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1 Introduction

In this thesis we will mainly be concerned with the followipgrameter dependent problem for
Emden’s equation, given by
—Au = v inQ,
u = 0 onoy (1.2)
u > 0 in€y,

whereQ);, = (—t — 1,t + 1)%\[—¢,¢]*> C R*,¢ > 0, is a square with quadratic hole. Our aim is to
prove existence and multiplicity of solutions to this preriol for various fixed values @gfand, in
some special cases, for whole intervals-ofilues. It is easy to see that problem (1.1) is in fact
equivalent to the problem of finding non-trivial solutioms t

(1.2)

“Au = [uf ingy
u = 0 on @Qt,

to which we will refer in the following.

As a motivation we will first summarize some results for Enmigl@gquation on various domains in
RY, N > 2, most of them of annulus type. For this purpose we considgepthblem
—Au = P inQ
v =yl (1.3)
u = 0 on o,

whereQ2 ¢ RY, N > 2, is a smoothly bounded domain apd> 1. It is well known that
existence and also uniqueness of solutions to this probkgerti strongly on the domaihand
the parameter. In cas« is star-shaped and> % N > 3, Pohozaev's identity [60] proves that
(1.3) admits no non-trivial solution. If howeveris subcritical, existence of non-trivial solutions
to (1.3) can be proved using e.g. the Mountain Pass TheorgmN&reover, there are examples
of domains for which existence of a solution implies alsaiitgqueness, e.g. in case©fbeing a
ball [30] or ©2 being symmetric and convex iN orthogonal directions angl close to the critical
exponent [34]. It is even conjectured that for con¢eand subcriticap there exists at most one
non-trivial solution to (1.3) [22]. However, there are sel@xamples showing that the conjecture
cannot hold when the convexity assumption is dropped. Irfdh@wving we will focus on some
results for the casg being an annulusly = {z € RY : R < |z| < R+ 1} or another annulus
type domain. In [14], [15], [20], [45], [46] and [47] the autfs proved the existence of nonradial
positive solutions in expanding annuli for sufficientlydarR and moreover that the number of
rotationally non-equivalent solutions tends to infinity/as—+ oo. Here some of the authors used
the invariance of annuli w.r.t. different symmetry groupsy. in [45] the existence of critical
points of the associated functional on subspace&gf2) which are invariant under rotations by
a fixed angle is proved.

If ©is no longer an annulus, but still an annular-type doma, with expanding hole like our
domain(2, above, one expects similar multiplicity results as in thevabpapers. Indeed, in [1],
[15] and [25] the authors proved the existence of an incngasumber of positive solutions as the
domain expands. [2] covers also the case of sign changingiaes. The work of Ackerman et
al. ([1] and [2]) is inspired by [25], and use ground stateigohs of the limit problem in the open
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strip (or cylinder in higher dimensions) as building blo¢ts solutions of (1.3) when the domain
expands. The result is proved using a Lyapunov-Schmidtatemtuargument. In contrast to the
multibump solutions which are constructed in [1] and [2E #uthors in [7] proved the existence
of almost-radial solutions in annular-type domains. Hesmdins which are diffeomorphic to an
annulus (by some diffeomorphisi) are considered and it is shown that there exist solutians (f
sufficiently expanded domain) which are closestpo 1", wherewy, is the unique positive solution

of (1.3) on the corresponding annulus.

All results which are proved in the previously mentionedgrastate existence and multiplicity in
the asymptotic case, i.e. when the expansion parametes temafinity, and moreover the domain
is smoothly bounded. We finally want to mention two papers laynd2r ([23] and [24]) where
the opposite case, a domain with one or more small holes,nsidered. It is proved that if the
solutions of (1.3) on the domain without hole are non-deggeeand the holes are not too close to
the boundary and sufficiently small, then the number of p@s#olutions on the domain with holes
equals the number of positive solutions on the domain withole. If the smoothness condition
on the boundary of the domain could be dropped, this resuliepto (1.2) would imply that
there exists a unique positive solution of (1.2} ié sufficiently small. Note that nondegeneracy
and unigueness of the positive solution of (1.2) withreplaced by(—1,1)? has already been
proven e.g. in [21].

The above papers motivate that also for problem (1.2) we atxpeltiplicity of solutions and
moreover an increasing number of solutiong gsows. It is therefore our aim to prove existence
and multiplicity of solutions to that problem for variousdik values ot or for whole parameter
intervals. Since the methods in the cited papers gave sé'suity” in the asymptotic case we will
use a completely different approach via a computer-assisizof.

In the last decades the increasing performance of comphéses led to a number of proofs in
mathematics which are computer-assisted. The first magordm proved with the help of a com-
puter was the Four-Colour-Theorem (1976, [4]) but also theolas Kepler-conjecure was proven
computer-aided.

In the following we mention some computer-assisted resdteerning partial differential equa-
tions. We are aware of two major different approaches fovipgexistence of solutions to partial
differential equations via computer-assistance: one éstduM.T. Nakao and the other one due to
M. Plum. Both methods have in common that the given bounddoevaroblem is reformulated
as a fixed point equation, and the assumptions of a fixed pgo#orém to solve this problem are
checked using the computer. However, the constructionediited point theorem and the methods
for proving its assumptions differ, e.g. while Nakao’s nugthrequires verified solution of large
linear and nonlinear systemsIif* and needs explicit a-priori projection error bounds, théroe
by Plum needs estimates on the spectrum of a self-adjoimatgpelt depends on the given prob-
lem to decide which of both approaches is more suitable asidra use. All results in this thesis
have been obtained following the method of M. Plum. The mdwaatage is that it can also be
applied to unbounded domains as it will be done in chapter 8.

Results proved by Nakao’s method include e.g. verificatioaaodditions to elliptic systems [63],
parabolic [53] and hyperbolic [52] equations, stationaysons for Navier-Stokes problems [36]
and also verification of solution curves [51]. A recent syrgaper [54] explains some variants of
Nakao’s method and includes many additional referencasthiéanethod of Plum we would like
to mention [59], where the existence of an unknown soluti@mbh for the Gelfand problem was
proved, as well as [12] which is concerned with the verifmaif multiple travelling wave solu-
tions of a nonlinear beam equation. In [50] and [49] it hasnbe®ved that the positive solution
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of —Au— A u—u? = 0in (0, 1)?, with homogeneous Dirichlet boundary conditions, is ugigad
nondegenerate for all € [0, 27%) andp = 2, 3.

A general overview and introduction to the method of M. Plemgiven in [58] and for some more
examples we refer to [38], [13] and [44].

The main idea of Plum’s method is to prove that in a suitabighi@urhood of some approximate
solutionw to the given problem a true solutianexists. As already mentioned this is achieved by
constructing an equivalent fixed point problem for the etres w — u, similar to but a bit more
general than the formulation in the Newton-Cantorovich Taeo In proving that the corres-
ponding fixed point operator maps a small ball into itself veeah estimates for the defect of the
approximate solution as well as a bound for the inverse dlitle@rization of the given problem at
w, which is obtained via eigenvalue bounds.

This thesis is organized as follows:

In chapter 2 we reformulate problem (1.2) as an equationefam F(u) = 0 with F being a
map between Banach spaces. We will then explain how the fixied pablem mentioned above
is constructed and formulate and prove the main existertemaciosure theorem. The subsequent
three chapters are devoted to the computation of the maredrents of this theorem: In chapter
3 we introduce methods to compute approximate solution.®),(which provide a sufficiently
small defect. The defect computation, which turns out todbear technical, is explained in detail
in chapter 4. Finally chapter 5 shows that a bound for thergsevef the linearization amounts to
the computation of bounds for the spectrum of some selftaidpperator. Therefore we will recall
some methods concerning the calculation of upper and loigenealues bounds and explain their
application to the given problem.

In chapter 6 we present both purely approximate and rigdyougsified results to problem (1.2)
for fixed values of ina gridtg < t; < ... <t, < 3wheret; —t;_,issmallforall: = 1,...,n.
The results provide existence, multiplicity and moreovesiesure of solutions to problem (1.2).

The subsequent chapter 7 is concerned with an existenceretmkere result for solutions of
(1.2) whent € [t;_1,t;] andt; given as above. We present an interpolation/perturbatigunaent
which yields approximate solutions, defect data and bododshe inverse of the linearization
forall t € [t;_1,t;] as well as an approach to verfiy the existence of smooth ealltianches
(ue)te(t;_1 4. The chapter concludes with some verified results.

In chapter 8 we consider the equatie\u = |u|?> with homogeneous Dirichlet boundary con-
ditions on the unbounded-shaped domaif® = ((—1,00) x (0,1)) U ((—=1,0) x (—o0,1)). We
prove the existence of a symmetric solution to this problewirg a bump centered in the corner
of the domain. Besides that this problem and the solutionraeeasting on their own, the solution
might later also be used as a building block in expanding dlesrfaaving rectangular corners. This
is motivated by [1] and [2], where smoothly bounded domanescansidered and the solution on
the inifinite strip is used as a building block.

Chapter 9 revisits problem (1.2) for parameter values3 (ort > 1.5 in some cases). By using
basic corner and edgebumps as building blocks (similartadiba in chapter 8) we prove existence
and multiplicity of solutions to (1.2) for all > 3 (or¢ > 1.5 in some cases).
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2 Existence and Enclosure Theorem

In this chapter we will formulate and prove the main existeaad enclosure Theorem for the
problem

(2.1)

—Au = |ul®* inQ
u = 0 onofl,

whereQ) C R? is a domain, not necessarily bounded. We first reformulatk) @ an equation
F(u) = 0whereX,Y andF : X — Y are to be chosen appropriately and search for approximate
solutionsw € X of this equation. The crucial idea is to prove existence afua solution in

a suitable neighbourhood of some approximate solutioniThis will be done by rewriting the
equationF(u) = 0 as a fixed point problem for the error= « — w and using Schauder’s or
Banach'’s Fixed Point Theorem.

The main idea for the existence and enclosure theorem isodeleitn [56]. The proceeding in this
chapter follows various papers by Plum or Plum et al., seg[[f8. We repeat the main steps and
results in the following.

2.1 Formulation as an EquationF(u) =0

By H}(€) we denote the space of all functionsiA(€2) with zero Dirichlet boundary values (in
the trace sense) and weak first derivative£i(2). Endowed with the inner produgt, v) ; :=
(Vu, V)2 + (u,v) 2, H(Q) is a Hilbert space. Moreover, I&~1(€2) denote the dual space of
H}(9), i.e. the space of all bounded linear functionaldf{(2), equipped with the usual operator
sup-norm.

LetnowF : H}(Q) — H (), F(u) = —Au — |ul>. We will first briefly repeat the well-known
way of interpreting—Awu and|u|® as elements off ~!(Q) for u € H} (). For the Laplacian, we
simply imitate partial integration:

(—Au)[v] = /QVU -Vodr forallve Hy(S).
Then
|(=Au)[v]] < /Q [Vu - Volde < [Vl 2| Vol 2 < [ Vullz|vllg (v € Hy(Q))
implies that—Aw is indeed a bounded linear functional and

= Aullg— < [IVullr2 < lullm-

Letnow f : 2 x R — R. In order to define some expression of the fof(n «) as an element
of H~1(©2), we recall Sobolev's Embedding Theorem. Sifite- R? the theorem states that the
embeddingH} (Q2) — L*(Q) is bounded for alp € [2, ), i.e. there exists some constaijt > 0
such that|wl|z» < Cp|wl|p; forallw € Hy(Q2). Denoting byp’ the dual number tp (which is

defined by the relatior} + -, = 1) we obtain for any functiom € L' (Q2)

/Q!w’v\ dz < |lwll o [vllze < Cyllwll o [vllmy, (v € Hy(2), (2.2)
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where we used bBlder’s inequality and the above embedding. Thus for ging (1, 2] we can
interpretw € L¥ () as a bounded linear functional éf} () via the definition

wly] = /Qwv da.

The crucial condition forf (-, u) being an element dff 1 () is therefore given by (-, u) € L¥ (Q)
for somep’ € (1,2]. This is for instance satisfied |if (-, y)| < C(|y| + |y|?) for someq € (1, c0),
and hence in particular fof (-, u) = |u|?, f(-,u) = wor f(-,u) = 3|w|wu, whereu,w € H(Q).
Therefore, F as stated above is well-defined and finding weak solutiong.4) {s equivalent to
find zeros ofF.
The mappingF is moreover Fechet differentiable with Fchet derivative (at some € H{(2))
given by

F(w)[v] = —Av — 3|w|lwv  forallv € Hy(Q).
Note that alsaF’(w)[v] € H!(Q) by the previous considerations. In the following we denote
L, :=F(w).
We assume that € H}(Q) is an approximate solution t&(u) = 0 and that constantsand K
are known such that

(i) ¢ bounds the defect of the approximate solution inthe'-norm, i.e.
IF @)+ = Il = Aw — w2 <4, (2.3)
(i) K bounds the inverse of the linearization®fatw, i.e.
[vllgy < K || Lo[v]|l - forallv e Hy(Q). (2.4)

Note that condition (2.4) immediately implies thiat is one-to-one. We will also need thay, is
onto. For this purpose we introduce the linear mapgingH} (Q) — H~1(2), given by

(®[u])(v) == (u,v) gz (u,v € Hy(€2)). (2.5)
® is an isometry, since for all € H;(2) we have
dlul) (v <Ua U>H1
Bl = sup LSOOI v,
ve HE(Q)\{0} ||”U||Hg veHL(Q)\{0} ||U||H3

(where “<” in the last step due to Cauchy-Schwarz and equality is athforv = ). Using
Riesz’ representation theorem for bounded linear functsooa a Hilbert space, we can moreover
prove that® is onto: For anyp, € H'(Q) there exists some unique € Hj (), such that
p(v) = (u,v)p forallv € Hy(Q), i.e. ®[u] = ¢ by (2.5). @ is the usual canonical isometric
isomorphism betweef; (2) and H~'(2), and we can define an inner product&n'(Q) by

(o0 -1 = (@7 ol @7 W)y (9,0 € H (). (2.6)

For the norm||| - ||| generated by this inner product we observe, using ¢ha an isometric
isomorphism,

Hlelll* = (@7 [e], @ oD ay = Il
and therefore this norm coincides with the old operator nowith the inner product defined in
(2.6), H~(Q2) becomes a Hilbert space.

In order to prove that,, is onto, we will show that
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(i) (®7'L,) (HY(Q)) is dense i} (), implying L, (H(Q)) is dense ind ~1(2),
(i) Lo(Hj () c H1(Q)is closed.

For proving (i) we first show thad~'L,, : Hg(Q) — Hy(Q) is symmetric w.r.t.(-,-) ;1. Let
u,v € H} (Q) :

(@ Lofu], v) g & (@ (7L [u))) [v] = (Lo [u)) [v]

= /Q Vv - Vu — 3|lw|wvu] de = (L,[v]) [u] 29 (u, q)_le[U])Hé.

Let nowu € H}(Q) be an element of the orthogonal complement®f!'L,)(H (), i.e. we
have
sym;netry<

0= (u, &' Ly,[v]) 1 &' Ly[u],v) gy forallv e Hy(Q).

Therefored~! L, [u] = 0, which impliesL,[u] = 0 and sincel.,, is one-to-one we finally conclude
u = 0. Thus (i) follows.

To prove (i), let(L,[u,]), .y be @ sequence if,, (H;($2)) converging to some € H~'(Q).
Condition (2.4) shows thdtu,),.cx is @ Cauchy sequence i} (2) and thus converges to some
u € H}(Q). SinceL,, is bounded, we obtaih,,[u,] — L{u] (n — oco) which givesy = L[u] €
L(H{(€2)) and therefore the closednessidfff} (Q2)) in H1($2).

We are now able to formulate and prove our main existence acld®ure theorem for problem
(2.1), see also [50, Theorem 1].

Theorem 1. Letw € H;(£2) be an approximate solution {&@.1)andd and K constants such that
(2.3)and (2.4) are satisfied. Let moreovér, > 0 be an embedding constant for the embedding
H}(Q) — L) andy := 3C3.

Finally suppose that there exists some- 0 such that

§ < — — 70 (lwl|zs + 5Cuc) (2.7)

a
K
and

2Kvya (||lwl|zs + 3Cia) < 1. (2.8)

Then there exists a solutiane H} () to problem(2.1) such that
lw —ullgy <o, (2.9)
which is moreover unique with the prope(g:9).

We will need the following lemma (see [50, Lemmas 3.1 and)3@]prove Theorem 1. For
p € [2, 00) we denote by, an embedding constant for the embeddiy2) — LP(2).

1 1 1 1 _
Lemma 1. Letpy,ps, ps, ps € [2,00) suchthat- 4 -~ + - + - = 1.

(@) Forall u,a,v € H}(Q):

llulu = lala] vl g < Cpy Cpy (lullor + [[all o) 1w — @l oz 0[] 5 -
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(b) Letu,u € H}(Q2) and suppose that for sonfé > 0
lollmy < K| Lafellli+ forall v e H(Q)
(with L,, denoting the Fechet derivative of atw € H}(f2)) and
K 1= 3Cp, Cp, K (||l por + ||| o0) | — @l zre < 1. (2.10)

Then,

K
ol < 7= I Zulo]ly forall ve Hy(Q).

Proof. (a) The Mean Value Theorem gives
1
luu — |alu = / 2tu + (1 —t)u|dt - (u — @)
0
which, for allp € HZ (), yields

1
:2//\tu—l—(l—t)m(u—ﬂ)vgpdxdt
0 Jo

'/Hu|u—|ﬂ\ﬂ]vgpdw
Q
1
< 2/ [+ (1 £ o [t — il s 0] s [0 o
0

1
= 20p30p4/ tlullr + (1= O)lfallzoi] dt - lu =@l oz 0] g |21 g
0

= Cps O ([ull Lo + (@]l on) Nl = @l oz 0] g o | g -

(b) First note that;[v] = —Av — 3|a|uv = L,[v] + 3 [|uju — |@|a] v. Using this equality and
(a) we obtain

Wl < KN Laolll - < K[1Lalolll -0 + 113 [Julu = @la] o]l ;-]
< K| Lufolll g + &llvll g,

and since by assumption< 1, the assertion follows.
O

Remark 1. Using the inequality|u — i[z» < Cp,llu — ||y leads to a sufficient condition for
(2.10). For the particular choigg = p, = p3 = p, = 4 condition (2.10) can be replaced by

foo= K ([[ullps + llallga) [lu = @llgy <1,
and the assertion of the lemma holds witinstead ofx.
Proof of Theorem 1, (see [50])irst rewrite problem (2.1) as follows: Finde H}(Q2) such that

—Au+ Aw = 3Jwlw(u —w) = Aw + W] + |u)® — [ = 3w|w(u — w).

Lo fu—u]
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Denoting byv := u — w the error between exact and approximate solution and ubatd.t, is
bijective, we can reformulate the problem as a fixed poinblenm forv:

v="T(v) =L [Aw+ [w]* + (Jw + v]* = |w|* — 3|w|wv)] . (2.11)
We will prove that the fixed point operatar : H}(Q) — Hi(Q) mapsD := {v € H}(Q) :
vz < o}, with o satisfying (2.7), into itself and is contractive @h Then Banach’s Fixed

Point Theorem ensures the existence of a unique fixed poistD and therefore the existence of
a solutionu = v* + w to problem (3.10), which is unique in the ball with radiugentered atb.

We first observe that for all, v € H} ()
1
3 ~13 - d ~13 ~
lw+v]” — |w+?]° = 3w|w(v —0) = / pr [|w+ tv + (1 = )0]* — 3t|w|w(v — )] dt
0
1
= / 3[Jw+tv+ (1 — 8)0|(w + tv + (1 — £)8) — |w|w] (v — D) dt.
0

Multiplying this equation by a test function, integratingen {2 and exchanging the order of inte-
gration on the right-hand-side yields

|| + v]* = |w + 7 = 3Jw|w(v — o

1
< s nm%/
0

peH(2)\{0}

M-

/93[|w+tv—|— (1 —t)o(w+tv+ (1 —1)0) — |w|w] (v — ) dz| dt

1
s/Vmw+w+u—wwqﬂwmww+u—ww%w—m%m
0

Sllell 4 +C4||tv+(1—t)17||Hé

<7 [(HUHHg + [0l llwllze + 5Callollg + 1905 + ||UHH§H7~}HH(})} [o = 0l 3. (2.12)

Thus we obtain for any € D (apply (2.12) witho = 0)

@4)
1Ty < K(Aw + |w) + (Jw +vf* — ]’ = Jw|wv) | -

(2.3)22.12) o [s ) Lo 5
< llwlzallvlly + ECalloli

2.7
<K [(5 + y(||w||ze + %0404)042} < a,

whencel’(D) c D follows.
To prove the contraction property dn, letv, v € D. Then

e ] i
1T (v) = T(@0) |5y < Klllw+ 0’ = w+ 0 = 3lw|w(v —0)[ 5

(2.12) ~ . - -
< Ky [(lollmg + 19l lleollze + 5Ca(loll7n + 10017 + HvHHgHvHHg)] v = 0|2

< 2Kya(||wlzs + 3Caa)llv = 0Ly,

and the assertion follows using (2.8). ]
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Remark 2. (a) Denote by () := & — va? (|lw||zs + $a) the right-hand-side of (2.7). Ob-
viously ¢ attains a positive maximum o[}, co) and thus the existence of some> 0
satisfying (2.7) is equivalent to

0 < max P(a). (2.13)

a€[0,00)

This means that has to be sufficiently small, which will be satisfied if the eppmate
solutionw is computed with high accuracy.

Furthermore, a small defect boutiavill imply a small error boundy if K is not too large.
(b) Note that (2.7) will imply (2.8) if we require that satisfies (2.13) with a strict inequality,
le.
d
i

anda is chosen appropriately. In order to prove thisdet 0 such that

(@) = max ().

a€[0,00)

Due to the structure of, a is unique and determined hy(a) = 0. The latter equation
implies

27Ka(||w||s + $Cia) =1
and therefore (2.7) and (2.8) will be satisfied fok &, « sufficiently close tav.

2.2 Computation of Embedding Constants

In the previous section we have made extensive use of thedgimgeconstant, for the em-
beddingH{(Q2) — L*(Q). The following lemma (see [58, Lemma 2]) provides an easy toay
compute embedding constants fé(Q2) — LP(Q2) for p € [2, 00). Recall thatC,, > 0 satisfies

[ull e < Cpllullgy  forallu € Hy(Q), (2.14)
where||ul[3, = [[VullZ. + [lul|7..

Lemma 2. LetQ C R? andp € [2,00). Letp* € [0, c0) denote the minimal point of the spectrum
of —A on H}(2) andv = |£]. Then an embedding constant i} (2) — L?(Q) is given by

GGG iy

-
5

1 3+t
%= (3)
(where the bracket-term is put equal to Vit 1).

Applying Lemma 2 forp = 2, p = 4 andp = 8 gives

ST

1 1 3 4 1
Cy = , Cy= ——, Cg = ( ) T-
vt (20" +4)3 2V2) (pr+4)

The computation of a lower bound fer will be explained in section 6.3. It can be done using
eigenvalue enclosure methods which are explained in sebtib
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3 Approximate Solutions

In this chapter we will introduce and explain the methodsdusethis thesis to compute appro-
ximate solutions to problem (1.2). We will start with a brrelview of the used Finite Element
space and continue with algorithms to obtain the desiredoappations. Finally we will show
how to utilize corner singular functions in order to imprae quality of the approximate solu-
tions.

3.1 Finite Elements

In this section we will briefly explain the Serendipity classFinite Elements which we used
throughout the computations. For a more general introdaatito Finite Elements we refer to the
books of Brenner and Scott [11] or Ciarlet [19].

Serendipity Elements were first described in 1968 by Erghsplrons and Zienkiewicz [29] and
have become very popular for meshes discretized by pargikeins, and thus in particular rectan-
gles. For these kinds of meshes the approximation orderren8iity Elements of order= 1, 2

in L” and piecewiséV? for 1 < p < oo is the same as for Langrangian Finite Elements of or-
derr, while simultaneously Serendipiy Elements have less @ésgoéfreedom, resulting in lower
computational cost.

For later purposes we will construct a Finite Element spduelwis suitable to discretize problems
involving not only Dirichlet but also Neumann boundary citioahs, i.e. problems of the form

—Au = f(u) InQ
u = 0 onl'p (3.1

o = 0 ondQ\I'p,

wheref : R — R is a smooth function and, C 09 is closed.

In the following, we will consider meshes discretized bythiniangles and rectangles, and Serendip-
ity Elements of order 2. We recall the constitution of a Fariilement space as it can be found in
many textbooks about Finite Elements. We start with tworesfee element&® and K¢, where

K is the triangle with corner), 0), (1,0) and(0,1) and K¢ the unit squarg0, 1)2. Sometimes

it will not be necessary to distinguish betwekf and K7, hence we will omit the index and write

K only. This will be a convention also for other variables toibeoduced later on. O we

have a finite dimensional spatéspanned by reference element shape functions, which are for
Serendipity Elements of order 2 given by

S(59) = (1—&—§)(1— 28— 2)
§t1(a%7g]) i“(%’ — 1)

Bld9) = 9@-1) for (i, ) € K", (3.2)
53(%,9) 42(1 — 2 — 9)

(e9) = dig

8(2,9) = 49(1—3 —79)
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and
$(2,9) = (1—2)(1-9)(1— 2% —29)
51(2,9) —2(1 = 9)(1 — 22 + 27)
85(2,9) = —29(3 — 2% —29)
35(”) —(1 = 2)(1+22 = 2) for (,§) € K°. (3.3)
$3(2,9) 42(1 = 2)(1 —9)
85(2,9) = 4a9(1—yg)
35(%,9) 4zg(1 — )

More precisely we have
V =V7:=spar{sl,...,31} or V=V'.=spas,...,5.}, respectively.

Each shape function is associated to a ngdé’ pfvhich are vertices or midpoints of the edges,
respectively. We denote the nodesiof by ¢/, i = 0,...,7 == m?and¢f,i = 1,...,5 = m/,
thereby observing the identities

Figure 3.1 shows the arrangement of nodes in the refereaneeals.

é 5 é é
I3 1o of d I3 L éfl
3 4] & & & é

Figure 3.1: Reference elements with corresponding nodes

Let now 7 be a partition of a bounded polygonal dom&lnc R? into images ofK = K¢ or
K = K* under affine mappings. Note that we allow both reference efésrhere, so the resulting
discretized domain may consist of both triangles and palogtams. In cas@ = €, with ,
being the domain in problem (1.2), we may require the maggpima only to be affine, but to be
an element of

N 0 1
Affpari= 4 F - K7 5 R?: F(i,g) = [ © V4 (€), aper\{0},c.deRSU
0 b i d
{F:[A(t_”RQ: F(:%,Q):a(c?sa —Slna> (%)—F(C),GER\{O},
sina  cos« U d

a € {O,g,ﬁ,%”}, c,dER},
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thereby obtaining a mesh involving only axis-parallel tigihgled triangles and rectangles. For
our purposes this will be sufficient, however for arbitragiygonal domaing? this restriction

Is too strong. We also remark that in order to discretize aalormto arbitrary triangles and
guadrilaterals one has to permit bilinear mappings.

On an elemenk’ = F(K) of T (with F € Aff par) We have a set of local shape functions

{5, 88} with s =50F1 i=0,...,m. (3.5)
Again the local shape functions are associated to the ndd&s given byF(éZ-), i=0,...,m.
Now we can define an affine equivalent Finite Element space, by

Vrp = {v e C(Q): vlr, =0andv|x € spas;,...,sh}, K€ T}. (3.6)

wherel'p, C 052 denotes the part of the boundary where Dirichlet boundangditions are im-
posed (cf. problem (3.1))./V indicates the number of unrestricted nodes7ini.e. the set
N = {&,...,&x} consisting of all interior nodes together with nodesast\I"p. Note that the
constructed Finite Element spacei$-conforming. For later purposes we will also note that there
isabasig s, ..., ¢n}of Vi r,, which satisfies the conditions (§;) = ¢;; foralli,j =1,..., N,

(& € N). As an abbreviation we will use the notatidiy := Vyg andV? := Vi sq. Clearly

Vv D Vinr, is true. In case the underlying domdinis not clear from the context, we will write
Vo, (£2).

Moreover we defindy, : C(Q) — Vy to be the interpolation operator for the Finite Element

space, which maps a functienc C(9) to its Finite Element interpolation, i.e. fare C(Q2) we
have

N
Iy, (u) = Z u(&)ps. (3.7)

Note thatly, mapsHE(Q) N C(Q) into the spacé’;?.

As a motivation for using Serendipity Elements we recall #-faeown result, which can e.g. be
found in [19, Theorem 3.2.1]: L&, (K) be the space of polynomials of degree at mosh K
and assum& 2 P, (K'). Moreover letT;, be a regular family of decompositions Gf i.e.

a) there exists a constamt> 0 such that for all € |, 75 : ZK < o, wherehy denotes the
diameter of the elemerit andpy the diameter of the largest ball containedin

b) h = max hy tends to zero,
KEeT,

andVy the corresponding Finite Element space, which is assumael ¢constructed only from one
single reference element. Then for any functioa H"'(2) we have

inf [|u— vl < CR™ ol (3.8)
veEVN
mf lu — v i) < Ch )0, (3.9)

veV]

where('is a constant not depending érand| - |, 1 o denotes the usual seminorm &f ().
The conditionV 2O P,(K) is furthermore not only sufficient but also necessary fag)and (3.9)
to hold (see [5]).
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SincePy(K) = sparfl,z,y, 22,42, zy} it is easy to see that DO P,(K) and thus the above
estimates hold with = 2.

To compare, we briefly consider Langrangian Finite Elememwitéch in fact are constructed by the
same spack’ as above in case of triangles and the spatplus a reference element shape funtion
§1(2,7) = 1629(1 — 2)(1 — ¢) in case of quadrilaterals. We introduce the notafiohfor the
underlying space. ObviouslyZ D V D 732(f() and therefore we obtain the same approximation
rate as for Serendipity Elements. Since moredvér> Ps(K) is not true, this rate can not be
improved and thus using Serendipity Elements instead ofjtaargian Finite Elements does not
lead to a loss of approximation quality in case of an affinevedent Finite Element space.

However, it is immediately clear from the above, that theragination rate is in both cases
(Serendipity and Lagrangian Finite Elements) lower, iffilnection« is not smooth but e.g. only
in H'(€2). This will also be the case in our applications, since our a@iorof interest has re-entrant
corners. We will use corner singular functions to improve #pproximations, see section 3.2.3
for detalils.

3.2 Algorithms

In order to compute approximate solutions to our given mob(1.2), we use a combination of
the Mountain Pass Algorithm and a Newton method: A simplifiecsion of the Mountain Pass

Algorithm will give an approximate weak solution to our pheim that serves as initial guess for a
Newton method. Due to re-entrant corners of the domain, vilglven introduce corner singular

functions to obtain an improved approximate solution.

In this section we always consider the spatH2) equipped with norn1|u||§{5 = [, |Vul?dz,

(u € Hy(Q)).

3.2.1 Mountain Pass algorithm

Let 2 C R? be a domain. For the problem

—Au = u? inQ (3.10)
u = 0 onoQ '
the associated energy functional is given by
J(u) = / [1Vul dz — 1u'] d, u € Hy(9). (3.11)
Q

We are now looking for critical points of the energy functidnsince.J’(u) = 0 implies thatu

is a weak solution of (3.10). Note that non-trivial solusao (3.10) are not necessarily positive,
but might also be negative or change sign. In particularafor solutionu to (3.10), also—u

is a solution. We are still only interested in positive smns to (3.10), but for the equivalent
formulation of finding critical points to the associated igyefunctional it is more convenient

to drop this requirement for the moment. By choosing somempaters in the procedure below
carefully we can hope for positive critical points, and dht#ee desired positivity a-posteriori (see
also the comments in the beginning of section 6.1).
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For the functional/ defined in (3.11) we havé € C'(H}(f2), R) and.J satisfies the Palais-Smale
condition (see [61]). Moreover we havg(0) = 0 and we can in addition prove thatis a local
minimum of J: Since2 C R? we haveH;(2) — L*(Q2) and thereforéful| s+ < Cyf|u||; for all

u € H(S). This yields

C4
T(w) = Sl — Hllds > Sl — Ll > 0= 5(0)

forallu € Hj(2) such that
V2
HUHH(} < oz

In particular this implies the existence @fa > 0 such that for alk, € H} () with [ull g = pwe
haveJ(u) > a. Since moreover for any € H;(Q2) with |[u| ;3 = 1, ands > 0 sufficiently large
it holds

J(su) = 3s* — 1sul| 14 <0, (3.12)

the Mountain Pass Theorem (see e.g. [61]) implies the exdstef at least one non-trivial critical
point of J.

The original proof of the Mountain Pass Theorem is non-gosive and does not give insight
how the critical point can be found in practise. A first algfom to compute critical points arising
from the Mountain Pass Theorem was presented by Choi and MeKien[18]. The following
simplified version is based on [17], where we modified somssseich that they are better suited
to our cubic nonlinearity.

(i) Letwy € H}(Q) be given such thaf (w) < 0.

(ii) Find the maximum ofJ along the straight half-line connectifigandwy, i.e. finds* > 0
such that/(s*wgy) = max,~q J(swp). Definew; := s*wy.

(iii) Determine somes € H}(Q) pointing into the direction of steepest descentuat(appro-
ximately, with its lengthljv[|;; chosen appropriately); see below. [[if||;; is less than a
prescribed tolerance, stop the algorithm.

(iv) Go into the direction of steepest descent: Redefipe= w; + v and go to step (ii).
We want to comment on these steps when the algorithm is aptdi¢he functional/ given in
(3.11). First note that (3.12) implies both the existenca &fnctionw, € HJ(2) as required in

step (i), and the existence of a maximumJobn the half-line{sw, : s > 0}, which is needed in
step (ii). An easy calculation shows

d o Jo [Vwol? dx Jo [Vwol? da
EJ(S’LUO)—O < 86{0,\/ fgwédff y T fgwé‘dm y

(note thatw, # 0 due to.J(w,) < 0) and moreover fog* = , /% > (0 we have
Q 0

%J(sw)

= —2/ |Vwol?dr < 0
Q

s=s*

and therefore the maximum dfon the half-line{sw, : s > 0} is attained at*w.
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We recall some considerations from [18] to find the directibsteepest descentat € H} ().
It corresponds to the functione H(2) with |[0[| 5 = 1, such that

P (ot 20) = T(w)
e—0 g

A

becomes “as negative as possible”, iweminimizes the Fechet derivative/’ at w, applied top
under the constrairjty|| ;1) = 1. For the minimizerd of that problem there exists a Lagrange
parametei € R such that

—20\AD = Aw; + wi. (3.13)

Once a weak solutiom = 2X\0 € H} () of —Aw = Aw; + w? is known,|\| can be determined
such that|9||;» = 1, and to find the sign ok note that (as — 0)

Jwited)—J(w) _ / [Vwy - Vo — wid] dz + O(e)
Q

£

91l 1 =1

(3':13’/ —9AVi - Vidr +0(e) =  —2\+0(s).
Q

Since the left-hand-side becomes negative,ifis not a local minimum of/, A must be positive.
Finally we choose := 20 in step (iii), which, due to\ > 0, points into the direction of steepest
descent. Note that Av equals the residual of the previous iteration and tfhjs;; = 2 will be
small if w, is close to a solution of (3.10) and therefore close to acalifpoint of /. Numerical
experience indicate that this choicewois appropriate.

In our application to (1.2) the Mountain Pass Algorithm isdiso find an approximate solution in
terms of Finite Element functions. Thus we choasgin (i), as well aso in (iii) to be elements
of V2. The latter leaves us with the computation of a Finite Elena@proximation of the weak
solution to the linear problem (3.13). This can be done uaiRitz-method.

3.2.2 Newton method

We first recall the Newton method in Banach spaces (see also [6]

Let X,Y be Banach-spaces; : X — Y a continuously Rechet-differentiable mapping and
w® € X such that[]—"’(w(o))]*1 is bounded and F(w®)]| is sufficiently small, i.e.w(® is an
approximate solution o (w) = 0. Then the sequencgo™) _  C X, which is defined by
OO = O ) = G 4 50 with 5 € X being the solution of

(F (@) v] = —F (&™) (3.14)
(which exists if|| F(@(©)|| is small enough, see [6]) converges to a solutionf the equation

F(w) = 0. Moreoverw is the only solution to this equation in a small neighbourhobw®.

The method can be used to construct a sequence of approxsoiat®nsw™, w® ... € X to
F(u) = 0 as follows: Instead of solving (3.14) exactly, we computeapproximate solution
v € X to that problem (witho™ replaced byw™) and definev™*) = w™ + (™, The
iteration is stopped, when for some prescribed toleransd) we have found:, € N such that

| ) — o= || < ¢
N———

—yp(ng—1)
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w(™) will then serve as new approximate solution.

We will apply the Newton method twice in the process of cormqmuapproximate solutions. First it
is used to improve the Finite Element approximation givethgyMountain Pass Algorithm. Here
X = H}(Q), Y = HY(Qy) andF(u) := —Au — |ul?. With the initial approximation,®) being
an element of/;? C H}(9) and requiring the same fef™, n € N (again using a Ritz-method
to solve the linear problems approximately) we finally obtai Finite Element approximation
w™) € VP, The second application will be explained in the end of secs.2.3.

3.2.3 Corner singular functions

In this section will briefly recall some results from [32]33and [55], which state that the solution
of the boundary value problem (1.2)

u = 0 on o),

can be split into a singular corner part and a regular pafti(t?).

Recall that our domain is given 8, = (—¢ + 1, ¢+ 1)*\[—¢, t]?, and thus features four re-entrant
cornersé; = (—t,t),& = (t,t),& = (t,—t) and&, = (—t,—t). At each of these corners we
introduce local polar coordinatés;, ;), wherer; = |z —¢&;| andy; ranges betweehandd := 37”
taking the minimal and maximal values on the two legs of th@®s&2, N B, (&;), respectively
(wherer > 0 is suitably chosen). Moreover, we define@n

2

Yi(ri, pi) =12 sin (%g&z) , (i=1,...,4). (3.15)

Obviously,y; = 0 on 99, N B(&;,r) whenr is sufficiently small and one can easily check that
Av; =0inQ, (i = 1,...,4). Foreachi € {1,...,4} we choose some fixed functioy €
H?(,)NC(Q,) which vanishes on the part 6f), wherey; does not vanish and satisfigg¢;) =
1. Defining

w; = Ay € Hy () (1=1,...,4)

a solutionu € H; () to (1.2) can be written as (see e.qg. [55, Theorem 3.4])
4
u= Z a;w; + v, (3.16)
i=1

wherev € H?(Q;) N H}(£2;) is the regular partand, € R (i = 1, ..., 4) are the so-called stress-
intensity-factors. We are now aiming at a computation oséhtactors: Using a dual singular
functionI'; we can represenmnt; by means of the solution. Let therefore

[\

Li(rs, 1) = Ti_g sin (2¢;)

and choose some fixed functidn € H2(Q2;) N C*(£2;) with the following properties:

(i) A; vanishes on the part &K2;\{¢;} wherel’; does not vanish,

(i) Ai(&) =1,
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(i) S :=A(AT) = (AN +2(VA,) - (V) € L2().

Then

vanishes o2\ {&;} and the following theorem holds [55, Theorem 3.4]:

Theorem 2. Letu € H}(€);) be a weak solution of1.2), expressed in the fori{3.16) Then

0 - _/ (Wilul® + S de (i=1,....4). (3.17)
Q

™

Clearly, a computation of the exact stress-intensity-fasdby (3.17) is only possible if one knows
also the exact solutiom. For our purpose - the improvement of the approximate smutit is how-
ever sufficient to know only approximations @f So let the Finite Element functicmt(”O) e VP
be the approximate solution of (1.2) obtained by the MounRass Algorithm and the Newton
method (computed without separate singular part). Plggiis function into (3.17) yields appro-
ximate stress-intensity-factors

1
i ::—/ [m|a§”°)|3+5@§”°)} de  (i=1,...,4).
Qy

7

The approximatiom?}”O) can now be improved as follows: Recall the Finite Elementpadkation
operatorly, defined in (3.7) and set, := a;t("O) — Iy, (Z?Zl diwi)’ which is an initial guess for
the regular part of the approximate solution to (1.2). Nowlp@a Newton method to improve the

approximation of the regular part, i.e. use= H} (), Y = H~(;) and

()

=1

4

Zdiwi +v

=1

F(v) = —-Av —

in the setting of section 3.2.2. We approximate ithth iterate of this Newton method ivi? and
denote it byv,,. The iteration is stopped when, for somg € N and a prescribed toleranee> 0,

vao - Umo—lu <€

holds. We denote the final approximation of the regular part b= v,,,, whereby our final
approximate solution to (1.2) is then given by:

4

we= Y amw;+7. (3.18)

=1
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4 Defect Computation

In this chapter we will explain how to compute a bound for tle¢edt, i.e. some constaft> 0
such that
| = Aws — w72 <0,

wherew; € H{(€);) is an approximate solution of (1.2).

4.1 Estimate byL?-Norms

By definition, one has

o, (Ve Vo = el d

I = Awe = Jwe* g1 = sup

, 4.1)
e HE(Q:)\{0} H‘PHH&

which is, due to the supremum, disadvantageous for the ctatigo of an upper bound.
We assume that € H(div,Q;) = {u € (L*())* : divu € L?*()} is an approximate
minimizer of

IVwy = pll72 + C5]
Note that|| Vw, — p||2, + CZ|| div p + |w;[*||2, is “small”, since forVw, = p alsodiv p ~ Aw; ~
—|wy|? follows (recall thato; € H}(Q;) is an approximate solution to (1.2)).
Using the triangle inequality antdiv w|| gz < ||w|| .2 for w € L?*(€);) we obtain:

div p + fa |12

H — Awt — \wt\3\|H—1 S H — le(VQ}t) + diVﬁHH—l + H le,ﬁ + ’thHH—l
< Ve = g2 + (1 div g+ [wi || -1

Finally the embeddind.?(Q;) — H () (with embedding constart, being the one of the
embeddingH} () — L*()) yields

| = Aw; — |wi*| -1 < ||[Vwe — pllz2 + Cof| div p + |wel*|| 22, 4.2)

sincediv p € L?(€;). Note that the right-hand-side of (4.2) will be small duehte (approximate)
minimizing property ofp.

Remark 3. If Aw; + |w;|®> was an element of?(£2;) (e.g. if w; was smooth enough), we could
have used the dual embedding(2;) — H~'(£2;) and thereby obtaining

| — Awy — wel|g-1 < Call = Awy — Jw || 2.

Equivalently, one can chooge= Vw; in (4.2).

4.1.1 Application to the given problem

Recall thatu; can be written as sum of a singular and an almost regularipart,

4

Wy = E dzwz‘i‘ﬁ,

=1
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2
wherew; = \;7; with cut-off functions); and singular functions; (r;, ¢;) = r? sin (%gpi) (4, 1)
local polar coordinates at the re-entrant com®ri = 1,...,4 ando € V7.

Letnowp = 31 a;Vw;+pwith 5 € (Viy)® suchthap ~ Vv and—div p ~ S5, @;Aw;+|w|?.
Plugging this into (4.2) yields

3

I = Awr = fwiPlla-+ < VD = pllz2 + Co (4.3)

(2

4
=1

4
=1

L2

Both summands on the right-hand-side of (4.3) are squars chantegrals, so we are now left to
compute upper bounds for integrals of non-negative funstiorhe first summand is an integral
with integrand being a Finite Element function. It can be pated exactly using a quadrature rule
of sufficiently high degree, applied in each element, aneruatl arithmetic. Our main concern in
this section is the computation of a tight upper bound fors@nd summand in an effective way.
The main problem is the mixture of cartesian coordinatespoidr coordinates in this integral.
Using the notations concerning Finite Elements introduicesection 3.1 and the abbreviation

4
w =Y a;w; we have:
=1
|—divp— Aw — |w+@y?’||i2 :/ [divp + Aw + yw+@|3}2 d(z,y)
Q

M
- Z/K [divp+ AT + |@ + 3] d(z,y).
i=1 7 i

We have made several attemps to treat these integralslgirea. by representing the whole
integrand either in polar coordinates or in cartesian doatds and integrating or using quadrature
rules. However, the resulting expressions turned out toalieer lengthy, which made such a
treatment very technical and not successful.

Next we tried several approximation and interpolation teghes, e.g. substituting functions in
polar coordinates by Taylor polynomials. This led to betesuls, but still the resulting error
exceeded the value of the residuum. Finally we came up wéhfdhowing interpolation idea,
which turned out to be effective and produces also suffilsiesmhall interpolation errors.

Before we start to explain the procedure in detail, we will fie tut-off functions that we have
used. For this purpose let

T2

P(z) = (1 - x—Q) . z€R, (4.4)

wherer = 1incaset > 1, andr = t if ¢ < 1 (recall thatt is the parameter of our considered
domain();). Ata corner§; = ((,m), i =1,...,4,letC; == [ —7,G+ 7] X [ —1,mi + 7],
and define the cut-off function
Plx— )Py —n;) If (x,y) € C;
W’y):{ (x = G)P(y—m) if (z.)

4.5
0 else (4.5)

Obviously); € C*(©;) and % (z, y) = (= — G)p(a — G) Py — m), %—zi(xay) = (y —n)P(z —
G)p(y — m;) for (z,y) € C; wherep(z) = — 5 (1 - %) Moreover, the cut-off functions satisfy

T

Ni(z,y)\j(z,y) =0 forall (z,y) € O, andi,j =1,...,4with i # j. (4.6)
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With the above choice (4.5) the cut-off functions are pidsevpolynomial int andy, and we can
4

therefore defineb to be the following piecewise polynomial approximationof= > a;w;:

=1

with Iy, being the interpolation operator into the Finite Elemerstcgd/y, defined in (3.7). Ob-
viously w € Hg () is continuous o), and smooth on eack; (j = 1,..., M).

Let furthermoreC be piecewise polynomial (continuous®, smooth oneack;, j = 1,..., M),
with £ ~ "1, @;Aw; = Ad. We will comment on the actual choice later.

Then we obtain:

|div 5+ A + @ + 3|,
= ||(div § + L + (b + 9)*) + (Ad — L@) + (|@ + 3] — (@ +5)%) | .
<||divp+ L + (0 + 0)3|| ,, + [|AD — L[| 2 + [[|@ + 3] — (@ + )|, (4.8)

Due to the choice of;, i = 1,...,4, the termdiv p + Lw + (w + v)? is piecewise polynomial
and itsZ?-norm can in principle be computed using quadrature rulesutfficiently high degree,
applied elementwise. We will first draw our attention to thieew terms in (4.8) and comment on
this purely polynomial part later.

Computation of ||[@ + 3|° — (@ + 9)*||,,

At first we want to omit the modulus, which is possibledf = @ + o > 0in Q,. Sincew;

is explicitly known, it is only a matter of careful estimaimsd implementation to check whether
w; > 01in Q, is true. Some estimates concerning the positivity checloedound in appendix A.2.
In the following we will omit the modulus; indeed a rigorouseck within our program showed
that all approximate solutiong are non-negative.

Clearly,

~

(@ +0)° — (@ +0)* = (@ — @) (@ + )+ (@ + ) (W + 0) + (b + )?)
and thus recalling the definitions af andw this yields
4
(@ +0)° — (0 +0)° = (0 +8)* + (@ +0) (1 + D) + (b + 8)%) Y _ @i (v — vy (1))

~ =1

:;f

The following computations provide an upper bound [foi + ©)? — (i + ©)3||5.. Due to (4.6)
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we have

(@ + ) — (@ + 9|, :/((w+@)3—<w+@)3)2 d(z, y)

_ / = @1 aih( — IVN(%->>)2 d(z,y)

/ f2 — Iy (30)))? d(z, )
=3 / RN (3 — Ty ()% d(2, )
<X (max[Pan]) - [ mGoP ). @)

Note thatrr}(ax [azX\2f% (i=1,...,4;5=1,..., M) can be computed using interval arithmetic.
J

We are now left to compute an upper bound for the integral if)(4For this purpose we will
slightly enlarge the domain of integration such that thelltesy integral can be calculated ana-
lytically using local polar coordinates. For simplicityewvill denote local polar coordinates by
(r, p), omitting the index. Let QF = (rh rik ) x (phi ok ) (k= 1,...,N; with N; € N

mln " max

suitably chosen) such thaU {(rcosg,rsing) : (r,p) € QF} O K;. By Ik, : C(Q) —

span{s1 . } ( € {1 ., M}) we denote the local interpolation operator which satisfies
Iy (u)|k, = IK]. (u|x,). Therefore

/ (s — Ty (0))? d(,y) = / (s — I, (30))° dlz. ),

K; K;

and due to positivity of the integrand we have (denotinghy;)(r, ¢) the function/x~; written
in polar coordinates)

/ (v = I, (7)) d(,y) < fj / [i(r, ) — (L) (o)) 7 d(r, )
K k:lQ?

= [i(r, ) — (I, ) (r, )] dre dop

min " min

N;
|: max? @max) - F} (Tﬂl]fm (pmax) - F} <Tﬁnlzxx7 gpmln) + F ( T in> (pfn]fn>:| :
k=1
Here,F; € C?((0,00) x [0, %], R) denotes a function with
0*F 0*F

87"890( ) = dpOr L(r,0) = [vi(r. @) — (I, %) (r, QO)]QT.
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2
This primitive can be computed using Maple [10], [48]. Ndtatty;(r, ¢) = r3 sin () and for
Serendipity Elements we have

(Ix,7i) (2, y) = o + 17 + eay + e3zy + eax® + e5y° + egr’y + erxy?,

(es = ez = 0 in case ofK; being a triangle), resulting in an expression fbg,v;)(r, ), which is
polynomial inr, cos ¢ andsin ¢.

Computation of ||Aw — L] -

Recall that we first have to fix the choice 6fv. As before we denote local polar coordinates at a
corner;, i = 1,...,4 by (r;, ;) and define

filry, 1) = —7“1% Cos(gpl)sin(%cpl) g1(ri, 1) = 7“1% sin(p1) cos(%cpl)
folrais) == 8 sin(iz) cos (342) 92(r2,02) 1= —27”23 cos(ip2) sin(502) (4.10)
f3(rs,p3) == —r3 COS(QDg)SiH(%(Pg,) g3(rs, p3) = 13 sin(yps) COS(%(P:),)
fa(ra, 04) = 73% sin(ipy) cos(%gm) 9a(ra, 1) = —ni% cos((py) sin(%g@l).
fiandg;, i = 1,...,4 are continuous functions df, co) x [0, 27] and therefore we can now
defineLw by

(Ld)(z,y) = & {(IVN%)(SU, YAX(z,y) + 3p(x — G) Py — mi)xe, (@, y) (T fi) (. y)+

i=1

=:ﬁ;(x,y)
Pz — G)ply — ni)xe,(2,y) (Ivygi) (z,y) |, (4.11)

;(rﬂc,y)

S

1

with P as defined in (4.4) andandC;, 7 = 1,...,4 as in the text on page 22 thereafter. Siite
andp are polynomials and; is piecewise polynomial als6w is piecewise polynomial.

From the above definition ofw it is however not immediately clear th&to is in fact an ap-
proximation ofAw. To justify our choice we will consider the summand fot 1 and show that
(Ivym1) AN + p1lvy, f1 + @i Iv, g1 IS indeed an approximation af, = A\;vy,. The cases = 2,3,4
can be treated analogously but we will not write down theitietere.

Recall thatt; = ((1,m1) = (—t,t) is the upper left re-entrant corner of the dom&jrand thus for
(xz,y) € C1 NQ, we can switch between local polar and cartesian coordifgtes

T — (1 =71Ccospy, Y —n =rising,
ri=(x— )2+ (y —m)

.
arctan(%), r—G>0,y—m>0

92 37—C1:07y_771>0
arctan (f%”_&) +7m, o r—(<0

Y1 =

R r—Cq=0y—m<0.
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For simplicity of presentation we consider in the followiogly the case: — ¢(; > 0,y — n; > 0.
Thenw, can be expressed in cartesian coordinates by

wi(z,y) = M,y) (2 = Q) + (g —m)*) * sin (2arctan (22 )

'

=71(zy)
ComputingAw, (z, y) yields (note that\y; = 0)
Awl(xv y) = Vl(xv y)A/\l(xa y) + 2v>\1< y) ( )
=71 (2, 9) AN (2, y) + 251 (2, ) G2 (2, y) + 252 (2, y) 52 (2, y),

and comparing with the formula (4.11) féro we will now show thap, Iy, f is an approximation
of 2‘9*1 371 andg Iy, g1 is an approximation 02‘”1 371 (clearly, A\, Iy, v, is an approximation of

(A)q) 71)
The derivatives ofy; in cartesian coordinates are given by

(z — ¢1) sin (% arctan <%)) — (y —m) cos (% arctan (i:g))

A (= Q2+ (y —m)?)’
%(L y) = z. (o G)eos <§ aretan (ﬁ» +(y—m) Sin <§ arctan (Z:Zi» :
" ’ ((z—=GC)2+(y—m)?)>
We define

Fiww) = 3~ ) P y)
on
Gi(z,y) = 2y — m)a—zjw,y)

and writing f; andg; in local polar coordinates we obtain

f1(r1 cos p,rysin ) = 11 Cos @y (sm( 01 )7"1 Cos Y1 — cos( 01 )rl sin gpl) rl_%

ol

5

= _7,1% COS (1 SIn (% ) = fi(r1, 1)

G1(ricos pr,mysingr) = risingy (cos(51) 1 cos o1 +sin(Fep1) risingn) 7y
= 7‘1% sin @1 cos(3¢1) = g1(r1, 1)

with fi, g; as defined in (4.10).

The properties ok, (see (4.5) and the definition pf thereafter) yield for:,y € C1NQy, x— (1 >
0,y —m > 0:

2851 (z, y)@%( T,Y) = %p(z —C)P(y — ﬁl)fl(l’:y) :ﬁl(iﬂ,y)ﬁ(%y)
2%/\1 (z, ?J)aai( y) = %P(Q; —Cu)p(y —m) ~2(33>Z/) = le(%?/)fz(ﬂf,y),

which completes our justification.
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We will now continue with the computation ¢fAw — L@||2. Using the triangle inequality we
obtain

|AD — L. =

M%

(@ AN (v — Tvy i) + @pi(fi — Tvy f3) + @iGi (95 — vy 9)]

1

.
Il

L2

-
Il IS
—

> [Washitai = B3l N = i ol s + (s = Tl ]

Upper bounds for the summands can be obtained analogousldessribed above for
| (@ + 0)3 — (0 + v)3|| 2. They are given by:

JaAN (s — Tve) |2 = / (@A — (Tvy))? diz, y)
Q:NC;

M
< dfmaXA/\iQ/ i — Iy d(z,y),
_; (AN [ (i = L 7)* (@ )
K;CC; K;
lapi(fi = Tvy fi)ll72 < Z dzznll(a_xﬁi/(fi_[Kjfi>2d($7y)7 (4.12)
K CC K;
lasGi (g: — Tvygi)l22 < Z a; max g, / (9 — Ir,9:)% d(, y), (4.13)
K CC’ K;

and the integrals over elemert§ in (4.12) and (4.13) can be bounded by a similar procedure as
already explained for the integrﬁll(j (vi — Tyyvi)? d(z, ).

Summarizing the previous steps we obtain the following cataiple upper bound
|div § + AD + (@ + 0)°

4

+ Z[HdiA/\i(%‘ - IVN%>||L2 + ||dzﬁz( i ]VNfZ)HLZ + Haz%< gi ]VN91>HL2}

=1

, < ||div g+ L+ (w0 +0)?]], + ||(ad + v)? — (ad +0)?]],
L L L

Computation of polynomial parts: quadrature rules

We are now left to compute an enclosure or upper bounddor g + L@ + (w + v)?||;.. Since
divp + Lw + (v + 0)® is piecewise polynomial we could, elementwise, use a quadraule
of sufficiently high degree to obtain an enclosure forlitsnorm. However, considering this
polynomial on a rectangle, we would have to use a tensoryatogluadrature rule of minimal
degree 20 in each variable, which gives at least 400 quadrptints. Therefore we apply again
an interpolation trick similar to the one at the beginninglef chapter: Letv := Iy, (w) be the
interpolation ofw in the Finite Element space. Then triangle inequality yseld

ldiv p + £ + (0 + v)? | o < ||div o+ Lib + (i + v)* b+ 8)” = (0 +0)°| s

Iz
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and as before we can estimate:

(1 — ) (i + ) + (0 + ) (i + ) + (0 +)°) |1

M
1+ ) = (@ + )|y = |
=1 =:h

M
< Zn}%th/K (i — )2 d(z, ).
i=1 j

12
If K;is arectangle, the integrarid — w)? is a polynomial Y~ b,2*y' and thus a tensor-product
k=1
quadrature rule of degree 7 in each variable, i.e. 49 quadrabints ink;, will be sufficient for

an exact computation of the integral.

Which degree is needed to complitév g + Lw + (w0 + 6)3!\12(@ exactly by a quadrature rule
whenK; is a rectangle? Sinadiv g + L + (w0 + 9)° = Y, ,_, cuz*y' we need again a tensor-
product quadrature rule of degree at leash each variable (when Gaussian quadrature rules

are applied). Therefore the numerical effort will be redlibg paying the price of a very small
additional defect-term.

Some explanations concerning quadrature rules and incpkaticonstruction of new cubature
rules on triangles can be found in appendix A.3. For a brigbduction into interval arithmetic
we refer to section 5.4.
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5 Computation of a Bound for the Inverse of the Linearization

In this chapter we will describe how to find a bound for the neeof the linearization at;, i.e. a
constantk satisfying

HvHHé(Qt) < K|| Lo, [v] || -1(020) forallv € Hy(Q), (5.2)

wherew, € H}(Q;) is an approximate solution to problem (1.2). To begin withwik show that
finding a constanfs satisfying (5.1) is in fact equivalent to the computatiorbofinds for some
parts of the spectrum of a self-adjoint operator. Thereftire main part of this chapter covers
methods to compute upper and lower eigenvalue bounds.

For simplicity of presentation we omit the indein the following.

5.1 Formulation as an Eigenvalue Problem

Recall the isometric isomorphist: H}(Q) — H () defined in (2.5). The isometry property
of ¢ yields
ILofo]ll-2 = (@7 Lo)[v]lmy  forallv € Hy(Q)

and thus condition (5.1) is equivalent to
vl < K@ L) [v]|ly  forallv € Hy(Q). (5.2)

In section 2.1 we have already proved that the opertdr.,, : H}(Q) — HJ () is symmetric.
Moreover it is defined on the whole @f}(Q2) and therefore self-adjoint. The following lemma
shows an equivalent condition to (5.2), which will be theibas our further considerations.

Lemma 3. Condition(5.2) holds for some&x > 0 if and only if
v :=min{|v| : visin the spectrum ofb~'L,} > 0,

and in the affirmative case one can choose any % .

Proof. Since® 'L, is self-adjoint we have by the spectral theorem (see e.g) [37
oL, = / vdE,
R

where(E,) is the spectral family ofo~'L,. Furthermore we can deduce from the properties of
E, that, for allv € H}(Q),

97 LllF = [ PalEa = [ Bl
R\(f’%'}/)
>t [ dlBal = [ Bl =l
R\(=7) R

sincer — [, is constant on intervals contained in the resolvent séof.,,.
Obviously (5.2) is satisfied with an’ > % if and only if v > 0. O]
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We are now left to prove that the spectrumiof! L, is bounded away from zero and to compute an
explicit lower bound for the distance ef ' L) to zero. Self-adjointness @f ' L,, implies that
there is no residual spectrum and thus we have to considestential spectrum and eigenvalues
of =1L, in the following.

Let 15y denote the identity map i (Q2) and! the embeddind?; () — L*(Q).

Lemma 4. The operator

S, { HY(Q) — H () 5:3)

is compact.

Proof. We rewriteS as follows
S=04d—L,) =011+ 3ww)l

and use the fact that the composition of compact and boundedrloperators is still compact.
First, the embeddingi} (Q2) — L*(2) is compact (recall thd® is bounded). Sincél + 3|w|w) €
L>=(92), the operator mapping € L*(Q) to (1+3|w|w)u € L*(Q2) is bounded. Using boundedness
of both the embedding?(Q2) — H~'(Q2) and®~! we obtain the assertion. O

Usingw > 0 (see also the comments in the previous chapter) we immédsse that is not an
eigenvalue ofS. Moreover,S is symmetric and linear and thus there exists a sequ@nggen C
R\{0} of eigenvalues of such thaj,, — 0 (n — oo) and the corresponding eigenvectors form
an orthonormal basg,, ) .cx of H}(Q). Thus®—'L, = I;n — S has eigenvalues, = 1—p,, n €

N and with the properties df:,,),cn We can conclude that

(i) All eigenvalues,, n € N have finite multiplicity, since:,, has.

(i) The essential spectrum @f~! L, consists only of the poinfl} becausd is the only accu-
mulation point of( i, ) nen-

This proves that the essential spectrum is indeed bounday fram zero and for the rest of the
chapter we will turn our attention to the computation of upged lower eigenvalue bounds.

For an eigenpaifv, u) € R x H}(Q2) of 7' L, we have by definition of and L,
—Au + 3|lwjwu = v(—Au+u), i.e. (1 —v)(—Au+u) = u+ 3|w|wu, (5.4)
to be understood as equationsHi! (2). Applying (5.4) tou yields

(1—-v) /(|Vu|2 +u?)dr = /(1 + 3|w|w) u? du.

Q Q

Sincew > 01in €2, we obtainl — v > 0 and dividing (5.4) byl — v yields

1
——

=K
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(5.5) is equivalent to

/ [Vu -V + up] de = n/[l + 3|w|w]up dx forall o € H}(9),

Q Q
i.e. (u,9)p1 = KkN(u,p) forall o € Hy (%), (5.6)
where
N(u,p) = /[1 + 3|w|w]uyp dx for all u, p € Hy (). (5.7)
Q

Recall that we need to show that the spectrunbof, is bounded away from zero, which, using
the transformatiom = -, amounts to bounding away from 1. By the previous arguments we
can furthermore conclude that all eigenvalues of (5.6Y)(&te positive and tend to infinity. Thus
we need an upper bound, which is smaller thafor the largest eigenvalue belaw(if it exists),
and a lower bound, which is larger thanfor the smallest eigenvalue above

5.2 Lower and Upper Eigenvalue Bounds

Although the eigenvalue problem (5.6), (5.7) does not hagemrtial spectrum, we will in this
section consider a more general case, where essentiatigpastallowed. This will be needed to
treat an eigenvalue problem in one of the upcoming sections.

Let(H, (-, -)) be a seperable complex (real) Hilbert space Aralbounded, positive and hermitian
sesquilinear (symmetric bilinear) form d@h. Then the eigenvalue problem

(u,v) = kN(u,v) forallve H (5.8)

is equivalent to an eigenvalue problem for a self-adjoirgrarR : H — H. Note that for (5.6),
(5.7) we haveH = H}(Q2) andR = Iy — ®~'L,. As usual we define the essential spectrum
of (5.8) to be the one of the associated self-adjoint oper@tand denote by, € R U {+o0}

its infimum. Suppose moreover that > 0. Upper bounds for eigenvalues of (518lowthe
essential spectrum can be computed by the well known meth&ahyleigh-Ritz (see e.g. [64,
Theorem 7.2)).

Theorem 3 (Rayleigh-Ritz-method). Letn € N andwvy,...,v, € H be linearly independent
trial functions. Define the matrices

AO = (<Ui’vj>>i7j:1 ..... n Al = (N(Ui7vj>>i:j:1 n (59)

.....

and letk; < /e < ...

< k, denote the eigenvalues of
Aol’ = /%Ala:

Then, ifz,, < oy, there are at least eigenvalues 0f5.8) belows, and then smallest of these,
denoted by:; < ks < ... < k,, and counted by multiplicity, satisfy
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The quality of upper bounds obtained by the Rayleigh-Ritz wettepends strongly on the choice
of vy,...,v,. In order to get good bounds one should use approximate feigetions as trial
functions, which can as well be computed using Rayleigh-Rith wimpler (but more) ansatz
functions, e.g. Finite Element basis functions.

The verified computation of upper bounds is rather straggiwhrd and simple if the dimension
of the matrix eigenvalue problem is not too large. In our agpions, most matrix eigenvalue
problems have dimension 1 or 2 and the largest problems atieneihsion 15.

On the other hand, computation of lower eigenvalue boundsnsre delicate task. We will use a
method that has been developed by Lehmann and later beeoveapoy Goerisch. The following

version of this method can be found in [12].

Theorem 4. Let (X, b(+,-)) denote a complex Hilbert space afid: H — X an isometric linear
operator, i.e.b(Typ, T) = (p,v) forall p,v € H. Letwv,...,v, € H be linearly independent
andws,...,w, € X satisfying

b(Ty,w;) = N(p,v) forall pe H, j=1,...,n. (5.10)
In addition to the matrices!, and A, in (5.9) define the matrix
Az = (b(wi, wy))ij=1...n- (5.11)

Let some € (0, oy] be chosen such that there are at most finitely many eigersvafu®.8) below
p, and such that

[v € spaf{vy,...,v,} and(v,p) = pN(v,p) forall p € H| = v =0. (5.12)
Letr; < ... <7 < 0denote the negative eigenvalues (counted by multiplioity)
(Ao — pAr)x = 7(Ag — 2pA; + p*Ag)z (5.13)

(the matrix on the right-hand-side is positive definite).efihthere are at least eigenvalues of
(5.8) belowp, and thek largest of these (counted by multiplicity), denotediBy< x| < ... <
Kk, satisfy

K > p— (G=1,... k).

1—’7']'

To compute lower eigenvalue bounds using the previous ¢meare need to specify the choice of
various ingredients needed. As in the Rayleigh-Ritz meth@\wil choosev,, ..., v, € H to be
approximate eigenfunctions of (5.8), and denoté&py . .. < &, upper bounds for the smallest
eigenvalues obtained by the Rayleigh-Ritz method (with. ., v, as ansatz functions). Here,

is chosen such that, < o(. If n > 1 (which is always true in our examples) the Rayleigh-Ritz
method gives at leasteigenvalues:,, . . ., x,, belowo,, bounded from above by; (indexwise).
Assume moreover that we can find sopne 0 such that there are at most finitely many eigenvalues
of (5.8) belowp, and which satisfies

Kn < p < Kpt1 < 0, (5.14)

if an n + 1-st eigenvalue of (5.8) exists. Otherwise we requife< p < oq. Due to the choice
of vy, ..., v,, the firstinequality in (5.14) implies condition (5.12).rhermore the matrix on the
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left-hand-side of (5.13) is now negative definite, whencé&3phas precisely. negative eigen-
values and thus the theorem gives lower bounds fomthergest eigenvalues of (5.8) belgw
These eigenvalues are also themallest eigenvalues, singe< «, 1 by (5.14). Together with
the Rayleigh-Ritz bounds we obtain two-sided eigenvalue dsdor then smallest eigenvalues
of (5.8).

However, to find satisfying (5.14) is not trivial. The inequality means thatneed a lower bound
for then + 1-st eigenvalue of (5.8) in order to computer lower boundsitiern smallest eigen-
values. Fortunately, it is not necessary to have a goodaaipoiver boundp, but a rather rough
one will be sufficient to produce very precise eigenvaluenoisuby Theorem 4. Such a rough
bound can often be obtained by a homotopy method, which wieewllain in the next section.
During this homotopy, we will use Theorem 4 mostly in case 1, which results in the following
Corollary:

Corollary 1. Let X, b, T as in the previous theorem. Letc H\{0} andw € X such that
b(Tp,w) = N(p,v) forall p € H.

(this is condition(5.10). Moreover, letp € (0, 0o] be chosen such that there are at most finitely
many eigenvalues db.8) belowp and

(v, v)
N(v,v) =7

(this is the first inequality irf5.14)and implies(5.12)). Then, there is an eigenvalueof problem
(5.8) satisfying

(5.15)

pN (v,v) — (v, v)
pb(w, w) — N(v,v)

<K< p. (5.16)

5.2.1 A homotopy method

In this subsection we will describe how to compute a constagdtisfying (5.14) as needed for
Theorem 4. For this purpose we use a homotopy method whialectsiour given problem (5.8)
to a “base problem”, whereas we have some knowledge on tlargpeof this problem. The
homotopy that we are going to describe here was first intredirc [12]. Its advantage over older
homotopy-versions is low computational effort, as only nxatigenvalue problems of very small
dimension (usually 1 or 2) have to be solved rigorously.

Suppose that a bounded, positive definite, Hermitian sksear (symmetric bilinear) fornv, on
(H,(-,-)) is at hand such that

No(u,u) > N(u,u) forallue H. (5.17)
We assume moreover, that there exists spraeR andn, € N, such that the base problem
<u7 ()0> = K‘(O)NO(U7 90) (518)

has exactlyn, eigenvalues:\”’ < ... < x!2 (counted by multiplicity) in(0, po) andp, < o\,
with gf)o) denoting the infimum of the essential spectrum of (5.18) &aléfined as the essential
spectrum of the associated self-adjoint oper&@t). We define

Ni(u,v) := (1 = 8)No(u,v) + sN(u,v) foru,v e H, s € |0,1], (5.19)
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and consider the family of eigenvalue problems
(u, ) = k¥ N(u, ) forallp e H. (5.20)

Analogously to the definition befor@gs) denotes the infimum of the essential spectrum of (5.20).
Condition (5.17) together with definition (5.19) shows thatu, u) is non-increasing in for each

fixedu € H. Therefore, witm§s> < més) < ... denoting the eigenvalues of (5.20) beloﬁf/), we
have for0 < s < § < 1, by Poincag’s min-max-principle,

k) < w\P forall j € Nsuch thak!” < o exists. (5.21)

To start the homotopy (in casg > 1) we suppose that the gap betweéﬁ and p, is not too
small. For somes; > 0 we compute approximate eigenpa(rsfl),agsl)) , 7 =1,...,ng of

problem (5.20) (withs = s;), with f#” < ... < i%ﬁf;) ordered by magnitude and such that the
Rayleigh quotient for's! satisfies

(a0, a)
< <n. (5.22)
Nsl (/&nsol 71]71801 )

We require furthermore that; is chosen almost maximal with this property, i.e. the presio
inequality is almost an equality, oy = 1. In the latter case the argumentation further below
completes already the homotopy. sif < 1 we have to distinguish two different cases: On the
basis of the approximations;?, /%ffolll, ...,&"™) we can guess whethet:" is a well-isolated
single eigenvalue or is part of an eigenvalue cluster (raspultiple eigenvalue). In the first case
Corollary 1, applied to problem (5.20) with= s; andv := a;i}) implies the existence of an
eigenvalue<*V) of that problem in the interval given by (5.16). Denotinglaser bound by,

we obtain
p1 < kB < py. (5.23)

Furthermore, since the base problem (5.18) has precigedigenvalues irf0, po), property (5.21)
shows that problem (5.20) (with= s;) has at most, eigenvalues iri0, po ), which together with
(5.23) implies:

problem (5.20) (withs = s;) has at most, — 1 eigenvalues ino, p, ). (5.24)

If a,(fol) Is computed with sufficient accuracy, the structureppshows thap, is not “far below”

po- Consequently, if the gap betweetffoll1 and mﬁf(}) is not too small, we expect that the only
eigenvalue injp;, py) is m,(%), and thus, that problem (5.20) has exaatly— 1 eigenvalues in
(0, po)-

In casen,(j;) appears to belong to a cluster of eigenvalues (or appeass/@higher multiplicity),
we can apply Theorem 4 with = n. > 2 being the size of the cluster. This yields a lower bound
p for HS;Z%H, e K;SOI) and since the base problem has precisglgigenvalues iri0, py), (5.21)
shows that problem (5.19) (with= s;) has at most, — n. eigenvalues inj0, p; ). If furthermore
mffollnc ., andx"")  are well separated ang is not too far belows!") we expect that the

no—"Ne no—nc+1?
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only eigenvalues if;, po) will be £ ..., k5D and therefore problem (5.20) (with= s,)

nog—ne+17

has exactlyn, — n. eigenvalues ir0, p; ).

Altogether we conclude that problem (5.20) (wikh= s;) has at most, — n; eigenvalues in

(0, p1), where
1 if x¥ andx®Y). are well separated
ny = { fimo - ANAK P (5.25)

no—1
n. else.

and weexpectthat problem (5.20) (witls = s;) has exactlyry — n; eigenvalues irf0, p;). By a
Rayleigh-Ritz computation we could check if this expectat®true, but it is not necessary. We
simply continue on the basis of this expectation and the Ragleigh-Ritz computation at the end
of the homotopy will prove it a posteriori, or show that thermiopy was not successful.

In the second homotopy step (taking placenif— n; > 1 ands; < 1) we repeat the above
procedure withs; in place of0, ny — n; in place ofn, andp; in place ofp,: For somes; we
compute approximate eigenpai(ﬁ:f?),a;”)) , (j = 1,...,n9 — np) of problem (5.20) (with
s = 83), such that

(52,7620,
< p1
(a(SQ) ﬂ(52) >

no—mni’ Yng—n1

(5.26)
hY

52

and the inequality in (5.26) is almost an equality. We define

ny+1 if mﬁfjﬂm andnffﬁlm_l are well separated
Mg =
ny +n. else,

wheren,. is the dimension of the eigenvalue clustéjflnl possibly belongs to. Then either Corol-
lary 1 or Theorem 4 withV = n,., respectively, give a lower bound such that there are at least
ni—ny eigenvalues in the intervgl,, p; ). Furthermore (5.24) and (5.21) show that problem (5.20)
(with s = s5) has at most, — n; eigenvalues ifj0, p; ), and thus we can conclude

problem (5.20) (withs = s,) has at most, — n, eigenvalues if0, ps). (5.27)

As before, we expect that problem (5.20) (witk- s5) has precisely,, —n, eigenvalues if0, ps).
We go on with this algorithm until for some € N, eithers, = 1 andn, < ng ors, < 1 and
n, = ng (in which case the homotopy cannot be continued). &c£ 1 we obtain in analogy to
(5.24) and (5.27)

problem (5.8) has at most — n, eigenvalues in0, p,.), (5.28)

implying thatp := p, is a lower bound for thes + 1-st eigenvalue of (5.8) with := ng — n,.
Finally, if s, = 1 andn > 1, we perform a Rayleigh-Ritz computation for problem (5.8) and
check ifk,, < p (cf. (5.14)) is satisfied (it will be satisfied if our expedataus we made before are
correct). If this check is successful, we can conclude thailpm (5.8) has at leasteigenvalues in
(0, p), which, together with (5.28), shows that problem (5.8) hagiselyn eigenvalues irf0, p).

By Theorem 4 we can now compute the desired lower bounds for graallest eigenvalues of
problem (5.8).

In cases, < 1 andng = n, we have to restart the homotopy with new (larger) values,&ndp;.
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5.2.2 Application to the given eigenvalue problem

In the previous section we have presented a method to cortguete eigenvalue bounds. In order
to apply it to our eigenvalue problem

/ Vu - Vo +up| de = Ii/(l + 3|w|w)up dx forall o € H}(Q)
Q Q

~~

:N(uv‘ip)
we need to specifyV,, X, b andT.
To start with letc : 2 — R be piecewise constant and such that
¢(z,y) > 3|w(z,y)|w(z,y) forall (z,y) € Q. (5.29)
Defining Ny : H} () x H}(Q) — R by
No(u,v) = /(1 + ¢)uv dx (5.30)
Q
leads to
No(u,u) > N(u,u) forallue Hj(Q),
i.e. condition (5.17) is satisfied. The eigenvalue problem
/ [Vu - Vo +uyp] de = & /(1 + ¢)updx forallp € Hy(Q) (5.31)
Q Q
:NO‘(,U#P)

ie. —Au+u=r?O1+2)u

J/

(the latter equation to be understood as an equatidiih(2)) will now serve as base problem.
Note that ifc was constant and was a rectangle we could immediately write down the eigemsl
of (5.31). However, in our case there is no direct accessdeitpenvalues, but a careful choice
of ¢ and another suitable comparison problem will enable us nopee lower bounds for certain
eigenvalues of (5.31). We will explain this in section 5.3.

Now we adress the question how to chodé&eé andT'. In our application we have:
H = Hy(Q),
<U’7 90> - <vu7 va)L2 + <U’7 90>L27
Ny(u,p) = /(1 + 3s|w|w + (1 — s)e)updr  foru,p € Hy(Q), s € [0,1].
Q

Define now
X = (L*(Q)” x L}(9),
Te = (Tf) (v € Hy()),

1) (1)
v w ._ 1 1 2 2
(2] ()] = 0ty ).
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Then the isometry condition ofi is clearly satisfied. For given;, condition (5.10) forw; =

(1)
( 2 )> € X, 7=1,...,nis equivalent to
w]

/[Vgo-w )+g0w }dz-/(l+3s|w|w+(1—s) ¢)pv;dr forall o € Hy(€).
Q

If we moreover require thabj(.l) € H(div,Q) = {u € (L*(Q))? : divu € L*(Q)}, partial
integration gives

/Q[ 90le( )—Hﬁw }dm—/{l(1+33|w|w+(1—s) )u; da forall € H2(Q),

which is equivalent to
dlv( ) —l—w( ) = (1 + 3s|w|w + (1 — s)¢) v;,
sinceH}(Q2) is dense inL?(2). Therefore we choose

w? = (14 3s|wlw + (1 = s)E)v; + div(w 1)). (5.32)

J
)

) satlsfylngw € H(div, ) and (5.32) can be used in Theorem 4
w:>

J
or Corollary 1 to compute lower eigenvalue bounds. Howewetremery choice Oiu§1) will lead
to good bounds: an analysis of the proof of Theorem 4 showsythad bounds will be obtained
when

By construction, an\<

w; ~ T’lZJj,
wherew; € H}(Q) is the solution of
(p,5) = Ns(p,v5)  (G=1....n). (5.33)
Suppose thaty, .. vn are approximate eigenfunctions to (5.8) with correspogdipproximate
eigenvalues:, . . . Then-- ~(0,v5) = Ni(op,v5) forall € Hg(€2), which givesw; =~ Rijvj

and thereforev; ~ ij if

1 1 (Vo
wj%Tij:~—< UJ) (j=1,...,n).

Ky Kj \ v

Since we have already chos&:ﬁz) due to (5.32), only the first part of this “soft” condition i$ o
use for us, i.e.

1

1 :

w](-)%;V'Uj (j=1,...,n).
j

Remark 4. (a) Problem (5.33) is part of the original theorem for lowryeavalue bounds by
Lehmann, whose application is strongly limited since (»i838isually not solvable in closed
form. The Goerisch extension using, b and T replaces (5.33) by (5.10), which can be
solved in many cases when the parameters are chosen appebpri

(b) A suitable approximation d¥v; is given by an approximate minimizgre H(div, §2) of

IVo; = pllze + [ divp + (1= (1 + Bs|wlw + (1 = 5)2))y[72.
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5.3 Domain Decomposition

We will now explain the general idea how to construct a sigtabmparison problem for our base
problem

/ [Vu - Vo +uy] de = £© /(1 + e updr forallp € Hy (), (5.34)
Q0 Q0

thereby also briefly commenting on the choiceof he idea of the method is due to E.B. Davies
and is explained in more detail in [8]. We will recall it in a neageneral setting.

Let thereforel' ¢ R? be a domain (not necessarily bounded) with piecewise smuathdary,
[' C U closed and: € L>°(U), ¢ > 0 a.e. inU. We consider the eigenvalue problem (written
here in strong formulation)

ou_

—Au+u=AN1+c)u inU, u=0 onT, 5

0 onoU\I. (5.35)

Denoting byH{(U) the completion of u € C>=(U) : u = 0in a neighbourhood df } w.r.t. the
H'-norm, the weak formulation of that problem is given by

/ Vu - Vo +up| de = )\/(1 +c)updr forall p € HA(U).
U U

As before we denote the infimum of the essential spectrum®ptioblem byr, and byd < A\; <
A2 < ... Its eigenvalues (note that> 0 implies positivity of the eigenvalues).

Now we splitU into two subdomain&; andU; such that their interface bounddry, = 0U;N0U,

is smooth and consider (5.35) withreplaced by/; andUs, respectively, and with' as before. We
denote these eigenvalue problems by (5.35-1) and (5.3Stf)pose now that for some fix@d<

B < 0y we know all eigenvalues of (5.35-1) and (5.35-2) belBvand combine these to a single
list of eigenvalues\go) < /\go) < ... < )\(LO) (counted by multiplicity). The corresponding eigen-
functions can be regarded as elements ot {u € L2(U) : uly, € H*(U;), u|r = 0for j = 1,2},
by zero extension outsidé, andU;, respectively.

Then Poinca#’s min-max-principle proves the following lemma:
Lemma5. Foralli = 1,..., L we have\!”) < ), provided that\; < oq.

Proof. SinceV > H(U) we have for alk € {1,..., L} such that\; < oy:

<VU, VU>L2(U1) + <VU, VU>L2(U2) + <U, U)LQ(U)

)\50) = inf max
ngV s‘l/Jthpacaevi\{O} <(1 + c)u, U>L2(U)
Vu,Vu + (u,u
< inf max < ) + { Wrw) =\
V;CHL(U) subspace.€V;\{0} <(1 + C)u, U)LQ(U)
dim V;=i

In principle, one can construct a homotopy joining the peats

<VU, VU>L2(U1) + <VU, VU>L2(U2) + <U, U>L2(U) = )\(O)<(1 + C)U, ’U>L2(U) forallv e V
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and (5.35), as it is also described in [8]. However, in ourligpfion a pure comparision of these
two problems is sufficient and therefore we will not descthee method in full generality here.

It is clear that the above procedure works as well, whieis splitted into more than two subdo-
mains and Neumann boundary conditions are imposed at ef@eface edge.

For the application of the domain decomposition method teeggenvalue problem (5.34) we will
split Q, = (—t — 1,¢ + 1)%\[—¢, t]* into rectangles and squares and choose be constant (or
piecewise constant in some cases) on these subdomains.tﬁme'rgenvalue$§0), cee A(LO) are
exactly computable (or can be enclosed). We will howevetpmre the details to section 6.2.
Until then we have fixed the approximate solutions for whiagwill apply this method and can
adapt our explanations to these cases.

5.4 Interval Arithmetic

A key ingredient for a computer-assisted proof as presemtedis thesis is the calculation of
various constants using the computer (edgand K satisfing (2.3) and (2.4), respectively), and
in order to obtain results which can be used to complete alytaos proof the computations
have to be rigorous. Since the computer can only represdtgljirmany numbers in an exact
way (these are the machine numbers), rounding errors walilowhich have to be captured in
the computations. For this purpose one has to use intertfaiaatic instead of the usual floating
point arithmetic. A general introduction into intervalthrnetic containing also various methods
for rigorously solving nonlinear equations, linear systeand many more is given in the book of
G. Alefeld and J. Herzberger [3].

For the implementation of interval arithmetic on a compuiae can choose between various
existing libraries. Since our programs are written in C++used the C-XSC library (see [43] and
[39]), which provides all basic interval operations anchdiad functions as well as some sample
algorithms.

For MATLAB we would also like to mention the toolbox INTLAB [, which is very intuitive and
easy to use and contains also a huge number of algorithmspgtidadions, e.g. verified solvers
for linear systems, eigenvalues or optimization routines.

5.4.1 Interval Newton method

We will now briefly recall the Interval Newton method, which used at various points in this
thesis to enclose all zeros of a function in a given compaetval. We will only consider the
case of functions having simple roots, since this is satisfiall our applications. However, there
are more general versions of the Interval Newton methodenitérature, treating also the case of
multiple roots (see e.g. [3]). The algorithm that we are gdimuse can be found in [35]. By|
we denote an interval iR and bym/[z] its midpoint.

Let f : R — R be continuously differentiable arid]’ c R an interval satisfying ¢ f([z]©).
The latter condition implies that has at most one zere' € [z]°. Defining
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the (k + 1)-st iterate of the interval Newton method is given by
(2] D = [2]® A N([2]®), k=0,1,2,... (5.36)

Due to the intersection o¥ ([z]*) with [z]* the Interval Newton method cannot diverge, i.e. the
iterates of the Newton method cannot become unbounded.dvergve have ([35, Theorem 6.1]):

a) Every zerac* € [z] of f satisfiest* € N([z]).

b) If N([z]) N [z] = 0, then there exists no zero ¢fin [z].

o

c) If N([z]) C [z], then there exists a unique zerojoin [z] and hence inV([z]).

a) and b) imply in particular that ffz]*) = () for somek, € N, then[z](®) does not contain a zero
of f.

To find all zeros off on a given compact intervat] C R we assume that there exists a subdivision
of [z] into smaller intervalsz|;, j = 1,...,M (M > 1 suitable), such thdt:| = Uj]‘il[x]j and
either

() 0¢ f(l«];) or
(i) 0 ¢ f/([a],) and/(Inf([],))/ (Sup([e],) < 0.

The conditions in (i) and (ii) can be checked a-priori usingetval Arithmetic and the existence
of the desired subdivision implies in particular thfahas only simple roots. On each subinterval
satisfying (ii) we perform the above Interval Newton itésatwith starting interva(z]® = [z];,
and stop the alorithm if for some, € N we obtain[z]*1+1) = [z]*1) or if the diameter of the
interval [z]*1+1) is smaller than a prescribed tolerance. In both cagés*") contains a new and
tight enclosure of the zero in the interval ;.

5.4.2 Matrix eigenvalue problems

We have seen in the previous sections that computation aidsofor eigenvalues also requires
verified enclosure of matrix eigenvalues. This can be domgyusterval arithmetic, together with
the following lemma (see [38]). BYC]"*"¥ we denote the space 8f x N matrices with complex
interval coefficients. Note thaY is “small” in our applications.

Lemma 6. Let [A],[B] C [C]V*N be Hermitian matrices with interval entries and such that
B € CN*¥ is positive definite for alB € [B]. For some fixed Hermitiaal, € [A4], B, € [B], let

(kj,Z;) (j =1,..., N) denote approximate eigenpairs.dfx = xByx, With Z} BoZ; ~ J;;.
Suppose that, for someg, r; > 0,
| X*AX — X*BXK||s < 70, |IX*BX — I|| <7, forall Aec[A],B € [B]

whereX = (Zy,...,2y), K = diag(Ry,...,kn). If 11 < 1, we have for allA € [A], B € [B]
and all eigenvalues of Az = kBux:

N
re | B(#,r) wherer = - " andB(k,r)={z€C: |z—r|<r}.  (5.37)
) -n
Jj=1

Moreover, each connected component of this union contamsamy eigenvalues as midpoiats
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6 Computations and Results

In this chapter we will present numerical results concegmuar problem (1.2),

—Au = |u]®* in¢
u = 0 on o),

wheret takes several values in the interyal 3]. We start with some purely approximate results
to show the variety of solutions that one can expect for tvergproblem. This includes also

an approximate bifurcation diagram, which shows how appmate solutions behave when the
parameter valuechanges.

In the second part of this chapter we choose some speciabdpyate solutions and show how
the domain decomposition method can be applied to obtaierddeunds for eigenvalues of the
corresponding base problem. Finally we present rigorosslie for eigenvalue enclosures and
defects, finally proving the existence of exact solutiongrtublem (1.2) by Theorem 1.

Hard- and software

All computations have been carried out on the parallel elu&TTO of the Institute for Applied
and Numerical Mathematics 3 at Karlsruhe Institute of Tetbgy. We used the Finite Element
Software M++, which has been developed by C. Wieners and hikimgpgroup and is based on
a programming model described in [65]. The software pravji@enongst others, various parallel
solvers for linear systems and eigenvalue problems. ltiisemrin C++ and uses the MPI standard
to realize parallel computations. Since we also extendedale by various routines that involve
interval arithmetic, we did only use one processor for atl@amputations. This was still sufficient
to carry out the calculations in reasonable time. For irgleavithmetic we used the libraries C-
XSC (see e.g. [43]) as well as MPFR and MPFI, which can be us€tiXSC via an interface
(see [9]). Since both the MPFR and MPFI library are based twyer-arithmetic, they can use
hardware ressources in their calculations which conestatsignificant reduction in computation
time compared with the software-based arithemtic of pureSGGX

The programs for obtaining approximate and verified resdtaprise several (tens of) thousands
lines of code and can clearly not be displayed in this thd3ie. code may of course be inspected
upon request to the author of this thesis.

6.1 Approximate Solutions

In order to find approximate solutions we use the combinatioMountain Pass Algorithm and
Newton method as explained in sections 3.2.1 and 3.2.2.arbtbese methods we have to fix a
suitable starting value for the Mountain Pass Algorithm.r @xpectations are that there should
be approximate solutions with various bumps centered attheers or edges of the domain.
Therefore we use starting values which have some kind of bilvage, e.g. for = 1 we put
translated versions efsin(7z) sin(7y) ((z,y) € (0,1)?, ¢ > 0) in one ore more corners or edges
of the domain. By this technique we obtained the followingragpnate solutions to (1.2), all for
t=1.
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Figure 6.1: Approximate solutions - Part |

We remark that these will be the approximate solutions foictvlive will prove existence of an
exact solution in a suitable neighbourhood (see also se6tih1).

6.1.1 More approximations and bifurcation diagrams

By putting suitable bumps in corners and edges of the domainmaming Mountain Pass Al-
gorithm and Newton method, we can even obtain more apprdiansafor the parameter value
t = 1. It is however clear that we cannot be sure to obtain all pdessipproximate solutions by
this technique. In order to find more approximations we ihigage branches of approximate solu-
tions: Suppose that for somewe have computed an approximate solution to (1.2) (witht,)

by means of Finite Elements. Let the approximation be giwen b

N

Wy, = Z cigol(.tl)

=1
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wherep{™ . o) denote a basis for the Finite Element sp&&€,,) andc; ..., cy € R. If
t, is “close” tot;, we can define a function

N
0
9 = Y il
=1

on V;?(€,), which can be used as initial approximation for a Newton méttfor problem (1.2)
with t = ;). If the Newton method converges we obtain an approximaligtien of problem
(1.2) (witht = t5). This technique is well-known as “continuation method™path-following
method”.

The procedure just presented may be used to investigate solwtaon evolves when the parameter
t becomes very small or very large. Figure 6.2 shows the evolutf the approximate solution
that we introduced as fourpeakcorner solution in the pres/gection: for small is looks almost
radially symmetric and asgrows the bumps in the corners separate more and more.

Figure 6.2: Evolution of Fourpeakcorner solution for {, £, 1,2,1, 2,2 1}
However, this path-following method will not necessarilpguce any new approximate solution
types and thus we check if there might be bifurcations oritigrpoints of these branches. Note that
the following considerations are just a motivation and doprovide a rigorous proof of neither
existence of solutions nor occurring bifurcations. By thelisit Function Thorem, bifurcation
from a solution branch or a turning point can only occur at sgrarameter value = t* and
solutionw,- if for that value the solution is degenerate, ifeis an eigenvalue of the linearized
operator ati.

To find a bifurcation or turning point, we therefore compytem@ximate eigenvalues éf,, (using
e.g. the Rayleigh-Ritz method). If for some value- t* we have an eigenvalue @f,, close to
zero, Lyapunov-Schmidt Reduction (see e.g. [16, Chapte) h8iivates the following approach:
Compute approximate eigenfunctions. . ., v, of L, . corresponding to the eigenvalue close to
zero. Choose,,...,g4,0 € R\{0} suitable (“small’) and set

d

0 _ E

Wpslp s = Wer4s + E;V;.
=1

This function may serve as an initial guess for a new appratersolution at the parameter value
t = t* 4+ 9, lying on a bifurcated branch (in case of a bifurcation poort on another part of
the original branch (in case of a turning point). One mightehto “play” with the parameters
g;,,i=1,...,dandd in order to find an initial guess such that the Newton methotemes.
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We would like to remark that there are more sophisticatechous to compute branches past
bifurcation or turning points, which are e.g. proposed bylié¢esee [41] or [42]. However, it
is more complicated and complex to implement these methodsiace the above simple ansatz
already led to the desired results we did not use Keller'sou.

Using the technique explained above (and an additionatHgditwing on the new branches) we
were able to find many more approximate solutions. Altogethe obtained 31 approximate
solutions fort = 1, the first 6 were already displayed in Figure 6.1 and thevoiig figures show
the remaining approximations.

5 .5

(21) Fourpeak 5

3 .5

(20) Fourpeak 4

5 .5

(19) Fourpeak 3

Figure 6.3: Approximate solutions - Part |
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Figure 6.3: Approximate solutions - Part Il

Since some of the solutions are hardly distinguishable femoh other in the above plots we
display the functions again, this time with a different gahview and thereby showing the level
profile and symmetry.

2 2 2

15 15 15

1 1 1

0.5 0.5 0.5

0 0 0

-0.5 -0.5 -0.5

-1 -1 -1

-1.5 -1.5 -1.5

-2 -2 -2
2 -15 -1 05 0 05 1 15 2 2 -15 -1 05 0 05 1 15 2 2 -15 -1 05 0 05 1 15 2

(7) Twopeak 1 (8) Twopeak 2 (9) Twopeak 3

Figure 6.4: Level sets and symmetry - Part |
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Figure 6.4: Level sets and symmetry - Part Il
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Finally, Figures 6.5 and 6.6 show bifurcation diagrams efapproximate solutions. Here we have
the parametet on thez-axis, the energy (w;) (defined in (3.11)) on thg-axis andmaxg, w; on
the z-axis. In Figure 6.5 we displayed only the main branchesauthany bifurcations, while
Figure 6.6 shows the full diagram including all occuringuiodations. Note that we have only
computed approximate solutions fore {t,...,t,} where the gridpoints; are “close”. The
continuous branches in the plots have been obtained by linespolation between the values in
the gridpoints.

Remark 5. (a) In [23] it was proved that whe C R™ is a bounded domain with smooth
boundary and/,, are small open star-shaped holegimwith diam U,, — 0 asn — oo, and

if the positive solution of
“Au = P inD
u |ulPin 6.1)
u = 0 onoD

I<p< ;’;—jﬁ form > 2,1 < p < oo for m = 2) is unique and non-degenerate, then also
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the problem

(6.2)
u = 0 ond(D\U,)

has a unique positive solution. Moreover, the solution®df)(and (6.2) are close ik’ for
all g. This result is not directly applicable to our problem sifizedoes not have a smooth
boundary. However, since the problem

{_Au = |uP in(—1,1) (6.3)
u = 0 ond(—1,1)2

{—Au = Jul? inD\U,

admits a unique non-degenerate solution (see e.g. [21])xpeck that fort close to zero
there is only one solution to problem (1.2), which looks like one of problem (6.3). An
approximate shape of the solution to (6.3) is displayed @) §nd a comparision with Figure
6.2 fort = 1—16 suggests the conjecture that for smathe only solution of (1.2) is the
fourpeakcorner solution (looking almost “radial” for tleesmall¢-values). However, for
all considered > 0.001 we could also find the onepeakcorner and onepeakedge s®utio
as approximations. Besides the possibility that the apprate solutions are “ghosts”, i.e.
there does not exist an exact solution nearby, there aretaalymore options: either the
theorem of [24] is false for domains not smoothly boundedherdnepeak solutions must
“vanish” for very small values of. We believe the latter is the case but we were not able to
prove this.

(b) For larger values of we could find many more approximate solutions having more tha
three bumps on the edges of the domain. For reasons of sityplie did however not
include these approximations in this thesis.

(1) onepeakcorner  (2) onepeakedge (7) Twopeak 1 (8) Twopeak 2 (12) Threepeak 1 (15) Threepeak 4

)

(15) (6)
55 ~ (8)/
5 L

45 + / (30) - _

35

max u

30

Energy

Figure 6.5: Bifurcation diagram including main branches
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_(29)

(30)

45 +
(26)/ /(27)
max u

3.5

1
30 50.708 09

Energy

Figure 6.6: Full bifurcation diagram. The numbers corresbto the numbering in Figures 6.1
and 6.4. Main branches are displayed by straight black libiésrcations of main branches are
displayed by straight blue lines and bifurcations from ¢éhlesanches by dottes lines.

Selection of candidates for verification

By purely numercial, i.e. non-verified, computations we cafcwate approximations for the
guantities that are needed to apply Theorem 1. This will gisesome numerical evidence for
which of the approximate solutions displayed above a vetific of a true solution nearby might
be successful. It turns out that for most of the approximateti®ns the constank’, satisfying
(2.4), will be too large to find some > 0 satisfying (2.7) and (2.8). We have seen in section 5.1
that the computation ak” amounts to the computation of bounds for the spectrum offadjeint
operator involving the linearization of problem (1.2) a¢ thpproximate solution. Moreover we
have seen thak’ becomes large if the spectrum is close to zero. In the aboveioned cases,
when K is too large, we have one or more eigenvalues which are t@e ¢wzero. Fortunately,
there are some approximate solutions which have certaimgtries and taking these symmetries
into account in our computations can lead to a reductiok’oiinstead of working with the full
spaceH;(€2;) we will consider only the subspace of &l (£2;)-functions exhibiting the same
symmetry as the considered approximate solution. Themeagdaes of the above mentioned ope-
rator corresponding to non-symmetric eigenfunctions déonger contribute to the value df
and often these are the ones being closest to zero. Finallyefification process will lead to a
true solution lying also in the space of symmeffig(€2;)-functions.

It is clear that this procedure cannot be applied if the agprate solution does not have any sym-
metry at all. For the above considered approximate solsticiorned out that the most promising
candidates for a successful verification are the ones gisglan Figure 6.1. Therefore we re-
stricted ourselves to these approximate solutions in tsteofethis thesis.
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6.2 Application of Domain Decomposition

6.2.1 Computational domains and splitting into subdomains

As explained in the previous section we are going to proveterce of solutions to (1.2) in a

neighbourhood of the approximations displayed in Figuitg®)-(6). The functions exhibit several
symmetries:

a) The solutions are symmetric w.r.t. the ayes =,y = —z,y = 0 andx = 0, i.e. they exhibit

full symmetry of the domain. This is the case for the fourmeaker and the fourpeakedge
solution.

b) The solutions are symmetric w.r.t. the axes= z, y = —x. We refer to this as quarter
symmetry I. It applies to the twopeakoppcorner solution.

c) The solutions are symmetric w.r.t. the axes: 0, z = 0, which we call quarter symmetry
Il. This is the case for the twopeakoppedge solution.

d) The solutions are symmetric w.r.t. the ayis= —z. This is called half symmetry | and
applies to the onepeakcorner solution.

e) The solutions are symmetric w.r.t. the ayis= 0, denoted by half symmetry Il and is
satisfied for the onepeakedge solution.

As already explained in the end of the previous section, dswl ta reduce computation time,
we take all symmetry of the solutions into account and worky @am suitable subdomains of
Q2;, imposing Neumann boundary conditions on the new partseobtiundary. Furthermore, we
shift the remaining subdomain such that the upper left teaahcorner is at the poirtd, 0). We
write €, for these computational domains and assume alwaysﬁmistchosen according to the
symmetries of the underlying approximate solution Note that this restriction leads to lower
bounds for those eigenvalues only, whose correspondirantigctions have the same symmetry

asw; and finally - provided the verification process is successfalexact solutions also having
this symmetry.

Figures 6.6 (a) to (e) show the computational domains andtigting into subdomains as it will

be used for the domain decomposition. Solid lines ©jn- mark where the domain is split, at
these lines we will impose additional Neumann boundary ttimm in the course of the domain
decomposition.

@ ©

QO Ql QO | Ql

(b)

| o
QO Ql | Q2
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(d) (e)
QO 3 Ql QQ QO Ql
0 6 2t 0 1 t
Q3 Q3
94
02 0

Figure 6.6: Computational domains for (a) fourpeakcorner faurpeakedge, (b) twopeakopp-

corner, (c) twopeakoppedge, (d) onepeakcorner, (e) okefdga

6.2.2 Eigenvalue bounds for the base-problem

We will now comment on the computation of lower eigenvaluerts for the base problem (5.31),
i.e. on the computation of eigenvalue bounds for the eidaeyaroblems( € {0,...,5})

—Au+u = MN1+7¢(z,y))u inQ

u = 0 on oY N oN
u = 0 on 9\ 0N

(6.4)

wherec : 2, — R is piecewise constant and such that 3|w;|w; on€),. We used the subdomains
V,j=0,...,5as marked in Figures 6.6 (a)-(e). To be more clear we writendbe explicit defi-

nitions:
(@ Q°=conv{(0,0),(0,1),(=1,1)} (d) Q°=conv{(0,0),(0,1),(—1,1)}
Ql_( ) (7 ) 912(072t)x(071>
(b) QY = conv{(0,0),(0,1),(—1,1)} 0% = (2,2t +1) x (0,1)
Q! = (0,2t) x (0,1) Q3 =(2t,2t +1) x (—2t,0)
0?2 = conv{(2t,0), (2t + 1,1), (2¢, 1)} = conv{(2t,—2t), (2t + 1, -2t — 1),
() Q°=(-1,0) % (0,1) (2t+1,-2t)}
QL = (0,2t) x (0,1) (e) Q:< 1,0) % (0,1)
03 = (-1,0) x (—t,0) =(0,t) x (0,1)
Q2 =(-1,0) x (=2t — 1, -2t)
03 = (—1,0) x (—2t,0)
Q5 =(0,t) x (—2t — 1,—2t)
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For a suitable definition of it is helpful to take also the variation of the approximatéutons

in the sudomaing)’ into account: cornerbump functions have a bump centeraaylilg) at
(—1,3) € Q° which fades inQ2! whereas edgebumps have a bump concentrating on the right
part of Q' (centered roughly &t, 5)). On the remaining subdomaifis, j > 1 the approximate
solutions do not vary much and are close to zero. We will fioeeechoose” to be constant on
each of the subdomaif®’ and’, j > 1, but piecewise constant ¢i': For some suitably chosen

5 € (0,1) we setQ™! = (0,0) x (0,1), Q"2 = Q'\QLI and define

¢; = maxg;3lwlw, (z,y) €Y 7 20.2.3.4.5
c(x,y) = cip = maxgrrdlwilws, (z,y) € QY
Clp = maxm?,\wt‘wt’ (z,y) € Q12
max{ci1,c12}, (x,y) € 901 N oNL2.

On the interface®Q’ N 0¥, i # j we definec by the larger of the two values in the adjacent
subdomains. We can check that # c; », which is also expectable from the shapeuvaf

With this choice ofc the base problem (5.31) is not “too far away” from the origigigenvalue
problem (5.5), which results in a small number of homotogpstto connect both problems.

Remark 6. Recall that we are aiming at bounds for the eigenvalues ofl@molb.6), (5.7) neigh-
bouringl. Therefore we will restrict ourselves to the computatiorigenvalues\ of (6.4) which
are smaller than a prescribed boutigl > 1, and we will use the particular choicg, := 8. Note
that if there was no eigenvalue of (6.4) bel6l, thenC';, would constitute a lower bound for the
smallest eigenvalue of (5.6), (5.7) (in which case we wowdehobtained the desired eigenvalue
bound). However, in all our applications this was never tgec

Eigenvalue problem inQ°

By the above definitions we have two different casegfgrmamelyQ® = (—1,0) x (0, 1) (square
case) and2’ = conv{(0,0),(0,1),(—1,1)} (triangle case). However, a closer look at the boun-
dary conditions in (6.4) shows that in the triangle case therwalues of (6.4); = 0 are in fact
eigenvalues of (6.4), = 0 for the square case which correspond to eigenfunctionglsgimmet-

ric w.r.t. y = —z. Therefore we can restrict ourselves to the computationgefnealues for the
following problem (which is (6.4); = 0 in the square case)

—Au+u = AN1+co)u in(—1,0)x (0,1)
u =0 on ({1} x [0, 1)) U ([=1,0] x {1}) =: T p (6.5)

o =0 on ({0} x [0, 1) U ([~ 10]><{0})

Extracting from the eigenvalues of (6.5) all eigenvaluesesponding to eigenfunctions which are
symmetric w.r.ty = —x finally yields eigenvalues of (6.4),= 0, in the triangle case.
To solve (6.5) we use a separation ansdtz y) = v(z)w(y), leading to

" "
_Va) =Z ) + A1+ ¢y) — 1 = const. =

v()  wly)

and the boundary conditions givé—1) = v/(0) = 0, w'(0) = w(1) = 0.
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(i) —v"(z) =T1v(2), v(—1) =2'(0) = 0.
This problem has non-trivial solutions only7f> 0 and in this case the general solution is
given by
v(z) = acos(v/7(x + 1)) + bsin(v/7(x + 1)).

Using the boundary conditions we obtair= 0 and

. 2k’
\/;Zg—klm, keNy ie. T:(W+2k7r) , k€ No.

(i) w"(y) = (1= M1 +co) + 1) w(y), w'(0) =w(l) =0,7 = (%)2 for somek € Nj.

-~

:Z’I:k
We obtain non-trivial solutions only faf, < 0 and the general solution in this case is given
by
w(y) = acos(\/—Try) + bsin(/—7xy).

The boundary conditions imply= 0 and\/—7,, = 5 + I7 for somel € N,.

Altogether we obtain eigenvalues

T—Th+ 1  (m42m)? + (74 2kn)* +4

Al = , k,l €Ny,
M 1+ ¢ 4(1 + o) 0
corresponding to eigenfunctions
wi(z,y) = sin ((Z + 2km) ) cos ((3 + 2I7) y) . (6.6)

Since the space spém, : k,l € Ny} is dense inH%LD(Ql) all eigenvalues of (6.5) are obtained
by this separation ansatz.

For the triangle case we have to find all eigenvalues of (@B6Esponding to eigenfunctions which
are symmetric w.r.t. tg = —z: In case)y, is a simple eigenvalue its eigenfunction is symmetric,
which can easily be seen from (6.6). For a double eigenvatualgo have one symmetric linearly
independent eigenfunction, and in case of an eigenvalue mvitltiplicity 3 or 4 we have two
linearly independent symmetric eigenfunctions. Eigemealwith higher multiplicity do not occur

if \yy < O (see Remark 6).

Eigenvalue problems in©/, j > 1

Since)? is a rotated and shifted version @f (in both the triangle and square case) and more-
over this transformation maps the Neumann and Dirichlendaty of2°, respectively, onto the
Neumann and Dirichlet boundary 6f, respectively, the eigenvalues of (6.4)= 2 are given by
eigenvalues of (6.4), = 0 with ¢, replaced by:,. The same argument applies fot.

For the eigenvalue problem {i® a separation ansatz leads to the eigenvalues

Mg — k2m? 4+ li:j +1
1+ C3

, keN leNy

and again a density argument shows that these are indeeigexvalues of (6.4); = 3. The
eigenvalue problem if2> can be treated similarly.
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Eigenvalue problem inQ!
The eigenvalue problem to be solved in this section is given b

—Au+u = AN1+¢(z,y))u in(0,s) x (0,1)
(0 y) = M(s y) = 0 forall y € [0, 1] (6.7)
u(z,0) =u(x,1) = 0 forall z € [0, s]

with s = t if w, is a cornerbump or the fourpeakedge solution ard2t in the remaining cases.
The separation ansatZz, y) = v(z)w(y) leads to

_w”(y) = c) — U”(x) =const. =T
e A1+ —1)+ o) t=r. (6.8)

We will solve these equations, together with the correspandoundary conditions from (6.7), in
the subdomain@'! := (0, ) x (0,1) andQ™? := (4, s) x (0,1).
(i) Differential equation it = (0,4) x (0,1).

The boundary conditions applying to this subdomain:afe) =
Clearly, non-trivial solutions te-w"(y) = Tw(y), w(0) = w(1)
if 7 > 0 and in this case we have

w( ) = 0andv’(0) = 0.
= 0 can only be obtained

T = k*r? (keN), w(y) =sin(kmry).
For v it remains to solve the differential equation
v'(x) = (K7 = A1+ c11) + Dov(z)
with boundary condition’(0) = 0. We consider three different cases:
@ k*m* = AX1l4c1)+1=—-1%<0 (n€R)

In this case the general solution is given ©yfx) = a; sin(mz) + by cos(mz) and
v1(0) = 0 givesv, (z) = by cos(mz).

b) 12— A1+c)+1=1>0 (n €R)

Now the general solution ig, (z) = a, sinh(72) + by cosh(mz) and using the boun-
dary condition we obtain) (0) = a; = 0, i.e. vy (x) = by cosh(mx).

(€) k*m* — A(1 4 ¢11) + 1 =0, and we obtain, (z) = by with b; € R.
(i) Differential equation in2? = (4, s) x (0, 1).

As before:w(0) = w(1) = 0, and thusr = k%72 with & € N andw(y) = sin(kry). The
differential equation for reads

v'(x) = (K*7* = A1+ ¢12) + 1)v(x)
with boundary condition’(s) = 0.

@ K= A1+4+co)+1=—72<0 (n€e€R)
General solution:vy(x) = agsin(m(r — s)) + by cos(mz(z — s)) and the boundary
condition implya, = 0, thus we haves(x) = by cos(ma(x — s)).
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(b) k2 2—)\(14‘0172)—1—1:2 T22 >0 (T2 GR)
Now the general solution is given by (z) = ay sinh(ma(x — s)) + b cosh(rz(z — s)),
the boundary condition yields,(s) = a; = 0 and thusvy(z) = by cosh(me(x — $))

(€) k*m* — A(1+ c12) +1 =0, and we obtain,(z) = by, by € R.

Altogether we obtain

o(z) = { vi(z), x€(0,9)

ve(z), x € (0,8)

with vy, v, of the form determined before, and the additional smoothneasditions

vi(0) = v2(0),  wi(6) = vy(d).

Note that the numbek occuring inv; andv, must be the same, since the resulting eigenfunction

will not be continuous at = § otherwise.

Case A:(i)(a) and (ii)(b), i.e. 7, = \/)\(1 +ec11)—1—k2n2, 1 = \/k27r2 +1—-A1+c0)
(note that due to the form af;, v, we may assume;, » > 0) and we have the following

restrictions for)\ : ) )
1+k 1+k
i < A < i7 (69)
1 + C1,1 1 + C1,2

which can only be satisfied i, ; > ¢4 ».

We have to find non-trivial solutions, b, of the following system of equations

by cos(11d) = by cosh(mz(d — s))

—bi7i(sind) = bempsinh(m (6 — s)),

which is equivalent to

cos(710) —2cosh(m(6 — s)) b\ (0
—ysin(m8) —2msinh(r(d —s)) ) \b ) \0)°

~
=A

Non-trivial solutions do exist if and only ifet A = 0, and this leads to
Ty cos(110) sinh(7(6 — 8)) + 71 sin(716) cosh(m(d — s)) = 0.

For a fixed value of: we can enclose all solutions to this nonlinear equation enrtterval
determined by (6.9) using an Interval Newton method (setémeb.4.1) as follows: we
first apply the Interval Newton method to the closure of thenval determined by (6.9)
and check a-posteriori that the enclosed solutions arg liyirthe interior of the interval
determined by (6.9) (which is indeed satisfied in all our catapons). In the following
cases we will always implicitly refer to this procedure whba Interval Newton method is
applied to an open interval.

Note that we have to consider only finitely many value& adince we are only interested in
eigenvalues\ < (', (see Remark 6).
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Case B:(i)(a) and (ii)(a), i.er1 = VA(1 4+ c11) — 1 — k272, 5 = /A (1 + c12) — k272 — 1 and
we have the following restrictions for :

1 k221 k22
>\>maX{ TR + 7T}::Bk.

; (6.10)
1 + C11 1+ C1,2

In this case the system to be solved is given by

< cos(1d)  —cos(me(0 — s))> <b1> _ (0)
—718in(70) Tosin(r2(d —s)) ) \be 0

(. J/
~~

anddet B = 0 is equivalent to
Ty cos(710) sin(12 (0 — s)) — 71 sin(719) cos(m2 (6 — s)) = 0.

Recall that we are only aiming at eigenvalues< C'; and therefore only at solutions to
the previous equation in the intervaBy, C}), provided B, < C}, with By as defined in
(6.10). Note that3, < Cp, is satisfied for only finitely many values &fand in these cases
all solutions in the intervalB,,, C') can be enclosed using an Interval Newton method.

Case C:(i)(b) and (ii)(b), i.e. 71 = /1 + k72— A1 +ci1), 2 = V/E72+1— A1+ cr2).
Restrictions for\ :

, {1+l{:27r2 1+k:27r2}
A < min .

l+ecin’ 1+ers

The system to be solved in this case is

cosh(110)  —cosh(my(d — s)) by (0
msinh(r6) —mysinh(r(d —s)) ) \by)  \0)°

.

—C
Obviously,

det C' =0 <= 7y sinh(7z(0 — s)) cosh(76) — 71 sinh(716) cosh(mz(d — s)) =0
<= mtanh(m(d — s)) = 7 tanh(m0).

Sincel < § < t < sandr, 5 > 0, the term on the left-hand-side is negative while the
expression on the right-hand-side is positive. Thus thexena non-trivial solutions in this
case.

Case D:(i)(b) and (ii)(a), i.e.ri = /1 + k7% — A1+ c11), 2 = /AL + 1) — k?7% — 1. We
have the following restrictions fox :

1 k2 2 1 k2 2
L+ R <\ < i7 (6.11)
1 + CLQ 1 + Cl,l

which can only be satisfied ifi ; < ¢1 2. In caser; » < ¢;; we do not obtain eigenvalues.
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The system to be solved is the following:

( cosh(m0)  —cos(me(d — s))) (b1> _ (O) ‘
71 sinh(7d) mesin(m(d —s)) ) \ be 0

N

=:D
Again non-trivial solutions will occur only for
det D =0 <= 1 cosh(70)sin(m2(0 — s)) + 7 sinh(710) cos(m2(6 — s)) = 0.

We use an Interval Newton method on the interval determirye@!i 1) to enclose zeros of
this nonlinear equation for fixekl As before we have to consider only finitely many values
of k, since we are aiming at eigenvalues: C', only.

Case E1:(i)(a) and (ii)(c), i.e.

Br? +1 1
A:—ﬂ- _l_ = \/(k/’2ﬂ'2+1)—110171 —/{:27T2—17§0,
C

)
1+cio 1,2

sincec; 1 # c1,2. Note that this case can only occurif; > ¢; 5.

The smoothness conditions onimply
by COS(T1(5) = by and — b1y SiIl(TﬂS) = 0.

Sinceb; = 0 or by = 0 yield v = 0 the second equation impliegd = jx for somej € N,
and therefore

1+ecin Jm
k2?4 1)L g2 1=
\/( T )1+0172 T 5

For a given value of we can check if there exists some N such that the previous equality
is satisfied. Note that we have to consider only finitely maages, since we are aiming at
A< OL.

Case E2:(i)(b) and (ii)(c)

In this case the smoothness conditionaorad
by COSh(7'15> = by and T1b1 Siﬂh(Tl(;) =0
which, due tor; # 0 andd # 0 impliesb; = b, = 0 and therefore = 0.

Case E3:(i)(c) and (ii)(b)

Now the smoothness conditions omjive
by = by cosh(m(6 —s)) and 0 = mbysinh(m(d — s))

which, due tor, # 0 andd — s # 0 impliesb; = by = 0 and therefore = 0.
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Case E4:(i)(c) and (ii)(a), i.e.

]{?27T2—|—1 1+012
A= o = (22 1) 2 22 1 £,
1—’—61,1 2 \/( )1+Cl,1 ?é

This case occurs only i ; < ¢ 9.
As in case E1 the smoothness conditionsamply the existence of somge N such that

1 .
\/(k’27r2 n 1)1 +C1p0 22 ] — 5]71’

+ C1,1 — S

and we can check for givel (£ small since onlyA < (7, is of interest to us) whether this
can be satisfied.

Case E5:(i)(c) and (ii)(c), which is not possible sineg; # c; ».

Remark 7. In the actual computations for eigenvalue bounds we did mokwith the approxi-
mate solutionv; = Zle a;w; + v; (w; = N\y; ando; € V) but with the Finite Element interpo-
lation a;t(” = Iy (w) whereN < N (i.e. Vy is coarser than the Finite Element spagg. This
avoids complicated integration during the homotopies avescomputation time. Eventually we
obtain a bound for the inverse of the Iinearizatiomvﬁf, which can then be used to compute the
corresponding bound fat,,, by Lemma 1 (b) (see also appendix A.4 for some details).

6.3 Lower Bound for the First Eigenvalue of the Laplacian

For the computation of embedding constants for the embgddif} (Q;) — LP(Q;), p > 2, via
Lemma 2 we need a lower bound for the first eigenvalue of théalcaam on(2, (with homogeneous
Dirichlet boundary conditions). Such a bound can be obthirgng a domain decomposition
method. We first divide the domain into 8 subdomains, whegesttbdomains marked with are
congruent tq0, 1) x (0, 1) and the ones marked with are congruent t¢0, 2¢) x (0,1). We use

1 2t
1 A B A
2t| B B
A B A

a domain decomposition ansatz to compute a lower bound dirt@igenvalue of the Dirichlet-
Laplacian orf2. We first compute the eigenvalues in the subdomadisd B with zero Dirichlet
boundary conditions 082 and zero Neumann boundary conditionstohn 0B.
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A) Let Q4 := (0,1)% The eigenvalue problem is given by: Find eigenpéirs, u) such that

—Au = Au in Q4
uw(0,y) = u(z,1) =0 forall z,ye[0,1]

5(Ly) = 55(0,0) =0 forall 2,y [0.1]

A separation ansatz(x, y) = v(x)w(y) leads to the following eigenvalues:

2r)? )2
A, = T2 Z“”L Nl keN,

B) LetQp = (0,2t) x (0,1). Now we have to solve the eigenvalue problem: Hikg, v) such
that

—Au = )\BU in QB
u(z,0) = u(z,1) =0 forall = e [0,2]
Bu(0,y) = 2“(2t,y) =0 forall ye|0,1].

Again, by separation of variables we obtain

1?72
Ap = k2?4
B ™+ 4t2 )

ke N, € Np.

The smallest eigenvalues in the union of &ll and A\ g are%2 (smallest eigenvalue id) and >
(smallest eigenvalue iB). Thus (by domain decomposition), a lower bound foritth eigenvalue
inof —A in Qs given byr? — lio This lower bound is independentidnd can be used to compute
a lower bound for the first eigenvalue ofA via the Lehmann-Goerisch method. We denote the
final bound by).

For some selected valuestoive display), as well as upper bounds which we computed using
the Rayleigh-Ritz method. The eigenvalue bounds have beepuwtethon a rather coarse mesh,
resulting in low computation time but still sufficiently igbounds.

Table 6.1: Lower bound for the smallest eigenvalue of thécBbiet Laplacian orf,

t A A

0.384765625 8.441616| 8.461986
0.501953125 8.588606| 8.610882
0.765625 8.795805| 8.822743
1 8.903686| 8.934723
1.5 9.024702| 9.063226
2 9.077287| 9.121176
2.5 9.100550| 9.147982
3 9.110544| 9.160245
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6.4 Verified Results for some Discrete Values af

We choose the gri@i’—; =ty <t <...<tlti;=1<1g <... <ty =3, where the grid points

to,...,ti7 andtyr, ...ty are equally spaced witth = 5% andd,; = % respectively. By this

choice all nodes in the Finite Element grid are machine nusbed thus exactly representable
by the computer. In case of the fourpeakcorner solution we ptesent some verified results for
parameter values< t,, thereby showing that our method is not limited to the chagéah

In the first part of the section we show results of our companatfor the different solution types.
The second part is concerned with proving multiplicity olusimns for a fixed value of.

6.4.1 Existence of solutions

In the following we summarize our verified results for:

(i) bounds for the smallest eigenvalues of (5.6), (5.7)Hwit replaced bybt(z), see Remark 7),
i.e. an upper bound for the largest eigenvalue below 1 angvarlbound for the smallest
eigenvalue above 1,

(i) a bound for the inverse of the linearizationuatsatisfying
ol < Kol Ly [v][| g forallo € Hy(€, sym),

where H} (€);, sym) denotes the space of all functions having the same symmesttiiea
approximate solution,

(i) an upper bound for the defect-norm ©f,

(iv) a constanty, satisfying (2.7) and (2.8), if existent.

The existence of some, in (iv) and the final checletHHé > «4 proves the existence of an exact
non-trivial solutionu; € Hj (€2, sym) to problem (1.2) such thd{t,, — wellmg < ou.

Here we will display the results for selected valueg ohly. Complete lists containing the results
for all grid values can be found in Appendix A.1.

Fourpeakcorner

As already mentioned we extended our grid by samalues smaller thaty. In case we could
not find a valuen;, > 0 satisfying (2.7), we note also the valuemafix 1) with v defined as in
Remark 2 (a). Note that all values are rounded (downwardiv#hue constitutes a lower bound
and upwards otherwise).
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Figure 6.7: Approximate solution “fourpeakcorner” forfdifent values of

t R1 Ko K, 0y ay max
0.208984375 | 0.35886 | 1.46450 | 3.15489 | 0.0257979 - 0.0206708
0.267578125 | 0.35837 | 1.29394 | 4.40575 | 0.0162102 - 0.0104117
0.326171875 | 0.35759 | 1.23600 | 5.24225 | 0.0112234 - 0.0072413
0.35546875 | 0.35700 | 1.25520 | 4.92280 | 0.0095729 - 0.0081590
0.384765625 | 0.35637 | 1.28913 | 4.46259 | 0.0083061 | 0.0529693 -
0.4140625 0.35579 | 1.32103 | 4.11833 | 0.0733333 | 0.0376470 -
0.47265625 | 0.35485 | 1.35813 | 3.79517 | 0.0059516 | 0.0258406 -
0.53125 0.35419 | 1.36966 | 3.70819 | 0.0049660 | 0.0204041 -
0.6484375 0.35340 | 1.37157 | 3.69441 | 0.0035973 | 0.0142616 -
0.765625 0.35302 | 1.36993 | 3.70615 | 0.0029272 | 0.0114808 -
0.8828125 0.35282 | 1.36847 | 3.71728 | 0.0027233 | 0.0106701 -

1 0.35272 | 1.36782 | 3.72185 | 0.0026960 | 0.0105702 -
1.25 0.35264 | 1.36723 | 3.72630 | 0.0027001 | 0.0105984 -

1.5 0.35262 | 1.36710 | 3.72704 | 0.0026982 | 0.0105912 -
1.75 0.35262 | 1.36706 | 3.72779 | 0.0026960 | 0.0105832 -

2 0.35262 | 1.36704 | 3.72778 | 0.0026943 | 0.0105754 -
2.25 0.35262 | 1.36703 | 3.72778 | 0.0026932 | 0.0105702 -

2.5 0.35262 | 1.36703 | 3.72778 | 0.0026925 | 0.0105670 -
2.75 0.35262 | 1.36703 | 3.72778 | 0.0026922 | 0.0105653 -

3 0.35262 | 1.36702 | 3.72779 | 0.0026920 | 0.0105647 -

From the table we can read that the defect boyyritecomes larger asdecreases. This is due to
the fact that the cut-off functions;, which are defined in (4.5), have support{itx,y) € R? :

|G — x| < tand|n; —y| < t} N Q; (where&; = ({;,n;) denotes a re-entrant corner ©f) and
satisfy \;(¢;) = 1. Therefore the cut-off functions become steepet dscreases and sinde)\;
andA\; enter the defect computation this has direct influence oféheed,.



62 6 Computations and Results

Fourpeakedge

Our approximate bifurcation diagrams indicate that thegeakedge solution lies on a branch
which has a turning point close to= 0.5. Indeed our verified results show that close to this
parameter value the bound for the inverse of the lineaaratt the approximate solution increases
rapidly. However, we did not prove that a turning point existsome neighbourhood ot= 0.5.

2 F N w & o

.5

-(é)t:1

-1

7(1)7t = 272 | (é)t =3

512

Figure 6.8: Approximate solution “fourpeakedge” for difat values of

t R1 Ko K, 0 o max i
0.501953125 | 0.35423 | 1.06716 | 15.97879 | 0.0041423 - 0.0007329
0.53125 0.35286 | 1.24676 | 5.05846 | 0.0034592 | 0.0203114 -
0.6484375 0.35077 | 1.56669 | 2.76567 | 0.0026737 | 0.0076181 -
0.765625 0.34994 | 1.54170 | 2.84700 | 0.0027014 | 0.0079404 -
0.8828125 0.34954 | 1.52943 | 2.88992 | 0.0028066 | 0.0083929 -

1 0.34935 | 1.52380 | 2.91018 | 0.0029412 | 0.0088759 -
1.25 0.34920 | 1.51987 | 2.92472 | 0.0027142 | 0.0082100 -
1.5 0.34916 | 1.51908 | 2.92764 | 0.0026696 | 0.0080783 -
1.75 0.34915 | 1.51897 | 2.92804 | 0.0027713 | 0.0083975 -

2 0.34915 | 1.51888 | 2.92858 | 0.0030319 | 0.0092189 -
2.25 0.34915 | 1.51885 | 2.92901 | 0.0035123 | 0.0107472 -
2.5 0.34915 | 1.51865 | 2.93055 | 0.0042391 | 0.0131032 -
2.75 0.34915 | 1.51878 | 2.93136 | 0.0052125 | 0.0163329 -

3 0.34915 | 1.51868 | 2.93337 | 0.0064216 | 0.0204903 -

Onepeakcorner

We display only results for grid values smaller than or eqoal5. In chapter 9 we will show that

a solution of onepeakcorner-type exists for all paramedtrest > 1.5.
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-én:1

5

4 -(3)t:3

1

t R1 Ko K 0y oy

0.501953125 | 0.35262 | 1.36707 | 3.72550 | 0.0047839 | 0.0190828
0.53125 0.35262 | 1.36705 | 3.72560 | 0.0041881 | 0.0165515
0.6484375 0.35262 | 1.36698 | 3.72600 | 0.0025596 | 0.0098762
0.765625 0.35262 | 1.36722 | 3.72418 | 0.0017697 | 0.0067501
0.8828125 0.35262 | 1.36712 | 3.72493 | 0.0014677 | 0.0055765
1 0.35262 | 1.36702 | 3.72570 | 0.0013807 | 0.0052407
1.125 0.35262 | 1.36702 | 3.72571 | 0.0013593 | 0.0051577
1.25 0.35262 | 1.36702 | 3.72571 | 0.0013531 | 0.0051335
1.375 0.35262 | 1.36702 | 3.72571 | 0.0013509 | 0.0051248
1.5 0.35262 | 1.36702 | 3.72571 | 0.0013498 | 0.0051205

Onepeakedge

1t=21

Figure 6.10: Approximate solution “onepeakedge” for diiet values of

=TS VU TR N
o,

2 = N w & a

(@t:3

t R1 Ko K 0y oy

0.501953125 | 0.34980 | 1.53720 | 2.86448 | 0.0021935 | 0.0064033
0.53125 0.34971 | 1.53469 | 2.87327 | 0.0020107 | 0.0058791
0.6484375 0.34945 | 1.52717 | 2.89999 | 0.0017023 | 0.0050115
0.765625 0.34931 | 1.52278 | 2.91576 | 0.0016161 | 0.0047805
0.8828125 0.34923 | 1.52089 | 2.92242 | 0.0015804 | 0.0046844
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1 0.34919 | 1.51976 | 2.92628 | 0.0015857 | 0.0047065
1.25 0.34916 | 1.51905 | 2.92709 | 0.0013685 | 0.0040551
1.5 0.34915 | 1.51881 | 2.92786 | 0.0013392 | 0.0039682
1.75 0.34915 | 1.51893 | 2.92738 | 0.0013875 | 0.0041123
2 0.34915 | 1.51887 | 2.92765 | 0.0015168 | 0.0045007
2.25 0.34915 | 1.51885 | 2.92787 | 0.0017565 | 0.0052229
2.5 0.34915 | 1.51864 | 2.92893 | 0.0021197 | 0.0063246
2.75 0.34915 | 1.51830 | 2.93062 | 0.0026063 | 0.0078136
3 0.34915 | 1.51871 | 2.92966 | 0.0032109 | 0.0096732

Twopeakoppcorner

Again we display only results for grid values smaller tharequal tol.5. The method in chapter
9 will prove that a solution of twopeakoppcorner-type existr all parameter valugs> 1.5.

g B N ® & a

ok N w s o
e RN @ a o
-

4(1)2:% 7(2.)t.:1 7(3-)26:3

Figure 6.11: Approximate solution “twopeakoppcorner” @iifferent values ot

t K1 Ko K, 0y oy

0.501953125 | 0.35264 | 1.36689 | 3.72722 | 0.0160981 | 0.1054400
0.53125 0.35264 | 1.36688 | 3.72730 | 0.0135297 | 0.0709231
0.6484375 0.35262 | 1.36677 | 3.72819 | 0.0069463 | 0.0294037
0.765625 0.35262 | 1.36713 | 3.72569 | 0.0039136 | 0.0155638
0.8828125 0.35262 | 1.36686 | 3.72803 | 0.0026440 | 0.0102880
1 0.35262 | 1.36699 | 3.72758 | 0.0022034 | 0.0085089
1.125 0.35262 | 1.36702 | 3.72571 | 0.0013825 | 0.0052473
1.25 0.35262 | 1.36702 | 3.72571 | 0.0013596 | 0.0051589
1.375 0.35262 | 1.36702 | 3.72571 | 0.0013526 | 0.0051316
1.5 0.35262 | 1.36702 | 3.72571 | 0.0013502 | 0.0051223
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Twopeakoppedge

Figure 6.12: Approximate solution “twopeakoppedge” fdfadient values of

(1)t _ 257
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2 = N w & o

($t=3

3 K1 Ko K Ot ay

0.501953125 | 0.34983 | 1.53786 | 2.86108 | 0.0025267 | 0.0074174
0.53125 0.34973 | 1.53514 | 2.87054 | 0.0023319 | 0.0068555
0.6484375 0.34945 | 1.52728 | 2.89834 | 0.0020558 | 0.0060872
0.765625 0.34931 | 1.52281 | 2.91444 | 0.0020373 | 0.0060655
0.8828125 0.34923 | 1.52090 | 2.92130 | 0.0020653 | 0.0061653
1 0.34919 | 1.51976 | 2.92536 | 0.0021303 | 0.0063725
1.25 0.34916 | 1.51905 | 2.92709 | 0.0013685 | 0.0040551
1.5 0.34915 | 1.51881 | 2.92786 | 0.0013392 | 0.0039682
1.75 0.34915 | 1.51893 | 2.92738 | 0.0013875 | 0.0041123
2 0.34915 | 1.51887 | 2.92765 | 0.0015168 | 0.0045007
2.25 0.34915 | 1.51885 | 2.92787 | 0.0017565 | 0.0052229
2.5 0.34915 | 1.51864 | 2.92893 | 0.0021197 | 0.0063246
2.75 0.34915 | 1.51830 | 2.93062 | 0.0026063 | 0.0078136
3 0.34915 | 1.51871 | 2.92966 | 0.0032109 | 0.0096732

6.4.2 Multiplicity

In order to prove that for some fixed valuetdivo exact solution&,ﬁl) andu§2) do not coincide it

is sufficient to prove

Suppose that we know approximate solutiofi$, w” € HZ(£,) as well as constantg ", a” > 0

such that

luf? — iVl < af

(1)

2
g — uf? | > 0.

and [ul” — | < a

(2)
P
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Using reverse triangle inequality we can estimate

1 2 1 2 1 1 2 2
luf” = w [ > ot = i =l — oy = ut? = wi? llm
1 2 1 2
> ot = w2 — ol — ¥

> ([T (@r”) = Ty @iz = o = T (@ )llae = Nl = T (@) 22
— aﬁl) — 042).
Since Iy, (w]fl)) and Iy, (w§2)) are Finite Element functions, th&*-norms of the first term can
easily be enclosed using a quadrature rule of sufficiengi degree, applied elementwise. Upper
bounds for the remaining norms have already been computatydhe defect computations and
thus a multiplicity check does not require a lot of additioefort.

A successful multiplicity check finally proves

Theorem5. (a) Forallt € {¥7 +415: i=0,1,2,3} there exists at least one non-trivial

solution to problen{1.2) (type fourpeakcorner).

_ 257 . - . . -
(b) Fort = £5 there exist at least five non-trivial solutions to probl€hx?) (types fourpeak-

corner, onepeakcorner, onepeakedge, twopeakoppcornemanpkakoppedge).

() Forte {Z2 +i15: i=0,...,16} U{l1+ L : i=1,...,8} there exist at least six non-

trivial solutions to problen{l1.2).

(d) Fort e {1.5 + f—ﬁ ci=1,..., 24} there exist at least four non-trivial solutions to problem
(1.2) (types fourpeakcorner, fourpeakedge, onepeakedge, tikoppadge).
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7 Verification of Solution Branches

Suppose now, that for two approximate solutions € Hj(€,) andw;, € H}(y,) to problem
(1.2) (witht = ¢, andt = t,, respectively) which are close, i.¢; — ¢; is small and and both
solutions are of the same type (fourpeakcorner, onepeaé&gatc.), we have proved the existence
of two exact solutionsy,, € Hj(,) andu, € Hj(,) in some neighbourhood af;,, and
wy,, respectively. In this chapter we will introduce a methogtove the existence of solutions
uy, € Hy(Q) forall t € [ty,t,], and to show thatu, )., +,) IS @ smooth branch, with a suitable
notion of continuity to be defined. The main idea is to transfthe approximate solutions, and

wy, to a fixed reference domain and to define (transformed) appedg solutions fot € [tq, ¢5]

by linear interpolation of the transformed approximations

In our given problem the parametsoccurs in the domain and the equation is not depending on the
parameter. For the opposite case, i.e. a parameter-degieagieation on a fixed domain, we refer
to [57], where computer-assisted existence and enclosgtgts for semilinear elliptic problems
(with parameter-dependent equation) are presented. Adugpplication of this method is also
given in [50]. However, the basic ideas of [57] can be trameféalso to our problem.

7.1 Construction of Branches

We start with a gridty < t; < ... < t; < t;;1 < ... < t, and suppose that for each
i € {0,...n}, we have computed an approximate solutigne H}(€2;,) to problem (1.2) (with
t = t;) as well as constants, and K;, such that

() ||—Aw, — |w,

3||H_1(Qti) < O

(“) HUHH(%(Q%) < Kti Lwti [U]HHfl(Qti) forallv € H&(Qtz)

It will be convention, that when speaking of a grid of funatsp we always consider functions of
the same type, e.g. approximate solutions with full symynetithe domain and a bump in each
corner, or approximate solutions with only one bump in thpaxpeft corner etc.

We furthermore assume that, by using Theorem 1, we have grihva there exists a number
oy, > 0 and a solutiony;, € H} (Q;,) satisfying

<

Jur, = will g,y <

i

foralli € {0,...,n}.

Letnowi € {1,...,n} befixedand € [t;_;,t;11]. We assume tha;tf) is a Lipschitz continuous
function mapping the domaift,, onto Q, and satisfying(¢\”)~! € C°'(Q,,€,), i.e. ¢! is a
Lipschitz homeomorphism. Furthermore we asswﬁj\)e: Id. By [31, Problem 7.5]w; o gbf) €
HY(,) for all w, € HL(SY) andw;, o (¢))~! € HL(,) for all wy, € HL(SY,). It follows, that

; HY(Q HY O,
@gz):{ o(8%) — H( t(z)) (7.1)
Wy > WO @y
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is bijective. In the following we denote variables{i, by (z, y) and variables i), by (x,y), and
using moreover the notation

ﬁ)t(‘%ag> = wt(¢§i)<a~;7@))7 (f7g> S Qti’

for w; € H}(€;), we obtain

wy(,y) =@ ((¢”) l(fv y), (z,y) €
(Vwn(e,y)" = (V) (0r)) ™ (@, 9)" I[o; (. y)

(whereJ denotes the Jacobian matrix).

Definition of interpolating approximations w;

Fort € (t;_1,t;) we definew, by linear interpolation of;, , = w;, , (;S,E”_I andw;, = wy, o ¢§f) =

wti:
N ti—t . t—1ti1 .
= , - O 7.2
- 151;71%171 * t; — tz’flwtl (7.2)
Finally, w, € H} () is given by
wp =0 (97)7 (7.3)

and will serve as approximate solution to problem (1.2).

Remark 8. In the following sections we will usually considere (t;_4,t;] for some fixedi €
{0,...,n} and thus in most cases the transformai;zb&his used. If no confusion can arise we will

often omit the superscrigt) in the notion ofgzﬁf) and write only¢;. However, also in case of this
shortened notation we always assume that<2;, — €2,.

7.1.1 Defect computation
As before let € {1,...,n} be fixed. Our aim is to compute a uniform bourd such that
|| — Awt — |wt|3||H71(Qt) < 5(2) forall ¢t € (ti—lu tz],

wherew; € H} () is the approximate solution of (1.2) given by (7.2), (7.3).cbntrast to the
procedure for the defect computation for fixeith section 4.1, where we estimated tHe''-norm

of the defect by the sum of twh2-norms, we will now work with the usualip-formulation of

the H~*-norm. In the following we will use the notatiof{w;) := |w;|>.

Foryp € H}(S;) we have, denoting := ¢ o ¢,
(= = fle)lel = [ [V Vi = flaap] diy
L [ e ) ([(Va0(@ 9 (1600 ()]
| (VO)&3)" (Jlo7 od) (,9)] — F(@(.5)(E.9)) d(.9)
= [ 1det ol (V507 600 TV - £(20F) d(3. ).
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Assume now that functiong ", v\? € L2(€),,) are at hand such that for ali [t;_;, ¢;]

= || det J[ou] (V@) [ o 77| | < Y (7.4)
d? - @)
g ldet Tlaipta] | < 75)

Then by the usual interpolation error estimate for lineéerpolation we obtain fot € [t; 1, ]
andy; € HY(Q,):

/Q |det T(od| [(Van" 160 16T Vi = F @) d(z )

o #/ ‘ det J[¢ti71H [(V@tifl)TJ[¢75¢71]71J[¢%71]7Tv90i - f(a)tifl)gpi} d(j'a ?j)

t;

- tti__t;__ll / ‘det J[¢tz” [(v(jjti)TJ[¢ti]_1J[¢ti]_Tv90i - f@tz)%] d('%’ g)‘

tg

U | (i —tii)?
< [ | e+ [ v§2>|¢i|d<x,y>] Lot e
Q, o

Before we start to consider the right-hand-side of (7.6), Weceamment on the transformation that
will be used during the process. We have already mentioregd{tnas to be Lipschitz continuous
(ensuring tha, mapsH; () onto H}(€,)). In addition, we will constructy; such that it is
piecewise linear and the linear mappings are compositibddations and translations, i.e. such
that

&(E,7) = > SLF §)xey (F,7) (7.7)
(40,0 () (40 v
L0 wm) ) P |

k e
Ql NQl =0 for j#£1 and €, =int (U Qi) :

J=1

with

and(} c Q,, satisfying

The coefficients:;, b;, c§1), c§2) have to be chosen acoordingly to guarantee Lipschitz aaityin
and the required mapping properties@f Moreover we assume — a;(t), t — b;(¢), and
t— c&l)(t), [ = 1,2, to be continuous if;_1, t;] and|a;(t)|, |b;(t)| > 6 > 0forall t € [t;_1,1;]
(ensuring that; ' exists for allt € [t;_1,t;]). To guarantee),, = Id we assume furthermore
a;(t;) =b;(t;) =1 andcg.l)(ti) = 0,1 =1, 2. The actual choice af, will be fixed in section 7.1.3.

(7.8) implies in particular].J[¢]] €| < max{|a;(t)|, |b;(t)[}|¢| for all ¢ € R? and considering the
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first summand on the right-hand-side of (7.6) we obtain

/ % |V<,01|dxy Z/ \/ldetJ[¢>J ‘ qu TJ[¢J TVg@,|dmy
Qq,

| de tJ[¢>J

-----

max{a;(OLI; 1} ) | ) ; o -
< meih g Il . det J J V| d(z,
< mxmx]( Sl ) Z / 0| det T L6 Vo (2. 9)

1
2

IN
B
»

Q,

max{|a b; 1
= [, o (2O ) [y O, 9l

mas{la; (Db, O1 ) | 11.(0) det JT N T/ -T2 d(5. G
max kteﬂgaﬁ]( ERE ) 17 22, (/ | det @] J[67]™" Vol d(Z, )

_j:1 ..... k:te ti1,ti] | det J[¢7]|

(1)
C ti—1t;

wherep = ¢; 0 ¢; ' € H(). In a similar way we can estimate the second summand on the
right-hand side of (7.6):

|detJ[¢3 2) ~
/Qt 1P leil d(@, ) = Z/ NS |pil d(@, 9)

< | max max ———| |4
- {jg,.f{,kteﬁﬁ} V| de tJ[¢Z]|:| I HLZ(Qti)

(2)
=Cy ti—1t;

Putting these two estimates together yields

1 ~ o~ 2 ~ o~ 1
Q, Q,

Thus the inequality in (7.6) leads to

|(=Aw; — f(w))[]| < max {Ot(}) o (2) } (t; — t;iq1)?

D +
||90||H3(Qt) timat 8
ti—t |(=Awr,_, — flw,_, )leiall |t —tig [(=Awy, — flwy,)) @il (7.9)
ti—tia ol m2 (c20) ti— i 1ol 1 20) ’

wherep;_; = pog0¢; ' € Hi (4, ,) (note that by our conventiopy ' = (gbg)_l)*l). Therefore,
with (x1,y;) denoting coordinates if};, ., we have

i—17

o0 = [ 962+ dizy)

Q

:/Q | det J[g]od; || det T ]|

i—1

U100 o0 )l o Wi + 2] darm)
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a;(ti—1) 2
a;(t)

2
. . . bi(ti—1) la; (#)b; ()] .
> [Jrﬁllnkte[rt?_l?tl] (mm{ ]bj(t) ,1} aj(tij_l)bj-(ti_l)l)}

(3)
ti—1t;

[ 19l 4ot do)

3
= 2 el @,y

and moreover

Il = [ 1det Tl (1160 Vil + 2] d(a.5)

K3

2 2
> i i ind || [+ .1 ()b, (t Voil? + @2 d(z,7
- \[]irll}n’k teg}{l,ti] (mln{ aj(t) ? bJ(t) Y } |a.]( ) J( )l | Qti |:| (10 ‘ + ()01] (x7y)
::Céfiltz
4
=, @ill a0, (7.10)

Plugging these two estimates into (7.9) and taking the sopne over allp € H} () (which is,
due to the mapping properties ©f, equivalent to taking the supremum over@ll, € H} (€, )
or p; € Hy(£,)), we obtain

ti—tiq)?
I - = Flivan < T a0 0, )+
maX{ (13) H - Awnil - f(wnfl)HH—l(Qtiil)? (14> ” — AU)ti — f(wtl) H_l(ﬂti)}
¢ c
ti—1t; ti_1t;
L. 2
< (t’b tl—l)

A {Ct(il—)ﬁw Ct(g)m} + max{ Ot 9t

e — 2
8 \/Ct(izlti \/C’giilti

7.1.2 Bound for the inverse of the linearization

Leti € {1,...,n} be fixed and denote hiya given subinterval of;_;, ¢;]. Our goal is to compute
constantds’; such that

1ol a0 < K1l Lo o)l g1,y forallv e Hy(;) and forallt € 1. (7.112)

As before we will make strong use of the Transformation Theoand in addition apply Poincgs
min-max principle.

Recall that by Lemma 3 in section 5.1 a constAnsatisfying
[0l i) < K 1 Lo [V]ll -1y forallv e Hy(:)  (fort > 0 being fixed
exists if and only if
v := min{|v| : v is in the spectrum o® 'L, } > 0

and in the affirmative case one can choose &ny % The isometric isomorphisrd : HJ () —
H~'(©;) has been introduced in (2.5).
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We have already seen in section 5.1 that (' L,,) = {1} and therefore it suffices to compute
upper and lower bounds for the eigenvaluesbof L, neighbouringd. Equivalently to (5.5),
which is the eigenvalue problem fér'L,,, we consider the eigenvalue problem

/ (1 + 3|wi|ws) up d(x,y) = n/ [Vu-Vo+up] dx,y) forallpe H&(Qt), (7.12)
Q

Q¢

and the transformation = 1 — v yields eigenvalues of 1 L,,.

Let NnoWt; 1o = 2(t;ioy 4+ ;) andI = [t;_1)2,t;]. Fort € I we denote byt” > 5l >

the eigenvalues of (7.12), ordered by magnitude and couytenultiplicity. By Poincaé’s min-
max-principle we have for alh € N (note that in section 5.1 we have proved that there exists an
infinite sequence of eigenvalues of (7.12) which converg@3:t

1+ 3w |ws) u? d(z,
777(7? = max min f ( o) ( y) (7.13)
UCH(Q) uel fQ [|[Vul]? + u?] d(x,y)

dim U=m

Estimating the Rayleigh quotient, where we compute analslgas in (7.10) and use the notation
U =uo ¢y = w0 @y, yields for allt € 1

Jo (14 3wrlwn) 2 d(z,y)  Jo, 10t T[] (1431213 32 d(7, )
Jo (IVul +wld(z,y) o, [det Tl [[J[a] ="Vl + a2 d(z,7)
(1) f(zt (143[@¢| @ )a® d(z,7)
Cz 1/2ti fﬂ [|Val2+a2] d(z,
(z

s o® oy (+alinfon)i? a
= ti_q1y9ti fQ [IVal]2+a?] d(z,

)
" (7.14)
)

Y

where

1 Jj=1,..,
(1) = max

C =

ti 1 oti

T el ] min | min
=1,k

C?, 4= min = - . (7.15)
imi/2n telt;_1/2,t
Sli1zt max. (max{ 1 ,1} |aj(t)bj(t)|>
J=L

For the numerators of the new Rayleighquotients on the hgihd-side of (7.14) we write

1
7| b;(¢)

Ju d(z, 7).

(7.16)
The modulus of the the first summand can be estimated as inrtué pf Lemma 1(a), with
pis.-.,pa € [2,00) such that- + - + - + .. = 1 and denoting by,,, an embedding constant

for the embedding?} (;,) — LPi(Q;,). Using moreovety;, — &; = tttz -(wy; — @y,_,) and

JatdGg)+ [

Q,

/ (1 + 3)04|3)i d(, §) = / 3 |nldr —
Q, Q1
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t € [ti—1/2,t;] we obtain

3

/ [Geln — e o) @2 (2, )
Q,

S 301730174 (|
< 5CCp (lwt, |l ori () + maxfJwr,

2
0 (Qtl)

@) + 1@l o) Nlwor, = @ellwe o)

i@y 3@ e @) + llww e @) }) -
e, = Be,y o2 @ 1Ml @,
=: T;||a|\§[5(9ti) forallt € [t;_1/2,t:] . (7.17)
Note that by choosing the interval= [t;_; -, t;] (instead ofit;_1, ¢;]) we gained a factog inT; .
Combining (7.16) and (7.17) yields
Jo, Ut 3l@dlay) @ d(Z,§)  fo, (14 3lwy|wr)a d(Z,5)
T (VP =@ d@d) = Jy NP+ @ g 1O

and analogously we obtain:

fo, (14 8020 #d(E.5) _ Jo Jidag)
o T 60 > Jo, NP+ de

Recall that the mapping properties ©f ensured bijectivity of the operat@, defined in (7.1).
Therefore also any:-dimensional subspadéof H} (€);) is  mapped to am-dimensional subspace
U C Hj(€y,) and foru € U we haveu = uwo ¢, € U. These considerations imply for all

t e [ i—1/2 ]

@ Jo, (1 + 3Jwilw,) w? d(z, y)
" UCHL () ue€U fQ [[Vu|? 4+ u?] d(x,y)
dim U=m
739 o Jo, (1 3la|@,) a* d(z, )
>~ ti—1/2ti OCHY () ael fQ |Vﬂ|2 +ﬁ2] d(:%,gj)
dim U=m

(7.18)(7.13) B

< C£¢31/2t (77%) +7; ) ) (7.19)

and analogously
2 . —
n® > C? Ll =) (7.20)

Denoting by them-th eigenvalue ofb~'L,, : H1(€}) — HL(,) we therefore obtain, using
the transformation)) = 1 — 777(]:? and the estimates (7.19), (7.20)

=1-CfY () + ) <P <102 L () =) =7,

i—1/2ti
forallt € [t;_1/2,t;] = I andm € N.

If there exists an index,, € N, for whichz,, < 0 (only in casen, > 0) andv?, ., > 0, Lemma

3 implies that B
Ky = (min { (7| 2oy 11 })



74 7 Verification of Solution Branches

is a constant satisfying (7.11) for ale I = [t;_12,t;].

We will now consider the interval := [t;,t;11/2], With ¢;112 = 4(¢; + t;41). Note that in
this case the functiof, is defined by linear interpolation af;, o <;5(”1 andw,,,, on§), , and
w, = @ o (6"V)~1. For the next steps, we transformsp and use the notatiof, = w; o ¢\”
andu = uo qﬁf) for w;,u € H (). Then we obtain for alt € T = [ti, tiv1y2):

Jo, U+ 3lwilwy) w? d(a,y) thi | det J[¢y]| (1 + 3|y |@,) 4% d(Z, §)
Jo (IVul +wld(z.y) [, [det J@d| [[J[a] ="Vl + a2 d(z,7)

) f“t (1+3|@e| )02 d(7,7)
titiy1/2 fQ [IVa|2+42] d(z,9)

(2) fQ (1+3|wt|wt) 2d(%,9) (721)
Litiy1)2 fQ [[Va|2+a2)d(Z,5) °
where
max |a;(t)b;(t
o _ max, [a;(£)b;(0)
titigz1/2 — te€ltistit1 /2] . ) L 2 . 2
P! (mm{ w@| - |5® ’1} |aj(t)bj(t)l)
2 Jfrlnn |a;(£)b; (1))
Clltie = B B TE ; . (7.22)
isbit1/2 1 1
s, ({245 55 1}t
Using
Wy = Wy O ¢§Z) =@ 0 <¢§i+1)),1 o ¢§1)
1= i+l it1)y— i 4, i) ;
- tirll—;iwti © ¢§L+ ) © (¢7§ " )> ! ° E) + tiilt—tiwt¢+1 o ( §+ )) ! o) ¢§ )7
leads to

Wy, — W =Wy, — Wy, © Cbgi“) © (¢(i+1))_1 o ﬁbgl)
+ﬁ%—pm¢W1<w“U<w9—mMow”% °o’].

i+1 t

and therefore, estimating as before yields:

=1-CY

titit1/2 (77%) +77) < vy <1 Ct( t)1+1/2 (777(7?) —7') = ?::

forallt € [t;,t;11/2] =1 andm € N. (7.23)

Here, the constant’ is given by
i+1 i+1)\— %
i = 400G | (o, o 667 0 (6 0 60 .
i+1 i+1)\— % ~ i+1)\— 7
5 (ot 008 0 (667 0 67 lmy + It © (67 ) 0 6oy ) -

|:2 Wy, — Wi, © ¢£:+1) ° (¢ H_l)) qbtl

|

LP2(Qy,)

wi, 0 3 0 (6o ¢l —wy,,, 0 (9T o Y

i+1

(7.24)

P2 (Qti):| '
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If there exists an index,, € N, for Whichvf;) < 0 (only in caseny > 0) andyg0+1 > (0, Lemma
3 implies that

K; = <min {|vj§o|,g;j0+1}>l (7.25)

is a constant satisfying (7.11) for &l I = [t;, t;11/2].

7.1.3 Transformations and computation of the relevant cornsnts

Before we continue we fix the transformations in (7.7) and)(@a®d use the concrete defini-
tions to calculate the second derivative in (7.4) and (7s5)vell as constang” , ...,CY |
O(l)

gt C,ff_)mti, C&)M/Q, Ot(ft)M/Q, 7 andr;". We will consider a shifted version of the domain

(—t — 1,t + 1)*\[—t, ¢]?, which has its upper left re-entrant corner at the pfiné), i.e. we use
Q= ((=1,2t + 1) x (=2t — 1,1)) \ ([0, 2¢] x [—2¢,0]).

Moreover, we will take symmetries of the domain and the aterad solutions, respectively, into
account. This will simplify the upcoming definitions and@ahtions.

Remark 9. It turned out that only in case of the fourpeakcorner soluti@ are able to prove the
existence of a solution branch fore [1.5, 3]. For all other solution types or parameter values of
t the grid that we chose in our numerical computations was netdnough. Due to time reasons
we were not able to use a finer grid in our computations, whichldveventually lead to solution
branches for other solutions types.

In the following, we will therefore only consider the casdwfictions having full symmetry.

Full symmetry

We distinguish the casés< 1 andt > 1 and set

Let now

Q) = conv{(0,0), (,0), (¢,1), (—1,1)}, Q = (e,t) x (0,1),

then), := int (Q_%UQ_t?) denotes the upper left eighth of the dom&in Note that it will be

enough to define the transformatipnon ﬁti as it can be symmetrically extended to the whole of
Q. In the following we always assunte< ¢ ort¢;_; > ¢. We set

¢ (7,9) = <x> : (Z,9) € , U{(e.9) - y € (0,1)}

o e 0\ (7 ght o
7(z,9) = (“65 1) (N) + < t6‘8>, (z,9) € QF,
\ ]

(7.26)
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=45) = (e4£,7) = (5,9) = ¢}(=.5). Moreover,
¢t1<Qt1) = Qy, (b%(Qf) =} and therefor@t($layl) = ¢1(12,y2) for some(wy, y1), (v2,92) € Qt
implies (z1,11), (12, 12) € QF or (z1,y1), (z2,y2) € Q2 or z; = x5y = e. In either case linearity
of ¢! i = 1,2 anddet J[¢}] # 0 implies (z1,11) = (z2,y2). Thuse¢, is continuous, bijective,
piecewise linear and therefore Lipschitz-continous.

and observéim;_,.- ¢?(7,7) = (t S+ ek

The inversep, * : Q, — €, defined or), (and symmetrically extended to the whole(®j, is
given by:

Y

2\—1 _ E 0 ry 5% " 2
\ <¢t> (ZL’,y) - <0 1) <y> ( 0 )7 ( 7y)EQt'

Indeedy, o ;' = ¢, 0 ¢; ' = Id and continuity ofp, ! can be checked as done for Sinceg; *
is also piecewise linear, it follows tha is a Lipschitz homeomorphism.

(01) Hz,y) = <x> : (z,y) € Q U{(e,y) - y€(0,1)}
¢ H(x,y) =

We will now computeyi(l), %(2) satisfying (7.4) and (7.5). An easy calculation shows

2

dt?

2

dt?

(| det J[6}]| (V) T I[o1] " T[6H ]

(| det J (6] (V) "I (03] T[62) "]

; e, oo, 0wy, Owt;_y
2(ti—e) (_ti—t 991, 4+ (=t ) 9ot 0 —2(ti—¢) "9z B 2 0y 9y
(t7€)3 ti—t;_1 O (t —t;— 1) oz (t7€)2 ti—ti—1 T tj—e ti—ti—1

<G foralle <t,_1 <t <t

where

din,
o

Oy, Ot 4

. &‘Dti . 6th 1
ok ok

oz oz

_|_

. 2(ti—¢) 2(ti—¢)
Gig = (ti_1—¢)3 ( ) T (tim1—e)*(ti—ti—1)

dwt . awtl 1
oy

(ti 75)(15 —ti—1)

Here we used
6(.;.&1 1
oz

Oy
oz

din,
oz

&Dti - 6‘-:?%7 1
oz oz

i

+

Y

max {

Thus we obtain (7.4) with

b <

1
V20 = VBIN 2@,

< 2V8(ti—e) || 9% 4 2VB(tize) I Oy, O,

= (ti—1—¢)3 oz LQ(QZ) (ti—1—€)? \ti—1—¢ ti—ti—1 oz oz LQ(QQ)
2/8(t;—¢) || O, &Utl 1
(et 1o o0 ey
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For the computation ofi@) we note thatf («;) = @} and thus

O et 1161 (@ )]' =0

L[ det 2] 0] '

602 @y, — @ t—e (@ — @\’
t 123 ti— 1A—|—6wt ti ti—1
t — & t _tz 1 t — £ ti_ti—l

< Ci,Z forall e < ti1 <t<t,,
where

Wy, — Wiy

_l’_
t; — i1

~ 2
i oo,Qf

mase {81 | 0z

1
€i72 =0 |:: ma’x{”d)ti—l Hio,Q? ) ’

W, — Wi

b — 1

Wt; oo,ﬂf}

2]
Thus, (7.5) holds with

Hwti — Wy HLQ(Qf)
2

||72(2)||L2(Qt1) S 6\/§ ; — € maX{H(Dti—l Hio,Q% ’ ||wt1||oo,Q$} tz _ ti—l
- - ”‘Dt o @ti,lHZ(%)
mac {20 0+ 190 e } =

Computation of the relevant constants

With ¢, defined as in (7.26) we can now easily compute the desiredamuss Note that for the
computation ofr;" in (7.24) we need compositions of different transformatiot is easy to see
that with the definition in (7.26) we have:

() ool = (6V)7 and ¢V o (¢ T) o oY = Idg, .

This simplifies the formula for;" significantly.

W max{a; (£)],[b; ()]} — [|M Lize
Cuslit ??gte%aft]( Vldet Jo]]] il Qt) s ”Lz(%)te][fg—afti] e

ol L PO Y s
@ _ @ -
oo = s, v, it e = Il 255
o) |* bt |* | e
a;(t) bi(®) | 7 laj (ti—1)bj(ti—1)]

ti—1—€ |2 1l tme ) Z fiize
t—e ) ti—1—¢€ t;—e
o

-~

1)

Y

3 . . :
C’t(.) ;. = min min (mm{
i—1lq

J=12telt;—1,t;]

= min min (min{
J=L2t€ti1,t:] \

ti_1—¢€ 2

t—e

2

4 . . :
C’t(_) ;. = min min (mm{
i—1lg

J=12t€t;—1,t]

[t 1o 1)

a;(t)
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. . o2 _ tii—
= min min ({tt’_a ,1}%)2 tl_e
J=1.2te[ti_1 ti] : e e
—_——
=1
() _ Joax fa; (£)b; (¢)] B 1
tioaati e L Pl [ el i) mind 2 1}
i—1/2:ti i i(t)b; tic1y2, ti—
]min2<mm{ 0| |50 71}a](t)bj(t)|>
o ti—é‘ _ t;—e
= max Ty
te€fts_1/2:t
@ min Ja; (£)b; (8) ' ==
) . min = min — 5
ti 1/t 2 L e
te[tl 1/2t max max b(t) 1}a](t)bj(t)|> te[tifl/Qyti] max{ Y t—¢g }
j
2
o t 5 ti_ bi—1/2—€
_ min (tZ —& t;—e )
t€lti_1/2.ti]
max a;(t)b;(t t—¢
o 5 Lo (005 () I =1
Litivi/2 — te[t t ] 21 - tets,t ]mln{ 1}
1+1/2 mln mln IRDIO) 1 lag(t)b; ()] itl/2 t—e’
j
2
_ <t a z+1/2—5>
te[tz z+1/2] fi—e c
@ B min2 laz (£)b; (1) i 1
titit1/2 — 2 2 {—¢
tet b 1 tE[ti maxq 1,5
[ +1/2] may max aj(t) ol }|aj(t)b]-(t)> titigr/) max{1,3=5 )
_ e (7.27)
te[t tz+l/2] fivrja—e’

Computation of embedding constants for a parameter interva

An embedding constarit, = C,(€;) for the embedding7}(Q;) — Lr(Q) for all t € [t; 1,1,
can be obtained using the following lemma:

Lemma 7. Let C,(Q2;) be an embedding constant for the embeddifid2,) — LP(£2,) which
has been computed via Lemma 2. Then, fot &l s, C, () = C,(€2;) is also a valid embedding
constant ford} () — LP(Q).

Proof. Denote by (€2;) the smallest Dirichlet eigenvalue efA on(),. By Lemma 2 it suffices
to prove);(€,) < A (£2) forall ¢ > s.

For this purpose we consider a suitable domain decompositid?; (see section 5.3) and use
Lemma 5. Let > s and split the domaif, as shown in Figure 7.1.

The subdomains marked witti are congruent t@’y := ((—1,s) x (0,1)) U ((—1,0) x (=s,1))
and the ones marked with are congruent td, := (0,2t — 2s) x (0,1). We consider the
eigenvalue problem for A on the subdomaing', D, with zero Neumann boundary conditions at
the interface and zero Dirichlet boundary conditions onrémeaining part of the boundary. The
resulting problem can equivalently be stated on the prp®tjomaing’, and D, respectively:
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(©

(D)

C D C
& st 0

D D

C D C

Figure 7.1: Domain decomposition fox,

—Au = Mou InCy
u = 0 ondC\{(z,y) €Cy: x =sory=—s} (7.28)
Sus,y) = g—Z(x,—s) =0 forallx € [-1,0], y € [0, 1]

Due to symmetry the smallest eigenvalue of this problem lsqué<,): We first note that
for any eigenfunction corresponding to the smallest eigenvaly€, ) also the functiori,
given byu(z,y) = u(—x,y) for (z,y) € Q, is an eigenfunction corresponding to the eigen-
value \; (€2,). Since this eigenvalue is simple andu must be linearly dependent. Using in
addition that. does not have zeros {by, this impliesu(z, y) = u(—=z, y) forall (z,y) € Q,
and therefore symmetry of w.r.t. the axist = 0. Other symmetries can be proven ana-
logously. Since), can be split into four congruent copies @f, the symmetry of the first
eigenfunction implies indeed that the smallest eigenvafyeoblem (C) is equal ta (£25).
Moreover it is clear that thé.-shaped domait/; := ((—s—1,—s+ 1) x (s — 1,5+ 1))

\ ([=s,—s+ 1] x [s — 1,s]) C £ forall s > 0 and therefore Poincais min-max-principle
impliesA;(25) < A\ (Us) = A1(Up). An easy and verified Rayleigh-Ritz computation for the
first Dirichlet eigenvalue\, (Uy) of —A on U, shows; (Uy) < 9.642, which in particular is
smaller thanr?. Hence),(Q,) < 72 follows.

—Au = ApU in Dy
u(z,0) =u(x,1) = 0 forall z € [0, 2t — 2s] (7.29)
9u(0,y) = %(225 —2s,y) = 0 forally € [0, 1]

The eigenvalues of this problem are larger than

Lemma 5, applied to the domain decomposition as given inrEigul, implies that a lower bound
for the smallest eigenvalue efA in €, with homogeneous Dirichlet boundary conditions is given
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by the smallest eigenvalue in the union of &l and\ . The smallest eigenvalue of problem (C),
which by the above considerations is equal{{f2,), occurs four times in this union and is smaller
thanz?, whereas all eigenvalues; are larger tham?. Therefore), (Q,) < X\, (Q;) follows. [

7.1.4 Numerical results

In the following we present verified results proving the &ige of a solution;, to problem
(1.2) for allt € [1.5,3]. As already mentioned in Remark 9 we will restrict oursehe@shie
fourpeakcorner solution, since the grid we chose was toseda verify other branches of solu-
tions. However, this is a purely technical restriction awdgeneral limitation of the method we
presented.

We chose the gridy = 1.5 < 1.53125 < 1.5625 < 1.625 < 1.6875 < ... < 2.9375 < 3 = tgs5,

i.e.ti—ti_l:1—16f0ra”i€{3,...,25}andt2—t1:tl—t(]:%.

The following table shows for theintervals(t;_, 2, t;) and(t;, t;11/2) (Wheret;_,/, = %(ti_l +1;)
andt; ), = %(ti + t;41)) constantd(;, §; anda, such that for alt in the given parameter interval

(i) K, bounds the inverse of the linearization.afi.e.
[l 3y < Kill Lo [V]llm-1(0)  forallv € H3 (S, sym),

whereH{ (€2, sym) denotes the space of all functions having full symmetry

(i) 9 is an upper bound for the defect-normugf i.e.
| = Aw; = |wil [l -100) < 0,
(i) o4 satisfies (2.7) and (2.8).

Recall that the existence of, > 0 satisfying (2.7) and (2.8) implies, by Theorem 1, that there
exists a solution; € H(€;) of problem (1.2) such that; — ul| 3 (q,) < o

t-interval Kt 5,5 (e

[1.5,1.515625]

4.79893

0.0034096

0.018427

[1.515625,1.53125

| 4.43140

0.0034096

0.016672

[1.53125,1.546875

| 4.88362

0.0033413

0.018416

[1.546875,1.5625]

4.25373

0.0033413

0.015514

[1.5625,1.59375]

6.19434

0.0050492

0.054182

[1.59375,1.625]

4.82656

0.0050492

0.029767

[1.625,1.65625]

5.76800

0.0046496

0.036495

[1.65625,1.6875]

4.67152

0.0046496

0.025580

[1.6875,1.71875]

5.46148

0.0043524

0.029937

[1.71875,1.75]

4.55093

0.0043524

0.022793

[1.75,1.78125]

5.23175

0.0041257

0.026063

[1.78125,1.8125]

4.45535

0.0041257

0.020821
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[1.8125,1.84375]

5.05417

0.0039489

0.023467

[1.84375,1.875]

4.37846

0.0039489

0.019365

[1.875,1.90625]

4.91354

0.0038084

0.021605

[1.90625,1.9375]

4.31584

0.0038084

0.018254

[1.9375,1.96875]

4.79996

0.0036948

0.020207

[1.96875,2]

4.26426

0.0036948

0.017385

[2,2.03125]

4.70665

0.0036016

0.019123

[2.03125,2.0625]

4.22131

0.0036016

0.016691

[2.0625,2.09375]

4.62880

0.0035242

0.018261

[2.09375,2.125]

4.18515

0.0035242

0.016126

[2.125,2.15625]

4.56294

0.0034592

0.017561

[2.15625,2.1875]

4.15436

0.0034592

0.015660

[2.1875,2.21875]

4.50651

0.0034042

0.016982

[2.21875,2.25]

4.12782

0.0034042

0.015270

[2.25,2.28125]

4.45758

0.0033572

0.016497

[2.28125,2.3125]

4.10469

0.0033572

0.014940

[2.3125,2.34375]

4.41470

0.0033168

0.016086

[2.34375,2.375]

4.08433

0.0033168

0.014658

[2.375,2.40625]

4.37679

0.0032819

0.015733

[2.40625,2.4375]

4.06623

0.0032819

0.014414

[2.4375,2.46875]

4.34299

0.0032514

0.015427

[2.46875,2.5]

4.05000

0.0032514

0.014203

[2.5,2.53125]

4.31263

0.0032248

0.015160

[2.53125,2.5625]

4.03535

0.0032248

0.014017

[2.5625,2.59375]

4.28520

0.0032013

0.014925

[2.59375,2.625]

4.02203

0.0032013

0.013853

[2.625,2.65625]

4.26028

0.0031805

0.014716

[2.65625,2.6875]

4.00986

0.0031805

0.013708

[2.6875,2.71875]

4.23753

0.0031621

0.014531

[2.71875,2.75]

3.99869

0.0031621

0.013578

[2.75,2.78125]

4.21666

0.0031456

0.014364

[2.78125,2.8125]

3.98839

0.0031456

0.013461

[2.8125,2.84375]

4.19745

0.0031308

0.014214

[2.84375,2.875]

3.97886

0.0031308

0.013356

[2.875,2.90625]

4.17970

0.0031175

0.014078

[2.90625,2.9375]

3.97002

0.0031175

0.013261

[2.9375,2.96875]

4.16326

0.0031054

0.013954

[2.96875,3]

3.96177

0.0031054

0.013174
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With «; given as in the above table we obtain the following theorem:

Theorem 6. For everyt € [1.5,3] there exists a solutiom; € H}(€;) of problem(1.2) (type
fourpeakcorner), such that

[ue — will g oy <

Remark 10. (a) Comparing with the results for fixed valueg @ section 6.4.1 we observe that
the values of; for t in a parameter intervat,_,,,, ;) or (t;,t;41/2) are significantly larger
than the value ofs; for ¢ = t;. The difference is due to the error terms, 7,;* and the con-

stantsCy) |, CiY 1= 1,2, defined in (7.15), (7.16), and (7.22), (7.24). Moreovee, th
calculations in (7.27) show that (in case of equally spacriiﬁfmpints)(Jt(il_)1 ot < Ct(f_)l e
andij}M , > C,fiim , and the difference between the constants grows in invergeopr

tion with the distance of; to € (note that: = 1 for our chosen grid). These differences are
also responsible for the jumps &f;: We observe that the value &, for t € (¢;,¢;11/2)
is larger than the value df, in (t;_1/2,%;). This is due to the fact that in the first case the

larger constantti,filt)i+1 ,, acts on the eigenvalue with smallest distance to zero, wimekly
determineds; (cf. (7.23) and (7.25)), while in the second case the smadjastanCt(j)

) : : . . : ~1/2ti
is active. Note that the eigenvalue with smallest distanceeto is always the second one,

which is indicated by the verified eigenvalue bounds in sedd.4.1.

(b) Using the values in the above table foe [t;_,/,,t;] andt € [t;,,11/2] we can define a
piecewise constant and lower semicontinuous functien o, (t € [1.5,3]) such thato,
satisfies (2.7) and (2.8) for all € [1.5,3]. To achieve lower semicontinuity we redefine
a; in the points of double definition to be the minimum of the twadues in the adjacent
intervals.

Sinceq, satisfies (2.8) with a strict inequality for alle [1.5, 3], and moreovew, is piece-
wise constant, we can choose some unifgrns 0 such that (2.8) is satisfied with, + 7
instead ofa;. This fact will be essential for proving that the obtainedusons u; for
t € [1.5, 3] form a continuous branch of solutions, as it will be done mlext section.

7.2 Smoothness of Solution Branches

Withagridty < t; < ...t;_1 < t; < ... <t,, e.g. chosen as in the previous section, we assume
again that for every € {0,...,n} we have computed an approximate solutign € H; (<)

of (1.2) (witht = ¢;). Then using the definition in (7.2) and (7.3) we can constapproximate
solutionsw; € H}(€);) of problem (1.2) for eachh € I := [ty,t,]. We assume now that for
everyt € I a defect bound, satisfying (2.3), a bound; for the inverse of the linearization at

w; (satisfying (2.4)) and a constamt satisfying (2.7) and (2.8) is known, implying that for every

t € I there exists a solution; € Hy(€;) with [|w; — w|lz3 < a;. We will now consider the
mappingt — u; and to prove that it is continuously differentiable in a ahble sense, thereby
obtaining a continuously differentiable branch of soloido problem (1.2).

In addition to the above we assume thats «; is lower semicontinuous and that we can choose
some uniform (i.e¢-independent); > 0 such that (2.8) holds with; + 7 instead ofw,, i.e. we
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have
2Ky(cw + 1) (lwel sy + 3Ca(ow + 1)) <1 forallt € I, (7.30)

whereC, denotes an embedding constant for the embeddif@2;) — L*(€;) andy := 3C3.

We will use two results of Theorem 3.1 in [50], which conggtan extension of Theorem 1
(assumptions ow;, o; andy just as stated above):

(V) If u e HY() is a solution of (1.2) satisfyingu — willgp < oy + n it follows thatu = w,,
i.e. the solution, is locally unique.

(N) Letu € Hy(Q) with [|u — wi|| gz < oy ThenL, : Hy(Q;) — H~'(€) is bijective, whence
in particularL,,, is bijective.

We will use a similar approach as in [50] to prove that),-; is a smooth branch, with a suitable
notion of differentiability still to be defined. In contratst the problem studied in [50], where the
parameter was part of the equation, the parameter in outgrofd..2) occurs in the domai;.

We therefore transform our problem to a fixed reference donthéreby obtaining an equivalent
parameter-dependent problem where the parameter doeager lappear in the domain, but only
in the transformed equation. We will then call the bramck u, continuously differentiable if
the brancht — u,; has this property (withi; denoting the transformed solution on the reference
domain).

Transformation of the problem

Let s € I be fixed anct > 0 small (to be chosen later). The domaig will serve as reference
domain for allt € U.(s) := (s —e,s + ¢) N I and we will denote variables ife; by (z, 7).

As before(z,y) denote variables if2;. Recall that the “old” transformationsf), which have
been used troughout the previous section, were piecewisarliand Lipschitz continuous, which
simplified many calculations. In this section it will howeJse necessary to define a new and
smoother transformation, : Q, — Q, (¢t € U.(s)), since the smoothness of the transformation is
needed to prove differentiability of the transformed siolutoranch.

Fort € U.(s) denotel'™ = 0 ((—t,t)?) andI'® = 9 ((—t — 1,¢ + 1)?). We fix a smooth cut-off

function x, € C*°(€,) with the following properties:

s(&,9) = 1 forall (z,3) € T’
Xs(Z,9) = 0 for all (z,y) € To"
xs(Z,9) € [0,1] forall (z,7) € Q,,

and define for € U.(s):

Q, Q
by ;{ ) : | (7.31)

Clearly,y», € C=(€);) and we have

U (T9) = (TF)  and 4, (TM) = TP (7.32)
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We will now prove that), : Q, — €, is bijective ift is sufficiently close tes. For this purpose
note that); can also be written as

Lo [t t—s
(@, 9) = (3+1 * s(s+1
Let ¢ € [0,27) be a fixed angle and consider the rRy := {(rcosp,rsinp) € R* r > 0}.
Sinceyy(z,9) = A&, y)(x,y) with A(z,y) € R it is immediately clear that;(R,) N, C R,.
Moreover we have

)xmy)) (59), (#.4) € Q.

0 )
g (Yy(rcosp,rsing)) =

t+1 t—s . . COS .
s(rcosw,rsiny) + r(Vys)(rcosy, rsinp) - €os , sin ).
1 s D (x( © @) +1(Vxs)( © ©) (Siw»]( @, sin p)

N J/

::CSZ;TVW)

(7.33)

Sincey, € C>=(£,) we obtain

max {

and we can therefore choose- 0 such that for some prescribéd § < % we obtain

Xs(rcos e, rsing) + r(Vxs)(rcos e, rsing) - (COS SO) : (rcose,rsing) € ﬁs} < 00

sin ¢

C(t,r, ) > 6 > 0forall (r, ¢) such that(r cos ¢, rsin p) € Q, and|t — s| < ¢.

Then (7.33), (7.32) imply that:|, o, : R, N Qs — R, N is bijective for eachy € (0,2n]
and allt € U.(s), whence bijectivity ofy; follows for ¢ € U.(s). With similar arguments, and by
possibly decreasinga little further,det J[v;](, ) > Oforallt € U.(s) and (¢, ) € Q, (note that

s = Id and thereforelet J[¢s] = 1 > 0). Thus the local inversion Theorem implies that for each
(z,y) € Q there exists a neighbourhodd; ;) C Q, of (,9) = ¢; '(z,y) and a neighbourhood
View) C Q of (z,y) such thaty, : Ugy — V) is bijective andy; ' € C*(V,,) since

Yy € C%(Q;). Thus we obtain); ' € C>=(Q,) forall t € U.(s).

By denotingii = u o vy, € HL () andp = p o, € HE(Q,) for u, o € HL(;), we obtain an
equivalent transformed formulation of our given problen2jfs follows { € U.(s)):

Vu-Ved(z,y) = / lul’o d(z,y)

Qt Qt

= | det J[]|[(Va)" (T[] o) (T[ve] ™ on) (V@) d(,9)

Qs

— / | det J[¢t]||i2|3¢ d(z, )

s

and therefore in strong formulation we have:

—Au = |[u]® inQ
u = 0 on o<,
| div (et Tl (T[] o) (Tl T ov) Vir) = [det Jpillaf in
u = 0 onof,.
(7.34)
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Defining
U.(s) x HY () — H(Q,)
F: (t, 1) — —div (| det J[ey]| (J[eoe] "t ouy) (T[] T oty) Vi) (7.35)
—| det J (i)’

(7.34), and therefore (1.2), is equivalent to

F(t, @) = 0.
Note that sincey, is a solution of (1.2) fot € U.(s), we haveF (t, i) = 0 for all t € U.(s) where
iy = uy o 1. The following theorem proves the desired smoothness addhdion branch:
Theorem 7. The solution branch

{ Uds) — Hj(S)

t — i
Is continuously differentiable.
Remark 11. We call the solution branclu).cu.(s) continuously differentiable if the associated
transformed branchi;).cu. (s) has this property.

The main idea for the proof is similar to the one in the proofaf, Theorem 4.1]. However, due
to the construction af, in (7.2) and (7.3), some technical difficulties arise anddfwe we need
the following three lemmas before we can prove Theorem 7.

Lemma 8. Let ¢, : Q, — Q, be aC’-family of Lipschitz-homeomorphisms such that —
Id|| Lo,y — 0 and||J[¢);] = I||L~(,) — 0 asT — 0. Then

lim [l o b — ull 30,y = 0 forallue Hy ().

Note that in this Lemma and its proof we omit the accent ~ ,esiwe are always working in the
domain(2, and no confusion with other variables can arise.

Proof. (i) As afirst step we prove for all € C§°(Q2;):
HU o 227- — UHLQ(QS) —0 as 7—0.

For this purpose we fixz, y) € €2, and choose C Q, to be the shortest piecewi§g -path
connectingz,y) =: v(0) andy.(z,y) =: v(1). Then

/ (T 1) dt\

~

u(iin(z,y)) = u(z,y)| =

1
< |Vull / o (8)] dt = |Vull e L (7).
0

where L() denotes the arc-length of the path Since||t), — Id||;~ — 0 ast — 0,
L(~) is bounded by|(z,y) — ¥, (x,y)| for 7 sufficiently small (recall2, = (—s — 1,s +
1)%\[-s, s]?). Therefore
luodr —ullfe < 4] Vul7e /Q (2, y) = &r (2, y)]* dl,y) < Clldbr — 1d||7 = 0
(1 —0).
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(i) We will now prove the assertion of the lemma far € C§°($;). Since||ul| g1, <
C||Vul| r2(q.) it suffices to show

%(UO¢T) - g_z

—0 as 7—0,
L2(Qs)

(and hence analogous|lyya%(u o) — g_ZHLz(QS) — 0 asT — 0 follows).

Using the triangle inequality and € C5°(€2,) we obtain

|((v0)T o i — (V) 2|+ [V (3 - )|,
< (v o b = (vu") (5 - )| o+ [[Fue b = v,
el -1
< fode— 3, (e -1], +1)
+C HJ[@&T] - IHLOO , (7.36)

ou N ou
oz © ¢T T oz 12 +

where the_- constardt deper_1ds on. Sinced, g—z e C°(Q,), step (i) and|J[¢),] — ||z —
0, 7 — 0, imply the assertion.

(iii) Let u € H}(Q) andd > 0 be arbitrary. Then there existse C5°(2,) such that, for allr
sufficiently small (7] < 7(¢)),

Juwodhr — v oGl < 2

as well as
[ — vl < 3.

This follows from the fact thaf’se(Q,) C Hj(€,) is dense and
|uwo, —vo 7;7”%13 = / [|V(u o) = V(voth)|?+ (ot —vo @@T)Z} d(x,y)
Qs

< [ 1det) ) 0 b (116 o b PV = Dl +u = off) diay)
Qs
<]

u = UHH&u

where we used|.J[¢),] — I||~ — 0, implying in particular boundedness dfi,] .
By step (ii) we have

lo o — vl < §
for all 7 sufficiently small and together with the above we obtain

ot —ull iy < lluo e —v ol + v oy —vluy +llu—v]m <o

Sinced > 0 was arbitrary the assertion of the lemma follows.
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Before we state and prove the next lemma, we recall the definiti approximate solutions; €
Hj () fort € (t;_1,t;] (givenin (7.2) and (7.3)). Using the transformat@ﬁ‘f Q;, — ), given
in (7.7) and (7.8), we have

ti —t ; t—t;_
wtl_l o Qﬁgl),l +—1
bi = i1 e —

—wt

wy; € H(% (Qtz>

Wt =
b —ti1

i—1

Wy = Wy, © (qbti))i € H(%(Qt)a

wherew;, , € H}(y, ,) andw,, € H}(Q,) are approximate solutions to (1.2) with= ¢, , and
t = t;, respectively.

Lemma 9. There exists sone< ¢, < ¢ such that the mapping

U52 (S) — H&(QS) (7 37)
t W= Wi oYy .

is continuous.

Proof. Case 15 # ¢; forall j € {0,... n} i.e. there exists a uniquec {0,...,n} and some
go > 0 such that(s — 9,5 + €9) C (¢;_1,1;). In this case we have for all€ (s — g5, 5 + €5):
wy = @ o (¢{))~1 and thus

Wy = w0y =W, 0 (Cbgi))_l oYy € HOl(QS)

Sincet € (t;_1,t;), the mappings

(s —e2,s+e2) — Hy(Sk)
t > W

and
{(5—52,s+52) — O, )

t = (Cbti))il oty
are continuous by construction®f, gbg") andy,. This proves the desired continuity of the mapping
in(7.37)ins #t; (j =1,...,n).

Case 2There exists somee€ {1,...,n} such thats = ¢, ;. We choose soms, > 0 such that
(s,s +¢e2) C (ti—1,t;]. Note that in this case it is sufficient to prove right-handtouity in s,
since left-hand continuity follows as in case 1.

Fort € (s,s+e9) C (t;_1,t;] we have agai, = @; o (qbf))—l and thus

Dy = wy oty = @y o (¢F)) ot € H(Q):
Fort = s = t;_1 we havew, = w, o 1, pe=td wy,_, and the desired right-continuity follows if we
can prove

hm ||wto¢t W, _ 1||H (Q;_1) =0.
t—)tz 1
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Using the definition ofo; (by linear interpolation, see (7.2)) we obtain

W oYy — Wy, | =W 0 (¢§i))71 oYy —wy,_,
= Gy, 0 (87) oy + i, 0 (¢8)) oy — wy,,

-1
(4)
wtl 1 =Wt 1od>t . .

= o ttsztz 1 gbg:)_l o (gb ) © wt t tz 1wt1 (gbgl))_l © wt - wt,‘_1
=Wt 4 © CthI © (¢t )71 © wt — W4
t—ti1 (i)y—1 _ (@) i)\—1 7.38
+ ti—ti_1 Wy; © (¢t ) © d]t Wi; 4 © ¢ti_1 © (¢t ) © ¢t : ( : )

First conside(¢§i))—1o¢t : Q. — ., (note that), : . |, — Q, sinces = t;_41). Using the def-

inition of ¢{” in (7.7), (7.8), together with the required properties @ toefficients,;, b;, c\", c”

thereafter, and the constructiomn@afin (7.31), we immediately obtain thé(gbf))*l o %) ( :
te(ti—1,ti—1te2

is aC°-family of Lipschitz homeomorphisms satisfying

() ohy — Id|peqo,, ) —0 as t—ti, (7.39)
and _
17{@") o t] = T,y =0 @s =1, (7.40)
Moreover, (7.39) and (7.40) imply théngﬁll o (6™) 1o ¢t) ( is aCO-family of Lip-
te(ti—1,ti—1+e2
schitz homeomorphisms diy, , satisfying o
68, 0 (8) oty — Id| i, ) — 0 as t -t (7.41)
and ' '
176, 0 (@) 0 th] — I, ) =0 as t— . (7.42)

By Lemma 8 it therefore follows that
Hwti—l o gbi(ij),l o (¢ l)) o wt Wt 4 “H(%(Qti_l) —0 as t— t?—l'

To prove that theéH}- norm of the second part in (7.38) tends to zero it is sufficiershow that

lwr, © (&87) ™ 0 Uil ) (7.43)

as well as . '
lwr,_, 0 61, 0 (B) ™ o il ) (7.44)

are uniformly bounded fot € (¢;_1,¢;_1 + £2). For (7.43) this follows directly from (7.39) and
(7.40) and similarly (7.41) and (7.42) imply the assertion(i7.44).

This finally proves right-hand continuity in=¢; ;. n

Lemma 10. Let0 < ¢; < € and

t —> Uy

{l@@)—»ﬂam>
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be aC'-smooth mapping. Then the mapping

Uei(s) = R (7.45)
t = oy —willgon

IS continuous.
Proof. We will only prove continuity of — ||V (it;00; ' —w;) || 12(q,), Since continuity of — ||i;0

Y; ' — w2 can be proven by similar ideas, but with much less effortngshe Transformation
Theorem again, we obtain (note that= w, o 1, o ;' = & o Y, 1):

[V (it 09t — Wt)H;(m) B
/Q | det S]] [(Vitr = Vi) (J[t] ™ ou) (T[] " o) (Vi — Viin)] d(i, ).

Letty € U, (s) be fixed andt € U, (s). Then, using the triangle inequality, we can estimate
(writing J[t] := J[+;]~T o4, to shorten the notation):

/Q S | det S]] [(Vity — Vo) "I [t]" T[E)(Vite — Veoy)] d(2,§) —
/Q S | det Sy, ]| [(Vity, — Veor) " T[to]" T[to](Vil, — Vioy,)] d(&, §)
< [ [1det Tl = det T I — Vi i, )
4 /Q et ()| 7107 T = Tl ]| Vi = i . 5)
+2 /Q s | det J[vy )| T [to) " T [to]| | Vit — Vit — (Veo, — Yoy, )|| Vit — Vg, | d(Z, §)
+ /Q | det J [y, ||| [to]" T[to]| [V ity — Vg, — (Veoy — Vg, )[? d(E, ). (7.46)

By assumptiort — 1, is aC'-smooth branch and Lemma 9 yields continuitytofs &,. Since
moreovert — 1), is continuous it follows that all terms on the right-handesaf (7.46) tend to
0 ast — ty (note that continuity of the mappings implies in particll@undedness of the terms
depending on, for ¢ close tot). n

Proof of Theorem 7The mappingF defined in (7.35) is continuously differentiable since- 0
was chosen such that, is invertible andy; ' € C>=(Q;) for all t € U.(s). Usingy, = Id,
implying @, = us o 1, = u,, We obtain

g—]ﬁ:—(s,ﬂs) = —A — 3lug|lus = L,,,
which is bijective by (N) from page 83. Thus by the Implicitrftion Theorem there exists
0 < £; < e and a branch

Us(s) — Hg(9)
t — Uy,
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which is aC'*-smooth solution branch of problem (7.34) with = i, = u,. By assumption we
have (note that, = w,):

[ds — Ws||H3(QS) < . (7.47)
By Lemma 10 the mapping
U,(s) — R (7.48)
t = flaovy! —willma

is continuous and since moreovers «; is lower semicontinuous, (7.47) implies the existence of
0 < g5 < ¢ such that

‘|ﬂt0w;1 _thHé(Qt) < o+ 1, forall ¢t € U52(8).
Hence, (U) from page 83 implies
ot =u,  forallt e U.,(s)
and therefore
ﬂt:uto@bt:fbt fOI’a”tE U52(8).
Thus the desired smoothness ef> u, in some neighbourhood offollows. O
Theorem 7 proves continuous differentiabilitytof> v, (with continuous differentiability of this
mapping as defined in Remark 11) in a neighbourhoogd ©f/. Repeating the argument for any

s € I, we therefore obtain a continuously differentiable brafef);c; of solutions to problem
(1.2).

In particular, Theorem 7 can be applied to the solutieng < [1.5, 3] obtained in Theorem 6; cf.
Remark 9 (b) for lower semicontinuity of— «; and the existence of satisfying (7.30).
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8 Unbounded L-shaped Domain

In the previous chapters we were concerned with the equatidn — |u|*> = 0 on some bounded
domain with homogeneous Dirichlet boundary conditions. Wilenow consider a similar prob-
lem, but stated on the unbounded L-shaped dofain((—1, co) x (0,1))U(—1,0) x (—o0,1)).
We will start with a motivation for this problem and then rié¢he main steps for a computer-
assisted proof.

8.1 Motivation

The main inspiration for considering our problem on an umu®d L-shaped domain is given
by two papers of Ackermann, Clapp and Pacella ([1] and [2])ciwhare both concerned with
the equation-Au + Au = f(u) on expanding tubular domains together with Dirichlet baamyd
conditions. In order to understand their approach, we \gjfleat some of the main results and
ideas here. We will focus on [1], in which only positive soduis are considered.

Let N > 2, 1<k < N —1andM be a compact-dimensional smooth submanifold &f"
without boundary. FoR > 0 sufficiently large defin€y to be the open tubular neighbourhood of
radius 1 of the expanded manifaly := {Rz : = € M}, i.e.

Qr = U {Rx+v:ve (M), v <1},

zeM

whereT,. M denotes the tangent space af at x. For A > —\; (\; being the first Dirichlet
eigenvalue of- A in the unit ball inR¥—*) consider the problem

8.1)
u = 0 onoQg.

{ —Au+Iu = f(u) inQg
There are some general hypotheses on differentiabilitygradth of f which we do not repeat
here, but which are e.g. satisfied in cdge) = |ul>.

Next, define
L= {(&n) € RE xRV [y <1},

which is the open cylinder (or in casé = 1, £k = 1 an open strip) and describes locally the limit
of 2 asR — oo. The main idea is to use ground state solutions of the problem

(8.2)

—Au+u = f(u) inL
u = 0 on oL

as building blocks for multibump solutions of (8.1). Assuthat (8.2) has a positive solution
U which is radially symmetric irf andn separately, and is non-degenerate in the sense that the
solution space to the problem

—Au+u= f'(U)u, ue€ Hy(L)
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has dimensiork. Finally, for eache € Mg let A, € O(N) be a linear isometry mapping the
tangent spacé, M ontoR* x {0} and(T,, M)+ onto{0} x RN¥~* and set

Ui i=U(As(y — ) (y €RY),

whereU is extended by to all of R". The main theorem of [1] proves the existence of solutions
to (8.1) for sufficiently largeR:

Theorem 8. For eachn € N there existR, > 0 such that for every? > R, there aren points
TRi,.--,Trn, € Mg and a positive solutiom of (8.1) of the form

UR = Z UmeR + 0(1)

i=1

in H'(RY) asR — co. Moreover|zg; — x| — oo asR — oo fori # j.

The basic idea of the proof is glueing rotated translatee@pbsitive ground state solutiéhand
using a Lyapunov-Schmidt reduction argument.

Due to corners in our domaii; this result cannot be applied directly to problem (1.2haligh

it might be possible, with some additional arguments, tostmet solutions with bumps on the
edges of(), (far away from the corners). Our aim is to prove - by compasisted means -
a suitable “one-bump” solution € HJ(Q2) that may serve as a building block for solutions of
(3.10), ast — oo, with bumps in the corners d®,. The actual construction of these kinds of
solutions will is not part of this thesis, instead we presamither method to prove existence of
certain bump-solutions for afl> ¢ for some suitablé in section 9.

8.2 Existence of a Solution by Computer-assistance

We first note that Theorem 1, which is our main existence awtbsure theorem, is also valid in
case of unbounded domains. In order to apply this theorem to

{—Au = [ inQ 8.3

u = 0 onof),

with Q = ((—1,00) x (0,1))U(—1,0) x (—o0, 1)), we need to compute an approximate solution
w € Hj(Q) as well as constantsand K such that

| — Aw — |w|*|g-10) < 6 (8.4)

and
||v||H3(Q) < K||Lw[v]||H71(Q) forallv € H&(Q) (8.5)

are satisfied. As before,
L, : H&(Q) — Hfl(Q), L,[v] = —Av — 3|w|wv

denotes the linearized operator at the approximate salutio
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8.2.1 Computation of an approximate solution

For the computation of an approximate solution we will usavalar procedure as for the problem
on a bounded domain, i.e. we first compute an approximatdi@lby means of Finite Ele-
ments and improve it by using a corner singular function.c&ithe computer cannot handle an
unbounded domain, we have to restrict ourselves to a bousuledbmairQ” = Q N (-7, 7)?
(T > 0), which contains the corner part 6f and cuts off the infinite legs of the domain. Using
the methods described in chapter 3 (Mountain Pass AlgorihdNewton method), we compute
an approximate solution® € V2 (Q7) of the following problem:
— 3 T
{ —Au = |ul* inQ (8.6)
v = 0 ondQT.

Starting the Mountain Pass Algorithm with an initial guessgessing a bump centered in the
corner we obtain an approximate solution having the samgeptyp Figure 8.1 shows*®.

5

Figure 8.1: Plot ofv°

Since2” has a re-entrant corner, we will again use a corner singutation to obtain an appro-
ximate solution with improved (i.e. smaller) defect. Dangtby (x, y) cartesian coordinates and
by (r, ¢) local polar coordinates &0, 0), we define
corner singular function:~(r, ¢) = r5 sin (2¢)
cut-off function: A, y) (1—22)%(1 — y*)*x(—1,102(, v)
and the new approximate solution (denoteduJsyagain)
w® = a\y + 0°, (8.7)

wherea € R denotes the corresponding approximate stress intengitgrfandoc € V.7 (Q7)
a Finite Element approximation of the regular part. The cotafon ofa and o can be done
analogously to section 3.2.3 (keeping in mind that we hawe @me re-entrant corner here).

In order to obtain an approximate solution@nwe extend.® and¢ by zero inQ\Q7:

we inQ7 ¢ inQf
= JR— v = —_— . 88
“ { 0 inQ\QT}’ ’ {o inQ\QT} 88)
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Sincew?, 7¢ € H}(Q7) we havew, v € H} ().

8.2.2 Computation of the defect

To compute a bound for the defect we follow the procedure atice 4.1 and estimate thé -
norm by a sum of twd’?-norms. For this purpose we need an approximatian H (div, ) of

Py
0y
p¢ ~ Vo and—div p¢ ~ aA(\y) + |w°|®. Moreover we requirg{(T,y) = p5(z,—T) = 0 for
x,y € (0,1). The latter condition assures that

__JpeinQF
Y 0 in 00

Analogously as in the beginning of section 4.1 we can esémat

the gradientVw, which is constructed as follows: First compuyte= € (Vy)? such that

is an element of/ (div, Q).

| — Aw — \wPHHfl(Q) < [[VD = pll 2 + Co ||— div p — aA(N\y) — |aNy + 17|3HL2(Q)
= IV = 5l 2oy + Ca || = div 5 — GANY) = [ady + 07| o gy

whereC, denotes an embedding constant for the embed#ih@2) — L*(Q2). Upper bounds for
the L2-norms can be computed as described before.

For later purposes we defipé := aV(\y) + p¢ and remark that® = a\y + 7 gives

VT — 0 27y = VW — p°[| 12 (ar)
=i = a80) — 83+ 5Py = |~ 5~ P

8.2.3 Bound for the inverse of the linearization

As in section 5.1 we use the isometric isomorphidm H}(Q) — H~'(Q2) defined in (2.5), to
obtain
Lol = (@7 L))y forallv e Hy(%),

which shows that condition (8.5) is equivalent to
ol < KIN(@ L) (o]
By Lemma 3 it follows that the previous inequality is satisfied
v := min{|v| : visin the spectrum o> 'L} > 0

and in the affirmative case one can choose &ny % Thus we are again left to compute bounds
for the spectrum ofb~'L,,. In section 5.1 we continued by showing that a certain opemaas
compact, thereby proving that the essential spectrud9f_,, consisted only of the poin{1}.
This compactness is however lacking in our case since thaithdmis now unbounded and we
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have to use a different approach to bound the essentialrapeof ®~'L,,. We follow the proce-
dure in [26, Example 1.8].
First consider the operatdy, : H}(2) — HY(Q), v — —Av + <W§—LXQ0) v, whereQ’ =

(—1,0) x (0,1). Since bothv andygo have compact suppo®, 'L, — ®~ 1Ly : H(Q) — H}(Q)
is compact and hence a well-known perturbation result if f#ds oesd @ L,,) = gesd @ Lg).
To boundoesd @1 Ly) we consider Rayleigh quotient$2\Q° is the union of two semi-infinite

strips, on each of which the Rayleigh quoti&“ﬁﬁ!i is bounded from below by2. Thus we
obtain for allu € H}(Q):

2
/ |Vul? dz > 27r / [[Vul* + v?] dz. (8.9)
Q\QO T+ 1 Q\Q0
Furthermore the trivial estimate> ﬂ;r—il implies
2
2 2 2 T 2 2
/QO [Vl + 2] do > w2+1/ﬂo [IVaf + 2] de. (8.10)

Adding (8.9) and (8.10) gives, for all € H; (9):

2
™
/Q 90 + (Fpxoe) ] de > T uly

and the left-hand side equa(l@‘lLou,u)Hé. So the Rayleigh quotient, and hence the spectrum,
and in particular the essential spectrumdof'L, is bounded from below byj—il. Hence we
concludeces{®'L,) C [ﬂg—il, oo), implying that the essential spectrum ®&f'L, is indeed
bounded away from zero.

As in section 5.1 we see that for an eigengairu) € R x H}(Q) of @' L, we have

/ [Vu-Vo+up| de = /1/(1 + 3lw|w)updz  forall p € Hy(Q) (8.11)
Q Q

:<u";>HC1) ::N\(,u,cp)
wherek := ﬁ N is a symmetric bilinear form and due to non-negativitywgfwhich can

be checked using computer-assistance, also positive @efinherefore]l — v > 0 for all pos-
sible eigenvaluey and we are left to compute upper and lower bounds for eigeasal of
(8.11) neighbourind. The essential spectrum of (8.11), which is defined in thalusay by

-1
the essential spectrum of the associated operater (IH01 — <I>*1Lw> , Is bounded below by

(1—minoesd @ 'L,))" ' = 1+ x%. The methods in section 5.2, which were formulated for eigen
value problems allowing essential spectrum, can therdferased to compute lower and upper
bounds for eigenvaluesof (8.11) below the essential spectrum, i.e. below 2. Thus we will

in particular obtain bounds for eigenvalues neighbouting

We will briefly comment on the choice of ansatz functions toused in the Rayleigh-Ritz and
the Lehmann-Goerisch method: Analogously to the constmicf w, letn € N andvg, ..., v¢ €
H;(27T) be approximate eigenfunctions of

/ [Vu-Vo+up| de = Ii/ (1 + 3|w|wup dr  forall p € HI(QT). (8.12)
QT fora
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Setting
ve, in QT .
v = _ (1=1,...,n),
0, inQ\QT
i.e. extending the functions by zero outsidé yields functionsy;, ..., v, € H}(S), which can

be used as approximate eigenfunctions of (8.11). In facigubese ansatz functions replaces the
eigenvalue problem (8.11) in the actual computations byetgenvalue problem (8.12). But still
we have to be aware that the bounds are only valid for eigeasdlelow the essential spectrum.

Homotopy and domain decomposition

Recall that a crucial ingredient for the Lehmann-Goerisclthoe is an a-priori lower bound for
some eigenvalue of (8.11), i.e. we need sgnsech that,, < p < x,,.1 for somen € N (with %,
denoting an upper bound far,, which can be obtained using the Rayleigh-Ritz method). Recall
from section 5.2 that the base problem

(us P i) = k@ /Q(l +e)updr, forallp e Hy(S), (8.13)
wherec > 3|w|w in €2, can be connected to (8.11) by the family of eigenvalue okl
(U, ) i) = k) /(1 + (1 — 8)¢ + 3s|w|w)updz forall o € H (),
Q

defined fors € [0, 1]. We will now explain how to compute lower bounds for (8.13)imler to
find an a-priori lower bound to start the homotopy. For the btopy itself we refer to section
5.2.1.

As before we take symmetry afinto account and restrict ourselves to the computationalaio
Q= QoMU ([0, 00) x (0,1)) whereQ"Y™ := conv{(0,0), (0,1), (—1,1)}, imposing Neumann
boundary conditions 0#\d<2. A decomposition into subdomais®’ ™ and (0, o) x (0,1)
leads to the eigenvalue problems

—Au+u = MN1+7¢)u, inQOM

u = 0, on(—1,0) x {1} =:Tp (8.14)
Qu =, on oYM,
and
—Au+u = A1+7¢u, in(0,00)x (0,1)
u = 0, on ((0,00) x {0}) U ((0,00) x {1})
Qu = 0, on{0} x (0,1) (8.15)
u(z,y) — 0, asr — oo

and the union of their eigenvalues, ordered by magnitudeteal by multiplicity and denoted by
A1 < Ap < ... constitute indexwise lower bounds for the eigenvalues df3Bby Lemma 5. We
define

Co = MaXgyemo|w|w, (z,y) € QOsym
oz, y) = c1 = max[ijxjo,1 3lwlw, (z,y) € (0,1] x (0,1)

Cp = Mmaxpgxo, dlwlw, (z,y) € (1,3] x(0,1)

0 (z,y) € (3,00) x (0,1).
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Thenz: QO — Ris piecewise constant and satisfies 3|w|w in Q). We can check thaty > ¢; >
co > 0, which is expectable from the shape.af

Note that we are aiming at bounds for eigenvalues of (8.1iQhbeuring 1. As mentioned in
Remark 6 it will be sufficient to compute only eigenvaluesf (8.14) and (8.15) below a prescribed
valueC';, and we will choos&’;, := # here.

For the computation of eigenvalues for (8.14) we refer tdise®.2.2, where we can also find a
guideline for the treatment of (8.15). For the latter, we aiseparation ansatZx, y) = v(z)w(y)
with

with the requirements € C'((0,00)), w € C*((0,1)). Clearly,w(y) = sin(kry) for some
k € N. Foruvy, vy, v3 we obtain the following{; € R, i = 1,2, 3):

(1) z € (0,1).

LY P2 4+1-A1+4c¢) = -1 <0,ie. > kl’fmﬂ.

The differential equation for; and boundary condition;(0) = 0 imply v,(z) =
by cos(Tx).
(1.2) K272+ 1= A1 +c;) =72 > 0,i.e. ) < BEL
Now we obtainv; (z) = by cosh(mz).
(1.3) k2m2 + 1= A1+ ¢;) =0,i.e. A = Bt
In this case we have; (z) = by, b, € R

(2) z € (1,3).

CU P +1-AN1+e)=—12<0ier>E 1“ We will later see that, < 1, thus

only eigenvalues larger than or equalip = © “ will be obtained in this case.
(22) K22 +1-AN14¢)=72>0,ie. )< k;f;l.
Then,vy(x) = age™* + bye™ ™7,
(3) z € (3,00).
The boundary condition implies? := k?7% — A + 1 > 0, whence\ < k*r? + 1 and
v3(z) = aze” ™" follows.
The continuity and differentiability conditions anlead to transcendental equations whose solu-
tions are eigenvalues of (8.15). Leaving out the case (2el9ltain:
Cases (1.1), (2.2), (3\Ve have the restriction

Er? 41
1 —|— C1
for A and the resulting equation is given by

k22 41
<A <min {W—+,0L} (8.16)
1+CQ

e 3T (67272(7'2 — 73)(cos(m1) e + T sin(my))+

€* (75 + 73)(— cos(m) T2 + 71 sin(r))) = 0. (8.17)
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For fixedk we can compute all solutions to this nonlinear equation énititerval determined by
(8.16) using an Interval Newton method (see section 5.€Barly, the interval in (8.16) will be
non-empty for only finitely many values &f

Cases (1.2), (2.2), (3We have the restriction < min {’“211—21, CL} and the resulting equation
IS

e [€™ (13 4 73)(— cosh(m1) T2 + 71 sinh(m))+
6727'2 (’7’2 — T3)(C08h(’7'1)’7'2 + 7 Sinh(T1>:| = 0. (818)

Sincec; > ¢ > ¢c3 > 0we havel) < 1, < ™, < 73 and thereforer, — 5 < 0 as well as
—cosh(r1)72 + 7isinh(7;) < 0. Note that the latter inequality is equivalentttmh(r;) < 2,
which is true sincétanh(z)| < 1 for all z € R.

Therefore the left-hand-side of equation (8.18) is negédtv all X in the considered range and we
do not obtain eigenvalues in this case.

Cases (1.3), (2.2), (3Now we have\ =

E2m241

T and the equation fok is given by

—373 ( —27o

e Ty — T3)€ — ¥ (1y + 7'3)) =0.
Since0 < 7 < 73 the left-hand-side of this equation is strictly negativel are do not obtain

eigenvalues.

Table 8.1 shows lower bounds for the union of eigenvaluegatblpms (8.14) and (8.15) below
3, denoted by, <, A\, < ..., and upper bounds for the smallest eigenvalues of the babéepn

(8.13), denoted by\” < #\”) < ... and obtained using the Rayleigh-Ritz method.

We can read from the table that there are various indicgtisfyingay’ < A,,; < Ani1 < K10,
where the last two inequalities are always satisfied (therl&dllowing from Lemma 5). Choosing
one of these indices and settipg := ), ; leads to a suitable a-priori lower bound as needed to
start the homotopy. In our calculations we used 11 andp, = 2.35653.

A 70 n A 70

n n —n

0.08291115

0.18116190

1.73749089

1.97597235

0.35867444

0.48072268

10

1.79188325

2.07091923

0.52231225

0.69817471

11

2.01325418

2.27738840

0.63443773

0.84523449

12

2.35653704

2.75039604

0.91020102

1.02707258

13

2.43367893

2.86291360

1.08005919

1.43594363

14

2.56478076

3.00029477

1.18596431

1.52508408

15

2.84054405

3.41282185

OIN|O|OR|IWIN|FR]|3

1.73749089

1.93535659

Table 8.1: Eigenvalues of the base problem and correspgtaliver bounds
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Smallest eigenvalue of the Laplacian

To compute the defect as well as for the computation of 0 satisfying (2.7) we need a embed-
ding constants for the embeddirf} () — LP(Q) for different values op. Lemma 2 proved
that these embedding constants can easily be computed towerébound for the smallest eigen-
value of —A on 2 with homogeneous Dirichlet boundary conditions in knowne @éuld use
zero as a lower bound for this eigenvalue, but a better boancde computed using the domain
decomposition method.

Analogous to the above considerations we can prove thas#engal spectrum 6f A is contained

in [72, 00). SplittingQ at {z = 0} and{y = 0} leads to the subdomai¥’ = (—1,0) x (0, 1),
{(z,y) € Q@ : 2z > 0} and{(z,y) € Q : y < 0} and as before we observe that the spectrum
of the two semi-infinite strips (with Neumann boundary cdiedis at{z = 0} and{y = 0},
respectively) starts at> and moreover does not contain eigenvalues. An easy catmulstiows
that there is only one eigenvalue of

—Au = du inQO°
u = 0 ondN’Non

u = 0  0ondQ’\oN
below7?, given by”;. With Lemma 5 it follows that alse-A on 2 has precisely one eigenvalue,
denotedk,, below the essential spectrum and a rough lower bound fegivien by%z. However,
using the Lehmann-Goerisch method it is possible to obtaetir lower bound: Computing (via
the Rayleigh-Ritz method) an upper boundor x, anyp € (&1, 7?) provides a suitable constant
satisfying (5.12). Now Theorem 4 yields the improved loweuid

K1 > 8.974967.

8.2.4 Numerical results

As before we used an interpolatidp_(w®) of w® in a Finite Element spacgy as approximate
solution in the eigenvalue computations and computed adtarthe inverse of the linearization
atw via Lemma 1. Summarizing our results we have (cf. sectior28dt the definition ofp°):

W — P |lL2ry > V. .

Ve — pf||p2qry < 0.000781513 (8.19)
| div(p®) + |[w[?|| 2y < 0.002897424 (8.20)
|w|| pagary = [Jw|rage) < 3.014332566 (8.21)

| — Aw — |w[*||z-1(0) < 0.001698908
K™ = 3.722883900

Cy = 0.461999702

a = 0.006470065

where Ks¥Mis a constant satisfying

[0l 1) < K| Lo[v]|lz-1@ forallv e H; () symmetric w.r.ty = —x.

This proves the following
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Theorem 9. Problem(8.3) has a non-trivial solution: € H}(Q2) satisfying
lu—wllai@o <«
and being symmetric w.nt= —x.

Remark 12. In a continuative joint paper with F. Pacella and M. Plum (iegaration) we prove
that the solution: obtained by our computer-assisted proof is moreover ngestrate and decays
exponentially az — oo andy — —oo, respectively. Thus the solution has similar properties as
the ground state of (8.2), and we hope to prove a similartrasudtated in Theorem 8 for expanding
domains with corners and using our solutiomstead of of the ground state from (8.2).
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9 Solutions for Domains with Larget

In this chapter we revisit problem (1.2) on domaiaswith ¢ > 3 (or¢ > 1.5 in some special
cases). Our aim is to prove the existence of solutions oft@qusly considered types (fourpeak-
corner, fourpeakedge, twopeakoppcorner, twopeakoppedgpeakcorner and onepeakedge) for
allt >t (with £ = 3 or¢ = 1.5, respecively). More precisely we are going to prove theofeihg:

Theorem 10. (a) For all ¢ > 1.5 there exist at least three different non-trivial solutiotts
problem(1.2) (types: onepeakcorner, twopeakoppcorner and fourpealechrn

(b) Forallt > 3there exist at least six different non-trivial solutiongai@blem(1.2).

Moreover we will show that the solution branch@s),. ; ..), given by the solutions in Theorem
10, are continuously differentiable.

To motivate our proceeding in this chapter we will start véittme observations based on numerical
experiments. If one considers, for a fixed solution type gim@ution of the approximate solution
ast varies, one oberserves the following for sufficiently laegel growingt (see also Figures 6.2
and 6.7 - 6.12):

e cornerbumps are centered in the cornerparts of the domédid@not change their shape

e edgebumps are centered in the middle of the edgeparts obthaid and do not change their
shape

e between the corner- or edgebumps the approximate solstaose to zero and these regions
are enlarged alsgrows

Therefore the basic idea is to construct an approximateéisoly putting bumps in the cornerparts
or edgeparts of the domain, extending by zero outside, amqtaee the existence of an exact
solution nearby, using computer-assistance. We take thas@s as the computed approximate
solution for

¢ the unbounded-shaped domain from chapter 8, in case of a cornerbump

¢ the infinite strip domain, in case of an edgebump,

(after obvious shifts and rotations).

Using the notations of section 8.2.1 we cho@se- 3, and consider the computationaishaped
domainQ” := ((—1,0) x (=3,1)) U ((—1,3) x (0,1)). We recall that® € H}(QT) as defined
in (8.7) is an approximate solution to the problem

—Au = Jul* inQT
u = 0 ondOt,

which is symmetric w.r.ty = —z and has one bump centered in the corner paft’af We will
refer to this approximate solution as the basic cornerbump.
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Analogously, we can define a basic edgebump: Let ther€fore: (0,6)x (0, 1) andw® € H{(02°)
be an approximate solution to

{—Au = |uf inQe 9.1

u = 0 on of°,

which has a bump centered(@t ;) and is symmetric w.r.tz = 3. Note thatu® can be chosen to
be a pure Finite Element function sin@é does not contain re-entrant corners.

We will use these two functions to construct various apprnate solutions to our original problem
on §2;, which have bumps in corner parts or on edges of the domaitmelfollowing, we always
consider a shifted version 6f;, having the upper left re-entrant corner at the péind).

9.1 Construction of Approximate Solutions

Cornerbumps
We define four subdomains ©f, = ((—1,2t + 1) x (=2t —1,1))\ ([0, 2¢] x [—2¢,0]):

Q0= Q7

Qgc D ._ (2t — 3,2t +1) x (0,1)) U ((2t,2t + 1) x (=3,1))

O = (2t — 3,2 + 1) x (=2t — 1, =28)) U ((2t, 2t + 1) x (=2t — 1,2t + 3))
QY = ((=1,3) x (=2t — 1, =2)) U ((=1,0) x (=2t — 1,2t + 3))

which are also displayed in Figure 9.1 (1).

Qic,o) i Qgc,l) Qge,so)

L
3 t -3 t

el3 ell
olef) Qe

Qic,B) Qt(c,2) Qt(e,2)

(1) 2)

Figure 9.1: Subdomains for the definition of (1) cornerbum@ &) edgebump functions

By using shifted and rotated versionswfin QEC’“, i € {0,...,3} and extending by zero in the
remaining part of2;, we can define several approximations of cornerpeak-soisiti
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(C1)

C (C,O)
c wi(z,y), (z,y) €

By constructionw;, is symmetric w.r.t. the axig = —z. Note also that this solution may be
defined for allt > 1.5.

(C2)
w(@,y), (z,y) €
w(z,y) = ¢ w2t —x, =2t —y), (x,y) € QEC’Z)
0, else

This function is symmetric w.r.t. the axgs= —x andy = x + 6, and thus has all diagonal
symmetry ofQ),. It can be defined for all > 1.5.

(C4)
(w(x,y), (z,y) € 4"
w(—y,x — 2t), (x,y) € Qgc’l)
wit(z,y) = ¢ w2t —x, =2t —y), (x,y) € QEC’2)
w(y +2t, —x), (x,y) €
L 0, else
This approximation exhibits full symmetry of the domdip. We have to require > 3 in
this case.
Edgebumps

Analogously to the cornerbump solutions we define, ifar 3, four subdomains of);, nhow
containing the centre parts of the edges,

O = (t — 3, +3) x (0,1)

QY = (26,2t + 1) x (=t — 3, —t + 3)
Q2 = (=3, +3) x (=2t — 1, —2¢)
QY = (=1,0) x (=t — 3, —t + 3),

see also Figure 9.1 (2), and put rotated and shifted versiansin Qﬁe’i), i €{0,...,3}. Extend-
ing by zero in the remaing part 6F; yields several types of edgebump-solutions. Note thatlin al
caseg > 3 is necessary.

(E1)

e | wr@—t+3y), (z,y) € QY

By constructionw;* is symmetric w.r.t. the axis = ¢.

(E2)
wé(z —t+3,y), (z,y) € QEE’O)
wi(z,y) =q wi(—x+t—3,—y—2t), (r,y)€ Qge’z)
0, else

This function is symmetric w.r.t. to the axes= ¢ andy = —t.
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(E4)
( wé(x —t+3,y), (z,y) € Qge’o)
wWwe(—y+3—t,x—2t), (x,y)€ Qge’l)
wit(z,y) = q w(—z+t—3,—y—2t), (z,y)€ QEEQ)
Wy +t+ 3, —x), (z,y) € Y
L 0, else

This approximation exhibits full symmetry of the doméin

Note that the construction of approximate solutions is Isintd the idea that is used in Theorem
8, where} " | U, r is asum of rotated and translated versions of a ground statéos, and
can be interpret as approximate solution.

9.2 Defect Computation
Recall that the defect of an approximate solutigre H;(2;) can be estimated by
| = Aw; = w100 < 1V = pellzo,) + Coll div pr + [wi? [l 2 (@) (9.2)

wherep; € H(div, ;) is an approximate minimizer qfth—ptHiQ(Qt)nLCQ || div ps+ |wt|3||%2(gt).
Our first aim is to construct such an approximatrby using only approximations o¥w* and
Vw*¢, respectively.

Cornerbumps
Let p¢ = p}: € H(div,QT) be an approximation o¥w satisfying— div(p°) ~ |w°|* and
P2

p5(3,y) = p5(x,—3) = 0 for z,y € (0,1), i.e. the normal component of is zero atr = 3 and
y = —3, respecively, which guarantees that the zero extensigf ioto ,\Q7 is in H(div, Q)

(see e.g. the procedure in section 8.2.2). With the follgwdefinitions, using® as a building
block, we obtain approximations &fw;’ in H(div, €2;):

(C1-1)
C (C’O)
o ) rfxy), (my) €8y
pit(z,y) = { 0. else
(C2-1)
p(z,y), (z,y) € A0

(2t — x, —2t — .
P2l =, 4) . (z,y) € QY

0, else
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(C4-1)
( c,
p(,y), (z,y) € 4
2 y b T 2t c
BT ) ) e ol
—pi(—y,z — 2t)
co . _pi (Qt -, —2t — y) (¢,2)
x,Y) = , (x,y) € Q
P, y) 52— w2t — ) (z,y) €
+ 2t, —x .
6@ )7 (z.y) € QY
pi(y +2t, —x)
0, else
\
Edgebumps
Similarly to the proceeding for cornerbumps we start withagproximationp® = pi €
P2

H (div, Q°) of Vwe, which satisfies- div(p®) ~ |w®|? andp$(0,y) = pS(6,y) = 0 fory € (0, 1).
As before this implies that the normal componenpohtz = 0 andx = 6, respectively, is zero.
Sincew® is a Finite Element function, we may search fdr p5 in the Finite Element space, too.
We are now able to define approximationsvab;” € H(div,(2;) in a similar way as we did for
the cornerbump solutions:

(E1-1)
pel(ZE y) . pe(x _t+37y)7 (‘ray) € Q)E&O)
b 0, else
(E2-1)
( e (e,0)
p(x_t—'—gvy)a (:E7y)€Qt
—pS(—x+t—3,—y—2 .
pi2(z,y) = pilmr+ =3y ),<Lweﬂ&”
—ps(—x+1t—3,—y —2t)
\ 0, else
(E4-1)
( e (e,0)
pi(x —t+3,y), (z,y) €

3—t,x—2t
Ay s e 2 (z,y) € Y
—p5(—y+ 3 —t,z — 2t)

(—
i
. —pi(—r+t—-3,—y—2t e,
pi2(x,y) = i( >,(%w69§m
—p5(—x+t—3,—y —2t)

o, — .
AL, o)) (z,y) € Y
p5(y + 2t, —x)
else




106 9 Solutions for Domains with Large

Due to the construction of;*, w;* andp;’, pi*, i = 1,2,4, (9.2) leads to

| = Awi —lwi' Pla-10) < IV = plliz@r) + Col div () + ||l 22 (r)

| = Awit = [wi* Pl < [V = p%llr2ie) + Coll div (p°) + ]|l 2(qe)

| = Aw = [wiPlla-10) < V2([[Vw® = pll2iary + Col div (p°) + [w[* 2o 9.3)
| = Aw® — |wPla-1y < \/_(vae = pllzz(e) + Col div (p°) + | [l 22(0e)) '

| = Aw* = |wi* Plla-10) < 2 ([IVw© = pll2ar) + Col| div (p°) + |0 Pl 120m))

2 (Ve = pllr2oey + Call div (p°) + [l r200)) -

/\

| = Awf = wf* Pl <
Note that upper bounds fafVw® — p°||12qry and || div (p°) + |w°[?|| 2r) have already been
computed and are displayed in section 8.2.4. The correspgnerms involvingw® and p¢ can
easily be computed exactly using a quadrature rule of seifilyi high degree, since all occurring
functions are piecewise polynomial. For the computatioaroEmbedding constatt = Cs(£2;)
for all t > ¢ we use Lemma 7, thereby obtainiag(€2,) = C»(Q;) for all ¢ > £. Thus we are now
able to compute the defect faf*, wi’ fori = 1,2,4 and allt > ¢ (we choosé = 1.5 for w* and

i = 1,2 andt = 3 in the remaining cases).

9.3 Bound for the Inverse of the Linearization

By construction of the approximate solution8, w;* we have

wi € Hy(Qy,synfi),  wi € Hy(QF, synfi), (i=1,2,4)

where
Hy (€, synf?) == {u € Hy(§) : u Ssymmetric w.rty = —x}
H (S, synf?) .= {u € Hy () : u symmetric w.rty = —z,y = v + 6}
Hy(Q, synf*) == {u € Hy (%) : w symmetricw.rty = —z,y =1+ 6,0 =t,y = —t}
H (€, synf?) := {u € H(€) : u symmetric w.r.tx = ¢}
H (S, synf?) := {u € H}() : u symmetric w.r.tx = t,y = —t}
Hy (Q, synf) := Hy (S, synt).

We will also use the notatiof/} (2, sym) if the underlying symmetry is clear from the context.
Our aim is now to compute constarits’, K;*, i = 1, 2, 4 satisfying

||U||H01(Qt) < Ky’

L, e [U]H . forallv € Hy(Qy, synf?), forallt > t, (9.4)
t H— Qt
[0l < K7

L,z [v] for all v € H}(Qy,synf), forallt > . (9.5)

H=1(Q)

We have seen earlier that for for the computation of a congtasatisfying||v|| 1 q,) < K| Lu[v]l|m-1(0,)
forall v € Hj(Qy) (with w € H} () given) it is sufficient and necessary to compute bounds for
the smallest eigenvalues of

/ [Vu-Vo+up| de = /i/ (14 3jw|lw)updz forallp € Hy(52).
Q4

Q
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Therefore, we will now compute uniform enclosures for thekest eigenvalues of

/ Vu - Vo +up| de = /i/ (1 + 3|wy|w;) updz  forall p € Hj (2, sym), (9.6)
Qt Qt

corresponding to eigenfunctions i (€;, sym) wherew, € {wi*, w : i = 1,2,4} andt > t.

In chapter 5 we have introduced and explained methods tanobfger and lower eigenvalue
bounds, thus we will now only comment on the settings andogsaio be made for applying these
methods. For lower eigenvalue bounds we start with a bad#gmmothat can be connected via a
homotopy with the eigenvalue problem (9.6). It is obvioudintical to problem (5.31), given by:

/ [Vu - Vo + up| doe = m(o)/ (14+2)updx forall o € Hy (2, sym), 9.7)
Q¢

Q

J

'

=No (u,cp)

wherec : ), — R depends on the choice of, is piecewise constant and such that

Clearly we can choose = 0 in all subdomains where; = 0, and such that it exhibits the same
symmetry asv,;. In particularc will depend only onu® andw*®, respectively.

9.3.1 Domain decomposition

Keeping the symmetry of the approximate solutions in minaccarerestrict ourselves to half, quar-
ter or eighth domain of2;, with Neumann boundary conditions on the new parts of thetary.

(a) (b)
T T
00 PN ~(2 ~(3 o) ~ ‘ ~ ~
N Q Q, : Qg ) Qt( ) Q le) : Q§2> QEB)
I N I N
| |
t 3 t 3
. ©
?27(50) le) QEQ) N
N
3 t
a6
o
N

Figure 9.2: Computational domains and domain decompodiiiocornerbumps in (a) case= 1,
(b) case = 2 and (c) case = 4

Figure 9.2 shows the computational domains and the sglittirsubdomain@,ﬁj) that will be
used during the domain decomposition in cage= w;*, ¢ = 1,2,4 is a cornerbump solution.
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o o

N

Figure 9.3: Computational domains and domain decompoditioadgebumps in (a) case= 4,

(b) casel = 2 and (c) case = 1

Figure 9.3 shows the same for the edgebump solutigns w”,
indicates parts of the boundary af = int (U;‘?:O QE”) (k > 3 to be chosen accordingly) where

Neumann boundary conditions are imposed. Solid lines mauktaries of the subdomaiﬁ?é”.

The definitions of2”’ are as follows:

Cornerbumps:
@ Q = conv{(0,0),(0,1),(~1
Qi = (0,1) x (0,1)
Q% =(0,3) x (0,1)
QP = (2t,2t + 1) x (0,1)
O = (21,2t + 1) x (=2t,0)
QP = conv{(2t, —21), (2t + 1, —2t),
(2t +1,—2t — 1)}
Edgebumps:
(@ Y =(—-30x(01)
QP = (0,6 —3) x (0,1)
QP = conv{(0,0), (0,1), (=1,1)}
t—3,t) x (0,1)

)
)
)
(b) O =
0@
)
)

(c)

QES) §§2) ﬁil) N
t—3 3

aw

Qis) Q)(f) N

0O = conv{(0,0),(0,1),(—1,1)}

(
0 = (0,3) x (0,1)
0 = (3,2t) x (0,1
Q0P = = conv{(2t,0),

)
(

Q< ) = conv{(0,0), (0,1), (=1,1)}
Q“> (0,3) x (0,1)
QP = (3,1) x (0,1)

()

QN = (t—3,¢) x (0,1)

QP = (0,6 —3) x (0,1)

QP = (=1,0) x (0,1)

O = (=1,0) x (=2t,0)

QP = (=1,0) x (=2t — 1, —2¢)
Q9 = (0,4) x (=2t — 1, —2¢).

i = 1,2,4. In all picturesN

2t +1,1), (2t,1)}
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For the domain decomposition we have to consider the eigigmypsoblems

—Au+u = A1+¢u in QE
w = 0 on T'Y = a0, noQY (9.9)

=0 on 8Qt N\

for j € {0,...,6}. Recall thatt = 0 in all subdomains where, = 0. With the splitting
made in figures 9.2 and 9.3, and by definitionwpfin (C1)-(C3) and (E1)-(E2), respectively, we
immediately see that= 0 in @ﬁj) for all j > 1. Using a separation ansatz we can easily see that
the eigenvalues of (9.9) fgr= 1, 3, 5 are bounded from below bgz + 1 (cf. section 6.2.2 when

OV is a triangle), whereas a lower bound for all eigenvalue9d)(for j; = 2,4, 6 is given by
72+ 1. Since we are aiming at bounds for eigenvalues neighbodtitige eigenvalues contributed
by ﬁgj), j > 1, are not of interest for us (provided that there are eigemsbf (9.9) forj = 0,1
which are smaller thal’@z +1).

Therefore it remains to consider the eigenvalue proble®) (@r ; = 1 and;j = 0, the latter one
only in the case that, is a cornerbump function. We first fix the choicecaf

Cornerbumps
We haveQ” = conv{(0,0),(0,1),(~1,1)} and Q" = (0,3) x (0,1). Sincewf’ = w* in

QEO) U ﬁgl), we can chooseindependently of in this subdomain. Analogously to the proceeding
in section 6.2.2 we defineto be constant im,ﬁo) and piecewise constantmgl):

Co 1= maxw3|wc|wc, (z,y) € Q
E(I’,y) = €1 = mMaX[p,1]x[0,1] BIWC‘UJC, ( ) € ( ] ( )
Cy 1= maxp 3)x[o,1) 3|wlw, (z,y) € (1,3] x (0,1)

Note thatcy > ¢; > ¢, Sincew® is the basic corner bump.
Edgebumps
We have()!") = (t—3,t) x (0,1). Choosing

o(x,y) == ¢1 1= max[p g« 01 3|w|w?, (z,y) € (t —3,t—1] x (0,1)
Y) ¢y = maxp g« 3lwelws, (z,y) € (t — 1,4 x (0, 1),

we see that problem (9.9) fgr= 1 is equivalent to

—Au+u = MN1+c)u in(0,3) x (0,1)
u(z,0) =u(x,1) = 0, z € (0,3)
50,y =56y =0, y € (0,1),

wherecd'(z) = ¢(z + t — 3). Note thate; < ¢, in this case.

Eigenvalues of (9.9) fof = 0 have already been computed in section 5.3. fer 1 we will (as
before) use a separation ansafz, y) = v(x)w(y) with v(x) = vi(x) forx € (0,9), v(z) = vo(x)

for x € (4,3) andwvy, vy, w smooth functions. We choose = 1 in case of cornerbumps and
0 = 2 in case of edgebump-solutions. In addition to the boundangditions we require: to be
continuously differentiable at = 4. As in the treatment of problem (6.7) in section 6.2.2 (page
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54 ff.) this leads to transcendental equations, whoseieokitare eigenvalues of (9.9) fgr= 1.
For the details we refer to the equations for (6.7), wherg#rametes in that problem has to be
replaced bys to obtain (9.9) for; = 1.

Let \; < A\ < ... < ), denote the union of all eigenvalues of problem (9.8) 0,1 for
cornerbumps o = 0 for edgebumps), counted by multiplicity, below a presciballie C;, <

™ 1 1. Moreover denote by!” < k3 < ... < x{” the smallest eigenvalues of (9.7), counted
by multiplicity, which correspond to eigenfunctions i} (€, sym). Since eigenvalues of (9.9)
for j > 1 are larger than”;—2 + 1, Lemma 5 implies\;, < /4;,(60) forall j = 1,...,q and moreover
The following two tables summarize the results and include apper boundé;}o) for the base
eigenvalues. These upper bounds can be computed using thedgRaiRitz method when “good”
ansatz functions are known. Their construction is addcessthe next section.

Table 9.1: Lower bounds for the base prob-
lem in case of cornerbump-functions.

j Aj R J Aj w

1 | 0.082911| 0.181162 1 | 0.138285| 0.138287
2 | 0.358674| 0.480723 2 | 0.287006| 0.287008
3 1 0.522312| 0.698175 3 10.474108| 0.474110
4 1 0.634437| 0.845235 4 | 0.627807| 0.627810
5 10.910201| 1.027073 5 1 0.644585| 0.644587
6 | 1.080058| 1.435944 6 | 1.003982| 1.003987
7 | 1.185964| 1.525085 7 | 1.028832| 1.028844
8 | 1.737490| 1.935357 8 |1.181200| 1.181214
9 | 1.737490| 1.975972 9 |1.211802| 1.211816
10| 1.791883| 2.070920 10 | 1.568845| 1.568862
11| 2.013254| 2.277388 11| 1.586584| 1.586603
12 | 2.356533| 2.750397 12 | 1.803839| 1.803898
13| 2.433678| 2.862914 13| 1.952124| 1.952190
14| 2.564780| 3.000295 14 | 1.994569| 1.994635

Table 9.2: Lower bounds for the base prob-
lem in case of edgebump-functions.

9.4 Upper Bounds and Homotopy
In analogy to the setting in section 5.2 we definedar [0, 1]:
Ny(u, @) = / (14 (1 = s8)e + s3|wi|w)updr  (u, o € Hy(Qy, Sym)),
Q4

and the family of eigenvalue problems connecting (9.7) &) (s given by

(u, @)H&(Qt) = H(S)Ns(ua p) forallp e Hy(, sym). (9.10)
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In order to find a suitable a-priori lower bound to start thenltopy, we have to find an index
n € {1,...,q} such thatz!’ < X\, < &, where!”’ denotes an upper bound fef.
Therefore we have to compute upper bounds for the firsigenvalues of (9.7), which can as
before be done using the Rayleigh-Ritz method. To apply thikiotk we have to choose suitable
testfunctionsvy, ..., v, € H}(€:) having the same symmetry propertiesuas We will briefly
comment on a possible construction of these test functimatscan also be used in the homotopy
and the Lehmann-Goerisch method.

Cornerbumps

Denote byH} (QT, sym) the subspace aoff} (27) containing all functions symmetric w.r.ty =
—x. Moreover, for some € [0,1], letw = (1 — s)c + sw® € Hy(Q", sym) and lets, ..., v} €
H}(QF, sym) be approximate eigenfunctions of

/ [Vu-Vo+up| de = 7'/ [1+w(z)updr forallp e HH(OQT, sym). (9.11)
QT QT

N

g

=:Ng(up)

Using the same definitions as(i@'1), (C2) and(C4) (construction ofv“), with w® replaced by,
(k =1,...,q) we can define approximate eigenfunctiefis. .., vs € Hg(y,synt?) (i = 1,2,4)
which are zero in the same subdomainsgqi = 1,2, 4).

Due to symmetry ofy’, ..., vg' € H;(£2;) we have for the quantities in the Rayleigh-Ritz method:

N o) = [ (U i@ de = NG o),
Q4

for i = 1,2,4, and analogously for the terms in the Lehmann-Goerisch odethlThus in the
course of the homotopy and for the computation of upper @aee bounds we have to work
only on the domairf2 (or even more efficiently on the half domaionv{(0,0), (3,0), (3,1),
<_17 1)})

Finally our considerations show that the computations rrdependent of and we can therefore
compute constants;"¥™, i = 1,2, 4 satisfying (9.4).

Edgebumps

Analogously to the cornerbump-case denotef3y ¢, sym) the subspace aoff; (Q2¢) containing
all functions symmetric w.r.tz = 3. Letw = (1 — s)c + sw® € Hg(Q¢, sym) for somes € [0, 1]
and letvs, . .., v; € Hg(Q°, sym) be approximate eigenfunctions of

/ Vu - Vo +up| de = 7'/ [1+w(z)updr forallp € Hy(Q°, sym). (9.12)

[\ J/

~
=:N¢ (u,p)

With the definitions in (E1), (E2) and (E4) (replacingby vf, .. ., v7) we can again define appro-
ximate eigenfunctions{’, ... ,vs* € Hy(Qy, synf) being zero in the same subdomainsu4s
(i =1,2,4).
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By construction we have

{vi's Uzei>H5(Qt) = i (U, Ule>H5(Qe)

N o) = [ (1wt de = iNE 0, o)
Qi

showing that during the homotopy or for the computation gfermbounds we have to work only
with the domairt2°. Thus we will obtain constants;">™, i = 1, 2, 4 satisfying (9.5).

Remark 13. During the homotopy we have to compute also approximatidriseogradients of
v, andv;’. As in section 9.2 these can be constructed from approximsyf, of Vv; andpf, of
Vg, respectively, by zero extension outside the corners oedf2;. For the resulting gradient
to be inH (div, §2;) we have to impose Dirichlet boundary conditions for the fimhponent opy,
atz = 3 and the second componentgfaty = —3, as well as for the first component gf at
x = 0andz = 6.

9.5 Numerical Results

Cornerbumps
From the results (8.19) and (8.20) in section 8.2.4 for tHeounded L-shaped domain we have

[Vw® — || 2qry < 0.000781513
| div(p°) + || 2 @r)y < 0.002897424,

which, using (9.3), leads to

| = Awft = |wi ]| g-1(0,) < 0.00169663 =: 67+ forallt > 1.5
| — Aw? — |wi?]?]| g-1(0,) < 0.00239940 =: 67+ forall¢t > 1.5
| — Aw* — |wi*?]| g-1(0,) < 0.00338548 =: 6;* forall t > 3.

For the eigenvalue problem (9.6) with replaced byly_ (w;'), i = 1,2,4 (see also Remark 7),
we have the uniform eigenvalue bounds fortalt ¢ (t = 1.5 fori = 1,2, ¢ = 3 fori = 4):

k1 < 0.35262
ko > 1.36740.

From (8.21) we have
[w| L1y < 3.014332566,

which implies
lwit |22,y = [|w]| Laory < 3.014332566

Wi || ey = V2|Jw|| L1qr) < 3.584665734
wi* || 220y = VA[|w || L1gry < 4.262909995.
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After using Lemma 1 once again, this yields the constafts’™, i = 1, 2, 4 satisfying (9.4):

K09 = 3722882891 forallt > 1.5
K™ = 3723601721 forallt > 1.5
K™ = 3724806373 forallt > 3.

Finally, with C4(€2;) denoting the embedding constant for the embeddip¢f2;) — L*(Q;) we
have by Lemma 7C,(€);) = C,4(Q;) forallt > # (t = 1.5fori = 1,2, = 3 for i = 4) and with
the results displayed in Table 6.1 we get

Cy(Q5) = 0.461477761
C4(Q3) = 0.460583805.

Now we can look foky;* > 0 such that

Cq

s « ci ci
O < o = 3(Ca(@))” (af)? (Jlo
t

g+ 30 Q)ag), i=1,2,4 forallt>1i,

and obtain that this inequality is satisfied for

ayt = 0.006460701 forallt > 1.5
ay? = 0.009282265 forallt > 1.5
agt =0.013466675 forallt > 3.

Therefore - after checkintyof’ || 1 (,) = V/illw® ||z or) > of', i = 1,2,4 - we obtain for allt > i
the existence of non-trivial solutionsg’ € H} (2% synfi) to problem (3.10) such that

Edgebumps
For the basic edge-bump we obtain the results

VW — p°|12(qey < 0.002138790
| div(p®) + [w°]*|| r2qe) < 0.004722495,

and thus, using (9.3),

| — Awst — i |l ir-1(0,) < 0.003623987 =: &t forallt > 3
| — Awg? — |wf ||l r-1(0y) < 0.005125091 =: ;> forallt > 3
| — Awp* — |wf* ||l ir-1(0,) < 0.007247973 =: 6;*  forall ¢ > 3.

Uniform bounds for the eigenvalue problem (9.6) withreplaced byly_ (w;*), i = 1,2, 4 for all
t > 3 are given by

k1 < 0.34915
Ko > 1.51840.
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Together with|w®|| 140y < 1.320091540, implying

HwtelHL‘l(Qt) = HweHsz(Qe) < 1.320091540
Wi | L2 = V2]Jwt || Lagey < 1.569862252
wi*|| Loy = VA||wE || Lagqey < 1.866891359,

the eigenvalue bounds yield the following constahi{s, i = 1,2, 4 satisfying (9.5) (after using
Lemma 1 once again)

KM =2.929314798 forallt > 3
K™= 2929521043 forall t > 3
K™ = 2929867970 forallt > 3.

Suitableq;’ satisfying

€

5 < ;’? —3(Ca(2))* (af")? (loof || e + 2Cu(Q)af), i=1,2,4 forallt >3
t

are now given by

ayt = 0.010757705 forallt > 3
ay? = 0.015346977 forallt > 3
ag* = 0.022036766 for all t > 3.

Note thatC,(€2;) = C,(€23) for all ¢ > 3 as already explained in the previous paragraph. Therefore

- after checking agaifiw;’ || 51 (q,) = \/EHUJGHH(%(QQ) > oy, i =1,2,4 - we obtain for allt > 3 the
existence of non-trivial solutiong’ € H}(Q¢, synf?) to problem (3.10) such that

||U? - wteLHHé(Qt) < Oé?fi L= ]-7 27 4.

Multiplicity
Similar as in section 6.4.2 we can prove

luf” = w1y >0 forallt >3,

whereu(” u{” € {uf',uf + i =1,2,4}, ui” # u{”, as well as
”u? - UEQHH&(Qt) >0 forallt > 1.5.

Let moreoven(u,):c(1.5,3 denote the fourpeakcorner solution branch, whose exigtead already
been proven in Theorem 6. By showing

' = well a0 >0 forallt € [1.5,3], i=1,2,

which is indeed satisfied, Theorem 10 is proved.
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Smoothness of solution branches

We will finally prove

Theorem 11. The solution branchegu;’),(; .., and (4;"),c(; ) ¢ = 1,2,4, are continuously
differentiable.

For the notion of differentiability of the branches we referthe definitions in setion 7.2 (see
Theorem 7 and Remark 11). The proof of Theorem 11 is almostiaiho the proof of Theorem
7, but with significant simplification in some steps:

e Continuity of the mapping defined in (7.48) follows immedigtéue to the construction of
the approximate solutiong® andw;’, i = 1,2, 4

e The mappings — «;*,t — «;*, i = 1,2,4 are constant and therefore clearly lower semi-
continuous. Moreover the existence of sotniedependent) > 0 such that (2.8) holds with
ay' 4+ ninstead ofa;, i = 1,2,4, anda;’ 4 n instead ofa;?, ¢ = 1,2,4, respectively, is
trivial.

Remark 14. It is clear that the method explained in this chapter is moitéd to the cornerbump
and edgebump functions we constructed. One could alsoraohsblutions having bumps in two
adjacent corner parts or edges of the domain, three bumgjnmiof corner- and edgebumps and
many more.



116 9 Solutions for Domains with Large




A Appendix

117

A Appendix

A.1 Complete Tables for Verified Results

Fourpeakcorner

t R1 Ko K, 0y o max
0.208984375 | 0.35886 | 1.46450 | 3.15489 | 0.0257979 - 0.0206708
0.23828125 0.35862 | 1.36796 | 3.72039 | 0.0201304 - 0.0147278
0.267578125 | 0.35837 | 1.29394 | 4.40575 | 0.0162102 - 0.0104117
0.296875 0.35805 | 1.24784 | 5.03974 | 0.0133682 - 0.0078930
0.326171875 | 0.35759 | 1.23600 | 5.24225 | 0.0112234 - 0.0072413
0.35546875 0.35700 | 1.25520 | 4.92280 | 0.0095729 - 0.0081590
0.384765625 | 0.35637 | 1.28913 | 4.46259 | 0.0083061 | 0.0529693 -
0.4140625 0.35579 | 1.32103 | 4.11833 | 0.0733333 | 0.0376470 -
0.443359375 | 0.35528 | 1.34409 | 3.90901 | 0.0057125 | 0.0302737 -
0.47265625 0.35485 | 1.35813 | 3.79517 | 0.0059516 | 0.0258406 -
0.501953125 | 0.35449 | 1.36588 | 3.73632 | 0.0054263 | 0.0227653 -
0.53125 0.35419 | 1.36966 | 3.70819 | 0.0049660 | 0.0204041 -
0.560546875 | 0.35393 | 1.37139 | 3.69581 | 0.0045563 | 0.0184645 -
0.58984375 0.35372 | 1.37191 | 3.69147 | 0.0041917 | 0.0168223 -
0.619140625 | 0.35355 | 1.37195 | 3.69149 | 0.0038717 | 0.0154279 -
0.6484375 0.35340 | 1.37157 | 3.69441 | 0.0035973 | 0.0142616 -
0.677734375 | 0.35328 | 1.37118 | 3.69733 | 0.0033684 | 0.0133000 -
0.70703125 0.35318 | 1.37074 | 3.70026 | 0.0031830 | 0.0125299 -
0.736328125 | 0.35309 | 1.37030 | 3.70320 | 0.0030377 | 0.0119315 -
0.765625 0.35302 | 1.36993 | 3.70615 | 0.0029272 | 0.0114808 -
0.794921875 | 0.35296 | 1.36943 | 3.70984 | 0.0028459 | 0.0111551 -
0.82421875 0.35290 | 1.36900 | 3.71281 | 0.0027881 | 0.0109250 -
0.853515625 | 0.35286 | 1.36872 | 3.71504 | 0.0027487 | 0.0107688 -
0.8828125 0.35282 | 1.36847 | 3.71728 | 0.0027233 | 0.0106701 -
0.9121093750 | 0.35279 | 1.36833 | 3.71805 | 0.0027079 | 0.0106086 -
0.94140625 0.35276 | 1.36793 | 3.72104 | 0.0026998 | 0.0105842 -
0.970703125 | 0.35274 | 1.36796 | 3.72108 | 0.0026965 | 0.0105701 -

1 0.35272 | 1.36782 | 3.72185 | 0.0026960 | 0.0105702 -
1.0625 0.35269 | 1.36762 | 3.72334 | 0.0026984 | 0.0105839 -
1.125 0.35267 | 1.36748 | 3.72482 | 0.0026996 | 0.0105930 -
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1.1875 0.35265 | 1.36738 | 3.72556 | 0.0027001 | 0.0105967 -
2.25 0.35264 | 1.36723 | 3.72630 | 0.0027001 | 0.0105984 -
1.3125 0.35263 | 1.36718 | 3.71786 | 0.0026998 | 0.0105701 -
1.375 0.35263 | 1.36714 | 3.72704 | 0.0026993 | 0.0105967 -
1.4375 0.35263 | 1.36712 | 3.72704 | 0.0026988 | 0.0105940 -
1.5 0.35262 | 1.36710 | 3.72704 | 0.0026982 | 0.0105912 -
1.5625 0.35262 | 1.36709 | 3.72779 | 0.0026976 | 0.0105908 -
1.625 0.35262 | 1.36707 | 3.72779 | 0.0026971 | 0.0105881 -
1.6875 0.35262 | 1.36707 | 3.72779 | 0.0026965 | 0.0105856 -
1.75 0.35262 | 1.36706 | 3.72779 | 0.0026960 | 0.0105832 -
1.8125 0.35262 | 1.36705 | 3.72778 | 0.0026955 | 0.0105810 -
1.875 0.35262 | 1.36705 | 3.72778 | 0.0026951 | 0.0105790 -
1.9375 0.35262 | 1.36705 | 3.72778 | 0.0026947 | 0.0105771 -
2 0.35262 | 1.36704 | 3.72778 | 0.0026943 | 0.0105754 -
2.0625 0.35262 | 1.36704 | 3.72778 | 0.0026940 | 0.0105739 -
2.125 0.35262 | 1.36704 | 3.72778 | 0.0026937 | 0.0105726 -
2.1875 0.35262 | 1.36704 | 3.72778 | 0.0026934 | 0.0105714 -
2.25 0.35262 | 1.36703 | 3.72778 | 0.0026932 | 0.0105702 -
2.3125 0.35262 | 1.36703 | 3.72778 | 0.0026930 | 0.0105693 -
2.375 0.35262 | 1.36703 | 3.72778 | 0.0026928 | 0.0105684 -
2.4375 0.35262 | 1.36703 | 3.72778 | 0.0026927 | 0.0105677 -
2.5 0.35262 | 1.36703 | 3.72778 | 0.0026925 | 0.0105670 -
2.5625 0.35262 | 1.36703 | 3.72778 | 0.0026924 | 0.0105665 -
2.625 0.35262 | 1.36703 | 3.72778 | 0.0026923 | 0.0105660 -
2.6875 0.35262 | 1.36703 | 3.72778 | 0.0026922 | 0.0105656 -
2.75 0.35262 | 1.36703 | 3.72778 | 0.0026922 | 0.0105653 -
2.8125 0.35262 | 1.36703 | 3.72778 | 0.0026921 | 0.0105650 -
2.875 0.35262 | 1.36703 | 3.72778 | 0.0026921 | 0.0105649 -
2.9375 0.35262 | 1.36702 | 3.72778 | 0.0026920 | 0.0105647 -
3 0.35262 | 1.36702 | 3.72779 | 0.0026920 | 0.0105647 -
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Fourpeakedge

t R1 Ko K, 0y o max ‘
0.501953125 | 0.35423 | 1.06716 | 15.97879 | 0.0041423 - 0.0007329
0.53125 0.35286 | 1.24676 | 5.05846 | 0.0034592 | 0.0203114 -
0.560546875 | 0.35209 | 1.36622 | 3.73308 | 0.0030727 | 0.0122322 -
0.58984375 | 0.35153 | 1.46354 | 3.15902 | 0.0028470 | 0.0093761 -
0.619140625 | 0.35111 | 1.53966 | 2.85439 | 0.0027271 | 0.0080405 -
0.6484375 0.35077 | 1.56669 | 2.76567 | 0.0026737 | 0.0076181 -
0.677734375 | 0.35049 | 1.55988 | 2.78736 | 0.0026586 | 0.0076371 -
0.70703125 | 0.35027 | 1.55267 | 2.81061 | 0.0026642 | 0.0077214 -
0.736328125 | 0.35009 | 1.54664 | 2.83046 | 0.0026802 | 0.0078276 -
0.765625 0.34994 | 1.54170 | 2.84700 | 0.0027014 | 0.0079404 -
0.794921875 | 0.34981 | 1.53768 | 2.86107 | 0.0027252 | 0.0080550 -
0.82421875 | 0.34971 | 1.53442 | 2.87292 | 0.0027508 | 0.0081690 -
0.853515625 | 0.34962 | 1.53165 | 2.88209 | 0.0027779 | 0.0082802 -
0.8828125 0.34954 | 1.52943 | 2.88992 | 0.0028066 | 0.0083929 -
0.912109375 | 0.34948 | 1.52763 | 2.89637 | 0.0028370 | 0.0085074 -
0.94140625 | 0.34943 | 1.52609 | 2.90216 | 0.0028695 | 0.0086265 -
0.970703125 | 0.34939 | 1.52487 | 2.90627 | 0.0029042 | 0.0087476 -
1 0.34935 | 1.52380 | 2.91018 | 0.0029412 | 0.0088759 -
1.0625 0.34929 | 1.52222 | 2.91602 | 0.0028330 | 0.0085558 -
1.125 0.34925 | 1.52113 | 2.92002 | 0.0027784 | 0.0083971 -
1.1875 0.34922 | 1.52036 | 2.92292 | 0.0027499 | 0.0083163 -
1.25 0.34920 | 1.51987 | 2.92472 | 0.0027142 | 0.0082100 -
1.3125 0.34918 | 1.51947 | 2.92618 | 0.0026816 | 0.0081119 -
1.375 0.34917 | 1.51926 | 2.92691 | 0.0026644 | 0.0080603 -
1.4375 0.34916 | 1.51895 | 2.92802 | 0.0026621 | 0.0080561 -
1.5 0.34916 | 1.51908 | 2.92764 | 0.0026696 | 0.0080783 -
1.5625 0.34916 | 1.51902 | 2.92764 | 0.0026841 | 0.0081235 -
1.625 0.34915 | 1.51897 | 2.92802 | 0.0027053 | 0.0081907 -
1.6875 0.34915 | 1.51893 | 2.92803 | 0.0027340 | 0.0082804 -
1.75 0.34915 | 1.51897 | 2.92804 | 0.0027713 | 0.0083975 -
1.8125 0.34915 | 1.51890 | 2.92806 | 0.0028187 | 0.0085461 -
1.875 0.34915 | 1.51894 | 2.92810 | 0.0028772 | 0.0087300 -
1.9375 0.34915 | 1.51886 | 2.92851 | 0.0029480 | 0.0089540 -
2 0.34915 | 1.51888 | 2.92858 | 0.0030319 | 0.0092189 -
2.0625 0.34915 | 1.51884 | 2.92866 | 0.0031298 | 0.0095286 -
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2.125 0.34915 | 1.51884 | 2.92875 | 0.0032422 | 0.0098853 -
2.1875 0.34915 | 1.51892 | 2.92850 | 0.0033696 | 0.0102895 -
2.25 0.34915 | 1.51885 | 2.92901 | 0.0035123 | 0.0107472 -
2.3125 0.34915 | 1.51884 | 2.92918 | 0.0036706 | 0.0112552 -
2.375 0.34915 | 1.51885 | 2.92936 | 0.0038445 | 0.0118161 -
2.4375 0.34915 | 1.51880 | 2.92957 | 0.0040340 | 0.0124306 -
2.5 0.34915 | 1.51865 | 2.93055 | 0.0042391 | 0.0131032 -
2.5625 0.34915 | 1.51878 | 2.93044 | 0.0044596 | 0.0138252 -
2.625 0.34915 | 1.51871 | 2.93072 | 0.0046955 | 0.0146047 -
2.6875 0.34915 | 1.51857 | 2.93178 | 0.0049465 | 0.0154449 -
2.75 0.34915 | 1.51878 | 2.93136 | 0.0052125 | 0.0163329 -
2.8125 0.34915 | 1.51870 | 2.93173 | 0.0054932 | 0.0172829 -
2.875 0.34915 | 1.51850 | 2.93287 | 0.0057884 | 0.0182967 -
2.9375 0.34915 | 1.51867 | 2.93292 | 0.0060980 | 0.0193619 -
3 0.34915 | 1.51868 | 2.93337 | 0.0064216 | 0.0204903 -

Onepeakcorner

t R1 Ko K, 0y oy

0.501953125 | 0.35262 | 1.36707 | 3.72550 | 0.0047839 | 0.0190828
0.53125 0.35262 | 1.36705 | 3.72560 | 0.0041881 | 0.0165515
0.560546875 | 0.35262 | 1.36704 | 3.72564 | 0.0036825 | 0.0144421
0.58984375 | 0.35262 | 1.36693 | 3.72642 | 0.0032471 | 0.0126552
0.619140625 | 0.35262 | 1.36702 | 3.72572 | 0.0028745 | 0.0111404
0.6484375 0.35262 | 1.36698 | 3.72600 | 0.0025596 | 0.0098762
0.677734375 | 0.35262 | 1.36689 | 3.72665 | 0.0022972 | 0.0088327
0.70703125 | 0.35262 | 1.36718 | 3.72449 | 0.0020819 | 0.0079760
0.736328125 | 0.35262 | 1.36717 | 3.72455 | 0.0019080 | 0.0072924
0.765625 0.35262 | 1.36722 | 3.72418 | 0.0017697 | 0.0067501
0.794921875 | 0.35262 | 1.36702 | 3.72566 | 0.0016613 | 0.0063301
0.82421875 | 0.35262 | 1.36708 | 3.72522 | 0.0015779 | 0.0060044
0.853515625 | 0.35262 | 1.36715 | 3.72470 | 0.0015146 | 0.0057581
0.8828125 0.35262 | 1.36712 | 3.72493 | 0.0014677 | 0.0055765
0.912109375 | 0.35262 | 1.36709 | 3.72516 | 0.0014336 | 0.0054445
0.94140625 | 0.35262 | 1.36708 | 3.72525 | 0.0014093 | 0.0053506
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0.970703125 | 0.35262 | 1.36715 | 3.72474 | 0.0013923 | 0.0052843
1 0.35262 | 1.36702 | 3.72570 | 0.0013807 | 0.0052407
1.0625 0.35262 | 1.36702 | 3.72571 | 0.0013667 | 0.0051864
1.125 0.35262 | 1.36702 | 3.72571 | 0.0013593 | 0.0051577
1.1875 0.35262 | 1.36702 | 3.72571 | 0.0013553 | 0.0051423
1.25 0.35262 | 1.36702 | 3.72571 | 0.0013531 | 0.0051335
1.3125 0.35262 | 1.36702 | 3.72571 | 0.0013517 | 0.0051282
1.375 0.35262 | 1.36702 | 3.72571 | 0.0013509 | 0.0051248
1.4375 0.35262 | 1.36702 | 3.72571 | 0.0013502 | 0.0051224
1.5 0.35262 | 1.36702 | 3.72571 | 0.0013498 | 0.0051205
Onepeakedge

t 1 Ko K; O oy

0.501953125 | 0.34980 | 1.53720 | 2.86448 | 0.0021935 | 0.0064033
0.53125 0.34971 | 1.53469 | 2.87327 | 0.0020107 | 0.0058791
0.560546875 | 0.34963 | 1.53237 | 2.88145 | 0.0018845 | 0.0055204
0.58984375 | 0.34956 | 1.53033 | 2.88869 | 0.0017995 | 0.0052810
0.619140625 | 0.34950 | 1.52851 | 2.89519 | 0.0017422 | 0.0051220
0.6484375 0.34945 | 1.52717 | 2.89999 | 0.0017023 | 0.0050115
0.677734375 | 0.34940 | 1.52589 | 2.90458 | 0.0016729 | 0.0049319
0.70703125 | 0.34937 | 1.52481 | 2.90846 | 0.0016501 | 0.0048701
0.736328125 | 0.34933 | 1.52387 | 2.91183 | 0.0016315 | 0.0048201
0.765625 0.34931 | 1.52278 | 2.91576 | 0.0016161 | 0.0047805
0.794921875 | 0.34928 | 1.52234 | 2.91731 | 0.0016033 | 0.0047448
0.82421875 | 0.34926 | 1.52177 | 2.91933 | 0.0015932 | 0.0047176
0.853515625 | 0.34924 | 1.52133 | 2.92088 | 0.0015855 | 0.0046972
0.8828125 0.34923 | 1.52089 | 2.92242 | 0.0015804 | 0.0046844
0.912109375 | 0.34922 | 1.52059 | 2.92345 | 0.0015779 | 0.0046784
0.94140625 | 0.34921 | 1.52031 | 2.92441 | 0.0015779 | 0.0046800
0.970703125 | 0.34920 | 1.52005 | 2.92529 | 0.0015806 | 0.0046893
1 0.34919 | 1.51976 | 2.92628 | 0.0015857 | 0.0047065
1.0625 0.34918 | 1.51949 | 2.92569 | 0.0014423 | 0.0042745
1.125 0.34917 | 1.51934 | 2.92615 | 0.0014085 | 0.0041739
1.1875 0.34916 | 1.51915 | 2.92678 | 0.0013897 | 0.0041182
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1.25 0.34916 | 1.51905 | 2.92709 | 0.0013685 | 0.0040551
1.3125 0.34915 | 1.51903 | 2.92712 | 0.0013496 | 0.0039985
1.375 0.34915 | 1.51838 | 2.92950 | 0.0013392 | 0.0039705
1.4375 0.34915 | 1.51870 | 2.92828 | 0.0013365 | 0.0039610
1.5 0.34915 | 1.51881 | 2.92786 | 0.0013392 | 0.0039682
1.5625 0.34915 | 1.51877 | 2.92799 | 0.0013455 | 0.0039875
1.625 0.34915 | 1.51874 | 2.92810 | 0.0013554 | 0.0040173
1.6875 0.34915 | 1.51870 | 2.92824 | 0.0013692 | 0.0040588
1.75 0.34915 | 1.51893 | 2.92738 | 0.0013875 | 0.0041123
1.8125 0.34915 | 1.51888 | 2.92757 | 0.0014108 | 0.0041825
1.875 0.34915 | 1.51886 | 2.92765 | 0.0014398 | 0.0042696
1.9375 0.34915 | 1.51892 | 2.92744 | 0.0014750 | 0.0043748
2 0.34915 | 1.51887 | 2.92765 | 0.0015168 | 0.0045007
2.0625 0.34915 | 1.51884 | 2.92779 | 0.0015656 | 0.0046475
2.125 0.34915 | 1.51891 | 2.92756 | 0.0016216 | 0.0048159
2.1875 0.34915 | 1.51891 | 2.92760 | 0.0016852 | 0.0050075
2.25 0.34915 | 1.51885 | 2.92787 | 0.0017565 | 0.0052229
2.3125 0.34915 | 1.51882 | 2.92804 | 0.0018356 | 0.0054620
% 0.34915 | 1.51884 | 2.92803 | 0.0019225 | 0.0057247
2.4375 0.34915 | 1.51882 | 2.92818 | 0.0020172 | 0.0060119
2.5 0.34915 | 1.51864 | 2.92893 | 0.0021197 | 0.0063246
2.5625 0.34915 | 1.51857 | 2.92928 | 0.0022300 | 0.0066606
2.625 0.34915 | 1.51866 | 2.92905 | 0.0023479 | 0.0070193
2.6875 0.34915 | 1.51298 | 2.95052 | 0.0024734 | 0.0074590
2.75 0.34915 | 1.51830 | 2.93062 | 0.0026063 | 0.0078136
2.8125 0.34915 | 1.51880 | 2.92887 | 0.0027467 | 0.0082392
2.875 0.34915 | 1.51850 | 2.93014 | 0.0028943 | 0.0086969
2.9375 0.34915 | 1.51878 | 2.92925 | 0.0030490 | 0.0091714
3 0.34915 | 1.51871 | 2.92966 | 0.0032109 | 0.0096732
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Twopeakoppcorner

t R1 Ko K, 0y oy

0.501953125 | 0.35264 | 1.36689 | 3.72722 | 0.0160981 | 0.1054400
0.53125 0.35264 | 1.36688 | 3.72730 | 0.0135297 | 0.0709231
0.560546875 | 0.35263 | 1.36677 | 3.72813 | 0.0113996 | 0.0546435
0.58984375 | 0.35263 | 1.36677 | 3.72814 | 0.0096303 | 0.0436372
0.619140625 | 0.35262 | 1.36687 | 3.72742 | 0.0081618 | 0.0355496
0.6484375 0.35262 | 1.36677 | 3.72819 | 0.0069463 | 0.0294037
0.677734375 | 0.35262 | 1.36676 | 3.72830 | 0.0059446 | 0.0246219
0.70703125 | 0.35262 | 1.36708 | 3.72596 | 0.0051237 | 0.0085325
0.736328125 | 0.35262 | 1.36708 | 3.72601 | 0.0044549 | 0.0178981
0.765625 0.35262 | 1.36713 | 3.72569 | 0.0039136 | 0.0155638
0.794921875 | 0.35262 | 1.36709 | 3.72605 | 0.0034785 | 0.0137265
0.82421875 | 0.35262 | 1.36702 | 3.72665 | 0.0031316 | 0.0122840
0.853515625 | 0.35262 | 1.36710 | 3.72614 | 0.0028576 | 0.0111542
0.8828125 0.35262 | 1.36686 | 3.72803 | 0.0026440 | 0.0102880
0.912109375 | 0.35262 | 1.36704 | 3.72680 | 0.0024801 | 0.0096200
0.94140625 | 0.35262 | 1.36704 | 3.72692 | 0.0023570 | 0.0091240
0.970703125 | 0.35262 | 1.36711 | 3.72654 | 0.0022671 | 0.0087616
1 0.35262 | 1.36699 | 3.72758 | 0.0022034 | 0.0085089
1.0625 0.35262 | 1.36702 | 3.72571 | 0.0014085 | 0.0053480
1.125 0.35262 | 1.36702 | 3.72571 | 0.0013825 | 0.0052473
1.1875 0.35262 | 1.36702 | 3.72571 | 0.0013678 | 0.0051905
1.25 0.35262 | 1.36702 | 3.72571 | 0.0013596 | 0.0051589
1.3125 0.35262 | 1.36702 | 3.72571 | 0.0013551 | 0.0051414
1.375 0.35262 | 1.36702 | 3.72571 | 0.0013526 | 0.0051316
1.4375 0.35262 | 1.36702 | 3.72571 | 0.0013511 | 0.0051258
1.5 0.35262 | 1.36702 | 3.72571 | 0.0013502 | 0.0051223
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t F1 Ko K, Oy Qo

0.501953125 | 0.34983 | 1.53786 | 2.86108 | 0.0025267 | 0.0074174
0.53125 0.34973 | 1.53514 | 2.87054 | 0.0023319 | 0.0068555
0.560546875 | 0.34965 | 1.53269 | 2.87913 | 0.0022042 | 0.0064916
0.58984375 | 0.34957 | 1.53056 | 2.88665 | 0.0021258 | 0.0062726
0.619140625 | 0.34951 | 1.52866 | 2.89341 | 0.0020805 | 0.0061511
0.6484375 0.34945 | 1.52728 | 2.89834 | 0.0020558 | 0.0060872
0.677734375 | 0.34941 | 1.52596 | 2.90308 | 0.0020432 | 0.0060591
0.70703125 | 0.34937 | 1.52485 | 2.90707 | 0.0020375 | 0.0060503
0.736328125 | 0.34934 | 1.52391 | 2.91046 | 0.0020359 | 0.0060529
0.765625 0.34931 | 1.52281 | 2.91444 | 0.0020373 | 0.0060655
0.794921875 | 0.34928 | 1.52236 | 2.91605 | 0.0020410 | 0.0060801
0.82421875 | 0.34926 | 1.52179 | 2.91810 | 0.0020469 | 0.0061024
0.853515625 | 0.34924 | 1.52135 | 2.91968 | 0.0020550 | 0.0061303
0.8828125 0.34923 | 1.52090 | 2.92130 | 0.0020653 | 0.0061653
0.912109375 | 0.34922 | 1.52061 | 2.92233 | 0.0020780 | 0.0062060
0.94140625 | 0.34921 | 1.52032 | 2.92336 | 0.0020930 | 0.0062541
0.970703125 | 0.34920 | 1.52005 | 2.92432 | 0.0021104 | 0.0063094
1 0.34919 | 1.51976 | 2.92536 | 0.0021303 | 0.0063725
1.0625 0.34918 | 1.51949 | 2.92569 | 0.0014423 | 0.0042745
1.125 0.34917 | 1.51934 | 2.92615 | 0.0014085 | 0.0041739
1.1875 0.34916 | 1.51915 | 2.92678 | 0.0013897 | 0.0041182
1.25 0.34916 | 1.51905 | 2.92709 | 0.0013685 | 0.0040551
1.3125 0.34915 | 1.51903 | 2.92712 | 0.0013496 | 0.0039985
1.375 0.34915 | 1.51838 | 2.92950 | 0.0013392 | 0.0039705
1.4375 0.34915 | 1.51869 | 2.92832 | 0.0013365 | 0.0039610
1.5 0.34915 | 1.51881 | 2.92786 | 0.0013392 | 0.0039682
1.5625 0.34915 | 1.51877 | 2.92799 | 0.0013455 | 0.0039875
1.625 0.34915 | 1.51874 | 2.92810 | 0.0013554 | 0.0040173
1.6875 0.34915 | 1.51870 | 2.92824 | 0.0013692 | 0.0040588
1.75 0.34915 | 1.51893 | 2.92738 | 0.0013875 | 0.0041123
1.8125 0.34915 | 1.51888 | 2.92757 | 0.0014108 | 0.0041825
1.875 0.34915 | 1.51886 | 2.92765 | 0.0014398 | 0.0042696
1.9375 0.34915 | 1.51892 | 2.92744 | 0.0014750 | 0.0043748
2 0.34915 | 1.51887 | 2.92765 | 0.0015168 | 0.0045007
2.0625 0.34915 | 1.51884 | 2.92779 | 0.0015656 | 0.0046475
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2.125 0.34915 | 1.51891 | 2.92756 | 0.0016216 | 0.0048159
2.1875 0.34915 | 1.51891 | 2.92760 | 0.0016852 | 0.0050075
2.25 0.34915 | 1.51885 | 2.92787 | 0.0017565 | 0.0052229
2.3125 0.34915 | 1.51882 | 2.92804 | 0.0018356 | 0.0054620
2.375 0.34915 | 1.51884 | 2.92803 | 0.0019225 | 0.0057247
2.4375 0.34915 | 1.51882 | 2.92818 | 0.0020172 | 0.0060119
2.5 0.34915 | 1.51864 | 2.92893 | 0.0021197 | 0.0063246
2.5625 0.34915 | 1.51857 | 2.92928 | 0.0022300 | 0.0066606
2.625 0.34915 | 1.51866 | 2.92905 | 0.0023479 | 0.0070193
2.6875 0.34915 | 1.51298 | 2.95052 | 0.0024734 | 0.0074590
2.75 0.34915 | 1.51830 | 2.93062 | 0.0026063 | 0.0078136
2.8125 0.34915 | 1.51880 | 2.92888 | 0.0027467 | 0.0082392
2.875 0.34915 | 1.51850 | 2.93014 | 0.0028943 | 0.0086969
2.9375 0.34915 | 1.51878 | 2.92925 | 0.0030490 | 0.0091714
3 0.34915 | 1.51871 | 2.92966 | 0.0032109 | 0.0096732

A.2 Positivity Check

We will explain how to compute enclosures for the range ofrapinate solutionsy; in order

to prove their nonnegativity if2;. This will be necessary to omit the modulus in various com-
putations. These calculations also apply for proving ngatieity of the computed approximate
solution in the unbounded-shaped domain.

Note that during our computations we used pure Finite Elerfirctions as well as approxi-
mations which are improved by corner singular functions, iwhich are of the formv, =
Zle a; N\ + v (see section 3.2.3 for the definitions gfand~;). In the following we will (as
done before) consider a shifted versiorfpfsuch that the upper left re-entrant corner is located at
(0,0). Then local polar coordinates, centered at this cornegiaen by(r, ¢), ¢ € (0, 2F),

=TT
arctan(), x>0,y >0
T T =

Y= ziljctan(%) +7m, < 87y -
37”, r=0,y <0

We will show how to compute an enclosure for the ranges0bn some element& such that
K C ((—1,t) x (—t,1)) N Q.. All other elements can be treated similarly sings; is given by a
suitable rotation and shift of;~; fori = 2, 3, 4.

First we recall some notatipns for Finite Elements that vinem«adAuced in section 3.1: The refer-
ence elements are given B = conv{(0,0), (0,1),(1,0)} and K = (0,1)%. Reference shape
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functions in k" are denoted by, j = 1,...,5 and are defined in (3.2). For reference shape

functions in/ we use the analogous notati@j)j =0,...,7 and refer to the definition in (3.3).
Local shape functions on an eleméntare then denoted by, j = 0, ..., m (withm = 5in case
K is atriangle andn = 7 in caseK is a rectangle, respectively), for their definition see)3.5

Remark 15. If edgebump functions (onepeakedge, twopeakedge, fokepga, see Figure 6.1)
are considered, the corresponding computational domsaéesHigure 6.6) can be discretized using
solely rectangles. This is not possible in the cornerbunmptfon cases, where the computational
domains contain only the half cornemv{(0,0), (0,1),(—1,1)}. Then also triangles occur in the
discretization.

In the following we omit the index.

Pure Finite Element function

If K is atriangle we can compute the exact range as followsed.et. , c5 be the nodal values of

w]K, i.e.
5

Wk = Zcisf(.

=0

By construction, the transformation mappifgon the reference celk?, preserves the range of
the Finite Element function and therefore we have

5
wlk(K)=0(K")  where ©=> c¢sl.

)
1=0

Clearly, o can also be written a&(z,§) = e + e + ey + ez + esi? + esg®. Itis easy to
computemin ., © andmax ., o and therefore the rangd K*) = [min, o, maxz, 9] . However,
since there is no compact formula fotin: v andmaxg: © and one has to consider several cases
depending on the coefficients of we will leave out the details.

If K is arectangle we have
7
K
Wk = Z Sy
1=0

and therefore with the same argument as before
wlk(K)=8(K%),  where ©=> ¢l

Writing

0(2,9) = eo + 1@ + e + e33Y + ead® + esy” + €627 + 72y,
with e, . . ., e; being linear combinations ef, . . ., ¢7, the most simple enclosure for the range is
then given by

w|i (K) Ceg+ e1]0,1] + e2[0, 1] + e3]0, 1] + 4]0, 1] + 5[0, 1] + €6[0, 1] + €7[0,1].  (A.1)



A Appendix 127

The expression on the right-hand-side can not be reductefusince in general0, 1]+ 5[0, 1] #
(a + b)[0,1] for a,b € R. Consider e.ga = —1 andb = 1: Then—1-[0,1] +1-1[0,1] = [-1, 1]
but(—1+1)[0,1] = 0.

If the enclosure given by (A.1) does only contain non-negatalues, we are done. This is indeed
satisfied in most elements. If the enclosure contains algative values we can refine the above
procedure by splitting the reference elementirsubsquare&’, = [ih, (i +1)h] x [kh, (k+1)h],
wheren € N is suitably choser = % andi,k =0,...,n — 1. An enclosure for the rangéf(q)

is then given by

n
N q
) C U v sz
i,k=1

and enclosures far(K%) can be calculated by

eo + e1[zi] + ealye] + eslwil[yn] + ealzi]) + eslyrl® + eslail*[ye] + erlai[y)?,
where we used the notation;] := [ih, (i + 1)h| andy;] := [kh, (k + 1)h].
However, also this refinement will not yield the desired esates ifK is an element touching the
boundary, where we have Dirichlet boundary conditions.hia tase the enclosure will certainly
contain zero and due to overestimation possibly also negasilues. As an example how to treat
these cases we will consider the elemefits= (z,,z, + d) x (0,e) and K = (—1,—1 + d) x
(1—e,1). The first element touches the boundaryffat the upper edge of the inner hole and the
second is the element at the “outer” coriferl, 1), see also Figure A.1. Note that other elements

touching the boundary can be treated similarly as the elemease FE1. Indeed, using a suitable
rearrangement of the coefficients, the same formulas casdzk u

Case FE1:K = (2,2, +d) x (0,¢€), 2, > 0.
In this case we have, = ¢; = ¢, = 0, and therefore
0(2, §) = —e20§(3 — 20 — 2§) — esf(1 — &) (1 + 2 — 2j)
+desf(l — §) + desig(1 — &) + derg(1 — 2)(1 - §)
= (eo + 1% + eaf) + €329 + es?)
=: p(Z,9).
Sincey is positive in(0, 1) we are left to check thqi(f(q) is contained in the nonnegative
real numbers. This could in principle be done using (A.1}, dincep is linear iny and
quadratic inz, we can even computein ., p andmax ;, p without much effort and therefore
alsop(K?) = [ming, p, maxy, p).
Case FE2:K = (—1,—1+d) x (1 —e,1).
Now we havery = ¢, = ¢35 = ¢ = ¢; = 0 and thus
0(2,9) = —ad(1 = §)(1 = 22 + 29) + dead(1 = 2)(1 = §) + 4e529(1 — 9)
=: 2(1 = 9)p(2,9).
Again, sincez(1 —y) > 0in K% we are leftto considqv(f(q). Here,p is bilinear and takes
its minimal and maximal value, respectively, in one of theneos of K¢.

Remark 16. Clearly a necessary condition for non-negativity of a Fiidtement function is non-
negativity of all nodal values. This is indeed satisfied fiboar approximate solutions.
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Figure A.1: Position of sample elements (Finite Elemenégas

Sum of corner singular function and Finite Element function

Let the approximate solution now be given by
4
w = Z ANy + v,
=1

with cut-off functions);, +; as defined in (3.15) and a Finite Element functionFor elements
K C ((—1,t) x (—t,1)) N, we have by construction of; (see (4.5) and (4.6)):

W= a1 A\iy1 +v

=w1

2
andy(r,p) =13 sin(%go). In the following, we omit the index and for simplicity of presentation
we consider the cage= 1, i.e. A(z,y) = (1 — 2?)*(1 — ¥*)x[-1,12(2, y) (note that the general

case\(z,y) = (1 — 2)*(1 — %)” can be treated analogously).

Clearly, the corner singular part is non-negativedirand positive inQ N (—1,1)%. If also the
Finite Element part is non-negative in some eleni€ntve are ready. The range computations can
be done as explained in the previous subsection. Howeae thill be elements for which the
regular parv |k is negative or the range-enclosure contains negative ¥alo¢his case we have to
compute range-enclosures of both the corner singular pdrt.a\We will here show some special
examples of elements and the corresponding procedures\te pon-negativity. For the positions
of the sample elements see also Figure A.2

Case S1:K C QN {(z,y) eR?: 2 <0, y > —z}, K = conv{(zp,y,), (z, + d, yp),
(@p, yp +d)}.
We haver,, z, + d < 0 and obtain for al(z, y) € K:

w(z,y) > (1- xf,)Q (1— (yp+ d)2)2 ((z, +d)* + yﬁ)% sin <§ arctan (ﬁid) + %w),

'
=m

w(z,y) < (1 — (xp + d)2)2 (1- yf))Q (xf) + (yp + d)Q)% sin (% arctan <z—’;) + %7?) .

J/

-~

=M
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The minimal and maximal values fgin (%gp) are due to the fact thgt> —z for (z,y) € K.
Denote by[v,,, vy| the computed range for the regular part, theii) C [am,aM] +
[vm, va]. This enclosure is indeed sufficient in all our applicatitm®btain non-negative

range enclosures.

Case S2:K = conv{(0,d), (—d,d), (0,0)}.
This is the triangle element at the re-entrant cofifed). Here the procedure from the first
case will not work, sincev = 0 at the corner and the range of the regular part contains
negative values. Due to Dirichlet boundary conditions weeha

wa,y) = a(l — 21— y?)*rs sin (20) + co(1 — & — §)(1 — 22 — 2§) + 1#(22 — 1)
+4e3z(1— 2 —g) +degzy +4esyg(l — 2 — 9
wherez = —% andy = d =1—% Thusl — 2z — gy = ”y , and using polar coordinates

T =17Ccosp andy = rsiny we obtaln

w(r cos @, rsin p) = ri [a(1 — 1% cos® p)*(1 — r* sin® p)? sin (3¢)
1
+ I (co(cos ¢ + sin @) (—d 4 2r cos ¢ + 2rsin @)
— ¢1 08 p(—2rcos p — d) — 4eg cos p(r cos p + rsin )

—4eq cosp(d — rsing) + 4des(d — rsing)(cos p + sin @))]
—: 5P (r, ).

Note that we havek C {(rcosy,rsing) : r € [0,v2d],¢ € [Z,25]}. Using interval
arithmetic we can thus comput€?® ([0, v/2d] x [%, 27]) and obtain an enclosure for k).

Case S3:K C QN (—=1,1)%, K = (z,, 2, +d) X (yp,yp +€), 7, > 0,7, +d < 1.
An enclosure for the range of the regular part can be compusied (A.1). For the singular
part we have the following estimates (for al, y) € K):

w(z,y) > (1— (z, + d) ) (1— (yp+ 6)2)2 (22 + yﬁ)% sin (% arctan (%iﬁd))
w(z,y) < (1—a ) (1- yi)Q ((zp +d)* + (yp + €)2>% sin (% arctan <y’;—je)> :

To check positivity we sum up the two ranges, leading to negative range enclosures in
all applications.

Case S4:K = (0,d) x (0,e)
The procedure of Case S3 will not work here, since both theutin@gnd the regular part
of the approximation satisfy Dirichlet boundary condicaand the enclosure given by (A.1)
will contain negative values due to overestimation. Howgesice for the regular part we
havecy, = ¢; = ¢4, = 0 we can use a similar trick as in case S2:

w(z,y) =a(l — 2?21 — y2)27“% sin (2¢) — c224(3 — 22 — 27))
—c30(1 —2)(1 + 22 — 29) + 4eszyg(1 — §) + degzy(1l — )
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wherez = %, § = £. Usingr sin ¢ = y, we obtain

< (2 1
Sin | 5
250 (Ge) = (i (3 - 20— 29)

wiz,y) = i sing [au - P -yt o

—es(1 — 2)(1 + 28 — 25) + desi (1 — ) + degi(1 — &) + der(1 — 2)(1 — w)]

. 2 1
, ) sin (¢ rs ..
=:r38ing [a(l - 552)2(1 - y2)2—sir(13g0 ) + o p(z, y)}

The range of the polynomial pgstcan be computed exactly by calculating:= min, p
andM = max, p. For the singular part we can use the estimate:

. 2 ~
a(1 — 2?)(1 — yW% > %a (1-d)*(1-e)’=C.

sin 2 . . sin(2 sin(2
Note that™“3*) has a removable singularity @at= 0 andlim sin(z0) _ 2, sin(50) > 2 for
sin(yp) o0 sin(yp) 37 sin(y) 3

pel0, 3. IfC+ > 0, non-negativity of the approximate solutioni
is proved. Indeed, this inequality is satisfied in our afgilans.

(o) +(gpre)?) Sm

Case S5:K = (z,, 2, +d) x (0,¢€), z, > 0.

The first idea is to treat these elements as the corner elemease S4. Unfortunately,
this does not work for all elements. Therefore we presenthemolution here. Obviously,
the approximate solution is zero on the boundary2ofWe compute the partial derivative
of w with respect ta; and check its positivity using interval arithmetic. If thertvative is
positive in K, w itself must be positive irk. Indeed, this sufficient condition is satisfied in
our applications.

Case S6:K = (2,2, +d) x (1 —e,1),z, > 0.

In this case it turned out to be sufficient to compute a rangsare for the regular part as
explained in case FEL.

S6

=N .

32 S4 S5

Figure A.2: Position of sample elements

Again note that all other elements can be treated simil&dy:elements not touching the boundary
a similar procedure as in case S1 or S3 can be used, wherehendgtimates of the maximal and
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minimal values of the corner singular part have to be adagatedrdingly. For elements touching
the boundary at the outer square we refer to case S6 and farlmiindary elements to the cases
S4 and S5 (where in S5 possibly the derivative w.r ttas to be considered, e.g. for elements at
the left inner square boundary).

A.3 Construction of Cubature Rules

At many points in this thesis we have to compute enclosuresigper bounds) for integrals of
Finite Element functions, i.e. for integrals of polynonsialver triangles and rectanglesRA. For
small polynomial degree one can find examples for cubatues miich are sufficient to integrate
these polynomials exactly (e.g. [28, Chapter 15]). Howeaweyur computations we need cubature
rules which can integrate also polynomials of higher degrekthus we will in this section explain
how we constructed suitable cubature rules to do so.

A.3.1 Cubature on a rectangle

We will first explain how to construct a cubature rule on thé square|0, 1]*> which is exact for
My Mo

polynomials of the formp(z,y) = >° > cuz*y! (e € R). We start with considering quadrature
k=01=0

rules on the intervaD, 1]:
Forn € N, letzy,...,z, € [0,1] be nodes andy, ..., w, € R weights of the quadrature rule

Qn(f) =Y wif(r) %/O fl@)dz,  f:[0,1] = R.

We will also write@,,[z1, . . . , x,; w1, . . ., wy; f] if the nodes and weights @§,, are not clear from

the context.

Q. is said to be of ordem if Q,(z*) = [ z*dz forall k = 0,...,m, i.e. Q, is exact for all
polynomials of degree smaller than or equahiolt is well known that the order of a quadrature
rule with n nodes cannot exceexh — 1 and that this order is attained for Gaussian quadrature
rules.

Analogously we define a cubature formul on [0, 1]? with nodes(z1,v1), .-, (Zn,y,) and
weightswy, . . . , w,, which approximates the integral of a functi¢n [0, 1> — R over|[0, 1]*:

Culf) = sz‘f(%‘, yi) & [z y)d(z,y).
k=1

[0,1]2

Let Q0 [d1, ... &nyian, ...y f] @and QW [G1, . .. Gnsi Brs - - -, Buy: f] be quadrature rules of
orderM; and M, respectively. The tensor-product cubature rule giverhege two is denoted by
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Cnm{QSﬁ)? Q%)} and has the following,n, nodes and weights

(3317?/1) = (ibﬁl) wy = o1 B

(2, y2) = (21,02), w2 = a1

(mnmynz) = (3?17 an); Wpy = alﬁng

(Trgt1, Ungr1) = (T2, 01),  Wnyp1 = a2
(x2n27 y2n2) = <£27 3)712)7 Waon, = O‘Qﬂng

(xnynga yn1n2) = (i’nlu gnz)y Wnying = anlﬁng-

Thus, for anyf : [0,1]> — R we have

nin2 niy  n2

Cruns (f) = Y _wif(zrn) = > Y i Bef (&5, i)

=1 7j=1 k=1

For a polynomial?y? with 0 < p < M; and0 < ¢ < M, the cubature rule gives

niy n2

Croma (27y") = > Y ;B a2l = Za”Zﬁkyk— (@) QW (y*)

7=1 k=1

1 1
=/ w”dﬂc/ ygdy:/ Pyt d(z,y),
0 0 [0,1]2

and the second last equation holds due to the given ord@éﬁb&nd@ﬁ?. Therefore all polyno-
mials of this form are integrated exactly.

To obtain a tensor-product cubature rule with smallestiptessaumber of nodes (and weights) we
construct it from quadrature rules with the same propegy,Gaussian quadrature rules.

Gauss-Legendre quadrature

In this section we will shortly recall the definition of the &s-Legendre quadrature on the interval
[—1,1].

Forn € Ny let P, be then-th Legendre polynomial, which can be expressed using theirRoss-

formula
1 dr

Fulz) = 2nn! dzn

P, is a polynomial of degree and has: simple real zeros, denoted hy, ..., z,, which will
serve as nodes of the Gauss-Legendre quadrature. The sveaghbe computed by

—(2* = 1) (A.2)

1 n o .
wi:/ | i 2 (i=1,...,n), (A.3)
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the latter formula following e.g. from [27, (9.4)] togethsith some basic properties of the Leg-
endre polynomials.

The order of the Gauss-Legendre quadrature rubeis 1, i.e. to integrate polynomials? with

0 < g < M exactly one has to use the corresponding rule with (%} nodes and weights.

The tensor-product rulé*nm{Qﬁf?, Q%)} will therefore be exact for polynomialg’y? with 0 <
p < M;and0 < g < M, if Qn"ﬁ andQ(y) are chosen to be the Gauss-Legendre quadrature rules
with n; = [#£1] andn, = [#2t] nodes and weights, respectively.

A.3.2 Cubature on atriangle

Let 7" be the triangle given by the point8, 0), (1,0) and (0, 1). For a functionf : 7" — R we
want to construct a cubature formula which approximatesirtegral |, f(x, y) d(z,y). Since
T={(r,y) eR?: 0<x <1, 0<y<1-x}we can use the substitution= ¢(1 — z) with
0 < z,t <1to obtain

/Tf(a;,y)d(m,y):/Ol/omf(x,y)dydx:/Ol/olf(x,tu—f))u—xl dt dz.

—ig(a.t)

Since the integral on the right-hand-side is an integrat g |, we can use the tensor-product
ansatz described in the previous subsection to construcalted conical cubature rules on the
triangleT: Let Q) [&1, ..., Zny; vy ..oy f] @NAQW[E1, . . oy Brs - - -, Buy: f] De quadrature
rules for the interval0, 1] of orderM; and/,, respectively, then (with the definition gfas in the
above formula)

/ / x,t dtdxwzz%ﬁkg (25, tr) = Zz%ﬁk VF(&5, t(1 — 7).

j=1 k=1 j=1 k=1

The conical cubature rule for the triangléis therefore given by the,n, nodes(x;,y;) and
weightsw; (: = 1,...,n1ns), where

T(G-1natk = Tj
Yii—natk = k(1 — T;)
W(G—1no+k = Oéjﬁk<1 — i’]) forj =1...,nq, k= 1,...,n9

Note that this cubature rule does not integrate all polymadsni’y? with 0 < p < M; and0 <
qg < M, overT exactly, but only the ones with < ¢ < My and0 < p+q¢+1 < M;. To

construct a conical cubature rule férwhich is exact for polynomials?y? with 0 < p < M,
and0 < g < M,, the number of nodes and weights for the quadrature rule$ atusast be

ny = {@1 andn; = [MW (with n, andn, attaining these minimal values if Gauss-
Legendre quadrature rules are used).

A.3.3 Verified cubature formulas

In order to obtain verified enclosures for the integrals cotag@ by one of the above cubature rules
we have to use interval arithmetic. This requires verifietl@sures for both the nodes and weights
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of the cubature rules, which, by the above formulas, can hetoacted from nodes and weights of
the corresponding quadrature rules.

In all our applications we used Gauss-Legendre quadratles,rwhere the nodes are given by
the zerosey, ..., x, of the Legendre polynomialg,, defined in (A.2), and the weights can be
computed using the formula (A.3). For small valueshathe zeros can be computed in closed
form and the expressions can be found in many textbooks. wawer larger valuesr{ > 5)
we have to compute enclosures for these zeros, which canrieeradgorously using an Interval
Newton method. Finally the weights can be computed usiregvat arithmetic and (A.3), and the
cubature nodes and weights are then given by the formul&®iprevious sections.

A.4  Some norm estimates and computations

In the following we omit the index.

We want to apply Lemma 1 to = w anda = 0. Recall thatv® = Iy,_(w) andw = Iy, (w),
whereN < N. We will also need the piecewise polynomial approximatiosf w that was defined
in (4.7) and is given by

&z, y) = Z aiXi(w,y) vy (i)

Assume that we have already computed a bolinduch that
[y < Lo [v]ll-2  forallv € Hy(Q).

We sep; = 4, p» =2, p3 = py = 8. Obviously_- + - + -~ + .- = 1 is satisfied. Now, in order
to satisfy the assumptions of Lemma 1 (b) we have to compute
k=K [3CF (|wllps + [0 [22) lw — @ | 2] (A.4)
and check that < 1 is satisfied. Note that it is sufficient to compute an uppemidoufor the
right hand-side of (A.4), check < 1, and use the conclusion of Lemma 1 (b) witinstead ofx.
We will briefly comment on the techniques to compute (or estejthe norm-quantities occuring
in (A.4).
a) To compute an upper bound fav — || > we use triangle inequality:
lo = @@ Nlpe < flw = @llzz + & = @l e + [l — 0@ 2.

Sincew — & as well asy — w® are piecewise polynomial, their’-norms can be computed
exactly using quadrature rules of sufficiently high degegmlied elementwise. For the first
summand we can write

lo— a2 =3 /K (w— &) d(x,y)

< Zi&? <mI§X>\i(5Uay)>2/ (i — Tvyyi)* d(z,y). (A.5)

K =1 K

All quantities on the right-hand-side, or upper boundslient, have already been computed
in the course of the defect computation.
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b) For the computation dfw||.« we use triangle inequality again:
wllzs < flw = @flpa + || s,
and for the first summand we have the estimate

oo = @l < max(w - @)l - @[3 (A6)

An upper bound fofjw—w||2, is already known and the termaxg(w—w)? can be computed
without much additional effort using interval arithmetia principle, one could also use a
similar estimate as in (A.5) to bourjid — w||7, directly. However, this would require upper
bounds for the integralf,. (v; — Iv,,v:)* d(x, y), and computing tight upper bounds for these
integrals is too costly for our purposes.
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