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Abstract

This text is a general, self contained, and tool independent introduction into
the Java Modeling Language, JML. It is a preview of a chapter planned to appear
in a book about the KeY approach and tool to the verification of Java software.
JML is the dominating starting point of KeY style Java verification. However, this
paper does not in any way depend on any tool nor verification methodology. Other
chapters in this book talk about the usage of JML in KeY style verification. Here,
we only refer to KeY in very few places, without relying on it. This introduction
is written for all readers with an interest in formal specification of software in
general, and anyone who wants to learn about the JML approach to specification in
particular. The authors appreciate any comments or questions that help to improve
the text.
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1 Introduction
The Java Modeling Language, JML, is an increasingly popular specification language
for Java software, that has been developed as a community effort since 1999. The na-
ture of such a project entails that language details change, sometimes rapidly, over time
and there is no ultimate reference for JML. Fortunately, for the items that we address
in this introduction, the syntax and semantics are for the greatest part already settled in
[Leavens et al., 2013]. Basic design decisions have been described in [Leavens et al.,
2006],1 that outlines these three overall goals:

• “JML must be able to document the interfaces and behavior of exist-
ing software, regardless of the analyses and design methods to create
it. [. . . ]

• The notation used in JML should be readily understandable by Java
programmers, including those with only standard mathematical train-
ing. [. . . ]

• The language must be capable of being given a rigorous formal se-
mantics, and must also be amenable to tool support.”

This essentially means two things to the specification language: Firstly, it needs to
express properties about the special aspects of the Java language, e.g., inheritance,
object initalization, or abrupt termination. Secondly, the specification language itself
heavily relies on Java; its syntax extends Java’s syntax and its semantics extend Java’s
semantics. The former makes it convenient to talk about such features in a natural
way instead of defining auxiliary constructs or instrumenting the code as in other spec-
ification methodologies. The latter can also come in handy since, with a reasonable
knowledge of Java, little theoretical background is needed in order to use JML. This
has been one of the major aims in the design of JML. It however bears the problem that
reasoning about specifications in a formal and abstract way becomes more difficult as
even simple expressions are evaluated w.r.t. the complex semantics of Java.

Assertions in source code to prove correctness of the implementation have already
been proposed long time ago [Floyd, 1967]. However, assertions were not widely used
in practice—the assert statement in Java only first appeared in version 1.4, in 2002.
Other programing languages adopted assertions earlier: Bertrand Meyer introduced the
concept of Design by Contract (DbC) in 1986 with the Eiffel language [Meyer, 1992,
1997]. DbC is a programming methodology where the behavior of program compo-
nents is described as a contract between the provider and the clients of the component.
The client only has to study the component’s contract, and this should tell him or her
exactly what he or she can expect from the component. The provider is free to choose
any implementation, as long as it respects the component’s contract. Design by Con-
tract has become a popular methodology for object-oriented languages. In this case,
the components are the program’s classes. Contracts naturally correspond with the
object-oriented paradigm to hide (or encapsulate) the internal state of an object.

The Eiffel compiler came with a special option to check validity of a contract at
runtime. Subsequently, the same ideas where applied to reason about other program-
ming languages (including Modula III, C++, and Smalltalk, that were all handled in
the Larch project [Guttag and Horning, 1993, Leavens and Cheon, 1993]). With the
growing popularity of Java, several people decided to develop a specification language

1This 2006 journal publication is a revised version of a technical report that first appeared in 1998.
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for Java. Gary Leavens and his students at Iowa State University used their experi-
ence from the Larch project, and started work on a DbC specification language for
Java in 1998. They proposed a specification language, and simultaneously developed
a JML runtime assertion checker, that could be used to validate the contracts at run-
time. At more or less the same time, Rustan Leino and his team at the DEC/Compaq
research centre started working on a tool for static code analysis. For the Extended
Static Checker for Java, ESC/Java [Leino et al., 2000], they developed a specification
language that was more or less a subset of JML. A successor, ESC/Java2 [Cok and
Kiniry, 2005], finally adopted JML as it is now. Several projects have been target-
ing tool supported formal verification of Java programs: the LOOP project [van den
Berg and Jacobs, 2001], the Krakatoa project [Marché et al., 2004], and of course KeY.
While in KeY originally specifications had been written in OCL, from version 0.99
(released in 2005) on, JML has been the primary input language2.

Ever since, the community has worked on adopting a single JML language, with
a single semantics—and this is still an ongoing process. Over the years, JML has
become a very large language, containing many different specification constructs, some
of which are only sensible in a single analysis technique. Because of the language
being so large, not for all constructs the semantics is actually understood and agreed
upon, and moreover all tools that support JML in fact only support a subset of it.
There have been several suggestions of providing a formal semantics [Jacobs and Poll,
2001, Engel, 2005, Darvas and Müller, 2007, Bruns, 2009], but as of 2014, there is
no final consensus. Moreover, JML suffers from the lack of support for current Java
versions; currently there are no specifications for Java 5 features, such as enums or
generic types. Dedicated expressions to deal with enhanced foreach loops have been
proposed in [Cok, 2008].

2 Method Contracts (Part 1)
Specifications, whether they are formulated in natural language or some formalism,
can express properties about system artifacts on various levels of granularity, like for
instance the overall system, some intermediate level, like architectural components,
or, on an even finer level of granularity, source code units. JML is designed for unit
specification. In Java, those units are:

• methods, where JML specifies the effect of a single method invocation;

• classes, where JML merely specifies constraints on the internal structure of an
object; and

• interfaces, where JML specifies the external behavior of an object.

Specifications of these units serve as contracts for their implementers, fixing what they
can rely upon, and what they have to deliver in return, following the aforementioned
Design by Contract paradigm.

We start by introducing method specifications in this section. While we go along,
we will also introduce more general concepts, such as JML expressions, that are later
used for class and interface specifications as well.

2Support for OCL has been dropped in KeY 2.0.
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2.1 Clauses of a Contract
Contracts of methods are an agreement between the caller of the method and the callee,
describing what guarantees they provide to each other. More specifically, it describes
what is expected from the code that calls the method, and it provides guarantees about
what the method will actually do. While in our terminology, ‘contract’ refers to the
complete behavioral specification, written JML specifications usually consist of speci-
fication cases. These specification cases are made up of several clauses.

The expectations on the caller are called the preconditions of the method. Typically,
these will be conditions on the method’s parameters, e.g., an argument should be a
nonnull reference, but the precondition can also describe that the method should only be
called when the object is in a particular state. In JML, each precondition is preceded by
the keyword requires, and the conjunction of all requires clauses forms the method’s
precondition. We would like to emphasise that it is not the method implementer’s
responsibility to check or handle a violation of the precondition. Instead, this is the
responsibility of the caller, and the whole point of contracts is to make this distribution
of responsibilities explicit, and checkable. Having said that, it can be a difficult design
decision when the caller should be responsible for ‘good’ parameters and prestates, and
when the called method should check and handle this itself. We refer to Sect. 2.2 for a
further discussion of defensive versus offensive specifications and implementations.

The guarantees provided by the method are called the postcondition of the method.
They describe how the object’s state is changed by the method, or what the expected
return value of the method is. A method only guarantees its postcondition to hold
whenever it is called in a state that respects the precondition. If it is called in a state
that does not satisfy the precondition, then no guarantee is made at all. In JML, every
postcondition expression is preceded by the keyword ensures, and the conjunction of
all ensures clauses forms the method’s postcondition.

JML specifications are written as special comments in the Java code, starting with
/*@ or //@. The @ symbol allows the JML parser to recognise that the comment con-
tains a JML specification. Sometimes, JML specifications are also called annotations,
because they annotate the program code. The preconditions and postconditions are
basically just Java expressions (of boolean type). This is done on purpose: if the speci-
fications are written in a language that the programmer is already familiar with, they are
easier for him to write and to read. JML extends Java’s syntax; almost every side effect
free Java expression, i.e., that does not modify the state and has no observable interac-
tion with the outside world, (cf. [Gosling et al., 2013]) is also a valid JML expression.
See Sect. 3 for a detailed discussion of JML expressions.

Example 1. Fig. 1 contains an example of a basic JML specification. It contains spec-
ification cases for the methods in an interface Student, modeling a typical student at
some university.

We discuss the different aspects of this example in full detail.

• To specify a certain method with JML, requires and ensures clauses are placed
immediately before that method, within a JML comment, starting with /*@ or
//@. For instance, the method changeStatus is specified in JML using two pre-
and two postconditions.

• The @ symbol is not only used at the beginning of a JML comment, but possi-
bly also at the beginning of each line of the JML specification, and before the
*/. This is not necessary, but helps to highlight the JML specifications better.
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1 public interface Student {

2

3 public static final int bachelor = 0;

4 public static final int master = 1;

5

6 public /*@ pure @*/ String getName ();

7

8 //@ ensures \result == bachelor || \result == master;

9 public /*@ pure @*/ int getStatus ();

10

11 //@ ensures \result >= 0;

12 public /*@ pure @*/ int getCredits ();

13

14 //@ ensures getName (). equals(n);

15 public void setName(String n);

16

17 /*@ requires c >= 0;

18 @ ensures getCredits () == \old(getCredits ()) + c;

19 @*/

20 public void addCredits(int c);

21

22 /*@ requires getCredits () >= 180;

23 @ requires getStatus () == bachelor;

24 @ ensures getCredits () == \old(getCredits ());

25 @ ensures getStatus () == master;

26 @*/

27 public void changeStatus ();

28

29

30 }

Listing 1: First JML example specification Student
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In general, a @ is ignored within a JML annotation if it is the first (non-white)
character in the line, or if it is the last character before ‘*/’.

• Requires resp. ensures clauses always consist of the keyword requires resp.
ensures, followed by a boolean expression.

• For method getName, we specify that it is a pure method, i.e., it may not have
any (visible) side effects, and it must terminate unconditionally (possibly with
an exception). Only pure methods may be used in specification expressions,
because these should not have side effects, and always terminate.

• Method getStatus is also specified as being pure. In addition, we specify that its
result may only be one of two values: bachelor or master. To denote the return
value of the method, the reserved JML keyword \result is used.

• For method getCredits we also specify that it is pure, and in addition we spec-
ify that its return value must be non-negative; a student thus never can have a
negative amount of credits.

• Method setName is non-pure, i.e., it may have side effects. Its postcondition is
expressed in terms of the pure methods getName and equals: it ensures that after
termination the result of getName is equal to the parameter n.

• Method addCredits’s precondition states a condition on the method parameters,
namely that only a positive number of credits can be added. The postcondition
specifies how the credits change. Again, this postcondition is expressed in terms
of a pure method, namely getCredits. Notice the use of the keyword \old. An
expression \old(E) in the postcondition actually denotes the value of expression
E in the state where the method call started, the prestate of the method. Thus the
postcondition of addCredits expresses that the number of credits only increases:
after evaluation of the method, the value of getCredits is equal to the old value
of getCredits, i.e., before the method was called, plus the parameter c.

• Method changeStatus’s precondition specifies that this method only may be
called when the student is in a particular state, namely he has obtained a suf-
ficient amount of credits to pass from the Bachelor status to the Master status.
Moreover, the method may only be called when the student is still having a Bach-
elor status. The postcondition expresses that the number of credits is not changed
by this operation, but the status is. Notice that the two preconditions and the two
postconditions of changeStatus are written as separate requires and ensures

clauses, respectively. Implicitly, these are assumed to be joined by conjunction,
thus the specification is equivalent to the following specification:

/*@ requires getCredits () >= 180 &

@ getStatus () == bachelor;

@ ensures getCredits () == \old(getCredits ()) &

@ getStatus () == master;

@*/

public void changeStatus ();

The reader might have wondered why not all method specifications in Student

have a pre- and a postcondition. Implicitly though, they have. For every specification
clause, there is a default. For pre- and postconditions this is the predicate true, i.e., no
constraints are placed on the caller of the method, or on the method’s implementation.
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Example 2. Thus for example the specification of method getStatus actually is the
following:

/*@ requires true;

@ ensures status == bachelor || status == master;

@*/

public int getStatus () {

return status;

}

2.2 Defensive versus Offensive Method Implementations
An important point about method contracts is that they can be used to avoid defensive
programming. Consider the specification of method addCredits in Listing 1,

This method assumes that its argument is nonnegative, and otherwise it is not going
to function correctly. When one uses a defensive programming style, one would first
test the value of the argument and throw an exception if this was negative. This clutters
up the code, and in many cases it is not necessary. Instead, using specifications, one can
use an ‘offensive’ coding style. The specification states what the method requires from
its caller. It only guarantees to function correctly if the caller also fulfills its part of the
contract. When validating the application, one checks that every call of the method is
indeed within the bounds of its specification, and thus the explicit test in the code is not
necessary. Thus, making good use of specifications can avoid adding many parameter
checks in the code. Such checks are only necessary when the parameters cannot be
controlled—for example, because they are given via an external user.

2.3 Specifications and Implementations
Notice that the method specifications are written independently of possible implemen-
tations. Classes that implement this interface may choose different implementations,
as long as it respects the specification. Method specifications do not always have to
specify the exact behavior of a method; they give minimal requirements that the imple-
mentation should respect.

Example 3. Considering the specification in Listing 1 again, the method specification
for changeStatus prescribes that the credits may not be changed by this method. How-
ever, method addCredits is free to update the status of the student. So for example,
an implementation that silently updates the status from Bachelor to Master whenever
appropriate is according to the specification. Notice that the specification case is re-
peated here for understandability and that it is not required and recommended to copy
specifications of interfaces in the classes that realize them.

/*@ requires c >= 0;

@ ensures getCredits () == \old(getCredits ()) + c;

@*/

public void addCredits(int c) {

credits = credits + c;

if (credits >= 180) {status = master ;}

}

Notice also that both addCredits and changeStatus would be free to change the
name of the student, according to the specification, even though we would typically not
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expect this to happen. A way to avoid this, is to add explicitly conditions getName().equals(\old(getName()))
to all postconditions. Later, in Sect. 10.1, we will see how assignable clauses can be
used to explicitly disallow these unwanted changes in a more convenient way.

3 Expressions
We have already seen that standard Java expressions can be used in JML specifications.
These expressions have to be side effect free, thus for example assignments, or incre-
ment/decrement operators, are not allowed. As also mentioned above, JML expressions
may contain method calls to pure methods.

In addition, JML defines several specification-specific constructs, to be used in ex-
pressions. The use of the \result and \old keywords has already been demonstrated
in Listing 1, and the official language specification contains a few more of these. Be-
sides Java’s logical operators, such as conjunction &, disjunction |and negation !, also
other logical operators are allowed in JML specifications, e.g., implication ==>, and
logical equivalence <==>. Since expressions are not supposed to have side effects or
terminate exceptionally, in JML in many cases the difference between logical opera-
tors such as & and |, and short circuit operators, such as &&, and || is not important.
However, sometimes the short circuit operators have to be used to ensure an expression
is welldefined. For instance, y != 0 & x/y == 5 may not be a welldefined expression,
while y != 0 && x/y == 5 is.

3.1 Quantified Boolean Expressions
However, for specifying interesting properties, purely propositional boolean expres-
sions are too limited. How could one for instance express any of the following proper-
ties with just propositional connectors?

• An array arr is sorted.

• The variable m holds the maximum entry of array arr.

• All Account objects in an array allAccounts are stored at the index correspond-
ing to their respective accountNumber field.

Given that the arrays in these examples have a statically unknown length, propo-
sitional connectives are not enough to express any of the above. What we need here
is quantification. For that, boolean JML expressions are extended by the following
constructs3.

• (\forall T x; b)
“for all x of type T , b holds”

• (\forall T x; a; b)
“for all x of type T fulfilling a, b holds”

• (\exists T x; b)
“there exists an x of type T such that b holds”

• (\exists T x; a; b)
“there exists an x of type T fulfilling a, such that b holds”

3The JML keywords \forall and \exists correspond to ∀ and ∃ in text-book notation.
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Here, T is a Java (primitive or reference) type, x is any name (hereby declared to be of
type T ), and a and b are boolean JML expressions. The a is called range predicate. The
two forms using a range predicate are not strictly needed, as they can be expressed with-
out. (\forall T x; a; b) is logically equivalent to (\forall T x; a ==> b), and
(\exists T x; a; b) is logically equivalent to (\exists T x; a && b). However,
the range predicates have a certain pragmatics not shared by their logical counterparts.
In (\forall T x; a; b), as well as in (\exists T x; a; b), the boolean expression
a is used intuitively to restrict range of x further than T does.

Example 4. Using quantifiers, we can specify that an array should be sorted, for in-
stance in a precondition for a logarithmic lookup method that assumes sorting.

//@ requires (\forall int i, j;

//@ 0 <= i & i < j & j < a.length;

//@ a[i] <= a[j]);

public int lookup(int elem) {...

The first argument ‘int i, j’ is the declaration of the variables over that the quan-
tification ranges. The (optional) second argument ‘0 <= i & i < j & j < a.length’
defines the range of the values for this variable, and the third argument is the actually
universally quantified formula (‘a[i] <= a[j]’ in this case).

Example 5. An alternative, but less preferred, way to phrase the specification in Exam-
ple 4 is the following:

//@ requires (\forall int i, j;

//@ 0 <= i & i < j & j < a.length ==> a[i] <= a[j]);

public int lookup(int elem) {...

Besides supporting readability, the range predicate form helps certain JML tools
to ‘execute’ quantified formulas where possible. This is less important for theorem
provers, like KeY. But a runtime verification tool would need to operationalise the pre-
condition, by looping through all i, j fulfilling 0 <= i & i < j & i < a.length, in-
stead of looping through all i, j between Integer.MIN_VALUE and Integer.MAX_VALUE.

Example 6. To specify that a method returns the index of an integer array arr holding
the maximum entry, we can write the following postcondition.

//@ ensures (\forall int i; 0 <= i && i < arr.length; \result >= arr[i]);

But is that enough? (The reader may briefly reflect before reading on.) An implementa-
tion always returning Integer.MAX_VALUE would satisfy the above postcondition4. We
therefore need an additional postcondition:

//@ ensures arr.length > 0 ==>

//@ (\exists int i; 0 <= i && i < arr.length; \result == arr[i]);

Example 7. The following boolean JML expressions says that all Account objects in an
array allAccounts are stored at the index corresponding to their respective accountNumber
field.

(\forall int i; 0 <= i && i < allAccounts.length;

allAccounts[i]. accountNumber == i)

Such an expression could for instance be used in an invariant, see Sect. 5.2.

4See also Sect. 9 for a discussion on Java integers.
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3.2 Numerical Comprehensions
In addition to the boolean quantified expressions, JML offers so called generalized
quantifiers \sum, \product, \min, \max, and \num_of. Those are actually numerical
comprehensions (or higher order functions) with bound variables. The postcondition
in Example 6 can alternatively be given as:

//@ ensures \result == (\max int i; 0 <= i && i < arr.length; arr[i]);

Notice that is syntactically similar to a quantified formula: the \max operator binds
a variable i, and a boolean guard expression restricts it to be within the range of the
array’s indices. The type of the \max expression is the type of its body; here it is the
type of arr[i]. The intuitive semantics is obviously that the result is the maximum
of all arr[i] where i is in the array range. However, the \max construct is not to-
tal, i.e., it is not always a welldefined expression. In case arr has zero length, for
instance, there is no maximum. A similar case appears with a noncompact range, e.g.,
the set of all mathematical integers (represented by the JML type \bigint, see Sect. 9):
(\max \bigint i; true; i).

Another comprehension operator is the summation operator \sum, of which we
make use in Example 8 on page 31 since the exact number of summands is not known:

(\sum int i; 0 <= i && i < s1.length; s1[i]. getCredits ())

In the common mathematical notation, this expression can be given as ∑
s1.length−1
i=0 s1[i].g . . . .

More generally, sum comprehensions in JML can have several bound variables that
range over sets of values. The general pattern is (\sum T x; P; Q) where T is a type,
P a boolean expression and Q an integer expression corresponds to ∑x∈{y∈T |P}Q. Like-
wise the \product operator is used to express product comprehensions. Since addition
(as multiplication) is commutative and associative, there is no particular order in which
elements are summed up. Sums with empty ranges have the value 0 by definition,
empty products have value 1.

Expressions using the \num_of operator, that gives the cardinality of a finite set, can
be expressed in terms of sums: (\num_of T x; P) is syntactic sugar for (\sum T x; P; 1).

However, like the maximum, sum comprehensions are not always welldefined.
For instance, the expression (\sum \bigint i; 0 <= i; i) corresponds to ∑

∞
i=0 i, the

value of which is undefined since it diverges. In some tools—including KeY—effective
reasoning about these comprehensions is therefore restricted to closed integer intervals,
for which sums, etc., are always defined. In particular, KeY only interprets sums of the
shape (\sum int i; ` <= i && i < u; Q), where the lower bound ` is included and
the upper bound u is excluded. This restricted form using intervals has the advantage of
having a simple induction schema to define these comprehensions, that lays the foun-
dation to reasoning about sums and products. More details about this are discussed in
Sect. ??.

3.3 Evaluation in the Prestate
As indicated in the introductory example, JML allows to mark any expression e in
a postcondition with \old(e), which means that e is not evaluated in the current
(post)state of the method, but in its prestate. In most cases, \old(e) is a subexpression
of some bigger expression, and it is important to be aware that all parts of the expres-
sion not included in \old(...) construct are evaluated in the current (post)state. This is
fairly obvious in many examples, like ensures getCredits() == \old(getCredits()) + c;
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in Fig. 1. For a slightly more subtle example, consider an ATM scenario, where an
insertedCard (represented by an object with a boolean field invalid) is ‘confiscated’
after too many failed attempts to enter the correct PIN, specified by

//@ ...

//@ ensures insertedCard == null;

//@ ensures \old(insertedCard ). invalid;

//@ ...

We encourage the reader, before reading on, to reflect on the difference between \old(insertedCard).invalid

and \old(insertedCard.invalid).
Writing \old(insertedCard.invalid) would mean that the method implemen-

tation has to guarantee that the invalid field of the old insertedCard object was
true before the method’s execution. This makes no sense, as a method implementa-
tion can never influence its prestate. However, \old(insertedCard).invalid makes
much more sense, as an implementation can, for instance, set the invalid field of
insertedCard object to true and afterward set insertedCard to null. To demand the
invalidation of the former insertedCard object in the poststate, \old(insertedCard).invalid
refers to the current field of the object formerly referred to by insertedCard.

4 Method Contracts (Part 2)
Now that the reader is familiar with the particular featues of JML expressions, we are
ready to continue the presentation of method contracts.

4.1 Visibility of Specifications
So far, the specifications that we have seen have not specified anything about the values
of an object’s instance variables. Typically, these are declared private, which limits
also their use within specifications. Basically JML uses the same access rules like Java
which means that elements used within specifications have to be visible to it and that
a specification itself also has a visibility. The access modifiers public, protected and
private are explicitly used to define specifications visibility. If none of these modifiers
is used a specification has the default (package) visibility.

In addition to the Java access rules, JML forbids the usage of elements within spec-
ifications that are less visible than the specification itself. The reason of this restriction
is simply that a reader of a specification may need the whole knowledge of all used
elements to understand it. As a consequence, it is for instance not possible to use
private variables directly within protected or public specifications. However, it is pos-
sible to change their visibility only for the specification layer via spec_protected or
spec_public.5

Example 8. If we specify the instance variables of class CStudent to be spec_public,
then its constructor can also be specified as in Listing 2.

A second restriction of specification visibility to keep in mind is that specifications
that constrain a field must have at least the visibility as the field itself, so they cannot be
more hidden. The reason is that otherwise a user of a field would not see the constraints
to maintain. This is especially important for invariants and constraints, discussed in
Sect. 5.2 and Sect. 5.4.

5A model field could be used as alternative, which also allows to use different fields in different imple-
mentations.
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class CStudent implements Student {

/*@ spec_public @*/ private String name;

/*@ spec_public @*/ private int credits;

/*@ spec_public @*/ private int status;

....

/*@ requires c >= 0;

@ ensures credits == c;

@ ensures status == bachelor;

@ ensures name = n;

@*/

public CStudent (int c, String n) {

credits = c;

name = n;

status = bachelor;

}

}

Listing 2: Class CStudent with spec_public variables

4.2 Specification Cases
When specifying a method, it is often useful, and sometimes necessary, to describe
the behavior separately for different parts of the prestate/input space. The structuring
mechanism for that is the specification case, each of which is specific for a particu-
lar precondition. Specification cases are combined by the also keyword. The above
method contracts consisted of only one specification case. We now give an example
where two specification cases are given for one method.

Example 9. Listing 3 shows the specification of a class implementing a set of inte-
gers, with a limited capacity that is fixed at the time when the integer set object is
constructed.

Here, the method add is specified by two specification cases, one for the case where
the set is not full, and the element to be added is not contained (size < limit && !contains(elem)),
and one for the case where the set is full (size == limit) or the element to be added
is already contained (contains(elem)).

Note that it is possible to specify add with only one specification case. Confer to
[Raghavan and Leavens, 2000] for a procedure to produce flat specifications.

Listing 3 is furthermore an example for extensive usage of quantification. More-
over, it demontrates the power of pure methods. Without the ability to use contains in
the specification of the other methods, all the occurrences of contains would need to
be replaced by the existentially quantified JML expression specifying contains, result-
ing in a much more complicated specification. We will extend on this example when
discussing class invariants.

4.3 Semantics of Normal Behavior Specification Cases
An important question is when a method specification is actually satisfied. And in
particular, if a method does not terminate, does it then satisfy its specification? The
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1 public class LimitedIntegerSet {

2 public final int limit;

3 /*@ spec_public @*/ private int arr[];

4 /*@ spec_public @*/ private int size = 0;

5

6 public LimitedIntegerSet(int limit) {

7 this.limit = limit;

8 this.arr = new int[limit ];

9 }

10

11 /*@ requires size < limit && !contains(elem);

12 @ ensures \result == true;

13 @ ensures contains(elem);

14 @ ensures (\forall int e;

15 @ e != elem;

16 @ contains(e) <==> \old(contains(e)));

17 @ ensures size == \old(size) + 1;

18 @

19 @ also

20 @

21 @ requires (size == limit) || contains(elem);

22 @ ensures \result == false;

23 @ ensures (\forall int e;

24 @ contains(e) <==> \old(contains(e)));

25 @ ensures size == \old(size);

26 @*/

27 public boolean add(int elem) {/*...*/}

28

29 /*@ ensures !contains(elem);

30 @ ensures (\forall int e;

31 @ e != elem;

32 @ contains(e) <==> \old(contains(e)));

33 @ ensures \old(contains(elem))

34 @ ==> size == \old(size) - 1;

35 @ ensures !\old(contains(elem))

36 @ ==> size == \old(size);

37 @*/

38 public void remove(int elem) {/*...*/}

39

40 /*@ ensures \result == (\exists int i;

41 @ 0 <= i && i < size;

42 @ arr[i] == elem);

43 @*/

44 public /*@ pure @*/ boolean contains(int elem) {/*...*/}

45

46 // other methods

47 }

Listing 3: Specifying (limited size) integer set
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specifications as we have seen here implicitly state that the method must always termi-
nate, i.e., they specify a total correctness condition, cf. Hoare [1969]. If method m is
specified as follows:

/*@ requires P;

@ ensures Q;

@*/

public ... m(...) { ...

this means the following:

If method m is executed in a pre-state where P holds, then execution of
method m from this pre-state terminates, and—if it terminates nor-
mally6—in the final state the postcondition Q holds.

To specify that a method may not terminate under some precondition, one can add
an explicit diverges clause. A diverges clauses specifies under which conditions a
method may not terminate, for example to express that for certain parameters a method
may not terminate. As we have seen above, the default is false, i.e., a method must
always terminate.

/*@ requires P;

@ ensures Q;

@ diverges x < 0;

@*/

public ... m(int x) { ...

Sometimes we wish to exclude the case that a method may terminate because of an
exception. In this case, the respective specification case is preceeded by the keyword
normal_behavior, that states that the method execution must terminate normally, and
in the final state the postcondition must hold.

The JML reference manual Leavens et al. [2013] further distinguishes between so
called lightweight and heavyweight specifications. Heavyweight specification cases are
preceded by one of the keywords behavior, normal_behavior, or exceptional_behavior
(see Sect. 7); all others are lightweight. The difference is that, in lightweight specifica-
tions, there are no standardized defaults—except for diverges which default is always
false. Instead, every tool is free to choose its own semantics. KeY takes the choice of
applying the same defaults as for heavyweight specifications.

The visibility of a lightweight specification case is always the one of the method
they specify.

4.4 Specifications for Constructors
Constructors can be considered as special methods. In the pre-state of a constructor, the
object does not yet exist. Thus a precondition of a constructor can only put constraints
on the constructor parameters, it cannot require anything about the internal state of
the object—as the object does not exist yet when the constructor is called. However,
the postcondition of the constructor can specify constraints on the state of the object.
Typically, it will relate the object state to the constructor’s parameters.

6A method is said to terminate normally if either it reached the end of its body, in a normal state, or it
terminated because of a return instruction. Below, in Sect. 7 we discuss how we can specify methods that
terminate because of an exception.
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Example 10. Suppose we have a class CStudent, implementing the Student interface.
It could have the following constructor:

/*@ requires c >= 0;

@ ensures getCredits () == c;

@ ensures getStatus () == bachelor;

@ ensures getName () = n;

@*/

CStudent (int c, String n) {

credits = c;

name = n;

status = bachelor;

}

Thus, to repeat, it would be incorrect to specify e.g., requires getCredits() >= 0;

or requires getStatus() == bachelor—these specifications are meaningless at the
moment that the constructor is invoked.

4.5 Notions of Purity
Above in Sect.2.1, we have said that only pure methods may be used in a method
specification, and purity was defined as terminating unconditionally and having no
visible side effects. ‘No visible side effects’ means that the state that was allocated
on the heap before the method call may not be changed. Thus, this does not exclude
that a method creates a new object and initialises it. In the same way, constructors
are pure if they only operate on fields of the object they initialize, not touching the
state that was allocated before the call to the constructor. If it, however, changes other
parts of the state it is not pure. For clarity, this notion of purity in standard JML is
sometimes known as weak purity. This is in contrast to strict purity, that requires that
the heap is not changed in any way. While weakly and strictly pure methods have the
same observable behavior, reasoning about hidden changes in weakly pure methods can
make a proof more complicated. In KeY’s extension to JML, strict purity is indicated
by the modifier strictly_pure.

Apart from that, there are situations where methods are technically speaking not
pure, but from a client point of view may be considered to be so. Consider for an
example the function that computes a hashcode. The first time this function is called
on an object, a field of the object will be written, so that the next calls can be evaluated
by looking up this field. Because of this, different notions of purity and observational
purity exist in the literature [Barnett et al., 2004, 2005c, Darvas and Müller, 2005,
Darvas and Leino, 2007, Naumann, 2007, Cok and Leavens, 2008]. For the scope of
this chapter, it is sufficient to define purity simply as not having any side effects.

While pure methods must terminate under any circumstance, they may still raise
exceptions or have nontrivial precondition. In these cases, the value of a pure method
invocation is not always welldefined. Therefore, it is a best practice to have true as
the precondition of pure methods and to rule out any exceptions.

5 Class Level Specifications
Consider again the specification of Student in Listing 1. If we look carefully at the
specifications and the description that we give about the student’s credits, we notice
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that implicitly we assume some properties about the value of getCredits that hold
throughout. For example, we wrote above:

“a student thus never can have a negative amount of credits”

and also

“the number of credits only increases.”

But if we would like to make explicit that we assume that these properties always hold,
we would have to add this to all the specifications in Student, and thus in particular
also to all methods that do not relate at all to the number of credits. Thus for example,
we would get the following specification:

/*@ requires getCredits () >= 0;

@ ensures \result == bachelor || \result == master;

@ ensures getCredits () >= 0;

@*/

/*@ pure @*/ public int getStatus ();

Clearly, this is not desired, because specifications would get very large, and besides
describing the intended behavior of that particular method, they also describe properties
over the lifetime of the object.

Therefore, JML provides also class level specifications, such as invariants, history
constraints and initially clauses. These specify properties over the internal state of an
object, and how the state can evolve during the object’s lifetime.

5.1 Visible States
To define in which state invariants hold, JML uses the notion of visible states [Poetzsch-
Heffter, 1997], that are states reached throughout the execution of a code fragment. In
other contexts, e.g., older versions of KeY, the semantics of invariants are based on
observed states [Beckert et al., 2007, Sect. 8.2], These two approaches are based on
different paradigms. A principle difference is that visible states are not necessarily
meant to be visible to an observer, but rather to semantical objects of the program.
The targets of visibility, i.e., the objects for which a state is visible, are determined
from the running execution and its receivers. The rationale behind this is, that it is
primarily intended to impose strong invariants, i.e., that are obliged to hold in every
intermediate state, but secondarily to allow temporary violations of invariants if the
‘violated object’ is a current method receiver (or of a type on that a static method is
invoked). Following the observable state approach, on the other hand, invariants that
hold at the beginning of a method invocation also hold at the end. This means that the
exact pre- and poststates are the only states observable. Visible states are intermediate
states in this sense. Following to [Leavens et al., 2013, Sect. 8.2] they are defined as
follows (a formalization of this can be found in [Bruns, 2009]).

Definition 1 (Visible states). A state is visible to an object o if it is reached at one of
the following moments in a program’s execution:

1. at the end of a constructor invocation that is initializing o,

2. at the beginning of a finalizer invocation that is finalizing o,

3. at the beginning and the end of a nonstatic method invocation with o as the
receiver, i.e., a method like o.m is called,
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4. at the beginning and the end of a static method invocation of a class C where o
is an instance of type C, or

5. when none of the aforementioned invocations are in progress.

The crucial one seems to be the last item. This could be seen as overly strict as it
seems us to require to check the invariants of nearly every object in every state reached
throughout execution. But if we consider a situation in which a class declaration con-
tains public fields, it is desirable to secure they are not arbitrarily changed.

It may appear at a first look as if the first three cases of Definition 1 are reducible
to the last case. This is not correct: Any method may invoke another one with identical
receiver (reentrant call, see also Example 13). In this example, the second case applies,
while the fifth does not. Even the first case (constructor) has to be treated separately
because a constructor might invoke another constructor. The poststate of this second
invocation is visible to the object that is being initialized. Although there is no problem
in defining formal semantics, this is a serious problem in practice. It would imply
for virtually every constructor to break its invariant. If not declared explicitly, like
in our example, Java enforces calls to super() to happen first on every constructor
invocation. Even if the superclass constructor establishes its own invariant, it has no
knowledge of fields in subclasses that need to be assigned to establish the invariant
of the subclass. But according to Def. 1, its poststate (that is an inner state of the
subclass constructor) is visible for the to initialize object—even though it is yet not
fully initialized. In [Bruns, 2009], several alternative definitions of visible states are
proposed that avoid this issue.

According to [Leavens et al., 2013], a state is visible for a type T (i.e., class or
interface) if it occurs after static initialization of T and it is a visible state for some
object of static type T . Leaving aside static initialization, this means that every state
reached by the virtual machine is visible to every class and interface. This is because
there is always an infinite number of instances for that the fifth case of Def. 1 applies.
Therefore, a static invariant in type C must be respected in every state after C has been
initialized.

5.2 Invariants
One of the most important and widely-used specification elements in object-orientation
are type invariants, also called class or object invariants7, is a predicate over the object
state that holds in all visible states of an object. These can be seen as conditions to
constrain the state an instance can be in. In addition, since the poststate of a constructor
is visible to the initialized object, any constructor has to ensure that the invariant is
established.

Example 11. Listing 4 shows three possible invariants that can be added to interface
Student. These specify that credits are never nonnegative; a student’s status is always
either Bachelor or Master, and nothing else; and if a student’s status is Master, he or
she has earned more than 180 credits.

Of course, instead of specifying invariants, one could also add these specifications
to all pre- and postconditions explicitly. However, this means that if you add a method
to a class, you have to remember to add these pre- and postconditions yourself. More-
over, invariants are also inherited by subclasses (and by implementations of interfaces).

7Not to be confused with loop invariants. These will be discussed in Sect. 10.2.
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interface Student {

public static final int bachelor = 0;
public static final int master = 1;

/*@ invariant getCredits () >= 0;
@ invariant getStatus () == bachelor ||
@ getStatus () == master;
@ invariant getStatus () == master ==>
@ getCredits () >= 180;
@
@ initially getCredits () == 0;
@ initially getStatus () == bachelor;
@
@ constraint getCredits () >= \old(getCredits ());
@ constraint \old(getStatus ()) == master ==>
@ getStatus () == master;
@ constraint \old(getName ()) == getName ();
@*/

public /*@ pure @*/ String getName ();

public /*@ pure @*/ int getStatus ();

public /*@ pure @*/ int getCredits ();

//@ ensures getName (). equals(n);
public void setName(String n);

/*@ requires c >= 0;
@ ensures getCredits () == \old(getCredits ()) + c;
@*/

public void addCredits(int c);

/*@ requires getCredits () >= 180;
@ requires getStatus () == bachelor;
@ ensures getCredits () == \old(getCredits ());
@ ensures getStatus () == master;
@*/

public void changeStatus ();

}

Listing 4: Interface Student with class level specifications
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Thus any method that overrides a method from a superclass still has to respect the in-
variants. And any method that one adds in the subclass also has to respect the invariants
from the superclass. This leads to a very nice separation of concerns.

An important point to realize is that invariants have to hold only in all visible object
states, i.e., in all states in which a method is called or terminates. Thus, inside the
method, the invariant may be temporarily broken.

Note that the kind of termination of a method does not matter. Regardless of ter-
minating normally, exceptionally or erroneously, a method has to meet the invariant in
every visible state.

Example 12. The following possible implementation of addCredits is correct, even
though it breaks the invariant that a student can only be studying for a Master if he or
she has earned more than 180 points inside the method: if credits + c is sufficiently
high, the status is changed to Master. After this assignment the invariant does not hold,
but because of the next assignment, the invariant is re-established before the method
terminates.

/*@ requires c >= 0;

@ ensures getCredits () == \old(getCredits ()) + c;

@*/

public void addCredits(int c) {

if (credits + c>= 180) {status = master ;} // invariant broken!

credits = credits + c;

}

However, if a method calls another method on the same object, it has to ensure that
the invariant holds before this callback. Why this is necessary, is best explained with
an example.

Example 13. Consider the interface CallBack in Listing 5.

interface CallBack {

//@ invariant getX() > 0;

//@ invariant getY() > 0;

/*@ pure @*/ public int getX ();

/*@ pure @*/ public int getY ();

//@ ensures getX() == x;

public void setX(int x);

//@ ensures getY() == y;

public void setY(int y);

//@ ensures \result == getX() % getY ();

public int remainder ();

public int longComputation ();

}

Listing 5: Interface CallBack
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Typically, correctness of the method remainder crucially depends on the value of
getY being greater than 0. Suppose we have an implementation of the CallBack inter-
face, where the method longComputation is sketched as follows.

public int longComputation (){

...

if (getY() ....) {

setY (0); // invariant broken

}

...

int r = remainder (); // callback

...

setY(r + 1) // invariant re-established

...

return ...

}

Naively, one could think that the fact that the invariant about getY is broken inside
this method, is harmless, because the invariant is re-established by the setY(r + 1)

statement. However, the call to the method remainder is a callback, and the invariant
should hold at this point. In fact, correct functioning of this method call depends on the
invariant holding. The invariant implicitly is part of remainder’s precondition. If the
invariant does not hold at the point of the callback, this means that remainder is called
outside its precondition, and no assumption can be made about its result as well.

Although invariants are always specified within a class or interface, their effective
scope is global. E.g., a method m in a class C is obliged to respect invariants of class D.
There is a way to avoid the requirement that the invariant has to hold upon callback: this
is by specifying that a method is a helper method. Such methods cannot depend on
the invariant to hold, and they do not guarantee that the invariant will hold afterwards.
Typically, only private methods should be specified as helper methods, because one
does not want that any other object can directly invoke a helper method.

Where do invariants come from? Sometimes they are imposed by some kind of
‘reality’ that the code is a model of. The interface Student in Listing 4 is such an ex-
ample. Students can only have a positive number of credits, they must be either Master
or Bachelor students, and so forth. Another common source of invariants is efficiency.
Efficient computations often require to organise the data in a specific way. One way
is introducing redundancy, like for instance in an index of a book, mapping words to
pages where they occur. Such an index is redundant (we can always search through the
whole book to find the occurrences of a word), but it enables efficient lookup. On the
downside, redundancy opens up for inconsistencies. The countermeasure are invariants
indeed, formalising the consistency conditions (like each word in an index appearing
in the text as well, at the page given by the index). Other ways to increase efficiency
limit the organization of data to comply to certain restrictions. A classic example of
that is sortedness, that allows for quicker look-up. To extend, for instance, the example
of LimitedIntergerSet (Listing 3) by sortedess, we add the invariant

/*@ public invariant (\forall int i;

@ 0 < i && i < size;

@ arr[i-1] <= arr[i]) ;

@*/

to that class. With that, the implementer of each method can rely on sortedness, and
the implementor of each impure method has to guarantee sortedness.
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Defining a precise semantics for invariants is still an active area of research, see
e.g. [Poetzsch-Heffter, 1997, Leino and Müller, 2004, Barnett et al., 2004, Müller et al.,
2006, Bruns, 2009]. A complication is that, although invariants are declared in a par-
ticular class, not only instances of that class have to respect it, but all objects in the
system. An alternative approach, that is used in the Spec# framework, is to explicitly
add specification statements unpack and pack for invariants. An invariant may only be
broken if it has been explicitly unpacked. When the invariant is reestablished, it has
to be explicitly be packed again, and this only succeeds if the invariant indeed holds at
this point. Every method can then specify explicitly whether it assumes invariants to
hold, i.e., to be packed, or not. This approach is sometimes referred to as the Boogie
methodology [Barnett et al., 2005a].

Similiar to the Boogie methodology, in the KeY system, invariants are not implicitly
added to specifications, but it is left to the specification to include specific invariants.
This specification may be more verbose, but it is clear from the given specification that
invariants are assumed or established. The invariant for an object o can be referred
to through \invariant_for(o). This allows that both visible and observed state se-
mantics of invariants can be simulated. Unlike in Boogie, explicit packing/unpacking
instructions in the code are not necessary. Instead, the specifier has to specify a set of
locations on that the invariant depends at most (accessible clause). Usually, methods
rely at least on the invariant of the current receiver. For convenience, this invariant is
implicitly included for non helper methods.

Finally, it is important to realize that the notion of object invariant that we discussed
here only makes sense in a sequential setting. In a multithreaded setting, there always
may be another thread accessing the object simultaneously, and one cannot talk about
visible state semantics anymore. Instead, in a multithreaded setting, one sometimes
specifies strong invariants that may never be broken. See, e.g., [Zaharieva-Stojanovski
and Huisman, 2014] for a modular specification and verification technique for class
invariants in a concurrent setting.

5.3 Initially Clauses
Sometimes, one explicitly wishes to specify the conditions that are satisfied by an ob-
ject upon creation. Each (non-helper) constructor8 of the object has to establish the
predicate specified by the initially clause. Another advantage of initially clauses is that
they are inherited; that means that also constructors of subclasses have to fulfil them.
Constructors in Java itself are not inherited. As a consequence, a constructor can rely
on the guarantees provided by a called super constructor but does not have to maintain
them.

Example 14. Listing 4 shows some possible initially clauses for the Student interface.

Again, it would be possible to specify this property as a postcondition of all con-
structors, instead of as a single initially clause. But in this way, any additional con-
structor has to respect the initially clause, and we ensure that also subclasses respect
it.

5.4 History Constraints
Invariants as we discussed above define a predicate that every (visible) state of the ob-
ject should respect. However, sometimes one also wishes to specify how an object may

8Again, typically only private constructors would be annotated as a helper constructor.
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evolve over time, i.e., the relationship that exists between the pre-state and the post-
state of a method call. This could be seen as a sort of general postcondition that has to
be respected by every method, however the definition is actually more fine grained than
that. For this, history constraints (usually constraints for short) have been introduced
[Liskov and Wing, 1993]. Constraints can be seen as implicit postconditions, but just
as invariants and initially clauses, they have the advantage that they are inherited, and
immediately are required to hold for any additional methods.

History constraints are in a way similar to invariants as they constrain the state that
an object may be in. But while invariants must hold for every visible state, history con-
straints describe the relation of two consecutive visible states in a program execution.
Constraints may rely on syntactical features that are used to measure changes between
states such as the \old operator as well as frame expressions. Similar to invariants,
there may be several constraint definitions and non-private constraints are being in-
herited. Assigning suitable semantics to history constraints is non-trivial; a possibility
would be to see them as special two-state model methods . This is not yet implemented
in KeY at the time of writing (KeY version 2.2).

Example 15. Listing 4 defines several constraints for the Student interface. The first
constraint specifies that the amount of credits can never decrease. The second con-
straint specifies that if a student has obtained the Master status, he will remain a Master
student, and cannot be downgraded to a Bachelor student again. Finally, the third con-
straint specifies that a student’s name can never change.

When specifying constraints, it is important that they should denote a nonstrict
relation, i.e., it should be possible to respect a constraint without actually changing
the state. This is sensible in practice, since it is nontrivial for an observer to deduce
that states are visible. In particular, any pure method should be able to respect the
constraint. Therefore, one should not specify the following strict constraint:

constraint \old(getCredits ()) < getCredits ();

as it is impossible to respect this constraint with a pure method. Typically, constraints
will also be transitive, so that when you consecutively call two methods from the same
object, you also know the relationship that holds between the pre-state of the first
method, and the post-state of the second method.

//@ constraint \old(getCredits ()) <= getCredits ();

/*@ requires c >= 0;

@ ensures getCredits () == \old(getCredits ()) + c;

@*/

// pre -state

public void addCredits(int c) {

credits = credits + c;

if (credits >= 180) {

// call -state changeStatus

changeStatus ();

// return -state changeStatus

}

} // post -state

Listing 6: Checking history constraints

25



Example 16. Consider the possible implementation of addCredits in Listing 6. To
show that the constraint is respected, it has to hold for the following visible state pairs:

• (pre-state, call-state changeStatus)

• (call-state changeStatus, return-state changeStatus)

• (return-state changeStatus, post-state)

Notice that if the constraint is transitive, the relationship also holds for the pair of
prestate and poststate, which is indeed what we want.

Again, in a multithreaded setting, the semantics of constraints would become less
clear. Because any interleaving is possible, all intermediate states must be assumed to
be visible states, because of the possible thread interleavings. However, a constraint
such as that getName returns a constant value could still be meaningful also in a mul-
tithreaded setting (except that the number of possible visible state pairs that have to
be considered might grow exponentially). Therefore, in a concurrent setting one could
imagine a notion of strong constraints, i.e., a relationship that has to hold for any pair
of consecutive states.

5.5 Static Class Specifications
For all class level specification constructs, static variants exists. For example, an in-
variant might restrict the value of a static variable, or a constraint might restrict the
evolution of a static variable. All static specifications have to be preceded by the key-
word static. Since instance methods might change static variables, static invariants
and constraints have to be respected by instance methods. In contrast, invariants and
constraints that only restrict the instance variables of a method cannot be invalidated
by a static method—and thus this does not have to be checked explicitly.

5.6 Inheritance of Specifications
Design by Contract allows to impose the concept of behavioral subtyping [Liskov,
1988], that is usually defined through the Liskov substitution princple, or Liskov prin-
ciple for short [Liskov and Wing, 1994].9 A type T ′ is a behavioral subtype of type T
if every observable behavior of T is also observable on T ′. In an object oriented pro-
gram, this means that any subclass may be used wherever a superclass is expected.
Behavioural subtyping expresses the idea that a subclass thus should behave as the su-
perclass (at least, when it is used in a superclass context). Subclasses in Java do not
always define behavioral subtypes. They can be used simply for the purpose of code
reuse.

But what exactly is the expected behavior of a linked list? Surely, given concrete
implementations in Java, there is no indeterminism that can be refined. This means
there cannot be strict behavioral subtypes regarding all behaviors; the substitution
principle as originally stated by Liskov [1988] is too strong in practice (cf. [Leavens,
1988]). Instead, we focus on the client perspective again and define behavior subtypes
regarding contracts (and invariants). This means that a class C′ is a behavioral subtype
of a super class C, if for every method m implemented in both C and C′ (i.e., the imple-
mentation in C′ is overriding), every specification case for C :: m is also a specification
case for C′ :: m, and that the contract of C :: m is refined by the contract of C′ :: m. A

9It is named the “constraint rule” there.
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full formalization of this definition of behavioral subtyping can be found in [Leavens
and Naumann, 2006].

To ensure that a subclass indeed defines a behavioral subtype, specification inher-
itance can be used [Dhara and Leavens, 1995, Leavens and Dhara, 2000]: In JML,
every (nonprivate) method in the subclass inherits the overridden method’s specifica-
tion cases defined in the superclass. And in addition, all invariants of the superclass
are inherited by the subclass. Notice that this same approach applies for interfaces and
implementing classes. An interface can be specified with its desired behavior. Every
class that implements this interface should be a behavioural subtype of the interface,
i.e., it should satisfy all the specifications of the interface. Concretely, this means the
following:

• every method that overrides a method from a superclass, or implements from an
interface, has to respect the method specification from the superclass;

• every class that implements an interface has to respect the specifications of the
interface; and

• every class that extends another class has to respect the specifications of that
class.

Still, it is possible to refine specifications in subclasses (or implementing classes),
in addition to what is inherited. Any additional specification of an inherited method
(whether or not the implementation is overridden) is added to the inherited specifica-
tions from the superclass, using the also keyword.

/*@ also

@

@ <subclass-specific-spec-cases>

@*/

public void method () { ...

Note that the JML comment starts with also, not preceded by anything. This is because
the inherited specification cases are still there, even if implicit, to be extended here by
whatever is written after the also.

Invariants are also fully, and implicitly, inherited. Extending the set of inherited
invariants by additional invariants specific for a subclass is easy, by simply writing
them in the subclass, using the normal syntax for invariants. The same applies also to
initially clauses and constraints.

The idea of behavioral subtypes is crucial for the correctness of object-oriented
programs. We can specify the behavior of a class in an abstract way. For example,
in class Average in Listing 7, we have an array of Student instances; the concrete
instances that are stored in the array may have different implementations, but we know
that they all implement the methods specified in the interface Student in Listing 1. This
means that we can rely on the specification case of Student#getCredits() in Line ??
of Average#averageCredits().

Respecting inherited specifications is a good practice, but it does not guarantee
behavioral subtyping per se. JML allows to make program elements more visible in the
specification than they are in the implementation (through the spec_public modifier,
see Sect. 4.1). In this way, specifications may expose implementation details. While
it is also a good practice to declare those specifications private, in many cases, this
would disable us from giving any meaningful specification. A solution to this dilemma
is abstraction, that will be covered in Sect. 8.1 below.
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6 Nonnull versus Nullable Object References
In Java, the set of values of reference type include the null reference. (Note that the
same is true for the values of array type, because each array type is also a subtype of
Object.) But even if the type system always allows null, the specifier may want to ex-
clude the null reference in many cases. Whether or not null is allowed can be expressed
by means of simple (in)equations, like, for instance, o != null, in pre/post-conditions
or invariants. However, this issue is of so dominant importance that JML offers two
special modifiers just for that, non_null and nullable. Class members (i.e., fields),
method parameters, and method return values can be declared as non_null (meaning
null is forbidden), or nullable (in which case null is allowed, but not enforced).

Here are some examples for forbidding null values.

private /*@ non_null @*/ String name;

adds the implicit invariant invariant name != null; to the class at hand.

public void setName(/*@ non_null @*/ String n) {...

adds the implicit precondition requires n != null; to each specification case of
setName.

public /*@ non_null @*/ String getName () {...

adds the implicit postcondition ensures \result != null; to each specification case
of getName.

The reader can imagine that non_null modifiers can easily bloat the specification.
Therefore, JML has built-in non_null as the default for all fields, method parameters,
and return types, such that the non_null in the above examples is actually redundant.
By only writing

private String name;

public void setName(String n) {...

public String getName () {...

without any explicit non_null, we get exactly the same implicit invariants, precondi-
tions, and postconditions as mentioned above.

But how can we allow null anyway? We can avoid the nonnull default by the
aforementioned modifier nullable. In the above examples, we could allow null (and
thereby avoid the implicit conditions), by writing

private /*@ nullable @*/ String name;

public void setName(/*@ nullable @*/ String n) {...

public /*@ nullable @*/ String getName () {...

Notice that the nonnull by default also can have some unwanted effects, as illus-
trated by the following example.

Example 17. Consider the following declaration of a LinkedList.

public class LinkedList {

private Object elem;

private LinkedList next;
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....

}

Because of the nonnull by default behavior of JML, this means that all elements in
the list are nonnull. Thus the list must be cyclic, or infinite.10 This is usually not
the intended behavior, and thus the next reference should be explicitly annotated as
nullable.

public class LinkedList {

private Object elem;

private /*@ nullable @*/ LinkedList next;

....

}

In short, it is important to remember that for all class fields, method parameters,
and method results, the null reference is forbidden wherever we do not state otherwise
with the JML modifier nullable.

In the context of allowing vs. forbidding the null reference, handling of arrays de-
serves special mentioning. The additional question here is whether, or not, the prohibi-
tion of null holds for the elements of the array. Without loss of generality, we consider
the following array typed field declaration: String[] arr;. Because of nonnull being
the default, this is equivalent to writing /*@ non_null @*/String[] arr;. Now, in
both cases, the prohibition of null references extends, in JML, to the elements of the
array! In other words, both the above forms have the same meaning as if the following
invarants were added:

//@ invariant arr != null;

//@ invariant (\forall int i; i >= 0 && i < arr.length; arr[i] != null);

Again, no such invariant is needed for dissallowing null; writing String[] arr; is
enough. We can, however, allow null for both, the whole array and its elements (at
first), by writing /*@ nullable @*/String[] arr;. To that, we can add further re-
strictions. For instance, if only the elements may be null, but not the whole array, we
can write:

//@ invariant arr != null;

/*@ nullable @*/ String [] arr;

7 Exceptional Behavior
So far, we have only considered normal termination of methods. But in some cases,
exceptions cannot be avoided. Therefore JML also allows one to specify explicitly
under what conditions an exception may occur.

The signals and signals_only clauses are introduced to specify exceptional post-
conditions. In addition, one can give an exceptional_behavior method specification
that expresses that a method must terminate with an exception. Exceptional postcon-
ditions have the form signals (E e) P, where E is a subtype of Throwable, and the
following meaning: if the method terminates because of an exception that is an in-
stance of type E, then the predicate P has to hold. The variable name e can be used
to refer to the exception in the predicate. The signals_only clause is optional in a

10A linked data structure having infinite length is indeed a contradiction. At runtime, there are only
finitely many created objects on the heap.
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method specification. Its syntax is signals_only E1, E2, . . ., En, meaning that if
the method terminates because of an exception, the dynamic type of the exception has
to be a subclass of E1, E2, . . . , or En. If signals_only is left out, only unchecked excep-
tions, i.e., instances of Error and RuntimeException, and the exception types declared
in the method’s throws clause are permitted.

1 class Average {

2

3 /*@ spec_public @*/ private Student [] sl;

4

5 /*@ signals_only ArithmeticException;

6 @ signals (ArithmeticException e) sl.length == 0;

7 @*/

8 public int averageCredits () {

9 int sum = 0;

10 for (int i = 0; i < sl.length; i++) {

11 sum = sum + sl[i]. getCredits ();

12 };

13 return sum/sl.length;

14 }

15 }

Listing 7: Class Average

Example 18. Consider for example class Average in Listing 7. The specification of
method averageCredits states that the method may only terminate normally, or with an
ArithmeticException—and thus, it will not throw an ArrayIndexOutOfBoundsException.
Moreover, if an ArithmeticException occurs, then in this exceptional state the length
of sl is 0.

Notice that it is incorrect to use an ensures clause, instead of a signals clause:
an ensures clause specifies a normal postcondition, that only holds upon normal ter-
mination of the method.

Above, in Sect. 2 we discussed normal_behavior specifications. Implicitly, these
state that the method has to terminate normally. Similarly, JML also has an exceptional_behavior

method specification. This specifies that the method has to terminate, because of an ex-
ception. As mentioned above, a behavior specification only enforces that a method
terminates, but it does not exclude exceptional termination. Thus a behavior specifica-
tion may well contain a signals or signals_only clause, whereas a normal behavior
specification may not contain these, and an exceptional behavior specification may not
contain an ensures clause.

As mentioned above, a single method can be specified with several method spec-
ifications, joined with also. Exceptional behavior specifications are typically used in
this case.
Example 19. Consider the more detailed specification for averageCredits in Listing 8.

This states that if sl.length > 0, i.e., there are students in the list, then the method
terminates and the result is the average value of the credits obtained by these students.
If sl.length == 0 then the method will terminate exceptionally, with a ArithmeticException.

In this example, the two preconditions together cover the complete state space for
the value of sl.length. If sl.length could be less than 0, the method’s behavior would
not be specified.
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class Average2 {

/*@ spec_public @*/ private Student [] sl;

/*@ normal_behavior

@ requires sl.length > 0;

@ ensures \result ==

@ (\sum int i; 0 <= i && i < sl.length;

@ sl[i]. getCredits ())/sl.length;

@ also

@ exceptional_behavior

@ requires sl.length == 0;

@ signals_only ArithmeticException;

@ signals (ArithmeticException e) true;

@*/

public int averageCredits () {

int sum = 0;

for (int i = 0; i < sl.length; i++) {

sum = sum + sl[i]. getCredits ();

};

return sum/sl.length;

}

}

Listing 8: Class Average

Finally, it is important to realize that invariants and constraints also must hold when
a method terminates exceptionally. This might seem strange at first: something goes
wrong during the execution, so why would it be necessary that the object stays in a
good state. But in many cases, the object can recover from the exception, and normal
execution can be resumed. But this means that it is necessary that also when an excep-
tion occurs, the object stays in a ‘welldefined’ state, i.e., a state in which the invariants
hold, and that evolves according to the constraints.

A Note on False In exceptional behavior specifications, one often sees specifications
like:

signals (Throwable e) false;

This is a way to state that an exception should not occur: if the exception occurs, the
property false should hold. And as this is this never the case, the exception may not
occur.

Similarly, if one specifies a postcondition ensures false; this states that a method
should not terminate normally. Thus a method specification:

ensures false;

signals (Throwable e) false;

diverges true;

implicitly says that a method should never terminate (either normally, or exceptionally).
Finally, a method can also be specified with a precondition requires false;. This

means that the method may not be invoked, as no caller can fulfill the precondition of
the method.
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8 Specification Only Class Members
The previous sections shows how the behavior of code members is specified in JML.
But sometimes it is easier or even required to introduce new members only for specifi-
cation.

Model fields, as discussed in Sect. 8.1, allow one to provide abstraction from the
concrete program state. For each abstract state, a relationship to the concrete program
state can be defined. In addition to model fields, sometimes it is also useful to define
model methods, i.e., methods that are used in specifications only.

This section also introduces ghost variables (Sect. 8.2). These can be used to extend
the state space with specification only information. They do not provide abstraction,
but can record extra information. The use of model and ghost fields is often confused,
and therefore Sect. 8.3 compares both approaches, and highlights their differences.

8.1 Model Fields and Model Methods
An important feature of specifications is that they provide abstraction over the concrete
implementations. Model fields serve as an abstraction feature in a familiar guise. They
are declared like regular fields, but within JML specifications and with the modifier
keyword model. Model fields can be read from like regular fields, but there are no as-
signments to them since they do not have a state of their own. Instead, to make sure that
the concrete implementation corresponds to the abstract specification, a link between
the two has to be made. For this purpose, the represents clause defines how the value
of the abstract variable is defined in terms of the values of the concrete entities. In the
so called functional form, the represents clause, that is a class member, appears similar
to an assignment, as can be seen in the following example taken from [Breunesse et al.,
2005].

Example 20. Class Decimal implements decimal variables using an intPart and decPart

variable, but the specification is given in terms of a single model field that represents
the value of the composed decimal number.

class Decimal {

public static final short PRECISION = (short) 1000;

/*@ spec_public @*/ private short intPart = (short) 0;

/*@ spec_public @*/ private short decPart = (short) 0;

//@ model int value;

//@ represents value = intPart * PRECISION + decPart;

}

Sometimes, a represents clause cannot be defined directly as a translation into con-
crete variables; sometimes a (nonfunctional) relation between the abstract and the con-
crete state can be expressed, sometimes only a dependency relation. JML provides a
way to define non-functional represents clauses. Instead of the assignment operator,
they consist of the keyword \such_that followed by a boolean expression. It means
that the model fields points to some value such that this condition is satisfied.

Example 21. Consider class MatrixImplem in Listing 9. It implements a matrix as
a single array (on some platforms, as JavaCard, only one-dimensional arrays are al-
lowed). A model variable matrix is declared, that specifies the abstract representation
of the matrix.

32



Unfortunately, no functional represents clause can be specified for this. Instead,
the such_that keyword is used to define a relational represents clause, that enables to
write the specifications of the matrix methods in terms of the abstract matrix variable.

Model fields are useful in many cases. Typical examples are specifications of in-
terfaces. The behavior of an interface is specified in terms of model variables, and the
classes implementing the interface define represents clauses for these model variables,
relating them to their own concrete implementation. Because of the flexible connec-
tion between concrete and abstract state using the represents clause, this does not
impose any restriction on the internal state of a class implementing the interface. Note
that in interfaces, model field declarations are static by default, nonstatic model field
declarations must use the modifier instance.
Example 22. Listing 10 gives an alternative specification for interface Student using
model fields. It shows the specification for an implementing class CCStudent. Note
that it does not declare the model variables, but only defines the represents clause.

Sometimes, to complete a specification, one needs a method that only is intended
for specification. To support this, JML provides model methods. A model method
is defined as part of the specification. It can be implemented, but it may also be ab-
stract. And the behavior of a model method is typically defined in terms of its pre- and
postconditions again. Typical usages for model methods are:

• if the specification needs a method that is not related to the code, for example to
sum all the elements in an array;

• if the specification needs a method that cannot be implemented easily, but that
can be specified without any problem.

8.2 Ghost Variables
Sometimes the information needed in specifications is not provided by the source code
itself. Typical examples are specifications that express something about the control
flow, e.g., how often or in which order methods are called, or about the used resources,
e.g., to limit the number of objects. This additional knowledge can be modelled with
ghost variables. These are specification-only variables that can be updated in the spec-
ification, via a special set annotation, placed inside a method body.

A ghost variable in JML can be defined as a class/instance member or as a local
variable. In both cases, it is declared as a normal Java variable, but inside a JML
comment preceded by the keyword ghost. It is important to know that the used type
might be a specification-only type such as \bigint (see Sect. 9). The initial value of a
ghost variable can be directly assigned during its declaration. Its value can be updated
during method execution by a set statement. This is a JML comment placed like a
normal statement within a method body, consisting of a keyword set followed by an
assignment. The left side of the assignment has to be a ghost variable and the right
sight can be any side effect free JML expression.
Example 23. Consider class Tries in Listing 11. This class supports operations that
might occasionally fail, and then should be retried, instead of returning an error. A
typical example of such an operation would be modifying a file, that might be tem-
porarily locked by the operating system. Method tryMaximalNTimes does a maximum
of n tries of the doTry operation, before returning a failure. To describe the behavior
of this method, ghost variables are very convenient, because the number of successful
and failed tries is only part of the specification, and not of the program itself.
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public class MatrixImplem {

//@ public model int[][] matrix;

private int x;

private int y;

private int[] matrix_implem;

/*@ represents matrix \such_that

@ (\forall int i; i >= 0 && i < x;

@ (\forall int j; j >= 0 && j < y;

@ matrix[i][j] == matrix_implem[x * j + i]));

@*/

/*@ ensures

@ (\forall int i; i >= 0 && i < x;

@ (\forall int j; j >= 0 && j < y;

@ matrix[i][j] == 0));

@*/

public MatrixImplem(int x, int y) {

this.x = x;

this.y = y;

matrix_implem = new int [x * y];

}

//@ ensures \result == matrix[i][j];

public /*@ pure @*/ int get (int i, int j) {

return matrix_implem[x * j + i];

}

/*@ ensures \result >= 0

@ ==> matrix[\result][ coordY(elem)] == elem;

@*/

public /*@ pure @*/ int coordX (int elem) {

for (int i = 0; i < matrix_implem.length; i++)

if (matrix_implem[i] == elem)

return i % x;

return -1;

}

/*@ ensures \result >= 0

@ ==> matrix[coordX(elem )][\result] == elem;

@*/

public /*@ pure @*/ int coordY (int elem) {

for (int i = 0; i < matrix_implem.length; i++)

if (matrix_implem[i] == elem)

return i / x;

return -1;

}

}

Listing 9: Represents clause using \such_that
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public interface Student {

/*@ public instance model int status;

@ public instance model int credits;

@ represents status = (credits < 180 ? bachelor : master );

@*/

/*@ instance invariant status == bachelor || status == master;

@ instance invariant credits >= 0;

@*/

public static final int bachelor = 0;

public static final int master = 1;

/*@ pure @*/ public String getName ();

//@ ensures \result == status;

/*@ pure @*/ public int getStatus ();

//@ ensures \result == credits;

/*@ pure @*/ public int getCredits ();

//@ ensures getName (). equals(n);

public void setName(String n);

/*@ requires c >= 0;

@ ensures credits == \old(credits) + c;

@*/

public void addCredits(int c);

/*@ requires credits >= 180;

@ requires status == bachelor;

@ ensures credits == \old(credits );

@ ensures status == master;

@*/

public void changeStatus ();

}

class CCStudent implements Student {

private int[] creditList;

/*@ represents credits =

@ (\sum int i; 0 <= i && i < creditList.length; creditList[i]);

@*/

// rest of class continued ...

}

Listing 10: Interface Student with model fields and an implementation.
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Two ghost variables are declared: successful and failed. The specification of
tryMaximalNTimes ensures that if it returns true method doTry was exactly once suc-
cessful and failed at most n− 1 times and if it returns false otherwise method doTry

was never successful and failed exactly n times. The ghost variables are updated in
each loop iteration.

1 public abstract class Tries {

2 //@ ghost private int successfulTries;

3 //@ ghost private int unsuccessfulTries;

4

5 public abstract boolean doTry ();

6

7 /*@ ensures \result ==> successfulTries == \old(successfulTries) + 1 &&

8 @ unsuccessfulTries >= \old(unsuccessfulTries) &&

9 @ unsuccessfulTries <= \old(unsuccessfulTries) + 2;

10 @ ensures !\result ==> successfulTries == \old(successfulTries) &&

11 @ unsuccessfulTries == \old(unsuccessfulTries) + 3;

12 @*/

13 public boolean tryMaximalThreeTimes () {

14 int i = 0;

15 boolean done = false;

16 while (i < 3 && !done) {

17 if (doTry ()) {

18 //@ set successfulTries = successfulTries + 1;

19 done = true;

20 }

21 else {

22 //@ set unsuccessfulTries = unsuccessfulTries + 1;

23 done = false;

24 }

25 i++;

26 }

27 return done;

28 }

29 }

Listing 11: Usage of ghost variables

8.3 Ghost Variables vs Model Fields
It is important to understand the difference between model and ghost variables. Both
are variables that are used for specification purposes only, and they do not occur during
the execution of the program.

However, model variables provide an abstract representation of the state. If the un-
derlying state changes, implicitly the model variable also changes. Often it is possible
to define this relationship explicitly as a translation, but sometimes it can only be given
in a nonconstructive manner (or even as a dependency relation).

In contrast, ghost variables extend the state. They provide some additional infor-
mation that cannot be directly related to the object state. Ghost variables are often
used to keep track of the events that have happened on an object, e.g., which meth-
ods have been called, how often have these methods been called etc. There also exists
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work where ghost variables have been used to keep track of the resources used by the
program: every time a new object is created, there is an associated set-annotation that
increases a resource counter, modelled as a ghost variable [Barthe et al., 2005]. In this
way, the specification can state something about the number of objects that have been
created by the program. This information allows then to define a resource analysis over
the application.

9 Integer Semantics
Since JML incorporates Java expressions, specifications also adhere to the semantics of
the Java numerical data types. This means in particular that always special care has to
be taken regarding overflows in integer operations11. Undoubtedly, dealing with finite
numerical data types is a very common source of programing errors. The most infa-
mous example from the real world is the maiden flight of Ariane 5, where conversion of
64-bit floating point data to 16-bit integers finally caused the spacecraft to be destroyed
just seconds after lift off [Nuseibeh, 1997]. It is thus desirable to detect such errors
and to not repeat them in the specification. We will show how to avoid this problem
through the use of JML’s \bigint data type, that represents the mathematical integers.
This section does not discuss semantics of integral data types in general; that can be
found in [Beckert et al., 2007, Chap. 12] or (more elaborate) in [Schlager, 2002].

Example 24. Regard the short method mult() below; it returns a*b, but this is not
multiplication in the mathematical sense, since an overflow may occur.

public int mult (int a, int b) { return a*b; }

The naive specification ensures \result == a*b; would be trivially true since it uses
the same overflow semantics.

This example shows a feature of Java that may be a large source of confusion. Inte-
ger operators in Java are often misunderstood to equal their mathematical counterparts,
see, e.g., the survey by Chalin [2003]. But the actual functionality12 represented by,
e.g., a*b (where both are int expressions) is ((a+ 231) · (b+ 231) mod 232)− 231).
In addition, these operators are overloaded – the * operator has different semantics
if one operand is of type long (64-bit integers). This means that, in many situa-
tions, naive specifications are just incorrect due to the presence of overflows. For in-
stance, in Listing 4, the invariant that credits are non-negative can be broken by method
addCredits(), that does not check for overflows.

Example 25. To display even more obscure characteristics of overflow semantics, the
following boolean JML expression is trivially true. We leave it to the reader to find out
with which element the quantifier would be instantiated.

(\exists int x; x-1 > x

&& (\forall int y; x <= y))

&& x == -x

&& x != 0 && x * 2 == 0);

11Similar issues arise with rounding in floating point operations, which however will not be covered here.
12More mathematically speaking, the int data type with operators + and * forms a finite Abelian ring

that is isomorphic to Z/Z232 . This means that addition and multiplication are commutative, associative, and
distributive; but there are zero-dividers—as shown in Example 25.
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Besides Java’s bounded integer types (also known as bit vector types), JML offers
the specification only primitive type \bigint, that represents the mathematical inte-
gers Z. ‘Specification only’ means that, besides variables bound by a quantifier, only
ghost variables and ghost and model fields can be declared with type \bigint. The
Java standard library also provides a type called BigInteger, that represents arbitrary
precision integers. While \bigint is a primitive type with an infinite number of el-
ements, BigInteger is just a regular Java object type. This means, in particular, that
instances of BigInteger must be created through constructors and that quantification
makes little sense since it only ranges over the (finitely many) created instances. It is
therefore inadequate for specification purposes.

Let us come back to Example 24. How can we specify that there is no overflow? In
Java, all arithmetic operations are unchecked, i.e., an overflow is not indicated in any
way, e.g., by exceptions. A precondition like a*b <= Integer.MAX_VALUE is trivially
true. Instead, we can apply numerical conversion to \bigint to expressions of type
int. Note that this kind of conversion, a widening, has no effect on the values of a

and b, but on the semantics of the * operator. Under the preconditions that the (mathe-
matical) product of a and b is within the bounds of int, we can ensures that the result
is indeed the mathematical product:

//@ requires Integer.MIN_VALUE <= (\bigint) a * (\bigint) b;

//@ requires Integer.MAX_VALUE >= (\bigint) a * (\bigint) b;

//@ ensures \result == (\bigint) a * (\bigint) b;

public int mult (int a, int b) { return a*b; }

Because this specification is tedious to write and even more horrible to read, classes
and methods can be annotated in JML with math modifiers [Chalin, 2004]. The default
integer semantics in specifications can be changed by declaring the method spec_bigint_math,
that achieves the above while saving to write down casts explicitly.

//@ requires Integer.MIN_VALUE <= a * b;

//@ requires Integer.MAX_VALUE >= a * b;

//@ ensures \result == a * b;

public /*@ spec_bigint_math @*/ int mult (int a, int b) { return a*b; }

An even simpler way to express the absence of overflows is to change the semantics of
the Java implementation through the code_safe_math modifier. It causes the program
to be interpreted as if operations were checked, leading to an exception in case of
overflow. The only thing left to show is that there are no exceptions:

//@ signals_only \nothing;

public /*@ code_safe_math @*/ int mult (int a, int b) { return a*b; }

There are six math modifiers in total, declaring integer expressions in specifications
or code to be interpreted as either Java integers with default operations, mathematical
integers, or Java integers with checked operations. While these modifiers are currently
not directly supported, the KeY prover offers to select different integer semantics.

10 Specification for Verification
The previously discussed specification constructs are essential to the Design by Con-
tract philosophy and relevant to all analysis techniques. However, for static verification
of Java programs it is typically required to provide some additional information, like
the locations a method might access (Sect. 10.1); guidance for the verification tool in
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the presence of loops via loop invariants (Sect. 10.2); or in general via assert statements
(Sect. 10.3).

10.1 Framing
An important aspect of verification is modularity. Each method is verified in isolation,
and any method call inside a body is abstracted by its method specification.

To achieve this, it is not enough to specify what a method does; it is also required
to specify what a method does not do. This is known as the frame problem [Borgida
et al., 1995, Müller et al., 2002]. Basically, for modular verification one needs to know
what is the frame of a method, i.e., what are the variables that may be changed by the
method, and what is the anti frame, i.e., which variables may not be changed by the
method.

To specify this, JML uses the assignable clause. This provides a set of variable
locations that may be modified by a method (thus, it may be an over-approximation
of the actual set of locations that is modified by the method). Location sets can be
given through comma separated lists of single variables or one of the special keywords
\nothing (only locations of newly allocated objects may be changed, corresponds to
weak purity, see Sect. 4.5), \everything (any location may be changed), this.* (all
locations provided by the current object), and array[*] or array[i..j] (all elements
in the array or between indices i and j). While assignable clauses are attached to
single specification cases, pure methods are defined to have an empty frame under
any precondition. The JML extension used in KeY, called JML*, provides additional
constructs to specify frames, offering more flexibility. Most important, in JML*, the
keyword \strictly_nothing denotes strictly the empty set of locations; strictly pure
methods are annotated with strictly_pure, see Sect. 4.5.

Example 26. Listing 12 contains the specification of Listing 1, but with assignable
clauses added.

Method addCredits increases the achieved credits, which means that it may have
to update the master flag to maintain the invariant. Therefore, the assignable clause of
this method lists the instance variables credits and master. Even though the variables
are not modified directly by the method, it is required to list them in the assignable
clause, because they may be modified during the method execution.

Methods updateCredits, changeToMaster and setName modify only one instance
variable, that is listed in the assignable clause of their method specifications.

Finally, method getName is specified as a pure method, that automatically implies
that the assignable clause is \nothing by default.

Of course it would be possible to add the information in the assignable clause to the
postcondition, explicitly specifying that the variables not mentioned in the assignable
clause are not changed. But this is not a satisfactory solution: a class might have many
variables and only a few are typically changed by a method. Moreover, when a new
variable is added, for every method that does not change it, an additional postcondition
about this variable not being changed would have to be added. As one can imagine,
this is error-prone, and leads to overly verbose specifications.

10.2 Loop Invariants
A verification tool typically needs some guidance in presence of loops to verify that a
method implementation complies to its specification. This is due to the general impos-
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1 public class Student {

2 private String name;

3

4 /*@ invariant credits >= 0;

5 @*/

6 private int credits;

7

8 /*@ invariant credits < 180 ==> !master &&

9 @ credits >= 180 ==> master;

10 @*/

11 private boolean master;

12

13 /*@ requires c >= 0;

14 @ ensures credits == \old(credits) + c;

15 @ assignable credits , master;

16 @*/

17 public void addCredits(int c) {

18 updateCredits(c);

19 if (credits >= 180) {

20 changeToMaster ();

21 }

22 }

23

24 /*@ requires c >= 0;

25 @ ensures credits == \old(credits) + c;

26 @ assignable credits;

27 @*/

28 private void updateCredits(int c) {

29 credits += c;

30 }

31

32 /*@ requires credits >= 180;

33 @ ensures master;

34 @ assignable master;

35 @*/

36 private void changeToMaster () {

37 master = true;

38 }

39

40 /*@ ensures this.name == name;

41 @ assignable this.name;

42 @*/

43 public void setName(String name) {

44 this.name = name;

45 }

46

47 /*@ ensures \result == name;

48 @*/

49 public /*@ pure @*/ String getName () {

50 return name;

51 }

52 }

Listing 12: Full specification of Student with assignable clauses
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sibility to statically evaluate the loop body repeatedly until the loop condition evaluates
to false. The number of iterations is not static but depends on dynamic input parameters
and initial states. In program verification, the dominating solution to this problem is the
usage of a loop invariant [Floyd, 1967, Hoare, 1969]. This is a formula whose validity
is preserved by the loop body (given the loop condition was true before). From this we
can conclude that, if the entire loop starts in a state where the loop invariant holds, then
it will still hold once the loop terminates, in addition the negated loop condition13.

There exits approaches to automated invariant generation [German and Wegbreit,
1975, Karr, 1976], and the recent years saw a very dynamic development in this area.
Yet, much more needs to be done to automatically find good invariants, and to integrate
that into verification tools. (The bottleneck is currently not to generate formulas that
are invariant over the loop body, but to identify those that contribute to the overall
correctness proof.) For the time being, finding loop invariants that allow to verify some
code unit is still a largely manual task. Guidance on how to write loop invariants is
beyond our scope here.

In the first place, loop invariants are proof artifacts, comparable to induction hypthe-
ses in inductive proofs. But JML offers the possibility to annotate loops, in the source
code, with invariants, to be used by verification tools during the proof process. The
corresponding keyword is loop_invariant, followed by a boolean JML expression.
The JML comment that contains this must be placed directly in front of the loop. No-
tice that a loop invariant may contain an \old(E) expression. This refers to the value
of the expression E before the method started, not to the value of E at the previous
iteration of the loop.

As long as no diverges clause (see Sect. 4.3) is defined, it is required to prove that
a method terminates. In the presence of a loop this is only possible if a decreasing

clause (also named variant) is provided together with the loop invariant. The decreas-
ing term must be wellfounded, which means that it cannot decrease forever. For the
decreasing clause, it has to be shown that it is strictly decreasing for each loop iteration
and that it evaluates to a nonnegative value in any state satisfying the invariant. There-
fore, this is sufficient to conclude that the loop terminates. In JML the decreasing term
is specified via keyword decreasing, followed by an expression of type integer.

Example 27. The loop invariant in method search in Listing 13 shows a very common
loop invariant pattern for methods iterating over an array. All the elements that have
been examined so far respect a certain property, and the loop terminates at least when
all the elements in the array have been examined. Variable found indicates in this
example whether the element to search is contained in the already examined elements
or not. A loop invariant restricting the range of loop variables is typically always
needed, but not sufficient alone. In this example, the range of loop variable i is limited
to valid array indices (0 <= i && i <= a.length). Finally, a well-founded decreasing
clause is provided, that allows to prove termination.

Loop invariants are sensitive to the frame problem as discussed for method calls
in Sect. 10.1. Basically, it is necessary to specify which variable locations might be
changed by a loop and which not. In KeY this is done with the assignable clause. Only
non-local locations have to be specified since local variables changed by the loop are
automatically added to the set of assignable locations by KeY.

Example 28. Method sum of Listing 14 computes the sum of the values provided by an
array using a for-each loop. The assignable clause is explicitly set to \strictly_nothing

13In fact, to reason about Java, it is required to also support abrupt loop termination, caused by an
exception or programmatically by a return, break or continue statement.
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1 /*@ normal_behavior

2 @ requires a != null;

3 @ ensures \result == (\exists int i;

4 @ 0 <= i && i < a.length; a[i] == val);

5 @*/

6 public boolean search(int[] a, int val) {

7 int i = 0;

8 /*@ maintaining !(\exists int j;

0 <= j && j < i; a[j] == val);

9 @ maintaining 0 <= i && i <= a.length;

10 @ decreasing a.length - i;

11 @*/

12 while (i < a.length) {

13 if (a[i] == val)

14 return true;

15 i++;

16 }

17 return false;

18 }

Listing 13: Loop invariant example to search an element in an array

to make sure that no objects are created during loop execution. Local variables are not
listed in the assignable clause since they are automatically added by KeY.

Java 1.5 introduced so called enhanced for loops (also called foreach loops, see
[Gosling et al., 2013, Sect. 14.14]) that iterate over elements of an array or a collection.
Here, the index variable is only implicit. As proposed by Cok [2008], the keyword
\index refers to this value. An example is also shown in Listing 14.

10.3 Assertions and Block Contracts
Sometimes, the program verifier needs some additional guidance in proving a contract.
This can be given as an intermediate assertion: assert P;14 We have to prove that P
is true in this intermediate state. Afterwards, we can use this additional knowledge to
prove the overall proof obligation. In this way, assertions in the code are similar to cuts
in proofs. JML also provides a dual assume statement. It is supposed to be assumed to
be true without verifying it.

While the intuition behind these constructs is clear, they perturb the concept of de-
sign by contract. In particular, the statement assume false; would make any contract
trivially satisfied. For this reason, in KeY assert and assume are replaced by block
contracts [Wacker, 2012]. The behavior of any Java block can be specified in the same
way as a method is specified (see Sect. 2) by placing the specification directly in front
of the Java block. It can contain any clause that is available for method contracts. The
only differences are: 1. that \old represents the value before executing the block, and
not the one before executing the method, and 2. that the \signals_only definition must
be explicitly specified, because a block has no throws definition from which it can be

14JML assert statements are not to be confused with Java assert statements. The former are only
present in specifications and meant to guide the prover. The latter is an actual program statement to be
checked at runtime, that raises an exception upon failure.
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1 /*@ requires array != null;

2 @ ensures \result == (\sum int i;

3 @ 0 <= i && i < array.length; array[i]);

4 @*/

5 public static int sum(int[] array) {

6 int sum = 0;

7 /*@ loop_invariant sum == (\sum int j;

8 @ 0 <= j && j < \index; array[j]);

9 @ loop_invariant \index >= 0 && \index <= array.length;

10 @ decreasing array.length - \index;

11 @ assignable \strictly_nothing;

12 @*/

13 for (int value : array) {

14 sum += value;

15 }

16 return sum;

17 }

Listing 14: Loop invariant example to compute the sum of an array

computed. Listing 15 shows the usage of a block contract within a longer method. The
block itself swaps the value of the two variables x and y.

1 public void complicated () {

2 // Some code

3

4 /*@ ensures x == \old(y);

5 @ ensures y == \old(x);

6 @ assignable x, y;

7 @ signals_only \nothing;

8 @*/

9 {

10 y = x + y;

11 x = y - x;

12 y = y - x;

13 }

14

15 // Some code

16 }

Listing 15: Usage of a block contract to swap two values

11 Conclusion
This chapter has provided a short overview of the Java Modeling Language (JML), its
main features and how it can be used to describe intended program behavior. More
information about JML, including people involved in the community effort, the refer-
ence manual, tools supporting JML, teaching material, and relevant papers are available
from the JML webpage http://jmlspecs.org/.
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To conclude, we briefly discuss other related program annotation languages, and
the wide range of tool support that exists for JML.

11.1 Tool Support for JML
One of the strong points of JML is that many different kinds of tool support exist for
it, covering the whole spectrum of formal methods. For an—unfortunately outdated—
overview of JML tools, the reader may refer to [Burdy et al., 2003]. We briefly describe
a few, more information is available from the JML webpage. It should be noted that
most recent tool development, including KeY, aims at combining different kinds of tool
support within a single environment. In particular both the JMLEclipse [Chalin et al.,
2010] and OpenJML [Cok, 2011] tool suites include their own runtime checker, static
analysis tool, and test case generator.

The original developers of JML started the work on JML with runtime checking
in mind, i.e., JML should provide support to check pre- and postconditions during
program execution. Many different tools exist that support this, for different subsets
of JML, e.g., JMLRac [Cheon, 2003], ajml [Rebêlo et al., 2008], and as mentioned
subtools of JMLEclipse and OpenJML. The runtime checking approach has also been
the basis for model checking of JML annotated programs in Bogor: every program
annotation is translated into an assertion, that is validated during the software model
checking procedure [Robby et al., 2006].

JML is also used for test case generation. JMLunitNG [Zimmerman and Nag-
moti, 2010] extends standard unit testing with knowledge derived from the program
annotations. KeyTestGen uses information from the KeY prover to improve test case
generation. As mentioned, also JMLEclipse and OpenJML provide support for test
case generation.

There are also several tools that support static checking of JML annotations, i.e.,
at compile time, without executing the program. These tools differ in the level of
automation and the support they provide for manually constructing a proof. In general,
the more user intervention is possible, the more complex properties can be verified.
KeY is a typical example of a tool that can verify complex properties, but requires
manual intervention. Other tools in this category are Krakatoa [Marché et al., 2004] and
KIV [Balser et al., 2000]. ESC/Java [Leino et al., 2000] and its followup ESC/Java2
[Cok and Kiniry, 2005] intended to provide automatic support for proving program
correctness (if necessary, compromising soundness or completeness). Another tool that
has been developed with automation in mind is JACK [Barthe et al., 2006], however it
also provided support to fall back on interactive prooving using Coq. Also the static
verification subtools of JMLEclipse and OpenJML are developed with automation in
mind. Finally, the VerCors tool set [Amighi et al., 2012] combines separation logic
support for concurrent programs with JML annotations.

Last, it should be mentioned that there are also very different tools that support
JML. There is a JMLdoc facility that allows one to generate webpages for JML an-
notations (similar to Javadoc). There also exist tools that generate JML annotations.
These range from generating arbitrary JML specifications such as Daikon [Ernst et al.,
2007], and Houdini [Flanagan and Leino, 2000] to tools that can generate one specific
class of annotations, such as Chase [Cataño and Huisman, 2003].
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11.2 Other Program Annotation Languages
The JML language has been a pioneer in the area of annotation based specification
languages dedicated to a single programming language. As explained above, in Sect. 1,
the intention of the developers was to provide a language to write assertions for Java
programs. Its design has been inspired by earlier experiences of some of the developers
on annotating Modula 3 [Leino and Nelson, 1998], and C++ (the Larch project) [Cheon
and Leavens, 1994].

As a major difference to more abstract specification languages, such as UML [Rum-
baugh et al., 2010], Z [Spivey, 1992], VDM [Fitzgerald et al., 2008], Alloy [Jackson,
2003], and the B method [Abrial, 1996], JML focuses solely on the phases of software
development in which source code is written. It is also primarily intended to specify ex-
isting code, rather than to implement programs according to a preexisting specification.
However, it should be noted that some work has been done on translating specifications
in these high level languagues into JML, e.g., for B [Cataño et al., 2012].

JML also has a number of similarities to OCL [Warmer and Kleppe, 1999], a lan-
guage for annotating UML class diagrams with constraints on object states. It is used
for both meta modeling and application modeling. In the latter case, annotations are
added to the fine design of the implementation, much like class and method specifica-
tions in JML. But unlike JML, OCL does not subscribe to any programming language,
and therefore does not address language-specific concerns (like, e.g., exceptions). Ear-
lier versions of KeY supported OCL as well [Beckert et al., 2007], but this has been
discontinued.

JML has been an inspiration for many other program annotation languages that
have emerged over the last years, such as the ANSI/ISO C Specification Language
(ACSL) [Baudin et al., 2010], and the language of the VCC tool (formerly “Verifying
C Compiler”) [Cohen et al., 2009], Spec# for C# [Barnett et al., 2005b], and Dafny
[Leino, 2010], that is an integrated annotation and programming language.

Recently, separation logic [O’Hearn et al., 2001, 2004] has become a popular al-
ternative to Hoare logic to specify program behavior. Separation logic allows explicit
reasoning about the heap, that makes it suitable for reasoning about pointer programs,
and for concurrent programs. Several approaches exist that combine separation logic
with JML (or JML like languages), to enable reasoning about pointers and/or concur-
rent programs, while maintaining the expressiveness of JML [Tuerk, 2009, Jacobs and
Piessens, 2011, Amighi et al., 2012].
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