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Introduction

One of the most fundamental questions asked by humankind is the question where life orig-
inates from. Unraveling this mystery aims both at the initial, prehistorical origin of life and
at the ongoing process of reproduction and evolution of new living organisms. Closely linked
to these rather abstract conceptual questions are hundreds of years of macroscopic empirical
e�orts to preserve life by curing diseases and to decelerate physiological aging. The invention
of an optical microscope in the seventeenth century by Antoni van Leeuwenhoek that could
resolve bacteria, red blood cells, and spermatozoa gave access to observations of constituents
that are important actors in today's understanding of the microscopic organization of life.
From that time on biologists bene�ted from technological improvements of imaging methods
that facilitated the direct observation of ever smaller objects in organisms. With a growing
understanding of chemical reactions and structure, the link between biology and chemistry
became apparent and created the scienti�c branches of biochemistry and structural biology.
Biological processes could now be understood by interlinked sequences of chemical reac-
tions and the constituents of life were recognized as biomolecular assemblies. At that point
biophysical approaches also came into play: As well the development of advanced imaging
techniques � meanwhile going far beyond the demands of lens grinders like van Leeuwenhoek
� as the basic theoretical or computational description of biomolecular processes were and
still are core competences of biophysicists and contribute to progress in the �eld of molecular
biology. Today's research in the interdisciplinary �elds of molecular biology, biochemistry,
and biophysics is interested in how to in�uence the generation of proteins, i. e., how to pro-
mote or prevent their expression, and in understanding related biomolecular mechanisms. A
pharmaceutically motivated subject of biophysical research is the investigation of chemical
compounds that bind to protein domains. Docking experiments and simulations ultimately
aim at �nding targets for drugs in order to provoke desired physiological responses. Several
regulatory mechanisms of gene expression have been identi�ed and are subject to ongoing in-
vestigations. A more recent �eld of research related to biophysics is termed �bioinformatics�
and employs methods of data mining, often based on statistical physics approaches, to ex-
tract information from the growing sequence databases. The inherent link between structure
and function motivates the research of techniques that determine protein or ribonucleic acid
(RNA) structure from a given sequence or a collection of evolutionarily related sequences.
As mentioned before, a general concept in biological sciences are computational approaches
that assist and complement experimental studies. The most successful technique in the
context of simulation schemes of the last decades are molecular dynamics simulations. This
approach combines parametrizations from empirical measurements and ab-initio quantum
mechanical calculations to approximate the dynamics of molecular systems. Following the
picture of van Leeuwenhoek's ground-breaking invention of a microscope, this class of tech-
niques has been referred to as �computational microscope� [1]. The Nobel prize in chemistry
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Introduction

of 2013 was awarded to three pioneers in the �eld of multiscale approaches in the context
of biomolecular simulation that also utilize the molecular dynamics approach. The concept
of multiscaling is based on the combination of coarse-grained elements at di�erent levels of
precision in the description of the modeled system. The di�erent levels of precision can be
descriptions based on quantum mechanics calculations, electrostatics, the generalization of
attractive and repulsive forces and exclusion volumes. The di�erent scales can also be real-
ized by di�erent geometrical representations of atom groups, molecular crowding, polymeric
assemblies (quaternary structure), the three-dimensional fold (tertiary structure), canonical
local substructural elements (secondary structure) or sequence information (primary struc-
ture). The work presented in this thesis addresses two issues in the context of multiscale
analysis and simulation of RNAs: simulations of cotranscriptional riboswitch folding and
advances to a novel approach of RNA structure prediction.

In the last decades the fundamental understanding of RNA has been drastically revo-
lutionized and has shed light on the importance of RNA for gene expression. The tradi-
tional picture of RNA was that of a messenger (therefore �messenger RNA�, mRNA) that
carries genetic information stored in deoxyribonucleic acid (DNA) sequences to the ribo-
somes for translation into proteins. Apart from being a mere transcript, various kinds of
RNA have been discovered and the involved mechanisms are still investigated. Transfer
RNA [2, 3], ribozymes [4] or riboswitches [5�9] are just some of the discovered classes of
non-coding functional RNA. A possible role is the regulation of gene expression as it can
be found in riboswitches. Representatives of this specialized class of structured RNA are
contained in the non-coding region of messenger RNA preceding a gene and are able to
perform conformational switching as a response to environmental conditions. The two-
state switching a�ects transcription or translation of the downstream gene that is usually
involved in metabolic functions according to chemical compounds, the �ligands�, that sur-
round the switch. Riboswitches regulate metabolic processes via an interaction network
that leads to the promotion or prevention of genetic expression. The initial decision of this
interaction network, i. e., the conformational reaction to the presence of ligands, has to be
made during or right after transcription which creates a competition between RNA synthe-
sis, RNA folding and ligand binding. All three occur on the seconds time scale given the
situation that ligand binding is not simply a surface docking but an entry in the interior
binding pocket provided by the riboswitch. The substantial e�ort of experiments on biolog-
ical systems and the given limits of experiments motivate the relevance of simulations that
complement experiments. Indeed, the interplay of experiment and simulation is justi�ed by
the following limits in both approaches. Experiments are typically limited to comparably
long timescales, often given by response times of apparatuses, and large length scales, often
given by optical resolution limits and restrictions on the applicable techniques due to the
soft matter nature of biomolecular systems. On the other hand, simulations are typically
limited to short timescales due to sequential time integrations, and the struggle with large
length scales since a larger system contains more particles which increases the numerical
complexity. Therefore, simulations are able to reduce the total e�ort of studies by assisting
experiments and enhance the understanding of processes by providing additional insight.
In the case of riboswitch folding, simulations need to be based on a suitable model that
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is computationally tractable while reaching the seconds timescale. The standard approach
would be to employ molecular dynamics simulations of the explicit system [10]. This simula-
tion scheme is based on a molecular interaction potential determined by the topology of the
investigated system. The potential terms feature simple, derivable mathematical forms and
the constituent-speci�c force constants and quantities of equilibrium are compiled in look-up
tables, often referred to as �force �elds�. The �rst spatial derivative of the potential energy
yields interatomic forces for Newton's equations of motion that are solved by numerical time
integration using a time step in the femtoseconds regime in order to be able to resolve inter-
atomic vibrations. Reduced scalability due to communication between subdivisions of the
system and long range interactions, such as Coulomb interactions, render potential energy
evaluations at each time step computationally expensive for explicit systems. Therefore,
this approach is currently restricted to simulated time spans in the milliseconds regime on
highly specialized computer hardware [11]. In order to reach the seconds timescale required
for RNA folding simulations it is necessary to employ an alternative approach: The native
structure-based model [12�17] gives access to longer timescales while it allows to explore
folding pathways towards the native folded state. The model is motivated by the assumption
that the free energy landscape of a biomolecule in conformational space has been formed by
evolution to be funnel-shaped towards its native state in order to guarantee experimentally
observed folding times. In addition to the overall funnel characteristics of the energy land-
scape the principle of minimal frustration reduces kinetic traps on folding routes towards the
native state. The gain of computationally tractable simulations comes at the price of ener-
getic coarse-graining and a prede�ned �native� state at the energetic minimum. The native
structure-based model is implemented by a potential energy that has its minimum at the
native folded state by construction and incorporates native contacts that cause the desired
cooperativity. The SMOG web-server [18] or the local installation eSBMTools [19] facilitate
the automatized setup of native structure-based potential formulations that interface with
standard software that provides the molecular dynamics time integration procedure.

The native conformations that are investigated in the course of this thesis are experimen-
tally resolved tertiary structures of the sensing domains of two riboswitches (SAM-I [20]
and add adenine [21]). The available structures are obtained by X-ray di�raction measure-
ments of the compactly folded, ligand-bound state under stabilizing ion concentrations. The
switching mechanisms of these two riboswitches are transcription termination by terminator
hairpin formation (SAM) or translational repression by rendering the start codon inacces-
sible for the ribosome (adenine). The study presented in this thesis aims at improving the
understanding of cotranscriptional riboswitch folding while keeping in mind that transcrip-
tion and riboswitch folding are time-wise competing processes. Former studies of riboswitch
folding by means of native structure-based model simulations focused on the characterization
of free folding [22, 23]. I introduce a coarse-grained model for transcription that emulates
the crowded environment of the RNA polymerase during transcription by imposing position
restraints in form of an enclosing tube. The sequential transcription process itself is modeled
by acting forces that extrude the stretched RNA strand out of the tube. Residues that have
left RNA polymerase are released from the acting forces and are free to form secondary
and tertiary contacts. The folding progress of helical substructures is analyzed by plotting
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the fraction of formed base pairs in helical substructures over the global folding progress
of the riboswitch. This analysis allows the observation of characteristic folding pathways
by distinguishing folding orders within the sensing region of the riboswitch. The computa-
tional approach facilitates the variation of transcription rates and explores their in�uence
on the folding characteristics. Therefore it is possible to observe di�erences between free
and cotranscriptional folding and between slow and fast transcription. As a main result of
this study cotranscriptional folding is found to be transcription-rate limited in both inves-
tigated systems for physiologically relevant transcription rates [24]. This result is in robust
agreement with a complementary computational study to which my results are compared.

The other scienti�c project discussed in this thesis is motivated by the rapidly growing
number of RNA sequence families and their representatives in databases while experimental
structure determination is still a demanding and complex procedure. As a consequence, the
number of experimentally determined tertiary structures of RNA families is much smaller
than the number of sequence families in databases. A striking attempt, therefore, is to ex-
plore the possibilities of deriving tertiary structure predictions from sequence alignments in
databases. The procedure involves statistical physics approaches to �nd directly coupled co-
evolving nucleotides � the sequence building blocks of RNA � in sequence alignments, which
indicate candidates for spatially close nucleotide pairs. The maximum entropy method
yields the least constrained statistical model for the empiric single site and pair frequencies
in sequence alignments. The model is solved by the technique of Lagrange multipliers that
are found via independent-site and mean-�eld approximation. Direct coupling information
can be calculated from the statistical model as a coupling score that ranks the predicted con-
tacts. Therefore the described method is referred to as direct coupling analysis (DCA) [25].
The outcome of the analysis of an RNA family's sequence alignment from the database is a
predicted contact map for that RNA family. The gained contact information can be trans-
ferred into a simplistic model similar to the native structure-based model, where quantities
of equilibrium are not taken from the native fold but from knowledge-based look-up tables.
The tables of bonded interactions and typical base pairing and stacking information (based
on secondary structure) are derived from representative RNA structures. The geometric
values of bonds, angles and planar dihedral angles are derived from histograms of geometric
information in an experimentally measured, native structure. Values for proper dihedral
angles are found in helical substructures and de�ne the twist of helical regions in hairpin
stem loops. Part of the helical substructures are also the non-bonded contacts that realize
stacking interactions and base pairing. The predicted nucleotide-nucleotide contacts pre-
dicted by DCA are mapped onto a list of atom-atom contacts by an averaging procedure that
introduces a cut-o� condition for mean distance and standard deviation of a list of atom-
atom contacts between the given nucleotides. The averaging is performed by the analysis of
an existing list of typical representatives of these nucleotide-nucleotide contacts [26]. As a
result, this knowledge-based model de�nes simulations that yield stable conformations that
can be compared to known RNA structures. The comparisons are used as benchmarks for
the assessment of the presented RNA structure prediction technique based on DCA contact
predictions.
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The �rst chapter compiles essential, basic information about ribonucleic acid (RNA)
that is of relevance for the work presented in this thesis. The synthesis of RNA sequences
by RNA polymerase (�transcription� process) is discussed. Furthermore, the interactions
between RNA constituents (the �nucleotides�) realize the formation of canonical structure
elements, such as hairpin stem loops. This chapter also introduces riboswitches as a subclass
of structured RNA with their speci�c regulatory functions.

In the second chapter an overview over various aspects of the standard molecular dy-
namics simulation scheme [10] is given. The di�erent steps � preparation of initial con-
ditions, computing forces, computing energies, updating the conformation and output �
are presented as the typical sequence of events. Thereby, the signi�cance of force �elds
in the context of molecular dynamics simulations is discussed and di�erent algorithms for
numerical time integration are described. In order to realize ensembles with constant tem-
perature or pressure, the systems need to be coupled to heat or pressure reservoirs which
is implemented by various temperature and pressure coupling techniques. This chapter
also discusses existing state-of-the-art software implementations of the molecular dynamics
simulation scheme that are often accompanied by their own force �eld formulations.

Simplistic models in the context of biomolecular folding and dynamics are presented in
the third chapter. In order to reach relevant timescales of RNA folding it is necessary to
reduce the computational e�ort of molecular dynamics simulation. The presented approach
is motivated by a basic theory of biopolymer folding. Levinthal proposed the picture of
a multikinetic folding pathway along intermediate states to resolve the apparent paradox
of �nite folding times in proteins [27]. This picture was extended by energy landscape
theory [28�30] that postulates funnel-shaped energy landscapes for foldable biopolymer se-
quences. The principle of minimal frustration introduces cooperativity that guides folding
by a network of native interactions towards the native state of the biopolymer � �rst dis-
cussed by a simplistic hydrophobic-polar model [31] � and is implemented by the native
structure-based model [12�17]. In the course of this thesis, this model is used to simulate
cotranscriptional riboswitch folding in a multiscale setup and modi�ed to incorporate ter-
tiary contact predictions into RNA folding simulations. The last presented simplistic model
is a kinetic Monte Carlo approach to RNA folding simulations [32] that provides comparable
results to native structure-based model simulations as part of a collaboration.

An introduction to coevolutionary statistical sequence analysis is discussed in the fourth
chapter. The presented method is searching for the least constrained statistical model that
reproduces the empirical single-site and pair frequency counts in sequence alignments [25].
This statistical model disentangles direct from indirect coupling and correlation information
can be ranked by its direct information scores. Directly coupled sequence units are indicative
of spatial closeness in the structure associated with the according sequences, which renders
predicted coupling with a high direct information score a good candidate for a structural
contact. The method, referred to as direct coupling analysis (DCA), has been successfully
employed to predict contact maps of proteins and protein complexes. The idea presented
as part of the results of this thesis is to assess the possibilities of the applicability of direct
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coupling analysis in the �eld of structured RNAs.

Chapters �ve, six, and seven elaborate on the three projects that represent my sci-
enti�c accomplishments in the context of multiscale simulation and analysis of structured
ribonucleic acids. First, the software implementation of native structure-based models that
facilitated the work presented in this thesis is presented. The project �eSBMTools� [19]
was initiated and has been accompanied by me in the course of this thesis. Secondly, my
study on cotranscriptional riboswitch folding is presented. I propose a multiscale repre-
sentation of transcription realized by a native structure-based model and analyze folding
pathways of two riboswitch aptamer regions. The outcome suggests that cotranscriptional
riboswitch folding is transcription-rate limited which is also backed by the comparison with
a kinetic Monte Carlo study by Michael Faber as part of a collaboration [24]. The third
project in collaboration with Eleonora De Leonardis is intended to transfer an established
statistical contact prediction model in the context of proteins (the direct coupling analysis,
DCA [25]) to RNA contact prediction and combine it with coarse-grained simulations in
order to advance to RNA tertiary structure prediction. The ranked contact predictions by
DCA are dominated by canonical base pairing contacts but also consist of tertiary contacts.
A modi�ed formulation of the standard native structure-based model is employed to test
the ability to get stable folds from predicted contact maps which motivates the application
of the model in the context of tertiary structure prediction.

The last chapter summarizes the important aspects of the conducted investigations.
Finally, it gives an outlook to further investigations that are motivated by the outcome of
this thesis.
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1 Chapter 1.

Ribonucleic Acid

The �rst chapter provides an overview of the di�erent aspects of ribonucleic acid (RNA)
that are essential to this thesis. RNA plays a crucial role in gene expression, the process
of creating proteins according to information stored in genes. This process starts with the
transcription of sequence information contained in genes that consist of deoxyribonucleic
acid (DNA). RNA as the transcription product is translated by the ribosome into the �nal
protein. In this simpli�ed picture of gene expression RNA �lls the role of a messenger, there-
fore referred to as messenger RNA (mRNA). Meanwhile, a more detailed view of processes
involving RNA has emerged that assigns various tasks to di�erent kinds of RNA.

After presenting a compact overview of RNA, I discuss the biochemistry and biophysics of
RNA synthesis, folding and ligand binding. Due to the biochemical features of RNA distinct
characteristic structural elements can be formed during and after transcription and RNA is
able to fold into a native conformation. In addition, RNA can form binding pockets that
detect chemical compounds, often referred to as �ligands�, with high speci�city. All three
processes � synthesis, folding and ligand binding � are interdependent processes that take
place at comparable time scales.

The next section introduces the RNA polymerase (RNAP) as the cellular machinery that
synthesizes RNA. The sequence of building blocks is read from DNA and a corresponding
complementary strand of RNA is simultaneously synthesized in a step-by-step manner. This
process is referred to as �transcription�. RNAP is a complex polymeric protein that has to
perform di�erent tasks � DNA sensing, DNA melting, DNA read-out, RNA synthesis, RNA
and DNA release � in a coordinated fashion.

The last section of this chapter describes riboswitches as representatives of structured
mRNA in the untranslated region (UTR). Riboswitches are bistable structural switches that
can terminate transcription or attenuate translation. The equilibrium between the two sta-
ble structural states is shifted by the presence of ligands, chemical compounds involved in
biomolecular processes via binding.
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1. Ribonucleic Acid
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Figure 1.1.: Structural formulae of RNA. The backbone of nucleoside monophosphates
(left) consists of a phosphate group and a pentose, a sugar ring with �ve
carbon atoms, of which one is adjacent. The backbone is connected at the
1' carbon atom in its pentose to one of the four organic bases guanine G,
cytosine C, adenine A or uracil U via a glycosidic bond. The next residue
along the sequence is attached to the oxygen atom at the 3' end of the
chain.

1.1. Overview

Gene expression is the process of transferring genetic information, stored in deoxyribonucleic
acid (DNA) double helices that are assembled in chromosomes, to the production of respec-
tive proteins, the building blocks and machines of life. Genetic information is stored in linear
sequences of DNA that consist of the deoxyribonucleotide building blocks deoxyadenosine,
deoxythymidine, deoxyguanosine, and deoxycytidine. A unit of three consecutive deoxyri-
bonucleotides that specify an amino acid, the building blocks of proteins, is called a �codon�.
A simple picture of gene expression features two steps: During transcription, a correspond-
ing strand of ribonucleic acid (RNA) is generated by the RNA polymerase (RNAP) as a
sequence of nucleotides that match the respective deoxyribonucleotides in DNA. The build-
ing blocks (and their respective DNA counterparts) are adenosine (deoxythymidine), uridine
(deoxyadenosine), guanosine (deoxycytidine), and cytidine (deoxyguanosine). Their chem-
ical structures are shown in Fig. 1.1 and their composition and synthesis are discussed in
more detail in Sec. 1.2. During translation, the sequence information contained in RNA is
translated by the ribosome into proteins, where each codon of three consecutive nucleotides
corresponds to an amino acid. This simplistic picture of gene expression has been more
and more re�ned over the last decades and various roles of RNA, besides being a messen-
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1.2. Biochemistry and Biophysics

ger (therefore: messenger RNA, mRNA), have been discovered [2�4, 33, 34]. A common
characteristic among several types of RNA is the ability to form stable folds which are then
referred to as structured RNA. Structured RNA can perform regulatory functions based
on the inherent link between structure and function. A more detailed description of RNA
and its structure, a discussion about the RNAP and an introduction to a speci�c class of
structured RNA, relevant for the studies presented in this thesis, are given in the following
sections.

1.2. Biochemistry and Biophysics

This section describes the biochemical and biophysical mechanisms that determine the syn-
thesis and structure formation of ribonucleic acids.

1.2.1. Synthesis

RNA synthesis is a sequential loop process executed by the RNA polymerase (RNAP, de-
scribed in Sec. 1.3) that elongates a strand of RNA according to a given complementary
sequence of DNA. Transcription takes place in a complex of RNAP, DNA and nascent RNA
that is called the �transcription bubble� [35]. An existing RNA chain RNAn of length n
is located with its 3' end at the catalytic center in RNAP. Nucleoside triphosphate (NTP;
nucleosides: adenosine, cytidine, guanosine or uridine triphosphate) as a generalized build-
ing block for RNA reaches the catalytic center via a channel from outside RNAP matching
the present base in the DNA. Pyrophosphate (P2O

4 �
7 , PPi) is cleaved from NTP and the

remaining nucleoside monophosphate (NMP) is bound to the 3' end of the existing RNA
strand. Subsequently, PPi is released and the strand translocated, extruding the grown
nascent RNAn+1. This circular process repeats until one of several sequence motifs [36],
such as a terminator loop followed by a stretch of uridines, destabilizes the transcription
bubble and the RNA as well as the DNA are released.

1.2.2. Structure

Structured RNA is able to form stable folds de�ned by secondary and tertiary structural
elements. The secondary structure is de�ned by base pairs that form helical conformations.
Base pairs are formed between the bases in side chains of RNA by hydrogen bonds. There are
several possible realizations [37] of which the most stable ones are the �canonical� Watson-
Crick (see Fig. 1.2) and Wobble base pairs (see Fig. 1.3). Depending on the type of base
pair there are two or three hydrogen bonds realized between the involved bases. Secondary
structure is realized via sequential pairings between bases that form a single stranded, two-
dimensional assembly, as shown in Fig. 1.4. The dominant secondary structural element is
the �hairpin� consisting of a helical stem that is realized by a single-stranded double helix and
the connecting non-paired loop region. The compact arrangement is energetically favored
due to stacking of the side chain bases that is physically explained by aligning dipole-dipole
interactions between the rings of the bases. The other, related structural element is the
non-local helix that pairs both ends of a large loop that contains one or more hairpins itself.
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1. Ribonucleic Acid

N

N

N

H

H

N H

ON

... N

O

N

N

H

H

...

(a) Guanine and cytosine

N

N

N

N

H

HN

... N

O

NH

O

...

(b) Adenine and uracil

Figure 1.2.: Structural formulae of Watson-Crick base pairing. The pairing between
two bases of RNA is realized by hydrogen bonds. The canonical Watson-
Crick pairing of guanine and cytosine (G-C) consists of three (a) and the
pairing of adenine and uracil (A-U) of two hydrogen bonds (b).

It assembles exactly like a local hairpin loop but has to overcome a higher entropic barrier
because of the substantially increased loop size.

The three-dimensional arrangement of secondary structure elements that determines the
geometric shape of RNA is referred to as the tertiary structure. The arrangement is �xed in
place by tertiary contacts, i. e., single base pairs or non-canonically paired bases depending
on relative orientation of bases to each other, as discussed in [37]. Common structural motifs
in the tertiary structure are kink turns, where the strand is maximally bent to realize the
other boundary conditions, or pseudoknots. Pseudoknots are two or more stem loops that
feature connections to each others loop regions which results in a knot-like structure.

Quaternary structure denotes polymeric complexes, often consisting of RNA and proteins,
such as ribosomal RNA [33], or RNA and bound ligands, as shown in Fig. 1.5. The bound
conformations with ligands are stabilized by mediated tertiary and quaternary contacts in
the vicinity of the ligand binding pocket. This binding mechanism is used by a subclass of
messenger RNA, the riboswitches, that feature interior binding pockets and conformational
switching in the presence of ligands, as discussed in Sec. 1.4.

1.3. RNA Polymerase

In this section the biomolecular machinery that sequesters the RNA, the RNA polymerase
(RNAP), is introduced. RNA is transcribed from deoxyribonucleic acid (DNA) as a com-
plementary strand by RNAP. Part of the information contained in RNA is subsequently
translated by the ribosome to proteins. The residual regions in the sequence are referred to
as the untranslated regions (UTR), as shown in Fig. 1.6.

The RNAP is attracted by promoter sequences along the DNA to which RNAP docks
with its alpha and sigma subunits [38]. Subsequently, RNAP encompasses the double helix
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1.3. RNA Polymerase
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Figure 1.3.: Structural formula of Wobble base pairing. The non-Watson-Crick base
pairing of guanine and uracil (G-U) consists of two hydrogen bonds.

CGCUUCAUAUAAUCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAACUCUUGAUUAUGAAGUG

(a) Sequence-based representation

5' 3'
(b) Schematic two-dimensional representation

Figure 1.4.: Secondary structure diagrams of an adenine sensing riboswitch [21] in
its ligand-bound conformation. The formed base pairs are represented
by lines connecting two bases. The local helices are colored in green
and blue and the non-local helix tying up both ends of the riboswitch
is colored in red. The two possible standard representations are shown
here: the clear-cut sequence-based representation in (a) gives more
detailed sequence information whereas the more graphic representation
in (b) illustrates local and non-local helical substructures.
The �gures are taken from [24] and used under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)
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1. Ribonucleic Acid

Figure 1.5.: Cartoon representation of tertiary RNA structure and a bound ligand.
The picture depicts an add adenine riboswitch (PDB ID 1Y26 [21]). The
local helices are colored in green and blue and the non-local terminal
helix is colored in red. The bound ligand, adenine, is highlighted in
orange and its binding pocket between the two coaxially stacked red and
blue helices encloses the ligand. The ligand mediates stabilizing contacts
that keep the ligand tightly bound and closed up once the ligand has
entered the pocket.
The �gure is taken from [24] and used under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/).
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1.4. Riboswitches

start

codingnon-coding non-coding

UAGUUAACGGGCC...5' UTR 3' UTRstop

Figure 1.6.: Schematic representation of mRNA. The actual coding region of mRNA
that represents the encoded protein sequence is encompassed by two non-
coding UTRs. Riboswitches are part of the 5' UTR since they either
terminate transcription as a structural response to the already transcribed
aptamer conformation or they attenuate translation by preventing the
ribosome to access the start codon AUG.

of DNA with two claw-like substructures, straightens out the double-helical DNA region in
between and melts the involved DNA base pairs apart. The RNAP is moving along the
isolated DNA sequence and successively reading the sequence information contained in the
single strand. According to the isolated single strand of DNA, RNAP sequences a new
strand of RNA at its catalytic center. The thereby formed complex of encompassing RNAP,
melted DNA and emerging RNA is referred to as the transcription bubble. The growing
nascent strand of RNA leaves the polymerase via the exit channel, another substructural
unit formed by a �exible claw. As soon as the RNA leaves the exit channel of RNAP it is
free to form secondary and tertiary contacts and fold. The positional restraints of the exit
channel enforce sequential folding of substructural elements which has been shown in recent
experimental [39] and computational [24] studies.

1.4. Riboswitches

Riboswitches are part of the UTR of mRNA at the 5' prime end, as seen in Fig. 1.6, and are
able to modulate gene expression depending on the current environmental conditions [5�9].
They can react to metabolic compounds in their vicinity with high speci�city. They consist
of two structural subunits: aptamer region and expression platform. The aptamer region
features a binding pocket for speci�c metabolites and reacts structurally to their presence.
For example, the binding of a metabolite can promote the formation of a non-local helix.
Contacts between the metabolite and the aptamer region mediate the stabilization of a
compact formation that closes the binding pocket around the metabolite. As a response,
the expression platform is able to fold into a conformation that terminates transcription or
attenuates translation of the downstream gene. Transcription termination is often achieved
by a hairpin stem loop followed by a uridine-rich sequence, which is, e. g., the mechanism in
a SAM-I riboswitch [20]. Translation can be inhibited by obscuring the start sequence AUG
from the ribosome inside a hairpin stem, as it is found in an add adenine riboswitch [21].
Since the synthesis (characterized by the transcription rate), folding (characterized by the
folding rate) and ligand binding (characterized by the binding a�nity) are interdependent
processes on comparable time scales the investigation of cotranscriptional riboswitch folding
is a topic of current research.
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1. Ribonucleic Acid

Their high speci�city makes them a target for potential repression or promotion of
metabolic mechanisms. As of today, research in this �eld is still limited to observing and
determining riboswitch mechanisms instead of designing novel structures and interaction
networks. A recent study [40] investigates, e. g., the biological implications of their dis-
covered �uoride riboswitch. They report a class of �uoride riboswitches that boost the
expression of proteins that counteract the toxic environmental in�uence of �uoride in bac-
teria.

1.4.1. Experimental Riboswitch Structures

Riboswitches are discovered by bioinformatics approaches that identify sequence motifs in
RNA sequence data sets that are suspected to play a regulatory role, such as terminator
hairpin stem loops. In the vicinity of such motifs ligand speci�c aptamer regions are likely to
be found [41]. The identi�ed suspect of such an aptamer region together with its expression
platform is sequenced and exposed to a range of typical metabolites. The expression levels of
a downstream gene can then be recorded to study the a�nity and speci�city of the riboswitch
suspect. In case of a positive match, experimental techniques, such as X-ray crystallography
or nuclear magnetic resonance (NMR), are used to resolve the riboswitch structure. In the
last two decades several high-resolution crystal structures have been deposited in the RCBS
Protein Data Bank (PDB) [42]. An exemplary subset of available structures is listed with
their PDB IDs in parentheses:

• adenine (1Y26) [21]

• M-box (2QBZ) [43]

• glycine (3OWI) [44]

• lysine (3DIL) [45]

• FMN (3F2Q) [46]

• TPP (2HOJ) [8]

• SAM-I (2GIS) [20]

• c-di-GMP (3IRW) [47]

• �uoride (3VRS) [48]

The compilation of these structures will be motivated in Chap. 7 and referred to as a �gold
standard� for the assessment of RNA contact predictions. Concrete studies about predicted
contacts in simulations of riboswitches are presented in the same chapter for structures
1Y26, 2GIS, 3OWI and 3VRS. Furthermore, a computational analysis of cotranscriptional
riboswitch folding is conducted in Chap. 6 for riboswitches 1Y26 and 2GIS.
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2 Chapter 2.

Molecular Dynamics

This chapter introduces molecular dynamics (MD) simulation as the established tool to model
biopolymer dynamics. It is referred to as the �computational microscope� [1] since it has been
proven to give access to beforehand unobservable processes, similar to the invention of the
optical microscope by Antoni van Leeuwenhoek. The MD simulation scheme in its standard
formulation generates the total potential energy of each particle in a system of interest from
empirical look-up tables (�force �elds�). The according forces on each particle are derived
from the potential energy and Newton's equations of motion are solved by numerical integra-
tion of the equations over time: Starting from the initial conditions, positions and velocities
of all particles are calculated for the next �nite time step and forces are reevaluated. The de-
sired temperature or pressure conditions are introduced via a wide range of possible coupling
techniques.

First, I describe the general protocol within the MD simulation scheme. Acquiring initial
conditions, generating the inter-atomic potentials and algorithms for numerical time inte-
gration of Newton's equations of motion are discussed. This section also covers various
techniques to introduce temperature and pressure coupling to the model, such as Berendsen
coupling or Langevin dynamics. In addition, the concept of steered molecular dynamics is
presented. This concept introduces additional external forces to a system of interest by time
dependent constraints.

At the end of this chapter I review several implementations of MD software and force
�elds. CHARMM, AMBER, NAMD, and GROMACS are the most widely used software
packages that are architecture independent and o�er a wide range of pre- and postprocessing
tools in addition to their core functionality. GROMACS o�ers a very �exible interface for
force �eld parametrizations which makes it favorable for simulations based on non-standard
force �eld de�nitions. My studies are based on such a modi�ed force �eld de�nition � a
native structure-based model � that will be introduced in the next chapter as a simplistic
theory within the MD frame work.
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2. Molecular Dynamics

2.1. Molecular Dynamics Simulation Scheme

Molecular dynamics (MD) simulations are a subclass of the molecular mechanics con-
cept that describes molecular systems by atomic particles under the in�uence of classical
potential-energy functions [10]. Atoms are usually represented by spheres that interact
with each other due to assigned properties, such as charge or the ability to share valence
electrons, which is modeled by e�ective interaction functions. The simulations give access
to experimentally inaccessible time scales and structural resolution levels. Therefore, MD
simulations are an established tool to complement experiments and to assist investigations
of biomolecular systems. The standard MD simulation scheme [49] consists of the following
�ve steps:

1. Prepare initial conditions:

The atom positions ri and velocities vi in a system of interest are acquired and the
position dependent interaction potential V ({ri}) is determined accordingly.

Positions are read from standardized coordinate �les, velocities are generated due to
thermal conditions and the interaction potential is calculated based on a combination
of de�ned mathematical formulations and according parameter lists.

2. Compute forces:

The force acting on an atom i is computed by

Fi = −∂V
∂ri

, (2.1)

which is e�ectively a summation over non-bonded atom pair forces Fi =
∑

j Fij and
bonded interaction forces. In addition, external forces or position constraints are
evaluated.

3. Compute energies:

Potential and kinetic energy values and the pressure tensor are computed. This eval-
uation is needed for temperature and pressure coupling techniques, as discussed in
more detail in Sec. 2.1.4.

4. Update con�guration:

Newton's equations of motion
d2ri
dt2

=
Fi

mi
(2.2)

are solved numerically by time integrations with a �nite time step ∆t starting from
the actual time t0. Thereby, the coordinates of the system are updated to a later point
in time t0 +∆t. The employed integration scheme depends on the the chosen coupling
techniques or the algorithm used to impose constraints.

5. Output system:
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2.1. Molecular Dynamics Simulation Scheme

The positions, velocities, energies, temperature, pressure, etc., are evaluated, compiled
and written to a �le. Steps 2 - 5 are repeated nt times until the desired period of time
is covered: tfinal = nt · ∆t. The sequence of system properties at each time step is
referred to as �trajectory�.

2.1.1. Molecular Dynamics Potential

According to the Born-Oppenheimer approximation, the potential energy function can be
a pairwise additive function of atom coordinates. The standard formulation of the MD
potential [10, 49] reads as

V ({r,R, θ, χ, φ, rij}) =
∑
bonds

Kb(r − r0)2

+
∑

Urey-Bradley

KUB(R−R0)2

+
∑
angles

Ka(θ − θ0)2

+
∑

dihedrals, impropers

Ki(χ− χ0)2

+
∑

dihedrals, propers

Kd

[
1− cos(M(φ− φ0))

]

+
∑

non-bonded

i,j

Kc

(σ0
ij

rij

)12

− 2 ·

(
σ0
ij

rij

)6
+

qiqj
εrε0rij

 .

In this potential the zero indexed quantities r0, R0, θ0, χ0, φ0, σ
0
ij represent the equilibrium

values. The bonded interactions � bonds, Urey-Bradly bonds, angles and dihedral (or tor-
sional) angles, as depicted in Fig. 2.1 � are expressed in a harmonic approximation. The
proper torsional angles are represented by a periodic potential with a possible multiplicity
M . Non-bonded interactions are introduced by Lennard-Jones potential terms and Coulomb
interactions, where qi, qj are charges, ε0 is the electric permittivity constant and εr is the rel-
ative permittivity of the surrounding medium. The force constants Kb,KUB,Ka,Ki,Kd,Kc

describe the strengths of the respective interactions.

The collection of parameters (equilibrium values, force constants, charges, permittivi-
ties, etc.) and the functional shapes of the involved potential terms are referred to as a
�force �eld�. The cataloged values are experimentally measured or derived from quantum
mechanical calculations. The basic assumption of the parametrization is that parameters
derived from studies based on partial subsystems can be transferred and assembled to larger
molecular systems.
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Figure 2.1.: Pictograms of bonded interactions relevant for MD potentials. The sim-
plest interaction is the bond, a (1,2) interaction characterized by the
distance between two atoms (top left). Angle and Urey-Bradley inter-
action are (1,3) interactions (top right). The angle is measured by the
span between two line segments and Urey-Bradley interaction by the dis-
tance between the �rst and third atom. There are two kinds of (1,4)
interactions: proper dihedral angle (bottom left) and improper or planar
dihedral angle (bottom right). The proper dihedral angle is de�ned by
the angle between the two planes given by the �rst three (1-2-3) and the
last three (2-3-4) atoms of a sequence of four atoms. The improper dihe-
dral angle is de�ned by the angle between a plane given by three (1-2-3)
atoms and a fourth (4) atom of four atoms that form an intersection. The
term planar dihedral angel is also used since this angle can guarantee the
planarity of rings.
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2.1. Molecular Dynamics Simulation Scheme

2.1.2. Velocity Generation

The initial generation of the particle velocities vi under the given thermal condition T follows
the Boltzmann velocity distribution

p(vi) = 4π

(
mi

2kBT

)3/2

v2
i exp

(
−miv

2
i

2kBT

)
, (2.3)

where p(vi) is the probability distribution to �nd particle i at velocity vi; mi are the particle
masses and kB is Boltzmann's constant.

2.1.3. Time Integration

Newton's equations of motion that are derived from the interatomic potential need to be
integrated numerically in time to gain the spatial trajectories of the particles ri(t). The
numerical integration scheme is a �nite di�erence method that introduces a �nite time step

∆t =
tfinal

nt
, (2.4)

where nt is the number of time steps to reach time tfinal. The time step is usually chosen in
the order of femtoseconds to be able to resolve interatomic vibrations [10].
The desired integration scheme is required to be time reversible, i. e., after n integrations

forward in time, n integrations backward in time should yield the same initial state. Apart
from that, the integrator needs to be symplectic, i. e., it guarantees the conservation of the
total energy in the system. A �rst possible algorithm that meets this requirements is the
simple Verlet algorithm [50]. The updated coordinates are calculated by

r(t+ ∆t) = 2 · r(t)− r(t−∆t) +
d2r(t)

dt2
∆t2 +O(∆t4) . (2.5)

A variant of the Verlet integrator is the �leapfrog integrator� [51]. This scheme updates as
well the coordinates as the velocities at among each other shifted times t+ ∆t and t+ 1

2∆t:

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
F(t) , (2.6)

r(t+ ∆t) = r(t) + ∆t · v(t+
1

2
∆t) , (2.7)

which results in the same trajectories for corresponding initial conditions as the original
Verlet algorithm:

r(t+ ∆t) = 2 · r(t)− r(t−∆t) +
1

m
F(t)∆t2 +O(∆t4) . (2.8)

The time step ∆t needs in general to be chosen su�ciently small to resolve all inter-
atomic motions. The fastest motions present in molecular systems are vibrational modes
that oscillate with a cycle duration in the femtoseconds range (10−15 seconds). This makes
the MD simulation scheme a challenging, inherently sequential, numerical procedure that has
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2. Molecular Dynamics

to overcome several orders of magnitude to reach relevant time scales for biological processes.
Recent simulations on specialized hardware reach the millisecond regime [11] that is enough
to study folding of small protein systems. For example, RNA folding has typical folding
times in the seconds range and exceeds these limits by three orders of magnitude.

2.1.4. Temperature and Pressure Coupling

In the case of an uncoupled MD simulation the computational results would represent a
microcanonical (NVE) ensemble. The experimental setup, however, usually resembles either
a canonical (NVT) or an isobaric-isothermal ensemble (NpT). To realize such an ensemble
one couples the simulations to a heat bath or a pressure reservoir [49]. The kinetic energy
of a system is given by

Ekin =
1

2

N∑
i=1

miv
2
i , (2.9)

where vi are the particle velocities. The kinetic energy is connected to the temperature T
by

1

2
NDoFkBT = Ekin , (2.10)

where NDoF denotes the number of degrees of freedom in the system. The number of degrees
of freedom of a system with N particles is given by

NDoF = 3N −Nc − 3 , (2.11)

where Nc represents the number of position constraints in the system.
Berendsen temperature coupling introduces weak coupling to an external heat bath with

temperature T0 in �rst-order kinetics described by [52]

dT

dt
=
T0 − T
τ

, (2.12)

where τ is the time constant of an exponentially decaying temperature deviation. The
time-dependent scaling-factor for velocities at every nTC steps is

λ =

1 +
nTC∆T

τT

(
T0

T (t− 1
2∆t)

− 1

)2

, (2.13)

where τT needs to be rede�ned. For a given constant τ in Eq. (2.12) and the heat capacity
at constant volume CV , τT is introduced by

τ =
2 · CV · τT
NDoF · kB

(2.14)

in order to redistribute the energy changes due to velocity rescaling between kinetic and
potential energy. This thermostat realizes a �rst order decay of temperature deviations
without oscillations and generates an ensemble that di�ers from the canonical ensemble
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2.1. Molecular Dynamics Simulation Scheme

by an error that decays with the system size. Alternative algorithms to the Berendsen
thermostat that reduce this error are the improved velocity rescaling method [53] or the
Nosé-Hoover coupling algorithm [54].

For a formulation of pressure coupling the kinetic energy can be written as a tensor

Ekin =
1

2

N∑
i

mivi ⊗ vi (2.15)

that allows us to formulate the pressure tensor

p =
2

V
(Ekin −Ξ) , (2.16)

where V is the volume of the computational box and Ξ is the virial tensor

Ξ = −1

2

∑
i<j

rij ⊗ Fij . (2.17)

In case of an isotropic system the scalar pressure p can be used for pressure coupling calcu-
lations and is calculated by

p = Tr(p)/3 . (2.18)

The Berendsen pressure coupling [52] introduces a scaling matrix s given by

sij = δij −
nPC∆t

3τp
βij(p

0
ij − pij(t)) , (2.19)

which rescales the simulated volume of the system with isothermal compressibility βij every
nPC steps in order to adjust the actual pressure pij to the desired pressure p

0
ij . Furthermore,

the Kronecker symbol is de�ned as

δij =

{
1 for i = j ,
0 otherwise .

(2.20)

The coupling then is, as in the temperature coupling algorithm, introduced via a �rst-order
decay relation

dp

dt
=

p
0
− p

τp
. (2.21)

2.1.5. Stochastic Dynamics

Stochastic or velocity Langevin dynamics o�ers a possibility to introduce temperature cou-
pling to the equation of motion [49]. The modi�ed equation of motion reads as

mi
d2ri
dt2

= −miφ
dri
dt

+ Fi(r) + ηi(t) , (2.22)
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where φ is a friction parameter, and the noise term ηi(t) has a Gaussian probability distri-
bution for which we get a correlation function following the �uctuation-dissipation theorem

〈ηi(t)ηj(t′)〉 = 2miφ · kBT · δijδ(t− t′) . (2.23)

Therein, δij is the Kronecker symbol as introduced in Eq. (2.20) and the respective function
is de�ned as

δ(t− t′) =

{
1 for t = t′ ,
0 otherwise .

(2.24)

If 1/φ is large compared to the used time step in a simulation, Langevin dynamics becomes
e�ectively a standard MD formulation with stochastic temperature coupling. The time
integration is performed with a modi�ed leap-frog algorithm with third order accuracy in
∆tφ [55].

2.1.6. Steered Molecular Dynamics

It is possible to introduce external forces to the simulations. They typically represent the
numerical analogon to, e. g., single-molecule atomic force microscopy or optical trap experi-
ments, or are a computational method to guide a system along a desired reaction coordinate.
The latter technique is often referred to as umbrella sampling and drives the dynamics of
a system to a prede�ned �nal state while conserving the possibility to calculate the free
energy landscape based on the well de�ned external forces. Constant force pulling emu-
lates the experimental setup of, e. g., experiments with optical traps [39] or atomic force
microscopy [56]. The third possibility are constant velocity simulations where �xed inter-
atomic constraints are increased with a constant rate. The standard method to introduce
constraints in MD simulations is o�ered by the SHAKE algorithm [57]. This algorithm is a
modi�ed velocity Verlet method that imposes a limit on the acceptable deviations of a set
of atom-atom distances.

2.2. Implementations

The implementation of MD software consist of two major parts: The compilation of suitable
force �elds as lists of experimentally determined or de-novo calculated interaction parameters
and the collection of computational machinery that conducts simulations under user-de�ned
conditions. Due to the huge amount of work behind such implementations the �eld is
dominated by a few international research groups. Usually, these research groups provide
both their own force �eld library and their MD software tools. The force �eld libraries are
often complemented by modi�cations of theoretical groups that adjust the parametrizations
to reproduce dynamical behavior of speci�c systems. This section gives a compact overview
over existing implementations.

2.2.1. Force Fields

The oldest still actively maintained and most established force �elds are AMBER [58] and
CHARMM [59]. A newer derivative of CHARMM is the GROMOS force �eld [60]. A more
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2.2. Implementations

recent force �eld is the coarse-grained MARTINI force �eld [61].
The usual work�ow in force �eld development starts from protein parametrizations that

are then adapted towards nucleic acids (RNA, DNA), lipids, and other organic compounds.
Due to the multitude of possible choices for formulations of the parametrization the actual
parameter values are usually not comparable between di�erent force �elds.

2.2.2. Molecular Dynamics Software

There exists a wide range of MD simulation software that cover multi-purpose suites and
more specialized tools. Almost all of them have in common that they are architecture
independent, which enables the users to run them as well on their desktop PC for prototyping
as on high performance computing facilities for productive runs. The used �le formats, albeit
there exists no general standard, are usually interconvertible. This allows the combination of
work�ow steps between tools in di�erent software suites. While some of them are developed
together with a distinct force �eld they usually o�er interfaces to alternative force �eld
de�nitions which fosters the comparability of parametrizations.
The force �elds AMBER and CHARMM provide their own MD simulation software pack-

ages (AMBER [62], CHARMM [63]). AMBER exhibits a modular concept with a suit of
various tools, and CHARMM provides a more holistic approach combining all functionalities
in a compact single application. Both implementations are tailored for the use on high per-
formance computing facilities due to the general demand of MD simulations. A stand-alone
software package without in-house force �eld development is the NAMD package [64] that
o�ers its own well integrated visualization tool VMD [65]. NAMD is also highly optimized
for high performance computation resources. GROMACS [66] is a very customizable soft-
ware package that is fully released under open source, creative commons license. It allows
a very �exible adjustment of force �eld de�nitions and is therefore best suited for modi�ed
formulations of the MD approach. It also o�ers optimizations for the use on desktop PCs,
which makes it an excellent choice especially for simplistic biomolecular folding models, as
introduced in Sec. 3.3 in the next chapter.
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3 Chapter 3.

Simplistic Models

As shown in the previous chapter, the applicability of standard molecular dynamics simula-
tions is limited to time scales in the order of milliseconds. This chapter introduces simplistic
models that are capable of reproducing the dynamics of biomolecules with reduced computa-
tional e�ort.

First, I motivate the assumption of a funneled energy landscape for biopolymer chains. The
derivations made from the thermodynamics and kinetics of such systems lead to a discussion
of biopolymer models in analogy to spin glass theory.

The next section covers concrete examples of simplistic models in the context of native
structure-based simulations. First, the hydrophobic-polar (HP) model is introduced as a
simple lattice model. The model introduces a highly frustrated energy landscape based on
hydrophilic-hydrophobic interactions. An extension to the model, the HP+ model, grants
energetic bene�ts for the formation of native contacts. The incorporation of native contact
information reduces the frustration and creates a funnel-shaped energy landscape.

As a further step, an o�-lattice model, in this thesis regarded as the native (tertiary)
structure-based model (SBM), is presented and discussed. Its potential energy has its mini-
mum at the native conformation resulting in an overall funneled free energy landscape biased
towards the native state. The introduced energetics with an all-(heavy)atom resolution are
homogeneous for all atom types. The dynamics simulations in this model can be realized in
a standard molecular dynamics integration scheme. Originating from protein folding mod-
els SBMs are motivated for RNA systems. This model will be the integral tool for tackling
biophysical challenges throughout my studies presented in this thesis.

In the last section, a native secondary structure-based model for RNA systems in a Monte
Carlo implementation is shown. The kinetic Monte Carlo model features empirical energetics
for the opening and closing of base pairs. This method is used as a complementary model
for comparisons to some of my results in Chap. 6.
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random heteropolymers

random biopolymer sequences

thermodynamically foldable sequences

kinetically foldable sequences

natural biopolymers

Figure 3.1.: Schematic representation of the number of sequences sorted by polymer
classi�cations in the context of foldability. The class of random het-
eropolymers comprises the countable in�nite number of random biopoly-
mer sequences. A subclass of the mass of hypothetically constructible
biopolymers are the sequences that are thermodynamically and kineti-
cally foldable. This class determines the range for biomolecular design
and contains the remaining, comparable small class of naturally occur-
ring biopolymers. This section tries to shed light on the theoretical char-
acterization of the class of thermodynamically and kinetically foldable
sequences which allows then to model natural biopolymers.

3.1. Biopolymer Folding Thermodynamics and Kinetics

Biomolecules such as proteins and nucleic acids (RNA or DNA) ful�ll myriads of important
tasks that create and maintain life in cells of all organisms. These biomolecular polymers are
sequences of distinct building blocks that fold into characteristic conformations depending
on biophysical interactions, e. g., hydrophobic forces, hydrogen bonds, or more distinctively
discussed RNA interactions in Sec. 1.2.2. Their actual functionality is determined by their
structure and less unambiguously by their sequence. The connection between structure
and function is thereby an established dogma of biomolecular sciences. In the context of
this dogma and in combination with the rapidly growing number of measured biomolecular
sequences [67, 68] it is very desirable to derive structure from biopolymer sequence alone.
A formal description of the folding process can be found in the theory of polymer physics.
In the context of heteropolymers the general challenge of biopolymers is their apparent
thermodynamic and kinetic foldability, as indicated in Fig. 3.1. The theoretical approach
needs, therefore, to reproduce basic thermodynamic and kinetic features of biopolymer
folding behavior.
A simple but compelling estimation for the folding time of a biopolymer was performed

by Levinthal who argued that the folding time of a rather small protein would exceed the
lifetime of the universe [27] � Levinthal's paradox. In combination with direct measure-
ments of protein folding times, at that time by An�nsen [69], the resolution of this paradox
was motivated in a quantitative manner. Levinthal himself proposed the following idea:
Since the number of possible conformations in biomolecules times the typical dwell time
exceeds the realistic folding times of polymers, folding needs to follow a folding pathway
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3.1. Biopolymer Folding Thermodynamics and Kinetics

along distinct intermediate states that was formed under evolutionary pressure. The folding
pathway picture by Levinthal was replaced by a more re�ned perspective of biopolymer fold-
ing that is based on energy landscape theory [70]. Therein, an energy landscape is de�ned
as the Helmholtz free energy as a function of the conformational space of the biopolymer.
This quantitative theoretical approach follows the lines of spin glass theory in combination
with a random energy model (REM) [71, 72]. The apparent experimentally determined
folding characteristics concur with the perspective of a funneled energy landscapes for pro-
teins [28�30]. The theoretical development over the last three decades has characterized
the biophysical view of biopolymer folding and has motivated the justi�cation of native
structure-based models [12�17].
The following derivation describes a statistical approach to protein folding and introduces

the free energy and entropy of a system by means of statistical mechanics [12, 13]. By the
choice of an order parameter, such as the similarity ratio to the native structure Q, it is
possible to parametrize the energy landscape of a biopolymer and introduce strata with
average energies Ē(Q). The central limit theorem for the energy distribution within a
stratum results in:

P (E) =
1√

2π∆E(Q)2
· exp

−
(
E − Ē(Q)

)2

2∆E(Q)2

 , (3.1)

where ∆E is the variance (or the �roughness� of the energy landscape within a stratum),
Ē(Q) is the mean of the distribution and Q is the similarity ratio to the native structure
ranging from 0 for the completely unfolded polymer to 1 for the native folded state. The
number of possible conformations is given by

Ω = γN , (3.2)

where γ is the number of possible states that can be occupied by a sequence unit (or
�residue�) and N is the sequence length. Depending on the structural accuracy of the model
γ may vary between 2 and more than 10. For a given nativeness Q of the polymer state the
number of conformations reads

Ω(Q) = γ?
N(1−Q)

, (3.3)

where γ? indicates an optional foreknowledge that reduces the number of possible states that
can be occupied. The number of possible conformations depends strongly on the nativeness
and reaches 1 in the case of a completely folded polymer. From this we can calculate the
entropy of the biopolymer

S0(Q) = kB log(Ω(Q)) . (3.4)

This formulation of the entropy reaches 0 for nativeness 1 in which case the system is
supposed to occupy a de�ned, single state.
We introduce an energy dependence to the number of accessible conformations by multi-

plying the energy probability in Eq. (3.1) with the number of conformations in Eq. (3.3):

Ω(E,Q) = P (E) · Ω(Q) . (3.5)
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The energy dependence arises from the fact that for a given temperature T not all high
energy states can be occupied. As a next step, we can derive the probability density at
thermal equilibrium to �nd a polymer with energy E and the nativeness Q

p(E,Q) =
1

Z
· Ω(E,Q) · e−E/kBT , (3.6)

where Z is the partition function that normalizes the probability function and kB is Boltz-
mann's constant. By maximizing this expression we gain the most probable energy at

Ê(Q) = Ē(Q)− ∆E(Q)2

kBT
(3.7)

and following Eq. (3.5) we gain the number of occupied states as

Ω
(
Ê(Q), Q

)
(3.4)(3.1)

= exp

(
S0(Q)

kB
− ∆E(Q)2

2(kBT )2

)
. (3.8)

Following Eq. (3.4) the entropy of the most probable energy state at a given nativeness
becomes

S
(
Ê(Q), Q

)
= S0(Q)− ∆E(Q)2

2kBT 2
. (3.9)

The most probable energy Ê(Q) and the entropy of the system S
(
Ê(Q), Q

)
are counter-

acting thermodynamic observables that dominate the folding process. The maximization of
entropy is linked to the tendency to increase the number of disordered con�gurations. The
minimization of energy demands a decrease in the conformational degrees of freedom of the
system. This motivates the consideration of the free energy at given temperature T and
nativeness Q

F (Q) = Ê(Q)− TS
(
Ê(Q), Q

)
= Ē(Q)− ∆E(Q)2

2kBT
− TS0(Q) . (3.10)

For high temperatures, the free energy exhibits a single minimum at a small nativeness (close
to 0), whereas for low temperatures it features a single minimum at a large nativeness (close
to 1). In the intermediate temperature range the free energy has two minima that have
equal thermodynamic weight at the folding temperature. These characteristics represent a
two-state folding behavior.
The theoretical approach to biopolymer folding kinetics exhibits four crucial di�erences

in contrast to standard transition state theory [73]:

1. The in�uence of a surrounding solvent has to be taken into account.

2. Entropic e�ects are important due to the conformational uncertainty of the interme-
diate and unfolded states.

3. The choice of a reaction coordinate is less clear.
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3.1. Biopolymer Folding Thermodynamics and Kinetics

4. The e�ective di�usion coe�cient may dependent drastically on the reaction coordinate.

The gradient of the free energy function represents the tendency of the system to change
its nativeness Q. The direction is determined by the general aim to minimize the free
energy. Transition state theory describes a process by overcoming a transition state that
prevents a direct conversion from an initial state towards the �nal state. The barrier height
of this transition state corresponds to a transition rate that is characterized by its di�usion
constant. If t̄(Q) stands for the average lifetime of a microstate in the system of interest the
bottleneck can be found at the nativeness Q̂kin that maximizes the lifetime. This lifetime
can be identi�ed with the folding time tf :

tf = t̄(Q̂kin) . (3.11)

The roughness of a energy landscape ∆E(Q) in�uences the lifetime of its microstates. The
lifetime is found to follow a Ferry law [74] for su�ciently high temperatures and reads:

t̄(Q) = t0 · e(∆E(Q)/kBT )2 . (3.12)

Below the �glass transition� temperature

Tg =

(
∆E(Q)2

2kBS0(Q)

)1/2

, (3.13)

at which the system runs out of entropy due to the lack of alternate conformation states,
the lifetime becomes

t̄ = t0 · eS0(Q)/kB , (3.14)

which resembles a �search� time in Levinthal's original point of view. Therefore, the relation
between folding temperature and glass transition temperature determines whether a polymer
will be able to fold in limited time or not.

Energy landscape theory has been discussed as an analytical description of biopolymer
folding. Levinthal's paradox that assumes a completely �at energy surface with a single hole
that represents the native conformation can be resolved by the concept of cooperativity that
is observed in biomolecular systems. Cooperative phase transitions, similar to crystallization
processes, can be understood as a funnel-shaped surface in the energy landscape. Due to the
huge number of conformational states under geometric constraints, this surface is expected
to be frustrated (in analogy to spin glasses) and rough. The experimental observations of
protein folding give rise to the assumption that evolutionary pressure formed the energy
landscapes of reliably folding polymers to be smooth or the underlying interaction network
to be minimally frustrated. The theoretical investigation of these systems identi�es as
well thermodynamic as kinetic aspects involved in the assessment of the foldability of a
biopolymer. The principle of minimal frustration introduces a suitable gradient in the free
energy landscape that creates a variety of folding paths towards the native state. Without
glass transition the system is able to achieve the necessary entropy loss. In other words: The
free energy pro�le can allow folding at limited time scales but in case of a glass transition
before su�cient folding, the folding channels will be kinetically inaccessible.
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Figure 3.2.: Schematic illustration of the HP model (sequence and conformations
taken from [31]). Top: A modeled protein sequence of H (blue) and
P (red) building blocks represents the hydrophobic (H) and hydrophilic
(P) sidechains. H blocks have the tendency to form contacts with each
other in order to achieve a compact fold. Bottom: H-H contacts gain an
energetic bene�t compared to H-P or P-P contacts. The conformation
on the left is kinetically trapped since it has to break two energetically
favored contacts to proceed towards the native conformation. The confor-
mation on the right represents the native fold at the energetic minimum
of the system with �ve H-H contacts.

3.2. Hydrophobic-polar Protein Folding Model

The hydrophobic-polar protein folding (HP) model introduces biophysical interactions be-
tween the surrounding solvent (usually water-based solutions) and the hydrophobic (H) and
polar or hydrophilic (P) side chains of proteins in a simplistic lattice model [31]. The system
is represented by a rectangular lattice that can accommodate a sequence of H or P building
blocks, as it is shown in Fig. 3.2 by a two-dimensional representation of the model. The en-
ergetic scoring function features a negative energy for each H-H contact and zero energy for
H-P or P-P contacts. An energy minimization, therefore, maximizes the number of contacts
of H blocks with each other. By means of these assumptions it is possible to investigate
the kinetics of biomolecular folding directly and reproduce characteristic experimental plots
like melting curves and Chevron plots [31]. This model also facilitates the investigation of
in�uences of native interactions on the folding process: An extended formulation, the HP+
model, incorporates native interactions as additional contact energy scores that promote the
native conformation. Thereby, kinetic traps in the folding process that are present in the
original HP model are reduced, the corresponding funneled energy landscape of the sequence
is smoothened and frustration is minimized. These �ndings � labeled with �principle of min-
imal frustration� [14, 29] � motivated the derivation of simplistic models that implement
minimally frustrated funneled energy landscapes. In the following section structure-based
models (SBMs) as o�-lattice examples that follow the principle of minimal frustration are
introduced.
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3.3. Native Structure-based Model

The principle of minimal frustration [14, 29] can also be introduced in o�-lattice, atom-
istic models. They are deducted from thermodynamic models of protein folding and intro-
duce native interaction networks to a simplistic energy parametrization in order to create
a funnel-shaped, minimally frustrated free energy landscape with the native conformation
as its minimum. These models are referred to as G	o-like models or native structure-based
models (SBMs) [12�17]. SBMs are designed to remove thermodynamic and kinetic traps
and to smoothen out the energy landscape without abandoning global characteristics. SBMs
have been validated by comparison with experimental measurements [75] in their originally
developed context of protein folding simulations. The application of SBMs in the �eld of
structured RNA folding is justi�ed due to observations that shed light on the existance of
native interaction networks that dominate the respective folding processes [76�78]. Accord-
ingly, there are quite recent studies of RNA folding by means of SBM simulations [22, 23, 79].
A comprehensive overview over the current status of SBM techniques in their wide range of
applications has been recently published [80].

There exist a web-based implementation [18] and a local implementation [19] that gen-
erate simulation input �les for SBM simulations. SBM simulations can then be performed
by standard MD software packages that allow a �exible modi�cation of the used force �eld
simulation. GROMACS [66] is such a software suite and its interplay with an SBM imple-
mentation is presented in Chap. 5.

3.3.1. Native Contact Information

The native contact information that needs to be incorporated in the SBM is determined
by a variety of de�nitions, two of which are a simple cut-o� contact map or a �shadow
map� [81]. The cut-o� de�nition regards all atom-atom pairs that are closer to each other
than a certain distance threshold as contacts. The shadow map takes, in addition to an
upper limit for the considered atom distances, a possible shadowing of inter-atomic contacts
by closer atoms in between into account. Two representations of a standard cut-o� contact
map are depicted in Fig. 3.3. The natural reaction coordinate in the context of SBMs is
the Q value � the total or normalized number of formed native contacts. The applicability
of the Q value as a reaction coordinate for protein folding simulations has been recently
investigated and reported in detail [82].

3.3.2. Potential Energy

The actual implementation of SBMs depends on the functional form and the parametrization
of the corresponding potentials. In principle there exist various formulations of which two
examples are given to illustrate the general approach: an all-(heavy)atom formulation and
a possible coarse-grained formulation of the potential energy.
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Figure 3.3.: Two possible contact map representations of an add adenine riboswitch
(PDB ID 1Y26 [21]). In the lower right half of the diagram each atom-
atom contact is marked which yields a contact map. The upper left half
of the diagram depicts a clearer view of the contact map. The contacts
are reduced to residue-residue contacts and color coded as stacking con-
tacts along the sequence (green), helical base pairing contacts (blue), as
discussed in Sec. 1.2.2 and general contacts highlighted in magenta.
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All-atom

An all-atom formulation of an SBM potential [22, 83] features most of the standard terms
in an MD potential, as discussed in Sec. 2.1:

V ({r, θ, χ, φ, rij}) =
∑
bonds

Kb(r − r0)2

+
∑
angles

Ka(θ − θ0)2

+
∑

dihedrals, impropers

Ki(χ− χ0)2

+
∑

dihedrals, backbone

K
(bb)
d

[[
1− cos(φ− φ0)

]
+

1

2

[
1− cos(3 · (φ− φ0))

]]

+
∑

dihedrals, sidechain

K
(sc)
d

[[
1− cos(φ− φ0)

]
+

1

2

[
1− cos(3 · (φ− φ0))

]]

+
∑

contacts

Kc

(σ0
ij

rij

)12

− 2 ·

(
σ0
ij

rij

)6


+
∑

non-native contacts

Knc

(
σ̃

rij

)12

. (3.15)

In this potential the zero indexed quantities r0, θ0, χ0, φ0, σ
0
ij represent the minimum of

the funneled energy landscape that is equal to the native conformation and σ̃ is a global
exclusion radius. Accordingly, the potential has its minimum at the native conformation.
The bonded interactions � bonds, angles and dihedral (or torsional) angles � are represented
in an usual fashion: Bonds, angles and improper dihedral angles are modeled in a harmonic
approximation, as seen in Fig. 3.4. The proper torsional angles are represented by a periodic
potential with a global minimum and two local minima (Fig. 3.5). Key to the SBM potential
are the native contacts that are introduced via Lennard-Jones potential terms between two
non-bonded atoms (Fig. 3.6). The contact information comprises an implicit modeling of
the otherwise neglected electrostatic interactions and involved solvents. All non-native atom
pairs are represented by repulsive terms.

The force constants Kb,Ka,Ki,Kd,Kc,Knc are homogeneous in the standard formulation
of SBMs, i. e., they do not depend on atom or residue types. Possible modi�cations are
discussed in the description of a software implementation that I present in Chap. 5. The
values of the force constants are cataloged for bonds, angles and improper dihedral angles.
For proper dihedral angles and contacts, a ratio between the total energy available in proper
dihedral angles and contacts is introduced. The sum of total proper dihedral energy and
contact energy is normalized to the number of atoms in the system. A more detailed descrip-
tion of the still homogeneous but relatively to each other de�ned force contacts for these
two interactions is given in Sec. A.1. As a result, the involved time and temperature scales
are given in unphysical, reduced units. In order to derive natural time and temperature
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Figure 3.4.: Visualization of a harmonic potential. The standard representation of
bonded interactions in molecular dynamics simulations is the harmonic
approximation. It follows a Hookean force law for displacements out of
the position of rest.
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Figure 3.5.: Visualization of a dihedral angle potential. The dihedral angle potential
is a 2π-periodic potential that has a global minimum at the native value
(here 0) and two local minima that allow the structure to occupy isomeric
conformations.
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Figure 3.6.: Visualization of a Lennard-Jones Potential. The potential is the sum of
a repulsive 1/r12 term and an attractive 1/r6 term. At distance 1 the
potential well has its minimum at a depth of −1 in this example.

scales from SBM simulations they need to be introduced via comparisons of characteristic
observables. Two strategies to introduce physical units to a system of interest are presented
in Sec. 6.2.5.

Cα Coarse Graining

The second example introduces the concept of coarse-graining into the framework of SBM
potential construction. The complexity of a system is reduced by aggregating the amino
acids of a protein into single beads at the positions of their Cα atoms. The respective
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potential energy function can be formulated as [75]

V ({r, θ, χ, φ, rij}) =
∑
bonds

Kb(r − r0)2

+
∑
angles

Ka(θ − θ0)2

+
∑

dihedrals

Kd

[[
1− cos(φ− φ0)

]
+

1

2

[
1− cos(3 · (φ− φ0))

]]

+
∑

contacts

Kc

5 ·

(
σ0
ij

rij

)12

− 6 ·

(
σ0
ij

rij

)10


+
∑

non-native contacts

Knc

(
σ̃

rij

)12

. (3.16)

In this particular formulation the regular Lennard-Jones potential terms are modi�ed to
a 10-12 form. This empirical modi�cation models the screening e�ects of the remaining
atoms in a amino acid around the Cα atom.

3.4. Kinetic Monte Carlo Method

A complementary native secondary structure-based approach is the kinetic Monte Carlo
(MC) method that has recently been presented for RNA folding simulations [32]. In contrast
to the SBM approach the kinetic MC method uses an empirical energy parametrization but
yields no atomistically resolved trajectories.
RNA is represented by a sequence of bases b1, ..., bN where bi = A, C, G or U (see Chap. 1).

A set of base pairs (bi, bj) de�nes the secondary structure of a given RNA sequence. Similar
to native tertiary structure-based approaches native structural information is incorporated
into the RNA model. A list of contacts that are closed in the native secondary structure is
provided and the base pairing interactions restricted to those listed. The total free energy
is then approximated by the sum of all structural motifs

Gtot =
∑

all base pairs

Gbase pair +
∑

all loops

Gloop . (3.17)

In general, the formation of a base pair is energetically preferred (∆Gbase pair > 0) and
closing a loop is penalized (∆Gloop < 0) due to the entropic cost. The free energy bene�ts
are calculated based on empirical models and parameters that are established in the �eld
of RNA secondary structure prediction [84]. The closure of base pairs is parametrized
depending on potential base stacking or single base mismatches. The formation of a hairpin
loop,e. g., is parametrized by

Ghairpin loop(l, (bi, bi+l+1)) = Ginit(l) +Gbase pair(bi, bj) +Goligo C(l) , (3.18)

where the loop of length l is positioned between bases bi and bi+l+1, Ginit(l) are cataloged
values and Goligo C(l) is a potential penalty for pure cytosine loops. Similarly, there exist

30



3.4. Kinetic Monte Carlo Method

parametrizations in combination with cataloged values for short loops, bulges and non-local
loops connecting multiple helices.
A Monte Carlo simulation scheme based on Metropolis rates is used to introduce dynamics.

The basic moves are the random closing and opening of single native base pairs within the
sequence. A move is accepted with a probability that is determined by the Boltzmann
weight function

p = exp
(
−∆G/kBT

)
, (3.19)

where ∆G is the free energy di�erence based on secondary structure formation before and
after the proposed move. In case of ∆G ≤ 0, moves are always accepted.
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4 Chapter 4.

Coevolutionary Statistical Analysis

The connection between structure and function of biopolymer chains and the structural sim-
ilarity of chains with high sequence identity (�homology�) is the consequence of evolutionary
pressure towards a desired function. Mutations within a class or �family� of homologous
chains, therefore, need to be compensated to guarantee structural integrity. Experimen-
tal techniques allow the recording of genetic information for tens of thousands of di�erent
species in a family while the structural resolution of biological systems is a very demanding
task. Sequence information can be �ltered for speci�c functional elements and compiled in
multiple sequence alignments (MSA) for such elements, available in open databases. Coevo-
lutionary methods are able to detect correlated mutations within such alignments and give
contact predictions for sequence elements in their chains. Contact investigations based on
coevolutionary algorithms aim at structure predictions which can ultimately shed light on the
function of biomolecular systems.

First, the basic concepts of sequence analysis by statistical methods are introduced. Mu-
tual information as a measure of correlation in coevolutionary methods is introduced. The
relevance of mutual information for coevolutionary statistical analyses is discussed and its
importance in the context of RNA is highlighted. Mutual information is able to predict
secondary structural elements very reliably but fails to do so for general tertiary contacts.

The next section discusses direct coupling analysis (DCA) as an improved approach to
disentangle direct and indirect correlations between two residues. Since indirect evolutionary
coupling is a common motif but obscures the prediction of spatial contacts, DCA is able to
yield improved predictions. A Potts model represents an ansatz for a probabilistic model that
maximizes entropy while satisfying the condition that the model depicts empirically observed
frequency counts of an MSA. Solutions to this problem can be found by assuming small
couplings that lead to a mean-�eld approximation. From the probabilistic model a gauge
independent score, the direct information (DI), can be derived that ranks the list of predicted
site pairs.
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GCGUGGAUGC
CUGUGACUAC
CUGUGACUAC
UCGAUAAUGC
UCAAUGAUGU
UUGGGAAGAC
UUGGGAAUAC
AUGGGGAUAC

organism1
organism2

...

Figure 4.1.: Exemplary MSA of RNA and the connection between correlation and
spatial closeness. Commutating columns in the alignment are highlighted
in yellow. The example illustrates directly coupled mutations in contrast
to indirectly coupled mutations that in�uence each other via one or more
mediating mutation steps in between. The direct correlation can be in-
dicative of spatial closeness of the two involved sequence elements.

4.1. Basic Concepts

Coevolutionary methods are based on multiple sequence alignments (MSAs) that contain
sequence information of a given characteristic sequence motif that is found in many di�erent
organisms. The collective of a characteristic sequence motif is called a �family� and its
member sequences are aligned to each other. Data sets of these families are stored in
databases, such as the RFAM sequence database [68]. A �ctive multiple sequence alignment
of RNA and the implication of commutating columns on spatial closeness are depicted in
Fig. 4.1: Destabilizing mutations within sequence contacts in a protein or an RNA strand are
supposed to be compensated by commutations in the course of evolution in order to conserve
functional structure elements. Therefore, directly correlated mutations can be linked to
spatial closeness in biopolymers. At the same time, sequence databases are growing rapidly
due to improved automated sequencing techniques [67, 68]. A striking idea in this context is
to develop or enhance biomolecular structure prediction protocols based on easily accessible
sequence information. These protocols are based on algorithms in the �eld of statistical
methods that discover mutation correlations and with them spatial contacts [85, 86]. This
section introduces the formal mathematical framework that is necessary to describe the
methods, as it can be found in [25]. The basic idea of mutual information approaches and
their applications and limits in the context of RNA structure predictions are discussed. In
the next section, a more advanced method, the direct coupling analysis (DCA), that has
been successfully employed for protein structure prediction is described.

4.1.1. Multiple Sequence Alignments and Frequency Counts

RNA families can be represented in databases by a multiple sequence alignment (MSA).
The various representatives of a given family are depicted as lines containing sequences in a

34



4.1. Basic Concepts

standard one-letter code for nucleotides or amino acids. These sequences are aligned so that
sequence identity is maximized and the over-all consensus secondary structure is conserved as
much as possible. There exist various algorithms that demand these conditions: Needleman-
Wunsch [87] and Smith-Waterman [88] algorithms are established dynamic programming
techniques to align sequences. Both algorithms evaluate similarity matrices that allow the
insertion of gaps and they di�er from each other by the employed gap penalty scheme, which
makes the Smith-Waterman algorithm favor local alignments compared to the Needleman-
Wunsch algorithm. Consensus secondary structures can be determined by a variety of
methods based on dynamic programming approaches, such as the Nussinov algorithm [89],
or statistical correlation approaches [90, 91].
In order to introduce a mathematical formalism to analyze the statistical properties of

an alignment, a matrix A that represents an MSA can be de�ned. A is �lled with entries
1, 2, . . . , q representing the building blocks of sequences where q is the size of the �alphabet�
of the biomolecular system, e. g., 5 for RNA (4 nucleotides G, C, A, U and 1 gap) or 21 for
proteins (20 amino acids and 1 gap). The shape of A is given by

A = (Aai ), i = 1, . . . , L, a = 1, . . . ,M , (4.1)

where L is the number of columns that represent the residues of the MSA (length of aligned
biopolymer sequences), and M is the number of rows in the MSA (number of biopolymer
representatives in the aligned family).
We de�ne the single-site and pair frequency counts as

fi(A) :=
1

M

M∑
a=1

δA,Aa
i
, (4.2)

fij(A,B) :=
1

M

M∑
a=1

δA,Aa
i
δB,Aa

i
, (4.3)

where 1 ≤ i, j ≤ L, 1 ≤ A,B ≤ q and δ represents the Kronecker symbol in Eq. (2.20).
Frequency counts are able to represent the statistical properties of the MSA if they are
based on independent samples. The usual content of sequence databases, however, has a
heavy sampling bias. This bias is caused by the general problem of phylogenetic relations
between species and by the choice of sampled species themselves due to research focuses.
The in�uence of the similarities in the aligned sequences can be corrected by a reweighting
scheme [92]. For a given sequence Aa = (Aa1, . . . , A

a
L), the number of similar sequences

Ab = (Ab1, . . . , A
b
L) can be de�ned by

ma :=
∣∣∣{b | 1 ≤ b ≤M, seqid(Aa, Ab) ≥ xL}

∣∣∣ , (4.4)

where x is the the similarity ratio of a sequence with length L. From this we can deduce
the e�ective number of independent sequences

Me� =

M∑
a=1

1

ma
. (4.5)
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Single-site and pair frequency counts can be rede�ned accordingly by

fi(A) :=
1

λ+Me�

λ
q

+
M∑
a=1

δA,Aa
i

 , (4.6)

fij(A,B) :=
1

λ+Me�

 λ

q2
+

M∑
a=1

δA,Aa
i
δB,Aa

i

 , (4.7)

where we introduce the pseudo-count λ [93]. The updated frequency counts compensate for
insu�ciently equally distributed sampling in the data set. The pseudo-count λ is usually
chosen in the order of Me� and can therefore be de�ned by

λ := l ·Me�, , (4.8)

where l ≈ 1 [25].

4.1.2. Mutual Information

A standard measure of mutual dependence between two MSA columns is the mutual infor-
mation MIij de�ned as

MIij =
∑
A,B

fij(A,B) ln

(
fij(A,B)

fi(A)fj(B)

)
. (4.9)

Mutual information equals zero if and only if columns i and j are independent of each
other, which corresponds to fij(A,B) = fi(A) · fj(B) ∀A,B, and is positive otherwise.
Mutual information is not able to distinguish between indirect and direct correlation and
is therefore applicable only to a limited extent for detecting spatial contacts. Correlations
could be mediated indirectly via one or more mutating building blocks that would give an
MI signal but are not in the spatial vicinity of each other. The signal in RNA alignments for
secondary structure contacts (Watson-Crick or Wobble base pairs) is su�ciently prominent
to use mutual information as prediction score [90, 91]. Tertiary contacts, i. e., all non-local
contacts apart from canonical base pairing, have a low signal that is indistinguishable from
underground noise. Therefore it is necessary to disentangle direct from indirect correlations
in order to raise the signal of direct tertiary contacts above the noise level.

4.2. Direct Coupling Analysis

To overcome the shortcoming of not being able to distinguish between direct and indirect
inter-column correlations in the MSA, the direct coupling analysis (DCA) disentangles these
two kinds of correlations [25]. DCA is an implementation of inverse statistical mechanics that
describes a formalism that is able to derive model parameters (in equivalent terms: �elds
and couplings) from observables (in equivalent terms: magnetizations, order parameters,
empirical samples, etc.). The maximum entropy ansatz is a concrete approach to solve
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this q-state Potts model, where q is the size of the sequence alphabet. In this section, the
maximum-entropy model is introduced and solved under independent-site and mean-�eld
approximations, as it can be found in [25]. Direct information (DI) can then be calculated
as the new improved scalar score for spatial contact predictions in biopolymers.

4.2.1. Maximum-entropy Ansatz

In contrast to simple mutual information calculations direct couplings can be discovered by
the more demanding and involved procedure of inferring a statistical model P (A1, . . . , AL)
for all biopolymer sequences in a family's MSA.We require a global model that can reproduce
the empirical single site fi(Ai) and pair frequency counts fi(Ai, Aj):

Pi(Ai) =
∑

{Ak|k 6=i}

P (A1, . . . , AL)
!

= fi(Ai) , (4.10)

Pij(Ai, Aj) =
∑

{Ak|k 6=i,j}

P (A1, . . . , AL)
!

= fi(Ai, Aj) . (4.11)

In addition, the model that satis�es Eqs. (4.10) and (4.11) should be most general and
therefore least constrained, which can be determined by maximizing the entropy

S = −
∑

{Ai|i=1,...,L}

P (A1, . . . , AL) ln
(
P (A1, . . . , AL)

)
. (4.12)

The text-book solution to this optimization problem follows the Lagrange formalism [94]
and reads

P (A1, . . . , AL) =
1

Z
exp

∑
i<j

eij(Ai, Aj) +
∑
i

hi(Ai)

 , (4.13)

where hi(A) and eij(A,B) are the respective Lagrange multipliers. The local �elds hi(A)
represent the local biases for the sequence units and the coupling strengths eij(A,B) their
statistical coupling.
It is helpful for a compact formulation of the formalism to introduce the partition function

Z =
∑

{Ai|i=1,...,L}

exp

∑
i<j

eij(Ai, Aj) +
∑
i

hi(Ai)

 (4.14)

that contains the local �elds and couplings of Eq. (4.13) and the Hamiltonian

H = −
∑

1≤i<j≤L
eij(Ai, Aj)−

L∑
i=1

hi(Ai) , (4.15)

which enables us to formulate the probabilistic model as

P (A1, . . . , AL) =
1

Z
exp

(
−H

)
. (4.16)
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The computational challenge of the determination of the marginals Pi(A) and Pij(A,B)
roots in the fact that it requires the summation over all alignments Ai in the partition
function in Eq. (4.14).
Here it can be pointed out that the marginals Pi(A) and Pij(A,B) can be analytically

derived from the partition function by

∂ ln(Z)

∂hi(A)
= −Pi(A) , (4.17)

∂2 ln(Z)

∂hi(A)∂hj(B)
= −Pij(A,B) + Pi(A)Pj(B) . (4.18)

Accordingly, we can introduce the connected correlations

Cij(A,B) := Pij(A,B)− Pi(A)Pj(B) , (4.19)

where indices i, j ∈ {1, . . . , L} and A,B ∈ {1, . . . , q − 1}. The limitation of A,B to
{1, . . . , q − 1} removes linear dependencies due to the normalization of the two-site marginals
Pij and makes Cij invertible. This makes Cij(A,B) a L(q−1)×L(q−1)-dimensional matrix
where the pairs (i, A) and (j, B) represent joint single indices.

4.2.2. Gauge Invariance

The number of parameters in the statistical model in (4.13) is
(
N
2

)
q2 + Nq. This number

is not the number of independent variables and can be corrected to
(
N
2

)
(q − 1)2 +N(q − 1)

for an independent set of parameters. Therefore, the following conditions can be applied:

eij(A, q) = eij(q, A) = hi(q) = 0 , (4.20)

which means that all couplings and biases are determined with respect to state q. Thereby,
the number of variables corresponds to the number of constraints, which renders the solution
of the maximum-entropy model unique.

4.2.3. Small-coupling Expansion

The explicit calculation of the partition function Z is computationally expensive and renders
the calculation for typical sequence lengths of biopolymers unfeasible. In order to reduce
the computational e�ort the algorithm is based on a small-coupling expansion [95, 96]. The
perturbed coupled Hamiltonian needs to be expanded for small perturbations around the
unperturbed case and can in general be introduced as

H(α) = −α
∑

1≤i<j≤L
eij(Ai, Aj)−

L∑
i=1

hi(Ai) , (4.21)

where α parameterizes the perturbation, ranging from 0 for independent variables and 1 for
the original model. The Gibbs potential

−G(α) = ln

 ∑
{Ai|i=1,...,L}

e−H(α)

− L∑
i=1

q−1∑
B=1

hi(B)Pi(B) (4.22)
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can be introduced as the Legendre transform of the free energy F = − lnZ. In contrast
to the free energy that depends on the �elds hi(A) and the couplings eij(A,B), the Gibbs
potential depends only on the couplings and the single-site marginals Pi(A):

G(α) = G
(
{αeij(A,B)}A,B=1,...,q−1

1≤i<j≤L , {Pi(A)}A=1,...,q−1
i=1,...,L

)
. (4.23)

From the Gibbs potential the �elds can be derived via Legendre transformation rules by

hi(A) =
∂G(α)

∂Pi(A)
(4.24)

and the inverted connected couplings by

(
C−1

)
ij

(A,B) =
∂hi(A)

∂Pj(B)
=

∂2G(α)

∂Pi(A)∂Pj(B)
. (4.25)

The restriction introduced in Eq. (4.19) renders matrix Cij invertible in case of a �nite
pseudo-count λ. Therefore, the two-site marginal distribution Pij can be calculated by
di�erentiating the Gibbs potential twice with respect to single-site marginals at i and j and
by inverting matrix Cij , following Eq. (4.19). To this end, it is also necessary to determine
an expression for the Gibbs potential, which will be done in a �rst order Taylor expansion
given by

G(α) = G(0) +
dG(α)

dα

∣∣∣∣∣
α=0

α+O(α2) . (4.26)

4.2.4. Independent-site and Mean-field Approximation

The �rst summand contains the Gibbs potential for α = 0 (independent-site approximation).
Without coupling, the Gibbs potential represents the negative entropy of an ensemble that
consists of L uncoupled �spins� (with q states) A1, ..., AL with given marginals Pi(Ai). In
this case the potential can be written as

G(0) =
L∑
i=1

q∑
A=1

Pi(A) ln(Pi(A)) (4.27)

=

L∑
i=1

q−1∑
A=1

Pi(A) ln(Pi(A))

+

L∑
i=1

1−
q−1∑
A=1

Pi(A)

 ln

1−
q−1∑
A=1

Pi(A)

 , (4.28)

where the last summand introduces the chosen gauge.

39



4. Coevolutionary Statistical Analysis

The next step is to derive an expression for the �rst derivative with respect to α. From
the de�nition of Gibbs potential in Eq. (4.22) we can derive

dG(α)

dα
=− d

dα
ln(Z(α))−

L∑
i=1

q−1∑
A=1

dhi(A

dα
Pi(A) (4.29)

=−
∑
{Ai}

∑
i<j

eij(Ai, Aj) +
∑
i

dhi(A)

dα

 e−H(α)

Z(α)

−
L∑
i=1

q−1∑
A=1

dhi(A

dα
Pi(A) (4.30)

=−

〈∑
i<j

eij(Ai, Aj)

〉
α

, (4.31)

which represents the average of the coupling term in the Hamiltonian. The evaluation of
this expression for α = 0 yields the factorized joint distribution of all variables over the
single-site marginals

dG(α)

dα

∣∣∣∣∣
α=0

= −
∑
i<j

∑
A,B

eij(A,B)Pi(A)Pj(B) . (4.32)

Inserting Eqs. (4.27) and (4.32) in the �rst-order approximation of the Gibbs potential yields
self-consistent mean-�eld equations for the local �elds

Pi(A)

Pi(q)
= exp

hi(A) +
∑
{j|j 6=i}

q−1∑
B=1

eij(A,B)Pj(B)

 (4.33)

and the inverse of the connected correlation matrix as(
C−1

)
ij

(A,B)

∣∣∣∣
α=0

=

 −eij(A,B) for i 6= j
δA,B

Pi(A) + 1
Pi(q)

for i = j
. (4.34)

With this we only need to invert the connected correlation matrix that can be determined
from the empiric single-site and pair frequency counts

Cemp
ij (A,B) = fij(A,B)− fi(A)fj(B) (4.35)

in order to calculate the couplings eij(A,B).

4.2.5. Direct Information

In order to be able to rank the pair correlations based on the calculated coupling matrices
eij(A,B) we need to calculate scalar values from the respective matrices. A gauge indepen-
dent quantity is the direct information (DI), as introduced in [92]:

DIij =

q∑
A,B=1

P dir
ij (A,B) ln

 P dir
ij (A,B)

fi(A)fj(B)

 , (4.36)
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where we assume a two-site model for a pair i, j

P dir
ij (A,B) =

1

Zij
exp

(
eij(A,B) + h̃i(A) + h̃j(B)

)
. (4.37)

The local �elds h̃i(A), h̃j(B) need to be calculated by identifying the corresponding marginal
distributions with the empirical single-site frequency counts

fi(A) =

q∑
B=1

P dir
ij (A,B) , fj(B) =

q∑
A=1

P dir
ij (A,B) . (4.38)

The presented approach [25] disentangles direct and indirect correlations that are found
in biomolecular sequence alignments, where direct correlations are able to indicate spatial
contacts. In order to achieve this disentanglement it is necessary to �nd a complete, least
constrained statistical model that describes a given empirical data set, i. e., single-site and
pair frequency counts. The maximum-entropy model is such a model and its standard solu-
tion can be found with help of the Lagrange formalism. By introducing respective Lagrange
multipliers a Hamiltonian that contains local �elds and couplings is set up. The formulation
is similar to a two-state Ising model but is generalized instead to a q-state Potts model where
q is the size of the biomolecular system's sequence alphabet. In order to solve the inverse
Potts model it would be necessary to calculate the partition function explicitly which is
computationally demanding and exceeds available computational resources for typical sizes
of biomolecular systems of interest. Three approximative steps ensure a less demanding pro-
cedure: A small-coupling expansion is applied to the Gibbs potential by expanding it in a
Taylor series for small couplings. Independent-site and mean-�eld approximations yield the
zeroth and �rst order approximation for the potential and give a relation between couplings
and an inverted connected correlation matrix that can be calculated from empiric single-site
and pair frequency counts. Therefore, the dominant computational e�ort becomes a matrix
inversion instead of explicit summations. A calculated coupling matrix for a given sequence
unit pair can be condensed into a scalar quantity, the �direct information� that serves as a
prediction score for the sequence unit pair. This method has been successfully employed in
protein contact prediction [25, 92, 97] and promises applicability in the �eld of RNA contact
prediction.
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5 Chapter 5.

eSBMTools: Native Structure-based
Model Software Package

This chapter introduces a Python implementation of native (tertiary) structure-based models
that was initiated by me and developed in cooperation with several members of our research
group. The software package is under constant development and released under GNU General
Public License version 3.0 at http://sourceforge.net/projects/esbmtools. The chapter
is based on our publication [19].

Molecular dynamics (MD) simulations are able to complement experimental measurements
to gain more detailed insights into the structure and function of biomolecular systems at ex-
perimentally inaccessible time or length scales, as discussed in Chap. 2. Limitations of
the standard MD simulation scheme are overcome by simplistic biopolymer models, such as
native structure-based models (SBM) that are based on energy landscape theory and the prin-
ciple of minimal frustration, as introduced in detail in Chap. 3. The computational e�ort for
protein and RNA folding simulations is reduced by structural and energetic coarse-graining.
A reduced complexity enables the design of work�ows that require extensive sampling over
simulations of biophysical dynamics.

In order to perform such automatized studies it is desirable to utilize a �exible imple-
mentation of SBMs that interfaces with an established simulation software. I present the
software package eSBMTools (�enhanced SBM tools�) that provides functionality to set up,
modify and evaluate SBMs for biomolecular systems. The software package is released open
source and written in Python that is architecture independent and allows the installation on
desktop or high performance computing systems. Its modules are tailored for the use with
the molecular dynamics simulation program GROMACS [66].

First, the structure of the package � preprocessing and postprocessing � and the range of
functionalities to assist the practical use of SBMs is described in more detail. Eventually,
concrete bene�ts for use cases presented in this thesis are discussed.
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5.1. Motivation and Overview

In the course of this thesis I started and was since in charge of the development of a
Python [98] software package called �enhanced native structure-based modeling tools� (eS-
BMTools) [19]. The toolkit is tailored to the MD simulation software GROMACS [66]. It
interfaces with its standard input �le formats, some of the evaluation tools provided by
GROMACS and the output �les generated by simulations.

Energy landscape theory and the principle of minimal frustration are based on the ne-
cessity that biomolecular evolution results in an e�ective tendency of a foldable biopolymer
to have a energy landscape that is funnel-shaped where its global minimum being the na-
tive, folded state, as discussed in Chap. 3. This model justi�es �nite folding times and
resolves Levinthal's paradoxon. Native structure-based models (SBMs) realize an idealized,
minimally frustrated folding funnel by means of a simplistic interaction potential [14, 83]
that allows MD simulations to reach biologically relevant time scales. The corresponding
potential is constructed from contact information of the native fold. The number of realized
native contacts in a conformation, the Q value, is at the same time the natural choice of
a reaction coordinate. The Q value is, therefore, used as a reaction coordinate to investi-
gate folding pathways or as an order parameter for thermodynamic evaluations, such as the
weighted histogram analysis method (WHAM) [99].

The SBM potential can be reformulated with structural coarse-graining techniques. Pro-
tein sequences can be represented by a chain of beads at the positions of the Cα atoms in
amino acids. Concrete formulations of the SBM in an all-atom [83] or a Cα [14] formulation
have been established. eSBMTools provides both formulations and takes the native confor-
mation from a given Protein Data Bank (PDB) [42] input �le. Appropriate input �les for
simulations by the MD simulation suite GROMACS are generated.

As a result, the implementation of SBM force �elds facilitates the setup of folding sim-
ulations that yield folding transitions on standard desktop computers. These simulations
are able to reach e�ective time scales of seconds and allow extensive sampling in case of
RNAs that consist of about 100 nucleotides on multipurpose high performance computing
systems. In contrast to existing web-based solutions, such as the SMOG-server [18] that
allow a straightforward setup of standard SBMs, eSBMTools equips the user in addition to
standard setup routines with a wide range of extensions. The customization of an existing
SBM in Python scripts allows the setup of automatized work�ows. The work�ows can vary
the standard formulation by, e.g., adding additional, non-native contacts, introducing novel
ligand or constituent topologies, or manipulating force �eld parameters or they can scan
global simulation parameters. The need for this range of functionalities can be motivated
by a number of published scenarios: The function of biomolecular machinery, such as the
ribosome, often requires structural transitions between di�erent conformations [100]. The
addition of non-native contacts to the SBM has been successfully implemented and inves-
tigated [101]. The SBM's structural �exibility allows deformations of the overall structure
as a possible response to such non-native interactions. Competing and alternative con-
formations in dual (or even multi)-basin models [102�104] are the investigated results of
respectively introduced deformations. Recent studies have also discovered the potential of
contacts predicted by statistical physics methods to predict complexes [105], protein struc-
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tures [106], active conformations [97] or transmembrane proteins [107]. Another example
for a general application of the described use cases is the prediction of exited states during
ribosome translocation by including contact information derived from experimental mea-
surements [108]. eSBMTools has already been successfully applied in projects outside my
personal research focus in a broad study about folding pathways in proteins [109] and for
modeling experimental markers in protein folding simulations [unpublished data by Ines
Reinartz].

In the following the implementation of the model is described in detail. eSBMTools'
structure, its interfaces to the GROMACS software package and the range of functions is
outlined. In the last section, the implications of eSBMTools for conducted studies in the
course of my research are discussed.

5.2. eSBMTools: Implementation of the Model

eSBMTools is organized in 13 modules that can be imported into custom Python projects.
This architecture allows the �exible assembly of functionalities for advanced work�ows in
the context of SBM simulations. The modules accept input �les and create output �les that
meet the formats that are de�ned by tools of the standard GROMACS software package [66].
The Python package assists the user during all steps around SBM simulations:

• generation of the �les that de�ne an SBM topology and geometry for GROMACS
simulations

• optional: manipulation of the SBM depending on the study

• generation of required simulation parameter input �les for GROMACS

• execution of post-processing protocols according to study

• visualization of results

The SBM is based on a native conformation de�ned by a PDB structure �le. An XML-
based topology de�nition that is provided by the package itself introduces bonded interac-
tions, such as bonds, angles and planar and proper dihedral angles. The provided topology
de�nitions describe DNA/RNA (by nucleotide building blocks) or protein (amino acid build-
ing blocks) systems in all-atom or Cα formulation. The �exible XML format enables the user
to realize custom topology de�nitions in addition to the existing entries. This way, ligands,
modi�ed sequence constituents, or experimental markers, such as Förster resonance energy
transfer (FRET)-�uorophores [110, 111], can be introduced to a model. The strategy how
to include FRET-�uorophores into SBM has recently been introduced in our work group
[unpublished data by Ines Reinartz]. Non-bonded interactions as atom-atom contacts are
implemented by a simple cut-o� formulation: A contact between two atoms is considered
to be formed if the distance between the two involved atoms is below a certain threshold,
by default 0.4 nm. A contact map represents every contact between two atoms by an entry,
as in Fig. 5.1.
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Figure 5.1.: Exemplary contact map of protein ubiquitin (PDB ID 1UBQ) with pos-
sible modi�cations. The top left half of the in principle symmetric binary
matrix shows the plain residue-residue contact map of the protein (with
weight 1.0). The bottom right half of the matrix shows the same contacts
but with reweighted contact strengths. The weighting factors depend on
the residue-residue pair involved in the contact and has been published
by Miyazawa and Jernigan [112] based on empiric statistical values.

The generated SBM can be modi�ed according to the requirements of the user's system
of interest. The contact information can be manipulated to include, e. g., predicted con-
tacts [25, 97] or the energetics of all contacts can be reweighted by, e. g., by amino acid
interaction matrices [112], shown in Fig. 5.1. Two SBMs can be merged in order to setup
combined systems for, e. g., complex formation simulations [105].

Once the �les that describe the system of interest � coordinates and force �eld � are
prepared, eSBMTools generates the required con�guration �les for GROMACS simulations.
This generation can be customized within Python to adjust simulation parameters, e.g.,
temperature, duration or time resolution to steer simulations within a work�ow. Examples
of this capability have been presented for automatized protein folding studies by Claude
Sinner in our group [109, 113].

In general, the range of functions of eSBMTools can be divided in two categories: prepro-
cessing and postprocessing. In the following, more detailed descriptions of the functionalities
within these two categories are presented.

5.2.1. Preprocessing

The preprocessing range of functions features the generation of the following set of �les:
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• .gro �le: The coordinate �le contains a complete list of atom positions in the system.
These positions serve as starting conformation for the MD simulation.

The coordinates are taken from a PDB (Protein Data Bank [42]) �le that provides
the native conformation for the SBM. Parsing of the PDB �le is performed by the
functionality provided by Biopython [114]. The organization by chains that the PDB
�le format features is lost due to the required GROMACS �le format.

• .top �le: The topology �le consists of an atom type list, a full reference atom list,
a list of non-bonded contacts and list of the bonded interactions bonds, angles and
dihedral angles. A detailed description of the .top �le composition can be found in
Sec. A.1.

The information in this �le about the present bonded interactions is generated based
on an XML based de�nition of bonded interactions within and between the building
blocks of a biomolecule. A library of standard biomolecular building blocks, such as
nucleotides (RNA, DNA) and amino acids (proteins), are included in the package.
Each building block is set up by a list of atoms, bonds, angles and dihedral angles in
human readable form that can be exchanged or extended at will.

The non-bonded contact information is based on the geometry of the biomolecule and
generated via a simple cut-o� criterion as contact de�nition. Chains that have been
present in the PDB �le are treated independently in terms of bonded and non-bonded
interactions.

• .mdp �le: The con�guration �le de�nes all simulation parameters, such as tempera-
tures, coupling settings, time steps, random seeds or the output frequency.

All options available in the GROMACS con�guration �le format are accessible by key
words within the Python implementation. Therefore, the generation is completely
customizable and automatized work�ows can be steered by a Python project.

During setup of the required simulation �les the standard formulation of the model can
be customized. The contact map can be reweighted, e. g., by statistically or biophysically
motivated relative residue-residue strengths. Additional contacts can be added to the native
ones to create interactions between monomers that form complexes or to provoke confor-
mational changes in a structure. The implementation also allows merging of two existing
models which would be a �rst step to create complexes from two independent structures
or to model biomolecular assembly, crowding or the presence of ligands. Alternatively, the
implementation allows to generate subsets of contacts to investigate the characteristic in-
�uence of speci�c contact classes on the structural stability of biomolecular systems. The
Python-based access to con�guration options facilitates automatized temperature scans in
work�ows and the modi�cations of random seeds guarantees statistical independence of
dynamic data in di�erent simulations.
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5.2.2. Postprocessing

The postprocessing of MD simulations is based on the temporal sequence of conformational
states of the system, the �trajectory�. Trajectories are saved by default in binary .xtc

�les that can be processed by GROMACS's various extensions. From the trajectories,
characteristic values can be generated:

• root mean-square deviation (RMSD) values [115]

RMSD(Ci, Cj) = min

 1

N

N∑
k=1

|rik − rjk|2
 1

2

rot,trans

, (5.1)

where Ci, Cj are the two conformations that exhibit deviations between each other, N
is the number of atoms in the system and min (.)rot,trans denotes the minimum over all
relative orientations between the two conformations. eSBMTools provides a wrapper
for calculations that are performed by the existing GROMACS tool g_rms.

• Q values [116]

Qk =

Nc∑
{ij}

qkij , (5.2)

where Nc is the number of contacts and

qkij =

1, if 0.8 ≤ rkij/σ0
ij ≤ 1.2

0, otherwise ,
(5.3)

where rkij is the actual distance of atom pair ij in a given conformation k and σ0
ij is the

respective native distance. Therefore, a Q value is the ratio of formed native contacts
in a given conformation. These values are a natural reaction coordinate for SBM
simulations [82]. eSBMTools provides a wrapper for calculations that are performed
by the existing custom GROMACS extension g_kuh [117]. Alternatively, the software
package features its own implementation for Q value calculations that is about ten
times slower than g_kuh but does not depend on a custom GROMACS extension.

The described characteristic values can be used to create evaluation scenarios, such as
contact maps over time or Q value �ltering for certain substructural elements. Q values of
simulations at di�erent temperatures, preferable around the folding temperature, are used
for weighted histogram analysis method (WHAM) [99, 118] calculations that generate a free
energy landscape F (Q,T ) over temperature T and Q value and the heat capacity CV (T ).
Visualization is realized by Python's internal functionality provided by matplotlib as part
of Scipy [119]
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5.3. Discussion

I have presented the software implementation that was created in the course of my studies
and contributed to all my research projects and several ongoing projects in the research
group. eSBMTools has been released to the public as an open source repository. Giving
the community a local implementation, in contrast to a web server, has several bene�ts:
The user has control over the analyses without the suspicion that operators of a web server
are logging submissions and scan them for interesting projects. Secondly, the Python based
implementation facilitates the setup of complex work�ows using the provided functionality
as is. Since Python is installed on most of today's multipurpose high performance computing
(HPC) facilities these work�ows can also operate directly within submitted jobs. The XML-
based topology de�nitions allows the addition of structural information without expert
programming knowledge. Eventually, the more experienced users can exploit the fact that
the implementation is open source and therefore extendable by own functions. I chose
GROMACS as a state-of-the-art MD implementation to interface with eSBMTools since it
provides the standard range of functionalities and is commonly available on HPC systems.
Additionally, the force �eld interface of GROMACS is �exible enough to accept the simplistic
parametrization of an SBM.

The software package has been successfully presented and applied in lecture tutorials.
Apart from that, its application in the course of my research that is presented later on
in my thesis is manifold. It plays a major role in the setup and evaluation of simulations
of cotranscriptional riboswitch folding, as discussed in Chap. 6. Coordinates of a helically
parameterized tube are generated by adapting the existing XML implementation and sub-
sequent merging of the tube with existing SBM topologies and coordinates is realized with
eSBMTools' standard formulation. Simulations are evaluated with the help of Q value tools
that allow the setup of Q value �ltering for regional Q values in helical substructures. My
investigations on the assessment of coevolutionary tertiary structure contact prediction in
RNA, as presented in Chap. 7, has greatly bene�ted from the �exible implementation of
XML based topologies. The architecture gives control over every part of the force�eld de�-
nitions individually and facilitates the formulation of �generalized� SBMs, later referred to
as �knowledge-based models� (KBMs).

Beyond speci�c individual applications of the tool, a work�ow realized by eSBMTools
has been deployed and published very recently as part of a computer grid implementa-
tion that gives access to SBM simulations on the Molecular Simulation Grid (MoSGrid,
https://mosgrid.de/portal) and is started and monitored within a web browser [120].
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6 Chapter 6.

Cotranscriptional Riboswitch Folding

In this chapter I present my results from a study on cotranscriptional riboswitch folding. My
results are then compared with an according study by Dipl. Phys. Michael Faber at the Max
Planck Institute of Colloids and Interfaces in Golm, Germany. The chapter is based on our
publication [24].

Riboswitches are sequences in the noncoding region at the start of messenger RNA (mRNA)
that are able to sense environmental conditions by binding small molecules, often referred
to as metabolites or ligands. Riboswitches can react structurally to a certain level of con-
centration of these metabolites, if they bind successfully. This structural reaction resembles
a two-state switch that turns genetic expression of the downstream gene �on� or �o��. The
decision between the formation of either state, has to occur while the transcript leaves its fac-
tory, the RNA polymerase (RNAP), i. e., during transcription. The extrusion out of RNAP,
folding and ligand binding all occur simultaneously and interdependently on the seconds time
scale.

I employ a coarse-grained in-silico technique to investigate the in�uence of the crowded
environment of RNAP on the folding characteristics of the SAM-I and add adenine ri-
boswitches at varying extrusion velocities. Native structure-based model (SBM) simulations
yield an atomically resolved dynamic model of riboswitch folding. The homogeneous ener-
getics of the model introduce solvents and the presence of ligands implicitly. Depending on
extrusion at various transcription rates, I observe and quantify di�erent pathways in the
formation of substructural elements. In the investigated scenarios, free-folding riboswitches
can exhibit di�erent folding characteristics compared to transcription-rate limited folding.
Since the critical transcription rate distinguishing these cases is higher than physiologically
relevant transcription rates, my �ndings suggest that cotranscriptional folding is reliably
transcription rate limited in case of the SAM-I and add adenine riboswitch.

Subsequently, my results are compared to results from the energetically more detailed ki-
netic Monte Carlo simulations by Michael Faber. The kinetic Monte Carlo method gives
access to longer time scales by describing folding on the native secondary structure level.
Our �ndings are in robust agreement given the complementarity of both techniques.
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6.1. Motivation and Overview

Riboswitches are a specialized subclass of structured RNA and situated in the untranslated
region (UTR) at the 5' end of messenger RNA (mRNA). The nascent RNA strand is se-
quenced by the RNA polymerase (RNAP) according to a DNA sequence: the transcription
process [35, 121, 122]. Small metabolites (or �ligands�) in the vicinity of the nascent RNA
strand can bind to the riboswitch that itself responds by conformational changes. These
conformational changes cause again structural responses that can prohibit expression of the
downstream gene by transcription termination or translational repression [5�8, 123]. In or-
der to perform this function, a riboswitch consists of two structural subdomains: aptamer
region and expression platform. The aptamer region detects and binds the ligand which
results in a speci�cally folded conformation that is stabilized by the bound ligand. As a
consequence, the expression platform reacts structurally to the respective conformation of
the aptamer. This reaction is then tailored to decide between two conformational states: a
state that permits transcription and translation and a state that can attenuate transcription
or translation. Thereby, a two-state switch depending on ligand binding is realized. Lig-
and binding requires a certain concentration of ligands surrounding the RNA strand during
transcription. However, it has been observed that even at high ligand concentrations ligand
binding can be highly suppressed [124]. These �ndings suggest that conformational changes
in the aptamer can prohibit ligand binding which gives the metabolite not enough time to
reach thermodynamic equilibrium in the bound state until the termination decision. The
apparent dissociation constant for an �on� riboswitch (bound ligand allows transcription)
can, therefore, be de�ned as

Kd =
koff
kon

, (6.1)

where koff is the time rate to terminate transcription and kon is the time rate × concen-
tration of ligands to continue transcription. One recent goal of riboswitch investigation is
to determine whether a riboswitch is thermodynamically or kinetically controlled [125�127],
i. e., whether thermodynamic equilibrium with the ligand can be reached within the time
window given by transcription (thermodynamic control). In a recent experimental study,
ligand binding of the pbuE adenine riboswitch has been directly observed in-vivo [39]. As a
result, this riboswitch is found to be kinetically controlled.

Cotranscriptional folding of RNA di�ers from free folding mainly in two aspects: First,
the folding chain is still growing and, thus, the subset of potential interaction partners
for any atom in the nascent chain evolves with time. As a consequence, the range of
possible conformations is also time-dependent and di�erent substructures may have di�erent
accessible time windows for folding. Secondly, spatial restriction (or reduction of chain
entropy) arises from steric interaction with the RNAP, the cellular machinery that reads
out the genetic information stored in DNA and synthesizes a complementary RNA strand.
The nascent RNA strand leaves the RNAP through an exit channel which introduces spatial
constraints for the emerging RNA allowing each nucleic acid to leave the RNAP individually.
Only outside RNAP the RNA is able to form secondary structural elements and, thus, the
nascent RNA strand experiences drastic spatial restrictions. Considering these two factors,
transcription may have an in�uence on the folding behavior of riboswitches and, eventually,
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ligand binding.
Experimental studies of RNA folding, such as single-molecule FRET measurements [128]

or optical trap extension experiments [129], are complex and costly processes that motivate
research for computational methods to complement such analyses. There have been several
approaches to combine computational and analytical methods with experimental �ndings
to systematically enhance our understanding of RNA folding [76, 130�132]. Atomically re-
solved simulations could add nanoscopic insight to the existing picture of riboswitch folding
characteristics. Straightforward all-atom molecular dynamics simulations with explicit sol-
vent, as introduced in Chap. 2, however, are typically still limited to simulated times in the
order of hundreds of nanoseconds in the context of RNA [133]. Because riboswitch folding
occurs at time scales in the order of seconds [134], such simulations would exceed present
day's computational resources by several orders of magnitudes.
In order to overcome these computational limitations, my study focuses on a structure-

based method to investigate cotranslational folding of two exemplary riboswitches. Native
structure-based models (SBMs) employ a potential that is based on the native fold of a
biomolecule, as described in Chap. 3. Motivated by energy landscape theory, this model ex-
hibits a smooth, funneled energy landscape dominated by native interactions. The energetic
coarse-graining of this model allows, while being still atomically resolved and dynamic, to
reach the biologically relevant time scales of RNA folding with comparably moderate com-
putational e�ort [22, 23, 108]. Free folding of the SAM-I riboswitch has been investigated
previously by means of the native structure-based model (SBM). The focus of that study
has been on ligand binding and nonlocal helix formation in the aptamer region during free
folding [22]. A similar study focused on a preQ1 riboswitch [23]. By contrast, the present
study focuses on cotranscriptional riboswitch folding and, thereby, on the in�uence of a
crowded environment on the overall folding characteristics of nascent riboswitches. In my
model, the stretched RNA strand is pushed out of a �exible tube with a funnel-like exit
region emulating the extrusion of a nascent RNA strand out of RNAP. The acting force
is distributed over a number of residues while they are inside the tube. Every segment of
the strand that leaves the tube is released of the acting force and, therefore, free to fold.
The physiologically relevant transcription rates of RNAP vary over about one order of mag-
nitude (about 15 to 80 nucleotides per second, nt/s) [35]. This �exibility is accomplished
by various pausing mechanisms that in�uence transcription speed [135�137]. According to
my results, the folding characteristics of riboswitches are transcription-rate limited within
the range of physiological transcription rates. Therefore, the folding characteristics of co-
transcriptional riboswitch folding di�ers robustly from the free folding scenario. My results
are then compared to respective results by a kinetic Monte Carlo study performed by Dipl.
Phys. Michael Faber. The comparison of both techniques in the course of our collaboration
yields good agreement that backs the signi�cance of our computational results.

6.2. Method

I present the methodological elements that were used in the course of this study. First,
the structures of interest, the SAM-I and add adenine riboswitches, are introduced and
their characteristic structural features highlighted. Secondly, the very simplistic coarse-
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grained model of the RNAP is described and motivated in the context of SBM simulations.
After that, the concrete formulation and application of SBMs within this investigation is
discussed and the necessary steps towards an accurate model depicted. In the end, I de�ne
the evaluation protocol that allows a compact presentation of the key results and makes them
at the same time comparable to results obtained by the kinetic Monte Carlo approach.

6.2.1. Structures of Interest

The investigated structures are the aptamer regions of two riboswitches with converse switch-
ing behavior and regulatory functions:

1. The SAM-I riboswitch from bacterium Thermoanaerobacter tengcongensis is an �o��
switch that regulates transcription. The investigated sequence consists of 94 nu-
cleotides and its structure has been published with PDB ID 2GIS [20] (shown in
Fig. 6.1A). The 94 nucleotides are arranged in a four-way helical junction with two
pairs of coaxially stacked helices P1 to P4. Their stems consist of 8, 7, 6 and 5
base pairs, respectively. A detailed depiction of the nucleotides involved in secondary
structure is given in Fig. 6.2. The metabolite S-adenosylmethionine (SAM) binds to
a binding pocket between P1 and P3.

2. The add adenine riboswitch from the procaryotic organism Vibrio vulni�cus is an �on�
switch that modulates translation initiation and consists of 71 nucleotides arranged in
a three-way helical junction as published in PDB ID 1Y26 [21] (shown in Fig. 6.1B).
The helices P1 to P3 exhibit stems consisting of 9, 6 and 6 base pairs, respectively, as
seen in detail in Fig. 6.2. The ligand binds between the two coaxially stacked helices
P1 and P2.

The two structures are experimentally resolved with high resolution (less than 0.3 nm)
and exhibit two di�erent switching mechanisms. In the following I want to investigate how
folding is a�ected by transcription for these two structures, speci�cally if and how the folding
order of the substructural elements depends on the transcription rate. Two folding scenarios
are studied here: free folding and cotranscriptional folding of the whole aptamer structure.

6.2.2. Extrusion Scenarios

The presence of the RNAP during transcription needs to be modeled in simulations by
means that are physiological accurate and technically realizable. Possible models would be:

• an explicitly growing strand

• extended and �xated strand that is released residue by residue

• extended strand in a completely enclosing tube with an exit region

The �rst model would mean restarting simulations for each nucleotide of the sequence at
a group of �xated atoms that is also shifted for every new simulation. This procedure is
technically quite laborious without any physiologically relevant advantages. The second
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Figure 6.1.: Tertiary and secondary structures of the SAM-I and add adenine ri-
boswitches in the ligand bound state. (A) Aptamer region of the SAM-I
riboswitch (PDB ID 2GIS): The colored strands indicate elements of sec-
ondary structure. Helix P1 is highlighted in red, P2 in green, P3 in blue,
and P4 in pink. The ligand is shown in orange. (B) Aptamer region of
the add adenine riboswitch (PDB ID 1Y26). The same colors as in (A)
for helices P1 to P3 and ligand are used. Helices P1 and P3 are coaxi-
ally stacked. (C ) The SAM-I riboswitch consists of two pairs of coaxially
stacked helices P1 to P4 connected by a four-way helical junction in its
ligand bound state. Helix P1 forms in the presence of the ligand and acts
as an anti-anti-terminator allowing the terminator (long stem loop with
downstream sequence of uridines) to fold. In this case, transcription is
terminated. (D) The add adenine riboswitch exhibits three helices P1 to
P3 in its ligand bound state. Helix P1 forms in the presence of the ligand
and prevents a translational repressor (initiation codon AUG paired in
long stem loop) from forming.
The �gure is taken from [24] and used under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0/).
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GGCUUAUCAAGAGAGGUGGAGGGACUGGCCCGAUGAAACCCGGCAACCAGAAAUGGUGCCAAUUCCUGCAGCGGAAACGUUGAAAGAUGAGCCA

CGCUUCAUAUAAUCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAACUCUUGAUUAUGAAGUG

Figure 6.2.: Secondary structure base pairs in the SAM-I (top) riboswitch and the
adenine add (bottom) in their respective ligand bound conformations.
Each connecting line between two bases in the sequence depicts a
Watson-Crick (G-C, A-U) or Wobble (G-U) base pair. Di�erent hair pin
loops are color coded as in Fig. 6.1: P1 in red, P2 in green, P3 in blue
and P4 in pink.
The �gure is taken from the supplementary information of [24] and

used under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/).

model is the technical easiest implementation that lacks the e�ect of mechanical drag and
the sterical in�uence of a bulky exit region. The third model, as seen in Fig. 6.3, is the
favored scenario since it allows a mechanically realistic implementation at a technically
feasible e�ort. It comes at the price of an in principle unnecessary large system due to the
oversized tube that has to accommodate the whole extended RNA strand.

The beads that are forming the tube are positioned based on a helical parametrization,
see Fig. 6.3. The helical parametrization positions beads with a distance ∆ of 0.4 nm
and a pitch h of 0.4 nm. The tube needs to accommodate a whole strechted strand of 94
nucleotides (length of the SAM-I riboswitch). Therefore, the tube has a diameter d1 of 2
nm and a length L1 of 110 nm. A gradual transition at the opening is realized by an exit
funnel that has a length L2 of 4 nm and an outer diameter d2 of 3 nm. These are the
steric boundary conditions that prevent secondary structure formation of the strand before
it has left the RNAP. Transcription as a dynamic process is then modeled by forces that
act between the rear end of the tube and every tenth nucleotide along the sequence. In
steered molecular dynamic simulations, as seen in Sec. 2.1.6, the aptamer of the riboswitch
is extruded out of the tube at a constant rate. Whenever a nucleotide reaches open space
outside the tube, the simulation is terminated and subsequently continued without the
acting force that belonged to the nucleotide that is no longer inside the tube. From that
moment on this part of the strand is free to form secondary structure contacts as it would
be the case for cotranscriptional folding.

6.2.3. Cotranscriptional Riboswitch Folding in SBM Simulations

The nascent RNA strand is generated by pulling apart both ends of the native structure to
a linear chain of maximal length in a steered molecular dynamics simulation for an SBM

56



6.2. Method

L L1 2

d1 d2

h

Δ d1

Figure 6.3.: Model of RNA polymerase (RNAP) in SBM simulations. Top: The tube
with a funnel-like exit region composed of a helix of SBM atoms surrounds
the stretched RNA. The tube atoms are positioned on a helix with a
diameter d1 of 2 nm and a length L1 of 110 nm to contain the whole
stretched RNA strand. The exit funnel has a length L2 of 4 nm and
an outer diameter d2 of 3 nm. These are the spatial constraints that
prevent folding before the nucleotides have left the RNAP. Forces acting
between the rear end of the tube (red ring) and every tenth nucleotide
along the sequence (�lled red circles) extrude the RNA strand out of the
tube with a constant rate. Whenever a nucleotide leaves the tube, it
is released of its acting force and therefore free to fold mimicking the
natural sequential transcription process. Bottom: The structure consists
of helically arranged beads. The beads are positioned with a distance ∆
of 0.4 nm and a pitch h of 0.4 nm.
The top �gure is taken from [24] and used under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0/).
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of the RNA. The RNAP is modeled by bonded beads positioned at helically parametrized
coordinates of a hollow cylinder that is long enough to contain the respective stretched
RNA strand. The beads are connected via bonds between next and next but one neighbors
along the helical parametrization. Each bead is represented by the uniform exclusion radius
of 0.25 nm for an SBM atom which creates spatial constraints built up by hard spheres.
The stretched RNA strand is then placed inside the tube and an SBM is generated for the
combined structure of tube and RNA. The combined SBM contains the geometry of both
individual structures without topological interactions. The extrusion process is reproduced
by forces that act between the rear end of the tube and every tenth nucleic acid of the
nascent strand, which is thereby driven out of the tube.

The system of interest is represented by its potential energy from which the position
dependent forces on each particle in the system can be calculated. Molecular dynamics
simulations solve the corresponding Newtonian equations of motion by numeric time inte-
gration, as described in Sec. 2.1.3. Key to this procedure is the formulation of a potential
energy scheme, which I choose to be the SBM, as introduced in Sec. 3.3. SBM is originally
motivated by the observation that evolution favored the formation of funneled energy land-
scapes for proteins [12�17]. Funneled energy landscapes represent folding processes that
are guided towards the native state by the cooperativity of their interactions with minimal
frustration, which has also been shown for structured RNA [77, 78, 138]. SBMs realize the
ideal case of a perfectly smooth, minimally frustrated and funneled energy landscape where
interactions of the native conformation dominate the interaction network. The all-atom
formulation of the structure-based potential [83] I use reads as

V =
∑
bonds

Kb(r − r0)2 +
∑
angles

Ka(θ − θ0)2

+
∑

improper

Ki(χ− χ0)2 +
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+
∑

contacts
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(σ0
ij

rij

)12

− 2 ·

(
σ0
ij

rij

)6


+
∑

non-contacts

Knc

(
σ̃

rij

)12

, (6.2)

where the dihedral (or torsional) angle potential is given by

fd(φ) =
[
1− cos(φ− φ0)

]
+

1

2

[
1− cos(3 · (φ− φ0))

]
(6.3)

and Kb, Ka, Ki, Kd, Kc and Knc are the corresponding force constants that are presented
in more detail in Sec. A.1. The parameters r0, θ0, χ0, φ0 and σ0

ij are taken from the native
structure and σ̃ is a global exclusion radius. Accordingly, the potential has its minimum
at the native conformation. The information of bonded interactions (bonds, angles, planar
dihedral and proper dihedral angles) is complemented by contact information that is in-
troduced via Lennard-Jones terms in Eq. (6.2). Contact information can be depicted in a
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6.2. Method

diagonal symmetric, binary matrix, often referred to as the �contact map� of a biomolecular
structure (see Sec. 3.3). We use a �shadow map� [81] as contact map that regards atoms
in contact within 0.6 nm radius as long as they are not shadowed by atoms within the
connecting line. Nucleotides are allowed to form contacts between neighboring residues in
order to be able to model stacking interactions (for a detailed description see Sec. 1.2.2).
The contacts are introduced via Lennard-Jones terms with minima at the native atom-atom
distances. Purely repulsive 1/r12

ij terms that are characterized by the uniform exclusion
radius σ̃ represent all other possible, non-contact pairings of atoms. The two SBMs of the
riboswitch aptamer regions for my simulations in the described formulation are generated
by the SMOG webserver [18].

6.2.4. Molecular Dynamics

I run the SBM simulations with the GROMACS software package [66]. The simulations
are performed at temperatures in reduced units of 62. A time step of 0.001 is used for
the extrusion simulations and 0.002 for the free folding simulations. The temperature is
introduced and kept constant via Langevin dynamics with a coupling constant of 1 and a
friction number of 1. In the extrusion scenario, we apply a constant velocity pull option
with di�erent constant rates, ranging from 0.0025 to 0.1.

6.2.5. Introducing Physical Temperature and Time Scale

The introduced force constants are homogeneous and normalized with respect to the system
size and number of contacts (as shown in Sec. A.1) but they have otherwise no physical
meaning. Thus, the model lacks physical time and temperature scales. In the following, the
procedures employed to introduce a frame of reference for the used simulation temperature
and a time scale are discussed.
I perform an all-atom molecular dynamics simulation based on the AMBER99 force �eld

with TIP3P water and counter ions [139], a time step of 2 femtoseconds and Berendsen
temperature coupling. The reference simulation of 1 µs at a physical temperature of 300 K
can be compared to spatial root mean-square �uctuations (RMSF) [115] of each nucleotide
n given by

RMSF(n) =

√√√√ 1

N

N∑
i

|rin − 〈rn〉|2 , (6.4)

where N is the number of conformations within a time-dependent trajectory and 〈.〉 denotes
the time-average. RMSF values of the standard MD simulation at 300 K and several refer-
ence SBM simulations are shown in Fig. 6.4. The mean-square deviation (MSD) between the
RMSF characteristics can be calculated as a global comparative value. The minimal MSD is
found for a simulation at a GROMACS temperature of 90, which is shown in Fig. 6.5. As a
result, I simulate at a temperature in the kinetic regime (62 in reduced units), to accelerate
folding by about one order of magnitude to allow extensive sampling (see Sec. A.2 for a
more detailed discussion).
I run 180 free folding simulations at the simulation temperature of 62 in reduced units.

From the free folding simulations a simulated folding time can be determined that can be
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6. Cotranscriptional Riboswitch Folding

compared with experimental results [134]. In order to gain an estimate for the folding time
in my simulations, the root mean-square deviations (RMSDs) with respect to the native
fold of each simulation frame are extracted from the trajectory. When the RMSD undercuts
a threshold of 0.3 nm the corresponding frame in the simulated trajectory is considered a
folding event. A histogram of these 180 folding events that is presented in Sec. A.2 yields
an asymmetric distribution whose maximum is regarded as an estimate for the folding time.
Comparison of this simulated folding time with an experimental value for the folding time
of an adenine riboswitch [134] yields 20 nt/s for the smallest extrusion rate of 0.0025.

6.2.6. Evaluation

I choose the number of formed base pairs as the reaction coordinate for my analyses. This
reaction coordinate permits sampling over randomized trajectories while parametrizing the
folding progress. This choice is also suitable for direct comparisons with the kinetic Monte
Carlo method, see Sec. 6.3.1, where the number of base pairs is the natural reaction coor-
dinate. The observables for my study are the numbers of formed base pairs within sub-
structural elements, i. e., the stems of native local and non-local helical hairpin loops in the
riboswitches. This observable will be referred to as the �regional Q value�. A base pair
in SBM simulations is considered as formed if more than 50% of the native interatomic
contacts between the two involved bases are formed. Further investigations show that the
folding characteristics are stable over a wide range of choices for this threshold (40 - 80%,
see Sec. A.3).

The introduced reaction coordinate and observables allow the evaluation of folding char-
acteristics in both riboswitch systems. Normalization of the regional Q value allows a more
clear arrangement of all substructural elements in a single plot for comparison, see Fig. 6.6
as part of Sec. 6.3. In a next step of information condensation a whole plot depicting the
folding characteristics, e. g., for a given extrusion rate, is reduced to a single value for each
substructural element: the �mid Q value�. The mid Q value of a helical folding characteristic
is determined by the number of formed helical base pairs at which the normalized regional
Q value of a substructural element is equal to 0.5.

6.3. Results

As a �rst result, 180 free folding simulations for each riboswitch are evaluated as a reference
for folding characteristics. Moreover, they serve as reference simulations that yield a compu-
tational estimate of folding time that can be compared with experimental data. As discussed
in Sec. 6.2.5 the SBM parametrization does not feature physical time or temperature scales.
Therefore, they need to be introduced by comparison of observables with experiments or
empirical force �eld simulations. We use the root mean-square �uctuations (RMSF) for a
temperature calibration and the folding time for adjusting the time scale. My simulations
are subsequently performed at a temperature of 62, well below a temperature of 90 that we
identi�ed with a physical temperature of 300 K. Simulations at a lower temperature result
in kinetically driven trajectories which speeds up the folding process (see Sec. A.2). Accel-
erated folding reduces the computational e�ort of folding simulations by about one order
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Figure 6.4.: Root mean-square �uctuations in AMBER99 and SBM simulations.
A reference simulation (SAM-I riboswitch, AMBER99 force-�eld with
TIP3P water and counter ions, 1 µs duration at 300 K in GROMACS)
has been run in order to relate the reduced temperatures of the SBMs
to a physical scale. The root mean-square �uctuations (RMSFs) per
nucleotide for the reference simulation can be compared to SBM simu-
lations at various temperatures in reduced units. By comparison of the
respective RMSF values, the best agreement can be identi�ed as the
corresponding physical temperature, see Fig. 6.5.
The �gure is taken from the supplementary information of [24] and

used under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/).
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of magnitude and facilitates extensive sampling. In Fig. 6.6 the sampled results of 180 free
folding trajectories are presented: The normalized regional Q value is de�ned as the nor-
malized number of formed base pairs within the respective helical substructure. The mean
values and standard deviations of the normalized regional Q values for each helical stem
are plotted over the total number of formed contacts during free folding. Mean value and
standard deviation represent an approximate Gaussian distribution of normalized regional
Q values within a contact bin, as can be seen in Sec. A.4. The SAM riboswitch exhibits
immediate folding of helix P4, followed by P3 and P2 with relatively small di�erence. The
non-local helix P1 constitutes the distinct end of the folding process by tying up both ends
of the RNA strand, in agreement with earlier simulations [22]. The adenine riboswitch starts
folding with helix P2, followed by P3 and concluded by the non-local helix P1.

For both riboswitches, 80 simulations at 12 extrusion rates each were performed in the
course of this investigations. Folding transitions can be characterized by the number of
formed helical base pairs at which the normalized regional Q value equals 0.5. The charac-
terization of the regional folding characteristics condenses each substructural folding curve
into a single value � the �mid Q value�. Mid Q values for all 12 extrusion rates and sub-
structural elements are shown in Fig. 6.7 and give a clear-cut representation of the cotran-
scriptional RNA folding analysis. We see an in�uence of the extrusion rate on the folding
order of substructural elements: In the SAM riboswitch, the folding order of P2 and P4 is
reversed over range of rates between 100 and 200 nt/s. The formations of P2 and P3 in the
SAM riboswitch and in the adenine riboswitch are simultaneous for a wide range of rates.
Folding of non-local helix P1 is independent of the extrusion rate in both riboswitches. In
both riboswitches, transitions in the folding order occur at extrusion rates (more than 100
nt/sec) that are beyond the range of physiologically relevant transcription rates. Based
on that observation, the free folding case can be distinguished from the transcription rate
limited case in the SAM-I riboswitch. In the add adenine riboswitch free folding and cotran-
scriptional folding exhibit the same characteristic folding order. As a result of this study,
riboswitch folding can be described as robustly transcription rate limited in the range in
physiologically relevant transcription rates between 15 and 80 nt/s [35].

6.3.1. Comparison with Kinectic Monte Carlo Results

In addition, I collaborated closely with a research group at the Max Planck Institute of Col-
loids and Interfaces in Golm that studied the cotranscriptional formation of secondary struc-
ture using kinetic Monte Carlo (MC) simulations. Unlike earlier MC studies [140, 141], but
similar to the SBM, Michael Faber and Stefan Klumpp employ their recently proposed ap-
proach that incorporates native secondary structural information into MC simulations [32].
The free energy of a conformation is determined by empirically parameterized values for
secondary structural motifs present in a given native secondary structure, as presented in
Sec. 3.4. The kinetic MC simulation scheme is based on elementary steps that consist of
the opening and closing of individual base pairs. Again, two di�erent simulation setups are
employed: First, the dynamics of free folding of the full-length chain is simulated. Secondly,
cotranscriptional riboswitch folding is emulated by sequentially splitting up the RNA into
a growing free and a diminishing con�ned part. RNA transcription corresponds, therefore,
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Figure 6.6.: Free folding characteristics of the SAM-I (top) and add adenine (bottom)
riboswitches in SBM simulations. The evaluation is based on 180 free
folding trajectories for each riboswitch. The mean value and standard
deviation of the normalized regional Q values are plotted for each bin
of number of formed helical base pairs. In the SAM ribswitch the helix
formation order is: P4, P2 and P3 almost indistinguishable, P1. Accord-
ingly for the adenine riboswitch: P2, P3, P1.
The �gure is taken from [24] and used under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0/).
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Figure 6.7.: Cotranscriptional folding characteristics of the SAM-I (left) and add ade-
nine (right) riboswitches in SBM simulations. The various extrusion rates
used in the simulations on the bottom axis are translated into transcrip-
tion rates in nt/s on the top axis. 80 trajectories have been generated
for each extrusion rate and each riboswitch. Each folding characteristic
is condensed into a set of four or three mid Q values (one for each helix,
depending in the riboswitch). Riboswitch folding is robustly transcription
rate limited for transcription rates between 15 and 80 nt/s (physiological
domain [35]).
The �gure is taken from [24] and used under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0/).
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6. Cotranscriptional Riboswitch Folding

to step-by-step shifting the boundary between these two parts. Formation of a base pair is
only possible if both bases are already free, while those that are still con�ned are not taken
into account for base pair formation.

Free folding simulations start from a conformation without formed base pairs. In both
riboswitches secondary structure formation follows a distinct order. The folding order in
the SAM riboswitch is the same as in SBM simulations: P4 folds �rst, followed by P3 and
P2. The non-local P1 folds up both ends of the strand when all other secondary structure
motifs are formed. Similarly, helices P2 and P3 �rst in the adenine riboswitch, followed
by the non-local helix P1. While in kinetic MC simulations the two helices P2 and P3
fold simultaneously, P2 appears to fold slightly before P3 in SBM simulations. Tertiary
interactions, which are not modeled in the kinetic MC approach, seem to cause this minor
di�erence in folding order of free folding.

The simulations with RNA chain growth start with a single free base and add nucleotides
of the RNA sequence to the free part at a given chain growth rate. The chain growth rates
are varied over a wider range than in SBM simulations since the kinetic MC simulations are
computationally much less expensive than the respective SBM simulations. Fig. 6.8 shows
the mid Q values that characterized a helix folding event for each simulated chain growth
rate. Small chain growth rates let the secondary structure elements form in the order of
their appearance (P2, P3, P1 for the adenine riboswitch and P2, P3, P4, P1 for the SAM
riboswitch). This order is di�erent from the one observed in the free folding case. The
folding orders in dependence of the extrusion or chain growth rate correspond qualitatively
between SBM and kinetic MC simulations.

Similar to the procedure used in SBM simulations, the time scale is introduced via com-
parison of folding times with experimental measurements. The experimental folding times of
a adenine riboswitch [134] are related to folding time histograms of kinetic MC simulations.
Eventually, the used chain growth rates, given in nt per MC step, can be translated to nt/s
and thereby compared to SBM results, which yields quantitative agreement. However, the
transition rate that separates transcription rate limited folding from free folding is shifted
to higher transcription rates compared to SBM simulations (' 0.1 nt/MC step or 104 nt/s).
This di�erence is discussed in Sec. 6.4. In both riboswitches, substructures fold limited by
the transcription rate within the whole range of physiologically relevant transcription rates.

6.3.2. Competing Conformations and Ligand Model in Kinetic MC

Within the kinetic MC simualtion scheme it is directly possible to allow competing base
pair formation steps by introducing them in the acceptance condition. The competing
conformations of the SAM-I and the add adenine riboswitch are shown in detail in Fig. 6.9.

The competing base pairs are included in the decision process at each MC step, weighted
by their free energy bene�ts. Time-resolved, normalized regional Q value trajectories alow
the observation of �back tracking� of helix P1, as seen in Fig. 6.10. As long as the hairpin
stem of the antiterminator (AT) helix are not available, the non-local helix P1 can start
to fold. In the end, helix AT wins against P1 since it is overall energetically favorable,
which is reproduced by the kinetic MC simulation scheme. This observation corresponds
to the experimentally measured behavior of this riboswitch. We propose a ligand model
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Figure 6.8.: Comparison of cotranscriptional folding in kinetic Monte Carlo simula-
tions. The simulation data was generated by Michael Faber at the Max
Planck Institute of Colloids and Interfaces, Golm. The various chain
growth rates used in the simulations on the bottom axis are translated
into transcription rates in nt/s on the top axis. The two plots correspond
qualitatively to the characterisitcs depicted in Fig. 6.7.
The �gure is taken from [24] and used under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0/).
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GGCUUAUC ... AAAGAUGAGCCAUUCUUGUAGUGGCUUCUUUUAGCG

GGCUUCAUA ... AUUAUGAAGUCUGUCGCUUUAUCCGAAAUUUUAUAAAGAGAAGACUCAUGAAU

SD sequence

TR*

Figure 6.9.: Secondary structure schematics of the SAM-I (top) riboswitch and the
add adenine (bottom) in their respective ligand-free conformations.
TR? denotes the part of the translational repressor helix that competes
directly to helix P1.
The �gure is taken from the supplementary information of [24] and

used under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/).

that also reproduces the experimentally determined behavior of a winning P1 helix due to
the presence of SAM metabolites. The stabilizing e�ect of a ligand is realized by lowering
the multi-loop penalty of helix P1. Varying this energetic contribution yields a minimal
stabilizing free energy bene�t of about 7 kBT in the SAM riboswitch and 2 kBT for the
adenine riboswitch.

6.4. Discussion

The presented computational results originate from a novel biophysical approach to model
cotranscriptional riboswitch folding. The investigated biomolecular processes of transcrip-
tion, ligand binding, and folding take place interdependently during a period of time in
the order of seconds. Therefore, the demands of standard MD simulations of riboswitch
folding exceed today's computational capabilities by several orders of magnitude [11]. SBM
implementations o�er computationally acquirable simulations that yield atomically resolved
dynamic trajectories of riboswitch folding. An implicit ligand model emulates the sensing
conformations of the aptamer for the ligand and ligand binding. SBM simulations are per-
formed at a temperature below the reference temperature derived from a simulation based
on the AMBER99 force �eld at 300 K. The lower temperature accelerates folding by about
one order of magnitude and reduces computational e�ort in favor of enhanced sampling.
The extensive sampling guarantees reliable results based on averaged statistical events.

The studied ranges of transcription rates exceed the physiological transcription rates re-
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Figure 6.10.: Competing conformations and ligand model for the SAM-I riboswitch
in kinetic MC simulations performed by Michael Faber. This �gure
displays two time-resolved trajectory averages of SAM-I riboswitch
folding. Left: During transcription, helix P1 starts folding before the
antiterminator (AT) sequence is available. Without the stabilizing
in�uence of the SAM ligand, the non-local helix �back tracks� in
favor of the physiologically expected AT helix. Right: In the case of
cotranscriptional riboswitch folding the presence of a ligand stabilizes
the formation of helix P1. The stabilizing e�ect of the ligand is modeled
by lowering the multiloop penalty for non-local helix P1 by 12 kBT in
the presented simulation.
The �gure is taken from the supplementary information of [24] and

used under the terms of the Creative Commons Attribution License
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alized by RNAP. SBM simulations yield consistent results with a complementary numerical
kinetic MC method for cotranscriptional folding of riboswitch aptamer structures for both
extreme cases, i. e., transcription-rate limited and free folding. However, the two models
di�er quantitatively regarding the value of the transcription rate at which the folding order
changes between characteristic behavior of free and cotranscriptional folding. SBM simula-
tions predict lower rates than kinetic MC simulations. This quantitative discrepancy re�ects
a di�erence in the folding times of the helical substructures in riboswitches, although the
simulated time scales have been introduced in the same way in both methods: In SBM
simulations, but not in kinetic MC simulations, folding of the individual hairpins is slowed
down by the drag of the adjoining single-stranded regions, which is discussed in more detail
in Sec. A.5. In both models, however, the transition between both scenarios occurs robustly
at high transcription rates greater than 100 nt/s which are not realized in nature.

The kinetic MC method is able to model competing conformations by design. Respective
simulations have been performed by Michael Faber to validate the robustness of the kinetic
MC method regarding this extension. The results support the picture of a structure that
has a ligand-free conformation that wins against the ligand-bound conformation if no lig-
and is present. The jointly developed ligand binding model in the kinetic MC framework
successfully describes the in�uence of a ligand. The derived energetic value that causes a
stable conformational change agrees with the one recently determined by a standard MD
study of the add adenine riboswitch [142].

During transcription a ligand can bind to the aptamer region of the riboswitch and in-
�uence the transcription termination or translation attenuation decision executed by the
riboswitch. This decision has to be made in a certain time range in order to be e�ective.
Whether this time range is su�cient for the aptamer binding site to reach thermodynamic
equilibrium with the metabolite de�nes whether a riboswitch is under kinetic or thermo-
dynamic control. Experimental measurements typically determine dissociation constants of
ligand binding in-vitro and compare them to metabolite concentrations that are responsible
for 50% termination e�ciency in-vivo [143, 144]. These measurements are quite rough keep-
ing the complexity of the involved mechanisms in mind. Depending on the transcription
progress, the riboswitch o�ers the metabolite a �growing� binding site with a time-dependent
binding a�nity. A binding pocket composed by substructures of the aptamer close to the 5'-
end e�ectively increases the time window available for ligand binding compared to a binding
pocket with signi�cant substructures close to the 3'-end. Considering transcription times of
typically seconds for both the aptamer and expression platform, this accounts to a signi�cant
di�erence compared to a fully transcribed free-folding riboswitch. Simulations complement
this picture by atomistic insights regarding folding paths and dynamic behavior.

Riboswitches � structured RNA in the 5' UTR of mRNAs � regulate gene expression of ge-
netic information contained in mRNAs on a transcriptional or translational level. A deeper
understanding of possible in�uences on the involved mechanisms will facilitate insights in
gene regulation, evolutionary processes or the RNA world hypothesis [145]. I employ a
protocol based on a coarse-grained approach that emulates spatial constraints of the RNAP
and sequential release of the riboswitch aptamer region: A homogenized, minimally frus-
trated force �eld based on the systems native tertiary structure. Michael Faber, on the
other hand, proposes a kinetic Monte Carlo method based on base pair formation weighted
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by free energy bene�ts determined from native secondary structure [32]. A comparison be-
tween the two complementary models as part of our collaboration yields agreeing results
that back the signi�cance of the presented �ndings. The results gained by both numerical
approaches give a more detailed insight in cotranscriptional riboswitch folding. Thereby,
the folding appears to occur in a transcription-rate limited order possibly di�erent from free
folding. The emerging picture of cotranscriptional riboswitch folding is surprisingly simple
and concurs with recent experimental �ndings in single molecule measurements [39].
An explicit ligand representation in my model and the implementation of the mutually

exclusive structures in the unbound state will be future re�nements to the model. Moreover,
the SBM introduces all native contacts by Lennard-Jones terms and assumes stabilizing ion
concentrations that were present during crystallization of the underlying PDB structure.
The implicitly modeled electrostatics prohibit the investigation of di�erent ion concentra-
tions on cotranscriptional riboswitch folding. In order to study the in�uence of varying ion
concentrations, the SBM would have to be expanded by electrostatics terms, as recently
presented in Debye-Hückel approximation [146, 147].
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7 Chapter 7.

Advances to RNA Structure
Prediction

This chapter gives an overview of the results acquired in the course of my studies on a
novel approach to RNA structure prediction based on direct coupling analysis (DCA) contact
predictions. The studies have been conducted in a close collaboration with M.Sc. Eleonora
De Leonardis in the group of Prof. Martin Weigt at the Université Pierre et Marie Curie
Paris, France.

Structured RNA ful�lls various catalytic or regulatory functions in cells. Since the dis-
covery of base pairs and the double helix of DNA by Watson and Crick in the 1960s, there
have been tremendous advances in experimental structure measurements both in DNA and
RNA. The strong link between structure and function motivates the re�nement of structure
resolution methods and simpli�cation of the procedures.

The automatization of experimental RNA sequencing methods resulted in vast databases
of RNA sequences over a huge variety of organisms and families. The available amount
of data facilitates research in the �elds of bioinformatics and statistical physics to look for
correlations or characteristic motifs. Since there is a growing gap between the number of
sequences available and the number of experimentally resolved RNA structures, a method
that exploits sequence information for structure prediction is a striking ansatz. DCA is
a method that originated in the �eld of protein contact prediction and is adapted to RNA
contact prediction in the course of this study.

Contact information predicted by DCA is translated into interatomic Lennard-Jones po-
tential terms and added to a knowledge-based model (KBM) force �eld for bonded and non-
bonded interactions. The subsequent folding simulations yield ensembles of stable conforma-
tions with deviations from the experimentally measured reference structures that are compa-
rable to other state-of-the-art RNA structure prediction approaches.
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7.1. Motivation and Overview

Similar to proteins as the more investigated biomolecular systems, structured RNA systems
are subject to the dogma that there is a link between their structures and their functionali-
ties. Therefore, the thorough investigation and resolution of RNA structures can give some
indication of their physiological functions. The �rst experimentally investigated structured
RNA systems were the transfer RNA (tRNA) [2, 3] in the early 1970s. tRNA delivers amino
acids, the building blocks of proteins, to the complementary RNA codons in the ribosome.
Thus, tRNA structure features a part that has selective a�nity for a speci�c amino acid
and a part that contains the corresponding codon. More recent examples are ribozymes [4]
� catalytic elements involved in the biosynthesis of RNA or RNA splicing � or riboswitches
that are discussed in more detail in Sec. 1.4 and Chap. 6. The functions of structured
RNA that are crucial in the complex network of biomolecular processes, are of high interest
but their experimental investigations are scienti�cally challenging and costly. On the other
hand, tremendous progress has been made in DNA and RNA sequencing techniques allow-
ing fast and automated determination of sequence information or �primary structure� [148].
Therefore, it is desired to develop analytic and numerical approaches that are able to pre-
dict RNA structures based on available sequences. The established focus so far has been
on secondary structure prediction. The methods used for secondary structure prediction
are based on statistical analysis methods [90, 91] or dynamic programming approaches [89].
Statistical methods in this �eld are not based on a single sequence but on multiple se-
quence alignments (MSA) of RNA families that are experimentally accessible due to the
before mentioned automatized sequencing techniques. The most comprehensive collection
of such sequence families are published in the RFAM database [68] where the sequences
are deposited as MSA data sets. A great challenge to the present day is the prediction
of tertiary structure in RNA. Very recent approaches in this �eld of research are template
based implementations that assemble sequence motifs by homology modeling algorithms,
e. g., ROSETTA [149]. Progress that has been achieved so far has been compiled recently
in a publication by several groups [150].

The �eld of statistical analysis methods in the context of RNA structure prediction has
focused in the past on mutual information analysis for secondary structure prediction. The
mutual information (MI) is de�ned as

MIij =
∑
A,B

fij(A,B) ln

(
fij(A,B)

fi(A)fj(B)

)
, (7.1)

where fi(A) and fj(B) are the single site frequency counts of nucleotides A,B at positions
i,j andfij(A,B) are the pair frequency counts, as introduced in Sec. 4.1.2. If the pair
frequency factorizes into the respective single site frequencies, MI equals to zero and is
positive otherwise. This method is able to predict canonical base pairs in MSAs reliably
because, apparently, there is a strong correlation in mutations of nucleotides participating
in canonical base pairs [85]. Therefore, secondary structure prediction can be considered as
a solved problem and consensus secondary structure information is already provided in the
databases together with the corresponding MSAs. Going beyond the analysis of apparent
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statistical couplings, the direct coupling analysis (DCA) disentangles direct couplings from
the whole set of correlations. For tertiary contacts, this disentanglement is necessary to
distinguish direct couplings that correspond to spatial closeness from indirect couplings
that comprise any kind of mediated correlations. DCA has become an established method
in protein contact prediction [25] or protein complex formation [105]. In the course of a close
collaboration with M.Sc. Eleonora De Leonardis in the group of Prof. Martin Weigt at the
Université Pierre et Marie Curie Paris I worked on the adaption of the DCA implementation
to process RNA alignments.

A smaller alphabet for RNA sequences (4 nucleotides and one gap) compared to proteins
(20 amino acids and one gap) yields more frustration and RNA conformations feature dif-
ferent structural motifs. After the method is adjusted to the di�erent biomolecular system
respective predictions can be generated. The predictions contain on top of secondary struc-
ture information also a substantial amount of tertiary contact predictions. Tertiary structure
predictions, however, have a lower signal than the secondary structure predictions and are
disturbed by underground noise in the DCA scores. Therefore, the quality of true positive
predictions and the in�uence of false positive predictions need to be assessed in order to be
able to improve the reliability of this new approach. To this end, I compile a corresponding
list of RNA sequence families and experimental PDB (Protein Data Bank [42]) structures
that meet certain requirements. In this de�ned �gold standard�, predictions can then be
used as constraints for KBM simulations and the outcome of respective folding simulations
can be compared to the PDB structures. The KBM force �eld uses cataloged values for
the quantities of equilibrium instead of values taken from a native fold. I create a catalog
based on studies of a training set, the SAM-I riboswitch (PDB ID 2GIS). The catalog fea-
tures default values and values that depend on the consensus secondary structure elements
provided together with the MSAs in RFAM. Four systems are then investigated by SBM
simulations in the generalized formulation: SAM-I riboswitch (PDB ID 2GIS), add adenine
riboswitch (PDB ID 1Y26), glycine riboswitch (PDB ID 3OWI) and �uoride riboswitch
(PDB ID 3VRS). I present the results of four di�erent contact scenarios:

a) only consensus secondary structure

b) consensus secondary structure and the 50 highest ranked true positives

c) consensus secondary structure and all available true positives

d) consensus secondary structure and the 100 highest ranked predictions (true and false
positives)

I show that all scenarios that are based on tertiary structure predictions (b, c, d) decrease
the average RMSD values of the folded ensembles in simulations compared to the plain
secondary information scenario (a). The presented proof of principle can also quantify the
in�uence of false positive disturbances in a set of predicted contacts.
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7.2. Method

The research protocol that facilitates the investigation of contact predictions in structured
RNA is introduced in the following. First, the adjustments necessary to use the original
DCA formulation are discussed and the steps towards a comparison with PDB structures
are described. To this end, I collect a �gold standard�, i. e., a list of highly resolved PDB
structures that correspond to RNA families in the RFAM database with su�cient sequence
data. The emerging coevolutionary RNA contact predictions can be assessed by evaluating
a true positive rate relative to the �true� PDB structure.

Instead of a criterion that is purely based on DCA predictions compared to the respective
PDB contact map I present a technique that introduces contact predictions to a simplistic de-
novo force �eld. The construction of this KBM force �eld is described in detail. Bonded and
non-bonded interactions are introduced by an analysis of a learning set and then transfered
to systems of interest. Subsequent SBM simulations yield folding trajectories that provide
ensembles of folded conformations based on DCA predictions for non-bonded interactions.
The root mean-square deviations (RMSDs) of the ensembles with respect to the native fold
represent a measure to evaluate the quality of a predicted contact map.

7.2.1. Gold Standard to Evaluate Prediction Quality

In order to assess the quality of DCA predictions it is necessary to have a �gold standard�
of �true� structures with su�cient respective sequence data. To this end, I compile a list
of PDB structures whose sequences have a best match overlap with their respective RFAM
MSAs, as shown in Tab. 7.1. PDB structures and RFAM sequence families have to meet a
list of requirements:

• experimental X-ray di�raction crystal structure with less than 0.4 nm resolution

The PDB contains several types of experimentally determined structures by techniques
such as X-ray crystallography, NMR, neutron scattering and cryo-electron microscopy.
X-ray structures provide the best resolved structures and are therefore a requirement
in this study.

• non-trivial

Some of the families contained in the RFAM database are single hairpin structures.
These structures are considered as trivial and therefore disregarded in this study.

• monomeric

Some of the families contained in the RFAM database represent single strands of
dimeric RNA structures. The investigation of polymeric complexes has additional
challenges and is outside the scope of this study.

• less than 1500 nucleotides
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RFAM ID Me� PDB ID Chain

RF00001 57991.33 3CC2 9
RF00017 8145.33 1L9A B
RF00059 3347.90 2HOJ A
RF00504 1828.54 3OWI A
RF00010 2309.67 1U9S A
RF00023 2143.30 4ABR Y
RF00162 1165.56 2GIS A
RF00050 1045.85 3F2Q X
RF02001 636.43 3BWP A
RF00167 588.88 1Y26 X
RF00168 552.38 3DIL A
RF01051 983.21 3IRW R
RF00380 206.70 2QBZ X
RF01734 532.03 3VRS A

Table 7.1.: Gold standard of structured RNA families. The table contains a list of
14 RNA families that are suitable for a structural comparison. The listed
families have published X-ray crystal structures with a resolution of less
than 0.4 nm, are neither trivial nor dimeric and their alignments contain
at least 1000 sequences. This list is sorted by the number of sequences
in RFAM database, version 11.0 [68]. The families are indicated by their
RFAM ID. Me� denotes the e�ective number of independent sequences, as
discussed in Sec. 4.1.1. The respective structure deposited in PDB is given
by its structure ID and a chain ID.

The current formulation of the DCA implementation reaches memory limits with
structures bigger than 1500 nucleotides.

• more than 1000 sequences or Me� > 200, respectively

The DCA requires a minimal number of independent sequences to provide reliable
statistical results.

The e�ective length of each sequence, as discussed in Chap. 4, is given by

Me� =

M∑
a=1

1

ma
, (7.2)

where we de�ne the number of similar sequences by

ma :=
∣∣∣{b | 1 ≤ b ≤M, seqid(Aa, Ab) ≥ xL}

∣∣∣ (7.3)

for a given similarity ratio x = 0.8.

77



7. Advances to RNA Structure Prediction

AAUCGCGUGGAUAUGGCACGCAAGUUUCUACCGGGCA.CCGUAAA.UGUCCG
AA.ACUGUGAAUCUAGCACAG.CGUCUCUACAAAGCA.CCGUAAA.UGCUUU
AA.ACUGUGAAUCUAGCACAG.CGUCUCUACAAAGCA.CCGUAAA.UGCUUU
AUACUCGAUAAUAUGGAUCGAGAGUUUCUACCCGGCAACCUUAAAUUGCUGG
AUCCUCAAUGAUAUGGUUUGAGAGUCUCUACCGGGUUACCGUAAACAACCUG
AAUCUUGGGAAUAGGGCCCAAAAGUUUCUACCGGAUCCCCGUAAAGGAUCUG
AAUUUUGGGAAUAUGGCCCAAAAGUCUCUACCCAAUAACCGUAAAUUAUUGG
AAUCAUGGGGAUAUGGCCCAUAAGUUUCUACCCGAUAACCGUAAAUUAUUGG

Compost metag.5

Streptococcus sobrin.44

Streptococcus sobrin.26

B.anthracis.1

Bacillus thuringens.5

Bacillus selenitired.2

Anoxybacillus flavit.2

Compost metag.4

Figure 7.1.: MSA excerpt of RFAM family RF00167 (add adenine riboswitch). Each
row of the alignment represents an instance of the given family found in
a speci�c organism (on the left). The red dots (.) denote gaps that are
introduced in the aligned sequence with a certain penalty to match the
other sequences as well as possible. The green columns denote conser-
vation of nucleotides in the sequences that are often present in regions
of high functional importance. The two yellow columns denote commu-
tations of nucleotides that can indicate correlation and spatial closeness.
To decide, whether this apparent commutations have direct or indirect
causes, is the task of statistical algorithms, such as the DCA method.

7.2.2. Coevolutionary RNA Contact Prediction

The coevolutionary approach to RNA contact prediction is based on the technique described
in detail in Sec. 4.2. Published formulations of this approach have been applied in the
�eld of protein structure prediction. The established DCA approach has been successfully
employed for, e. g., contact prediction in proteins [25] and protein-protein complexes [105].
RNA structures have di�erent challenges for the statistical method. The �alphabet� or
number of states in the Potts model is reduced to 5 compared to 21 for proteins. This
reduction yields a drastically increase in frustration at each position of the sequence. The
number of alternatives in case of a mutation is very small and thus the probability of random
commutations comparably high. In the course of a close collaboration with M. Sc. Eleonora
De Leonardis during my visit in the group of Prof. Martin Weigt at the Université Pierre et
Marie Curie Paris I helped to adapt a respective implementation to be able to treat RNA
multiple sequence alignments, as shown in Fig. 7.1.
In a �rst step, all columns that contain more than 50% gaps are removed from the

alignment to reduce the alignment to relevant entries. Key to the statistical method, as
discussed in Chap. 4, are the rede�ned frequency counts

fi(A) =
1

λ+Me�

λ
q

+
M∑
a=1

δA,Aa
i

 , (7.4)

fij(A,B) =
1

λ+Me�

 λ

q2
+

M∑
a=1

δA,Aa
i
δB,Aa

i

 , (7.5)

where we introduce the pseudo-count λ = Me� and the e�ective number of independent
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sequences Me�, see Eq. (7.2). The score obtained by a simple mutual information analysis
needs be re�ned by disentangling direct and indirect correlations. To this end, we look for
a statistical model for the entire RNA sequence that reproduces the empirical frequency
counts as marginals. The most general model is revealed by the principle of maximum
entropy. This principle has the known solution

P (A1, . . . , AL) =
1

Z
exp

∑
i<j

eij(Ai, Aj) +
∑
i

hi(Ai)

 , (7.6)

where eij(A,B) are pairwise couplings and hi(A) are local �elds. In this study

eij(A, q) = eij(q, A) = hi(q) = 0 (7.7)

is the used gauge where couplings and �elds are considered relative to the last ribonucleic
acid A = q = 5. Based on a mean-�eld approximation eij(A,B) and hi(A) can be deter-
mined. The score value for DCA predictions is the direct information (DI) as introduced in
Sec. 4.2.5:

DIij =

q∑
A,B=1

P dir
ij (A,B) ln

 P dir
ij (A,B)

fi(A)fj(B)

 , (7.8)

where the direct statistical model

P dir
ij (A,B) =

1

Zij
exp

(
eij(A,B) + h̃i(A) + h̃j(B)

)
(7.9)

and the frequency counts

fi(A) =

q∑
B=1

P dir
ij (A,B) , fj(B) =

q∑
A=1

P dir
ij (A,B) (7.10)

are contained.
The general challenge is to distinguish the very high signal for secondary structure contacts

(Watson-Crick and Wobble base pairs) from tertiary structure contacts with signals that
are only slightly above the noise level in the DI signal.
In order to compare the DCA predicted contact map to a �true� contact map read from

a PDB structure it is necessary to align the PDB sequence to its best match in the MSA.
This alignment is performed by a Smith-Waterman algorithm [88] that was chosen over
the Needleman-Wunsch algorithm [87] and is used in the MATLAB work�ow of the DCA
software package. DCA predictions are then generated by the MATLAB implementation
that is distributed by the group of Prof. Martin Weigt at the Université Pierre et Marie
Curie Paris [25].

7.2.3. Knowledge-based Model Force Field

The general idea is to translate DCA residue contact prediction for structured RNA into in-
teratomic contacts, combine it with a knowledge-based model (KBM) force �eld for bonded
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interactions in RNA. Subsequent folding simulations are expected to yield stable conforma-
tions as close to the experimentally measured structures as possible. The magnitude of the
deviations from the native structure can be used to assess the quality of the initial contact
predictions by DCA.

The KBM force �eld follows the parametrization scheme of regular SBMs but does not
take the quantities of equilibrium from a given structure. The quantities of equilibrium
are instead taken from a catalog that is generated from a combination of learning sets. In
the following I present the di�erent steps necessary to generate the catalog and setup a
respective force �eld for a given RNA sequence and consensus secondary structure.

The potential energy of SBM simulations reads as

V =
∑
bonds

Kb(r − r0)2 +
∑
angles

Ka(θ − θ0)2

+
∑

improper

Ki(χ− χ0)2 +
∑

dihedrals

Kdfd(φ)

+
∑

contacts

Kc

(σ0
ij

rij

)12

− 2 ·

(
σ0
ij

rij

)6


+
∑

non-contacts

Knc

(
σ̃

rij

)12

(7.11)

where the dihedral (or torsional) angle potential is given by

fd(φ) =
[
1− cos(φ− φ0)

]
+

1

2

[
1− cos(3 · (φ− φ0))

]
(7.12)

and Kb, Ka, Ki, Kd, Kc and Knc are the corresponding force constants that are presented
in more detail in Sec. A.1. σ̃ is a global exclusion radius and the parameters r0, θ0, χ0,
φ0 and σ0

ij are taken from the native structure in its original formulation. The variation
of this formulation that is necessary to be able to use this framework for de-novo folding
simulations is to choose the parameters r0, θ0, χ0, φ0 and σ

0
ij in a generalized or knowledge-

based scheme.

First, bonded interactions need to be introduced in the KBM. The general idea is to
analyze the learning set by histograms for all possible bonded interactions. The learning set
for the bonded interactions in this study is the SAM-I riboswitch structure published in PDB
ID 2GIS. The bond distances are very narrowly distributed and have standard deviations of
less than 0.001 nm for bonds that range between 0.12 and 0.17 nm. Similarly, the angles are
also very narrowly distributed with standard deviations of less than 6 degrees for angles that
range between 101 and 131 degrees. The third class of bonded interactions that are very well
de�ned by all appearances in the learning set are the planar dihedral angles that stabilze
planarity in the rings of the bases. The angles are either 180 or 360 degrees (depending
on the order of listed atoms de�ning the angle) with standard deviations of less than 3
degrees. Therefore, all bonds, angles and planar dihedral angles can be cataloged for an
arbitrary structure, independently of their involvement in substructural elements. This can
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Figure 7.2.: Interatomic contact distance histogram in the SAM-I riboswitch. Two
peaks in the distribution at 0.16 and 0.25 nm can be identi�ed with con-
tacts across the interface of two nucleotides along the backbone. The
continuous distribution above these peaks needs to be resolved by more
distinct analyses of speci�c structural motifs, such as base pairing or base
stacking interactions.

be physically motivated by the fact that bond distances as well as angles are determined by
the overlap between next-neighbor atomic orbitals and molecular rings are kept planar by
the collective overlap of their constituents' orbitals.

The quantities of equilibrium for proper dihedral angles are dependent on their involve-
ment in substructural elements. Dihedral angles are the de�ning geometrical values that
describe a conformation within the range of its structural �exibility. The analysis of the
learning set reveals a set of proper dihedral angles that are narrowly distributed in helical
regions. I choose a cut-o� of 9 degrees for the standard deviation of helical dihedral angles
within a nucleotide and a cut-o� of 17 degrees for the standard deviations of dihedral an-
gles at the interface between two nucleotides. The set comprises 24 dihedral angles within
nucleotides and 2 connecting dihedral angles. The required information for determining he-
lical regions is the consensus secondary structure of the RNA that is stored in the database
together with the MSA.

In a next step the non-bonded interactions need to be introduced. The analysis of the
overall distribution of contact distances in the learning set is shown in Fig. 7.2. Contact
distances along the back bone are the same for all nucleotides and correspond to the two
sharp peeks in the histogram: C3' - P (0.16 nm) and O3' - {P, OP1, OP2, O5'} (0.25 nm).
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Figure 7.3.: Interatomic contacts in Watson-Crick base pairs. The contacts are deter-
mined by calculating the average atom-atom distances of 24 Watson-Crick
base pairs in the SAM-I riboswitch. The average distances between atoms
in the depicted base pairs are smaller than 0.4 nm with a standard devi-
ation of 0.01 nm or less. This yields 15 contacts in the G-C (top) and 12
contacts in the A-U (bottom) base pair.

A continuum of contacts above the sharp peeks needs to be resolved by the analysis of
explicit structural motifs. The two motifs that are included in the model are base pairing
and base stacking contacts. Base pairing contacts, as shown in Fig. 7.3 and Fig. 7.4, are
found in base pairs of the learning set with a cut-o� of 0.4 nm. Base stacking contacts can
be extracted from the learning set with a cut-o� of 0.4 nm and symmetric constructions
since not all 16 possible realizations of stacking base sequences are present in the learning
set.

The bonded and non-bonded interactions of the KBM are compiled in an XML catalog
and integrated in the eSBMTools implementation via the existing XML-based topology
de�nition, as discussed in Sec. 5.2.1.

The remaining vital ingredient to the knowledge-based model is the incorporation of ter-
tiary contact predictions from DCA. A residue-residue contact predicted by DCA needs
to be mapped onto a set of corresponding atom-atom contacts. To this end, I choose a
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Figure 7.4.: Interatomic contacts in Wobble base pairs. The contacts are determined
by calculating the average value of 2 Wobble base pairs in the SAM-I
riboswitch. The average distances between atoms in the depicted Wobble
base pair are smaller than 0.4 nm with a standard deviation of 0.01 nm
or less. This yields 9 contacts in the G-U base pair.

set of typical RNA contact classes proposed by the research group of Eric Westhof [26].
This set classi�es possible inter-nucleotide contacts by their relative base coordination and
orientation and provides a collection of representative all-atom structures to determine char-
acteristic atom-atom distances. For a predicted nucleotide-nucleotide contact announced by
DCA, all respective RNA structures in the set are analyzed and the averages and standard
deviations of according atom-atom distances are calculated. A list of atom-atom contacts
with mean values less than 0.6 nm and standard deviations less than 0.3 nm is then included
as all-atom Lennard-Jones contacts in the knowledge-based model.

The required model is now complete and features the following potential terms:

• cataloged values for all bonds, angles and planar dihedral angles

• cataloged values for proper dihedral angles in helical regions

• cataloged values for base stacking and base pairing contacts

• mean values of atom-atom distances (based on a set of characteristic structures [26])
for a given nucleotide-nucleotide contact

The generalized formulation of the potential in the SBM framework enables atomically re-
solved and computationally a�ordable simulations. Therefore, RNA folding can be observed
and extensive sampling allows investigation of the folded ensembles.
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RFAM ID PDB ID Organism

RF00001 3CC2 Haloarcula_ marismort.2
RF00017 1L9A M.murinus.681
RF00059 2HOJ Escherichia_ coli_E11.2
RF00504 3OWI Vibrio_cholerae_bv._.2
RF00010 1U9S Thermus_thermophilus.2
RF00023 4ABR marine_metag.496
RF00162 2GIS Thermoanaerobacter_t.3
RF00050 3F2Q Fusobacterium.18
RF02001 3BWP Oceanobacillus_iheye.5
RF00167 1Y26 Vibrio_vulni�cus_CM.1
RF00168 3DIL Thermotoga_maritima_.2
RF01051 3IRW Vibrio.6
RF00380 2QBZ Bacillus_pumilus_SAF.1
RF01734 3VRS Thermotoga.2

Table 7.2.: Gold standard of structured RNA families with their best matches to the
corresponding PDB sequences. The PDB sequences are compared to the
sequences in the RNA family alignment by a standard Smith-Waterman
algorithm [88]. The found sequences and their indicated organisms of origin
correspond to the organisms given in their PDB entries, respectively.

7.3. Results

In the following section I compile the outcomes of my studies conducted in the context of
DCA contact prediction for structured RNA. The results consist of two categories. First
the general analysis of structures in the gold standard is presented. This analysis already
demonstrates capability of DCA to discover secondary structural elements and tertiary
contacts. Secondly, the incorporation of DCA contact predictions in SBM simulations gives
a more quantitative evaluation of the prediction quality in a subset of the gold standard. The
ensemble of folded conformations based on KBM simulation incorporating coevolutionary
contact predictions yields RMSD values comparable to a recent publication of state-of-the-
art RNA structure predictions [150].

7.3.1. Gold Standard

I present the compiled �gold standard� of RNA families (as stored in the RFAM database)
that have corresponding structures available in the PDB. The alignments for all structure
sequences with their best matches in the MSAs is shown in Tab. 7.2. The best matching
alignments are found by a standard Smith-Waterman algorithm [88] that allows gaps in the
alignment at the cost of a score penalty.

For the families contained in the gold standard I calculated contact map predictions. 4
examples � RF00167, RF00162, RF01734 and RF00504 � are shown in Fig. 7.5 and Fig. 7.6.
The contact predictions of the other 10 families are shown in the appendix in Sec. A.6. The
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contact maps show the native contact map in grey, the consensus secondary structure in blue
and the 70 highest ranked DI predictions in red. The secondary structure is present in the top
ranked predictions. The secondary structure information could also be produced by mutual
information. Novel information is the enrichment in the tertiary structure contact regions
of the DCA predictions compared to predictions that are gained by mutual information.

7.3.2. KBM Simulations

The simulations are based on a potential that was generated from the learning set structure
SAM-I riboswitch (PDB ID 2GIS) and a collection of representative nucleotide-nucleotide
contacts [26]. The work�ow allows investigations of various tertiary contact scenarios in
systems of interest and is able to demonstrate the reliability of the cataloged bonded inter-
actions. Four scenarios are applied for the structures of an add adenine riboswitch (PDB
ID 1Y26), a SAM-I riboswitch (PDB ID 2GIS), a �uoride riboswitch (PDB ID 3VRS) and
a glycine riboswitch (PDB ID 3OWI):

a) only secondary structure

b) secondary structure + 100 predictions (true positive + false positive)

c) secondary structure + 50 true positive predictions

d) secondary structure + all true positive predictions

Eleonora De Leonardis provided me with predictions by the most recent version of the
DCA prediction implementation. Among the 100 predictions of scenario d there are 27 true
positives in RF00167, 30 true positives in RF00162, 16 true positives in RF01734 and 21 true
positives in RF00504. The average and minimal RMSD values for 10 simulations in each
scenario are shown in Fig. 7.7. Scenario b) and c) are the same for the �uoride riboswitch,
since the riboswitch features only 41 native nucleotide-nucleotide contacts. In all cases the
following general trends are evident:

• Any of the included tertiary structure information reduces the RMSD values compared
to simulations with only secondary structure information.

• The addition of false positive predictions increases the RMSD values.

• Including all true positive predictions instead of just 50 has a comparably small, but
slightly decreasing in�uence on the RMSD values.

7.4. Discussion

The presented approach allows the direct observation of a stabilizing in�uence of predicted
tertiary contacts on an RNA strand towards its native fold. The predictions are purely based
on openly accessible sequence information. The gold standard outlines the evaluation of 10
more than the 4 simulated systems of interest. I focus on a subset of the gold standard that
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Figure 7.5.: Predicted contact maps for RNA families RF00167 (top) and RF00162
(bottom). The corresponding structures are PDB ID 1Y26 (top) and
PDB ID 2GIS (bottom).
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Figure 7.6.: Predicted contact maps for RNA families RF01734 (top) and RF00504
(bottom). The corresponding structures are PDB ID 3VRS (top) and
PDB ID 3OWI (bottom).
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Figure 7.7.: Quantitative analysis of prediction quality. The averages of the last 2000
frames and the the minima are plotted. In each diagramm four scenarios
are presented: a) only secondary structure, b) secondary structure and
100 predictions, c) secondary structure and 50 true positives, d) secondary
structure and all true positives. Since the native structure of RF01734
only contains 41 contacts, scenario c and d are the same. The overall
tendency is that the inclusion of tertiary contact information provided by
DCA predictions in addition to consensus secondary structure informa-
tion improves the prediction quality compared to simulations based only
on secondary structure information. The reduction of false positive pre-
dictions seems to have a stronger in�uence than to increase the absolute
number of positive predictions.
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7.4. Discussion

Figure 7.8.: Structure overlay of the native (PDB ID 1Y26) and a simulated confor-
mation of the add adenine riboswitch. The simulated conformation has
an RMSD value of 0.65 nm and illustrates the general features of simula-
tion outcome in an exemplary, hand-picked simulation frame: The global
arrangement of the structure is correct and base pairs are formed cor-
rectly. The shapes of helical substructures is quite wobbly and unde�ned
compared to, e. g., template-based prediction techniques. This simulation
was performed under the ideal conditions of all true positive predictions
without false positive predictions (scenario b) and therefore indicates the
limits the present knowledge-based model parametrization.
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7. Advances to RNA Structure Prediction

consists of the learning set itself (SAM-I riboswitch), the other riboswitch that I analyzed
in the cotranscriptional folding study (add adenine riboswitch), the smallest riboswitch
in the gold standard (�uoride riboswitch) and a reference structure (glycine riboswitch)
that has been discussed in an earlier competitive study [150]. Although, our collaborative
project was originally designed to evaluate the quality of DCA predictions for structural
RNA formation, the calculated average RMSD values reach the range of RMSD values in
this competitive study that predicted the structure of exemplary RNA structures, such
as the glycine riboswitch (PDB ID 3OWI). Besides the riboswitch, only structures that
were arti�cially designed, such as single hairpins and a constructed fourway function, are
presented in the competition with much lower RMSD values. Therefore naturally occurring
structures are considered the more challenging systems.

These surprisingly good results regarding prediction quality motivate further improve-
ments to the presented novel approach of combining coevolutionary, statistical methods
with KBM simulations. Several improvements both on the side of DCA and on the side of
KBM simulations are indicated by the experience gained so far. On the side of DCA the
major challenge is the reduction of the false positive ratio among the considered predictions.
The simulations show that it is possible to reduce the RMSD by including only true positive
predictions and also by increasing the absolute number of true positive predictions. An
exemplary simulation frame, based on a contact map with all true positive predictions (sce-
nario d), as an overlay with the native fold is shown in Fig. 7.8. Therefore, any technique
that is able to �lter or reorder the given DCA predictions for true positive predictions has
potential to reduce the RMSD values to the given base line.

At the interface between DCA and KBM it may be possible determine the atom-atom
contacts more precisely if there can be discovered a statistical inference of Westhof classi�-
cations [26] on the base-base contact predictions. A given Westhof classi�cation for a DCA
prediction would allow more de�nite contact de�nitions similar to the current realization of
canonical base pairs in the KBM.

The KBM parametrization could be improved by a larger learning set, i. e., a combination
of several di�erent RNA structures. The larger data base might reduce the statistical
errors in the dihedral angle distributions. Further inclusions of dihedral angles that can
be justi�ed by a reduced threshold for standard deviations that might stabilize the helical
regions. Compared to template-based prediction techniques the helices in my de-novo force
�eld are less prominent and distinct which could be improved by additional dihedral angles.
Furthermore, the variation of cut-o�s for the atom-atom distance averaging procedure based
on Westhof classi�cations has not been investigated and could have an in�uence on the
outcome of the simulations.

On the technical side there are possible future investigations: Annealing simulations with
low RMSD frames as starting conformation at lower temperatures can lower the RMSD by
�freezing� the helical base pairs and keeping the helical twists more rigid. The computation-
ally more demanding approach would be to use a low RMSD conformation from the KBM
simulations as starting conformation for a standard molecular dynamics simulation with
stabilizing ions and explicit water. The local relaxations in this simulation would happen
on time scales in the nanosecond to microsecond regime and could drive the system towards
the native state.
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7.4. Discussion

In order to utilize this approach in the course of blind RNA structure prediction, strategies
have to be developed to identify trajectory frames of minimal RMSD. This identi�cation
could be achieved by evaluating independently accessible quantities, such as (regional) Q
values, energies or intra-trajectory RMSD values, directly or correlations among them. This
would again reduce the given RMSD value (to the minimal instead of the average) and would
provide even better starting conformations for any annealing techniques.
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8 Chapter 8.

Conclusion

The �eld of riboswitch research is comparably young since the �rst discovery of a riboswitch
in 2002 [9]. The investigations are focusing on the identi�cation of new representatives of
riboswitches and the characterization of regulatory mechanisms by recording the dynamics
of folding and ligand binding under various experimental conditions. The inherent connec-
tion between structure and function motivates the research for tertiary structure prediction
methods that give access to experimentally still unresolved riboswitches and their regulatory
mechanisms. If the structure is resolved and an impression of its function is available, more
detailed studies that probe the dynamics of such a riboswitch are required to improve the
understanding of the interplay of involved processes.

8.1. Summary

I have presented the results of three projects in the course of my scienti�c work in the
context of native structure-based models (SBMs) for regulatory RNA. They comprise a
new, published and openly accessible software implementation of native structure-based
model generation and evaluation, a published study that employs a multiscale model to
investigate cotranscriptional riboswitch folding and advances to a novel approach in the
�eld of RNA tertiary structure prediction.

eSBMTools is a Python-based software implementation of SBM generation and modi�-
cation [19] that enables �exible de�nition of work�ows of corresponding simulations. The
software package assists the setup process and the evaluation of SBM simulations for protein
and RNA systems. Thereby, it renders the generation process �exible enough to implement
the knowledge-based model formulation utilized in the third project. In addition, eSBM-
Tools enables several current projects in the research group, ranging from an automated
work�ow to analyze protein folding pathways [109] to incorporating FRET dyes in SBM
simulations. The project is under ongoing development and released online under GNU
General Public License version 3.0 and has recently been integrated in a UNICORE grid
portlet on the MoSGrid portal [120].
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8. Conclusion

The computational analysis of cotranscriptional riboswitch folding [24] represents a timely
and extensive study of riboswitch folding dynamics. The general challenges of this analysis
are the treatment of transcription, the timescale of RNA folding, competing conformations
(the switching states), respective ligand binding and the in�uence of stabilizing ions. Tran-
scription is introduced by a simplistic, coarse-grained model and the seconds timescale is
reached by employing a native structure-based model that allows the investigation of fold-
ing pathways. The position restraints of the RNA polymerase during transcription are
realized by an enclosing tube out of which the nascent RNA strand is extruded by acting
forces. Cotranscriptional folding is evaluated via projecting the regional folding progress
on the global folding progress. Thereby, the folding order of substructural elements can be
identi�ed. My �ndings show robust transcription-rate limited folding of substructural heli-
cal elements in the range of physiologically relevant transcription rates. The results are in
agreement with the outcome of a complementary computational technique by Michael Faber
at the Max Planck Institute of Colloids and Interfaces in Golm who presents a secondary
structure-based model of cotranscriptional RNA folding in a kinetic Monte Carlo simulation
scheme. The remaining challenges, i. e., competing conformations, explicit ligand binding
and the treatment of ion concentrations are subject to future studies, as discussed in the
next section.

The third project in collaboration with Eleonora De Leonardis in the group of Prof. Mar-
tin Weigt at the Université Pierre et Marie Curie Paris explores the possibilities that are
o�ered by coevolutionary contact predictions from a direct coupling analysis [25] (DCA)
in the �eld of RNA structure prediction. The basic idea is to exploit available and easily
accessible sequence information of RNA families in order to get access to missing and com-
parably hard-to-reach tertiary structure information. Therefore, one needs to analyze the
available aligned sequence data that is organized in tables with one line for each recorded
representative and �nd directly coupled columns in the alignments. Direct coupling between
sequence positions in the analyzed motif indicates spatial closeness due to the possibility of
commutating residues that try to maintain structural integrity. The empiric single-site and
pair frequency counts in a given sequence database can be described by the least constrained
statistical model which is described in the maximum entropy theory. The statistical physics
technique of Lagrangian multipliers provides an ansatz for solving this statistical model.
Independent-site and mean-�eld approximations reduce the computational e�ort by avoid-
ing the computationally demanding execution of involved partition functions. From the
thereby gained stochastic model for single-site and pair frequency counts a direct coupling
score can be calculated by which the predicted contacts can be ranked. The ranked pre-
dictions contain, besides secondary structure information that has already been identi�ed
by means of other statistical analyses, a su�ciently high signal of tertiary structure con-
tacts. The relevance of the predicted contacts in combination with the respective amount
of false positive predictions needs to be evaluated in order to be able to assess the novel
technique. Therefore, I incorporate the predicted contact map into a knowledge-based vari-
ation of SBM simulations. The knowledge-based concept determines the geometrical values
of quantities of equilibrium from a representative native conformation. Thresholds for the
standard deviation of geometric values in the reference system allow the inclusion of bonded
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8.2. Outlook

and non-bonded interactions in helical substructures. The nucleotide-nucleotide contacts
predicted by DCA can be mapped onto representative atom-atom contacts by averaging
over a published list of typical contact classes [26]. The knowledge-based force �eld can
be included in the molecular dynamics simulation scheme in the same way as the native
structure-based force �eld. Simulations of four riboswitch systems yield stable folds that
show a systematic improvement of structure quality, measured by means of root mean-
square deviation (RMSD) values, by the inclusion of predicted tertiary contacts in addition
to secondary structure contacts.

8.2. Outlook

The presented approach to tertiary RNA structure prediction is promising since it serves as
a proof of principle for the systematic improvement of RNA structure prediction quality by
the inclusion of tertiary contact information from a predicted contact map. The predictions
are purely based on accessible sequence data and can be utilized in combination with a
simplistic energetic model to generate all-atom conformations. The evaluation of this novel
approach indicates the following re�nements in the course of developing a fully predictive
model.
On the side of DCA, an increase of the signal-to-noise ratio or the �true positive rate� of

DCA contact prediction holds out the prospect of systematic improvement to the prediction
quality according to my simulations. Basic parameters such as the pseudo-count or the
similarity threshold have been transferred from former protein contact prediction analyses
and might need to be reevaluated in the new context of RNA contact prediction. Another
possibility to reduce the number of false positive predictions is to evaluate the �nal predicted
contact map by means of clustering techniques in order to identify accumulations of contacts
that tend to be characteristic for appearances of true positive predictions. It also needs to
be investigated how inferring contact classes, such as the classes proposed by the group
of Eric Westhof [26], could enhance the outcome of the direct information score by the
speci�cation of the expected contact class. Such inference could determine the kind of
contact according to the respective classi�cation scheme and therefore de�ne the mapping
of nucleotide-nucleotide contacts to atom-atom contacts more precisely.
The knowledge-based force �eld o�ers a basic setup of parameters that can be optimized

regarding the structure prediction quality measured by RMSD values compared to the native
fold. In particular, it is necessary to �nd optimal cut-o�s for mean value and standard
deviation as part of the distance averaging while mapping predicted nucleotide-nucleotide
contact onto atom-atom contacts. Characteristic values for bonded interactions and base
pairing interactions can be improved by determining respective values based on multiple
native RNA structures. Also for this procedure it remains to be evaluated how to choose
optimal thresholds for the required maximal standard deviation that determines geometric
values that are included. In a last step the exploration of appropriate scoring values to
identify the lowest RMSD conformations within a folding simulation is an important task.
Blind predictions rely on a robust identi�cation of conformations close to the desired native
one. In this context clustering algorithms for projections of suitable energetic score values
need to be evaluated in the pursuit of low RMSD conformations.
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8. Conclusion

The computational analysis of cotranscriptional riboswitch folding consists of, as discussed
before, �ve major challenges: The treatment of transcription in atomistic simulations has
to be realized, a timescale in the seconds regime needs to be reached, the two competing
conformations of the switch should be included in the model, ligand binding should have an
explicit e�ect on the folding and the involved ions should be introduced by a correspond-
ing electrostatic description. The treatment of transcription and the desired timescale are
successfully implemented in the presented study. The representation of competing confor-
mations in the native structure-based model can be realized by introducing double minimum
potential terms for the proper dihedral angles. The challenge in this case is to get estima-
tions for the geometric values in the ligand-free conformation since their three-dimensional
conformations are usually, while the mechanism is understood on the secondary structure
level, experimentally not resolved. Assuming the knowledge of a native ligand-free con-
formation and the solution to technical di�culties of implementing the double minimum
potential, the �ndings can be compared to results obtained by native secondary structure-
based kinetic Monte Carlo simulations [24]. Introducing an explicit model of ligand binding
in SBM simulation would require the parametrization of the ligand itself in combination with
additional contacts that allow ligand binding. In principle this can be achieved by following
the methodology presented in [22]. The treatment of electrostatics in native structure-based
models can be realized by Debye-Hückel theory [146, 147].
Additions to the existing model in these regards would mean further re�nement of the

reduced model as a physically motivated theory of biopolymer folding. A more precise
description of riboswitch dynamics aims ultimately at answering the question whether a
riboswitch is kinetically or thermodynamically driven which is a crucial step in order to
identify the respective regulation mechanism. Control over genetic expression by the in�u-
ence of ligands could promote or suppress bacterial activity and therefore cure diseases.
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A Appendix A.

Appendix

This appendix covers additional detailed elaborations and complements.

First, it gives a detailed overview over the structure of a SBM topology �le that follows
the GROMACS �le syntax. The di�erences between an all-atom formulation and a Cα
formulation are pointed out.

In the second section, the folding times of an add adenine riboswitch at di�erent temper-
atures in SBM simulations are presented. The folding event histograms over time show a
speed up in folding for the lower temperature (kinetic regime) which motivates simulations
at the lower temperature in order to reduce the computational e�ort.

The next section investigates the in�uence of the base pair contact threshold on the folding
characteristics and comes to the conclusion that a choice of 0.5 agrees with a wide range of
choices.

Normalized regional Q value distributions within bins of the total number of formed heli-
cal base pairs are discussed in the fourth section. The histograms exhibit single maximum
distributions which justi�es the rough approximations by normal distributions characterized
by mean value and standard deviation.

Subsequently, the mechanical drag on hairpin stem loops in SBM simulations is discussed
in comparison to the behavior in kinetic Monte Carlo simulations. The observed di�erence
in the model causes the quantitative di�erences in the predicted transitions of folding orders,
as seen in Sec. 6.3.

Additional contact map predictions from the gold standard of structured RNA families as
presented in Sec. 7.3.1 are shown in the sixth section of this chapter. The contact maps
exhibit high signals for secondary structure elements while in contrast to established contact
prediction techniques some enrichment of tertiary contact predictions are present.

The last section states the hardware and software used for realizing the scienti�c work
presented in this thesis.
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A. Appendix

A.1. SBM Topology File Composition for GROMACS

This section describes the various sections in a GROMACS topology �le for the use with
SBM force �eld de�nitions. It is divided in an all-atom formulation, as it is used for all
RNA simulations in this thesis, and a Cα formulation that is included in the presented
implementation eSBMTools, as discussed in Sec. 5.2. The general structure is described in
the GROMACS manual [49] and the default parameters are based on [18, 22, 83].

All-atom

• defaults
This section de�nes the non-bonded function type as 1 (Lennard-Jones), the Lennard-
Jones combination rule as 1 (parametrization choice as presented in the �pairs� section
below) and prohibits the automatic generation of pair parameters.

non-bonded function combination rule generate pairs
1 1 no

• atomtypes
This section represents a list of all atom types appearing in the structure.

name mass charge ptype c6′ c12′

1.0 0.0 A 0.0

c12′ stands for the (only) repulsive term of non-bonded, non-contact interactions and
is given by

c12′ = ε2 · σ12
r = 0.01 · 0.2512 .

• moleculetype
This sections gives an identi�er to the contained molecule and sets the number of the
excluded bond distance for non-bonded interactions to 3.

name number exclusions
3

• atoms
This section represents a list of all atoms appearing in the structure. Each atom has
a number, a type, is associated with a residue (number and name), has a name, a
charge group number and is characterized by its charge and mass.

number type res nr res name atom name charge group nr charge mass
0.0 1.0

• pairs
This section introduces all non-bonded interactions.

i j function c6 c12
1

The potential terms in the Lennard-Jones formulation are calculated by

c6 = Kc · 2 · σ6
ij , c12 = Kc · σ12

ij ,
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A.1. SBM Topology File Composition for GROMACS

where σij are the native distances. The force constant Kc is determined by

Kc =
NA

NC
·

RC/D

1 +RC/D
,

where NA is the total number of atoms, NC is the total number of contacts and RC/D

is the ratio between total contact and total dihedral energy. The default value of RC/D

is 2. The total number of contacts NC takes into account a relative weight of contacts,
e. g., a factor of 1/3 for stacking contacts in nucleic acids.

• bonds
This section contains all bonds in the structure.

i j function r0 Kb

1

The default value of Kb is 20000.

• exclusions
This sections de�nes all non-native contacts in a structure by a negative list that
contains as a logical consequence the indices of all non-bonded interactions (pairs).

i j

• angles
This section contains all angles in the structure.

i j k function θ0 Ka

1

The default value of Ka is 40.

• dihedrals
This section contains all the improper and proper dihedral angles. The improper
(planar) dihedral angles are characterized by:

i j k l function χ0 Ki

2

The default value of Ki is 40.

The proper dihedral angles are characterized by:

i j k l function φ′0 K ′d multiplicity
1 1 or 3

In case of multiplicity 1 the force constant K ′d is given by:

K ′d =
NA

(1 +RC/D) ·ND
.

In case of multiplicity 3 the force constant K ′d is given by:

K ′d = 0.5 · NA

(1 +RC/D) ·ND
.
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A. Appendix

φ′0 needs to cause a sign change in front of the cosine since GROMACS de�nes its
potential with a + sign. In addition, φ′0 has to absorb the factor 3 in case of multiplicity
3 due to the GROMACS de�nition.

• system
This section simply gives the described system an arbitrary name.

• molecules
This section compiles all present molecule types (by name) present in the system
(usually only one).

name number

Cα

The Cα formulation is slightly di�erent and I state the sections that exhibit di�erences in
the following.

• atomtypes
This section represents a list of all atom types appearing in the structure.

name mass charge ptype c6′ c12′

1.0 0.0 A 0.0

c12′ stands for the (only) repulsive term of non-bonded, non-contact interactions and
is given by

c12′ = ε2 · σ12
r = 1 · 0.412 .

• pairs
This section introduces all non-bonded interactions.

i j function c6 c12
1

The potential terms in the modi�ed Lennard-Jones 10-12 formulation (see Eq. (3.16))
are calculated by

c6 = Kc · 6 · σ10
ij , c12 = Kc · 5 · σ12

ij ,

where σij are the native distances and the force constant Kc has the homogeneous
default value 1.

• dihedrals
This section contains all the proper dihedral angles.

i j k l function φ0 K ′d multiplicity
1 1 or 3

In case of multiplicity 1 the force constant K ′d is given by

K ′d = 1 .
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A.2. Folding Time of Adenine Riboswitch

In case of multiplicity 3 the force constant K ′d is given by

K ′d = 0.5 .

φ′0 needs to cause a sign change in front of the cosine since GROMACS de�nes its
potential with a + sign. In addition, φ′0 has to absorb the factor 3 in case of multiplicity
3 due to GROMACS de�nition.

A.2. Folding Time of Adenine Riboswitch

Lowering the temperature in SBM simulations speeds up folding times without changing
the overall characteristics of the folding process. In order to quantify this e�ect folding sim-
ulations are performed for the add adenine riboswitch (PDB ID 1Y26 [21]). The simulations
are performed at two di�erent temperatures: 90 and 62 in reduced GROMACS units. The
results are two normalized folding time distribution histograms, as shown in Fig. A.1. The
folding time is characterized by the �rst moment in time, when the trajectory undercuts
an RMSD value of 0.3 nm compared to the native conformation. The comparison yields a
speed-up factor of about 6.

A.3. Choice of Base Pair Contact Threshold

For the evaluation of SBM simulations in the context of RNA folding it is appropriate to
choose the number of formed base pairs as the reaction coordinate. The data contained
in all-atom trajectories needs to be projected on this reaction coordinate. Therefore, it is
necessary to de�ne a measure for a formed base pair based on all-atom information. A
sensible choice is the introduction of a relative threshold for the number of formed atom-
atom contacts between two bases. The determination of 0.5 for this threshold is motivated
by a robust behavior of the substructural folding characteristics over a wide range (0.4 -
0.8) of thresholds, as presented in Fig. A.2.

A.4. Regional Q Value Distribution in Total Q Bin

The characterization of hairpin stem loop folding is based on a distribution of normalized
regional Q values over the number of formed helical base pairs. In order to be able to
asign a representative number of normalized regional Q value to the corresponding number
of formed helical base pairs the shape of this distributions has to be taken into account.
Fig. A.3 (free folding) and Fig. A.4 (cotranscriptional folding) show the distributions for
the SAM-I riboswitch (PDB ID 2GIS [20]). The observed distributions are single-maximum
distributions that are crudely approximated by a Gaussian distribution to depict the mag-
nitude of deviations in the presented folding characteristics throughout this thesis.
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Figure A.1.: Folding times of add adenine riboswitch at two di�erent temperatures.
Top: The histogram of folding times at a temperature of 62 in reduced
GROMACS units has its peak at about 4000 in reduced GROMACS
time units. Bottom: The histogram of folding times at a temperature of
90 in reduced GROMACS units has its peak at about 24000 in reduced
GROMACS time units. There is a factor of 6 in folding time due to the
higher temperature. Without a change in the folding characteristics it
is possible to reduce the computational e�ort for the folding simulations
by one order of magnitude.
The histogram at the top is taken from the supplementary information of [24]

and used under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/).
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A.4. Regional Q Value Distribution in Total Q Bin
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Figure A.2.: In�uence of base pair contact threshold on folding characteristics of
the SAM-I riboswitch. The ratio of the number of necessary formed
contacts to consider a base pair as formed can be varied. Over the range
of investigated base pair contact thresholds (0.4 - 0.8) there is no change
in the folding characteristics. The conducted evaluations in Chap. 6 are
performed at a contact threshold of 0.5.
The �gure is taken from the supplementary information of [24] and

used under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/).
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Figure A.3.: Regional Q value distribution for free folding of a SAM-I riboswitch.
Depicted are the folding characteristics of helices P1 - P4. The data is
extracted from the 180 simulated trajectories of free folding.
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A.4. Regional Q Value Distribution in Total Q Bin
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Figure A.4.: Regional Q value distribution for cotranscriptional folding of a SAM-I
riboswitch. Depicted are the folding characteristics of helices P1 - P4.
The data is extracted from the 80 simulated trajectories of cotranscrip-
tional folding at a rate of 0.0025 in reduced GROMACS units (simulation
parameter).
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A.5. Mechanical Drag in SBM Simulations

The comparison between SBM and kinetic Monte Carlo (MC) simulations reveals a quanti-
tative di�erence in the transcription rates at which the transitions of folding orders occur.
The discovery of this discrepancy motivates an additional consideration of di�erences in
the modeling of single hairpin formation. The folding time of an isolated single hairpin in
SBM simulations di�ers from the same hairpin embedded in the whole structure, whereas
in the kinetic MC simulation this is not the case. A histogram of the folding times in SBM
simulations of hairpin stem loop P2 in the add adenine riboswitch is shown in Fig. A.5. A
comparison with experimental values, as discussed in Sec. 6.2.5, yields an estimate of the
folding time of 0.0175 seconds in SBM simulations. The same hairpin stem loop inside the
surrounding chain of the riboswitch aptamer region exhibits a folding time of 0.375 sec-
onds based on a distinct evaluation of the simulations in Sec. 6.2.5. The complete chain
acts with a drag on both ends of the hairpin resulting in an higher estimate of the folding
time. The kinetic MC approach yields for both scenarios the same estimate of the folding
time, i. e., 0.00635 seconds, as shown in Fig. A.6. This folding time corresponds well to
the folding time of the isolated hairpin stem loop in SBM simulations. The observed faster
single hairpin folding embedded in the complete aptamer structure explains why the kinetic
MC approach predicts higher transcription rates at which cotranscriptional folding starts
to leave the transcription rate limited regime.

A.6. Contact Predictions for Gold Standard

This section compiles the remaining predicted DCA contact maps in the course of my
studies that are introduced and discussed in Sec. 7.3.1. Families RF00001 and RF00017
are shown in Fig. A.7, families RF00059 and RF00010 in Fig. A.8, families RF00023 and
RF00050 in Fig. A.9, families RF02001 and RF00168 in Fig. A.10, and families RF01051 and
RF00380 in Fig. A.11. The contact maps show the native contact map in gray, the consensus
secondary structure in blue and the 70 highest ranked direct information (DI) predictions
in red. The secondary structure is present in the top ranked predictions. The secondary
structure information could also be produced by mutual information. Novel information is
the enrichment in the tertiary structure contact regions of the DCA predictions.

A.7. Used Hard- and Software

The desktop computer I used was equipped with an Intel (R) Core (TM) i5 CPU 650,
running at 3.2 GHz on 4 cores. The memory was 6 GB RAM and as an operating system I
chose Ubuntu Linux 11.04, 11.10, and 12.04 (LTS), consecutively. I used this machine for

• prototyping and software development (eclipse 3.7, Python 2.7, ipython, MATLAB
2012b (MathWorks))

• test runs (GROMACS [66], NAMD [64])
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Figure A.5.: Normalized histogram of folding times in SBM simulations for free
folding of isolated helix P2 (add adenine riboswitch). The isolated helix
folds in about 90 GROMACS reduced time units instead of about 1300
for the hairpin stem loop embedded in the whole aptamer region.
The �gure is taken from the supplementary information of [24] and

used under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/).
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Figure A.6.: Histogram of folding times in kinetic MC simulations for free folding of
helix P2 (add adenine riboswitch). The simulation data was generated
by Michael Faber at the Max Planck Institute of Colloids and Interfaces,
Golm. This characteristics is independent of the surrounding structure
of the considered substructural element.
The �gure is taken from the supplementary information of [24] and

used under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/).
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Figure A.7.: Predicted contact maps for RNA families RF00001 (top) and RF00017
(bottom). The corresponding structures are PDB ID 3CC2 (top) and
PDB ID 1L9A (bottom).
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Figure A.8.: Predicted contact maps for RNA families RF00059 (top) and RF00010
(bottom). The corresponding structures are PDB ID 2HOJ (top) and
PDB ID 1U9S (bottom).
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Figure A.9.: Predicted contact maps for RNA families RF00023 (top) and RF00050
(bottom). The corresponding structures are PDB ID 4ABR (top) and
PDB ID 3F2Q (bottom).
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Figure A.10.: Predicted contact maps for RNA families RF02001 (top) and RF00168
(bottom). The corresponding structures are PDB ID 3BWP (top) and
PDB ID 3DIL (bottom).
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Figure A.11.: Predicted contact maps for RNA families RF01051 (top) and RF00380
(bottom). The corresponding structures are PDB ID 3IRW (top) and
PDB ID 2QBZ (bottom).
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• evaluation and visualization (eSBMTools [19], pymol, UCSF Chimera [151], VMD [65],
xmgrace, gnuplot)

• documentation (Kile, LibreO�ce, Mendeley, inkscape, gimp)

Productive runs of GROMACS simulations in the context of cotranscriptional riboswitch
folding were performed on the bwGRiD cluster (http://www.bw-grid.de) at the sites in
Karlsruhe, Esslingen, Mannheim, Heidelberg and Stuttgart. Productive runs of GROMACS
simulations in the context of advances to RNA structure prediction were performed on the
bwUniCluster (http://www.bwhpc-c5.de/wiki/index.php/BwUniCluster_User_Guide) in
Karlsruhe.
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