
Efficient
Main Memory Deduplication

Through Cross Layer Integration
zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Dipl.-Inform. Konrad Miller
aus Kiel

Tag der mündlichen Prüfung: 17. Juli 2014

Hauptreferent: Prof. Dr. Frank Bellosa
Karlsruher Institut für Technologie

Korreferent: Prof. Dr. Wolfgang Schröder-Preikschat
Friedrich-Alexander Universität Erlangen-Nürnberg

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

An operating system with more random access memory available can use this
additional storage capacity to improve the overall system performance. This im-
provement mainly stems from additional caching and the increased degree of multi-
programming. A prime example is cloud computing. In cloud computing, virtual
machines (VMs) permit the flexible allocation and migration of services as well as
the consolidation of systems onto fewer physical machines, while preserving strong
service isolation. The main memory size limits how many VMs can be co-located
on a physical host and also greatly influences their I/O-speed.

Memory sharing was already a hot topic in the 60s, when time sharing systems were
first used. In consequence, the copy-on-write mechanism and simple sharing policies
were invented to reduce memory duplication from equal source objects (e.g., shared
libraries). Today, memory sharing is an important research topic again as previous
studies have shown that the memory footprint of VMs often contains a significant
amount of pages with equal content while at the same time traditional memory
sharing approaches are not applicable in such workloads. The main problem in
deduplicating virtual machine memory is a semantic gap caused by the isolation of
VMs that makes the identification of duplicate memory pages difficult.

Memory deduplication scanners disregard the sources of and reasons for duplicated
memory pages and base the detection of such sharing opportunities purely on their
content. Memory scanners continuously create and update an index of memory
contents at a certain rate. If memory is to be inserted into the index that already
contains the respective page-data, both memory pages are merged and shared using
copy-on-write. One of the two memory pages can then be released and reused fully
transparently to the affected processes (VMs).

Memory scanners directly trade computational overhead and memory bandwidth
with deduplication success and latency. Especially the merge latency, the time
between establishing certain content in a page and merging it with a duplicate, is
high in such systems. Current scanners, for example VMware’s ESX, need a long
time (in the range of 5–30 min) to detect new sharing opportunities and therefore
can only find static sharing opportunities instead of exploiting the full sharing
potential.

iv

This thesis makes the following, novel contributions:

1 Analysis of Duplication Characteristics

Prior work has focused on the mechanisms of memory deduplication. In conse-
quence, the analyses that have been done in this area have targeted the amount of
memory that can be saved using the respective approaches.

This thesis can confirm the results that were previously published. However, it goes
further and also analyzes the reasons for duplication and takes a more detailed look
into the temporal and spatial characteristics of duplication in different workloads.

In virtualized environments, we have observed that all types of memory contents
can contribute to memory redundancy, however that many sharable pages in the
host originate in accesses to background storage. Those pages are in addition not
likely to change their contents in the near future due to the way I/O-caching
algorithms function.

2 Cross Layer Integration for Memory Scanners

Following our analyses we have developed XLH [61, 62]. Our approach extends
main memory deduplication scanners through Cross Layer I/O-based Hints (XLH).
XLH focuses the deduplication effort on memory parts with a higher prospect to
yielding good sharing candidates. In the case of virtualized environments those are
recently modified memory areas that belong to the I/O-caches of virtual machine
guests.

3 Deduplication and Sharing in Virtual Environments

We were able to show that XLH helps finding and exploiting sharing opportunities
earlier than regular memory scanners. XLH’s early detection of sharing opportuni-
ties saves more memory by deduplicating otherwise missed short-lived pages and
by increasing the time long-lived duplicates remain shared.

In our benchmarks, XLH can merge duplicates that stem from virtual disk images
earlier than the KSM memory scanner by minutes. XLH can save up to eight times
as much memory at the same scan-rate settings [62].

4 Performance Considerations

A thorough analysis of overheads, performance benefits and performance penalties
is an important part of this thesis. Deduplication has two sides to it: The overhead
caused by the deduplication process itself on the one hand. The overhead that
applications experience, for example due to additional copy-on-write page-faults,
on the other hand.

Contents

1. Introduction 1
1.1. Sharing and Deduplication Techniques 3
1.2. Contributions . 6
1.3. Underlying Publications and Theses 7
1.4. Organization . 8

2. Background and Literature Review 11
2.1. Terms . 11
2.2. Virtual Memory Systems . 12

2.2.1. Indirect Addressing . 12
2.2.2. Virtual Address Space . 13
2.2.3. Physical Address Space: Paging 16
2.2.4. Copy-on-write . 18
2.2.5. Anonymous vs. Named Memory 19
2.2.6. Paging Virtual Machines 19

2.3. Traditional Page Sharing Approaches 20
2.3.1. Sharing Cloned Content 21
2.3.2. Sharing the I/O Buffer Cache Among Applications 21

2.4. Deduplication for Virtual Machines 23
2.4.1. The Semantic Gap . 25
2.4.2. Address Space Cloning in Virtualization 25
2.4.3. VM I/O Path and Disk Cache Placement 26
2.4.4. Deduplication Through Inspection: Main Memory Scanners 28
2.4.5. Deduplication through Paravirtualization and Semantic-

Aware Inspection . 32
2.5. Conclusion: Limitations of the State-of-Art 35

viii Contents

3. Analysis of Main Memory Duplication and Sharing 37
3.1. Measuring Main Memory Duplication 37

3.1.1. VM Snapshots . 38
3.1.2. Page-faults . 40
3.1.3. Emulation . 43
3.1.4. Trap and Emulate . 45
3.1.5. Custom Hardware . 46
3.1.6. Summary of Analytical Methods 46

3.2. The Anatomy of Memory Duplication 47
3.2.1. Reasons for Memory Duplication 47
3.2.2. Spatial and Quantitative Characteristics 49
3.2.3. Temporal Characteristics 55

3.3. Conclusion . 57

4. Cross Layer Integration through Deduplication Hints 59
4.1. Linux Virtual Memory Implementation 59

4.1.1. Basic Linux Internal Memory Management 60
4.1.2. Linux Address Spaces . 61
4.1.3. Linux Page Cache . 63
4.1.4. Page-Faults . 65

4.2. Implementation of Kernel Samepage Merging 65
4.2.1. KSM Data Structures . 67
4.2.2. KSM Mechanisms and Policies 70

4.3. XLH Design . 73
4.3.1. Design Goals . 73
4.3.2. Hint Generation . 74
4.3.3. Hint Storage . 76
4.3.4. Hint Processing . 77
4.3.5. Mitigating the Unstable Tree Degeneration 79

4.4. XLH Implementation . 80

5. Deduplicating Virtualized Environments 83
5.1. Benchmark Metrics . 84
5.2. Benchmark Scenarios . 85
5.3. General Benchmark Set-Up . 86
5.4. Evaluation Results and Interpretation 89

5.4.1. Kernel-Build . 90
5.4.2. Apache web-server and HTTPerf 99
5.4.3. Bonnie++ . 102
5.4.4. Mixed . 106

5.5. Conclusion . 108

Contents ix

6. Performance Considerations 109
6.1. Scanning Overheads and Boundary 109

6.1.1. Code Paths . 110
6.1.2. Code-Path Frequencies and Aggregated Cost 114
6.1.3. Scan-Rate Boundaries . 119

6.2. Runtime Effects of Page Sharing 120
6.2.1. Run-Time vs. Scan-Rate 122
6.2.2. Writing and Breaking Sharing 122
6.2.3. Reading and Caching . 126

6.3. Conclusion . 128

7. Conclusion 129
7.1. Limitations and Future Work . 131

A. Deutsche Zusammenfassung 133

B. Apache Static File Generation 137

Lists 139
Tables . 139
Figures . 139
Bibliography . 145

Chapter 1

Introduction

An operating system (OS) with more random access memory (RAM) available
can use this additional storage capacity to improve the overall system performance
through caching and to increase the degree of multi-programming:

Applications are slowed down when they wait for I/O, whether they are I/O-bound
or not. Thus, applications directly benefit from file- and meta-data caching in main
memory. First, a RAM based cache is an order of magnitude faster than background
storage. Second, this cache can also be used to buffer writes. The OS can then return
to the application directly after the write operation has been buffered and before it
has been persisted to the background store. Current consumer grade random access
memories1 outperform even the fastest, available enterprise class SSDs2 by a factor
of almost 300x regarding random access throughput, by a factor of 35x regarding
linear access throughput, and by a factor of 20x in access latency. The latency gap
is much higher when writing. The throughput of cached disk accesses using those
devices3 consequently shows a speed-up of more than 250x compared to uncached
random access and a speed-up of more than 26x compared to uncached linear access.

Moreover, the amount of available RAM is a determining factor for how many
applications can be run in parallel and thus how well all system components can
be utilized. Application performance decreases drastically [25] when the system
cannot keep the current working set [26] in memory. Today, the amount of
available main memory limits the number of virtual machines (VMs) a physical
machine can host [39]. Hypervisors reach the upper bound for the number of
hosted VMs when the sum of all working sets approaches the amount of available
memory. When this point is passed, the hypervisor begins swapping memory from
and to the background store at vast performance degradation for all VMs [35, 84].

1e.g., DDR3-10667U: throughput 10.67 GB/s, latency: 10 ns
2e.g., Samsung 840 Pro: 4kB random read throughput 0.036 GB/s, latency 200 ns [34]
3measured with hdparm

2 Introduction

Memory Sharing

Memory is often in short supply [39]. In common virtualization environments,
such as cloud computing data centers, the leading companies employ consumer-
grade PC hardware. This type of hardware currently supports up to 32 GiB of
DDR3 RAM per CPU [19], because of limitations of the chipset and mainboard
design. Hardware that supports more memory is currently much more expensive.

Virtual memory management techniques such as segmentation [75] or paging [31]
give applications an own address space to store data. Every application can only
access memory in their own address space, so using segmentation or paging gives
an application the illusion of exclusively using a computer’s main memory. When
using virtual memory, multiple virtual addresses can be mapped to the same physical
address with the effect that different programs share physical memory.

There are three different possibilities to share memory between applications in
operating systems employing virtual memory management. First, memory can
be shared read-write. In this case, both applications see each other’s writes to
the memory region. Second, memory regions can be shared read-only. This, for
example, enables OSes to robustly share libraries among processes while keeping
the address spaces isolated. Writes to such memory regions are forbidden. Third,
memory can be shared copy-on-write (COW). COW makes it possible to share
memory between different applications in a way that allows modification. The
involved applications never see mutual modification, however. Using COW main
memory is shared between address spaces while maintaining the illusion of exclusive
access when writing. We focus on analyzing and increasing copy-on-write sharing
in this thesis.

Benefits from Sharing

Sharing main memory using virtual memory management has benefits on different
levels in the hard- and software stack:

• Sharing frees main memory that would otherwise be occupied by duplicates.
The gained free space can then be used to provide larger caches for lower
levels in the storage hierarchy, or to run more applications.

• Sharing main memory frees space in preceding physically indexed levels in
the storage hierarchy. Shared memory regions are transported only once to
CPU caches resulting in more space for caching other address space areas in
those faster, smaller memories.

• Sharing can achieve copy semantics without actually copying data in memory,
thus effectively speeding up copy operations.

Introduction 3

1.1. Sharing and Deduplication Techniques

When running multiple applications [46] and specifically in virtual environments
in which a physical machine is executing multiple virtual machines (VMs), a consid-
erable amount of main memory can be shared and thus freed through employing
sharing- and deduplication techniques [5, 13, 39, 61–63, 84]. Operating systems
have been using techniques to initially share address spaces among applications and
shared background storage caches for decades. Recently, those techniques have been
complemented with approaches to share memory regions even after modification.

Sharing Address Spaces

A new process is created in UNIX based OSes by forking a thread of execution
off of an existing process. When forking, the OS creates an address space (AS)
for the new process and (semantically) copies the forking processes AS content to
the new AS. Actually, the OS shares the parent address space with its child using
copy-on-write instead of copying memory in RAM.

Note that creating a new process is not the same as starting a program. In order
to start a new program, an application first forks itself and then overwrites the
new processes AS, with the program to be started, using exec. At this point
shared memory between the two processes is lost. Starting a program twice, in
consequence, results in two processes that do not share any part of their address
space except of the data shared through the file system cache.

Sharing the File System Cache

The contents of previously loaded files are typically cached in an operating system’s
file cache (e.g., the page-cache in Linux).

Files can be mapped into main memory to be easily and efficiently accessed non-
linearly, for example via the mmap system call in UNIX. Multiple such mappings to
the same file are shared within the file cache. Program binary images and dynami-
cally shared libraries are generally implemented through this mechanism [30].

Using this mechanism has the limitation that it solely shares memory regions that
come from the same source object; a memory region from the same inode. When
one copies a file, both files will not be shared in memory as the “copy” semantic is
not known to the OS.

4 Introduction

Sharing Virtual Machine Memory

When introducing virtual machines (VMs), the hypervisor and VM encompass the
same kind of semantic gap regarding “copies” that the file system cache has.

VMs generally ship with their own virtual disk image (VDI) that contains copies of
shared libraries, programs and configuration files or even data that are also used in
other VMs. In Figure 1.1, libA is used in both VMs, but the hypervisor potentially
cannot even interpret/read the file systems used by the VMs. Even if it could read
the file systems it could not infer the equity of files solely based on the path within
the file system image.

Physical

Memory

Hypervisor VM 1

libA.so

kernel

Data A

VM 2

kernel

libA.so

Data B

Free

?

?

?

?

?

?

Free
S

e
m

a
n

tic
 G

a
p

Figure 1.1.: All semantic knowledge known to the guest OS is lost when using
virtualization.

The hypervisor does not know the “same object” semantic between VMs as the
objects’ semantic is hidden behind the virtualization layer. Thus, traditional sharing
policies cannot be used for deduplicating VMs as those mechanisms are based on the
source of objects instead of being based on the contents of those objects in memory.
OS researchers have derived the following two solutions.

Paravirtualization-based Deduplication

The approaches that fall into this category aim to circumvent the semantic gap by
introspecting operations within the VMs and communicating semantic information
though an interface between the VMs and the hypervisor (Figure 1.2).

In some workloads, many duplicates come from copying data within memory
or are different copies of the same file. Disco [12] and Satori [63] operate under
the assumption that one can observe the creation of duplicates and then instantly
deduplicate them. Both implement a form of content addressable disk and are

Introduction 5

capable of deduplicating memory contents that come from this disk at the costs of
I/O-overhead and the burden of changing the guest OS. Disco also hooked calls
such as bcopy to cope with direct copies being created in memory.

Physical

Memory

Hypervisor VM 1

 libA.so

 kernel

 Data A

VM 2

 kernel

 libA.so

 Data B

Free

kernel

libA.so

Data A

kernel

Data B

libB.so

Free

In
te

rf
a

c
e

In
te

rf
a

c
e

Physical

Memory

Hypervisor

?

?

?

?

?

?

Memory

Scanner

Scan

pages

Figure 1.2.: Paravirtualized systems in-
terface with the guest vir-
tual machines to close (parts
of) the semantic gap.

Figure 1.3.: Memory scanners create an
index of main memory con-
tents without regard to their
semantic origin.

Main Memory Scanners

To get around the semantic gap without modifying the guest OS, main memory
deduplication scanners were introduced in VMware’s ESX [84] and later also
adopted in the Linux kernel under the name Kernel Samepage Merging (KSM) [2].

Memory deduplication scanners disregard the sources of and reasons for duplicated
memory pages and base the detection of such sharing opportunities purely on their
contents (Figure 1.3). Memory scanners continuously create and update an index
of memory contents at a certain rate. If memory is to be inserted into the index
that already contains the respective page-data, both memory pages are merged and
shared using copy-on-write. One of the two memory pages can then be released
and reused fully transparently to the affected processes (VMs).

Memory scanners directly trade computational overhead and memory bandwidth
with deduplication success and latency. Especially the merge latency, the time
between establishing certain content in a page and merging it with a duplicate, is
high in such systems. Current scanners need a long time (in the range of 5–30 min)
to detect new sharing opportunities and therefore can only find static sharing
opportunities instead of exploiting the full sharing potential.

6 Introduction

1.2. Contributions

This thesis makes the following main contributions:

Analysis of Duplication Prior work has focused on the mechanisms of memory
deduplication. In consequence the analyses that have been done in this area have
targeted the amount of memory that can be saved using the respective approaches.

This thesis can confirm the results that were previously published. However, it goes
further and also analyzes the reasons for duplication and takes a more detailed look
into the temporal and spatial characteristics of duplication in different workloads.

In virtualized environments, we have observed that all types of memory contents
can contribute to memory redundancy, however that many sharable pages in the
host originate from accesses to background storage. Those pages are in addition
not likely to change their contents in the near future due to the way disk-caching
algorithms function.

Cross-Layer Integration for Memory Scanners Following our analyses we
have developed XLH [61, 62]. Our approach extends main memory deduplication
scanners through Cross Layer I/O-based Hints (XLH). XLH focuses the dedupli-
cation effort on memory parts with a higher prospect to yielding good sharing
candidates. In the case of virtualized environments those are recently modified
memory areas that belong to the I/O-caches of virtual machine guests.

Deduplication and Sharing in Virtual Environments We were able to show
that XLH can help to find and exploit sharing opportunities earlier than regular
memory scanners. XLH’s early detection of sharing opportunities can save more
memory by deduplicating otherwise missed short-lived pages and by increasing the
time long-lived duplicates remain shared.

In our benchmarks, XLH can merge duplicates that stem from virtual disk images
earlier than the KSM memory scanner by minutes. In total, XLH can save up to
eight times as much memory at the same scan-rate settings [62].

Performance Considerations when using Deduplication A thorough analysis
of overheads, performance benefits and performance penalties is an important part
of this thesis. Deduplication has two sides to it. The overhead caused by the
deduplication process itself on the one hand. The overhead that applications
experience, for example due to additional copy-on-write page-faults, on the other
hand.

Introduction 7

1.3. Underlying Publications and Theses

This thesis would not exist without the lively cooperation with my colleagues and
students and is in consequence based on many previously published documents. The
presented results were evaluated more extensively and thoroughly than previously
possible. Moreover, I have interpreted these results in the new, extended context,
thus the interpretation and the inferred conclusions may differ from previous
publications.

I advised the following students when they wrote their study- and diploma theses at
IBDS. They have contributed to this thesis, in chronological order:

• Thorsten Gröninger has written a kernel module to extract content based
hashes from all memory pages of a specified process during the course of his
study thesis [37]. He has used the module to conduct some initial experiments
about memory duplication quantities. We have later used this kernel module
to generate the “sharing opportunities” lines throughout the benchmarks of
the published papers and this thesis.

• Marc Rittinghaus has implemented memory tracing in the Simics full sys-
tem simulator for his diploma thesis [69]. Parts of the data he has gathered to
evaluate his approach have been incorporated in Chapter 3.

• Fabian Franz has analyzed memory deduplication hints preliminary in his
diploma thesis [32]. The first implementation of KSM++ that later evolved
to XLH was joined work of Fabian Franz and myself. His work is visible in
Chapter 4 and Chapter 5.

• Thorsten Gröninger improved the tracing speed of Marc Rittinghaus’ anal-
ysis platform by exchanging Simics with the faster QEMU as a part of his
diploma thesis [38]. QEMU is much faster due to binary translation. QEMU
is however not meant to be used for simulation which introduced a whole
set of new challenges such as a missing precise cycle counter. The resulting
implementation allowed for detailed analyses of much longer-running work-
loads than previously possible. Thorsten Gröninger’s results have flown into
Chapter 3.

• Marco Kroll has analyzed the memory scanning overhead as well as on
the effects that the memory deduplication process has on other co-scheduled
applications. Some insights gained during the course of his diploma thesis [49]
are presented in Chapter 6.

8 Introduction

The following papers have been published before the submission of this thesis:

• Preliminary results of the application of memory deduplication hints for
making memory deduplication more efficient have been published at the
ASPLOS workshop RESoLVE 2012 [61].

• The publication was later extended and published as a full paper at USENIX
ATC 2013 [62]. Fabian was of great help. He did not only participate in the
implementation of KSM++ and XLH, but also supervised the benchmarking
process for the evaluation of both papers. He is consequently the co-author of
both publications. My colleagues Marc Rittinghaus, Marius Hillenbrand and
my advisor Frank Bellosa have helped revise the papers and were available for
discussion throughout my work. They are also co-authors of the publications.

1.4. Organization

The remainder of this thesis is organized as follows:

Chapter 2 – Background and Literature Review introduces terms and prin-
ciples that the thesis is based on. It also introduces an overview of related work in
the fields of virtual memory management, memory sharing for applications, and
memory deduplication for virtual machines. Previous work specifically related to
single topics is presented in the beginning of the respective chapters.

Chapter 3 – Analysis of Main Memory Duplication and Sharing first dis-
cusses different possibilities to measure memory duplication. It then motivates the
use of memory saving techniques by quantifying the amount of savable memory as
well as the sources and characteristics of sharable pages obtained through various
formerly discussed techniques.

Chapter 4 – Cross-Layer Integration through Deduplication Hints starts
with a brief introduction to x86 paging and the Linux virtual memory system.
It then thoroughly describes the design and implementation of cross-layer hints
(XLH), the main contribution of this thesis.

Chapter 5 – Deduplicating Virtualized Environments first introduces related
work and background information related to virtual machine memory allocation
and memory deduplication. It then analyzes the benefits and drawbacks that XLH
has on virtualized environments by first introducing metrics to compare different
deduplication strategies and by then defining benchmarks and discussing their
results.

Introduction 9

Chapter 6 – Performance Considerations analyzes the work that memory
scanners put into the deduplication process. It moreover analyzes runtime proper-
ties of memory deduplication.

Chapter 7 – Conclusion first recapitulates the main points of the thesis before
summarizing the main contributions as well as the limitations of the presented
work. This chapter closes with an outlook on possible future research directions.

Chapter 2

Background and Literature Review

This chapter describes terms (Section 2.1) and operating system (OS) principles that
this thesis is based upon. It moreover gives a general overview of related work that
tangents the thesis. Related work which is specific to single chapters is discussed
within those respective chapters.

Paged virtual memory systems can safely map the same physical pages into multiple
virtual address spaces while keeping modifications private to each address space
(Section 2.2). The OS can reduce the memory footprint of processes if it knows in
advance which memory regions contain equal data contents (Section 2.3).

Recently, workloads have become popular that make it hard for the underlying OS
to decide in advance which pages it can share. A prime example is a hypervisor
that executes multiple virtual machines (VMs). This led to the development of
mechanisms specifically tailored to deduplicate memory within and across VMs.
Solutions for deduplicating virtual machine memory, as well as the limitations
thereof, are introduced in Section 2.4. The chapter concludes by summarizing the
limitations of the current state of the art in memory deduplication (Section 2.5).

2.1. Terms

Throughout this work, instead of defining pages to be equal if their source objects
are the same, I use a weaker definition of equity for memory pages: I call pages
equal if their data contents match. Memory pages that are exclusively filled with
0-bytes are denoted by zero-pages.

Equal pages mapping to different page frames can be merged to a single page frame
which is then referenced by both pages sharing the frame. I refer to pages that
are modified to become equal to at least one other page in the system as sharing
opportunity. The total amount of sharing opportunities is equivalent to the total
amount of memory that can be freed and thus reused.

12 Background and Literature Review

After the merging has taken place, I call the remaining page frame to be sharing
while I refer to all freed pages referencing this page frame as shared pages. The sum
of shared pages represents the total amount of memory that is currently saved by
deduplication on page granularity.

The term host denotes the layer beneath a guest virtual machine if virtualization
is used or the OS that provides the runtime environment of native applications.
The host can thus represent the virtual machine monitor, hypervisor or a regular,
unlayered operating system depending on the context.

2.2. Virtual Memory Systems

Up to the early 1960’s programs were loaded into and then run from physical
memory directly. If a program was larger than the available main memory, the
programmer partitioned his program manually into so called overlays or segments
which were then swapped as a whole within the memory hierarchy [28]. Today,
this kind of memory partitioning remains to be useful in very small embedded
processors [53].

2.2.1. Indirect Addressing

When paging [31] and segmentation [75] based virtual memory systems made their
way into computing systems in 1961, programmers were freed from the burden of
manually partitioning their programs as this was now done transparently by the
virtual memory system.

Virtual memory systems introduce an indirection layer for memory addresses.
Programs can now use their own, contiguous address space by using indirect, virtual
addresses to access memory from their private address space. Physical memory
addresses are never used in programs directly. In consequence, the OS does not need
to map entire virtual address spaces to physical memory. Memory can be loaded
and mapped on demand, when it is accessed.

A co-processor, called memory management unit (MMU) translates virtual ad-
dresses into physical addresses at every load and store (Figure 2.1). The OS manages
a translation database that stores how virtual addresses map to physical addresses.
The MMU uses this database to autonomously translate addresses that have previ-
ously been mapped. If addresses that have not been mapped by the OS before are
accessed, the OS is called through an exception to establish a valid mapping before
restarting the access unless an error has occurred.

Background and Literature Review 13

1. VirtualCPU MMU

2b. Fault

Physical
Memory

2a. Physical
AddressAddress

3. Data

Figure 2.1.: Interplay of components when using indirect addressing. Processes load
and store virtual addresses. The memory management unit translates
those virtual addresses to physical addresses.

Virtual memory systems have the following key benefits over addressing physical
memory directly [60]:

• Protection: Each process has its own address space. No process can observe
or corrupt memory of another process.

• Explicit sharing: Virtual addresses make safe and explicit sharing of objects
in physical memory possible by mapping different virtual addresses to the
same location in physical memory.

• Transparency: Memory contents can be loaded into arbitrary locations in
physical memory while being accessible at predefined locations within the
process’ virtual address spaces. Different processes can use the same addresses
without interfering with each other.

• Overcommitment: The OS can allocate more virtual memory to processes
than physically available. Overcommitted memory can be swapped from
background storage transparently to the application.

When using virtual memory systems, there are always two viewpoints: the operat-
ing system’s and the hardware’s view. Those sides correspond to the policies and
the semantic organization of the virtual address space (§2.2.2) and the mechanics of
mapping virtual to physical addresses (§2.2.3) respectively.

2.2.2. Virtual Address Space

The operating system cares about the allocation of address space sections to pro-
grams, about their protection settings, and about where memory comes from and
goes to. In short, the OS knows about the semantics of larger sections of memory.

When starting a program, the OS creates a new (virtual) address space for the
resulting process. The process’s binary file specifies the different address space
sections the process requires and how these sections need to be initialized for the
program to be executed properly.

14 Background and Literature Review

Typically a UNIX/Linux process contains the following sections [59] (Figure 2.2):

• Stack: Local variables, function call parameters, return values, return ad-
dresses, memory allocated through alloca.

• Heap: Dynamically allocated memory for applications, that is memory
allocated through malloc.

• .bss: Block Started by Symbol. Uninitialized static variables. Contains zeros
when first accessed.

• Data: Initialized data from binary file, e.g., global variables.

• Read-Only Data: Initialized data from binary file that will never be written,
e.g., constants such as strings.

• Text: Machine code to be executed by process.

stack

vmem max

0

heap

memory mapping

.bss

data

ro data

text

Figure 2.2.: A typical Linux address space. [59]

The OS allocates memory for those sections and stores their semantics, for example
what files the memory contents come from or what protection bits they should
have in memory, and the size of the section. The OS also sets up a translation table
that the MMU can use to translate virtual to physical addresses.

Background and Literature Review 15

Page Replacement Eventually, all page frames will be allocated to the kernel,
the page cache, and processes. Then, unless processes voluntarily give back memory
(munmap, sbrk) or exit, the OS needs to replace existing memory mappings when
allocating new memory. To this end, the OS is responsible for the following
operations:

• Swapping out: When a process allocates virtual memory, for example by
requesting more heap memory (sbrk), or when a new process is started, the
OS allocates physical memory to the process. As superfluous memory is
generally used for caching, the OS first needs to free physical memory in
order to reallocate those page frames. It can do this by flushing cached pages
or by swapping not recently used pages to disk; the OS decides which pages
to evict and how to properly evict them.

• Swapping in: When an address that is currently not in memory is accessed,
for example due to memory over-commitment, the MMU signals this con-
dition to the OS through a CPU exception (i.e., a segmentation fault or a
page-fault). The OS can then suspend the process that executed the faulting
instruction, bring in the wanted memory and restart the process right before
the faulting memory load or store instruction.

• Resolving illegal access: If a process accesses an illegal address, which is an
address that is not mapped into the process’s address space at all, the OS
receives a page-fault from the MMU due to the missing mapping. It can then
notice from its recorded virtual memory sections that the accessed address is
not mapped and forcibly quit the process.

• Handling memory mapped files: Only the OS knows how to use the file
system. It is therefore the operating system’s responsibility to bring in and
flush out (dirty) memory mapped file pages. The same is true for memory
mapped devices.

Working Set Every program has a memory sweet-spot: it requires the memory
pages that it needs for the ongoing computation — the working set — to reside in
main memory. Operating systems generally take the working set of applications
into account when making page replacement decisions.

Denning defined a working set model that says that those pages that have been
recently used are a good predictor for the pages that will be used in the near
future [26]. This model is still in use today.

Thrashing If there is not enough memory available for keeping all active working
sets in main memory, the system falls into a “condition of near-total performance
collapse” [27]. This condition is commonly referred to as thrashing. Thrashing is
caused by the steep performance drop in access latencies and throughput from main
memory to background storage.

16 Background and Literature Review

2.2.3. Physical Address Space: Paging

The hardware cares about how to translate a virtual address to a physical address.
The MMU, today generally integrated into the CPU, can autonomously translate
virtual addresses to physical addresses if the mapping is available in main memory.
For everything else it signals the OS that then sets up the mappings for the MMU.

Segmentation and paging based virtual memory systems were published within the
same year. Some memory management units (e.g., x86) support both techniques,
segmentation and paging [21]. In x86, a logical (virtual) memory address is first
translated to a linear address through segmentation and then further to a physical
address through paging. However, today’s modern operating systems predomi-
nantly use paging for virtual memory management. Linux [54] and L4Ka [23]
for example use the flat memory model, meaning that they fix the kernel and user
code and data segmentation registers to span the entire address space starting with
zero.Those OSes then use paging for virtual memory management, only.

When using paging, the virtual address space of applications is divided into fixed
size chunks called pages. Typical page-sizes are 4 KiB and 2 MiB, but the Intel
architecture supports 1 GiB pages as well [21]. The Alpha 21064 for example gives
the OS developer the possibility to use 8 KiB, 16 KiB, 32 KiB, and 64 KiB page
sizes [45]. Pages are always a power-of-two bytes in size. Thus, larger pages are a
multiple of the smaller page-sizes. Physical memory is divided into page frames of
the smallest page-size and virtual pages are mapped to those page frames aligned to
their page-size (Figure 2.3).

Each virtual address space that the operating system manages is associated with
a page table that stores how pages currently map to page frames, that is where
in physical memory the content of a page currently resides. The OS maintains
this page table while the MMU consults the page table contents when translating
addresses.

The customary long mode of the x86-64 processor architecture uses a 4-level page
table (Figure 2.4) to translate virtual to physical addresses [21]. For every address
space, it consists of a hierarchy of page tables, beginning with the page map level 4
(PML4), which the MMU finds through an x86 CPU register (%CR3) dedicated to
hold the PML4 of the currently active address space1. The PML4 points to multiple
page directory pointers tables (PDPTs). Those, in turn, point to page directories (PDs),
which finally point to page table entries (PTEs). At each level, the respective table
can either point to a directory in the next hierarchy level, or to a PTE. PTEs in the
first hierarchy level are called page directory pointers table entry (PDPTE), in the
second hierarchy level they are called page directory entry (PDE).

1The OS sets the %CR3 register to switch to another address space.

Background and Literature Review 17

vmem

84 kib

80 kib

76 kib

72 kib

68 kib

64 kib

60 kib

56 kib

52 kib

48 kib

44 kib

40 kib

36 kib

32 kib

28 kib

24 kib

20 kib

16 kib

12 kib

8 kib

4 kib

0 kib

stack

heap

memory mapping

text

pmem

84 kib

80 kib

76 kib

72 kib

68 kib

64 kib

60 kib

56 kib

52 kib

48 kib

44 kib

40 kib

36 kib

32 kib

28 kib

24 kib

20 kib

16 kib

12 kib

8 kib

4 kib

0 kib

heap

heap

heap

heap

memory mapping

stack

text

Figure 2.3.: Virtual memory areas are cut into virtual pages and then mapped to
physical page frames individually using a paging MMU. Adjacent pages
can but don’t have to be mapped to adjacent page frames.

The hierarchy depth to a PTE determines the size of the referenced page. For
example, a 4 KiB page uses the full depth of 4 levels, while 2 MiB pages are referenced
by PDEs and 1 GiB pages are referenced by PDPTEs.

Each page table entry contains, among others, information about:

• Present Bit: Whether the page is currently available in memory or needs to
be brought in by the OS, via a page-fault, before accessing it.

• Page Frame Number: If the page is present, at which physical address the
page it is currently located.

• Write Bit: If the page may be written to. When a process writes to a page
with a clear write bit, the MMU halts the operation and raises a page-fault.

• Caching: If this page should be cached at all and with which policy.

• Accessed Bit: Set if this page was touched since the bit was last cleared.

• Dirty Bit: Set if this page was modified since the bit was last cleared.

18 Background and Literature Review

1 GiB Memory

1 GiB Memory

… 512x… 512x

… 512x

2 MiB Memory

2 MiB Memory

… 512x

… 512x

4 KiB Memory

4 KiB Memory

… 512x

PML4

%CR3

PDPTE

PDPT PDE

PD PTE

Figure 2.4.: Structure of Intel x86-64 page tables. [21]

The offset within the page is directly given in the virtual address and is just con-
catenated to the page frame number to form the final address. If the full page table
hierarchy branch of a page table entry is currently mapped into memory, the MMU
can translate addresses autonomously. If the target data page is also in memory,
the access is done without OS invocation at all. In addition, the MMU caches
recently used translations in the Translation Look-aside Buffer (TLB). However,
all pages, including PDPT(E)s, PD(E)s, PTEs, and data pages can be swapped out
to background storage. Only the PML4 is pinned to physical memory. When
an address is resolved for a page whose page table entries or directories are not in
memory, multiple page-faults can be cascaded to resolve the final address.

Details on the structure of x86-64 page tables were taken from the Intel Architecture
Software Developer’s Manual [21]. Details on sizes, contents and mechanics of
page tables are out of scope of this document and can be found there.

2.2.4. Copy-on-write

The BNN pager in the TEXEX system [10] first complemented memory sharing
with a copy-on-write (COW) mechanism. Using COW, memory pages are shared
between processes without the involved processes seeing mutual modifications.

This is achieved, by marking the pages read-only in the page table (page-register
in TEXEX). This way, the MMU suspends the current command and issues a
page-fault on writes to those shared pages. The OS then creates a private copy of
the to-be-written page frame, remaps the respective page to the new page frame and
continues the write operation on the new, unshared memory.

Background and Literature Review 19

The OS knows if the write operation to a read-only page is an error or a copy-
on-write operation through its additional, orthogonal virtual memory translation
database, so no additional hardware flag is needed to implement COW sharing.

2.2.5. Anonymous vs. Named Memory

Throughout this thesis anonymous pages are differentiated from named pages
depending on their semantics.

Anonymous memory and consequently memory pages that make up this type
of memory do not have a natural representation anywhere else in the storage
hierarchy. Prime examples of such memory are the heap and stack segments of
running processes.

Anonymous memory contents cannot be evicted from main memory without
specifically writing them to a dedicated disk area on a background store (i.e., pagefile,
swap partition, etc.).

Named memory pages in contrast do have a natural representation within the
storage stack, generally in form of a file on disk. Prime examples of such memory
are memory mapped files in general, and text segments of shared library and
processes specifically. Note that files read through the VFS interface are generally
buffered in a cache (i.e., page-cache, file-cache, etc.) in modern operating systems.
This cache is also made up of named memory pages.

When named pages are being evicted from main memory, they can be just dropped
when they still contain the unmodified contents of their source file. When, memory
mapped file pages have been written, the modifications are written back to the
original source file before evicting the page.

2.2.6. Paging Virtual Machines

Running virtual machines (VMs) adds another level of indirection to the virtual
memory management stack. First, guest-virtual is translated to guest-physical
memory, that is memory which is used like physical memory by the guest OS but
in reality is virtual memory in the host (host-virtual). The guest-physical memory
is then translated again into host-physical memory.

Hardware instructions to modify virtual memory state, for example setting up
page tables and switching address spaces (setting the %CR3 register), are considered
sensitive instructions that can only be executed by privileged software running in
a special CPU mode. Generally, the OS kernel takes this role. When layering
OSes, using virtualization, the question arises how virtual machines manage their

20 Background and Literature Review

memory. The host cannot grant VMs full access to the hardware as it could not
guarantee isolation between VMs and the host, then.

Today, the following three techniques commonly deal with the additional level of
indirection:

• Paravirtualization: Paravirtualization was made popular by the Xen hy-
pervisor [4]. Using paravirtualization, the guest OS is modified to use a
hyper-call interface provided by the host. For example, when a new process
is started within a VM, the VM registers the newly allocated memory with
the hypervisor [4].

• Shadow Page Tables: This technique is used by the VMware virtual machine
monitor. When using shadow page tables, the MMU traps to the host on
changes to guest memory page tables, without the need for guests to coop-
erate. The host can then map memory appropriately on behalf of the guest,
consulting a shadow page table which contains the physical location of guest
pages [9].

• Nested Page Tables: Current hardware virtualization enabled CPUs are ca-
pable of Second Level Address Translation in hardware. This means, that their
MMU can interpret page tables of nested guest OSes, effectively eliminating
the need for separate shadow page tables. This kind of hardware also provides
a more sophisticated TLB, which can handle address space switches with
fewer TLB flushes due to an additional address space identifier. To this end,
Intel ships CPUs with Extended Page Tables (EPTs) [21] while AMD imple-
ments this feature under the name Rapid Virtualization Indexing (RVI) [1].
Using hardware virtualization workloads can run up to 48% faster for real
benchmarks, up to a factor of 6x faster in micro-benchmarks [9].

2.3. Traditional Page Sharing Approaches

Virtual memory systems and the copy-on-write technique, discussed in the previous
section, lay the foundation stone for all transparent main memory sharing policies.

Traditional, non-virtualized operating systems share memory read-write between
processes explicitly when programs request shared main memory (shmem) or implic-
itly when programs map the same file into main memory, for example using mmap
with MAP_SHARED. Those operating systems can also share main memory transpar-
ently to the processes using copy-on-write semantics when cloning address spaces
(§ 2.3.1), for example when forking, or when using files (§ 2.3.2).

Background and Literature Review 21

2.3.1. Sharing Cloned Content

Memory already used to be short in early systems, but memory-shortness ag-
gravated when time sharing systems were invented. Time sharing systems allow
multiple users to launch several processes simultaneously. Virtualizing the CPU
makes it possible to switch between those processes to make them appear to make
progress concurrently.

Specifically in UNIX based operating systems, processes are traditionally not created
and executed2 independently. Instead, processes fork into two – the original parent
process and a newly created child process which inherits almost all of its parent’s
state, such as address space, instruction pointer, open files, etc. This way all
processes form a process tree with a single root – the init process – which is created
at boot time.

The OS needs to perform the address space copy on behalf of the forking process for
security reasons; modifying address spaces is a sensitive operation. In consequence,
the OS knows of the copy operation and it’s semantic. That makes forking a trivial
target for memory sharing. Today, fork does not physically copy the entire address
space. Instead, the anonymous parts of the parent address space, which are currently
mapped in memory, are shared with the child process using copy-on-write. This
way, unmodified memory pages remain shared throughout the entire life of the
child. Memory pages that are written at run-time of either process are actually
copied and thus not made visible to the other process.

2.3.2. Sharing the I/O Buffer Cache Among Applications

Data are made persistent for future use on background storage such as hard disk
drives (HDDs) or solid state drives (SSDs). When programs are started, they are
loaded from background store; settings and data are also loaded from there and are
kept between runs of programs and even between reboots.

Long-Tail File Distribution Background storage itself is considered a system
performance bottleneck. However, most systems only have few files in their active
working set, and main memory is generally an order of magnitude faster than
persistent storage devices, which make it a good case for caching. For example,
a news web server accesses files that are visible on the front page at a very high
frequency in contrast to older articles that are accessed infrequently. Such a long-
tail distribution is actually common throughout the file system. Few files are
accessed very frequently while many files are accessed infrequently [29]. This access
distribution makes the use of file system caches reasonable as only few files need to
be present for the cache to achieve a high hit-rate.

2The parent is responsible for collecting its children’s termination state.

22 Background and Literature Review

Unified File Caches A file system cache could be implemented in the user level
on a per-application basis. A global OS cache which is used by all processes is a good
design decision, however, for the following reasons: First, the same files are often
used by multiple processes at the same time. An example would be the Microsoft
IIS web server, which consists of multiple worker processes which all access the
same data. Another example would be different independent processes that are
linked against the same shared library, such as libc. Using a global cache the OS
only needs to load the library from background store once. Second, files are often
used again at a later time by another instance of the same program after exiting the
previous instance. An example would be a cron job that runs frequently. Without a
file system cache, the program would need to be loaded from background store at
every run.

Consequently, modern operating systems use a portion of the main memory as
a global cache for the background store. In Linux, for example, all unallocated
memory makes up the page-cache which caches file data, file meta-data, etc. All
processes then share this file cache, which is located in and managed by the OS.

The Virtual File System Programs access files through a virtual file system
(VFS) interface. The VFS is an abstraction, which makes it possible to access every
file in the same way, regardless of the underlying file system and storage media
(Figure 2.5).

Application

Operating System

File1 File2 Physical Disk

1. VFS read

2. FS read

Figure 2.5.: The I/O-path of applications.

When a process reads files through the VFS, the read system call copies the requested
data from the page-cache to the target buffer in the user’s anonymous address space.
If the requested file parts are accessed for the first time, they are first loaded into
the cache.

Processes can also access page-cache memory directly, without copying it first.
They do this by mapping the respective files into their address space (mmap). When
multiple processes mmap the same file parts, they effectively share the buffer cache
memory. Shared libraries are generally implemented to share their code section this
way [30].

File-based Caching Sharing in file system caches is generally not based on the
contents of the blocks that files are made up of. Instead, modern operating systems
share the file system cache on a per-file basis. Files are identified by their device
and file system internal file number. When using mmap for example, the <inode,
offset> pair is used as the semantic origin.

Background and Literature Review 23

Although that works very well when mapping the identical file, i.e., any one of the
hard-links with the same inode, multiple times it fails to provide memory sharing
between copies of the same file as all copies are represented by different inodes in
the file system.

This is even true if a deduplicating file system is used: Although every block with
a certain content ideally only exists once in the block-layer of such a file system,
different files that contain the same blocks still have their own file control block
(inode). When two files that are made up of the same data blocks are loaded into
memory, these previously deduplicated file blocks are actually duplicated again in
the file cache.

Content Caching Koller et al. have identified the duplication issue in file sys-
tem caches and propose to replace traditional caches with a combination of two
techniques: A content based cache stores each block content only once. Blocks
originating from different files but with the same content are neither duplicated
in nor are they retrieved from the background store again. The dynamic replica
retrieval mechanism selects the replica to be fetched that leads to fewest retrieval
overhead (e.g., disk arm movement). Additionally, Koller et al., propose to choose
good candidates for selective disk deduplication through statistics generated from
the dynamic replica retrieval. [48]

This system requires a strong linkage of the file system and disk cache as the file
system needs to provide content hashes from metadata (i.e., without reading the
data from disk). This makes a wide-spread deployment of such a system in the
near future unlikely, as today’s systems often orchestrate many different local and
remote file systems in a single, global cache.

2.4. Deduplication for Virtual Machines

Although the concept of virtualizing resources, including virtualizing entire ma-
chines has already been invented in the 1960s, it has not had its breakthrough until
the beginning of this millennium when infrastructure as a service (IaaS) and cloud
computing became popular [36, 50]. In today’s multi-core era we recognize the
main memory size as a primary bottleneck when running multiple virtual machines
(VMs, guests) on a physical machine [39].

Sharing Potential Multiple VMs running on a host often contain equal pages
within and across the VMs as previous studies have shown (Table 2.1). In the best
case the same OS, libraries or programs handle the same data. To increase the
sharing potential, cloud providers can consolidate VMs with close workloads on
the same physical machine [88].

24 Background and Literature Review

Name Source Configuration Equal pages

VMware ESX [84] 10 VMs, SPEC95 65 %
Difference Engine [39] 3 VMs, XP/Linux, RUBiS/LAMP 40 % – 85 %
Satori [63] 2 VMs, Kernel-build/Apache 11 % – 66 %
Chang et al. [14] Hadoop, HOMP (MPI), LAMP 11 % – 86 %
Barker et al. [5] desktop/server snapshots 15 %

Table 2.1.: Memory sharing potential according to previous studies.

Memory Overcommitment for Virtual Machines Memory overcommitment
is an important technique to increase the number of VMs on a physical host. Tradi-
tional sharing policies, however, cannot effectively share memory in virtualized
environments.

Those policies are limited to scenarios in which sharing semantics are known a
priori: Pages with the same origin are shared; the actual content of memory pages is
not regarded for finding further sharing candidates. There is a semantic gap (§2.4.1)
between the host and the VMs which makes those policies inapplicable for sharing
memory without modification.

Address space as well as buffer cache sharing can, nevertheless, be extended in
order to be useful in virtualized environments: Cloning of address spaces has been
adjusted to make cloning and sharing entire VMs possible (§2.4.2). In addition,
different propositions have been made in the past to make it possible to share file
caches across VMs (§2.4.3). Moreover, new mechanisms and policies have been
created to deal with the remaining shortcomings. In order to circumvent or mitigate
the semantic gap, and make sharing of (a subset) of those targets possible across
guests and the host, two different approaches have been taken in the past: Semantic
agnostic inspection of memory page contents through memory scanners (§ 2.4.4)
and the paravirtualization and introspection of guests through the instrumentation
thereof (§ 2.4.5).

Memory Pressure vs. Memory Deduplication Memory deduplication in-
creases the memory density across actively used memory in the system. Effectively,
memory deduplication is a compression technique that pushes back the boundary
at which the system starts thrashing.

In consequence, the justification of memory deduplication varies depending on
the current system state. If the system is not under memory pressure, no memory
deduplication may be needed at all. If the system is already thrashing, even putting
many CPU cycles and much memory bandwidth into scanning can be justified if it
brings the system out of the thrashing state.

Background and Literature Review 25

2.4.1. The Semantic Gap

Virtualization hosts cannot easily share VM memory using traditional sharing
policies due to a semantic gap, which is introduced through an additional level of
memory indirection in the virtualization layer. Due to the semantic gap, semantic
information about memory mappings is only available in the virtualized guest, but
not in the host [15].

Semantic gaps can generally occur between any subsystems separated by an abstrac-
tion layer, whether it be a virtualization host and guest, or an OS and a running
process.

Examples for information that is lost when traveling abstraction layers are:

• If two files are the same: The copy semantic is lost after the copy operation at
the VFS layer.

• If a memory page is anonymous, named, or device memory: The mapping
semantic is lost at the nested virtual memory translation layer.

• If two address space regions are two instances of the same program they likely
contain similar data: The program semantic is lost when the guest OS is left
as guest processes are not represented in the host.

• If a program or VM copies memory within its address space: The copy
semantic is lost after the loop or the appropriate library call (i.e., memcpy).

2.4.2. Address Space Cloning in Virtualization

When forking, the parent process is used as the semantic origin for sharing memory
and the entire address space is shared between the parent and child processes. The
Android OS uses this property of fork to optimize its run-time environment [68].
Here, all processes are based on Java and run in Android’s custom Java interpreter,
the Dalvik virtual machine. In order to easily share the core libraries and the virtual
machine itself (including some interpreter run-time state), all processes are forked
off of a well-defined Dalvik VM base process, the Cygote process.

For VMs, this kind of sharing only makes sense after the guest OS is fully booted, as
most of the memory contents change while booting. In consequence, mechanisms
that work analogically to fork-sharing have been used to exploit sharing potential
when cloning VMs in the past [50, 83]. Cloning VMs works very well for sharing
initial memory images of virtual machines using COW semantics with a largely
common state. Guests cannot share pages that will establish equal contents after
cloning the VM using this technique, however. Using COW semantics when
cloning to remote hosts can also be beneficial as it allows the cloned source VM to
continue running while the cloning is in progress [50].

26 Background and Literature Review

Virtual machine cloning has not caught on to a wide popularity as it requires
spawned guests to be equal to be applicable. In contrast guests tend to be regarded
as black boxes to the underlying host system.

2.4.3. VM I/O Path and Disk Cache Placement

Although file system cache placement is easy in a single OS (§2.3.2), it is hard to
cleverly place this cache in the VM I/O path. Virtual machines do generally not
share a file system with one another or their host. Instead, VMs implement their
own file system on a virtual block device which is then mapped to a large file in the
host called the virtual disk image (VDI). The VDI can contain an arbitrary file
system determined by the guest OS. The host does not have to be able to interpret
the guest file system and usually doesn’t.

Figure 2.6 depicts the I/O path that applications running within a VM take when
they access their background storage:

1. The application issues a file operation either through a VFS system call to the
guest OS or by accessing a memory mapped file.

2. The guest file system translates the accessed file location to blocks on its
(virtual) disk. The OS then programs the (virtual) disk’s (virtual) DMA
controller to access these blocks.

3. The host implements the virtual disk, generally mapping it 1:1 to a file – the
VDI. The hypervisor consequently accesses the VDI file through a host VFS
system call in order to satisfy the guests (v)DMA request.

4. The host’s file system translates the VDI file location to blocks on the (physi-
cal) disk and accesses this disk through the (real) DMA controller.

1. Application reads from guest VFS

2. File system reads virtual disk

3. Hypervisor reads VDI through VFS

4. Hypervisor file system reads disk

Host OS

Hypervisor

Native

ApplicationGuest OS

Physical

Disk
VDI File

File System

VDI File

File System

Application

Figure 2.6.: I/O-path from an application through the guest and host to background
storage when using virtualization.

Background and Literature Review 27

Caching can take place in the host as well as in the guest, leading to four different
I/O-cache configurations described by Zhang et al. [89] and by Balbir Singh [78]:

• Host Cache: on | Guest Cache: on
This configuration is the default in KVM [22] and uses at least twice as much
memory for caching as the other configurations due to the double-caching
problem [77]. All data from background storage is cached twice: once in the
host and once in the guest.

Although this configuration has a high memory overhead, it also has the best
caching characteristics. When a file is first accessed by a VM, there is still a
chance that the file contents are already in the host’s cache. Afterwards there
is a great chance that it can directly be reused from the guest’s cache without
trapping to the host.

• Host Cache: on | Guest Cache: off
This configuration is not common as it leads to high context switching
overhead and poor performance isolation. For every background storage
access, the VM must exit and trap to the hypervisor to satisfy the I/O request
from the host’s cache.

In turn, this solution has a good chance for main memory sharing within
the host cache if multiple VMs were booted from the same VDI file. Note,
however, that no sharing would take place when booting from different VDI
images even if equal blocks existed. Moreover, this configuration must be
specifically supported by the guest, as its cache needs to be turned off.

• Host Cache: off | Guest Cache: on
This configuration is common and is the default setting in VirtualBox [41] for
example. Guests have the most accurate knowledge about the active working
set of their applications and in consequence they know best what to cache.

This configuration has no prospect of memory deduplication between VMs
and in addition the VM cannot help the VM’s I/O through prefetching and
caching even if there is memory available.

• Host Cache: off | Guest Cache: off
This configuration is generally not a good idea, because background storage
I/O is often a bottleneck that can be significantly improved through caching.

28 Background and Literature Review

2.4.4. Deduplication Through Inspection: Main Memory
Scanners

Carl Waldspurger introduced several new memory management techniques for
virtual machines to the VMware ESX server. The most relevant technique to
the thesis at hand is content-based page sharing via main memory scanning [84].
Content-based page sharing takes a black-box approach to deduplication. The
semantic of memory pages is not regarded in the deduplication process at all. Instead
deduplication is done purely on the basis of the content of memory pages. Equal
pages can be shared regardless of their semantics and histories. In consequence,
the guest does not need to be modified in any way, which is one of the greatest
advantages of memory deduplication scanners.

Memory scanners are a process, that wakes up periodically, chooses pages to scan,
and adds the contents of those pages to an index before going back to sleep. When
equal pages are found during the insertion, the affected pages are merged transpar-
ently using the regular COW mechanism.

Linux followed with the same general idea under the name KSM [2]. Lee et al.
extended the scan process to host page cache memory [52]. Difference engine
extended memory scanning to sub-page sharing and compression [39].

VMware ESX

In ESX, duplicate host-physical page frames are found using the compare-by-hash
method, which associates every content with a hash value. Hash values can then
be compared in proxy of the actual value, speeding the process up thanks to their
much smaller size [40].

Hash values can, for example, easily be indexed through a hash-table; the method
implemented in ESX (Figure 2.7). False positives, which occur when two different
pages compute the same hash, are eliminated through a full comparison of the
original data. When matching pages have been identified, these pages are merged
using the regular copy-on-write mechanism. Merged pages remain in the hash-table
in which they are marked as stable until they are written. If a page does not currently
have a sharing partner in the system, the hash value is recorded in the hash-table
without marking the respective page COW. Those values are treated differently
than stable pages in the hash-table. On a future hash value match with such a page,
it’s hash value is first recomputed and updated before potentially going into the
comparison phase described above. [84]

In ESX, pages are indexed at a fixed rate, in random order [84]. The original ESX
paper hypothesizes that a better scan order heuristic could be beneficial, it does not
propose a well suited policy, however.

Background and Literature Review 29

Search in
stable tree

Page found?

Get next page

All advised
pages scanned?

Clear unstable tree

Calculate page hash

Page modified?

Update hash

Search in
unstable tree

Page found?

Merge pages and move
to stable tree

Insert page into
unstable tree

KSM
periodic scan

Merge page

No

Yes

No

Yes

No

Yes

No

Yes

Figure 2.7.: High level overview of the ESX memory scanning process.

Linux KSM

Andrea Arcangeli et al. brought memory deduplication scanning into the Linux
mainline kernel under the name KSM. The acronym KSM stands for either Kernel
Samepage Merging or Kernel Shared Memory. [2]

In contrast to the method introduced by ESX, KSM does not scan the entire host-
physical main memory when enabled. Instead, KSM operates only on anonymous
host-virtual main memory regions that have been specifically advised to the OS
to potentially contain many duplicate pages using the madvise system call. This
is done from user space and popular virtual machine monitors madvise the entire
VM memory space when bringing up VMs.

30 Background and Literature Review

The KSM scan process also differs from ESX in the policy that it uses to select the
next candidate to be scanned. KSM scans advised virtual memory areas sequentially
in a round robin fashion, as opposed to ESX, which randomly picks physical page
frames to scan next.

KSM allocates a tree node data structure for every madvised page in the system.
Those nodes contain, beside a pointer to their respective anonymous page, addi-
tional information such as the jhash2 checksum that this page’s content had at the
last visit and a sequence number that is incremented at each visit.

The indexing data structure needed to be revised in Linux, because VMware had
patented the use of compare-by-hash for memory deduplication [85]. Instead of
using a hash-table, the nodes described above are linked into two red-black trees
using their full page content as the key into the tree.

The first tree is named unstable tree, and records pages that have likely not changed
since their last visit. The recorded checksum is used to check for this property.
These pages are not protected from being written to, however, their content may
thus still be unstable, hence the name. The second tree is named stable tree. In
contrast to the unstable tree, it records pages that have already been merged and
marked COW and in consequence, it contains pages that cannot be modified prior
to a COW page-fault. Note, that KSM is not explicitly notified when such a page-
fault occurs. The fault is handled by the page-fault handler alone. KSM can however
notice that as page-fault has happened from its data structures and clean up the stale
stable-tree entries to keep it consistent.

The KSM scan process is depicted in Figure 2.8. Every time a page is visited, KSM
first checks the stable tree if a merge candidate is present, already. If this is the
case, the new page is added to the sharing group and the scan moves on to the next
virtual page. If there is currently no equal stable page, the jhash2 checksum is
calculated and the scanner checks if the hash value has changed since the last visit of
that page. If it has changed, the hash value is updated and the scan continues with
the next page. Otherwise, if the page’s content has not changed since the last visit
or if a hash collision has occurred, the page is looked up in the unstable tree. If a
sharing buddy is found there, both pages are merged and inserted into the stable
tree. Otherwise, the new page is added to the unstable tree.

When all advised pages have been scanned, the entire unstable tree is dropped and
the process is repeated from the beginning, leaving only the stable tree and this
round’s checksums behind.

All information for the description of KSM have been taken from Arcangeli et
al. [2] and from studying the Linux kernel source code 3.0 to 3.4, which can be
obtained from www.kernel.org.

www.kernel.org

Background and Literature Review 31

Search in

stable tree

Page

found?

Get next page

All pages

 scanned?

Clear unstable tree

Calculate page hash

Page

modified?

Update hash

Search in

unstable tree

Page

found?

Merge pages and move

to stable tree

Insert page into

unstable tree

Merge page

Yes

No

Yes

No

Yes Yes

NoNo

Periodic scan

Figure 2.8.: High level overview of the KSM memory scanning process. [62]

Host Page Cache Deduplication

Lee et al. propose a twofold approach to deduplication. The unmodified Linux
KSM memory scanner is used to deduplicate memory allocated by virtual machines.
In addition, a second memory scanner is introduced that indexes the host’s page-
cache. The second scanner therefore merges files that are cached in the host, based
on their content. [52]

Using both techniques simultaneously, Lee et al. can free more memory than
KSM alone if VMs ship with their own VDI and do not use a static base image in
conjunction with virtual copy-on-write disks. [52]

Difference Engine

Difference engine extends previous memory scanning approaches that were capable
of deduplicating equal pages with sub-page sharing through memory patching that
is capable of merging similar pages and through memory compression.

Difference engine, in addition, is also the first scanner that makes use of page table
flags to efficiently classify pages based on their “freshness”. Based on this metric
for the expected page modification frequency, Difference engine chooses whether
sub-level patching and compression are likely to cause high overheads, as those
techniques must be reversed in a page-fault at each access. Note that this includes
read accesses and not only writes as in other techniques. [39]

32 Background and Literature Review

2.4.5. Deduplication through Paravirtualization and
Semantic-Aware Inspection

Deduplication systems that fall into the category of paravirtualized- or semantic-
aware inspection-based systems aim to explicitly track changes made in guests in
order to observe the creation of duplicates. These systems find duplicate main
memory pages either through intrusive instrumentation of guest operating systems
(paravirtualization) or by inspecting the guest unintrusively.

All techniques introduced in this section require a strong interdependence between
host and guest. Paravirtualization based techniques require the possibility to modify
the guest OS in order to create an interface between the host and the guest which is
used to communicate semantic information to surpass the semantic gap. Inspection
based techniques, in turn, only work when the target is specifically known and
supported by the host.

(Cellular) Disco

Disco is a virtual machine monitor (VMM) that can run multiple instances of the
IRIX operating system on an SGI Origin 2000 system. The project’s goal was to
avoid extensive and complicated changes to commodity operating systems, such
as IRIX at the time, to make them scale on many-core processor systems. Instead,
servers were intended to scale by running multiple instances of available multi-
processor (few cores) OSes on top of a virtualization layer. The processes are then
parallelized on the application layer using the efficient communication mechanisms
that the VMM provides. [12]

Bugnion et al. identified three challenges in their effort: Virtualization overhead
such as an increasing number of TLB flushes, resource management issues such
as lock holder preemption, and finally communication and sharing. All three
challenges are attributed to the introduced semantic gap between the VMM and the
workloads running within their guest OS. [12]

Addressing the semantic gap in the interplay between (virtual) disks and buffer
caches, Disco introduces copy-on-write disks. Disco intercepts all DMA requests to
those disks and transparently omits reading the same data multiple times through
copy-on-write sharing previously read data in main memory. [12]

Cellular Disco extends the original Disco approach, which was viable for smaller
scale servers, to be useful on large-scale shared-memory NUMA multi-processors.
To this end, Cellular Disco adds hardware partitioning as well as resource man-
agement mechanisms and policies. Cellular Disco for example allows guest OSes
to overcommit physical memory – it allocates more physical memory to virtual
machines than available. [35]

Background and Literature Review 33

Collaborative Memory Management (CMM)

Due to the semantic gap in virtualization, the usage semantic of guest pages is
not known to the host. In particular, memory pages can be currently unused and
marked as free in the guest but still carry their last content. Linux, for example,
does not zero memory pages until it allocates them to processes, in contrast to
Windows which has a thread dedicated to zeroing free pages.

Those free pages are consequently handled the same way as any other page in the
system by the host regarding page allocation, page replacement, and swapping.
Those pages moreover take up valuable space in physical memory that could
otherwise be overcommitted to other guests.

Collaborative Memory Management (CMM) paravirtualizes the Linux guest to
communicate memory usage semantics to the zSeries z/VM hypervisor [74].

Memory pages can be in one of the following states:

• stable: default

• unused: can be discarded

• volatile: guest can tolerate data-loss

• potential volatile: guest can tolerate data-loss if page is not dirty in PTE

The goal is for CMM to identify the working set of guests in order to trim the
guest’s working set size accordingly. Using CMM, unused pages can for example
be discarded and reused by other guests instead of expensively and unnecessarily
swapping them to disk. [74] The host itself can also put such memory to good use
for example for caching.

Geiger

While the host can overcommit its physical memory to VMs, it needs to be careful
that the active working set of currently running VMs needs to fit the total main
memory size. Otherwise, the system will start thrashing, degrading the perfor-
mance of all VMs. Thrashing is even harder to handle in virtual environments due
to the additional layer of memory translation and the semantic gap between those
translation layers.

Geiger unintrusively infers page usage information from guests in the Xen hyper-
visor [4]. The information collection is based on techniques that were previously
used to optimize buffer cache placement [16, 87]. Applied to virtualization, these
techniques can notice when pages are inserted into and evicted from the guest buffer
cache, and also notice when the guest is swapping and replacing pages by tracing
page-faults, page table updates, copy-, and disk operations [43].

34 Background and Literature Review

With this semantic information, Geiger aims to make good resource decisions
for VMs. An example application is working set estimation that can be used to
prune VM memory. Another application can be to use the inferred information to
improve second-level caching, for example by avoiding caching the same data twice
(see §2.4.3).

Satori

Satori [63] is a Xen [4] based solution that uses paravirtualized, virtual, content
addressable disks to detect sharing opportunities that originate from the guest file
systems and are read into the guest’s page cache.

Satori aims to prevent duplication from emerging instead of merging it after it has
occurred. The mechanisms Satori uses to reach this goal are very similar to the
mechanisms that have previously been used to implement memory deduplication
in Disco. Both systems deviate in the location where the deduplication mechanisms
are implemented. Satori implements a content addressable disk in the form of a
paravirtualized virtual disk as opposed to Disco, which implements their content
addressable disk in the host.

Satori performs very well in workloads that are not sensitive to I/O latency and
jitter. It can for instance prevent 18%–50% of all duplicates from being created in a
Linux kernel-build benchmark and share up to 94% of all duplicates in an apache
web server scenario. The evaluation, however, shows high performance overheads
of up to 34.8% in the Bonnie file system benchmark. [63]

Transcendent Memory

Transcendent Memory (tmem) aims to claim unutilized physical memory to make
it available where it is needed. Using tmem, the virtualization host acts as a server
that manages a pool of physical memory. Guest VMs are tmem clients that can
claim memory from the memory pool through a well-defined interface similar
to key-value stores (get, put). Using tmem turns classical static provisioning of
main memory that can only be trimmed through techniques such as memory
ballooning [84], into dynamic provisioning of main memory. [56, 57]

XHive

XHive is a cooperative caching scheme similar to Transcendent Memory. Instead of
using a host page cache for VDIs, XHive implements a cooperative caching scheme
between VMs. The host implements a content addressable key-value store that acts
as a swapping device for the guests. [47]

Background and Literature Review 35

XHive thus practically gives memory pages that are swapped out a second chance
to remain in memory. This is implemented by moving swapped pages out of the
guests’ quotas to the host where they can be shared among multiple VMs.

Singleton

Singleton addresses the double-caching problem. Sharma et al. optimize caching in
KVM based environments by eliminating duplicates from the host cache.

VM memory is deduplicated using the default KSM memory scanner [2]. At the
same time, Singleton concurrently looks up host page cache pages in KSM’s data
structures that store the state of the ongoing VM memory deduplication. This way,
singleton can identify if a host page has a high probability to already be contained
in a guest’s page cache and evict those pages freeing memory in the host. [77]

Small Is Big

In order to achieve a good compromise between VM switching overhead and cache
deduplication Zhang et al. propose a combination of the two caching policies:

• Host Cache: on, Guest Cache: off

• Host Cache: off, Guest Cache: on

In their work, the guest is paravirtualized and decides based on the file semantic
if it should be cached on the host or in the guest. Files that ship with a base OS
image are cached in the host as these files exhibit the greatest chance for sharing in
the cache. Private files that were created after the base image was first booted are
then cached in the guest’s cache to optimize the access latency of these files. On the
one hand, if multiple VM instances are booted from the same VDI image, a great
portion of the host file cache can be shared. On the other hand, all accesses to those
files are then subject to extended access delays due to additional VM exits. [89]

2.5. Conclusion: Limitations of the State-of-Art

Virtual memory systems made transparent copy-on-write memory sharing possible
in the early 60s. This technique has made its breakthrough when time sharing
systems were built for the first time. Copy-on-write can be used to share anonymous
address space regions between processes and to share the same buffer for files
among different processes. Those traditional sharing policies cannot be used for

36 Background and Literature Review

deduplicating VMs, as those mechanisms are purely based on sharing objects that
come from the same source, known a-priori. Virtualization hosts do not have such
knowledge, however, due to the semantic gap.

Paravirtualization-based approaches transport and leverage semantic information
and thus exploit specifically considered sharing sources instantaneously at creation
time. However, using this approach, the hypervisor needs to process all I/O and
hooks right away. This can be a bottleneck for I/O-intensive workloads, and for
applications that make frequent use of hooked calls. Moreover, paravirtualization
directly implies, that the virtualization guest needs to be modified. This, however,
is not always possible, for example if the source code is not available.

Memory deduplication scanners treat all memory equally regardless of their se-
mantic and are thus able to exploit sharing opportunities from all sources without
the need to modify the guest OS. However, scanners have their downside when it
comes to deduplicate short-lived sharing opportunities quickly, as those systems
can only index memory pages at a limited rate.

Chapter 3

Analysis of Main Memory
Duplication and Sharing

This chapter motivates that memory deduplication methods can be improved by
incorporating semantic knowledge into the deduplication process. Therefore we
assess the opportunities for deduplication qualitatively and quantitatively.

Section 3.1 enumerates methods to measure and analyze memory duplication. The
following Section 3.2 gives reasons for memory duplication. Then it quantifies
the amount, sources, and characteristics of sharable memory regions obtained
through various benchmarks and data acquisition methods. Section 3.3 concludes
the chapter with a summary.

3.1. Measuring Main Memory Duplication

Main memory today1 can be modified at peak frequencies of up to 6.3 · 106 pages
second ,

in single socket systems. When measuring memory characteristics in software
it is unavoidable that the measuring process itself influences the target workload.
In consequence, one needs to be very careful to use appropriate measurement
techniques that keep the distortion within reasonable bounds.

In order to analyze the properties and development of sharing opportunities, we
need possibility to inspect memory contents and to track their modification over
time. The following sections discuss different techniques that can be used to trace
main memory modifications which allows us to observe memory duplication to
analyze its characteristics.

1November 2013, PC3-24000U DDR3 RAM

38 Analysis of Main Memory Duplication and Sharing

Uhlig and Mudge, consider different attributes in their review of trace-driven
memory simulation techniques [82]. I redefine those attributes to fit memory
duplication analysis and address those attributes in my following review of memory
deduplication analysis methods:

• Completeness: Can all memory duplicates be observed?

• Detail: How much context, beyond the quantity, can be derived?

• Distortion: How does the analysis influence the measured workload?

• Ease-of-use: How hard to use is this method?

• Slowdown: How much longer does the workload run when analyzed?

3.1.1. VM Snapshots

Any privileged process can freely set-up virtual address spaces. This enables such
processes to inspect memory contents of all other processes on a system. Operating
System (OS) kernel modules for example can access memory pages of any process
in the system; that is done in memory scanners to insert pages into the index.
Hypervisors also use this privilege to create memory snapshots of active virtual
machines (VMs) in order to suspend, migrate, and restart virtual machines.

Periodic main memory snapshots can be used to analyze main memory charac-
teristics of processes such as virtual machines. This can be done by sampling and
recording memory contents periodically. Afterwards, for example when the work-
load has finished, different properties can be investigated in the recorded data. One
example is the average number of duplicates in each snapshot.

Completeness Following the Nyquist-Shannon sampling theorem, the sampling
rate needs to be twice the cutoff frequency to see every memory modification. This
means that two reads need to be performed to every memory page in the system
for every write that can be done during that time. This is impossible, with random
access memory (RAM) typical equal read and write speeds. Thus, VM snapshots
can thus never detect all main memory modifications. In conclusion, VM snapshots
are functionally incomplete for memory duplication analysis as a duplicate can be
created and destroyed, before we can observe the duplicated state in a snapshot.

Slowdown There are two overheads that, taken together, make up the time needed
to create a snapshot. First, a near-constant overhead in which the system scans
main memory pages and detects which pages have been modified since the last
snapshot. Second, the time needed to write the modified data to persistent storage,
for example to disk.

Analysis of Main Memory Duplication and Sharing 39

Nikolai Baudis measured the overheads for creating incremental snapshots as a part
of this Bachelor thesis [6] at our institute. His implementation records memory
images of QEMU VMs [8], storing new memory pages on a local, high-performance
key-value store. In a benchmark, incremental snapshots of a 2 GiB VM were taken
in 2 second intervals. Between consecutive snapshots, the workload modified about
4000 pages. Those were written to a local Redis [73] server where a solid state
device (SSD) was used as the background store. The snapshot downtime – the time
between the beginning and end of a snapshot in which the VM is inactive – was
around 400 ms. Parsing QEMU’s bitmap that indicates dirty pages took 25–40%
of each snapshot’s time. Hashing the dirty pages which need to be stored took
between 15% and 20% of this time and 40–60% of the time could be attributed to
writing the modified memory pages to the background store.

Scanning for modifications on the one hand and storing those modified pages on
the other hand limits the attainable snapshot resolution in practice. The lower
bound for creating a snapshot is the (constant) time it takes to scan memory
for modifications in a scenario where no pages have been modified since the last
snapshot. The upper bound for creating a snapshot is the time is takes to scan
memory when all pages have been modified and then persisting all (modified) pages.

Not all analyses require snapshots that encompass the full memory content. When
quantifying the amount of memory duplication in a system, it is for example enough
to record collision resilient hashes (e.g., cryptographic hashes such as SHA-1).
Colliding hashes can then be used to count duplicates in the system. For our
analysis we have implemented a kernel module that creates periodic snapshots using
hashes [37]. We use this module to infer the sharing opportunities baseline from
secondly snapshots when evaluating different memory deduplication strategies.

Distortion There is a trade-off between the resolution of this method, depending
on the sampling rate on the one hand and its influence on the measured workload on
the other hand. While creating a snapshot, the workload is typically not scheduled
by the OS, to make those snapshots consistent. That results in a downtime in which
the snapshot is taken while the workload cannot run. The length of this downtime
determines the influence of this analysis method on the execution of the workload.

Specifying the downtime is not easy as it depends greatly on the amount of memory
that the workload modifies, on the speed at which the workload modifies memory
and on the sampling rate that the snapshots are taken in. When the snapshot
frequency is high, the workload has less time to modify memory pages due to
the shorter time interval between snapshots. Intuitively, one could think that
the shortened snapshot time can even out the increased number of snapshot that
have to be taken. Two things need to be taken into consideration in this process,
however. We have seen, creating a snapshot can be subdivided into the time it
takes to find the modified pages since the last snapshot and into the time it takes
to persist those new pages. First, the time it takes to scan for modified pages is

40 Analysis of Main Memory Duplication and Sharing

constant; all pages in the system need to be checked for modification, whether this
is done via the page table modified bit data structures which the VM provides or
via hash-and-compare. Second, the total number of stored, modified pages is greater
when creating snapshots at a higher frequency. Making more frequent snapshots
increases the resolution of this method; more of the intermediate memory states
are then recorded in addition. So, more frequent snapshots always lead to a longer
total downtime.

Ease-of-use and Detail The development of memory contents can be easily
tracked with snapshots, regardless of the workload itself. In the case of VMs this
means that this technique can be used without knowing what guest OS is running.
Some information can be directly extracted from each snapshot such as: the number
of duplicates – pages that can be shared and then freed – and the size of sharing
groups – then number of pages that make use of a sharing page. Other information
require the correlation of different snapshots, such as the time that pages could
remain shared. Extracting such information can easily be done.

Information that require semantic knowledge of pages are very hard to obtain.
Gathering semantic information from a series of snapshots is hard, because the
full chronological sequence of memory modifications is not available. In order
to obtain semantic information from snapshots, reverse engineering techniques
need to be applied to every snapshot. These techniques have to be tailored to
each target workload, which requires time and internal knowledge of the analyzed
system. For example, when analyzing a guest OS, the internal data structures
that represent processes (PCBs) and address spaces need to be found. Those data
structures reference other data structures with virtual addresses, as opposed to the
physical memory addresses that are known in the memory dump. Virtual addresses
need to be translated in the analysis using the page tables in the snapshot.

Jonas Julino has analyzed memory snapshots taken from the Android SDK simula-
tor in his study thesis [44]. He has written a tool to find processes and correlate
their address spaces through reverse engineering in single memory dumps. About
9.5% of all non-free and non-zero memory pages are duplicates in the used Android
OS. Julino found the Dalvik VM to be the main source of duplication.

3.1.2. Page-faults

In paging-based memory management systems, virtual pages can be write-protected
in their respective page table entry (PTE). When a write-protected page is written,
the memory management unit (MMU) signals an exception which invokes the OS.
The OS can then take appropriate measures to deal with the exception. Either, the
page was intentionally mapped read-only and is not supposed to be written then the
access has been correctly denied and the process is killed unless the process provides

Analysis of Main Memory Duplication and Sharing 41

an exception handler for such cases. Or, the page was mapped read-only for the OS
to get a signal (the exception) on the next memory write.

A good example for the second scenario is the copy-on-write (COW) mechanism.
The page frame is intended to be shared transparently, thus the write-protected
page mapping is used to guard the page frames’ content. When a sharing process
writes his respective page that is mapping to this page frame, the MMU signals
the OS, which then gets a chance to copy the page frame and map a private copy
with read-write permissions to the writing process. The OS knows, that the write
operation was in fact allowed despite the read-only mapping, through its internal
virtual memory area records.

The same mechanism can also be used to analyze memory write bursts. To this end,
the OS maps all pages that should be considered in the analysis read-only. When a
page-fault is signaled, the COW mechanism is used to save the previous state of the
page and transparently fork a new page for the writing process. The OS then sets a
timer to take away write permissions on the copied page at a later time to repeat
this process for the next write burst.

Completeness The copied page needs to be mapped read-write until the faulting
process has written the page, but that there is no way to halt modification precisely
after the first write operation completes. The OS has to monitor (poll) the PTE’s
modified flag, to learn about write operations. If it finds the flag set, it remaps the
page back to read-only. This way, not all single write operations can be record.
Write bursts at the granularity from the page-fault until the OS maps the page back
read-only are recorded, instead.

Note that using this analysis method does not impede the original COW mechanism
as the OS can infer the semantic context of the page-fault from its internal virtual
memory area data structures.

Detail The amount of additional semantic context that can be derived from the
analysis using page-faults depends on where the analysis takes place. The OS can
easily do this analysis for native applications. It can moreover do it regardless of
the position of the OS itself; the analyzing OS can run on bare metal as well as in a
VM as a guest. When analyzing at this level, semantic information such as virtual
address mappings are trivially known to the analysis by accessing the appropriate
data structures in the page-fault handler.

Mapping pages read-only and using this method to analyze virtualization guests
can also be done in the host by setting all guest pages to read-only in the extended
page tables (EPTs). This modification is fully transparent to the nested page table
entries used by the guest OS itself. If the analysis takes place on this level, the same
semantic gap, as described for VM snapshots applies. Introspection methods are
needed to infer the semantic context of written pages.

42 Analysis of Main Memory Duplication and Sharing

Distortion and Slowdown This analysis method influences the measured work-
load in three ways. All three distort the measurements by skewing with the timings
in which instructions are executed and slowing down the progress of the workload.

First, the access latency is skewed. Usually, the read and write latency to RAM have
equal access latencies. When using this method, the first write in a burst raises a
page-fault which causes the OS to copy the associated page. The page-fault handling
slows down the write latency by two orders of magnitude2.

Second, the analysis distorts the write throughput due to the increased number of
page-faults. As long as there is free memory available, the analysis can copy the
faulting page and restart the faulting operation. Persisting or analyzing the page
content can be deferred to a later time and in addition done by a different CPU
core. After the respective data has been saved, the page can be added to the free
pool again.

Even without persisting changes, the increased page-fault rate can slow down
memory writes significantly. For example, on a laptop with an Intel i7-3520M CPU
and 1333 MHz DDR3 RAM, writing a 1 GiB chunk of contiguous memory with
memset is slower by a factor of 6x when every page experiences a COW page-fault
on the first access compared to writing without page-faults.

The third kind of slowdown occurs, when the analyzing machine runs out of
memory. This happens when the write-burst rate of the target is higher than the
rate in which the copied pages can be analyzed and persisted. In such a case, the
target workload must be halted until the memory pressure has lifted. If the whole
content is important for the analysis, write-burst rate is limited by the write rate
of the background store. For analyses with many similar memory regions, for
example larger equally initialized regions, it may be beneficial to compress memory
pages before persisting them. It may also be enough to record hash values of such
pages.

Ease-of-use The implementation is not as easy as the previous method. When
changing the memory subsystem of an OS, there are many pitfalls. Timing and
locking bugs are hard to find at this level in addition. When this method is imple-
mented correctly, however, the collected information is as complete as it would
be using snapshots with a high sampling rate. The same algorithms for building
semantic context for further analysis can also be used from the previous method.

2Measured 122.5x by touching 1M consecutive pages in a loop with and without COW breaks,
subtracting the time the loop needs to run. Benchmark was run on an Intel i7-2600K with
1333 MHz DDR3 RAM running Linux 3.4.

Analysis of Main Memory Duplication and Sharing 43

3.1.3. Emulation

Programs that have been compiled for one computing system, can generally not run
on another system unless the new system implements a compatible instruction set
architecture (ISA). Moving from one computing system to another thus generally
breaks the binary compatibility of programs.

Emulation, originally invented in the early 60s, eases the transition to succeeding
computing systems by enabling old binary programs to run on a new system with
incompatible ISA. Emulation achieves this in one of two ways [81]:

• Simulation: The machine code is interpreted at execution time, or

• Binary Translation: Old machine code is converted to the new ISA.

Completeness Emulation is done at instruction level, whether the instructions
are interpreted or translated. The emulator keeps track of how instructions modify
a (virtual) hardware model. In consequence, the emulator has access to all details
that can be inferred from the executed instructions and the hardware states. This
includes all memory accesses and the content of memory pages at all times.

Detail Emulation is commonly used to implement functional full system sim-
ulators. Such simulators can be used to thoroughly analyze entire computing
systems for example to find programming errors or performance bottlenecks on a
per-instruction detail-level.

In order to see additional, contextual information about the analyzed system’s
execution state, the simulator can make use of introspection techniques.

Binary translation can also be used to analyze applications in user space, where
more contextual information is available for correlation. To this end, applications
can be translated to collect data about their own execution. Well known examples
are the dynamic recompilation based tools Valgrind [66] and Pin [55]. Another
example is Electric Fence (eFence) [71], which can be statically added to a program
in the linking stage. All three tools can be used to find memory leaks and memory
usage errors (e.g., use after free).

Slowdown Full system simulation through interpretation is performed by simula-
tors such as Bochs [51], which runs x86 binaries on different architectures.

44 Analysis of Main Memory Duplication and Sharing

Binary Translation can speed up the execution time by a factor of 30x compared
to interpretation [8]. This technique is used by a variety of emulators such as
QEMU [8] and full system simulators such as MARSSx86 [67].

The slowdown of emulators depends heavily on the additional bookkeeping and
computation that is done at each interpretation step or in each translated basic block
respectively:

• Full system simulators such as Simics can be many orders of magnitude slower
than native execution when analyzing memory duplication properties. We
have measured slowdowns of >7200x using Simics [69]. This results in a
simulation time of 300 days for a workload of the length of a single hour.

• Quick emulators using binary translation and without instrumentation for
measurements are still about 4-10x slower than native execution [8].

• We have found that instrumenting QEMU to trace memory accesses intro-
duces another slowdown-factor of 4x over QEMU [38].

While working on analytical methods for memory accesses, we have realized that
the largest speed-up potential for full system simulation lies in parallelizing the
simulation of single cores. We have already published a paper [70] that outlines
our ideas to realize this goal and quantifies the possible speed-up in a mathematical
model. According to that model, near-native speeds are possible when simulating
single cores on multi-core machines.

Distortion Emulation can be used to purely execute systems and it can also be used
to analyze systems at different granularities. Instrumentation can range from the
creation of a call-graph and functional analysis over the analysis of access patterns
to caches and memory to microarchitectural analyses including precise timing
predictions. The different granularities can be implemented using an appropriate
combination of fast binary translation and slower, more detailed, interpretation.

Ease-of-use The ease-of-use varies greatly between the different, available frame-
works. Tools such as Valgrind on the one hand, can easily and quickly be used to
find pre-defined program errors. Full system simulators such as Simics on the other
hand require deep knowledge of the analyzed systems and a lot of work to set-up
a simulation with the required hooks and parameters. Contextual information
that exceeds the hardware state and executed instructions needs to be gathered and
correlated by hand, for example through introspection.

Analysis of Main Memory Duplication and Sharing 45

3.1.4. Trap and Emulate

Trap and Emulate is originally a technique that makes virtualization possible despite
the lack of virtualization hardware support in the physical virtualization host [72].

CPUs only allow the execution of sensitive instructions, for example masking
interrupts or changing address spaces, if the CPU is in a privileged mode (i.e., CPL0
on x86). For security reasons, only the host runs in this privileged mode and
the virtualized hosts run with regular user privileges (i.e., CPL3 on x86). Guest
OSes expect to run in privileged mode, however, as they are in charge of managing
their (virtual) hardware. Calling a sensitive instruction without privileges, as a
guest would perform it, traps into the host through a CPU exception similarly to a
page-fault.

In case of a page-fault, the exception would be handled – the missing page mapped
into memory – and then the original instruction would be restarted. When running
sensitive instructions, the only possibility to successfully restart such a faulting
operation would be to raise the privileges of the guest. As this is not intended,
otherwise the isolation between guests and host could be compromised by the
guest, the host needs to emulate the faulting instruction and advance the instruction
pointer to return to the next instruction after the faulting one.

Analogous to page-faults, described in the previous section, Trap and Emulate can
also be used for memory analysis. In contrast to the previous method, after trapping
into the kernel due to a page-fault, the OS does not resolve the memory protection
page-fault and restart the faulting operation. Instead, the host – which has a read-
write mapping to the respective page frame – emulates the faulting operation and
then increments the instruction pointer. This way, the guest skips the faulting
instruction after emulation.

Completeness Trap and Emulate makes complete memory traces possible as the
emulation renders remapping the accessed page unnecessary. This way, there is no
time frame in which the page can be accessed unnoticed to the host.

Memory pages can also be mapped without access rights in the page table. Reading
a page without access rights will then trap to the host which can emulate the read
instruction. Thus, Trap and Emulate also works for tracing main memory read
operations.

Relevance Trap and Emulate is inferior to emulation in combination with binary
translation in any way. Using Trap and Emulate, the analysis is restricted to CPU-
specific, fixed, predefined points in which analysis can take place. Binary translation
delivers much higher performance. In addition it can modify the original binary
code to trap into a more detailed emulation mode for critical parts of a program if
necessary.

46 Analysis of Main Memory Duplication and Sharing

3.1.5. Custom Hardware

All previously introduced methods are techniques to analyze memory contents or
access patterns in software. Specialized hardware can also record memory traces
for analysis. Such hardware can be inserted along the bus between CPU and main
memory in different places. All insertion places hide some details from the observer,
however. When replacing the CPU, concurrent accesses to memory from DMA
controllers and other CPUs are hidden. When sniffing the bus, cache accesses are
missed.

The Hybrid Memory Trace Tool [3] replaces DDR3-RAM of a computing system
and can record memory accesses with no slowdown. Context needs to be correlated
similarly to the emulation based approaches. The benefit of such hardware is the
increased recording speed compared to software methods.

3.1.6. Summary of Analytical Methods

When recording memory traces for memory (de-)duplication analysis several factors
need to be taken into consideration. Different methods can be used to generate such
traces; all of which have different characteristics (Table 3.1). All discussed methods
need an introspection mechanism to correlate semantic with the trace.

Method Complete Distortion Ease-of-use Slowdown

VM Snapshots no based on frequency easy low–medium

Page-faults no high harder medium

Emulation yes depends hard high

Trap and Emulate yes high harder medium

Custom Hardware no low hard none

Table 3.1.: Overview and comparison of analytical methods.

We have mainly used VM snapshots and Emulation to evaluate our experiments. VM
snapshots are an easy and quick way to analyze memory duplication quantities.
Full system simulators can be used to gain more insight into the reasons behind
duplication and the circumstances of their creation. Easy-to-use hardware was not
available when we started this project.

Analysis of Main Memory Duplication and Sharing 47

3.2. The Anatomy of Memory Duplication

In order to instate a good deduplication policy, one first needs to understand the
reasons for and properties of memory duplication. The following paragraphs
provide an intuition where memory duplication comes from, in which quantities
and distribution they are created, and how long they live.

First, I qualitatively describe why memory duplication exist and give reasons for
highly varying duplication rates that can be measured in different workloads (§3.2.1).
Second, I analyze spatial and quantitative characteristics such as the origin of sharing
candidates and their cardinality (§3.2.2). The final paragraph describes temporal
characteristics of duplicates: How long they remain sharable and the circumstances
of their end (§3.2.3).

3.2.1. Reasons for Memory Duplication

Equal memory pages by pure chance are very improbable. A 4 KiB page can be in
24096·8 (≈ 1.4 · 109864) different states, and even the birthday-paradox does not make
content collisions likely for this many states when taking realistic memory sizes
(� 1 TiB ≈ 1.1 · 1012) into account. For a collision probability of 1% one would
need to generate 1.6 · 104931 uniformly distributed random pages3.

It is unlikely that we will ever reach memory sizes that make coincidental duplicates
likely at uniform distribution for two reasons: First, we are unlikely to achieve a
higher storage density than one bit per elementary particle4. Second, number of
elementary particles in the observable universe is estimated to be 1097 [65].

Nevertheless, today’s systems do contain duplicates. Their existence indicates that
there are semantic correlations leading to duplicates. One goal of this thesis is to
find policies, deduced from the creation semantics, to efficiently identify those
duplicates.

Some sources for such semantics are:

Popular Pages and Initialization Memory page contents are not distributed
uniformly across all possible states. Certain page values are recurring more often
than others. Prime examples are pages filled with patterns such as 0’s or 1’s, but other
initialization patterns are also likely5. Large arrays containing page-aligned objects
(e.g., an OS’s Process Control Block) may also be (pre-)initialized to recurring
patterns.

3Calculated with the square approximation of the birthday problem.
4Examples of elementary particles are: quarks, electrons, photons, and neutrinos
5Some programmers initialize their data structures to values that the human eye can quickly

identify in memory dumps, such as 0xDEADBEEF.

48 Analysis of Main Memory Duplication and Sharing

Direct Copies Within a program’s address space, memory is often copied via
bcopy, memcpy, and memmove. However, copying can also be implemented using
arbitrary mov loops making the creation of copies hard to observe. An exam-
ple for making a copy within a program would be the flyweight software design
pattern [33].

Direct memory copies are, moreover, often made when transporting information
between address spaces. A prime example is a program reading file contents. The
OS first reads the requested file into a kernel-internal file cache and then merely
copies the result into the target user address space. When files larger than the used
page size are read and the target pages are aligned to that page size, this creates a
duplicate page in memory.

Determinism Duplicates can also be the result of deterministic calculation results
within programs. When two instances of this program are executed, this leads to
duplicate memory contents between those processes.

An example would be an ELF-loader creating the same address space sections,
initialized with the same data when executing a program. The rodata sections will
for example likely contain the same constant strings in all processes of the same
program. In contrast to the last paragraph, these memory areas are not copied in
memory, but are autonomously created by each process.
Another example for this kind of duplication would be the creation of (the same)
lookup-tables at the beginning of an algorithm.

A similar kind of duplication also occurs at the boundary between a hypervisor and
a guest OS. Guest OSes ship with their own virtual disk image (VDI) containing
all programs, shared libraries and data needed to boot the guest VM. When a
hypervisor boots the same VDI multiple times, the same programs and libraries are
loaded into the hosts’ memory simultaneously.

This kind of duplication also occurs between programs that are statically linked
against the same libraries [79], when using zero-install, and when running appliances.
Starting any pair of those programs that were linked to the same libraries can lead
to memory duplicates. An analogous problem exists when using sandboxes.

Different files with similar or equal content Files are loaded into the buffer
cache based on their file identifier (e.g., inode), not based by their content.

Similar files are created when file contents evolve over time. Examples are shared
libraries, databases and documents of different versions. Files with fully equal con-
tent can also exist in different parts of the file system. Examples are popular icons
that are shipped with multiple software projects (e.g., freely available emoticons)
or shared libraries that are bundled on distribution. It is for example common to
bundle the QT-framework libraries with every QT-application that is distributed
to the Windows OS.

Analysis of Main Memory Duplication and Sharing 49

3.2.2. Spatial and Quantitative Characteristics

This paragraph analyzes the spatial characteristics of memory duplication. That
includes the quantity of duplication as well as their cardinality or rank, which is a
metric for the distribution of shared and sharing pages. Spatial characteristics also
include the classification into self-sharing and inter-domain sharing and an overview
of the semantic origin of duplicate pages.

Duplication Quantity

The amount of sharable pages varies greatly between workloads. Previous studies
have found redundancy on page granularity to make up 11% – 86% of the total
amount of main memory allocated to VMs (Table 2.1). We have measured mem-
ory duplication in different workloads and scenarios as well. Two scenarios are
introduced here. Duplication quantities of further scenarios can be found in the
following chapters.

A desktop workload, in our case a PC with 2 GiB RAM with Linux6 running Libre-
Office7 and Firefox8 has a sharing potential of approximately 110 MiB, alone. The
same OS running Gimp9 and Eclipse10 yields a sharing potential of approximately
93 MiB main memory (Figure 3.1).

Those measurements have been done using the Simics full system simulator. Note
that the VMs did not use all of the available 2 GiB RAM when running the bench-
mark. When such a workload is run in a VM, the actual physical footprint is smaller
than 2 GiB even without deduplication as only touched memory is allocated in the
host. The actual amount of allocated memory varies greatly between workloads
and also depends on the workload history. Disk I/O intensive workloads, that
read (or write) many different files will use most of the available memory for disk
caching. CPU intensive workloads on the other hand use hardly any memory at all.

A common application for VMs is to run multiple batch-jobs simultaneously.
This way, the hardware utilization can be maximized while retaining isolation
between jobs. On compile-servers for continuous integration [80], for example,
the same code base might be compiled from different repository-copies (branches),
in different VMs at the same time. Such scenarios yield a very high potential for
memory deduplication on the one hand. Short run-times of single jobs make
deduplication hard on the other hand.

6Ubuntu 11.10, 32 Bit, Kernel 3.3.2
7LibreOffice Writer 3.4.4 Build 402
8Firefox 12
9Gimp 2.6.11 displaying a 6.21 MiB picture

10Eclipse 3.7.0 Indigo

50 Analysis of Main Memory Duplication and Sharing

90

100

110

120

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

S
h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

[M
iB

]

Time [min]

LibreOffice
Gimp

Eclipse

Figure 3.1.: Duplication in different Desktop environments. Each workload is
running Ubuntu Linux as the OS. The three different workload were
run independently of each other, they do not run simultaneously.

100

200

300

400

1 2 3 4 5 6 7 8

S
h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

[M
iB

]

Time [min]

Opportunities

Figure 3.2.: Batch-job: Sharing potential of 2 VMs with 512 MiB RAM, each build-
ing the Linux kernel.

When running two Linux 3.0 kernel-builds (compiling the kernel) at the same time
in VMs with 512 MiB each, more than a third of the total memory footprint for the
VMs can potentially be saved using memory deduplication (Figure 3.2). We have
gathered the number of sharing opportunities with secondly snapshots in this case.
The run-time of the kernel-build is only 7:30 minutes without snapshots. We scale
the time axis accordingly for the evaluation in Section 5.4.

Analysis of Main Memory Duplication and Sharing 51

Self-sharing vs. Inter-domain sharing

As we have seen, there are different circumstances in which main memory duplicates
are created. When analyzing those sharing opportunities, we follow Barker et
al.’s [5] notation of self-sharing and inter-VM sharing. As deduplication is not
limited to virtual environments, we differentiate more broadly between intra-
domain sharing or self-sharing on the one hand, and inter-domain sharing on the
other hand:

• Self-sharing: Memory shared within a single semantic domain.

• Inter-domain sharing: Memory shared across different semantic domains.

This definition depends on the context that it is used in: When analyzing duplica-
tion in the address space of a process, sharing within a section (e.g., the heap) is
considered self-sharing while sharing across sections (e.g., between heap and text
segments) would be considered inter-domain sharing. When analyzing duplication
in virtual machines, one would consider both of the above to be self-sharing if they
occur within a single VM’s memory partition. Equal memory pages that could
be shared between VM instances would be considered inter-domain sharing in this
case.

Figure 3.3 breaks down the total amount of sharing opportunities into self- and inter-
domain sharing. The graph shows the distribution for three desktop workloads:
LibreOffice, Gimp, and Eclipse each running in their own Ubuntu VM respectively.
In this benchmark, inter-domain sharing dominates. This is not the case for all
workloads, however. Barker et al. [5] have measured the contrary in their desktop
workloads at the very high snapshot interval of 30 minutes per snapshot.

0.0

0.5

1.0

1.5

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

S
h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

[G
iB

]

Time [min]

Inter-VM Sharing
Self-Sharing

Total

Figure 3.3.: Self-sharing vs. Intra-domain sharing: The previous three desktop
workloads LibreOffice, Gimp, and Eclipse respectively run in three
virtual machines with 2 GiB RAM. This scenario resembles a VM-based
terminal server.

52 Analysis of Main Memory Duplication and Sharing

Sharing Rank

The difference between self-sharing and inter-domain sharing is directly reflected in
the sharing rank. When merging equal memory pages, a single, shared COW page
frame remains in the system to be referenced by all other pages.

The rank is the number of equal pages that can be merged [63]. For example, if
two pages have the same content in the system, their sharing rank is two. One of
those pages can be freed and shared, the other page remains in the system to be
sharing (Figure 3.4). When more pages are equal, the sharing rank is higher than
two. For a sharing rank of n, n− 1 pages can be shared, while one page remains,
sharing the content using COW.

vmem

72 KiB

68 KiB

64 KiB

60 KiB

56 KiB

52 KiB

48 KiB

44 KiB

40 KiB

36 KiB

32 KiB

28 KiB

24 KiB

20 KiB

16 KiB

12 KiB

8 KiB

4 KiB

0 KiB

pmem

72 KiB

68 KiB

64 KiB

60 KiB

56 KiB

52 KiB

48 KiB

44 KiB

40 KiB

36 KiB

32 KiB

28 KiB

24 KiB

20 KiB

16 KiB

12 KiB

8 KiB

4 KiB

0 KiB

vmem

72 KiB

68 KiB

64 KiB

60 KiB

56 KiB

52 KiB

48 KiB

44 KiB

40 KiB

36 KiB

32 KiB

28 KiB

24 KiB

20 KiB

16 KiB

12 KiB

8 KiB

4 KiB

0 KiB

pmem

72 KiB

68 KiB

64 KiB

60 KiB

56 KiB

52 KiB

48 KiB

44 KiB

40 KiB

36 KiB

32 KiB

28 KiB

24 KiB

20 KiB

16 KiB

12 KiB

8 KiB

4 KiB

0 KiB

Sharing

Shared

Shared

Figure 3.4.: Three equal pages are merged into a single sharing page and two shared
pages. The two shared pages can be freed, the sharing page needs to
remain allocated. The sharing rank is three.

A higher rank on the one hand means, that more memory can be freed and thus
saved with the same total of equal pages. For example, if one page is sharing and 99
pages share this page (rank of 100), 99 pages can be freed. If 50 pages are sharing
and another 50 pages share those pages (rank of two), only 50 pages can be freed. In
both cases there is a total amount of 100 equal pages.

Analysis of Main Memory Duplication and Sharing 53

Self-sharing and inter-domain sharing scale differently with a growing number
of sharing domains: The rank of (purely) self-sharing pages is hardly affected by
the number of sharing domains. When starting another workload, additional
sharing opportunities can generally only be found within the new domain. Inter-
domain sharing in contrast generally scales proportionally to the number of sharing
domains. Adding another (similar) domain, for example another Ubuntu Linux
VM, increases the chance that another page is added to an existing inter-domain
sharing group, increasing its rank. This is especially true, if a cloud provider
consolidates VMs with similar memory footprints.

The sharing rank depends heavily on the workload and on the distribution of self-
sharing and inter-domain sharing. Miłós et al. [63] have evaluated their approach
using Linux kernel-builds, HTTPerf, and RUBiS. They have also measured the
sharing rank in an aggregate of those benchmark scenarios. Almost 80% of the
sharing opportunities had a rank of two. Rank three and four were assessed to
make up 7% and 3% respectively. Another 6.5% of the sharing opportunities had
a sharing rank of 14 or higher, while the remaining sharing ranks of 5 to 13 only
contained between 0.5% and 1.3% of the sharing opportunities.

In our aforementioned desktop benchmarks, when running LibreOffice, Gimp,
and Eclipse in three separate VMs simultaneously, we have measured the following
sharing ranks, which are also summarized in Table 3.2: 15% had a rank of two, 83%
had a rank of three. Ranks four to six made up only 0.1% in total, while 1.4% of the
sharing opportunities had a rank of six or higher. Table 3.2 also breaks those results
further down into inter-domain sharing and self-sharing. The inter-domain sharing
rank clearly peaks at three due to the number of VMs that were run simultaneously
in this benchmarks, which was also three. The self-sharing rank peaks between
two and three pages and then at ranks of higher then six. Either pairs or triplets of
pages are found within a sharing domain, or larger contiguous memory regions are
initialized to a certain pattern.

Rank Self-Sharing Inter-domain Sharing Total

2 55.2% 6.5% 15.4%
3 39.0% 93.5% 83.0%
4 0.2% 0.0% 0.1%
5 0.1% 0.0% 0.0%
6 0.1% 0.0% 0.0%

> 6 5.4% 0.0% 1.4%

Table 3.2.: Sharing-rank distribution of 3 Ubuntu Linux VMs running LibreOffice,
Eclipse, and Gimp respectively [69].

54 Analysis of Main Memory Duplication and Sharing

Semantic Origin of Sharing Candidates

When grouping sharing opportunities by their semantic origin, it is nontrivial how
to attribute mergeable pages from different semantic origins. Two approaches are
plausible: First, grouping can be done based on the number of pages that enter a
sharing group. Second, grouping can be done based on the highest total number of
cycles that pages of a certain origin remain in the sharing group.

Figure 3.5 illustrates this issue. If only the number of pages that enter the sharing
group is counted, then pages that fluctuate between sharable and not sharable
contents will distort which semantic origin this page frame will be attribute to.
In the example, the heap pages that enter the sharing group five times makes the
heap the prominent page type on that group. If the total share time is considered as
the basis for a page type attribution of a page frame then the sharing group in the
example is attributed to the page cache.

1 2 3 4 5 6 7 8

H H H H H

F F

F

Time

Page
F File Cache Page H Heap Page

Figure 3.5.: Sharing groups can be attributed to the page type that enters the most
into the group. It can alternatively be attributed to the page type that
remains in the group the longest. [69]

We have decided that the second approach paints a better picture of the shared page
usage. What counts after all is how much the sharing groups are used, not how
many pages enter the group. Highly fluctuating pages would otherwise distort the
distribution of sharing groups.

We have introspected Simics simulations to gather information about the semantic
sources of the sharing opportunities [69]. Due to slowdowns of >7200x we were
only able to analyze workloads with little computation and low memory pressure.
The following results are aggregated numbers taken from introspecting the three
previously presented desktop workloads, running Eclipse, LibreOffice, and Gimp
atop of Ubuntu Linux.

Analysis of Main Memory Duplication and Sharing 55

Figure 3.6 visualizes our findings. Our experiments are limited to the terminal
server and desktop domain only. The result, that file and heap memory make up
the majority of the sharing opportunities, can also be deduced from measurements
published by Miłós et al. [63]. Barker et al. [5] have found a majority of the sharing
opportunities to come from heap memory (50%) followed closely by file-based
memory (43%).

0 20 40 60 80 100

Desktop Applications

File

Heap

Kernel

Other

Share of total sharing opportunities [%]

Figure 3.6.: Aggregated origins of sharing opportunities of 3 Ubuntu Linux VMs
running LibreOffice, Eclipse, and Gimp respectively. [69]

3.2.3. Temporal Characteristics

This section describes temporal characteristics of duplicate memory pages. It
highlights how long sharing opportunities live and when they are usually detected
by a memory scanner. Moreover, it details on the time when sharing is broken.

Longevity

The time that pages remain equal is the longevity of sharing opportunities. Its
distribution depends heavily on the workload and the semantic origin of the sharing
opportunities that can be found.

Sharing opportunities that live for a long time, can easily be identified by brute
force using memory scanners (see Section 2.4.4). Miłós et al. [63] have found that
VMware’s ESX server can find about half of the available sharing opportunities
after 37 minutes using default settings. Even when using aggressive settings in the
ESX memory scanner, Miłós et al. have measured that it takes up to 20 minutes to
find half of the available memory duplicates in their benchmarks.

When running two Linux kernel-builds each one in a separate VM with 512 MiB
RAM the sharing opportunity longevities that are illustrated in Figure 3.7 can be
measured. When assuming a duplicate detection time of 30 seconds a large portion
of the available sharing opportunities in this benchmark will not be detected by a
regular memory scanner.

56 Analysis of Main Memory Duplication and Sharing

54,5%

15,0%
13,0%

9,8%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

≥ 1 sec ≥ 30 sec ≥ 5 min ≥ 30 min

C
u

m
u

la
ti
v
e

 S
h

a
ri
n

g

Deduplication
Improvement
Potential

Figure 3.7.: Longevity of sharing opportunities when running two Linux kernel-
builds in separate VMs.

Disappearance of Sharing Opportunities

Sharing is only broken when the content of merged pages is modified. Note that
changing the status of a page, for example marking a page as free after a process
ended, does not break sharing, yet. In Linux, pages that are freed are not zeroed
until their next allocation. When no memory pressure is present, this prolongs
the time that pages exiting the page cache can be shared. The consequence is, that
memory pages can remain shared long after the respective pages have been freed.

Figure 3.8 illustrates the number of sharing opportunities that exist during the
Bonnie++ file system benchmark and thereafter, when pages get freed by the OS.
Bonnie++ deletes the temporary files it has previously created to measure the file
system performance around 150 seconds after the beginning of the benchmark. The
memory pages that have previously cached those file contents remain unchanged
until they are allocated to another process.

 0

 200

 400

 600

 800

 1000

 0 30 60 90 120 150 180 210 240

S
h

ar
in

g
 O

p
p

o
rt

u
n

it
ie

s
[M

iB
]

Time [sec]

Page Cache
Free

Figure 3.8.: Pages remain shared even after their memory state changes to free. In
Linux, the content doesn’t change from the last allocated content, as
long as the state remains free.

Analysis of Main Memory Duplication and Sharing 57

3.3. Conclusion

We have introduced different techniques to gather information about memory
duplication. In order to gain detailed insight into the semantics of sharing op-
portunities one always needs to go through the trouble to implement some form
of introspection, however. We have used VM snapshots to gain insight into the
duplication quantity of different workloads. Then we turned to emulation, by
instrumenting the Simics full system simulator and QEMU with introspection
methods, to get a deeper insight into the spatial and temporal characteristics of
memory duplication.

Memory duplication has two main semantic sources: heaps and the page cache
that is used to cache files in the OS. Many duplicates cannot be caught by today’s
memory scanners due to their short longevity. Those duplicates still live for
minutes, so they could be shared with little performance impact, if they were
identified more timely.

Chapter 4

Cross Layer Integration through
Deduplication Hints

This chapter introduces the main memory deduplication scanner extension Cross
Layer deduplication Hints (XLH), the main contribution of this thesis. XLH
focuses the deduplication effort on memory parts with a higher prospect to yielding
good sharing candidates. The idea is that hints, for what those areas are, come
directly from the subsystems that can decide which pages are likely to contain
duplicates. In the case of virtualized environments, hints can for example be
generated by the host for recently modified memory areas that belong to the
I/O-caches of virtual machine guests.

Our XLH prototype is based on Linux’ KSM memory scanner. Consequently,
Section 4.1 introduces the virtual memory management implementation in Linux
before the following Section 4.2 reviews the KSM memory scanner in detail. Sec-
tion 4.3 discusses different aspects that have been considered when designing XLH
and Section 4.4 highlights some details of its implementation.

4.1. Linux Virtual Memory Implementation

In this section I introduce the key data structures and mechanisms of the Linux 3.4
virtual memory management (VMM) implementation. §4.1.1 describes how Linux
handles basic internal memory allocation. §4.1.2 describes how the allocation
of the address space layout of applications is represented. §4.1.3 describes the
implementation of the Linux page cache, which is responsible for caching file
system operations. Finally, §4.1.4 describes the mechanisms that use the previously
described data structures.

60 Cross Layer Integration through Deduplication Hints

This section does not intend to give a comprehensive introduction into Linux
memory management. Instead, I focus on the parts needed to understand XLH,
our approach described later in this chapter. The full Linux source-code is available
to the interested reader at www.kernel.org.

4.1.1. Basic Linux Internal Memory Management

The Linux kernel represents every physical page frame of the system with a page
data structure [54]. All page structures are stored in a large array, the mem_map
(Figure 4.1).

mem_map:

page

_count

_mapcount

mapping

index

virtual

[...]

page

Figure 4.1.: The page structure representing a page frame.

The page structure stores the number of (virtual) pages referencing the page frame
(_count). If _count is zero, the page frame is free. The _mapcount variable stores
how many PTEs this page frame is referenced from1.

Moreover, the page structure contains a mapping pointer. The mapping has a context-
sensitive semantic. If the page frame holds file backed memory, mapping points to
the data structure describing the file’s mapping in the file cache (address_space)
and index describes the offset needed to read and write the respective part of the
file represented by this page frame. If, however, the page frame holds anonymous
memory, mapping points to a linked list containing all memory areas (VMAs) that
reference this frame (anon_vma).

The state (free/allocated) of physical pages are managed by a buddy allocator [58].
Often, smaller sized objects than pages are needed to store data structures. Only
handing out memory on page granularity would lead to significant internal frag-
mentation. In consequence, Linux stacks a second memory allocator on top of
the buddy allocator to dynamically allocate smaller portions of memory: the slab
allocator [11].

1Recall, that PTEs can be shared.

Cross Layer Integration through Deduplication Hints 61

4.1.2. Linux Address Spaces

The address space (AS) of each task (process or thread) is described in a memory de-
scriptor (MM). This descriptor is organized as a collection of memory areas (VMAs),
each representing a segment in the virtual address space of the task. Figure 4.2
visualizes the interplay between tasks, MMs and VMAs.

vm_area_struct

mm_struct
task_structvm_start

vm_end

start_stack

mmmmap/mm_rb

vm_flags

*anon_vma

*vm_file

vm_pgoff

map_count

start_code

start_brk

vm_mm owner

vm_area_struct

mm_struct
task_struct

address spacevirtual memory

segment

process

Figure 4.2.: Interplay of Linux virtual memory management data structures.

Virtual Memory Area (VMA) Every process’s address space is made up of legal2

and illegal address ranges. All legal address ranges are contiguous segments in
the virtual address space and are described by a Virtual Memory Area (VMA)
represented by a vm_area_struct structure.

All memory areas are assigned flags (vm_flags) by the OS. These flags describe how
the memory shall be used. They also determine how the OS sets the respective PTE
flags when mapped. Most important for this thesis is the MAP_SHARED flag, which
indicates a memory area that is shared between tasks. The opposite of a shared
mapping is the private mapping (MAP_PRIVATE). The read-only flag (MAP_DENYWRITE)
is needed to implement copy-on-write.

VMAs can carry data of different origins, particularly the distinction between
anonymous (MAP_ANONYMOUS) and named pages is done here (§2.2.5). Examples of
anonymous VMAs are the stack segment which is created and modified at runtime,
the data segment which is loaded from a binary but can later be written without
modifying the binary, the heap segment, and shared pages mapped for example via
shmem. Examples for named memory regions are the text segment which is loaded
from background store containing program binary code and all pages from the page
cache that are mapped into the address space via mmap. Not all variables in the VMA
struct are always valid. For named segments, two member variables describe the
corresponding file (vm_file) and offset (vm_pgoff). For anonymous files, anon_vma
is set to signal, that this memory is not backed by a file.

2Those memory areas do not have to be mapped at all times. They can be invalid (i.e., currently
not in physical memory) despite being legal (part of the virtual address space).

62 Cross Layer Integration through Deduplication Hints

Memory Management (MM) The address space, which is the virtual memory
layout of a process, is represented by a memory descriptor (mm_struct). Most
importantly the memory descriptor contains a linked list of all contained VMAs.
Dedicated pointers exist for the most important VMAs. Examples are pointers
that point to the code (start_code), stack (start_stack), and the heap (start_brk)
segments.

The list of VMAs is also referenced by a red-black tree (mm_rb) for easy lookup
of addresses in addition to the list, which is well suited to efficiently traverse the
VMAs in order. Note that these are merely two different indices for the same data
nodes.

The VMAs that are included in the MM of a task can easily be inspected from user
space via the /proc file system. The memory mappings of the own process can
be listed through /proc/self/maps (Figure 4.3). Each line starts with the virtual
address range of the VMA, followed by the access permissions in rwx (read, write
execution) notation, if applicable the offset in the file, major and minor number of
the device, the inode number and the file path and file name [18]. Not all mappings
are based on files. Anonymous regions do not have device, inode or file path and
name fields. More insight about the actual memory usage characteristics of each
segment is stated in /proc/self/smaps. Figure 4.4 shows the output for the first
segment of the previous example.

Figure 4.3.: The VMAs of a cat task.

Cross Layer Integration through Deduplication Hints 63

Figure 4.4.: Details about the memory consumption of the cat text segment.
Shortened /proc/<pid>/smaps output.

4.1.3. Linux Page Cache

The Linux page cache speeds up accesses to block devices by sacrificing main
memory for caching previously accessed contents. When reading from disk, for
example, the read code path first checks if the desired data blocks are already
available in the cache and only accesses the background store if they are not [54].

As previously noted, files can be directly mapped into a process address space as a
new virtual memory area using mmap. This mapping can comprise any contiguous
part of the file, including the entire file. Linux maps such pages directly to the
buffer cache.

This way, direct, uninterrupted access is granted to applications if the file block
has previously been loaded and is still in memory. Otherwise, the MMU issues a
page-fault, as the requested page is invalid; the OS then loads the requested file-parts
into the page cache and makes the new page available to the application by updating
its page table.

Although 4 KiB disk blocks are becoming increasingly popular, the typical block
size for HDDs is still 512 bytes. Blocks in a page of the page cache are ordered
by the logical position they have in the file. This position does not necessarily
correspond to the block’s position on the background store, which is up to the file
system.

64 Cross Layer Integration through Deduplication Hints

Address Space Object Contrary to the name, the address space object does not
describe the virtual address space of a process. Instead, the address_space object is
the entity by which Linux caches pages. It abstracts the origin of the cached data by
spanning an address space of offsets within a file and describing how these map to
the containing backing device. This way, the page cache can be used to cache any
data on page granularity instead of specializing on block devices [58]. The page
cache can, for example, handle regular files, memory mapped files, block devices,
and shared memory regions that are not backed by a regular file but by swap space.

Among other information, the address_space contains a pointer to the source de-
vice (backing_dev_info), inode (host), and offset (writeback_index). It moreover
contains the number of writable references to this cache entry (i_mmap_writable),
the number of read-only references (i_mmap), and the number of pages in this entry
(nrpages). In addition, the address_space contains pointers to methods that are
called on various events that happen, when handling cached data (a_ops). One
example is a cache miss handler that the OS can call when it wants to write back a
cached page.

For any page cache, it is crucial that the cached pages are found quickly when
they are accessed. In Linux, a radix-tree is used as an index to hold all allocated
address space objects. Additionally, the address space object can be accessed from
the VMA, via the vm_file pointer. Figure 4.5 depicts the relationship between
the data structures that hold the information needed to implement the Linux page
cache.

host

backing_dev_info

a_ops

address_space

writeback_index

i_mmap_writable

mmap_writable

nrpages

address_space

address_space_operationsaddress_space_operations

backing_dev_infobacking_dev_info

inode inode

Figure 4.5.: The data structures used to implement the Linux page cache.

Cross Layer Integration through Deduplication Hints 65

4.1.4. Page-Faults

The allocation and initialization of page tables is separated from the population
of pages with data in modern operating systems. In Linux, virtual pages are not
mapped to physical memory page frames until they are first used (demand paging).

The MMU triggers a page-fault if it cannot resolve a memory access by itself due
to lack of information, or if the memory access is illegal according to the current
mapping flags. An example for the former would be the access to a page that has
previously not been referenced yet. Another example is the access to a swapped,
and hence invalid page that has to be brought into memory before accessing it. An
example for the latter case is a write operation to a page whose PTE protection bits
are currently set to read-only. The page-fault invokes the OS to resolve such issues
by taking the appropriate actions.

On legal accesses, page-faults associate pages with a page frame, potentially after
evicting another page [58]. Before marking the page valid in the page table and
returning to the faulting process, the OS initializes the new page frame with the
data that is associated with the respective memory region.

Figure 4.6 is loosely based on Figure 4.17 in Mauerer’s Book “Professional Linux
Kernel Architecture” [58] and depicts reasons for page-faults and how page-faults
can be resolved. A segmentation fault is either handled by the OS by calling
the appropriate signal handler to let the application resolve the problem itself, if
available. If no such signal handler is available, the OS forces the faulting process to
quit.

4.2. Implementation of Kernel Samepage Merging

The design of Kernel Samepage Merging (KSM) has first been presented by Arcangeli
et al. at the Linux Symposium 2009 [2]. I have given a high-level description of
KSM in § 2.4.4.

KSM was first added into mainline Linux kernel 2.6.32 in December 2009 [42].
Since then, the code has undergone several revisions. A brief description of the key
data structures, mechanisms and policies that implement KSM in Linux 3.4 follows.
This is the version that we have extended to build our XLH prototype described
throughout the rest of this chapter. Figure 4.7 gives an overview of the interacting
subsystems.

66 Cross Layer Integration through Deduplication Hints

Kernel Address Space

No

User Address Space

No

Yes Yes

Yes

No

Yes No

Page-Fault

Address

Space?

Kernel Mode?
Segmentation

Fault

Mapping

Exists?

Page

Mapping

Valid?

Bring in Data

from Background

Store

Sufficient

Privileges in

VMA?

Copy Page and

Mark Read-Write

(Copy-on-Write)

Synchronize with

Reference

Page Table or

Kernel Panic

Figure 4.6.: Flowchart of page-fault reasons and how to resolve them [58].

Cross Layer Integration through Deduplication Hints 67

Application

Virtual Memory Areas KSM
Index

Pagefault

Handler

Merge

Exit

Handler

Write

Exit

Unmerge advice

Wake Up

Sleep

Figure 4.7.: The interplay of the application, KSM, the page-fault-, and exit-handler.

4.2.1. KSM Data Structures

The data structures storing information about the KSM scan process and index are
described in the following. If no other reference is given, the provided information
is derived directly from the Linux 3.4 source code.

Reverse Mapping Item KSM keeps a reverse mapping item (rmap_item) for
every virtual page that can be deduplicated. It has its name due to its function to
translate physical page frames (kpfn) for merged pages to the virtual addresses that
use the page frame in a copy-on-write fashion. The rmap_item is also the common
data node storing the state of each page in the deduplication scan.

The rmap_item comprises information such as:

• A sequence number (low bits of address) that indicates how often this page
has been visited in the past.

• A jhash2 checksum (oldchecksum) of the content that the page had when the
scanner last visited that page.

• The state (also encoded in the low order bits of address) and consequently
position of the item in the following data structures (mm_slot, unstable tree,
stable tree).

• A pointer to the next item of its address space (mm).

68 Cross Layer Integration through Deduplication Hints

All major data structures in KSM such as the mm_slot, the unstable tree, and the
stable tree, which are described in the next paragraphs, use rmap_items intrusively.
This means, that they merely hold pointers to the same nodes, they do not allocate
or delete rmap_items3.

mm_slot The mm_slot contains a sorted list of all address regions that are subject
to deduplication, grouped by their containing mm. Applications can add new regions
from their own address space to mm_slot using the madvise system call with the
MADV_MERGEABLE flag. If there is already a mergeable region in the same MM, the
new memory area is added to that mm’s rmap_list by creating a new rmap_item for
every page in the area and inserting it to the list.

KSM Cursor A single instance of the KSM cursor (ksm_cursor) structure exists
per system. It stores information about the current progress of the linear scan
through all rmap_items in all mm_slots. To this end, it contains pointers to the
mm_slot and rmap_item that currently processes and the next address to be scanned
(address).

Unstable Tree The unstable red-black tree keeps rmap_items of pages that have
neither recently been modified nor been merged yet (Figure 4.8).

root_unstable_tree:

rmap_item
node->rightnode->left

rmap_item rmap_item

Figure 4.8.: rmap_items contain node pointers to form the unstable tree. If a certain
rmap_item is part of the unstable tree is indicated by the UNSTABLE_FLAG
in the low order bit of the address field.

The index into the tree is the full content of the inserted pages. To find a page with
a certain content A, the first bytes of the root-node need to be compared to the
first bytes of A until the bytes differ. If the different bytes in A are smaller than the
bytes in the root node, KSM follows the tree to the left, if the bytes in B are greater,
KSM follows to the right and repeats the process. If all bytes match KSM has found
the rmap_item of another page with same content.

Pages whose references are linked into the unstable tree are not protected from
being written by their respective processes. The content that was used as an index
to insert the page can consequently change over time, distorting the tree. We
have dubbed this property the “degeneration of the unstable tree” [2], which was
adopted by following publications [76].

3Unintrusive containers copy data nodes on insert and free them after removal.

Cross Layer Integration through Deduplication Hints 69

Entire tree branches can become stale due to write operations on intermediate
nodes. For example, all branches to the left of the root node in Figure 4.9 become
unreachable when the content is changed to something starting with the bytes “BA”.
The entire index loses pages with a contents between pages starting with “BA” (the
previous content) and pages starting with “EA”.

CK… HJ…

MG… DZ… … DZ…

not reachable

reinsert

EA…
BA…

modified

Figure 4.9.: Pages referenced by the unstable tree are not write-protected. The tree
can thereby degenerate. [62]

The unstable tree is discarded after each scan round to clean up the degeneration.
Dropping the unstable tree is just a matter of resetting the root node pointer
(root_unstable_tree) pointer to NULL since no reverse map items are allocated or
freed on tree operations. All rmap_items stay referenced through their respective
mm_slot and can in consequence always be found by the scanner.

Stable Tree The stable red-black-tree references rmap_items that have previously
been merged and are marked with the STABLE_FLAG in the address field.

Merged pages are set to copy-on-write and are consequently write-protected. Pages
in the stable tree do either still have the content that they had when they were
inserted into the tree or have been unmapped. Unmapping happens for example
when copying the referenced page after a write. This state change can easily be
detected at scan-time; stale items in the stable tree are removed when they are
passed on lookup operations.

The garbage collection at lookup time is intentional. If the copy-on-write page-fault
handler had to remove the written pages from the stable tree, concurrent access
to the tree would need to be serialized. The single threaded scan process can omit
locking.

Another difference between the stable- and the unstable trees is that in the unstable
tree, it is an exception to find multiple items that point to the same page contents.

70 Cross Layer Integration through Deduplication Hints

In the unstable tree this can only happen when:

• Page A is inserted into the tree

• Page B on the path to A is modified and blocks the path to A

• Page Ā is added with the same content as A

• Page B is restored, restoring the path to A

In the stable tree, however, the normal case is that multiple items share the same
content; pages end up in the stable tree due to this fact in the first place. Stable
nodes reference a single rmap_item when sharing with this item was broken, only.

Due to the different usage scenario two additional fields are used to reference the
rmap_items while they are part of the stable tree. A linked list of rmap_items that
reference the virtual pages that are currently merged to the same page frame is added
(hlist) as well as the page frame number that they reference kpfn (Figure 4.10).

root_stable_tree:

node->left

rmap_item

rmap_item

 hlist

rmap_item

 hlist
\0

 kpfn = 42 kpfn = 42

 hlist

 kpfn = 23

\0

merged pages

broken sharing

Figure 4.10.: Each rmap_item contains left and right pointers that make up the
stable tree. In addition, each rmap_item contains a linked list holding
references to the other items that reference the same merged page
frame kpfn.

4.2.2. KSM Mechanisms and Policies

After describing the data structures that were added to the Linux virtual memory
layer, the following paragraphs describe how these data structures are used to
implement memory deduplication scanning summarized in Figure 4.11.

Cross Layer Integration through Deduplication Hints 71

Search in

stable tree

Page

found?

Get next page

All pages

 scanned?

Clear unstable tree

Calculate page hash

Page

modified?

Update hash

Search in

unstable tree

Page

found?

Merge pages and move

to stable tree

Insert page into

unstable tree

Merge page

Yes

No

Yes

No

Yes Yes

NoNo

Periodic scan

Figure 4.11.: High level overview of the KSM memory scanning process [62].

Selecting Subjects for Deduplication To omit wasting CPU cycles and mem-
ory bandwidth by scanning memory that is unlikely to contain duplicates, KSM
only indexes pages that processes specifically select for being subject to deduplica-
tion.

Programs inform the kernel, that they want a certain address range to be dedu-
plicated, using the madvise system call with the MADV_MERGEABLE flag. The OS
forwards memory regions that are advised to be mergeable to KSM. The scanner
then inserts the VMA and issued address range to the mm_slot data structure right
before the current scan cursor. This way, the advised memory area has time to settle
down before the scan thread visits it for the first time. In its current implementation,
KSM only allows setting MADV_MERGEABLE on pages with 4 KiB page-size.

An address range can later be excluded from the deduplication scanner by issuing
the madvise call with the MADV_UNMERGEABLE flag. Then, sharing for all pages in that
address range is broken and the address range is removed from the mm_slot.

KSM does not increase the reference counter for pages in the mm_slot. This implies,
that pages scanned by KSM can disappear at any time. On the plus side, KSM does
not need to lock the respective pages when scanning, instead KSM uses a mechanism
derived from page_cache_get_speculative() to access pages without referencing
them.

72 Cross Layer Integration through Deduplication Hints

Wake-ups and Pages to Scan The OS wakes up the KSM daemon periodically
every ksm_thread_sleep_millisecs ms. The sleep time can be configured from
user space via /sys/kernel/mm/ksm/sleep_millisecs.

On every wake-up, the scanner visits ksm_thread_pages_to_scan pages. The
number of pages to scan at each wake-up can be configured from user space via
/sys/kernel/mm/ksm/pages_to_scan.

Selecting the Next Page KSM scans virtual address spaces for duplicates, as
opposed to VMware’s ESX which scans physical page frames [84]. KSM selects
the next page for scanning based on the order in the mm_slot data structure. The
advised pages are scanned in increasing address order per mm. The ksm_cursor stores
the current scan position between wake-ups.

This is the place where new rmap_items are first allocated if no such item exists for
the virtual page that is supposed to be scanned next, yet. Otherwise, the previously
allocated rmap_item is reused; it then already caries useful information from the
last visit of the scanner.

When scanning, the scan thread skips invalid pages. That means, that it omits
indexing pages that are currently not in memory, for example when those pages are
currently swapped out to disk. Moreover, KSM does not visit pages that already
reside in the stable tree, identified by the FLAG_STABLE in the rmap_items.

Merging with Stable Pages Every time KSM visits a page, it first searches the
stable tree for a sharing buddy. If such an equal pages is found, the new page is
remapped to the sharing page frame and freed. The scan continues with the next
page.

Filtering Frequently Modified Pages The unstable tree is endangered of degen-
erating quickly if many frequently fluctuating pages are inserted (§5.4.1). KSM uses
a heuristic to make the insertion of such less likely. Only pages whose content-based
jhash2 hash value has not changed since the last visit are inserted into the unstable
tree. To this end, the rmap_item records the hash value that the page had at the last
visit. If oldchecksum carries the same value as the current hash value, KSM tries to
insert the page into the unstable tree.

Merging with Unstable Pages When inserting the page into the unstable tree,
KSM may encounter another page with the same content to already reside in the
unstable tree. In this case, the new page is marked COW for sharing. Then the
equal page that was found in the unstable tree is remapped to reference the shared
page before freeing the redundant, now unreferenced copy. Afterwards, KSM adds
a new stable_node to the stable tree and appends the rmap_items that now share
the same page frame number.

Cross Layer Integration through Deduplication Hints 73

This sequence is not atomic. There can be a racing page-fault on another CPU which
breaks the sharing before the rmap_items are recorded in the stable tree. KSM thus
checks if the sharing is still valid when appending the respective rmap_items to the
stable node and leave them unmapped.

Scan Rounds After scanning the last memory area of the last mm_slot, KSM is
done with a full scan round. It then drops the unstable tree by setting the unstable
root node pointer to NULL. Afterwards, the rmap_items are still reachable through
their mm_slot and are not freed. The oldchecksum and the entire stable tree remain.

Breaking Merged Pages The scan process is fully single threaded. Locking is
only required to protect the code from concurrent memory management operations
of the Linux virtual memory subsystem. One of such operations is breaking COW
pages in the page-fault handler.

The page-fault- and exit-handlers in Linux have not been modified when KSM was
added. Shared pages that have been merged by KSM are broken using the same
mechanism that is also used to break shared pages that have for example been created
by using fork.

4.3. XLH Design

When extending a main memory scanner such as KSM, one needs to be very careful
not to break explicit and implicit design decisions that were made. Today, many
CPU cores often share the same physical memory and use a shared bus to access it.
In memory management, concurrent operations on shared memory management
data structures are serialized by spinlocks. KSM in particular, has been carefully
designed to add as little locking as possible to the existing memory management
code. Most of the design decisions in XLH were influenced by this circumstance.

The following paragraphs describe our XLH design: §4.3.1 describes the reasoning
and goals behind XLH. §4.3.2 describes how XLH generates hints in the VFS
layer of the host. §4.3.3 presents how XLH stores received hints until they are
processed. §4.3.4 reports how XLH prioritizes processing hinted pages and how
this prioritization fits into the design of KSM.

4.3.1. Design Goals

The foremost design goal of XLH is to detect equal memory pages more quickly
than a brute-force memory scanner such as KSM [2] or ESX [84]. This shall be
done by visiting memory pages with a high prospect of finding a sharing oppor-
tunity earlier. Pages with a high prospect to yield a sharing opportunity shall be
communicated via a hint to the deduplication scanner.

74 Cross Layer Integration through Deduplication Hints

Visiting and sharing duplicates earlier leads to more free memory available for other
purposes such as caching or running additional VMs. Figure 4.12 illustrates the
reasoning behind this claim.

Saved

Pages

1

1121

KSM

XLH

Equal

Pages

t

2

Page can be deduplicated
XLH visits page KSM visits page

Figure 4.12.: Earlier sharing can cause more memory to be shared and memory to
be shared for a longer time [62].

4.3.2. Hint Generation

We have extended madvise to pose a unified API to submit deduplication hints. To
this end we have added the new flag MADV_MERGEABLE_HINT and made it possible to
call madvise from within the kernel in addition to calling it from user space. An
XLH-hint invocation looks like this:

madvise(hint_start, hint_length, MADV_MERGEABLE_HINT);

The parameters hint_start and hint_length are rounded to encompass only full
virtual pages before passing the hint along and recording it.

I/O-Based Hints We have closed our analyses of the previous Chapter 3 with
the discovery that memory duplicates primarily stem from process heaps and from
background storage I/O. Our prototype currently supports generating hints in the
virtual file system (VFS) layer with the incentive to find duplicates that stem from
the background store more quickly than previously possible.

When using virtualization, the VM’s file systems are implemented fully in the
guests. The host solely exports a virtual block device to the guest. This is either
done by passing a real device through to the host or by mapping the guest’s block
I/O directly onto a large file in the host. Generally, the latter is the case, as the
former makes the flexible allocation and migration of VMs more complex.

Cross Layer Integration through Deduplication Hints 75

Consider Figure 4.13. When an application accesses a file it can either go through
the VFS using system calls such as open, read, and write, or it can map the file
to memory using mmap (1). Then, accesses to the mapped memory regions are
reflected in the file. For example, if an invalid page is read, the resulting page-fault
will go through the file system and get the sought-after data from the background
store (2). This behavior is the same, whether the application runs natively (i.e.,
without virtualization) or within a VM. In native environments, the access to the
background store may be an actual DMA transaction to a local disk or go to a
remote system (e.g., to NFS). In the virtualized case, the access will be handled by a
virtual DMA controller and translated to another VFS call (3); this time in the host.
The host then fetches the data from the guest’s VDI file using the physical DMA
controller (4).

When the DMA transaction finishes and the data returns to the second read VFS
call (5), the host reports the target memory area of the I/O-operation as a hint to
XLH using our madvise interface (6). Afterwards, the host returns the requested
data to the guest (7), which passes the data on to the application (8).

Host OS

 Hypervisor

Guest OS

Physical

Disk

Application
1.

2.

XLH
3.

4.

5.

6.

7.

8.

File System

VDI File

File System

Figure 4.13.: Generating I/O-based memory deduplication hints.

In contrast to previous I/O-based approaches [12, 63], XLH does not process the
hint before returning the result. Instead, it defers processing the hint to a later time
and only records the target memory area. This policy minimizes the overhead for
the I/O-transaction.

In addition, our system can be and has been implemented without modifying
the guest OS, running within the VM, in any way. Using the VFS to emit hints
even works for native applications running on the host. The only requirement is,
that the target memory areas need to be MADV_MERGEABLE. This can enable XLH
to efficiently deduplicate main memory for native server environments such as
terminal servers, in the future.

76 Cross Layer Integration through Deduplication Hints

Note that the VFS is not specific to Linux. All widespread operating systems use
some form of a virtual file system layer to separate the file system implementation
details from the application interface for file and directory access.

Other Hint Sources The hint generation and storage is fully decoupled from the
memory scanner itself. Adding more hint sources is as easy as doing the appropriate
madvise call from a different subsystem or even from a user level application. At
this point, however, we haven’t found another well suited source for hints.

4.3.3. Hint Storage

XLH needs to store emitted deduplication hints until they are processed by the
scanner. There is a number of questions that play into the design of a good storage
data structure. While evaluating how to design a well suited data structure for
storing hints in XLH we have had the following insights:

Should all hints be recorded? This question boils down to the follow-up ques-
tion: Can we filter bad hints and then only record good ones? Filtering hints is a
contradictio in adiecto. We should never have to filter hints. If the hints are bad they
shouldn’t have been emitted in the first place!

Should all recorded hints be kept indefinitely? Hints are only useful if they
are processed shortly after their submission. If pages are processed by the scanner
before it processes the hint it will not only visit that page twice, but there is also no
benefit of the hint whatsoever.

A hard upper bound for keeping hints (“aging”) should hence be the time between
page visits by a regular scanner with a given scan-rate and advised number of pages.
XLH skips hints that were issued in the last scan round.

In our experiments with deduplicating virtual machine workloads, we have em-
pirically found that a maximum age of around 15 seconds led to the most effective
deduplication using XLH (§5.4.1). Processing older hints converges XLH to a regu-
lar KSM memory scanner. The main benefit XLH has is sharing hinted duplicate
pages earlier than KSM. This is impeded by processing older hints.

Should there be an upper bound for the number of stored hints? The
submission of hints is fully decoupled from their processing. The subsystem
that submits a hint does neither know nor should it care whether the average
rate of submitted hints is greater or smaller than the rate in which the memory
scanner processes hints. In consequence, XLH needs a mechanism to discard hints
(“pruning”) when the number of incoming hints exceeds the number of processed

Cross Layer Integration through Deduplication Hints 77

hints. There is no way to rank hints by their quality in advance to processing them.
It is however better to discard old hints than new hints in order to both maximize
the average time that merged pages remain shared and minimize the average merge
latency.

Should the oldest (queue) or the newest (stack) hints be processed first?
The same argument that was already used in the last paragraph applies here. New
hints are more valuable to XLH than old hints. Therefore the hint storage data
structure should return the hints to the scanner in ascending age.

Bounded Circular Stack Taking into consideration the previously laid out argu-
ments, we have decided to implement the hint storage as a bounded circular stack,
illustrated in Figure 4.14.

E

D

C

B

ABase

Top 2x push

F

E

D

C

B

G

Base

Top

3x pop

D

C

BBase

Top

Figure 4.14.: The operation of XLH’s bounded circular stack to store memory
deduplication hints [62].

This data structure has the following properties:

• There is a hard upper bound for storing hints.
• No dynamic memory allocation is done when storing hints.
• The soft maximum age of hints can be adjusted by setting the stack size as a

function of the scan-rate.
• The oldest, unprocessed hint is overwritten, when the stack is full and a

subsequent hint is added.
• The newest hints are handed to the scanner first.

4.3.4. Hint Processing

We have answered the following questions before making the design decision to
implement hint processing asynchronous to their submission and interleaved to the
regular scan process.

78 Cross Layer Integration through Deduplication Hints

Should hints be processed synchronously or deferred? Processing hints di-
rectly at the time of their submission (synchronously) can slow down the issuing
task significantly. In the synchronous case, the task that issued the hint is paused
until the hinted memory area is fully indexed.

Miłós et al. have found a slowdown of up to 35% when running the file system
benchmark Bonnie++ in their synchronous deduplication mechanism Satori [63].
Using synchronous deduplication of hints coming from frequent and latency sensi-
tive tasks should in consequence be avoided.

We have decided to block the task that issued the hint as shortly as possible. There-
fore, XLH only records the hint and then defers it’s processing. This way, the
processing is maximally decoupled from the submission of hints.

Should hints be processed in parallel, statically prioritized or interleaved?
The design space has three trivial possibilities to process hinted pages:

First, hinted pages could be processed in parallel to the regular, linear scan process.
This solution, however, would require serialization at all shared data structure
accesses. In addition to complicating the process, this would also make it less
scalable.

Second, hinted pages could be statically prioritized higher than the linear scan
process. Then, however, the linear scan process would not make any progress if
the number of incoming hints superseded the scan-rate. In our analysis (Chapter 3)
we have noticed that often both, heap and file based pages provide deduplication
candidates. Starving the linear scan process would cut the heap based deduplication
opportunities off from the scanner.

We have decided on a third option. Interleaving the linear scan with processing
hints (Figure 4.15). Upon wake-up, the scanner decides if it continues the linear
scan or processes hints based on a defined interleaving ratio. If the hint buffer does
not contain enough hints to satisfy the number of pages (pages_to_scan) that are
supposed to be scanned in this wake-up, the remaining quota is filled with pages
from the linear scan.

KSM: Scan

1000 Pages

Wake-up Wake-up

XLH:

700 Hints

Wake-up

KSM:

300

Pages

XLH: Process

1000 Hints

Hints buffer

empty

t

Figure 4.15.: Hints are processed interleaved to the regular scan process [62].

Should hinted pages be filtered for fluctuation first? We have decided, that
by design, hints should only be issued on pages that are good sharing candidates.

Cross Layer Integration through Deduplication Hints 79

This also implies, that their chance to be highly fluctuating should be low before
they are submitted as a hint.

Pages from the page cache are inherently not highly fluctuating. In the contrary, as
we have seen in the previous chapter, their content does often not even change right
away after they are unmapped. In consequence, we do not filter hinted pages at all.

Resulting Design Following our previous discussion we have derived the XLH
workflow depicted in Figure 4.16. A single scan thread is responsible for both, the
linear scan and for following hints. At wake-up, it decides what kind of pages it
indexes next. If the hint buffer is exhausted, it continues the linear scan, keeping
the number of pages scanned per wake-up constant. This design has the additional
advantage that the comparison between KSM and XLH can be done easily and
fairly based on the same scan-rate setting.

When processing a page in the regular scan mode, the workflow resembles the
one previously introduced in the description of KSM (§4.2.2). When processing a
hint, however, the page is always looked-up in the unstable tree, regardless of its
previously recorded hash value.

Periodic scan

Hints left?

Get next

hint

Search in

stable tree

Page

found?

Merge page

Search in unstable

data structure

Page

found?

Merge pages and

move to stable tree

Insert page into un-

stable data structure

Calculate page hash

Page

modified?

Update hash

Yes

Get next

page

Processing

a hint?

No

YesYes

No

No

NoYes

No

Yes

Figure 4.16.: High level workflow of the XLH scan process.

4.3.5. Mitigating the Unstable Tree Degeneration

As we have seen in §4.2.1, unstable tree nodes are not protected from modification.
In consequence, the reachability of nodes in the unstable tree can be broken when
pages that are indexed through the unstable tree are modified. We have analyzed
the following three solutions that can stop the degeneration of the unstable tree.

80 Cross Layer Integration through Deduplication Hints

Mapping Pages Referenced by the Unstable Tree Read-Only Instead of
leaving pages that are indexed through the unstable tree writable, all pages that are
inserted into the tree can be marked read-only analogous to the behavior of the
stable tree.

This solution should not be blindly applied to all pages that are visited by the
scanner as it can degrade the performance of scanned applications by an order of
magnitude. Detailed measurements can be found in Chapter 6. Mapping the nodes
that are referenced in the unstable tree read-only can however be beneficial if applied
to a chosen subset. This approach is denoted as “KSM RO” in the evaluation.

Indexing Hashes instead of Page Contents Another possible solution to the
degeneration problem would be to index hashes of the contents that the pages had
at the time of insertion instead of indexing the volatile content itself. We have
decided that if hashes were to be indexed then the appropriate data structure is a
hash-table not a tree.

Replacing the Red-Black-Tree with a Hash-Table The main problem in the
degeneration of the tree is not that nodes become stale themselves. The gravest
problem is that modified nodes can make other nodes unreachable, too. Entire
sub-trees (at most half of the tree) can become unreachable after the modification
of a single referenced page (recall Figure 4.9).

The second option that we have implemented to stop the unstable tree from degen-
erating is to exchange the tree altogether with a hash-table. When using a hash-table,
modifying a referenced page can at most break the reachability of that page from
this hash. This is not a problem, as the referenced page’s old hash value is not an
indicator that the new page content is sought for merging. The modification of
the page content can however not break the reachability of any other node in the
unstable tree.

We have implemented this modification under the name “XLH HT” to compare it
to the read-only unstable tree solution and the unmodified unstable tree.

4.4. XLH Implementation

We have first implemented XLH on the basis of KSM in Linux 3.0 and later ported
it to Linux 3.4. Including all comments, debug code and statistics we have added
2350 and modified 250 lines of code. Almost 95% of the implementation falls into
the main KSM implementation (mm/ksm.c). The remaining changes were done in
the I/O subsystem (hinting) and in header files.

Cross Layer Integration through Deduplication Hints 81

For our virtualized environment we have chosen QEMU [8]with KVM. A popular,
open source, virtualization host that can be easily used to run batches of unattended
benchmarks and is widely used in practice.

VFS Hinting We have directly inserted our hint submission mechanism into the
VFS read and write functions. It is crucial, that the I/O operation is done first
(do_readv_writev) before recording the hint. Otherwise, as hints are processed
asynchronous and in parallel to the I/O itself, the scanner could access the hinted
page before its content has been established.

Finding rmap_items in the mm_slots data structure KSM scans pages strictly
linearly by VMS’s. A linked list is an efficient data structure to implement finding
the next page to scan in this scan order. To this end, KSM implements separate
linked lists for each mm in the mm_slots data structure.

XLH needs to look-up rmap_items in random order, as hinted pages need to be
visited out of the linear scan order. To efficiently support both, the linear scan and
random access to the rmap_items we have modified the mm_slots to hold red-black
trees of rmap_items instead of a linked list.

Insert operations only happen infrequently, when new pages are madvised to be
deduplication candidates after booting a new VM and are thus not time critical.
Linear traversal of a red-black tree can be implemented as efficiently as the traversal
of a linked list (O(1) to get the next item). In addition, the red-black tree allows
random look-ups in O(log n), asymptotically. In typical virtual environments, the
tree depth is in the area of 18-22 (1 GiB-32 GiB).

If the look-up time ever becomes a bottleneck in the memory scanner, it is also
possible to cache previously looked up rmap_item locations in the address field
of the page data structure which is unused while the rmap_item is a part of the
unstable tree. Then, the first look-up would need to be done in O(log n) while
following look-ups could be performed in O(1).

Statistics When measuring the sharing time, we cannot use the time at which
the respective rmap_item is removed from the stable tree as the end time. This
is because (stale) rmap_items are removed from their stable_nodes when their
invalidity is detected in a subsequent lookup operation. The item is not removed
when the sharing is broken (recall §4.2.1).

We had to modify the page-fault handler (do_wp_page) to record the COW break
time for memory that has been merged by the memory scanner; a special case that
is not needed for regular operation without statistics.

Chapter 5

Deduplicating Virtualized
Environments

Since the 2000s there has been a trend to move physical servers into virtual ones and
consolidate those virtual servers onto fewer physical machines than previously pos-
sible. This strategy has many benefits such as a higher utilization of all subsystems
in the remaining physical servers. Especially the CPU – which is otherwise typically
idle in today’s servers – benefits from consolidation. Moreover, this techniques
yields the possibility to flexibly allocate and migrate server instances. This allows
operators to increase the efficiency of data-centers by switching off unused physical
servers, effectively cutting costs of data-centers.

As previously described in research papers (Chapter 2) and thoroughly analyzed in
Chapter 3, such environments are a good target for memory deduplication for two
reasons: First, the amount of duplicates can be large and further increased through
smart migration [88]. Second, virtual environments benefit greatly from memory
deduplication as their bottleneck is generally the main memory size [39].

This chapter analyzes the effect that XLH, in conjuncture with I/O-based hints,
has on deduplication in virtual environments. We show that the deduplication
effectiveness of XLH is superior to KSM at the same scan-rate settings. We also
present where the increase in shared pages comes from. Moreover, we explore
the impact that KSM’s degenerating unstable tree has and analyze the effects that
mitigating the unstable tree generation has on the memory scanning performance.

We first introduce our metrics to measure success in Section 5.1. Section 5.2 elabo-
rates on the benchmark scenarios that we have used to evaluate our approach and
Section 5.3 introduces common benchmark parameters. The following Section 5.4
shows the results of our benchmarks and discusses them before we conclude the
chapter with a summary in Section 5.5.

84 Deduplicating Virtualized Environments

5.1. Benchmark Metrics

The two most important metrics for any memory deduplication system are the
amount of memory that can be freed using the technique and the resources that
it needs to perform the deduplication. In the comparison between memory dedu-
plication systems we say that one system is superior to another if it can save more
memory than the other, while generating the same amount of overhead in a cer-
tain workload. This can also be expressed the other way round: Can one system
deduplicate the same amount of memory while using less resources than the other?

We have set-up and run different benchmarks to compare the deduplication charac-
teristics of KSM and XLH. In addition to the total run-time we have measured the
following data when conducting our benchmarks.

Sharing Opportunities We have measured the amount of available sharing oppor-
tunities by periodically dumping the hash values of all allocated pages in the work-
load. The implementation details of the tool can be found in Thorsten Gröeninger’s
study thesis [37]. For the purpose of analyzing memory duplication, we output all
content hashes every second.

Hashing all allocated pages and recording those hashes every second adds a runtime
overhead in the area of 20%. This number can of course vary, depending on the
workload, working set size, and hardware. In order to make the sharing opportunity
quantities comparable to benchmarks without such slowdown, we have contracted
the time axis to match the exact benchmark time.

Shared and Sharing Pages The number of shared1 and sharing2 pages can
already be accessed from user space in the vanilla KSM implementation through
sysfs. During the benchmark, we output such values every second.

Merge Latency Comparing the time between establishing a page content and
merging this page is tricky without tracing the memory contents. We have relaxed
this analysis to compare when KSM and XLH merge pages with the same content
throughout the benchmark. Our approach is to filter out all shared pages that
only occur in either one of the systems but not in both. For the remaining shared
pages that are established in both systems we compare the times at which those
pages are merged relative to the beginning of the benchmark. In consequence, we
don’t measure the actual, absolute merge latency but measure the latency difference
between systems instead.

1/sys/kernel/mm/ksm/pages_shared
2/sys/kernel/mm/ksm/pages_sharing

Deduplicating Virtualized Environments 85

5.2. Benchmark Scenarios

We have used the following benchmark scenarios to compare KSM and XLH
regarding deduplication effectiveness.

Kernel-Build Measuring the sharing potential of parallel Linux kernel compiles
has a long tradition in publications [39, 47, 61–63, 77] regarding memory deduplica-
tion. Compile jobs have the characteristic that they need CPU computation for
parsing, lexing, and optimizing. They need file operations, as well. For example,
when reading source files, writing intermediate object files, and when reading ob-
jects to link the final binary. Moreover, it is a common scenario to run multiple
VMs compiling the same source code at the same time, for instance for continuous
integration (CI). One representative for a cloud service supporting CI in such a way
is TravisCI [80].

HTTPerf Benchmarking web-server performance, like the kernel compile bench-
mark, is also common in memory deduplication publications [39, 47, 61–63]. Serv-
ing static web-sites using the Apache web server [7] is an I/O-intensive benchmark
which is sensitive to the access latency. HTTPerf [64] can measure this performance
characteristic of web-servers and we can thus gain insight into the differences in
deduplication quantity and into I/O overheads, at the same time.

Bonnie++ The file system benchmark Bonnie++ [17] is a local stress-test for
the background storage I/O-layer. We chose Bonnie++ to check if the hinting
mechanism is a bottleneck for I/O-based hints. Previous deduplication systems
such as Satori have been prone to slowdowns of up to 35% in this benchmark [63].

The average disk throughput and access latency are direct result of the Bonnie++
benchmark. We have also compared the run-times – the time that benchmarks need
from start to finish.

Mixed In this benchmark, we combine one VM from the kernel-build benchmark
and another VM from the HTTPerf benchmark. We have modified the HTTPerf
settings to match the kernel compilation time. This benchmarks compares KSM
and XLH in a scenario that has only few sharing opportunities while many, mostly
bad, hints are produced.

Micro-Benchmarks In the next Chapter 6 we analyze the performance char-
acteristics using synthetic micro-benchmarks. Answers to questions about the
performance of merging and copy-on-write breaks as well as on caching effects can
be found there.

86 Deduplicating Virtualized Environments

5.3. General Benchmark Set-Up

All benchmarks have been conducted on a PC with an Intel i7-2600 quad-core
processor with 16 GiB DDR3 RAM. We have switched off the turbo boost feature in
the BIOS and disabled dynamic frequency and voltage scaling, fixing the frequency
at the maximum. We have set-up Ubuntu 13.04 as the host OS and replaced the
original Linux kernel with our XLH extended version.

Ubuntu 12.04 LTS serves as the guest OS in the VMs, as this Long Term Support
version is commonly already available in commercial cloud computing providers.
The address space layout randomization (ASLR) feature decreases the amount of
available sharing opportunities [5]. Nevertheless, we have left this feature at its
default setting, which is: on. Each guest is assigned one virtual CPU (vCPU)
and 512 MiB memory. One physical CPU (pCPU) is consequently used for the
benchmark logic and for recording results, another pCPU is occupied by the
memory scanner. The remaining pCPUs are used for running the virtual machines.
This set-up is in line with the current developments in computer hardware where
the number of cores raises faster than they are utilized. Consequently, we assume
that KSM has a pCPU for itself.

Unless otherwise noted, every following graph shows the mean of six runs of a
respective configuration. Table 5.1 summarizes the settings that we have used in
the three configurations used throughout this chapter (XLH RO, KSM, KSM RO).
The table also shows the XLH HT configuration benchmarked in Chapter 6.

Setting
Name XLH XLH HT KSM KSM RO

VFS Hinting # #
Unstable Structure RB-Tree Hash-Table RB-Tree RB-Tree

Skip Reset-Tree #
RO Unstable Structure # #

Table 5.1.: Default settings of the four configurations used in the benchmarks.

Scan-Rate We vary the scan-rate by adjusting the sleep time while leaving the
pages that are scanned at each wake-up constant at 100 pages. The bounded circular
stack sizes that we have used for each sleep time and the resulting scan-rates of the
respective settings are listed in Table 5.2.

Size of Bounded Circular Stack The size of the hint buffer, in our implemen-
tation the bounded circular stack, is a parameter that we need to set for XLH in the
following benchmarks. We have run kernel-build benchmarks to find good values
for the hint buffer and applied those settings to all benchmarks.

Deduplicating Virtualized Environments 87

Variable
Sleep time 20 ms 100 ms 200 ms

Stack Size [entries] 40.960 8.192 4.096
Effective Scan-Rate [pages/s] 5.300 1.100 530

Table 5.2.: The stack sizes we have used for the varying scanner sleep times.
See §6.1.3 for a discussion about the effective scan-rate.

Figure 5.1 and Figure 5.2 show the kernel-build benchmark at sleep-times of 20 ms,
100 ms and 200 ms, when scanning 100 pages at each wake-up, with various sizes
of the bounded circular stack used to store hints before they are processed. The
VMs are booted and four full scan rounds are performed to share static sharing
opportunities in the base image before the workload starts.

The bounded circular stack size has a great impact on the deduplication quantity
when using XLH. Three different outcomes can be observed:

• If set too small, the deduplication quantity of XLH is low. This is because
XLH degenerates into KSM when the hint buffer size moves towards zero.
XLH with a zero hint buffer size is behaving exactly like KSM as no hints are
processed at hint-processing wake-ups. XLH then shifts directly to the linear
scan for the rest (the entire) of the hint-processing quantum.

• With larger hint buffer sizes the deduplication quantity in our benchmark
steadily rises until it is saturated.

• If the hint buffer size is too large, the deduplication ratio drops again. This
can be observed best in the benchmark with a 200 ms sleep-time (Figure 5.2).
The deduplication quantity is much lower with stack sizes that can store 8192
and 16384 hints before overflowing than with a stack size that stores 4096
hint entries.

The reason for the drop in deduplication quantity for very large hint buffer sizes
is, that large hint buffer sizes store hints for a longer period of time. Once hints
become outdated, they are of no use to XLH anymore. They do, however, take up
some of the scan quantum to process and thus decrease the efficiency of XLH.

Currently, we only use a very course grained aging mechanism to filter out such
outdated hints. If a hint was issued in the last scan round,3 XLH drops it after
popping it from the top of the stack. Dropping hints does not count into the
hint processing quota as XLH discards those hints before visiting the hinted pages
themselves.

3Which we can recognize by a sequence number that we store with a hint. The sequence number
can be stored in the low order bits of the address at no extra storage expense.

88 Deduplicating Virtualized Environments

100

150

200

250

300

350

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

20 ms wake-up time

128 1k 4k 8k 16k 32k 64k

75

100

125

150

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

100 ms wake-up time

128 256 1k 2k 4k 8k 16k 32k

Figure 5.1.: Kernel-build deduplication effectiveness at fixed sleep-times of 20 ms
and 100 ms, scanning 100 pages per wake-up with different stack sizes
in the XLH RO configuration.

Deduplicating Virtualized Environments 89

70

80

90

100

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

200 ms wake-up time

256 512 1k 4k 8k 16k

Figure 5.2.: XLH RO Kernel-build deduplication effectiveness at a fixed sleep-time
of 200 ms, scanning 100 pages per wake-up with different stack sizes.

For the kernel-build benchmark, a simple rule of thumb applies for choosing a well
suited hint buffer size. We have found empirically that the deduplication quantity is
at its maximum, if a full hint buffer can be drained in about 15 seconds at the fixed
scan-rate and pages-to-scan setting. Our default hint buffer sizes (Table 5.2) reflect
this rule. Note that the rate at which hints are processed in a given benchmark is
dependent on the scan-rate as well as on the interleaving ratio.

5.4. Evaluation Results and Interpretation

This section contains specifics about our benchmark set-ups, their outcome, and
its discussion. The first two benchmarks, the kernel-build and HTTPerf show the
deduplication performance when many duplicates are present. The following Bon-
nie++ benchmark contains only few duplicates. The key focus in this benchmark
was to stress-test the background storage system and in consequence test if XLH
introduces a source for slowdowns with the hint generation and storage. The last
section contains the mixed benchmark where we run one kernel-build VM and a
VM running the apache web server simultaneously. In this benchmark we compare
XLH and KSM in a scenario where only few deduplication candidates exist, yet
many, mostly invalid hints are generated.

90 Deduplicating Virtualized Environments

5.4.1. Kernel-Build

In the kernel-build benchmark, two VMs compile the Linux 2.6.27 kernel simul-
taneously. We have disabled the compilation of most kernel modules to reach a
compile time of just above 7:30 minutes.

Benchmark Set-Up Figure 5.3 illustrates the set-up of the kernel-build bench-
mark. The benchmark logic and the memory scanner occupy one core each. In
addition two VMs are run on the remaining two pCPUs, building a Linux kernel
each.

Benchmark

Control

Logic

Memory

Scanner

VM compiling Linux

Quad Core Host

VM compiling Linux

Figure 5.3.: Two VMs compile the Linux kernel, each one occupying a CPU core.
The remaining two cores are used for the benchmark logic and the
memory scanner, respectively.

Recall that the line illustrating the amount of possible sharing opportunities in
Figure 5.4 and Figure 5.5 were measured in a separate benchmark without running
a deduplication scanner. Instead, we took memory snapshots of the two VMs every
second and later analyzed these for equal pages offline. Due to the high snapshot
overhead, the run-time of the kernel-build increases. We have scaled the time axis to
match the original time interval. Also, we have shifted the line to the left to match
the points in time that the kernel-build starts in both benchmarks.

Deduplicating Virtualized Environments 91

Deduplication Quantity In this benchmark, we assume that the VMs were specif-
ically booted for running the benchmark workload. Hence, we start the memory
scanner and the workloads at the same time. That way, in the beginning of the
benchmark, in addition to the duplication caused by the workload, the scanner
also has to merge static duplicates from the base system. This set-up is compara-
ble to continuous integration services that boot a separate VM for each specific
compilation and integration job.

The development of the deduplication quantities when running the benchmark
with different scan-rates can be found in Figure 5.4. In our kernel-build bench-
marks, XLH constantly outperforms KSM at the same scan-rate. At a sleep-time
of 20 ms, XLH can share almost all available sharing opportunities. KSM in turn
can almost constantly only find about two thirds of those sharing opportunities
when running at this scan-rate. At the lower scan-rates KSM can share almost no
sharing opportunities at all. XLH works much better at those low scan-rates. It is,
however, also limited by the small rate at which pages are visited and merges much
fewer sharing opportunities than available.

Deduplication Quantity After Warm-Up The base system already contains
duplicate memory pages. In this benchmark, before starting the compilation
workload, we have waited for four full scan rounds to complete before starting the
kernel-build. This way all sharing opportunities from the base system are already
shared when the workload begins.

Despite the deterministic nature of the experiment, the initial sharing quantity
varies by around 7000 pages (∼27 MiB) throughout the 72 considered benchmark
runs. We have measured that between 20037 and 27340 pages (78–107 MiB) can be
shared initially, after booting both VMs and before starting the kernel-build.

Figure 5.5 depicts the deduplication quantities after warming up the memory
scanner with the VM base system. The graph with the fastest scan-rate almost
resembles the previous one without warm-up. The other two benchmarks, however,
paint a different picture. While KSM loses more than half of its previously merged
sharing opportunities, XLH can at least keep a dynamic equilibrium between
merges and COW-breaks.

In the benchmark with the most aggressive scan-rate, XLH can in total detect
and merge 1.6 times more sharing opportunities with different content than KSM.
While XLH merges 5504114 different sharing opportunities, KSM can only find
3429034 pages that can be shared.

4Median of 6 benchmark runs

92 Deduplicating Virtualized Environments

100

200

300

400

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

20 ms wake-up time

Opportunities
XLH RO
KSM RO

100

200

300

400

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

100 ms wake-up time

Opportunities
XLH RO
KSM RO

100

200

300

400

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

200 ms wake-up time

Opportunities
XLH RO
KSM RO

Figure 5.4.: Kernel-build merge performance with varying wake-up times. The
memory scanner and kernel-build start at the same time.

Deduplicating Virtualized Environments 93

100

200

300

400

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

20 ms wake-up time

Opportunities
XLH RO
KSM RO

100

200

300

400

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

100 ms wake-up time

Opportunities
XLH RO
KSM RO

100

200

300

400

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

200 ms wake-up time

Opportunities
XLH RO
KSM RO

Figure 5.5.: Kernel-build merge performance with varying wake-up times. The
scanner merges static sharing opportunities, then the workload starts.

94 Deduplicating Virtualized Environments

Merge Latency There are two different possibilities for false positives when using
the method previously described in §5.1. First, the matching algorithm records
matching contents based on the hash value alone. Since we are using a weak hashing
algorithm (jhash2), no such match needs to be in fact present in the original content
in the case of colliding hashes. Second, it is possible, that one of the systems merges
the first occurrence of a sharing opportunity while the other system merges a later
sharing opportunity of the same content but does not find the first occurrence.
Then, two semantically different sharing opportunities with the same content are
compared. False positives will appear as outliers in the measured merge latencies.

From two benchmark runs, we were able to match 121813 sharing opportunities.
To account for false positives we have filtered the top and bottom 1%� (122 values)
before visualizing data. Figure 5.6 depicts the resulting difference in merge latency
times of KSM RO and XLH RO, sorted by time.

 0

 60

 120

 180

 240

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 161.3

M
er

g
e

L
at

en
cy

 T
im

e
D

if
fe

re
n
ce

 [
se

c]

Quantile of Matched Merged Pages

median

Figure 5.6.: Sorted merge latency difference of 121571 matched merged pages be-
tween KSM and XLH in the kernel-build benchmark at 20 ms wake-up
time.

When comparing the time into the benchmark at which the respective scanners
merge pages with equal content hashes, it becomes apparent that XLH detects
those opportunities around 2:41 minutes before KSM at a 20 ms wake-up time.
Negative values in this graph would mean that XLH merges pages after KSM. This
only occurs in less than 0.14%� (17 values) of the merges in our (unfiltered) sample,
however.

Viewed from the opposite angle, XLH detects sharing opportunities more quickly
than KSM in more than 99.9% of all merged pages that we have matched seman-
tically. XLH thus achieves the superior deduplication quantity by checking and
merging prospective sharing candidates earlier than KSM.

Deduplicating Virtualized Environments 95

Merge Duration Finding sharing opportunities earlier has a twofold impact.
First, XLH can find additional short lived sharing opportunities. Second, XLH
shares sharing opportunities that can also be found by KSM for a longer period of
time.

Both effects are confirmed by the histogram plotted in Figure 5.7, which shows the
merge duration using the same data samples used in the previous paragraph. Here,
the number of short lived sharing opportunities, up to 60 seconds, doubles when
using XLH over KSM. Longer lived sharing opportunities that can be shared for
over 150 seconds, also rise. The shift to longer sharing times can be seen especially
well in the range between 360 seconds and 450 seconds.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420

N
u

m
b

e
r

o
f

O
c
c
u

re
n

c
e
s

Time [sec]

KSM RO
XLH RO

Figure 5.7.: Merge durations in the kernel-build benchmark at 20 ms sleep-time.

Kernel-Build Run-Time We have measured the total time that each VM needed
to boot and compile its Linux kernel. Figure 5.8 depicts the resulting workload
run-times averaged over 12 VMs respectively. These times come from the first kernel-
build benchmark which was done without first merging static sharing opportunities
from the base image.

XLH is always slightly slower than KSM on average. As we will explore in Chap-
ter 6, this slowdown is due to the time it takes to merge and break the respective
memory and is not attributed to finding the additional sharing attributes. If KSM
and XLH were set to merge the same amount of sharing opportunities on average
then both scanners would spend the same amount of time merging memory. XLH,
however, would then spend less time finding the sharing opportunities and thus
speed up the workload compared to KSM.

96 Deduplicating Virtualized Environments

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

X
L

H
 (

2
0
0
m

s)

K
S

M
 (

2
0
0
m

s)

X
L

H
 (

1
0
0
m

s)

K
S

M
 (

1
0
0
m

s)

X
L

H
 (

2
0
m

s)

K
S

M
 (

2
0
m

s)

T
im

e
 [

s]

Figure 5.8.: Average time, the kernel-build takes to finish in the different configura-
tions. Six runs were timed resulting in an average of 12 VM compile-
times for each configuration.

Unstable Tree Degeneration The unstable tree data structure is meant to index
memory pages that have not been modified between visits but that do not currently
have a sharing partner. Just like the entire KSM memory scanner, the unstable
tree works only well if the goal is to share long-lived sharing opportunities. If
pages are written between scan rounds, the subtrees underneath those pages may
get lost (Figure 4.9). This degenerating unstable tree problem aggravates the closer
the modified pages are to the root of the tree as the loss of subtrees will then affect
more pages.

It is easy to measure the number of affected pages in the unstable tree. All tree-nodes
can still be reached for example using a breath-first search (BFS). To check which
and how many nodes are reachable in the unstable tree, we have implemented a
modified BFS: For every node N discovered through the BFS, the algorithm checks
if the content of N can also be found when searching for it in the index.

When running this unstable tree checker at the end of each scan round, we get the
node reachability summarized in Table 5.3. The numbers for each scan-rate were

Deduplicating Virtualized Environments 97

Property
Sleep-time 20 ms 100 ms 200 ms

Upper 95% confidence: 82% 76% 85%
Arithmetic mean: 62% 53% 75%

Lower 95% confidence: 41% 31% 65%

Table 5.3.: Two VMs running the kernel-build benchmark with the vanilla KSM.
Percentage of pages that are reachable at the end of a full scan round.

generated from 12 kernel-build benchmark runs. Under the assumption that the
reachability of unstable nodes follows a normal distribution, the 95% confidence
interval boundaries indicate that 95% of the arithmetic means of all possible kernel-
build benchmarks are within the given boundaries. It is thus very likely, that only
between 30% and 85% percent of the nodes in the unstable tree are reachable at the
end of each scan round.

The largest influence for the number of unreachable unstable tree pages is the
number of total pages in the tree. If the number of memory pages that reside in
the unstable tree rises, so does the probability for a modification of a page in the
unstable tree. Every modified unstable tree page can make up to half of the tree
unreachable if the root-node is modified.

The proportion of pages that is admitted into the unstable tree depends on the
interplay of two factors: the memory modification rate and the scan-rate. If the
modification rate is very high compared to the time that a scan round takes to finish,
then only few memory pages will be inserted into the unstable tree, because the
hash heuristic prevents the insertion of all modified pages.

Despite causing a higher possibility for breaking the tree, it is important to admit
many pages into the unstable tree. This is because a larger number of indexed pages
raises the chance to find a sharing opportunity. In conclusion it is important to
address the degenerating tree problem.

Mitigation of the Unstable Tree Degeneration We have implemented two
approaches to mitigate the degeneration of the unstable tree. First, mapping the
memory pages that are indexed through the unstable tree read-only and using the
page-fault as a signal to mark tree-nodes as stale5. Second, we have implemented a
hash-table to replace the unstable tree.

5Stale nodes can then be cleaned up on the next KSM run without additional locking.

98 Deduplicating Virtualized Environments

Figure 5.9 compares the deduplication ratios of different unstable tree configura-
tions. Regarding the deduplication ratio, both approaches – the hash-table and the
read-only unstable tree – perform exactly the same. For visual clarity, we have
only printed the former line in the graph. Reset refers to dropping (resetting) the
unstable tree at the end of a scan round. If the unstable tree does not degenerate
at all, the memory scanner has no reason to reset the unstable tree at the end of a
scan round, as resetting the tree is merely a clean-up mechanism for unreachable
unstable tree nodes.

0

50

100

150

200

250

300

350

400

 0 60 120 180 240 300 360 420

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

XLH - RO - no reset
XLH - RO - with reset
XLH - RW - with reset
KSM - RW - with reset
KSM - RO - no reset

Figure 5.9.: Comparison between different unstable data structure configurations.
Kernel-build merge performance with a 20 ms wake-up time after merg-
ing static sharing opportunities.

XLH shares almost the same amount of pages, regardless of the configuration. Only
the linking phase, at the very end of the benchmark, shows a larger deviation
between the three benchmark configurations. The main reason for this behavior
is that I/O pages with the same content, that are later merged due to two hints,
are inserted into the unstable tree in short succession. This decreases the likeliness
for a concurrent unstable tree operation to degenerate this part of the tree in the
meantime.

KSM’s deduplication quantity, in turn, is affected severely by the degeneration of
the unstable tree. To compare XLH and KSM more fairly we have used the “KSM
RO” configuration in all our benchmarks instead of the vanilla KSM.

Deduplicating Virtualized Environments 99

Conclusion of the Kernel-Build Benchmark First, we have further demon-
strated that XLH can save much more memory than a linear memory scanner such
as KSM can, at the same scan-rates. XLH especially excels in less aggressive scan-rate
settings. We have determined that XLH achieves its superior deduplication ratio by
exploiting additional short lived sharing as well as by prolonging the sharing time
of sharing opportunities that can also be found by KSM by up to 4 minutes.

When evaluating the ratio of reachable nodes in the unstable tree, we have found
a large proportion of the tree to be unreachable in all scan-rate settings. Our two
solutions to the degenerating unstable tree problem differ only in the run-time
performance which is evaluated in the next chapter. Here, we have seen, that it is
mainly a problem for the vanilla KSM implementation. When keeping the unstable
tree intact, the deduplication quantity stays almost the same for XLH.

5.4.2. Apache web-server and HTTPerf

HTTPerf [64] is a tool to measure the performance of web-servers such as the
popular Apache HTTP server [7]. Serving static web-pages is latency sensitive.
HTTPerf can evaluate this metric and enables us to compare XLH and KSM in this
respect.

Benchmark Set-Up Figure 5.10 illustrates the set-up used for this benchmark.
Apart from the benchmark logic and the memory scanner occupying one core
each, the host runs two VMs; each executing the Apache HTTP server. An addi-
tional, physical computer runs two instances of the HTTPerf tool to measure the
performance characteristics of both web servers. The virtualization host and the
computer running HTTPerf are connected via gigabit Ethernet.

We have generated static files of 50 kB in size for the first web server and shuffled
the order of those files for the second web server. This way, when the two HTTPerf
instances access the files in the same order of file-names the contents are served in
the shuffled order. We have used this approach to work around the lack of a feature
in HTTPerf to access files in random order. The python code for the described
generation of files is listed in Appendix B.

Deduplication Quantity The deduplication quantity is depicted in Figure 5.12.
Alike the results in the kernel-build benchmark, XLH can constantly find and
merge more sharing opportunities than KSM at all scan-rate settings. While KSM
can only merge about 50 MiB memory at a 100 ms wake-up time, XLH can save
almost 400 MiB memory; more than 8x as much. In reverse, XLH can save almost
as much memory as KSM despite scanning 5x slower, as can be seen in Figure 5.11.

100 Deduplicating Virtualized Environments

Benchmark

Control

Logic

Memory

Scanner

Apache Web Server

Quad Core Host

Apache Web Server2x HTTPerf

Figure 5.10.: Two physical computers are used for the HTTPerf benchmark. One
running the two virtualized Apache web servers, the other running
two instances of the HTTPerf benchmark.

100

200

300

400

2 4 6 8 10 12 14 16

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

20ms vs. 100 ms wake-up time

XLH RO 100ms
KSM RO 20ms

Figure 5.11.: Comparison when XLH scans 5x slower than KSM. KSM scans
5300 pages per second while XLH scans 1100 pages per second.

Deduplicating Virtualized Environments 101

100

200

300

400

0 2 4 6 8 10 12 14 16

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

20 ms wake-up time

XLH RO
KSM RO

100

200

300

400

2 4 6 8 10 12 14 16

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

100 ms wake-up time

XLH RO
KSM RO

100

200

300

400

2 4 6 8 10 12 14 16

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

200 ms wake-up time

KSM RO
KSM RO

Figure 5.12.: Merge performance in two apache web servers serving static files to
two HTTPerf instances requesting the same files in a different order.
The scanner was warmed up, merging static sharing opportunities,
before the workload started.

102 Deduplicating Virtualized Environments

HTTPerf Latency HTTPerf directly outputs the average time it needs for con-
necting and transferring data from the tested web server. Figure 5.13 shows the
0.05 quantile, the median and the 0.95 quantile of the average transfer times of six
HTTPerf runs in each configuration.

 3

 4

 5

 6

T
ra

n
sf

er
 T

im
e

[m
s]

Sleep-Time [ms]

HTTPerf Transfer Time

20 100 200

XLH RO
KSM RO

Figure 5.13.: Each bar represents the 0.05 quantile, median, and 0.95 quantile of the
transfer time of 6 separate HTTPerf runs.

All benchmark runs resulted in transfer latencies between 3.5 ms and 6 ms. The
variation is very low with a few outliers that are not fully filtered. The outliers are
likely due to unrelated traffic in our internal network that was not exclusively used
for the experiment. There does not seem to be a relation between the system used
and the latency as XLH is sometimes at the faster end (20 ms, 200 ms sleep-times)
and sometimes at the slower end (100 ms sleep-time). It also does not seem to be
connected to the scan-rate in our settings; the 100 ms setting shows a slightly lower
latency than the benchmarks in the other two sleep-times.

Conclusion of the HTTPerf Benchmark In the HTTPerf benchmark, XLH
can deduplicate up to eight times as much memory as KSM at a sleep-time of 100 ms.
XLH can deduplicate as much memory as KSM when KSM scans roughly 5 times
faster than XLH (20 ms sleep-time). The transfer latency times do not show a clear
trend which correlates the latency with our modifications or the scan-speed at the
used settings.

5.4.3. Bonnie++

Bonnie++ [17] is a file system benchmark for UNIX. We use Bonnie++ to analyze
the influence of our modifications of the I/O-Layer on the disk performance. We
measure the total time that the Bonnie++ runs take. The throughput and access
latencies are directly output in the benchmark results.

Deduplicating Virtualized Environments 103

Benchmark Set-Up The benchmark set-up deviates from previous benchmarks
in the respect, that Bonnie++ is only executed in a single VM to make the results
more stable. If we had executed two Bonnie++ benchmarks at the same time,
both instances would influence one another greatly as both try to saturate the
background store.

The set-up is depicted in Figure 5.14. We have run 100 Bonnie++ benchmark runs
and aggregated the results. A Hitachi HDS72101 hard disk drive (HDD) posed as the
benchmark target.

Benchmark

Control

Logic

Memory

Scanner

VM running

Bonnie++

Quad Core Host

Figure 5.14.: A single VM runs the Bonnie++ benchmark.

Benchmark Run-Time The first graph in Figure 5.15 depicts the run-time distri-
bution of 100 Bonnie++ runs. The marker in the middle represents the median,
while the error bars show the 0.05 and 0.95 quantile. The dashed lines show the
same quantiles for 100 Bonnie++ runs without deduplicating memory at all.

Figure 5.16 shows the sorted run-times of all 100 Bonnie++ benchmark runs that
were used to generate the first graph in Figure 5.15. The run-times of about 60% of
the benchmark runs are close together. Those runs take just below 12 seconds to
run in total. A tail starts rising in the remaining part of the graph, maxing out at a
run-time of about 17 seconds. There is no clear distinction between the minimum
and mean run-times in the used configurations. Neither the scanner (XLH or KSM)
nor the scan-rate seem to affect the result. The maximum run-time, however, is
always slightly higher when using XLH over KSM in our experiments.

104 Deduplicating Virtualized Environments

 11

 12

 13

 14

 15

 16

 17

 18
R

u
n
-T

im
e

[s
]

Sleep-Time [ms]

Bonnie++ Benchmark Run-Time

20 100 200

XLH RO
KSM RO

 350

 400

 450

 500

 550

 600

 650

 700

 750

A
cc

es
s

L
at

en
cy

 [
u
s]

Sleep-Time [ms]

Bonnie++ Benchmark Latency

20 100 200

XLH RO
KSM RO

 108

 110

 112

 114

 116

 118

 120

 122

T
h
ro

u
g
h
tp

u
t

[M
iB

/s
]

Sleep-Time [ms]

Bonnie++ Benchmark Throughput

20 100 200

XLH RO
KSM RO

Figure 5.15.: Run-time, latency and throughput when reading block sequentially
from HDD. 0.05 quantile, median, and 0.95 quantile of 100 Bonnie++
runs.

Deduplicating Virtualized Environments 105

 11

 12

 13

 14

 15

 16

 17

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u
n
-T

im
e
 [

s]

Quantile of Sorted Results

XLH 20ms
KSM 20ms
XLH 100ms

KSM 100ms
XLH 200ms
KSM 200ms

Figure 5.16.: Quantile plot of 100 Bonnie++ runs, sorted by time.

Latency The second graph in Figure 5.15 depicts the access latency when reading
sequential blocks from the HDD. There is no clear trend that correlates the scan-
rate with the mean access latency. All resulting graphs are very close together with
little variation. The additional hint-storage in the I/O path is not noticeable in the
disk access latency.

Throughput The third graph in Figure 5.15 shows the throughput that Bonnie++
measures when reading blocks sequentially. There seems to be a trend for XLH to
get a slightly higher throughput than KSM. This is surprising, as the benchmark
run-time and latency do not reflect this trend.

The benchmark runs are very short which limits the accuracy of the results. In
addition, the difference is only between 3%� and 8%� of the total throughput.
We neglect this result as the difference can as well be due to imprecision in the
measurement [86].

106 Deduplicating Virtualized Environments

Conclusion of the Bonnie++ Benchmark XLH adds code to the I/O layer
that records every read and write operation. Using Bonnie++, however, we were
not able to measure a clear performance difference, neither between KSM and XLH,
nor between the two and the base system without memory deduplication.

5.4.4. Mixed

In this scenario we compare KSM and XLH in a set-up that exhibits only few
sharing possibilities while many, mostly bogus hints are produced. We do this
by mixing workloads. Then, apart from the same guest OS, code and data of the
workloads are almost distinct.

Benchmark Set-Up In this benchmark we mix the set-ups of two previously
presented workloads. As depicted in Figure 5.17 one VM runs a Linux kernel-build.
Another VM runs the Apache web server that interacts with an HTTPerf instance
running natively on a different physical host. The HTTPerf instance and the
virtualized host are connected through a gigabit Ethernet connection. Compared to
the first HTTPerf benchmark, we have modified the HTTPerf settings to shorten
the benchmark run-time in order to match the kernel compilation time.

Benchmark

Control

Logic

Memory

Scanner

Apache Web Server

Quad Core Host

VM compiling LinuxHTTPerf

Figure 5.17.: Two physical computers are used for the mixed benchmark. One
running a virtualized Apache web server and a kernel-build within an-
other VM. The other computer is running an instance of the HTTPerf
benchmark.

Deduplicating Virtualized Environments 107

50

75

100

125

 0 60 120 180 240 300 360 420 480 540

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

20 ms wake-up time

XLH RO
KSM RO

50

75

100

125

 0 60 120 180 240 300 360 420 480 540

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

100 ms wake-up time

XLH RO
KSM RO

50

75

100

125

 0 60 120 180 240 300 360 420 480 540

S
h
ar

ed
 M

em
o
ry

 [
M

iB
]

Time [sec]

200 ms wake-up time

XLH RO
KSM RO

Figure 5.18.: Merge performance of simultaneous kernel-build and an HTTPerf
workloads with varying wake-up times. The scanner merges static
sharing opportunities, then the workload starts.

108 Deduplicating Virtualized Environments

Results Figure 5.18 shows the deduplication quantity for three sleep-times. For
sleep-times of 200 ms and 100 ms both, KSM and XLH, share practically the same
amount of memory. Surprisingly, XLH can save up to 20% more memory than
KSM in the benchmark with 20 ms.

The additional sharing comes from self-sharing in the kernel-build benchmark.
When compilation results are flushed to disk, XLH can exploit the duplicates
between anonymous and file memory before the anonymous memory region is
reclaimed and reused by the OS as previously presented in §3.2.3.

Conclusion of the Mixed Benchmark Mixing workloads can make hints useless
for inter-VM sharing. In our benchmarks, however, we did not see a decrease in
sharing quantities when using XLH in this scenario as could be expected as XLH
needs to follow many bogus hints. Instead, XLH can rise the deduplication quantity
slightly by finding self-sharing opportunities more quickly.

5.5. Conclusion

In the past decade, there has been a trend to migrate servers into virtual machines.
Although this strategy leads to a better resource utilization and flexibility, it intro-
duces a bottleneck in the main memory size. Memory scanners can increase the
memory density of virtual machines by finding duplicates in guest memory and
sharing them in a copy-on-write fashion. Memory scanners such as VMware ESX
and Linux’ KSM identify duplicate memory pages by indexing all pages in linear or
random order without regard to the memory semantics. XLH complements this
technique by prioritizing pages of recent I/O activity.

In this chapter we have shown that XLH can share up to eight times more memory
than previous scanners in typical virtualization scenarios at the same scan-rate.
XLH achieves this increased sharing rate by finding sharing candidates between one
and four minutes earlier than linear memory scanners and by finding additional
sharing opportunities that could previously not be detected.

The increased sharing quantity comes at no measurable performance impact com-
pared to KSM at the same scan-rate. Even in non-favorable scenarios, when most
hints are bogus, XLH does not perform worse than KSM.

Chapter 6

Performance Considerations

Until now we have resolved that extending memory scanners with I/O-based hints
can save more memory than pure brute-force, linear memory scanning at the same
scan-rate settings. We have also shown that the performance in terms of benchmark
run-time, I/O-latency, and I/O-throughput are barely affected by our extension.

This chapter analyzes the runtime effects of memory deduplication scanners more
closely. We approach the problem from two different perspectives: From the
scanner’s point of view and from the application’s point of view. Section 6.1
analyzes the work that duplication scanners put into the deduplication process. The
following Section 6.2 elaborates on positive as well as negative effects that searching
for and sharing equal pages has on workloads of different runtime characteristics.
Section 6.3 concludes this chapter by summarizing the main results.

6.1. Scanning Overheads and Boundary

In this section we analyze the work that a memory scanner puts into the dedu-
plication process directly. We begin by going through the KSM scan process and
identifying how much time each part of that process takes to execute (§6.1.1). We
also analyze the time that XLH spends on recording and retrieving hints in that
paragraph. The next paragraph (§6.1.2) shows how often the code paths are executed
in total and in relationship to each other. The section closes with an exploration of
the scan-rate boundary, the maximum rate at which KSM can visit pages (§6.1.3).

110 Performance Considerations

6.1.1. Code Paths

We first measure how long each code path in KSM (vanilla Linux 3.4-rc3) takes.
We have gathered this information by running a micro-benchmark in which we
initialized the to-be-scanned memory in a way that forced the scanner to run solely
along certain paths in the first scan rounds. While conducting the benchmark, we
measured the time spent in the respective functions using Ftrace.

Ftrace Ftrace is Linux’ internal function call tracer that provides information
about function call frequencies, execution times, interrupts, preemption, and more.
If Ftrace is enabled during kernel compilation, the compiler inserts the mcount
instruction in front of every non-static function [49].

The space occupied by mcount is replaced by nop instructions when tracing is
disabled. If, however, tracing is enabled, the mcount instruction acts as a trampoline
to analysis code. The analysis code records the current time using the Time Stamp
Counter (TSC) register and replaces the return address of the function with the
mreturn trampoline that is used to record the elapsed time difference. Gathered
statistics are output via the debug file system (debugfs).

Benchmark Set-Up The data region that is scanned in this benchmark is initial-
ized as depicted in Figure 6.1. In the first scan round, the hash is calculated but the
page is not indexed, yet. The data is initialized to contain distinct data in the first
half of the scanned VMA. The second half contains an exact copy of the first half of
the data. Thus scanning the first half of the data in the second scan round will result
in adding all pages to the unstable tree, as all hashes are still valid. When scanning
the second half of the data region, every page already has a sharing partner in the
unstable tree and is thus merged.

43214321

1
st

 Scan-Round: Calculate Hash

First Half of 2
nd

 Scan-Round:

Add to Unstable Tree

Second Half of 2
nd

 Scan-Round:

Merge and Add to Stable Tree

Figure 6.1.: The data-initialization that was used to force the scanner to run along
known paths.

From the number of pages that we have indexed we know in which phase of the
scan we are at every moment during the benchmark. This way we can differentiate
between successful and unsuccessful tree lookups.

Performance Considerations 111

KSM Path Costs The resulting path-times can be found in Figure 6.2. For
comparison: In our set-up it takes around 600 ns to read 4 KiB linearly from main
memory. An LLC miss that fetches a cache-line from main memory takes around
50 ns [20].

Search in
stable tree

Page found?

Get next page

Calculate page hash
(3300ns)

Page modified?

Search in
unstable tree

Page found?
Merge pages

(5277ns)

Insert to
unstable tree

Merge page
(3864ns)

Yes
(3177ns)

No
(305ns)

3318ns

1234ns

Yes

No

Remove from
unstable tree

no

yes

114ns

Figure 6.2.: The execution time of each sub-path of the scan process.

The times for stable and unstable tree look-ups differ greatly whether an equal
page is already in the respective tree or not. If the page is not in the tree, the (lazy)
comparison finishes much earlier in the look-up process. For this reason, we have
annotated the outgoing edges for tree lookups instead of the nodes which we have
annotated for the other operations. We do not annotate the pure look-up for the
unstable tree, as the single look-up function already performs the next action –
remove or insert – in compound. This avoids either locking the tree until the
insertion takes place, or a second traversal of the tree.

112 Performance Considerations

Unstable Tree vs. Hash-Table Lookup Speed Our benchmarks have shown
that there is a great difference between unsuccessfully looking up a page in the
unstable tree (305 ns) and finding a page in the unstable tree (3177 ns).

This difference comes from the additional number of pages that need to be compared
to the page that we are looking for, while traversing the tree, in case of a match. In
addition, the whole page needs to be finally compared to make sure, that the pages
are in fact equal. When the page is not in the unstable tree, the comparison can
cease at the first differing byte in the leaf node.

When replacing the unstable tree with a hash-table, the look-up time is constant, as
long as there is enough room in the table and no chaining is required. A well-tuned
hash-table should therefore reduce the successful look-up time significantly, in the
common case.

Figure 6.3 depicts the 0.05 quantile, the median and 0.95 quantile of the time
required to look-up (and insert) a page in our hash-table implementation as well
as the time to remove a page from the data structure. The numbers are generated
using ftrace recording 56605 samples for the look-up and 62117 samples measuring
the removal.

 0

 500

 1000

 1500

 2000

 2500

 3000

Search and Insert Remove

T
im

e
 [

n
s]

Figure 6.3.: Time to search and insert into the unstable hash-table and the time it
takes to remove a page from the unstable hash-table, respectively. The
bars show the 0.05 quantile, the median and the 0.95 quantile.

As expected, the common time to look-up and insert a page in the hash-table
is shorter (199 ns) than when using the original unstable tree implementation
(1234 ns). The difference is even larger for the removal from the unstable data
structure. When a hash-table is used removal takes 91 ns in the median while we
have measured 3318 ns for the unstable tree.

Performance Considerations 113

XLH’s Bounded Circular Stack XLH extends the original KSM code by the
bounded circular stack used for storing hints. Table 6.1 shows the execution times
for adding a hint into and for removing a hint from the stack respectively. The
additional push and pop operations are very fast, compared to the original KSM
operations.

Property
Operation Push Pop

Median 38 ns 111 ns

Table 6.1.: Execution times of bounded circular stack push and pop operations.

XLH’s mm_slot modification The main difference between processing hints and
following the linear scan is the choice which page to visit next. When processing
hints, the next page to visit is taken from the bounded circular stack instead of
following a pointer in the rmap_item. Then, a more costly red-black tree look-up is
performed to find the rmap_item that was referenced by the hint within the mm_slot
data structure.

Figure 6.4 depicts the time to extract the next rmap_item to process, when scanning
and when following a hint. In our experiments it took a median time of 592 ns
for the hint path and a median time of 114 ns for the scan path to return the next
rmap_item to be processed. Compared to the time it takes to calculate the hash
value of the visited page (3300 ns) or merging pages (3864 ns), getting the next page
to visit does not seem to be a problem that is important to address at the moment.

 0

 250

 500

 750

 1000

 1250

Hint Scan

T
im

e
to

 g
et

 n
ex

t
rm

ap
 i

te
m

 [
n
s]

Figure 6.4.: Time to find the rmap_item for the currently processed hint or the
time to find the next rmap_item, respectively. The bars show the 0.05
quantile, the median and the 0.95 quantile of 100 k samples.

114 Performance Considerations

We have run all of our benchmarks with this naïve implementation. It is, however,
possible to extend the approach by caching the tree look-up in the address field of
the page data structure. Then, every distinct rmap_item only needs to be looked up
using the red-black tree once in O(log n) before it can be found in O(1) from the
cache. This caching mechanism is prone to programming errors but can decrease
the look-up performance to the same time that the scan path takes.

6.1.2. Code-Path Frequencies and Aggregated Cost

The absolute time it takes to execute each path in the KSM scan process and the
time spent in the XLH extensions is meaningless without information about how
often each code path is taken in a typical workload.

Figure 6.5, Figure 6.6, and Figure 6.7 show the relative distribution of the frequen-
cies that each code-path is taken when running the kernel-build benchmark and
scanning 100 pages per wake-up with sleep-times of 20 ms, 100 ms, and 200 ms
respectively. There is a clear tendency that can be taken from the progression of
the graphs: The more aggressive the scanner operates, the more likely it is that
pages have the same content in successive visits. This is in line with intuition: if
the modification frequency remains constant, the times at which pages still have
the content from the previous visit rises if the frequency at which the pages are
visited increases. It impacts the deduplication effectiveness significantly if many
pages never make it into the unstable tree.

The total number how often each path has been taken in the entire kernel-build
benchmark and the aggregated path cost (Equation 6.1) for all three sleep-times are
given in Table 6.2.

aggregated path cost = #occurences · texecution (6.1)

Path
Sleep-Time 20 ms 100 ms 200 ms

Merge to Stable Tree 20,465 (144 ms) 4,755 (33 ms) 1,190 (8 ms)
Differing Hashes 1,161,046 (4,186 ms) 447,126 (1,612 ms) 197,024 (710 ms)

Merge from Unstable Tree 47,931 (585 ms) 4,660 (57 ms) 782 (10 ms)
Add to Unstable Tree 1,442,546 (6,980 ms) 84,584 (409 ms) 8,090 (39 ms)

Total 2,671,988 (11,895 ms) 541,125 (2,111 ms) 207,086 (767 ms)

Table 6.2.: Number of times each path was taken and the resulting aggregated path
costs in the kernel-build benchmark which runs around 7:30 minutes.

Performance Considerations 115

In stable tree?

Page hash modified?

In unstable tree?

Yes, merge

(99%) No
Yes, out

(56%) No
Yes, merge

No, add to unstable tree

(1%)

(43%)

(2%)
(54%)

Figure 6.5.: Paths taken by visited pages through the KSM memory scanner when
scanning 100 pages per wake-up and waking up every 20 ms.

In stable tree?

Page hash modified?

In unstable tree?

Yes, merge

(99%) No
Yes, out

(16%) No
Yes, merge

No, add to unstable tree

(1%)

(83%)

(1%)
(15%)

Figure 6.6.: Paths taken by visited pages through the KSM memory scanner when
scanning 100 pages per wake-up and waking up every 100 ms.

In stable tree?

Page hash modified?

In unstable tree?

Yes, merge

(99%) No
Yes, out

(4%) No
Yes, merge

No, add to unstable tree

(1%)

(95%)

(1%)
(3%)

Figure 6.7.: Paths taken by visited pages through the KSM memory scanner when
scanning 100 pages per wake-up and waking up every 200 ms.

116 Performance Considerations

The total time spent visiting pages that fluctuate frequently (differing hashes) and
the time spend inserting pages into the unstable tree (add to unstable tree) dominate
in all three scan-rate settings. This suggests, that it is a good idea to prioritize pages
in the scanner that have a higher chance to lead to a merge.

Produced Hints The number of produced hints depends only on the I/O activity
of the workload. Its rate is independent of the scan-rate, as the hinting mecha-
nism is decoupled from the scan process. The accumulated number of produced
hints, recorded from the beginning of the workload, after booting, is depicted in
Figure 6.8.

 0

 200000

 400000

 600000

 800000

2 4 6 8 10 12 14 16 18

T
o
ta

l
N

u
m

b
e
r

o
f

P
ro

d
u
c
e
d
 H

in
ts

Time [min]

Produced Hints

Kernel-Build
HTTPerf

275 hints/second
550 hints/second

15000 hints/second

Figure 6.8.: Number of hints produced in the kernel-build and HTTPerf bench-
marks.

Excluding the boot-process of both VMs, a full kernel-build benchmark produces
around 750 k hints in the I/O subsystem, resulting in the same amount of bounded
circular stack push operations. The kernel-build benchmark has two phases, compi-
lation and linking. The compilation phase, which reads all source files and creates
an object file for each module, produces around 550 hints per second. The linking
phase reads all previously created object files and links it to the Linux kernel image.
This phase requires less computation and has in consequence a higher I/O rate,
producing around 15000 hints per second.

Performance Considerations 117

The I/O rate in the Apache web servers is dependent on the rate at which the
HTTPerf tool requests files. In our benchmark XLH produces around 275 hints
per second resulting in a total of around 250 k produced hints.

The total work that XLH puts into generating and pushing hints into the bounded
circular stack is summarized in Table 6.3. In total, XLH needs less than 0.07%� of
the CPU time for inserting hints in the kernel-build benchmark and less than
0.01%� of the CPU time in the HTTPerf benchmark. This overhead is negligible in
the deduplication process.

Produced Hints Time Spent Inserting Hints Run-Time

Kernel-Build 746,450 28 ms ≈ 7:30 min
HTTPerf 266,736 10 ms ≈ 18:00 min

Table 6.3.: Total amount of hints inserted into the bounded circular stack and total
time spent pushing hints until the end of the benchmark run-time.

Consumed Hints The number of consumed hints and accordingly the number of
pop operations, and mm_slot tree searches is highly dependent on the scan-rate and
interleaving ratio of the scanner, and on the size of the stack. This is because old
entries are overwritten when the stack is full and new hints are pushed. As long
as hints are present, XLH withdraws them at a constant rate. The rates at which
hints are consumed throughout the kernel-build and HTTPerf benchmarks in our
default settings are depicted in Figure 6.9.

The total time that XLH spends inserting hints into the bounded circular stack
and taking hints out of the stack is given in Table 6.4. The CPU overhead for
consuming hints is below 0.04%� in both benchmarks for a sleep-time of 20 ms.

Benchmark
Sleep-Time 20 ms 100 ms 200 ms Run-Time

Kernel-Build 163,454 (18 ms) 85,300 (9 ms) 55,017 (6 ms) ≈ 7:30 min
HTTPerf 173,361 (19 ms) 118,592 (13 ms) 78,039 (9 ms) ≈ 18:00 min

Table 6.4.: Total amount of hints extracted from the bounded circular stack and
total time spent taking out hints until the end of the benchmark run-
time.

For comparing the overhead that XLH has caused using the transition from an
mm_slot list to an mm_slot red-black tree we use the aggregated get next page time
(Equation 6.2).

118 Performance Considerations

 0

 100

 200

 300

 0 60 120 180 240 300 360 420

C
o
n
su

m
ed

 H
in

ts
 p

er
 S

ec
o
n
d

Time [sec]

Consumed Hints in Kernel-Build

20 ms
100 ms
200 ms

 0

 50

 100

 150

2 4 6 8 10 12 14 16

C
o
n
su

m
ed

 H
in

ts
 p

er
 S

ec
o
n
d

Time [min]

Consumed Hints in HTTPerf Benchmark

20 ms
100 ms
200 ms

Figure 6.9.: Rate at which hints are consumed in the kernel-build and HTTPerf
benchmarks.

aggregated get next page time = #scanned pages · tlinear page lookup +

#consumed hints · trandom page lookup
(6.2)

Table 6.5 lists the aggregated get next page times for the kernel-build and HTTPerf
benchmarks in different sleep-times. Each number of consumed hints and number
of scanned pages that we have used for the calculation is the average of 6 benchmark
runs. The times that linear and random page lookups take are the median numbers
presented in Figure 6.4.

The absolute speed difference between linearly getting the next page to scan (114 ns)
and getting a random page that belongs to a hint (592 ns) differs by a factor of 5.2x
in the median. In a real workload, the average speed difference for getting the next
page to visit is not as severe, between XLH and KSM, as the absolute numbers

Performance Considerations 119

indicated. XLH is only between 16% and 53% slower than KSM when getting the
next page to process. This is because there is a mix of both operations in XLH and
there are generally less hinted pages than scanned pages.

6.1.3. Scan-Rate Boundaries

There is a limit for the speed at which a system can scan memory pages for duplicates.
To find this limit in the vanilla KSM memory scanner, we have run the following
benchmark: First we have initialized 4 GiB of page-aligned memory with random
memory contents and madvised this memory to be mergeable. Then we have run
the memory scanner with varying settings for 240 seconds. In each 240 second
interval we have measured how many pages were visited every second. We have
then used the median of those 240 values as the number of pages that can be scanned
per second in this setting.

The scan-rate is set through two variables (Figure 6.10). The sleep-time determines
how long the memory scanner is inactive between scan spurts. The pages-to-scan
setting determines how many pages are scanned at each wake-up.

Scan
pages-to-scan

Pages

Scan
pages-to-scan

Pages

Scan
pages-to-scan

Pages

t

Wake-up sleep-time sleep-time

Figure 6.10.: Wake-ups do not occur strictly periodically. Instead the KSM daemon
sleeps for a defined time between the end of the previous scan-spurt
and the next wake-up. The time to scan pages-to-scan pages is variable.

Benchmark
Sleep-Time 20 ms 100 ms 200 ms Run-Time

XLH Kernel-Build 541 ms 200 ms 146 ms ≈ 7:30
KSM Kernel-Build 380 ms 134 ms 102 ms ≈ 18:00
XLH HTTPerf 926 ms 359 ms 220 ms ≈ 7:30
KSM HTTPerf 797 ms 235 ms 159 ms ≈ 18:00

Table 6.5.: Aggregated get next page time for XLH and KSM in the HTTPerf and
Kernel-Build benchmarks.

120 Performance Considerations

We have first fixed the pages-to-scan setting at 100 pages and varied the sleep-time
between 2 ms and 256 ms. The resulting numbers of pages that are scanned over the
course of a second at those settings are depicted in Figure 6.11. The first 3 points,
at 2 ms, 4 ms and 8 ms result in the same scan-speed. Around 10 ms is the shortest
sleep-time that Linux can handle with the default slice-time length.

Then we have fixed the sleep-time at 10 ms and varied the pages-to-scan setting
between 100 and 2600. The result is depicted in Figure 6.12. The number of
pages that can be scanned in a second approaches around 385 MiB per second,
asymptotically. In our benchmark set-up KSM cannot exceed this scan-rate.

Two things put these numbers into perspective. First, in a system with 32 GiB
RAM a full scan round takes at least 1:25 minutes at the most aggressive possible
scan-rate. With the two visits that are required to find a new sharing opportunity
pair, new sharing opportunities are detected after an expected time of 2:13 minutes.
Second, the most aggressive scan-rate has a large run-time effect on the scanned
workload.

The effective scan-rate resulting from our default pages-to-scan and sleep-time
settings can be obtained from Table 6.6.

Sleep-time [ms]: 20 100 200

Pages-to-scan: 100 100 100
Effective scan-rate [pages/s]: 5,300 1,100 530
Effective scan-rate [MiB/s]: 20.7 4.3 2.1

Table 6.6.: Effective scan-rate in our default benchmark settings.

6.2. Runtime Effects of Page Sharing

This section evaluates the overhead which applications incur when competing with
a memory scanner for shared resources. First, we quantify the effect that rising scan-
rates have on the run-time of concurrently running applications (§6.2.1). Second,
we analyze the impact of additional page-faults and the copy-on-write overhead on
the run-time of deduplicated applications (§6.2.2). Third, we evaluate the potential
of main memory deduplication to increase the read speed and to lead to additional
space in the CPU caches (§6.2.3).

Performance Considerations 121

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120 140 160 180 200 220 240

V
is

it
ed

 P
ag

es
 p

er
 S

ec
o

n
d

Sleep-Time [ms]

Scan-Rates at Varying Sleep-Times

KSM
25 MiB/s

Figure 6.11.: Visited memory pages per second at varying sleep-times. The number
of pages that are scanned at each wake-up is fixed at 100.

 0

 25000

 50000

 75000

 100000

 0 5000 10000 15000 20000 25000

V
is

it
ed

 P
ag

es
 p

er
 S

ec
o

n
d

Scanned Pages per Wake-Up

Scan-Rates at Varying Pages per Wake-Up

KSM
400 MiB/s

Figure 6.12.: Visited memory pages per second at varying pages-to-scan settings.
The sleep-time is fixed at 10 ms.

122 Performance Considerations

CPU Overhead In accordance to the current trend that the number and speed of
CPU cores grows faster than the size and speed of memory, we generally assume
that the host has free CPU resources available. If the memory scanner runs on
a shared CPU, it can be run at a low priority. This way, the scanner yields to a
concurrently running CPU bound task. Linux, for example, runs the KSM daemon
at a niceness value of 51.

6.2.1. Run-Time vs. Scan-Rate

KSM needs to scan at a higher scan-rate to find more sharing opportunities. To show
that this causes slowdowns for the workload we have measured the run-time of the
kernel-build benchmark when scanning, but without actually merging memory.

Figure 6.13 depicts the kernel-build run-times at a sleep-time of 20 ms at different
pages per wake-up settings. The run-time clearly rises with higher scan-rates.
Visiting 100 pages more per wake-up causes the kernel-build to run roughly 1 second
(≈ 2.5%�) longer in the median. This result is not directly comparable to the
previous Figure 5.8, as the previous run-time was measured after warming up the
scanner. Moreover, the previous benchmark also included the merge and copy-on-
write overheads.

The only three ways in which the scanner influences the workload on a second
core are memory bus contention, shared LLC cache thrashing and L1/L2 cache
coherency protocol overheads.

6.2.2. Writing and Breaking Sharing

When shared pages are written, the page-fault handler creates a copy of the page
frame and then remaps the written page to point to the new page frame in the
involved page tables2. In consequence, the TLB entries and cache lines that point to
the old page frame need to be invalidated.

Worst Case Write Performance Degradation To measure the worst case slow-
down due to copy-on-write operations, we have set-up a micro benchmark that
records the throughput when every write operation leads to a page-fault.

1On a scale from -20 to 19 where regular processes run at 0. Higher values mean a lower priority.
2Multiple address spaces can share the same page read-write. If the resulting page frame is transpar-

ently merged and later broken, all semantically related pages need to be remapped to point to
the same copy.

Performance Considerations 123

 455

 460

 465

 470

 475

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
u
n
-T

im
e

[s
]

Pages per Wake-up

Figure 6.13.: Run-time of kernel-build while scanning, but not merging, VM mem-
ory with KSM (with writable unstable tree pages). KSM was config-
ured with a wake-up time of 20 ms. The bars show the run-times of 3
kernel-build runs.

To this end, we have written a program that allocates 1 GiB contiguous memory.
Then we have forked to create a second address space sharing the first in a copy-on-
write fashion. Following this, the program executes a tight loop, writing 8 bytes
(one 64 Bit integer) into each page. While writing, we sampled the progress and
benchmark time 128 times.

Figure 6.14 depicts the throughput when writing in the set-up described above,
compared to writing writable memory (without forking). The copy-on-write
operations decrease the write speed by a factor of 140x in this (pathological) worst
case scenario. When attributing the entire absolute overhead (1112 ms) to the time
spent resolving copy-on-write page-faults, then a single copy-on-write operation
takes 4242 ns on average.

Streaming Write Performance Degradation When streaming to COW mem-
ory, the relative performance impact is much smaller, as only one copy-on-write
operation has to be done every 4096 bytes. We have repeated the micro benchmark
described in the last paragraph. This time, however the tight loop writes the entire
page (instead of a single integer) before continuing with the next page.

124 Performance Considerations

 0

 500

 1000

 1500

 0 128 256 384 512 640 768 896 1024

C
u
m

u
la

te
d
 T

im
e

[m
s]

Written Bytes [MiB]

Writable
Copy-On-Write

Figure 6.14.: Comparison between the time it takes to write single integers trigger-
ing a copy-on-write page-fault at each operation and without (hard)
page faults.

Figure 6.15 depicts the resulting write performance of writing without (hard) page-
faults and writing with one copy-on-write fault per page. The write speed without
page-faults is faster by a factor of 3.6x. The absolute performance decrease (1108 ms)
is very close to the last benchmark, however. On average, a single copy-on-write
operation takes 4227 ns, in this benchmark.

 0

 500

 1000

 1500

 0 128 256 384 512 640 768 896 1024

C
u
m

u
la

te
d
 T

im
e

[m
s]

Written Bytes [MiB]

Writable
Copy-On-Write

Figure 6.15.: Comparison between the time it takes to write entire pages without
(hard) page-faults and with one copy-on-write page-fault at each page.

Performance Considerations 125

Copy-On-Write Operations We have recorded 332738 copy-on-write operations
in the kernel-build benchmark at a sleep-time of 20 ms, scanning 100 pages per
wake-up in the KSM RO configuration.

Figure 6.16 depicts the distribution of those operations across the benchmark time.
In this benchmark, every write that leads to a broken sharing is recorded. On
a shared page with sharing rank 3, all three pages will be broken separately and
thus three COW breaks are recorded in the histogram. If a page is shared until
the program terminates, the break is not recorded until it is reused (§3.2.3). Such
copy-on-write operations to not appear in the graph.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

N
u
m

b
e
r

o
f

O
c
c
u
re

n
c
e
s

Time [sec]

Figure 6.16.: Distribution of copy-on-write operations due to broken shared pages
in the kernel-build benchmark. The benchmark was configured to run
KSM RO with a sleep-time of 20 ms scanning 100 pages per wake-up.

Sharing is broken throughout the benchmark. Most shared pages are broken at the
end of the benchmark, in the linking phase, however. If every break costs 4235ns
(mean of streaming and single write overhead) then the total time the host spends
breaking shared pages is 1.409 s. This equates to 3.13%� of the benchmark time.

126 Performance Considerations

6.2.3. Reading and Caching

Although deduplication is often a source for overhead, memory deduplication also
contains the opportunity to increase the memory access speed. Such speed-ups
can result from reading shared memory, when a shared page is already present in
a physically indexed cache-line. Another chance for a speed-up is that cache lines
become free due to the deduplication and can be used for other data.

Reading Shared Memory Intel uses a physically indexed Last Level Cache (LLC).
Thus, the memory read speed directly benefits from memory deduplication if a
merged page has previously been accessed and is still cached.

We have conducted a micro benchmark on an Intel Core i7-920 CPU with 8MiB
LLC and 24 GiB Kingston DDR3 memory (1333 MHz). In this micro benchmark
we have allocated 1 GiB of memory and initialized it so that all pages can be merged
to one. We have then measured the read performance from a fully deduplicated
memory region and without deduplication.

Table 6.7 lists the median results of 128 runs of this benchmark. The upper bound
to shared memory accesses is 19 GiB per second which is almost the speed of the
last level cache; a speedup of 2x compared to unshared reads.

Unshared Read Shared Read RAM LLC

Throughput [GiB/s] 9.5 19.0 10.9 24.5

Table 6.7.: Median throughput measured in our micro benchmark. The throughput
numbers for the Last Level Cache and for the RAM were reported by
memtest86+ [24].

Increased Cache Capacity On physically indexed caches, merged physical mem-
ory page frames also lead to a decreased number of used cache lines, if both virtual
pages are active. Caching generally operates on a smaller granularity than paging.
On modern Intel processors, such as the Intel i7 and Xeon CPUs, cache lines on all
three hierarchy levels (L1, L2 and L3) are 64 bytes long. This does not mean, that
deduplication is performed on cache line granularity in the caches. Deduplication
that has been done on page size is reflected in the cache, however.

Recall the desktop workload that we have described in §3.2.2. In that benchmark,
we simulated and traced a PC with 2 GiB RAM running Gimp, LibreOffice, and
Eclipse using the Simics full system simulator [69].

Performance Considerations 127

To learn about the effect that deduplication has on CPU caches, we have applied
cache models of three different CPUs (Table 6.8) to a memory trace of the desktop
workload. With those models, we have analyzed the amount of cache lines that
could be freed if memory deduplication were used.

Name Associativity Size Type

Intel Pentium 4 (Willamette) 8-way 256 KiB L2 cache
Intel Core i7-2600K 16-way 8 MiB L3 cache
Intel Xeon E5-2470 20-way 20 MiB L3 cache

Table 6.8.: Caches that we have modeled and simulated.

Figure 6.17 shows the result of our simulation. With increasing cache sizes, memory
deduplication increases the possibility to have a positive effect on the cache. Merged
pages that are reflected in merged cache lines show the 2x increase in read throughput
that was previously presented in the micro-benchmark. With larger CPU caches
that we might see in the future, the positive effect of memory deduplication on the
read performance will grow.

 0%

 0.5%

 1%

 1.5%

 2%

 2.5%

 3%

 3.5%

 4%

 4.5%

Pentium 4 Core i7 Xeon E5

A
v
er

ag
e

sa
v
ed

 c
ac

h
e

af
te

r
d
ed

u
p
li

ca
ti

o
n

Figure 6.17.: Cache space that could effectively be saved with deduplication.

128 Performance Considerations

6.3. Conclusion

In this chapter we have first analyzed the work that memory scanners put into the
scanning process. We have done this by measuring how much time each functional
component in the KSM memory scanner takes to run in a micro benchmark. Then
we have measured how often each functional component is used in the kernel-build
benchmark to put the absolute overheads into perspective.

In KSM, unsuccessfully looking up pages in the unstable tree, calculating the hash
value, and merging pages are the most costly operations. How often each operation
is performed heavily depends on the scan-rate. The higher the scan-rate, the more
visited pages are inserted into the unstable tree after calculating the hash value. On
slower scan-rates, more visited pages are skipped after calculating the hash value due
to the heuristic that keeps fluctuating pages from being inserted into the unstable
tree. In absolute values, those two paths always dominate the run-time of the
scanner. Merely which one of the two paths is causing more overhead depends on
the scan-rate. We have also measured the time and number of times that XLH’s
modifications to KSM run with the result, that the overhead that XLH adds to
KSM is negligible.

We have also analyzed the overhead that memory scanners impose on concurrently
running application: First, we have established that scanning at a higher scan-
rate does cause higher run-time overhead on real applications. Second, we have
considered the write performance overhead and the read performance gain, caused
by memory deduplication, individually. The copy-on-write overhead is constant
per incident and takes around 4.2µs per page-fault, regardless if the memory is
written randomly or if the memory is streamed to. When reading, the maximum
speed-up depends on the fastest physically indexed cache in the memory hierarchy.
In our set-up, the speed-up that can be reached when reading is limited by the L3
CPU cache, which is roughly twice as fast as the RAM. The proportion of current
caches that can be reused due to sharing is limited, however. We have measured
4.2% of cache space that can be reused in the kernel-build benchmark on a Xeon
processor.

Chapter 7

Conclusion

Operating Systems can always put main memory to good use. Additional memory
can speed up I/O through caching. Additional memory can moreover increase
the degree of multi-programming. In virtualized environments this means that
more virtual machines can be located on a physical host, reducing the number of
servers to run a workload. The available memory capacity, however, is the primary
bottleneck when it comes to consolidating virtual machines [39].

Virtual memory systems make it possible to share memory pages in a copy-on-write
(COW) fashion. Previous work has shown that the memory footprint of virtual
machines can be reduced significantly by merging equal pages using COW. The
semantic gap between virtual machines and the host system makes it difficult to
identify such pages, however. Until now, sharing opportunities have been identified
either through brute force scanning, or using paravirtualization and introspection
techniques.

A thorough analysis of sharing opportunities in virtual environments has given us
the insight that I/O pages are a good candidate for memory sharing. Such pages are
modified infrequently. They, however, often contain equal pages.

When using brute force main memory scanners, this opportunity for sharing is
not exploited to its full potential. Furthermore, previous paravirtualization and
introspection based methods that aim to prevent such memory duplicates from
appearing at all have been prone to slowdowns of up to 35% in benchmarks that
stress the I/O system [63].

We propose to introduce Cross Layer Hints (XLH) to memory scanners. XLH is a
novel heuristic to focus memory scanning on areas of I/O activity. XLH hooks
background storage I/O operations in the virtual file system of the host and stores
the target I/O memory pages in a hint buffer. Those hints are later processed by
the memory scanner, interleaved with the regular scan process.

130 Conclusion

We have implemented an XLH prototype, based on Linux’ memory deduplication
scanner KSM. Evaluating our prototype, we were able to show that compared
to linear scanning at the same scan-rate, memory deduplication scanners deliver
superior memory deduplication quantities when preferring recently modified I/O-
pages. In the HTTPerf benchmark, for example, XLH was able to merge eight times
more pages than KSM at the same scan-rate. XLH finds more sharing opportunities
than KSM and detects them earlier by minutes. Thereby, XLH exploits sharing
opportunities within and across virtual machines that were not detectable by
linear scanners before and prolongs the sharing time of previously detected sharing
opportunities.

Although the amount of saved memory rises, we have measured only minor in-
creases in scanning overhead when moving from a purely linear memory scanner
to XLH. When overcommitting memory, there are three predominant costs for the
hypervisor: Finding duplicates, merging them, and finally breaking shared pages
using copy-on-write. The identification overhead can be clearly improved using
I/O-based hints. Merging pages can be costly, if the pages that are supposed to be
merged are currently in use. Then, the merge operation has a negative performance
impact on the application as previously cached pages and TLB entries need to be
reloaded. Breaking shared pages using copy-on-write adds a fixed cost for each time
a shared page is broken. Sharing pages that are likely to live for a longer period of
time – such as pages in the page-cache of the guest OS – more quickly on the one
hand, but merging other pages less aggressively on the other hand, can decrease the
overhead of memory deduplication. XLH achieves this at medium scan-rates, such
as our benchmark setting where we scan 100 pages per wake-up, with a sleep-time
of 100 ms.

Reading memory can benefit greatly from deduplication. With growing cache sizes,
we predict that we will notice this effect in real applications. Here, we have shown
that the speed-up potential depends on the fastest physically indexed cache in the
memory hierarchy. In our case the speed-up was limited by the L3 cache, which is
twice as fast as main memory in our set-up.

The XLH design is robust enough to be of practical use in virtualized data centers.
Interleaving hint processing with the scan process acts as a safeguard against starving
the linear scan that can find non-I/O duplicates. The interleaving ratio and hint
buffer sizes are tunable and can thus be adjusted to be applicable to many workloads.

We have left it open where hints can come from. I/O-based hints are just one
well-suited example for such a hint source. In our design, hints can be issued
concurrently from any number of sources by using the madvise system call. This
way, applications can even advise the memory scanner to preferentially scan parts
of their own address space.

Conclusion 131

7.1. Limitations and Future Work

Working on this project has not only answered many questions and brought insight
into the area of memory deduplication. It has also raised questions and pinpointed
challenges and thus directions for ongoing work.

NUMA Our solution currently solely targets single socket, multi-core systems
with uniform memory access speeds. Non-uniform memory access (NUMA)
systems distinguish between local and remote memory accesses that have different
latency and throughput characteristics depending on their distance. As remote
memory accesses are more expensive compared to local ones in those terms, in such
systems, merging two pages from different nodes causes a higher overhead than
locally. We have not regarded NUMA memory deduplication and the effect of
our extensions on NUMA memory deduplication in this thesis. The analysis of
memory deduplication on such systems will become interesting in the near future,
as NUMA systems currently gain in market penetration.

Automatically Tuning Parameters at Runtime We have analyzed very static
workloads in our evaluation. Beforehand, we have explored good parameters to
maximize the duplication quantity running the kernel-build benchmark. We have
then used those parameters in all other benchmarks.

Real workloads do generally not behave as uniformly. In consequence, the question
is not only how to find good initial parameters. It is moreover a question of tuning
the deduplication parameters at run-time.

Hardware Support for Efficient Deduplication We have found a heuristic to
improve the overhead of identifying sharing opportunities. We have, however, not
regarded the remaining sources of overhead in memory deduplication.

Three of the remaining overhead sources are purely mechanisms in nature and could
thus be improved in hardware:

• Checksums: Main memory could calculate page frame checksums in hard-
ware.

• Merging: Merging is prone to race conditions and must be very carefully
implemented. After merging, the caches and TLB entries for the merged pages
are flushed. The copy, page table, cache and TLB operations can potentially
be performed atomically in hardware.

• Copy-on-Write: If the page table had a notion of “free page frame” the OS
could reserve a small pool of copy-on-write targets. The MMU could then
resolve copy-on-write faults without OS invocation.

132 Conclusion

Not all equal pages should be merged at all (e.g., in NUMA systems), and sometimes
it can be beneficial to delay merging to wait and see if a memory region is highly
fluctuating or not before going through the trouble of merging it. So, although
mechanisms can be pushed down the systems stack, I would strongly suggest to
leave policy decisions in the OS or even pushing policy decisions higher up the
software stack.

Application to Native Applications KSM only supports deduplication of anony-
mous memory regions. This is sufficient to merge pages from virtual machines,
because the host allocates all VM physical memory as anonymous memory in the
host virtual address space.

If the memory deduplication mechanism was extended to support named memory,
it would be possible to merge VM memory with the host page cache. Moreover,
this would make it possible to deduplicate native applications. We have seen great
potential for deduplication of native terminal and game servers in a preliminary
quantitative analysis [46]. XLH could then be directly used in this scenario without
modification.

Appendix A

Deutsche Zusammenfassung

Betriebssysteme können zusätzlichen Hauptspeicherplatz (RAM) nutzen um die
Geschwindigkeit und Auslastung von Computersystemen zu erhöhen. Zusätzlicher
Hauptspeicher kann beispielsweise genutzt werden um Hintergrundspeicherzugrif-
fe zu puffern und somit zu beschleunigen.

Virtualisierung ermöglicht eine flexible Einplanung und Migration von Diensten
sowie die Konsolidierung vieler virtueller Maschinen auf weniger physische Ma-
schinen. Dabei bleibt eine starke Isolation zwischen den Diensten erhalten. Bei der
Nutzung von Virtualisierung ist die verfügbare Hauptspeichermenge der hauptsäch-
liche Flaschenhals für die Konsolidierung zusätzlicher virtueller Maschinen (VMs)
auf einem physischen Server. Da die übrigen Ressourcen, wie beispielsweise die
zentrale Recheneinheit (CPU), generell nicht vollständig ausgelastet sind, bedeutet
eine höhere Integrationsdichte virtueller Maschinen hier eine effizientere Nutzung
der verfügbaren Ressourcen und damit geringere Kosten für den Betrieb von Re-
chenzentren. Erhöht sich die Menge des aktiv genutzten Hauptspeichers, durch
übermäßige Konsolidierung, über die physisch verfügbare Hauptspeichergröße
hinaus, verringert sich die Rechenleistung aufgrund von Seitenflattern (thrashing)
für alle Dienste auf diesem physischen Server.

Gemeinsam genutzter Hauptspeicher

Viele Hauptspeicherseiten (pages) enthalten im Allgemeinen, aber in besonderem
Maße in virtualisierten Servern, den gleichen Inhalt. Diese Hauptspeicherseiten
können mit dem Kopieren-beim-Schreiben (copy-on-write) Mechanismus auf einen
einzigen Hauptspeicherseitenrahmen zusammengelegt und dort gemeinsam genutzt
werden. Die Schwierigkeit hierbei liegt im Auffinden der Seiten mit identischem
Inhalt.

134 Deutsche Zusammenfassung

In der Vergangenheit wurden zwei Verfahren entwickelt um gemeinsam nutzbare
Seiten zu finden: Erstens solche, die auf Paravirtualisierung und Introspektion beru-
hen und zweitens Verfahren, welche auf dem Absuchen von Hauptspeicherseiten
basieren (memory scanner). Verfahren die auf Paravirtualisierung beruhen, kom-
munizieren semantische Informationen zwischen virtualisiertem Gastbetriebssys-
tem und dem physischen Wirtsystem. Mithilfe von veränderten virtuellen Hinter-
grundspeichergeräten in den Gastsystemen ist es Satori [63] beispielsweise möglich
dateibasierten Hauptspeicher zwischen virtuellen Maschinen zusammenzulegen
und somit einzusparen. Die Autoren geben für Satori allerdings indirekte Kosten
von bis zu 35% gegenüber unveränderten Systemen an, wenn virtuelle Maschi-
nen das Dateisystemleistungsfähigkeitsbewertungsprogramm Bonnie++ ausführen.
Hauptspeicherabsuchverfahren erstellen kontinuierlich, mit einer vorher festgelegten
Absuchrate, einen Index des untersuchten Speichers. Stellt der absuchende Prozess
beim Einfügen in den Index fest, dass sich der einzufügende Inhalt bereits im In-
dex befindet, legt der Absuchprozess beide Hauptspeicherseitenrahmen zusammen
und gibt daraufhin den redundanten, nun nicht mehr referenzierten, Rahmen frei.
Hauptspeicherabsuchverfahren sind gegenüber auf Paravirtualisierung basierenden
Verfahren hinsichtlich der indirekten Kosten für ausgeführte Programme im Vorteil.
Sowohl bei der Deduplikationseffizienz als auch bei dessen Effektivität hingegen
sind Hauptspeicherabsuchverfahren im Nachteil.

Systemschichtübergreifende Hinweise

Um die Vorteile beider Verfahren zu vereinen, also um ohne die Gastbetriebssys-
teme anzupassen und um mit geringen indirekten Kosten effizient und effektiv
Hauptspeicherinhalte gemeinsam nutzen zu können, schlagen wir vor system-
schichtübergreifende Hinweise (cross layer hints, XLH) in Hauptspeicherabsuch-
verfahren zu integrieren. Mithilfe dieser Hinweise können Subsysteme, die über se-
mantisches Wissen darüber verfügen, welche Hauptspeicherseiten gute Kandidaten
für das Zusammenlegen sind, dieses Wissen an das Hauptspeicherabsuchverfahren
übermitteln. Die Seiten, für die Hinweise vorliegen, werden daraufhin bevorzugt
abgesucht.

Wir haben einen Linux-basierten Prototyp implementiert, in dem das virtuelle
Dateisystem im Wirtssystem dem Hauptspeicherabsuchverfahren Hinweise darüber
gibt, mit welchen Speicherseiten Hintergrundspeicherkommunikation stattfindet.
In der vorliegenden Arbeit konnten wir zeigen, dass ein Absuchverfahren, welches
diese Hinweise bevorzugt bearbeitet, bis zu achtmal mehr Hauptspeicher sparen
kann als ein Absuchverfahren, das strikt linear im Gast-Physischen Addressraum
nach Duplikaten sucht. Der zusätzlich gesparte Hauptspeicher kommt daher, dass
Speicherseiten, die in beiden Absuchverfahren gefunden werden, in XLH um Minu-
ten früher geteilt werden können. Weiterhin können durch die frühe Indizierung
zusätzliche, kurzlebige Seiten gleichen Inhalts gefunden werden.

Deutsche Zusammenfassung 135

Die Auswertung der Kosten für Hauptspeicherabsuchverfahren bestätigte, dass
eine erhöhte Absuchrate zu höheren indirekten Kosten für reale Arbeitslasten
führt. Wir konnten außerdem zeigen, dass der Einsatz von XLH, bei gleichen
Absuchraten, nur einen vernachlässigbaren Mehraufwand gegenüber einem linearen
Absuchverfahren mit sich bringt.

Appendix B

Apache Static File Generation

The following python script generates a directory structure expected by HTTPerf
and static files of 50 kB length with random content. The contents of the second
directory are the same than the contents from the first directory but shuffled.

import os, random

def createFiles(a, b):

r = file(’/dev/urandom’, ’r’).read(50000)

print a, b

file(a , ’w’).write(r)

file(b , ’w’).write(r)

def generateDirs(l1, l2):

os.mkdir(’l1’)

os.mkdir(’l2’)

for a in range(0, 10):

a = str(a)

os.mkdir(’l1’ + ’/’ + a)

os.mkdir(’l2’ + ’/’ + a)

for b in range(0, 10):

b = str(b)

os.mkdir(’l1’ + ’/’ + a + ’/’ + b)

os.mkdir(’l2’ + ’/’ + a + ’/’ + b)

for c in range(0, 10):

c = str(c)

os.mkdir(’l1’ + ’/’ + a + ’/’ + b + ’/’ + c)

os.mkdir(’l2’ + ’/’ + a + ’/’ + b + ’/’ + c)

for d in range(0, 10):

d = str(d)

f = a + ’/’ + b + ’/’ + c + ’/’ + d + ’.html’

l1.append(f)

l2.append(f)

138 Apache Static File Generation

l1 = []

l2 = []

generateDirs(l1, l2)

random.shuffle(l2)

while len(l1) > 0:

a = l1.pop()

b = l2.pop()

print str(’l1/’ + a), str(’l2/’ + b)

createFiles(str(’l1/’ + a), str(’l2/’ + b))

List of Tables

2.1. Memory sharing potential according to previous studies. 24

3.1. Overview and comparison of analytical methods. 46
3.2. Sharing-rank distribution of 3 Ubuntu Linux VMs running Libre-

Office, Eclipse, and Gimp respectively [69]. 53

5.1. Default settings of the four configurations used in the benchmarks. 86
5.2. The stack sizes we have used for the varying scanner sleep times.

See §6.1.3 for a discussion about the effective scan-rate. 87
5.3. Two VMs running the kernel-build benchmark with the vanilla

KSM. Percentage of pages that are reachable at the end of a full scan
round. 97

6.1. Execution times of bounded circular stack push and pop operations. 113
6.2. Number of times each path was taken and the resulting aggre-

gated path costs in the kernel-build benchmark which runs around
7:30 minutes. 114

6.3. Total amount of hints inserted into the bounded circular stack
and total time spent pushing hints until the end of the benchmark
run-time. 117

6.4. Total amount of hints extracted from the bounded circular stack
and total time spent taking out hints until the end of the benchmark
run-time. 117

6.5. Aggregated get next page time for XLH and KSM in the HTTPerf
and Kernel-Build benchmarks. 119

6.6. Effective scan-rate in our default benchmark settings. 120
6.7. Median throughput measured in our micro benchmark. The through-

put numbers for the Last Level Cache and for the RAM were re-
ported by memtest86+ [24]. 126

6.8. Caches that we have modeled and simulated. 127

List of Figures

1.1. All semantic knowledge known to the guest OS is lost when using
virtualization. 4

1.2. Paravirtualized systems interface with the guest virtual machines to
close (parts of) the semantic gap. 5

1.3. Memory scanners create an index of main memory contents with-
out regard to their semantic origin. 5

2.1. Interplay of components when using indirect addressing. Processes
load and store virtual addresses. The memory management unit
translates those virtual addresses to physical addresses. 13

2.2. A typical Linux address space. [59] 14
2.3. Virtual memory areas are cut into virtual pages and then mapped

to physical page frames individually using a paging MMU. Adjacent
pages can but don’t have to be mapped to adjacent page frames. . . 17

2.4. Structure of Intel x86-64 page tables. [21] 18
2.5. The I/O-path of applications. 22
2.6. I/O-path from an application through the guest and host to back-

ground storage when using virtualization. 26
2.7. High level overview of the ESX memory scanning process. 29
2.8. High level overview of the KSM memory scanning process. [62] . 31

3.1. Duplication in different Desktop environments. Each workload is
running Ubuntu Linux as the OS. The three different workload
were run independently of each other, they do not run simultane-
ously. 50

3.2. Batch-job: Sharing potential of 2 VMs with 512 MiB RAM, each
building the Linux kernel. 50

3.3. Self-sharing vs. Intra-domain sharing: The previous three desktop
workloads LibreOffice, Gimp, and Eclipse respectively run in three
virtual machines with 2 GiB RAM. This scenario resembles a VM-
based terminal server. 51

142 List of Figures

3.4. Three equal pages are merged into a single sharing page and two
shared pages. The two shared pages can be freed, the sharing page
needs to remain allocated. The sharing rank is three. 52

3.5. Sharing groups can be attributed to the page type that enters the
most into the group. It can alternatively be attributed to the page
type that remains in the group the longest. [69] 54

3.6. Aggregated origins of sharing opportunities of 3 Ubuntu Linux
VMs running LibreOffice, Eclipse, and Gimp respectively. [69] . . 55

3.7. Longevity of sharing opportunities when running two Linux kernel-
builds in separate VMs. 56

3.8. Pages remain shared even after their memory state changes to free.
In Linux, the content doesn’t change from the last allocated content,
as long as the state remains free. 56

4.1. The page structure representing a page frame. 60
4.2. Interplay of Linux virtual memory management data structures. . . 61
4.3. The VMAs of a cat task. 62
4.4. Details about the memory consumption of the cat text segment.

Shortened /proc/<pid>/smaps output. 63
4.5. The data structures used to implement the Linux page cache. . . . 64
4.6. Flowchart of page-fault reasons and how to resolve them [58]. . . . 66
4.7. The interplay of the application, KSM, the page-fault-, and exit-

handler. 67
4.8. rmap_items contain node pointers to form the unstable tree. If a

certain rmap_item is part of the unstable tree is indicated by the
UNSTABLE_FLAG in the low order bit of the address field. 68

4.9. Pages referenced by the unstable tree are not write-protected. The
tree can thereby degenerate. [62] 69

4.10. Each rmap_item contains left and right pointers that make up the
stable tree. In addition, each rmap_item contains a linked list hold-
ing references to the other items that reference the same merged
page frame kpfn. 70

4.11. High level overview of the KSM memory scanning process [62]. . 71
4.12. Earlier sharing can cause more memory to be shared and memory

to be shared for a longer time [62]. 74
4.13. Generating I/O-based memory deduplication hints. 75
4.14. The operation of XLH’s bounded circular stack to store memory

deduplication hints [62]. 77
4.15. Hints are processed interleaved to the regular scan process [62]. . . 78
4.16. High level workflow of the XLH scan process. 79

5.1. Kernel-build deduplication effectiveness at fixed sleep-times of 20 ms
and 100 ms, scanning 100 pages per wake-up with different stack
sizes in the XLH RO configuration. 88

List of Figures 143

5.2. XLH RO Kernel-build deduplication effectiveness at a fixed sleep-
time of 200 ms, scanning 100 pages per wake-up with different stack
sizes. 89

5.3. Two VMs compile the Linux kernel, each one occupying a CPU
core. The remaining two cores are used for the benchmark logic
and the memory scanner, respectively. 90

5.4. Kernel-build merge performance with varying wake-up times. The
memory scanner and kernel-build start at the same time. 92

5.5. Kernel-build merge performance with varying wake-up times. The
scanner merges static sharing opportunities, then the workload
starts. 93

5.6. Sorted merge latency difference of 121571 matched merged pages
between KSM and XLH in the kernel-build benchmark at 20 ms
wake-up time. 94

5.7. Merge durations in the kernel-build benchmark at 20 ms sleep-time. 95
5.8. Average time, the kernel-build takes to finish in the different con-

figurations. Six runs were timed resulting in an average of 12 VM
compile-times for each configuration. 96

5.9. Comparison between different unstable data structure configura-
tions. Kernel-build merge performance with a 20 ms wake-up time
after merging static sharing opportunities. 98

5.10. Two physical computers are used for the HTTPerf benchmark. One
running the two virtualized Apache web servers, the other running
two instances of the HTTPerf benchmark. 100

5.11. Comparison when XLH scans 5x slower than KSM. KSM scans
5300 pages per second while XLH scans 1100 pages per second. . . 100

5.12. Merge performance in two apache web servers serving static files to
two HTTPerf instances requesting the same files in a different order.
The scanner was warmed up, merging static sharing opportunities,
before the workload started. 101

5.13. Each bar represents the 0.05 quantile, median, and 0.95 quantile of
the transfer time of 6 separate HTTPerf runs. 102

5.14. A single VM runs the Bonnie++ benchmark. 103
5.15. Run-time, latency and throughput when reading block sequentially

from HDD. 0.05 quantile, median, and 0.95 quantile of 100 Bon-
nie++ runs. 104

5.16. Quantile plot of 100 Bonnie++ runs, sorted by time. 105
5.17. Two physical computers are used for the mixed benchmark. One

running a virtualized Apache web server and a kernel-build within
another VM. The other computer is running an instance of the
HTTPerf benchmark. 106

144 List of Figures

5.18. Merge performance of simultaneous kernel-build and an HTTPerf
workloads with varying wake-up times. The scanner merges static
sharing opportunities, then the workload starts. 107

6.1. The data-initialization that was used to force the scanner to run
along known paths. 110

6.2. The execution time of each sub-path of the scan process. 111
6.3. Time to search and insert into the unstable hash-table and the time

it takes to remove a page from the unstable hash-table, respectively.
The bars show the 0.05 quantile, the median and the 0.95 quantile. 112

6.4. Time to find the rmap_item for the currently processed hint or the
time to find the next rmap_item, respectively. The bars show the
0.05 quantile, the median and the 0.95 quantile of 100 k samples. . 113

6.5. Paths taken by visited pages through the KSM memory scanner
when scanning 100 pages per wake-up and waking up every 20 ms. 115

6.6. Paths taken by visited pages through the KSM memory scanner
when scanning 100 pages per wake-up and waking up every 100 ms. 115

6.7. Paths taken by visited pages through the KSM memory scanner
when scanning 100 pages per wake-up and waking up every 200 ms. 115

6.8. Number of hints produced in the kernel-build and HTTPerf bench-
marks. 116

6.9. Rate at which hints are consumed in the kernel-build and HTTPerf
benchmarks. 118

6.10. Wake-ups do not occur strictly periodically. Instead the KSM dae-
mon sleeps for a defined time between the end of the previous
scan-spurt and the next wake-up. The time to scan pages-to-scan
pages is variable. 119

6.11. Visited memory pages per second at varying sleep-times. The num-
ber of pages that are scanned at each wake-up is fixed at 100. 121

6.12. Visited memory pages per second at varying pages-to-scan settings.
The sleep-time is fixed at 10 ms. 121

6.13. Run-time of kernel-build while scanning, but not merging, VM
memory with KSM (with writable unstable tree pages). KSM was
configured with a wake-up time of 20 ms. The bars show the run-
times of 3 kernel-build runs. 123

6.14. Comparison between the time it takes to write single integers trig-
gering a copy-on-write page-fault at each operation and without
(hard) page faults. 124

6.15. Comparison between the time it takes to write entire pages without
(hard) page-faults and with one copy-on-write page-fault at each
page. 124

List of Figures 145

6.16. Distribution of copy-on-write operations due to broken shared
pages in the kernel-build benchmark. The benchmark was config-
ured to run KSM RO with a sleep-time of 20 ms scanning 100 pages
per wake-up. 125

6.17. Cache space that could effectively be saved with deduplication. . . 127

Bibliography

[1] Advanced Micro Devices, Inc. AMD-V Nested Paging, 1.0 edition, July 2008.

[2] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory density
by using KSM. In The Linux Symposium, OLS ’09, Montreal, Canada, July
2009. Linux Symposium Inc.

[3] Yungang Bao, Mingyu Chen, Yuan Ruan, Li Liu, Jianping Fan, Qingbo
Yuan, Bo Song, and Jianwei Xu. Hmtt: a platform independent full-system
memory trace monitoring system. In SIGMETRICS international conference
on Measurement and modeling of computer systems, SIGMETRICS ’08, pages
229–240, Annapolis, MD, USA, 2008. Association for Computing Machinery.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In 19th Symposium on Operating Systems Principles, SOSP ’03,
pages 164–177, Bolton Landing, NY, USA, 2003. Association for Computing
Machinery.

[5] Sean Barker, Timothy Wood, Prashant Shenoy, and Ramesh Sitaraman. An
empirical study of memory sharing in virtual machines. In Proceedings of the
USENIX ATC, Berkeley, CA, 2012. USENIX Association.

[6] Nikolai Baudis. Deduplicating virtual machine checkpoints for distributed
system simulation, November 2013. Bachelor Thesis, System Architecture
Group, KIT, Germany.

[7] Brian Behlendorf, Roy T. Fielding, Rob Hartill, David Robinson, Cliff Skol-
nick, Randy Terbush, Robert S. Thau, and Andrew Wilson. Apache http
server. https://httpd.apache.org, 1995.

[8] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference - FREENIX Track, USENIX ATC ’05, Anaheim,
CA, USA, 2005. USENIX Association.

https://httpd.apache.org

148 Bibliography

[9] Nikhil Bhatia. Performance evaluation of intel ept hardware assist, March
2009.

[10] Daniel G. Bobrow, Jerry D. Burchfiel, Daniel L. Murphy, and Raymond S.
Tomlinson. Tenex, a paged time sharing system for the pdp - 10. Commun.
ACM, 15, March 1972.

[11] Jeff Bonwick. The slab allocator: An object-caching kernel. In USENIX
Summer 1994 Technical Conference, BOS 1994, Boston, MA, USA, June 1994.
USENIX Association.

[12] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors. In 16th Symposium
on Operating Systems Principles, SOSP ’97, pages 143–156, Saint-Malo, France,
October 1997. Association for Computing Machinery.

[13] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu. An empirical study on mem-
ory sharing of virtual machines for server consolidation. In 9th International
Symposium on Parallel and Distributed Processing with Applications, ISPA ’11,
pages 244–249. Institute of Electrical and Electronics Engineers, May 2011.

[14] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu. An empirical study on mem-
ory sharing of virtual machines for server consolidation. In 9th International
Symposium on Parallel and Distributed Processing with Applications, ISPA ’11,
pages 244–249, Busa, Korea, May 2011. IEEE.

[15] Peter M. Chen and Brian D. Noble. When virtual is better than real. In Eighth
Workshop on Hot Topics in Operating Systems, HOTOS ’01, pages 133–138,
Elmau, Germany, May 2001. IEEE.

[16] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction based cache placement
for storage caches. In USENIX Annual Technical Conference, USENIX ATC
’03, San Antonio, TX, USA, 2003. USENIX Association.

[17] Russell Coker. Bonnie++. http://www.coker.com.au/bonnie++, 1999.

[18] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux
Device Drivers. O’Reilly Media, Inc., 3rd edition, 2005.

[19] Intel Corporation. 2nd Gen Intel Core Processor Family Desktop Datasheet,
Vol. 1. http://www.intel.com/content/dam/www/public/us/en/
documents/datasheets/2nd-gen-core-desktop-vol-1-datasheet.
pdf, 2013.

[20] Intel Corporation, editor. Intel 64 and IA-32 Architectures Optimization
Reference Manual. July 2013.

[21] Intel Corporation, editor. Intel 64 and IA-32 Architectures Software Developer’s
Manual, volume 3. June 2013.

http://www.coker.com.au/bonnie++
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-core-desktop-vol-1-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-core-desktop-vol-1-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/2nd-gen-core-desktop-vol-1-datasheet.pdf

Bibliography 149

[22] International Business Machines Corporation. Kernel Virtual Machine
(KVM) – Best practices for KVM. http://pic.dhe.ibm.com/infocenter/
lnxinfo/v3r0m0/topic/liaat/liaatbestpractices_pdf.pdf, April
2012. accessed September 2013.

[23] Uwe Dannowski, Joshua LeVasseur, Espen Skoglund, Volkmar Uhlig, and
Jan Stoess. L4 eXperimental Kernel Reference Manual, Version X.2. http:
//www.l4ka.org/l4ka/l4-x2-r7.pdf, October 2011.

[24] Samuel Demeulemeester. memtest86+. http://memtest.org.

[25] Peter J. Denning. Thrashing: its causes and prevention. In Proceedings of the
December 9-11, 1968, fall joint computer conference, part I, AFIPS ’68 (Fall, part
I), pages 915–922, New York, NY, USA, 1968. Association for Computing
Machinery.

[26] Peter J. Denning. The working set model for program behavior. Communica-
tions of the ACM, 11(5):323–333, May 1968.

[27] Peter J Denning. Before memory was virtual. In the Beginning: Personal
Recollections of Software Pioneers, 1996.

[28] International Business Machines Corporation. Data Processing Division. IBM
OS Linkage Editor and Loader: (Program Numbers 360S-ED-510, 360S-ED-521
[and] 360S-LD-547). IBM Systems reference library. 1972.

[29] Allen B. Downey. The structural cause of file size distributions. In 9th
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, MASCOT ’01, pages 361–370, Cincinnati,
OH, USA, August 2001. IEEE Computer Society.

[30] Ulrich Drepper. How to write shared libraries. Technical report, Red Hat,
Inc., 2010.

[31] John Fotheringham. Dynamic storage allocation in the atlas computer, in-
cluding an automatic use of a backing store. Commun. ACM, 4(10):435–436,
October 1961.

[32] Fabian Franz, Konrad Miller, and Frank Bellosa. Using i/o-based hints to
make memory-deduplication scanners more efficient, July 2012. Diploma
Thesis, System Architecture Group, KIT, Germany.

[33] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[34] Ilya Gavrichenkov. Samsung 840 Pro and Samsung 840 Solid
State Drives Review. http://www.xbitlabs.com/articles/storage/
display/samsung-840-pro_5.html, 2013. accessed July 2013.

http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaat/liaatbestpractices_pdf.pdf
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaat/liaatbestpractices_pdf.pdf
http://www.l4ka.org/l4ka/l4-x2-r7.pdf
http://www.l4ka.org/l4ka/l4-x2-r7.pdf
http://memtest.org
http://www.xbitlabs.com/articles/storage/display/samsung-840-pro_5.html
http://www.xbitlabs.com/articles/storage/display/samsung-840-pro_5.html

150 Bibliography

[35] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum.
Cellular disco: resource management using virtual clusters on shared-memory
multiprocessors. In 17th Symposium on Operating Systems Principles, SOSP
’99, pages 154–169, Charleston, South Carolina, USA, December 1999. Asso-
ciation for Computing Machinery.

[36] Charles David Graziano. A performance analysis of xen and kvm hypervisors
for hosting the xen worlds project. Master’s thesis, Iowa State University,
2011.

[37] Thorsten Gröninger, Konrad Miller, and Frank Bellosa. Analyzing shared
memory opportunities in different workloads, November 2011. Study Thesis,
System Architecture Group, KIT, Germany.

[38] Thorsten Gröninger, Marc Rittinghaus, Konrad Miller, and Frank Bellosa.
On statistical properties of duplicate memory pages, October 2013. Diploma
Thesis, System Architecture Group, KIT, Germany.

[39] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren,
George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference engine:
harnessing memory redundancy in virtual machines. Communications of the
ACM, 53(10):85–93, October 2010.

[40] Val Henson and Richard Henderson. Guidelines for using compare-by-hash.
http://valerieaurora.org/review/hash2.pdf, 2005.

[41] Oracle Corporation innotek GmbH. Virtualbox. https://www.
virtualbox.org, 2007.

[42] M. Tim Jones. Anatomy of Linux Kernel Shared Memory. http://
public.dhe.ibm.com/software/dw/linux/l-kernel-shared-memory/
l-kernel-shared-memory-pdf.pdf, April 2010. accessed September 2013.

[43] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Geiger: Monitoring the buffer cache in a virtual machine environment. In
12th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XII, pages 14–24, San Jose, CA, USA,
October 2006. Association for Computing Machinery.

[44] Jonas Julino, Konrad Miller, and Frank Bellosa. Analysing page duplication
on android, March 2012. Study Thesis, System Architecture Group, KIT,
Germany.

[45] Randy Howard Katz. Lecture 19: Case study – virtual memory, alpha
21064 memory hierarchy and performance. http://bnrg.cs.berkeley.
edu/~randy/Courses/CS252.S96/Lecture19.pdf, 1996.

http://valerieaurora.org/review/hash2.pdf
https://www.virtualbox.org
https://www.virtualbox.org
http://public.dhe.ibm.com/software/dw/linux/l-kernel-shared-memory/l-kernel-shared-memory-pdf.pdf
http://public.dhe.ibm.com/software/dw/linux/l-kernel-shared-memory/l-kernel-shared-memory-pdf.pdf
http://public.dhe.ibm.com/software/dw/linux/l-kernel-shared-memory/l-kernel-shared-memory-pdf.pdf
http://bnrg.cs.berkeley.edu/~randy/Courses/CS252.S96/Lecture19.pdf
http://bnrg.cs.berkeley.edu/~randy/Courses/CS252.S96/Lecture19.pdf

Bibliography 151

[46] Philipp Kern, Konrad Miller, and Frank Bellosa. Generalizing memory
deduplication for native applications, sandboxes and virtual machines. Mas-
ter’s thesis, April 2013. Diploma Thesis, System Architecture Group, KIT,
Germany.

[47] Hwanju Kim, Heeseung Jo, and Joonwon Lee. XHive: Efficient coopera-
tive caching for virtual machines. Transactions on Computers, 60(1):106–119,
January 2011.

[48] Ricardo Koller and Raju Rangaswami. I/o deduplication: Utilizing con-
tent similarity to improve i/o performance. Trans. Storage, 6(3):13:1–13:26,
September 2010.

[49] Marco Kroll, Konrad Miller, and Frank Bellosa. Performance analysis of
memory deduplication, March 2014. Diploma Thesis, System Architecture
Group, KIT, Germany.

[50] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, and et al. Snowflock:
rapid virtual machine cloning for cloud computing. In Proceedings of the 4th
ACM European conference on Computer systems, EuroSys ’09, New York, NY,
2009. Association for Computing Machinery.

[51] Kevin P. Lawton. Bochs: A portable pc emulator for unix/x. Linux Journal,
1996(29es), September 1996.

[52] Seho Lee, Inhyeok Kim, Dongwoo Lee, and Young Ik Eom. The page cache
duplication mechanism in virtualized systems. International Journal of Control
and Automation, 6(1):151–159, February 2013.

[53] John R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 1999.

[54] Robert Lowe. Linux Kernel Development - A thorough guide to the design and
implementation of the Linux kernel. Addison Wesley, 3rd edition, 2012.

[55] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation. In
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’05, pages 190–200, Chicago, IL, USA, 2005. Association for Computing
Machinery.

[56] Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt Hackel. Par-
avirtualized paging. In First Workshop on I/O Virtualization, WIOV ’08, San
Diego, CA, USA, December 2008. USENIX Association.

[57] Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt Hackel. Tran-
scendent memory and linux. In The Linux Symposium, OLS ’09, Montreal,
Canada, July 2009. Linux Symposium Inc.

152 Bibliography

[58] Wolfgang Mauerer. Professional Linux Kernel Architecture. Wiley Publishing,
Inc., 2008.

[59] Konrad Miller. Betriebssysteme Übung 2 WS 2011/2012. based on Stanford
class CS140, 2011, by David Mazieres. http://www.scs.stanford.edu/
11wi-cs140/, 2011.

[60] Konrad Miller. Betriebssysteme Übung 4 WS 2011/2012. based on Stanford
class CS140, 2011, by David Mazieres. http://www.scs.stanford.edu/
11wi-cs140/, 2011.

[61] Konrad Miller, Fabian Franz, Thorsten Groeninger, Marc Rittinghaus, Mar-
ius Hillenbrand, and Frank Bellosa. KSM++: Using i/o-based hints to
make memory-deduplication scanners more efficient. In ASPLOS Workshop
on Runtime Environments, Systems, Layering and Virtualized Environments,
RESoLVE ’12, London, UK, March 2012.

[62] Konrad Miller, Fabian Franz, Marc Rittinghaus, Marius Hillenbrand, and
Frank Bellosa. XLH: More effective memory deduplication scanners through
cross-layer hints. In USENIX Annual Technical Conference, USENIX ATC
’13, San Jose, CA, USA, 2013. USENIX Association.

[63] Grzegorz Miłós, Derek G. Murray, Steven Hand, and Michael A. Fetterman.
Satori: Enlightened page sharing. In USENIX Annual Technical Conference,
USENIX ATC ’09. USENIX Association, 2009.

[64] David Mosberger and Tai Jin. Httperf - a tool for measuring web server
performance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31–
37, 1998.

[65] Robert P. Munafo. Notable properties of specific numbers. http://mrob.
com/pub/math/numbers-19.html, 2013. accessed November 2013.

[66] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’07, pages 89–100, San
Diego, CA, USA, 2007. Association for Computing Machinery.

[67] Avadh Patel, Furat Afram, and Kanad Ghose. Marss-x86: A qemu-based
micro-architectural and systems simulator for x86 multicore processors. In
1st International Qemu Users Forum, pages 29–30, 2011.

[68] Patrick Brady. Anatomy & Physiology of an Android. In Google I/O Devel-
oper Conference, 2008.

[69] Marc Rittinghaus, Konrad Miller, and Frank Bellosa. Runtime benefits of
memory deduplication, July 2012. Diploma Thesis, System Architecture
Group, KIT, Germany.

http://www.scs.stanford.edu/11wi-cs140/
http://www.scs.stanford.edu/11wi-cs140/
http://www.scs.stanford.edu/11wi-cs140/
http://www.scs.stanford.edu/11wi-cs140/
http://mrob.com/pub/math/numbers-19.html
http://mrob.com/pub/math/numbers-19.html

Bibliography 153

[70] Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, and Frank Bellosa.
Simuboost: Scalable parallelization of functional system simulation. In 11th
International Workshop on Dynamic Analysis, WODA ’03, Houston, Texas,
March 2013.

[71] William K Robertson, Christopher Kruegel, Darren Mutz, and Fredrik Valeur.
Run-time detection of heap-based overflows. In 17th Large Installation Systems
Administration Conference, volume 3 of LISA ’03, pages 51–60, San Diego,
CA, USA, October 2003. USENIX Association.

[72] John Scott Robin and Cynthia E. Irvine. Analysis of the intel pentium’s
ability to support a secure virtual machine monitor. In 9th USENIX Security
Symposium, SSYM ’00, Denver, CO, USA, August 2000. USENIX Associa-
tion.

[73] Salvatore Sanfilippo and The Redis Community. Redis key-value store. http:
//redis.io, 2009.

[74] Martin Schwidefsky, Hubertus Franke, Ray Mansell, Raj Himanshu, Damian
Osisek, and JongHyuk Choi. Collaborative Memory Management in Hosted
Linux Environments. In The Linux Symposium – Volume Two, OLS ’06, pages
313–328, Ottawa, Canada, July 2006. Linux Symposium Inc.

[75] Burroughs Corporation. Sales Technical Services. The Descriptor: A Definition
of the B5000 Information Processing System. Bulletin (Burroughs Corporation.
Sales Technical Services). Sales Technical Services, Equipment and Systems
Marketing Division, Burroughs Corporation, 1961.

[76] Shengyang Sha, Li Jianxin, Nan Li, Wuyang Ju, Lei Cui, and Bo Li.
SmartKSM: A vmm-based memory deduplication scanner for virtual ma-
chines. Poster presented at the 24th Symposium on Operating Systems
Principles, April 2013.

[77] Prateek Sharma and Purushottam Kulkarni. Singleton: System-wide page
deduplication in virtual environments. In 21st International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’12, pages 15–26,
Delft, Netherlands, June 2012. Association for Computing Machinery.

[78] Balbir Singh. Page/slab cache control in a virtualized environment. In
12th Annual Linux Symposium, OLS ’10, Ottawa, Canada, July 2010. Linux
Symposium Inc.

[79] Kuniyasu Suzaki, Toshiki Yagi, Kengo Iijima, Nguyen Anh Quynh, Cyrille
Artho, and Yoshihito Watanebe. Moving from logical sharing of guest os to
physical sharing of deduplication on virtual machine. In Proceedings of the 5th
USENIX conference on Hot topics in security, HotSec’10, pages 1–7, Berkeley,
CA, USA, 2010. USENIX Association.

http://redis.io
http://redis.io

154 Bibliography

[80] TravisCI Community. TravisCI: continuous integration service. https:
//travis-ci.org/, 2012.

[81] S. G. Tucker. Emulation of large systems. Communications of the ACM,
8(12):753–761, December 1965.

[82] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simulation: A
survey. ACM Computing Surveys (CSUR), 29(2):128–170, June 1997.

[83] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and
containment in the potemkin virtual honeyfarm. In 20th Symposium on
Operating Systems Principles, SOSP ’05, pages 148–162, Brighton, UK, October
2005. Association for Computing Machinery.

[84] Carl A. Waldspurger. Memory resource management in vmware esx server.
In 5th Symposium on Operating System Design and Implementation, OSDI ’02,
pages 181–194, Boston, MA, USA, December 2002. USENIX Association.

[85] Carl A. Waldspurger. Content-based, transparent sharing of memory units.
U.S. Patent number: 6789156, September 2004.

[86] Vincent M Weaver and Sally A McKee. Can hardware performance counters
be trusted? In International Symposium on Workload Characterization, IISWC
’08. IEEE Computer Society, 2008.

[87] Theodore M. Wong and John Wilkes. My cache or yours? making storage
more exclusive. In USENIX Annual Technical Conference, USENIX ATC ’02,
Monterey, CA, USA, 2002. USENIX Association.

[88] Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy, Peter Desnoyers,
Emmanuel Cecchet, and Mark D. Corner. Memory buddies: Exploiting page
sharing for smart colocation in virtualized data centers. In International Con-
ference on Virtual Execution Environments, VEE ’09, pages 31–40, Washington,
DC, USA, March 2009. Association for Computing Machinery.

[89] Zhe Zhang, Han Chen, and Hui Lei. Small is big: Functionally partitioned
file caching in virtualized environments. In Fourth USENIX Workshop on
Hot Topics in Cloud Computing, Hotcloud ’12, Boston, MA, USA, June 2012.
USENIX.

https://travis-ci.org/
https://travis-ci.org/

	Introduction
	Sharing and Deduplication Techniques
	Contributions
	Underlying Publications and Theses
	Organization

	Background and Literature Review
	Terms
	Virtual Memory Systems
	Indirect Addressing
	Virtual Address Space
	Physical Address Space: Paging
	Copy-on-write
	Anonymous vs. Named Memory
	Paging Virtual Machines

	Traditional Page Sharing Approaches
	Sharing Cloned Content
	Sharing the I/O Buffer Cache Among Applications

	Deduplication for Virtual Machines
	The Semantic Gap
	Address Space Cloning in Virtualization
	VM I/O Path and Disk Cache Placement
	Deduplication Through Inspection: Main Memory Scanners
	Deduplication through Paravirtualization and Semantic-Aware Inspection

	Conclusion: Limitations of the State-of-Art

	Analysis of Main Memory Duplication and Sharing
	Measuring Main Memory Duplication
	VM Snapshots
	Page-faults
	Emulation
	Trap and Emulate
	Custom Hardware
	Summary of Analytical Methods

	The Anatomy of Memory Duplication
	Reasons for Memory Duplication
	Spatial and Quantitative Characteristics
	Temporal Characteristics

	Conclusion

	Cross Layer Integration through Deduplication Hints
	Linux Virtual Memory Implementation
	Basic Linux Internal Memory Management
	Linux Address Spaces
	Linux Page Cache
	Page-Faults

	Implementation of Kernel Samepage Merging
	KSM Data Structures
	KSM Mechanisms and Policies

	XLH Design
	Design Goals
	Hint Generation
	Hint Storage
	Hint Processing
	Mitigating the Unstable Tree Degeneration

	XLH Implementation

	Deduplicating Virtualized Environments
	Benchmark Metrics
	Benchmark Scenarios
	General Benchmark Set-Up
	Evaluation Results and Interpretation
	Kernel-Build
	Apache web-server and HTTPerf
	Bonnie++
	Mixed

	Conclusion

	Performance Considerations
	Scanning Overheads and Boundary
	Code Paths
	Code-Path Frequencies and Aggregated Cost
	Scan-Rate Boundaries

	Runtime Effects of Page Sharing
	Run-Time vs. Scan-Rate
	Writing and Breaking Sharing
	Reading and Caching

	Conclusion

	Conclusion
	Limitations and Future Work

	Deutsche Zusammenfassung
	Apache Static File Generation
	Lists
	Tables
	Figures
	Bibliography

