Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)
von der Fakultat fiir Wirtschaftswissenschaften
des Karlsruher Instituts fiir Technologie (KIT)
genehmigte Dissertation von
Dipl.-Inform.Wirt. Andreas Josef Wagner

RANK-AWARE, APPROXIMATE QUERY PROCESSING ON THE
SEMANTIC WEB

ANDREAS JOSEF WAGNER

Tag der miindlichen Priifung: 11.06.2014
Referent: Prof. Dr. Rudi Studer
Korreferent: Prof. Dr. Wolfgang Nejdl

Karlsruhe, 2014



This thesis is decicated to my loving family — my mother and father,
brother, sister-in-law, and niece.



ABSTRACT

The amount of data on the World Wide Web that adheres to Semantic Web stan-
dards is rapidly increasing. Most notably, many Web pages are annotated with
RDFa, Microdata, or Microformats. Moreover, the popular Linked Data princi-
ples led to a drastic increase in Semantic Web data, which is accessible using
simple HTTP operations. In fact, not only instance data, but also schema data is
published on the Web. Thus, one may conceive the World Wide Web as a vast
space of interlinked data sources, which feature Semantic Web data.

Search over this huge Web data corpus frequently leads to queries having
large result sets. So, in order to discover data elements, which satisfy a given
information need, users must rely on ranking techniques to sort results according
to their relevance. Unfortunately, processing queries with ranked results over a
large data corpus is highly expensive in terms of computation time as well as
computation resources. This is because the sorting of query results is a blocking
operation in the query operator tree. In simple terms, all results have to be computed,
before they can be sorted according to their assigned ranking scores. Clearly,
processing queries in this manner causes prohibitive query computation costs —
in particular, in context with web-scale data.

At the same time, applications oftentimes face information needs, which do
not require complete and exact results. Most notably, end-users who search the
Web commonly only investigate a small fraction of top-ranked query results,
until they discover a data element of interest. Thus, applications should be able to
process queries in a flexible way — some queries may require exact results, while others
could be answered approximately.

In this thesis, we face the problem of how to process queries over Web data in an
approximate and rank-aware fashion. Aiming at this complex problem, we provide
several novel contributions.

More specifically, we introduce a rank-aware join operator for Web data. By means
of this join operator, we can process queries with ranked results much more
efficiently. That is, our rank-aware join operator focuses on computing the top-
ranked query results first, while omitting the remainder of the results. This way,
these join operators consume much less join inputs, which translates to perfor-
mance gains for the overall query computation time.

Additionally, we exploit the fact that many information needs can be ad-
dressed via incomplete/approximated result sets. That is, we enable systems to
trade-off result completeness and accuracy, in favor of query computation time.
We provide two contributions for this approximate query processing. On the one
hand, we present a novel pipeline of operations, which allows to incrementally com-
pute query results. So, initial approximate results can either be reported directly
or could be refined as needed. On the other hand, we introduce a new approx-
imate rank-aware join operator. Our operator allows to discard such intermediate
query results, which are not likely to lead to a final top-ranked result. In other
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words, the approximate rank-aware join operator enables a system to discard
low-ranked results during the query processing.

Furthermore, we present a novel approach for selectivity estimation that is
tailored towards the needs of Web data and typical Web queries. That is, our
selectivity estimation approach allows the estimation of queries, which match
structured as well as unstructured data elements in the Web of data. Such a
selectivity estimation is crucial for query optimization techniques, which can
integrate our approximate/rank-aware join operators in physical query plans.
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INTRODUCTION

Context of this Thesis. In this thesis, we are concerned with efficiency aspects
of search on Web data. While these efficiency problems are manifold in nature,
we specifically target ranking and approximation aspects.

Our research led to the development of an open-source Web data management
system (CumulusRDF), which is freely available on the Web." Amongst other de-
ployments, CumulusRDF is currently used in the iZEUS? research project, where
the system manages real-time data from electric vehicles.

Running Example. Throughout the thesis, we follow a running example about
the movie “Roman Holiday”. For instance, Figure 1 illustrates the IMDB Web
page about “Roman Holiday”. In particular, we will explain our approaches and
contributions by means of this example. Note, while this example is situated in
the movie domain, our approaches are generic and can be used on data from
any domain.

1.1 MOTIVATION
1.1.1  Semantic Web Data

The terminology Web data and Web search refers to data and search on the World
Wide Web (WWWw). The amount of Web documents is large and rapidly increas-
ing. As of October 2013, more than 767 million Web pages are available on the
WWW.3 Traditionally, data published on the WWW is represented as simple
HyperText Markup Language (HTML) pages, with no means for machines to
“understand” data semantics. That is, HTML pages solely specify how machines,
e.g., Web browsers, are supposed to visualize the data, but not what the pages are
about and how they relate to each other [81].

% Example 1

Consider the HTML page about the movie “Roman Holiday” in Figure 1.
Only a human reader understands that this page describes a famous movie
called “Roman Holiday” featuring Audrey Hepburn. However, a machine

Thttp://code.google.com/p/cumulusrdf/, retrieved 2013-10-05.
2http://www.izeus.kit.edu/, retrieved 2013-10-10.
3http://news.netcraft.com/, retrieved 2013-10-05.
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Figure 1: HTML IMDB Web page about the movie “Roman Holiday” visualized by a
browser.#

only sees the HTML data, which dictates how to visualize the contents of
that page, see Figure 2.

Addressing this problem, the World Wide Web Consortium (W3C) proposed
several open standards (commonly referred to as Semantic Web Stack) for encod-
ing Web data such that machines are able to infer meaning from that data —
thereby forming the Semantic Web.>

More precisely, the W3C proposed Uniform Resource Identifiers (URIs)® as
entity identifiers and defined the Resource Description Format (RDF) [147] and
the Resource Description Framework Schema (RDFS) [29] as lightweight Web data
formats. Further, the SPARQL protocol and RDF query language (SPARQL) was
proposed as query language for RDF data [17]. The interested reader may find a
detailed introduction to the complete Semantic Web Stack in [81].

For the remainder of this thesis, we define Semantic Web data, also referred to
as Web data, as follows [160]:

4http://www.imdb.com/title/tt0046250/, retrieved 2013-10-05.
Shttp://www.w3.org/standards/semanticweb/, retrieved 2013-10-05.
Shttp://tools.ietf. org/html/rfc3986, retrieved 2013-10-07.
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class="image">
href="/media/rm1442547968/tt00462502ref_=tt_ov_i"
he' t="317"

214"

man Holiday (1953) Poster”
i Roman Holiday (1953) Poster"
sre="http://ia.hedia-imdb.com/images/M/MVSBMTg10Dgz0DAINLSBML5BanBnXKFtZTCWNTIOMZU3Mg@@. _V1_SX214_.3pg"

td id="overview-top"

iv id="prometer_container™
iv id="prometer" class="meter-collapsed down"-
iv id erHeaderBox"
id="meterTitle" class="meterToggleOnHover">MOVIEmeter=/di
a onclick="(new Image()).src='/rg/tt_moviemeter_why/prosystem/images/b.gif?link=/r/tt_moviemeter_why/title/tte046250";"
r/tt_moviemeter_why/title/tt0046250"
id="meterRank">Top 5000

iv id="meterChangeRow" class="meterToggleOnHover"
Down

iv id="meterseeMoreRow" class="meterToggleOnHover"
a onclick="(new Image()).src='/rg/tt_moviemeter_why/prosystem/images/b.gif?link=/r/tt_moviemeter_why/title/tt0046250" ;"
href="/r/tt_moviemeter_why/title/tt@046250">View rank on IMDbPro

1 class="header"> Roman Holiday
an class="nobr"-(<a href="/year/1953/2ref_stt_ov_inf" -1953</a>)

iv class="infobar"
an title="Not Rated"
class="us_not_rated titlePageSprite absmiddle"
content="NOT RATED":

Figure 2: HTML source code for the “Roman Holiday” Web page in Figure 1. This struc-
tured HTML data only specifies how to display the data.

»+ Definition 1: Semantic Web Data, Web Data (Informal) [160]

Semantic Web data (Web data) contains descriptions of entities on the Web,
with each description being a set of triples: {(s, p, 0)}. A triple associates an
entity (subject) s with an object o via a predicate p. A set of triples forms a
data graph.

Note, we will provide a formal data model in Chapter 2.

In recent years, the amount of Web data drastically increased. Most notably,
semantic annotations, Linked Data,”® and Web schemata have contributed to
this development [160].

@® Semantic annotations are structured data elements, which can be embed-
ded in Web pages. For this, RDFa [11], Microdata [80], and Microformats®
have been used. For estimating the amount of such annotations, the Web
Data Commons project'® recently analyzed the Common Crawl'* — a well-
known corpus of 3 billion unique HTML pages retrieved from 40.6 million
domains. According to [25] and the Web Data Commons project, 12.3% of
the websites contained in the Common Crawl corpus contain structured
data. In terms of RDF, this structured data is represented by means of 7.3
billion RDF triples and captures 1.15 billion typed entities. Other studies
even estimate that approximately 10% of all Web pages feature semantic
annotations [121].

7http://www.w3.0rg/DesignIssues/LinkedData.html, retrieved 2013-10-05.
8http://www.w3.0rg/standards/semanticweb/data, retrieved 2013-10-07.
9http://microformats.org/, retrieved 2013-10-05.
%http://webdatacommons.org/, retrieved 2013-10-05.
http://commoncrawl.org/, retrieved 2013-10-06.
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preview

=ILilked 10vié DAtAEaSe~»

Roman Holiday
Resource URI: http:ffdata.linkedmdb.org/resource/film/38439

Home | Example film

movie:actor <http://data.linkedmdb.org/resource/actor/29849=>
movie:actor = http://data.linkedmdb.org/resource/actor/30054 >
movie:actor <http://data.linkedmdb.org/resource/actor/34103>

dc:date 1953

movie:director <http://data.linkedmdb.org/resource/director/8591 =
movie:editor <http://data.linkedmdb.org/resource/editor/994 >

is movie:film_of_distributor of <http://data.linkedmdb.orgfresource/film_film_distributor_relationship/4693=
movie:filmid 38439 (xsd:int)

movie:initial_release_date 1953

rdfs:label Roman Holiday

is foaf:made of <http://data.linkedmdb.org/resource/director/8591 >
movie:music_contributor =http://data.linkedmdb.org/resource/music_contributor/4258=>
movie:music_contributor <http://data.linkedmdb.org/rescurce/music_contributor/4680=
foaf:page < http://www.freebase.com/view/guid/9202a8c04000641f8000000000089029 >
movie:performance =http://data.linkedmdb.org/resource/performance/24810=>
movie:performance <http://data.linkedmdb.org/resource/performance/24811 >
movie:performance <http://data.linkedmdb.org/resource/performance/24812=>
movie:producer <http://data.linkedmdb.org/resource/producer/I867 =

dc:title Roman Holiday

rdf:type movie:film

movie:writer <http://data.linkedmdb.org/resource/writer/13051>
movie:writer <http://data.linkedmdb.org/resource/writer/18843=>
movie:writer =http://data.linkedmdb.org/resource/writer/6148=>

Linked MDB page about the movie “Roman Holiday”."* Structured data is
encoded as RDF and published adhering to Linked Data standards.

@ The terminology Linked Data describes a popular set of principles for pub-
lishing RDF data on the Web. Currently more than 62 billion triples in
920 datasets are published as Linked Data.’3 Following Linked Data princi-
ples, HTTP links connect entities (instead of Web pages), thereby associat-
ing “data elements” directly. Furthermore, links between entities are typed,
which enables a characterization of the relationship. Prominent examples
of Linked Data datasets include DBpedia’# and LinkedMDB.'> The former
comprises structured data extracted from Wikipedia,'® while the latter con-
tains data about movies.

% Example 2

Consider Figure 3: a set of triples describes the movie “Roman Hol-
iday”. These triples actually capture the data semantics, i.e., the un-
derlying meaning of the data — in contrast to the corresponding
HTML page in Figure 2. More precisely, each triple assigns the sub-

2http:
Bhttp:
14http:
Bhttp:
Bphttp:

//data.linkedmdb.org/page/film/38439, retrieved 2013-10-05.
//stats.lod2.eu/, retrieved 2013-10-05.

//dbpedia.org/, retrieved 2013-10-05.

//linkedmdb.org/, retrieved 2013-10-05.
//www.wikipedia.org/, retrieved 2013-10-05.
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Figure 4: The semantic search process [160, 7].

ject (entity “Roman Holiday”) an object via a predicate. For example,
the triple (film:38439, rdf:type, movie:film) states that the entity
“Roman Holiday” (identified with film:38439) has movie:film via
rdf:type assigned.”

The URI prefix film and movie stands for http://data.linkedmdb.
org/resource/film and http://data.linkedmdb.org/resource/movie, respec-
tively. Further, the URI prefix rdf stands for http://www.w3.0rg/1999/02/
22-rdf-syntax-ns#.

® Last, schemata on the Web provide reusable vocabularies for Web data.
A well-known example is Schema.org'” — an effort by major search en-
gine providers (Google, Bing, Yahoo, and Yandex) to create and maintain
schema information for a structured Web page markup. A Schema.org ver-
sion adhering to Linked Data principles is also available.*®

1.1.2 Semantic Search

1.1.2.1  Overview

Search is commonly known as an end-user paradigm that aims at satisfying
information needs via simple user interfaces/access mechanisms [160]. That is,
a user expresses an information need as a query via an interface and the engine
attempts to discover data elements, which are assumed to satisfy that need.

However, because of query/data ambiguities, discovering such relevant ele-
ments may be hard. Semantic data as well as semantic query representations
target this issue and thereby help to improve Web search significantly. Semantic
search can be defined as follows:

7http://schema.org/, retrieved 2013-10-05.
Bnttp://schema. rdfs. org/, retrieved 2013-10-05.
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»+ Definition 2: Semantic Search (Informal) [160]

“Semantic search [...] makes use of explicit semantics to solve core search
tasks, i.e., to use semantics for interpreting query and data, matching query
against data and ranking results.”, see [160].

A generic semantic search process is illustrated in Figure 4. Intuitively, a se-
mantic search process first determines possible query/data interpretations. Vari-
ous interpretations are caused by ambiguities in query or data. Next, depending
on the chosen query/data interpretation, query results are evaluated by match-
ing query constraints to data elements. Last, every result is associated with a
ranking score, which captures the relevance of that result with regard to the
query and user intent. This way, an interface may present top-ranked results
tirst and allow users to quickly satisfy their information needs [160, 7].

Semantics — as captured by Web data — are exploited at every step of the
search process, in order to determine the user’s information need and find data
elements that match this need best [160, 7].

1.1.2.2 Problems

Semantic search engines oftentimes produce vary large result sets due to multiple
query/data interpretations as well as extensive datasets on the Web. Large re-
sult sets, in turn, make result ranking essential for discovering relevant results
and satisfying an information need. At the same time, system efficiency/respon-
siveness is crucial for many application domains. Most notably, for end-user sys-
tems responsiveness is a key requirement. Thus, semantic search systems must
address the problem on how to compute large ranked result sets and report the most
important (top-ranked) results as soon as possible:

% Problem 1: Rank-aware Query Processing

Compute ranked results efficiently and report top-ranked results as soon as
possible.

Another way to cope with large result sets is to relax the requirement for exact
and complete results. In fact, many semantic search applications are end-user
oriented. Here, users frequently omit results and only view a small fraction of
the entire result set. Thus, semantic search systems should allow for a trade-off
between result accuracy/completeness and computation time:

% Problem 2: Approximate Query Processing

Compute large result sets efficiently by allowing to trade off result accuracy
and result completeness for computation time.

Semantic search has received much attention and poses many other problems.
However, in this thesis we are solely concerned with Problem 1 and Problem 2.
The interested reader may see the comprehensive surveys [160, 7]. Note, we also
discuss the scope of this thesis in Section 1.3.2.
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Highest Rated Feature Films With Title Matching "Holiday"

Sort by

1.

MOVIEmeter | A-Z | User Rating ¥ | Num Votes | US Box Office | Runtime | Year | US Release Date

Holiday Road (2012) Add to Watchlist
LA A0 0 8 8 & 8.2
A comedy anthelegy film in which thirteen filmmakers each take on a different American holiday.

Dir: Aaron Arendt, Todd Berger With: Meggan Amos, Jessica Antonucci, Lesley Bargar Suter
Comedy

Roman Holiday (1953) Add to Watchlist
LA A 0 0 8 & & 8.1

A bered and sheltered princess escapes her guardians and falls in love with an American newsman in

Rome.

Dir: William Wyler With: Gregery Peck, Audrey Hepburn, Eddie Albert
Comedy Drama Romance 118 mins. | Approved

Holiday (1938) Add to Watchlist
e o v e e o o 7.7

A young man falls in love with a girl frem a rich family. His unorthodox plan te go on heliday for the
early years of his life is met with skepticism by everyone except for his fiancée's eccentric sister and
leng suffering brother.

Dir: George Cukor With: Katharine Hepburn, Cary Grant, Doris Nolan

Comedy Romance 95 mins. | Approved

Johnny Holiday (1949) Add to Watchlist
........ 7.7

Young street tough sent to a reform farm is torn between friends from his past and those who are
trying te help him change his life.
Dir: Willis Goldbeck With: William Bendix, Stanley Clements, Hoagy Carmichael

Crime | Drama 92 mins.

On Holiday (2010) Add to Watchlist
LA A 0 0 8 8 & 7.6

Dir: Brian McGuire With: Whitmer Themas, Jennifer June Ross, Tipper Newton

Comedy 85 mins.

Figure 5: Search for high ranking movies with keyword “holiday” on IMDB Web page.
Ranking scores are based on user ratings."

In the next paragraphs, let us briefly introduce the fields of research concerned
with above problems.

1.1.2.3 Problem 1: Rank-aware Query Processing

Rank-aware query processing, so-called top-k query processing, is a very active
research area in the database (DB) community [95]. Here, the goal is to compute
top-ranked query results, without materializing the entire result set. Consider the ex-

ample:

% Example 3

Figure 5 depicts a ranked list of movies for the keyword query “holiday”.
Computing this list could be done in multiple ways. The naive solution

would be:

@ Materialize a list of entities, which have the keyword “holiday” asso-

ciated.

@ Further, materialize a second list of movie entities and join both lists.

® Sort the movie entities in the joined list based on their user ratings.
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Computing ranked results in such a manner is highly inefficient [95]. Above
solution (Example 3) requires three lists of intermediate results: an entity list for
keyword query “holiday”, another list of movie entities, and the joined entity
list. In fact, the entire joined list must be materialized before it can be sorted and
reported. This is because sorting is a blocking operation, i.e., the results can only
be sorted if all results have been computed. Given queries with large result sets,
this procedure leads to prohibitive join and sort operations [95].

Rank-aware query processing strategies target this problem by embedding
ranking within the query processing [95]. More specifically, these strategies al-
low search engines to iteratively compute ranked results, without the need to fully
materialize the result set. For this, ranking scores of already computed results
are used to estimate whether or not “higher-ranked” results could be found by
computing further results [95]. This can lead to drastic runtime efficiency gains
— as we will show in Chapter 3 and Chapter 5.

1.1.2.4 Problem 2: Approximate Query Processing

We employ approximate query processing (AQP) to target the above Problem 2.
AQP comprises a set of techniques, which allow to save time by computing
approximate instead of exact results [112]. Such approximation techniques fre-
quently utilize compact data synopses, in oder to produce query results that
are “similar” to exact results. Such synopses may be based on random samples,
wavelets, or histograms [112]. Traditionally, AQP was employed in the database
community for aggregate queries featuring functions like sum() or avg() [112].

However, we use AQP in context with rank-aware query processing. Consider
the following example:

% Example 4

A user is searching for top-ranking movies with keyword “holiday” in
Example 3. However, the user probably does not care about the precise
ranking values. That is, she probably would not mind if the ranking values
were approximated — as long as the result order remains similar.

Further, the user will first look at the top-ranked movies and only later
(if necessary) consider additional results. Thus, a system could incrementally
compute query results and approximate query results with low ranking.

Generally speaking, we consider AQP in terms of two dimensions:

@ Incremental Result Computation
First, we consider incremental result computation as one AQP dimension.
That is, query results are processed step-by-step via a pipeline of opera-
tions. This way, initial/approximated results can be obtained very early
and can be refined as needed, see Section 5.2.

@ Rank-aware Approximation
Second, rank-aware approximation techniques resemble another AQP di-
mension. More specifically, we target the problem of approximating the

'9Web search on http://www.imdb.com/search/. Web page retrieved at 2013-10-05.


http://www.imdb.com/search/
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ranking value for a particular result. Intermediate results, which are not
likely to contribute to the final top-ranked results are discarded during
query processing, see Section 5.3.

1.2 WEB DATA CHARACTERISTICS

Web data features several characteristics that split Problem 1 and Problem 2 into
several research questions (presented in the next section). In the following, let us
discuss key characteristics, which we faced in our work.

1.2.1  Characteristic 1: Schemaless Data

Web data comes with great flexibility in terms of its associated schema. In fact,
data on the Web often has little or no schema information. In particular, entities
frequently have no RDFS [29] or Web Ontology Language (OWL) [82, 8] ontol-
ogy>° assigned. Thus, entities could only be described via instance data and not
in a formal manner, e.g., by means of class or property definitions.

1.2.2  Characteristic 2: Hybrid Data

Web data contains different types of entity descriptions: text-rich, structured, and
formal descriptions [160]. The former refers to unstructured/textual descriptions
associated with entities. Structured descriptions, however, comprise attributes
and relations as well as classes. Generally speaking, these descriptions feature
data elements, which adhere to a pre-defined schema. Last, formal entity de-
scriptions may be seen as a special kind of structured descriptions, which use
highly expressive representations such as OWL [82, 8] or F-Logic [101].

% Example 5

A movie entity could have a (lengthy) textual description via a comment or a
plot attribute, see Example 3. Furthermore, that entity may have relations
(e.g., starring) or classes (e.g., movie or actor). Last, the entity could have
a formal description stating that every movie must have at least one actor
assigned via the starring relation.

From a general point of view, entities on the Web contain unstructured and
structured descriptions — commonly known as hybrid data. In the DB and In-
formation Retrieval (IR) community challenges associated with hybrid data are
known as DB&IR integration [165]. This kind of Web data will be queried with
constraints that match structured as well as unstructured data elements [171].
Consequently, we will refer to such queries as hybrid queries.

2http://www.w3.0rg/standards/semanticweb/ontology, retrieved 2013-10-08.
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1.2.3 Characteristic 3: Distributed and Low-volume Data

Web data is usually highly distributed over a large space of low-volume data
sources. That is, data is not centrally stored and managed in few large databases,
but located in various small sources with restricted capabilities [97, 105]. This
development is fostered by the Linked Data principles as well as semantic anno-
tations standards.

® Low-volume Data with Simple Access
Data sources frequently comprise very few entities and small entity de-
scriptions. Following Linked Data principles, every HTTP URI identifies
a “virtual data source” [105]. Access to this source is done via HTTP op-
erations. For instance, HTTP GET is used for retrieving the entity’s de-
scription and HTTP DELETE for deletion of the entity (identified with that
URI) [153]. For a complete listing of supported operations see [153].

@ Distributed Data
The Web of data does not restrict or control data publishing: everybody
may publish and interlink data [97]. Such a lack of a “controlled author-
ship” results in a high distribution and wide range of Web data sources.
For instance, there are currently more than 920 Linked Data datasets pub-
licly available.** Note, the number of sources increases drastically, if one
regards every entity as its own data source [105].

Web data features many other characteristics, which may lead to further re-

search questions. However, in this thesis we focus on the above characteristics.
See also Section 1.3.2 for the scope of this thesis.

1.3 RESEARCH QUESTIONS AND SCOPE
1.3.1 Research Questions

Based on Problem 1 and Problem 2, our overall research question is:

#» OQverall Research Quesion

How to allow for rank-aware and approximate query processing over Web
data?

Given Web data characteristics in Section 1.2, the overall question breaks down
into several research questions, which we target in Chapter 3, Chapter 4, and
Chapter 5. An overview of our problems, the addressed research questions as
well as Web data characteristics is depicted in Figure 6.

2Ihttp://stats.lod2.eu/, retrieved 2014-02-01.
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1.3 RESEARCH QUESTIONS AND SCOPE

How to allow rank: e and approxi query pr ing over Web data?
Problem 1 Problem 2
Compute ranked results efficiently and report Compute large result sets efficiently by allowing to
top-ranked results as soon as possible. trade off result accuracy for computation time.
Web Data Research Question 2, Research Question 2, Research Question 3,
Characteristics Ch. 4 Ch.4 Ch. 5, Sect. 5.2
Characteristic 1 A\ l A\ l
Schemaless Data 7 7
Research Question 2, Research Question 2,
Research Question 1, Ch.4 Research Question 4, Ch.4
— Ch.3 Ch. 5, Sect. 5.3
Characteristic 2 A A
Hybrid Data 7 | l &7
Future/Related Work Research Question 4, Future/Related Work Research Question 4,
Characteristic 3 F1 A Ch. 5, Sect. 5.3 F2 Ch. 5, Sect. 5.3
Distributed and O
Low-volume Data l l
Research Question 1, Future/Related Work Future/Related Work
Ch.3 F1 F3

Figure 6: Overview of problems, Web data characteristics, and research questions, which
are address in this thesis.

# Research Question 1

How to enable top-k query processing on highly distributed, schemaless
Web data?

Research Question 1 is driven by the distributed nature of Web data (Character-
istic 3) and aims at allowing rank-aware query processing in such a context
(Problem 1). More precisely, our task is to process joins over data from dis-
tributed sources in such a manner that high-ranked results are reported first.
We investigate top-k join processing techniques for this task and extend previ-
ous works [55, 116, 144, 170] in Chapter 3 to match our distributed and low-volume
Web data (Characteristic 3).

Moreover, our approach does not require schema information. Thus, we allow
for schemaless Web data (Characteristic 1) to be processed.

#» Research Question 2

How to allow for efficient and effective selectivity estimates on hybrid,
schemaless Web data?

Driven by schemaless (Characteristic 1) and hybrid (Characteristic 2) Web data,
we address Research Question 2 as a key problem in Chapter 4. In this chapter,
we target the question: How to efficiently and effectively predict the result size
of queries over Web data? More specifically, our selectivity estimation approach
calculates the cardinality of queries, which may comprise structured as well as
unstructured query constraints. While the former query constraint matches struc-
tured entity descriptions, the latter constraint matches keywords in unstructured
entity descriptions.

Selectivity estimation plays a crucial role for query optimization, as it allows
to integrate join operators in physical query plans [53]. Further, we exploit se-
lectivity estimation to support our rank-aware approximate query processing in
Section 5.3 (see Research Question 4).
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Last, we present two complementary forms of approximate query processing:
(1) incremental result approximation in Research Question 3 and (2) rank-aware
approximation in Research Question 4.

# Research Question 3

How to enable approximate and incremental query processing on schema-
less Web data?

Incremental query processing directly reflects Problem 2, because initial (ap-
proximated) results can be reported very early. Intuitively, query results are com-
puted step-by-step and results can be returned at any time during this proce-
dure. We present a pipeline-based approach targeting this question in Chapter 5,
Section 5.2. In particular, our approach does not require any schema information
throughout the pipeline (Characteristic 1).

#) Research Question 4

How to enable approximate top-k query processing for hybrid queries over
schemaless Web data?

Research Question 4 aims at approximating query results with regard to their
associated ranking position. That is, instead of approximating all query bindings,
we specifically approximate the low-ranked results. The former is addressed
by the aforementioned Research Question 3. We present a novel approach for
such a rank-aware approximation in Chapter 5 (see Section 5.3), which works
with schemaless (Characteristic 1) as well as hybrid queries and hybrid Web data
(Characteristic 2).

1.3.2  Scope of this Thesis

Semantic search has been addressed by many other works before [160, 7]. The
interested reader may see [158] for a complete semantic search process. In par-
ticular, [104] aims at an efficient query processing over hybrid Web data. In fact,
[104] presents query processing as well as indexing techniques, which are com-
plementary to the approaches in this thesis. Moreover, [79] targets the effective-
ness of ranking techniques over hybrid Web data. In contrast, we will not focus
on effectiveness issues of different ranking techniques, but simply consider a
ranking function to be given.

Generally speaking, we solely target the above research questions in Chapter 3,
Chapter 4, and Chapter 5. With regard to those questions, this thesis provides
several novel contributions — as we will outline in the next section.

1.4 CONTRIBUTIONS

With regard to the aforementioned research questions, this thesis provides the
following contributions:
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5 Contribution for Research Question 1

Top-k join processing over Linked Data.

Existing work on top-k processing in the DB community targets scenarios,
where data is centrally stored and managed, or where data is located at few /large
Web databases [51, 95]. In contrast, Web data is highly distributed over a large
space of small data sources — most notably, Web data sources adhering to the
Linked Data principles.

In Chapter 3, we will show how to extend well-known top-k processing tech-
niques [51, 95] to the Web of Linked Data sources. Chapter 3 is based on our
previous publication [2] and targets the schemaless (Characteristic 1) as well as
highly distributed nature (Characteristic 3) of Web data.

= Contribution for Research Question 2

Selectivity estimation for hybrid and schemaless Web data.

Based on our publication [3], we present a novel selectivity estimation ap-
proach for hybrid schemaless Web data in Chapter 4. For this, we combine a
template-based Bayesian network with string synopses. More specifically, we ex-
tend existing work for selectivity estimation over relational DBs [60, 162] to effec-
tively estimate queries over schemaless Web data (Characteristic 1). Furthermore,
we estimate the selectivity of keyword queries over textual entity descriptions by
means of string synopses (Characteristic 2).

1= Contribution for Research Question 3

Approximate and incremental query processing over Web data.

Based on our work in [1], we give an incremental query processing approach in
Chapter 5, see Section 5.2. For this, we decompose the query processing into four
sequential phases that operate on different data synopses, which are well-suited
for schemaless Web data (Characteristic 1). Each phase produces an intermedi-
ate/approximate result, which is refined (if necessary) by the subsequent phase.
This way, a system may report initial /approximate early, if the information need
does not require correct and complete results, respectively.

Moreover, we propose two novel approximate join processing techniques that
are employed in this processing pipeline. On the one hand, we propose approx-
imate structure matching that operates on bloom filters. On the other hand, we
propose structure-based result refinement, which exploits a compact data synop-
sis (the so-called structure index) for approximate join processing.

1w Contribution for Research Question 4

Approximate top-k query processing for hybrid queries over Web data.

For Research Question 4, we investigate rank-aware approximate query pro-
cessing in Chapter 5, see Section 5.3. This chapter is based on a work, which
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is published in [4]. Our approach estimates how likely an intermediate result
leads to a final top-k result — intermediate results below a given threshold will
be pruned. For this, we employ work on selectivity estimation (as presented in
Chapter 4) as well as techniques from the field of Bayesian statistics. More pre-
cisely, our statistics are learned in a pay-as-you-go manner during query process-
ing. In particular, these statistics allow for keyword queries, thereby enabling an
effective search over hybrid Web data (Characteristic 2). Moreover, our statistics a
very lightweight, which enables a system to efficiently maintain its indexes. Effi-
cient maintenance is a crucial advantage with regard to the frequently changing
Web data.

1.5 OUTLINE

The remainder of this thesis comprises six chapters, which discuss Contribu-
tions 1 - 4 and aim at Research Questions 1 - 4.

@ Chapter 2 — Foundations
Chapter 2 provides preliminaries for our approaches in Chapter 3, Chap-
ter 4, and Chapter 5. In particular, we introduce our data/query model.
Furthermore, we outline basic query processing strategies as well as intro-
duce top-k processing techniques from the DB community.

® Chapter 3 — Rank-aware Query Processing
In Chapter 3, we present a novel approach for top-k join processing over
Linked Data. For this, we extend traditional top-k techniques to the Web
of Linked Data sources. That is, we specifically target distributed and low-
volume data sources.

O Chapter 4 — Selectivity Estimation
We introduce a selectivity estimation approach for queries over schemaless,
hybrid Web data in Chapter 4. That is, our work allows query constraints
that match structured as well as unstructured entity descriptions.

© Chapter 5 — Approximate Query Processing
Chapter 5 features two approaches for approximate query processing over
Web data. First, we discuss a pipeline of operations for an incremental pro-
cessing of queries in Section 5.2. Second, we propose a rank-aware query
result approximation in Section 5.3. These approaches are complementary
to each other, i.e., a system may apply both approaches as means to com-
pute approximated ranked results.

® Chapter 6 — Conclusion
Last, we summarize our contributions and results in Chapter 6. Further, we
give an outlook on important future work.
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FOUNDATIONS

In this chapter, we discuss the preliminaries for the remainder of the thesis. In
particular, we present our data/query model. The former specifies the data repre-
sentation and the latter defines a query language over this data, see Section 2.1.
In Section 2.2, we outline our result model and basic query processing tech-
niques. Last, we introduce top-k query processing strategies in Section 2.3 — a
particular kind of query processing that is “rank-aware”.

2.1 DATA AND QUERY MODEL

In recent years, RDF became a standard for describing entities on the Web. Thus,
as a particular form of Web data (see Definition 1, p. 4), we use RDF [147] as data
model. RDF data may be conceived as a data graph that connects and describes
entities. More precisely, RDF data constitutes a set of triples {(s,p,0)} forming a
data graph, see Figure 7. Every triple describes a particular entity (the subject) s
through a predicate/object pair: p/o.

The standard language for querying RDF is SPARQL [17]. In this thesis, we
restrict our attention to a key fragment of SPARQL: basic graph pattern (BGP)
queries. See Section 2.1.2 for further details on the employed query model.

2.1.1 Structured and Unstructured Data

»+ Definition 3: RDF Graph, RDF Triple

Let £, and {, denote a set of attribute and relation labels. RDF data my be
seen as a directed labeled graph § = (V, €, {q, (), where V is the disjoint
union V = Vg WV W V¢, with Vg as entity nodes, V4 as attribute value
nodes, and V¢ as class nodes.

Edges (triples) € = Eg W EA are a disjoint union of relation edges Eg and
attribute edges £a. Relation edges connect entity nodes: (s,v,0) € Eg iff
s € Vg, r € {rWtype, and o € Vg W V. Attribute edges connect an entity
with an attribute value: (s, a,0) € € iff s € Vg,0 € Vo, and a € {,.

The “special” relation edge (s, type,c) € €g, s € Vg, and ¢ € V¢, models
that entity s belongs to class c.
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. “Aud : .
‘ Movie ‘ ‘ 1976 H B Person Location Strength
. Tautou through
name Unity”
dateOfBirth type

type type
“Belgium”

starring

“Mel
Ferrer”

type

title type name name “Audrey Hepburn was a British
“Audrey actress and humanitarian.

‘ “Roman ‘ PaEEN H “Gregory ‘ Kathleen Born in Ixelles, Belgium as
Holiday™ Peck” Hepburn” Audrey Kathleen Ruston”

Figure 7: RDF graph that captures information about Audrey Hepburn and her movie
“Roman Holiday”.

% Example 6

Example data is depicted in Figure 7. More specifically, the example data
graph has an entity set Ve = {m1,p1,p2,P3,p4, 11} and a set of attribute
value nodes VAo = {“Roman Holiday”, “Audrey Kathleen Hepburn”,...}.
Attribute edges are given by £ao = {name, title,...} and relation edges
are Egr = {starring, spouse,...}. Further, entities are assigned to classes:
Vc ={Movie, Person, Actress, Location}.

Unstructured Data. Many RDF graphs are text-rich, i.e., they contain large
amounts of textual data. More formally, attribute value nodes in VA oftentimes
comprise large text values. For instance, our data graph in Figure 7 features texts
for attributes comment, motto, or title.

Generally speaking, structured RDF data frequently has text via predicates
such as rdfs:comment or dc:description.?* Well-known examples are the DB-
pedia® or IMDB** dataset. Furthermore, unstructured Web documents are fre-
quently annotated with structured data using, e.g.,, RDFa or Microformats.?>
Such interlinked documents can be seen as an RDF graph with documents as
objects. For instance, the Wikidata project®® recently introduced structured data
to the Wikipedia corpus.

Structured Data. At the same time, RDF data also contains structured data in
form of attribute (£a) and relation edges (Egr), as well as classes in V. With
regard to our example in Figure 7, the graph contains, e.g., the Movie class, the
starring relation, or the title attribute as structured data. Notice, for simplicity
we omit additional RDFS [29] features such as predicate or class hierarchies. Fur-

22Prefix rdfs and dc stand for http://www.w3.0rg/2000/01/rdf-schema# and http://purl.
org/dc/elements/1.1/, respectively.

23http://dbpedia.org, retrieved 2013-10-30.

24http://www.linkedmdb.org, retrieved 2013-10-30.

Shttp://www.webdatacommons.org, retrieved 2013-10-30.

2http://www.wikidata.org, retrieved 2013-10-30.
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‘ "Belgium“>

tpg
type tps tps name [ 7
/—H \
S e~
title starring bornin
-
tp, rating tp; tPs type
8.0 Person

Figure 8: Hybrid query graph Q, which is asking for movies with title “Holiday”,
starring “Audrey Hepburn” etc. Data is given in Figure 7. Query Q comprises
eight triple patterns: Q = {tpy,...,tps}.

PREFIX ex: <http://example.org/>
PREFIX xs: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

SELECT
WHERE
{

m ex:title 7t .

FILTER contains(?t , "Holiday")
?m ex:rating "8.0"""xs:double .
?m rdf:type ex:Movie .

?m ex:starring ?p .

?p ex:name ?nl .

FILTER contains(?nl , "Audrey Hepburn")
?p rdf:type ex:Person .

?p ex:bornIn ?1 .

?1 ex:name ?n2 .

FILTER contains(?n2 , "Belgium")

Listing 1: Hybrid query from Figure 8 written in SPARQL 1.1 syntax.

ther note that more expressive data representations, e.g., OWL [82, 8], introduce
even more schema data.

Hybrid Data.  For this thesis, we focus on the mixture of structured and unstruc-
tured data in RDF graphs — we refer to this kind of data as hybrid data. Moreover,
if an attribute value o € VA contains text, we conceive it as a bag-of-words. We
say that a vocabulary W comprises all such bags-of-words in V.

% Example 7

For instance, in Figure 7 we would regard attribute value “Roman Holiday”
as a bag-of-words: {“Roman”, “Holiday”}. Further, we have a vocabulary
W = {“Roman”,”Holiday”, “Audrey”, “Kathleen”, ...}, which captures all
such words in Figure 7.
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2.1.2  Structured and Unstructured Queries

Next, let us introduce a query model well-suited for RDF graphs following Def-
inition 3. We employ a core part of SPARQL [17]: basic graph patterns (BGPs)
queries. Furthermore, we present a corresponding result model together with its
formal semantics.

BGP Queries and Result Model. BGP queries comprise a conjunction of triple
patterns. We use a particular type of BGP queries: hybrid queries. Hybrid queries
can comprise some patterns that match structured data, while other patterns can
match unstructured texts.

»+ Definition 4: Hybrid Query, Triple Pattern

Given a data graph § = (V, €, {q, (), a hybrid query Q is a directed labeled
graph GQ = (VQ,€Q), where VQ is the disjoint union VR = \78 S \78 & \78,
with \73 as a set of variable nodes, \78 =V =VegWVa WV as a set of
constants, and \78 as a set of user-defined keywords. Edges &Q are called
triple patterns, with each pattern adhering to:

tp = <Srp/ O>

wheresGV\?&JVE,pefatﬂﬂrw\?\g,andoEV\(}&JVA&JVC&JVS.

As a shorthand, we will sometimes write a query Q as a set of its triple patterns:
Q = {tpi}. For example, query Q = {tp;, ..., tps} in Figure 8.

For simplicity, we define a keyword node as a single word occurring in the
text. That is, a keyword is one element from a bag-of-words representation of an
attribute node.

% Example 8

An example query Q is shown in Figure 8. Query Q features eight triple
patterns, which match structured and unstructured data, respectively. For
instance, the triple pattern

tp1 = (m, starring, p)

has two variable nodes (m and p) and matches the starring relation in
Figure 7. Furthermore, the pattern

tp2 = (m, title, “Holiday”)

has a keyword “Holiday”, and matches the attribute node “Roman Holi-
day”. Query Q can also be written in SPARQL syntax — as shown in List-
ing 1.

Corresponding to edge types, {4, {r, and type in Definition 3, we distinguish
four kinds of query patterns:
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»+ Definition 5: Class, Relation, Attribute, and String Triple Pattern

A query Q can comprise:

Class Pattern
tp = (s, type, 0),s € \78 W Ve and o € V.

Relation Pattern
tp = (s,1,0),s € VS WVg, 0 € \78 &JVS, and T € {,.

Attribute Pattern
tp = (s,a,0),s € VS WVE, 0 € \78 Lw\‘}, and a € {,.

String Pattern
tp = (s,a,w),s € \78 WVg, W e \78, and a € {,.

Notice, we will sometimes refer to class, relation, and attribute pattern as struc-
tured query pattern.

Result Model. A result (binding) for a query Q is defined as:

»+ Definition 6: Binding

A binding b for a query Q is a vector (ti,...,tn) of triples, such that each
triple t; matches (defined in Definition 8 and Definition 9) exactly one pattern
tpi in Q and triples in b form a subgraph of §.

Via the matching of patterns in Q to triples, b binds variables to nodes in
the data. Formally, for binding b there is a function py : VS — V, mapping
every variable in Q to a node in V.

Notice, we will use the terms result and binding synonymously in the following.
Furthermore, the result set for a query Q is denoted as B.

% Example 9

Continuing Example 8, one possible binding (result) for Q is:

= (t] ’ tZI t3/ t4/ t5/ t6/ t7/ t8)/ Where
triple t; = (my, type, Movie) matches tp1,
triple t; = (my, title, “Roman Holiday”) matches tp;,

triple t3 = (my, rating, 8.0) matches tps,

triple ts = (my, starring, p,) matches tps,
triple t¢ = (p2, type, Person) matches tpg,

triple t; =

(
(
(
triple t4 = (p2, name, “Audrey Kathleen Hepburn”) matches tpa,
(
(
(l1, name, “Belgium”) matches tp7, and
(

triple tg = (p2, bornIn, 1;) matches tps.
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Function pp binds all variables in query Q. That is, gy (m) = my, up(p) =
P2, and pp(l) = 14.

During query processing partial bindings, which feature some patterns with
no matching triples, will occur:

»+ Definition 7: Partial and Complete Binding

We refer to a pattern tp;, which has no bound triple, as unevaluated, and
write * in the binding’s b i" position:

b = (t],...,ti_],*,ti+],...,tn)

We call such a binding b partial and denote its evaluated patterns as Q(b) C
Q, as well as its unevaluated patterns as Q"(b) = Q\ Q(b). Binding b is
complete, if all patterns have been evaluated: Q(b) = Q.

Binding b comprises a partial binding b’, if any matched triple t; in b’ is also
contained in b at position i. In this case, we say b’ contributes to b.

Query and Result Semantics. The semantics of hybrid queries follow those of
SPARQL BGP queries. That is, a binding is a subgraph of the underlying data
graph, which matches all query patterns.

»+ Definition 8: Structured Triple Pattern Match

Given a triple pattern tp = (s,p,0) in query Q, where s € \78 WVE, p €
o Wi, &JV\Q,, and o € \78 LJ_rJVg, and a triple t = (s’,p’,0’) in data graph G,
let 1pq denote an indicator function such that:

(18(s 6\78) :T ELSE: s=s’) AND

T (FpecVY): T ELSE: Y AND
o

)

(1F(0 € \78) :T ELSE: o
F ELSE

Triple t matches the structured pattern tp iff 1y (tp,t) =T.

The only difference to SPARQL BGP queries is due to keyword nodes: a value
node o’ € V5 matches a keyword w € Ve, iff the bag-of-words from o’ contains
word w. We say keyword triple patterns have a contains semantic:
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»+ Definition 9: String Triple Pattern Match

Given a keyword pattern tp = (s,p,w) in query Q, where s € V\Q, W Ve,
p € g &JVS, and w € \78, and a triple t = (s/,p’,0’) in data graph G, let
]l',i,l denote an indicator function such that:

(1E(s € V\Q/) :T ELSE: s=s’) AND
T ((p € \78) :T ELSE: p=p’) AND
(bag-of-words(o”) N {w} # 0)
F ELSE

]]'llf/l (tp/ t) =

Triple t matches string pattern tp iff 1¥, (tp,t) = T.

2.2 QUERY PROCESSING

Next, we discuss a traditional pipeline for processing hybrid queries. We give
an overview in Section 2.2.1 and outline query plan generation in Section 2.2.2.
Further, we introduce query cost estimation basics (see Section 2.2.3) and present
query execution in Section 2.2.4.

2.2.1  Owverview

The first relational database was implemented in the System R project [149].
Nowadays, SPARQL and BGP query processing still follows the main steps in-
troduced in [149]: (1) statistics generation, (2) query optimization, and (3) query
execution, see [128]. A generic overview is shown in Figure 9-a.

@ Statistics Generation
Statistics generation is done offline, i.e., before a query is issued. In this
phase, attribute value, relation, and/or join cardinalities are computed.
These cardinalities are oftentimes stored by means of histograms [135] or
wavelets [118].

@ Query Optimization
During the second step, a query is translated to an execution plan (query
plan). The translation is done at runtime and specifies how the query re-
sults are computed [53]. This is possible because of the declarative nature of
SPARQL queries: queries solely state which data shall be retrieved, but not
how. More precisely, the translation is usually carried out in three stages,
see Figure 9-b.

* Firstly, the query is parsed to a logical representation, e.g., a relational
algebra [45, 142] and its syntax is validated [128].

¢ Secondly, a “logical” query plan is computed, e.g., via query unnest-
ing [124] or view resolution/merging [72], that captures the query
semantics [128].
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Figure 9: (a) Traditional query processing pipeline based on the System R project [149].
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(b) Query optimization producing a logical and physical query plan [128].

* Last, the logical query plan is transformed to a physical plan. The lat-
ter precisely specifies how query results will computed, i.e., the plan
states for each of its operators concrete algorithms (e.g., a hash join),
and resources (e.g., disk or memory space) to be used. For this transla-
tion, a cost-based plan generation is frequently employed. That is, the
optimizer tries to estimate computation costs of query subexpressions
(e.g., single joins or triple patterns) and find a physical plan that min-
imizes its associated costs [128]. Notice that estimations may differ

depending on the available statistics.

® Query Execution

In the last stage, the physical query plan is given to an engine that com-
putes the results — precisely as dictated by the physical plan [53]. Two as-
pects during query execution are important for this thesis: pipelining and
scheduling.

* Pipelining is a desirable property of operators in the query plan. The
property dictates that an operator processes one input at a time and
propagates one output to the next operator. Pipelined computation
may lead to better response times and higher throughput [53]. Un-
fortunately, not all operators (e.g., sorting) support pipelining, but

instead must process all their (intermediate) results together [53].

data-driven scheduling, in Section 2.2.4.

Scheduling of computation during the query plan execution is of high
importance [53]. We will detail two options, namely iterator-based and
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Figure 10: (a) Query fragment from example in Figure 8. (b) Logical query plan for the
query in (b). (c) Physical query plan for the query in (b).

% Example 10

Figure 10-a depicts a logical/physical query plan for a fragment of our
running example from Figure 8.

The logical plan does not include any implementation specific aspects,
e.g., concrete join algorithms. In contrast, the physical plan states that hash-
joins shall be used. Further, the physical plan employs a different join
ordering than the logical plan. That is, bindings for triple patterns are
joined /materialized differently in the physical plan, because the patterns
are sorted according to their estimated join cardinalities.

2.2.2  Query Optimization

As outlined above, query optimization transforms a query into a physical query
plan. However, because of declarative query languages, such as SPARQL [17]
or SQL [53], an optimization engine has a certain freedom to choose amongst
multiple possible physical query plans, which all lead to the same result set. For-
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Figure 11: (a) Generic scan operator. (b) Generic equi-join operator with n join inputs
and join variable m.

mally speaking, the logical representation of a particular query can be written in
different forms, which are equivalent to each other (algebraic equivalences) [53].

These various plans may differ drastically in terms of their costs, e.g., num-
ber of intermediate results and overall query processing time. This problem is
addressed by the query optimization engine — it aims at finding the “best” phys-
ical query plan for a given query. We will provide details on a cost model in
Section 2.2.3.

Query optimization has a long-standing history in the (relational) database
community. Initial work on query optimization was done in the System R project
[149]. The authors in [149] proposed a bottom-up dynamic programming ap-
proach for join order optimization and introduced the notion “interesting or-
ders”. Other solutions exploited rules for optimization. A well-known example
is the Starbust optimizer [70] that employed rules in order to integrate low-level
physical operators. In contrast to the bottom-up strategy proposed in [149], the
works [63, 64] presented a top-down optimization relying on memorization tech-
niques.

In this thesis, we have a have simplistic query model — we solely address BGP
queries (see Definition 4, p. 20). In such a setting, previous approaches [104]
focused on the choice of the query operators and the ordering of the joins. Note,
there is a large body of works in the area of relational databases, which focus
on more sophisticated optimizations [53]. Further, for general SPARQL queries
additional optimizations have been investigated [108, 142, 161].

Query Operators. Two kinds of logical query operators are important for us: a

scan and an equi-join operator. Intuitively, a scan operator materializes matching
triples for a given pattern, see Figure 11-a.

»+ Definition 10: Scan Operator (Informal) [112]

For a given query Q over a data graph G, a scan operator is a function that
projects a triple pattern in Q to a set of matching triples in data graph §.

There are a number of possible implementations (physical scan operators) for
a logical scan operator [84, 139].
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% Example 11

Given a vertical triple store, triples are stored directly in a three-column
SPO-table and indexes are provided for every possible access pattern [84,
139]. In Figure 10-c, we use such a vertical store and implement the scan
operators as scans over the POS-index:

P o - S

ex:bornIn ex:11 — ex:p2

ex:date0OfBirth 1976 — ex:pl
—

ex:rating 8.0 —  ex:ml
—

For instance, the scan for pattern tp = (?m, ex:rating, 8.0) (see Fig-
ure 10-c) would be realized by means of a lookup with prefix (ex:rating,
8.0) in the above POS-index.

Triples that match different triple patterns are combined via a logical equi-join
operators, see Figure 11-b. Based on [112], we informally define an equi-join as:

»+ Definition 11: Equi-Join Operator (Informal) [112]

For a given query Q over a data graph G, intermediate results from n inputs
are combined by a theta-join via an equality constraint on the join variable
m — the so-called equi-join on m. Each input i may either be another join or
a scan operator.

Frequently, hash-joins, merge-joins, and nested-loop joins are exploited as
physical join operators [84, 139]. For example, in Figure 10-c, the query optimizer
decided to use two hash-joins. For simplicity we will discuss binary equi-joins
in the following. However, all our approaches can be applied to n-ary joins.

Join Ordering. One of the key tasks of the optimizer is finding the “best” join
order. That is, algebraic equivalences allow for multiple different join orderings,
which all lead to the same results, but cause different costs in terms of number
of intermediate results and query processing time. Most notably, it is known that
the join operation is commutative and associative [53].

* Join commutativity: tp; X tp; < tp; M tp;.

* Join associativity: tp; X (tpj X tpi) < (tpi X tp;) X tpy.


ex:bornIn
ex:l1
ex:p2
ex:dateOfBirth
ex:p1
ex:rating
ex:m1
ex:rating
ex:rating
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% Example 12

The join order in the logical query tree in Figure 10-b is changed to the
order in the physical tree, see Figure 10-c. That is, tp7 X tp; is evaluated
first, instead of tp3 X tp;y.

Notice, join (re-)ordering can result in different query tree forms [53]: a left-
deep, a right-deep, or a bushy tree.

2.2.3 Cost Model

The question remains, how a query optimizer quantifies the quality of a physical
query plan. For this, various approaches exist for SPARQL [104, 108, 142, 161]
as well as SQL queries [53]. Intuitively, many of those approaches are (to some
extent) cost-based, i.e., use optimization strategies to discover the cheapest phys-
ical plan over a search space.

Depending on the concrete system, a cost model may vary. However, these
models oftentimes incorporate aspects as follows [53]:

@ Costs for Secondary Storage Access
Costs associated with read and write access to data from the secondary
disk storage, respectively.

@ Costs for Disk Storage
Costs for storing data at disk during query processing.

® Costs for Computation
Costs due to in-memory processing, e.g., join computations. Such costs are
also referred to as CPU costs.

@ Costs for Memory
Costs associated with memory consumption for, e.g., buffering intermedi-
ate results.

® Costs for Communication
In case of a distributed query processing setting, costs can be caused by
communication of (intermediate) results to the site/terminal where the
query was issued at.

For join ordering and query operator selection, selectivity estimation plays
a crucial role [104]. In simple terms, selectivity estimation allows to compute
cardinality estimations for a query and its sub-expressions. This way, many of
the above described costs can be approximated for a particular physical query
tree. More specifically, a selectivity estimation function is defined as:
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+next()
+open()
+close()

%

Scan Equi-Join

Figure 12: An abstract iterator class, implemented by a generic scan and equi-join oper-
ator.

»+ Definition 12: Selectivity Estimation Function (Informal)

Given a query Q and a data graph G, a selection estimation function, sel,
projects Q to the cardinality of query Q’s result set, which is computed over
data graph .

Note, we will provide a refined definition in Definition 21.

2.2.4 Query Execution

In this last step of the query processing process (see Figure 9 for an overview of
the query processing pipeline), the physical query plan is executed and query
results are returned to the user. Two aspects are of importance during this
phase [53]: pipelining capabilities of an operator and operator scheduling. The
former can greatly improve the overall throughput of the query execution — we
discuss pipelining in more details in Section 2.3.

The latter, the operator scheduling, dictates the order in which query opera-
tors interact with each other. Traditional database systems employ the iterator
principle [62]. That is, each query operator implements the iterator interface (see
Figure 12) — comprising three methods [62]:

* An open method that activates the operator and recursively its children.

* An iterator contains a next method, which produces the next binding. In
particular, a join operator implementation of the next method would call
the next method of its children and join their partial bindings.

* Last, an iterator features the close method, which terminates the operator.

As an alternative solution to the iterator principle, the data-driven scheduling
has been proposed in [169]. Execution based on data-driven scheduling is some-
times called push-based query execution. Here, the data producing operators trig-
ger all other operators and thereby control the overall query execution. Thus,
“the data” and not “the operators” control the query execution. More precisely,
every operator gets input data from its children and actively pushes outputs to
its parent [169].
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Figure 14: Given query Q in Figure 10-a: (a) Naive top-k query processing exploiting a
sort operation after computing the entire result set. (b) Join top-k processing
using two PBRJ operators and one sorted access for every triple pattern.

In the next chapters, we will rely on both query execution paradigms, de-
pending on what precise setting we have. Most importantly, if and how data is
distributed over a space of sources.

2.3 RANK-AWARE QUERY PROCESSING

As motivated in the introduction (see Section 1.1.2.3), top-k query processing
aims at efficiently computing the k top-ranked results for a given query. For this,
techniques try to terminate early, i.e, to not compute the entire result set, but stop
computation immediately after the top-k results have been found [95].

In Section 2.3.1, we give a brief overview over existing top-k processing strate-
gies. Further, we discuss a particular kind of top-k query processing in Sec-
tion 2.3.2: join top-k processing.
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2.3.1  Overview

In recent years, top-k processing techniques gained a significant amount of atten-
tion in the DB community [95]. While works differ along multiple dimensions
(discussed below), they commonly target the so-called early termination.

Early Termination. Given a query Q, we can compute a top-k result simply by
materializing the entire result set for Q and sorting the results afterwards, see
Example 3. In other words, we would apply a sort operation after the top-level
join in query tree.

Unfortunately, sorting is a blocking operation and does not allow for pipelin-
ing. In contrast, a top-k join operator (introduced in the next section) omits the
sort operation and enables pipelining. This way, it is possible to stop result com-
putation immediately after the first top-k results have been found [95] — com-
monly referred to as early termination.

% Example 13

Figure 14 provides two physical query plans for the query in Figure 10-a.
The LHS physical query plan computes all query bindings and sorts them
in the very last step, since sorting is a blocking operation.

In contrast, the RHS physical query plan applies two top-k join oper-
ators. Here, a query optimizer can search for the best possible physical
query plan — no blocking sort operation is applied. Moreover, the top-k
join operators allow to terminate early. That is, not all results have to be
computed, in order for the top-k results to be reported.

Design Dimensions. Based on [95], top-k techniques are categorized by means
of dimensions as depicted in Figure 13:

* Dimension 1: Query Model
Approaches differ with regard to the query model. Selection top-k process-
ing addresses entity queries only. That is, it computes top-ranked entities
with every entity being ranked according one or more criteria, e.g., [54].
Furthermore, join top-k processing techniques rank every triple and calcu-
late top-k join results, e.g., [93]. Last, the aggregate top-k processing focuses
on aggregate queries, e.g., [110].

* Dimension 2: Data Access
Top-k processing differs depending on the available data access. Frequently,
one assumes that data, e.g., triples or entities, can be accessed in descend-
ing score order (sorted access, defined below), e.g., [54, 66]. In addition, other
approaches rely on a random access to their input data, e.g., [54, 65]. Some
works, e.g., [93, 32], require at least one sorted access, in order to use the
random accesses for probing the remaining inputs.

* Dimension 3: Ranking
Top-k strategies vary depending on the ranking functions they support.
While most approaches require ranking functions to be monotonic, e.g.,
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[54], some other works lifted this restriction [174]. Last, some approaches
that target skyline queries require no ranking function, e.g., [28, 172].

* Dimension 4: Data and Query Uncertainty
Data model and query model could be uncertain. Former approaches deal
with uncertain data [137, 152], e.g., in the sensor networks domain, where
sensor measurements are never exact and always include some amount
of jitter. The latter approaches address approximate query processing over
certain data. Here, the goal is to trade off result accuracy in favor of result
computation time [14, 157].

* Dimension 5: Implementation Level
Top-k techniques can vary with regard to their implementation. Some ap-
proaches are realized in the application layer, on top of a query processing
system, e.g., [34, 50]. Other solutions, however, are implemented as part of
the query processing engine, i.e., as query operators, e.g., [93, 109, 110].

The interested reader may see [95] for a comprehensive survey discussing
above dimensions and top-k strategies in depth.

In this work, we are concerned with join top-k (Dimension 1) over certain data
(Dimension 4), implemented as query operators (Dimension 5), and requiring a
sorted access (Dimension 2) as well as monotonic ranking functions (Dimension 3).
We will define the precise setting in Chapter 3 and Chapter 5.

2.3.2  Top-k Join Processing

Queries over Web data often comprise joins to combine bindings for multiple
triple patterns. For example, the rather simple query in Figure 8 would already
require seven joins. We therefore focus on the top-k join (Dimension 1) problem
in this thesis. The top-k join commonly requires a sorted access as well as a
monotonic ranking function.

2.3.2.1  Ranking Function

We employ a ranking function for quantifying the relevance of a binding b:

»+ Definition 13: Ranking Function

A ranking function is given by scoreg : B — IR, with B as set of all bindings
for query Q. scoreq(b) assigns a score to b, which indicates b’s relevance
with regard to query Q and/or the user, who issued query Q.

More precisely, scoreg(b) is given by an aggregation over b’s triples:
scoreq(b) == P, ¢ p scoreq (T ), with & as monotonic aggregation function.

The above definition follows the notion of user-/query-dependent ranking
as presented in [12, 36, 156]. A prime example for query-dependent ranking
functions is result ranking for keyword queries, where scores reflect the quality
of the keyword match. This quality could, e.g., be measured by the Levenshtein
distance [26].
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On the other end of the spectrum are “offline” ranking functions, which as-
sign scores that are independent of query and user characteristics, respectively.
Such triple scores could, e.g., be obtained via PageRank inspired ranking [74] or
witness counts [52].

Note, scoreg could be defined as part of the query, e.g., by means of the ORDER BY
clause in SPARQL.

% Example 14

Given the query in Figure 8 and a binding
b= (t1 = <51/P1/01>/ . -/t8 — <58/p8/ OS))

where triple t; matches triple pattern tp;. Then, a ranking function for b
could be defined as:

scoreg = pageRank(sy)
+ (1 —levenshtein(o,, “Holiday”))
+pageRank(sy)
+ (1 —levenshtein(os, “Audrey”))

+ (1 —levenshtein(oz, “Belgium”))

where levenshtein() is a function measuring the Levenshtein distance [26]
between an object (e.g., 02) and a keyword (e.g., “Holiday”). Further, the
PageRank [132] score of an entity is captured by pageRank() and the ag-
gregation function, @, is given by a summation.

2.3.2.2  Sorted Access

As a special scan operator (see Definition 10 and Figure 14), we require a sorted
access sa; for every pattern tp; in query Q, which retrieves matching triples in
descending score order. Formally, a sorted access is defined as:

»+ Definition 14: Sorted Access

Given a data graph §, a query Q, and a ranking function scoreq, a sorted
access sa; for a pattern tp; in Q is a scan operator that projects tp; to a sorted
set of matching triples in graph §. That is, each triple is assigned a score via
scoreg and the set is sorted according to descending score order.

Efficient sorted access implementations for RDF data have been proposed in [2,
115]. Let us illustrate the core idea on our running example:
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% Example 15

Let us continue Example 14 and provide sorted accesses for its ranking
function.

¢ On one hand, given the keyword pattern
tp2 = (m, title, “Holiday”)

in Figure 8, a sorted access must materialize all triples, which have
an attribute node that contains “Holiday”. After materialization at
runtime, these triples are sorted with descending similarity with re-
gard to that keyword (measured via the Levenshtein distance). Thus,
sorted access sa, loads one triple

t = (my, title, “Roman Holiday”)

which comprises “Holiday”. Then, triple t is ranked according to
its Levenshtein distance to “Holiday”. Similarly, sorted accesses for
patterns tps and tp7 (see Figure 8) can be provided.

* On the other hand, for pattern

tpe = (p, type, Person)

in Figure 8, an offline ranking based on a PageRank score for Person
instances is employed, see Example 14. So, we can index all triples
matching pattern tp4 based on their associated Person score at of-
fline time. Finally, a sorted access can be provided at runtime by
iterating over matching triples in descending PageRank score order.
Similarly, sorted accesses for patterns tp1, tps, tps, and tps (see Fig-
ure 8) can be provided.

Partial bindings retrieved from sorted accesses are combined via equi-joins,
see Definition 11 and Figure 14 — as presented in Section 2.2. To enable a top-k
query processing, we introduce a rank-aware equi-join in the following section.

2.3.2.3 Pull Bound Rank Join Framework

The authors in [143] formulated a general framework for top-k join algorithms,
the Pull Bound Rank Join (PBR]), which can be instantiated to yield well-known
top-k join approaches such as the hash rank-join (HRJN) or the nested-loops rank-
join (NRIN) [03].

This framework contains two components: a pulling strategy P§ and a bound-
ing strategy BS. The pulling strategy decides, which join input to pull next. The
bounding strategy estimates a maximal possible score for “unseen” join results,
i.e., the maximal score of future join results.

Notice, for simplicity we outline the framework for binary joins, however, it
can be easily extended to cover n-ary joins.
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Algorithmus 1 : Pull/Bound Rank Join framework [143].

Params :Pulling strategy PS and bounding strategy B8

Index :Sorted access sa; and sa; for input i and j, respectively.

Buffer :Output buffer O. Buffer H; and H; for “seen” bindings, pulled
from sa; and sa;.

Input :Query Q and result size k.

Output : Top-k result in buffer O.

begin

-

2 B+

3 while | O |< k or bmirb scoreg(b’) < B do
e

// select next input i to pull from

4 1 ¢ PS.input()
// pull next binding from 1

5 b < next triple pattern binding from sa;
// update upper bound f3

6 B + BS.update(b)

// join attempt with seen bindings from input j
O < H; X {b}
Retain only k top-ranked bindings in O

// update seen buffer H;

9 Add b to H;
// return top-k results
10 return O

Framework. The PBR] framework [143] is depicted in Algorithm 1. On Line 3,
we check whether the output buffer O comprises k complete bindings and if
there could be unseen (future) bindings with higher scores — measured via
bound 3 and bounding strategy BS, respectively. If both conditions hold, the
PBR]J terminates and reports bindings in O (early termination, as explained above).
Otherwise, P$ selects an input i to pull from (see Line 4) and produces a new par-
tial binding b from the sorted access on input i, see Line 5. After materialization,
we update 3 using the bounding strategy BS. Then, we attempt to join binding b
with seen bindings from the other input, j, and add join results to output buffer
O, see Lines 7-8. Last, we put partial binding b in buffer H; (Line 9).

Instantiations for PS and BS. Multiple works proposed bounding strategies,
e.g., [55, 93, 116, 143] and pulling strategies, e.g., [93, 117]. Commonly, the corner-
bound [93] is employed as bounding strategy:
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»+ Definition 15: Corner Bound

A PBR]J operator maintains two bounds, u; and 1;, for each input i. u; is the
highest score observed from input i, while 1; is the lowest observed score
on input i. If input i is exhausted, 1; is set to —co. The bound for scores of
unseen join results is:

B =max{u; ®1ly, uy ® 1}

where @ is the aggregation function used in the ranking function (see Defi-
nition 13, p. 32).

On the other hand, the corner-bound-adaptive strategy [93] is frequently used as
pulling strategy PS:

»+ Definition 16: Corner-Bound-Adaptive Pulling

The corner-bound-adaptive pulling strategy chooses the input i such that:
i=Tifu @l <uy®ly and i = 2 otherwise, where @ is the aggregation
function used in the ranking function.

If u; @ 1; =u, @ 1y, the input with the smaller number of unseen (future)
partial bindings is chosen.

Note, the corner-bound has been shown to be instance-optimal for binary PBR]
operators and one ranking attribute per join input [144].
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Context of this Chapter. In this chapter, we present an exact top-k join for
distributed RDF data: Linked Data top-k processing. This approach is based on
our previous publication [2] and resembles a rank-aware equi-join operator for
distributed Web data.

More specifically, our Linked Data top-k processing allows a data-driven rank-
aware processing of hybrid queries over distributed Web data. Data-driven sche-
duling of operators is a key feature of our work and enables the processing
to be less affected by Web data source unavailabilities. In fact, processing is
driven by data retrieved from Web sources. Moreover, we leverage information,
which is available in our Web data indexes, in order to significantly improve the
corner bound strategy and to allow for an earlier termination. This tighter bound
drastically safes time and number of triples/Web data sources processed during
top-k result computation.

These contributions aim at Research Question 1: How to enable top-k query
processing on highly distributed Web data? As a complementary approach, which
targets Research Question 4, we will present an approximate top-k processing for
Web data in Chapter 5. In particular, this work will allow for efficiency gains by
means of less accurate result sets. In contrast, the Linked Data top-k approach
processes queries in an exact and complete manner.

We classify our approach based on the design dimensions outlined in Sec-
tion 2.3.1. This classification is highlighted in Figure 15.
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Figure 15: Classification of our Linked Data top-k processing approach.
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Figure 16: The running example from Figure 7 (adapted for simplicity) is distributed
over three data sources: si, s, and s3. The RDF data describes the movie
“Roman Holiday” and its actors Audrey Hepburn and Gregory Peck.

* We target a top-k join problem, i.e., single triples have ranking scores as-
signed and top-ranked joined results are reported.

* Further, we have certain data and compute exact results.

¢ We provide a novel lightweight sorted access implementation for Web data
sources. In particular, the necessary indexes make maintenance of changing
Web data highly efficient, due to our simple score statistics.

¢ We implemented a top-k join operator, which can be integrated in a phys-
ical query plan - as decided by a query optimizer. In fact, we present a
selectivity estimation approach in Chapter 4, which allows for highly ac-
curate selectivity estimations of hybrid queries over Web data. Based on
these selectivity estimates, a query optimizer can create a physical query
plan — including our Linked Data top-k join operator.

e Last, our approach employs a monotonic ranking function. Note, many
common ranking functions, e.g., PageRank ranking [132], fall in this cate-

gory.

Outline. In Section 3.1, we introduce and motivate the problem (Section 3.1.1)
as well as provide the necessary background on Linked Data query processing
(Section 3.1.2). Then, we outline our contributions and research questions in Sec-
tion 3.2. In Section 3.3, we introduce our novel top-k processing approach. In
particular, we propose two optimizations allowing for tighter score bounds on
future join results, and a way to prune unnecessary partial bindings. Last, we
present our evaluation in Section 3.4 and discuss related work in Section 3.5,
before concluding with Section 3.6.
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3.1 INTRODUCTION
3.1.1  Motivation

RDF data is oftentimes highly distributed across a space of sources. Each data
source can comprise one or more RDF graphs. Formally speaking, a data graph
G could be a disconnected graph, where every data source holds one or more
subgraphs of . Notice, this general notion of distributed data is strongly related
to the concept of dataspaces — the interested reader may see [56, 71].

% Example 16

The data from our running example in Figure 7 is distributed over three
data sources (s1, s2, and s3) in Figure 16.

One popular form of distributed RDF is Linked Data [24]. The Linked Data
principles®” mandate how to access and publish RDF data on the Web:

® Use Uniform Resource Identifiers (URIs) as identifiers for entity nodes Ve
in the data graph §.

@ Use Hypertext Transfer Protocol (HTTP) URIs to enable an easy lookup.

® Dereferencing a URI returns a description, i.e., RDF graph, of the entity
identified by that URL

@ Entity descriptions should link to related entities, which are again identi-
fied via their HTTP URIs.

According to the Linked Data principles, dereferencing a Linked Data URI via
HTTP should return a machine-readable description of the entity identified by
that URL So, each entity in Vg represents a data source:

»+ Definition 17: Linked Data Source

Given a data graph G, its subgraphs are distributed over a space of sources:
{si}. A HTTP URI d is an identifier for a Linked Data source s, which fea-
tures a set of RDF triples T¢ from § as content. That is, T¢ is obtained
by dereferencing d. Triples in T¢ contain HTTP URI references (links) that
connect d with related sources.

% Example 17

Figure 17 depicts three Linked Data sources (s1, s2, and s3) identified by
means of their URIs: ex:m1, ex:p2, and ex:p4. Dereferencing their URIs
would yield the RDF graphs that are shown in Figure 17.

27http://www.w3.0rg/DesignIssues/LinkedData.html, retrieved 2013-11-15.
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Listing 2: Namespace prefixes.

@prefix ex: <http://example.org/> .
|| @prefix xs: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

Listing 3: Source s7 for URI ex:m1.

ex:ml ex:year "1953"Axs:int ; Listing 4: Source s3 for URI ex: p4.

ex:rating "8.0"""xs:double ;
rdf:type ex:Movie ; ex:p4 ex:name "Gregory Peck"
ex:title "Roman Holiday" ; 2 rdf:type ex:Person .
ex:starring ex:p2 ,
ex:p4 .

Listing 5: Source s, for URI ex:p2.

1 || ex:p2 ex:name "Audrey Kathleen Hepburn" ;

2 ex:comment "Audrey Hepburn was

3 a British actress and humanitarian.
4 Born in Ixelles, Belgium as

5 Audrey Kathleen Ruston" ;

6 rdf:type ex:Person ;

7 rdf:type ex:Actress ;

8 ex:spouse ex:p3 ;

9 ex:bornIn ex:11 .

Figure 17: The sources from Figure 16 are illustrated as Linked Data sources. That is,
each source is identified with an URI and sources provide links to each other.
RDF data is written in NTriples syntax [21].

Several works have studied the problem of Linked Data query processing [75,
77, 78, 105, 106, 140]. In fact, a recent survey provides an overview of Linked
Data processing strategies [76]. Processing structured queries over Linked Data
can be seen as a special case of federated query processing.

However, instead of relying on endpoints that provide structured querying ca-
pabilities (e.g., SPARQL interfaces), only HTTP URI lookups are available. Thus,
entire sources have to be retrieved. Even for a single trivial query, hundreds of
sources have to be processed in their entirety [105]. Aiming at delivering up-to-
date results, sources often cannot be cached, but have to be fetched from external
hosts. Thus, query processing efficiency/scalability are essential problems in the
Linked Data setting.

In the next paragraphs, let us briefly discuss how existing query processing
approaches addressed these efficiency and scalability issues.

41


ex:m1
ex:p4
ex:p2

3.1 INTRODUCTION

|| PREFIX ex: <http://example.org/>
>|| PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

|| SELECT ?m ?p
5 || WHERE

of[ {
7|| ?m ex:starring ?p .

g|| ?p rdf:type ex:Person .

9| ¥

Person

(m——(p)
starring

Ranking Function:
scoreq(b1) = popularity(m;) + popularity(p,)
with binding by = (<mg,starring,p;>, <ps, type, Person>)

tps

Figure 18: Example query asking for movies, which star some Person. The query com-
prises two triple patterns, tps (Line 7) and tpg (Line 8), and represents a
fragment of the query in Figure 8. For ranking results, a popularity-based
score is employed for movie as well as actor bindings.

3.1.2  Data-driven Linked Data Query Processing

In this chapter, we use the example query in Figure 18, which is a fragment of
our running example in Figure 8. We use this query (as well as its matching data
sources in Figure 17) to illustrate Linked Data query processing.

% Example 18

For the query in Figure 18, the URIs ex:ml, ex:p2, and ex:p4 (data is
illustrated in Figure 17) are dereferenced and their triples are joined to
produce bindings for the variables m and p.

The results are retrieved from different sources, which vary in relevance:
we use an offline computed popularity score for bindings to the movie as
well as the actress variable. More specifically, URI ex:p2 provides data
about the very popular actress Audrey Kathleen Hepburn, while URI
ex:p4 holds data about Gregory Peck, who is less well-known. Such differ-
ences in actor popularity could be captured by a ranking function, which
aggregates the actor/movie popularity.”

42


ex:m1
ex:p2
ex:p4
ex:p2
ex:p4

3.1 INTRODUCTION

The ranking function scoreq is given as simple summation over those
popularity scores:

scoreg(b) = popularity(my) + popularity(p1)

where b = ((my, starring, p1), (p1, type, Person)).

“In a real-world application, popularity scores could be computed based on a
PageRank strategy [132], which exploits the ranking of the corresponding DBpedia and
Wikipedia page, respectively.

Linked Data Query Processing. Traditionally, a query Q is evaluated by ob-
taining bindings for each triple pattern and then performing a series of equi-joins
between bindings obtained for patterns that share a variable, see Section 2.2. In
the Linked Data context, BGP queries are evaluated against all sources in the
Linked Data graph . While some sources may be available locally, others have
to be retrieved via HTTP dereferencing during query processing.

For this, exploration-based link traversal [77, 78] can be performed at runtime.
The link traversal strategy assumes that Q contains at least one URI d as “entry
point” to data graph §. Starting from triples in T¢, G is then searched for results
by following links from d to other sources.

Instead of exploring sources at runtime, knowledge about (previously pro-
cessed) Linked Data sources in the form of statistics has been exploited to de-
termine and rank relevant sources [75, 105] at query compilation time. Existing
approaches assume a source index, which is basically a map that associates a
triple pattern tp with sources containing triples that match tp. Let the result of
a lookup in the source index for tp be source(tp).

Given a source index, Linked data query processing can be conceived as a
series of operators:

* Source-Scan Operator
We identify the source-scan as a distinctive operator in Linked Data query
processing. Given a source s with URI d, source-scan(d) outputs all triples
in 74,

e Selection Operator
A selection 0ya(tp) is performed on T4 to output triples that match a triple
pattern tp.

* Equi-Join Operator
Two triple patterns tp; and tp; that share a common variable are combined
via an equi-join operator tp; X tpj (i.e., bindings for tp; and tp; are joined).
In general, Q; X Qj; joins any subexpression Q; with another subexpression
Q;, where 9; C Q, Q; C Q, and Q; NQ; = @. Note, in the following, we refer
to an equi-join simply as join.

* Union Operator
Last, we have | J(i1,...,1in), which outputs the union of its inputs i.

For clarity of presentation, we assume triple patterns form a connected graph
such that a join is the only operator used to combine triples from different pat-

43



3.1 INTRODUCTION 44

Push-based query
processing, i.e., data is
actively pushed from
access plans to joins.

ﬁ/ " Access
\_ Plans
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Source- Source- ‘
Scan Scan |
Source s; Source s3
ex:p2 ex:p4
tps: ?m ex:starring ?p tpe: ?p rdf:type ex:Person

Figure 19: Push-based plan for query Q in Figure 18 [105, 106].

terns. Then, Linked Data query processing can be modeled as a tree-structured
plan as exemplified (see Example 19).

Query plans in relational databases generally consist of access plans for in-
dividual relations. Similarly, Linked Data query plans are composed of access
plans at the bottom-level — one access plan for each triple pattern. An access plan
for triple pattern tp; in query Q = {tp1,...,tpn} is a tree-structured query plan
constructed in the following way:

@ At the lowest level, leaf nodes are source scan operators, one for every
source s that is relevant for triple pattern tp;, i.e., s has URI d € source(tp;).

@ The next level contains selection operators. We employ one selection oper-
ator for every source scan operator.

@ The root node is a union operator | J(0g4; (tpi), ..., Ogan (tpi)), which com-
bines the outputs of all selection operators for tp; (with d; € source(tpi)).

Note, an access plan for triple pattern tp; implements the scan operator de-
fined in Definition 10, i.e., it provides access to matching triple for a given pattern
tpi in query Q.

At the next levels, the outputs of the access plans (of their root operators) are
successively joined to process all triple patterns of the query, resulting in a tree
of operators.

% Example 19

Figure 19 shows an example query plan for the query in Figure 18. There
are three source scan operators (one for each source): source-scan(ex:ml),
source-scan(ex: p2), and source-scan(ex: p4).
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Together with selection and union operators, they form two access plans
for the patterns tp; and tp,. The output of these access plans is combined
using one join operator.

Push-based Processing. In previous works [105, 106], data-driven (also known
as push-based) execution using symmetric hash join operators was shown to have
better performance than iterator-based implementations (such as [78]). In a push-
based model, operators push their results to subsequent operators instead of
pulling from input operators, i.e., the execution is driven by the incoming data.
This leads to better behavior in network settings, because, unlike in iterator-
based execution models, the query execution is not blocked, when a single source
is delayed [106]. See also Figure 19 for a push-based query plan.

3.1.3 Problem

Above query processing techniques are not well-suited for queries with ranked
results such as Example 18. This is because sorting (of the ranked results) is
a blocking operation. Thus, all results must be computed — even if the user is
only interested in few top-ranked bindings. This blocking nullifies the advantages
of push-based query processing, which aimed at allowing a non-blocking query
plan. The problem is exacerbated by the fact that result computation on Linked
Data requires retrieval of entire sources. So, data materialization from remote
Linked Data sources may be much more expensive than in a centralized query
processing context.

Top-k query processing — as outlined in Section 2.3 — aims at a more efficient
query execution by focusing on the k best results, while skipping the compu-
tation of remaining results. This early termination can lead to a significant re-
duction in the number of inputs to be read and processed, which translates to
drastic performance improvements.

Unfortunately, traditional top-k processing strategies are not suitable for Link-
ed Data query processing: First, existing works require heavyweight indexes,
which would cause extensive maintenance efforts given the frequently changing
Web data. Second, previous top-k processing assumes an iterator-based query
execution. However, as shown in [105, 106], push-based query execution is much
more efficient for Linked Data query processing.

In the following, we show how to overcome these obstacles, by introducing the
first join top-k strategy, which is well-suited for Linked Data query processing.
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3.2 RESEARCH QUESTIONS AND CONTRIBUTIONS

Let us outline the research questions, hypotheses, and contributions, which we
target throughout the chapter.

3.2.1  Research Questions and Hypotheses

As presented in Section 1.3, our overall research question is: How to allow for
rank-aware and approximate query processing on the Web of data? In this chap-
ter, we address the former part, i.e., we introduce a rank-aware equi-join operator
for Web data. More specifically, we aim at Research Question 1:

# Research Question 1

How to enable top-k query processing on highly distributed, schemaless
Web data?

For addressing above research question, we verify hypotheses as follows:

O Hypothesis 1

Join top-k processing based on the Pull Bound Rank Join (PBR]) framework
(see Algorithm 1) can be extended to match the requirements of highly dis-
tributed Web data. Moreover, such a top-k processing allows for significant
performance gains for computation of ranked results over Web data.

Intuitively, Hypothesis 1 states that the PBR] framework can be extended for
the needs of Web data. In particular, we expect that the PBR] can be extended
to a push-based query processing — thereby omitting any blocking in the query
execution due to Web source delays. Further, we expect that we can implement a
lightweight sorted access over the Web data sources, which allows for an efficient
maintenance.

To validate Hypothesis 1 we provide Algorithm 2, Algorithm 3, and Algo-
rithm 4 in Section 3.3 — our LD-PBR] framework. Moreover, we implemented these
algorithms and empirically show (see the evaluation in Section 3.4) the feasibility
of our sorted access as well as LD-PBR] framework.

Further, due to the early termination feature of the LD-PBR] framework, we ex-
pect to save computation time as well as process less join inputs. We empirically
validate this claim by means of the evaluation in Section 3.4.

O Hypothesis 2

Given our lightweight sorted accesses, we can improve the state-of-the-art
bounding strategy (corner bound, see Definition 15, p. 36). Moreover, the LD-
PBR] framework can be extended to allow for pruning of partial bindings,
which cannot lead to a complete top-k binding. This way, we process less
partial bindings and safe computation time due to less join attempts.
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We provide a theoretical analysis by means of Theorem 1, Theorem 2, and
Theorem 3 to validate both claims in Hypothesis 2. Furthermore, we show the
validity of Hypothesis 2 in our evaluation in Section 3.4.

3.2.2  Contributions

While being naturally appealing, top-k processing has not been studied in the
Linked Data context before. Aiming at above hypotheses, we provide the follow-
ing contributions:

 Contribution for Hypothesis 1
Top-k query processing has been extensively studied for relational data [95].
Closest to our work is top-k querying over Web-accessible databases [170]
and distributed join top-k processing [51].

However, the Linked Data context is unique to the extent that only URI
lookups are available for accessing data. Instead of retrieving partial bind-
ings from sources that are exposed via query interfaces (of the correspond-
ing database endpoints), we have to retrieve entire sources via URI lookups.

These unique Web data characteristics require a novel top-k query process-
ing strategy. In particular, the highly distributed Web data sources make an
non-blocking push-based query execution essential — as outlined in the mo-
tivation section. Additionally, the frequently changing Web data requires
a more lightweight sorted access implementation. Existing works did not
face this issue, because data was oftentimes much more static and main-
tained at few/large databases.

Facing these characteristics, we propose the LD-PBR] framework. To the
best of our knowledge, this is the first work towards top-k Linked Data
query processing.

* Contribution for Hypothesis 2
Based on our sorted access indexes (implementation), we provide a more
accurate bounding strategy. In particular, we formally show that: (1) our
bound is correct in Theorem 1, and (2) our bound is tighter than the current
state-of-the-art strategy in Theorem 2.

Further, we propose an aggressive pruning of partial bindings that cannot
contribute to the final top-k result. We formally show in Theorem 3 that
this pruning still guarantees exact and complete top-k results.

Both optimizations lead to less join inputs read/processed and an earlier
termination of the LD-PBR] operator. We empirically show these perfor-
mance gains in our evaluation.

 Contribution for Hypothesis 1 and Hypothesis 2
We conducted an evaluation on real-world Linked Data sources and queries
to validate the Hypotheses 1 and 2. In these experiments the LD-PBR]
framework could achieve significant performance gains over the state-of-
the-art Linked data query processing.
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Figure 20: Rank-aware query plan for query Q in Figure 18 employing source-scan-sort
operators, the LD-PBR] in Algorithm 2, as well as a scheduler as replacement
for a pulling strategy.

In fact, we can show that LD-PBR] processing leads to 35% less computa-
tion time on average. We can further show that our proposed optimizations
increase the computation time performance by 12% on average.

3.3 LINKED DATA TOP-K QUERY PROCESSING

We now discuss how existing top-k join (also called rank join) strategies can be
be extended to the Linked Data query processing problem as presented before.
Further, we present an optimization towards tighter bounds and an aggressive
result pruning. Throughout the query processing we do not approximate. Thus,
our approach always reports correct and complete top-k results.

3.3.1 Sorted Access

Besides the source index employed for Linked Data query processing, we need
a ranking function as well as a sorted access for top-k processing.

Regarding the former, we employ a monotonic ranking function, scoreq, for
determining the relevance of triples and (partial) query results. That is, any func-
tion adhering to Definition 13 may be used.
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% Example 20

Continuing Example 18, the ranking function is:
scoreg(b) = popularity(my) + popularity(py)

where b = ((my, starring, p1), (p1, type, Person)).

For the sake of simplicity, we assume that scoreg(b) assigns triples in
source s1 (URI ex:m1) a score of 1, source s, (URI ex:p2) a score of 2, and
triples in source s3 (URI ex:p4) score 3.

Following Definition 14, a sorted access on a given join input allows to access
partial bindings in descending score order. In a central data setting, a sorted ac-
cess can be efficiently provided by using a score index over the input data [95]. In
particular, [115] discusses implementation strategies for a sorted access for cen-
trally stored RDE. Notice, while work on top-k join processing over distributed
databases [51] aims at a similar setting, it also assumes such a complete index.

However, in the Linked Data context, only source statistics are assumed to
be available, while the contained triples are not indexed, e.g., for the sake of result
freshness. Following this tradition, we provide a lightweight sorted access, which
only requires score bounds (computed at indexing time) for the sources, while
triples are ranked and sorted on-the-fly.

»+ Definition 18: Source Score Bounds

Given a source s with URI d, its upper bound score score, (d) is defined as
the maximal score of the triples contained in T¢:

scorey (d) = max {scoreq(t) |t € TS} (1a)
The lower bound score is defined as:
scorei(d) = min {scoreq(t) |t € T} (1b)

For each triple pattern in the source index, we store its list of relevant sources
in descending order of their upper bound scores score, . This allows sources
for each union operator to be retrieved sequentially in the order of their upper
bound scores. As triples for a given source are not sorted, we replace each source-
scan operator with a source-scan-sort operator. A source-scan-sort operator, after
retrieving a source with URI d, sorts its triples T¢ according to their scores.

% Example 21

Figure 19 and Figure 20 are two physical query plans for the query in
Figure 18. In contrast to Figure 19, Figure 20 shows an access plan with
source-scan-sort operators, which provide a sorted access to the bindings
for pattern tps and tpg, respectively.

However, if two (or more) sources, say, d; and dj, have overlapping source
score bounds (scorei(d;) < scorey(d;j) < scorey(di)), and both are inputs for
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the same union, the output of the union will not be ordered if these sources are
retrieved individually. We address this problem by treating both sources as “one
source”. That is, sources with URIs d; and d; are scanned and sorted via the
same source-scan-sort operator.

Note that score, (d) and scorei(d) do not have to be precise — they could be

approximated, e.g., based on expected scores.

Algorithmus 2 : LD-PBR]J.push(b)

g A

o 9 o

10

Input :Pushed partial binding b on input i € {i4,1,}.
Param. :Bounding strategy BS.
Buffer :Output buffer (priority queue) O. Buffer H; and Hj for “seen”

bindings from input i and j, respectively.

begin

ifi= i] then
L j <12
else
| j+
Insert b into buffer H;
O’ + Probe H; for valid join combinations with b

foreach join result b’ € O’ do
t Insert b’ into O

[} + BS.update(b)

3.3.2  Push-based Top-k Join Processing

Exploiting the ranking function, source index, and our sorted access, we can
extend top-k strategies to the Linked Data setting.

Previous work on top-k join processing uses a pull-based query execution.

That is, join operators actively pull on their inputs in order to produce an output
[51, 93, 144]. We extend the PBR]J template in Algorithm 1 to allow for a push-
based execution — well-suited for the Linked Data setting. For simplicity, the
following presentation of the PBR] algorithm uses binary joins. However, our
algorithms can also be applied for general n-ary joins.

In a pull-based implementation, operators call a next method on their input

operators to obtain new data. Consider also the generic iterator description in
Section 2.2.4 (see Figure 12). In a push-based execution the control flow is in-
verted. That is, operators have a push method that is called by their input oper-
ators. Algorithm 2 shows the push method of the LD-PBR] operator. The input
from which the partial binding b was received is identified by i € {i;,i,}.

* On Line 6 (Algorithm 2), the partial binding b is inserted into the buffer

H;. Algorithm 2 features two buffers, H; and Hj, for “seen” bindings, i.e.,
bindings which have been pushed by input i and j.

* On Line 7, we probe the other input’s buffer H; for valid (i.e., the join

condition holds) join combinations. Successful join results are added to the
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output buffer O in Lines 8-9. Output buffer O is a priority queue such that
the result with the highest score is first.

* On Line 10, the threshold (3 is updated using the bounding strategy BS.
This provides an upper bound 3 on the scores of “unseen” (future) join
results, i.e., join results comprising “unseen” partial bindings. When a join
result in queue O has a score > the threshold (3, we know that there is no
unseen (future) result, which has a higher score. Thus, this result in buffer
O is ready to be reported to a subsequent operator. If buffer O contains k
results, which are ready to be reported, the algorithm stops reading inputs
(early termination, see Section 2.3.1).

As discussed in Algorithm 1, the standard PBR] has two parameters: the bound-
ing strateqy BS (see Definition 15, p. 36) and the pulling strategy PS (see Defini-
tion 16, p. 36).

For the former parameter, the corner-bound strategy [93], is employed by many
works and is also used in our approach.

The latter parameter, however, is intended for a pull-based query execution
— thus, it can not be employed. Similar to the idea behind the pulling strategy,
we aim to have control over the results that are pushed to subsequent operators.
Because a push-based join has no influence over the data flow (within the query
plan), we introduce a scheduling strategy to regain control. Furthermore, the push
method in Algorithm 2, only adds join results to the output queue O, but does
not push them to a subsequent operator. Instead, the pushing is performed in a
separate activate method (see Algorithm 4) — as mandated by the scheduling
strategy.

% Example 22

In Figure 20 the scheduling strategy uses the current query execution state
to decide which operator to activate. In this example, the scheduling
strategy activates the sorted access sas, i.e., source-scan-sort, selection,
and union for triple pattern tps. This way, any binding for tps, which is
ready to be reported, will be pushed in the LD-PBR]J operator by the sorted
access sas.

We will provide further details on both strategies in the next paragraphs.

Bounding Strategy. A bounding strategy BS is used to update the current
score threshold f3, i.e., the upper bound on scores of unseen join results. Since
only those results in the output buffer O can be reported that have a score equal
to or greater than the threshold §, it is essential that the threshold f3 is as accurate
(tight) as possible. In our experiments, we employed the well-known corner-
bound strategy (see Definition 15, p. 36), as well as an improved variant of it,
which we present in Section 3.3.3. However, it is important to note that any
other strategy may also be applied for our LD-PBR] algorithm.
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Algorithmus 3 : LD-PBR]J.execute(Q, k)
Input :Query Q. Number of results k.
Param. :Scheduling strategy S.
Data  :Query plan P.
Output : Top-k query results in output buffer O.
1 begin

2 P +plan(Q)

3 op < S.nextOp(P)

4 while | O |< kA op # null do
5 op.activate()

6 op < S.next0Op(P)

7 return O

Scheduling Strategy. Deciding which input to pull from has a large effect on
query processing performance [93, 144]. Previously, this decision was captured
in a pulling strategy employed by the join operator implementation.

However, in push-based systems, the execution is not driven by operators, but
by the input data. Join operators are only activated if input is actively pushed
from operators lower in the operator tree. Therefore, instead of pulling, we pro-
pose a scheduling strategy that determines which operators in a query plan are
scheduled for execution. That is, we move the control, over what input produces
new partial bindings, from the join operator to the query engine, which orches-
trates the query execution.

Algorithm 3 shows the execute method that takes a query Q and the number
of results k as input and returns the top-k results.

* We obtain a query plan P from the plan method on Line 2.

* We then use the scheduling strategy & to determine the next operator that
should be scheduled for execution (see Line 3).

* The scheduling strategy uses the current execution state as captured by
the operators in the query plan to select the next operator. We activate the
selected operator on Line 5.

* Last, a new operator is selected (see Line 6), until we either have obtained
the desired number of k results or there is no more operator to be activated
(i.e., all inputs have been retrieved and processed, see Line 4).

Algorithmus 4 : LD-PBR]J.activate()

Input :Subsequent operator op according to query plan P.
Buffer :Output buffer O.
Data  :Score threshold f3.
1 begin
2 while scoreg(O.peek()) > B do
3 b < O.dequeue()
op.push(b)

4

Algorithm 4 depicts the activate method for our LD-PBR] operator, which
is called by the execute method. Intuitively, the activate method triggers a
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T Report results if LD-PBRJ operator is
activated, and score > B.

[ Output Buffer O score
‘ b = (tye t32) 4
/ LD PBRJ threshold B = max {uy + I, uz + 1}
= max {1+3, 1+3}
M =4
1 Buffer H, score Buffer H, score u; =
up = -
t 15 : <ex:m;, ex:starring, ex:p,> 1 ty, : <ex:py, rdf:type, ex:Person>| 3
L=1 ty,6 : <ex:my, ex:starring, ex:ps> 1 ;=3
Cinputiy ), Clnputi, ) Look
Look sas: tps: ?m ex:starring ?p score sag: tpe: ?p rdf:type ex:Person | score 00
ahead ahead: 2
— 00 ty3 : <ex:p,, rdf:type, ex:Person>| 2
Sorted access is empty. H The 3 triple in source s,in Figure 17.

Data sources
from Figure 17.

Figure 21: Detailed view on the LD-PBR] operator from Figure 20. Data is retrieved from
the sources in Figure 17.

“flush” of the operator’s output buffer O. That is, all computed results having a
score larger than or equal to the operator’s threshold 3 (Line 2) are reported to
the subsequent operator (Lines 3-4). An activate method for a source-scan-sort
operator of a source d simply pushes all triples in d in a sorted fashion. Further,
activate for selection and union operators causes them to push their outputs to
a subsequent operator.

The question remains how a scheduling strategy should select the next operator
(nextOp method, see Algorithm 3 at Line 6). For this, we apply the idea behind
the state-of-the-art pulling strategy [144] (see Definition 16, p. 36) to perform
corner-bound-adaptive scheduling. Basically, we choose the input which leads to
the highest reduction in the corner-bound:

»+ Definition 19: Corner-Bound-Adaptive Scheduling

Given a LD-PBR] operator, we prefer the input that could produce join re-
sults with the highest scores. That is, we prefer input 17 iff u; © 1, <u; @1y
and i, otherwise. In case of ties, the input with the smaller number of un-
seen (future) partial bindings is chosen.

@ is the aggregation function used in the ranking function. Further, u;
is the highest score observed from input i, while 1; is the lowest observed
score on input 1i.

The scheduling strategy then recursively selects and activates operators that
may provide partial bindings for the preferred input. That is, in case the cho-
sen input is another LD-PBR] operator, which has an empty output queue, the
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scheduling strategy selects and activates operators for its preferred input in the
same manner.

% Example 23

Figure 21 provides a detailed view on the LD-PBR] operator from Exam-
ple 22 in Figure 20. Further, we use data from sources si, sz, and s3 in
Figure 17. For simplicity, we assume k = 1 and denote the j* triple in
source s; as t;. For instance, t; 5 refers to the 5th triple in source s (see
Figure 17):

tis5 = (ex:ml, ex:starring, ex:p2>

Our scheduling strategy prefers input i; and selects/activates the source-
scan-sort(s1), o(tps), and union(tps). Note, also input i, would have been
a valid choice, since the threshold (3 is not set yet. The LD-PBR] reads
t1,5 and t ¢ as new partial bindings from union(tps) and both bindings
are inserted into Hy (u; = 1l; = 1). The scheduler now prefers input 1i,,
because input i; is exhausted and selects/activates source-scan-sort(s3),
o(tpe), and union(tpg), because source s3 has triples with higher scores
than source s;. Then, union(tpg) pushes t3, and u, as well as 1, is set to
scoreq(ts2) = 3. Employing a summation as aggregation function @, the
threshold £ is:

B =max{1+3,1+3}=4

Then, t3 is inserted into Hj. Joins between t3, and bindings in H; are
attempted: t1 ¢ M t3, yields a result b, which is then inserted into the
output queue, O. Finally, since scoreq(b) =4 > 3 =4 holds, b is reported
as the top-1 result, and the LD-PBR] terminates. Note, not all inputs have
been processed. That is, source s, has not been scanned.

3.3.3 Improved Threshold Estimation

In the next paragraphs, we present two modifications of the corner-bound bound-
ing strategy (see Definition 15, p. 36), which allow to calculate a tighter threshold

(3, thereby achieving earlier termination and result reporting, respectively.

Entity Query Bounds. A entity query comprises a set of triple patterns Q,,

which share a common variable at the subject position:

»+ Definition 20: Entity Query

An entity query Q, is a directed labeled graph G- = (\79, 88), where V@ is
the disjoint union \78 = \78 O \78 O V%, with \73 as a set of variable nodes,
\78 as a set of constants, and \78 as a set of user-defined keywords.

Further, 8\9 = {(v,p,0)}, where v is a fixed entity variable from VQ, p €
{q Lﬂﬂr,andoe\?\(; L+JV8 Lﬂ\?%.
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A query Q can be conveiced as as disjoint union of its entity queries:

H o =9
Q, € Qg
with Qg as set of all entity queries contained in query Q.

Given Linked Data, we observed that every result for an entity query Q, is con-
tained in one single source. This is because a result is an entity and information
related to that entity comes exclusively from the one source, which represents
that particular entity. Exploiting this knowledge, a more precise corner-bound
for entity queries can be calculated.

More precisely, we can derive that, in order to be relevant, sources for Q, must
satisfy all triple patterns in Q, (because they must capture all information for
the requested entity). Given relevant sources for Q, are denoted as D and the
source upper bound is given by score, (d) for d € D, the maximal possible score
for results matching Q,,, scoremax(Qy), can be derived based on the maximum
source upper bound, maxq ¢ p scorey (d). Formally:

scoremax(Qy) = scoremax(tp1) @ ... ® scoremax (tpn), with (2a)
scoremax (tpi) == anaé scorey(d), fori=1,...,n (2b)
€

where entity query Q, = {tpi}i=1,...n and @ is the aggregation, which is de-
fined for the ranking function. Equation 2b holds because:

* Every triple that contributes to a result for entity query Q, must be con-
tained in a source d € D.

¢ Thus, every contributing triple must have a score < finas scorey(d).
€

Look-Ahead Bounds. The corner-bound strategy uses the last seen scores, 1;,
of partial bindings to calculate the current threshold, 3. We observed that, when
an partial binding b; is received by an operator on input i, the next partial
binding b***! (and its score scoreq(b***!)) is often already available in the
pushing operator. This is because:

® Source-scan-sort operators materialize their complete output before push-
ing to subsequent operators.

@ LD-PBR] operators maintain an output queue that often contains more than
one result with scores greater than or equal to the current threshold f3.

® Given a source di has been pushed by a source-scan-sort operator, the
source score upper bound of the next source to be loaded, di 1, is available.

By using the score of the next, instead of the last seen partial binding, we
can provide a more accurate threshold (3, because we can estimate the maximal
score of unseen bindings from that particular input more accurately. Formally,
we define the look-ahead bounds 1; for input i as:

. scoreq (bext) if the binding b*¢*! is available 3
=
1 otherwise
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% Example 24

We have two look-ahead bounds in Figure 21. For input iy, we know that
1y = —oo, because there are no more relevant sources for pattern tps. With
regard to input i,, we have 1, = 2, since the next relevant source s, has a
source upper bound of 2.

Threshold Calculation. By applying entity query bounds as well as look-ahead
bounds, we can refine the corner-bound { as:

. min{uj + 15, scoremax(Q)}
[3 = max ) (4)
min{u, + 11, scoremax(Q)}
with

scoTemax(Q) = @ scoremax(9Qv)
Q, € Qg

% Example 25

Continuing Example 24, we can compute an improved corner-bound as
follows:

N min{u; + 12, scoremax (tps) + scoremax (tps)}

[ = max }
min{u; + 1y, scoremax(tps) + scoremax (tpe)}
min{l+2, 143} =3
= max
min{3+—oco0, 1+3} =-—00
=3

In contrast, the standard corner-bound is = max{u; + 1, u> + 11} =
max{3+1,1+3}=4.

The following theorem shows 3 to be correct:

** Theorem 1: Improved Corner-Bound is Correct

Bound B is correct, i.e., there is no unseen result b with scoreg(b) > B.
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Sketch of Proof

Given a query Q, bound E is correct iff: (i) ®Qv €0 scoTemax(9Qy) provides
a valid score upper bound for Q’s results and (ii) 1; is a valid score upper
bound for unseen partial bindings from input i.

(i) Considering the former constraint, assume there is a result b with
scoreq(b) > scoremax(Q). Then, there must be at least one entity re-
sult, be, for an entity query Q, € Qg such that:

scoreg(be) > scoremax(Qy)

In this case, be can not come from one single source, but must be
distributed over multiple sources. This is because scoremax(Q,) is
composed of maxq ep scorey (d), which provides a valid score upper
bound for all triple pattern bindings in b, that come for the same
source d. However, b, being distributed over multiple sources contra-
dicts our initial assumption, i.e., all results for Q, are located at one
source. Therefore, constraint (i) holds for every Q, € Qg.

(ii) Regarding the latter constraint, 1; is a valid score upper bound over
partial bindings from input i, if there is no unseen binding b in input
i with scoreq(b) > T; = scoreq(bI***t). However,

scoreq (b***') < scoreq(b)

can not hold, as we have a sorted access over input i. Thus, constraint
(ii) holds for every partial binding b in input i.

Overall, as constraints (i) and (ii) hold at all times, B is correct g

Moreover, we can show 3 to be tighter than the standard corner-bound:
** Theorem 2: Improved Corner-Bound is Tighter

Bound fg is tighter than corner-bound f3, i.e., B < B holds at all times.

Sketch of Proof

We Xvish to show that E is tighter than §3, i.e., E < B at all times. In order
for B < 3 to hold, either (i) scoremax(Q) < uy @1, or (i) u; ® Tj <wdl,
must always hold.

(i) Considering the former, since scoremax(Q) merely provides a (valid)
upper bound over scores of query results for a query Q, there may be
results for query Q such that: scoremax(Q) > u; @1 is true.
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(ii) Thus, E < B can only hold at all times, if u; ® Ij < u; @ 1j always holds.
Recall that T]- is always set to the “next” possible score, i.e., the score of
the next partial binding seen in input j. As we have a sorted access, the
“next” possible score is guaranteed to be smaller, thus, Tj < 1 holds for
every partial binding.

Overall, as (ii) holds at all times, B is tighter than g

3.3.4 Early Pruning of Partial Results

Source information can be exploited to prune partial results, which can not con-
tribute to final top-k results. This way, we aim at reducing space consumption of
buffer O and buffer H in Algorithm 2. Smaller buffers, in turn, reduce join costs
(due to less join attempts) and buffer maintenance costs.

The idea of pruning partial bindings has also been pursued by approximate
top-k selection approaches [157]. However, in contrast to previous works, we do
not approximate, but only prune those partial bindings that are guaranteed not to
contribute to the final top-k results. Thus, we still compute exact top-k results — as
shown in Theorem 3.

Intuitively, we prune a partial result, if its score together with the maximal
possible score for its unevaluated query fragment, is smaller than the minimal
(so far computed) top-k result score. Note, the opportunity for pruning only
arises if at least k complete results have been computed.

More formally, let b be a partial binding for query Q, with Q(b) C Q as evalu-
ated query fragment and Q" (b) = Q\ Q(b) as unevaluated query fragment (see
Definition 7, p. 22). Then, a score upper bound of all final results comprising
b can be obtained by aggregating scoreq(b) and the maximal possible score of
results for Q%(b), scoremax (Q"(b)):

scoreq(b’) < scoreq(b) @ scoremax(Q4(b)) (5a)

with b’ as a complete binding comprising partial binding b. Similar to Equa-
tion 4, scoremax(Q¥(b)) can be computed as the aggregation of maximal source
upper bounds, which are obtained for triple patterns in Q%(b) = {tp1,...,tpm}:

scoremax(Q" (b)) == scoremax(tp1) ® ... scoremax (tpm), with (5b)
scoremax (tpi) == 5na6< scorey(d), fori=1,...,m (5¢0)
€Dy

where D; is the set of relevant sources for pattern tp; € Q“(b) (according to
the source index), and @ is the aggregation, which is defined for the ranking
function.
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Last, the following theorem can be established:

> Theorem 3

Given a query Q, a partial binding b cannot contribute to one or more final
top-k results for query Q, if

scoreg(b) @ scoremax (2" (b)) < min scoreq(b)
beo

where O is the output buffer in Algorithm 2, which contains at least k re-
sults.

Sketch of Proof

If a partial binding b is pruned, while actually contributing to a final top-k
result b’, it must hold:

scoreg(b’) > min scoreq(b)
beO

That is, the score of b’ is larger than the minimal score among the currently
known complete results in O. However, if b was pruned, it holds that:

scoreg(b) @ scoremax (2% (b)) < min scoreg(b)
beo

At the same time, as given in Equation 5a and Equation 5b, scoremax(Q"(b))
provides a valid upper bound of scores for b’:

scoreq(b’) < scoreq(b) @ scoremax(Q%(b))

Therefore,
scoreg(b’) < min scoreq(b)
beo

which contradicts the initial assumption that b’ is a top-k result g

3.4 EVALUATION

In the following, we present our evaluation results and empirically validate:

* Hypothesis 1 in Section 3.2
Top-k processing via our LD-PBR] operator outperforms state-of-the-art
Linked Data query processing.

* Hypothesis 2 in Section 3.2
Our tighter bounding in Equation 4, as well as early pruning strategy in
Equation 5a and Equation 5b, leads to a better performance than state-of-
the-art top-k processing.
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3.4.1 Evaluation Setting

Systems. We implemented three different systems, which are all based on
push-based join processing. For every query, we generated a left-deep query
plan with random join order. All systems use the same plan and differ solely in
the join operator implementation.

First, we have the push-based symmetric hash join operator (shj) [105, 106],
which does not employ top-k processing techniques, but instead produces all re-
sults, and then sorts them to obtain the desired top-k results. Further, we use two
implementations of the LD-PBR] operator. Both use the corner-bound-adaptive
scheduling strategy, but employ different bounding strategies. The first uses the
corner-bound (rj-cc) from previous work [144] (see Definition 15, p. 36), while
the second (rj-tc) employs our optimization with tighter bounds and early re-
sult pruning, see Equation 4, Equation 5a, and Equation sb.

The shj baseline is used to study the benefits of top-k processing in the Linked Data
setting, see Hypothesis 1. With regard to Hypothesis 2, we employ rj-cc to analyze the
effect of the proposed optimizations.

All systems were implemented in Java 6. Experiments were run on a Linux
server with two Intel Xeon 2.80GHz Dual-Core CPUs, 8GB RAM and a Seagate
ST31000340AS 1TB hard disk. Before each query execution, all operating system
caches were cleared. The presented values are averages collected over three runs.

Dataset and Queries. We used queries from the Linked Data FedBench bench-
mark.?® Due to schema changes in DBpedia?® and time-outs observed during the
experiments (> 2 min), three of the 11 FedBench queries were omitted. Addition-
ally, we used 12 queries that we created. In total, we had 20 queries that differ
in the number of their results (1 — 10K) and in their complexity in terms of the
number of triple patterns (2 —5). A complete listing of our queries can be found
in the appendix, see Section A.1.

To obtain the dataset, we executed all queries directly over the Web of Linked
Data using a link-traversal approach [78] and recorded all Linked Data sources
that were retrieved during query execution. In total, we downloaded 681,408
Linked Data sources, comprising a total of 1,867,485 triples. From this dataset
we created a source index that is used by the query planner to obtain relevant
sources for the given triple patterns.

We observed that network latency greatly varies between hosts and evaluation
runs. In order to systematically study the effects of top-k processing, we decided
to store the sources locally and to simulate Linked Data query processing on a
single machine — as done before [105, 106].

Parameters. Parameter k € {1,5,10,20} denotes the number of top-k results
to be computed. Further, we employed three different score distributions d €
{u, n, e} (uniform, normal and exponential).

More precisely, scores were randomly assigned to triples in the dataset. We
applied three different score distributions: uniform, normal (u =5, 0? =1) and

2Bhttp://fedbench. fluidops.net, retrieved 2013-12-07.
9http://dbpedia.org, retrieved 2013-12-07.

60


http://fedbench.fluidops.net
http://dbpedia.org

3.4 EVALUATION

M rj-cc

0= o rj-t
= rj-tc

60 ¢ m shi
= =

[l 1o 1.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Figure 22: All queries with their evaluation times (k =1, d = n).

exponential (A = 1). This allows us to abstract from a particular ranking function
and examine the applicability of top-k processing for different classes of ranking
functions. We used a summation as score aggregation function, &.

3.4.2 Evaluation Results

Overall Results. Figure 22 shows an overview of processing times for all
queries (k = 1,d = n). We can see that the LD-PBR] approaches (rj-tc and
rj-cc) perform better or at least equal to shj for all queries. Note, we discuss
outlier queries Q19 and Q20 in the following. On average, the execution times
for rj-ccand rj-tc are 23.13s and 20.32s, whereas shj required 43.05s for query
execution. This represents a performance improvement of the rj-cc and rj-tc
operators over the shj operator by factors of 1.86 and 2.14, respectively.

The improved performance of the LD-PBR] operators is because of their top-k
processing. That is, LD-PBR] operators do not have to process all input data in
order to produce the k top results, but can terminate early. In contrast, the shj
operator produces all results. Figure 23-a shows the average number of retrieved
sources for different values of k. We can see that the LD-PBR] approaches retrieve
fewer sources than the baseline approach. In fact, rj-cc and rj-tc retrieve and
process only 41% and 34% of the sources that the shj approach requires. This is
a significant advantage in the Linked Data context, where sources can only be
retrieved in their entirety.

However, we also see that the LD-PBR] operators sometimes do not perform
better than the shj operator. In these cases, the result is small, e.g., Q19 has
only two results. The LD-PBR] operators have to read all inputs and compute
all results in these cases. For example, for Q20 the LD-PBR] approaches retrieve
and process all 35,103 sources — just as the shj approach does.

Bounding Strategies. Next, let us examine the effect of the bounding strate-
gies on overall execution time. rj-cc and rj-tc require an average processing
time of 23.13s and 20.32s, respectively. This is an improvement of 12% of rj-tc
over rj-cc. For some queries, e.g., Q3, the improvement is even higher. Given
query Q3, rj-tc requires 11s — compared to 30s for rj-cc.

The improved performance can be explained with the tighter, more precise
bounding strategy realized by rj - tc. For instance, given query Q3, our bounding
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Figure 23: (a) Average number of sources over all queries vs. different k (d = n). (b) Aver-
age evaluation time over all queries vs. different k (d = n). (c) Average evalua-
tion time over all queries vs. different score distributions (k = 10). (d) Average
evaluation time over all queries vs. varying number of triple patterns (k =1,
d=n).

strategy can take advantage of a large star-shaped subexpression with 3 patterns
in Q3 - leading to an accurate entity query bound. Additionally, we observed
that the look-ahead strategy helps to calculate a much tighter upper bound, es-
pecially when there are large score differences between successive bindings from
a particular input.

A tighter (more precise) bound means that results can be reported earlier and
less inputs have to be read. This is directly reflected in the number of sources
that are processed by rj-tc and rj-cc. On average rj-tc requires 23% fewer
sources than rj-cc. Note, while in Figure 22 rj-tc’s performance often seems to
be comparable to rj-cc, Figure 23-a makes the differences more clear in terms
of the number of retrieved sources. For example, both systems require an equal
amount of processing times for Q17. However, rj-tc retrieves 7% less sources.
Such “small” savings did not show properly in our evaluation (since we retrieved
sources locally from disk), but would effect processing time in a real-world set-
ting with network latency.

Concerning the outlier Q19, we noticed that rj-tc did read slightly more in-
put (2%) than rj-cc. This behavior is due to our implementation: Sources are
retrieved in parallel to join execution. In some cases, the join operators and the
source retriever did not stop at the same time.

We conclude that rj - tc performs equally well or better than rj - cc. For queries
with large entity query fragments or with inputs, which have large score differ-
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ences between successive sources, we are able to achieve performance gains of
up to 60% by means of the rj-tc operator.

Early Pruning. We observed that the pruning strategy leads to lower buffer
sizes, i.e., less memory consumption. For instance, given query Q9, the rj-tc
operator could prune 8% of its buffered data. However, we also noticed that
the number of sources loaded/scanned is actually the key performance factor.
While pruning had positive effects, the improvement is small compared to what
could be achieved with tighter bounds. For example, for query Q9 73% of total
processing time was spent on loading and scanning sources.

Effect of Result Size k.  Figure 23-b depicts the average query processing time
for all three approaches at different k (with score distribution d = n). We ob-
served that the time for shj is constant in k, since shj always computes all
results. Further, we observed that the LD-PBR], rj-tc and rj-cc, approaches
outperform shj for all k. However, with increasing k, more inputs need to be
processed. Thus, the runtime differences between the LD-PBR] approaches and
shj operator become smaller. For instance, for k = 1 the average time saving
with regard to shj is 46% (52%) for rj-cc (rj-tc). Given k = 10, the average
time saving with regard to shj is only 31% (41%) for rj-cc (rj-tc).

Further, we can see in Figure 23-b that rj - tc outperforms rj-cc over all values
for k. The differences are due to our tighter bounding strategy, which substan-
tially reduces the amount of required inputs. For example, for k = 10, rj-tc
requires 21% less inputs than rj-cc.

Last, we noted that rj-tc and rj-cc behave similarly for increasing k. That is,
both operators become less efficient with increasing k, see Figure 23-b.

Effect of Score Distributions. Figure 23-c shows average processing times for
all approaches for the three score distributions. We see that the performance of
both LD-PBR] operators varied only slightly with regard to different score dis-
tributions. For instance, rj-cc performed 7% better on the normal distribution
compared to the uniform distribution. The shj operator has constant evaluation
times over all distributions. We argue that this shows the general applicability
of our LD-PBR] approach. That is, its performance gains are not dependent on a
particular ranking function.

Effect of Query Complexity. Figure 23-d shows average processing times (with
k =1,d = n) for different numbers of triple patterns. Overall, processing times
increase for all systems with an increasing number of patterns. Again, we see
that the LD-PBR] operators, rj-tc and rj-cc, outperform shj for all query sizes.
In particular, for 5 query patterns, we noticed the effects of our entity bounds
more clearly, as those queries often contained entity queries up to length 3.
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3.5 RELATED WORK
3.5.1 Pull-based, Centralized Top-k Processing

The top-k join problem has been addressed by many works — as discussed in
the comprehensive survey [95]. Most notably, the J* rank join, based on the A*
algorithm, was proposed in [125]. Other top-k join algorithms, the HRJN and the
HRJN*, were introduced in [93] and further extended in [109].

In contrast to such works, we aim at a Linked Data context. As recent works [78,
75, 105, 106] have shown, Linked Data query processing introduces various novel
challenges. In particular, instead of a pull-based top-k join, we needed a push-
based execution for queries over Linked Data [105, 106]. We therefore extended
the well-known PBR] framework to allow for a push-based query execution.

The majority of top-k join solutions target centrally stored data [95]. A promi-
nent example is the Pull/Bound Rank Join framework [144], which captures the
existing top-k join approaches within one single framework. However, as we
outlined in Section 1.2.3, Web data is inherently distributed over a vast space of
sources. Centrally indexing these sources would come at great costs in terms of
index maintenance and storage space. Moreover, central indexing would require
allowed data access to all Web data sources. This strongly restricts the possible
use-cases of Web data, e.g., in a commercial application.

Note that the only other work, which extends top-k join processing to RDF
data is [115]. We presented a top-k join processing approach for distributed RDF.
That is, data graphs are spread over a space of sources. In contrast, data may
be stored and indexed centrally. For this, [115] proposed an extension of the
SPARQL algebra, the so-called SPARQL-RANIK, as well as an optimized SPARQL-
RANK implementation for RDF stores. This work is complementary to our solution,
since [115] focuses on a pull-based top-k join operator, which is well-suited for
a centralized RDF store. However, the authors do not consider the case of data
being located at various (small) data sources.

Last, different bounding strategies have been proposed. In [55, 144], the au-
thors introduced a new Feasible-Region (FR) bound for the general setting of
n-ary joins and multiple score attributes. However, it has been shown that the
PBR]J template with corner-bound is instance-optimal in the restricted setting of
binary joins and a single score attribute [55, 144]. We extend the corner-bound to
the Linked Data setting and provide tighter/more precise bounds, which allow
for earlier termination and better performance.

3.5.2 Distributed Top-k Processing

There has been work on distributed selection top-k processing, e.g., [20, 120, 126,
163, 170], and distributed aggregation top-k processing, e.g., [131, 138]. Unfortu-
nately, the selection top-k problem and the aggregation top-k problem are both
highly different from the join top-k problem. The selection top-k problem aims
at finding top-ranked entities, where each entity is ranked according to multiple
dimensions. The aggregation top-k problems aims at finding top-ranked sets of
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bindings, where each set is ranked according to an aggregation function. Thus,
extending such techniques to a join top-k problem is not straightforward [51].

With regard to the top-k join problem, [51] presents a top-k join approach for
distributed databases, while [6, 175, 176] target a P2P scenario. We differ from
the former, as we rely exclusively on simple HTTP lookups for data access as
well as use only basic indexes in the form of the source index [51]. Moreover, for
each Linked Data source we only require a min/max score bound, whereas [51]
utilizes complete histograms over scoring attributes. The latter works rely on
score sampling to compute a lower score bound [6, 175, 176]. However, given
many small sources, such a solution would lead to prohibitive costs. Overall, we
aimed at a lightweight sorted access implementation, which requires only simple
score statistics. In turn, we have only minimal maintenance — a key advantage
with regard to the highly dynamic Web of data.

3.5.3 Approximate Top-k Processing

Various works target the computation of approximate top-k results [15, 16, 120,
151, 157]. In particular, similar to our pruning approach, [157] estimates the like-
lihood of partial bindings contributing to a final result. If this estimate is below
a given threshold, partial bindings are pruned. However, [157] addressed the se-
lection top-k problem, which is different to our top-k join problem. More impor-
tantly, we do not rely on probabilistic estimates for pruning, but employ accurate
upper bounds. Thus, we do not approximate the final top-k results.

3.6 SUMMARY

In this chapter, we addressed the first research question:

# Research Question 1

How to enable top-k query processing on highly distributed, schemaless
Web data?

For this, we validated Hypothesis 1 and Hypothesis 2:

i Hypothesis 1

Join top-k processing based on the Pull Bound Rank Join (PBR]) framework
(see Algorithm 1) can be extended to match the requirements of highly dis-
tributed Web data. Moreover, such a top-k processing allows for significant
performance gains for computation of ranked results over Web data.

Targeting above hypothesis, we proposed a novel LD-PBR] framework. We
implemented our system and empirically showed its feasibility and performance
advantages.
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7l Hypothesis 2

Given our lightweight sorted accesses, we can improve the state-of-the-art
bounding strategy (corner bound, see Definition 15, p. 36). Moreover, the
LD-PBR] framework can be extended to allow for pruning of partial bind-
ings, which cannot lead to a complete top-k binding. This way, we process
less partial bindings and safe computation time due to less join attempts.

With regard to Hypothesis 2, we provided a theoretical analysis — thereby vali-
dating our proposed bounding strategy. Moreover, we validated this hypothesis
by means of our experiments. In fact, we could show that our improved bound-
ing strategy can lead to significant performance gains.

In the next chapter, we will present an approach for selectivity estimation of
hybrid queries over Web data. By means of this work, we allow query optimizers
to construct suitable query plans, which comprise (amongst other operators) our
LD-PBR] operator.

66



SELECTIVITY ESTIMATION

67



SELECTIVITY ESTIMATION

Context of this Chapter. In this chapter, we present a selectivity estimation for
text-rich RDF data, which is based on our previous publication [3]. For this, we
introduce an approach, which compactly summarizes structured /unstructured
data and exploits this summary to estimate the result size of a hybrid query.

We aim to effectively and efficiently estimate result set sizes for hybrid queries
over Web data. The former goal refers to accurate estimations, while the latter
goal refers to efficiency in terms of time and space needed for selectivity estima-
tions. Our work contributes to this thesis with regard to two aspects:

O We employ selectivity estimation as means to compute the binding probability in
our approximate top-k join approach, see Section 5.3. More specifically, we ex-
ploit selectivity estimation to calculate the probability for a partial binding
to contribute to one or more complete bindings. We use this probability
to prune such partial bindings that have a low chance of contributing to a
complete binding — thereby approximating the top-k result set. Note, this
approximate query processing targets our Research Question 4: How to
enable approximate rank-aware query processing on Web data?

@ Selectivity estimation is a crucial part of query optimization. Figure 24 il-
lustrates the traditional query processing pipeline — we highlighted the
steps, where selectivity estimation plays a key role. More specifically, by
means of selectivity estimation, costs for physical query plans can be ap-
proximated and a query optimizer can construct an optimal physical plan.
In particular, selectivity estimation allows to compare query plans featur-
ing different join orders with each other. The join order is critical for hybrid
queries, since some patterns may be highly selective, while others may bind
large amounts of triples. Thus, it is crucial for an optimizer to construct a
physical query plan, which minimizes the number of intermediate query
results.

Moreover, works on rank-aware query processing showed the need for
depth estimation for PBR] operators [94, 145, 146]. Depth estimation is con-
cerned with approximating the number of partial bindings read from a
particular PBR] operator input. As discussed in [94, 145, 146], such infor-
mation is crucial for integration of PBR] operators in physical query plans.
For this, recent work in [145, 146] presented the DEEP framework, which
offers a flexible algorithm template for depth estimation, based on selectiv-
ity estimations techniques.
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Figure 24: Context of our selectivity estimation for text-rich RDF data approach [149].
Figure (b) provides a detailed view on the query optimizer, which is also
captured in figure (a). Steps in which our selectivity estimation plays an im-
portant role are highlighted.

Our selectivity estimation approach can be directly applied for both optimizations.
This way, query optimization is tailored towards the characteristics of hybrid
queries and Web data — leading to better physical query plans/performance gains.
In particular, employing the DEEP framework in conjunction with our se-
lection estimation would allow an optimal integration of the LD-PBR] op-
erator as well as the A-PRBJ operator in physical query plans. Note, the
A-PRBJ operator is an approximate top-k join operator that is introduced
in Section 5.3.

Outline. In Section 4.1, we motivate the problem of selectivity estimation over
text-rich RDF data, and introduce foundations as well as our terminology. We
discuss research problems and our contributions in Section 4.2. We present our
main approach, the BN™ system, in Section 4.3. Then, we discuss evaluation
results in Section 4.4. In Section 4.5, we give an overview of related works. Last,
we conclude with Section 4.6.

4.1 INTRODUCTION
4.1.1  Motivation

The use-cases for selectivity estimation techniques within a query processing
context are manifold:

® Processing hybrid queries requires a query optimizer, which relies on selectivity
estimates to approximate query execution costs, which are associated with a
given physical query plan.
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More specifically, the cost model commonly captures costs for computation
(e.g., the number of join attempts), costs for storage access (e.g., the number
of triples loaded), or costs for memory (e.g., the number of buffered partial
bindings in join operators). These costs can be estimated via selectivity
estimation approaches. See Section 2.2.3 for a detailed introduction to the
cost model.

By means of this cost estimation, the query optimizer searches, e.g., using
a dynamic programming technique [53], over a space of possible physical
query plans — targeting an optimal physical query plan. Such an optimal query
plan optimizes the overall query execution costs. In particular, the optimal
plan aims at minimizing the amount of intermediate results — the driving
factor behind the overall query execution time [53]

@ As a special case of cost estimation, depth estimation has been proposed
for rank-aware join operators [94, 145, 146]. Depth estimation is concerned
with the estimation of the number of inputs, which are read from a join
input, in order to produce the desired top-k results [94, 145, 146]. For this,
previous works employed selection estimation techniques.

Similar to above presented query execution costs, depth estimation is used
by a query optimizer to construct an optimal physical query plan, which
comprises rank-aware join operators [94, 145, 146].

® Selectivity estimates, as studied in this chapter, are not only crucial for
query optimization, but for many problems that can be solved via con-
junctive queries. For instance, data extraction [164] and data integration
programs [37] have been formulated as queries, which involve selection
and (similarity) join patterns.

Selectivity estimations are mostly performed at runtime. Thus, efficiency of
the required computations is essential. Targeting a low computational overhead,
selectivity estimation is based on data synopses, which approximately capture
underlying data value distributions through a statistical summary. Several as-
sumptions are commonly employed to keep such a synopsis small and simple:

@ Uniform Distribution Assumption
Let us come back to the example in Figure 7. Let X;,qme be a random vari-
able for predicate name, with Q as its sample space. The uniform distribution
assumption implies that all values for a predicate are equally likely. In Fig-
ure 7 predicate name features five distinct values: | Q(Xname) | = 5. Thus,
the probability for an entity x having name “Gregory Peck” is:
P(Xname = “Gregory Peck”) ~ ; = T
| Q(Xname) |5
In other words, the probability for a query pattern tp = (x, name,”Gregory
Peck”) is 1. Clearly, this assumption may lead to misestimates, when “Gre-
gory Peck” is a common name shared by several entities.
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@ Predicate Value Independence Assumption
Similarly to Xname, let Xcomment be a random variable for predicate
comment in Figure 7. Given a second query pattern tp = (x, comment, “Au-
drey Hepburn was. ..”) with:

P(Xcomment = “Audrey Hepburn was...”) =1

the predicate value independence assumption dictates that the two pred-
icate values are independent. That is, the probability of observing both
events is:

P(Xname = “Gregory Peck”, Xcomment = “Audrey Hepburn was...”) =
P(Xname = “Gregory Peck”) - P(Xcomment = “Audrey Hepburn was...”)

However, as we can observe in the data (see Figure 7), there is actually
no entity that is associated with that name and comment. Thus, the joint
probability should actually be 0. Such a misestimate is due to correlations
among data values. Given the value for name, a particular value for comment
is more or less likely to occur (instead of being equally likely).

® Join Predicate Independence Assumption

Last, there is the join predicate independence assumption, which is a spe-
cial case of the previous assumption. This assumption states that the exis-
tence of a predicate is independent of the value/existence of another pred-
icate. Coming back to our example in Figure 7, the existence of comment
and any value for name would be assumed to be independent. Again, such
a simplification would lead to misestimates, since predicate comment only
occurs with name “Audrey Kathleen Hepburn”.

As demonstrated by our examples, above independence assumptions greatly
effect the effectiveness (i.e., accuracy) of selectivity estimates. Inaccurate esti-
mates, however, can greatly affect applications, which rely on those selectivity
estimates. In particular, query optimizers will construct non-optimal physical
query plans, which may lead to an expensive query execution.

A large body of work has been devoted to avoid one or more of the above in-
dependence assumptions. Approaches aim to consider data correlations, thereby
achieving more accurate selectivity estimates. Assumption 1 is addressed by
counting values and embedding the resulting frequency statistics into synopses
such as histograms [135] and wavelets [118]. Dealing with Assumption 2 and
Assumption 3 requires a joint distribution of two or more random variables,
which may be approximated via join synopses [10], tuple-graph synopses [154]
or probabilistic relational models (PRMs) [60, 162].

4.1.2  Selectivity Estimation

Given a query Q, its selectivity, denoted by sel(Q), is defined as the cardinality
of Q’s result set (see Definition 12, p. 29). In this work, we address the problem
of estimating sel(Q), which may be decomposed into two functions:
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* The Function R : Q — IN gives an upper bound cardinality of the result set
for query Q.

In previous works [60], R(Q) is estimated as size of the cross-product of
the tables, which the query Q is evaluated over. In our setting, table names
are not explicitly given in a query. To obtain R(Q), we consider an upper
bound of results for every distinct query variable. That is, for each v € VQ,
we upper-bound the number of its bindings, R(v), as number of all entities
belonging to class c:

R(v) = s | (s, type, c) € €} (6)

with € as edge set of the data graph §. However, computing R(v) like this
requires Q to contain a class pattern (v, type, c). If v has no class assigned,
we use the number of all entities, |Vg|, as an estimate for R(v). Then, R(Q)
is given by:

RQ) =[] R (7)

* The probabilistic component P defines a probability function that maps Q to

a probability. More precisely, P assigns a probability to a binary random
variable, say 1o, modeling whether or not Q’s result set is non-empty. In
other words, 1o captures whether Q holds. We write P(1o = T) as P(Q)
for simplicity.
The probabilistic component P(Q) captures the joint probability over a set of ran-
dom variables — one random variable for each query pattern in Q. Intuitively, each
such random variable models whether the associated query pattern holds
or not.

Employing function R and the probabilistic component P(Q), we can refine
the informal definition in Definition 12:

»+ Definition 21: Selectivity Estimation Function

Given a query Q and a data graph G, a selection estimation function, sel, is
defined as:

sel(Q) == R(Q) - P(Q) )

In the next paragraphs, we introduce Bayesian networks (BNs) and their temp-
late-based representation, in order to efficiently and effectively compute P(Q) for
a given query Q.

4.1.3 Probabilistic Framework — Bayesian Networks
In order to compute the query probability P(Q) for a query Q with |Q] = n,

we need to estimate a joint probability over n random variables: X, ..., Xy. As-
suming each random variable X; has a sample space Q;, capturing the exact
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joint probability would require [ [; [Qi| space. To reduce space complexity, in-
dependence assumptions are commonly employed. One might assume all ran-
dom variables to be pairwise independent, thereby reducing the space to )_; [Q;].
However, as discussed above, such independence assumptions rarely result in
accurate joint probability approximations. Instead, conditional independence has
been exploited to obtain a more effective, yet scalable, approach for probability
estimation [48, 60, 162]. This is based on the observation that often correlations
between two random variables X; and X, can be “mediated” by a third variable
X3. That is, variables X7, X; become independent given X3:

X1 L X2 X3

Finding and exploiting such conditional independences enables a factorization
of the full joint distribution — hence, allows a more compact representation and
efficient computation of probabilities.

A Bayesian network (BN) represents a directed graphical model that allows for
a compact representation of joint distributions by means of two components: a
network structure and model parameters [102].

e BN Network Structure
The BN network structure is a directed acyclic graph, where nodes stand
for random variables and edges represent dependencies among them. Given
parent nodes Pa(X;) = {Xj,..., Xi}, a random variable X; is dependent on
Pa(X;), but conditionally independent of all non-descendant nodes (ran-
dom variables), i.e., all nodes which are not reachable from X; when re-
moving Pa(Xj).

e BN Parameters
BN parameters comprise conditional probability distributions (CPDs) for
random variables in the network. That is, each node X; is associated with
a CPD capturing the conditional probability P(X; | Pa(Xj)).

A BN allows for computing the joint distribution P(Xj,..., Xy ) via the chain
rule [102]:

P(X1,.... Xn) = [ [ P(X: | Pa(Xy)) 9)

This task is commonly referred to as inferencing. More precisely, we ask a
conditional probability query, which can be addressed by various exact as well as
approximate inferencing approaches [102]. Variable elimination is a naive exact
inferencing algorithm and is based on a simple idea [102]:
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Figure 25: (a) Template-based BN for the running example in Figure 7. (b) Query ground
BN for query in Figure 8. Note, templates Xcomment, Xmotto and Xiocation
are marginalized out. (c) CPD for template Xyitie-

Excursus: Variable Elimination
We know that:

P(Xi/pa)

P(Xi|pa) = Pipa)

(10)
Thus, to compute the RHS numerator, we can sum out all random variables
which are neither the query random variable, X;, nor the evidence random
variables, Pa(X;) = pa. The RHS denominator is given by summing out the
joint distribution.

% Example 26

An example BN (a template-based BN, as discussed below) for our data
graph in Figure 7 is illustrated in Figure 25-a. From its structure one can ob-
serve that, e.g., Xstarring is dependent on Pa(Xstarring) = {Xtittes Xnamels
but independent of all other random variables given its two parents.

An example CPD for random variable Xiitie is shown in 25-c. Each
row captures a probability, given one particular assignment to its parent
random variables (Pa). That is, the CPD for Xit1e holds probabilities for
n-grams of title values, conditioned on whether or not the particular
entity is a Movie.

We use template-based BNs [102] (so-called template models) as means to com-
pactly represent correlations in graph-structured data. A template model is a
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framework featuring two parts: template variables (short: templates) and template
factors.

Each template can be instantiated to obtain multiple random variables in a
ground BN. These instantiated random variables share the same sample space
and the same semantics as their template. More formally, a template is defined
as a function X(«y, ..., ax), whose sample space is QO(X) and each argument «;
is a placeholder to be instantiated to obtain random variables.

% Example 27

Figure 25-a shows a template model, containing templates such as Xynovie,
Xstarring Of Xname, which are derived from classes, relations, and at-
tributes from our data graph in Figure 7.

A ground BN can be obtained using data from the data graph for template
instantiations. That is, placeholders «; are instantiated by entities in the data,
forming an entity skeleton of a template.

»+ Definition 22: Entity Skeleton

Given a data graph G = (V, €, {q, {;) and a template X(oq, ..., xn), an entity
skeleton of X is defined as &(x1,...,0n) C E(x1) X ... X &(an ), where each
&(ai) C Vg in data graph § specifies all possible entity assignments to «;.

Using its entity skeletons, we can define a ground BN by instantiating a tem-
plate as a set of random variables: X = {X(e) | e € €}, where Q)(X(e)) = Q(X).

% Example 28

For the template Xpcrson(02) and Eperson(®2) = {p1, P2, P3, P4}, the set
of random variables obtained for the ground BN is given by:

Xperson = {Xperson(p1 )/ Xperson(pZ)r Xperson(p.%)/ Xperson(p4)}

Different assignments to a template argument «; result in different random
variables in the ground BN, which share the same probabilistic semantics. That
is, they share the structure dependencies and parameters (CPDs), which are de-
fined in the template model. CPDs are captured as template factors, which define
probability distributions, which are shared by all instantiated random variables
for that particular template.

Such a template-based representation is flexible, since various ground BNs can
be obtained, based on different entity skeletons. In our approach, we will exploit
this flexibility to define a suitable ground BN for a given query — while relying
on a fixed template model.
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% Example 29

Consider the query ground BN in Figure 25-b. Random variables are in-
stantiated for each query pattern, while having a query variable as place-
holder for entity bindings.

4.1.4 Problem

A joint distribution of n random variables that exhibits all possible dependen-
cies requires a high-dimensional representation. A data synopsis (for selectivity
estimation), which tries to capture data correlations in such a manner, will suf-
fer from an exponential blowup of storage space and computational cost. At the
same time, two random variables are oftentimes actually independent, if condi-
tioned on a third random variable.

Selectivity estimation approaches based on PRM synopses [60, 162] exploit
this conditional independence, in order to factor a full joint distribution into
multiple low-dimensional distributions. This factorization allows for a compact
and efficient synopsis/selectivity estimation.

Unfortunately, Web data and hybrid queries pose novel challenges for selectiv-
ity estimation:

Graph-Structured, Schemaless Web Data.  Existing PRM-based solutions [60,
162] are proposed for relational data. In particular, they assume a partitioning
scheme that determines the tables in which data is stored. Further, such ap-
proaches take queries as inputs, which explicitly specify the tables from which
data shall be retrieved. For instance, consider the query pattern (x, name, “Gre-
gory Peck”), which selects all bindings from the entire data graph matching
that name. In contrast to that, previous works assume a selection pattern to have
a FROM clause that specifies the table from which data is selected, e.g., Person.
Thus, the probability P(Xname = “Gregory Peck”) is estimated for bindings in
the Person table only. Applying such solutions to a graph-structured setting is
not directly possible, because queries do not contain table information. Further,
data graphs can be partitioned in various ways. Different partitioning schemes,
however, yield different tables, which in turn greatly affect the performance of
existing solutions.

Queries over Text-Rich Web Data. Another problem with PRM approaches
[60, 162] is that random variables are assumed to have small sample spaces. In ex-
isting works, random variables capture structured query patterns with constants
that are bounded to a fixed number of values. In addition to structured patterns,
we aim to support string patterns for specifying keyword constraints over tex-
tual values. In particular, string patterns comprise keywords, which match any
value that contains such keywords, see Section 2.1.2. That is, results for these
string patterns do not have to exactly match a specified constant, but only have
to contain a given keyword.
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% Example 30

For instance, given data in Figure 7 and the query in Figure 8, bind-
ings for (x, name, “Gregory Peck”) would also satisfy the pattern (x, name,
“Gregory”), as they both contain “Gregory”. Thus, to support queries via
a string pattern on predicate name, a sample space Q(Xname) must com-
prise all words as well as phrases (sequences of words) contained in text
values for name. Clearly, Q(X,qme) may potentially be very large.

The problem outlined in the above example is exacerbated, when dependen-
cies between values in these sample spaces have to be considered. For dealing
with string patterns, specific string synopses summarizing the value spaces of tex-
tual attributes have been proposed. For instance, synopses based on pruned suf-
fix trees, Markov tables, clusters or n-grams have received much attention [35,
99, 164]. However, previous works estimate the selectivity of single string pat-
terns. In our setting, we aim to support queries that comprise a combination of
structured and string query patterns: hybrid queries. To the best of our knowledge,
there is no work, which considers dependencies between these different types of patterns.

4.2 RESEARCH QUESTIONS AND CONTRIBUTIONS

Next, let us discuss research problems, hypotheses, and contributions, which we
present in this chapter.

4.2.1  Research Questions and Hypotheses

Coming back to our overall Research Question (introduced in Section 1.3): How
to allow for rank-aware and approximate query processing on the Web of data?
We aim at this question using rank-aware as well as approximate join operators.
In order to integrate such operators in physical query plans, we face another
research question:

# Research Question 2

How to allow for efficient and effective selectivity estimates on hybrid,
schemaless Web data?

Notice, by efficient we mean a low selectivity estimation computation time and
a small data synopsis size. By effective we mean an accurate selectivity estimation.

Throughout this chapter, we address the above research question using hy-
potheses as follows:

O Hypothesis 3

A template-based representation of BNs allows for effective and efficient
selectivity estimation for graph-structured RDF data.

Concerning Hypothesis 3, we present a template-based BN model, called BN*,
in Section 4.3, which is well-suited for schemaless, graph-structured Web data.
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That is, we expect our BN to enable an effective and efficient data synopsis for
selectivity estimation over Web data. We validate this hypothesis in our evalua-
tion on real-world Web data in Section 4.4.

O Hypothesis 4

String synopses can be integrated in template-based BNs and allow for ef-
fective and efficient selectivity estimation for text-rich RDF data.

With regard to Hypothesis 4, we extend the template-based BN model in Sec-
tion 4.3 with string synopses. We expect the overall data synopsis to support ef-
fective and efficient selectivity estimation of string patterns, which are conjoined
with other triple patterns — forming hybrid queries. By means of the evaluation
in Section 4.4 we validate this claim.

4.2.2  Contributions

Towards an efficient and effective solution for selectivity estimation of hybrid
queries over text-rich Web data, we provide the following contributions:

 Contribution for Hypothesis 3
We rely on an instantiation of a general template-based BN: BN*. This
model is able to effectively capture correlations in schemaless Web data
graphs.

In contrast to existing PRM-based approaches [60, 162], we do not assume
a specific data partitioning. In fact, our model is learned directly from the
instance data — without requiring any schema information.

 Contribution for Hypothesis 4
In order to support hybrid queries over text-rich Web data, we show how
string synopses can be integrated into our template-based model BN™.

This way, we lift the restriction of PRM-based approaches [60, 162] to only
feature random variables with small sample spaces. Allowing for large
sample spaces is crucial, since selectivity estimation for hybrid queries re-
quires sample spaces to feature all n-grams, which occur in the Web data
graph.

e Contribution for Hypothesis 3 and Hypothesis 4
We implemented our BN* approach to perform experiments on real-world
Web data. We can empirically show that our solution greatly improves
the effectiveness of selectivity estimates for hybrid queries. In terms of
efficiency, our solution is promising, as BN* performs comparable to the
baseline systems. In fact, the results suggest that BN inferencing requires
only a negligible computational overhead.
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4.3 SELECTIVITY ESTIMATION OVER TEXT-RICH RDF GRAPHS

In this section, we propose a novel template-based BN, the BN™ data synopsis,
which is well-suited for schemaless, graph-structured Web data. In particular,
we show how string synopses can be integrated into BN, in order to support
selectivity estimation for hybrid queries. By means of the BN™ data synopsis, we
realize an efficient and effective instantiation of the probabilistic component P
(see Definition 21, p. 72).

4.3.1 BN™ Data Synopsis

The BN™ data synopsis comprises two parts: (1) A template-based BN, which is
defined based on instances (entity skeletons) observed in the Web data graph.
(2) String synopses to summarize the sample spaces for predicates in the data
graph, which feature large textual values.

4.3.1.1  BN* Template Model

Given a Web data graph § = (V, €, {4, {,), we introduce three kinds of templates:

o Attribute Template
We define a template for each attribute a € {4 in data graph G: Xq(x1).

* Relation Template
We define a template for each relation r € {, in data graph G: X, (1, x2).

* Class Template
We define a template for each class ¢ € V¢ in data graph G: X (otq).

Each template for a relation r or a class c is binary:
QX)) = Q(Xe) ={T, F}

In contrast, a sample space for attribute template X, comprises a bag of n-grams,
which are derived from values of attribute a.

% Example 31

For our running example, templates are depicted in Figure 25-a. For in-
stance, the sample space for Xname is given by:

Q(Xname) =1{"Audrey”, “Hepburn”, “Audrey Hepburn”, “Mel”, ...}

To obtain a ground BN, above templates are instantiated using the following
entity skeletons:

e Entity Skeleton for Attribute Templates
For an attribute template, an entity skeleton consists of all entities having
that attribute:

Ea(Oﬂ) = {S | <S/ alo> € EA} (11)
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e Entity Skeleton for Relation Templates
The entity skeleton &,(x7,x2) contains all pairs of source/target entities
having relation r:

Evlar, 2) ={(s,t) | (s,7,t) € Egr} (12a)

Let source and target entities be denoted as

E5(or) ={s | (s,7,1) € Ex) (12b)
and
el(oz) = {t| (5,7, 1) € Er) (120)
where
&xl(on,02) € E3(ar) x EX(0x2) (12d)

e Entity Skeleton for Class Templates
The entity skeleton for a class template X.(x1) is given by all entities be-
longing to that class:

Eclar) ={s| (s, type,c) € &} (13)

Such a template-based approach has the merit of being compact. The number
of templates is far less than the number of random variables in a ground BN.
This is because BN structure and BN parameters (CPDs) are only learned for
the template model. More precisely, templates are instantiated with entities at
runtime to construct a ground BN. For inferencing, a CPD from the template
model is shared among all random variables in the ground BN, which instantiate
that template.

4.3.1.2 Discussion

In our work, we use a general template-based model as probabilistic framework,
see problem description in Section 4.1.4. Previous instantiations of template-
based models focus on relational data. Most notably, Probabilistic Relational
Models (PRM) [57] and Probabilistic Entity Relation Models (PER) [59] have
been proposed. In fact, PRMs have also been applied for selectivity estima-
tion [60, 162]. However, PRM-based solutions are not well-suited for a graph-
structured data model, because of differences in the data as well as query model.

In a relational context, data is stored in tables corresponding to relations cap-
tured by a conceptual model. Further, relation names are explicitly given in
a query — stated in a FROM clause. Correspondingly, previous works [60, 162]
employ a PRM to model selection predicates through random variables of the
form Xg A, where R is a relational table and A is an attribute. For instance,
Xpersonname = ~Audrey” is a random variable capturing a selection on table
Person where name equals “Audrey”. Analogously, join predicates are modeled
as binary random variables that involve two explicitly specified tables.

8o



4.3 SELECTIVITY ESTIMATION OVER TEXT-RICH RDF GRAPHS

As opposed to that, graph-structured data, such as RDEF, can be partitioned
in different ways. For instance, there may be a table for every entity class, e.g.,
a Person table capturing different person attributes [168]. On the other hand,
a table might be constructed for every attribute and relation — leading to, e.g.,
a table for attribute name. The latter partitioning is also known as vertical parti-
tioning [9]. Thus, at query level, there is no explicit information about the tables
from which data shall be selected. Further, schema information may be queried
via class patterns, which are not supported in the relational setting.

Due to these differences, the following problems occur when storing graph
data in tables and applying a PRM-based approach:

e Sensitivity to Data Partitioning

A PRM assumes tables to be given. Thus, random variables are defined
and their parameters/dependencies are learned — all of which with regard
to these tables. Different partitioning schemes for data graphs, however,
yield different tables. Therefore, models learned from such tables might
largely vary — in terms of dependency structure as well as parameters. In
particular, [162] focuses on learning correlations between attributes, which
are comprised within one table, while assumptions are made to simplify
cross-table dependencies. While resulting in a very lightweight PRM, this
approach assumes that data is partitioned in tables comprising related
attributes. In the case of vertical partitioning, however, where every at-
tribute constitutes a table, there are no local dependencies to be learned
and cross-table dependencies are more important. Generally speaking, the
performance of PRM solutions is sensitive to the partitioning strategy. Our
template-based solution does not make any assumptions about data par-
titioning. Instead, a template model is learned from entity skeletons and
values from a data graph - independent from the way data is stored in
tables.

* Cross-Table Selection

Besides vertical partitioning, another common strategy for graph data par-
titioning is to construct a table for every class [168]. However, oftentimes
common attributes, such as name, are used to describe entities of different
types, e.g., Person and Location (see Figure 7). Given such a class-based
partitioning, the attribute pattern (p, name, “Audrey”) would select data
from different tables. Unfortunately, these tables may not be explicitly spec-
ified in a query. At the same time, this explicit specification is required by
PRM-based approaches. A possible solution is to maintain information to
find out in which tables name occurs and to construct corresponding ran-
dom variables, which refer to these different tables. Finally, one would
need to aggregate the probabilities obtained for these variables. In contrast,
with our template-based solution, only one template variable, X, qme, is
needed to support this predicate. A PRM-based approach, on the other
hand, requires consulting one variable and CPD for every table.
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e Multi-Table Joins

A similar problem occurs when dealing with joins. In a PRM context, a
join predicate requires data from two explicitly specified tables. Joins cor-
respond to relation patterns in our setting. That is, a relation may be seen
as referring to two foreign keys, which connect a source with a target entity.
However, depending on the data partitioning, processing such a join (rela-
tion pattern), might involve one or more unspecified tables. For instance,
given a relation pattern (p, bornIn, 1), predicate bornIn could join either
Person or Actress entities with Location instances, see Figure 7. Thus,
data for the entities to be joined might be located in different tables. In a
PRM one may handle this issue via using several random variables and ag-
gregating their probabilities. In contrast, using our approach, merely one
single CPD and random variable representing the given relation pattern is
required.

4.3.1.3 BN String Synopsis

Consider an attribute template X, with sample space Q(Xq). Then, for comput-
ing selectivity estimates for string patterns over attribute a, the sample space
Q(Xq) must capture all words and phrases, which occur in attribute a’s val-
ues. Oftentimes attribute values comprise long texts, resulting in a sample space
to quickly blow up. So, we propose to employ string synopses in order to compactly
represent large sample spaces of attribute templates.

More precisely, in order to compactly represent QQ,, which is a large set of
strings, we propose the use of string synopses such as Markov tables [35], his-
tograms [99], or n-gram synopses [164]. We generalize from existing works to
define the following class of string synopses:

»+ Definition 23: String Synopsis
A string synopsis for an attribute template X is a tuple 8(v, count).

¢ The synopsis function v maps elements in the bag of n-grams for at-
tribute a, denoted by B, to elements in a compact synopsis sample
space Q(Xq).

e A function count : Q(Xs) — IN returns the number of elements in
the “original” space B,, which are represented by a given synopsis
element in Q(Xg).

Above definition of a synopsis is generic, however, a well-suited synopsis func-
tion v should aim at three goals:

® The synopsis function v should lead to a small sample space, Q(X), since
a compact representation facilitates learning and keeps the CPD size small.

@ The synopsis function v should be most accurate. That is, each synopsis
element in O(X4) should represent only few n-grams from the original
space, Bg.
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® The synopsis function v should capture all “important” n-grams, while dis-
carding “not important” ones. From a conceptual point of view, discarded
n-grams are mapped to a bottom element L, which captures the probabil-
ity mass of all missed n-grams.

While we do not restrict our approach to a particular type of string synopsis,
existing work [164] has shown that (with regard to above goals) synopses based
on n-grams are well-suited for the task of selectivity estimation for the contains
operator on dictionaries. Notice, the contains operator has the same semantics as
our string patterns (see Definition 9, p. 23): it matches text values that contain a
given keyword. Thus, we follow this line of work and integrate n-gram synopses
into BN* for our evaluation systems in Section 4.4.

An n-gram synopsis works as follows [164]: For an attribute a in the data
graph, the synopsis function v projects a’s textual attribute values to their n-
gram representation B,.

% Example 32

The attribute comment has one attribute value in Figure 7. This value is
mapped by the synopsis function v to Beomment = {“Audrey”, “Hep-
burn”, “Audrey Hepburn”, ...}.

Then, the space B, is reduced by using a decision criterion to dictate which
n-grams in B, to include in a synopsis sample space Q(X). That is, the syn-
opsis space Q(X,) represents a subset of “important” n-grams. Note, n-gram
synopses are most accurate, since each synopsis element in Q(X,) represents
exactly one n-gram in B, — in contrast to, e.g., histograms.

Recent work has outlined several of such decision criteria [164]. One simplis-
tic strategy is to randomly sample n-grams from B,. Another approach is to con-
struct a top-k n-gram synopsis. For this, n-grams are extracted together with
their number of occurrences. Then, the k most frequent n-grams are included in
the synopsis space.

% Example 33

Let us continue Example 32. Given attribute comment, the count for n-
gram “Audrey” would be two, while “Hepburn” only occurs once. Thus,
the top-k n-gram synopsis would rank “Audrey” as more important than
“Hepburn”. In other words, the synopsis would rather discard the n-gram
“Hepburn” than the n-gram “Audrey”.

Further, as a more efficient top-k n-gram synopsis, a stratified Bloom filter syn-
opsis has been proposed [164]. This synopsis uses Bloom filters [27] as a heuristic
map that projects n-grams to their counts. This way, the stratified Bloom filter
synopsis can store more n-grams than the top-k n-gram synopsis. However, this
extended storage capacity comes at the cost of accuracy, since Bloom filters re-
semble a probabilistic data structure.
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4.3.2 BN™ Data Synopsis Construction

The BN™ data synopsis should compactly represent the joint distribution over tem-
plates, while capturing dependencies between structured data elements as well
as n-grams of textual attribute values.

However, large sample spaces and complex dependencies among templates
may lead to prohibitive synopsis size/selectivity estimation times. In fact, dur-
ing our experiments we observed sample space sizes up to 2 million n-grams
for some attributes. Such sample spaces translate to large CPDs, which in turn
make fast selectivity estimation at runtime impossible. Furthermore, dependen-
cies between templates aggravate this problem: the size of a CPD multiplies with
each parent a particular template is dependent on. We address these problems
by means of two strategies:

® Compact Sample Spaces
We utilize string synopses in order to compress an attribute template sam-
ple space into a manageable size.

@ Compact BN Structure
Instead of constructing a complex network structure featuring all possible
dependencies, we solely focus on the most important ones. That is, we aim
for an approximation of the joint distribution that shall limit the dimen-
sions of the CPDs, while preserving key dependencies.

In the following paragraphs, we will show in Algorithm 5 how string syn-
opses (as presented in the previous Section 4.3.1.3) can be integrated in the BN*
synopsis. Moreover, we introduce an structure learning approach, which solely
captures key dependencies in the data graph. Last, we discuss how BN parame-
ters can be learned.

4.3.2.1  Structure Learning

An efficient and well-known technique in the BN literature [41, 119] is based on
using a product approximation of rich structures via trees. These tree structures
guarantee that each template has at most one parent.

Recently, such an approximation has been adopted to PRMs for a relational set-
ting. The resulting “lightweight” structure has been shown to improve efficiency,
while still producing high-quality selectivity estimates [162].

We apply product approximation to a graph-structured setting, by imposing a
fixed structure of independences between template variables:

»+ Definition 24: BN* Fixed Network Structure

Given a data graph, the following conditional independences are assumed
to hold:

a. Two templates X7 and X, are conditionally independent given their par-
ents, if they do not share a common entity in their skeletons £; and &;.
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Note, in case either of these templates, say X;, captures a relation, we
use & = & U &} as the skeleton, i.e., the union of its source and target
entities

b. Each class template, X, has no parent.

c. Eachrelation template, X, is independent of any class template X, given
its parents.

We argue that the independences induced via the above fixed structure are
meaningful due to the following argumentation:

® We impose that strong correlations among templates only occur, if they
share some common entities. Intuitively speaking, for templates to be cor-
related, they need to “talk about” the same entities, see Definition 24-a.

@ We argue that there is a causal dependency between a class template and
an attribute template (see Definition 24-b/c). In other words, assigning an
entity to a given class causally affects the probability of its attribute values.

® Last, we impose a conditional independence between a class and a relation
template (see Definition 24-b/c). That is, we assume that class templates
influence attribute templates, which, in turn, influence relation templates.
This way, we have a lightweight “dependency chain”, which starts with the
class templates.

Exploiting the fixed structure, we can decompose the structure learning proce-
dure: First, we construct a disconnected graph, coined local part and denoted as
Tlocal, of the template model by learning dependencies between class/attribute
and attribute/attribute template pairs. Then, we simplify T1ocq1 Via an approxi-
mation T}, .- Last, we add relation templates to the structure J7 ., and obtain
a final template model 7.

For learning the local part, Tiocq1, We add weighted edges between each
class/attribute and attribute/attribute template pair, which is not independent
with respect to the fixed structure assumption in Definition 24. That is, each pair
must have an “overlap” in their skeletons — the templates share one or more
common entities.

% Example 34

In Figure 25-a, we add an edge Xyovie — Xtitie for the Movie/title
template pair, because their skeletons are identical:
Emovie = Etitle = {M1}

In order to calculate the dependency weight between two templates, we use
the mutual information quantity, denoted as mi, which represents the “amount of
information shared” between two templates X1, X;:

mi(Xq,X>2) : Z Z P(x1,%2) log< ((X;'TZ))> (14a)

x1€ Q1 x26€ 0>,
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with Q; = Q(X;) being the sample space of template X;. The maximum likeli-
hood estimation of P(X; = x;) is:

v

M [x]
N

P(Xi =xi) = (14b)
with N as normalization factor. M is a sufficient statistic that counts entities in
the skeleton of X; having x; as value:

Mi[x{] = Z 1{Xi(e) = x¢} (14¢)

ec &y

Note, 1 is an indicator function, i.e., it returns 1 if its expression is true, O other-
wise. Similarly, the joint distribution of X7 and X is:

M 2[x1,%2]

P(Xy =x1, X2 =x2) = N

(14d)
with N as normalization factor and 7\711,2 [x1,x2] as count of entities having both
values:

M 2[x1,%2] = Z 1{X1(e) =x1,X2(e) = x2} (14€)
ec&Né,

Once the weighted edges have been added to the local parts Ticq1, the model
comprises all possible dependencies between class templates and attribute tem-
plates according to our fixed structure in Definition 24. Then, we capture only
the most important correlations in T14cq1 by reducing it to its maximum-spanning

forest.3° This yields a much simpler structure: 7, ;-

% Example 35

For our running example, T}, ., is depicted in Figure 25-a and its four
maximum-spanning trees are highlighted in different colors. For instance,
the red maximum-spanning tree contains three edges (dependencies):

{xmovie - xtitle/ xmovie — fxyearr xmovie — xruting}

Intuitively speaking, each maximum-spanning tree describes dependen-
cies of the same entities — as dedicated by Definition 24-a. For example,
the above maximum-spanning tree captures dependencies of Movie enti-
ties.

Due to the fixed structure restriction, the maximum-spanning forest algorithm
may find no solution. In such cases, we iteratively remove the weakest attribute-
to-attribute edge, until a spanning tree can be obtained.

3°In this work, a maximum-spanning forest is defined as a set of spanning trees — one for each
component in Tiocq1 [148].
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Algorithmus 5 : Construction of the BN* data synopsis.

)

N

SN U s W

10
11
12
13
14
15
16

17
18

19

Input :Templates X = {Xa}vaece, ¥{Xitvrer, 8{Xcveeve,
entity skeletons € ={€q}vace, W{€rlvrer, Wi€clveeve,
and synopsis size p.

Output : BN* data synopsis 7.

begin

Tlocal — Q)

QX)) =Q(X.)={T,F} forall cand r

Q(Xq) = InitializeSynopsis(a, p) for all a

foreach X, € X do

foreach non-independent X, to X, w.r.t. Definition 24 do

t Add (Xc miXeXa) Xa) to Tlocal

foreach non-independent X,/ to X, w.r.t. Definition 24 do

(X1, Xa
t Add (Xa/ M Xa) to Tlocal
Tlocal & MAX-SPANNING-FOREST (‘J’local)

T4 Tocar // initialize T
foreach X, € X do
ngest =argmaxX, c source(r) mi(Xq, Xr)
ngSt =argmax, c tqrget(r) mi(Xa, Xs)
if ngSt # NULL then

| Add (X5t = X;) to T

if X3¢t £ NULL then
| Add (X5t = X;) to T

return T

% Example 36

Continuing Example 35: While the orange and blue maximum-spanning
trees have been comprised in one component in Tiocq1, We needed to re-
move the weighted edges between Xname and Xcomment, which led to

two trees in the maximum-spanning forest 77, ., see Figure 25-a.

Overall, the construction of 7, 4, results in a dynamic partitioning of the dependen-

cies, based on information contained in entity skeletons.

Next, we integrate relation templates in the maximum-spanning forest 77,

ocal"

Mutual information is used to quantify dependencies between relation templates
and attribute templates. For every relation template, its mutual information with
regard to all possible (with regard to Definition 24, p. 84) source and target
attribute templates is computed. Finally, given a relation template, the two at-
tribute templates that exhibit the highest mutual information are used as parents
of that relation template.

87



4.3 SELECTIVITY ESTIMATION OVER TEXT-RICH RDF GRAPHS

% Example 37

In Figure 25-a, the relation template Xstqrring connects two maximum-
spanning trees (red and blue) from T} ., via two attribute templates:
Xtitle and Xy ame- More specifically, relation template X qrring has two
parents, Xiit1e and Xy ame, which exhibit the highest mutual information
among all possible parent templates.

Algorithm 5 summarizes the entire structure learning procedure. The algo-
rithm takes all relation/attribute/class templates, their entity skeletons, and the
string synopsis size parameter p as input. Then, we initialize the sample spaces
of all templates in Lines 3-4.

In particular, initializing the sample space for an attribute template requires
string synopsis construction for the associated attribute. Note, the string syn-
opsis construction algorithm depends on the employed string synopsis. We dis-
cussed the construction of n-gram string synopses in Section 4.3.1.3.

We learn the local template model T15cq1 On Lines 5-9, by adding weighted
edges between all possible attribute/attribute and class/attribute template pairs.
On Line 10, we approximate Ti,cq1 by computing the maximum-spanning forest
and adding its result, T} .., to an intermediate model. Relation templates are
added as connections between maximum-spanning trees in Ty, ., on Lines 12-18
— resulting in the BN synopsis, 7.

Constructing a BN™ data synopsis by means of Algorithm 5 leads to a valid
template-based BN:

** Theorem 4

The template-based BN* synopsis constructed according to Algorithm 5 is
valid, i.e., acyclic.

Sketch of Proof

A local model Ticq1 is reduced to a forest of trees, T7,.,, vVia a maximal
spanning tree algorithm. Thus, every tree in J7 . ., represents a valid acyclic
fragment of T1ocq1. Then, we connect these tree structures by incrementally
adding edges representing relation templates, see Algorithm 5 on Lines 12-
18. However, a relation template must not have children. Thus, no cycles can
be introduced at this step g

4.3.2.2  Parameter Learning

After having built a BN™ network structure, we may now learn its model param-
eters, i.e., conditional probability distributions. As done in recent works [60, 162],
learning CPDs can be achieved based on the sufficient statistic M in Equation 14.
More precisely, according to Bayes rule it holds that:

P(X;, X;5)

P(X;) (15)

P(X; | X;) =
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So, we can compute P(X;, X;) and P(X;), as we did for obtaining the mutual
information in Equation 14a. Note, in case of a relation template, say Xi, we need
to estimate a distribution conditioned on two other templates (X; and Xy):

P(X; | X5, Xy)

This can be achieved by extending the M function to capture three templates:
M 23[x1,%2,%3]. For an efficient parameter learning, we employ two sorts of
optimizations.

@ We use caching strategies for keeping frequently needed M statistics in
memory. In fact, caching can be applied to store results already produced
during structure learning.

% Example 38

For example, sufficient statistics for the template Xn10vie are needed
more than once, because Xniovie is a parent of Xiitte, Xyear, and
Xrating- S0, we can cache sufficient statistics for Xpovie, thereby
omitting additional computations.

@ We can formulate M expressions (see Equation 14) as queries to be issued
at a database. For instance, l\u/lp],pz[xhxz] can be calculated based on the
cardinality of a result set for query Q = {(s,p1,x1), (s, p2,%2)}, with X,
being the template for p;. This way, the database handles query optimiza-
tions, caching of results for frequently computed query fragments etc.

4.3.2.3 Maintenance

Data on the Web is subject to frequent changes. We handle these evolving triples
in two ways:

On the one hand, changes may result in minor modifications of entity skele-
tons and sample spaces. As a consequence, some model parameters may no
longer be accurate enough for effective selectivity estimations. Such affected
CPDs should be recomputed, given an updated data graph. For minor changes
such a reestimation, however, does not influence other parameters and/or the
structure. So, these computations may be done incrementally. In fact, while
model parameters might have to be frequently recomputed, the network struc-
ture is commonly much more “stable”.

On the other hand, given drastic changes in a data graph, its structure as well
as parameters has to be recomputed. Our experiments show that, even in this
case, learning is feasible within a short amount of time. For our datasets, we
observed that computation of the entire BN* model, including string synopses,
took at most 3 hours.

4.3.3 Selectivity Estimation

4.3.3.1  Query Ground BN

In order to employ our BN* data synopsis for selectivity estimation, we have to
instantiate its templates specifically for the given query — leading to ground BN.
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To be precise, we do not form a standard ground BN, since this would solely
capture entities as random variable assignments. Instead, we form a query ground
BN featuring random variables that have sets of entities as assignments, which
are result bindings to query variables.

We instantiate templates in the BN* data synopsis as follows:

e For each relation pattern (s, r,0) and class pattern (s, type,c) in Q, we in-
stantiate a random variable X, (s,0) = T and X (s) = T, respectively.

e For every string pattern (s, a, w), its keyword w is mapped to a correspond-
ing element in our synopsis, v(w), such that the resulting instantiated ran-
dom variable is: Xq(s) = v(w).

e Last, for an attribute pattern (s, a,0) we instantiate the random variable:
Xa(s) =o.

It is important to note that any template in the BN* synopsis, which is not
needed for a given query, is marginalized out. Moreover, the same template may
be instantiated multiple times — as required for the query.

% Example 39

In our running example, we instantiate one random variable for each
query pattern, as shown in Figure 25-b. In particular, we need two instan-
tiations of the template Xy, qme, since the query has two triple patterns
with predicate name. Templates that are not relevant for the query, e.g.,
Xcomment, are marginalized out.

Given a query Q with query graph GQ = (VQ,EQ), we compute the joint
probability of the associated query ground BN to estimate Q’s selectivity:

P(Q)~vy-P A Xe(s,0)=T N Xc(s)=T
(s,r,0) € EQ (s,type,c) € EQ
rel, ceVe

A Xals) =v(w) /A Xals)=o | (16a)

(s,a,w) € EQ (s,a,0) € €Q
acly, weVv? a€ely, 0eVl
where
1 . .
Y= is a correction factor. (16b)

[ count(v(w))
w e V%
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% Example g0

Coming back to Example 39, we compute P(Q) as:

P(Q) = v P(Xmovie(Mm) =T A Xrating(m) = 8.0
Xtitte(m) = v(“Holiday”) /A Xstarring(m/p) =TA
Xperson(P) =T A Xname(p) = v(“Audrey Hepburn”) A
Xbornin(P, 1) =T A Xname(l) = v(”Belgium”))

The correction factor y is necessary, because v(w) may not only capture the
probability mass for keyword w, but could also include other words (phrases).
Consider a histogram synopsis. Here, “Wiliam” and “Wyler” may be represented
by a single bucket [Wi—W?qy]. Then, a query pattern (p, name, “Wiliam” ) would
be translated to Xnqame(p) = [Wi—Wyl. However, the bucket [Wi— Wy] not only
comprises “Wiliam”, but also “Wyler”. Thus, its probability must by “corrected”.
Note, such a correction implies a uniform distribution among all words (phrases),
which are captured by a single synopsis element.

For the above inferencing problem (Equation 16), each instantiated random
variable reuses the CPD from its template. In the simplest case, inferencing
for P(Q) could be performed via “brute-force” marginalization. However, as
marginalization is expensive, we employ belief propagation allowing an approx-
imation, which operates on a junction tree representation of the ground BN [162].

Further, we adopt the standard inferencing task to deal with the following
problems that arise in our setting: multiple value assignments and missing synopsis
values.

4.3.3.2  Multiple Value Assignments

Oftentimes a string synopsis restricts the length of its phrases due to a limited
amount of storage space. If a query pattern contains a phrase as keyword, which
is longer than this threshold, a simple strategy is to break that phrase into multi-
ple smaller phrases. For instance, if a synopsis only allows 1-grams, a keyword
phrase with k words must be split into k 1-grams. In such a case, instantiated
random variables (referring to the same query variable) have multiple values.

% Example 41

Let’s assume we have an n-gram synopsis, which allows only 1-grams.
Then, the random variable X, gme (p) in Figure 25-b would have two assign-
ments (“Audrey” and “Hepburn”), because the query keyword “Audrey
Hepburn” is too long.

This problem can be addressed through an aggregation function. We use a
stochastic mode aggregation, which uses all values as evidence, but weights each
one with its frequency within the query [155].
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% Example 42

Continuing the above Example 41, P(Xpornin = T | Xname(p) = “Audrey
Hepburn”) is computed via stochastic mode aggregation as:

P(Xbornln =T | Xname (p) = ”Audrey Hepburn”) ~
1

E : P(Xbornln =T | Xname (P) == ”Audrey”) +

1

5 P(Xbornin =T | Xname(p) = “Hepburn”)
This is because, the probability for each assignment of Xy qme(p) is

weighted with J, since both values (“Audrey” and “Hepburn”) occur once

in the query.

4.3.3.3 Missing Synopsis Values

There are synopses, such as the top-k n-gram, for which some query keywords
do not have a corresponding synopsis element. That is, the synopsis discarded
that particular word (phrase) during construction for space reasons. The prob-
ability for these “missing” keywords cannot be estimated by means of the BN*
synopsis, since such keywords are not included in any sample space. To deal
with this problem, a string pattern featuring a missing keywords is assumed to
be independent from the remainder of the query.

Then, its probability can be estimated based on a heuristic. We employ the left-
backoff strategy, which finds the longest known n-gram that is a prefix (postfix)
of the missing keyword and estimates its probability based on statistics for that
prefix (postfix) [164].

4.4 EVALUATION

In the following, we discuss the experiments, which we preformed to analyze the
accuracy (effectiveness) and the time performance (efficiency) of our BN* selectivity
estimation. As baseline, we used an approach that assumes independence among
string patterns as well as between them and structured query patterns.

Overall, our results suggest that the baseline yields very low accuracy, when
dependencies between query patterns exist. For IMDB, we observed such strong
correlations in the data. Here, given we employ the most accurate string synopsis
(stratified bloom filters), BN™ improved the baseline’s accuracy by 93% in terms
of multiplicative error. In other words, BN™ achieved a decrease of error by a
factor of 13.6. With respect to efficiency, we found that the BN inferencing over-
head was actually negligible. The main factor driving computation time was the
string synopsis that we employed. When both approaches, BN* and the baseline,
used the same type of string synopsis, their performance was comparable.
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IMDB DBLP

# Triples 7,310,190 11,014,618
# Entities 1,673,097 2,395,467
# 1-grams 7,841,347 25,540,172

# Attributes 11 21
# Relations 8 18
# Classes 6 18

Table 1: Dataset statistics for DBLP and IMDB benchmarks.

# Relation Patterns | # String Patterns
0 1 2-4 1-2 3 4-7
# Queries | 33 44 23 28 35 26
# Class Patterns # Total Patterns
1T 2 34 2-3 46 7-11
# Queries | 49 30 21 28 31 41

Table 2: Query statistics depicting the number of relation patterns, string patterns, and
class patterns, which are contained in our query load.

4.4.1  Evaluation Setting

Data. We used two real-world datasets: DBLP comprising computer science
bibliographies and IMDB holding information from the movie domain. Table 1
provides basic statistics for both datasets. DBLP as well as IMDB hold text-rich
attributes like name, label, or info.

We employed n-gram string synopses as presented in [164]. However, we only
used T-grams in our experiments, as larger values for n resulted in synopses that
exceed our memory space limit. Overall, we extracted 25,540,172 and 7, 841,347
1-grams from DBLP and IMDB.

We chose these two datasets, as in one of them (IMDB) textual attribute val-
ues strongly correlate among each other and with structured data. In particu-
lar, we noticed strong dependencies during structure learning between values
of attributes such as label and info. Hence, IMDB is appropriate to test the
hypothesis: assuming independence hurts the quality of selectivity estimates, given a
dataset exhibits correlations. On the other hand, we employed DBLP, which showed
almost no such correlations. Here, we expect accuracy differences to be less sig-
nificant. Comparing the accuracy performances across these two datasets will
illustrate the relative benefit of our solution.

Queries. We employed queries that have been used for keyword search evalu-
ation [42, 114]. These queries capture information needs expressed as keywords.
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Based on query keywords and their structured results, we constructed corre-
sponding graph patterns, comprising string, class, and relation patterns. In par-
ticular, we generated 54 DBLP queries based on [114]. Additionally, 46 queries
were constructed for IMDB, based on a recent keyword search benchmark [42].
We omitted 4 queries from [42], because they could not be translated to our
query model. Our workload includes queries containing 2-11 patterns in total:
0-4 relation patterns, 1-7 string patterns, and 1-4 class patterns, see Table 2.

Note, since we extracted 1-grams only, every string pattern with a phrase of
length n is decomposed into n string patterns. So, each string pattern captures
exactly one word.

In our subsequent analysis, we rely on the number of patterns as an indicator
for query complexity. We expect queries with a larger number of patterns to
be more “difficult” in terms of both accuracy and efficiency. That is, accurate
estimates may be harder to obtain and require additional computation.

However, most crucial are the dependencies between query patterns: we ob-
served that there are more correlated patterns in IMDB, e.g., info (class Movie)
and title (class Movie). Queries in DBLP, on the other hand, often include, e.g.,
name (class Author) and label (class Title) patterns, for which we could not
measure any significant correlations.

Table 2 gives an overview of the query load, while example queries are given
in Listing 6. All queries can be found in our appendix, see Section A.2.

Listing 6: Example queries for IMDB and DBLP benchmark. Variables are pink, key-
words green, and classes as well as predicates are black.

1 // IMDB query // DBLP query

2 <x,type,Title> <x, label, "clustering">
<x,title,"star"> <x, label, "mining">

1 <x,title, "trek"> <x,year,"2005">
<x,cast_info,c> <x,type,Article>

6 <c,type,Cast_info> <x,author,y>

7 <c,role, r> <y, type,Person>

8 <r,name, rn> <y,name, "nikos">

9 <r, type, Char_name>
10 <c,person,p>

11 <p, type,Person>

12 <p,name, "brent">
13 <p,name, "spiner">

Systems. As string synopses we employed strategies proposed in [164]. That
is, we obtained a random sample of 1-grams, top-k 1-grams, and stratified bloom
filters (sbf) on 1-grams.

For selectivity estimating of the entire query, string patterns were integrated
via: (1) independence (ind) or (2) conditional independence (bn) assumption. In the
former case (independence assumption), selectivity of string and structured query
patterns was estimated using string synopses and histograms. More precisely,
the selectivity of structured query patterns was estimated similar to [87]. In
the latter case (conditional independence assumption), selectivity estimation was
performed using our BN™ synopsis.
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Combining string synopses with the independence/conditional independence
assumption resulted in six different systems: indgsample, indiop-k, and indgps rely
on the independence assumption, and bngampie, bNiop-k as well as bngys are BN™*
approaches.

Synopsis Size. We experimented with synopses of various sizes. The key fac-
tor driving the overall synopsis size was the employed string synopsis. The
string synopsis determined the size of the (conditional) probability distribution
for ind, (bn.), which was the most costly type of statistic. Other statistics, e.g.,
the BN* network structure, were negligible in terms of space.

We varied the number of 1-grams comprised by the top-k and sample syn-
opsis, i.e., #1-grams per attribute € {0.5K, 1K, 5K, 10K}. Regarding the sbf string
synopsis, we captured up to {2.5K, 5K, 25K, 50K} of the most frequent 1-grams for
each attribute and varied the bloom filter sizes. This resulted in similar memory
requirements for the sbf string synopsis. All systems loaded their synopsis into
main memory.

Opverall, different string synopses (sizes) yielded different systems with {2, 4,
20, 40} MByte of memory consumption, while no additional hard disk space was
required. We observed that, while selectivity estimations become more accurate
with greater size, no further improvements could be achieved, using synopses
> 20 MByte. In order to allow for the best accuracy and to illustrate this conver-
gence, we report results from synopses with up to 40 MByte.

Implementation and Offline Learning.  For bn, systems, we used the BN™ con-
struction procedure, as presented in Algorithm 5. That is, we learned a model
structure, capturing the most important correlations only. Then, we calculated
model parameters (CPDs) based on sufficient statistics. String synopsis con-
struction could be done efficiently: each synopsis, including sbf-based synopses,
could be computed in less than one hour. Structure and parameter learning for
bn, combined took in the worst case up to three hours. Inferencing needed by
our systems was done using a Junction tree algorithm [162].

As bn, and ind, systems rely on the same probability distributions for string
patterns, parameters were shared. That is, for ind, approaches we did not need
a BN* model structure, but merely kept its marginalized parameters. Further,
histograms for ind, comprising relation and class statistics were constructed
similar to [87]. Model structure (histograms) as well as parameters for bn, (ind.)
were stored in a key-value store outside the database system — both were loaded
into memory at start-up. Depending on the synopsis size loading took up to 3s.

We implemented all systems and algorithms using Java 6. Experiments were
run on a Linux server with two Intel Xeon 5140 CPUs (each with 2 cores at
2.33GHz), 48GB RAM (with 16GB assigned to the JVM), and a RAID10 with IBM
SAS 148GB 10K rpm disks. Before each query execution all operating system
caches were cleared. The presented values are averages collected over five runs.
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Figure 26: Evaluation results for DBLP and IMDB. All y-axes are in logarithmic scale.
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4.4.2 Evaluation Results: Effectiveness

As metric for the selectivity estimation accuracy, we employed the multiplicative
error (denoted as me), which was also used in previous work [48]. This error
metric is defined as:

~ max{sel(Q),selq(Q)}

me(Q) = min{sel(Q), sel (Q)} (17)

with sel(Q) and sely(Q) as exact and approximated selectivity for Q. Intu-
itively, the multiplicative error represents the factor at which sel,(Q) under- or
overestimates sel(Q).

Overall Results.  Figure 26-a, -b (-e, -f) depict the multiplicative error for DBLP
(IMDB). Best accuracy results were achieved by ind, and bn, having a size > 20
MByte, because these synopses had sufficient memory space to capture most
query keywords.

Further, the results confirmed our conjecture that the degree of data correla-
tions has a significant impact on the accuracy differences between ind, and bn.,
approaches. That is, a high degree of correlation in the IMDB dataset translated
to large accuracy differences. In contrast, the improvement that bn, could achieve
over the baseline was small for DBLP.

Last, comparing ind, (bn.) systems in terms of their string synopsis, we found
that sampling-based approaches were outperformed by systems using top-k
1-gram synopses. Such systems, in turn, performed worse than sbf-based ap-
proaches. In fact, when using samples, the bngample System achieved results simi-
lar to those from indsample- This behavior is due to the fact that many keywords
in query patterns were “missed” in the sample synopses. In these cases, both
approaches rely on the same heuristic (leftbackoff strategy [164]) to calculate the
probability for such keywords, which translates to large misestimates.

Synopsis Size. Figure 26-a and -e depict estimation errors vs. different synop-
sis sizes for DBLP and IMDB. Given a small synopsis (< 4 MByte), we observed
that top-k and especially sample-based systems performed poorly, while accu-
racy for sbf-based approaches was fairly stable. With increasing synopsis size
(€ [4,20] MByte), the performance of top-k 1-gram approaches converged to the
accurate estimations, which were achieved by sbf-based systems. Differences in
estimation quality can be explained by missed query keywords. More precisely,
when missing a keyword, approaches have to rely on inaccurate heuristics for
probability computation. The good and stable performance of sbf-based systems
suggests that using stratified bloom filters is an effective strategy, which allows
for an accurate estimation of most query 1-grams.

Data Correlations. Results obtained for IMDB and DBLP largely varied. For
the IMDB dataset, bng,¢ could reduce errors of the indg,¢ approach by 93%, while
improvements were much smaller given DBLP. For instance, for DBLP queries
with string pattern name and label, there are no significant correlations in our
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BN*. Thus, the probabilities obtained by bn, were almost identical to the ones
from ind.. However, while ind, led to fairly good estimates for the overall query
load on DBLP, we could achieve more accurate selectivity computations via bn,
for specific “correlated” queries. For instance, for DBLP query Q1 we could ap-
proximate a 10% better selectivity estimation.

Query Size. Figure 26-b and -f show the multiplicative error for a varying
number of query patterns. We noticed the error to increase in the number of
patterns. This effect is expected, as more query patterns (hence more “difficult”
queries) lead to an increasingly error-prone probability estimation.

An interesting observation is that ind, outperformed bn, for some queries —
see IMDB queries with 5 patterns and DBLP queries with 4 patterns (Figure 26-
b and -f). For instance, given IMDB query Q28, indiyp-k achieved 13% better
results than bny, . In such cases, string query patterns were translated to mul-
tiple values (1-grams) that are assigned to one single random variable. For pro-
cessing these multiple assignments, bn, employed value aggregation. However,
the stochastic mode aggregation led to over-/underestimations for these queries
due to inaccurate evidence weights. On the other hand, ind. systems could ap-
proximate the probability simply via independence assumption.

Overall, we observed that while stochastic mode aggregation resulted in worse
estimates for some queries, it led to better results on average.

4.4.3 Evaluation Results: Efficiency

During the second part of the experiments, we studied efficiency aspects of selec-
tivity estimation with regard to varying synopsis sizes (Figure 26-c and -g) and
query complexities (Figure 26-d and -h).

For all systems, our reported times represent solely the inference task (com-
putation of Equation 16), while times for model construction and loading were
omitted.

Overall Results. An important observation is that BN" inferencing did not
have a decisive impact on the overall performance. Instead, the employed string
synopsis was a key factor driving the efficiency: systems with sample-based syn-
opses, bngample and indgmple, Were faster than approaches relying on top-k 1-
gram synopses, which in turn outperformed sbf-based systems, bng,s and indgps.

In fact, when employing the same string synopsis, bn, approaches led to com-
putation times comparable to those from ind. This can be explained with the
lightweight model structure used by bn., which only captures the most impor-
tant correlations. Further, our structure contained many tree-shaped parts, which
could be processed efficiently through Junction tree inferencing.

Interestingly, we noticed ind, systems to be even slower than bn,. in some cases.
We explain this with: (1) the computational overhead of histogram-based estima-
tion of structured query constraints for ind,, and (2) with runtime advantages of
bn, due to stochastic aggregation. That is, fewer probability computations were
performed by bn,, because through value aggregation, the system could process
several string patterns via one single inference task. On the other hand, ind. ap-
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proaches needed to compute the probability for each string pattern individually.
For instance, bn, needed 30% less computation time compared to ind, for Q33
in the IMDB query load. This is because Q33 contains seven info string patterns
that were aggregated by bn, —leading to one random variable assignment.

String Synopses. Compared to other synopses, the time savings achieved by
sample-based systems were possible due to missing 1-grams. However, such
savings came at the expense of accuracy. If a particular query keyword is not
included in a synopsis, heuristics are employed. In this case, the probability
computation is done without the use of (conditional) probability distributions.
Thus, no time-consuming marginalization was needed. Further, the missing 1-
gram could not be added to the model “as evidence” for further inferencing.
Sbf-based systems performed worst. We explain this behavior with the com-
putational overhead introduced by bloom filters. Further, as sbf synopses com-
prised a larger number of 1-grams, marginalization was more expensive. Note,
with an increasing number of 1-grams to be managed, the performance of sample-
based and top-k systems converged to the one exhibited by sbf-based approaches.

Synopsis Size. Figure 26-c and -g show selectivity estimation time vs. synop-
sis size. As expected, larger string synopses translated to bigger (conditional)
probability distributions and hence, resulted in longer inference times.

Sbf-based approaches are an exception, as they provided a stable performance
for different synopsis sizes. This constant estimation time was due to the fact
that computational costs for sbf systems are largely determined by their bloom
filters. In fact, we observed that costs only marginally depended on the overall
number 1-grams.

Query Size. Figure 26-d and -h show that selectivity estimation times increase
with query size. This is because each additional query pattern translated to more
inferencing iterations and probability lookups that were needed by bn, and ind.
systems.

4.5 RELATED WORK

For better effectiveness (accuracy), selectivity estimation approaches aim to avoid
the uniform distribution assumption, the predicate value independence assump-
tion, and the join predicate independence assumption (see Section 4.1.1).

One line of research employs table-level data synopses, i.e., data reduction tech-
niques that capture joint distributions of attribute values within a table. Previous
approaches utilize, e.g., histograms [48, 135] or wavelets [118]. Such table-level
approaches are suitable for addressing the uniform distribution assumption and
the predicate value independence assumption. However, the join independence
assumptions can not be omitted, because table-level synopses are restricted to a
single table and do not incorporate foreign-key relations.

Another line of research is concerned with schema-level synopses. Here, a syn-
opsis does not only capture a single table, but also related tables, which are
connected via foreign keys. Approaches based on graphical models [60, 162],
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graph synopses [154], or join samples [10] have been proposed. Such solutions
can avoid all three independence assumptions and thereby allow for effective
selectivity estimates.

Our approach falls into this category. In fact, closest to our work are solutions
based on PRMs [60, 162]. However, PRM-based approaches focus on relational
data. We discussed in detail why PRMs are not directly applicable to schemaless
Web data, see Section 4.3.1.2.

To summarize this discussion: A key problem is that PRM-based approaches
assume queries with selection and join patterns, which are evaluated against
explicitly specified tables. Queries in our setting, however, may not specify ta-
bles from which data shall be selected. In general, the effectiveness of PRM sys-
tems is greatly determined by the chosen data partitioning scheme. Addressing
these shortcomings, we rely on a different template-based representation of BNs,
which is well-suited for modeling probabilistic dependencies in Web data.

Further, no previous approach supports query patterns having large domains
of textual values. In fact, some authors pointed out that the number of nominal
values can be limited via clustering or, if possible, using feature hierarchies [60].
However, there is no work studying how clustering techniques may be integrated
into a selectivity estimation framework, or how it may affect estimation effective-
ness and efficiency. In this work, we build upon string synopses and show how
they can be used in a template-based BN.

Another direction of related work is concerned with estimating the selectiv-
ity of string patterns [35, 98, 99, 107, 164]. Some approaches aim at substring
and fuzzy string matching [35, 98, 107], while other systems target extraction
operators, e.g., regular expression or dictionary-based operators [150, 164]. How-
ever, these works do not consider dependencies among multiple string patterns
and/or structured patterns, which are evaluated against structured data. In
this chapter, we showed that string synopses can be integrated into a template-
based BN to deal with a conjunction of string/structured query patterns (hybrid
queries).

In summary, our approach represents a novel schema-level synopsis, which is capable
of handling hybrid queries over Web data.

4.6 SUMMARY

We targeted Research Question 2 in this chapter:

# Research Question 2

How to allow for efficient and effective selectivity estimates on hybrid,
schemaless Web data?

For this complex question, we validated two hypotheses: Hypothesis 3 and
Hypothesis 4.
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7 Hypothesis 3

A template-based representation of BNs allows for effective and efficient
selectivity estimation for graph-structured RDF data.

For the above hypothesis, we presented a novel template-based BN, coined
BN™, which is well-suited for Web data. The BN* data synopsis resembles a
schema-level data synopsis, which omits all three independence assumptions.
At the same time, by means of our structure learning procedure as well as our
fixed structure assumption, the BN* template model adheres to a lightweight
network structure, which only captures key dependencies in the data.

7 Hypothesis 4

String synopses can be integrated in template-based BNs and allow for ef-
fective and efficient selectivity estimation for text-rich RDF data.

Since Web data oftentimes contains text-rich attributes, the BN* synopsis must
capture dependencies between/among those unstructured data elements and
structured data elements. In order to efficiently capture such dependencies, we
proposed the use of string synopses in the BN* synopsis — allowing to compress
its sample spaces. This way, large samples spaces containing text values could
be represented in a compact manner.

To validate effectiveness and efficiency of selectivity estimation based on our
BN* data synopsis, we conducted experiments on real-world datasets. In fact,
we could empirically show that, given there are dependencies between query
patterns and text values, selectivity estimation effectiveness can be greatly im-
proved. Moreover, we observed that this increased effectiveness does not come
at the expense of efficiency, as the inferencing needed to consider the dependen-
cies required only negligible overhead.

By means of our novel selectivity estimation, query optimizers can construct
physical queries, which comprise rank-aware/approximate join operator over
Web data — as proposed in this thesis. While we introduced a rank-aware join
operator for distributed Web data in Chapter 3, we will present approximate
join operators as well as a query processing pipeline for incremental query pro-
cessing in the next chapter. Note that our approximate join operator not only
requires selectivity estimation for integration in a physical query plan, but also
for its internal join operation.
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Context of this Chapter. In this chapter, we introduce two approaches for
approximate query processing over Web data. These approaches allow systems to
trade off result accuracy and result completeness for result computation time. Moreover,
our approaches are complementary to each other. Thus, a system may employ both
works together. The following chapter is split into two main parts:

@ On the one hand, we propose an approach for incremental and approxi-
mate query processing over Web data in Section 5.2. For this, we present
a novel pipeline of operations, which allows to process queries incrementally.
In particular, our pipeline consists of multiple join operators and data syn-
opses, which are well-suited for schemaless Web data. This section is based
on our previous publication [1].

In contrast to our LD-PBR] operator that was discussed in Chapter 3, our
incremental query processing pipeline does not consider result ranking.
However, intermediate query results in our pipeline can be reported at
any point in time. This way, large result sets can be processed efficiently,
since systems have the possibility to answer queries quickly with initial
results. In other words, systems can decide with what degree of accuracy
to compute query results — as dictated by the given information need.

Additionally, query optimization techniques, which exploit our BN™ selec-
tivity estimation work (Chapter 4), can be used to optimize queries issued
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Figure 27: Classification of our approximate top-k join processing approach in Section 5.3.
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Problem 1, Sect. 1.1.2
Process queries such that top-ranked results
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Problem 2, Sect. 1.1.2
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Figure 28:

Overview: Approximate incremental approach in Section 5.2 versus approxi-
mate rank-aware approach in Section 5.3.

throughout the incremental query processing pipeline. In particular, we
start our pipeline by computing entity queries, which oftentimes may re-
semble hybrid queries. Here, our BN* synopsis can provide effective selec-
tivity estimates, thereby allowing the query optimizer to construct optimal
physical query plans.

O On

the other hand, we present an approximate top-k join processing ap-

proach in Section 5.3, which is based on our publication [4]. We highlight
the classification of this rank-aware join operator in Figure 27. Recall, the
dimensions for this classification have been introduced in Section 2.3.1.

As done for the LD-PBR] operator, we target the join top-k prob-
lem. More precisely, we introduce a new approximate top-k operator,
which can be integrated in physical query plans. In particular, we can
employ our BN* selectivity estimation approach for the necessary cost
estimates of the query optimizer.

Further, we require join inputs to accessible via sorted accesses. In
contrast to the LD-PBR] operator, we do not need a specific sorted
access implementation. In fact, given distributed Web data, we can
employ our access plans presented in Chapter 3.

As before in Chapter 3, we need the ranking function to be monotonic.

Most importantly, contrary to the LD-PBR] operator, our join operator
approximates the top-k results. That is, we compute false positive and
false negative top-k results, respectively.

Selectivity estimation, e.g., realized by the BN* selectivity estimation ap-
proach, is not only essential for the query optimizer, but also for the ac-
tual approximate top-k query processing. This is because, our approximate
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Figure 29: Generic approximate query processing approach [96, 112]. The data synopsis
is constructed at indexing time and compactly summarizes the data. At query
time, an approximation algorithm exploits the synopsis in order to compute
approximate results for a given query.

top-k join operator exploits selectivity estimates, in order to judge if a par-
tial binding will lead to a complete binding. Partial bindings, which have
a low probability of leading to a complete binding, will be pruned during
query processing.

Figure 28 illustrates the relation between our incremental query processing in
Section 5.2 versus our approximate top-k query processing in Section 5.3. The
first approach is complementary to the second approach. More specifically, our
system in Section 5.2 computes false positive and false negative query results,
respectively. That is, some query results may be not valid. In contrast, our ap-
proximate top-k query processing always computes valid query results. However,
those results may be false positive or false negative top-k results. That is, some
reported approximated top-k results may not belong to the exact top-k results.

Outline. We first give a brief motivation for approximate query processing in
Section 5.1. The remainder of this chapter comprises two parts:

In Section 5.2, we discuss a system for incremental and approximate query
processing. We outline research questions in Section 5.2.2. We propose our novel
incremental query processing pipeline in Section 5.2.3. We discuss the evaluation
results in Section 5.2.4. In Section 5.2.5, we outline the related work. Last, we
summarize our findings in Section 5.2.6.

In Section 5.3, we introduce our new approach for approximate top-k join
processing. More specifically, we discuss our research questions in Section 5.3.2.
Our approximate top-k query processing approach is presented in Section 5.3.3.
In Section 5.3.4, we discuss the evaluation. Further, we outline related works in
Section 5.3.5. Finally, we conclude with Section 5.3.6.

5.1 MOTIVATION

Approximate query processing techniques constitute a popular class of process-
ing techniques for large-scale data [58, 112]. Intuitively, approximate processing
techniques ensure a quick response time — even for expensive queries — by ei-
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ther omitting results or by reporting “roughly estimated” results. The first work
addressing approximate query processing was published in [122].

The authors in [96] provide an overview of approximate query processing ap-
proaches — as illustrated in Figure 29. Intuitively, a data analysis algorithm is used
to construct a synopsis at offline time from the data. At runtime, the data synopsis
is employed to compute approximate results for a given query. Previous works
exploited different kinds of synopses for approximate query processing. For in-
stance, sampling, histogram, and wavelet-based synopses have been employed
in various works [58]. The interested reader may find further details in [58, 96].

The motivation for applying approximate processing techniques is manifold
and depends on the system, the users, and the information needs [58, 112]:

@ Extensive datasets oftentimes reside on hard disks or tapes. Unfortunately,
efficient data access on such media is still problematic. Approximation
techniques feature compact data synopsis, which can provide the means
to ensure fast response times.

@ End-user applications frequently face information needs that do not re-
quire a high result accuracy. For example, given a Web search engine, users
mostly visit only few top-ranked results — all remaining results are simply
omitted. Thus, an engine may safely approximate low-ranked results, since
only very few users will investigate them.

® Data mining or decision support systems are very resource-intensive ap-
plications. At the same time, result accuracy or completeness is commonly
not critical for such applications, because apply aggregation functions (e.g.,
sum, count, max, or min) are used to summarize results. Thus, approxima-
tion techniques can help to scale data mining and decision support systems
to large datasets by roughly estimating the applied aggregation function.

@ Approximations may provide a query and dataset preview, respectively.
That is, approximate query processing may be employed to allow users to
gain a first insight into a dataset or issue an initial query.

® Lastly, resources such as network bandwidth or storage space often make
exact result computation impossible or very expensive. In contrast, approx-
imate query processing allows to store the necessary data in a compact
synopsis. In fact, this synopsis may be cached locally, thereby omitting net-
work transfers.

Many of the above arguments are highly relevant for search over Web data.
Most importantly, the amount of Web data is rapidly increasing — as motivated
in the introduction in Chapter 1. So, many search systems will require slow data
storage media such as hard disks. Moreover, end-users frequently search over
Web data. Thus, systems have to deal with information needs, which can be
addressed with via top-ranked results only. Lastly, Web data is commonly dis-
tributed over a space of data sources. Therefore, network communication costs,
e.g., network latency, play a crucial role for Web search approaches.
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5.2 APPROXIMATE INCREMENTAL QUERY PROCESSING

In the following, we present two approaches for approximate query processing
over Web data. While both can been seen as instantiations of the above frame-
work, they differ in terms of their employed synopses as well as online query
approximation.

5.2 APPROXIMATE INCREMENTAL QUERY PROCESSING

In the first section, we introduce an approach for incremental and approximate
processing of hybrid queries over Web data. For this, we present a novel pipeline
of operations, which allows to report results at any point in time to the users.

5.2.1 Introduction

Web Data Management. Efficient management of Web data bears novel chal-
lenges, which have attracted various research communities. In particular, several
RDF stores have been implemented as DB-based solutions such as RDF-extensions
for Oracle and DB2,3* Jena,3* Sesame,33 or Virtuoso.34

Further, native solutions for RDF like OWLIM,3> HStar [39], AllegroGraph,36
YARS [73], Hexastore [166], and RDF-3X [129] have been introduced.

Recently, also IR technologies, in particular inverted indexes, have been pro-
posed for managing RDF data [173]. An overview over the various Web data
management strategies can be found in [85, 139].

Problem. Unfortunately, all these systems focus on computing complete and ex-
act answers. However, in a Web setting exact and complete query bindings (with
billions of triples), lead to prohibitive response times — especially with respect to
complex hybrid queries.

At the same time, as outlined above, many end-users have information needs,
which can be addressed with incomplete and inaccurate results. In particular, the
success of current Web search engines suggest that exact and complete results
may not be needed. Recent studies estimate that 95% of all users investigate only
the first 10 top-ranked results.3”

Thus, a more practical direction towards responsive and scalable solutions for
Web-scale semantic data management is approximate query processing (together
with sophisticated mechanisms for ranking, see Section 1.1.2). In this chapter,
we focus on the problem of approximate processing and how to refine bindings
incrementally. In other words, we give systems the freedom to decide in which
granularity to compute query results — some information needs may require “more
accurate” query results than others.

3Thttp://www-01.1ibm.com/software/data/db2/, retrieved 2014-02-10.
32http://jena.apache.org/, retrieved 2014-02-10.
3Bhttp://www.openrdf.org/, retrieved 2014-02-10.
34http://virtuoso.openlinksw.com/, retrieved 2014-02-10.
35http://www.ontotext.com/owlim/, retrieved 2014-02-10.
30http://franz.com/agraph/allegrograph/, retrieved 2014-02-10.
37http://chitika.com/google-positioning-value/, retrieved 2014-02-10.
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5.2 APPROXIMATE INCREMENTAL QUERY PROCESSING

5.2.2 Research Questions and Contributions

In the next paragraphs, we outline the research questions, hypotheses, and con-
tributions we present throughout this section.

5.2.2.1 Research Questions and Hypotheses

In order to efficiently process hybrid queries over Web data, we want to exploit
approximate and incremental query processing techniques. So, we ask the fol-
lowing research question:

# Research Question 3

How to enable approximate and incremental query processing on schema-
less Web data?

Notice, an overview of all research questions is given in Section 1.3. We ad-
dress Research Question 3 by means of two hypotheses:

O Hypothesis 5

Web data synopses and corresponding query processing algorithms allow
for an incremental processing of hybrid queries.

Intuitively, above hypothesis expects Web data synopses to enable for an in-
cremental processing of hybrid queries. In fact, users may stop the processing
at any point in time and the system reports the currently known results. To tar-
get Hypothesis 5, we introduce a novel approach in Section 5.2.3 that features
a pipeline of operators, which employ three data synopses: our neighborhood
synopsis, our s