
Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)
von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)
genehmigte Dissertation von
Dipl.-Inform.Wirt. Andreas Josef Wagner

R A N K - AWA R E , A P P R O X I M AT E Q U E RY P R O C E S S I N G O N T H E
S E M A N T I C W E B

andreas josef wagner

Tag der mündlichen Prüfung: 11.06.2014

Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Wolfgang Nejdl

Karlsruhe, 2014

This thesis is decicated to my loving family – my mother and father,
brother, sister-in-law, and niece.

A B S T R A C T

The amount of data on the World Wide Web that adheres to Semantic Web stan-
dards is rapidly increasing. Most notably, many Web pages are annotated with
RDFa, Microdata, or Microformats. Moreover, the popular Linked Data princi-
ples led to a drastic increase in Semantic Web data, which is accessible using
simple HTTP operations. In fact, not only instance data, but also schema data is
published on the Web. Thus, one may conceive the World Wide Web as a vast
space of interlinked data sources, which feature Semantic Web data.

Search over this huge Web data corpus frequently leads to queries having
large result sets. So, in order to discover data elements, which satisfy a given
information need, users must rely on ranking techniques to sort results according
to their relevance. Unfortunately, processing queries with ranked results over a
large data corpus is highly expensive in terms of computation time as well as
computation resources. This is because the sorting of query results is a blocking
operation in the query operator tree. In simple terms, all results have to be computed,
before they can be sorted according to their assigned ranking scores. Clearly,
processing queries in this manner causes prohibitive query computation costs –
in particular, in context with web-scale data.

At the same time, applications oftentimes face information needs, which do
not require complete and exact results. Most notably, end-users who search the
Web commonly only investigate a small fraction of top-ranked query results,
until they discover a data element of interest. Thus, applications should be able to
process queries in a flexible way – some queries may require exact results, while others
could be answered approximately.

In this thesis, we face the problem of how to process queries over Web data in an
approximate and rank-aware fashion. Aiming at this complex problem, we provide
several novel contributions.

More specifically, we introduce a rank-aware join operator for Web data. By means
of this join operator, we can process queries with ranked results much more
efficiently. That is, our rank-aware join operator focuses on computing the top-
ranked query results first, while omitting the remainder of the results. This way,
these join operators consume much less join inputs, which translates to perfor-
mance gains for the overall query computation time.

Additionally, we exploit the fact that many information needs can be ad-
dressed via incomplete/approximated result sets. That is, we enable systems to
trade-off result completeness and accuracy, in favor of query computation time.
We provide two contributions for this approximate query processing. On the one
hand, we present a novel pipeline of operations, which allows to incrementally com-
pute query results. So, initial approximate results can either be reported directly
or could be refined as needed. On the other hand, we introduce a new approx-
imate rank-aware join operator. Our operator allows to discard such intermediate
query results, which are not likely to lead to a final top-ranked result. In other

iii

words, the approximate rank-aware join operator enables a system to discard
low-ranked results during the query processing.

Furthermore, we present a novel approach for selectivity estimation that is
tailored towards the needs of Web data and typical Web queries. That is, our
selectivity estimation approach allows the estimation of queries, which match
structured as well as unstructured data elements in the Web of data. Such a
selectivity estimation is crucial for query optimization techniques, which can
integrate our approximate/rank-aware join operators in physical query plans.

iv

P U B L I C AT I O N S

Text as well as figures in this thesis have partly been already published. That is,
the thesis is based on the following papers:

[1] Tran, Thanh and Ladwig, Günter and Wagner, Andreas, Approximate and
Incremental Processing of Complex Queries against the Web of Data.
Proceedings of the Database and Expert Systems Applications Conference
(DEXA), 2011.

[2] Wagner, Andreas and Duc, Thanh Tran and Ladwig, Günter and Harth, An-
dreas and Studer, Rudi, Top-k Linked Data query processing. Proceedings
of the Extended Semantic Web Conference (ESWC), 2012.

[3] Wagner, Andreas and Bicer, Veli and Tran, Thanh, Selectivity Estimation for
Hybrid Queries over Text-Rich Data Graphs. Proceedings of the Interna-
tional Conference on Extending Database Technology (EDBT), 2013.

[4] Wagner, Andreas and Bicer, Veli and Tran, Thanh, Pay-as-you-go Approxima-
tive Top-k Join Processing for the Web of Data. Proceedings of the Extended
Semantic Web Conference (ESWC), 2014.

v

C O N T E N T S

1 introduction 2

1.1 Motivation . 2

1.1.1 Semantic Web Data . 2

1.1.2 Semantic Search . 6

1.2 Web Data Characteristics . 10

1.2.1 Schemaless Data . 10

1.2.2 Hybrid Data . 10

1.2.3 Distributed and Low-volume Data 11

1.3 Research Questions and Scope . 11

1.3.1 Research Questions . 11

1.3.2 Scope of this Thesis . 13

1.4 Contributions . 13

1.5 Outline . 15

2 foundations 17

2.1 Data and Query Model . 17

2.1.1 Structured and Unstructured Data 17

2.1.2 Structured and Unstructured Queries 20

2.2 Query Processing . 23

2.2.1 Overview . 23

2.2.2 Query Optimization . 25

2.2.3 Cost Model . 28

2.2.4 Query Execution . 29

2.3 Rank-aware Query Processing . 30

2.3.1 Overview . 31

2.3.2 Top-k Join Processing . 32

3 rank-aware query processing 38

3.1 Introduction . 40

3.1.1 Motivation . 40

3.1.2 Data-driven Linked Data Query Processing 42

3.1.3 Problem . 45

3.2 Research Questions and Contributions 46

3.2.1 Research Questions and Hypotheses 46

3.2.2 Contributions . 47

3.3 Linked Data Top-k Query Processing 48

3.3.1 Sorted Access . 48

3.3.2 Push-based Top-k Join Processing 50

3.3.3 Improved Threshold Estimation 54

3.3.4 Early Pruning of Partial Results 58

3.4 Evaluation . 59

3.4.1 Evaluation Setting . 60

vi

contents vii

3.4.2 Evaluation Results . 61

3.5 Related Work . 64

3.5.1 Pull-based, Centralized Top-k Processing 64

3.5.2 Distributed Top-k Processing 64

3.5.3 Approximate Top-k Processing 65

3.6 Summary . 65

4 selectivity estimation 68

4.1 Introduction . 69

4.1.1 Motivation . 69

4.1.2 Selectivity Estimation . 71

4.1.3 Probabilistic Framework . 72

4.1.4 Problem . 76

4.2 Research Questions and Contributions 77

4.2.1 Research Questions and Hypotheses 77

4.2.2 Contributions . 78

4.3 Selectivity Estimation over Text-Rich RDF Graphs 79

4.3.1 Data Synopsis . 79

4.3.2 Data Synopsis Construction 84

4.3.3 Selectivity Estimation . 89

4.4 Evaluation . 92

4.4.1 Evaluation Setting . 93

4.4.2 Evaluation Results: Effectiveness 97

4.4.3 Evaluation Results: Efficiency 98

4.5 Related Work . 99

4.6 Summary . 100

5 approximate query processing 103

5.1 Motivation . 105

5.2 Approximate Incremental Query Processing 107

5.2.1 Introduction . 107

5.2.2 Research Questions and Contributions 108

5.2.3 A Pipeline-based Approach for Approximate and Incre-
mental Query Processing . 109

5.2.4 Evaluation . 123

5.2.5 Related Work . 128

5.2.6 Summary . 129

5.3 Rank-aware Approximate Query Processing 131

5.3.1 Introduction . 131

5.3.2 Research Questions and Contributions 134

5.3.3 Pay-as-you-go Approximate Top-k Join Processing 135

5.3.4 Evaluation . 153

5.3.5 Related Work . 159

5.3.6 Summary . 160

5.4 Conclusion . 161

6 conclusion 164

6.1 Summary . 164

contents viii

6.2 Future Work . 167

bibliography 169

List of Figures 184

List of Tables 186

List of Algorithms 187

Acronyms 188

a appendix : evaluation queries 189

a.1 Evaluation Queries for Chapter 3 . 190

a.2 Evaluation Queries for Chapter 4 . 197

a.3 Evaluation Queries for Chapter 5 . 213

I N T R O D U C T I O N

1

1
I N T R O D U C T I O N

Context of this Thesis. In this thesis, we are concerned with efficiency aspects
of search on Web data. While these efficiency problems are manifold in nature,
we specifically target ranking and approximation aspects.

Our research led to the development of an open-source Web data management
system (CumulusRDF), which is freely available on the Web.1 Amongst other de-
ployments, CumulusRDF is currently used in the iZEUS2 research project, where
the system manages real-time data from electric vehicles.

Running Example. Throughout the thesis, we follow a running example about
the movie “Roman Holiday”. For instance, Figure 1 illustrates the IMDB Web
page about “Roman Holiday”. In particular, we will explain our approaches and
contributions by means of this example. Note, while this example is situated in
the movie domain, our approaches are generic and can be used on data from
any domain.

1.1 motivation

1.1.1 Semantic Web Data

The terminology Web data and Web search refers to data and search on the World
Wide Web (WWW). The amount of Web documents is large and rapidly increas-
ing. As of October 2013, more than 767 million Web pages are available on the
WWW.3 Traditionally, data published on the WWW is represented as simple
HyperText Markup Language (HTML) pages, with no means for machines to
“understand” data semantics. That is, HTML pages solely specify how machines,
e.g., Web browsers, are supposed to visualize the data, but not what the pages are
about and how they relate to each other [81].

. Example 1

Consider the HTML page about the movie “Roman Holiday” in Figure 1.
Only a human reader understands that this page describes a famous movie
called “Roman Holiday” featuring Audrey Hepburn. However, a machine

1http://code.google.com/p/cumulusrdf/, retrieved 2013-10-05.
2http://www.izeus.kit.edu/, retrieved 2013-10-10.
3http://news.netcraft.com/, retrieved 2013-10-05.

2

http://code.google.com/p/cumulusrdf/
http://www.izeus.kit.edu/
http://news.netcraft.com/

1.1 motivation 3

Figure 1: HTML IMDB Web page about the movie “Roman Holiday” visualized by a
browser.4

only sees the HTML data, which dictates how to visualize the contents of
that page, see Figure 2.

Addressing this problem, the World Wide Web Consortium (W3C) proposed
several open standards (commonly referred to as Semantic Web Stack) for encod-
ing Web data such that machines are able to infer meaning from that data –
thereby forming the Semantic Web.5

More precisely, the W3C proposed Uniform Resource Identifiers (URIs)6 as
entity identifiers and defined the Resource Description Format (RDF) [147] and
the Resource Description Framework Schema (RDFS) [29] as lightweight Web data
formats. Further, the SPARQL protocol and RDF query language (SPARQL) was
proposed as query language for RDF data [17]. The interested reader may find a
detailed introduction to the complete Semantic Web Stack in [81].

For the remainder of this thesis, we define Semantic Web data, also referred to
as Web data, as follows [160]:

4http://www.imdb.com/title/tt0046250/, retrieved 2013-10-05.
5http://www.w3.org/standards/semanticweb/, retrieved 2013-10-05.
6http://tools.ietf.org/html/rfc3986, retrieved 2013-10-07.

http://www.imdb.com/title/tt0046250/
http://www.w3.org/standards/semanticweb/
http://tools.ietf.org/html/rfc3986

1.1 motivation 4

Figure 2: HTML source code for the “Roman Holiday” Web page in Figure 1. This struc-
tured HTML data only specifies how to display the data.

ó Definition 1: Semantic Web Data, Web Data (Informal) [160]

Semantic Web data (Web data) contains descriptions of entities on the Web,
with each description being a set of triples: {〈s,p,o〉}. A triple associates an
entity (subject) s with an object o via a predicate p. A set of triples forms a
data graph.

Note, we will provide a formal data model in Chapter 2.
In recent years, the amount of Web data drastically increased. Most notably,

semantic annotations, Linked Data,7,8 and Web schemata have contributed to
this development [160].

À Semantic annotations are structured data elements, which can be embed-
ded in Web pages. For this, RDFa [11], Microdata [80], and Microformats9

have been used. For estimating the amount of such annotations, the Web
Data Commons project10 recently analyzed the Common Crawl11 – a well-
known corpus of 3 billion unique HTML pages retrieved from 40.6 million
domains. According to [25] and the Web Data Commons project, 12.3% of
the websites contained in the Common Crawl corpus contain structured
data. In terms of RDF, this structured data is represented by means of 7.3
billion RDF triples and captures 1.15 billion typed entities. Other studies
even estimate that approximately 10% of all Web pages feature semantic
annotations [121].

7http://www.w3.org/DesignIssues/LinkedData.html, retrieved 2013-10-05.
8http://www.w3.org/standards/semanticweb/data, retrieved 2013-10-07.
9http://microformats.org/, retrieved 2013-10-05.

10http://webdatacommons.org/, retrieved 2013-10-05.
11http://commoncrawl.org/, retrieved 2013-10-06.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/standards/semanticweb/data
http://microformats.org/
http://webdatacommons.org/
http://commoncrawl.org/

1.1 motivation 5

Figure 3: Linked MDB page about the movie “Roman Holiday”.12 Structured data is
encoded as RDF and published adhering to Linked Data standards.

Á The terminology Linked Data describes a popular set of principles for pub-
lishing RDF data on the Web. Currently more than 62 billion triples in
920 datasets are published as Linked Data.13 Following Linked Data princi-
ples, HTTP links connect entities (instead of Web pages), thereby associat-
ing “data elements” directly. Furthermore, links between entities are typed,
which enables a characterization of the relationship. Prominent examples
of Linked Data datasets include DBpedia14 and LinkedMDB.15 The former
comprises structured data extracted from Wikipedia,16 while the latter con-
tains data about movies.

. Example 2

Consider Figure 3: a set of triples describes the movie “Roman Hol-
iday”. These triples actually capture the data semantics, i.e., the un-
derlying meaning of the data – in contrast to the corresponding
HTML page in Figure 2. More precisely, each triple assigns the sub-

12http://data.linkedmdb.org/page/film/38439, retrieved 2013-10-05.
13http://stats.lod2.eu/, retrieved 2013-10-05.
14http://dbpedia.org/, retrieved 2013-10-05.
15http://linkedmdb.org/, retrieved 2013-10-05.
16http://www.wikipedia.org/, retrieved 2013-10-05.

http://data.linkedmdb.org/page/film/38439
http://stats.lod2.eu/
http://dbpedia.org/
http://linkedmdb.org/
http://www.wikipedia.org/

1.1 motivation 6

DataQuery

Query

Interpretation

Data

Interpretation

Information Need

Matching

Results
S

e
m

a
ti

c
s

Ranked Results

Ranking

User Interface

Figure 4: The semantic search process [160, 7].

ject (entity “Roman Holiday”) an object via a predicate. For example,
the triple 〈film:38439, rdf:type, movie:film〉 states that the entity
“Roman Holiday” (identified with film:38439) has movie:film via
rdf:type assigned.a

aThe URI prefix film and movie stands for http://data.linkedmdb.

org/resource/film and http://data.linkedmdb.org/resource/movie, respec-
tively. Further, the URI prefix rdf stands for http://www.w3.org/1999/02/

22-rdf-syntax-ns#.

Â Last, schemata on the Web provide reusable vocabularies for Web data.
A well-known example is Schema.org17 – an effort by major search en-
gine providers (Google, Bing, Yahoo, and Yandex) to create and maintain
schema information for a structured Web page markup. A Schema.org ver-
sion adhering to Linked Data principles is also available.18

1.1.2 Semantic Search

1.1.2.1 Overview

Search is commonly known as an end-user paradigm that aims at satisfying
information needs via simple user interfaces/access mechanisms [160]. That is,
a user expresses an information need as a query via an interface and the engine
attempts to discover data elements, which are assumed to satisfy that need.

However, because of query/data ambiguities, discovering such relevant ele-
ments may be hard. Semantic data as well as semantic query representations
target this issue and thereby help to improve Web search significantly. Semantic
search can be defined as follows:

17http://schema.org/, retrieved 2013-10-05.
18http://schema.rdfs.org/, retrieved 2013-10-05.

film:38439
rdf:type
movie:film
film:38439
movie:film
rdf:type
film
movie
http://data.linkedmdb.org/resource/film
http://data.linkedmdb.org/resource/film
http://data.linkedmdb.org/resource/movie
rdf
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://schema.org/
http://schema.rdfs.org/

1.1 motivation 7

ó Definition 2: Semantic Search (Informal) [160]

“Semantic search [...] makes use of explicit semantics to solve core search
tasks, i.e., to use semantics for interpreting query and data, matching query
against data and ranking results.”, see [160].

A generic semantic search process is illustrated in Figure 4. Intuitively, a se-
mantic search process first determines possible query/data interpretations. Vari-
ous interpretations are caused by ambiguities in query or data. Next, depending
on the chosen query/data interpretation, query results are evaluated by match-
ing query constraints to data elements. Last, every result is associated with a
ranking score, which captures the relevance of that result with regard to the
query and user intent. This way, an interface may present top-ranked results
first and allow users to quickly satisfy their information needs [160, 7].

Semantics – as captured by Web data – are exploited at every step of the
search process, in order to determine the user’s information need and find data
elements that match this need best [160, 7].

1.1.2.2 Problems

Semantic search engines oftentimes produce vary large result sets due to multiple
query/data interpretations as well as extensive datasets on the Web. Large re-
sult sets, in turn, make result ranking essential for discovering relevant results
and satisfying an information need. At the same time, system efficiency/respon-
siveness is crucial for many application domains. Most notably, for end-user sys-
tems responsiveness is a key requirement. Thus, semantic search systems must
address the problem on how to compute large ranked result sets and report the most
important (top-ranked) results as soon as possible:

� Problem 1: Rank-aware Query Processing

Compute ranked results efficiently and report top-ranked results as soon as
possible.

Another way to cope with large result sets is to relax the requirement for exact
and complete results. In fact, many semantic search applications are end-user
oriented. Here, users frequently omit results and only view a small fraction of
the entire result set. Thus, semantic search systems should allow for a trade-off
between result accuracy/completeness and computation time:

� Problem 2: Approximate Query Processing

Compute large result sets efficiently by allowing to trade off result accuracy
and result completeness for computation time.

Semantic search has received much attention and poses many other problems.
However, in this thesis we are solely concerned with Problem 1 and Problem 2.
The interested reader may see the comprehensive surveys [160, 7]. Note, we also
discuss the scope of this thesis in Section 1.3.2.

1.1 motivation 8

Figure 5: Search for high ranking movies with keyword “holiday” on IMDB Web page.
Ranking scores are based on user ratings.19

In the next paragraphs, let us briefly introduce the fields of research concerned
with above problems.

1.1.2.3 Problem 1: Rank-aware Query Processing

Rank-aware query processing, so-called top-k query processing, is a very active
research area in the database (DB) community [95]. Here, the goal is to compute
top-ranked query results, without materializing the entire result set. Consider the ex-
ample:

. Example 3

Figure 5 depicts a ranked list of movies for the keyword query “holiday”.
Computing this list could be done in multiple ways. The naïve solution
would be:

À Materialize a list of entities, which have the keyword “holiday” asso-
ciated.

Á Further, materialize a second list of movie entities and join both lists.

Â Sort the movie entities in the joined list based on their user ratings.

1.1 motivation 9

Computing ranked results in such a manner is highly inefficient [95]. Above
solution (Example 3) requires three lists of intermediate results: an entity list for
keyword query “holiday”, another list of movie entities, and the joined entity
list. In fact, the entire joined list must be materialized before it can be sorted and
reported. This is because sorting is a blocking operation, i.e., the results can only
be sorted if all results have been computed. Given queries with large result sets,
this procedure leads to prohibitive join and sort operations [95].

Rank-aware query processing strategies target this problem by embedding
ranking within the query processing [95]. More specifically, these strategies al-
low search engines to iteratively compute ranked results, without the need to fully
materialize the result set. For this, ranking scores of already computed results
are used to estimate whether or not “higher-ranked” results could be found by
computing further results [95]. This can lead to drastic runtime efficiency gains
– as we will show in Chapter 3 and Chapter 5.

1.1.2.4 Problem 2: Approximate Query Processing

We employ approximate query processing (AQP) to target the above Problem 2.
AQP comprises a set of techniques, which allow to save time by computing
approximate instead of exact results [112]. Such approximation techniques fre-
quently utilize compact data synopses, in oder to produce query results that
are “similar” to exact results. Such synopses may be based on random samples,
wavelets, or histograms [112]. Traditionally, AQP was employed in the database
community for aggregate queries featuring functions like sum() or avg() [112].

However, we use AQP in context with rank-aware query processing. Consider
the following example:

. Example 4

A user is searching for top-ranking movies with keyword “holiday” in
Example 3. However, the user probably does not care about the precise
ranking values. That is, she probably would not mind if the ranking values
were approximated – as long as the result order remains similar.

Further, the user will first look at the top-ranked movies and only later
(if necessary) consider additional results. Thus, a system could incrementally
compute query results and approximate query results with low ranking.

Generally speaking, we consider AQP in terms of two dimensions:

À Incremental Result Computation
First, we consider incremental result computation as one AQP dimension.
That is, query results are processed step-by-step via a pipeline of opera-
tions. This way, initial/approximated results can be obtained very early
and can be refined as needed, see Section 5.2.

Á Rank-aware Approximation
Second, rank-aware approximation techniques resemble another AQP di-
mension. More specifically, we target the problem of approximating the

19Web search on http://www.imdb.com/search/. Web page retrieved at 2013-10-05.

http://www.imdb.com/search/

1.2 web data characteristics 10

ranking value for a particular result. Intermediate results, which are not
likely to contribute to the final top-ranked results are discarded during
query processing, see Section 5.3.

1.2 web data characteristics

Web data features several characteristics that split Problem 1 and Problem 2 into
several research questions (presented in the next section). In the following, let us
discuss key characteristics, which we faced in our work.

1.2.1 Characteristic 1: Schemaless Data

Web data comes with great flexibility in terms of its associated schema. In fact,
data on the Web often has little or no schema information. In particular, entities
frequently have no RDFS [29] or Web Ontology Language (OWL) [82, 8] ontol-
ogy20 assigned. Thus, entities could only be described via instance data and not
in a formal manner, e.g., by means of class or property definitions.

1.2.2 Characteristic 2: Hybrid Data

Web data contains different types of entity descriptions: text-rich, structured, and
formal descriptions [160]. The former refers to unstructured/textual descriptions
associated with entities. Structured descriptions, however, comprise attributes
and relations as well as classes. Generally speaking, these descriptions feature
data elements, which adhere to a pre-defined schema. Last, formal entity de-
scriptions may be seen as a special kind of structured descriptions, which use
highly expressive representations such as OWL [82, 8] or F-Logic [101].

. Example 5

A movie entity could have a (lengthy) textual description via a comment or a
plot attribute, see Example 3. Furthermore, that entity may have relations
(e.g., starring) or classes (e.g., movie or actor). Last, the entity could have
a formal description stating that every movie must have at least one actor

assigned via the starring relation.

From a general point of view, entities on the Web contain unstructured and
structured descriptions – commonly known as hybrid data. In the DB and In-
formation Retrieval (IR) community challenges associated with hybrid data are
known as DB&IR integration [165]. This kind of Web data will be queried with
constraints that match structured as well as unstructured data elements [171].
Consequently, we will refer to such queries as hybrid queries.

20http://www.w3.org/standards/semanticweb/ontology, retrieved 2013-10-08.

http://www.w3.org/standards/semanticweb/ontology

1.3 research questions and scope 11

1.2.3 Characteristic 3: Distributed and Low-volume Data

Web data is usually highly distributed over a large space of low-volume data
sources. That is, data is not centrally stored and managed in few large databases,
but located in various small sources with restricted capabilities [97, 105]. This
development is fostered by the Linked Data principles as well as semantic anno-
tations standards.

À Low-volume Data with Simple Access
Data sources frequently comprise very few entities and small entity de-
scriptions. Following Linked Data principles, every HTTP URI identifies
a “virtual data source” [105]. Access to this source is done via HTTP op-
erations. For instance, HTTP GET is used for retrieving the entity’s de-
scription and HTTP DELETE for deletion of the entity (identified with that
URI) [153]. For a complete listing of supported operations see [153].

Á Distributed Data
The Web of data does not restrict or control data publishing: everybody
may publish and interlink data [97]. Such a lack of a “controlled author-
ship” results in a high distribution and wide range of Web data sources.
For instance, there are currently more than 920 Linked Data datasets pub-
licly available.21 Note, the number of sources increases drastically, if one
regards every entity as its own data source [105].

Web data features many other characteristics, which may lead to further re-
search questions. However, in this thesis we focus on the above characteristics.
See also Section 1.3.2 for the scope of this thesis.

1.3 research questions and scope

1.3.1 Research Questions

Based on Problem 1 and Problem 2, our overall research question is:

- Overall Research Quesion

How to allow for rank-aware and approximate query processing over Web
data?

Given Web data characteristics in Section 1.2, the overall question breaks down
into several research questions, which we target in Chapter 3, Chapter 4, and
Chapter 5. An overview of our problems, the addressed research questions as
well as Web data characteristics is depicted in Figure 6.

21http://stats.lod2.eu/, retrieved 2014-02-01.

http://stats.lod2.eu/

1.3 research questions and scope 12

Web Data

Characteristics

Problem 1

Compute ranked results efficiently and report

top-ranked results as soon as possible.

Problem 2

Compute large result sets efficiently by allowing to

trade off result accuracy for computation time.

Characteristic 1

Schemaless Data

Characteristic 2

Hybrid Data

Characteristic 3

Distributed and

Low-volume Data

How to allow rank-aware and approximate query processing over Web data?

Research Question 1,

Ch. 3

Research Question 1,

Ch. 3

Future/Related Work

F1
Research Question 4,

Ch. 5, Sect. 5.3

Research Question 3,

Ch. 5, Sect. 5.2

Future/Related Work

F2

Research Question 2,

Ch. 4

Future/Related Work

F3

Research Question 4,

Ch. 5, Sect. 5.3

Research Question 4,

Ch. 5, Sect. 5.3

Research Question 2,

Ch. 4

Research Question 2,

Ch. 4

Research Question 2,

Ch. 4

Future/Related Work

F1

Figure 6: Overview of problems, Web data characteristics, and research questions, which
are address in this thesis.

- Research Question 1

How to enable top-k query processing on highly distributed, schemaless
Web data?

Research Question 1 is driven by the distributed nature of Web data (Character-
istic 3) and aims at allowing rank-aware query processing in such a context
(Problem 1). More precisely, our task is to process joins over data from dis-
tributed sources in such a manner that high-ranked results are reported first.
We investigate top-k join processing techniques for this task and extend previ-
ous works [55, 116, 144, 170] in Chapter 3 to match our distributed and low-volume
Web data (Characteristic 3).

Moreover, our approach does not require schema information. Thus, we allow
for schemaless Web data (Characteristic 1) to be processed.

- Research Question 2

How to allow for efficient and effective selectivity estimates on hybrid,
schemaless Web data?

Driven by schemaless (Characteristic 1) and hybrid (Characteristic 2) Web data,
we address Research Question 2 as a key problem in Chapter 4. In this chapter,
we target the question: How to efficiently and effectively predict the result size
of queries over Web data? More specifically, our selectivity estimation approach
calculates the cardinality of queries, which may comprise structured as well as
unstructured query constraints. While the former query constraint matches struc-
tured entity descriptions, the latter constraint matches keywords in unstructured
entity descriptions.

Selectivity estimation plays a crucial role for query optimization, as it allows
to integrate join operators in physical query plans [53]. Further, we exploit se-
lectivity estimation to support our rank-aware approximate query processing in
Section 5.3 (see Research Question 4).

1.4 contributions 13

Last, we present two complementary forms of approximate query processing:
(1) incremental result approximation in Research Question 3 and (2) rank-aware
approximation in Research Question 4.

- Research Question 3

How to enable approximate and incremental query processing on schema-
less Web data?

Incremental query processing directly reflects Problem 2, because initial (ap-
proximated) results can be reported very early. Intuitively, query results are com-
puted step-by-step and results can be returned at any time during this proce-
dure. We present a pipeline-based approach targeting this question in Chapter 5,
Section 5.2. In particular, our approach does not require any schema information
throughout the pipeline (Characteristic 1).

- Research Question 4

How to enable approximate top-k query processing for hybrid queries over
schemaless Web data?

Research Question 4 aims at approximating query results with regard to their
associated ranking position. That is, instead of approximating all query bindings,
we specifically approximate the low-ranked results. The former is addressed
by the aforementioned Research Question 3. We present a novel approach for
such a rank-aware approximation in Chapter 5 (see Section 5.3), which works
with schemaless (Characteristic 1) as well as hybrid queries and hybrid Web data
(Characteristic 2).

1.3.2 Scope of this Thesis

Semantic search has been addressed by many other works before [160, 7]. The
interested reader may see [158] for a complete semantic search process. In par-
ticular, [104] aims at an efficient query processing over hybrid Web data. In fact,
[104] presents query processing as well as indexing techniques, which are com-
plementary to the approaches in this thesis. Moreover, [79] targets the effective-
ness of ranking techniques over hybrid Web data. In contrast, we will not focus
on effectiveness issues of different ranking techniques, but simply consider a
ranking function to be given.

Generally speaking, we solely target the above research questions in Chapter 3,
Chapter 4, and Chapter 5. With regard to those questions, this thesis provides
several novel contributions – as we will outline in the next section.

1.4 contributions

With regard to the aforementioned research questions, this thesis provides the
following contributions:

1.4 contributions 14

+ Contribution for Research Question 1

Top-k join processing over Linked Data.

Existing work on top-k processing in the DB community targets scenarios,
where data is centrally stored and managed, or where data is located at few/large
Web databases [51, 95]. In contrast, Web data is highly distributed over a large
space of small data sources – most notably, Web data sources adhering to the
Linked Data principles.

In Chapter 3, we will show how to extend well-known top-k processing tech-
niques [51, 95] to the Web of Linked Data sources. Chapter 3 is based on our
previous publication [2] and targets the schemaless (Characteristic 1) as well as
highly distributed nature (Characteristic 3) of Web data.

+ Contribution for Research Question 2

Selectivity estimation for hybrid and schemaless Web data.

Based on our publication [3], we present a novel selectivity estimation ap-
proach for hybrid schemaless Web data in Chapter 4. For this, we combine a
template-based Bayesian network with string synopses. More specifically, we ex-
tend existing work for selectivity estimation over relational DBs [60, 162] to effec-
tively estimate queries over schemaless Web data (Characteristic 1). Furthermore,
we estimate the selectivity of keyword queries over textual entity descriptions by
means of string synopses (Characteristic 2).

+ Contribution for Research Question 3

Approximate and incremental query processing over Web data.

Based on our work in [1], we give an incremental query processing approach in
Chapter 5, see Section 5.2. For this, we decompose the query processing into four
sequential phases that operate on different data synopses, which are well-suited
for schemaless Web data (Characteristic 1). Each phase produces an intermedi-
ate/approximate result, which is refined (if necessary) by the subsequent phase.
This way, a system may report initial/approximate early, if the information need
does not require correct and complete results, respectively.

Moreover, we propose two novel approximate join processing techniques that
are employed in this processing pipeline. On the one hand, we propose approx-
imate structure matching that operates on bloom filters. On the other hand, we
propose structure-based result refinement, which exploits a compact data synop-
sis (the so-called structure index) for approximate join processing.

+ Contribution for Research Question 4

Approximate top-k query processing for hybrid queries over Web data.

For Research Question 4, we investigate rank-aware approximate query pro-
cessing in Chapter 5, see Section 5.3. This chapter is based on a work, which

1.5 outline 15

is published in [4]. Our approach estimates how likely an intermediate result
leads to a final top-k result – intermediate results below a given threshold will
be pruned. For this, we employ work on selectivity estimation (as presented in
Chapter 4) as well as techniques from the field of Bayesian statistics. More pre-
cisely, our statistics are learned in a pay-as-you-go manner during query process-
ing. In particular, these statistics allow for keyword queries, thereby enabling an
effective search over hybrid Web data (Characteristic 2). Moreover, our statistics a
very lightweight, which enables a system to efficiently maintain its indexes. Effi-
cient maintenance is a crucial advantage with regard to the frequently changing
Web data.

1.5 outline

The remainder of this thesis comprises six chapters, which discuss Contribu-
tions 1 - 4 and aim at Research Questions 1 - 4.

Ë Chapter 2 – Foundations
Chapter 2 provides preliminaries for our approaches in Chapter 3, Chap-
ter 4, and Chapter 5. In particular, we introduce our data/query model.
Furthermore, we outline basic query processing strategies as well as intro-
duce top-k processing techniques from the DB community.

Ì Chapter 3 – Rank-aware Query Processing
In Chapter 3, we present a novel approach for top-k join processing over
Linked Data. For this, we extend traditional top-k techniques to the Web
of Linked Data sources. That is, we specifically target distributed and low-
volume data sources.

Í Chapter 4 – Selectivity Estimation
We introduce a selectivity estimation approach for queries over schemaless,
hybrid Web data in Chapter 4. That is, our work allows query constraints
that match structured as well as unstructured entity descriptions.

Î Chapter 5 – Approximate Query Processing
Chapter 5 features two approaches for approximate query processing over
Web data. First, we discuss a pipeline of operations for an incremental pro-
cessing of queries in Section 5.2. Second, we propose a rank-aware query
result approximation in Section 5.3. These approaches are complementary
to each other, i.e., a system may apply both approaches as means to com-
pute approximated ranked results.

Ï Chapter 6 – Conclusion
Last, we summarize our contributions and results in Chapter 6. Further, we
give an outlook on important future work.

F O U N D AT I O N S

16

2
F O U N D AT I O N S

In this chapter, we discuss the preliminaries for the remainder of the thesis. In
particular, we present our data/query model. The former specifies the data repre-
sentation and the latter defines a query language over this data, see Section 2.1.
In Section 2.2, we outline our result model and basic query processing tech-
niques. Last, we introduce top-k query processing strategies in Section 2.3 – a
particular kind of query processing that is “rank-aware”.

2.1 data and query model

In recent years, RDF became a standard for describing entities on the Web. Thus,
as a particular form of Web data (see Definition 1, p. 4), we use RDF [147] as data
model. RDF data may be conceived as a data graph that connects and describes
entities. More precisely, RDF data constitutes a set of triples {〈s,p,o〉} forming a
data graph, see Figure 7. Every triple describes a particular entity (the subject) s
through a predicate/object pair: p/o.

The standard language for querying RDF is SPARQL [17]. In this thesis, we
restrict our attention to a key fragment of SPARQL: basic graph pattern (BGP)
queries. See Section 2.1.2 for further details on the employed query model.

2.1.1 Structured and Unstructured Data

ó Definition 3: RDF Graph, RDF Triple

Let `a and `r denote a set of attribute and relation labels. RDF data my be
seen as a directed labeled graph G = (V,E, `a, `r), where V is the disjoint
union V = VE] VA] VC, with VE as entity nodes, VA as attribute value
nodes, and VC as class nodes.

Edges (triples) E = ER] EA are a disjoint union of relation edges ER and
attribute edges EA. Relation edges connect entity nodes: 〈s, r,o〉 ∈ ER iff
s ∈ VE, r ∈ `r] type, and o ∈ VE] VC. Attribute edges connect an entity
with an attribute value: 〈s,a,o〉 ∈ EA iff s ∈ VE,o ∈ VA, and a ∈ `a.

The “special” relation edge 〈s, type, c〉 ∈ ER, s ∈ VE, and c ∈ VC, models
that entity s belongs to class c.

17

2.1 data and query model 18

starring type

type
name

dateOfBirth

rating

year

comment

motto

name

Person

“Audrey
Kathleen

Hepburn“

type

“Roman
Holiday“

Movie

starring

type

“Belgium“
bornIn

Location

type

“Audrey
Tautou“

type

“Mel
Ferrer“

type

spouse

title name

name

name

p1

p2 p3

l1

“Audrey Hepburn was a British
actress and humanitarian.

Born in Ixelles, Belgium as

Audrey Kathleen Ruston“

“Strength
through

Unity“

8.0

1953

1976

m1
p4

Person
“Gregory
Peck“

Actress

Figure 7: RDF graph that captures information about Audrey Hepburn and her movie
“Roman Holiday”.

. Example 6

Example data is depicted in Figure 7. More specifically, the example data
graph has an entity set VE = {m1,p1,p2,p3,p4, l1} and a set of attribute
value nodes VA = {“Roman Holiday”, “Audrey Kathleen Hepburn”, . . .}.
Attribute edges are given by EA = {name, title, . . .} and relation edges
are ER = {starring, spouse, . . .}. Further, entities are assigned to classes:
VC = {Movie, Person, Actress, Location}.

Unstructured Data. Many RDF graphs are text-rich, i.e., they contain large
amounts of textual data. More formally, attribute value nodes in VA oftentimes
comprise large text values. For instance, our data graph in Figure 7 features texts
for attributes comment, motto, or title.

Generally speaking, structured RDF data frequently has text via predicates
such as rdfs:comment or dc:description.22 Well-known examples are the DB-
pedia23 or IMDB24 dataset. Furthermore, unstructured Web documents are fre-
quently annotated with structured data using, e.g., RDFa or Microformats.25

Such interlinked documents can be seen as an RDF graph with documents as
objects. For instance, the Wikidata project26 recently introduced structured data
to the Wikipedia corpus.

Structured Data. At the same time, RDF data also contains structured data in
form of attribute (EA) and relation edges (ER), as well as classes in VC. With
regard to our example in Figure 7, the graph contains, e.g., the Movie class, the
starring relation, or the title attribute as structured data. Notice, for simplicity
we omit additional RDFS [29] features such as predicate or class hierarchies. Fur-

22Prefix rdfs and dc stand for http://www.w3.org/2000/01/rdf-schema# and http://purl.

org/dc/elements/1.1/, respectively.
23http://dbpedia.org, retrieved 2013-10-30.
24http://www.linkedmdb.org, retrieved 2013-10-30.
25http://www.webdatacommons.org, retrieved 2013-10-30.
26http://www.wikidata.org, retrieved 2013-10-30.

rdfs
dc
http://www.w3.org/2000/01/rdf-schema#
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://dbpedia.org
http://www.linkedmdb.org
http://www.webdatacommons.org
http://www.wikidata.org

2.1 data and query model 19

bornIntitle

rating

name
type

type

name

p l

“Belgium““Audrey
Hepburn“

“Holiday“

Movie

Person

starring
m

8.0

tp2

tp1

tp3

tp4
tp5

tp6

tp7
tp8

Figure 8: Hybrid query graph Q, which is asking for movies with title “Holiday”,
starring “Audrey Hepburn” etc. Data is given in Figure 7. Query Q comprises
eight triple patterns: Q = {tp1, . . . , tp8}.

1 PREFIX ex: <http://example.org/>

2 PREFIX xs: <http://www.w3.org/2001/XMLSchema#>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4

5 SELECT *
6 WHERE

7 {

8 ?m ex:title ?t .

9 FILTER contains(?t , "Holiday") .

10 ?m ex:rating "8.0"^^xs:double .

11 ?m rdf:type ex:Movie .

12 ?m ex:starring ?p .

13 ?p ex:name ?n1 .

14 FILTER contains(?n1 , "Audrey Hepburn") .

15 ?p rdf:type ex:Person .

16 ?p ex:bornIn ?l .

17 ?l ex:name ?n2 .

18 FILTER contains(?n2 , "Belgium") .

19 }

Listing 1: Hybrid query from Figure 8 written in SPARQL 1.1 syntax.

ther note that more expressive data representations, e.g., OWL [82, 8], introduce
even more schema data.

Hybrid Data. For this thesis, we focus on the mixture of structured and unstruc-
tured data in RDF graphs – we refer to this kind of data as hybrid data. Moreover,
if an attribute value o ∈ VA contains text, we conceive it as a bag-of-words. We
say that a vocabulary W comprises all such bags-of-words in VA.

. Example 7

For instance, in Figure 7 we would regard attribute value “Roman Holiday”
as a bag-of-words: {“Roman”, “Holiday”}. Further, we have a vocabulary
W = {“Roman”,“Holiday”, “Audrey”, “Kathleen”, . . .}, which captures all
such words in Figure 7.

2.1 data and query model 20

2.1.2 Structured and Unstructured Queries

Next, let us introduce a query model well-suited for RDF graphs following Def-
inition 3. We employ a core part of SPARQL [17]: basic graph patterns (BGPs)
queries. Furthermore, we present a corresponding result model together with its
formal semantics.

BGP Queries and Result Model. BGP queries comprise a conjunction of triple
patterns. We use a particular type of BGP queries: hybrid queries. Hybrid queries
can comprise some patterns that match structured data, while other patterns can
match unstructured texts.

ó Definition 4: Hybrid Query, Triple Pattern

Given a data graph G = (V,E, `a, `r), a hybrid query Q is a directed labeled
graph GQ = (VQ,EQ), where VQ is the disjoint union VQ = V

Q
V]V

Q
C]V

Q
K ,

with V
Q
V as a set of variable nodes, VQC = V = VE] VA] VC as a set of

constants, and V
Q
K as a set of user-defined keywords. Edges EQ are called

triple patterns, with each pattern adhering to:

tp = 〈s,p,o〉

where s ∈ V
Q
V]VE, p ∈ `a] `r]VQV , and o ∈ V

Q
V]VA]VC]V

Q
K .

As a shorthand, we will sometimes write a query Q as a set of its triple patterns:
Q = {tpi}. For example, query Q = {tp1, . . . , tp8} in Figure 8.

For simplicity, we define a keyword node as a single word occurring in the
text. That is, a keyword is one element from a bag-of-words representation of an
attribute node.

. Example 8

An example query Q is shown in Figure 8. Query Q features eight triple
patterns, which match structured and unstructured data, respectively. For
instance, the triple pattern

tp1 = 〈m, starring, p〉

has two variable nodes (m and p) and matches the starring relation in
Figure 7. Furthermore, the pattern

tp2 = 〈m, title, “Holiday”〉

has a keyword “Holiday”, and matches the attribute node “Roman Holi-
day”. Query Q can also be written in SPARQL syntax – as shown in List-
ing 1.

Corresponding to edge types, `a, `r, and type in Definition 3, we distinguish
four kinds of query patterns:

2.1 data and query model 21

ó Definition 5: Class, Relation, Attribute, and String Triple Pattern

A query Q can comprise:

• Class Pattern
tp = 〈s, type,o〉, s ∈ V

Q
V]VE and o ∈ VC.

• Relation Pattern
tp = 〈s, r,o〉, s ∈ V

Q
V]VE,o ∈ V

Q
C]V

Q
V , and r ∈ `r.

• Attribute Pattern
tp = 〈s,a,o〉, s ∈ V

Q
V]VE,o ∈ V

Q
C]V

Q
V , and a ∈ `a.

• String Pattern
tp = 〈s,a,w〉, s ∈ V

Q
V]VE,w ∈ V

Q
K , and a ∈ `a.

Notice, we will sometimes refer to class, relation, and attribute pattern as struc-
tured query pattern.

Result Model. A result (binding) for a query Q is defined as:

ó Definition 6: Binding

A binding b for a query Q is a vector (t1, . . . , tn) of triples, such that each
triple ti matches (defined in Definition 8 and Definition 9) exactly one pattern
tpi in Q and triples in b form a subgraph of G.

Via the matching of patterns in Q to triples, b binds variables to nodes in
the data. Formally, for binding b there is a function µb : VQV 7→ V, mapping
every variable in Q to a node in V.

Notice, we will use the terms result and binding synonymously in the following.
Furthermore, the result set for a query Q is denoted as B.

. Example 9

Continuing Example 8, one possible binding (result) for Q is:

b =
(
t1, t2, t3, t4, t5, t6, t7, t8

)
, where

triple t1 = 〈m1, type, Movie〉 matches tp1,

triple t2 = 〈m1, title, “Roman Holiday”〉 matches tp2,

triple t3 = 〈m1, rating, 8.0〉 matches tp3,

triple t4 = 〈p2, name, “Audrey Kathleen Hepburn”〉 matches tp4,

triple t5 = 〈m1, starring, p2〉 matches tp5,

triple t6 = 〈p2, type, Person〉 matches tp6,

triple t7 = 〈l1, name, “Belgium”〉 matches tp7, and

triple t8 = 〈p2, bornIn, l1〉 matches tp8.

2.1 data and query model 22

Function µb binds all variables in query Q. That is, µb(m) = m1, µb(p) =
p2, and µb(l) = l1.

During query processing partial bindings, which feature some patterns with
no matching triples, will occur:

ó Definition 7: Partial and Complete Binding

We refer to a pattern tpi, which has no bound triple, as unevaluated, and
write ∗ in the binding’s b ith position:

b =
(
t1, . . . , ti−1, ∗, ti+1, . . . , tn

)
We call such a binding b partial and denote its evaluated patterns as Q(b) ⊆
Q, as well as its unevaluated patterns as Qu(b) = Q \ Q(b). Binding b is
complete, if all patterns have been evaluated: Q(b) = Q.

Binding b comprises a partial binding b ′, if any matched triple ti in b ′ is also
contained in b at position i. In this case, we say b ′ contributes to b.

Query and Result Semantics. The semantics of hybrid queries follow those of
SPARQL BGP queries. That is, a binding is a subgraph of the underlying data
graph, which matches all query patterns.

ó Definition 8: Structured Triple Pattern Match

Given a triple pattern tp = 〈s,p,o〉 in query Q, where s ∈ V
Q
V] VE, p ∈

`a] `r] VQV , and o ∈ V
Q
V] V

Q
C , and a triple t = 〈s ′,p ′,o ′〉 in data graph G,

let 1M denote an indicator function such that:

1M(tp, t) :=


(if(s ∈ V

Q
V) : T else : s = s ′) and

T (if(p ∈ V
Q
V) : T else : p = p ′) and

(if(o ∈ V
Q
V) : T else : o = o ′)

F else

Triple t matches the structured pattern tp iff 1M(tp, t) = T.

The only difference to SPARQL BGP queries is due to keyword nodes: a value
node o ′ ∈ VA matches a keyword w ∈ V

Q
K , iff the bag-of-words from o ′ contains

word w. We say keyword triple patterns have a contains semantic:

2.2 query processing 23

ó Definition 9: String Triple Pattern Match

Given a keyword pattern tp = 〈s,p,w〉 in query Q, where s ∈ V
Q
V] VE,

p ∈ `a] V
Q
V , and w ∈ V

Q
K , and a triple t = 〈s ′,p ′,o ′〉 in data graph G, let

1KM denote an indicator function such that:

1KM(tp, t) :=


(if(s ∈ V

Q
V) : T else : s = s ′) and

T (if(p ∈ V
Q
V) : T else : p = p ′) and

(bag-of-words(o ′) ∩ {w} 6= ∅)
F else

Triple t matches string pattern tp iff 1KM(tp, t) = T.

2.2 query processing

Next, we discuss a traditional pipeline for processing hybrid queries. We give
an overview in Section 2.2.1 and outline query plan generation in Section 2.2.2.
Further, we introduce query cost estimation basics (see Section 2.2.3) and present
query execution in Section 2.2.4.

2.2.1 Overview

The first relational database was implemented in the System R project [149].
Nowadays, SPARQL and BGP query processing still follows the main steps in-
troduced in [149]: (1) statistics generation, (2) query optimization, and (3) query
execution, see [128]. A generic overview is shown in Figure 9-a.

À Statistics Generation
Statistics generation is done offline, i.e., before a query is issued. In this
phase, attribute value, relation, and/or join cardinalities are computed.
These cardinalities are oftentimes stored by means of histograms [135] or
wavelets [118].

Á Query Optimization
During the second step, a query is translated to an execution plan (query
plan). The translation is done at runtime and specifies how the query re-
sults are computed [53]. This is possible because of the declarative nature of
SPARQL queries: queries solely state which data shall be retrieved, but not
how. More precisely, the translation is usually carried out in three stages,
see Figure 9-b.

• Firstly, the query is parsed to a logical representation, e.g., a relational
algebra [45, 142] and its syntax is validated [128].

• Secondly, a “logical” query plan is computed, e.g., via query unnest-
ing [124] or view resolution/merging [72], that captures the query
semantics [128].

2.2 query processing 24

Query Query Optimizer

Information Need

ResultsQuery Executor

(a)

(b)

Query Plan

Statistics

Generation

Online

Offline Estimated

Costs

1

2 3

Query Optimizer

Query
Logical

Query Plan

Physical

Query Plan

Algebraic

Equivalences

Estimated

Costs

2

Figure 9: (a) Traditional query processing pipeline based on the System R project [149].
(b) Query optimization producing a logical and physical query plan [128].

• Last, the logical query plan is transformed to a physical plan. The lat-
ter precisely specifies how query results will computed, i.e., the plan
states for each of its operators concrete algorithms (e.g., a hash join),
and resources (e.g., disk or memory space) to be used. For this transla-
tion, a cost-based plan generation is frequently employed. That is, the
optimizer tries to estimate computation costs of query subexpressions
(e.g., single joins or triple patterns) and find a physical plan that min-
imizes its associated costs [128]. Notice that estimations may differ
depending on the available statistics.

Â Query Execution
In the last stage, the physical query plan is given to an engine that com-
putes the results – precisely as dictated by the physical plan [53]. Two as-
pects during query execution are important for this thesis: pipelining and
scheduling.

• Pipelining is a desirable property of operators in the query plan. The
property dictates that an operator processes one input at a time and
propagates one output to the next operator. Pipelined computation
may lead to better response times and higher throughput [53]. Un-
fortunately, not all operators (e.g., sorting) support pipelining, but
instead must process all their (intermediate) results together [53].

• Scheduling of computation during the query plan execution is of high
importance [53]. We will detail two options, namely iterator-based and
data-driven scheduling, in Section 2.2.4.

2.2 query processing 25

tp3: ?m ex:rating “8.0“^^xs:double

tp1: ?m rdf:type ex:Movie contains(?t, “Holiday“)

π
SELECT ?m
WHERE
{
 ?m rdf:type ex:Movie .
 ?m ex:title ?t .
 FILTER contains(?t, “Holiday“) .
 ?m ex:rating “8.0“^^xs:double .
}

 Q = {tp1,tp2,tp3}

(a) (b)

m

Equi-Join

m

Equi-Join

Scan FILTER

Scan

tp1

tp2

tp3

Projection

m

(c)

π

m

Hash-Join

m

Hash-Join

contains(?t, “Holiday“)

FILTER

tp3: ?m ex:rating “8.0“^^xs:double

Index
Scan: POS

tp1: ?m rdf:type ex:Movie

Index
Scan: POS

Projection

m

tp2: ?m ex:title ?t

Scan

tp2: ?m ex:title ?t

Index
Scan: POS

Figure 10: (a) Query fragment from example in Figure 8. (b) Logical query plan for the
query in (b). (c) Physical query plan for the query in (b).

. Example 10

Figure 10-a depicts a logical/physical query plan for a fragment of our
running example from Figure 8.

The logical plan does not include any implementation specific aspects,
e.g., concrete join algorithms. In contrast, the physical plan states that hash-
joins shall be used. Further, the physical plan employs a different join
ordering than the logical plan. That is, bindings for triple patterns are
joined/materialized differently in the physical plan, because the patterns
are sorted according to their estimated join cardinalities.

2.2.2 Query Optimization

As outlined above, query optimization transforms a query into a physical query
plan. However, because of declarative query languages, such as SPARQL [17]
or SQL [53], an optimization engine has a certain freedom to choose amongst
multiple possible physical query plans, which all lead to the same result set. For-

2.2 query processing 26

(a)

Matching Triples

Triple Pattern

Scan Operator

Equi-Join

Operator

(b)

Input i1 Input i2 Input in...

Output

Join
Variable m

Figure 11: (a) Generic scan operator. (b) Generic equi-join operator with n join inputs
and join variable m.

mally speaking, the logical representation of a particular query can be written in
different forms, which are equivalent to each other (algebraic equivalences) [53].

These various plans may differ drastically in terms of their costs, e.g., num-
ber of intermediate results and overall query processing time. This problem is
addressed by the query optimization engine – it aims at finding the “best” phys-
ical query plan for a given query. We will provide details on a cost model in
Section 2.2.3.

Query optimization has a long-standing history in the (relational) database
community. Initial work on query optimization was done in the System R project
[149]. The authors in [149] proposed a bottom-up dynamic programming ap-
proach for join order optimization and introduced the notion “interesting or-
ders”. Other solutions exploited rules for optimization. A well-known example
is the Starbust optimizer [70] that employed rules in order to integrate low-level
physical operators. In contrast to the bottom-up strategy proposed in [149], the
works [63, 64] presented a top-down optimization relying on memorization tech-
niques.

In this thesis, we have a have simplistic query model – we solely address BGP
queries (see Definition 4, p. 20). In such a setting, previous approaches [104]
focused on the choice of the query operators and the ordering of the joins. Note,
there is a large body of works in the area of relational databases, which focus
on more sophisticated optimizations [53]. Further, for general SPARQL queries
additional optimizations have been investigated [108, 142, 161].

Query Operators. Two kinds of logical query operators are important for us: a
scan and an equi-join operator. Intuitively, a scan operator materializes matching
triples for a given pattern, see Figure 11-a.

ó Definition 10: Scan Operator (Informal) [112]

For a given query Q over a data graph G, a scan operator is a function that
projects a triple pattern in Q to a set of matching triples in data graph G.

There are a number of possible implementations (physical scan operators) for
a logical scan operator [84, 139].

2.2 query processing 27

. Example 11

Given a vertical triple store, triples are stored directly in a three-column
SPO-table and indexes are provided for every possible access pattern [84,
139]. In Figure 10-c, we use such a vertical store and implement the scan
operators as scans over the POS-index:

P O → S

ex:bornIn ex:l1 → ex:p2

ex:dateOfBirth 1976 → ex:p1

. → . . .

ex:rating 8.0 → ex:m1

. → . . .

For instance, the scan for pattern tp = 〈?m, ex:rating, 8.0〉 (see Fig-
ure 10-c) would be realized by means of a lookup with prefix 〈ex:rating,
8.0〉 in the above POS-index.

Triples that match different triple patterns are combined via a logical equi-join
operators, see Figure 11-b. Based on [112], we informally define an equi-join as:

ó Definition 11: Equi-Join Operator (Informal) [112]

For a given query Q over a data graph G, intermediate results from n inputs
are combined by a theta-join via an equality constraint on the join variable
m – the so-called equi-join on m. Each input i may either be another join or
a scan operator.

Frequently, hash-joins, merge-joins, and nested-loop joins are exploited as
physical join operators [84, 139]. For example, in Figure 10-c, the query optimizer
decided to use two hash-joins. For simplicity we will discuss binary equi-joins
in the following. However, all our approaches can be applied to n-ary joins.

Join Ordering. One of the key tasks of the optimizer is finding the “best” join
order. That is, algebraic equivalences allow for multiple different join orderings,
which all lead to the same results, but cause different costs in terms of number
of intermediate results and query processing time. Most notably, it is known that
the join operation is commutative and associative [53].

• Join commutativity: tpi 1 tpj ⇔ tpj 1 tpi.

• Join associativity: tpi 1
(
tpj 1 tpk

)
⇔
(
tpi 1 tpj

)
1 tpk.

ex:bornIn
ex:l1
ex:p2
ex:dateOfBirth
ex:p1
ex:rating
ex:m1
ex:rating
ex:rating

2.2 query processing 28

. Example 12

The join order in the logical query tree in Figure 10-b is changed to the
order in the physical tree, see Figure 10-c. That is, tp1 1 tp2 is evaluated
first, instead of tp3 1 tp1.

Notice, join (re-)ordering can result in different query tree forms [53]: a left-
deep, a right-deep, or a bushy tree.

2.2.3 Cost Model

The question remains, how a query optimizer quantifies the quality of a physical
query plan. For this, various approaches exist for SPARQL [104, 108, 142, 161]
as well as SQL queries [53]. Intuitively, many of those approaches are (to some
extent) cost-based, i.e., use optimization strategies to discover the cheapest phys-
ical plan over a search space.

Depending on the concrete system, a cost model may vary. However, these
models oftentimes incorporate aspects as follows [53]:

À Costs for Secondary Storage Access
Costs associated with read and write access to data from the secondary
disk storage, respectively.

Á Costs for Disk Storage
Costs for storing data at disk during query processing.

Â Costs for Computation
Costs due to in-memory processing, e.g., join computations. Such costs are
also referred to as CPU costs.

Ã Costs for Memory
Costs associated with memory consumption for, e.g., buffering intermedi-
ate results.

Ä Costs for Communication
In case of a distributed query processing setting, costs can be caused by
communication of (intermediate) results to the site/terminal where the
query was issued at.

For join ordering and query operator selection, selectivity estimation plays
a crucial role [104]. In simple terms, selectivity estimation allows to compute
cardinality estimations for a query and its sub-expressions. This way, many of
the above described costs can be approximated for a particular physical query
tree. More specifically, a selectivity estimation function is defined as:

2.2 query processing 29

+next()
+open()
+close()

Iterator

Scan Equi-Join

Figure 12: An abstract iterator class, implemented by a generic scan and equi-join oper-
ator.

ó Definition 12: Selectivity Estimation Function (Informal)

Given a query Q and a data graph G, a selection estimation function, sel,
projects Q to the cardinality of query Q’s result set, which is computed over
data graph G.

Note, we will provide a refined definition in Definition 21.

2.2.4 Query Execution

In this last step of the query processing process (see Figure 9 for an overview of
the query processing pipeline), the physical query plan is executed and query
results are returned to the user. Two aspects are of importance during this
phase [53]: pipelining capabilities of an operator and operator scheduling. The
former can greatly improve the overall throughput of the query execution – we
discuss pipelining in more details in Section 2.3.

The latter, the operator scheduling, dictates the order in which query opera-
tors interact with each other. Traditional database systems employ the iterator
principle [62]. That is, each query operator implements the iterator interface (see
Figure 12) – comprising three methods [62]:

• An open method that activates the operator and recursively its children.

• An iterator contains a next method, which produces the next binding. In
particular, a join operator implementation of the next method would call
the next method of its children and join their partial bindings.

• Last, an iterator features the close method, which terminates the operator.

As an alternative solution to the iterator principle, the data-driven scheduling
has been proposed in [169]. Execution based on data-driven scheduling is some-
times called push-based query execution. Here, the data producing operators trig-
ger all other operators and thereby control the overall query execution. Thus,
“the data” and not “the operators” control the query execution. More precisely,
every operator gets input data from its children and actively pushes outputs to
its parent [169].

2.3 rank-aware query processing 30

Top-k Processing
Techniques

Query Model

Data Model

Data Access

Impl. Level

Ranking

Selection Top-k

Join Top-k

Aggregation
Top-k

Certain Data +
Exact Processing

Certain Data +
Approximate

Processing

Uncertain Data

Sorted Access
Sorted and

Random Access

Sorted Access
with Controlled

Probes

Query Engine
Application

Level

Monotonic

Generic

Unknown

Dimension 1

Dimension 4

Dimension 2 Dimension 3

Dimension 5

Figure 13: Overview of varying top-k strategies based on [95].

π

m

Hash-Join

m

Hash-Join

tp3: ?m ex:rating “8.0“^^xs:double

Index
Scan: POS

tp1: ?m rdf:type ex:Movie

Index
Scan: POS

Projection

m

Sort π

m

PBRJ

m

PBRJ

tp3: ?m ex:rating “8.0“^^xs:double

Sorted
Access sa3

tp1: ?m rdf:type ex:Movie

Sorted
Access sa1

Projection

m

(a) (b)Limit k

k

C
o

m
p

u
ta

ti
o

n

o
f

al
l r

e
su

lt
s

contains(?t, “Holiday“)

FILTER

tp2: ?m ex:title ?t

Index
Scan: POS

contains(?t, “Holiday“)

FILTER

tp2: ?m ex:title ?t

Index
Scan: POS

Sorted
Access sa2

Figure 14: Given query Q in Figure 10-a: (a) Naive top-k query processing exploiting a
sort operation after computing the entire result set. (b) Join top-k processing
using two PBRJ operators and one sorted access for every triple pattern.

In the next chapters, we will rely on both query execution paradigms, de-
pending on what precise setting we have. Most importantly, if and how data is
distributed over a space of sources.

2.3 rank-aware query processing

As motivated in the introduction (see Section 1.1.2.3), top-k query processing
aims at efficiently computing the k top-ranked results for a given query. For this,
techniques try to terminate early, i.e, to not compute the entire result set, but stop
computation immediately after the top-k results have been found [95].

In Section 2.3.1, we give a brief overview over existing top-k processing strate-
gies. Further, we discuss a particular kind of top-k query processing in Sec-
tion 2.3.2: join top-k processing.

2.3 rank-aware query processing 31

2.3.1 Overview

In recent years, top-k processing techniques gained a significant amount of atten-
tion in the DB community [95]. While works differ along multiple dimensions
(discussed below), they commonly target the so-called early termination.

Early Termination. Given a query Q, we can compute a top-k result simply by
materializing the entire result set for Q and sorting the results afterwards, see
Example 3. In other words, we would apply a sort operation after the top-level
join in query tree.

Unfortunately, sorting is a blocking operation and does not allow for pipelin-
ing. In contrast, a top-k join operator (introduced in the next section) omits the
sort operation and enables pipelining. This way, it is possible to stop result com-
putation immediately after the first top-k results have been found [95] – com-
monly referred to as early termination.

. Example 13

Figure 14 provides two physical query plans for the query in Figure 10-a.
The LHS physical query plan computes all query bindings and sorts them
in the very last step, since sorting is a blocking operation.

In contrast, the RHS physical query plan applies two top-k join oper-
ators. Here, a query optimizer can search for the best possible physical
query plan – no blocking sort operation is applied. Moreover, the top-k
join operators allow to terminate early. That is, not all results have to be
computed, in order for the top-k results to be reported.

Design Dimensions. Based on [95], top-k techniques are categorized by means
of dimensions as depicted in Figure 13:

• Dimension 1: Query Model
Approaches differ with regard to the query model. Selection top-k process-
ing addresses entity queries only. That is, it computes top-ranked entities
with every entity being ranked according one or more criteria, e.g., [54].
Furthermore, join top-k processing techniques rank every triple and calcu-
late top-k join results, e.g., [93]. Last, the aggregate top-k processing focuses
on aggregate queries, e.g., [110].

• Dimension 2: Data Access
Top-k processing differs depending on the available data access. Frequently,
one assumes that data, e.g., triples or entities, can be accessed in descend-
ing score order (sorted access, defined below), e.g., [54, 66]. In addition, other
approaches rely on a random access to their input data, e.g., [54, 65]. Some
works, e.g., [93, 32], require at least one sorted access, in order to use the
random accesses for probing the remaining inputs.

• Dimension 3: Ranking
Top-k strategies vary depending on the ranking functions they support.
While most approaches require ranking functions to be monotonic, e.g.,

2.3 rank-aware query processing 32

[54], some other works lifted this restriction [174]. Last, some approaches
that target skyline queries require no ranking function, e.g., [28, 172].

• Dimension 4: Data and Query Uncertainty
Data model and query model could be uncertain. Former approaches deal
with uncertain data [137, 152], e.g., in the sensor networks domain, where
sensor measurements are never exact and always include some amount
of jitter. The latter approaches address approximate query processing over
certain data. Here, the goal is to trade off result accuracy in favor of result
computation time [14, 157].

• Dimension 5: Implementation Level
Top-k techniques can vary with regard to their implementation. Some ap-
proaches are realized in the application layer, on top of a query processing
system, e.g., [34, 50]. Other solutions, however, are implemented as part of
the query processing engine, i.e., as query operators, e.g., [93, 109, 110].

The interested reader may see [95] for a comprehensive survey discussing
above dimensions and top-k strategies in depth.

In this work, we are concerned with join top-k (Dimension 1) over certain data
(Dimension 4), implemented as query operators (Dimension 5), and requiring a
sorted access (Dimension 2) as well as monotonic ranking functions (Dimension 3).
We will define the precise setting in Chapter 3 and Chapter 5.

2.3.2 Top-k Join Processing

Queries over Web data often comprise joins to combine bindings for multiple
triple patterns. For example, the rather simple query in Figure 8 would already
require seven joins. We therefore focus on the top-k join (Dimension 1) problem
in this thesis. The top-k join commonly requires a sorted access as well as a
monotonic ranking function.

2.3.2.1 Ranking Function

We employ a ranking function for quantifying the relevance of a binding b:

ó Definition 13: Ranking Function

A ranking function is given by scoreQ : B 7→ R, with B as set of all bindings
for query Q. scoreQ(b) assigns a score to b, which indicates b’s relevance
with regard to query Q and/or the user, who issued query Q.

More precisely, scoreQ(b) is given by an aggregation over b’s triples:
scoreQ(b) :=

⊕
t ∈ b scoreQ

(
~t
)
, with ⊕ as monotonic aggregation function.

The above definition follows the notion of user-/query-dependent ranking
as presented in [12, 36, 156]. A prime example for query-dependent ranking
functions is result ranking for keyword queries, where scores reflect the quality
of the keyword match. This quality could, e.g., be measured by the Levenshtein
distance [26].

2.3 rank-aware query processing 33

On the other end of the spectrum are “offline” ranking functions, which as-
sign scores that are independent of query and user characteristics, respectively.
Such triple scores could, e.g., be obtained via PageRank inspired ranking [74] or
witness counts [52].

Note, scoreQ could be defined as part of the query, e.g., by means of the ORDER BY

clause in SPARQL.

. Example 14

Given the query in Figure 8 and a binding

b = (t1 = 〈s1,p1,o1〉, . . . , t8 = 〈s8,p8,o8〉)

where triple ti matches triple pattern tpi. Then, a ranking function for b
could be defined as:

scoreQ = pageRank(s1)

+ (1− levenshtein(o2, “Holiday”))

+ pageRank(s4)

+ (1− levenshtein(o4, “Audrey”))

+ (1− levenshtein(o7, “Belgium”))

where levenshtein() is a function measuring the Levenshtein distance [26]
between an object (e.g., o2) and a keyword (e.g., “Holiday”). Further, the
PageRank [132] score of an entity is captured by pageRank() and the ag-
gregation function, ⊕, is given by a summation.

2.3.2.2 Sorted Access

As a special scan operator (see Definition 10 and Figure 14), we require a sorted
access sai for every pattern tpi in query Q, which retrieves matching triples in
descending score order. Formally, a sorted access is defined as:

ó Definition 14: Sorted Access

Given a data graph G, a query Q, and a ranking function scoreQ, a sorted
access sai for a pattern tpi in Q is a scan operator that projects tpi to a sorted
set of matching triples in graph G. That is, each triple is assigned a score via
scoreQ and the set is sorted according to descending score order.

Efficient sorted access implementations for RDF data have been proposed in [2,
115]. Let us illustrate the core idea on our running example:

2.3 rank-aware query processing 34

. Example 15

Let us continue Example 14 and provide sorted accesses for its ranking
function.

• On one hand, given the keyword pattern

tp2 = 〈m, title, “Holiday”〉

in Figure 8, a sorted access must materialize all triples, which have
an attribute node that contains “Holiday”. After materialization at
runtime, these triples are sorted with descending similarity with re-
gard to that keyword (measured via the Levenshtein distance). Thus,
sorted access sa2 loads one triple

t = 〈m1, title, “Roman Holiday”〉

which comprises “Holiday”. Then, triple t is ranked according to
its Levenshtein distance to “Holiday”. Similarly, sorted accesses for
patterns tp4 and tp7 (see Figure 8) can be provided.

• On the other hand, for pattern

tp6 = 〈p, type, Person〉

in Figure 8, an offline ranking based on a PageRank score for Person
instances is employed, see Example 14. So, we can index all triples
matching pattern tp4 based on their associated Person score at of-
fline time. Finally, a sorted access can be provided at runtime by
iterating over matching triples in descending PageRank score order.
Similarly, sorted accesses for patterns tp1, tp3, tp5, and tp8 (see Fig-
ure 8) can be provided.

Partial bindings retrieved from sorted accesses are combined via equi-joins,
see Definition 11 and Figure 14 – as presented in Section 2.2. To enable a top-k
query processing, we introduce a rank-aware equi-join in the following section.

2.3.2.3 Pull Bound Rank Join Framework

The authors in [143] formulated a general framework for top-k join algorithms,
the Pull Bound Rank Join (PBRJ), which can be instantiated to yield well-known
top-k join approaches such as the hash rank-join (HRJN) or the nested-loops rank-
join (NRJN) [93].

This framework contains two components: a pulling strategy PS and a bound-
ing strategy BS. The pulling strategy decides, which join input to pull next. The
bounding strategy estimates a maximal possible score for “unseen” join results,
i.e., the maximal score of future join results.

Notice, for simplicity we outline the framework for binary joins, however, it
can be easily extended to cover n-ary joins.

2.3 rank-aware query processing 35

Algorithmus 1 : Pull/Bound Rank Join framework [143].
Params : Pulling strategy PS and bounding strategy BS

Index : Sorted access sai and saj for input i and j, respectively.
Buffer : Output buffer O. Buffer Hi and Hj for “seen” bindings, pulled

from sai and saj.
Input : Query Q and result size k.
Output : Top-k result in buffer O.

1 begin

2 β←∞
3 while | O |< k or min

b ′∈O
scoreQ(b

′) < β do

// select next input i to pull from

4 i← PS.input()
// pull next binding from i

5 b← next triple pattern binding from sai
// update upper bound β

6 β← BS.update(b)

// join attempt with seen bindings from input j

7 O← Hj 1 {b}

8 Retain only k top-ranked bindings in O

// update seen buffer Hi
9 Add b to Hi

// return top-k results

10 return O

Framework. The PBRJ framework [143] is depicted in Algorithm 1. On Line 3,
we check whether the output buffer O comprises k complete bindings and if
there could be unseen (future) bindings with higher scores – measured via
bound β and bounding strategy BS, respectively. If both conditions hold, the
PBRJ terminates and reports bindings in O (early termination, as explained above).
Otherwise, PS selects an input i to pull from (see Line 4) and produces a new par-
tial binding b from the sorted access on input i, see Line 5. After materialization,
we update β using the bounding strategy BS. Then, we attempt to join binding b
with seen bindings from the other input, j, and add join results to output buffer
O, see Lines 7-8. Last, we put partial binding b in buffer Hi (Line 9).

Instantiations for PS and BS. Multiple works proposed bounding strategies,
e.g., [55, 93, 116, 143] and pulling strategies, e.g., [93, 117]. Commonly, the corner-
bound [93] is employed as bounding strategy:

2.3 rank-aware query processing 36

ó Definition 15: Corner Bound

A PBRJ operator maintains two bounds, ui and li, for each input i. ui is the
highest score observed from input i, while li is the lowest observed score
on input i. If input i is exhausted, li is set to −∞. The bound for scores of
unseen join results is:

β := max {u1 ⊕ l2, u2 ⊕ l1}

where ⊕ is the aggregation function used in the ranking function (see Defi-
nition 13, p. 32).

On the other hand, the corner-bound-adaptive strategy [93] is frequently used as
pulling strategy PS:

ó Definition 16: Corner-Bound-Adaptive Pulling

The corner-bound-adaptive pulling strategy chooses the input i such that:
i = 1 if u1 ⊕ l2 < u2 ⊕ l1 and i = 2 otherwise, where ⊕ is the aggregation
function used in the ranking function.

If u1⊕ l2 = u2⊕ l1, the input with the smaller number of unseen (future)
partial bindings is chosen.

Note, the corner-bound has been shown to be instance-optimal for binary PBRJ
operators and one ranking attribute per join input [144].

R A N K - AWA R E Q U E RY P R O C E S S I N G

37

3
R A N K - AWA R E Q U E RY P R O C E S S I N G

Context of this Chapter. In this chapter, we present an exact top-k join for
distributed RDF data: Linked Data top-k processing. This approach is based on
our previous publication [2] and resembles a rank-aware equi-join operator for
distributed Web data.

More specifically, our Linked Data top-k processing allows a data-driven rank-
aware processing of hybrid queries over distributed Web data. Data-driven sche-
duling of operators is a key feature of our work and enables the processing
to be less affected by Web data source unavailabilities. In fact, processing is
driven by data retrieved from Web sources. Moreover, we leverage information,
which is available in our Web data indexes, in order to significantly improve the
corner bound strategy and to allow for an earlier termination. This tighter bound
drastically safes time and number of triples/Web data sources processed during
top-k result computation.

These contributions aim at Research Question 1: How to enable top-k query
processing on highly distributed Web data? As a complementary approach, which
targets Research Question 4, we will present an approximate top-k processing for
Web data in Chapter 5. In particular, this work will allow for efficiency gains by
means of less accurate result sets. In contrast, the Linked Data top-k approach
processes queries in an exact and complete manner.

We classify our approach based on the design dimensions outlined in Sec-
tion 2.3.1. This classification is highlighted in Figure 15.

Top-k Processing
Techniques

Query Model

Data Model

Data Access

Impl. Level

Ranking

Selection Top-k Selection Top-k

Join Top-k

Aggregation
Top-k

Aggregation
Top-k

Certain Data +
Exact Processing

Certain Data +
Approximate

Processing

Certain Data +
Approximate

Processing

Uncertain DataUncertain Data

Sorted Access Sorted and
Random Access

Sorted and
Random Access

Sorted Access
with Controlled

Probes

Sorted Access
with Controlled

Probes

Query Engine Application
Level

Application
Level

Monotonic

GenericGeneric

UnknownUnknown

Figure 15: Classification of our Linked Data top-k processing approach.

38

3.1 introduction 39

Data source s1

Data source s2

Data source s3

rating

year

“Roman
Holiday“

Movie

starring

type

title

p2

8.0

1953

m1
p4starring

p4

Person

type

“Gregory
Peck“

name

comment

Person

“Audrey
Kathleen

Hepburn“

type
bornIn

spouse

name

p2 p3

l1

“Audrey
Hepburn

was ...“

Actress

type

Figure 16: The running example from Figure 7 (adapted for simplicity) is distributed
over three data sources: s1, s2, and s3. The RDF data describes the movie
“Roman Holiday” and its actors Audrey Hepburn and Gregory Peck.

• We target a top-k join problem, i.e., single triples have ranking scores as-
signed and top-ranked joined results are reported.

• Further, we have certain data and compute exact results.

• We provide a novel lightweight sorted access implementation for Web data
sources. In particular, the necessary indexes make maintenance of changing
Web data highly efficient, due to our simple score statistics.

• We implemented a top-k join operator, which can be integrated in a phys-
ical query plan – as decided by a query optimizer. In fact, we present a
selectivity estimation approach in Chapter 4, which allows for highly ac-
curate selectivity estimations of hybrid queries over Web data. Based on
these selectivity estimates, a query optimizer can create a physical query
plan – including our Linked Data top-k join operator.

• Last, our approach employs a monotonic ranking function. Note, many
common ranking functions, e.g., PageRank ranking [132], fall in this cate-
gory.

Outline. In Section 3.1, we introduce and motivate the problem (Section 3.1.1)
as well as provide the necessary background on Linked Data query processing
(Section 3.1.2). Then, we outline our contributions and research questions in Sec-
tion 3.2. In Section 3.3, we introduce our novel top-k processing approach. In
particular, we propose two optimizations allowing for tighter score bounds on
future join results, and a way to prune unnecessary partial bindings. Last, we
present our evaluation in Section 3.4 and discuss related work in Section 3.5,
before concluding with Section 3.6.

3.1 introduction 40

3.1 introduction

3.1.1 Motivation

RDF data is oftentimes highly distributed across a space of sources. Each data
source can comprise one or more RDF graphs. Formally speaking, a data graph
G could be a disconnected graph, where every data source holds one or more
subgraphs of G. Notice, this general notion of distributed data is strongly related
to the concept of dataspaces – the interested reader may see [56, 71].

. Example 16

The data from our running example in Figure 7 is distributed over three
data sources (s1, s2, and s3) in Figure 16.

One popular form of distributed RDF is Linked Data [24]. The Linked Data
principles27 mandate how to access and publish RDF data on the Web:

À Use Uniform Resource Identifiers (URIs) as identifiers for entity nodes VE
in the data graph G.

Á Use Hypertext Transfer Protocol (HTTP) URIs to enable an easy lookup.

Â Dereferencing a URI returns a description, i.e., RDF graph, of the entity
identified by that URI.

Ã Entity descriptions should link to related entities, which are again identi-
fied via their HTTP URIs.

According to the Linked Data principles, dereferencing a Linked Data URI via
HTTP should return a machine-readable description of the entity identified by
that URI. So, each entity in VE represents a data source:

ó Definition 17: Linked Data Source

Given a data graph G, its subgraphs are distributed over a space of sources:
{si}. A HTTP URI d is an identifier for a Linked Data source s, which fea-
tures a set of RDF triples Tds from G as content. That is, Tds is obtained
by dereferencing d. Triples in Tds contain HTTP URI references (links) that
connect d with related sources.

. Example 17

Figure 17 depicts three Linked Data sources (s1, s2, and s3) identified by
means of their URIs: ex:m1, ex:p2, and ex:p4. Dereferencing their URIs
would yield the RDF graphs that are shown in Figure 17.

27http://www.w3.org/DesignIssues/LinkedData.html, retrieved 2013-11-15.

ex:m1
ex:p2
ex:p4
http://www.w3.org/DesignIssues/LinkedData.html

3.1 introduction 41

Listing 2: Namespace prefixes.

1 @prefix ex: <http://example.org/> .

2 @prefix xs: <http://www.w3.org/2001/XMLSchema#> .

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . �
Listing 3: Source s1 for URI ex:m1.

1 ex:m1 ex:year "1953"^^xs:int ;

2 ex:rating "8.0"^^xs:double ;

3 rdf:type ex:Movie ;

4 ex:title "Roman Holiday" ;

5 ex:starring ex:p2 ,

6 ex:p4 . �

Listing 4: Source s3 for URI ex:p4.

1 ex:p4 ex:name "Gregory Peck" ;

2 rdf:type ex:Person . �
Listing 5: Source s2 for URI ex:p2.

1 ex:p2 ex:name "Audrey Kathleen Hepburn" ;

2 ex:comment "Audrey Hepburn was

3 a British actress and humanitarian.

4 Born in Ixelles, Belgium as

5 Audrey Kathleen Ruston" ;

6 rdf:type ex:Person ;

7 rdf:type ex:Actress ;

8 ex:spouse ex:p3 ;

9 ex:bornIn ex:l1 . �
Figure 17: The sources from Figure 16 are illustrated as Linked Data sources. That is,

each source is identified with an URI and sources provide links to each other.
RDF data is written in NTriples syntax [21].

Several works have studied the problem of Linked Data query processing [75,
77, 78, 105, 106, 140]. In fact, a recent survey provides an overview of Linked
Data processing strategies [76]. Processing structured queries over Linked Data
can be seen as a special case of federated query processing.

However, instead of relying on endpoints that provide structured querying ca-
pabilities (e.g., SPARQL interfaces), only HTTP URI lookups are available. Thus,
entire sources have to be retrieved. Even for a single trivial query, hundreds of
sources have to be processed in their entirety [105]. Aiming at delivering up-to-
date results, sources often cannot be cached, but have to be fetched from external
hosts. Thus, query processing efficiency/scalability are essential problems in the
Linked Data setting.

In the next paragraphs, let us briefly discuss how existing query processing
approaches addressed these efficiency and scalability issues.

ex:m1
ex:p4
ex:p2

3.1 introduction 42

1 PREFIX ex: <http://example.org/>

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3

4 SELECT ?m ?p

5 WHERE

6 {

7 ?m ex:starring ?p .

8 ?p rdf:type ex:Person .

9 }

type

p
starring

m

tp5
tp6

Ranking Function:
scoreQ(b1) = popularity(m1) + popularity(p1)
with binding b1 = (<m1,starring,p1>, <p1, type, Person>)

Person

Figure 18: Example query asking for movies, which star some Person. The query com-
prises two triple patterns, tp5 (Line 7) and tp6 (Line 8), and represents a
fragment of the query in Figure 8. For ranking results, a popularity-based
score is employed for movie as well as actor bindings.

3.1.2 Data-driven Linked Data Query Processing

In this chapter, we use the example query in Figure 18, which is a fragment of
our running example in Figure 8. We use this query (as well as its matching data
sources in Figure 17) to illustrate Linked Data query processing.

. Example 18

For the query in Figure 18, the URIs ex:m1, ex:p2, and ex:p4 (data is
illustrated in Figure 17) are dereferenced and their triples are joined to
produce bindings for the variables m and p.

The results are retrieved from different sources, which vary in relevance:
we use an offline computed popularity score for bindings to the movie as
well as the actress variable. More specifically, URI ex:p2 provides data
about the very popular actress Audrey Kathleen Hepburn, while URI
ex:p4 holds data about Gregory Peck, who is less well-known. Such differ-
ences in actor popularity could be captured by a ranking function, which
aggregates the actor/movie popularity.a

ex:m1
ex:p2
ex:p4
ex:p2
ex:p4

3.1 introduction 43

The ranking function scoreQ is given as simple summation over those
popularity scores:

scoreQ(b) = popularity(m1) + popularity(p1)

where b =
(
〈m1, starring, p1〉, 〈p1, type, Person〉

)
.

aIn a real-world application, popularity scores could be computed based on a
PageRank strategy [132], which exploits the ranking of the corresponding DBpedia and
Wikipedia page, respectively.

Linked Data Query Processing. Traditionally, a query Q is evaluated by ob-
taining bindings for each triple pattern and then performing a series of equi-joins
between bindings obtained for patterns that share a variable, see Section 2.2. In
the Linked Data context, BGP queries are evaluated against all sources in the
Linked Data graph G. While some sources may be available locally, others have
to be retrieved via HTTP dereferencing during query processing.

For this, exploration-based link traversal [77, 78] can be performed at runtime.
The link traversal strategy assumes that Q contains at least one URI d as “entry
point” to data graph G. Starting from triples in Tds , G is then searched for results
by following links from d to other sources.

Instead of exploring sources at runtime, knowledge about (previously pro-
cessed) Linked Data sources in the form of statistics has been exploited to de-
termine and rank relevant sources [75, 105] at query compilation time. Existing
approaches assume a source index, which is basically a map that associates a
triple pattern tp with sources containing triples that match tp. Let the result of
a lookup in the source index for tp be source(tp).

Given a source index, Linked data query processing can be conceived as a
series of operators:

• Source-Scan Operator
We identify the source-scan as a distinctive operator in Linked Data query
processing. Given a source s with URI d, source-scan(d) outputs all triples
in Tds .

• Selection Operator
A selection σTds (tp) is performed on Tds to output triples that match a triple
pattern tp.

• Equi-Join Operator
Two triple patterns tpi and tpj that share a common variable are combined
via an equi-join operator tpi 1 tpj (i.e., bindings for tpi and tpj are joined).
In general, Qi 1 Qj joins any subexpression Qi with another subexpression
Qj, where Qi ⊂ Q, Qj ⊂ Q, and Qi ∩Qj = ∅. Note, in the following, we refer
to an equi-join simply as join.

• Union Operator
Last, we have

⋃
(i1, . . . , in), which outputs the union of its inputs i.

For clarity of presentation, we assume triple patterns form a connected graph
such that a join is the only operator used to combine triples from different pat-

3.1 introduction 44

σ(tp6)σ(tp5)

p

Equi-Join

Source s1

Source-
Scan

Source s2 Source s3

tp6: ?p rdf:type ex:Person

Selection

push

Source-
Scan

Selection

push

tp5: ?m ex:starring ?p

σ(tp6)

Selection

push

Source-
Scan

Union

push push

Union

push

pushpush
Access
Plans

Push-based query
processing, i.e., data is

actively pushed from
access plans to joins.

ex:m1 ex:p2 ex:p4

Figure 19: Push-based plan for query Q in Figure 18 [105, 106].

terns. Then, Linked Data query processing can be modeled as a tree-structured
plan as exemplified (see Example 19).

Query plans in relational databases generally consist of access plans for in-
dividual relations. Similarly, Linked Data query plans are composed of access
plans at the bottom-level – one access plan for each triple pattern. An access plan
for triple pattern tpi in query Q = {tp1, . . . , tpn} is a tree-structured query plan
constructed in the following way:

À At the lowest level, leaf nodes are source scan operators, one for every
source s that is relevant for triple pattern tpi, i.e., s has URI d ∈ source(tpi).

Á The next level contains selection operators. We employ one selection oper-
ator for every source scan operator.

Â The root node is a union operator
⋃
(σTd1 (tpi), . . . ,σTdn (tpi)), which com-

bines the outputs of all selection operators for tpi (with di ∈ source(tpi)).

Note, an access plan for triple pattern tpi implements the scan operator de-
fined in Definition 10, i.e., it provides access to matching triple for a given pattern
tpi in query Q.

At the next levels, the outputs of the access plans (of their root operators) are
successively joined to process all triple patterns of the query, resulting in a tree
of operators.

. Example 19

Figure 19 shows an example query plan for the query in Figure 18. There
are three source scan operators (one for each source): source-scan(ex:m1),
source-scan(ex:p2), and source-scan(ex:p4).

ex:m1
ex:p2
ex:p4

3.1 introduction 45

Together with selection and union operators, they form two access plans
for the patterns tp1 and tp2. The output of these access plans is combined
using one join operator.

Push-based Processing. In previous works [105, 106], data-driven (also known
as push-based) execution using symmetric hash join operators was shown to have
better performance than iterator-based implementations (such as [78]). In a push-
based model, operators push their results to subsequent operators instead of
pulling from input operators, i.e., the execution is driven by the incoming data.
This leads to better behavior in network settings, because, unlike in iterator-
based execution models, the query execution is not blocked, when a single source
is delayed [106]. See also Figure 19 for a push-based query plan.

3.1.3 Problem

Above query processing techniques are not well-suited for queries with ranked
results such as Example 18. This is because sorting (of the ranked results) is
a blocking operation. Thus, all results must be computed – even if the user is
only interested in few top-ranked bindings. This blocking nullifies the advantages
of push-based query processing, which aimed at allowing a non-blocking query
plan. The problem is exacerbated by the fact that result computation on Linked
Data requires retrieval of entire sources. So, data materialization from remote
Linked Data sources may be much more expensive than in a centralized query
processing context.

Top-k query processing – as outlined in Section 2.3 – aims at a more efficient
query execution by focusing on the k best results, while skipping the compu-
tation of remaining results. This early termination can lead to a significant re-
duction in the number of inputs to be read and processed, which translates to
drastic performance improvements.

Unfortunately, traditional top-k processing strategies are not suitable for Link-
ed Data query processing: First, existing works require heavyweight indexes,
which would cause extensive maintenance efforts given the frequently changing
Web data. Second, previous top-k processing assumes an iterator-based query
execution. However, as shown in [105, 106], push-based query execution is much
more efficient for Linked Data query processing.

In the following, we show how to overcome these obstacles, by introducing the
first join top-k strategy, which is well-suited for Linked Data query processing.

3.2 research questions and contributions 46

3.2 research questions and contributions

Let us outline the research questions, hypotheses, and contributions, which we
target throughout the chapter.

3.2.1 Research Questions and Hypotheses

As presented in Section 1.3, our overall research question is: How to allow for
rank-aware and approximate query processing on the Web of data? In this chap-
ter, we address the former part, i.e., we introduce a rank-aware equi-join operator
for Web data. More specifically, we aim at Research Question 1:

- Research Question 1

How to enable top-k query processing on highly distributed, schemaless
Web data?

For addressing above research question, we verify hypotheses as follows:

2 Hypothesis 1

Join top-k processing based on the Pull Bound Rank Join (PBRJ) framework
(see Algorithm 1) can be extended to match the requirements of highly dis-
tributed Web data. Moreover, such a top-k processing allows for significant
performance gains for computation of ranked results over Web data.

Intuitively, Hypothesis 1 states that the PBRJ framework can be extended for
the needs of Web data. In particular, we expect that the PBRJ can be extended
to a push-based query processing – thereby omitting any blocking in the query
execution due to Web source delays. Further, we expect that we can implement a
lightweight sorted access over the Web data sources, which allows for an efficient
maintenance.

To validate Hypothesis 1 we provide Algorithm 2, Algorithm 3, and Algo-
rithm 4 in Section 3.3 – our LD-PBRJ framework. Moreover, we implemented these
algorithms and empirically show (see the evaluation in Section 3.4) the feasibility
of our sorted access as well as LD-PBRJ framework.

Further, due to the early termination feature of the LD-PBRJ framework, we ex-
pect to save computation time as well as process less join inputs. We empirically
validate this claim by means of the evaluation in Section 3.4.

2 Hypothesis 2

Given our lightweight sorted accesses, we can improve the state-of-the-art
bounding strategy (corner bound, see Definition 15, p. 36). Moreover, the LD-
PBRJ framework can be extended to allow for pruning of partial bindings,
which cannot lead to a complete top-k binding. This way, we process less
partial bindings and safe computation time due to less join attempts.

3.2 research questions and contributions 47

We provide a theoretical analysis by means of Theorem 1, Theorem 2, and
Theorem 3 to validate both claims in Hypothesis 2. Furthermore, we show the
validity of Hypothesis 2 in our evaluation in Section 3.4.

3.2.2 Contributions

While being naturally appealing, top-k processing has not been studied in the
Linked Data context before. Aiming at above hypotheses, we provide the follow-
ing contributions:

• Contribution for Hypothesis 1
Top-k query processing has been extensively studied for relational data [95].
Closest to our work is top-k querying over Web-accessible databases [170]
and distributed join top-k processing [51].

However, the Linked Data context is unique to the extent that only URI
lookups are available for accessing data. Instead of retrieving partial bind-
ings from sources that are exposed via query interfaces (of the correspond-
ing database endpoints), we have to retrieve entire sources via URI lookups.

These unique Web data characteristics require a novel top-k query process-
ing strategy. In particular, the highly distributed Web data sources make an
non-blocking push-based query execution essential – as outlined in the mo-
tivation section. Additionally, the frequently changing Web data requires
a more lightweight sorted access implementation. Existing works did not
face this issue, because data was oftentimes much more static and main-
tained at few/large databases.

Facing these characteristics, we propose the LD-PBRJ framework. To the
best of our knowledge, this is the first work towards top-k Linked Data
query processing.

• Contribution for Hypothesis 2
Based on our sorted access indexes (implementation), we provide a more
accurate bounding strategy. In particular, we formally show that: (1) our
bound is correct in Theorem 1, and (2) our bound is tighter than the current
state-of-the-art strategy in Theorem 2.

Further, we propose an aggressive pruning of partial bindings that cannot
contribute to the final top-k result. We formally show in Theorem 3 that
this pruning still guarantees exact and complete top-k results.

Both optimizations lead to less join inputs read/processed and an earlier
termination of the LD-PBRJ operator. We empirically show these perfor-
mance gains in our evaluation.

• Contribution for Hypothesis 1 and Hypothesis 2
We conducted an evaluation on real-world Linked Data sources and queries
to validate the Hypotheses 1 and 2. In these experiments the LD-PBRJ
framework could achieve significant performance gains over the state-of-
the-art Linked data query processing.

3.3 linked data top-k query processing 48

σ(tp6)σ(tp5)

Source s1

Source-
Scan-Sort

Source s2 Source s3

tp6: ?p rdf:type ex:Person

Selection

push

Source-
Scan-Sort

Selection

push

tp5: ?m ex:starring ?p

σ(tp6)

Selection

push

Source-
Scan-Sort

Union

push push

Union

push

pushpush

ex:m1 ex:p2 ex:p4

compute
use

Query Execution
Input: Q, k

update

use

activate

Sc
h

e
d

u
le

r

Sorted
Access sa5

Access
Plans

Sorted
Access sa6

p

LD-PBRJ
Current

Execution
State

Scheduling
Strategy

Figure 20: Rank-aware query plan for query Q in Figure 18 employing source-scan-sort
operators, the LD-PBRJ in Algorithm 2, as well as a scheduler as replacement
for a pulling strategy.

In fact, we can show that LD-PBRJ processing leads to 35% less computa-
tion time on average. We can further show that our proposed optimizations
increase the computation time performance by 12% on average.

3.3 linked data top-k query processing

We now discuss how existing top-k join (also called rank join) strategies can be
be extended to the Linked Data query processing problem as presented before.
Further, we present an optimization towards tighter bounds and an aggressive
result pruning. Throughout the query processing we do not approximate. Thus,
our approach always reports correct and complete top-k results.

3.3.1 Sorted Access

Besides the source index employed for Linked Data query processing, we need
a ranking function as well as a sorted access for top-k processing.

Regarding the former, we employ a monotonic ranking function, scoreQ, for
determining the relevance of triples and (partial) query results. That is, any func-
tion adhering to Definition 13 may be used.

3.3 linked data top-k query processing 49

. Example 20

Continuing Example 18, the ranking function is:

scoreQ(b) = popularity(m1) + popularity(p1)

where b = (〈m1, starring, p1〉, 〈p1, type, Person〉).
For the sake of simplicity, we assume that scoreQ(b) assigns triples in

source s1 (URI ex:m1) a score of 1, source s2 (URI ex:p2) a score of 2, and
triples in source s3 (URI ex:p4) score 3.

Following Definition 14, a sorted access on a given join input allows to access
partial bindings in descending score order. In a central data setting, a sorted ac-
cess can be efficiently provided by using a score index over the input data [95]. In
particular, [115] discusses implementation strategies for a sorted access for cen-
trally stored RDF. Notice, while work on top-k join processing over distributed
databases [51] aims at a similar setting, it also assumes such a complete index.

However, in the Linked Data context, only source statistics are assumed to
be available, while the contained triples are not indexed, e.g., for the sake of result
freshness. Following this tradition, we provide a lightweight sorted access, which
only requires score bounds (computed at indexing time) for the sources, while
triples are ranked and sorted on-the-fly.

ó Definition 18: Source Score Bounds

Given a source s with URI d, its upper bound score scoreu(d) is defined as
the maximal score of the triples contained in Tds :

scoreu(d) := max
{
scoreQ(t) | t ∈ Tds

}
(1a)

The lower bound score is defined as:

scorel(d) := min
{
scoreQ(t) | t ∈ Tds

}
(1b)

For each triple pattern in the source index, we store its list of relevant sources
in descending order of their upper bound scores scoreu. This allows sources
for each union operator to be retrieved sequentially in the order of their upper
bound scores. As triples for a given source are not sorted, we replace each source-
scan operator with a source-scan-sort operator. A source-scan-sort operator, after
retrieving a source with URI d, sorts its triples Tds according to their scores.

. Example 21

Figure 19 and Figure 20 are two physical query plans for the query in
Figure 18. In contrast to Figure 19, Figure 20 shows an access plan with
source-scan-sort operators, which provide a sorted access to the bindings
for pattern tp5 and tp6, respectively.

However, if two (or more) sources, say, di and dj, have overlapping source
score bounds (scorel(di) < scoreu(dj) < scoreu(di)), and both are inputs for

ex:m1
ex:p2
ex:p4

3.3 linked data top-k query processing 50

the same union, the output of the union will not be ordered if these sources are
retrieved individually. We address this problem by treating both sources as “one
source”. That is, sources with URIs di and dj are scanned and sorted via the
same source-scan-sort operator.

Note that scoreu(d) and scorel(d) do not have to be precise – they could be
approximated, e.g., based on expected scores.

Algorithmus 2 : LD-PBRJ.push(b)
Input : Pushed partial binding b on input i ∈ {i1, i2}.
Param. : Bounding strategy BS.
Buffer : Output buffer (priority queue) O. Buffer Hi and Hj for “seen”

bindings from input i and j, respectively.
1 begin
2 if i = i1 then
3 j← i2

4 else
5 j← i1

6 Insert b into buffer Hi
7 O ′ ← Probe Hj for valid join combinations with b
8 foreach join result b ′ ∈ O ′ do
9 Insert b ′ into O

10 β← BS.update(b)

3.3.2 Push-based Top-k Join Processing

Exploiting the ranking function, source index, and our sorted access, we can
extend top-k strategies to the Linked Data setting.

Previous work on top-k join processing uses a pull-based query execution.
That is, join operators actively pull on their inputs in order to produce an output
[51, 93, 144]. We extend the PBRJ template in Algorithm 1 to allow for a push-
based execution – well-suited for the Linked Data setting. For simplicity, the
following presentation of the PBRJ algorithm uses binary joins. However, our
algorithms can also be applied for general n-ary joins.

In a pull-based implementation, operators call a next method on their input
operators to obtain new data. Consider also the generic iterator description in
Section 2.2.4 (see Figure 12). In a push-based execution the control flow is in-
verted. That is, operators have a push method that is called by their input oper-
ators. Algorithm 2 shows the push method of the LD-PBRJ operator. The input
from which the partial binding b was received is identified by i ∈ {i1, i2}.

• On Line 6 (Algorithm 2), the partial binding b is inserted into the buffer
Hi. Algorithm 2 features two buffers, Hi and Hj, for “seen” bindings, i.e.,
bindings which have been pushed by input i and j.

• On Line 7, we probe the other input’s buffer Hj for valid (i.e., the join
condition holds) join combinations. Successful join results are added to the

3.3 linked data top-k query processing 51

output buffer O in Lines 8-9. Output buffer O is a priority queue such that
the result with the highest score is first.

• On Line 10, the threshold β is updated using the bounding strategy BS.
This provides an upper bound β on the scores of “unseen” (future) join
results, i.e., join results comprising “unseen” partial bindings. When a join
result in queue O has a score > the threshold β, we know that there is no
unseen (future) result, which has a higher score. Thus, this result in buffer
O is ready to be reported to a subsequent operator. If buffer O contains k
results, which are ready to be reported, the algorithm stops reading inputs
(early termination, see Section 2.3.1).

As discussed in Algorithm 1, the standard PBRJ has two parameters: the bound-
ing strategy BS (see Definition 15, p. 36) and the pulling strategy PS (see Defini-
tion 16, p. 36).

For the former parameter, the corner-bound strategy [93], is employed by many
works and is also used in our approach.

The latter parameter, however, is intended for a pull-based query execution
– thus, it can not be employed. Similar to the idea behind the pulling strategy,
we aim to have control over the results that are pushed to subsequent operators.
Because a push-based join has no influence over the data flow (within the query
plan), we introduce a scheduling strategy to regain control. Furthermore, the push

method in Algorithm 2, only adds join results to the output queue O, but does
not push them to a subsequent operator. Instead, the pushing is performed in a
separate activate method (see Algorithm 4) – as mandated by the scheduling
strategy.

. Example 22

In Figure 20 the scheduling strategy uses the current query execution state
to decide which operator to activate. In this example, the scheduling
strategy activates the sorted access sa5, i.e., source-scan-sort, selection,
and union for triple pattern tp5. This way, any binding for tp5, which is
ready to be reported, will be pushed in the LD-PBRJ operator by the sorted
access sa5.

We will provide further details on both strategies in the next paragraphs.

Bounding Strategy. A bounding strategy BS is used to update the current
score threshold β, i.e., the upper bound on scores of unseen join results. Since
only those results in the output buffer O can be reported that have a score equal
to or greater than the threshold β, it is essential that the threshold β is as accurate
(tight) as possible. In our experiments, we employed the well-known corner-
bound strategy (see Definition 15, p. 36), as well as an improved variant of it,
which we present in Section 3.3.3. However, it is important to note that any
other strategy may also be applied for our LD-PBRJ algorithm.

3.3 linked data top-k query processing 52

Algorithmus 3 : LD-PBRJ.execute(Q,k)
Input : Query Q. Number of results k.
Param. : Scheduling strategy S.
Data : Query plan P.
Output : Top-k query results in output buffer O.

1 begin
2 P ←plan(Q)

3 op← S.nextOp(P)
4 while | O |< k∧ op 6= null do
5 op.activate()
6 op← S.nextOp(P)

7 return O

Scheduling Strategy. Deciding which input to pull from has a large effect on
query processing performance [93, 144]. Previously, this decision was captured
in a pulling strategy employed by the join operator implementation.

However, in push-based systems, the execution is not driven by operators, but
by the input data. Join operators are only activated if input is actively pushed
from operators lower in the operator tree. Therefore, instead of pulling, we pro-
pose a scheduling strategy that determines which operators in a query plan are
scheduled for execution. That is, we move the control, over what input produces
new partial bindings, from the join operator to the query engine, which orches-
trates the query execution.

Algorithm 3 shows the execute method that takes a query Q and the number
of results k as input and returns the top-k results.

• We obtain a query plan P from the plan method on Line 2.

• We then use the scheduling strategy S to determine the next operator that
should be scheduled for execution (see Line 3).

• The scheduling strategy uses the current execution state as captured by
the operators in the query plan to select the next operator. We activate the
selected operator on Line 5.

• Last, a new operator is selected (see Line 6), until we either have obtained
the desired number of k results or there is no more operator to be activated
(i.e., all inputs have been retrieved and processed, see Line 4).

Algorithmus 4 : LD-PBRJ.activate()
Input : Subsequent operator op according to query plan P.
Buffer : Output buffer O.
Data : Score threshold β.

1 begin
2 while scoreQ(O.peek()) > β do
3 b← O.dequeue()
4 op.push(b)

Algorithm 4 depicts the activate method for our LD-PBRJ operator, which
is called by the execute method. Intuitively, the activate method triggers a

3.3 linked data top-k query processing 53

p

LD-PBRJ

Output Buffer O score

Buffer H1 score

sa6: tp6: ?p rdf:type ex:Personsa5: tp5: ?m ex:starring ?p
Input i2

t1,5 : <ex:m1, ex:starring, ex:p2> 1
t1,6 : <ex:m1, ex:starring, ex:p4> 1

Buffer H2 score

t3,2 : <ex:p4, rdf:type, ex:Person> 3
u1 = 1

l1 = 1

u2 = 3

l2 = 3

t2,3 : <ex:p2, rdf:type, ex:Person> 2

Look
ahead:

Look
ahead: 2

threshold β = max {u1 + l2, u2 + l1}
 = max {1+3, 1+3}
 = 4

Report results if LD-PBRJ operator is
activated, and score ≥ β.

 b = (t1,6, t3,2) 4

The 3rd triple in source s2 in Figure 17.Sorted access is empty.

2

scorescore

Input i1

Source s1 Source s2 Source s3

Data sources
from Figure 17.

Figure 21: Detailed view on the LD-PBRJ operator from Figure 20. Data is retrieved from
the sources in Figure 17.

“flush” of the operator’s output buffer O. That is, all computed results having a
score larger than or equal to the operator’s threshold β (Line 2) are reported to
the subsequent operator (Lines 3-4). An activate method for a source-scan-sort
operator of a source d simply pushes all triples in d in a sorted fashion. Further,
activate for selection and union operators causes them to push their outputs to
a subsequent operator.

The question remains how a scheduling strategy should select the next operator
(nextOp method, see Algorithm 3 at Line 6). For this, we apply the idea behind
the state-of-the-art pulling strategy [144] (see Definition 16, p. 36) to perform
corner-bound-adaptive scheduling. Basically, we choose the input which leads to
the highest reduction in the corner-bound:

ó Definition 19: Corner-Bound-Adaptive Scheduling

Given a LD-PBRJ operator, we prefer the input that could produce join re-
sults with the highest scores. That is, we prefer input i1 iff u1⊕ l2 < u2⊕ l1
and i2 otherwise. In case of ties, the input with the smaller number of un-
seen (future) partial bindings is chosen.
⊕ is the aggregation function used in the ranking function. Further, ui

is the highest score observed from input i, while li is the lowest observed
score on input i.

The scheduling strategy then recursively selects and activates operators that
may provide partial bindings for the preferred input. That is, in case the cho-
sen input is another LD-PBRJ operator, which has an empty output queue, the

3.3 linked data top-k query processing 54

scheduling strategy selects and activates operators for its preferred input in the
same manner.

. Example 23

Figure 21 provides a detailed view on the LD-PBRJ operator from Exam-
ple 22 in Figure 20. Further, we use data from sources s1, s2, and s3 in
Figure 17. For simplicity, we assume k = 1 and denote the jth triple in
source si as ti,j. For instance, t1,5 refers to the 5th triple in source s1 (see
Figure 17):

t1,5 = 〈ex:m1, ex:starring, ex:p2〉

Our scheduling strategy prefers input i1 and selects/activates the source-
scan-sort(s1), σ(tp5), and union(tp5). Note, also input i2 would have been
a valid choice, since the threshold β is not set yet. The LD-PBRJ reads
t1,5 and t1,6 as new partial bindings from union(tp5) and both bindings
are inserted into H1 (u1 = l1 = 1). The scheduler now prefers input i2,
because input i1 is exhausted and selects/activates source-scan-sort(s3),
σ(tp6), and union(tp6), because source s3 has triples with higher scores
than source s2. Then, union(tp6) pushes t3,2 and u2 as well as l2 is set to
scoreQ(t3,2) = 3. Employing a summation as aggregation function ⊕, the
threshold β is:

β = max {1+ 3, 1+ 3} = 4

Then, t3,2 is inserted into H2. Joins between t3,2 and bindings in H1 are
attempted: t1,6 1 t3,2 yields a result b, which is then inserted into the
output queue, O. Finally, since scoreQ(b) = 4 > β = 4 holds, b is reported
as the top-1 result, and the LD-PBRJ terminates. Note, not all inputs have
been processed. That is, source s2 has not been scanned.

3.3.3 Improved Threshold Estimation

In the next paragraphs, we present two modifications of the corner-bound bound-
ing strategy (see Definition 15, p. 36), which allow to calculate a tighter threshold
β̃, thereby achieving earlier termination and result reporting, respectively.

Entity Query Bounds. A entity query comprises a set of triple patterns Qv,
which share a common variable at the subject position:

ó Definition 20: Entity Query

An entity query Qv is a directed labeled graph G
Q
v = (VQv ,EQv), where VQ is

the disjoint union V
Q
v = V

Q
V] V

Q
C] V

Q
K , with V

Q
V as a set of variable nodes,

V
Q
C as a set of constants, and V

Q
K as a set of user-defined keywords.

Further, EQv = {〈v,p,o〉}, where v is a fixed entity variable from V
Q
V , p ∈

`a] `r, and o ∈ V
Q
V] V

Q
C] V

Q
K .

ex:m1
ex:starring
ex:p2

3.3 linked data top-k query processing 55

A query Q can be conveiced as as disjoint union of its entity queries:⊎
Qv∈QE

Qv = Q

with QE as set of all entity queries contained in query Q.
Given Linked Data, we observed that every result for an entity query Qv is con-

tained in one single source. This is because a result is an entity and information
related to that entity comes exclusively from the one source, which represents
that particular entity. Exploiting this knowledge, a more precise corner-bound
for entity queries can be calculated.

More precisely, we can derive that, in order to be relevant, sources for Qv must
satisfy all triple patterns in Qv (because they must capture all information for
the requested entity). Given relevant sources for Qv are denoted as D and the
source upper bound is given by scoreu(d) for d ∈ D, the maximal possible score
for results matching Qv, scoremax(Qv), can be derived based on the maximum
source upper bound, maxd∈D scoreu(d). Formally:

scoremax(Qv) := scoremax(tp1)⊕ . . .⊕ scoremax(tpn), with (2a)

scoremax(tpi) := max
d∈D

scoreu(d), for i = 1, . . . ,n (2b)

where entity query Qv = {tpi}i=1,...,n and ⊕ is the aggregation, which is de-
fined for the ranking function. Equation 2b holds because:

• Every triple that contributes to a result for entity query Qv must be con-
tained in a source d ∈ D.

• Thus, every contributing triple must have a score 6 max
d∈D

scoreu(d).

Look-Ahead Bounds. The corner-bound strategy uses the last seen scores, li,
of partial bindings to calculate the current threshold, β. We observed that, when
an partial binding bi is received by an operator on input i, the next partial
binding bnexti (and its score scoreQ(bnexti)) is often already available in the
pushing operator. This is because:

À Source-scan-sort operators materialize their complete output before push-
ing to subsequent operators.

Á LD-PBRJ operators maintain an output queue that often contains more than
one result with scores greater than or equal to the current threshold β.

Â Given a source di has been pushed by a source-scan-sort operator, the
source score upper bound of the next source to be loaded, di+1, is available.

By using the score of the next, instead of the last seen partial binding, we
can provide a more accurate threshold β, because we can estimate the maximal
score of unseen bindings from that particular input more accurately. Formally,
we define the look-ahead bounds l̃i for input i as:

l̃i :=

scoreQ(bnexti) if the binding bnexti is available

li otherwise
(3)

3.3 linked data top-k query processing 56

. Example 24

We have two look-ahead bounds in Figure 21. For input i1, we know that
l̃1 = −∞, because there are no more relevant sources for pattern tp5. With
regard to input i2, we have l̃2 = 2, since the next relevant source s2 has a
source upper bound of 2.

Threshold Calculation. By applying entity query bounds as well as look-ahead
bounds, we can refine the corner-bound β as:

β̃ := max

min {u1 + l̃2, scoremax(Q)}

min {u2 + l̃1, scoremax(Q)}
(4)

with

scoremax(Q) :=
⊕

Qv∈QE

scoremax(Qv)

. Example 25

Continuing Example 24, we can compute an improved corner-bound as
follows:

β̃ = max

min {u1 + l̃2, scoremax(tp5) + scoremax(tp5)}

min {u2 + l̃1, scoremax(tp5) + scoremax(tp6)}

= max

min {1+ 2, 1+ 3} = 3

min {3+−∞, 1+ 3} = −∞
= 3

In contrast, the standard corner-bound is β = max {u1 + l2,u2 + l1} =

max {3+ 1, 1+ 3} = 4.

The following theorem shows β̃ to be correct:

û Theorem 1: Improved Corner-Bound is Correct

Bound β̃ is correct, i.e., there is no unseen result b with scoreQ(b) > β̃.

3.3 linked data top-k query processing 57

Sketch of Proof

Given a query Q, bound β̃ is correct iff: (i)
⊕

Qv∈QE
scoremax(Qv) provides

a valid score upper bound for Q’s results and (ii) l̃i is a valid score upper
bound for unseen partial bindings from input i.

(i) Considering the former constraint, assume there is a result b with
scoreQ(b) > scoremax(Q). Then, there must be at least one entity re-
sult, be, for an entity query Qv ∈ QE such that:

scoreQ(be) > scoremax(Qv)

In this case, be can not come from one single source, but must be
distributed over multiple sources. This is because scoremax(Qv) is
composed of maxd∈D scoreu(d), which provides a valid score upper
bound for all triple pattern bindings in be that come for the same
source d. However, be being distributed over multiple sources contra-
dicts our initial assumption, i.e., all results for Qv are located at one
source. Therefore, constraint (i) holds for every Qv ∈ QE.

(ii) Regarding the latter constraint, l̃i is a valid score upper bound over
partial bindings from input i, if there is no unseen binding b in input
i with scoreQ(b) > l̃i = scoreQ(bnexti). However,

scoreQ(b
next
i) < scoreQ(b)

can not hold, as we have a sorted access over input i. Thus, constraint
(ii) holds for every partial binding b in input i.

Overall, as constraints (i) and (ii) hold at all times, β̃ is correct �

Moreover, we can show β̃ to be tighter than the standard corner-bound:

û Theorem 2: Improved Corner-Bound is Tighter

Bound β̃ is tighter than corner-bound β, i.e., β̃ 6 β holds at all times.

Sketch of Proof

We wish to show that β̃ is tighter than β, i.e., β̃ 6 β at all times. In order
for β̃ 6 β to hold, either (i) scoremax(Q) 6 ui ⊕ lj, or (ii) ui ⊕ l̃j 6 ui ⊕ lj,
must always hold.

(i) Considering the former, since scoremax(Q) merely provides a (valid)
upper bound over scores of query results for a query Q, there may be
results for query Q such that: scoremax(Q) > ui ⊕ lj is true.

3.3 linked data top-k query processing 58

(ii) Thus, β̃ 6 β can only hold at all times, if ui⊕ l̃j 6 ui⊕ lj always holds.
Recall that l̃j is always set to the “next” possible score, i.e., the score of
the next partial binding seen in input j. As we have a sorted access, the
“next” possible score is guaranteed to be smaller, thus, l̃j 6 lj holds for
every partial binding.

Overall, as (ii) holds at all times, β̃ is tighter than β �

3.3.4 Early Pruning of Partial Results

Source information can be exploited to prune partial results, which can not con-
tribute to final top-k results. This way, we aim at reducing space consumption of
buffer O and buffer H in Algorithm 2. Smaller buffers, in turn, reduce join costs
(due to less join attempts) and buffer maintenance costs.

The idea of pruning partial bindings has also been pursued by approximate
top-k selection approaches [157]. However, in contrast to previous works, we do
not approximate, but only prune those partial bindings that are guaranteed not to
contribute to the final top-k results. Thus, we still compute exact top-k results – as
shown in Theorem 3.

Intuitively, we prune a partial result, if its score together with the maximal
possible score for its unevaluated query fragment, is smaller than the minimal
(so far computed) top-k result score. Note, the opportunity for pruning only
arises if at least k complete results have been computed.

More formally, let b be a partial binding for query Q, with Q(b) ⊆ Q as evalu-
ated query fragment and Qu(b) = Q \ Q(b) as unevaluated query fragment (see
Definition 7, p. 22). Then, a score upper bound of all final results comprising
b can be obtained by aggregating scoreQ(b) and the maximal possible score of
results for Qu(b), scoremax(Qu(b)):

scoreQ(b
′) 6 scoreQ(b)⊕ scoremax(Qu(b)) (5a)

with b ′ as a complete binding comprising partial binding b. Similar to Equa-
tion 4, scoremax(Qu(b)) can be computed as the aggregation of maximal source
upper bounds, which are obtained for triple patterns in Qu(b) = {tp1, . . . , tpm}:

scoremax(Q
u(b)) := scoremax(tp1)⊕ . . .⊕ scoremax(tpm), with (5b)

scoremax(tpi) := max
d∈Di

scoreu(d), for i = 1, . . . ,m (5c)

where Di is the set of relevant sources for pattern tpi ∈ Qu(b) (according to
the source index), and ⊕ is the aggregation, which is defined for the ranking
function.

3.4 evaluation 59

Last, the following theorem can be established:

û Theorem 3

Given a query Q, a partial binding b cannot contribute to one or more final
top-k results for query Q, if

scoreQ(b)⊕ scoremax(Qu(b)) 6 min
b̄∈O

scoreQ(b̄)

where O is the output buffer in Algorithm 2, which contains at least k re-
sults.

Sketch of Proof

If a partial binding b is pruned, while actually contributing to a final top-k
result b ′, it must hold:

scoreQ(b
′) > min

b̄∈O
scoreQ(b̄)

That is, the score of b ′ is larger than the minimal score among the currently
known complete results in O. However, if b was pruned, it holds that:

scoreQ(b)⊕ scoremax(Qu(b)) 6 min
b̄∈O

scoreQ(b̄)

At the same time, as given in Equation 5a and Equation 5b, scoremax(Qu(b))
provides a valid upper bound of scores for b ′:

scoreQ(b
′) 6 scoreQ(b)⊕ scoremax(Qu(b))

Therefore,
scoreQ(b

′) 6 min
b̄∈O

scoreQ(b̄)

which contradicts the initial assumption that b ′ is a top-k result �

3.4 evaluation

In the following, we present our evaluation results and empirically validate:

• Hypothesis 1 in Section 3.2
Top-k processing via our LD-PBRJ operator outperforms state-of-the-art
Linked Data query processing.

• Hypothesis 2 in Section 3.2
Our tighter bounding in Equation 4, as well as early pruning strategy in
Equation 5a and Equation 5b, leads to a better performance than state-of-
the-art top-k processing.

3.4 evaluation 60

3.4.1 Evaluation Setting

Systems. We implemented three different systems, which are all based on
push-based join processing. For every query, we generated a left-deep query
plan with random join order. All systems use the same plan and differ solely in
the join operator implementation.

First, we have the push-based symmetric hash join operator (shj) [105, 106],
which does not employ top-k processing techniques, but instead produces all re-
sults, and then sorts them to obtain the desired top-k results. Further, we use two
implementations of the LD-PBRJ operator. Both use the corner-bound-adaptive
scheduling strategy, but employ different bounding strategies. The first uses the
corner-bound (rj-cc) from previous work [144] (see Definition 15, p. 36), while
the second (rj-tc) employs our optimization with tighter bounds and early re-
sult pruning, see Equation 4, Equation 5a, and Equation 5b.

The shj baseline is used to study the benefits of top-k processing in the Linked Data
setting, see Hypothesis 1. With regard to Hypothesis 2, we employ rj-cc to analyze the
effect of the proposed optimizations.

All systems were implemented in Java 6. Experiments were run on a Linux
server with two Intel Xeon 2.80GHz Dual-Core CPUs, 8GB RAM and a Seagate
ST31000340AS 1TB hard disk. Before each query execution, all operating system
caches were cleared. The presented values are averages collected over three runs.

Dataset and Queries. We used queries from the Linked Data FedBench bench-
mark.28 Due to schema changes in DBpedia29 and time-outs observed during the
experiments (> 2 min), three of the 11 FedBench queries were omitted. Addition-
ally, we used 12 queries that we created. In total, we had 20 queries that differ
in the number of their results (1− 10K) and in their complexity in terms of the
number of triple patterns (2− 5). A complete listing of our queries can be found
in the appendix, see Section A.1.

To obtain the dataset, we executed all queries directly over the Web of Linked
Data using a link-traversal approach [78] and recorded all Linked Data sources
that were retrieved during query execution. In total, we downloaded 681, 408
Linked Data sources, comprising a total of 1, 867, 485 triples. From this dataset
we created a source index that is used by the query planner to obtain relevant
sources for the given triple patterns.

We observed that network latency greatly varies between hosts and evaluation
runs. In order to systematically study the effects of top-k processing, we decided
to store the sources locally and to simulate Linked Data query processing on a
single machine – as done before [105, 106].

Parameters. Parameter k ∈ {1, 5, 10, 20} denotes the number of top-k results
to be computed. Further, we employed three different score distributions d ∈
{u,n, e} (uniform, normal and exponential).

More precisely, scores were randomly assigned to triples in the dataset. We
applied three different score distributions: uniform, normal (µ = 5,σ2 = 1) and

28http://fedbench.fluidops.net, retrieved 2013-12-07.
29http://dbpedia.org, retrieved 2013-12-07.

http://fedbench.fluidops.net
http://dbpedia.org

3.4 evaluation 61

0

10

20

30

40

50

60

70

80

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Ti
m

e
[s

]

rj-cc

rj-tc

shj

Figure 22: All queries with their evaluation times (k = 1, d = n).

exponential (λ = 1). This allows us to abstract from a particular ranking function
and examine the applicability of top-k processing for different classes of ranking
functions. We used a summation as score aggregation function, ⊕.

3.4.2 Evaluation Results

Overall Results. Figure 22 shows an overview of processing times for all
queries (k = 1,d = n). We can see that the LD-PBRJ approaches (rj-tc and
rj-cc) perform better or at least equal to shj for all queries. Note, we discuss
outlier queries Q19 and Q20 in the following. On average, the execution times
for rj-cc and rj-tc are 23.13s and 20.32s, whereas shj required 43.05s for query
execution. This represents a performance improvement of the rj-cc and rj-tc

operators over the shj operator by factors of 1.86 and 2.14, respectively.
The improved performance of the LD-PBRJ operators is because of their top-k

processing. That is, LD-PBRJ operators do not have to process all input data in
order to produce the k top results, but can terminate early. In contrast, the shj

operator produces all results. Figure 23-a shows the average number of retrieved
sources for different values of k. We can see that the LD-PBRJ approaches retrieve
fewer sources than the baseline approach. In fact, rj-cc and rj-tc retrieve and
process only 41% and 34% of the sources that the shj approach requires. This is
a significant advantage in the Linked Data context, where sources can only be
retrieved in their entirety.

However, we also see that the LD-PBRJ operators sometimes do not perform
better than the shj operator. In these cases, the result is small, e.g., Q19 has
only two results. The LD-PBRJ operators have to read all inputs and compute
all results in these cases. For example, for Q20 the LD-PBRJ approaches retrieve
and process all 35, 103 sources – just as the shj approach does.

Bounding Strategies. Next, let us examine the effect of the bounding strate-
gies on overall execution time. rj-cc and rj-tc require an average processing
time of 23.13s and 20.32s, respectively. This is an improvement of 12% of rj-tc
over rj-cc. For some queries, e.g., Q3, the improvement is even higher. Given
query Q3, rj-tc requires 11s – compared to 30s for rj-cc.

The improved performance can be explained with the tighter, more precise
bounding strategy realized by rj-tc. For instance, given query Q3, our bounding

3.4 evaluation 62

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

k:1 k:5 k:10 k:20

#s
o

u
rc

es
 re

tr
ie

ve
d

rj-cc

rj-tc

shj
0

10

20

30

40

50

k:1 k:5 k:10 k:20

Ti
m

e
[s

]

rj-cc

rj-tc

shj

(a) (b)

0

10

20

30

40

50

dist:n dist:e dist:u

Ti
m

e
[s

]

rj-cc

rj-tc

shj

(c)

0

10

20

30

40

50

60

70

2TP 3TP 4TP 5TP
Ti

m
e

 [
s]

rj-cc

rj-tc

shj

(d)

Figure 23: (a) Average number of sources over all queries vs. different k (d = n). (b) Aver-
age evaluation time over all queries vs. different k (d = n). (c) Average evalua-
tion time over all queries vs. different score distributions (k = 10). (d) Average
evaluation time over all queries vs. varying number of triple patterns (k = 1,
d = n).

strategy can take advantage of a large star-shaped subexpression with 3 patterns
in Q3 – leading to an accurate entity query bound. Additionally, we observed
that the look-ahead strategy helps to calculate a much tighter upper bound, es-
pecially when there are large score differences between successive bindings from
a particular input.

A tighter (more precise) bound means that results can be reported earlier and
less inputs have to be read. This is directly reflected in the number of sources
that are processed by rj-tc and rj-cc. On average rj-tc requires 23% fewer
sources than rj-cc. Note, while in Figure 22 rj-tc’s performance often seems to
be comparable to rj-cc, Figure 23-a makes the differences more clear in terms
of the number of retrieved sources. For example, both systems require an equal
amount of processing times for Q17. However, rj-tc retrieves 7% less sources.
Such “small” savings did not show properly in our evaluation (since we retrieved
sources locally from disk), but would effect processing time in a real-world set-
ting with network latency.

Concerning the outlier Q19, we noticed that rj-tc did read slightly more in-
put (2%) than rj-cc. This behavior is due to our implementation: Sources are
retrieved in parallel to join execution. In some cases, the join operators and the
source retriever did not stop at the same time.

We conclude that rj-tc performs equally well or better than rj-cc. For queries
with large entity query fragments or with inputs, which have large score differ-

3.4 evaluation 63

ences between successive sources, we are able to achieve performance gains of
up to 60% by means of the rj-tc operator.

Early Pruning. We observed that the pruning strategy leads to lower buffer
sizes, i.e., less memory consumption. For instance, given query Q9, the rj-tc

operator could prune 8% of its buffered data. However, we also noticed that
the number of sources loaded/scanned is actually the key performance factor.
While pruning had positive effects, the improvement is small compared to what
could be achieved with tighter bounds. For example, for query Q9 73% of total
processing time was spent on loading and scanning sources.

Effect of Result Size k. Figure 23-b depicts the average query processing time
for all three approaches at different k (with score distribution d = n). We ob-
served that the time for shj is constant in k, since shj always computes all
results. Further, we observed that the LD-PBRJ, rj-tc and rj-cc, approaches
outperform shj for all k. However, with increasing k, more inputs need to be
processed. Thus, the runtime differences between the LD-PBRJ approaches and
shj operator become smaller. For instance, for k = 1 the average time saving
with regard to shj is 46% (52%) for rj-cc (rj-tc). Given k = 10, the average
time saving with regard to shj is only 31% (41%) for rj-cc (rj-tc).

Further, we can see in Figure 23-b that rj-tc outperforms rj-cc over all values
for k. The differences are due to our tighter bounding strategy, which substan-
tially reduces the amount of required inputs. For example, for k = 10, rj-tc
requires 21% less inputs than rj-cc.

Last, we noted that rj-tc and rj-cc behave similarly for increasing k. That is,
both operators become less efficient with increasing k, see Figure 23-b.

Effect of Score Distributions. Figure 23-c shows average processing times for
all approaches for the three score distributions. We see that the performance of
both LD-PBRJ operators varied only slightly with regard to different score dis-
tributions. For instance, rj-cc performed 7% better on the normal distribution
compared to the uniform distribution. The shj operator has constant evaluation
times over all distributions. We argue that this shows the general applicability
of our LD-PBRJ approach. That is, its performance gains are not dependent on a
particular ranking function.

Effect of Query Complexity. Figure 23-d shows average processing times (with
k = 1,d = n) for different numbers of triple patterns. Overall, processing times
increase for all systems with an increasing number of patterns. Again, we see
that the LD-PBRJ operators, rj-tc and rj-cc, outperform shj for all query sizes.
In particular, for 5 query patterns, we noticed the effects of our entity bounds
more clearly, as those queries often contained entity queries up to length 3.

3.5 related work 64

3.5 related work

3.5.1 Pull-based, Centralized Top-k Processing

The top-k join problem has been addressed by many works – as discussed in
the comprehensive survey [95]. Most notably, the J∗ rank join, based on the A∗

algorithm, was proposed in [125]. Other top-k join algorithms, the HRJN and the
HRJN∗, were introduced in [93] and further extended in [109].

In contrast to such works, we aim at a Linked Data context. As recent works [78,
75, 105, 106] have shown, Linked Data query processing introduces various novel
challenges. In particular, instead of a pull-based top-k join, we needed a push-
based execution for queries over Linked Data [105, 106]. We therefore extended
the well-known PBRJ framework to allow for a push-based query execution.

The majority of top-k join solutions target centrally stored data [95]. A promi-
nent example is the Pull/Bound Rank Join framework [144], which captures the
existing top-k join approaches within one single framework. However, as we
outlined in Section 1.2.3, Web data is inherently distributed over a vast space of
sources. Centrally indexing these sources would come at great costs in terms of
index maintenance and storage space. Moreover, central indexing would require
allowed data access to all Web data sources. This strongly restricts the possible
use-cases of Web data, e.g., in a commercial application.

Note that the only other work, which extends top-k join processing to RDF
data is [115]. We presented a top-k join processing approach for distributed RDF.
That is, data graphs are spread over a space of sources. In contrast, data may
be stored and indexed centrally. For this, [115] proposed an extension of the
SPARQL algebra, the so-called SPARQL-RANK, as well as an optimized SPARQL-
RANK implementation for RDF stores. This work is complementary to our solution,
since [115] focuses on a pull-based top-k join operator, which is well-suited for
a centralized RDF store. However, the authors do not consider the case of data
being located at various (small) data sources.

Last, different bounding strategies have been proposed. In [55, 144], the au-
thors introduced a new Feasible-Region (FR) bound for the general setting of
n-ary joins and multiple score attributes. However, it has been shown that the
PBRJ template with corner-bound is instance-optimal in the restricted setting of
binary joins and a single score attribute [55, 144]. We extend the corner-bound to
the Linked Data setting and provide tighter/more precise bounds, which allow
for earlier termination and better performance.

3.5.2 Distributed Top-k Processing

There has been work on distributed selection top-k processing, e.g., [20, 120, 126,
163, 170], and distributed aggregation top-k processing, e.g., [131, 138]. Unfortu-
nately, the selection top-k problem and the aggregation top-k problem are both
highly different from the join top-k problem. The selection top-k problem aims
at finding top-ranked entities, where each entity is ranked according to multiple
dimensions. The aggregation top-k problems aims at finding top-ranked sets of

3.6 summary 65

bindings, where each set is ranked according to an aggregation function. Thus,
extending such techniques to a join top-k problem is not straightforward [51].

With regard to the top-k join problem, [51] presents a top-k join approach for
distributed databases, while [6, 175, 176] target a P2P scenario. We differ from
the former, as we rely exclusively on simple HTTP lookups for data access as
well as use only basic indexes in the form of the source index [51]. Moreover, for
each Linked Data source we only require a min/max score bound, whereas [51]
utilizes complete histograms over scoring attributes. The latter works rely on
score sampling to compute a lower score bound [6, 175, 176]. However, given
many small sources, such a solution would lead to prohibitive costs. Overall, we
aimed at a lightweight sorted access implementation, which requires only simple
score statistics. In turn, we have only minimal maintenance – a key advantage
with regard to the highly dynamic Web of data.

3.5.3 Approximate Top-k Processing

Various works target the computation of approximate top-k results [15, 16, 120,
151, 157]. In particular, similar to our pruning approach, [157] estimates the like-
lihood of partial bindings contributing to a final result. If this estimate is below
a given threshold, partial bindings are pruned. However, [157] addressed the se-
lection top-k problem, which is different to our top-k join problem. More impor-
tantly, we do not rely on probabilistic estimates for pruning, but employ accurate
upper bounds. Thus, we do not approximate the final top-k results.

3.6 summary

In this chapter, we addressed the first research question:

- Research Question 1

How to enable top-k query processing on highly distributed, schemaless
Web data?

For this, we validated Hypothesis 1 and Hypothesis 2:

2� Hypothesis 1

Join top-k processing based on the Pull Bound Rank Join (PBRJ) framework
(see Algorithm 1) can be extended to match the requirements of highly dis-
tributed Web data. Moreover, such a top-k processing allows for significant
performance gains for computation of ranked results over Web data.

Targeting above hypothesis, we proposed a novel LD-PBRJ framework. We
implemented our system and empirically showed its feasibility and performance
advantages.

3.6 summary 66

2� Hypothesis 2

Given our lightweight sorted accesses, we can improve the state-of-the-art
bounding strategy (corner bound, see Definition 15, p. 36). Moreover, the
LD-PBRJ framework can be extended to allow for pruning of partial bind-
ings, which cannot lead to a complete top-k binding. This way, we process
less partial bindings and safe computation time due to less join attempts.

With regard to Hypothesis 2, we provided a theoretical analysis – thereby vali-
dating our proposed bounding strategy. Moreover, we validated this hypothesis
by means of our experiments. In fact, we could show that our improved bound-
ing strategy can lead to significant performance gains.

In the next chapter, we will present an approach for selectivity estimation of
hybrid queries over Web data. By means of this work, we allow query optimizers
to construct suitable query plans, which comprise (amongst other operators) our
LD-PBRJ operator.

S E L E C T I V I T Y E S T I M AT I O N

67

4
S E L E C T I V I T Y E S T I M AT I O N

Context of this Chapter. In this chapter, we present a selectivity estimation for
text-rich RDF data, which is based on our previous publication [3]. For this, we
introduce an approach, which compactly summarizes structured/unstructured
data and exploits this summary to estimate the result size of a hybrid query.

We aim to effectively and efficiently estimate result set sizes for hybrid queries
over Web data. The former goal refers to accurate estimations, while the latter
goal refers to efficiency in terms of time and space needed for selectivity estima-
tions. Our work contributes to this thesis with regard to two aspects:

Ê We employ selectivity estimation as means to compute the binding probability in
our approximate top-k join approach, see Section 5.3. More specifically, we ex-
ploit selectivity estimation to calculate the probability for a partial binding
to contribute to one or more complete bindings. We use this probability
to prune such partial bindings that have a low chance of contributing to a
complete binding – thereby approximating the top-k result set. Note, this
approximate query processing targets our Research Question 4: How to
enable approximate rank-aware query processing on Web data?

Ë Selectivity estimation is a crucial part of query optimization. Figure 24 il-
lustrates the traditional query processing pipeline – we highlighted the
steps, where selectivity estimation plays a key role. More specifically, by
means of selectivity estimation, costs for physical query plans can be ap-
proximated and a query optimizer can construct an optimal physical plan.
In particular, selectivity estimation allows to compare query plans featur-
ing different join orders with each other. The join order is critical for hybrid
queries, since some patterns may be highly selective, while others may bind
large amounts of triples. Thus, it is crucial for an optimizer to construct a
physical query plan, which minimizes the number of intermediate query
results.

Moreover, works on rank-aware query processing showed the need for
depth estimation for PBRJ operators [94, 145, 146]. Depth estimation is con-
cerned with approximating the number of partial bindings read from a
particular PBRJ operator input. As discussed in [94, 145, 146], such infor-
mation is crucial for integration of PBRJ operators in physical query plans.
For this, recent work in [145, 146] presented the DEEP framework, which
offers a flexible algorithm template for depth estimation, based on selectiv-
ity estimations techniques.

68

4.1 introduction 69

Query Query Optimizer

Information Need

ResultsQuery Executor

(a)

(b)

Query Plan

Statistics

Generation

Online

Offline Estimated

Costs

1

2 3

Query Optimizer

Query
Logical

Query Plan

Physical

Query Plan

Algebraic

Equivalences

Estimated

Costs

Figure 24: Context of our selectivity estimation for text-rich RDF data approach [149].
Figure (b) provides a detailed view on the query optimizer, which is also
captured in figure (a). Steps in which our selectivity estimation plays an im-
portant role are highlighted.

Our selectivity estimation approach can be directly applied for both optimizations.
This way, query optimization is tailored towards the characteristics of hybrid
queries and Web data – leading to better physical query plans/performance gains.
In particular, employing the DEEP framework in conjunction with our se-
lection estimation would allow an optimal integration of the LD-PBRJ op-
erator as well as the A-PRBJ operator in physical query plans. Note, the
A-PRBJ operator is an approximate top-k join operator that is introduced
in Section 5.3.

Outline. In Section 4.1, we motivate the problem of selectivity estimation over
text-rich RDF data, and introduce foundations as well as our terminology. We
discuss research problems and our contributions in Section 4.2. We present our
main approach, the BN+ system, in Section 4.3. Then, we discuss evaluation
results in Section 4.4. In Section 4.5, we give an overview of related works. Last,
we conclude with Section 4.6.

4.1 introduction

4.1.1 Motivation

The use-cases for selectivity estimation techniques within a query processing
context are manifold:

À Processing hybrid queries requires a query optimizer, which relies on selectivity
estimates to approximate query execution costs, which are associated with a
given physical query plan.

4.1 introduction 70

More specifically, the cost model commonly captures costs for computation
(e.g., the number of join attempts), costs for storage access (e.g., the number
of triples loaded), or costs for memory (e.g., the number of buffered partial
bindings in join operators). These costs can be estimated via selectivity
estimation approaches. See Section 2.2.3 for a detailed introduction to the
cost model.

By means of this cost estimation, the query optimizer searches, e.g., using
a dynamic programming technique [53], over a space of possible physical
query plans – targeting an optimal physical query plan. Such an optimal query
plan optimizes the overall query execution costs. In particular, the optimal
plan aims at minimizing the amount of intermediate results – the driving
factor behind the overall query execution time [53]

Á As a special case of cost estimation, depth estimation has been proposed
for rank-aware join operators [94, 145, 146]. Depth estimation is concerned
with the estimation of the number of inputs, which are read from a join
input, in order to produce the desired top-k results [94, 145, 146]. For this,
previous works employed selection estimation techniques.

Similar to above presented query execution costs, depth estimation is used
by a query optimizer to construct an optimal physical query plan, which
comprises rank-aware join operators [94, 145, 146].

Â Selectivity estimates, as studied in this chapter, are not only crucial for
query optimization, but for many problems that can be solved via con-
junctive queries. For instance, data extraction [164] and data integration
programs [37] have been formulated as queries, which involve selection
and (similarity) join patterns.

Selectivity estimations are mostly performed at runtime. Thus, efficiency of
the required computations is essential. Targeting a low computational overhead,
selectivity estimation is based on data synopses, which approximately capture
underlying data value distributions through a statistical summary. Several as-
sumptions are commonly employed to keep such a synopsis small and simple:

À Uniform Distribution Assumption
Let us come back to the example in Figure 7. Let Xname be a random vari-
able for predicate name, with Ω as its sample space. The uniform distribution
assumption implies that all values for a predicate are equally likely. In Fig-
ure 7 predicate name features five distinct values: | Ω(Xname) | = 5. Thus,
the probability for an entity x having name “Gregory Peck” is:

P(Xname = “Gregory Peck”) ≈ 1

| Ω(Xname) |
=
1

5

In other words, the probability for a query pattern tp = 〈x,name,“Gregory
Peck”〉 is 15 . Clearly, this assumption may lead to misestimates, when “Gre-
gory Peck” is a common name shared by several entities.

4.1 introduction 71

Á Predicate Value Independence Assumption
Similarly to Xname, let Xcomment be a random variable for predicate
comment in Figure 7. Given a second query pattern tp = 〈x, comment, “Au-
drey Hepburn was. . . ”〉 with:

P(Xcomment = “Audrey Hepburn was. . . ”) = 1

the predicate value independence assumption dictates that the two pred-
icate values are independent. That is, the probability of observing both
events is:

P(Xname = “Gregory Peck”,Xcomment = “Audrey Hepburn was. . . ”) ≈
P(Xname = “Gregory Peck”) · P(Xcomment = “Audrey Hepburn was. . . ”)

=
1

5
· 1

However, as we can observe in the data (see Figure 7), there is actually
no entity that is associated with that name and comment. Thus, the joint
probability should actually be 0. Such a misestimate is due to correlations
among data values. Given the value for name, a particular value for comment
is more or less likely to occur (instead of being equally likely).

Â Join Predicate Independence Assumption
Last, there is the join predicate independence assumption, which is a spe-
cial case of the previous assumption. This assumption states that the exis-
tence of a predicate is independent of the value/existence of another pred-
icate. Coming back to our example in Figure 7, the existence of comment

and any value for name would be assumed to be independent. Again, such
a simplification would lead to misestimates, since predicate comment only
occurs with name “Audrey Kathleen Hepburn”.

As demonstrated by our examples, above independence assumptions greatly
effect the effectiveness (i.e., accuracy) of selectivity estimates. Inaccurate esti-
mates, however, can greatly affect applications, which rely on those selectivity
estimates. In particular, query optimizers will construct non-optimal physical
query plans, which may lead to an expensive query execution.

A large body of work has been devoted to avoid one or more of the above in-
dependence assumptions. Approaches aim to consider data correlations, thereby
achieving more accurate selectivity estimates. Assumption 1 is addressed by
counting values and embedding the resulting frequency statistics into synopses
such as histograms [135] and wavelets [118]. Dealing with Assumption 2 and
Assumption 3 requires a joint distribution of two or more random variables,
which may be approximated via join synopses [10], tuple-graph synopses [154]
or probabilistic relational models (PRMs) [60, 162].

4.1.2 Selectivity Estimation

Given a query Q, its selectivity, denoted by sel(Q), is defined as the cardinality
of Q’s result set (see Definition 12, p. 29). In this work, we address the problem
of estimating sel(Q), which may be decomposed into two functions:

4.1 introduction 72

• The Function R : Q→N gives an upper bound cardinality of the result set
for query Q.

In previous works [60], R(Q) is estimated as size of the cross-product of
the tables, which the query Q is evaluated over. In our setting, table names
are not explicitly given in a query. To obtain R(Q), we consider an upper
bound of results for every distinct query variable. That is, for each v ∈ V

Q
V ,

we upper-bound the number of its bindings, R(v), as number of all entities
belonging to class c:

R(v) = |{s | 〈s, type, c〉 ∈ E}| (6)

with E as edge set of the data graph G. However, computing R(v) like this
requires Q to contain a class pattern 〈v, type, c〉. If v has no class assigned,
we use the number of all entities, |VE|, as an estimate for R(v). Then, R(Q)
is given by:

R(Q) :=
∏
v∈V

Q
V

R(v) (7)

• The probabilistic component P defines a probability function that maps Q to
a probability. More precisely, P assigns a probability to a binary random
variable, say 1Q, modeling whether or not Q’s result set is non-empty. In
other words, 1Q captures whether Q holds. We write P(1Q = T) as P(Q)

for simplicity.

The probabilistic component P(Q) captures the joint probability over a set of ran-
dom variables – one random variable for each query pattern in Q. Intuitively, each
such random variable models whether the associated query pattern holds
or not.

Employing function R and the probabilistic component P(Q), we can refine
the informal definition in Definition 12:

ó Definition 21: Selectivity Estimation Function

Given a query Q and a data graph G, a selection estimation function, sel, is
defined as:

sel(Q) := R(Q) ·P(Q) (8)

In the next paragraphs, we introduce Bayesian networks (BNs) and their temp-
late-based representation, in order to efficiently and effectively compute P(Q) for
a given query Q.

4.1.3 Probabilistic Framework – Bayesian Networks

In order to compute the query probability P(Q) for a query Q with |Q| = n,
we need to estimate a joint probability over n random variables: X1, . . . ,Xn. As-
suming each random variable Xi has a sample space Ωi, capturing the exact

4.1 introduction 73

joint probability would require
∏
i |Ωi| space. To reduce space complexity, in-

dependence assumptions are commonly employed. One might assume all ran-
dom variables to be pairwise independent, thereby reducing the space to

∑
i |Ωi|.

However, as discussed above, such independence assumptions rarely result in
accurate joint probability approximations. Instead, conditional independence has
been exploited to obtain a more effective, yet scalable, approach for probability
estimation [48, 60, 162]. This is based on the observation that often correlations
between two random variables X1 and X2 can be “mediated” by a third variable
X3. That is, variables X1, X2 become independent given X3:

X1 ⊥ X2 | X3

Finding and exploiting such conditional independences enables a factorization
of the full joint distribution – hence, allows a more compact representation and
efficient computation of probabilities.

A Bayesian network (BN) represents a directed graphical model that allows for
a compact representation of joint distributions by means of two components: a
network structure and model parameters [102].

• BN Network Structure
The BN network structure is a directed acyclic graph, where nodes stand
for random variables and edges represent dependencies among them. Given
parent nodes Pa(Xi) = {Xj, . . . ,Xk}, a random variable Xi is dependent on
Pa(Xi), but conditionally independent of all non-descendant nodes (ran-
dom variables), i.e., all nodes which are not reachable from Xi when re-
moving Pa(Xi).

• BN Parameters
BN parameters comprise conditional probability distributions (CPDs) for
random variables in the network. That is, each node Xi is associated with
a CPD capturing the conditional probability P(Xi | Pa(Xi)).

A BN allows for computing the joint distribution P(X1, . . . ,Xn) via the chain
rule [102]:

P(X1, . . . ,Xn) ≈
∏
i

P(Xi | Pa(Xi)) (9)

This task is commonly referred to as inferencing. More precisely, we ask a
conditional probability query, which can be addressed by various exact as well as
approximate inferencing approaches [102]. Variable elimination is a naïve exact
inferencing algorithm and is based on a simple idea [102]:

4.1 introduction 74

Xtitle(α1) Xname(α2)

Xspouse(α2,α2)

Xmotto(α3)

(a)

(b)

Xmovie(m)

Xstarring(m,p)
Xtitle(m)

Xperson(p)

Xname(l)

Xname(p)

XbornIn(p,l)

Xactress(α2)

Xmovie(α1)

Xperson(α2)

XbornIn(α2,α3)

Xcomment(α2)
Xlocation(α3)

Xstarring(α1,α2)

Xyear(α1)

Xrating(α1)

XdateOfBirth(α2)

Xrating(m)

(c)

Figure 25: (a) Template-based BN for the running example in Figure 7. (b) Query ground
BN for query in Figure 8. Note, templates Xcomment, Xmotto and Xlocation
are marginalized out. (c) CPD for template Xtitle.

Excursus: Variable Elimination
We know that:

P(Xi | pa) =
P(Xi,pa)
P(pa)

(10)

Thus, to compute the RHS numerator, we can sum out all random variables
which are neither the query random variable, Xi, nor the evidence random
variables, Pa(Xi) = pa. The RHS denominator is given by summing out the
joint distribution.

. Example 26

An example BN (a template-based BN, as discussed below) for our data
graph in Figure 7 is illustrated in Figure 25-a. From its structure one can ob-
serve that, e.g., Xstarring is dependent on Pa(Xstarring) = {Xtitle,Xname},
but independent of all other random variables given its two parents.

An example CPD for random variable Xtitle is shown in 25-c. Each
row captures a probability, given one particular assignment to its parent
random variables (Pa). That is, the CPD for Xtitle holds probabilities for
n-grams of title values, conditioned on whether or not the particular
entity is a Movie.

We use template-based BNs [102] (so-called template models) as means to com-
pactly represent correlations in graph-structured data. A template model is a

4.1 introduction 75

framework featuring two parts: template variables (short: templates) and template
factors.

Each template can be instantiated to obtain multiple random variables in a
ground BN. These instantiated random variables share the same sample space
and the same semantics as their template. More formally, a template is defined
as a function X(α1, . . . ,αk), whose sample space is Ω(X) and each argument αi
is a placeholder to be instantiated to obtain random variables.

. Example 27

Figure 25-a shows a template model, containing templates such as Xmovie,
Xstarring or Xname, which are derived from classes, relations, and at-
tributes from our data graph in Figure 7.

A ground BN can be obtained using data from the data graph for template
instantiations. That is, placeholders αi are instantiated by entities in the data,
forming an entity skeleton of a template.

ó Definition 22: Entity Skeleton

Given a data graph G = (V,E, `a, `r) and a template X(α1, . . . ,αn), an entity
skeleton of X is defined as E(α1, . . . ,αn) ⊆ E(α1)× . . .× E(αn), where each
E(αi) ⊆ VE in data graph G specifies all possible entity assignments to αi.

Using its entity skeletons, we can define a ground BN by instantiating a tem-
plate as a set of random variables: X = {X(e) | e ∈ E}, where Ω(X(e)) = Ω(X).

. Example 28

For the template Xperson(α2) and Eperson(α2) = {p1, p2, p3, p4}, the set
of random variables obtained for the ground BN is given by:

Xperson = {Xperson(p1),Xperson(p2),Xperson(p3),Xperson(p4)}

Different assignments to a template argument αi result in different random
variables in the ground BN, which share the same probabilistic semantics. That
is, they share the structure dependencies and parameters (CPDs), which are de-
fined in the template model. CPDs are captured as template factors, which define
probability distributions, which are shared by all instantiated random variables
for that particular template.

Such a template-based representation is flexible, since various ground BNs can
be obtained, based on different entity skeletons. In our approach, we will exploit
this flexibility to define a suitable ground BN for a given query – while relying
on a fixed template model.

4.1 introduction 76

. Example 29

Consider the query ground BN in Figure 25-b. Random variables are in-
stantiated for each query pattern, while having a query variable as place-
holder for entity bindings.

4.1.4 Problem

A joint distribution of n random variables that exhibits all possible dependen-
cies requires a high-dimensional representation. A data synopsis (for selectivity
estimation), which tries to capture data correlations in such a manner, will suf-
fer from an exponential blowup of storage space and computational cost. At the
same time, two random variables are oftentimes actually independent, if condi-
tioned on a third random variable.

Selectivity estimation approaches based on PRM synopses [60, 162] exploit
this conditional independence, in order to factor a full joint distribution into
multiple low-dimensional distributions. This factorization allows for a compact
and efficient synopsis/selectivity estimation.

Unfortunately, Web data and hybrid queries pose novel challenges for selectiv-
ity estimation:

Graph-Structured, Schemaless Web Data. Existing PRM-based solutions [60,
162] are proposed for relational data. In particular, they assume a partitioning
scheme that determines the tables in which data is stored. Further, such ap-
proaches take queries as inputs, which explicitly specify the tables from which
data shall be retrieved. For instance, consider the query pattern 〈x, name, “Gre-
gory Peck”〉, which selects all bindings from the entire data graph matching
that name. In contrast to that, previous works assume a selection pattern to have
a FROM clause that specifies the table from which data is selected, e.g., Person.
Thus, the probability P(Xname = “Gregory Peck”) is estimated for bindings in
the Person table only. Applying such solutions to a graph-structured setting is
not directly possible, because queries do not contain table information. Further,
data graphs can be partitioned in various ways. Different partitioning schemes,
however, yield different tables, which in turn greatly affect the performance of
existing solutions.

Queries over Text-Rich Web Data. Another problem with PRM approaches
[60, 162] is that random variables are assumed to have small sample spaces. In ex-
isting works, random variables capture structured query patterns with constants
that are bounded to a fixed number of values. In addition to structured patterns,
we aim to support string patterns for specifying keyword constraints over tex-
tual values. In particular, string patterns comprise keywords, which match any
value that contains such keywords, see Section 2.1.2. That is, results for these
string patterns do not have to exactly match a specified constant, but only have
to contain a given keyword.

4.2 research questions and contributions 77

. Example 30

For instance, given data in Figure 7 and the query in Figure 8, bind-
ings for 〈x, name, “Gregory Peck”〉 would also satisfy the pattern 〈x, name,
“Gregory”〉, as they both contain “Gregory”. Thus, to support queries via
a string pattern on predicate name, a sample space Ω(Xname) must com-
prise all words as well as phrases (sequences of words) contained in text
values for name. Clearly, Ω(Xname) may potentially be very large.

The problem outlined in the above example is exacerbated, when dependen-
cies between values in these sample spaces have to be considered. For dealing
with string patterns, specific string synopses summarizing the value spaces of tex-
tual attributes have been proposed. For instance, synopses based on pruned suf-
fix trees, Markov tables, clusters or n-grams have received much attention [35,
99, 164]. However, previous works estimate the selectivity of single string pat-
terns. In our setting, we aim to support queries that comprise a combination of
structured and string query patterns: hybrid queries. To the best of our knowledge,
there is no work, which considers dependencies between these different types of patterns.

4.2 research questions and contributions

Next, let us discuss research problems, hypotheses, and contributions, which we
present in this chapter.

4.2.1 Research Questions and Hypotheses

Coming back to our overall Research Question (introduced in Section 1.3): How
to allow for rank-aware and approximate query processing on the Web of data?
We aim at this question using rank-aware as well as approximate join operators.
In order to integrate such operators in physical query plans, we face another
research question:

- Research Question 2

How to allow for efficient and effective selectivity estimates on hybrid,
schemaless Web data?

Notice, by efficient we mean a low selectivity estimation computation time and
a small data synopsis size. By effective we mean an accurate selectivity estimation.

Throughout this chapter, we address the above research question using hy-
potheses as follows:

2 Hypothesis 3

A template-based representation of BNs allows for effective and efficient
selectivity estimation for graph-structured RDF data.

Concerning Hypothesis 3, we present a template-based BN model, called BN+,
in Section 4.3, which is well-suited for schemaless, graph-structured Web data.

4.2 research questions and contributions 78

That is, we expect our BN+ to enable an effective and efficient data synopsis for
selectivity estimation over Web data. We validate this hypothesis in our evalua-
tion on real-world Web data in Section 4.4.

2 Hypothesis 4

String synopses can be integrated in template-based BNs and allow for ef-
fective and efficient selectivity estimation for text-rich RDF data.

With regard to Hypothesis 4, we extend the template-based BN model in Sec-
tion 4.3 with string synopses. We expect the overall data synopsis to support ef-
fective and efficient selectivity estimation of string patterns, which are conjoined
with other triple patterns – forming hybrid queries. By means of the evaluation
in Section 4.4 we validate this claim.

4.2.2 Contributions

Towards an efficient and effective solution for selectivity estimation of hybrid
queries over text-rich Web data, we provide the following contributions:

• Contribution for Hypothesis 3
We rely on an instantiation of a general template-based BN: BN+. This
model is able to effectively capture correlations in schemaless Web data
graphs.

In contrast to existing PRM-based approaches [60, 162], we do not assume
a specific data partitioning. In fact, our model is learned directly from the
instance data – without requiring any schema information.

• Contribution for Hypothesis 4
In order to support hybrid queries over text-rich Web data, we show how
string synopses can be integrated into our template-based model BN+.

This way, we lift the restriction of PRM-based approaches [60, 162] to only
feature random variables with small sample spaces. Allowing for large
sample spaces is crucial, since selectivity estimation for hybrid queries re-
quires sample spaces to feature all n-grams, which occur in the Web data
graph.

• Contribution for Hypothesis 3 and Hypothesis 4
We implemented our BN+ approach to perform experiments on real-world
Web data. We can empirically show that our solution greatly improves
the effectiveness of selectivity estimates for hybrid queries. In terms of
efficiency, our solution is promising, as BN+ performs comparable to the
baseline systems. In fact, the results suggest that BN inferencing requires
only a negligible computational overhead.

4.3 selectivity estimation over text-rich rdf graphs 79

4.3 selectivity estimation over text-rich rdf graphs

In this section, we propose a novel template-based BN, the BN+ data synopsis,
which is well-suited for schemaless, graph-structured Web data. In particular,
we show how string synopses can be integrated into BN+, in order to support
selectivity estimation for hybrid queries. By means of the BN+ data synopsis, we
realize an efficient and effective instantiation of the probabilistic component P

(see Definition 21, p. 72).

4.3.1 BN+ Data Synopsis

The BN+ data synopsis comprises two parts: (1) A template-based BN, which is
defined based on instances (entity skeletons) observed in the Web data graph.
(2) String synopses to summarize the sample spaces for predicates in the data
graph, which feature large textual values.

4.3.1.1 BN+ Template Model

Given a Web data graph G = (V,E, `a, `r), we introduce three kinds of templates:

• Attribute Template
We define a template for each attribute a ∈ `a in data graph G: Xa(α1).

• Relation Template
We define a template for each relation r ∈ `r in data graph G: Xr(α1,α2).

• Class Template
We define a template for each class c ∈ VC in data graph G: Xc(α1).

Each template for a relation r or a class c is binary:

Ω(Xr) = Ω(Xc) = {T, F }

In contrast, a sample space for attribute template Xa comprises a bag of n-grams,
which are derived from values of attribute a.

. Example 31

For our running example, templates are depicted in Figure 25-a. For in-
stance, the sample space for Xname is given by:

Ω(Xname) = {“Audrey”, “Hepburn”, “Audrey Hepburn”, “Mel”, . . . }

To obtain a ground BN, above templates are instantiated using the following
entity skeletons:

• Entity Skeleton for Attribute Templates
For an attribute template, an entity skeleton consists of all entities having
that attribute:

Ea(α1) := {s | 〈s,a,o〉 ∈ EA} (11)

4.3 selectivity estimation over text-rich rdf graphs 80

• Entity Skeleton for Relation Templates
The entity skeleton Er(α1,α2) contains all pairs of source/target entities
having relation r:

Er(α1,α2) := {〈s, t〉 | 〈s, r, t〉 ∈ ER} (12a)

Let source and target entities be denoted as

Esr(α1) := {s | 〈s, r, t〉 ∈ ER} (12b)

and

Etr(α2) := {t | 〈s, r, t〉 ∈ ER} (12c)

where

Er(α1,α2) ⊆ Esr(α1)× Etr(α2) (12d)

• Entity Skeleton for Class Templates
The entity skeleton for a class template Xc(α1) is given by all entities be-
longing to that class:

Ec(α1) := {s | 〈s, type, c〉 ∈ E} (13)

Such a template-based approach has the merit of being compact. The number
of templates is far less than the number of random variables in a ground BN.
This is because BN structure and BN parameters (CPDs) are only learned for
the template model. More precisely, templates are instantiated with entities at
runtime to construct a ground BN. For inferencing, a CPD from the template
model is shared among all random variables in the ground BN, which instantiate
that template.

4.3.1.2 Discussion

In our work, we use a general template-based model as probabilistic framework,
see problem description in Section 4.1.4. Previous instantiations of template-
based models focus on relational data. Most notably, Probabilistic Relational
Models (PRM) [57] and Probabilistic Entity Relation Models (PER) [59] have
been proposed. In fact, PRMs have also been applied for selectivity estima-
tion [60, 162]. However, PRM-based solutions are not well-suited for a graph-
structured data model, because of differences in the data as well as query model.

In a relational context, data is stored in tables corresponding to relations cap-
tured by a conceptual model. Further, relation names are explicitly given in
a query – stated in a FROM clause. Correspondingly, previous works [60, 162]
employ a PRM to model selection predicates through random variables of the
form XR.A, where R is a relational table and A is an attribute. For instance,
XPerson.name = “Audrey” is a random variable capturing a selection on table
Person where name equals “Audrey”. Analogously, join predicates are modeled
as binary random variables that involve two explicitly specified tables.

4.3 selectivity estimation over text-rich rdf graphs 81

As opposed to that, graph-structured data, such as RDF, can be partitioned
in different ways. For instance, there may be a table for every entity class, e.g.,
a Person table capturing different person attributes [168]. On the other hand,
a table might be constructed for every attribute and relation – leading to, e.g.,
a table for attribute name. The latter partitioning is also known as vertical parti-
tioning [9]. Thus, at query level, there is no explicit information about the tables
from which data shall be selected. Further, schema information may be queried
via class patterns, which are not supported in the relational setting.

Due to these differences, the following problems occur when storing graph
data in tables and applying a PRM-based approach:

• Sensitivity to Data Partitioning
A PRM assumes tables to be given. Thus, random variables are defined
and their parameters/dependencies are learned – all of which with regard
to these tables. Different partitioning schemes for data graphs, however,
yield different tables. Therefore, models learned from such tables might
largely vary – in terms of dependency structure as well as parameters. In
particular, [162] focuses on learning correlations between attributes, which
are comprised within one table, while assumptions are made to simplify
cross-table dependencies. While resulting in a very lightweight PRM, this
approach assumes that data is partitioned in tables comprising related
attributes. In the case of vertical partitioning, however, where every at-
tribute constitutes a table, there are no local dependencies to be learned
and cross-table dependencies are more important. Generally speaking, the
performance of PRM solutions is sensitive to the partitioning strategy. Our
template-based solution does not make any assumptions about data par-
titioning. Instead, a template model is learned from entity skeletons and
values from a data graph – independent from the way data is stored in
tables.

• Cross-Table Selection
Besides vertical partitioning, another common strategy for graph data par-
titioning is to construct a table for every class [168]. However, oftentimes
common attributes, such as name, are used to describe entities of different
types, e.g., Person and Location (see Figure 7). Given such a class-based
partitioning, the attribute pattern 〈p, name, “Audrey”〉 would select data
from different tables. Unfortunately, these tables may not be explicitly spec-
ified in a query. At the same time, this explicit specification is required by
PRM-based approaches. A possible solution is to maintain information to
find out in which tables name occurs and to construct corresponding ran-
dom variables, which refer to these different tables. Finally, one would
need to aggregate the probabilities obtained for these variables. In contrast,
with our template-based solution, only one template variable, Xname, is
needed to support this predicate. A PRM-based approach, on the other
hand, requires consulting one variable and CPD for every table.

4.3 selectivity estimation over text-rich rdf graphs 82

• Multi-Table Joins
A similar problem occurs when dealing with joins. In a PRM context, a
join predicate requires data from two explicitly specified tables. Joins cor-
respond to relation patterns in our setting. That is, a relation may be seen
as referring to two foreign keys, which connect a source with a target entity.
However, depending on the data partitioning, processing such a join (rela-
tion pattern), might involve one or more unspecified tables. For instance,
given a relation pattern 〈p, bornIn, l〉, predicate bornIn could join either
Person or Actress entities with Location instances, see Figure 7. Thus,
data for the entities to be joined might be located in different tables. In a
PRM one may handle this issue via using several random variables and ag-
gregating their probabilities. In contrast, using our approach, merely one
single CPD and random variable representing the given relation pattern is
required.

4.3.1.3 BN+ String Synopsis

Consider an attribute template Xa with sample space Ω(Xa). Then, for comput-
ing selectivity estimates for string patterns over attribute a, the sample space
Ω(Xa) must capture all words and phrases, which occur in attribute a’s val-
ues. Oftentimes attribute values comprise long texts, resulting in a sample space
to quickly blow up. So, we propose to employ string synopses in order to compactly
represent large sample spaces of attribute templates.

More precisely, in order to compactly represent Ωa, which is a large set of
strings, we propose the use of string synopses such as Markov tables [35], his-
tograms [99], or n-gram synopses [164]. We generalize from existing works to
define the following class of string synopses:

ó Definition 23: String Synopsis

A string synopsis for an attribute template Xa is a tuple S(ν, count).

• The synopsis function ν maps elements in the bag of n-grams for at-
tribute a, denoted by Ba, to elements in a compact synopsis sample
space Ω(Xa).

• A function count : Ω(Xa) → N returns the number of elements in
the “original” space Ba, which are represented by a given synopsis
element in Ω(Xa).

Above definition of a synopsis is generic, however, a well-suited synopsis func-
tion ν should aim at three goals:

À The synopsis function ν should lead to a small sample space, Ω(Xa), since
a compact representation facilitates learning and keeps the CPD size small.

Á The synopsis function ν should be most accurate. That is, each synopsis
element in Ω(Xa) should represent only few n-grams from the original
space, Ba.

4.3 selectivity estimation over text-rich rdf graphs 83

Â The synopsis function ν should capture all “important” n-grams, while dis-
carding “not important” ones. From a conceptual point of view, discarded
n-grams are mapped to a bottom element ⊥, which captures the probabil-
ity mass of all missed n-grams.

While we do not restrict our approach to a particular type of string synopsis,
existing work [164] has shown that (with regard to above goals) synopses based
on n-grams are well-suited for the task of selectivity estimation for the contains
operator on dictionaries. Notice, the contains operator has the same semantics as
our string patterns (see Definition 9, p. 23): it matches text values that contain a
given keyword. Thus, we follow this line of work and integrate n-gram synopses
into BN+ for our evaluation systems in Section 4.4.

An n-gram synopsis works as follows [164]: For an attribute a in the data
graph, the synopsis function ν projects a’s textual attribute values to their n-
gram representation Ba.

. Example 32

The attribute comment has one attribute value in Figure 7. This value is
mapped by the synopsis function ν to Bcomment = {“Audrey”, “Hep-
burn”, “Audrey Hepburn”, . . . }.

Then, the space Ba is reduced by using a decision criterion to dictate which
n-grams in Ba to include in a synopsis sample space Ω(Xa). That is, the syn-
opsis space Ω(Xa) represents a subset of “important” n-grams. Note, n-gram
synopses are most accurate, since each synopsis element in Ω(Xa) represents
exactly one n-gram in Ba – in contrast to, e.g., histograms.

Recent work has outlined several of such decision criteria [164]. One simplis-
tic strategy is to randomly sample n-grams from Ba. Another approach is to con-
struct a top-k n-gram synopsis. For this, n-grams are extracted together with
their number of occurrences. Then, the k most frequent n-grams are included in
the synopsis space.

. Example 33

Let us continue Example 32. Given attribute comment, the count for n-
gram “Audrey” would be two, while “Hepburn” only occurs once. Thus,
the top-k n-gram synopsis would rank “Audrey” as more important than
“Hepburn”. In other words, the synopsis would rather discard the n-gram
“Hepburn” than the n-gram “Audrey”.

Further, as a more efficient top-k n-gram synopsis, a stratified Bloom filter syn-
opsis has been proposed [164]. This synopsis uses Bloom filters [27] as a heuristic
map that projects n-grams to their counts. This way, the stratified Bloom filter
synopsis can store more n-grams than the top-k n-gram synopsis. However, this
extended storage capacity comes at the cost of accuracy, since Bloom filters re-
semble a probabilistic data structure.

4.3 selectivity estimation over text-rich rdf graphs 84

4.3.2 BN+ Data Synopsis Construction

The BN+ data synopsis should compactly represent the joint distribution over tem-
plates, while capturing dependencies between structured data elements as well
as n-grams of textual attribute values.

However, large sample spaces and complex dependencies among templates
may lead to prohibitive synopsis size/selectivity estimation times. In fact, dur-
ing our experiments we observed sample space sizes up to 2 million n-grams
for some attributes. Such sample spaces translate to large CPDs, which in turn
make fast selectivity estimation at runtime impossible. Furthermore, dependen-
cies between templates aggravate this problem: the size of a CPD multiplies with
each parent a particular template is dependent on. We address these problems
by means of two strategies:

À Compact Sample Spaces
We utilize string synopses in order to compress an attribute template sam-
ple space into a manageable size.

Á Compact BN Structure
Instead of constructing a complex network structure featuring all possible
dependencies, we solely focus on the most important ones. That is, we aim
for an approximation of the joint distribution that shall limit the dimen-
sions of the CPDs, while preserving key dependencies.

In the following paragraphs, we will show in Algorithm 5 how string syn-
opses (as presented in the previous Section 4.3.1.3) can be integrated in the BN+

synopsis. Moreover, we introduce an structure learning approach, which solely
captures key dependencies in the data graph. Last, we discuss how BN parame-
ters can be learned.

4.3.2.1 Structure Learning

An efficient and well-known technique in the BN literature [41, 119] is based on
using a product approximation of rich structures via trees. These tree structures
guarantee that each template has at most one parent.

Recently, such an approximation has been adopted to PRMs for a relational set-
ting. The resulting “lightweight” structure has been shown to improve efficiency,
while still producing high-quality selectivity estimates [162].

We apply product approximation to a graph-structured setting, by imposing a
fixed structure of independences between template variables:

ó Definition 24: BN+ Fixed Network Structure

Given a data graph, the following conditional independences are assumed
to hold:

a. Two templates X1 and X2 are conditionally independent given their par-
ents, if they do not share a common entity in their skeletons E1 and E2.

4.3 selectivity estimation over text-rich rdf graphs 85

Note, in case either of these templates, say Xi, captures a relation, we
use Ei = Esi ∪ Eti as the skeleton, i.e., the union of its source and target
entities

b. Each class template, Xc, has no parent.

c. Each relation template, Xr, is independent of any class template Xc, given
its parents.

We argue that the independences induced via the above fixed structure are
meaningful due to the following argumentation:

À We impose that strong correlations among templates only occur, if they
share some common entities. Intuitively speaking, for templates to be cor-
related, they need to “talk about” the same entities, see Definition 24-a.

Á We argue that there is a causal dependency between a class template and
an attribute template (see Definition 24-b/c). In other words, assigning an
entity to a given class causally affects the probability of its attribute values.

Â Last, we impose a conditional independence between a class and a relation
template (see Definition 24-b/c). That is, we assume that class templates
influence attribute templates, which, in turn, influence relation templates.
This way, we have a lightweight “dependency chain”, which starts with the
class templates.

Exploiting the fixed structure, we can decompose the structure learning proce-
dure: First, we construct a disconnected graph, coined local part and denoted as
Tlocal, of the template model by learning dependencies between class/attribute
and attribute/attribute template pairs. Then, we simplify Tlocal via an approxi-
mation T∗local. Last, we add relation templates to the structure T∗local and obtain
a final template model T.

For learning the local part, Tlocal, we add weighted edges between each
class/attribute and attribute/attribute template pair, which is not independent
with respect to the fixed structure assumption in Definition 24. That is, each pair
must have an “overlap” in their skeletons – the templates share one or more
common entities.

. Example 34

In Figure 25-a, we add an edge Xmovie → Xtitle for the Movie/title
template pair, because their skeletons are identical:

Emovie = Etitle = {m1}

In order to calculate the dependency weight between two templates, we use
the mutual information quantity, denoted as mi, which represents the “amount of
information shared” between two templates X1,X2:

mi(X1,X2) :=
∑
x1∈Ω1

∑
x2∈Ω2

P(x1, x2) · log
(
P(x1, x2)
P(x1)P(x2)

)
(14a)

4.3 selectivity estimation over text-rich rdf graphs 86

with Ωi = Ω(Xi) being the sample space of template Xi. The maximum likeli-
hood estimation of P(Xi = xi) is:

P(Xi = xi) :=
M̆i[xi]

N
(14b)

with N as normalization factor. M̆ is a sufficient statistic that counts entities in
the skeleton of Xi having xi as value:

M̆i[xi] :=
∑
e∈Ei

1{Xi(e) = xi} (14c)

Note, 1 is an indicator function, i.e., it returns 1 if its expression is true, 0 other-
wise. Similarly, the joint distribution of X1 and X2 is:

P(X1 = x1,X2 = x2) :=
M̆1,2[x1, x2]

N
(14d)

with N as normalization factor and M̆1,2[x1, x2] as count of entities having both
values:

M̆1,2[x1, x2] :=
∑

e∈E1∩E2

1{X1(e) = x1,X2(e) = x2} (14e)

Once the weighted edges have been added to the local parts Tlocal, the model
comprises all possible dependencies between class templates and attribute tem-
plates according to our fixed structure in Definition 24. Then, we capture only
the most important correlations in Tlocal by reducing it to its maximum-spanning
forest.30 This yields a much simpler structure: T∗local.

. Example 35

For our running example, T∗local is depicted in Figure 25-a and its four
maximum-spanning trees are highlighted in different colors. For instance,
the red maximum-spanning tree contains three edges (dependencies):

{Xmovie → Xtitle,Xmovie → Xyear,Xmovie → Xrating}

Intuitively speaking, each maximum-spanning tree describes dependen-
cies of the same entities – as dedicated by Definition 24-a. For example,
the above maximum-spanning tree captures dependencies of Movie enti-
ties.

Due to the fixed structure restriction, the maximum-spanning forest algorithm
may find no solution. In such cases, we iteratively remove the weakest attribute-
to-attribute edge, until a spanning tree can be obtained.

30In this work, a maximum-spanning forest is defined as a set of spanning trees – one for each
component in Tlocal [148].

4.3 selectivity estimation over text-rich rdf graphs 87

Algorithmus 5 : Construction of the BN+ data synopsis.
Input : Templates X = {Xa}∀a∈ `a] {Xr}∀ r∈ `r] {Xc}∀c∈VC ,

entity skeletons E = {Ea}∀a∈ `a] {Er}∀ r∈ `r] {Ec}∀c∈VC ,
and synopsis size ρ.

Output : BN+ data synopsis T.
1 begin
2 Tlocal ← ∅
3 Ω(Xr) = Ω(Xc) = {T, F} for all c and r
4 Ω(Xa) = InitializeSynopsis(a, ρ) for all a
5 foreach Xa ∈ X do
6 foreach non-independent Xc to Xa w.r.t. Definition 24 do

7 Add (Xc
mi(Xc,Xa)−−−−−−−→ Xa) to Tlocal

8 foreach non-independent Xa ′ to Xa w.r.t. Definition 24 do

9 Add (Xa ′
mi(Xa ′ ,Xa)−−−−−−−−→ Xa) to Tlocal

10 T∗local ←Max-Spanning-Forest

(
Tlocal

)
11 T ← T∗local // initialize T

12 foreach Xr ∈ X do
13 Xbestas

= arg maxa∈source(r)mi(Xa,Xr)
14 Xbestat

= arg maxa∈ target(r)mi(Xa,Xr)
15 if Xbestas

6= NULL then
16 Add (Xbestas

→ Xr) to T

17 if Xbestat
6= NULL then

18 Add (Xbestat
→ Xr) to T

19 return T

. Example 36

Continuing Example 35: While the orange and blue maximum-spanning
trees have been comprised in one component in Tlocal, we needed to re-
move the weighted edges between Xname and Xcomment, which led to
two trees in the maximum-spanning forest T∗local, see Figure 25-a.

Overall, the construction of T∗local results in a dynamic partitioning of the dependen-
cies, based on information contained in entity skeletons.

Next, we integrate relation templates in the maximum-spanning forest T∗local.
Mutual information is used to quantify dependencies between relation templates
and attribute templates. For every relation template, its mutual information with
regard to all possible (with regard to Definition 24, p. 84) source and target
attribute templates is computed. Finally, given a relation template, the two at-
tribute templates that exhibit the highest mutual information are used as parents
of that relation template.

4.3 selectivity estimation over text-rich rdf graphs 88

. Example 37

In Figure 25-a, the relation template Xstarring connects two maximum-
spanning trees (red and blue) from T∗local via two attribute templates:
Xtitle and Xname. More specifically, relation template Xstarring has two
parents, Xtitle and Xname, which exhibit the highest mutual information
among all possible parent templates.

Algorithm 5 summarizes the entire structure learning procedure. The algo-
rithm takes all relation/attribute/class templates, their entity skeletons, and the
string synopsis size parameter ρ as input. Then, we initialize the sample spaces
of all templates in Lines 3-4.

In particular, initializing the sample space for an attribute template requires
string synopsis construction for the associated attribute. Note, the string syn-
opsis construction algorithm depends on the employed string synopsis. We dis-
cussed the construction of n-gram string synopses in Section 4.3.1.3.

We learn the local template model Tlocal on Lines 5-9, by adding weighted
edges between all possible attribute/attribute and class/attribute template pairs.
On Line 10, we approximate Tlocal by computing the maximum-spanning forest
and adding its result, T∗local, to an intermediate model. Relation templates are
added as connections between maximum-spanning trees in T∗local on Lines 12-18

– resulting in the BN+ synopsis, T.
Constructing a BN+ data synopsis by means of Algorithm 5 leads to a valid

template-based BN:

û Theorem 4

The template-based BN+ synopsis constructed according to Algorithm 5 is
valid, i.e., acyclic.

Sketch of Proof

A local model Tlocal is reduced to a forest of trees, T∗local, via a maximal
spanning tree algorithm. Thus, every tree in T∗local represents a valid acyclic
fragment of Tlocal. Then, we connect these tree structures by incrementally
adding edges representing relation templates, see Algorithm 5 on Lines 12-
18. However, a relation template must not have children. Thus, no cycles can
be introduced at this step �

4.3.2.2 Parameter Learning

After having built a BN+ network structure, we may now learn its model param-
eters, i.e., conditional probability distributions. As done in recent works [60, 162],
learning CPDs can be achieved based on the sufficient statistic M̆ in Equation 14.
More precisely, according to Bayes rule it holds that:

P(Xi | Xj) =
P(Xi,Xj)
P(Xj)

(15)

4.3 selectivity estimation over text-rich rdf graphs 89

So, we can compute P(Xi,Xj) and P(Xj), as we did for obtaining the mutual
information in Equation 14a. Note, in case of a relation template, say Xi, we need
to estimate a distribution conditioned on two other templates (Xj and Xk):

P(Xi | Xj,Xk)

This can be achieved by extending the M̆ function to capture three templates:
M̆1,2,3[x1, x2, x3]. For an efficient parameter learning, we employ two sorts of
optimizations.

À We use caching strategies for keeping frequently needed M̆ statistics in
memory. In fact, caching can be applied to store results already produced
during structure learning.

. Example 38

For example, sufficient statistics for the template XMovie are needed
more than once, because XMovie is a parent of Xtitle, Xyear, and
Xrating. So, we can cache sufficient statistics for XMovie, thereby
omitting additional computations.

Á We can formulate M̆ expressions (see Equation 14) as queries to be issued
at a database. For instance, M̆p1,p2 [x1, x2] can be calculated based on the
cardinality of a result set for query Q = {〈s,p1, x1〉, 〈s,p2, x2〉}, with Xpi
being the template for pi. This way, the database handles query optimiza-
tions, caching of results for frequently computed query fragments etc.

4.3.2.3 Maintenance

Data on the Web is subject to frequent changes. We handle these evolving triples
in two ways:

On the one hand, changes may result in minor modifications of entity skele-
tons and sample spaces. As a consequence, some model parameters may no
longer be accurate enough for effective selectivity estimations. Such affected
CPDs should be recomputed, given an updated data graph. For minor changes
such a reestimation, however, does not influence other parameters and/or the
structure. So, these computations may be done incrementally. In fact, while
model parameters might have to be frequently recomputed, the network struc-
ture is commonly much more “stable”.

On the other hand, given drastic changes in a data graph, its structure as well
as parameters has to be recomputed. Our experiments show that, even in this
case, learning is feasible within a short amount of time. For our datasets, we
observed that computation of the entire BN+ model, including string synopses,
took at most 3 hours.

4.3.3 Selectivity Estimation

4.3.3.1 Query Ground BN

In order to employ our BN+ data synopsis for selectivity estimation, we have to
instantiate its templates specifically for the given query – leading to ground BN.

4.3 selectivity estimation over text-rich rdf graphs 90

To be precise, we do not form a standard ground BN, since this would solely
capture entities as random variable assignments. Instead, we form a query ground
BN featuring random variables that have sets of entities as assignments, which
are result bindings to query variables.

We instantiate templates in the BN+ data synopsis as follows:

• For each relation pattern 〈s, r,o〉 and class pattern 〈s, type, c〉 in Q, we in-
stantiate a random variable Xr(s,o) = T and Xc(s) = T, respectively.

• For every string pattern 〈s,a,w〉, its keyword w is mapped to a correspond-
ing element in our synopsis, ν(w), such that the resulting instantiated ran-
dom variable is: Xa(s) = ν(w).

• Last, for an attribute pattern 〈s,a,o〉 we instantiate the random variable:
Xa(s) = o.

It is important to note that any template in the BN+ synopsis, which is not
needed for a given query, is marginalized out. Moreover, the same template may
be instantiated multiple times – as required for the query.

. Example 39

In our running example, we instantiate one random variable for each
query pattern, as shown in Figure 25-b. In particular, we need two instan-
tiations of the template Xname, since the query has two triple patterns
with predicate name. Templates that are not relevant for the query, e.g.,
Xcomment, are marginalized out.

Given a query Q with query graph GQ = (VQ,EQ), we compute the joint
probability of the associated query ground BN to estimate Q’s selectivity:

P(Q) ≈ γ · P

 ∧
〈s,r,o〉∈EQ

r∈ `r

Xr(s,o) = T
∧

〈s,type,c〉∈EQ

c∈VC

Xc(s) = T

∧
〈s,a,w〉∈EQ

a∈ `a,w∈V
Q
K

Xa(s) = ν(w)
∧

〈s,a,o〉∈EQ

a∈ `a, o∈V
Q
C

Xa(s) = o

 (16a)

where

γ :=
1∏

w∈V
Q
K

count(ν(w))
is a correction factor. (16b)

4.3 selectivity estimation over text-rich rdf graphs 91

. Example 40

Coming back to Example 39, we compute P(Q) as:

P(Q) ≈ γ · P
(
XMovie(m) = T ∧ Xrating(m) = 8.0∧

Xtitle(m) = ν(“Holiday”) ∧ Xstarring(m,p) = T∧

XPerson(p) = T ∧ Xname(p) = ν(“Audrey Hepburn”)∧

XbornIn(p, l) = T ∧ Xname(l) = ν(“Belgium”)
)

The correction factor γ is necessary, because ν(w) may not only capture the
probability mass for keyword w, but could also include other words (phrases).
Consider a histogram synopsis. Here, “Wiliam” and “Wyler” may be represented
by a single bucket [Wi−Wy]. Then, a query pattern 〈p,name, “Wiliam” 〉would
be translated to Xname(p) = [Wi−Wy]. However, the bucket [Wi−Wy] not only
comprises “Wiliam”, but also “Wyler”. Thus, its probability must by “corrected”.
Note, such a correction implies a uniform distribution among all words (phrases),
which are captured by a single synopsis element.

For the above inferencing problem (Equation 16), each instantiated random
variable reuses the CPD from its template. In the simplest case, inferencing
for P(Q) could be performed via “brute-force” marginalization. However, as
marginalization is expensive, we employ belief propagation allowing an approx-
imation, which operates on a junction tree representation of the ground BN [162].

Further, we adopt the standard inferencing task to deal with the following
problems that arise in our setting: multiple value assignments and missing synopsis
values.

4.3.3.2 Multiple Value Assignments

Oftentimes a string synopsis restricts the length of its phrases due to a limited
amount of storage space. If a query pattern contains a phrase as keyword, which
is longer than this threshold, a simple strategy is to break that phrase into multi-
ple smaller phrases. For instance, if a synopsis only allows 1-grams, a keyword
phrase with k words must be split into k 1-grams. In such a case, instantiated
random variables (referring to the same query variable) have multiple values.

. Example 41

Let’s assume we have an n-gram synopsis, which allows only 1-grams.
Then, the random variable Xname(p) in Figure 25-b would have two assign-
ments (“Audrey” and “Hepburn”), because the query keyword “Audrey
Hepburn” is too long.

This problem can be addressed through an aggregation function. We use a
stochastic mode aggregation, which uses all values as evidence, but weights each
one with its frequency within the query [155].

4.4 evaluation 92

. Example 42

Continuing the above Example 41, P(XbornIn = T | Xname(p) = “Audrey
Hepburn”) is computed via stochastic mode aggregation as:

P(XbornIn = T | Xname(p) = “Audrey Hepburn”) ≈
1

2
· P(XbornIn = T | Xname(p) = “Audrey”) +

1

2
· P(XbornIn = T | Xname(p) = “Hepburn”)

This is because, the probability for each assignment of Xname(p) is
weighted with 1

2 , since both values (“Audrey” and “Hepburn”) occur once
in the query.

4.3.3.3 Missing Synopsis Values

There are synopses, such as the top-k n-gram, for which some query keywords
do not have a corresponding synopsis element. That is, the synopsis discarded
that particular word (phrase) during construction for space reasons. The prob-
ability for these “missing” keywords cannot be estimated by means of the BN+

synopsis, since such keywords are not included in any sample space. To deal
with this problem, a string pattern featuring a missing keywords is assumed to
be independent from the remainder of the query.

Then, its probability can be estimated based on a heuristic. We employ the left-
backoff strategy, which finds the longest known n-gram that is a prefix (postfix)
of the missing keyword and estimates its probability based on statistics for that
prefix (postfix) [164].

4.4 evaluation

In the following, we discuss the experiments, which we preformed to analyze the
accuracy (effectiveness) and the time performance (efficiency) of our BN+ selectivity
estimation. As baseline, we used an approach that assumes independence among
string patterns as well as between them and structured query patterns.

Overall, our results suggest that the baseline yields very low accuracy, when
dependencies between query patterns exist. For IMDB, we observed such strong
correlations in the data. Here, given we employ the most accurate string synopsis
(stratified bloom filters), BN+ improved the baseline’s accuracy by 93% in terms
of multiplicative error. In other words, BN+ achieved a decrease of error by a
factor of 13.6. With respect to efficiency, we found that the BN inferencing over-
head was actually negligible. The main factor driving computation time was the
string synopsis that we employed. When both approaches, BN+ and the baseline,
used the same type of string synopsis, their performance was comparable.

4.4 evaluation 93

IMDB DBLP

Triples 7, 310, 190 11, 014, 618

Entities 1, 673, 097 2, 395, 467

1-grams 7, 841, 347 25, 540, 172

Attributes 11 21

Relations 8 18

Classes 6 18

Table 1: Dataset statistics for DBLP and IMDB benchmarks.

Relation Patterns # String Patterns

0 1 2-4 1-2 3 4-7

Queries 33 44 23 28 35 26

Class Patterns # Total Patterns

1 2 3-4 2-3 4-6 7-11

Queries 49 30 21 28 31 41

Table 2: Query statistics depicting the number of relation patterns, string patterns, and
class patterns, which are contained in our query load.

4.4.1 Evaluation Setting

Data. We used two real-world datasets: DBLP comprising computer science
bibliographies and IMDB holding information from the movie domain. Table 1

provides basic statistics for both datasets. DBLP as well as IMDB hold text-rich
attributes like name, label, or info.

We employed n-gram string synopses as presented in [164]. However, we only
used 1-grams in our experiments, as larger values for n resulted in synopses that
exceed our memory space limit. Overall, we extracted 25, 540, 172 and 7, 841, 347
1-grams from DBLP and IMDB.

We chose these two datasets, as in one of them (IMDB) textual attribute val-
ues strongly correlate among each other and with structured data. In particu-
lar, we noticed strong dependencies during structure learning between values
of attributes such as label and info. Hence, IMDB is appropriate to test the
hypothesis: assuming independence hurts the quality of selectivity estimates, given a
dataset exhibits correlations. On the other hand, we employed DBLP, which showed
almost no such correlations. Here, we expect accuracy differences to be less sig-
nificant. Comparing the accuracy performances across these two datasets will
illustrate the relative benefit of our solution.

Queries. We employed queries that have been used for keyword search evalu-
ation [42, 114]. These queries capture information needs expressed as keywords.

4.4 evaluation 94

Based on query keywords and their structured results, we constructed corre-
sponding graph patterns, comprising string, class, and relation patterns. In par-
ticular, we generated 54 DBLP queries based on [114]. Additionally, 46 queries
were constructed for IMDB, based on a recent keyword search benchmark [42].
We omitted 4 queries from [42], because they could not be translated to our
query model. Our workload includes queries containing 2-11 patterns in total:
0-4 relation patterns, 1-7 string patterns, and 1-4 class patterns, see Table 2.

Note, since we extracted 1-grams only, every string pattern with a phrase of
length n is decomposed into n string patterns. So, each string pattern captures
exactly one word.

In our subsequent analysis, we rely on the number of patterns as an indicator
for query complexity. We expect queries with a larger number of patterns to
be more “difficult” in terms of both accuracy and efficiency. That is, accurate
estimates may be harder to obtain and require additional computation.

However, most crucial are the dependencies between query patterns: we ob-
served that there are more correlated patterns in IMDB, e.g., info (class Movie)
and title (class Movie). Queries in DBLP, on the other hand, often include, e.g.,
name (class Author) and label (class Title) patterns, for which we could not
measure any significant correlations.

Table 2 gives an overview of the query load, while example queries are given
in Listing 6. All queries can be found in our appendix, see Section A.2.

Listing 6: Example queries for IMDB and DBLP benchmark. Variables are pink, key-
words green, and classes as well as predicates are black.

1 // IMDB query // DBLP query

2 <x,type,Title> <x,label,"clustering">

3 <x,title,"star"> <x,label,"mining">

4 <x,title,"trek"> <x,year,"2005">

5 <x,cast_info,c> <x,type,Article>

6 <c,type,Cast_info> <x,author,y>

7 <c,role,r> <y,type,Person>

8 <r,name,rn> <y,name,"nikos">

9 <r,type,Char_name>

10 <c,person,p>

11 <p,type,Person>

12 <p,name,"brent">

13 <p,name,"spiner">

Systems. As string synopses we employed strategies proposed in [164]. That
is, we obtained a random sample of 1-grams, top-k 1-grams, and stratified bloom
filters (sbf) on 1-grams.

For selectivity estimating of the entire query, string patterns were integrated
via: (1) independence (ind) or (2) conditional independence (bn) assumption. In the
former case (independence assumption), selectivity of string and structured query
patterns was estimated using string synopses and histograms. More precisely,
the selectivity of structured query patterns was estimated similar to [87]. In
the latter case (conditional independence assumption), selectivity estimation was
performed using our BN+ synopsis.

4.4 evaluation 95

Combining string synopses with the independence/conditional independence
assumption resulted in six different systems: indsample, indtop-k, and indsbf rely
on the independence assumption, and bnsample, bntop-k as well as bnsbf are BN+

approaches.

Synopsis Size. We experimented with synopses of various sizes. The key fac-
tor driving the overall synopsis size was the employed string synopsis. The
string synopsis determined the size of the (conditional) probability distribution
for ind∗ (bn∗), which was the most costly type of statistic. Other statistics, e.g.,
the BN+ network structure, were negligible in terms of space.

We varied the number of 1-grams comprised by the top-k and sample syn-
opsis, i.e., #1-grams per attribute ∈ {0.5K, 1K, 5K, 10K}. Regarding the sbf string
synopsis, we captured up to {2.5K, 5K, 25K, 50K} of the most frequent 1-grams for
each attribute and varied the bloom filter sizes. This resulted in similar memory
requirements for the sbf string synopsis. All systems loaded their synopsis into
main memory.

Overall, different string synopses (sizes) yielded different systems with {2, 4,
20, 40} MByte of memory consumption, while no additional hard disk space was
required. We observed that, while selectivity estimations become more accurate
with greater size, no further improvements could be achieved, using synopses
> 20 MByte. In order to allow for the best accuracy and to illustrate this conver-
gence, we report results from synopses with up to 40 MByte.

Implementation and Offline Learning. For bn∗ systems, we used the BN+ con-
struction procedure, as presented in Algorithm 5. That is, we learned a model
structure, capturing the most important correlations only. Then, we calculated
model parameters (CPDs) based on sufficient statistics. String synopsis con-
struction could be done efficiently: each synopsis, including sbf-based synopses,
could be computed in less than one hour. Structure and parameter learning for
bn∗ combined took in the worst case up to three hours. Inferencing needed by
our systems was done using a Junction tree algorithm [162].

As bn∗ and ind∗ systems rely on the same probability distributions for string
patterns, parameters were shared. That is, for ind∗ approaches we did not need
a BN+ model structure, but merely kept its marginalized parameters. Further,
histograms for ind∗ comprising relation and class statistics were constructed
similar to [87]. Model structure (histograms) as well as parameters for bn∗ (ind∗)
were stored in a key-value store outside the database system – both were loaded
into memory at start-up. Depending on the synopsis size loading took up to 3s.

We implemented all systems and algorithms using Java 6. Experiments were
run on a Linux server with two Intel Xeon 5140 CPUs (each with 2 cores at
2.33GHz), 48GB RAM (with 16GB assigned to the JVM), and a RAID10 with IBM
SAS 148GB 10K rpm disks. Before each query execution all operating system
caches were cleared. The presented values are averages collected over five runs.

4.4 evaluation 96

1E+1

1E+2

1E+3

[2,4] [5,6] [7,11]

Ti
m

e
(m

s)

Num. of Predicates 1E+1

1E+2

1E+3

0.5 2 4 20 40

Ti
m

e
(m

s)

Synopsis Size (MByte)

1E+1

1E+2

1E+3

1E+4

[2,4] [5,6] [7,11]

M
u

lt
ip

li.
 E

rr
.

Num. of Predicates 1E+1

1E+2

1E+3

1E+4

1E+5

0.5 2 4 20 40

M
u

lt
ip

li.
 E

rr
.

Synopsis Size (MByte)

1E+01

1E+02

1E+03

1E+04

0.5 2 4 20 40

M
u

lt
ip

li.
 E

rr
.

Synopsis Size (MByte) 1E+1

1E+2

1E+3

1E+4

[2,3] [4,5] [6,7]

M
u

lt
ip

li.
 E

rr
.

Num. of Predicates

1E+2

1E+3

2 4 20 40

Ti
m

e
(m

s)

Synopsis Size (MByte) 1E+2

1E+3

[2,3] [4,5] [6,7]
Ti

m
e

 (
m

s)

Num. of Predicates

(a) (b)

(c) (d)

(e) (f)

(g) (h)

DBLP

IMDB

Figure 26: Evaluation results for DBLP and IMDB. All y-axes are in logarithmic scale.

4.4 evaluation 97

4.4.2 Evaluation Results: Effectiveness

As metric for the selectivity estimation accuracy, we employed the multiplicative
error (denoted as me), which was also used in previous work [48]. This error
metric is defined as:

me(Q) :=
max {sel(Q), sela(Q)}
min {sel(Q), sela(Q)}

(17)

with sel(Q) and sela(Q) as exact and approximated selectivity for Q. Intu-
itively, the multiplicative error represents the factor at which sela(Q) under- or
overestimates sel(Q).

Overall Results. Figure 26-a, -b (-e, -f) depict the multiplicative error for DBLP
(IMDB). Best accuracy results were achieved by ind∗ and bn∗ having a size > 20
MByte, because these synopses had sufficient memory space to capture most
query keywords.

Further, the results confirmed our conjecture that the degree of data correla-
tions has a significant impact on the accuracy differences between ind∗ and bn∗
approaches. That is, a high degree of correlation in the IMDB dataset translated
to large accuracy differences. In contrast, the improvement that bn∗ could achieve
over the baseline was small for DBLP.

Last, comparing ind∗ (bn∗) systems in terms of their string synopsis, we found
that sampling-based approaches were outperformed by systems using top-k
1-gram synopses. Such systems, in turn, performed worse than sbf-based ap-
proaches. In fact, when using samples, the bnsample system achieved results simi-
lar to those from indsample. This behavior is due to the fact that many keywords
in query patterns were “missed” in the sample synopses. In these cases, both
approaches rely on the same heuristic (leftbackoff strategy [164]) to calculate the
probability for such keywords, which translates to large misestimates.

Synopsis Size. Figure 26-a and -e depict estimation errors vs. different synop-
sis sizes for DBLP and IMDB. Given a small synopsis (6 4 MByte), we observed
that top-k and especially sample-based systems performed poorly, while accu-
racy for sbf-based approaches was fairly stable. With increasing synopsis size
(∈ [4, 20] MByte), the performance of top-k 1-gram approaches converged to the
accurate estimations, which were achieved by sbf-based systems. Differences in
estimation quality can be explained by missed query keywords. More precisely,
when missing a keyword, approaches have to rely on inaccurate heuristics for
probability computation. The good and stable performance of sbf-based systems
suggests that using stratified bloom filters is an effective strategy, which allows
for an accurate estimation of most query 1-grams.

Data Correlations. Results obtained for IMDB and DBLP largely varied. For
the IMDB dataset, bnsbf could reduce errors of the indsbf approach by 93%, while
improvements were much smaller given DBLP. For instance, for DBLP queries
with string pattern name and label, there are no significant correlations in our

4.4 evaluation 98

BN+. Thus, the probabilities obtained by bn∗ were almost identical to the ones
from ind∗. However, while ind∗ led to fairly good estimates for the overall query
load on DBLP, we could achieve more accurate selectivity computations via bn∗
for specific “correlated” queries. For instance, for DBLP query Q1 we could ap-
proximate a 10% better selectivity estimation.

Query Size. Figure 26-b and -f show the multiplicative error for a varying
number of query patterns. We noticed the error to increase in the number of
patterns. This effect is expected, as more query patterns (hence more “difficult”
queries) lead to an increasingly error-prone probability estimation.

An interesting observation is that ind∗ outperformed bn∗ for some queries –
see IMDB queries with 5 patterns and DBLP queries with 4 patterns (Figure 26-
b and -f). For instance, given IMDB query Q28, indtop-k achieved 13% better
results than bntop-k. In such cases, string query patterns were translated to mul-
tiple values (1-grams) that are assigned to one single random variable. For pro-
cessing these multiple assignments, bn∗ employed value aggregation. However,
the stochastic mode aggregation led to over-/underestimations for these queries
due to inaccurate evidence weights. On the other hand, ind∗ systems could ap-
proximate the probability simply via independence assumption.

Overall, we observed that while stochastic mode aggregation resulted in worse
estimates for some queries, it led to better results on average.

4.4.3 Evaluation Results: Efficiency

During the second part of the experiments, we studied efficiency aspects of selec-
tivity estimation with regard to varying synopsis sizes (Figure 26-c and -g) and
query complexities (Figure 26-d and -h).

For all systems, our reported times represent solely the inference task (com-
putation of Equation 16), while times for model construction and loading were
omitted.

Overall Results. An important observation is that BN+ inferencing did not
have a decisive impact on the overall performance. Instead, the employed string
synopsis was a key factor driving the efficiency: systems with sample-based syn-
opses, bnsample and indsample, were faster than approaches relying on top-k 1-
gram synopses, which in turn outperformed sbf-based systems, bnsbf and indsbf.

In fact, when employing the same string synopsis, bn∗ approaches led to com-
putation times comparable to those from ind∗. This can be explained with the
lightweight model structure used by bn∗, which only captures the most impor-
tant correlations. Further, our structure contained many tree-shaped parts, which
could be processed efficiently through Junction tree inferencing.

Interestingly, we noticed ind∗ systems to be even slower than bn∗ in some cases.
We explain this with: (1) the computational overhead of histogram-based estima-
tion of structured query constraints for ind∗, and (2) with runtime advantages of
bn∗ due to stochastic aggregation. That is, fewer probability computations were
performed by bn∗, because through value aggregation, the system could process
several string patterns via one single inference task. On the other hand, ind∗ ap-

4.5 related work 99

proaches needed to compute the probability for each string pattern individually.
For instance, bn∗ needed 30% less computation time compared to ind∗ for Q33

in the IMDB query load. This is because Q33 contains seven info string patterns
that were aggregated by bn∗ – leading to one random variable assignment.

String Synopses. Compared to other synopses, the time savings achieved by
sample-based systems were possible due to missing 1-grams. However, such
savings came at the expense of accuracy. If a particular query keyword is not
included in a synopsis, heuristics are employed. In this case, the probability
computation is done without the use of (conditional) probability distributions.
Thus, no time-consuming marginalization was needed. Further, the missing 1-
gram could not be added to the model “as evidence” for further inferencing.

Sbf-based systems performed worst. We explain this behavior with the com-
putational overhead introduced by bloom filters. Further, as sbf synopses com-
prised a larger number of 1-grams, marginalization was more expensive. Note,
with an increasing number of 1-grams to be managed, the performance of sample-
based and top-k systems converged to the one exhibited by sbf-based approaches.

Synopsis Size. Figure 26-c and -g show selectivity estimation time vs. synop-
sis size. As expected, larger string synopses translated to bigger (conditional)
probability distributions and hence, resulted in longer inference times.

Sbf-based approaches are an exception, as they provided a stable performance
for different synopsis sizes. This constant estimation time was due to the fact
that computational costs for sbf systems are largely determined by their bloom
filters. In fact, we observed that costs only marginally depended on the overall
number 1-grams.

Query Size. Figure 26-d and -h show that selectivity estimation times increase
with query size. This is because each additional query pattern translated to more
inferencing iterations and probability lookups that were needed by bn∗ and ind∗
systems.

4.5 related work

For better effectiveness (accuracy), selectivity estimation approaches aim to avoid
the uniform distribution assumption, the predicate value independence assump-
tion, and the join predicate independence assumption (see Section 4.1.1).

One line of research employs table-level data synopses, i.e., data reduction tech-
niques that capture joint distributions of attribute values within a table. Previous
approaches utilize, e.g., histograms [48, 135] or wavelets [118]. Such table-level
approaches are suitable for addressing the uniform distribution assumption and
the predicate value independence assumption. However, the join independence
assumptions can not be omitted, because table-level synopses are restricted to a
single table and do not incorporate foreign-key relations.

Another line of research is concerned with schema-level synopses. Here, a syn-
opsis does not only capture a single table, but also related tables, which are
connected via foreign keys. Approaches based on graphical models [60, 162],

4.6 summary 100

graph synopses [154], or join samples [10] have been proposed. Such solutions
can avoid all three independence assumptions and thereby allow for effective
selectivity estimates.

Our approach falls into this category. In fact, closest to our work are solutions
based on PRMs [60, 162]. However, PRM-based approaches focus on relational
data. We discussed in detail why PRMs are not directly applicable to schemaless
Web data, see Section 4.3.1.2.

To summarize this discussion: A key problem is that PRM-based approaches
assume queries with selection and join patterns, which are evaluated against
explicitly specified tables. Queries in our setting, however, may not specify ta-
bles from which data shall be selected. In general, the effectiveness of PRM sys-
tems is greatly determined by the chosen data partitioning scheme. Addressing
these shortcomings, we rely on a different template-based representation of BNs,
which is well-suited for modeling probabilistic dependencies in Web data.

Further, no previous approach supports query patterns having large domains
of textual values. In fact, some authors pointed out that the number of nominal
values can be limited via clustering or, if possible, using feature hierarchies [60].
However, there is no work studying how clustering techniques may be integrated
into a selectivity estimation framework, or how it may affect estimation effective-
ness and efficiency. In this work, we build upon string synopses and show how
they can be used in a template-based BN.

Another direction of related work is concerned with estimating the selectiv-
ity of string patterns [35, 98, 99, 107, 164]. Some approaches aim at substring
and fuzzy string matching [35, 98, 107], while other systems target extraction
operators, e.g., regular expression or dictionary-based operators [150, 164]. How-
ever, these works do not consider dependencies among multiple string patterns
and/or structured patterns, which are evaluated against structured data. In
this chapter, we showed that string synopses can be integrated into a template-
based BN to deal with a conjunction of string/structured query patterns (hybrid
queries).

In summary, our approach represents a novel schema-level synopsis, which is capable
of handling hybrid queries over Web data.

4.6 summary

We targeted Research Question 2 in this chapter:

- Research Question 2

How to allow for efficient and effective selectivity estimates on hybrid,
schemaless Web data?

For this complex question, we validated two hypotheses: Hypothesis 3 and
Hypothesis 4.

4.6 summary 101

2� Hypothesis 3

A template-based representation of BNs allows for effective and efficient
selectivity estimation for graph-structured RDF data.

For the above hypothesis, we presented a novel template-based BN, coined
BN+, which is well-suited for Web data. The BN+ data synopsis resembles a
schema-level data synopsis, which omits all three independence assumptions.
At the same time, by means of our structure learning procedure as well as our
fixed structure assumption, the BN+ template model adheres to a lightweight
network structure, which only captures key dependencies in the data.

2� Hypothesis 4

String synopses can be integrated in template-based BNs and allow for ef-
fective and efficient selectivity estimation for text-rich RDF data.

Since Web data oftentimes contains text-rich attributes, the BN+ synopsis must
capture dependencies between/among those unstructured data elements and
structured data elements. In order to efficiently capture such dependencies, we
proposed the use of string synopses in the BN+ synopsis – allowing to compress
its sample spaces. This way, large samples spaces containing text values could
be represented in a compact manner.

To validate effectiveness and efficiency of selectivity estimation based on our
BN+ data synopsis, we conducted experiments on real-world datasets. In fact,
we could empirically show that, given there are dependencies between query
patterns and text values, selectivity estimation effectiveness can be greatly im-
proved. Moreover, we observed that this increased effectiveness does not come
at the expense of efficiency, as the inferencing needed to consider the dependen-
cies required only negligible overhead.

By means of our novel selectivity estimation, query optimizers can construct
physical queries, which comprise rank-aware/approximate join operator over
Web data – as proposed in this thesis. While we introduced a rank-aware join
operator for distributed Web data in Chapter 3, we will present approximate
join operators as well as a query processing pipeline for incremental query pro-
cessing in the next chapter. Note that our approximate join operator not only
requires selectivity estimation for integration in a physical query plan, but also
for its internal join operation.

A P P R O X I M AT E Q U E RY P R O C E S S I N G

102

5
A P P R O X I M AT E Q U E RY P R O C E S S I N G

Context of this Chapter. In this chapter, we introduce two approaches for
approximate query processing over Web data. These approaches allow systems to
trade off result accuracy and result completeness for result computation time. Moreover,
our approaches are complementary to each other. Thus, a system may employ both
works together. The following chapter is split into two main parts:

Ê On the one hand, we propose an approach for incremental and approxi-
mate query processing over Web data in Section 5.2. For this, we present
a novel pipeline of operations, which allows to process queries incrementally.
In particular, our pipeline consists of multiple join operators and data syn-
opses, which are well-suited for schemaless Web data. This section is based
on our previous publication [1].

In contrast to our LD-PBRJ operator that was discussed in Chapter 3, our
incremental query processing pipeline does not consider result ranking.
However, intermediate query results in our pipeline can be reported at
any point in time. This way, large result sets can be processed efficiently,
since systems have the possibility to answer queries quickly with initial
results. In other words, systems can decide with what degree of accuracy
to compute query results – as dictated by the given information need.

Additionally, query optimization techniques, which exploit our BN+ selec-
tivity estimation work (Chapter 4), can be used to optimize queries issued

Top-k Processing
Techniques

Query Model

Data Model

Data Access

Impl. Level

Ranking

Selection Top-k Selection Top-k

Join Top-k

Aggregation
Top-k

Aggregation
Top-k

Certain Data +
Exact Processing

Certain Data +
Exact Processing

Certain Data +
Approximate

Processing

Uncertain DataUncertain Data

Sorted Access Sorted and
Random Access

Sorted and
Random Access

Sorted Access
with Controlled

Probes

Sorted Access
with Controlled

Probes

Query Engine Application
Level

Application
Level

Monotonic

GenericGeneric

UnknownUnknown

Figure 27: Classification of our approximate top-k join processing approach in Section 5.3.

103

approximate query processing 104

Problem 1, Sect. 1.1.2

Process queries such that top-ranked results

are reported as soon as possible.

Problem 2, Sect. 1.1.2

Compute large result sets quickly and allow to trade

off result accuracy for computation time.

Research Question 4, Ch. 5, Sect. 5.3

How to enable approximate, rank-aware query processing on Web data?

Research Question 3, Ch. 5, Sect. 5.2

How to enable approximate, incremental query processing on Web

data?

Approximate
Top-k Results

Approximate
Query Binding

Goal

Goal

Complementary
Goals

Computes:
False positive and false
negative top-k results

Computes:
False positive and false
negative query results

addressed by

addressed by

Figure 28: Overview: Approximate incremental approach in Section 5.2 versus approxi-
mate rank-aware approach in Section 5.3.

throughout the incremental query processing pipeline. In particular, we
start our pipeline by computing entity queries, which oftentimes may re-
semble hybrid queries. Here, our BN+ synopsis can provide effective selec-
tivity estimates, thereby allowing the query optimizer to construct optimal
physical query plans.

Ë On the other hand, we present an approximate top-k join processing ap-
proach in Section 5.3, which is based on our publication [4]. We highlight
the classification of this rank-aware join operator in Figure 27. Recall, the
dimensions for this classification have been introduced in Section 2.3.1.

• As done for the LD-PBRJ operator, we target the join top-k prob-
lem. More precisely, we introduce a new approximate top-k operator,
which can be integrated in physical query plans. In particular, we can
employ our BN+ selectivity estimation approach for the necessary cost
estimates of the query optimizer.

• Further, we require join inputs to accessible via sorted accesses. In
contrast to the LD-PBRJ operator, we do not need a specific sorted
access implementation. In fact, given distributed Web data, we can
employ our access plans presented in Chapter 3.

• As before in Chapter 3, we need the ranking function to be monotonic.

• Most importantly, contrary to the LD-PBRJ operator, our join operator
approximates the top-k results. That is, we compute false positive and
false negative top-k results, respectively.

Selectivity estimation, e.g., realized by the BN+ selectivity estimation ap-
proach, is not only essential for the query optimizer, but also for the ac-
tual approximate top-k query processing. This is because, our approximate

5.1 motivation 105

DataData Data Analysis
Data

Synopsis

Data
Synopsis

Offline Synopsis Construction

Approximation
Algo.

Online Query Approximation

Query

Information Need

Approx.

Results

Figure 29: Generic approximate query processing approach [96, 112]. The data synopsis
is constructed at indexing time and compactly summarizes the data. At query
time, an approximation algorithm exploits the synopsis in order to compute
approximate results for a given query.

top-k join operator exploits selectivity estimates, in order to judge if a par-
tial binding will lead to a complete binding. Partial bindings, which have
a low probability of leading to a complete binding, will be pruned during
query processing.

Figure 28 illustrates the relation between our incremental query processing in
Section 5.2 versus our approximate top-k query processing in Section 5.3. The
first approach is complementary to the second approach. More specifically, our
system in Section 5.2 computes false positive and false negative query results,
respectively. That is, some query results may be not valid. In contrast, our ap-
proximate top-k query processing always computes valid query results. However,
those results may be false positive or false negative top-k results. That is, some
reported approximated top-k results may not belong to the exact top-k results.

Outline. We first give a brief motivation for approximate query processing in
Section 5.1. The remainder of this chapter comprises two parts:

In Section 5.2, we discuss a system for incremental and approximate query
processing. We outline research questions in Section 5.2.2. We propose our novel
incremental query processing pipeline in Section 5.2.3. We discuss the evaluation
results in Section 5.2.4. In Section 5.2.5, we outline the related work. Last, we
summarize our findings in Section 5.2.6.

In Section 5.3, we introduce our new approach for approximate top-k join
processing. More specifically, we discuss our research questions in Section 5.3.2.
Our approximate top-k query processing approach is presented in Section 5.3.3.
In Section 5.3.4, we discuss the evaluation. Further, we outline related works in
Section 5.3.5. Finally, we conclude with Section 5.3.6.

5.1 motivation

Approximate query processing techniques constitute a popular class of process-
ing techniques for large-scale data [58, 112]. Intuitively, approximate processing
techniques ensure a quick response time – even for expensive queries – by ei-

5.1 motivation 106

ther omitting results or by reporting “roughly estimated” results. The first work
addressing approximate query processing was published in [122].

The authors in [96] provide an overview of approximate query processing ap-
proaches – as illustrated in Figure 29. Intuitively, a data analysis algorithm is used
to construct a synopsis at offline time from the data. At runtime, the data synopsis
is employed to compute approximate results for a given query. Previous works
exploited different kinds of synopses for approximate query processing. For in-
stance, sampling, histogram, and wavelet-based synopses have been employed
in various works [58]. The interested reader may find further details in [58, 96].

The motivation for applying approximate processing techniques is manifold
and depends on the system, the users, and the information needs [58, 112]:

À Extensive datasets oftentimes reside on hard disks or tapes. Unfortunately,
efficient data access on such media is still problematic. Approximation
techniques feature compact data synopsis, which can provide the means
to ensure fast response times.

Á End-user applications frequently face information needs that do not re-
quire a high result accuracy. For example, given a Web search engine, users
mostly visit only few top-ranked results – all remaining results are simply
omitted. Thus, an engine may safely approximate low-ranked results, since
only very few users will investigate them.

Â Data mining or decision support systems are very resource-intensive ap-
plications. At the same time, result accuracy or completeness is commonly
not critical for such applications, because apply aggregation functions (e.g.,
sum, count, max, or min) are used to summarize results. Thus, approxima-
tion techniques can help to scale data mining and decision support systems
to large datasets by roughly estimating the applied aggregation function.

Ã Approximations may provide a query and dataset preview, respectively.
That is, approximate query processing may be employed to allow users to
gain a first insight into a dataset or issue an initial query.

Ä Lastly, resources such as network bandwidth or storage space often make
exact result computation impossible or very expensive. In contrast, approx-
imate query processing allows to store the necessary data in a compact
synopsis. In fact, this synopsis may be cached locally, thereby omitting net-
work transfers.

Many of the above arguments are highly relevant for search over Web data.
Most importantly, the amount of Web data is rapidly increasing – as motivated
in the introduction in Chapter 1. So, many search systems will require slow data
storage media such as hard disks. Moreover, end-users frequently search over
Web data. Thus, systems have to deal with information needs, which can be
addressed with via top-ranked results only. Lastly, Web data is commonly dis-
tributed over a space of data sources. Therefore, network communication costs,
e.g., network latency, play a crucial role for Web search approaches.

5.2 approximate incremental query processing 107

In the following, we present two approaches for approximate query processing
over Web data. While both can been seen as instantiations of the above frame-
work, they differ in terms of their employed synopses as well as online query
approximation.

5.2 approximate incremental query processing

In the first section, we introduce an approach for incremental and approximate
processing of hybrid queries over Web data. For this, we present a novel pipeline
of operations, which allows to report results at any point in time to the users.

5.2.1 Introduction

Web Data Management. Efficient management of Web data bears novel chal-
lenges, which have attracted various research communities. In particular, several
RDF stores have been implemented as DB-based solutions such as RDF-extensions
for Oracle and DB2,31 Jena,32 Sesame,33 or Virtuoso.34

Further, native solutions for RDF like OWLIM,35 HStar [39], AllegroGraph,36

YARS [73], Hexastore [166], and RDF-3X [129] have been introduced.
Recently, also IR technologies, in particular inverted indexes, have been pro-

posed for managing RDF data [173]. An overview over the various Web data
management strategies can be found in [85, 139].

Problem. Unfortunately, all these systems focus on computing complete and ex-
act answers. However, in a Web setting exact and complete query bindings (with
billions of triples), lead to prohibitive response times – especially with respect to
complex hybrid queries.

At the same time, as outlined above, many end-users have information needs,
which can be addressed with incomplete and inaccurate results. In particular, the
success of current Web search engines suggest that exact and complete results
may not be needed. Recent studies estimate that 95% of all users investigate only
the first 10 top-ranked results.37

Thus, a more practical direction towards responsive and scalable solutions for
Web-scale semantic data management is approximate query processing (together
with sophisticated mechanisms for ranking, see Section 1.1.2). In this chapter,
we focus on the problem of approximate processing and how to refine bindings
incrementally. In other words, we give systems the freedom to decide in which
granularity to compute query results – some information needs may require “more
accurate” query results than others.

31http://www-01.ibm.com/software/data/db2/, retrieved 2014-02-10.
32http://jena.apache.org/, retrieved 2014-02-10.
33http://www.openrdf.org/, retrieved 2014-02-10.
34http://virtuoso.openlinksw.com/, retrieved 2014-02-10.
35http://www.ontotext.com/owlim/, retrieved 2014-02-10.
36http://franz.com/agraph/allegrograph/, retrieved 2014-02-10.
37http://chitika.com/google-positioning-value/, retrieved 2014-02-10.

http://www-01.ibm.com/software/data/db2/
http://jena.apache.org/
http://www.openrdf.org/
http://virtuoso.openlinksw.com/
http://www.ontotext.com/owlim/
http://franz.com/agraph/allegrograph/
http://chitika.com/google-positioning-value/

5.2 approximate incremental query processing 108

5.2.2 Research Questions and Contributions

In the next paragraphs, we outline the research questions, hypotheses, and con-
tributions we present throughout this section.

5.2.2.1 Research Questions and Hypotheses

In order to efficiently process hybrid queries over Web data, we want to exploit
approximate and incremental query processing techniques. So, we ask the fol-
lowing research question:

- Research Question 3

How to enable approximate and incremental query processing on schema-
less Web data?

Notice, an overview of all research questions is given in Section 1.3. We ad-
dress Research Question 3 by means of two hypotheses:

2 Hypothesis 5

Web data synopses and corresponding query processing algorithms allow
for an incremental processing of hybrid queries.

Intuitively, above hypothesis expects Web data synopses to enable for an in-
cremental processing of hybrid queries. In fact, users may stop the processing
at any point in time and the system reports the currently known results. To tar-
get Hypothesis 5, we introduce a novel approach in Section 5.2.3 that features
a pipeline of operators, which employ three data synopses: our neighborhood
synopsis, our structure index synopsis, and our relation index synopsis. More-
over, we implemented this approach and conducted extensive experiments to
empirically validate Hypothesis 5.

2 Hypothesis 6

Web data synopses and corresponding query processing algorithms enable
an approximate processing of hybrid queries.

We predict with Hypothesis 6 that the same Web data synopses also allow
for an approximate query processing. For this, we present a new approximate
structure matching technique in Section 5.2.3. Furthermore, we introduce a novel
approximate query processing strategy, which operates on a compact data syn-
opsis. We empirically validate Hypothesis 6 by means of our experiments in
Section 5.2.4.

5.2.2.2 Contributions

We propose a novel pipeline-based approach for processing hybrid queries over
Web data. Our approach allows an “affordable” computation of an initial set
of approximate results, which can be incrementally refined as needed. We thereby

5.2 approximate incremental query processing 109

allow a trade-off between result accuracy/completeness and query computation
time. Our specific contributions are:

• Contribution for Hypothesis 5
Using a pipeline of four computation phases, query results can be incre-
mentally processed – as required for the given information need. In the
first phase, we compute potential entity matches. Then, structural relation-
ships between those entities are checked in the subsequent phases. To the
best of our knowledge, this is the first work towards a pipelined processing of
queries over Web data, which allows an incremental result computation.

• Contribution for Hypothesis 6
For processing structured query patterns, we introduce a novel approximate
structure matching technique based on our neighborhood join. In particular,
we show how this approximate structure matching can be efficiently imple-
mented via Bloom filters [27]. Another approximation is introduced for re-
lation pattern matching: Instead of operating on the actual Web data graph,
we approximate relation pattern matches over a compact data synopsis.

• Contribution for Hypothesis 5 and Hypothesis 6
We implemented our approach and conducted experiments by means of
the LUBM benchmark [67] as well as DBLP data [13]. We show that our in-
cremental approach preforms well with regard to time needed for comput-
ing exact and complete results. Furthermore, our approach also achieves
promising results for approximate result computation. That is, a significant
amount of processing time could be saved, while still producing query re-
sults with high precision and recall.

5.2.3 A Pipeline-based Approach for Approximate and Incremental Query Processing

5.2.3.1 Overview

Approach. For a hybrid query Q, we outlined the traditional query processing
based on graph pattern matching in Section 2.2. As opposed to such an exact and
complete query processing, an approximate procedure might output results, which
only partially match the query Q. That is, a binding matches only some triple
patterns comprised in Q. A query processing procedure is incremental, when
results computed in the previous step are used for subsequent steps.

Figure 30 illustrates the main concepts and techniques of our approach. The
Web data graph is captured by multiple data synopses: While attribute triples
are stored in the entity index synopsis, relations triples are stored in the relation
index synopsis. Moreover, the structure index synopsis [159] captures the overall
structure in the Web data graph.

These synopses are employed in various operators in the pipeline, which we
propose for query processing. We rely on sorted merge joins and reuse related
query processing techniques [9, 166]. However, as opposed to exact and complete
techniques, operations in our pipeline match the query against the data in an
approximate way, thereby obtaining partially matching results (which are refined

5.2 approximate incremental query processing 110

Data Synopsis:
Entity and

Neighborhood
Index

Data Synopsis:
Entity and

Neighborhood
Index

Data Synopsis:
Structure Index

Data Synopsis:
Structure Index

Data Synopsis:
Relation Index

Data Synopsis:
Relation Index

Data Analysis:
Index Entities +

Entity Neighbor-
hoods

Data Analysis:
Bisimulation

Data Analysis:
Structure-based
Partitioning and

Refinement

Query

Information Need

Offline synopsis
construction

Online query
approximation

1. Entity Search (ES)

2. Intersecting Entity
Neighborhoods (ASM)

3. Structure-
based Result
Refinement

(SRR)

4. Structure-
based Result
Computation

(SRC)

Final Exact

Results

Incremental result refinement

RDF DataRDF Data

Synopsis elements
used for query pro-
cessing

Figure 30: Offline data preprocessing and online query approximation, which is em-
ployed in our incremental query processing pipeline. Our approach can be
seen as an instantiation of the general framework in Section 5.1. In partic-
ular, we instantiated the three framework complements: data analysis, data
synopsis, and online approximation.

during the process). Note, instead of operating on all approximated results, it is
possible to apply a cutoff or let the user choose the candidates at every step.

More precisely, our approach features steps as follows:

À Entity Search (ES)
We start by decomposing the query into entity queries and performing
an entity search. During this search, we store results in sorted entity lists
with a maximum length (cutoff). These results match only attribute query
patterns and string query patterns.

Á Approximate Structure Matching (ASM)
In the next step, we employ approximate structure matching. Here, we ver-
ify if the current results match the relation query patterns. For this, we
compute the overlap of the neighborhood of the entities obtained from the
previous step. That is, we verify if the entities are “somehow” connected –
thereby we approximately match the relation query patterns.

Â Structure-based Result Refinement (SRR)
During structure-based result refinement, we further refine the previous
results by searching for paths in the structure index, which might connect
entities via relation query patterns.

Ã Structure-based Result Computation (SRC)
Only in the final step (structure-based result computation), we actually use
edges in the data graph to verify if these connections indeed exist, and

5.2 approximate incremental query processing 111

(b)

title

rating

name
type

type

p

“Audrey“

“Holiday“

Movie

Person

starring
m

8.0

tp2

tp1

tp3

tp4

tp5

tp6

dateOfBirth dateOfBirth

Person

“Audrey

Kathleen

Hepburn“

type

“Audrey

Tautou“

type

name name

p1p2

19761929

rating
year

“Roman

Holiday“

starring

title

8.0 1953

m1

rating

year

“Amélie“

starring

title

8.5

2001

m2

“Audrey

Meadows“

name

p3

(a)

knows

starring

(c)
[p3]~
p3

[m1]~
m1,m2

[p1]~
p1,p2

knows

Figure 31: (a) A data graph, which is based on our running example in Figure 7.
(b) Query graph based on Figure 8. Triple patterns tp7 and tp8 have been
omitted for simplicity. (c) Structure index for the data graph in (a).

output the final results. Note, only these final results exactly match the
query.

. Example 43

Let us illustrate the above steps by our running example in Figure 31.
Results of the refinement steps are also summarized in Table 3.

• We have two entity variables {m,p} in our query, see Figure 31-b.
During ES, we obtain initial bindings: variablem has potential match
{m1} and variable p has potential matches {p1,p2,p3}. Entities p1, p2,
and p3 are bindings for pattern tp4 because of the contains semantic
of string patterns (see Definition 9, p. 23).

5.2 approximate incremental query processing 112

• During the ASM step, we find that entity p1 and entity p2 are some-
how connected with the other entities. This leads to two refined re-
sults: b1 and b2, where

µb1(m) = m1, µb1(p) = p1
µb2(m) = m1, µb2(p) = p2

• In the SRR step, we check via the structure index if entity m1 has
starring as outgoing predicate. Further, we check if entities {p1,p2}
have starring as incoming predicate. Both conditions hold, so the
result remains the same.

• Last, in the SRC step, we observe that the previous approximate tech-
niques leads to one incorrect binding b:

µb(p) = p1 and µb(m) = m1

Entity p1 could not be pruned through ASM, because p1 has a con-
nection to m2 via the starring relation.

Entity p1 could also not be pruned via SRR, because when looking
at the synopsis (structure index), p1 exhibits the same structure as
p2 (i.e., p1 and p2 are both in the extension [p1]

∼ – see Figure 31-c).

Finally, by means of the SRC step, we find out that p1 is actually not
connected with m1 via starring. So, entity p1 can not contribute to
a complete binding and the intermediate result b1 is pruned.

Discussion. Our design is based on the observation that state-of-the-art tech-
niques oftentimes only perform well with regard to queries with highly selective
patterns (e.g., attribute patterns with a constant). However, query patterns con-
taining many variables are more expensive. Considering Web-scale data graphs,
these query patterns become prohibitive. That is, processing patterns such as
〈x, rdf:type, y〉 or 〈x, foaf:knows, y〉, requires millions of RDF triples to be
retrieved. For dealing with Web-scale queries (having query patterns that might
lead to large number of bindings), we propose a pipeline of operations. This pipeline
starts with “cheap” query patterns to obtain an initial set of approximate results
and incrementally refines the results via more expensive query patterns.

Work on data partitioning and indexing [9, 73, 166] is orthogonal and comple-
ments our solution. Moreover, we reuse existing techniques for exact and com-
plete query processing based on sorted merge joins [9, 166]. Building upon these
previous works, we present the first solution towards a pipelined processing of com-
plex queries on Web data, which enables results to be computed approximately
and incrementally.

In particular, our approach is the first approximate technique for querying RDF
data, which is capable of trading result accuracy for computation time. That is,
approximately matching results can be reported early and (if needed) result ac-
curacy can be improved through several subsequent refinement steps. Compared

5.2 approximate incremental query processing 113

ES

Binding µb(m) µb(p)

b1 m1 p1

b2 m1 p2

b3 m1 p3

ASM

Binding µb(m) µb(p)

b1 m1 p1

b2 m1 p2

SRR

Binding µb(m) µb(p)

b1 m1 p1

b2 m1 p2

SRC

Binding µb(m) µb(p)

b2 m1 p2

Table 3: Approximated results after the ES, ASM, SRR, and SRC computation step. The
corresponding query and data graph is shown in Figure 31.

to existing techniques, the structure refinement step (SRR) resembles a technique
for approximate twig pattern matching [134]. The difference is that our structure
index is a synopsis for general graph-structured Web data, while the synopsis
employed in [134] is for hierarchical XML data only. Further, in contrast to pre-
vious techniques, we introduce an additional level of approximation: ASM. Our
ASM phase exploits a novel approximate join operator that uses the notion of
“neighborhood overlap” for structure matching.

As opposed top-k approaches, our incremental approach does not compute the
best, but all approximate results, which are iteratively refined in several steps.
In particular, we do not focus on ranking aspects and simply apply a predefined
cutoff to prune large result sets.

5.2.3.2 Entity Search (ES)

Let us first describe offline entity indexing and afterwards online entity search.

Entity Indexing. Attributes a ∈ `a that refer to a particular entity are grouped
together and represented as a document (ENT-doc) in an inverted index. We use
structured document indexing – a feature supported in many IR engines such as
Lucene38 – to store entity attribute values in different fields:

• Extension ID
Field points to the entity’s extension.

• Denotations
Field contains the entity’s URI and name.

• Attributes
Field comprises a concatenation of attribute/value-pairs for that entity.

38http://lucene.apache.org/, retrieved 2014-01-20.

http://lucene.apache.org/

5.2 approximate incremental query processing 114

starring

Entities: {m1}

Qm

<m,title,“Holiday“>
<m,rating,8>

Qp

<p,name,“Audrey“>

(b) (c)

(a)

starring
[m1]~

m1
[p1]~
p1,p2

[m1]~
<m1,starring,p2> p

[p1]~
p1,p2

Entities: {p1, p2, p3}

Figure 32: (a) The transformed query graph obtained in ES. (b) The structure index
match computed in SRR. (c) Refinement in the SRC phase through joins along
the structure index match.

• k-neighborhood
Field contains neighbor entities, which are reachable via paths with maxi-
mum length k.

Query Decomposition. We decompose the original query graph Q into entity
queries and a transformed query graph:

• Entity Queries QE

We defined entity queries in Definition 20, p. 54. Intuitively, an entity query
Qv constitutes a set of triple patterns, which share the common variable v at
the subject position. In following, let QE denote the set of all entity queries,
which are comprised in a given query Q.

. Example 44

For instance, in Figure 32-a we have two entity queries: Qm and Qp.
The former has m1 as matching entity, while the latter has entities
p1 and p2 as result.

• Maximum Distance
Let the distance between two queries, Qv and Qx, be defined as the length
of the shortest path of relation patterns connecting the variables v and x.
We denote this distance as dQv(Qy).

Further, let dmaxQv
be the maximum distance between the entity query Qv

in QE and all other entity queries in QE. More formally:

dmaxQv
:= max {dQv(Qy) | Qy ∈ QE} (18)

5.2 approximate incremental query processing 115

• Transformed Query
The transformed query Q ′ contains entity queries QE as nodes and relation
query patterns as edges. Query Q ′ may be conceived as a compact repre-
sentation of the original query Q, where attribute/string query patterns in
query Q are “collapsed” into entity queries QE. That is, each entity query
node in Q ′ represents a set of attribute/string query patterns from Q.

. Example 45

The transformed query in Figure 32-a contains two entity queries,
Qm and Qp, as nodes, which are connected via a starring edge.
Further, entity query Qm contains two triple patterns:

tp2 = 〈m, title, “Holiday”〉
tp3 = 〈m, rating, 8〉

More specifically, a transformed query Q ′ can be constructed as follows: We
select an attribute/string query pattern 〈v,a,o〉 and create an entity query Qv for
node v. Other attribute/string query patterns, which refer to the same variable
v are added to Qv. Starting with this entity query, we construct the transformed
query graph Q ′ using breadth-first search (BFS) in Q. We add visited relation
query patterns as edges to the transformed query. If new attribute/string query
patterns are encountered, we use them to create new entity queries.

During the traversal, the length of visited relation chains is recorded. This
allows us to compute the distance for every entity query pair. That is, for every
entity query Qx, we compute its distance dQx(Qy) to another entity query Qy in
QE. Finally, the maximum distance dmaxQx

is computed for every entity query Qx
from this information.

Processing Entity Queries. Every entity query is evaluated by submitting its
attribute/string query patterns as a query against the entity index. That is, query

Qv = {tp1 = 〈v,a1,o1〉, . . . , tpn = 〈v,an,on〉}

is issued as a conjunction of its query patterns. Note, for our experiments, we
used Lucene as the IR engine for indexing as well as computing entity query re-
sults. Given query Qv, we return a list of matching entities, where the maximum
length of the list is less than a predefined cutoff value.

. Example 46

The query Q in Figure 31-b is decomposed into the entity queries Qm
and Qp, see Figure 32-a. Further, Qm and Qp are connected via relation
starring, which leads to the transformed query Q ′ in Figure 32-a.

To construct this transformed query, we start with pattern 〈p, name,
“Audrey”〉 to create Qp. Then, we traverse the relation starring and meet
a new entity variable m. Thus, we construct an entity query

Qm = {〈m, title, “Holiday”〉, 〈m, rating, 8〉}

5.2 approximate incremental query processing 116

h1(p1)h2(p2)h1(p2)h1(m1) h2(m1)

p3

m1 p1p2

p1p2

p2p1

p1m2 p2

p3 2-neigh-
borhood

m1 2-neigh-
borhood

p2 2-neigh-
borhood

p1 2-neigh-
borhood

m2 2-neigh-
borhood

p2

(b)

(a)

1 0 0 0 0 1 0 1 0 1 0 1

12 bit array

Bloom Filter
for m1's neigh-
borhood

Hash
functions

m1's neighborhood

h2(p1)

m1 p1

Figure 33: (a) Entity neighborhoods for data graph in Figure 31-a. (b) Bloom filter for
m1’s entity neighborhood. We employed two hash functions (h1 and h2) and
a 12 bit array.

for variable m. Then, we add the relation starring as edge between Qp
and Qm – leading to the transformed query Q ′ in Figure 32-a.

Last, for our entity search, we issue entity query Qp and Qm, which
results in matching entities {p1,p2,p3} and m1, respectively.

5.2.3.3 Approximate Structure Matching (ASM)

So far, only entity query parts of query Q have been matched, while the relation
patterns have not been processed. Typically, this structure matching is performed
by joining the previously computed entities along their relation patterns. How-
ever, instead of such equi-joins (which would produce exact results), we propose
to perform a neighborhood join based on the intersection of entity neighborhoods. In the
following, let us introduce this novel concept for approximate structure match-
ing and discuss suitable encoding and indexing techniques.

ó Definition 25: Entity Neighborhood, Entity Neighborhood Join

Given a data graph G = (V,E, `a, `r), the k-neighborhood of an entity e ∈ VE
is the set Eenb,k ⊆ VE, which comprises entities that can be reached from e

via a path of relation edges with maximum length k.
The neighborhood overlap between entity e1 and e2, denoted as e1∩nb e2,

is defined as intersection Ee1nb,k ∩ E
e2
nb,k.

The neighborhood join of the entity sets E1 and E2, E1 ./nb E2, is an equi-
join between all pairs (e1, e2), with e1 ∈ E1, e2 ∈ E2. Further, two entities,
e1 and e2, are equivalent iff e1 ∩nb e2 6= ∅.

5.2 approximate incremental query processing 117

Managing neighborhood via Bloom filters. For every entity e ∈ VE, we com-
pute its k-neighborhood via BFS. Then, all elements in this neighborhood (in-
cluding entity e) are stored in the entity index using the neighborhood-field (see
the entity index description in Section 5.2.3.2). At runtime, we represent entity
neighborhoods as Bloom filters [27].

Bloom filters are space-efficient, probabilistic data structures that allow for
testing whether an element is a member of a set. During this membership test
false positives are possible. However, false negatives can not occur. The error
probability for false positives is: (1− e−f

n
m)f, where m is the size of the Bloom

filter in bits, n is the number of elements in the set, and f is the number of hash
functions used [27].

. Example 47

The 2-neighborhoods for entities in our data graph (Figure 31-a) are de-
picted in Figure 33-a. For instance, entity m1 has the set

Em1

nb,2 = {m1,p2,p1}

as neighborhood. More precisely, m1’s neighborhood is obtained by BFS:
first, we reach the 1-hop neighbors {p2}, and then the 2-hop neighbors {p1}.
The bloom filter encoding of m1’s neighborhood is given in Figure 33-b.
For this, we employ two hash functions (h1 and h2) and a 12 bit array.

Approximate matching via Bloom filters. Checking for a connection between
entity query Qe1 and Qe2 could be done by performing equi-joins over all possi-
ble relation paths (up to length k) between entity e1 and e2. Unfortunately, this
quickly becomes very expensive for large data graphs.

In contrast, we propose to check for these connections in an approximate fash-
ion via a neighborhood join: E1 ./nbEfilter E2. Note, this join solely operates on the
Bloom filters associated with the entities. That is, our neighborhood join does
not require retrieval and join of triples from the actual data graph. The join is
evaluated by processing e1 ./nb e2 for all e1 ∈ E1 and e2 ∈ E2 in a nested loop
manner – using the filters of elements in E1 or E2, denoted by Efilter.

More precisely, for processing the join e1 ./nbe2 e2, we evaluate if e1 ∈ Ee2nb,k,
by means of the bloom filter for entity e2. Performing neighborhood joins this
way requires that the neighborhood of e2 covers e1. In other words, the neighbor-
hood index parameter k must be larger than or equal to the relation path length
between e2 and e1. For checking connections between entities in the sets E1 and
E2, along a chain of k relation patterns, only one set of Bloom filters has to be re-
trieved to perform exactly one neighborhood join. With the traditional approach,
however, k− 1 binary equi-joins would have to be performed [85, 139].

The approximate structure matching (ASM) procedure based on our neighbor-
hood join is illustrated in Algorithm 6. We search for a “center” entity query,
Qcenter, in Line 2. Qcenter has the lowest eccentricity39 and is used as starting
point. From query Qcenter, we process the neighbor entity queries in the trans-

39The eccentricity of a vertex in a connected graph is given by its maximum distance to any
other vertex in that graph [167].

5.2 approximate incremental query processing 118

Algorithmus 6 : Approximate structure matching (ASM) based on neighbor-
hood join processing.
Input : Transformed query Q ′. Let every entity query Qe ∈ QE be

associated with a set of entities EQe .
Output : Table A, where each row represents an approximated query result.

1 begin
// initialize center and filter query

2 Qcenter ← arg min {eccentricity(Qe) | Qe ∈ QE}

3 Qfilter ← Qcenter
4 A← EQcenter

5 while ∃ Qe ∈ QE : ¬visited(Qe) do
6 Qneighbor ← QE found via DFS along a path of relation patterns

starting at query Qcenter

// set new query for the neighborhood join (if necessary)

7 if dQfilter(Qneighbor) > k then
8 Qfilter ← QlastSeen, where QlastSeen is the last seen query along

the currently traversed DFS path

// using the neighborhood join, we check

// if entities are “somehow” connected

9 A← A ./nbEQfilter
EQneighbor

10 return A

formed query Q ′ via DFS traversal, see Line 6. For every query Qneighbor in the
current DFS path, we compute a neighborhood join between Qneighbor’s entities
and entities in the intermediate result A, see Line 9.

At the beginning, we marked the center node as Qfilter. Thereby we indicate
that filters of EQcenter should be used for neighborhood joins “as long as pos-
sible”, i.e., until dQfilter(Qneighbor) > k, see Line 7. If bloom filters of EQcenter
are not sufficient any more, we proceed with the filters of EQlastSeen – the en-
tity query seen last on the current DFS path, see Line 8. This procedure aims at
maximizing the reuse of bloom filters.

. Example 48

We continue with our running example. Consider the query Q in Figure 31-
b and the transformed query Q ′ in Figure 32-a. Entity neighborhoods for
k = 2 are depicted in Figure 33.

Since both entity queries in Figure 32-a have an eccentricity of one,
we could start with either entity query. For this example, we initialize
Qcenter = Qm. Entities that match Qm are added to A: A = {m1}. By
means of DFS from Qcenter, we arrive at the 1-hop neighbor entity query,
Qneighbor = Qp. Because it holds that

dQcenter(Qneighbor) = 1 < k = 2

5.2 approximate incremental query processing 119

we can use bloom filters from Qcenter, i.e., Qm, to compute the neighbor-
hood join:

A ./nbEQm
EQp

Using this join, we can prune entity p3, because it is not connected to m1.

5.2.3.4 Structure-based Result Refinement (SRR) and Computation (SRC)

The ASM step leads to a set of approximated bindings. Every binding comprises
entities that are somehow connected, i.e., connected via some “unknown” rela-
tions. During our SRR and SRC refinement, we want to find out whether they
are actually connected via paths captured by our query patterns. More precisely,
we propose the structure-based result refinement (SRR), which refines the pre-
vious results by using a structure index synopsis. Here, we check if bindings
computed in the ASM step could match query relation patterns. Lastly, exact
results are computed in the structure-based result computation (SRC) phase.

Structure Index for Graph-Structured Data. Structure indexes have been used
for semi-structured and XML data [30, 38, 100]. A well-known concept is the data-
guide [61], which is a structural description for rooted data graphs. Dataguide
nodes are created for groups of data nodes that share the same incoming edge-
labeled paths starting from the root. Similar to this concept, a structure index
has been proposed for general data graphs [159]. Nodes in this index stand for
groups of data graph nodes, which have the same “structural neighborhood”.
Here, structural similarity is defined using the well-known notion of bisimula-
tion [5]. Two nodes, v1 and v2, are bisimilar (denoted as v1 ∼ v2), if they cannot
be distinguished by looking only at their outgoing or incoming “edge-labeled
trees”. Pairwise bisimilar nodes form a node (so-called extension) in the struc-
ture index. These nodes are connected by relation edges from the data graph.

For our incremental query processing pipeline, we are only interested in group-
ing entities. Thus, for a given data graph G = (V,E, `a, `r), we apply the bisimu-
lation ∼ to a subgraph G ′ = (VE,ER, `r), which only comprises entity nodes and
relation edges. So, one may conceive graph G ′ as an “entity graph” that is based
on data graph G. A bisimulation on G ′ leads to a set of extensions: {[v]∼ | v ∈ VE}

with [v]∼ := {v ′ ∈ VE | v ∼ v ′}. Extensions [v]∼ form a complete partitioning of
entity nodes VE in entity graph G ′.

Given an entity graph G ′, we define the structure index graph G∼ as graph,
where extensions are nodes and relations in G ′ are edges. That is, an edge with
label r ∈ `r connects extensions [v1]

∼ and [v2]
∼ iff G ′ contains a triple 〈v ′, r, v ′′〉,

where v ′ ∈ [v1]
∼ and v ′′ ∈ [v2]

∼.

. Example 49

The entities in Figure 31-a can be partitioned into three extensions – shown
as nodes of the structure index graph in Figure 31-c.

For instance, entity p1 and p2 are grouped into the extension [p1]
∼ be-

cause they are bisimilar. That is, both have an incoming starring relation
as well as an incoming/outgoing knows relation.

5.2 approximate incremental query processing 120

Algorithmus 7 : Structure-based result refinement (SRR) using the structure
graph index based on [159].
Input : Transformed query Q ′, entity queries QE, approximated query

result from ASM phase in Table A, and structure index graph G∼.
Buffer :EXTQe is a two column table containing the entities for QE

(computed during the ASM phase) and their extension.
Output : Approximated results in table A.

1 begin
2 foreach pattern 〈Qe1 , r,Qe2〉 ∈ Q ′ do

// get matching extensions for current query pattern

3 E∼ ← {([v1]
∼, [v2]∼) | 〈[v1]∼, r, [v2]∼〉 is triple in G∼}

4 foreach Qe ∈ {Qe1 ,Qe2} do
5 if QE is entity query then

// check if ASM entities (for QE) are associated with

// matching extensions

6 E∼ ← E∼ ./Qe EXTQe

7 if M = ∅ then
8 M← E∼

9 else
10 M← E∼ ./M

// project refined entities on attributes in QE

11 A← πQe∈QE(M)

12 return A

The structure index is well-suited for approximating query bindings with re-
gard to relation patterns. This is due to the following lemma from [159]:

ú Lemma 1

If there is a query binding for a given data graph G, there is also binding on
the associated structure index graph G∼. Moreover, matching extensions in
the structure index graph comprise all matching entities in data graph G.

A proof for the above lemma can be found in [159].

Structure-based Result Refinement (SRR). Given a query Q, Lemma 1 en-
sures that matching extensions in the structure index synopsis will contain all
entity results in the data graph G. Therefore, entities computed in the previous
ASM step can only contribute to valid query bindings, if they are comprised in matching
extensions in the structure index graph. Based on this observation, SRR performs
two steps: (1) Compute matching extensions for the transformed query Q ′ in the
structure index G∼. (2) Check if the matching structure index extensions contain
the previously computed entities.

5.2 approximate incremental query processing 121

Structure-based result refinement (SRR) is given in Algorithm 7. Matching
extensions from the structure index G∼ are retrieved on Line 3 and buffered in
E∼. Then, for each entity query QE, we check if entities for QE, which have been
computed during the ASM step, are also contained in the matching extensions,
see Line 6. For this, we use the extensions associated with these entities (as
stored in ENT-doc, see Section 5.2.3.2) to construct the EXTQe table and join
this table with E∼. After processing all relation patterns, buffer M contains only
entities, which are comprised in matching structure index extensions, see Lines 7-
10. Finally, by projecting on the attributes in QE, we obtain the refined entities
from M, see Line 11.

. Example 50

The results computed during the ASM step are shown in Table 3. To refine
these results, we start by searching the matching extensions in the struc-
ture index in Figure 31-c. For the relation pattern starring, we find the
extensions [p1]

∼ and [m1]
∼. The former is a match for entity query Qp,

while the latter matches entity query Qm. Entity query Qp has two entities,
p1 and p2, which were computed by ASM. This leads to an EXTQp table as
follows:

EXTQp

Entity Ext.

p1 [p1]
∼

p2 [p1]
∼

Since both entities are comprised in a matching extension, [p1]∼, we can
not prune any entity. For query Qm, its ASM result m1 is also associated
with an matching extension, [m1]∼. Thus, for our running example, SRR
can’t refine the ASM result and returns two approximated results:

b1 =
(
〈m1, type, Movie〉, 〈m1, title, “Holiday”〉, 〈m1, rating, 8〉,

〈p1, name, “Audrey”〉, 〈m1, starring, p1〉, 〈p1, type, Person〉
)

b2 =
(
〈m1, type, Movie〉, 〈m1, title, “Holiday”〉, 〈m1, rating, 8〉,

〈p2, name, “Audrey”〉, 〈m1, starring, p2〉, 〈p2, type, Person〉
)

Complete Structure-based Result Computation (SRC). In the last SRC phase,
we compute exact query results. Note, only during this step, we actually perform
joins on the data graph G – all other phases employed data synopses.

To improve efficiency, we do not retrieve and join data along the query patterns
in a standard way [85, 139]. Instead, we incrementally refine the results. That is,
we reuse the structure index results and the entities associated with them – as
stored in the intermediate result M (see Algorithm 7, Line 11). Intuitively, we

5.2 approximate incremental query processing 122

iterate over extensions in M and join their entities along the relation and class
patterns present in the query, respectively.

. Example 51

Let us continue Example 50. We start with extension [m1]
∼ and its entity

m1. As extension [m1]
∼ is connected with extension [p1]

∼ via the starring

relation, we attempt to join m1 with entities from [p1]
∼. This leads to one

exact query result:

b =
(
〈m1, type, Movie〉, 〈m1, title, “Holiday”〉, 〈m1, rating, 8〉,

〈p2, name, “Audrey”〉, 〈m1, starring, p2〉, 〈p2, type, Person〉
)

5.2.3.5 Theoretical Analysis

In the following paragraphs, we analyze our approach from a theoretical perspec-
tive. In particular, we will give a runtime complexity for each phase in Figure 30.

Consider a query Q, which has a query graph GQ = (VQ,EQ), and a data
graph G = (V,E, `a, `r). Then, time complexity for computing query Q’s exact
result set B is bounded by:

O
(
η|E

Q|
)

where η is the maximum number of matching triples for triple patterns in Q:

η := max
tp∈Q

|{t | 1M(tp, t) = T, t ∈ E}|

Intuitively, this can be shown based on the following observation: Let B1 be a
set of bindings for query Q1 and let B2 be a set of bindings for query Q2. Then,
the join Q1 ./ Q2 can be calculated inO (|B1| · |B2|) time. Note, by means of sorted
indexes, fast merge joins achieve a near-linear behavior: O

(
η · |EQ|

)
.

In contrast, our approach breaks query processing into four steps. With regard
to our ES step, an entity query QE (comprised in query Q) might contain as many
attribute/string query patterns as Q itself. That is, Q might be “one big” entity
query. Further, these attribute/string patterns can be processed via fast merge
joins over posting lists, see Section 5.2.3.2. Thus, ES has a time complexity of:

O
(
η · |EQ|

)
During the ASM step, |QE|− 1 neighborhood joins have to be performed. Since

neighborhood joins are executed in nested loop manner, we require a complexity:

O
(
ζ
|QE|−1
ES

)
where ζES stands for the largest entity query result set:

ζES := max
Qe∈QE

{|BQe |}

5.2 approximate incremental query processing 123

Data (#Triple) Data (MB) EntityIdx (MB)

DBLP 12, 920, 826 2, 084 2210

LUBM5 722, 987 122 142

LUBM10 1, 272, 609 215 253

LUBM50 6, 654, 596 1, 132 1391

RelIdx (MB) StrucIdx (KB) Schema (KB)

DBLP 2, 311 132 28

LUBM5 112 100 24

LUBM10 198 80 24

LUBM50 1, 037 82 24

Table 4: Statistics for the employed data graphs and their data synopses.

In the SRR step, we use nested loop joins on the structure index for all relation
patterns in Q. Thus, SRR has a complexity of

O
(
η∼ · |EQ| · |ζASM|

)
where η∼ is the maximum number of matching structure index edges for relation
patterns in Q and |ζASM| is the maximum number of entity bindings (for queries
Qe ∈ QE), which were computed by the ASM phase.

Finally, we iterate over SRR results and join them along relation/class patterns.
So, our SRC step requires a complexity of

O(|ζSRR| · |EQ|)

where |ζSRR| refers to the maximum number of entity bindings, which were
computed by the SRR step.

5.2.4 Evaluation

In the following, we present empirical performance results and analyze the efficiency
and result accuracy trade-off to inspect the incremental and approximate features
of our approach. We thereby aim to validate Hypothesis 5 and Hypothesis 6.

5.2.4.1 Evaluation Setting

Systems. We implemented our incremental approach (called INC) based on
vertical partitioning and sextuple indexing [9, 166].

Unfortunately, there is no suitable baseline for the approximate and incremen-
tal features of our INC system. That is, ASM is based on the novel neighborhood
join. Further, there is no alternative to SRR. As discussed in Section 5.2.3.1, SRR

5.2 approximate incremental query processing 124

0 

2000 

4000 

6000 

8000 

10000 

12000 

DBLP  LUBM5  LUBM10  LUBM50 

Q
ue

ry
 '
m
e 
[m

s]
 

Dataset 

VP_TOTAL 

INC_SRC

INC_SRR 

INC_ASM 

INC_ES 

Figure 34: Query result computation times for different datasets.

is based on a summary, which is conceptually similar to synopses proposed for
XML or relational data. However, it is not clear how to extend these concepts to
graph-structured data and how to use them in a pipeline. We therefore compare our
approach with an exact and complete query processing system. More precisely, we im-
plemented an exact and complete sort merge join using the same data partitions
and indexes (called VP).

Since optimization techniques, e.g., proposed in RDF-3X [129], are orthogo-
nal to our work, all experiments were performed without such optimizations.
That is, query processing was based on fixed query plans. For a given query, all
approaches relied on the same plan.

All systems were implemented in Java 5. The bit-vector length and the number
of hash functions, which we employed for ASM Bloom filters, were computed to
reach an error probability of 0.1. Neighborhood indexes were created for k = 3.

For our experiments we used a Linux server with two Intel Xeon Dual Core
2.33GHz processors and 48GB of main memory (2GB were allocated to JVM).
Data and indexes were stored on a Samsung SpinPoint S250 200GB SATA II disk.
All reported values are averages over 10 runs. Before each query execution all
operating system caches were cleared.

Data. We used e DBLP dataset, which captures real-world bibliographic infor-
mation [13]. Further, we employed the LUBthM [67] benchmark to create three
datasets for 5, 10, and 50 universities. An overview of our datasets and their
corresponding data synopses is depicted in Table 4. Note, while our structure
graph indexes are bigger than a typical data schema, they are much smaller than
the underlying data graphs.

Queries. For studying the approaches in a principled way, we generated bench-
mark queries via random sampling. More precisely, we generated queries rang-
ing from simple path-shaped queries to complex graph-shaped queries. For this,
we used parameters as follows: the maximum number of constants conmax,
the maximum number of paths pathmax, the maximum path length lmax, and
the maximum number of cycles cycmax in the query graph. We sampled con-

5.2 approximate incremental query processing 125

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

Q
ue

ry
 '
m
e 
[m

s]
 

Dataset 

VP_TOTAL 

INC_SRC 

INC_SRR 

INC_ASM 

INC_ES 

Path  Star  Graph
 Query Shape 

Figure 35: Query result computation times for different query shapes.

stants from attribute values in the data graph. Further, we sampled paths and
cycles from data graph triples. The parameters used in the experiments are:
conmax = 20, pathmax = 6, lmax = 3, and cycmax = 2. This resulted in a
comprehensive query load of 80 queries.

Metrics. We measure system efficiency by means of result computation time. For
measuring effectiveness of the INC approach, we compute result set precision:

precision :=
|correct results ∩ results retrieved|

|results retrieved|

An intermediate query binding, which is computed during the ES, ASM, or
SRR phase, is correct if it contributes to an exact result. For a query Q, the pre-
cision of an ES result set is defined as average precision over all result sets from
entity queries in Q.

Notice, we do not report recall values, since the recall is always 1. This is because
all our pipeline steps solely check necessary conditions. So, no intermediate result that
contributes to a complete result will be pruned.

5.2.4.2 Evaluation Results

Efficiency: Overall Results. With regard to the INC approach, we decomposed
the total result computation time into times for the ES, ASM, SRR, and SRC step.
Further, we computed the average computation times over our query load – as
illustrated in Figure 34 and Figure 35. We observed that the ES time is only a
small fraction of the total computation time. Times for SRR and SRC, in contrast,
were much larger. In fact, ASM constitutes the largest time share.

More specifically, the ES, ASM, and SRR step requires only 6%, 71%, and
84% percent of the total computation time, see Figure 34. These results suggest
that users can obtain an approximated result set in a small fraction of time via
ES, ASM, or SRR – depending on the desired result accuracy (discussed below).
We explain these differences with our iterative processing of expensive query
predicates. In particular, we noticed query processing for ES to be very fast,
because the attribute/string patterns frequently led to few bindings and could
be processed efficiently via merge joins.

5.2 approximate incremental query processing 126

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

1  2  3 

Q
ue

ry
 '
m
e 
[m

s]
 

Neighborhood distance 

VP_TOTAL 

INC_SRC 

INC_SRR 

INC_ASM 

INC_ES 

Figure 36: Effect of neighborhood distance k on result computation time.

Furthermore, when comparing total computation times, we observed INC to
be slower than VP for LUBM5 and LUBM10, but faster for larger datasets such as
LUBM50 and DBLP, see Figure 34. This is because large datasets lead to relation
patterns being more expensive, which results in bigger gains of our approximate
relation pattern processing. While these results might change with query opti-
mization, they are still promising as they indicate that our incremental approach
was able to effectively reuse intermediate results.

This confirms our Hypothesis 5: Our pipeline-based query processing approach allows
for an effective incremental query processing over Web data.

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

1  2  3 

Pr
ec
is
io
n 

Neighborhood distance 

ES 

ASM 

SRR 

Figure 37: Effect of neighborhood distance k on result set precision.

Efficiency: Effect of Data Size. We measured the computation time versus
different LUBM dataset sizes, see Table 4. As illustrated in Figure 34, the result
computation time increased linearly with the size of the data – for VP as well as
INC. Further, INC became more efficient with increasing data size. In particular,
we observed the percentage of computation time needed for ASM to decrease
with the data size. That is, the gain of ASM became “more clear” as the dataset
grew larger. We argue this to be a key feature in the Web context: our ASM phase
may help to quickly obtain initial result sets from a large data graph.

5.2 approximate incremental query processing 127

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0  2000  4000  6000  8000  10000  12000 

Pr
ec
is
io
n 

Time [ms] 

ES 

ASM 

SRR 

Figure 38: Result precision vs. result computation time.

Efficiency: Effect of Query Complexity. Considering query complexity, we
classified our query load into three classes according their shape: path-, star-,
and general graph-shaped queries. As depicted in Figure 35, INC did not perform
well on path queries. We noted ASM to be very expensive for this type of queries.
This is because, the reusability of Bloom filters was low and new bloom filters
had to be loaded frequently. Filter loading and nested loop joins became the
bottleneck, resulting in slightly higher result computation times compared to VP.

Efficiency: Effect of Relation Pattern Path Length k. Furthermore, we catego-
rized the queries according to the length of the longest relation pattern path, i.e.,
the “neighborhood distance” between entities. As shown in Figure 36, queries
with longer relation paths required more time – for the VP as well as the INC ap-
proach. With regard to the INC system, we observed the time for the ASM phase
to remain fairly constant. This suggests that the ASM step can be performed effi-
ciently, even for long relation paths. Thus, ASM may help to deal with complex
queries and provide initial results early.

Effectiveness: Effect of Relation Pattern Path Length k. Average precision for
our different steps versus neighborhood distance k is illustrated in Figure 37. We
noted the precision of ES to be relatively stable: 0.3 - 0.4. This can be expected,
because k should have no effect on the entity search quality. For the ASM and
the SRR phase, however, precision decreased in neighborhood distance k. We
explain this effect with ASM/SRR approximations becoming more error-prone
with increasing relation pattern path length. That is, approximations tend to be
less accurate, the more relation patterns are considered.

Effectiveness: Time versus Precision. We show average computation time ver-
sus result set precision in Figure 38. Due to our incremental refinement, precision
as well as result computation time increase with each additional step. Despite of
some outliers, we observed a trend as follows: ES produced fast results at low
precision – below 0.5 for most cases. Precision results could be largely improved
through ASM. In fact, in 30% of the cases, ASM drove precision from 0.5 up to

5.2 approximate incremental query processing 128

0.8. For most of these cases (60%), the amount of additional result computation
time was less than 10% of the total time.

Findings in the above paragraphs confirm the Hypothesis 6: The ASM step in our
pipeline enables an effective approximate query processing over Web data.

5.2.5 Related Work

Much work in RDF data management targets orthogonal problems, namely data
partitioning [9] and indexing [73, 166]. An overview over Web data management
techniques is given in [85, 139]. We now discuss related approaches, which aim
at approximate or incremental query processing:

Query Processing. Matching a query against a data graph is typically per-
formed by retrieving triples and joining them along the query patterns – see also
Section 2.2. Join processing can be greatly accelerated, when the retrieved triples
are already sorted. Sorting is the main advantage of vertical partitioning [9] and
sextuple indexing [166] approaches, which feature data partitioning and index-
ing strategies that allow fast (nearly linear) merge joins. Further efficiency gains
can be achieved by finding an optimal query plan [129].

However, all these approaches aim at exact and complete query processing. In
contrast, our pipeline-based approach allows a system to report approximated
results – thereby saving a significant amount of processing time.

Approximate Query Processing. In the Semantic Web community, notions for
structural and semantic approximation [44, 46, 47, 91] have been proposed, re-
spectively. In these works, the focus lies on finding and ranking results that only
approximately match a query. Moreover, strategies for relaxing a given query
have been introduced [86, 88, 89, 90, 136]. Here, a query is modified, e.g., by
removing one or more query patterns, in order to compute approximate query
results.

In contrast, we propose a pipeline of operators, which incrementally refines ap-
proximate results. In particular, our approach allows to compute exact results – if
necessary for a given information need. Moreover, throughout our pipeline, we
one produce false positive results, but no false negative results. This is because
all our processing steps are necessary, but not sufficient.

In DB community, approximate techniques have been proposed for “taming
the terabytes” [18, 31, 58, 96]. Here, focus lies on efficiency. Instead of using the
actual data, a query is processed over an appropriate synopsis (e.g., histograms,
wavelets, or sample-based) – see also Figure 29. In fact, a suitable synopsis for
XML data as been suggested [134], in order to compute approximate results for
twig-pattern queries.

In contrast to approaches for flat relational data [58, 96], our SRR/SRC phase
exploits a data synopsis, which is well-suited for graph-structured Web data [159].
Moreover, our novel neighborhood join allows an effective approximate structure
matching based on a compact Bloom filter synopsis.

5.2 approximate incremental query processing 129

Incremental Query Processing. Related to our incremental approach is work
on top-k query processing. Different algorithms for top-k query processing have
been proposed [95]. Here, the goal is omit complete result materialization by
stopping query processing as soon as the top-ranked results have been found.

In particular, we discussed an approach for Linked Data top-k processing in
Chapter 3. Further, we will introduce an approximate top-k processing for Web
data/queries in Section 5.3.

In contrast to these top-k query processing approaches, our incremental pro-
cessing pipeline computes all results and is not restricted to the processing of
top-ranked results. In fact, top-k query processing works are complementary to
our approach.

5.2.6 Summary

We addressed the following research question in this section:

- Research Question 3

How to enable approximate and incremental query processing on schema-
less Web data?

For the above research question, we targeted two hypotheses by means of our
novel pipeline-based query processing approach:

2� Hypothesis 5

Web data synopses and corresponding query processing algorithms allow
for an incremental processing of hybrid queries.

With regard to Hypothesis 5, we proposed a novel pipeline of operators, which
allows to quickly compute an initial approximated query result. Then, these
initial results can be refined using four processing steps. Intermediate results
can be reported at any point in time during this refinement – as needed for the
particular information need. We empirically validated our incremental query
processing approach via extensive experiments on two RDF datasets.

2� Hypothesis 6

Web data synopses and corresponding query processing algorithms enable
an approximate processing of hybrid queries.

Concerning Hypothesis 6, we introduced two novel approximate query pro-
cessing techniques in our query processing pipeline. On the one hand, we pro-
posed the ASM phase, which allows to compute approximate relation pattern
matches using our new neighborhood join. On the other hand, we proposed the
SRR phase, which approximates query bindings by computing matches over the
structure index synopsis. We empirically validated both phases in terms of their
efficiency and effectiveness during our experiments. In particular, we observed

5.2 approximate incremental query processing 130

that initial results could be effectively refined via approximate structure match-
ing with little computation time.

In the following section, we will introduce a complementary system that al-
lows to approximately compute ranked query bindings.

5.3 rank-aware approximate query processing 131

5.3 rank-aware approximate query processing

In the second part of this chapter, we present a novel approach for approximate
rank-aware query processing. In contrast to our incremental query processing ap-
proach, we do not target query result approximation, but rather aim at an approx-
imation of the top-k results. That is, all our query results are valid, but some may
not belong to the exact top-k results.

5.3.1 Introduction

5.3.1.1 Motivation

As outlined in Chapter 1, queries over Web data frequently produce a large
number of results. Reasons for this are twofold: (1) The amount of data on the
Web drastically increased. This may strongly boost the number of query pattern
matches. (2) There could be multiple possible data as well as query interpreta-
tions. Each data/query interpretation can be evaluated over the data graph –
leading to an increase in the overall result set size for a given query. Therefore,
the semantic search process incorporates result ranking as a key feature for an
effective search over such large result sets [160, 7].

Ranking functions for queries over Web data oftentimes need to incorporate
query or user characteristics [12, 36, 156]:

. Example 52

Consider a user having the following information need: “Find movies with
highest ratings, featuring an actress Audrey Hepburn, and playing close to
Rome.” The corresponding query graph and ranking function is depicted
in Figure 39.

Example 52 would require a ranking function to incorporate the movie rating,
quality of keyword matches for “Audrey Hepburn”, and distance of the movie’s
location to Rome. While one may assume that a higher movie rating is preferred
by any user and query, scores for keyword and location constraint dependent on query
and user characteristics.

For instance, in order to rank a binding for “Audrey Hepburn”, a function
could measure the Levenshtein distance between that keyword and the bind-
ing’s attribute value, see Figure 39-c. Notice, given another keyword (e.g., only
“Audrey”), the very same attribute value would yield a different score. Further,
depending on the user’s geographic knowledge of Italy, she may have different
notions of “closeness” to Rome, e.g., distance 6 100 km (see Figure 39-c).

We generalize from Example 52: Whenever a hybrid query contains a string pattern,
a ranking function should measure the quality of the keyword match in the data graph.
To allow for user/query-dependent, our definition of a ranking function (Defini-
tion 13, p. 32) quantifies the relevance of a binding b with regard to the query Q

and the user who issued that query.
For efficiently processing queries with ranked results over Web data, two re-

cent works employed top-k join processing techniques [2, 115]. In particular, we

5.3 rank-aware approximate query processing 132

r

“Audrey K.
Hepburn“

“Roman
Holiday“

Movie

starring

type

title

-74.006

8.1

rating

type

“Breakfast at
Tiffany's“

title

rating
starring

12.4839

loc

type 8.5

rating

“Amélie“
41.8947

40.7146

Location

type

lat

long

lat

long

type
“Audrey
Tautou“title

starring

loc

mrating
“Audrey
Hepburn“

starring
loc

(a)

(b)

ltp1
tp3

tp2

“Rome“

name

“New York“

name

m1

m3

l1

l2

m2

(c)
scoreQ(b) = rating(r)
 + (1 - levenshtein(s,“Audrey Hepburn“))
 + (IF [distance(l,(41.8947,12.4839)) ≤ 100km] 1 ; ELSE 0)

with b = (<m,rating,r>,<m,starring,s>,<m,loc,l>)

7.7

Figure 39: (a) A data graph based on our running example in Figure 7. (b) Query graph
asking for a movie starring “Audrey Hepburn”, which is based on Figure 8.
Note, several triple patterns have been removed for simplicity. (c) Scoring
function, which aggregates scores for triple pattern bindings (bold): movie
ratings, Levenshtein distance with regard to “Audrey Hepburn”, and distance
of the movie’s location to Rome (lat: 41.8947, long: 12.4839) 6 100 km.

introduced our LD-PBRJ operator for top-k processing over distributed Web data
in Chapter 3. Unfortunately, these approaches solely aim at computing exact and
complete top-k results.

However, as outlined in Section 5.1, search on Web data is mostly performed
by end-users, which have information needs that do not require a high result accuracy
or completeness. In fact, result computation time is often the key factor.

. Example 53

A system may compute top-50 movie results for Example 52. However,
users oftentimes just visit one or two top-ranked results, until they dis-
cover a movie of interest. The remaining results are simply omitted.

Studies estimate that 95% of all Web search users visit less than the first ten
top-ranked results.40 Thus, users mostly pay attention to few top-ranked results,
while low-ranked results are rarely investigated.

Above findings motivate the need for approximated ranked results. In simple
terms, a system should be able to approximate low-ranked (less important) results, in
order to save computation time.

40http://chitika.com/google-positioning-value/, retrieved 2014-02-10.

http://chitika.com/google-positioning-value/

5.3 rank-aware approximate query processing 133

5.3.1.2 Problem

Existing approaches for top-k processing over Web data compute only exact and
complete results [2, 115], see Chapter 3.

Previous works for approximate top-k processing over relational databases [15,
16, 120, 151, 157] are not suitable for hybrid Web queries and Web data. This is
because these works assume complete ranking score statistics at indexing time. Such
statistics describe scores of partial and complete query bindings, respectively. So,
in oder to construct the necessary score statistics, one has to know all possible
scores for partial/complete bindings of a given query at indexing time. Unfortu-
nately, this leads to two major problems:

• Problem 1: User-/Query-Dependent Ranking of Web Queries
Query-/user-dependent ranking functions [12, 36, 156] are employed for
many Web queries, e.g., keyword, spatial, or temporal queries [19, 40, 43,
111, 113]. Most notably, any hybrid query, which features a string pattern,
requires a query-dependent ranking function. However, such ranking scores
are only known at runtime.

. Example 54

Consider triple pattern tp2 and tp3 in Figure 39-b: Binding scores are
decided by query characteristics (i.e., Levenshtein distance to query
keyword “Audrey Hepburn”) or user characteristics (i.e., the user-
defined distance to Rome). So, no score statistic can be computed for
pattern tp2 or tp3 at indexing time.

• Problem 2: Distributed and Frequently Changing Web Data
Web data is commonly highly distributed and frequently updated. For instance,
movie ratings for pattern tp1 (see Figure 39-b) may be spread across mul-
tiple data sources – some of them could even be “hidden” behind SPARQL
endpoints. Moreover, these sources may feature constantly updated rating

scores. Thus, while constructing an offline statistic for rating scores is fea-
sible, it comes with great costs in terms of maintenance. This problem is
exacerbated by the fact that RDF allows for very heterogeneous data. For ex-
ample, the rating predicate in query pattern tp1 could be used to specify
the rating of movies as well as products, restaurants etc. Thus, offline score
statistics will grow quickly and become complex.

5.3 rank-aware approximate query processing 134

5.3.2 Research Questions and Contributions

In the next paragraphs, we discuss the research question, hypotheses, and con-
tributions that we provide in this section.

5.3.2.1 Research Questions and Hypotheses

We aim at an approximate rank-aware query processing approach, which is well-
suited for hybrid queries over Web data, by means of the following research
question:

- Research Question 4

How to enable approximate top-k query processing for hybrid queries over
schemaless Web data?

We target Research Question 4 using two hypotheses:

2 Hypothesis 7

Given user/query-dependent ranking functions, we can learn score statistics
for approximate top-k query processing by means of Bayesian statistics.

We expect Bayesian statistics to provide suitable means for learning score
statistics during query processing. This way, we do not require information about
ranking functions or score distributions at indexing time.

We validate Hypothesis 7 by describing our novel approximate top-k pro-
cessing approach in Section 5.3.3. Moreover, we highlight the applicability of
Bayesian statistics with regard to our approach in a theoretical analysis, see
Section 5.3.3.6. In particular, we give bounds for the approximation error. Ad-
ditionally, we empirically show that statistics learned via Bayesian statistics are
suitable for approximate top-k processing using the evaluation in Section 5.3.4.

2 Hypothesis 8

Bayesian statistics allow for lightweight score statistics.

We expect Bayesian statistics to be well-suited for frequently changing Web
data. More specifically, we expect Bayesian statistics to enable easily maintain-
able score statistics.

We provide a theoretical analysis of our approach to validate this claim. In
particular, we show time and space complexity bounds in Theorem 5 and Theo-
rem 6, respectively. Moreover, we empirically validate Hypothesis 8 by means of
the evaluation in Section 5.3.4.

5.3.2.2 Contributions

In order to address the above research question and to target Hypothesis 7 and
Hypothesis 8, we provide several contributions:

5.3 rank-aware approximate query processing 135

• Contribution for Hypothesis 7
This is the first work for approximate top-k join processing for hybrid
queries over Web data. In particular, our approach learns score distribu-
tions using Bayesian statistics in a pay-as-you-go manner at runtime. This
way, we allow user/query-dependent ranking functions to be employed –
a key requirement for effective search via hybrid queries.

• Contribution for Hypothesis 7 and Hypothesis 8
We provide a theoretical analysis of our approach and formally show its
efficiency and effectiveness. In particular, we show the distribution learning
to have a constant space complexity and a runtime complexity bounded by
the result size. Moreover, we give bounds for the approximation error of
our approach.

• Contribution for Hypothesis 7 and Hypothesis 8
We implemented our approach and conducted experiments on two SPARQL
benchmarks. Evaluation results are promising, as we could achieve time
savings of up to 65%, while still having a high precision/recall.

5.3.3 Pay-as-you-go Approximate Top-k Join Processing

We now present an approximate top-k join approach, the so-called A-PBRJ, that
is tailored towards the frequently changing Web data as well as hybrid queries
and their user/query-dependent ranking functions.

5.3.3.1 Prerequisites

Similar to the LD-PBRJ operator in Chapter 3, we also require sorted accesses for
our A-PBRJ approach. Moreover, we rely on Bayesian statistics for learning the
score statistics at runtime.

Sorted Access. As presented in Definition 14, given a pattern tpi, a sorted ac-
cess sai retrieves matching triples in descending score order. Previous works on
join top-k processing over Web data introduced efficient sorted access implemen-
tations for RDF stores [2, 115].

In this work, we do not require a specific sorted access implementation. In fact,
given distributed Web data, we could exploit the sorted access implementation
for the LD-PBRJ in Section 3.3.1

. Example 55

Let us continue Example 52. Here, sorted accesses for the data/query
graph in Figure 39 could be implemented in different ways. We also il-
lustrate these sorted accesses in Figure 40-a.

• Given the keyword pattern tp2 = 〈m, starring, “Audrey Hepburn”〉,
a sorted access must materialize all triples, which have a value that
contains “Audrey” or “Hepburn”. After materialization these triples

5.3 rank-aware approximate query processing 136

O1+2+3 score

complete bindings: tp1+ tp2 + tp3

sa1: <m,rating,r> sa2: <m,starring,“Audrey
Hepburn“>

sa3: <m,loc,l>
H1 score H2 score

m

O1+2 score

A1

Hyperpara
meters: α1

A2

Hyperpara
meters: α2

A4

Hyperpara
meters: α4

Input i1 Input i2

b11 = (t11 = <m3,rating,8.5>, *, *) 8.5

t11:<m3,rating,8.5>, 8.5
t12:<m1,rating,8.1>, 8.1
t13:<m2,rating,7.7>, 7.7

Offline Index: Rating

Sorted
Access
Pointer
at next
match-
ing triple

 t21:<m1,starring,“Audrey K. Hepburn“>, 0.9
 t22:<m2,starring,“Audrey K. Hepburn“>, 0.9
 t23:<m3,starring,“Audrey Tautou“>, 0.3

Sorted List at Runtime:
Triples containing “Audrey“ or “Hepburn“

 l2: (41.8947,12.4839)
 l1: (40.7146,-74.006)

R-Tree Offline Index:
Location

A-PBRJ j1

partial bindings: tp1+ tp2

b21 = (*, t21 = <m1,starring,
“Audrey K. Hepburn“>, *)

0.9

H1+2 score

Input i4

Input i3

H3 score

b31 = (*, *, t31 = <m1,loc,l2>) 1

A3

Hyperpara
meters: α3

m

A-PBRJ j2

Stat1: Offline sample
mean and variance
for rating ranking

Stat2: Runtime sample mean
and variance for Levenshtein

distance ranking

Stat3: Runtime mean and variance
(based on uniform distribution) for

location ranking

(b)

(a)

score samples

partial bindings

partial bindings

= (8.1, 0.16) = (0.7, 0.12) = (0.5, 0.08)

Figure 40: (a) Approximate rank join tree with three sorted accesses – one for each triple
pattern in Figure 39-b. Two information flows occur in the tree: partial bind-
ings (green) and score samples (blue). (b) Sufficient statistics calculated based
on scores observed at indexing time (stat1) and runtime (stat2 and stat3).

are sorted with descending similarity with regard to that keyword
(e.g., measured via Levenshtein distance [26]).a Thus, sorted access
sa2 loads three triples comprising “Audrey” or “Hepburn” and sorts
them according to their Levenshtein distance to “Audrey Hepburn”.

• In contrast, for pattern 〈m, loc, l〉 an R-tree [69] on the attribute
pair (lat, long) may be used. This offline computed index yields
two location hits: l1 and l2. While l2 is an exact match (thus, triple
t31 has max. score 1), l1 is more distant from Rome. Note, location
l1 (triple t32) is only loaded if needed, i.e., if join-2 pulls on sorted
access sa3 a second time.

• Last, an index for attribute rating can be constructed at offline time.
For this, triples are stored with descending rating value. Then, the
sorted access sa1 can iterate over this list.

aThe distance between two strings may be measured by various metrics. A commonly
employed heuristic is the Levenshtein distance [26].

5.3 rank-aware approximate query processing 137

Partial bindings retrieved from sorted accesses are combined via joins. That is,
an equi-join combines two (or more) inputs. This way, multiple joins form a tree.
For instance, three sorted accesses are combined via two joins in Figure 40-a.

Score Statistics. We do not require offline knowledge about ranking func-
tions or score distributions. Every score statistic needed is learned at runtime
by means of the pay-as-you-go paradigm. More precisely, we exploit conjugate
priors for learning the necessary probability distributions.

Let Θ be a set of parameters. One can model prior beliefs about these param-
eters in the form of probabilities: Θ ∼ P(Θ | α) [22, 83]. Here, α is a vector of
hyperparameters allowing to parametrize the prior distribution. Suppose we ob-
serve relevant data x = {x1, . . . , xn} with regard to Θ, where each xi ∼ P(xi | Θ).
Then, the dependency between observations x and prior parameters Θ can be
written as P(x | Θ). We can estimate a posterior probability using the Bayes theo-
rem, which captures parameters Θ conditioned on observed events x. In simple
terms, a posterior distribution models how likely parameters Θ are, in light of the seen
data x and the prior beliefs [22, 83]:

P(Θ | x,α) ∝ P(x | Θ) · P(Θ | α) =
P(x | Θ) · P(Θ | α)∑
Θ P(x | Θ)P(Θ)

(19)

The term P(x | Θ) is oftentimes conceived as a function of Θ, given fixed
observations x. Then, P(x | Θ) can be written as likelihood function:

l(Θ | x) := P(x | Θ)

Following this interpretation, one may read Equation 19 as [22, 83]:

posterior ∝ prior× likelihood

.

. Example 56

For pattern tp1 in Figure 40-a, scores are based on rating values. So, we can
compute sufficient statistics, i.e., a mean x̄1 = 8.1 and a variance s21 = 0.16,
for these scores at offline time, see stat1 in Figure 40-b.

These statistics represent prior beliefs about the “true” distribution that
is capturing only those scores for bindings of tp1 that are part of a com-
plete binding. In fact, only triple t12 and t13 contribute to complete bind-
ings. Thus, only their scores should be modeled via a distribution. We
update the prior beliefs using scores samples x observed during query
processing, thereby learning the true (posterior) distribution as we go.

Since we are interested in unobserved events x∗, we need the posterior predictive
distribution, i.e., the distribution of new events given observed data x [22, 83]:

P(x∗ | x,α) =
∑
Θ

P(x∗ | Θ)P(Θ | x,α) (20)

An important kind of Bayesian priors are the conjugate priors [22, 83].

5.3 rank-aware approximate query processing 138

ó Definition 26: Conjugate Prior

A prior distribution family D for a parameter set Θ is called conjugate iff
P(Θ) ∈ D⇒ P(Θ | x) ∈ D.

Intuitively, conjugate priors require the posterior and prior distribution to be-
long to the same distribution family. In other words, these priors provide a “com-
putational convenience”, because they give a closed-form of the posterior distri-
bution [22, 83]. Thus, posterior computation is easy and efficient for conjugate
priors – enabling an efficient distribution learning at runtime.

5.3.3.2 Approximate Rank Join Framework

We extend the Pull Bound Rank Join (PBRJ) framework (shown in Algorithm 1),
and propose a new approximate Pull/Bound Rank Join (A-PBRJ) framework that
comprises three parts: a pulling strategy PS, a bounding strategy BS, and a
probabilistic component PC.

PS determines the next join input to pull from [143]. The bounding strategy
BS gives an upper bound, β, for the maximal possible score of unseen join re-
sults [143]. Last, we use our new probabilistic component PC to estimate a prob-
ability for a partial binding to contribute to the final top-k result.

Overview. The A-PBRJ is depicted in Algorithm 8. Based on Algorithm 1, we
first check if k top-ranked complete bindings have been found (see Algorithm 8,
Line 4). If so, the A-PBRJ terminates and reports the top-ranked results in O.
Otherwise, we attempt to produce further join results. That is, PS selects an
input i to pull from (see Algorithm 8, Line 5) and materializes a new partial
binding b. Afterwards, we update the β bound via bounding strategy BS.

. Example 57

In Figure 40-a, join j2 decides (via strategy PS) to first pull on sa3 and load
partial binding t31. Then, join j2 pulls on input i4 (join j1), which in turn
pulls on its input i1 (sa1) loading binding t11 and afterwards on input i2
(sa2) loading t21. The join attempt t11 1 t21 in j1 fails, because m3 6= m1.

In Line 8, PC estimates the probability for a partial binding b leading to a
complete top-k binding: the top-k test. If b fails this test, b will be pruned. That is,
we do not attempt to join it and do not insert it in Hi. Here, Hi is a buffer that
holds “seen” bindings from input i.

Otherwise, if the top-k test holds, b is further processed (see Lines 9-15). That
is, we join b with seen bindings from the other input j and add results to output
buffer O. Further, b is inserted into buffer Hi, see Line 10.

For learning the necessary probability distributions, PC trains on seen bind-
ings/scores in O, see Line 12. Notice, we continuously train PC throughout the
query processing – every time “enough” new bindings are in O, see Line 11. PC
requires parameter ω for its pruning decision. ω holds the the smallest currently
known top-k score (see Line 15). ω is initialized as −∞ on Line 2.

5.3 rank-aware approximate query processing 139

Algorithmus 8 : Approximate Pull/Bound Rank Join (A-PBRJ).
Param. : Pulling strategy PS, bounding strategy BS, probabilistic

component PC.
Index : Sorted access sai and saj for input i and j, respectively.
Buffer : Output buffer O. Hi and Hj for “seen” bindings from sorted access

sai and sorted access saj, respectively.
Input : Query Q, result size k, and top-k test threshold τ.
Output : Approximated top-k result.

1 begin
2 β←∞, ω← −∞
3 PC.initialize() // initialize prior distributions

4 while | O |< k or min
b̄∈O

scoreQ(b̄) < β do

5 i← PS.input()
6 b← next partial binding from sorted access sai
7 β← BS.update(b)

// top-k test, see Algorithm 10

8 if PC.probabilityTopK(b,ω) > τ then

9 O← Hj 1 {b}

10 b∪Hi // add b to buffer Hi

11 if #new bindings B in O > training threshold then
// score distribution learning, see Algorithm 9

12 PC.train(B)
13 Retain only k top-ranked bindings in O

14 if |O | > k then // update smallest top-k score ω

15 ω← min
b̄∈O

scoreQ(b̄)

// return approximated top-k results

16 return O

Pulling Strategy PS and Bounding Strategy BS. The A-PBRJ may exploit any
bounding [55, 93, 116, 143] or pulling strategy [93, 117]. However, as the most
common bounding strategy, we employ the corner bound [93] for our experiments
(see Definition 15, p. 36).

. Example 58

In example Figure 40-a, join j1 currently has

β = max {8.5+ 0.9, 0.9+ 8.5}

with u1 = l1 = 8.5, and u2 = l2 = 0.9.

Furthermore, we use the corner-bound-adaptive pulling strategy [93], which is
defined in Definition 16, in our experiments.

5.3 rank-aware approximate query processing 140

. Example 59

For join j1 in Figure 40-a, the corner-bound-adaptive pulling strategy may
select either input, because

u1 + l2 = u2 + l1 ⇔ 8.5+ 0.9 = 0.9+ 8.5

and both inputs having two unseen partial bindings.

5.3.3.3 Probabilistic Component PC

Given a partial binding b, we wish to know how likely b will contribute to the
final top-k results. For this, we propose our new top-k test, which relies on two
probabilities: (1) The probability that b contributes to a complete binding (binding
probability). (2) The probability that complete bindings comprising b have higher
scores than the current top-k bindings (score probability).

Binding Probability. To address the former probability, we use a selectivity
estimation function. Intuitively, given a query Q, sel(Q) estimates Q’s cardinality.
That is, the expected number of Q’s results. Note, we introduced the selectivity
estimation function in Definition 12.

. Example 60

Consider the query and data graph in Figure 39-a. Here, the selectivity of
pattern tp3 = 〈m,loc, l〉 is sel(tp3) = 2, because two triples match this
pattern.

Based on a selectivity estimation function, we define a complete binding indicator
for a partial binding b:

1(Qu(b) | b) :=

1 if sel(Qu(b) | b) > 0

0 otherwise
(21)

Intuitively, for a partial binding b, 1(Qu(b) | b) models whether matching triples
for b’s unevaluated patterns can exist, given variable assignments dictated by b.

ó Definition 27

Given a partial binding b and its unevaluated query patterns Qu(b) (see
Definition 7, p. 22), we define Qu(b) | b as:

Qu(b) | b := { tpi } (22)

where tpi ∈ Qu(b) and each variable v in tpi that is bound by b is replaced
with its assignment in b, µb(v), which results in a new pattern tpi.

5.3 rank-aware approximate query processing 141

. Example 61

Consider partial binding b11 = (t11 = 〈m3, rating, 8.5〉, ∗, ∗) in Figure 40.
Then, Qu(b11) | b11 is given by:

Qu(b11) | b11 = {〈m3, starring, “Audrey Hepburn”〉︸ ︷︷ ︸
tp2

, 〈m3, loc, l〉︸ ︷︷ ︸
tp3

}

because variable m in pattern tp2 and tp3 is replaced with its assignment
in b11, µb11(m) = m3. Further, it holds that

1(Qu(b11) | b11) = 0

because selectivity for both patterns is 0.

It is important to notice that the complete binding indicator is independent
of a specific selectivity function – any selectivity estimation for BGP queries may be
used. With regard to text-rich Web data, our selectivity estimation approach in
Chapter 4 may be employed.

We aimed at a simplistic baseline implementation of the complete binding
indicator for our experiments. Therefore, we reused work from [127, 130] for a
selectivity estimation function. The authors employed indexes for triple patterns
with two constants: SP, PS, SO, OS, PO, and OP. Each index maps a 〈val1, val2〉 pair
to its cardinality, i.e., the number of its matching triples in the data. For instance,
〈m1, starring〉 would map to 1 in Figure 39-a, since there is one triple matching
the pattern 〈m1, starring, p〉. However, the binding indicator only requires a
selectivity estimation function to make a boolean decision: either sel(Qu(b) |

b) > 0 or not. Thus, not all six indexes are necessary. In fact, indexes SP, PO, and
SO are sufficient.

A simple implementation of sel(Qu(b) | b) based on [127, 130] returns 1 iff

∀ 〈s,p,o〉 ∈ Qu(b) | b, s ∈ VE : SP.card (〈s,p〉) > 0 ∧ (23a)

∀ 〈s,p,o〉 ∈ Qu(b) | b, o ∈ VE]VA : PO.card (〈p,o〉) > 0 ∧ (23b)

∀ 〈s,p,o〉 ∈ Qu(b) | b, s ∈ VE ∧ o ∈ VE]VA : SO.card (〈s,o〉) > 0 (23c)

and 0 otherwise, with card() as cardinality function.

. Example 62

For Qu(b11) | b11 in Example 61, the binding indicator 1 (Qu(b11) | b11)

is 0, because the selectivity for both patterns is 0. Using above selectivity
estimation implementation, probe in SP for 〈m3, loc〉 returns “pair does
not exist”. So, the function sel(Qu(b11) | b11) would correctly return 0.

5.3 rank-aware approximate query processing 142

Score Probability. For a partial binding b, let scores for bindings of b’s unevalu-
ated patterns, Qu(b), be captured via a random variable Xs

Qu(b).

. Example 63

In Figure 40-a, partial binding b31 currently has a score of 1. However,
scores for bindings to tp1 and tp2 are unknown and modeled via Xs

Qu(b31)
.

Then, we can obtain the probability for b contributing to a complete binding
that has a score > x as:

P
(
XsQu(b) > δ(x,b)

)
(24)

where δ(x,b) := x− scoreQ(b). More precisely, partial binding b has a “certain”
score, scoreQ(b), and only the score for its unevaluated patterns is unknown. So,
δ(x,b) is the “delta” between b’s current score and a desired score x.

Top-k Test. Finally, we define the top-k test (see Algorithm 8, Line 8) via above
probabilities. More precisely, we use the complete binding indicator to determine
whether a partial binding b might contribute to a complete binding. Further, we
employ the score probability to estimate how likely a complete binding, which
comprises partial binding b, has a score that is larger than the smallest known
top-k score, ω, see Algorithm 8 on Line 15:

1(Qu(b) | b)︸ ︷︷ ︸
binding

probability

·P(XsQu(b) > δ(ω,b))︸ ︷︷ ︸
score probability

> τ (25)

with τ ∈ [0, 1] as top-k test threshold.

Discussion.

• Threshold τ provides a key instrument for semantic search systems, since
it allows to adjust the result accuracy. For instance, a system may decide to
compute top-50 results in total and increase τ every time a new top-ranked
binding can be reported. Generally speaking, τ should not be conceived
as a constant, but rather as a function in reported top-ranked results. This
way, systems can target typical end-user information needs, which do not
require accurate low-ranked query results.

• The parameter ω refers to the smallest currently known top-k binding
score. In particular, as long as no k complete bindings have been found,
ω is set to −∞ (see Algorithm 8, Line 2), and the score probability is al-
ways 1. So, a partial binding b is only pruned if it fails the complete binding
indicator. That is, if b is not expected to contribute to any complete binding.

• Assume we have a tree of A-PBRJ operators and a partial binding b fails
the complete binding indicator test at join ji. Then, it is crucial to know, be-
cause of which pattern in Qu(b) | b the partial binding b fails the complete
binding indicator test. In other words, we need to know which pattern
tp ∈ Qu(b) | b leads to 1(Qu(b) | b) = 0.

5.3 rank-aware approximate query processing 143

(a) Predictive Distributions (b) Priors

Input i1
P(Xsi1) stat2⊕ stat3:

Qu = {tp2, tp3} (0.7+ 0.5, 0.12+ 0.08) = (1.2, 0.2)

Input i2
P(Xsi2) stat1⊕ stat3:

Qu = {tp1, tp3} (8.1+ 0.5, 0.16+ 0.08) = (8.6, 0.24)

Input i3
P(Xsi3) stat1⊕ stat2:

Qu = {tp1, tp2} (8.1+ 0.7, 0.16+ 0.12) = (8.8, 0.28)

Input i4
P(Xsi4) stat3:

Qu = {tp3} (0.5, 0.08)

Table 5: (a) Given joins in Figure 40-a, we train four predictive score distributions
(one for each input). For instance, Xsi1 models scores for bindings of tp2 1
tp3. (b) Priors are based on sufficient statistics in Figure 40-b. We employ
a summation as aggregation function ⊕ in Figure 39-c. So, stat1 ⊕ stat3 =
(8.1+ 0.5, 0.16+ 0.08) = (8.6, 0.24) etc.

Let tpk be that pattern and let join jk be the join, which joins pattern tpk
with the remainder of the query. Then, we update all β thresholds associ-
ated with joins, which are “above” join ji and “below” jk in the tree. More
precisely, we update β with the expected score of the partial binding b in
that particular join.

This updating is necessary, because the partial binding b is assumed to
successfully join with other bindings in joins “above” join ji and “below”
jk. Only at join jk, due to pattern tpk, binding b is assumed to fail.

• Last, each top-k test causes costs in the form of probability computations.
We will provide an empirical estimation for those costs in our evaluation,
see Section 5.3.4.3. However, recent work introduced a cost-aware rank join,
which schedules sorted and random accesses based on their associated
costs [117]. This work can be directly applied here. In fact, the top-k test
may be treated as “one more” access in their optimization problem [117].

5.3.3.4 Score Distribution Learning

Distributions for random variables Xs
Qu(b) may be obtained by learning a score

distribution P(Xsi) for each join input i. Note, partial bindings, which come from
the same input, have the same set of unevaluated triple patterns. Thus, Xsi cap-
tures scores of the unevaluated patterns from its partial bindings.

. Example 64

In Figure 40-a, all partial bindings from input i1 have Qu = {tp2, tp3} as
unevaluated patterns. Thus, it holds that

P
(
XsQu(b11)

)
= P

(
Xsi1
)

5.3 rank-aware approximate query processing 144

because binding b11 is produced by input i1. In fact, all bindings from
input i1 follow the same distribution, P(Xsi1), which captures scores of
bindings to tp2 1 tp3.

Overall, for the running example, we need to learn the four distributions
depicted in Table 5: P(Xsi1), P(X

s
i2
), P(Xsi3), and P(Xsi4).

Since we assume user/query-dependent ranking functions, we do not know
the true distribution for Xsi . A reasonable assumption is to use a Gaussian distri-
bution for Xsi and to employ a conjugate prior to train its unknown mean and
variance, respectively.

As shown in [83], the mean of the Gaussian distribution for Xsi also follows a
Gaussian distribution, see Equation 26b. The variance of the Gaussian distribu-
tion for Xsi follows an inverse-Gamma distribution, see Equation 26c. Hyperpa-
rameters α0 = (µ0,η0,σ20,ν0) parameterize both distributions, where µ0 is the
prior mean with quality η0 and σ20 is the prior variance with quality ν0 [83]:

Xsi ∼ normal
(
µ,σ2

)
(26a)

µ | σ2 ∼ normal
(
µ0,

σ2

η0

)
(26b)

σ2 ∼ inverse-gamma
(
ν0
2

,
ν0σ

2
0

2

)
(26c)

Prior Distribution. We initialize the prior distribution in Line 3 in Algorithm 8.
More specifically, we specify a prior distribution for Xsi via prior hyperparame-
ters α0 for each input i. For α0, we require sufficient score statistics in the form
of a sample mean

x̄ =
1

n

∑
xi∈ x

xi

and a sample variance

s2 =
1

(n− 1)

∑
xi∈ x

(xi − x̄)
2

with x as sample. There are multiple ways to obtain the necessary score samples:

. Example 65

Figure 40-b depicts three sufficient statistics based on information from
the sorted accesses:

À With regard to sorted access sa1, we rely on offline information to
obtain the sufficient statistics. Recall, rating scores are known before
runtime. Therefore, x̄1 = 8.1 and s21 = 0.16 can be computed offline.

Á Online information is exploited for sorted access sa2. Here, the list
of matching triples for keywords “Audrey” and “Hepburn” must be
fully materialized. So, x̄2 = 0.7 and s22 = 0.12 can be computed from
scores of triples in this list.

5.3 rank-aware approximate query processing 145

Â Last, given access sa3, we neither have offline scores, nor a fully ma-
terialized list of triples (sa3 loads a triple solely upon a pull request).
In lack of more information, we assume each score to be equal likely,
i.e., a uniform distribution. Given a min. score of 0 and a max. score
of 1, we get: x̄3 = 0.5 and s23 = 0.08.

Algorithmus 9 : PC.train()
Param. : Weight w > 1 for score sample x.
Buffer : Buffer A storing hyperparameters α.
Input : Complete bindings B ⊆ O and join j.

1 begin
// train hyperparameters for each input

2 foreach input i in join j do

// load prior hyperparameters for input i

3 αn = (µn,ηn,σ2n,νn)← Ai

// get scores of bindings for input i’s unevaluated patterns

4 foreach complete binding b ∈ B do
5 get binding b ′ comprised in b, which matches unevaluated

patterns
6 add scoreQ(b ′) to score sample x

// compute sample mean and variance

7 x̄ ← mean(x) = n−1
∑
xi

8 s2 ← var(x) = 1
(n−1)

∑
(xi − x̄)

2

// compute posterior hyperparameters

9 νn+1 ← νn +w, ηn+1 ← ηn +w

10 µn+1 ← 1
ηn+1

· (ηnµn +wx̄)

11 σ2n+1 ←
1

νn+1
·
(
νnσ

2
n + (w− 1)s2 + ηnw

ηn+1
· (x̄− µn)2

)
// store new (posterior) hyperparameters for input i

12 Ai ← αn+1 = (µn+1,ηn+1,σ2n+1,νn+1)

We initialize hyperparameters α0 with µ0 as sample mean, σ20 as sample vari-
ance, and η0 = ν0 as sample quality. For every input, we aggregate necessary
sample means/variances for µ0/σ20. For example, given input i1 with unevalu-
ated patterns Qu = {tp2, tp3}, we sum up (aggregate) statistics stat2 and stat3:
x̄2 + x̄3 for µ0 and s22 + s

2
3 for σ20, see Table 5.

Hyperparameters η0 and ν0 are used to quantify the prior quality. For instance,
stat1 and stat2 are exact statistics, while stat3 relies on a uniform distribution. So,
weighting reflects the prior’s accuracy.

Posterior Distribution. Having estimated a prior distribution, we continuously
update this distribution with scores seen during query processing.

Intuitively, each time new complete bindings are produced, all prior distribu-
tions could be trained – as illustrated in Algorithm 9. That is, complete binding

5.3 rank-aware approximate query processing 146

scores are used to update hyperparameters from the previous n-th training it-
eration, αn, resulting in new posterior hyperparameters, αn+1. For this, we use
standard training on Lines 10-11 [83]:

µn+1 =
ηnµn +wx̄

ηn+1
(27a)

σ2n+1 =
1

νn+1
·
(
νnσ

2
n + (w− 1)s2 +

ηnw

ηn+1
· (x̄− µn)2

)
(27b)

In simple terms, the prior mean µn is updated with the new sample mean x̄
(see Equation 27a and Line 10). Furthermore, the prior variance σ2n is updated
with the sample variance s2 (see Equation 27b and Line 11). To obtain the sam-
ple mean and sample variance, each input computes its own score sample x (see
Lines 5-6). This is necessary since every Xsi models scores for different unevalu-
ated patterns.

Prior hyperparameters are weighted via ηn and νn. Further, for each hyper-
parameter update, a parameter w is used as a weight indicating the quality of
sample x. Finally, new hyperparameters αn+1 are stored on Line 12.

. Example 66

Consider input i1 in Table 5 and assume η0 = ν0 = 1. Then, the prior is:
α0 = (1.2, 1, 0.20, 1). We observe scores x = {x1, x2} from

B = {〈t12, t21, t31〉, 〈t13, t22, t32〉}

with w = |x| = 2 and

x1 = 1.9 = scoreQ(t21) + scoreQ(t31)

x2 = 0.9 = scoreQ(t22) + scoreQ(t32)

So, we have s2 = 0.5 and x̄ = 1.4, which leads to the posterior hyperpa-
rameters:

η1 = ν1 = 1+ 2 = 3

σ21 =
1

3
·

(
0.2+ (2− 1) · 0.5+

(1.4− 1.2)2

3

)
= 0.71

µ1 =
(1.2+ 2 · 1.4)

3
= 1.33

After each such update only posterior hyperparameters are stored, thereby
making the learning highly space and time efficient:

û Theorem 5: Distribution Learning Space Complexity

Given an A-PRBJ operator, at any time during query processing, we require
a space complexity of O(1) for score distribution learning.

5.3 rank-aware approximate query processing 147

Sketch of Proof

Given an A-PRBJ operator, every of its inputs i stores only a parameter vec-
tor, hyperparameters α, during each training iteration (Algorithm 9, Line 12).
Since each vector α has a fixed size, the space consumption remains constant.
In particular, vector α is independent of the number of training iterations �

For the learning time complexity we can show:

û Theorem 6: Distribution Learning Time Complexity

Given an A-PRBJ operator, a query Q, and B complete bindings for Q, score
learning time complexity is bounded by O(|B|).

Sketch of Proof

Given an A-PRBJ operator and a set of complete bindings B: A score sample,
x, is constructed (Algorithm 9, Lines 5-6) with O(|B|) complexity. Mean and
variance is computed from x in O(|x|) time. However, since |x| 6 |B|, it holds
that O(|x|) ∈ O(|B|). In fact, computation of mean and variance could also
be done while collecting the sample (Algorithm 9, Lines 5-6). Further, hy-
perparameters are updated via x in constant time (Algorithm 9, Lines 9-11).
Overall, the training has a complexity of: O(|B|) �

Algorithmus 10 : PC.probabilityTopK()

Buffer : Buffer A storing hyperparameters.
Input : Partial bindings b, input i, and join j.
Output : Probability that b will result in one (or more) final top-k bindings.

1 begin

// load hyperparameters αn for input i

2 αn = (µn,ηn,σ2n,νn)← Ai

// posterior predictive distribution in closed-form as

// Student’s t-distribution based on hyperparameters αn

3 Xsi ∼ t(νn)

(
x | µn, σ

2
n(ηn+1)
ηn

)
// compute score probability

4 pS ← P
(
Xs
Qu(b) > δ(ω,b)

)
= P

(
Xsi > δ(ω,b)

)
// compute binding probability

5 pB ← 1(Qu(b) | b)

// probability that b contributes to top-k results

6 return pS · pB

5.3 rank-aware approximate query processing 148

Predictive Distribution. We provide an implementation of the top-k test in
Algorithm 10. At any point during query processing, one may need to perform
this test. For this, our approach allows to always give a distribution for Xsi , based
on the currently known hyperparameters αn, see Line 2. Since hyperparameters
are continuously trained, the distribution quality improves over time.

More specifically, we use the posterior predictive distribution. This distribution
estimates probabilities for new scores, based on observed scores and the prior dis-
tribution. For a Gaussian conjugate prior, this distribution can be easily obtained
in a closed form as non-standardized Student’s t-distribution with νn degrees
of freedom [83], see Line 3.

We compute P(Xs
Qu(b)) = P(Xsi) by means of the posterior predictive distri-

bution on Line 4. Last, we compute the binding probability via a selectivity
estimation function on Line 5 and return b’s top-k test probability in Line 6.

5.3.3.5 Discussion

Refined Conjugate Priors. Whenever we have offline information about the
true distribution of Xs

Qu(i) (or good approximation for it), we can replace the
Gaussian conjugate prior in Equation 26 with a more suitable one. For this, only
minor changes in the score distribution training and the predictive distribution
estimation are required. No further modifications are needed – the top-k test
works with any valid score distribution for Xs

Qu(i).
A wide variety of discrete/continuous conjugate priors are known. Thus, in

the best case, there is a conjugate prior for the true distribution of Xs
Qu(i). If no

suitable conjugate prior exists, we can exploit a mixture of multiple conjugate
priors: ∑

i

wiPi (Θ)

with each Pi (Θ) being a conjugate prior and wi as weights such that
∑
iwi = 1

and 0 < wi < 1. In particular, it has been shown that any distribution from the
exponential family can be approximated (arbitrarily close) by means of a mixed
conjugate prior [22].

Maintenance. We require maintenance of binding/score probabilities. Binding
probabilities are estimated via a selectivity estimation function. Maintenance of
these statistics varies with the specific selectivity estimation implementation. For
instance, we outlined maintenance of our selectivity estimation approach for
hybrid queries over Web data in Section 4.3.2.3.

We train score distributions throughout query processing. So, only for prior
distributions sufficient statistics are necessary and must be maintained. This
maintenance differs, depending on the ranking functions employed:

• For user-/query-dependent ranking functions (e.g., the distance ranking
constraint in Figure 39-b) scores are unknown before runtime. Thus, no
sufficient statistic can be stored/maintained. However, in such a case, a
minimal and maximal score must be kept. For instance, for the distance

ranking constraint, we would store a minimal and maximal score as 0 and

5.3 rank-aware approximate query processing 149

1, respectively. This way, we can assume a uniform score distribution as
naïve prior, and compute mean and variance as:

stat3 = (x̄3 = 0.5, s23 = 0.08)

see Figure 40-b and Example 65.

• With regard to user-/query-independent ranking functions (e.g., the rating
ranking constraint in Figure 39-b) sufficient statistics can be computed at
indexing time. That is, one should maintain a sample mean and a sample
variance (see Example 65). In fact, one may even store further distribution
characteristics, e.g., distribution skewness or symmetry. This way, more re-
fined conjugate priors could be estimated (see paragraph above).

5.3.3.6 Theoretical Analysis

In this section, we present a theoretical analysis with regard to the effectiveness
of the A-PBRJ operator. More precisely, we discuss the quality of the learned
score distributions in Theorem 7 and Theorem 8, and provide bounds for the
approximation error in Theorem 9.

Distribution Quality. The aggregation function ⊕, which is used by the rank-
ing function scoreQ, could be any monotonic function.

However, when we restrict the aggregation to a summation, we can formally
show that a Gaussian distribution/conjugate prior is a good approximation for the
true distribution of Xs

Qu(i). Notice, many common aggregations employ summa-
tions, e.g., TF-IDF inspired functions can be represented by summations [157].
For such a summation-based aggregation function it holds:

û Theorem 7

Given a query Q = {tpk}k and Xs
Qu(i) =

∑
tpk ∈ Qu(i) X

s
tpk

, the Central Limit
Theorem (CLT) holds:∑

k

(
Xstpk − µk

)√∑
k σ
2
k

∼
n→∞ normal(0, 1)

with n as the number of patterns in Qu(i), and Xstpk as random variable
modeling scores of bindings for pattern tpk. Further, µk and σ2k stand for
the finite mean and variance of Xstpk , respectively.

Sketch of Proof (Informal)

Since we do not have knowledge about the ranking function, scoreQ, or the
distribution for Xstpk , we can only outline a very informal sketch of proof in
the following. Our argumentation is based on two aspects:

5.3 rank-aware approximate query processing 150

À Recall, we define a separate ranking function scoreQ for every triple
pattern tpk in query Q, see Definition 13, p. 32. In particular, each
function computes its score solely by considering the partial binding
of “its own” pattern, tpk. So, it is reasonable to assume that scores
for bindings of two patterns, tpi and tpj, in query Q are independent.
This leads to random variables Xstpi and Xstpj being independent:

Xstpi ⊥ X
s
tpj

Á Without loss of generality, we assume each random variable Xstpk to
have a finite mean µk and variance σ2k. Notice, most common distribu-
tions feature a finite mean and variance.

In its simplest form, the Central Limit Theorem is only applicable to i.i.d.
random variables [68]. However, in the Lindeberg Theorem this restriction is
lifted. That is, every variable Xstpk may adhere to a different distribution [68]:

ú Lemma 2: Lindeberg Condition [68]

If
lim
n→∞ 1

s2n

∑
k

E
(
(Xstpk − µk)

2
)
· 1
(
|Xstpk − µk| > εsn

)
= 0

holds, where s2n =
∑
k σ
2
k, then the Central Limit Theorem in Theorem 7

holds.

Further, it is known that [23]:

ú Lemma 3

If each random variable Xstpk is uniformly bounded, and limn→∞ sn = ∞,
then the Lindeberg Condition in Lemma 2 holds.

Sketch of Proof

Since our scoreQ function is bounded in [0, 1] (defined in Definition 13,
p. 32), every variable Xstpk is also bounded: P(0 6 Xstpk 6 1) = 1.

Further, the variance σ2k can be expected to be > 0 for each Xstpk , because
Xstpk models ranking scores. That is, ranking scores are supposed to vary
between results, in order to assist users in differentiating between results,
and quickly discover results of interest. Therefore, it can be expected that
sn =

∑
k σ
2
k →∞ with n→∞ �

In simple terms, Theorem 7 states that the true distribution of Xs
Qu(i) converges

(in the number of patterns in Qu(i)) to a Gaussian distribution.
However, the next question is: “how fast” does Xs

Qu(i) converge to a Gaussian
distribution? In other words, “how large” must Qu(i) be, in order for Xs

Qu(i) to
follow a Gaussian distribution? For this convergence it holds:

5.3 rank-aware approximate query processing 151

û Theorem 8: Berry-Esseen Theorem [68]

Let ρk = E
(
|Xstpk |

3
)
<∞ be the third absolute normalized moment of Xstpk .

Then, it holds [68]:

sup
x

|F(x) −φ(x)| 6 C ·
∑
k ρk(∑
k σ
2
k

) 3
2

with φ(x) as standard Gaussian CDF, and F(x) as exact CDF of Xs
Qu(i). Fur-

ther, tpk, µk, and σ2k are defined as in Theorem 7.

C is a constant in Theorem 8, which is currently estimated as 0.4097 6 C 6 0.56
[68]. Intuitively, Theorem 8 gives an absolute bound for the difference between the
true distribution of Xs

Qu(i) and a Gaussian distribution.

Approximation Error. Let Xei denote a random variable for the error intro-
duced by pruning from input i. This error may be measured as the number of
pruned partial bindings from i, which would have contributed to the final top-k
result. Then, it holds that:

ú Lemma 4

Random variable Xei follows a binomial distribution such that:

Xei ∼ bin (ci, ε+ τ) (29)

ci stands for the the number of bindings pulled from input i, in order to
produce the top-k results. Further, τ is the error threshold from Equation 25,
and ε is a small constant > 0.

Sketch of Proof

From a given input i, let’s assume that we materialize ci partial bindings.
Every such binding could be pruned “wrongfully” by the top-k test in Equa-
tion 25, either because the binding probability was falsely estimated as 0 or
because the score probability was smaller than the threshold τ.

Let the probability for the former be bounded by a constant ε > 0, while
the probability for the latter is known to be 6 τ. Thus, the overall probability
for a partial bindings to be wrongfully pruned in Equation 25 is 6 ε+ τ.

Further, pulling ci partial bindings from input i may be conceived as ci
trails, where a wrongly pruned binding is a “hit”. Therefore, we can model
Xei by means of binomial distribution, with ci as number of trails and ε+ τ
as “success” probability. Overall, it holds that: Xei ∼ bin(ci, ε+ τ) �

Note, ε is a small error introduced by the binding indicator function. This error
depends on the accuracy of the selectivity estimation. However, as the binding
indicator only requires a binary decision, its induced error is frequently very
small. In fact, our simplistic implementation in Equation 23 is exact: ε = 0.

5.3 rank-aware approximate query processing 152

Given a tree of A-PBRJ operators, which have a total of n inputs, let Xe capture
the overall error. That is, random variable Xe models the total number of wrong-
fully pruned partial bindings. We can show that Xe also adheres to a binomial
distribution:

û Theorem 9

Based on Lemma 4, it holds that:

Xe ∼ bin

(
n∑
i=1

ci, ε+ τ

)
(30)

with ci, τ, and ε, as defined in Lemma 4.

Sketch of Proof

Given a tree of joins having n inputs: {i1, . . . , in}. Let every input ij pull
cj partial bindings, in order for the join tree to produce the desired k top-
ranked results. Further, the error (the number of wrongly pruned partial
bindings) for each input ij is modeled via variable

Xei ∼ bin(cj, ε+ τ)

see Lemma 4.
False positives/negatives results comprised in the final top-k bindings

are caused by wrongly pruned partial bindings. More precisely, for a given
input ij, every wrongfully pruned partial binding could lead to a false posi-
tive/negative top-k result. Thus, errors from the individual inputs “sum up”
to a total error – captured by Xe.

In other words, random variable Xe is a summation over the random
variables Xei . Further, errors made in the inputs are independent of each
other. That is, every pair of variables, Xei and Xej , is independent: Xei ⊥ Xej .

Thus, Xe is again a binomial distribution with
∑n
i=1 ci trails and “success”

probability ε+ τ: Xe ∼ bin (
∑n
i=1 ci, ε+ τ) �

Finally, we can give the expected error as a function in threshold τ:

E (Xe) =

n∑
i=1

ci · (ε+ τ) (31)

5.3 rank-aware approximate query processing 153

SP² Queries DBPSB Queries

Queries 13 120

Triple patterns 2-9 2-4

Mean(# Triple patterns) 5 2.8

Var(# Triple patterns) 6.4 0.6

Results 1 - 5.4E6 1 - 50

Mean(# Results) 545E3 3.9

Var(# Results) 2.1E12 51.6

Table 6: Query statistics for the SP² and DBPSB benchmark.

5.3.4 Evaluation

We conducted experiments for (1) analyzing the efficiency and effectiveness of the
A-PBRJ operator, and (2) inspecting the behavior of our probabilistic component PC.
By means of the former, we illustrate the overall performance of our approach,
when compared with the exact PBRJ. The latter provides insights into overhead
and accuracy of the probabilistic component.

5.3.4.1 Evaluation Setting

Benchmarks. We used two SPARQL benchmarks: (1) The SP² benchmark fea-
turing synthetic DBLP data [141]. (2) The DBpedia SPARQL benchmark (DBPSB),
which holds real-world DBpedia data and queries [123]. For both benchmarks,
we generated datasets with 10M triples.

We translated the benchmark queries to our query model. Queries featuring
no triple patterns could not be translated – we omitted 12 and 4 queries in DBPSB
and SP², respectively. We generated DBPSB queries as proposed in [123]: Overall,
we used 8 seed queries with 15 random bindings, which led to a total of 120
DBPSB queries. For SP² we employed 13 queries. In total, we had a comprehen-
sive load of 133 queries. Query statistics are given in Table 6 and a complete
query listing is shown in Section A.3.

Systems. We randomly generated bushy query plans. For a given query, all
systems rely on the same plan. We implemented three systems that solely differ
in their join operator:

• A system with join-sort operator, JS, which does not employ top-k processing,
but instead produces all results and then sorts them.

• An exact and complete top-k join operator, PBRJ, featuring the corner-bound
in Definition 15 and the corner-bound-adaptive pulling strategy in Defini-
tion 16. PBRJ is an implementation of Algorithm 1 and resembles previous
approaches for top-k processing over RDF data [115, 2].

5.3 rank-aware approximate query processing 154

2.0E+06

2.2E+06

2.4E+06

2.6E+06

2.8E+06

3.0E+06

3.2E+06

0 0.1 0.2 0.4 0.6 0.8

#I
n

p
u

ts

Threshold τ

JS

PBRJ

A-PBRJ

3.5E+04

4.5E+04

5.5E+04

6.5E+04

7.5E+04

8.5E+04

0 0.1 0.2 0.4 0.6 0.8

Ti
m

e
 (

m
s)

Threshold τ

JS

PBRJ

A-PBRJ

(a) (b)

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

0 0.1 0.2 0.4 0.6 0.8

#I
n

p
u

ts

Threshold τ

JS

PBRJ

A-PBRJ

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

0 0.1 0.2 0.4 0.6 0.8

Ti
m

e
 (

m
s)

Threshold τ

JS

PBRJ

A-PBRJ

(c) (d)

SP2

DBPSB

Figure 41: Efficiency evaluation results for SP²/DBPSB: (a)/(c) number of inputs versus
threshold τ. (b)/(d) time versus threshold τ.

• Last, we implemented our approximate top-k join operator, A-PBRJ, illus-
trated in Algorithm 8.

Score learning and top-k test implementation for the A-PBRJ operator follows
Algorithm 9 and Algorithm 10, respectively. We employed a training threshold
of 10 bindings for score distribution learning, see Line 11 in Algorithm 8. Fur-
ther, we used sufficient statistics based on a uniform distribution over [0, 1], as
discussed in Example 65 for sorted access sa3. Prior weights ν0 and η0 are both
1, see Algorithm 9. Weight w in Algorithm 9 is the sample size, |x|. Scores for sin-
gle triple pattern bindings are random (see below) and complete binding scores
are computed as summation. We reused the selectivity estimation implementa-
tion from [127, 130] for our binding probabilities. The complete binding indicator
implementation adheres to Equation 23.

We implemented all systems in Java 6. Experiments were run on a Linux server
with two Intel Xeon 5140 CPUs at 2.33GHz, 48GB memory (16GB assigned to
the JVM), and a RAID10 with IBM SAS 148GB 10K rpm disks. Before each query
execution, all operating system caches were cleared. The presented values are
averages collected over five runs.

Parameters. We employed multiple parameters, in order to examine the be-
havior of above systems with regard to different settings:

• We vary the number of results to be computed: k ∈ {1, 5, 10, 20}.

5.3 rank-aware approximate query processing 155

• We chose triple pattern binding scores, scoreQ(t), at random with distribu-
tion d ∈ {u,n, e} (uniform, normal, and exponential distribution). By means
of varying distributions, we aim at an abstraction from a particular ranking
function and examine performance for different “classes” of functions. We
employed standard parameters for all distributions and normalized scores
to be in [0, 1].

• Last, we used top-k test thresholds τ ∈ [0, 0.8] for inspecting the trade-off
between computation efficiency and effectiveness.

Metrics. We rely on the following metrics to measure efficiency and effective-
ness aspects of the systems. As efficiency metrics we use: (1) the number of
inputs processed and (2) the time needed for result computation.

As effectiveness metrics we use: (1) Precision: fraction of approximated top-k
results that are exact top-k results. (2) Recall: fraction of exact top-k results,
which are reported as approximate top-k results. Notice, precision and recall
have identical values, since both share the same denominator k. We therefore
discuss only precision results in the following. Further, precision is given as av-
erage over our query load (so-called macro-precision). (3) Last, we employ the
score error defined in [157], which compares the approximate versus exact top-k
score as:

1

k

∑
b=1,...,k

|score∗Q(b) − scoreQ(b)|

with score∗Q(b) and scoreQ(b) as approximated and exact score for binding b,
respectively.

5.3.4.2 Evaluation Results: A-PBRJ

In the next paragraphs, we inspect the overall behavior of our A-PBRJ approach
versus the baseline systems, which compute exact and complete results.

Efficiency Results. Efficiency results are depicted in Figure 41-a/b (c/d) for
SP² (DBPSB). We observed A-PBRJ to save inputs and computation time. For SP²
(DBPSB), A-PBRJ needed up to 25% (23%) less inputs versus baseline PBRJ and
30% (67%) versus JS. We explain these gains with pruning of partial bindings
via our top-k test, thereby omitting “unnecessary” joins and join attempts. In
fact, we were able to prune up to 40% (90%) of the inputs, given SP² (DBPSB).
Fewer inputs translated to time savings of 35% (65%) versus PBRJ and 47% (80%)
versus JS, given SP² (DBPSB).

Interestingly, we saw an increase in inputs for τ ∈ [0.2, 0.4] in SP² and τ ∈
[0.4, 0.8] in DBPSB, see Figure 41-a/c. For instance, comparing τ = 0.2 and τ = 0.4
in SP², A-PBRJ read 8% more inputs. DBPSB was less affected: we noticed a
marginal increase of 2% for τ = 0.4 versus τ = 0.6. We explain the increase in
both benchmarks with a too “aggressive” pruning – too many partial bindings
were pruned wrongfully. That is, many pruned bindings would have led to a
larger or even a complete binding. In turn, this led to more inputs being read,
in order to produce the desired k results. In fact, τ ∈ [0.6, 0.8] was even more

5.3 rank-aware approximate query processing 156

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.4 0.6 0.8

M
ac

ro
-P

re
ci

si
o

n

Threshold τ

A-PBRJ (E)
A-PBRJ (N)
A-PBRJ (U)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.4 0.6 0.8

M
ac

ro
-P

re
ci

si
o

n

Threshold τ

A-PBRJ (E)
A-PBRJ (N)
A-PBRJ (U)

0E+00

1E-02

2E-02

3E-02

4E-02

5E-02

6E-02

7E-02

0 0.1 0.2 0.4 0.6 0.8

Sc
o

re
 E

rr
o

r

Threshold τ

A-PBRJ (E)
A-PBRJ (N)
A-PBRJ (U)

(a) (b)

5E-03

1E-02

2E-02

2E-02

3E-02

3E-02

0 0.1 0.2 0.4 0.6 0.8

Sc
o

re
 E

rr
o

r

Threshold τ

A-PBRJ (E)
A-PBRJ (N)
A-PBRJ (U)

(c) (d)

SP2

DBPSB

Figure 42: Effectiveness evaluation results for SP²/DBPSB: (a)/(c) macro-precision ver-
sus threshold τ. (b)/(d) score error versus threshold τ.

aggressive. However, the ratio between pruned bindings and read inputs was
high enough to compensate for the extra inputs. Overall, we saw a “sweet spot”
at τ ≈ 0.2 for SP² and DBPSB. Here, we noted pruning to be fairly accurate, i.e.,
only few partial bindings were wrongfully pruned. In fact, we observed high
precision (recall) values for both benchmarks given τ ≈ 0.2: 80% (88%) in SP²
(DBPSB) – as discussed below. With regard to computation time for SP² and
DBPSB queries, we noticed similar effects as for the inputs, see Figure 41-b/d. In
particular, the “sweet spot” at τ ≈ 0.2 is also reflected here.

As expected, we observed inputs and time to increase in k for A-PBRJ and
PBRJ. For instance, comparing k = 1 and k = 20, A-PBRJ needed a factor of
1.2 (5.7) more time, given SP² (DBPSB). Similarly, 1.2 (6.8) times more inputs
were consumed by A-PBRJ for SP² (DBPSB). We explain this behavior with more
inputs/join attempts being required to produce a larger result. PBRJ leads to a
similar performance decrease. For instance given k = 1 versus k = 20 in SP²,
PBRJ needed a factor of 1.3 (1.2) more inputs (time). Note, as baseline JS simply
computed all results, this system was not affected by k.

Furthermore, we cloud not find a correlation between system performance and
score distributions. In other words, score distributions (ranking functions) had
no impact on A-PBRJ’s performance. For instance given DBPSB queries, A-PBRJ
resulted in the following gains versus PBRJ with regard to inputs (time): 27%
(65%) for e distribution, 23% (64%) given u distribution, and 21% (64%) for n
distribution.

5.3 rank-aware approximate query processing 157

Last, with regard to parameter τ, we noted A-PBRJ’s efficiency to increase
with τ ∈ [0, 0.2], given SP² and DBPSB. However, as outlined above, too aggres-
sive pruning let to “inverse” effects. An important observation is, however, that
our approach was already able to achieve performance gains with a very small
τ < 0.1. Here, partial bindings were pruned primarily due to their low binding
probability. In fact, A-PBRJ could even save time for τ = 0: 26% (60%) with SP²
(DBPSB). We inspected queries leading to such saving and saw that many of
their partial bindings had a binding probability ≈ 0. We argue that this a strong
advantage of A-PBRJ: even for low error thresholds (leading to a minor effectiveness
decrease), we could achieve efficiency gains.

Effectiveness Results. In the following, we analyze A-PBRJ in terms of its ac-
curacy. Note, baselines PBRJ and JS always compute exact and complete results. So,
we restrict our attention to the A-PBRJ system.

Figure 42-a/c (b/d) depicts the macro-precision (score error) for varying score
distributions. We observed high precision values of up to 0.98 for both bench-
marks, see Figure 42-a/c. Given τ < 0.1, all distributions led to very similar
precision results ∈ [0.8, 0.95] and [0.90, 0.98] for SP² and DBPSB, respectively. In
general, A-PBRJ’s effectiveness is hardly affected by a particular score distribu-
tion, see Figure 42-a/c. We explain these good approximations with accurate
score/binding probabilities – no matter the score distribution.

Moreover, even for large τ ∈ [0.6, 0.8] A-PBRJ achieved a high macro-precision
in [0.75, 0.8] on DBPSB queries. This is because, DBPSB queries feature selective
patterns and have only a small result cardinality 6 10. Thus, “chances” of prun-
ing a final top-k binding were quite small – even for a large τ. Moreover, A-PBRJ
let to a very effective pruning via binding probabilities, as many partial bind-
ings had a binding probability ≈ 0 (due to the high query selectivity). This way,
A-PBRJ pruned up to 97% of the total inputs for some DBPSB queries.

In order to quantify “how bad” false positive/negative results are, we em-
ployed the score error metric, see Figure 42-b/d. For both benchmarks, we ob-
served that score error was ∈ [0.07, 0.11] for a small τ < 0.1. We explain this with
our high precision (recall). That is, A-PBRJ led to only few false positive/negative
top-k results given τ < 0.1. As expected, score error increased in τ, due to more
false positives/negatives top-k results. Overall, however, score error results were
very promising: we saw an average score error of 0.03 (0.02), given SP² (DBPSB).

With regard to parameter k, we observed that k does not impact A-PBRJ’s
effectiveness. Given SP², we saw A-PBRJ to be fairly stable in different values for
parameter k. For instance, macro-precision was in [0.8, 0.85] as average over all k
and τ = 0.1. Also for the DBPSB benchmark, we noted only minor effectiveness
fluctuations: macro-precision varied around 7% with regard to different k.

We noticed A-PBRJ’s effectiveness to not be influenced by varying score distri-
butions, see Figure 42-a/b/c/d. Given SP², we saw a macro-precision of 0.79 for
u distribution, 0.79 for e distribution, and 0.80 for n distribution. Also for the
DBPSB benchmark, we observed only minor changes in macro-precision: 0.87 for
u distribution, 0.85 for e as well as n distribution.

With regard to the effectiveness of A-PBRJ versus parameter τ, we noticed that
metrics over both benchmarks decreased with increasing τ. For instance, macro-

5.3 rank-aware approximate query processing 158

SP² DBPSB

Time (ms) 1 - 300 1 - 24

Samples 1 - 4E6 1 - 50

Avg. #Sample 400E3 4

(a) Efficiency: average learning time and
the number of learning samples.

Dist. SP² DBPSB

e 0.34 0.04

n 0.34 0.01

u 0.31 0.02

(b) Effectiveness: average p-
value from the Kolmogo-
rov-Smirnov test.

Table 7: Efficiency and effectiveness of score distribution learning.

precision decreased for τ = 0 versus τ = 0.8 with 27% (23%), given SP² (DBPSB).
Such a behavior can be expected, since chances of pruning “the wrong” bindings
increase with higher τ values. Thus, while leading to efficiency gains (discussed
above), a higher value for τ causes effectiveness loses.

5.3.4.3 Evaluation Results: Probabilistic Component

In this section, we analyze the performance of the probabilistic component in
terms of its efficiency and effectiveness. Since binding probabilities are estimated
via a given selectivity estimation framework based on previous works [127, 130],
we focus on the learning and the computation of score probabilities.

Efficiency Results. First, we analyze the overhead introduced by score dis-
tribution learning. For this, we measured the time needed for hyperparameter
training, see Algorithm 9. We set the training threshold, i.e., the number of new
bindings after which a new training procedure is triggered, to 1 (Algorithm 8,
Line 11). Table 7-a gives average training times and the number of samples for
distribution training.

We observed average learning times ∈ [1, 300] ms ([1, 24] ms) over all score
distributions, queries and thresholds τ, given the SP² (DBPSB) benchmark. We
noted the driving factor to be the overall query selectivity. That is, SP² queries of-
ten had a large cardinality� 100, which led to a high number (up to 4, 227, 732)
of training samples. In contrast, DBPSB featured highly selective queries, result-
ing in few training iterations – only up to 50 score samples were available on
average. Overall, this explains the additional training time (factor 12.5) needed
for SP² queries, when compared to DBPSB. Note, one can easily cope with high
cardinality queries by: (1) setting a larger training threshold or (2) stop the distri-
bution learning, if the distribution “quality” does not improve any more. How-
ever, such optimizations are left to future work.

Second, we measured the extra time required for performing a top-k test, see
Algorithm 10. On average over both benchmarks and all parameters, a top-k
test needed 4.3K ns. This time comprises a selectivity estimation lookup for the
binding probability and the score probability computation. In contrast, a sorted
(random) access took 26.8K ns (1.7M ns) on average. Thus, a top-k test is fairly
cheap in comparison to a sorted and random access, respectively.

5.3 rank-aware approximate query processing 159

Effectiveness Results. For inspecting the effectiveness of our score distribu-
tion learning, we measured how well the trained distributions fit the observed
complete binding scores. More precisely, we applied the well-known Kolmogo-
rov-Smirnov test [68], which measures via a p-value in [0, 1] whether a sample
comes from the population of a specific distribution. Table 7-b depicts p-values
as averages for both benchmarks.

We observed drastic differences between p-values for SP² and DBPSB. SP² re-
sults were very promising and reflect that learned distributions accurately cap-
ture the true scores of complete bindings. That is, our distribution learning could
achieve high-quality approximations: the p-value was 0.34 for distribution e as
well as distribution n, and 0.31 for distribution u. With regard to DBPSB, we
could not train good distributions. We measured poor p-values: 0.04 for distribu-
tion e, 0.01 given distribution n, and 0.02 for distribution u. We explain this with
the few training samples available for DBPSB queries, due to their high selectiv-
ity. As discussed above, SP² queries featured much more score samples, see Ta-
ble 7-a. However, the interesting observation is that the overall approach, A-PBRJ,
was hardly affected. In fact, A-PBRJ achieved a high precision ∈ [0.73, 0.98] for
DBPSB. This is because the score probabilities are only relevant for the top-k test,
if k complete bindings have been computed (see discussion in Section 5.3.3.3).
However, for many DBPSB queries, their cardinality was 6 k. Thus, the poor
distribution quality had little to no effect.

Overall, we can conclude that the probabilistic component trains score distributions
in an efficient and effective manner, if sufficient score samples are available.

5.3.5 Related Work

There is a large body of work on top-k query processing for relational data [95].
Most recently, such approaches have been extended to RDF data and SPARQL
queries [2, 115]. In particular, we presented the LD-PBRJ operator for top-k join
processing over distributed Web data in Chapter 3.

These works aim at exact and complete top-k results. However, for many appli-
cations result accuracy and completeness is not important. Instead, result com-
putation time is the key factor. We outlined several examples in Section 5.1. In
particular, end-user oriented search over Web data is a prime example for those
applications.

To foster an efficient result computation (by trading off result accuracy/com-
pleteness), approximate top-k techniques have been proposed [15, 16, 120, 151, 157].
Most notably, [157] used score statistics to predict the highest possible com-
plete score of a partial binding. Partial results are discarded, if they are not
likely to contribute to a top-k result. Focusing on distributed top-k queries, [120]
employed histograms to predict aggregated score values over a space of data
sources. Anytime measures for top-k processing have been introduced by [15, 16].
For this, the authors used offline score information, e.g., histograms, to predict
complete binding scores at runtime. Last, approximate top-k processing under
budgetary has been addressed in [151].

However, all such approximate top-k approaches heavily rely on score statistics
at indexing time. That is, scores must be known at indexing time for computing

5.3 rank-aware approximate query processing 160

statistics, e.g., histograms. However, offline statistics lead to major drawbacks
in a Web setting – as outlined in Problem 1 and Problem 2 in Section 5.3.1.1.
In contrast, we propose a lightweight system: we learn our score distributions in a
pay-as-you-go manner at runtime. In fact, our statistics cause only minor overhead in
terms of space and time, see Theorem 5 and Theorem 6.

5.3.6 Summary

In this section, we introduced a novel approximate join top-k algorithm, the so-
called A-PBRJ, thereby addressing Research Question 4:

- Research Question 4

How to enable approximate top-k query processing for hybrid queries over
schemaless Web data?

For this research question, we aimed at two hypotheses by means of our
A-PBRJ operator:

2� Hypothesis 7

Given user/query-dependent ranking functions, we can learn score statis-
tics for approximate top-k query processing by means of Bayesian statistics.

On the one hand, with regard to the above hypothesis, we introduced a score
learning procedure in Algorithm 9, which allows to train score distribution via
Bayesian statistics at runtime. This way, our approach does not require offline
information about ranking functions or score distribution, respectively. In fact,
every statistic needed can be learned at runtime from score samples observed
during query processing.

We empirically validated the efficiency and effectiveness of this score distri-
bution learning. In particular, we showed that our A-PBRJ system could achieve
times savings of up to 65%, while maintaining a high precision/recall.

Additionally, we conducted a theoretical analysis in Section 5.3.3.6, thereby
showing the effectiveness of the proposed score distribution learning in Theo-
rem 7 and Theorem 8. Moreover, we gave bounds for the approximation error in
Theorem 9.

2� Hypothesis 8

Bayesian statistics allow for lightweight score statistics.

On the other hand, with regard to Hypothesis 8, we showed space and time
complexity bounds in Theorem 5 and Theorem 6, respectively. Further, in our
evaluation in Section 5.3.4, we provided empirical evidence that Bayesian statis-
tics allow for an efficient implementation of the probabilistic component PC.

5.4 conclusion 161

Figure 43: Screenshot of NASA’s EOSDIS system.41

5.4 conclusion

In this chapter, we introduced two new approaches for approximate query pro-
cessing over Web data. Our first approach resembles a pipeline of operators,
which incrementally process hybrid queries in a rank-agnostic manner. In par-
ticular, we introduced several novel data synopses and approximate query pro-
cessing strategies for Web data. In contrast, our second approach is a rank-aware
approximate join operator, which discards partial query bindings that probably
would not contribute to the final top-k results. For this, we exploit well-known
techniques from the field of Bayesian statistics, in order to learn necessary data
synopses at runtime. This way, we allow to employ user/query-dependent rank-
ing functions for hybrid queries – a key requirement for an effective search over
hybrid Web data.

Both approaches allow a system to handle information needs, which do not
require a high result accuracy and completeness, respectively. These information
needs frequently occur in end-user oriented systems – as discussed in Section 5.1.

However, driven by the increasing amount of Web data, systems will have
a strong need for efficient query processing strategies. Targeting this issue, ap-
proximate query processing can help by reporting approximated results early
and computing exact/complete results solely on demand. More precisely, such
strategies could be seen as a form of query result preview [133], which provides
initial insights into the query and its potential results, respectively. While a user
inspects the result preview, a system can spend additional time for computing
refined results. In fact, while inspecting the result preview, a user could refine
the query in order to better match her information need [133].

41https://www.cs.umd.edu/hcil/eosdis/, retrieved 2013-10-05.

https://www.cs.umd.edu/hcil/eosdis/

5.4 conclusion 162

A prominent example for a system with query result preview functionality is
NASA’s EOSDIS (Earth Observing System Data and Information System) sys-
tem [49]. Consider the screenshot in Figure 43. Here, users are presented inter-
active results previews for NASA’s environmental data. Users can refine their
queries, e.g., by specifying the specific geographic region of interest.

Generally speaking, we argue that various systems, also those facing infor-
mation needs that require exact and complete results, may exploit approximate
query processing techniques in order to cope with the data size.

C O N C L U S I O N

163

6
C O N C L U S I O N

6.1 summary

In this thesis, we addressed the following research question:

- Overall Research Quesion

How to allow for rank-aware and approximate query processing over Web
data?

We identified three Web data characteristics, which are crucial for the above
research question: schemaless Web data, hybrid Web data, and distributed/low-
volume Web data. Based on these Web data characteristics, we split the over-
all research question into four subquestions, which we addressed in Chapter 3,
Chapter 4, and Chapter 5. An overview of these research question, our contribu-
tions, and the future/related work is illustrated in Figure 44.

- Research Question 1

How to enable top-k query processing on highly distributed, schemaless
Web data?

In Chapter 3, we aimed at Research Question 1 – targeting an approach for
rank-aware join processing over highly distributed and schemaless Web data
(Characteristic 1 and Characteristic 3, see Figure 44). For this, we provided Con-
tribution 1.

+ Contribution for Research Question 1

Top-k join processing over Linked Data.

Our top-k join processing approach, LD-PBRJ, allows for a push-based, rank-
aware query processing. The push-based nature of our approach is a key differ-
ence to state-of-the-art pull-based top-k join processing strategies. This way, Web
data sources can be retrieved efficiently in a non-blocking manner.

Moreover, our approach requires only very lightweight statistics for its sorted
accesses. Such lightweight statistics enable an easy index maintenance. This is a
great advantage with regard to the frequently changing Web data.

164

6.1 summary 165

Web Data

Characteristics

Problem 1

Compute ranked results efficiently and report

top-ranked results as soon as possible.

Problem 2

Compute large result sets efficiently by allowing to

trade off result accuracy for computation time.

Characteristic 1

Schemaless Data

Characteristic 2

Hybrid Data

Characteristic 3

Distributed and

Low-volume Data

How to allow rank-aware and approximate query processing over Web data?

Research Question 1,

Ch. 3

Research Question 1,

Ch. 3

Future/Related Work

F1
Research Question 4,

Ch. 5, Sect. 5.3

Research Question 3,

Ch. 5, Sect. 5.2

Future/Related Work

F2

Research Question 2,

Ch. 4

Future/Related Work

F3

Research Question 4,

Ch. 5, Sect. 5.3

Research Question 4,

Ch. 5, Sect. 5.3

Research Question 2,

Ch. 4

Research Question 2,

Ch. 4

Research Question 2,

Ch. 4

Future/Related Work

F1

Figure 44: Overview of problems, Web data characteristics, and research questions,
which are address in this thesis.

Last, we provided two optimizations for the LD-PBRJ: (1) a tighter bounding
strategy and (2) a strategy for the pruning of partial bindings, which can not
contribute to the final top-k results. Both optimizations lead to less inputs being
materialized and processed. Less inputs, in turn, translate to time savings for the
overall query result computation.

- Research Question 2

How to allow for efficient and effective selectivity estimates on hybrid,
schemaless Web data?

In Chapter 4, we proposed a selectivity estimation approach for the above
Research Question 2. More specifically, we provided a tailored solution for selec-
tivity estimation of hybrid queries over text-rich, schemaless Web data (Charac-
teristic 1 and Characteristic 2, see Figure 44). By means of such a selectivity esti-
mation approach, a query optimizer can integrate our rank-aware/approximate
join operators into physical query plans.

+ Contribution for Research Question 2

Selectivity estimation for hybrid and schemaless Web data.

We proposed the BN+ approach for Research Question 2. Here, we exploited
well-known techniques from the field of Bayesian networks to compactly model
dependencies in schemaless Web data. In contrast to previous works, our BN+

approach does not assume a specific data partitioning. Instead, we learn the
network structure as well as the network parameters solely from instance data.

Moreover, we integrated string synopses in the BN+ approach. Via the string
synopses, we can efficiently represent large n-gram sample spaces. Thereby, we
capture dependencies between structured and unstructured data elements, re-
spectively. Capturing these dependencies in an uniform manner is essential for
an effective selectivity estimation of hybrid queries.

6.1 summary 166

- Research Question 3

How to enable approximate and incremental query processing on schema-
less Web data?

In Chapter 5, we targeted an approach for incremental query processing on
schemaless Web data (Characteristic 1 in Figure 44). This way, approximate re-
sults can be computed quickly, and can either be reported early or can be refined
– based on the given information need.

+ Contribution for Research Question 3

Approximate and incremental query processing over Web data.

With regard to Research Question 3, we proposed a pipeline comprising four
phases: entity search (ES), approximate structure matching (ASM), structure-
based result refinement (SRR), and structure-based result computation (SRC).
The first three phases compute approximate results, which can be refined (if
necessary) by the next phase. Only the very last phase, structure-based result
computation (SRC), produces exact results. Throughout the phases, we exploit
synopses and join techniques that are well-suited for schemaless Web data.

Moreover, two of our phases – approximate structure matching (ASM) and
structure-based result refinement (SRR) – exploit novel approximate join pro-
cessing techniques. This way, we iteratively and approximately process expen-
sive relation query patterns, respectively.

- Research Question 4

How to enable approximate top-k query processing for hybrid queries over
schemaless Web data?

Last, we addressed Research Question 4 in Chapter 5. Here, we are concerned
with rank-aware approximate query processing. More specifically, instead of
computing false positive/negative query results, we compute false positive/neg-
ative top-k query results. For this, we exploited a lightweight data synopsis,
which is tailored towards hybrid and schemaless Web data (Characteristic 1 and
Characteristic 2 in Figure 44).

+ Contribution for Research Question 4

Approximate top-k query processing for hybrid queries over Web data.

We introduced a novel approximate top-k join algorithm framework, the A-
PBRJ, for the above Research Question 4. Within our framework, we rely on
Bayesian statistics for training lightweight score statistics during query process-
ing. This way, we allow for user/query-dependent ranking functions, which are
crucial for an effective ranking of hybrid queries over text-rich Web data.

Additionally, the lightweight nature of our lightweight score statistics leads to
a very low index maintenance overhead. In fact, we showed our approach to have

6.2 future work 167

only a constant space complexity and a runtime complexity that is bounded by
the result size. Given the rapidly changing Web data, such a lightweight synopsis
and its low index maintenance overhead is a great advantage.

6.2 future work

In the following, we will briefly outline relevant future work with regard to our
overall research question. We also depicted such future works in Figure 44.

R Future Work and Related Work – F1

Sorted access for top-k join processing over distributed hybrid Web data.

We proposed a lightweight sorted access implementation for highly distributed
Web data in Chapter 3. Intuitively speaking, we presented a source index, which
maps triple patterns to potentially matching data sources. For every such data
source, we also captured the minimal and maximal ranking score of its triples,
respectively.

However, with regard to hybrid Web data, a source index quickly becomes
very expensive in terms of space as well as maintenance. Recall that hybrid
queries feature a contains semantic. Therefore, a suitable index structure would
have to map a pattern 〈s,a,w〉 to every sources, which comprises a triple that
contains attribute a and keyword w.

For this, recent work [104] introduced source index implementations, which
are well-suited for hybrid queries and hybrid Web data, respectively. However,
such approaches do not incorporate ranking scores. In particular, existing works
on index structures for hybrid Web data do not provide sorted accesses. This
is a hard problem, because ranking functions for hybrid queries are oftentimes
user/query-dependent [12, 36, 156]. Therefore, offline score statistics can not be
computed for these ranking functions. Note, for the selection top-k problem,
previous works addressed similar problems [33, 92].

Moreover, relying on centralized top-k join query processing over distributed
Web data leads to expensive data shipping [103]. Previous work [51] targeted
this problem and proposed a distributed top-k join. However, the authors in [51]
exploit complex histogram score statistics. Such statistics are very expensive to
maintain. Furthermore, these statistics require all scores to be known at index-
ing time. This strongly restricts the possible ranking functions. In particular, no
user/query-dependent ranking function [12, 36, 156] could be used.

R Future Work and Related Work – F2

Index structures for approximate query processing over hybrid Web data.

We presented several index structures for our incremental query processing
pipeline in Chapter 5. In particular, we proposed a simple index for the entity
search (ES) phase, see Section 5.2.3.2. Recent work [104] presented more sophis-
ticated indexes for hybrid queries and hybrid Web data, respectively. However,

6.2 future work 168

since we do not require exact query results, we could development index struc-
tures that allow for approximate matching of hybrid entity queries. That is, these
index structures enable to match a given pattern with a degree of precision. This
way, the entity search (ES) phase could evaluate entity queries with increasing
degree of precision – as dictated by a given information

Moreover, the entity search (ES) phase could exploit selectivity estimation tech-
niques – as discussed in Chapter 4 – to decide which hybrid entity patterns to
evaluate with what degree of precision. Essentially, this could be conceived as
a form of query optimization. That is, a query optimizer decides which pattern
causes what costs, and should therefore be matched with a particular precision.

Note, above ideas are highly related to approximate query processing tech-
niques, which relax a given user query [86, 88, 89, 90, 136]. However, in contrast
to existing works, we argue that the focus should lie on two aspects: (1) Incremen-
tal query processing: a system should always be able to compute exact results.
(2) Structured query optimization: a system should decide how to relax a query
based on query optimization techniques.

R Future Work and Related Work – F3

Distributed approximate/incremental query processing.

Our indexes structures and query processing techniques in Chapter 5 are cen-
tralized. That is, we rely on data shipping [103] in order to handle distributed
data sources. In particular, with regard to index structures discussed for our
incremental query processing pipeline in Section 5.2, future work should aim
at more sophisticated query processing techniques. More precisely, a query pro-
cessing pipeline should take the data source characteristics (e.g., location, latency,
access capability) into account. This way, the query processing phases could first
exploit “cheap” data sources, e.g., data sources which have a low latency, while
using “expensive” data sources only if necessary.

In contrast to existing works on distributed query processing [103], this adds
an additional dimension in the optimization problem: the information need.
More precisely, a suitable approach needs to estimate (1) the costs of process-
ing a given query by means of specific data sources and (2) the expected query
result quality. Thus, the approach should have the freedom to trade off result
quality in favor of a cheaper query plan/distribution.

P U B L I C AT I O N S

[1] Thanh Tran, Günter Ladwig, and Andreas Wagner. Approximate and Incre-
mental Processing of Complex Queries against the Web of Data. In Proceed-
ings of the Database and Expert Systems Applications Conference (DEXA), 2011.

[2] Andreas Wagner, Thanh Tran Duc, Günter Ladwig, Andreas Harth, and Rudi
Studer. Top-k Linked Data query processing. In Proceedings of the Extended
Semantic Web Conference (ESWC), 2012.

[3] Andreas Wagner, Veli Bicer, and Thanh Tran. Selectivity Estimation for Hy-
brid Queries over Text-Rich Data Graphs. In Proceedings of the International
Conference on Extending Database Technology (EDBT), 2013.

[4] Andreas Wagner, Veli Bicer, and Thanh Tran. Pay-as-you-go Approximative
Top-k Join Processing for the Web of Data. In Proceedings of the Extended
Semantic Web Conference (ESWC), 2014.

169

R E F E R E N C E S

[5] An Implementation of an Efficient Algorithm for Bisimulation Equivalence.
Sci. Comput. Program., 13(2-3):219–236, 1990.

[6] Semantic link based top-K join queries in P2P networks. In Les Carr,
David De Roure, Arun Iyengar, Carole A. Goble, and Michael Dahlin, ed-
itors, Proceedings of the International Conference on World Wide Web (WWW),
pages 1005–1006, 2006.

[7] SemSearchPro - Using semantics throughout the search process. Journal of
Web Semantics, 9(4):349–364, 2011.

[8] OWL 2 Web Ontology Language: Document Overview. W3C Recommenda-
tion. World Wide Web Consortium, 2012. URL http://www.w3.org/TR/

owl2-overview/.

[9] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach.
Scalable semantic web data management using vertical partitioning. In
Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 411–422, 2007.

[10] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. Join synopses for approximate query answering. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 275–286, 1999.

[11] B. Adida, M. Birbeck, S. McCarron, and I. Herman. RDFa 1.1 Core - Second
Edition. W3C Recommendations. World Wide Web Consortium, 2013. URL
http://www.w3.org/TR/2013/REC-rdfa-core-20130822/.

[12] Rakesh Agrawal, Ralf Rantzau, and Evimaria Terzi. Context-sensitive rank-
ing. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), pages 383–394, 2006.

[13] Boanerges Aleman-Meza, Farshad Hakimpour, I. Budak Arpinar, and
Amit P. Sheth. SwetoDblp ontology of Computer Science publications. Web
Semantics: Science, Services and Agents on the World Wide Web, 5(3):151–155,
2007.

[14] Giuseppe Amato, Fausto Rabitti, Pasquale Savino, and Pavel Zezula. Re-
gion Proximity in Metric Spaces and Its Use for Approximate Similarity
Search. ACM Trans. Inf. Syst., 21(2):192–227, 2003.

[15] Benjamin Arai, Gautam Das, Dimitrios Gunopulos, and Nick Koudas. Any-
time Measures for Top-k Algorithms. In Proceedings of the International Con-
ference on Very Large Data Bases, pages 914–925, 2007.

170

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/2013/REC-rdfa-core-20130822/

bibliography 171

[16] Benjamin Arai, Gautam Das, Dimitrios Gunopulos, and Nick Koudas. Any-
time measures for top-k algorithms on exact and fuzzy data sets. The VLDB
Journal, 18(2):407–427, 2009.

[17] Carlos Aranda, Olivier Corby, Souripriya Das, Lee Feigenbaum, Paul
Gearon, Birte Glimm, Steve Harris, Sandro Hawke, Ivan Herman, Nicholas
Humfrey, Nico Michaelis, Chimezie Ogbuji, Matthew Perry, Alexandre
Passant, Axel Polleres, Eric Prud’hommeaux, Andy Seaborne, and Gre-
gory Williams, editors. SPARQL 1.1 Overview. W3C Recommenda-
tion. World Wide Web Consortium, 2013. URL http://www.w3.org/TR/

sparql11-overview/.

[18] Brian Babcock, Surajit Chaudhuri, and Gautam Das. Dynamic Sample
Selection for Approximate Query Processing. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
539–550, 2003.

[19] Akanksha Baid, Ian Rae, Jiexing Li, AnHai Doan, and Jeffrey Naughton.
Toward Scalable Keyword Search over Relational Data. Proc. VLDB Endow.,
3(1-2):140–149, 2010.

[20] Wolf-Tilo Balke, Wolfgang Nejdl, Wolf Siberski, and Uwe Thaden. Progres-
sive Distributed Top-k Retrieval in Peer-to-Peer Networks. In Proceedings
of the International Conference on Data Engineering (ICDE), pages 174–185,
2005.

[21] D. Becket. RDF 1.1 N-Triples. W3C Recommendation. World Wide Web
Consortium, 2014. URL http://www.w3.org/TR/n-triples/.

[22] J.M. Bernardo and A.F.M. Smith. Bayesian Theory. John Wiley & Sons, 2007.

[23] Patrick Billingsley. Probability and Measure. Wiley-Interscience, 1995.

[24] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story
so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[25] Christian Bizer, Kai Eckert, Robert Meusel, Hannes Mühleisen, Michael
Schuhmacher, and Johanna Völker. Deployment of RDFa, Microdata, and
Microformats on the Web – A Quantitative Analysis. In Proceedings of the
International Semantic Web Conference (ISWC), 2013.

[26] Paul E. Black and Vreda Pieterse. Levenshtein Distance, 2013. URL http:

//www.nist.gov/dads/HTML/Levenshtein.html.

[27] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Communications of the ACM, 13(7):422–426, 1970.

[28] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The Skyline
Operator. In Proceedings of the International Conference on Data Engineering
(ICDE), pages 421–430, 2001.

http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/n-triples/
http://www.nist.gov/dads/HTML/Levenshtein.html
http://www.nist.gov/dads/HTML/Levenshtein.html

bibliography 172

[29] Dan Brickley and R. V. Guha, editors. RDF Schema 1.1. W3C Recommen-
dation. World Wide Web Consortium, 2014. URL http://www.w3.org/TR/

rdf-schema.

[30] Peter Buneman, Susan Davidson, Mary Fernandez, and Dan Suciu.
Adding Structure to Unstructured Data. In Proceedings of the International
Conference on Database Theory (ICDT), pages 336–350, 1997.

[31] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok
Shim. Approximate Query Processing Using Wavelets. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages 111–122,
2000.

[32] Kevin Chen-Chuan Chang and Seung-won Hwang. Minimal Probing: Sup-
porting Expensive Predicates for Top-k Queries. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
346–357, 2002.

[33] Kevin Chen-Chuan Chang and Seung-won Hwang. Minimal probing: Sup-
porting expensive predicates for top-k queries. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
346–357, 2002.

[34] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng Li,
Ming-Ling Lo, and John R. Smith. The Onion Technique: Indexing for Lin-
ear Optimization Queries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 391–402, 2000.

[35] Surajit Chaudhuri, Venkatesh Ganti, and Luis Gravano. Selectivity Estima-
tion for String Predicates: Overcoming the Underestimation Problem. In
Proceedings of the International Conference on Data Engineering (ICDE), pages
227–238, 2004.

[36] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum.
Probabilistic information retrieval approach for ranking of database query
results. ACM Trans. Database Syst., 31(3):1134–1168, 2006.

[37] Surajit Chaudhuri, Bee-Chung Chen, Venkatesh Ganti, and Raghav
Kaushik. Example-driven design of efficient record matching queries. In
Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 327–338, 2007.

[38] Qun Chen, Andrew Lim, and Kian Win Ong. D(k)-index: an adaptive
structural summary for graph-structured data. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
134–144, 2003.

[39] Yan Chen, Jianbo Ou, Yu Jiang, and Xiaofeng Meng. HStar – a
Semantic Repository for Large Scale OWL Documents. In Proceedings of
the Asian Conference on The Semantic Web (ASWC), pages 415–428, 2006.

http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/rdf-schema

bibliography 173

[40] Yen-Yu Chen, Torsten Suel, and Alexander Markowetz. Efficient Query
Processing in Geographic Web Search Engines. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
277–288, 2006.

[41] C. Chow and C. Liu. Approximating discrete probability distributions
with dependence trees. IEEE Transactions on Information Theory, 14(3):462–
467, 1968.

[42] Joel Coffman and Alfred C. Weaver. A framework for evaluating database
keyword search strategies. In Proceedings of the ACM International Confer-
ence on Information and Knowledge Management (CIKM), pages 729–738, 2010.

[43] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient Retrieval of
the Top-k Most Relevant Spatial Web Objects. Proc. VLDB Endow., 2(1):
337–348, 2009.

[44] Olivier Corby, Rose Dieng-Kuntz, Catherine Faron-Zucker, and Fabien L.
Gandon. Searching the Semantic Web: Approximate Query Processing
Based on Ontologies. IEEE Intelligent Systems, 21(1):20–27, 2006.

[45] R. Cyganiak. A relational algebra for SPARQL. Technical report, HP Lab-
oratories Bristol, 2005. URL http://www.hpl.hp.com/techreports/2005/

HPL-2005-170.html.

[46] Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. A similarity
measure for approximate querying over rdf data. In Proceedings of the Joint
EDBT/ICDT Workshops, pages 205–213, 2013.

[47] Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. Approx-
imate querying of RDF graphs via path alignment. Distrib. Parallel
Databases, 2014 (to appear).

[48] Amol Deshpande, Minos N. Garofalakis, and Rajeev Rastogi. Inde-
pendence is Good: Dependency-Based Histogram Synopses for High-
Dimensional Data. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), pages 199–210, 2001.

[49] Khoa Doan, Catherine Plaisant, Ben Shneiderman, and Tom Bruns. Query
Previews for Networked Information Systems: A Case Study with NASA
Environmental Data. SIGMOD Record, 26(1):75–81, 1997.

[50] Donko Donjerkovic and Raghu Ramakrishnan. Probabilistic Optimization
of Top N Queries. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 411–422, 1999.

[51] Christos Doulkeridis, Akrivi Vlachou, Kjetil Nørvåg, Yannis Kotidis, and
Neoklis Polyzotis. Processing of Rank Joins in Highly Distributed Systems.
In Proceedings of the International Conference on Data Engineering (ICDE),
pages 606–617, 2012.

http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html
http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html

bibliography 174

[52] Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, Marcin Sydow, and Ger-
hard Weikum. Language-model-based ranking for queries on RDF-graphs.
In Proceedings of the ACM International Conference on Information and Knowl-
edge Management (CIKM), pages 977–986, 2009.

[53] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Systems.
Addison-Wesley, 2010.

[54] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation al-
gorithms for middleware. In Proceedings of the ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), pages 102–113,
2001.

[55] Jonathan Finger and Neoklis Polyzotis. Robust and efficient algorithms
for rank join evaluation. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 415–428, 2009.

[56] Michael Franklin, Alon Halevy, and David Maier. From Databases to Datas-
paces: A New Abstraction for Information Management. SIGMOD Record,
34(4):27–33, 2005.

[57] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning prob-
abilistic relational models. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 1300–1309, 1999.

[58] Minos N. Garofalakis and Phillip B. Gibbon. Approximate Query Process-
ing: Taming the TeraBytes. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), page 725, 2001.

[59] Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2007.

[60] Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation
using probabilistic models. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 461–472, 2001.

[61] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formu-
lation and Optimization in Semistructured Databases. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages 436–445.
Morgan Kaufmann Publishers Inc., 1997.

[62] Goetz Graefe. Query evaluation techniques for large databases. ACM
Comput. Surv., 25(2):73–169, 1993.

[63] Goetz Graefe. The Cascades Framework for Query Optimization. IEEE
Data Eng. Bull., 18(3):19–29, 1995.

[64] Goetz Graefe and William J. McKenna. The Volcano Optimizer Generator:
Extensibility and Efficient Search. In Proceedings of the International Confer-
ence on Data Engineering (ICDE), pages 209–218, 1993.

bibliography 175

[65] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Optimizing Multi-
Feature Queries for Image Databases. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 419–428, 2000.

[66] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Towards Efficient
Multi-Feature Queries in Heterogeneous Environments. In IEEE Interna-
tional Conference on Information Technology: Coding and Computing (ITCC),
page 622, 2001.

[67] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. J. Web Sem., 3(2–3):158–182, 2005.

[68] A. Gut. Probability: A Graduate Course: A Graduate Course. Springer, 2012.

[69] Antonin Guttman. R-trees: A Dynamic Index Structure for Spatial Search-
ing. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), pages 47–57, 1984.

[70] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query
processing in starburst. SIGMOD Record, 18(2):377–388, 1989.

[71] Alon Halevy, Michael Franklin, and David Maier. Principles of Dataspace
Systems. In Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS), pages 1–9, 2006.

[72] Alon Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4):270–294, 2001.

[73] Andreas Harth and Stefan Decker. Optimized Index Structures for Query-
ing RDF from the Web. In Proceedings of the Latin American Web Congress
(LA-WEB), pages 71–80, 2005.

[74] Andreas Harth, Sheila Kinsella, and Stefan Decker. Using Naming Au-
thority to Rank Data and Ontologies for Web Search. In Proceedings of the
International Semantic Web Conference (ISWC), pages 277–292, 2009.

[75] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe Sat-
tler, and Jürgen Umbrich. Data summaries for on-demand queries over
linked data. In Proceedings of the International Conference on World Wide Web
(WWW), pages 411–420, 2010.

[76] Olaf Hartig. An Overview on Execution Strategies for Linked Data Queries.
Datenbank-Spektrum, 13(2):89–99.

[77] Olaf Hartig. Zero-Knowledge Query Planning for an Iterator Implemen-
tation of Link Traversal Based Query Execution. In Proceedings of the 8th
Extended Semantic Web Conference on The Semantic Web (ESWC), pages 154–
169, 2011.

[78] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing
SPARQL Queries over the Web of Linked Data. In Proceedings of the In-
ternational Semantic Web Conference (ISWC), pages 293–309, 2009.

bibliography 176

[79] Daniel M. Herzig. Ranking for Web Data Search Using On-The-Fly Data Inte-
gration. PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, 2013.

[80] Ian Hickson, editor. HTML Microdata. W3C Recommendation. World Wide
Web Consortium, 2012. URL http://www.w3.org/TR/microdata/.

[81] P. Hitzler, M. Krotzsch, and S. Rudolph. Foundations of Semantic Web Tech-
nologies. Taylor & Francis, 2011.

[82] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and
Sebastian Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C
Recommendation. World Wide Web Consortium, 2012. URL http://www.

w3.org/TR/owl2-primer/.

[83] P.D. Hoff. A first course in Bayesian statistical methods. Springer, 2009.

[84] Katja Hose, Ralf Schenkel, Martin Theobald, and Gerhard Weikum.
Database foundations for scalable RDF processing. In Proceedings of the
International Conference on Reasoning Web (RW), pages 202–249, 2011.

[85] Katja Hose, Ralf Schenkel, Martin Theobald, and Gerhard Weikum.
Database Foundations for Scalable RDF Processing. In Proceedings of the
International Conference on Reasoning Web (RW), pages 202–249, 2011.

[86] Hai Huang and Chengfei Liu. Query relaxation for star queries on rdf.
In PProceedings of the International Conference on Web Information Systems
Engineering (WISE), pages 376–389, 2010.

[87] Hai Huang and Chengfei Liu. Estimating selectivity for joined RDF triple
patterns. In Proceedings of the ACM International Conference on Information
and Knowledge Management (CIKM), pages 1435–1444, 2011.

[88] Hai Huang, Chengfei Liu, and Xiaofang Zhou. Computing Relaxed An-
swers on RDF Databases. In Proceedings of the International Conference on
Web Information Systems Engineering (WISE), pages 163–175, 2008.

[89] Hai Huang, Chengfei Liu, and Xiaofang Zhou. Approximating Query An-
swering on RDF Databases. World Wide Web, 15(1):89–114, 2012.

[90] Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. A Relaxed
Approach to RDF Querying. In Proceedings of the International Semantic Web
Conference (ISWC), pages 314–328, 2006.

[91] Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. Ranking
Approximate Answers to Semantic Web Queries. In Proceedings of the 8th
Extended Semantic Web Conference on The Semantic Web (ESWC), pages 263–
277, 2009.

[92] Seung-Won Hwang and K.C.-C. Chang. Probe minimization by schedule
optimization: Supporting top-k queries with expensive predicates. IEEE
Transactions on Knowledge and Data Engineering, 19(5):646–662, 2007.

http://www.w3.org/TR/microdata/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/

bibliography 177

[93] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k
join queries in relational databases. The VLDB Journal, 13(3):207–221, 2004.

[94] Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid, Hicham G. Elmongui,
Rahul Shah, and Jeffrey Scott Vitter. Adaptive Rank-aware Query Opti-
mization in Relational Databases. ACM Trans. Database Syst., 31(4):1257–
1304, 2006.

[95] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A Survey of
Top-k Query Processing Techniques in Relational Database Systems. ACM
Comput. Surv., 40(4):11:1–11:58, 2008.

[96] Yannis E. Ioannidis. Approximations in database systems. In Proceedings
of the International Conference on Database Theory (ICDT), pages 16–30, 2002.

[97] Ian Jacobs and Norman Walsh, editors. Architecture of the World Wide Web,
Volume One. W3C Recommendation. World Wide Web Consortium, 2004.
URL http://www.w3.org/TR/webarch/.

[98] H. V. Jagadish, Olga Kapitskaia, Raymond T. Ng, and Divesh Srivastava.
One-dimensional and multi-dimensional substring selectivity estimation.
The VLDB Journal, 9(3):214–230, 2000.

[99] Liang Jin and Chen Li. Selectivity Estimation for Fuzzy String Predicates
in Large Data Sets. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 397–408, 2005.

[100] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Henry F. Ko-
rth. Covering indexes for branching path queries. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
133–144, 2002.

[101] Kifer, Michael and Lausen, Georg. F-logic: A Higher-order Language for
Reasoning About Objects, Inheritance, and Scheme. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 134–146, 1989.

[102] D. Koller and N. Friedman. Probabilistic Hraphical Models. The MIT Press,
2009.

[103] Donald Kossmann. The state of the art in distributed query processing.
ACM Comput. Surv., 32(4), 2000.

[104] Günter Ladwig. Efficient Optimization and Processing of Queries over Text-rich
Graph-structured Data. PhD thesis, Karlsruhe Institute of Technology, 2013.

[105] Günter Ladwig and Thanh Tran. Linked Data Query Processing Strategies.
In Proceedings of the International Semantic Web Conference (ISWC), 2010.

[106] Günter Ladwig and Thanh Tran. SIHJoin: Querying Remote and Local
Linked Data. In Proceedings of the 8th Extended Semantic Web Conference on
The Semantic Web (ESWC), pages 139–153, 2011.

http://www.w3.org/TR/webarch/

bibliography 178

[107] Hongrae Lee, Raymond T. Ng, and Kyuseok Shim. Extending Q-Grams
to Estimate Selectivity of String Matching with Low Edit Distance. In
Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 195–206, 2007.

[108] Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static
analysis and optimization of semantic web queries. In Proceedings of the
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 89–100, 2012.

[109] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song.
RankSQL: Query Algebra and Optimization for Relational Top-k Queries.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 131–142, 2005.

[110] Chengkai Li, Kevin Chen-Chuan Chang, and Ihab F. Ilyas. Supporting Ad-
hoc Ranking Aggregates. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 61–72, 2006.

[111] Feifei Li, Ke Yi, and Wangchao Le. Top-k Queries on Temporal Data. The
VLDB Journal, 19(5):715–733, 2010.

[112] Ling Liu and M. Tamer Özsu, editors. Encyclopedia of Database Systems.
Springer, 2009.

[113] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: Top-k Key-
word Query in Relational Databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 115–126,
2007.

[114] Yi Luo, Wei Wang, Xuemin Lin, Xiaofang Zhou, Jianmin Wang, and Keqiu
Li. SPARK2: Top-k Keyword Query in Relational Databases. IEEE Transac-
tions on Knowledge and Data Engineering, 23(12):1763–1780, 2011.

[115] Sara Magliacane, Alessandro Bozzon, and Emanuele Della Valle. Efficient
execution of top-k SPARQL queries. In Proceedings of the International Se-
mantic Web Conference (ISWC), pages 344–360, 2012.

[116] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, and David W. Cheung.
Efficient top-k aggregation of ranked inputs. ACM Trans. Database Syst., 32

(3), 2007.

[117] D. Martinenghi and M. Tagliasacchi. Cost-Aware Rank Join with Random
and Sorted Access. IEEE Transactions on Knowledge and Data Engineering, 24

(12):2143–2155, 2012.

[118] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selectiv-
ity estimation. Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 448–459, 1998.

[119] M. Meila and M. I. Jordan. Learning with mixtures of trees. The Journal of
Machine Learning Research, 1:1–48, 2001.

bibliography 179

[120] Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. KLEE: a frame-
work for distributed top-k query algorithms. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), pages 637–648, 2005.

[121] Peter Mika, Edgar Meij, and Hugo Zaragoza. Investigating the Semantic
Gap through Query Log Analysis. In Proceedings of the International Seman-
tic Web Conference (ISWC), pages 441–455, 2009.

[122] Jacob Paul Morgenstein. Computer Based Management Information Systems
Embodying Answer Accuracy As a User Parameter. PhD thesis, 1981.

[123] Morsey, Mohamed and Lehmann, Jens and Auer, Sören and Ngomo, Axel-
Cyrille Ngonga. DBpedia SPARQL Benchmark: Performance Assessment
with Real Queries on Real Data. In Proceedings of the International Semantic
Web Conference (ISWC), pages 454–469, 2011.

[124] M. Muralikrishna. Improved Unnesting Algorithms for Join Aggregate
SQL Queries. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 91–102, 1992.

[125] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and
Jeffrey Scott Vitter. Supporting Incremental Join Queries on Ranked Inputs.
In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 281–290, 2001.

[126] Wolfgang Nejdl, Wolf Siberski, Uwe Thaden, and Wolf-Tilo Balke. Top-k
Query Evaluation for Schema-Based Peer-to-Peer Networks. In Proceedings
of the International Semantic Web Conference (ISWC), pages 137–151. 2004.

[127] T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality
estimation for RDF queries with multiple joins. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE), pages 984–994, 2011.

[128] Thomas Neumann. Efficient generation and execution of DAG-structured query
graphs. PhD thesis, University of Mannheim, 2005.

[129] Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style engine for
RDF. PVLDB, 1(1):647–659, 2008.

[130] Thomas Neumann and Gerhard Weikum. Scalable join processing on very
large RDF graphs. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD), pages 627–640, 2009.

[131] Thomas Neumann, Matthias Bender, Sebastian Michel, Ralf Schenkel, Pe-
ter Triantafillou, and Gerhard Weikum. Distributed Top-k Aggregation
Queries at Large. Distrib. Parallel Databases, 26(1):3–27, 2009.

[132] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank Citation Ranking: Bringing Order to the Web. Technical report,
1999. URL http://ilpubs.stanford.edu:8090/422/.

http://ilpubs.stanford.edu:8090/422/

bibliography 180

[133] Catherine Plaisant, Ben Shneiderman, Khoa Doan, and Tom Bruns. Inter-
face and Data Architecture for Query Preview in Networked Information
Systems. ACM Trans. Inf. Syst., 17(3):320–341, 1999.

[134] Neoklis Polyzotis, Minos Garofalakis, and Yannis Ioannidis. Approximate
XML query answers. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), pages 263–274, 2004.

[135] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. Improved his-
tograms for selectivity estimation of range predicates. Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD),
(2):294–305, 1996.

[136] Alexandra Poulovassilis and Peter T. Wood. Combining approximation
and relaxation in semantic web path queries. In Proceedings of the Interna-
tional Semantic Web Conference (ISWC), pages 631–646, 2010.

[137] Christopher Re, Nilesh N. Dalvi, and Dan Suciu. Efficient Top-k Query
Evaluation on Probabilistic Data. In Proceedings of the International Confer-
ence on Data Engineering (ICDE), pages 886–895, 2007.

[138] Guy Sagy, Izchak Sharfman, Daniel Keren, and Assaf Schuster. Top-k Vec-
torial Aggregation Queries in a Distributed Environment. J. Parallel Distrib.
Comput., 71(2):302–315, 2011.

[139] Sherif Sakr and Ghazi Al-Naymat. Relational processing of RDF queries: a
survey. SIGMOD Record, 38(4):23–28, 2010.

[140] Florian Schmedding. Incremental SPARQL Evaluation for Query Answer-
ing on Linked Data. In Proceedings of the International Workshop on Consum-
ing Linked Data (COLD), 2011.

[141] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.
SP2Bench: A SPARQL Performance Benchmark. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE), pages 222–233, 2009.

[142] Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of
SPARQL query optimization. In Proceedings of the International Conference
on Database Theory (ICDT), pages 4–33, 2010.

[143] Karl Schnaitter and Neoklis Polyzotis. Evaluating rank joins with optimal
cost. In Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), pages 43–52, 2008.

[144] Karl Schnaitter and Neoklis Polyzotis. Optimal algorithms for evaluating
rank joins in database systems. ACM Trans. Database Syst., 35(1):6–1, 2010.

[145] Karl Schnaitter, Joshua Spiegel, and Neoklis Polyzotis. Depth estimation
for ranking query optimization. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 902–913, 2007.

[146] Karl Schnaitter, Joshua Spiegel, and Neoklis Polyzotis. Depth Estimation
for Ranking Query Optimization. The VLDB Journal, 18(2):521–542, 2009.

bibliography 181

[147] Guus Schreiber and Yves Raimond, editors. RDF 1.1 Primer. W3C Recom-
mendation. World Wide Web Consortium, 2014. URL http://www.w3.org/

TR/rdf11-primer/.

[148] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, 2011.

[149] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), pages 23–34, 1979.

[150] Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakrishnan.
Declarative Information Extraction Using Datalog with Embedded Extrac-
tion Predicates. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 1033–1044, 2007.

[151] Michal Shmueli-Scheuer, Chen Li, Yosi Mass, Haggai Roitman, Ralf
Schenkel, and Gerhard Weikum. Best-Effort Top-k Query Processing Un-
der Budgetary Constraints. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 928–939, 2009.

[152] M.A. Soliman, I.F. Ilyas, and K.C.-C. Chang. Top-k Query Processing in
Uncertain Databases. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 896–905, 2007.

[153] Steve Speicher, John Arwe, and Ashok Malhotra, editors. Linked Data Plat-
form 1.0. W3C Working Draft. World Wide Web Consortium, 2013. URL
http://www.w3.org/TR/ldp/.

[154] Joshua Spiegel and Neoklis Polyzotis. Graph-based synopses for relational
selectivity estimation. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), pages 205–216, 2006.

[155] Ben Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and
clustering in relational data. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 870–876, 2001.

[156] Aditya Telang, Chengkai Li, and Sharma Chakravarthy. One Size Does Not
Fit All: Toward User- and Query-Dependent Ranking for Web Databases.
IEEE Transactions on Knowledge and Data Engineering, 24(9):1671–1685, 2012.

[157] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k query eval-
uation with probabilistic guarantees. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages 648–659, 2004.

[158] Duc Thanh Tran. Semantic Web Search - A Process-Oriented Perspective on
Data Retrieval on the Semantic Web. PhD thesis, Karlsruhe Institute of Tech-
nology, Karlsruhe, 2010.

[159] Duc Thanh Tran and Günter Ladwig. Structure Index for RDF Data. In
Workshop on Semantic Data Management, 2010.

http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/ldp/

bibliography 182

[160] Duc Thanh Tran and Peter Mika. Semantic Search - Systems, Concepts,
Methods and the Communities behind It, 2012. URL http://sites.

google.com/site/kimducthanh/publication/semsearch-survey.pdf. Un-
der Submission.

[161] Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki, Vassilis
Christophides, and Peter Boncz. Heuristics-based query optimisation for
SPARQL. In Proceedings of the International Conference on Extending Database
Technology (EDBT), pages 324–335, 2012.

[162] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. Lightweight
Graphical Models for Selectivity Estimation Without Independence As-
sumptions. PVLDB, 4(11):852–863, 2011.

[163] Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørvåg. Distributed Top-
k Query Processing by Exploiting Skyline Summaries. Distrib. Parallel
Databases, 30(3-4):239–271, 2012.

[164] Daisy Zhe Wang, Long Wei, Yunyao Li, Frederick Reiss, and Shivaku-
mar Vaithyanathan. Selectivity estimation for extraction operators over
text data. In Proceedings of the International Conference on Data Engineering
(ICDE), pages 685–696, 2011.

[165] Gerhard Weikum. DB&IR: both sides now. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
25–30, New York, NY, USA, 2007.

[166] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: sex-
tuple indexing for semantic web data management. PVLDB, 1(1):1008–
1019, 2008.

[167] Eric W. Weisstein. Graph Eccentricity. From MathWorld – A Wolfram
Web Resource. URL http://mathworld.wolfram.com/GraphEccentricity.

html.

[168] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds. Effi-
cient RDF Storage and Retrieval in Jena2. In Proceedings of the International
Workshop on Semantic Web and Databases, pages 131–150, 2003.

[169] A.N. Wilschut and P. M G Apers. Dataflow query execution in a parallel
main-memory environment. In Proceedings of the International Conference on
Parallel and Distributed Information Systems (PDIS), pages 68–77, 1991.

[170] Minji Wu, Laure Berti-Equille, Amelie Marian, Cecilia M. Procopiuc, and
Divesh Srivastava. Processing top-k join queries. Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), pages 860–870, 2010.

[171] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword Search in Relational
Databases: A Survey. IEEE Data Eng. Bull., 33(1):67–78, 2010.

[172] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu, and Qing
Zhang. Efficient Computation of the Skyline Cube. In Proceedings of the

http://sites.google.com/site/kimducthanh/publication/semsearch-survey.pdf
http://sites.google.com/site/kimducthanh/publication/semsearch-survey.pdf
http://mathworld.wolfram.com/GraphEccentricity.html
http://mathworld.wolfram.com/GraphEccentricity.html

bibliography 183

International Conference on Very Large Data Bases (VLDB), pages 241–252,
2005.

[173] Lei Zhang, Qiaoling Liu, Jie Zhang, Haofen Wang, Yue Pan, and Yong
Yu. Semplore: An IR Approach to Scalable Hybrid Query of Semantic
Web Data. In Proceedings of the International The Semantic Web and Asian
Conference on Asian Semantic Web Conference (ISWC/ASWC), pages 652–665,
2007.

[174] Zhen Zhang, Seung-won Hwang, Kevin Chen-Chuan Chang, Min Wang,
Christian A. Lang, and Yuan-chi Chang. Boolean + Ranking: Querying a
Database by K-constrained Optimization. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data (SIGMOD), pages 359–
370, 2006.

[175] Keping Zhao, Shuigeng Zhou, K.-L. Tan, and Aoying Zhou. Supporting
ranked join in peer-to-peer networks. In Proceedings of the International
Conference on Database and Expert Systems Applications (DEXA), pages 796–
800, 2005.

[176] Keping Zhao, Shuigeng Zhou, and Aoying Zhou. Towards Efficient
Ranked Query Processing in Peer-to-Peer Networks. In Proceedings of the
Joint Chinese-German Workshop, Cognitive Systems, pages 145–160. 2007.

L I S T O F F I G U R E S

Figure 1 HTML IMDB Web page about the movie “Roman Holiday”. 3

Figure 2 HTML source code for the “Roman Holiday” Web page. . 4

Figure 3 Linked MDB page about “Roman Holiday”. 5

Figure 4 The semantic search process. 6

Figure 5 Search for movies with keyword “holiday”. 8

Figure 6 Problems and research questions in this thesis. 12

Figure 7 RDF graph for the running example. 18

Figure 8 Hybrid query graph for the running example. 19

Figure 9 Query processing overview. 24

Figure 10 Query processing example. 25

Figure 11 Scan operator and equi-join operator. 26

Figure 12 Abstract iterator operator. 29

Figure 13 Overview of top-k strategies. 30

Figure 14 Top-k processing example. 30

Figure 15 Classification of the LD-PBRJ approach. 38

Figure 16 Data graph for the running example in Chapter 3. 39

Figure 17 Listing of Linked Data sources. 41

Figure 18 Query graph for the running example in Chapter 3. 42

Figure 19 Push-based query plan. 44

Figure 20 Rank-aware query plan for the running example. 48

Figure 21 Detailed view on the LD-PBRJ operator. 53

Figure 22 Overview of the evaluation results for Chapter 3. 61

Figure 23 Detailed evaluation results for Chapter 3. 62

Figure 24 Context of the selectivity estimation in Chapter 5. 69

Figure 25 Bayesian Network for the running example in Chapter 4. . 74

Figure 26 Evaluation results for Chapter 4. 96

Figure 27 Classification of the A-PBRJ approach. 103

Figure 28 Overview of Chapter 5. 104

Figure 29 Generic approximate query processing approach. 105

Figure 30 Query processing pipeline for Section 5.2. 110

Figure 31 Data/query graph for the running example in Section 5.2. 111

Figure 32 Data synopses for the query processing pipeline. 114

Figure 33 Entity neighborhoods for the running example. 116

Figure 34 Evaluation for Section 5.2: computation times. 124

Figure 35 Evaluation for Section 5.2: computation times vs. query
shapes. 125

Figure 36 Evaluation for Section 5.2: neighborhood distance vs. com-
putation time. 126

Figure 37 Evaluation for Section 5.2: neighborhood distance vs. pre-
cision. 126

Figure 38 Evaluation for Section 5.2: Result precision vs. computa-
tion time. 127

184

bibliography 185

Figure 39 Data/query graph for the running example in Section 5.3 132

Figure 40 Approximate rank join tree for the running example. . . . 136

Figure 41 Evaluation for Section 5.3: #inputs vs. threshold and time
vs. threshold. 154

Figure 42 Evaluation for Section 5.3: macro-precision vs. threshold
and score error vs. threshold. 156

Figure 43 Screenshot of NASA’s EOSDIS system. 161

Figure 44 Problems and research questions in this thesis. 165

L I S T O F TA B L E S

Table 1 Dataset statistics for the evaluation in Chapter 4. 93

Table 2 Query statistics for the evaluation in Chapter 4. 93

Table 3 Approximated results for the running example. 113

Table 4 Dataset statistics for the evaluation in Section 5.2. 123

Table 5 Predictive score distributions for the running example. . . 143

Table 6 Query statistics for the evaluation in Section 5.2. 153

Table 7 Evaluation for Section 5.3: score distribution learning. . . . 158

186

L I S T O F A L G O R I T H M S

1 Pull/Bound Rank Join algorithm framework. 35

2 LD-PBRJ push method. 50

3 LD-PBRJ execute method. 52

4 LD-PBRJ activate method. 52

5 BN+ data synopsis construction algorithm. 87

6 Approximate structure matching (ASM) algorithm. 118

7 Structure-based result refinement (SRR) algorithm. 120

8 A-PBRJ algorithm framework. 139

9 A-PBRJ training algorithm. 145

10 A-PBRJ top-k test algorithm. 147

187

A C R O N Y M S

WWW World Wide Web

RDF Resource Description Format

RDFS Resource Description Framework Schema

OWL Web Ontology Language

SPARQL SPARQL protocol and RDF query language

HTML HyperText Markup Language

W3C World Wide Web Consortium

AQP approximate query processing

BGP basic graph pattern

PBRJ Pull Bound Rank Join

HRJN hash rank-join

NRJN nested-loops rank-join

HTTP Hypertext Transfer Protocol

URI Uniform Resource Identifier

PRM probabilistic relational model

BN Bayesian network

CPD conditional probability distribution

BFS breadth-first search

DFS depth-first search

A-PBRJ approximate Pull/Bound Rank Join

CLT Central Limit Theorem

DB database

IR Information Retrieval

188

A
A P P E N D I X : E VA L U AT I O N Q U E R I E S

189

a.1 evaluation queries for chapter 3

Queries employed in Section 3.4 – partially based on FedBench benchmark.42

Listing 7: Query 1.

1

2 PREFIX dbpedia: <http://dbpedia.org/resource/Category:>

3 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

4 PREFIX owl: <http://www.w3.org/2002/07/owl#>

5 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

6 PREFIX dcterms: <http://purl.org/dc/terms/>

7

8 SELECT * WHERE {

9 ?x dcterms:subject dbpedia:Liberal_democracies .

10 ?x rdfs:label ?l .

11 ?x owl:sameAs ?x2 .

12 ?x2 foaf:name ?n .

13 }

Listing 8: Query 2.

1

2 PREFIX dbpedia : <http :// dbpedia . org/resource/>
3 PREFIX dbowl : <http :// dbpedia . org/ontology/>
4 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
5 PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >
6

7 SELECT * WHERE {
8 ?p dbowl : s ta teOfOr ig in dbpedia : I t a l y .
9 ?p a f o a f : Person .

10 ?p owl : sameAs ?p2 .
11 }

Listing 9: Query 3.

1

2 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/
resource/drugbank/>

3 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
4

5 SELECT * WHERE {
6 ?d owl : sameAs ?d2 .
7 ?d drugbank : drugCategory ?c .
8 ?d drugbank : casRegistryNumber ?id .
9 }

42http://fedbench.fluidops.net, retrieved 2013-12-07.

http://fedbench.fluidops.net

Listing 10: Query 4.

1

2 PREFIX dbpedia : <http :// dbpedia . org/resource/Category : >
3 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
4 PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf−schema#>
5 PREFIX dcterms : <http :// purl . org/dc/terms/>
6

7 SELECT * WHERE {
8 ?x dcterms : s u b j e c t dbpedia : Western_Europe .
9 ?x owl : sameAs ?x2 .

10 ?x2 r d f s : l a b e l ? l .
11 }

Listing 11: Query 5.

1

2 PREFIX dbpedia : <http :// dbpedia . org/resource/Category : >
3 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
4

5 SELECT * WHERE {
6 ?x dcterms : s u b j e c t dbpedia : Chancellors_of_Germany .
7 ?x2 owl : sameAs ?x .
8 }

Listing 12: Query 6.

1

2 PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >
3 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
4 PREFIX dcterms : <http :// purl . org/dc/terms/>
5 PREFIX mdb: <http :// data . linkedmdb . org/resource/ d i r e c t o r />
6

7 SELECT * WHERE {
8 mdb: 8 477 f o a f : made ?f .
9 ?f dcterms : date ?d .

10 ?f f o a f : page ?p .
11 ?f owl : sameAs ?f2 .
12 }

Listing 13: Query 7.

1

2 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
3 PREFIX dailymed : <http ://www4. wiwiss . fu−b e r l i n . de/dailymed/

resource/dailymed/>
4 PREFIX dailymed_orga : <http ://www4. wiwiss . fu−b e r l i n . de/dailymed/

resource/organiza t ion/>
5 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/

resource/drugbank/>
6

7 SELECT * WHERE {
8 dailymed_orga : Mylan_Pharmaceuticals_Inc dailymed : producesDrug

?d .
9 ?d dailymed : genericDrug ?gd .

10 ?gd drugbank : poss ib leDiseas eTarge t ?dt .
11 ?dt owl : sameAs ?dt2 .
12 }

Listing 14: Query 8.

1

2 PREFIX dbpedia : <http :// dbpedia . org/resource/>
3 PREFIX dbowl : <http :// dbpedia . org/ontology/>
4 PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >
5 PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf−schema#>
6

7 SELECT * WHERE {
8 ?b dbowl : a r t i s t dbpedia : The_Beat les .
9 ?b r d f s : l a b e l ? l 1 .

10 ?b r d f s : l a b e l ? l 2 .
11 ?b dbowl : previousWork ?a .
12 ?a f o a f : depic t ion ?img .
13 }

Listing 15: Query 9.

1

2 PREFIX dbowl : <http :// dbpedia . org/ontology/>
3 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
4 PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf−schema#>
5 PREFIX factbook : <http ://www4. wiwiss . fu−b e r l i n . de/factbook/ns#>
6

7 SELECT * WHERE {
8 ?c a dbowl : Country .
9 ?c r d f s : l a b e l ? l .

10 ?c owl : sameAs ?c2 .
11 ?c2 factbook : unemploymentrate ?u .
12 ?c2 factbook : l i t e r a c y _ t o t a l p o p u l a t i o n ?p .
13 }

Listing 16: Query 10.

1

2 PREFIX dbpedia : <http :// dbpedia . org/resource/>
3 PREFIX dbowl : <http :// dbpedia . org/ontology/>
4 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
5 PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf−schema#>
6 PREFIX mdb_movie : <http :// data . linkedmdb . org/resource/movie>
7

8 SELECT * WHERE {
9 ?f mdb_movie : a c t o r ?a .

10 ?f mdb_movie : f e a t u r e d _ f i l m _ l o c a t i o n ? l c .
11 ? l c r d f s : l a b e l ? l .
12 ?f owl : sameAs ?f2 .
13 ?f2 dbowl : music dbpedia : John_Williams .
14 }

Listing 17: Query 11.

1

2 PREFIX geo−ont : <http ://www. geonames . org/ontology#>
3

4 SELECT * WHERE {
5 ?c geo−ont : parentFeature <http ://sws . geonames . org /6269131/> .
6 ?c geo−ont : of f ic ia lName " Cornwall " .
7 ?c geo−ont : nearby ? l c .
8 ? l c geo−ont : name ?n .
9 ? l c a ? t .

10 }

Listing 18: Query 12.

1

2 PREFIX dbpedia : <http :// dbpedia . org/resource/>
3 PREFIX dbprop : <http :// dbpedia . org/property/>
4 PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >
5 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
6

7 SELECT * WHERE {
8 ?x dbprop : country dbpedia : Germany .
9 ?x owl : sameAs ?x2 .

10 ?x2 f o a f : depic t ion ?img .
11 }

Listing 19: Query 13.

1 # FedBench − LD query 1

2

3 PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf−schema#>
4 PREFIX swc : <http :// data . semanticweb . org/ns/swc/ontology#>
5 PREFIX swrc : <http :// swrc . ontoware . org/ontology#>
6 PREFIX iswc_2008 : <ht tp :// data . semanticweb . org/conference/iswc

/2008/>
7

8 SELECT * WHERE {
9 ?p swc : i s P a r t O f iswc_2008 : poster_demo_proceedings .

10 ?p swrc : author ?a .
11 ?a r d f s : l a b e l ? l .
12 }

Listing 20: Query 14.

1 # FedBench − LD query 2

2

3 PREFIX swc : <http :// data . semanticweb . org/ns/swc/ontology#>
4 PREFIX swrc : <http :// swrc . ontoware . org/ontology#>
5 PREFIX eswc : <http :// data . semanticweb . org/conference/eswc/>
6

7 SELECT * WHERE {
8 ?pro swc : relatedToEvent eswc :2010 .
9 ?p swc : i s P a r t O f ?pro .

10 ?p swrc : author ?a .
11 }

Listing 21: Query 15.

1 # FedBench − LD query 3

2

3 PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf−schema#>
4 PREFIX swc : <http :// data . semanticweb . org/ns/swc/ontology#>
5 PREFIX swrc : <http :// swrc . ontoware . org/ontology#>
6 PREFIX iswc_2008 : <ht tp :// data . semanticweb . org/conference/iswc

/2008/>
7

8 SELECT * WHERE {
9 ?p swc : i s P a r t O f iswc_2008 : poster_demo_proceedings .

10 ?p swrc : author ?a .
11 ?a owl : sameAs ?a2 .
12 ?a r d f s : l a b e l ? l .
13 }

Listing 22: Query 16.

1 # FedBench − LD query 4

2

3 PREFIX swc : <http :// data . semanticweb . org/ns/swc/ontology#>
4 PREFIX swrc : <http :// swrc . ontoware . org/ontology#>
5 PREFIX eswc : <http :// data . semanticweb . org/conference/eswc/>
6

7 SELECT * WHERE {
8 ?r swc : isRoleAt eswc :2010 .
9 ?r swc : heldBy ?x .

10 ?p swrc : author ?a .
11 ?p swc : i s P a r t O f ?pro .
12 ?pro swc : relatedToEvent eswc :2010 .
13 }

Listing 23: Query 17.

1 # FedBench − LD query 5

2

3 PREFIX dbpedia : <http :// dbpedia . org/resource/>
4 PREFIX dbowl : <http :// dbpedia . org/ontology/>
5 PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >
6

7 SELECT * WHERE {
8 ?a dbowl : a r t i s t dbpedia : Michael_Jackson .
9 ?a a dbowl : Album .

10 ?a f o a f : name ?n .
11 }

Listing 24: Query 18.

1 # FedBench − LD query 7

2

3 PREFIX gn : <http ://www. geonames . org/ontology#>
4

5 SELECT * WHERE {
6 ?x gn : parentFeature <http ://sws . geonames . org /29210 44/> .
7 ?x gn : name ?n .
8 }

Listing 25: Query 19.

1 # FedBench − LD query 8

2

3 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/
resource/drugbank/>

4 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
5 PREFIX skos : <http ://www. w3 . org /2004/02/ skos/core #>
6 PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/ >
7

8 SELECT * WHERE {
9 ?drug drugbank : drugCategory

10 <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/resource/
drugcategory/micronutr ient > .

11 ?drug drugbank : casRegistryNumber ?id .
12 ?drug owl : sameAs ?s .
13 ?s f o a f : name ?o .
14 ?s skos : s u b j e c t ?sub .
15 }

Listing 26: Query 20.

1 # FedBench − LD query 10

2

3 PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
4 PREFIX skos : <http ://www. w3 . org /2004/02/ skos/core #>
5 PREFIX nyt : <http :// data . nytimes . com/elements/>
6 PREFIX dbpedia : <http :// dbpedia . org/resource/Category : >
7

8 SELECT * WHERE {
9 ?c skos : s u b j e c t dbpedia : Chancellors_of_Germany .

10 ?c owl : sameAs ?c2 .
11 ?c2 nyt : l a t e s t _ u s e ?u .
12 }

a.2 evaluation queries for chapter 4

Below, we present the query load used during our experiments in Chapter 4.
Queries for the DBLP dataset are based on [114], while IMDB queries are taken
from [42]. All queries are given in RDF NTriples [21] notation.

Listing 27: Queries from DBLP benchmark [114].

1

2

3 # @PREFIX dc :
4 # <http :// purl . org/dc/elements /1.1/ > .
5 # @PREFIX f o a f :
6 # <http :// xmlns . com/ f o a f /0.1/ > .
7 # @PREFIX rdf :
8 # <http ://www. w3 . org/1999/02/22− rdf−syntax−ns#> .
9 # @PREFIX r d f s :

10 # <http ://www. w3 . org /2000/01/ rdf−schema#> .
11 # @PREFIX dblp :
12 # <http :// l s d i s . cs . uga . edu/ p r o j e c t s /semdis/opus#> .
13

14 # q1

15 ?x r d f s : l a b e l " c l i q u e " .
16 ?x dblp : las t_modi f ied_date " 2002−12−09 " .
17 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
18 ?x dblp : author ?y .
19 ?y rdf : type f o a f : Person .
20 ?y f o a f : name " nikos " .
21

22 # q2

23 ?y rdf : type f o a f : Person .
24 ?y f o a f : name " nikos " .
25 ?y f o a f : name " zotos " .
26

27 # q3

28 ?x r d f s : l a b e l " c o n s t r a i n t " .
29 ?x dblp : las t_modi f ied_date " 2005−02−25 " .
30 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
31 ?x dblp : author ?y .
32 ?y rdf : type f o a f : Person .
33 ?y f o a f : name " chuang " .
34

35 # q4

36 ?x r d f s : l a b e l " mining " .
37 ?x r d f s : l a b e l " c l u s t e r i n g " .
38 ?x dblp : year " 2005 " .
39 ?x rdf : type dblp : A r t i c l e .
40 ?x dblp : author ?y .
41 ?y rdf : type f o a f : Person .
42 ?y f o a f : name " nikos " .
43

44 # q5

45 ?x r d f s : l a b e l " s p a t i a l " .
46 ?x dblp : las t_modi f ied_date " 2006−03−31 " .
47 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
48 ?x dblp : author ?y .
49 ?y rdf : type f o a f : Person .
50 ?y f o a f : name " p a t e l " .
51

52 # q6

53 ?x rdf : type dblp : A r t i c l e .
54 ?x r d f s : l a b e l " middleware " .
55 ?x dblp : author ?y .
56 ?y rdf : type f o a f : Person .
57 ?y f o a f : name " zhang " .
58

59 # q7

60 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
61 ?x r d f s : l a b e l " middleware " .
62 ?x r d f s : l a b e l " optimal " .
63 ?x dblp : author ?y .
64 ?y rdf : type f o a f : Person .
65 ?y f o a f : name " ronald " .
66

67 # q8

68 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
69 ?x r d f s : l a b e l " p a r t i t i o n " .
70 ?x r d f s : l a b e l " r e l a t i o n a l " .
71 ?x r d f s : l a b e l " query " .
72

73 # q9

74 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
75 ?x r d f s : l a b e l " p a r t i t i o n " .
76 ?x dblp : author ?y .
77 ?y rdf : type f o a f : Person .
78 ?y f o a f : name " p a t e l " .
79

80 # q10

81 ?x rdf : type dblp : Proceedings .
82 ?x r d f s : l a b e l " r e c o g n i t i o n " .
83 ?x r d f s : l a b e l " speech " .
84 ?x r d f s : l a b e l " software " .
85 ?x dc : publ i sher ?p .
86

87 # q11

88 ?x rdf : type dblp : Proceedings .
89 ?x r d f s : l a b e l " data " .
90 ?x r d f s : l a b e l " mining " .
91 ?x dc : publ i sher <http ://www. spr inger . de/> .
92

93 # q12

94 ?x rdf : type dblp : Proceedings .
95 ?x r d f s : l a b e l " a u s t r a l i a " .
96 ?x r d f s : l a b e l " stream " .
97 ?x dc : publ i sher <http ://www. spr inger . de/> .

98

99 # q13

100 ?x dblp : year " 2002 " .
101 ?x rdf : type dblp : Proceedings .
102 ?x r d f s : l a b e l " i n d u s t r i a l " .
103 ?x r d f s : l a b e l " database " .
104 ?x dc : publ i sher ?p .
105

106 # q14

107 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
108 ?x dblp : las t_modi f ied_date " 2006−03−09 " .
109 ?x dblp : author ?y .
110 ?y rdf : type f o a f : Person .
111 ?y f o a f : name " j i g n e s h " .
112

113 # q15

114 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
115 ?x r d f s : l a b e l " algorithm " .
116 ?x r d f s : l a b e l " incomplete " .
117 ?x r d f s : l a b e l " search " .
118

119 # q16

120 ?x dblp : journal_name "SIGMOD" .
121 ?x rdf : type dblp : A r t i c l e .
122 ?x r d f s : l a b e l "web" .
123 ?x r d f s : l a b e l " search " .
124

125 # q17

126 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
127 ?x r d f s : l a b e l " semistructured " .
128 ?x r d f s : l a b e l " search " .
129 ?x dblp : author ?y .
130 ?y rdf : type f o a f : Person .
131 ?y f o a f : name " goldman " .
132

133 # q18

134 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
135 ?x r d f s : l a b e l " query " .
136 ?x r d f s : l a b e l " c o s t " .
137 ?x r d f s : l a b e l " opt imizat ion " .
138 ?x dblp : author ?y .
139 ?y rdf : type f o a f : Person .
140 ?y f o a f : name " arvind " .
141

142 # q19

143 ?x dblp : year " 2007 " .
144 ?x r d f s : l a b e l " software " .
145 ?x r d f s : l a b e l " time " .
146 ?x rdf : type dblp : A r t i c l e .
147 ?x dblp : author ?y .
148 ?y rdf : type f o a f : Person .
149 ?y f o a f : name " zhu " .
150

151 # q20

152 ?y rdf : type f o a f : Person .
153 ?y f o a f : name " zhu " .
154 ?y f o a f : name " yuntao " .
155

156 # q21

157 ?x dblp : year " 2003 " .
158 ?x r d f s : l a b e l " data " .
159 ?x r d f s : l a b e l " content " .
160 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
161 ?x dblp : author ?y .
162 ?y rdf : type f o a f : Person .
163 ?y f o a f : name " nikos " .
164

165 # q22

166 ?x r d f s : l a b e l " s p a t i a l " .
167 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
168 ?x dblp : author ?y .
169 ?y rdf : type f o a f : Person .
170 ?y f o a f : name " j i g n e s h " .
171

172 # q23

173 ?x r d f s : l a b e l " a lgori thms " .
174 ?x r d f s : l a b e l " p a r a l l e l " .
175 ?x r d f s : l a b e l " s p a t i a l " .
176 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
177 ?x dblp : author ?y .
178 ?x dc : r e l a t i o n " conf " .
179 ?y rdf : type f o a f : Person .
180 ?y f o a f : name " p a t e l " .
181

182 # q24

183 ?x r d f s : l a b e l " implementation " .
184 ?x r d f s : l a b e l " eva luat ion " .
185 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
186 ?x dblp : las t_modi f ied_date " 2006−03−31 " .
187 ?x dblp : c i t e s ?c .
188 ?x dblp : author ?y .
189 ?y rdf : type f o a f : Person .
190 ?y f o a f : name " p a t e l " .
191

192 # q25

193 ?x r d f s : l a b e l " opt imizat ion " .
194 ?x r d f s : l a b e l " query " .
195 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
196 ?x dblp : author ?y .
197 ?x dblp : year " 2003 " .
198 ?y rdf : type f o a f : Person .
199 ?y f o a f : name ?n .
200

201 # q26

202 ?x r d f s : l a b e l " xml " .
203 ?x r d f s : l a b e l " t o o l " .

204 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
205 ?x dblp : year " 2004 " .
206 ?x dblp : author ?y .
207 ?y rdf : type f o a f : Person .
208 ?y f o a f : name " p a t e l " .
209

210 # q27

211 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
212 ?x r d f s : l a b e l " a r c h i t e c t u r e " .
213 ?x r d f s : l a b e l "web" .
214 ?x dblp : las t_modi f ied_date " 2005−09−05 " .
215 ?x dblp : author ?y .
216 ?y rdf : type f o a f : Person .
217 ?y f o a f : name "wu" .
218

219 # q28

220 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
221 ?x r d f s : l a b e l " language " .
222 ?x r d f s : l a b e l " software " .
223 ?x r d f s : l a b e l " system " .
224 ?x dblp : year " 2001 " .
225 ?x dblp : author ?y .
226 ?y rdf : type f o a f : Person .
227 ?y f o a f : name " roland " .
228

229 # q29

230 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
231 ?x r d f s : l a b e l " middleware " .
232 ?x dblp : las t_modi f ied_date " 2006−01−17 " .
233 ?x dblp : author ?y .
234 ?y rdf : type f o a f : Person .
235 ?y f o a f : name " sihvonen " .
236

237 # q30

238 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
239 ?x r d f s : l a b e l " middleware " .
240 ?x r d f s : l a b e l " v i r t u a l " .
241 ?x dblp : year " 2001 " .
242 ?x dblp : author ?y .
243 ?y rdf : type f o a f : Person .
244 ?y f o a f : name "kwang" .
245

246 # q31

247 ?x rdf : type dblp : A r t i c l e .
248 ?x r d f s : l a b e l " java " .
249 ?x r d f s : l a b e l " code " .
250 ?x r d f s : l a b e l " program " .
251 ?x dblp : author ?y .
252 ?y rdf : type f o a f : Person .
253 ?y f o a f : name " roland " .
254

255 # q32

256 ?x rdf : type dblp : A r t i c l e .

257 ?x r d f s : l a b e l " s i g n a l " .
258 ?x r d f s : l a b e l " space " .
259 ?x dblp : author ?y .
260 ?y rdf : type f o a f : Person .
261 ?y f o a f : name " zheng " .
262

263 # q33

264 ?x dblp : author ?y .
265 ?y rdf : type f o a f : Person .
266 ?y f o a f : name " fag in " .
267 ?y f o a f : name " roland " .
268

269 # q34

270 ?x dblp : author ?y .
271 ?y rdf : type f o a f : Person .
272 ?y f o a f : name " zheng " .
273 ?y f o a f : name " qui " .
274

275 # q35

276 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
277 ?x r d f s : l a b e l " process ing " .
278 ?x r d f s : l a b e l " query " .
279

280 # q36

281 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
282 ?x r d f s : l a b e l " xml " .
283 ?x r d f s : l a b e l " process ing " .
284

285 # q37

286 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
287 ?x r d f s : l a b e l " b i o l o g i c a l " .
288 ?x r d f s : l a b e l " sequence " .
289 ?x dblp : las t_modi f ied_date " 2007−08−21 " .
290 ?x dblp : author ?y .
291 ?y rdf : type f o a f : Person .
292 ?y f o a f : name " j i g n e s h " .
293

294 # q38

295 ?x rdf : type dblp : Book .
296 ?x r d f s : l a b e l " d e c i s i o n " .
297 ?x r d f s : l a b e l " i n t e l l i g e n t " .
298 ?x r d f s : l a b e l " making " .
299 ?x dc : publ i sher <http ://www. spr inger . de/> .
300

301 # q39

302 ?x rdf : type dblp : Proceedings .
303 ?x r d f s : l a b e l " databases " .
304 ?x r d f s : l a b e l " b i o l o g i c a l " .
305 ?x dc : publ i sher <http ://www. spr inger . de/> .
306

307 # q40

308 ?x rdf : type dblp : Book .
309 ?x r d f s : l a b e l " mining " .

310 ?x r d f s : l a b e l " data " .
311

312 # q41

313 ?x rdf : type dblp : Book .
314 ?x r d f s : l a b e l " mining " .
315 ?x r d f s : l a b e l " data " .
316 ?x dc : publ i sher <http ://www. spr inger . de/> .
317 ?x dc : r e l a t i o n " t r i e r . de " .
318 ?x dc : r e l a t i o n " books " .
319

320 # q42

321 ?x rdf : type dblp : Book .
322 ?x r d f s : l a b e l " i n t e l l i g e n c e " .
323 ?x r d f s : l a b e l " computational " .
324 ?x dc : publ i sher <http ://www. spr inger . de/> .
325 ?x dc : r e l a t i o n " t r i e r . de " .
326 ?x dblp : year " 2007 " .
327

328 # q43

329 ?x rdf : type dblp : Book .
330 ?x r d f s : l a b e l " b i o l o g i c a l l y " .
331 ?x r d f s : l a b e l " insp i r ed " .
332 ?x r d f s : l a b e l " methods " .
333

334 # q44

335 ?x rdf : type dblp : Book .
336 ?x r d f s : l a b e l " networks " .
337 ?x r d f s : l a b e l " neural " .
338

339 # q45

340 ?x rdf : type dblp : Book .
341 ?x r d f s : l a b e l " l earn ing " .
342 ?x r d f s : l a b e l " machine " .
343 ?x dc : publ i sher <http ://www. spr inger . de/> .
344

345 # q46

346 ?x rdf : type dblp : Book .
347 ?x r d f s : l a b e l " software " .
348 ?x r d f s : l a b e l " system " .
349 ?x dc : publ i sher <http ://www. spr inger . de/> .
350

351 # q47

352 ?x rdf : type dblp : Book .
353 ?x r d f s : l a b e l " a r c h i t e c t u r e " .
354 ?x r d f s : l a b e l " computer " .
355

356 # q48

357 ?x rdf : type dblp : Book .
358 ?x r d f s : l a b e l "web" .
359 ?x dblp : year " 2006 " .
360 ?x dc : publ i sher ?p .
361 ?x dblp : e d i t o r ?e .
362 ?e f o a f : name " kandel " .

363 ?e f o a f : name " abraham " .
364

365 # q49

366 ?x rdf : type dblp : Book .
367 ?x r d f s : l a b e l " t h e o r e t i c a l " .
368 ?x r d f s : l a b e l " s c i e n c e " .
369 ?x dc : publ i sher <http ://www. e l s e v i e r . nl/> .
370

371 # q50

372 ?x rdf : type dblp : Book_Chapter .
373 ?x r d f s : l a b e l " search " .
374 ?x r d f s : l a b e l " semantic " .
375

376 # q51

377 ?x rdf : type dblp : A r t i c l e .
378 ?x r d f s : l a b e l " search " .
379 ?x r d f s : l a b e l " concept " .
380 ?x r d f s : l a b e l " based " .
381

382 # q52

383 ?x dblp : journal_name " sigmod " .
384 ?x rdf : type dblp : A r t i c l e .
385 ?x r d f s : l a b e l " model " .
386 ?x r d f s : l a b e l " information " .
387

388 # q53

389 ?x dblp : journal_name " sigmod " .
390 ?x rdf : type dblp : A r t i c l e .
391 ?x r d f s : l a b e l " dynamic " .
392 ?x r d f s : l a b e l " networks " .
393

394 # q54

395 ?x rdf : type dblp : A r t i c l e _ i n _ P r o c e e d i n g s .
396 ?x r d f s : l a b e l " s torage " .
397 ?x r d f s : l a b e l " adaptive " .
398 ?x dblp : author ?y .
399 ?x dblp : year " 2003 " .
400 ?y rdf : type f o a f : Person .
401 ?y f o a f : name " j i g n e s h " .

Listing 28: Queries from IMDB benchmark [42].

1

2

3 # @PREFIX imdb :
4 # <http ://imdb/p r e d i c a t e/> .
5 # @PREFIX imdb_class :
6 # <http ://imdb/ c l a s s /> .
7 # @PREFIX rdf :
8 # <http ://www. w3 . org/1999/02/22− rdf−syntax−ns#> .
9

10 # q1

11 ?x rdf : type imdb_class : name .

12 ?x imdb : name " washington " .
13 ?x imdb : name " denzel " .
14

15 # q2

16 ?x rdf : type imdb_class : name .
17 ?x imdb : name " eastwood " .
18 ?x imdb : name " c l i n t " .
19

20 # q3

21 ?x rdf : type imdb_class : name .
22 ?x imdb : name " john " .
23 ?x imdb : name "wayne" .
24

25 # q4

26 ?x rdf : type imdb_class : name .
27 ?x imdb : name " smith " .
28 ?x imdb : name " w i l l " .
29

30 # q5

31 ?x rdf : type imdb_class : name .
32 ?x imdb : name " ford " .
33 ?x imdb : name " harr i son " .
34

35 # q6

36 ?x rdf : type imdb_class : name .
37 ?x imdb : name " j u l i a " .
38 ?x imdb : name " r o b e r t s " .
39

40 # q7

41 ?x rdf : type imdb_class : name .
42 ?x imdb : name " tom " .
43 ?x imdb : name " hanks " .
44

45 # q8

46 ?x rdf : type imdb_class : name .
47 ?x imdb : name " johnny " .
48 ?x imdb : name " depp " .
49

50 # q9

51 ?x rdf : type imdb_class : name .
52 ?x imdb : name " angel ina " .
53 ?x imdb : name " j o l i e " .
54

55 # q10

56 ?x rdf : type imdb_class : name .
57 ?x imdb : name " freeman " .
58 ?x imdb : name " morgan " .
59

60 # q11

61 ?x rdf : type imdb_class : t i t l e .
62 ?x imdb : t i t l e " gone " .
63 ?x imdb : t i t l e " with " .
64 ?x imdb : t i t l e " the " .

65 ?x imdb : t i t l e " wind " .
66

67 # q12

68 ?x rdf : type imdb_class : t i t l e .
69 ?x imdb : t i t l e " wars " .
70 ?x imdb : t i t l e " s t a r " .
71

72 # q13

73 ?x rdf : type imdb_class : t i t l e .
74 ?x imdb : t i t l e " casablanca " .
75

76 # q14

77 ?x rdf : type imdb_class : t i t l e .
78 ?x imdb : t i t l e " the " .
79 ?x imdb : t i t l e " lord " .
80 ?x imdb : t i t l e " r i ngs " .
81

82 # q15

83 ?x rdf : type imdb_class : t i t l e .
84 ?x imdb : t i t l e " the " .
85 ?x imdb : t i t l e " sound " .
86 ?x imdb : t i t l e " music " .
87

88 # q16

89 ?x rdf : type imdb_class : t i t l e .
90 ?x imdb : t i t l e " wizard " .
91 ?x imdb : t i t l e " oz " .
92

93 # q17

94 ?x rdf : type imdb_class : t i t l e .
95 ?x imdb : t i t l e " the " .
96 ?x imdb : t i t l e " notebook " .
97

98 # q18

99 ?x rdf : type imdb_class : t i t l e .
100 ?x imdb : t i t l e " f o r r e s t " .
101 ?x imdb : t i t l e "gump" .
102

103 # q19

104 ?x rdf : type imdb_class : t i t l e .
105 ?x imdb : t i t l e " the " .
106 ?x imdb : t i t l e " p r i n c e s s " .
107 ?x imdb : t i t l e " br ide " .
108

109 # q20

110 ?x rdf : type imdb_class : t i t l e .
111 ?x imdb : t i t l e " the " .
112 ?x imdb : t i t l e " godfather " .
113

114 # q21

115 ?x imdb : t i t l e ? t .
116 ?x rdf : type imdb_class : t i t l e .
117 ?x imdb : c a s t _ i n f o ?z .

118 ?r rdf : type imdb_class : char_name .
119 ?r imdb : name " f i n c h " .
120 ?r imdb : name " a t t i c u s " .
121 ?z rdf : type imdb_class : c a s t _ i n f o .
122 ?z imdb : r o l e ?r .
123

124 # q22

125 ?x imdb : t i t l e ? t .
126 ?x rdf : type imdb_class : t i t l e .
127 ?x imdb : c a s t _ i n f o ?z .
128 ?z rdf : type imdb_class : c a s t _ i n f o .
129 ?r imdb : name " indiana " .
130 ?r imdb : name " jones " .
131 ?z imdb : r o l e ?r .
132 ?r rdf : type imdb_class : char_name .
133

134 # q23

135 ?x imdb : t i t l e ? t .
136 ?x rdf : type imdb_class : t i t l e .
137 ?x imdb : c a s t _ i n f o ?z .
138 ?z rdf : type imdb_class : c a s t _ i n f o .
139 ?z imdb : r o l e ?r .
140 ?r rdf : type imdb_class : char_name .
141 ?r imdb : name " james " .
142 ?r imdb : name " bond " .
143

144 # q24

145 ?x imdb : t i t l e ? t .
146 ?x rdf : type imdb_class : t i t l e .
147 ?x imdb : c a s t _ i n f o ?z .
148 ?z rdf : type imdb_class : c a s t _ i n f o .
149 ?z imdb : r o l e ?r .
150 ?r rdf : type imdb_class : char_name .
151 ?r imdb : name " r i c k " .
152 ?r imdb : name " b l a i n e " .
153

154 # q25

155 ?x imdb : t i t l e ? t .
156 ?x imdb : c a s t _ i n f o ?z .
157 ?z rdf : type imdb_class : c a s t _ i n f o .
158 ?z imdb : r o l e ?r .
159 ?r rdf : type imdb_class : char_name .
160 ?r imdb : name " kaine " .
161 ?r imdb : name " w i l l " .
162

163 # q26

164 ?x imdb : t i t l e ? t .
165 ?x rdf : type imdb_class : t i t l e .
166 ?x imdb : c a s t _ i n f o ?z .
167 ?z rdf : type imdb_class : c a s t _ i n f o .
168 ?z imdb : r o l e ?r .
169 ?r rdf : type imdb_class : char_name .
170 ?r imdb : name " dr . " .

171 ?r imdb : name " hannibal " .
172 ?r imdb : name " l e c t e r " .
173

174 # q27

175 ?x imdb : t i t l e ? t .
176 ?x rdf : type imdb_class : t i t l e .
177 ?x imdb : c a s t _ i n f o ?z .
178 ?z rdf : type imdb_class : c a s t _ i n f o .
179 ?z imdb : r o l e ?r .
180 ?r rdf : type imdb_class : char_name .
181 ?r imdb : name " norman " .
182 ?r imdb : name " bates " .
183

184 # q28

185 ?x imdb : t i t l e ? t .
186 ?x rdf : type imdb_class : t i t l e .
187 ?x imdb : c a s t _ i n f o ?z .
188 ?z rdf : type imdb_class : c a s t _ i n f o .
189 ?z imdb : r o l e ?r .
190 ?r rdf : type imdb_class : char_name .
191 ?r imdb : name " darth " .
192 ?r imdb : name " vader " .
193

194 # q29

195 ?x imdb : t i t l e ? t .
196 ?x rdf : type imdb_class : t i t l e .
197 ?x imdb : c a s t _ i n f o ?z .
198 ?z rdf : type imdb_class : c a s t _ i n f o .
199 ?z imdb : r o l e ?r .
200 ?r rdf : type imdb_class : char_name .
201 ?r imdb : name " the " .
202 ?r imdb : name " wicked " .
203 ?r imdb : name " witch " .
204 ?r imdb : name " the " .
205 ?r imdb : name " west " .
206

207 # q30

208 ?x imdb : t i t l e ? t .
209 ?x rdf : type imdb_class : t i t l e .
210 ?x imdb : c a s t _ i n f o ?z .
211 ?z rdf : type imdb_class : c a s t _ i n f o .
212 ?z imdb : r o l e ?r .
213 ?r rdf : type imdb_class : char_name .
214 ?r imdb : name " nurse " .
215 ?r imdb : name " ratched " .
216

217 # q31

218 ?x imdb : t i t l e ? t .
219 ?x rdf : type imdb_class : t i t l e .
220 ?x imdb : movie_info ? i .
221 ? i rdf : type imdb_class : movie_info .
222 ? i imdb : i n f o " f rankly " .
223 ? i imdb : i n f o " dear " .

224 ? i imdb : i n f o " don ’ t " .
225 ? i imdb : i n f o " give " .
226 ? i imdb : i n f o "damn" .
227

228 # q32

229 ?x imdb : t i t l e ? t .
230 ?x rdf : type imdb_class : t i t l e .
231 ?x imdb : movie_info ? i .
232 ? i rdf : type imdb_class : movie_info .
233 ? i imdb : i n f o " going " .
234 ? i imdb : i n f o "make" .
235 ? i imdb : i n f o " o f f e r " .
236 ? i imdb : i n f o " can ’ t " .
237 ? i imdb : i n f o " r e f u s e " .
238

239 # q33

240 ?x imdb : t i t l e ? t .
241 ?x rdf : type imdb_class : t i t l e .
242 ?x imdb : movie_info ? i .
243 ? i rdf : type imdb_class : movie_info .
244 ? i imdb : i n f o " understand " .
245 ? i imdb : i n f o " c l a s s " .
246 ? i imdb : i n f o " contender " .
247 ? i imdb : i n f o " coulda " .
248 ? i imdb : i n f o " somebody " .
249 ? i imdb : i n f o " ins tead " .
250 ? i imdb : i n f o "bum" .
251

252 # q34

253 ?x imdb : t i t l e ? t .
254 ?x rdf : type imdb_class : t i t l e .
255 ?x imdb : movie_info ? i .
256 ? i rdf : type imdb_class : movie_info .
257 ? i imdb : i n f o " t o t o " .
258 ? i imdb : i n f o " f e e l i n g " .
259 ? i imdb : i n f o " not " .
260 ? i imdb : i n f o " kansas " .
261 ? i imdb : i n f o " anymore " .
262

263 # q35

264 ?x imdb : t i t l e ? t .
265 ?x rdf : type imdb_class : t i t l e .
266 ?x imdb : movie_info ? i .
267 ? i rdf : type imdb_class : movie_info .
268 ? i imdb : i n f o " here ’ s " .
269 ? i imdb : i n f o " looking " .
270 ? i imdb : i n f o " kid " .
271

272 # q36

273 ?x rdf : type imdb_class : t i t l e .
274 ?c rdf : type imdb_class : c a s t _ i n f o .
275 ?x imdb : c a s t _ i n f o ?c .
276 ?c imdb : r o l e ?r .

277 ?r rdf : type imdb_class : char_name .
278 ?r imdb : name " skywalker " .
279 ?c imdb : person ?p .
280 ?p rdf : type imdb_class : name .
281 ?p imdb : name " hamil l " .
282

283 # q37

284 ?x imdb : year " 2004 " .
285 ?x rdf : type imdb_class : t i t l e .
286 ?x imdb : t i t l e ? t .
287 ?x imdb : c a s t _ i n f o ?c .
288 ?c rdf : type imdb_class : c a s t _ i n f o .
289 ?c imdb : person ?p .
290 ?p rdf : type imdb_class : name .
291 ?p imdb : name " hanks " .
292

293 # q38 #
294 ?r imdb : name ?rn .
295 ?r rdf : type imdb_class : char_name .
296 ?x rdf : type imdb_class : t i t l e .
297 ?x imdb : t i t l e " yours " .
298 ?x imdb : t i t l e " mine " .
299 ?x imdb : t i t l e " ours " .
300 ?x imdb : c a s t _ i n f o ?c .
301 ?c rdf : type imdb_class : c a s t _ i n f o .
302 ?c imdb : r o l e ?r .
303 ?c imdb : person ?p .
304 ?p rdf : type imdb_class : name .
305 ?p imdb : name " henry " .
306 ?p imdb : name " fonda " .
307

308 # q39

309 ?x rdf : type imdb_class : t i t l e .
310 ?x imdb : t i t l e " g l a d i a t o r " .
311 ?x imdb : c a s t _ i n f o ?c .
312 ?c rdf : type imdb_class : c a s t _ i n f o .
313 ?c imdb : r o l e ?r .
314 ?r imdb : name ?rn .
315 ?r rdf : type imdb_class : char_name .
316 ?c imdb : person ?p .
317 ?p rdf : type imdb_class : name .
318 ?p imdb : name " r u s s e l l " .
319 ?p imdb : name " crowe " .
320

321 # q40

322 ?x rdf : type imdb_class : t i t l e .
323 ?x imdb : t i t l e " s t a r " .
324 ?x imdb : t i t l e " t r e k " .
325 ?x imdb : c a s t _ i n f o ?c .
326 ?r rdf : type imdb_class : char_name .
327 ?r imdb : name ?rn .
328 ?c rdf : type imdb_class : c a s t _ i n f o .
329 ?c imdb : r o l e ?r .

330 ?c imdb : person ?p .
331 ?p rdf : type imdb_class : name .
332 ?p imdb : name " spiner " .
333 ?p imdb : name " brent " .
334

335 # q41

336 ?x imdb : year " 1951 " .
337 ?x imdb : t i t l e ? t .
338 ?x rdf : type imdb_class : t i t l e .
339 ?x imdb : c a s t _ i n f o ?c .
340 ?c rdf : type imdb_class : c a s t _ i n f o .
341 ?c imdb : person ?p .
342 ?p rdf : type imdb_class : name .
343 ?p imdb : name " audrey " .
344 ?p imdb : name " hepburn " .
345

346 # q42

347 ?p rdf : type imdb_class : name .
348 ?p imdb : name ?n .
349 ?c imdb : person ?p .
350 ?c rdf : type imdb_class : c a s t _ i n f o .
351 ?c imdb : r o l e ?r .
352 ?r rdf : type imdb_class : char_name .
353 ?r imdb : name " jacques " .
354 ?r imdb : name " clouseau " .
355

356 # q43

357 ?p rdf : type imdb_class : name .
358 ?p imdb : name ?n .
359 ?c imdb : person ?p .
360 ?c rdf : type imdb_class : c a s t _ i n f o .
361 ?c imdb : r o l e ?r .
362 ?r rdf : type imdb_class : char_name .
363 ?r imdb : name " j a c k " .
364 ?r imdb : name " ryan " .
365

366 # q44

367 ?p rdf : type imdb_class : name .
368 ?p imdb : name " s t a l l o n e " .
369 ?c imdb : person ?p .
370 ?c rdf : type imdb_class : c a s t _ i n f o .
371 ?c imdb : r o l e ?r .
372 ?r rdf : type imdb_class : char_name .
373 ?r imdb : name " rocky " .
374

375 # q45

376 ?p rdf : type imdb_class : name .
377 ?p imdb : name ?n .
378 ?c imdb : person ?p .
379 ?c rdf : type imdb_class : c a s t _ i n f o .
380 ?c imdb : r o l e ?r .
381 ?r rdf : type imdb_class : char_name .
382 ?r imdb : name " terminator " .

383

384 # omitted q46 to q49

385

386 # q50

387 ?a rdf : type imdb_class : t i t l e .
388 ?a imdb : t i t l e " l o s t " .
389 ?a imdb : t i t l e " ark " .
390 ?a imdb : c a s t _ i n f o ?ca .
391 ?ca rdf : type imdb_class : c a s t _ i n f o .
392 ?ca imdb : person ?p .
393 ?p rdf : type imdb_class : name .
394 ?p imdb : name ?n .
395 ? c i rdf : type imdb_class : c a s t _ i n f o .
396 ? c i imdb : person ?p .
397 ? i rdf : type imdb_class : t i t l e .
398 ? i imdb : c a s t _ i n f o ? c i .
399 ? i imdb : t i t l e " indiana " .
400 ? i imdb : t i t l e " jones " .
401 ? i imdb : t i t l e " l a s t " .
402 ? i imdb : t i t l e " crusade " .

a.3 evaluation queries for chapter 5

In this section, we present the query load that was used during our experiments
in Section 5.3. Queries for the SP² benchmark are based on [141], while the
DBPSB benchmark queries are generated from seed queries in [123]. All queries
are given in RDF NTriples [21] notation.

Listing 29: Prefixes used for SP² and DBPSB queries.

1 @prefix rdf :
2 <http ://www. w3 . org/1999/02/22− rdf−syntax−ns#> .
3 @prefix r d f s :
4 <http ://www. w3 . org /2000/01/ rdf−schema#> .
5 @prefix dc :
6 <http :// purl . org/dc/elements /1.1/ > .
7 @prefix dcterms :
8 <http :// purl . org/dc/terms/> .
9 @prefix xs :

10 <http ://www. w3 . org /2001/XMLSchema#> .
11 @prefix bench :
12 <http :// l o c a l h o s t /vocabulary/bench/> .
13 @prefix f o a f :
14 <http :// xmlns . com/ f o a f /0.1/ > .
15 @prefix swrc :
16 <http :// swrc . ontoware . org/ontology#> .
17 @prefix dbpedia :
18 <http :// dbpedia . org/ontology/> .
19 @prefix dbpediaprop :
20 <http :// dbpedia . org/property/> .
21 @prefix dbpediares :
22 <http :// dbpedia . org/resource/> .
23 @prefix skos :
24 <http ://www. w3 . org /2004/02/ skos/core > .
25 @prefix yago :
26 <http :// dbpedia . org/ c l a s s /yago/> .

Listing 30: Queries for SP² benchmark [141].

1 ### 1

2 ? j o u r n a l dc : t i t l e " Journal 1 (19 40) "^^xs : s t r i n g .
3 ? j o u r n a l dcterms : issued ?yr .
4 ? j o u r n a l rdf : type bench : Journal .
5

6 ### 2

7 ? inproc dcterms : partOf ?proc .
8 ? inproc bench : b o o k t i t l e ? b o o k t i t l e .
9 ? inproc swrc : pages ?page .

10 ? inproc dc : t i t l e ? t i t l e .
11 ? inproc r d f s : seeAlso ?ee .
12 ? inproc f o a f : homepage ? u r l .
13 ? inproc dcterms : issued ?yr .
14 ? inproc dc : c r e a t o r ?author .

15 ? inproc rdf : type bench : Inproceedings .
16

17 ### 3

18 ? a r t i c l e rdf : type bench : A r t i c l e .
19 ? a r t i c l e swrc : pages ?value .
20

21 ### 4

22 ? a r t i c l e rdf : type bench : A r t i c l e .
23 ? a r t i c l e swrc : month ?value .
24

25 ### 5

26 ? a r t i c l e rdf : type bench : A r t i c l e .
27 ? a r t i c l e swrc : isbn ?value .
28

29 ### 6

30 ? a r t i c l e 1 dc : c r e a t o r ?author1 .
31 ?author1 f o a f : name ?name1 .
32 ? a r t i c l e 1 swrc : j o u r n a l ? j o u r n a l .
33 ? a r t i c l e 2 swrc : j o u r n a l ? j o u r n a l .
34 ? a r t i c l e 2 dc : c r e a t o r ?author2 .
35 ?author2 f o a f : name ?name2 .
36 ? a r t i c l e 1 rdf : type bench : A r t i c l e .
37 ? a r t i c l e 2 rdf : type bench : A r t i c l e .
38

39 ### 7

40 ? a r t i c l e dc : c r e a t o r ?person .
41 ?person f o a f : name ?name .
42 ?person2 f o a f : name ?name .
43 ? inproc dc : c r e a t o r ?person2 .
44 ? a r t i c l e rdf : type bench : A r t i c l e .
45 ? inproc rdf : type bench : Inproceedings .
46

47 ### 8

48 ?document dcterms : issued ?yr .
49 ?document dc : c r e a t o r ?author .
50 ?author f o a f : name ?name .
51 ?document rdf : type ? c l a s s .
52 ? c l a s s r d f s : subClassOf f o a f : Document .
53

54 ### 9

55 ?doc dc : t i t l e ? t i t l e .
56 ?bag2 ?member2 ?doc .
57 ?doc2 dcterms : r e f e r e n c e s ?bag2 .
58 ?doc rdf : type ? c l a s s .
59 ? c l a s s r d f s : subClassOf f o a f : Document .
60

61 ### 10

62 ?erdoes f o a f : name " Paul Erdoes "^^xs : s t r i n g .
63 ?document dc : c r e a t o r ?erdoes .
64 ?document dc : c r e a t o r ?author .
65 ?document2 dc : c r e a t o r ?author .
66 ?document2 dc : c r e a t o r ?author2 .
67 ?author2 f o a f : name ?name .

68 ?erdoes rdf : type f o a f : Person .
69

70 ### 11

71 ?person rdf : type f o a f : Person .
72 ? s u b j e c t ? p r e d i c a t e ?person .
73

74 ### 12

75 ? a r t i c l e dc : c r e a t o r ?person1 .
76 ?person1 f o a f : name ?name .
77 ?person2 f o a f : name ?name .
78 ? inproc dc : c r e a t o r ?person2 .
79 ? inproc rdf : type bench : Inproceedings .
80 ? a r t i c l e rdf : type bench : A r t i c l e .
81

82 ### 13

83 ?erdoes f o a f : name " Paul Erdoes "^^xs : s t r i n g .
84 ?document dc : c r e a t o r ?erdoes .
85 ?document dc : c r e a t o r ?author .
86 ?document2 dc : c r e a t o r ?author .
87 ?document2 dc : c r e a t o r ?author2 .
88 ?author2 f o a f : name ?name .
89 ?erdoes rdf : type f o a f : Person .

Listing 31: Queries for DBPSB benchmark [123].

1 ### 1

2 ?var5 rdf : type dbpedia : Person .
3 ?var5 f o a f : page ?var8 .
4 ?var5 dbpedia : thumbnail ?var4 .
5 ?var5 r d f s : l a b e l " Thaksin Shinawatra "@nn .
6

7 ### 2

8 ?var5 dbpedia : thumbnail ?var4 .
9 ?var5 rdf : type dbpedia : Person .

10 ?var5 r d f s : l a b e l
11 "\u0420\u0438\u0448\u0435 ,
12 \u0428\u0430\u0440\u043B\u044C " @ru .
13 ?var5 f o a f : page ?var8 .
14

15 ### 3

16 ?var5 dbpedia : thumbnail ?var4 .
17 ?var5 rdf : type dbpedia : Person .
18 ?var5 r d f s : l a b e l
19 " Amadeo, quinto
20 Duque de Aosta " @es .
21 ?var5 f o a f : page ?var8 .
22

23 ### 4

24 ?var5 dbpedia : thumbnail ?var4 .
25 ?var5 rdf : type dbpedia : Person .
26 ?var5 r d f s : l a b e l " Godeberta "@en .
27 ?var5 f o a f : page ?var8 .
28

29 ### 5

30 ?var5 dbpedia : thumbnail ?var4 .
31 ?var5 rdf : type dbpedia : Person .
32 ?var5 r d f s : l a b e l " Thaksin Shinawatra " @nl .
33 ?var5 f o a f : page ?var8 .
34

35 ### 6

36 ?var5 dbpedia : thumbnail ?var4 .
37 ?var5 rdf : type dbpedia : Person .
38 ?var5 r d f s : l a b e l
39 "\u827E\u9A30\u00B7

40 \u4F0A\u683C\u8A00 "@zh .
41 ?var5 f o a f : page ?var8 .
42

43 ### 7

44 ?var5 dbpedia : thumbnail ?var4 .
45 ?var5 rdf : type dbpedia : Person .
46 ?var5 r d f s : l a b e l " Vlad\u00EDmir Karpets " @es .
47 ?var5 f o a f : page ?var8 .
48

49 ### 8

50 ?var5 dbpedia : thumbnail ?var4 .
51 ?var5 rdf : type dbpedia : Person .
52 ?var5 r d f s : l a b e l " Daniel Pear l "@en .
53 ?var5 f o a f : page ?var8 .
54

55 ### 9

56 ?var5 dbpedia : thumbnail ?var4 .
57 ?var5 rdf : type dbpedia : Person .
58 ?var5 r d f s : l a b e l
59 "\u30DE\u30EA\u30FC\u30FB\u30EB
60 \u30A4\u30FC\u30BA\u30FB\u30C9\u30EB
61 \u30EC\u30A2\u30F3 " @ja .
62 ?var5 f o a f : page ?var8 .
63

64 ### 10

65 ?var5 dbpedia : thumbnail ?var4 .
66 ?var5 rdf : type dbpedia : Person .
67 ?var5 r d f s : l a b e l " Walter Hodge"@en .
68 ?var5 f o a f : page ?var8 .
69

70 ### 11

71 ?var5 dbpedia : thumbnail ?var4 .
72 ?var5 rdf : type dbpedia : Person .
73 ?var5 r d f s : l a b e l "Damian Wayne"@en .
74 ?var5 f o a f : page ?var8 .
75

76 ### 12

77 ?var5 dbpedia : thumbnail ?var4 .
78 ?var5 rdf : type dbpedia : Person .
79 ?var5 r d f s : l a b e l
80 "\u0417\u0430\u043B
81 \u0435\u0432\u0441\u043A

82 \u0438\u0439 , \u041A\u0430\u0437

83 \u0438\u043C\u0435\u0436 " @ru .
84 ?var5 f o a f : page ?var8 .
85

86 ### 13

87 ?var5 dbpedia : thumbnail ?var4 .
88 ?var5 rdf : type dbpedia : Person .
89 ?var5 r d f s : l a b e l
90 "\u0413\u0438

91 \u043B\u0430\u0443\u0440\u0438 ,
92 \u041D\u0438\u043A\u043E\u043B
93 \u043E\u0437 \u0417\u0443\u0440

94 \u0430\u0431\u043E\u0432\u0438

95 \u0447 " @ru .
96 ?var5 f o a f : page ?var8 .
97

98 ### 14

99 ?var5dbpedia : thumbnail ?var4 .
100 ?var5 rdf : type dbpedia : Person .
101 ?var5 r d f s : l a b e l " F r a n c i s Atterbury "@en .
102 ?var5 f o a f : page ?var8 .
103

104 ### 15

105 ?var5 dbpedia : thumbnail ?var4 .
106 ?var5 rdf : type dbpedia : Person .
107 ?var5 r d f s : l a b e l "Damian Wayne" @es .
108 ?var5 f o a f : page ?var8 .
109

110 ### 16

111 ?var4 dbpediaprop : b i r t h P l a c e
112 " Vigny, Val d ’ Oise "@en .
113 ?var4 dbpedia : b i r thDate ?var6 .
114 ?var4 f o a f : name ?var8 .
115 ?var4 dbpedia : deathDate ?var10 .
116

117 ### 17

118 ?var4 dbpediaprop : b i r t h P l a c e
119 " S a l i s b u r y , England "@en .
120 ?var4 dbpedia : b i r thDate ?var6 .
121 ?var4 f o a f : name ?var8 .
122 ?var4 dbpedia : deathDate ?var10 .
123

124 ### 18

125 ?var4 dbpediaprop : b i r t h P l a c e
126 " Ba i l ey in the c i t y of Durham"@en .
127 ?var4 dbpedia : b i r thDate ?var6 .
128 ?var4 f o a f : name ?var8 .
129 ?var4 dbpedia : deathDate ?var10 .
130

131 ### 19

132 ?var4 dbpediaprop : b i r t h P l a c e
133 " V a s i l i e v s k a y a ,
134 Tambov Governorate , "@en .

135 ?var4 dbpedia : b i r thDate ?var6 .
136 ?var4 f o a f : name ?var8 .
137 ?var4 dbpedia : deathDate ?var10 .
138

139 ### 20

140 ?var4 dbpediaprop : b i r t h P l a c e
141 dbpediares : Waltham%2C_Massachusetts .
142 ?var4 dbpedia : b i r thDate ?var6 .
143 ?var4 f o a f : name ?var8 .
144 ?var4 dbpedia : deathDate ?var10 .
145

146 ### 21

147 ?var4 dbpediaprop : b i r t h P l a c e
148 dbpediares : Valencia%2C_Spain .
149 ?var4 dbpedia : b i r thDate ?var6 .
150 ?var4 f o a f : name ?var8 .
151 ?var4 dbpedia : deathDate ?var10 .
152

153 ### 22

154 ?var4 dbpediaprop : b i r t h P l a c e
155 dbpediares : Hal i fax%2C_West_Yorkshire .
156 ?var4 dbpedia : b i r thDate ?var6 .
157 ?var4 f o a f : name ?var8 .
158 ?var4 dbpedia : deathDate ?var10 .
159

160 ### 23

161 ?var4 dbpediaprop : b i r t h P l a c e dbpediares : Sucre .
162 ?var4 dbpedia : b i r thDate ?var6 .
163 ?var4 f o a f : name ?var8 .
164 ?var4 dbpedia : deathDate ?var10 .
165

166 ### 24

167 ?var4 dbpediaprop : b i r t h P l a c e
168 dbpediares : L%C3%BAcar .
169 ?var4 dbpedia : b i r thDate ?var6 .
170 ?var4 f o a f : name ?var8 .
171 ?var4 dbpedia : deathDate ?var10 .
172

173 ### 25

174 ?var4 dbpediaprop : b i r t h P l a c e
175 dbpediares :%C3%89tampes .
176 ?var4 dbpedia : b i r thDate ?var6 .
177 ?var4 f o a f : name ?var8 .
178 ?var4 dbpedia : deathDate ?var10 .
179

180 ### 26

181 ?var4 dbpediaprop : b i r t h P l a c e
182 dbpediares : Montgomery_County%2C_Maryland .
183 ?var4 dbpedia : b i r thDate ?var6 .
184 ?var4 f o a f : name ?var8 .
185 ?var4 dbpedia : deathDate ?var10 .
186

187 ### 27

188 ?var4 dbpediaprop : b i r t h P l a c e
189 " B e r k e l e y , G l o u c e s t e r s h i r e "@en .
190 ?var4 dbpedia : b i r thDate ?var6 .
191 ?var4 f o a f : name ?var8 .
192 ?var4 dbpedia : deathDate ?var10 .
193

194 ### 28

195 ?var4 dbpediaprop : b i r t h P l a c e
196 dbpediares : Papa l_S ta tes .
197 ?var4 dbpedia : b i r thDate ?var6 .
198 ?var4 f o a f : name ?var8 .
199 ?var4 dbpedia : deathDate ?var10 .
200

201 ### 29

202 ?var4 dbpediaprop : b i r t h P l a c e
203 dbpediares : City_of_London .
204 ?var4 dbpedia : b i r thDate ?var6 .
205 ?var4 f o a f : name ?var8 .
206 ?var4 dbpedia : deathDate ?var10 .
207

208 ### 30

209 ?var4 dbpediaprop : b i r t h P l a c e
210 " Houghton, Norfo lk , England "@en .
211 ?var4 dbpedia : b i r thDate ?var6 .
212 ?var4 f o a f : name ?var8 .
213 ?var4 dbpedia : deathDate ?var10 .
214

215 ### 31

216 ?var4 r d f s : l a b e l " (3 72) Palma "@de .
217 ?var3 skos : broader ?var4 .
218 ?var3 r d f s : l a b e l ?var6 .
219

220 ### 32

221 ?var4 r d f s : l a b e l " (1155 4) Asios "@de .
222 ?var3 skos : broader ?var4 .
223 ?var3 r d f s : l a b e l ?var6 .
224

225 ### 33

226 ?var4 r d f s : l a b e l " (3 0 8 0) Moisseiev "@de .
227 ?var3 skos : broader ?var4 .
228 ?var3 r d f s : l a b e l ?var6 .
229

230 ### 34

231 ?var4 r d f s : l a b e l " (12 73) Helma"@de .
232 ?var3 skos : broader ?var4 .
233 ?var3 r d f s : l a b e l ?var6 .
234

235 ### 35

236 ?var4 r d f s : l a b e l
237 " (1198 78) 2002 CY224 "@en .
238 ?var3 skos : broader ?var4 .
239 ?var3 r d f s : l a b e l ?var6 .
240

241 ### 36

242 ?var4 r d f s : l a b e l
243 " 039A\u578B\u6F5C
244 \u6C34\u8266 " @ja .
245 ?var3 skos : broader ?var4 .
246 ?var3 r d f s : l a b e l ?var6 .
247

248 ### 37

249 ?var4 r d f s : l a b e l
250 " (4444) \u042D
251 \u0448\u0435\u0440 " @ru .
252 ?var3 skos : broader ?var4 .
253 ?var3 r d f s : l a b e l ?var6 .
254

255 ### 38

256 ?var4 r d f s : l a b e l
257 " (383 4) Zappafrank " @es .
258 ?var3 skos : broader ?var4 .
259 ?var3 r d f s : l a b e l ?var6 .
260

261 ### 39

262 ?var4 r d f s : l a b e l " (2 6 1 2) Kathryn "@de .
263 ?var3 skos : broader ?var4 .
264 ?var3 r d f s : l a b e l ?var6 .
265

266 ### 40

267 ?var4 r d f s : l a b e l " (2 9 0) Bruna "@de .
268 ?var3 skos : broader ?var4 .
269 ?var3 r d f s : l a b e l ?var6 .
270

271 ### 41

272 ?var4 r d f s : l a b e l " (438) Zeuxo "@de .
273 ?var3 skos : broader ?var4 .
274 ?var3 r d f s : l a b e l ?var6 .
275

276 ### 42

277 ?var4 r d f s : l a b e l " ! X\u00F3\u00F5 "@de .
278 ?var3 skos : broader ?var4 .
279 ?var3 r d f s : l a b e l ?var6 .
280

281 ### 43

282 ?var4 r d f s : l a b e l " (1 0 8 3) S a l v i a "@de .
283 ?var3 skos : broader ?var4 .
284 ?var3 r d f s : l a b e l ?var6 .
285

286 ### 44

287 ?var4 r d f s : l a b e l
288 " (1 2 9 6) Andr\u00E9e "@de .
289 ?var3 skos : broader ?var4 .
290 ?var3 r d f s : l a b e l ?var6 .
291

292 ### 45

293 ?var1 rdf : type yago : ChristianLGBTPeople .

294 ?var1 f o a f : givenName ?var2 .
295

296 ### 46

297 ?var1 rdf : type yago : DefJamRecordingsArtists .
298 ?var1 f o a f : givenName ?var2 .
299

300 ### 47

301 ?var1 rdf : type yago : IndianFilmActors .
302 ?var1 f o a f : givenName ?var2 .
303

304 ### 48

305 ?var1 rdf : type yago : Engl ishKeyboardis ts .
306 ?var1 f o a f : givenName ?var2 .
307

308 ### 49

309 ?var1 rdf : type yago : Gui tarPlayers .
310 ?var1 f o a f : givenName ?var2 .
311

312 ### 50

313 ?var1 rdf : type yago : Fil ipinoFemaleModels .
314 ?var1 f o a f : givenName ?var2 .
315

316 ### 51

317 ?var1 rdf : type yago : BluesBrothers .
318 ?var1 f o a f : givenName ?var2 .
319

320 ### 52

321 ?var1 rdf : type yago : AmericanSongwriters .
322 ?var1 f o a f : givenName ?var2 .
323

324 ### 53

325 ?var1 rdf : type yago : F r e n c h J a z z V i o l i n i s t s .
326 ?var1 f o a f : givenName ?var2 .
327

328 ### 54

329 ?var1 rdf : type yago : EnglishJazzComposers .
330 ?var1 f o a f : givenName ?var2 .
331

332 ### 55

333 ?var1 rdf : type yago : HarveyMuddCollegeAlumni .
334 ?var1 f o a f : givenName ?var2 .
335

336 ### 56

337 ?var1 rdf : type yago : Bass i s t109842629 .
338 ?var1 f o a f : givenName ?var2 .
339

340 ### 57

341 ?var1 rdf : type yago : Curate109983572 .
342 ?var1 f o a f : givenName ?var2 .
343

344 ### 58

345 ?var1 rdf : type yago : GreekFemaleModels .
346 ?var1 f o a f : givenName ?var2 .

347

348 ### 59

349 ?var1 rdf : type yago : F i l i p i n o R e l i g i o u s L e a d e r s .
350 ?var1 f o a f : givenName ?var2 .
351

352 ### 60

353 ?var4 skos : s u b j e c t
354 dbpediares : Category : 1 0 0 4_deaths .
355 ?var4 f o a f : name ?var6 .
356

357 ### 61

358 ?var4 skos : s u b j e c t
359 dbpediares : Category :
360 11 th_century_in_England .
361 ?var4 f o a f : name ?var6 .
362

363 ### 62

364 ?var4 skos : s u b j e c t
365 dbpediares : Category : 1 0 6 7_deaths .
366 ?var4 f o a f : name ?var6 .
367

368 ### 63

369 ?var4 skos : s u b j e c t
370 dbpediares : Category : 1 1 0 7 _ b i r t h s .
371 ?var4 f o a f : name ?var6 .
372

373 ### 64

374 ?var4 skos : s u b j e c t
375 dbpediares : Category :%C5%A0koda_trams .
376 ?var4 f o a f : name ?var6 .
377

378 ### 65

379 ?var4 skos : s u b j e c t
380 dbpediares : Category :
381 %C3%81gui las_Cibae%C3%B1as_players .
382 ?var4 f o a f : name ?var6 .
383

384 ### 66

385 ?var4 skos : s u b j e c t
386 dbpediares : Category : 1255 _ b i r t h s .
387 ?var4 f o a f : name ?var6 .
388

389 ### 67

390 ?var4 skos : s u b j e c t
391 dbpediares : Category : 0 s_BC_births .
392 ?var4 f o a f : name ?var6 .
393

394 ### 68

395 ?var4 skos : s u b j e c t
396 dbpediares : Category :
397 1130 _ d i s e s t a b l i s h m e n t s .
398 ?var4 f o a f : name ?var6 .
399

400 ### 69

401 ?var4 skos : s u b j e c t
402 dbpediares : Category :
403 . 3 2 _S%26W_Long_firearms .
404 ?var4 f o a f : name ?var6 .
405

406 ### 70

407 ?var4 skos : s u b j e c t
408 dbpediares : Category : 1009 _deaths .
409 ?var4 f o a f : name ?var6 .
410

411 ### 71

412 ?var4 skos : s u b j e c t
413 dbpediares : Category : 1 1 44_deaths .
414 ?var4 f o a f : name ?var6 .
415

416 ### 72

417 ?var4 skos : s u b j e c t
418 dbpediares : Category : 1239 _deaths .
419 ?var4 f o a f : name ?var6 .
420

421 ### 73

422 ?var4 skos : s u b j e c t
423 dbpediares : Category : 1 0 70s_deaths .
424 ?var4 f o a f : name ?var6 .
425

426 ### 74

427 ?var4 skos : s u b j e c t
428 dbpediares : Category : 1105 .
429 ?var4 f o a f : name ?var6 .
430

431 ### 75

432 ?var3 dbpedia : in f luenced
433 dbpediares :Ram%C3%B3n_Emeterio_Betances .
434 ?var3 f o a f : page ?var4 .
435 ?var3 r d f s : l a b e l ?var6 .
436

437 ### 76

438 ?var3 dbpedia : in f luenced dbpediares : Rob_Corddry .
439 ?var3 f o a f : page ?var4 .
440 ?var3 r d f s : l a b e l ?var6 .
441

442 ### 77

443 ?var3 dbpedia : in f luenced
444 dbpediares : Parakrama_Nir ie l la .
445 ?var3 f o a f : page ?var4 .
446 ?var3 r d f s : l a b e l ?var6 .
447

448 ### 78

449 ?var3 dbpedia : in f luenced
450 dbpediares : Alexander_VI .
451 ?var3 f o a f : page ?var4 .
452 ?var3 r d f s : l a b e l ?var6 .

453

454 ### 79

455 ?var3 dbpedia : in f luenced dbpediares : I q b a l .
456 ?var3 f o a f : page ?var4 .
457 ?var3 r d f s : l a b e l ?var6 .
458

459 ### 80

460 ?var3 dbpedia : in f luenced
461 dbpediares : Al−Maqrizi .
462 ?var3 f o a f : page ?var4 .
463 ?var3 r d f s : l a b e l ?var6 .
464

465 ### 81

466 ?var3 dbpedia : in f luenced
467 dbpediares : Clarence_Irving_Lewis .
468 ?var3 f o a f : page ?var4 .
469 ?var3 r d f s : l a b e l ?var6 .
470

471 ### 82

472 ?var3 dbpedia : in f luenced
473 dbpediares : Ibn_Khaleel .
474 ?var3 f o a f : page ?var4 .
475 ?var3 r d f s : l a b e l ?var6 .
476

477 ### 83

478 ?var3 dbpedia : in f luenced
479 dbpediares : David_Friedl%C3%A4nder .
480 ?var3 f o a f : page ?var4 .
481 ?var3 r d f s : l a b e l ?var6 .
482

483 ### 84

484 ?var3 dbpedia : in f luenced
485 dbpediares : John_Warnock .
486 ?var3 f o a f : page ?var4 .
487 ?var3 r d f s : l a b e l ?var6 .
488

489 ### 85

490 ?var3 dbpedia : in f luenced
491 dbpediares : Vladimir_Lenin .
492 ?var3 f o a f : page ?var4 .
493 ?var3 r d f s : l a b e l ?var6 .
494

495 ### 86

496 ?var3 dbpedia : in f luenced
497 dbpediares : Niall_McLaren .
498 ?var3 f o a f : page ?var4 .
499 ?var3 r d f s : l a b e l ?var6 .
500

501 ### 87

502 ?var3 dbpedia : in f luenced
503 dbpediares : David_J . _Farber .
504 ?var3 f o a f : page ?var4 .
505 ?var3 r d f s : l a b e l ?var6 .

506

507 ### 88

508 ?var3 dbpedia : in f luenced
509 dbpediares : Fran_Lebowitz .
510 ?var3 f o a f : page ?var4 .
511 ?var3 r d f s : l a b e l ?var6 .
512

513 ### 89

514 ?var3 dbpedia : in f luenced
515 dbpediares : Kathleen_Raine .
516 ?var3 f o a f : page ?var4 .
517 ?var3 r d f s : l a b e l ?var6 .
518

519 ### 90

520 ?var0 r d f s : l a b e l " The Subt le Knife "@en .
521 ?var0 rdf : type ?var1 .
522

523 ### 91

524 ?var0 r d f s : l a b e l " P a t r i o t e r " @sv .
525 ?var0 rdf : type ?var1 .
526

527 ### 92

528 ?var0 r d f s : l a b e l " Scar Tissue (l i b r o) " @es .
529 ?var0 rdf : type ?var1 .
530

531 ### 93

532 ?var0 r d f s : l a b e l
533 " Jason Bournes ultimatum "@nn .
534 ?var0 rdf : type ?var1 .
535

536 ### 94

537 ?var0 r d f s : l a b e l " Jane Eyre " @fr .
538 ?var0 rdf : type ?var1 .
539

540 ### 95

541 ?var0 r d f s : l a b e l
542 "Gone with the Wind (l i v r o) " @pt .
543 ?var0 rdf : type ?var1 .
544

545 ### 96

546 ?var0 r d f s : l a b e l " Alkumets\u00E4 " @fi .
547 ?var0 rdf : type ?var1 .
548

549 ### 97

550 ?var0 r d f s : l a b e l
551 " F l i g h t from the Dark "@en .
552 ?var0 rdf : type ?var1 .
553

554 ### 98

555 ?var0 r d f s : l a b e l " Mongol Empire "@en .
556 ?var0 rdf : type ?var1 .
557

558 ### 99

559 ?var0 r d f s : l a b e l " Kultahattu " @fi .
560 ?var0 rdf : type ?var1 .
561

562 ### 100

563 ?var0 r d f s : l a b e l
564 " Aseiden k\u00E4ytt\u00F6 " @fi .
565 ?var0 rdf : type ?var1 .
566

567 ### 101

568 ?var0 r d f s : l a b e l "Marrow (novel) "@en .
569 ?var0 rdf : type ?var1 .
570

571 ### 102

572 ?var0 r d f s : l a b e l " The Acid House "@en .
573 ?var0 rdf : type ?var1 .
574

575 ### 103

576 ?var0 r d f s : l a b e l "\u6B63\u4E49\u8BBA"@zh .
577 ?var0 rdf : type ?var1 .
578

579 ### 104

580 ?var0 r d f s : l a b e l "Dawn of the Dragons "@en .
581 ?var0 rdf : type ?var1 .
582

583 ### 105

584 ?var2 rdf : type dbpedia : Person .
585 ?var2 r d f s : l a b e l
586 "Ab\u016B l−Hasan Ban\u012Bsadr "@de .
587 ?var2 f o a f : page ?var4 .
588

589 ### 106

590 ?var2 rdf : type dbpedia : Person .
591 ?var2 r d f s : l a b e l
592 " Abdul Rahman of Negeri Sembilan "@en .
593 ?var2 f o a f : page ?var4 .
594

595 ### 107

596 ?var2 rdf : type dbpedia : Person .
597 ?var2 r d f s : l a b e l "A.W. Farwick "@en .
598 ?var2 f o a f : page ?var4 .
599

600 ### 108

601 ?var2 rdf : type dbpedia : Person .
602 ?var2 r d f s : l a b e l " Abdullah G\u00FCl " @sv .
603 ?var2 f o a f : page ?var4 .
604

605 ### 109

606 ?var2 rdf : type dbpedia : Person .
607 ?var2 r d f s : l a b e l " Aaron Pe\u00F1a "@en .
608 ?var2 f o a f : page ?var4 .
609

610 ### 110

611 ?var2 rdf : type dbpedia : Person .

612 ?var2 r d f s : l a b e l "Abby Lockhart " @fr .
613 ?var2 f o a f : page ?var4 .
614

615 ### 111

616 ?var2 rdf : type dbpedia : Person .
617 ?var2 r d f s : l a b e l "Abd al−L a t i f "@en .
618 ?var2 f o a f : page ?var4 .
619

620 ### 112

621 ?var2 rdf : type dbpedia : Person .
622 ?var2 r d f s : l a b e l " Abdel Halim Khaddam" @fr .
623 ?var2 f o a f : page ?var4 .
624

625 ### 113

626 ?var2 rdf : type dbpedia : Person .
627 ?var2 r d f s : l a b e l "Abdur Rahman Khan" @fr .
628 ?var2 f o a f : page ?var4 .
629

630 ### 114

631 ?var2 rdf : type dbpedia : Person .
632 ?var2 r d f s : l a b e l
633 "A\u0142\u0142a Kudriawcewa " @pl .
634 ?var2 f o a f : page ?var4 .
635

636 ### 115

637 ?var2 rdf : type dbpedia : Person .
638 ?var2 r d f s : l a b e l " Aaron Raper "@en .
639 ?var2 f o a f : page ?var4 .
640

641 ### 116

642 ?var2 rdf : type dbpedia : Person .
643 ?var2 r d f s : l a b e l "A. L . Williams "@en .
644 ?var2 f o a f : page ?var4 .
645

646 ### 117

647 ?var2 rdf : type dbpedia : Person .
648 ?var2 r d f s : l a b e l " Abdul Kadir Khan" @sv .
649 ?var2 f o a f : page ?var4 .
650

651 ### 118

652 ?var2 rdf : type dbpedia : Person .
653 ?var2 r d f s : l a b e l "A. J . P ierzynski "@en .
654 ?var2 f o a f : page ?var4 .
655

656 ### 119

657 ?var2 rdf : type dbpedia : Person .
658 ?var2 r d f s : l a b e l " Abdullah Ahmad Badawi " @pl .
659 ?var2 f o a f : page ?var4 .
660

661 ### 120

662 ?var2 rdf : type dbpedia : Person .
663 ?var2 r d f s : l a b e l
664 " Abdelbaset Al i Mohmed Al Megrahi "@en .

665 ?var2 f o a f : page ?var4 .

	Dedication
	Abstract
	Publications
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Semantic Web Data
	1.1.2 Semantic Search

	1.2 Web Data Characteristics
	1.2.1 Schemaless Data
	1.2.2 Hybrid Data
	1.2.3 Distributed and Low-volume Data

	1.3 Research Questions and Scope
	1.3.1 Research Questions
	1.3.2 Scope of this Thesis

	1.4 Contributions
	1.5 Outline

	2 Foundations
	2.1 Data and Query Model
	2.1.1 Structured and Unstructured Data
	2.1.2 Structured and Unstructured Queries

	2.2 Query Processing
	2.2.1 Overview
	2.2.2 Query Optimization
	2.2.3 Cost Model
	2.2.4 Query Execution

	2.3 Rank-aware Query Processing
	2.3.1 Overview
	2.3.2 Top-k Join Processing

	3 Rank-aware Query Processing
	3.1 Introduction
	3.1.1 Motivation
	3.1.2 Data-driven Linked Data Query Processing
	3.1.3 Problem

	3.2 Research Questions and Contributions
	3.2.1 Research Questions and Hypotheses
	3.2.2 Contributions

	3.3 Linked Data Top-k Query Processing
	3.3.1 Sorted Access
	3.3.2 Push-based Top-k Join Processing
	3.3.3 Improved Threshold Estimation
	3.3.4 Early Pruning of Partial Results

	3.4 Evaluation
	3.4.1 Evaluation Setting
	3.4.2 Evaluation Results

	3.5 Related Work
	3.5.1 Pull-based, Centralized Top-k Processing
	3.5.2 Distributed Top-k Processing
	3.5.3 Approximate Top-k Processing

	3.6 Summary

	4 Selectivity Estimation
	4.1 Introduction
	4.1.1 Motivation
	4.1.2 Selectivity Estimation
	4.1.3 Probabilistic Framework
	4.1.4 Problem

	4.2 Research Questions and Contributions
	4.2.1 Research Questions and Hypotheses
	4.2.2 Contributions

	4.3 Selectivity Estimation over Text-Rich RDF Graphs
	4.3.1 Data Synopsis
	4.3.2 Data Synopsis Construction
	4.3.3 Selectivity Estimation

	4.4 Evaluation
	4.4.1 Evaluation Setting
	4.4.2 Evaluation Results: Effectiveness
	4.4.3 Evaluation Results: Efficiency

	4.5 Related Work
	4.6 Summary

	5 Approximate Query Processing
	5.1 Motivation
	5.2 Approximate Incremental Query Processing
	5.2.1 Introduction
	5.2.2 Research Questions and Contributions
	5.2.3 A Pipeline-based Approach for Approximate and Incremental Query Processing
	5.2.4 Evaluation
	5.2.5 Related Work
	5.2.6 Summary

	5.3 Rank-aware Approximate Query Processing
	5.3.1 Introduction
	5.3.2 Research Questions and Contributions
	5.3.3 Pay-as-you-go Approximate Top-k Join Processing
	5.3.4 Evaluation
	5.3.5 Related Work
	5.3.6 Summary

	5.4 Conclusion

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	A Appendix: Evaluation Queries
	A.1 Evaluation Queries for Chapter 3
	A.2 Evaluation Queries for Chapter 4
	A.3 Evaluation Queries for Chapter 5

