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Zusammenfassung  

Ginkbilobin ist ein kurzes, fungizides Protein, das aus Samen des lebenden 

Fossils Ginkgo biloba gereinigt und kloniert wurde. Homologe dieses Proteins 

kommen in allen Samenpflanzen und dem Farn Selaginella vor. Die Anordnung 

von Domänen, Peptidmotiven und spezifischen Cysteinsignaturen sind in den 

unterschiedlichen Homologen konserviert. 

Um einen Einblick in die zelluläre Funktion der konservierten Motive zu erlangen, 

haben wir GFP-Fusionen des vollständigen und Teilen des Proteins Ginkbilobin 

transient und stabil in Tabak BY-2 Zellen experimiert. Das Signalpeptid des 

vollständigen Proteins bewirkt seinen effizienten Export aus der Zelle. Wird das 

Signalpeptid verdeckt oder abgespalten, bindet Ginkbilobin-GFP ans 

Aktinzellskelett und kann es so indirekt sichtbar machen. Wir konnten die 

Aktin-bindende Aktivität von Ginkbilobin auf eine spezifische Subdomäne hinter 

dem Signalpeptid eingrenzen. Wird diese Unterdomäne stabil überexprimiert, 

kann man eine spezifische Verzögerung in der prämitotischen Positionierung des 

Zellkerns beobachten, was auf eine eingeschränkte Dynamik von perinukleären 

Aktinbündeln hinweist. Die durch diese Domäne verursachte Aktinbündelung 

beeinträchtigt die Synchronizität der Zellteilung, ein Effekt, der durch Zugabe des 

polar transportierten Auxins Indol-3-Essigsäure (IAA) aufgehoben werden kann. 

Um die zelluläre Reaktion der Bindung dieser Subdomäne an Aktin aufzuklären, 

verwenden wir Chemical Engineering, basierend auf synthetischen Peptiden, die 

aus Konjugaten von unterschiedlichen Teilen der Aktin-bindenden Subdomäne 

mit dem zellpermeierenden Peptid BP100 und Rhodamin B als fluoreszenten 

Marker bestehen. Durch die Bindung dieses synthetischen Konstrukts an Aktin 

wird sehr wirksam Zelltod induziert. Bei geringeren Konzentrationen wird das 

Konjugat von BP100 mit der spezifischen Domäne in die lebende Zelle 

transportiert und bindet dort an Aktin. Die Aufnahme des konjugierten Peptids in 
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die Zelle wird durch Phytotropine wie IAA und NPA so wie durch Aktindrogen 

(Latrunculin B and Phalloidin) beeinflusst. Wir entwickeln aus diesen Ergebnissen 

ein Arbeitsmodell, in dem Ginkbilobin das Aktinzellskelett der Zielzelle behindern 

kann und auf diese Weise einen evolutionär konservierten Apoptoseweg aktiviert. 
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Abstract 

Ginkbilobin is a short antifungal protein that had been purified and cloned from 

the seeds of the living fossil Ginkgo biloba. Homologues of this protein can be 

detected in all seed plants and the heterosporic fern Selaginella, and are 

conserved with respect to domain structures, peptide motifs, and specific cysteine 

signatures.  

To get insight into the cellular functions of these conserved motifs we expressed 

GFP fusions of full-length and truncated ginkbilobin in tobacco BY-2 cells. We 

show that the signal peptide confers efficient secretion of ginkbilobin. When this 

signal peptide is either cleaved or masked, ginkbilobin binds and visualizes the 

actin cytoskeleton. We can locate this actin-binding activity of ginkbilobin to a 

specific subdomain just downstream of the signal peptide. Upon stable 

overexpression of this domain, we observe a specific delay in premitotic nuclear 

positioning indicative of a reduced dynamicity of perinuclear actin cables. And the 

actin-bundling of this domain impairs the synchrony of cell division, whereas in 

addition of the polarly transported auxin indole-3-acetic acid restored the 

synchrony.  

To elucidate the cellular response of the binding of this subdomain to actin, we 

use chemical engineering based on synthetic peptides comprising different parts 

of the actin-binding subdomain conjugated with the cell-penetrating peptide 

BP100 and with rhodamine B as a fluorescent reporter. Binding of this synthetic 

construct to actin efficiently induces cell death. At lower concentrations, the 

specific domain peptide in fusion with BP100 can be delivered into the living cells 

and binds to actin. The cellular uptake of the conjugated peptides is affected by 

phytotropins (IAA and NPA) and actin drugs (latrunculin B and phalloidin). We 

discuss these findings in terms of a working model, where ginkbilobin can 

interfere with the actin cytoskeleton of the target cell to activate an evolutionarily 

conserved apoptotic pathway. 
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1. Introduction 

1.1 Ginkbilobin: a new weapon from Ginkgo biloba 

Ginkgo biloba is one of the most primitive extant seed plants and is regarded as a 

„living fossil‟. It harbours a broad spectrum of resistance or tolerance to many 

pathogens and herbivores. Ginkgo anatomy, structure and growth of the shoot 

apex and internal secretory structures have been studied since the beginning of 

the last century (Shaw, 1908; Mundry and Stutzel, 2006). This unique tree and the 

antifungal protein ginkbilobin cloned from the seed of it will be described in the 

following paragraphs. 

1.1.1 The Ginkgo tree 

Dating back more than 270 million years, Ginkgo biloba, the only species 

remaining from the family Ginkgoaceae, is one of the most ancestral lines in the 

gymnosperms often referred to as a „living fossil‟ because it is known to have 

existed early in the Jurassic period. Because its leaves resemble the maidenhair 

fern, it is also known as the maidenhair tree (Jacobs and Browner, 2000). The key 

identifying features of Ginkgo biloba are motile sperm within the pollen tube and 

archegonia in the megagametophyte within ovule (Friedman, 1993; Zhang, 1998; 

An et al., 2007). These specific structures define Ginkgo as primitive living 

gymnosperms and highlight their unique male and female gametophyte 

development and fertilization. And the gametophytes must undergo an elaborate 

maturation process taking 4.5 months (Zhang et al., 2013). Unrelated to any other 

living plant species, it grows throughout China, Korea, Japan, Europe, and the 

United States. Ginkgo trees can be up to 100 feet tall, 50 feet in circumference, 

and can live up to 2500 years. After the nuclear bomb was detonated in Hiroshima, 

they were the first plants to re-grow and were free of signs of genetic mutation 

(Jacobs and Browner, 2000). 
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In fact, Ginkgo seems to be highly resistant or tolerant to many pathogens and 

herbivores, which may be the reason why this unique tree can live up to thousand 

years. This species is rich in pharmacologically active compounds that are also 

exploited for medical applications, including antioxidant, neurotransmitter/ 

receptor modulator and anti-platelet activating activities (for review see Diamond 

et al., 2000). A jasmonate-dependent defensin gene (Shen et al., 2005), and a 

chitin binding antimicrobial protein (Huang et al., 2000) cloned and purified from 

Ginkgo biloba leaves provide further evidence for efficient inducible basal 

immunity in this species. In fact, seeds of Ginkgo biloba contain high levels of the 

antifungal protein ginkbilobin (Wang and Ng, 2000) that exhibits sequence 

similarity to embryo-abundant proteins mainly from gymnosperms, and a 

homology with the extracellular domain of angiosperm cysteine-rich receptor-like 

kinases (Sawano et al., 2007; Liu et al., 2010). 

1.1.2 Ginkbilobin homology to extracellular domain of receptor-like kinase 

Receptor-like kinases are key pattern-recognition receptors (PRRs) for microbe- 

and plant-derived molecular patterns that are associated with pathogen attack 

(Wu and Zhou, 2013). Last several years, substantial efforts have been 

conducted to investigate the function of the RLKs. RLKs participate in a wide 

range of processes, including self-incompatibility, disease resistance, regulation 

of development and hormone perception (Shiu and Bleecker, 2001). RLKs are 

one of the largest protein families in plant. Normally, they contain a signal peptide 

at the N-terminus, an extracellular domain, a transmembrane region, and a 

C-terminal domain with eukaryotic protein kinase signatures (van der Geer et al., 

1994). The Arabidopsis genome contains more than 600 RLKs members, and  

rice has nearly twice as many such members as Arabidopsis does (Shiu et al., 

2004). Plant RLKs are grouped into four classes according to sequence motifs of 

their extracellular receptor domains (Hardie, 1999). The first class of RLKs is 

characterized by the Leu-rich repeat (LRR) which is involved in protein to protein 

interaction (Walker, 1994). The second class represents homologues of S-domain 
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RLKs (SRKs) of Brassicaceae with a characteristic array of Cys residues and 

other conserved motifs that are presumably involved in self-incompatibility (Stein 

et al., 1991; Walker, 1994). The third class contains a lectin-like extracellular 

domain that may bind oligosaccharides, such as the elicitors derived from 

breakdown of the cell wall (Herve et al., 1996). Wak1 from Arabidopsis is the only 

gene present in the fourth class that contains extracellular sequence repeats 

related to mammalian epidermal growth factors (Kohorn et al., 1992). Other types 

of extracellular domains of Arabidopsis RLKs such as PR5 proteins that 

accumulate in the extracellular space are expressed in response to infection by 

microbial pathogens (Wang et al., 1996). Studies of phytopathogenic molecular 

structures and their receptors have provided crucial insight into the co-evolution 

between plants and pathogens. 

The angiosperm homologues of ginkbilobin share the characteristic feature of 

receptor-like kinases, such as the N-terminal signal peptide, an extracellular 

domain (which is the domain exhibiting the homology with ginkbilobin), a 

transmembrane region, and a C-terminal domain with eukaryotic kinase 

signatures (for review see van der Geer et al., 1994). Ginkbilobin has been 

purified in two versions – the full-length protein contains a signal peptide and is 

termed ginkbilobin-2, while the first discovered ginkbilobin-1 is a fragment lacking 

the signal peptide and the C-terminal half of the protein harbouring a 

characteristic cysteine signature, which is conserved between all plant 

homologues of ginkbilobin including the angiosperm receptor-like kinases (Wang 

and Ng, 2000; Sawano et al., 2007). 

1.2 Evolution of plant defence  

Due to expose to a large number of threatening pathogens and insects, plants 

have evolved different mechanisms for self-defence, such as the production of 

secondary metabolites or defence-related proteins. Ginkgo as the ancient seed 

plant would serve as a precious model to address the question about the 
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evolution of seed immunity. General concepts of plant immunity and the evolution 

of defence mechanisms in lower plants will be discussed in the following sections. 

1.2.1 Plant immunity 

Plants as sessile organisms cannot run away when they are attacked, nor can 

they rely on mobile defence cells that constitute the core of animal immunity. 

Instead, plant defence, is based upon the innate immunity of individual cells. This 

innate immunity is composed of two layers (Jones and Dangl, 2006): on the one 

side is a very general basal defence which can be triggered by microbial 

associated molecular patterns (MAMPs) and activate the production of secondary 

metabolites or proteins with antimicrobial activity. Specialized pathogens have 

adapted to this host response by so-called effector molecules which can suppress 

this basal defence, such that the pathogen can invade the host cell. On the other 

side, during the co-evolution with these pathogens, some host plants have 

acquired specific receptors that can recognize the microbial effectors and 

reactivate defence. As final response to microbial invasion, this effector-triggered 

immunity (ETI) can culminate in programmed cell death (PCD). Cell-death related 

immunity is a very effective strategy to kill or at least to contain the intruder, but it 

is a meaningful strategy only in organisms, where cells have developed a high 

degree of functional cooperation. Cell-death related immunity is therefore not 

expected in most of the algae, where true multicellularity has not been fully 

unfolded, but must have evolved later, during the evolution of terrestrial plants. 

Nonetheless, there is evidence for a second, possibly independent development 

of cell-death related immunity in the kelps, macroalgae that have developed true 

multicellularity as well (for review see Weinberger, 2007). 

1.2.2 Defence tools in early land plants 

During evolution, plants have developed mechanisms to cope with different stress, 

including pathogen infection. Secretion of toxic compounds is considered to be 

the primary and most ancient tool of defence. In fact, there is a rich literature 
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describing such compounds from lower plants including mosses, ferns, and algae. 

Production and secretion of these compounds is expected to be inducible for 

mainly two reasons: (a) It sequesters considerable metabolic activity, which is 

thus not available for normal growth and development, and (b) these compounds 

are toxic, so one strategy to evade auto-intoxication of the producer cell or tissue 

is to strictly confine the production of these compounds to the time when they are 

needed, and to the location where they are needed. 

Mosses are one of the oldest land plants that are rarely infected by bacteria and 

fungi. They lack shields like cuticle or bark to protect themselves against microbial 

infections, but they use chemical weapons to defend themselves. Fungistatic and 

fungitoxic compounds are released when a fungal spore falls on bryophyte thallus 

or leaf, inhibiting spore germination. This chemical weapon is one of their life 

strategies to be survived for more than 350 million years (Frahm, 2004). Mosses 

are known to contain a range of secondary metabolites. The P. patens genome 

has been duplicated 30 and 60 million years ago, and metabolic genes seem to 

have been retained in excess following duplication, leading probably, in part, to 

the high versatility of moss metabolism (Rensing et al., 2007). Some of these 

metabolites, such as flavonoids, have played important roles in the adaptation of 

plants to land, to cope with a variety of stresses, including ultraviolet-B (UV-B) 

radiation, desiccation stress and co-evolving herbivores and pathogens (Ponce de 

Leon and Montesano, 2013). 

Pteridophytes are not infected by microbial pathogens, which may be one of the 

important factors for the evolutionary success of pteridophytes and the fact that 

they survived for more than 350 million years (Sharma and Vyas, 1985). Many 

ferns have been used as medicinal plants since ancient times. The extensive 

survey of antibiotic activity among the ferns conducted and about a hundred 

species could be used in preparation of improved herbal or drug formulations 

(Banerjee and Sen, 1980). Phytochemicals from pteridophytes show very potent 
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antimicrobial properties. Many species of Selaginella have cytotoxic activity and 

each species with such activity contains bioflavonoids (Lin et al., 2000; Zhang et 

al., 2012). Ferns collected from the Aravalli hills (Rajasthan, India) have 

antibacterial activity against the phytopathogen, Agrobacterium tumefaciens, and 

human pathogens, Salmonella arizonae, E. coli and Salmonella typhi (all MTCC 

strains) (Parihar et al., 2010). 

Macroalgae which lack cell-based inducible immune responses, enhance their 

fitness via chemical defences against microbes. This hypothesis could explain 

why macroscopic algae are rarely infected, despite constant exposure to 

potentially deleterious microorganisms (Kohlmeyer, 1971). The antimicrobial 

compounds produced from algae provide an effective chemical defence against 

ecologically important microbes (Hornsey and Hide, 1974; Kubanek et al., 2003). 

Animals and vascular plants defend pathogens with innate receptors mediating 

their resistance. Macroalgae defend microbes mainly using their chemical 

compounds. While pathogen-activated or pathogen-induced macroalgal defence 

was detected two decades ago, it revealed major functional similarities among 

the defence systems of distant macroalgal clades and the innate immune 

systems of vascular plants and metazoans. However, the molecular concept of 

macroalgal receptor-mediated immunity needs to be complemented to develop a 

joint ecological perspective on seaweed-microbe interactions (Weinberger, 2007). 

The invention of seeds as mobile and robust means for gene has flow confronted 

plant defence with a new challenge: as an adaptation to propagation function, 

maturating seeds shut down metabolic activity almost completely. A structure that 

is densely packed with rich biological resources and at the same time is 

metabolically inactive, represents a very attractive target for microbial attack. 

Since, under these circumstances, inducible defence does not provide an efficient 

strategy to ward off pathogens from seeds, seed plants (and possibly already the 

heterosporic ferns, such as Selaginella) must have evolved constitutive protection 
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against fungal attack. Ginkgo biloba as a „living fossil‟ represents one of the most 

ancestral lines in the gymnosperms and therefore might serve as an interesting 

model to address the question about the evolution of seed immunity. The general 

question of seed immunity is even accentuated in Ginkgo biloba, because the 

immature seed is shed several months before fertilization actually takes place, 

which means that the delicate gametophytes have to survive for a long period a 

midst the progressively rotten fleshy tissue. 

1.3 Fungal growth and responses 

1.3.1 Role of actin in hyphal growth  

Fungi are divided into two big groups: yeasts and moulds. Yeasts are solitary 

rounded forms that reproduce by making more rounded forms through 

mechanisms such as budding or fission. Moulds, on the other hand, have bodies 

composed of thread-like long cells called hyphae. Thus, moulds are also known 

as filamentous fungi.  

Fungi form long, tube-like hyphae, which show extreme polarized growth from the 

tip. A continuous flow of secretion vesicles from the hyphal cell body to the 

growing hyphal tip is essential for cell wall and membrane extension. 

Microtubules (MT) and actin, together with their corresponding motor proteins, 

are involved in the process. And the arrangement of the cytoskeleton is a crucial 

step to establish and maintain polarity. In Saccharomyces cerevisiae and 

Schizosaccharomyces pombe, actin-mediated vesicle transportation is sufficient 

for polar cell extension, but in S. pombe, MTs are in addition required for the 

establishment of polarity (Fischer et al., 2008). In single cell yeasts, such as in 

budding yeast Saccharomyces cerevisiae and in fission yeast 

Schizosaccharomyces pombe, polarized growth is restricted to certain times 

during the cell cycle, whereas in filamentous fungi, such as Aspergillus nidulans 

or Neurospora crassa, cell extension is a continuous and indefinite process (Snell 
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and Nurse, 1994; Pringle et al., 1995; Riquelme et al., 2003). 

Polarized growth depends on the actin cytoskeleton, which consists of cortical 

actin patches and actin cables (Pruyne and Bretscher, 2000a). The 

polymerization of actin to form the patch ultrastructure is considered to be the 

driving force for generating endocytic vesicles by pulling the membrane inwards, 

but the formation also serves well as a structural scaffold (Ayscough et al., 1997; 

Kaksonen et al., 2003; Huckaba et al., 2004). Actin cables are targeted 

specifically to polarity sites, which are protein assemblies that direct new cell 

growth (Casamayor and Snyder, 2002), and which facilitate appropriate 

endocytosis and exocytosis in these regions (Pruyne and Bretscher, 2000b). 

Actin cables are thought to form tracks along which the class V myosin, Myo2, 

and its regulatory light chain, Mlc1, transport secretory vesicles that contain the 

raw materials and enzymes for the synthesis of new cell walls and cell 

membranes in the growing bud (Johnston et al., 1991; Schott et al., 1999; 

Karpova et al., 2000). Polarization of the actin cytoskeleton is ultimately 

by the Cdc42 GTPase, which localizes to the incipient bud site and the bud tip 

(Wendland and Philippsen, 2001; Bassilana and Arkowitz, 2006).  

1.3.2 Actin mediated apoptosis in fungi 

In fungi the actin cytoskeleton is involved in numerous cellular processes 

including: cell polarity, cytokinesis, endocytosis, exocytosis, bud site selection, 

cell wall remodelling and cell shape determination (Drubin et al., 1988; Kubler and 

Riezman, 1993; Karpova et al., 1998; Torralba et al., 1998; Pruyne and Bretscher, 

2000a; Harris, 2006). The regulation of actin assembly and disassembly is under 

the control of complex signaling systems that link external signals to remodeling 

events, which result in altered cellular activities that adapt cell shape or behaviour 

to suit new environmental conditions. Actin and ABPs are convincingly placed 

within signaling networks regulating commitment to apoptosis.  
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A range of studies have revealed that actin plays a key role in apoptosis/PCD 

regulation from the animal, plant and fungal Kingdoms. Recent data suggests that 

the activity of actin regulatory proteins such as gelsolin, cofilin/ADF 

(actin-depolymerization factor), coronin and β-thymosins play a crucial role in the 

regulation of apoptosis in animal cells (Franklin-Tong and Gourlay, 2008). 

Inhibitors of actin polymerization, such as cytochalasin, which causes 

depolymerization of actin microfilaments, have been demonstrated to prevent 

defence responses, alterations in actin polymerization status can be a general 

mechanism used by plants to mediate PCD (Tomiyama et al., 1982; Skalamera 

and Heath, 1998). It has been reported that, as has been found in many 

mammalian and plant cells, the stabilization of cortical actin structures induces 

apoptosis in yeast (Gourlay et al., 2004). Mutations in actin regulatory proteins 

that lead to the accumulation of aggregates of stabilized F-actin have been shown 

to trigger a process termed „actin mediated apoptosis‟ in Saccharomyces 

cerevisiae (Gourlay and Ayscough, 2005, 2006). It has been proposed that the 

dynamics of actin polymerization may be responsible for modulating apoptotic 

signaling cascades.  

Ras signaling may be a conserved mechanism by which yeasts are able to 

regulate cell death. The production of the secondary messenger cAMP is carried 

out by an adenylyl cyclase, Cyr1p, and can be stimulated by two mechanisms. 

One is the G protein-coupled receptor GPR1-GPA2 system (Thevelein et al., 

2005). The second is through binding of GTP-bound Ras and adenylyl 

cyclase-associated (Srv2p/CAP) proteins (Toda et al., 1985). Elevation of cAMP 

levels leads to dissociation of the protein kinase A (PKA) regulator Bcy1p to yield 

active A kinases which elicit alterations in processes such as cell cycle 

progression and stress responses (Thevelein, 1992). A strong correlation 

between ROS accumulation, apoptosis, and the dynamic state of the actin 

cytoskeleton exists in yeast (Gourlay et al., 2004). Evidence to support this 

from data showing that the pathogenic yeast Candida albicans has been shown 
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regulate apoptosis via Ras/cAMP signaling (Phillips et al., 2003; Phillips et al., 

2006). And an actin-mediated apoptosis pathway also exists in Saccharomyces 

cerevisiae which is likely to arise from a tight interaction between the cytoskeleton 

and the Ras signaling pathway (Gourlay and Ayscough, 2006). 

1.4 Bypassing the membrane barrier by BP100 

Cell-penetrating peptides (CPPs) are generally short cationic peptides, such as 

β-peptides or peptoids, which have amphipathic α-helical conformations that are 

attracted by the anionic cell surface and can eventually penetrate through the 

hydrophobic lipid bilayer (Eggenberger et al., 2011).  

Peptide-based gene delivery systems have been well established that certain 

potential peptide carriers are able to penetrate membranes of mammalian cells 

(Fawell et al., 1994; Simeoni et al., 2003; Numata and Kaplan, 2010). These 

so-called CPPs are able to enter cells seemingly independent of energy and 

classic receptor mediated endocytosis (Lindgren et al., 2000; Zorko and Langel, 

2005). For plant cells, however, this new technology is still in its early stage, with 

several studies reporting the use of CPPs to deliver plasmid DNA into 

permeabilized wheat embryo (Chugh and Eudes, 2008), mung bean and soy 

bean roots (Chen et al., 2007), and others using double-stranded RNA to induce 

post-transcriptional gene silencing in tobacco suspension cells (Unnamalai et al., 

2004). The CPP BP100 has been developed as an efficient cell penetrating tool to 

introduce functional cargoes such as the actin-binding Lifeact peptide 

(MGVADLIKKFESISKEE) into tobacco cells (Eggenberger et al., 2011). 

BP100 (KKLFKKILKYL-amide) is an antimicrobial peptide that was obtained by 

systematic mutation of Pep3 (WKLFKKILKVL-amide), a hybrid peptide derived 

from the naturally occurring cecropin-A (an antimicrobial peptide from the moth 

Hyalophora cecropia) and melittin (a membrane permeabilizing component of 

bee venom) (Wade et al., 1992; Ferre et al., 2006; Ferre et al., 2009). It has 
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already been demonstrated that BP100 has antimicrobial activity against Erwinia 

amylovora, Pseudomonas syringae and Xanthomonas vesicatoria in vivo and in 

vitro (Badosa et al., 2007). CPPs share two common important features: a net 

positive charge and the ability to assume an amphipathic structure. The net 

positive charge promotes their binding to the anionic cell surface, while the 

amphipathic structure favors peptide insertion into the membrane.  

Several models have been proposed to account for the morphological changes 

involved in antimicrobial peptides (AMPs)-mediated membrane disruption, such 

as pore formation (Yang et al., 2001), cell lysis (Shai, 1999), peptide translocation 

into the cytoplasm (Kobayashi et al., 2004) or intracellular targets without 

membrane damage (Yeaman and Yount, 2003; Brogden, 2005; Hancock and 

Sahl, 2006). In such mechanisms, peptides would stress the cell membrane to 

traverse and reach their site of action (Ferre et al., 2009). BP100 is a 

multifunctional membrane-active peptide of only 11 amino acids, with a high 

antimicrobial activity, an efficient cell-penetrating ability and low hemolytic 

side-effects. It forms an amphiphilic α-helix that is similar to other antimicrobial 

peptides like magainin (Wadhwani et al., 2014). However, BP100 is not long 

enough to span the lipid bilayer to form transmembrane pores and can be taken 

up into BY-2 cells without being toxic, hence it represents an ideal test candidate 

for the targeted cargo delivery into plant cells (Eggenberger et al., 2011). 

1.5 Scope of this study 

To defend against pathogen attacks, seed plants have evolved efficient strategies 

to protect themselves. Ginkgo as the ancient seed plant would provide a precious 

model to figure out the evolution of seed immunity. Seeds of Ginkgo biloba contain 

high levels of the antifungal protein ginkbilobin which is resistant to different fungi 

such as Fusarium oxysporum, Trichoderma reesei, or Candida albicans (Wang 

and Ng, 2000; Sawano et al., 2007). But the cellular mechanism of growth 

inhibition is not clear. In this study, we put forward two main questions to work on 
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the antifungal protein ginkbilobin.   

1. Where dose ginkbilobin and its truncated versions target in tobacco BY-2 

cells? 

To get insight into potential cellular targets of ginkbilobin, we expressed GFP 

fusions of full-length and various truncated ginkbilobin in tobacco BY-2 

suspension cells. We show that the signal peptide confers efficient secretion of 

ginkbilobin. When this secretion is prevented by cleaving off or masking the signal 

peptide, ginkbilobin decorates filamentous structures. Via different covisualization 

strategies, it is shown that these structures are actin filaments, and that the 

actin-binding activity of ginkbilobin is located in a specific subdomain (termed as 

A1), just downstream of the signal peptide. Upon stable overexpression of this 

domain, we observe a specific delay in premitotic nuclear positioning indicative of 

a reduced dynamicity of perinuclear actin cables.  

2. What is the biological function of ginkbilobin? 

To get insight into the cellular events evoked by the binding of this subdomain to 

actin, we employ a strategy based on chemical engineering using synthetic 

peptides. They comprise of different parts of the actin-binding subdomain 

conjugated with the cell-penetrating peptide BP100 and with rhodamine B (RhB) 

as a fluorescent reporter. We observe that the binding of specific subdomain 

motifs to actin filaments is followed by rapid and efficient induction of cell death, 

leading to a working model for the mode of action of ginkbilobin, where 

ginkbilobin can interfere with the actin cytoskeleton of the target cell to activate an 

evolutionarily conserved apoptotic pathway. 
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2. Materials and Methods 

2.1 Cell lines and cultivation 

Suspension cell lines of BY-2 (Nicotiana tabacum L. cv Bright Yellow-2; Nagata  

et al., 1992) were cultivated in liquid medium containing 4.3 g l-1 Murashige and 

Skoog salts (Duchefa Biochemie, Haarlem, Netherlands), 30 g l-1 sucrose, 200 

mg l-1 KH2PO4 , 100 mg l-1 inositol, 1 mg l-1 thiamine, and 0.2 mg l-1 2,4-D, pH 5.8. 

The cells were subcultivated weekly inoculating 1.0 to 1.5 ml of stationary cells 

into 30 ml fresh medium in 100 ml Erlenmeyer flasks. The cells were incubated at 

27°C under constant shaking on an orbital shaker (IKA Labortechnik, Staufen, 

Germany) at 150 rpm. Stock BY-2 calli were maintained on MS medium solidified 

with 0.8 % (w/v) agar (Roth, Karlsruhe, Germany) and subcultivated monthly. In 

addition to the BY-2 wild type (WT) (Nagata et al., 1992), two transgenic cell lines, 

GF11 (Sano et al., 2005) and FABD2 (Klotz and Nick, 2012) were used in this 

study which express the actin-binding domain 2 of plant fimbrin in fusion with GFP 

and RFP, respectively, under the control of the constitutive cauliflower mosaic 

virus (CaMV) 35S promoter. Several stable transgenic cell lines expressing 

different domains of ginkbilobin in fusion with GFP were generated in the current 

work. Transgenic cell lines and calli were cultivated on the same medium as 

non-transformed BY-2 WT cell culture, but complemented with the respective 

antibiotics (100 mg l-1 kanamycin for the ginkbilobin lines and FABD2, 30 mg l-1 

hygromycin for GF11, respectively). 

2.2 Cloning of full-length and truncated versions of ginkbilobin-2 

2.2.1 RNA extraction and cDNA preparation 

Mature seeds of Ginkgo biloba were collected in Freiburg (Germany) in 

December and kept at -80°C. The material was ground in liquid nitrogen using a 

mortar and total RNA extracted following the improved RNA extraction method 
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developed by Liu et al. (2010) (see Appendix 5.1, P. 77, for an overview of the 

improved RNA extraction method). Genomic DNA was digested by incubating the 

samples with RNase-free DNAse I (Qiagen, Hilden, Germany) on column for 30 

min at 37°C. The integrity of RNA was checked by electrophoresis. cDNA 

synthesis was performed using the Dynamo cDNA Synthesis Kit (Finnzymes, 

Vantaa, Finland), according to the instruction of the manufacturer, taking 1 µg of 

RNA as template for reverse transcription.  

2.2.2 TA cloning and Gateway® cloning 

To generate transgenic cell lines overexpressing full-length or truncated versions 

of ginkbilobin-2, binary vectors were constructed using TA cloning and 

Gateway®-Cloning technology (Invitrogen Corporation, Paisley, UK). Gateway 

primers were designed according to the manufacturer‟s instruction amplifying 

either full length, signal peptide, full length without signal peptide, subdomain A1, 

subdomain A1+A2, subdomain A1+A2+A3, and subdomain B of ginkbilobin-2 

from the cDNA of Ginkgo biloba (see the coding sequence of ginkbilobin-2 and its 

subdomains in Appendix 5.2, P. 78). The primer sequences are specified in 

Appendix 5.3, P. 78. For the preparatory PCR standard conditions and the 

Phusion Polymerase (NEB, Frankfurt, Germany; 0.4 U for a total volume of 20 µl) 

were used with 35 cycles (pre-heating at 98°C for 30 s; denaturation at 98°C for 

10 s, annealing at 58°C for 20 s, and extension at 72°C for 20 s), followed by final 

extension at 72°C for 5 min. The PCR products were excised from the gel and 

purified using the NucleoSpin® Extract II (Macherey-Nagel, Dueren, Germany) kit 

according to the manufacturer instructions. A-overhangs were added to the PCR 

product by A-tailing (purified PCR product 15 µl; Taq Polymerase 0.2 µl; 10x 

ThermoPol buffer 5 µl; 10 mM dATP 1 µl; dd H2O 28.8 µl; total volume 50 µl) at 

72°C for 10-30 min, and the A-tailing product was directly purified using the 

NucleoSpin® Extract II, then inserted into vector pGEM-T® Easy (Promega 

Corporation, USA). Destination vectors were constructed following Gateway® 

cloning technology instructions (see Appendix 5.4 and 5.5, P. 79 and P. 81, for an 
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overview of TA-cloning technology and the Gateway® cloning technology) with 

TA-cloning products and the binary vector pK7WGF2 (Karimi et al., 2002) 

(C-terminal fusion GFP, kanamycin resistance) and pK7FWG2 (Karimi et al., 

2002) (N-terminal fusion GFP, kanamycin resistance). The structure of the 

different domains is shown in Figure 3.1B, P. 27 and all the generated Gateway® 

destination vector maps can be found in Appendix 5.6, P. 81. 

2.3 Establishment of biolistic and stable transformation of 

tobacco BY-2 cells 

2.3.1 Biolistic transformation 

Gold particles (1.5-3.0 μm; Sigma-Aldrich, Taufkirchen, Germany) were coated 

with the corresponding plasmid DNA according to the standard manual of 

Bio-Rad (PDS-1000/He Particle Delivery System manual; for details, see 

Appendix 5.7, P. 83) with the following modifications. Gold particles (1.5-3.0 µM; 

Sigma-Aldrich, Germany) were suspended in 1 ml 50% (v/v) sterile glycerol by 

mixing on a bench-top vortexer (Bender & Hobein Zurich, Switzerland). For each 

sample, 12.5 μl of gold suspension were added to a 1.5 ml reaction tube. While 

mixing vigorously, the following components were added successively: 1 μg of 

plasmid DNA, 12.5 μl of 2.5 M sterile CaCl2 and 5 μl of 0.1 M sterile spermidine 

(Roth, Karlsruhe, Germany), and then mixed for 3 min, spun down briefly, the 

supernatant was then discarded. Subsequently, the gold particles were washed 

with 125 µl of ice-cold absolute ethanol and resuspended in 40 μl of ice-cold 

absolute ethanol. The coated gold particles were loaded on macrocarriers 

(BIO-RAD Hercules, CA, USA) in 10µl step wise. 750 µl 3-day-old tobacco BY-2 

WT cells were placed on PetriSlides™ (Millipore, Billerica, USA) containing a thin 

layer of solid MS medium (0.8% w/v Danish agar). These loaded PetriSlides™ 

were transferred into a custom-made chamber (Finer et al., 1992), and 

bombarded by three shots at a pressure of 1.5 bar in a vacuum chamber of -0.8 

bar. After the bombardment, the cells were incubated for 18-48 h in the dark at 



Materials and Methods 

16 

27°C, and then inspected by microscopy. For the cotransformation of two 

constructs, 500 ng of each plasmid were mixed before coating the gold particles.  

2.3.2 Agrobacterium-mediated transformation 

BY-2 cells were transformed via Agrobacterium-mediated transformation 

following the improved protocol by Buschmann et al. (2011) to get both transient 

and stable transformation. Chemo-competent Agrobacteria were prepared using 

a freeze-thaw transformation protocol: competent LBA 4404 cells (strain LBA 

4404; Invitrogen Corporation, Paisley, UK) were thawed at room temperature, 

gently mixed with 500-1000 ng of plasmid DNA, frozen in liquid nitrogen for 1 min, 

and rethawed for 5 min at 37°C. 500 μl of LB medium (Lennox Broth, Roth, 

Karlsruhe, Germany) were added and the mixture was then incubated at 28°C for 

1-2 hours under continuous shaking. Subsequently, 100-200 μl of bacteria were 

plated onto solidified LB containing 50 mg l-1 rifampicin, 300 mg l-1 streptomycin, 

and 100 mg l-1 spectinomycin and incubated for 2-3 days at 28°C. 

Single colonies were picked and inoculated into 5 ml of liquid LB medium 

containing the same antibiotics and shaken at 28°C for further 24 hours. From 

this suspension, 1 ml were transferred into 5 ml of fresh LB medium and 

cultivated in a shaker up to an OD600 of 0.8. Then, the Agrobacteria were 

harvested by centrifugation at 8,000 rpm (Heraeus Pico 17 Centrifuge, Thermo 

Scientific, Langenselbold, Germany) for 7 min in a 50-ml Falcon tube. The 

supernatant was discarded, and the sediment resuspended thoroughly with 180 

μl of Paul‟s medium (4.3 g l-1 Murashige and Skoog salts with 1% sucrose, pH 5.8) 

to yield the cocultivation inoculum. For cocultivation, 90ml of 3-day-old BY-2 cells 

were washed with Paul‟s medium using a Scientific Nalgene® Filter Holder 

(Thermo Scientific, Langenselbold, Germany) combined with Nylon mesh with 

pores of diameter of 70 μm and resuspended in 1/5 of the starting volume, and 

this five-fold concentrated suspension cells were mixed with the cocultivation 

inoculum on an orbitary shaker for 5 min at 100 rpm. The mixture of transformed 
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bacteria and BY-2 cells was plated on Paul‟s agar (Paul‟s media with 0.5% 

Phytagel), and kept at 22°C in the dark for 3-4 days before microscopical 

analysis.  

To obtain stably transformed lines, the calli were further cultivated on solid MS 

medium (0.8% w/v Danish agar) with 100 mg l-1 kanamycin and 100-300 mg l-1 

cefotaxime. Transformed calli appeared after 2-3 weeks. For cotransformation, 

the cocultivation inoculum was prepared as mixture of the respective transformed 

Agrobacterium strains. 

2.4 Phalloidin-based actin staining  

To visualize actin, the modified method by Maisch et al. (2009) based on the 

protocol by Olyslaegers and Verbelen (1998) was used. 120 µl of cells were fixed 

for 10 min in 1.8 % (w/v) paraformaldehyde freshly prepared in actin stabilizing 

buffer (ASB, 0.1 M PIPES, 5 mM MgCl2, and 10 mM EGTA, pH 7.0), and then 

transferred to ASB with fixative, but supplemented with 1% glycerol for additional 

10 min to permeabalize the cell membrane. Subsequently, the cells were 

incubated for 30 min with 500 µl of 0.66 µM TRITC-phalloidin (Sigma-Aldrich, 

Taufkirchen, Germany) prepared from a stock solution in 96% (w/v) ethanol by 

dilution (1:100, v/v)  with  phosphate-buffered saline (0.15 M NaCl, 2.7 mM KCl, 

1.2 mM KH2PO4, 6.5 mM Na2HPO4, pH 7.2). Finally, the cells were washed three 

times for 10 min in phosphate-buffered saline and directly viewed under the 

microscope.  

2.5 Ginkbilobin-2 subdomain peptide conjugates treatment of 

tobacco BY-2 cells  

To test the vivo localization of Ginkbilobin-2 subdomain peptide conjugates 

Rhodamine B-BP100-domain A1; Rhodamine B-BP100-domain A2; Rhodamine 

B-BP100-domain A3) and unconjugated BP100 (Rhodamine B-BP100) (Ferre et 
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al., 2009) (see the sequences of the peptide conjugates in Appendix 5.8, P. 83) 

as a control, 50 μl of 4 day old BY-2 WT cell suspension and 950 μl of culture 

medium were mixed in a 1.5 ml reaction tube. Each peptide was added to a final 

concentration of 0.5 μM and incubated for 6 hours up to 24 hours in the dark 

under continuous shaking. Following incubation, the cells were transferred to 

custom-made staining chambers and thoroughly washed 3 times with 15 ml of 

fresh sterile culture medium and viewed the uptake of the cells at 6 hours, 12 

hours, and 24 hours under microscope.  

To assess the localization of RBA1, RBA2 and RBA3 in relation to actin filaments 

in vivo, the conjugated peptides and BP100 were incubated with the 4 day old 

transgenic tobacco BY-2 cell line GF-11 for 24 hours, washed as described above 

and viewed under a microscope immediately.  

2.6 Drug Treatment of tobacco BY-2 cells  

2.6.1 Auxin and phytotropin treatment 

The natural auxin indole-3-acetic acid (IAA, Sigma-Aldrich) or the auxin-transport 

inhibitors 1-N-naphthylphthalamic acid (NPA, Sigma-Aldrich) were added to the 3 

days old actin maker line GF-11 at final concentrations of 2 μM for IAA (diluted 

from a stock solution of 100 mM IAA in 96 % (v/v) ethanol) and 12 μM for NPA 

(diluted from a stock solution of 10 mM NPA in DMSO) and incubated 10 min, and 

followed under a microscope. Following this pre-incubation, 2 μM ginkbilobin 

conjugates and BP100 was added and incubated for 30 min. During this 

incubation step the response of the cells were followed under a microscope. 

2.6.2 Actin inhibitors latrunculin B and phalloidin treatment 

To eliminate actin filaments, 1 µM of Latrunculin B (Sigma-Aldrich, Deisenhofen, 

Germany) (stock solution 1 mM in DMSO) were added to 3-day-old BY-2 cells 

(overexpressors of ginkbilobin subdomain A1, full length ginkbilobin without signal 
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peptide and actin marker line GF11) and the response was followed under a 

microscope. 

For the actin inhibitor treatment, 1 µM latrunculin B or 1 µM Phalloidin from 

Amanita phalloides (Sigma-Aldrich; stock solution 1mM in 96 % (v/v) ethanol) was 

added into 3 days old actin maker line GF-11 and incubated for 30 min. The 

response was followed under a microscope. Following this pre-incubation, 2 μM 

ginkbilobin conjugates and BP100 was added and incubated for 30 min. During 

this incubation step the response of the cells were followed under a microscope. 

2.6.3 Peptide conjugates treatment to GF-11 cell line preincubated with 

drugs 

Following the preincubation of the drugs (2 µM IAA and 12 µM NPA for 10 min, 1 

µM Lat B and 1 µM phalloidin for 30 min as described above), 2 µM Ginkbilobin-2 

subdomain peptide conjugates and BP100 were added and viewed the following 

30 min under a microscope.  

2.7 Phenotyping cellular responses  

2.7.1 Determination of nuclear positioning, division synchrony, cell length 

and width 

The different ginkbilobin-2 based overexpressor lines were phenotyped as 

described in Kühn et al. (2013). Nuclear positioning (NP) was quantified from 500 

individual 3 days old cells were measured from three independent experimental 

series. To determine the response of division synchrony, cell length and width the 

natural auxin indole acetic acid (IAA, 2 µM, diluted from a stock solution of 100 

mM IAA in ethanol) and the auxin-efflux inhibitor 1-N-naphthyl phthalamic acid 

(NPA, 10 µM, diluted from a stock solution of 10 mM NPA in dimethyl sulfoxide), 

cells were either scored at day 4 (division synchrony) or day 7 (cell length and 

width) after subcultivation. 20 μl aliquot of cells viewed under AxioImager Z.1 
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microscope (Zeiss, Jena, Germany) and images taken using the MosaiX module 

of the AxioVision software to cover a 4x4 mm area with 121 single pictures at an 

overlay of 10 % to monitor division synchrony and measure the NP, the cell length 

and width (Campanoni et al., 2003; Maisch and Nick, 2007). Each experiment 

was accompanied by a corresponding solvent control. For division synchrony 

around 3000 cell files were recorded from at least three independent 

experimental series. For cell length and width, 1500 individual cells were 

measured from three independent experimental series.  

2.7.2 Determination of cell mortality 

To evaluate the cell mortality of Ginkbilobin-2 subdomain peptide conjugates and 

unconjugated BP100, each peptide was added to 4 day old tobacco BY-2 WT cell 

line with different concentrations of 0.5 μM, 1 μM, 2 μM or 3 μM. The cells were 

incubated at 27 °C under continuous shaking up to 24 hours. And the cell mortality 

was recorded at 1 hour, 6 hours, 12 hours and 24 hours. To check for a possible 

influence of drug treatment on cell mortality, following 30 min drug treatment (2 

µM IAA, 12 µM NPA , 1 µM Lat B and 1 µM phalloidin), 1 μM subdomain 

conjugates and BP100 were added to GF11 cell line, respectively, and continued 

to incubate for 6 hours to record the cell mortality. 

Mortality in response to ginkbilobin-2 subdomain peptide conjugates was 

quantified by 1 ml of 2.5 % Evans Blue (w/v) (Sigma-Aldrich) dissolved in millipore 

water for 1 min and filtered the cells using custom-made staining chamber with a 

pore-size of 70 µm mesh bottom (Nick et al., 2000). Following 3 times washing 

with Millipore water the cells were viewed under AxioImager Z.1 microscope 

(Zeiss, Jena, Germany) and mosaic pictures were obtained as described above. 

1000 cells were counted from three independent experimental series. 

2.8 Synthesis of ginkbilobin-subdomain peptide conjugates  

The subdomains A1, A2, and A3 from the putative actin-binding domain of 
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ginkbilobin-2 were synthetically generated as fusions with the cell-penetrating 

peptide BP100 and rhodamine B, following the strategy previously described in 

(Eggenberger et al., 2011). All peptides were synthesized by using standard 

9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis (Fields and 

Noble, 1990). Rhodamine B was used as a fluorescent marker and BP100 as the 

cell-penetrating carrier. Rhodamine B was coupled at the N-terminus of BP100, 

and the different ginkbilobin-2 subdomain peptides were coupled at the C-termini 

of the constructs (see the sequences of the peptide conjugates in Appendix 5.8, P. 

83). The peptides were purified by HPLC using acetonitrile/water gradients as 

previously described (Wadhwani et al., 2006; Wadhwani et al., 2008), and the 

purified peptides were characterized by analytical liquid chromatography 

combined with ESI-mass spectrometry (Eggenberger et al., 2011). 

2.9 Microscopy 

To phenotype cellular responses, cells were observed and recorded under an 

AxioImager Z.1 microscope (Zeiss, Jena, Germany) equipped with an ApoTome 

microscope slider for optical sectioning and a cooled digital CCD camera 

(AxioCam MRm; Zeiss). TRITC-/RFP- and GFP-/Alexa-Fluor® 488-fluorescence 

were observed through the filter sets 43 HE (excitation: 550 nm, beamsplitter: 570 

nm, and emission: 605 nm) and 38 HE (excitation: 470 nm, beamsplitter: 495 nm, 

and emission: 525 nm), respectively (Zeiss). For cell mortality, cell division 

synchrony and cell size, samples were observed in the differential interference 

contrast (DIC) using a 20x objective (Plan-Apochromat 20x/0.75) and the MosaiX 

module of the imaging software (Zeiss). And images were analysed using the 

AxioVision (Rel. 4.8.2) software or Image J (NIH, Bethesda, USA).  

To observe the cellular details of the transformed cells, images of RFP-/TRITC 

and GFP-/Alexa-Fluor® 488-fluorescence were examined with an AxioObserver 

Z1 (Zeiss, Jena, Germany) using a 63 × LCI-Neofluar Imm Corr DIC oil objective 

(NA 1.3), the 561nm and 488 nm emission line of the Ar-Kr laser, a cooled digital 
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CCD camera (AxioCam MRm; Zeiss) and a spinning-disc device (Yokogawa 

CSU-X1 Spinning Disk Unit, Yokogawa Electric Corporation, Tokyo, Japan). 
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3. Results 

In this chapter, the results from this work are separated into three main parts. In 

the first part, divergent phylogeny of proteins containing a ginkbilobin-2 domain is 

analyzed. Following that, the generation of new transgenic tobacco BY-2 cell lines 

is described. Firstly, the localization of the transgenic cell lines and their 

colocalization with actin marker cell line FABD2 are visualized. Secondly, 

morphologic studies of overexpressing subdomain A1, full length without signal 

peptide (NSP) and subdomain B of ginkbilobin-2 with auxin treatment are 

analyzed. In the third part, the work deals with the cellular response of 

ginkbilobin-2. Truncated subdomain A coupled with the cell-penetrating carrier 

BP100 and rhodamine B were introduced into BY-2 cells firstly to get insight into 

cellular response. Secondly, the uptake of subdomain conjugates pretreated with 

actin drugs and auxin into the cell should be studied.  

3.1 Divergent phylogeny of proteins containing a ginkbilobin-2 

domain 

To get access to putative functions of ginkbilobin-2, a phylogenetic tree was 

constructed based on the neighbour-joining algorithm of homologous proteins 

(Figure 3.1 A). Homologues of ginkbilobin-2 could be identified only in seed plants, 

and in the heterosporic fern Selaginella. These homologues clustered into two 

classes (Figure 3.1 B) – one class contained proteins just composed of the 

ginkbilobin-2 domain and along with N-terminal putative signal peptide for 

secretion, while the other class contained proteins harbouring, in addition, a long 

C-terminal extension of usually ~180 amino acids. Both classes occurred in all 

taxa, but there was a clear dominance of the version without extension in the 

gymnosperms, whereas the version with extension dominated in the angiosperms. 

In Selaginella, eight ginkbilobin-2 homologues could be identified; three with, and 

five without this C-terminal extension. Within each of the two classes of 
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ginkbilobin-2 domain proteins, the members clustered mostly in accordance with 

taxonomic relationship, i.e. dicot and monocot, as well as the gymnosperm 

members formed separate subclades. However, those homologues from 

Selaginella that lacked the C-terminal extension were split into two groups, one 

was basal to the clade, and one was closer to the monocot members. Alignment 

of the sequences revealed specific cysteine signatures that were conserved 

throughout, even between the accessions with and without the C-terminal 

extension. In this extension, further cysteine signatures could be detected that 

were preserved as well (Figure 3.1 B). The closest relatives of ginkbilobin-2 with 

approximately 85% identity were embryo-abundant proteins from conifers. In 

Ginkgo, a closely matching second protein, designated as ginkbilobin-1, had 

been described as well (Wang and Ng, 2000). However, since this protein was 

lacking a signal peptide and even a start codon, we considered ginkbilobin-1 as a 

fragment and did not analyse it further. Based on the conservation in the 

alignment, the ginkbilobin-2 domain could be subdivided into subdomains A1, A2, 

A3, B1, and B2. Among those subdomains, especially B1 and A2 were conserved 

throughout the evolution of vascular plants, whereas A3 appeared to be more 

variable. The domain B contained a conserved cysteine signature C-X8-C-X2-C, 

which is a characteristic feature of a receptor superfamily described for 

Arabidopsis thaliana and rice and was proposed to participate in defence 

signalling (Chen, 2001). However, these receptors do not share a ginkbilobin-2 

domain. 

The conservation of the cysteine signatures along with numerous other motifs of 

the ginkbilobin-2 domain throughout the evolution of vascular plants suggests that 

these motifs confer important biological functions. Since the ginkbilobin-2 domain 

as an entity, to our knowledge, does not occur outside the vascular plants, we 

were wondering whether the isolated subdomains (A1, A2, A3, B1 and B2) might 

have additional homologues. For this purpose, we conducted a Blast-search with 

the isolated subdomains at reduced stringency of the e-value threshold (100) to 
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recover such additional, partial, homologues whose functional assignments might 

give us an idea about potential cellular functions of ginkbilobin-2. 

For the A1 motif, among 12 recovered hits, three of the homologues were part of 

the so-called CLASP-N-like/armadillo fold proteins (see the alignments in 

Appendix 5.9, P. 84). These cytoskeletal proteins are known to mediate 

interactions between actin filaments and microtubules. Two of those proteins 

were from insects, one from an oomycete with up to 65% similarity that remained 

confined to the A1 motif. A search with the A2 motif yielded 13 hits, whereby six 

were two-component histidine kinases of plant-interacting bacteria. The 

homology was located to the start of the histidine-kinase homodimerization 

domain and reached up to 80% similarity, again remaining confined to this motif 

on both sides. Whereas a search with the A3 motif did not uncover any 

homologues, the search with the B1 motif produced a couple of angiosperm 

sequences (both mono- and dicots) in addition to the previously known 

ginkbilobin-2 containing proteins. These additional sequences also possess the 

above-mentioned specific cysteine signatures, and showed homologies of 50-60% 

similarity in most cases that were, however, confined to the B1 motif. For most of 

them no function was assigned. Three of these hits belonged to a plant 

receptor-like kinase superfamily involved in pathogen sensing (Chen, 2001). A 

search with the B2 domain yielded homologues in bacterial proteins related to 

phytopathogenicity, but also one plant DUF26 domain protein that had already 

been picked up by the search for B1 homologues. It should be noted that the hits 

recovered by this strategy shared only similarity with individual subdomains of 

ginkbilobin-2, not with ginkbilobin-2 as an entity. Nevertheless, these motifs 

indicate a putative relationship with defence on the one hand, and with the 

cytoskeleton on the other. 
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Figure 3.1 Phylogeny and domain structure of ginkbilobin-2 related proteins. (A) Evolutionary 

relationship between 55 ginkbilobin-2 related protein sequences inferred by Neighbor-Joining 

method. Values next to the branches represent the percentage of replicate trees in which the 

associated taxa clustered together in the bootstrap test (based on 500 replicates). The tree is 

drawn to scale, with branch lengths in the same units as those of the evolutionary distances used 

to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson 

correction method and are in the units of the number of amino acid substitutions per site. All 

positions containing gaps and missing data were eliminated from the dataset (complete deletion 

option) leaving a total of 89 positions in the final dataset. The Swissprot accessions are given 

along with the genus name. (B) Domain structure of ginkbilobin-2 related protein sequences. SP 

predicted signal peptide, followed by subdomains A1-3, and subdomains B1-2, and in some of the 

proteins an additional long cysteine-rich C-terminal extension (Cys-ext). The conservation of the 

individual domains with ginkbilobin-2 is indicated by the shaded boxes based on similarity at the 

amino-acid level. The yellow lines represent conserved cysteine signatures. 
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3.2 Generation of transgenic cell lines and localization studies of 

ginkbilobin-2 fusion proteins  

3.2.1 Modification of the Buschmann method for Agrobacterium-mediated 

transformation of BY-2 cells  

In order to achieve the cellular localization and functions of ginkbilobin-2, we 

generated cell lines overexpressing full length and truncated variations of 

ginkbilobin-2 in this study. First, we used the Gateway® cloning system to 

construct the expressing vectors. Then, the protocol for transient 

Agrobacterium-mediated transformation of BY-2 cells developed by Buschmann 

et al. (2011) was applied for transforming BY-2 cells with a few modifications 

which improved the efficiency of transformation. First and most importantly, the 

cocultivation temperature was decreased to 22°C instead of 27°C which 

produced higher transient transformation rate in BY-2 cells (see Fig. 3.2). Fullner 

and Nester (1996) and Dillen et al. (1997) suggested that there was a difference 

in temperature for optimal bacteria propagation and effective plant transformation. 

Second, mixture of cells and Agrobacteria were not directly placed on the MS 

Paul agar surface but on a layer of filter paper in between instead to avoid the 

mechanical wounding caused by transferring the cells when using a sterile 

spatula. By doing that, the transformed cells will stay close to each other and are 

able to generate rapidly enough calli to overcome the selection pressure. 
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Fig. 3.2 (A) Transient transformants (sudomain A1-GFP) of BY-2 cells 3 days after cocultivation on 

solid Paul agar surface (Scale bar 200 μm). (B) Transformed calli appeared 3 weeks after 

incubation on MS agar medium supplied with 300 mg l
-1

 cefotaxime and 100 mg l
-1

 kanamycin. (C) 

Transformed calli under the fluorescent microscope.  

3.2.2 Localization of full-length ginkbilobin-2 and its individual domains 

To achieve more information about cellular functions of ginkbilobin-2, the 

subcellular localization of the full-length protein and specific truncations were 

tested by expressing GFP fusions in tobacco BY-2 cells, either transiently (by 

biolistics) or in a stable manner (using binary vectors based on the GATEWAY® 

cloning strategy). Since the N-terminus harboured a predicted signal peptide of 

26 amino acids (using the on line software SignalP 4.1 server), we first tested a 

fusion of GFP C-terminal to this putative signal motif. Upon expression, this 

construct showed up small fluorescent vesicles (Figure 3.3 A) that were moving 

along with the cytoplasmic strands and also decorated the nuclear rim, which 

indicated that the signal peptide was functional and designated GFP for secretion. 

In the next step, the full-length sequence of ginkbilobin-2 (including the signal 

motif) was investigated. Due to the presence of the signal peptide and potential 

steric hindrance, GFP was fused either in N- or in C-terminal position of the 

full-length ginkbilobin-2 coding sequence including the signal peptide. The 

C-terminal fusion of full-length ginkbilobin-2 (Figure 3.3 B) produced the same 

pattern as the signal peptide alone suggesting that the signal peptide was 

functional in committing its cargo for the secretory pathway. However, when GFP 

was fused to the N-terminus of full-length ginkbilobin-2 (including the signal 

peptide), this fusion exhibited a different pattern (Figure 3.3 C) as it visualized 

filamentous structures that tethered the nucleus by transvacuolar strands to a 

cortical meshwork, a morphology and organization that is characteristic for plant 

actin. To test whether this deviant localization of GFP-ginkbilobin-2 was caused 

by GFP masking the signal peptide, we fused GFP C-terminally of full-length 

ginkbilobin-2, but truncated the signal motif (SP). Again, this construct visualized 
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filamentous structures (Figure 3.3 D) leading to the evidence that ginkbilobin-2 – 

if not sequestered from the cytoplasm by means of the N-terminal signal peptide – 

will tether to a filamentous network that might be actin. 

 

Figure 3.3 Localization of GFP fusion constructs of full-length or truncated ginkbilobin-2 upon 

transient expression in tobacco BY-2 cells. The structure of the constructs used is shown 

schematically. (A) Signal peptide upstream of GFP. (B) Full-length ginkbilobin-2 including the 

signal peptide upstream of C-terminally fused GFP. (C) Full-length ginkbilobin-2 including the 

signal peptide downstream of N-terminally fused GFP. (D) Ginkilobin-2 lacking the signal peptide 

upstream of C-terminally fused GFP. (E) Subdomain B upstream of C-terminally fused GFP. (F) 
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Subdomain A1 upstream of C-terminally fused GFP. (G) Subdomains A1+A2 upstream of 

C-terminally fused GFP. (H) Subdomains A1+A2+A3 upstream of C-terminally fused GFP. Scale 

bar 20 µm. 

In the next step, we asked, which of the subdomains confers this specific 

localization. Thus, various subdomains or combinations thereof were tested for 

their localization. Subdomain B (Figure 3.3 E) that contains the specific cysteine 

signature was at first sight localized in a manner similar to the full-length protein 

with truncated signal peptide (Figure 3.3 D). However, a closer look reveals that 

the strands labelled by this construct are much broader and widen near the cell 

cortex into triangles, which is the pattern observed for the structure of the 

cytoplasmic strands in these vacuolated cells. This indicates that the filamentous 

localization of the full-length protein (Figure 3.3 C) is not conferred by domain B. 

Therefore, domain A was put under closer scrutiny: the entire domain A marked, 

in addition to cytoplasmic strands, filaments that were much more slender (Figure 

3.3 H). When domain A was divided into subdomains A1 and A2, these thin 

strands became more prominent (Figure 3.3 G), and when everything was 

truncated down to subdomain A1 alone (Figure 3.3 F), a rich system of fine 

filaments became manifest that was congruent with the pattern observed for the 

full-length protein with truncated signal peptide. These filaments converged to the 

nuclear envelope and emanated from rod-like, sometimes more punctate 

structures at the nuclear rim. This pattern is reminiscent of the actin cytoskeleton 

in those cells. This truncation study assigns the specific localization of 

ginkbilobin-2 to subdomain A1. 

3.2.3 Ginkbilobin-2 domains targeting to actin 

To get insight into the cellular nature of the filamentous structures visualized by 

ginkbilobin-2, the different constructs described above were transiently expressed 

in a stable actin maker line expressing FABD2-RFP either via biolistic or via 

Agrobacterium-mediated transformation. The signal peptide alone (Figure 3.4 
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A1-3) as well as a fusion of GFP placed at the C-terminus of full-length 

ginkbilobin-2 (Figure 3.4 B1-3) produced vesicles that were moving along the 

actin filaments. In contrast, when GFP was fused to the N-terminal of the 

full-length ginkbilobin-2 (Figure 3.4 C1-3), filamentous structures were seen that 

matched exactly with actin filaments. Next, we want to test whether the differential 

localization of C-terminal (Figure 3.4 B1-3) versus N-terminal (Figure 3.4 C1-3) 

GFP fused to full length ginkbilobin-2 was caused by masking of the signal 

peptide, when GFP was fused at the N-terminus. We thus generated a construct, 

where GFP was placed at the C-terminus of full-length ginkbilobin-2, but where 

the signal peptide was truncated. This construct (SP, Figure 3.4 D1-3) visualized 

a subset of actin filaments. Exemplarily for the subdomains we tested subdomain 

A1 (Figure 3.4 E1-3), which also colocalized with actin filaments. 

To verify whether the localization of subdomain A1 was dependent on actin 

filaments, 1 µM of latrunculin B was used to treat subdomain A1 for 30 min. 

Latrunculin B is commonly used to disrupt the actin cytoskeleton net work 

(Spector et al., 1983) and indeed we find that the filamentous structures 

visualized by the GFP fusion with subdomain A1 (Figure 3.3 F, P. 30) were 

completely eliminated and replaced by vesicular structures (Figure 3.5 A). The 

same was true for ginkbilobin-2 with GFP fused C-terminally but devoid of the 

signal peptide (Figure 3.5 B). As a control, the actin marker line GF11 was 

subjected to the same treatment and found to be devoid of any actin filaments, 

demonstrating that the treatment is efficient to eliminate actin microfilaments 

(Figure 3.5 C).  A stable line of subdomain A1 in fusion with GFP showed the 

same filamentous structures as already seen in the transient transformants 

(compare Figure 3.3 and 3.4). To verify that these filaments represent actin 

filaments, the stable transformants were stained with TRITC-phalloidin, a dye 

known to bind to polymeric actin (Kakimoto and Shibaoka, 1987). The resulting 

images (Figure 3.5 D1-3) showed that the GFP fusion of subdomain A1 (Figure 

3.5 D1) colocalized with the TRITC-phalloidin labelled actin (Figure 3.5 D2). 
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These data show that ginkilobin-2 – if not recruited for secretion by the signal 

peptide – binds to actin filaments, and that subdomain A1 is functionally 

equivalent to the full-length protein with respect to this actin-binding activity. 

 



Results 

34 

Figure 3.4 Localization patterns observed for expression of ginkbilobin-2 subdomains fused with 

GFP in the background of the actin marker line RFP-FABD2. (1) showing the GFP signal, (2) the 

RFP signal, and (3) the merge of both signals. The schematic sketch shows the structure of the 

respective construct. (A) Signal peptide upstream of C-terminally fused GFP. (B) Full-length 

ginkbilobin-2 including the signal peptide upstream of C-terminally fused GFP. (C) Full-length 

ginkbilobin-2 downstream of N-terminally fused GFP. (D) Ginkilobin-2 lacking the signal peptide 

upstream of C-terminally fused GFP (NSP). (E) Subdomain A1 upstream of C-terminally fused 

GFP. Scale bar 20 µm. 

 

Figure 3.5 The filamentous signal visualized by the subdomain A1 of ginkbilobin-2 is caused by 

actin. (A) Subdomain A1 upstream of C-terminally fused GFP after treatment with 1 µM of 

latrunculin B for 30 min. (B) Ginkbilobin-2 lacking the signal peptide upstream of C-terminally 

fused GFP (SP) treated with 1 µM of latrunculin B for 30 min. (C) Actin signal in the GF-11 line 

after treatment with 1 µM of latrunculin B for 30 min. (D) Labelling of actin filaments in a stable 

transformant expressing subdomain A1 upstream of C-terminally fused GFP using 

TRITC-phalloidin. The GFP signal is shown in (1), the phalloidin signal in (2), the merge of both 

signals in (3). Scale bar 20 µm. 
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3.3 Stable transformants of truncated variations of ginkbilobin-2 

3.3.1 Subdomain A1 is sufficient to modulate nuclear positioning 

To see whether the association of ginkbilobin-2 with actin would alter any 

actin-dependent cellular responses, different stable overexpression lines were 

generated in tobacco BY-2 via Agrobacterium-mediated transformation and 

phenotyped. Stable transformants were obtained for subdomains A1, B, and 

full-length ginkbilobin-2 without the signal peptide (SP, also abbreviated as NSP 

for “non-signal peptide”). Subdomain A1 localized along transvacuolar actin 

cables and in rod-like punctate structures adjacent to the nuclear rim (Figure 3.5 

D1-3, Figure 3.6 A1-3). For the lines overexpressing NSP or subdomain B (Figure 

3.6 B and 3.6 C), only weak expression could be obtained that was localized in 

the same pattern as seen for the transiently transformed cells (Figure 3.3 E and 

3.3 D). This indicates that higher stable expression of these two transgenes might 

impair viability, such that during the course of cultivation only the weak 

expressors had persisted. Stably transformed calli of C-terminal fused GFP of full 

length ginkbilobin-2 image showed small vesicles all over the cell, while the 

C-terminal fusion of the signal peptide with GFP accumulated in vesicles in some 

part of the cell (see the figures of fl-GFP and SP-GFP in Appendix 5.10, P. 85).   

Premitotic nuclear positioning is a trait that depends on a perinuclear array of 

actin filaments (Durst et al., 2014) that move and tether the nucleus in concert 

with microtubules and plant specific minus-directed KCH-kinesins (Kühn et al., 

2013). We therefore measured nuclear positioning on day 3 after subcultivation 

and observed that nuclear positioning was significantly delayed in the 

overexpressor of subdomain A1 (Figure 3.6 D) and NSP, compared to the 

non-transformed BY-2 control. In contrast, overexpression of subdomain B did not 

cause such a delay. The comparison of the isolated subdomain A1 with the NSP 

construct (that also harbours subdomain A1, but did not produce a stronger effect) 

and with subdomain B demonstrates that subdomain A1 is necessary and 
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sufficient to confer an inhibition on nuclear positioning. 

 

 

Figure 3.6 Phenotypes of stable transformants and the nuclear positioning. Phenotypes of stable 

transformants for C-terminal GFP-fusions with subdomain A1 (A), subdomain B (B), or the SP 

construct, i.e. ginkbilobin without signal peptide (C). In (A-C), GFP is shown in (1), dic in (2), 
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merge of the two channels in (3). Scale bar 20 µm. (D) Nuclear positioning in the stable 

transformants shown in (A-C) as compared to the non-transformed control. A value of 30% 

indicates that the nucleus is completely lateral, whereas a value of 50% indicates that the nucleus 

has moved exactly into the cell center. Values represent means and standard errors from 1500 

individual cells collected from three independent experimental series. Asterisks represent 

differences with the control that are significant at the 95% confidence level (Student‟s t-test). 

3.3.2 Subdomain A1 restored the cell synchrony and inhibited elongation of 

IAA treated cells 

The cell division of BY-2 cell line is partially synchronized and the synchrony can 

be disturbed by auxin transport inhibitor of 1-N-naphthylphthalamic acid (NPA) 

and auxin indole-3-acetic acid (IAA) (Maisch and Nick, 2007). To confirm 

subdomain A1 was actin bundling and to better understand the role of actin in 

auxin-dependent patterning, the stably transformed cell lines subdomain A1, B, 

NSP and BY-2 WT were incubated in the presence of 10 µM NPA and 2 µM IAA 

for 4 days to check the cell numbers per file. The nontransformed and 

transformed cells both exhibited peaks of files of two, four and six, and the even 

numbers were more frequent than the uneven numbers. For BY-2 WT (Figure 3.7 

A) and NSP (Figure 3.7 D), after the treatment of IAA and NPA, files consisting of 

4 cells decreased and files consisting of 1 cell increased. Hence, cell division was 

delayed in the presence of IAA and NPA, whereby treatment with 2 µM IAA had a 

stronger inhibitory on cell division than that of 10 µM NPA. Similar to the WT, in 

cells overexpressing Subdomain A1 (Figure 3.7 B), files consisting of 4 cells 

decreased and files consisting of 1 cell increased in the presence of IAA and NPA. 

However, the frequencies of files consisting of 4 cells were equal after addition of 

IAA and NPA. Subdomain A1 restored the synchrony in the presence of IAA 

compared with BY-2 WT and NSP. For Subdomain B, we did not see any 

significant changes of synchrony in the presence of Both IAA and NPA. 

Comparing the frequencies of transformed cells and that of nontransfromed cells 

(Figure 3.7 E), files consisting of 4 cells decreased and files consisting of 1 cell 

increased. Thus the cell divisions of the transformed cells were delayed.  
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After 7 days incubation in the presence of 10 µM NPA and 2 µM IAA, cell length 

and width were measured (Figure 3.7 F). The cell widths were similar with or 

without IAA or NPA. However, we observed a significant change of cell length. 

BY-2 WT and NSP overexpressing cells became shorter in the addition of NPA 

and IAA compared with the untreated samples. In conclusion, both cell division 

and cell elongation were affected. In cells overexpressing subdomain A1 and 

subdomain B, cell elongation was a little elevated in the presence of NPA, while it 

was inhibited in the presence of IAA.  

 

 

 

Figure 3.7 Effect of NPA and IAA on division pattern and cell length and width. (A-D) Frequency 

distribution over cell number per file of BY-2 WT, Subdomain A1, B, NSP overexpressing cells with 

or without 10µM NPA and 2µM IAA treatment for 7days. (E) Frequency distribution over cell 
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number per file of 7-day-old BY-2 WT, Subdomain A1, B and NSP cells. (F) 7-day-old cell length 

and width with or without 10µM NPA and 2µM IAA treatment. Values represent means and 

standard errors from 1500 individual cells collected from three independent experimental series. 

3.4 Synthetic and partial ginkgilobin-2 peptides conjugated to a 

cell-penetrating peptide  

3.4.1 Localization of ginkbilobin-2 subdomain conjugates in BY-2 cells 

The attempt to generate stable overexpression cell line of the GFP-fusions with 

ginkbilobin-2 fragments was only partially successful, because the signal 

observed in the transformants was relatively low (see Figure 3.6 A-C) compared 

to the signal conferred by transient expression (see Figure 3.3). This indicates 

that overexpression of these transgenes impinges on viability, such that weaker 

expressors are favoured over stronger expressors. The stringency of antibiotic 

selection (100 mg l-1 kanamycin) was already at the maximum – further increase 

of stringency would therefore cause sublethality even of transformed cells. We 

therefore employed a different strategy: The cell-penetrating peptide (CPP) 

BP100 can carry functional cargoes into plant cells (Eggenberger et al., 2011), 

which allows to administer a defined quantity of the function at any defined point 

in time. Therefore, various subdomains of ginkbilobin-2 were coupled with 

rhodamine B (RhB) as a fluorescent reporter and conjugated with BP100 by 

chemical synthesis, and then introduced into BY-2 WT cells. Since the previous 

experiments had shown that the actin-binding activity can be mainly attributed to 

subdomain A, we synthesized conjugates for subdomains A1, A2, and A3, 

respectively. Our specific aim here was to identify which of the three subdomains 

are responsible for binding to actin. 
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Figure 3.8 Localization of the peptide conjugates in BY-2 cells. Introduction of ginkbilobin-2 

peptide conjugates with the cell-permeating peptide BP100 and rhodamine B as a fluorescent 

reporter into non-transformed cells of BY-2 (A-D), or into the actin-marker line GF11 expressing 

the actin-binding domain 2 of plant fimbrin in fusion with GFP (E-H). (A), (E) Subdomain A1. (B), 

(F) Subdomain A2. (C), (G) Subdomain A3. (D), (H) Unconjugated BP100. Panels (1E-1H) show 

the rhodamine signal, (2) the actin signal, and (3) the merge of both signals, respectively. Arrows 

show the punctate structures. Scale bar 20 µm. 

Preparatory experiments demonstrated that treatment with the subdomain-CPP 

conjugates caused rapid cell death, if the concentration exceeded 1 µM. To follow 

uptake microscopically, we thus used 0.5 µM of the ginkbilobin-2 subdomain-CPP 

conjugates as well as the non-conjugated BP100 and incubated non-transformed 

BY-2 WT cells for 24 hours to test the uptake by spinning-disc microscopy. 

Confocal sections near the central plane of the cell demonstrated clearly that the 

fluorescent marker was present in the cytoplasm (Figure 3.8 A-D).  For the 

conjugates with subdomain A1, A2, and A3, the signal was forming punctate 

structures. Some of these dots seemed to be aligned like beads on a string 

(Figure 3.8 A-C, shown with arrows). RhB coupled with BP100 alone was also 

transferred into the cytoplasm but produced diffuse labelling throughout the 

cytoplasm and was also bound along the cross wall (Figure 3.8 D). To get more 

insight into the localization of the peptides, the stable actin marker cell line GF-11 

was incubated with the conjugates. The structures visualized by the subdomain 

A1 conjugate (Figure 3.8 E1) were associated with the transvacuolar actin cables. 

The fluorescence of the actin cables also appeared somewhat discontinuous. A 

similar outcome was observed for the subdomain A3 (Figure 3.8 G1-3). In 

contrast, for subdomain A2 and the non-conjugated BP100 (Figure 3.8 F, H), the 

RhB signal did not colocalize with actin filaments, which also were of contiguous 

appearance. Here, also a considerable fraction of the RhB signal was associated 

with the cross-walls. 
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3.4.2 Cell death can be induced by actin-binding ginkbilobin-2 peptides in 

fusion with BP100 

We analyzed the cell-death response triggered by the conjugates in more detail, 

by employing the uptake of the non-permeable dye Evan‟s Blue as readout for 

mortality. A dose-response of mortality, scored 1 h after addition of the conjugates, 

showed a threshold at 1 µM and saturation (with 100% mortality) from 2 µM 

(Figure 3.9 A). As a control, we tested the unconjugated BP100 carrier but 

observed only a minor induction of mortality (saturating at around 25% from 2 µM), 

demonstrating that the high mortality is caused by the ginkbilobin peptide cargo 

and not by the carrier itself. Since the concentration range between threshold and 

saturation was very narrow at 1 h, this makes it difficult to see potential 

differences between the peptides. We therefore followed the time course of 

mortality for a concentration of 1 µM (Figure 3.9 B). Here, mortality developed 

most rapidly for the A1 and A3 conjugates, whereas A2 produced a weaker effect, 

and the BP100 carrier alone did not cause significant mortality, even after 

incubation for 24 h. Thus, those conjugates that decorated actin cables (A1 and 

A3), were also effective in inducing cell death, whereas the A2 conjugate that did 

not decorate actin cables, was also a less efficient trigger of cell death. 

To gain insight of the progression of cell death, we traced the details of the 

cellular response of 4-day-old GF-11 treated with 2 µM subdomain A1 conjugate 

under the microscope for 8 min (Figure 3.9 C). Following that short time, the cell 

shrinked and the cables of the transvacuolar actin were destroyed rapidly. 

Simultaneously, the rhodamine labelled conjugated peptide went inside of the cell 

immediately around the nucleus (Figure 3.9 C second panel RBA1) due to the 

damaged cell membrane. In addition, some stress vesicles appeared in the 

6-day-old GF-11 cells if grown in the presence of 0.5 µM A1 conjugate incubated 

for 24 hours (Figure 3.9 D 1-4). 
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Figure 3.9 Peptide conjugates induced cell mortality in BY-2 cells. (A), (B) Mortality induced in 

non-transformed BY-2 cells upon incubation with the ginkbilobin-2 peptide conjugates and the 

non-conjugated BP100 carrier. (A) Dose response of mortality over the concentration of the 

conjugate with subdomain A1 (RBA1, diamonds), subdomain A2 (RBA2, squares), subdomain A3 

(RBA3, triangles), or unconjugated BP100 (RBP100, circles) for a treatment of 1 hour. (B) Time 

course of mortality for treatment with 1 µM of the same conjugates as in (A). Data represent mean 

values and standard errors from three independent experimental series comprising a population 

of more than 3000 cells for each curve. (C) Detailed GF-11 cell death in addition of 2µM 

subdomain A1 conjugate (RBA1). First panel shows GFP of GF11, second panel shows 
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rhodamine B signal of RBA1, third panel shows merge of the two channels. (D) Cellular response 

of GF-11 cells over RBA1 treatment of 24 hours. (1) represents GFP, (2) represents rhodamine 

signal, (3) represents dic channel, (4) represents merge of the all three channels. Scale bar 20 

µm. 

3.4.3 Cellular uptake of conjugated peptides of ginkbilobin-2 

According to the cell mortality results described above, the time point of uptake by 

3-day-old BY-2 WT cells was tracked using 0.5 µM subdomain conjugates (A1, A2 

and A3) and unconjugated BP100 at 6, 12 and 24 hours by spinning-disc 

microscopy. Confocal sections near the central plane of the cell demonstrated 

clearly that the fluorescent marker was present in the cytoplasm (Figure 3.10 A-D). 

The uptake was increased with the time course. For the conjugates with 

subdomain A1, A2, and A3 (Figure 3.10 A-C), the signal was forming punctate 

structures and bound along the cross wall after being incubated for 24 hours, 

whereas the cell uptake at 6 and 12 hours showed a diffuse label throughout the 

cytoplasm and was also bound along the cross wall. RhB coupled to BP100 alone 

was also transferred into the cytoplasm but only produced a homogeneous 

fluorescent labelled pattern without any punctate structures even for 24 hours 

incubation (Figure 3.10 D). And these peptoid-filled vesicles of subdomain A1 

conjugates at 24 hours observed in the cell were attached to actin which was 

already shown in Figure 3.8 E.  
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Figure 3.10 Visualization of BY-2 cell uptake at different time points. Introduction of ginkbilobin-2 

peptide conjugates with the cell-permeating peptide BP100 and rhodamine B as fluorescent 

reporter into BY-2 WT cells. (A) Sudomain A1 (RBA1). (B) Sudomain A2 (RBA2). (C) Sudomain 

A3 (RBA3). (D) Unconjugated BP100 (RBP100). Scale bar 20 µm. 
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3.4.4 Actin bundled treated with peptide conjugates of ginkbilobin-2 in GF11 

cell line 

To find out the detailed cellular response, 2 µM conjugated ginkbilobin-2 peptides 

and unconjugated BP100 were delivered into the 4-day-old stable actin marker 

cell line GF11. Following 20 min visualization under the spinning-disc microscope, 

it became evident that actin was bundled under treatment of conjugated peptides 

of ginkbilobin-2 subdomain A1, A2 and A3 (Figure 3.11 A-C) with subdomains A1 

and A3 (Figure 3.11 A and C) being the more potent one than subdomain A2 

(Figure 3.11 B). The result was consistent with the finding that cell mortality is 

increase in subdomain A1 and A3 overexpressing cells (Figure 3.9 A and B). 

BP100 coupled with Rhodamine B only (Figure 3.11 D) and the control GF11 

without any treatment (Figure 3.11 E) did not exhibit any actin bundle. Therefore 

bundling of actin can be understood as a stress signal that indicates the struggle 

against toxic peptides.   

 

Figure 3.11 Stress response of actin filaments to subdomain conjugates of ginkbilobin-2. GF11 

cell response to subdomain conjugates over 20 min. (A) Subdomain A1 conjugate (RBA1). (B) 

subdomain A2 conjugate (RBA2). (C) Subdomain A3 conjugate (RBA3). (D) Unconjugated BP100 

(RBP100). (E) Control GF11 cells without treatment. Scale bar 20 µm. 
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3.4.5 Phytotropins and actin drugs affect the uptake of conjugated peptides  

Conjugated peptides in fusion with BP100 were seen to accumulate in a highly 

heterogenous pattern. Even neighbouring cells of a cell file could differ in their 

uptake. This observation was correspondence with the doctoral thesis of Dr. Kai 

Eggenberger (2010). 

 

Figure 3.12 Distribution of BP100 in a 

tobacco BY-2 cell file after 24 hours of 

incubation. Scale bar 20 μm. 

The amount of BP100 that had 

accumulated over 24 hours varied 

greatly between individual cells of a 

file as shown in figure 3.12. In this file, 

the two cells from the right clearly had 

accumulated the least within the cell 

file, while the next two cells had 

accumulated the most. And the other 

conjugated peptides fused with 

BP100 had the similar heterogenous 

pattern (data not shown). 

The different uptake of the cells could be affected by auxin transport (doctoral 

thesis of Dr. Kai Eggenberger, 2010). To verify the conjugated peptides in fusion of 

BP100 were affected by auxin transport, tobacco BY-2 WT and GF-11 cells were 

pretreated with auxin efflux inhibitor 1-N-naphthylphthalamic acid (NPA), the 

naturally occurring auxin 3-indole-acetic acid (IAA), actin inhibitor latrunculin B 

and phalloidin. Following that, the cell mortality incubated with the peptide 

conjugates was recorded. 

The effect of phytotropins and actin drugs on actin organization is showed in 

Figure 3.13. The overexpression of the actin-binding domain GF11 induced a 

strong reorganization of the actin cytoskeleton in the cell cortex (Figure 3.13 A-D 0 

min). The presence of 2 µM IAA led to a debundling of actin and numerous fine 
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cortical actin filaments were observed (Figure 3.13 A 10 min). In the presence of 

10 µM NPA, the cortical actin filaments were heavily bundled over 10 min (Figure 

3.13 B). Latrunculin B blocks actin association and dissociation, which binds and 

irreversibly sequesters G-actin, led to an elimination of actin filaments into rods 

(Figure 3.13 C). Phalloidin decreases the rate of actin dissociation which causes 

increase of F-actin, and more actin filaments were associated with plasma 

membrane (Figure 3.13 D).

 

Figure 3.13 Effect of phytotropins and actin drugs on actin organization. GF-11 cell line was 

incubated with phytotropins (IAA and NPA) for 10 min and actin drugs (latrunculin B and phalloidin) 

for 30 min. (A) IAA treatment. (B) NPA treatment. (C) Latrunculin B treatment. (D) Phalloidin 

treatment. Scale bar 20 μm. 

Following the pretreatment with the inhibitors above, the various subdomain 

conjugated peptides of ginkbilobin-2 and unconjugated BP100 were added, and 

immediately viewed the following 30 min under the microscope. The actin 

filaments were heavily bundled except the Lat B pretreated GF11 cells which was 

irreversible compared to the control with unconjugated BP100 (see the figures in 

appendix 5.11, P. 85). After incubation of BY-2 cells with the peptides for 6 hours, 

cell mortality was counted. The uptake of the conjugated peptides after 
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preincubation with the previously mentioned drugs was reduced compared to the 

untreated cells coinciding with decreased cell mortality to varying degrees from 

2.3% to 15.15% (Table 3.1). However, the cell mortality of GF11 cells which 

overexpress actin-binding domain 2 of plant fimbrin was higher compared to BY-2 

WT cells.  

Table 3.1 Effect of inhibitors on uptake of conjugated peptides. The cell mortality and the variation 

of the cell mortality treated with the peptide conjugates in company with/without the inhibitor were 

shown in the table. NPA: 1-N-naphthylphthalamic acid, IAA: 3-indole-acetic acid, Lat B: latrunculin 

B. 

 

3.5 Summary 

Seeds of Ginkgo biloba contain high levels of the antifungal protein ginkbilobin 

(Wang and Ng, 2000) that exhibits sequence similarity to embryo-abundant 

proteins mainly from gymnosperms, and a homology with the extracellular 

domain of angiosperm cysteine-rich receptor-like kinases (Sawano et al., 2007; 

Liu et al., 2010). To get access to putative functions of ginkbilobin-2, we did a 

phylogenetic tree and alignment. The conservation of the cysteine signatures 

along with numerous other motifs of the ginkbilobin-2 domain throughout the 

evolution of vascular plants suggests that these motifs confer important biological 

functions. Alignments showed that the isolated subdomains (A1, A2, A3, B1 and 

B2) had additional homologues, and subdomains A1 was homology to 

CLASP-N-like/armadillo fold proteins which mediate interactions between actin 

filaments and microtubules. 

app:ds:variation
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With these putative speculations, we generated various cell lines overexpressing 

either full length or truncated ginkbilobin-2 with GFP tags for subsequent works. 

And during the process of establishing transgenic cell lines, the transformation 

procedure of the Buschmann method (Buschmann et al., 2011) was modified 

which improved the performance in transforming tobacco BY-2 cells. Microscopic 

studies demonstrated that there was a signal peptide (26aa) at the N-terminus of 

ginkbilobin-2 and the localization of subdomain A1 might be related to actin 

filaments. To verify the pattern of subdomain A1, it was cotransformed with stable 

actin marker cell line FABD2-RFP and the two constructs were colocalizing. To 

further confirm the relation with actin, latrunculin B was used to eliminate the actin 

of subdomain A1 transformants and the phenotypes of the stable transformants 

treated with auxin were also studies. All the findings demonstrated that 

subdomain A1 labelling actin filaments.  

In the last part, we employed a strategy based on chemical engineering using 

synthetic peptides comprising different parts of ginkbilobin-2 conjugated with the 

cell-permeating peptide BP100 and rhodamine B. We observed that higher 

amount of subdomain A1, A2 and A3 conjugates induced a rapid and efficient cell 

death. And the binding of subdomain A1 motives to actin filaments was monitored. 

The uptake of cell-penetrating peptide BP100 was reported to be driven by auxin 

transport (doctoral thesis of Dr. Kai Eggenberger, 2010). To gain insight of the 

mechanism, phytotropins and actin drugs were preincubated with the cells, and it 

demonstrated that the cell mortality treated with the peptide conjugates fused with 

BP100 was decreased compared to the untreated ones. This finding supports 

that the uptake is affected by auxin transport. 

According to these findings, we conclude that ginkbilobin can interfere with the 

actin cytoskeleton of the target cell to activate an evolutionary conserved 

apoptotic pathway. However, a completed understanding about the function in 

vivo is still far from being accomplished. 
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4. Discussion 

Fungi are an extremely diverse group of organisms with around 250,000 species 

and widely distributed in every ecosystem. Plants have evolved a variety of potent 

defence mechanisms, such as reinforcement of cell walls, hypersensitive 

responses (HR), and synthesis of secondary metabolites or antifungal proteins 

(Hammond-Kosack and Jones, 1996; Selitrennikoff, 2001; Wallace, 2004). So far, 

hundreds of antifungal proteins have been discovered in plants and are classified 

into different groups, such as thaumatin-like proteins, defensins, cyclophilins, 

ribosome-inactivating proteins, pathogenesis-related proteins, chitin-binding 

proteins and so on (Selitrennikoff, 2001). In the plant life cycle, the period of the 

seed germination is especially vulnerable for pathogen attack because pathogens 

could invade to seed storage tissues through the ruptured seed coats. Thus many 

plant seeds must contain antimicrobial proteins to protect their nutritious tissues 

from invaders. An antifungal protein ginkbilobin-2 isolated from the endosperm of 

Ginkgo seeds inhibits the growth of plant and human pathogenic fungi such as 

Fusarium oxysporum and Candida albicans. Interestingly, ginkbilobin-2 does not 

show any sequence similarity to other antimicrobial proteins such as cyclophilin, 

defensin, miraculin and thaumatin-like proteins (Sawano et al., 2007). 

What is the mechanism of this novel antifungal protein? In the following sections, 

we will discuss the findings from the results. First, the potential functions of 

ginkbilobin-2 will be discussed based on the previous work. In the second part, 

the advantages and cell responses in using the cell-penetrating carrier BP 100 to 

introduce functional cargoes (ginkbilobin-2 subdomains) into BY-2 cells are 

described. And based on these findings, we propose a working model on the 

function of ginkbilobin-2. Finally, the outlook is given, the remaining questions and 

the future work that should be answered and conducted. 
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4.1 Potential functions of ginkbilobin domains 

4.1.1 Antifungal protein ginkbilobin 

The plant receptor-like kinases (RLKs) play crucial roles in stress response and 

cellular processes. The cysteine-rich RLKs are a newly classified member with a 

C-X8-C-X2-C motif and are involved in plant defence responses, being induced by 

pathogen attack (Czernic et al., 1999). But the mechanism of the novel antifungal 

protein is not clear. To understand the function of ginkbilobin, we did sequence 

homology analysis. From the alignment, we found that subdomain A1 was similar 

to a CLASP-N-like/armadillo fold protein which linked actin filaments to 

microtubule plus-ends, and it performed a couple of different functions related to 

connecting different proteins. Thus domain A1 might be responsible for the 

binding to actin filaments. The tertiary structure of ginkbilobin-2 has been solved 

based on crystallization and is composed of two α-helices and a β-sheet 

composed of five strands, which form a compact single-domain architecture 

comprising the α-helices and the β-strands (Miyakawa et al., 2009). One of the 

α-helices produced by subdomain A2 constitutes a positively charged surface. 

This positively charged surface of subdomain A2 was suggested to interact with 

the (negatively charged) fungal surface, which might cause membrane 

permeabilization analogous to the case of sapecin, an insect defensin (Takeuchi 

et al., 2004). Subdomain B contains a specific and conserved cysteine signature 

(C-X8-C-X2-C) that is also characteristic of so-called DUF-26 homologues, a 

subgroup of the extensive receptor-like kinase superfamily of angiosperms. This 

subgroup of cysteine-rich receptor-like kinases is involved in plant defence to 

pathogen attack (Czernic et al., 1999). The conserved cysteine signature forms 

three disulfide bridges that are likely to contribute to the structural stability of 

ginkbilobin (Miyakawa et al., 2009), and by functional analogy might act in 

pathogen recognition. The functional context of this putative pathogen recognition 

is certainly different: in Ginkgo biloba, the B-domain would target the actin-binding 

subdomain A1 to the pathogen, whereas in the context of the cysteine-rich 
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receptor-like kinases of angiosperms, the recognition of the pathogen would 

trigger an intracellular kinase cascade culminating in the activation of defence 

genes and, in the case of a biotrophic pathogen, programmed cell death. 

4.1.2 Ginkbilobin binds to actin 

To prove the predicted function of the protein, gateway vectors of the full length 

and partial cDNA of ginkbilobin-2 were constructed and transferred into BY-2 WT 

cells. We found that small vesicles accumulated along the cytoplasmic strands 

showed in C-terminal GFP fusion with the signal peptide (Figure 3.3 A, P. 30) and 

with full-length ginkbilobin-2 (Figure 3.3 B, P. 30). GFP fused to the N-terminus of 

full-length ginkbilobin-2 exhibited a different pattern to that of the C-terminal one, 

which labelled actin filaments (Figure 3.3 C, P. 30). So we confirmed that there 

was a signal peptide at the N-terminus of ginkbilobin-2, and the N-terminal fusion 

with GFP hided the function of the signal peptide. To identify the domain that 

accounts for actin binding, we constructed gateway vectors of various 

subdomains. Subdomain A1, A1+A2, A1+A2+A3 and full length without signal 

peptide (NSP/SP) all exhibited the same actin like pattern, so domain A1 was 

destined to bind to actin (Figure 3.3 D, F, G and H, P. 30).  

To further prove the localization of the subdomains, we colocalized the various 

domains with the stable actin marker line FABD2. Subdomain A1 was colocalizing 

with actin filaments (Figure 3.4 E, P. 33) and full length without signal peptide 

(NSP) colocalized with a certain subpopulation of actin filaments (Figure 3.4 D, P. 

33). Latrunculin B treatment and TRITC-phalloidin actin staining of transformed 

BY-2 cells further confirmed that subdomain A1 is related to actin. Lat B was used 

as a tool to impair and eliminate the fine meshwork of actin filaments specifically, 

and the damaged and punctuated structures suggested that subdomain A1 and 

NSP labelled actin filaments (Figure 3.5 A-C, P. 34). Rhodamine-phalloidin actin 

staining showed that subdomain A1 (the filamentous structures labelled by GFP) 

and the rhodamine fluorescence were completely congruent (Figure 3.5 D, P. 34), 
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demonstrating that subdomain A1-GFP fusion protein labelled actin filaments. 

Since ginkbilobin-2 was cytoskeleton associated, we measured the nuclear 

movement of the stably transformed cell lines overexpressing subdomain A1, B 

and NSP. The nuclear position of 3-day-old subdomain A1 and NSP cells were 

significantly different compared to BY-2 WT, which were much closer to the 

plasma membrane, while for BY-2 WT it was closer to the center (Figure 3.6 D, P. 

36). The delay of the nuclear movement feed back to a microtubule or actin 

cytoskeleton dependent process. Actin and tubulin are abundant cytoskeletal 

proteins of eukaryotic cells that play major roles in cytoplasmic organization and 

motility in both interphase and mitotic cells. Nuclear positioning in many cells is a 

microtubule dependent process, while some cases of nuclear positioning is 

involved in the actin cytoskeleton. In animal cells, the nuclear movement is tightly 

associated with a microtubule organizing center (MTOC) such as a centrosome or 

spindle pole body (SPB) or moves along microtubules like other cellular 

organelles (Reinsch and Gonczy, 1998; Starr and Fridolfsson, 2010; Metzger et 

al., 2012). Plant nuclei move rapidly and farther along an actin filament 

cytoskeleton (Chytilova et al., 2000). In plant cells, nuclei move large distances 

along the actin filaments, often undergoing shape changes when they move 

(Traas et al., 1987; Chytilova et al., 2000). They move more rapidly than animal 

nuclei by a unique mechanism involving actin and a myosin motor that enables 

rapid and long-distance nuclear movement and nuclear positioning in response to 

environmental stimuli (Van Bruaene et al., 2003; Tamura et al., 2013). The spatial 

correspondence between the distribution of actin filaments and microtubules 

indicates cooperation between both cytoskeleton elements in generating the 

motive force for nuclear migration (Lloyd et al., 1987; Meindl et al., 1994). So we 

concluded that the continuous bundling of actin filaments was the reason for the 

delayed nuclear movement of subdomain A1 and NSP. 

The BY-2 cell line (Nagata et al., 1992; Nagata and Kumagai, 1999) grows in 

simple files that exhibit basic characteristics of pattern formation, like clear axis 
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and polarity of cell division and growth. Hence, this system provides a good 

approach to study spatial aspects of cell division and detect fluctuations of 

hormone levels during cell division (Redig et al., 1996). Actin is involved in 

auxin-dependent patterning. The state of actin filaments will be changed by auxin 

transport (Waller et al., 2002; Nick, 2006; Maisch and Nick, 2007). Cell division 

was synchronized in cell lines with characteristic peaks of frequency two, four and 

six per cell file in BY-2 cells. After the treatment with IAA and NPA, frequencies of 

four cells per file of all the cell lines decreased and one cells per file increased, 

suggesting that the division of the cells was postponed (Figure 3.7 B, P. 38). For 

subdomain A1 (Figure 3.7 B, P. 38), the frequencies of files consisting of four cells 

were equal in the presence of IAA or NPA, while the cell frequencies of four cells 

per file of BY-2 WT treated with IAA were lower than that of NPA treated (Figure 

3.7 A, P. 38). Therefore, subdomain A1 restored the synchrony in the presence of 

IAA compared with BY-2 WT. The results was consistent with Maisch who reported 

in 2007 that the constitutively bundled actin as well as the impaired synchrony of 

cell division depends on polar auxin transport, and the synchrony restored in the 

presence of IAA as the massive actin bundles are replaced by finer detached 

microfilaments. Previous studies of maize and rice coleoptiles demonstrate that 

IAA induced a dissociation of actin bundles and a formation of fine microfilament 

strands. The auxin response to actin involves changes in the bundling of actin 

filaments, with bundled actin being characteristic for a situation that auxin was 

depleted (Waller et al., 2002; Holweg et al., 2004). The cell length and width of 

cells overexpressing subdomain A1 was not changed after being treated with 

auxin. However, in the case of BY-2 WT, the cells became shorter in the presence 

of auxin (Figure 3.7 F, P. 38). It might be the bundling of actin balanced the 

increased auxin transport. 

In conclusion, the binding of ginkbilobin to actin was mediated by the subdomain 

A1 (Figure 3.3, 3.4 and 3.5, P. 30, 33, 34), and it was necessary and sufficient for 

the delay of premitotic nuclear positioning (Figure 3.6 D, P. 36) and also restored 
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the synchrony in the presence of IAA (Figure 3.7 B, P. 38). 

4.2 Advances in chemical engineering using functional cargoes 

4.2.1 BP100 – a novel cell-penetrating carrier 

Introduction of exogenous genes into plant cells is invaluable in various 

applications for basic plant science (Chilton, 2005). The Agrobacterium-mediated 

method (Broothaerts et al., 2005) and particle bombardment (Boynton et al., 1988) 

are two practical methods for delivering new genes into plant cells. Nevertheless, 

they all suffer from several limitations such as low yield in cell delivery, limitation 

of transgene sizes, risk of gene damage, restriction to applicable plant species 

and the requirement of expensive equipment (Miranda et al., 1992). Therefore, 

new gene transformations systems are needed to explore for plant gene study. 

Cell-penetrating peptides which could be used successfully for the intracellular 

delivery of molecules offer a promising tool for noninvasive delivery. 

Cell-penetrating peptides have common features that are short, amphipathic and 

net positively charged. And these peptides offer advantages over the traditional 

transformation techniques due to the efficiency for a wide range of cell types 

(Lindgren et al., 2000). In the last few decades, several cell-penetrating peptides 

have been demonstrated to pass through the plasma membrane of eukaryotic 

cells, and the mechanism is still under investigation. Peptide taken up into cells 

often involves the formation of a channel, either in the plasma membrane or in the 

endosomes. Pore formation in the plasma membrane like such caused by insect 

defensins will provoke cell death (Hoffmann et al., 1996). In contrast for these 

cell-penetrating peptides, the translocation is reported to be receptor and energy 

independent and partially driven by endocytosis (Zorko and Langel, 2005). Zorko 

and Langel (2005) have constructed a hypothetical translocation diagram for 

CPPs, based on the known processes that occur during internalization (Figure 

4.1). The uptake of CPP is a multistep process. The first step is the interaction of 

the cationic CPP molecules with the exposed negatively charged parts of the 
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phospholipid layer of the cell surface. After the internalization, the CCPs with the 

fusion proteins or peptides are either bound to cell intracellular structures or free 

in the cytoplasma. The uptake of the labelled CPPs in or at the cell membrane 

can be detected by confocal microscopy. The peptidolytic degradation of CPP 

exists in the cell which has been confirmed (Pooga et al., 1998; Elmquist et al., 

2001), and finally, it will be released from the cell. 

 

Figure 4.1 Simplified kinetic scheme for cell-penetrating peptide (CPP) internalization. In and out 

represent the CPP inside and outside the cell; M represents membrane bound CPP; Free means 

non-bound CPP (for instance in cytosol); Bound means the CPP that is interacting with inner cell 

structures (like intracellular membranes, proteins, etc); Degradation products means proteolytic 

cleavage of the CPP in the cell; EC denotes endocytosis. Cited from (Zorko and Langel, 2005). 

Cell-penetrating peptides as delivery vehicles also have some undesirable side 

effects such as toxic effects on cell membranes or cell components and limitation 

of coupling large cargo (Zorko and Langel, 2005). BP100 (KKLFKKILKYL-amide) 

(Ferre et al., 2009) as a cell-penetrating carrier shares common features with 

other CPPs, and BP100 has minimal toxic effects. In this study, 1µM of BP100 

was sufficient to shuttle cargoes into BY-2 cells and did not show toxicity (Figure 

3.8 and 3.9, P. 40, 43). 

4.2.2 BP100 leading functional cargoes into plant cells 

CPPs as delivery agents could rapidly translocate useful cargoes into living cells. 
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Various types of cargoes such as proteins (Pooga et al., 2001), peptides (Taylor 

et al., 2000; Villa et al., 2000), fragments of DNA (Chen et al., 2007), small 

molecules (Violini et al., 2002) and liposomes (Tseng et al., 2002) have been 

attached to CPPs and introduced into the cell. Cargoes (proteins or peptides) and 

CPPs are normally conjugated in tandem as fusion proteins (Lin et al., 1995; Lin 

et al., 1996; Rojas et al., 1998). We have shown in previous work (Eggenberger 

et al., 2011) that BP100 can be used as an efficient cell-penetrating carrier to 

enter living plant cells. This tool can be exploited for chemical engineering, by 

conjugating specific peptides that bind to specific cellular targets as cargo to 

BP100. As a proof of principle, the actin-binding peptide Lifeact had been 

successfully introduced into tobacco cells using BP100 and used to visualize the 

perinuclear actin network. Those earlier experiments by Eggenberger et al. (2011) 

have shown that Lifeact coupled to BP100 can be introduced into BY-2 cells and 

binds to the actin microfilaments, while Lifeact without BP100 can also be taken 

up by the cells but the Lifeact has no function that only localizes in the cytoplasm. 

Cell-penetrating peptides (CPPs) are short cationic peptides with an amphiphilic 

character that interact with the negatively charged cell surface and can finally 

pass through the hydrophobic lipid bilayer without causing any permanent 

damage. Although short cationic sequences with an amphiphilic nature seem to 

be required in CPPs to enable their membrane passage, the mechanism of this 

bilayer penetration is still unclear (Fischer et al., 2004; Pujals et al., 2006; 

Fonseca et al., 2009). However, irrespective of the still enigmatic mechanism of 

uptake, the current work demonstrates that CPPs can be successfully used to 

introduce functional cargoes (in this case subdomain A1 of ginkbilobin) into living 

plant cells to obtain a specific cellular response namely programmed cell death 

(Figure 3.9, P. 43). However, lower amount of domain A1 conjugates could target 

to certain subpopulation of actin filaments (Figure 3.8, P. 40). 

Monitoring the cellular uptake of the conjugated peptides of the various domains 

over 24 hours, we found that the uptake was increased over the time. Up to 24 



Discussion 

59 

hours, punctate structures appeared within the cell, while at the time point 6 and 

12 hours, we only observed the diffuse rhodamine label throughout the cytoplasm 

(Figure 3.10, P. 45). In order to gain the mechanism of the internalization of 

BP100, we used actin drugs (Lat B and phalloidin) and phytotropins (IAA and NPA) 

to pretreat the cells. It has been reported in previous studies that the role of 

endocytosis in uptake of CPP is not negligible (Leifert and Whitton, 2003; Vives et 

al., 2003). It has been shown that the internalization of protegrin derived SynB 

peptides and Tat derived CPPs into living cells is related to endocytotic processes 

(Drin et al., 2003; Richard et al., 2003). In plants, actin filaments drive the 

receptor-mediated endocytosis (Engqvist-Goldstein and Drubin, 2003; Baluska et 

al., 2004). So we pretreated the BY-2 cells with Lat B and phalloidin, and it was 

shown that the death rate was decreased compared to not pretreated cells in the 

presence of BP100-subdomain conjugates (Table 3.1, P. 49), which was 

consistent with the previous work by Kai Eggenberger (2010, doctoral thesis). 

And the findings demonstrated that the internalization of BP100 carrier was 

mediated by actin filaments. It has already been confirmed that cell division and 

cell elongation was controlled by different auxin signalling pathways (Campanoni 

and Nick, 2005), and we have discussed above that the dynamic of actin 

filaments will be changed by auxin transport. We found that cell uptake of BP100 

conjugates within a cell file was heterogenous (Figure 3.12, P. 47). This suggests 

that the uptake of BP100 was dependent on auxin transport. The cells pretreated 

with phytotropins (IAA and NPA) decreased the cell death rate in the presence of 

BP100-subdomain conjugates afterwards compared to not pretreated cells (Table 

3.1, P. 49). These results indicated that the uptake of BP100 by the living plant 

cells was partially driven by actin mediated endocytosis. 

4.3 Actin as a deadly switch  

Our observations indicate a role of actin reorganization for the induction of 

programmed cell death, a phenomenon progressively emerging for eukaryotic 
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cells in general (for reviews see Gourlay and Ayscough, 2005; Franklin-Tong and 

Gourlay, 2008) that has also been demonstrated for plant cells (reviewed in 

Smertenko and Franklin-Tong, 2011). For instance, the bundling of actin cables in 

cells of the embryonic suspensor not only heralds ensuing cell death, but has 

been shown to be necessary and sufficient to initiate apoptosis in this system (for 

review see Smertenko and Bozhkov, 2014). We also could demonstrate in 

suspension cells of grapevine and tobacco that cell death triggered by bacterial 

Harpin elicitors is heralded by a rapid and specific reorganization of the actin 

cytoskeleton: The cortical actin filaments subtending the cell membrane detach, 

and the entire actin skeleton contracts into dense cables towards the nucleus 

(Qiao et al., 2010, response of Vitis rupestris, to Harpin N; Guan et al., 2013, 

response of tobacco BY-2 to Harpin Z). Moreover, the grapevine phytoalexin 

resveratrol, which seems to be crucial for resistance to biotrophic pathogens, can 

induce a similar actin response, which is later followed by programmed cell death 

(Chang et al., 2011). In this study, we also observed that the actin filaments were 

bundled when the cell was treated with BP100-subdomain conjugated peptides 

over 20 min (Figure 3.11, P. 46), and some cells monitored under the microscope 

shrinked and died rapidly showing a destroyed actin cytoskeleton (Figure 3.9 C, P. 

43). Additionally stress vesicles along actin filament were observed in the post 

cycling cells incubated with subdomain peptide conjugates (Figure 3.9 D, P. 43). 

Based on the functional study conducted in the present work, a working model for 

the biological function of ginkbilobin can be proposed: The actin-bundling activity 

of subdomain A1 is prevented in the producer cell by efficient secretion of the 

protein by virtue of its N-terminal signal peptide. Upon secretion, ginkbilobin could 

be targeted through the B-domain to microbial surfaces and delivers there the 

actual “killer”, i.e. subdomain A1. The polar growth of fungal hyphae depends on 

the actin cytoskeleton (Pruyne and Bretscher, 2000a, b) sustaining very intensive 

recycling of membraneous material at the hyphal tip including numerous 

membrane fusion and separation events (Ayscough et al., 1997). These events 
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are highly dependent on actin turnover and therefore represent a very sensitive 

target for compounds with antifungal activity. When ginkbilobin binds to the 

hyphal tip, it is expected to enter the cell as consequence of intensive membrane 

recycling events and will eventually come into contact with actin filaments to bind 

and interfere with their dynamicity. As a consequence, polar growth is arrested. 

Moreover, suppression of actin dynamicity can induce apoptotic cell death also in 

fungi, a phenomenon known in the literature as „actin-mediated apoptosis‟ 

(Gourlay et al., 2004; Gourlay and Ayscough, 2005, 2006). The antifungal activity 

of ginkbilobin has been demonstrated by plate inhibition assays (Wang and Ng, 

2000; Sawano et al., 2007) for different fungi such as Fusarium oxysporum, 

Trichoderma reesei, or Candida albicans. Unfortunately, the cellular mechanism 

of growth inhibition has not been addressed in those studies. 

Based on this working model, the antifungal activity of ginkbilobin would exploit 

an evolutionarily conserved and ancient mechanism to control cell death via 

restricting actin dynamics. Later, by a functional shift in higher plants, the 

functional modules of ginkbilobin seemed to have been recruited for different 

purposes; the cysteine signature of the B-domain was integrated into 

receptor-like kinases such that microbial binding could be linked with defence 

signalling. Therefore, the A-domain became dispensable and was lost in most 

proteins except for some protective proteins of the seeds (the homologues 

harbouring the long C-terminal extension). Future work will be dedicated to 

analyse the cellular response of fungal hyphae to ginkbilobin and its functional 

subdomains. 

4.4 Conclusion 

According to the analysis and the experiments above, we could conclude that 

there was a signal peptide at the N-terminus of ginkbilobin-2, followed by an actin 

binding domain subdomain A1; subdomain A2 which formed a negative charged 

surface could be a transmembrane domain; subdomain A3 was similar to 
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bacterial surface protein without any predicted function. And the C-terminal part is 

the cysteine rich receptor-like domain (domain B) forming three disulfide bonds 

that involved in ligand binding. The cysteine-rich receptor-like kinases in 

Arabidopsis are induced by pathogen infection and convey hypersensitive 

reaction, which is a typical programmed cell death (Czernic et al., 1999). In our 

current study, we found that subdomain A1, A2 and A3 coupled with 

cell-penetrating carrier BP100 could induce actin bundling of BY-2 cells and with 

higher concentration it would provoke cell death. However, the cell death rate was 

decreased after preincubating with actin drugs and auxin. Therefore it was clearly 

demonstrated that the mechanism of the uptake of CPP-BP100 was related to 

endocytosis. All these findings from this study support the above proposed model 

– ginkbilobin after secretion will recognize and bind to the actin of fungal hyphae 

and trigger actin-mediated apoptosis. 

4.5 Outlook 

Antifungal proteins have been isolated from diverse organisms, including animals, 

insects, plants and fungi. The mechanisms of these proteins are manifold 

including fungal cell wall polymer degradation, membrane channel and pore 

formation, damage of cellular ribosomes, inhibition of DNA synthesis and 

inhibition of the cell cycle (Selitrennikoff, 2001). New antifungal proteins with 

unknown mode of actions are being discovered permanently. To get insight in the 

function of these proteins, we need bio-techniques to translocate the genes into 

cells. Membranes of eukaryotic cells form a serious barrier for delivering the 

target molecules into the cells. To overcome this problem, many efforts have been 

conducted using viral vectors; however, it has several side effects like gene 

damage or disorder. And now newly synthesised cell-penetrating peptides which 

could be internalized into the cells without permanent damage have been well 

developed and used for scientific purpose. In this study, it became clear that CPP 

BP100 can be used as a novel tool for rapid gene delivery into plant cells. 
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However, the mechanism of its translocation into cells needs further exploration. 

And it also could be used in future studies to construct antifungal assays to 

enquire fungal hyphae response to ginkbilobin and its subdomains. 
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5. Appendix 

5.1 Improved RNA extraction  

5.1.1 RNA extraction buffer and instruments preparation 

Extraction buffer: 2.5% CTAB (W/V), 100 mmol l
-1

 Tris-HCl (pH 8.0), 25 mmol l
-1

 EDTA 

(pH 8.0), 2 mol l
-1

 NaCl, 0.5 g l
-1

 Spermidine, 2% PVP (Sigma MW.40000). Before the 

extraction, 2% (v/v) β-mercaptoethanol and 1.5 mg ml
-1 

Proteinase K (Merk, Germany) 

was added to the extraction buffer. The extraction buffer was prepared freshly every time 

before use. After fully mixed, the extraction buffer was incubated at 42°C of water bath. 

Tris-HCl solution was prepared with the autoclaved DEPC-H2O, the other solutions were 

treated with 0.1% DEPC-H2O overnight then autoclaved. Mortars and tweezers were 

packed with silver paper, and sterilized in the oven at 180°C for 6 h. Tips and 2 ml 

reaction tubes were treated with 0.1% DEPC-H2O overnight then autoclaved. 

5.1.2 Total RNA extraction 

500 μl preheated extraction buffer was pipetted into a 2 ml reaction tube. The powder of 

grinded seeds with liquid nitrogen was immediately transferred into the reaction tube, 

vortexed vigorously for 2 min, incubated at 45°C for 90 min and mixed it every 10 min. 

0.5 ml water-saturated phenol: chloroform: isoamyl alcohol 25:24:1 was added, vortexed 

vigorously for 2 min, then centrifuged at 4°C, 14000 g, 5 min. 0.5 ml supernatant was 

pipetted to another 2 ml reaction tube. 1 ml Trizol was added, vortexed for 2 min and then 

incubated on the ice for 5 min. 0.3 ml chloroform was added, vortexed and kept for 5 min 

at room temperature, then centrifuged at 4°C, 14000 g, 10 min. 0.75 ml supernatant was 

pipetted to another 2 ml reaction tube, 1/4 volume 10 mol l
-1

 LiCl added, vortexed for 1 

min, then kept at 4°C overnight. The following day, the samples were centrifuged at 4°C, 

14000 g, 15min. The supernatant was discarded, 2 mol l
-1

 LiCl 1ml were added to 

suspend and rinse precipitate, and centrifuged again and the supernatant was discarded. 

The precipitate dissolved with 600 μl sterilized water (treated with 0.1% DEPC-H2O), 

equal volume chloroform added, vortexed and incubated at room temperature for 5min, 

then centrifuged at 4°C, 14000 g, 10 min. 0.5 ml supernatant was transferred to another 

2 ml reaction tube. 2.5 times volume (1.25 ml) ethanol and 50 μl (1/10 volume) 3 mol l
-1

 

NaAc (PH 5.2) was added, vortexed vigorously for 1 min, and incubated at -20°C for 1h. 

Following the last step, the samples were centrifuged at 4°C, 14000 g, 1 min. The 

supernatant was discarded, 1ml 70% ethanol was added to suspend and rinse the 

precipitate. The samples were centrifuged shortly, the supernatant were discarded, the 
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precipitate was dried at the room temperature for 2 min, and last 10 μl sterilized water 

(treated with 0.1% DEPC-H2O) was added to dissolve completely. 

5.2 Coding sequence of the genes under investigation 

Full length of ginkbilobin-2 (GenBank: DQ496113.1) 

MKTMRMNSAFILAFALAAAMLILTEAANTAFVSSACNTQKIPSGSPFNRNLRAMLADLRQNT

AFSGYDYKTSRAGSGGAPTAYGRATCKQSISQSDCTACLSNLVNRIFSICNNAIGARVQLVD

CFIQYEQRSF 

Signal peptide of ginkbilobin-2 

MKTMRMNSAFILAFALAAAMLILTEA 

Full length without signal peptide (NSP, SP) 

ANTAFVSSACNTQKIPSGSPFNRNLRAMLADLRQNTAFSGYDYKTSRAGSGGAPTAYGRAT

CKQSISQSDCTACLSNLVNRIFSICNNAIGARVQLVDCFIQYEQRSF 

Subdomain A1 

ANTAFVSSACNTQKIPSGSPF 

Subdomain A1+A2 

ANTAFVSSACNTQKIPSGSPFNRNLRAMLADLRQNTAF 

Subdomain A1+A2+A3 

ANTAFVSSACNTQKIPSGSPFNRNLRAMLADLRQNTAFSGYDYKTSRAGSGG 

Subdomain B 

APTAYGRATCKQSISQSDCTACLSNLVNRIFSICNNAIGARVQLVDCFIQYEQRSF 

5.3 Primer sequences for TA cloning and Gateway®-Cloning 

Primers Sequences (5’- 3’) 

Full length Fw 

Signal peptide Fw 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAAGAC

TATGAGAATGAATTCGG 

Full length Re N-terminal GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAGAAGCT
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CCTCTGCTCG 

Full length Re C-terminal 

Full length without SP Re 

Domain B Re 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGAAGCTCC

TCTGCTCGTATTG 

Signal peptide Re C-terminal GGGGACCACTTTGTACAAGAAAGCTGGGTCAGCTTCTGT

AAGTATGAGCATGGC 

Domain B Fw GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCACC

CACTGCCTACGG 

Full length without SP Fw 

Domain A1 Fw 

Domain A1+A2 Fw 

Domain A1+A2+A3 Fw 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCCAA

TACAGCCTTCGTC 

Domain A1 Re C-terminal GGGGACCACTTTGTACAAGAAAGCTGGGTCAAATGGGCT

GCCGCTTGG 

Domain A1+A2 Re C-terminal GGGGACCACTTTGTACAAGAAAGCTGGGTCGAAGGCAG

TGTTTTGCCTC 

Domain A1+A2+A3 Re 

C-terminal 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCTCCGCT

TCCTGCAC 

 

5.4 TA cloning technology overview 

5.4.1 Ligation Protocol 

Reaction component Volume 

2X Rapid Ligation Buffer, T4 DNA Ligase  5 µl 

pGEM
®
-T Easy Vector (50 ng) 1 µl 

A-tailing PCR product 3 µl 

T4 DNA Ligase (3 Weiss units/µl) 1 µl 

Final volume  10 µl 
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5.4.2 Transformation Protocol 

1. Prepare two LB/100 µg ml-1 ampicillin/0.5 mM IPTG/ 80 µg ml-1 X-Gal plates for each 

ligation reaction. Equilibrate the plates to room temperature. 

2. Centrifuge the tubes containing the ligation reactions to collect the contents at the 

bottom. Add 2 µl of each ligation reaction to a sterile 1.5ml reaction tube on ice.  

3. Take reaction tube(s) of frozen DH 5α Competent Cells from storage and place in an 

ice bath until just thawed (about 5 min). Mix the cells by gently flicking the reaction tube. 

Avoid excessive pipetting, as the competent cells are extremely fragile. 

4. Carefully transfer 50 µl of cells into each reaction tube prepared in Step 2.  

5. Gently flick the reaction tubes to mix and place them on ice for 20 min. 

6. Heat-shock the cells for 45–50 seconds in a water bath at exactly 42°C (do not shake). 

7. Immediately return the reaction tubes to ice for 2 minutes. 

8. Add 950 µl room-temperature LB medium to the reaction tubes containing cells 

transformed with ligation reactions. 

9. Incubate for 1.5 h at 37°C with shaking (~150rpm). 

10. Plate 100 µl of each transformation culture onto duplicate LB/ampicillin/IPTG/X-Gal 

plates. If a higher number of colonies is desired, the cells may be pelleted by 

centrifugation at 1,000 × g for 10 min, resuspended in 200 µl of LB medium, and 100 µl 

plated on each of two plates. 

11. Incubate the plates overnight (16–24 hours) at 37°C. If 100 µl is plated, approximately 

100 colonies per plate are routinely seen using competent cells that are 1 × 108 cfu/µg 

DNA. Longer incubations or storage of plates at 4°C (after 37°C overnight incubation) 

may be used to facilitate blue color development. White colonies generally contain 

inserts; however, inserts may also be present in blue colonies. 

For more information concerning the TA-cloning technology, refer to the manual 

“pGEM®-T and pGEM®-T Easy Vector Systems” (promega: http://www.promega.com). 
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5.5 Gateway® recombination reactions technology overview 

The Gateway® technology (Invitrogen Corporation, Paisley, UK) uses the bacteriophage 

site-specific lambda recombination system to facilitate transfer of heterologous DNA 

sequences between vectors (Hartley et al., 2000). The components of the lambda 

recombination sites (att sites) are modified to improve the specificity and efficiency of the 

system (Bushman et al., 1985).  

Two recombination reactions constitute the basis of this technology:  

1. BP reaction: Facilitates recombination of an attB substrate (attB-PCR product) with an 

attP substrate (called “donor vector”) to create an attL-containing entry clone. This 

reaction is catalysed by BP Clonase™ II enzyme mix (Invitrogen).  

2. LR reaction: Facilitates recombination of an attL substrate (called “entry clone”) with 

an attR substrate (called “destination vector”) to create an attB-containing expression 

clone. This reaction is catalysed by LR Clonase™ II enzyme mix (Invitrogen).  

The presence of the ccdB gene within this system allows negative selection of the donor 

and destination vectors in E. coli following recombination and transformation. The CcdB 

protein interferes with E. coli DNA gyrase (Bernard and Couturier, 1992), thereby 

inhibiting growth of most E. coli strains. When recombination occurs (i.e. between an 

attB-PCR product and a donor vector or between an entry clone and a destination vector), 

the ccdB gene is replaced by the gene of interest. Cells that take up unreacted vectors 

carrying the ccdB gene or by-product molecules retaining the ccdB gene will fail to grow. 

This allows high-efficiency recovery of the desired clones. For more information 

concerning the Gateway® technology, refer to the manual “Gateway® Technology with 

Clonase™ II” (Invitrogen; http://www.invitrogen.com). This summary of the Gateway® 

technology was taken from the doctoral thesis of Dr. Jan Maisch (Botanical Institute I, KIT, 

Karlsruhe; Maisch, 2007). 

5.6 Gateway® destination vector of ginkbilobin-2 maps 
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5.7 Preparation of DNA-coated gold particles for biolistic transformation  

120 mg of gold particles (1.5-3.0 μm; Sigma-Aldrich) were suspended in 1 ml 50 % (v/v) 

sterile glycerol by mixing on a platform vortexer (Bender & Hobein, Zurich, Switzerland). 

Continuous agitation of the suspended gold particles was needed for uniform DNA 

precipitation onto gold particles maximizing uniform sampling. For each sample, 12.5 μl 

of gold suspension was removed to a 1.5 ml reaction tube.  

While mixing vigorously, the following components were added successively: 1 μg of 

DNA, 12.5 μl of 2.5 M sterile CaCl2, and 5 μl of 0.1 M sterile spermidine (Roth, Karlsruhe, 

Germany).  

Following supplementary mixing for 3 minutes, the DNA-coated gold particles were spun 

down briefly, and the supernatant was discarded. Subsequently, the gold particles were 

washed with 125 μl of ice-cold absolute ethanol and resuspended in 40 μl of ice-cold 

absolute ethanol. DNA-coated gold particles were loaded onto the macrocarrier 

(BIO-RAD, Hercules, CA, USA) in 10 μl steps. Particle bombardment was performed 

immediately after complete evaporation of the ethanol.  

This protocol was taken and modified from the doctoral thesis of Dr. Jan Maisch 

(Botanical Institute I, KIT, Karlsruhe; Maisch J., 2007). 

5.8 Sequences of ginkbilobin-2 subdomain peptide conjugates 

Peptide conjugates Sequence 

Rhodamine B- BP100- RhB-(KKLFKKILKYL)-(ANTAFVSSACNTQKIPSGSPF)  
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subdomain A1 (RBA1) 

Rhodamine B- BP100- 

subdomain A2 (RBA2) 
RhB-(KKLFKKILKYL)-(NLRAMLADLRQNTAF) 

Rhodamine B- BP100- 

subdomain A3 (RBA3) 
RhB-(KKLFKKILKYL)-(SGYDYKTSRAGSGG) 

Rhodamine B- BP100 

(RBP100) 
RhB-(KKLFKKILKYL) 

5.9 Alignment of ginkbilobin-2 subdomains with other homologous proteins 

A4ZDL 6 represents the antifungal protein ginkbilobin-2. 

Subdomain A1 

 

The three of the homologous protein are CLASP-N-like/armadillo fold, homology behind 

CLASP-N-domain. Phytophthora (DON3V3), leaf cutter ant (H9HXS0), carpenter ant 

(E2B1J0). 

Subdomain A2 

 

The six of the homologous proteins are located at the start of the histidine kinase. 

Herbaspirillum (J2UWU2), Meiothermus Silvanus (D7BA94), Bradyrhizobium (H0TB79, 

H0SFQ8, H0RVR1). 

Subdomain B1 
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The homologous proteins are receptor-like kinase function envisaged. Ricinus communis 

(B9S441), Populus trichocarpa (B9H872), Maize DUF26 domain (K7TJX4).  

Subdomain B2 

 

Unknown soybean protein (K7LJU0), Staphylococcus several sequences linked with 

pathogenicity (K8YA55), Listeria protein (D2P5U3), Diatom protein (K0TNB8), Castor 

bean DUF26 domain kinase (B9S7M6).  

5.10 Visualization of stable transformed calli of full length and signal 

peptide of ginkbilobin-2 with C-terminally fused GFP 

  

5.11 Actin organization to the conjugated peptides of ginkbilobin-2 

pretreated with phytotropins and actin drugs 

The following figures showed the actin response of 4-day-old GF11 cells incubated with 2 

μM various subdomain conjugates A1, A2, A3 of ginkbilobin-2 (RBA1, RBA2, RBA3)  

and unconjugated BP100 (RBP100) over 30 min pretreated with phytotropins (2 M μM 

IAA and 10 μM NPA) for 10 min and and actin drugs (1 μM latrunculin B and 1 μM 

phalloidin) for 30 min. (A-D) Actin response in addition of RBA1, RBA2, RBA3 and 

RBP100 preincubated with IAA. (E-H) Actin response in addition of RBA1, RBA2, RBA3 

and RBP100 preincubated with NPA. (I-L) Actin response in addition of RBA1, RBA2, 

RBA3 and RBP100 preincubated with latrunculin B. (M-P) Actin response in addition of 

RBA1, RBA2, RBA3 and RBP100 preincubated with phalloidin. Scale bar 20 μm. 
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