Remark on linear spaces

Peter Volkmann

Let Λ be a field. A linear space over Λ is a commutative group V together with a multiplication $\cdot: \Lambda \times V \rightarrow V$ satisfying the following:

1) $\lambda \cdot(x+y)=\lambda \cdot x+\lambda \cdot y \quad(\lambda \in \Lambda ; x, y \in V)$,
2) $(\lambda+\mu) \cdot x=\lambda \cdot x+\mu \cdot x \quad(\lambda, \mu \in \Lambda ; x \in V)$,
3) $(\lambda \mu) \cdot x=\lambda \cdot(\mu \cdot x) \quad(\lambda, \mu \in \Lambda ; x \in V)$,
4) $1 \cdot x=x \quad(x \in V)$.

For proving that a subset W of a linear space V is a linear subspace, it is sufficient to show

$$
\begin{aligned}
& W \neq \emptyset \\
& x, y \in W \Rightarrow x+y \in W \\
& \lambda \in \Lambda, x \in W \Rightarrow \lambda \cdot x \in W
\end{aligned}
$$

In particular, it is not necessary to check explicitely the group-structure of W. Now we shall see that, analogously, it is not necessary to use the groupnotion explicitely in the definition of a linear space.

Theorem. Let V be a set, Λ a field, and let $+: V \times V \rightarrow V, \cdot: \Lambda \times V \rightarrow V$ be given. Then V is a linear space over Λ if and only if the following conditions hold:
I) $V \neq \emptyset$,
II) $(x+y)+z=x+(y+z) \quad(x, y, z \in V)$,
III) $x+y=y+x \quad(x, y \in V)$,
1), 2), 3), 4) from above, and
5) $0 \cdot x=0 \cdot y \quad(x, y \in V)$,
where 0 denotes the zero of Λ.
Proof. It is sufficient to show that I) - III) and 1) - 5) imply V to be a group: Because of I) and 5),

$$
\theta=0 \cdot x \quad(x \in V)
$$

is a well defined element of V, and we only need to verify

$$
x+\theta=x \quad(x \in V), \quad x+(-1) \cdot x=\theta \quad(x \in V) .
$$

Both formulas easily follow from 2), 4), and the definition of θ :

$$
\begin{aligned}
& x+\theta=1 \cdot x+0 \cdot x=(1+0) \cdot x=1 \cdot x=x, \\
& x+(-1) \cdot x=1 \cdot x+(-1) \cdot x=(1+(-1)) \cdot x=0 \cdot x=\theta .
\end{aligned}
$$

Example showing the above theorem to be false, when 5) is not required: Let $+: V \times V \rightarrow V$ satisfy I), II), III), and

$$
\text { IV) } x+x=x \quad(x \in V)
$$

(e.g., $V=2^{E}=\{x \mid x \subseteq E\}$ being the power-set of a set E, where + means the union of subsets of E, i.e., $x+y=x \cup y$ for $x, y \in V)$. When defining $\cdot: \Lambda \times V \rightarrow V$ by

$$
\lambda \cdot x=x \quad(\lambda \in \Lambda, x \in V)
$$

then 1), 2), 3), 4) are fulfilled, but V is not a linear space, unless V is a singleton. (In a linear space V, condition IV) forces every element to be zero.)

Typescript: Marion Ewald.

Author's address: Institut für Analysis, KIT, 76128 Karlsruhe, Germany

