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1 Introduction

Superconductivity is one of the striking emergent phenomena in condensed mat-
ter physics. Under favorable circumstances fermionic quasiparticles pair up and
condense into a state with macroscopic phase coherence and a gapped quasiparti-
cle excitation spectrum, displaying perfect diamagnetism and zero electrical resis-
tance. The properties of one class of superconductors can be understood in terms
of electron-phonon coupling as the pairing glue and an order parameter with the
highest possible symmetry compatible with the symmetry of the crystal structure.
This class of superconductors is called conventional, while all superconductors with
a different or unknown pairing mechanism or symmetry of the order parameter
lower than that of the crystal structure are classified as unconventional. Apart from
natural curiosity, research on superconductors is ultimately driven by the desire to
discover materials with ever higher transition temperatures, larger critical magnetic
fields, and larger critical currents for the use in, for example, high-field magnets or
high-current power lines. From the beginning, in 1911, this research was propelled
forward by a number of serendipitous discoveries of superconductivity in new or
known materials [1]. An iron-based superconductor, whose transition temperature
drew attention, was first discovered in 2008 [2]. The transition temperatures and the
multiband character, with all its ramifications for superconductivity and the normal
state, spur the interest in iron-based superconductors [3–7].
The classification of iron-based superconductors distinguishes families based on

the structural elements that separate the FeAs (or FeSe) layers that are common to
all of its members. Going from simpler to more complex structures, selected parent
compounds and their families are FeSe (’11’), LiFeAs (’111’), LaFeAsO (’1111’), and
BaFe2As2 (’122’).
Iron-based superconductors of the 122-family constitute a large number of materi-

als for the study and tuning of unconventional superconductivity. The stoichiometric
compounds AFe2As2, where A can be Ca, Sr, Ba, K, Rb, Cs, or Eu, are either su-
perconductors (K, Rb, Cs) or can be tuned to superconductivity by pressure or by
substitution of A, Fe, or As by other elements. While the application of pressure
tunes essentially the bandwidth of quasiparticles, the effects of substitution are more
complex. Apart from a possible change of bandwidth due to chemical pressure, sub-
stitution may change the filling of bands and the amount of scattering. Therefore,
effects of chemical pressure, doping, and disorder can be difficult to disentangle. An
advantage of the stoichiometric superconductors KFe2As2, RbFe2As2, and CsFe2As2
is that no pressure or substitution is needed to study superconductivity. This group
of compounds can, however, be viewed as a substitution series AFe2As2 with chang-
ing alkali atom A =K, Rb, Cs. Then, substitution takes place not in the FeAs planes
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1 Introduction

but between them and no additional disorder is introduced.
In contrast to BaFe2As2, for example, the crystal structures of KFe2As2, RbFe2As2,

and CsFe2As2 remain tetragonal down to lowest temperatures. Also, no mag-
netic order develops. While BaFe2As2, to stay with the same example, has both
electron-like and hole-like bands, KFe2As2, RbFe2As2, and CsFe2As2 only have
hole-like bands. Their superconducting tansition temperatures Tc are relatively
low (Tc = 3.4, 2.5, 2.25K). Therefore, the study of superconductivity is not ham-
pered by a large phonon background in physical quantities. In addition, the upper
critical magnetic fields µ0Hc2 (up to 5T) are easily accessible without high-field facil-
ities. All in all, hope is raised that in the stoichiometric superconductors KFe2As2,
RbFe2As2, and CsFe2As2 unconventional superconductivity can be studied in its
pure form, without disturbing (though interesting) effects of excess disorder or mag-
netic order. With a multitude of bands and gaps, a disputed symmetry of the order
parameter, and an unknown pairing mechanism the puzzle is challenging enough.
In this work superconductivity and the electronic structure of the stoichiometric

superconductors KFe2As2, RbFe2As2, and CsFe2As2 were probed by thermal expan-
sion and magnetostriction measurements at very low temperatures. Single-crystal
growth and characterization, with a special emphasis on structural properties, is
described in chapter 2. The dilatometer and the experimental setup in a dilution
refrigerator is explained in chapter 3.
It is known that KFe2As2 is a multiband superconductor with a paramagnetically

limited upper critical field for the magnetic field in the ab-plane at low temperatures
[8–10]. The question arises how superconducting properties develop in the series
to RbFe2As2 and CsFe2As2. The measurements of the phase diagram, the uniaxial
pressure dependence of critical tuning parameters, as well as statements about the
limiting mechanism of the upper critical field presented in this work (chapter 4) will
provide a solid foundation for theoretical attempts to describe multiband supercon-
ductivity in this series. In addition, the structural parameters of the iron-arsenic
layers of CsFe2As2 are approximately equal to those of Ba1−xKxFe2As2, x = 0.5.
This provides the opportunity to explore how the same structural elements give rise
to superconductivity with transition temperatures of 2.25K and 35K, respectively.
KFe2As2, RbFe2As2, and CsFe2As2 exhibit relatively large electronic correlations

compared to other iron-based superconductors. This is manifest in a cumulative
measure of the density of states, the Sommerfeld coefficient of the specific heat,
which increases in the series from approximately 100 to 180mJmol−1 K−2 [9, 11].
In order to improve the understanding of this effect, it is necessary to know the
contribution of each of the five bands. Here, quantum oscillation studies can be
useful as a bulk probe of the Fermi surface that yields effective quasiparticle masses
on a per band basis. The Fermi surface of KFe2As2 and the effective masses of its
bands have already been studied [12–14]. The question arises how the Fermi surfaces
and the effective masses of each band of RbFe2As2 and CsFe2As2 develop. This work
presents the first measurements of the Fermi surfaces of RbFe2As2 and CsFe2As2
and experimental data on effective masses of all bands (chapter 5). The origin of
the electronic correlations and possible links to superconductivity are discussed.
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2 Single crystals

2.1 Crystal growth parameters

The single crystals studied in this work were grown and characterized by the crystal
growth team of the Institute for Solid State Physics (IFP) at the Karlsruhe Institute
of Technology (KIT). Thomas Wolf grew single crystals of KFe2As2, RbFe2As2,
and CsFe2As2 from arsenic-rich flux in alumina crucibles, as reported in Ref. [8]
for KFe2As2. The crucibles were sealed in an iron tube filled with argon gas. All
growth parameters are listed in table 2.1. One important parameter is the slow
cooling rate. Also, most samples were annealed in situ, directly after the growth,
to decrease defect concentrations. Figure 2.1 shows a photograph of the RbFe2As2
crystal.

2.2 Crystal structure

Peter Schweiss (IFP) studied the crystal structure of single crystals at room tem-
perature with four-circle x-ray diffractometry using molybdenum radiation. Struc-
tural refinement confirmed the space group to be I4/mmm and the composition
to be stoichiometric within the error of the experiment (1-2%). The conventional
bodycentered-tetragonal unit cell contains two formula units and two iron-arsenic
layers. The iron-arsenic layers consist of a square planar arrangement of iron atoms
surrounded by arsenic atoms in a tetrahedron configuration (see figure 2.3). Figure
2.2 compares the structural parameters of KFe2As2, RbFe2As2, and CsFe2As2, called

Table 2.1: A list of the single crystals and their growth parameters. Alumina
crucibles were sealed in iron-tubes filled with argon gas. T1 is the maximum
temperature, T2 the minimum temperature, and rT the cooling rate. In situ
annealing at lower temperatures directly after the growth was applied for most
samples.

Sample, batch no. flux T1, T2, rT annealing
A:Fe:As ◦C, ◦C, ◦C/h in situ

KFe2As2 (S1), 1119 0.22:0.25:0.53 1000, 854, 0.30 3 ◦C/h to RT
KFe2As2 (S2), 1049 0.30:0.10:0.60 980, 808, 0.49 none
RbFe2As2, 1180 0.40:0.05:0.55 980, 691, 0.76 1 d at 450, 400, 350 ◦C
CsFe2As2 (S1), 1239 0.40:0.05:0.55 950, 799, 0.25 1 d at 450, 400, 350 ◦C
CsFe2As2 (S2), 1253 0.40:0.05:0.55 950, 797, 0.20 1 d at 450, 400, 350 ◦C
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2 Single crystals

Figure 2.1: A photograph of the RbFe2As2 crystal. Its shorter length along
the crystal a-direction is approximately 3.5mm, its thickness is approximately
0.7mm.

A122-series, with the parameters of CaFe2As2, SrFe2As2, and BaFe2As2, called
AE122-series, and with Ba1−xKxFe2As2. The large A-As or AE-As bond length
and the phenomenological linear dependence of c, a, and z on the eight-fold coor-
dinated ion radius RI8 of the alkali (A) or alkaline earth (AE) atom in both the
A122- and the AE122-series justify the choice of this quantity as abscissa. Values
of RI8 were taken from Ref. [15]. The unit cell volume V and the c/a-ratio increase
linearly with RI8 in both series. In the AE122-series the tetrahedron of arsenic
atoms surrounding the iron atoms is compressed along the c-direction, and in the
A122-series it is elongated along c. The tetrahedron angle α in the ac-plane and
the other tetrahedron angle β (see figure 2.3) follow similar trends in both series,
with α increasing with RI8 and β decreasing with RI8. The ideal tetrahedron angle
α = β = 109.47 ◦ is realized in Ba1−xKxFe2As2 for x ≈ 0.4. The height hAs of the
arsenic atoms above the iron plane decreases very little in the AE122-series, while
the distance dFe−As between the iron atoms and the arsenic atoms increases signifi-
cantly. The A122-series exhibits the opposite behavior: hAs decreases significantly,
while dFe−As changes very little. The distance between iron atoms, on the other
hand, is given by dFe−Fe = a/

√
2 and increases linearly in both series. The ratio

hAs/a measures the anisotropy of the iron-arsenic planes, in contrast to c/a, which
measures the anisotropy of the whole unit cell. While it is larger for the A122-series,
hAs/a decreases in both series. To aid in the visualization of these structural pa-
rameters, figure 2.3 gives an artist’s impression of the conventional tetragonal unit
cells of KFe2As2, RbFe2As2, and CsFe2As2.
Johrendt and Pöttgen [16] argued that, based on the bond lengths in BaFe2As2,

the Ba-As bonds are rather ionic, the polar but covalent Fe-As bonds are the
strongest bonds, and direct Fe-Fe bonds are present. Since the iron atoms are nomi-
nally in a 3d6 configuration in BaFe2As2, d-shells are more than half-filled and Fe-Fe
antibonding states are at least partially occupied. Any change in the a-parameter
changes the overlap of antibonding orbitals involved in the Fe-Fe bond. In the series
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2.2 Crystal structure
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Figure 2.2: The structural parameters of CaFe2As2, SrFe2As2, BaFe2As2
(green), Ba1−xKxFe2As2 (green to red), KFe2As2, RbFe2As2, and CsFe2As2
(red) measured by four-circle x-ray diffraction on single crystals at room tem-
perature, plotted against the eight-fold coordinated ion radius RI8 of the alkali
(A) or alkaline earth (AE) atom. Values of RI8 were taken from Ref. [15]. α
is the tetrahedron angle in the ac-plane and β is the other tetrahedron angle
(see figure 2.3). The ideal tetrahedron angle 109.47 ◦ is marked with a dashed
line. hAs is the height of the arsenic atoms above the iron plane. hAs/a gives a
measure of the anisotropy of the iron-arsenic layers. dFe−As is the iron-arsenic
bond length. The iron-iron distance is dFe−Fe = a/

√
2.
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2 Single crystals
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Figure 2.3: Sketches of the conventional tetragonal unit cells of KFe2As2,
RbFe2As2, and CsFe2As2. The relative sizes of the unit cells and the atomic
positions are to scale.

Ba1−xKxFe2As2 the parameters a and c, as well as the tetrahedron angles change
linearly with x [17]. While c increases, a and z decrease, leading to an elongation
of the tetrahedron in the z-direction. The ideal tetrahedron angle is crossed at
x = 0.4, where also the optimal superconducting transition temperature Tc ≈ 38K
is reached.
When hydrostatic pressure is applied to BaFe2As2 [18], both a and c decrease,

but z increases. This leads to a similar elongation of the tetrahedron as in the
Ba1−xKxFe2As2 series [18]. The ideal tetrahedron angle and the optimal Tc are
reached for a pressure of approximately 4GPa. Thus, substitution of Ba by K and
hydrostatic pressure have a very similar and pronounced effect on the iron-arsenic
planes and on superconductivity.
When K is replaced by Rb and Cs in the A122-series, the iron-arsenic planes

change relatively little, as in the AE122-series. The most noticable change is in the
height of the arsenic atoms above the iron plane. Remarkably, the structure of the
iron-arsenic layers of CsFe2As2 is very similar to that of Ba0.5K0.5Fe2As2.

2.3 Magnetization

The volume magnetization divided by the magnetic field, MV /H, of KFe2As2 as
a function of temperature was measured and discussed by Hardy et al. [9]. It in-
creases with decreasing temperature, exhibits a broad maximum around 100K and
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2.3 Magnetization

Figure 2.4: Volume magnetization divided by the magnetic field, MV /H, of
KFe2As2 measured as a function of temperature T . Taken from Ref. [9]. The
upturn at low temperatures is caused by magnetic impurities. The broad max-
imum around 100K is interpreted as a quasiparticle coherence scale [9].

an upturn at low temperatures (see figure 2.4). The position of the broad maximum
is interpreted [9] as a quasiparticle coherence scale, below which heavy quasiparti-
cles exist in a Fermi liquid and above which quasiparticles lose coherence. At lower
magnetic fields the broad maximum is better visible for H ‖ ab than for H ‖ c. The
upturn at low temperatures is a sign of magnetic impurities [9]. MV /H of RbFe2As2
and CsFe2As2, albeit recorded at lower magnetic fields than the curves in figure 2.4,
are similar to that of KFe2As2 (see figure 2.5). The curves also display an upturn at
low temperatures, so the samples also contain magnetic impurities, either embedded
in the bulk, or on the surface, or both. A broad maximum is visible for RbFe2As2 in
H ‖ ab but not in H ‖ c, where it is possibly hidden below the upturn at low tem-
peratures. For CsFe2As2 no broad maximum is visible in the measurements shown.
Possibly, the broad maximum is shifted to lower temperatures in the series KFe2As2
to RbFe2As2 to CsFe2As2, being hardly visible in magnetization measurements in
low fields. This would be compatible with thermal expansion data, which display a
broad maximum at roughly 100K, 50K, and 40K, respectively [19].
The right-hand panel of figure 2.5 shows the superconducting transition as ob-

served by magnetization measurements performed using a "magnetic properties mea-
surement system" with SQUID read-out by Quantum Design. The onset of the
Meissner effect is seen as a drop in the field-cooled MV /H.
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Figure 2.5: Left: Volume magnetization divided by the magnetic field,
MV /H, of RbFe2As2 (H ‖ ab and H ‖ c) and CsFe2As2 (H ‖ a). The upturn at
low temperatures reveals magnetic impurities. Right: MV /H (field-cooled) of
KFe2As2, RbFe2As2, and CsFe2As2, showing the superconducting transition.
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3 Capacitance Dilatometry

3.1 Capacitance dilatometer

A very sensitive method is required to measure changes in length of millimeter-sized
crystals at low temperatures and in magnetic fields. Capacitance dilatometry offers
the required sensitivity to resolve effects of the order of magnitude of 10−6 to 10−10

in the relative change in length ∆L/L. The working principle of this method is
as follows (see figure 3.1): A sample of length L, for example a single crystal, is
clamped between a ground plate and one of two parallel capacitor plates by the
force exerted by two parallel springs. When the length of the sample changes, the
springs transmit this movement to the first capacitor plate which, in turn, moves
relative to the second capacitor plate. This changes the distance d of the capacitor
plates and accordingly their capacitance C. The change in capacitance is measured
and converted into the change in length of the sample ∆L:

∆L = −∆d = −ε0εrA ·∆
1
C
, (3.1)

where ε0 ≈ 8.854188 · 10−12 AsV−1 is the electric constant, εr is the relative elec-
tric permittivity, and A is the area of the capacitor plates. For the measurements
presented in this work εr = 1 and A = 0.92 cm2. To obtain the approximate rela-
tive change in length ∆L/L, the length of the sample at room temperature L0 was
measured with a digital caliper with micrometer resolution.
The resolution of the relative change in length ∆L/L0 can be estimated to be

∆
(∆L
L0

)
= ε0εrA

L0
· 1
C2 ∆(C), (3.2)

where ∆(C) is the resolution of the capacitance measurement. It is desirable to
measure at a small absolute distance of the capacitor plates, as this leads to a large
absolute capacitance and to a large change in capacitance for a small change in
sample length, which improves the resolution. For the measurements presented in
this work ∆(C) = 10−6 to 10−5 pF and the resolution in the relative change in length
is in the range 10−9 to 10−10, or 0.1 to 1 pm for a sample that is one millimeter long.
The capacitance dilatometer used in this work was already described by Drobnik

[20] and by Zaum [21]. It is made of Cu:Be alloy. At temperatures below 4K its
thermal expansion is so small that no correction of the data for thermal expansion
of the dilatometer is necessary.
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3 Capacitance Dilatometry

sample

insulation

capacitor
plates

parallel
springs

d

L

Capacitance dilatometer

Figure 3.1: Left: Schematic of a parallel-plate capacitance dilatometer. A
change in sample length L is transmitted to the movement of one capacitor
plate via two parallel springs. The change in the distance d of the capacitor
plates is measured as a change in capacitance C ∝ 1/d. Right: Photograph of
the dilatometer used in this work.

3.2 Experimental setup in a dilution refrigerator

Measurements were conducted in a dilution refrigerator, model MX400 by Oxford
Instruments, equipped with a 14T magnet. The dilatometer was thermally coupled
to the mixing chamber by plates made of a silver alloy. The temperature at the
sample could be ramped up from 20mK to 3K without evaporating the mixture in
the mixing chamber. Measurements above 3K were conducted removing part of the
mixture and using only the 1K-pot for cooling. A strain gauge was used as heating
element and a ruthenium oxide chip as thermometer.
Thermal coupling to the room-temperature environment of the laboratory has

to be avoided. Therefore a range of different cables are used at different tempera-
ture stages. At room temperature common copper wires transmit electrical signals
between the refrigerator and the instruments for data acquisition and instrument
control. The wires are twisted in pairs and well shielded to prevent the pick-up of
electromagnetic noise. Outbreak boxes and filters directly on top of the cryostat pre-
vent the intrusion of electromagnetic environment noise into the cold part. Between
the room-temperature stage and the 4K-stage Cu:Be wires with smaller thermal
conductivity are used. Between the 4K-stage and the mixing chamber of the refrig-
erator superconducting niobium titanium wires are used, because superconducting
electrons do not transport heat. Between the mixing chamber and the dilatometer
copper wires provide a good thermal connection of the capacitance plates and the
thermometers to the bulk of the cold stage of the refrigerator. Coaxial cables were
used for the capacitance measurement, with superconducting niobium cores between
the 4K-stage and the mixing chamber.
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3.3 Thermal expansion and magnetostriction

Capacitance was measured in a three-terminal setup with a capacitance bridge,
model AH2550 by Andeen-Hagerling, using an excitation voltage of 15V, an ex-
citation frequency of 1 kHz, and an integration time of 9 s. The resistance of the
ruthenium oxide thermometer was measured with an AC resistance bridge, model
AC370 by Lake Shore Cryotronics. The effect of magnetoresistance was considered
during the conversion of the resistance into a temperature value. Coefficients of a
phenomenological description of the magnetoresistance proposed by Watanabe et al.
[22] were extracted from calibration measurements by Zaum [21]. Spline interpola-
tions of the resistance as a function of both temperature and magnetic field allowed
the field-correction of all temperature values. The heating element was driven by
a DC current source, model 2400 SourceMeter by Keithley Instruments, with a
low-frequency pass attached to its output.
Thermal expansion and magnetostriction were measured in a continuous manner,

ramping the temperature or the magnetic field continuously and taking measure-
ments of the capacitance with a fixed averaging time of 9 s. The temperature rate
depended exponentially on the temperature, so that more data points were taken at
lower temperatures, where changes in length are usually smaller. The ramp rate of
the magnetic field was constant, usually 0.1T/min, or 0.02T/min for measurements
of higher-frequency quantum oscillations.

3.3 Thermal expansion and magnetostriction

Thermal expansion relates a second rank tensor, strain εij , to a scalar, temperature
T . Since εij is a symmetric tensor, also the thermal expansion tensor is symmetric.

αij =
(
∂εij
∂T

)
p,H=0

(3.3)

For uniaxial samples in zero magnetic field or with a magnetic field applied parallel
to the axis

αij =

α11 0 0
0 α11 0
0 0 α33

 . (3.4)

Therefore, for the tetragonal crystals studied in this work, only two thermal expan-
sion coefficients are relevant at zero magnetic field: αa ≡ α11 and αc ≡ α33. The
volume thermal expansion coefficient is then αV = 2αa+αc. For magnetic fields Hk

or stress σkl applied in arbitrary directions the number of coefficients rises. Magne-
tostriction is a third rank axial tensor, that means its coefficients change sign under
reflections or inversions:

λijk =
(

∂εij
∂(µ0Hk)

)
T,p

. (3.5)
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3 Capacitance Dilatometry

In this work changes in length were measured along crystal a- and c-axes while
applying the magnetic field either along the a-, b-, or c-direction. Thus five magne-
tostriction coefficients appear in this work: λH‖aa ≡ λ111, λH‖ba ≡ λ112, λH‖ca ≡ λ113,
λ
H‖a
c ≡ λ331, and λH‖cc ≡ λ333.
Since the absolute length L of the sample cannot be measured continuously, the

temperature derivative of the linear strain ε was approximated by the temperature
derivative of the dilation (L−L0)/L0 with respect to the length at room temperature
L0 = LRT .

ε =
∫ L

L0

dL′

L′
= ln

(
L

L0

)
= ln

(
1 + L− L0

L0

)
(3.6)

∂ε

∂T
= 1
L

∂L

∂T
≈ 1
L0

∂L

∂T
+O

(
∂

∂T

(
L− L0
L0

)2
)

(3.7)

This introduces only a very small error, because the change in length is very small
compared to the absolute length (by a factor of 10−8 to 10−6). The same approxi-
mation is made for the magnetic-field derivative.
The uniaxial stress exerted on the sample by clamping it in the dilatometer is so

small, typically several bar, that it can be neglected. This is shown by the exper-
imental fact that anomalies in αa and αc yield the same transition temperature Tc
despite different signs of the uniaxial stress-dependence of the transition temperature
dTc/dσa and dTc/dσc.

3.4 Uniaxial pressure dependence of entropy and
magnetization

Thermal expansion and magnetostriction are related to other thermodynamic quan-
tities by means of the total differential of the Gibbs free energy

dG(T, p,H) = −SdT + V dp−
∑
i

Mid(µ0Hi), (3.8)

where S is the entropy, V the volume, and M the magnetic moment, or

dG(T, σij , Hk) = −SdT −
∫

dV

∑
i,j

εijdσij

−∑
k

Mkd(µ0Hk), (3.9)

where stress σij replaces hydrostatic pressure p. Since G is a thermodynamic poten-
tial, the order of partial differentiation of G with respect to two of its variables can
be interchanged arbitrarily. From this a set of equations, called Maxwell relations,
follows that relate several thermodynamic quantities. Specifically, the Maxwell rela-
tions state the equivalence of thermal expansion and the pressure dependence of the
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3.5 Phase transitions

entropy, as well as the equivalence of magnetostriction and the pressure dependence
of the magnetic moment:

αV = 1
V

(
∂V

∂T

)
p,H

= − 1
V

(
∂S

∂p

)
T,H

, (3.10)

λV = 1
V

(
∂V

∂(µ0H)

)
T,p

= − 1
V

(
∂M

∂p

)
T,H

. (3.11)

In the corresponding expressions for αi and λi, i = a, c (or 1,3) for tetragonal systems
the hydrostatic pressure can be replaced by the uniaxial pressure pi ≡ −σii.

αi = 1
Li

(
∂Li
∂T

)
σ,H

= − 1
V

(
∂S

∂pi

)
T,H

(3.12)

λi = 1
Li

(
∂Li

∂(µ0H)

)
T,σ

= − 1
V

(
∂M

∂pi

)
T,H

(3.13)

One should not get confused by the fact that the pressure dependence of the entropy
or the magnetic moment is given as a function of temperature or magnetic field at
a constant pressure (zero in this work) and not as a function of pressure.
The temperature derivative of the thermal expansion coefficient, which is the

curvature of the change in length as a function of temperature, is related to the
pressure dependence of the specific heat C, because ∂S/∂T = C/T .(

∂αi
∂T

)
p,H

= − 1
V T

(
∂C

∂pi

)
T,H

∗= − 1
V

(
∂γ

∂pi

)
T,H

, (3.14)

where the last identity, marked with an asterisk, holds for a Fermi liquid at low
temperatures, when C = γT with the Sommerfeld coefficient γ. The Sommerfeld
coefficient, in turn, is proportional to the density of states.
The magnetic-field derivative of the magnetostriction coefficient, which is the cur-

vature of the change in length as a function of magnetic field, is related to the
pressure dependence of the magnetic susceptibility χ = ∂M/∂(µ0H).(

∂λi
∂(µ0H)

)
T,p

= − 1
V

(
∂χ

∂pi

)
T,H

(3.15)

For a Fermi liquid at low temperatures, the magnetic susceptibility is proportional
to the density of states and the g-factor of the quasiparticles.

3.5 Phase transitions
The equivalence of the thermal expansion coefficient α and the pressure dependence
of the entropy (eqs. 3.10, 3.12) is the explanation for the appearance of anomalies
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3 Capacitance Dilatometry

in α at phase transitions. All phase transitions, at which ∂S/∂p or its temperature
derivative change as a function of T , can be observed in α, not only structural phase
transitions, but also magnetic and superconducting transitions. Similar, all phase
transitions, at which ∂M/∂p or its field derivative change as a function of µ0H, can
be observed in the magnetostriction coefficient λ. At continuous phase transitions
the Gibbs free energy G is continuous as a function of the tuning parameter, and
there is a slope change of the extensive quantities S, V , and M and a step in C, χ,
α, and λ. The uniaxial pressure dependence of the transition temperature and the
critical magnetic field can be obtained from the Ehrenfest relations:

dTc
dpi

= VmTc
∆αi
∆Cm

, (3.16)

d(µ0Hc)
dpi

= Vm
∆λi
∆χm

, (3.17)

where the index m refers to molar quantities. At discontinuous phase transitions G
exhibits a discontinuity as a function of the tuning parameter, and there is a step
in S, V , and M and a sharp peak in α and λ. In this case, the uniaxial pressure
dependence of the transition temperature and the critical magnetic field can be
obtained from the Clausius-Clapeyron relations:

dTc
dpi

= Vm
∆Li/Li

∆Sm
, (3.18)

d(µ0Hc)
dpi

= Vm
∆Li/Li
∆Mm

. (3.19)

The uniaxial pressure dependence is evaluated at a fixed pi (approximately zero in
this work), not as a function of uniaxial pressure.
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4 Superconductivity in KFe2As2,
RbFe2As2, and CsFe2As2

4.1 Superconductivity in iron-based materials

Superconductivity in iron-based materials [3–7, 23] is connected with their common
structural element, iron-arsenic layers or, in the case of FeSe, iron-selenium layers. A
generalized phase diagram, the dependence of the superconducting transition tem-
perature Tc on a tuning parameter like pressure p or chemical substitution x, bears
similarities to the generalized phase diagrams of the heavy-fermion superconductors
and the cuprate superconductors. Superconductivity arises when a magnetic order is
suppressed, and Tc(p) or Tc(x) often exhibit a broad maximum ("dome"). It seems
to be established that electron-phonon coupling is too weak to explain the Tc of
iron-based superconductors on its own [24], although the electron-phonon interac-
tion can be underestimated by calculations, especially in the presence of electronic
correlations [25]. So-called spin-fluctuation exchange is a candidate for the pairing
glue [7]. In many cases the symmetry of the superconducting gap [6, 7] is established
to be symmetric with respect to rotation about the main symmetry axis and even
with respect to inversion (A1g or "s-wave"). There are four to five bands that cross
the Fermi energy and, accordingly, four to five gaps. Each gap can have a different
magnitude that varies with direction. Nodes in the gap function are not a unique
signature of a particular symmetry of the order parameter. So-called "accidental"
nodes may appear for s-wave symmetry. There may be a nodeless "d-wave" state
[7] (B1g or B2g, antisymmetric with respect to rotations about the main symmetry
axis). Small gaps may be mistaken for nodes in certain experiments. The symmetry
may change with doping or with an external perturbation. In the Ba1−xKxFe2As2
series the symmetry above x = 0.6 is discussed controversially while it is established
to be s-wave with a sign-change of the order parameter between electron- and hole-
parts of the Fermi surface (s+−) below x = 0.6 [26]. Thus, there is also no agreement
on the symmetry of the gaps in KFe2As2, RbFe2As2, and CsFe2As2.
The multiband or multigap character of superconductivity in iron-based materials

leaves its fingerprint in many physical quantities [27]. Apart from its phenomenolog-
ical manifestations, intriguing aspects of multiband superconductivity are how the
interactions between bands affect the pairing strength and the symmetry. No general
answer can be given to these questions [6, 7], due to the large number of relevant
material parameters. Different bands can have different density of states, impurity
scattering rates, Fermi velocities, anisotropies, coupling strength, energy gaps, gap
symmetries, etc [27]. Interband coupling gives rise to a single transition temperature
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4 Superconductivity in KFe2As2, RbFe2As2, and CsFe2As2

Tc and a single upper critical field Hc2. The interaction of multiple bands can lead to
surprisingly high Tc, as is the case for MgB2 [27], where a description with two bands
and their anisotropy explains a Tc of 39K even with electron-phonon interaction as
the pairing glue. Considering this contribution in MgB2, it should be studied how
multiband properties affect the pairing in the iron-based superconductors, which
display similar Tc values, and how multiband interactions could be tuned to boost
the transition temperatures further.

4.2 The critical temperature measured by thermal
expansion

The observation of the Meissner effect is the hallmark sign of superconductivity.
Not only is it the effect that defines a superconductor, it is also a bulk probe,
compared to resistivity measurements, where a drop in resistivity can also be due
to percolating paths of superconducting impurity phases or interfaces. Thermal
expansion and magnetostriction are also bulk probes. That an anomaly in these
quantities is connected with a superconducting transition, and not, for example,
with a magnetic transition, must be verified by studying its dependence on a second
tuning parameter or by other methods. The anomalies in thermal expansion and
magnetostriction are usually sharp and provide a very good way to map out a phase
diagram. As a bonus, they contain information on the uniaxial pressure dependence
of the critical quantities Tc and Hc2, respectively.
Thermal expansion ∆a/a0 and ∆c/c0 of KFe2As2 [10], RbFe2As2, and CsFe2As2

single crystals was measured at temperatures between 50mK and 4K and in mag-
netic fields H ‖ a, b and H ‖ c up to 14T. While for RbFe2As2 both ∆a/a0 and
∆c/c0 could be measured on the same sample, for KFe2As2, and partly for CsFe2As2,
∆a/a0 and ∆c/c0 had to be measured on different samples, called samples S1 and S2
respectively, because S1 was too thin for measurements of ∆c/c0. This provides the
opportunity to compare different samples of nominally the same compound made in
different batches.
Figure 4.1 shows the relative changes in length ∆a/a0 and ∆c/c0 of RbFe2As2

at H = 0. The superconducting transition is observed as a change in slope of
∆L/L0 at Tc = 2.5K, the signature of a continuous phase transition. Above the
transition ∆L/L0 ∝ T 2 and a grows with temperature while c shrinks. Below the
superconducting transition a shrinks with temperature while c grows.
The derivatives of ∆a/a0 and ∆c/c0 yield αa and αc, respectively, shown in figure

4.2 for KFe2As2, RbFe2As2, and CsFe2As2 for H = 0. The superconducting tran-
sition is observed as a step in αi. The position of the transition temperature Tc is
taken as the midpoint of this step. This criterion is consistent with the criterion
usually applied for the extraction of the transition temperature from specific heat
curves. There, the transition temperature is determined under the premise that
equal amounts of entropy connected with the transition should lie below and above
Tc. Compared to the specific heat, which is always positive, the thermal expansion
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4.2 The critical temperature measured by thermal expansion
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Figure 4.1: Relative changes in length ∆a/a0 and ∆c/c0 of RbFe2As2 at
H = 0. The superconducting transition is observed as a change in slope of
∆L/L0. Above the transition ∆L/L0 ∝ T 2 and a grows with temperature
while c shrinks. Below the superconducting transition a shrinks with increas-
ing temperature while c grows.

and its anomalies can have different signs. When there is a sign change of αi in ad-
dition to a step, this is a particularly clear sign of a transition. Above the transition
αi has a linear dependence on the temperature. This is expected for a Fermi liquid
at low temperatures with a linear dependence of the specific heat on temperature
and a constant Grüneisen ratio αV /C. Below Tc the thermal expansion coefficient
tends towards zero, as expected for any material.
The right-hand part of figure 4.2 shows αi/T . A constant αi/T above Tc is ex-

pected for a Fermi liquid at low temperatures. In this case the constant value gives
the uniaxial pressure dependence of the density of states at zero pressure (see eq.
3.14). Below Tc the shape of the curves is relatively complicated, not directly tend-
ing to zero but exhibiting a hump at low temperatures. In general, this is a sign of
either one gap on an anisotropic band, or multiple gaps on isotropic bands, or multi-
ple gaps on anisotropic bands [27]. It is similar to the effects seen in the specific heat
divided by temperature C/T of MgB2 (see figure 4.3) [28, 29], which is established
to be a conventional multiband superconductor [27]. There is a fast rise of C/T
at very low temperatures, a shoulder at low temperatures, and a relatively small
jump at the transition, all not compatible with expectations for the case of a single,
isotropic band [27]. Similar characteristics were observed in C/T of KFe2As2, which
was described with four bands by Hardy et al. [30] (see the left-hand panel of figure
4.3). The necessity to invoke a multiband description in addition to anisotropy is
evident from ARPES measurements [26].
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Figure 4.2: Top panels: The thermal expansion coefficients αc and αa of (from
left to right) KFe2As2 (Samples S2 and S1), RbFe2As2, and CsFe2As2 (S2) at
H = 0. The continuous superconducting transition is visible as a step in αi

at T = 3.4, 2.5, 2.25K, respectively. Bottom panels: The complicated shape of
the curve resulting from multiple superconducting gaps shows up more clearly
in αc/T and αa/T . The constant αc/T and αa/T above Tc is expected for a
Fermi liquid at low temperatures.
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4.3 Vortex matter

Mg11B2 powder
Bouquet (2001)

KFe2As2

Hardy (2014)

Figure 4.3: The electronic specific heat Ce divided by T and by the normal-
state Sommerfeld coefficient γn of Mg11B2 [28] (left) and KFe2As2 [30] (right),
plotted against the normalized temperature t = T/Tc. In the case of MgB2 the
shape of the specific heat curve can be explained by two superconducting gaps
[27]. Hardy et al. [30] use four gaps to describe the specific heat of KFe2As2.

The comparison of αc for KFe2As2 with curves published by Burger et al. [8] and
Bud’ko et al. [31] reveals a discrepancy in the absolute values (see figure 4.4). This
difference is not due to the instruments used for the measurements but due to the
shape of the samples and is a common problem with plate-like samples of iron-based
superconductors [32]. A thin, plate-like sample clamped into a dilatometer along
the c-axis will have contact with the dilatometer at several points. During thermal
expansion measurements, not only the length along the c-axis changes, but also the
length in the ab-plane. This leads to friction at the contact points and possibly to
a bending of the sample or to a sideways movement of one of the capacitor plates,
which may affect the signal.
Thermal expansion ∆a/a0 and ∆c/c0 was measured also in finite magnetic fields

H ‖ a, b and H ‖ c up to 14T. As an example, figure 4.5 shows αa of RbFe2As2 in
several magnetic fields H ‖ c and figure 4.6 shows αa in H ‖ a. The superconducting
transition can be determined from αi for several magnetic fields. As the phase
transition line is crossed more and more tangentially at higher fields, the step in αi
becomes smoother. At these fields and temperatures magnetostriction curves cross
the phase transition line more perpendicularly, resulting in sharper anomalies (see
section 4.4).

4.3 Vortex matter

Magnetostriction ∆a/a0 and ∆c/c0 of KFe2As2 [10], RbFe2As2, and CsFe2As2 single
crystals was measured in magnetic fieldsH ‖ a andH ‖ c up to 14T, at temperatures
between 50mK and 4K. As an example, figure 4.7 shows the relative changes in
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Figure 4.4: The thermal expansion coefficients αc/T and αa/T of KFe2As2
for µ0H = 0T and 5T. The measurement of αc/T for µ0H = 0T by Zocco
et al. [10] is compared to data by Burger et al. [8] and Bud’ko et al. [31]. The
absolute values of αc/T vary, a common problem with plate-like samples of
iron-based superconductors [32].
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Figure 4.5: Left: The thermal expansion coefficient αa of RbFe2As2 for H ‖
c,H = 0, 0.1, 0.25, 0.5, 0.75, 1, 1.1, 3, 7, 14T, recorded during cooling (closed
symbols) and heating (open symbols). Right: αa/T . The superconducting
transition is seen as a step, which becomes smoother at higher fields, because
the phase transition line is crossed more tangentially.
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Figure 4.6: Left: The thermal expansion coefficient αa of RbFe2As2 for H ‖
a,H = 0, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 3.75, 3.85, 4T, recorded during cooling
(closed symbols) and heating (open symbols). Right: αa/T .

length ∆a/a0 and ∆c/c0 of RbFe2As2 at T = 50mK for different directions of the
magnetic field. For H ‖ c the superconducting transition is observed as a change
in the slope, a sign of a continuous phase transition. For H ‖ a the transition is
observed as a step-like anomaly, a sign of a transition that is discontinuous. The
magnetostriction curves in the superconducting state are different for increasing and
decreasing magnetic field, the magnetostriction is irreversible. Also, it displays some
peculiar anomalies.
The magnetostriction of superconductors results from several effects [33]. The

first effect is the reversible part that is governed by thermodynamics. It is observed
as a linear dependence of ∆L/L on the magnetic field or, equivalently, as a constant
magnetostriction coefficient λi. A second effect is due to the demagnetizing field,
which causes a deformation of the sample in order to minimize its energy. In type-II
superconductors with an upper critical field Hc2 � Hc1, the magnetic moment far
above Hc1 is small due to the penetration of magnetic flux. Accordingly, demagne-
tization effects can usually be neglected. A third effect is due to supercurrents at
the surface of the sample [33]. A fourth effect can be explained by the behavior of
vortices, regions of normal-conducting material that penetrate a type-II supercon-
ductor in the mixed state, at magnetic fields between the lower critical field Hc1 and
the upper critical field Hc2.
The interface between superconducting and normal-conducting regions can have a

positive or a negative surface energy σsn [34]. When σsn > 0 it costs energy to create
interfaces, while for σsn < 0 it is favorable to create a certain amount of interfaces,
because the loss in superconducting condensation energy Uc can be compensated by
the gain in σsn. The sign of σsn is determined by the Ginzburg-Landau parameter
κ = λL/ξGL. Here, λL is the London penetration depth, the length scale on which
magnetic fields and shielding currents penetrate a superconductor. Disturbances of
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Figure 4.7: Relative changes in length ∆a/a0 and ∆c/c0 of RbFe2As2 at T =
50mK for H ‖ ab (left) and H ‖ c (right). For H ‖ ab the magnetostriction
is irreversible in the superconducting state. The transition is observed as a
step-like anomaly. For H ‖ c the dilation is a linear function of the magnetic
field in the superconducting state. The transition is seen as a change in slope.

the superconducting order parameter decay exponentially on a length scale ξGL, the
Ginzburg-Landau coherence length. When κ < 1/

√
2, the surface energy is positive

and the behavior of superconductivity in a magnetic field H is of type I. The interior
of the superconductor is perfectly shielded from the magnetic field by currents close
to the surface until the thermodynamic critical field Hc is reached. At Hc there is an
abrupt destruction of superconductivity. Depending on the demagnetization factor,
there is an intermediate state of a type-I superconductor below Hc, in which macro-
scopic domains of superconductivity and the normal state exist next to each other.
When κ > 1/

√
2, the surface energy is negative and the behavior of superconductiv-

ity in a magnetic field H is of type II. Below a lower critical field Hc1 there is perfect
shielding, but above Hc1, in the mixed state, magnetic field penetrates into the bulk
of the superconductor until superconductivity is destroyed completely at the upper
critical field Hc2. The penetration of magnetic field in the mixed state happens in
the form of normal-conducting tubes, containing one flux quantum Φ0 = h/2e each
and the currents necessary to shield it. These entities are called vortices. With in-
creasing field, the number of vortices increases, but not the magnetic flux per vortex.
This way, the size of the interface between superconducting and normal-conducting
regions is maximized, and with it the gain in surface energy σsn compared to the
loss in Uc. Under the influence of a demagnetization factor, there is an intermedi-
ate state of a type-II superconductor below Hc1, in which macroscopic domains of
perfectly shielded superconductivity and of the mixed state exist next to each other.
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4.4 The upper critical magnetic field measured by magnetostriction

Interactions between vortices and impurities and between vortices themselves can
lead to a range of phenomena. Repulsive interactions between vortices are the
reason for the formation of regular vortex lattices. The position of a vortex can
be fixed, or "pinned", at an impurity [35]. When different parts of a vortex are
pinned at different impurities, the vortex line can bend, acting against the stiffness
of the vortex. This multitude of counteracting interactions can create several more
or less ordered vortex states, with transitions tuned by the magnetic field, which
changes the density of the vortices, or by the temperature, which changes their
thermal energy. Apart from transitions, also avalanche effects may be observed.
When one vortex is unpinned and retains sufficient kinetic energy to unpin other
vortices in collisions, an avalanche of vortex movement is created, a time-dependent
phenomenon, which might be observed as an anomaly in macroscopic quantities and
is then referred to as "flux jump". A common effect is the appearance of a peak and
a hysteresis in thermodynamic quantities just below the upper critical field. This
effect is called "peak effect". Its origin, as proposed by Pippard [36], is a decrease
in the rigidity of the vortex lattice close to the upper critical field, which leads to a
sudden increase in vortex pinning.
The melting transition of a vortex lattice was observed in Ba0.5K0.5Fe2As2 in

specific heat, thermal expansion, and magnetization measurements [37, 38]. In the
thermal expansion coefficient this transition appears as a peak in the heating curve,
a few Kelvin below the superconducting transition, at around 30K [37, 38]. No such
transition is seen in the thermal expansion of KFe2As2, RbFe2As2, or CsFe2As2. For
these compounds the upper critical field and the transition temperature are much
lower than for Ba0.5K0.5Fe2As2. Therefore, thermal fluctuations are not sufficient
to melt the vortex lattice before superconductivity is destroyed.
Irreversibilities caused by vortices are observed in the magnetostriction of KFe2As2,

RbFe2As2, or CsFe2As2 for H ‖ ab. Figure 4.8 shows the relative change in length
∆c/c0 of CsFe2As2 (sample 2) at several temperatures. Several peaks are observed
at lowest temperatures, with similar distance in the magnetic field. A peak effect is
visible close to the upper critical field. Also the magnetostriction of sample 1 shows
a peak effect (see figure 4.9). But it does not show large equidistant peaks like the
measurements on sample 2. Differences in impurity concentrations can lead to dif-
ferent vortex behavior. Also a dependence of the effect on the exact field direction
could be an explanation for this difference.

4.4 The upper critical magnetic field measured by
magnetostriction

The upper critical magnetic field of KFe2As2, RbFe2As2, and CsFe2As2 can easily
be determined from the magnetostriction for H ‖ c. For this field direction, the
magnetostriction ∆L/L in the superconducting state is mostly reversible, with a
linear field dependence (see figure 4.7). The superconducting transition is observed
as a change in slope of ∆L/L and as a step in the magnetostriction coefficient λi
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Figure 4.8: Relative change in length ∆c/c0 of CsFe2As2 (Sample 2) at
T = 50, 250, 500mK for H ‖ a. The curves shown were recorded during a
full field loop: the magnetic field was ramped 14 − (−7) − 14T. Therefore,
two pairs of curves for decreasing and increasing magnetic field are shown for
each temperature. The two curves for decreasing field and the two curves for
increasing field fall on top of each other, as expected for the change in length,
and are plotted using the same color and not listed separately in the legend.
For 50mK also an initial curve is shown. Several peaks are observed at lowest
temperatures, with similar distance in the magnetic field (1.1T). A peak effect
is visible close to the upper critical field.
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4.4 The upper critical magnetic field measured by magnetostriction
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Figure 4.9: Relative change in length ∆a/a0 of CsFe2As2 (Sample 1) at T =
50, 250, 500mK for H ‖ a. A peak effect is visible close to the upper critical
field.

for all temperatures (see figures 4.12, 4.13). When the position of the transition
is taken as the midpoint of the step in λi, the resulting upper critical field Hc2 is
consistent with the transition temperature Tc deduced from the thermal expansion
in the respective magnetic field.
For H ‖ ab the situation is similar at temperatures 0.5Tc < T < Tc. In this

region the magnetostriction ∆L/L is linear in the superconducting state and the
transition is visible as a step in the magnetostriction coefficient, accompanied by
a small peak effect (see figures 4.7, 4.11, 4.9, 4.8). The upper critical field can
be extracted from the position of the midpoint of the step. The character of the
transition changes at temperatures T . 0.5Tc, when the anomaly at the transition
develops from a step to a peak, signaling a discontinuous phase transition. Also,
the irreversibilities increase at lower temperatures, including the peak effect. The
proximity of the peak effect to the upper critical field makes it more difficult to
extract Hc2 from the magnetostriction coefficient λi (see figures 4.12, 4.13). When
the position of Hc2 is taken as the midpoint of the first flank encountered coming
from higher fields towards the transition, the resulting Hc2 is consistent with the
position of the transition observed in thermal expansion. Therefore, this criterion is
chosen for the determination of the upper critical field.
The upper critical field of KFe2As2 was studied by Zocco et al. [10]. Figure 4.10

shows ∆c/c0 of KFe2As2 for both H ‖ c and H ‖ a as well as λc for H ‖ a at different
temperatures.
Figure 4.11 shows how the superconducting transition of RbFe2As2 develops from

a change in slope of ∆a/a0 at higher temperatures to a step-like anomaly at lower
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Figure 4.10: Left: change in length ∆c/c0 of KFe2As2 at different tempera-
tures for H ‖ a (a) and H ‖ c (b). Right: magnetostriction coefficient λc for
H ‖ a. Taken from [10].

temperatures for H ‖ ab. In the magnetostriction coefficient this is observed as a
development of the transition from a step to a peak (see figure 4.12). Thus, for all
three compounds, KFe2As2, RbFe2As2, and CsFe2As2, the upper critical field shows
very similar behavior. For H ‖ c the superconducting transition is continuous at all
temperatures. For H ‖ ab the superconducting transition is continuous at higher
temperatures, but becomes discontinuous at lower temperatures.

4.5 Phase diagrams

Tracking the anomalies in thermal expansion and magnetostriction, H-T phase dia-
grams were mapped out. The left-hand panel of figure 4.14 shows the phase diagrams
of KFe2As2, RbFe2As2, and CsFe2As2. The superconducting transition temperature
Tc decreases monotonically in the series, from 3.4K, to 2.5K, to 2.25K. The behav-
ior of the upper critical field is more complicated. For H ‖ c the upper critical field
µ0H

‖c
c2 is 1.5T, 1.0T, and 1.8T, respectively. Thus, there is no monotonic trend

in the series. For H ‖ a the upper critical field µ0H
‖a
c2 is 4.8T, 4.0T, and 4.5T,

respectively. Again, there is no monotonic trend. The right-hand panel of figure
4.14 shows the normalized phase diagrams. The curves of H‖cc2/H

‖c
c2 (T = 0) as a

function of T/Tc fall on top of each other, while the curves of H‖ac2 /H
‖a
c2 (T = 0) fan

out towards larger values. The anisotropy H‖ac2 /H
‖c
c2 is shown in figure 4.15. It in-

creases with temperature. From KFe2As2 to RbFe2As2 the anisotropy increases, but
it decreases again from RbFe2As2 to CsFe2As2 below the values for KFe2As2. This
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4.5 Phase diagrams

Figure 4.11: Relative change in length ∆a/a0 of RbFe2As2 at different tem-
peratures between 50mK and 2K for decreasing and increasing magnetic field
H ‖ b. The superconducting transition develops from a change in slope at
higher temperatures to a step-like anomaly at lower temperatures. Irreversibil-
ities increase at lower temperatures (the upper curve at each temperature was
recorded in a decreasing field). The two violet curves are thermal expansion
curves at 0T and at 4T.
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Figure 4.12: Magnetostriction coefficient λa of RbFe2As2 at different tem-
peratures for H ‖ b (left) and H ‖ c (right), for decreasing (solid line) and
increasing (dashed line) field. For H ‖ b the magnetostriction coefficient λa

develops a negative peak at low temperatures. It displays irreversibilities in
the superconducting state, with a peak effect close to the upper critical field.
For H ‖ c it retains a step-like anomaly down to lowest temperatures. Small
irreversibilities close to Hc2 only show up at low temperatures.
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Figure 4.13: Magnetostriction coefficient λa of CsFe2As2 at different tem-
peratures for H ‖ a (left) and H ‖ c (right), for decreasing (solid line) and
increasing (dashed line) field. For H ‖ a the magnetostriction coefficient λa

develops a negative peak at low temperatures. It displays irreversibilities in
the superconducting state, with a peak effect close to the upper critical field.
For H ‖ c it retains a step-like anomaly down to lowest temperatures. Small
irreversibilities close to Hc2 only show up at low temperatures.

33



4 Superconductivity in KFe2As2, RbFe2As2, and CsFe2As2

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 1 2 3 40
1
2
3
4
5
6

H  | |  c

H  | |  a  K F e 2 A s 2
 R b F e 2 A s 2
 C s F e 2 A s 2

 µ 0H
c2

 (T
)

T  ( K )

H  | |  c
H  | |  a

 K F e 2 A s 2
 R b F e 2 A s 2
 C s F e 2 A s 2

H c2
/H c2

T=
0

T / T c

Figure 4.14: Left: Phase diagrams of KFe2As2, RbFe2As2, and CsFe2As2 for
H ‖ a (closed symbols) and H ‖ c (open symbols). Right: Normalized phase
diagrams.

behavior is not simply related to structural measures of anisotropy like c/a or hAs/a
(see figure 2.2). Also the distance between FeAs layers, c(1 − 2z), or the distance
between FeAs layers divided by the thickness of a FeAs layer, (0.5 − z)/(z − 0.25),
do not correlate directly with the anisotropy of the upper critical field.

4.6 Limiting mechanisms of the upper critical field

A magnetic field destroys superconductivity in type-II superconductors by means
of two mechanisms [34, 39]. The first mechanism is the orbital limiting. When
the kinetic energy of the collective cyclotron motion of the Cooper pairs surpasses
the superconducting condensation energy, superconductivity is destroyed [40]. In an
increasing magnetic field the distance between vortices, regions of normal-conducting
material, decreases until vortices overlap and superconductivity is destroyed. This
is a continuous transition [39]. The second mechanism is the Pauli or paramagnetic
limiting, present only in spin-singlet superconductors. When the energy gained
by aligning all spins parallel to the magnetic field surpasses the superconducting
condensation energy, Cooper pairs are destroyed. This is a discontinuous transition
[39]. There are always both mechanisms at work. In many cases the effect of
paramagnetic limiting is small, so that Hc2 ≈ Horb [34]. But in cases when the
Pauli susceptibility is large, the free energy of the normal state in a magnetic field
equals the free energy of a superconductor in the mixed state well below Horb and a
discontinuous transition at Hc2 is observed (see figure 4.16).
Other effects that may affect the upper critical field, apart from the gap symmetry

and anisotropy, are scattering by non-magnetic or magnetic impurities, the coupling
strength, spin-orbit coupling, and, in the case of multiband superconductors, inter-
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Figure 4.15: Anisotropy of the upper critical fields of KFe2As2, RbFe2As2,
and CsFe2As2.

band scattering [27, 34].
Limiting effects of the upper critical field can be analyzed and related to theoretical

predictions using a plot of Hc2/Tc
∣∣∣∂Hc2
∂T

∣∣∣
T=Tc

as a function of T/Tc [39, 41]. Figure
4.17 compares these plots for KFe2As2, RbFe2As2, and CsFe2As2. For H ‖ c all
curves fall on top of each other and terminate at approximately 0.73 for T = 0,
which is very close to the expected value for a purely orbitally limited upper critical
field in the clean limit, for an isotropic, single band (0.727) [41]. Despite these
restrictions, for which the prediction holds, similar values have not only been found
for nearly isotropic conventional superconductors, but often also for anisotropic and
multiband superconductors, when the magnetic field was applied along a uniaxial
direction like the c-axis [27]. For H ‖ a the curves terminate at different, lower
values for T = 0 due to the effect of paramagnetic limiting. This lowering of the
upper critical field may explain the decrease of the anisotropy H‖ac2 /H

‖c
c2 with lower

temperatures (see figure 4.15).
To find out at which temperature the upper critical field becomes paramagneti-

cally limited, the maximum value of the peak-like anomaly in the magnetostriction
coefficient, λmax, is taken as a measure of how discontinuous the transition is. This
might be problematic for the case of CsFe2As2, where the peak effect affects the
magnetostriction coefficient very close to the transition (see figure 4.13). Figure
4.18 shows the normalized λmax/λmax(T = 0) at Hc2 as a function of T/Tc for
KFe2As2, RbFe2As2, and CsFe2As2. By the criterion displayed in figure 4.18, an
approximate tricritical temperature, below which the transition becomes discontin-
uous, can be obtained. This temperature is roughly the same fraction of Tc for all
three compounds, about 0.5Tc.
The anisotropy of the orbitally limited upper critical field Horb is related to the
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Figure 4.16: Schematic plot of the free energy at T = 0 as a function of an
applied magnetic field for the normal state and for the superconducting state
(after [39]). The free energy of the normal state (∝ −χsH

2, solid, red line)
decreases with the magnetic field due to the Pauli spin susceptibility χs. In
the limit of exclusively paramagnetic limiting, it crosses the free energy of the
superconducting state (horizontal, blue, dashed line) at Hpar. During the tran-
sition from the superconducting state to the normal state, the free energy would
change its slope. Therefore, the transition atHpar would be discontinuous. The
free energy of a type-I superconductor follows the grey line, with a discontin-
uous transition at the thermodynamic critical field Hth, which is lowered by
spin paramagnetism compared to the case without spin paramagnetism. A
type-II superconductor has a mixed state above the lower critical field Hc1. Its
free energy (solid, blue line), in the limit of absent spin paramagnetism in the
normal state, would approach the free energy of the normal state tangentially
at Horb. During the transition, the free energy would change its curvature, but
not its slope. Therefore, the transition at Horb would be continuous. When
spin paramagnetism in the normal state is not negligible, the free energy of the
superconducting state crosses the free energy of the normal state at Hc2. It
changes its slope in the transition that is thus discontinuous.
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Figure 4.17: Upper critical field Hc2 of KFe2As2, RbFe2As2, and CsFe2As2
for H ‖ a (closed symbols) and H ‖ c (open symbols), normalized by Tc ·
|∂Hc2/∂Tc|T =Tc . For H ‖ c all curves fall on top of each other and terminate
at approximately 0.73 for T = 0, which is the expected value for an orbitally
limited Hc2 in the clean limit with g = 0 [41]. For H ‖ a the curves terminate
at different, lower values for T = 0 due to the effect of paramagnetic limiting
[39].
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Figure 4.18: Normalized peak value of the magnetostriction coefficient at the
upper critical field of KFe2As2, RbFe2As2, and CsFe2As2 for H ‖ a. Espe-
cially for CsFe2As2, this value might be affected by the peak effect close to
the transition. The reduced temperature T/Tc below which the transition be-
comes discontinuous (the tricritical point) is approximately the same for all
compounds.

anisotropy of the Ginzburg-Landau coherence length ξGL via [27]

Γ ≡ H
‖ab
orb

H
‖c
orb

= ξabGL
ξcGL

, (4.1)

since

µ0H
‖c
orb = Φ0

2π(ξabGL)2 , µ0H
‖ab
orb = Φ0

2πξabGLξ
c
GL
. (4.2)

As the upper critical field H
‖c
c2 of KFe2As2, RbFe2As2, and CsFe2As2 is orbitally

limited, ξabGL can be determined using equation 4.2. The coherence length ξcGL can
then be calculated from the anisotropy at T = Tc (figure 4.15) or from the anisotropy
of the slope

∣∣∣∂Hc2
∂T

∣∣∣
T=Tc

(figure 4.14) using equation 4.1. The coherence length is
related to the Fermi velocity via ξ ∝ ~vF/(kBTc) [34]. This Fermi velocity vF
results from an integral over the Fermi surface and from an average over multiple
bands [27]. The orbitally limited H‖aborb can also be determined from the anisotropy
and equation 4.1. Critical quantities and coherence lengths of KFe2As2, RbFe2As2,
and CsFe2As2 are listed in table 4.6. Since the mean free paths l (l > 100 nm
for the ac-plane, see section 5.2.4) are larger than the Ginzburg-Landau coherence
lengths, superconductivity in KFe2As2, RbFe2As2, and CsFe2As2 can be described
in the so-called clean limit (l � ξGL). This is consistent with the observation that
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4.7 Conclusions

Table 4.1: Critical quantities and coherence lengths.

Tc µ0H
‖c
c2 µ0H

‖ab
c2 µ0H

‖ab
orb

∣∣∣∣∂µ0H
‖c
c2

∂T

∣∣∣∣
Tc

∣∣∣∣∂µ0H
‖ab
c2

∂T

∣∣∣∣
Tc

ξcGL ξabGL

K T T T T/K T/K nm nm
KFe2As2 3.4 1.5 4.8 10.4 0.59 4.19 2.1 14.8
RbFe2As2 2.5 1.0 4.0 7.8 0.57 4.30 2.4 18.1
CsFe2As2 2.25 1.8 4.5 7.6 1.10 4.66 3.2 13.5

Hc2/Tc
∣∣∣∂Hc2
∂T

∣∣∣
T=Tc

for T = 0 is approximately equal to the predicted value 0.73 [39]
for H ‖ c.

4.7 Conclusions
KFe2As2, RbFe2As2, and CsFe2As2 are a series of iron-based materials with similar
superconducting properties. They enable the study of multiband superconductivity
in systems that are clean compared to other materials, due to the absence of addi-
tional disorder that would be introduced by substitutional atoms. Superconductivity
can be described in the clean limit. The upper critical field becomes paramagneti-
cally limited at low temperatures for the magnetic field in the ab-plane.
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5 Quantum oscillations and electronic
correlations in KFe2As2, RbFe2As2,
and CsFe2As2

5.1 Electronic correlations in iron-based
superconductors

5.1.1 Electronic correlations in a Fermi liquid

Electronic correlations are the restriction of the free movement of electrons by other
electrons. Correlating mechanisms can be direct Coulomb interactions acting on the
charge or exchange interactions acting on the spin via the Pauli principle. Already in
the absence of electronic correlations or other many-body interactions, the effective
mass of an electron in a metal deviates from the free electron mass. The effective
mass that results directly from the dispersion E(k) of non-interacting electrons, i.e.,
the band structure, is called the band mass mb. The inverse tensor of the band mass
is

m−1
b,r, i,j(k) = 1

~2
∂2Er(k)
∂ki∂kj

(5.1)

where r is the band index. The band mass is larger when the curvature of the
dispersion is smaller, which is typically the case close to the boundaries of the
Brillouin zone. Spin-orbit coupling can increase the band mass, for example in
p-electron systems like some semiconductors, and should therefore be included in
calculations of mb.
If the excitations of an interacting electron system have a one-to-one correspon-

dence to those of the noninteracting system, their properties can be phenomenolog-
ically described by the effective quasiparticle mass m∗,

m∗ = mb(1 + 1
3F

s
1 ), (5.2)

where F s1 is a Landau parameter [42].
The interface between experimental observations and a theoretical many-body

description is the spectral function A(k, ω). The spectral weight of its quasiparticle
peak, Zk, is proportional to the inverse of the mass enhancement caused by many-
body interactions [42]

Zk ∝
mb

m∗
. (5.3)

41



5 Quantum oscillations and electronic correlations in KFe2As2, RbFe2As2, and CsFe2As2

The enhanced density of states at the Fermi energy for every spin quantum number
s is

Ds(EF) = m∗skF,s
π2~2 , (5.4)

where ~kF is the quasiparticle momentum at the Fermi energy EF. The larger density
of states can be measured as an enhanced Sommerfeld coefficient of the specific heat

γ = π2

3 k
2
BD(EF), (5.5)

where D(EF) =
∑
sDs(EF), and a modified spin susceptibility

χs =
(
g

2
e~

2me

)2 D(EF)
1 + F a0

, (5.6)

where g is the g-factor, me is the free electron mass, and F a0 is a Landau parameter
[42]. Other quantities that reveal correlations are, for example, the spectral func-
tion measured by ARPES, the Drude weight in optical conductivity spectra, or the
effective mass determined from the temperature dependence of the amplitudes of
quantum oscillations.

5.1.2 Experimental signs of correlations in iron-based
superconductors

Electronic correlations in iron-based superconductors have been revealed experi-
mentally in several compounds (see Ref. [3] for a review by Johnston). Stewart
[5] stressed in his review that the measured Sommerfeld coefficients could not be
explained by band structure calculations on the level of density functional theory.
Yin et al. [43] compiled experimentally obtained effective masses and attempted
to model them with calculations in the framework of dynamical mean-field the-
ory (DMFT). de’ Medici et al. [44] extracted a trend in the correlations of 122-
compounds, which increase notably in the Ba1−xKxFe2As2 series. The end member
of this series, KFe2As2, is one of the iron-based superconductors with the largest
mass enhancements. Hardy et al. [9] discussed a proximity of selected bands to a
Mott transition as a possible reason for the large Sommerfeld coefficient and spin
susceptibility (see section 5.4.2). Of the known 122-compounds only RbFe2As2 and
CsFe2As2 have larger Sommerfeld coefficients [11] and effective quasiparticle masses
(this work) than KFe2As2.
It is instructive to compare three extensively studied substitution series with

BaFe2As2 as the mother compound with respect to electronic correlations: the iron-
cobalt series Ba(Fe1−xCox)2As2, the barium-potassium series Ba1−xKxFe2As2, and
the arsenic-phosphorus series BaFe2(As1−xPx)2. In the Ba(Fe1−xCox)2As2 series
mass enhancements are small, about a factor of 2, for all x, despite an increase of
the Sommerfeld coefficient around the superconducting dome and at larger x [32].
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Figure 5.1: The Sommerfeld coefficient of the specific heat γ of
Ba1−xKxFe2As2 [46] and Rb1−xCsxFe2As2 [11], plotted against the eight-fold
coordinated ion radius RI8 of the alkali or alkaline earth atom. Replacing Ba
by K in the Ba1−xKxFe2As2 not only increases RI8, but also dopes holes, up
to 0.5 holes per iron atom for KFe2As2.

In the BaFe2(As1−xPx)2 series there is a mass enhancement of a factor of 4 to 10 in
the vicinity of the putative quantum critical point hidden by the superconducting
dome, but otherwise the mass enhancement factor is small, approximately 2 [45].
Only in the Ba1−xKxFe2As2 series does the mass enhancement factor increase with
substitution, from about 2 to 9 [44]. Storey et al. [46] measured the specific heat of
the Ba1−xKxFe2As2 series, which exhibits an increasing Sommerfeld coefficient (see
figure 5.1).
The proximity to a Mott localization of charge carriers leads to bad metallicity

[3]. In iron-based superconductors the electrical resistivity at room temperature is
large, even when the residual resistivity at low temperatures is small [3]. The mean
free path of quasiparticles at room temperature is of the same order of magnitude
as the Fermi wavelength, which is a hallmark of bad metallicity in proximity to
a Mott transition [47]. Figure 5.2 from [48] compares the resistivity of three 122
substitution series and highlights the bad metallicity in Ba1−xKxFe2As2.
Also, the small Drude weight observed in optical conductivity spectra is a sign

of correlations, since this quantity is inversely proportional to the effective charge
carrier mass [3, 47, 49]. Of the three substitution series with BaFe2As2 as the mother
compound, namely Ba(Fe1−xCox)2As2, Ba1−xKxFe2As2, and BaFe2(As1−xPx)2, only
the (Ba,K)-122 series exhibits a decreasing Drude weight [48, 50] (see figure 5.3).
There is an apparent discrepancy between mass enhancements measured by spe-
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Figure 5.2: In-plane resistivity of three 122 substitution series, taken from
Nakajima et al. [48]. The room-temperature resistivity of Ba1−xKxFe2As2
remains large for all x.

Figure 5.3: Spectral weight of the narrow (a) and broad (b) Drude component
of optical conductivity spectra, taken from Nakajima et al. [48]. The Drude
weight of the narrow component decreases for Ba1−xKxFe2As2.
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cific heat and optical conductivity which can be explained with the multiband nature
of the materials [44]. While the density of states is proportional to a sum of terms
m∗/mb, the Drude weight is proportional to a sum of terms mb/m

∗. Therefore, the
density of states is dominated by the mass enhancement of the heaviest band, while
the Drude weight is dominated by the smallest mass enhancement. A difference in
mass enhancements between different bands can be directly observed in ARPES or
quantum oscillation measurements. Yoshida et al. [13] measured the Fermi surface of
KFe2As2 with ARPES (see figure 5.11). They also determined mass enhancements
for all bands, which compare well with the de Haas-van Alphen data of Terashima
et al. [12]. For reviews on quantum oscillation studies of other iron-based supercon-
ductors see [51, 52].

5.2 Quantum oscillations in the magnetostriction

5.2.1 Theoretical description

A means to study electronic correlations in a material is to measure quantum oscilla-
tions and to extract effective quasiparticle masses of each band from the temperature
dependence of the oscillation amplitudes. In contrast to the cumulative measure of
correlations, the Sommerfeld coefficient of the specific heat, quantum oscillations
yield a measure of the strength of correlations on a per band basis. Compared
to ARPES, quantum oscillation measurements have the advantage of being a bulk
probe not sensitive to the surface of the sample. Disadvantages are the need for high
magnetic fields and very pure samples.
A magnetic field modifies the dispersion of quasiparticles perpendicular to the

magnetic field. Assuming a magnetic field B = Bêz along the z-direction, quasipar-
ticles will move on closed orbits in the xy-plane and occupy Landau levels

En(k) = ~ωc
(
n+ 1

2

)
+ E(kz)±

1
2gµBB, n = 0, 1, 2, ..., (5.7)

where ωc is the cyclotron frequency,

ωc = eB

m∗
, (5.8)

and g is the g-factor, which is g = 2 for free electrons. In momentum space the states
lie on Landau tubes aligned in the z-direction with cross-sections in the xy-plane

Sn = 2πe
~

(
n+ 1

2 ±
1
4g
)
B, n = 0, 1, 2, ... (5.9)

With increasing magnetic field the cross-sections of the Landau tubes grow, so that
one Landau tube after the other traverses the Fermi surface with cross-section A.
When this happens, a peak in the density of states crosses the Fermi energy, causing
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oscillations in many physical quantities. For quasiparticles of each spin oscillations
with a period in the inverse magnetic field

∆
( 1
B

)
= 2πe

~
1
A

(5.10)

are observed [53]. In case g = 2, the phase difference between the oscillations from
spin-up and spin-down quasiparticles is not noticed because it coincides with the
period.
A common method to measure quantum oscillations is to use the de Haas-van

Alphen effect, oscillations in the magnetization M . According to the Lifshitz-
Kosevich formula [53] for the oscillatory part of the magnetization

∼
M :

∼
M =

∑
r

∼
M r =

∑
r,p

ar,psin
(2πpFr

B
+ φr,p

)
. (5.11)

Here, the index r counts the different frequencies Fr observed as well as their con-
tributions

∼
M r to the oscillatory magnetization parallel to the magnetic field B. The

index p counts the harmonics, φr,p are the phases and ar,p are the amplitudes:

ar,p ∝
Fr

µ∗rp
3/2B

1/2CrRT,r,pRD,r,pRS,r,p, (5.12)

where Cr is the curvature factor of the cross-section Ar of the Fermi surface:

Cr =
∣∣∣∣∣∂2Ar
∂k2
‖

∣∣∣∣∣
−1/2

, (5.13)

so that the smaller the curvature in the direction of the magnetic field, the larger
the amplitude. The largest amplitude results from a two-dimensional Fermi surface
when the field is applied along its normal.
The temperature factor RT describes the temperature-dependence of the ampli-

tudes with one free parameter, the mass enhancement factor µ∗ ≡ m∗/me with
respect to the free electron mass me.

RT,r,p = X

sinh(X) , X = 2π2pkBTµ
∗
r

e~B
. (5.14)

Therefore, average effective masses m∗r can be determined for each observed orbit
r by fitting RT,r,p to the measured amplitude as a function of temperature. When
the amplitudes are obtained by means of a Fourier transform over a range of inverse
fields, the single magnetic field B in RT is taken as the average of the inverse applied
magnetic fields that limit this range.
The Dingle factor RD describes the effect of impurity scattering on the amplitudes.

RD,r,p = exp
(
−πpmb,r

eBτr

)
= exp

(
−π~pkF,r

eBlr

)
. (5.15)
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The approximation of a circular Fermi surface cross section, πk2
F = A = 2πeF/~

allows the extraction of the mean free path l = τvF from the B-dependence of the
oscillation amplitudes.

RD,r,p ≈ exp

−πp
√

2~
e

√
Fr
Blr

 . (5.16)

The spin-splitting factor RS describes the influence of the splitting of the en-
ergy levels of spin-up and spin-down quasiparticles by g∗µBB. This introduces a
phase difference between quantum oscillations originating from spin-up and spin-
down quasiparticles, reducing the amplitude by a factor

RS,r,p = cos
(
πpm∗s,rg

∗
r

2me

)
, (5.17)

where m∗s is the so-called spin mass which is renormalized by electron-electron in-
teractions only, in contrast to the effective quasi-particle mass m∗, which is also
renormalized by electron-phonon interaction [52]. The effective g-factor g∗ is two
for free electrons. A complication arises when there is an appreciable difference in
the effective masses of spin-up and spin-down quasiparticles m∗↑ and m∗↓ [54]. If this
is the case, the contributions of spin-up and spin-down quasiparticles to the oscilla-
tory magnetization must be considered separately, with amplitudes a↑ and a↓, and
phases φ↑ and φ↓.
In this work quantum oscillations were measured in the magnetostriction. The

effect of oscillatory magnetostriction was predicted by Chandrasekhar [55] and first
observed by Green and Chandrasekhar [56] in bismuth in 1963. The strain εij can
be deduced from the Gibbs free energy (see equation 3.9) via

εij = − 1
V

∂G

∂σij
. (5.18)

Alternatively, the magnetostriction coefficient λ can be deduced directly from the
stress dependence of the magnetization

λijk = 1
V

∂Mk

∂σij
. (5.19)

Considering only a magnetization M parallel to the applied field and only uniaxial
pressure in perpendicular directions pi ≡ −σii, i = a, c or i = 1, 3, (as for equation
3.13; not to be confused with the summation index p counting the harmonics), the
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Lifshitz-Kosevich formula for the oscillatory magnetostriction coefficient becomes

∼
λi = − 1

V

∂
∼
M

∂pi

= − 1
V

∑
r,p,s

[
∂Fr
∂pi

ar,p,s
Fr

(
sin
(2πpFr

B
+ φr,p,s

)
+ 2πpFr

B
cos

(2πpFr
B

+ φr,p,s

))

+ ∂(ar,p,s/Fr)
∂pi

Frsin
(2πpFr

B
+ φr,p,s

)
+ ∂φr,p,s

∂pi
ar,p,scos

(2πpFr
B

+ φr,p,s

)]
,

(5.20)

where the symbols have the same meaning as for equations 5.11 to 5.17, but an ad-
ditional index s =↑, ↓ was introduced to account for spin-dependent effective masses
and phases. In the simplest case, the pressure dependence of the cross-section of
the Fermi surface is much larger than the pressure dependence of the effective mass,
of the effective g-factor, or of the phase. Then the oscillatory magnetostriction is
approximately [53, 57, 58]

∼
λi ≈ −

1
V

∑
r,p,s

∂Fr
∂pi

2πp
B

ar,p,scos
(2πpFr

B
+ φr,p,s

)
, (5.21)

where also F � B was used.
Magnetostriction can be measured along different crystal directions while keeping

the direction of the magnetic field fixed. The oscillatory part of the magnetostriction
then varies with the stress dependence of the cross-sections of the Fermi surface in
the particular directions. By comparing measurements along main crystal directions,
the anisotropy of the stress dependence of the Fermi surface can be deduced. To
obtain absolute values of the stress dependence of the Fermi surface it is necessary
to measure the oscillatory magnetization with the same phase and on the same
crystal as the magnetostriction. This was not feasible with our experimental setup.
Alternatively, when quantum oscillation data measured under hydrostatic pressure
is available, the combined information yields the anisotropic stress dependence of the
Fermi surface. Information on the anisotropy of the stress dependence of the Fermi
surface is a feature of oscillatory magnetostriction that distinguishes this method
from de Haas-van Alphen oscillations in the magnetization or magnetic torque, or
Shubnikov-de Haas oscillations in the resistivity.

5.2.2 Oscillations

Wemeasured the magnetostriction coefficients λa and λc of KFe2As2 [10, 14], RbFe2As2,
and CsFe2As2 single crystals in magnetic fields H ‖ a and H ‖ c up to 14T and for
temperatures down to 50mK. While for RbFe2As2 both λa and λc could be mea-
sured on the same sample, for KFe2As2 and CsFe2As2 λa and λc had to be measured
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on different samples, called samples S1 and S2 respectively, because S1 was too thin
for measurements of λc. This provides the opportunity to compare different samples
of nominally the same compound made in different batches. Quantum oscillations
were observed for all samples and field directions.
Figure 5.4 shows the oscillatory part of the magnetostriction coefficient λa of

KFe2As2, RbFe2As2, and CsFe2As2 forH ‖ c at different temperatures. For KFe2As2
and RbFe2As2 quantum oscillations could be observed up to temperatures of 0.5K,
for CsFe2As2 up to 0.25K.
Figure 5.5 shows the oscillatory part of the magnetostriction coefficient λa of

KFe2As2, RbFe2As2, and CsFe2As2 forH ‖ a at different temperatures. For KFe2As2
quantum oscillations could be observed up to temperatures of 4K, for RbFe2As2 up
to 2.5K, and for CsFe2As2 up to 1K. The absence of modulations for KFe2As2 and
RbFe2As2 shows that the spectrum contains only a single frequency. The beating
observed for CsFe2As2 can be explained by field-dependent spin-splitting.

5.2.3 Spin splitting

A magnetic field introduces an energy difference between spin-up and spin-down
quasiparticles of g∗µBB that leads to a phase difference in quantum oscillations.
In case the effective g-factor g∗ deviates from two or the effective mass deviates
from the free electron mass, this phase difference can be observed as a splitting of
oscillation peaks. The amplitudes are reduced by the spin-splitting factor in the
Lifshitz-Kosevich formula (see equation 5.17). In case the g-factor or the effective
mass is changed by spin-orbit coupling or by many-body interactions, a splitting
of the oscillation peaks can be observed and the amplitudes are reduced by the
spin-splitting factor in the Lifshitz-Kosevich formula (see equation 5.17).
Figure 5.6 shows the oscillatory parts of the magnetostriction coefficients λa and

λc of KFe2As2, RbFe2As2, and CsFe2As2 for H ‖ a at T = 50mK. A spin-splitting
of the oscillation peaks is observed, especially pronounced in λc. The spin-splitting
decreases with increasing inverse field, which means it increases with the magnetic
field. In the series KFe2As2 to RbFe2As2 to CsFe2As2 the spin-splitting decreases.
For CsFe2As2 it is only indirectly visible due to the beating that is caused by its
field-dependence.

5.2.4 Mean free path

The Dingle factor RD in the Lifshitz-Kosevich formula allows the extraction of the
mean free path under certain simplifying assumptions (see equation 5.16). When
the quantity ln(aB1/2R−1

T ), where a is the amplitude of the oscillation, and RT is
the temperature factor (equation 5.14) is plotted against 1/B (see figure 5.8), the
slope of the plot contains the inverse of the mean free path l (see equation 5.16).

ln
(
a
√
B

RT

)
= −πp

√
2~
e

√
F

Bl
. (5.22)
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Figure 5.4: The oscillatory part of the magnetostriction coefficient λa of
KFe2As2, RbFe2As2, and CsFe2As2 for H ‖ c at different temperatures.
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Figure 5.5: The oscillatory part of the magnetostriction coefficient λa of
KFe2As2, RbFe2As2, and CsFe2As2 for H ‖ a at different temperatures. Os-
cillations with one single frequency are visible. The beatings observed for
CsFe2As2 can be explained by field-dependent spin-splitting.
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Figure 5.6: The oscillatory parts of the magnetostriction coefficients λa and
λc of KFe2As2, RbFe2As2, and CsFe2As2 for H ‖ a at T = 50mK. The spin-
splitting of the oscillation peaks decreases in the series. For CsFe2As2 it is only
indirectly visible due to the beating.
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Figure 5.7: The oscillatory parts of the magnetostriction coefficients λa and
λc of KFe2As2, RbFe2As2, and CsFe2As2 for H ‖ c at T = 50mK.
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Figure 5.8: Plots used to determine the mean free path of the orbit observed
for H ‖ a (see equation 5.22). For KFe2As2 and CsFe2As2 sample 2 is purer
than sample 1.

For H ‖ a the amplitudes a can be read directly from the plot of the quantum
oscillations as a function of inverse field (fig. 5.6). For CsFe2As2 the spin-splitting is
too small to be observed directly. It is only visible due to its field-dependence that
causes the beatings. Since only two beating maxima are observed, only two points
are available for the determination of the slope. Fortunately this is sufficient. The
following mean free paths result from this analysis for the orbit observed for H ‖ a:
For KFe2As2 l ≈ 120 nm for sample 1 and l ≈ 160 nm for sample 2. For RbFe2As2
l ≈ 130 nm. For CsFe2As2 l ≈ 150 nm for sample 1 and l ≈ 230 nm for sample 2.
This leads to the conclusion that both for KFe2As2 and CsFe2As2 sample 2 is purer
than sample 1.

5.3 Fermi surfaces

5.3.1 Fermi surfaces of iron-based superconductors

The Fermi surfaces of iron-based superconductors consist of up to five sheets, de-
pending on the number of d-electron or hole bands that cross the Fermi energy.
The prominent structural elements are iron arsenic layers that are stacked along
the crystallographic c-direction and separated by other structural elements. Due to
this anisotropy, common features of the Fermi surface include more or less distorted
tubes with axes parallel to c.
Before discussing Fermi surfaces in detail, a clarification of notation regarding

reciprocal space is in order to avoid confusion. For an extensive review of this issue
see Ref. [3]. The ’11’, ’111’, and ’1111’ compounds with space group P4/nmm have
a primitive tetragonal (pt) unit cell containing one FeAs layer. The conventional
translational vectors of the reciprocal lattice kx,ky,kz are parallel to their respective
conventional translational vectors of the direct lattice a, b, c. The ’122’ compounds
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with space group I4/mmm have a conventional body-centered tetragonal (bct) unit
cell containing two FeAs layers. The reciprocal lattice is again body-centered tetrag-
onal, but the conventional translational vectors of the reciprocal lattice kx,ky are
at angles of 45◦ to the conventional vectors of the direct lattice a, b. See figure 5.9
for depictions of the two Brillouin zones.
Regarding notation of the points in the first BZ, there is never confusion with the

Γ point, which denotes the center of the BZ. The M point in the pt BZ and the X
point in the bct BZ refer to the same position in reciprocal space with respect to
the conventional tetragonal direct lattice. The top center of the BZ is referred to as
Z point in the pt BZ and as M point in the bct BZ. The distance from the center
to the top center is π/c in the pt BZ and 2π/c in the bct BZ.
In some calculations not the pt or bct unit cell are used, but only a square with

iron atoms at its corners, approximating the FeAs layers with only one Fe atom per
unit cell. The respective BZ is called ’unfolded’ BZ. Compared to the conventional
BZ, which is called ’folded’ BZ, it is rotated by 45◦ and larger by a factor of

√
2.

The X point in the ’unfolded’ BZ denotes the same point in reciprocal space as the
M point in the ’folded’ pt BZ and the X point in the ’folded’ bct BZ.
Some compounds (e.g., FeSe, LaFeAsO, Ca,Sr,Ba-122) undergo a structural phase

transition at low temperatures and become orthorhombic (e.g., space group Cmma
for ’1111’, Fmmm for ’122’). This brings about further complications in notation.
As a special service to the reader I will refer to points in reciprocal space not byM ,

X, or Z but by Q-vectors in conventional reciprocal lattice units (2π/a, 2π/a, 2π/c).
Using the center of the Brillouin zone as the origin (0, 0, 0), the unit vectors point
along the conventional tetragonal, crystallographic a, b, and c axes, respectively. In
this notation the corner of the BZ is Q = (0.5, 0.5, 0) and the top center of the BZ
is Q = (0, 0, 0.5) for pt systems and Q = (0, 0, 1) for bct systems.
In LiFeAs [59], LaFeAsO [60], CaFe2As2 [61], SrFe2As2 [62], and BaFe2As2 [63]

the Fermi surface consists of two to three distorted hole cylinders or pockets centered
at Q = (0, 0, qz) and two distorted electron cylinders centered at Q = (0.5, 0.5, qz).
In the Ba1−xKxFe2As2 series the Fermi surface develops with hole doping in the

following way (see figures 5.10, 5.11): The cross-sections of the distorted hole cylin-
ders centered at Q = (0, 0, qz) grow continuously [64]. At the same time so-called
’propellers’ develop at Q = (0.5, 0.5, qz) [65, 66]. The ’hub’ of the ’propeller’ is an
electron-like feature of the Fermi surface centered directly at Q = (0.5, 0.5, qz). The
four ’blades’ of the ’propeller’ are hole-like features and are located close to the ’hub’.
Alternatively, a botanic picture can be used to describe these Fermi surface sheets as
’flowers’ with a ’stem’ and four ’petals’. At a composition of x = 0.5 to x = 0.6 the
electron-like ’hubs’ shift above the Fermi energy and only the blades remain [67–69].
KFe2As2 has exclusively hole bands. Its Fermi surface consists of three warped hole
cylinders centered at Q = (0, 0, qz) and one warped hole cylinder close to every four
of the points equivalent to Q = (0.5, 0.5, qz) [13], as well as a small hole pocket at
Q = (0, 0, 1) [14]. DFT calculations performed by Heid (IFP) and Ikeda [70] predict
very similar Fermi surfaces for RbFe2As2 and CsFe2As2 (figure 5.12). This work
provides first experimental confirmation of this prediction.
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Figure 5.9: First Brillouin zones (BZ) of the primitive tetragonal (pt) lattice
(left) and the body centered tetragonal (bct) lattice (right) for c > a. Taken
from the Bilbao Crystallographic Server [71]. Note the different orientations of
the depicted BZ with respect to the conventional direction in the direct lattice
a.

Ba1-xKxFe2As2

Figure 5.10: Top panels: Fermi surface cuts of Ba1−xKxFe2As2, x =
0.25, 0.4, 0.7 at Q = (qx, qy, 0) obtained by ARPES by Nakayama et al. [64].
Blue and red: Cylinders centered at Q = (0, 0, 0). Green: Fermi surface sheets
centered at Q = (0.5, 0.5, 0), but plotted at Q = (0, 0, 0) in these figures. Bot-
tom panels: ARPES intensity maps of Ba1−xKxFe2As2, x = 0.5 (left) and
x = 0.6 (right) measured by Malaeb et al. [67].
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Ba0.1K0.9Fe2As2 KFe2As2

Xunet al.,
Phys.nRev.nB.n88,n220508n(2013)

Yoshida et al.,nFront.nPhysicsn2,n17n(2014)

Figure 5.11: Left panels: ARPES intensity maps of Ba0.1K0.9Fe2As2 at the
Fermi energy for (a) Q = (qx, qy, 0), (b) Q = (qx, qy, 1) measured by Xu et al.
[68]. Special emphasis is on the occurrence of hole cylinders close to Q =
(0.5, 0.5, qz) and the absence of electron cylinders directly at Q = (0.5, 0.5, qz).
Top right panels: ARPES intensity maps of KFe2As2 at the Fermi energy for
(A) approximately Q = (qx, qy, 0), (B) approximately Q = (qx, qy, 1), where
−0.5 ≤ qx,y ≤ 1.0 measured by Yoshida et al. [13]. Below: Fermi surface cuts.
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KFe2As2 RbFe2As2 CsFe2As2

Q=(0.5,0,0)
Q=(0,0,0)

Q=(0.5,0.5,0)

Q=(0,0,1)

Figure 5.12: Fermi surfaces of KFe2As2, RbFe2As2, and CsFe2As2 as calcu-
lated by Ikeda [70] using density functional theory. The size of the ’propeller
blades’ or ’flower petals’ around Q = (0.5, 0.5, qz) is predicted to grow in the
series, as well as the pocket at Q = (0, 0, 1).

5.3.2 Fermi surface cross-sections

Extremal cross-sections of the Fermi surface A can be extracted directly from the
frequencies F of quantum oscillations via the Onsager relation [53]

A = 2πe
~
· F. (5.23)

The frequencies, in turn, are obtained by means of a Fourier transform. In order to
compute the Fourier transform, first a polynomial of low order was subtracted from
the measured magnetostriction coefficient, thus extracting its oscillatory part. The
oscillatory part of the magnetostriction coefficient as a function of inverse magnetic
field was then linearly interpolated to obtain evenly spaced data points. Finally, the
fast Fourier transform (FFT) was computed in a certain range of inverse magnetic
field. In addition to the frequencies F , the FFT also delivers the amplitude and the
phase for every frequency.
The minimum resolvable frequency difference, or the frequency resolution ∆F , is

given by the inverse of the range of inverse magnetic fields.

∆F =
( 1
µ0Hmin

− 1
µ0Hmax

)−1
(5.24)

For example, for Hmin = 2T and Hmax = 14T the frequency resolution is ∆F =
2.33T, while for Hmin = 7T and Hmax = 14T it is ∆F = 14.0T (see figure 5.13).
The maximum resolvable frequency Fmax (called Nyquist frequency) is determined
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Figure 5.13: Left: Maximum resolvable frequency for the parameters used in
the measurements of the magnetostriction. Maximum observed frequencies are
indicated by black horizontal lines. Right: Frequency resolution for different
ranges of inverse magnetic field used in the Fourier transform.

by the sampling interval ∆(1/µ0H):

Fmax = 1
2∆

(
1

µ0H

) . (5.25)

Quantum oscillations in the magnetostriction were measured with a constant ramp
rate of the magnetic field r = 0.02T/min for H ‖ c and r = 0.1T/min for H ‖ a,
taking averages of the capacitance over a fixed time interval ∆t = 9 s. Therefore,
the sampling interval in the inverse magnetic field ∆(1/µ0H) is smaller at higher
fields

∆
( 1
µ0H

)
= r

(µ0H)2 ∆t (5.26)

and accordingly the maximum resolvable frequency Fmax is larger at higher mag-
netic fields (see figure 5.13). In total there are three contributions that determine
the dependence of the amplitudes on the range of inverse magnetic fiels chosen for
the Fourier transform: Apart from the magnetic field dependence described by the
Dingle factor RD (equation 5.15) and other field-dependent quantities contained in
the amplitudes, there are the field-dependence of the maximum resolvable frequency
Fmax and the range-dependence of the frequency resolution ∆F . In order to extract
information on observable frequencies and amplitudes, Fourier spectra with different
field ranges were compared.
Figure 5.14 shows the Fourier spectra of the oscillatory parts of the magnetostric-

tion coefficients λa and λc of KFe2As2, RbFe2As2, and CsFe2As2 at T = 50mK for
H ‖ c and H ‖ a. The inverse field ranges for the FFT were chosen as large as
possible to obtain the best possible frequency resolution. For H ‖ a only one small
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frequency and its harmonics below ∼ 0.6 kT were observed. For H ‖ c a multitude
of frequencies were observed, and for the identification of single frequencies a num-
ber of specific frequency ranges will be discussed in the following. The position of
fundamental frequencies are marked by thick, black vertical lines in the figures. Ex-
pected positions of second and third harmonics are marked by thinner vertical lines.
The assignment of frequencies to Fermi surface features for RbFe2As2 and CsFe2As2
was based on the assignment of frequencies for KFe2As2 made by Terashima et al.
[12] on the basis of angle-dependent dHvA measurements. Therefore, the following
notation, which was established by previous work on KFe2As2 [72], is used in some
figures: εl and εh denote the lower (l) and the higher (h) frequency, respectively,
assigned to the hole tubes in the corner of the Brillouin zone, αl and αh the inner
tube at the center of the BZ, ζl and ζh the middle tube, and β the outer tube.
Figure 5.15 shows the low-frequency part of the Fourier spectra for H ‖ c. Two

distinct frequencies, and for KFe2As2 also their higher harmonics, can be identified.
Following the work of Terashima et al. [12] on KFe2As2, these frequencies are as-
signed to the hole tubes in the corner of the BZ. Apparently, the tubes have two
extremal cross-sections, but from quantum oscillation data alone it can not be de-
cided at which qz in the Brillouin zone the larger and the smaller cross-section lie.
According to both LDA calculations by Ikeda (see figure 5.12) and LDA+DMFT
calculations on KFe2As2 by Backes [73], the larger cross-section is located at qz = 0
and the smaller one at qz = 1. In ARPES data on KFe2As2 by Yoshida et al. [13] the
tubes appear roughly twice as big and no difference in cross-section is seen at these
qz. As becomes evident from the data shown in figure 5.15, in the series KFe2As2
to RbFe2As2 to CsFe2As2 the average cross-section of the tube increases, while the
difference between minimum and maximum cross-sections (the warping) decreases.
Figure 5.16 shows the frequency range of the Fourier spectra associated with the

inner hole tube. In the series KFe2As2 to RbFe2As2 to CsFe2As2 the average cross-
section of the tube decreases, while the difference between minimum and maximum
cross-sections (the warping) increases. For KFe2As2 a series of frequencies associated
with magnetic breakdown orbits is visible. They are discussed in subsection 5.3.3.
Figure 5.17 shows the frequency range associated with the middle hole tube. In

line with angle-dependent dHvA measurements by Terashima et al. [12], two fre-
quencies that lie wide apart are observed for KFe2As2. The lower frequency is
assigned to a large part of the middle tube with a smaller cross-section around the
center of the BZ, and the higher frequency to a small part of the middle tube at the
top of the BZ [12]. For RbFe2As2 and CsFe2As2 a corresponding larger frequency
above 4 kT is not observed (figure 5.17). Instead, the smaller frequency increases
and its amplitude peak splits. Either the middle tubes of RbFe2As2 and CsFe2As2
have very small warping or they still have large warping but the larger frequency is
not observed in our data and there are three extremal cross-sections. It is unlikely
that the appreciable splitting would be caused by a small misalignment(below 2◦)
of the crystal c-axis with respect to H. Assuming that the frequency pair at the
lower frequency constitutes all extremal cross-sections of the middle tube, already a
hole count of 25% is reached, as for KFe2As2 without the outer tube (see subsection
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Figure 5.14: Fourier spectra of the oscillatory parts of the magnetostriction
coefficients λa and λc of KFe2As2, RbFe2As2, and CsFe2As2 at T = 50mK for
H ‖ c (left) and H ‖ a (right). Field ranges chosen for the FFT are 2 − 14T
for H ‖ c and 6 − 14T, 4.2 − 14T, and 5.5 − 14T for KFe2As2, RbFe2As2,
and CsFe2As2, respectively, for H ‖ a. Fundamental frequencies are marked
by thick, black, vertical lines and expected frequencies of second and third
harmonics are marked by thinner vertical lines
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Figure 5.15: Low-frequency part of the Fourier spectra of the oscillatory part
of the magnetostriction coefficient for H ‖ c at T = 50mK. Fundamental
frequencies associated with the hole tubes in the corner of the Brillouin zone
(εl and εh) are marked by thick, black, vertical lines. Expected frequencies of
second and third harmonics are marked by thinner vertical lines. In the series
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Figure 5.16: Fourier frequencies associated with the inner hole tube in the
center of the BZ (αl and αh). In the series KFe2As2 to RbFe2As2 to CsFe2As2
the size of the tube decreases, while the warping increases. For KFe2As2 a
series of frequencies associated with magnetic breakdown orbits is visible (see
section 5.3.3).
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5.3.4). Therefore, the frequency pair is interpreted as the complete representation
of a middle hole tube with very small warping.
Figure 5.18 shows the frequency range associated with the outer hole tube. For

KFe2As2 the frequency belonging to the outer tube is very close to the third harmonic
of a well pronounced frequency of the inner tube, as already noted by Terashima
et al. [12]. This explains the shoulder on the left-hand side of the peak. Quite
possibly, there is also a second peak associated with the outer tube buried in the
wide foot of the peak. For Ba0.07K0.93Fe2As2 Terashima et al. [12] observed a clear,
albeit small splitting of 0.08 kT of the corresponding peak. This can be interpreted
as a very small warping of the outer tube [12]. Also for KFe2As2 a small warping is
expected, since the hole count already reaches the expected 50% with the observed
peak (see subsection 5.3.4). Thus no further frequency is expected to appear.
For RbFe2As2 and CsFe2As2 no peak exceeds the noise level in this frequency

region. One reason for the absence of a frequency associated with the outer tube in
our data is impurity scattering (see equation 5.16). Larger extremal cross-sections
of the Fermi surface imply a larger orbit in real space. For the same mean free
path, impurity scattering suppresses larger orbits more strongly than smaller ones.
Therefore, the orbit might be observed in purer crystals with less impurity scattering
or in higher magnetic fields where the orbits in real space are smaller. Another reason
for the absence might be the high effective mass (see equation 5.14). In that case
lower temperatures would be beneficial.
Figure 5.19 shows the Fourier spectra for H ‖ a. Only small frequencies and their

harmonics can be seen. They are associated with the small hole pockets at the top
of the BZ. In the series KFe2As2 to RbFe2As2 to CsFe2As2 the size of the pocket
increases. For H ‖ c they are not seen, probably because of the large curvature at
the extremal cross-section (see equation 5.13).
All detected frequencies are listed in table 5.3.2.

5.3.3 Magnetic breakdown orbits in KFe2As2

A multitude of equally spaced frequencies between 2.3 kT and 2.9 kT, and their
second harmonics between 4.6 kT and 5.8 kT, are observed for KFe2As2 in a magnetic
field H ‖ c, as already mentioned above (figure 5.16). They are shown in figure
5.20 on an enlarged scale. These frequencies can be ascribed to so-called magnetic
breakdown orbits between the inner and the middle hole tube with frequencies 2.3 kT
and 2.9 kT, respectively [12]. When two Fermi surfaces are very close to each other, a
high magnetic field can lead to tunneling of quasiparticles between orbits on different
Fermi surfaces separated by a small energy gap εg. This effect is called magnetic
breakdown. The condition for it to occur is that the separation between the Landau
levels ~ωc must be [53]

~ωc &
ε2g
EF

. (5.27)
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Figure 5.17: Fourier frequencies associated with the middle hole tube in the
center of the BZ (ζl and ζh). For KFe2As2 frequencies corresponding to a
minimum and a maximum cross-section are observed [12]. For RbFe2As2 and
CsFe2As2 a frequency above 4 kT is not observed. Instead the lower frequency
splits, pointing to much smaller warping. In the series KFe2As2 to RbFe2As2
to CsFe2As2 the size of the tube grows.
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Figure 5.18: Fourier frequencies associated with the outer hole tube in the
center of the BZ (β). For KFe2As2 the frequency belonging to the outer tube
is very close to the third harmonic of a well pronounced frequency of the inner
tube (3αh) [12]. For RbFe2As2 and CsFe2As2 no peak exceeds the noise level
in this frequency region.

66



5.3 Fermi surfaces

0 . 0

0 . 1

0 . 2

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

3 r d2 n d

 

  

H  | |  a

 � c
 � a

  FF
T A

mp
litu

de
 (a

rbi
tra

ry 
un

its)

 

 

3 r d2 n d

 � c  ( S 2 )
 � a  ( S 1 )

 � c  ( S 2 )
 � a  ( S 1 )

r a n g e :  5 . 5  -  1 4  T

r a n g e :  4 . 2  -  1 4  T

 F  ( k T )

  

 

K F e 2 A s 2

R b F e 2 A s 2

C s F e 2 A s 2

T  =  5 0  m K r a n g e :  6  -  1 4  T

3 r d2 n d
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Table 5.1: The Fourier frequencies extracted from quantum oscillations in the
magnetostriction coefficient λ of KbFe2As2, RbFe2As2, and CsFe2As2 for H ‖ c
and H ‖ a. The data for KbFe2As2 [10] compare well with the dHvA measure-
ments of Terashima et al. [12].

Fourier frequencies F (kT)
Fermi KFe2As2 RbFe2As2 CsFe2As2
surface dHvA[12] λ[10] λ λ

H ‖ c corner 0.24 0.24 0.32 0.40
corner 0.36 0.36 0.41 0.44
inner 2.30 2.30 2.13 1.83
inner 2.39 2.39 2.29 2.30
middle 2.89 2.90 3.13 3.27
middle 4.40 4.44 3.14 3.29
outer 7.16 7.19 - -

H ‖ a top center - 0.062 0.096 0.29

In the case of KFe2As2, the inner and the middle hole tube are sufficiently close
to each other at certain points in reciprocal space that magnetic breakdown occurs
already at moderate magnetic fields. ARPES measurements [13] (see figure 5.11)
and LDA+DMFT calculations [73] suggest that magnetic breakdown is possible at
eight points where the inner and the middle hole tubes are especially close. The
frequencies of the breakdown orbits can be explained assuming a certain number of
disconnected areas between the inner and the middle tube [12]: four areas A1 and
four areas A2, where A1 = 2A2, so that Amiddle = Ainner + 12A2 and the frequency
corresponding to A2 is 50T (see figure 5.21).
For RbFe2As2 only two small amplitudes at approximately 2.25 kT and 2.65 kT

surmount the noise level that could be signs of magnetic breakdown (figure 5.16).
For CsFe2As2 no such frequencies are detected. The feeble occurrence or absence of
frequencies associated with magnetic breakdown in RbFe2As2 and CsFe2As2 reveals
a larger distance of their respective Fermi surfaces in reciprocal space.

5.3.4 Hole count and size of outer hole tubes

The number of states enclosed by the Fermi surface is the electron or hole count,
that is the number of electrons or holes in partially occupied bands. Luttinger’s
theorem states that interactions between fermions do not affect the Fermi volume,
or the total number of occupied states. Thus, also in a correlated electron system
forming a Fermi liquid, the electron or hole count N is given by the ratio of the
Fermi volume VF and the volume of one state in reciprocal space V1k:

N = VF
V1k

= 2VF
V

(2π)3 , (5.28)
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Figure 5.20: Frequencies associated with magnetic breakdown orbits between
the inner (2.3 kT) and the middle (2.9 kT) hole tube of KFe2As2. Left: The
distance of frequencies resulting from magnetic breakdown (indicated by small
vertical lines) is 0.05 kT. Right: The distance of frequencies in the region of
second harmonics is still 0.05 kT, not 0.1 kT, confirming their explanation by
magnetic breakdown.

Figure 5.21: The frequencies of the breakdown orbits can be explained as-
suming a certain number of disconnected areas between the inner and the
middle tube: four areas A1 and four areas A2, where A1 = 2A2, so that
Amiddle = Ainner +12A2 and the frequency corresponding to A2 is 50T. Taken
from [12]. Possibly A2 = 2A1 as predicted by LDA+DMFT calculations [73].
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where V is the volume of the crystal and the factor of two is due to the spin degen-
eracy (spin quantum number 1/2). Expressing VF as a fraction f of the volume of
the first Brillouin zone VBZ = (2π)3/Vuc, where Vuc is the volume of the primitive
unit cell of the direct lattice, the number Nuc of carriers in Vuc can be calculated.

f ≡ VF
VBZ

, (5.29)

Nuc = N

V
Vuc = 2f. (5.30)

The Fermi volumes of the different bands of KFe2As2, RbFe2As2, and CsFe2As2
were estimated by approximating the inner, middle, and outer hole tubes, as well as
the hole tubes at the corners of the BZ, as cylinders and the hole pocket at the top
center of the BZ as a sphere. Adding up the contributions of the different bands,
the Fermi volume of KFe2As2 can be calculated to be approximately f = 51.4%BZ,
or roughly 50%BZ. The volume of the conventional body centered tetragonal (bct)
Brillouin zone f refers to is VBZ = 2 · (2π)3/(a2c). The volume of the respective cell
in direct space is Vuc = a2c/2, the volume of the primitive unit cell (and half the
volume of the conventional bct unit cell). Hence the number of holes per primitive
unit cell is approximately one. Since there is one formula unit in the primitive unit
cell, there is one hole per two iron atoms and the iron atoms are nominally in a
3d5.5 configuration, if full ionization of K1+ and As3− is assumed. The hole count
confirms the nominal doping of one hole per formula unit, or 0.5 holes per iron atom,
inferred from replacing Ba2+ by K1+ in BaFe2As2. For BaFe2As2 Terashima et al.
[74] give a count of 0.0235 holes and 0.0246 electrons per primitive cell, so the hole
and electron counts compensate and the iron atoms in BaFe2As2 are nominally in a
3d6 state.
The deduced hole count of KFe2As2 agrees well with data of Terashima et al. [12],

who obtain f = 51.3%BZ by dHvA measurements, and with data of Yoshida et al.
[13], who obtain f = 60%BZ from ARPES measurements, stating that the values
deduced from ARPES are typically 10 − 20% larger than for dHvA due to excess
carriers at the sample surface.
Table 5.3.4 compares the Fermi volumes as a fraction of the Brillouin zone on a

per band basis (see also figure 5.22). The contributions to the hole count of the
tubes at the corner and the pocket at the top of the BZ increase in the series. The
contribution of the inner tube decreases. The part of the middle tube around qz = 0
makes an increasing contribution to the hole count. According to angle-dependent
dHvA measurements of Terashima et al. [12], the wider part of the middle tube of
KFe2As2 is restricted to a relatively small section around qz = 1. For RbFe2As2 and
CsFe2As2 the warping of the middle tube is very small and the hole count of the
middle tube both at qz = 0 and qz = 1 increases.
Although the outer hole tube is not seen in our measurements for RbFe2As2

and CsFe2As2, its size can be inferred from the hole count, since all other bands
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5.3 Fermi surfaces

Table 5.2: The estimated Fermi volume of the five hole bands, as fractions
of the respective first Brillouin zone in %. Tube-like features like the inner,
middle, and outer hole tube as well as the ’petals’ in the corner of the BZ were
approximated as cylinders. The hole pockets at the top center of the BZ were
approximated as spheres. ARPES gives estimates that are too large due to
excess surface carriers [13]. For RbFe2As2 and CsFe2As2 the outer hole tube
is missing in the data, but its size can be inferred assuming the same Fermi
volume as for KFe2As2.

Estimated Fermi volume VF (%BZ)
Fermi KFe2As2 RbFe2As2 CsFe2As2
surface dHvA[12] ARPES[13] λ λ λ

corner 0.86 2.1 0.85 1.16 1.46
corner 1.29 2.1 1.29 1.47 1.63
inner 8.2 9.1 8.2 7.7 6.7
inner 8.5 9.8 8.5 8.3 8.5
middle 10.3 12.2 10.4 11.3 12.0
middle 15.7 17.0 15.9 11.4 12.1
outer 25.6 27.3 25.7 (26.8*) (25.4*)
outer - 30.0 - - -
top center - - 0.00015 0.00029 0.0016
sum 51.3 61.1 51.4 24.6** 26.0**
*assuming a total 51.4%BZ, as for KFe2As2.
**without the outer hole tube.
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Figure 5.22: Fermi volume VF (%BZ) that would result if every observed
frequency of the oscillatory magnetostriction was associated with a two-
dimensional tube of the Fermi surface, or a sphere, in case of the pocket at
the top of the Brillouin zone. To obtain the approximate VF of warped tubes,
an average of the lower and the higher observed frequency must be taken. For
RbFe2As2 and CsFe2As2 the value for the outer tube was deduced assuming a
total count of 51.4% BZ, as for KFe2As2. The hole count per formula unit is
twice the volume fraction of the BZ. The plot of the Fermi surface of KFe2As2
was taken from Ref. [75].
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are observed. This requires the assumption that the hole doping is the same for
RbFe2As2 and CsFe2As as for KFe2As2 and accordingly the total Fermi volume of
these compounds would also be 51.4% (or roughly 50%) of their respective Brillouin
zone. With this assumption a very similar fraction of the Fermi volume is missing for
RbFe2As2 and CsFe2As: approximately 25%. Accordingly, a frequency belonging to
the outer hole tube of roughly 7.0− 7.4 kT and 6.5− 6.9 kT would be expected for
RbFe2As2 and CsFe2As, respectively. These values lie well in the range of resolvable
frequencies, so the reason for the absence in our data is probably scattering at
impurities. Therefore, these frequencies should be observable for even purer samples
and in higher magnetic fields.
Following this estimation, approximately half the holes counted, namely 0.5 per

formula unit or 0.25 per iron atom, reside in the band belonging to the outer hole
tube.

5.3.5 Anisotropy of the stress dependence of the Fermi surface

Since the uniaxial stress dependence of the Fermi surface enters the amplitudes of
the quantum oscillations in the magnetostriction (see equation 5.21), a comparison
of the oscillations of λc and λa for the same field direction can provide additional
information on the anisotropy of the Fermi surface. Only for RbFe2As2 λc and
λa were measured on the same crystal. Therefore, a direct comparison of absolute
amplitudes is strictly only possible for this compound. Nonetheless, we attempt to
compare the anisotropy also with KFe2As2 and CsFe2As2. When different samples
S1, S2 with different mean free paths l1, l2 are compared, we try to correct the
difference in amplitude due to the Dingle factor (equation 5.16): First the natural
logarithm of the amplitude of S1 is taken, and then multiplied by the ratio of mean
free paths l1/l2 determined in subsection 5.2.4. Next, the exponential function is
applied, and finally the expression is multiplied by the amplitude to the power
of 1 − l1/l2. Figure 5.23 shows the anisotropy of the abolute value of the stress
dependence of the cross-sections of the Fermi surface∣∣∣∣∂Fr∂σc

∣∣∣∣
/ ∣∣∣∣∂Fr∂σa

∣∣∣∣ , (5.31)

plotted against the structural c/a ratio for KFe2As2, RbFe2As2, and CsFe2As2.
The increase of the anisotropy of |∂Fr/∂σi| from KFe2As2 to RbFe2As2 for the
middle tube and the tube at the corners of the BZ, and its decrease to CsFe2As2 is
reminiscent of the behavior of the anisotropy of the upper critical field (section 4.5).

5.4 Effective masses

5.4.1 Effective masses

The oscillatory magnetostriction was measured at several different temperatures
T (see figures 5.4 and 5.5). The Fourier spectra yield the amplitudes at different
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Figure 5.23: Anisotropy of the stress dependence of the Fermi surface
|∂Fr/∂σi|, i = a, c, plotted against the structural c/a ratio. The anisotropy
can strictly only be computed for RbFe2As2 since for KFe2As2 and CsFe2As2
the quantum oscillations in λa and λc were measured on different samples (S1
and S2). The values for KFe2As2 and CsFe2As2 were therefore corrected for
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temperatures, which are needed to extract the effective quasiparticle massm∗ via the
temperature factor RT in the Lifshitz-Kosevich formula (eq. 5.14). The expression
for RT was fitted to the amplitudes as a function of temperature, with m∗ as the
only free parameter apart from an arbitrary scaling factor. Figures 5.24 and 5.25
shows these fits.
The effective masses of the outer tubes of RbFe2As2 and CsFe2As2 could not be

determined by a fit of RT , since the frequencies were not observed. Their effective
masses can, however, be estimated by comparison of the Sommerfeld coefficient γ
from the effective masses of the observed bands with γ measured by specific heat
[9, 11]. The contribution of each band to the Sommerfeld coefficient can be estimated
under the assumption of a two-dimensional Fermi surface with circular cross-section
and a quadratic dispersion of the quasiparticles

γ = π2

3 k
2
BD(EF) ≈ πk2

BNAa
2

3~2 m∗ (5.32)

where NA is the Avogadro number and a is the structural a-parameter. Adding up
the contributions of the hole tubes, counting four tubes in the corner of the BZ and
neglecting the hole pocket at the top of the BZ, γ = 76mJ mol−1 K−2 for RbFe2As2
and γ = 117mJ mol−1 K−2 for CsFe2As2 is obtained. Thus, to reach the measured
values of γ = 112mJ mol−1 K−2 for RbFe2As2 and γ = 178mJ mol−1 K−2 for
CsFe2As2 [11], fractions γ = 36mJ mol−1 K−2 for RbFe2As2 and γ = 61mJ mol−1

K−2 for CsFe2As2 are missing. This is equivalent to m∗/me = 24 for the outer tube
of RbFe2As2 and m∗/me = 41 for the outer tube of CsFe2As2. According to this
estimate, the outer tube has the largest m∗ of all bands. Together with the large
size of the orbit, this makes it more difficult to observe the outer tube at small fields,
providing an explanation for its absence in our data.
Figure 5.26 shows the effective quasiparticle masses of KFe2As2, RbFe2As2, and

CsFe2As2 in comparison. The general trend in the series is an increase of the effective
masses in all bands. The exception is the relatively small widened part around
qz = 1 of the middle tube of KFe2As2, which according to Terashima et al. [12] and
Yoshida et al. [13] has a high m∗/me of 18 free electron masses. But this widened
part disappears for RbFe2As2 and CsFe2As2, which exhibit only very small warping
of the middle tube (see figure 5.22). The part of the middle tube around qz = 0
follows the trend of increasing m∗ in the series.
To obtain the mass enhancement caused by electronic correlations, the bare band

mass mb is needed. It can be computed with density functional theory. Ikeda (for-
merly Kyoto University, now Ritsumeikan University) calculated the band structure
with this method and the band-resolved density of states [70]. Using equation 5.32,
estimates of the average band masses are obtained for the in-plane orbits. Values lie
in the range mb ≈ 0.5 to 3me (see figure 5.26). This compares well with the band
masses of KFe2As2 reported in Ref. [13, 72]. In the series KFe2As2 to RbFe2As2 to
CsFe2As2 the band masses change very little. The mass enhancement m∗/mb, in
contrast, increases in the series. Figure 5.27 shows the mass enhancement plotted
against the cross-sectional area of the Fermi surface of the respective band expressed
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Figure 5.25: The temperature dependence of the Fourier amplitudes forH ‖ a
for KFe2As2, RbFe2As2, and CsFe2As2. Effective masses m∗ are determined
by fits of the temperature factor RT (eq. 5.14).

as a fraction of the Brillouin zone. Apart from the hole tubes in the corner of the
Brillouin zone, the mass enhancement increases with the size of the Fermi surface.
Multiplied by a factor of two this is the approximate hole count of the respective
bands.

5.4.2 Possible mechanisms behind the mass enhancement

The mass enhancement m∗/mb increases in the series KFe2As2 to RbFe2As2 to
CsFe2As2 and it increases with the hole count of the tubes running through the
center of the Brillouin zone. Also the mass enhancement of the tubes at the corner
of the BZ zone is significant, as is the increase of the effective mass of the pocket at
the top of the BZ. What mechanism causes the mass enhancement?
The hole pocket at the top of the BZ is quite small and it is located at the edge

of the BZ. Therefore, spin-orbit coupling might be expected to increase its band
mass [53]. The band-resolved density of states calculated by Ikeda [70], expressed
as a Sommerfeld coefficient γ is 0.28, 0.46, and 0.83mJmol−1 K−2 for KFe2As2,
RbFe2As2, and CsFe2As2, respectively. These values were calculated neglecting
electron-phonon interaction and spin-orbit coupling, nonetheless they can explain
a factor-of-three increase of the band mass along the series. Thus, the four-fold
increase of the effective mass of the band belonging to the hole pocket at the top of
the BZ might be entirely due to the increase of the band mass.
The band belonging to the hole tubes at the corner of the BZ exhibits a mass

enhancement that is similar to that of the outer hole tube. In fact, according to
calculated band structures [72], these two features of the Fermi surface arise from the
same band crossing the Fermi energy at different sections of the BZ. A complication
with the hole tubes at the corner of the BZ is that flat bands of unoccupied states lie
very close above the Fermi energy. Many-body interactions with these states might
affect the effective mass.
Kanter et al. [11] speculated that flat bands close to the Fermi energy might
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Figure 5.26: Left: Effective quasiparticle massesm∗ for all bands of KFe2As2,
RbFe2As2, and CsFe2As2. The data for KFe2As2 are taken from Terashima
et al. [12] and Zocco et al. [14]. The effective masses for the outer tubes of
RbFe2As2 and CsFe2As2 were estimated from the missing part of the Sommer-
feld coefficient of specific heat measured by Kanter et al. [11]. Bottom right:
Band masses mb, estimated from the band-resolved density of states calculated
by Ikeda [70], neglecting electron-phonon interaction and spin-orbit coupling.
Top right: Mass enhancement m∗/mb. While the band masses change only
little in the series KFe2As2 to RbFe2As2 to CsFe2As2, the mass enhancement
increases.
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Figure 5.27: Mass enhancement m∗/mb for KFe2As2, RbFe2As2, and
CsFe2As2, plotted against the cross-sectional area of the Fermi surface of the
respective band expressed as a fraction of the first Brillouin zone. Apart from
the hole tubes in the corner of the first Brillouin zone the mass enhancement
increases with the size of the Fermi surface, which measures the hole count
when multiplied by a factor of two.
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explain the large observed Sommerfeld coefficient of RbFe2As2 and CsFe2As2. They
encouraged quantum oscillation studies on single crystals to test that hypothesis.
The calculations of the band mass and the mass enhancement (fig. 5.26) show that
the band mass cannot explain the increase of m∗ in the A122 series, nor the increase
of m∗ with the hole count of the tubes running through the center of the BZ. The
explanation of these observations is thus an open problem.
The electronic correlations of iron-based superconductors cannot be explained by

models considering only repulsive Coulomb interactions by including a Hubbard U
in the Hamiltonian [44]. One hypothesis for the origin of correlations is the effect of
intraorbital exchange interactions, also called Hund’s rule coupling J (for a review
by Georges and de Medici see reference [76]). In this picture Hund’s rule coupling
works to decouple different bands and to increase correlations selectively for different
bands. This way bands can have different proximity to a Mott transition. If one band
undergoes a Mott transition while other bands stay itinerant, this is called an orbital-
selective Mott transition [44]. Considering the filling of a band as a parameter, a
Mott transition is reached for half filling. In the case of iron d-orbitals, half filling is
realized for an occupation of five electrons or holes, if all the d-orbitals are treated
on equal footing. If, however, the orbitals are decoupled by crystal-field effects or
Hund’s rule coupling, filling must be considered for every orbital separately and half
filling is realized for one electron or hole per orbital. According to calculations by de’
Medici et al. [44] for the Ba1−xKxFe2As2 series, the filling is different for the different
d-orbitals. Hence the d-bands have different proximity to the Mott transition and
exhibit differences in mass enhancement. Specifically, de’ Medici et al. [44] predict
the largest mass enhancement for bands bearing predominantly dxy character.
The band associated with the outer hole tube has the largest effective mass. From

polarization dependent ARPES measurements on KFe2As2, Yoshida et al. [13] de-
duce a dominant yz, xz, and xy character of the inner, middle, and outer Fermi
surface in the center of the BZ, respectively. Also, LDA and LDA+DMFT calcula-
tions on KFe2As2 [73] predict a predominant dxy character of the outer hole tube.
Therefore, the scenario of a proximity to an orbital-selective Mott transition is in
line with our data. The outer tube is also the best candidate for a Mott transi-
tion, since it has the largest cross-section of the Fermi surface, therefore the largest
contribution to the hole count, so it is closest to half-filling.
Wu et al. [77] invoke decoupled bands with different degrees of electronic corre-

lations without Hund’s rule coupling as the cause. They explain the low in-plane
magnetic moment of LaFeAsO with the effects of spin-orbit coupling, Fe d and As
4p hybridization, and the crystal-field splitting. They state: "The presence of an
itinerant band coupled to one with moderate Mott physics makes the problem of
the iron pnictides more akin to that of the Kondo lattice in heavy fermions than the
cuprates" [77]. This raises the question whether the observed correlation effects can
be explained without invoking Hund’s rule coupling.
Apart from the effective quasiparticle mass also the quasiparticle coherence scale

is affected by electronic correlations. In case of decoupled bands, the coherence
scale can be different for each band. As discussed by Hardy et al. [9], there is a
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crossover of quasiparticle coherence with temperature in KFe2As2. This crossover is
visible in the resistivity as a change in the temperature dependence from T 2 at low
temperatures to a different curvature at room temperature. In thermal expansion
and magnetization the crossover is visible as a broad maximum around 100K [9].
Below the quasiparticle coherence scale quasiparticles exist in a Fermi liquid. Above
the scale they lose coherence and cease to exist. The magnetization (figure 2.5)
and the thermal expansion [19] of RbFe2As2 and CsFe2As2 are similar to that of
KFe2As2, but show the broad maximum at lower temperatures, pointing to a lower
quasiparticle coherence scale. According to Georges et al. [76] Hund’s rule coupling
reduces the quasiparticle coherence scale of non-half-filled bands.
Independent of the exact mechanism, it can be stated that some effect decouples

the different bands and selectively increases their effective masses, quite possibly
tuning the proximity to orbital-selective Mott transitions and the quasiparticle co-
herence scale. This mechanism is not only driven by doping as in the Ba1−xKxFe2As2
series but also by replacing K by Rb and finally by Cs in the AFe2As2 series.

5.5 Possible links between superconductivity and
electronic correlations

Most iron-based superconductors exhibit γ values that would be typical also for
conventional superconductors or organic superconductors. Only Ba1−xKxFe2As2,
RbFe2As2, and CsFe2As2 venture into the realm of γ values typical for heavy-
fermion superconductors. The origin of electronic correlations in these iron-based
superconductors, which are d-metals, is an unsolved mystery (see section 5.4). Pos-
sibly, exchange interactions (Hund’s rule coupling) lie behind this peculiar behavior
[44, 76].
Figure 5.28 shows the Sommerfeld coefficient of the specific heat in the normal

state, γ, of Ba1−xKxFe2As2, RbFe2As2, and CsFe2As2, plotted against the super-
conducting transition temperature Tc. Starting at a low γ value for BaFe2As2, the
Sommerfeld coefficient rises as Tc reaches its maximum value for Ba0.6K0.4Fe2As2,
and rises further, while Tc decreases towards KFe2As2, RbFe2As2, and CsFe2As2.
Impurities in single crystals or powders can increase the Sommerfeld coefficient and
thus may lead to an overestimation of electronic correlations intrinsic to a material.
This explains the variation in Sommerfeld coefficients reported for Ba1−xKxFe2As2,
in addition to the difficulties of extracting the normal-state Sommerfeld coefficient
from the specific heat of a superconductor with relatively high Tc. For KFe2As2,
RbFe2As2, and CsFe2As2 the large Sommerfeld coefficients are confirmed by the ef-
fective masses determined from quantum oscillations. Therefore, their origin really
lies in electronic correlations and not in impurities.
The specific heat of KFe2As2, RbFe2As2, and CsFe2As2 displays a similar jump

∆C at the superconducting transition [9, 78, 79] (see figure 5.29). Plotted against
Tc, this jump ∆C does not follow the phenomenological Bud’ko-Ni-Canfield (BNC)
scaling ∆C ∝ T 3

c observed for many iron-based superconductors [80] (see figure
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Figure 5.28: The Sommerfeld coefficient of the specific heat γ of
Ba1−xKxFe2As2, RbFe2As2, and CsFe2As2, plotted against the superconduct-
ing transition temperature Tc.

5.30). This deviation from BNC scaling would vanish, if the large Sommerfeld
coefficient γ was included by plotting ∆C/γ against Tc. The quantity ∆C/γTc is
predicted to be 1.43 by BCS theory for weak coupling, and it is expected to increase
with coupling strength. The value is expected to decrease with increasing anisotropy
in the single-band case and to decrease with increasing difference between intraband
coupling strengths in the tow-band case [27]. Thus, the low values ∆C/γTc ≈ 0.54,
0.42, 0.36 of KFe2As2, RbFe2As2, and CsFe2As2, respectively, may be explained by
the different coupling strengths of the distinct bands. For KFe2As2 pairing potentials
for individual bands were discussed in the framework of a four-band BCS model by
Hardy et al. [30].
According to figure 2.2, the iron-arsenic layers of CsFe2As2 have nearly the same

structure as those of Ba0.5K0.5Fe2As2, which is quite close to the optimally doped
Ba0.6K0.4Fe2As2. Considering the vastly different superconducting transition tem-
peratures of 2.25K and 35 − 38K, respectively, it would be interesting to study
the differences between the two compounds. One difference is the interlayer cou-
pling, since CsFe2As2 has a larger spacer atom between the iron-arsenic layers than
Ba0.5K0.5Fe2As2. Another difference is the doping, with a nominal doping of 0.5
holes per iron atom for CsFe2As2 and 0.25 holes per iron atom for Ba0.5K0.5Fe2As2.
In the course of the hole doping, there is a change of the Fermi surface, a Lifshitz
transition, where the electron-like features of the Fermi surface vanish and only hole-
like features remain (see section 5.3). In the Tc-x phase diagram, Ba0.5K0.5Fe2As2
lies close to the center of the superconducting dome, possibly more exposed to fluc-
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tuations in the wake of the magneto-structural transition.
In the picture of band-selective proximities to Mott transitions [44], increasing

hole doping causes a decoupling of the bands, restricting orbital fluctuations. So a
reduction of fluctuations goes hand in hand with increasing hole concentration and
increasing electronic correlations. In MgB2 the high Tc of 39K is reached by the
interaction of two anisotropic bands with electron-phonon coupling as the pairing
glue [27, 83]. If some sort of fluctuations, especially involving interband interactions,
are essential to the pairing in Ba1−xKxFe2As2, RbFe2As2, and CsFe2As2, then the
decoupling of the bands might explain the reduction of Tc in the series.

5.5.1 Uniaxial pressure dependences

One means to study the relation between superconductivity and electronic correla-
tions is to change a tuning parameter and to see how that affects each. Hydrostatic
pressure p is a suitable tuning parameter. It is known how Tc decreases with pres-
sure for KFe2As2 [84], RbFe2As2 [85], and CsFe2As2 [86]. Remarkably, Tc starts to
increase again, after some critical pressure pc is reached (observed for KFe2As2 [84]
and CsFe2As2 [86]). Unfortunately, no measurements of the Sommerfeld coefficient
under pressure have been reported to date. The increase of the unit-cell volume
in the series KFe2As2, to RbFe2As2, to CsFe2As2 cannot be used as a substitute
for ’negative’ pressure. Since Tc decreases in this series, its development cannot be
ascribed to a simple volume effect. Thermal expansion curves at low temperature
(figure 4.2) deliver the uniaxial pressure dependence of both the Sommerfeld coeffi-
cient γ and Tc at zero pressure (see equations 3.14 and 3.16). Figure 5.31 shows the
uniaxial pressure dependence of these quantities, for the a- and for the c-direction.
Some reservations are in order regarding the absolute values of the uniaxial pressure
dependence in the c-direction, as discussed in section 4.2. Ignoring these, it can be
stated that in the light of uniaxial pressure, superconductivity and electronic corre-
lations in the normal state seem to be unrelated in KFe2As2, somewhat related in
RbFe2As2, and going hand-in-hand in CsFe2As2 (see figure 5.31).

5.6 Conclusions
The Fermi liquids in KFe2As2, RbFe2As2, and CsFe2As2 exhibit increasingly strong
electronic correlations. The first experimental information on the Fermi surfaces of
RbFe2As2 and CsFe2As was obtained by means of quantum oscillations in the mag-
netostriction, comparing frequencies with those of KFe2As2, for which the Fermi
surface has already been well studied [12–14]. The topology of the Fermi surfaces
remains the same in the series, while some particular features change in size. The
size of the small pocket at the top center of the Brillouin zone increases systemati-
cally, as well as the size of the warped tubes at the corners of the Brillouin zone. The
average cross-section of the inner tube running through the center of the Brillouin
zone decreases, while the large part of the middle tube increases. The cross-section
of the outer tube is not observed in the measurements on RbFe2As2 and CsFe2As2,
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Figure 5.31: The uniaxial pressure dependence with respect to the a- and
to the c-direction of the superconducting transition temperature, Tc, and of
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CsFe2As2 as determined from thermal expansion (see figure 4.2). The lines
denote the respective combination of uniaxial pressure along a and along c that
would lead to a maximum effect on Tc (blue) or on γ (green). Reservations
regarding absolute values apply (see section 4.2).

but it can be estimated under the plausible assumption that the hole count remains
the same in the series. The hole count confirms the nominal hole doping of one hole
per formula unit, corresponding to a nominal 3d5.5 state of the iron atoms. Effective
quasiparticle masses increase within the series, albeit with differences between the
bands. The effective mass belonging to the outer tubes can be estimated from the
Sommerfeld coefficient and effective masses of all other bands. The mass enhance-
ment compared to the band mass is largest for the outer tube and the tubes at the
corner of the Brillouin zone.
The large effective quasiparticle masses cannot be explained by calculations in the

local density approximation, therefore remormalization effects must be responsible
[72, 73]. One hypothesis for the mechanism behind the correlation effects is the
scenario of a proximity to an orbital-selective Mott transition [44]. In this picture,
Hund’s rule coupling decouples the bands and increases electronic correlations with
different strength in different bands. Specifically, bands with dominating dxy char-
acter that are close to half-filling are predicted to be closest to an orbital-selective
Mott transition [44]. The effective quasiparticle masses determined from quantum
oscillations confirm differences in mass enhancement between the bands. The outer
hole tube running through the center of the Brillouin zone has the largest hole
count and the largest mass enhancement. This is compatible with the scenario of
band-dependent proximity to a Mott transition laid out by de’ Medici et al. [44].
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6 Summary

KFe2As2, RbFe2As2, and CsFe2As2 are a series of rather clean, ambient-pressure,
low-temperature superconductors well suited to study several intriguing aspects of
the class of iron-based superconductors. This thesis presents a comparative study
of these materials based on thermal expansion and magnetostriction measurements
at very low temperatures.
Much is already known about KFe2As2, including its H-T phase diagram [8, 10]

and its Fermi surface consisting of three hole tubes in the center of the Brillouin
zone, one hole tube in every corner, and a hole pocket at the top center [12–14]. The
origin of the enhanced Sommerfeld coefficient and the enhanced effective masses of
KFe2As2 has already been discussed in the framework of band-dependent proximities
to Mott transitions caused by Hund’s rule coupling [9, 44]. But the issue of strong
electronic correlations in iron-based superconductors, which are d metals, is not set-
tled and remains one of the most intriguing aspects of these materials. Although
it is known for several years that RbFe2As2 and CsFe2As2 have even larger Som-
merfeld coefficients than KFe2As2 [11], only now have single crystals of RbFe2As2
and CsFe2As2 become available in sufficient quality to study the Fermi surface and
effective quasiparticle masses experimentally.
This thesis presents the first H-T phase diagrams of RbFe2As2 and CsFe2As2

single crystals down to very low temperatures. The field anisotropy of these phase
diagrams is considerable, with an orbitally limited upper critical field for magnetic
fields applied parallel to the c direction and a paramagnetically limited upper critical
field for magnetic fields applied parallel to the ab plane. The multiband character
of superconductivity leaves its fingerprint in the H-T phase diagrams and in the
thermal expansion curves presented in this work. This data thus enables future
theoretical studies of multiband superconductivity in RbFe2As2 and CsFe2As2 in
addition to KFe2As2, so that now a series of three similar systems is available for
such studies.
The now available single crystals are pure enough to display quantum oscillations.

This thesis presents quantum oscillations of the magnetostriction and delivers the
first experimental data on the Fermi surfaces and the effective quasiparticle masses
of RbFe2As2 and CsFe2As2. All Fermi surfaces could be observed except the outer
hole tube running through the center of the Brillouin zone. Its properties could be
deduced, however, from the properties of all other bands with the help of the total
hole count and the total Sommerfeld coefficient. The Fermi surfaces of RbFe2As2
and CsFe2As2 exhibit the same general features as those of KFe2As2, with differences
in the size of particular features. The hole pocket at the top center of the Brillouin
zone grows in the series KFe2As2 to RbFe2As2 to CsFe2As2. In that sense, the Fermi
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surface of CsFe2As2 is most three-dimensional. The cross-section of the warped tubes
in the corner of the Brillouin zone increases in the series, as well as the main part of
the middle tube running through the center of the Brillouin zone. The cross-section
of the inner tube in the center decreases and the cross-section of the outer tube can
be estimated to remain approximately the same fraction of the Brillouin zone. As
the exact cross-sections of the Fermi surfaces cannot be obtained by calculations in
the framework of density functional theory due to the large electronic correlations,
the measurements of the Fermi surfaces will proof valuable in theoretical studies of
material properties and in the development of more sophisticated theoretical tools
for the calculation of the electronic structure.
The measured effective quasiparticle masses of all bands increase in the series

KFe2As2 to RbFe2As2 to CsFe2As2. A comparison with calculated band masses
yields the mass enhancement. This is largest for the band associated with the hole
tubes in the corner of the Brillouin zone and the outer hole tube in the center of
the Brillouin zone. The fact that the largest mass enhancement occurs for the band
with the largest hole count and predominant dxy character is compatible with the
Hund’s rule coupling scenario for the origin of the mass enhancement already laid
out for KFe2As2 [9, 44]. Future theoretical studies must now test if this scenario
of band-dependent proximities to Mott transitions caused by Hund’s rule coupling
really also explains the mass enhancements in RbFe2As2 and CsFe2As2.
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