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Chapter 1

Introduction

Climate change, resource scarcity as well as public and political opinion neces-
sitate changes to the current energy system. Ambitious political goals to reduce
carbon emissions are omnipresent. The Kyoto Protocol to the United Nations
Framework Convention on Climate Change (UNFCCC) is the largest inter-
national treaty on the reduction of greenhouse gas (GHG) emissions (United
Nations, 1998). The second commitment period of the Kyoto Protocol aims at
reducing GHG emissions against 1990 levels by at least 18% until 2020 (United
Nations, 2012).1 Besides the reduction of carbon emissions, many countries
reinforce the restructuring of the energy system to limit dependency on fossil
fuel imports (e.g., oil, natural gas) or avoid possibly hazardous technologies
(e.g., nuclear). Some examples in addition to Kyoto targets are Japans’s aim
to cut 10% of electricity consumption by 2030, China’s target to reduce energy
intensity by 16% until 2015 and the new fuel economy standards in the United
States (IEA, 2012b).

The power sector globally accounts for a large share of the total primary en-
ergy consumption and carbon emissions. In the United States, the electric power
sector accounts for approximately 40% of total primary energy consumption
(US Energy Information Administration, 2012)2 and 33% of total greenhouse gas
emissions (US Environmental Protection Agency, 2013). In the European Union,
the energy used by power producers accounts for approximately one third of
gross inland consumption.3 Figure 1.1 depicts the primary sources of energy
and distribution to different sectors in the EU-27. The electric power system is
a crucial starting point in achieving the targets and ensuring reliable electricity
supply at the same time.

1Many countries with binding targets in the Kyoto Protocol are members of the European
Union which is reflected in the EU Roadmap 2050 targets of reducing carbon emissions below
1990 levels by 20% until 2020 and 80–95% until 2050 (European Commission, 2011).

2This figure actually represents developed countries. According to IEA (2012a), electricity ac-
counts for approximately 18% of total energy consumption.

3For more details on assumptions, see http://epp.eurostat.ec.europa.eu/statistics_

explained/index.php/Consumption_of_energy#Further_Eurostat_information.

http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Consumption_of_energy#Further_Eurostat_information
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Consumption_of_energy#Further_Eurostat_information
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Gross inland consumption, by fuel

Total: 1,759 Mtoe

Oil (617)

Gas (442)

Nuclear (237)

Hard coal (190)

Lignite (90)

RES (172)

Final energy consumption, by sector

Total: 1,759 Mtoe

Energy used by power
producers (34.4%)

Transport (20.8%)

Residential (17.4%)

Industry (16.6%)

Services (8.6%)

Other (2.1%)

Figure 1.1: EU-27 gross inland consumption by fuel and final energy consumption by
sector 2010 in Mtoe (Data source: Eurostat, 2012)4

A prominent example of the power system paradigm change is the En-
ergiewende (energy transition) in Germany. The German government has set a goal
to reduce greenhouse gas emissions by 80–95% in comparison to 1990 levels by
2050 (BMWi and BMU, 2010), with a set nuclear phase-out by 2022 (German Fed-
eral Government, 2011). Being a densely populated, industrialized country with
limited potentials for generating electricity from continuously available renew-
able energy sources (e.g., hydro) in comparison to countries like Norway5, this
is an ambitious goal for Germany. Consequently, Germany serves as an inter-
national role model and is closely observed and discussed internationally (The
Economist, 2012).

1.1 Power Grid Investment and Operation

Globally, the transition and development of power systems lead to considerable
investments with power grids accounting for a large share of these expenditures.
The International Energy Agency (IEA) estimates total global infrastructure in-
vestments of $17 trillion needed in the power sector from 2011-2035 (IEA, 2011b).
A share of 58% is due to new power plants, 31% to distribution and 11% to trans-
mission infrastructure. Recent calculations of infrastructure investments are in

4One Million tons of oil equivalent (Mtoe) is equal to 11.63 TWh. Missing values to 100% are
served by other fuels.

5In Norway hydro accounts for 94.7% of total domestic electricity generation (IEA, 2012a).
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the same range and show that the power sector accounts for a large share of
total infrastructure investments globally (Figure 1.2). In Germany, major invest-
ments in grid capacity and new technologies are identified as crucial building
blocks for the integration of renewable energy sources, with cost drivers in the
distribution as well as in the transmission grid (BNetzA, 2012).

In the context of these investments, the overall goal should be to meet fu-
ture requirements with an efficient set of measures. Therefore, many parties in
the power system are involved and need to be coordinated to achieve efficient
capacity management. A grid operator faces the fundamental choice between
capacity utilization and capacity provision under uncertainty:

• Infrastructure investments — build additional power grid capacity effi-
ciently

• System operations — use existing infrastructure capacity efficiently

In the long-run, regulatory conditions need to establish incentives for differ-
ent actors to incorporate the grid infrastructure cost into their decisions. In the
short-term, Transmission System Operators (TSOs) and Distribution System Op-
erators (DSOs) can apply coordination measures to fulfill their responsibility of
maintaining a balanced power grid and making the most out of infrastructure
capacity. These targets get even more important in the light of increasing pene-
tration of intermittent renewable energy sources (RES), which have less or even
equal to zero marginal production cost and hence increase the relative weight of
capacity investment costs.

Total

External
estimates

57

0.7Ports

2.0Airports

4.5Rail

9.5Telecom

11.7Water

12.2Power

16.6Roads

Figure 1.2: Estimated global infrastructure investments by sector required between
2013–2030 in $ trillion (Data source: McKinsey Global Institute, 2013)
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1.2 Challenges in Power System Transformation

Today, power systems are developing from central, large and constant gener-
ation bases with unidirectional distribution function into more decentralized,
intermittent, and bidirectional systems. Until recently, an integrated monopolist
internalized all relevant factors and rolled out the centrally planned infrastruc-
ture, in typical power systems. This central planning approach is based on his-
torical experience and a controllable supply side that served the predictable and
inflexible demand side.
However, major changes are currently in progress in power systems. Most no-
table is the steadily increasing amount of installed capacity of RES. In contrast to
the past, where supply followed demand, electricity demand will increasingly
have to match intermittent supply from RES. A large share of this capacity is in-
stalled remotely from past fossil-fuel based generators and load centers resulting
in new power flow patterns. In addition, power sectors are to a greater extent
liberalized and unbundled, which has led to an increased number of actors and
stakeholders. The privatization and restructuring began in the UK and Chile
in the late 1980s and during the 1990s in many other countries (Sioshansi and
Pfaffenberger, 2006). The split into different entities in generation, transmission,
distribution, and consumption provides a variety of options which influence the
development of the power sector by adapting regulations or introducing new
business models (Cossent et al., 2009). Established markets which serve as auto-
mated balancing mechanisms observe the effects of RES:

“A rising share of wind and solar-generated power during the peakload pe-
riod could be observed in 2012. As a consequence, the peakload power price
frequently fell below the baseload price - the opposite of what usually hap-
pens.” European Commission (2012)

From a grid perspective, the large investments, long planning and project re-
alization phases stand in sharp contrast to the new demanded flexibility. Vari-
ous simple, infrastructure-based solutions are able to meet the flexibility require-
ments. For example, massive distributed storage could be rolled out to balance
all supply and demand mismatches at all locations. Alternatively, the grid could
be reinforced such that there is sufficient grid capacity, independent of the spa-
tiotemporal distribution of supply and demand. Another option is siting de-
mand near generation centers or supply near load centers. In special settings,
these solutions are discussed: The straightforward solution of using storage is
currently used in smart micro grids in remote areas (e.g., the sustainable island
La Graciosa6). Huge investments into grid capacity are in focus of large inter-
regional transmission projects, e.g., HVDC7 lines in Europe for large distance

6http://www.endesasmartgrids.com/index.php/en/la-graciosa-en
7High-voltage direct current

http://www.endesasmartgrids.com/index.php/en/la-graciosa-en
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balancing of RES. These investments need economic justification to ensure a se-
lection of most beneficial investments. In addition, all investments need a fair
balancing against other measures aiming to use infrastructure more efficiently.

1.3 Opportunities for Efficient Use and Development
of Power Grids

The utilization of power grid infrastructure results from the spatial distribution
of dynamic supply and demand. Consequently, for an efficient use of the grid,
all actors that can influence supply, demand, or grid capacity need to be aligned.
The incentives that influence the behavior depend on the regulatory design of
the power system.

1.3.1 Efficient Use of Capacity

A complementary approach to new investments in grid capacity is flexibility in
supply and demand with the purpose of using given resources more efficiently.
Within a smart power grid, real-time information from sensors and distributed
intelligence can recognize the current conditions and determine appropriate re-
sponses (Ramchurn et al., 2012). This information as well as intelligent control
and incentive mechanisms to shape supply and demand can be used to achieve
better grid utilization and thus limiting investment requirements. There are var-
ious alternative approaches to coordinate grid capacity, storage, demand, gen-
eration, and other influencing factors. An example is demand response (DR)
with the objective of using flexible loads to match intermittent renewable sup-
ply (Albadi and El-Saadany, 2008). To mobilize the potential of approaches that
foster efficient operation, further changes in the regulatory environment have to
be considered. In addition, analysis of real-time data and new technologies (e.g.,
intelligent substations, smart meters) help to ensure an efficient smart power
grid. The question whether benefits of these technologies outweigh their costs
is subject of current discussions and analyses (Electric Power Research Institute,
2011). However, the sum of benefits should be considered (Faruqui et al., 2010),
and with aging assets the scheduled replacement cycle might be used to speed
up the roll-out of smart-grid infrastructure (Joskow, 2012).

1.3.2 Efficient Investment Planning

The central investment incentive for grid operators (TSOs or DSOs) is the re-
muneration scheme. Depending on the prevailing electricity market design and
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competition details, grid operators may or may not have incentives for pursuing
efficient investment choices (Ehrenmann and Neuhoff, 2009).

However, even with the right incentives for grid operators, investments can
still be inefficient due to other actors in the power system. An important influ-
encing factor is the future development of demand and generation. Depending
on the location and the fluctuations over time, these may be beneficial for the
utilization of infrastructure or may lead to additional investment needs. In the
long-run, the incentives to efficiently locate demand and supply may play a ma-
jor role. In addition, grid planning needs to consider opportunities provided by
new technologies, actors, energy services and business models. Enabling the ef-
ficient use of capacity provides ample opportunities to reduce the need for grid
investments.

1.4 Structure of the Thesis

The goal of this thesis is to develop and evaluate different coordination ap-
proaches and incentive systems for efficient operation and investment in grid
capacity. Using various research methodologies, these approaches are analyzed
both on transmission and distribution grid levels.

The first challenge of efficient operation with given grid resources is addressed
by short-term coordination mechanisms for flexible loads that mitigate grid con-
gestion and local infrastructure overloads while at the same time fostering the
use of low-cost or renewable generation. The evaluation is mainly based on
calculations and simulations on different grid levels, predominantly using real
data.

The second challenge concerns the incentives of different actors to pursue
investments that are beneficial for power grids. For this purpose, different
regulatory regimes and their influence on incentives to consider grid capacity
costs in investment decisions are examined. The analysis is based on micro-
economic models of power systems including generators, system operators, and
consumers. Within this model, the influence of regulatory regimes for grid cost
allocation on competition and investment behavior is analyzed. Both research
streams mainly focus on data sources and regulatory regimes in the German or
Swiss electricity market. Where appropriate, these examples are complemented
by different designs and regulations from other international experiences. The
following paragraphs provide a quick overview of the topics covered in each
chapter of this thesis. A graphical overview of its sections is depicted in Figure
1.3.

Chapter 2 summarizes the basic concepts of the power sector, ranging from
the involved actors and the current state of liberalization to the physical laws
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Chapter 1: Introduction

Chapter 2: Electric Power System Fundamentals

Chapter 3: Pricing and Coordination in Power Systems

Chapter 4: Local Load Coordination

4.1 Alternatives for Local Load Coordina-
tion

4.2 Electric Vehicle Charging as Flexible
Load

4.3 Evaluation of Local Load Coordination

4.4 Swiss Grid Planning Impact Case
Study

4.5 Conclusion of Local Load Coordination

Chapter 5: Transmission Grid Cost Alloca-
tion and Investment

5.1 Transmission Pricing and Cost Alloca-
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- A Microeconomic Analysis

5.3 Grid and Energy Pricing with Preexist-
ing Investments

5.4 Grid Cost Allocation and Investment

5.5 Conclusion of Transmission Pricing
and Cost Allocation

Chapter 6: Conclusion

Figure 1.3: Structure of the thesis

and challenges of the grid. Serving as the foundation for the subsequent
chapters, it highlights the special features that differentiate the power sector
from other network industries.

Chapter 3 recapitulates on the state-of-the-art of pricing and incentives. It
discusses opportunities to resolve challenges in the power system as well as
acceptance issues and presents the current progress of implementation.

The main focus of Chapter 4 is local load coordination approaches. EV charg-
ing loads are used as an exemplary flexible load to analyze the potential of dif-
ferent incentive schemes to mitigate overloads. Chapter 4 mainly addresses the
following research questions:

• What is the influence of different load coordination mechanisms (e.g.,
load-based, supply-based) and flexible loads (e.g., EV charging) on
load profiles?

• What is the potential of different load coordination alternatives to
support efficient grid utilization?
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Investment incentives for generators and grid cost allocation under different
regulatory regimes are covered in Chapter 5. Motivated by diverse regulatory
solutions in different countries, micro-economic models are used to explore the
effects on different stakeholders and the power system development. Chapter 5
specifically addresses the following research questions:

• What is the influence of different cost allocation options (e.g., genera-
tion or load) on welfare?

• Which allocation of transmission and generation assets results under
different regulatory regimes?

Chapter 6 presents a short synthesis of the research outcomes. In addition, it
discusses the implications and provides an outlook on open research questions
and possible extensions.

1.5 Research Path

The content of this thesis is based on research outcomes of several years.
Some parts of this thesis were previously covered and published in journals,
conference proceedings, or working papers. This section lays out which articles
contain parts of this thesis and how the ideas, research questions, methods, and
data relate to each other.

Publications that predominantly concern the potential of flexible demand as
well as the interrelation to grid utilization and distribution network expansion:

• Schuller, A., J. P. Ilg, and C. van Dinther (2012). Benchmarking Electric Vehicle
Charging Control Strategies. In Proceedings of the IEEE PES Innovative Smart
Grid Technologies (ISGT), pp. 1–8
This paper evaluates the potential of flexible EV charging loads to increase
wind energy consumption based on a simulation using German data. It
demonstrates the potential of flexible loads for the integration of renewable
energy sources without considering grid constraints.

• Flath, C. M., S. Gottwalt, and J. P. Ilg (2012). A Revenue Management Approach
for Efficient Electric Vehicle Charging Coordination. In Proceedings of the 45th
Annual Hawaii International Conference on System Sciences (HICSS), pp. 1888
– 1896
A revenue management approach for EV charging demonstrates how a
simple coordination mechanism can efficiently allocate limited charging
capacity to consumers with different willingness to pay. The paper is based
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on a formal model of demand and supply and in a simple numerical ex-
ample applies the approach to a fictitious neighborhood with limited grid
capacity.

• Basse, H., F. Salah, and J. Ilg (2012). Nutzung von Demand-Side-Management
für Leistungsausgleich und Netzausbauvermeidung: ein komplexer Spagat (Teil
1). EW-das Magazin für die Energie Wirtschaft 22, 48–51
This article explores the trade-offs between demand-side management in-
centives for fostering the consumption of RES and reducing grid utilization
from an industry perspective. In addition, it explains the main thoughts
and ideas of the EV charging simulation in the Swiss grid planning case
study from Section 4.4.

• Ilg, J. P., H. Lange, and C. M. Flath (2013). Reduction of Congestion in Power
Grids. Working paper
This working paper focuses on congestions in power grids. It explains and
discusses alternative actions for each actor to resolve a congested situation
in power grids.

Publications that deal with different coordination mechanisms for EV charg-
ing, especially the influence of EV charging on local grid infrastructure and local
infrastructure pricing to avoid overloads:

• Flath, C. M., J. P. Ilg, and C. Weinhardt (2012). Decision Support for Electric Ve-
hicle Charging. In Proceedings of the 18th Americas Conference on Information
Systems (AMCIS)
The paper develops a more detailed model of flexible EV charging demand
in the form of different charging strategies based on real mobility data.
With these strategies it is possible to model different levels of information
availability (e.g., price forecasts) or risk propensity (e.g., minimum range).
This is valuable for more realistic models and provides a basis for the re-
sulting charging load simulations.

• Salah, F., J. P. Ilg, C. M. Flath, H. Basse, and C. van Dinther (2013). Impact of
Electric Vehicles in High-Voltage Grids: A Swiss Case Study. Working Paper
The potential impact of EV charging on the power grid and grid planning
are presented in this working paper based on Swiss load, grid, and mo-
bility data. In cooperation with BKW FMB Energy Ltd. (BKW) the pa-
per investigates the impact of flexible EV loads on high-voltage substation
transformers in 2040, given different scenarios.

• Flath, C. M., J. P. Ilg, S. Gottwalt, H. Schmeck, and C. Weinhardt (2013). Improv-
ing Electric Vehicle Charging Coordination Through Area Pricing. Transportation
Science (available online), 1–16
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The main results on local area pricing for EV charging are published in this
article. It employs the EV charging strategies to evaluate a local infrastruc-
ture coordination mechanism in a single transformer setting. The mech-
anism combines generation price-based and local utilization-based incen-
tives to foster the use of RES and at the same time adhere to infrastructural
constraints.

• Ilg, J. P., C. M. Flath, F. Salah, and H. Basse (2013). Electric Vehicle Charging
Coordination and Local Power Grid Utilization. Working paper and
Salah, F., H. Basse, and J. Ilg (2012). Auswirkungen der Elektromobilität auf die
Auslastung von Stromnetzen an einem Schweizer Fallbeispiel. In VDE-Kongress
2012, Stuttgart, Germany. VDE VERLAG GmbH
Based on the potential grid impact of EV charging (Salah et al., 2013),
different coordination mechanisms are evaluated in these articles —
including the area pricing mechanism presented in Flath et al. (2013).

Publications dealing with transmission pricing, cost allocation of infrastruc-
ture, and efficient investment incentives:

• Ilg, J. P., C. M. Flath, and J. Krämer (2012). A Note on the Economics of Metered
Grid Pricing. In Proceedings of the 9th International Conference on the European
Energy Market (EEM), pp. 1–6
Different cost allocation methods influence competition outcomes and wel-
fare distribution between generation and demand. This paper analyzes the
welfare distribution in the case of preexisting investments based on a two-
node model.

• Ilg, J.; Flath, C.; Krämer, J. (2013) Investment and Grid Cost Allocation. Working
Paper.
Investors factor the regulatory design into their decisions on new invest-
ments in generation and transmission capacity. Based on different regula-
tory regimes on grid cost allocation, the implications on investment behav-
ior are analyzed and discussed in this paper.

Some paragraphs and sections in this thesis are previous versions, extensions,
or direct reproductions of own publications or working papers. In addition to
this provided list, their use is mentioned explicitly at the end of the introductory
paragraphs of each chapter.
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Electric Power System Fundamentals

Similar to other industries, the power sector has a life cycle or value chain for
its core product electric power: generation, transmission, distribution, and con-
sumption. Generators that produce electricity, grid operators on different levels
that transport and distribute electricity, and consumers who employ electric en-
ergy in various applications. Interaction between these core functions depends
on the level of vertical integration of different functions and therefore the reg-
ulatory design. Nowadays, the interaction also involves wholesale markets as
well as sales and distribution functions which are not examined in detail in this
thesis. The major difference of the power sector in comparison to many other
industries is that electric energy is not easily storable1 and the delivery time is
nearly instantaneous (Stoft, 2002). Therefore, power supply has to equal system
load at any time. If not, the system frequency will either decrease in case of ex-
cess demand or increase in case of excess supply. In essence, this leads to a much
closer coupling of all actors in the power sector than in other industries. Besides
non-storability, electricity has additional special characteristics that influence the
structure, operation, and development of the power sector (e.g., Erdmann and
Zweifel, 2008):

• Usable for many services

• Not easily substitutable

• Technically homogenous, economically heterogeneous

• Variety of generation technologies with different costs

• Variety of transformation options into other energy forms (e.g., chemical,
thermal, mechanical)

• Grid-bound transportation

1Electric energy can be transformed and stored in other forms with losses.
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This chapter provides an overview on the current state and the development
of the power sector. It introduces the main actors, the high-level regulatory de-
velopment and how the actors interact to achieve a stable and secure electricity
system as it exists in developed countries. The intention is not to cover all de-
tails of the electric power system but rather provide the basis for the research
covered in this thesis. It is to support the understanding of the history of the
power sector, its rough functionality as well as recent developments influenc-
ing the actors. The German power sector serves as a practical example for an
industrialized country which is particularly challenged due to the Energiewende.

At some points own existing publications are used in this chapter. In detail,
some paragraphs in Section 2.5 are based on Flath et al. (2013).

2.1 Regulation

Power system regulation by itself is a huge topic for research and discussion due
to the large variety in regulatory approaches globally. The seminal work of Kahn
(1988), The Economics of Regulation, provides a deeper understanding of the core
principles in regulation. This section provides a high-level description of some
regulatory notions relevant for this thesis. Therefore, the main focus is on the
German electricity market regulation. If a more detailed inspection is necessary,
the paragraphs are mentioned and discussed in the respective chapter.

2.1.1 Electricity Market Restructuring

The term deregulation is often used in connection with these restructuring devel-
opments. In fact, as noted by Vogel (1996), the introduction of competition in the
electricity sector does not lead to less regulation — according to Hogan (2002),
restructuring is the better term. A synonym for restructuring is the liberalization
of the markets used by the European Union (Sioshansi, 2006).

In the past, a state-owned regulated and integrated monopolist typically per-
formed all functions including generation, transmission, and distribution as
well as retailing of electricity. Due to assumed inefficiencies, electricity markets
started to be deregulated or liberalized globally since the 1980s. Sioshansi (2006)
provides a list of countries, including a short description of the main liberaliza-
tion highlights. The main target across different countries was to create com-
petition in order to achieve more efficient investment and operation for lower
end-consumer prices and better service levels. Depending on the approach, re-
structuring comprises several of the main actions:2

2This list is not exhaustive, but merely a compilation of typical actions. Jamasb et al. (2005) and
Joskow (2008) provide similar lists.
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• Privatization of state-owned utilities

• Vertical separation of electricity supply functions (Unbundling)3

• Introduction of competition, e.g., in generation and/or retailing4

• Establishment of an independent regulator

• Launch of a wholesale market

Joskow (2008) provides a more detailed description of actions and their im-
plementation in different electricity markets. An overview of early regulatory
development and structural changes in the US power sector is given in Joskow
et al. (1989).

The German electricity market restructuring is mainly driven by EU regula-
tion. Beginning with the first electricity market directive 96/92/EC, the Eu-
ropean Union started to liberalize national electricity markets in the 1990s. In
addition, the European Commission aimed to improve cross-border transmis-
sion capacity and rules to facilitate electricity trades in order to create a single
European market (Jamasb et al., 2005). The second energy package focused on
the remaining “main obstacles in arriving at a fully operational and competitive
internal market [and] relate[d] amongst other things to issues of access to the
network, tarification issues and different degrees of market opening between
Member States” (Directive 2003/54/EC).5 The third energy package tackles the
challenge that “nondiscriminatory network access and an equally effective level
of regulatory supervision in each Member State do not yet exist” (Directive
2009/72/EC).6 In particular, it focuses on the facilitation of cross-border trading
through the expansion of interconnections and common rules. Major parts of the
EU goals for electricity market reform have been implemented by the member
states. However, the internal European energy market is currently not on track
for the planned implementation deadline.7 In Germany, nearly all these EU en-
ergy directives have been fully implemented.8 In 1998, the first EU electricity
market directive was transposed into national legislation with the amended En-

3Vayrying degrees of unbundling are discussed in Friedrichsen (2012) as well as Erdmann and
Zweifel (2008).

4Transmission and distribution grids are still monopolies, since it is economically inefficient to
duplicate grid infrastructure (Stoft, 2002).

5http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:176:0037:0037:

EN:PDF
6http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:211:0055:0093:

EN:PDF
7http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52012DC0663:EN:NOT
8http://ec.europa.eu/energy/gas_electricity/doc/de_energy_market_2011_en.pdf

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:176:0037:0037:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:176:0037:0037:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:211:0055:0093:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:211:0055:0093:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52012DC0663:EN:NOT
http://ec.europa.eu/energy/gas_electricity/doc/de_energy_market_2011_en.pdf
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ergiewirtschaftsgesetz (EnWG — Energy Industry Act).9 This included account-
ing unbundling as well as non-discriminating network access for retail elec-
tricity suppliers which led to retail competition. In 2005, the Bundesnetzagentur
(BNetzA — Federal Network Agency) took on responsibility as a regulator in the
energy sector with the commencement of the Energiewirtschaftsgesetz (EnWG
— Energy Industry Act). This was accompanied by the switch from negotiated
third-party access to regulated third-party access. With the changes since then,
further unbundling of the grid activities on transmission and distribution level
were put into force in national law. In summary, Germany has basically imple-
mented all main actions of electricity market restructuring.

2.1.2 Other Major Regulatory Influences

The liberalization, which directly changes the structure of the electricity sector,
is only one sort of regulatory influence. Other regulatory decisions influencing
the environment, behavior and development in this industry are briefly outlined
in the following paragraphs.

The support for renewables through quotas or subsidies are one example of
regulatory influences (Haas et al., 2008). In 2012, at least 109 countries supported
RES by legislation and 118 countries had renewable energy targets in place (Re-
newable Energy Policy Network, 2012). Feed-in tariffs are implemented in more
than 60 different countries with various detailed designs (Couture and Gagnon,
2010). The most prominent example is the support for RES through subsidies
and feed-in tariffs in the German Renewable Energy Act (Erneuerbare-Energien-
Gesetz — EEG), which led to a share of 31.7% of global photovoltaic capacity
installed in a country with limited potential from solar power (Massoon et al.,
2013). The feed-in tariffs succeeded in substantially increasing the RES capacity
in Germany. As a response, feed-in tariffs for solar PV have been recently re-
duced10 and new regulation enforces retrofitting of solar PV installations with
control equipment in order to ensure system stability (Systemstabilitätsverord-
nung — SysStabV). The support led to increases in capacity of other renewable
energy sources as well, however, not in the same order of magnitude (see next
section).

A parallel regulatory activity is the European Union Emission Trading System

9http://www.bundesnetzagentur.de/cln_1932/EN/Areas/Energy/Companies/

GeneralInformationOnEnergyRegulation/HistoryOfLiberalisation/

historyofliberalisation_node.html
10See press release of the Federal Network Agency from April 30, 2013: http:

//www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Allgemeines/Presse/

Pressemitteilungen/2013/130430_EinspVerguetg_PV_Anl_pdf.pdf;jsessionid=

40E1FE78C89CBB121C7C53D5BF8E7AA3?__blob=publicationFile&v=2

http://www.bundesnetzagentur.de/cln_1932/EN/Areas/Energy/Companies/GeneralInformationOnEnergyRegulation/HistoryOfLiberalisation/historyofliberalisation_node.html
http://www.bundesnetzagentur.de/cln_1932/EN/Areas/Energy/Companies/GeneralInformationOnEnergyRegulation/HistoryOfLiberalisation/historyofliberalisation_node.html
http://www.bundesnetzagentur.de/cln_1932/EN/Areas/Energy/Companies/GeneralInformationOnEnergyRegulation/HistoryOfLiberalisation/historyofliberalisation_node.html
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Allgemeines/Presse/Pressemitteilungen/2013/130430_EinspVerguetg_PV_Anl_pdf.pdf;jsessionid=40E1FE78C89CBB121C7C53D5BF8E7AA3?__blob=publicationFile&v=2
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Allgemeines/Presse/Pressemitteilungen/2013/130430_EinspVerguetg_PV_Anl_pdf.pdf;jsessionid=40E1FE78C89CBB121C7C53D5BF8E7AA3?__blob=publicationFile&v=2
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Allgemeines/Presse/Pressemitteilungen/2013/130430_EinspVerguetg_PV_Anl_pdf.pdf;jsessionid=40E1FE78C89CBB121C7C53D5BF8E7AA3?__blob=publicationFile&v=2
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Allgemeines/Presse/Pressemitteilungen/2013/130430_EinspVerguetg_PV_Anl_pdf.pdf;jsessionid=40E1FE78C89CBB121C7C53D5BF8E7AA3?__blob=publicationFile&v=2
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(EU ETS), which favors energy sources with low greenhouse gas emissions. The
European Commission (2009) describes details on the mechanisms and realiza-
tion. Another development in regulation is the nuclear phase-out decisions (e.g.,
Germany and Switzerland). Whereas the current strategies of other countries are
directly opposed to this decision (e.g., France and Great Britain).
Other regulations and subsidies for green technologies are being implemented
or currently discussed, with the magnitude of influence is still to be seen. This
includes, amongst others, technology regulation (e.g., consumption efficiency
for home appliances), tariff regulation (e.g., grid charge reduction for curtailable
loads), exemptions from fees and levies (e.g., large consumers), or tax reductions
(e.g., Hybrid or Battery EVs), .

2.2 Generation

Generators represent the supply side in the power system, producing the com-
modity electricity in power generation plants. This section describes generation
characteristics and development with focus on Germany.

2.2.1 Structure

Based on resource availability and historical development, various generation
technologies are employed to generate electric energy, leading to fundamen-
tally differing supply mixes. Some countries have enough potential from re-
newable sources to serve a large share of their load, e.g., Norway with more
than 95% from hydro (IEA, 2011a). Other countries follow a nuclear power strat-
egy, e.g., France with approximately 77% generation from nuclear power plants
(IEA, 2009). Other industrialized countries rely on a more diverse mix of gen-
eration units — an example is the German generation mix (Figure 2.1). On an
aggregate level, this roughly corresponds to the average generation portfolio for
OECD countries, which generate 61% from fossil fuel, 21% from nuclear, and
18% from renewable sources11 (IEA, 2012a). The difference in generation mixes
led to differing levels of emission and self-sufficiency per country.

Because of existing economies of scale in most generation technologies (Stoft,
2002), a large share of generated electricity stems from large and often fossil
fuel-based generation blocks. Figure 2.2 depicts the distribution of power
plant unit sizes by generation technology in Germany 2012. The three main
generation technologies, lignite, coal and nuclear also have the largest unit
sizes in the German power sector. The historically developed mix required

11In contrast to Germany mainly hydro.
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Figure 2.1: Gross power generation by power plant type in Germany 2012 — 617 TWh
total with main renewable sources highlighted (Data source: Bundesministerium für
Wirtschaft und Technologie, 2013)
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Figure 2.2: Block capacities > 10 MW by power plant type in Germany 2012 (Data source:
BNetzA, 2013)12

major investments due to the size and long economic lifetime of generation
assets. This led to a dominant position of four big generation companies (RWE,
E.ON, Vattenfall, EnBW), accounting for >80% of total installed capacity as well
as electricity feed-in (Bundeskartellamt, 2011). When focusing on competing
generation capacities only, i.e., ignoring RES generators with priority feed-in,

12The block capacities are sometimes sums, in cases where one operator combines several power
plants. This applies mainly to wind and PV and leads to the unexpectedly high capacity
outliers.
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Figure 2.3: Stylized merit order for dispatching (based on Erdmann and Zweifel, 2008)

they still account for 73% of total generation capacity, even after retiring eight
nuclear power plants in 2011 (Bundeskartellamt and Bundesnetzagentur, 2012).

In many countries generators are unbundled from distribution and therefore
competing on electricity markets to sell their output to retailers. The generation
capacity is scheduled in advance in order of increasing marginal cost. Whole-
sale electricity markets use this as the general principle when matching demand
and supply. In day-ahead wholesale markets, retailers submit bids, and gen-
erators submit asks. The intersection of the bids and asks is the market clear-
ing price. For each delivery period, generally half hour or hour, an individual
market clearing price is determined (Holmberg and Newbery, 2010). Genera-
tion units with low short-run marginal costs of production, e.g. hydropower
or nuclear power plants, can typically offer lower prices, hence they are in use
more frequently. This merit order favors current demand being served by the
generator with the lowest cost (Figure 2.3). This also leads to a low utilization
of peaking plants which are only used during a few hours of extreme peaks
per year (Spees and Lave, 2008). In addition to these simplified general princi-
ples, wholesale electricity markets have additional complexities in products and
matching (see for example Ockenfels et al., 2008). Market participants have to
factor in constraints like ramping cost, optimal efficiency levels, fuel availability,
RES priority dispatch, intermittency, and locational differences due to grid con-
gestion. For example, only a small fraction of all power transactions are traded
on wholesale markets. In many countries a large share is traded in advance in
bilateral over-the-counter (OTC) transactions (Rademaekers et al., 2008; Lijesen,
2007). Most notably, power transactions occur differently depending on the time
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to physical delivery. Figure 2.4 exemplarily depicts different transactions and
products traded.

On the long-term end there are bilateral delivery contracts and the scheduling
of generation units, but also the planning of generation investment, e.g., type,
size, location. On the other extreme, TSOs need to call ancillary services like
spinning reserves to balance supply and demand and adhere to physical system
limits. A detailed analysis exceeds the dimension of this thesis, since all different
types of power transactions have different rules and renumeration schemes.
For details on specific electricity markets and rules, please refer to publications
about the specific topic, e.g., Stephenson and Paun (2001) on electricity market
trading in general, Swider (2006) on trading on markets for grid operators and
generators, Ockenfels et al. (2008) on electricity market design.

In addition to the revenue criterion, physical constraints influence the gener-
ation schedule for some generation technologies. Many renewable generators
are supply-dependent and therefore intermittent. Exemplary patterns of wind
and solar generation are depicted in Figures 2.5 and 2.6. The examples illustrate
the daily pattern of PV in contrast to the stochastic wind generation. However,
both generation types have large short-term variability, which emphasizes the
intermittency. In addition to the depicted examples, both generation types ex-
perience seasonal differences, e.g., on average lower solar radiation and higher
wind speed in winter.

Fossil fuel-based plants need to take into account the cost of their ramping
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Figure 2.5: Wind power output variability based on total wind generation in Bonneville
Power Administration (BPA) control area during an example month in February 2012 13
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Figure 2.6: Photovoltaic power output variability based on a single rooftop panel instal-
lation during example weeks in June 2013 14

time, since these generators cannot be switched on and off instantaneously (e.g.,
nuclear, coal, lignite). These plants provide constant generation curves over
time, so called baseload. To serve varying demand, the long-term stable and in-

13Wind generation data from 2012 at 5-minute increments from Bonneville Power Administra-
tion (mainly Washington, Oregon and Idaho) available at http://transmission.bpa.gov/
business/operations/wind/. This data is used because it is a vailable in high 5-minutes
resolution.

14PV generation data from 2013 at 5-minute increments from a single rooftop installation near
Stuttgart, Germany (own source).

http://transmission.bpa.gov/business/operations/wind/
http://transmission.bpa.gov/business/operations/wind/
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Installed Gross power Average capacity
capacity (GW) generation (TWh) factor

Coal 30.2 (17.7%) 117.0 (18.6%) 44.3%
Wind 27.2 (16.0%) 37.8 (6.0%) 15.9%
Gas 23.8 (14.0%) 86.8 (13.8%) 41.7%
Lignite 22.7 (13.3%) 145.9 (23.2%) 73.4%
Nuclear 21.5 (12.6%) 140.6 (22.4%) 74.6%
Solar 17.6 (10.3%) 11.7 (1.9%) 7.6%
Hydro 10.4 (6.1%) 27.4 (4.4%) 29.9%
Other 6.2 (3.7%) 25.1 (4.0%) 46.0%
Oil 5.9 (3.4%) 8.4 (1.3%) 16.3%
Biomass 4.8 (2.8%) 28.1 (4.5%) 66.6%

Total 170.2 628.6

Table 2.1: Installed capacity and gross power generation by source in Germany 2010
(Data source: Bundesministerium für Wirtschaft und Technologie, 2013)15

termittent renewable generation types are supported by short-term controllable
generators with low ramping times (e.g., pumped hydro, gas). Therefore, these
generators are often used in peak-load hours with high electricity prices.

The capacity factor describes the utilization of a power plant by the ratio of
actual energy output over a period of time to the maximum output defined by
maximum capacity. For example, the US Energy Information Administration
(2011) reports typical capacity factors of 90.3% for nuclear power plants in com-
parison to 33.9% of renewables (conventional hydropower excluded). Table 2.1
shows the installed generation capacity in Germany in comparison to the gross
power generation per type of generator in 2010, sorted by installed capacity. Re-
newables account for a large share of the installed capacity already. However,
the average capacity factors, e.g., wind 15.9%, solar 7.5%, due to intermittent
supply explain the low share in total gross power generation of Figure 2.1.

2.2.2 Trends

The goal of reducing carbon dioxide emissions, the development of global fuel
markets, and new technologies influence the power generation mix and opera-
tion. This section provides a quick overview of current trends which are relevant
for the research results in the subsequent chapters. Most notably, the share of
renewable energy sources is rising globally. The IEA (2012b) expects RES to ac-
count for one-third of total electricity output by 2035. This development is fueled

15Data from 2010 is used due the start of the nuclear phase-out which has a major influence on
capacity factors. Until now, the share of RES — mainly wind and solar — is still increasing.
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by falling technology cost, continued subsidies, and liberalization. In Germany,
the subsidies in the context of the Energiewende as well as increasing environ-
mental awareness led to major investments into solar and wind power. In July
2012, renewables accounted for approximately 41% of total generation capacity
(Bundeskartellamt and Bundesnetzagentur, 2012). Due to supply dependency
of most renewable generators, the share of gross generation is lower but steadily
increasing. Figure 2.7 depicts the share of gross generation in Germany during
the last decade.
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Figure 2.7: Renewables share of gross generation is steadily increasing mainly in wind,
biomass and solar (Data source: Bundesministerium für Wirtschaft und Technologie,
2013)

The rise of renewable energy also leads to shifts of generation capacity to loca-
tions with good supply of renewable energy sources. In Germany, wind capacity
is strongly increasing in the North, whereas solar is installed mainly in the South-
ern part of the country. In addition, the sizes of these new generators are typi-
cally smaller than former fossil fuel-based plants, except for large offshore wind
farms. This leads to a more decentralized generation, which is already indicated
in Figure 2.2 by sizes per generator type. In addition, small Combined Heat and
Power (CHP) plants with increased energy efficiency gain market share with reg-
ulatory support (e.g., act on combined heat and power generation in Germany
- KWK). So-called Distributed Generation (DG) accounted for approximately 20%
of total power generation in Germany in 2006 and is still increasing (Bauknecht
and Brunekreeft, 2008). In Denmark, DG already represents more than 50% of
total generation (Bauknecht and Brunekreeft, 2008). In contrast to the German
Energiewende, different approaches to reduce carbon dioxide emissions influence
the generation mix: the use of carbon capture and storage (CCS) or nuclear are
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Figure 2.8: Grid and voltage levels and naming according to §2 Nr.6 StromNEV in Ger-
many and Swissgrid in Switzerland16

also ways to adhere to the main goal of emission reduction mentioned in the
introduction (Islegen and Reichelstein, 2010; van Vuuren et al., 2007).

2.3 Transmission and Distribution

The transmission of electric power occurs nearly instantaneously even over large
distances, based on a grid of physical lines. This section describes the main char-
acteristics of the transmission and distribution grid, with the focus on Germany.

2.3.1 Structure

The extra-high voltage grid for long-distance transmission is operated by trans-
mission system operators (TSOs), whereas distribution system operators (DSOs)
manage the lower-voltage levels which are originally dedicated to the distribu-
tion of electric power to end consumers (Figure 2.8). This thesis focuses on the
TSO concept, where ownership and operation of the transmission system are
integrated. Another model, which is not applied here, is the split into a trans-
mission owner who is also responsible for physical maintenance and an inde-
pendent system operator (see Brunekreeft et al. (2005) as well as Balmert and
Brunekreeft (2008)). The electric power grid for transmission and distribution
is typically divided into four different voltage levels: Extra-high, high, medium
and low voltage. Since the exact voltage levels and naming of each grid or volt-
age level differ by region and specific application, this thesis always refers to the
German and Swiss notation as depicted in Figure 2.8.

16Source http://www.swissgrid.ch/swissgrid/en/home/grid/transmission_system/grid_

levels.html

http://www.swissgrid.ch/swissgrid/en/home/grid/transmission_system/grid_levels.html
http://www.swissgrid.ch/swissgrid/en/home/grid/transmission_system/grid_levels.html
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Extra-high voltage transmission grids are often operated by a few large TSOs
(Germany) or even just one monopolistic TSO (Switzerland). In Germany, there
are four control zones, each with one responsible TSO (see Figure 2.9).

Figure 2.9: The four control zones in Germany17

DSOs are responsible for the distribution systems on a regional scale. In 2011,
more than 700 DSOs were responsible for approximately 1.9 million kilometers
of electric lines and nearly 48 million metering points in Germany (Table 2.2).
In comparison, the highest voltage level comprised 630 metering points, which
are mainly large industrial customers and pumped storage. Hence, the demand
directly connected to the transmission grid already accounts for approximately
10% of total consumption. Table 2.2 shows the structure and size of different
voltage levels in Germany. Large generators are typically connected to the higher
voltage levels. However, new generation units like photovoltaics or combined
heat and power (CHP) plants are increasingly connected to low-voltage grids.

All system operators are responsible for grid stability, security and reliability
within their area. TSOs are mainly responsible for providing system security
by balancing load fluctuations in the short term through ancillary services in
their control area. DSOs cover the operation, maintenance and repair in their
region, as well as mid- and long-term planning to accommodate future supply
and demand. Since the flow of power is not controllable and the German power
grid is interconnected between the control zones and with other European coun-
tries, the system stability in one region influences the whole grid. An example
of this is the system disturbance in the German transmission grid in November

17By Francis McLloyd [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)],
via Wikimedia Commons

http://creativecommons.org/licenses/by-sa/3.0


24 Electric Power System Fundamentals

2006 that affected all European countries in the same synchronous area (ERGEG,
2007). To avoid such incidents, the N-1 criterion attempts to ensure that the

Grid data 2011 Unit TSO DSO Total

System operators [#] 4 735 739
Electric circuit length [km] 34,404 1,869,670 1,904,074

thereof extra-high voltage [km] 34,314 483 34,797
thereof high voltage [km] 90 94,932 95,022
thereof medium voltage [km] 0 532,894 532,894
thereof low voltage [km] 0 1,241,361 1,241,361

End consumption [TWh] 44.8 461.3 506.1
thereof commerce and industry [TWh] 34.7 334.2 368.9
thereof households [TWh] 0 126 126
thereof pumped storage [TWh] 10.1 1.1 11.2

End-consumer metering points [#] 630 47,660,927 47,661,557
thereof commerce and industry [#] 496 2,894,412 2,894,908
thereof households [#] 134 44,766,515 44,766,649

Table 2.2: Grid length and metering points per voltage level (Data source: Bundeskartel-
lamt and Bundesnetzagentur, 2012)18

most important grid infrastructure components are fail-safe — at least on trans-
mission and supra-regional distribution level. It ensures that at any point in
time the failure of one asset (e.g., line, transformer, generator) does not lead to
overloads in other infrastructure assets. These high security standards result in
high system stability. In Germany, the System Average Interruption Duration
Index (SAIDI) for end consumers is as low as 17.44 minutes per year in 2006-
2010 (Bundeskartellamt and Bundesnetzagentur, 2012). Since security is crucial
in industrialized countries and the grid is a natural monopoly, TSOs and DSOs
are the most regulated actors in the power system. However, a detailed analysis
of this regulation goes beyond the scope of this thesis. An overview of the reg-
ulatory development is provided in Section 2.1. If specific norms are relevant,
they are introduced and discussed in the respective section.

2.3.2 Trends

The dominant trend in power grids are the major investments for different rea-
sons, even in countries with existing power grids, and without considering
growing demand. First, transmission and distribution assets are aging and may
be replaced (Pérez-Arriaga et al., 2013). Second, locational shifts in generation

18Potential small deviations from other diagrams in this thesis are due to differing data sources.
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caused by new generation (e.g., wind offshore) or decommissioning of old as-
sets (e.g., nuclear phase-out) lead to changes in power flows (ENTSO-E, 2012a).
Third, interconnection of markets to allow power flows for market integration
(Meeus et al., 2005). Fourth, decentralization of supply and smart distribution
grids need new investments to ensure reliable grid operation and enable new
coordination and control approaches (see Faruqui et al., 2010). The ENTSO-E
(2012a) provides a detailed overview of the reasons in the network development
plan for Europe.

The majority of these grid investments is necessary on distribution grid level
(IEA, 2011b). However, the focus of most public discussions is on the large
transmission and interconnection projects. In Germany, the main example is
the Netzentwicklungsplan (Power Grid Development Plan),19 which plans — in
addition to the existing network’s expansion and optimization — several new
high-voltage direct current (HVDC) lines to meet the additional transmission
requirements from North to South. These huge investments affect grid opera-
tors’ financial planning models for the future. Therefore, different regulatory
approaches for cost recovery are discussed due to financing issues and to pro-
vide a stable framework for efficient investment (Henriot, 2013).

Consumers as ultimate sponsors will face rising grid charges (Bundeskartel-
lamt and Bundesnetzagentur, 2012). In addition to cost, grid investments need
tremendous lead time and are often delayed in many countries — especially
on the high voltage level (ENTSO-E, 2012a). In Germany, 15 out of 24 extra-
high voltage grid investments prioritized by the Energy Line Expansion Act
(EnLAG) are currently delayed between one and five years (Bundeskartellamt
and Bundesnetzagentur, 2012).

2.4 Consumption

Consumers employ electric energy for various applications such as lighting,
cooling and heating, or other electronic appliances. This section describes the
main characteristics of the consumer side with the focus on households in Ger-
many.

2.4.1 Structure

When referring to the GHG reduction targets mentioned in the introduction,
one has to consider total energy consumption. The leverage of using all sources
of increasing energy efficiency (e.g., better insulation of buildings) is high for
achieving the targets. However, all approaches discussed in this thesis refer to

19http://www.netzentwicklungsplan.de

http://www.netzentwicklungsplan.de
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Figure 2.10: Final energy consumption by energy source type in Germany 2011 in Peta-
joule20— 8,744 PJ total (Data source: Bundesministerium für Wirtschaft und Technologie,
2013)

electricity only. In Germany, electricity itself accounts for approximately 22% of
total final energy consumption, being third after fuel and gas (see Figure 2.10).

As depicted in Figure 2.11, the main consumers of electricity in Germany are
industry and households.

Industry

223.0

Households

141.0

Trade and commerce

74.8
Public facilities

45.0 Transportation
16.5 Agriculture
8.7

Figure 2.11: Electricity consumption by consumer type in Germany 2010, excluding ex-
port, losses, internal consumption and pumped storage — 509 TWh total21(Data source:
Bundesministerium für Wirtschaft und Technologie, 2013)

These loads have the largest impact on total consumption and the system load
pattern over time. In particular, the load curves of industrial consumers differ

20One petajoule (PJ) is equal to 1015 joules and 3.6 PJ = 1TWh. Hence, the final energy consump-
tion of electricity reported here accounts for approximately 524 TWh in 2011.

21The 2010 consumption is less than the 524 TWh in 2011 as reported in Figure 2.10.
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Figure 2.12: Synthetic H0 load profile for different days and seasons in Germany (Data
source: http://www.vsg-netz.de/vsgnetz/Stromnetz/Lastprofilverfahren.php)

substantially, since they are dependent on the industry and electricity demand in
production. Due to these differences and the amount of total consumption, load
profiles for industrial customers are measured for billing purposes and special
contracts already. The total consumption of a single household is negligible in
comparison to total system load. Often — especially for infrastructure sizing —
synthetic load profiles are used to account for household consumption (Figure
2.12). These profiles try to represent a typical average household load profile.
However, each consumer has his individual and unique load profile, which can
deviate considerably from this average pattern. In the face of information avail-
ability through smart grids and increasing flexibility through automation and
smart appliances, a more individual examination of load profiles seems promis-
ing (see Flath et al., 2012). From an overall system perspective, these load profiles
add up to the total system load that need to be matched by generation capacity
under given grid infrastructure capacities.

Historically, the overarching principle in the power sector was that supply
follows demand, i.e. generation capacities are scheduled to match demand.
The German load profile has a base load that is constant in the long-term. In
addition, there are some typical patterns which repeatedly occur in different
time periods (e.g., daily, weekly, monthly, yearly). The remaining fluctuations
in demand are stochastic in nature and most difficult to match by generators.
As mentioned before, the generators with lowest marginal cost should be
scheduled first. Since RES sometimes have priority feed-in by law and their
marginal cost are equal to zero, the scheduling of the remaining generation

http://www.vsg-netz.de/vsgnetz/Stromnetz/Lastprofilverfahren.php
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capacities is based on the residual load. With the stochastic nature of demand
and the increasing share of intermittent generators, forecasting of residual load
is essential. Hahn et al. (2009) provide an overview of existing load forecasting
methods and models.

Electricity demand is often assumed to be largely independent from incen-
tives. This is because, only large consumers or special loads like night storage
heaters receive adjusted prices which account for different marginal generation
cost. However, demand side management (DSM) has been an extensively ana-
lyzed concept in the last decade. One goal is to determine the elasticity of de-
mand based on different incentives. An overview of different analyzes of price
elasticities is provided by Lijesen (2007). With the rise of the smart grid and
automated demand, elasticities are expected to increase. This demand side flex-
ibility is the central element used for price coordination of demand as described
in Chapter 4.

2.4.2 Trends

Even in industrialized countries, total electricity demand is still increasing be-
cause of numerous new appliances, services and uses based on electric power.
In Germany, with some of the highest electricity prices and steady improvements
in energy efficiency of different applications, the share of electricity of the total
energy consumption increased from 17.3% in 1990 to 21.6% in 2011 (Bundesmin-
isterium für Wirtschaft und Technologie, 2013). Some barriers for more efficiency
gains on the consumption side are imperfect information, hidden costs, uncer-
tainty, access to capital, and split incentives (Schleich, 2009). Improved informa-
tion availability can also be used in demand response management with variable
prices. The first programs are developing from research test beds to first real of-
fers to end consumers (for details, see Section 3.3). Smart technology roll out
is accelerating (e.g., smart meters), leading to more available information and
control equipment. Directive 2009/72/EC of the European Parliament and of
the Council requires all member states to follow “a timetable with a target of up
to 10 years for the implementation of intelligent metering systems” and a mini-
mum of 80% of all consumers to “be equipped with intelligent metering systems
by 2020”. In addition, new technologies and control algorithms are being devel-
oped to increase the flexibility in demand without influencing usage patterns.

2.5 Current and Future Challenges

The current trends in the three major functions and in regulation influence the
electric power system operation and development. The following paragraphs
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briefly summarize key effects and challenges in context of this thesis.22

2.5.1 Power Grid Operation and Control

If the crucial balance with generation matching consumption is not achieved,
system reliability is at risk and physical destruction of equipment or outages
can occur. Currently, balancing is realized by a mixture of storage facilities,
sophisticated forecasting tools and different types of generators. Typically, it is
impossible or very expensive for large and central power plants to increase or
decrease their output on short notice. Therefore, these generators are mainly
used to serve base load. Mid load and peak load are served by more flexible
generators like natural gas, combined heat and power (CHP) plants, or pumped
storage. Overall, the responsible system operator tries to achieve a match
of the demand forecast by a schedule for dispatch. Additionally, ancillary
service providers absorb deviations from this dispatch schedule by providing
short-term balancing for frequency stability (Stoft, 2002). The interaction of
these components allows electricity generation to match demand and balance
the system.

The increasing share of intermittent, preferred renewable supply and retire-
ment of old generators leads to a shrinking firm capacity, increasing the risk
load-generation mismatches. Deviations have to be balanced on short notice, in-
creasing the demand for additional flexible reserve capacity. Demand flexibility
is thus mainly used in the form of large curtailable load contracts with industry
consumers. Other demand in the current electricity system is almost completely
unresponsive. However, with smart grid technology, households can be more
responsive as well and may provide decentralized balancing services.

In addition to balancing generation and consumption, further constraints
posed by system components have to be adhered to. Often an energy-only
wholesale market is in operation without incorporating grid constraints.23 In
contrast, new generators are often built at remote locations, which leads to new
power flows. Another aspect is load clustering at specific locations due to simi-
lar demand patterns. These effects may lead to high utilization of infrastructure
equipment or even overloads. Therefore, the shift to RES and slow grid invest-
ments result in rising losses due to grid congestion (Bruninx et al., 2013) (e.g.,
grid operators have to shed wind farms) and operational risks (Gouveia and
Matos, 2009). In Germany, these losses tripled from approximately 127 GWh in

22This section contains extended parts of our paper Flath et al. (2013).
23The assumption of sufficient grid capacity with no congestion is also called ‘copper-plate’ (see

Brunekreeft et al., 2005).
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2010 to 412 GWh in 2011 (Bundeskartellamt and Bundesnetzagentur, 2012).

2.5.2 Power System Market Design

Unbundling on the one hand leads to more competition and therefore supports
the goal of lower end consumer prices. On the other hand, it increases trans-
action cost, owing to coordination of and communication between separate
entities. In addition to this overhead, missing information or wrong incentives
for single entities through existing rules may lead to inefficient outcomes
(Friedrichsen, 2011). Each entity tries to optimize its own outcome within
the given market design. Changes to market design result in modification
of single elements (e.g., changing rates) or even business models (e.g., new
ancillary service providers). Therefore, design changes need to be evaluated,
and configuration needs to avoid adverse incentives.

Specifically the role of the power grid has changed from a top-down distri-
bution grid for a single entity to a grid for transactions and exchanges between
different entities. The locations and patterns of load and generation are shifting
significantly. This shift in locally different demand and supply dynamics needs
to be accounted for by locally efficient incentives. Along with this decentral-
ization comes a change in responsibility from TSOs to DSOs. In the future,
more balancing and coordination activity is expected to occur in distribution
grids which also raises the need for appropriate regulation and unbundling
(Friedrichsen, 2012). As stated before, new grid investments are essential for
future power system operation. Some transmission system operators are already
experiencing financing issues. Therefore, a market environment is necessary
that assures financing as well as efficient investment and operation of power
grids at the same time (Neuhoff et al., 2012). Given the high and long-term
investment in power grid infrastructure, the expected developments of both the
supply and demand side need to be factored in to achieve an efficient overall
grid development.

Generators face lower prices on the wholesale market through RES (Sensfuss
et al., 2008; European Commission, 2012). Specifically, the feed-in of solar PV
power in former high-price periods deteriorates the profitability of flexible gen-
erators. Cossent et al. (2009) and Newbery (2010) discuss the necessary changes
and challenges in market design to accommodate the increasing share of RES. An
obvious example are German generators’ announcements to shut down recently
built flexible gas power stations — even next to nuclear power plants which
are planned to be phased out soon.24 In this special case, the German regula-

24See http://www.bloomberg.com/news/2013-03-12/europe-gas-carnage-shown-by-eon-
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tor reacted with compensation payments for fixed costs to keep these generation
capacities as reserve.25 However, in the long term, the market design needs to
ensure reasonable profitability for these flexible generators — even if the load
factor is low and they serve mainly as a backup. Capacity markets are one mea-
sure currently discussed to tackle this challenge (Cramton and Ockenfels, 2012;
Stauffer, 2006).

The consumption side itself can contribute significantly to achieve the set
targets. In order to tap this potential, the market design needs to incentivize
more efficient appliances for reduction or new smart grid technologies for
flexibilization of demand. However, even given a market design that incen-
tivizes joint collaboration of different entities, more information is stored and
exchanged for coordination. Therefore, system security is not only about reliable
supply and demand matching, but also about data security or risk of cyber
attacks (Quinn, 2009; Mohsenian-Rad and Leon-Garcia, 2011).

Inadequate market design can cause unwanted market outcomes. One exam-
ple is the California electricity crisis in California with skyrocketing electricity
prices (Borenstein, 2002). In this case, the main reason was the market power of
power suppliers under the given market design (Borenstein et al., 2002). This
thesis focuses on the analyzes of few incentives based on some coordination ap-
proaches and does not attempt to solve all possible failures in market design (see
Hogan, 2002; Wilson, 2002; Woo et al., 2003; Newbery, 2010, for more informa-
tion on market design challenges).

closing-3-year-old-plant-energy.html
25See E.ON press release http://www.eon.com/en/media/news/press-releases/2013/5/3/

2013-eon-annual-shareholders-meeting--building-the-new-eon.html

http://www.eon.com/en/media/news/press-releases/2013/5/3/2013-eon-annual-shareholders-meeting--building-the-new-eon.html
http://www.eon.com/en/media/news/press-releases/2013/5/3/2013-eon-annual-shareholders-meeting--building-the-new-eon.html




Chapter 3

Pricing and Coordination in Power
Systems

Following the last chapter on the situation and development of the power sector,
this chapter provides an overview of the state of the art in pricing and coordi-
nation. First, coordination as referred to in the context of this thesis is defined,
and different approaches are introduced. This is followed by a discussion of the
short-term and long-term opportunities to avoid grid infrastructure overloads in
generation, consumption as well as transmission and distribution. Subsequently,
a short overview of cost in electricity provision, current electricity tariffs and
prices for end consumers in Germany introduces the focus on monetary incen-
tives. Finally, a simple pricing model with three components is introduced as the
foundation for the subsequent analyzes. This is not an exhaustive work on pric-
ing and coordination. It rather gives an understanding of potential and missing
prerequisites to tap the potentials analyzed in the following chapters.

This chapter is partly based on own publications. Specifically, Section 3.2 is
currently included in our working paper Ilg et al. (2013), and some paragraphs
in Section 3.3.3 have previously been published in our paper Flath et al. (2013).

3.1 Coordination and Mechanisms

The seminal work of Malone (1988) defines coordination in the following way:

“When multiple actors pursue goals together, they have to do things
to organize themselves that a single actor pursuing the same goals
would not have to do. We call these extra organizing activities coor-
dination.”

This thesis focuses on the usage of scarce resources by multiple actors. For the
power sector, the main resources are the generation capacity, the available grid
capacity as well as external dimensions like technical restrictions or the supply
of renewable energies. Black and Larson (2007) identify six different approaches
for managing scarce capacity:
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• Capacity expansion

• Capacity upgrades

• Substitution

• Rationing (discriminatory or non-discriminatory)

• Loss or degradation of service

• Demand management

The first three items mainly refer to additional investments to secure supply.
In contrast, the last three items represent coordination options that employ the
demand side by either forcefully rationing and degrading quality or incentiviz-
ing to adjust demand.

The focus of this thesis is on mechanisms for grid capacity coordination which
either avoid any rationing/degradation and expansion/upgrade or set incen-
tives for efficient operation and investment. Overall, several different coordi-
nation mechanisms for limited capacities are analyzed, matching into a stan-
dard structure as depicted in Figure 3.1. Each approach tries to coordinate actors
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Figure 3.1: Overview of input for planned coordination mechanism framework

within an environment with limited resources (e.g., grid capacity). To this end, it
uses a mechanism which could range from central control to a non-binding sug-
gestion. To achieve coordination, data can be collected and transformed into in-
formation to be exchanged in various ways — from individual local information
to globally available information or forecasts. Ideally, the amount of information
exchange necessary should be as minimal as possible. Finally, the coordination
outcome may be influenced by externalities that are neither part of the coordina-
tion process nor under control of participating actors.

Alderete (2005) names three main goals of congestion management in power
systems:
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• Be economically efficient

• Send efficient signals to encourage transmission and generation invest-
ment

• Facilitate instruments to hedge against congestion

There are helpful suggestions from other industries which may be applied. An
example is a pricing scheme for electricity networks based on quality of service
similar to DaSilva (2000). Another interesting approach is congestion pricing
(MacKie-Mason and Varian, 1995a), e.g., road congestion pricing (Arnott and
Small, 1994) based on traffic flow. All these approaches have varying similari-
ties with power grids (e.g., network industries) but also differences (e.g., non-
storability). Therefore, they can be applied to design and test new coordination
mechanisms, but at the same time they might lead to different outcomes in the
context of power grids.

3.2 Options for Coordination in Power Grids

The close coupling and interrelation between the three functions means that each
function can influence the whole system state (Chapter 2). In order to achieve
robust and efficient coordination outcomes in the power grid, possible bottle-
necks as well as influencing options of different actors need to be considered. In
addition, an overview of current prices and existing incentives is necessary to
understand the current state.1

3.2.1 Bottlenecks in Power Grids

A bottleneck in the power system occurs when it is impossible to satisfy all ca-
pacity requirements using the lowest cost generation option without overload-
ing infrastructure equipment in the transmission or distribution grid, such as
power lines or transformers (Kumar et al., 2005). Congestion in the power grid
can occur on different voltage levels and in different infrastructure elements. In
order to discuss possible solutions more broadly, this chapter abstracts from a
detailed distinction of different bottlenecks.

In general, two different situations can lead to these bottlenecks. Either the
grid’s infrastructure capacity is not sufficient, or total demand exceeds the max-
imum generation capacity at a specific point in time. Figure 3.2 conceptionally
depicts the two typical causes for bottlenecks in power grids. The first situa-
tion occurs if the capacity of one grid infrastructure element x is not sufficient

1This Section is currently incorporated in our working paper Ilg et al. (2013).



36 Pricing and Coordination in Power Systems

when transporting the necessary power d > x, even if there is enough genera-
tion capacity k to satisfy demand d < k. The second situation arises if the given
generation capacity k is the limiting factor k < d but there is still sufficient grid
infrastructure capacity k < x.

G

k

C

d

x G Generation with capacity k

C Consumer with demand d

Figure 3.2: Conceptional overview of limited capacities

Typically, these bottlenecks can be distinguished into temporary and struc-
tural bottlenecks. Temporary bottlenecks may occur under special circumstances
such as maintenance activities and can be mitigated by temporary measures. On
the other hand, structural bottlenecks are long-term phenomenons and should
be addressed through structural measures of congestion reduction. Specifically,
substantial changes in regional demand or supply may cause structural bottle-
necks. This can lead to a long-term difference between supply and demand for
electricity at a specific location — either due to scarce grid capacity or missing
generation capacity.

3.2.2 Reduction of Congestion in Power Grids

This section introduces different temporal and structural measures to reduce
congestion through changes in generation capacity, transmission capacity and
power consumption. In addition, potential hindrances for the implementation
of the respective measures are identified.

Generation

Generators can relieve supply capacity constraints by investments in additional
generation capacity. Generators can also reduce transmission in the grid and
thus the risk of grid infrastructure congestion in the power system. The tem-
porary instance of this measure is a redispatch of generators in order to adhere
to system constraints and still satisfy total demand. Such redispatch normally
leads to a deviation from the optimal low-cost solution (Keller, 2004), due to the
dispatch of generators with higher marginal cost to avoid short-term constraints.
The structural form or long-run form of this measure is the siting decision of new
generation capacity. The siting of new generators next to load centers typically
results in a reduction of the transmission system load. An extreme example are
emergency power generators which currently serve as backup capacity for im-
portant and sensitive loads like hospitals or data centers. However, investors
have to consider many other factors when selecting a location. For example,
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renewable energy sources cannot be operated economically efficient at every lo-
cation. The efficiency of wind turbines and solar power depends heavily on local
conditions. The same applies to gas, coal or nuclear power plants which are de-
pendent on fuel and cooling water availability (Rious et al., 2011). In addition,
economies of scale apply to many generation technologies (Stoft, 2002), which
also influences the siting.

Transmission and Distribution

The expansion of the grid infrastructure is a measure for grid operators to in-
crease the transmission or distribution capacity to avoid congestion. However,
grid expansion does not influence total generation capacity and location in the
grid. If the generation capacity is remote from main load centers, grid expan-
sion is very expensive. In special cases grid expansion can even lead to addi-
tional bottlenecks due to loop flows (Blumsack et al., 2007). Therefore, power
system simulations are necessary prior to investments to analyze the effect of
more transmission capacity. A temporary instance of this measure is realistic
in special cases only (e.g., interim lines in case of damages2), since investment
costs are extremely high and the projects need a long time for planning as well
as construction (Erdmann and Zweifel, 2008). The structural expansion of grid
capacity is widely in use, and governments consider it as the solution to avoid
bottlenecks, e.g., the Germany Energy Line Expansion Act (EnLAG). Important
influencing factors for the decision on transmission investment are resistance in
the population against these infrastructure projects (Keller, 2004) as well as long,
complicated planning, approval and building processes (Buijs et al., 2011). In
addition, the expected shifts of supply due to the nuclear phase-out and most
notably due to RES lead to congestions that require expansion (Bruninx et al.,
2013). An example is the investment into wind power capacity in the northern
part of Germany which requires transmission grid capacity to supply load cen-
ters in the South.

Consumption

The reduction of peak demand on the consumer-side can resolve both types
of constraints: scarce transmission capacity and missing generation capacity.
A drastic variant of this is load shedding — where loads are temporarily
disconnected from the electricity grid. Usually, load shedding concerns large
consumers, since their load has an effect on grid usage at a specific location and
only affects a small number of consumers that typically have special contracts.
The system operator compensates affected consumers in case of load shedding,

2See, for example, high-voltage line damage due to local tornado: http://www.50hertz.com/
en/file/20121004_PM-Tornado_EN.pdf

http://www.50hertz.com/en/file/20121004_PM-Tornado_EN.pdf
http://www.50hertz.com/en/file/20121004_PM-Tornado_EN.pdf
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e.g., if large production processes have to be readjusted due to load shedding
(Albadi and El-Saadany, 2008). Structural changes are incentives for consumers
to change their consumption patterns by pricing schemes, e.g., to encourage
long-term reduction of demand peaks. This type of demand response (DR) on
prices is one essential element of this thesis, specifically in Chapter 4.

In summary, the three main stakeholders in the power system can reduce con-
gestion by different measures. However, all measures lead to suboptimal results
in short-term. The temporary reduction of congestion by generation — the sub-
stitution of generation capacity — namely leads to inefficient dispatch, and thus
to higher production costs. The temporary reduction of congestion by consump-
tion — load shedding — leads to additional costs due to accrued compensation
payments. Because of the high costs associated with the implementation of long-
run measures, temporary actions to reduce congestion are in many situations
more efficient. The long-term solution by generation and transmission — the lo-
cation choice for generation capacity and the expansion of grid capacity — both
lead to significant investment cost and long-term projects (Rious et al., 2011).
Reducing peak demand by changing consumption patterns is basically feasible,
but not yet widely implemented.

3.3 Price Incentives for Coordination in Power
Systems

The two major approaches to achieve system-beneficial coordination are direct
control or establishment of appropriate incentive schemes. Various types of in-
centives are possible — ranging, for example, from intangible feedback and rep-
utation to more tangible ones like rewards or monetary incentives. This thesis
focuses on monetary incentives in the form of prices similar to Eßer et al. (2007)
who find in a model that retail electricity prices can reduce peak load signifi-
cantly. In reality, Reiss and White (2008) find during the California electricity
crises that consumers seem to react to considerable price increases.

3.3.1 Electricity Price for End Consumers

When discussing pricing of electricity, the first step is to understand the cost
of electricity provision independently from distribution of costs, market mech-
anisms and regulatory influences. This paragraph briefly describes the cost oc-
curring to serve electricity demand on a high aggregation level without claiming
to be exhaustive.

The two major functions to serve electricity demand at a specific location are
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generation as well as transmission and distribution. In both functions, costs are
typically split into fixed and variable parts. In generation, the main fixed cost
parts are the capital costs for investment into generation capacity that largely
depend on the size and type of generator. In addition, there are some fixed op-
erations and maintenance costs independent of utilization. The variable costs of
electricity generation typically include fuel cost (e.g., coal, oil, gas), waste and
pollution cost as well as variable parts of operation and maintenance expendi-
tures. Therefore, small fossil fuel-based generators require a smaller initial in-
vestment than large ones but lead to higher variable cost due to economies of
scale (Stoft, 2002). In contrast, RES generators typically require high initial in-
vestments but lead to lower variable cost, since these avoid fuel costs. The major
elements in transmission and distribution are also fixed investment costs into in-
frastructure, ranging from high-voltage transmission lines to the components in
the low-voltage grid that serves typical household loads. Most maintenance and
operation costs in electricity grids are fixed as well and independent from actual
load flows. In addition, there are some variable costs mainly due to losses, redis-
patch or balancing power. Thus, the optimal mix of generation and transmission
is dependent on both location and demand patterns.

In addition, other factors — especially taxes and levies — influence the total
cost of electricity depending on the market design and regulatory regime. Espe-
cially noticeable are the discrepancies between wholesale power prices and end
consumer prices. For example, the increasing capacity of wind and solar power
led to the situation that the “lowest day-ahead wholesale power prices in the
CWE [Central Western Europe] region could be observed in the German mar-
ket” in 2012 (European Commission, 2012). In situations with high RES genera-
tion but low demand even negative prices occur in wholesale electricity markets.
However, retail electricity prices for typical German households are among the
most expensive in Europe (Figure 3.3).

German Electricity Price for End Consumers

The electricity price for end consumers comprises additional cost factors on
top of the pure cost for electricity provision, e.g., service fees for metering and
billing. Major additional elements are taxes and levies. This section focuses on
the structure of German electricity prices for end consumers, since the German
power sector serves as an example in the following chapters. Many of the elec-
tricity price elements in Germany also exist in other countries. However, an
analysis of different countries would go beyond the scope of this thesis. The
average end consumer price of 28.5 ct/kWh (2013) in Germany for a household
with 3,500 kWh yearly consumption basically consists of 3 different cost types
(BDEW, 2013):
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Figure 3.3: Comparison of retail electricity prices in 2012 for households with 2,500 -
5,000 kWh yearly consumption (Data source: Bundesministerium für Wirtschaft und
Technologie, 2013)

• Regulated network charges (approximately 20%)

• Electricity procurement and sales (approximately 30%)

• Taxes and levies (approximately 50%)

Regulated Network Charges

The power grid is a natural monopoly, therefore the Incentive Regulation Or-
dinance (ARegV — Anreizregulierungsverordnung) dictates a revenue-cap for
system operators to foster efficiency. The calculation of grid charges in Germany
is regulated in the Electricity Network Charges Ordinance (StromNEV — Strom-
netzentgeltverordnung). These costs include mainly basic and calculatory cost
for grid infrastructure and operation but also ancillary services (§13 StromNEV),
losses (§10 StromNEV) and other costs (e.g., metering, billing §17(7) StromNEV).
The grid costs are allocated by grid levels in each control area and paid by con-
sumers only (§15 StromNEV). For consumers with load profile measurement,
the grid charges are calculated based on §17 StromNEV and consist of a demand
charge per year (e/kW) and an energy price per kWh (e/kWh) independent
of the distance between supply and demand (§17 StromNEV). However, small
consumers like households are not measured and simply pay grid fees based on
their energy consumption and a base fee. In addition, according to §19 Strom-
NEV, some large industrial consumers can apply for paying vastly reduced grid



Pricing and Coordination in Power Systems 41

charges. Against the background of increasing grid charges due to investments
and balancing cost, this exemption has been under discussion recently.3

Electricity Procurement and Sales

The procurement of electric power is split into OTC (over-the-counter) and elec-
tricity exchange trades. The majority of transactions (volume-based) are pro-
cessed in form of bilateral OTC deals, but power exchanges in Europe are gain-
ing market share (Rademaekers et al., 2008). In addition to these procurement
costs, the electricity supplier needs to cover some administrative and sales costs.
Including the profit margin, this price element largely depends on the contract
between retailer and customer.

Additional Taxes and Levies

There are multi-facetted taxes and levies for various purposes. This paragraph
gives a short description of the main components and explains who has to pay
what. The current value of each element is derived from BDEW (2013).

Value-added tax (VAT) is a standard consumption tax paid by end consumers
and is set to 19% in Germany.

The offshore liability charge was introduced in 2013 to reduce investment risks
for offshore wind parks. If the grid connection is delayed, the system operator
has to pay compensation to the offshore generators for electricity that cannot
be transmitted (§17e EnWG). These costs are allocated to end consumers in the
form of offshore liability charge (§17f EnWG). Again, large end consumers pay
less per kWh. In 2013, 0.25 cents/kWh is charged for consumption up to 1 GWh,
whereas larger consumers pay 0.05 cents/kWh or even 0.025 cents/kWh for all
additional consumption above 1 GWh.

The renewable energy law (EEG) apportionment is meant to cover the difference
between guaranteed RES feed-in tariffs and the actual price realized on the
wholesale market. End consumers compensate the difference between feed-in
tariff and wholesale price by paying the EEG apportionment. Again, based on
§40-42 EEG, large industrial consumers have to pay only a limited share of the
EEG apportionment. This is one reason apart from increasing investment into
RES that has led to the steadily increasing EEG apportionment in recent years.
Another interesting reason are lower wholesale prices in Germany, due to an

3For example see the article “The Cost of Green: Germany Tussles Over
the Bill for Its Energy Revolution” http://world.time.com/2013/05/28/

the-cost-of-green-germany-tussles-over-the-bill-for-its-energy-revolution/

http://world.time.com/2013/05/28/the-cost-of-green-germany-tussles-over-the-bill-for-its-energy-revolution/
http://world.time.com/2013/05/28/the-cost-of-green-germany-tussles-over-the-bill-for-its-energy-revolution/
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increasing share of RES which at the same time increase the EEG apportionment.
At the beginning of 2013 the apportionment was raised from 3.592 cents/kWh
to 5.277 cents/kWh.

The so-called §19 levy compensates system operators for reduced revenues
due to reduced grid charges for large consumers based on §19 StromNEV.
This levy is paid by all other consumers per kWh, with reduced burden for
consumption over 100 MWh. In 2013, the levy was raised from 0.151 cents/kWh
to 0.329 cents/kWh for small consumers.

The concession fee compensates municipalities for the usage of roads. System
operators have to collect this fee, typically based on the number of inhabitants
as indicated in the Concession Fee Ordinance (Konzessionsabgabenverordnung
— KAV) and pay it to the municipality. Again, some special contract customers
have to pay only limited concession fees, based on §2 KAV.

The power tax was introduced as one element of an ecological tax reform. The
generated funds are mainly intended to support the German public pension
fund. Again, some types of industrial consumers, especially those with large
electricity consumption, can get discounted charges. For all other consumers
the standard tax rate was 2.05 cents/kWh in 2012.

The CHP allocation was introduced to support the German goals for climate
protection by increasing the share of CHP electricity generation (§1 KWKG)
It is structurally similar to the EEG apportionment but at a lower level. In
2013, it was raised to 0.126 cents/kWh for small consumers, with the charge for
consumption above 100 MWh being limited (§9 KWKG).

Comparison of Industry and Household Prices

The German Federal Network Agency and the BDEW publish reports on the
development of average electricity prices. To account for the differences in reg-
ulation for each element of the end consumer price, end consumer types are
differentiated into typical industry and typical household customers 4. Based on
size assumptions and questionnaires, the average price per kWh is determined.
The results of the latest BDEW publication on end consumer price elements are
depicted in Figure 3.4.

Obviously, there are large differences in cost allocation for some taxes and
levies. In the context of this thesis price elements for households are discussed.

4The Federal Network Agency even distinguishes a medium-sized business customer



Pricing and Coordination in Power Systems 43

However, the basic understanding of cost allocation as described in this section
serves as an important background to understand potential challenges in devel-
opment and fairness.

§19 Levy

CHP allocation

Concession fee

EEG apportionment 

Grid charges, electricity procurement and sales

Offshore liability

Power tax

VAT

0 5 10
Price of element [cent/kWh]

variable

Household

Industry

Figure 3.4: Average end consumer electricity price 2013 in Germany by element for
households and industry customers (Data source: BDEW, 2013)5

3.3.2 Electricity Tariffs State-of-the-Art

Typical electricity tariffs for end consumers like households are based on
constant rates per kilowatt hour (kWh) without variable components. This is
due to the fact that typical billing of electricity with analog meters required
manual meter readings. Early publications on dynamic pricing discussed
ideas to communicate dynamic tariffs via telephone circuits or utility radio
broadcasting (Schweppe et al., 1988). However, without today’s ICT capabilities,
they suggested retrieving billing data based on monthly visits of a meter reader
(Schweppe et al., 1988). Also, demand charges were assumed to be unsuitable
for small consumers due to “the high cost of maximum-demand meters”
(Houthakker, 1951). In addition to the technical view, consumers typically
prefer less complex rates (Dütschke and Paetz, 2013). For these reasons, only
simple tariffs based on time-of-use (TOU) have been used for small consumers
in the past. One example are two-zone tariffs with lower cost per kWh during
the night implemented by two separate analog meters. With the advent of smart
meters and a smart grid communication infrastructure real-time consumption
data is available at lower cost. Faruqui et al. (2010) calculate that operational
savings can cover a large share of smart meter installation cost in the EU. They
claim that in combination with dynamic pricing, the additional infrastructure
savings — especially due to peak load reduction — exceed the cost of a smart

5As mentioned above, some industry consumers are even exempt from paying some of the
charges depicted in this figure (e.g., EEG apportionment).
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meter roll-out. Therefore, TOU and load-dependent tariffs are increasingly
discussed and often supported by regulation. For example, in Germany, the
Energy Industry Act (EnWG) §40(5) constitutes an obligation for electric utilities
and retailers to offer such load-dependent or TOU tariffs. Various types of
tariffs are tested by different electricity suppliers globally. A recent report to
the Commission for Energy in Ireland discusses options for dynamic tariffs and
provides an non-exhaustive overview of dynamic tariffs that have already been
rolled-out to end consumers (Pöyry, 2012). The tariffs presented range from
two-zone night-day tariffs with a small price spread of only approximately 10%6

(Enel, Italy) to hourly real-time pricing which follows wholesale pricing and
could range from 1 to 37 cents/kWh (Pepco, United States) (Pöyry, 2012). An
analytically-driven approach to design optimal TOU tariffs is provided by Flath
(2013a), addressing flexibility in start, length, and the number of time zones as
well as update frequency and spreads.

As all these examples demonstrate, most dynamic tariffs for end consumers
with low consumption are focusing on total cost per kWh. Tariffs for residen-
tial customers do not differentiate between cost elements as mentioned in Sec-
tion 3.3.1. Some cost or tariff elements are increasingly flexible, however not
dynamic, e.g., discounted grid charges for flexible demand. In Germany, §14a
EnWG enacts reduced grid fees for controllable loads and mentions electric ve-
hicles in particular. In the context of research projects and small field trials, some
more complex and innovative tariffs are investigated and tested. In contrast,
large consumers already pay demand charges based on real-time measurements.
In Germany, §10(2) MessZV enacts the obligation to measure demand of large
consumers on a quarter-hourly basis.7

A detailed review would exceed the scope of this thesis. Faruqui and Ser-
gici (2010) provide an overview of different field trial rates. In Germany, several
recent electricity tariff trials occurred in different model regions for research pur-
poses. These activities are bundled under the E-Energy funding program.8

3.3.3 Dynamic Pricing Theory

Whereas the previous section focused on trials and rolled-out tariffs for end con-
sumers, this section gives a short introduction into the theory of dynamic pric-
ing.9 The first-best price in real-time electricity pricing is an optimal spot price

6The day price is 1.1 times the night price.
7According to §12(1) StromNZV, this applies to all end consumers with >100,000 kWh con-

sumption.
8See http://www.e-energy.de/en/index.php for more details.
9The last part of this subsection is a version of some paragraphs of our previously published

paper (Flath et al., 2013) with small amendments.

http://www.e-energy.de/en/index.php
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that equals marginal costs at each node in the grid including transmission and
generation cost (Green, 2007; Schweppe et al., 1988). This also applies to house-
hold end consumers, since “they will consume too much during peak periods
and too little during off-peak periods” if their retail tariffs do not incorporate
variations in marginal costs (Joskow and Wolfram, 2012). The development in
the direction of more dynamic electricity prices as described in the previous sec-
tion favors some consumers over others. However, so far, the typical flat tariff
per kWh is still being offered and the trials and rollouts mentioned above were
optional. In Germany, §40(5) EnWG also constitutes the obligation to offer a flat
tariff. This may also hinder more dynamic tariffs which are discussed in this
thesis. Dynamic tariffs offered by electricity suppliers will only be adversely se-
lected by consumers that are flexible enough and actually save cost (Ackerlof,
1970), whereas other consumers will stay with the flat tariff. Depending on the
supply cost of electricity, this may lower the willingness to offer different dy-
namic tariffs. Another point of view is stated by Faruqui (2010):

“the presumption of unfairness in dynamic pricing rests on an as-
sumption of fairness in today’s tariffs.”

This rests on the typical socialization of cost in the electric power sector. More
precisely, consumers with flat tariffs pay the exact same price for the same
amount of consumption, independent of their individual pattern. A household
that consumes mainly in low-demand periods when there might even be excess
generation (e.g., from wind power) pays the same as a household that consumes
only in high-demand periods where expensive peaking plants need to be
dispatched.

Various researchers demonstrate efficiency gains in the electricity system with
the application of time-based pricing (Crew and Kleindorfer, 1976; Newsham
and Bowker, 2010) and spatial (i.e., nodal or locational) pricing (Green, 2007;
Lewis, 2010).

Crew and Kleindorfer (1976) show that time-based pricing is an efficient
management option under stochastic demand and generation. Newsham and
Bowker (2010) review several North American studies of time-varying pricing.
They identify the cost-effective supply of electricity demand by shifting load
from peak to off-peak hours as the main objective for its introduction. For ex-
ample, Green (2007) develops a nodal pricing model, incorporating losses and
transmission constraints. For England and Wales, this model shows a welfare
increase by 1.3%. Lewis (2010) states that locational prices can be seen as an
indicator of electricity system insufficiencies. He uses locational prices as an in-
dicator to determine locations where wind turbines could provide the greatest
benefit to the system. Bohn et al. (1984) derive optimal electricity prices over
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space and time depending on electricity load flow. These prices influence the
patterns of production, transmission and use of electricity.

The temporal component of electricity pricing reflects the market price of gen-
eration. In wholesale electricity markets generators offer their electricity output
to retailers. As described in the previous chapter, various technologies are avail-
able for generation, and marginal costs of different power plants depend on fuel
prices, operational costs and efficiency levels. Power plants are scheduled in
order of increasing short-run marginal costs of production. Last in this order are
typically peaking plants (Holmberg and Newbery, 2010). The highest marginal
cost generator dispatched determines the market clearing price for all gener-
ators in operation (see Figure 2.3). Therefore, availability of generation from
renewable sources with zero marginal cost reduces the wholesale price (Sens-
fuss et al., 2008). Typically, in times with high demand, generation costs are high.

Costs of transmission and utilization of low-voltage grids are the fundamen-
tal drivers behind spatial price differences. Consideration of all operational con-
straints results in nodal prices. Each point where electricity is generated or con-
sumed has a specific price (Bohn et al., 1984). However, this large number of
nodal prices may be too complex for the application to end consumers. Zonal
pricing reduces this complexity: The price within one area of the grid changes
according to the local system state. Zones can be pre-defined or dynamically
established depending on grid conditions.10 Zonal pricing allows a reasonable
trade-off between pricing complexity and the coordination ability of the pricing
scheme. Hogan (1998a) demonstrates different transmission pricing approaches,
and Leuthold et al. (2008) summarize the debate on zonal vs. nodal pricing.

3.3.4 Price Components and Coordination in Focus

Even with the knowledge and research on dynamic pricing of the last decades,
still more research needs to be done to understand the influence of rate design on
demand as well as the winners and losers (Joskow and Wolfram, 2012). Parme-
sano (2007) highlights the importance of dynamic rate design to achieve energy
efficiency. The general attributes of a sound rate structure have been summa-
rized in the Principles of Public Utility Rates, which was originally published in
1961 (Bonbright et al., 1988). This seminal work also identifies three primary
criteria to judge a rate structure and therefore help with rate design regulation:

• Capital Attraction — enough revenues for utilities to ensure a fair return
and desirable levels of quality and safety

10A similar example is congestion pricing of roads during peak hours which encourages drivers
to either use alternative routes or shift travel times to non-congested hours (see Arnott and
Small, 1994).
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• Consumer Rationing — “discourage the wasteful use of public utility ser-
vices while promoting all the use [...] justified [...] [between] cost incurred
and benefits received”

• Fairness to Ratepayers — fair distribution of cost ideally to beneficiaries and
without inadequate discrimination

Similar to these criteria, the objective of this thesis is to analyze new coordination
approaches that provide alternatives to current investment incentives (Capital
Attraction), use of resources (Consumer Rationing) and cost allocation (Fairness to
Ratepayers). Since physical constraints and system conditions change, the price
generally has to vary per location and over time. In a static scenario Schweppe
et al. (1985) decompose this price into three components: “generation fuel and
maintenance, network losses and variable maintenance, generation and network
quality of supply (costs related to unserved energy)”.

Given the operational constraints of the electricity system, this thesis analyzes
three price components (for different divisions of price and cost components,
see, e.g., Houthakker, 1951; Bohn et al., 1984; Stoft, 2002; Parmesano, 2007):

• Energy Price – reflects the market price for generation at a specific location

• Network Price – reflects the price for transmission of power between loca-
tions

• Local Price – reflects the price for utilization of low-voltage grid at a location

In the following chapters, the effects and interaction of some instances of these
components in different scenarios are analyzed in the face of the primary criteria
of rate structure design.

As mentioned above, the supply side coordination in the electric power sys-
tem exists in the form of wholesale markets, dispatching or ancillary services,
given the regulatory interventions such as priority of RES (Energy Price). There-
fore, Chapter 4 focuses on coordination approaches using the remaining two
price components under a given Energy Price. Demand side flexibility has been
used so far with large industrial consumers only. Hence, the focus is on the op-
erational demand side coordination of small consumers (Local Price), possible
through ICT-enabled information availability in real time. Structural coordina-
tion of demand, supply and the network is in focus of Chapter 5, mainly in the
form of cost allocation of long-term investments (Network Price) and the inferred
impact. The relevant structural coordination approaches are reviewed in detail
in Chapter 5.





Chapter 4

Local Load Coordination

This chapter focuses on the potential of load coordination, to ensure adherence
to local infrastructure limits in the distribution grid. The focus is on DSOs
who are responsible for grid capacity on lower voltage levels for private end
consumers. The aim is not to provide ancillary services for system stability on
low-voltage level, but to discuss demand response mechanisms for balancing
the limits of existing grid infrastructure and the optimal utilization of renewable
or low-cost generation. The terms demand response (DR) and demand side
management (DSM) are often understood as synonyms. In more detailed
definitions DSM is considered as a superset of DR — going beyond load shifting
and including long-term energy efficiency measures (Palensky and Dietrich,
2011). In contrast, Albadi and El-Saadany (2008) categorize the reduction of
total electricity consumption as DR. An overview of load-shaping objectives of
DSM is provided by Gellings (1985), ranging from peak clipping (e.g., simple load
curtailment), strategic conservation/load growth (e.g., energy efficiency) to other
objectives of demand shaping, e.g., valley filling, load shifting, flexible load shape.
Energy efficiency, which leads to an overall reduction of quantities demanded,
is an important factor to reduce GHG emissions and avoid infrastructure
overloads. Efficiency measures of small consumers can provide significant
savings, since a large part of electricity consumption is wasted in households.
For example, in IAE member countries, approximately 10% of total electricity
consumption in households stems from stand-by power (IEA, 2001). However,
even with an increase in efficiency, the growth (e.g., population, economy) and
rebound effects undermine these savings.1 Hence, continued growth in total
electricity demand is projected globally (IEA, 2011b). This chapter intentionally
excludes the overall reduction of demand and uses both the terms DR and DSM
— where DR mainly refers to measures of load shifting.

In their seminal work, Schweppe et al. (1988) describe the core pricing
methodologies to incentivize DR that can nowadays be exploited using smart
grid technologies. Oren (2013) categorizes two different DR paradigms: real-

1For more details about the rebound effect, see Greening et al. (2000) and Berkhout et al. (2000).
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time prices for retail customers and load control contracts differentiated by
quality of service. Similarly, Albadi and El-Saadany (2008) classify DR programs
into price-based programs and incentive-based programs. Both paradigms are
not widespread so far, and Oren (2013) focuses on the paradigm of contracted
load control options. This chapter emphasizes the direction of real-time pricing
for demand coordination and employs direct load control options such as
curtailment as reference scenarios.

A flexible demand side is a necessary prerequisite for any DR application
scenario. Retail customers combine various load types with different flexibility.
This results in specific control characteristics: Some loads are controllable at all
times and might react immediately with continuously flexible higher or lower
demand (e.g., heating, ventilation, air-conditioning devices – HVAC), whereas
other loads cannot respond instantaneously due to operating characteristics
(e.g., washing machines during a washing cycle) or can only consume in discrete
power levels (e.g., appliances with on/off-switch only). Some appliance loads
are dependent on or constrained by other devices (e.g., a dryer should only run
after a washing machine cycle). Other load types even offer the possibility of
substituting electric power consumption (e.g., switch heating from electricity to
natural gas). The most flexible devices are storage appliances, especially if their
charging pattern is not restricted by their type.

However, the mere existence of flexible loads itself is not sufficient to establish
DR successfully. Consumers need to allow and enable use of the available flexi-
bility. Specifically, consumer reaction to dynamic prices is subject to discussions,
since electricity costs are still too low in comparison to total cost-of-living. The
low price elasticity of demand has been confirmed by several studies (Faruqui
and Sergici, 2010). Also, the willingness to accept lower quality of service in the
form of lower reliability levels for some loads seems limited, given the current
high security of supply levels in industrialized nations. However, some studies
show high demand for dynamic tariffs2 and that load control automation helps
to increase acceptance rates (Dütschke and Paetz, 2013). Hence, an essential
step to ensure consumer acceptance of demand flexibility on a household level
is the development of support tools for different load types. These tools need to
ensure that consumers’ utility is not impaired and that they can easily adjust the
service or tool to their personal preferences.

Based on the requirements and characteristics described above, different
coordination mechanisms are discussed in this chapter which fit into the coor-

2In one program, 93% of all customers preferred the dynamic tariff in comparison to a flat rate
(Pöyry, 2012).
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dination framework presented in Section 3.1. The main actors are consumers,
who can shift flexible parts of their demand to achieve individual targets (e.g.,
minimize cost, maximize use of RES). At the same time, system operators,
retailers and generators are responsible for power provision and want to coor-
dinate the demand in their favor. The central resources in this chapter are local
infrastructure limits which need to be adhered to. At the same time, utilization
of renewable or low-cost generation is ideally maximized. The coordination
mechanisms discussed can be based on different levels of information, e.g.,
market prices, local prices, local infrastructure utilization, and availability of
renewable or other low-cost generation.

First, general alternatives for local load coordination are presented in Sec-
tion 4.1. Section 4.2 describes electric vehicle charging loads as one practical
example. Subsequently, Section 4.3 analyzes in detail the influence of different
coordination approaches on EV charging loads in combination with local
infrastructure limits. One striking result is that decentralized approaches have
the potential to shift loads such that grid limits are adhered to. This decentral-
ized approach can thus avoid central load shedding. Section 4.4 applies the
theoretical research results in a Swiss grid planning case study. This practical
application demonstrates the potential impact of DR and variable tariffs on
high-voltage grid planning. The main assumptions and limitations of the
research approach are discussed in Section 4.5.1. Finally, Section 4.5.2 concludes
and summarizes the main implications of this chapter.

This chapter contains parts of own publications and working papers. Namely
Section 4.2 on electric vehicles as flexible loads contains parts of our papers Flath
et al. (2012), Flath et al. (2013) and Salah et al. (2013). In Section 4.3, some sub-
sections — especially the modeling and the sections on uncoordinated, supply-
based coordination and dynamic load pricing coordination — are partly repro-
ductions of Salah et al. (2013) and Flath et al. (2013). This section also comprises
the results of Flath et al. (2013). The Swiss case study presented in Section 4.4 is
an extended version of our results presented in Salah et al. (2013). Finally, the
discussion (Section 4.5.1) and conclusion (Section 4.5.2) also repeat some parts of
the respective chapters in our papers Flath et al. (2013) and Salah et al. (2013).

4.1 Alternatives for Local Load Coordination

Throughout the rest of this thesis the underlying assumption is the availabil-
ity of flexible loads and the willingness of consumers to exploit this flexibility.
This section describes different contracting and pricing options to incentivize
demand in order to match available supply and at the same time ensure adher-
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ence to infrastructure limits. To this end, this thesis defines energy consumption
e (e.g., measured in kWh or MWh) and load l (e.g., measured in kW or MW).
Naturally, the following relation applies:

e =
∫

l (t) dt (4.1)

This definition critically hinges on the continuous measurement of loads. In
practical applications, the average load in discretized periods of time is used li

t
(Taylor and Schwarz, 1990). An example are quarter-hourly load measurements
which are typically used for large industry consumers in Germany. Given short
measurement periods ∆t, the deviation between an average value and a continu-
ous value becomes small. Assuming such discretized measuring periods of time
(∆t), the demand of an individual consumer i in one period consists of two basic
parts with the following relation:

• Load li
t

• Energy consumption ei
t = li

t · ∆t

4.1.1 Supply-based Incentives

The first goal of demand side coordination is to match a given supply availabil-
ity through the use of flexibility. As described in the previous chapters, there is
a large body of literature on matching intermittent RES to flexible loads. This is
achieved by means of smart metering technologies and often introduced in the
form of variable tariffs for energy consumption et. To account for varying sup-
ply situations, an external price signal pext

t can reflect the supply situation and
incentivize or disincetivize consumers with flexible demand (this is one possi-
ble realization of the energy price). With the assumption of discretized periods of
time, the individual electricity costs of consumer i are calculated as the sum of
the products of price and quantity:

T

∑
t=1

pext
t · ei

t (4.2)

During times of high prices (e.g., in situations with low supply from RES)
flexible individual consumers lower their consumption ei

t and may increase their
consumption in low-price periods. Total consumption Et = ∑i ei

t is dependent
on the current prices and the price elasticity of consumers. Obviously, this
demand response can also be realized by direct control based on contracts
(Fahrioglu and Alvarado, 2000). An example are load aggregators or retailers
that have load control contracts with their customers and try to shift consump-
tion into periods with low power prices (Kirschen, 2003). The aggregation helps
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to reach a critical mass that can be used to participate in power markets that
follow current power market designs.

Researchers have analyzed this type of load coordination from various points
of view, using different external price signals or even direct load control. Darya-
nian et al. (1989) and Ahlert (2010) analyze optimal demand response strategy
of storage-type consumers based on spot prices. Gottwalt et al. (2011) compare
household demand patterns and electricity bills under flat tariffs and given vari-
able electricity prices. They also analyze resulting load shifts and find that vari-
able electricity prices can lead to significant shifting effects and new total load
peaks (avalanche effects or load synchronization). Kishore and Snyder (2010) show
similar results: with flexible residential demand and peak/off-peak pricing they
find new peaks in low-price periods based on individual demand optimization.
Using simulations, Sioshansi and Short (2009) find that real-time pricing can in-
crease wind generation use and decrease wind curtailment with load demand
elasticities. Our paper (Schuller et al., 2012) also demonstrates significant in-
crease in wind-power utilization when incentivizing flexible EV charging loads
with a wind-power-based tariff. We observe the same load avalanche effects as the
previous studies when offering a dynamic price to an EV population.

Therefore, local load limits have to be considered. Even if there is excess re-
newable energy feed-in in the system, some grid infrastructure components may
already operate at their limit. Demand response through direct control or mon-
etary incentives needs to internalize this risk of overloads into the coordination
mechanisms. The next sections present the analytical descriptions of examples
for the integration of local infrastructure limits into coordination mechanisms.
These generic approaches are subsequently applied in simulation models with
electric vehicles as flexible demand.

4.1.2 Load Curtailment

Load curtailment is one way to deal with demand peaks given the limits of
the local power grid infrastructure (e.g., transformer loads, line limits, voltage
drops). In the following, static and dynamic load curtailment are introduced.

Static Load Curtailment (SLC)

A trivial way to stay within tolerable infrastructure limits is to statically limit
all individual load levels li. A theoretical worst case given full load flexibility is
a simultaneity factor of unity, i.e., all consumers demand electricity at the same
time.3 To account for this worst case given a total maximum load of L at a specific

3This seems unlikely, however with fully flexible loads such situations are theoretically possi-
ble.
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location, one could limit individual loads homogeneously. Thus, the static load
limits li for all i ∈ [1..n] loads need to fulfill the condition

li ≤ L
n

. (4.3)

L needs to be selected such that all infrastructure component limitations are con-
sidered.4 In practical applications, this approach could be implemented by in-
stalling fuses that are sized accordingly. Grid expansions are basically planned
with a similar approach in mind: The capacity is sized based on the maximum
load expected, but considering different types of loads and hence not using the
worst case simultaneity factor of unity.5

Dynamic Load Curtailment (DLC)

The aggregate load at a specific location can be simplified as Lt = ∑n
i=1 li

t. De-
pending on the load type — interruptable demand contracts (switch on/off only)
or continuously controllable loads — the load curtailment is dynamically ad-
justable based on different aggregate load levels. Baldick et al. (2006) provide a
good overview on interruptable load contracts.

This type of control can be exercised by the local DSO, typically with flexible
non-critical loads (e.g., refrigerators, HVAC, heat pumps, storage appliances).
Generally, two simple types of dynamic load curtailment are possible. The first
one follows the “first-come first-serve” philosophy: all loads li

t are accepted until
the aggregated level L is reached. Any additional loads are curtailed completely.
The second curtailment option is reducing all loads — either evenly or propor-
tionally based on individual contracts — when the limit L is reached. The latter
option is only feasible with continuously controllable loads or at least loads with
multiple power levels. Hence under DLC, individual consumers can consume
more than the static limit described in Equation 4.3 as long as the dynamic load
is lower than the limit:

n

∑
i=1

li
t ≤ L ∀t ∈ T (4.4)

Multiple extensions can be added to these simple forms of dynamic load curtail-
ment. Based on more complex contracts and communication technology, quality
of service differentiation is possible. Each customer may have a quality of ser-
vice specification for each load type. Hence, the curtailment and demand levels
could be specified, e.g., based on load type or level and time (see Oren, 2013).

4This is clearly a simplification of possible grid infrastructure situations. In some cases an
asymmetrical load limitation might be more useful, e.g., due to voltage drops.

5For example, the former DIN VDE 0100-300 lists expected simultaneity factors for dif-
ferent commercial and industrial applications (see http://www.vde-verlag.de/buecher/

leseprobe/lese2867.pdf).

http://www.vde-verlag.de/buecher/leseprobe/lese2867.pdf
http://www.vde-verlag.de/buecher/leseprobe/lese2867.pdf
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Optimization approaches can use this information, e.g., for minimizing end-user
discomfort while adhering to load limits (Ramanathan and Vittal, 2008). An ex-
ample of different service levels is analyzed in our paper (Flath et al., 2012),
which applies a revenue management approach for electric vehicle charging. We
model customer segments with different valuations charging their EVs and use
two booking classes to achieve an efficient allocation of the available limited ca-
pacity.

4.1.3 Demand-based Incentives

Load curtailment approaches do not take into account different valuations of de-
mand over time, e.g., due to intended application or different price sensitivity of
consumers. The integration of limited infrastructure capacity with price signals
is the focus of demand-based incentives. A typical format is a demand charge
where consumers pay for maximum power consumption (in kW) per billing in-
terval ∆tb ≥ ∆t. For example, a consumer pays for the highest quarter-hourly
(∆t) average load (li

t) within 12 hours (∆tb). This makes sense due to measure-
ment resolution, amount of data and load variability of some appliances (e.g.,
high starting load of refrigerators). Again, two generic approaches can be imag-
ined: static (individual) and dynamic (aggregate) load-based pricing.

Static Load-Based Pricing (SLP)

Static load-based pricing uses individual demand measurements to apply de-
mand charges. No information about local or total grid load is necessary. In
general, consumers pay a charge depending on their load pattern during the
billing interval ∆tb.

A typical implementation is that consumers pay a charge per kW for the high-
est individual load level within one billing interval:6

pSLP
tb
≡ f

(
max
t∈tb

{
li
t

})
(4.5)

In a simplified tariff scenario with ∆t = ∆tb, the consumers pay a price for
their load level per time slot: pSLP

t ≡ f
(
li
t
)
.

Apart from price elasticity and consumer flexibility, the demand response
strongly depends on the load-price function. A simple constant price (per kW)
combined with the identical duration of measuring and billing period (∆t = ∆tb)
leads to the same incentives as a flat external price signal of supply as introduced
in Equation 4.2. This thesis focuses on the goal of avoiding local infrastructure

6For sake of brevity a compact notation is used in the following, e.g., pSLP
tb

(
maxt∈tb

{
li
t
})

.
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overloads by means of increasing marginal demand charges. These charges in-
centivize individual consumers to avoid demand peaks and therefore to ‘flatten’
their demand profile.

Another possibility to incorporate the individual load level are adjustments to
the energy price. The resulting price experienced by the consumer depends on
the external price and the individual load level:

pSLP,e
t ≡ f

(
li
t, pext

t

)
(4.6)

Dynamic Load-Based Pricing (DLP)

Dynamic load-based pricing approaches require more information and data ex-
change than SLP approaches because pricing is based on current aggregate de-
mand Lt = ∑i li

t at a specific location or in an area comprising several consumers.
Therefore, each consumer has only limited influence on pricing by adjusting his
own demand pattern. The load price in each period ∆tb is dependent on the total
load pattern in the billing interval. Charging for the highest load level measured,
the price obtains as:

pDLP
tb
≡ f

(
max
t∈tb
{Lt}

)
(4.7)

In comparison to SLP, demand is less constrained by high-prices if overall
local demand is low and idle system capacity is available. However, given the
dependency on other consumers in the location, the individual consumer does
not know the exact price in advance because the highest load peak is not deter-
mined at the beginning of a period ∆tb. To account for price dependability, prices
need to be announced prior to consumption time. One alternative is to use the
expected maximum load E [maxt∈tb {Lt}] and announce this value in advance.
With ∆tb = ∆t the price is determined directly in the period of consumption
when the aggregate demand of the current period is fixed and therefore con-
verges to a simplified “near real-time” load price. This simplifies 4.7 to:

pDLP
t ≡ f (Lt) (4.8)

Similar to SLP, DLP adjustments through the energy price are also possible.
The external price signal pext

t can be extended by a price signal which includes
the respective loads. The resulting energy price depends on:

pDLP,e
t ≡ f

(
Lt, pext

t
)

(4.9)

Given the demand charge function setup, consumers are incentivized to re-
duce demand when local infrastructure is utilized to a greater extent. A similar
concept is used for peak-load pricing (e.g., Boiteux, 1960) with the intention to
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limit demand due to missing generation capacity. The static approach based on
booking classes in our paper (Flath et al., 2012) is a modification of peak-load
pricing. In this case we model two different prices only, and each consumer can
decide to book capacity at a lower price in advance or pay a higher price for
adhoc capacity requirements.

4.1.4 Combined Local Load Coordination

Obviously, both load-based pricing methods (SLP and DLP) cannot guarantee
compliance with intended infrastructure limits. Thus, final control of load shed-
ding by the system operator is still necessary. However, given the knowledge
about demand elasticity, the respective pricing mechanisms might be adjusted
to moderate between grid limits and use of low-cost or renewable supply. For
ease of exposition and to ensure price dependability, the billing and measure-
ment periods are synchronized in the following: ∆tb = ∆t. The combined coor-
dination approaches as well as the respective objective functions in focus of this
thesis are summarized in Table 4.1. In the following, the thesis focuses on the

Coordination Load constraints Pricing structure

Supply-based - ∑t∈T pext
t · ei

t

with SLC li ≤ L
n ∑t∈T pext

t · ei
t

with DLC ∑n
i=1 li

t ≤ L, ∀t ∈ T ∑t∈T pext
t · ei

t

with SLP - ∑t∈T

(
pSLP,e

t
(
li
t, pext

t
)
· ei

t + pSLP
t

(
li
t
)
· li

t

)
with DLP - ∑t∈T

(
pDLP,e

t
(

Lt, pext
t
)
· ei

t + pDLP
t (Lt) · li

t

)
Table 4.1: Load coordination mechanisms in focus

economic potential of combining supply-based incentives with load curtailment
and demand-based incentives to incorporate infrastructure limits. To this end,
the different combinations of local coordination are applied to a population of
flexible and price-sensitive consumer types. EV charging demand serves as a
generic example for one type of flexible load.

4.2 Electric Vehicle Charging as Flexible Load

Electric vehicle charging load is used as an example in some of our existing pub-
lications and working papers. Hence, this section is a combined and extended
version of parts of the papers Flath et al. (2012), Flath et al. (2013) and Salah et al.
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(2013). For example, the following introduction is based on the paper presented
at the Americas Conference on Information Systems (AMCIS) (Flath et al., 2012).
The related work part is an extended version of what has been used in the men-
tioned publications, and the paragraphs on the charging optimization approach
as well as the model setup have been used in shorter, amended versions in the
respective papers.

Road transportation accounts for over 20% of CO2 emissions in the USA and
the European Union.7 Therefore, this sector plays a crucial role in meeting global
CO2 reduction goals mentioned in Chapter 1. Projections of leading research in-
stitutions expect significant growth of EV sales (Cooper et al., 2013; Navigant
Research, 2013; OECD/IEA, 2013). Additionally, many countries try to reach
challenging targets of electric vehicle (EV) penetration in the next years (Ger-
man Federal Government, 2009; Department of Energy and Climate Change,
2009; DOE, 2011). While electric vehicles locally always operate (tank-to-wheel)
emission-free, the more relevant total emission balance (well-to-wheel) critically
hinges on the electricity mix used for charging the vehicle. Figure 4.1 illustrates
that EVs can achieve emission reduction only if the electric energy comes from
renewable energy sources (e.g., wind or solar).

DOI: 10.1002/bltj Bell Labs Technical Journal 49

The most compelling way to compare energy effi-

ciencies and GHG emissions of alternative car engine

concepts with the classical combustion engine is the

well-to-wheel (WTW) analysis. This analysis is a holis-

tic approach that accounts for the complete energy

efficiency and environmental sustainability chain

from primary energy sources (well) to the final energy

consumer (wheel). It does not include manufactur-

ing costs of production facilities (e.g., refineries, wind

turbines, solar panels).

A WTW analysis comprises two parts, the well-

to-tank (WTT), or production and transportation of

fuels, and the tank-to-wheel (TTW) pathway or trac-

tion system. Given the various combinations of pos-

sible energy sources and drivetrains, in this paper, we

focus on the four options below to analyze their WTT

and TTW. The analysis is based on the data from [2].

• Classical combustion engines (Otto, Diesel),

• Hybrid electric vehicles,

• Fuel cells driven vehicles, and

• Electric vehicles.

Energy Efficiency
Today’s well-introduced HEV concept is the first

logical step from classical ICEs towards pure EVs. The

number of HEVs is growing worldwide. The HEV con-

cept combines all advantages of conventional engines

(superior operating distance and established ICE tech-

nology) with the excellent energy efficiency of electric

engines. The electric components of HEVs are espe-

cially qualified for urban stop-and-go traffic scenarios

due to their zero energy consumption in idle mode.

Nevertheless, the main drivetrain is an ICE. The HEV

concept, represented by the hybrid/Otto (e) and

hybrid/Diesel (f) columns in Figure 1, improves

WTW efficiency by up to 25 percent. Figure 1 illus-

trates WTW fuel consumption in equivalent unit liters

of gasoline per 100 km. The chosen reference car is

comparable to a 1.6 l Volkswagen Golf* with a gaso-

line engine [2].

The next evolutionary step in HEVs (e, f) is the

evolution towards a PHEV that allows for charging

the battery with electric energy taken directly from
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Figure 1.
Well-to-wheel fuel consumption.

Figure 4.1: Emission statistics of different vehicle technologies (Ballentin et al., 2011)

However, power generation by these sources is highly intermittent and their

7See http://ec.europa.eu/clima/policies/transport/vehicles/index_en.htm and http:

//www.eia.gov/environment/emissions/ghg_report/pdf/0573%282009%29.pdf

http://ec.europa.eu/clima/policies/transport/vehicles/index_en.htm
http://www.eia.gov/environment/emissions/ghg_report/pdf/0573%282009%29.pdf
http://www.eia.gov/environment/emissions/ghg_report/pdf/0573%282009%29.pdf
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increasing share challenges the operational stability of today’s power system.
Electric vehicles induce additional demand for electric energy. Moreover, these
new loads are fairly flexible, since most of the time private cars are not in motion.
By using information and communication technology (ICT), the smart grid can
provide full visibility to monitor, control and optimize EV charging and enable
new services such as variable tariffs by different dimensions, feedback or remote
control. The management of EV charging is a promising research field due to
three reasons:

• EVs will induce significant new load to the power system

• The smart grid offers new information and control possibilities

• Habits — which are normally difficult to change — have not been devel-
oped for EV charging

Large-scale EV charging will interlink the transportation sector with the elec-
tric power sector and introduce a significant new load which will put additional
stress on the electricity system (Blumsack and Fernandez, 2012). At the same
time, these charging loads are temporally flexible and are thus promising can-
didates for applying DSM approaches. Smart integration of EVs may reduce
the threats to power system reliability. Furthermore, they may even offer bal-
ancing capacity for intermittent generators and thus help to stabilize the grid
(Kempton and Tomić, 2005; Lund and Kempton, 2008). To realize these eco-
nomic potentials, vehicle operators should adapt their charging behavior based
on price signals or cede control of their vehicle (Peças Lopes et al., 2009). The
latter is problematic, as customers most probably expect EV usage to be similar
to conventional vehicles — non-availability of EVs due to low charging levels
will not be accepted by customers. Consequently, EV users will need support
systems to achieve truly smart charging behavior on the individual level. This
thesis assumes such automation as given to analyze the discussed coordination
approaches for flexible loads. In addition to individual flexibility, the grid im-
pact is highly dependent on the number of EVs, the technical details and the
objective of charging coordination.

4.2.1 Technical Specifications of Electric Vehicles and Charging
Systems

The term electric vehicle generally comprises different technical architectures and
configurations.8 Chan (2007) names three general classes: Battery EVs (BEV),
Hybrid EVs (HEV) and Fuel Cell EVs (FCEV). In the context of power system

8This text comprises parts of our papers (Flath et al., 2013; Salah et al., 2013; Flath et al., 2012)
and combines the technical specifications for this thesis.
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utilization, BEVs and Plug-in Hybrid EVs (PHEV) are relevant within this thesis
because these are directly connected to the power system. An introduction with
detailed information on EV architectures is provided by Chan (2007) and Chan
et al. (2010). The internal combustion engine (ICE) in HEVs are not in scope
of this thesis but would provide further interesting applications as an outside
option. The remaining part of this thesis focuses on BEVs only.

Recently, an increasing number of electric vehicles from major OEMs have be-
come available. The most relevant EV characteristics are distance-specific energy
consumption, battery capacity and vehicle maximum range. Most notably, bat-
tery capacity in BEVs is limited due to cost as well as size and weight, since the
volumic energy of batteries is low in comparison to fossil fuel. This results in
general in a lower maximum range than today’s typical ICE vehicles. Table 4.2
lists this data for a selection of current electric vehicles.

Make and Curb Battery Range Energy
Model Weight Capacity Consumption

(kg) (kWh) (km) (kWh/km)

Citroën C-Zero 1,110 16 150 0.107
Ford Transit Electric 2,340 28 130 0.215
Karabag Fiat 500 E 1,120 20 140 0.148
Mitsubishi i-MiEV 1,110 16 150 0.107
Mercedes A-Class E-Cell 1,591 36 255 0.141
Nissan Leaf 1,520 24 160 0.150
Peugeot iOn 1,110 16 150 0.107
Renault Fluence Z.E. 1,610 22 185 0.119
Renault Kangoo Z.E. 1,410 22 170 0.129
Renault Twizzy 75 450 7 100 0.070
Renault Zoe 1,392 22 210 0.105
Smart Fortwo Electric Drive 975 17.6 140 0.126
Tesla Roadster 1,220 53 393 0.135
Think Global Th!nk City 1,038 23 160 0.144

Average 1,285 23 178 0.129

Table 4.2: Technical data of current electric vehicles (Salah et al., 2013)

In addition to the technical specification of the EVs, the charging system and
battery specifications influence the impact on and interaction with the power
grid.9 The IEC standard 62196-1 specifies four charging modes, ranging from
the slow AC mode (up to 3.5 kW) to the fast DC mode (up to 240 kW). Further-
more, the charging speed of EV batteries is limited due to physical constraints
of the batteries. Most recent electric vehicles are typically capable to charge in

9The term “plug-in” gives the impression that inductive charging is excluded. This thesis ab-
stracts from different technical alternatives and treats conductive and inductive charging con-
nections equally.
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slow AC mode (3.5 kW) or fast AC mode (11/22 kW). Thus, refueling is much
slower for EVs and can hardly be done en route. The German National Electric
Mobility Platform suggests that the future charging infrastructure will consist
of a mix of home charging stations, public charging stations and fast charging
stations (Nationale Plattform Elektromobilität, 2011). Fast charging stations will
represent a very small part of the infrastructure as they are expensive and will
be required for long-distance traffic only.

Typical charging speed at home is around 3 kW, which translates into approx-
imately 8 hours charging time for a full charge of a 24 kWh battery. Faster charg-
ing speeds at 11 kW are possible with special plugs and quick charging stations
with over 50 kW, which are in development and testing. With the fast charging
mode, vehicles’ batteries can be fully charged in about 30 minutes. Faster charg-
ing offers both quick mobility range for driving needs and more flexibility for
intelligent charging to support power grids. In the long-term, EVs should not
only support the power system by scheduling their charging load appropriately
but also by feeding electricity back into the grid. Several research contributions
covering that direction envision EVs to provide vehicle-to-grid (V2G) services
(Kempton and Tomić, 2005). Since vehicles are parked more than 90% of the
time, the wide scale adoption of EVs could provide a flexible storage opportu-
nity for the power system.

4.2.2 Charging Demand and Mobility Needs

Electric mobility faces two major challenges: support the driving needs of the
consumer and avoid negative influences or even support the efficiency of the
power grid.10 In comparison to other household loads, EVs have some special
characteristics due to technical restrictions and usage patterns. EV charging can
increase household demand for electric energy significantly. The US Department
of Energy rated the fuel economy of two EVs in 2012 — the Nissan Leaf with 34
kWh/100 miles and the Mitsubishi i-Miev with 30 kWh/100 miles.11 From a
top-down perspective, an average driver with approximately 13,500 miles/year
therefore increases the consumption of electric energy by approximately 4,000
kWh.12 With approximately two vehicles per household, the electrification of
individual mobility creates significant additional load on top of existing house-
hold consumption. Overall, one EV consumes approximately one third of an

10This section is an extended version of sections in our papers Flath et al. (2012) and Salah et al.
(2013).

11Deviations to table 4.2 are due to different measurements of the Department of Energy and
specific manufacturers.

12For details, see the US Energy Information Administration http://205.254.135.24/tools/

faqs/faq.cfm?id=97&t=3 and the US Department of Energy: http://www1.eere.energy.

gov/vehiclesandfuels/facts/2010_fotw618.html.

http://205.254.135.24/tools/faqs/faq.cfm?id=97&t=3
http://205.254.135.24/tools/faqs/faq.cfm?id=97&t=3
http://www1.eere.energy.gov/vehiclesandfuels/facts/2010_fotw618.html
http://www1.eere.energy.gov/vehiclesandfuels/facts/2010_fotw618.html
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average US household. A more detailed bottom-up representation of mobility
behavior is used in the models of this chapter. This is necessary to analyze fea-
sibility of individual mobility with range-limited EVs and the charging-related
grid impact.

Currently, market penetration of EVs is low, mainly due to the small choice of
models and high purchase cost. Specifically, battery costs have to drop signifi-
cantly in order for EVs to be competitive without subsidies (Hidrue et al., 2011).
Apart from high cost, one important reason which could impede market pene-
tration is the range limitation of EVs and the resulting range anxiety of mobility
users (Eberle and von Helmolt, 2010). However, different datasets indicate that
a large share of individual car mobility could be realized by EVs. Using multi-
day GPS data from Seattle, Khan and Kockelman (2012) note that EVs with 100
miles range could meet the driving needs of 50% of one-vehicle households and
80% of multiple-vehicle households. Based on another set of real-world drive
cycles, Gonder et al. (2007) find that only 5% of the vehicles drive more than 100
miles per day. Despite the limitations, about one third of all drivers could suc-
cessfully use an EV now available on the market with a few adaptions in their
driving pattern (Pearre et al., 2011; Greene, 1985). According to recent studies,
electric vehicle penetration is expected to increase in many industrialized coun-
tries during the next years. In the most optimistic scenarios, different studies
estimate penetration rates of 24% (Becker et al., 2009) or 19% (NRC, 2010) of the
US light vehicle fleet in 2030. In Europe, Nemry and Brons (2010) estimate a
share between 7% and 27% of electric cars in the fleet by 2030.

4.2.3 Related Work on Charging Coordination of EVs

Research on EV charging coordination gains importance due to the expected rise
of EVs. This section provides an overview on different EV charging coordination
approaches and research questions in context of this thesis. Shorter versions of
this part are included in Flath et al. (2013) and Salah et al. (2013).

For additional views on this topic, the interested reader may refer to other
literature overviews (e.g., Bessa and Matos, 2012; Richardson, 2013).

Overview

The discussion on management methods to shift EV charging loads into off-peak
periods started already in the early 1980s (Heydt, 1983). Since then, various as-
pects have been examined by different communities, for example electrical engi-
neering, economics and computer science. The focus has been on impact analysis
of individual electric mobility on the electricity grid, and it has been shown that
EV charging increases load significantly (Roe et al., 2009; Clement-Nyns et al.,
2011; van Vliet et al., 2010). Depending on distribution grid characteristics, this
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can lead to bottlenecks and power quality issues (e.g., transformer overloads,
voltage drops). Different simulations have shown that the electrification level
of the current car fleet can reach between 10 – 40% before inducing problems in
low-voltage distribution grids (Staats et al., 1998; Rahman and Shrestha, 1993;
Richardson et al., 2010). Many of the aforementioned publications focus on grid
capacity analysis without taking into account the possibilities of economically
motivated charging coordination (Roe et al., 2009; Richardson et al., 2010; Rah-
man and Shrestha, 1993).

Objective Function

The heterogeneity of actors in today’s liberalized power systems leads to differ-
ent objectives for EV charging coordination. From a generation perspective it is
beneficial to optimize the utilization of low-cost generation capacity or use EV
charging to smooth the load curve in order to minimize ramping cost (e.g., Guille
and Gross, 2009). Sioshansi and Denholm (2010) minimize the total system cost
consisting of generation and EV operating costs. Environmental organizations as
well as governments often propagate the use of EV charging flexibility to reduce
carbon dioxide emissions by integrating renewable energy sources, e.g., use ex-
cess wind-power in-feed for EV charging (Lund and Kempton, 2008; Caramanis
and Foster, 2009). At the same time, electrical engineers often focus on coor-
dination to provide regulating power (Tomic and Kempton, 2007; Andersson
et al., 2010), minimize power losses (Clement et al., 2009; Sortomme et al., 2011),
maximize EV integration (Peças Lopes et al., 2009), or reduce emissions as well
(Göransson et al., 2010). In contrast, economists minimize cost for power suppli-
ers or EV owners (Sioshansi et al., 2010; Dietz et al., 2011). From a mobility user’s
point of view the objective is to reduce mobility costs by optimizing the charging
schedule based on variable electricity rates (Rotering and Ilic, 2011; Flath et al.,
2013).

Coordination Approach

Approaches for EV charging coordination range from central optimal planning
(Clement et al., 2009; Lund and Kempton, 2008) to decentralized approaches like
time-of-use pricing (Peças Lopes et al., 2009; Clement-Nyns et al., 2011; Qian
et al., 2011) or coordination based on local grid parameters (Peças Lopes et al.,
2010; Flath et al., 2013). In general, the approaches abstract from direct commu-
nication of individual preferences similar to the load coordination approaches
described in Section 4.1.
Centrally controlled coordination is often based on assumptions such as a given
share of all EV owners using off-peak periods or the option of shedding (cur-
tailing) some EVs on demand by contract (van Vliet et al., 2010; Kempton and
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Tomić, 2005; Andersson et al., 2010; Göransson et al., 2010; Sioshansi et al., 2010).
Evaluations of EV charging based on intermittent RES infeed often apply cen-
tral approaches as well (Lund and Kempton, 2008; Li et al., 2013; Markel et al.,
2009). Besides that, another model already uses centrally forecasted DR in addi-
tion to wind power integration (Wang et al., 2011). However, EV charging with
decentralized decisions based on RES price signals or online mechanisms has
been used recently (Schuller et al., 2012; Gerding et al., 2011; Dietz et al., 2011).
This chapter complements existing research with the integration and evaluation
of grid constraints in combination with decentralized coordination approaches
of individual EVs.

Grid Impact

In recent years, some research projects and field studies focused on the power
system impact of EV charging, similar to this thesis. Farmer et al. (2010) com-
pare different studies and find that available generation capacity is sufficient
— even with significant EV penetration — as long as the charging activity
is coordinated. An overarching study by Kintner-Meyer et al. (2007) finds
that the US power system capacity is sufficient to provide fuel for 84% of
the total car, pickup truck and SUV fleet with a daily average drive of 33
miles. The study does not focus on grid issues. However, the authors state
that EV charging adds significant new loads and may impact overall grid
reliability due to infrastructure utilization. Taylor et al. (2009) recommend
analyses on distribution feeder level to investigate which charging behaviors
and penetration levels need to be considered or require actions by utilities,
respectively. Real data case studies on the grid impact show slightly varying
focus, approaches and results. Peças Lopes et al. (2011) propose a framework for
the EV grid integration and show in simulations that with a central aggregator
EV penetration rates up to 52% are possible in an example medium voltage
grid. Based on a reference distribution grid, Qian et al. (2011) simulate different
controlled and uncontrolled charging scenarios which result in approximately
36% peak load increase with 20% penetration rate in uncontrolled charging.
In a planning model based on two real distribution areas, Pieltain Fernandez
et al. (2011) demonstrate the increase of system investment cost and significant
energy losses in a 60% EV penetration scenario. In addition, other possible
grid impacts like power quality problems or voltage imbalances may occur
(Putrus et al., 2009). Roe et al. (2009) investigate the effect of EV charging in
a distribution circuit and, in a specific simulation scenario, find a significant
reduction of the expected life of the distribution transformer. This thesis
adds a Swiss case study which analyzes the influence of EV loads on future
grid expansions under different load coordination and EV penetration scenarios.
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Several research publications partly use similar model features, input data and
evaluation methods as applied in this thesis. Table 4.3 provides an overview of
selected publications on EV charging coordination.
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Acha et al. (2010) D D D D D (D) (D) Time-coordinated optimal power flow helps DSOs to value the storage
available in their networks.

Acha et al. (2011) D D D D D D D (D) (D) D Mild effects of EV on 11kW network. EVs in foreseeable future not envi-
ronmentally advantageous.

Caramanis and Foster
(2009)

D D D D D D D Proof of concept that EV charging coordination can be beneficial for local
infrastructure and reduce cost.

Clement-Nyns et al.
(2010)

D D D D D D D Analysis of the effect of PHEVs in an IEEE 34 Bus shows that voltage
deviation limits as well as transformer limits are reached.

Clement-Nyns et al.
(2011)

D D D D D D Uncoordinated charging can lead to local grid problems. Centrally co-
ordinated charging based on two price levels leads to voltage deviations
that can be mitigated by voltage constraints.

Fan (2012) D D D D Use of congestion pricing inspired from communication networks with
willingness-to-pay function per individual EV.

Galus et al. (2010) D D D D (D) D Modelling dynamic state changes of EVs controlled by an aggregator in-
cluding individual utility.

Gerding et al. (2011) D D D D (D) Development and evaluation of an online auction allocation mechanism
for EV charging capacity, which leads to a higher allocative efficiency
than a fixed price system.

Heydt (1983) D (D) D D D Investigation of generation and load management cost given different
penetration rates. EV load management which shifts load into off-peak
hours can reduce peak loads and improve load factors.

Kempton and Tomić
(2005)

D D D D EVs can provide high-value time-critical system services. Regulation and
spinning reserve services can be provided by 3% of California’s car fleet.

Lund and Kempton
(2008)

D D D D Impact model on a national electricity system assuming all EV storage as
one big battery. Intelligent charging of EVs improves system efficiency,
lowers CO2 emissions and improves the ability to integrate RES.

Papadopoulos et al.
(2012)

D D D D D Evaluation of EV charging effects in LV distribution networks with smart
charging and micro-generation. Both can reduce voltage violations and
overloads significantly at higher EV penetration rates.
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Peças Lopes et al. (2009,
2011)

D (D) D (D) D D D D Comparison of dumb charging to a dual-tariff coordination and a cen-
tral smart charging coordination to maximize EV integration. Charging
coordination can increase the maximum EV integration level.

Qian et al. (2011) D D (D) D (D) D D D D Evaluation of uncontrolled EV charging on total load at example resi-
dential, commercial and industrial feeders. Optimal smart charging with
real-time tariff only shows that most charging occurs in low-cost hours.

Rahman and Shrestha
(1993)

D D (D) D D Impact of three simple charging models on total load: all EVs start simul-
taneously, EVs start sequentially in groups, EVs charge uniformly over
time. Main results indicate that distribution grid limits are reached in
residential areas at 20% EV penetration.

Sioshansi and Miller
(2011)

D (D) D D D D D Analysis of cost of EV charging given cases with and without emission
constraints. Constraining the emissions induced by EV charging does not
largely increase total cost.

Sioshansi (2012) (D) D (D) D D D D Evaluation of EV charging with individual agents under different tariffs
on total generation cost and emissions. RTP performs worst in total cost
due to resources with nonconvexities (e.g., ramping constraints)

Sortomme et al. (2011) D (D) D D D D Analysis of the relationship between feeder losses, load factor, and load
variance in the context of coordinated PHEV charging. Evaluation of
three central algorithms that minimize distribution system impact.

Valentine et al. (2011) D D D D D D Intelligent charging optimizes costs of generation, including ramping
cost in comparison to uncontrolled charging.

Vandael et al. (2011) (D) D D D D D Multi-agent systems (MAS) solution with negotiation on different grid
voltage levels. Hierarchical scheduling approaches of decentralized
charge intentions decrease system imbalances.

Wang et al. (2011) D D D (D) D Simulation of optimally dispatched PHEV charging load demonstrates
cost reduction potential which increases with DR enabled.

Table 4.3: Summary of selected contributions on EV charging coordination
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4.2.4 Individual EV Charging Optimization

Economic EV charging optimization can be formulated as a linear program by
adapting the classic Daryanian et al. (1989) model formulation for decentralized
electricity storage.13 This section describes the optimal EV charging model
used in this thesis to represent individual fully flexible EV agents. The core
part of this section is taken from our working paper on the grid impact of EVs
in Switzerland (Salah et al., 2013). The model and strategies are extended to
facilitate the integration of all mentioned coordination approaches on a generic
level. The used scenario and data description partly stems from our paper Flath
et al. (2013).

Bottom-up individual driving profiles from the German Mobility Panel
(Zumkeller et al., 2010) serve as input for the analysis. This thesis uses the
driving profiles of employees due to four reasons: First, employees represent a
large fraction of total population. Second, in comparison to other demographic
groups, employees drive more. Third, the commuter trips are a good opportu-
nity to be conducted by electric vehicles. Fourth, commuter mobility behavior
is fairly consistent over several weeks. Each driving profile provides the origin,
departure time, arrival time and destination as well as the distance traveled in
a 15 minute time resolution over one week. While the original driving profiles
where recorded using conventional vehicles, the optimization assumes them as
driven by EVs.

For each modeled electric vehicle i ∈ [1..n] driving profiles provide the respec-
tive information:

• a consumption vector γi =
〈
γi

1, ..., γi
T
〉

specifying the required electrical
energy for driving in each time slot as well as

• a location vector ai =
〈

ai
1, ..., ai

T
〉

where ai
t indicates a vehicle’s current lo-

cation area over the collection of time slots t ∈ [1..T].

Following the time resolution of the EV profiles, all consumption (driving) and
charging actions are discretized in 15-minute intervals. In our model the time
horizon (T) is set to one week consisting of 672 time slots. The time horizon also
spans a (potentially varying) price vector p = 〈p1, ..., pT〉 indicating the price
of electricity at each point in time. Given this discrete time structure, the EVs’
charging decisions can be represented as charging vectors φi =

〈
φi

1, ...φi
T
〉
.14

The total load at location x at time t then is Φt,x = ∑n
i=1

[(
φi

t
)

1(x=ai
t)

]
where

1(x=ai
t)

is the indicator function on the location level. While the mobility dataset

13See Sioshansi et al. (2010) or Flath et al. (2013) for similar EV charging models.
14When referring to individual vehicle decisions we will sometimes drop the i index from γi and

φi for ease of exposition.
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Figure 4.2: Distribution of vehicle locations and states over one week based on 2,966
employee driving profiles (Data source: Zumkeller et al., 2010)

of Zumkeller et al. (2010) provides a multitude of vehicle locations, the charging
locations are restricted to home and workplace in line with typical EV scenar-
ios. The driving profiles of employees in Figure 4.2 demonstrate that these two
locations account for the highest relative probability of EV locations. Given the
assumption that mobility behavior does not change significantly with EVs, it
seems most reasonable that charging stations are available at these locations.

Individual charging decisions are given by charging strategies. A charging
strategy determines individual charging amounts, given the driving profile and
a price vector, that is the mapping (γi, ai, p) 7→ φi.15 In the following, this thesis
focuses on the individually optimal charging based on a price signal assuming
fully price-responsive EV agents.

Decision Variables

A charging program defines the charge amount φt for each time slot. Together
with the static consumption values γt it also defines the battery state of charge
SOCt for each time slot. As V2G is not in scope, the charging amount is posi-
tive and limited by the maximum charging amount κ. Given the different op-
tions for charging speeds (Section 4.2.1), the 11 kW charging mode is used in

15See our paper Flath et al. (2012) for a discussion of different charging strategies.
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the initial model. Assuming a linear charging process and discretized time slots
of 15 minutes — similar to the driving profile resolution — this translates into
κ = 2.75 kWh per time slot. Similarly, the battery level must always be positive
and cannot exceed battery capacity SOC. The model deviates from original car
specifications (Table 4.2) and rather uses a fictitious vehicle with SOC = 30 kWh
battery capacity and a consumption of 0.15 kWh/km determining a maximum
range of 200 km. The rationale here was to better capture the capabilities of a
future standard EV. Without consideration of losses, the 11 kW mode results in
a minimum charging time of about 165 minutes for a complete charge for the 30
kWh-battery.

Objective Function

Since the focus is on economic coordination, individual charging cost minimiza-
tion is the appropriate objective.16 The charge amounts with the corresponding
billing structure allow to determine the total individual charging costs C:

min
φ

C(φ) (4.10)

The functional form of C(φ) obviously depends on the payment structure as
described before.

Constraints

A valid charge program needs to ensure the relationship between charging
amounts (φt), driving consumption (γt) and the vehicle battery level (SOCt).
Specifically, the battery level at time t is determined by the battery level as well
as the consumption/charging amounts in t− 1:

SOCt = SOCt−1 + φt − γt ∀t ∈ [1..T] (4.11)

Furthermore, a terminal battery level SOCT is specified to prevent the optimiza-
tion from completely discharging the battery towards the end of the time hori-
zon. The initial charge level allows us to compare the different charging coordi-
nation approaches:17

SOCT = SOC0 (4.12)

16Alternative optimization goals include vehicle availability, emissions or battery health.
17This constraint can lead to some driving profiles being infeasible if there is not enough time

to restore the full battery towards the end of the optimization horizon. An alternative to
account for different terminal battery levels SOCT is the valuation of the remaining energy in
the batteries (Scott et al., 2013).
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The total charging amounts under optimal charging are then exogenously given
by total consumption and the difference between the initial and terminal SOC.

Moreover, since EVs can only be charged when connected to the grid, the ve-
hicle location at extracted from the driving profiles governs the current charging
capacity κt.18

κ (at) =

{
κ if at ∈ {Home, Work},
0 otherwise.

This current charging capacity then constrains the range from which φt can be
chosen:

φt ∈ [0, κ(at)] ∀t ∈ [1..T] (4.13)

4.2.5 Solution Procedure and Model Setup

Using the data described in the previous section, EV charging behavior is mod-
eled to calculate the total locational load based on a JAVA program. This section
is a combined and extended version of parts of our papers Flath et al. (2012),
Flath et al. (2013) and Salah et al. (2013).

Solution Procedure

For each modeled EV a corresponding EV agent encapsulates an appropriate
driving profile, a battery state-of-charge (SOC) and a charging decision logic.
The iteration over the set of EV agents leads to the individual charging decisions
over the model horizon. The aggregation of individual decisions yields the addi-
tional load induced by EV charging. In the following, this total EV charging load
is used for the evaluation of dynamic load coordination mechanisms (DLC and
DLP). Since each decision influences the aggregate load, the coordination ap-
proach parameters are updated after each individual EV agent has determined
its optimal charging pattern. The optimization horizon for each EV is one week.
To this end, the subsequent EV always faces the coordination mechanism pa-
rameters after the previous EV’s decision. Obviously, in the case of dynamic
load coordination this leads to disadvantages for EV agents scheduled later. The
introduction of more granular decisions as described in our paper Flath et al.
(2013) results in a marginalization of this disadvantage. However, for the anal-
ysis of average cost and the influence on local grid utilization, the ordered op-
timization approach is sufficient. In addition, the EVs are shuffled during the
initialization of each week’s optimization problem to avoid effects of sorted se-
quences in the following analyses. Figure 4.3 depicts a program overview (for

18Note that while this looks like an if-else condition this is only for compactness of expression.
Each κ(at) is a static expression (i.e. no decision variable) extracted from the driving profiles
which are applied to build the set of constraints (4.13).
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Figure 4.3: Model workflow

one week optimization horizon).
As the decision variables φt and SOCt are real-valued and the objective func-

tion as well as all constraints are linear, the result is a standard linear optimiza-
tion program. The industry-standard IBM ILOG CPLEX 12.3 solver facilitates
efficient solving of the optimization problems for each modeled vehicle. Given
the large problem size when charging schedules for many thousand vehicles are
optimized, it is very important to ensure the linearity of the individual opti-
mization programs. This is one reason for some simplifying model assumptions
(linear charging model, fixed driving schedules) which otherwise would yield
quadratic or mixed-integer problem formulations.

Model Setup for Charging Coordination

A simple scenario setup serves as basis for the analyses of local grid constraints
in the context of EV charging.19 More specifically, the local grid constraint in
focus is the capacity limit of the transformer substation in the distribution grid
in a specific area (e.g., load limit of the distribution transformer). If this limit is
exceeded, the transformer degenerates more rapidly. Recent research on electric
mobility shows that such transformer overloads are the central challenge of EV

19This section is an amended version of our data description used in the paper published in
Transportation Science (Flath et al., 2013).
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integration in distribution grids (Stoeckl et al., 2011; Gong et al., 2012). Other
physical constraints such as transmission line limits or voltage drops would
go beyond the scope of this thesis. As described above, the charging loads are
analyzed at two possible charging locations or areas, Home and Work. The load
limit for EV charging in both areas is set to Φlim

x = 2, 000 kW, i.e., approximately
20% of the EV population can charge simultaneously at each location at 11 kW
charging power (e.g., assuming one residential and one industrial zone). These
are instances of the total maximum load L introduced in Section 4.1. Using the
locational information of the driving profiles to determine charging locations,
this approach is similar to the analysis of residential area load as described by
Rahman and Shrestha (1993).

The simulation of individual driving habits and EVs results in high computa-
tional requirements (Richardson, 2013). To keep computability on an acceptable
level, 1,000 random employee driving profiles out of the 2,966 from the German
Mobility Panel (Zumkeller et al., 2010) depicted in Figure 4.2 serve as a model
base for EV charging load. Each vehicle is modeled individually as described
in the previous section to ensure decentralized coordination based on rational
and independent individual decision-making. However, because of excessive
trip distances or insufficient charging time between subsequent trips, a driving
profile may not be feasible with an EV. In addition, the end SOCT condition 4.12
of the optimal charging regime results in some profiles becoming infeasible.
The reason is that this thesis assumes SOCT = SOCO = SOC to be able to
compare results of uncoordinated and coordinated charging. For these reasons,
100 infeasible driving profiles have to be removed in the base scenario (charging
at home and work with charging power 11 kW).20

The population charging behavior is evaluated under a time-based variable
external price signal which is an instance of pext

t described in Section 4.1. This
thesis uses EPEX SPOT (European Power Exchange) hourly electricity prices
from 2012.21. These prices are not directly applicable to end-consumers. How-
ever, the availability of low-cost generation capacity in the market is somehow
reflected by the price variability. This way, the electricity price data also serves as
a proxy for renewable generation availability. These prices neither include taxes
nor license or transmission fees. Therefore, the average hourly prices of 2012 are
normalized to the average retail electricity price in Germany in the same year
(approximately 0.26 e/kWh).22 In addition, the prices are interpolated linearly

2073 profiles are removed due to excessive trip distances. Additional 25 profiles are removed
due to aT 6∈ {Home, Work}, and 2 profiles because the time after the last trip is insufficient
to reach SOC.

21www.epexspot.com/en/market-data/
22The average electricity price in 2012 for households is reported by Bundeskartellamt and

www.epexspot.com/en/market-data/
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Figure 4.4: Upscaled and interpolated electricity prices of 52 weeks in 2012

to better map hourly prices to the 15-minute resolution of the driving profiles.
Finally, all negative prices are set to zero to avoid gains through consumption of
electricity for mobility. This is in line with the EU goals of energy efficient tariffs
that do not support the waste of energy, e.g., directive 2006/32/EC. Figure 4.4
depicts the upscaled and interpolated electricity prices for one week. This ap-
proach follows prior research on smart grid and EV applications (Hartmann and
Özdemir, 2011; Gottwalt et al., 2011).

4.3 Evaluation of Local Load Coordination

In the following, instances of the generic coordination approaches from Section
4.1 are analyzed in combination with EV charging. First, quantitative results of
the EV charging instances are presented individually. Then, a quantitative and
qualitative comparison as well as a sensitivity analysis of the load-pricing ap-
proaches are conducted to understand the influence of the different approaches
and setups. The sections on uncoordinated, supply-based coordination and dy-
namic load pricing coordination are partly reproductions of Salah et al. (2013)
and Flath et al. (2013). This section also comprises the results of Flath et al.
(2013).

Bundesnetzagentur (2012) with 0.2606 e/kWh and by (BDEW, 2013) with 0.2589 e/kWh,
respectively.
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4.3.1 Local EV Charging Coordination

The effects of local load coordination approaches are analyzed in combination
with temporal price-based coordination. First, uncoordinated and supply-based
coordination with optimal charging strategies are analyzed as reference cases
that ignore the locational dimension. Then, the different decentralized local load
coordination approaches as well as an optimal central scenario are evaluated, us-
ing EV charging load. The respective IBM ILOG CPLEX optimization programs
are provided in Appendix A – D.

Uncoordinated Charging

Uncoordinated charging (UC) without any price incentives serves as a reference
scenario to evaluate the results of all other approaches.23 The practical interpre-
tation is a business-as-usual scenario for EV charging, since most end consumers
pay a flat tariff per kWh only. In this case, the EV agents are assumed to pursue
a range-maximizing charging strategy. This simplest EV agent behavior is to
charge the battery whenever possible, i.e., independent of any other decision
factors like SOC or charging costs. Using the battery capacity of SOC = 30 kWh
and the maximum charging amount in one time slot κ = 2.75 kWh the simple
charging strategy is given by

φt = min
[
κ(at), SOC− SOCt

]
(4.14)

where

κ(at) =

{
κ if at ∈ {Home, Work},
0 otherwise.

This simple charging maximizes EV range at any given time. Moreover, it re-
quires no information on future trips of the EV customer. It can be used to ana-
lyze the feasibility of any given driving profile under EV battery restrictions and
provides a maximum range benchmark. Therefore, all remaining driving pro-
files used are feasible under UC.24 Uncoordinated charging mainly depends on
the driving profiles and is expected to result in load spikes due to commuter mo-
bility, i.e., in the morning at Work and in the evening at Home. Figure 4.5 depicts
the resulting loads at the different locations. On the left, it shows the load over
time at both charging locations Home and Work in one example week (672 time
slots). On the right, all load levels throughout the simulated 52 weeks with each
672 time slots serve as the base for each location (34,944 time slots per location).
The violin plots on the right of Figure 4.5 depict the distribution of occurred load

23A version of this section is also used in our working paper Salah et al. (2013).
24This charging approach was used to identify the 100 infeasible profiles at 11 kW charging

speed.
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levels over all 52 weeks. This type of diagram is repeated in this chapter to allow
for visual comparison of the different load coordination mechanisms.
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Figure 4.5: Aggregate load curve at Home and Work locations with uncoordinated charg-
ing (UC) in one example week (672 time slots) and distribution of loads over 52 weeks
(34,944 time slots)

There are no observations of overloads of the given infrastructure limit at both
locations. The distributed arrival times in combination with the charging speed
of 11 kW leads to a low simultaneity factor. Since the driving profiles are re-
peated each week and charging is not price-sensitive, the looping over several
weeks does not change this outcome.

However, simple charging is completely static and cannot be influenced by
external signals (e.g., no response to price, congestion or renewable generation
signals). In the following, the individual EV charging optimization is used —
assuming full price-responsiveness on behalf of the EV agents.

Supply-based Charging

The intuitive solution of supply-based (SB) charging coordination uses the ex-
ogenous wholesale electricity market price. This serves as a reference scenario
of coordination without consideration of resulting loads.25 To this end, the co-
ordination effect on aggregate load is analyzed under full information both on
wholesale prices and trips of each individual EV agent.

Hence, the individual charging optimization model described in Section 4.2.4
is instantiated with a supply-based pricing structure. The individual EV charg-

25This section contains is based on parts of our paper Flath et al. (2013) where supply-based
charging also serves as reference scenario.
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ing objective function is:

min
φ

C(φ) =
T

∑
t=1

(
pext

t · φt
)

(4.15)

subject to the constraints listed in Section 4.2.4. Given the individual optimiza-
tion, all EV agents try to shift their charging demand to low-cost periods of the
external price signal. Consequently, the aggregate load exhibits extreme spikes
greatly exceeding 2,000 kW under wholesale electricity price coordination dur-
ing low-price periods. Figure 4.6 shows the resulting load pattern for one exam-
ple week and the load distribution over all 52 weeks. In addition, the exogenous
price vector for the example week is depicted below the load pattern. The lower
right corner shows the external price signal distribution over all 52 weeks in a
violin plot as well. Note that the y-axis for the full year price distribution is dif-
ferent from the example week account for wholesale price spikes that occurred
in other weeks of the year 2012.
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Figure 4.6: Aggregate load curve at Home and Work locations with supply-based coordi-
nation (SB) and external price signal in one example week (672 time slots) and distribu-
tion over 52 weeks (34,944 time slots)

The violin plot in the upper right corner shows that extreme load spikes also
occur in other weeks of the year. These effects are in line with results from prior
research on the effects of price-based coordination in retail markets (Rahman
and Shrestha, 1993; Gottwalt et al., 2011). Another interesting outcome is that
the charging mainly occurs at the Home location, even though charging is possi-
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ble at both locations. The reason for this is that in the current electricity market
low electricity prices typically emerge during low-demand hours at night (see
Figure 4.4). Consequently, supply-based EV charging coordination leads to tem-
poral and spatial clustering of charging activity. Therefore, the physical limits
of distribution grids may be significantly challenged in residential areas by in-
creasing EV penetration.

Static Load Curtailment

The simple solution to avoid infrastructure overloads through EV charging is to
limit the maximum charging speed at the charging station. This is an instance of
the SLC approach described above. As indicated in Table 4.1 the pricing struc-
ture and therefore the objective function remains the same as with supply-based
charging. However, in the EV model setup, the individual charging speed is
limited to

L
n
=

2, 000kW
900

≈ 2.2kW. (4.16)

This directly translates into κ = 0.55 kWh per 15 minutes time slot. Given this
additional constraint, the individual EV charging optimization leads to lower
peak demands, as depicted in Figures 4.7.
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Figure 4.7: Aggregate load curve at Home and Work locations with static load curtailment
(SLC) and external price signal in one example week (672 time slots) and distribution
over 52 weeks (34,944 time slots)

However, these reduced loads come at the expense of lower utilization of low-
cost generation which will result in higher average wholesale prices paid by con-
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sumers. In addition, limited charging speed influences the spontaneous range
and renders additional profiles infeasible. These factors will be discussed in the
comparison of the different coordination mechanisms at the end of this chapter.

Dynamic Load Curtailment

Obviously, the static load curtailment leads to a reduction of charging speed to
avoid overloads. This is desirable if the total system load at a specific location is
high. However, given no other loads, a charging speed reduction makes no sense
in low-load periods, since it may hinder the consumption of low-cost generation
capacity and reduces available driving range. The DLC approach, in contrast,
starts curtailing charging loads not before total load reaches the defined infras-
tructure limit at a location. Given the individual charging optimization, this sec-
tion calculates the “first-come first-serve” alternative only. The second option —
reducing all loads equally — results in multiple optimization loops. Under full
information, each EV agent needs to update its optimal charging pattern in case
of load curtailments. Due to the sequential solution, this increases the required
optimization time beyond being acceptable. However, from an overall load and
charging cost perspective, the expected results are similar to the “first-come first-
serve” alternative. The dynamic load curtailment constraint from Equation 4.4
translates into the following condition at all charging locations:

n

∑
i=1

φi
t,x ≤ Φlim

x ∀t ∈ T

where Φlim
x = 2, 000kW

(4.17)

Similar to SLC, the objective function and other auxiliary conditions remain the
same. Given the strict capacity constraint, DLC succeeds in keeping the infras-
tructure limits as depicted in Figure 4.8. At the same time, DLC does not restrict
consumption needlessly during low-cost time slots. However, it can result in
infeasible profiles similar to SLC.
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Figure 4.8: Aggregate load curve at Home and Work locations with dynamic load curtail-
ment (DLC) and external price signal in one example week (672 time slots) and distri-
bution over 52 weeks (34,944 time slots)

Static Load-Based Pricing

Load-based pricing coordination aims to overcome central load control and thus
can avoid inefficient load curtailments. In the case of EV charging, it focuses on
ensuring mobility by avoiding the occurrence of infeasible driving profiles. Price
coordination approaches hand over the decision-making to the individual agent
and allow for different valuations for the ‘charging’ or ‘mobility service’.

Two different instances of SLP are evaluated within this thesis. First, a typi-
cal load pricing SLPmax based on the maximum load in a billing interval of one
week (∆tb). Second, a continuous load pricing SLPt where billing and measure-
ment interval have the same duration (∆tb = ∆t). As mentioned in Table 4.1, the
price element in the objective function needs to be adjusted for SLP approaches.
Under SLPmax, the objective function adds a payment for the maximum individ-
ual load occurred per week. As mentioned above, increasing marginal capacity
costs are used to incentivize the use of lower charging speeds:

min
φ

C(φ) =
T

∑
t=1

(
pext

t · φt
)
+ µ ·

(
max

t∈[1..T]
{φt}

)β

(4.18)

This EV charging example utilizes a quadratic function with β = 2 to represent
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increasing marginal load cost.26 In this exemplary instance, factor µ which con-
trols the influence of load price is set to unity. Similarly, the continuous load
pricing SLPt objective function for EV charging is implemented with shorter
billing periods:

min
φ

C(φ) =
T

∑
t=1

(
pext

t · φt + τ · φ2
t

)
(4.19)

The constant factor τ determines the penalty fee for higher loads per period and
is set to τ = 0.1 in the current example. If it is too low, the load level influence
on the total price per period is marginal and the resulting charging patterns are
close to the purely supply-based coordination. In the case of this factor being
too high, the individual optimization tries to minimize load peaks without inte-
grating the external price signal. The selected value ensures in this scenario that
most load peaks are reduced to adhering or only slightly exceeding the infras-
tructure limit. Given the maximum charging speed of κ = 2.75 kWh in one time
slot, the total costs are approximately split even between the SLP component
and the average external price at this limit. Such scaling is not possible for µ in
the SLPmax approach because the average influence of the SLP component per
kWh depends on the total consumption per week, which differs per vehicle. A
more detailed sensitivity analysis of both factors is presented in Section 4.3.3. As
depicted in the overview, Figures 4.9, and Figures 4.10, both approaches lead to
a peak load reduction.

Obviously, the SLP approaches cannot guarantee total load to stay within in-
frastructure limits. Depending on the implementation, the main difference is
that SLPmax results in an individual optimal selection of a maximum charging
speed for a whole week. Whereas, under SLPt the EV agents balance between
energy and load cost in each time slot separately.

26The next section of this thesis shortly discusses the reasons for convex cost functions.
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Figure 4.9: Aggregate load curve at Home and Work locations with SLPmax coordination
and external price signal in one example week (672 time slots) and distribution over 52
weeks (34,944 time slots)
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Figure 4.10: Aggregate load curve at Home and Work locations with SLPt coordination
and external price signal in one example week (672 time slots) and distribution over 52
weeks (34,944 time slots)
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Dynamic Load-Based Pricing

Static load pricing is not sufficient due to still existing overloads. In addition, in
a practical example the available infrastructure capacity might vary over time.
Therefore, DLP is applied to the EV charging model in the form of dynamic
prices at the available charging locations Home and Work. This section describes
in detail the instance of a DLP approach in the form of local area pricing, based
on our paper (Flath et al., 2013).27 Following the theory on road pricing (Arnott
and Small, 1994), this approach aims to improve coordination by introducing a
location surcharge that reflects the difference between the social costs of charging
and the private costs of users. In road congestion pricing marginal cost pricing
is used, where the price is the sum of marginal costs to the road provider and the
opportunity costs of the congestion delay of all drivers. These marginal costs in-
crease with each additional driver according to their influence on average speed.
This is not directly comparable with the situation in the power grid. However,
there are reasons why a similar capacity pricing scheme seems promising for
local power grids:

• Additional utilization increases the risk of grid failures for all users

• Losses increase disproportionately with energy flow

• Infrastructure wear increases with additional load

Due to these reasons, the DLP approach needs to fulfill the first condition: The
instantaneous dynamic local price component ploc

t,x at location x is increasing in
the total current load at this location Φt,x, that is

∂ploc
t,x

∂Φt,x
> 0. (4.20)

As noted by MacKie-Mason and Varian (1995b), there is no need for economic
coordination when available capacity greatly exceeds demand. On the other
hand, if quantity demanded exceeds quantity supplied, capacity allocation is
important to ensure system reliability. Therefore, the increase of the local price
component should be increasing in the local utilization level, which leads to a
convex cost function:

∂2ploc
t,x

∂2Φt,x
> 0 (4.21)

This local price needs to be adjusted such that the local load infrastructure
limit Φlim

x is not exceeded in any time slot. As substations exhibit temporally
varying residual load patterns, it could well be imagined that the infrastructure

27This sections is in large parts a reproduction of our paper on area pricing (Flath et al., 2013).
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limit itself could be time-varying. Denoting substation utilization by z = Φt,x
Φlim

x
the following pricing function parameterized by ξ is used to determine location-
specific prices fulfilling conditions (4.20) and (4.21):

ploc
t,x =

{
eξz−1
eξ−1 ploc

lim if z < 1
ploc

lim if z ≥ 1
(4.22)

where ploc
lim is the locational surcharge at the infrastructure limit z = 1. Some

exemplary pricing functions using different values for ξ are depicted in Figure
4.11. This DLP approach is applied in the model to update the charging prices
dynamically given the charging activity at different locations. After a customer’s
charging decision has been made, the adjusted price for the current location is
updated to reflect the load increase and the subsequent customers experience
adapted prices.

Total load at location (Φx)

Lo
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loc

Φx
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ξ=100.0
0

0

Figure 4.11: Examples of dynamic local pricing function for different values of ξ

In the following, the limit price ploc
lim is based on the median price of the exter-

nal price pext of the respective week. Given the dynamic adjustment, the share of
the local price is especially high in “congested” time slots. As mentioned above,
the EV agents optimize their charging pattern based on a price vector including
the local price component which is updated after each EV. The shuffling of EVs
minimizes the effects of sorted sequences (“unfairness”). To illustrate the effect,
the intermediate case (ξ = 3) from Figure 4.11 serves as an example. As charging
is triggered by low electricity prices, the area price component increases greatly
in time slots with low external prices. Figure 4.12 shows the resulting loads
and prices at the locations using optimal EV charging in an example week. The
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depicted prices represent the price level reached after the final EV’s charging
decision.
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Figure 4.12: Aggregate load curve at Home and Work locations with DLP coordination
and external price signal in one example week (672 time slots) and distribution over 52
weeks (34,944 time slots)

Higher loads still occur at the Home location because low wholesale electricity
prices still occur during nighttime. Notably, the local load in all 52 simulated
weeks never reaches the limit Φlim at any location, which also indicates that the
local limit price ploc

lim is never reached in both locations. The distribution of the
different price elements in the lower right corner shows that the additional local
surcharges remain on low levels. Specifically, there is hardly any local surcharge
at Work, which indicates that load levels are well below the given capacity limit.
As mentioned before, the additional revenues generated by location-specific sur-
charges can be used for other purposes, e.g., capacity expansion. In summary,
dynamic local price increases lead to both temporal and spatial shifts in individ-
ual charging decisions and reduce load peaks significantly.
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Optimal Central Planning of EV Charging

An optimal central planner (OPT) serves as a reference case for the quantita-
tive comparison of the different coordination approaches. To this end, the cen-
tral planner has full information both about wholesale prices and trips of each
individual EV agent i. The main difference is that all charging schedules are
optimized centrally and not individually for one week:

min
φi

∑
i

C
(

φi
)
= ∑

i

T

∑
t=1

(
pext

t · φi
t

)
(4.23)

The optimization is subject to the constraints 4.11, 4.12 and 4.13 for each indi-
vidual EV. In addition, the maximum load restrictions used in DLC at Home and
Work (Equation 4.17) are directly implemented in the optimization model:

n

∑
i=1

φi
t,x ≤ Φlim

x = 2, 000 kW ∀t ∈ T.

Given this implementation, the CPLEX solver calculates an overall cost min-
imizing charging pattern for each week which at the same time fulfills the grid
limits and ensures mobility needs. The introduced overview graph shows that
the load limits are always exactly reached, but never exceeded in time slots with
low wholesale prices (Figure 4.13). In the following, this central planner ap-
proach serves as a quantitative reference.
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Figure 4.13: Aggregate load curve at home and work locations given a central planner
(OPT) and external price signal in one example week (672 time slots) and distribution
over 52 weeks (34,944 time slots)

4.3.2 Quantitative Comparison

Figure 4.14 shows the load variability over 52 weeks for the implemented charg-
ing coordination approaches at the Home location — where the majority of con-
sumption occurs. For completeness, a similar diagram for the Work location is
provided in Appendix E. The figure demonstrates that all approaches that com-
bine the external price signal with some form of infrastructure load coordina-
tion lead to relatively similar load patterns. The main charging load is clustered
in low-cost night hours and at weekends. Overall, the resulting load curves
of the DLC approach seem to match the OPT load curves the best. Both ap-
proaches fully utilize available capacity in low-cost time slots and do not exceed
infrastructure limits by design. The static individual coordination approaches
(SLC/SLP) and DLP exhibit very similar patterns. In the following, a more de-
tailed analysis based on important indicators is performed.

Obviously all approaches which incorporate load as an influencing factor of
coordination succeed in reducing the loads significantly. However, in detail the
approaches vary widely in efficiency and effectiveness. Quantitatively the re-
sults of the EV charging coordination approaches are evaluated using the fol-
lowing dimensions:28

Average cost (whsl): The average wholesale (whsl) cost per kWh can serve as

28We used similar dimensions in our paper Flath et al. (2013).
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Figure 4.14: Comparison of charging coordination outcomes at Home over 52 weeks

an indicator for the ability of the charging coordination to incentivize the
consumption of low-cost supply (or RES infeed). With low wholesale cost
the important target of integrating the supply availability is achieved. The
additional revenues from load-based pricing are intentionally omitted to
preserve comparability. As mentioned above, these costs can be redis-
tributed or used for capacity investments. The difference in individual cost
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is obvious, but not within the scope of this thesis. The cost obtained under
SB charging coordination provides a lower bound for average wholesale
cost.

Average SOC: The average SOC represents the spontaneous range availability
of the EV population. In the following, the average SOC is represented in
a percentage of the maximum SOC. A higher average SOC indicates a high
availability of mobility services. Since range anxiety is one of the main
obstacles of EV penetration, this is an important factor for EV adoption
(Eberle and von Helmolt, 2010). The UC serves as the maximum possible
benchmark in this scenario.

Average infeasible profiles: The average number of infeasible profiles per week
indicates the level of guaranteed mobility. Canceling trips which are pos-
sible with other charging coordination mechanisms may induce customer
dissatisfaction. The risk of infeasible rides may even prevent EVs from
gaining share in the individual mobility market. However, there is always
the outside option of using a non-electric vehicle to fulfill mobility needs.

Overloads: The number of overloads indicates the effectiveness of congestion
mitigation. While overloads should ideally not occur at all, the grid infras-
tructure elements are able to cope with limited overloads for a short period
of time.

Maximum load: The maximum load occurred at each location indicates the mag-
nitude of overloads and therefore helps to understand if given grid infras-
tructure might tolerate this for a short period. On the other hand, low
maximum loads reveal that given capacity is not fully utilized and coordi-
nation mechanisms might be adjusted to allow higher loads.

Locational consumption: The share of total charging consumption at the loca-
tions Home and Work stands for the influence of the mechanisms to induce
locational load shifts.

The important variables characterizing the outcome of each coordination ap-
proach are compared in Table 4.4. In addition to the base case of 2,000 kW, all
approaches have been simulated using a local load limit of Φlim

x = 1, 000 kW to
investigate potential differences with less spare capacity.

Regarding the wholesale cost, the cost-optimal SB benchmark of 0.135 e
kWh

is a hypothetical solution only, since the goal is to avoid overloads and the
maximum load of 9,470 kW is not acceptable. The realistic benchmark which
incorporates the local infrastructure limits are results of a central planner (OPT)
with full information: 0.144 e

kWh (0.159 e
kWh at Φlim

x = 1, 000 kW). The other
extreme in terms of average wholesale cost is uncoordinated UC charging.
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C
oordination

UC SB SLC DLC SLPmax SLPt DLP OPT

Dimension Home Work Home Work Home Work Home Work Home Work Home Work Home Work Home Work

Li
m

it
2,

00
0

kW

Avg. cost (whsl) [ ekWh ] 0.307 0.135 0.155 0.145 0.149 0.163 0.154 0.144

Avg. SOC [pct.] 98.7% 69.9% 68.2% 70.8% 71.7% 73.6% 72.1% 71.1%

Avg. Inf. Prof. [#] 0 0 52.0 1.0 0 0 0 0

Overloads [#] 0 0 975 19 0 0 0 0 425 0 50 0 0 0 0 0

Max. Load [kW] 684 733 9,470 5,361 1,812 1,071 2,000 2,000 2,465 1,327 3,146 1,057 1,804 1,428 2,000 2,000

Home Cons. [pct.] 68.8% 97.0% 95.9% 96.5% 96.9% 94.9% 93.1% 95.9%

Li
m

it
1,

00
0

kW

Avg. cost (whsl) [ ekWh ] 0.307 0.135 0.175 0.159 0.149 0.163 0.172 0.159

Avg. SOC [pct.] 98.7% 69.9% 66.9% 72.0% 71.7% 73.6% 74.7% 72.7%

Avg. Inf. Prof. [#] 0 0 105.0 5.0 0 0 0 0

Overloads [#] 0 0 1,501 33 0 0 0 0 2,636 21 1,323 4 26 0 0 0

Max. Load [kW] 684 733 9,470 5,361 824 484 1,000 1,000 2,465 1,327 3,146 1,057 1,239 797 1,000 1,000

Home Cons. [pct.] 68.8% 97.0% 93.4% 95.7% 96.9% 94.9% 91.4% 94.1%

Table 4.4: EV model results with different charging coordination approaches at 11kW
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All load-pricing and load-curtailment approaches succeed in reducing the
average wholesale cost in comparison to UC. Considering the OPT benchmark,
DLC clearly yields a very good average cost outcome in comparison to the
other approaches. However, both load curtailment options result in infeasible
profiles due to their nature of external control. This is a major disadvantage
of these approaches. The simulation with Φlim

x = 1, 000 kW demonstrates the
increasing risk of having infeasible profiles with load curtailment and limited
infrastructure capacity.

On the other hand, in terms of overloads, SLC and DLC can ensure avoidance
by design, whereas all load-pricing approaches are prone to experience over-
loads. As expected, significant overloads occur in supply-based coordination.
SLPmax and SLPt fail to ensure infrastructure limits in the current setup in both
instances. Both do not react to the limit change from 2,000 kW to 1,000 kW,
similar to uncoordinated UC and cost-optimal SB charging. Notably, in the
provided instance the DLP approach fully avoids overloads at the 2,000 kW
level and leads to minor overloads at the 1,000 kW level by incorporating the
total load information.

The average SOC is around 70% for all load coordination approaches and
yields limited additional insights. This is also caused by the start and end
constraints for each week which enforce a full battery (100%). Concerning the
exemplary EV used in this simulation, 70% is translated into approximately
140 km of spontaneous range. The dimension of locational consumption
affirms the initial finding that with wholesale price-based load coordination, EV
charging loads are shifted into night hours when vehicles are at Home. Only UC
yields a stronger dispersion of charging activity over both charging locations.

In summary, DLC dominates SLC in all dimensions. It is also better than the
load-pricing approaches in terms of average wholesale cost. In addition, it en-
sures adherence to load limits but at the cost of some infeasible profiles. The
cost disadvantage of the load-pricing approaches may be caused by the initial-
izations of the factors τ, µ and ξ used. The fact that the maximum loads in the
DLP scenario do not reach the local limit in the 2,000 kW example supports this
assumption. Therefore, the sensitivity of load-pricing approaches will be further
investigated in the following.
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4.3.3 Sensitivity Analysis of Load-Pricing Approaches to
Different Parameter Initializations

Given the dependence of all presented load-pricing approaches on their param-
eter setup, this section discusses the outcome sensitivity on different initializa-
tions. Due to the extensive computation required to optimize all 52 weeks of the
year, only a few variations of the relevant parameters are performed to gain an
understanding of the resulting impact.

Sensitivity of SLPmax Approach

The presented SLPmax approach is influenced by varying the constant µ in Equa-
tion 4.18 which trades off overloads and costs. The initial implementation with
µ = 1 leads to lower wholesale cost in comparison to most other local load
coordination approaches (see Table 4.4), but at the same time some overloads
occurred at the Home location. Increasing the parameter µ results in higher indi-
vidual load prices even at low charging levels. For this reason, EV agents reduce
their charging levels and shift load to time slots with higher wholesale prices.
As shown in Table 4.5, the average wholesale price increases and overloads are
eliminated. In contrast, lowering µ results in also lower wholesale prices and
increasing maximum loads as well as more overloads at the Home location.

µ

0.5 1 3 10

Home Work Home Work Home Work Home Work

SL
P

m
ax

Avg. cost (whsl) [ ekWh ] 0.145 0.149 0.158 0.171
Avg. SOC [pct.] 71.2% 71.7% 72.7% 74.6%
Avg. Inf. Prof. [#] 0 0 0 0
Overloads [#] 917 0 425 0 0 0 0 0
Max. Load [kW] 3,232 1,824 2,465 1,327 1,885 876 1,291 620
Home Cons. [pct.] 97.0% 96.9% 96.5% 95.2%

Table 4.5: Impact of parameter µ on outcome of SLPmax approach

For the scenario discussed in this thesis, the setup which avoids overloads
and still uses low-cost wholesale time slots is roughly 1 < µ < 3 with average
wholesale cost between 0.149 e/kWh and 0.158 e/kWh. To determine the op-
timal setup of parameter µ, the cost of overloads would need to be calculated.
Given the large investments and long service life of transformers, this goes be-
yond the scope of this thesis.
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Sensitivity of SLPt Approach

The SLPt approach depends on the initialization of τ. The previously discussed
instance τ = 0.1, forces EV agents to use high charging speeds in time slots with
low wholesale prices only. However, the average wholesale costs are high rela-
tive to other approaches in Table 4.4, while overloads can still occur. Instances
with higher values for τ reduce the number and magnitude of overloads. The
EV agents are faced with higher individual charging cost at low charging levels
already. To this end, the charging loads are shifted into other time slots where
the sum of external price signal and individual load price is lower. This shift
leads to higher average wholesale cost which indicates that SLPt cannot incen-
tivize the advantageous use of low-cost or renewable generation given greater
τ’s. However, small τ’s result in even more overloads. The optimal setup to
avoid overloads is roughly 0.1 < τ < 0.3, with average wholesale cost between
0.163 e/kWh and 0.189 e/kWh. Similar to µ, the calculation of an optimal τ is
dependent on the cost of overloads and goes beyond the scope of this thesis.

Generally, both SLP approaches converge to the SB coordination regime for
µ→ 0 or τ → 0, respectively.

Sensitivity of DLP Approach

DLP area pricing avoids overloads of local infrastructure under a specified pa-
rameter set. A similar sensitivity analysis for DLP has previously been con-
ducted in our paper Flath et al. (2013). In the example configuration of the previ-
ous sections, infrastructure limits are not exceeded given the 2,000 kW instance.
However, the average wholesale prices paid are among the highest, with ex-
ception of UC (Table 4.4). The reason might be the setup of the DLP pricing
approach with a factor of ξ = 3 which is not strongly diverging from a linear
price increase (see Figure 4.11). We analyze effects on aggregate load at Home
for different choices of ξ which controls the sensitivity of the local load coordi-
nation. Notably, the load share at Home accounts for around 90% of the total
charging loads. Table 4.7 depicts the load distribution with varying ξ at both
locations. If ξ is set to low values near zero, the local load pricing component
tends to increase linearly in the load. This leads to increasing total prices even
at low load levels and avoids higher loads. On the one hand, this is favorable
for the local infrastructure, as realized loads stay well below the limit level. On
the other hand, EV owners are prevented from fully utilizing time slots with low
wholesale prices due to a dominating local price component even with available
local infrastructure capacity. For higher levels of ξ local prices exhibit very lim-
ited increases at low load levels. We observe high loads more often with high
ξ initializations, since the locational component increases only with high loads
(near transformer capacity limit), while occurrences of medium loads decrease.
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τ

0.01 0.1 0.3 0.5

Home Work Home Work Home Work Home Work

SL
P

t

Avg. cost (whsl) [ ekWh ] 0.139 0.163 0.189 0.203
Avg. SOC [pct.] 70.8% 73.6% 77.0% 78.8%
Avg. Inf. Prof. [#] 0 0 0 0
Overloads [#] 960 14 50 0 0 0 0 0
Max. Load [kW] 9,389 3,649 3,146 1,057 1,429 549 1,031 415
Home Cons. [pct.] 96.8% 94.9% 91.0% 88.4%

Table 4.6: Impact of parameter τ on outcome of SLPt approach

Demand is more concentrated in times of low wholesale prices which reduces
charging costs. For high values of ξ the average wholesale charging cost even
converges to the results of OPT or DLC. However, the risk of overloads in-
creases, since the infrastructure is frequently operated at its physical limit and
each EV agent individually decides on its own charging pattern. Especially EV
agents with long distances and short recharging times — which means low flex-
ibility — increase the risk of ad hoc individual inflexible demand. This uncer-
tainty increases the risk of overloads when infrastructure is more often operated
at its limit.29 In the simulation runs, some sporadic overloads of the transformer
could be observed at Home for ξ = 100.

Overall, ξ has a great effect on the coordination result and the resulting loads.
In choosing this parameter, system operators can balance the risk of infrastruc-
ture overloads at a specific location against the utilization of available low-cost
generation.

29The same would apply for uncertainty of other loads that are currently not considered in the
model.
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ξ

0.01 0.10 1.00 3.00 10.00 100.00

Avg. cost (whsl) [ ekWh ] 0.165 0.165 0.161 0.154 0.147 0.145
Avg. cost (loc) [ ekWh ] 0.035 0.034 0.028 0.015 0.003 0.000
Avg. SOC [pct.] 73.8% 73.8% 73.0% 72.1% 71.3% 70.9%
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0-100 kW (%) 64.01 64.37 68.14 75.14 83.99 85.25
100-500 kW (%) 23.55 22.97 17.13 8.40 3.76 4.56
500-1,000 kW (%) 10.06 10.20 11.37 10.69 1.62 1.80
1,000-1,500 kW (%) 2.11 2.19 3.08 5.10 5.46 1.08
1,500-2,000 kW (%) 0.25 0.26 0.28 0.67 5.17 7.26
> 2,000 kW (%) 0.00 0.00 0.00 0.00 0.00 0.05

Load share at Home (%) 90.59 90.78 92.37 94.48 96.07 96.50
Max. load at Home (%) 1,942 1,934 1,855 1,804 1,918 2,013
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ad
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0-100 kW (%) 94.64 94.82 96.21 97.76 98.70 98.91
100-500 kW (%) 5.20 5.01 3.60 1.95 1.08 0.91
500-1,000 kW (%) 0.12 0.12 0.13 0.21 0.06 0.05
1,000-1,500 kW (%) 0.03 0.04 0.06 0.08 0.09 0.03
1,500-2,000 kW (%) 0.00 0.00 0.00 0.00 0.07 0.10
> 2,000 kW (%) 0.00 0.00 0.00 0.00 0.00 0.00

Load share at Work (%) 9.41 9.22 7.63 5.52 3.93 3.50
Max. load at Work (%) 1,087 1,097 1,215 1,428 1,773 1,984

Table 4.7: Impact of ξ on average costs and load at Home and Work with individual EV
charging optimization

4.3.4 Qualitative Comparison

From a qualitative perspective the load coordination approaches can be evalu-
ated along seven criteria. An aggregated summary of the comparison is shown
in Table 4.8. The central planner is not rated qualitatively, since the central
control approach is merely used as a hypothetical quantitative benchmark in
this thesis. For each criteria there is a benchmark (BM) solution. All other ap-
proaches are rated either performing good (+), average (◦), or worse (−) than
the others, using a qualitative ranking.

Communication complexity Communication complexity depends on the diver-
sity of information, number of senders and receivers, and frequency of
communication. Without load coordination, UC serves as a benchmark
(BM), since no information needs to be exchanged, except for billing pur-
poses. SB, SLC and SLP coordination merely require broadcasting of cur-
rent prices (+). DLC needs to add a simple local control signal if maximum
capacity is reached (◦). In contrast, DLP requires an additional local price
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signal communicated to all end consumers (−).

Tariff/contract complexity Nearly the same reasoning as for communication
complexity applies to the tariff or contract structure. Again, uncoordinated
charging serves as a benchmark (BM). SB has slightly higher complexity
due to variable supply prices (+). SLC and SLP add prices or curtail load
based on individual limits which is fairly complex (◦). In contrast, dynam-
ically integrating local load levels, either in the curtailment option (DLC)
or the pricing function (DLP), yields the highest complexity of approaches
discussed in this thesis (−).

Infrastructure limit protection By design, the load-curtailment approaches SLC
and DLC ensure adherence to infrastructure limits (BM). SB is a worst
case scenario of load clustering and does not consider infrastructure lim-
its (−). Depending on the load type, UC keeps the load within the limits
(◦). The load pricing approaches are all likely to ensure infrastructure limit
protection given a reasonable parametrization (+). However, all static ap-
proaches benefit from omitting other loads in the presented scenarios.30

Consumption guarantee In the EV charging example, profile feasibility can be
seen as a proxy for guaranteeing consumption. Following this reasoning,
all approaches allow desired consumption at any time (BM), except for the
load curtailment options (−). This is a disadvantage and not compatible
with today’s expectations of reliable power supply almost independently
from the type of load.

Comfort level The comfort level is a transcription for the safety distance kept
from minimum required user limits. The spontaneous mobility in the EV
case serves as proxy for this criterion. Therefore, UC serves as a benchmark
scenario, since it always ensures consumption as early as possible (BM).
All other approaches lead to small differences in the average SOC in the
given parameter instances (◦). However, the comfort level also heavily
depends on the parametrization.

Desired supply utilization The uncoordinated approach does not incentivize
load shifts to desired supply (e.g., low-cost, RES) at all (−). All other ap-
proaches incorporate incentives to shift load into periods with low-cost
wholesale prices. Obviously, the SB coordination serves as a benchmark in
terms of desired supply utilization (BM). However, given the individual
information base, SLC and SLP can limit loads, even if it is not necessary in

30The Swiss grid planning impact study, which is presented in the next section, includes these
other loads in the analysis.
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terms of aggregate load (◦). In contrast, DLP and DLC influence demand
only if it is necessary due to aggregate infrastructure limits (+).

Efficiency/Fairness The efficiency or fairness criterion is more weakly defined
in this case and combines several aspects of the other criteria. Basically,
it rates whether the coordination approach is able to differentiate between
low and high load valuation. This means that in time slots with capac-
ity constraints preferably demand with high valuation is served. UC, SB,
SLC and DLC cannot distinguish between different valuations for demand
in capacity-constrained time slots (−). For UC and SB, this is because ca-
pacity is not considered at all. SLC and DLC are forms of direct control
and therefore could integrate different valuations in forms of static con-
tracts only (i.e., only low valuation loads that can cope with curtailment
will accept these approaches). SLP adds the dynamic pricing of load and
therefore leads to prudent usage of high load levels. However, SLP still
focuses on own load only and does not lead to shifts of unnecessary loads
with low valuation in comparison to other consumers in times of high in-
frastructure utilization (◦). This target is achieved by DLP only. Given the
right setup, DLP incentivizes load shifting in times of high aggregate load
and thus tries to ensure efficient use of infrastructure in combination with
supply-based incentives (+).

Coordination

Criterion UC SB SLC DLC SLP DLP

Communication complexity BM + + ◦ + −
Tariff complexity BM + ◦ − ◦ −
Infrastructure limit protection ◦ − BM BM + +
Consumption guarantee BM BM − − BM BM
Comfort level BM ◦ ◦ ◦ ◦ ◦
Desired supply utilization − BM ◦ + ◦ +
Efficiency/Fairness − − − − ◦ +

Table 4.8: Qualitative comparison of load coordination approaches

Summarizing the comparison, the load-pricing approaches — especially DLP
— seem a promising alternative to load curtailment contracts, since control re-
mains at the customers’ level. The main obstacles are potential challenges in
customer acceptance as well as the lack of a smart grid infrastructure that is nec-
essary to overcome tariff and communication complexity.
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4.4 Swiss Grid Planning Impact Case Study

As the electrification of individual mobility connects the transportation sector to
the power system, also influences on power grid planning are discussed. This
section studies the impact of EV charging loads on the Swiss high-voltage grid
under different EV penetration and pricing scenarios. It is an adapted and ex-
tended version of our working paper on the grid impact of electric vehicles in
Switzerland (Salah et al., 2013). Similar to the simulations before, the respective
individual peak load induced by a typical commuter car depends on the techni-
cal specifications of the charging spot and the vehicle. A typical commuter car
in Switzerland covers a distance of approximately 18,000 kilometers/year and
therefore increases the consumption of electric energy by approximately 2,700
kWh which is more than the yearly average consumption of a single person
household.31

4.4.1 Swiss Grid Planning

The typical planning horizons for power grids are in the order of decades due
to grid assets’ long service life. EVs may create new and unexpected load pat-
terns with potentially high simultaneity factors due to commuter traffic, which
needs to be considered in grid planning activities. Our study extends one in-
fluence factor in BKW’s target grid planning project 2040 which aims at mod-
eling possible scenarios in order to estimate future grid load and power flows
to plan future grid development. BKW periodically plans the future grid struc-
ture on a long-term basis. The current project is titled “Zielnetzplanung 2040”.
A scenario-based approach is used to evaluate contingencies for technological
changes similar to other grid planning studies (see Mobasheri et al., 1989).

In recent years, different aspects of EV impact on power systems have been
investigated by electrical engineers and energy economists. However, existing
publications mainly deal with high-level estimates of consumption, physical im-
pact at specific locations or issues in distribution grids (see Section 4.2.3). This
section complements existing research by focusing on high-voltage grids using
real data for grid capacity and utilization, spot prices and mobility behavior in
a Swiss case study. The grid load and capacity utilization at high-voltage sub-
station level in the BKW grid region (Figure 4.15) are the focus of this analysis.
Given the mentioned real-data input parameters, we model and analyze the im-
pact of different charging coordination scenarios and market penetration levels
on substation capacity utilization. The overall objective is to understand the

31These proportions differ somewhat from the US situation mentioned before (Data
source: http://www.bfe.admin.ch/themen/00526/00541/00542/00630/index.html?lang=
en&dossier_id=00765)

http://www.bfe.admin.ch/themen/00526/00541/00542/00630/index.html?lang=en&dossier_id=00765
http://www.bfe.admin.ch/themen/00526/00541/00542/00630/index.html?lang=en&dossier_id=00765
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Figure 4.15: BKW’s grid service region in Switzerland

long-term impact of EV charging load on the grid — an important aspect in grid
planning.

Using data from the Bern region in Switzerland, the study tackles the follow-
ing research questions with the goal of supporting grid planning for the next 20
to 30 years:32

• What is the influence of EV charging on substation capacity utilization in
high-voltage grids at different EV penetration levels?

• What is the potential influence of variable price-based EV charging coordi-
nation on substation capacity utilization in high-voltage grids given price-
responsive EV charging agents?

• What is the potential influence of DLP pricing in this practical grid expan-
sion planning setting?

4.4.2 Swiss Grid and Mobility Data

In order to estimate the load impact from EV charging activity on the BKW high-
voltage grid in the Bern area, the model builds on different real sets of data.
These model elements and input data sources are illustrated in Figure 4.16. Ve-
hicle data (1) consists of technical data concerning battery capacity and power
consumption which has an effect on the individual EV charging demand. The

32These specific research questions are added because the use of proprietary data required align-
ment of the content in this section.
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power rating of charging systems (2) determines the minimum length of a charg-
ing procedure and the maximum instantaneous impact of an individual vehicle
on the system. Another external input for the model is the electricity spot price
Swissix (3) which serves as a baseline for a variable EV charging tariff. Techni-
cal specifications and locations of high-voltage substations in the BKW grid (4)
are incorporated to account for regional differences in grid capacity. Given the
forecast of every substation’s load curve (5), all other loads are accounted for
as well. By considering the market penetration and regional allocation of elec-
tric vehicles (6) we can map the effects of regional differences to corresponding
substations. Swiss driving profiles (7) from the Swiss Federal Statistical Office
(SFSO) are the main source for modeling driving behavior which governs the
charging requirement for daily trips as well as the times during which charging
procedures can take place.

(1) (2)

(4)

(5)

(6,7)

(3)

Model element Data Source

(1) EV technical data OEM data
(2) Charging power IEC 62196-1
(3) Electricity prices Swissgrid, EPEX
(4) Grid infrastructure BKW data
(5) Load curve forecasts BKW data
(6) EV deployment SFSO data
(7) Driving profiles SFSO census

Figure 4.16: Model elements and data sources

Vehicle Technical Data

The model deviates from original car specifications and instead uses a fictitious
vehicle with similar specifications as used to evaluate the different load coordi-
nation approaches in Section 4.2.1: 30 kWh battery capacity (SOC) and a con-
sumption of 0.15 kWh/km determining a maximum range of 200 km.

Charging Power

In this case study, we assume that by 2040 home and public charging stations at
11 kW will be widely available in Switzerland and vehicles will support three-
phase charging. This charging speed determines the same maximum charging
amount in one time slot as Parameter κ in Section 4.2.1.
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Electricity Price

For the evaluation of the charging loads three pricing scenarios are applied —
static pricing, SB pricing and DLP. The power price for end consumers in
Switzerland comprises 40% generation, trade and marketing costs, 46% grid
costs and 14% taxes and other dues.33 For the static electricity price scenario,
we can directly apply a price of 0.18 e/kWh to our model in the form of a flat
tariff for EV charging. However, variable electricity prices are currently not yet
readily available to retail customers. Therefore, the model uses a hypothetical
SB tariff which assumes that the entire wholesale costs follow the Swissix spot
market price. The DLP approach uses the SB price and adds a dynamic price
component to account for the current system load. To increase the temporal res-
olution of the prices and increase the alignment with the driving profiles, the
hourly exchange prices are linearly interpolated to obtain quarter-hourly prices.
Let pT denote the Swissix wholesale price in hour T and pT+1 the wholesale price
in the subsequent hour T+ 1. The linearly interpolated price p(t) in t ∈ [T, T+ 1]
is then given by:

p(t) = (T + 1− t)pT + (t− T)pT+1 (4.24)

For example, if two subsequent hourly prices are 50.00 e/MWh and 60.00
e/MWh, we obtain in-between quarter-hourly prices of 52.50 e/MWh, 55.00
e/MWh, and 57.50 e/MWh. These prices are then fed back into the generation
share by normalizing with the average price in 2010 and are then applied to the
dynamic electricity tariff scenario. To ensure tractability of the approach, we use
an exogenous price and in our model abstract from influencing feedback mecha-
nisms on the electricity price. The potential development of future power prices
and the influence of flexible loads are discussed in Section 4.5.1.

Grid Infrastructure

The power grid comprises different layers ranging from high-voltage transmis-
sion lines to low-voltage distribution grids. Relevant bottlenecks in the grid are
the line limits and transformer capacities across different voltage levels. This
case study focuses on the load at substations in the high-voltage grid of BKW.
These substations comprise transformers between the high-voltage grids, that
either run on 132 or 50 kV, and the connected medium-voltage grids, that oper-
ate at 16 kV, and further aggregate the load of end consumers in the low-voltage
grid. Typical transformers have a capacity of 12.5, 25, or 40 MVA depending on
the load profile in this region.

A substation is the topological node where we measure the load to calculate

33For further information, we refer to the association of Swiss electricity enterprises (http://
www.strom.ch).

http://www.strom.ch
http://www.strom.ch
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the capacity utilization. For the sake of simplicity, we abstract from the capac-
ity utilization of overlying high-voltage lines, since this would require time-
intensive load flow calculations. Thus, the utilization values reported corre-
spond to transformer capacity and not to actual system capacity. Hence, the
values are systematically too low, as transformer capacity may be higher than
the feeding line limits. Initial calculations of the developed scenarios on the real
BKW grid model show that the lines can be an important limiting factor. We
use the (n-1)-capacity of all HV/MV transformers in each substation as 100%
capacity on our model, i.e., half of the total capacity in the case of two equal
transformers and two thirds in the case of three equal transformers.34 This is a
standard approach in high-voltage grid planning.

In Switzerland, 8 million people are supplied through approximately 250 sub-
stations with a transformer capacity of 40 MVA on average (BFE, 2010). In the
area supplied by BKW and adjacent regions35 there are 122 substations in total.
78 of these are completely or partly owned by BKW which supply approximately
350.000 people. Reasons for the deviation of people per substation ratio is that
BKW supplies rural areas with a low residential density, while cities like Bern
are supplied by other operators. For 59 of BKW’s substations sufficient data
was available to be able to generate an individual load curve forecast for each of
them. Out of these 59 substations, the load forecasts of ten substations already
exceeded today’s transformer capacity in 2040 without additional EV charging
loads which necessitates capacity investments to ensure reliable future opera-
tion. As the focus is on transformer substation requirements due to EV charging,
we excluded these substations from our analysis. The remaining 49 substations
(highlighted in Figure 4.17) are considered and serve as base for our model.

To capture the effect of EV charging on these substations we need to map mu-
nicipalities (with their expected number of electric vehicles) to each substation.
The location of the distribution grid stations36 connected to substations deter-
mines which municipalities are supplied by which substations. The distribution
of EV charging stations within the municipalities which are connected to the low
voltage grid is not within the scope of our simulation. Our study focuses on the
aggregate charging load which can be measured on the substations’ level.

34For ease of exposition, this reference value is being referred to as “substation capacity”, even
though substations’ switchgear can represent another limiting factor besides lines and trans-
formers.

35Adjacent regions had to be examined in BKW’s target grid planning project as they can influ-
ence BKW’s grid.

36Distribution grid stations transform between medium voltage grids and low voltage grids.
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50 kV Grid
132 kV Grid

Modeled Substation
Other Substation

Figure 4.17: BKW high-voltage grid and (modeled) substations

Load Curve Forecasts

BKW forecasts the substations’ load curves for the year 2040 within the target
grid planning project. An extensive scenario analysis incorporated 18 drivers of
electricity generation and consumption. More than 80 published studies were
used to predict the future development of these drivers. Among the most influ-
ential drivers of consumption are economic growth, demographics, transporta-
tion and energy efficiency. The resulting forecasts are used to identify the substa-
tion load curves for 2040. To obtain the original load curves, the three peak load
days of the year 2010 were selected along with the previous and following day.
The average of these nine load curves serve as characteristic worst-case substa-
tion load curve for the year 2010. Based on this load curve the influence factors
are added to obtain a forecast for the load curve of the year 2040.

Market Penetration and Vehicle Allocation

The market penetration of electric vehicles obviously has a high influence on
the total load generated by their charging activity. The Swiss Federal Office of
Energy presents possible market penetration of electric vehicles for the next 20
years in four different scenarios in its fact sheet (Bundesamt für Energie, 2010).
These scenarios are complemented by an additional BKW scenario which was
developed up to the year 2040 within BKW’s target grid planning. The analysis
is based on this scenario and assumes that in 2040 there will be 700,000 EVs in
Switzerland. This number corresponds to 16% of all vehicles in Switzerland. We
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allocate the EVs to the substations of BKW in order to model their influence on
substation load curves. An overview of the required input data and the combi-
nation is depicted in Figure 4.18.

Input Data Calculation

Future municipality pop-
ulation
(Bundesamt für Statistik,
2011c, Bundesamt für
Statistik, 2011a)

Cars-per-capita distri-
bution (Bundesamt für
Statistik, 2011b)

EV Penetration scenarios
(Estimate 16% and ex-
treme 50/100%)

Cars per municipality

EVs per municipality (for
each scenario)

Figure 4.18: Mapping of different input data to derive EV distribution

The distribution of the electric vehicles in each municipality in Switzerland
is estimated using current municipality population (Bundesamt für Statistik,
2011c) and future projections (Bundesamt für Statistik, 2011a) as well as the cars-
per-capita ratio (Bundesamt für Statistik, 2011b). Subsequently, we estimate the
number of passenger cars in each municipality in 2040. Assuming that the na-
tionwide market penetration is identical across municipalities, we estimate the
number of electric vehicles in each municipality as shown in Figure 4.19. As ex-
plained above, we can map each municipality to a substation in our grid model
to directly derive the number of EVs per substation. Furthermore, we analyze
more extreme penetration levels of 50% and 100% to see potential results for
higher penetration rates. By increasing the EV penetration rate homogeneously
across municipalities, we can identify the substations that will sooner reach their
limit. These extreme scenarios help to demonstrate the potential impact of static
and variable prices.

Driving Profiles

In order to model EV charging activity we need to know when the EVs are con-
nected to a charging point. To this end, we use driving profiles that provide
information about a car’s location/status (e.g., at home, at work, driving) over
time. The Swiss Federal Statistical Office (SFSO) has carried out a survey regard-
ing the mobility behavior in Switzerland (Bundesamt für Statistik, 2007) which
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Figure 4.19: Estimated number of EVs per municipality in the relevant regions in 2040

serves as base data for our model. Members of 60,000 households were selected
randomly and interviewed regarding their mobility behavior on the day before
the interview day. We use the survey questions on trip timing, distances, type
and means of transportation to extract raw trip data. Figure 4.20 depicts the
distribution of the daily driving distances.

This trip data is wrapped in driving profiles that consist of the driving status,
the distance driven, and the location of the car in a 15-minute resolution over the
whole day. We use these driving profiles to model the EV charging requirements.
Although these profiles are based on conventional vehicle trips, we apply them
to build EV models — similar to the previous section — as changes in the driving
behavior have to be expected only in the long-run (Oeltze et al., 2006). In order
to allow for load shifts greater than one day, the driving profiles are extended
to a period of one week by looping them. Of the initial set of 17,087 driving
profiles, we had to remove 4.1% of the profiles, as they conflicted with certain
model assumptions:37

• 1.3% of the profiles featured trips that exceeded the assumed EV range in

37This differs from the approximately 10% of driving profiles that had to be removed from the
German Mobility Panel employee data in Section 4.3. Except for the difference of employees
only in the German Mobility Panel to a mixed population here, the underlying reasons for the
difference are not known. However, some differences may be due to the survey format. For
example, SFSO data refers to the day before the interview, which clearly excludes trips and
vacation times greater than one day. As depicted in Figure 4.20, the distribution is similar to
typical mobility behavior.
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Figure 4.20: Distribution of daily driving distances in the SFSO mobility survey

a single trip

• 0.4% of the profiles featured trip sequences with insufficient recharge time
and thus exceeded the assumed EV range

• 2.4% of the profiles did not terminate at the home location and were thus
unable to fully restore battery capacity at the end as required for optimal
EV charging

Given the limited size of the mobility survey compared with the EV penetra-
tion projection, we reused the set of driving profiles to generate the necessary
input data. To maintain integrity with respect to the driving habits, the assign-
ment of profiles to substation is based on the municipality type as provided by
the SFSO (Schuler et al., 2005), i.e., only rural profiles are used in rural areas.

4.4.3 Results for Grid Planning

Using the model described above, we can evaluate the impact of EV charging
loads on the substations in the BKW grid. We first look at the static electricity
rate scenario with different penetration levels and corresponding simple charg-
ing behavior. Subsequently, we investigate the effect of smart charging in the
variable rate SB scenario for different electricity price curves. Finally, we evalu-
ate the same external price weeks with a DLP approach for each substation.
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Static Rate Scenario

In the first scenario we analyze the impact of electric vehicles under current lin-
ear electricity rate conditions. Electric vehicles constitute a new power consumer
that was supplied by fossil fuels so far. As generically demonstrated in the last
sections, there is a risk that peak loads could rise by uncoordinated EV charging,
and an extension of power grids would be required. Specifically in the evening
hours new peaks are expected because of charging activity occurring when com-
muters return home. Under a static price (flat tariff for EV charging) there are no
financial incentives for shifting the charging load, and hence the uncoordinated
charging UC is applicable in this case.

The distribution of the substations peak loads with different EV market pene-
tration levels is presented in Figure 4.21. The substation count (y-axis) denotes
the number of substations with a specific peak load (x-axis). A peak load is the
highest utilization ratio of all 15-minute intervals of a week at one specific sub-
station. With an expected market penetration of 16%, none of the analyzed sub-
stations will be overloaded. However, we can identify a slight increase of peak
loads. For a market penetration of 50% we find one substation that will be over-
loaded. At 100% penetration the number of overloaded substations increases to
three.

0% 16% 50% 100%

0

5

10

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Maximum Substation Load Level [%]

S
ub

st
at

io
n 

C
ou

nt

Figure 4.21: Substation peak load distribution with uncoordinated charging UC for dif-
ferent EV market penetration levels (N=49)

With the estimated progress of market penetration of EVs, we can expect that
none of the substations will be overloaded until the year 2040. Thus, load clus-
tering due to similar driving habits does not have a large impact on peak loads
of BKW substations at a market penetration of 16%. At higher EV penetration
levels, overload situations become more likely but still remain limited in both
number as well as magnitude.
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Variable Rate Scenario

In order to tap into EV charging flexibility, vehicle owners need to be offered
incentives that promote charging during times of low generation costs or to bal-
ance fluctuating generation from renewable energy sources. To analyze this set-
ting, we apply the exemplary variable rate described in Section 4.4.2 to reflect
the wholesale market price in charging costs. This incentive results in an SB
charging coordination based on the Swissix price.
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Figure 4.22: Substation peak load distribution under simple and smart charging for 16%
market penetration (N=49)

Figure 4.22 shows that at a market penetration of 16% many substations are
already overloaded under SB price-coordinated charging. Furthermore, reach-
ing utilization levels of 150%, these overloads are more significant than the ones
under simple UC charging with 100% penetration. The strong shift of the his-
togram towards higher peak loads is a result of price differences over the week.
Due to the financial incentives, price-sensitive EV agents will charge their bat-
teries at times of low electricity prices. The depicted histograms are based on the
Swissix prices of the third calendar week 2010. However, the observed effects
are robust to variations of the underlying price vector. In total we evaluated 12
different price weeks in 2010 that are depicted in Figure 4.23 — four example
weeks for each season: summer, winter and transition.

Besides the aggregate view of all substations, it is also illustrative to look at
the substations individually. Figure 4.24 provides anonymized utilization box-
plots based on smart charging of all 12 simulated weeks for each substation. The
solid line illustrates the peak utilization of each substation without EV charging
loads. The diverse outcomes per substation reflect the multitude of real input
data for the simulation. Some substations will be more challenged by upcoming
EV charging loads. The underlying reasons for this heterogeneity are diverse,
e.g., rural or urban areas, mobility behavior, EV distribution. Furthermore, this
analysis provides some guidance on which substations will be suited for eco-
nomic coordination of charging loads (overloads arising mostly from EV charg-
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Figure 4.23: Substation peak loads with optimal smart charging for sample weeks in
summer, transition and winter period under 16% market penetration (N=49)

ing), and which substations will most likely require capacity upgrades (high uti-
lization levels even without electric vehicles).

DLP Scenario

Due to the resulting overloads of the variable SB coordination, we apply a DLP
coordination to analyze the potential overload mitigation effect. Unlike the ex-
ample with Home and Work locations in Section 4.3.1, DLP is set up at each sub-
station in the BKW grid. The parametrization is the same as in Section 4.3.1 with
ξ = 3 and the limit price based on the median of the external price of the re-
spective week. As expected, DLP coordination succeeds in shifting EV charging
load into times with lower grid utilization. Across all substations, the maximum
capacity is never exceeded given 16% EV market penetration in the 12 example
weeks simulated (Figure 4.25). The DLP approach ‘allows’ increasing peak loads
caused by EV charging at substations with lower maximum utilization. In con-
trast, substations with high maximum utilization do not experience higher peak
loads through EV charging under DLP. Nevertheless, as mentioned before, sub-
stations with high utilization even if no additional load from EVs is considered
most likely will require capacity upgrades.
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Figure 4.24: Boxplots for substation peak load distribution per substation with SB smart
charging (based on 12 simulation weeks)
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Figure 4.25: Boxplots for substation peak load distribution per substation with DLP
smart charging (based on 12 simulation weeks)
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4.4.4 Conclusion of Swiss Grid Planning Example

In our model for the EV impact on BKW’s grid we find that under today’s condi-
tions with static electricity rates and an EV market penetration of 16% there is no
risk of overloads on high-voltage substation level. However, under higher mar-
ket shares of 50%, EV charging may lead to overloads at some locations with-
out coordination. If regulatory conditions allow the use of variable electricity
prices and consumers react on these prices to minimize mobility cost, substation
overloads would already occur at a market penetration level of 16%. Thus both
increasing EV penetration levels as well as coordination based on exogenous
market prices may in the long run cause grid problems. The detected overloads
can effectively be mitigated by adding a local load-based price component (DLP)
which incentivizes the shift of charging loads into periods with lower local uti-
lization.

These results signify three things:

(i) Price incentives can activate significant load flexibility with respect to elec-
tric vehicle charging.

(ii) Exogenous prices based on system-wide electricity wholesale prices give
rise to strong over-coordination effects which may challenge local grid
infrastructure limits not only on the low-voltage level but also in high-
voltage distribution grids.

(iii) Capacity investments or grid-conscious EV charging coordination are re-
quired to guarantee adherence to substation utilization thresholds at high
EV penetration levels.

Balancing an economically efficient use of low-cost supply for EV charg-
ing with additional grid costs will require the joint attention of regulators, re-
searchers, grid operators, and generators while at the same time taking into ac-
count customer needs.

4.5 Conclusion of Local Load Coordination

The analyzed local load coordination approaches demonstrate potential to in-
fluence future grid operation and planning. The following section discusses the
results, summarizes the findings, and provides an outlook of possible future re-
search. This is an amended version of the discussion in our working paper Salah
et al. (2013) an contains parts of Flath et al. (2013).
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4.5.1 Discussion

The modeled approaches of local load coordination have limitations mainly con-
cerning assumptions on modeled components and individual behaviour. The
main limitations are discussed in the following.

Tariff Complexity

As noted before, spatial pricing schemes have been demonstrated to improve
system efficiency while at the same time increasing the pricing complexity that
customers are faced with. First, the discussed tariffs (e.g., SLP, DLP) are cur-
rently not realistic on a household level. Specifically, the complex tariffs require
a full smart grid roll-out as well as real-time access to load and billing data. In
addition, the regulator would need to allow one actor to charge dynamic fees
based on the local system state. Given the deregulation to foster competition,
a grid area is typically served by several electricity retailers in most countries.
Therefore, the grid operator is suited to undertake this task as a form of his grid
operation duties. So far, there is no intended introduction of such dynamic local
grid fees. Even if the technical and regulatory issues are resolved, consumers
need to accept highly variable tariffs or load curtailment for the implementation
of the discussed load coordination mechanisms. Dütschke and Paetz (2013) find
that consumers prefer simple over complex tariffs and that demand automation
is needed to tap consumers’ flexibility. However, EV charging constitutes an ad-
ditional and flexible load which may facilitate the introduction and serve as a
reference case for load coordination approaches as well as more complex tariffs,
since it is separable from other loads through designated charging stations.

Full Price Responsiveness

Furthermore, the load clustering and coordination results, given a variable price
vector, are based on fully price-responsive EV owners with perfect knowledge
of future market prices. Unquestionably, these are benchmark results for the ef-
fects of price-responsive EV charging on the power system while still assuring
given mobility patterns. In general, load flexibility in field trials is only limited
as mentioned before. Faruqui and Sergici (2010) review 15 residential dynamic
pricing studies and report mean peak reductions of 4-44%, depending on rate
design. They find an especially high impact of dynamic pricing if supported
by enabling technologies such as automated air conditioning. However, these
studies are based on residential demand which includes load types that are less
shiftable (e.g., entertainment, cooking). In contrast, EV loads are easily shiftable
without or with only a minor loss in mobility comfort. Therefore, high load flex-
ibility seems to be possible in the presence of appropriate incentives and tech-
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nical support for EV owners (e.g., intuitive interfaces and automated charging
systems). Smart charging of EVs offers higher benefits than other load manage-
ment approaches due to large charging energy amounts. In the future, variable
pricing can be applied to other flexible loads as well (e.g., distributed storage,
heating and cooling appliances) to leverage demand side flexibility. Another as-
pect may be the flexibility in mobility patterns, as this thesis assumes invariant
mobility needs. As mentioned by Sioshansi (2012), consumers may change their
driving patterns when they get used to variable tariffs. In addition, the exam-
ples assume that the entire consumer population is in the same tariff. In real
applications, a variety of different tariffs will be offered to consumers. Thus,
consumers with a preference for higher quality of service may select different
tariffs. Consequently, the load coordination effects presented may be valid for
parts of the total consumer base only. Different behaviour based on heuristic EV
charging strategies and only limited knowledge is discussed in our papers Flath
et al. (2012) and Flath et al. (2013).

Exogenous Price Vectors

In all instances of our model we assume an exogenous price vector. Depending
on the scenario, the variability and the spread between highest and lowest price
are different. However, it should be noted, that for the analysis of substation uti-
lization, the absolute level of the dynamic prices is not essential. Price variabil-
ity is crucial, as optimal charging leverages these price differentials to determine
charging schedules. In the case of completely flat price curves, these load coordi-
nation incentives vanish. This approach implicitly assumes that wholesale prices
remain unaffected by the EV loads. This is clearly a limiting assumption, as con-
centrated charging loads may induce system-wide load increases which should
impact wholesale prices. Other publications focus on different aspects of load
influence on wholesale prices. Boisvert et al. (2002) find in the NYISO zone that
the supply curve is “hockey-stick shaped” with prices exponentially increasing
in load. Whereas, Li and Flynn (2006) analyze 13 different power markets and
find that the relationship between price and load differ significantly. Nyamdash
and Denny (2013) investigate the influence of storage deployment on wholesale
prices in a unit commitment model. They find a reduction in fuel cost but an
increase in the average electricity price of the simulated power system.

Using Swissix prices as an example, a price-load relationship becomes evi-
dent. The effect greatly varies, even when controlling for season and day type as
illustrated by the large price differences present at each load level in Figure 4.26.
Both increasing amounts of intermittent generation and increased load flexibil-
ity (a result of large-scale electrification of individual transport served by renew-
able energy sources) will further distort the load-price relationship. Therefore,
a stable and meaningful wholesale price model based on aggregate load is not
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Figure 4.26: Swissix price and Swiss total system load in 2010

available. For this reason, we avoid implementing an arbitrary model and keep
prices as an exogenous and invariant input. The wholesale prices used as in-
put thus mainly serve to capture possible price dynamics. Other stochastic price
vectors will likely yield very similar results concerning the more frequent occur-
rence of substation overloads. Still, the wholesale price effect of large-scale EV
integration (and other flexible loads) offers interesting opportunities for future
research.

Power System Modeling

The impact of EV charging loads on transformer utilization in the grid is a rel-
evant example in this thesis. This is an important step to understand opportu-
nities and risks of flexible loads, but it is at the same time a simplification of
the complex power system. To identify other effects and constraints (e.g., losses,
line utilization, voltage drops), more detailed data and power flow analyses are
necessary. The presented model assumes EV charging to be dynamic and all
other influence factors to be static. New technologies (e.g., battery storage, home
automation) and the development of decentralized generation units (e.g., solar,
CHP) should be included to generalize the model and to obtain more robust
simulation results. In addition, the model may be further detailed by consider-
ing geographical differences in vehicle penetration (see Saarenpää et al., 2013) or
long-term changes in mobility behavior.
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4.5.2 Summary and Outlook

The presented local load coordination approaches show interesting potential
even when considering the discussed limitations. This section summarizes the
main contributions and implications and gives an outlook on potential next
steps.

Contribution and Implications

Variable electricity rates are considered an important option to coordinate con-
sumption behavior in smart grids — in the case of EVs, their charging activity.
However, the discussion around variable tariffs to shift loads so far has mostly
ignored arising grid issues. Introducing variable tariffs that merely focus on in-
centives for low-cost or renewable generation will lead to a significant increase
of peak loads in times of low prices given price-sensitive consumers (Gottwalt
et al., 2011). To match these load increases substantial grid investments will be
required. These may diminish the welfare gains expected from dynamic electric-
ity pricing.

Therefore, the possibility and potentials of incentives based on adaptive pric-
ing of local capacity or individual load levels need to be explored in the future.
Specifically, if dynamic prices are offered to end consumers, the grid limitations
have to be accounted for. Load coordination to increase the utilization of avail-
able capacity is an alternative to grid investments. This may pose a regulatory
challenge in unbundled electricity markets, as marketing activities need to ac-
count for grid operations. Which load coordination approach is suitable in a
specific application heavily depends on the load type and especially the service
that is provided. Not only the flexibility is important for load coordination but
the robustness to risks or consequences of small deviations as well. The results
presented in this chapter underline the potential of load coordination. In combi-
nation with increasing home automation and awareness for power system chal-
lenges, existing loads may become more flexible as well. Not only does the po-
tential have to be incorporated in grid control opportunities — such as ancillary
services — but at the same time grid expansion and planning may need to be
adjusted, based on local consumer population characteristics.

Opportunities for Future Research

There are various possible extensions or modifications of the model used for
evaluating the load coordination approaches — in the input variables, the coor-
dination approaches, and the resulting implications. For example, the potentials
analyzed in this chapter do not include V2G services. Nevertheless, model ex-
tensions are straightforward. Resulting loads from the model on substation level
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can be used for load flow calculations, determining impact on power lines. In
fact, initial calculations of the developed scenarios on the real BKW grid model
show that already at a penetration level of 16% the lines can be an important
limiting factor. Another natural next step is to model the implications of EV
charging on other voltage levels or different high-voltage power grids to com-
pare results. Moreover, some model assumptions may warrant closer attention
to ensure robust results. So far, the model abstracts from battery specifications
or different charging patterns which could affect battery ageing. As mentioned
above, another strong assumption is the full knowledge of future mobility pat-
terns and prices assumed in the optimal charging strategy. Finally, the model
needs to be incorporated and aligned with other modeling efforts to support the
major restructuring of the power system. For example, the integration with mod-
els of generation capacity development including the local, intermittent supply
would allow for a combined analysis of dynamic supply and dynamic demand
on different grid levels. In addition, the real potential of the different load coor-
dination approaches needs to be investigated, e.g., consumer acceptance of these
approaches for different services or the role of DSOs in future grid operation and
planning.



Chapter 5

Transmission Grid Cost Allocation
and Investment

Expected changes in electric power supply and demand impact future power
grids. On the one hand, the shift from fossil fuel-based generation to renewable
energy sources (RES) leads to more intermittent supply. On the other hand, de-
mand profiles are expected to change, since new smart grid technologies enable
flexibility in consumption of electricity and provide a basis for more diversified
energy tariffs and services.

In addition to these changes in supply and demand patterns, there is also
a locational shift of generation, since RES generators are typically not built at
the same locations as existing fossil fuel plants. This relocation of generation
capacity poses additional challenges for the historically grown grid infrastruc-
ture. Massive grid infrastructure investments are necessary and grid expansion
actions are undertaken in different forms internationally.1 Regulators have
to consider both grid investments and other measures such as influencing
the siting of new generators to achieve reliable electricity supply and define
an efficient trade-off. In cases with high investment costs or extensive land
consumption, project duration and public opinion are of major concern.2 The
allocation of grid investment costs fuels public discussions, as these costs are
enormous and the beneficiaries are often not clearly identifiable, with some par-
ties even being at a disadvantage. In essence, the individual goals of economic
efficiency and common ‘fairness’ are difficult to achieve simultaneously. This
chapter is motivated by recent discussions on rising energy prices, investment
into grid infrastructure (e.g., new HVDC lines), siting of new RES generators
as well as transmission pricing and cost allocation policies (e.g., Transmission

1e.g., UK http://www.nationalgrid.com/uk/Electricity/MajorProjects/, USA http://

www.tresamigasllc.com/
2See German Grid Development Plan Consultation http://www.netzentwicklungsplan.

de/sites/default/files/NEP_2012/Factsheet.pdf and UK National Grid Un-
dergrounding Consultation http://www.nationalgrid.com/uk/Electricity/

UndergroundingConsultation/

http://www.nationalgrid.com/uk/Electricity/MajorProjects/
http://www.tresamigasllc.com/
http://www.tresamigasllc.com/
http://www.netzentwicklungsplan.de/sites/default/files/NEP_2012/Factsheet.pdf
http://www.netzentwicklungsplan.de/sites/default/files/NEP_2012/Factsheet.pdf
http://www.nationalgrid.com/uk/Electricity/UndergroundingConsultation/
http://www.nationalgrid.com/uk/Electricity/UndergroundingConsultation/


118 Transmission Grid Cost Allocation and Investment

Pricing Methodology Review in New Zealand3). A full grid expansion to avoid
any congestion at all allows location-independent perfect competition among
generators but may not be the best solution in all cases.4 As noted by Knieps
(2013): “the extension of network capacities to such a degree that congestion
disappears would result in overinvestment and cannot be considered a socially
optimal solution.”

An example for the locational changes of supply centers with the need
for high investments into the transmission grid is the German Energiewende.
Figure 5.1 depicts the suggested infrastructure investments of the four TSOs
into the transmission grid in Germany until 2032. Part of these investments
are 4 HVDC lines which connect regions in the wind-rich North of Germany
with major load centers in the South. Mainly due to a massive increase of wind
generation in the North, the TSOs expect a necessary investment into HVDC
transmission capacity over 3,100 km with an estimated cost of e 27 bn without
cabling (50Hertz Transmission GmbH et al., 2012). After a consultation process
the regulator approved 3 of these HVDC lines and other projects to be pursued
(BNetzA, 2012). Recently, the updated preliminary recommendation of the
TSOs expects even higher required transmission capacity (50Hertz Transmission
GmbH et al., 2013).

These major investments motivate the following questions: Are the invest-
ments efficient? Who pays for the investments? Neuhoff et al. (2008) provide
an analysis of a similar situation in the UK, where the best wind resources are
in Scotland. Their model shows that a more distributed investment into wind
generation might be beneficial for three reasons: matching local demand with
local supply reduces losses, less wind capacity curtailment due to less transmis-
sion constraint situations, and a less concentrated investment into wind capacity
leads to a less volatile generation pattern in total. In the example of Germany,
differences in grid cost for household consumers exist in the current system al-
ready. Figure 5.2 depicts the differences in grid charges for households (BNetzA,
2011). Households in the eastern part of Germany pay higher grid charges than
in the Southwest. According to the regulator, these differences are caused by
high investments into grid capacity in the 1990s and overall lower consumption
in comparison to grid size (BNetzA, 2011).

Obviously, different types of grid cost allocation may lead to seemingly ‘un-

3See http://www.ea.govt.nz/our-work/consultations/priority-projects/

tpm-issues-oct12/ for the currently ongoing consultation for the transmission pric-
ing methodology review.

4The assumption of sufficient grid capacity with no congestion is also called ‘copper-plate’ (see
Brunekreeft et al., 2005).

http://www.ea.govt.nz/our-work/consultations/priority-projects/tpm-issues-oct12/
http://www.ea.govt.nz/our-work/consultations/priority-projects/tpm-issues-oct12/
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Figure 5.1: Suggested grid expansion projects in the lead scenario of the German Grid
Development Plan 2012 (50Hertz Transmission GmbH et al., 2012)
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Figure 5.2: Locational differences in grid charges for households in Germany 2011
(BNetzA, 2011)

fair’ outcomes. For example, one strange outcome may be that consumers who
have no benefit bear a large share of the grid cost. Consumers in the eastern
part of Germany, where a large share of the low-cost wind generation is located,
may have to pay a major share of investments. This would increase the cost
differences due to the building of new lines. However, in the German exam-
ple, the final course is not yet set. In the context of this thesis, we contacted the
German regulator (Bundesnetzagentur) in late November 2012 to find out who
will pay for the investments into the transmission grid until 2032. So far, the
questions are officially unanswered in written form. In informal phone calls the
Bundesnetzagentur mentioned that a final answer is not yet possible, which may
indicate that there may be room for changes in the regulatory regime.

Incentivizing local generation and consumption by charging direct beneficia-
ries of grid investments for grid cost may be a different approach to addressing
upcoming grid challenges. The variety in cost allocation schemes under
different regulatory regimes underlines the arising complexity which leads to
public discussion and experts’ consultations for regulatory advice. This chapter
analyzes different cost allocation and pricing regimes in a simple network
model. Focusing on the economic behavior and implications on consumer and
total welfare, it simplifies the modeled entities as much as possible, abstracting
from rich power system modeling aspects. Important questions to be analyzed
are the influence of different cost allocation and pricing options on welfare as
well as the corresponding investments in transmission and generation assets
under different regulatory regimes.

This chapter is also an extension of own publications and working papers.
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Specifically, Sections 5.2 – 5.5 are reproductions and extensions of our paper
Ilg et al. (2012) and the results presented here are currently incorporated in the
working paper Investment and Grid Cost Allocation.

5.1 Transmission Pricing and Cost Allocation
Foundations

In most countries, integrated utilities have been in charge of electricity supply
for end consumers, and pricing of separate functions has not been in focus. A
vertically integrated monopolist utility is inherently incentivized to find a cost-
optimal mix of transmission and generation assets. Deregulation in the power
sector has led to an unbundling of tasks and often separate entities: generation,
transmission, and local distribution. This development in combination with the
need for investment fed the discussion on the siting of generators, locational
pricing, and cost allocation of grid investments.

The literature on transmission pricing is mostly applicable to these questions
and focuses on short-term operation as well as long-term cost recovery in some
forms with locational differences. Due to lack of electricity storage and trans-
mission capacity constraints, pricing needs to avoid congestion in the short run.
Since electricity cannot be routed, topics like loop flows and ancillary services
require unique approaches and limit the applicability of solutions from other
network industries. At the same time, the high investment costs of transmission
systems and generation plants require stable and long-term pricing to guide in-
vestment decisions and ensure the recovery of sunk cost. This section provides
an introduction to the objectives, theory and dimensions of transmission cost al-
location as well as related economic models to the approaches presented in this
chapter.

5.1.1 Objectives of Electricity Transmission Pricing

Transmission pricing is complex and has to respect different aspects and incen-
tives in order to lead to a preferred or intended outcome. Green (1997) pro-
vides an international comparison on transmission pricing and names six guid-
ing principles for transmission pricing regarding economic efficiency and po-
litical implementation, which since then have been widely accepted by other
authors: “The prices should:

• promote the efficient day-to-day operation of the bulk power market;

• signal locational advantages for investment in generation and demand;

• signal the need for investment in the transmission system;
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• compensate the owners of existing transmission assets;

• be simple and transparent; and

• be politically implementable.”

Also, Brunekreeft et al. (2005) name five points which should ideally be en-
couraged by network charges:

• “the efficient short-run use of the network (dispatch order and congestion
management);

• efficient investment in expanding the network;

• efficient signals to guide investment decisions by generation and load
(where and at what scale to locate and with what choice of technology —
baseload, peaking, etc.)

• fairness and political feasibility;

• cost recovery.”

Other authors formulate or list similar principles in other ways (e.g., Hunt and
Shuttleworth, 1993; Oren et al., 2002; Pérez-Arriaga and Smeers, 2003). On the
one hand, some of these requirements can be grouped into ‘soft’ implementabil-
ity requirements of fairness, simplicity and political feasibility. On the other
hand, there are some ‘hard’ economic facts and incentives that need to be con-
sidered to foster an efficient outcome. Namely, these are short-term efficient
operation as well as long-term efficient investment and remuneration of all par-
ticipating actors.

5.1.2 Transmission Cost Theory and Dimensions

This section briefly describes the different costs incurred by transmission and
provides an introduction into theoretical cost allocation dimensions. Finally, in-
ternational differences in cost allocation are presented to highlight the variety of
existing regulatory regimes. The goal is to provide an overview and literature
references for further details of the discussed topics.

Transmission Cost Types

From a TSO perspective, two different types of transmission costs can be
distinguished: connection cost and network infrastructure cost (Madrigal and
Stoft, 2012). Connection costs occur when a new consumer or generator needs
to be connected to the transmission grid. Policies allocate different parts of the
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connection costs to individual actors. This ranges from super-shallow policies,
where all grid expansions and network upgrades are borne by the TSO, to
deep policies, where the individual actor has to also bear upgrade costs in
the transmission grid (Madrigal and Stoft, 2012; Barth et al., 2008). As long
as these costs can be assigned to a single consumer or generator — which is
typically the case for shallow costs — they are not within scope of this chapter.
These ‘dedicated facility’ costs are easily allocatable to a single generator or
consumer (Pérez-Arriaga and Smeers, 2003). The deep connection policies are
more difficult, since it is not a trivial task to assign deep connection costs, e.g., to
a single generator due to the nature of dynamic usage and varying power flows.
The network infrastructure costs cover the remaining transmission grid costs,
and comprise mainly investment costs and costs of operation which typically
include maintenance, losses, congestion, and ancillary services (Madrigal and
Stoft, 2012).

One possibility for short-term cost recovery often discussed is the nodal or
locational marginal pricing (LMP) approach, which leads to different locational
prices in case of congestion. This results in short-run efficient outcomes and also
generates congestion revenues.5 Major publications agree that it is unlikely or
even impossible to achieve full cost recovery by marginal pricing (Brunekreeft
et al., 2005; Pérez-Arriaga et al., 1995; Pérez-Arriaga and Smeers, 2003). There-
fore, even in an LMP system, the remaining costs still need to be allocated. Sim-
ilarly, Knieps (2013) notes that cost recovery is an important question in trans-
mission pricing, due to economies of scale in transmission investment. In line
with the cost allocation white paper of Baldick et al. (2007), we agree that short
run congestion costs, LMPs, and redispatch costs are important but beyond the
scope of this chapter. Hence, this chapter’s focus is limited to capital or invest-
ment cost allocation and recovery in the long-term.

Generic Alternatives for Transmission Cost Allocation

For cost recovery the main question is whether the cost should be allocated to
generators or consumers. In existing literature this is often discussed as the
G-charge/-component for generation and the L-charge/-component for load
(Brunekreeft et al., 2005; von Hirschhausen et al., 2012). One generally desired

5A critique mentioned in Leuthold et al. (2008) is that a large number of nodal prices is seen as
too complex by some researches, and therefore zonal prices may be a compromise. However,
the zonal approach is also strongly criticized by Hogan (1999), due to the fact that nodal pric-
ing would lead to zones with similar prices if there is no difference between nodes. However,
Hogan (1999) also mentions that the focus of his argument is short-term congestion manage-
ment. Finally, the magnitude of impact is again discussed by Oren (1998). For more details
on nodal and zonal pricing as well as where the concepts are applied, Leuthold et al. (2008)
provide further information.
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principle is the following: beneficiaries or those who cause the grid cost, should
pay (see Pérez-Arriaga and Smeers, 2003). However, beneficiaries are very diffi-
cult to identify in an interconnected power grid and often change over time.

In addition to the cost allocation to different stakeholders, the calculation
method for transmission charges is another dimension. An important factor is
whether cost allocation should be uniform or differentiated. One possible type
is differentiation by location of generation or consumption.

Madrigal and Stoft (2012) provide an overview of network infrastructure
pricing methodologies. Shirmohammadi and Gorenstin (1996) name similar
paradigms for calculation of transmission charges based on actual cost. They
identify three different transmission pricing paradigms:

• Under a postage stamp model all transmission users pay the same rate
pro rata, independent from individual benefit or cost causality, e.g., for
consumers based on total consumption (energy-based) or maximum de-
mand (capacity-based) (Madrigal and Stoft, 2012). A small deviation is
a license plate fee which is a regionally differentiated postage stamp rate
(Brunekreeft et al., 2005).

• Usage-based methods on the other hand attempt to charge grid users in re-
lation to their actual use of the infrastructure. Madrigal and Stoft (2012)
further divide these methods into flow-based and MW-mile calculations.
The latter also incorporate distances for rate calculations in addition to
caused flows.6 As mentioned before, the definition of usage-based can be
extremely complex in interconnected power grids.

• Combined pricing approaches are a blend of postage-stamp and usage-
based methods.

In summary, the discussion on who is to be charged for the usage of the trans-
mission system is spanned by two extremes: socialization vs. beneficiary pays
(PJM, 2010). In the case of socialization, grid costs are split independently from
benefits with the main argument that every stakeholder benefits from the relia-
bility provided by the transmission grid. By contrast, under ‘beneficiary pays’
the costs are allocated to the stakeholders who benefit the most (e.g., by usage
of capacity or low electricity prices). One has to note, that if the benefits are
widely distributed, a beneficiary-pays scheme might result in in the same cost
allocation as socialization (MIT, 2011). Obviously, it is a challenging task for reg-
ulators to create conditions and rules for transmission cost allocation that fulfill
all objectives mentioned in the previous section

6For more details on distances and the difference between geographical and electric distance
please refer to Pérez-Arriaga and Smeers (2003).
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International Examples and Approaches

In reality, grid costs in most countries are financed by several different charges
(e.g., connection charges, postage stamp charges per kWh). There is no common
and agreed guideline or model that defines how much each actor needs to pay
for transmission.

The differences in regulatory regimes are already pronounced, even for the
connection costs that seem ‘easy to allocate’, such as super-shallow cost. All cost
allocation methods from super-shallow to deep are applied in different countries
(see Madrigal and Stoft, 2012). The same applies for the European Union (von
Hirschhausen et al., 2012). A detailed overview also demonstrates that even
in the EU, the included cost parts in transmission tariffs vary to a great extent,
e.g., losses, different system services (ENTSO-E, 2012b). These publications also
show that none of the concepts of postage-stamp and usage-based pricing have
been globally accepted so far (see Madrigal and Stoft, 2012).

Also, the cost allocation to generation or load is implemented differently,
even within a single country, e.g., different ISO regions in the U.S. (PJM, 2010).
The same applies for the European Union where around half of the member
states allocate all transmission cost to load/consumers (PJM, 2010). The other
half also allocates varying shares of the cost to generators. A regularly updated
overview on who pays transmission is provided by the European Network of
Transmission System Operators for Electricity (ENTSO-E, 2011, 2012b).

Several regulators recently attempt to improve cost allocation schemes to
match their specific situation and promote efficient as well as ’fair’ outcomes
(e.g., FERC in the US, Electricity Authority in New Zealand). For example,
Order 1000 by the US Federal Energy Regulatory Commission (FERC) tries to
address these questions by allocating costs to beneficiaries:7 “The regional and
inter-regional cost allocation methods each must adhere to six regional and in-
terregional cost allocation principles:

• costs must be allocated in a way that is roughly commensurate with bene-
fits;

• there must be no involuntary allocation of costs to non-beneficiaries;

• a benefit to cost threshold ratio cannot exceed 1.25;

• costs must be allocated solely within the transmission planning region or
pair of regions unless those outside the region or pair of regions voluntarily
assume costs;

7Source: http://www.ferc.gov/whats-new/comm-meet/2012/051712/E-1.pdf (p. 395)

http://www.ferc.gov/whats-new/comm-meet/2012/051712/E-1.pdf
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• there must be a transparent method for determining benefits and identify-
ing beneficiaries; and

• there may be different methods for different types of transmission facili-
ties.”

Olson (2012) provides an interesting interpretation of the Order 1000 and
discovers that it is still complex to allocate grid cost ‘fairly’ even if the order uses
the word ‘fair’ 32 times. Another example is the transmission pricing scheme in
New Zealand which has been subject to discussions and changes several times
in the last years (Electricity Authority, 2012). In contrast, other countries still
apply a socialization of large shares of grid investment cost.

Since this section cannot fully analyze and discuss all regulatory approaches,
only some selected cases on transmission cost allocation are presented. First,
LMP is not only used by the often mentioned example of PJM, but also by other
U.S. ISOs and in other countries, e.g., New Zealand, Argentina (Frontier Eco-
nomics, 2009). Zonal approaches are used in the UK and also in other countries
such as Australia (National Grid, 2013; Frontier Economics, 2009; Ault et al.,
2007). In Germany, transmission injection pricing for generation nodes is pro-
hibited by regulation (Knieps, 2013). A real example demonstrates the influence
of cost allocation methods on actual investment and also on social welfare: The
Arizona Commission rejected a transmission line the cost of which would have
had to be borne by Arizona ratepayers, whereas California customers would
have benefited from supply at lower cost (Baldick et al., 2007).

The different approaches and recent discussions show that there is currently
no generally accepted optimal approach. This is why we evaluate different sce-
narios where grid costs are paid by either generators or consumers. Olmos and
Pérez-Arriaga (2009) summarize the current situation accurately: “There is no
universal consensus on the most adequate regulatory approach for transmission
investment, access, and pricing.” Or as Green (1997) puts it: “None of the au-
thors claims that they have ‘the’ right answer, and it probably does not exist.
All we can do is learn from each others’ experience, and hope for incremental
improvements.”

5.1.3 Related Work on Transmission Pricing and Cost Allocation

This section provides an overview of related work to the models applied in this
chapter. These models analyze the influence of different transmission cost allo-
cation regimes in a static scenario with existing assets and in a dynamic scenario
where a generator still can invest into capacity. Hence, publications that ana-
lyze different transmission pricing approaches as well as competition in spatial
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grid models are briefly summarized to show complementary approaches to the
ones used in this chapter. Since each publication tackles various relevant model-
ing dimensions, they are presented only briefly to avoid repetitions of the same
sources. The relevant aspects of each publication for the models applied in this
chapter are summarized in Table 5.1.

Overviews

Some publications offer overviews with a focus on different aspects in spatial
electricity markets. Green (1997) serves as a good introduction into the topic,
raises the main questions on welfare, incentives as well as implementability and
gives an overview of the international experience. Ventosa et al. (2005) provide
an overview on electricity market modeling trends and split the models into
optimization, equilibrium, and simulation models. Similar to Ventosa et al.
(2005), this chapter focuses “for brevity’s sake” and presents only a selection
of models, i.e., a large share of literature that deals with nodal pricing and
operational models is left out. However, Hsu (1997) provides a good overview
of short-term transmission pricing literature. He also points out the unresolved
challenges with long-term cost allocation and incentives. Smeers (1997) dis-
cusses the potential of different competition equilibrium models in restructured
gas and electricity markets. Finally, Kagiannas et al. (2004) contribute a review
of generation planning methods under competition.

Competition

Competition in spatial models is analyzed by a multitude of models — the
following selection matches the topics addressed in this chapter. Borenstein
et al. (2000) employ a two-node model with one dominating supplier at each
node and constrained grid capacity. Using Cournot competition they show
that modest additions to transmission capacity can yield large social benefits.
In addition, they discuss opportunities to extend their model and apply it to
the Californian electricity market to find that strategic congestion may be an
important issue. Wei and Smeers (1999) model a spatial oligopolistic Cournot
competition among generators with regulated transmission prices. They apply
two transmission pricing regimes — namely average-cost and marginal-cost
pricing — to a four node simulation representing European countries and find
that average-cost pricing yields lower supply but higher profits.
In a three-node Cournot model with loop flows, Cardell et al. (1997) find that
market power may also be exerted by increasing outputs to congest transmission
lines. Hobbs (1986) analyzes short-run spatial price equilibria in an oligopolistic
deregulated power market with the use of different models. He applies the
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Nash-Bertrand and a limit price model to upstate New York. The comparison
of prices, profits, and social welfare to a regulated prices regime shows that
consumers experience different price effects based on their location.

Investment

Investment and expansion are often analyzed in publications using several
stages. Aflaki and Netessine (2012) present a paper on strategic investment into
RES. They use an investment and a generation stage, however, grid investment
or cost allocation is not in focus. Joskow and Tirole (2005) analyze merchant
transmission investment in detail and incorporate several dimensions to ob-
tain more realistic models. They demonstrate — also using simple economic
two-node models — that merchant transmission investment may lead to in-
efficiencies, e.g., when market power influences nodal prices or lumpiness of
investment lead to over- or under-investment. Chao and Wilson (2012) analyze
electricity transmission and generation investments in three models: efficient
coordination, merchant transmission investment, and sequential coordination.
They find substantial differences in welfare, prices and investments between ef-
ficient regulated and merchant investment and suggest their model as a tool for
transmission planners to evaluate different situations and regimes. They state
that when the efficiency losses of self-financed (injection fees and congestion
charges) investments are small, it might be advantageous due to the avoidance
of cost allocation discussions. Murphy and Smeers (2005) investigate different
generation investment models also including a two-stage Cournot model but
use a single node to avoid transmission challenges. Sauma and Oren (2006)
as well as Sauma and Oren (2007) propose a 3-period model for investment
and Cournot competition. The periods are transmission planning followed by
generation investment and finally an energy spot market. They investigate the
influence of transmission investment on social welfare and find that different
targets — namely maximization of social welfare, minimization of market
power, and maximization of consumer or producer surplus — may all lead
to different grid expansion plans. Van der Weijde and Hobbs (2012) evaluate
transmission investment for renewable energy sources under uncertainty using
a stochastic two-stage optimization model. They apply their model to the
UK transmission system and analyze the value of information and the cost of
ignoring uncertainty.
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Allocation and Cost Recovery

Other publications deal specifically with the challenge of cost allocation and
recovery in different settings. Rubio-Odériz and Pérez-Arriaga (2000) analyze
different allocation methods to recover remaining costs of the transmission
service that are not paid by marginal pricing. This “complimentary charge”
is allocated by three approaches: “marginal participation factor”, “mean par-
ticipation factor”, and “benefit factors”. In their comparison of the methods
they consider benefit factors as the best concept based on the criteria efficiency,
objectivity and simplicity. However, they also raise serious implementation
problems due to the complexity of benefit identification. Rious et al. (2009)
employ an average participation tariff in addition to nodal pricing which
allocates cost to generators based on their total use of the network and improves
coordination between generation and transmission investments significantly.
Similarly, Olmos and Pérez-Arriaga (2009) present an approach which is meant
to accompany nodal prices to recover full cost. Their approach socializes the
unused fraction of a line and tries to allocate the remaining cost based on the
expected incremental use of the line by each generator and each load. However,
they also mention the challenge that these transmission charges need to be
determined and published before the generation investment decision. This
is a non-trivial task and the optimality of the results can only be analyzed
ex-post, when investment decisions have already been influenced. Joskow and
Tirole (2000) investigate the effects of the allocation of physical and financial
transmission rights in a congested network — first with a simple two-node
model and then they expand it to a model with loop flows. This paper does not
focus on cost recovery, it is mentioned here due to the description of the simple
grid model.

Practical Examples

Finally, some publications discuss transmission pricing and cost allocation in
practical examples. The following three papers give a notion of the differences
between theoretical concepts and real-life implementations. Philpott and Hoang
(2010) analyze a scheme based on auctioning physical flow rights as alternative
to the allocation of HVDC cost to South Island generators in NZ. Ault et al. (2007)
model the investment cost-related zonal pricing approach in the UK and find
that it is suitable in the future if some issues are resolved that affect some actors,
e.g., the effect of distributed generation and the re-zoning in some areas. Dietrich
et al. (2009) show for the German market that an integration of grid conditions
leads to a different siting of power plants and a social welfare gain in comparison
to the current situation with no locational signals.
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Aflaki and Netessine (2012) D D D D D D D Analysis of investment into RES and conventional generation under ver-
tical integration and market competition. They find that due to intermit-
tency of supply, market liberalization may not promote efficient genera-
tion investments.

Borenstein et al. (2000) D D (D) (D) (D) Two-node Cournot model with constrained transmission capacity and
Bertrand extension. They find that transmission expansion mitigates
market power and reduces prices.

Cardell et al. (1997) D D (D) (D) D Spatial three-node Cournot model with loop flows that yields the result
that market power may also be exerted by increasing outputs to block
transmission.

Chao and Wilson (2012) D D D D D D D Three-node Cournot model with two transmission lines to study efficient
transmission and generation planning. Costs are allocated to consumers
in three ways: socialized, beneficiary pays, and market-based. The au-
thors state that when the efficiency losses of a self-financed investments
(injection fees and congestion charges) are small, it might be advanta-
geous due to the avoidance of cost allocation discussions.

Hobbs (1986) D D D D (D) (D) Model of Bertrand competition and limit-pricing in spatial electricity
markets. The comparison to a price regulation model shows that con-
sumers experience different price effects by location.

Joskow and Tirole (2000) D (D) D (D) (D) D Two- and Three-node model to analyze the influence of transmission
right allocation on a congested network. They find that physical and fi-
nancial transmission rights can increase market power of generators and
consumers.

Joskow and Tirole (2005) (D) D (D) (D) D A merchant transmission investment is expanded to incorporate realistic
attributes in transmission, e.g., market power. The authors find that mer-
chant transmission investment yields inefficiencies given these attributes.

Murphy and Smeers (2005) D (D) D D D Single node model which investigates generation investment and perfect
competition as well as simultaneous and two-stage cournot competition.
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Olmos and Pérez-Arriaga (2009) (D) D (D) D Analysis of transmission charge designs to recover grid cost and guide
siting decisions. The application to the Spanish power system shows the
expected result that exporting regions pay higher transmission charges.

Rious et al. (2009) (D) D (D) D (D) D Two-node model with nodal pricing and an average participation tariff to
send long-term signals. The authors find that an implementation of a lo-
cational network tariff is more important for efficient siting of generation
capacity than the implementation of nodal pricing.

Rubio-Odériz and Pérez-
Arriaga (2000)

D D (D) (D) D Analysis of three different network cost allocation methods with applica-
tion to the Spanish market.

Sauma and Oren (2006), Sauma
and Oren (2007)

D D (D) (D) D D Cournot competition to evaluate the influence of transmission invest-
ment on social welfare with three periods: transmission planning, gen-
eration investment and market operation. Expansion plans differ largely
dependent on the optimization target.

Van der Weijde and Hobbs
(2012)

D D D D Two-stage stochastic optimization model that minimizes total cost con-
sisting of transmission investment as well as investment and operation
of generation under uncertainty.

Wei and Smeers (1999) D (D) (D) D (D) D Spatial Cournot with regulated transmission prices (average and
marginal) charged to generators. Average-cost pricing yields lower sup-
ply but higher profits than marginal-cost pricing.

Table 5.1: Summary of selected contributions on transmission grid pricing and cost allocation models
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This chapter extends prior research on grid or transmission pricing and cost
allocation by investigating cost allocation and local price differentiation simul-
taneously. The use of price discrimination raises again the question of what is
fairness. As discussed in the beginning, one may argue that electricity is a com-
modity product and all types of differentiation are per se unfair. However, this
thesis rather follows the argumentation that fair prices can also be differentiated,
e.g., by time or location especially in order to yield an efficient outcome. This cor-
responds to the notion that current uniform pricing regimes are not per se fair in
terms of grid cost allocation (Faruqui, 2010). Different regulatory cost allocation
regimes are compared with respect to their impacts on total and consumer wel-
fare. The intention is to present the modeling assumptions from an economic
point of view and to allow the reader to judge applicability and limitations of
the presented model.

5.2 Grid Cost Allocation and Competition - A
Microeconomic Analysis

A simple analytical network model with a three-step time structure serves as the
base to investigate different alternatives for transmission grid cost allocation. A
previous version of the model has been published published in our paper Ilg
et al. (2012). This basic model abstracts from physical reality and is intended
to guide the discussion on the economic implications with respect to welfare
distribution as well as implications on investment behavior. In the following,
the model and decision structure are described in general. Subsequently, the
model is instantiated twice — first to analyze welfare distribution with preexist-
ing investments and second to analyze investment behavior into new grid and
generation capacity.

5.2.1 Basic Stylized Grid Model

We assume an unbundled power market with the functions generation and
transmission performed by legally and commercially separated entities. The ba-
sis is a simple two-node grid model (nodes L and H) with heterogeneous con-
ditions for generation of electricity similar to Joskow and Tirole (2000, 2005).
At each location (node), we model one generator and one consumer popula-
tion. The locations are interconnected by a transmission infrastructure (i.e., a
single transmission line or a more complex transmission grid) operated by a
TSO O as depicted in Figure 5.3. For the consumer populations at each location
Dj, j ∈ {L, H} it is not relevant whether these are actually individual end con-
sumers (households or industry), distributors, or retailers, since the latter sim-
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ply serve as load aggregators. Independent generator populations Gi, i ∈ {L, H}
serve the demand as suppliers either directly at their location or via the trans-
mission grid infrastructure. Both locations feature sufficient natural resources to
serve total demand if sufficient generation capacity is built.

Location L

Location H

GL DL

GH DH

O

O System Operator

Gi Generator population

Dj Consumer Demand

Figure 5.3: Basic model overview

Grid costs are imposed on different participants depending on the regulatory
regime. Consumers are assumed to be price takers, i.e., demand is perfectly in-
elastic. In the following, two different instances of this basic model are used
to analyze locational competition and investment behavior with different condi-
tions for generation and investment efficiency, respectively.

5.2.2 Generic Timing and Decision Structure

Our basic model is applied using different assumptions and scenarios to investi-
gate competition and investment behavior. We split the analysis into two parts,
since the model instances strongly depend on the question to be answered. The
reason for this is the sequence of decisions we assume in context of the transmis-
sion investment and operation:

• Step 1: Regulatory environment decision

• Step 2: Investment decision into generation capacity at both locations

• Step 3: Revenue generation through electricity dispatch and pricing

All decisions in competition and investments are based on full knowledge of the
regulatory environment. Without existing generation and transmission infras-
tructure assets, the participating actors decide on their investments based on the
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regulatory environment. Subsequently, the actors compete on the market and try
to maximize their profit under the given regulatory regime. Obviously, actors
incorporate the third stage of revenue generation into their investment decision.
To this end, we first analyze step 3, to understand the behavior of participants
given a preexisting infrastructure. This is comparable to a static case where gen-
erators and the transmission grid are already existing — which is true for large
parts of most power systems. Step 2 on the other hand represents a dynamic
decision on new investments into generation and transmission capacity.

The following sections provide a description of the two different model in-
stances we use to analyze step 2 and 3. First, step 3 with competitive dispatch
and pricing is investigated under different regulatory regimes. Based on these
results, the investment stage in step 2 is discussed. In the classification of Ven-
tosa et al. (2005) step 3 is modeled as an equilibrium model whereas we use an
optimization model for one generator in step 2.

5.3 Grid and Energy Pricing with Preexisting
Investments

This section is an amended version of our publication Ilg et al. (2012), with mod-
ifications regarding the focus of the regulatory scenarios and extensions to ac-
count for uneven consumer population splits. Instead of emphasizing the loca-
tional price differentiation, we mainly focus on the allocation of grid cost. One
major assumption in this section is that generators at each location and the con-
necting transmission grid are preexisting. First, the market and institutional sce-
narios that we want to analyze with our model are presented as described by
Smeers (1997). Based on Smeers (1997), the market scenario defines the main de-
sign parts of our model such as number and behavior of participants, structure
of the industry and hypotheses about competition. Obviously, the basic parts of
the market scenario are already defined by the basic grid model (Section 5.2.1).
Subsequently, we describe the institutional scenarios that are defined as the reg-
ulatory environment set by public authorities which influences the market.

5.3.1 Market Scenario and Behavior of Participants

Our model analyzes the competition between two generating firms at different
locations. Generators are independent entities and do not cooperate, i.e., they
compete at both locations to maximize individual profit. Extending the basic
grid model, the generators GL at location L produce at constant marginal cost
of MCL per unit of energy, whereas the generators GH produce at marginal cost
MCH (Figure 5.4).
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Location L

Location H

GL

MCL

DL

1− α

GH

MCH

DH

α

O

CT

O System Operator

Gi Generator population

Dj Consumer Demand

Figure 5.4: Model instance for grid pricing with preexisting investment

We focus on the case of cost asymmetry, that is generators differ in their
marginal production costs, such that MCL < MCH. To reduce the notational
burden we normalize MCL to zero without loss of generality. Therefore, MCH
can be interpreted as the generation cost difference between the two locations.
We assume generators behave competitively and maximize their profits by set-
ting their prices strategically. Our model abstracts from physical constraints such
that the generators are not limited by transmission or generation capacity.

For ease of exposition, we normalize the total demand in the model (i.e., the
sum of both consumer population demands) to unity. However, the consumer
distribution is variable across the two nodes. Parameter α defines the share of
the consumer population at location H. Therefore, a consumer population share
of 1− α is situated at the low-cost location L. The additional assumption 1 > α ≥
0.5 ensures that the major share of total consumption is located at the high-cost
location H. Each consumer population chooses its supplier purely price-based.
If prices are identical, they randomly choose either one with equal probability.

A regulated TSO provides transmission services based on the constant calcu-
latory grid cost CT which incur per unit of energy transmitted from one location
to the other. These constant grid costs or capital costs of transmission infrastruc-
ture are based on the assumption of an ideally sized grid (i.e., there is always
enough and no excessive unused transmission capacity). Naturally, dynamic
grid utilization is heavily dependent on load patterns and the generators’ capac-
ity factors. Abstracting from this complexity, we focus on static grid situations
comparable to a long-term average analysis. This is similar to a regulated mo-
nopolist that is allowed to recover cost. Depending on the institutional scenario
these grid costs are charged either to generation or demand.
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5.3.2 Institutional Scenarios

We analyze four different regulatory regimes or scenarios (Figure 5.5). In this
first part, we abstract from investment and focus on competition between preex-
isting generators under the different regulatory scenarios.

Socialization of
grid cost among
consumers

I

Uniform supply
pricing and ben-
efiting generators
bear grid cost

II

Uniform supply
pricing and bene-
fiting consumers
bear grid cost

III

Price discrimina-
tion allowed and
generators bear
grid cost

IV

Figure 5.5: Institutional scenario overview with preexisting investments

Depending on the institutional scenario generators have to set uniform prices
or are allowed to discriminate prices by consumer location. Prices of generator
Gi at location j are represented as pj

i , i ∈ {l, h}, j ∈ {L, H}, i.e. pH
l is the price the

low-cost generator is offering to consumers at the high-cost location H. In our
reference Scenario I generators are not allowed to discriminate prices by loca-
tion. All transmission and grid-related costs are socialized and allocated to con-
sumers based on their share of total consumption independent of their location.
This results in a market where generators set uniform prices for all consumers
purely based on generation cost without taking into account transmission cost.
In the subsequent scenarios we want to compare transmission pricing based on
a simple beneficiary pays scheme. In Scenario II transmission costs are fully al-
located to transmitting generators and in Scenario III to transmitting consumers,
only based on total share of transmitted energy. Still, generators are not allowed
to differentiate their price by customer location. However, the transmission cost
allocation schemes may lead to differentiated total cost for consumers. The last
Scenario IV analyzes the influence of price discrimination with cost allocation to
beneficiaries.

5.3.3 Scenario I — Socialization of Grid Cost and Consumers
Bear Grid Cost

The socialization of grid costs to customers based on their demand and indepen-
dently of their location is a simple form of cost allocation. Since grid costs are
merely added to the uniform price of generation, both consumer populations
pay the same price per unit of energy, including transmission. Socialized grid
costs have no influence on the price competition between the generators. With-
out the possibility of price discrimination, generators have to charge the same
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price at both locations. Therefore, we simplify the price notations as follows:

pH
l = pL

l = pl,

pH
h = pL

h = ph.
(5.1)

Owing to the Bertrand-style competition with uniform prices, all demand will
be allocated to the generator that offers the lowest price or split evenly in case of
identical prices. The demand function for the generator L is

NGL =


1 if pl < ph
0.5α + 0.5(1− α) if pl = ph
0 if pl > ph

(5.2)

and respectively the opposite for generator H. Since identical prices would lead
to split population, which in return would change total grid cost, we abstract
from this special case in order to derive clear results. In addition, this outcome
would be somehow artificial and unstable given the multitude of different gen-
eration technologies.

Based on this demand the profit functions of the generators are

πL = NGL(pl −MCL),

πH = NGH(ph −MCH).
(5.3)

The resulting competition is a typical Bertrand competition based on the gen-
eration price. The generators will undercut prices as long as they are above
marginal cost. Similar to Peeters and Strobel (2009), we define undercutting as
the setting of lower prices to attract consumers from the opposite generator de-
spite any additional cost such as transportation or transmission. Finally, low-
cost generators will serve the whole market at a price slightly below marginal
cost of the generators at the high-cost location. Then the high-cost generator
can no longer undercut without making losses. This results in an equilibrium
generation price for all consumers of

p∗l = p∗H
l = p∗L

l = MCH − ε. (5.4)

Given totally inelastic demand and marginal production cost of zero, and ne-
glecting ε, the equilibrium profit functions of the generators are

π∗L = MCH,

π∗H = 0.
(5.5)

Both consumer populations have to pay the same end consumer price and
additionally finance total grid cost αct which leads to the average consumer cost
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for their demand of

AVCDL = AVCDH = MCH +
αCT

1
= MCH + αCT (5.6)

The socialization of grid cost results in the maximum grid infrastructure to serve
α ≥ 0.5 of the total consumer population with low-cost generation. This result
has two interesting facets. First, generators with higher cost cannot compete
independently of grid cost levels. Second, consumers next to low-cost generation
pay for the grid like the customers next to the high-cost generation without being
beneficiaries of the transmission.

5.3.4 Scenario II — Benefiting Generators Bear Grid Cost

In the second scenario the transmission grid costs are fully allocated to the trans-
mitting generators, and they still have to offer uniform prices to consumers
(Equation 5.1). The competing generators have to take into account the expected
grid cost for serving the whole market when setting their prices, which leads to
the following profit functions

πL = NGL(pl −MCL)− αCT,

πH = NGH(ph −MCH)− (1− α)CT.
(5.7)

Equilibrium prices result from the same undercutting competition as in Sce-
nario I, with generators anticipating their share of grid cost when serving remote
consumers. Depending on the transmission cost, the low-cost generator located
next to the smaller consumer population might not have lower total marginal
cost. Again, the generator with the lowest marginal cost will serve all consumers
at the minimum price of the opposite generator. Given the transmission cost,
minimum prices when serving all consumers are

pl = MCL + αCT = αCT,

ph = MCH + (1− α)CT.
(5.8)

The resulting equilibrium prices depend on both the consumer population par-
tition (α) and the locational difference in generation cost (MCH). Excluding the
possibility to split consumer populations evenly, we obtain two possible out-
comes.
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Case 1 — Low-cost generator captures market If pl < ph, the low-cost genera-
tor can serve the whole market. The condition can be converted into

pl < ph

αCT < MCH + (1− α)CT

1
2α− 1

>
CT

MCH

(5.9)

GL will charge the other generator’s minimum price minus an infinitesimal dis-
count. Neglecting ε, the resulting price obtains:

p∗l = MCH + (1− α)CT if
1

2α− 1
>

CT

MCH
(5.10)

Including generation and grid costs, the industry profits are

π∗L = (1− 2α)CT + MCH,

π∗H = 0.
(5.11)

As the low-cost generator accounts for grid cost αMCT when setting prices,
the resulting prices are the average consumer cost: AVCDL = AVCDH = p∗l =

MCH + (1− α)CT.

Case 2 — High-cost generator captures market In the opposite case pl > ph
the high-cost generator will capture the whole market. Thus, neglecting ε, the
equilibrium price is

p∗h = αCT if
1

2α− 1
<

CT

MCH
. (5.12)

The resulting industry profits are

π∗L = 0,

π∗H = (2α− 1)CT −MCH.
(5.13)

Again, the grid cost (1− α)CT are already included — the price represents the
final average consumer cost: AVCDL = AVCDH = p∗h = αCT.

Cases — Overview The condition 1
2α−1 < CT

MCH
that determines the switch

from case 1 to case 2 depending on the grid-to-generation-cost relation CT
MCH

is
depicted in Figure 5.6. In the area above the depicted function GH serves total
demand — GL otherwise in the area below. In both cases the total industry profit
Π∗ = π∗L + π∗H is absorbed by a single company while network costs amount to
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Figure 5.6: Characteristics of condition 1
2α−1 for different α

αCT in Case 1 or (1− α)CT in Case 2, respectively. Generators with higher cost
can therefore compete if grid cost are high, generation cost difference is low and
large share of population is at the high cost location.

5.3.5 Scenario III — Benefiting Consumers Bear Grid Cost

In the third scenario all grid costs are allocated to the consumers that use trans-
mission capacity. Given the restriction to uniform pricing, consumers pay the
same price per unit of energy but have to add transmission cost if buying from
the opposite generator. That is, consumer demand DL will always choose the
less expensive option of (pl, ph + CT) and DH will choose the less expensive op-
tions from (pl + CT, ph). In pure Bertrand competition, generator GL faces the
following demand function:

NGl =



1 if pl < ph − CT
0.5α + 1− α if pl = ph − CT
1− α if ph + ct > pl > ph − CT
0.5(1− α) if pl = ph + CT
0 if pl > ph + CT

(5.14)

while GH always captures the remaining demand.
Therefore, generators need to consider expected grid cost for consumers when

setting their uniform prices (Equation 5.1). With our assumptions MCH >

MCL = 0 and CT > 0, generator pool GL is always able to capture its local con-
sumer demand DL; therefore the lower two lines of Equation 5.14 cannot occur,
and the high-cost generator will never capture the whole market. With respect
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to consumer demand DH we need to analyze two different cases.8

Case 1 — Market served by low-cost generator In the case of CT < MCH,
the low-cost generator can capture the whole market due to a large generation
cost difference (first line of Equation 5.14). The low-cost generator can profitably
price the high-cost generator out of the market by setting a price at

p∗l = MCH − CT − ε (5.15)

Neglecting the infinitesimal ε, the generators will generate a profit of

π∗L = MCH − CT,

π∗H = 0,

Π∗ = MCH − CT.

(5.16)

Both consumer populations will buy at this price p∗l from GL. Additionally, the
consumers at the high-cost location have to bear the grid cost of αCT. Therefore,
the average consumption costs for each demand population are

AVCDL = MCH − CT,

AVCDH =
α(MCH − CT) + αCT

α
= MCH.

(5.17)

The population at the low-cost location has lower average cost than consumers
at the high-cost location: AVCDH > AVCDL .

Case 2 — Market split In the case of CT > MCH, each generator has a local
cost advantage and could serve its local market profitably without connecting
grid infrastructure. However, generators can leverage the threat of potential
grid cost to realize higher prices at their local consumer pool. In such a case,
a Nash-Bertrand equilibrium in pure price-strategies does not exist (Shy, 2001).
However, Morgan and Shy (1996) propose the Undercut Proof Equilibrium as
an alternative solution concept. According to Peeters and Strobel (2009), the ra-
tionale behind the UPE has some similar features as the Stackelberg sequential
price setting process. Each generator assumes its own price as fixed and ana-
lyzes whether the opposite generator has an incentive to undercut in order to
capture the whole market. In the UPE each generator sets the highest price pos-
sible without giving the opposite generator an incentive to undercut and capture
the whole market. In detail that means GL has to set the price pl satisfying the

8Again, we abstract from analyzing the cases of pl = ph − CT to avoid fictitious results with
split consumer pools and therefore differing grid cost.
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following condition

πGH = (ph −MCH)α ≥ pl −MCH − (1− α)MCT. (5.18)

Whereas GH sets the price ph subject to

πGH = pl(1− α) ≥ ph − αMCT. (5.19)

This leads to the UPE prices of

p∗l =
1− α

α2 − α + 1
MCH + CT,

p∗h =
(α− 1)2

α2 − α + 1
MCH + CT.

(5.20)

The characteristics of these UPE prices dependent on α are depicted in Figure
5.7. Obviously, the absolute price level depends on MCH and CT, however, the
shape of the curves is invariant.
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Figure 5.7: UPE consumer prices for different α with split market and without transmis-
sion

The equilibrium prices always fulfill the condition of p∗h < p∗l with no
transmission occurring that also means p∗h = AVCDH < AVCDL = p∗l . There-
fore, consumers at the high-cost location are better off than consumers at the
low-cost location (5.7). This is in contrast to an equilibrium in mixed strategies
which predicts that lower prices are set by a generator with lower cost and
smaller customer base (Peeters and Strobel, 2009) and also in contrast to a
Hotelling location model (Shy, 2001). This special property of the UPE prices
may have an influence on real or experimental competition cases (Peeters and
Strobel, 2009). However, Shy (2001) notes that in some industries it is common
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for firms with a larger consumer base to sell at a lower price, e.g., discount stores.

Industry and firm profits are then given by local population share times
equilibrium price minus the generation costs:

π∗L =

(
1− α

α2 − α + 1
MCH + CT

)
(1− α),

π∗H =

(
(α− 1)2

α2 − α + 1
MCH + CT −MCH

)
α,

Π∗ =
(1− 2α)

α2 − α + 1
MCH + CT.

(5.21)

Cases — Overview In summary, the low-cost generator can serve the whole
market if its cost advantage is large enough (Case 1). However, GL has to com-
pare the profit with the profit of a split market (Case 2) to decide whether it is
better to serve all consumers or give up the remote customers in order to realize
higher profits. Comparing Equation 5.16 and Equation 5.21, we can determine
when it is optimal for GL to serve the whole market or when it is optimal to
forfeit the remote customers, respectively:

MCH − CT > (
1− α

α2 − α + 1
MCH + CT)(1− α)

⇔ α

2− 3α + 3α2 − α3 >
CT

MCH

(5.22)

The factor α
2−3α+3α2−α3 is strictly increasing in α ∈ [0.5; 1] and depicted in Fig-

ure 5.8. As long as the grid costs are sufficiently low in comparison to generation
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Figure 5.8: Characteristics of condition α
2−3α+3α2−α3 for different α
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cost , GL will serve the whole market (case 1). However, if the grid costs are suf-
ficiently high, the low-cost generator will find it profitable to serve only its local
customers in a split market to realize the higher UPE prices (case 2). In addi-
tion, the switch between the two cases depends on α. For small values of α, the
low-cost generator tends to split the market already at lower grid cost.

This scenario has two interesting implications. First, in the case of a split mar-
ket, the generators can utilize ‘virtual’ grid cost as market protection and set
higher prices. This means in a split market no grid infrastructure is necessary.
However, the ‘threat’ of grid pricing allows to set higher prices on the respec-
tive local market. Second, when the low-cost generator serves the whole market,
consumers at the high-cost location as beneficiaries pay higher average end con-
sumer prices.

5.3.6 Scenario IV — Price Discrimination and Generators Bear
Grid Cost

In the final scenario generators are allowed to discriminate prices based on con-
sumer location, i.e. there are four individual prices pH

l , pL
l , pH

h , pL
h in the market.

This price discrimination effectively separates the two markets. In this case we
focus only on the option where transmitting generators have to cover transmis-
sion cost.9 This results in differentiated end consumers prices per unit of energy,
including transmission/grid cost. Similar to Scenario II, competing generators
have to consider expected grid cost when setting prices. However, they can uti-
lize grid cost to realize higher prices with their local consumer population.

Equilibrium prices result from undercutting competition in each market with
generators anticipating their share of grid cost when serving remote consumers.
Again, the generator with the lowest marginal cost will serve the consumers at
the minimum price of the opposite generator. In this scenario minimum prices
differ by location:

pL
l = MCL = 0,

pL
h = MCH + CT,

pH
l = MCL + CT = CT,

pH
h = MCH.

(5.23)

The resulting optimum prices do not depend on the relative consumer pool sizes
(α and 1− α), since the markets are separated by price discrimination.

Given the assumption MCH > MCL = 0, the low-cost generator GL can al-

9In Ilg et al. (2012), we demonstrate that individual welfare is independent of cost allocation in
a price discrimination scenario.
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ways capture the whole customer demand DL by charging the minimal price pL
h

minus an infinitesimal discount:

pL∗
l = pL

h − ε = MCH + CT − ε (5.24)

For the equilibrium in respect of consumer demand DH we distinguish two
cases similar to Scenario III. Depending on the grid and generation cost dif-
ference, low-cost generators serve the whole market if their cost advantage is
sufficiently large or each consumer population is served by the local generator
without transmission.

Case 1 — Market served by low-cost generator In the case of CT < MCH, the
low-cost generator can capture consumer demand DH due to a large generation
cost difference by charging

pH∗
l = pH

h − ε = MCH − ε (5.25)

Total industry profit is generated by the low-cost generator alone:

π∗L = (1− α)(MCH + CT) + αMCH − αCT = MCH + (1− 2α)CT,

π∗H = 0,

Π∗ = MCH + (1− 2α)CT.

(5.26)

The average consumer costs are higher at the low-cost location

AVCDL = pL∗
l = MCH + CT,

AVCDH = pH∗
l = MCH.

(5.27)

Case 2 — Market split In the case of CT > MCH, the high-cost generator GH
has a local cost advantage and can serve its local market profitably leveraging
the differentiating grid cost to realize higher prices by charging:

pH∗
h = pH

l − ε = CT − ε (5.28)

Total industry profit is split between both generators with no transmission cost:

π∗L = (1− α)(MCH + CT),

π∗H = αCT,

Π∗ = (1− α)MCH + CT.

(5.29)

Similar to Case 1, the average consumer costs are higher at the low-cost loca-
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tion

AVCDL = pL∗
l = MCH + CT,

AVCDH = pH∗
l = CT.

(5.30)

Cases — Overview For low grid cost CT the generator GL can profitably serve
the whole market. As soon as CT > MCH or CT

MCH
> 1 respectively, the market is

split independently of the consumer demand distribution. Figure 5.9 depicts the
condition and the respective case per area. In both cases consumers at the low-

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Demand share at high−cost location α

C
on

di
tio

n 
C

T

M
C

H

Case 1

Case 2

Figure 5.9: Characteristics of the switching condition in Scenario IV for different α

cost location face higher prices. Again, both generators can use ‘virtual’ grid cost
as market protection and to set higher prices in a split market.

5.3.7 Comparison of Scenarios

In this section we compare the different scenarios with respect to their economic
impact. More precisely, we compare the overall cost efficiency, firm profits and
customer cost split by location. To obtain more compact expressions, we again
drop the ε terms. Table 5.2 summarizes the results along the important dimen-
sions. An important factor are the different conditions for CT

MCH
that determine

the outcomes in each scenario. To this end, all conditional functions are plotted
in Figure 5.10.

Cost Efficiency

The most obvious way to analyze allocative efficiency in our model is to calculate
the total industry costs arising from grid and generation cost. A social planner
would clearly minimize these costs to maximize social welfare. For MCL = 0 the
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Pricing Uniform Pricing Discriminatory Pricing

Allocation Scenario I Soc. cost II Ben. Generators III Ben. Consumers IV Ben. Generators

Demand served by GL GL GH GL Split GL Split
Condition – CT

MCH
< 1

2α−1
1

2α−1 < CT
MCH

CT
MCH

< α
2−3α+3α2−α3

α
2−3α+3α2−α3 < CT

MCH

CT
MCH

< 1 1 < CT
MCH

Total grid cost αCT αCT (1− α)CT αCT 0 αCT 0

Industry profit Π∗ MCH MCH + (1− 2α)CT −MCH + (2α− 1)CT MCH − CT
(1−2α)
α2−α+1 MCH + CT MCH + (1− 2α)CT (1− α)MCH + CT

Generator π∗L MCH MCH + (1− 2α)CT 0 MCH − CT

(
1−α

α2−α+1 MCH + CT

)
(1− α) MCH + (1− 2α)CT (1− α)(MCH + CT)

profits π∗H 0 0 −MCH + (2α− 1)CT 0
(

(α−1)2

α2−α+1 MCH + CT + MCH

)
α 0 αCT

Avg. consumer AVCDL MCH + αCT MCH + (1− α)CT αCT MCH − CT
1−α

α2−α+1 MCH + CT MCH + CT MCH + CT

costs AVCDH MCH + αCT MCH + (1− α)CT αCT MCH
(α−1)2

α2−α+1 MCH + CT MCH CT

Table 5.2: Competition scenario comparison with preexisting investment
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cost-minimal schedule is readily determined: Demand DL will always be served
by generator GL, while for demand DH it depends on the proportion of CT and
MCH. If CT > MCH or noted differently CT

MCH
> 1, demand DH is optimally

served by generator GH. Otherwise it is optimal to serve the whole market with
generator GL. This threshold criterion is represented by the constant function

CT
MCH

> 1 in Figure 5.10.
From the analysis, we obtain that scenarios I and II cannot achieve this total

cost optimum for CT
MCH

> 1. This is because under the uniform pricing regime
with socialized grid costs or generators bearing grid costs the optimal split allo-
cation cannot be achieved. In Scenario II the market is always served by GL until
the whole market switches from GL to GH at the threshold level CT

MCH
> 1

2α−1 due
to Bertrand competition. Conversely, in Scenario III, generator GL’s incentive
to sustain higher prices with the local demand for CT

MCH
> α

2−3α+3α2−α3 yields a
split outcome in cases where concentrated generation by generator GL would be
efficient. Finally, in Scenario IV, the cost-optimal allocation is always achieved.

Industry Profits

The comparison of industry profits — in this case it is defined as the total prof-
its of both generators — is more complex and also depends on CT

MCH
and the

demand distribution factor α. Figure 5.3 depicts the total industry profits for rel-
evant realizations of CT with fixed levels MH ∈ {1, 2, 3}. The first result is that
no Scenario is strictly dominating the other scenarios. However, for CT

MCH
< 1,

Scenario I with socialized grid cost yields the highest industry profits. In all
other scenarios, total industry profits fall with a small but increasing CT. As
soon as the specific threshold condition as depicted in Figure 5.10 is reached, the
total industry profit rises again. As mentioned before, this happens only at high
levels of CT and α in Scenario II. In this scenario, the total industry profit can
surpass the Scenario I profits at unrealistically high CT levels only. This is due to
the inefficient centralized customer allocation. In contrast, the industry profit in
Scenario IV with discriminatory pricing jumps to a dominating level as soon as

CT
MCH

> 1. This is clearly a result of both generators using their market power in
their local market protected by high grid cost. Customer-borne grid pricing with
uniform generation prices (Scenario III) yields more differential results: For low
relative grid costs, CT

MCH
< α

2−3α+3α2−α3 , industry profits are strictly lower than
in the other scenarios. Even with the switch to a split market, the profits do not
immediately surpass the other scenarios. However, for high relative grid cost

CT
MCH

>> 1, this scenario leads to strongly increasing industry profits similar to
Scenario IV and also surpassing Scenario I and II.
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Scenario II Scenario III Scenario IV

M
C

H
=

1
M

C
H
=

2
M

C
H
=

3

Table 5.3: Industry profit of scenarios II, III and IV in comparison to the reference Scenario I given different levels of generation cost MCH
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Consumer Cost

Obviously, consumers’ costs are to some extend complementary to the genera-
tion profits. However, especially their distribution is an important factor from a
regulatory perspective. Hence, the first differentiating factor of all scenarios is
whether final end consumer costs are equal or differentiated across the locations.
To this end, Table 5.2 contains final consumer cost by location. Clearly, Scenario
I and II result in final uniform end consumer cost by design. Given the Bertrand
competition, a split market is also impossible in these scenarios. Interestingly,
Scenario II results in strictly lower or equal consumer cost in comparison to Sce-
nario I with socialized grid cost.

For Scenario III and IV, the large industry profits in a split market case as dis-
cussed above are reflected in the consumer cost. Given a split market, the final
cost always contains the grid cost CT which can be interpreted as the ‘protec-
tion bonus’ due to high grid cost. Furthermore, it is interesting to look at the
locational consumer cost which differs by location in all cases of Scenario III and
IV. In most cases consumer demand DH is better off than consumer demand
DL. Given that the low-cost generator GL is situated close to consumer demand
DL, this insight seems counter-intuitive. However, it results naturally from the
possibility of product differentiation. Interestingly, this difference is most pro-
nounced under the discriminatory pricing Scenario IV. Consumer demand DL is
only better off under Scenario III when benefiting generators bear grid cost and
grid cost are low enough to fulfill the condition CT

MCH
< α

2−3α+3α2−α3 . That is, the
optimal cost efficiency in Scenario IV and partly in Scenario III come at the cost
of inter-population inequality and high industry profits in case of split markets
without the need of grid infrastructure.

5.3.8 Conclusion on Grid Cost Allocation with Preexisting
Investments

Unlike regulated or cost-based pricing, the presented framework allows the gen-
erator firms to select an optimal pricing strategy to maximize profits. Locational
discriminatory pricing yields efficient outcomes with respect to total welfare.
This cost-optimum is achieved at the expense of the consumers, with the gen-
erators being able to secure significant profits. However, if the cost difference
between the generators is large compared to the grid cost, all scenarios achieve
the same efficiency with the low-cost generator serving total demand. Consider-
ing typical cost structures in the electricity market this is a very relevant case.

Scenarios III and IV allow cost differences between the consumer populations.
Casual reasoning might suggest that this could be beneficial for consumer de-
mand DL which is located next to the the low cost generation capacity. Due to
product differentiation and strategic pricing, the converse is true in most cases
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with consumer demand DH facing lower costs. Again, the case of high gener-
ation cost difference is special, yielding a unique result in Scenario III: Remote
consumers pay more than local consumers.

Our model lends itself to future extensions. The Bertrand competition model
may be replaced by alternative specifications like Cournot or Hotelling. This
may shed light on the robustness of our results. In fact, Smeers (1997) notes
that “the achieved equilibrium lies between the Cournot equilibrium and the
Bertrand equilibrium. It is close to the Cournot equilibrium at peak time, when
capacities are almost saturated and close to the Betrand equilibrium when there
is significant excess capacity”. Similarly, dropping the infinite capacity assump-
tion or introducing richer cost functions (e.g., grid cost with economies of scale)
allows the analysis of more complex situations. Finally, analysis of the invest-
ment location choices as discussed in the following may enhance our under-
standing of the interplay between network costs and investments.

5.4 Grid Cost Allocation and Investment

In this section we analyze the influence of different regulatory environments
on generation investment decisions and the necessary transmission grid capac-
ity. The results presented here are currently incorporated in the working paper
Investment and Grid Cost Allocation. In our simple example we disregard compe-
tition and analyze the investment behavior of a single profit maximizing gener-
ation investor. As described in Section 5.2.2, the investment decision is based
on full knowledge of the regulatory regime. Consequently, the generator in-
vests in order to maximize his profit. The stylized grid model as presented in
Section 5.2.1 with some additional assumptions serves as the basis for the fol-
lowing analyses. Similar to the competition model with preexisting investments
in Section 5.3, we first describe the underlying market scenario and the analyzed
institutional scenarios (Smeers, 1997).

Market Scenario

We assume that no generation capacity is existing before investment. This is a
rather unusual assumption in real situations in the development of power sys-
tems. However, the shift to RES leads to significant changes in power systems
including — in some cases — the replacement of a major share of the gener-
ation capacity. Hence, regarding grid cost allocation policy, regulators might
think about treating new generators or specific types of generators differently
to achieve efficient investments. The major difference between both locations in
this model instance is the investment necessary to generate enough output to
balance demand. In one location (L), lower investments are necessary to install
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new generators with a certain energy output gL, whereas the second location
(H) leads to higher investment for generators with an output gH. To this end, we
introduce two investment cost factors wL and wH with wL < wH to account for
differences in investment to achieve the same output (Figure 5.11).

Location L

Location H

GL

MCLwL

DL

GH

MCHwH

DH

O

wT

O System Operator

Gi Generator population

Dj Consumer Demand

Figure 5.11: Model instance for grid cost allocation and investment

This means that investment cost IL and IH at the locations are depending on
the generation capacity decision gi, i ∈ {L, H} and the investment factors:10

IL ≡ f (wL, gL),

IH ≡ f (wH, gH).
(5.31)

In addition, we assume increasing marginal investment cost at both locations:

∂IL

∂gL
> 0,

∂IH

∂gH
> 0,

(5.32)

Using wind power as an example, this investment type is comparable to wind
farms at windy locations (L) and locations with less wind (H). The capacity fac-
tor of wind farms at location L is higher for the same capacity than at location
H. In addition, the sites for wind parks at both locations are of different quality.
First, wind farms are built at sites with the best capacity factor and least construc-
tion cost. Then, investment cost per output increases due to decreasing quality
of sites at both locations. Once generation capacity is built at each location, all

10Similar to the previous chapter, we use a more compact notation throughout the chapter, e.g.,
IL(wL, gL).
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generators produce at the same constant low marginal cost of MCL = MCH per
unit of energy. Without loss of generality we normalize MCL = MCH = 0 to
reduce complexity of results. This assumption is based on the fact that main-
tenance costs are largely independent of energy output for renewable energy
sources like wind or solar. For ease of calculation we do not use the consumer
distribution factor α in this section. The demand of the consumer populations
DL and DH at each location is represented by dj with j ∈ {L, H}. Figure 5.11
provides an overview of the model instance.

Institutional Scenarios

With the model we aim to evaluate and compare different options for grid in-
vestment cost allocation and their influence on investment in spatially diverse
electricity markets. The necessary grid investment cost T depends on the grid
investment factor wT as well as the locational distribution of demand and sup-
ply:

T ≡ f (wT, dH, dL, gH, gL). (5.33)

We analyze two different regulatory regimes or scenarios similar to scenarios I
and II in the previous section. Both scenarios are summarized in Figure 5.12.
We abstract from competition and focus on the investment policy of a single
generation investor under the different regulatory scenarios. To this end, Sce-
narios III and IV from the previous section are not applicable due to the missing
competition assumption. In our Scenario A, all transmission- and grid-related
investment costs are socialized and allocated to consumers based on their share
of total consumption, independently of their location. In Scenario B, grid costs
are fully allocated to the transmitting generators. Hence, we assume transmis-
sion cost allocation based on a simple beneficiary pays scheme. In the following
section, we generally describe the profit function and its sensitivity on different
parameters. Afterwards, the impact of each regulatory regime on the profit and
the investment decision is discussed in detail.

Socialization of
grid cost

A

Benefiting gen-
erator bears grid
cost

B

Figure 5.12: Institutional scenario overview for investment analysis
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5.4.1 Generation Investor’s Profit Function

An investor can optimally locate and size his generation capacity to maximize
his profit. To this end, he has to consider both locations simultaneously and
anticipate all revenues and cost. Given generation costs MCL = MCH = 0, the
profit function is composed of five main parts:

• Revenue at location L: RL

• Revenue at location H: RH

• Investment cost for generation capacity at location L: IL

• Investment cost for generation capacity at location H: IH

• Transmission cost for transmission capacity: T

Since we assume demand to be inflexible, the amount of energy consumed and
sold is fixed. Obviously, a single generating firm as a monopolist would charge
infinitely high prices to maximize profit. We assume a price threshold where
consumers stop consuming electric energy.11 Consequently, the maximum rev-
enue at each location (RL, RH) is fixed and the marginal revenue per unit of en-
ergy is constant up to the price threshold — with the generator always charging
the maximum price. As long as marginal revenue is greater than marginal cost,
the generator will serve all demand and invest in sufficient generation capacity.

The investment split between the two locations determines the investment
cost, depends on wi and gi i ∈ {L, H} and occurs as described above. We use
simple quadratic functions to represent increasing total investments:

IL = wLg2
L,

IH = wHg2
H.

(5.34)

This yields linear marginal investment cost:

∂IL

∂gL
= 2wLgL,

∂IH

∂gH
= 2wHgH.

(5.35)

After the investment phase the generator serves consumer demand. Affected
by the location of the generation capacity and the consumer demand, transmis-
sion infrastructure is necessary. Depending on the regulatory environment, the
generation investor has to consider these costs or they are socialized across the

11In reality this could be a price where it is cheaper for consumers to switch to generating power
on their own and stop buying from a central supplier.
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consumer population. In our special case with inelastic demand, maximum con-
sumer prices and total revenue are constant. This influences the investment be-
havior and a cost minimizing objective function is sufficient. The overall objec-
tive function of the generation investor is:

min
gL,gH

C = T(dL, dH, gL, gH, wT)︸ ︷︷ ︸
transmission cost

+ I(gL, gH, wL, wH)︸ ︷︷ ︸
investment

. (5.36)

In addition to the basic assumptions, we note that under certainty investment
in excess generation capacity would never occur. To this end, a simple condition
ensures the balance that generation output equals demand:12

∑
i

gi = ∑
i

di, i ∈ {L, H}. (5.37)

Obviously, generation output and demand are not constant in a practical set-
ting. However, we abstract from this challenge and assume a sufficiently flexible
system that can be approximated with constant demand and supply. In prac-
tical applications, this requires, for example, sufficient storage capacity at both
locations.

To account for typical situations, we assume the majority of consumers and
therefore the main load center to be at location H with higher investment cost ,
i.e. the sites for low-cost investment into generation are remote from load centers
(dL < dH). Therefore, ∆d = dH − dL is strictly positive. In addition, we assume
rational behavior — especially that the generation investor will always install
enough generation at the low-cost location to serve the local demand (gL ≥ dL).
With the condition for the balance of generation and demand (Equation 5.37) we
can derive the representations of necessary transmission capacity:

gL + gH = dL + dH

gL − dL = dH − gH ≥ 0

Given these definitions, we can set up a model with increasing linear transmis-
sion investment cost depending on the discrepancy in demand and supply per
location:

T(dL, dH, gL, gH, wt) = (gL − dL)wT = (dH − gH)wT (5.38)

The total generation investment cost in this scenario is the sum of investment at
both locations (see Equation 5.34):

I(gL, gH) = wLg2
L + wHg2

H.

12Another option may be to include a term which represents expected blackout cost dependent
on supply-demand mismatches.
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The defined terms induce varying impact on profits depending on the regulatory
regime — which we will analyze in the following.

5.4.2 Scenario A — Socialization of Grid Cost

In this scenario with socialized grid cost, the generation investment decision is
independent from grid investment, since the generator faces inelastic demand
and consumers bear the grid cost. Thus, the transmission cost element in the
generator’s cost function is T(dL, dH, gL, gH, wT) = 0 and the generator simply
minimizes generation investment cost:

min
gL,gH

C = wLg2
L + wHg2

H (5.39)

Generation investment will occur at the location with lowest marginal invest-
ment cost until total demand d = dL + dH is served as long as marginal costs
are below the consumer’s reservation price threshold. With our assumption of
linearly increasing marginal investment cost the generator will invest at both lo-
cations simultaneously, disregarding locational distribution of demand. Given
the supply and demand Equation 5.37, we can calculate the optimal investment
at each location for a given demand. The share of investment depends on the
increasing marginal cost:

C = wL (d− gH)
2 + wHg2

H

= wLd2 − 2wLdgH + wLg2
H + wHg2

H

∂C
∂gH

= −2wLd + 2wLg∗H + 2wHg∗H
!
= 0

(wH + wL) g∗H = wLd

g∗H =
wLd

wH + wL

Similarly, we obtain the optimal investment at the low-cost location as g∗L =
wHd

wH+wL
. As expected, the major investment into generation capacity occurs at

the remote location with lower cost and a small share of total demand. Figure
5.13 illustrates how a given demand leads to a share of investment in generation
capacity at each location and demonstrates that investment is independent of
grid cost and consumer demand split. Notably, the necessary grid investment
costs that are socialized obtain as g∗L − dL = dH − g∗L.
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gHgL

marginal cost

∂IL
∂gL

= 2wLgL

g∗L g∗H

d

∂IH
∂gH

= 2wHgH

Figure 5.13: Investment Scenario A with socialized grid cost

5.4.3 Scenario B — Benefiting Generators Bear Grid Cost

In the second scenario, the benefiting generators bear the calculatory marginal
grid investment cost. Given the single investor case, this means that the gen-
eration investor needs to factor in the expected grid cost T ≥ 0 when deciding
on the capacity investment locations. Hence, the grid costs remain in the cost
minimization problem of Equation 5.36. Given gL = d− gH, we can eliminate gL
and simplify the cost function:

C = (dH − gH)wT + wLg2
L + wHg2

H

= (dH − gH)wT + wL (d− gH)
2 + wHg2

H

= (dH − gH)wT + wL

(
d2 − 2dgH + g2

H

)
+ wHg2

H

= dHwT − gHwT + wLd2 − 2wLdgH + wLg2
H + wHg2

H

The optimal investment split requires minimization of these cost:

∂C
∂gH

= −wT − 2wLd + 2wLg∗H + 2wHg∗H
!
= 0

(wL + wH) 2g∗H = 2wLd + wT

g∗H =
wLd + 0.5wT

wL + wH

Similarly, we obtain the cost function depending on gL by replacement of
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gH = d− gL:

C = (gL − dL)wT + wLd2
L + wHd2

H

= (gL − dL)wT + wLg2
L + wH (d− gL)

2

= (gL − dL)wT + wLg2
L + wH

(
d2 − 2dgL + g2

L

)
= gLwT − dLwT + wLg2

L + wHd2 − 2wHdgL + wHg2
L

And the optimal investment g∗L at location L:

∂C
∂gL

= wT + 2wLg∗L − 2wHd + 2wHg∗L
!
= 0

(wL + wH) 2g∗L = 2wHd− wT

g∗L =
wHd− 0.5wT

wL + wH

In contrast to Scenario A, the generator considers transmission cost and in-
vests more in generation at the high-cost location depending on grid cost wT.
Figure 5.14 illustrates how the grid cost influences the investment decision for
an exemplary implementation of demand distribution and marginal cost. The
costs at the low-cost location include the expected grid cost as soon as the local
market is served and transmission to the high cost location is necessary.13

gHgL

marginal cost

∂CL
∂gL

= 2wLgL + wT

g∗L g∗H

d

dL

∂CH
∂gH

= 2wHgH

Figure 5.14: Investment Scenario B with generator bearing grid cost

13Given our assumption gL ≥ dL this is always the case for each additional capacity investment
at the low-cost location.
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5.4.4 Conclusion on Grid Cost Allocation and Investment

The simple analytical model shows the difference in investment decisions given
the grid cost allocation regime. Table 5.4 summarizes the obtained optimal in-
vestment policies in dependence of the investment cost factors.

Regulatory regime

Scenario A Scenario B

G
en

er
at

io
n

in
ve

st
m

en
t

g∗L
wHd

wH+wL
> wHd−0.5wT

wL+wH

g∗H
wLd

wH+wL
< wLd+0.5wT

wL+wH

Table 5.4: Optimal locational generation investments given different transmission cost
allocation policies

Given the socialization of transmission grid investment cost (Scenario A), the
investing generator optimizes generation cost independently of location. There-
fore a large share of total capacity investment occurs at location L with low-
investment cost but also a smaller share of total demand. Hence, the model con-
firms that socialization reduces “the system’s ability to promote investment in
the best locations” (MIT, 2011). As Scenario B shows, the investor can already be
incentivized to focus on overall more efficient generation capacity investments
in this first investment step. In Scenario B he has to bear the grid investment cost
which leads to lower generation investments at the low-cost location with small
consumer demand. Consequently, less grid investment is necessary, since the
generation investor trades grid investment off against generation investment.

These results are not restricted to the simple analytical model applied here.
Knieps (2013) analyzes a richer model including variable infrastructure invest-
ments with “injection charges” for generators and “extraction prices” for con-
sumers. He argues that with injection charges “incentives arise for the genera-
tors of renewable energy not only to focus on generation costs but also to choose
the proper location of electricity generators, taking into account locational differ-
ent injection charges” (Knieps, 2013). Another example is the recommendation
of von Hirschhausen et al. (2012) to the European Commission to at least in-
troduce a minimum grid price component that is charged to generators. Also,
Madrigal and Stoft (2012) agree that if specific groups of renewable generators
cause expansion cost, these generators should bear the cost. A practical example
where different locational grid charges are used, is the zonal approach used in
the UK. However, as also mentioned before, countries are using various trans-
mission cost allocation schemes, which are even further differentiated, e.g., by
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type of consumption or voltage level.

5.5 Conclusion of Transmission Pricing and Cost
Allocation

The multitude of alternatives to transmission pricing and cost allocation is also
reflected in the regulatory practices in different countries as described in Sec-
tion 5.1. The objectives are agreed on, but the practical implementation needs
to pay attention to establishing the right incentives in the specific power sector
which differ widely, e.g., in terms of liberalization, market power, generation
technologies or grid topology. This is also reflected in the large number of re-
search publications on transmission pricing and cost allocation as well as the
expert consultations in different countries. In addition, the topic of who pays
which share of the grid cost and on which calculatory base gains increasing im-
portance due to several developments in major power markets:

• Locational shift of generation to remote locations requires grid investment
for connection and transmission (e.g., offshore wind farms)

• Decreasing importance of marginal generation cost with rising shares of
RES (e.g., wind, solar)

• Intermittent availability of RES with low capacity factors may lead to lower
average grid utilization (see Table 2.1)

• Self-supplying consumers use grid less often and may absolve themselves
from responsibility for socialized financing of grid assets

• Regulatory exemptions from grid charges for some consumers concentrate
the cost burden on a smaller community (e.g., exemptions for large indus-
try consumers in Germany)

• Increasing investment cost to realize future smarter grids and renew aging
assets

To this end, the influence of pricing and cost allocation was analyzed in this
chapter using a generic two-node model. First, the influence of cost allocation to
benefiting generators or consumers on competition outcomes and behavior was
analyzed. Second, the generation investment behavior was studied using differ-
ent cost allocation regimes. Under the employed model assumptions, some in-
teresting directions for future regulation can be discussed. Both model instances
demonstrate possibilities to mitigate seemingly ‘unfair’ grid cost allocations.
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The first model shows that the allocation of grid cost influences the static com-
petition outcome, e.g., in terms of efficiency and total end consumer prices. A so-
cialization of grid cost may lead to high industry profits if transmission costs are
low in comparison to generation cost differences. In addition, it demonstrates
that generators can use transmission cost to exercise market power in local mar-
kets. And that consumers next to low-cost generation may be unintuitively ex-
posed to higher prices than consumers at locations with higher marginal cost of
generation. The model suggests one regulatory regime (out of four analyzed)
which leads to an expected ‘fair’ outcome under the assumption of low grid
cost: When benefiting consumers — that are located remote from low-cost en-
ergy sources — bear the grid cost, the total prices paid by these consumers are
higher as intuitively expected.

The second model targets the incentives for generation investors into capacity
at different locations and analyzes the influence of cost allocation. It confirms
and underlines that generators have little incentive to integrate transmission cost
in their siting decision in a setting with socialized grid cost. This result is in line
with Brunekreeft et al. (2005) who state that “in the absence of LMP, there is a
strong case for a locational element to grid charges”.

In summary, the models provide and describe opportunities for regulators to
understand the incentives of the different actors given our model assumptions.
First, the benefiting consumers need to be charged directly in order to create
an environment where consumers who live in areas with low-cost generation
actually pay less for their consumption. Second, the transmitting generators
also need to face grid cost in order to create the incentives for them to allocate
capacity efficiently in terms of grid and generation cost.

However, countries apply different regulatory regimes. One reason may be
that the grid and competition model used here is extremely simplified and based
on many assumptions. As mentioned before, the models may be adapted to be
applicable for other research questions, for example, other competition models
(e.g., Cournot, Hotelling), different cost functions (e.g., including economies of
scale), or more complex grid representations. Another extension could tackle the
hard assumption of inelastic demand which obviously enables the exert of mar-
ket power. Bompard et al. (2007) state that a small increase in demand elasticity
can mitigate market power enabled by constraints and leads to improved market
outcomes. In addition, other factors increase the uncertainty of the results and
may be analyzed in more detail, e.g, intermittent supply or stochastic demand.
Overall, for specific power sectors and markets, the theories developed in the
analytical models need to be verified in more realistic simulation models over
time. These extensions go beyond the scope of this thesis, however, the litera-
ture review in the beginning of this chapter provides some links to other models.
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Another important reason for various regulatory regimes are different targets
and markets that regulators have to deal with as well as the possibilities and in-
formation they have to work with. For example, in complex power networks it
is difficult to identify who is benefiting from a grid expansion, which can hinder
precise cost allocation.14 In addition, if grid costs account for a small fraction of
total cost only and reliability and/or use of RES is most important, a socializa-
tion of grid cost among consumers might be seen as ‘fair’. Also, applying differ-
entiated grid charges can influence the level playing field for generators that is
intended by investments for congestion-avoidance. Finally, the use of locations
with low-cost generation condition might have political priority. Thus, despite
the results in this chapter, there are various reasons why a regulator decides to
socialize grid cost among all consumers or use an approach with zonal differ-
ences for demand and generation. For example, Baldick et al. (2011) recommend
to change the UK cost allocation in a way that all existing grid costs (except for
shallow connection cost) should be borne by consumers to enable the level play-
ing field. However, in the same report they also recommend a “generation fol-
lows transmission” planning process and an efficient locational pricing scheme
(Baldick et al., 2011). This would basically represent a centrally planned optimal
grid expansion, where planned congestion costs yield to an optimal allocation
of generation capacity. Indeed, the proposed theoretical “Optimal Charging Ar-
rangement for Energy Transmission” (Baldick et al., 2011) seems a promising
approach. In another publication, Baldick et al. (2007) provide a good statement
on optimal planning: “As has been noted countless times in the past, there is
virtually no transmission asset that has ever been built that has not been used in
ways its planners and builders never anticipated.” Leuthold et al. (2008) apply
nodal pricing to the German network which serves as an example in this chapter.
They find that nodal prices are more efficient than uniform pricing. However,
they also state that the static nodal prices do not give incentives for efficient grid
expansion.

In summary, the optimal decision on transmission pricing and cost allocation
regulation depends on the specific situation and targets. However, given the
increasing importance of grid cost mentioned above, the allocation of grid cost
may be an important topic in challenged power systems. For that matter, one
possible approach can be to charge some parts of the grid in a different way. One
example are the costs of the HVDC connection in New Zealand which are allo-
cated through separate charges (Electricity Authority, 2012). In line with Hogan
(1998b), the allocation problems for existing transmission assets and grid expan-
sion could be treated differently.

14It is even possible that an investment is counterproductive similar to the Braess paradox
(Blumsack et al., 2007).





Chapter 6

Conclusion

This thesis focuses on the efficient use of power grid capacity and efficient in-
vestment into grid infrastructure on different voltage levels. More specifically,
it analyzes different coordination mechanisms and incentives to achieve more
efficient short-term operation and long-term investment behavior. The analyzed
models have limitations and primarily serve as a guideline in specific cases. The
specific discussion sections for the models on local infrastructure pricing (Sec-
tion 4.5.1) and transmission grid cost allocation (Section 5.5) name the limita-
tions and ideas for future extensions. This conclusion provides a summary of
the main findings and implications of the discussed models. It finalizes with a
more comprehensive overview of the potential solutions for challenges in future
power systems and open questions in the transition to an efficient low-carbon
power sector.

6.1 Summary

Major changes in power systems over the next decades pose challenges to exist-
ing power grids and require major infrastructure investments. These challenges
are particularly complex in unbundled power markets where individual actors
— generators, system operators, and consumers — need to be coordinated.
Chapter 2 provides an overview of the characteristics for the major actors in
the electricity supply chain and summarizes resulting challenges in physical
operation and market design. Chapter 3 discusses coordination mechanisms
and management options for each actor to react to bottlenecks in power grids,
such as temporal or spatial load/supply shifting as well as capacity invest-
ments. Monetary incentives in the form of variable or even dynamic prices
are discussed in more detail, based on theoretical potentials and frameworks.
In addition, real-life implementations and promising recent developments are
presented.

The local infrastructure coordination approaches analyzed in Chapter 4
specifically address the challenge of using existing distribution grids efficiently.
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The example modeling of electric vehicles as flexible load demonstrates that
a large scale introduction of variable prices based on variable supply (e.g.,
to incentivize consumption of RES) may lead to overloads in the distribution
grid. However, these overloads can be mitigated through appropriate load
coordination approaches. The investigated coordination approaches include
a central planner, which serves as a benchmark, static and dynamic load
curtailment as well as static and dynamic load pricing options. The load
curtailment approaches can almost achieve the results of a central planner in
terms of grid utilization and low-cost energy consumption with a relatively
small impact on service quality. Furthermore, a main contribution of this thesis
is the proposition and benchmarking of decentralized coordination approaches
in form of dynamic load pricing which keep the individual decision at the
consumer level. At the same time the approaches incentivize the use of low-cost
supply (e.g., RES) while taking existing distribution grid limits into account. In
the expected development to more decentralized and intermittent generation
capacities, these ideas can help to ensure a reliable power system with efficient
utilization of distribution grid capacity.

Different possible incentives on the transmission level are investigated in
Chapter 5 using analytical microeconomic models. The models analyze the influ-
ence of different transmission infrastructure cost allocation regimes on competi-
tion and investment behavior of generators. It can be shown that cost allocation
affects efficiency and ‘fairness’ of the outcomes. The allocation of transmission
grid cost can lead to opportunities for generators to secure significant profits at
the expense of the consumers. In addition, the cost allocation regime can enable
strategic pricing which results in seemingly ‘unfair’ situations, i.e., consumers
next to low-cost generation capacity face higher prices. Taking investment into
new generation capacity into account, the model demonstrates that the typical
socialization of grid cost can lead to inefficient investments and that a change
in regulation to allocate grid cost to generators might foster efficiency. In sum-
mary, the results signify that all changes to regulatory regimes have to be thor-
oughly investigated in the light of the specific power market situation in order
to yield positive or efficient results in total. As Green (2000) wisely put it: “Any
change from existing systems is likely to produce winners and losers, and those
who expect (rightly or wrongly) to be losers will have an incentive to oppose
the changes. In the end, the results can depend as much on politics as on eco-
nomics.”
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6.2 Outlook

The approaches discussed in this thesis add insights which emphasize the
important role of the grid and may support efficiency in the transition to, as well
as in the operation of, a low-carbon power sector. Recent newspaper articles
demonstrate that grid investments and siting of new generation capacities re-
ceive increasing attention in political discussions in context of the Energiewende.1

However, besides the topics discussed, there are still many open questions and
numerous areas for further research that are either prerequisites for the success
of the presented coordination approaches or stand independently alongside.

Complementary to the discussed topics, one major goal needs to be the
advancement of efficient supply technologies, e.g., in storage, transmission,
or generation. Similarly, or even more important is an efficiency increase in
consumption. A simple raise of awareness for energy consumption can yield
significant energy savings merely by switching off unnecessary equipment or
investing in more energy-efficient equipment. To this end, rising power prices
for end consumers (e.g., in Germany due to the Energiewende) might not only
cause higher electricity bills but also yield very positive saving effects in the
long run.

Smart grid technologies that improve the ability to monitor and control in
real-time are actually prerequisites for the approaches presented in this thesis.
While these technologies are already available today, their market penetra-
tion and use is hampered by missing incentives and limited user acceptance.
When real-time data is widely available, research in energy informatics and
economics can activate efficiency potentials in addition to a simple reduction of
consumption. To foster this research, simulation frameworks and testbeds can
be used to investigate how theoretical results can be realized in more practical
settings. In addition to the overall setting, interaction with individual actors
such as consumers, operators, and generators needs to be analyzed further.
Open questions include, e.g., ‘which type of of incentives (e.g., monetary or
non-monetary) result in what kinds of effect?’, ‘What should the communication
or interface between actors and systems look like to be accepted in terms of data
security and to be efficient in terms of the outcome?’, ‘What kind of information
on individual flexibility is most valuable?’. Answers to these questions can
enable new services and business models in the future power sector. They may
also overcome the roll-out issues and lead to a dissemination of smart grid

1See for example Handelsblatt on November 8, 2013 on the expectation that the transmission grid
expansion in Germany will be more expensive than planned (http://www.handelsblatt.
com/politik/deutschland/energiewende-koalition-will-energiekosten-senken/

9051802.html).

http://www.handelsblatt.com/politik/deutschland/energiewende-koalition-will-energiekosten-senken/9051802.html
http://www.handelsblatt.com/politik/deutschland/energiewende-koalition-will-energiekosten-senken/9051802.html
http://www.handelsblatt.com/politik/deutschland/energiewende-koalition-will-energiekosten-senken/9051802.html
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technologies. In the special case of incentives for the efficient use of capacity
and investment into power grid infrastructure, it is important to analyze the
interaction of different incentives. Particularly when applying several coordina-
tion approaches in an interconnected grid they are not separate from each other
but need to be checked for compatibility and mutual influences.

In addition to the technical aspects and user acceptance, other influencing
factors need to be considered, e.g., legal issues, existing regulations, or re-
sistance of individual stakeholders. Hence, the development of a consistent,
integrated incentive and contract system is still a long way to go. The transition
to another system needs some time and might require regulatory measures
that are temporary only. One apparent example is the Renewable Energy Act
in Germany: the necessity of modifications is widely agreed, but the detailed
implementation is being severely discussed.

In summary, more flexibility combined with the right incentives can help to
support power system transformations. However, there will be individual paths
to a sustainable energy future as well as different detailed organizations — these
paths remain to be seen.
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DLC Dynamic load curtailment
DLP Dynamic load pricing
DOE Department of Energy
DR Demand response
DSM Demand side management
DSO Distribution system operator
EEG Erneuerbare-Energien-Gesetz — Renewable Energy Act
EEM European Energy Market
EnLAG Energieleitungsausbaugesetz — Energy Line Expansion

Act
ENTSO-E European Network of Transmission System Operators for

Electricity
EnWG Energiewirtschaftsgesetz — Energy Industry Act
EPEX European Power Exchange
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ERGEG European Regulators’ Group for Electricity and Gas
EU European Union
EU ETS European Union emission trading system
EV Electric vehicle
FCEV Fuel cell electric vehicle
FERC Federal Energy Regulatory Commission
GHG Greenhouse gas
GW Gigawatt
HEV Hybrid electric vehicle
HICSS Hawaiian International Conference on System Sciences
HV High-voltage
HVAC Heating, ventilation, and air conditioning
HVDC High-voltage direct current
ICE Internal combustion engine
ICT Information and communications technology
IEA International Energy Agency
IEEE Institute of Electrical and Electronics Engineers
ISGT Innovative Smart Grid Technology
KAV Konzessionsabgabenverordnung — Concession Fee Ordi-

nance
KIT Karlsruhe Institute of Technology
KW Kilowatt
KWKG Kraft-Wärme-Kopplungsgesetz — German Combined Heat

and Power Act
LMP Locational marginal pricing
MV Medium-voltage
MVA Megavolt ampere
MW Megawatt
NYISO New York Independent System Operator
OECD Organisation for Economic Co-operation and Development
OECD Organisation for Economic Co-operation and Development
OEM Original equipment manufacturer
OPT Optimal
OTC Over-the-counter
PES Power and Energy Society
PHEV Plug-in hybrid electric vehicle
RES Renewable energy sources
SAIDI System Average Interruption Duration Index
SAIDI System Average Interruption Duration Index
SB Supply-based
SFSO Swiss Federal Statistical Office
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SLC Static load curtailment
SLP Static load pricing
SOC State of charge
StromEinspG Stromeinspeisungsgesetz — Electricity Feed Act
StromNEV Stromnetzentgeltverordnung — Electricity Grid Charges

Ordinance
SUV Sport utility vehicle
SysStabV Systemstabilitätsverordnung — System Stability Ordinance
TOU Time of use
TSO Transmission system operator
TW Terawatt
UC Uncoordinated
UNFCCC United Nations Framework Convention on Climate Change
UPE Undercut Proof Equilibrium
US United States
V2G Vehicle to grid
VAT Value added tax
VDE Verband der Elektrotechnik, Elektronik und Information-

stechnik — Association for Electrical, Electronic and Infor-
mation Technologies
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A Optimization program used for SB, SLC, DLC,
DLP

Based on our paper Flath et al. (2013), we used the following optimization pro-
gram for SB, SLC, DLC, and DLP:

int NbPeriods = ...;

float initSoc =...;

float maxSoc = ...;

float endSoc = ...;

range Periods = 1..NbPeriods;

float Capacity[Periods] = ...;

float Demand[Periods] = ...;

float Cost[Periods] = ...;

dvar float+ PosChargeamount[Periods];

dvar float+ Soc[Periods];

minimize

sum( t in Periods )

Cost[t]*PosChargeamount[t];

subject to {

forall(t in Periods )

ctNonNegativeSoc:

Soc[t] >= 0;

forall(t in Periods )

ctMaxSoc:

Soc[t] <= maxSoc;

forall( t in Periods )

ctChargeamount:

PosChargeamount[t] <= Capacity[t];

forall( t in 2..NbPeriods )

ctStorageConstraint:

Soc[t] == Soc[t-1]+ PosChargeamount[t] - Demand[t];

ctInit:

Soc[1] == initSoc + PosChargeamount [1] - Demand[1];

ctEnd:

Soc[NbPeriods] >= endSoc;

};
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B Optimization program used for SLPmax

Based on an amended version of the program in Flath (2013b), we used the fol-
lowing optimization program for SLPmax:

int NbPeriods = ...;

float initSoc =...;

float maxSoc = ...;

float endSoc = ...;

range Periods = 1..NbPeriods;

float Capacity[Periods] = ...;

float Demand[Periods] = ...;

float Cost[Periods] = ...;

dvar float+ PosChargeamount[Periods];

dvar float+ Soc[Periods];

dvar float+ maxLoad[Periods];

minimize

(sum( t in Periods ) Cost[t]*PosChargeamount[t])+1*maxLoad[NbPeriods]*maxLoad[NbPeriods];

subject to {

forall(t in Periods )

ctNonNegativeSoc:

Soc[t] >= 0;

forall(t in Periods )

ctMaxSoc:

Soc[t] <= maxSoc;

forall( t in Periods )

ctChargeamount:

PosChargeamount[t] <= Capacity[t];

forall( t in 2..NbPeriods )

ctStorageConstraint:

Soc[t] == Soc[t-1]+ PosChargeamount[t] - Demand[t];

ctInit:

Soc[1] == initSoc + PosChargeamount [1] - Demand[1];

ctEnd:

Soc[NbPeriods] >= endSoc;

forall( t in 2..NbPeriods )

ctMaxLoadCarryOver:

maxLoad[t]>=maxLoad[t-1];

forall( t in Periods )

ctMaxLoadCurrentPeriod:

maxLoad[t]>=PosChargeamount[t];

};
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C Optimization program used for SLPt

Based on an amended version of the program in Flath (2013b), we used the fol-
lowing optimization program for SLPt:

int NbPeriods = ...;

float initSoc =...;

float maxSoc = ...;

float endSoc = ...;

range Periods = 1..NbPeriods;

float Capacity[Periods] = ...;

float Demand[Periods] = ...;

float Cost[Periods] = ...;

dvar float+ PosChargeamount[Periods];

dvar float+ Soc[Periods];

minimize

sum( t in Periods )

(Cost[t]*PosChargeamount[t]+PosChargeamount[t]*PosChargeamount[t]*0.1);

subject to {

forall(t in Periods )

ctNonNegativeSoc:

Soc[t] >= 0;

forall(t in Periods )

ctMaxSoc:

Soc[t] <= maxSoc;

forall( t in Periods )

ctChargeamount:

PosChargeamount[t] <= Capacity[t];

forall( t in 2..NbPeriods )

ctStorageConstraint:

Soc[t] == Soc[t-1]+ PosChargeamount[t] - Demand[t];

ctInit:

Soc[1] == initSoc + PosChargeamount [1] - Demand[1];

ctEnd:

Soc[NbPeriods] >= endSoc;

};
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D Optimization program used for OPT
Further extensions of the previous programs result in the following optimization
program for OPT:
int NbPeriods = ...;

int NbVehicles = ...;

float initSoc =...;

float maxSoc = ...;

float endSoc = ...;

float maxChargeAmount =...;

range Vehicles = 1..NbVehicles;

range Periods = 1..NbPeriods;

float ChargingPossibleH[Vehicles][Periods] = ...;

float ChargingPossibleW[Vehicles][Periods] = ...;

float Demand[Vehicles][Periods] = ...;

float Cost[Periods] = ...;

dvar float+ PosChargeamountH[Vehicles][Periods];

dvar float+ PosChargeamountW[Vehicles][Periods];

dvar float+ Soc[Vehicles][Periods];

dvar float+ TotalChargingH[Periods];

dvar float+ TotalChargingW[Periods];

minimize

sum( t in Periods )(

sum( n in Vehicles)(

Cost[t]*PosChargeamountH[n][t]+Cost[t]*PosChargeamountW[n][t]));

subject to {

forall(v in Vehicles)

ctInitStorage:

Soc[v][1] == initSoc + PosChargeamountH[v][1] + PosChargeamountW[v][1] - Demand[v][1];

forall(v in Vehicles, t in 2..NbPeriods )

ctStorageConstraint:

Soc[v][t] == Soc[v][t-1] + PosChargeamountH[v][t] + PosChargeamountW[v][t] - Demand[v][t];

forall(v in Vehicles, t in Periods )

ctChargeamountH:

PosChargeamountH[v][t] <= ChargingPossibleH[v][t]*maxChargeAmount;

forall(v in Vehicles, t in Periods )

ctChargeamount:

PosChargeamountW[v][t] <= ChargingPossibleW[v][t]*maxChargeAmount;

forall(v in Vehicles, t in Periods )

ctMaxSoc:

Soc[v][t] <= maxSoc;

forall(v in Vehicles)

ctEnd:

Soc[v][NbPeriods] == endSoc;

forall(v in Vehicles, t in Periods )

ctNonNegativeSoc:

Soc[v][t] >= 0;

forall(v in Vehicles, t in Periods)

ctNonNegativeChargeamountH:

PosChargeamountH[v][t] >= 0;



Appendix 205

forall(v in Vehicles, t in Periods)

ctNonNegativeChargeamountW:

PosChargeamountW[v][t] >= 0;

forall(t in Periods )

ctTotalLoadH:

sum( n in Vehicles)(PosChargeamountH[n][t]) == TotalChargingH[t];

forall(t in Periods )

ctTotalLoadW:

sum( n in Vehicles)(PosChargeamountW[n][t]) == TotalChargingW[t];

forall(t in Periods )

ctMaxLoadH:

TotalChargingH[t] <= x;

forall(t in Periods )

ctMaxLoadW:

TotalChargingW[t] <= x;

};
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E Comparison of Charging Coordination Outcomes
at Work Location
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Figure E.1: Comparison of charging coordination outcomes at work over 52 weeks
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