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1 Introduction

Internal combustion engines are the heart of modern automotive vehi-
cles. The cylinder crankcase, as the core component of the engine, pro-
vides an enclosed space for generating the vehicle power. Cylinder liners
are like the ventricles, in which pistons send rhythmic heartbeats to drive
the engine. For a traveling car the rotation speed of a motor is normally
more than 1000 r/min . This means that the friction occurs quite inten-
sively between the piston and the cylinder wall. Surface structures of the
cylinder wall have important influence on friction losses, oil consumption
and piston wear. These factors further influence engine performances like
energy efficiency, noxious emission and service longevity. For these rea-
sons the quality of cylinder bore surfaces is of great interest in the field of
engine production. Inspection techniques based on image analysis have
been commonly used for the quality control of engine cylinders. Inspired
by the increasing demand on inspection robustness and precision, this
thesis focuses on novel inspection solutions for cylinder bore surfaces that
possess a wide range of qualities.

1.1 Background

Surface textures on cylinder bores play an essential role for reducing fric-
tion and oil consumption. Previous motor tests manifest that tribological
processes in the cylinder-piston system, as shown in Fig. 1.1, are very
complex. Several different theories [13, 64, 66] have been presented to
characterize the relations between the surface topology and engine per-
formances. Based on these theories, a variety of manufacturing methods
were developed to finish function-relevant cylinder liner surfaces. The
commonly used production approach is the honing technique, because
it can significantly improve the geometrical accuracy of cylinder bores
and create specially designed surface structures. Engines finished by hon-
ing are desired to fulfill the increasing legislative requirement for harm-
ful emission, as well as to satisfy customers’ demands on environment-
friendly and energy-efficient automobiles. For these purposes, image-
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1 Introduction

Figure 1.1 Cylinder–piston system in automotive engines.

based surface inspection is widely used in the research of manufacturing
techniques as well as in the quality assurance for mass production.

The evaluation of new honing techniques is normally performed offline
in laboratories. It has been known that triboogical properties of honed
surfaces can be improved by optimazing the cylinder material, the hon-
ing tool or the honing process. Honed cylinder liners are carried into the
laboratory. Then, quality features describing textural and topological sur-
face structures are measured in a manual or an automated fashion. In
this process, it is verified whether honed surfaces conform to the design
specifications. The quality control for the mass production requires the
same measurement of surface features as that conducted in offline appli-
cations. Surface qualities are evaluated according to industrial standards
that are formulated by car manufacturers. However, not all inspection
tasks are online realisable. A part of inspection tasks concern material
details, such as metal folds and graphite grains. This requires highly re-
solved surface data. Some 2D and 3D imaging systems are commonly
used by car manufacturers. For example, light optical microscopy and
scanning electron microscopy are adopted to investigate 2D texture fea-
tures and material structures. Due to the complex internal structure of
microscopic systems, it is still difficult to integrate them in machines. Be-

2



1.2 Motivation

sides, white light interferometers and the confocal microscopy are use-
ful measuring instruments for roughness measurement. With 3D imaging
systems, honed surfaces are described by so-called 2.5D images which en-
code surface heights. Image analysis methods can thus be used to analyze
surface textures as well as surface roughness. Since 3D imaging systems
are very sensitive to the mechanical vibration, currently they are not suit-
able for online applicaitons. Nevertheless, several researches [36, 52] were
conducted to design non-distructive 3D inspection systems. These sys-
tems still cannot be integrated in production lines. Besides, 2.5D images
are acquired by scanning the surface topology. Thus, the inspection pro-
cess is time-consuming. To facilitate the acquisition of surface data, small
surface specimens are extracted at different places of cylinder walls by
splitting cylinder liners. With the aforementioned imaging systems, sur-
face details with a size of micrometers can be clearly revealed in images.
As explained before, such a high image resolution is still diffclut to realise
in online inspection systems. Other inspection tasks concern the overview
evaluation of machining patterns (also known as surface finishes), such
as the measurement of honing angles, the balance of honing grooves as
well as the recognition of blowholes, bubbles and scratches with a size of
millimeters. These quality problems can be investigated in macro-scales.
Macroscopic imaging systems are already good enough for these tasks.
This enables fully automated 100%-inspection of cylinder bore surfaces.
Some compact 2D imaging systems [28, 45, 48] insert images sensors into
cylinder bores and scan cylinder walls around 360◦. With these systems,
images showing complete cylinder walls can be directly acquired in cylin-
der bores. The inspection process is fast and non-distructive. These sys-
tems are suitable for both on- and offline appliactions. Compared with
the conventional visual inspection, results generated by image analysis
are reliable and reproducible. Hence, automated vision systems are fa-
vored in the automobile industry. In the meantime higher requirements
are put forward to the performance of inspection systems.

1.2 Motivation

This thesis develops image analysis algorithms for standard 2D micro-
scopic systems. The highlights of the work lie in the algorithm design
for two challenging inspection tasks — the detection of metal folds and
graphite grains. By assuming that the micrographs of honed surfaces

3



1 Introduction

show a good image quality, the research aims to overcome the difficul-
ties for analyzing complex surface details.

In the field of automated inspection of honed surfaces, the research in-
terest lies in three apsects — image acquisition, image processing algo-
rithm, and quality parameters. This thesis contributes to the last two as-
pects. The work does not actually improve imaging systems. However,
the choice of proper methods for image acquisition builds the fundation
of the work. The tendency in image acquisition techniques is to non-
destructively capture the surface data directly in the cylinder bores. As
long as surface images can “faithfully” reflect the surface topography, the
proposed image processing algorithms can be commonly applicable to
both destructive and non-destructive imaging systems. In this thesis, a
destructive way to capture surface images is adopted. Surface samples are
prepared by splitting cylinder bores. Then, two standard approaches for
image acquisition are exploited. Pictures captured by a light optical mi-
croscope (LOM) and a scanning electron microscope (SEM) are adopted
for investigating the surface appearance at different scales. The choice of
imaging systems hat a reason that surface components influence engine
properties in their own roughness scales. An inspection method that han-
dles honed surfaces at a certain observation scale may lower the accuracy
of describing relevant objects at other scales. Hence, a more rational strat-
egy for surface description is to match the image acquisition method with
the scales of surface components.

This thesis focus on the further development of inspection methods for
2D surface finishes. Two novel algorithms for defect inspection in SEM
images and graphite detection in LOM images are proposed. In the first
algorithm a local approach for recognizing surface defects overcomes the
drawbacks of conventional model-based methods. It can be noted that
tool marks imaged in micrographs may be far from the ideal model of
honing textures. The image analysis for these surface objects is more dif-
ficult than that for regular honing patterns. In previous works [2, 14, 80],
honing grooves were assumed to dominate the surface. Thereby, texture
features could be extracted from the entire image. Defects were detected
as the abnormal of honing textures. However, in the worst case, expected
honing textures may be seriously degraded in the surface finish due to
an improper manufacturing process. The model-based analysis of honed
surfaces may lead to instable evaluation because of poor surface qualities.
Therefore, more effective and robust surface features are desired to deal
with a variety of honing structures. The presented approach for defect in-
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1.3 Thesis organization

spection is edge-based. Edge features like the orientation and the strength
are used for constructing feature maps. To ensure the robustness of fea-
ture extraction, a novel orientation estimator is designed. The presented
inspection strategy shows some significant advantages:

� Independent of the formation of honing textures,

� Applicable to a wide range of surface qualities and

� Potential to be extended to 2.5D applications.

The second algorithm concerns the investigation of laser-exposed cylin-
der bore surfaces. The produced surfaces consist of randomly scattered
pores which provide the surface functionality similar to conventional
honing grooves. These pores are formed by uncovered graphite grains.
Currently, the automated quality evaluation based on 2D images is still
lacked for such surfaces. In this thesis, a morphological feature for de-
scribing a set of surface components is proposed. On this basis, a scheme
for segmenting graphite grains is designed. This approach enables robust
detection of graphite grains even when inhomogeneous illumination and
textual disturbances exist.

Moreover, the proposed methods can assist the assessment of surface
qualities. The detection results are utilized for constructing quality pa-
rameters. Nowadays, several quality parameters [2, 14, 80] for honed sur-
faces have been implemented for the quality control. Another two param-
eters are proposed for characterizing the defect severity and the unifor-
mity of graphite distribution, in which engine producers are increasingly
interested. Defects and graphite gains can be automatically evaluated in
use of the novel algorithms and quality parameters.

1.3 Thesis organization

This work is to gain insight into detection-based surface evaluation,
which concerns exactly localizing honing defects as well as segmenting
uncovered graphite grains. These topics originally stem from quantitative
metallography [22, 61], which studies the physical structure and compo-
nents of metals. Physical features of the material, the mechanical process
and the imaging mechanism play essential roles for the surface structures
shown in images. In order to understand the inspection tasks correctly, it
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1 Introduction

is necessary to study in depth the surface functions and manufacturing
processes. Chapter 2 will explicate these issues in detail.

In Chapter 3 the acquisition methods of micrographs are introduced.
Image qualities are tuned to the satisfactory status for displaying rele-
vant surface components in surface finish. Surface structures can be vi-
sually recognized based on their shading. The illustrated pictures were
captured in motor factories. Some exemplars of inspection objects have
been identified by experts, which helped the understanding of inspec-
tion tasks. The algorithms proposed in this thesis will detect and evaluate
these objects automatically.

Chapter 4 presents a modification of the structure tensor for analyzing
local orientations. Furthermore, this method for the orientation analysis
is applied to defect detection on plateau-honed surfaces. Surface defects
are to be localized in SEM images that are well configured at a high mag-
nification. Since surface components are spatially occluded, it is enabled
to regionally segment defects and honing grooves. Technically, feature-
based detection scheme is developed to reveal defective locations in SEM
images. The weighted orientation dispersion is taken as the signature of
defective edges. The algorithm for orientation estimation combines the
classic gradient-based method with an edge-preserving filter. The exper-
iments will show that the detection scheme features both an improved
robustness and accuracy.

In Chapter 5 a multiscale morphological feature for segmenting uncov-
ered graphite grains is developed for inspecting laser-exposed cylinder
liners. LOM images with a low magnification are appropriate for study-
ing the distribution of graphite grains. On machined surfaces, a non-
uniform illumination and varying background textures may have a neg-
ative impact on the stability of graphite detection. Conventional methods
relying on image intensities are unable to yield correct segmentations.
The work begins with the study of morphological shapes of the image
topography. It can be observed that the interpretation of intensity peaks
and valleys is related to observation scales. Inspired by these findings,
surface components at different roughness levels can be assigned to fore-
and background images. Graphite grains are accurately detected by post-
processing of the binarized foreground map.

Chapter 6 proposes quality parameters describing the defect severity
and the distribution of graphite grains. Detected surface components are
statistically analyzed in this chapter. By testing a series of surface samples,
quantitative evaluations are compared with the visual impression.
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2 Honed surfaces

2.1 Cylinder manufacturing

The material and the manufacturing method are two critical factors af-
fecting cylinder qualities. Since cylinder bodies must be able to withstand
the internal high-temperature and high-pressure environment, the cylin-
der material is required to possess enough hardness and toughness. Ad-
ditionally, uncovered material ingredients are incorporated into surface
textures. The commonly used cylinder materials [65] include cast iron
with lamellar graphite (GJL), cast iron with vermicular graphite (GJV)
and aluminum-silicon alloy. GJL is a traditional material for engine cylin-
ders. Recently, GJV is considered to be an alternative material due to its
excellent mechanical and physical properties. However, the production
cost of GJV is higher than that of GJL. In contrast to cast iron, aluminum
alloy gradually becomes popular, since it can considerably reduce the en-
gine weight. For the sack of the inadequate cylinder strength, the applica-
tion of the aluminum material is still confined to low power engines. Due
to the respective merits and drawbacks of these materials, they co-exist
now with each other in the engine world.

Honing [35, 67–69] is an abrasive machining method, typically applied
to cylinder finishing. Honing tools are equipped with honing stones that
feature an abrasive material, such as silicon carbide or diamond. As illus-
trated in Fig. 2.1, the honing process consists of rotating and sliding the
honing tool. The velocity of honing stones can be decomposed into the
tangential and axial components. By adjusting these two speeds, it is con-
venient to designate the honing angle according to the following formula
[21]:

α = 2 tan−1 v2
v1

. (2.1)

In this way, honed surfaces are structured with two sets of parallel
grooves. Such a texture is technically called “cross hatch”. Modern hon-
ing processes can achieve highly precise bore dimensions through mul-
tiple stages. The grain size of honing stones should be carefully chosen

7



2 Honed surfaces

Figure 2.1 Honing process.

in each honing phase. The smaller crystal grains honing stones have, the
finer grooves can be machined, that is, the smoother bore surfaces can be
produced. Therefore, the shape and the roughness of cylinder bores have
a close relation with honing stones.

For cylinders made of cast iron, honing with coarse abrasives has two
effects: honing stones expose graphite components by cutting off the ma-
terial close to the surface; in the meantime they smear burrs into metal
flakes along cutting edges. In consequence, opened graphite particles are
enclosed again by the folded metal. To improve surface roughness the
metal folds appearing as sharp peaks are required to be removed by fine
honing. By sophisticated control of machine parameters coarse tool marks
cannot be worn off thoroughly. In this case, grooves of different scales are
overlapped in the surface finish. Since deep grooves partition the surface
into diamond-shaped flat areas, this method is technically referred to as
“plateau-honing” [18]. Alternatively, if merely the finest honing grooves
are preserved, the method corresponds to “peak-honing” [18]. The recent
advances in honing technology are made by integrating laser treatments,

8



2.2 Surface function

(a) (b) (c) (d)

Figure 2.2 Honing textures (courtesy of [68]). (a) Plateau-honed. (b) Laser-
exposed. (c) Laser-honed. (d) MMC-casted.

for instance, deliberately engraving regular pocket structures on plateau-
honed surfaces [35] or by laser-exposure of peak-honed surfaces aiming
to melt a layer of metal folds and consequently open graphite grains [68].
For aluminum cylinders, honing is used to expose metal matrix compos-
ites (MMC) [13]. Textures obtained in aluminum cylinder liners are com-
pletely different from those produced with cast iron. In terms of afore-
mentioned honing methods four types of honing textures are available
in practice: plateau-honed, laser-exposed, laser-honed and MMC-casted.
See also Fig. 2.2. This thesis will focus on the first two classes of honing
textures. The tribological sense behind these textures will be explained in
the rest of this chapter.

2.2 Surface function

During engine operation, the fuel energy is converted into the kinetic en-
ergy of pistons. Due to the friction between the cylinder wall and the
piston ring, energy losses are inevitable. An effective means to reduce
friction is to make use of a lubrication mechanism to isolate contact sur-
faces. The formation of the lubricating layer, that is, an oil film, is a hy-
drodynamic result. Motor oil arrives at bore surfaces via the channel in-
side the piston. With the movement of the piston, the whole cylinder wall
can be lubricated by the oil. The thickness and the distribution of the oil
film highly depend on the structure of the cylinder bore surfaces. At the
roughness scale, valleys in the surface profile serve as oil-reservoirs, from
which the piston ring obtains sufficient lubricant for pulling out a fluid
film. In addition to the influence on lubrication, bore surfaces are also
tightly related to oil consumption and noxious emission. When the pis-
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2 Honed surfaces

Figure 2.3 Tribological systems (courtesy of [35]).

ton ring runs back to the bottom of the cylinder liner, motor oil should
be scraped into the crankcase oil tray for the repeated use. Otherwise the
remaining oil will be combusted together with the fuel. In this case, CO2
emission will increase dramatically. The experts’ experience tells that oil
consumption is mainly caused by “oil leakage“ [18]. Peaks on rough bore
surfaces do not only bring about strong piston wear, but also damage
cylinder walls by leaving axial grooved traces. Thereby, lubricant may
enter the combustion chamber along large gaps. For these reasons the de-
sired surface structures of cylinder bores should be featured with small
roughness on the part contacting the piston while also guarantee the ad-
equate oil reserve in valleys.

Modern honing technologies allow producing functionally designated
textures. For example, on plateau-honed surfaces lubricant is dispersed in
honing grooves, which constitute a channel system [35] communicating at
intersection points (Fig. 2.3 left panel). The design of the honing angle, α,
depends on the consideration that motor oil should be evenly distributed
in the tangential and axial directions. The latest techniques illustrate that

10



2.2 Surface function

a flat honing angle (α < 30◦) leads to less oil distribution in the axial direc-
tion, and thus the piston tends to be hard-going on the running surface.
With an increased honing angle (α > 90◦), lubricant dominates in the ax-
ial direction. In this case too much oil goes into the combustion chamber.
To obtain the optimum lubricating effect the honing angle should be cho-
sen in the interval between 30◦ and 90◦. The honing technique could be
combined with laser exposure. The right panel of Fig. 2.3 shows that the
micro-pressure chamber system [35] substitutes the channel system to re-
tain motor oil. Vermicular graphite is opened by melting metal folds for
the purpose of producing porous structures. As motor oil resides in pores,
the piston seems to be “swimming” on the surface. Such a structure over-
comes the major drawback of the communicating channel system, that is,
the friction is increased again after the piston expels oil to the surround-
ing. At this point it becomes clear why the distribution of opened graphite
particles is crucial for surface lubrication. Keeping these surface functions
in mind, novel solutions for the inspection of some challenging surfaces
are explored in the following parts of this thesis.
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3 Image acquisition

In the industrial environment, image acquisition of honed surfaces fol-
lows internationally standardized metallographic approaches [61, 75].
Light optical microscope (LOM) and scanning electron microscope (SEM)
are the major tools used for qualitative and quantitative analysis of honed
surfaces. In this thesis surface data are collected from specimens that are
prepared by splitting a cylinder liner. The cylinder wall is cut into stripes
or small pieces. To obtain a comprehensive understanding of multiscale
surface structures, examinations using LOM and SEM images comple-
ment each other in the aspects of overall surface appearances and mate-
rial details.

3.1 Light optical microscopy

The LOM [11, 63] is the most efficient and economic instrument compared
to any other examination technique in metallography. It takes advantage
of a compound lens to focus light into the eyes or a camera. On metal-
lic surfaces the interaction between the specimen and the incident light
is recognizable, when light reflected from a surface region (the field of
view, FOV) hits the optical system. At the end of the light path an CCD or
CMOS sensor converts the light signals into digital images. In Fig. 3.1, the
structure of LOM systems is schematically illustrated. Figure 3.2 shows a
LOM acquisition for a piece of laser-exposed cylinder bore surface.

Current optical microscopes possess sufficient resolving power for
imaging graphite grains. Based on optical geometry, the optical magni-
fication of LOMs is the product of the powers of the ocular and objective
lenses. Nowadays, the maximum magnification of LOMs can reach val-
ues higher than 1000. Moreover, as the light from a point on the specimen
passes through the back aperture of objectives, a disk-like fringe pattern
appears in the image plane. Optical resolution is the smallest distance be-
tween two points on a specimen that can be distinguished as separate en-
tities. Currently, the maxmal spatial resolution of LOMs is equal to 0.2 μm.
These physical properties of LOM systems can fully meet the requirement
for the detection of graphite grains. Normally, uncovered graphite grains
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3 Image acquisition

Figure 3.1 Light optical microscope system.

have a mean area of ca. 0.2 × 0.2 mm2. In Fig. 3.2 every square milimeter
contains approximately 10 grains. Total 200∼300 grains can be observed
in the FOV. Such a magnification is very suitable for the study of grain
distribution. Additionally, Fig. 3.2 shows an image block captured by a
high-resolution CCD camera. The size of each graphite grain is equal to
an image area of 50∼100 pixels. This makes graphite grains distinct to
other surface components with different sizes. Another property of LOMs
that should be mentioned is the depth of focus (DOF). Only those sur-
face points distancing from the focused plane within a tolerence can be
sharply imaged by a LOM. Specimens of cylinder bores have curved sur-
face profiles. The DOF should be improved with a low optical magnifi-
cation or a small numerical aperture [6] in order to obtain a good image
quality. By sophiscatedly configuring the LOM, most part of the cylin-
der bore surface shown in Fig. 3.2 is sharply imaged. The distoration is
not recognizable, since the imaged surface patch can be approximated
as a plane, when the radius of the cylinder bore (100 mm) is far greater
than the extension of the surface patch. Besides, image contrast may be
inhomogeneous due to the non-uniform illumination. Such disturbance
degrades the image quality. In this inspection task, the qualified surface
finish should show fine plateau grooves and evenly uncovered graphite
particles. The dark graphite grains shown in this image are to be detected
with the method described in Chapter 5.
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3.2 Scanning electron microscopy

Figure 3.2 Unqualified laser-exposed cylinder bore surface (evenly uncovered
graphite grains, too many deep grooves). FOV ≈ 5 × 5 mm2. The
image size is 256 × 256.

3.2 Scanning electron microscopy

In metallography, material details are preferably examined with a scan-
ning electron microscope. A SEM imaging system [62] is schematically
illustrated in Fig. 3.3. It utilizes a high-energy electron beam, namely the
primary electrons (PEs), for scanning the specimen. By means of mag-
netic and objective lenses, the electron beam emitted from the electron
gun is focused to a spot on the specimen surface. By altering the elec-
trical current in deflection coils, the electron beam can be deflected with
a certain angle. In this way, the scanning spot translates to the next scan-
ning point in a predefined raster pattern. Whenever the electron beam hits
the surface, the energy exchange between incident electrons and speci-
men atoms creates a variety of signals, among which secondary electrons
(SEs) are most frequently used for imaging. SEs are released from the sur-
face by excitation. A special detector collects SEs scattered in the sample
chamber, and then converts them into successive electrical signals. Fur-
thermore, a signal processing system connected to the detector serves for
signal amplification and digitalization. The output signal can be assigned
to an image pixel in form of a gray value. When the scanning raster is
associated with the image grid, the surface region within the scanning
raster is ultimately able to be viewed as a digital image.

Unlike the LOM, the magnification of a SEM is not derived from the
power of lenses but from the following relation:
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3 Image acquisition

Figure 3.3 Scanning electron microscopy.

SEM magnification =
displayed image size

raster size on the specimen
.

The lenses of the SEM are only to focus the electron beam into a spot.
Assuming that the image size is fixed for the display, the specimen will
be enlarged as the raster size is reduced. Accordingly, the FOV becomes
smaller. As long as the spot is small enough to resolve the scanning raster,
the specimen can be sharply imaged. The brightness of SEM images relies
on the amount of collected secondary electrons. Regardless of the primary
electron beam and the specimen material, the surface pose is the main fac-
tor affecting the emission of secondary electrons. Figure 3.4 demonstrates
that the “escape” path turns shorter as the incident angle φ increases. It
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3.2 Scanning electron microscopy

Figure 3.4 Secondary electron emission. As the primary electron beam enters
the specimen, secondary electrons escape from a teardrop-shaped ex-
citation volume.

Figure 3.5 Topography contrast.
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3 Image acquisition

Figure 3.6 Unqualified plateau-honed surface (too many metal folds, less evi-
dent plateaus). FOV ≈ 0.12 × 0.12 mm2. The image size is 256 × 256.

means that secondary electrons are easier to emit from steep surfaces.
Another phenomenon is that more electrons can be captured from a sur-
face toward the detector than that opposite to the detector. Considering a
rough surface profile composed of a number of small sections, the inten-
sities could vary like the schematic diagram shown in Fig. 3.5.

Figure 3.6 displays a piece of a unqualified plateau-honed surface. Ow-
ing to the high resolution and the large DOF, the SEM image shows
a stereo effect that is not available in LOM images. These properties
are quite beneficial for the structure-oriented analysis. This SEM image
is later employed for the development of image analysis algorithms.
This surface sample shows that the cross-hatch patterns are not success-
fully machined. Honing grooves are seriously interrupted into fragments.
Moreover, it can be observed that the defective locations marked with ar-
rows are folded metal flakes. Such a surface structure will induce a strong
surface friction. The piston ring is also likely to be damaged by sharp
metal folds. In addition, plateau grooves do not abound in this image.
As a result, the piston is hard-going on such a surface. The algorithm for
defect detection will be presented and experimentally validated with this
image in Chapter 4.
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4 Defect inspection

For plateau-honed cylinders, the presence of two bands of honing
grooves is desired in the manufacturing process. Due to the imperfect-
ness of metalworking, honing grooves are smeared and interrupted by
folded metal. These material defects result in frictional losses and acceler-
ate the wear of the piston. Moreover, exfoliated metal flakes increase the
particle emission in the running process of engine operation. Currently,
the grading of defect severity is still a demanding work. In most cases,
metal folds are visually analyzed in SEM images. The obtained inspec-
tion results are not reliable. For these reasons, quantitative evaluation of
surface qualities is in demand.

Plateau-honed surfaces possess a physically inhomogeneous topogra-
phy. Two roughness levels exist in s honing textures. The surface compo-
nents with low roughness are considered as smooth plateaus, on which
fine grooves show a very low image contrast. These smooth surface
regions are partitioned by deep honing grooves, which feature a high
roughness level. SEM images can faithfully reflect the intrinsic surface
topography in a 2D fashion. Deep grooves are well contrasted in gray-
level SEM images. Surface damages like metal folds exist on both rough-
ness levels. These manufacturing failures are distinct, when they extend
beyond the surface. Weak scratches on plateaus have little influence on
engine properties. Hence, the presented detection will concentrate on
the high roughness level, which shows higher image contrast than that
at plateaus. In this chapter the state-of-the-art approaches for detecting
metal folds are reviewed firstly. Afterwards, a new inspection strategy
based on the edge-aware structure tensor is proposed. Compared with
previous works, the method is edge-based and independent of honing
grooves. It will be shown that the presented method is applicable to in-
spect honed surfaces owning a wide range of qualities.
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4 Defect inspection

4.1 Previous work

4.1.1 Approach using signal processing

The early work for the detection of metal folds (“Blechmantel” in Ger-
man) and other defects (holes, groove interrupts, stains, etc.) was pre-
sented by Beyerer and Puente [3, 58]. Their image analysis approach is
based on a signal model. Ideal honing texture is assumed to consist of
compounded groove sets according to the designated spatial geometry.
Surface defects are treated as abnormal places in groove textures. In the
last few years this model has been the foundation of analyzing honed
surfaces in digital images. The classic application of Beyerer’s model was
separating straight lines from an isotopic background. The framework
was originally developed in the Fourier domain [5]. Recently, an improve-
ment was made in [80], where the wavelet transform was utilized to op-
timize the textural decomposition in WLI images.

The family of algorithms following Beyerer’s model shows a consen-
sus that defect inspection should become trivial in the separated back-
ground image. Here Beyerer’s scheme is briefly recalled in Fig. 4.2. Fig-
ure 4.1 shows the detection result obtained by using the test image shown
in Fig. 3.6. The 2D Fourier coefficients representing textures consisting
of straight grooves are distributed along compact radial lines across the
origin. The background is assumed to be isotropic and, according to the
Riemann-Lebesgue lemma, its spectrum concentrates around the origin
of the spatial frequency domain. After splitting the image spectrum into
an anisotropic and an isotropic part, the groove texture and the back-

(a) (b) (c)

Figure 4.1 Signal decomposition of Fig. 3.6. (a) Groove texture. (b) Background.
(c) Defective edges.
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4.1 Previous work

Figure 4.2 Beyerer’s scheme for defect detection.
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4 Defect inspection

ground can be reconstructed by using the inverse Fourier transform. De-
fects can be localized in the background image by edge detection. To ob-
tain closed contours of defective edges, Laplacian-of-Gaussian (LoG) fil-
ters are adopted in their work. Their results can be further optimized by
limiting the detection within grooved regions.

The model-based textural decomposition turns out to be problematic
for analyzing seriously defective surfaces. The spectral analysis of hon-
ing textures handles surface images globally. The algorithm works well
for honed surfaces in which grooves are present throughout the entire im-
age. Practical manufacturing processes may be disturbed by many com-
plex factors. Machine parameters, the material of honing stones and the
coolant could lead to significantly varying surface qualities. The test im-
age shown in Fig. 4.1 illustrates that the global algorithm is not capable of
thoroughly eliminating groove fragments from the background. Artifacts
may appear in separated images, because grooves reconstructed from the
2D Fourier domain are intact lines without gaps. The presence of groove
interrupts limits the anisotropic character of grooves, which may induce
an improper assignment of Fourier coefficients during the spectrum de-
composition. Moreover, it should be argued that the influence of image
noise is not ignorable in the stage of detection. During the LoG-filtering,
unexpected zero-crossings could be created by noise. As a result, defect
contours may be linked with noise contours. Such a problem is trouble-
some, since defects could be incorrectly localized. So far, the exact finding
of defects is still challenging for 2D image analysis of honed surfaces. In
view of the drawbacks of global signal decomposition, the algorithm de-
veloped in this thesis should be independent of the presence of honing
grooves.

4.1.2 Approach based on surface measurement

The height of surface profiles provides additional information for sur-
face inspection. In general, the surface topography can be separated into
material spurs, plateaus and valleys [78, 80]. The assessment for mate-
rial defects not only depends on surface heights but also on textural fea-
tures. Xin [80] and Dimkovsiki [14] brought forward similar interpreta-
tions of honing defects that are observed with a white light interferom-
eter (WLI). They believed that tool marks on honed surfaces should be
non-interrupted grooves so that motor oil can flow smoothly. This fam-
ily of methods segmented a 2.5D image into deep grooves and plateaus.
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4.1 Previous work

(a) (b)

Figure 4.3 Detection results published in [14]. (a) WLI image of a plateau-honed
surface. (b) Coarse grooves interrupted by metal folds that are col-
ored in gray.

Boundaries of coarse grooves were determined by the Radon transform.
Plateaus were regions among coarse grooves. Based on surface heights,
they found blocked regions inside globally reconstructed grooves. These
groove interruptions were detected as metal folds. Furthermore, peaks
rising on plateaus were regarded as material burrs. This idea is illustrated
in Fig. 4.3. However, the approaches mentioned above suffer from some
drawbacks:

� The defect detection depends on the estimation of groove param-
eters, such as the position, the width and the angle of individual
grooves. Unfortunately, it is difficult to estimate these parameters at
smeared grooves. The long-distance interaction of image contents is
often needed to link groove fragments.

� Nowadays, some motor producers do not consider interrupted
grooves as manufacturing failures, but treat them as a part of the
micro-press chamber system. Such an understanding conflicts with
the definition of defects advocated by Xin and Dimkovsiki.

To avoid confusion, only the defects that extend beyond the surface are
taken into account. Metal folds that have been pressed into surfaces are
not in the scope of the study, because they do not really increase surface
friction. The approach identifies honing failures at defective edges which
have irregular shapes due to the smearing of honing stones.
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4 Defect inspection

4.2 Local orientation analysis

In 2D gray-level images, strong intensity variations are referred to as im-
age edges. The locations where the intensity variation happens form spa-
tial edge shapes. Physical groove boundaries are imaged as straight edges
of high strength, while metal folds are distinct due to their sharp and
rough edges. In nature, straight and rough edges can be distinguished
with local orientations. Thus, local orientation analysis is the main te-
chinique used in the presented detection scheme.

In the literature the orientation information has been known as a sig-
nificant feature of oriented textures. A varity of orientation operators was
presented. The choice of orientation operators is quite dependent of ap-
plications. Some special properties of textures were emphasized in the
process of feature extraction. In this context these methods are sorted into
two classes, that is, gradient-based and filter-based methods. In the fol-
lowing, the characteristics of these methods are reviewed. Then, a novel
approach is introduced in Section 4.3.

4.2.1 Filter-bank based methods

4.2.1.1 A short survey

Filter-bank based algorithms look for directional structures with scaled
and rotated filter kernels. The selected filter bank can be composed of
Gaussian derivative filters [37], Gabor filters [43] or steerable filters [20].
Filtered images construct an orientation space [9, 23] or orientation-scale
space [84], in which overlapped objects with multiple orientations can
be segmented. Since each kernel of the filter bank only covers limited
spatial frequencies, high-frequency noise could be discarded from filter
channels. Filter-bank based methods are thus more resistant to noise than
gradient-based ones. The prominent weakness of these methods is the
limited orientation accuracy due to the fixed number of filters.

4.2.1.2 Gabor-filter bank

As reported in [1], the Gabor-filter bank is an oriented feature detec-
tor with good performance. Through creating an orientation-scale space,
many useful edge features can be extracted. Inspired by this, in Section
4.3.3 a set of feature-adaptive filter kernels is developed to improve the
estimation of local orientations. Several techniques [25, 38, 73] have been
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4.2 Local orientation analysis

reported in the literature for the design of Gabor filters. The advice of
Manjunath and Ma [38] is adopted here, becase their method has been
validated in many applications on texture segmentation and object recog-
nition. A 2D complex Gabor function and its Fourier transform can be
formulated as

f (x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x
+

y2

σ2
y

)
+ 2πju0x

]
, (4.1)

F(u, v) = exp

{
−1

2

[
(u − u0)

2

σ2
u

+
v2

σ2
v

]}
, (4.2)

where σu = 1/2πσx and σv = 1/2πσy. The band limit of a Gabor filter
is defined with its half-peak magnitude support in the Fourier domain.
The Gabor-filter bank is a class of self-similar Gabor functions that are
generated by scaling and rotating the basic filter f (x, y). The members of
Gabor-filter bank are non-orthogonal. In order to reduce the redundancy
in filtered images, the filter supports in the Fourier domain are aligned to
touch each other. Given the number of orientations, Nξ , and the number

of scales, Nη , a Gabor filter bank can be notated as
{

fξ, η (x)
}

with ξ =

1, 2, . . . , Nξ and η = 1, 2, . . . , Nη . An example is shown in Fig. 4.4.

Formally, the member of a Gabor-filter bank can be written as

fξ,η (x, y) = ρ−η F
(

x′, y′
)

, (4.3)

with

x′ = ρ−(η−1) (x cos θ + y sin θ) ,

y′ = ρ−(η−1) (−x sin θ + y cos θ) ,

The parameters of Equ. 4.3 are calculated with following formulas:
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θ =
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The filtered images are complex, and can be written as

ğξ, η (x) = gξ, η (x) ∗ fξ,η (x) . (4.4)

It is worth to note that in the spatial domain the real (odd) part of com-
plex Gabor filters is capable of detecting step edges, while the imaginary
(even) part is useful for finding roof edges. Since both step and roof edges
should be detectable for the inspection of honed surfaces, the Gabor en-
ergy function is utilized for analyzing the structural anisotropy. Hence,
a matrix of size Nξ × Nη is constructed at a pixel location, x. The matrix

element is
∣∣∣ğξ, η (x)

∣∣∣2. As explained in [34],
∣∣∣ğξ, η (x)

∣∣∣2 will be high when
fξ, η (x) coincides with the edge width and the edge angle. To gain scale-

invariant edge features, the maximum of
∣∣∣ğξ, η (x)

∣∣∣2 is chosen from the
dimension that repesents the scales [33]. The resulting feature is merely
related to orientations:

g̃ξ (x) = max
η

∣∣∣ğξ, η (x)
∣∣∣2 . (4.5)

The values of g̃ξ (x) at all orientations indicate an energy distribution,
which is able to describe local multi-oriented structures.
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Figure 4.4 Gabor-filter bank in 2D Fourier domain. Nξ = 6 and Nη = 4. u1 and
uNη

are the lowest and highest center frequencies, respectively. Δθ is
the angle interval.

4.2.2 Gradient-based methods

4.2.2.1 A short survey

Gradient-based approaches utilize the structure tensor [29] to estimate
local dominant orientations. The resulting orientations deliver higher ac-
curacy at fine scales than filter-bank based methods. However, conven-
tional derivative filters used to compute gradient vectors are sensitive to
image noise. For this reason, the estimation accuracy of local orientations
is often degraded due to image noise. To deal with this problem, some re-
searchers improved the robustness to noise by using alternative compu-
tational methods. The orientation operator proposed in [32] implements
a band-pass filter by integration. Another author [40] approximated the
structure tensor by auto-correlation. Some efforts were also made to im-
prove the structure tensor by adaptively varying the smoothing mecha-
nism [7, 8, 15, 46, 81]. Besides, many applications [31, 41, 55] require to
smooth the orientation field without destroying relevant singular points.
Diffusion-based regularization [10], model-based optimization [83] and
block-wise voting schemes [77] are approaches that were specially de-
signed for this purpose. The resulting orientation fields were coarsened
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4 Defect inspection

In this thesis, the detection of metal folds is associated with edge ori-
entations. The idea is to distinguish rough and straight edges via a de-
scriptor of edge shapes, which requires high accuracy not only for edge
angles, but also for edge locations. The conventional gradient-based ap-
proach is considered to be suitable for this applcation, and thus chosen
as the foundation of this work. Firstly, this approach is recalled. Its prob-
lems are illustrated through some tests. To improve the robustness, the
gradient-based approach is then optimized in Section 4.3.

4.2.2.2 Classic structure tensor

The optimal orientation estimation is assumed to fulfill the least squares
principle. The question can be formulated as minimizing the following
objective function in terms of the unity vector n representing the optimal
orientation:

J =
1

N2

∑
x∈ΩW

∣∣∣(∇g (x))T n
∣∣∣2 . (4.6)

x = (x, y)T denotes a pixel location. ∇g (x) =
(

gx, gy

)T
(x) is the gray-

level gradient of the image g (x). ΩW is the support of a local window,
W, which is sized to N × N. The minimization problem can be solved by
eigendecomposition of the structure tensor,

TC (x) =

⎛
⎝ T11 T12

T21 T11

⎞
⎠ (x) (4.7)

with

T11 (x) =
(

g2
x ∗ GW

)
(x) ,

T22 (x) =
(

g2
y ∗ GW

)
(x) ,

T12 (x) = T21 (x) =
(

gxgy ∗ GW

)
(x) ,

where the structure tensor TC (x) is defined as the smoothed dyadic prod-
uct of the gradient vector, GW (x) denotes a Gaussian or averaging filter
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kernel, and ∗ is the convolution operator. Computationally, the eigenval-
ues can be calculated directly with

λ1 (x) =
1
2

[
det (x) +

√
det2 (x)− 4tr (x)

]
, (4.8)

λ2 (x) =
1
2

[
det (x)−

√
det2 (x)− 4tr (x)

]
. (4.9)

Here, det (x) is the determinant of TC (x), and tr (x) is the trace of TC (x):

det (x) = T11 (x) T22 (x)− T2
12 (x) .

tr (x) = T11 (x) + T22 (x) ,

Moreover, the angle of the eigenvector corresponding to the largest eigen-
value is expressed as

O (x) = tan−1 2T12 (x)

(T22 − T11) (x)
. (4.10)

The local dominant orientation is perpendicular to O (x) /2.

4.2.2.3 Property

The mathematical expressions in Section 4.2.2.2 are usually used for the
calculation. By smoothing the whole image domain, the mean squared-
gradient field can be obtain as follows:

u (x) = λ1 (x) ejO(x).

The pros and cons of the classic structure tensor are illustrated with
the test image shown in Fig. 4.5. The window size critically affects the
orientation estimation. The large window significantly reduces noise but
introduces a strong blurring in both the amplitude and orientation field.
In contrary, the rough edge is preserved by using a small window. How-
ever, noise reduction may be insufficient at straight edges. Besides, the
classic structure tensor can only deal with the intrinsic 1D structure [17]
that shows only one dominant orientation. At the structure mixture (e.g.,
junctions) the estimated orientation will be far from each oriented struc-
ture contained in the local window.
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To detail the reasons of aforementioned issues, the eigenvalues and
eigenvectors of the classic structure tensor are formulated in an alterna-
tive form. According to [31], the eigenvalue analysis of the structure ten-
sor is equivalent to averaging squared-gradients in a local window. Let
me represent the gradient vector with a complex variable:

∇g (x) = gx (x) + jgy (x) . (4.11)

The squared-gradient can be expressed as

r (x) ejϕ(x) = g2
x (x)− g2

y (x) + 2jgx (x) gy (x) . (4.12)

Then, squared-gradients in a local window can be visualized on the com-
plex plane with a compass plot. The obtained vector map demonstrates
a gradient distribution which can reflect edge shapes. Artificial patterns
shown in Fig. 4.6 are used to illustrate four typical structures — straight
edges, rough edges, junctions and smooth patches. Gaussian noise is de-
liberately added to these pictures. The corresponding gradient distribu-
tions are depicted in Fig. 4.7. It can be seen that the dispersion of squared-
gradients changes with the edge strength and the noise level. Therefore,
the mean squared-gradients are also contrast-variant and noise-sensitive.

The performance of the structure tensor can be further discussed in real
images. A surface image is represented with the following model:

g (x) = i (x) t (x) + n (x) , (4.13)

(a) (b)

Figure 4.5 Vector fields, λ1 (x) ej(O(x)/2+π/2), estimated by the classic structure
tensor. (a) N = 5, (b) N = 21.
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(a) (b) (c) (d)

Figure 4.6 Noisy artificial patterns. (a) Straight edge. (b) Junction. (c) Rough
edge. (d) Smooth patch.

where t (x) is the undisturbed image signal of a relief texture, i (x) denotes
the inhomogeneity, and n (x) is additive white Gaussian noise (AWGN).
The gradient field derived from Equ. 4.13 is

∇g (x) ≈ ∇i (x)∇t (x) +∇n (x) , (4.14)

where the derivative of i (x) is neglected, because i (x) normally varies
very slowly in local regions. Equ. 4.14 means that i (x) scales the gradient
amplitude, |∇t (x)|, but does not tune the gradient angle of t (x). In com-
parison, image noise distorts both the gradient amplitude and the angle.
Let me notate the squared-gradient of t (x) in the polar coordinate system
as rt (x) ejϕt(x). Then, the squared-gradient of g (x) can be described with

r (x) ejϕ(x) =
(

i2 (x) rt (x) + rn (x)
)

ej(ϕt(x)+ϕn(x)), (4.15)

where rn (x) and ϕn (x) are the biases in the radial amplitude and the
rotated angle, respectively. This representation inherits the properties of
Equ. 4.14 and combines the signal and the noise in a single term. Further-
more, it should be noted that strong gradients have higher votes to the
vector addition than weak ones. This enables to describe local dominant
structures by simplifying Equ. 4.15 as follows:

� Squared-gradients at strong edges can be approximately character-
ized with i2 (x) rt (x) ej(ϕt(x)+ϕn(x));

� Weak edges and smooth regions can be expressed as rn (x) ejϕn(x),
since these places are dominated by noise.
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(a) (b)

(c) (d)

Figure 4.7 Gradient distributions of noisy patterns. (a) Straight edge. (b) Junc-
tion. (c) Rough edge. (d) Smooth patch.

Based on the analysis above, the mean squared-gradient in a local win-
dow can be formulated as

RWejΦW ≈ 1

N2

∑
x∈ΩW

(
i2 (x) rt (x) + rn (x)

)
ej(ϕt(x)+ϕn(x)). (4.16)
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The decomposition is then accomplished in the following equations:

RWejΦW = Rte
jΦt + RnejΦn (4.17)

with

Rte
jΦt ≈ 1

N2

∑
x∈ΩW

ω (x) i2 (x) rt (x) ej(ϕt(x)+ϕn(x)),

RnejΦn ≈ 1

N2

∑
x∈ΩW

(1 − ω (x)) rn (x) ejφn(x),

ω (x) =

{
1 if x at strong edges,
0 otherweise.

In the case of weak image noise, the gradient distribution of strong edges
still keeps a significant anisotropy. Hence, the first term of Equ. 4.17,
Rte

jΦt , represents a smoothed version of strong edges. The second term,
RnejΦn , can reduce noise by vector addition due to the large dispersion
of noisy vectors. From this model it can be known that edges and noise
are smoothed in the whole window region ΩW. As a result, edges cannot
be preserved by such isotropic filtering. Moreover, this model also indi-
cates that edges and noise can be separated in local windows under per-
oper assumptions. This property enables the design of anisotropic filters
which should limit the smoothing within specified regions. The study of
anisotropic filters is presented in the next section.

4.3 Edge-aware structure tensor

4.3.1 Design idea

In this section, the classic structure tensor is improved by means of tai-
loring local squared-gradients. Fig. 4.8(a) sketches a group of squared-
gradients in a local window whose center is located at an edge. In this
case, vectors similar to the one at the window center should take more
votes for orientation estimation. In another situation, the window cen-
ter may be a noisy pixel, as shown in Fig. 4.8(b). Noisy vectors are ex-
pected to be selected for the averaging. This concept is realized with an
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(a)

(b)

Figure 4.8 Improved orientation estimation (a) at an edge pixel and (b) at a
noise pixel. Black solid lines are squared-gradients at window cen-
ters, while gray solid lines are squared-gradients in the neighbor-
hood. In the first stage vectors with a norm significantly different
from the window center are removed. In the second stage the mean
squared-gradients are indicated with black dash lines.

algorithm that combines the classic structure tensor with a bilateral fil-
ter and an anisotropic filter. The achieved structure tensor is named as
edge-aware structure tensor (EAST), which demonstrates superior char-
acteristics in noise reduction and edge preservation. Large local windows
are preferred in the structure tensor for significantly reducing noise. The
proposed algorithm is able to reach the requirement on the structure se-
lectivity depicted in Fig. 4.8.

4.3.2 Bilateral filter

The bilateral filter [51, 72] and its variants are important techniques in the
world of edge-preserving filtering. This attractive image processing tool
has been widely applied to image editing, image denoising and contrast
enhancement. It takes the following form:

34



4.3 Edge-aware structure tensor

ǧ (x) =
1
C

∑
p∈ΩW

g (p) GW (‖p − x‖) GR (|g (p)− g (x)|) , (4.18)

where C is a factor for normalizing the sum. GW denotes a 2D Gaussian,
which is related to the Euclidean distance between x and its neighbor p.
‖·‖ means the L2-norm. GR is a range function with a Gaussian form,
which is attributed with |g(p) − g(x)|, that is, the L1-norm of image in-
tensities. Since only similar intensities take part in the smoothing, strong
edges can be preserved in filtered images. Furthermore, some authors [26,
54] improved the original bilateral filter with adaptive range functions re-
lying on another image. This class of filters is known as the cross/joint
bilateral filter, and takes a common form:

ǧ (x) =
1
C

∑
p∈ΩW

g (p) GW (‖p − x‖) GR (|g0 (p)− g0 (x)|) . (4.19)

where g0 is a reference image different from g.
With some extensions, the bilateral filtering can be integrated into the

classic structure tensor. The new structure tensor is highlighted with the
properties designed in Fig. 4.8. It is straightforward to extend the bilateral
filter to vector fields or tensor fields [15, 81]. In these applications, the
range filter, GR, was linked with the distance of vectors or tensors. The
filtering was carried out for each element of vectors or tensors. In Equ.
4.17 the mean squared-gradient was modeled by using a constant box
kernel as the spatial filter. The local window was separated into edges
and noise regions. If ω (x) is substituted with a bilateral kernel, the mean
squared-gradient field can be expressed as

u (x) =
1
C

∑
p∈ΩW

r (p) ejϕ(p)GR (‖∇g (p) ‖ − ‖∇g (x) ‖) . (4.20)

This mathematical expression can theoretically explain the principle of
the bilateral structure tensor proposed in [81].

4.3.3 Adaptive filter kernels

The approach differs from the previous work in the improved structure
selectivity, which leads to an anisotropic structure tensor. The filter ker-

35



4 Defect inspection

nel should be adaptively tuned in order to alleviate the structure mix-
ture in local windows. In this work the Gabor-filter bank is used to detect
multi-oriented structures. The Gabor-features,

{
g̃ξ (x) , ξ = 1, 2, . . . , Nξ

}
,

extracted in Section 4.2.1.2 are capsulated into a vector,

g̃ (x) =
(

g̃1, g̃2, . . . , g̃Nξ

)
(x) , (4.21)

because they belong to a same type of features. Additionally, the gradient
magnitude, ‖∇g (x) ‖, is also involved in the filter kernel. The filtering is
expected to occur at strong edges. As a result, two range functions are
used for the bilateral filtering. They are then combined in a single filter
kernel:

Gσ1σ2
(p, x) = Gσ1

(p, x)Gσ2
(p, x) (4.22)

with

Gσ1
(p, x) = exp

[
− (‖∇g(p)‖ − ‖∇g(x)‖)2

σ2
1

]
,

Gσ2
(p, x) = exp

⎡
⎢⎣−

∥∥∥‖∇g(p)‖2g̃ (p)− ‖∇g(x)‖2g̃ (x)
∥∥∥2

σ2
2

⎤
⎥⎦ .

Formally, the mean squared-gradient field is expressed as

u (x) =
1
C

∑
p∈ΩW

r (p) ejϕ(p)Gσ1σ2
(p, x) . (4.23)

As explained in Section 4.2.2.3, the eigendecomposition of the structure
tensor is equivalent to filtering a vector-valued image. In this sense, Gσ1
and Gσ2

are range filters for vector amplitudes and vector angles, re-
spectively. Gσ1

contributes to localizing strong edges, whereas Gσ2
is an

anisotropic filter responsible for searching oriented structures similar to
the window center.
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4.3 Edge-aware structure tensor

4.3.4 Tensor filtering

Let me include the structure tensor in the framework of bilateral filtering.
The classic structure tensor (CST) defined in Equ. 4.7 can be rewritten as
a weighted sum of local tensors, i.e.,

TC (x) =
∑

p∈ΩW

T (p) GW (‖p − x‖) (4.24)

with

T (p) =

⎛
⎝ g2

x gxgy

gxgy g2
x

⎞
⎠ (p) .

GW plays a role of the spatial filter. Furthermore, it is easy to derive Equ.
4.16 from Equ. 4.24 in that the eigendecomposition is a linear operation.
In the same way, the edge-aware structure tensor (EAST) can be defined
as

TE (x) =
1
C

∑
p∈ΩW

T (p) Gσ1σ2
(p, x) . (4.25)

Similarly, the bilateral structure tensor (BST) can be expressed as

TB (x) =
1
C

∑
p∈ΩW

T (p) Gσ1
(p, x) . (4.26)

4.3.5 Parameter selection

4.3.5.1 Parameters in Gabor filters

The performance of the EAST can be adjusted by a set of parameters. In
the step of feature extraction, the number of orientations and scales, Nξ
and Nη , as well as the lowest and highest center frequencies, u1 and u2,
can fully determine the Gabor-filter bank. When the number of scales is
larger than two, the remaining center frequencies at other scales can be
automatically fixed according to the filter layout. Gabor filters are nor-
mally used to extract frequency components that correspond to meaning-
ful image contents. However, the spatial frequency distributions of real
images are often unknown. To deal with this problem, the Gabor-filter
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bank is constructed with following considerations. The number of scales,
Nη , is set to 3. Furthermore, the lowest and highest normalized center
frequencies are set to 0.125 pixel/cycle and 0.45 pixel/cycle, respectively.
In this way, Gabor filters are configured to be oriented low-, band- and
high-pass filters, which can cover the entire spectrum. The number of fil-
ter orientations decides the angular resolution for discriminating oriented
structures. By setting Nξ to 18, the angle interval of Gabor filters, Δθ, is
equal to 10◦.

4.3.5.2 Adaptive smoothing parameters

Both range filters used have a common Gaussian form with a zero mean.
Thus, they can be fully determined by their standard deviations. Each
range filter is observed as a sigmoidal threshold function which trans-
forms feature distances into [0,1]. Gσ1

serves as a detector of edge/non-
edge structures. Its standard deviation plays a role of a soft threshold
that classifies image structures in local windows according to the simi-
larity of edge strength. In the EAST another range filter is used to deal
with the problem induced by structure mixture. Gσ2

classifies local orien-
tations into two groups that are similar and dissimilar to the orientation
of the window center. Since Gaussian noise does not indicate obvious ori-
entations, noisy pixels in smooth regions are taken as similar in terms of
the structure anisotropy. σ2 plays a role of a soft threshold to discriminate
the orientation similarity. The larger these two parameters are, the more
strongly the squared-gradient vectors can be smoothed.

In most applications the smoothing parameter for the range filter is set
to a globally unified value. The empirical studies reported in [82] man-
ifest that the global parameter is not suited for detail preservation in all
regions. The authors of [79] derived adaptive parameters from local phase
characteristics. Their bilateral filter improved the perceptual effect of im-
age denoising. [15] brought forward a statistical method for estimating
the optimal smoothing parameters. However, this method relied on an
iterative optimizing process which was not convenient to handle. In this
work, an adaptive method for parameter estimation is developed. In Equ.
4.22 the range filters are attributed with

d1 (p, x) = |‖∇g(p)‖ − ‖∇g(x)‖| , (4.27)

d2 (p, x) =
∥∥∥‖∇g(p)‖2g̃ (p)− ‖∇g(x)‖2g̃ (x)

∥∥∥ . (4.28)
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4.3 Edge-aware structure tensor

The smoothing parameters are associated with the distribution of feature
distances in local windows. The effectiveness of the method is ascertained
by the fact that the predented feature vectors are powerful for discrimi-
nating oriented structures.

Histogram-based approaches are normally used to study the distribu-
tion of statistical variables. To build the histogram of dk with k = 1 or 2,
feature distances should be divided into bins. It is nontrivial to do this,
because the dynamic range of dk varies in each local window. The size
of bins will critically affect the histogram of dk. Instead, the profile of
sorted feature distances is studied in local windows. Let

{
ď(l)

}
be a

set of increasingly sorted values of dk in a local window, where l ∈
{1, 2, 3, . . . , lmax} denotes the index. For local windows of size N × N,
lmax = N2 − 1 holds. The feature distance located at the window center
is ignored, because it is always equal to zero. Moreover,

{
ď(l)

}
implies

the histogram of dk, which is denoted as H(ď) in this context. Note that
each of range filters in the EAST is adopted to discriminate two sets of lo-
cal structures. Edge and non-edge structures are separated in Gσ1

, while
similarly and dissimilarly oriented structures are distinguished in Gσ2

.
If image features for local structures have a high descriminative power,
the histogram of dk will be unimodal or bimodal. Accordingly, the pro-
file of ď(l) will have large convex or concave curvatures. Based on this
relation, the distribution of dk can be separated into several partitions
which represent obviously small, transitive and obviously large feature
distances. Correspondingly, the shape of ď(l) is simplifed with connected
line segments showing one or two inflection points. Fig. 4.9 schemati-
cally demonstrates four possible simplified profiles of ď(l), as well as the
shapes of H(ď) regardless of histogram bins. Furthermore, the indices un-
derlying these line segments construct several sets containing classified
pixels, which are labeled with S, A and D, respectively representing ob-
viously small, transitive and obviously large feature distances mentioned
above. S = ∅ for type I, while D = ∅ for type IV. By simplifying and
splitting the profile of ď(l), a data-driven approach can be developed for
parameter estimation.

For types I, III and IV, transitive structures lie in the tail of H(ď). Thus,
the structure classification is trivial in these cases. In comparison, the dis-
tribution of type II is dominated with transitive structures. To estimate
σ1, the data in S and A zones are taken into account. This ensures that the
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Type I

Type II

Type III

Type IV

Figure 4.9 Left column: simplified profiles of feature distances. Right column:
distribution models.
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transitive regions from edges to smooth patches can be revealed in

σ1 = ď(1) +
√

1
lA

∑
l∈S∪A

(
ď(l)− ď(1)

)2
, (4.29)

where ď is derived from d1, lA is the upper limit of A zone. Considering
the self-distance at the window center, the soft threshold is biased with
ď(1). The second term of Equ. 4.29 is a rooted secondary center moment.
Moreover, σ2 implies an angular tolerance for detecting consistent orien-
tations with respect to the window center. In the profiles of types I and
II, the data in S and A zones indicate a wide range of angle differences.
Therefore, these situations should be treated carefully. The estimate of σ2
is ď(1) plus an empirical value that is smaller than the mean of sorted fea-
ture distances in S and A zones. Furthermore, the distributions of types
III and IV have distinct peaks in the low value area of ď. In these cases,
only S zone is considered for estimating σ2. A zone is not considered in
order to ensure the accuracy of orientation selection. In summary, the es-
timation functions are formulated in terms of profile shapes:

for types I and II,

σ2 = ď(1) + ϑ (κ) , (4.30)

for types III and IV,

σ2 = ď(1) +
√

1
lS

∑
l∈S

(
ď(l)− ď(1)

)2
, (4.31)

where the values of ď are derived from d2, lS is the upper limit of S zone.
Furthermore,

ϑ (κ) =
κ

lA

∑
l∈S∪A

ď(l)

with κ ∈ [0, 1]. The choice of κ is discussed later in Section 4.5.1. In a
special case, the local window may contain constant intensities. σ1 and σ2
will be equal to zero. As this situation appears, Gσ1σ2

is defined as a box
kernel.

The last question is how to determine the inflection points in the sim-
plified profile of ď(l). In the scheme, these points are calculated with the
help of following indices:
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Figure 4.10 Estimating inflection points in ď.

l1 = arg min
l

{
ď(l)− d̃(l)

}
, (4.32)

l2 = arg max
l

{
ď(l)− d̃(l)

}
, (4.33)

with

d̃(l) = ď(l) +
ď
(

N2 − 1
)
− ď (1)

N2 − 1
l.

d̃(l) denotes a straight line connecting the begin and end points of ď(l).
The graphical illustration of l1 and l2 is shown in Fig. 4.10. lS and lA can
be found according to Table 4.1.

Table 4.1 Upper boundaries of S and A zones.

distribution
types

lS lA

I 1 l2

II l2 l1

III l1 l2

IV l1 lmax
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4.4 Detection scheme

4.4.1 Feature extraction

It has been known from Fig. 4.7 that orientations along straight edges
show a unimodal distribution, whereas orientations along rough edges
are randomly scattered. Moreover, multi-oriented structures like junc-
tions possess two or more dominant orientations. Therefore, the orien-
tation uniformity is high in individual modes, but low in the whole dis-
tribution. Smooth patches do not indicate an obvious anisotropy. It can be
observed that plateau-honed surfaces consist of these four typical struc-
tures. Rough edges are regarded as defects. Since the orientation disper-
sion of noisy vectors makes no sense for the application, only the disper-
sion of edge orientations is investigated in the vector field.

u (x) = λ1(x)ω(x)ejO(x), (4.34)

where ω(x) is the edge map created by segmenting the amplitude field,
λ1(x), with Otsu’s threshold [50]. Then, the orientation dispersion is mea-
sured with the small eigenvalue of the classic structure tensor. The win-
dow size is fixed to 5× 5 in the assumption that such a small window can
only contain a single edge. The derived small eigenvalues are denoted as
λ̌2(x).

Since the edge strength is the main perceptual evidence in 2D gray
value images to identify the severity of surface damage, image contrast
is also an important cue for defect detection. Combining the contrast and
orientation features of defective edges, the defect signature is ultimately
defined as

S (x) = N (λ1)N
(
λ̌2

)
. (4.35)

N (·) is a min-max normalization function, which linearly transforms the
maximum to one and the minimum to zero. Since eigenvalues have large
dynamic ranges, λ1 and λ̌2 are logarithmically stretched before normal-
ization. Because metal working is imperfect, it can be considered that de-
fects always exist in surface samples. This means that slight orientation
dispersion cannot be enhanced by normalization.

43



4 Defect inspection

Figure 4.11 EAST-based detection scheme.
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(a) (b) (c) (d)

Figure 4.12 Detection at junctions. (a) Intersection of straight lines. (b) Detection
result of (a). (c) Intersection of a rough line and a straight line. (d)
Detection result of (c).

4.4.2 Segmentation

The most salient defects can be segmented by thresholding S (x) with
Otsu’s method. The EAST-based detection scheme is summerized in Fig.
4.11. Moreover, inhomogeneous intensities are irrelevant signals for sur-
face characterization. These signals can be eliminated from the original
image by preprocessing with homogenization techniques [4, 76]. Further-
more, it should be pointed out that any intersections at rough edges are
a part of defects. In other words, only junctions of straight edges should
be excluded from detection results. This consideration is explained with
Fig. 4.12. In the postprocessing, isolated small and round regions are re-
moved, since defective edges are large and elongated objects. The round-
ness measure is defined in Appendix C.1.

4.5 Experimental results

4.5.1 Range filters

In this section, filter kernels as well as parameter settings for the EAST are
validated. The improvement of the filter kernel is illustrated by compari-
son with the BST. In the experiments, gradients are computed with hori-
zontal and vertical central difference operators. Filter kernels are sized to
21 × 21 for both structure tensors. The smoothing parameter for the BST
is automatically computed with Equ. 4.29. Moreover, the influence of κ is
investigated with an image pattern shown in Fig. 4.14(a). In this example,
both the profiles of sorted d1 and sorted d2 are shaped as type I, as de-
picted in Fig. 4.13. Since edges are normally sparse in local windows, ď(l)
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(a)

(b)

Figure 4.13 Profiles of ď(l) obtained from (a) d1 and (b) d2. The local window is
shown in Fig. 4.14.
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(a) (b)

(c) (d) (e)

Figure 4.14 Range filter adjusted by κ. (a) Local window containing a rough
line. (b) Gσ1

, (c)-(e) Gσ2
with κ = 0.2, 0.6 and 0.9.

is likely to be types I or II at edges. Thus, the parameter, κ, is useful for ad-
justing the smoothing degree at edges. The window center marked with a
white circle is located at a rough edge. With the estimated σ1, the weights
for edges are significantly higher than the surrounding in Gσ1

. This in-
dicates that edges and non-edge regions can be reasonably classified by
the automatic choice of σ1. By observing Figs. 4.14(c)-(e), it can be noted
that the larger the value of κ is, the stronger the edge will be smoothed. In
the application it is intended to preserve orientation fluctuations at rough
edges. Thus, in the following κ is set to 0.2 by default.

Fig. 4.15 demonstrates three synthetic patterns and corresponding
adaptive filter kernels. In the first row the window center is located in
a smooth region. In all three filter kernels, the weights for edges are ob-
viously suppressed. This can effectively avoid the interaction between
edges and smooth regions during the filtering. In this test, σ2 shows its
ability of discriminating oriented and non-oriented structures. Gσ1

con-
tributes to the localization of edges and smooth regions. Moreover, the
superiority of the EAST can also be observed as edges are smoothed.
As shown in the second row, Gσ1σ2

is oriented to the edge direction.
Surrounding edges having similar directions also gain large weights in
Gσ1σ2

. In this case, dispersed orientations will not be processed together.
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Figure 4.15 Range filters for artificial patterns. (a) Synthetic patterns, (b) Gσ1
, (c)

Gσ2
, (d) Gσ1σ2

.

These two experiments verify that the EAST exactly obeys the design idea
demonstrated in Fig. 4.8. Besides, if a local window contains only noise,
the BST and the EAST will attempt to find similar structures in noise. The
example for this case is shown in the last row.

Furthermore, the BST and the EAST are tested by using real SEM im-
ages of plateau-honed surfaces. Practical examples for the typical struc-
tures mentioned in Section 4.2.2.3 are shown in Fig. 4.16. In complex tech-
nical surfaces, edges are likely to be intersected in a small area. Hence,
Gσ1

is not sufficient for generating accurate estimates of edge orientations.
This problem can be effectively addressed with the anisotropic filter, Gσ2

.
These examples also verify that the strategy for estimating smoothing pa-
rameters is applicable to both synthetic and real images.

4.5.2 Amplitude and orientation fields

In this section, the performance of the CST, the BST and the EAST is eval-
uated with an artificial picture. The artificial image, shown in Fig. 4.17,
consists of random lines. Their positions and angles obey the uniform
distribution. Since this picture is rich of junctions, it is especially suited
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Figure 4.16 Range filters for real image patches. The rows from top to bottom
are surface samples centered at a straight edge, a rough edge, a
junction and a smooth patch. The columns indicate (a) Real image
patches, (b) Gσ1

, (c) Gσ2
and (d) Gσ1σ2

.

for illustrating the advantage of using an anisotropic filter in the struc-
ture tensor. Moreover, the influence of parameters is also discussed. The
CST and the BST are only affected by the window size, N, while the
EAST has a set of parameters. As mentioned in Section 4.3.5, the per-
formance of the EAST is mainly influenced by three parameters, Nξ , N
and κ. During the visual evaluation, these parameters are firstly set to(

Nξ , N, κ
)
= (18, 21, 0.2). Afterwards, one of these parameters is altered

for the quantitative evaluation. To make objective assessments, a ground
truth is needed in the experiments. Here the amplitudes of squared-
gradients, r (x), are taken as the ground truth of amplitudes. Besides,
since the digital lines are not perfectly straight in a low resolution image,
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Figure 4.17 Synthetic random lines.

the true edge orientations are assumed to be a slightly smoothed version
of ϕ (x). The CST with a window size of 3 × 3 is used for the smooth-
ing. The ground truth of angles is denoted as ϕ̌ (x), which is defined in[−180◦, 180◦

]
.

(a) (b) (c) (d)

Figure 4.18 Visual evaluation. (a) Ground truth. (b)-(d) Estimated vector fields
associated with the CST, the BST and the EAST, respectively.

Figure 4.18 shows r (x) ej(ϕ̌(x)/2+π/2) derived from noise-free gradients
as well as λ1 (x) ej(O(x)/2+π/2) obtained by structure tensors. These vec-
tors are chosen from a local window depicted in Fig. 4.17. In Fig. 4.18(b)
the vectors obtained by the CST are strongly smoothed so that structure
details become invisible. In Fig. 4.18(c), the vector amplitudes are almost
zero at the junction. The drawback of the BST becomes clear in this exam-
ple. In comparison, the EAST generates vectors that are most similar to
the ground truth.

Furthermore, a quantitative assessment shall be conducted. Vector am-
plitudes and vector angles are evaluated separately. Vector amplitudes
indicate the goodness of the edge localization, which can be described by
the peak signal to noise ratio (PSNR):
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PSNR = 10 log10
max r2 (x)

1
A
∑

x∈Ωg
(λ1 (x)− r (x))2 , (4.36)

where A is the total number of pixels in the image. Vector angles re-
flect the orientation accuracy. The mean angular error (MAE) is computed
with

MAE =
1

2Ae

∑
x∈Ωe

arc (O (x) , ϕ̌ (x)) , (4.37)

arc (O (x) , ϕ̌ (x)) = 180 − |180 − |O (x)− ϕ̌ (x) || ,

where arc (O (x) , ϕ̌ (x)) [47] computes the smallest angular distance from
O (x) to ϕ̌ (x) in the unit circle. O (x) ∈ [−180◦, 180◦

]
is estimated by one

of the structure tensors introduced in Section 4.3.4. The angles are selected
from

Ωe = {p, r (p) > 0} .

Ae is the size of Ωe. The mean orientation error is the half of the mean
error of O (x).

In the following, it is illustrated how the number of orientations of the
Gabor filter bank, Nξ , influences the performance of the EAST. In this
test the angle resolution of the Gabor filter bank is altered from 5◦ to
30◦. Fig. 4.19 shows that the PSNR is approximately invariant to Nξ . This
illustrates that the random lines shown in Fig. 4.17 are distinguishable
when the angle resolution is less than 30◦. Thus, edge strength is not sup-
pressed in the filtered amplitude field. However, the orientation accuracy
is closely related to Nξ . This problem is illustrated in Fig. 4.20. If Nξ is
too small, multi-oriented edges cannot be exactly described with Gabor
features. If Nξ is too large, the anisotropic filter kernel of the EAST will
be oriented to zigzag segments of discrete lines. In this experiment, the
optimal orientation number for the Gabor-filter bank is found at Nξ = 18.
As shown in Appendix A.1, this setting is also suitable for the filtering of
other images.

Next, the parameter κ is taken into account. In Fig. 4.21 the amplitude
field is slightly degraded by an increasing κ. As known from Fig. 4.14, κ
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Figure 4.19 Amplitude evaluation of the EAST depending on Nξ .

does not affect the edge localization. Therefore, the degradation is not in-
duced by the blurring across edges, like in Fig. 4.18(b), but by the smooth-
ing of junctions, like in Fig. 4.18(c). Moreover, the MAE curve is shown in
Fig. 4.22. Choosing a value of κ that is too small will result in an under-
smoothing of squared-gradients. Angle errors will be large due to noise.
In addition, if the value of κ is too large, the anisotropy of Gσ2

will be
weakened. In this case, the orientation accuracy is lowered by the inter-
action of multi-oriented structures. Over-smoothed orientations cannot
exactly reflect the shape of edges.

The third test is to investigate the influence of the window size, which
is a common parameter for the CST, the BST and the EAST. Therefore,
a comparative study is performed. Test results are exhibited in Fig. 4.23
and Fig. 4.24. The CST is most sensitive to the window size. Poor edge
localization causes strong amplitude biases at both edge and non-edge
locations. The BST is better than the CST, since for the BST the filtering
does not take place across edges. In comparison, the EAST shows the
best edge-preserving ability. The estimated amplitude field is nearly the
same whatever the window size is. The angle accuracy of the CST and
the BST depends on the degree of structure mixture in local windows.
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Figure 4.20 Angle evaluation of the EAST depending on Nξ .

Figure 4.21 Angle evaluation of the EAST depending on κ.
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Figure 4.22 Angle evaluation of the EAST depending on κ.

Figure 4.23 Amplitude evaluation of structure tensors depending on N.
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Figure 4.24 Angle evaluation of structure tensors depending on N.

Hence, large windows are not suitable for estimating edge orientations.
The EAST breaks through this limitation and achieves good estimates for
angles. Local windows used by the EAST specify the area for searching
similar structures. The larger the window becomes, the more structures
that resemble the window center are likely to be found. Consequently,
the squared-gradient field will be strongly filtered by using large win-
dows. Hence, the under- and over-smoothing problems persist as well in
the selection of the window size. In this test the optimal window size is
N = 21.

Lastly, the noise resistance of all three structure tensors is illustrated.
Gaussian noise with different standard deviations is added to Fig. 4.17.
The noise level, σn, is denoted as the ratio of the noise standard deviation
to the maximum gray value of the image. Once multi-oriented structures
cannot be separated in the filter kernel, amplitudes at junctions will be
blurred or weakened. PSNR values will be thus decreased. Fig. 4.25 shows
the PSNR curves computed for the CST, the BST and the EAST. As the
noise level is increased, PSNR values for the EAST rapidly declines from
a large value. This result can be interpreted by recalling the vector model
presented in Equ. 4.17, i.e.,
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Figure 4.25 Amplitude evaluation of structure tensors depending on σn.

Figure 4.26 Angle evaluation of structure tensors depending on σn.
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RWejΦW = Rte
jΦt + RnejΦn .

In this model, additive noise is split into two parts. The one is explicitly
represented by RnejΦn , the other is included in Rte

jΦt . The range filter, Gσ1
,

used in the BST and the EAST, intends to remove RnejΦn and preserve
Rte

jΦt . In the case where weak noise is superposed on strong edges, the
local orientation can be accurately estimated with Rte

jΦt . However, this
assumption will be violated when the image is contaminated by strong
noise. If edges are not perceptible in strong noise, the EAST and the BST
will attempt to preserve noise edges. In contrast, the CST blurs all edges
in the amplitude field. This leads to strong noise reduction but poor edge
localization. Moreover, MAE curves shown in Fig. 4.26 also illustrate the
same issue. Angular errors generated by the EAST are small when image
noise is weak and are then quickly increased as the noise level becomes
high. For the application, current SEMs can create high quality pictures.
Image noise is not critical for inspecting cylinder bore surfaces.

4.5.3 Applications

In this section the usefulness of the EAST for surface inspection is eval-
uated. The SEM image shown in Fig. 3.6 is adopted for the test. Due to
the good image quality, image preprocessing is not needed in the experi-
ments. Parameters are also set to

(
Nξ , N, κ

)
= (18, 21, 0.2). The process of

EAST-based feature extraction is exhibited in Fig. 4.27. By observing these
feature maps, it can be seen that noise and straight edges are gradually
removed. Defects are highlighted in the defect signature map. Instead of
the EAST, the CST and the BST are also applied to the calculation of the
signature of the defect. These two variants of the detection method are
involved in the following tests.

Then, global and local detection approaches are to be quantitatively
evaluated. Since the real ground truth is not available for complex tech-
nical surfaces, defective edges and salient groove edges are manually
marked in the original image. The marker is shaped as a small win-
dow of size 2 × 2. Figure 4.28 demonstrates the achieved map of mark-
ers. Furthermore, an evaluation method for error analysis is visualized in
Fig. 4.29. False positive errors (FP) correspond to false alarms at groove
edges. Missed defects are regarded as false negative errors (FN). True
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(a) (b)

(c) (d)

Figure 4.27 Feature extraction. (a) —g—, (b) λ1, (c) λ̌2, (d) S .

positive detections (TP) are the correct segmentations of defects. Marked
groove edges that are not detected as defects represent true negative de-
tections (TN). All these measures are computed taking the number of
marked pixels into account. Based on these notions, the true positive rate,
P (Defect|Defect), and the false positive rate P (Defect|Groove), are cal-
culated as follows:
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Figure 4.28 Ground truth for the SEM test image. Black markers are defective
edges, while gray markers are groove edges.

Figure 4.29 Measures for error analysis.

P (Defect|Defect) =
TP

TP + FN
, (4.38)

P (Defect|Groove) =
FP

TP + FP
. (4.39)

The descriptive power of the defect signature can be verified with re-
ceiver operating characteristic (ROC) curves [71]. A ROC curve is created
by relating the true positive rate with the false positive rate at different
threshold settings. Figure 4.30 shows ROC curves for the EAST-based
method, where different values of κ and different window sizes are used.
These curves do almost overlap. This indicates that the performance of
the EAST-based method is not significantly influenced by these parame-
ters. In contrast, the CST- and the BST-based methods are instable when
the window size is changed. This issue becomes obvious in Fig. 4.31 and
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Figure 4.30 Evaluating the EAST-based approach in ROC curves.

Figure 4.31 Evaluating the CST-based approach in ROC curves.

Fig. 4.32. In addition, these three methods show a similar performance as
the window size is small. Since in small windows the risk for a structure
mixture can be greatly reduced, the benefit of using the anisotropic filter
is not obvious. It should be pointed out that small windows are unable
to detect orientation variations at large scales. Small windows will also
lower the noise immunity of local approaches. Therefore, large windows
are preferred in the EAST-based method.

The accuracy of segmention is not emphasized in the evaluation that
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Figure 4.32 Evaluating the BST-based approach in ROC curves.

uses a ground truth. The false positive errors are further evaluated
with a set of comparative studies. Figure 4.33 provides a comprehen-
sive illustration of the detection accuracy. The condition probabilities
(P (Defect|Defect) , P (Defect|Groove)) are given under the images. In
this way, detection results at different parameter settings are associated
with numerical evaluation results. In the output images, defective loca-
tions are marked in white. It can be seen that both the true positive rate
and the false positive rate are improved as the value of κ and the window
size N are increased. Simultaneously, the localization of defects becomes
slightly worse. Nevertheless, the detection results are quite similar. From
this test it can be known that the overall performance of the EAST-based
detection scheme is not critically affected by the parameter settings. In
Fig. 4.34 detection results generated by the CST-based method are placed
together. As the window size is increased, both the detection rate and
the segmentation results are degraded. A false alarm rate of more than
10% is generally unacceptable for practical applications. The BST-based
method achieves a higher relative true positive rate; see Fig. 4.35. How-
ever, the false alarm rate is still too high. Moreover, both CST- and BST-
based methods yield high true positive rate at the expense of a poor local-
ization. Hence, it can be argued that these two methods are unstable with
respect to parameter settings. In comparison, the global detection scheme
cannot achieve satisfactory result, as shown in Fig. 4.36, when the surface
quality is seriously degraded.
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(0.61, 0.04) (0.66, 0.05) (0.68, 0.05)

(0.65, 0.05) (0.74, 0.08) (0.77, 0.09)

(0.65, 0.05) (0.77, 0.09) (0.79, 0.12)

Figure 4.33 Evaluating EAST-based segmentation results. Columns: from left to
right κ = 0.2, 0.6, 0.9. Rows: from top to bottom N = 11, 21, 31.
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(0.85, 0.18) (0.77, 0.24) (0.65, 0.23)

Figure 4.34 Evaluating CST-based segmentation results. From left to right N =
11, 21, 31.

(0.85, 0.16) (0.81, 0.20) (0.84, 0.19)

Figure 4.35 Evaluating BST-based segmentation results. From left to right N =
11, 21, 31.

(0.31, 0.01)

Figure 4.36 Evaluating the global method.
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The mechanical properties of engine cylinders can be optimized by in-
corporating vermicular graphite in cast iron. Exposed graphite particles
could fall off after test running. The empty cavities on cylinder bore sur-
faces result in porous structures which constitute a micro-pressure cham-
ber system. The multi-stage honing process is not sufficient to uncover
graphite grains. A further treatment with laser irradiation is needed to ab-
late a very thin layer of metal from bore surfaces. After the laser exposure,
metal folds are removed. Worm-like graphite particles are expected to be-
come visible throughout the surface. Moreover, deep honing grooves may
remain on the surface. They represent oil channels connecting pores, and
are undesired in the surface finish. Figure 3.2 shows a series-production
cylinder bore surface. Textural disturbances and non-uniform intensities
are two major problems for detecting graphite grains. In this chapter an
inspection algorithm is designed for segmenting graphite particles on
laser-exposed cylinder bore surfaces. The approach builds upon a new
understanding of how to describe the image topography in morphologi-
cal scale spaces.

5.1 Related work

The metallographic characteristics of graphite cast irons have been in-
tensively studied in material science. The mechanical properties of work
pieces are very dependent on the proportion of spheroidal, vermicular
and lamellar graphite in cast iron. Several image analysis algorithms for
graphite classification [30, 49, 57] were proposed. These algorithms quan-
titatively describe the shape and distribution of uncovered graphite par-
ticles. The method presented in this chapter is comparable with them in
the binarization of specimen images.

Local adaptive thresholds are popularly used to segment graphite
grains in LOM images. These techniques were specially developed to
cope with the intensity non-uniformity. The approaches for comput-
ing the threshold locally have been summarized in a survey paper
[70]. The representative methods are Niblack’s, Sauvola’s and Bernsen’s
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thresholds, which are parameterized with different inhomogeneity mea-
sures. The segmentation criteria proposed by Niblack and Sauvola tuned
threshold values with the local mean and the local variance in differ-
ent forms. Bernsen chose the mean of the local maximum and minimum
as the threshold if the local contrast was large enough. The threshold-
ing techniques mentioned above are effective for well-prepared speci-
mens of graphite cast irons. In the case where surface textures are re-
moved by polishing, a good image contrast can be easily obtained by us-
ing a bright field illumination. The segmentation of dark graphite grains
and the bright background was tractable. However, graphite inspection
on laser-exposed surfaces may suffer from strong textural disturbances,
which result in poor segmentation results when adaptive thresholds are
used. This problem is addressed with a novel strategy based on the image
topography. The discrimination between foreground objects and back-
ground textures will be accomplished pixelwise.

In this work gray-level images are interpreted as topographic maps by
taking the image intensity as the third extent besides the spatial coor-
dinates. In this sense, the concept behind the approach is similar to the
idea of analyzing the 2.5D surface topography. According to the litera-
ture, mathematical morphology turns out to be a powerful tool for sur-
face characterization [60]. It can be found that the results achieved by
Decencire et al. [12] are quite close to presented approach, although their
approach was originally designed for the measurement of surface rough-
ness. With an alternate sequential filter (ASF) [53], they decomposed the
surface topography into three elements — reference surface, superficial
roughness and valleys. Analogously, the approach separates the topogra-
phy of LOM images into different roughness levels. Graphite grains are
to be detected in the highest roughness level.

5.2 Morphological scale spaces

In this section a method is proposed for characterizing the image topogra-
phy by multiscale morphological filtering. This section starts with the no-
tation of the morphological operators used in this context. By analyzing
the scale-space behaviors of hat transforms, topographical shapes can be
reasonably interpreted with feature curves. Numerical shape signatures
are then derived by dual observations of morphological scale spaces. The
application to the graphite detection will be detailed in Section 5.2.1.
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5.2.1 Notation

Mathematical morphology [39] is a nonlinear methodology for image
analysis. The basic morphological operations are dilation and erosion. Se-
quential calculation of dilation and erosion leads to the morphological
opening and closing. Considering a signal g(l), l ∈ Ωg, to be a function
mapping a linear coordinate into R ∪ (−∞, + ∞), the dilation of g(l) by
a flat structuring element B(l) can be denoted as:

(g ⊕ B) (l) =
∨

l∈Ωg

{g (lx) + B (l − lx)} , (5.1)

where ∨ is a supremum operator. lx denotes the linear coordinate in the
neighborhood of l. Accordingly, the erosion is defined as:

(g � B) (l) =
∧

l∈Ωg

{g (l) + B (lx − l)} , (5.2)

where ∧ is an infimum operator. With the definition of dilation and ero-
sion, the opening can be expressed as:

yo(l) = (g ◦ B) (l) = (g � B ⊕ B) (l). (5.3)

Then, the closing can be written as follow:

yc(l) = (g • B) (l) = (g ⊕ B � B) (l). (5.4)

Furthermore, the top-hat transform is achieved by subtracting the opened
image from the original one,

h(l) = (g − g ◦ B) (l), (5.5)

and calculate the bottom-hat transform by subtracting the original image
from the closed one (in order to obtain a positive result),

ȟ(l) = (g • B − g) (l). (5.6)

Note that only the peaks (valleys) smaller than the structuring element
can be detected by the top-hat (bottom-hat) transform. Therefore, the
multiscale top-hat and bottom-hat transforms can be formulated by in-
corporating the size of structuring elements as an additional attribute:
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h(l, s) = (g − g ◦ Bs) (l), (5.7)

ȟ(l, s) = (g • Bs − g) (l), (5.8)

where s is a natural number representing the scale index of a structuring
element. Bs(l) is computed by recursively dilating B(l) with itself:

Bs(l) =

⎛
⎝B ⊕ B ⊕ · · · ⊕ B︸ ︷︷ ︸

s times

⎞
⎠ (l). (5.9)

In particular, h(l, 0) and ȟ(l, 0) are designated as zero, i.e.,

h(l, 0) = ȟ(l, 0) ≡ 0. (5.10)

In the topographic analysis, the top-hat transform was used to extract
bright features from peaks, while the bottom-hat transform was utilized
to locate dark features at valleys [44].

5.2.2 Scale-space behavior

To facilitate the visualization, an example is shown in Fig. 5.1(a). A dis-
crete 1D signal is opened with a series of line-like structuring elements.
The length of the structuring element was sequentially selected from the
set {3, 5, 7, . . . , 21}, i.e., the scale index, s, ranged from 1 to 10. The origi-
nal signal and opened signals were superposed in a single diagram. The
opening operation flattened the signal by cutting down its peaks. Thus,
the opened signals can be viewed as cutting lines. Analogously, the clos-
ing operation smoothed the signal by filling up its valleys. Due to the
duality of both hat transforms similar properties are obtained from the
bottom-hat scale space. In the following, the discussions concentrate on
the top-hat scale space derived by opening.

By observing a pixel position, the traced path through the top-hat scale
space creates a bright feature curve. The amplitude increment of peaks is
equal to the falling distance of the cutting line. Thereby, the original signal
can be decomposed into several lattices. For a specified scale range larger
than the scale s − 1 and smaller than the scale s, the extracted lattice rep-
resents the bright feature. Formally, the bright feature can be computed
with
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(a) (b)

Figure 5.1 Scale-space behaviors. (a) Opened signals. (b) Bright features at l0.

Figure 5.2 Peak sharpness influenced by the height and the width.

Δh(l, s) = h(l, s)− h(l, s − 1), (5.11)

In a similar way, the dark feature is defined as

Δȟ(l, s) = ȟ(l, s)− ȟ(l, s − 1). (5.12)

It should be noted that bright and dark features are not always available
at signal points because they are scale-limited. This issue can be illus-
trated by observing a signal point at l0. From Fig. 5.1(b) it can be seen that
no bright features are obtained from the top-hat transform at low scales
(1∼3), since the peak that covers l0 is broader than 7 points (equivalent to
the size of the structuring element at scale 3). Thus, the cutting line coin-
cides with the original signal at l0. By enlarging the size of the structuring
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element, the peak between scales (3∼4) is detected until the cutting line
dropped off to a local minimum and then stops to change. The falling
process of the cutting line continues when the size of structuring element
reaches the width of a larger peak covering l0. Thus, the magnitude of
the bright feature curve does not increase in the scale interval (4∼5). The
same situation happens at scales (7∼9). This scale-space behavior results
in a stair-like bright feature curve. Furthermore, It should be pointed
out that the slope of bright feature curve is related to the sharpness of
the peaks. Figure 5.2 shows this property intuitively. The high peak is
sharper than the low one as two peaks have the same bottom width (at
a fixed scale). In other words, when extracting bright features from two
neighboring scales, the thickest lattice (the largest slope) of bright fea-
tures will obtained from the highest peak. The analog properties can also
be obtained in the bottom-hat scale space. Combining both top-hat and
bottom-hat scale spaces enables a comprehensive description of signal
roughness.

5.2.3 Morphological stability

The characterization of image topography is normally related to observa-
tion scales. For instance, small valleys may belong to large peaks and thus
cannot be detected in large scales. In turn, small peaks located at large val-
leys will be neglected when large valleys are in the focus. Hence, pixels
may change their roles in the image topography with regard to the obser-
vation scale. This phenomenon often appears on complex technical sur-
faces, and can be explained with the fractal theory [16]. However, some
valleys or peaks are rarely confused with their counterpart, when their
size or intensity stands out in the neighborhood. The fractal characteristic
is destroyed at these places. In optical micrographs graphite grains are
always shown as isolated dark particles. They represent significant im-
age valleys, even if rough groove textures are distributed in their vicinity.
Utilizing this feature graphite grains can detected. For the intuition, topo-
graphical shapes are graphically illustrated in Fig. 5.3. By enlarging the
observation domain from (a) to (b), the morphological shape varies from
a peak to a valley. From this example it can be known that visual recog-
nition is accomplished by dual observations of topographical maps, from
above and below, respectively. The visual classification of topographical
shapes can be formulated with the definitions given below. l0 represents
an observed signal point.
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Figure 5.3 Scale-related morphological shapes in a rough curve.

Definition 5.1 (Observation domain) Given a domain Γ that does not
contain any holes. Γ is an observation domain of l0, if and only if l0 ∈ Γ
and Γ ⊂ Ωg. The size of Γ represents the observation scale.

Definition 5.2 (Complete set of observation domains) A complete set
of observation domains at the point l0 is denoted as U = {Γk} with
k = 1, 2, 3, . . . , K, which is composed of Γ and all its translations that
fulfill Definition 5.1.

Definition 5.3 (Peaks and valleys) Let Ψk be the boundary of Γk, which
is an observation domain of the point l0. At an observed scale, the point
l0 is the member of a peak, if ∃Γk ⊂ U for which g (l0) is larger than all
values in {g (l0) , l0 ∈ Ψk}. In contrary, the point l0 is a member of a
valley, if g (l0) is smaller than all values in {g (l0) , l0 ∈ Ψk}.

Definition 5.4 (“Flat” and “rough” regions) “Flat” regions do not
mean absolutely constant areas, but the points that are neither recog-
nized as peaks nor as valleys in a range of observed scales. “Rough”
regions refer to the points that are simultaneously recognized as peaks
and valleys.

Definition 5.5 (Morphological stability) Given a range of observation
scales, [s1, s2], state a pixel is morphologically stable, if it is steadily
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recognized as a member of valleys, peaks or “flat” regions; otherwise
it is located in one of the “rough” regions, which are morphologically
unstable.

Numerically, the visual process described above is equivalent to top-
and bottom-hat transforms in a scale space. In Table 5.1 the topographical
shapes are related to morphological feature curves. This idea etablishes
the foundation of the algorithm for detecting graphite grains. In the next
section a shape descriptor is developed for practical applications.

Table 5.1 Classification of topographical shapes.

Shape types h(l, s), s ∈ [s1, s2] ȟ(l, s), s ∈ [s1, s2]

Stable peak Inconstant Constant

Stable valley Constant Inconstant

“Rough” region Inconstant Inconstant

“Flat” region Constant Constant

5.2.4 Application to shape description

It is intended to identify topographical shapes of image intensities by
pairwise observation of h(l, s) and ȟ(l, s). However, for a numerical anal-
ysis it is not convenient to consider feature pairs. In order to merge bright
and dark features into a single measure, a signature for the morphological
stability is developed in the following form:

m̃(l) =
m(l)− m̌(l)
m(l) + m̌(l)

, (5.13)

where m(l) and m̌(l) are the steepness of feature curves, which are re-
quired to fulfill m(l) + m̌(l) � 0. There are two options to calculate m(l)
and m̌(l). The first one is to employ the global steepness of peaks and
valleys for this purpose:

m(l) =
h(l, s2)− h(l, s1)

s2 − s1
, (5.14)
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m̌(l) =
ȟ(l, s2)− ȟ(l, s1)

s2 − s1
. (5.15)

Here, only the features at the lowest and the highest scales are considered
for representing the feature variations. Secondly, details of feature curves
can be taken into account:

m(l) =
h(l, s2)− h(l, s1)

s2 − s1 − s0
, (5.16)

m̌(l) =
ȟ(l, s2)− ȟ(l, s1)

s2 − s1 − š0
, (5.17)

where s0 and š0 are the length of scale intervals in which no bright and
dark features are found. Now, the numerical criterion for classifying to-
pographical shapes is presented:

� m̃(l) is equal to +1 on stable peaks and −1 on stable valleys;

� m̃(l) ∈ (−1, 1) indicates “rough” regions;

� m̃(l) is not defined on “flat” zones where m(l) and m̌(l) is less than
a threshold Tm.

Before m̃(l) is computed, “flat” zones should be investigated separately.
Morphological stability measures computed with the overall and detail-
dependent steepness are denoted as m̃1(l) and m̃2(l), respectively.

5.3 Detection scheme

This section applies the developed shape descriptor to the graphite detec-
tion on laser-exposed surfaces. The usefulness of the method is explained
by modeling the surface image in a photometric point of view. In the last
step, the post-processing is designed to eliminate residual grooves from
the segmented foreground objects. Graphite grains are to be detected at
the remaining objects.
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5.3.1 Feature extraction

In optical micrographs, graphite grains and deep grooves are shown as
black regions. They are regarded as the foreground. The remaining image
domain including metal shining and fine grooves comprises the back-
ground. The image formation process introduced in Section 3.1 inspires
me to model LOM images of laser-exposed surfaces in a nonlinear fash-
ion. Let g(l) be a surface image, which can be formally written as

g(l) =

{
ζ(l) l ∈ Ωζ ,
i(l)τ(l) l ∈ Ωτ ,

(5.18)

with Ωg = Ωζ ∪ Ωτ , Ωζ ∩ Ωτ = ∅. ζ(l) denotes the foreground. i(l) de-
cribes illumination non-uniformities. τ(l) represents an oscillatory back-
ground texture. In this model, image signals are nonlinearly connected,
since physical surface structures occlude each other. Moreover, as an as-
sumption the non-uniformity and oscillatory textures obey a multiplica-
tive model. At low magnifications, optical micrographs of laser-exposed
surfaces demonstrate the following photometric characteristics.

� Graphite grains have a non-metallic property, and residual grooves
are deep structures. Thus, little light can be reflected from them into
the imaging system. Foreground objects in ζ(l) are approximately
invariant to the spatial illumination. Their intensities look like deep
basins in image topography.

� Oscillatory textures are composed of metallic microfacets with ran-
dom orientations. These microstructures lead to clustered intensity
peaks and valleys in τ(l), which are sensitive to the design of the
imaging system, e.g., the illumination mode and the specimen pose.

� In general, i(l) varies much more slowly than other signal compo-
nents. Hence, the texture signal multiplied with i(l) still keeps the
peak-valley structure.

Figure 5.4 illustrates these characteristics based on an image row. Surface
components are manually marked in the image profile. In the following,
it can be seen that morphological stability provides a scale-space evidence
for graphite detection.

Then, top-hat and bottom-hat transforms are applied to the test image.
The structuring elements are disk-shaped with radii increasing from 1 to
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Figure 5.4 Profile of image intensities. Displayed intensities are located on the
line marked in the gray image patch. The arrows indicate the fore-
ground objects.

10 pixels. The choice of the scale range will be explained later. Figure 5.5
shows bright and dark feature curves of some pixel samples. For the fore-
ground objects, the bright feature remains near zero in the top-hat scale
space, whereas the dark feature increases in the bottom-hat scale space. In
the textural background, local minima and maxima are leveled randomly.
Therefore, stair-like feature curves appear in both scale spaces. By com-
parison, bright areas correspond to high peaks. Because of the duality of
top-hat and bottom-hat transforms, the scale-space behaviors of shining
areas are opposite to foreground objects.

In Fig. 5.5 bright and dark feature curves are shown in pairs. It can be
found that they match the characteristics described in Table 5.1. During
the foreground segmentation the emphasis is only put on intensity val-
leys. This allows me to rectify the signature of morphological stability by
setting its positive and undefined positions to zero, that is,

m̃′(l) =

⎧⎪⎨
⎪⎩

m̃(l) m̃(l) < 0,
0 m̃(l) ≥ 0,
0 m(l) < Tm, m̌(l) < Tm.

(5.19)
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(a)

(b)

(c)

Figure 5.5 Dual observation of the image topography. (a) Valley. (b) Oscillatory
texture. (c) Peak.
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Figure 5.6 Scale selection. Columns from left to right: s1 = 1, 3, 5. Rows from
top to bottom: s2 = 10, 15, 20.

Accordingly, the rectified versions of m̃1(l) and m̃2(l) are notated as m̃′
1(l)

and m̃′
2(l), respectively. For LOM images digitized with 256 gray levels,

“flat regions” can be found by setting the threshold, Tm, to 5. This way,
significant valleys cannot be lost by the rectification. Considering two op-
tions of the steepness measure, m̃′

1(l) and m̃′
2(l) are combined with a min-

imum operator:

m̃g(l) = min
l

{
m̃′

1(l), m̃′
2(l)

}
. (5.20)

Furthermore, the discussion comes to the influence of scale selection.
Firstly, the size of B(l) determines the step length for enlarging the struc-
turing element. Given a disk-like structuring element B(l) with a radius

77



5 Graphite detection

of rB pixels, the radius increment from Bs(l) to Bs+1(l) amounts (2rB − 1)
pixels. In order to reveal as much topographical information as possi-
ble, the scale resolution is set to the minimum, i.e., rB = 1. Secondly,
the scale range with a lower limit, s1, and an upper limit, s2, is specified
to sieve valleys of different scales. This property is shown by choosing
s1 ∈ {1, 3, 5} and s2 ∈ {10, 15, 20}. A matrix of feature maps is then ob-
tained in Fig. 5.6. It can be seen that small particles are suppressed as s1
becomes large, whereas large valleys in non-uniform intensities are ex-
tract by increasing s2. Therefore, the scale range should be adjusted ac-
cording to the magnification of LOM images. For the optical micrographs
used in the experiments, s1 = 1 and s2 = 10 are considered to be moder-
ate.

5.3.2 Segmentation

The feature image, m̃g(l), is segmented with Otsu’s threshold. The fore-
ground objects are located in the segmented regions owning the lowest
value of m̃g(l). To identify graphite grains, the foreground should be fur-
ther separated into grooves and graphite grains. Firstly, the morphologi-
cal path opening introduced in Appendix B is used to find elongated ob-
jects that are not perfectly straight. The image grid is taken as an oriented
graph. Paths defined in this graph are utilized as structuring elements.
This step accomplishes a preliminary separation of grains and grooves.
Since the path opening eliminates lines that contain paths larger than a
given path length, short and thin lines are retained in the grain map. To
deal with this problem, the binary maps separated by path opening are
corrected by investigating the roundness of connected objects. Elongated
objects are moved from the grain map to the groove map. Similarly, round
particles are moved from the groove map to the grain map.

5.4 Experimental results

The detection scheme for graphite grains is validated in two stages.
Firstly, the focus lies in the foreground segmentation. The approach is
compared with local thresholding approaches and the alternating sequen-
tial filter (ASF). Appendix C.2 summarizes local adaptive thresholding
methods. The ASF is defined as
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(a) (b) (c)

(d) (e) (f)

Figure 5.7 Results of postprocessing. (a) and (d): Grains and grooves separated
by path opening. (b) and (e): Corrected binary maps. (c) and (f):
Grains and grooves marked in the original image.

as(l) =

⎛
⎝g ◦ B • B · · · B ◦ B • B︸ ︷︷ ︸

s times

⎞
⎠ (l). (5.21)

In the experiment, s is set to 20, and B is a flat disk-like structuring ele-
ment of radius 1. The ultimate detection results are verified in the second
stage.

Figure 5.8 illustrates a series of foreground segmentations. Local adap-
tive thresholds and the ASF are resistant to non-uniform intensities, but
are unable to tackle the problem induced by background grooves. The
method is based on the fact that graphite particles, fine grooves and non-
uniform intensities are present at different scales. This characteristic was
exploited to reject background disturbances. Thus, both the lighting and
textural disturbances have little impact on the segmentation result.
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5 Graphite detection

(a) (b) (c)

(d) (e) (f)

Figure 5.8 Foreground segmentation. (a) ASF. (b) Bernsen. (c) Niblak. (d)
Sauvola. (e) Local mean. (f) Method in this work.

Moreover, the correctness of graphite detection is verified by clip-
ping graphite grains from the original image. Figure 5.7 illustrates that
graphite grains adhered on coarse grooves are also eliminated, because
they are also a part of the oil channel system. Additionally, some short
groove fragments are still perceptible in the corrected grain map. Since
their shapes are close to porous structures, they are considered as a part
of the micro-chamber system. These experiments illustrate that the detec-
tion result can serve as a basis for an automated surface evaluation. More
results for the validation can be found in Appendix A.2.

80



6 Surface evaluation

This chapter gains an insight into the quality parameters for the evalua-
tion of 2D surface finishes. Table 6.1 indicates some quality measures for
laser-exposed surfaces, which are mostly emphasized by engine produc-
ers. The quality measures for plateau-honed surfaces are incompletely
summarized in Table 6.2. Some applications issues for these quality mea-
sures should be noticed. Firstly, some of these measures are related with
the image contrast, the magnification or the field of view. They describe
the visual impression of surface qualities. For this reason, an individual
quality measure is comparable among surface samples only under speci-
fied imaging conditions. Furthermore, surface images should be acquired
at different places on the cylinder wall during the non-100% inspection.
The statistical analysis of quality measures for a group of surface samples
is needed to evaluate the overall quality of cylinder bore surfaces. The
mean and standard deviation of each quality measure are computed for
the final evaluation. Based on the detection schemes presented in this the-
sis, another two quality parameters are developed. The usage of the new
quality measures is as same as introduced before.

Table 6.1 Quality measures for laser-exposed cylinders.

Surface components Quality parameters

Grooves Area of residual deep grooves.

Graphite grains
Size of grains,

distribution uniformity,

density of grains.

81



6 Surface evaluation

Table 6.2 Quality measures for plateau-honed cylinders.

Surface components Quality parameters [2, 14, 59, 80]

Defects

Area of metal folds,

overall degree of defectivity,

area of bubbles and blowholes.

Groove texture

Honing angle,

groove dispersion,

balance of groove sets,

amount of axial grooves,

groove width,

area of grooves and plateaus.

area of groove interrupts.

6.1 Defect severity

The proposed measure for defect severity describes the distribution of
metal folds, which can be associated with the density and strength of de-
fective edges. Unlike the overall degree of defectivity presented in [59] the
damage of honing grooves is not considered in the defect severity. This is
advantageous for the study of individual surface components. The mea-
sure of defect severity is developed in the following formula:

D =

∑
x∈Ωd

λ1 (x)

A
. (6.1)

The numerator is a sum of the strength of detective edges. Ωd is the
segmented defect region. The denominator, A, is the area of a rectangu-
lar image. Without loss of generality, all results presented in this section
are measured in pixels. Figure 6.1 shows a series of surface samples visu-
ally sorted in the order from “seriously defective” to “slightly defective.”
The displayed images are of size 256 × 256. The detection results are also
demonstrated in the same figure. In Fig. 6.2, the plot shows the values of

82



6.1 Defect severity

g Defects Binary map

Figure 6.1 Detection results of surface samples.
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6 Surface evaluation

Figure 6.2 Surface evaluation in defect severity.

defect severity against the sample number. It can be seen that the result
achieved by the numerical measure coincides with the visual impression.

6.2 Graphite distribution

In the segmented graphite map, isolated entities are taken as graphite
grains. These entities are labeled through the connectivity analysis ac-
cording to [39]. The geometric centers of the labeled regions yield a point
pattern, which indicates grain locations. When graphite grains are clus-
tered, lubricant oil will be unevenly distributed on the surface. Addi-
tionally, the size of graphite grains is also expected to be uniform. To
characterize the graphite distribution, spatial statistics [19] is employed.
Moran’s autocorrelation index [42] (generally denoted as I) is used to de-
scribe the spatial distribution of graphite grains. In this work, the corre-
sponding formula is

I =
Nc

∑
p
∑

q wpq

(
cp − c̄

)(
cq − c̄

)
(∑

p
∑

q wpq

)∑
p

(
cp − c̄

)2 . (6.2)
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6.2 Graphite distribution

(a) (b) (c)

Figure 6.3 Point patterns. (a) Random, I = −1. (b) Uniform, I = −0.06. (c)
Cluster, I = 0.78. Random values from [1, 100] are assigned to these
points.

(a) (b) (c)

Figure 6.4 Measures in Moran’s index. I = −0.83. (a) Voronoi diagram. (b)
Grain centers. (c) Delaunay triangles.

Here, Nc is the number of detected graphite grains. cp and cq are two
observations of a random variable c. In the present application, c de-
notes the size of graphite grains, and c̄ the mean grain size. wpq is the
weight indicating the adjacency of observations at p and q. As suggested
in [24], wpq is chose to 1/dpq for close neighbors, where dpq denotes the
distance between neighboring grains. Otherwise, wpq is set to 0. Addi-
tionally, wpp is also set to 0 in the implementation. The adjacency relation
of graphite grains is defined with a Voronoi diagram. Connecting neigh-
boring graphite centers results in a map of Delaunay triangles, where the
grain distance, dpq, is measured with the side length of these triangles.

In the theory of spatial statistics, the spatial distribution of point pat-
terns can be classified into three types, as shown in Fig. 6.3. As long as the
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6 Surface evaluation

variable values are inconstant at these points, the spatial relation works
in Moran’s index I. The expected value of Moran’s index I is equal to
−1/(Nc − 1). The uniform distribution has a high negative spatial au-
tocorrelation, i.e., I is significantly smaller than −1/(Nc − 1) and near
to −1. The random distribution does not show any spatial autocorrela-
tion. In this case, I is approximately equal to 0 if Nc is very large. The
cluster distribution indicates a high positive spatial autocorrelation. Thus,
its I value is close to 1. Figure 6.4 illustrates the process for implement-
ing Moran’s index I. The result shows that graphite grains contained in
the test image are randomly distributed, which is desired for the laser-
exposed honing.
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7 Conclusions

This thesis has presented two image-based inspection approaches for the
quality evaluation of cylinder bore surfaces. In the automotive industry,
cylinder blocks are finished by honing, which can significantly improve
the tribological performance of engines. The surface finish has a critical
influence on engine lubrication and the wear of pistons. Therefore, cylin-
der bore surfaces are manufactured into specified textures which pro-
vide the desired surface functions. The work contributes to detect sur-
face components and characterize these components for surface quality
assessment.

Two types of cylinder bore surfaces have been investigated in this the-
sis. Firstly, defect detection was carried out on plateau-honed surfaces,
where honing grooves serve as oil channels in the lubrication system.
Secondly, the study concerned laser-exposed surfaces, where graphite
grains form pores for reserving lubricant in running surfaces. To eval-
uate grooved and porous structures, different inspection strategies are
proposed. On plateau-honed surfaces defective positions are located at
cutting edges of tool marks, which are only perceptible in highly mag-
nified images. Thus, the scanning electron microscopy was adopted for
this purpose. The details of surface structures were explored in this part.
On laser-exposed surfaces, graphite grains are shaped as scattered par-
ticles. To assess the graphite distribution, a low image magnification is
needed to show an overview of the surface. Hence, image data used for
this inspection task were captured by a light optical microscope. The work
focused on image analysis algorithms which are suited for the aforemen-
tioned micrographs.

In the first algorithm developed in this thesis, metal folds were con-
sidered to be manufacturing failures on plateau-honed surfaces. These
defects were actually metal burrs that could seriously wear pistons. Since
metal folds were created in form of rough edges, defects on honed sur-
faces can be identified according to edge shapes. This needed an accu-
rate estimation of edge positions and orientations on complex techni-
cal surfaces. Unfortunately, current orientation detectors were not good
enough for the inspection task. To improve the performance of conven-
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tional gradient-based methods, edges and image noise were modeled in
the squared-gradient field. Smoothing this vector field is fully identical
with the eigenvalue analysis of the structure tensor. The problem was
thus converted to constructing a structure-adaptive smoothing filter. The
filter kernel was designed in a bilateral form. A pair of range filters was
developed to achieve edge-preserving and orientation- selective proper-
ties. The one was attributed with gradient amplitudes, and the other re-
lied on a set of features that were extracted by a Gabor-filter bank. Ad-
ditionally, parameters for range filters were automatically selected with a
novel method, which was based on a reasonable inference of image struc-
tures. Smoothing parameters were formulated according to profile shapes
of sorted feature distances which were calculated in a local window. A
novel structure tensor was constructed by extending the developed bilat-
eral filter to the tensor field. It was then named as edge-aware structure
tensor. The superior characteristics of this new orientation detector were
validated with both synthetic and real images. Furthermore, a signature
of the defect to identify rough edges was designed by combining orienta-
tion dispersion and defect saliency. The final segmentation of defective
edges was accomplished with an automatic threshold. The visual and
quantitative evaluation manifested that the proposed approach achieved
the best results in comparison with the state-of-the-art techniques.

The second algorithm was designed for detecting graphite grains in
optical micrographs. Laser-exposed surfaces are composed of spatially
occluded surface components, which show different photometrical char-
acteristics. Surface components invariant to the illuminant were taken
as foreground objects, such as graphite grains and deep grooves, while
the remaining plateau grooves constitute a background whose appear-
ance varies with imaging conditions. These surface components can be
described by features related to the image topography. Especially, fore-
ground objects were always represented by deep intensity valleys in con-
trast to their neighborhood. This visual impression was numerically de-
scribed with a metric for morphological stability. Top-hat and bottom-hat
filters were useful for characterizing the image topography from above
and below. This process tuned out to be the same as that in the visual
recognition of graphite grains. It can be also noted that topographical
shapes are scale-related. Hence, foreground objects were searched in a
specific scale range. To detect peaks and valleys in the image topography,
bright and dark features were extracted at each pixel location by hat trans-
forms. Two morphological scale spaces obtained by relating these features
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with the size of the structuring element. These scale spaces could sig-
nificantly illustrate topographical shapes of honed surfaces. Foreground
objects were shown as stable valleys. Morphological stability was char-
acterized by the steepness of peaks and valleys with respect to a same
scale range. The boundaries of the detected peaks and valleys could be
effectively determined based on the concept of morphological stability.
Furthermore, the grain map was created by eliminating deep grooves
from the binarized foreground map. An advanced morphological oper-
ator, path opening, was employed to remove elongated objects in binary
images. The proposed method for detecting graphite grains was resis-
tant to the disturbances induced by non-uniform illumination and back-
ground textures. The method was compared with local adaptive thresh-
olding techniques and alternating sequential filters, which are commonly
used for segmenting technical surfaces. The method was able to perform
more stable segmentation of meaningful objects.

With the algorithm proposed above, a component-oriented evaluation
of surface qualities was performed instead of a global assessment of sur-
face patches. The reason for the component-oriented evaluation can be
explained with an example. If plateau-honed surfaces are seriously dam-
aged, expected cross-hatch textures are not successfully produced. In this
case, textural features for globally evaluating honing grooves are less
meaningful. To assess surfaces of a wide range of qualities, individual
surface components have to be taken into account. In this thesis defect
severity of plateau-honed surfaces was evaluated with the weighted spa-
tial density of defects. The suitability of this measure was verified by
sorting a series of damaged surface samples. Ranking the surface qual-
ities based on the proposed quantitative measures led to the same results
as the visual assessment. Moreover, the graphite distribution in laser-
exposed surfaces was studied. Spatial auto-correlation of grain areas was
taken as a quality measure to indicate the spatial uniformity of graphite
grains. These quality parameters also verified the application potential of
the image analysis algorithms.

In conclusion, the proposed algorithms can accurately and robustly
separate images of cylinder bore surfaces into meaningful surface com-
ponents. Even very challenging surfaces are able to be correctly evalu-
ated in the segmentation results. At present, the inspection methods in-
troduced in this work are still limited in laboratory applications. The ex-
tension to the inspection for mass production requires imaging systems
which should be capable of generating high-quality images at large mag-
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nifications. Moreover, the EAST can be utilized for corner detection and
diffusion filtering, which are typical applications of structure tensors. The
measure of morphological stability provides a robust feature for objects
with constant intensities. It will be useful for the segmentation tasks that
rely on the size of objects rather than their intensity values.
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A Results

A.1 Defect inspection

The section presents additional experimental results that achieved by test-
ing a series of surface samples. Feature images as well as the final defect
map are calculated with the EAST-based detection scheme. Parameters
are set to

(
Nξ , N, κ

)
= (18, 21, 0.2). These results show that the proposed

algorithm can deal with a wide range of surface qualities.

g Defects Binary map

λ1 λ̌2 S
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g Defects Binary map
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g Defects Binary map
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A.1 Defect inspection

g Defects Binary map

λ1 λ̌2 S

g Defects Binary map

λ1 λ̌2 S
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g Defects Binary map

λ1 λ̌2 S

g Defects Binary map

λ1 λ̌2 S

94



A.2 Graphite detection

A.2 Graphite detection

Several surface patches are examined in LOM images showing greatly
varying illuminant conditions and background grooves. The detection
scheme turns out to be very robust to these disturbances. The proposed
method achieves good segmentation results in these experiments.

g Grains Binary map
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A Results

g Grains Binary map
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B Path openings and closings

Recently, advanced directional morphological operators, named as path
openings and closings, were proposed in [27]. The conventional morpho-
logical method for detecting narrow and elongated objects used straight
lines as structuring elements. Different from that, path openings and clos-
ings consider digital images as directed graphs. Structuring elements
were specified with graph paths of a limited length. The benefits of do-
ing so are obvious. On the one hand, line-like objects are not assumed to
be perfectly straight. Some slightly curved lines are also detectable with
path openings and closings. On the other hand, the thickness of line-like
objects is not a critical issue by using path-based structuring elements.
Both thin and thick lines can be found with a same structuring element.
Formally, path openings and closings are defined as follows.

The principle is introduced with binary images. Let G be a directed
graph endowed with an adjacent relation z �→ z∗. That means there is a
graph edge from a node z to another z∗. Here, z is called a predecessor
of z∗, and z∗ a successor of z. With these definitions, the dilation can be
written as

δ ({z}) = {
z ∈ G|z �→ z∗

}
. (B.1)

In other words, the dilation of a subset χ ⊆ G comprises all points
which have a predecessor in χ. Furthermore, the following notations
are given. A δ-path of length L is defined as b = (b1, b2 , . . . , bL) with
bk+1 ∈ δ ({bk}) for k = 1, 2, . . . , L − 1 . The elements of b are contained
in P(b) = {b1, b2, . . . , bL}. The set of all δ-paths of length L is denoted as
ΠL, in which the part contained in a subset χ of G is notated with ΠL(χ),
i.e.,

ΠL(χ) = {b ∈ ΠL|P(b) ⊆ χ} . (B.2)

Consequently, the path opening can be defined as

γL (χ) =
⋃

{P(b)|b ∈ ΠL(χ)} . (B.3)
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B Path openings and closings

γL (χ) is the union of all paths of length L contained in χ. Conversely, the
path closing is defined by exchanging the foreground and the background
in a binary map.

Path openings and closings depend on the notion of graph connectiv-
ity. Figure B.1 demonstrates the adjacencies defined in [74], which are ori-
ented in four different directions. Combination by supremum (for open-
ings) and infimum (for closings) makes it possible to retain paths oriented
in all possible directions just using these four adjacencies.

(a) (b) (c) (d)

Figure B.1 Adjacencies in four directions. (a) East. (b) Northeast. (c) North. (d)
Northwest.
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C Miscellaneous

C.1 Roundness

The roundness, also named as the circularity, is the most important mea-
sure for graphite classification. As defined in [56], the roundness is ex-
pressed as

roundness =
4c

πD2 , (C.1)

where c is the area of the grain, and D denotes the diameter of the smallest
circle that can fully contain the grain. The graphical illustration in Fig. C.1
intuitively explains the meaning of roundness. As a shape parameter, the
roundness is very useful for discriminating round and elongated objects.

Figure C.1 Geometrical illustration of the roundness.
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C Miscellaneous

C.2 Local adaptive thresholds

Table C.1 Local adaptive thresholds.

Methods Definition, x ∈ ΩW

Bernsen

If max {g (x)} − min {g (x)} > 15, T(x) =
0.5Q, where Q = max {g (x)}+ min {g (x)},
else the background is segmented at Q ≥ 128,
and the foreground is segmented at Q < 128.
The window size is N = 31.

Niblak T(x) = μW(x) + βσW(x) with β = −0.2. The
window size is N = 15.

Sauvola
T(x) = μW(x) + 1 + β

(
σW(x)

128 − 1
)

with β =

−0.5. The window size is N = 15.

Local mean T(x) = μW(x). The window size is N = 15.

Note: for images digitalized with 256 gray levels, μW(x) is the local
mean, and σW(x) is the local standard deviation. ΩW denotes the
local window of size N × N
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D Nomenclature

Symbol Description

Chapter 2: Honed surfaces

α Honing angle

v1 Horizontal speed of honing stones

v2 Vertical speed of honing stones

Chapter 3: Image acquisition

φ Incident angle of primary electron beam in SEM

Chapter 4: Defect detection

n Vector for optimization

J Objective function

g 1D or 2D gray-level image

x Spatial horizontal coordinate

y Spatial vertical coordinate

x Vector spatial coordinate (x, y)T

N Local window size

Ωg Support of g

ΩW Support of the local window

TC Classic structure tensor

T11, T12, T21, T22 Elements of the structure tensor

GW Spatial filter kernel

gx x-derivative of g

gy y-derivative of g

∇g Gradient of g

|·| L1-norm
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Symbol Description

λ1 The first eigenvalue of the structure tensor

λ2 The second eigenvalue of the structure tensor

det Determinant of the structure tensor

tr Trace of the structure tensor

O Angle of the first eigenvector corresponding to λ1

j Imaginary unit

r Amplitude of the squared-gradient for g (x)

ϕ Angle of the squared-gradient for g (x)

i Non-uniform image intensity

t True texture signal in the image

n Noise signal in the image

rt Amplitude of the squared-gradient for t (x)

ϕt Angle of the squared-gradient for t (x)

rn Amplitude of the squared-gradient for n (x)

ϕn Angle of the squared-gradient for n (x)

RW Amplitude of the mean squared-gradient for g (x)

ΦW Angle of the mean squared-gradient for g (x)

Rt Amplitude of the mean squared-gradient for t (x)

Φt Angle of the mean squared-gradient for t (x)

Rn Amplitude of the mean squared-gradient for n (x)

Φn Angle of the mean squared-gradient for n (x)

ω Binary edge map

u Mean squared-gradient

ǧ Bilateral filter output

GR Range filter

p Vector coordinate neighboring x

C Normalization factor in the bilateral filter
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Symbol Description

g0 Reference image for the cross bilateral filter

f Basic Gabor-filter in the spatial domain

F Basic Gabor-filter in the spatial frequency domain

u, v Coordinates of 2D Fourier domain

σx, σy Standard deviations in f (x, y)

σu, σv Standard deviations in F (u, v)

ξ Index for orientations in the Gabor-filter bank

η Index for scales in the Gabor-filter bank

u0 Central spatial frequency of F (u, v)

u1 The lowest cantral frequency of scaled Gabor-
filters

uNη
The highest cantral frequency of scaled Gabor-
filters

θ The angle of Gabor filters

Δθ Minimum angle interval of Gabor filters

Nξ Orientation number of the Gabor-filter bank

Nη Scale number of the Gabor-filter bank

x′,y′ Scales and rotated x and y coordinats

ρ Scale factor

fξ,η Oriented and scaled Gabor-wavelet in the spatial
domain

ğξ,η Output image filtered by fξ,η

g̃ξ Scale-invariant Gabor energy

g̃ Feature vector composed of all values of g̃ξ

‖·‖ L2-norm

Gσ1
Range function relying on |∇g|

Gσ2
Range function relying on ‖g̃‖

Gσ1σ2
Multiplication of Gσ1

and Gσ2
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Symbol Description

σ1 Standard deviation for Gσ1

σ2 Standard deviation for Gσ2

T Tensor at a pixel location

TE Edge-aware structure tensor

TB Bilateral structure tensor

uE Mean squared-gradient obtained from TE

k Subscript for indexing variables

d1 Feature distance for computing Gσ1

d2 Feature distance for computing Gσ2

ď Sorted array of feature distances

H Histogram of ď

S Indices of ď labeled for structures similar to the
window center

A Indices of ď for ambiguous structures

D Indices of ď for structures different from the win-
dow center

l Linear coordinate for array or matrix

lA Upper limit of A

lS Upper limit of S

lmax Maxmum pixel number for sorting the feature dis-
tance in local windows

l1, l2 Inflection points in the simplified profile of ď

κ Parameter in the estimation function for σ2

d̃ Straight line connecting the begin and the end
points of ď

S Defect signature

ϕ̌ Ground truth angle generated by smoothing ϕ

N Normalization function
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Symbol Description

λ̌2 Orientation dispersion calculated by the small
eigenvalue

A Image area in pixel

Ae Area of segmented edge regions

Ωe Support of segmented edge regions

σn Standard deviation of image noise

Chapter 5: Graphite detection

lx Linear coordinate in the neighborhood of l

l0 Observed signal location

R Real number domain

yo Filtered signal by morphological opening

yc Filtered signal by morphological closing

h Output of the top-hat transform

ȟ Output of the bottom-hat transform

s Scale index

s1 Lower limit of the scale range

s2 Upper limit of the scale range

B Structuring element

Δh Bright feature

Δȟ Dark feature

Γ Observation domain

U Complete set of the observation domain

K Size of U

Ψk Boundary of Γ

m Steepness of peaks

m̌ Steepness of valleys

s0 Total length of scale intervals where no bright fea-
ture is output
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Symbol Description

š0 Total length of scale intervals where no dark fea-
ture is output

m̃ Morphological stability

m̃1, m̃2 Optional expressions of m̃

ζ Foreground in g

τ Background texture in g

Ωζ Support of ζ

Ωτ Support of τ

m̃′ Rectified m̃

m̃′
1, m̃′

2 Optional expressions of m̃′

m̃g Modified morphological stability

rB Radius of B

as Output of the alternating sequential filter at the
s-th scale

T Local adaptive threshold

ρ Coefficient adjusting T

Q Sum of local minimum and local maximum of g

μW Local mean of image intensities

σW Local standard deviation of image intensities

Chapter 6: Surface evaluation

D Defect severity

Ωd Support of segmented defective regions

I Moran’s autocorrelation index

p, q Indice of grains

wpq Weight in Moran’s I

c Grain area

cp, cq A pair of observations of

c̄ Mean grain area
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Symbol Description

Nc Number of graphite grains

dpq Distance between a pair of graphite grains

Appendix B: Path openings and closings

z Graph node as the predecessor

z∗ Graph node as the successor

G Oriented graph defined on the image grid

χ A subset of G
δ Node set containing all successors

b Node vector denoting a path

bk Node in the path b

L Path length

ΠL Path set containing all paths of length L

γ Output of the path opening

P Node set containing all nodes in the path b

Appendix C: Miscellaneous

D Diameter of the smallest circle that fully contains a
grain

β Coefficient for scaling local adaptive thresholds
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[12] Decenciére, E. and Jeulin, D. Morphological decomposition of the sur-
face topography of an internal combustion engine cylinder to characterize
wear. In: Wear 249.3 (2001), pp. 482–488.

[13] Dienwiebel, M. and Scherge, M. Neue Erkenntnisse zur Tribolo-
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Anwendung, Prüfung. Berlin, Heidelberg: Springer, 2002.

[66] Scheib, H. Untersuchung des Zusammenhangs zwischen Erstarrung,
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