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Abstract
We report numeric and analytic calculations of the electrostatic properties
for armchair carbon nanotube–graphene junctions. Using a semi-empirical
method we first demonstrate that the equilibrium distance between a carbon
nanotube and a graphene sheet varies with respect to the diameter of the
carbon nanotube. We find significantly reduced values compared to AB-stacked
graphene sheets in graphite, while even smaller value is found for a fullerene
C60 implying a dimensionality dependence of the equilibrium distance between
graphene and the other sp2 carbon allotropes. Then, we use conformal mapping
and a charge–dipole model to study the charge distribution of the carbon
nanotube–graphene junctions in various configurations. We observe that the
charges are accumulated/depleted at and near the vicinity of the junctions and
that capped carbon nanotubes induce a significantly smaller charge concentration
at their ends than the open-end nanotubes. We demonstrate that the carbon
nanotube influence on the graphene sheet is limited to only few atomic rows.
Such an influence strongly depends on the distance between carbon nanotube
and the graphene sheet and scales with the carbon nanotube radius, while
the potential difference does not modify the length over which the charge
concentration is disturbed by the presence of the tube. By studying the potential
landscape of carbon nanotube–graphene junctions, our work could be used as
a starting point to model the charge carrier injection in these unconventional
systems.
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1. Introduction

Due to its outstanding physical properties, graphene is seen as a very promising material for
many applications ranging from high frequency electronics to energy storage [1–3]. Usually,
electrical devices made upon graphene flakes or films rely on their crystalline quality, their
physical environment as well as their interconnectivity with other material [4, 5]. Indeed,
connecting graphene has become a key issue to improve the performances of graphene-
based devices [6–8]. Conduction in graphene depends not only on the conducting channel
of the device but also on the metal/graphene interfaces. Depositing metal on graphene
introduces an additional contact resistance, that contributes to reduce the overall conductance
of the device. The mismatch between the work functions at the metal/graphene interface
leads to a charge transfer and consequently to the doping of the graphene under the
contacts [9–12]. This process is partly governed by the fact that the metal can be either
chemisorbed or physisorbed [9, 10]. Moreover, the doping has been reported to extend to a
large distance in the graphene far from the interface region creating pn-junctions or charge
inhomogeneities even at high carrier density [13–17]. In addition, it has been shown that
graphene is extremely sensitive to strain which is reflected in many of its electrical and optical
properties [18–23]. Consequently, measurements of the contact resistance in graphene field-
effect devices have shown inconsistency and the experimental values range over two orders of
magnitude [7, 24–39]. This evidence shows that not only is the choice of the connecting material
crucial but also the experimental conditions for its deposition, which can hinder precise control
of the device fabrication.

In the search for reducing the contact resistance in sp2 carbon devices, recent works have
shown that graphitic materials could be an alternative to connect carbon nanotube (CNT)
and graphene [40–46]. While graphene nanoribbon arrays have already been experimentally
designed [47], theoretical expectations indicate that these tunable systems show a strong
stacking dependence of the conductance and that they could be utilized as spin filters [48–51].
Indeed, there is an increasing interest in building full sp2-carbon circuits, in particular by
designing electrical devices with various sp2-carbon allotropes [41, 52–59]. While graphene
could be used as a transparent electrode, CNT could be used to contact graphene [60]. Density
functional theory (DFT) calculations have demonstrated that for armchair single-walled tubes,
the work function is close to the undoped graphene one (∼4.48 eV) [61]. On the experimental
side, measurements performed using ultra-violet photoemission spectroscopy gave values for
the work function of CNT close to the one measured for graphene [62, 63]. Using CNT to
connect graphene could prevent a large charge transfer and therefore could ensure a better
integration into the graphene-device. Moreover from a mechanical perspective, since CNT are
light materials, the strain effects on graphene should be minimal compared to the ones induced
by the metal deposition. Raman spectroscopy experiments show that strain effects for deposited
metals which have a high lattice mismatch with graphene introduce significant defects (i.e.
Au and Ag in [64]). Since mechanical strains induce a change in the graphene work function
(increase up to 0.64 eV for a 10% isotropic strain [20]), charge transfer between the metal and
the graphene sheet may occur modifying the potential landscape in the vicinity of the contact,
leading to a decrease in the device performances. We note that theoretical studies of covalently
bond CNT–graphene hybrid systems have been reported [66–69] with potential application
in energy storage [70] or supercapacitor [71]. Additionally, CNT would provide the smallest
possible charge carrier injector to a graphene sheet.
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Electronic transport experiments on sp2-carbon hybrid structures have already been
reported in the literature. For example, high conductance and low contact resistance were
observed in CNT–CNT junctions [65, 72–74]. If only recently theoretical work succeeded to
model the transport across a CNT–graphene junction [75] the first experiments in this field
were performed more than a decade ago: conducting atomic force microscopy on CNT–graphite
(i.e. highly oriented pyrolitic graphite) junctions were investigated using conductive atomic
force microscopy in [76]. Resistance of the junction showed a strong dependence on the
CNT–graphite lattice angle which was explained by the periodic mismatch of the electron
momentum between both structures. More recently, the growth of CNT directly on few-layer
graphene demonstrated the crystallographic alignment of the two respective lattices [77]. Hybrid
CNT–graphene junctions have also been fabricated and tend to sustain that metallic CNT make
good contact for graphene [52, 60, 78–80]. A Raman spectroscopy study of single walled
metallic CNT covered by single layer graphene demonstrated that it is possible to detect a
charge transfer occurring at the CNT–graphene junction [81].

In this work, we report an electrostatic study of CNT–graphene junctions. We are able
to quantify the magnitude and the extension of the charge transfer induced when holding the
CNT and the graphene at different electric potentials. We use analytic electrostatic calculations
and an atomistic model, labeled as charge–dipole model, that includes the Coulomb interaction
to compute the net charge distribution for both structures. This last model is able to handle
structures with large number of atoms allowing a more extended overview of the system on
a larger scale. We demonstrate a significant charge accumulation/depletion (depending on the
sign of the voltage applied to the structures) in the graphene for atoms close to the junction
region. A few atomic rows away from the CNT, the charge per atoms tends rapidly toward the
neutrality. We conclude that the influence of the CNT on the graphene from an electrostatic
point of view is spatially very limited.

This paper is organized as follows. First, we determine the CNT–graphene junction binding
properties, mainly focusing on the equilibrium distance in section 2. The results provide thus
accurate inputs for the following electrostatic calculations. In section 3.1, we then present
analytic calculations of the CNT–graphene junction slice using two conformal transformations
enabling us to determine the electrostatic potential in every point of the two-dimensional space
and we detail the charge density inferred from them. Section 3.2 describes the charge–dipole
model allowing us a more accurate description of the unusual geometry of our system. The
results drawn from this atomistic model are commented in the subsections of section 3.2. Finally
in section 4, we compare the results from our two-dimensional analytic calculations with the
three-dimensional (3D) charge–dipole model.

2. Determination of the equilibrium distance between a carbon nanotube (CNT) and
a graphene sheet

Calculations of the equilibrium distance between two sp2-carbon allotropes have been already
performed in the past essentially determining the distance between two graphene sheets in
graphite [82–84]. More recently, binding energies and equilibrium distance between CNT and
graphene have been reported in the framework of using the CNT as an atomic force microscopy
tip [85–87]. In this work, we have computed the equilibrium distance between a CNT and
a graphene sheet using the semi-empirical PM6-D method implemented in the MOPAC2009
package [88, 89]. The method based on a reparameterized neglect of diatomic differential
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Figure 1. Binding energy for the CNT (5,5), (9,9) and (15,15) as function of the
SWCNT–graphene distance. Inset: unit cell used for the calculation.

overlap method renders accurately the weak interaction that plays a fundamental role in sp2

carbon hybrid structures. The weak interaction is the sum of two opposite contributions: the
repulsive interaction due to the atomic orbital overlap and the attractive van der Waals forces.
The van der Waals interaction handling has been improved for it by introducing a specific
empirical term to account for the London dispersion energy as described in [90]. Recently,
such a method has been used successfully to determine the bending of a suspended graphene
sheet in a holey graphite structure [91].

In order to determine the equilibrium distance, we have performed binding energy
calculations between several types of armchair CNT and a graphene sheet. We have calculated
the total energy for different CNT–graphene distances EGra+CNT(d), as well as for the uncoupled
system EGra+CNT(∞). The binding energy EBin(d) for a distance between the CNT and the
graphene set to d , is given by

EBin(d) = EGra+CNT(d) − EGra+CNT(∞).

The equilibrium distance is the distance for which the binding energy reaches its minimum.
For the calculations, a large unit cell ranging from 500 to 1500 atoms has been translated

in order to reproduce the whole structure. The large length of the unit cell (∼50 Å) leads to
negligible intercell CNT–CNT interactions. A picture of the unit cell used for the calculations
for a (5,5) single walled carbon nanotube (SWCNT) is represented in the inset in figure 1.
In order to ensure the good convergence of our calculations, both structures are allowed to
relax separately. All atoms of the graphene are free to relax in the in-plan directions. For the
CNT, only the closest row of atoms to the graphene sheet is fixed, thus defining the distance
CNT–graphene. The rest of the atoms is allowed to relax freely. The optimized geometry has
been used for the self consistent field calculations.

The results for the binding energy calculations for a CNT (5,5), (9,9) and (15,15) are
represented in figure 1. We observe that the equilibrium distance ranges from 3.02 Å for (5,5)
to 3.06 Å for (15,15). It is clear that the equilibrium distance increases with the diameter of
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Figure 2. Binding energy obtained by the PM6-D method for the CNT (5,5) as function
of the SWCNT–graphene distance. The London dispersion contribution as well as the
binding energy obtained without considering the dispersion contribution (PM6 method)
are also represented.

the tube (from 6.8 to 20.2 Å). Such a trend is in good agreement with previous studies [85–87]
based on local-orbital DFT combined with intermolecular perturbation theory to render the van
der Waals interaction as presented in [92, 93], while the values we obtained for the equilibrium
distance are slightly higher. We believe that the difference in the obtained results could be due
to the treatment of the repulsive interaction by both methods as well as to the amount of atoms
that the calculations can handle.

The value of the equilibrium distance is far less than the inter-layer distance in multilayer
graphene (∼3.4 Å experimental value). Differently from the multilayer graphene case, where all
atoms are binding atoms, in the case of CNT–graphene systems, because of the CNT curvature,
the only atoms restricted to a region close enough to both structures feel the repulsion due to
the orbital overlap. The short-ranged repulsive energy contribution is thus more affected by the
curvature than the long-ranged attractive van der Waals contribution, leading to a lowering of
the equilibrium distance.

As previously mentioned, the specific London dispersion term in the PM6-D method is
crucial to render properly the binding between graphitic structures. The lack of dispersion term
as seen in figure 2 leads to a weaker binding (−0.38 eV compared to −4.16 eV for the PM6-D
method) and as well as to a higher equilibrium distance, close to the interlayer distance in
graphite. We confirm this trend by additionally performing similar calculations for a C60

molecule on a graphene sheet (see figure 3). We observe that the equilibrium distance is very
much smaller than a (5,5) CNT which has the same diameter suggesting a dimensionality
dependence of the equilibrium distance between graphene and the other sp2 carbon materials.

We have used the calculated equilibrium distance (and the extrapolated values for very
large diameter CNT, see appendix A) for our study of the charge distribution described in the
following sections.
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Figure 3. Equilibrium distance for a C60 molecule, a (5,5), a (9,9) and (15,15) CNT.
The red dashed line represents the distance between two graphene sheet in a AB stacked
configuration.

3. Charge distribution

3.1. Analytic modeling using conformal mapping transformations

Analytic electrostatic models have been used to exactly describe the charge distribution in
CNT [94] and graphene [95]-based devices. In this section, we report exact two-dimensional
solutions of the charge distribution in CNT–graphene junctions where the system is sliced
perpendicularly to the CNT (see figure 4) using conformal transformation to solve exactly the
Laplace’s equation. This calculation technique [96] has already been applied successfully in
graphene-based systems to obtain the transmission eigenvalues for a rectangular geometry [97].
We first calculate the charge distribution for a CNT–graphene junction using a two-dimensional
classical electrostatic model while the junction is reduced into a circle and an infinite line
representing the CNT and the graphene sheet, respectively. The Laplace’s equation is solved for
the considered geometry using two successive conformal mapping transformations. From the
electrostatic potential, the linear charge density on the graphene sheet could be then inferred.
We show that a strong charge accumulation occurs in the vicinity of the CNT–graphene
interface. However, the amount of charges decreases sharply with the distance to the junction.
We also characterized the length over which the CNT has a significant influence on the charge
distribution in the graphene sheet. Note that for simplification we still denominate the CNT by
their chiral number (n,m) while they are just distinguished by their corresponding radii.

3.1.1. Laplace’s equation. Here we assume that for very large graphene sheets, edge effects
can be neglected. If we consider the graphene–CNT junction far from the edges, the graphene
can be modeled by an infinite straight line parallel to the x-axis. The CNT is approximated by
a circle of radius Rcnt,0 and is placed at a distance Rcnt,0 + ε above the graphene. We use for ε

the values calculated from section 2. We consider that the potential difference between the CNT
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Figure 4. (a) Initial geometry of the sliced CNT–graphene junction where the CNT is
represented by a circle placed at a distance υ form a graphene flake represented by
an infinite line. (b) Geometry obtained by transforming the initial geometry via the
first conformal transformation. (c) Final geometry obtained via the second conformal
mapping.

and the graphene sheet does not reduce ε (which corresponds to the equilibrium distance of the
previous section), since the strong repulsive forces should counteract the electrostatic attraction.
A diagram of the initial geometry is drawn in figure 4(a). The graphene and the CNT are set to
a potential Vgra and Vcnt, respectively. These boundary conditions and the Laplace’s equation

∇
2V = 0 (1)

determine the electrostatic potential V for the above described geometry.
This particular Dirichlet problem cannot be solved straightforward. Since the Laplace’s

equation is known to be invariant under conformal transformation, we successively applied
two conformal maps in order to transform the initial geometry into a solvable problem (see
appendix B for calculation details). The first transformation maps the initial circle and the
initial line into two non-concentric circles. The second one maps the non-concentric circles
into concentric circles (see figure 4).

3.1.2. Charge density. The final geometry (figure 4(c)) matches the one of a capacitor made
of two infinitely long concentric cylindrical shells. The inner cylinder (radius: Rcnt,2) is set at
a potential Vcnt while the outer cylinder (radius: Rgra,2) is set at Vgra. In this configuration the
Laplace’s equation can easily be solved. The potential between the two cylinder capacitor is
then given by

V (p, q) = Vcnt +
1V

c

(
ln (

√
(p2 + q2) − ln (Rcnt,2)

)
, (2)

where 1V = Vgra − Vcnt and c = ln(
Rgra,2

Rcnt,2
).

Using the expression of p(x, y) and q(x, y) in equation (2) yields the potential for the
initial geometry V (x, y). A map of the electric potential is represented in figure 5 for a CNT
(5,5) with Vcnt = 10 V and Vgra = 1 V. As expected, the potential drop at the junction region
occurs at the smallest area developing the strongest electric field. Since our sliced junction is a
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Figure 5. Color map of the electrical potential for a CNT (5,5). The tube is shown as
a white circle. The potential of the nanotube is Vcnt = 10 V whereas the graphene is
maintained at the potential Vgra = 1 V.

two-dimensional system, the linear charge density λ(x) for the graphene sheet is given in the
(Ox,y, x, y) coordinate system by

∂V

∂x
(x, y) = −

λ (x)

ε0
. (3)

Figure 6 shows λ(x) for CNT (5,5), (9,9), (20,20) and (37,37) with Vcnt = 10 V and
Vgra = 1 V.

The charge density profile exhibits a sharp peak in the junction region. The charge
accumulation does occur in a region in the vicinity of the CNT–graphene junction, as the charge
density profile tends quickly toward neutrality away from the junction. The influence of the CNT
on the charge distribution in the graphene sheet is thus spatially limited to a small portion of it.
The maximum charge accumulation is around −1.45e nm−1 for the CNT (5,5) while for larger
radius CNT the maximum is around −1.55e nm−1. This means that the radius of the CNT plays
a less significant role on the maximum of charge accumulated as the distance between the CNT
and the graphene sheet. The effect of the radius on the overall shape of the charge density is also
limited. Only the width of the peak in the charge density profiles of CNT with smaller radius
is broader than ones for CNT with large radius. Thus, when normalized to their radius, CNT
with smaller radius tends to have a deeper influence on the graphene sheet charge distribution
than CNT with larger radius (as we saw in the previous sections, the smaller the CNT radius the
closer to the graphene sheet).

Despite the fact that these analytic calculations produce exact solutions, the CNT and the
graphene sheet geometries are dramatically simplified. The atom positions are not taken into
account and it is not possible to visualize the charges at the apex of the tube. In the following
section, we use a numerical method which allows to accurately account for the geometry of the
junction.

8
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Figure 6. Charge density for the CNT (5,5), (9,9), (20,20) and (37,37) with Vcnt = 10 V
and Vgra = 1 V. The distances have been normalized to the radii of the tubes. This
representation shows that ε has a stronger influence than the radius of the CNT on the
charge distribution on the graphene sheet in the proximity of the junction.

3.2. Numerical calculations using the charge–dipole model

3.2.1. Presentation of the charge–dipole model. Using analytic calculations, we have seen
that the influence of the CNT on the graphene charge distribution is restrained to regions
of a few nanometers. In this section we have used a ‘charge–dipole’ 3D model to study the
CNT–graphene junctions down to the atomic scale. The charge–dipole model associates to each
atom i , a net charge qi and a dipole pi . The electronic configuration of the sp2-carbon structure
is then well reflected: the net charge accounts for the π -electrons and the dipole accounts for
the σ -electrons. For a given spatial distribution of atoms, the total electrostatic energy Etot is
minimized in order to compute the {qi , pi } associated with each atom.

The model has been first suggested by Orlon [98] in an extension to previous works
on the polarizations of molecules. The idea of associating to each atom of a molecule a net
charge and a dipole to compute electronic properties of molecules structures has then been used
successfully by Appliquing et al [99] and Stern et al [100]. The first sp2 carbon allotrope system
was studied by Shanker et al [101] in the framework of the polarizability of C60 molecules.
It has been presented in its current development by Mayer in 2005 who found a satisfying
renormalization of the model to avoid the divergence arising when a point distribution of
charge is considered [102, 103]. Additionally, the charge–dipole model was successfully used
in modeling the electric field induced deformations of CNT cantilevers [104] and the charge
rearrangement in charged CNT [105].

In a recent work, this model was successfully used to compute the charge distribution in
a relaxed graphene sheet [106]. The results were compared to a classical electrostatic analytic
model. The model was able to give a satisfying description of the charge enhancement effects
on the edge of the graphene.

In this section, we describe the charge–dipole model as it has been presented and
parameterized by Mayer in 2005 and extended in 2007 [103, 107]. The total electrostatic energy

9



New J. Phys. 16 (2014) 013019 P T Robert and R Danneau

for a N atoms configuration and its associated charge–dipole values {qi , pi } is given by

Etot =
1

2

∑
i 6= j

qi T
i, j

q−qq j −

∑
i 6= j

qi T
i, j
q−pp j −

1

2

∑
i 6= j

pi T
i, j
p−pp j +

1

2

N∑
i=1

qi T
i,i

q−qqi −

N∑
i=1

qi T i,i
q−ppi

−
1

2

N∑
i=1

pi T i,i
p−ppi +

∑
i

qi(χi + Vi,ext) −

∑
i

pi · Ei,ext. (4)

For an atom i , χi is the affinity of the atom i , the external potential is Vi,ext and external
electrostatic field is Ei,ext. The three first terms in Etot are the mutual interaction terms
between atoms, the next three terms contain the self-energy terms whereas the two last terms
are the single atom interaction terms. The terms Tq−q , T q−p, T p−p contain, respectively, the
charge–charge, charge–dipole, dipole–dipole interactions in vacuum.

In order to be able to define the terms T i,i
q−q , T i,i

q−p, T i,i
p−p, which diverge for a point charge

distribution when ri, j → 0, the charge density for each atom has been regularized by a Gaussian
distribution centered on the atom. The atom i bearing a charge qi has its charge distribution
given by

ρi(r) =
qi

π3/2 R3
exp

(
−

|r − ri |
2

R2

)
, (5)

where R is the width of the Gaussian distribution.
The parameter R has been set in the calculation to 0.068 62 nm, as used in previous

works [102, 103, 106–110]. This value corresponds for carbon sp2 structures, to a polarizability
of αiso

4πε0
= 0.121 490 01 nm.

For a system of N atoms, the {qi , pi } for each atom are determined by minimizing the total
electrostatic energy Etot given by equation (4). The minimization is carried by requiring that for
each atom i

∂ Etot

∂qi
= 0 and

∂ Etot

∂pi
= 0

leading to solve a 4 × N linear equation system.
If the sum of the net charge is required to be equal to a specific value Qtot, an additional

equation has to be solved. The minimization of the expression Etot − λ(
∑

i q − Qtot) with respect
to the variable λ leads to the additional equation.

3.2.2. Geometry. The CNT–graphene junction has been modeled by a rectangular flake of
graphene and a CNT placed on top of the graphene flake. The length of the in-plane bound
between two carbon atoms has been set to 0.142 nm. We used the distance ε between the
graphene and the CNT determined by the PM6-D semi-empirical quantum chemical method
presented in section 2. For a CNT (5,5), ε is taken as 3.02 Å through all calculations unless it is
specified. The coordinate system used for the calculation is represented in figure 7. The stacking
of the atoms is A–B, meaning that for the CNT, its closest atoms to the graphene flake on the
center of an hexagonal cell.

For the graphene sheet, we have fixed the width of the sheet all through the calculations to
w ∼ 5.00 nm and we have taken several lengths for the sheet ranging from l ∼ 5.00–50.00 nm,
which corresponds to a number of atoms from Ngra = 984–9512. Although the charge–dipole

10
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Figure 7. Geometry of the studied CNT–graphene junctions: Parameters and coordinate
system used for our calculations.

model does not take into account the band structure of the CNT and the graphene sheet, for
the coherence of our study we have taken armchair CNT to form the junction. For most of the
calculation we have chosen a (5,5) CNT that has been made by repeating 19 elementary cells
in the y direction, thus having a non-caped length of about 4.60 nm and containing Ncnt = 380
atoms. The junction length (i.e. the length of the part of the CNT lying on top of the graphene
sheet) is ∼2.25 nm, the rest of the CNT lays suspended outside the flake in straight manner. For
capping the CNT, we use a C30 hemisphere made by halving of a C60 molecule (Ncnt = 420).
The free standing end was left uncapped.

3.2.3. Code validation. In this part, we validate our code by reproducing results already
published on graphene and CNT prior to study the CNT–graphene junction. We demonstrate
that the charge–dipole model is poorly sensitive to changes induced by the geometry relaxation
processes and only on the very edge of the system. The charge–dipole model reveals smoother
charge distribution and no variation in the bulk of the system.

Charge accumulation effect at the edges of a graphene sheet has already been calculated
numerically [111, 112] and also by using analytic electrostatic model [95]. Wang and
Scharstein [106] confirmed this result for a rectangular graphene sheet held at a potential V0

with a certain amount of external charges using a charge–dipole model. The net electric charge
tends to accumulate on the edges and on the corners. The authors used a charge–dipole based
model to compute the charge distribution on free-standing relaxed graphene. The graphene
sheet was relaxed by using adaptive inter-molecular reactive bond order potential functions.

11
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Figure 8. Density of net charge for a rectangular graphene sheet. A color scale has been
used to represent the charge density for each atoms. Red stands for a high charge density,
blue for a lower one. The density has been normalized to the one in the middle of the
graphene flake: q0 = 8.1 × 10−4 e per atom.

We carried out the same calculations by without any relaxation of the geometry and compared
our results to the one obtained in [106].

A rectangular graphene sheet (dimensions: x = 8 and y = 5 nm) has been used for the
calculations generated with the parameters described in section 3.2.2. Here, the graphene flake
was held at a potential of Vgra = 1 V.

Figure 8 reproduces the results for the unrelaxed graphene sheet. The edges and corners
charge enhancement effects are clearly observed. The range of the normalized charge density
is consistent with the results by Wang [106], reaching its maximum value at the corners (i.e.
about 14 times the density at the center of the flake). We see here that the results obtained in a
non-relaxed structure is very similar to the relaxed one.

We have also performed calculations in an uncapped (5,5) CNT. The structure was not
relaxed. We imposed the CNT to have a total charge Q = 20e. The results are compared to
those obtained using different calculation methods [113–115] (see figure 9). The expected
U -shape curve for the density was obtained. Again, our calculations for an unrelaxed structure is
fairly similar to the relaxed one. The value of the density differs slightly for the atoms at the edge
of the CNT. DFT and moment method results depart more from the results obtained for both
unrelaxed/relaxed structures with the charge–dipole model. This is particularly true for the end
atoms since the normalized charge density given by the charge–dipole is around 1.8–2 whereas
for the DFT and moment method it is around 2.5–2.7. This qualitative agreement between all
of these methods (excess of charges at the edge of the CNT), the change of the charge density
is smoother for the charge–dipole model. We also note that the DFT calculations produce an
unexpected variation at the center of the CNT which is somewhat difficult to interpret.

Here we have demonstrated that our program is able to reproduce the already existing
results and we show that the effect of relaxation is very limited. In the following sections we
apply our code to the CNT–graphene junction for various configurations.

3.2.4. Scaling and effect of the junction region on the graphene sheet. In this part, we study
the effect of the CNT on graphene sheets with different sizes. This allows us to determine
from which size of the system we can consider that the edge effect does not influence the charge
distribution at the junction itself. When the graphene is held at a potential of Vgra = 1 V while the

12
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Figure 9. Normalized charge density along the (5,5) CNT axis with respect to the
average net charge per atom. The results for the unrelaxed/relaxed CNT using the
charge–dipole model are plotted, as well as results of the DFT calculations from [114]
and results of moment method from [115]. Inset: net charge per atom. The blue color
indicates a low net charge while the green denotes a significant amount of net charge
and the red color denotes strong accumulation of charge.

CNT is set at Vcnt = 10 V, the net charge per atom in the graphene flake experiences considerable
variation close to the junction region. The closest the graphene atoms are located to the CNT,
the stronger the effects on the charge profile are. In order to determine the length over which the
graphene atoms feel the influence of the CNT, calculations with several lengths for the graphene
flake have been performed. We study the net charge distribution in the graphene along the length
of the sheet near the junction region as well as far from the CNT, following the line drawn in
the inset of figure 10. The edge effects is then presented in section 3.2.6.

Figure 10(a) shows clearly that the charge profile does not change significantly around
the junction region with the length of the graphene sheet. The charge depletion peak in the
charge profile has the same shape through all calculations. For a length of about l ∼ 5.00 nm,
the minimum is about −10.97 × 10−2 e per atom when for about l ∼ 50.00 nm it is about
−10.85 × 10−2e per atom. These values correspond to the net charge carried by the closest
atom to the CNT. The further the graphene atoms are from the CNT, the weaker is the charge
depletion. For atoms located a few nm (x > 2–3 nm) away from the CNT, the charge profile
flattens when the influence of the CNT becomes less prevalent.

Narrower graphene sheets exhibit stronger edge effects which modify the charge
distribution up to −2.76 × 10−2 e per atom for a l ∼ 5.00 nm length. With increasing length,
the edge effects become less significant. For lengths around 40 nm, the edge effects are almost
irrelevant. One effect of the scaling is that for lengths larger than ∼15 nm, the net charge value
reaches, for atoms located away from the CNT, almost a neutral value. Thus meaning that the
influence of the CNT is restrained to a few atomic rows near the junction region. For smaller
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Figure 10. (a) Net charge per atom in the junction region along the width of the
graphene sheet. Different widths for the graphene sheet have been used. (b) Length on
the graphene sheet where the net charge corresponds to |q|5% max for different graphene
sheet lengths.

sheets, the influence of the CNT is still strong near the edges of the graphene since the net
charge value stays well above the neutrality.

The value |q|5% max corresponding to 5% of the maximal absolute value for the net charge
is located in the part where the charge profile starts to flatten. Thus, the length on the graphene
sheet l5% max where the net charge profile reaches |q|5% max is a good indicator of how far the
CNT affects the charge distribution in the graphene sheet. In figure 10(b), l5% max has been
represented for different values of graphene sheet lengths. The influence of the CNT increases
with the length of the graphene. For small lengths it is limited to the very few atomic rows near
the junction. l5% max reaches a value around 1.90 nm eventually and does not show significant
changes with the scaling. Hence, this value can be taken as reference for the extent of the CNT
influence on the graphene. Therefore, for our investigation we have chosen graphene sheets that
are sufficiently large enough that l5% max is already saturated.

3.2.5. Charge distribution profile in the graphene sheet and the CNT. Here we study the
charge distribution profile for both structures. We also investigate how the net charge distribution
changes for an uncapped and a capped CNT. Using the conclusions of section 3.2.4 to determine
a suitable geometry, we choose a graphene sheet with a length about ∼24.6 nm for our study.
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Figure 11. (a) Net atomic charge density for an uncapped metallic CNT (5,5)-graphene
junction. The net charge has been normalized for the CNT as well as for the graphene
to the average charge per atom for each structure. The blue color indicates a net charge
close to the average while the green denotes a significant variation to the average and
the red color denotes a strong variation to the average. (b) Net atomic charge density for
an uncapped (5,5) metallic CNT part of a (5,5) CNT–graphene junction. The charge has
been represented for the top atomic row and for the bottom atomic row. (c) Net charge
density profile along the width of the graphene flake for different rows of atoms. The
colors correspond to the different atomic rows with x = cst. (d) Net charge profile along
the length of the graphene flake for different rows of atoms. The colors displayed in the
top figure correspond to the different atomic rows with y = cst.

First we examine the junction uncapped (5,5) CNT–graphene. The average charge per atom
has been computed for each structure as well as the net charge distribution. The average net
charge per atom in an uncapped (5,5) metallic CNT–graphene junction was found to be qcnt =∑

cnt qi/Ncnt = 5.71 × 10−2e per atom for the CNT and qgra =
∑

gra qi/Ngra = −0.46 × 10−2e
per atom for the graphene.

From figure 11(a), it can be seen that the net charge value significantly differs from the
average net charge for the atoms located close to the junction region. The strongest variations
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are to be found at the extremity of the CNT that lays on top of the graphene and at the edge of
the graphene sheet under the CNT.

It can be noticed (figure 11(b)), that the atoms on top of the CNT do not experience a
significant change in their net charge until the very few extremity atom rows. The net charge
ranges from 2.80 to 3.57 × 10−2e per atom for these atoms but the two end atoms, which have
much higher charge due to the edge effects. Such an observation contrasts with the bottom
atoms of the CNT which feel the strong influence of the graphene flake. These atoms see their
net charge increase on the junction part, their net charge ranges then from 1.30 to 1.56 × 10−1e
per atom for the end atom, which has the highest net charge value and feels the highest edge
effects. Besides on the junction part, except for the end atom, the net charge distribution does
not experience a strong variation.

On the graphene flake, this behavior can also be observed. Aside from the edge atoms,
figure 11(c) shows that for the junction part the net charge profile does not change significantly
along the length of the junction. Still, the profile changes with the distance to the axis of the
CNT. For the atoms outside the junction region, the charge profile tends quickly toward the
neutrality.

For the row of atoms placed at a distance x = 0.071 nm of the tube axis (i.e: the closest
atoms to the CNT axis), the net charge per atom varies from −10.02 to −10.96 × 10−2e per
atom excluding the edge atom (the pink curve in figure 11(c)). While for the row placed at
x = 0.355 nm away from the tube axis, which is a value close to the radius of the (5,5) CNT, the
net charge ranges from −6.2 to −7.3 × 10−2e per atom (the orange diamonds in figure 11(c)).

Further away from the CNT axis, the effects of the CNT combined with the charge
enhancement effects on the edges lead to a more pronounced decrease of the net charge value
along the length of the junction with y increasing. Even so, for a row placed at x = 0.781 nm
away from the CNT axis, the net charge per in the junction region remains around −3.1 × 10−2e
per atom.

As seen in figure 11(d), the charge profile along the length of the graphene flake for atomics
rows with negative y show no major difference, edge row of the graphene sheet set apart. The
charge profile shows a dramatic variation for atoms close to the CNT, while it decreases steeply
a few atomic rows away from the CNT axis (l5% max ∼ 1.9 nm) and thus reaches a plateau value
that is close to the electrical neutrality.

The ideal open-end CNT have non-terminated sharp edges, leading to a strong charge
accumulation at the end of the CNT. However, capped CNT that can be terminated by a half-
fullerene structure. The absence of non-terminated atoms at the end of the CNT is expected to
show less edge effects, i.e. a reduced charge accumulation at the end of the junction. Moreover,
from an experimental point of view, CNT are known to be either capped or uncapped [116].
The nature of the ends cannot be predicted and are potentially hard to control. We compute
the average net charge for both structures this time using a capped CNT (5,5). The values of
the average net charges lie in the same range as in the calculation made with an uncapped
CNT: for the CNT qcnt =

∑
cnt qi/Ncnt = 5.62 × 10−2e per atom and for the graphene qgra =∑

gra qi/Ngra = −0.50 × 10−2e per atom.
For the CNT, capped end set apart, figure 12(a) shows that capping the end of the CNT

does not affect the charge profile along the length of the tube. The charge profile along the tube
shows a similar behavior as in figure 11(b). The results of the calculations clearly demonstrate
that the edge effects are much less prevalent at the junction end of the capped nanotube than on
the case of an uncapped CNT. The atom with the maximal net charge in the CNT is still to be
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Figure 12. (a) Net atomic charge density for a capped(5,5) metallic CNT part of a (5,5)
CNT–graphene junction. The charge has been represented for the top atomic row and for
the bottom atomic row. (b) Net charge per atom along the length of the graphene flake
for different atomic rows. The (5,5) CNT has been capped with a C60 molecule at one
end. (c) Net charge for the atoms belonging to the cap of the (5,5) CNT. The color scale
indicates the value of the net charge in e. (d) Relative difference in the charge density
in the junction region part of the graphene sheet when considering a capped nanotube
over an uncapped nanotube. The relative difference is given by (qgra,capped − qgra)/qgra.
The color scale gives the percentage of difference.

found at the junction end, but with a significant lower charge density than before. Indeed, for a
uncapped CNT, the maximal net charge was 2.79 × 10−1e per atom when for a capped nanotube
its value is 1.72 × 10−1e per atom as can be observed in figure 12(c).

Concerning the graphene flake, the overall charge profile shape does not show significant
difference with the non-capped case (see figure 12(d)). The induced changes on the charge
profile when using a capped CNT are shown in figure 12(d). As expected these changes are
concentrated near the cap region, thus the atoms close to the cap experience the most significant
variations in their net charge. For the closest atoms to the cap, the increase in the net charge
is about 1.92 times the value of the charge density in the uncapped CNT. These changes are
reflected in the average carried net charge of the graphene flake qgra, capped which is higher than
in the uncapped nanotubes junction case.
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Figure 13. (a) Edge geometry: zigzag (left), armchair (right). (b) Net charge per
atom in the junction region along the width of the graphene flake for different edge
configurations.

3.2.6. Effects of the edges of the graphene flake. Until now, we have been focused on the
part of the junction where the charge profile does not experience significant variation along the
width of the graphene sheet. In this section we focus on the edge row of the graphene sheet that
takes part into the junction (i.e. the row for y = −l/2). From the previous section, the net charge
depletion for this particular row presents a different behavior and reaches higher values than for
rows in the middle of the junction. Figure 11(d) shows that the maximal depletion value on the
edge row is ∼−20.5 × 10−2e when for the middle part of the junction, the maximal value is
only around ∼−10.8 × 10−2e. For the edge row, besides the higher maximal value, the peak in
the charge profile has a broaden shape, meaning that the influence of the CNT extends further
in the graphene sheet (l5% max ∼ 3.30 nm).

So far, the junction region has been involved graphene sheet with armchair edges.
Therefore, we performed calculations for junctions with zigzag edges as represented in
figure 13(a). As illustrated in figure 13(b), for both edge configurations, the maximum of net
charge depletion in the graphene flake is reached in the junction region for the closest atoms to
the CNT. The difference of edge configuration has a substantial influence only on the net charge
per atom in the graphene flake for the atomic row forming the edge itself. There, the atoms
of the zigzag edges have a higher charge depletion value than their armchair counterpart. The
maximum depletion is for zigzag edges about −21.4 × 10−2e when it is about −20.5 × 10−2e
for armchair edges. For atoms located away from the edges, as expected, the influence of
the edge configuration is less prevalent. The value for the maximal depletion for the zigzag
configuration is ∼−11.0 × 10−2e whereas for the armchair configuration it is ∼−10.8 × 10−2e.

18



New J. Phys. 16 (2014) 013019 P T Robert and R Danneau

If we consider l5% max as defined in section 3.2.4 for a cut along the graphene in a middle
of the junction, there is no significant variation due to the type of edge involve in the junction
(l5% max ∼ 1.90 nm). Only on the edge row l5% max does slightly differ depending on the edge
characteristic(l5% max ∼ 3.40 nm for zigzag edges, l5% max ∼ 3.30 nm for armchair edges).

The edge of the graphene sheet part of the junction shows a higher depletion effect than
the atomic rows in the middle of the junction. Thus the length over which the CNT affects the
charge distribution in the edge atomic row is larger than for the rest of the junction region.
The nature of the edge geometry does not significantly affect the charge distribution along
the edge row, only a slight increase in the charge depletion can be observed when using
zigzag edges. This most likely reflects a limitation of a model purely based on electrostatic
considerations.

3.2.7. Effects of the potential difference. In this part, the effects of the electrical potential
difference on the charge profile are presented. In experimental works the electrical potential
difference between the graphene and the CNT may vary, in particular if the graphene is back-
gated as it is in common transport measurement technique. We demonstrate that the charge
distribution scales proportionally with the potential difference 1V = Vcnt − Vgra. The shape of
the charge profile in the graphene sheet as well as the length over which the CNT affects the
charge in the graphene do not change with the potential difference.

We have used the same geometry as in section 3.2.5 for an uncapped CNT (5,5). Through
all the previous calculations, the potential difference has been kept at 1V = Vcnt − Vgra = 9 V
with Vgra = 1 V and Vcnt = 10 V. The graphene sheet has been hold at the same potential through
all calculations (Vgra = 1 V), while letting the potential difference taking three different values:
1V = 5, 15 and 18 V. The results of these calculations as well as the one obtained previously
with 1V = 9 V have been plotted in figure 14. The charge profile on the graphene sheet
for different 1V exhibits the same behavior as in the previous sections. Thus the maximum
depletion is found for atoms close to the CNT and the profile presents a sharp decrease of the
depletion a few atomic rows away.

As depicted in the inset in the right part of figure 14, the values for the maximal depletion
ranges from −6.0 × 10−2e for 1V = Vcnt − Vgra = 5 V to −22.9 × 10−2e for 1V = 18 V and
presents a linear behavior with respect to 1V . For the mean value of the net charge in
the graphene sheet, the same observations can be seen. Thus the charge profile seems to
scale proportionally with the potential difference 1V . This is a direct consequence of the
charge–dipole model from which the right-hand side of the system of linear equations are
proportional to 1V . This trend is confirmed if we normalize the charge profiles obtained for
the considered 1V to the actual potential difference 1V . We obtain then the unique profile
depicted in the right part of figure 14.

4. Discussion

In this section, we compare the results from our analytic calculations to the charge–dipole
model. We first determine how the influence length l5% max scales with the radius of the CNT
for both models. Then we study how the distance between the two sp2 carbon allotropes does
affect the charge distributions in the graphene.
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Figure 14. (left) Net charge profile along the length of the graphene sheet in the middle
of the junction region for 1V = 5, 9, 15 and 18 V. (right) Net charge profile along
the length of the graphene sheet in the middle of the junction region normalized to
the potential difference 1V . Inset: maximum charge depletion for several potential
differences 1V .

Figure 15. View of the extension of the CNT influence on the graphene sheet for a CNT
(7,7) (left) and a CNT (37,37) (right). Atoms in red have a net charge |q|> |q|5% max,
while atoms in blue have a net charge |q|6 |q|5% max.

4.1. Scaling of the influence length l5% max with the radius of the CNT

Here we investigate the scaling of the influence length l5% max with the radius by replacing the
CNT (5,5) used for the previous computations by tubes with a higher radius. We have used
12 different armchair CNT (n, n) with radii ranging from ∼0.5 to ∼3.35 nm (and the chiral
index n ranging from 7 to 50), giving then 12 different junction configurations. The equilibrium
distance between the tubes and the graphene has been inferred from the results of section 2.
For each junction configuration, the influence length l5% max is determined. In order to be able
to study how the influence region on the graphene sheet changes with the radius of the CNT,
l5% max has been normalized to the radius of the CNT.

As clearly seen from the two charge distributions in figure 15, the influence of the CNT
on the graphene sheet tends to be more restricted to regions close to the CNT when the radius
increases. This trend is clearly to be seen in the variation of l5% max with the radius of the CNT for
either analytic calculations or charge–dipole model (figure 16). The charge–dipole model gives
for the CNT (50,50) a influence length l5% max of only about 1.7 times the radius of the tube
itself, while for the tube (7,7) l5% max is about 4.5 times the radius. The results of the analytic
calculations yield higher values for l5% max but follows the same tendency as the charge–dipole
model, l5% max = 1.9 for the CNT (50,50) and l5% max = 5.6 for CNT (7,7).
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Figure 16. Influence length l5% max versus the radius of the CNT used for the junction
(top). l5% max has been normalized to the radius of the CNT (bottom). l5% max has been
analytically computed and using the charge–dipole model.

A important point in the analytic calculations is the lack of edge effects, since the graphene
and the CNT are modeled by the cross-section of an infinite graphene sheet and the cross-
section of an infinite cylinder. The values for l5% max are taken far from the edges in the case of
the charge–dipole model. Thus edge effects can be ruled out to justify the differences arising
between the two models. A reliable explanation for the different l5% max values between the two
models lies in the dipole–charge interaction that tends to prevent the charge from spreading out
in the graphene sheet and pin them to the junction region. Additionally, as the diameter of the
tube is increasing the two models tend to the same normalized values. It is already clear that
the distance between that CNT and the graphene sheet is significant role in the electrostatic
landscape of the junction.

4.2. Effects of the carbone nanotube–graphene distance

Now we discuss the effect of the CNT–graphene distance dCNT–Gra on the charge distribution
in the graphene sheet. In section 2, the distance between a CNT (5,5) and a graphene sheet has
been computed. To our knowledge, no experimental values are available for the equilibrium
distance between a CNT and a graphene sheet. Furthermore, the equilibrium distance may vary
with the experimental conditions. In particular for graphene-like field-effect devices and given
the π–π nature of the CNT–graphene interactions, the gate voltage sweep may draw the tube
toward the graphene or pull it away.

We have carried the calculations for distances within a large range that covers values
around the equilibrium distance for a (5,5) CNT. Here we have chosen a range from dCNT–Gra =

2.4–3.8 Å.4

4 It is important to note that the reduction of the CNT–graphene distance is highly limited due to the strong short
range repulsive forces.
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Figure 17. (left) Net charge profile in the graphene given by the charge–dipole model
for different equilibrium distances dCNT–Gra. (right) Charge density profile calculated
analytically in the graphene for different equilibrium distances dCNT–Gra.

The charge distribution profile across the graphene sheet is represented in figure 17
for several dCNT–Gra and for both models. The overall shape of the profile does not change
significantly with the distance dCNT–Gra. Indeed, the region of influence of the CNT is still
restrained to a few atomic rows around the CNT and does not extend far in the graphene sheet.
The only noticeable modification is the value of the charge distribution peak. The closer the tube
is to the graphene sheet, the higher the value of the maximum of charge. Thus, the variation of
dCNT–Gra does only affect significantly the atoms located in the vicinity of the CNT.

Since both models give the same trend, we use the charge–dipole model to study in more
detail the charge variation with the distance dCNT–Gra in the first rows of atoms close to the
CNT. The closest atom to the CNT (labeled as Max figure 18) undergoes the most dramatic
change in net charge, carrying for dCNT–Gra = 2.4 Å a net charge of −17.3 × 10−2e and for
dCNT–Gra = 3.8 Å a net charge of −7.4 × 10−2e. This behavior is clearly to be seen in figure 18,
where the net charge has been represented for atoms sitting at several distances from the closest
one to the CNT. The net charge has been normalized for each atomic row to the one for the
distance dCNT–Gra = 2.4 Å. For the atoms sitting from one row to three rows away from the
closest atom to the CNT, the change in the net charge is significant when the distance dCNT–Gra

varies. When compared to the net charge these atoms carry for dCNT–Gra = 2.4 Å, the net charge
loss is about 0.6 times for the first row atom and for the third row atoms about 0.15 times. For
rows further away, the loss is smaller and it becomes eventually negligible for the atom five rows
away from the closest one to the CNT, meaning that the change in the distance dCNT–Gra has no
more impact on the net charge. We note that our findings are in good agreement with the studies
of metal–graphene junctions [9–11] as well as metal–dielectric–graphene junctions [117, 118]
which report that the distance between a physically adsorbed metal and a graphene sheet is
crucial to locate the Fermi level below the metal contact.

The charge distribution around the junction is therefore strongly governed by the distance
between the CNT and the graphene sheet. While a larger size of the CNT would enlarge the
zone of influence of the CNT on the graphene sheet, the increase of the equilibrium distance
counterbalances it up to the point of becoming dominant.
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Figure 18. Normalized charge versus the CNT–graphene distance for the atom closest to
the CNT (Max), the second closest, the third closest, the fourth closest and sixth closest.
A sketch of the junction’s geometry with the corresponding atoms is shown above.

5. Conclusions

To summarize this work, we have studied the electrostatic behavior of a CNT–graphene
junction. We first calculated the equilibrium distance between the CNT and graphene sheet
and found that the larger the diameter the further apart the two sp2 carbon structures up to the
two dimensional limit of two AB stacked graphene layers are. The CNT–graphene distance
constitutes an important parameter for the description of the geometry used for the calculations.
On one side, we performed electrostatic analytic calculations solving the Poisson’s equation by
conformal mapping techniques. On the other side, we have used a charge–dipole model.

For both models, we were able to describe the charge depletion/accumulation at a
CNT–graphene junction. The influence of the CNT on the charge distribution in the graphene
sheet has been analyzed by defining the length of influence of the CNT on the graphene sheet
l5% max. We showed that for small radius CNTs the influence extends in the graphene sheet over
a length up to ∼6–7 times the radius while for large CNT radius the influence length was found
to be ∼1.5–2 times the radius. Therefore, we could conclude that the influence of the CNT on
charge distribution in the graphene sheet remains restrained to a region close to the junction
region and does not extend deeper in the graphene sheet. We have also seen that a closed CNT
accumulates fewer charges than the open-end ones. While the electrostatic does not seem to be
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strongly sensitive to the edge quality, we have demonstrated that an increase of the potential
difference between the CNT and the graphene sheet does not extend l5% max. Since the distance
between the CNT and the graphene sheet can strongly tune the charge distribution, it is rather
likely that it will also affect the charge injection from the tube to the graphene. Finally, our work
opens the way for the theoretical study of the electronic transport in CNT–graphene junctions.
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Appendix A. Extrapolation to determine the equilibrium distance for large CNT

For further applications (see section 4.1), we need to determine the equilibrium distance for
large radii CNT (n,n) with chiral index up to n = 50 by extrapolation of our calculations for
smaller CNT. The data obtained with MOPAC for the tubes CNT (5,5), (9,9) and (15,15) have
been used to determine the following function:

deq = d0 + A exp

(
−

R

R0

)
(A.1)

with deq the equilibrium distance for a CNT with a radius of R, A and R0 are free parameters
determined by the extrapolation (here A = −0.34 Å and R0 = 103 Å). The limit for the
equilibrium distance has been set to be the graphene interlayer distance (i.e. d0 = 3.34 Å). The
equilibrium distance for a CNT (50,50) which has a radius of ∼34 Å is about 3.16 Å. Thus, for
over an order magnitude change for the radius, the equilibrium distance increases from about
0.14 Å (figure A.1).

Appendix B. Conformal mapping transformations

We detail the two conformal mapping transformations used in section 3.1. The initial geometry
is described in the (Ox,y, x, y) coordinate system. The first map transforms this coordinates
system into (Ou,v, u, v). In the final coordinates system (Op,q, p, q), the solution of the
Laplace’s equation is straightforward. The first conformal mapping transformation used G(z) is
given by

G(z) = w =
(Rcnt,0 − ε)ε

2Rcnt,0 − ε
+

iε2

z − 2iε
, (B.1)

where z = x + i y and w = u + iv, z, w ∈ C and x, y, u, v ∈ R. By applying G(z) to the initial
geometry (figure 4(a))) we obtained the geometry shown in figure 4(b)). Thus, the original
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Figure A.1. Extrapolation procedure to extract the equilibrium distance for large CNT
(n,n) with n 6 50 determined by using equation (A.1).

circle Ccnt,0 (radius: Rcnt,0 center: Ox,y) is mapped into a new circle Ccnt,1 (radius: Rcnt,1, center:
Ou,v) while the straight line is transformed into a circle Cgra,1 (radius: Rgra,1, center: Au,v). The
coordinates of the point Au,v are given by

u Au,v
=

(
2Rcnt,0 − 3ε

)
ε

4
(
2Rcnt,0 − ε

) , vAu,v
= 0. (B.2)

The expression for the radii are given by

Rcnt,1 =
Rcnt,0ε

|ε − 2Rcnt,0|
, Rgra,1 = ε/4. (B.3)

For later use, we defined u1 and u2 as

u1 = u Au,v
− Rgra,1, u2 = u Au,v

+ Rgra,1. (B.4)

For the second conformal mapping transformation H(w), we used a Moebius transformation in
order to map the circles previously obtained by using G(z) into two concentric circles centered
on Op,q . H(w) is given by

H(w) = t =
w − ab

aw − b
(B.5)

with t = p + iq , t ∈ C, p, q ∈ R and a and b defined by

a =

R2
cnt,1 + u1u2 +

√
(R2

cnt,1 − u2
1)(R2

cnt,1 − u2
2)

Rcnt,1(u2
1 + u2

2)
(B.6)

b = Rcnt,1. (B.7)
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Thus by applying the transformation H(w), the circle Ccnt,1 is mapped into the circle Ccnt,2

(radius: Rcnt,2) and the circle Cgra,1 is transformed into the circle Cgra,2 (radius: Rgra,2). Both
circles Ccnt,2 and Cgra,2 are centered at Op,q as shown in figure 4(c).

Rcnt,2 has a simple value since

Rcnt,2 = 1, (B.8)

while Rgra,2 is given by

Rgra,2 =

R2
cnt,1 − u1u2 +

√
(R2

cnt,1 − u2
1)(R2

cnt,1 − u2
2)

Rcnt,1(u2
1 − u2

2)
. (B.9)

By using the transformation G and H , the expression of p(x, y) and q(x, y) can be inferred
since {

<(G(z)) = <(w) = u(x, y),

=(G(z)) = =(w) = v(x, y)

and {
<(H(w)) = <(t) = p(u, v),

=(H(w)) = =(t) = q(u, v),

where < stands for the real part and = for the imaginary part.

Appendix C. Charge–dipole model interaction terms

We sum up the charge–dipole interaction terms as presented in [102, 107]. Equation (4) in
section 3.2.1 gives the expression of the total electrostatic energy. The charge–charge interaction
term is given by

1

2

∑
i, j

qi T
i, j

q−qq j , (C.1)

where T i, j
q−q stands for the charge–charge interaction tensor in vacuum. If ri, j is the distance

between the atom i and the atom j , and ri the coordinate of the atom i , the regular expression
for T i, j

q−q is then

T i, j
q−q =

1

4πε0

1

ri, j
. (C.2)

The charge–dipole interaction term is

−

∑
i, j

qi T
i, j
q−pp j , (C.3)

where T i, j
q−p is the charge–dipole interaction tensor in the vacuum. The regular expression for

Ti, j
q−p is

Ti, j
q−p = −∇ri T i, j

q−q . (C.4)
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The dipole–dipole interaction term is

−
1

2

∑
i, j

pi T
i, j
p−pp j , (C.5)

where T i, j
p−p is the dipole–dipole interaction tensor in the vacuum. The regular expression for

Ti, j
p−p is

Ti, j
p−p = −∇r j ⊗ ∇ri T i, j

q−q . (C.6)

Using the equation (5) in the expressions for the interaction tensors terms leads then to the
following expressions:

T i, j
q−q =

1

4πε0

erf
(

ri, j
√

2R

)
ri, j

, (C.7)

Ti, j
q−p =

1

4πε0

ri, j

r 3
i, j

[
erf

(
ri, j

√
2R

)
−

√
2

π

ri, j

R
exp

(
−r 2

i, j/2R2
)]

, (C.8)

Ti, j
p−p =

1

4πε0

3ri, j ⊗ ri, j − r 2
i, j Id3

r 5
i, j

×

{[
erf

(
ri, j

√
2R

)
−

√
2

π

ri, j

R
exp

(
−r 2

i, j/2R2
)]

−

√
2

π

1

R3

ri, j ⊗ ri, j

r 2
i, j

exp
(
−r 2

i, j/2R2
)}

,

(C.9)

where Id3 is the size 3 identity matrix and erf is the Gauss error function given by

erf(x) =
2

√
π

∫ x

0
exp(−t2)dt. (C.10)

The limit case ri, j → 0 in expression (C.7), (C.8) and (C.10) gives for the self-energy terms

T i,i
q−q =

1

4πε0

√
2

√
π R

, (C.11)

Ti,i
p−q = 0, (C.12)

Ti,i
p−p = −

1

4πε0

√
2

3
√

π R3
Id3. (C.13)

In [103, 107], the dipole–dipole self-interaction Ti,i
p−p term is equal to α−1

iso which represent
the polarizability of the carbon atoms in sp2 carbon structures. Thus assuming an isotropic
polarizability, the following relation can be used to link the parameter R (i.e. the width of the
Gaussian distribution) and the polarizability using the following expression:

αiso

4πε0
= 3

√
π

2
R3. (C.14)
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The parameter R has been then determined using experimental data to reproduce the mean
polarizability of fullerenes and lateral polarizability of CNT [102].

The implementation of the charge–dipole model has been done using the C++
programming language. The resolution of the linear equation system was performed with the
routine DGESV called by the C++ code. This routine is part of the LAPACK package [119]
written in Fortran. Structures with up to about 10 000 atoms could be solved using the random
access memory resources of the Opus Cluster from the Steinbuch Centre for Computing (SCC).
The size of the systems handled with the charge–dipole model is therefore larger than with
ab initio methods or even semi-empirical methods.
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