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Abstract
Dilational materials are stable, three-dimensional isotropic auxetics with an
ultimate Poissonʼs ratio of−1. Inspired by previous theoretical work, we design a
feasible blueprint for an artificial material, a metamaterial, which approaches the
ideal of a dilational material. The main novelty of our work is that we also
fabricate and characterize corresponding metamaterial samples. To reveal all
modes in the design, we calculate the phonon band structures. On this basis,
using cubic symmetry we can unambiguously retrieve all different non-zero
elements of the rank-four effective metamaterial elasticity tensor from which all
effective elastic metamaterial properties follow. While the elastic properties and
the phase velocity remain anisotropic, the effective Poissonʼs ratio indeed
becomes isotropic and approaches −1 in the limit of small internal connections.
This finding is also supported by independent, static continuum-mechanics
calculations. In static experiments on macroscopic polymer structures fabricated
by three-dimensional printing, we measure Poissonʼs ratios as low as −0.8 in
good agreement with the theory. Microscopic samples are also presented.
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1. Introduction

Auxetic materials are rather special and unusual elastic solids. Their Poissonʼs ratio ν is
negative, which means that it is easy to change their volume while fixing their shape, but it is
hard to change their shape while fixing their volume [1]. This behavior is opposite to that of an
ideal liquid [2] and to that of an ideal pentamode metamaterial [3]. In general, auxetic materials
can be anisotropic, in which case the Poissonʼs ratio turns into a Poissonʼs matrix [4, 5]. There
are no fundamental bounds for the values of the elements of the general Poissonʼs matrix [6]. In
sharp contrast, there are established bounds for stable elastic isotropic media. Here, the
Poissonʼs ratio [5] is connected to the ratio of bulk modulus B (the inverse of the
compressibility) and shear modulus G via

ν
ν

= +
−

B

G

1
3

1
0.5

. (1)

For a stable elastic solid, neither the bulk nor shear modulus can be negative. For example,
exerting a hydrostatic pressure onto a material with <B 0 would lead to an expansion, further
increasing the pressure, the volume, etc. This non-negativity together with equation (1)
immediately translates into the well-known interval of possible Poissonʼs ratios of
ν ∈ −[ 1, 0.5]. Effectively, isotropic auxetic materials with ν < 0 composed of disordered
polymer- or metal-based foams have been extensively studied in the literature; for a recent
review see [7]. It is not clear though how one would systematically approach, along these lines,
the ultimate limit of ν = −1. Such ultimate extreme auxetic materials are called ‘dilational’
because they strictly support no other modes than dilations. Intuitively, for example, if one
exerts a force onto a Statue of Liberty made of a dilational material at any point and along any
direction, one can change its volume, but it will always maintain the exact shape of the Statue of
Liberty. Obviously, this behavior is very different from that of a regular elastic solid. As an
impact would be distributed throughout the entire elastic structure, dilational materials can, for
example, be used as shock absorbers [8, 9]. Early three-dimensional auxetic metamaterials with
anisotropic Poissonʼs ratios have recently been presented [10]. It is again not clear though how
this approach [10] could be brought towards an isotropic behavior with ν = −1. In the literature,
several conceptual models for dilational metamaterials have been discussed [11–16]. These,
however, contain elements like ‘perfect joints’ and ‘rigid rods’ that still need to be translated to
a three-dimensional continuous microstructure composed of one constituent material (and
vacuum in the voids) that can be fabricated using current technology. In this paper, inspired by
the two-dimensional conceptual model of [11], we design a three-dimensional feasible blueprint
for such a dilational material. On the basis of this blueprint, we also fabricate and characterize
experimentally corresponding crystalline samples. The experiments form the main novelty of
the present work. Several questions arise in the design process. Does this microstructure support
unwanted easy modes other than the wanted dilations? Can this microstructure be described by
a simple elasticity tensor and a constant mass density? For so-called Cosserat materials or for
materials with anisotropic mass-density tensors [17–20], the answer would generally be
negative. Our blueprint contains small internal connections mimicking the mentioned ‘ideal
joints’. How small do these connections have to be? The blueprint uses a simple-cubic
translational lattice. Do we really get an isotropic Poissonʼs ratio? In general cubic elastic solids,
the answer would be negative. To address all of these questions, we start by presenting the
calculated phonon band structures for our blueprint. Next, we compare these with the static
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continuum-mechanics calculations. These can then be directly compared with our static
experiments on macroscopic polymer-based metamaterials made by three-dimensional printing.
Finally, we show that microscopic versions can also be fabricated by recent advances in galvo-
scanner dip-in direct-laser-writing (DLW) optical lithography. A related but different idea has
recently been demonstrated by a rubbery chartreuse ball with 24 carefully spaced round dimples
[21]. These buckliballs can also be arranged into bucklicrystals [22].

2. The blueprint

Our three-dimensional blueprint depicted in figure 1 is based on a recently published two-
dimensional conceptual model [11]. This model contains ‘ideal joints’ and ‘rigid bars’. In our
blueprint, the ideal joints are implemented by small connections between the square and the
triangular elements. Upon compression along one direction, for example from the top to the
bottom, the inner squares rotate and the triangular outer connection elements get pulled inwards.
Thus, ideally, the structure contracts laterally by the same amount as it contracts vertically. The
Poissonʼs ratio would thus be ν = −1. We will have to investigate to what extent we approach
this ideal for a finite connection size d compared to the cubic lattice constant a. Furthermore, the
very thin rigid bars in [11] have been eliminated in our blueprint because they cannot be
implemented using a single constituent material. As a result, it is not clear whether unwanted
easy modes of deformation might occur. Indeed, in preliminary simulations, we have found that
when using only one sense of rotation of the squares, the squares do not only rotate around their
center, but also translate. To eliminate this unwanted easy mode, we use a three-dimensional
checkerboard arrangement with the discussed motif alternating with its mirror image. The small
cubes with a side length identical to the thickness of all squares and triangles are not necessary
for the metamaterial function. They are, however, crucial as markers in our measurements of the
Poissonʼs ratio (see below). They are hence considered in all our band structure and static
calculations to allow for direct comparison.

3. Phonon band structures

The phonon band structure reveals all the modes of the elastic metamaterial, possibly including
unwanted easy modes other than dilations (see above). The long-wavelength limit of the band
structure can be the starting point for a description in terms of effective elastic metamaterial
parameters (see next section). In our numerical band-structure calculations for the dilational
metamaterial structure in figure 1, we solve the usual elastodynamic equations [23] for the

displacement vector ⃗ ⃗u r t( , ) containing the time-independent rank-four elasticity tensor ⃗
↔

( )C r

and the scalar mass density ρ ⃗r( ), i.e.

ρ∇⃗ · ∇⃗ ⃗ − ∂ ⃗
∂

=
↔
C u

u

t
( ) 0, (2)

2

2

using a commercial software package (COMSOL Multiphysics, MUMPS solver). We impose
Bloch-periodic boundary conditions onto the primitive cubic real-space cell shown in figure 1.
We have carefully checked that all the results presented in this paper are converged. Typically,
convergence is achieved using several tens of thousands of tetrahedra in one primitive real-
space cell. We choose an isotropic polymer as the constituent material with Youngʼs modulus
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1 GPa, Poissonʼs ratio 0.4, and mass density −1200 kg m 3. These values are chosen according to
the below experiments. Due to the scalability of the elastodynamic equations, our results can
easily be scaled to isotropic constituent materials with any different Youngʼs modulus and
density. The Poisson ratio of the constituent material influences the results only to a very minor
degree. The voids in the polymer are assumed to be vacuum. The lattice constant is chosen as
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Figure 1. (a) Blueprint of a three-dimensional dilational metamaterial. A single unit cell
is shown. This cell is composed of a checkerboard arrangement of a motif made of
squares and triangles, and its mirror image. Everything is made from one material,
however, different parts of the unit cell are colored for clarity. Faces of equal color
(three for each color) are identical in shape when viewed from the same direction. They
are only shifted along the normal face. As we display one unit cell, the faces at the
surface of the unit cell are half as thick as the interior faces. (b) One plane of the
structure, with geometrical parameters indicated. The cubic lattice constant is a. The
other parameters are: block size =b a/ 0.25, width of the holding element =w a/ 0.048,
layer thickness =t a/ 0.05, holder length =h a/ 0.235, and connection size =d a/ 0.5%.



=a 4.8 cm according to our below experiments on macroscopic polymer structures. However,
the results can again easily be scaled to any other value of a.

The crystal illustrated by figure 1 has inversion symmetry, three mirror planes normal to
the principal cubic axes, and two-fold rotational symmetry along the same three axes. This two-
fold rather than four-fold rotational symmetry means that the crystal does not have the same
symmetry as the underlying simple-cubic translational lattice. It is rather an element of the point
group D h2 (in Schoenflies notation). However, our numerical calculations show that the band
structure exhibits full cubic symmetry for the eight lowest bands, i.e. the eigenfrequencies for
wave vectors along the x-, y-, z-directions are identical (not depicted). We thus represent the
band structure results in a simple-cubic Brillouin zone. Examples of calculated band structures
are depicted in figure 2 for two different values of the ratio d a/ . Shown are the six lowest
eigenmodes. It becomes immediately clear that the slope of the low-frequency or long-
wavelength acoustic modes is not the same for all directions, it is anisotropic. Along the
ΓX -direction (i.e. along the principal cubic axes), the velocity of the longitudinally polarized
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Figure 2. Calculated phonon band structures (blue dots) of dilational metamaterials, i.e.
angular frequency ω versus wave vector for a tour along the high-symmetry points of
the simple-cubic Brillouin zone (see inset in (a)). The straight red lines correspond to
the effective-medium description of a cubic-symmetry crystal. (a) connection size

=d a/ 0.5%, (b) =d a/ 5%; =a 4.8 cm. The gray area in (a) highlights a complete
three-dimensional elastic band gap.
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Figure 3. (a), (b) Polar representations of the phase velocity at a wave number of
=k a0.01/ , i.e. the phase velocity in a particular direction is given by the radial length.

The cut on the left is for the xy-plane, and the cut on the right for a plane spanned by the
[111] and [110] directions. The cut on the left shows the four-fold rotational symmetry
expected for a cubic structure. The connection size is (a) =d a/ 0.5% and (b) =d a/ 5%.
All other geometrical parameters are as quoted in figure 1. The blue dots are derived
from the phonon band structure, and the red curves are the result of an effective-
parameter description of a cubic-symmetry medium. (c) Selected eigenmodes for a fixed
wave number of =k a0.2/ and for =d a/ 0.5%. The corresponding eigenfrequencies
scale proportionally to the inverse of the lattice constant a (in units of m) and are quoted
below each panel. They increase from left to right. The black arrows indicate the

direction of the wave vector ⃗k , and the red arrows the directions of the displacement



mode is smaller than that of the transversely polarized modes (see figure 3). In isotropic elastic
media, the opposite holds true. As to be expected, the phase velocities are larger for larger d a/ .
We note in passing that the band structure in figure 2 for =d a/ 0.5% exhibits a complete three-
dimensional elastic (i.e. not only acoustic) band gap between normalized frequencies of 3.52
and 3.87 kHz. This region with a zero bulk phonon density of states corresponds to a gap-to-
midgap ratio of 9%. This complements the other possibilities reported in the literature [23, 24].
To further emphasize the anisotropy, we also plot the phase velocity in polar diagrams in
figure 3. Constant phase velocity would lead to circles in the two-dimensional cuts depicted.
Clearly, the curves shown in figures 3(a) and (b) are not circular at all, neither for the small nor
the large value of d a/ . They do show four-fold symmetry though. This statement is not trivial,
because the three orthogonal axes are not strictly equivalent in terms of the geometrical
structure. This can be seen when comparing a view on the unit cell shown in figure 1 onto the
xy- and the xz-planes. Nevertheless, the band structures show that wave propagation is
equivalent for the three cubic axes.

The anisotropic behavior of the phase velocity is connected to rather complex underlying
eigenmodes that are illustrated by the examples shown in figure 3(c). The red arrows point in
the direction of the displacement eigenvector, averaged over all points in the unit cell. The black
arrows are the corresponding wave vectors (their modulus is a0.2/ ). For waves propagating
along the principal cubic axes or along the face diagonals, we find pure longitudinal or pure
transverse polarization. For arbitrary oblique propagation directions with respect to the principal
cubic axes, the eigenmodes are complicated mixtures of transverse and longitudinal
polarization. In contrast, in an ideal isotropic elastic medium, the polarizations would be
purely transverse or longitudinal.

4. Retrieval of the elasticity tensor

The phonon band structures presented in the previous section have shown pronounced
anisotropies resulting from the cubic symmetry of the underlying translational lattice. In
general, this also leads to an anisotropic Poissonʼs ratio ν [31]. In the limit of ν → −1 for
compression along the principal cubic axes, one does, however, expect an isotropic behavior.
To quantitatively investigate this important aspect of isotropy as a function of d a/ , we derive a
Poissonʼs ratio from the phonon band structure. To do so, we compare the band structures with
the expectation from the continuum mechanics of an effective cubic-symmetry medium. For

crystals obeying simple-cubic symmetry [25, 26], the rank-four elasticity tensor
↔
C has the three

different non-zero elements = = = = = = = =C C C C C C C C C C,11 22 33 1111 2222 3333 12 13 23 1122

= = = = =C C C C C ,2211 1133 3311 2233 3322 and = = = = = =C C C C C C C44 55 66 2323 3232 2332 3223

= = = = = = = =C C C C C C C C .1313 3131 1331 3113 1212 2121 1221 2112 Here, the elements with only
two indices refer to the Voigt notation [27]. All other elements are zero. Furthermore, we
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Figure 3. (Continued.) vector ⃗u averaged over one unit cell. Shown are the ΓX direction
identical to the principal cubic axes, and the ΓM direction parallel to the cubic face diagonals, as
well as for an oblique direction. For the latter, the modes are no longer purely transversely or
longitudinally polarized. The normalized modulus of the local displacement vector ⃗u is shown by
the false-color scale given on the right-hand side for the surface of the unit cell.



assume a constant scalar effective metamaterial mass density ρ, which is simply given by the
volume filling fraction f of the constituent material times its own bulk mass density (see
figure 1). For =d a/ 0.5% ( =d a/ 5%), we get =f 10.4% ( =f 11.2%). On this basis, we can
now calculate the phonon band structure in the long-wavelength limit. To do so, one needs to

connect the phase velocities with the elements of
↔
C and with ρ. Here, it is convenient to inspect

the ΓM or [110] direction with three different phase velocities v and three orthogonal
eigenmodes that are either purely longitudinally (L) or purely transversely (T) polarized (see
above). The latter either lie in the xy-plane or along the z-direction. Following [28], the
connections are given by

ρ=C v( ) , (3)z
44 110

T, 2

ρ ρ= − −C v C v( ) ( ) , (4)xy
12 110

L 2
44 110

T, 2

ρ= +C v C2 ( ) . (5)xy
11 110

T, 2
12

The three different elements of
↔
C can immediately be computed from the three different phase

velocities. One has to make sure though that the polarizations of the corresponding eigenmodes
are the same as for the numerical band structure calculations. We have checked this aspect (not
depicted). Furthermore, one needs to make sure that the elastic behavior is described for all
other propagation directions as well. To this end, we compare in figures 2 and 3 the results from
the phonon band structure (blue dots) with those of the effective-medium description (red lines).
Obviously, we obtain excellent overall agreement for all conditions in the long-wavelength

limit. This means that a description of the elastic metamaterial in terms of an elasticity tensor
↔
C

for a cubic-symmetry effective medium is adequate. Having derived all non-zero elements of
the effective metamaterial elasticity tensor, we can now apply established analysis to extract the
Youngʼs modulus E, the shear modulus G, the bulk modulus B [29, 30], and the Poissonʼs ratio
(or Poissonʼs matrix) [31]. We have

=
+ −

+
E

C C C C

C C

2
, (6)11

2
12 11 12

2

11 12

=G C , (7)44

=
+

B
C C2

3
. (8)11 12

Examples are given in table 1.
The Poissonʼs ratio for compression along the principal cubic axes is given by [29, 30]

ν =
+
C

C C
. (9)12

11 12

However, the Poissonʼs ratio might still be different for arbitrary oblique compression
directions. Here, we use the more general expressions as given in [31], which are based on
averaging along the directions normal to the compression direction.

ν ϕ θ = −
+ −

+ +
 
 
r r

r r
( , )

( 2)

16[ (2 )]
. (10)12 44

12 44
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Introducing the compliance tensor =
↔ ↔−
S C

1

, the abbreviations in (10) are given by

=r
S

S
,12

12

11

=r
S

S
,44

44

11

θ θ ϕ θ= + + +⎡⎣ ⎤⎦ 2 53 4 cos (2 ) 7 cos (4 ) 8 cos (4 ) sin ( ) ,4

θ θ ϕ θ= − + + + 11 4 cos (2 ) 7 cos (4 ) 8 cos (4 ) sin ( ),4

θ θ ϕ θ= + + 8 cos ( ) 6 sin ( ) 2 cos (4 ) sin ( ),4 4 4

θ θ ϕ= +⎡⎣ ⎤⎦ 2 sin (2 ) sin ( ) sin (2 ) .2 4 2

Here, as usual, ϕ and θ are the azimuthal and polar angle, respectively, in spherical coordinates.
The resulting direction dependence of the Poissonʼs ratio is visualized in two different ways in
figures 4 and 5. Figure 4 is the generalized polar representation, i.e. the Poissonʼs ratio is
proportional to the length of the vector from the origin to the depicted surface. The Poissonʼs
ratio is also visualized by the false-color scale. For large connections, e.g. for =d a/ 5%, the
behavior is obviously far from isotropic. Furthermore, the effective metamaterial Poissonʼs ratio
is far from −1. For a decreasing connection size d a/ , the effective metamaterial Poissonʼs ratio ν
becomes more negative and reaches an almost isotropic behavior at =d a/ 0.25%. This means
that experiments need to realize values of d a/ below 1% or better. Figure 5 depicts the derived
minimum and maximum values of ν versus d a/ . For the smallest numerically accessible values
of d a/ , the Poissonʼs ratio comes close to−1. The data do not appear to extrapolate to exactly−1
though. We suspect that this aspect is due to the small cubes in our blueprint that we have
introduced for experimental reasons (see above). We expect that the effective metamaterial
Poissonʼs ratio would converge to −1 in the hypothetical limit of no cubes and →d a/ 0, which
cannot be realized experimentally though.
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Table 1. Examples of retrieved effective parameters. The three non-equivalent non-zero
elements of the elasticity tensor C11, C12, =C G44 , the Youngʼs modulus E, and the bulk
modulus B are given for selected values of d a/ .

d a/ (%) C11 (MPa) C12 (MPa) =C G44 (MPa) E (MPa) B (MPa)

5 2.7 0.0051 4.0 2.7 0.89
4 2.4 −0.16 3.8 2.4 0.69
3 2.0 −0.35 3.4 1.9 0.43
1.25 1.3 −0.52 2.1 0.61 0.086
0.75 1.1 −0.51 1.7 0.33 0.042
0.5 1.0 −0.46 1.4 0.20 0.025
0.25 0.85 −0.41 1.1 0.12 0.014
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Figure 4. Three-dimensional polar diagram of the effective metamaterial Poissonʼs ratio
ν, i.e. the length of the vector from the origin to the surface is proportional to the
modulus of the Poissonʼs ratio. The Poissonʼs ratio including its sign is also indicated
by the false-color scale. As the d a/ ratio decreases, ν becomes more negative and more
isotropic, eventually approaching the ultimate limit of −1 for an isotropic elastic
material. These results are derived from the band structures as exemplified in figure 2
and for the other geometrical parameters as in figure 1.



5. Static continuum-mechanics calculations

Often, the Poissonʼs ratio is measured in (quasi-)static experiments. To derive the Poissonʼs
ratio, one compresses along one direction, e.g. the z-direction, leading to a certain strain (or
relative displacement) εzz, observes or calculates the displacement along the orthogonal x-
direction (or the orthogonal y-direction), hence the element of the strain tensor εxx, and computes
the Poissonʼs ratio according to its definition

ν
ε
ε

= − . (11)xx

zz

Furthermore, experiments are based on finite-size samples also containing a finite number of
unit cells only. For metamaterials, the number of unit cells may be rather small. We thus also
investigate the question to what extent are measurement artifacts expected for accessible-sized
samples. The numerical calculations to be presented in this section have been performed with
COMSOL Multiphysics using the Structural Mechanics Module. The geometry of the structure
is created using the CAD COMSOL Kernel. The mesh is created within COMSOL
Multiphysics using the preset parameter values called ‘normal’ meshing with settings:
maximum element size = a0.1 , minimum element size = a0.018 , maximum element growth
rate = 1.5, resolution of curvature = 0.6, resolution of narrow regions = 0.5. For example, for a
connection size of =d a/ 0.5%, this leads to about 90 000 tetrahedral elements. We use the
MUMPS Solver. In convergence tests, we have verified that the derived effective metamaterial
Poissonʼs ratios are accurate to within 0.01. All geometrical parameters and constituent material
parameters are as given above. To mimic a fictitious infinitely extended crystal, we assume that
all unit cells behave the same way (analogous to the zero wave vector in the previous section or
to the Taylor (Voigt) assumption in [32, 33]). For convenience, we choose our frame of
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Figure 5. The minimum and maximum effective metamaterial Poissonʼs ratio (see
figure 4) versus d a/ ratio. The red symbols are the minima and maxima derived from
the phonon band structures, and the blue dots are obtained from static continuum-
mechanics calculations for compression along one of the principal cubic axes.



reference such that the crystal center of mass is fixed. For compression along one principal
cubic axis, these conditions can be implemented by imposing anti-symmetric boundary
conditions (corresponding to periodic conditions allowing for a volume change) onto a single
cubic unit cell. This means that the normal component of the displacement vector on the surface
of the unit cell is constant on this surface and equal to the negative of the normal component on
the opposing surface. To investigate the linear regime, we choose strains along the compression
direction of 1%. The resulting behavior is illustrated in figure 6(a). The length of the (black)
arrows is exaggerated and indicates the local displacement vectors. The false-color scale shows
the modulus of the local displacement vector. Note that the corners of the unit cell move almost
diagonally towards the center. The Poissonʼs ratio can immediately be computed from the
components of these displacement vectors. For example, for =d a/ 0.75% corresponding to our
below experiments, we obtain ν = −0.79. We note in passing that the other points within the
unit cell generally move in different directions than the corners. This has important implications
for our below experiments in that we must not evaluate the movement of all points within the
unit cell, but rather only of the corners (which are representative of the macroscopic
deformation). To have a finite region for imaging and tracking, we have introduced the small
cubes in figure 1. The results of ν versus d a/ are shown in blue in figure 5. Obviously, the
agreement of these (static) values with those derived from the (dynamic) phonon band
structures is good, giving further validity to our results. The most negative dynamic results tend
to be more negative than the static ones. For example, for =d a/ 0.75%, the minimum dynamic
value is ν = −0.895, the static one ν = −0.79. Static calculations have also been performed for
a finite metamaterial sample containing × ×2 2 2 unit cells (see figure 1) as shown in
figure 6(b), to directly compare these with the experiments. Here, we assume sliding boundary
conditions in the plane normal to the compression direction. Good agreement together with the
calculations for the infinite crystals as above will allow us to extract Poissonʼs ratios under these
conditions. Figure 6(b) is an example for a finite crystal composed of × ×2 2 2 unit cells. To
compare with the experiments to be discussed below, one can measure the lateral strain of the
left and right outer corners in the middle of the horizontal direction (see small circles) and
divide these by the relative axial shift of the stamps. We obtain a Poissonʼs ratio for the finite
crystal of −0.76, which is not too far from the one for the fictitious infinitely extended crystal of
ν = −0.79 in panel (a) of the same figure. These parameters have been chosen to match those of
the experiments to be discussed next.

6. Macroscopic dilational metamaterials

We fabricated macroscopic (this section) and microscopic (next section) versions of the
blueprint shown in figure 1. The macroscopic samples were fabricated with the Objet30 printer
sold by Objet (now Stratasys), USA. For the metamaterial, we used the basic polymer ink
‘FullCure850 VeroGray’. During the fabrication, however, one also needs a support material.
The default is a mixture of ‘FullCure850 VeroGray’ and ‘FullCure705 Support’ that we were
not able to remove from the composite. Thus, we exclusively chose ‘FullCure705 Support’,
which can be etched out in a bath of NaOH base after hand cleaning. The structure files are
exported in STL file format directly from the geometry used in the COMSOL Multiphysics
calculations and are imported into the Objet printer. The printing is done automatically using a
standard process. An example of a fabricated macroscopic metamaterial structure is shown in
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figure 7(a). The geometrical parameters are as defined in figure 1 with =d a/ 0.75% and
=a 4.8 cm. According to previous measurements [34], the constituent polymer has a Youngʼs

modulus in the range of E = 0.7–2 GPa. The measurement setup for the macroscopic samples
consists of two metallic stamps and a linear stage containing a force cell. The sliding boundary
conditions (see previous section) are achieved by placing the watered sample between the
stamps. We attempted to implement fixed boundary conditions by gluing the sample to the
stamp using double-sided tape. This led to the same lateral displacements of the sample,
indicating very strong forces parallel to the stamps, which suggests that assuming sliding
boundary conditions is adequate. We gradually compressed the sample by moving one stamp
with a linear stage while fixing the other stamp, and recorded the images of one of the sample
surfaces. These images were taken with a Canon EOS 550D camera in full HD (1920 × 1080
pixels) resolution and at 24 frames per second. The objective lens (Tamron SP 70–300 mm f/4-
5,6 Di VC USD) is located at a distance of approximately1.5 m to the sample. We checked that
the image distortions (e.g. barrel-type aberrations) were sufficiently small to not influence our
experiments. The displacements of the corners of the unit cells were tracked using an
autocorrelation approach used previously [10]. Multiple measurements with increasing
maximum strain for a crystal composed of × ×2 2 2 unit cells (see figure 7(a)) are depicted
in figure 7(b). The graph shows the strain along the horizontal direction (x) versus the strain
along the axial compression direction (z). The solid red curve corresponds to two measurement
cycles, i.e. the sample is compressed, released and compressed and released again. Clearly, the
four parts are hardly distinguishable, indicating an almost reversible elastic behavior. From fits
with straight lines (see green dots) we deduce a Poissonʼs ratio of − ±0.76 0.02. The
corresponding numerically calculated strains for a finite sample with × ×2 2 2 unit cells are
shown as black dots. Using the identical structure parameters but assuming an infinite crystal
(see previous section), we get a Poissonʼs ratio of ν = −0.79. We note in passing that we have
simultaneously measured the axial force from a load cell (not depicted). For =d a/ 0.75%, we
obtain a metamaterial Youngʼs modulus of =E 0.16 MPa. For the same d a/ value, we obtained
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Figure 6. (a) × ×2 2 2 unit cells (compare figure 1) out of an infinite crystal
compressed along the z-direction. The resulting in-plane strain for an axial strain of 0.01
is depicted by the false-color scale projected onto the front surface of the cube as well as
by the black arrows. (b) The same, but for a finite crystal with × ×2 2 2 unit cells.



=E 0.33 MPa from the theory (see table 1). Given the significant error in the constituent
polymer Youngʼs modulus quoted above, these values are roughly consistent.

7. Microscopic dilational metamaterials

The structures shown in the preceding section have validated our theoretical blueprint of a
three-dimensional dilational metamaterial, but they hardly qualify as a ‘material’ in the normal
sense. Thus, it is interesting to ask whether corresponding structures with lattice constants a that
are two to three orders of magnitude smaller are in reach. Also, it would be highly desirable to
obtain structures containing a larger total number of unit cells. We have thus also fabricated
microscopic structures based on the same blueprint (without the small blocks for tracking). To
fabricate such microscopic dilational metamaterial samples, photoresist samples are prepared by
drop-casting the commercially available negative-tone photoresist ‘IP-Dip’ (Nanoscribe GmbH,
Germany) on diced silicon wafers ( ×22 22 mm). We used the commercial DLW system
Photonic Professional GT (Nanoscribe GmbH, Germany). In this instrument, the liquid
photoresist is polymerized via two-photon absorption using a 40 MHz frequency-doubled
Erbium fiber laser with a pulse duration of 90 fs. To avoid depth-dependent aberrations, the
objective lens (with numerical aperture =NA 1.3 or =NA 0.8, Carl Zeiss) is directly dipped
into the resist. The laser focus is scanned using a set of pivoted galvo mirrors. Structural data
are again created in STL file format using the open-source software Blender and COMSOL
Multiphysics. Due to the demanding critical distances of the mechanical metamaterials, the scan
raster is set to 200 nm (400 nm) laterally and 300 nm (800 nm) axially for the =NA 1.3
( =NA 0.8) objective lens. Each individual layer is scanned in the so-called skywriting mode,
i.e. while the laser focus is scanned continuously, the laser power is switched between 0 mW
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Figure 7. (a) Photograph of a macroscopic polymer-based finite crystal with × ×2 2 2
unit cells fabricated by 3D printing, following the blueprint and the parameters given in
figure 1(b). The measured lateral versus axial strain (solid red curve) is obtained from an
image correlation approach upon compression along the vertical z-direction. The green
circles on the straight lines correspond to a Poissonʼs ratio of −0.76 and −0.77,
respectively, and the black circles to numerical calculations for =d a/ 0.75%.
Extrapolation to an infinite three-dimensional crystal (see previous section) delivers a
Poissonʼs ratio of ν = −0.79.
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Figure 8. Gallery of polymer dilational metamaterial microstructures with different
sizes and aspect ratios, following the blueprint illustrated in figure 1 (without the small
cubic tracking markers), all fabricated by 3D dip-in direct laser writing. (a)
Photograph of a structure with × ×3 3 9 unit cells (and a smaller one on the right-
hand side), μ=a 180 m. (b) Electron micrograph of two microstructure samples with
overall aspect ratios of 1:1 and 2:1, respectively, μ=a 35 m. (c) Magnified view onto
one unit cell of the structure, revealing details within the unit cell (compare figure 1),
a = 35 μm.



(no exposure) and about 13 mW or higher (exposure) to build up the fine features of the
metamaterial. The writing speed is set to −20 mm s 1. After DLW of the preprogrammed pattern,
the exposed sample is developed for 20 min in isopropanol and acetone. The process is finished
in a supercritical point dryer to avoid capillary forces during drying.

Optical and electron micrographs of different samples are depicted in figure 8. The sample
in panel (a) has overall dimensions of × ×0.54 0.54 1.62 mm ( × ×3 3 9 unit cells), yet, at the
same time, minimum feature sizes in the sub-micron range. However, due to the smaller lattice
constants, it is not possible to resolve the details within the unit cell to track the positions of the
small marker cubes for measuring the Poissonʼs ratio, as performed for the macroscopic
samples.

8. Conclusion

We have designed, fabricated and characterized a three-dimensional microstructure based on a
simple-cubic translational lattice that effectively acts as an auxetic, converging for small
internal connections →d a/ 0 to the ultimate limit of an isotropic three-dimensional dilational
metamaterial of ν = −1. Our experiments approach this limit. Interestingly, the Poissonʼs ratio
becomes isotropic in the limit →d a/ 0, whereas the acoustic phase velocity and other elastic
properties remain anisotropic. If fabricated in larger volumes and composed of different
constituent materials, such dilational metamaterials might find applications in terms of shock
absorbers. In our treatment, we have derived all the elements of the effective metamaterial
elasticity tensor and hence all elastic parameters by comparing the phonon band structure in the
long-wavelength limit with the continuum mechanics of the homogeneous media. This
parameter retrieval could be of interest for other cubic-symmetry elastic metamaterials beyond
the specific example discussed here.
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