Three-dimensional adaptive coordinate
transformations for the Fourier modal
method

Jens Klichenmeistet

Institut flr Theoretische Festkorperphysik, Karlsruhe Institute of Technology (KIT),
Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany

*jens.kuechenmeister@kit.edu

Abstract: The concepts of adaptive coordinates and adaptive spatial
resolution have proved to be a valuable tool to improve the convergence
characteristics of the Fourier Modal Method (FMM), especially for
metallo-dielectric systems. Yet, only two-dimensional adaptive coordinates
were used so far. This paper presents the first systematic construction
of three-dimensional adaptive coordinate and adaptive spatial resolution
transformations in the context of the FMM. For that, the construction of
a three-dimensional mesh for a periodic system consisting of two layers
of mutually rotated, metallic crosses is discussed. The main impact of this
method is that it can be used with any classic FMM code that is able to
solve the large FMM eigenproblem. Since the transformation starts and
ends in a Cartesian mesh, only the transformed material tensors need to be
computed and entered into an existing FMM code.
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1. Introduction

Periodic nanostructures gathered a tremendous amount of interest in the past decade [1]. Evolv-
ing experimental techniques allowed for more and more complex structures. Alongside this
experimental development, numerical tools to solve Maxwell’'s equations became much more
elaborate, too.

One of these rapidly developing numerical techniques is the Fourier Modal Method (FMM).

It is capable to predict the transmission properties of periodic photonic systems, both dielectric
and metallic. The systems normally considered are periodic with respect xy-filane and

finite in z-direction. The system is sliced into layers with constant permittivitg-direction

and in each of these layers an eigenvalue problem is solved which stems from Maxwell’s curl
equations. This allows expanding the fields into eigenmodes. The layers are then connected
using a scattering matrix algorithm which ensures the fulfillment of the continuity conditions
[2].

After significant advancements for lamellar gratings and on the topic of the correct Fourier
factorization rules [3-5], the FMM still faced the problem of properly calculating the response
of metallic systems. In-plane stair-casing for not-grid-aligned structures and most of all the
Gibbs phenomenon remained a challenge.

A popular approach to tackle these problems is the application of coordinate transformations.
Two kinds of transformations emerged. First, adaptive coordinates (AC) are used to transform
the permittivity distributions in such a way that the surface of the considered structures becomes
grid-aligned. Second, adaptive spatial resolution (ASR) increases the coordinate line density
along the interfaces. Combining both drastically enhance the performance of the method [6-8].
In recent years, different concepts emerged for the construction of the corresponding meshes
[9-11].

So far, adaptive coordinates have been used imytpdane. However, complex structures oc-
curring in different layers pose a problem since different adaptive meshes would be necessary.
How to connect these different meshes optimally remains a challenging task since each mesh
represents a different basis. Also, the incident plane waves need to be transformed which in-
duces additional errors. These problems can be tackled by designing a three-dimensional adap-
tive coordinate transformation. This method trades an increased amount of slices in the method
for an accurate representation of the structure’s surface in all three dimensions. In this paper,
such a three-dimensional transformation is designed for a system that has gathered an extensive
amount of interest in recent years, two periodic layers of mutually rotated, metallic crosses [12].
These structures are known for their strong optical activity. The transformation leads to fully
anisotropic permittivity and permeability tensors. The key point is that the metallic crosses are
twisted by the transformation so that they are both grid-aligned in the transformed space (thus
allowing an ideal representation by the FMM) and at the same time the transformation between
the crosses is performed continuouslyidirection.

Moreover, a way to implement a three-dimensional adaptive spatial resolution is discussed.
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The overall result is a method that allows the implementation of arbitrary three-dimensional
adaptive coordinates and adaptive spatial resolution in classical, open source FMM codes [13,
14].

In section 2, the basics of Maxwell's equations in generalized coordinates are discussed. Sec-
tion 3 covers the design of the three-dimensional adaptive coordinate transformation. Finally,
the concept for three-dimensional adaptive spatial resolution is presented in section 4.

2. Covariant formulation of the Fourier Modal Method with generalized coordinates

In this section, we discuss how generalized coordinates are incorporated in the FMM. The
system we investigate in this paper is displayed in Fig. 1. It consists of two periodic layers of
mutually rotated, metallic crosses.

g EE
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£

Fig. 1. Schematic view of the system of interest, namely two layers of mutually rotated,
metallic crosses. The system is finitextrdirection and periodic with respect to tR&x?

plane ki, denotes the wave vector of an incident plane wavéx2x® describes a Cartesian
coordinate system.

Since generalized coordinates in the context of the FMM have been discussed before, we will
only briefly discuss them here. The presentation naturally follows previous publications on the
topic in content and notation, see [9-11, 15]. We distinguish between a curvilinear coordinate
systemOx!x?x3 and a Cartesian coordinate syst@x'x’x3. The three-dimensional adaptive
coordinate transformations that are investigated in this paper have the form

o= %), (1)
X = R, 2)
X o= (3)
Eventually, we want to solve Maxwell's curl equations which read
EPUTOEr = ikO\/@IJpUHUa (4)
EpGTaO'HT = _|k0\/g£pO-Eo' (5)

in covariant form, see [15]. Heré&,denotes the Levi-Civita symbol atig andH, are covariant
components of the electric and magnetic field. Throughout the manuscript, Greek indices run
from 1 to 3. Furthermore, we use the Einstein sum convention, meaning that repeated indices
are implicitly summed over. The vacuum wave number is derlgtedw/c with the frequency

w and the speed of lightt The metric tensor reads

_ OxP ox?

po _ 77" %
oxt gxt’

(6)
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andg (as used in Egs. (4) and (5)) denotes the reciprocal of its determinant. As illustrated in
detail in [11], the coordinate transformation leads to a transformed permittivity of the form
oxP ox°
po _ Y7 Y7 Z1x
¢ oxt oxX & 0
wherezg™ is the permittivity tensor in the Cartesian system. The permeability transforms iden-
tically. It is noteworthy that the matrix that is Fourier transformed when using FMM with AC
and/or ASR is not the permittivity itself given in Eq. (7) but rathege”?. Therefore, we re-
fer to ,/geP? from now on as theeffective permittivity. By entering Egs. (1)—(3) in Eq. (7)
one can observe that both the effective permittivity and the effective permeability become fully
anisotropic. Therefore, the full anisotropic FMM eigenvalue problem has to be solved.

3. Three-dimensional adaptive coordinates

The overall aim of this section is to obtain three-dimensional adaptive coordinate transforma-
tion of the form in Egs. (1) and (2) for our system depicted in Fig. 1. Since three-dimensional
meshing is a complex procedure, the discussion is structured the following way: First, an ex-
ample of a two-dimensional mesh is discussed. Second, this planar mesh is utilized to create a
three-dimensional mapping. Third, the impact on the transformed permittivity is illustrated and
discussed.

3.1. Two-dimensional mesh for a rotated cross

The objective is to find a two-dimensional, planar mesh for a rotated cross. Since the proce-
dure how to find such meshes is discussed in great detail in [11], we only briefly review the
construction process depicted in Fig. 2. In Fig. 2(a), we show how the unit cell is divided for
the mapping. The four poin®® Q, R andS define specific coordinate lines (blue and red). Fig-

ure 2(b) depicts how these coordinate lines are mapped. The mapping in between these specific
coordinate lines is given by a linear interpolation. The resulting mesh is depicted in Fig. 2(c).
One may notice that we could have chosen different specific coordinate lines which would also
lead to a grid-aligned cross in the effective permittivity. The reason we choose the ones shown
in Fig. 2 becomes clear in the next paragraph.

(a) (b) ()

T

Fig. 2. lllustration of the construction principle for a mesh of a cross with given rotation
angle. The point®, Q,RandSin panel (a) divide the unit cell into several zones which are
mapped according to panel (b). The mapping in between the specific coordinate lines (blue
and red) is obtained by linear interpolation. The resulting mesh is depicted in panel (c).
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3.2. Constructing the three-dimensional transformation

The lower cross in Fig. 1 is already grid-aligned. This simplifies the discussion at this point
but does not impose a restriction. The upper cross can be transformed such that its effective
permittivity is also grid-aligned. However, we have to change the coordinate system in between
continuously such that artificial reflections are avoided. This means that we obtain a different
planar mesh for every value gi. This value o directly translates into a rotation angle which

in turn translates to a mesh like in section 3.1. Explicitly, this means that we perform coordinate
transformations in the space between the crosses, too. This explains why we constructed the
mesh in Fig. 2 the way we did—for a give@ value we only compute the rotation angle and
easily obtain the planar mesh. In particular, we hereby make sure that the grid-aligned crosses
are directly above each other in the transformed space.

The lower cross is grid-aligned and we choose the origin of our coordinate system to be in the
center of the lower surface of this cross. The height of each cross is dénateithe distance
between the crosses is denoke@ince we want the upper cross to be rotated by the afigle
we obtain

¢(>—<3):%(x3—h), X2 € [h,h+ D] (8)

for the rotational dependence of the planar mesh oxtfeeordinate.

In Fig. 3, we visualize the real parts of the effective permittivity tensors for two different
values of. The system is a square lattice with lattice constant 600 nm. The cross is 250 nm in
diameter and the width of the arms of the crosses is 50 nm. The height of the crdsse2%s
nm and the spacing between thenbis 50 nm. The angle by which the upper cross is rotated
is ¢ = 15°. We assume the crosses to consist of gold, described by a Drude model with the
parameters., = 9.0685, a plasma frequenay = 1.3544- 1016 Hz and a damping coefficient
y = 1.1536- 104 Hz, see [16]. The wavelength used for Fig. 3 is 1000 nm. The color scale in
Fig. 3(b) has been saturated at 0 {gge*! and,/ge>3 in order to see more features. The real
part of the dielectric function of the gold crosses is abed®. We depict the/ge'?, | /ge'?,

/€3 and,/ge3® components of the effective permittivity. This suffices since the permittivity
tensor is symmetric, e.g,/ge*?=, /ge?! and the mapping in Fig. 2 & symmetric. This results
in \/ge%? and,/ge>3 being,/ge*! and,/ge ' rotated counter clockwise by 9Qrespectively.

In Fig. 3(a) we display the effective permittivity et = h+b/2, i.e., between the crosses. As
shown, the effective permittivity of this layer of air becomes fully anisotropic due to Eqgs. (1), (2)
and (7). In Fig. 3(b) we display the effective permittivitydt= h+b, i.e., in the layer with the
rotated cross. Due to the form of the coordinate transformation in Fig. 2, the gold cross is grid-
aligned in the transformed space. The origin of the discontinuities in the effective permittivity
is the fact that the meshes above are not differentiable. This however does not affect the overall
performance of the method as long as the discretization parameters are chosen wisely, see [11].

4. Three-dimensional adaptive spatial resolution

Up to this point we created an effective permittivity where the gold crosses are grid-aligned
in both layers. Since we designed the three-dimensional adaptive coordinates such that the
crosses are right above each other, it would suffice to apply the same two-dimensional, planar
adaptive spatial resolution (ASR) transformation function in each layer. This means that the
coordinate lines are compressed at the vicinity of the metallic surface. Mathematically, this is
just another coordinate transformation that transforms the effective permittivity. The design of
such a transformation is described in detail in [8,11]. However, this requires an FMM code that
is capable to process coordinate transformations directly, including a switch in the basis. Also,
it is difficult to start a plane wave in physical space, since this plane wave is also transformed
when we change the basis functions due to the coordinate transformation we perform in every
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Fig. 3. Real parts of the transformed effective permittivity tensors and the corresponding
meshesx! is displayed on the horizontal axis amél on the vertical. Panel (a) displays

the real part of the effective permittivity of the test systemxai= h+b/2, i.e., in the
middle between the crosses. Panel (b) depicts the real part of the effective permittivity at
x3=h+Db,i.e., inthe layer of the rotated cross. All results were obtained with a real space
discretization of 1024 1024 points. The color scale in panel (b) has been saturated at 0
for /gel and,/ge33. Here, the real part of the permittivity of the crosses reaches values
of about—42.

layer. Therefore, a three-dimensional ASR is desirable to avoid these problems.

As indicated above, the aim of this paper is to demonstrate a way to incorporate three-
dimensional coordinate transformation in any classic FMM code. To do so, the basic idea is
switching on the adaptive spatial resolution smoothly with increasirgpordinate. Thereby;,
the basis functions of the problem represent the real, physical space. Therefore, we can eas-
ily start an ordinary plane wave in the incoming, Cartesian, physical half-space. Then, we can
introduce several intermediate layers to start the adaptive spatial resolution. The general pro-
cedure is sketched in Fig. 4(a). In this sketch, we start by a Cartesian layer at the bottom, cf.
Fig. 4(b). In the next three layers, we gradually introduce the ASR as discussed in great detail
in [11]. “1/3 ASR” figuratively means that the ASR has reached a third of its desired strength,
see Figs. 4(c)-4(e).

The layer in which the ASR is fully introduced at its desired strength (cf. Fig. 4(e)) is the
layer where the first cross is located (shaded in yellow). Then, like before, we rotate the mesh,
only with an ASR applied before that, see Fig. 4(f). Once the mesh is rotated up to the cross
rotation anglegg, we can compute the layer of the rotated cross, again shaded in yellow in
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Fig. 4. Three-dimensional meshing with a Cartesian layer as first and last layer. Starting
from Cartesian, physical, untransformed space, the density of coordinate lines is gradually
increased using &-dependent compression function. Then, after the layer with the grid-
aligned cross, the mesh is rotated up to the apgia the layer with the second cross. After

this, the mesh is rotated back and the coordinate line density is reduced until the mesh is
Cartesian again. The corresponding meshes are depicted in panels (b) to (g). From those
meshes the transformed permittivity and permeability tensors can be computed.

Fig. 4(a). The mesh that is used to compute the effective permittivity in this layer is depicted in
Fig. 4(g). Like above, we then gradually reverse the mesh changes—first, the mesh is rotated
back, then the ASR is decreased until we reach the outgoing layer with a Cartesian mesh.

Mathematically, this looks the following: when we want the increase of the density to happen
on the intervak® € [0, c], then the mapping has to obey

x

10 = X, 9)
xtc) = ASRxY). (10)

X

Here, ASR denotes the compression function gg&gin Section 8 in [11]). A linear introduc-
tion of the ASR seems most reasonable. Therefore, a suitable function fulfilling the require-
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ments is
x(xE,x3) = % (ASRxY) —xb) x3 4+ xt (11)
Thex? mapping is constructed similarly.

Conceptually, the whole coordinate transformation still has the form of Egs. (1)—(3). For any
given value of we first compress the coordinate lines and then apply the adaptive coordinate
transformation. The result is meshes like in Fig. 4. The great advantage of such a procedure
is that it can be easily incorporated into any classical FMM code which can solve the large
eigenproblem. Since the incoming and outgoing layer are Cartesian, this is perfectly compat-
ible. So any classical FMM code that can solve the large eigenproblem can just be given the
transformed permittivity and permeability and can, thereby, incorporate three-dimensional co-
ordinate transformations. Moreover, the issues of two-dimensional transformations that were
discussed above are avoided.

5. Conclusion

This work dealt with the enhancement of the Fourier Modal Method towards three-dimensional
adaptive coordinate transformations. We demonstrated how a three-dimensional mesh can be
constructed and how this transformation translates into fully anisotropic effective permittivity
and permeability tensors. The presented approach can be used to extend any classical FMM
code that is able to solve the large eigenproblem such that it uses coordinate transformations,
namely by simply transforming the tensors in the presented fashion. While it increases the
number of layers to be solved, the overall Fourier representation of the entire structure is highly
improved since the structures are transformed to be grid-aligned and the transition in between
the structures is performed continuously. This concept expands the range of possibilities for the
FMM greatly, especially for complex systems which vary in propagation direction.
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