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Kurzdarstellung

Metallschäume sind funktionale Werkstoffe, deren zelluläre Strukturen
natürlichen Materialien wie z.B. Knochen oder Pflanzen nachempfun-
den sind. Aufgrund ihrer hohen Steifigkeit bei geringer Masse, werden
geschlossenporige Metallschäume bereits seit Längerem als Konstruk-
tionselemente im Leichtbau, als Energieabsorptionselemente, als Schwin-
gungsdämpfer oder zur Schalldämmung eingesetzt. Dagegen sind offen-
porige Metallschäume wegen ihrer durchströmbaren Struktur, ihrer sehr
großen benetzbaren Oberfläche und ihres großen Verhältnis von Ober-
fläche zu Volumen für eine Reihe weiterer Anwendungen von großem
Interesse, z.B. als Wärmeübertragungselemente oder Katalysatoren in
der Verfahrenstechnik.

Um die für eine Anwendung notwendigen charakteristischen, thermi-
schen und strömungsmechanischen Eigenschaften zu bestimmen und
einen systematischen praxisgerechten Einsatz mit Hilfe von Korrelatio-
nen sowie Modellansätzen zu ermöglichen, werden im Rahmen dieser
Arbeit zum einen experimentelle Untersuchungen durchgeführt und
numerische Methoden für die Simulation der Strömung und Wärme-
übertragung entwickelt. Die experimentellen Untersuchungen tragen
einerseits zur Erweiterung der heute verfügbaren Datenbasis, speziell für
Reynoldszahlen im Bereich von 800 . Re . 35′000 bei, und dienen ander-
erseits als Validierungsgrundlage für Simulationsstudien. Die durchge-
führten Messungen umfassen dabei neben der Charakterisierung der
Schaumstruktur anhand von Porendurchmesser, Stegdurchmesser, rela-
tiver Dichte und Porosität auch die Vermessung der Druckverluste und
des Wärmeübertragungsverhaltens für unterschiedliche durchströmte
Längen für den o.g. Reynoldszahlenbereich.

Im Vergleich zu den bereits etablierten und bekannten numerischen
Methoden der Strömungsmechanik und Wärmeübertragung ist die Pha-
senfeldmethode ein recht junges und dennoch sehr mächtiges Werkzeug.
Gerade im Hinblick auf die heutigen Anforderungen interdisziplinärer
Aufgabenstellungen und die gekoppelte Multiphysiksimulation, birgt sie
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enormes Potential für die Entwicklung eines nachhaltigen Simulationsver-
fahrens. In dieser Arbeit werden ein Lattice-Boltzmann Strömungslöser
und ein Lösungsverfahren für die Berechnung der Wärmeübertragung
im Kontext einer Phasenfeldmethode entwickelt, getestet und angewen-
det. Von besonderer Bedeutung ist hierbei die numerische Modellierung
im Bereich der diffusen Grenzflächen. Während für den Strömungslöser
bekannte Konzepte erfolgreich angewendet werden können, wird für die
Energiegleichung ein neuer Ansatz für die Formulierung der dreidimen-
sionalen instationären Wärmeübertragung mit Hilfe einer tensoriellen
Beschreibung der Mobilitäten und einem angepassten Divergenzoper-
ator vorgestellt. Abschließend wird die Anwendbarkeit am Beispiel
offenporiger Metallschäume demonstriert und ein qualitativer und quan-
titativer Vergleich zu experimentell ermittelten Kenngrößen gegeben.



Abstract

Metal foams are functional engineered materials, motivated by the struc-
tures of natural materials, e.g. bones or plants. Due to their high stiff-
ness and low mass, closed-pore metal foams have been underway for
some time as construction elements in lightweight construction, energy-
absorbing elements, as vibration dampers or used for sound insulation.
In contrast, open-cell metal foams, due to their permeable structure,
its very large wettable surface and their large ratio of surface area to
volume, are of great interest for a number of other applications, e.g. as
heat transfer elements or catalysts in chemical engineering.

To determine the necessary characteristic, thermal and fluid mechan-
ical properties for an application, and to allow a systematic practical
use by means of correlations and modeling approaches, in the present
work we perform experimental investigations and develop numerical
methods for the simulation of flow and heat transfer. The experimental
investigations on one-hand contribute to enlargement of the currently
available data base, especially for Reynolds numbers in the range of
800 . Re . 35′000, and on the other hand, serve as validation basis for
simulation studies. Besides to the characterization of the foam structure
based on pore-diameter, edge-diameter, specific gravity and porosity,
the measurements comprise the acquisition of pressure loss and the
heat transfer performance for different lengths and the above-mentioned
range of Reynolds numbers.

Compared to the already established and well-known numerical meth-
ods of fluid mechanics and heat transfer, the phase-field method is a
relatively young, yet very powerful tool. Especially in view of the cur-
rent requirements of interdisciplinary tasks and coupled multi-physics
simulations, it harbours an enormous potential for the development of a
sustainable simulation method. In the present work, a lattice Boltzmann
and a heat transfer solver are developed, tested and applied in the con-
text of a phase-field method. Of particular importance is the numerical
modelling in the area of the diffuse interface. While we can successfully
apply known and established methods for the flow solver, we present a
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new approach for the three-dimensional transient heat transfer, by means
of a tensorial mobility approach and a revised divergence operator. Fi-
nally, the applicability is demonstrated using the example of open-cell
metal foams and given a qualitative and quantitative comparison with
experimentally determined parameters.
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Chapter 1

Introduction

Along with the rise of today’s issues such as energy-efficiency and ther-
mal balance of machinery, the interest on cellular solids in engineering
applications has increased. During the last decades metal foam, which
belongs to the class of porous media, was established in engineering
applications. At first, mostly closed cell metal foams were used for
structural components because of their unique mechnical features. Sub-
sequently open cell metal foams were identified for the use in chemical
or heat transfer applications, accounting for their huge surface to volume
ratio and their penetrable structure [7, 113, 189]. Referring to [86] a
cellular solid is made up of an interconnected network of solid struts
or plates which form the edges and faces of cells. These cellular solids –
to which open cell metal foams adhere – are characterized by the same
physical, mechanical and thermal properties as pure solids, whereas the
range and combination of these properties distinguish their inimitability
and opens their application to a variety of engineering applications and
innovative products.

Although research on porous media has been conducted since the mid
18

th century, where Darcy deduced the basic equations and characteristics
of flow in porous media, fluid flow and thermal physics in cellular solids
still cannot be verified in a general fashion. Even though the physical
and engineering sciences are aware of this topic since more than about
150 years, it has not lost its actuality, and there are still open issues to be
clarified. At this point, experimental as well as numerical investigations
can help to gain a deeper insight and understanding.

While the early publications are mainly focused on the mechanical prop-
erties, a rewiev on the last decades literature illustrates the emerging
importance of the fluidic and thermal application of open cell metal
foams. In order to lead the basic flow properties into the design process
of related applications and products, experimental and computational
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efforts are mandatory. From 1999 until 2004 the priority program 1075

on Cellular Metallic Materials1, concerned with the properties, processing
parameters, optimisation and understanding of the new materials, was
founded by the Deutsche Forschungsgemeinschaft (DFG). Apart from that,
numerous experimental and numerical efforts underline the importance
and actuality of that topic to this day. A recent review on heat trans-
fer applications of matrix and foam materials is given in [94] and the
performance of finned heat exchangers and open cell metal foam heat
exchangers is given in [183]. In [132–135, 222] experimental pressure loss
and heat transfer measurements are conducted for a large number of
aluminium and copper foams, whereas [149] investigated the pressure
loss characteristics in nickel foams. Ceramic foam structures are in the
focus of [48, 90] for applications in catalytic and chemical applications.
For all publications mentioned, the range of Reynolds numbers is limited
to a small to medium range. Thus, the range of medium to high Reynolds
numbers, which is in particular interesting for engineering applications,
will be covered by the present work.

There are only few publications covering the numerical treatment of the
fluid flow and heat transfer in cellular solids on a detailed high resolution
pore scale level, cf. [12, 19, 38, 46, 114, 123] to name only a few, and
which are discussed later in the text and which is the motivation for the
development of a straightforward, seamless and comfortable method.

1.1 Scope of this work

As a representative for the group of cellular solids, the focus of the
present work is laid on open cell metal foams. The objective of the thesis
is twofold: at first, the experimental investigations contribute to the
available database of hydraulic and thermal properties of open cell metal
foams, whereas the modelling efforts contribute to the development of
appropriate numerical methods in the context of the diffuse interface
phase field approach.

For the experiments, the measurement range is chosen in order to cover
a moderate to high Reynolds number flow regime, since there is only few
data available. From this, we claim to establish correlations for pressure
loss and thermal performance. The numerical work will represent the

1http://gepris.dfg.de/gepris/projekt/5469604 (accessed: 20/4/2014)

http://gepris.dfg.de/gepris/projekt/5469604
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capabilities of the established methods and algorithms for their use on
complex microstructures and cellular solids, by means of focusing exem-
plarily on open cell metal foams, as a predecessor of a more extensive
parameter study in comparison to experimental data.

In view of more complex multidisciplinary and multiphysics applications
e.g. including phase transition, electro chemistry or solute transport,
as well as more complex convoluted microstructures, we compile our
work in the context of a phase field method [154]. The phase field
method emerged from simulations within the scope of solidification,
crystal-growth or phase-transition problems. In this contribution, we will
utilize the method for the creation and mapping of complex pore-scale
structures. Thus, no phase-field dynamics is present, i.e. the phase field is
only used to distinguish between different phases (fluid|solid) which do
not evolve in time. One can easily think of applications, topologies and
configurations which can hardly be mastered by body fitted, interface
tracking methods, if ever. For the latter situations, the presented approach
promise to be a comfortable, feasible and high potential method.

For the solution of the fluid flow, we will employ the lattice Boltzmann
method, which has evolved as a powerful and valuable tool, on eye-level
with classical computational fluid dynamics methods, for computational
studies of incompressible and quasi-incompressible flow regimes. How-
ever, there are only a few publications on lattice Boltzmann models
for fluid flow in the context of phase field throughout the last decade.
Whereas [148, 175, 176] are concerned with the simulation of dendritic
solidification including the effects of liquid motion, [67, 155] aim at the
simulation of fluid flow in complex microstructures unlike the classical
field of application of a phase-field method.

Regarding heat transfer simulations, the evolution equation of tempera-
ture is solved within the framework of the phase-field method. In the
course of this work, the numerical treatment is subject of the develop-
ment of a new segmented tensorial formulation, which allows for the
stable and accurate solution of three dimensional transient temperature
field.

The solution of the Navier-Stokes equations is accompanied by several
numerical difficulties, the treatment of nonlinear convective terms or
the solution of the Poisson equation to evaluate the pressure [161]. In
lattice Boltzmann methods, the pressure is obtained by the equation of
state and the nonlinear convective terms reduce to an advection type
problem [219]. Furthermore, the LBM is completely explicit, thus simple
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to implement. Each timestep is divided into a collision and a streaming
step, which are local and nearest neighbour operations and which are
hence predestined for parallelisation [95, 194, 215].

1.2 Outline of the thesis

The thesis is organized as follows: In chap. 2 we describe the main prop-
erties of open cell metal foams, their characterisation and a new method
which enables the straightforward, feasible and realisitc modelling of
foam structures, followed by the experimental setup as well as the re-
sults of fluid dynamic and thermal measurements, discussed in chap. 3.
The presentation of the numerical approach starts in chap. 4, where a
brief overview on the idea of a diffuse interface phase field method is
given. The integration of established numerical approaches as well as
the development of new methods for diffuse interface fluid dynamics
and heat transfer together with results of their validation, is provided
in chap. 5 and chap. 6, respectively. Results of the modelling of real
foam structures, in terms of coupled diffuse interface fluid flow and heat
transfer approach, are evaluated and compared to measurements of real
foam structures in chap. 7. Finally an outlook on potential improvements,
optimisations and future developments is given in chap. 8, and the thesis
is closed by a summary and conclusion in chap. 9.



Chapter 2

Metal foam

This rather young group of materials is the focus of attention of academics
and engineers since the early nineties. Similarly to bionic structures or
polymer foams, they have extremely low densities and high specific
surface areas. Utilising metals as base materials results in excellent
mechanical, electrical, thermal and acoustic properties, whereas specific
properties like thermal expansion coefficient, electric conductivity or
melting temperature remain unchanged compared to the raw material
[7].

Metal foams can be made from almost all base materials, whereas each
one shows up its individual and specific foam structure. Due to their
low melting temperatures, aluminium, magnesia, tin and copper are

(a) (b)

Figure 2.1: Close up of (a) closed cell foam1 and (b) open cell foam (pore diameter
of approximately 5 mm each).

1This image is taken from: http://commons.wikimedia.org/wiki/File:Closed_cell_
metal_foam_with_large_cell_size.JPG, available under the Creative Commons
Attribution/Share-Alike Licence. (accessed: 10/3/2014)

http://commons.wikimedia.org/wiki/File:Closed_cell_metal_foam_with_large_cell_si ze.JPG
http://commons.wikimedia.org/wiki/File:Closed_cell_metal_foam_with_large_cell_si ze.JPG
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appropriate for a reasonable and cost-efficient production [100]. The cell
structure of metal foam is of statistical nature, where the cells and the
pore sizes are more or less statistically scattered, depending on the related
manufacturing process. Two major foam types can be distinguished,
namely closed cell and open cell metal foams.

2.1 Closed cell foam

Closed cell foams are characterised by segregated pores which are not
linked or connected, cf. 2.1(a). These foams typically have almost exclu-
sively spherical cells, a very good mass to stiffness ratio, low density and
excellent energy absorption properties. Therefore, closed cell foams are
suited for application in numerous fields within the scope of weight op-
timisation and impact energy absorption, e.g. automobile and aerospace
sectors [7, 86, 100].

2.2 Open cell foam

Open cell metal foams are characterised by an interconnected permeable
pore structure, which exhibits a high specific surface and a moderate
pressure drop. Their penetrability, allows for the use as heat exchanger,
and, together with the large internal surface, for the use in chemical
engineering (catalysts, battery) [7, 86, 100]. Furthermore, heat transfer
properties of phase change materials may be improved by embedding
open cell metal foams and increasing the penetration of heat.

2.3 Production process

Over the years, a vast number of different methods for the production
of metal foams have been developed. These methods can be divided
into two basic groups: smelting-metallurgy production and powder-
metallurgy production.

Furthermore, the methods can be distinguished by the process of pore
evolution in self-evolving and preshaping methods. In self-evolving
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methods, the pores are formed by gas bubbles, whereby the cell arrange-
ment and pore size distribution is based on the laws of statistics. Thus,
the final foam structure is heavily controlled by the parameters of the
production process, which leads to a comparatively high scattering of
the material properties. In preshaping methods (e.g. precision casting),
the material properties like pore size, specific gravity or porosity, can be
controlled by the mould, leading to a more homogeneous structure.

Smelting-metallurgy production: in most of these methods the molten
metal is foamed by injection of gas or by addition of a blowing-
agent. The latter are substances, which either perform a chemical
reaction or, due to high temperatures, release dissolved gas (e.g.
metallic hydrides like Titanium Hydride (TiH2)). Corresponding
production processes are for instance ALOPRAS®, METCOMB®,
ALCAN/HYDRO, CYMAT, COMBAL or GASAR, cf. [100].

However, smelting production which do not use blowing agents
or injection gas, are based on a modified casting process, and
by utilising a mould, they belong to the group of preshaping
methods. Among others, the production of open pored metal foams
is commonly performed by pressure casting with placeholders,
precision casting (lost-wax process) or the ERG DUOCEL®-process.

Powder-metallurgy production: this process is similar to the produc-
tion of ceramics. Metal powder and the blowing-agent are mixed
and compressed (extrusion pressing). The moulded piece is then
brought to foaming temperature, which is close to melting temper-
ature, where the blowing agent releases gas and a cellular structure
results. These methods are not suitable for the production of open
cell metal foams [100].

2.4 Characterisation of open cell foams

2.4.1 Pore density

The characterisation and classification of open-cell metal foams in terms
of the pore density (ppi2) is not sufficiently accurate for the thermal
and fluid mechanical studies, due the lack of information on the ratio

2pores per inch
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Figure 2.2: Characteristic measures of foams.

of pore size and edge thickness. A certain number of pores per inch
can be achieved by both, small pores with thick struts, as well as by
large pores with small struts. Despite having the same pore density,
this results in very different ratios of void (superficial) volume and
volume of the parent metal of the foam. Due to this, a characterisation
of the metal foam samples with regard to their specific gravity and the
porosity is significant for the subsequent investigations, gaining more
detailed information on the structural composition and on the permeable
volume.

2.4.2 Specific gravity

The specific gravity ρ∗ is defined as ratio of the density of the foam ρfoam
and density of the base material ρmetal [88, 89] as

ρ∗ =
ρfoam
ρmetal

. (2.1)

The more cavities or pores the foam has, the lower the specific gravity.
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2.4.3 Porosity

The porosity ψ is the ratio of the cross-sectional area of the pores and the
cross-sectional area of the flow channel. According to [17] the porosity is
defined as

ψ =
Apore

Afoam
. (2.2)

Based on the volume of the pores and the total volume of the foam, the
porosity is written as [4, 40]

ψ =
Vpore

Vfoam
. (2.3)

Furthermore, according to [100], the porosity can be deduced from the
specific gravity and the density of the base material as

ψ = 1− ρ∗

ρmetal
, (2.4)

hence, the porosity is directly related to the relative density. Both mea-
sures characterise the structural composition of the foams and can be
utilised to observe and conclude on fluid mechanical properties.

2.5 Open cell foam modelling

Making the complex geometric structures of cellular solids available to a
numerical simulation requires the representation in a digitally, machine
readable format. There are a couple of approaches for modelling foam
structures, for example using representative elementary volumes (REV),
ranging from simple cubic cell to regular dodecahedron [105] and even
more complex tetrakaidecahedron [18, 42], cf. figure 2.3.

These models describe the pore structure by means of a representative
unit cell, characterising the structural configuration of the foam. The unit
cell is a combination of nodes which are interconnected by edges. An
open-cell metal foam can thus be described as a combination of nodes
and edges. Within these models, mass is distributed along struts and at
the knots of the regular structures, which are then used for an analytical
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Figure 2.3: Unit cells used by different authors to synthetically build cellular
solids from regular structures.

derivation of foam characteristics like porosity or structure performance
data such as thermal conductivity.

In [105] the foam structure is modelled using a simple cubic elementary
cell, which allows a very simple representative structure, and is used to
derive a theoretical model for pressure loss and heat transfer. An even
more simplified approach is used in [55], presuming one-dimensional
heat transfer and modelling foam structure by means of a batch of cylin-
ders. The cross-sectional shape of the interconnected edges is studied
by [105] using the dodecahedron with twelve flat pentagonal faces. El-
ementary cells with prism shaped and round edges are modelled and
compared in terms of porosity and pressure loss. The tetrakaidecahedron
is a polyhedron with six quadratic and eight hexagonal faces [28], which
allows to account for the imbalance of face and edge shape in a real foam
structure. Among others it is used by [18, 42, 75, 107, 197] to model
porosity, pressure loss and heat transfer in open cell metal foams.

However, detailed numerical investigations at pore scale level are either
lacking in realistic structures due to simplified representation by the
above mentioned unit cells, or depend on a geometry which needs to
be captured by a costly tomography, cf. [12, 19, 114]. In the course of
this work [178] created a new algorithm, that is capable of synthetically
creating three dimensional cellular solids, foam or fabric like structures,
with either open or closed cells. The workflow substantially follows three
steps:
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(a) (b)

Figure 2.4: (a) Compact packing of spheres (red) with uniform pore diameter.
(b) 3D Voronoi-diagram, where the different colours represent different Voronoi-
regions.

(a) (b)

Figure 2.5: (a) The struts computed from the Voronoi-diagram, (b) the final
structure.

1. First, the computational domain is gradually filled with spheres,
in order to receive the most compact packing. Whereas the first
sphere is located randomly inside the domain, the second sphere
is again placed randomly at a vacant location, and then moved



12 Chapter 2 Metal foam

towards the first one. The third sphere is once more inserted at a
random vacant location, and then iteratively moved towards the
previous two spheres. Each following sphere is then repeatedly
placed at a vacant location and then iteratively moved towards the
previous three nearest-neighbour spheres. After a few iterations
each sphere thus has its optimal position. Figure 2.4(a) depicts an
example of a compact packing of spheres achieved by the described
procedure.

2. Next, the basic topology of the structure is derived from a Voronoi-
decomposition of the spatial domain, where each Voronoi-vertex
corresponds to exactly one Voronoi-region. Each Voronoi-region
consists of all points whose distance to the center of the Voronoi-
region is not greater than their distance to any other region. Here,
the Voronoi-decomposition is done, by assigning one sphere to
each geometrical location of the domain, for which the distance to
sphere-center is minimal. The resulting Voronoi-regions give the
basic topology for the cellular structure. Figure 2.4(b) shows the
corresponding Voronoi-diagram for the packing of spheres given
previously.

3. Finally, the cellular structure is created from the boundaries of the
Voronoi-diagram. Each location, where at least three regions are
connected, are used to built edges of the cellular structure. The
knots of the structure, where four struts are joined, are built from
the connections of four regions, cf. fig. 2.5(a).

The struts of cellular structures are often different with regards to their
cross-sectional shape. For example, aluminium foams often have a
triangular cross-sectional shape and thickening in the vicinity of the
knots. The latter can be re-sampled by relating the thickness of the struts
to the distance to their knots. The triangular shape is re-sampled, by also
considering the connections of two Voronoi-regions. Here, an additional
criterion if material is set or not, is given by the distance to the nearest
boundary region, see fig. 2.5(b).
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Experiments1

3.1 Specimens

In the course of this work open cell metal foam is examined [202], where
the samples are aluminium foams (AlSi7Mg) with pore densities of
10 ppi, 20 ppi, and 30 ppi, and copper foam with a pore density of 10 ppi.
The probes are manufactured by precision casting and were supplied by
m.pore2.

Figure 3.1: Exemplary open cell metal foam probes used for the experimental
investigations [67].

The cylindrical structure of the foam samples with a inner diameter
of 40 mm and a foam-length of 20 mm is embedded in the cylindrical
shroud. The shroud acts as the seal against the environment and is used

1Some of the results of the subsequent sections were presented at ECCOMAS 2012 -
European Congress on Computational Methods in Applied Sciences and Engineering and
published in [67].

2m.pore GmbH, Dresden, Germany
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as transmission surface between the heat source and the interior metal
foam, which is physically connected, i.e. casted together in one single
process, cf. fig. 3.1. This ensures the best possible heat transfer between
the cylindrical heat sources and the foam samples.

Referring to the manufacturing process of open cell metal foam, the
overall length of a cylindrical encapsulated sample is limited due to
the demoulding process. With respect to the scheduled porosities for
investigations, namely 10 ppi, 20 ppi and 30 ppi, the maximum sample
length is limited to 20 mm. Therefore, the foam samples as well as the
isolated housing are designed modularly with respect to different sample
lengths planned for measurements. In doing so we presume that heat
transfer effects in axial direction are negligible compared to the radial
conduction and convective effects, and segmentation of foam samples
still provide valuable results. Finally, specimens with a diameter of
40 mm and the incremental lengths of 20 mm, 40 mm, 60 mm, 80 mm and
100 mm are available.

3.2 Characterisation of specimens

To characterise the specimens beyond of the pore density, and to be
able to better interpret the results of the fluid mechanical and thermal
investigations, the samples were examined by the following described
methods. The recorded measures are pore diameter dpore, face diameter
dface and edge diameter dedge, depicted schematically in fig. 2.2.

In order to assess whether the measured values are normally distributed,
and if the calculated mean is representative, a normal probability plot
was chosen for presentation. The so called p-value of the Anderson-
Darling test [192] is used here as a key-figure to assess normality. In
addition, the bounds of a 95 % confidence interval are shown (dotted
lines) in the following diagrams.

3.2.1 Microscopy

Pore diameter dpore, face diameter dface and edge thickness dedge are
ascertained by means of a digital microscope Keyence VHX-600, by super-
imposing circular and linear measures using the accompanying image
measurement software. Figure 3.2 shows the exemplary measurement of
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Figure 3.2: Example of superimposed circular and linear measures using the
image measurement software of the Keyence VHX-600 digital microscope.

some circular and linear measures for a 10 ppi aluminium foam sample.

Due to the coarse structure of the 10 ppi foam samples, ten measuring
points are taken on both sides of the samples at five-times magnifica-
tion, making up a total of 100 measurement points. For the 20 ppi and
30 ppi samples it was possible to acquire fifteen measuring points at
ten-times magnification on each side of the samples, resulting in overall
150 measurement points for each foam type.

Pore diameter

The normal probability plot of one sample for each foam type is exem-
plarily depicted in figs. 3.3, whereas the complete series of individual
measures is given in figs. A.1 to A.4 in appendix A. It is verified by the
individual normal probability plots given in appendix A for each sample
of all foam types, that the assumption of normality and the averaged
mean measures are valid.

On the other hand, from the cumulative normal probability plots, where
all samples of one foam type are considered, we see that the criterion
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(a) 10 ppi aluminium, sample №1
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(b) 20 ppi aluminium, sample №3
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(c) 30 ppi aluminium, sample №4
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(d) 10 ppi copper, sample №5

Figure 3.3: Exemplary normal probability plots of the measured pore diameter
for (a) 10 ppi aluminium sample №1 (b) 30 ppi aluminium sample №3 (c) 20 ppi
aluminium sample №4 and (d) 10 ppi copper sample №5. The dotted lines
represent the 95 % confidence interval, respectively.

of the Anderson-Darling test is infringed3. The cumulative normal
probability plots of each foam type are given in figs. A.1(f), A.2(f), A.3(f)
and A.4(f), respectively.

As expected, the pore diameter decreases with increasing number of
pores per inch, whereas the difference between 10 ppi aluminium and
20 ppi aluminium is much larger than between 20 ppi aluminium and
30 ppi aluminium. Furthermore, it is noteworthy, that the 10 ppi alu-
minium and copper foam both have a similar pore diameter of about

3For the Anderson-Darling test, a value of p < 0.05 indicates a significant deviation from
the prescribed probability distribution – here, normal distribution.
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(a) 10 ppi aluminium
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(b) 20 ppi aluminium
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(c) 30 ppi aluminium
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(d) 10 ppi copper

Figure 3.4: Cumulative (all samples) normal probability plots of the measured
face diameter for (a) 10 ppi aluminium, (b) 30 ppi aluminium, (c) 20 ppi alu-
minium and (d) 10 ppi copper. The dotted lines represent the 95 % confidence
interval, respectively.

6 mm. The scattering of measures is highest for the 10 ppi aluminium
foam. The individual mean pore diameters of each sample are sum-
marised in table 3.1.

Face diameter

The cumulative (all samples) normal probability plots of the measured
face diameters of each foam type are depicted in figs. 3.4, whereas the
complete series of individual measures is given in figs. A.5 to A.8 in
appendix A. Since p > 0.05 for the evaluation of all foam types, the
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(a) 10 ppi aluminium, sample №3
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(b) 20 ppi aluminium, sample №1
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(c) 30 ppi aluminium, sample №5
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(d) 10 ppi copper, sample №2

Figure 3.5: Exemplary normal probability plots of the measured edge thickness
for (a) 10 ppi aluminium sample №3 (b) 30 ppi aluminium sample №1 (c) 20 ppi
aluminium sample №5 and (d) 10 ppi copper sample №2. The dotted lines
represent the 95 % confidence interval, respectively.

face diameter does not depend on the individual samples as the pore
diameter above. The individual and cumulative mean face diameters are
summarised in table 3.1.

As with the pore diameter, the face diameter decreases with increas-
ing number of pores per inch, whereas the difference between 10 ppi
aluminium and 20 ppi aluminium is much larger than between 20 ppi
aluminium and 30 ppi aluminium. The individual mean face diameters
of each sample and the cumulative face diameters are summarised in
table 3.1.
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Table 3.1: Summary of the individual and cumulative pore diameters dpore, face
diameters dface and edge thickness dedge for all foam samples in mm.

sample № 1 2 3 4 5
cumula-

tive

10 ppi aluminium
dpore 5.82± 0.21 5.89± 0.27 6.51± 0.38 6.01± 0.29 6.32± 0.32 *
dface 2.50± 0.32 2.39± 0.28 2.46± 0.35 2.52± 0.34 2.44± 0.33 2.46± 0.32
dedge 0.60± 0.09 0.61± 0.08 0.80± 0.18 0.74± 0.12 0.78± 0.11 *

20 ppi aluminium
dpore 3.44± 0.25 3.55± 0.13 3.58± 0.15 3.57± 0.07 3.64± 0.16 *
dface 1.07± 0.24 1.03± 0.19 1.05± 0.25 1.16± 0.26 1.04± 0.18 1.07± 0.22
dedge 0.48± 0.06 0.47± 0.08 0.51± 0.01 0.48± 0.08 0.51± 0.06 0.49± 0.08

30 ppi aluminium
dpore 3.09± 0.10 3.02± 0.11 3.16± 0.15 3.05± 0.10 3.10± 0.07 *
dface 0.89± 0.15 0.90± 0.14 0.93± 0.16 0.86± 0.12 0.92± 0.13 0.90± 0.14
dedge 0.31± 0.05 0.42± 0.05 0.31± 0.05 0.43± 0.11 0.41± 0.06 0.37± 0.09

10 ppi copper
dpore 5.89± 0.46 5.69± 0.28 5.92± 0.45 5.78± 0.24 5.77± 0.20 *
dface 2.06± 0.30 2.11± 0.36 1.98± 0.32 1.99± 0.33 2.14± 0.41 2.06± 0.35
dedge 1.24± 0.11 1.07± 0.15 1.17± 0.15 1.14± 0.15 1.06± 0.29 *

*: no cumulative values available

Edge thickness

As with the above pore diameters, the edge thickness of the cumulative
measures of the different foam types does not follow a normal distri-
bution, whereas the normal probability plots of the individual samples
given in figs. A.9 to A.12 in appendix A, probate the mean edge thickness
evaluated.

While the cumulative edge thickness of the 10 ppi aluminium and copper
foams infringe the criterion of the Anderson-Darling test, the cumulative
values of 20 ppi and 30 ppi aluminium samples are valid. The edge
thickness decreases with increasing number of pores per inch. While
the pore diameter of the 10 ppi foams of aluminium and copper type are
relatively similar, the edge thickness significantly differs. The individual
mean edge diameters of each sample and the cumulative values for the
20 ppi and 30 ppi aluminium foams are summarised in table 3.1.

In direct comparison between the aluminium and copper foams of equal
pore density (10 ppi) at ten-times magnification distinct differences in
the pore diameter, face diameter and edge thicknesses can be seen, cf.
fig. 3.6. While the copper foam has smaller pore and face diameter, the
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(a) 10 ppi aluminium, sample №1 (b) 10 ppi copper, sample №4

Figure 3.6: Comparison of foam structure at ten-times magnification for 10 ppi
aluminium sample №1 and copper sample №1.

(a) 10ppi aluminium, sample №1 (b) 10ppi copper, sample №2

Figure 3.7: Comparison of foam structure at twenty-times magnification for
10 ppi aluminium sample №1 and copper sample №1.

edge thickness is larger, thus achieving the same pore density, such as
aluminium foam. The difference in edge-shape of aluminium and copper
foams is depicted in figs. 3.7 at twenty-times magnification. While the
aluminium foam shows triangular shaped edges, the edges of the copper
foam are rounded. Due to the figs. 3.6 and 3.7 it can be surmised that
the porosity of the copper foam is smaller than that of the aluminium
foam.

3.2.2 Gravimetry

Since the foam samples are embedded into the shroud, a direct mea-
surement of the mass of the foam is not possible. Instead, the finally
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Table 3.2: Summary of the individual and cumulative specific gravity ρ∗ and
porosities ψ.

sample № 1 2 3 4 5 cumulative

10 ppi aluminium
ρ∗ 0.116 0.072 0.123 0.162 0.121 0.119
ψ 88.441% 92.777% 87.703% 83.846% 87.888% 88.131%

20 ppi aluminium
ρ∗ 0.170 0.166 0.210 0.171 0.169 0.177
ψ 83.032% 83.355% 78.996% 82.926% 83.111% 82.284%

30 ppi aluminium
ρ∗ 0.126 0.177 0.090 0.189 0.127 0.141
ψ 87.439% 82.334% 90.999% 81.143% 87.341% 85.851%

10 ppi copper
ρ∗ 0.236 0.298 0.289 0.239 0.272 0.267
ψ 76.402% 70.186% 71.067% 76.074% 72.834% 73.312%

machined geometry of the shroud is measured in detail, and the mass
was calculated using the density of the base material specified by the
manufacturer and subtracted from the overall mass of the samples.

The overall weight of the individual samples is measured using a Sartorius
digital precision scale type LP6200S. All measurements are repeated
multiple times, and all results are controlled using a Mettler analogue
precision scale type P-1200.

Doing so, the foam mass is calculated from mfoam = msample −mshroud,
whereas the specific gravity and the porosity are evaluated using eqns.
(2.1) and (2.4), respectively. The specific gravity and the porosities of the
individual samples are summarised in tab. 3.2.

Even though the specimens are delivered by the same manufacturer and
originate from the same production lot, there are significant differences
in porosity. The 30ppi aluminium samples show the maximum deviation
in porosity, varying in the range between 81.144% and 90.999%.

This again illustrates the shortcoming of the term pore-density (ppi –
pores per inch). Foams of the same pore density significantly differ
regarding their pore scale measures and porosities, whereas foams of
different pore densities show similar porosity.
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Figure 3.8: Schematic diagram of the test rig: inlet, probe and outlet with pres-
sure traversing units À, temperature rakes Á, probe section Â, thermal massflow
meter Ã and air supply Ä.

3.3 Test rig

The experimental test rig for fluid flow and heat transfer measurements of
air flow through cellular solids is designed, manufactured and assembled
at the Karlsruhe University of Applied Sciences [64, 67]. Emphasis is laid
on practical relevance, and a circular cross-section is chosen in the style
of most engineering fluid flow applications. Furthermore, this avoids
impact of secondary flow phenomena.

The cross sectional area with a diameter of 40 mm is designed with
respect to a feasible flow supply and to enable laminar up to turbulent
flow regime with respect to the available metal foam probes of different
porosities. According to the specifications of the manufacturer, probes
with 10 ppi, 20 ppi and 30 ppi are customly produced.

The test rig can be divided into three sections, namely the inflow-, test-
and outflow-section, where the temperatures, static and total pressures
are measured at two locations at the inlet and outlet section, right in
front and behind of the test section, cf. fig. 3.8.

In the inflow section of the experimental rig, ambient air flows through
a stainless steel pipe with a length of 2 m, such that the flow is
unimpeded and fully developed. In order to minimise the axial
offset of the pipings and fittings, either metal bushes are used for
alignment, sealed and mounted using TKA-Axilock couplings, or
grooved flanges. In order to measure the pressure and velocity
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(a) (b)

Figure 3.9: Detailed view on (a) the three dimensional design models of the
custom made pressure probe section of the test rig (linear actuator and sensor
are omitted here) and (b) image of the Pitot tube inside the ’real’ assembly.

(a) (b)

Figure 3.10: Detailed view on (a) the three dimensional design model of the
custom made temperature probe section of the test rig and (b) the temperature
rake inside the probe section.

(a) (b)

Figure 3.11: Three dimensional design model of the test section of the test rig,
with foam samples, heat sources and modular housing elements; the temperature
sensors are omitted here.
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Figure 3.12: Final installation of the test rig.

profiles in front of and behind the foam samples, a custom made
adjustable Pitot tube is designed and manufactured, cf. figs. 3.9.
It enables to measure the total pressure along the transversal axis
of the cross section at any position up to a distance of 2 mm from
the wall. A stainless steel capillary tube with an outer diameter
of D =1 mm and a diameter ratio of d/D ≈ 0.6 is used for the
Pitot tube, cf. fig. 3.9(b). According to [159], for the diameter ratio
of about 0.6, a deviation of ≤ ± 10

◦ causes no significant error.
The linear actuator allows positional accuracy and repeatability by
0.01 mm. Using the static pressure measured by four wall pres-
sure taps connected by a loop, we are able to obtain the dynamic
pressure and velocity respectively. The Pitot tube is driven by a
linear actuator which is controlled by the computer-operated test
rig control system. Throughout all pressure taps, high accuracy
capacitive and piezoresistive differential pressure transmitters of
Endress+Hauser with ceramic or silicon sensors are used.

Figures 3.10 shows the custom made temperature rake, which is
used to ascertain the temperature profiles in front of and behind
the foam samples. The rake is equipped with 9 miniature high
accuracy type T thermocouples with a diameter of 0.5 mm.

The test section is entirely made of PTFE and designed in a modular
way, to enable testing of probes with lengths of 20 mm, 40 mm,
60 mm, 80 mm and 100 mm. It consists of a front and rear element
and five identical intermateable slabs. The front and rear plates are
designed and milled to be aligned with the grooved flanges of the
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measurement fittings. An aligned and tight connection between the
intermateable slabs are guaranteed by a centering collar and Viton
o-rings. The overall test section is assembled using four threaded
rods and wing nuts, cf. figs. 3.11.

For the heat transfer measurements, the foam samples are equipped
individually with cylindrical heat source elements from Freek with
an output of 470 W, i.e. roughly a total output of 2500 W when test-
ing five samples. Each heating element is controlled individually
by the test-rig control software, such that the wall temperature is
kept constant.

The outflow section is equipped with a Endress+Hauser thermal mass
flow meter Proline t-mass 65, which is customly calibrated for a lim-
ited range of 0 to 65 kg/h to obtain a measurement uncertainty of
±1 %. At the outlet of the open circuit an ebm-papst high-pressure
blower type G3G125-AA20-10 is installed for air supply. The blower
provides a minimum massflow of 5 kg/h, a maximum massflow of
65 kg/h and a maximum pressure difference of 18’000 Pa at zero
flow rate.

3.4 Control unit & data acquisition

The complete governance and control system is realised with a cus-
tomised National Instruments LabVIEW software control system, allowing
the simultaneous recording of all signals as well as the automatic steering
of the adjustable Pitot tube and the automatic heating control. The latter
allows a constant temperature regulation at ±1

◦C within a temperature
range of about 30

◦C up to 120
◦C at full discharge.

The connection to the respective actuators and sensors is realised via a
NI-cDAQ-9178 USB data acquisition board and several modules for the
processing of the different input and output signals, cf. fig. 3.13.

The pressure sensors and the thermal massflow meter are connected
via an analogue input module NI-9203 while there are two dedicated
16-channel input modules NI-9214 for the thermocouples, and the fan
is controlled by the NI-9263 output module. The linear actuators of the
Pitot probes are directly connected via USB, and also controlled within
the LabVIEW program. Ambient conditions as well as the temperature



26 Chapter 3 Experiments

Figure 3.13: Schematic of the data acquisition, control system and regulation.

Figure 3.14: Exemplary screenshot of the test-rig control and data acquisition
software program, realised with National Instruments LabVIEW software.

control of the heat sources are connected using RedLab USB boxes from
Meilhaus Electronics.

The graphical user interface of the test-rig control software allows the
to user access the fan speed, the positioning of the Pitot tubes, the
constant temperature regulation and the automatic acquisition of all data,
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Table 3.3: Absolute total uncertainties for the different signals.

value unit total absolute uncertainty

ambient pressure Pa ± 395
ambient temperature ◦C ± 1.0
rel. humidity ◦C ± 0.8
static/total pressure Pa ± 2.5
dynamic pressure Pa ± 6.1
massflow kg/h ± 0.1
temperatures ◦C ± 0.6

cf. fig. 3.14. Due to the huge amount of data (about 60’000 values for a
measurement time of 1 min at a sampling rate of 1000 Hz) the software
DIAdem of National Instruments is used for post-processing.

3.5 Measurement uncertainties

The measurement chain is affected by several sources of uncertainty.
In addition to the uncertainties of the sensors, there are sources of
uncertainties in signal conditioning (offset errors and gain errors), as
well as the quantisation error of the A/D conversion. With respect to
the rules of error propagation, the absolute total uncertainty for the
different sensors and the relevant measurement chain are determined
and given in tab. 3.3. Further details and tests on repeatability, accuracy
and plausibility are reported in [202].
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3.6 Fluid mechanic measurements

Knowledge about the head loss of flow in open cell metal foam is vital
for its application as heat exchanger. A first attempt for the description
of the flow in porous media was done in the early 18

th century by Darcy.
Assuming homogeneity and isotropy of the porous layer, he derived by
experiments the proportional relationship between the pressure gradient
∇p, the discharge rate q and the dynamic viscosity µ of the fluid

−∇p =
µ

K1
q , (3.1)

where K1 is the empirical permeability of the porous medium [113].
Relating the gradient of a potential to a flux via a mobility coefficient is
similar to Fick’s law, Fourier’s law or Ohm’s law, and can also be derived
as a special solution of the Navier-Stokes equation. The relation can be
used for flow regimes with Reynolds numbers ≤ 3. Increasing velocity or
decreasing viscosity leads to a higher Reynolds number, where inertial
forces become crucial compared to frictional forces. This is taken into
account in the Forchheimer-Darcy equation, by adding a turbulent term
to the viscous term on the right hand side of the Darcy equation

−∇p =
µ

K1
q +

ρ

K2
q2 . (3.2)

For the application of Darcy’s law and the Forchheimer-Darcy equation
for packed beds, the Darcy and non-Darcy permeability coefficients K1
and K2 are for instance given as correlations of particle diameter, porosity
and Reynolds number, and known as Kozeny–Carman equation and
Ergun-equation.

There are numerous publications concerned with pressure loss data and
correlations for open cell metal foam as well as ceramic foams, and this
issue is still subject of ongoing research activities, cf. [2, 51, 53, 59, 82, 133,
134]. The most comprehensive overview of the state of the art empirical
and theoretical methods for pressure drop modelling is given by [59].
In accordance with the well known Ergun-equation for packed spheres,
many authors make use of a second order polynomial for successfully
modelling pressure loss correlations.
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Figure 3.15: Pressure loss for all the individual foam samples of (a) 10 ppi alu-
minium, (b) 20 ppi aluminium, (c) 30 ppi aluminium and (d) 10 ppi copper,
respectively. Reynolds number is based on inlet diameter.
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Figure 3.16: Pressure loss of foams of similar porosity (a) ψ ≈83 % and (b)
ψ ≈87 %.Reynolds number is based on inlet diameter.
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3.6.1 Pressure loss of all individual samples

Testing all individual samples, the measurements range from minimum
fan speed to the upper limit of the thermal massflow meter or 100 % fan
speed, with increments of 5 %. Thus, for each sample we conduct 10 to
16 individual measurements, depending on the specific pressure loss.

Each measurement point represents the temporal average of a measure-
ment duration of 10 s, respectively. All physical properties are deter-
mined according to the inlet conditions of the working fluid and [110].
The Reynolds number reads

Re =
us di
ν f

, (3.3)

where us is the superficial velocity at the inlet of the specimen, di is the
diameter of the inlet geometry and ν f is the kinematic viscosity of the
fluid with respect to the inflow conditions.

Figures 3.15 show the pressure losses of the individual foam samples for
all foam types and pore densities, respectively. The individual samples
of equal pore density show significant differences in pressure loss, which
corresponds to the variations in characteristic pore scale measures already
established in sec. 3.2. However, the deviations are consistent with the
porosities, i.e. higher porosity causes less pressure loss. The sole excep-
tions are 10 ppi copper samples №2 and №3 as well as 20 ppi aluminium
samples №1 and №4, cf. figs. 3.15(b) and 3.15(d), respectively.

Reasons for the discrepancies are the measuring inaccuracies in gravimet-
ric determination of porosity and material accumulation in the vicinity
of the shroud, cf. figs. 3.17. As already mentioned in sec. 3.2.2 these are
production-related issues, which cannot be excluded in the course of
manufacturing, neither be controlled nor suppressed.

Foams of different pore densities but similar porosities are compared in
figs. 3.16. Different foams of similar porosity compare well to each other,
and it becomes obvious, that the pore density is neither significant nor
meaningful to characterise similarity or comparability.

3.6.2 Pressure loss per unit length

In a second setup, the samples of the same pore density are combined
modularly, testing the gradations of 20 mm, 40 mm, 60 mm, 80 mm and
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100 mm, respectively. Starting at minimum fan power, the measurements
are limited by either the maximum fan power or the upper limit of the
thermal massflow meter, depending on porosity and combined sample
length. As established above, the porosity varies significantly for samples
of the same pore density, which already became evident in the pressure
loss characteristics of the individual samples. We therefore expect a
certain scattering for the pressure loss per unit length.

The results of the measurements are given in figs. 3.18, together with
a quadratic fit of type y = a x2 + b x for each pore density, respectively.
The 10 ppi copper foam shows the largest scattering, and remarkably
good results are obtained for the 20 ppi aluminium foams. From this
it is evident, that the pore density is unsuitable for the characterisation
of foams, even though the individual samples of one pore density are

(a) 10 ppi copper, sample №2 (b) 10 ppi copper, sample №3

(c) 20 ppi aluminium, sample №1 (d) 20 ppi aluminium, sample №4

Figure 3.17: Material accumulation in the vincinity of the shroud as well as
measurement inaccuracies are the reason for uncertainties in determination of
porosity: (a) and (b) 10 ppi copper foam samples №2 and №3, (c) and (d) 20 ppi
aluminium foam samples №1 and №4, respectively.
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Figure 3.18: Pressure loss per unit length for (a) 10 ppi aluminium, (b) 20 ppi
aluminium, (c) 30 ppi aluminium and (d) 10 ppi copper. The black solid line
represents a quadratic fit of type y = a x2 + b x. Samples of the same pore density
are combined for overall lengths from 20 mm to 100 mm.
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Figure 3.19: Cumulative pressure loss per unit length for all samples of each
pore density.
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manufactured by the same production batch. Figure 3.19 shows the
comparison of the pressure loss per unit length for all pore densities.
Despite of the scattering, the ordering of the pressure loss characteristics
corresponds to the average porosities of the samples.

In order to correlate the experimental data of all samples, the pressure
loss is described by the dimensionless Hagen number and the flow
velocity by the Reynolds number as

Hg =
∆p
∆L

d3
h

ρ f ν2
f

and Re =
u dh
ψ ν f

(3.4)

Following the Carman-Kozeny theory, and according to the hydraulic
radius model [113], the hydraulic diameter is expressed as

dh =
4× void volume

surface area
=

4 ψ

Sν(1− ψ)
, (3.5)

where Sν is the specific surface area. The latter can be derived from the
pore diameter dpore, the face diameter dface and the porosity ψ by the
correlation proposed by [22] based on a tetrakaidecahedron model

Sν =
Cν(1− ψ)n

dedge + dface
, (3.6)

with the constants Cν = 0.482 and n = 0.5.

The non-dimensional pressure loss per unit length and the non-dimen-
sional velocity of all foam types and lengths is given in fig. 3.20, in
terms of Hagen and Reynolds number, eqns. (3.4), respectively. The
Reynolds number varies in the range of about 350 < Re < 35 000, where
the Hagen numbers of all samples can be represented by a correlation
of type Hg = A · Re + B · Re2 with respect to Erguns equation, and in
accordance to [47]. The dashed line represents the correlation of [47],
obtained from measurements on different ceramic foams, whereas the
solid line represents the correlation found for the measurements done
in the course of this work. Here, the coefficient of the linear term is
retained constant, since it mainly influences the slope of the correlation
curve towards low Reynolds numbers Re 6 100, which are not subject of
the present measurements. In the work of [47], the maximum Reynolds
number is at about Re ≈ 3’000, whereas in the present study the foam
samples are investigated for Reynolds numbers up to Re ≈ 35’000. With
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Figure 3.20: Correlation of the non-dimensional pressure loss per unit length
and non-dimensional velocity, in terms of Hagen and Reynolds number for all
foam types and lengths.

respect to Erguns equation, the coefficient of the quadratic term models
the contribution due to turbulent effects, which are more crucial for the
mentioned flow regime. The quadratic coefficient B is found by a least
square fit, with respect to the double logarithmic reference frame. The
correlation is in good agreement with the measured data. However, for
each foam type, the records at the lower end of the Reynolds number
show higher deviations compared to the correlation.

In Accordance with measurements in [17], these are the transition points
of the flow regime, i.e. the pressure drop across the metal foam leaves
the linear Darcy regime and enters the form dominated pressure drop
regime.

In [181] similar deviations are reported for the heat transfer at low Peclet
numbers in packed beds. It is assumed, that the low Reynolds number
deviations are subject to similar effects, where flaws in the cellular
structure, e.g. closed cells or the material accumulation at the shroud of
the samples (cf. figs. 3.17) cause imbalances in the flow field which result
in modified pressure loss characteristics.
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3.7 Thermal measurements

The use of high conductivity cellular solids has gained increasing im-
portance in heat transfer applications over the recent years. Open cell
metal foams provide the advantages of metallic properties like good heat
conductivity with a large surface to volume ratio and an intense mixing
of the flow. Numerous publications, on experimental and theoretical
work carried out in the recent past [20, 52, 55, 85, 125, 126, 132, 199, 218],
are evidence for the importance of developing a better foundation and
even a better understanding with respect of the thermal design.

3.7.1 Mechanisms of heat transfer

Most commonly one distinguishes between heat transfer by conduction,
by convection and by radiation, whereby the heat flux q is the rate of
thermal energy flow per unit surface area which is subject to the heat
transfer.

The macroscopic formulation of heat conduction is known as Fourier’s
law, where the heat flux is proportional to the temperature gradient

q = −k∇T , (3.7)

where the proportionality factor k is the thermal conductivity, and the
minus sign indicates, that the direction of heat transfer coincides with
the negative temperature gradient.

Heat transfer in terms of the transport by a fluid flow is subject to
convective heat transfer. One can distinguish between natural or free
convection, if the fluid flow is driven by the buoyancy forces induced
by the temperature gradients, or forced convection, if the fluid flow is
driven by a pump. However, such energy transfer heavily depends on
the nature of the flow [8, 122]. With regards to Fourier’s law, within the
linear Ansatz of heat transfer the convective heat transfer is characterised
by a heat transfer coefficient

h =
|q|
∆T

, (3.8)

given as the proportionality of the magnitude of the heat flux and the
driving force of the heat flux, i.e. the characteristic temperature differ-
ence.
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Thermal radiation takes into account the emission and absorption of
electromagnetic radiation due to an object’s temperature. For the tem-
perature ranges covered in the experiments, thermal radiation cannot be
generally excluded. Therefore, heat transfer considered in the following
represents the sum of convection and radiation effects.

3.7.2 Characterisation of heat transfer

In general, heat transfer can be characterised by the non-dimensional
representation of the heat transfer coefficient h, namely the Nusselt
number

Nu =
h lref
k f

, (3.9)

where lref is a characteristic length scale and k f is the thermal conductiv-
ity of the fluid.

The local heat flux qw at the surface of the foam structure depends on
the local flow and thermal boundary layer, and can hardly be measured.
Therefore, in the following an integral heat transfer coefficient is used

h̄ =
Q̇

Aref ∆ϑ
, (3.10)

where Q̇ is the rate of heat flow, Aref is the characteristic heat transfer
surface and ∆ϑ is the temperature difference. Analogous to a channel-
flow, the integral rate of heat flow is defined as

Q̇ = ṁ cP (ϑ f o − ϑ f i) (3.11)

with ṁ the massflow of the fluid, cP the specific heat capacity at constant
pressure of the fluid, and ϑ f o − ϑ f i the temperature difference of the fluid
between inlet and outlet. With respect to the constant wall temperature,
the temperature difference ∆ϑ in eq. (3.10) is replaced by the logarithmic
temperature difference [170]

∆ϑlog =
(ϑ f o − ϑ f i)

ln

(
(ϑW − ϑ f )i

(ϑW − ϑ f )o

) . (3.12)
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Substituting eq. (3.10) with definitions in eqns. (3.11) and (3.12) in the
definition of the Nusselt number (3.9) reads [132]

Nu =
ṁ cP lref
Aref k f

ln

(
(ϑW − ϑ f )i

(ϑW − ϑ f )o

)
. (3.13)

Depending on the level of approximation which applies for the system
under investigation, different measures apply for the characteristic length
[113]. Looking at the metal foam as a whole [18, 40], the hydraulic diam-
eter dhydr is used in the definition of the Reynolds number, whereas the
overall foam length lref is used in the definition of the Nusselt number. In
accordance with the approach used for porous beds other authors replace
the particle diameter with the pore diameter dpore, or the permeability K,
cf. [54, 55, 75].

Since the temperature and pressure sensors are applied right in front of
and behind the specimens, the characteristic values represent integral
measures at the macroscopic level. Therefore, and in accordance with [18,
40], the characteristic lengths dhydr and lref, are used for the Reynolds
and Nusselt number, respectively. The cylindrical duct wall is used as
characteristic heat transfer surface Aref.

The utilisation of individual samples, used to increase the overall sample
length by discrete increments, is done under the assumption of negligible
axial heat conduction. The latter, in terms of a non-dimensional transport
equation of the temperature reads

1
Pe2

∂2T
∂ζ2 , (3.14)

where ζ is the non-dimensional axial coordinate, and Pe is the Peclet
number [47]. Obviously, for Pe� 1, the impact of axial heat conduction
is negligible. For the properties and conditions applied in this work,
with Pe > 1000, it is reasonable to conclude that heat conduction in axial
direction can be neglected.

3.7.3 Execution of tests

Heat transfer measurements are carried out at varying massflows and
with constant wall temperatures of 60

◦C, 90
◦C and 120

◦C. For all of
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Table 3.4: Coefficient C and exponent m for the individual Nusselt number
correlations of type Nu = C · Rem · Pr1/3, according to [179, 218].

foam type Al 10 ppi Al 20 ppi Al 30 ppi Cu 10 ppi

length, l [mm] exponent, m
100 0.651 0.706 0.699 1.071

80 0.631 0.651 0.687 1.045

60 0.636 0.600 0.620 0.886

40 0.586 0.601 0.615 0.711

20 0.650 0.515 0.581 0.507

length, l [mm] coefficient, C
100 4.265 3.027 2.985 0.152

80 4.130 4.189 2.795 0.165

60 3.476 5.648 4.340 0.614

40 3.970 4.158 3.842 2.445

20 1.325 4.491 2.700 7.509

the four pore densities, the measurement series are conducted using
all samples, thus with an overall length of 100 mm, applying different
mass flows at three different wall temperatures, 60

◦C, 90
◦C and 120

◦C
respectively. Then, the overall length is reduced by one sample (20 mm)
continually, each time measuring different mass flows at three wall
temperatures.

About 80 measurement series are carried out, where each series includes
10 operating points in the range of 10 % to 100 % massflow. Each time,
the parameters of the constant wall temperature control unit are adjusted,
which allows to keep the maximum deviation within ± 0.3 ◦C of the
index value. After the control system settles and all measurement signals
have stabilised, the recording of data is done for 60 s, corresponding to
60’000 data records of temperatures, pressures and massflow.

The average temperature at the inlet and outlet of the samples is derived
by means of a massflow average. However, comparison of area and
massflow averaging shows a maximum difference in Nusselt number
of approximately 4 %. The measurement of the massflow and velocity
distribution is explained in more detail in section 3.8.

〈ϑ〉a =
1

∑n
i=1 Ai

n

∑
i=1

Aiϑi (3.15)
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(a) 10 ppi copper
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(b) 10 ppi aluminium
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(c) 20 ppi aluminium
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(d) 30 ppi aluminium

Figure 3.21: Nusselt number distributions of all foam types and lengths, each
measured at three temperatures, 60

◦C, 90
◦C and 120

◦C, respectively. The solid
lines represent correlation curves of type Nu = C · Rem · Pr1/3, for which the
coefficients C and exponents m are individually fitted for each length; values are
tabulated in tab. 3.4.

〈ϑ〉m =
1

∑n
i=1 ṁi

n

∑
i=1

ṁiϑi (3.16)

Regarding the material properties, the density of the air ρ f is calculated
using the equation of state with respect to the inlet conditions, whereas
the specific heat capacity at constant pressure cP, the thermal conductivity
k f and the viscosity ν f are interpolated from tabulated data, cf. [110]. The
Reynolds number is varied from about 600 to about 30’000, considering
both, laminar and turbulent flow regimes.
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(a) 10 ppi copper
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(b) 10 ppi aluminium
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(c) 20 ppi aluminium
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(d) 30 ppi aluminium

Figure 3.22: Nusselt number distributions of all foam types and lengths, each
measured at three temperatures, 60

◦C, 90
◦C and 120

◦C, respectively. The solid
lines represent correlation curves of type Nu = C · Rem · Pr1/3, for which the
coefficients C are evaluated individually, whereas the exponents m are constant
for each foam type; parameters are tabulated in tab. 3.5.

3.7.4 Experimental heat transfer coefficients

Figure 3.21 depicts the measured heat transfer coefficients shown as
Nusselt number distributions for all foam types, for the lengths 20 mm,
40 mm, 60 mm, 80 mm and 100 mm and for the three temperature levels
60
◦C, 90

◦C and 120
◦C. The fluid properties exhibits minor variations

for the applied temperature ranges, wherefore the measurements at the
three temperature levels almost coincide.

As expected, the Nusselt number increases with higher Reynolds num-
bers and larger sample lengths for all foam types. The Prandtl number is
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found to be virtually constant for the temperature range of the experi-
ments, and is evaluated at approximately Pr ≈ 0.72.

Following [179, 218] a correlation of type Nu = C · Rem · Pr1/3 is chosen,
where the coefficient C and the exponent m are adapted for each foam
type and porosity. The correlations are given by the solid lines in figs. 3.21.
The coefficient C and the exponent m are tabulated in table 3.4. There is
no uniform trend for the coefficient and exponent for different sample
lengths, which can most probably be attributed to the deviations in
porosity and specific gravity for the samples of the same pore density,
cf. sec. 3.2. However, the individual fitted correlations are in good
agreement with the experimental data.

With respect to [26, 179], employing the same correlation but utilising a
constant exponent m for each pore density, the resulting coefficients C of
the correlation reveals a uniform picture, cf. tab. 3.5. For all foam types,
the coefficient C increases with sample length, whereas the exponent
varies in the range of m = 0.63 . . . 0.67 for 10 ppi to 30 ppi aluminium
foams, respectively. The copper foam exhibits an exponent of m = 0.95

to reproduce the strong rise in slope of the Nusselt number distribution
with increasing sample length. The comparison of the experimental data
and the second set of correlations is depicted in figs. 3.22.

Finally, an attempt is made to find a unique correlation for all foams.
Since only one copper foam type is available for the measurements, which
is not representative for a correlation, only the aluminium foams are
considered. The correlation of type Nu = C ·Rem ·Pr1/3 is applied on the
Nusselt number distributions of each foam type simultaneously, where
the exponent m is constrained to be uniform for all lengths. Results
found for the exponent m = m(ψ) and the coefficients C = C(ψ, l) =
A(l)ψ + B(l), are then correlated with the relevant cumulative porosity
ψ and lengths l, respectively. The symbolic structure of the correlation
reads

Nu = [A(l)ψ + B(l)] · Rem(ψ) · Pr1/3 , (3.17)

where the coefficient A(l) and B(l) are linearly dependent on the length
l, and the exponent m(ψ) is linear dependent on the porosity ψ. Least
square fitting of the experimental data results in the discrete relation

Nu = [(−0.6181 l + 3.4856)ψ+

+(0.5881 l − 2.1673)] · Re(0.5173 ψ+0.1748) Pr1/3 . (3.18)
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Figure 3.23: Comparison of newly developed Nusselt number correlation in
comparison with the experimental data for aluminium foams of porosity (a)
88.131 %, (b) 85.851 % and (c) 82.248 % and for the lengths 20 mm, 40 mm, 60 mm,
80 mm and 100 mm, respectively. Additionally, (d) shows the comparison of
the correlation for all three porosities. Each foam is measured at three tempera-
tures, 60

◦C, 90
◦C and 120

◦C, respectively. The solid lines represent correlation
curves of type Nu = C(l, ψ) · Rem(ψ) · Pr1/3, for which the coefficient C(l, ψ) and
exponents m(ψ) are relations of length and porosity.

In comparison of the measurements with the correlation, there is good
agreement for all types and lengths of the aluminium foams, cf. fig. 3.23.
Differences are within a range of about ± 10 %, except for the profile for a
porosity of 85.851 % at 40 mm length. The deviations are explained by the
fact, that the individual samples, which are used to increment the length,
evince production-related variations in porosity, cf. sec. 3.2. Again, it gets
obvious that the pore density is not a sufficient measure to characterise
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Table 3.5: Parameters of the foam type Nusselt number correlations of type
Nu = C · Rem · Pr1/3. According to [179, 218] the coefficient C is fitted for each
length, whereas and the exponent m is kept constant for each foam type.

foam type Al 10 ppi Al 20 ppi Al 30 ppi Cu 10 ppi

length, l [mm] exponent, m
20 . . . 100 0.602 0.592 0.622 0.84

length, l [mm] coefficient, C
100 6.931 9.309 6.422 1.359

80 5.479 7.537 5.363 1.158

60 4.861 6.074 4.263 0.950

40 3.402 4.537 3.587 0.676

20 2.122 2.097 1.808 0.282

the foams. The pore scale measures, like pore diameter or edge diameter,
which result in a certain porosity, significantly influence the pressure
losses as well as the heat transfer capabilities. With decreasing pore size,
the specific area available for heat transfer is increasing. Furthermore,
the continuous detachment and reattachment, due to the scattering of
the flow in the heavily rugged pore structure, promotes the moment and
energy transfer.

The resulting correlations in figs. 3.23 indicate, that with rising length
the Nusselt number tends to increase with smaller porosity, for the foam
types under consideration, cf. fig. 3.23(d). For a length of 20 mm the
curves almost coincide for different porosities, whereas the tendency is
considerable for the lengths l > 40 mm.



44 Chapter 3 Experiments

Al10ppi
20mm
25.7 kg/h

ch
an

ne
l h

eig
ht 

[ m
m 

]

0

10

20

30

40 Al20ppi
20mm
26.1 kg/h

Al30ppi
20mm
26.4 kg/h

Cu10ppi
20mm
26.4 kg/h

Al10ppi
100mm
26.3 kg/h

ch
an

ne
l h

eig
ht 

[ m
m 

]

0

10

20

30

40

0 0.5 1 1.5

Al20ppi
100mm
27.0 kg/h

         relative velocity, u / u [ - ]
0 0.5 1 1.5

Al30ppi
100mm
26.1 kg/h

0 0.5 1 1.5
inlet
outlet

Cu10ppi
100mm
27.7 kg/h

0 0.5 1 1.5

Figure 3.24: Relative velocity distributions at inlet and outlet of all foam types
for 20 mm and 100 mm length, respectively.

3.8 Velocity profiles and massflow distributions

While the average flow velocity is determined using the massflow of the
thermal massflow meter and the channel geometry, a detailed velocity
distribution is obtained using the adjustable Pitot tube. This allows for
qualitative and quantitative assessment of the velocity distribution at the
inlet and outlet of the foam probes.

For each foam type, the minimal and maximal lengths 20 mm and 100 mm
are tested for 10 operating points (discharge) and at 9 transversal loca-
tions within a massflow range of approximately 5 kg/h up to 65 kg/h.
Since the massflow is controlled manually by the fan speed, there are
minor differences in the massflows between the different foam types and
lengths.



3.8 Velocity profiles and massflow distributions 45

The relative velocity profiles at inlet and outlet of all foam types for
lengths 20 mm and 100 mm are exemplarily shown in fig. 3.24 for a
massflow in the range of about 25.7 kg/h to 27.7 kg/h. In order to
compare profiles at different massflows and different inlet and outlet
temperatures, the relative velocity

ui
ū

=

√
2·pdyn,i

ρi
1
n ∑n

i ∑n
j ρj A◦,i

∑n
i ρi A◦,i

√
2·pdyn,i

ρi

(3.19)

is used, which refers to the average superficial velocity and is inde-
pendent from thermal conditions. For a series of transversal location
i = 1 . . . n, the cross section is divided into circular sections A◦,i. Ded-
icated temperature sensors and the adjustable Pitot tube are used to
measure the dynamic pressure pdyn,i at these locations, whereas the
density ρi is derived from the temperature Ti.
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Figure 3.25: Nusselt number distributions of the reference samples of lengths
20 mm, 40 mm, 60 mm, 80 mm and 100 mm, measured at 90

◦C respectively. The
solid lines represent regression curves of type Nu = C · Re0.7 · Pr1/3, for which
the coefficients C are fitted individually.

For all foam types with a length of 20 mm there are slight differences
of inlet and outlet profile shapes. Obviously, the impact of structural
and topological properties is not mixed out after a length of 20 mm.
On the other hand, the inlet and outlet profiles of all aluminium foams
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of 100 mm length are almost congruent, whereas the copper foam of
100 mm length still shows significant differences in inlet and outlet
profiles. The complete series of relative velocity profiles for all foams
and all massflows is given in appendix B. For all foams of length 20 mm
local disorders in the velocity profiles, due to structural and topological
characteristics of the foam, evolve at small to medium discharges and
are obvious up to the maximum discharge. The velocity profiles of the
aluminium foams of different pore density and length 100 mm are almost
evenly and homogeneous for the overall range of discharges. However,
a significant kink in the outlet velocity profile at about 30 mm channel
height is obvious for almost all aluminium foams of length 100 mm for
the maximum discharge. This might be an indication for a turbulent
wake at the outlet of the probe, which only arises at high Reynolds
numbers. A very different picture is given by the copper foams of 20 mm
and 100 mm length for different massflows. For both lengths, there are
significant disorders and differences in the velocity profiles between inlet
and outlet, that seem to evolve at small to medium discharges and keep
present up to the maximum discharge. With regards to the characteristics
of the copper foam, this might be due to the coarser pore structure, with
larger pores and thicker edges.

As expected, the aluminium foam with highest pore density shows the
smallest differences between inlet and outlet as well as the most homo-
geneous velocity profile. The qualitative impact of the foam structures
on the characteristics of the velocity profile and flow field corresponds to
the foam characteristics in terms of pore size and edge thickness. Smaller
measures and filigree branch structures show less impact. In addition to
the relative velocity profiles, the corresponding massflow distributions
are provided in appendix C, figs. C.1 to C.6.

3.8.1 Assessment of thermal and flow characteristics

In the preceding sections pressure loss and heat transfer characteristics
of different foam structures were presented. The thermal as well as the
hydraulic characteristics of a heat transfer element are of vital importance
for the design and qualification of heat exchangers. In order to classify
and assess the performance of the foam structures for the use in heat
transfer applications, additional pressure loss and heat transfer measure-
ments are carried out for cylindrical reference samples. A qualitative and
quantitative comparison will show the benefits in heat transfer as well as
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(a) (b)

Figure 3.26: Comparison of (a) pressure loss and (b) heat transfer characteristics
of different foam types and cylindrical reference samples of different lengths at a
Reynolds number of approximately Re ≈ 22′000.

the increased pressure losses of metal foam filled pipes in comparison to
classical cylindrical channels.

The cylindrical reference samples are manufactured from seamless preci-
sion stainless steel tubes, where the inner diameter of 40 mm is equal to
the cylindrical shroud diameter of the foam samples, and using the same
length increments of 20 mm, 40 mm, 60 mm, 80 mm and 100 mm. Mea-
surements of pressure loss and heat transfer characteristics are carried
out equivalently to the measurements done for the foam samples above.
The measured Nusselt numbers of the reference samples are depicted
in fig. 3.25 for the same range of Reynolds numbers as for the foam
samples. Whereas the characteristics of the Nusselt number distributions
are similar to those of the foams, the magnitudes are about one order
smaller. Solid line regression curves of type Nu = C · Re0.7 · Pr1/3 are
added to the diagram in order to better illustrate the characteristic of
the profiles. The coefficients C are fitted individually for each length,
whereas a fixed exponent of 0.7 for the Reynolds number is applied.

The pressure loss and the Nusselt number of all foam types and reference
samples are shown in figs. 3.26 for all lengths. It is obvious, that using
the foam samples, the heat transfer in terms of Nusselt numbers is by
far increased compared to the reference samples, cf. fig. 3.26(b). On the
other hand, this improvement does not come for free, since the pressure
loss is increased simultaneously, cf. fig. 3.26(a).
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Figure 3.27: Thermal resistance vs. hydraulic power for all foam types and
lengths in comparison to the tubular reference probe.

An assessment of the foam samples relative to the reference probes is
carried out by comparing the hydraulic performance in terms of the
required hydraulic power

Ẇhydr = ∆p · V̇ , (3.20)

to the so called thermal resistance, which is formulated as

Rtherm =
1

h Are f
(3.21)

according to [17]. This quantity constitutes the resistance that a body
offers to a heat flux, where h is the heat transfer coefficient and Aref is
the characteristic heat transfer area. Both, the hydraulic and the thermal
performance values are subject of minimisation with respect to efficient
heat transfer applications. With decreasing thermal resistance, the easier
the heat flows through the heat exchanger.

The thermal resistance is plotted against the hydraulic power for all
foam types and the reference probes for all lengths in figs. 3.27. An
ideal heat exchanger should exhibit small thermal resistance as well as
small hydraulic power at the same time. The measured distributions in
figs. 3.27 all obey the same characteristics, i.e. the thermal resistance is
decreased with increasing hydraulic power, since the effect of increased
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convection has a positive impact on the heat transfer. Whereas the
thermal resistance is of the same order of magnitude for all types of
foams, the thermal resistance of the reference probes is at least one order
of magnitude greater, similar to the Nusselt numbers shown in fig. 3.25.
At the same time, the range of the hydraulic power of the reference
samples is smaller than for the foam samples. However, foams and
reference samples both share a common range, for which the foams show
superior overall characteristics.

In figs. 3.28 thermal resistance vs. hydraulic power is plotted for foams
and reference samples of similar lengths respectively. It is noticeable,
that the different foams of the same length share almost the same char-
acteristic distribution. Especially the aluminium foams show almost
identical characteristic profiles, whereas the slope of the copper foam
is slightly inclined. In general, the copper foam shows slightly better
thermal performance at higher hydraulic powers. For all lengths it is
obvious, that looking at the range of hydraulic power from approximately
0.1 W to 1 W, the foams show significantly less thermal resistance, and an
imaginary extrapolation shows, that this holds for an even wider range
of operation.

Finally, as already mentioned, the benefit in heat transfer does not
come without the cost of an increased hydraulic power. In [17] foam
characteristics are compared to commercially available heat exchangers,
where the resistances of the foams are two times lower while requiring
the same pumping power. The measurements above confirm, that the
heat transfer characteristics of cellular solids, namely open cell metal
foams, can be superior compared to conventional techniques, depending
on the particular application, cf. [17, 94, 223].
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Figure 3.28: Comparison of thermal resistance vs. hydraulic power for foam and
reference samples of equal lengths 20 mm to 100 mm, (a) to (e), respectively.



Chapter 4

Diffuse interface approach

The phase-field approach enjoys a constantly increasing and wide spread-
ing utilisation in manifold fields of applications. With its roots in solidifi-
cation and crystallisation processes [58, 112, 154, 156, 185, 191] it is one
of the most appropriate methods in modelling interfacial and pattern
formation phenomena. Today, the areas of application include phase
transition, fluid flow, crack propagation, magnetism and many more [5,
10, 14, 32, 41, 145].

Historically, the phase field approach is an easy and efficient mathe-
matical method for solving free boundary problems. The elegance of
the method lies in the fact that, compared to the classical front-tracking
methods, the phase-field approach avoids the explicit treatment of phase
boundaries, and the boundary conditions are implicitly applied at the
interface. In the classical diffuse interface approach each of the physical
entities are identified using order parameters, which are physical quanti-
ties exhibiting jumps across a phase boundary, e.g. in the Cahn-Hilliard
model, the composition is an order parameter. An alternative framework,
is the interpretation of the phase-field as indicator functions (phase-fields),
wherein, each of the indicators determine the presence or absence of a
given physical entity. The phase-fields vary smoothly across an artifi-
cially created interface of finite width between the physical phases. The
material properties with respect to the phases are interpolated using
the functionals constructed out of the phase-fields. This approach, has
gained widescale utilisation owing to the ease with which the equations
of motion can be derived. Consequently, the method has been applied to
a wide variety of problems of phase transformations involving interfacial
motion and complex geometrical evolution, also including catastrophic
phase terminations.

The phase-field method models the transition between the states of
different phases, where the dynamics of the phases α and β are modelled
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Figure 4.1: Scheme of a computational domain Ω with phases α and β. Utilising
the phase field method, the interface is of finite width, and the order parameter φα

changes from 1 to 0 across the diffuse interface, whereas φβ = 1− φα. The order
parameters φα and φβ as well as the characteristic properties of the individual
phases are constant throughout the bulk areas, respectively.

by means of the order parameters φα(x, t) and φβ(x, t), with φα(x, t) = 1
in regions where phase α is present and φα(x, t) = 0 where phase α is
absent, cf. fig. 4.1. In the region of the diffuse layer surrounding phase α,
φα changes continuously, differentiable and monotonously from 0 to 1.
Everywhere in the simulation domain, the constraint φα + φβ = 1 must
be fulfilled. In the scope of this work, we distinguish two different phases
in the simulation domain, namely solid and fluid phase. In the bulk solid
phase, the respective order parameter φs = 1 whereas φ f = 0, and vice
versa in the bulk fluid phase. Furthermore, the condition φs + φ f = 1
holds throughout the whole numerical domain at each time.

Consider a computational domain Ω with the continuous bulk phases
α and β, which are separated by a interface of finite width, cf. fig. 4.1.
A equally spaced uniform Cartesian grid, which is not aligned with the
interface is employed. In the bulk, the material properties are constant,
whereas inside the transition region of the diffuse interface layer, either
the material properties are supposed to be interpolation functions of the
order parameters or a special treatment is applied, such that the physics
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in the bulk are maintained and asymptotically recover the physics of a
sharp interface solution.

The evolution equations of the conserved variables, such as the internal
energy and the mass, follow the Cahn-Hilliard approach [25] and finally
result in Fick’s well-known second law. Herein, without loss of generality,
the energetics, the physical, thermodynamical and chemical quantities of
the bulk phases, are interpolated across the diffuse interface.

The phase field method implemented in PACE3D is originally based on
the model presented in [154, 156] and is under continuous development.
It can simultaneously solve the mass diffusion, temperature and the front
tracking in multiphase and multicomponent materials – accordingly the
system variables are concentration c, temperature T and order parameter
φ. The evolution equations are derived by the variation of the entropy
functional S(φ, c, T), with respect to all system variables

S(φ, c, T) =
∫

Ω

(
s(φ, c, T)−

(
ε a(φ,∇φ) +

1
ε

w(φ)

))
, (4.1)

where s(φ, c, T) is the entropy density, a(φ,∇φ) is the surface gradient
entropy and w(φ) is the potential. Herein, surface gradient entropy
a(φ,∇φ) promotes the expansion of the interface, whereas the poten-
tial w(φ) is minimal for pure phases. The formulation and balance of
a(φ,∇φ) and w(φ) is essential for the shape of the diffuse interface. The
model parameter ε is related to the finite width λ of the diffuse interface
layer. The variational derivatives of the entropy functional leads i.a. to
the evolution equation of the phase field

τkε
∂φα

∂t
= ε

(
∇ · ∂a(φ,∇φ)

∂∇φα
− ∂a(φ,∇φ)

∂φα

)
−

− 1
ε

∂w(φ)

∂φα
− 1

T
∂ f (T, φ)

∂φα
−Λ , (4.2)

where f is the bulk free energy and τk is the kinetic coefficient (mobility),
related to the relaxation rate of the phase transition. The Lagrange
multiplier Λ ensures the constraint

N

∑
α=1

φα = 1 , (4.3)
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at each spatial location for all times. The most commonly used definitions
of the potential w(φ) are the multi-obstacle and the multi-well potential,
respectively

wobst(φ) =


∞ φα = 1, α ∈ [1, ..., N]

16
π2 ∑

α<β

γαβ φαφβ
(4.4)

wwell(φ) = 9 ∑
α<β

γαβ φ2
αφ2

β , (4.5)

where γαβ is the surface tension between phases α and β, that scales
the maxima of the potentials in 0 6 φ 6 1. The formulation yields
two stable conditions at φ = (0, 1), represented either by the minima of
the double-well or the roots of the obstacle potential, cf. fig. 4.2. Note,
that the obstacle potential is defined on the so called Gibbs-simplex
G = {φ ∈ RN : ∑α φα = 1, 0 6 φα 6 1}. The potential w(φ) is related
to the order parameter by

|∇φ| = ∂φ

∂n
=

1
ε

√
w(φ) . (4.6)

Since this work aims for the computation of fluid flow and heat transfer in
cellular solids, the essential evolution equations under consideration are
the energy equation and the conservation equations of fluid mechanics,
namely the Navier-Stokes equations. In the context of the phase filed
method, the energy equation can be derived from the entropy functional
(4.1).

According to Gauss’s divergence theorem, the conservation laws for the
internal energy and concentration read

∂te = ∇ · je ,
∂tc = ∇ · jc ,

(4.7)

where je and je are the net energy and mass fluxes, classically given by
the linear relation of the gradient of a potential, which strictly speaking
only holds for ∇T � T. For the energy equation, the flux can be
defined by Fourier’s law je = −k∇T, where the temperature T is the
potential and the coefficient k is the thermal conductivity, whereas for
the concentration Fick’s law is given by jc = −D∇ρ, with the coefficient
of diffusion D.
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Figure 4.2: Course of the terms for the obstacle and double-well potential. Whereas
the stable states are located in the minima of the double-well potential, the
obstacle is defined on the Gibbs-Simplex.

With respect to non-equilibrium thermodynamics [164, 165] the rate of
entropy generation is linearly related to the flux density. The latter is
related to the thermodynamical force1, which can be derived by the vari-
ational derivative of the entropy functional (4.1). Thus, the conservation
equations of internal energy, and accordingly of concentration, as well as
the evolution equation of the order parameter2 reads

∂te = ∇ ·
(

Me
e∇

δS
δe

+ Mc
e ∇

δS
δc

)
,

∂tc = ∇ ·
(

Me
c∇

δS
δe

+ Mc
c∇

δS
δc

)
,

∂tφ = Mφ
φ

δS
δφ

,

(4.8)

where Mi
e, Mi

c and Mφ
φ are the mobility coefficients of the internal energy

e, the concentration c and the order parameter φ with respect to the
system variables i = φ, c and T.

In the present work no interface dynamics and no mass diffusion is
considered, i.e. ∂tφ = ∂tc = 0. Thus, the phase field does not evolve in

1locally defined gradients of inverse macroscopic variables
2since the order parameter is a non-conserved quantity, an evolution equation is formu-

lated
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Figure 4.3: Steady state solutions of the phase field equations employing the
double-well and obstacle potential, respectively. The interface width λ = επ2/4
is exact for the obstacle potential, whereas for the double-well potential it is
defined as 95% of the bulk value of φ.

time, and the contributions of φ and c in eqns. (4.8) vanishes. The system
of equations (4.8) reduces to

∂te = ∇ ·
(

Me
e∇

δS
δe

)
, (4.9)

where the thermodynamic potential δS/δe is given as 1/T with respect
to the basic thermodynamical definition of the internal energy e =
f − TS. Finally, Fourier’s law may be written as j = kT2∇(1/T), and the
conservation equation of internal energy reads

CV(φ) ∂tT = ∇ ·
(

k(φ) T2∇ 1
T

)
, (4.10)

where the internal energy is given in terms of the heat capacity and
temperature as e = CV(φ)T.

Thereby, without limiting the generality, the physical quantities of the
bulk phases, CV(φ) and k(φ) are interpolated across the diffuse interface.
The derivation of an eligible interpolation formalism is essential, in
order to perform quantitative simulations. Against this background, the
present work contributes to the interpolation of mobility and capacity
coefficients of heat conduction by means of a general diffusive transport
process in chapter 6.

The conservation equations of fluid flow are not derived from the entropy
functional, but coupled to the energy equation as well as to the phase-
field using appropriate techniques. In the interface layer each cell is
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partially filled with solid and fluid according to the order parameters φs
and φ f , respectively. Thus, a reasonable treatment should guarantee the
no-slip condition for the solid phase us = 0 m/s, an on the other hand
recover the velocity profile of the bulk fluid phase. In the course of this
work the lattice-Boltzmann method is employed, which asymptotically
solves the Navier-Stokes equations in the limit of nearly incompressible
low Mach number flows. Details of the lattice Boltzmann method as well
as the coupling is presented in chapter 5.





Chapter 5

Diffuse interface fluid mechanics1

As a branch of continuum mechanics, fluid mechanics is concerned with
the characteristics of steady and moving fluids as well as the interaction
of fluids and forces. In continuum mechanics, matter – here fluid – is
assumed to entirely fill the domain of interest, and to pass over the fact
that it is made of individual atoms or molecules. Within the continuum
hypothesis, the statistical averages of the physical properties such as
density, pressure, temperature or velocity in an representative elementary
volume (REV), are assumed to vary continuously within space [74].

At the macroscopic level of reality, where the density of elements is
high enough, we can consider the domain of interest as a continuum.
Even though individual motion is not suppressed, the large number of
elements and the mutual interaction result in a superimposed collec-
tive motion. The mathematical framework is build upon the classical
conservation equations of continuum mechanics, employing the specific
macroscopic variables [57].

On the microscopic level, fluids can be viewed as particles or molecules
that interact among themselves and with the surrounding. Within the
framework of statistical mechanics, the kinetic theory establishes a rather
simple mechanical picture of the particle interaction and links the molec-
ular composition and motion to the thermodynamic entities [80, 95].
Hence, the interaction of the elements is a measure for their individuality,
represented by the Knudsen-number Kn, which is defined as the ratio
of the molecular free path length to characteristic physical length scale
of the system. However, for systems, where Kn & 1, the continuum
theory no longer holds, and the methods of statistical mechanics must
be applied.

1Parts of the subsequent sections are submitted for publication in Journal of Computational
Physics [65].
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In this context [121] suitably refers to the Navier-Stokes equations of
continuum mechanics as a top-down approach and to the kinetic equations
as a bottom-up approach.

The solution of the Navier-Stokes equations is accompanied by several
numerical difficulties, the treatment of nonlinear convective terms or
the solution of the Poisson equation to evaluate the pressure [161]. In
lattice Boltzmann methods, the pressure is obtained by the equation of
state and the nonlinear convective terms reduce to an advection type
problem [219]. Compared to other common fluid dynamics applications,
the lattice Boltzmann method captivates by its simplicity in terms of
modelling the physical process as well as the ease of implementation.
Furthermore, the lattice Boltzmann scheme is highly appropriate for
parallelisation, which is important with regard to exascale computing
[31, 49, 97, 99, 213].

5.1 Continuum fluid dynamics

Following the classical theory of continuum mechanics, the motion of
a single phase viscous fluid in the macroscopic continuum regime, is
governed by the conservation equations of mass and momentum [57,
162]

∂tρ +∇ · (ρu) = 0 (5.1)
ρ (∂tu + u · ∇u) = f −∇p +∇ ·T (5.2)

respectively, with the density ρ, the fluid velocity u, the pressure p,
the body force per unit volume f and the deviatoric stress tensor T.
Employing Stokes law of friction, the latter is defined as

Tij = µ

(
∂jui + ∂iuj −

2
3

δij ∂lul

)
, (5.3)

where µ is the dynamic viscosity and δij is the Kronecker delta2.

2δij = 1 ∀ i = j and δij = 0 ∀ i 6= j
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Except for a few simple, mostly academic cases, the above system of
nonlinear partial differential equations can only be solved numerically [6,
73, 101]. The majority of technically interesting flows is turbulent, and
even today the direct numerical simulation (DNS) of such flows still re-
quires a disproportionately high effort [43]. However, the computational
effort can be considerably reduced, by applying statistically averaged
variables and equations3. Closure of this system of partial differential
equations using a turbulence model, allows the application on problems
of technical interest with feasible effort [171, 214].

In the course of this work comparative simulations are performed using
the commercial computer-aided engineering package StarCCM, devel-
oped by CD-Adapco4. While the software suite was mainly developed
for computational fluid dynamics (CFD) simulations, solving the Navier-
Stokes equations by employing different segregated and coupled numeri-
cal algorithms, it has evolved to include additional continuum mechanics
models, most notably heat transfer and solid stress models.

5.2 Kinetic theory

Whereas the most widespread methods of computational fluid dynamics
(CFD) used in engineering applications today follow the classical theory
of continuum mechanics by solving the Navier-Stokes equations [73, 101],
methods based on the kinetic theory [80, 95], like the lattice-Boltzmann
method, emerge a competent and promising alternative.

It was Bernoulli that first tried to formulate a kinetic theory in the early
17th century [11], but it took another hundred years, until the theory
was proposed; amongst others by the work of Clausius, Maxwell and
finally Boltzmann, cf. [15, 16, 36, 37, 139]

As part of statistical mechanics, the kinetic theory of gases is concerned
with the properties and the movement of ideal gases, where it describes
the gas laws from a mechanical point of view. Regarding the concept
of continuum, it models a random thermal movement of a collection of
particles [60, 188], uniformly with no preferred direction. Apart from
collisions, the particle movement is independent and uncoupled, cf. [80,
95]. Whereas a detailed analysis of the collision and dynamics of all

3Reynolds Averaged Navier-Stokes equations (RANS)
4http://www.cd-adapco.com/ (accessed: 15/5/2014)

http://www.cd-adapco.com/
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particles will however exceed todays available computational resources
by far, the statistical approach of kinetic theory is the origin for various
numerical methods.

5.2.1 Particle distribution function

Instead of working with individual particles, the kinetic theory considers
ensembles of particles in the form of particle distribution functions
adopting a statistical approach. The particle distribution function

f (x, ξ, t) =
dN

dVdξ
, (5.4)

indicates the number of particles N in the six-dimensional phase space,
spanned by the three spatial directions dV = dx dy dz and the corre-
sponding velocity components dξ = dξx dξy dξz. Thereby, the particle
distribution function can be interpreted deterministically as a particle
density or statistically as a probability function [95].

5.2.2 Boltzmann equation

The treatment of the particle distribution functions is in the realm of
statistical mechanics, and the Boltzmann equation describes the time
evolution of such a system. The differential form of the continuous
Boltzmann equation

d
dt

f (x, ξ, t) = Ω( f ) , (5.5)

relates the total derivative, the total change, of the particle distribution
function f = f (x, ξ, t), to the result of the collision term Ω( f ) on the
RHS. More explicitly one can write

∂t f + ξ · ∇x f +
1
ρ

F · ∇ξ f = Ω( f ) . (5.6)

where still a closure is necessary by modelling the particle interaction
for the collision operator on the RHS. Under the assumption of localised
binary collisions in terms of the so called Stoßzahlansatz approximation,
the collision operator takes the form of a complex integral formulation
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[15, 80, 95] and the Boltzmann transport equation results in a time-
dependent nonlinear integro-differential equation in six-dimensional
phase space, which is mathematically ambitious.

5.2.3 Maxwell-Boltzmann distribution

In the limit of thermodynamic equilibrium, the velocity distribution of
the particles adopt all possible magnitudes and directions without any
preference, which results in a spherical symmetry. This presumption is
sufficient to derive a distribution for the thermodynamic equilibrium
and to correctly calculate the microscopic and macroscopic properties
[15, 139]. The so called Maxwell-Boltzmann distribution reads

f eq =

√(
m

2πkBT

)3
e
(
− m

2kBT ξ2
)

, (5.7)

where kB is the Boltzmann constant, T is the absolute temperature, m the
mass of the particle and ξ is the velocity of the particle.

5.2.4 Macroscopic quantities

In the light of statistical mechanics, the kinetic theory deals with prob-
abilistic quantities which are characterised by different features, that
are related to the moments of their probability distribution. With this
in mind, the macroscopic quantities of fluid flow are determined by
integrals of the product of the particle distribution function f (x, t, ξ) and
a function Ψ(ξ) [95]. The particle density n(x, t), the molecular density
ρ(x, t) and the velocity v(x, t) for instance, are given as [95]

n(x, t) =
∫

ξ
f (x, t, ξ) · dξ (5.8)

ρ(x, t) = m
∫

ξ
f (x, t, ξ) · dξ (5.9)

v(x, t) =
1
n

∫
ξ

ξ f (x, t, ξ) · dξ (5.10)
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5.2.5 BGK collision term

In order to provide a solution of the mathematically very complex Boltz-
mann equation (5.6), which is mainly because of the square of the particle
distribution function in the collision integral [80], a simplified ansatz was
suggested by Bhatnagar, Gross and Krook [13]. Herein the collision term
is replaced by

Ω( f ) = ω ( f eq − f ) , (5.11)

where it is assumed, that the system relaxes towards the Maxwell-
Boltzmann equilibrium distribution function f eq. The relaxation time τ

of the system is represented by the collision frequency ω = 1
τ .

Despite of its simplicity, the model complies essential characteristics of
the Boltzmann equation [80, 95], and it can be shown by so called
Chapman-Enskog expansion [29, 115] that the BGK-Model recovers
the conservation equations of continuum mechanics, namely the Euler-
equations, the Navier-Stokes equations as well as the Burnett-equations.

5.3 The lattice Boltzmann method

Rather than solving the governing equations of continuum fluiddynamics
directly, the lattice Boltzmann method (LBM) is based on the kinetics of
statistically distributed particles in six-dimensional phase-space5, cf. [80,
95]. It is a numerical scheme that solves the discrete Boltzmann transport
equation, and it can be shown by Chapman-Enskog multiscale expan-
sion [29], that the solution of the lattice Boltzmann equation accurately
satisfies the Navier-Stokes equations for quasi-incompressible flows. His-
torically they are based on their predecessor the lattice gas automaton
(LGA) [78, 79, 96], that suffers from statistical noise and led to the de-
velopment of the LBM methods [141]. An excellent overview on the
historical development of LGA and LBM as well as detailed derivations
can for instance be found in [121, 194, 210, 215].

Starting from the Boltzmann evolution equation (5.6), space is discretised
by a uniform, rectangular Cartesian grid, whereas the continuous velocity
space is represented by a discrete set of lattice velocities ei, linking the

5spanned by the components of spatial coordinates x and microscopic velocity ξ
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(a) D2Q9 (b) D3Q19

Figure 5.1: Unit lattice of the discrete velocities for (a) the two dimensional D2Q9

model and (b) the three dimensional D3Q19 model. In the unit lattice, the vectors
have discrete directions as well as discrete magnitudes. For the models depicted,
the vectors can have three magnitudes: 0 for particles at rest (centered at the
origin of the unit lattices), 1 for particles travelling parallel to the axis (blue),

√
2

for particles travelling along plane diagonal (orange).

lattice to its nearest neighbours. A discrete velocity space V is introduced,
i.e. the particles are allowed to follow predefined directions ei

V = {e0, . . . , eq−1} | ei ∈ Rq, i = 0, . . . , q− 1 , (5.12)

where q represents the number of discrete velocities. The employed lattice
model is named DdQq, according to the number of spatial dimensions
d, and the number of discrete velocities q. In PACE3D the D2Q9 model
for two and the D3Q19 model for three dimensions are implemented,
cf. fig. 5.1.

The lattice vectors for the D2Q9 model are given as

ei =

(
0, −1, 1, 0, 0, −1, 1, −1, 1
0, 0, 0, −1, 1, −1, 1, 1, −1

)
, (5.13)

and the lattice vectors of the D3Q19 model are give as

ei =

 0 −1 1 0 0 0 0 −1 1 −1 1
0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 −1 1 −1 1 1 −1

−1 1 −1 1 0 0 0 0
−1 1 1 −1 −1 1 −1 1

0 0 0 0 −1 1 1 −1

 (5.14)
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Employing the BGK collision term (5.11) in the Boltzmann equation (5.6),
the discrete lattice-Boltzmann equation reads [194, 215]

fi(x + ei∆t, t + ∆t)− fi(x, t) = Ωij

(
f j(x, t)− f eq

j (ρ, u)
)

, (5.15)

where the fi’s are the particle distribution functions, the ei’s are the dis-
crete velocities, x is the spatial coordinate, and Ωij is the collision matrix.
Thus, the lattice Boltzmann equation is a finite difference representation
of the evolution equation for the discrete particle distribution function fi,
where ∆x = ∆t = 1.

The discrete equilibrium distribution function f eq
i is defined by a Taylor

expansion of the Maxwell-Boltzmann equation (5.7) up to second order,
and is given with respect to discrete velocity space as

f eq
i = wiρ

(
1− ei · u

c2
s

+
(ei · u)2

2 c4
s
− u2

2 c2
s

)
, (5.16)

where cs = c/
√

3 is the lattice speed of sound, c is the basic speed
on the lattice with time and space step ∆t = ∆x = 1 in lattice units.
From requiring that the the equilibrium distribution complies with the
moments of the collision invariants mass, momentum and energy, as well
as from symmetry considerations and from ∑i wi = 1, the weights are
derived as [95]

wi =


4
9 , i = 0
1
9 , i = 1 . . . 4
1
36 , i = 5 . . . 8

(5.17)

for the D2Q9 model and

wi =


1
3 , i = 0
1

18 , i = 1 . . . 6
1

36 , i = 7 . . . 18

(5.18)

for the D3Q19 model.

5.3.1 Physical moments

The physical moments, representing the macroscopic values of density
and momentum, are given by means of the discrete moments of the
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distribution functions according to the definitions given in sec. 5.2.4,
i.e.

ρ = ∑
i

fi

ρu = ∑
i

ei fi .
(5.19)

5.3.2 Single relaxation time model

Applying the approximation of Bhatnagar-Gross-Krook [13], leads to the
so called lattice BGK (LBGK) single-relaxation time (SRT) lattice Boltz-
mann model [35, 174]. Here, all moments of the distribution functions
relax with the same time scale, and the simple diagonal form of the
collision matrix Ωij reduces to a single relaxation parameter 1/τ applied
on the collision term

fi(x + ei∆t, t + ∆t)− fi(x, t) =
1
τ

(
f j(x, t)− f eq

j (ρ, u)
)

, (5.20)

Herein the relaxation parameter ω = 1/τ is related to the kinematic
viscosity through

ν = c2
s

(
τ −∆t

1
2

)
=

1
3

(
τ − 1

2

)
, (5.21)

which can be derived by employing the Chapman-Enskog analysis, as
shown in [95]. The lattice units are commonly normalised, i.e. ∆x =
∆t = 1, and thus it is immediately obvious, that a value of τ = 0.5 is the
natural lower limit of the formalism, since a negative viscosity will lead
to unphysical and unstable results.

When it comes to the numerical implementation of the outlined formal-
ism, a single time step of a typical algorithm is divided into different
steps:

• The macroscopic values of ρ and u are computed as the moments
of the particle distribution functions, eq. (5.19).

• During the collision step, the equilibrium distribution functions
are calculated from ρ and u according to eq. (5.16), and the particle
distribution functions are updated according to

f̃i(x, t) = fi(x, t)− 1
τ

(
f j(x, t)− f eq

j (ρ, u)
)
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• Finally, the new particle distribution functions f̃i are propagated
towards neighbouring lattices as

fi(x + ei∆t, t + ∆t) = f̃i(x, t)

5.3.3 Multiple relaxation time model

According to the Multiple Relaxation Time (MRT) model of D’Humières
[44], the numerical stability, accuracy and the physical limits of the
method can be further improved, using an independently adjustable
relaxation time for each kinetic moment.

With respect to the velocity-space, one can construct a moment-space for a
certain DdQq model, which is formulated by the corresponding physical
moments mi, [45]. Defining a transformation matrix M, the particle
distribution functions fi are transferred from velocity-space into the
corresponding physical moments mi in moment-space and vice versa

m =M f or f =M−1m . (5.22)

By applying a Gram-Schmidt orthogonalization [43], a decomposition
leads to

Ωij =M−1Ω̂ijM or Ω̂ij =MΩijM−1 , (5.23)

where the diagonal matrix Ω̂ij = 1 s represent the relaxation parameters
si in moment-space, with 1 being the identity matrix. The MRT lattice
Boltzmann evolution equation is written as

fi(x + ei δt, t + δt) = fi(x, t)−M−1 Ω̂ij

(
mi(x, t)−m(eq)

i (x, t)
)

. (5.24)

Collision now takes place in moment-space utilising different physically
related relaxation parameters si. The transformations of the equilibrium

moments m(eq)
i and the values forM and Ω̂ij can be found in [45]. Due

to the individual relaxation parameters, the bulk viscosity ς = 2
9

(
1
s1
− 1

2

)
and shear viscosity ν = 1

3

(
1
s9
− 1

2

)
are no longer coupled as in the BGK

model. Thus, spurious oscillations related to low shear viscosities can be
damped, and the stability of the model is improved [45, 118, 129].
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Today, there is no theory to derive a perfect set of relaxation values for
every application. However, values can be derived by semi empirical
numerical stability analysis, studying the behaviour of the eigenvalues
of a linearised collision operator [118, 129].

The transformation matrixM and the set of relaxation parameters for
the D2Q9 model are given as

M =



1 1 1 1 1 1 1 1 1
−4 2 −1 2 −1 2 −1 2 −1

4 1 −2 1 −2 1 −2 1 −2
0 −1 −1 −1 0 1 1 1 0
0 −1 2 −1 0 1 −2 1 0
0 1 0 −1 −1 −1 0 1 1
0 1 0 −1 2 −1 0 1 −2
0 0 1 0 −1 0 1 0 −1
0 −1 0 1 0 −1 0 1 0


(5.25)

and

s =
(

0.0 1.63 1.14 0.0 1.92 0.0 1.92 1.99 1.99
)

(5.26)

whereas the inverse transformation matricesM−1 and the values for the
D3Q19 model are listed in appendix D. The numerical implementation is
similar to the one outlined for the SRT model, except that the collision is
carried out in the moment space.

5.4 Linkage to Navier-Stokes equation –
Chapman-Enskog expansion

The multiscale singular perturbation analysis known as Chapman-Enskog
expansion allows to derive the Navier-Stokes equations from the Boltz-
mann equation by means of an asymptotic analysis [121, 209, 215]. The
following description is mainly inspired by [209] and is presented here
for completeness and comprehension. Starting from the discrete Boltz-
mann equation with a general collision term Ω(x, t), a Taylor expansion
for a function of two variables for fi(x + ci, t + 1) leads to

Ωi(x, t) ≈ (∂t +∇ · ci) fi +
1
2
(∂2

t + 2∂t∇ · ci +∇∇ : cici) fi +O(3)
(5.27)
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Perturbation theory provides the technique to separate the function
fi(x, t) in two timescales t1 and t2 for fast and slow phenomena (ad-
vection and diffusion), respectively. The time derivative is expanded
as

∂t = ε∂t1 + ε2∂t2 +O(ε3) , (5.28)

where ε is the perturbation parameter. Similarly, the spatial derivative is
expanded for one term

∇ = ε∇1 +O(ε2) . (5.29)

Finally, the particle distribution function as well as the collision term are
expanded, starting at the zeroth order terms f (0)i and Ω

(0)
i as

fi = f (0)i + ε f (1)i +O(ε2) (5.30)

Ωi = Ω
(0)
i + εΩ

(1)
i + ε2Ω

(2)
i +O(ε3) (5.31)

Summarising the expansions above and substitute them in the Taylor
series (5.27) reads

Ω
(0)
i + εΩ

(1)
i + ε2Ω

(2)
i +O(ε3) =(

ε∂t1 + ε2∂t2 + ε∇1 · ci + ε2 1
2

∂2
t1
+ ε2∂t1∇1 · ci + ε2 1

2
∇1∇1 : cici

)
(

f (0)i + ε f (1)i

)
+O(ε3) . (5.32)

Sorting and rearranging with respect to the smallness parameter ε one
gets

Ω
(0)
i + εΩ

(1)
i + ε2Ω

(2)
i +O(ε3) = ε

[
(∂t1 +∇1 · ci) f (0)i

]
+

+ ε2
[
(∂t1 +∇1 · ci) f (1)i +

+

(
∂t2 +

1
2

∂2
t1
+ ∂t1∇1 · ci +

1
2
∇1∇1 : cici

)
f (0)i

]
+

+O(ε3) . (5.33)
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Looking at the terms of different order in ε separately by means of a
coefficient comparison, it directly follows that Ω

(0)
i = 0, and for the

remaining terms

Ω
(1)
i = (∂t1 +∇1 · ci) f (0)i (5.34)

Ω
(2)
i = (∂t1 +∇1 · ci) f (1)i +

+

(
∂t2 +

1
2

∂2
t1
+ ∂t1∇1 · ci +

1
2
∇1∇1 : cici

)
f (0)i (5.35)

Conserved quantities and BGK collision term

In order to proceed with the linkage between the lattice Boltzmann
equation and the Navier-Stokes equations, we revise the definition of the
conserved macroscopic quantities as moments of the particle distribution
function here

ρ = ∑
i

fi = ∑
i

f (0)i (5.36)

ρu = ∑
i

ci fi = ∑
i

ci f (0)i (5.37)

Π = ∑
i

Qi fi with Qi = cici − c2
s (5.38)

Furthermore, the BGK collision operator is expressed by expansion of
the particle distribution function around f (0)i as

Ωi = −
1
τ

(
fi − f (0)i

)
= − 1

τ

(
ε f (1)i + ε2 f (0)i +O(ε3)

)
(5.39)

Mass and Momentum are preserved by the collision operator, i.e. ∑i Ωi =
∑i ciΩi = 0, which further leads to

∑
i

Ωi = −
1
τ ∑

i
f (k)i = 0 ∀ k > 0 (5.40)

∑
i

ciΩi = −
1
τ ∑

i
ci f (k)i = 0 ∀ k > 0 (5.41)

i.e. for the BGK operator, the zeroth and first order moments of the
non-equilibrium distribution will vanish.
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O(0) moments of the Chapman-Enskog expansion

Formulating the zeroth order moment for the terms of O(ε) from the
Chapman-Enskog expansion, eq. (5.34), reads

∑
i

Ω
(1)
i = ∑

i
∂t1 f (0)i + ∑

i
∇1 · ci f (0)i = 0 . (5.42)

With respect to the results for the conserved quantities, eq. (5.36) and
(5.37), it follows

∑
i

∂t1 f (0)i = ∂t1 ∑
i

f (0)i with ∑
i

f (0)i = ρ (5.43)

∑
i
∇1ci f (0)i = ∇1 ∑

i
ci f (0)i with ∑

i
ci f (0)i = ρu . (5.44)

Putting everything together, the continuity equation is recovered for
timescale t1

∂t1 ρ +∇1 · ρu = 0 . (5.45)

In the same way the zeroth order moment for the terms of O(ε2) from
the Chapman-Enskog expansion, eq. (5.35), reads

∑
i

Ω
(2)
i = ∂t1 ∑

i
f (1)i +∇1 ·∑

i
ci f (1)i + ∂t2 ∑

i
f (0)i +

1
2

∂2
t1 ∑

i
f (0)i + ∂t1∇1 ·∑

i
ci f (0)i +

1
2
∇1∇1 : ∑

i
cici f (0)i = 0 . (5.46)

Applying eq. (5.40) we can drop the first two terms on the right hand
side. Additionally applying the definitions of the conserved quantities,
eqns. (5.36) to (5.38), this simplifies to

∂t2 ρ +
1
2

∂2
t1

ρ + ∂t1∇1 · ρu +
1
2
∇1∇1 : ∑

i

(
Qi + c2

s1
)

f (0)i = 0 , (5.47)

and with ∇1∇1 : 1 = ∇2
1 it finally follows

∂t2 ρ + ∂t1∇1 · ρu +
1
2

(
∂2

t1
ρ +∇1∇1 : Π(0) + c2

s∇2
1ρ
)
= 0 . (5.48)
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O(1) moments of the Chapman-Enskog expansion

The first order moment for the terms of O(ε) from the Chapman-Enskog
expansion, eq. (5.34), reads

∑
i

ciΩ
(1)
i = ∂t1 ∑

i
ci f (0)i +∇1 ·∑

i
cici f (0)i = 0 , (5.49)

which results in

∂t1 ρu +∇1 ·Π(0) + c2
s∇1ρ = 0 . (5.50)

Similarly, the first order moment of eq. (5.35) is given as

∑
i

ciΩ
(2)
i = ∂t1 ∑

i
ci f (1)i +∇1 ·∑

i
cici f (1)i + ∂t2 ∑

i
ci f (0)i +

1
2

∂2
t1 ∑

i
ci f (0)i + ∂t1∇1 ·∑

i
cici f (0)i +

1
2
∇1∇1 : ∑

i
cicici f (0)i = 0 , (5.51)

which leads to

∇1 ·Π(1) + ∂t2 ρu +
1
2

∂2
t1

ρu + ∂t1∇1 ·Π(0) + c2
s ∂t1∇1ρ+

+
1
2
∇1∇1 : R(0) = 0 , (5.52)

where R(0) is a rank 2 tensor (R(0)
αβγ = ∑i ciαciβciγ f (0)i ) which is be fur-

ther investigated in the course of an Chapman-Enskog analysis for the
momentum equation, cf. [209].

Deriving the continuity equation

The expansion as well as the zeroth and first order moments derived so
far can now be combined. Taking one half of the time derivative in t1 of
eq. (5.45) and substracting it from eq. (5.48) gives

∂t2 ρ +
1
2

(
∂t1∇1 · ρu +∇1∇1 : Π(0) + c2

s∇2
1ρ
)
= 0 . (5.53)
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On closer inspection it gets obvious, that the expression in brackets is
identical to the divergence of eq. (5.50), which means that

∂t2 ρ = 0 . (5.54)

While t1 is the time scale of fast phenomena, the result for the timescale
t2 states, that the particle exchange due to diffusion takes place without
a redistribution of mass, which obeys to advective processes. Since
∂tρ = ε∂t1 ρ + ε2∂t2 ρ and ∇ = ε∇1, it follows that

∂tρ +∇ · ρu = 0 , (5.55)

which is the continuity equation for compressible fluids. The derivation
of the momentum equations is done by the same analysis but is much
more involved. Therefore the interested reader may refer [95, 121, 209,
215]. At this point it is noteworthy, that the simple collision and streaming
scheme presented above, provides a feasible and satisfying technique to
render the Navier-Stokes equations up to second order in space and time
[106].

5.5 Boundary conditions

One of the advantages of the lattice Boltzmann method is the easy and
seamless implementation of basic fluiddynamic boundary conditions.
On the other hand, since boundary conditions will have to be formulated
in terms of the distribution functions rather than in terms of physical
quantities, the translation of macroscopic to microscopic information can
impose considerable difficulties, demanding for more involved schemes,
cf. [87, 98, 224].

In the following, only a brief description of a few simply boundary
treatments which were used in this work is presented. However, there are
by far more boundary condition schemes available in the open literature,
which are more sophisticated [21, 87, 98, 131, 186, 224], but a discussion
of those would go beyond the scope of this work.

Bounce Back: The so called bounce back boundary condition is realised
by applying a rather simple mechanism associated with a mechani-
cal viewpoint. To render the hydraulic no-slip boundary condition,
particle distribution functions at the walls are simply reflected, cf.
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Figure 5.2: Illustration of the bounce back mechanism for a two-dimensional D2Q9

lattice. Incoming particle distribution functions ( f4, f6 and f7) are reflected ( f3, f5
and f8) applying a rather mechanical concept. Herein, the no-slip wall is located
halfway between the fluid and boundary lattices.

fig. 5.2. The standard bounce-back scheme is explained and de-
scribed at length in the open literature, cf. [81, 150, 196]. Problems
may arise when the physical wall is not aligned with the lattices,
which requires for more involved schemes or certain interpolation
techniques, cf. [21, 34, 87, 91, 160].

Equilibrium Boundary Condition: Employing the so called equilibrium
boundary condition, the particle distribution functions fi of the con-
cerned lattice are simply

fi(x, t) = f eq
i (ub) , (5.56)

i.e. subject of equilibrium distribution according to the velocity ub.
In [151] it is shown, that for moderate Reynolds numbers in the
weak non-equilibrium regime, these kind of boundary conditions
provide a reasonable option.

Periodic Boundary Conditions: Often, when it comes to represent pe-
riodic flow conditions, the problem setup might be substantially
reduced, especially in terms of computational resources and simu-
lation time. Periodic boundaries always appear in pairs, i.e. flow
that leaves on one boundary of a domain is supposed to enter at the
adjacent boundary and vice versa, for instance. Accordingly, the
quantities of the corresponding boundaries are exchanged, whereas
employing the lattice Boltzmann method distribution functions are
exchanged rather than physical quantities.

Extrapolation Boundary Condition: At outlet or opening boundaries,
where the values or conditions of the physical quantities are not
known at first, the most appropriate assumption one could make,



76 Chapter 5 Diffuse interface fluid mechanics

is to extrapolate the interior values onto the domain boundary.
However, this might lead to stability problems, especially for high
gradients or recirculating flows at the concerning boundary. Stabil-
ity might be slightly improved by a weighting of the distribution
function extrapolation in terms of pressure or density.

5.6 Modelling of body forces

So far body forces are omitted for simplicity. However, in order to
simulate gravity or buoyancy driven flows, and for the modelling of the
diffuse interface coupling, a suitable treatment is required. There are
different models proposed and discussed for the incorporation of body
forces into lattice Boltzmann method, cf. [23, 92, 117, 127, 136, 150].

Following [142, 143] and with regards to the diffuse interface modelling
according to [10] which will be described in sec. 5.8, we employ the exact
difference method proposed by [117]. The velocity change due to the
action of the force ∆u = F∆t/ρ is used to model the force contribution

∆ fi = f (eq)
i (ρ, u + ∆u)− f (eq)

i (ρ, u) , (5.57)

that is added to the right hand side of eq. (5.15).

5.7 Smagorinsky subgrid-scale turbulence
model

To account for the effects of spatially unresolved turbulent effects we
employ the subgrid-scale model of Smagorinsky [104, 171, 172, 180, 187],
where the eddy-viscosity νt is related to

νt = (Cs∆)
2 |S | , (5.58)

with the Smagorinsky constant Cs, the filter size ∆, and the magnitude
|S | of the strain rate tensor Sij = (∂iuj + ∂jui)

|S | =
√

2SijSij . (5.59)
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In LBE the strain rate tensor Sij can be calculated directly from the
second-order moment of the non-equilibrium distribution function [104,
220] as

Sij =
3

2ρτt∆t
Π

(neq)
ij , (5.60)

with the non-equilibrium momentum tensor

Π
(neq)
ij = ∑

α

eαieαj( fα − f (eq)
α ) . (5.61)

From this, the eddy-viscosity can be expressed as

νt =
3

2ρτt∆t
(Cs∆)

2
√

Π
(neq)
ij Π

(neq)
ij . (5.62)

Finally, we use the effective viscosity ν∗ = ν + νt to get an effective
relaxation time

τ∗ =
3 ν∗ + 1

2
. (5.63)

Using the effective relaxation time in eq. 5.20, we model a filtered form
of the LBE in terms of a large-eddy simulation [104].

5.8 Diffuse interface modelling

With respect to the diffuse interface region of the phase field method,
a special treatment of the flow in the phase transition region of fluid
(f) and solid (s) phases is essential, cf. chapter 4. Inside the diffuse
interface layer each cell is partially filled with solid and fluid according
to the magnitude of the order parameters φs and φl , respectively. An
appropriate modelling approach should recover the no-slip condition
for the solid phase us = 0 m/s as well as the velocity profile of the bulk
fluid phase. In the following two different models are presented and
validations are carried out in the subsequent sections.
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5.8.1 Diffuse bounce back

A notably simple method is proposed in [148], where the streaming
step is modified, such that depending on the order parameter φ only
a fraction of the distribution function is transmitted. The modified
evolution equation for the SRT lattice Boltzmann method reads

fi(x + ei δt, t + δt) = f̃i(x, t)− r(φ)Ωij

(
fi − f (eq)

i

)
, (5.64)

where the reflection is carried out by means of a diffuse bounce back
mechanism

f̃i(x, t) = r(φ) fi(x, t) + (1− r(φ)) fi(x, t) . (5.65)

Herein fi(x, t) denotes particle distribution functions bounced back in
opposite direction with respect to i. The reflectivity function r(φ) is
modelled according to [148] and with respect to the steady state solution
of the diffuse interface profile as

r(φ) =
1
2

(
1− tanh

(
dw

λ f

))
, (5.66)

where dw = λ atanh(0.5− φ f )/δx is the distance relative to the interface
(φ = 0.5) and λ f = ν/cs is the molecular mean free path. Furthermore,
φ f is the liquid fraction and λ = επ2/4 is the interface width. Since the
reflectivity is given as a function of the diffuse phase-field variables, a
smooth transition at the phase boundary (fluid-solid) is guaranteed. We
will reference this model as reflectivity model the following.

5.8.2 Dissipative interfacial stress term

Following the methodology of [10], the effect of the diffuse interface
region can also be modelled by an additional dissipative forcing term
for the partially filled regions, cf. [142, 143, 205]. The same approach
is recently applied by [144] for the coupled phase field and lattice Boltz-
mann simulation of dendritic solidification including the effects of liquid
motion. The phase-averaged velocity ū inside the diffuse interface re-
gion, with respect to us = 0, is written as the volume averaged velocity
ū = usφs + ulφl = ulφl . According to Beckermann et al. [10], the fluid is
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considered incompressible, which corresponds well with the low Mach
number assumption of the lattice Boltzmann method. Hence, the conser-
vation equations of fluid mechanics can be formulated as [10]

∇ · (φ f u) = 0

∂t(φ f ρu) +∇ ·
(

φ f ρuuT
)
= −φl∇p +∇ · (µ∇(φ f u))− 〈[τ] f · ∇X f 〉V

(5.67)

where the last term on the right hand side of the second equation Md
f =

〈[τ] f · ∇X f 〉 is derived from the interfacial momentum source. The term
is named dissipative interfacial stress term, and accounts for additional
dissipation viscous stress inside the interface layer. Herein τ corresponds
to the viscous stress tensor.

In accordance with flow inside porous media [113, 157, 189] the dissipa-
tive interfacial stress term is added to the liquid phase and is modelled
according to Darcy’s law for porous media flow as

Md
f = hµ f (1− φ f )

u f

δ
|∇φ| , (5.68)

with a dimensionless friction coefficient h, a model parameter relative to
interface width δ, the liquid dynamic viscosity µ f and the solid fraction
φs. Note, that δ is a parameter related to the interface thickness, which
is given as approximately 6δ when using the double well potential
formulation φ(n) = 1

2 (1 + tanh (n/2δ)) given in [10]. Since the double
well will give φ = 0 or 1 only as x → ±∞ respectively, the interface
thickness is defined as 6δ for the range of 0.05 6 φ 6 0.95, whereas the
interface width of the obstacle potential eq. (4.4) is defined as λ = π2ε/4
for 0 6 φ 6 1. Comparing the interface widths 6δ ≈ λ and ignoring the
difference between double-well and obstacle potential gives

δ = π2ε/24 . (5.69)

For the binary α|β interface at equilibrium ∂tφ = 0 the balance of the
variations of surface gradient energy and potential

ε

(
∂a(φ,∇φ)

∂φ
−∇ · ∂a(φ,∇φ)

∂∇φ

)
=

1
ε

∂w(φ)

∂φ
. (5.70)
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The surface gradient energy

a(φ,∇φ) = ∑
α<β

γαβ(aαβ(φ,∇φ))2|qαβ|2 , (5.71)

can be simplified, since aαβ ≡ 1 in case of isotropy and qαβ = −∇φ for a
binary α|β interface, to

a(φ,∇φ) = γαβ|∇φ|2 , (5.72)

Using this in eq. (5.70) for the one-dimensional case, leads to

2 ε γαβ∇2φ =
1
ε

∂w(φ)

∂φ
, (5.73)

multiplying with ∇φ and integrating with respect to φ

ε γαβ|∇φ|2 = εa(φ,∇φ) =
1
ε

w(φ) , (5.74)

and using the obstacle potential (4.4) gives

|∇φ| = 4
πε

√
φ(1− φ) . (5.75)

Putting things together, using eqns. (5.69) and (5.75) in eq. (5.68) and
ul = u/φl , the dissipative interfacial stress term reads

Md
f =

96
π3ε2 h µ f u

φs

φ f

√
φs φ f . (5.76)

All terms are now defined except the friction coefficient h, which is
derived from a plain Poiseuille flow. Hence, the momentum equation
(5.67) simplifies to

µ f
∂2(φ f u)

∂x2 − 96
π3ε2 h µ f u

φs

φ f

√
φs φ f = φl

∂p
∂y

. (5.77)

Since there is no analytical solution for eq. (5.77), it is normalised with
respect to X = x/∆x and solved numerically according to [193] using
Mathematica. According to [10] the ansatz u(X) = exp(

√
hX) is used for

the velocity. Finally, the friction coefficient is evaluated as h = 3.285. In
the context of the lattice Boltzmann method, the additional dissipative
interfacial stress term is added by means of the body force modelling
mentioned in sec. 5.6 using the formalism of [117], and the model is
named forcing model within the subsequent sections.
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5.9 Parametrisation

As mentioned at different occasions above, the lattice Boltzmann formal-
ism implies that the dimensionless set of space and time unit equals unity,
∆x = ∆t = 1. However, the simulation strives to reflect actual, real world
physics. With regards to the laws of similitude (Buckingham Π-theorem)
[217], flows are equivalent if they achieve geometric-, kinematic- and
dynamic similarity. The solution of the incompressible Navier-Stokes
equation is mainly characterised by the Reynolds number.

With respect to the prerequisite of small Mach number regime6 for the
lattice Boltzmann method, the flow can be considered as effectively
incompressible. Thus, the Reynolds number is held to be the same
for both the physical and the lattice units, in order to ensure dynamic
similitude between the real world and simulation.

Starting from the physical system, the characteristic Reynolds number
is given by the characteristic length scale l0, velocity u0 and viscosity ν0
as

Re =
l0 · u0

ν0
. (5.78)

Note, that in an intermediate dimensionless system (d) on the way from
physical to lattice units, the Reynolds number is given as the reciprocal
of the dimensionless viscosity Re = 1/νd, since ∆x = ∆t = 1.

Now an appropriate choice on the spatial resolution Nx and the velocity
u0,(lb) in lattice units (lb) must be made to fix the discrete cell spacing δx
and the discrete time step δt as

δx =
l0
Nx

(5.79)

δt =
u0,(lb)

u0
· δx (5.80)

The decision taking and the constraints for the choice of Nx and u(lb) will
be more clear after the whole picture of the parametrisation is drawn.

6The equilibrium distribution only holds for small velocities or low Mach numbers [95,
215].
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Typically, the velocity in lattice units is the one applied as boundary or
initial condition, otherwise an arbitrary physical velocity ui,(p) is scaled
to lattice units as

ui,(lb) = ui,(p) ·
u0,lb

u0
, (5.81)

whereas the viscosity in lattice units is given as

ν(lb) = ν0 ·
δt

δ2
x

. (5.82)

According to the Chapman-Enskog analysis, the collision frequency ω is
related to the dynamic viscosity [95]. In that sense the relaxation time
τ = 1/ω is given as

τ = 3 ν(lb) +
1
2

, (5.83)

where the factor ½ is added with respect to a finite time step width.
Finally, the scaling for the density ρ0 can be freely chosen, whereas the
physical pressure is linked via the equation of state as

p(p) =
1
3

ρ(lb)
δ2

x

δ2
t

ρ0 . (5.84)

As already outlined above in sec. 5.3.2 the viscosity in eq. (5.21) must
not be negative, thus as the lower limit, the relaxation time should be
τ > 0.5. To recap on the choice of the spatial resolution Nx and the
reference velocity in lattice units u0,(lb) it gets obvious, that both values
have an impact on the stability in terms of the relaxation time τ.

Furthermore, since the lattice Boltzmann method does not support high
Mach number flows7, the magnitude of the lattice velocity is limited by
the speed of sound cs. However, the lattice Boltzmann method solves
for quasi compressible flows, where the numerical accuracy is affected
by compressibility effects. According to the comprehensive derivation
in [121], while the compressibility effects scale with Ma2 ∼ δ2

t /δ2
x, the

lattice error scales with δ2
x since the lattice Boltzmann method is second

7Note, there are flavours of models and methods capable of high Mach number or even
supersonic flows [30, 198, 215], which are not within the scope of this work.
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order accurate. This leads to a trade-off between lattice error and com-
pressibility error, and gives the common relation δt ∼ δ2

x, cf. [72, 121,
215].

For illustration, sample parametrisation is carried out in appendix E, and
the corresponding input parameters for the simulation with PACE3D are
given.

5.10 Validation

For validation of the above outlined lattice Boltzmann method integrated
in PACE3D three different testcases are performed throughout the sub-
sequent sections, where simulations are conducted for sharp as well
as diffuse interface setups and the results are compared to analytic or
reference data from literature.

5.10.1 Plain Poiseuille-flow

The velocity profile of the plain Poiseuille-flow is given as

u(y) =
dp
dx

1
2µ

((
h
2

)2
− y2

)
(5.85)

where the origin of the coordinate system is placed at the centerline of
the channel, h is the channel height and µ the dynamic viscosity. In
general, the flow is driven by a pressure gradient dp/dx in flow direction.
For a gravity driven flow, we replace dp/dx = ρg.

Figure 5.3 depicts velocity profiles obtained for different lattice models
and diffuse interface couplings in comparison with the corresponding
analytical and the sharp interface solutions. The channel width is dis-
cretised using 50 lattices starting at grid coordinate 20 and ending at 70
for the sharp interface setup. For all diffuse interface setups, a smooth
distribution of the order parameter is chosen, such that φ = 0.5 is located
at the grid coordinate 20 and 70, respectively. Different diffuse interface
widths are tested, where the dimensionless control parameter ε = 3,
5 and 7 corresponds to the interface widths λ ≈ 7, 12 and 17, where
λ = ε π2/4 in grid units.
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Figure 5.3: Comparison of velocity profiles of the plain Poiseuille flow obtained
analytically, with sharp interface with different diffuse interface and lattice
models: (a) SRT lattice BGK model and reflectivity model (b) SRT lattice BGK
model and forcing model (c) MRT lattice Boltzmann model and forcing model.
The shadowy regions mark the diffuse interface layer.
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While the sharp interface solution matches the analytical profile, we
observe differences in the velocity distribution for the reflectivity model,
cf. fig. 5.3(a). The magnitude of the velocity profile is at maximum 4%
lower than the reference solution. However, the results of the forcing
model are in very good agreement with the analytic solution for both,
the SRT as well as MRT lattice Boltzmann method respectively, cf. figs.
5.3(b) and 5.3(c).

5.10.2 Lid driven cavity

For more than three decades [24], the lid-driven cavity flow is a well
known and most probably one of the most implemented benchmark
problems in computational fluid dynamics, cf. [61, 62, 84]. Despite
its simplicity, which makes the problem appropriate for coding and
numerics, it retains plenty of flow physics, such as singularities at two of
its corners and counter rotating vortices.

The cavity is spatially discretised according to the stability requirements
[216] and with respect to the different Reynolds numbers performed
with 100× 100 cells for Reynolds numbers Re=100 and Re=1000. For a
Reynolds number of Re=5000 the sharp interface solution using the MRT
model required a resolution of 250× 250 cells, whereas the stability is
obviously positively influenced by employing the MRT forcing model
where 150× 150 cells lead to a accurate and stable solution, cf. figs. 5.4.
As a consequence of the plain Poiseuille test, we exclusively apply the
forcing model to this testcase. The normalised velocity profiles along
the vertical and the horizontal center line are displayed in figs. 5.4 for
Reynolds numbers Re=100, 1000 and 5000, along with the reference
solutions from [62, 84].

For the Reynolds numbers Re=100 and Re=1000 we observe minor devia-
tions in the velocity profiles in horizontal centerline direction between
sharp and diffuse interface solutions, cf. figs. 5.4(a) and 5.4(c), whereas
the differences for the velocity distribution along vertical centerline direc-
tion are negligible, cf. figs. 5.4(b) and 5.4(d). For a high Reynolds number
Re=5000, the solution is subject to small oscillations, indicating transient
effects which cause more obvious but still acceptable differences, as
depicted in figs. 5.4(e) and 5.4(f).
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Figure 5.4: Velocity profiles for the lid driven cavity testcase: normalised vertical
velocity along horizontal centerline for Reynolds numbers (a) Re=100, (c) Re=1000
and (e) Re=5000, and normalised horizontal velocity along vertical centerline
for Reynolds numbers (b) Re=100, (d) Re=1000 and (f) Re=5000. The shadowy
regions mark the diffuse interface areas.
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Figure 5.5: Time averaged normalised streamwise velocity along horizontal cen-
terline for the turbulent flow past square cylinder.
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Figure 5.6: Time averaged normalised streamwise velocity along vertical center-
line for the turbulent flow past square cylinder.

5.10.3 Square cylinder in high Reynolds number flow

The simulation of flow past square cylinder [71, 124, 190] is performed for
flow at Re=22’000 using the afore mentioned SRT lattice Boltzmann BGK
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method employing the Smagorinsky turbulence model. A square cylinder
of dimensions D× D is located at the center of a computational domain
of extent -10 D ≤ x ≤ 20 D in streamwise direction and -10 D ≤ y ≤ 10 D
in lateral direction. The velocity boundary condition is applied at the
inlet, pressure boundary condition at the outlet, and no slip boundary
conditions on the outer walls. Providing that the flow is two-dimensional,
periodic boundary conditions are composed in lateral direction. The
Reynolds number is defined as

Re =
u D

ν
(5.86)

using the uniform inlet velocity U, the width of the square cylinder
D and the kinematic viscosity ν. A spatial discretisation of 200× 300

cells is chosen for the sharp interface setup, whereas a finer resolution
of 400× 600 cells is used for the diffuse interface setup, in order to
reasonably resolve the diffuse boundaries.

In fig. 5.5 the time averaged streamwise velocity along the wake centerline
is compared to experimental and numerical reference data, cf. [56, 76,
124, 130, 208]. The results of our method are in the same range and at
the same level as the experimental and numerical reference data. While
the sharp interface solution ( ) in fig. 5.5(a) slightly overpredicts the
negative peak in the wake of the cube compared to the experimental data
( and ), the diffuse interface results are in very good agreement, cf.
fig. 5.5(b). The velocity slope in the wake is well mapped by both, the
sharp as well as the diffuse interface solution.

The velocity profile in lateral direction at x/D = 0.5 is given in figs. 5.6 for
the sharp and diffuse interface solutions in comparison to experimental
data. For both, the bulk velocity profile is in very good agreement
with the experimental data, and also the slope is well mapped. Due to
the prerequisite of a uniform Cartesian grid for the lattice Boltzmann
simulation, and a limited reasonable grid resolution, the details of the
flow in the immediate vicinity of the surface lacks from grid resolution
for the sharp interface setup, cf. fig. 5.6(a). For a finer mesh using the
diffuse interface approach, the details are smoothed intrinsically by the
dissipative forcing inside the interface layer, cf. fig. 5.6(b).



Chapter 6

Diffuse interface heat transfer1

With respect to heat transfer across a phase boundary, it has been shown
that for different thermal conductivities of two phases which are in
contact, a scalar interpolation of this quantity causes the phenomena of
heat trapping across a non-stationary interface, which is caused by unequal
fluxes of heat current across two sides of an interface [3, 140]. The defect
manifests itself as a discontinuity of the temperature when asymptotes
of the bulk temperature fields are extended on to the interface from both
phases. A similar phenomenon has also been found in mass transfer
across the interface between phases which have differing diffusivities,
the result in this case being a solute trapping causing a chemical potential
jump at the interface [111]. In the limit of vanishing diffusive current
through the bulk solid, it can be shown through a formal asymptotic
analysis this jump is proportional to the velocity of the interface. A
solution was proposed through the formulation of an anti-trapping
current [111], which corrects for this defect though a current from the
solid (zero diffusivity) to the liquid that is proportional to the velocity.

In the limit of non-vanishing diffusivity in the solid, the flux of heat/mass
across the interface can be present even for non-zero velocities. Due to
the non-homogeneity of the thermal conductivity across the interface
an incorrect interpolation leads to a chemical potential/temperature at
the interface, which is independent of the velocity of the interface [93,
169]. [163] correct for this defect, when the interface is non-stationary,
by modifying the anti-trapping current by a factor which depends on
the flux reaching the solid side of the interface. The problem is however
unsolved for stationary interfaces.

Physically, the problem can be seen as the retrieval of the correct effective
thermal resistance for the different currents across the phase-field interface.

1Parts of the subsequent sections are submitted for publication in Modelling and Simulation
in Materials Science and Engineering [68, 70].
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Essentially, for currents flowing in a direction normal to the interface,
the two phases are arranged in a serial manner, rendering the effective
resistance as R = Rαφα + Rβφα, where the φα and φβ are the indicator
functions representing the volumes of the two phases at a given point.
Clearly, since the current is given by k∇T, k being the thermal conductiv-
ity, the resistance is given by 1/k, and therefore, the correct interpolation
of the thermal conductivity would read 1/k⊥ = φα/kα + φβ/kβ. How-
ever, for currents flowing in the plane of the interface parallel to it, the
phases are arranged parallely, thereby the correct interpolation should be
k‖ = kαφα + kβφβ. This duality cannot be treated in a scalar framework
and [158] formulates a tensorial approach where the thermal conductivity
can be written as a matrix such that,(

jn
jt

)
=

(
k⊥ 0
0 k‖

)(
∇Tn
∇Tt,

)
(6.1)

where jn and jt are the currents normal and parallel to the interface.

While the above construction solves the asymmetry in fluxes at steady-
state, the transient evolution of the temperature field across an in-
homogeneous interface has not been treated. The relevant parameter
related to the change of temperature for a unit change in the internal
energy is indeed related to the heat capacity of the interface. In this
chapter we outline the problems arising with the different interpolation
schemes for the heat capacity, and thereby derive a modified divergence
operator constructed out of the effective capacities of the interface, for
the different currents across the interface. In this endeavour, we draw
upon inferences from the analogical variable in electrical circuits which
is the electrical capacitance.

Recent developments [83] indicate, that there are more sophisticated
methods for the solution of the model problems we are dealing with
in the subsequent section. We are aware of the fact, that non moving
interfaces without phase transition or morphological processes, are ac-
curately and in particular more efficiently covered by means of classical
finite difference or finite element methods. The elegance of the phase-
field method, lies in being able to treat problems of complex geometries
which would otherwise require very efficient numerical schemes in the
FEM, FVM framework, through relatively less intensive computational
methods, thus allowing for ease of parallelisation required for simulating
larger domains.
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In the course of fluid flow and heat transfer applications we utilise the
phase-field method for the modelling of transient heat conduction for
composite materials, thus paying attention on the correct representation
of the underlying physical processes. In the following, the method
proposed in [158] is extended to the general three dimensional and
transient case in the context of heat conduction.

6.1 Physical Model

We will start from the well known heat conduction equation [167]

ρ cV ∂tT = 〈∇ , q〉, (6.2)

with time derivative ∂tT, density ρ, specific heat cV , and heat flux vector
q. The latter is proportional to the product of the thermal conductivity k
and the gradient of the temperature potential

q = k∇T . (6.3)

We consider a computational domain Ω with the continuous bulk phases
α and β, which are separated by a interface of finite width, cf. fig. 4.1.
An equally spaced uniform Cartesian grid, which is not aligned with
the interface is employed. In the bulk, the material properties k and
cV are constant, i.e. k α, k β and c α

V , c β
V according to the phases α and β

respectively. Inside the transition region of the diffuse interface layer,
the material properties are supposed to be interpolation functions of the
order parameters, such that they maintain the physics in the bulk and
asymptotically recover the physics of a sharp interface solution. Thus
we define k(φ) as the interpolation function for the thermal conductivity
and CV(φ) as the interpolation function for the volumetric heat capacity
CV(φ) = ρ cV(φ).

Thus, the basic scalar temperature evolution equation we consider is

CV(φ) ∂tT = 〈∇, | k(φ)∇T〉 . (6.4)

By default, the initialisation of the phase distribution is done by a sharp
interface setup. At first we performed a phase-field simulation without
driving forces, in order to establish a diffuse interface with finite width λ.
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The pre-calculations were stopped as the phase-field landscape became
stationary.

In the following, the functions k(φ) and CV(φ) need to be defined.
As outlined in ch. 4, the material properties of the bulk phases are
interpolated across the diffuse interface. The derivation of an eligible
interpolation formalism is essential, in order to perform quantitative
simulations. Against this background, the interpolation of mobility and
capacity coefficients of heat conduction by means of a general diffusive
transport process are developed in the following sections. In avoidance
of unnecessarily convoluted examples, we focus on two phase systems
with non-moving steady interfaces. Thus, the stationary phase field φα is
solely used to distinguish between the different phases.

6.2 Classical sharp-interface methodology

Already [168] is concerned with the modelling of the mobility coefficient
of a diffusive process at the interface of a composite material in the
context of a sharp-interface finite volume (FV) model. It is derived,
that the mobility coefficients are represented best using a harmonic
interpolation. We give a brief outline of the concept.

Figure 6.1: Sharp interface finite volume example.

Consider the control volume approach depicted in fig. 6.1, where the
conductivities kL and kR are defined at cell centers, with respect to the
phases ’L’ and ’R’ respectively. For discretisation purposes we need to
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express the conductivity at interface position ’c’. A first attempt might
be to use a linear variation of k(x) between the values of kL and kR
respectively, which leads to

kc =
δxR
δxLR

kL +
δxL

δxLR
kR . (6.5)

If the interface ’c’ is located midway between ’L’ and ’R’, δxR/δxLR → 0.5,
and kc is the arithmetic mean of kL and kR. As we can see from the
following survey, this is not valid, neither accurate nor can it handle
abrupt changes in k.

The conductivity k is not important, since our main objective is a good
representation of the heat flux qc at the interface. It is desired, that inter-
polation of k leads to correct qc. According to Fick’s law the heat flux q is
proportional to a temperature gradient ∆T/∆x, with the proportionality
factor k, the thermal conductivity. Assuming that the conductivities are
constant throughout the cells, and with the temperature difference with
respect to the distance to the interface c, the heat fluxes are defined for
both sides of the interface

qL =
kL

δxL
(TL − Tc) and qR =

kR
δxR

(Tc − TR) , (6.6)

where Tc is the interface temperature, and rearranged

Tc = TL − qL
δxL
kL

= qR
δxR
kR

+ TR . (6.7)

From the continuity condition qL = qR = qc, we get

TL − qc
δxL
kL

= qc
δxR
kR

+ TR (6.8)

and obtain

qc =
TL − TR(

δxR
kR

+ δxL
kL

) (6.9)

Now we model the conduction equation for point ’c’ as

kc =
qc δxLR
TL − TR

=
TL − TR
TL − TR

δxLR(
δxR
kR

+ δxL
kL

) =
δxLR(

δxR
kR

+ δxL
kL

) (6.10)
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and write

1
kc

=
δxL

δxLR

1
kL

+
δxR
δxLR

1
kR

(6.11)

So, kc is the harmonic mean, and the ratios δxR/δxLR and δxR/δxLR are
the weighting functions, depending on the position of the interface.

We can further test two limits, where we assume that the interface is
right in the middle of the left and the right cell. If one conductivity tends
to zero, e.g. kR → 0, this leads to

lim
kR→0

kc = 0 (6.12)

representing an insulator. If we assume kL � kR, we get

lim
kL→∞

kc =
kR δxLR

δxR
(6.13)

Here, the interface conductivity does not depend on kL, since there is no
resistance from phase ’L’. However, kc 6= kR since qc is to be captured,
and thus kc = kR δxLR/δxR to account for the nominal distance.

6.3 Capacitance analogy

The utilisation of the diffuse-interface methods for problems of trans-
port in non-homogeneous media, requires careful understanding of the
transport mechanisms across the interface which are intrinsically related
to the interpolation of the related material properties across the inter-
face. In heat transfer problems the material parameter related to the
flux of heat across the interface is the thermal conductivity. In [158]
the authors describe a tensorial approach for removing the temperature
jump discontinuity at an interface, which is seen in models using a scalar
interpolation of the thermal conductivity that are unable to capture the
effective surface resistance in multi-dimensional flow of current. While,
the approach allows for the correct boundary conditions of the tem-
perature field at steady state, the case of transient heat flow across an
interface is untreated.

In the subsequent sections we intend to contribute an approach for the
time-dependent problem, the relevant material parameter here being
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the heat capacity. To arrive at the correct interpolation scheme for this
material property, we draw on an analogy to the effective capacitance in
electric circuits. For this, consider the similarity of the internal energy
e and electric charge Q, where infinitesimal changes in either quantity
can be related to the corresponding change in temperature T and voltage
difference V respectively as,

δe = CV δT
δQ = Ce δV

(6.14)

where the temperature potential T corresponds to the electric potential
V as well as the heat capacity CV corresponds to the electric capacitance
Ce.

It is well known, that the effective capacitance of an electrical circuit
depends on the direction of the current with respect to a serial or parallel
arrangement of the capacitors. Therefore, let us consider the effective
capacitance in terms of the capacitors formed of material α and β. A serial
arrangement corresponds to a current normal to an interface between
the capacitors, for which the effective capacitance writes as 1/Ce,⊥ =

1/Cα
e + 1/Cβ

e . On the other hand, for a parallel arrangement, the potential
across both phases is the same, and the effective capacitance writes as
Ce,‖ = Cα

e + Cβ
e .

In the following sections, we first show the discrepancies that arise with
the different interpolation schemes and thereafter employ this analogy
and derive the interpolation functions for the heat capacity of the diffuse
interface approach with respect to the direction of the heat currents
according to the interface.

6.4 Numerical survey on 1D test case

In this section we present successive numerical investigations on the
transient heat conduction problem using the concept of the diffuse inter-
face of the phase-field method [154], applying the methodology of [158]
for the thermal conductivity k(φ) and applying different interpolation
schemes for the volumetric heat capacity CV(φ) with respect to eq. (6.4).
For the sake of simplicity and computational effort, a rather simple setup
of a quasi one-dimensional composite material is used to investigate
the diffuse interface transient heat conduction problem, cf. fig. 6.2. The
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composites are equally spaced in a physical domain of length 0.05 m
which is resolved by 200 cells in z direction, where the temperature is
held constant at the left boundary at z = 0 while the right boundary at
z = zmax is set to adiabatic. In the sense of a quasi one-dimensional setup,
the other directions are resolved by just one cell and the corresponding
boundaries are subject to adiabatic conditions. The stationary interface
is located at the center of the domain.

Starting from a constant initial temperature of 293 K in the interior of
the domain, we instantaneously apply a temperature of 303 K at the left
boundary at z = 0. Since we are interested in high ratios of thermal
conductivity and heat capacity, aluminium and air are used as materials.
At this point we have to indicate, that natural convection is not considered.
Only diffuse thermal transport is modelled. The physical properties used
for the simulations are listed in tab. 6.2.

Qualitative and quantitative comparison in the sense of model develop-
ment is achieved with simulations performed applying the commercial
package StarCCM of CD-Adapco [27], and setting an identical numerical
domain and configuration. Validation of the final chosen model against
analytical solutions are provided in section 6.6.

Figure 6.2: Outline of the one dimensional test case together with an indication
for the profile of the order parameter φα. The sharp interface location corresponds
to φα = φβ = 0.5.
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Figure 6.3: Phase-field profile shape for different interface widths.

Unless stated otherwise, we use an interface of about 15 cells. Based
on the steady state solution for the order parameter [154], the interface
width λ = επ2/4, where ε is a model parameter of the phase field
method [154]. Here, the location of the sharp interface is represented
by φα = φβ = 0.5, cf. fig. 6.2. For studying the influence of interface
width, the parameter ε is increased up to 21, which is equivalent to about
53 cells. The different interfaces are depicted in fig. 6.3. The profile ε =
0 is used to generate sharp interface like solutions for comparison and
validation.

Starting with the 1D representation, both, the sharp interface as well as
the diffuse interface models refer to the interfacial conditions of matching
temperatures approaching from both sides of the interface, given by

T α = T β . (6.15)

Furthermore, the setup corresponds to the condition reading

k α∇⊥T = k β∇⊥T = q⊥ = const . (6.16)

In the subsequent sections we perform simulations on heat conduction
perpendicular to the interface. The quasi one-dimensional setup allows
us to employ the heat conduction eq. (6.4) with scalar mobility and
capacity coefficients. While we use the harmonic interpolation for the
thermal conductivity k(φ), we will study the effect of applying different
interpolation schemes for the specific heat CV(φ), in order to correctly
render the temperature evolution in the bulk phases.



98 Chapter 6 Diffuse interface heat transfer

At this point, it is important to note, that in the context of the phase field
model, we intentionally choose to model an nonphysical finite interface
at a mesoscopic scale. Doing so, the method avoids the explicit definition
of a coupling (boundary) condition at the interface. We are aware that we
will receive deviations inside the interface, compared to sharp interface
solution, and we refrain from a physical interpretation since the concept
of a finite interface is a mathematical model.

6.4.1 Sharp interface solutions

At first we confirm, that the modelling and discretisation of the governing
bulk conservation equations of heat conduction give reasonable results.
Therefore, we perform calculations using a unit step function instead
of a diffuse interface representation. Doing this, the order parameter φ
changes discontinuously from 0 to 1 from one cell to the next.

Figure 6.4: Distributions of dimensionless temperature at different times, calcu-
lated with StarCCM (sharp interface) and with PACE3D using a unit step function
in φα.

Due to the discretisation, the temperature gradient of the heat flux k∇T
is evaluated at the cell faces. Thus, the thermal conductivities k need
to be interpolated. In case of the unit step function, evaluation of the
inverse interpolation is written as

1
k(φ)

= ∑
α

h(φα)

kα
(6.17)
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(a)

(b)

Figure 6.5: Inverse/harmonic interpolation in k and direct/arithmetic interpola-
tion in CV . (a) interface profile φ together with material properties k and CV , (b)
temperature profile, interface profile φ and thermal diffusivity a. The shadowy
area indicates the diffuse interface region, with a vertical line at φ = 0.5.

at the cell face implying φα = 0.5. Herein, and in the following, the
function h(φ) represents an interpolation function, which is used to
smooth or sharpen the distribution of φ inside the interface, whereas
the bulk values are recovered. In the subsequent sections hα and hβ

are used as an abbreviation for h(φα) and h(φβ), respectively. Thus the
interpolation recovers the harmonic mean of the thermal conductivities,
cf. sec. 6.2.

Using the unit step function, we evaluate the 1D testcase at four different
instants of time: 5, 10, 15 and 20 s. Figure 6.4 depicts the distribution of
normalised temperature along the z-coordinate, where the simulations
done with PACE3D perfectly renders the temperature distributions at
different times compared to StarCCM.
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(a)

(b)

Figure 6.6: Inverse/harmonic interpolation in k and in CV . (a) interface profile
φ together with material properties k and CV , (b) temperature profile, interface
profile φ and thermal diffusivity a. The shadowy area indicates the diffuse
interface region, with a vertical line at φ = 0.5.

6.4.2 Linear interpolation in volumetric heat capacity

By default we start with a linear (direct or arithmetic) interpolation of
the volumetric heat capacity inside the diffuse interface region

CV(φ) = ∑
α

C α
V h(φα) . (6.18)

The combination of inverse interpolation of k(φ) and direct interpolation
of CV(φ) respectively, leads to a kind of ’barrier’ in the distribution
of the locally derived thermal diffusivity a(φ) = k(φ)/CV(φ), cf. fig.
6.5(a). This causes a reduced diffusive transport, and a steep temperature
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(a)

(b)

Figure 6.7: Inverse/harmonic interpolation in k and evaluation of CV by lin-
ear/direct interpolation of thermal inertia I. (a) interface profile φ together with
material properties k and CV , (b) temperature profile, interface profile φ and
thermal diffusivity a. The shadowy area indicates the diffuse interface region,
with a vertical line at φ = 0.5.

gradient inside the diffuse interface, cf. fig. 6.5(b). Thus, the direct
interpolation in volumetric heat capacity is not suitable for the problem
of heat flux perpendicular to the interface.

6.4.3 Inverse interpolation in volumetric heat capacity

Consequently, we apply the inverse/harmonic interpolation for both,
k(φ) and CV(φ), i.e.

1
CV(φ)

= ∑
α

h(φα)

C α
V

. (6.19)
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(a)

(b)

Figure 6.8: Inverse/harmonic interpolation in k and evaluation of CV by in-
verse/harmonic interpolation of thermal inertia I. (a) interface profile φ together
with material properties k and CV , (b) temperature profile, interface profile φ and
thermal diffusivity a. The shadowy area indicates the diffuse interface region,
with a vertical line at φ = 0.5.

Referring to fig. 6.6(a), the distributions of k and CV qualitatively coincide.
This results in a quite promising temperature distribution that gives a
qualitatively good picture but nevertheless does not coincide with the
reference curve obtained with StarCCM, cf. fig. 6.6(b).

Since the evaluated temperature is higher than that of the reference curve,
the temporal evolution of temperature apparently is too fast. The same is
noticed for different instances of time, which are not depicted here. This
gets even more reasonable when trying to physically explain the effect of
the diffuse interface by smoothing the spatial transition from one phase
to the other. Approaching the interface from e.g. the bulk of phase α
we are still in phase α with decreased conductivity and heat capacity of
the concerned phase. Since ∂tT ∝ 1/CV , the actual temporal evolution is
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faster. At the same time, also the flux q ∝ k is decreased, which seems
to balance the problem. Obviously this is not sufficient to capture the
physically correct temporal temperature evolution in detail.

6.4.4 Direct interpolation in thermal inertia

Referring to the semi-infinite contact problem [9], we will make use of
the so called thermal inertia I, which is a composed material property,
characterising the importance of dynamic effects. A higher thermal
inertia will cause a system to take longer to reach thermal equilibrium.
It is defined as square root of the product of thermal conductivity and
volumetric heat capacity in the form

I =
√

k CV (6.20)

Here we derive the interpolation of CV via the direct interpolation of the
thermal inertia

I(φ) =
√

k(φ)CV(φ) = I αh α + I βh β. (6.21)

We substitute k(φ) by the inverse interpolation and define

CV(φ) =

(
I αh α + I βh β

)2

k(φ)
(6.22)

The contour lines of the functions k(φ) and CV(φ) across the interface
are plotted in fig. 6.7(a). Again, as for the direct interpolation of CV in
section 6.4.2, we get a kind of barrier, i.e. due to the interpolation routine,
the thermal diffusivity reaches very small values inside the interface,
which inhibits the evolution of temperature profile, as depicted in fig.
6.7(b).

6.4.5 Inverse interpolation in thermal inertia

Consequently, we do the inverse/harmonic interpolation for the thermal
inertia I

1
I(φ)

=
1√

k(φ)CV(φ)
=

h α

I α
+

h β

I β
. (6.23)
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(a)

(b)

Figure 6.9: Inverse/harmonic interpolation in k and factorised inverse/harmonic
interpolation of CV using a single fixed factor. (a) interface profile φ together
with material properties k and CV , (b) temperature profile, interface profile φ and
thermal diffusivity a. The shadowy area indicates the diffuse interface region,
with a vertical line at φ = 0.5.

and combine this expression with the inverse interpolation of k(φ) read-
ing

CV(φ) =
1

k(φ)

(
h α

I α
+

h β

I β

)−2

. (6.24)

As depicted in fig. 6.8 we get comparable results as using the inverse/har-
monic interpolation for k and CV . Even though both, the direct and
inverse interpolations in thermal inertia do not seem to deviate, we
included the results for thoroughness and comprehension.
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6.4.6 Factorised inverse interpolation in volumetric heat
capacity

In the preceding test cases we have seen that we derive the best agreement
with the sharp interface solution for the case when the heat capacity is
inverse interpolated. A motivation for this has already been discussed
before in sec. 6.3, in that the effective capacitance is derived through an
inverse interpolation of the heat capacity for the case where the current
is normal to the interfacial direction. However, in doing so, we cannot
re-derive the volume integral internal energy across the interface. In the
following, we present a factorised scheme where we artificially modify
the heat capacity in order to derive the correct volume integral of the
internal energy.

We start from the formulation of an effective heat capacity for the sharp
interface, ĈV , in a domain which is equally occupied by phases α and β.
Using the volume fractions χα and χβ we can write

ĈV = χαCα
V + χβCβ

V . (6.25)

Since the domain is separated in exactly two parts, we consider χα =

χβ = 1
2 , and obtain the arithmetic mean

ĈV =
1
2

(
Cα

V + Cβ
V

)
. (6.26)

To derive an effective volumetric heat capacity for the diffuse interface,
C̃V , we define an integral heat capacity distribution C′V(φ) over the not
yet known interface in the range of the diffuse interface width by

C̃V =
1
λ

∫ λ/2

−λ/2
C′V(φ) dx . (6.27)

if we assume, that the effective heat capacities are equal for the sharp
and diffuse interface profile, we can set ĈV = C̃V and obtain

λ

2
[
Cα + Cβ

]
=
∫ λ/2

−λ/2
C′V(φ) dx . (6.28)

As discussed above, the inverse harmonic interpolation (HM) for CV
shows promising results to establish the expected temperature profiles
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(a)

(b)

Figure 6.10: Inverse/harmonic interpolation in k and factorised inverse/har-
monic interpolation of CV using a single decaying factor. (a) interface profile
φ together with material properties k and CV , (b) temperature profile, interface
profile φ and thermal diffusivity a. The shadowy area indicates the diffuse
interface region, with a vertical line at φ = 0.5.

across the interface. To match the arithmetic mean (AM) with the integral
formulation over a harmonic interpolation ansatz for C′V in eq. (6.28), we
introduce a correction factor f by

C′V(φ) =
f Cα

VCβ
V

Cα
V +

(
Cβ

V − Cα
V

)
hα(φ)

. (6.29)

A physical interpretation for our proposition is that while we locally
violate the balance laws for the internal energy the global average across
the interface is maintained, thus causing no eventual error to our energy
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(a)

(b)

Figure 6.11: Inverse/harmonic interpolation in k and factorised inverse/har-
monic interpolation of CV using a phase dependent decaying factor. (a) interface
profile φ together with material properties k and CV , (b) temperature profile,
interface profile φ and thermal diffusivity a. The shadowy area indicates the
diffuse interface region, with a vertical line at φ = 0.5.

balance. Inserting expression (6.29) in eq. (6.28) and replacing dx by
dx
dφ dφ, we get for a binary system

λ

2
[
Cα + Cβ

]
=
∫ 1

0

f Cα
VCβ

V

Cα
V +

(
Cβ

V − Cα
V

)
hα(φ)

dx
dφ

dφ . (6.30)

With regards to the steady state solution for the evolution equation of

φ [154], we can use the identities dx/dφ = (πε/4)
(√

φ(1− φ)
)−1

and

λ = π2ε/4, which leads to
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Table 6.1: Numerical estimates on three different types of the factorised inverse
interpolation of CV(φ).

description factor f

single fixed factor, f f = 3.81468
single decaying factor, f h(φα) f = 3.82721
phase dependent decaying factor,
( f h(φα)− h(φα) + 1)C α

V
f = 5.05906

π

2

[
C α

V + C β
V

]
=
∫ 1

0

f C α
VC β

V

C α
V +

(
C β

V − C α
V

)
h(φα)

dφ√
φ (1− φ)

. (6.31)

This equation can only be solved numerically for f with respect to certain
values of C α

V and C β
V . Before doing this we consider two additional

possible factorisations: i) contrary to applying a constant f throughout
the whole interface, we assume f to be a function of φα, i.e. f (φα) =
f h(φα), and ii) we impose a factor only on one phase, e.g. in the phase
with the larger CV , by C̃ α

V = ( f h(φα)− h(φα) + 1)C α
V inside the interface

0 < φ < 1. Hence, eq. (6.31) can be rewritten to

π

2

[
C α

V + C β
V

]
=
∫ 1

0

C̃ α
VC β

V

C̃ α
V +

(
C β

V − C̃ α
V

)
h(φα)

dφ√
φ (1− φ)

. (6.32)

For all the factorisations, we maintain the bulk values C α
V and C β

V outside
the interface, respectively. Using h(φ) = φ3(6φ2 − 15φ + 10) as interface
interpolation function, C α

V = 64015.434 and C β
V = 31.600714 the numeri-

cal solution, using e.g. Mathematica, provides the factors listed in tab. 6.1.

Analogous to the representations in the previous sections, the distribu-
tions of the order parameter, the interpolated material parameters and
the temperature are depicted in figs. 6.9, 6.10 and 6.11 for the single fixed
factor, single decaying factor and the phase dependent decaying factor
respectively.
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Figure 6.12: Interpolation of material properties k and CV , interpolation of ther-
mal diffusivity a and temperature profile, using decaying factorised inverse/har-
monic interpolation in CV for different diffuse interface widths, ε.
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Figure 6.13: Interpolation of material properties k and CV , interpolation of ther-
mal diffusivity a and temperature profile, using decaying factorised inverse/har-
monic interpolation in CV for different diffuse interface widths, ε and at different
instances of time.

All three factorisations show a steep increase in CV with different mag-
nitudes at the transition from bulk to the interface regarding the phase
with the higher CV value. The differences obtained for the different fac-
torisations are more pronounced for considering the thermal diffusivity
a. While the amplification, evoked by the fixed factor, keeps the thermal
diffusivity inside the interface at an almost constant level, it is gradually
smoothed towards the bulk value of the second phase for the single
decaying factor, cf. 6.9(b) and 6.10(b).
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Due to the lump amplification in case of the fixed factorisation, the
temperature inside the second phase (grid coordinate > 100) is slightly
smaller than that of the reference solution. The matching of the temper-
ature distribution is further improved using the decaying factorisation
and finally the phase dependent factorisation, cf. 6.10(b) and 6.11(b)
respectively.

Figure 6.12 shows the dependence of the temperature distribution for
different diffuse interface widths. The maximum difference between the
evaluated temperature curve and the reference solution is of an order of
about 1%. We note that in the case ε = 21, the interface consists of more
than 50 cells, i.e. more than 25% of the computational domain. This high
resolution is only chosen to elaborate the convergence properties of ε.
In general when modelling in the context of phase-field methods, the
interface is intended to be small compared to the overall computational
domain.

Finally we proof the validity of the model for different instances of time,
namely 10, 15 and 20s. Figure 6.13 shows a good overall matching of the
temperature distributions for three different interface widths and for the
three instances of time with the reference solution respectively.

In summary the effects of the different types of interpolation in terms
of the temporal temperature difference and the temperature profile at
an arbitrary timestep in fig. 6.14. Despite, that it correctly renders the
effective thermal diffusivity, the linear interpolation causes a jump in
temporal temperature difference as well as in temperature profile, cf.
fig. 6.5. On the other hand, the inverse interpolation gives a smooth
distribution of temporal temperature difference and temperature profile,
whereas by definition it cannot reproduce the effective capacity – thus,
a higher thermal diffusivity results in a higher temporal temperature
difference and an increased temperature profile, cf. fig. 6.6. By design,
the factorised inverse interpolation renders the correct effective capacity
in the interface, as well as the corresponding thermal diffusivity, and
finally avoids a jump across the interface.

6.5 Tensorial formulation

Based on the feasible model for one dimensional heat conduction per-
pendicular to the interface, we will extent the formulation to three di-
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Figure 6.14: Temporal temperature difference and the dimensionless temperature
profiles for a 1D simulation of a equally spaced composite domain (alumini-
um/air) heated from one side, for the linear interpolation, the inverse interpo-
lation and the factorised inverse interpolation of CV(φ) in the diffuse interface
compared to the sharp interface solution.

mensions. In the subsequent description, we split up the temperature
diffusion equation

CV ∂tT = 〈∇, k∇T〉 (6.33)

in a flux-part

q = k∇T (6.34)

and a divergence part

CV ∂tT = 〈∇, q〉 . (6.35)

With respect to the derivations in section 6.4.2, 6.4.3 and according to
[158], we replace the scalar thermal conductivity k by a tensorial mobility
K = K(φ,∇φ), which depends on the direction relative to the interface

K = k⊥Q + k‖(1−Q) , (6.36)
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where 1 represents the unit tensor, and k‖ = k‖(φ) and k⊥ = k⊥(φ) are
the interpolation functions for heat flux parallel and perpendicular to
the interface,

k‖(φ) = ∑
α

h(φα)kα and
1

k⊥(φ)
= ∑

α

h(φα)

kα
(6.37)

respectively. The tensor Q = Q(∇φ) is defined as

Q =
∇φ

|∇φ| ⊗
∇φ

|∇φ| . (6.38)

Using this, we write the flux part of the temperature diffusion equation
as

q = K∇T . (6.39)

With respect to the electric analogy outlined in sec. 6.3, we have a circuit
for the heat current normal to the interface and two circuits for the
heat currents in tangential directions, which obey different interpolation
schemes. The actual heat conduction problem through the interface thus
is a super-position of two parallel and one series circuits, i.e. the resulting
evolution equation for the temperature must read

∂tT =
1

CV,⊥
∂nqn +

1
CV,‖

∂sqs +
1

CV,‖
∂tqt (6.40)

where n, t, s are the coordinates normal and tangential to the interface,
respectively.

Accordingly, we define a modified divergence operator in Cartesian
co-ordinates as

∇̃R = (RQ + (1−Q))∇ , (6.41)

where R = CV,‖/CV,⊥ is the ratio of the interpolation functions for the
specific heat parallel and perpendicular to the interface,

CV,‖ = ∑
α

h(φα)Cα
V , (6.42)

CV,⊥ =
C̃α

VCβ
V

C̃α
V +

(
Cβ

V − C̃α
V

)
hα(φ)

, (6.43)
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the latter being the decaying phase dependent factorised harmonic inter-
polation for a binary system, cf. dec. 6.4.6. We now rewrite the evolution
equation as

CV,‖ ∂tT = 〈∇̃R, K∇T〉 . (6.44)

Note, that in the bulk regions, where R = 1, we retrieve the classical
divergence operator.

Equation (6.44) is solved in PACE3D on a structured, equally spaced
Cartesian grid, by means of an explicit finite difference formulation. At
this point, it is crucial to note that the formalism in [168] is based on a
steady state solution, whereas the accuracy and stability of a numerical
time dependent solution will also depend on the choice of the discrete
time step. In the course of model development we are using a rather
simple fully explicit finite difference framework, employing fully ex-
plicit forward Euler time discretisation. The three dimensional spatial
implementation is done by means of a MAC (marker and cell) scheme
with a staggered grid arrangement with respect to the three normal
components and three shear components of the symmetric tensors K.
Therefore, timestep size is chosen with respect to the well known stability
and quality criterions given in the literature [101, 102].

6.6 Validation

6.6.1 One dimensional semi infinite contact problem

In addition to the previous numerical survey, we continue with a one
dimensional validation for the heat flux perpendicular to the interface,
for two semi-infinite phases α and β in contact, having different material
properties k α, c α

V and k β, c β
V as well as different initial temperatures Tα

0

and Tβ
0 at time t = 0, cf. fig. 6.15. The interface position is assumed to be

at the coordinate x = 0.

For each of the phases, we consider a one-dimensional heat conduction
equation

C α
V ∂tTα = ∂x( k α∂xTα), x ≤ 0 (6.45)
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C β
V ∂tTβ = ∂x( k β∂xTβ), x ≥ 0 . (6.46)

In the context of a sharp interface representation the two equations are
coupled by the interfacial temperature Ti given by

Tα
∣∣
−0 = Tβ

∣∣
+0 = Ti (6.47)

and by the continuity condition of the heat flux

kα∂xTα
∣∣
−0 = kβ∂xTβ

∣∣
+0. (6.48)

As indicated in the textbooks [9, 167], the interfacial temperature Ti does
not depend on time. Almost instantly after contact the interfacial temper-
ature Ti establishes, and the temperature distribution inside the phases
develops, depending on the interfacial temperature Ti and the constant
initial temperature Tα

0 and Tβ
0 .From [9], the interfacial temperature can

be expressed as

Ti = Tα
0 +

I α

I α + I β
(Tβ

0 − Tα
0 ) , (6.49)

where I α and I β are the thermal inertias of phases α and β respec-
tively. Using the definitions ξα = x/

√
4 aαt and ξβ = x/

√
4 aβt, where

a is the thermal diffusivity, the temporal evolution of the temperature
distribution is given as:

Tα(x, t) = Tα
0 + (Ti − Tα

0 ) erfc(−ξα), x ≤ 0 (6.50)

(a) (b)

Figure 6.15: (a) One dimensional validation of heat conduction for two semi
infinite phases α and β, with initial temperatures Tα

0 and Tβ
0 respectively, and (b)

setup for the numerical test case.
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Figure 6.16: One dimensional heat conduction perpendicular to interface for (a)
aluminium-copper and (b) aluminium-air for different instances of time.

Al-Cu

ε = 6
ε = 9
ε = 12
ε = 15
ε = 18
ε = 21
ε = 25
StarCCM+

physical coordinate [ m ]
0.00 0.01 0.02 0.03 0.04 0.05

di
m

en
si

on
le

ss
 te

m
pe

ra
tu

re
 [-

]

1.00

1.25

1.50

1.75

2.00

2.25

grid cooridnate [ - ]
0 50 100 150 200

(a)

Al-Air

ε = 6
ε = 9
ε = 12
ε = 15
ε = 18
ε = 21
ε = 25
StarCCM+

physical coordinate [ m ]
0.00 0.01 0.02 0.03 0.04 0.05

di
m

en
si

on
le

ss
 te

m
pe

ra
tu

re
 [-

]

1.00

1.25

1.50

1.75

2.00

2.25

grid cooridnate [ - ]
0 50 100 150 200

(b)

Figure 6.17: 1D heat conduction perpendicular to the interface for for different
widths of the diffuse interface for (a) aluminium-copper and (b) aluminium-air.

Tβ(x, t) = Ti + (Tβ
0 − Ti) erf

(
ξβ

)
, x ≥ 0 . (6.51)

For the purpose of validation we compare analytical as well as numerical
calculations utilising the software PACE3D and StarCCM. We employ two
different ratios for the material properties: the material combination
aluminium-copper and aluminium-air.

For both composites and for different physical instances of time, t = 0.2 s,
0.3 s, 0.4 s and 0.5 s, we get an excellent agreement of the numerical and
analytical solutions, as depicted in fig. 6.16. For the results obtained with
PACE3D, a typical setting of ε = 6 is used for the diffuse interface width,
which results in approximately 15 cells spanning the diffuse interface.
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Table 6.2: Thermal properties of materials used in the simulations.ρ: density
[kg m−1], k: thermal conductivity [W m−1 K−1], cV : specific heat [J kg−1 K−1].

phase abbrev. ρ k cV

Copper Cu 8940 398 836
Aluminium Al 2800 150 837
Steel Fe 7870 80 448
Stainless Steel CrNiMo 7900 17 460
Polytetrafluo-
rethylen PTFE 2200 0.2 1000

Air Air 1.15 0.025 1006

In order to depict the influence of the interface width, fig. 6.17 shows
the results of different settings for ε for both combination of materials
at a fixed time t = 0.3 s. Due to the high ratios in k and CV , the combi-
nation of aluminium and air shows slight variations of the temperature
distributions inside the diffuse interface as ε varies, whereas the bulk
distributions match. When material properties are of the same order of
magnitude, e.g. for the combination of aluminium and copper, the effect
is less significant. Despite of the variations inside the diffuse interface,
which are process related, the overall temporal and spatial distribution of
temperature is met in good accordance with the analytical and numerical
data.

6.6.2 Two dimensional circular inclusion

Validation of two dimensional transient tensorial heat conduction is done
with a simple geometric setup. We consider a rectangular domain of
0.02 m× 0.02 m that contains a circular disc with a diameter of 0.008 m.

Table 6.3: Composites and their ratios of the thermal conductivities k and volu-
metric heat capacities CV .

composites abbrev. ratio of k’s ratio of CV ’s

Aluminium-Steel Al-Fe ∼ 1 ∼ 1
Aluminium-Stainless Steel Al-CrNiMo ∼ 2 ∼ 1
Aluminium-
Polytetrafluorethylen Al-PTFE ∼ 107 ∼ 1

Aluminium-Air Al-Air ∼ 6000 ∼ 2026
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(a)

(b)

(c)

(d)

Figure 6.18: Comparison of the temperature distributions for a two dimensional
circular inclusion at a horizontal cross section obtained with PACE3D and Star-
CCM for different instances of time and for material combinations (a) alumini-
um/iron, (b) aluminium/stainless steel, (c) aluminium/PTFE, (d) aluminium/air.
The shadowy regions mark the diffuse interface layer.
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Figure 6.19: 3D view of the three dimensional spherical inclusion. The transpar-
ent sphere indicates the spatial dimensions, while the volume shape is coloured
using the temperature distribution.

Figure 6.20: Comparison of temperature distributions obtained with PACE3D and
StarCCM at a central cross section of the sphere for different instances of time.

The domain is discretised on a uniform rectangular grid of 200× 200

cells.

While we apply properties of aluminium for the circular body, we use
different material combinations for the enclosing rectangular domain in
order to validate our model for different ratios of the thermal conductivity
and specific heat. The properties for the various composites are given in
tables 6.2 and 6.3.
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As initial condition we impose a temperature of 600 K on the disc, while
the surrounding domain is set to 300 K. For all boundaries of the rectan-
gular domain we set adiabatic conditions, i.e. ∂nT = 0.

We report numerical calculations using the commercial package StarCCM
and PACE3D in comparison for all composites listed in tab. 6.3. The
PACE3D simulations are performed using a diffuse interface width of
about 15 cells (according to a model parameter for the interface width
of ε = 6). Evaluation of the temperature distribution along a horizontal
cross section at different instances of time is shown in fig. 6.18 for all
composites. The comparison gives a good overall compliance for all
composites, i.e. for ratios of the thermal conductivity k (tab. 6.3) ranging
from ≈ 1 up to ≈ 6000 and of the volumetric heat capacity CV ranging
from ≈ 1 up to ≈ 2025. A maximum deviation between the solutions
of about 1 % is found, which might even be traced back to the different
numerical schemes of the software packages.

6.6.3 Three dimensional spherical inclusion

Finally we perform a full three dimensional calculation to test the tenso-
rial mobility formulation. We use a spherical inclusion with a diameter
of 0.008 m in a cubic domain with an edge length of 0.016 m and a
computational representation of 80 cells in each direction.

We impose the same temperature conditions for the body and boundaries
of the domain as in 2D. As composite we apply aluminium/stainless
steel and compare the results of PACE3D with the reference solution
StarCCM.

Figure 6.20 contains the temperature distributions at a central cross
section of the sphere at different times. Results are in good agreement
with the reference solution, even though we observe a slightly increased
difference, which can be explained by the lower resolution (lesser number
of grid points) used in 3D. During the evolution in time, the deviation
reduces.
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6.7 Segmented tensorial model

Regretfully, we still have to struggle with the application of the above
mentioned method in case of high ratios in material properties for com-
plex geometries. This is the motivation to further investigate these
deficiencies, and an improvement is presented hereby. For comprehen-
sion, it is useful to recapitulate the development of the method in the
following.

6.7.1 Outline

Diffuse Interface transport problem

Consider the general transient two-phase transport processes, with static
interfaces. For the phases α and β, we write

Ci ∂tθ = ∇ · (Mi∇θ) with i ∈ α, β. (6.52)

Here, θ is the potential, the Mi’s and Ci’s are the phase dependent
mobilities and capacities. At the interface the continuity of the potential
and of the flux holds

θα = θβ and Mα∇θ|α = Mβ∇θ
∣∣
β

. (6.53)

In the phase-field context just one diffusion equation is considered

C(φ) ∂tθ = ∇ · (M(φ)∇θ) , (6.54)

where M(φ) and C(φ) describe the transition of the bulk mobilities and
capacities across the interface, and φ represents the order parameter in
the context of phase-field model.

Tensorial mobility approach

Originally, the mobility M and the capacity C are scalar quantities. As
outlined above, a scalar formulation of the governing equations in the
phase-field context induces so called diffuse-interface effects: surface-
diffusion will lead to artificial surface currents along the diffuse interface,
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surface-resistance will cause discontinuities in the bulk potential extrap-
olated to the interface point of symmetry, at φ = 0.5 representing the
sharp-interface limit.

In [158] it is shown, that both effects can be eliminated simultaneously,
by introducing the tensorial mobility approach. He focused on steady
state transport processes

∇ · (M(φ,∇φ)∇θ) = 0 , (6.55)

from which he derived the tensorial formulation and the interpolation of
the mobilities herein, with respect to the interface orientation:

M(φ,∇φ) = M⊥(φ)Q + M‖(φ)(1−Q) , (6.56)

where 1 represents the unit tensor, and Q is the projection onto the
interface normal n = ∇φ

|∇φ| , given by

Q = n⊗ n. (6.57)

The different interpolation functions for the mobilities perpendicular
and parallel to the interface, are M‖(φ) = Mαφα + Mβφβ and M⊥(φ) =
(M−1

α φα + M−1
β φβ)

−1.

Modified divergence operator

An extension of this approach to three dimensions and transient trans-
port problems is given above, where a modified divergence operator is
derived. With dedicated interpolation functions, the capacities parallel
and perpendicular to the interface are CV,‖(φ) and CV,⊥(φ) according
to eqns. (6.42) and (6.43), respectively. The heat conduction equation is
rewritten as

C‖(φ) ∂tθ = 〈∇̃R, M(φ,∇φ)∇θ〉. (6.58)

Herein, ∇̃R represents a spatially varying divergence operator given in
Cartesian coordinates, locally rotated with respect to the interface orien-
tation and weighted according to the directional interpolation scheme of
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CV,⊥ and CV,‖, respectively. If written in interface normal coordinates,
with orthonormal basis vectors n, s and t, the operator reads as

∇̃R,(n,t,s) =MR,(n,t,s)∇(n,t,s) =

R 0 0
0 1 0
0 0 1

∇(n,t,s) (6.59)

In the same sense, one could think of M∇ as a spatially varying gradient
operator given in Cartesian coordinates, locally rotated with respect
to the interface orientation as eq. (6.59) and weighted according to the
directional interpolation schemes of M⊥ and M‖, respectively.

6.7.2 Discussion

The approach of [158] limits the applicability to steady two-dimensional
transport processes, and simulation results where shown for maximum
ratios in mobilities up to 10. In the preceding sections, the extension to a
more general transient and three-dimensional model was realised, which
also proofed to be feasible for slightly higher ratios in mobilities and
capacities.

Both models provide a solid foundation for the correct description of
the physical scope of interest. The persistent limitation for both models,
according to high distinctive ratios in material properties and complex
geometries, is a matter of the implementation, done by means of a MAC
(marker and cell) scheme. Whereas the mapping of the mobilities and
the discretisation of the derivatives was done as described in [158], the
conductivities in sec. 6.5 were subject to central discretisation schemes.

In the vicinity of high curvatures and steep gradients in mobility, capac-
ity and the order parameter, the method resulted in checkerboard-like
solutions and growing oscillations of the potential. Reduction of time
step width, as well as different staggered discretisation approaches, did
not lead to success. Hence, a so called segmented approach is considered,
and presented below.
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6.7.3 Formulation

In order to identify the sources of instabilities, we separate eq. (6.58) by
applying the product rule, and rearrange the resulting terms by the order
of derivatives of potential

CV,‖ ∂tθ = 〈∇̃R, M∇θ〉 = 〈MR∇, M∇θ〉 = 〈Q∇,∇θ〉+ 〈L,∇θ〉 ,
(6.60)

where ∇̃R is the modified divergence operator with respect to Cartesian
co-ordinates.

The coefficient matrix Q =MRM and the differential operator Q∇ have
the same form as eq. (6.59) in Cartesian co-ordinates. If this differential
operator is applied on ∇θ, we will write this expression as the tensor
contraction (MRM) : H(θ), where H(θ) is the Hessian of the potential.
With respect to the order of the Hessian, we name it the quadratic part
of the tensorial formulation.

Deriving the coefficient vector L = ∇̃R ·M, we apply the modified
divergence operator ∇̃R on M. We then scalar multiply it with the
Jacobian of the temperature, and thus, with respect to the order of ∇θ,
we name it the linear part of the tensorial formulation.

We exclusively attribute diffusive character to the quadratic term
(MRM) : H(θ), since it just contains second order derivatives of θ and
constant coefficients. With regard to the structure of a general advection-
diffusion equation, and because of the stationary pseudo velocity L, we
consider the linear part on the right-hand side as a pseudo-advective
term.

This kind of formulation reveals the source of instabilities. In case of high
ratios of mobilities and high curvature in φ, the contribution of the linear
part is getting significant. Owing to its advective nature, this contribution
fails with a central discretisation scheme with increasing pseudo velocity,
and promotes instabilities. Therefore, the instabilities we received by
applying purely central schemes on the previous formulation, using the
equivalent eq. (6.58), are now obvious. The staggered implementation
showed reasonable and stable solutions for ratios in thermal conductivity
up to about 500, while the curvature of the validation cases was moderate
for the circular and spherical inclusions tested, cf. sec. 6.6.
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The new formulation allows us to apply different discretisation schemes
on the quadratic and linear part, respectively. According to the stan-
dard discretisation methods given in [101, 168, 200], we use a central
discretisation scheme on the diffusive part and an upwind scheme for
the pseudo-advective part, according to the quadratic and linear terms
respectively.

6.8 Validation of the segmented approach

A comprehensive study and validations of different interpolation meth-
ods on one-dimensional test cases are already given in sec. 6.6. In the
following, we provide numerical calculations in two dimensions, to in-
corporate the influence of interface orientation and thus of the different
directional interpolations of the bulk properties. Accordingly, we assess
the accuracy and the stability of the calculations for different setups.

Whereas the model and discretisation was given in terms of a general
transient transport equation, transient heat conduction is a representative
application. In the scope of this work we apply the corresponding
transient temperature equation

CV,‖ ∂tT = 〈MRK∇,∇T〉+ 〈∇̃R ·K,∇T〉 , (6.61)

and solely narrow down the used material-combination to aluminium
and air, in order to reflect one of the most different material settings from
an engineering point of view, cf. tab. 6.2. In this context, the potential
θ, mobility M and capacity C correspond to the temperature T, thermal
conductivity k and volumetric heat capacity CV , respectively.

If not otherwise stated, a normalised quadratic domain is discretised
on a uniform rectangular grid of 100× 100 cells, corresponding to the
physical lengths of 0.1 m× 0.1 m. While using a reference temperature of
Tre f = 300 K, a reference length of lre f = 0.1 m and the thermal conduc-
tivity and volumetric heat capacity of air for normalisation, we keep the
units for the time in the following figures to improve comprehensibility,
cf. tab. 6.2.

We consider different setups, according to the direction of heat flux with
respect to the interface. Heat conduction perpendicular to the interface
is considered in a quadratic domain of normalised dimensions 1× 1

with a quadrant of radius 0.7, placed at the lower left corner. The initial
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Figure 6.21: Temperature profiles across the convex interface (circular inclusion
of aluminium in air) at different times for the setup in sec. 6.6.2, fig. 6.18(d),
where a circular inclusion of radius 0.4 m is embedded symmetrically into a rect-
angular domain of 0.02 m× 0.02 m, resolved by 200× 200 cells. The temperature
distributions of the (a) staggered and the (b) segmented approach are compared
to the numerical reference solution obtained with StarCCM. The shadowy regions
mark the diffuse interface layer.

temperatures of aluminium and air are TAl = 2 and TAir = 1 respectively,
while the domain boundaries are defined adiabatic.

In order to investigate the heat conduction parallel to the interface, we use
a quadratic domain of dimensions 1× 1, which is divided into two equal
rectangular subdomains of dimensions 0.5× 1. The whole domain is
initialised with a temperature of TAl = TAir = 1. A constant temperature
is applied at one boundary perpendicular to the interface, while all other
boundaries are adiabatic.

From the first setup we derive two test cases, by applying the material
properties of aluminium on the circular inclusion and the material prop-
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(a)

(b)

Figure 6.22: Temperature profiles across the convex interface (circular inclusion
of aluminium in air) for long-time simulations (a) for 2 s and (b) for 10 s, using
the segmented approach, each compared to the numerical reference solution
obtained with StarCCM. The shadowy regions mark the diffuse interface layer.

erties of air on the surrounding, and vice versa. They are named convex
interface and concave interface, with respect to the curvature of the alu-
minium phase boundary. Evaluation is done on a radially symmetrical
cross section of the inclusion. Finally, the case with equal rectangular sub-
domains is called parallel interface, where the temperature distributions
are determined at a cross section parallel to the hot boundary.

6.8.1 2D circular inclusion – convex interface

At first we racapitulate the deficiency of the staggered implementation
of [158] which was applied to a two-dimensional convex interface setup
in sec. 6.6, cf. fig. 6.21(a). The temperature distributions obtained with
PACE3D show deviations compared to the numerical reference solution
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(a)

(b)

Figure 6.23: Temperature profiles across the concave interface (circular inclusion
of air inside aluminium) for two different interface widths, 6 cells and 15 cells,
respectively, after (a) two seconds and (b) ten seconds, each compared to the
numerical reference solution obtained with StarCCM. The shadowy regions mark
the diffuse interface layer.

of StarCCM, already for short simulation times. Since the errors in a
diffuse transport process are accumulated over the time, the differences
will become significant.

The results of the segmented-implementation (eq. (6.60)) on the same
setup are in excellent agreement with the numerical reference solution of
StarCCM, cf. fig. 6.21(b).

Aiming at simulating larger physical times, we performed long-time
runs on the convex interface setup for 2 s and 10 s physical time. Fig-
ure 6.22 shows the temperature profiles for 2 s and 10 s respectively. We
performed simulations with different proportions of interface width to
radius, in particular λ/R = 0.13 and λ/R = 0.21. Both results are in
good agreement with the numerical reference solution obtained with
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(a)

(b)

Figure 6.24: Temperature profiles across the parallel interface after (a) two sec-
onds and (b) ten seconds, each compared to the numerical reference solution
obtained with StarCCM. The shadowy region marks the diffuse interface layer.

StarCCM. Minor deviations inside the diffuse interface region are intrinsic
with respect to the diffuse interface modelling, compared to the sharp
interface solution.

6.8.2 2D circular inclusion – concave interface

Interchanging the phases from the convex interface filling leads us to a
concave interface setup. Figures 6.23(a) and 6.23(b) show the tempera-
ture distributions for the long-time runs for 2 s and 10 s physical time,
respectively. The overall agreement with the numerical reference solution
obtained with StarCCM is excellent. Note, that there is no significant
difference between the solutions obtained for interface width ratios of
λ/R = 0.13 and λ/R = 0.21.
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6.8.3 2D parallel interface heat conduction

Using the parallel interface setup mentioned above, we apply material
properties of air and aluminium for the left and the right subdomain,
respectively. Both phases are subject to a constant temperature boundary
condition at the bottom of the domain.

Note, there is no pure heat conduction parallel to the interface. Due
to the difference in the material properties of the bulk phases, there is
also a difference in the temporal evolution of temperature inside the two
phases. As a consequence of this, a temperature gradient and a heat flux
perpendicular to the interface will arise. However, this setup allows us
to investigate the effect of heat conduction parallel to the interface.

Figure 6.24 shows the temperature distributions across the plain parallel
heated interface at 20 % domain height (a) at t = 2 s and (b) at t = 10 s.
The solutions are obtained using different interface widths λ = 6, 9 and
12 cells, which has an almost vanishing effect. Generally speaking, the
temperature distributions obtained with PACE3D, are in good agreement
with the reference solution of StarCCM.

6.8.4 Consistency

Assessment of the segmented implementation is done by checking the
conservation of the internal energy on the above-mentioned convex and
concave-interface long-time simulations for t = 10 s. In the latter setups
homogeneous Neumann conditions are used on all domain boundaries,
thus the total internal energy

Ek = ∑
i

∑
α

[φαCα
V Ti]

∣∣∣∣∣
k

. (6.62)

must keep constant. The thermal energy at time step k is computed as
sum over all grid points i = 0, 1, . . . , N and all phases α. On the ordinate
we plot the relative energy error defined as

εk
energy =

Ek

Ek=0 − 1 , (6.63)

where Ek=0 is the initial thermal energy at initial timestep k = 0.
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Figure 6.25: Relative error in overall thermal energy for concave and convex
interfaces, each with different interface widths (λ = 9 cells and λ = 15 cells).

From fig. 6.25 we find, that in each simulation considered, the relative
error is less than 1.5 %. In [158] it is shown, that in the range of 0.005

≤ λ/R ≤ 0.035 the error vanishes for the steady formulation. We are
aware of the fact, that due to the rather practical factorisation approach
introduced for the transient formulation, we do not have an exact model
up to now. Even though the perpendicular heat conduction matches
excellently, we still notice slight differences in the parallel interface setup,
which is due to the missing dependency of the factorisation fα,β on the
interface width λ. Additionally, compared to [158], we have used much
higher ratios λ/R, since we are interested on further applications with
moderate grid resolutions.

Due to the intrinsic misalignment of phase boundaries and the numerical
grid, the method is affected by the grid-anisotropy. This explains the
difference of the errors of convex and concave setups. Furthermore, we
notice that the absolute level of error is decreasing with the ratio λ/R,
and the magnitude over time is bounded.

6.8.5 Effect of initial solution

For the simple two-dimensional validations, we encountered very small
over-shoots (� 1 %) in temperature in the vicinity of the interface during
the first few iterations, that vanished immediately. Owing to the sharp
temperature distribution used as initial condition applied on a smooth
interface, the temperature in the interface first has to settle. We performed
numerical tests, using a smooth initial temperature distribution, that was
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scaled according to the order parameter, and successfully minimised the
over-shoots. However, even though a scaled initial distribution behaves
smoother than a sharp initial solution, in setups where two bodies
of different temperature touch immediately at the first iteration, it is
physically no better either. The latter is rather an analytical or numerical
ideal conception, which induces the mentioned over-shoots.

6.9 Convective heat transfer

Besides the diffusive heat transport due to conduction, we have to con-
sider the transportation of heat by the macroscopic convective movement
in the case of coupled heat transfer and fluid flow. In this context, the
term conjugate heat transfer [73] is used, and includes the temperature
evolution in solids and fluids caused by the thermal and hydraulic inter-
action. Here, the contribution of diffuse or convective transport depends
on the thermal properties of the materials (solid and fluid) as well as the
flow regime. The latter, in turn, heavily depends on the geometry.

For the application of quasi-incompressible low speed flows (Ma� 0.3),
the viscous effects can be neglected as well as the pressure work term.
Accounting for these prerequisites, the transient convection-diffusion
equation for the temperature field reads

CV,‖ ∂tT︸ ︷︷ ︸
local derivative

+ 〈u,∇T〉︸ ︷︷ ︸
convective derivative

= 〈MRK∇,∇T〉+ 〈∇̃R ·K,∇T〉︸ ︷︷ ︸
diffusion (segmented approach)

,

(6.64)

where u is the fluid velocity, and the convective derivative contributes for
the transportation of energy [6, 101, 102]. Note, that the local derivative
∂tT is the local time rate of change of the temperature at a fixed spatial
location, whereas u · ∇T is the time rate of change due to the movement
of the fluid. Both can be summarised as substantial derivative D/Dt ≡
∂t + u · ∇ that can be applied on any flow field variable [6].

For technical processes, the convective heat transfer is usually charac-
terised by the Nusselt number, which is introduced in the experimental
part of this work, cf. eq. (3.9) in sec. 3.7.2.
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6.10 Parametrisation

With respect to the computational treatment and accuracy we use a
non-dimensional representation of the governing equations. Selecting
basic reference quantities, all physical quantities (p) can be normalised
accordingly; cf. parametrisation for the diffuse interface fluid flow in
sec. 5.9. Using characteristic values (ref) for the reference length xref,
the density ρref, the time tref and the temperature Tref, we write the
dimensionless quantities (n) as

T(n) =
T(p)

Tref
, x(n) =

x(p)
xref

, t(n) =
t(p)
tref

, and ρ(n) =
ρ(p)

ρref
. (6.65)

Accordingly, the physical values of specific heat capacity cV,(p), the
volumetric heat capacity CV,(p) and the thermal conductivity k(p) are
transferred into non-dimensional (n) values as

cV,(n) = cV,(p) ·
t2
refTref

x2
ref

CV,(n) = CV,(p) ·
t2
refTref

ρrefx2
ref

k(n) = k(p) ·
t3
refTref

ρrefx4
ref

,

(6.66)

whereas a comprehensive and specific example is given appendix E.



Chapter 7

Application1

Up to here we have introduced the lattice-Boltzmann method for the
modelling of fluid flow in chapter 5 and the evolution equation of tem-
perature in chapter 6, both in the context of the phase field model, where
special attention is payed upon the modelling in the diffuse interface
region. In this chapter a brief outline of the numerical implementation
is given, and the coupled diffuse fluid flow and diffuse heat transfer
method is employed on the simulation of open cell metal foams.

With respect to the embarrassments that come along with the measure-
ments of fluid flow and heat transfer at the pore scale level of open cell
foams, it appears likely to apply numerical methods. However, simula-
tion does not come at zero cost. The task is not only to provide a feasible
geometrical and topological model for the foam under consideration,
but also in the numerical treatment of the complex structure. Today,
processing power is falling in cost, which allows for the simulation of
even bigger domains and more complex physics. However, the pre- and
post-processing tasks are still challenging, and the rule of thumb of the
early times of numerical modelling – which states that about 80% of the
effort is spent on mesh generation, model specification and evaluation of
the results – still holds.

Even though sophisticated mesh generation tools are available in the field
of academic as well as commercial simulation tools, the discretisation of
a complex cellular solid is still a challenging, time consuming and most
interactive task. To this effect, the combination of an automated method
for foam generation (chap. 2), within the context of an interface capturing
phase filed approach (chap. 4) with appropriate methods for fluid flow
(chap. 5) and heat transfer (chap. 6) provides a promising alternative.

1Parts of the subsequent sections are submitted for publication in Advanced Engineering
Materials [66] and Cellular materials: Proceedings CELLMAT 2014 [63, 69].
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Apart from that, to start with the geometry, a suitable representation of
the foam structure is essential.

To the authors best knowledge, there are only few publications on the
coupled fluid flow and heat transfer simulation in open cell metal foams.
Actually, the greatest difficulty is the realistic modelling of the foam
structure. For instance, this can be realised by conducting expensive and
time consuming investigations using industrial computed tomography
(CT) scanning, which provides voxel data that requires careful post-
treatment to prepare the three-dimensional foam structures, or applying
a simplified modelling approach, cf. chap. 2. For the most part, validation
of heat transfer and fluid flow performance is done against macroscopic
parameters such as pressure drop, pressure drop per unit length and
Nusselt number.

A numerical model for fluid flow modelling based on a fundamental
periodic structure of eight unit cells is examined in the work of [19]. The
foam geometry is spatially resolved by unstructured tetrahedral meshes
with 2.2× 10

5, 4.4× 10
5 and 8.3× 10

5 elements. Simulations are carried
out using the flow solver CFD-ACE of CFDRC2, whereas all pressure
drop results are about 25% underestimated. The authors claim that
responsibility for the discrepancy is due to the lack of side wall effects.

Numerical analysis of the conduction heat transfer in high porosity foam
structures is done in [38]. The effective thermal conductivity of porous
structures is most commonly modelled by means of empirical or semi-
empirical models, based on different assumptions regarding pore scale
and unit cell topology, which reveals significant variations. Therefore, a
finite volume method is applied for evaluation and assessment. Foams
are generated from regular structures (unit cells) as well as from tomo-
graphic data. The results show, that the fraction of solid phase in the
struts and in the lumps (intersections) is the key parameter for success-
ful modelling, whereas the shape of the cells and struts has much less
impact.

A completely different approach is pursued in [123], where a so called
mesh-based microstructure representation algorithm (MBMRA) is em-
ployed for the modelling of cellular solids. In doing so, a reasonable
fine mesh spans the whole simulation domain including fluid and solid
regions. Random placed seed points are used for a rule based unstruc-
tured mesh growing algorithm for the solid matrix. The residual cellular

2http://www.cfdrc.com/ (accessed: 15/5/2014)

http://www.cfdrc.com/
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structure depends on the predefined rules, and facilitates the generation
of porous or fibrous structures for instance. Finally, the mesh provides a
sharp interface representation of the fluid and solid domain, whereas a
coupled Navier-Stokes solver for the fluid and a heat conduction code
for the solid is used to simulate the conjugate heat transfer problem
in a porous structure. Despite the interesting MBMRA-approach, the
presented results lack of a comprehensive validation.

In [12] a multiple relaxation time lattice Boltzmann method is employed
to simulate the flow field in a metallic foam sample. The geometry of
the sample is gained from CT-scans conducted for a single cubic NiCr-
foam sample of about 12.8 mm edge length. Experimental pressure drop
data is successfully recovered for a low to medium Reynolds number
regime.

Foam structures based on a unit cell modelling are employed in [114] for
the coupled simulation of fluid flow and heat transfer using an in-house
solver for the Navier-Stokes and energy equations. Foam structures of
10 ppi and 40 ppi are generated from regular unit cells. Different unstruc-
tured computational grids with about 7× 10

5, 1.5× 10
6 and 2.8× 10

6

tetrahedral elements were used, whereas the computational domain
spans several pores in streamwise direction, in order to be representative.
Pressure loss as well as heat transfer data is found to be reasonable
with respect to experimental data. However, the authors in [114] con-
sider, that the geometry and foam creation process is tedious and time
consuming.

A commercial Navier-Stokes CFD-Software (Ansys FLUENT3) is used in
[46] for the simulation of pressure drop in foam structures of different
pore densities but similar relative porosity. Again, these authors received
two-dimensional images through computer tomographic X-ray measure-
ments, which are then used to derive three-dimensional foam structures
as a starting point for flow simulations. Computational domains of differ-
ent sizes, covering a representative section of the foam with respect to the
number of pores, are generated for the samples with pore densities 5 ppi,
10 ppi, 20 ppi and 40 ppi, ranging from about 3× 10

6 to 27× 10
6 mesh el-

ements. The numerical results are in good agreement with measurement
data, with deviations of about 5 % to 15 % in particular.

In the present chapter we therefore employ the coupled phase field fluid
flow and heat transfer method presented above, on real world foam

3http://www.ansys.com/ (accessed: 15/5/2014)

http://www.ansys.com/
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structures, whereas the experimental results provided in chap. 3 are used
as validation data.

7.1 Numerics

As mentioned in chapter 5, the lattice Boltzmann method can be con-
sidered as being the discretised continuous Boltzmann equation, which
asymptotically recovers the Navier Stokes equations. Since the method
is formulated in a six dimensional phase-space, the spatial as well as
the velocity space needs to be discretised. Hence, eq. (5.6) is discre-
tised utilising either a two dimensional D2Q9 lattice model or a three
dimensional D3Q19 model, cf. sec. 5.3. The discrete lattice Boltzmann
equation (5.15) can be viewed as a finite difference representation of the
continuous Boltzmann equation with simple explicit forward Euler time
discretisation. Thereby, the lattice Boltzmann methods requires a regular
Cartesian equally spaced grid.

For the heat transfer calculation equation (6.44) is solved in PACE3D
on the same structured, equally spaced Cartesian grid, by means of an
explicit finite difference formulation. At this point, it is crucial to note
that the formalism of [168], which we have compared to regarding the
sharp interface approach, is based on a steady state solution, whereas the
accuracy and stability of a numerical time dependent solution will also
depend on the choice of the discrete time step. In the course of model
development we are using a rather simple fully explicit finite difference
framework, employing fully explicit forward Euler time discretisation.

Whereas the first implementation of the tensorial approach given in sec.
6.5 is done by means of a MAC (marker and cell) scheme with a staggered
grid arrangement with respect to the three normal components and three
shear components of the symmetric tensors, the segmented approach
outlined in sec. 6.7.3 is less involved. For the latter, a central discretisation
scheme and an upwind scheme as well as a total-variation diminishing
(TVD) scheme [101] are used for the diffusive and the pseudo-advective
parts, respectively.

All the used discretisation schemes are standard schemes, which are
well documented in the open literature [6, 73, 168, 200], hence a lengthy
outline is omitted here. The grid resolution is chosen problem dependent,
according to the rule of thumb that at least 6 to 10 cells should be used
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to represent the interfacial region. Timestep size is chosen with respect
to the well known stability and quality criterions given in the literature
[101, 102].

Above fluid flow and heat transfer solvers are coupled with the phase
field solver of the software package PACE3D4, developed at the Karlsruhe
University of Applied Sciences, Institute of Materials and Processes and the
Karlsruhe Institute of Technology, Institute of Applied Materials. It allows
for the simulation, visualisation and analysis of problems subject to
phase transitions or interface dynamics, based on the multicomponent
multiphase phase field method of [154]. Besides the basic evolution
equations of phase field, concentration and energy, the coupling of addi-
tional solvers for elasticity, magnetism of fluid flow allows the realisation
of multidisciplinary simulations. However, in the course of this work,
focus is given exclusively to the development of the fluid flow and heat
transfer capabilities, whereas no phase transition or interface dynamics
are considered herein. The software PACE3D and the methods outlined
in the preceding chapters is parallelized using OpenMPI5, whereas a one-
dimensional and three-dimensional domain decomposition allows for
extremely efficient performance on high performance computing (HPC)
architectures, cf. [103, 211].

7.2 Foam modelling using PACE3D

Depending on the manufacturing process most cellular solids in general,
and in particular open cell metal foams are intrinsically stochastic struc-
tures. Therefore, regular unit cell based structures most often lack from
the true features of the microstructure and its effects.

In sec. 2.5 the algorithm developed by [178] is described, which is used
in the following for the creation and modelling of open cell metal foam
structures. The method is controlled using a statistical measure – mean
and standard deviation – of the pore diameter and the edge diameter,
whereas the porosity and specific gravity are results of the final structure.
Due to its heuristic nature, the presented algorithm is able to reflect the
stochastic nature of the foam structures and therefore represent the flow
and heat transfer properties more realistic, cf. fig. 7.1.

4Parallel Algorithm for Crystal Evolution in 3D
5http://www.open-mpi.de (accessed: 10/3/2014)

http://www.open-mpi.de
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The initialisation of the phase distribution is done by a sharp interface
setup. At first we perform a phase-field simulation without driving forces,
in order to establish a diffuse interface with finite width λ. The pre-
calculations are stopped as the phase-field landscape becomes stationary.

Figure 7.1: Pore scale features (small window, closed window and thickened
junctions) of artificial and real foam structures.

The experimental data for foams of the same pore density showed signif-
icant differences in pore scale measures and porosity. For the assessment
of the numerically modelled foam structures emphasis was laid on cap-
turing the porosity as realistic as possible. Since the basic packing of

(a) (b) (c)

Figure 7.2: Different artificially generated foam structures with different porosi-
ties, to represent 10 ppi aluminium foams: (a) ψmodelling = 88.44 % corresponding
to sample №1, (b) ψmodelling = 92.78 % corresponding to sample №2 and (c)
ψmodelling = 83.85 % corresponding to sample №4, cf. tab. 7.1.
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spheres in the foam modelling algorithm is based on a heuristic but
reproducible model, the same set of input parameters can lead to foam
models of different porosities. Thus, the seed-point of the heuristic model
is varied over a certain range, and the suitable porosity, with respect
to the experimental values, are found by an automated trial and error
procedure.

Table 7.1: Comparison of the porosity of experimental and artificial foam
structures.

sample experiment modelling error

№1 88.441 % 88.440 % −0.001 %
№2 92.777 % 92.780 % +0.003 %
№3 87.707 % 87.700 % −0.007 %
№4 83.846 % 83.850 % +0.004 %
№5 87.889 % 87.890 % +0.001 %

Table 7.1 exemplarily shows the comparison of the porosities for the real-
world and the artificial foams for the 10 ppi aluminium samples used
in the experimental investigations, cf. chap. 3, whereas three different
artificial foam structures are depicted in fig. 7.2. The agreement in
porosities given in tab. 7.1 is excellent, and the qualitative compliance
of the detailed pore structure between model and microscopic images
taken during the experiments is astonishing. Furthermore it must be
mentioned here, that the process of foam generation is a matter of several
seconds up to several minutes depending on the domain size. For a fine
spatial resolution of 200

3 cells, the foam generation including a couple of
phase-filed iterations for the development of a smooth interface, require
about 6 min on an ordinary single CFD workstation.

7.3 Fluid flow and heat transfer simulation in
cellular solids using StarCCM

For comparison in terms of quantitative results as well as for the qual-
itative assessment of the modelling procedure, a number of selected
comparative simulations are performed using the commercial simulation
software StarCCM.
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(a)

(b)

Figure 7.3: (a) Basic foam geometry (dimensions 2.2 cm× 2.2 cm× 2.2 cm) im-
ported in StarCCM (b) customised sample geometry reflecting the real sample
geometry and flow situation.
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(a)

(b)

Figure 7.4: Exemplary polyhedral mesh in StarCCM, with about 8.4× 10
5 ele-

ments: (a) longitudinal cross section and (b) solidsurface representation of the
computational domain with 8.4× 10

5 cells, 4.9× 10
6 faces and 4.5× 10

6 vertices.

It is not necessary to mention, that the geometric modelling of a foam
structure is far beyond the capabilities of the CAD6 kernel that comes
along with StarCCM. However, the foam structures generated in PACE3D
are exported in STL format7, and then used as input for the modelling
in StarCCM. The generation of a feasible numerical model in terms of a

6Computer Aided Design.
7File format native to Stereo Lithography, also known as Standard Tessellation Language,

cf. http://www.en.wikipedia.org/wiki/STL_(file_format) (accessed: 8/4/2014)

http://www.en.wikipedia.org/wiki/STL_(file_format)
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FS: full scale

Al 10ppi, ψ = 88.44%
StarCCM
Experiment
Measurement Fit

-1.5% FS+1.5% FS
Δ P

 [ P
a ]

0

200

400

600

800

Reynolds number, Re [ - ]
0 5000 10000 15000 20000 25000 30000 35000

Figure 7.5: Comparison of experimental and numerical pressure loss data ob-
tained with StarCCM for the 10 ppi aluminium foam sample №1 ψ = 88.44 % of
length 20 mm.

mesh, boundary description and simulation setup, is not as straight for-
ward as in PACE3D. Elaborate user interaction is necessary, and – which
is the most critical point of view – mesh generation is still the most time
consuming and difficult part. StarCCM employs an automatic unstruc-
tured mesh generation system, where either hexahedral, tetrahedral or
polygonal element types can be used. The mesh generation is controlled
by different criteria related to geometric elements or features and general
mesh sizing and quality parameters, which should be selected carefully
to obtain high quality numerical grids. For a detailed description of the
available options we refer to [27].

Assuming, that the size of the specimen is large enough with respect to a
representative elementary volume (REV), the foam structure is considered
to be homogeneous and can be reduced to a symmetric quarter, having
a horizontal and vertical plane of symmetry in streamwise direction
along the centerline. Thus, we start from a foam model with dimensions
2.2 cm× 2.2 cm× 2.2 cm, which needs to be further worked up, in order
to reflect the real foam specimen, cf. fig.7.3. A suitable inlet and outlet
length is modelled, to provide a fully developed flow in front of the
sample and to avoid boundary effects on the flow leaving the foam. For
conjugate heat transfer simulation, the heat source with respect to the
experimental setup is modelled by a cylindrical solid shroud.
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Figure 7.6: Exemplary thermal results of fluid flow and heat transfer simulation
of open cell metal foam using StarCCM: (a) comparison of measured and simu-
lated temperature profile in the outflow and (b) comparison of measured and
simulated Nusselt numbers at three different temperature levels (60

◦C, 90
◦C and

120
◦C) for foams of comparable porosity.

A high quality mesh is made from polyhedral cells, where prism layers
are inserted in the vicinity of solid surfaces, resulting in 8.4× 10

5 cells,
4.9× 10

6 faces and 4.5× 10
6 vertices. A longitudinal cross section is

shown in fig. 7.4(a), whereas the solid surface of the foam and shroud is
given in fig. 7.4(b). Appropriate boundary conditions are applied on all
faces of the computational domain, and material properties of aluminium
and air are used for fluid and solid. Finally, the Navier-Stokes and energy
equations are solved in StarCCM by means of a coupled implicit finite
volume method.

Exemplary results for the pressure loss is given in fig. 7.5 for a 10 ppi
aluminium foam sample of 20 mm length. As indicated in sec. 7.2, the
modelled foam structures are in very good agreement with the measured
samples in terms of porosity, cf. tab. 7.1. The simulated and measured
pressure losses are in good agreement, whereas slightly higher deviation
is observed in case of high Reynolds numbers. The numerical results are
within an constant error band of about ± 1.5 %, except for the highest
Reynolds number, where the difference is in the order of about 4%.
Despite of the excellent agreement of the foams in terms of porosities,
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structural and topological differences between the real and artificial
foams may account for the deviations in pressure losses.

Figure 7.6 shows exemplary results of the thermal simulations using
the artificial 10 ppi aluminium foam structures. Even though the mod-
elled foam structure does not coincide with the real foam structure in
all pore scale details and features, the temperature profile of the flow
downstream of the sample is in rather reasonable agreement with the
measurement, cf. fig. 7.6(a). Furthermore, the integral heat transfer per-
formance in terms of Nusselt number is given in fig. 7.6(b) for three
different artificial foam samples with porosities ψ = 88.44 %, 87.7 % and
87.89 % compared to the measured values for the 10 ppi aluminium sam-
ple of porosity ψ = 88.441 %. Whereas the simulation shows excellent
agreement for the simulation using an artificial foam of almost identical
porosity (ψsim = 88.44 % compared to ψexp = 88.441 %), the simulation
for two foams of smaller porosities yield slightly decreased Nusselt
numbers.

The overall agreement of experimental and numerical fluid flow and heat
transfer features is promising, and demonstrates that the artificial foam
structures represent a suitable geometrical modelling approach.

7.4 Fluid flow simulation in cellular solids
using PACE3D

In the following we present results of the coupled lattice Boltzmann and
segmented tensorial heat transfer solvers outlined in chapters 5 and 6,
respectively. The foam structures mentioned in sec. 7.2 are used, amongst
other foams which are generated with respect to the measured samples,
cf. sec. 3.2. We will focus on a numerical domain that represents an open
cell metal foam probe of dimensions ø 40 mm× 20 mm.

In contrast to StarCCM the coupled solvers in PACE3D make use of the
same uniform and equally spaced Cartesian grid. With respect to a
suitable resolution of the finite interfacial region between fluid and solid
phases – from experience about 6 to 10 cells – different numerical grids
ranging from 100× 100 to 200× 200 cells in lateral and 400 to 600 cells
in streamwise direction are generated. Thanks to the cylindrical shape
and in order to save computational resources and simulation time, one
quarter of the sample is modelled, expecting two symmetry planes along
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Figure 7.7: Computational domain of 200× 200× 600 cells used in PACE3D. The
foam is depicted as light greyish surface, whereas the dark grey region indicates
the outer solid margin that is defined as a so called barrier region which does
not account for the numerical computation.

Figure 7.8: Distribution of the order parameter on a longitudinal cross section
through the computational domain. The blue regions indicate fluid, the red re-
gions solid and the diffuse interface is highlighted by showing the corresponding
cells in case of non vanishing gradients of the order parameter.
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the flow direction. The geometrical representation of the foam is given
in fig. 7.7 shaded in light grey, whereas the outer solid tubular margin is
indicated as dark grey region. The latter is defined as a so called barrier
region, that does not account for the computation and efficiently reduces
the numerical effort. Thus, the overall amount of active cells for the
numerical computation reduces from about 24× 10

6 to about 18× 10
6.

A cylindrical inlet and outlet region is modelled, and it is proven that
we get a developed velocity profile at the inlet, whereas extrapolation
boundary conditions are used at the outlet of the numerical domain for
fluid flow and heat transfer, respectively.

Whereas fluid flow simulations are only carried out in the fluid region
of the computational domain, the coupled heat transfer and fluid flow
calculations are seamlessly applied on both, the fluid and solid regions.
it should be pointed out, that by using the phase field method no explicit
boundary or coupling conditions have to be defined at the fluid-solid
interfaces. For the mentioned barrier region no calculation is executed,
and the interface between barrier and an arbitrary phase acts like an
adiabatic solid wall. Since the barrier region is not modelled as a diffuse
interface, the tubular geometry results in a staircase representation (dark
grey), whereas the cylindrical shroud of the foam is modelled as solid
phase, which results in a smooth cylindrical shape. However, since drag
and friction of the foam by far exceeds the drag and friction induced by
the cylindrical inlet and outlet region we accept this shortcoming.

Starting from a sharp, staircase like representation of the structure, the
diffuse interface is established by performing a couple of phase field
iterations; without a driving force, to avoid growth of shrinkage of the
structure. Figure 7.8 shows the distribution of the order parameter on
a cross section of the computational domain. The blue regions indicate
fluid, the red regions solid and the diffuse interface is highlighted by
showing the corresponding cells in case of non vanishing gradients of
the order parameter.

Figure 7.9 depicts the experimental and numerical integral pressure
loss for a foam probe with a pore density of 10 ppi and a porosity of
88.44 % for different Reynolds numbers. In addition to the measurements
outlined in chapter 3 an additional experimental series is done with
respect to detailed pressure losses at low to medium Reynolds numbers
ranging from about 800 to 6’500. These measurements are obtained
using a high precision pressure transducer (Endress+Hauser) with an
accuracy of ± 0.05 % for a full scale of 25 hPa, indicated by the upper and
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Figure 7.9: Comparison of measured and simulated pressure loss data. An addi-
tional measurement series is performed for low to medium Reynolds numbers
using a high accuracy pressure transducer. The level of accuracy is indicated by
the upper and lower error limits at ±0.05 %. The results of StarCCM are shown
as a reference, whereas sharp interface as well as diffuse interface results are given
for PACE3D.

lower error limits (dashed lines) in the figure. The results of StarCCM
are included for comparison, whereas two different simulation series
are carried out using PACE3D. A coarse staircase mesh with dimensions
100× 100× 400 cells is used for a sharp interface like solution, without
applying smoothing with respect to the diffuse interface generation. On
the other hand a finer mesh with dimensions 200× 200× 600 cells is
used for a diffuse interface simulation, where the interface spans about 6

to 10 cells. While the results of StarCCM show slightly higher deviations
for higher Reynolds number, the results obtained with PACE3D, for both
sharp as well as diffuse interface setup, are all within the ± 0.05 % error
margin.

Further numerical test are performed on artificial foam structures with
pore diameters of 4 mm, 5 mm and 6 mm and a constant edge diameter
of 0.6 mm, which result in porosities of ψ = 76.08 %, 83.53 % and 89.03 %,
respectively. The results of flow simulations with Reynolds numbers
ranging from about 150 to about 3000 are compared with the experimen-
tal data of the most comparable foam structures in terms of porosity used
in the experimental investigation, i.e. 10 ppi copper ψ = 76.42 %, 10 ppi
aluminium ψ = 83.53 % and 10 ppi aluminium ψ = 88.44 %. The results
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(a)

(b)

(c)

Figure 7.10: Pressure loss per unit length data over Reynolds number for different
artificial foam structures with pore diameters of 4 mm, 5 mm and 6 mm and a
constant edge diameter of 0.6 mm, which result in porosities of (a) ψ = 76.08 %,
(b) ψ = 83.53 % and (c) ψ = 89.03 %, respectively. The most equivalent foams in
terms of porosity (10 ppi copper ψ = 76.42 %, 10 ppi aluminium ψ = 83.53 % and
10 ppi aluminium ψ = 88.44 %) are chosen for comparison, whereas the fit of the
experimental data is extrapolated towards low Reynolds numbers.
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(a) (b)

Figure 7.11: Distribution of velocity magnitude (a) up- and (b) downstream of
the foam sample for a Reynolds number of about Re≈ 6’000.

(a) (b)

Figure 7.12: Distribution of velocity magnitude (a) up- and (b) downstream of
the foam sample for a Reynolds number of about Re≈ 26’000.

are depicted in figs. 7.10 in comparison to the extrapolated measurement
fits.

Apart from comparing integral performance values in terms of pressure
loss, the simulation of complex cellular structures provides a high level
of details, which can hardly be accessed by experimental methods, if
ever. Thus, in the following a couple of flow features are visualised
and discussed. The distribution of velocity magnitude is given in figs.
7.11 and 7.12 on a lateral cross section up- and downstream of the foam
sample for a moderate Reynolds numbers of about 6’000 and 26’000,
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(a) (b)

Figure 7.13: In-plane vectors, depicting the secondary flow structure (a) up- and
(b) downstream of the foam sample for a Reynolds number of about Re≈ 6’000.

(a) (b)

Figure 7.14: In-plane vectors, depicting the secondary flow structure (a) up- and
(b) downstream of the foam sample for a Reynolds number of about Re≈ 26’000.

respectively. There is an obvious difference in the velocity gradient next
to the cylindrical wall for the velocity distributions upstream of the foam
sample, that correctly corresponds to the Reynolds number, i.e. the flow
that pertains to the higher Reynolds number shows a higher gradient,
therefore a much smaller boundary layer. Regarding the downstream
velocity distribution, the flow with the smaller Reynolds number shows
a vast region of low velocity, compared to more homogeneous flow
structure which belongs to a higher Reynolds number. Besides increasing
turbulent effects, with increasing Reynolds number, the mixing of the
flow due to vortex shedding, detachment of wakes behind the foam edges
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(a) (b)

Figure 7.15: Velocity distribution of the secondary flow structure (a) up- and (b)
downstream of the foam sample for a Reynolds number of about Re≈ 6’000.

(a) (b)

Figure 7.16: Velocity distribution of the secondary flow structure (a) up- and (b)
downstream of the foam sample for a Reynolds number of about Re≈ 26’000.

and higher frequency of unsteady flow phenomena is more distinctive,
thus leading to a more granular velocity distribution.

This is acknowledged by the secondary flow structure, depicted by the
plane-parallel secondary flow vectors given in figs. 7.13 and 7.14, as
well as the distribution of the magnitude of secondary flow given in
figs. 7.15 and 7.16. Despite of some inflow effects, due to the constant
velocity boundary condition at the inlet, the secondary flow is vanishing
upstream of the foam sample, cf. 7.13(a) and 7.14(a). On the other
hand, the secondary flow structure downstream of the foam is likely
to coincide with the topological features (pores and pore windows) of
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(a)

(b)

Figure 7.17: Velocity distribution on a longitudinal cross section for (a) a
Reynolds number of about 6’000 and (b) 26’000 for a 10 ppi aluminium foam
sample with porosity ψ = 88.44 %.

the foam. However, the flow structure belonging to a higher Reynolds
number not only shows higher magnitude in secondary flow, but also
the flow is more dispersed, cf. 7.15(b) and 7.16(b).

The occurrence of unsteady flow phenomena like vortex shedding in
the wake of the foam edges can be identified in figs. 7.17(a) and 7.17(b).
The flow with Re≈ 6’000 shows large wakes and detached flow regions.
The regions of separated flow downstream of the foam is more pro-
nounced, whereas for the higher Reynolds number, the separation is
more dispersed. The complex interaction of the different effects leads to
a heavily distorted, fluctuating flow structure in the downstream region,
cf. figs. 7.17(a) and 7.17(b). The longitudinal velocity distribution of
the flow with higher Reynolds number shows unsteady flow features
(vortex shedding) already downstream of the first foam edges. Besides
the frictional losses due to the formation of boundary layers, the main
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Figure 7.18: Visualisation of the flow inside the foam structure with three-
dimensional streamlines at a Reynolds number of about 26’000. Besides straight
flow paths, detached flow is identified in the wake of a foam edge. Streamlines
are coloured by the magnitude of the velocity.

source of irreversible dissipation of energy is due to the eddies formed by
the wake flow. Since the applied lattice Boltzmann method solves for the
transient flow field, the unsteadiness will not disappear or smeared as
for a steady RANS8-solver. However, for both Reynolds numbers under
investigation, the fluctuating flow is mixed out not far downstream the
foam – a well homogenised flow is identified just about two characteristic
diameters downstream of the samples. Due to the unsteadiness of the
flow, the analysis of the integral pressure loss as well as the thermal
performance values in the subsequent section, are conducted as time
averaged quantities.

Finally, a three dimensional visualisation of streamlines is given as an ex-
ample for the level of details which is provided by a numerical simulation
at pore scale level. Figure 7.18 shows some exemplary streamlines inside
the foam structure, coloured with the local velocity magnitude. Whereas
some of the streamlines pass through the structure on a straight path
and without significant disturbance, some streamlines close to the wake
of a foam edge give some idea of the separation and recirculation that

8Reynolds Averaged Navier Stokes



154 Chapter 7 Application

takes place. Adjacent streamlines of high and low velocity magnitudes
will form free shear layers; again a source of dissipative energy loss.

7.5 Thermal simulation of cellular solids using
PACE3D

In this section we provide results for the simulation of forced convection
inside a foam structure. The flow is driven externally, and dominates
buoyancy effects. According to the ratio of Grashof number and square
of the Reynolds number three regimes are classified, where different
effects will dominate the coupled flow and heat transfer, cf. tab. 7.2.

Table 7.2: Classification of coupled fluid flow and heat transfer according to the
ratio of Grashof and square of Reynolds number.

condition regime

Gr/Re2 � 1 domination of forced convection
Gr/Re2 ∼ 1 same order of magnitude of buoyant and inertial forces
Gr/Re2 � 1 domination of natural convection

With a ratio of Gr/Re2<1 for almost all of our measurements and
Gr/Re2<0.1 for the selected application, buoyant effects can be neglected.
From the fact that we operate in a moderate regime close to ambient
conditions regarding temperature and pressure, and from the experi-
mental results in chap. 3, we know that the Prandtl number is at about
0.7. As a consequence, the thermal and momentum boundary layers are
of the same order, i.e. no additional refinement of the mesh is required.
However, the application of the segmented tensorial approach on such
complex geometry is a challenging task.

As a first qualitative test application, we consider pure heat conduction
in an open cell metal foam. The foam structure is a computer generated
geometry model mounted on a base plate, which is subject to a constant
temperature at the bottom. The physical properties of aluminium are ap-
plied on the foam, while the surrounding is modelled using the physical
properties of air. Note, that forced as well as free convection is omitted
here. This case represents a rather small foam structure including only
a few struts and pores. We consider a uniform rectangular domain of
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(a) (b)

Figure 7.19: Temperature distributions on a wall-mounted open cell metal foam
with constant wall temperature: (a) temperature distribution on the ligaments of
the aluminium foam (b) temperature distribution and isolines on an imprinted
transparent cube.

0.02 m× 0.02 m× 0.02 m, which is discretised with a rather coarse uni-
form rectangular grid of 80× 80× 80 cells. A temperature difference
of ∆T = 60 K is applied on the base plate, compared to the remaining
domain which is initialised at T = 300 K. The simulation is carried out for
a physical time of t = 5 s, and fig. 7.19 shows qualitative visualisations of
the results of the computations of the foam structure, where the colour
bar indicates the normalised temperature. The surface temperature of
the ligaments is given in 7.19(a), and fig. 7.19(b) depicts the temperature
distribution in the surrounding air on an imprinted transparent cube.

In absence of experimental and analytical reference data, a qualitative
examination yields, that the results are reasonable and that the segmented
tensorial approach is suitable for the thermal simulation in complex
convoluted three dimensional cellular structures. Especially from the
numerical point of view, the approach is found to be robust and stable,
no stability issues, spurious effects or oscillations are observed.

A hybrid thermal model (HTLBE-Model9), where a lattice Boltzmann
fluid flow method is coupled with a classical finite difference heat transfer
algorithm, is already proposed by [120], and successfully applied by
[108, 153, 206], to mention only a few. By decoupling of mass and

9Hybrid Thermal Lattice Boltzmann Equation Model
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Figure 7.20: Temperature distribution inside a 10 ppi aluminium foam sample
of porosity ψ = 88.44 %. The temperature is given on the surface of the foam
structure as well as on three lateral cross sections for the fluid, where low and
high temperature corresponds to blue and red colours, respectively.

momentum from energy conservation [207], it is assumed that for a weak
coupling of fluid flow with temperature allows for using an athermal
lattice Boltzmann model for the solution of the flow field, whereas the
temperature field coupled by convective and buoyancy terms [146]. With
respect to [206], the acoustic modes in the temperature equations that
refer to real gases are neglected in the course of the present work. Thus,
we solve for the incompressible energy equation and no scaling of the
thermal diffusivity is required [120]. Due to the different stability criteria
of an advection diffusion process, namely the CFL condition10 and grid
Peclet number11 [101], and for the lattice Boltzmann method (eq. (5.21)),
the time step size is evaluated accordingly and, if necessary, chosen
differently for the fluid flow and heat transfer part.

10Courant Friedrichs Lewy condition: for explicit time integration schemes, the time step
width should be less than the time for the information to travel across the computational
grid.

11For a stable explicit time integration scheme, it is sufficient (not necessary) that the grid
Peclet number Pe= u∆x/α < 2.
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Figure 7.21: Comparison of numerical and experimental Nusselt numbers for a
10 ppi aluminium foam with a porosity of ψ = 88.44 %.

To finally test the coupled implementation of the diffuse interface fluid
flow and diffuse interface heat transfer models on a real world engi-
neering type application, a 10 ppi aluminium foam sample of 20 mm
length is simulated. The computational domain is equal to the one used
for fluid flow simulation, cf. fig. 7.7. In doing so, the solid phase of
the foam is embedded into a cylindrical barrier tube which is used to
model the adiabatic solid walls of the circular cross section flow channel.
Thanks to the phase field approach, no extra modelling or definition of
the fluid-solid interfaces is necessary. A special so called barrier condition
is defined for the spatial region of the cylindrical shroud of the foam,
which applies a constant wall temperature to a certain phase which is
adjacent to the barrier, according to the experimental setting. Figure 7.20

exemplarily shows the heated foam structure with three cross sectional
planes depicting the temperature distribution of the fluid. On the outer
cylindrical shroud (coloured red according to high temperature), the
boundary condition applies, and is almost constant all over the shroud
geometry due to the high thermal conductivity of the bulk solid material,
whereas the foam structure shows a smooth radial temperature gradient.
Compared to this, the temperature gradient in axial direction inside
the foam is hard to see, again, due to the high thermal conductivity
compared to the surrounding fluid.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.22: Time series of unsteady temperature distributions on a longitudinal
cross section. Here, the foam structure depicted in (a) is subject to a radial
initial temperature distribution (b). The figs. (c) to (f) give an impression of the
temporal evolution of the temperature field.

We conduct a series of simulations in order to compare the integral ther-
mal performance by means of the Nusselt number for different Reynolds
numbers. Figure 7.21 shows the results compared to the experimental
reference values gained from the studies in chap. 3. According to the
measurements, where the recorded physical quantities are time-averaged,
the simulation results are averaged over a representative period. The
results of the simulation are all within an error band ± 5 % of the full
scale value. The overall agreement of the numerical and experimental
reference values is excellent for the contemplated range of Reynolds
numbers.

Finally, to give an idea of the temporal evolution of the temperature field,
we provide a small series of consecutive snapshots. Figures 7.22 provide
a view on the foam structure and the initial solution of the temperature
field in figs. 7.22(a) and 7.22(b), respectively. These are followed by four
timesteps showing the temperature field on a longitudinal cross section
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of the computational domain. The unsteady flow phenomena discussed
above are also obvious in the pictures of the evolving temperature field
in figs. 7.22(c) to 7.22(f), respectively.





Chapter 8

Outlook

Within this chapter we provide a sneak preview on some topics that
emerged during the work on this thesis and were found to be worth
focusing on in future developments and optimisations of the physical
modelling and the numerical methods.

8.1 Multiphase diffuse heat transfer

So far the formulation of the segmented tensorial approach given in
eq. (6.60) sec. 6.7.3, is valid for a binary system, which is sufficient and
feasible for the present work. However, it is aspiring, and in the context of
a multicomponent multiphase phase field method it appears necessary, to
extend or generalise the formulation for an arbitrary number of phases.

Thinking of a domain which is made from a number of n > 2 phases, we
have binary interfaces as well as triple-points, quadruple-point and any
further combinations, depending on the number of adjacent phases. The
key issue is exactly the treatment of these connections points with n > 2

phases. As a first attempt we start from a ternary system with a resulting
heat flux vector that prevails at the triple point. We further assume,
that the resulting heat flux vector is composed from the individual
combinations of the binary α|β sub-interfaces, which reads

j = ∑
α<β

jαβ . (8.1)

The corresponding flux is formulated similar to what was derived in
chap. 6 as

jαβ =
φαφβ

∑α<β φαφβ

(
kαβ
⊥ Qαβ + kαβ

‖ (1−Qαβ)
)
∇T , (8.2)
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(a) (b)

Figure 8.1: Exemplary application of the segmented tensorial mobility multi-
phase formulation. Heat conduction in a ternary 2D domain: (a) initial tempera-
ture distribution and (b) snapshot of the steady temperature distribution.

where the leftmost fraction is a weighting factor which accounts for the
volume fractions of the involved phases. The corresponding thermal
conductivities kαβ

⊥ and kαβ

‖ are derived by the same interpolation schemes
outlined in sec. 6.4. For a system of n > 2 phases, the projection Qαβ is
given as

Qαβ =
qαβ

|qαβ|
⊗

qαβ

|qαβ|
, (8.3)

where the generalised interface normal reads

qαβ = φβ∇φα − φα∇φβ . (8.4)

For the solution of the segmented tensorial formulation in eq. (6.60),
the piecewise binary formulation and weighting is also applied on the
formulation of the spatially varying divergence operator ∇̃R.

A first test scenario is build from a three phase setup of copper, alu-
minium and air, depicted in fig. 8.1(a). Initially, the copper phase is at
dimensionless temperature TCu,0 = 2, whereas the aluminium and air
phases are at dimensionless temperature TAir,0 = TAl,0 = 1, whereas all
domain boundaries are set to an isolated condition (∂T/∂n = 0, with
normal direction n). At time t0 the phases are brought into contact, and
the temperature evolution is monitored for all times t > t0 until steady
state is reached.
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Whereas the first result looks quite promising, a closer look reveals
that the temperature distribution is not smooth in the region of the
triple-point, cf. fig. 8.2. Obviously, further development is necessary
for the correct qualitative and quantitative multiphase treatment. A
second attempt is to use the gradient of the mobilities, ∇M instead of
the gradient of the order parameter ∇φ in the definition of the projection
(eq. (8.3)) and a different weighting.

Furthermore, the current formulation and implementation of the phase
dependent decaying factorisation presented in sec. 6.4.6, causes a jump
at the transition from bulk to interface. Even though this does not cause
any problem until here, a more suitable formulation is preferable. We
already conducted several tests using a sinusoidal formulation for the
interfacial heat capacity CV(φ), which reads as

CV(φ) =

h(φα) + φαφβ · f · sin
(

π
g φm

)
Cα

V
+

+
h(φβ) + φβφβ · f · sin

(
π
g φm

β

)
Cβ

V

−1

. (8.5)

Here, h(φ) is the interface interpolation function and the factors g and m
are subject for adaptation and optimisation of the interpolation function
with respect to the ratio of Cα

V/Cβ
V . This kind of formulation ensures

Figure 8.2: Close up of the temperature at the triple point, revealing a slightly
crinkled distribution.
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the same integral factorisation, and at the same time provides a smooth,
continuous and differentiable representation, which matches the bulk
limits, cf. fig. 8.3.
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Figure 8.3: Potential candidate of interpolation function (eq. (8.5)) which guaran-
tees a smooth, continuous and differentiable representation of CV(φ) inside the
interface.

However, these issues are provided here by means of an outlook, but they
are subject of ongoing research and development and will be presented
elsewhere.

8.2 Kinetic representation of heat conduction
equation

A comprehensive overview on the properties of thermal lattice Boltzmann
models is given in [119, 120], and the hybrid thermal lattice Boltzmann
equation model (HTLBE-model) is established therein. The latter ap-
proach is applied by [146, 206, 207] and is successfully employed in the
present work.

However, numerous authors report on the successful application of
the so called passive scalar approach [137, 184, 195] and the double
distribution function approach [1, 109, 147, 152, 201, 212], to name only
a few. Apart from the disadvantage of poorer efficiency because of
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too many redundant degrees of freedom [119], it has been found that
the method allows for larger timesteps [176]. The proposed approach is
successfully applied within the context of phase field methods simulating
dendritic growth and scalar diffusion. Due to the fact, that diffusion is
modelled by a relaxation towards equilibrium rather than a second order
spatial derivative, the timestep scales linearly with the grid size rather
than quadratically [175].

8.3 Adaptive mesh refinement

The computations mentioned in chap. 7 are performed on equally spaced
Cartesian grids, where the same spatial resolution is used for the complex
convoluted microstructure of the foam and the up- and downstream
regions. Since we do not expect significant gradients of the dominating
variables (temperature, velocity, pressure) in the upstream region of
the foam, the number of elements used for the computation could be
dramatically reduced. Also for the microstructure or the downstream
region, the spatial resolution could be controlled by the gradient of the
flow or thermal variables. The mentioned idea is called adaptive mesh
refinement (AMR) and is employed by many academic and commercial
solvers in different disciplines. Although the performance (computational
time per timestep and cell) remains constant, the computational costs are
reduced, due to the scale dependent resolution of a simulation.

A successful and promising test implementation within PACE3D is pro-
vided by [116], utilising hierarchical grids, cf. fig. 8.4. At the interfaces
of adjacent cells of different refinement levels, so called hanging nodes,
interpolation and extrapolation techniques are necessary for a correct
and feasible treatment of the physical quantities. Within the context
of lattice Boltzmann methods, the interpolation is done between phase-
spaces, which makes the numerical treatment and physical interpretation
a bit more involved. However, different successful implementations are
reported in the open literature. Whereas [39, 177] employ octree data
structures for an efficient book keeping over the different grid levels, the
methods given in [77, 203, 221] make use of hierarchical grids, which are
more appropriate with respect to an implementation in PACE3D. For the
future it is desirable to extend the basic AMR implementation of [116]
for the segmented tensorial mobility approach as well as for the lattice
Boltzmann flow solver in PACE3D.
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Figure 8.4: Exemplary visualisation of a simulation on crystal growth, employing
a basic implementation of an adaptive mesh refinement method in PACE3D,
picture taken from [116].

8.4 Multigrid convergence acceleration

In the LBM context, since the particle distributions move to the next
lattice in one timestep, the well known CFL-number1 is always equal to 1.
As a consequence, convergence is mainly controlled by acoustic modes,
which results in bad convergence for steady state problems [128]. When
talking about adaptive mesh refinement above, the idea suggests to also
employ a well established convergence acceleration technique, known as
multigrid methods [73, 101]. By utilising several grids of different spatial
resolution, high frequency errors are damped, which improves stability
and convergence rate. There are numerous successful implementations
reported in the open literature [101, 173], whereas [138, 204] report about
successful implementations for lattice Boltzmann flow solvers.

1Courant-Friedrichs-Lewy number: stability condition: for explicit time integration
schemes, the time step width should be less than the time for the information to
travel across the computational grid.



Chapter 9

Conclusion

This work presents several contributions on the experimental and nu-
merical investigation of fluid flow and heat transfer in cellular solids.
In particular we focus on open cell metal foam, whereas the methods
are generally applicable to all types of cellular solids. The results of the
experimental work claims to enlarge the available hydraulic and thermal
performance data of open cell metal foams, and at the same time it serves
as validation data for the development of new and advanced numerical
methods.

Rather than applying one of the classical academical or commercial
numerical finite volume (FV), finite difference (FD) or finite element
(FE) interface tracking methods, we based our models on a interface
capturing phase field method [154]. A coupled diffuse interface fluid
flow and heat transfer approach is established in view of dealing with
even more complex geometries, and with regards to the dynamics of
interfaces and convoluted multiphysics applications. One can easily think
of topologies and configurations which can hardly be mastered by body
fitted, interface tracking methods, if ever. For the latter situations, the
presented method offers a feasible and comfortable way of performing
detailed investigations.

Despite of the fact, that we have concentrated on problems related to
fluid flow and heat transfer, the methodology is generally applicable to
a wider range of applications such as mass transport, growth processes
or coupling with solvers for elasticity or magnetism. In avoidance of un-
necessarily convoluted examples, we focused on two phase systems with
stationary steady interfaces. With this in mind, the numerical work pre-
sented herein claims to contribute to the continuous model development
in the active and broad-ranging field of phase field methods.

With a focus on high performance and exa-scale computing, we were
able to implement the mentioned numerical methods within the highly
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parallelized framework of PACE3D, employing a modern 3D domain
decomposition approach with load balancing [211].

9.1 Experiments

We successfully performed hydraulic and thermal measurements for
open cell metal foam samples of different pore densities, up to a max-
imum Reynolds number of about Re≈ 35’000. Besides of acquiring
validation data for the development of the numerical methods, the re-
sults gained from the experimental efforts contribute to enlarge todays
database of pressure loss and heat transfer characteristics of cellular solid,
by means of providing pressure loss data and Nusselt numbers up to
a high Reynolds number flow regime. The accuracy, consistency and
reliability of the measurements is assessed by multiple measurements
and plausibility checks. Hydraulic and thermal performance is assessed
by means of integral Hagen, Nusselt and Reynolds numbers.

Aluminium and copper specimens of different pore densities encased in
cylindrical pipe segments were jointly manufactured from the same base
material, respectively. A vast number of measurement series are carried
out using customised measurement equipment and data acquisition. The
modular configuration of the test rig as well as samples of equal pore
density, facilitated the investigation of the hydraulic and thermal per-
formance characteristics for the samples of diameter 40 mm and lengths
20 mm, 40 mm, 60 mm, 80 mm and 100 mm in streamwise direction.

Pressure loss characteristics are in qualitative agreement with compa-
rable investigation of recent publications [53, 82, 132–134, 166, 222].
According to [47] a common pressure loss correlation is derived for all
foam types, where the pressure loss is represented by the dimensionless
Hagen number depending on the Reynolds number. With respect to
the thermal measurements, we derived a Nusselt number correlation for
each individual foam type as well as a common formulation for all foam
types, based on well established formulations given in the open literature
[18, 26, 40, 47, 54, 55, 75, 179, 218]. Comparison against simple tubular
reference samples and the comparison of the fluiddynamic and thermal
performance in terms of the hydraulic power and thermal resistance
according to [17], gives an impression of the advantages gained from
using open cell metal foams in heat exchangers.
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9.2 Cellular Solids

The characterisation of the specimens in terms of statistical assessment
and analysis of pore scale measures revealed the incapability of the
commonly used pore density for the classification of open cell metal
foams. Samples of equal pore density showed significant differences in
pore scale measures and porosity, which is affirmed by the respective
differences in hydraulic and thermal performance, cf. chap. 3.

In sec. 2.5 we presented an algorithm [178], which enables us to artificially
generate realistic geometries of cellular solids. The astonishing realistic
representation of foam structures is presented in chap. 7, where we
were able to generate computational foam structures that match the real
porosity except for deviations of less than a fraction of one percentage.

The complex microstructure geometries are generated automatically in
minimal turnaround times. Using conventional CFD-packages, either
structured or unstructured body fitted meshes are employed. In order
to resolve complex microstructures, such as the open cell metal foams,
these meshes require obvious user interaction and adaptation. Here,
the representation of the microstructure in terms of a diffuse interface
approach, provides a seamless and straightforward numerical apporach
with minimum user interaction and minimal turnaround times.

9.3 Modelling of fluid flow

In chap. 5 we were able to present the successful coupling of single and
multiple relaxation time lattice Boltzmann models with a phase field
method. The linkage and the treatment of the diffuse interface region
of the flow field is realized by two different models, the reflectivity [148]
and the forcing model [10, 50, 157]. To avoid resolving the small scale
turbulent effects by means of spatial and temporal discretisation, but
to incorporate the effects for the application on high Reynolds number
flow, the Smagorinsky subgrid scale turbulence model is implemented
[33, 104, 121, 182, 187].

The results of the validation cases for plain poiseuille flow, flow in a lid
driven cavity and for the turbulent high Reynolds number flow over a
square cylinder at Re = 20’000 are in very good agreement with analytical
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and numerical reference solutions. Furthermore, it is obvious from these
results, that the forcing model is superior to the reflectivity model.

9.4 Modelling of heat transfer

A comprehensive numerical survey on the transient two-phase heat
conduction problem in the context of a diffuse interface method is given
in chap. 6. Based on the motivating work of [158], where it is shown
how the tensorial mobility approach eliminates thin interface effects,
we extended this strategy for transient three dimensional two-phase
heat conduction problems. The numerical survey of different interfacial
interpolation techniques for the volumetric heat capacity has shown, that
a factorised phase dependent interpolation gives best results. While
the thermal conductivity is modelled as a tensorial quantity, a modified
divergence operator is applied with respect to the different interpolation
schemes used for different directions according to the interface.

Focusing on complex convoluted microstructure geometries, the detailed
survey with regards to robustness and stability of the approach finally
resulted in the segmented tensorial formulation. The mathematical
derivation allows us to distinguish between quadratic and linear terms.
Owing to the physical and pseudo-physical nature of the different terms,
we apply dedicated discretisation schemes, whereby the final formulation
results in a much simpler implementation compared to the staggered ap-
proach of the earlier model. Furthermore, all stability issues of the earlier
formulation, related to high ratios in mobility and capacity properties, as
well as complex high curvature geometries, are improved significantly.

We obtain excellent results for a number of basic one-, two- and three-
dimensional validation cases, compared to analytical as well as numerical
reference solutions, whereas different material combinations with low
to high ratios in thermal conductivity and specific heat are tested. Note,
that in the present work we performed quantitative simulations with
λ/R1, which is ten times larger than given in [158]. Moreover, the ratios
of material properties are also several orders higher. To the authors best
knowledge, this is the first time [70] reporting on a transient tensorial
modelling of diffusive transport problem within the context of phase
field methods.

1interface width per radius of curvature
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Whereas we utilised the phase-field method for the modelling of transient
heat conduction for composite materials, the method is generally appli-
cable to a variety of physical phenomena which obey classical diffusive
transport equations. Moreover, the presented approach, implemented
in PACE3D, is vast promising for transient free boundary multi physics
problems, which are the scope of modern phase-field methods. Thus, the
present model provides a good foundation for a variety of avenues for
numerical modelling and application on multi physics problems, and the
ongoing efforts should spread across different areas of interest.

9.5 Applications

Besides the validations carried out for the diffuse interface fluid flow
approach outlined in chap. 5 and the diffuse interface heat conduction
method developed in chap. 6, we finally applied the coupled diffuse
interface method on a real world engineering application of the fluid flow
and heat transfer in an open cell metal foam. This is an indicative
example for the group of cellular solids and complex microstructures –
one main area of application for phase field methods.

Simulations were performed for artificial counterparts of the foam struc-
tures used in the experiments, cf. chap. 7. The results in terms of pressure
loss and heat transfer data are in good agreement with the measure-
ments. Furthermore, the results provide vast information, which permits
a detailed view on pore scale features of flow and temperature. Conclud-
ing we can determine that the derived methods are able to recover the
integral performance values of fluid flow and heat transfer in complex
foam-structures, with a satisfying and reasonable degree of accuracy.
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A.1 Pore diameter
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(b) Sample №2
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Figure A.1: Normal probability plots of pore diameter, (a)-(e) of the individual
10 ppi aluminium samples 1-5 and (f) cumultative normal probability plot.
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(a) Sample №1
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(b) Sample №2
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(c) Sample №3
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Figure A.2: Normal probability plots of pore diameter, (a)-(e) of the individual
20 ppi aluminium samples 1-5 and (f) cumultative normal probability plot.
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(a) Sample №1
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(b) Sample №2
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Figure A.3: Normal probability plots of pore diameter, (a)-(e) of the individual
30 ppi aluminium samples 1-5 and (f) cumultative normal probability plot.
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(a) Sample №1
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(b) Sample №2
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(e) Sample №5

●

●
●
●
●

●●
●●
●●●

●●
●●●
●●●●

●●●
●●●
●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●●●
●●●●
●●●

●●●
●●●●●

●●●
●●●
●●
●●

●●
●●
● ● ●

●
●
●

●

●
Mean:  5.809 
StDev:  0.345 
N:  100 
Anderson−Darling 
AD:  1.24 
P−value:  0.003002

1

5
10

20
30
40
50
60
70
80

90
95

99

5.0 5.5 6.0 6.5 7.0
pore diameter

pe
rc

en
t

(f) Cumulative

Figure A.4: Normal probability plots of pore diameter, (a)-(e) of the individual
10 ppi copper samples 1-5 and (f) cumultative normal probability plot.
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A.2 Face diameter
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(a) Sample №1
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Figure A.5: Normal probability plots of face diameter, (a)-(e) of the individual
10 ppi aluminium samples 1-5 and (f) cumultative normal probability plot.
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(a) Sample №1
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(b) Sample №2
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Figure A.6: Normal probability plots of face diameter, (a)-(e) of the individual
20 ppi aluminium samples 1-5 and (f) cumultative normal probability plot.
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(a) Sample №1
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(b) Sample №2
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(c) Sample №3

●

●

●

●
●
●
●

●
●

●
●
●

●
●
●

●
●

●

●

●

Mean:  0.8615 
StDev:  0.1218 
N:  20 
Anderson−Darling 
AD:  0.267 
P−value:  0.6496

1

5
10

20
30
40
50
60
70
80

90
95

99

0.6 0.8 1.0 1.2
face diameter

pe
rc

en
t

(d) Sample №4
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Figure A.7: Normal probability plots of face diameter, (a)-(e) of the individual
30 ppi aluminium samples 1-5 and (f) cumultative normal probability plot.
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(b) Sample №2
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Figure A.8: Normal probability plots of face diameter, (a)-(e) of the individual
10 ppi copper samples 1-5 and (f) cumultative normal probability plot.



182 Appendix A Foam characterization

A.3 Edge thickness
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Figure A.9: Normal probability plots of edge thickness, (a)-(e) of the individual
10 ppi aluminium samples 1-5 and (f) cumultative normal probability plot.
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Figure A.10: Normal probability plots of edge thickness, (a)-(e) of the individual
20 ppi aluminium samples 1-5 and (f) cumultative normal probability plot.
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Figure A.11: Normal probability plots of edge thickness, (a)-(e) of the individual
30 ppi aluminium samples 1-5 and (f) cumultative normal probability plot.
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Figure A.12: Normal probability plots of edge thickness, (a)-(e) of the individual
10 ppi copper samples 1-5 and (f) cumultative normal probability plot.
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B.1 10 ppi aluminium foam
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Figure B.1: Relative velocity u/ū profiles for 10 ppi aluminium foam of (a) 20 mm
and (b) 100 mm length, for different mass flows respectively.
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B.2 20 ppi aluminium foam
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Figure B.2: Relative velocity u/ū profiles for 20 ppi aluminium foam of (a) 20 mm
and (b) 100 mm length, for different mass flows respectively.
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B.3 30 ppi aluminium foam
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Figure B.3: Relative velocity u/ū profiles for 30 ppi aluminium foam of (a) 20 mm
and (b) 100 mm length, for different mass flows respectively.
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B.4 10 ppi copper foam
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Figure B.4: Relative velocity u/ū profiles for 10 ppi copper foam of (a) 20 mm
and (b) 100 mm length, for different mass flows respectively.





Appendix C

Massflow distributions

C.1 10ppi aluminium foam
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Figure C.1: Massflow distribution along transversal direction for 10 ppi alu-
minium foam of 20 mm length at (a) inlet and (b) outlet.
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Figure C.2: Massflow distribution along transversal direction for 10 ppi alu-
minium foam of 100 mm length at (a) inlet and (b) outlet.
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C.2 20ppi aluminium foam
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Figure C.3: Massflow distribution along transversal direction for 20 ppi alu-
minium foam of 20 mm length at (a) inlet and (b) outlet.
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Figure C.4: Massflow distribution along transversal direction for 20 ppi alu-
minium foam of 100 mm length at (a) inlet and (b) outlet.
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C.3 30ppi aluminium foam
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Figure C.5: Massflow distribution along transversal direction for 30 ppi alu-
minium foam of 20 mm length at (a) inlet and (b) outlet.
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Figure C.6: Massflow distribution along transversal direction for 30 ppi alu-
minium foam of 100 mm length at (a) inlet and (b) outlet.
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C.4 10ppi copper foam
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Figure C.7: Massflow distribution along transversal direction for 30 ppi alu-
minium foam of 20 mm length at (a) inlet and (b) outlet.
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Figure C.8: Massflow distribution along transversal direction for 30 ppi alu-
minium foam of 100 mm length at (a) inlet and (b) outlet.



Appendix D

Parameters of the MRT lattice
Boltzmann method

The full transformation matrices, inverse transformation matrices and
relaxation parameters for the D2Q9 and D3Q19 MRT lattice Boltzmann
model used in PACE3D are listed below.

D.1 D2Q9 multiple relaxation time modell

D2Q9 transformation matrix

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 0 0 −1 1 −1 1 1 −1
0 0 0 2 −2 −1 1 1 −1
0 −1 1 0 0 −1 1 −1 1
0 2 −2 0 0 −1 1 −1 1
0 −1 −1 1 1 0 0 0 0
0 0 0 0 0 1 1 −1 −1


(D.1)
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D2Q9 inverse transformation matrix

M−1 =



1
9 − 1

9
1
9 0 0 0 0 0 0

1
9 − 1

36 − 1
18 0 0 − 1

6
1
6 − 1

4 0
1
9 − 1

36 − 1
18 0 0 1

6 − 1
6 − 1

4 0
1
9 − 1

36
1

18 − 1
6

1
6 0 0 1

4 0
1
9 − 1

36 − 1
18

1
6 − 1

6 0 0 1
4 0

1
9

1
18

1
36 − 1
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12 0 1

4
1
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1
18

1
36

1
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1
12

1
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4
1
9
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18
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36

1
6

1
12 − 1

6 − 1
12 0 1

4
1
9

1
18
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36 − 1
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12

1
6
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12 0 − 1

4



(D.2)

D2Q9 relaxation parameters

s =
(

0.0 1.63 1.14 0.0 1.92 0.0 1.92 1.99 1.99
)

(D.3)
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Appendix E

Parametrisation

E.1 Exemplary parametrisation of the lattice
Boltzmann fluid flow solver

In this section the parametrisation of the lattice Boltzmann flow solver in
PACE3D is shown according to sec. 5.9. For this, we consider the flow of
air (kinematic viscosity ν(p) = 1.8558× 10−5m2/s) at superficial velocity
of u(p) = 2 m/s in a cylindrical channel with a diameter of l(p) = 0.04 m.
Thus, the characteristic Reynolds number is given as

Re(p) =
u(p) · l(p)

ν(p)
=

2m/s · 0.04m
1.8558× 10−5m2/s

≈ 4312 . (E.1)

With a choice for the spatial resolution Nx and the magnitude of the
velocity in lattice units u(lb) we can deduce the discrete spatial interval
∆x and the discrete time interval ∆t. For instance, using Nx = 400 and
u(lb) = 0, 05 we get

δx =
l(p)
Nx

=
0.04m

400
= 0.0001m , (E.2)

and

δt =
u(lb)

u(lb)
· δx =

0.05
2m/s

· 0.0001m = 0.0000025s (E.3)

Using the discrete spatial and temporal interval δx and δt, we get the
lattice viscosity ν(lb) from

ν(lb) = ν(p)
δt

δx2 = 1.8558× 10−5m2/s · 0.0000025s
(0.0001m)2 = 0.0046377 . (E.4)
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The relaxation parameter τ follows from eq. (5.21) as

τ = 3 · ν(lb) + 0.5 = 0.5139 , (E.5)

whereas the required number of timesteps Nt to cover certain timespan
∆t is

Nt =
∆t
δt

. (E.6)

1 #
2 # LBM SPECIFIC
3 #
4 FluidDynamics . LiquidPhases = (0.0 , 1.0)
5 FluidDynamics . Gamma = 0.5
6 FluidDynamics . streakline = 0
7 FluidDynamics . traceline = 0
8 FluidDynamics . Gravity = (0.0 , 0.0 , 0.0)
9 FluidDynamics . Density = (1.0 , 1.0)

10

11 FluidDynamics .LBM. KinematicViscosity = (0.0 , 0.0046377)
12 FluidDynamics .LBM. ReferenceDensity = 1.0
13 FluidDynamics .LBM.K = (1.0 , 1.0)
14

15 FluidDynamics .LBM. Store . Residuals = 0
16 FluidDynamics .LBM. Store . VelocityMagnitude = 1
17 FluidDynamics .LBM. Store . VelocityComponents = 1
18

19 FluidDynamics .LBM. LatticeType = d3q19
20 FluidDynamics .LBM. Dynamics = 0
21 FluidDynamics .LBM. DeltaX = 0.000 1
22

23 FluidDynamics .LBM. Boundary . ClosedWall = (0 ,0 ,0 ,0 ,0 ,0)
24 FluidDynamics .LBM. Boundary . Pressure = (1 ,1 ,1 ,1 ,1 ,1)
25 FluidDynamics .LBM. InnerBoundary = no_slip
26 FluidDynamics .LBM. RotationAxis = -1
27

28 FluidDynamics .LBM. Precalc = 0
29 FluidDynamics .LBM. Precalc . Steps = 0
30 FluidDynamics .LBM. Precalc . Threshold = 0.000 01
31

32 FluidDynamics .LBM.Init = 1
33 FluidDynamics .LBM.Init. Velocity = ( 0.0 , 0.0 , 0.0 )
34

35 FluidDynamics . Boundary . FlowRate = [ (0.0 , 0.0 , 0.0 ), (0.0 , 0.0 , 0.0 ),
\

36 (0.0 , 0.0 , 0.0 ), (0.0 , 0.0 , 0.0 ),
\

37 (0.0 , 0.0 , 0.05) , (0.0 , 0.0 , 0.05)
]

38

39 FluidDynamics .LBM. Boundary = ( periodic , periodic , \
40 periodic , periodic , \
41 velocity_linear , pressure )

Listing E.1: Lattice Boltzmann specific control parameters



E.1 Exemplary parametrisation of the lattice Boltzmann fluid flow solver 207

Finally, we can check the Reynolds number of the discrete system to be
equal to the physical Reynolds number

Re(lb) =
Nx · u(lb)

ν(lb)
(E.7)

An exemplary listing of the concerning lattice Boltzmann specific control
parameters is given in listing E.1, where the parameter

FluidDynamics.LBM.KinematicViscosity

represents the kinematic viscosities of all phases and velocities in lattice
units at the boundaries are given using the parameter

FluidDynamics.Boundary.FlowRate.
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E.2 Exemplary parametrisation of the finite
difference heat transfer solver

In this section the parametrisation of the heat equation solver in PACE3D
is shown according to sec. 6.10. We assume that the considered problem
is fully discribed by a characteristic length lref = 0.001 m, a characteristic
density ρref = 1 kg/m3, a characteristic temperature Tref = 300 K and a
characteristic time interval tref = 0.0000025 s.

Starting from the physical values of e.g. aluminium for the specific
heat capacity cV,(p) = 8.37× 102 J/(kg K), the volumetric heat capacity

CV,(p) = 2.344× 106 J/(m3 K) and the thermal conductivity k(p) = 1.5×
102 W/(m K) we can derive the non-dimensional values according to
eqns. 6.66 as

cV,(n) = cV,(p) ·
t2
refTref

x2
ref

= 8.37× 102 J/(kg K) · (0.0000025 s)2 · 300 K
(0.001 m)2 = 1.569× 102

CV,(n) = CV,(p) ·
t2
refTref

ρrefx2
ref

= 2.344× 106 J/(m3 K) · (0.0000025 s)2 · 300 K
1 kg/m3 · (0.001 m)2

= 4.394× 105

k(n) = k(p) ·
t3
refTref

ρrefx4
ref

= 1.5× 102 W/(m K) · (0.0000025 s)3 · 300 K
1 kg/m3 · (0.001 m)4

= 7.031× 103 .

(E.8)

1 #
2 # THERMAL SPECIFICATION
3 #
4 Energy .Type = 6
5 Energy . Noise .Type = 0
6 Energy .CV.Type = 0
7 Energy .k.Type = 0
8 Energy .CV.CV = 1.0
9 Energy .CV.CVa = ( 439425. , 261.92 )

10 Energy .k.Ka = ( 7031.25 , 1.172)
11 Energy .CV.fa = ( 5.05906 , 1. )
12

13 Energy . option = diffusion + advection_upwind
14 Energy . scale = 0
15 Energy . scale . vectorT = (1, 1)
16 Energy . Boundary = ( isolate , isolate , \
17 isolate , isolate , \
18 isolate , isolate )
19

20 Temperature = 1.

Listing E.2: Heat equation specific control parameters
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The relevant control parameters are given in listing E.2, where the pa-
rameter Energy.CV.CVa represents the non-dimensional volumetric heat
capacities, whereas the control parameter Energy.k.Ka represents the
vector of thermal conductivities for the different phases (in the listing,
phase one is asigned the above values of aluminium).
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