
Online Optimization with Lookahead

Zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von
Dipl.-Wi.-Ing. Fabian Dunke

Tag der mündlichen Prüfung: 24. Juli 2014

Referent: Prof. Dr. Stefan Nickel

Korreferent: Prof. Dr.-Ing. Kai Furmans

Karlsruhe, 2014

I

Acknowledgements

The work you are looking at is my thesis, but it would definitely not have been possible

without the help, support and guidance of others. I first would like to thank those people.

To Prof. Dr. Stefan Nickel:

For your farsighted mentoring, for your valuable ideas throughout supervising this thesis,

and for giving me the opportunity to work in OR.

To Prof. Dr.-Ing. Kai Furmans:

For your kind interest in this work and for co-supervising it, and not to forget, for the first

steps that I could take in logistics when I was a student.

To Prof. Dr. Oliver Stein:

For your long-lasting and careful attention, for arousing my interest in optimization, and for

teaching me how to work precisely.

To Prof. Dr. J. Philipp Reiss:

For your sincere and friendly conduct as the chairman of the examination committee.

To Prof. Dr. Gerhard Woeginger:

For your lucid recommendations with regard to the realization of mathematical concepts and

for your gracious hospitality.

To Alex, Anne, Brita, Eric, Ines, Jörg and Melanie:

For the amicable working atmosphere which makes work a pleasant duty and for the com-

ments on this thesis which doubtlessly helped me improve the quality of this work.

To Marcel and Lars:

For calling me over the last five years to have an always delicious meal at mensa.

To My Family:

For the support and encouragement that you have given to me all my life.

Fabian Dunke

III

Abstract

Online optimization with lookahead deals with sequential decision making under incomplete

information where each decision must be made on the basis of a limited, but certain preview

(lookahead) of future input data. In many applications, this optimization paradigm provides

a better description of a decision maker’s informational state than the well-established dis-

ciplines of offline and online optimization since not all may be known about the future, but

also not nothing.

Despite the growing importance of the resource information as a result of technological

advances, lookahead is often still only deemed an add-on to online optimization in problem-

specific contexts. We argue that in order to understand how algorithm performance can

be enhanced by additional information, it requires a common understanding of lookahead

and its implications on instance processing by algorithms. The main contributions of this

thesis consist of the development of a systematic groundwork for comprehensive performance

evaluation of algorithms in online optimization with lookahead and the subsequent validation

of the presented approaches in theoretical analysis and computational experiments.

In the first part, we embed the paradigm of online optimization with lookahead into the

theory of optimization and develop a precise definition of the term lookahead. We find

that the lookahead effect on the objective value can be subdivided into an informational

and a processual component: The former yields the improvement attainable by forwarded

information release, while the latter expresses the improvement attainable by the change in a

problem’s “rules” immanent to lookahead. Since it is widely acknowledged that competitive

analysis – still the standard gauge for performance measurement of online algorithms – fails

to display the typical behavior of algorithms, we lay out a holistic distributional approach of

performance analysis which takes into account both the absolute behavior of an algorithm as

well as its behavior relative to some reference algorithm. This approach facilitates an explicit

consideration of different information regimes. Further, we establish the link to discrete event

systems which finally leads to the formulation of a generic modeling framework for online

optimization with lookahead.

IV

The second part applies the proposed method of distributional performance analysis to on-

line algorithms endowed with various degrees of information preview and provides structural

insights with regard to observable lookahead effects in the respective problem settings: We

first perform an exact analysis in basic settings of the ski rental, bin packing and traveling

salesman problem. From the proofs, we obtain explanations for the fact that lookahead

leads to different magnitudes of improvement depending on the respective problem types.

Subsequently, we expand our analysis to more general settings of the above problems and

additionally to the paging and scheduling problem: Extensive sample-based numerical ex-

periments are conducted to examine the algorithms’ reactions to different levels of supplied

information. Obtained results are gathered in an information pool concerning the impact of

additional information in several standard problems of online optimization. Results on the

lookahead effect from these problems can conditionally be transferred to more complex set-

tings as seen in simulation studies on the real world applications of an order picking system

in a warehouse and a pickup and delivery service in a road network. We conclude that our

approach to performance analysis of algorithms in online optimization with lookahead can

be employed in problem settings of various complexities to assess the value of information

and to determine the most suitable algorithm from a set of potential algorithm candidates

for different lookahead levels.

V

Contents

1 Introduction 1

1.1 Problem Statement and Scope of the Thesis 5

1.2 Applications of Online Optimization with Lookahead 7

1.3 Overview of the Thesis . 13

2 Analysis of Optimization Algorithms 15

2.1 Optimization Paradigms . 15

2.1.1 Offline Optimization . 20

2.1.2 Online Optimization . 20

2.1.3 Online Optimization with Lookahead 21

2.2 Algorithm Analysis . 24

2.2.1 Complexity of Problems and Algorithms 25

2.2.2 Classification of Optimization Algorithms 29

2.2.3 Algorithms and Lookahead . 31

2.3 Performance of Optimization Algorithms . 36

2.3.1 Performance Measures for Online Optimization Algorithms 36

2.3.1.1 Deterministic Worst-Case Performance Measures 39

2.3.1.2 Probabilistic Worst-Case Performance Measures 44

2.3.1.3 Average-Case Performance Measures 45

2.3.1.4 Distributional Performance Measures 47

2.3.2 Performance Comparison of Optimization Algorithms 50

2.4 Optimization Algorithms and Discrete Event Systems 62

2.4.1 Discrete Event Systems . 62

2.4.2 Automata . 65

2.4.3 Markov Chains . 68

2.4.4 Discrete Event Simulation . 69

2.5 Concluding Discussion . 71

VI Contents

3 A Modeling Framework for Online Optimization with Lookahead 73

3.1 Modeling Prototypes . 73

3.2 Modeling Framework Components . 75

3.2.1 Basic Modeling Elements . 75

3.2.2 Lookahead Type . 79

3.2.3 Processing Mode and Order . 83

3.2.4 Processing Accessibility . 85

3.2.5 Algorithm Execution Mode . 86

3.3 A Classification Scheme . 87

3.4 Discrete Event Process Model . 90

3.5 Relation to Markov Chains . 91

3.6 Instantiations of the Framework . 93

3.7 Concluding Discussion . 99

4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead 101

4.1 Online Ski Rental with Lookahead . 101

4.2 Online Bin Packing with Lookahead . 111

4.3 Online Traveling Salesman Problem with Lookahead 134

4.4 Concluding Discussion . 144

5 Experimental Analysis of Algorithms for Online Optimization with Lookahead 147

5.1 Online Ski Rental with Lookahead . 148

5.1.1 Average Results . 148

5.1.2 Distributional Results . 150

5.2 Online Paging with Lookahead . 154

5.2.1 Average Results . 156

5.2.2 Distributional Results . 158

5.2.3 Markov Chain Results . 162

5.3 Online Bin Packing with Lookahead . 165

5.3.1 Classical Bin Packing . 166

5.3.1.1 Average Results . 169

5.3.1.2 Distributional Results . 171

5.3.2 Bounded-Space Bin Packing . 176

5.3.2.1 Average Results . 180

5.3.2.2 Distributional Results . 182

5.3.2.3 Markov Chain Results . 186

Contents VII

5.4 Online Traveling Salesman Problem with Lookahead 188

5.4.1 Average Results . 193

5.4.2 Distributional Results . 195

5.4.3 Markov Chain Results . 199

5.5 Online Scheduling with Lookahead . 201

5.5.1 Online Single Machine Scheduling . 203

5.5.1.1 Average Results . 205

5.5.1.2 Distributional Results . 207

5.5.1.3 Markov Chain Results . 208

5.5.2 Online Parallel Machines Scheduling 210

5.5.2.1 Average Results . 212

5.5.2.2 Distributional Results . 215

5.6 Concluding Discussion . 215

6 Simulation of Real World Applications 219

6.1 Online Order Picking with Lookahead . 220

6.1.1 Average Results . 228

6.1.2 Distributional Results . 231

6.2 Online Pickup and Delivery with Lookahead 239

6.2.1 Average Results . 246

6.2.2 Distributional Results . 250

6.3 Concluding Discussion . 257

7 Conclusion and Outlook 261

7.1 Conclusion . 261

7.2 Outlook . 265

A Appendix 269

A.1 Additional Proofs from Chapter 4 . 269

A.1.1 Proof of Lemma 4.4 . 269

A.1.2 Proof of Lemma 4.9 . 270

A.2 Numerical Results from Chapter 5 . 272

A.2.1 Online Ski Rental with Lookahead 273

A.2.2 Online Paging with Lookahead . 276

A.2.3 Online Bin Packing with Lookahead 285

A.2.3.1 Classical Problem . 285

A.2.3.2 Bounded-Space Problem . 294

A.2.4 Online Traveling Salesman with Lookahead 303

VIII Contents

A.2.5 Online Scheduling with Lookahead 315

A.2.5.1 Single Machine Problem . 315

A.2.5.2 Parallel Machines Problem 319

A.3 Numerical Results from Chapter 6 . 323

A.3.1 Online Order Picking with Lookahead 323

A.3.2 Online Pickup and Delivery with Lookahead 347

References 357

List of Figures 373

List of Tables 379

1

1 Introduction

Although there is undisputed agreement on the importance of coping with unexpected events

in today’s systems for production and logistics ([78], [148], [154]), recent implementations

of planning and scheduling systems such as Advanced Planning Systems (APS) still suffer

from their deficiency in dealing with uncertainty over time: In a rolling time horizon, fu-

ture plans are determined on the basis of forecasted data by offline optimization methods

([154]). However, since only decisions of the next period are implemented before the problem

gets resolved with updated forecasts, this approach exhibits a high degree of redundancy.

Additionally, predictions are destined to be wrong, and it is only a matter of time before

deviations between plan and reality will occur.

On the other hand, the number of problem settings where input data can be collected and

processed in real time is continuously increasing due to technological advances ([78]). Since

planning systems built for these environments are subject to steady information disclosure,

they are said to be online. Optimization problems arising in this context are called online

optimization problems and algorithms for them have to operate dynamically. This paradigm

is completely opposite to that of classical offline optimization where all input data is assumed

to be known in advance. Between these two extremes, there is an intermediate setting which

we will call online optimization with lookahead. Here, the amount of accessible information

is governed by some lookahead mechanism. Online optimization with lookahead represents

an alternative approach for dealing with unpredictable events: Instead of having to rely on

forecasted data, uncertainty is tackled by sequential decision making where each decision is

made based only on the small, but certain part of the future known at that time.

In an organizational context, the task of solving online optimization problems (with look-

ahead) is a recurring pattern needed to operate and control industrial applications. The

functional logic of a dynamic system repeatedly requires decision making in order to continue

([135]). For each of these decisions, an online algorithm is called as a subroutine. It has to

determine partial solutions based on the currently available input data such that the overall

solution which will be composed of all partial solutions will be as good as possible.

2 1 Introduction

Figure 1.1 sums up the hierarchical relation between the logic in a dynamic system and the

online optimization module needed therein (see also [119]).

Operations and control

Input update
(lookahead set)

Online optimization
with lookahead

Figure 1.1: Hierarchical relation between operations and control of a dynamic system and online
optimization with lookahead.

Whether the assumption of complete or incomplete information applies, depends on the

application: On the strategic level, almost all problems are offline, e.g., facility location,

supplier selection or distribution channel selection. On the operational level, problems are

often intrinsically online, e.g., order picking, scheduling or transportation planning. Problems

on the tactical planning level, such as capacity planning or distribution planning, appear

to be of either kind. A variety of problems is solved by concatenating offline and online

optimization methods: In the first stage, offline optimization is carried out with all data

available at the start of the planning horizon; in the second stage, input data is collected

and processed repeatedly in an online manner where fixed decisions from the first stage are

respected (cf. also [88]). We conclude that online optimization problems with lookahead are

encountered primarily on the operational and occasionally on the tactical level of control.

Algorithms for solving online optimization problems – both with and without lookahead –

have to obey regimes of incomplete information while making their choices. Contrarily, offline

optimization algorithms are privileged to resort to complete information while computing a

solution. Solution methodologies for tackling the different types of these problems strongly

differ from each other as illustrated exemplarily in Figure 1.2 for the processing of an input

sequence consisting of input elements σ1, σ2, . . . , σn with n ∈ N. Arriving input elements are

represented by red rectangles, already processed input elements appear in green rectangles,

and already known but still unprocessed input elements are printed in blue rectangles. For

algorithm Alg and i, j,m ∈ N with i ≤ j ≤ m, we denote by Alg{σi,...,σj}[σ1, . . . , σm] the

costs incurred by Alg for processing the input elements in {σi, . . . , σj} based on information

σ1, . . . , σm.

3

σ1

σ2σ1

...

σn· · ·σ2σ1

T
im

e
t

Online algorithm
On

On{σ1}[σ1]

On{σ2}[σ1, σ2]

...

On{σn}[σ1, . . . , σn]

a)

σ2σ1

σ3σ2σ1

σ5σ4σ3σ2σ1

...

σn· · ·σ2σ1

T
im

e
t Online algorithm

with lookahead
La

La{σ2}[σ1, σ2]

La{σ1,σ3}[σ1, σ2, σ3]

La{σ4}[σ1, . . . , σ5]

...

La{σn}[σ1, . . . , σn]

b)

σn· · ·σ2σ1
Offline algorithm

Off
Off{σ1,...,σn}[σ1, . . . , σn]

c)

Figure 1.2: Comparison of optimization paradigms. a) Online optimization without lookahead.
b) Online optimization with lookahead. c) Offline optimization.

Significant research efforts have been put into tackling continuous online optimization prob-

lems arising in process industries (e.g., chemical production, raw materials processing) and

in control problems (e.g., regulatory control of power plants, robotics, aerospace). Related

problems are coined by continuous nonlinear dynamical systems, and the task consists of

monitoring and controlling the processes by adjusting parameters in order to keep the sys-

tem in a steady state (see, e.g., [84], [125]). To solve these problems, methods from control

theory are applied where mainly continuous decision variables appear within differential

equations.

In this thesis, we deal with discrete online optimization problems which means that decisions

can be traced back to a discrete structure ([85]). Most problems emerge from combinatorial

optimization where one searches for a best element in a discrete set of feasible solutions or

4 1 Introduction

from integer programming where one aims at solving mathematical programs with decision

variables constrained to take on integer values1. Online problems of this type occur in a

multitude of domains (see, e.g., [24], [32], [84], [74], [85]) including

• production and logistics, e.g., routing, packing, scheduling, load balancing,

• telecommunications, e.g., call admission, circuit routing,

• memory management, e.g., caching, paging, file migration,

• self-organizing data structures, e.g., list accessing, binary search trees,

• financial engineering, e.g., rent-or-buy decisions, portfolio selection, trading, and

• theoretical problems, e.g., graph coloring, graph matching, online linear programming.

Lookahead information is also encountered in plenty of situations in our everyday lives as

shown in Figure 1.3 and it has a major influence on our decision making: Dynamic passen-

ger information boards provide predictions about expected vehicle arrivals within the next

minutes; the information can be used in order to update travel routes based on the cur-

rent traffic scene. The weather forecast influences decisions concerning weather-dependent

outdoor activities and prevents us from booking them when the weather is announced to

be bad. A calendar can be seen as the ultimate embodiment of lookahead as it allows to

record all known pieces of future information which seem relevant to organize our personal

or professional schedules.

a) b) c)

Figure 1.3: Everyday life situations where decisions can be improved due to lookahead. a) Dy-
namic passenger information board. b) Weather forecast. c) Organizer and calendar.

1 Combinatorial optimization and integer programming are closely related to each other due to the fact that
many combinatorial optimization problems can be formulated as integer programs and, vice versa, many
integer programs can be understood in terms of a combinatorial optimization problem.

1.1 Problem Statement and Scope of the Thesis 5

1.1 Problem Statement and Scope of the Thesis

Basic variants of online problems have been studied in the mathematical framework known as

competitive analysis (see, e.g., [32], [74]): Algorithms for an online optimization problem have

to compete with an optimal offline algorithm which knows the whole input in advance and

quality guarantees have to hold for arbitrary input sequences. Hence, competitive analysis

is a worst-case consideration of a worst-case analysis; results are overly pessimistic and do

not reflect an algorithm’s practical abilities to suitably deal with a given problem.

Most theoretical results were derived based on the taxonomy prevalent in a specific problem

and not based on a general notation valid for problems of all kinds. Likewise, the intermediate

setting of online optimization with lookahead has been addressed by the online optimization

community every now and then only in specific problems arising in routing and transportation

([7], [8], [11], [34], [96], [95], [155]), scheduling ([51], [123], [129], [130], [134], [161], [168],

[169]), organization of data structures ([2], [3], [41], [113], [156], [163], [164]), data transfer

([64], [93]), packing ([83], [86]), lot sizing ([1]), metrical task systems ([20], [115]) or graph

theory ([45], [87], [94]). To the best of our knowledge, there have been no attempts to

formalize different degrees of available information in a general framework.

A reason for the lack of general concepts lies in the unsettled role of the factor time. In some

problems it is just used to establish an order of events (sequential model); others intrinsically

rely upon time as a part of the instance specification (time stamp model). This issue also

accounts for various perceptions of the term lookahead: Does it mean that a certain number

of future input elements is known? Does it mean that all future input elements occurring in

a particular time window are foreseen?

Endowing an algorithm with lookahead should lead to better results due to improved planning

opportunities. Therefore, lookahead is deemed a mechanism for increasing the power of an

algorithm ([96]) and we may ask for the value of a preview on future information within the

class of online optimization problems.

Obviously, lookahead without an algorithm which can make use of it renders itself worthless.

Therefore, determining the value of lookahead and performance analysis of algorithms are

closely intertwined. By the nature of sequential decision making under incomplete informa-

tion, possible “errors” of an algorithm cannot necessarily be corrected later when one realizes

that another decision would have been better ([151]). Due to the inevitability of failure, it is

impossible to find an algorithm which solves an online optimization problem to optimality

and all we can do is to find algorithms for a certain problem which are as good as possible.

6 1 Introduction

Asking for the value of additional information gives rise to the idea of comparing algorithms

under lookahead to algorithms with small information resources rather than to an optimal

offline algorithm which is in sharp contrast to competitive analysis. Since we consider it un-

fair to use an optimal offline algorithm as the performance yardstick in online optimization,

we seek for other, more practically oriented methods for the analysis of algorithms.

In summary, we recognize that a number of significant questions in online optimization with

lookahead have not yet been addressed satisfactorily. Motivated by the above shortcomings

in the current state of the theory, we formulate four major research questions (RQ):

RQ1 What do we understand by lookahead?

RQ2 Which formalism can be used to model the solution process in an online optimization

problem with lookahead in a generally applicable framework?

RQ3 Which performance measurement approach is best suitable to analyze the performance

of algorithms in online optimization problems with lookahead and to relate the quality

of algorithms to each other?

RQ4 What is the value of different degrees of lookahead in specific online optimization

problems with lookahead?

In industrial settings, algorithms often have to terminate in a couple of seconds ([85]). Tra-

ditionally, information is the only scarce resource in online optimization and no attention

is paid to computing time. In awareness of this gap between theory and practice, we will

have a look at real-time requirements whenever they may become crucial in distinguishing

between the quality of algorithms, e.g., when NP-hard (sub-) problems are encountered.

Finally, we point out that the approach of online optimization with lookahead taken in

this thesis can be distinguished from other approaches for optimization under incomplete

information (see, e.g., [5], [29]): In stochastic programming, probability distributions for

scenarios that take into account all uncertain factors are known and solution quality is typ-

ically evaluated by average case measures such as to immunize the solution probabilistically

to incomplete information. In addition, stochastic programming is rather concerned with

sporadic than with frequent decision making. Robust optimization, in contrast, does not

rely on probability distributions but on a given range of possible values for uncertain factors.

The goal is to construct a solution which is feasible for all possible realizations and exhibits

optimality in some robustness-related sense. A conceptual framework called online stochas-

tic optimization which assumes given distributions for future requests has been devised in

[22] and [24]. Generic algorithms that express different goals and exploit given stochastic

information are proposed, e.g., optimizing expectation, consensus or regret.

1.2 Applications of Online Optimization with Lookahead 7

Online optimization with lookahead as treated in this thesis differs from the previous ap-

proaches by its perception of uncertainty: Rather than presuming a particular probability

model or possible value ranges, it strives for a more holistic analysis of uncertainty as justified

by increased volatilities in today’s markets. We opt for a method of performance analysis

which incorporates typical and worst-case behavior of an algorithm as well as its overall

performance range in an equal measure. Although the traditional focus of online optimiza-

tion is on hedging against worst-case scenarios, recent application-driven developments show

that in a more comprehensive view on the topic also aspects like sensitivity to additional

lookahead or integration into simulation environments need to be addressed.

1.2 Applications of Online Optimization with Lookahead

Online optimization problems with lookahead arise in applications of different domains. The

following examples suggest that lookahead is polymorphic depending on the context.

Online Routing with Lookahead

A recurring task in transportation and logistics is vehicle routing ([118]). As a result of

increased usage of geographic information systems (GIS) and global positioning systems

(GPS), the research focus has shifted from the static to the dynamic version of the problem

([139]); these variants refer to the offline and online version, respectively. Applications can

be found in emergency, taxi and repair services as well as in order picking.

A number of requests has to be served by a set of vehicles each starting and ending in a given

depotO with the aim of optimizing some costs such as the total travel distance. Every request

has a release time representing the earliest time for service. Providing lookahead makes both

locations and release times of the requests known earlier. In Figure 1.4, the offline situation

is compared to the online situation. In the latter case, dots in gray correspond to unknown

requests at snapshot time and numbers indicate the request revelation order.

Providing additional lookahead is expected to lead to enhanced performance by incorporat-

ing more requests into an algorithm’s strategy. However, based on customer requirements it

needs to be clarified first whether earlier notification due to lookahead also facilitates earlier

customer service, or whether earliest service times from the online problem without looka-

head are retained. This requirement strongly impacts the optimization potential induced by

lookahead. We point out three notions of lookahead known from literature:

8 1 Introduction

O

x1

x
2

a)

1

4

2

7

3

5

6

8

10

9

11

12

O

x1

x
2

b)

Figure 1.4: Vehicle routing. a) Offline (static) version. b) Online (dynamic) version.

• Request lookahead allows an algorithm to foresee a fixed number of upcoming requests

([7], [8]).

• Time lookahead as discussed by Allulli et al. ([7], [8]) and Ausiello et al. ([11]) allows

an algorithm to foresee all requests having a release time within a fixed time window

starting at the current time.

• Disclosure times of requests introduced by Jaillet and Wagner ([96]) explicitly specify

the notification times of requests and differ from their earliest service times.

Request lookahead is probably the most unrealistic among these concepts ([11]), whereas

disclosure times allow for a customer-specific model of lookahead ([96]). Time lookahead

sets the same temporal offset between notification and release of a request for all customers.

Competitive analysis in [7] and [96] yields that time lookahead and disclosure dates may lead

to (slight) improvements depending on the objective function and metric space.

We mention that there are numerous refinements and generalizations of the vehicle routing

problem with industrial relevance ([158]), e.g., pickup and delivery problems or inventory

routing problems, which all lend themselves to an integration of additional lookahead infor-

mation. The design of real-time compliant algorithms has to take into account the computa-

tional complexity of vehicle routing problems2, e.g., by devising decomposition methods such

as cluster-first route-second strategies ([101]). Moreover, one has to be aware of counterintu-

itive problem features such as the fact that waiting for requests located in spatial proximity

may be beneficial although there are still unserved requests.

2 The vehicle routing problem is NP-hard because its decision version contains Hamiltonian Circuit

which is known to be an NP-complete problem.

1.2 Applications of Online Optimization with Lookahead 9

Online Bin Packing with Lookahead

Packing comprises the task of combining objects from a set of small items in order to pack

them into elements of large objects such that some objective function is optimized ([69]). The

practical scope of packing is twofold: First, it includes the combinatorial task of grouping

small items into subsets and assigning each of them to a large object; second, it includes

the geometric task of ensuring that within each large object the small items are laid out

such that they are entirely contained in the large object without overlapping. Applications

include packaging logistics, assembly line balancing, memory allocation and layout design.

A fundamental packing problem is the (one-dimensional) bin packing problem ([77]) where

a number of items σ1, σ2, . . . , σn for n ∈ N with sizes si ∈ (0, 1] for i = 1, . . . n is given and

the task is to pack them into a minimum number of unit-capacitated bins. We seek to find

a partition of {σ1, σ2, . . . , σn} into a minimum number m of subsets B1, B2, . . . , Bm such

that ∑
σi∈Bj

si ≤ 1

for all j = 1, . . . ,m. The problem is computationally complex3.

The problem instance in Figure 1.5 shows why it is important to have a look at different

modes of information disclosure. In the pure online setting, items arrive and have to be

packed one after another without knowledge of any other future item. In an exemplary

lookahead setting, two items to be packed are known at each time except when only one

item remains to be packed. While an optimal offline algorithm needs only six bins, all online

algorithms without lookahead which do not open a new bin when the item to be packed fits

in an already open bin end up with eight bins. Seven bins are needed by all online algorithms

with lookahead of two items which try to generate bins occupied as much as possible.

The input sequence in Figure 1.5 is somewhat pathologic with respect to the item sizes and

the input sequence length. If the input sequence was much longer, the unoccupied space

of the depicted bins would probably be filled. Thus, the performance degradation due to

incomplete information is expected to be small for sufficiently long item sequences.

In contrast to the assumptions of the basic bin packing problem, there will be bounds on

the number of open bins as a result of space restrictions in practice: In packaging logistics

one would have to obey the number of packaging stations or loading docks; in memory

allocation one would have to respect storage capacities ([83]). This problem is called the

3 Bin packing is NP-hard because its decision version can be reduced from Partition which is known to
be an NP-complete problem.

10 1 Introduction

0.5

σ1

0.4

σ2

0.5

σ3

0.4

σ4

0.5

σ5

0.4

σ6

0.5

σ7

0.4

σ8
0.6

σ9

0.6

σ10

0.6

σ11

0.6

σ12

a)

0.6

0.4

1

0.6

0.4

2

0.6

0.4

3

0.6

0.4

4

0.5

0.5

5

0.5

0.5

6

b)

0.5

0.4

1

0.5

0.4

2

0.5

0.4

3

0.5

0.4

4

0.6

5

0.6

6

0.6

7

0.6

8

c)

0.5

0.5

1

0.4

0.5

2

0.4

0.5

3

0.4

0.6

4

0.6

0.4

5

0.6

6

0.6

7

d)

Figure 1.5: Bin packing. a) Item sequence. b) Optimal offline solution. c) Solution of an online
algorithm without lookahead. d) Solution of an online algorithm with lookahead.

(one-dimensional) bounded-space bin packing problem: Each time a new bin needs to be

opened, one of the K open bins has to be closed first. In packaging logistics this means

to send a bin or truck away; in memory allocation this amounts to deleting the contents

of some memory module. Because bins cannot remain open arbitrarily long and may be

sent away although not fully laden, the improvement to be expected by lookahead in the

bounded-space problem should be bigger than in the unbounded case.

Apart from informational benefits, lookahead in packing may serve as a buffer for input el-

ements. In a warehouse, items can be consolidated before their assignment to a destination

container ([83], [101]). Thus, lookahead equips the decision maker with more alternatives

through the accumulation of items. Clearly, this only holds if the processing order of known

items is arbitrary. We require to define lookahead always in conjunction with a specification

of a corresponding processing mode which tells us whether permuting input elements is al-

1.2 Applications of Online Optimization with Lookahead 11

lowed (e.g., by sorting physically small items in a buffer) or not (e.g., by enqueuing physically

large items in a job sequence).

We mention two types of lookahead from literature applicable to packing problems:

• In (conventional) request lookahead, a fixed number of future objects to be packed is

seen at any time ([83]).

• In property lookahead, the lookahead consists of those items which jointly fulfill a given

property ([83], [155]).

An instantiation of property lookahead has been laid out by Grove ([83]) for bin packing:

The lookahead consists of those items which jointly do not exceed a threshold cost value

when being processed by some algorithm. Another instantiation, due to Tinkl ([155]), is

to collect those elements in the lookahead which do not exceed a given threshold weight or

size. With respect to practical considerations, we need to guarantee that no item stays in

the buffer and no bin stays in the warehouse for too long in order to prevent starvation.

The aforementioned problems can be generalized to two or three spatial dimensions and

there are numerous additional problem variants (see, e.g., [55]) of which we mention batch

bin packing where items become available in blocks, dynamic bin packing where possible

events include departures and variable-sized bin packing where bin sizes may vary.

Online Paging with Lookahead

Memory management and data organization intrinsically feature an online character due to

data communication over time. Algorithms try to organize memory or data structures such

that the total costs for access are lowest possible. The paging problem is a fundamental

problem in computer science ([32]) and gave rise to competitive analysis in the 1980s ([149]).

It is concerned with efficiently managing a two-level store of memory consisting of a small

fast cache memory of size k and a large slow memory of unbounded size. The input sequence

corresponds to a sequence of requested pages and a requested page can only be accessed

when it is in the cache. Thus, whenever the request is on a page already in the cache, no

cost is incurred (cache hit), but whenever an algorithm has to bring the requested page to

the cache first, a unit cost is charged (page fault, cache miss). The problem is to decide

which cache page to evict upon a page fault. As opposed to the previous applications, there

is a polynomial-time optimal offline algorithm: Algorithm LongestForwardDistance

(Lfd, Belady’s optimal replacement algorithm in [17]) serves every request sequence with

the minimum number of faults by evicting the page in the cache which will be requested

12 1 Introduction

farthest in the future when a page fault occurs. An online algorithm knows nothing about

future requests. Unfavorably, this may escalate to every request producing a cache miss.

Consider a cache of size 3 and a slow memory containing all 26 letters of the standard

alphabet. Initially, the cache is filled with {a, b, c} as displayed in Figure 1.6, and the

sequence of requested pages is σ = (f, a, b, i, a, n). Offline algorithm Lfd incurs three page

faults. Online algorithm LeastRecentlyUsed (Lru) evicts a page whose last request was

earliest, i.e., least recently, among the cache pages. Lru incurs five page faults on σ.

a

b

c

a

b

f

a

b

f

a

b

f

a

i

f

a

i

f

n

i

f

a)

a

b

c

f

b

c

f

a

c

f

a

b

i

a

b

i

a

b

i

a

n

b)

Figure 1.6: Paging. Offline algorithm Lfd in a) and online algorithm Lru in b) lead to a different
number of page faults on input sequence σ = (f, a, b, i, a, n).

Requests usually arrive in fixed-size blocks in data communications, thereby giving a natural

preview of requests. The model of conventional request lookahead where a fixed number

of pages is seen at each time has been repelled because of its ineffectiveness in competitive

analysis ([164]): Denote by σki a request on page σi for k times in a row. Then the ratio of

the costs incurred by online algorithm Alg1 to the costs incurred by Lfd on page sequence

(σ1, σ2, . . . , σn) is the same as the ratio incurred by an online algorithm Algk with lookahead

k to the costs incurred by Lfd on page sequence (σk1 , σ
k
2 , . . . , σ

k
n) when Algk mimics Alg1

on the first of each σki with i = 1, . . . , n. Lookahead becomes useless in this case since it hides

new future requests. To eliminate this shortcoming, we give three alternatives of lookahead

that have been devised in literature:

• Strong lookahead of size k as introduced by Albers ([2]) consists of the current request

and k additional pairwise different pages which also have to differ from the current

request.

• Resource-bounded lookahead of size k as suggested by Young ([164]) consists of those

upcoming pages that fulfill the property that no more than k+ 1 page faults will occur

when processed by the online algorithm under consideration.

• By natural lookahead of size k as devised by Breslauer ([41]), we understand the knowl-

edge of k + 1 distinct pages which in contrast to strong lookahead collectively are not

in the cache.

1.3 Overview of the Thesis 13

Note that strong lookahead is independent of an algorithm, resource-bounded lookahead de-

pends both on an algorithm’s past and future behavior which makes it admittedly unrealistic

for use, and natural lookahead relies on an algorithm’s past behavior. It is shown for each of

these lookahead types that mild improvements in competitive analysis are achieved because

pathological cases as described above are bypassed. Paging algorithms turn out to strongly

benefit already from conventional request lookahead in empirical studies ([41]).

1.3 Overview of the Thesis

The overall structure of this thesis is divided into seven chapters as shown in Figure 1.7.

1 Introduction

Motivation

2 Analysis of Optimization Algorithms

3 A Modeling Framework for Online Optimization with Lookahead

Background and Modeling

4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

6 Simulation of Real World Applications

Analysis of Algorithms for Online Optimization with Lookahead

7 Conclusions and Outlook

Recap and Recommendations

Figure 1.7: Structure of the thesis.

14 1 Introduction

Chapter 1 introduced the subject of online optimization with lookahead, motivated desired

research outcomes and laid out some application examples.

The following two chapters are devoted to the definition of a general modeling framework

for online optimization problems with lookahead: In Chapter 2, we take a closer look at

different optimization paradigms with respect to the amount of information provided, and

we discuss different concepts for performance analysis of optimization algorithms, especially

in the context of online optimization under varying degree of informational preview. Finally,

we interrelate different modeling techniques for discrete event systems and find that methods

for solving online optimization problems with lookahead adhere to these techniques as well

due to their sequential decision making character. Chapter 3 focuses on the modeling of

online optimization problems with lookahead: We collect basic definitions for lookahead

and look at their peculiarities. Since one of our main goals is to analyze the performance

of algorithms in different applications using unified concepts and a common taxonomy, we

propose a generic process model which all online algorithms using lookahead have to obey.

In the remainder of this thesis, we continue by instantiating this framework for a variety

of important applications and by applying the proposed methods of algorithm analysis to

assess the value of lookahead.

Chapters 4 to 6 delve into the analysis of online optimization algorithms endowed with

various degrees of lookahead in particular problem settings: In Chapter 4, a theoretical

analysis is conducted for basic academic problem settings. First hints are found concerning

the role of lookahead as a promoter of improved algorithm performance. In Chapter 5, we

explore the effects of lookahead in classic online optimization problems. Detailed numerical

experiments are conducted from a sampling-based point of view. The results indicate that the

behavior of online algorithms in practice depends on the amount of lookahead, but also that

the extent of the lookahead value strongly relies on the problem itself. Online optimization

algorithms exploiting lookahead information are used within simulation models of two real

world applications in Chapter 6. We learn that due to the higher number of restrictions in

practical settings, the lookahead effect is mitigated to a certain extent.

Chapter 7 subsumes the findings of this thesis and recurs to the four central research questions

that were specified previously in this introduction. Likewise, we point out limitations of our

approach and provide starting points for possible future research directions.

15

2 Analysis of Optimization Algorithms

Algorithms are computational methods to solve any kind of computational problem, i.e., to

provide the correct output for any input ([54]). Optimization algorithms face the task of

determining a best possible element out of a set of solution candidates. Unfortunately, in

online optimization – both with and without lookahead – the input is revealed only gradually,

and due to the inevitability of failure in decision making under incomplete information, it is

impossible for any algorithm operating in an online manner to halt with the correct, i.e., best

possible, output on any input. This chapter clarifies and resolves the relationships between

the different modes of information disclosure and discusses the role of algorithms in this

context. In particular, we provide a clear definition of the optimization paradigm online

optimization with lookahead and decompose the effect of lookahead into an informational

and a processual component. To facilitate an analysis of the lookahead impact on solution

quality, we develop a holistic approach to performance measurement of algorithms. Finally,

general analogies between the solution process in an online optimization problem and discrete

event systems are deduced.

2.1 Optimization Paradigms

In online optimization, input data is revealed sequentially. Optimization problems arising

in practice often exhibit this type of information disclosure as opposed to standard offline

optimization where all data is known in advance4. Essentially, offline and online optimiza-

tion differ in the amount of accessible informational content: Offline optimization assumes

complete information, online optimization assumes incomplete information. The definition

of complete is unique in terms of representing 100 %, but the definition of incomplete admits

an infinite number of levels representing t % with t ∈ [0, 100). This leads to the definition of

4 According to [74], the terms online and offline are likely to origin from cryptographic systems where
decryption was either done continuously during data transfer (on the communication line) or after all
data were transferred (off the communication line).

16 2 Analysis of Optimization Algorithms

a more profound notion which we will refer to as online optimization with lookahead. Here,

we can quantify the amount of information which is available to any algorithm operating in

this information regime. We start with a series of definitions in order to ensure a common

taxonomical and notational basis. The first definitions are based on Garey and Johnson ([77])

as well as on Ausiello et al. ([12]); subsequent definitions for online optimization problems –

both with and without lookahead – are introduced first in this thesis.

Definition 2.1 (Problem ([77])).

A problem is a general question containing a set of parameters. 4

Definition 2.2 (Instance of a problem ([77])).

An instance of a problem is a set of parameter values describing a concrete version of the

problem. 4

We remark that the term input is often used as a synonym for the term instance.

Definition 2.3 (Solution ([77])).

A solution to a given instance of a problem is an adequate answer to the concrete version of

the problem obtained by replacing the parameters in the general question with the provided

parameter values of the instance. 4

There are several types of problems requiring different kinds of answers: Decision problems

and search problems require yes-/no-answers, counting problems require integer answers,

and optimization problems require answers encoding the best solution. In order to give a

concise definition of the class of optimization problems, we first need an underlying concept

of optimality which allows us to judge on the quality of solutions.

Definition 2.4 (Optimality concept).

An optimality concept is a correspondence returning for each set of solutions to a given

instance of a problem a subset of this set to be considered best. 4

A natural form of an optimality concept is based on a scalar-valued objective function f

which assigns each solution s a number f(s) ∈ R, the ≤-relation on R and an optimization

goal opt ∈ {min,max}. There are other concepts of optimality, e.g., Pareto optimality in

multicriteria optimization, but for us the above optimality concept induced by (f,≤, opt)

will do. We are in a position to give a formal definition of an optimization problem which

implicitly subsumes the previous concepts.

2.1 Optimization Paradigms 17

Definition 2.5 (Optimization problem ([12])).

An optimization problem Π is a quadruple (I, S, f, opt) where I is a set of instances, S is

a function returning the set of solutions S(i) for any i ∈ I, f is a function returning the

objective value for any pair (i, s) ∈ I × S(i), and opt ∈ {min,max} is the optimization

goal. 4

We note that the set S(i) is also called the feasible set of i ∈ I.

In a given instance of an optimization problem, we can account for a best possible solution

among the set of all solution candidates in terms of the problem’s optimality concept.

Definition 2.6 ((Exact) solution to an instance of an optimization problem ([12])).

Let Π = (I, S, f, opt) be an optimization problem.

a) A solution to i ∈ I is a pair (s, f(i, s)) where s ∈ S(i).

b) An exact solution to i ∈ I is a pair (s∗, f(i, s∗)) where s∗ ∈ S(i) such that f(i, s∗) ≤
f(i, s) for all s ∈ S(i) if opt = min and f(i, s∗) ≥ f(i, s) for all s ∈ S(i) if opt = max.

4

The term optimal solution is used as a synonym for the term exact solution.

Because we consider optimization problems where instances are not known at the outset

but disclosed over time in an instance revelation process, Definition 2.5 exhibits two major

shortcomings:

• It does not account for the sequentiality in the instance revelation process that any

solution method has to obey.

• It disregards that the instance revelation process may depend on previous (partial)

answers given by the solution method.

We introduce the instance revelation rule as a mechanism to account for dynamic aspects in

the revelation process of an instance.

Definition 2.7 (Instance revelation rule).

An instance revelation rule is a rule that governs the temporal course of events in the release

of information on the problem instance. 4

The dynamic disclosure of an instance of an optimization problem is respected in the following

definition by associating a sequence of input elements and the instance revelation rule itself

to the instance.

18 2 Analysis of Optimization Algorithms

Definition 2.8 (Instance of an optimization problem).

An instance of an optimization problem consists of a set of parameter values including a

sequence σ = (σ1, σ2, . . .) and an instance revelation rule r. 4

The sequence σ in an instance of an optimization problem is called input sequence; its

elements σ1, σ2, . . . are called input elements. We say that the elements of σ await processing

by some solution method. Once an input element has been processed, it is considered finished.

We give three examples of general nature for an instance revelation rule:

• σi+1 with i = 1, 2, . . . is revealed when σi is considered finished.

• σ1, σ2, . . . are revealed at prescribed release times τ1, τ2, . . .

• σ is known completely at time 0.

Observe that choosing different instance revelation rules r and r′ on the same input sequence

σ establishes two different problem instances. Since different instance revelation rules may

be used for the same problem, we need a possibility to settle all sources of unclarity with

respect to the dynamic processing of the input elements which may inherently arise by the

introduction of lookahead. To this end, we associate a set of rules with a problem Π.

Definition 2.9 (Rule set).

A rule set of a problem is a set of restrictions on the solution to an instance of the problem.

4

Observe that choosing two different rule sets P and P ′ establishes two different problems.

We list three examples which may appear as elements of a rule set. Note that the first rule

cannot be used in conjunction with the second or third rule, respectively.

• σi with i = 1, 2, . . . has to be finished before σj with j > i can be finished.

• The finishing order of the input elements in σ is arbitrary.

• At most m ∈ N input elements with m > 1 can be finished at the same time.

The instance revelation rule and the rule set allow us to make a clear distinction between

the informational implications caused by lookahead and the consequences on processing of

the input elements inherent to lookahead. Regrettably, except for [155], none of the existing

literature on online optimization in conjunction with lookahead is concerned with this kind

of split of lookahead into forwarded information and implied processing requirements. As

a result, it is not clear which of the mechanisms is responsible for improvements when

additional lookahead is granted.

2.1 Optimization Paradigms 19

Whenever we want to make the rule set P of an optimization problem Π explicit, we may

write ΠP instead of Π and provide a specification of P ; whenever we want to make the

instance revelation process of an instance explicit, we specify the input sequence σ and the

revelation rule r in a pair (σ, r) along with the parameter values of the problem instance.

Example 2.10 (Paging).

Consider the paging problem introduced in Chapter 1.2 with page alphabet A, cache size k,

an initially filled cache, and denote by C = {c1, c2, . . . , ck} a cache configuration, i.e., a set

containing the k cache pages. We identify the elements of ΠP = (I, S, f, opt).

Rule set P may contain the following restrictions:

• Elements from σ = (σ1, σ2, . . .) are requested in ascending order of their index.

• Only one non-cache page can be brought into the cache at a time.

• A requested non-cache page has to be brought into the cache as soon as possible.

I is the set of all instances i = (σ, r) where σ = (σ1, σ2, . . .) with σi ∈ A for i = 1, 2, . . . is

the sequence of requested pages and r is an instance revelation rule such as:

• All elements of σ are known at the outset (offline optimization problem).

• Elements of σ become available one after another in equidistant intervals (online opti-

mization problem with independent release).

• One input element is known at a time; the next input element is revealed when

the previous one has been brought into the cache (online optimization problem with

processing-dependent release).

• Exactly k ∈ N input elements are known at a time; a new input element is revealed

when a known one has been brought into the cache (online optimization problem with

lookahead and processing-dependent release).

The set of solution candidates S contains all sequences of cache configurations which comply

with r and P , i.e.,

S =
{

(C1, C2, . . .) |Ci for i = 1, 2, . . . respects r and P
}
.

The objective function

f =
∑
j>1

|Cj\Cj−1|

maps a sequence of cache configurations to the total number of page evictions. opt = min

demands to minimize the total number of page evictions. ♦

20 2 Analysis of Optimization Algorithms

2.1.1 Offline Optimization

The key characteristic of an offline optimization problem is that there is no uncertainty about

any of its instances.

Definition 2.11 (Offline optimization problem).

An offline optimization problem is an optimization problem where in each instance the input

sequence is known at time 0. 4

Example 2.12 (Offline paging).

Paging is a sequential problem by nature, i.e., although all page requests are known at the

outset, it is forbidden to permute them when bringing them into the cache. This is reflected

by the specification of rule set P = {p1, p2, p3} with

• p1 := σi has to be brought into the cache before σj if i < j,

• p2 := Two successive cache configurations have to differ in exactly one page, and

• p3 := A page has to be brought into the cache as soon as it is available.

♦

2.1.2 Online Optimization

The key characteristic of an online optimization problem is that there is uncertainty with

respect to the input sequence in at least one instance of that problem.

Definition 2.13 (Online optimization problem).

An online optimization problem is an optimization problem where at least one instance exists

for which the input sequence is not known completely at time 0. 4

We next specify two refinements of online optimization problems frequently addressed in

literature ([85], [116], [157]). In the sequential model of online optimization, new input

elements are revealed in a processing-dependent fashion.

Definition 2.14 (Online optimization problem in the sequential model).

An online optimization problem in the sequential model is an optimization problem where

any instance of the problem has an instance revelation rule which says that a new input

element only becomes known when another one has finished processing. 4

2.1 Optimization Paradigms 21

In the time stamp model of online optimization, input elements are released by an inde-

pendent external input element generator irrespective of any processing. The release times

correspond to time stamps. In contrast to the sequential model, input elements can be

accumulated in the time stamp model.

Definition 2.15 (Online optimization problem in the time stamp model).

An online optimization problem in the time stamp model is an optimization problem where

any instance of the problem has an instance revelation rule which assigns each input element

an independent release time. 4

Example 2.16 (Online paging).

Online paging is classically understood in the sequential model. Hence, we have for each

instance an instance revelation rule in the form

r := At time 0, only σ1 is seen; the next page of σ is revealed when the

currently known unprocessed page is in the cache.

Concerning rule set P , we can drop rules p1 and p2 from the offline problem in Example 2.12

because they are implied automatically as a consequence of r and we obtain

P := {A page has to be brought into the cache as soon as it is available}.

In the (barely known) time stamp model of paging, page requests pop up independently at

their release times and the restriction of sequential processing is dropped. Hence, we have

another instance revelation rule, namely

r := A page becomes available when its release time is reached.

We demand page evictions after time intervals of a given length have elapsed by rule set

P := {The cache is updated after a given amount of time has elapsed}.

In implementations, we have to think of resolution strategies for the case of too many page

arrivals in a short period of time (buffer overflow). ♦

2.1.3 Online Optimization with Lookahead

Online optimization problems with lookahead are online optimization problems. Their sep-

arate discussion results from the significant research question of how much the outcome in

22 2 Analysis of Optimization Algorithms

an online optimization problem can be enhanced through the provision of input elements at

an earlier point in time. Since lookahead makes information available earlier, an equivalent

approach would be to speak of preponed or forwarded information release.

Introducing lookahead in an online optimization problem amounts to exchanging the instance

revelation rule of each instance with another one that has enhanced lookahead capabilities.

Hence, we have to view any instance with lookahead in the light of a reference instance

without lookahead. We further recognize that by making parts of the instance known earlier,

new possibilities with regard to input element processing may arise as stated in the rule set.

We establish the notion of an instance revelation rule substitution in order to manifest

reference to another online optimization problem.

Definition 2.17 (Instance revelation rule substitution).

An instance revelation rule substitution r → r′ of instance revelation rule r with instance

revelation rule r′ transforms any instance of an optimization problem containing r into the

same instance with r replaced by r′. 4

If there is a functional relation between the input element release times in the original and

those in the transformed instance, we can refine the abstract concept of an instance revelation

rule substitution by the specification of a function which gives for each input element σi the

amount of time by which σi becomes known earlier under lookahead than in the reference

instance without lookahead.

Definition 2.18 (Lookahead operator).

A lookahead operator is a function L : N → R≥0 where L(i) gives the amount of time that

input element σi of an instance containing input sequence σ = (σ1, σ2, . . .) becomes known

earlier through lookahead. 4

Lookahead is worthless for L ≡ 0 and almighty (with respect to the resource information) for

L ≡ τ where τ represents the vector of release times of the input elements in the reference

instance.

Apart from transforming problem instances by changing their instance revelation rule, looka-

head may impose different restrictions on how to treat the elements of σ.

Definition 2.19 (Rule set substitution).

A rule set substitution P → P ′ of rule set P with rule set P ′ transforms optimization

problem ΠP = (I, S, f, opt) into optimization problem ΠP ′ = (I, S ′, f, opt) where for i ∈ I
any s ∈ S(i) satisfies P and any s′ ∈ S ′(i) satisfies P ′. 4

2.1 Optimization Paradigms 23

Essentially, as a result of a rule set substitution, the feasible sets of ΠP and ΠP ′ no longer

coincide because P ′ imposes different requirements on a solution than P .

We are in a position to give a definition of lookahead in online optimization:

Definition 2.20 (Lookahead).

A lookahead is a pair (r → r′, P → P ′) consisting of an instance revelation rule substitution

r → r′ and a rule set substitution P → P ′. 4

The following definition accounts for the transformation of a given reference online opti-

mization problem induced by lookahead: On the one hand, transformation affects problem

instances due to the instance revelation rule substitution; on the other hand, problem re-

strictions may be updated as a result of the rule set substitution.

Definition 2.21 (Online optimization problem with lookahead).

An online optimization problem with lookahead is an online optimization problem which is

obtained from a reference online optimization problem by applying the instance revelation

rule substitution and the rule set substitution of a given lookahead to the instances and to

the feasible set of the reference online optimization problem, respectively. 4

Figure 2.1 illustrates the decomposition of lookahead into an informational and a processual

component.

Online optimization problem

ΠP = (I, S, f, opt)
i = (σ, r) ∈ I

Online optimization problem
with lookahead

Π′
P = (I ′, S, f, opt)
i′ = (σ, r′) ∈ I ′

Online optimization problem
with lookahead

Π′
P ′ = (I ′, S ′, f, opt)
i′ = (σ, r′) ∈ I ′

(r → r′, P → P)

Instance revelation

rule substitution

(r′ → r′, P → P ′)
Rule set

substitution

(r → r′, P → P ′)
Lookahead

Figure 2.1: Change of problem instances and problem through application of lookahead.

24 2 Analysis of Optimization Algorithms

Example 2.22 (Online paging with lookahead).

First, recall the instance revelation rule in the reference online optimization problem from

Example 2.16 as

r := At time 0, only σ1 is seen; the next page of σ is revealed when the

currently known unprocessed page is in the cache.

Consider now lookahead where essentially a fixed number k of pages is known at each time,

but pages are still required to be processed in their order of release (request lookahead

without permutation); we have instance revelation rule

r′ := At time 0, σ1, . . . , σk are seen; the next page of σ is revealed when the

currently known unprocessed page with smallest index is in the cache.

Rule set P of the reference online optimization problem remains valid after introduction of

lookahead, i.e., the lookahead is of the form (r → r′, P → P).

We also give the instance revelation rule for the strong type of lookahead as introduced by

Albers ([2]) where one can foresee additionally the next k different pages.

r′ := At time 0, σ1, . . . , σk′ with |{σ1, . . . , σk′}| = k + 1 are seen; whenever a

page from the lookahead is served for the last time among the lookahead

requests, the remaining pages of σ are revealed such that there are k + 1

pairwise different pages in the lookahead again.

♦

Because of the absence of a neutral performance benchmark in any optimization problem

under incomplete information (in contrast to the existence of exact solutions in offline opti-

mization), we recognize that we cannot derive any statement about the value of lookahead in

online optimization without specifying the solution method on which any of these statements

would depend.

2.2 Algorithm Analysis

Since we cannot expect a given instance of a problem to be solved by mere intuition or

clairvoyance, we are in need of a structured computational method for solution retrieval.

2.2 Algorithm Analysis 25

Definition 2.23 (Algorithm ([54], [77])).

An algorithm is a list of computational statements designed to find an adequate answer for

any instance of a given problem. 4

Algorithms take a set of values as initial input, optionally collect values as additional in-

put during execution of the statements and produce another set of values as output. In

optimization problems, algorithms return an element from the set of solutions.

Definition 2.24 ((Exact) algorithm for an optimization problem ([12], [54])).

Let Π = (I, S, f, opt) be an optimization problem.

a) An algorithm is a function Alg : I → S which assigns every i ∈ I a solution

sAlg(i) ∈ S(i).

b) An exact algorithm is a function Alg : I → S which assigns every i ∈ I an exact

solution sAlg(i) ∈ S(i).

4

The term optimal algorithm is used as a synonym for the term exact algorithm.

For problems under incomplete information, exact algorithms do not exist by nature; for

hard offline optimization problems, they may exceed available computing resources on some

instances. We conclude that in either situation, we have to be satisfied with algorithms which

produce possibly good solutions in favor of the decision maker. Moreover, data in applications

is often fuzzy or inaccurate, rendering the usage of exact algorithms inexpedient.

The two main pillars in the field of algorithms are design and analysis. We are concerned

with the latter since we intend to decide for a given set of algorithm candidates which one is

most promising. Concerning algorithms for online optimization problems under lookahead,

the resource information represents the biggest asset of an algorithm, and we seek to analyze

the influence of this resource on obtainable solution quality.

2.2.1 Complexity of Problems and Algorithms

Motivated by the resource boundedness of computers, complexity analysis of algorithms opts

at investigating resource utilization such as run time, memory or bandwidth consumption of

algorithms. The primary yardstick for algorithm complexity is run time which stems from

the desire to measure efficiency in terms of speed. Transferring the tractability of problems

through (known) algorithms, problems are also categorized in complexity classes.

26 2 Analysis of Optimization Algorithms

The underlying computational model of the following discussion is the unit-cost random ac-

cess machine where only the number of elementary steps is counted ([54]): Each elementary

step takes O(1) time independent of the length of involved operands. Elementary steps com-

prise arithmetic, data and control operations. Memory hierarchies and multi-core processors

are neglected in this model of computation as well. However, it gives suitable run time

predictions of algorithms on computers. We recall that a polynomial-time algorithm for a

problem is an algorithm which terminates for any instance of size n ∈ N in O(nk) time with

k ∈ N0.

In order to organize optimization problems in complexity classes, we have to make one step

back and consider a class of problems related to optimization problems.

Definition 2.25 (Decision problem ([77])).

A decision problem is a problem where the answer to each instance is either yes or no. 4

Any optimization problem Π = (I, S, f, opt) can be associated to a corresponding decision

problem by equipping it with a bound b ∈ R on the objective value and asking for instance

i ∈ I whether s ∈ S(i) with f(s) ≤ b if opt = min or f(s) ≥ b if opt = max exists. It follows

that an optimization problem is at least as hard as the related decision version. Fortunately,

decision problems can be organized in complexity classes.

Definition 2.26 (Complexity class P ([77])).

The complexity class P consists of all decision problems for which an algorithm exists which

determines the correct solution to any instance in polynomial time. 4

Unfortunately, for plenty of decision problems no polynomial-time algorithm has been found

until today. In order to admit a classification of these problems with respect to their tractabil-

ity as well, we merely demand that verification of an answer to a problem instance is compu-

tationally tractable when a certificate for the answer is provided. Verification is accomplished

by a verification algorithm which outputs yes upon receival of an instance and a certificate

if and only if the instance is indeed a yes-instance. Because it is unclear how many of these

certificates need to be supplied until a yes-instance is encountered, the N in the following

definition stands for non-deterministic.

Definition 2.27 (Complexity class NP ([77])).

The complexity class NP consists of all decision problems for which any yes-answer along

with a certificate can be verified as a yes-instance in polynomial time. 4

The majority of the decision versions of real world computational problems belongs to the

hardest problems in NP . To characterize them, we need polynomial-time reducibility.

2.2 Algorithm Analysis 27

Definition 2.28 (Polynomial-time reducibility ([77])).

A decision problem Π′ is called polynomial-time reducible to decision problem Π if there is

a polynomial-time algorithm with respect to the size of i′ ∈ IΠ′ such that

1. i′ ∈ IΠ′ is transformed into i ∈ IΠ,

2. i′ is a yes-instance if and only if i is a yes-instance.

4

Clearly, any algorithm for Π can be used as a subroutine for Π′. If there is no polynomial-time

algorithm for Π′, then there cannot be a polynomial-time algorithm for Π since otherwise

the polynomial-time algorithm for Π could be used for Π′ along with polynomial-time re-

ducibility.

Definition 2.29 (Complexity class NP-complete ([77])).

The complexity class NP-complete consists of all decision problems Π which fulfill the

following two properties:

1. Π ∈ NP ,

2. Π′ is polynomial-time reducible to Π for any Π′ ∈ NP .

4

It follows that if one NP-complete problem can be solved in polynomial time, then all

problems in NP can be solved in polynomial time, i.e., P = NP ; also, if for any NP-

complete problem no polynomial-time algorithm exists, then there is no such algorithm for

all NP-complete problems. This is why NP-complete problems are considered the hardest

problems in NP . Starting with the satisfiability problem ([52]), the existence of numerous

NP-complete problems could be established. Recalling that P , NP and NP-complete are

defined only for decision problems, we extend the classification to general problems next. For

polynomial-time reductions between different problem classes, we refer the reader to [12].

Definition 2.30 (Complexity class NP-hard ([77])).

The complexity classNP-hard consists of all problems Π for which it holds that any Π′ ∈ NP
is polynomial-time reducible to Π. 4

If already the decision problem version of an optimization problem is NP-complete, then

the optimization problem itself has to be at least as hard as all problems in NP . Figure 2.2

summarizes the relations between the complexity classes.

28 2 Analysis of Optimization Algorithms

P

NP

NP-complete NP-hard

a)

P = NP
= NP-complete

NP-hard

b)

Figure 2.2: Relations between complexity classes. a) P 6= NP. b) P = NP.

The extensive list of NP-complete problems in [77] including settings from graph theory,

network design, partitioning, storage and retrieval, and mathematical programming contains

numerous elementary problems which can be identified as subproblems in thousands of prac-

tical applications, making them intrinsically difficult. Although the vast majority of known

algorithms for NP-hard problems run in exponential time and we cannot fare better than

super-polynomial (given P 6= NP), for some problems faster exact algorithms are known

than for others. Over the last years, researchers have fostered interest in determining the

exact complexity ofNP-hard problems to distinguish between different exponential run-time

behaviors of algorithms. We refer the interested reader to the survey of Woeginger ([160]).

Complexity classes for optimization problems are established in relation to P and NP .

NPO comprises all optimization problems whose decision version is in NP ; PO consists of

all NPO problems which can be solved exactly in polynomial time.

Definition 2.31 (Complexity class NPO ([12])).

The complexity class NPO consists of all optimization problems Π = (I, S, f, opt) which

fulfill the following properties:

1. i ∈ I is recognizable as an instance of the problem in polynomial time.

2. For any i ∈ I, it is decidable in polynomial time whether a given s ∈ S(i), and the size

of any s ∈ S(i) is bounded by O(|s|k) for some k ∈ N0.

3. f is computable in polynomial time.

4

Definition 2.32 (Complexity class PO ([12])).

The complexity class PO consists of all optimization problems Π = (I, S, f, opt) ∈ NPO
such that there exists an exact polynomial-time algorithm for Π. 4

2.2 Algorithm Analysis 29

In the sequel, we discuss how complexity arises in online optimization problems. Due to

successive instance revelation, no optimization algorithm can be exact and not even an

exponential-time algorithm with infinite capacities is able to determine an exact solution.

Thus, any online optimization problem is NP-hard. Yet, because solving an instance of an

online optimization problem comprises solving a series of subproblems, we have to be more

concerned about the complexity of the subproblems.

Whenever lookahead implies that the informational preview in terms of future input ele-

ments is bounded, subproblems occurring over time can be solved in fixed polynomial time.

Whenever lookahead admits an arbitrary number of input elements to be foreseen, the sizes

of the subproblems may become arbitrarily large such that their complexity equals that of

the offline variant of the subproblem. Irrespective of a polynomial-time upper bound on run

time, solving medium to large scale instances of NP-hard optimization problems represents

a computational burden for any online procedure in case of real-time requirements.

Since future information is uncertain anyway, finding exact solutions to the subproblems does

not automatically imply better solutions for the overall problem. We will see in Chapters 5

and 6 that there are counterexample instances in some problems where exact reoptimization

turns out disadvantageous due to myopic decision making based on current data because fu-

ture (currently unknown) data is likely to necessitate deviating from once computed plans.

We remark that it is not clear (i.e., it is not exogenously given) how optimization goal and

constraints have to look like in the subproblems. One expects them to coincide with those

of the overall problem, but perhaps it may be more advantageous to include additional or

different criteria and restrictions in the subproblems (see also Chapters 5.3, 5.4 and 7.2).

2.2.2 Classification of Optimization Algorithms

Besides classifying algorithms according to their run time, we have to account for solution

quality when dealing with optimization algorithms. Among the set of algorithms which do

not necessarily provide an exact solution to an optimization problem, we distinguish between

different aspiration levels ([12], [54]). To this end, let sAlg(i) ∈ S(i) be the solution computed

by algorithm Alg for instance i ∈ I in an optimization problem Π = (I, S, f, opt).

Approximation algorithms find a solution to an offline optimization problem with provable

solution quality. If opt = min, Alg is called c-approximative if for all i ∈ I it holds

that

f(i, sAlg(i)) ≤ c · min
s∈S(i)

f(i, s).

30 2 Analysis of Optimization Algorithms

If opt = max, Alg is called a c-approximation algorithm if for all i ∈ I it holds that

c · f(i, sAlg(i)) ≥ max
s∈S(i)

f(i, s).

Approximation algorithms5 are used when the limiting resource is computing time.

Competitive algorithms find a solution to an online optimization problem with provable

solution quality with respect to a hypothesized offline algorithm. If opt = min, Alg

is called c-competitive if for all i ∈ I it holds that

f(i, sAlg(i)) ≤ c · min
s∈S(i)

f(i, s).

If opt = max, Alg is called c-competitive if for all i ∈ I it holds that

c · f(i, sAlg(i)) ≥ max
s∈S(i)

f(i, s).

The limiting resource is scarce information ([32]) and not computing time.

Heuristics find a good, but not necessarily optimal solution to an (offline or online) op-

timization problem without assuring any guarantee of solution quality. Nonetheless,

computational experiments show that a large number of heuristic algorithms perform

considerably well for instances of practical problems.

Example 2.33 (Algorithms in a practical problem).

Consider a repair service which has to send a technician to customers upon their request.

To save costs, the optimization problem consists of selecting a customer order that causes a

minimum length of the service technician’s tour starting and ending at the company building.

How can the problem be tackled? Realizing that at each day the company faces an online

version of the NP-hard traveling salesman problem (TSP), there are several possibilities:

• The company ignores that customer requests arrive online and puts their requests off

to be served at the next day. This day-ahead scheduling approach amounts to solving

instances of the offline TSP over night such that customers will be served according to

the obtained plan the next day. If the company possesses two computers, it can try to

solve a mathematical programming formulation ([19], [42]) of the instance with an exact

algorithm on one computer, whilst on the other it uses Christofides’ 3
2
-approximation

5 The definitions for opt ∈ {min,max} can be collapsed into one by max

{
f(i,sAlg(i))

f(i,s∗) , f(i,s∗)
f(i,sAlg(i))

}
≤ c with

exact solution s∗ on any instance i; the maximum is attained by the first term in a minimization problem
and by the second term in a maximization problem.

2.2 Algorithm Analysis 31

algorithm ([44]) for the TSP or the k-opt-heuristic with k ∈ {2, 3, 4} ([124]) which is

known to produce sufficiently good results for practical needs.

• Arriving customer requests are served in an online manner. Suitable objectives are to

minimize the makespan, i.e., the time to finish all requests, or to minimize the latency,

i.e., the sum of all completion times of the customers. For minimizing the makespan

a 2-competitive algorithm PlanAtHome is known ([13]), while for minimizing the

latency only a 6-competitive algorithm Interval is available ([117]). We mention two

generic algorithms for solving online optimization problems ([116]): Replan computes

an optimal tour for all known requests whenever a new request arrives and follows this

tour until either it returns to the origin or a new request arrives; Ignore computes

an optimal tour for all known requests and follows this tour until it returns to the

origin where it computes a new optimal tour for those requests that have arrived in

the meantime. Both algorithms are 5
2
-competitive for minimizing the makespan.

• Customer requests are assumed to pop up some time ahead of earliest possible visit

(e.g., due to contractually prescribed durations between service request and delivery),

giving an algorithm a form of time lookahead. It is shown in [7] that lookahead leaves

the competitive factor at 2 which means that no better algorithm with respect to the

optimal offline solution is found in the competitive analysis framework.

♦

2.2.3 Algorithms and Lookahead

With algorithms as solution procedures for online optimization problems, we are led to the

question of what can be achieved by them upon provision of additional lookahead. For most

problem instances, lookahead is expected to change the instance and the underlying rules

in favor of the decision maker. Yet, there are situations where decisions of an algorithm

based on lookahead are worse than those that would have been taken without lookahead. To

quantify the impact of lookahead in terms of a change in the objective value, we introduce the

lookahead value which we further decompose into two components according to the instance

revelation rule and rule set substitutions of a lookahead.

Definition 2.34 (Lookahead value).

Let ΠP = (I, S, f, opt) and ΠP ′ = (I ′, S ′, f, opt) be online optimization problems where the

instances i′ ∈ I ′ result from applying lookahead (r → r′, P → P ′) to the instances i ∈ I, and

let sAlg ∈ S(i) and sAlg′ ∈ S ′(i′) be the solution candidates obtained by Alg and Alg′,

respectively.

32 2 Analysis of Optimization Algorithms

• If opt = max, then

∆f r,r
′,P,P ′

Alg,Alg′(i) := f(i′, sAlg′)− f(i, sAlg)

is called the lookahead value of (r → r′, P → P ′) on input sequence i with respect to

algorithm pair (Alg,Alg′).

• If opt = min, then

∆f r,r
′,P,P ′

Alg,Alg′(i) := f(i, sAlg)− f(i′, sAlg′)

is called the lookahead value of (r → r′, P → P ′) on i with respect to algorithm pair

(Alg,Alg′).

4

We artificially decompose the lookahead value to account for the partial improvements due

to the instance revelation rule substitution and due to the rule set substitution, respectively.

The decomposition is artificial because it relies on the members of the set ALG of admissible

algorithms for problems that have to operate under rule set P .

Definition 2.35 (Partial lookahead value due to instance revelation rule substitution).

Let ΠP = (I, S, f, opt) be an online optimization problem, let Alg be an algorithm for ΠP ,

and let ALG be a set of admissible algorithms for ΠP . Further, let i′′ be the instance which

results from applying lookahead (r → r′, P → P ′) to instance i ∈ I, and let sAlg ∈ S(i) and

sAlg′′ ∈ S(i′′) be the solutions obtained by Alg and Alg′′ ∈ ALG, respectively.

• If opt = max, then

∆f r,r
′

Alg(i) := max
Alg′′∈ALG

{
f(i′′, sAlg′′)

}
− f(i, sAlg)

is called the partial lookahead value of (r → r′, P → P ′) due to instance revelation

rule substitution r → r′ on i with respect to Alg and ALG.

• If opt = min, then

∆f r,r
′

Alg(i) := f(i, sAlg)− min
Alg′′∈ALG

{
f(i′′, sAlg′′)

}
is called the partial lookahead value of (r → r′, P → P ′) due to instance revelation

rule substitution r → r′ on i with respect to Alg and ALG.

4

2.2 Algorithm Analysis 33

Note that in the previous definition Alg′′ has to operate under P although the lookahead

(r → r′, P → P ′) also comprises a rule set substitution to P ′. However, to determine the

partial lookahead value attributable to the instance revelation rule substitution, we have to

maintain algorithm processing under rule set P . The value of ∆f r,r
′

Alg(i) specifies the absolute

improvement attainable for a given set ALG of algorithm candidates operating under P .

Definition 2.36 (Partial lookahead value due to rule set substitution).

Let ΠP = (I, S, f, opt) and ΠP ′ = (I ′, S ′, f, opt) be online optimization problems, let Alg

and Alg′ be algorithms for ΠP and ΠP ′ , respectively. Further, let i′ be the instance which

results from applying instance revelation rule substitution (r → r′) to instance i ∈ I, and

let sAlg′ ∈ S(i′) be the solution obtained by Alg′. The value

∆fP,P
′

Alg,Alg′(i) := ∆f r,r
′,P,P ′

Alg,Alg′(i)−∆f r,r
′

Alg(i)

is called the partial lookahead value of (r → r′, P → P ′) due to rule set substitution P → P ′

on i with respect to algorithm pair (Alg,Alg′). 4

By definition, the lookahead value is decomposed into the two components, i.e., for lookahead

(r → r′, P → P ′) it holds that

∆f r,r
′,P,P ′

Alg,Alg′(i) = ∆f r,r
′

Alg(i) + ∆fP,P
′

Alg,Alg′(i).

It deserves mentioning that the partial lookahead value due to rule set substitution implicitly

presumes that additional information is made known earlier. Hence, it can be seen as the

part of the lookahead effect that could not be elicited just by making use of the additional

information. In a similar form, [155] considers lookahead to be either a means of information

preview or a means of selection.

The following two examples show that – depending on the application – both partial look-

ahead values can be prevalent.

Example 2.37 (Online bin packing with lookahead).

Consider bin packing with two item sizes {0.4, 0.6} and item sequence σ = (σ1, σ2, σ3, σ4) =

(0.4, 0.4, 0.6, 0.6). For the pure online version, we have instance revelation rule r as

r := σ1 is known at the beginning;σi+1 is revealed after σi has been assigned

and rule set P as

P := {σi has to be assigned before σi+1}.

34 2 Analysis of Optimization Algorithms

For the lookahead version, we assume request lookahead of size 2, i.e., we have instance

revelation rule r′ as

r′ := σ1, σ2 are known at time 0; an item is revealed when another one has been assigned

and rule set P ′ as

P ′ := {Any previously revealed item can be assigned when it has not yet been assigned}.

Let instances i and i′ correspond to σ as revealed under r and r′, respectively. We use

algorithm BestFit (Bf) in the pure online setting and algorithm BestFitDecreasing

(Bfd) in the setting with lookahead. Bf puts the next item into the fullest bin available,

whereas Bfd first sorts the known unassigned items by non-increasing sizes and assigns the

largest of them to the fullest bin available. Both algorithms comply with rule sets P and P ′,

respectively. Moreover, we let intermediary algorithm BestFitModified (Bfm) operate

under rule set P , i.e., it puts the items into the bins in their order of appearance. However,

Bfm bases its decision on all available information: When Bfm is supplied with information

according to r′ it operates identically to Bf except for the case where an open bin at level

0.4 exists and two unassigned items with sizes 0.4 and 0.6 have to be assigned in this order

(as required by P). In this case, the item of size 0.4 is put in a new bin and the item of size

0.6 is packed afterwards in one of the two bins at level 0.4.

Applying Bf yields one bin at level 0.8 and two bins at level 0.6, i.e., sBf(i) =
(
(0.4, 0.4), (0.6),

(0.6)
)

and f(i, sBf(i)) = 3. Applying Bfd yields two fully laden bins, i.e., sBfd(i′) =(
(0.4, 0.6), (0.6, 0.4)

)
and f(i′, sBfd(i′)) = 2. We therefore observe a lookahead value of

∆f r,r
′,P,P ′

Bf,Bfd (i) = 3 − 2 = 1. Applying Bfm yields sBfm(i′) =
(
(0.4, 0.6), (0.4, 0.6)

)
in compli-

ance with P and f(i′, sBfm(i′)) = 2. Moreover, f(i′, s) ≥ 2 for any solution s ∈ S(i′). Thus, we

have a lookahead value due to instance revelation rule substitution of ∆f r,r
′

Bf (i) = 3−2 = 1 on

i. There is no lookahead value due to rule set substitution because ∆fP,P
′

Bf,Bfd(i) = 3−2−1 = 0.

In this example, the improvement is a result of provision of information at an earlier point

in time; allowing to permute the items is of no value. We can think of this as an algorithm

fictively processing lookahead information and reserving spaces according to the lookahead

case, whilst factually still adhering to the original release order during item packing. ♦

Example 2.38 (Online traveling salesman with lookahead).

Consider a traveling salesman problem with two locations {0, 1} and request sequence σ =

(σ1, σ2, σ3, σ4, σ5) = (0, 1, 0, 1, 0). The server starts in 0. For the pure online version, we have

2.2 Algorithm Analysis 35

instance revelation rule r as

r = σ1 is known at the beginning;σi+1 is revealed after σi has been visited

and rule set P as

P = {σi has to be visited before σi+1}.

For the lookahead version, we assume request lookahead of size 2, i.e., we have instance

revelation rule r′ as

r′ = σ1, σ2 are known initially; a request is revealed when another one has been visited

and rule set P ′ as

P ′ := {Any previously revealed request can be visited when it has not yet been visited}.

Let instances i and i′ correspond to σ as revealed under r and r′, respectively. Note that

rule set P ′ makes some locations visitable at an earlier time, e.g., at time 0, both σ1 and

σ2 can be visited, whilst under P only σ1 can be visited. Due to P , we must use algorithm

FirstComeFirstServed (Fcfs) in the pure online setting; in the setting with lookahead,

we use algorithm NearestNeighbor (Nn). Fcfs visits the requests in their order of

release, whereas Nn stays in the current location when this location is contained in the two

unvisited known requests. Both algorithms comply with rule sets P and P ′, respectively.

Moreover, there is no algorithm other than Fcfs to operate under P , i.e., we must choose

Fcfs as an intermediary algorithm that is supplied with information according to r′, but

obviously cannot capitalize from it.

Applying Fcfs on i yields the visiting order sFcfs(i) = (0, 1, 0, 1, 0) and f(i, sFcfs(i)) = 4.

Applying Nn on i′ yields the visiting order sNn(i′) = (0, 0, 1, 1, 0) and f(i′, sNn) = 2. We

therefore observe a lookahead value of ∆f r,r
′,P,P ′

Fcfs,Nn (i) = 4 − 2 = 2. Applying “intermediary”

algorithm Fcfs on i′ yields sFcfs(i
′) = (0, 1, 0, 1, 0) in compliance with P and f(i′, sFcfs) = 4.

Moreover f(i′, s) = 4 for any solution s ∈ S(i′). Thus, we have a lookahead value due

to instance revelation rule substitution of ∆f r,r
′

Fcfs(i) = 4 − 4 = 0 on i. The complete

lookahead value is made up of the lookahead value due to rule set substitution because

∆fP,P
′

Fcfs,Nn(i) = 4− 2− 0 = 2.

In this example, the improvement is a result of the change of circumstances under which

requests have to be visited; allowing to permute the release order of the known requests in

the visiting order is responsible for the complete lookahead value and it enables us to get

36 2 Analysis of Optimization Algorithms

rid of Fcfs which is ultimately susceptible to detours. Without this allowance we could not

make use of any additional information no matter at which time it is given. ♦

2.3 Performance of Optimization Algorithms

There are many different perspectives on assessing algorithm performance, and to our mind,

a holistic judgement can only be obtained by intermixing them: Worst-case analysis gives

strong worst-case guarantees of algorithm quality, but lacks in displaying the overall behavior.

Average-case analysis addresses an algorithm’s overall behavior, but it assumes distributions

on the instances to be given and provides no guarantee in form of a maximum deviation

from an (offline) optimum. Distributional analysis intends to illustrate the spectrum of

an algorithm’s behavior over all input instances, thereby eliminating weaknesses of worst-

case and average-case analysis; yet, distributional results are hard to obtain. We desire the

following properties for an ideal performance measure:

Generality The performance measure can be formulated regardless of a specific problem.

Applicability The performance measure can be applied to all types of problem settings.

Representativeness The performance measure allows for a statement about the overall be-

havior of an algorithm over all instances.

Comparability Algorithms can be compared directly using the performance measure.

Analyzability and computability The performance measure can be expressed analytically

or at least calculated in a sample-based method.

It is hardly possible for a performance measure to fulfill all criteria at once. Subsequently, we

first study performance measures for online algorithms suggested in literature along with their

strengths and weaknesses (Chapter 2.3.1), before we present our approach to performance

assessment of algorithms in online optimization that allows for the consideration of different

information regimes (Chapter 2.3.2).

2.3.1 Performance Measures for Online Optimization Algorithms

Analyzing the relation between an online algorithm (with absent or present lookahead) and

an optimal offline algorithm from a worst-case perspective has become the standard tool,

called competitive analysis, for analyzing online algorithms. However, this approach comes

along with some notable disadvantages and limitations ([65], [73]):

2.3 Performance of Optimization Algorithms 37

• Results are overly pessimistic because single worst-case instances, often pathologically

construed, decide upon the quality of an algorithm.

• Competitive analysis is oblivious to overall algorithm performance.

• Algorithm performance is reduced to a single, worst-case-related key figure.

• Discriminating between algorithms with equivalent worst-case, but differing average-

case behavior is impossible.

• Competing with an omniscient offline algorithm may be irrelevant in practice because

only short previews of future information are eligible.

• Direct comparison between two candidate algorithms is impossible.

• Although suggested by computational experiments, competitive analysis often fails to

reproduce the beneficial impact of lookahead.

• If the generation of input elements depends on algorithm processing, it is impossible

to formulate an offline counterpart of an online optimization problem.

• Competitive analysis is only amenable for academic problems, but not for real world

applications.

In order to mitigate these effects, several enhancements to competitive analysis were proposed

(see, e.g., the surveys in [38], [65], [91]) such as increasing the power of the online algorithm,

reducing the power of the offline algorithm, restricting the instance space, applying alter-

native objective functions, or randomizing the online processing. Other approaches intend

to eliminate the weaknesses of competitive analysis, e.g., by comparing algorithms directly,

assuming some distribution for the input sequences, or expanding performance assessment

from a single number to distribution functions. Table 2.1 gives a systematical overview of

the performance measures found in literature used for the analysis of online optimization

algorithms.

To harmonize notation with literature, we will denote the objective value f(i, sAlg(i)) of

online algorithm Alg on instance i containing input sequence σ as Alg[σ] := f(i, sAlg(i));

instead of instance set I, we use the set of all input sequences Σ. Moreover, we assume

minimization as optimization goal and denote an optimal (hypothesized) offline algorithm

by Opt. Except for the competitive ratio, none of the developed alternatives is widely

accepted and recognized as a performance measure. The reason for this is that the measures

were mainly developed in a problem-specific context in order to unfold some special property

of an algorithm that has been observed empirically.

38 2 Analysis of Optimization Algorithms

Deterministic worst-case analysis

Competitive analysis and refinements

• Competitive ratio ([80], [32], [99], [100], [104], [149], [150])

• Competitive ratio under resource augmentation (On ↑) ([56], [71], [102], [149])

• Competitive ratio under fair adversaries (Off ↓) ([11], [31])

• Competitive ratio under locality of reference (Off ↓) ([4], [33])

• Loose competitive ratio (Off ↓) ([165], [167])

• Accommodating function (Off ↓) ([37], [39])

• Cooperative ratio ([66])

Other approaches

• Comparative ratio ([115])

• Max/Max ratio ([20])

• Relative worst-order ratio ([35])

Probabilistic worst-case analysis

Competitive analysis and refinements

• Smoothed competitive ratio (Off ↓) ([16], [153])

• (Randomized algorithms (Off ↓) ([21], [32])

Other approaches

• Random order ratio ([108])

Average-case analysis

Competitive analysis and refinements

• Expected competitive ratio ([151])

• Expected performance ratio ([136], [145], [151])

• Expected competitive ratio under diffuse adversaries ([115], [15], [166])

Distributional analysis

Other approaches

• Relative interval analysis ([67])

• Stochastic dominance ([90])

• Bijective analysis ([9], [10])

• Average analysis ([9], [10])

• Counting distribution of objective value ([68])

• Counting distribution of performance ratio ([68])

Table 2.1: Performance measures for algorithms in online optimization problems. Decreased (in-
creased) power of an offline (online) algorithm is denoted by Off ↓ (On ↑).

2.3 Performance of Optimization Algorithms 39

2.3.1.1 Deterministic Worst-Case Performance Measures

Competitive analysis has become the standard for measuring performance of online algo-

rithms since its advent in the 1970s and 1980s6. The idea of competitive analysis is to

directly compare the performance of Alg to that of Opt. Alg is called c-competitive if

there is a constant a such that

Alg[σ] ≤ c ·Opt[σ] + a, σ ∈ Σ. (2.1)

The role of the additive constant a is to facilitate an asymptotic analysis and to make results

independent of initial conditions for finite input sequences. In the case a = 0, Alg is called

strictly c-competitive if
Alg[σ]

Opt[σ]
≤ c, σ ∈ Σ. (2.2)

A c-competitive algorithm is a c-approximation algorithm with the additional restriction

that it has to compute online ([32]). The competitive ratio cr of Alg is the greatest lower

bound over all c such that Alg is c-competitive, i.e.,

cr = inf{c ≥ 1 |Alg[σ] ≤ c ·Opt[σ] + a, σ ∈ Σ} (2.3)

= inf{c ≥ 1 |Alg is c-competitive}. (2.4)

The competitive ratio states how much the performance of Alg degrades with respect to Opt

due to the lack of information in the worst-case. If Alg can be shown to be c-competitive,

but c cannot be shown to be the competitive ratio because we only have a lower bound c for

the competitive ratio, there is a competitiveness gap of c−c for Alg. The competitive ratio’s

worst-case nature leads to the critique mentioned in the introduction of this section. The

first competitive analysis is probably due to Graham ([80]) who analyzed the List algorithm

for minimum makespan scheduling on m parallel machines showing that cr = 2− 1
m

.

The weakness of Alg compared to Opt can partially be overcome by tuning instance para-

meters in favor of Alg and leaving them unchanged for Opt. Since informational nescience

is compensated with additional resources, this is called resource augmentation. It was intro-

duced for scheduling ([102]) where machines are allowed to process tasks at a higher speed

in the online problem. Generalizations to other problems are apparent: In paging, the cache

size is increased ([149]); in bin packing, larger bins are used ([56], [71]). The performance

6 Graham’s guarantee for the List scheduling algorithm ([80]) from 1966 and Johnson’s work on approxi-
mation algorithms for bin packing ([99], [100]) in the 1970s fostered research interest in worst-case perfor-
mance measurement of online algorithms. In the mid 1980s, the papers by Sleator and Tarjan ([149], [150])
continued this flourishing interest which led to the term competitive analysis in 1988 by Karlin ([104]).

40 2 Analysis of Optimization Algorithms

measure depends on the amount ε of extra resource that is given to Alg which now operates

with resource amount (1 + ε) · 100% (denoted by Alg1+ε). Alg is c-competitive7 under

resource augmentation ε if it holds that

Alg1+ε[σ]

Opt[σ]
≤ c, σ ∈ Σ.

Similarly to augmenting resources of Alg, we can diminish those of Opt. A realization of

this idea is to restrict the behavior of Opt to acting as a fair adversary ([11], [31]) in a sense

to be specified in the problem: In the traveling salesman problem, the server has to move

within the convex hull of the requests known to Alg so far to prevent cheap capitalizing

by moving to a future request which Alg cannot see; a fair adversary in bin packing has

to pack items in the same order as Alg. Let Opt′ be an optimal algorithm for the offline

problem under fairness constraints, then Alg is called c-competitive under fair adversaries

if Condition 2.1 holds with Opt substituted by Opt′.

Restricting instances to typical input patterns encountered in practice narrows the gap be-

tween Alg’s and Opt’s power. An application prototype is paging where it is observed that

over a short time only pages from a local neighborhood of the current cache content are

referenced (locality of reference). Numerous models of locality were proposed ([4], [33]): In

the access graph model, a graph G whose vertices correspond to page requests is used; edges

are established between two vertices corresponding to two requests when these can be re-

quested consecutively. Any feasible input sequence corresponds to a walk in G. The concave

function model ([4]) is based on the idea that the number of distinct pages in a subsequence

has to grow slower than linear in the size of the subsequence. This concept coincides with

the working set model in memory management ([59], [60]) where a function f : N→ R>0 is

concave if and only if f(1) = 1 and f(n + 1) − f(n) ≥ f(n + 2) − f(n + 1) for all n ∈ N.

An input sequence in the max-model of concave analysis is admissible if for all subsequences

of length n at most f(n) distinct pages are in the subsequence; an input sequence in the

average-model of concave analysis is admissible if the average number of distinct pages in

all subsequences of length n is at most f(n). Denote the set of input sequences consistent

with the chosen model of locality by Σloc, then Alg is called c-competitive under locality of

reference if Condition 2.1 holds with Σ replaced by Σloc.

Loose competitiveness has been introduced in [165] for two reasons: First, worst-case in-

stances in competitive analysis are often tailored to specific problem parameters. Second, it

is arguable whether input sequences with small cost shall be considered in the same way as

7 Most publications do not differentiate between competitive and strictly competitive; the case a = 0 in
Condition 2.1 is often tacitly assumed.

2.3 Performance of Optimization Algorithms 41

costly ones because of setup and overhead. We pay attention to one problem parameter k,

and let K be the set of possible values for k. Alg is (ε, δ,K)-loosely c-competitive if for any

σ ∈ Σ at least (1− δ) · 100 % of the |K| parameter values for k satisfy

Algk[σ] ≤ max{c ·Opt[σ], ε · |σ|}

where Algk[σ] is the objective value of Alg on σ when the parameter is k. Hence, input

sequences with costs no larger than ε · |σ| are ignored for appropriate constant ε. Parameter

k corresponds to the cache size in paging and to the bin capacity in bin packing. Using loose

competitiveness in paging, deviations between empirical performance ratios and the lower

bound of the competitive ratio can be explained ([167]).

The accommodating function ([37], [39]) is defined for online optimization problems with a

limited resource which comes in a default amount, say k, but may be varied. Similar to

locality of reference, we restrict input sequences: Let Optk[σ] denote the costs of Opt on

σ when Opt has a resource level of k, then an input sequence σ is called an α-sequence if

Optαk[σ] = Optk′ [σ] for all k′ ≥ αk. Clearly, for 1-sequences the default amount of the

resource is enough for Opt to find the optimal solution. Let Σα be the set of all α-sequences,

then Alg is c-competitive under α-sequences if Condition 2.1 holds with Σ replaced by Σα;

Alg has competitive ratio cr(α) under α-sequences if Condition 2.3 holds with Σ replaced by

Σα. Plotting cr(α) over α yields the accommodating function A(α) = cr(α). A(1) is called

accommodating ratio of Alg and it expresses the worst-case ratio on those input sequences

which are easy enough for Opt to produce an optimal solution given the default amount of

resources. The accommodating function has been applied to resource-constrained problems

such as seat reservation, fair bin packing, unrestricted bin packing and paging. The authors

claim that only small values α ≥ 1 should be considered in order to get rid of those input

sequences leading to the conventional competitive ratio.

The cooperative ratio ([66]) replaces Opt[σ] with some modified cost value Opt′[σ] that

implicitly accounts for the difficulty of σ: On a difficult input sequence, Alg is explicitly

allowed to incur a higher cost. Let Opt′ : Σ→ R be a function with Opt′[σ] ≥ Opt[σ] for

all σ ∈ Σ, then Alg has cooperative ratio cr if Condition 2.3 holds with Opt[σ] replaced

by Opt′[σ]. The idea is to reduce the impact of badly behaving input sequences on the per-

formance ratio. In applications, difficult instances are expected to be isolated in the input

sequence space, e.g., requests in paging are expected to be generated according to some local-

ity property. Hence, the adversary is trusted to cooperate with and not to sabotage Alg. It

has been shown that the cooperative ratio leads to a better separation between performances

of different paging and list update algorithms compared to competitive analysis.

42 2 Analysis of Optimization Algorithms

Comparative analysis ([115]) differs from competitive analysis in that the latter relates Alg’s

objective value to that of Opt, whereas the former relates the best objective value of a class

of algorithm candidates to that of another class of algorithm candidates which are weaker

than Opt, but stronger than those in the first class. Let A,B be two algorithm classes

where B is more powerful than A, e.g., due to more computational resources or due to more

available information, then the comparative ratio ccompr is defined as

ccompr := max
B∈B

min
A∈A

max
σ∈Σ

A[σ]

B[σ]
.

In order to maximize ccompr , B chooses candidate B, whereupon A answers with candidate

A, whereupon B chooses the worst instance σ ∈ Σ for A. The idea of comparative analysis

is also the foundation of our approach in Chapter 2.3.2: Compare algorithm classes with

varying lookahead levels to each other. Its advantages become apparent in the possibility to

compare algorithms without reference to Opt. Whereas competitive analysis fails to capture

the benefit of (request) lookahead of size l in paging with cache size k, it has been shown

in [115] that lookahead leads to a comparative ratio of ccompr = min{k, l + 1} as opposed to

cr = k for algorithms both with and without lookahead in competitive analysis.

Rather than comparing Alg with Opt on the same worst-case instance, the max/max ratio

([20]) compares the (amortized) behavior of both algorithms on their respective worst-case

instances. Amortization refers to the costs per input element: The amortized costs AAlg,n

of Alg over all input sequences σ = (σ1, σ2, . . . , σn) of length n are the worst-case costs per

input element over all input sequences of length n, i.e.,

AAlg,n = max
σ∈Σ,|σ|=n

Alg[σ]

n

The max/max ratio cmax
r of Alg is defined as

cmax
r := lim sup

n→∞

AAlg,n

AOpt,n

= lim sup
n→∞

max
σ∈Σ,|σ|=n

Alg[σ]

max
σ∈Σ,|σ|=n

Opt[σ]
.

Direct comparison of algorithms Alg1 and Alg2 is possible by replacing Alg with Alg1

and Opt with Alg2. Using the max/max ratio, non-competitive algorithms in compet-

itive analysis are deemed competitive in the framework of the max/max ratio: Consider

an insurance against (repeated) theft where the only option is to buy or not to buy ([20]).

Any algorithm that wants to be competitive has to buy; hence, the malicious adversary in

competitive analysis never presents a theft. Likewise, when the algorithm never buys, the

2.3 Performance of Optimization Algorithms 43

adversary presents thefts only. In total, the algorithm is non-competitive. On finite input

sequences σ = (σ1, . . . , σn) where σi = 1 means theft and σi = 0 means no theft in period

i, cmax
r attains a finite value, and buying always induces a lower max/max ratio than not

buying because the worst-case for buying is the fixed price, whereas for not buying it is the

number of periods multiplied with the item value. Moreover, it is shown that the max/max

ratio is able to discriminate between algorithms with different levels of lookahead for the

k-server problem which is impossible in competitive analysis. Note that paging with cache

size k coincides with the k-server problem where all request points are equidistant.

The relative worst-order ratio ([35]) combines the ideas of considering the behavior on input

sequence permutations (cf. random-order ratio on page 44) and selecting the worst-case

sequence for either algorithm (cf. max/max ratio). Let Π be the set of all permutations of

{1, 2, . . . , n} and denote by σπ the permutation of σ ∈ Σ according to π ∈ Π. By Alg′[σ]

we denote the costs of the worst-case permutation of σ for Alg, i.e.,

Alg′[σ] = max
π∈Π
{Alg[σπ]}.

For c ∈ R, define statements S1(c) and S2(c) as

S1(c) : There exists a constant b such that Alg′1[σ] ≤ c ·Alg′2[σ] + b,

S2(c) : There exists a constant b such that Alg′1[σ] ≥ c ·Alg′2[σ]− b.

The relative worst-order ratio of Alg1 and Alg2 is defined if S1(1) or S2(1) holds; in this

case, Alg1 and Alg2 are called comparable. Let Alg1 and Alg2 be two comparable

algorithms, then the relative worst-order ratio cAlg1,Alg2 is

cAlg1,Alg2 :=

sup{r |S2(r)}, if S1(1) holds,

inf{r |S1(r)}, if S2(1) holds.

For Alg2 = Opt, we speak of the worst-order ratio. Observe that for problems where all

permutations of an input sequence induce the same (optimal) costs, the worst-order ratio

reduces to the competitive ratio. For comparable algorithms, a relative worst-order ratio

cAlg1,Alg2 = 1 means that Alg1 and Alg2 are considered equal, whereas cAlg1,Alg2 < 1

(cAlg1,Alg2 > 1) indicates that Alg1 is better (worse) than Alg2. The relative worst-order

ratio allows an algorithm to perform bad on some specific input sequence which may be

totally different from the worst-case sequence of the other algorithm. The authors have

evaluated the measure for bin packing, seat reservation, paging and 2-server problems on the

line to compare several online algorithms in these problems ([36], [35], [40], [38]).

44 2 Analysis of Optimization Algorithms

2.3.1.2 Probabilistic Worst-Case Performance Measures

Probabilistic worst-case analysis is based on the use of some randomization mechanism. In

contrast to average-case analysis, randomness is not used to impute probabilities on the

occurrence of input sequences, but to blur worst-case instances.

Smoothed competitive analysis ([16]) origins from smoothed (complexity) analysis ([153])

where it was introduced to explain why the observed complexity of the simplex algorithm

is polynomial-time, whereas its worst-case complexity is exponential-time. The basic idea

to confirm these observations is to show that worst-case inputs are fragile in the sense that

the worst-case character vanishes under small (smoothing) perturbations. The idea has been

transferred to the analysis of online optimization algorithms by slightly perturbing instances

according to some probability distribution and analyzing the expected competitive ratio on

the perturbed sequences. Let p be some probability distribution and let Σp(σ) ⊂ Σ be the

set of input instances that are obtained by smoothening σ ∈ Σ according to p, then the

smoothed competitive ratio csr of Alg under p is given by

csr := sup
σ∈Σ

Ep
(Alg[σp]

Opt[σp]

)
where Ep is the expectation taken over all input sequences σp ∈ Σp(σ)8. For processor

scheduling in a time-sharing multitasking operating system, some algorithm is shown to

behave better under smoothed instances than its competitive ratio would suggest ([16]).

The random-order ratio ([108]) works similar to the smoothed competitive ratio. It con-

siders the neighborhood ΣΠ(σ) of an input sequence σ = (σ1, σ2, . . . , σn) as the set of all

permutations of σ, i.e.,

ΣΠ(σ) = {(σπ−1(1), σπ−1(2), . . . , σπ−1(n)) |π is a permutation of {1, 2, . . . , n}}.

The random-order ratio cror of Alg is given by

cror := lim sup
Opt[σ]→∞

EΣΠ(σ)(Alg[σ])

EΣΠ(σ)(Opt[σ])

where Opt[σ]→∞ (as given in [108]) characterizes the set of all input instances with length

tending to infinity and all permutations of an input sequence are considered equally likely,

i.e., uniformly distributed. For some applications, such as bin packing, this assumption is

8 Instead of the expectation of the ratio, also the ratio of expectations could be used; however, the instance-
wise perspective is preferred in [16] because of its stronger notion of competitiveness.

2.3 Performance of Optimization Algorithms 45

appropriate, whereas for others, such as paging with locality of reference, it is not. In [108],

it is shown that BestFit outperforms other online bin packing algorithms: The algorithm

is shown to have cror ∈ [1.08, 1.5], whereas the competitive ratio is 1.7.

We only mention the use of randomized algorithms in order to improve worst-case results:

A randomized online algorithm RandAlg is a probability distribution over a set of deter-

ministic online algorithms {Alg1,Alg2, . . . ,Algm} which will be drawn at random. The

objective value of RandAlg[σ] on input sequence σ then becomes a random variable. The

strength of a randomized algorithm arises as a result of its uncertain realization that the

malicious adversary has to cope with. We will not go into detail as we seek for an assessment

of the behavior of a single deterministic algorithm and refer the reader to [21] and [32].

2.3.1.3 Average-Case Performance Measures

In average-case analysis, stochasticity refers to probabilities for input sequence occurrences.

The notion of competitiveness has been transferred to stochastic settings ([136], [151]). Let

D be a probability distribution over all input sequences, then Alg is called c-competitive

under D if there is a constant a such that

ED(Alg[σ]) ≤ c · E(Opt[σ]) + a.

In the case a = 0, Alg is called strictly c-competitive under D if

ED(Alg[σ])

ED(Opt[σ])
≤ c.

The expected competitive ratio cr of Alg under D is

cDr = inf{c ≥ 1 |ED(Alg[σ]) ≤ c · ED(Opt[σ]) + a}
= inf{c ≥ 1 |Alg is c-competitive under D}.

In the same way, the expectation can be taken instance-wise over all ratios between Alg’s

and Opt’s costs: The expected performance ratio c′Dr of Alg under D is

c′Dr = inf
{
c ≥ 1 |ED

(Alg[σ]

Opt[σ]

)
≤ c
}
.

The author in [151] concludes that the expected performance ratio should be favored over

the expected competitive ratio because sequences with small (large) objective value would

46 2 Analysis of Optimization Algorithms

be underrepresented (overrepresented) in the isolated expectations. Moreover, the expected

performance ratio indicates which algorithm performs better on most of the sequences, and

using Markov’s inequality the probability for a sequence whose ratio is far from the expec-

tation can be bounded. Several publications consider an asymptotic version of the expected

performance ratio where one restricts attention to input sequences of infinite length (see, e.g.,

[26], [50], [106], [121]): Let Σn comprise the set of all input sequences of length n, σn ∈ Σn

and

RD(n) := ED
(Alg[σn]

Opt[σn]

)
,

then the asymptotic expected performance ratio R(∞) of algorithm Alg is

RD(∞) = lim
n→∞

RD(n).

Expected competitiveness has been extensively studied in the context of bin packing with a

focus on the asymptotic expected performance ratio: RD(∞) is derived for NextFit under

uniformly distributed item sizes ([50], [106], [142]); Harmonic has RD(∞) = π2

3
−2 ≈ 1.289

([121]). In [26], FirstFit is shown to be asymptotically optimal, i.e., RD(∞) = 1. [147]

introduced the expected waste as a subsitute performance measure and succeeded in sepa-

rating BestFit and FirstFit: In the limit both perform equally good, whereas BestFit

converges faster. Results for discrete item size distributions are given in [49]. [6] and [109]

adopt similar techniques to determine whether BestFit, FirstFit and RandomFit are

stable, i.e., whether the expected waste remains asymptotically bounded. Results for dis-

crete item sizes in the bounded-space bin packing problem are due to [136]. Surveys including

average-case results in bin packing can be found in [46], [47] and [55]. In paging with locality

of reference, [105] extends the access graph model with edge probabilities such that input

sequences are generated by a Markov chain. The asymptotic expected fault rate is used to

characterize an algorithm that achieves an optimal asymptotic expected fault rate on any

Markov chain. Moreover, a procedure to determine an online algorithm whose asymptotic

expected fault rate is bounded with respect to Opt is devised. However, in [75] it has been

shown previously that none of the famous algorithms such as Lru or Fifo can have an

asymptotic expected fault rate that is bounded with respect to Opt. In [76], c′Dr is analyzed

for the ski rental problem where skiing ends after any period with probability λ ∈ [0, 1].

Upper bounds on c′Dr for List in makespan scheduling were derived in [48] under several

distributions; for completion time scheduling, c′Dr ∈ O(1) was proven in [145] for Shortest-

ExpectedProcessingTime under a class of distributions with known expected processing

time. Bounds on c′Dr are found in [144], [151], [152] for minimum spanning trees, paging and

completion time scheduling.

2.3 Performance of Optimization Algorithms 47

The diffuse adversary model introduced in [115] decreases adversary power by restricting

instances to a class of admissible distributions ∆ whereof a worst distribution D ∈ ∆ is

selected to determine the value of the performance measure. Alg is said to have expected

competitive ratio cdr(∆) under diffuse adversaries with distribution class ∆ if

cdr(∆) = inf
{
c ≥ 1 | ED(Alg[σ])

ED(Opt[σ])
≤ c,D ∈ ∆

}
.

Alg is said to have expected performance ratio c′dr (∆) under diffuse adversaries with distri-

bution class ∆ if

c′dr (∆) = inf
{
c ≥ 1 |ED

(Alg[σ]

Opt[σ]

)
≤ c,D ∈ ∆

}
.

The diffuse adversary model was first proposed in [115] to improve competitive analysis re-

sults on paging where a class of distributions ∆ε is given to model the opposite of locality

of reference: For any given history of previously requested pages and any page p, the prob-

ability that p will be requested next is not larger than ε. It is shown that Lru attains the

optimal expected performance ratio under diffuse adversaries with distribution class ∆ε. The

computation of c′dr (∆ε) has been achieved in [166] showing Lru’s superiority over Fwf and

Fifo. A diffuse adversary to model locality of reference is proposed in [15]: Given some

history of previous pages, the probability of requesting page p is a non-increasing function of

the last point in time when p was requested. The observed superiority of Lru is confirmed

because c′dr (∆) ∈ O(1) when distributions exhibit a sufficiently large degree of locality.

2.3.1.4 Distributional Performance Measures

The main advantage of distributional performance analysis is that an algorithm is judged by

a distribution instead of a single key figure. Although no probabilistic assumptions are made

in online optimization, we recognize that we obtain deterministic counting results when we

impute a uniform distribution over all instances ([90]).

Relative interval analysis ([67]) is a preliminary stage of distributional analysis since it only

considers the extreme values of a distribution for two algorithms. Define

MinAlg1,Alg2(n) := min
|σ|=n
{Alg1[σ]−Alg2[σ]},

MaxAlg1,Alg2(n) := max
|σ|=n
{Alg1[σ]−Alg2[σ]},

48 2 Analysis of Optimization Algorithms

then the relative interval of Alg1 and Alg2 is

IAlg1,Alg2 =
[
lim inf
n→∞

MinAlg1,Alg2
(n)

n
, lim sup

n→∞

MaxAlg1,Alg2
(n)

n

]
.

The relative interval of an algorithm pair corresponds to its asymptotic range of amortized

costs. For IAlg1,Alg2 = [0, c] with c ≥ 0, Alg2 dominates Alg1 in the sense that Alg2 never

incurs larger (asymptotic) amortized costs than Alg1. Analogously, for IAlg1,Alg2 = [−c, 0]

with c ≥ 0, Alg1 dominates Alg2. Relative interval analysis allows for a direct comparison

between two algorithms without reference to Opt. In [67], relative interval analysis facilitates

a distinction between paging algorithms Lru and Fifo on the one side and Fwf on the other

side; moreover, it also reflects the positive influence of lookahead on Lru.

Stochastic dominance (see, e.g., [133]) origins from statistics where it is used to establish an

order relation between distributions of two random variables. By interpreting the objective

value obtained by an algorithm as a random variable, this concept has been transferred to

the analysis of online optimization algorithms in [90] where the objective value distributions

of two algorithms Alg1 and Alg2 are related to each other using stochastic dominance9. Let

FAlg : R→ [0, 1] be the cumulative distribution function of the objective value of Alg:

• Alg1 dominates Alg2 stochastically at zeroth order if and only if Alg1[σ] ≥ Alg2[σ]

for all σ ∈ Σ (instance-wise dominance).

• Alg1 dominates Alg2 stochastically at first order (Alg1 ≥st Alg2) if the probability

for achieving an objective value larger than or equal to v is higher for Alg1 than for

Alg2 for all v ∈ R, i.e., Alg1 has more mass on high values than Alg2:

Alg1 ≥st Alg2 :⇔ P (Alg1[σ] ≥ v) ≥ P (Alg2[σ] ≥ v), v ∈ R

⇔ FAlg2(v) ≥ FAlg1(v), v ∈ R.

• Alg1 dominates Alg2 stochastically at second order (Alg1 ≥st2 Alg2) if the cumula-

tion of all probability densities for achieving an objective value larger than or equal to

v is higher for Alg1 than for Alg2 for all x ∈ R, i.e., Alg1 has more mass on [x,+∞]

than Alg2:

Alg1 ≥st2 Alg2 :⇔
∫ x

−∞
P (Alg1[σ] ≥ v)dv ≥

∫ x

−∞
P (Alg2[σ] ≥ v)dv, x ∈ R

⇔
∫ x

−∞
(FAlg2(v)− FAlg1(v))dv ≥ 0, x ∈ R.

9 Note that in a minimization problem Alg1[σ] ≥ Alg2[σ] means that Alg2 is better than Alg1 on σ.

2.3 Performance of Optimization Algorithms 49

Graphically, Alg1 ≥st Alg2 yields FAlg1(v) ≤ FAlg2(v) and Alg1 ≥st2 Alg2 means that the

area from −∞ to v under FAlg2 is larger than that of FAlg1 for v ∈ R. Figure 2.3 exemplifies

stochastic dominance between the objective value distributions of three algorithms.

0

1

v

F
A

l
g
i
(v
)

Alg1

Alg2

Alg3

Figure 2.3: Stochastic dominance relations between Alg1,Alg2,Alg3. Alg1 ≥st Alg2 and
Alg1 ≥st Alg3, but neither Alg2 ≥st Alg3 nor Alg3 ≥st Alg2. Alg1 ≥st2 Alg2

and Alg1 ≥st2 Alg3, and from the shaded area we see that Alg2 ≥st2 Alg3.

If Alg1 stochastically dominates Alg2 at first order, then E(Alg1) ≥ E(Alg2). It is

easy to see that stochastic dominance at a given order implies stochastic dominance at all

subsequent orders. Unfortunately, no order of stochastic dominance admits a total ordering

among all distributions and we cannot expect stochastic dominance to hold for arbitrary

algorithms. However, when comparing an algorithm without lookahead Alg1 to one with

lookahead Alg2 in a minimization problem, Alg1 ≥st Alg2 would illustrate the benefit of

lookahead because Alg2 attains smaller objective values on more instances than Alg1. In

this case, Alg2 is said to be stochastically better than Alg1. In [90], stochastic dominance

is analyzed for paging and bin coloring: Lru can be shown to be stochastically optimal for

paging with locality of reference under three different models of locality; in bin coloring,

the reasonable GreedyFit algorithm is shown to be stochastically better than the trivial

OneBin algorithm, whereas competitive analysis fails to discriminate them.

Bijective analysis ([9]) is a special case of stochastic dominance where input sequences are

uniformly distributed. The basic idea is to find a bijection b : Σn ↔ Σn between the

input sequences for Alg1 and Alg2 such that in a minimization problem, the objective

value Alg1[σ] of Alg1 on σ is never worse than that of Alg2 on the image b(σ) of σ,

i.e., Alg2[b(σ)]. Essentially, the approach consists in establishing an order of the elements

in Σn such that Alg1 outperforms Alg2 on every pair (σ, b(σ)). Alg1 is called no worse

than Alg2 according to bijective analysis (Alg1 � Alg2) if for all n ≥ n0 ≥ 1 with some

n0 ∈ N there exists b : Σn ↔ Σn with Alg1[σ] ≤ Alg2[b(σ)] for all σ ∈ Σn. Alg1 is called

50 2 Analysis of Optimization Algorithms

better than Alg2 according to bijective analysis if Alg1 � Alg2 and not Alg2 � Alg1.

Hence, Alg1 does not have to outperform Alg2 on each input sequence, but there has to

be a relabeling of the input sequences such that this relation holds between the original and

relabeled sequences. The authors applied bijective analysis to the paging and list update

problem in [9] and [10]: Lru is better than Fwf according to bijective analysis. Moreover,

lookahead is shown to be beneficial by Lru(l) � Lru where l is the lookahead size.

The authors of [9] themselves consider bijective analysis as too strong to establish a relation

between algorithms in many problems and propose a substantially weaker concept called

average analysis ([65]) which compares the average cost of two algorithms over all requests

of the same length. Alg1 is called no worse than Alg2 according to average analysis if for

all n ≥ n0 ≥ 1 with some n0 ∈ N we have∑
σ∈Σn

Alg1[σ] ≤
∑
σ∈Σn

Alg2[σ].

For paging with locality of reference as defined in concave analysis, Lru is strictly separated

from all other strategies as the unique optimal strategy according to average analysis.

We point out the advantages given in [10] for bijective analysis that can be transferred to

any distributional performance measure:

• The performance measure is simple and intuitive, yet powerful.

• Algorithms can be compared directly without reference to a hypothetical algorithm.

• Typical properties of algorithms are likely to be uncovered.

We will adopt the idea of looking at distribution functions for assessing algorithm per-

formance in our approach presented in the following section. We note that none of the

distributional performance measures proposed in literature sticks to the idea of comparing

algorithms on an instance-wise basis in form of a performance ratio.

2.3.2 Performance Comparison of Optimization Algorithms

The behavior of an algorithm with respect to the obtained objective value may differ strongly

from instance to instance. We seek for an approach which summarizes the global behavior of

an algorithm over all instances, but also does not lose sight of local quality, i.e., with respect

to a particular instance. We wish to present algorithm behavior free of risk preferences

such that the decision maker can choose the most suitable algorithm according to personal

preferences, and we desire to analyze the impact of lookahead on algorithm performance.

2.3 Performance of Optimization Algorithms 51

Definition 2.39 (Objective value).

Let Π = (I, S, f, opt) be an optimization problem, let i ∈ I be an instance of Π, and let Alg

be an algorithm for Π choosing sAlg(i) ∈ S(i) on i.

a) vAlg(i) := f(i, sAlg(i)) is called objective value of Alg with respect to i.

b) vAlg(I) := max
i∈I
{vAlg(i)} is called upper objective value of Alg with respect to I.

c) vAlg(I) := min
i∈I
{vAlg(i)} is called lower objective value of Alg with respect to I.

4
Since in online optimization, traditionally no probabilistic information on instance occur-

rences is given, choosing the maximum entropy distribution emulates the state of informa-

tional nescience best by minimizing the amount of a-priori information in the distribution

([97], [98]). The uniform distribution over I is the maximum entropy distribution among all

distributions with support I (which follows from Langrangian relaxation by the definition

of the entropy together with the constraint that the sum over all probabilities equals 1).

For finite I, imposing a uniform distribution leads to counting results saying how many out

of all instances yield a certain objective value ([90]). We define the counting distribution

function10 in order to subsume these frequency information of objective values over I:

Definition 2.40 (Counting distribution function of objective value).

Let Π = (I, S, f, opt) be an optimization problem, let i ∈ I be an instance of Π, let Alg be

an algorithm for Π, and let vAlg(i) be the objective value of Alg on i.

a) If I is a discrete set, then the function FAlg : R→ [0, 1] with

FAlg(v) :=

∑
i∈I

1[−∞,v](vAlg(i))

|I|

is called counting distribution function of the objective value of Alg over I.

b) If I is an uncountable set, then the function FAlg : R→ [0, 1] with

FAlg(v) :=

∫
i∈I

1[−∞,v](vAlg(i))

|I|

is called counting distribution function of the objective value of Alg over I.

4
10The indicator function 1A(x) is 1 if x ∈ A and 0 otherwise.

52 2 Analysis of Optimization Algorithms

Comparing two algorithms by means of their counting distribution functions of the objective

value is done by examining their relative positions to each other. Assuming minimization

in Figure 2.4 a), Alg1 exhibits a more volatile behavior than Alg2 with objective values

ranging in a broader interval; likewise, chances for a low objective value are higher.

0

1

vAlg1
vAlg2 vAlg2 vAlg1

v

F
A

l
g
i
(v
)

Alg1

Alg2

a)

0

1

rAlg1,Alg2 1 rAlg1,Alg2

r

F
A

l
g
1
,A

l
g
2
(r
)

Alg1/Alg2

b)

Figure 2.4: Counting distribution functions. a) Of objective value of Alg1 and Alg2. b) Of
performance ratio of Alg1 relative to Alg2.

The following definitions account for the relative performance of two algorithms to each other

when both are restricted to operate on the same problem instance:

Definition 2.41 (Performance ratio).

Let Π = (I, S, f, opt) be an optimization problem, let i ∈ I be an instance of Π, and let

Alg1, Alg2 be two algorithms for Π choosing sAlg1(i), sAlg2(i) ∈ S(i) on i, respectively.

a) rAlg1,Alg2(i) :=
f(i,sAlg1

(i))

f(i,sAlg2
(i))

is called performance ratio of Alg1 relative to Alg2 with

respect to i.

b) rAlg1,Alg2(I) := max
i∈I
{rAlg1,Alg2(i)} is called upper performance ratio of Alg1 relative

to Alg2 with respect to I.

c) rAlg1,Alg2
(I) := min

i∈I
{rAlg1,Alg2(i)} is called lower performance ratio of Alg1 relative

to Alg2 with respect to I.

4

rAlg1,Alg2(I) coincides with the competitive ratio if Π is an online optimization problem,

Alg1 is an online algorithm and Alg2 equals Opt. It coincides with the approximation

ratio if Π is an offline optimization problem, Alg1 is an offline algorithm and Alg2 equals

Opt. For online algorithms Alg1 and Alg2 with and without lookahead, respectively, the

performance ratio expresses how much Alg1 benefits from lookahead compared to Alg2.

2.3 Performance of Optimization Algorithms 53

Definition 2.42 (Counting distribution function of performance ratio).

Let Π = (I, S, f, opt) be an optimization problem, let i ∈ I be an instance of Π, let Alg be

an algorithm for Π, and let rAlg1,Alg2(i) be the performance ratio of Alg1 relative to Alg2

on i.

a) If I is a discrete set, then the function FAlg1,Alg2 : R→ [0, 1] with

FAlg1,Alg2(r) :=

∑
i∈I

1[−∞,r](rAlg1,Alg2(i))

|I|

is called counting distribution function of the performance ratio of Alg1 relative to

Alg2 over I.

b) If I is an uncountable set, then the function FAlg1,Alg2 : R→ [0, 1] with

FAlg1,Alg2(r) :=

∫
i∈I

1[−∞,r](rAlg1,Alg2(i))

|I|

is called counting distribution function of the performance ratio of Alg1 relative to

Alg2 over I.

4

Assuming minimization, comparing two algorithms Alg1 and Alg2 by means of their count-

ing distribution function of the performance ratio is done by partitioning the set of all in-

stances into those with performance ratio smaller than or equal to 1 (favoring Alg1) and into

those with performance ratio larger than 1 (favoring Alg2). In Figure 2.4 b), Alg1 attains

an objective value at least as large as that of Alg2 on the majority of the instances.

We mention advantages of our two-sided approach which consists of using distribution func-

tions of the objective value and the performance ratio for assessing an algorithm’s quality:

• The distribution function of the objective value gives a global view on the quality of

an algorithm over all instances.

• The distribution function of the performance ratio of an algorithm pair offers a local

view on the quality of both algorithms relative to each other on the same instance.

• Distribution-based analysis also yields information about ranges and variability.

• Algorithms with arbitrary lookahead levels can be compared to each other.

54 2 Analysis of Optimization Algorithms

Example 2.43 (Counting distributions of objective value and performance ratio).

Consider an optimization problem Π = (I, S, f,max) where the instance set I is defined by

I = {x ∈ R2 |x1 + x2 ≤ 5, 0.75x1 + x2 ≤ 4.5, x1 ≤ 3, x1 ≥ 0, x2 ≥ 0} ⊂ R2

as illustrated in Figure 2.5 with a total volume |I| = 10.

0 1 2 3 4 5 6

0

1

2

3

4

5

vAlg1
(x) = 2

vAlg2
(x) = 1.5

vAlg3(x) = 1.5

I

x1

x
2

Figure 2.5: Graphical illustration of instance set I.

The set of feasible solutions for each i ∈ I is given by

S(i) = S(x1, x2) = {c1x1 + c2x2 | c1, c2 ∈ R} = R

and a feasible solution s ∈ S(i) is evaluated as its identity, i.e., f(i, s) = s. For some

(intransparent) reason, we have three algorithms Alg1, Alg2, Alg3 which choose

sAlg1(i) = sAlg1(x1, x2) = x1 + x2,

sAlg2(i) = sAlg2(x1, x2) = 1.5x1 + 0.5x2,

sAlg3(i) = sAlg3(x1, x2) = 0.5x1 + 1.5x2,

respectively. Which of the three algorithms is most promising when some instance i ∈ I will

be revealed to the decision maker?

In contrast to linear programming, we do not want to maximize sAlgj
(i) for j = 1, 2, 3 over

I but rather would like to obtain the objective value distribution over I for each of the

algorithms (cf. Figure 2.6 for Alg1). One can think of a decision maker who has to choose

2.3 Performance of Optimization Algorithms 55

one of the algorithms before being presented with some point i = (x1, x2) ∈ I. How should

the decision maker behave in order to obtain a high objective value?

0
1

2
3 0

2

4

0

2

4

I

x1 x2

v A
l
g
1
(x
)

0

1

2

3

4

5

Figure 2.6: Objective value of Alg1 over instance set I.

To find an expression for the counting distribution function FAlgj
(v) with j = 1, 2, 3, we

first compute the area V j
v := |{x ∈ I | f(x, sAlgj

(x)) ≤ v}| of all points x ∈ I with objective

function value of Algj smaller than or equal to v.

• f(x, sAlg1(x)) = x1 + x2:

– v ∈ [0, 3]: V 1
v =

v∫
0

(v − x1)dx1 = 0.5v2

– v ∈ [3, 4.5]: V 1
v =

3∫
0

(v − x1)dx1 = 3v − 4.5

– v ∈ [4.5, 5]: V 1
v =

4v−18∫
0

(4.5− 0.75x1)dx1 +
3∫

4v−18

(v − x1)dx1 = −2v2 + 21v − 45

• f(x, sAlg2(x)) = 1.5x1 + 0.5x2:

– v ∈ [0, 2.25]: V 2
v =

2
3
v∫

0

(2v − 3x1)dx1 = 2
3
v2

– v ∈ [2.25, 4.5]: V 2
v =

8
9
v−2∫
0

(4.5− 0.75x1)dx1 +

2
3
v∫

8
9
v−2

(2v− 3x1)dx1 = −2
9
v2 + 4v− 4.5

– v ∈ [4.5, 5.5]: V 2
v =

2∫
0

(4.5− 0.75x1)dx1 +
v−2.5∫

2

(5− x1)dx1 +
3∫

v−2.5

(2v − 3x1)dx1

= −v2 + 11v − 20.25

56 2 Analysis of Optimization Algorithms

• f(x, sAlg3(x)) = 0.5x1 + 1.5x2:

– v ∈ [0, 1.5]: V 3
v =

2v∫
0

(2
3
v − 1

3
x1)dx1 = 2

3
v2

– v ∈ [1.5, 4.5]: V 3
v =

3∫
0

(2
3
v − 1

3
x1)dx1 = 2v − 1.5

– v ∈ [4.5, 5.5]: V 3
v =

7.5−v∫
0

(2
3
v − 1

3
x1)dx1 +

3∫
7.5−v

(5− x1)dx1

= −1
3
v2 + 5v − 8.25

– v ∈ [5.5, 6.75]: V 3
v =

10.8−1.6v∫
0

(2
3
v− 1

3
x1)dx1+

2∫
10.8−1.6v

(4.5−0.75x1)dx1+
3∫
2

(5−x1)dx1

= − 8
15
v2 + 7.2v − 14.3

With V j
v for j ∈ {1, 2, 3} and I’s total volume of 10, we have that the percentage of all x ∈ I

with objective value of Algj smaller than or equal to v is V j
v

10
. We can interpret this value as

the probability that the objective value will be no more than v when we pick a point x ∈ I
at random, i.e., when we assume a uniform distribution over the elements of I. We obtain

the counting distribution functions of the objective value (cf. Figure 2.7) as follows:

FAlg1(v) =



0, if v < 0

1
10

(0.5v2), if 0 ≤ v < 3,

1
10

(3v − 4.5), if 3 ≤ v < 4.5,

1
10

(−2v2 + 21v − 45), if 4.5 ≤ v < 5,

1, else.

FAlg2(v) =



0, if v < 0,

1
10

(2
3
v2), if 0 ≤ v < 2.25,

1
10

(−2
9
v2 + 4v − 4.5), if 2.25 ≤ v < 4.5,

1
10

(−v2 + 11v − 20.25), if 4.5 ≤ v < 5.5,

1, else.

2.3 Performance of Optimization Algorithms 57

0 1 2 3 4 5 6 7

0

1

v

F
A

l
g
i
(v
)

Alg1

Alg2

Alg3

Figure 2.7: Distributions of objective value of Alg1, Alg2, Alg3 over I.

FAlg3(v) =



0, if v < 0,

1
10

(2
3
v2), if 0 ≤ v < 1.5,

1
10

(2v − 1.5), if 1.5 ≤ v < 4.5,

1
10

(−1
3
v2 + 5v − 8.25), if 4.5 ≤ v < 5.5,

1
10

(− 8
15
v2 + 7.2v − 14.3), if 5.5 ≤ v < 6.75,

1, else.

Because of FAlg2(v) ≥ FAlg3(v) for v ∈ R, Alg3 dominates Alg2. No dominance relation

involves FAlg1 . However, when we compare FAlg1 and FAlg2 , we see that FAlg1(v) ≤ FAlg2(v)

for v ∈ [0, 4.5] making Alg1 comparably attractive.

We next seek to derive an expression for the counting distribution function of the performance

ratio of one algorithm relative to another one. Exemplarily, Figure 2.8 shows the graph of

the performance ratio rAlg1,Alg2(x) over all instances.

Considering performance ratio rAlg1,Alg2(i) =
f(i,sAlg1

(i))

f(i,sAlg2
(i))

= x1+x2

1.5x1+0.5x2
, we first recognize that

every ray emanating from the origin consists of points with equal performance ratio: Let

x2 = mx1 be such a ray, then it follows that

f(i, sAlg1(i))

f(i, sAlg2(i))
=

x1 +mx1

1.5x1 + 0.5mx1

=
x1(1 +m)

x1(1.5 + 0.5m)
= const.

As displayed in Figure 2.9, we subdivide I into three regions A1 with rAlg1,Alg2(i) ∈ [2
3
, 10

11
],

A2 with rAlg1,Alg2(i) ∈ [10
11
, 10

9
], and A3 with rAlg1,Alg2(i) ∈ [10

9
, 2].

58 2 Analysis of Optimization Algorithms

0
1

2
3 0

2

4

0

1

2

I

x1 x2

v A
l
g
1
(x
)

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2.8: Performance ratio rAlg1,Alg2(x) over instance set I.

Observe that for two rays x2 = m2x1 and x2 = m1x1 with m2 > m1 it follows that all points

on x2 = m2x1 have a larger performance ratio than all points on x2 = m1x1:

x1 +m2x1

1.5x1 + 0.5m2x1

>
x1 +m1x1

1.5x1 + 0.5m1x1

⇔ 1 +m2

1.5 + 0.5m2

>
1 +m1

1.5 + 0.5m1

⇔ m2 > m1.

0 1 2 3 4 5 6

0

1

2

3

4

5

A2

A3

A1

r(x) = 2
3

r(x) = 10
11

r(x) = 10
9

r(x) = 2

α2

α3

·

x1

x
2

Figure 2.9: Instance set I with regions A1, A2, A3.

In order to find an expression for FAlg1,Alg2(r), we have to characterize the amount of the

volume of I where performance ratios not larger than r are attained for each r ∈ R. We

have from the previous discussion that FAlg1,Alg2(r) = 0 for r < 2
3

and FAlg1,Alg2(r) = 1

for r ≥ 2. For the remaining values of r, we analyze areas A1, A2 and A3: By A≤i (r)

2.3 Performance of Optimization Algorithms 59

(i = 1, 2, 3) we denote the (triangular) subregion in Ai where each point x of this sub-

region has rAlg1,Alg2(x) ≤ r, by x(r) = (x1(r), x2(r)) we denote the point on the face of

I with rAlg1,Alg2(x) = r, and by h(x(r)) we denote the height of triangle A≤i (r) when

the ray emanating from 0 intersects x(r). As the bases of A≤1 (r), A≤2 (r), A≤3 (r), we take

[0, (3, 0)], [0, (3, 2)], [0, (2, 3)], respectively.

• For A1, we have that |A≤1 (2
3
)| = 0 and |A≤1 (10

11
)| = 3. Exploiting the relation

r =
3 + x2

4.5 + 0.5x2

⇔ x2 =
3− 4.5r

0.5r − 1
⇔ x2 =

6− 9r

r − 2

which follows from x1 = 3 on the face of I in A1 coinciding with the height of the

triangle for computing A≤1 (r), we obtain

|A≤1 (r)| = 1

2
· 3 · h(x(r)) =

1

2
· 3 · x2(r) =

3

2

(6− 9r

r − 2

)
.

Relating |A≤1 (r)| to |I| = 10, we get for r ∈ [2
3
, 10

11
] that

FAlg1,Alg2(r) =
3

20

(6− 9r

r − 2

)
.

• For A2, we have that |A≤2 (10
11

)| = 0 and |A≤2 (10
9

)| = 2.5. Using the values of the slopes

of x2 = 5− x1 and x2 = 2
3
x1 we have

tanα2 =
∣∣∣−1− 2

3

1− 2
3

∣∣∣ = 5⇒ α2 = tan−1(5) ≈ 78.69◦.

Exploiting the relation

r =
5

7.5− x2

⇔ x2 = 7.5− 5

r
⇔ x2 =

15

2
− 5

r

which follows from x1 = 5− x2 on the face of I in A2 needed to determine the height

of the triangle for computing A≤2 (r), we obtain

|A≤2 (r)| = 1

2
·
√

13 · h(x(r))

=
1

2
·
√

13 · sin(tan−1(5)) ·
√

((5− x2)− 3)2 + (x2 − 2)2

=
1

2
·
√

13 · sin(tan−1(5)) ·
√

2 · (x2 − 2)

=
5

2
· (x2 − 2) =

5

2
·
((15

2
− 5

r

)
− 2
)

=
5

2
·
(11

2
− 5

r

)
.

60 2 Analysis of Optimization Algorithms

Relating |A≤2 (r)| to |I| = 10 and considering that |A1| = 3, we get for r ∈ [10
11
, 10

9
] that

FAlg1,Alg2(r) = 0.3 +
5

20

(11

2
− 5

r

)
=

67

40
− 5

4r
.

• For A3, we have that |A≤3 (10
9

)| = 0 and |A≤3 (2)| = 4.5. Using the values of the slopes

of x2 = 4.5− 0.75x1 and x2 = 1.5x1 we have

tanα3 =
∣∣1.5 + 0.75

1− 9
8

∣∣ = 18⇒ α3 = tan−1(18) ≈ 86.82◦.

Exploiting the relation

r =
36− 2x2

54− 9x2

⇔ x2 = 6− 24

9r − 2

which follows from x1 = 6− 4
3
x2 on the face of I in A3 needed to determine the height

of the triangle for computing A≤3 (r), we obtain

|A≤3 (r)| = 1

2
·
√

13 · h(x(r))

=
1

2
·
√

13 · sin(tan−1(18)) ·
√

((6− 4

3
x2)− 2)2 + (x2 − 3)2

=
1

2
·
√

13 · sin(tan−1(18)) · 5

3
· (x2 − 3)

= 3 · (x2 − 3) = 3
((

6− 24

9r − 2

)
− 3
)

= 9− 72

9r − 2
.

Relating |A≤3 (r)| to |I| = 10 and considering that |A1| = 3, |A1| = 2.5, we get for

r ∈ [10
9
, 2] that

FAlg1,Alg2(r) = 0.55 +
9

10

(
1− 8

9r − 2

)
=

29

20
− 36

5(9r − 2)
.

We obtain the counting distribution function for the performance ratio of Alg1 relative to

Alg2 as

FAlg1,Alg2(r) =



0, if r < 2
3
,

3
20

(
6−9r
r−2

)
, if 2

3
≤ r < 10

11
,

67
40
− 5

4r
, if 10

11
≤ r < 10

9
,

29
20
− 36

5(9r−2)
, if 10

9
≤ r < 2,

1, if r ≥ 2.

2.3 Performance of Optimization Algorithms 61

A similar analysis applies to determine the distribution functions of the performance ratio

of Alg1 relative to Alg3 and of Alg2 relative to Alg3, respectively:

FAlg1,Alg3(r) =



0, if r < 2
3
,

27
20
− 54−27r

5(5r+2)
, if 2

3
≤ r < 10

11
,

73
40
− 5

4r
, if 10

11
≤ r < 10

9
,

1− 18−9r
10(6r−4)

, if 10
9
≤ r < 2,

1, if r ≥ 2.

FAlg2,Alg3(r) =



0, if r < 1
3
,

27
20
− 81−27r

5(5r+9)
, if 1

3
≤ r < 9

11
,

6
5
− 15−5r

8(1+r)
, if 9

11
≤ r < 11

9
,

1− 27−9r
20(3r−1)

, if 11
9
≤ r < 3,

1, if r ≥ 3.

Figure 2.10 plots the distribution functions of the performance ratio of the three algorithms

relative to each other.

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

r

F
A

l
g
i
,A

l
g
j
(r
)

Alg1/Alg2

Alg1/Alg3

Alg2/Alg3

Figure 2.10: Distribution of performance ratio of Algi relative to Algj for (i, j) = (1, 2),
(i, j) = (1, 3) and (i, j) = (2, 3) over I.

Because of maximization, it would be more desirable to choose Alg1 over Alg2: The per-

formance ratio range [2
3
, 2] reveals that Alg1 can be up to twice as good as Alg2, whereas

Alg2 can only be 3
2

as good as Alg1; at the same time more than 50 % of the instances incur

a ratio larger than 1. Consider FAlg1,Alg3 : On the one hand, Alg1 loses to Alg3 on having

more instances with a ratio larger than 1; on the other hand, Alg1 beats Alg3 in potentially

62 2 Analysis of Optimization Algorithms

being twice as good, whereas Alg3 can only be 3
2

as good as Alg1. For FAlg2,Alg3 , the ratio

ranges in [1
3
, 3] and less than 50 % of the instances incur a ratio larger than 1. In this sense,

Alg3 should be favored over Alg2. From the discussion it follows that Alg2 is not to be

recommended in the first place.

We remark that in general computing the volume of a polytope is #P-hard11. For further

details, the interested reader is referred to [110], [111], [112]. ♦

2.4 Optimization Algorithms and Discrete Event Systems

So far we were only concerned with the outcome of an algorithm for a given instance of an

online optimization problem but did not pay attention to the solution process that is under-

gone in order to obtain the outcome. Now we concentrate on the modeling of that solution

process: Interpreting the release of an input element of input sequence σ = (σ1, σ2, . . .) as the

occurrence of an event allows us to recast the solution process in online optimization using

the terminology from discrete event systems. In the following Chapters 2.4.1 to 2.4.4, differ-

ent modeling concepts are discussed based on the standard works [43] and [126] on discrete

event systems as well as on the guidelines of the Association of German Engineers (VDI,

Verein Deutscher Ingenieure) on simulation in [159]; alongside the discussion we transfer

these concepts to online optimization with lookahead.

2.4.1 Discrete Event Systems

Define a process as a transformation, transportation or storage of some energetic, material or

informational resource, then a system is a fragment of the real world in which all processes

relevant to the user take place. As such, a system is a reduction from the real world to

those entities which influence these processes and satisfy the user’s wish to duplicate them.

Models are used to describe systems: A model is a formal description of a system which

captures the relevant aspects of the system along with all related processes in a sufficient

level of detail. Systems with time-dependent behavior are called dynamic systems and they

are usually described by an input-output model.

11A counting problem Π (asking for the number of solutions to an instance with a given property) is in
complexity class #P if its associated decision problem is in NP. A problem in #P is at least as hard
as its decision problem version in NP. A counting problem Π is in complexity class #P-complete if it
is in #P and all other problems in #P can be transformed to it in polynomial time. A problem Π is in
complexity class #P-hard if it is at least as hard as any problem in #P.

2.4 Optimization Algorithms and Discrete Event Systems 63

Processes in dynamic systems are stimulated by an input function v : T → V from the set

T of time instants to the set V of input values. In discrete time systems, we typically have

T = N0; in continuous time systems, usually T = R≥0. The system responds to the values

provided by v over time with an output function w : T → W from T to the setW of output

values. Let Fv and Fw be the set of all input and output functions, respectively. Then we

can view a (model of a) system as an operator S : Fv → Fw and S can be described by the

input-output relation

(w(0), w(1), w(2), . . . , w(k)) = S ◦ (v(0), v(1), v(2), . . . , v(k)).

It has proven useful to bypass the input-output relation by using the concept of a state. A

state s(k) of a system at time k comprises all information needed to determine w(k′) for k′ ≥ k

based on v(k′). The state space S of a system is the set of all possible states of the system.

Using a state transition function f : S × V → S and an output function h : S × V → W ,

we substitute the input-output relation with a recursive state space representation of the

system in discrete time by

s(k + 1) = f(s(k), v(k)), s(0) = s0,

w(k) = h(s(k), v(k))

where s0 is the initial state of the system.

Let an event be a spontaneous occurrence triggered by some external entity (event generator,

nature) or by fulfillment of all conditions of a switching rule (event generation rule). Because

events can be used to submit changes of the input function value to the system over time,

the following definition is obtained:

Definition 2.44 (Discrete event system ([43], [126])).

A discrete event system (DES) is an event-driven system whose state trajectory depends

only on the occurrence of discrete events over time. 4

Figure 2.11 subsumes the causal relationships in a discrete event system. Note that events

may result from the output function and feed back as an event to the input function.

In online optimization, the release of input elements occurs at discrete points in time and an

online algorithm operates as part of a reactive planning system. Hence, the solution process

in online optimization can be modeled as a DES. Because we associate an objective value to

an input sequence processed by an algorithm, we embed an entry for the objective value of

64 2 Analysis of Optimization Algorithms

Input
generation

Process
Event

generation

Input v(k)

v1(k)

v2(k)

v3(k)

Output w(k)

w1(k)

w2(k)

w3(k)

Event
sequence

Figure 2.11: Event-based input-output model of discrete event systems. (Source: [126])

the current state into the state encoding scheme. Table 2.2 summarizes analogies between

the solution procedure in online optimization and the behavior of discrete event systems.

Online optimization Discrete event system

Input element Event
Input sequence Event sequence

Input element release Event occurrence
Releases occur at discrete times Events occur at discrete times

Algorithm reacts to input element releases System reacts to event occurrences
Online algorithm State transition function
Objective value Entry in state encoding scheme

Table 2.2: Analogies between online optimization and discrete event systems.

As a result of their similarities, both online algorithms and discrete event systems can be

tackled using the same arsenal of analytical methods.

Automata are the basic logical model to replicate discrete system behavior over time. They

allow to track state transitions and resulting state trajectories over time. However,

they do not provide information on frequencies for transitions or trajectories leading

to a certain state.

Markov chains extend logical models with stochastic information. Their analysis gives in-

formation about state frequencies and yields mathematical expressions for quantities of

interest. Recall that by imposing a uniform distribution over the set of input elements

(as the maximum entropy distribution), we obtain deterministic counting results.

Discrete event simulation is applied for most real world problem settings since it is impossi-

ble to use exact methods like automata or Markov chains due to intractable complexity

and state space explosion for increased problem size and level of detail.

2.4 Optimization Algorithms and Discrete Event Systems 65

Due to their logical character with regard to the order of events, both basic automata and

Markov chains are restricted to the analysis of online optimization algorithms in the sequen-

tial model. In order to comply with the time stamp model, timed versions of automata and

Markov chains are needed. These are obtained by additionally imposing a clock structure

on the DES. We will not further discuss this topic in the sequel.

2.4.2 Automata

Automata theory provides a formal means to study the behavior of a discrete event system

over time. The set of all events can be regarded as an alphabet and event sequences cor-

respond to words which form the input to an automaton. The set of all words that can be

processed by an automaton is called the language of this automaton. Informally, an automa-

ton is a device capable of processing the words of its language. An automaton is the simplest

representation of an event-driven state transition mechanism.

Definition 2.45 (Deterministic automaton ([43], [126])).

A deterministic automaton A is a quintuple (S, E , f, s0,SF) where S is the set of states, E
is the set of events, f : S × E → S is the state transition function, s0 ∈ S is the initial state

and SF ⊆ S is the set of final states. 4

A deterministic automaton can be represented by a graph: Nodes correspond to the states

of the automaton; edges represent transitions between states and are labeled with the events

which induce the state transition. The event-driven approach becomes apparent by using

automata to process an event sequence resulting in a state sequence as seen in Figure 2.12.

A

e1

e2

e3

s1

s2

s3

T
im

e
t

Figure 2.12: Automaton as a formal means to process elements of an event sequence. (Source:
[126])

The behavior of an automaton for a given event sequence (e0, e1, e2, . . . , eK) with K ∈ N
when starting in initial state s0 ∈ S is specified by the sequence of state transitions

sk+1 = f(sk, ek), ek ∈ {e ∈ E | f(sk, e) is defined}, k = 0, 1, . . . , K.

66 2 Analysis of Optimization Algorithms

Although instances in online optimization are uncertain, a deterministic online algorithm

processes any instance deterministically. Thus, it suffices to restrict attention to deterministic

automata. In order to describe the behavior of an online algorithm during input element

processing by a deterministic automaton, we have to perform the following steps:

1. Define the set of input elements which are translated into event set E .

2. Find a representation of the system state which is translated into state space S.

3. Determine the behavior of the online algorithm when it encounters a given input ele-

ment in a given state which is translated into state transition function f .

4. Determine the initial system state s0 and, if necessary, the set of final states SF .

Analysis methods focus on properties that can be inferred from reachability between states:

Given an automaton A with initial state si, it is asked for the set of reachable states SR where

state sj is called reachable from si if there exists an event sequence such that the sequence

of induced state transitions leads from si to sj. The concept of reachability coincides with

reachability in graph theory and can be reduced to finding a path between si and sj in the

graph representation of A. Introduce the adjacency matrix A = (aij) with i, j ∈ S as

aij =

1, if there exists e ∈ E with f(i, e) = j

0, else,

and denote by Ak = (akij) the kth power of A for k ∈ N. Because in a connected graph

with N nodes any node can be reached traversing at most N − 1 edges, we have that by

determining AN−1 all reachability relations between states of the automaton are known: sj

is reachable from si if and only if aN−1
ij 6= 0.

With regard to the performance ratio analysis of online optimization algorithms, we consider

the product coupling A× = A1 ×A2 of two automata A1,A2. The product coupling of two

automata is used when both automata are synchronized, i.e., they have to respond to a

common sequence of events (cf. Figure 2.13). Comparing two online algorithms on the same

input sequence, this condition is given whenever the input sequence does not depend on

previous decisions.

Formally, the product couplingA× ofA1 = (S1, E , f1, s0,1,SF,1) andA2 = (S2, E , f2, s0,2,SF,2)

is given as A× = (S1×S2, E , f×, (s0,1, s0,2),SF,1×SF,2) where a state is a pair (s1, s2) ∈ S1×S2

and the state transition function f× is recast as

2.4 Optimization Algorithms and Discrete Event Systems 67

A1 = (S1, E , f1, s0,1,SF,1)

A2 = (S2, E , f2, s0,2,SF,2)

e = (e1, e2, . . .)

Figure 2.13: Coupling of two automata. (Source: [126])

f×((s1, s2), e) =


(
f1(s1, e), f2(s2, e)

)
if f1(s1, e) and f2(s2, e) are defined,

undefined, otherwise.

Applying the product-coupling on two online algorithms permits a simultaneous tracking of

the state evolution over time.

In preparation for the discussion of Markov chains, we introduce the notions of an au-

tonomous deterministic automaton and an autonomous nondeterministic automaton.

Definition 2.46 (Autonomous deterministic automaton ([43], [126])).

An autonomous deterministic automaton A is a quadruple (S, f, s0,SF) where S, s0, SF are

the same as in a deterministic automaton and f : S → S is the state transition function. 4

State transitions of an autonomous automaton are not associated to the occurrence of events

but rather happen without a certain reason out of nowhere.

Definition 2.47 (Autonomous nondeterministic automaton ([43], [126])).

An autonomous nondeterministic automaton A is a quadruple (S, frel, s0,SF) where S, s0,

SF are the same as in an autonomus deterministic automaton and frel : S → 2S is the state

transition relation. 4

The state transition relation frel(·) of a nondeterministic automaton gives a set of possible

successor states from the power set 2S of S for some given state. Notice that we obtain an

autonomous nondeterministic automaton from any deterministic automaton simply by omit-

ting the set of events Σ in the definition of the state transition function. In the automaton

graph this amounts to removing the edge labels (events) suggesting that the state transition

is carried out as a result of some random mechanism rather than as a result of an event.

68 2 Analysis of Optimization Algorithms

2.4.3 Markov Chains

Besides analyzing state reachability, Markov chains allow for analyzing the frequency of

encountering a given state by incorporating probabilistic information on state transitions.

This approach is particularly meaningful for representing the performance distribution of

algorithms as it allows to track the objective value and performance ratio distribution.

Let P (A) denote the probability of some event A and let Sk be a random variable for the

state at time k in a discrete event system with time instants N0. A Markov chain is obtained

from an autonomous nondeterministic automaton by replacing the state transition relation

frel with a probability distribution Gprob : S × S → [0, 1] such that

gss′ := Gprob(s, s
′) = P (Sk+1 = s′ |Sk = s)

gives the conditional probability that the system reaches state s′ at time k + 1 when it has

already reached state s at time k. We have to impose that∑
s′∈S

gss′ = 1, s ∈ S,

to ensure that Gprob(s, ·) is a probability distribution. In a discrete event system, uncertainty

is quantified by stochastic information on the occurrence of events leading to a state tran-

sition. When no stochastic information is given, imputing the uniform distribution yields

deterministic counting results ([90]).

Definition 2.48 (Markov chain ([43], [126])).

A Markov chain A is a quadruple (S, Gprob, p0,SF) where S, SF are the same as in an

autonomous deterministic automaton, Gprob : S×S → [0, 1] is the state transition probability

distribution and p0 is a probability distribution on the initial state. 4

A Markov chain is also called an autonomous stochastic automaton.

Denote by p(k) the vector whose ith element pi(k) := P (Sk = i) gives the probability that

the system takes on state i at time k. Using matrix G = (gij) with

gij := P (Sk+1 = j |Sk = i),

we obtain the recursive relation

p(k + 1) = Gp(k)

2.4 Optimization Algorithms and Discrete Event Systems 69

known as the Chapman-Kolmogorow equation. Hence, a Markov chain models a discrete time

linear system and with the initial state probability distribution p0 we have that pk = Gkp0

computes the state probabilities at time k. Using the uniform distribution over all events or

state transitions, respectively, we obtain deterministic counting results with regard to how

often a state is reached after a fixed amount of time has expired.

A system is said to have the Markov property if it holds that

P (Sk+1 = sk+1 |Sk = sk, . . . , S0 = s0) = P (Sk+1 = sk+1 |Sk = sk)

for all k ≥ 0. The Markov property states that the successor state solely depends on the

current state, but on none of the states prior to that. It can be shown that a system has to

fulfill the Markov property in order to establish a recursion in the form of the Kolmogorow-

Chapman equation which gives rise to the term Markov chain as a synonym for autonomous

stochastic automaton. The Markov property has also coined the notion of a memoryless

system due to the system’s oblivion to past states before the current state.

Classical Markov chain analysis is concerned with finding the steady state distribution, if it

exists. We are interested in a Markov chain’s transient behavior which yields information

about the state distribution after a given number of time steps ([90]). In most Markov chain

models of online optimization, no steady state distribution exists due to the objective value

being a part of the state encoding. We use Markov chains to obtain frequency information

concerning states with a prescribed objective value. For the performance ratio of an algorithm

relative to another, the state space of an associated Markov chain would need to comprise

the Cartesian product of the state space used for the analysis of the objective value of one

algorithm as outlined in Chapter 2.4.2.

2.4.4 Discrete Event Simulation

According to [159], “simulation is the reproduction of a system along with its dynamic

processes in an executable model in order to retrieve results which are transferable to reality”.

An execution of the simulation with specified input parameters is called simulation run or

replication. Results on system performance are derived from first collecting data over a

sufficient number of simulation runs which then serve as the computational basis so as to

determine (point, interval or distributional) estimates for several performance measures of

interest. In an experiment, we define a sufficiently large replication set to increase the

likelihood for results of high representativeness. Besides experiment design, we have to take

70 2 Analysis of Optimization Algorithms

into account in the model design that each involved stochastic process is associated with a

separate stream of random numbers such that any sort of dependency is ruled out.

Whenever a real world system shall be analyzed but exact analysis is out of reach due to a

high degree of complexity and a large number of dependent stochastic processes, simulation

represents an appropriate tool to provide estimates for desired performance measures. Al-

though the approximation character in the outcomes may be deprecating, there are quite a

number of advantages:

• Simulation may be the only way to analyze the behavior of complex systems with mul-

tiple dependent random variables and manifold types of events such as input element

releases, machine breakdowns, occurrence of erroneous data or erroneous operations.

• Sufficiently many simulation runs allow to obtain statistically sound results.

• Simulation allows to track manifold quantities of interest as intended by multicriteria

approaches in optimization.

• Simulation as an abstract model of reality is comparatively risk-free and cheap.

The event calendar is the pivotal element of a discrete event simulation model. It can

be thought of as a list of pending events that are fed into the discrete event system over

the course of a simulation run. Hence, the event calendar at time t is a list of events

ek, ek+1, . . . , ekmax

Lt =
(
(ek, tk), (ek+1, tk+1), . . . , (ekmax , tkmax)

)
with elements ordered according to non-decreasing occurrence times tk, tk+1, . . . , tkmax . We

take care of state trajectories by using a state transition function f : S × E → S where S
corresponds to the state space and E corresponds to the event set.

A run of a discrete event simulation model comprises the steps displayed in Algorithm

2.1 and any implementation of a discrete event simulation software amounts to a generic

implementation of these steps. A simulation study then consists of building a model for the

simulation and executing Algorithm 2.1 with respect to the simulation model for a sufficient

number of times with independent seeds. Clearly, the main contribution in a simulation

study consists in building the right model for the right purpose. Therefore, modeling requires

continuous surveillance using validation and verification methods ([141]).

There are two possible hierarchical relations between simulation and optimization ([135],

[119]): First, optimization appears as a subroutine module in the simulation; second, sim-

ulation is used as a multi-criteria evaluation function for an optimization method. Due

to incremental decision making in online optimization, we are concerned with the former

2.5 Concluding Discussion 71

Algorithm 2.1 Discrete event simulation run

Input: Seed value list S, initial state s, initial event list E, set of statistics, ending condition

1: Initialize random number generators with seed values from S
2: Initialize system state with s
3: Initialize event calendar with initial event list E
4: while ending condition not fulfilled do
5: Remove first entry (e, t) from event calendar
6: Advance to time t
7: Update system state according to state transition function s := f(s, e)
8: Update statistics
9: Delete (e, t) and all infeasible events from event calendar

10: Generate new events and add them to event calendar
11: Reorder elements in the event calendar by non-decreasing event times
12: end while

Output: Terminal state s, values of statistics

relation where decisions from an optimization module are iteratively requested within the

simulation model at the corresponding decision points of the function logic in the real world

model. In Algorithm 2.1, a decision elicited from an optimization method is manifested in

the discrete event simulation run by a state transition according to that decision in line 7.

Real world systems from production and logistics are inherently complex and contain opti-

mization problems exhibiting an online character at several control points. Discrete event

simulation combined with methods from online optimization represents a powerful tool in

the design (or reorganization) phase of such systems as it allows to evaluate the performance

of algorithms and to identify the most promising algorithm with respect to the user’s require-

ments on system performance. As a major disadvantage, it is much more difficult to gain

structural insights on why a system behaves the way it does from simulation experiments

than from exact analysis methods. After the simulation model is finished, it is often just

used as a black box to evaluate sample state trajectories of the system.

2.5 Concluding Discussion

This chapter provided a clear definition of the term online optimization with lookahead in

order to ensure a common understanding of this optimization concept not only through-

out this thesis but also throughout different problem settings in general. We clarified the

relations between the different optimization paradigms and examined their implications on

computational complexity as well as on algorithm analysis. It became evident that – due

72 2 Analysis of Optimization Algorithms

to the inevitability of failure in online optimization – algorithms in this field should not be

judged based only on the almighty yardstick of offline optimization. Therefore, we reviewed

the vast majority of alternative performance measures proposed in literature alongside their

advantages and disadvantages. This led to the conclusion that more comprehensive meth-

ods of performance analysis are indispensable, especially regarding algorithms for online

optimization with lookahead. We suggested a combined usage of the counting distribution

functions for the performance ratio and for the objective function value which together sub-

mit a thorough picture of an algorithm’s behavior in a given problem context. From the

analogy between discrete event systems and the solution process in online optimization it

became clear that exact analysis is out of scope whenever problem sizes become too large

and dependencies of random variables too complex. Overall, we gathered a set of potential

analysis tools for algorithms in online optimization with lookahead as displayed in Figure

2.14.

Analysis
of online
algorithms

Exact
analysis

Worst-
case

analysis

Average-
case

analysis

Distributional
analysis

Experimental
analysis

Sampling
Discrete
event

simulation

Figure 2.14: Analysis methods for online algorithms.

Since algorithms as solution methods for arising instances of online optimization problems are

not addressed explicitly in the analysis methods of discrete event systems, we next develop a

model of discrete event systems that explicitly takes into account sequential decision-making

by algorithms.

73

3 A Modeling Framework for Online

Optimization with Lookahead

In this chapter, we consider how a system whose function logic iteratively requires solving

subproblems of an online optimization problem instance can be tackled formally. We propose

a generic framework in order to harmonize concepts and notation throughout problems and

applications. Its instantiations specify the constraints and the potential workflow that the

system under consideration has to undergo while processing an input sequence using an algo-

rithm with lookahead capabilities. The framework intends to facilitate systematic algorithm

analysis based on a common understanding of the solution process paradigm and lookahead

mechanism. In contrast to discrete event systems, our framework explicitly accounts for an

integration of an algorithm’s decision making and available lookahead.

3.1 Modeling Prototypes

A first attempt to model online optimization problems generically were request answer games

as introduced at the beginning of the previous millenium’s last decade by Ben-David et al.

([21]). A sequence of requests is presented online and each time a new request arrives, an

adequate answer has to be given incurring some cost.

Formally, a request answer game over time horizon n ∈ N is a triple (R,A, C) where R
is a set of requests, A is a set of answers and C = {cn |n ∈ N} is a set of cost functions

with cn : Rn × An → R ∪ {∞}. In this model, a deterministic online algorithm Alg =

(Alg1,Alg2, . . . ,Algn) is a sequence of functions with Algi : Ri → A for i = 1, 2, . . . , n.

The output of an algorithm upon request sequence r = (r1, r2, . . . , rn) ∈ Rn is a sequence of

answers a = (a1, a2, . . . , an) ∈ An with ai = Algi(r1, r2, . . . , ri) for i = 1, 2, . . . , n. The costs

incurred by Alg upon processing r are given by cn(r, a).

74 3 A Modeling Framework for Online Optimization with Lookahead

Although request and answer games cover many online optimization problems, the concept

could not be established as a modeling standard due to its lacking ability to account for the

rationale in an algorithm’s decision making. Clearly, the concept of a state is needed for this

purpose. Request and answer games are mainly used in order to distinguish between several

types of adversaries in competitive analysis of randomized online algorithms ([21], [32]).

Another proposition for a generic model of online optimization origins from the priority

programme Online Optimization of Large Scale Systems of the German Research Foundation

(DFG, Deutsche Forschungsgemeinschaft) from 1996 to 2001 ([84]). On an informal basis,

Grötschel et al. ([85]) propose the sequential model and the time stamp model of online

optimization as refurbished in Definitions 2.14 and 2.15, respectively.

In both models, an input sequence σ = (σ1, σ2, . . .) is revealed over time and an algorithm

has to serve each of the input elements. In the sequential model, σi+1 is presented only when

σi has just been served, i.e., input elements are processed according to the first-in first-out

priority rule. In the time stamp model, each input element σi comes along with a release time

τi which is independent of an algorithm’s previous actions. The release time represents the

earliest point in time where σi may be served. Hence, in complete opposite to the sequential

model, the order of service is not fixed initially. Under the time stamp model, decisions

have a tentative character as long as they have not been executed and may be revoked until

then. As a result of an inclusion of the factor time, different solution strategies arise for an

algorithm: Waiting may become lucrative and decisions may be made at arbitrary points in

time.

Both for the sequential and time stamp model, no extension to the lookahead case was

suggested. In particular, incorporation of lookahead would require a more concise statement

about the restrictions on the service order and on the earliest possible times for service

which would arise due to lookahead. A subdivision of lookahead into an informational and

a processual component as outlined in Chapter 2.1.3 would be the logical consequence.

For classical disciplines in optimization, the working schemes of exact algorithms are known:

In mixed integer linear programming, the branch and bound method is established and

research concentrates on improving or extending the method by valid inequalities or branch

and cut procedures. In dynamic programming, value iteration, policy iteration or linear

programming are known to work as a result of the Bellman equation and research focuses

on how to apply the methods in practice, e.g., by approximative approaches. In contrast, no

online optimization algorithm can be exact; as a result, there is no basic starting point for

further research as outlined for the other fields. We believe that the introduction of a formal

modeling framework is at least a first step to find a common basis of understanding.

3.2 Modeling Framework Components 75

3.2 Modeling Framework Components

We recognize that previous models of online optimization lack an integration of lookahead

and a representation of the solution process for a given problem instance. In particular, the

sequential character of decision making by an algorithm in form of reactive planning upon

notification of new input elements needs a dedicated formulation. In the following sections,

we build a generic modeling framework for online optimization problems with lookahead; it

comprises four building blocks:

• The basic modeling elements provide an abstract view on the infrastructure of infor-

mation flows needed to model the solution process.

• The lookahead type specifies the instance revelation rule that an algorithm under look-

ahead has to obey in contrast to the reference online case.

• The processing characteristics specify the processing rules that an algorithm under

lookahead has to obey in its decision making on how to serve the input elements in

contrast to the reference online case.

• The algorithm execution mode defines the time instants at which algorithm evaluation

is scheduled over the course of the solution process.

Instantiations of the four building blocks are combined in a generic process model which

describes the interaction of the modeling elements over time as a result of the specific forms

of lookahead type, implied processing characteristics and prescribed algorithm execution

mode. The process model is of a discrete event nature because an algorithm has to respond

to a sequence of input elements arriving at discrete points in time ([68]).

3.2.1 Basic Modeling Elements

We first identify the constituting elements which are needed in each model of an online

optimization problem with lookahead. To this end, we consider the problem as part of a

dynamic system: We let the system under consideration be the abstracted collection of all

real world entities needed to describe the optimization problem, and we embed the system

in a time horizon with current time denoted by t.

76 3 A Modeling Framework for Online Optimization with Lookahead

Input element and input sequence

The smallest unit of information is given by an input element from the set of all possible input

elements Σ1 (which is the set of all input sequences of length 1). The input appears in form of

an input sequence σ = (σ1, σ2, . . .) consisting of input elements σi ∈ Σ1 for i = 1, 2, . . . These

are invisible at first, but then revealed successively according to the lookahead mechanism.

Each input element awaits some processing during the solution process. The processing of

an input element can be understood as the result of a decision (e.g., in form of a decision

variable assignment) on what to do with it in order to comply with all restrictions and to

contribute to the optimization goal.

An input element σi is a data record containing all relevant information needed by an algo-

rithm to decide on the processing of σi. On the most granular level, it is associated with the

following atomic parts:

• Release time τi := τ(σi) in the reference online optimization problem

• Release time τ ′i := τ ′(σi) in the online optimization problem with lookahead

• Processing time interval [T i, T i] := [T (σi), T (σi)] in the reference online optimization

problem

• Processing time interval [T ′i, T
′
i] := [T ′(σi), T

′
(σi)] in the online optimization problem

with lookahead

• Input element information ri := r(σi)

The only requirement on release times is τ ′i ≤ τi. The processing time intervals [T i, T i] and

[T ′i, T
′
i] give the times at which input element σi is allowed to be (physically) processed in

the absence and presence of lookahead, respectively. Many combinatorial online optimization

problems have T i = T i and T ′i = T
′
i; in this case, we can also use Ti and T ′i as the time

instants where processing is due to be executed. ri carries the essential information of σi

which is needed for decision making (e.g., the size of an item in bin packing or the location

of a request in the traveling salesman problem).

We associate two time-dependent variables with each input element σi:

• Processing status pi(t) := p(σi, t) ∈ {unprocessed, processing, finished}

• Action ai(t) := a(σi, t)

3.2 Modeling Framework Components 77

Processing status pi(t) gives the state of σi at time t and rules membership to the sets of

still unprocessed, currently processing or already finished input elements. Action ai(t) is a

data record with all information concerning how σi is, was, or is planned to be processed.

ai(t) is determined by an algorithm; if no action has been determined yet at time t, we set

ai(t) = Null. Whenever ai(t) 6= Null, we have that ai(t) contains at least the elements

ta,starti and ta,finishi denoting the time instants when processing of σi is (planned to be) started

and finished, respectively. Decisions made previously may be revoked until the current time

t reaches ta,starti . The set of all possible actions for an input element is denoted by A.

There are no additional sources of incomplete information with respect to σi once it has

been notified, i.e., it is given in its entirety as soon as its existence emerges. Each input

element experiences two steps with respect to its information: First, all information of an

input element is announced at its release time. Second, this information is exploited by an

algorithm to determine how an input element will be processed. The processing itself, of

course, takes place between ta,starti and ta,finishi without any further ado.

We remark that there are different types of events besides the arrival of new input elements

in real world applications such as system breakdowns, erroneous inputs or other kinds of

unforeseeable disturbances. In these cases, it must be ensured that input sequence σ can

accommodate input elements of different event classes.

Lookahead set

At each time t, the processing statuses of the known input elements establish a partition

of all available input elements into sets Ut, Pt and Ft of unprocessed, currently processing

and finished input elements, respectively. In the reference online optimization problem, we

have

• Ut := {σi | τi ≤ t, pi(t) = unprocessed}

• Pt := {σi | τi ≤ t, pi(t) = processing}

• Ft := {σi | τi ≤ t, pi(t) = finished}

In an online optimization problem with lookahead, τi is replaced with τ ′i . The following

equivalences rule membership of σi to these sets:

• pi(t) = unprocessed ⇔ ai(t) = Null ∨ ta,starti > t

• pi(t) = processing ⇔ ta,starti ≤ t < ta,finishi

• pi(t) = finished ⇔ ta,finishi ≤ t

78 3 A Modeling Framework for Online Optimization with Lookahead

The lookahead set Lt at time t is the collection of those input elements which have been

revealed, but still require (some amount of) processing, i.e., Lt := Ut∪Pt. Thus, Lt depends

on previous decisions and actions caused by an algorithm and not on a distinction between

the release times in the cases of absent and present lookahead. Although it might be tempting

to define lookahead as the set difference between the input elements known in the reference

online case and those known in the lookahead case, this approach has no practical benefit as

it is oblivious to the input elements which are at an algorithm’s disposal. Note that an input

element can stay in Lt arbitrarily long and suffer starvation if its processing is continuously

rejected in favor of another input element.

State space

For a better representation of the dependencies between an algorithm’s decision and the

current state, we decompose each state s from the set of all states S into three components

s = (sin, ssys, sobj) with input state sin, system state ssys and objective state sobj. All

information concerning the input of the problem at time t is collected in input state sint =

(Ut, Pt, Ft); the set of all input states is denoted by S in. Because sint contains all σi with

τi ≤ t or τ ′i ≤ t, it also contains all action variables ai(t) for these input elements. To

describe external circumstances which have to be taken into account by an algorithm, the

system state ssyst at time t is a data record containing all information to describe the system

configuration (e.g., bin configurations in bin packing or the current server position in the

traveling salesman problem) at time t; the set of all system states is denoted by Ssys. In the

context of optimization, we have to use valued states to keep track of the current objective

value during the solution process. At time t, we extract all information relevant to the future

development of the objective value (e.g., the plain current objective value) in objective

state sobjt ; the set of all objective states is denoted by Sobj. The set of all states is S =

S in × Ssys × Sobj; concerning the solution process of an online optimization problem with

lookahead, we are interested in the state trajectory evolution (st)t≥0 with st ∈ S for t ≥ 0.

Event space

Because in online optimization an algorithm has to respond to arriving input elements, we

classify the arrival of a new input element as an event. Likewise, finished processing may

change the objective state such that the end of an input element’s processing also represents

an event. In total, all state transitions which are of interest in monitoring the solution

process of an online optimization problem are triggered by the occurrence of an event. We

3.2 Modeling Framework Components 79

subsume all possible events in the event set E . Events occur at discrete time instants and

have a duration of zero. In our framework, events are the only source of uncertainty which an

algorithm has to cope with. Note that both the sequential and time stamp model of online

optimization only know two types of events referring either to finished processing of an input

element or to notification of a new input element; both types coincide in the sequential model

because a new element only becomes available when a known one finishes processing.

Algorithm

Input element processing is controlled by the decisions of an algorithm, ultimately causing

changeovers of input elements between sets Ut, Pt and Ft as imputed by the algorithm’s

decisions. Recalling that in online optimization the overall solution is composed of a sequence

of partial solutions, an algorithm Alg is used to successively produce partial solutions by

determining the values of the input elements’ action variables. Let nt := |Ut ∪ Pt| = |Lt| be

the number of unfinished known input elements, then an online algorithm Alg is a family

of functions Alg := (Algt)t≥0 where Algt : S ×E → Ant is a function determining for each

of the nt known and yet unfinished input elements an action from the action space A based

on current state s ∈ S and occurring event e ∈ E . Hence, our definition of an algorithm

generalizes that of the request answer games from Chapter 3.1 in terms of the dependency

on the current state and the multidimensionality of the codomain. Algt is evaluated at each

time instant t where an event occurs.

State transition

The state transition function f : S × E → S determines for a given state s ∈ S and an

occurring event e ∈ E the successor state s′ ∈ S. It only needs to be evaluated at the

discrete time instants where an event occurs because for all other times the state trajectory

is assumed to advance deterministically, i.e., it can be precomputed.

3.2.2 Lookahead Type

The lookahead type specifies the mechanism under which the membership of input elements

to lookahead set Lt is governed for all t. According to the taxonomy from Chapter 2.1.3,

it corresponds to the instance revelation rule of online optimization with lookahead. Which

lookahead type is employed depends on the application under consideration and on the tech-

nical possibilities. We give some frequently used types of lookahead in literature, harmonize

80 3 A Modeling Framework for Online Optimization with Lookahead

them with our notation and introduce property lookahead as a generalization of all instance

revelation rules which allow for a property-related characterization of all known input ele-

ments. Recall that a key characteristic in the sequential model is the processing-dependent

release of input elements: Only when an input element finishes processing, a new one be-

comes known; in the time stamp model, input elements become known independently of

previous decisions and an online algorithm is allowed to wait and revoke decisions as long

as they have not been implemented. Despite of that, also the sequential model can incor-

porate temporal aspects in the specification of input element σi. A similar classification of

lookahead types as described subsequently has also been given by Tinkl ([155]).

Request lookahead

Request lookahead of size k ∈ N ([155]) is defined to have access to a fixed number k of

unprocessed or currently processing input elements, or to all of the remaining unprocessed

and currently processing input elements if there are less than k of them. The first of these

input elements is also known in the pure online situation, but the remaining k − 1 input

elements or all remaining input elements if there are less than k of them are known due to

the lookahead capability. Request lookahead construes the lookahead set dependent on the

processing statuses of the input elements and not in an independent process of release. We

obtain the release times recursively from

τi :=

0, if i = 1,

min{ta,finishj |σj ∈ Lτi−1
}, if i = 2, 3, . . .

in the case without lookahead and

τ ′i :=

0, if i = 1, . . . , k,

min{ta,finishj |σj ∈ Lτ ′i−1
}, if i = k + 1, k + 2, . . .

in the case with lookahead. Request lookahead origins from applications where time is not

modeled explicitly such that request lookahead is understood only in the sequential model.

Request lookahead is not possible in the time stamp model because an arbitrary number of

input elements may be released at any time contradicting the requirement to hold at most

k input elements. For applications which adhere to capacities, such as storage devices or

inventory spaces, request lookahead is realistic, whereas for applications which deal with

immaterial requests, such as emergency calls or customer demands, it is unrealistic.

Under request lookahead, input elements are revealed in a rolling time horizon. However, one

3.2 Modeling Framework Components 81

can also think of situations where information is released rather in batches or blocks than

steadily over time: A new batch is only given when all elements of the previous one have

finished processing. This gives rise to a batched version of this lookahead variant. In batched

request lookahead of size k, input elements are always revealed in blocks of k elements if

there are more than k elements left, otherwise the remaining input elements are revealed. In

this case, we have

τ ′i :=

0, if i = 1, . . . , k,

max{ta,finishj |σj ∈ Lτ ′ck}, if i = ck + 1, ck + 2, . . . , ck + k with c ∈ N.

Time lookahead

Time lookahead of length D ∈ R>0 ([155]) essentially makes input element σi known D time

units earlier in the online setting with lookahead than in the setting without lookahead.

Hence, except for input sequences which are released before t = D, there is a fixed offset

D between an input element’s release time in the cases of present and absent lookahead.

Release times τi in the pure online setting are assumed to be independent of an algorithm’s

processing and we obtain that τ ′i := max{τi − D, 0}. Time lookahead can be seen as an

artificial preponement of the moment at which an input element is notified by D time units.

It is not admissible in the sequential model because the generation of input elements is an

independent process. A drawback of time lookahead is that arbitrarily many input elements

may reside in the lookahead set: When processing of a single input element extends over time,

the workload may collapse in the long run. Thus, it is reasonable to see time lookahead in

connection with stability enforcing constraints similar to those in queuing systems where the

occupation rate is used to measure server utilization. It deserves mentioning that artificially

diminishing the release time of an input element is conceptually different from allowing an

algorithm to wait in order to accumulate input elements as we nominally make information

available earlier in time. Though, the consequences and positive effects of delaying processing

decisions to a later point in time are similar because the planning basis, i.e., the available

data for a set of decisions, is extended in both situations (cf. also [7]).

Collective property lookahead

Collective property lookahead has been first introduced as a general concept in [155] although

in bin packing (see, e.g., [83]) and paging (see, e.g., [2]) it had already been instantiated

82 3 A Modeling Framework for Online Optimization with Lookahead

before. Let c-prop be a time variant property of an arbitrary subset σ≤j(t) of the elements

in input sequence σ where

σ≤j(t) := {σi | i ∈ {1, 2, . . . , j}, pi(t) 6= finished}.

Write c-propj(t) := c-prop(σ≤j, t) if σ≤j(t) fulfills c-prop at time t and ¬c-propj(t) otherwise.

In addition, we assume for σi, σj, σk ∈ Lt that ¬c-propk(t) holds for all k > j whenever

¬c-propj(t) and that c-propi(t) holds for all i < j whenever c-propj(t). Without a collective

property lookahead device for c-prop, any algorithm is oblivious to c-prop and σi is released

according to the instance revelation rule in the online case; collective property lookahead

makes all input elements that comply with c-prop visible to an algorithm. Collective property

lookahead is defined to have access at time t to a largest possible subsequence of unfinished

input elements such that all input elements of this subsequence collectively fulfill property

c-prop at time t. The first time t where c-propi(t) is fulfilled is set to be the preponed release

time of σi. Thus, in the online setting with lookahead, we have τ ′i := min{t | c-propi(t)}.
The instance revelation rule of the pure online setting has to ensure that τ ′i ≤ τi. Collective

property lookahead can be admissible both in the sequential model and time stamp model

depending on the definition of c-prop itself. Collective property lookahead is used when input

elements collectively influence which part of the input sequence is seen, e.g., due to their

combined size or weight.

Property lookahead

We introduce this type of lookahead as a generalization of all lookahead types that can

be described explicitly. Let prop be a time variant property of each input element. Write

propi(t) := prop(σi, t) if σi fulfills prop at time t and ¬propi(t) otherwise. Without a property

lookahead device for prop, any algorithm is oblivious to prop and σi is released according to

the instance revelation rule in the online case; property lookahead makes all input elements

that comply with prop visible to an algorithm. The first time t where propi(t) is fulfilled

is set to be the preponed release time of σi. Thus, in the online setting with lookahead,

we have τ ′i := min{t | propi(t)}. The instance revelation rule of the pure online setting has

to ensure that τ ′i ≤ τi. Property lookahead can be admissible both in the sequential model

and time stamp model depending on the definition of prop itself. Property lookahead is

used whenever there is some device that allows to recognize input elements which fulfill the

property. Note that property lookahead is a generalization of all lookahead types that rely

on some rule which governs membership of input elements to the lookahead set.

3.2 Modeling Framework Components 83

Free lookahead

Free lookahead is applied whenever it is observed that input elements become known earlier

than in the reference online setting, but the mechanism of preponed release of input elements

is unknown or hidden to the user. The fundamental feature of free lookahead is that there

is no relation known between τi and τ ′i other than τ ′i ≤ τi.

3.2.3 Processing Mode and Order

According to Chapter 2.1.3, when input elements are processed, they are subject to the rules

specified in (processing) rule sets P and P ′ of the online optimization problem in absence

and presence of lookahead, respectively. Unfortunately, in literature it is never specified

how P and P ′ exactly look like but tacitly assumed according to the problem context. We

provide a classification which verbally expresses the essential difference between P and P ′.

By definition, the decisions of an algorithm on processing start and end times have to obey

T i ≤ ta,starti ≤ ta,finishi ≤ T i in the pure online setting; in the online case with lookahead, T i

and T i have to be replaced by T ′i and T
′
i, respectively.

Under lookahead, we have to deal with the questions whether we have to adhere to the order

in the input element sequence also in processing (processing order) and whether more than

one input element can be processed at a time (processing mode).

We explain combinations of the four possible processing modes

• single processing,

• parallel processing,

• limited parallel processing,

• property processing

with the two possible processing orders

• in-order processing,

• random-order processing.

84 3 A Modeling Framework for Online Optimization with Lookahead

Single in-order processing

In single in-order processing, we have to obey the given order of input element releases also

when processing the input elements and we have to process them one after another. For the

decisions of an algorithm on input element σi it has to hold that ta,finishi ≤ ta,starti+1 .

Single random-order processing

In single random-order processing, we are allowed to choose any available unfinished input

element for being processed next at any time, but have to respect that only one input element

can be processed at a time. For the decisions of an algorithm on two input elements σi and

σj with i 6= j it has to hold that [ta,starti , ta,finishi) ∩ [ta,startj , ta,finishj) = ∅.

Parallel in-order processing

In parallel in-order processing, we have to obey the given order of input element releases

also when processing the input elements, but we may process more than one input element

at a time. For the decisions of an algorithm on input element σi it has to hold that ta,starti ≤
ta,starti+1 .

Parallel random-order processing

In parallel random-order processing, we are allowed to choose any available unfinished input

element for being processed next at any time and we may process more than one input

element at a time. There are no temporal restrictions on processing times which have to

hold for the decisions of an algorithm on the input elements.

Limited parallel in-order processing

Limited parallel in-order processing is similar to parallel in-order processing, but additionally

imposes that at most m input elements can be processed at a time. For the decisions of an

algorithm on input element σi it has to hold that ta,starti ≤ ta,starti+1 and additionally for t ≥ 0

that |{σj | t ∈ [ta,startj , ta,finishj)}| ≤ m.

3.2 Modeling Framework Components 85

Limited parallel random-order processing

Limited parallel random-order processing is similar to parallel random-order processing, but

additionally imposes that at most m input elements can be processed at a time, i.e., for the

decisions of an algorithm it has to hold for t ≥ 0 that |{σj | t ∈ [ta,startj , ta,finishj)}| ≤ m.

Property processing

In property processing, input elements eligible to be processed at time t are marked. Let

proc be a time-dependent property of each input element; write proci(t) := proc(σi, t) if σi

fulfills proc at time t and ¬proci(t) otherwise. Processing start times are coordinated such

that proci(t) is fulfilled when ta,starti = t is chosen. For the decisions of an algorithm on input

element σi it has to hold that ta,starti ∈ {t ≥ 0 | proci(t)}. All previous processing modes and

orders can be emulated by property processing using an adequate specification of proc.

3.2.4 Processing Accessibility

We address the question of when input elements are ready to be processed once they have

been disclosed. Exact specifications of instance revelation rules r and r′ as well as of rule sets

P and P ′ according to the taxonomy in Chapter 2.1.3 would resolve this issue automatically.

However, these specifications are rarely given explicitly in publications such that we provide

a classification which verbally expresses the processing permissions arising by lookahead.

The task is to specify whether earlier disclosure of input element information only means

that the information is known earlier or also that the input element itself is ready to be

processed earlier (cf. also [155]). In the first case, there can only be an informational benefit

of lookahead, but there may additionally be a processual benefit in the latter case.

Immediate accessibility

Processing input element σi is possible directly upon receiving it, i.e., we have T i := τi in

the online setting without lookahead and T ′i := τ ′i in the online setting with lookahead.

Regular accessibility

Processing input element σi is possible only when the regular earliest processing time is

reached, i.e., we have T ′i := T i.

86 3 A Modeling Framework for Online Optimization with Lookahead

Delayed accessibility

Processing input element σi is not possible directly upon receiving its information, but may

be possible at some time before the regular earliest processing time, i.e., we have T i > τi in

the online setting without lookahead and T ′i > τ ′i in the online setting with lookahead. A

typical case is to impose a fixed offset toff between information release and earliest possible

processing, i.e., T i = τi + toff and T ′i = τ ′i + toff .

3.2.5 Algorithm Execution Mode

The algorithm execution mode controls at which time instants an algorithm is executed

in order to determine the values of the action variables of known input elements. Recall

that algorithm execution and action execution (physical processing) are different: Algorithm

execution refers to the computational steps needed to determine actions for input elements,

whereas action execution is the realization of the decisions which have been determined by

algorithm execution before. Action execution runs automatically, but algorithm execution

needs initiation.

We present three intuitive algorithm execution modes which are applicable to algorithms

in online optimization problems with absent or present lookahead. Computing time of al-

gorithms is not a scarce resource in the online optimization paradigm by definition; the

only scarce resource is information ([32]). However, when exact algorithms are applied to

instances of NP-hard optimization problems, we have to ensure that prescribed real-time

requirements are not violated.

Cyclic Execution

Algorithm execution is carried out cyclically, i.e., at all times texeci = i · tcycle for i = 0, 1, 2, . . .

where tcycle is the base time interval between two algorithm executions. It is possible that an

arbitrary large number of new input elements accumulates during two algorithm executions

or that no new input element arrives at all. Execution may still be worthwhile because

actions different from Null may be determined for known input elements which have not

yet been assigned an action so far.

3.3 A Classification Scheme 87

Full Buffer Execution

Algorithm execution is performed every time that the number of elements in the lookahead

set reaches a prescribed limit c ∈ N, i.e., at all times in

{
texec ≥ 0

∣∣ |Ltexec | = c, |Ltexec−ε| < c
}

with sufficiently small ε > 0. At the end of the input sequence, it has to be assured that none

of the input elements σi exhibits ai(t) = Null so as to guarantee that each input element

will be processed.

Discrete Event Execution

Execution of an algorithm is triggered by events occurring at discrete time instants. From

a technical point of view, an event detecting device must be installed in order to monitor

incoming events. Release of a new input element and finished processing of an input element

serve as typical events in basic online optimization problems. In more complex settings,

additional events such as any type of system breakdown or failure can also be considered as

events. Denote by (tei)i∈N the sequence of time instants at which events are notified, then

algorithm execution takes place at times texeci = tei + ε for i ∈ N with sufficiently small ε > 0.

Note that practically all types of relevant algorithm execution modes can be traced back to

the case of discrete event execution by appropriate definition of the set of events.

3.3 A Classification Scheme

Similar to the classification scheme of Graham et al. for scheduling problems ([81]), we pro-

vide a classification scheme for the modeling of online optimization problems with lookahead

that takes into account their characteristics as identified in the previous sections. Given an

instance of an online optimization problem with lookahead, the components of the modeling

framework need to be specified in order to implement a solution procedure: Basic modeling

elements as introduced in Chapter 3.2.1 are specific to the problem under investigation such

that an associated modeling effort is unavoidable; restrictions concerning the release pro-

cess, the processing characteristics and the algorithm execution mode from Chapters 3.2.2

to 3.2.5 work in a similar way for different problem settings, and they characterize the form

of the instance revelation rule substitution and rule set substitution that comes along with

lookahead.

88 3 A Modeling Framework for Online Optimization with Lookahead

We propose a four-position classification scheme of the form α | β | γ | δ for online optimiza-

tion problems with lookahead in order to quickly indicate the qualitative characteristics of

a problem under lookahead as compared to the online problem without lookahead:

Lookahead type α Frequently used entries for α are:

• req for request lookahead

• req-b for request lookahead in batches

• time for time lookahead

• col for collective property lookahead

• prop for property lookahead

• free for free lookahead

Processing mode and order β Frequently used entries for β are:

• sngl/ord for single in-order processing

• sngl/rnd for single random-order processing

• prl/ord for parallel in-order processing

• prl/rnd for parallel random-order processing

• prl-ltd/ord for parallel limited in-order processing

• prl-ltd/rnd for parallel limited random-order processing

• pp for property processing

Processing accessibility γ Frequently used entries for γ are:

• im for immediate accessibility

• reg for regular accessibility

• dly for delayed accessibility

Algorithm execution mode δ Frequently used entries for δ are:

• cyc for cyclic algorithm execution

• full for full buffer algorithm execution

• discr for discrete event algorithm execution

3.3 A Classification Scheme 89

Reference Proprietary name α β γ δ

Routing and transportation

Allulli et al. [7], [8] – time sngl/rnd reg discr

Ausiello et al. [11] – time sngl/rnd reg discr

Bosman and La Poutré [34] oracle free prl-ltd/rnd reg discr

Jaillet and Lu [95] advanced information prop sngl/rnd reg discr

Jaillet and Wagner [96] advanced information prop sngl/rnd reg discr

Tinkl [155] lookahead (La) by order req sngl/rnd im cyc

Scheduling

Coleman [51] – req sngl/rnd reg discr

Li et al. [123] – time prl/rnd reg discr

Mandelbaum and Shabtay [129] adaptive La req prl-ltd/ord reg cyc

Mandelbaum and Shabtay [129] non-adaptive La req-b prl-ltd/ord reg cyc

Mao and Kincaid [130] – req sngl/rnd reg discr

Motwani et al. [134] finite La req sngl/ord im cyc

Yang et al. [161] head-of-the-line req sngl/rnd im cyc

Zheng et al. [168] – time sngl/ord reg discr

Zheng et al. [169] – time sngl/rnd reg discr

Data structures

Albers [2], [3] weak La req sngl/ord reg cyc

Albers [3] strong LA col sngl/ord reg cyc

Breslauer [41] natural LA col sngl/ord reg cyc

Kiniwa et al. [113] – req sngl/rnd im cyc

Torng [156] – req sngl/ord reg cyc

Yeh et al. [163] – req-b sngl/rnd im cyc

Young [164] resource-bounded La col sngl/ord reg cyc

Data transfer

Dooly et al. [64] oracle req sngl/ord reg cyc

Imrek and Németh [93] – time sngl/ord reg discr

Packing

Grove [83] – col sngl/rnd im cyc

Gutin et al. [86] – req-b sngl/rnd im cyc

Lot sizing

Ahlroth et al. [1] – time prl/ord im cyc

Metrical task systems

Ben-David and Borodin [20] – req prl-ltd/ord reg cyc

Koutsoupias and Papadimitriou [115] – req sngl/ord reg cyc

Graph theory

Chung et al. [45] window index col sngl/ord reg cyc

Halldorssón and Szegedy [87] – req sngl/ord reg cyc

Halldorssón and Szegedy [87] buffer req-b sngl/ord reg cyc

Irani [94] – req sngl/ord reg cyc

Table 3.1: Classification of lookahead concepts in papers on online optimization with lookahead.

90 3 A Modeling Framework for Online Optimization with Lookahead

As an example, the sequential model of online optimization endowed with request lookahead

as encountered in the paging problem may be represented both by req | sngl/ord | im | discr
and req | sngl/ord | im | cyc.

In literature, lookahead is mainly defined with respect to the topic of a paper; often an explicit

specification of processing characteristics is missing but implicitly assumed. Table 3.1 on the

previous page classifies the lookahead concepts and their requirements on processing and

algorithm execution as described in papers on online optimization with lookahead.

Finally, we relate the classification scheme to Definitions 2.13 and 2.21 of online optimization

problems in absence and presence of lookahead, respectively: The lookahead type α indicates

the instance revelation rule substitution from r to r′. The processing mode and order β as

well as the processing accessibility γ are established by rule set P ′ which constitutes the

conditions for the processing of the input elements such that compliance with the feasible

set of the problem under lookahead is ensured. The algorithm execution mode δ as part of

the solution routine is unaffected by the problem formulation.

3.4 Discrete Event Process Model

The generic process model for online optimization with lookahead describes the interaction of

the basic modeling elements over time in order to reproduce the function logic of a dynamic

system. Because we basically impute a discrete-event-triggered algorithm execution, we also

speak of a discrete event process model. In order to keep track of the solution process in

an instance of an online optimization problem with lookahead, we need instantiations of the

lookahead type, the processing mode and order, and the processing accessibility as specified

by the (instance revelation rule and the rule set of the) application.

The system is assumed to operate on an event-driven basis. Starting with initial state s0 ∈ S,

Figure 3.1 schematically illustrates how the system’s state trajectory (s0, s1, s2, . . .) evolves

as a result of events arriving in the event sequence (e0, e1, e2, . . .) and related computations

of algorithm Alg: Upon arrival of an event e ∈ E , the system proceeds from its current state

s ∈ S to successor state s′ ∈ S by evaluating the state transition function f(s, e). However,

computing the successor state at time t as f(s, e) implicitly requires a preceding evaluation

of Algt(s, e) ∈ Ant where nt is the number of known unfinished input elements at time t

because the successor state also contains a specification of the action variables for the yet

unfinished input elements. Upon reaching the successor state, the system awaits the arrival

of a new event causing the system to undergo the same sequence of steps again.

3.5 Relation to Markov Chains 91

s0 ∈ S Alg0(s0, e0)

s1 ∈ S Alg1(s1, e1)

s2 ∈ S · · ·

e0 ∈ E

f(s0, e0)

e1 ∈ E

f(s1, e1)

e2 ∈ E

Figure 3.1: State trajectory with associated state transition function and algorithm evaluations
in the process model for online optimization with lookahead.

The computational effort of an algorithm caused by a state transition typically depends on

the type of the event e that is encountered: The arrival of a new input element suggests

to solve a snapshot optimization problem in order to determine the action variable for the

new input element and to redetermine the action variables for still unfinished input elements;

finished processing of an input element will not cause an algorithm to spend excessive compu-

tational resources since no additional action for a new input element needs to be determined

and all remaining actions are expected to remain the same as they have been computed

previously on the same informational basis.

Information about the evolution of the objective value which is incurred by processing the

elements of the input sequence can be tracked by monitoring the objective state component

sobj of each attained state s = (sin, ssys, sobj). Typically, when an event corresponds to a

finished processing of an input element, a change in the objective value can be observed as a

result of the associated state transition, whereas when an event corresponds to a new input

element release, no immediate change in the objective value will occur since processing of

this input element is still pending.

3.5 Relation to Markov Chains

In a Markov chain, state transitions occur at discrete time instants i ∈ N irrespective of

all past states other than the current state resulting in an associated random (stochastic)

process exhibiting the memoryless property. That is why Markov chains are an equivalent

type of description for autonomous stochastic automata (see also Chapter 2.4.3). A Markov

92 3 A Modeling Framework for Online Optimization with Lookahead

chain can be modeled by identifying the state space S, the initial state probabilities p0(s)

which give the probability that the initial state of the system is s ∈ S, the state transition

probabilities gss′ which give the probability that the successor state of s ∈ S is s′ ∈ S, and a

set SF ⊆ S of terminal states for which we would like to obtain frequency information. For

a fixed initial state s0 ∈ S, the state of the Markov chain is assumed to evolve autonomously

according to the state transition probabilities; after n ∈ N transition steps, a probability

distribution over the states reached after n transitions starting from s0 is obtained. Our

discrete event process model is somewhat different from this perspective because it neither

specifies initial state probabilities nor state transition probabilities. Moreover, upon receiv-

ing a new event from event set E , an algorithm decides deterministically which successor

state will be attained. However, with the sequence of occurring events (e0, e1, e2, . . .), we can

identify a source of randomness also in the discrete event process model. We translate our

nescience of probabilities for occurring events into the assumption of a uniform distribution

for the occurring events: According to the principle of maximum entropy, the largest entropy

distribution, which is the discrete uniform distribution in this case, should be chosen repre-

sentatively in order to ensure that no unjustified assumptions are introduced ([97], [98]). As

a major side effect of this approach, we can use a Markov chain to model the evolution of

the state trajectory in online optimization with lookahead: The state space S of the Markov

chain coincides with the state space of the discrete event process model, the distribution

of the initial state probabilities is degenerated by p0(s0) = 1 for s0 ∈ S and p0(s) = 0 for

s ∈ S with s 6= s0, and the state transition probabilities are chosen as gss′ := e(s,s′)
|E| where

e(s, s′) :=
∣∣ {e ∈ E | fAlg(s, e) = s′}

∣∣ is the number of events in E leading from state s ∈ S
to state s′ ∈ S by applying algorithm Alg. The choice of gss′ in this Markov chain accounts

for the discrete uniform distribution over the elements of event set E . We note that because

of the objective state component sobj in state s = (sin, ssys, sobj) ∈ S holding information

about the valuation of a state, we implicitly model a valued Markov chain with the above

specifications.

A requirement to adopt Markov chains to online optimization with lookahead is that the

state space S is a finite or countable set. Hence, for time lookahead or continuous state

space information this method of evaluation would be inapplicable and a discretization of

the respective dimensions is required first. However, analyzing an algorithm for an online

optimization problem with lookahead by means of an associated Markov chain suffers the

same computational burdens as the analysis of any Markov chain when the size of the state

space explodes for increased values of the problem parameters ([18]).

We note that the set up of a Markov decision process ([140]) is different from ours: State tran-

sitions occur probabilistically once a control action has been chosen, whereas in our setting

3.6 Instantiations of the Framework 93

they occur deterministically based on an algorithm’s deterministic decision. Markov decision

processes are used as a modeling formalism to determine an optimal strategy, i.e., the deci-

sions of an optimal algorithm with respect to some expected objective value, using dynamic

programming. Stochastic assumptions concerning transition probabilities depending on the

control action are given a-priori: p(s, a, s′) with s, s′ ∈ S and a ∈ A is the probability that

the successor state of s is s′ if action a is chosen. In contrast to this, our analysis merely

intends to evaluate the quality of a given algorithm in a setting of complete nescience of

stochastic information. In particular, we do not seek for an optimal algorithm.

3.6 Instantiations of the Framework

We instantiate the generic modeling framework for online optimization with lookahead in

three exemplary applications by specifying its components.

Online Bin Packing with Lookahead

Consider a version of the online bin packing problem whose lookahead and processing char-

acteristics are classified according to

req | sngl/ord | reg | discr.

Lookahead type Request lookahead of size k.

Processing Mode and Order Items have to be packed in their order of appearance one af-

ter another. As a result, the advantage accrued by lookahead is merely informational.

However, as seen in Example 2.37 and confirmed by the computational results in Chap-

ter 5.3, the value of permuting the item order in physical processing turns out to be 0

anyway when an unbounded number of open bins is allowed.

Processing Accessibility Although lookahead makes items known earlier in time, their pro-

cessing time in the lookahead setting coincides with the processing time in the setting

without lookahead due to required sequentiality. This type of restriction may arise due

to the physical dimensions of the objects which have to be packed.

Algorithm Execution Mode Since assignment decisions are invariant as long as no event

(arrival of new item or packing of item into a bin) occurs, they only need to be (re-)

determined by evaluating Alg whenever an event takes place.

94 3 A Modeling Framework for Online Optimization with Lookahead

Input element and input sequence Denote the set of items by Σ1. An element σi ∈ Σ1 of

the input sequence σ = (σ1, σ2, . . .) corresponds to an item and comprises the following

data:

• Release time τi = i− 1 in the reference problem without lookahead

• Release time τ ′i = max{0, i− k} in the problem with lookahead

• Processing time Ti = i− ε in the reference problem without lookahead

• Processing time T ′i = i− ε in the problem with lookahead

• Input element information ri = si where si is the size of item σi

Lookahead set The lookahead set essentially contains those k items which have not yet

been put into a bin, i.e., Lt = {σi | pi(t) = unprocessed, τi ≤ t} in the setting without

lookahead and Lt = {σi | pi(t) = unprocessed, τ ′i ≤ t} in the setting with lookahead.

State space The state space is given as S = {(U, c1, c2, . . . , cm,m)} where U is the set of

items which have not yet been physically assigned to a bin with U ∈ Σ1∪∅ in the case

without lookahead and U ∈ ⋃
k′≤k

{
{σ1, σ2, . . . , σk′} |σi ∈ Σ1, i = 1, 2, . . . , k′

}
in the case

with lookahead and (c1, c2, . . . , cm) are the fill levels of the m bins used.

Event space The set of events comprises two event types. Events of the first type are of the

form e1(σi) := Arrival of new item σi and events of the second type are of the form

e2(σi, j) := Physical assignment of item σi to bin j. Hence, the event set is given as

E = {e1(σi) |σi ∈ Σ1} ∪ {e2(σi, j) |σi ∈ Σ1, j ∈ N}.

Algorithm An algorithm has to decide into which bin an item has to be put such that no bin

capacity is ever exceeded. Thus, with nt = |Lt| as the number of unprocessed items at

time t, Algt : S×E → {N∪Null}nt is a function which assigns each item in Lt either

the number of the bin into which it is planned to be put at its respective processing

time or leaves the destination bin undetermined.

State transition function Let the current state at time t be s = (U, c1, c2, . . . , cm,m) and

let an event of the form e = e1(σi) occur at t, then the successor state s′ computed

by the state transition function is f(s, e) = (U ′, c1, c2, . . . , cm,m) where U ′ corresponds

to U expanded with σi. Upon event e = e2(σi, j), the successor state s′ is f(s, e) =

(U ′, c′1, c
′
2, . . . , c

′
m′ ,m

′) where U ′ corresponds to U diminished by σi, c
′
j = cj+si, c

′
k = ck

for k = 1, . . . ,m with k 6= j and m′ ∈ {m,m + 1} gives the number of occupied bins

after σi has been packed.

3.6 Instantiations of the Framework 95

Online Traveling Salesman Problem with Lookahead

Consider a version of the online traveling salesman problem whose lookahead and processing

characteristics are classified according to

time | sngl/rnd | im | discr.

Due to the infinite state space as a result of continuous time, the elements of the state space

are uncountable and Markov chain analysis is computationally prohibitive. Nonetheless, the

discrete event process model can be utilized in sample-based analysis or simulation.

Lookahead type Time lookahead of length D.

Processing Mode and Order Locations have to be visited one after another, but not nec-

essarily in their order of appearance. As a result, the advantage from lookahead is

both related to earlier information and possibilities of earlier processing. As seen in

Example 2.37 and confirmed by the computational results in Chapter 5.4, algorithms

benefit from lookahead by visiting spatially proximate locations in temporal proximity.

Processing Accessibility Positive effects in terms of increased degrees of freedom due to

permutability of locations in the visiting sequence are further enhanced by immediate

processing accessibility of the locations, i.e., once a location is known, it is allowed to be

visited immediately. Unrestricted visitation opportunities of this kind may arise when-

ever the requesting entity has no temporal preferences which is the case for physical

or virtual objects, but not for animate beings.

Algorithm Execution Mode Because sequencing decisions are invariant as long as no event

(arrival of new request or finished service) occurs, they only need to be (re-) deter-

mined by evaluating Alg whenever an event takes place. Due to continuous time,

the state trajectory is a continuous path in the state space. However, events can be

ordered such that discrete event algorithm execution applies, and the evolution of the

state trajectory can be (analytically) reproduced based on the event occurrences and

associated decisions of the algorithm.

Input element and input sequence Denote the set of locations by Σ1. An element σi ∈ Σ1

of the input sequence σ = (σ1, σ2, . . .) corresponds to a location to be visited and

comprises the following data:

• Release time τi ∈ [0,∞) in the reference problem without lookahead

• Release time τ ′i = max{0, τi −D} in the problem with lookahead

96 3 A Modeling Framework for Online Optimization with Lookahead

• Processing time Ti ∈ [τi,∞) in the reference problem without lookahead

• Processing time T ′i ∈ [τ ′i ,∞) in the problem with lookahead

• Input element information ri = xi where xi gives the spatial position of σi

Lookahead set Set p(σi) := processing if location σi is currently approached and p(σi) :=

unprocessed otherwise. The lookahead set contains all known locations which have not

yet been reached by the server, i.e., Lt = {σi | pi(t) ∈ {unprocessed, processing}, τi ≤ t}
in the case without lookahead and Lt = {σi | pi(t) = {unprocessed, processing}, τ ′i ≤ t}
in the case with lookahead.

State space Let n be the maximum number of locations to be visited by the server. The

state space is given as S = {(U, P, t, xs, tlast)} where U ∈ ⋃
n′≤n

{
{σ1, σ2, . . . , σn′} |σi ∈

Σ1, i = 1, 2, . . . , n′
}

is the set of unprocessed locations, P ∈ Σ1 ∪ ∅ is the currently

approached location, t is the current time, xs is the current server location and tlast is

the last time instant where a request location has been visited.

Event space The server moves autonomously to its destinations as prescribed in the action

variables of the locations. The set of events only comprises two event types. Events

of the first type are of the form e1(σi) := Arrival of new location σi and events of the

second type are of the form e2(σi) := Server has reached location σi. Hence, the event

set is given as E = {e1(σi) |σi ∈ Σ1} ∪ {e2(σi) |σi ∈ Σ1}.

Algorithm An algorithm has to decide upon the order in which the locations in Lt have to

be visited. It suffices at each time if the server knows which location to approach next;

note that the current destination may be revised upon announcement of a new location.

Thus, with nt = |Lt| as the number of unvisited locations at time t, Algt : S × E →
{N∪Null}nt is a function which assigns each location in Lt either the position in the

visiting order of the unvisited locations or leaves the position undetermined.

State transition function Let the current state at time t be s = (U, P, t, xs, tlast) and let

an event of the form e = e1(σ) occur at t, then the successor state s′ computed

by the state transition function is f(s, e) = (U ′, P ′, t, xs, tlast) where P ′ contains the

location from U ∪ P ∪ {σi} which Algt decides to approach next and U ′ contains the

remaining unvisited locations. Upon event e = e2(σi) at time t, the successor state s′

is f(s, e) = (U ′, P ′, t, x′s, t
′
last) where x′s = xi, t

′
last = t, and for U ′ and P ′ there are two

cases. First, if all known locations have been visited, then U ′ = P ′ = ∅. Second, if

at least one location is still to be visited, then P ′ contains the location determined by

Algt(s, e) to be visited next and U ′ contains the remaining unvisited locations.

3.6 Instantiations of the Framework 97

Online Linear Programming with Lookahead

Consider for m,n ∈ N a linear program with n-dimensional decision variable x ∈ [0, 1]n of

the form

max cᵀx s.t. Ax ≤ b, 0 ≤ xi ≤ 1, i = 1, . . . , n

where c ∈ Rn, b ∈ Rm, and A = (aij) is a (m,n)-matrix with aij ∈ R for all i = 1, . . . ,m and

j = 1, . . . , n. In the online linear programming problem ([162]), the number of variables n

and the right-hand side b are given in advance, but the objective function coeffients cj and

the columns aj = (a1j, . . . , amj) of A are revealed one after another for j = 1, . . . , n. The

goal is to assign a value from [0, 1] to xj when (cj, aj) is disclosed. In the case of lookahead,

more than one variable with unassigned value may be known at a time.

Consider a version of the online linear programming problem whose lookahead and processing

characteristics are classified according to

req | prl/rnd | im | cyc.

Lookahead type Request lookahead of size k.

Processing Mode and Order Processing a revealed variable amounts to irrevocably set its

value.

Processing Accessibility Because variables are abstract entities, there are no restrictions

on their processing and variables can be assigned values as soon as their respective

column data is known.

Algorithm Execution Mode Because value assignment decisions are invariant as long as no

event (release of a new column or value assignment to a variable) occurs, they only need

to be (re-) determined by evaluating Alg whenever a new variable’s data is revealed

(which is assumed to happen cyclically).

Input element and input sequence Denote the set of variables by Σ1. An element σi ∈ Σ1

of the input sequence σ = (σ1, σ2, . . .) corresponds to a variable xi and comprises the

following data:

• Release time τi = i− 1 in the reference problem without lookahead

• Release time τ ′i = max{0, i− k} in the problem with lookahead

• Processing time Ti = i− ε in the reference problem without lookahead

• Processing time T ′i = i− ε in the problem with lookahead

98 3 A Modeling Framework for Online Optimization with Lookahead

• Input element information ri = (ci, ai) where ci is the objective function coefficient

of xi and ai is the vector of the coefficients (a1i, . . . , ami) in the ith column of the

coefficient matrix A

Lookahead set The lookahead set essentially contains those k variables which have not yet

been assigned an irrevocable value, i.e., Lt = {σi | pi(t) = unprocessed, τi ≤ t} in the

setting without lookahead and Lt = {σi | pi(t) = unprocessed, τ ′i ≤ t} in the setting

with lookahead.

State space The state space is given as S = {(U, F, x, o)} where U is the set of variables

which have not yet been assigned an irrevocable value with U ∈ Σ1 ∪ ∅ in the case

without lookahead and U ∈ ⋃
k′≤k

{
{σ1, σ2, . . . , σk′} |σi ∈ Σ1, i = 1, 2, . . . , k′

}
in the case

with lookahead, F is the tuple of variables which have already been assigned a final

value with F ∈ ⋃
n′≤n

{
{σ1, σ2, . . . , σn′} |σi ∈ Σ1, i = 1, 2, . . . , n′

}
for n′ = 0, 1, . . . , n,

x ∈
{
R ∪ {Null}

}n
is the vector of values assigned to the variables and

o :=
n∑
i=1,
σi∈F

cixi

is the objective value incurred so far.

Event space The set of events comprises two event types. Events of the first type are of

the form e1(σi) := Release of a new column σi and events of the second type are of the

form e2(σi, v) := The variable of column σi has been assigned the irrevocable value v.

Hence, the event set is given as E = {e1(σi) |σi ∈ Σ1} ∪ {e2(σi, v) |σi ∈ Σ1, v ∈ [0, 1]}.

Algorithm An algorithm has to decide which values to assign to the revealed variables and in

which order of the variables the value assignment will take place. Thus, with nt = |Lt|
as the number of variables without fixed value assignment at time t, Algt : S × E →
{[0, 1]∪Null}nt ×{N∪Null}nt is a function which assigns each variable in Lt a pair

(v, p) where v gives the planned value of the variable and p gives the planned position

in the sequence of upcoming assignments; if no value and no position for a variable

have been determined yet, the pair (Null,Null) can be used tentatively. Algorithms

may strongly rely on the theory of linear programming and the concepts introduced

for column generation in order to check profitability of a new column ([61], [162]), e.g.,

by making use of the value of the dual variables from the preceding snapshot linear

program in order to decide on the value of the next variables.

3.7 Concluding Discussion 99

State transition function Let the current state at time t be s = (U, F, x, o) and let an event

of the form e = e1(σi) occur at t, then the successor state s′ computed by the state

transition function is f(s, e) = (U ′, F, x, o) where U ′ corresponds to U expanded with

the additional column σi that has been released at time t. Upon event e = e2(σi, v),

the successor state s′ is f(s, e) = (U ′, F ′, x′, o′) where U ′ corresponds to U diminished

by σi, F
′ corresponds to F expanded with σi, x

′ contains the same elements as x except

for the element corresponding to σi, the element corresponding to σi in x′ is set to v

and o′ = o+ civ.

3.7 Concluding Discussion

The discussion of previous attempts to model online optimization problems in a general

fashion showed that these suffer from several shortcomings with respect to practical pur-

poses. Amongst them, the lack of integration of lookahead and of the solution routine itself

indicated the need for a more comprehensive framework for online optimization with looka-

head. Taking advantage of the analogies between the solution process in sequential decision

making and discrete event systems trajectories, we derived a general framework for online

optimization with lookahead which can easily be instantiated in arbitrary applications. We

accounted for the multitude of different lookahead forms encountered in theory and practice

by introducing a classification scheme which allows for a quick categorization of a looka-

head setting on hand, including the restrictions that arise for any solution process due to

the provision of lookahead. Table 3.1 on page 89 gave a classification of the lookahead set-

tings encountered in publications on online optimization with lookahead according to the

proposed classification scheme. Furthermore, as a result of the close relationship between

discrete event systems and Markov chains, we transferred Markov chain analysis to online op-

timization with lookahead. The final section of this chapter exemplified three instantiations

of the modeling framework.

101

4 Theoretical Analysis of Algorithms for

Online Optimization with Lookahead

In this chapter, we investigate the question of what can be achieved by the provision of

additional lookahead relative to the pure online case where no lookahead is available from a

theoretical point of view. The exact analysis comprises the derivation of exact expressions

for the counting distribution functions of the objective value and the performance ratio (see

Definitions 2.40 and 2.42). We stick to base cases of three academic problems:

• Online Ski Rental with Lookahead

• Online Bin Packing with Lookahead

• Online Traveling Salesman Problem with Lookahead

In the first problem, we allow for arbitrary additional lookahead, whereas for the two latter

problems only one additional input element is considered. Theoretical analysis is possible

because the implications of lookahead on the objective can be traced back to combinatorics.

4.1 Online Ski Rental with Lookahead

In the ski rental problem ([103], [128]), a novice to skiing needs to procure a pair of skis for

an unknown number of days. As long as the skis have not been bought, the skier has to

choose before each period whether to rent the skis for that day and thereby repeatedly incur

renting costs, or to buy the skis and incur buying costs on that day with no additional future

costs. The ski rental problem can be generalized to a decision maker in need of a resource

for a time horizon of unknown length with two possibilities for procurement as long as the

resource has not yet been bought: Either by paying a one-time cost (buy option) and using

the resource without additional future costs, or by paying a pay-per-period cost granting

right of use on that day (renting option).

102 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

In the offline version, the skier knows the number of skiing days in advance.

Problem 4.1 (Offline Ski Rental).

Instance Number n of skiing days, buying cost B, daily renting costs r.

Task Decide on which day i ∈ {1, 2, . . . n} ∪ {∞} to buy skis where i = ∞ means

that they are never bought such that total skiing costs are minimized.

In the online version, the skier knows at the beginning of each day whether skiing will occur

on this day or not, i.e., whether the end of the skiing period has been reached or not.

Problem 4.2 (Online Ski Rental).

Instance Sequence of bits σ = (σ1, σ2, . . . , σn, σn+1) with σ1 = . . . = σn = 1 and σn+1 = 0

where σi indicates whether the skier will go skiing on day i (σi = 1) or not

(σi = 0) for i = 1, . . . , n + 1, buying cost B, daily renting costs r, instance

revelation rule r̃ for the online case.

Task Sequentially decide for each i = 1, 2, . . . , n without knowing σj for j > i whether

to rent or buy skis on day i such that total skiing costs are minimized.

In the online version with lookahead of size l ∈ N, the skier knows at the beginning of each

day whether skiing will occur on this day and the consecutive l− 1 days or not, i.e., whether

the end of the skiing period has been or will be reached during this and the next l−1 days.

Problem 4.3 (Online Ski Rental with Lookahead).

Instance Sequence of bits σ = (σ1, σ2, . . . , σn, σn+1) with σ1 = . . . = σn = 1 and σn+1 = 0

where σi indicates whether the skier will go skiing on day i (σi = 1) or not

(σi = 0) for i = 1, . . . , n + 1, buying cost B, daily renting costs r, instance

revelation rule r̃′ for the lookahead case.

Task Sequentially decide for each i = 1, 2, . . . , n without knowing σj for j > i+ l− 1

whether to rent or buy skis on day i such that total skiing costs are minimized.

The instance revelation rule in the online case is

r̃ := At the start of day i, σi is revealed

and in the lookahead case

r̃′ := At the start of day i, unknown elements of σi, σi+1, . . . , σmin{i+l−1,n+1} are revealed.

The rule set is trivial and coincides in both cases with

P = P ′ := {At any day i, go skiing if σi = 1, otherwise do not go skiing}.

4.1 Online Ski Rental with Lookahead 103

According to the modeling framework from Chapter 3, the lookahead setting is

req | sngl/ord | reg | discr or equivalently req | sngl/ord | reg | cyc.

The input information of an input element is given by σi. In the online case, we have

τi = i and Ti = i + ε; in the lookahead case, we have τ ′i = max{1, i − l + 1} and T ′i =

max{1, i− l + 1}+ ε with sufficiently small ε > 0.

The offline problem is solved easily: Buy at the beginning of the first period if B ≤ rn,

otherwise rent the pair of skis in all periods yielding costs of rn < B. Thus, we have

Optimal[(σ1, σ2, . . . , σn, σn+1)] = min{B, rn}.

In Algorithm 4.1, we denote the time of purchase by k and interpret k = ∞ as the option

to never buy.

Algorithm 4.1 Optimal offline algorithm Optimal for ski rental

Input: Input sequence σ = (σ1, σ2, . . . , σn, σn+1), renting cost r > 0, buying cost B

1: if B ≤ rn (⇔ n ≥ B
r

) then
2: k := 1, C := B
3: else
4: k :=∞, C := rn
5: end if

Output: Time of purchase k, optimal skiing costs C

A generic algorithm for the online problem buys in a prescribed period k if n ≥ k. We will

denote this algorithm by Buyk (cf. Algorithm 4.2 and [128]) and its payment profile is given

by

Buyk[(σ1, σ2, . . . , σn, σn+1)] =

rn if n < k,

r(k − 1) +B otherwise.

Because of rbB
r
c ≤ B ≤ rdB

r
e, dB

r
e gives the minimum number of days for which buying

induces costs not higher than for renting. Thus, in the lookahead case with l ≥ dB
r
e (recall

that additional l− 1 periods can be overseen besides the current period), we see at the first

day whether buying at the first day excels renting and any reasonable algorithm would buy

at the first day if σdB
r
e = 1. The payment profile of such an algorithm coincides with that of

Optimal. Thus, there is no need for further discussion of the case l ≥ dB
r
e and we turn to

the case l < dB
r
e where we cannot see in the first period whether buying will excel renting

because the overseen time horizon is too short.

104 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

Algorithm 4.2 Online algorithm Buyk for ski rental

Input: First element σ1 of input sequence σ, renting cost r > 0, buying cost B, intended
time of purchase k

1: i := 1, k̃ :=∞, C := 0
2: while σi = 1 and i ≤ k do
3: if i = k then
4: k̃ := k, C := r(k − 1) +B
5: else
6: C := ri
7: additional input: (i+ 1)st element σi+1 of input sequence σ
8: i := i+ 1
9: end if

10: end while

Output: Realized time of purchase k̃, skiing costs C

Algorithm 4.3 Online algorithm ConditionalBuyk,l with lookahead for ski rental

Input: Lookahead l (in days), first l elements σ1, σ2, . . . , σl of input sequence σ, renting cost
r > 0, buying cost B, intended time of purchase k

1: i := 1, k̃ :=∞, C := 0
2: if l < dB

r
e then

3: while σi = 1 and i ≤ k do
4: if i = k and σi+l−1 = 1 then
5: k̃ := k, C := r(k − 1) +B
6: else
7: C := ri
8: if σi+l−1 = 1 then
9: additional input: (i+ l)th element σi+l of input sequence σ

10: end if
11: i := i+ 1
12: end if
13: end while
14: else
15: if σdB

r
e = 1 then

16: k̃ := 1, C := B
17: else
18: C := r ·max{i ∈ {1, . . . , l} |σi = 1}
19: end if
20: end if

Output: Realized time of purchase k̃, skiing costs C

4.1 Online Ski Rental with Lookahead 105

On the previous page, we introduce generic online algorithm ConditionalBuyk,l (cf. Al-

gorithm 4.3) for the lookahead setting; it exploits lookahead by the following decision rule:

Buy in period k if n ≥ k + l − 1. The algorithm coincides with Buyk for l = 1 and its

payment profile is given by

ConditionalBuyk,l[(σ1, σ2, . . . , σn, σn+1)] =


min{B, rn} if l ≥ dB

r
e,

rn if l < dB
r
e, n < k + l − 1,

r(k − 1) +B otherwise.

We compare algorithms Optimal, Buyk and ConditionalBuyk,l in order to evaluate the

benefit of lookahead in the ski rental problem. The costs of all mentioned algorithms are

summarized in Table 4.1 depending on the relation between k, k + l − 1 and dB
r
e, and we

can already conclude that lookahead in the ski rental problem induces stochastic dominance

of all orders.

n Optimal Buyk ConditionalBuyk,l

1, 2, . . . , k − 1 rn rn rn
k, k + 1, . . . , k + l − 2 rn r(k − 1) +B rn

k + l − 1, k + l, . . . , dB
r
e − 1 rn r(k − 1) +B r(k − 1) +B

dB
r
e, dB

r
e+ 1, . . . , nmax B r(k − 1) +B r(k − 1) +B

a)

n Optimal Buyk ConditionalBuyk,l

1, 2, . . . , k − 1 rn rn rn
k, k + 1, . . . , dB

r
e − 1 rn r(k − 1) +B rn

dB
r
e, dB

r
e+ 1, . . . , k + l − 2 B r(k − 1) +B rn

k + l − 1, k + l, . . . , nmax B r(k − 1) +B r(k − 1) +B

b)

n Optimal Buyk ConditionalBuyk,l

1, 2, . . . , dB
r
e − 1 rn rn rn

dB
r
e, dB

r
e+ 1, . . . , k − 1 B rn rn

k, k + 1, . . . , k + l − 2 B r(k − 1) +B rn
k + l − 1, k + l, . . . , nmax B r(k − 1) +B r(k − 1) +B

c)

Table 4.1: Costs in the ski rental problem with l < dBr e. a) k < k + l − 1 ≤ dBr e. b) k ≤ dBr e <
k+ l− 1. c) dBr e ≤ k < k+ l− 1. In a), the third line vanishes for dBr e = k+ l− 1; in
b) and c), the second line vanishes for dBr e = k.

106 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

Note that ConditionalBuyk,l never achieves higher costs than Buyk because of

rn ≤ r(k − 1) +B for n = k, . . . , k + l − 2 ⇔ rn ≤ r(k − 1) +B for n = k + l − 2

⇔ r(l − 1) ≤ B

⇔ l ≤ B

r
+ 1

where the last inequality is certainly true when l < dB
r
e. For l ≥ dB

r
e, recall that Opt and

ConditionalBuyk,l behave identically.

We now analyze the counting distribution functions of the objective value and the perfor-

mance ratio for the set of input sequences corresponding to at most nmax ∈ N skiing days,

i.e., for

Σ≤nmax =
{
σ = (σ1, σ2, . . . , σn, σn+1) |n ∈ {1, 2, . . . , nmax}

}
.

The dominance relations between Optimal, ConditionalBuyk,l over Buyk can be seen in

the resulting counting distribution functions for the objective value in Figure 4.1 and Table

4.2 (for a simplified exposition we only give the values at the breakpoints) where for all v ∈ R
we have FOptimal(v) ≥ FConditionalBuyk,l

(v) ≥ FBuyk
(v).

r 2r B (k − 1)r (k + l − 2)r (k − 1)r + B

0

1/nmax

2/nmax

bB/rc
nmax

k−1
nmax

k+l−2
nmax

1

v

F
(v
)

Buyk

ConditionalBuyk,l

Optimal

Figure 4.1: Counting distribution functions of costs in the ski rental problem with k ≥ B
r .

We note that no special relation has to be enforced on B, r and k: Choosing k < B
r

may be

justified by the fact that if buying is carried out, then it should be beneficial in the outset.

Choosing k ≥ B
r

may be justified by the fact that the decision maker wants to try skiing for

a certain time first before buying skis.

4.1 Online Ski Rental with Lookahead 107

v FBuyk
(v) FConditionalBuyk,l

(v) FOptimal(v)

r 1
nmax

1
nmax

{
1

nmax
if r < B,

1 else

2r 2
nmax

2
nmax

{
2

nmax
if 2r < B,

1 else
...

...
...

...

(k − 1)r k−1
nmax

k−1
nmax

{
k−1
nmax

if (k − 1)r < B,

1 else

kr k−1
nmax

k
nmax

{
k

nmax
if kr < B,

1 else

(k + 1)r k−1
nmax

k+1
nmax

{
k+1
nmax

if (k + 1)r < B,

1 else
...

...
...

...

(k + l − 2)r k−1
nmax

k+l−2
nmax

{
k+l−2
nmax

if (k + l − 2)r < B,

1 else

(k + l − 1)r k−1
nmax

k+l−2
nmax

{
k+l−1
nmax

if (k + l − 1)r < B,

1 else
...

...
...

...

(k − 1)r +B 1 1 1

Table 4.2: Counting distribution functions of costs in the ski rental problem with l < dBr e.

When we consider an instance-wise comparison of Buyk and ConditionalBuyk,l, we find

that for all but l − 1 input sequences there is no difference in the objective value, resulting

in performance ratio Buyk[σ]
ConditionalBuyk,l[σ]

= 1 for these input sequences σ. The remaining l− 1

input sequences exhibit improved performance of ConditionalBuyk,l over Buyk due to

lookahead. Performance ratios for these inputs range in the interval[
r(k − 1) +B

r(k + l − 2)
,
r(k − 1) +B

rk

]
=

[
1 +

B + r − rl
r(k + l − 2)

, 1 +
B − r
rk

]

which can be seen by considering the extreme cases n = k + l − 2 and n = k. The resulting

values of the counting distribution function for the performance ratio of Buyk relative to

ConditionalBuyk,l are graphically illustrated in Figure 4.2 and shown in Table 4.3.

108 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

1
r(k−1)+B
r(k−2)+rl

r(k−1)+B
r(k−2)+2r

0

1 − l−1
nmax

1 − l−2
nmax

1 − l−3
nmax

1 − 1
nmax

1

v

F
B

u
y
k

C
o
n
d
it

io
n
a
l
B

u
y
k
,l

(v
)

r(k−1)+B
r(k−2)+r(l−1)

Figure 4.2: Counting distribution function of performance ratio of costs in the ski rental problem.

v F Buyk
ConditionalBuyk,l

(v)

1 1− l−1
nmax

r(k−1)+B
r(k−2)+rl

1− l−2
nmax

r(k−1)+B
r(k−2)+r(l−1)

1− l−3
nmax

...
...

r(k−1)+B
r(k−2)+3r

1− 1
nmax

r(k−1)+B
r(k−2)+2r

1

Table 4.3: Counting distribution function of performance ratio of costs in the ski rental problem.

Similarly, we instance-wise compare Buyk and Optimal as well as ConditionalBuyk,l and

Optimal. Since Buyk and ConditionalBuyk,l coincide for l = 1, it suffices to analyze

ConditionalBuyk,l. According to Table 4.1, we have to consider the cases k+ l− 1 ≤ dB
r
e

and k+ l− 1 > dB
r
e. For k+ l− 1 ≤ dB

r
e, we have that k+ l− 2 of the nmax input sequences

lead to performance ratio 1 and nmax − dBr e + 1 input sequences lead to performance ratio
r(k−1)+B

B
. Input sequences σ = (σ1, . . . , σn, σn+1) with n ∈ {k + l − 1, . . . , dB

r
e − 1} lead to

performance ratio r(k−1)+B
rn

. Thus, for these input sequences the performance ratio ranges in

the interval [
r(k − 1) +B

r(dB
r
e − 1)

,
r(k − 1) +B

r(k + l − 1)

]
.

4.1 Online Ski Rental with Lookahead 109

1
r(k−1)+B

B
r(k−1)+B

r(dB
r
e−1)

r(k−1)+B
r(k+l−1)

0

k+l−2
nmax

nmax+k+l−dB
r
e−1

nmax

1 − d
B
r
e−k−l

nmax

1 − d
B
r
e−k−l−1

nmax

1 − 1
nmax

1

v

F
C

o
n
d
it

io
n
a
l
B

u
y
k
,l

O
p
t
im

a
l

(v
)

r(k−1)+B

r(dB
r
e−2)

Figure 4.3: Counting distribution function of performance ratio of costs in the ski rental problem
with k + l − 1 ≤ dBr e.

v FConditionalBuyk,l
Optimal

(v) v FConditionalBuyk,l
Optimal

(v)

1 k+l−2
nmax

1
dB

r
e−1

nmax

r(k−1)+B
B

nmax+k+l−dB
r
e−1

nmax

rdB
r
e

B

dB
r
e

nmax

r(k−1)+B

r(dB
r
e−1)

1− d
B
r
e−k−l
nmax

r(dB
r
e+1)

B

dB
r
e+1

nmax

r(k−1)+B

r(dB
r
e−2)

1− d
B
r
e−k−l−1

nmax

...
...

...
... r(k+l−3)

B
k+l−3
nmax

r(k−1)+B
r(k+l−2)

1− 1
nmax

r(k+l−2)
B

k+l−2
nmax

r(k−1)+B
r(k+l−1)

1 r(k−1)+B
B

1

a) b)

Table 4.4: Counting distribution functions of performance ratio of costs in the ski rental problem.
a) k + l − 1 ≤ dBr e and b) k + l − 1 > dBr e.

110 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

The resulting counting distribution function of the performance ratio is illustrated in Figure

4.3 and Table 4.4 a) on the previous page.

For k + l− 1 > dB
r
e, we have that dB

r
e − 1 of the nmax input sequences lead to performance

ratio 1 and nmax − k − l + 2 input sequences lead to performance ratio r(k−1)+B
B

. Input

sequences σ = (σ1, . . . , σn, σn+1) with n ∈ {dB
r
e, . . . , k+ l− 2} lead to performance ratio rn

B
.

Thus, for these input sequences the performance ratio ranges in the interval[
rdB

r
e

B
,
r(k + l − 2)

B

]
.

The resulting counting distribution function of the performance ratio is illustrated in Figure

4.4 and Table 4.4 b).

1
rdB/re

B
r(k+l−2)

B
r(k−1)+B

B

0

dB
r
e−1

nmax

dB
r
e

nmax

dB
r
e+1

nmax

k+l−2
nmax

1

v

F
C

o
n
d
it

io
n
a
l
B

u
y
k
,l

O
p
t
im

a
l

(v
)

r(dB/re+1)
B

Figure 4.4: Counting distribution function of performance ratio of costs in the ski rental problem
with k + l − 1 > dBr e.

For l1 > l2, ConditionalBuyk,l1 instance-wise outperforms ConditionalBuyk,l2 , i.e., no

algorithm of this family ever fails to interpret lookahead to its advantage. The explanation

4.2 Online Bin Packing with Lookahead 111

for this can be traced back to the one-shot decision character: Because there is only one

decision, there is no possibility that its profitability could be undone by a future decision.

In this section, we underlined by exact analysis that in the ski rental problem it is possible

to incur considerable improvement (for typical parameter values of B, r, k and l) when ad-

ditional lookahead information concerning the plan on skiing over the next days is provided.

The improvement is due to the avoidance of mispurchases when a short time later the skier

ends the skiing trip.

4.2 Online Bin Packing with Lookahead

The bin packing problem is a fundamental combinatorial problem from the class of cutting

and packing ([55]). It has attracted research attention as an abstract problem of packing a

set of small objects into a set of larger objects under some objective function.

Problem 4.4 (Offline Bin Packing).

Instance Bin capacity C, set of items {σi | i ∈ {1, . . . , n}} where item σi has size si for

i = 1, . . . , n.

Task Assign each item to a bin such that the sum of item sizes assigned to a bin does

not exceed C and the number of bins used is minimal.

In the online version, the items have to be packed one after another without knowledge of

items other than the next one.

Problem 4.5 (Online Bin Packing).

Instance Bin capacity C, sequence of items (σ1, . . . , σn) where item σi has size si for

i = 1, . . . , n, instance revelation rule r for the online case.

Task Sequentially assign each item σi to a bin without having any information about

items σj with j > i such that the sum of item sizes assigned to a bin does not

exceed C and the number of bins used is minimal.

In the online version with lookahead, the items have to be packed one after another with

limited knowledge about future items.

Problem 4.6 (Online Bin Packing with Lookahead).

Instance Bin capacity C, sequence of items (σ1, . . . , σn) where item σi has size si for

i = 1, . . . , n, instance revelation rule r′ for the lookahead case.

Task Sequentially assign an unpacked item which is known as part of the lookahead

information to a bin such that the sum of item sizes assigned to a bin does not

exceed C and the number of bins used is minimal.

112 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

Different types of lookahead are possible in bin packing, and we make the type to be inves-

tigated subsequently more concrete. The instance revelation rule in the online case is

r := At the beginning, σ1 is known; a new item is revealed when a known one is packed

and in the lookahead case with l ∈ N

r′ := At the beginning, σ1, . . . , σl are known; a new item is revealed when a known one is

packed.

The rule set in the online case is trivial, i.e.,

P := {Pack the known item};

permutations are allowed in the lookahead case, i.e.,

P ′ := {Pack one of the known items}.

According to the modeling framework from Chapter 3, the lookahead setting is

req | sngl/rnd | im | discr or equivalently req | sngl/rnd | im | cyc.

The input information of an input element is given by si. In the online case, we have τi = i

and Ti = i+ ε; in the lookahead case, we have τi = max{1, i− l} and T ′i = max{1, i− l}+ ε,

T
′
i =∞ with sufficiently small ε > 0.

We now compare the pure online setting with the setting enhanced by lookahead: Online

algorithm BestFit puts the known item into the fullest open bin that can accommodate

it, if any; otherwise a new bin is opened and the item put in it (cf. Algorithm 4.4 and [55]).

Online algorithm BestFitl with request lookahead l first sorts the known items in order of

non-increasing sizes and fictively packs them using BestFit; the largest known item is then

put into the fullest open bin that can accommodate it, if any; otherwise a new bin is opened

and the largest known item put in it (cf. Algorithm 4.5 and [55]).

Under additional lookahead of one item (l = 2), we derive exact expressions for the counting

distribution functions of the objective value and the performance ratio for the case of two

item sizes 0.5 + ε and 0.5− ε with arbitrary ε ∈ (0, 1
6
) and C = 1. Under these conditions at

most two items fit into a single bin. Despite the simple setting, the exact analysis is rather

intricate and relies upon the combinatorial structure imposed to the problem. We conclude

that there is no general recipe for exact analysis in online optimization with lookahead.

4.2 Online Bin Packing with Lookahead 113

Algorithm 4.4 Online algorithm BestFit for bin packing

Input: First element σ1 of input sequence σ with size s1, bin capacity C

1: i := 1, J := ∅
2: while i ≤ n do
3: Determine the fill levels fj of all open bins j ∈ J
4: if J ′ := {j ∈ J | fj + si ≤ C} 6= ∅ then
5: Determine j′ ∈ J ′ such that fj′ = max{fj | j ∈ J ′}
6: else
7: Open a new bin j′, J := J ∪ {j′}
8: end if
9: Assign item σi to bin j′

10: if i < n then
11: additional input: (i+ 1)st element σi+1 of input sequence σ with size si+1

12: end if
13: i := i+ 1
14: end while

Output: Number of bins used |J |

Algorithm 4.5 Online algorithm BestFitl with lookahead for bin packing

Input: First l elements σ1, . . . , σl of input sequence σ with sizes s1, . . . , sl, bin capacity C

1: i := 1, J := ∅
2: while i ≤ n do
3: Determine the fill levels fj of all open bins j ∈ J
4: Sort the unpacked known items obtaining list σ(1), σ(2), . . . with s(1) ≥ s(2) ≥ . . .
5: if J ′ := {j ∈ J | fj + s(1) ≤ C} 6= ∅ then
6: Determine j′ ∈ J ′ such that fj′ = max{fj | j ∈ J ′}
7: else
8: Open a new bin j′, J := J ∪ {j′}
9: end if

10: Assign item σ(1) to bin j′

11: if i ≤ n− l then
12: additional input: (i+ l)th element σi+l of input sequence σ with size si+l
13: end if
14: i := i+ 1
15: end while

Output: Number of bins used |J |

114 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

From now on, we refer to BestFit as Bf and to BestFit2 as Bfd because BestFit2

emulates BestFit with the additional feature that the two known items are always sorted

by decreasing size. We set C := 1, let ε ∈ (0, 1
6
) and use the following additional notation:

• Large / small item: Item of size 0.5 + ε / 0.5− ε

• nl(σ) / ns(σ): Number of large / small items in σ

• Bf(n,m) / Bfd(n,m): Number of item sequences of length n which need m bins under

BestFit / BestFit2

• Ci: ith Catalan number given by Ci =
(

2i
i

)
−
(

2i
i+1

)
= 1

i+1

(
2i
i

)
12

Theorem 4.1. For any item sequence σ = (σ1, σ2, . . .) with σi ∈ {0.5 + ε, 0.5 − ε} it holds

that Bf[σ]−Bfd[σ] ∈ {0, 1}.

Proof. The first difference in the packings of Bf and Bfd occurs when item subsequence

(0.5− ε, 0.5− ε, 0.5+ ε) appears and there is no bin to accommodate any of these items. Bfd

packs the first and third item into a single bin at full capacity and keeps the second (small)

item unpacked in the lookahead until the end of the sequence (since items are homogenous),

whereas Bf packs the first two items in a bin at capacity 1 − 2ε and the third item in a

second bin. Thus, Bfd leads with one bin less used, but also one small item less packed.

Bfd also loses its lookahead power as it holds the small item in the lookahead and will not

change orders of two lookahead items ever again. Thus, both Bfd and Bf will process the

remaining items in parallel, but starting from a different bin configuration. The number of

upcoming new bins for the remaining items by Bf can only be the same or one less than

that of Bfd (without considering the left-over small item) because items have to be packed

in the same order and Bf can pack one small item without opening a new bin, whereas Bfd

has to open a new bin immediately. Finally, Bfd has to pack the left-over small item: When

the number of new bins in the previous step is the same for Bfd and Bf and in the packing

of Bfd there is room for a small item, Bfd will end up with one bin less than Bf, otherwise

Bfd will have to open a new bin resulting in a tie for the numbers of bins used.

From Theorem 4.1 it follows that Bfd dominates Bf in the sense that for each item sequence

it produces the same number of bins or even needs one bin less. As a result, Bfd never makes

a decision which will have worse consequences than that of Bf in the given setting.

12The Catalan numbers (see, e.g., [146]) are a sequence of natural numbers discovered by Eugene Charles
Catalan (1814-1894) which appear in an enormous number of counting problems. The Catalan numbers
(Ci)i∈N0

start with 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .

4.2 Online Bin Packing with Lookahead 115

Definition 4.1 (Condensation of an input sequence).

Let σ = (σ1, σ2, . . .) be an input sequence with σi ∈ {0.5 + ε, 0.5 − ε}. The condensation

σc of σ is the input sequence that arises by repetitively removing all pairs (0.5− ε, 0.5− ε)
starting in an odd position if the number of large items encountered previously is not larger

than the number of small items encountered previously. 4

A pair of removed small items in Definition 4.1 is also referred to as a condensed pair or as

a condensation in an input sequence.

Example 4.2 (Condensation of an input sequence).

Consider for ε = 0.1 the item sequences σ1 = (0.4, 0.4, 0.6, 0.6, 0.4, 0.6) and σ2 = (0.6, 0.4, 0.4,

0.6, 0.4, 0.4, 0.6, 0.4, 0.4, 0.4). The condensation of σ1 is σc1 = (0.6, 0.6, 0.4, 0.6); the conden-

sation of σ2 is σc2 = (0.6, 0.4, 0.4, 0.6, 0.6, 0.4). ♦

The condensation σc of an input sequence σ can be computed by Algorithm 4.6.

Algorithm 4.6 Determining the condensation of an item sequence

Input: Input sequence σ = (σ1, σ2, . . .) with σj ∈ {0.5− ε, 0.5 + ε}
1: σc := σ, i := 1
2: while i ≤ |σc| − 1 do
3: if σci = σci+1 = 0.5− ε and nl(σcj)j=1,...,i−1 ≤ ns(σcj)j=1,...,i−1 then
4: Delete σci and σci+1 from σc by removal (successive elements are shifted forwards)
5: i := i− 2
6: end if
7: i := i+ 2
8: end while

Output: Condensation σc of σ

Theorem 4.2. For any item sequence σ = (σ1, σ2, . . . , σn) with σi ∈ {0.5 + ε, 0.5 − ε} and

n ∈ N it holds that Bf[σ] − Bfd[σ] = 1 if and only if there is an odd j ∈ N such that the

following conditions are satisfied:

i) nl((σ1, . . . , σj−1)) = ns((σ1, . . . , σj−1)c)

ii) (σj, σj+1, σj+2) = (0.5− ε, 0.5− ε, 0.5 + ε)

iii) ns((σj+3, . . . , σn)) = ns((σj+3, . . . , σn)c)

iv) nl((σj+3, . . . , σn)) ≥ ns((σj+3, . . . , σn)) + 1

116 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

Proof. ⇒: Let Bf[σ] − Bfd[σ] = 1 for σ = (σ1, . . . , σn). Then σ can be split into σi =

(σ1, . . . , σj−1) and σii = (σj, . . . , σn) such that Bf[σi]−Bfd[σi] = 0, Bf[σii]−Bfd[σii] = 1

and both algorithms produce the same bin configurations (albeit in a different order) for σi.

Among all these splits there exists one with longest σi which we refer to as σi from now on.

Recall that the first difference in the packings of Bf and Bfd occurs when item subsequence

(0.5− ε, 0.5− ε, 0.5 + ε) appears and no open bin can accommodate any of these items. By

definition, σi immediately precedes this subsequence. If |σi| was odd, any algorithm would

leave a bin with space at least 0.5− ε after packing the odd number of items in σi. Hence,

the first (small) item of the subsequence could also be added contradicting that no open bin

can accommodate any of the items. Thus, |σi| is even and j is odd.

From Definition 4.1, it follows that nl((σi)) ≥ ns((σi)c) because any pair of small items

that would lead to more small than large items immediately after this pair has been deleted

in ns((σi)c) and |σi| is even. For nl((σi)) = ns((σi)c), each large item has a matching

small item which comes after or immediately before the large item. Thus, the configuration

determined by Bf is composed of nl((σi)) completely filled bins and |σi|−2nl((σi))
2

bins with

two small items. Clearly, this number of bins is optimal. From the proof of Theorem 4.1,

both Bfd and Bf attain the optimal number of bins by the same bin configurations for

nl((σi)) = ns((σi)c). For nl((σi)) > ns((σi)c), we show by contradiction that σi cannot be

a longest possible subsequence such that Bfd and Bf produce the same bin configurations:

Assume that σi is a longest possible subsequence such that Bfd and Bf produce the same

bin configurations and nl((σi)) > ns((σi)c). Then there is at least one bin containing a large

item without a matching small item. An additional small item will be put into such a bin,

an additional large item will need a new bin, but the configurations of both algorithms will

remain the same contradicting the definition of σi. Thus, nl((σi)) = ns((σi)c) which is i).

According to i) and the definition of σi, there must be an odd j such that Bfd starts to

exhibit an advantage over Bf on σii = (σj, σj+1, σj+2, . . .) after σi has been packed resulting

in the same bin configurations with no space left by both algorithms. Only (σj, σj+1) =

(0.5 − ε, 0.5 − ε) potentially produces a difference. To make this happen, Bfd need not

pack these two items into the same bin, whereas Bf has to. This happens if and only if

σj+2 = 0.5 + ε: Bfd will not pack σj+1 immediately, but delay it until the end of the item

sequence, whereas σj+2 will be matched with σj. This establishes ii).

To see iii), note that the processing of Bfd on σii = (0.5 − ε, 0.5 − ε, 0.5 + ε, σj+3, . . . , σn)

is emulated by Bf on σ̃ii = (0.5 − ε, 0.5 + ε, σj+3, . . . , σn, 0.5 − ε). Assume there is a con-

densed pair of small items in the subsequence starting with σj+3; if there is more than one

condensation, consider the first one. Let σj′ be the first small item of this condensation. Bf

4.2 Online Bin Packing with Lookahead 117

produces a bin with two small items for σj and σj+1, but not for σj′ and σj′+1 since two small

items starting in an even position of the original sequence cannot be put in the same bin by

Bf. Bfd processes (σj, σj+1, σj+2, . . . , σn−1, σn) as (σj, σj+2, . . . , σn−1, σn, σj+1) emulated by

Bf, i.e., it does not produce a bin with two small items for σj and σj+2, but for σj′ and σj′+1

since in (σi, σ̃ii) these items are condensed items. Between σj+3 and σj′ , neither algorithm

produces another bin with two small items since we consider the first condensation in the

subsequence starting from σj+3. Hence, both Bf and Bfd produce one additional bin with

two small items for σ̃i = (σ1, . . . , σj−1, σj, σj+1, σj+2, . . . , σj′) as compared to σi, and σi could

not have been the longest possible first part among all splits of σ.

From i), ii), iii), we know that in Bfd’s processing there is no bin with two small items from

σj onwards, whereas Bf creates such a bin for (σj, σj+1). Hence, in order to pack σj+1 at the

end of Bfd’s processing into an already open bin and to save a bin as compared to Bf, we

need an open bin with a large item only. This is the case if and only if in the subsequence

starting from σj+3 at least one more large item exists, i.e., iv).

⇐: We have that for item sequence σ there is an odd j ∈ N such that conditions i) to iv)

are fulfilled. In the sequel, a bin is called matched if it contains a large and small item,

otherwise it is called unmatched. From iii), we know that Bfd will not produce a bin with

two small items from σj onwards, whereas Bf creates such a one for (σj, σj+1). From iv),

we conclude that the number of matched bins in Bfd is two higher than in Bf. From the

pigeonhole principle, it follows that the number of unmatched bins in Bf is three higher

than in Bfd. Thus, Bf[(σj, σj+1, . . . , σn)]− Bfd[(σj, σj+1, . . . , σn)] = 1. i) guarantees that

in the bin configurations induced both by Bfd and Bf there is a matching small item for

any large item such that there is no bin with a large item only after (σ1, . . . , σj−1) have

been processed. Since |(σ1, . . . , σj−1)| is even, there is no bin with a small item only after

(σ1, . . . , σj−1) has been packed. Hence, the initial position for processing (σj, σj+1, . . . , σn)

is the same for Bfd and Bf and can be viewed as restarting with no bins used so far. In

particular, Bf[(σ1, σ2, . . . , σj−1)]−Bfd[(σ1, σ2, . . . , σj−1)] = 0.

We are in a position to characterize the number of item sequences of given length which lead

to a a saving of one bin by applying Bfd instead of Bf.

Theorem 4.3.

a) The number of item sequences σ of odd length |σ| = 2n + 1 for n ∈ N with Bf[σ] −
Bfd[σ] = 1 is given by

118 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

n−1∑
p=1

(
22(p−1) −

p−1∑
i=1

Ci · 22(p−1−i)
)(

22(n−p) −
n−p∑
i=1

Ci · 22(n−p−i) − Cn−p+1

)
.

b) The number of item sequences σ of even length |σ| = 2n for n ∈ N with Bf[σ] −
Bfd[σ] = 1 is given by

n−1∑
p=1

(
22(p−1) −

p−1∑
i=1

Ci · 22(p−1−i)
)(

22(n−p)−1 −
n−p−1∑
i=1

Ci · 22(n−p−i)−1 − Cn−p
)
.

Proof.

a) We compute the number of item sequences σ which can be brought into the form

σ = (σ1, . . . , σj−1, σj, σj+1, σj+2, σj+3, . . . , σ2n+1) fulfilling i) to iv) from Theorem 4.2

with odd j. We can choose j to be every odd number with |(σj, σj+1, σj+2, . . . , σ2n+1)| ≥
4. The largest j fulfilling this condition is j = 2(n − 1) − 1 such that five items

(σ2(n−1)−1, σ2(n−1), σ2n−1, σ2n, σ2n+1) remain. Hence, in the first sum, p runs from 1 to

n− 1 indicating that j runs from 2 · 1− 1 = 1 to 2 · (n− 1)− 1 with even j’s omitted.

We first consider the first pair of parentheses: For fixed p, the number of item (sub-)

sequences of length 2(p− 1) satisfying condition i) from Theorem 4.2, i.e.,

nl((σ1, . . . , σj−1)) = ns((σ1, . . . , σj−1)c) (?)

with j − 1 = 2(p− 1) is n0 = 22(p−1)−
p−1∑
i=1

Ci · 22(p−1−i) which can be seen as follows: It

holds that n0 = 22(p−1)−nviol where nviol is the number of sequences of length 2(p−1) vi-

olating (?). Since by definition nl((σ1, . . . , σj−1)) ≥ ns((σ1, . . . , σj−1)c), we have nviol =

|Σviol| with Σviol := {(σ1, . . . , σj−1) |nl((σ1, . . . , σj−1)) > ns((σ1, . . . , σj−1)c)}. From

the pigeonhole principle, we can only have nl((σ1, . . . , σj−1)) = ns((σ1, . . . , σj−1)c) + d

where d = 2, 4, 6, . . . for (σ1, . . . , σj−1) ∈ Σviol because |(σ1, . . . , σj−1)c| is even. Thus,

a pair of large items has to occur at positions 2(p− 1− i) + 1 and 2(p− 1− i) + 2 for

i ∈ {1, 2, . . . , p−1} which will be responsible for nl((σ1, . . . , σj−1)) > ns((σ1, . . . , σj−1)c)

under conditions

• nl((σ2(p−1−i)+3, . . . , σ2(p−1))) = ns((σ2(p−1−i)+3, . . . , σ2(p−1))) and

• ns((σ2(p−1−i)+3, . . . , σ2(p−1))) = ns((σ2(p−1−i)+3, . . . , σ2(p−1))
c)

regardless of σ1, . . . , σ2(p−1−i) . Thus, we can choose σ1, . . . , σ2(p−1−i) freely giving the

factor 22(p−1−i). Note that the first condition is necessary to ensure that the two

4.2 Online Bin Packing with Lookahead 119

large items σ2(p−1−i)+1 and σ2(p−1−i)+2 can be held responsible for nl((σ1, . . . , σj−1)) >

ns((σ1, . . . , σj−1)c); the second condition is sufficient to make them responsible for

nl((σ1, . . . , σj−1)) > ns((σ1, . . . , σj−1)c) because if there was a condensed pair of small

items, then at least one pair of two large items would follow which would be responsible

for nl((σ1, . . . , σj−1)) > ns((σ1, . . . , σj−1)c). For fixed i, it remains to show that the

number of item sequences of length 2(i− 1) fulfilling the two itemized conditions is Ci.

To this end, we make use of the concept of (recurring) unit-sloped paths ([131]):

Definition 4.3 ((Recurring) unit-sloped path).

A unit-sloped path of length 2i is a path in R2 from (0, 0) to (2i, s2i) consisting only of

line segments between (k− 1, sk−1) and (k, sk) for k = 1, 2, . . . , 2i where sk = sk−1 + 1

or sk = sk−1 − 1 and s0 = 0. A recurring unit-sloped path of length 2i is a unit-sloped

path of length 2i that ends in (2i, 0), i.e., it has s2i = 0. 4

Note that if we restrict sk ≥ 0 for all k = 0, 1, 2, . . . , 2i, this definition coincides with

that of the well-known Dyck path (see, e.g., [62], [63]). Figure 4.5 shows an example

for a recurring unit-sloped path and a Dyck path, respectively.

1 2i

1

a)

1 2i

1

b)

Figure 4.5: Recurring unit sloped paths. a) General path. and b) Dyck path.

Lemma 4.4.

a) The number of recurring unit-sloped paths of length 2i which have sk ≥ 0 for all

k = 0, 1, 2, . . . , 2i is Ci.

b) The number of recurring unit-sloped paths of length 2i which have sk ≥ −1 for all

k = 0, 1, 2, . . . , 2i is Ci+1.

Proof. See Appendix A.1.1.

In order to fulfill the first itemized condition, observe the correspondences between the

appearance of a large item and an up-move (sk = sk−1+1) and between the appearance

of a small item and a down-move (sk = sk−1 − 1) in a unit-sloped path. Because the

number of large items equals the number of small items, this path is also recurring.

120 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

The second itemized condition expresses that there are never two small items such that

the number of large items minus the number of small items up to an arbitrary position

in the item sequence would drop down to −2. Hence, the number of item sequences of

length 2(i−1) fulfilling both conditions is equal to the number of recurring unit-sloped

paths with sk ≥ −1 for all k. According to Lemma 4.4 b), this number is Ci.

We now consider the second pair of parentheses: For fixed p, the number of item

sequences of length 2(n−p) which fulfill conditions iii) and iv) from Theorem 4.2, i.e.,

• ns((σj+3, . . . , σ2n+1)) = ns((σj+3, . . . , σ2n+1)c) and

• nl((σj+3, . . . , σ2n+1)) ≥ ns((σj+3, . . . , σ2n+1)) + 1

with j = 2p − 1 can be characterized as 22(n−p) − n1 − n2 where n1 is the number of

item sequences of length 2(n− p) with at least one condensation and n2 is the number

of item sequences of length 2(n− p) without condensation that has the same number

of small and large items.

For n1, let i ∈ {1, . . . , n−p} be fixed such that the first condensation consists of σ2(p+i)

and σ2(p+i)+1, then we need to have nl(σj+3, . . . , σ2(p+i)−1) = ns(σj+3, . . . , σ2(p+i)−1) and

no condensation is allowed in (σj+3, . . . , σ2(p+i)−1). Structurally, we obtain the same

two conditions as the two itemized conditions for the first pair of parentheses, i.e.,

• nl((σ2(p+1), . . . , σ2(p+i)−1)) = ns((σ2(p+1), . . . , σ2(p+i)−1)) and

• ns((σ2(p+1), . . . , σ2(p+i)−1)) = ns((σ2(p+1), . . . , σ2(p+i)−1)c)

regardless of σ2(p+i)+2, . . . , σ2n+1 because once a condensation occurs the rest is irrele-

vant. Since σ2(p+i)+2, . . . , σ2n+1 are free, the factor 22(n−p−i) follows, and from Lemma

4.4, the number of item sequences of length 2(i− 1) fulfilling the two itemized condi-

tions is Ci. Thus, we obtain n1 =
n−p∑
i=1

Ci · 22(n−p−i). Also from Lemma 4.4, it follows

that n2 = Cn−p+1 gives the number of item sequences of length 2(n − p) where the

number of large items equals the number of small items and no condensations occur.

b) The proof is analogous to part a) with the only difference that the decomposition into

σ = (σ1, . . . , σj−1, σj, σj+1, σj+2, σj+3, . . . , σ2n+1) now has odd |(σj+3, . . . , σ2n)|. Thus,

for a given p ∈ {1, . . . , n−1}, the subsequence (σj+3, . . . , σ2n) now only has 2(n−p)−1

elements, and the number of sequences of (longest possible even) length 2(n − p − 1)

without condensation and balanced number of small and large items is Cn−p.

4.2 Online Bin Packing with Lookahead 121

The previous result yielded the number of item sequences of given length for which Bfd

saves a bin as compared to Bf. Although this cannot be used directly for the counting

distribution functions of the objective value or performance ratio, many proof ideas are

reused subsequently.

Lemma 4.5.

a) The number an,k of unit-sloped paths of length 2n with sk′ ≥ −1 for all k′ = 0, 1, 2, . . . , 2n

which end at position (2n, 2k), i.e., at height 2k, is given by

an,k =
k + 1

n+ 1

(
2n+ 2

n− k

)
.

b) The number of item sequences σ of length 2n without condensations where Bf[σ] = m

for m ∈ {n, n+ 1, . . . , 2n} is given by an,m−n.

Proof.

a) The proof is an immediate consequence of the bijection between Dyck paths of length

2n+ 2 and path pairs of length n given in [63] and the included remark concerning the

relaxation of the restriction of path pairs having to end in the same point. To this end,

we first modify the bijection by omitting the appended u-step at the beginning and the

appended d-step at the end of the Dyck path in order to facilitate recurring unit-sloped

paths that are allowed to hit the level of −1. Moreover, since the number of path pairs

of length n having endpoints k
√

2 apart is an,k
13, it follows from the bijection that the

number of unit-sloped paths ending at height 2k is an,k.

b) A total number of m bins with m ∈ {n, n + 1, . . . , 2n} is obtained when in an item

sequence without condensations m− n out of the n pairs of successive items are pairs

of large items for which no matching small items can be found afterwards. Each

such item sequence corresponds to a unit-sloped path of length 2n with sk ≥ −1

for k = 0, 1, 2, . . . , 2n ending at height 2(m − n) because each pair of large items

contributes an amount of 2 to the total height achieved at the end of the path, and

the result follows.

13 It also holds that an,k =
∑

i1+i2+...+ik=n

Ci1Ci2 · · ·Cik , i.e., an,k is the sum of products of Catalan numbers

which is why the resulting table for n, k ∈ N with k ≤ n is called Catalan triangle ([146]).

122 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

Theorem 4.6.

a) The number of item sequences σ of length 2n where Bf[σ] = m is given by

Bf(2n,m) =


n∑

k=m−n
an,k =

n∑
k=m−n

k + 1

n+ 1

(
2n+ 2

n− k

)
if n ≤ m ≤ 2n,

0 otherwise.

b) The number of item sequences σ of length 2n+ 1 where Bf[σ] = m is given by

Bf(2n+ 1,m) =



2
n∑

k=m−n
an,k + an,m−1−n if n+ 1 < m ≤ 2n+ 1,

3
n∑
k=0

an,k − an,0 if m = n+ 1,

0 otherwise.

Proof.

a) Since for 2n items at least n and at most 2n bins are needed, Bf(2n,m) = 0 for m < n

and m > 2n. For the remaining m, we perform a reverse induction on m. The base

case m = 2n is valid because the only item sequence which needs 2n bins has 2n large

items and it holds that

n∑
k=2n−n

an,k = an,n =
n+ 1

n+ 1

(
2n+ 2

0

)
= 1.

For the inductive step, let Bf(2n,m) =
n∑

k=m−n
an,k be valid for some m with 2n ≥ m >

n. We show that Bf(2n,m − 1) =
n∑

k=m−1−n
an,k. Because of m > n, there must be a

pair of large items starting at an odd position for which no matching small items follow

in every item sequence with objective value m since otherwise these large items could

be matched with small items and would fit into a bin contradicting m > n. Hence, we

obtain for any item sequence with objective value m an item sequence with objective

value m − 1 by replacing the first pair of large items starting at an odd position for

which no matching small items follow with a pair of small items which in turn lead

to a condensation. As a result, we have Bf(2n,m − 1) = Bf(2n,m) + |Σadd| where

Σadd are the additional item sequences leading to objective value m − 1 which have

not resulted from establishing a condensation in an item sequence with objective value

4.2 Online Bin Packing with Lookahead 123

m. These item sequences can be mapped to a unit-sloped path of length 2n not going

below level −1 and ending at height 2(m − 1 − n). From Lemma 4.5, we have that

|Σadd| = an,m−n−1. Together with the induction hypothesis we conclude that

Bf(2n,m− 1) = Bf(2n,m) + |Σadd| =
n∑

k=m−n
an,k + an,m−n−1 =

n∑
k=m−n−1

an,k.

b) Since for 2n+1 items at least n+1 and at most 2n+1 bins are needed, Bf(2n+1,m) = 0

for m < n+ 1 and m > 2n+ 1. Notice that whenever m > n+ 1 for an item sequence

of length 2n + 1, we have m > n for the same item sequence where the last item is

deleted. Thus, there must be a pair of large items beginning at an odd position in the

truncated sequence from the same reasoning as in part a) of the proof. Objective value

m with n + 1 < m ≤ 2n + 1 for an item sequence of length 2n + 1 can be attained in

two ways: First, Bf needed m−1 bins after 2n items and the 2n+1st item leads to the

mth bin. Second, Bf needed m bins after 2n items and the 2n+1st item needs no new

bin. In the first case, we have Bf(2n,m− 1) item sequences which must incur a new

bin upon appending a large item; appending a small item would leave the objective

value at m because there are at least two large items which could be matched with

the small item. In the second case, Bf(2n,m) item sequences will not incur a new bin

upon appending a small item as this item can be matched with one of the large items;

appending a large item would lead to objective value m+ 1 since after 2n items there

can never be a bin with a small item only.

We obtain

Bf(2n+ 1,m) = Bf(2n,m− 1) + Bf(2n,m)

=
n∑

k=m−1−n
an,k +

n∑
k=m−n

an,k = 2
n∑

k=m−n
an,k + an,m−1−n.

Objective value n+ 1 can be attained in three ways: First, Bf needed n bins after 2n

items and the 2n + 1st item is large leading to the n + 1st bin. Second, Bf needed n

bins after 2n items and the 2n + 1st item is small leading to the n + 1st bin. Third,

Bf needed n+ 1 bins after 2n items and the 2n+ 1st item is small, but does not lead

to a new bin. The first case is trivial. In the second case, we seek for the same item

sequences because neither of them can exhibit a pair of large items starting in an odd

position. In the third case, we seek for the item sequences of length 2n with objective

value n + 1 which have at least one pair of large items beginning at an odd position

124 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

such that the appended small item does not incur a new bin. These item sequences

are counted by Bf(2n, n+ 1). We obtain

Bf(2n+ 1, n+ 1) = Bf(2n, n) + Bf(2n, n) + Bf(2n, n+ 1)

=
n∑
k=0

an,k +
n∑
k=0

an,k +
n∑
k=1

an,k = 3
n∑
k=0

an,k − an,0.

We now give another formula to compute the numbers Bf(2n,m) and Bf(2n+ 1,m).

Theorem 4.7.

a) The number of item sequences σ of length 2n where Bf[σ] = m is given by

Bf(2n,m) =


(

2n+1
m+1

)
=
(

2n
m

)
+
(

2n
m+1

)
if n ≤ m ≤ 2n,

0 otherwise.

b) The number of item sequences σ of length 2n+ 1 where Bf[σ] = m is given by

Bf(2n+ 1,m) =


(

2n+2
m+1

)
=
(

2n+1
m

)
+
(

2n+1
m+1

)
if n+ 1 < m ≤ 2n+ 1,(

2n+3
n+2

)
−
(

2n+1
n+1

)
if m = n+ 1,

0 otherwise.

Proof.

a) We show by two-dimensional induction on n and m that

n∑
k=m−n

an,k =

(
2n+ 1

m+ 1

)
.

Recall that n = 1, 2, . . . and m = n, n+ 1, . . . , 2n. The base case n = 1 and m = n = 1

is valid because it holds that

1∑
k=0

a1,k = a1,0 + a1,1 = 2 + 1 = 3 =

(
2 · 1 + 1

1 + 1

)
=

(
3

2

)
= 3.

4.2 Online Bin Packing with Lookahead 125

In the first inductive step (on n with fixed m = n), we show that
n∑
k=0

an,k =
(

2n+1
n+1

)
holds. From [146], we know that 1

2

(
2(n+1)
n+1

)
=

n∑
k=0

an,k. The result follows from

1

2

(
2(n+ 1)

n+ 1

)
=

1

2

(2n+ 2)!

(n+ 1)!(n+ 1)!
=

(2n+ 2)(2n+ 1)!

2(n+ 1)n!(n+ 1)!
=

(
2n+ 1

n+ 1

)
.

In the second inductive step (on m with arbitrary n), we show that
n∑

k=m−n
an,k =

(
2n+1
m+1

)
implies

n∑
k=m+1−n

an,k =
(

2n+1
m+2

)
. This can be seen by the following calculations:

n∑
k=m+1−n

an,k =
n∑

k=m−n
an,k − an,m−n =

(
2n+ 1

m+ 1

)
− m− n+ 1

n+ 1

(
2n+ 2

2n−m

)

=
(2n+ 1)!

(m+ 1)!(2n−m)!
− m− n+ 1

n+ 1

(2n+ 2)!

(2n−m)!(m+ 2)!

=
(2n+ 1)!(n+ 1)(m+ 2)− (m− n+ 1)(2n+ 2)!

(2n−m)!(m+ 2)!(n+ 1)

=
(2n+ 1)!

(m+ 2)!(2n−m− 1)!

(n+ 1)(m+ 2)− (m− n+ 1)(2n+ 2)

(2n−m)(n+ 1)

=
(2n+ 1)!

(m+ 2)!(2n−m− 1)!
· 1 =

(
2n+ 1

m+ 2

)
.

b) For m = n+ 1, we have

3
n∑
k=0

an,k − an,0
a)
= 3

(
2n+ 1

n+ 1

)
− 1

n+ 1

(
2n+ 2

n

)
= 3

(2n+ 1)!

(n+ 1)!n!
− 1

n+ 1

(2n+ 2)!

n!(n+ 2)!

=
(2n+ 1)!

(n+ 2)!(n+ 1)!
(3(n+ 2)(n+ 1)− (2n+ 2))

=
(2n+ 1)!

(n+ 2)!(n+ 1)!
(3n2 + 7n+ 4)

126 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

and (
2n+ 3

n+ 2

)
−
(

2n+ 1

n+ 1

)
=

(2n+ 3)!

(n+ 2)!(n+ 1)!
− (2n+ 1)!

(n+ 1)!n!

=
(2n+ 1)!

(n+ 2)!(n+ 1)!
((2n+ 3)(2n+ 2)− (n+ 2)(n+ 1))

=
(2n+ 1)!

(n+ 2)!(n+ 1)!
(3n2 + 7n+ 4).

which together yields the desired relation for m = n+ 1.

For n+ 1 < m ≤ 2n+ 1, we have

2
n∑

k=m−n
an,k + an,m−n−1

a)
= 2

(
2n+ 1

m+ 1

)
+
m− n
n+ 1

(
2n+ 2

2n−m+ 1

)

= 2
(2n+ 1)!

(m+ 1)!(2n−m)!
+
m− n
n+ 1

(2n+ 2)!

(2n−m+ 1)!(m+ 1)!

=
(2n+ 2)!

(m+ 1)!(2n−m+ 1)!

(
2(2n−m+ 1)

2n+ 2
+
m− n
n+ 1

)

=
(2n+ 2)!

(m+ 1)!(2n−m+ 1)!

(
2n+ 2

2n+ 2

)
=

(
2n+ 2

m+ 1

)
.

Theorem 4.8. The number of item sequences σ of length n where Bf[σ] = m and

Bfd[σ] = m− 1 is given by
(

n
m+1

)
for m = dn

2
e+ 1, . . . , n− 1.

Proof. From [143], we have for 1 ≤ q ≤ p ≤ 2q − 1 the following expression for the binomial

coefficient: (
p

q

)
=
∑
i≥0

Ci

(
p− 1− 2i

q − 1− i

)

For item sequence σ, assume that |σ| = 2n and that σ fulfills the conditions stated in

Theorem 4.2. We further decompose σ into three parts: For some i ∈ {1, . . . , n − 1},
let (σ1, σ2, . . . , σ2(i−1)) correspond to a recurring unit-sloped path with sk ≥ −1 for all

k = 1, 2, . . . , 2(i − 1), let σ2i−1, σ2i be the first two small items which would be condensed,

4.2 Online Bin Packing with Lookahead 127

and let (σ2i+1, σ2(i+1), . . . , σ2n) be the rest of σ. Note that σ2i−1, σ2i are not necessarily

responsible for the saving which can be accrued by Bfd over Bf.

According to Lemma 4.4, the number of item sequences fulfilling the properties of the first

subsequence is Ci. The number of item subsequences (σ2i+1, σ2(i+1), . . . , σ2n) leading to overall

m bins for Bf and overall m − 1 bins for Bfd is
(

2n−2i
m−i

)
which can be seen as follows: For

(σ1, σ2, . . . , σ2(i−1)), i− 1 bins were needed such that for (σ2i−1, σ2i, . . . , σ2n), m− i + 1 and

m− i additional bins will be needed by Bf and Bfd, respectively. Since σ2i−1, σ2i are small

items, m− i bins will be needed by Bf for (σ2i+1, σ2(i+1), . . . , σ2n) and in addition, conditions

ii), iii) and iv) of Theorem 4.2 have to hold for some j ≥ 2i−1 to realize the saving of Bfd.

Because condition iv) of Theorem 4.2 has to hold, objective value m is attained by Bf when

m− i out of the 2n−2i items (σ2i+1, σ2(i+1), . . . , σ2n) are large. However, this choice does not

necessarily fulfill conditions ii) and iii) of Theorem 4.2 because it may be that (σ2i+1, σ2i+2) =

(0.5 − ε, 0.5 + ε) or that condensations can be found in (σ2i+2, σ2i+3, . . . , σ2n). These two

cases are resolved as follows: Whenever (σ2i+1, σ2i+2) = (0.5− ε, 0.5 + ε), we find a bijective

mapping from σ to some σ′ where σ′ is identical to σ except for (σ2i+1, σ2i+2) now being

(σ2i+1, σ2i+2) = (0.5 − ε, 0.5 − ε). Hereby, another condensation is established which erases

responsibility of the first condensation for the saving of Bfd and claims responsibility itself

(by setting j = 2i+1). Whenever we have another condensation in (σ2i+2, σ2i+3, . . . , σ2n), we

recognize that it erases responsibility for the saving of Bfd of a previous condensation and

claims responsibility itself (by setting j accordingly). Thus, for some i such that (σ2i−1, σ2i)

is the first condensation, there are
(

2n−2i
m−i

)
item subsequences (σ2i+1, σ2(i+1), . . . , σ2n) fulfilling

conditions ii), iii) and iv) of Theorem 4.2.

Lemma 4.9. For n ≤ m ≤ 2n it holds that

∑
i≥1

Ci

(
2n− 2i

m− i

)
=
∑
i≥1

Ci−1

(
2n− 2i+ 1

m− i+ 1

)
.

Proof. See Appendix A.1.2.

We complete the proof for even length 2n of σ with the following calculation:

∑
i≥1

Ci

(
2n− 2i

m− i

)
=
∑
i≥1

Ci−1

(
2n− 2i+ 1

m− i+ 1

)
=
∑
i≥1

1

i

(
2i− 2

i− 1

)(
2n− 2i+ 1

m− i+ 1

)
=
∑
i≥0

1

i+ 1

(
2i

i

)(
2n− 2i− 1

m− i

)
=
∑
i≥0

Ci

(
2n− 2i− 1

m− i

)
=

(
2n

m+ 1

)
.

128 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

where the the last equality follows for n < m ≤ 2n− 1 from the proof of Lemma 9 in [143]

and condition iv) from Theorem 4.2. For odd length 2n+ 1 of σ, the proof is analogous with

2n− 2i replaced by 2n− 2i+ 1.

Corollary 4.10. The number of item sequences σ of length n with Bf[σ] = m and Bfd[σ] =

m is given by
(
n
m

)
for m = dn

2
e+ 1, . . . , n.

Proof. From Theorem 4.1, we know that Bfd[σ] ∈ {m,m − 1} whenever Bf[σ] = m; from

the previous Theorem 4.8, we know that |{σ | |σ| = n,Bfd[σ] = m−1,Bf[σ] = m}| =
(

n
m+1

)
for m = dn

2
e+1, . . . , n−1. Hence, from Theorem 4.7 it immediately follows for these m that

|{σ | |σ| = n,Bfd[σ] = m}| =
(
n+ 1

m+ 1

)
−
(

n

m+ 1

)
=

(
n

m

)
.

Clearly, |{σ | |σ| = n,Bf[σ] = n}| = |{σ | |σ| = n,Bfd[σ] = n}| = 1.

We are in a position to state the central relation between the objective values attained by

Bfd and Bf.

Theorem 4.11. The number of item sequences σ of length n where Bfd[σ] = m is given by

Bfd(n,m) =



1 if m = n,

Bf(n,m) + Bf(n,m+ 1)− 2
(

n
m+1

)
if m = dn

2
e+ 1, . . . , n− 1,

Bf(n,m) + Bf(n,m+ 1)−
(

n
m+1

)
if m = dn

2
e,

0 if m ≤ dn
2
e − 1.

Proof. Because of item sizes in {0.5− ε, 0.5 + ε}, at most two items can be packed in a bin

so that packing n items in less than dn
2
e bins is infeasible. Likewise, each item of σ is packed

separately if and only if each item is large, and there is only one such item sequence σ.

The number of item sequences of length n for which Bfd attains objective value m can be

computed as n1 + n2− n3− n4 where n1 is the number of item sequences σ of length n with

Bf[σ] = m, n2 is the number of item sequences σ of length n with Bf[σ] = m+ 1, n3 is the

number of item sequences σ of length n with Bf[σ] = m, Bfd[σ] = m − 1, and n4 is the

number of item sequences σ of length n with Bf[σ] = m+ 1, Bfd[σ] = m+ 1.

From Theorem 4.8, we have that the number of all item sequences σ of length n with

Bf[σ] = m and Bfd[σ] = m − 1 is n3 =
(

n
m+1

)
for m = dn

2
e + 1, . . . , n − 1; from Corollary

4.10, we have that the number of all item sequences σ of length n with Bf[σ] = m + 1 and

Bfd[σ] = m+ 1 is n4 =
(

n
m+1

)
for m = dn

2
e, . . . , n− 1, and the result follows.

4.2 Online Bin Packing with Lookahead 129

From the previous results, we immediately obtain expressions for the counting distribution

functions of the objective value FBf(v) and FBfd(v), respectively. We now restrict ourselves

to item sequences of even length because from the previous results analogous conclusions

can be drawn immediately for item sequences of odd length.

Corollary 4.12. The counting distribution functions of the objective value FBf(v) and

FBfd(v) of Bf and Bfd for item sequences of length 2n are given by

FBf(v) =


0 if v < n,

2−2n

bvc∑
m=n

(
2n+1
m+1

)
if n ≤ v < 2n,

1 if v ≥ 2n,

and

FBfd(v) =


0 if v < n,

2−2n

(bvc∑
m=n

((
2n+1
m+1

)
+
(

2n+1
m+2

)
− 2
(

2n
m+1

))
+
(

2n
m+1

))
if n ≤ v < 2n,

1 if v ≥ 2n.

Proof. Direct consequence of Theorems 4.7 and 4.11.

The following corollary expresses Bfd’s dominance over Bf. As could already be seen from

Theorem 4.1, stochastic dominance of all orders is established.

Theorem 4.13. For item sequences of length 2n, we have FBfd(v) ≥ FBf(v) for all v ∈ R
and FBfd(v)− FBf(v) > FBfd(v + 1)− FBf(v + 1) for all v < 2n− 1.

Proof. For v < n and v ≥ 2n− 1, FBf(v) = FBfd(v). For n ≤ v < 2n− 1

FBfd(v)− FBf(v) =

(bvc∑
m=n

((
2n+1
m+2

)
− 2
(

2n
m+1

))
+
(

2n
n+1

))
· (2−2n)

=

(bvc∑
m=n

((
2n+1
m+2

)
−
(

2n
m+1

)
−
(

2n
m+1

))
+
(

2n
n+1

))
· (2−2n)

=

(bvc∑
m=n

((
2n
m+2

)
−
(

2n
m+1

))
+
(

2n
n+1

))
· (2−2n)

=
((

2n
bvc+2

)
−
(

2n
n+1

)
+
(

2n
n+1

))
· (2−2n) =

(
2n
bvc+2

)
· (2−2n) > 0.

130 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

The second part follows immediately from Pascal’s triangle as a result of
(

2n
v+2

)
>
(

2n
v+3

)
for

v = n, n+ 1, . . . , 2n− 3.

Theorem 4.14. For item sequences of length 2n, we have supv∈R |FBfd(v)−FBf(v)| → 0 as

n→∞.

Proof. Using the formula of Stirling (n! ≈
√

2πn(n
e
)n; see, e.g., [114]), we get for n → ∞

that

FBfd(n)− FBf(n) =

(
2n

n+ 2

)
· 2−2n

=
(2n)!

(n+ 2)!(n− 2)!
· 2−2n

≈
√

4πn(2n
e

)2n√
2π(n+ 2)(n+2

e
)n+2

√
2π(n− 2)(n−2

e
)n−2

· 2−2n

=

√
n(2n

e
)2n√

π(n2 − 4)(n+2
e

)n+2(n−2
e

)n−2
· 2−2n

=

√
n(2n)2n√

π(n2 − 4)(n+ 2)n+2(n− 2)n−2
· 2−2n

=

√
n22nn2n√

π(n2 − 4)(n+ 2)n+2(n− 2)n−2
· 2−2n ∈ Θ(

1√
n

).

In addition,
(

2n
v

)
>
(

2n
v+1

)
for v ∈ N with v ≥ n, i.e., FBfd(v)−FBf(v) monotonously decreases

for v ≥ n. Since also FBfd(v) = FBf(v) for v < n and v ≥ 2n− 1, the result follows.

As a consequence of Theorem 4.14, one additional lookahead item is worthless in the limit for

Bfd in comparison to Bf. Taking into account Theorem 4.1, this result was to be expected.

The reason for this ineffectiveness lies in the total forfeiture of the power of the lookahead

capability once a small item occurs and occupies the lookahead set.

Figure 4.6 exemplarily plots FBf(v) and FBfd(v) for all item sequences of length n =

10, 50, 100, 500. We observe a rather small lookahead effect as a result of the conditions

in Theorem 4.2 which are collectively found only in a minor fraction of all item sequences.

We next derive an expression for the counting distribution function of the performance ratio

F Bf
Bfd

(v) of Bf relative to Bfd.

4.2 Online Bin Packing with Lookahead 131

10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf

Bfd

a)

50 55 60 65 70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf

Bfd

b)

100 110 120 130 140 150 160 170 180 190 200
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf

Bfd

c)

500 550 600 650 700 750 800 850 900 950 1,000
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf

Bfd

d)

Figure 4.6: Counting distribution functions of costs in the bin packing problem. a) 2n = 20.
b) 2n = 100. c) 2n = 200. d) 2n = 1000.

132 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

Corollary 4.15. The counting distribution function of the performance ratio F Bf
Bfd

(v) of Bf

relative to Bfd for item sequences of length 2n is given by

F Bf
Bfd

(v) =



0 if v < 1,

1
2

+
1
2(2n

n)+(2n
n+1)

22n if 1 ≤ v < 2n−1
2n−2

= 1 + 1
2n−2

,

1
2

+

1
2(2n

n)+(2n
n+1)+

n−2−k∑
i=0

(2n
2n−i)

22n if n+k+1
n+k

= 1 + 1
n+k
≤ v < n+k

n+k−1
= 1 + 1

n+k−1

for k = 1, . . . , n− 2,

1 else.

Proof. According to Theorem 4.8, we have:

•
(

2n
n+2

)
is the number of sequences of length 2n with Bf[σ] = n+ 1, Bfd[σ] = n

•
(

2n
n+3

)
is the number of sequences of length 2n with Bf[σ] = n+ 2, Bfd[σ] = n+ 1

• . . .

•
(

2n
2n

)
is the number of sequences of length 2n with Bf[σ] = 2n− 1, Bfd[σ] = 2n− 2

Apart from these item sequences, no other sequences change their objective due to application

of Bfd instead of Bf. Thus, the performance ratio ranges in [1, n+1
n

] and the number of item

sequences of length 2n which leave the number of bins unchanged in both algorithms is

22n −
(

2n
n+2

)
−
(

2n
n+3

)
− . . .−

(
2n
2n

)
=
(

2n
0

)
+
(

2n
1

)
+ . . .+

(
2n
n+1

)
= 22n−1 +

1

2

(
2n
n

)
+
(

2n
n+1

)
.

Exploiting this relation, we immediately get the given expression for the counting distribution

function of the performance ratio as F Bf
Bfd

(v).

In Figure 4.7, exemplary plots of F Bf
Bfd

(v) are given for input sequences of length n =

10, 50, 100, 500 confirming that the lookahead effect is also relatively small with respect to

an instance-wise comparison of both algorithms to each other.

The only pair of items where algorithm Bfd changes the packing order in contrast to the

revelation order is σsub = (0.5− ε, 0.5 + ε). Assume now that Bfd is prohibited to permute

the item order during packing. Define algorithm Bfd′ which fictively operates as Bfd, i.e.,

it does not put the small item of σsub into an open bin with a small item but in a new bin

because it reserves the space in the already open bin for the large item of σsub. Since Bfd′

emulates Bfd and leads to the same outcome, it is seen easily that the value of being allowed

to permute the items is zero. The attainable benefit out of the additional lookahead item is

entirely due to the information about the size of this item.

4.2 Online Bin Packing with Lookahead 133

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf/Bfd

a)

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf/Bfd

b)

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf/Bfd

c)

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf/Bfd

d)

Figure 4.7: Counting distribution functions of performance ratio of costs in the bin packing prob-
lem. a) 2n = 20. b) 2n = 100. c) 2n = 200. d) 2n = 1000.

134 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

The derivation of expressions for the counting distribution functions of the objective value

and of the performance ratio for the case of two item sizes showed that the improvement

to be expected from an additional lookahead item is very small as a result of a number of

(restrictive) conditions that have to be fulfilled by the structure of an item sequence (cf.

Theorem 4.2). We also found that the lookahead effect vanishes in the sense of converging

distribution functions for Bf and Bfd as the number of items tends to infinity; vice versa,

the impact of lookahead is more likely to be observed on item sequences which are of rather

short length. Moreover, it is irrelevant whether one is allowed to change the order of the

items during their packing or not.

4.3 Online Traveling Salesman Problem with Lookahead

The traveling salesman problem (TSP) lies at the core of nearly every transportation or

routing problem as it seeks to find a round trip (also called tour) for a given set of locations

to be visited (also called requests) such that some cost function depending on the total travel

distance is minimized ([122]). Hence, the TSP is a pure sequencing problem.

For input sequence σ = (σ1, σ2, . . .), let a request σi with i ∈ N correspond to a point xi in

a space M with metric d :M×M→ R, then the TSP consists of visiting the points of all

requests with a server in a tour of minimum length starting and ending in some distinguished

origin o ∈M.

A permutation π(σ) = (π1(σ), π2(σ), . . . , πn(σ)) of the set {σ1, σ2, . . . , σn} of requests repre-

sents a tour (o, xπ1(σ), xπ2(σ), . . . , xπn(σ), o), i.e., a feasible solution to an instance of the TSP.

The value of

D(π(σ)) := d(o, xπ1(σ)) +
n−1∑
i=1

d(xπi(σ), xπi+1(σ)) + d(xπn(σ), o)

is called the tour length of π(σ).

Problem 4.7 (Offline Traveling Salesman).

Instance Metric space (M, d), origin o ∈ M, set of requests σ = {σi | i ∈ {1, . . . , n}}
where σi is a request at xi ∈M.

Task Find a permutation π(σ) of σ with minimum tour length.

Because we neglect temporal aspects, the online versions are considered in the sequential

model. The online version without lookahead is trivial because the requests have to be

visited in their order of appearance.

4.3 Online Traveling Salesman Problem with Lookahead 135

Problem 4.8 (Online Traveling Salesman).

Instance Metric space (M, d), origin o ∈ M, sequence of requests σ = (σ1, σ2, . . . , σn)

where σi is a request at xi ∈M, instance revelation rule r for the online case.

Task Sequentially set πi(σ) := σi when σi is revealed.

In the online version with lookahead, there is limited knowledge about a number of requests

to be visited.

Problem 4.9 (Online Traveling Salesman with Lookahead).

Instance Metric space (M, d), origin o ∈ M, sequence of requests σ = (σ1, σ2, . . . , σn)

where σi is a request at xi ∈ M, instance revelation rule r′ for the lookahead

case.

Task Sequentially choose πi(σ) as one of the unvisited requests which are known as

part of the lookahead information such that the tour length of π(σ) is minimized.

As a result of the irrelevance of the factor time, the instance revelation rule in the online

case is

r := At the beginning, σ1 is known; a new request is revealed when the known one is visited

and in the lookahead case with l ∈ N

r′ := At the beginning, σ1, . . . , σl are known; a new request is revealed when a known one

is visited.

The rule set in the online case is trivial and does not give any degrees of freedom to the

decision maker, i.e.,

P := {Visit the known request};

permutations are allowed in the lookahead case, i.e.,

P ′ := {Visit one of the known requests}.

According to the modeling framework from Chapter 3, the lookahead setting is

req | sngl/rnd | im | discr or equivalently req | sngl/rnd | im | cyc.

The input information of an input element is given by xi. In the online case, we have τi = i

and Ti = i+ ε; in the lookahead case, we have τi = max{1, i− l} and T ′i = max{1, i− l}+ ε,

T
′
i = ∞ with sufficiently small ε > 0. Hence, the server is assumed to travel at infinite

speed.

136 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

We now compare the pure online setting with the setting enhanced by lookahead: Online

algorithm FirstComeFirstServed has no choices, i.e., the server has to visit the requests

in their order of appearance in a first-come first-served manner (cf. Algorithm 4.7). Online

algorithm NearestNeighborl with request lookahead l always moves the server to the

closest known point in terms of distance from its current location (cf. Algorithm 4.8).

Algorithm 4.7 Online algorithm FirstComeFirstServed for the TSP

Input: Metric space (M, d), origin o ∈M, first element σ1 of input sequence σ with request
at x1

1: D := d(o, xσ1), i := 1, π1(σ) := σ1

2: while i < n do
3: additional input: (i+ 1)st element σi+1 of input sequence σ with request at xi+1

4: D := D + d(xσi , xσi+1
), πi+1(σ) := σi+1

5: i := i+ 1
6: end while
7: D := D + d(xσn , o)

Output: (Identity) Permutation π(σ), total distance D of π(σ)

Algorithm 4.8 Online algorithm NearestNeighborl with lookahead for the TSP

Input: Metric space (M, d), origin o ∈ M, first l elements σ1, σ2, . . . , σl of input sequence
σ with requests at x1, x2, . . . , xl

1: x := o,D := 0, i := 1, J := {1, 2, . . . , l}
2: while i ≤ n do
3: k := arg minj∈J d(x, xσj), J := J\{k}, x′ := xσk
4: D := D + d(x, x′), πi(σ) := σk
5: if i ≤ n− l then
6: additional input: (i+ l)th element σi+l of input sequence σ with request at xi+l
7: J := J ∪ {i+ l}
8: end if
9: i := i+ 1, x := x′

10: end while
11: D := D + d(x, o)

Output: Permutation π(σ), total distance D of π(σ)

Under additional lookahead of one request (l = 2), we derive exact expressions for the

counting distribution functions of the objective value and the performance ratio for the case

of a metric space consisting of two points only, i.e., M = {0, 1} with d(0, 1) = d(1, 0) = 1,

d(0, 0) = d(1, 1) = 0 and o = 0.

From now on, we refer to FirstComeFirstServed as Fcfs and to NearestNeighbor2

as Nn. We use the following additional terminology:

4.3 Online Traveling Salesman Problem with Lookahead 137

• A pass is the transition between two successive requests.

• A change pass is a pass between two requests (σi, σi+1) with xi = 1, xi+1 = 0 or

xi = 0, xi+1 = 1.

• A remain pass is a pass between two requests (σi, σi+1) with xi = xi+1.

• A request subsequence (σi, σi+1, σi+2) is a pass pair.

• A free point at a given time is a point which is not occupied by the server at that time.

The main advantage of Nn over Fcfs is its ability to crack pass pairs (0, 1, 0) or (1, 0, 1) in

order to build pass pairs (0, 0, 1) or (1, 1, 0). Note that because of the return to o, only even

overall tour lengths are possible.

Theorem 4.16.

a) The number of request sequences σ of length n where Fcfs[σ] = m and m is even is

given by

Fcfs(n,m) =

(
n+ 1

m

)
.

b) The number of request sequences σ of length n where Nn[σ] = m and m is even is

given by

Nn(n,m) =

(
n+ 1

2m− 2

)
+

(
n+ 1

2m

)
.

Proof. A sequence of n points starting and ending in o has n+ 2 requests including the two

dummy requests at o and encounters n+ 1 passes to either the current or the free point.

a) For Fcfs in order to result in objective value m, a request sequence has to exhibit

exactly m change passes out of the n+ 1 passes.

b) For m = 0, the formula obviously holds. For m > 0, first observe that each resulting

sequence after being processed by Nn exhibits a last change from 0 to 1 and a last

change from 1 to 0 in the visiting order of requests which together contribute a total

of 2 to the objective value. We conclude that a contribution of m − 2 is due to all

previous passes that do not involve the 1 of the last change from 0 to 1. There are two

cases how this 1 could be obtained: Either it was at the same position originally and

remained there also under processing of Nn (case 1), or it had been shifted to that

position as a result of the processing of Nn (case 2).

Denote by σ the original request sequence and by σ′ the visiting order under Nn. For

n = 9 and m = 4, we give an example of case 1 by

138 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

• σ = (0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0),

• σ′ = (0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0)

and of case 2 by

• σ = (0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0),

• σ′ = (0 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 0).

For each of the m− 2 changes incurred by Nn, of course, there must also have been a

corresponding change pass in the original sequence (marked red). Additionally, through

the processing of Nn, this change pass can only be responsible for a change if in the

processing order of Nn the (potentially shifted) destination of the original change pass

is succeeded by another pass which has to be a remain-pass (marked green).

In the first case, m− 2 change passes along with their affirmative remain-passes in the

transformed sequence and two additional change passes (marked blue) incur changes,

i.e., 2(m − 2) + 2 = 2m − 2 out of the n + 1 passes have to be chosen. In the

second case, because of the last change from 0 to 1 in the transformed sequence (which

resulted from a shifted change pass, also marked red) and its affirmative remain pass,

m − 2 + 1 = m − 1 change passes along with their affirmative remain-passes in the

transformed sequence and two additional passes (marked blue), whereof the first one is

a pass from 1 to 0 ensuring that the 1 will be shifted to the right (cf. definition of case

2), incur changes, i.e., 2(m− 1) + 2 = 2m out of the n+ 1 passes have to be chosen.

From the previous result, we immediately obtain expressions for the counting distribution

functions of the objective value FFcfs(v) and FNn(v), respectively. Note that Fcfs and Nn

have possible tour lengths in {0, 2, 4, . . . , 2dn
2
e} and {0, 2, 4, . . . , 2dn

4
}e, respectively, for n+2

requests including the first and last request to o (cf. proof of Theorem 4.18).

Corollary 4.17. The counting distribution functions of the objective value FFcfs(v) and

FNn(v) of Fcfs and Nn for request sequences of length n + 2 (including the first and last

request to o) are given by

FFcfs(v) =


0 if v < 0,
n′∑
i=0

(
n+1
2i

)
· 2−n if 2n′ ≤ v < 2n′ + 2 for n′ = 0, 1, . . . , dn

2
e − 1,

1 if v ≥ 2dn
2
e,

4.3 Online Traveling Salesman Problem with Lookahead 139

FNn(v) =


0 if v < 0,
n′∑
i=0

((
n+1
4i

)
+
(
n+1
4i−2

))
· 2−n if 2n′ ≤ v < 2n′ + 2 for n′ = 0, 1, . . . , dn

4
e − 1,

1 if v ≥ 2dn
4
e.

Figure 4.8 exemplarily plots FFcfs(v) and FNn(v) for all item sequences of length n =

5, 10, 50, 100, 500, 1000. We observe a significant lookahead effect as a result of permut-

ing request triples with two sucessive change passes such that these turn into one change

pass and one remain pass.

We next derive an expression for the counting distribution function of the performance ratio

F Nn
Fcfs

(v) of Nn relative to Fcfs.

Theorem 4.18. Let mNn(σ) and mFcfs(σ) denote the objective values of algorithms Nn

and Fcfs on request sequence σ, respectively, and let n Nn
Fcfs

(n, a, b) be the number of request

sequences σ of length n + 2 (including the first and last request to o) with mNn(σ) = a and

mFcfs(σ) = b for a = 0, 2, 4, . . . , 2dn
4
e and b = 0, 2, 4, . . . , 2dn

2
e, then it holds that

n Nn
Fcfs

(n, a, b) =



1 if b = a = 0(
n+3−a

a

)
if b = a 6= 0(

n+1−a
2a

)
if b = 3a(

n+2−a
2a−1

)
+ (a− 1)

(
n+1−a
2a−1

)
if b = 3a− 2(

a−2
b−a

2

)(
n+3−a

a+b
2

)
+
(
a−2

b−a
2
−1

)(
n+2−a

a+b
2

)
+
(
a−1

b−a
2
−1

)(
n+1−a

a+b
2

)
if b = a+ 2, a+ 4, . . . ,

3a− 4

0 else.

Proof. Notice that Nn can never be worse than Fcfs because whenever Nn changes the

order, a saving occurs without future drawbacks. Nn needs at least a third of the distance of

Fcfs which can be seen by (0, 1, 0, 1, 0, 1, 0) which requires two units from Nn and six units

from Fcfs. There are no sequences with a larger percentage of savings because at the end

of this sequence only two requests on 0 are seen by Nn, i.e., there is no value of lookahead

in this moment, and modifying the above sequence by additional requests cannot improve

the advantage of Nn over Fcfs any further. For a request sequence with n points (apart

from the dummy requests at the beginning and end), b can attain values up to 2dn
2
e which is

seen by the worst-case sequences for Fcfs: Sequences of odd length consist only of change

passes; sequences of even length consist only of change passes except for one remain pass.

For a request sequence with n points (apart from the dummy requests at the beginning and

140 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

0 2 4 6
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fcfs

Nn

a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fcfs

Nn

b)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fcfs

Nn

c)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fcfs

Nn

d)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fcfs

Nn

e)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fcfs

Nn

f)

Figure 4.8: Counting distribution functions of costs in the TSP. a) n = 5. b) n = 10. c) n = 50.
d) n = 100. e) n = 500. f) n = 1000.

4.3 Online Traveling Salesman Problem with Lookahead 141

end), a can attain values up to 2dn
4
e which is seen by the worst-case sequences for Nn of the

forms (0, (1, 1, 0, 0)c, 1, 0), (0, (1, 1, 0, 0)c, 1, 1, 0) or (0, (1, 1, 0, 0)c, 1, 1, 0, 0) for c ∈ N where

(1, 1, 0, 0)c means that (1, 1, 0, 0) is requested c times in a row. Hence, every four requests

contribute at most two units to the objective value (except for the last, the two last or the

three last requests). The only sequence with a = b = 0 has σi = 0 for i = 1, . . . , n.

For a = b 6= 0, the visiting order of the points in σ is identical for Fcfs and Nn because Nn

has a lookahead of one additional request. In particular, we know that the pass immediately

following each of the first a − 2 change passes has to be a remain pass since otherwise Nn

would have reorganized the order. (The last two change passes do not have to exhibit this

structure because these changes cannot be extinguished by Nn due to the forced return to

the origin.) Thus, since for a− 2 passes we know the type of the immediate successor pass,

we only have to choose the a change passes out of n+ 1− (a− 2) = n+ 3− a passes.

For b = 3a, it follows from the definition of the request lookahead mechanism with one

additional request that the request sequence has to consist only of disjunct subsequences of

the form (0c0 , 1, 0c1 , 1c2 , 0, 1c3 , 0c4) with ci ∈ N for i = 0, 1, 2, 3, 4 where xc stands for a request

on x ∈ {0, 1} for c times in a row. The requests of each such subsequence will be visited in

the order (0c0 , 0c1 , 1, 1c2 , 1c3 , 0, 0c4) by Nn producing two moves, whereas Fcfs needs six. In

particular, we know that in the original sequence after the first pass from 0 to 1 a pass to 0

immediately follows and that the pass from 0 to 1c3 is immediately preceded by a 1. Hence,

for each pass in σ that leads to one of the a moves of Nn, there is also another associated

pass known in σ. Thus, we choose out of n + 1 − a passes rather than out of n + 1 passes.

Within each such subsequence, we have to choose the ends of 0c0 , 0c1 , 1c2 , 1c3 by selecting

c0, c1, c2, c3. Since there are a
2

such subsequences for objective value a, in total we have to

choose 4 · a
2

= 2a out of n+ 1− a passes.

In the sequel, we call a subsequence (0, 1, 0) or (1, 0, 1) a change-change pass pair (c/c-pair)

and a subsequence (0, 1, 1) or (1, 0, 0) a change-remain pass pair (c/r-pair).

For a difference of b − a in the outcome, one has to encounter exactly b−a
2

non-overlapping

c/c-pairs before the final return to o. Hence, for b = 3a − 2, we need 3a−2−a
2

= a − 1 non-

overlapping c/c-pairs. Moreover, one additional (isolated) change pass has to occur within σ

because a−1 is odd and the server has to return to o. For each of the a−1 c/c-pairs (0, 1, 0)

or (1, 0, 1), we also have to specify the position until which the sequence continues with 0

and 1, respectively. Hence, we have to choose (a − 1) + 1 + (a − 1) = 2a − 1 passes. Now

there are two cases which lead to
(
n+2−a
2a−1

)
+ (a− 1)

(
n+1−a
2a−1

)
sequences exhibiting b = 3a− 2:

• The isolated change pass occurs after all non-overlapping c/c-pairs. Then we have to

142 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

choose the non-overlapping c/c-pairs and the isolated change pass out of n+1−(a−1) =

n+ 2− a passes.

• The isolated change pass occurs prior to all or within the sequence of non-overlapping

c/c-pairs. Then we have to choose the non-overlapping c/c-pairs and the isolated

change pass out of n + 1 − (a − 1) − 1 = n + 1 − a passes because we know that the

isolated change pass is succeeded by a remain pass since otherwise it would not be an

isolated change pass. Clearly, there are a− 1 positions to locate the change pass prior

to all or within the sequence of the a− 1 non-overlapping c/c-pairs.

For b = a + 2i with i = 1, 2, . . . , a− 2, exactly i non-overlapping c/c-pairs occur before the

final return to o because each such pair gives a saving of two. We conclude that at least

(a− 2)− i pairs have to be c/r-pairs and two additional change passes are left over (which

may come in arbitrary form, i.e., as a c/c-pair or as two c/r-pairs). We distinguish whether

these two left-over change passes appear at the end of σ (case 1) or not (cases 2 and 3):

• First, assume the two left-over change passes to appear at the end of σ, i.e., when all

of the a−2 c/c- and c/r-pairs have occurred. Hence, we choose out of n+1− (a−2) =

n + 3 − a rather than out of n + 1 passes. Recall that for a difference of b − a one

has to encounter exactly b−a
2

non-overlapping c/c-pairs before the final return to o. In

total, in order to obtain objective value pair (a, b) one has to choose b−a
2

+ a = a+b
2

change passes. Since the two left-over change passes appear at the end of σ, we have

that the b−a
2

non-overlapping c/c-pairs appear somewhere among the a− 2 known c/c-

and c/r-pairs, i.e., we have to choose b−a
2

out of a− 2.

• Second, assume one additional c/r-pair (containing a left-over change pass) is inserted

before the last of the known a−2 c/c- and c/r-pairs, i.e., within the first a−1 c/c- and

c/r-pairs. Then we have to choose a+b
2

change passes out of n+1−(a−2)−1 = n+2−a
passes. Due to the additional c/r-pair, there are only b−a

2
− 1 c/c-pairs among the first

a− 2 c/c- and c/r-pairs, i.e., we have to choose b−a
2
− 1 out of a− 2.

• Third, assume two additional c/r-pairs (each containing a left-over change pass) are

inserted before the last of the known a−2 c/c- and c/r-pairs, i.e., within the first a c/c-

and c/r-pairs. Then we have to choose a+b
2

change passes out of n+ 1− (a− 2)− 2 =

n + 1 − a passes. Due to the additional c/r-pairs, there are only b−a
2
− 2 or b−a

2
− 1

c/c-pairs among the first a− 2 c/c- and c/r-pairs, i.e., we have to choose b−a
2
− 2 out

of a− 2 or b−a
2
− 1 out of a− 2, i.e.,

(
a−2

b−a
2
−2

)
+
(
a−2

b−a
2
−1

)
=
(
a−1

b−a
2
−1

)
.

4.3 Online Traveling Salesman Problem with Lookahead 143

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Nn/Fcfs

a)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Nn/Fcfs

b)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Nn/Fcfs

c)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Nn/Fcfs

d)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Nn/Fcfs

e)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Nn/Fcfs

f)

Figure 4.9: Counting distributions functions of performance ratio of costs in the TSP. a) n = 5.
b) n = 10. c) n = 50. d) n = 100. e) n = 500. f) n = 1000.

144 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

Corollary 4.19. The counting distribution function of the performance ratio F Nn
Fcfs

(v) of

Fcfs and Nn for request sequences of length n+ 2 (including the first and last request to 0)

is given by

F Nn
Fcfs

(v) = 2−n ·
∑

j=0,2,...,2dn
2
e

∑
i=0,2,...,min{j,2dn

4
e},

i
j
≤v

n Nn
Fcfs

(n, i, j)

with n Nn
Fcfs

(n, i, j) from Theorem 4.18.

In Figure 4.9 on the previous page, exemplary plots of F Nn
Fcfs

(v) are given for input sequences

of length n = 5, 10, 50, 100, 500, 1000 confirming that the lookahead effect is also enormous

with respect to an instance-wise comparison of both algorithms to each other.

For the online TSP with two locations, we showed that the provision of only one additional

location already leads to huge improvements in the total distance to be traveled by the server

as a result of the immediate savings that can be accrued without future obligations whenever

the second of the two known locations coincides with the current server position and the first

one does not. The benefit is exclusively due to the allowance to visit the known requests in

any order. Hence, the lookahead effect is entirely made up of its processual component.

4.4 Concluding Discussion

In this chapter, we carried out an exact theoretical analysis of algorithm performance in

online optimization with lookahead for three academic problem classes. In each of the set-

tings, we characterized the improvement attainable by additional information in terms of

the resulting counting distribution functions of the objective value and of the performance

ratio. The analysis reproduced an exact image of algorithm behavior over all input sequences

(including also competitive analysis results).

In all three problems, we found that lookahead has a positive influence on solution quality,

albeit the magnitude of the impact differs strongly from one problem to another. Explana-

tions and reasons for these differences in the value of information could mainly be identified

in the proofs of the results: The ski rental problem – representing the class of rent-or-buy

problems – exhibits a remarkable lookahead effect as a result of improved one-shot decision

making. The bin packing problem – representing the class of packing problems – only admits

small improvements because a number of restrictive conditions on combined item sizes would

need to be fulfilled such there is potential for saving a bin at all. In contrast to that, in the

4.4 Concluding Discussion 145

TSP – representing the class of routing problems – the largest improvement is observed be-

cause permuting the visiting order directly pays off in form of savings in the travel distance

without future drawbacks. Note that permutations were allowed in bin packing, too; yet,

the considered algorithm could not capitalize from it.

Table 4.5 sums up at a coarse-grained level the qualitative findings of the exact analysis

in the three problem settings from this chapter: While in the ski rental and bin packing

problem the lookahead effect (column ∆f r,r
′,P,P ′

Alg,Alg′) was entirely made up of its informational

component (column ∆f r,r
′

Alg), the benefit attained in the TSP was facilitated by the rule

set substitution (column ∆fP,P
′

Alg,Alg′) in form of the allowance to visit the locations in an

arbitrary order. Observe from the last column (Deterioration) that in no problem it was

possible to incur a deterioration upon obtaining additional lookahead information.

The derivation of the expressions for the counting distribution functions of the performance

ratio and of the objective value showed that an exact analysis of combinatorial online opti-

mization problems is strongly interconnected to the combinatorial structure which is injected

to the problem setting by the processing of an algorithm and the choice of problem param-

eters. Clearly, these structures are recognizable by human thinking capabilities only when

algorithms apply simple decision rules. However, even under this assumption the analysis

became quite involved. We recognize that for larger lookahead and general settings it is

virtually impossible to track the effects of lookahead in the processing of an algorithm over

all input sequences. Hence, we are led to conducting experimental analysis in more realistic

problem settings which will be our agenda for the next two chapters.

146 4 Theoretical Analysis of Algorithms for Online Optimization with Lookahead

P
ro

b
le

m
T

y
p

e/
S
iz

e
A

tt
ri

b
u

te
R

u
le

∆
f
r,
r
′ ,
P
,P
′

A
l
g
,A

l
g
′

∆
f
r,
r
′

A
l
g

∆
f
P
,P
′

A
l
g
,A

l
g
′

D
et

er
io

ra
ti

o
n

S
k
i

re
n
ta

l
re

q
u
es

t
lo

o
ka

h
ea

d
/

ar
b

it
ra

ry
–

–
la

rg
e

la
rg

e
ze

ro
n

o

B
in

p
a
ck

in
g

re
q
u
es

t
lo

ok
a
h
ea

d
/

2
2

it
em

si
ze

s
p

er
m

u
ta

ti
on

s
sm

al
l

sm
al

l
ze

ro
n
o

n
o

p
er

m
u

ta
ti

on
s

sm
al

l
sm

al
l

ze
ro

n
o

T
S
P

re
q
u
es

t
lo

ok
a
h

ea
d
/

2
2

lo
ca

ti
on

s
p

er
m

u
ta

ti
on

s
la

rg
e

ze
ro

la
rg

e
n
o

n
o

p
er

m
u

ta
ti

on
s

ze
ro

ze
ro

ze
ro

n
o

T
a
b
le

4
.5
:

Q
u

a
li
ta

ti
v
e

su
m

m
ar

y
of

th
e

ex
ac

t
re

su
lt

s
fr

om
C

h
ap

te
r

4
.

147

5 Experimental Analysis of Algorithms for

Online Optimization with Lookahead

Complementing the theoretical results derived in the previous chapter, we now conduct a

series of numerical experiments on five standard online optimization problems in order to

examine the impact of lookahead on solution quality for algorithms specifically tailored to

take advantage of lookahead. We observe significant differences in the magnitude of the

lookahead effect depending on the respective problem settings and give explanations for

varying algorithm behavior under additional lookahead. The study of this chapter enables

us to preestimate the magnitude of the lookahead effect based on the problem characteristics

provided. We consider two additional problems alongside those of the previous chapter:

• Online Paging with Lookahead

• Online Scheduling with Lookahead

For each problem, three different types of analysis are applied in order to ensure a compre-

hensive view on algorithm behavior under different information regimes:

1. Average results portray the overall behavior of algorithms under different amounts of

lookahead for a prescribed number of independent random input sequences.

2. Distributional results submit a more precise picture by including frequency information

on observed objective values and performance ratios, respectively.

3. Markov chain results serve as an exact underpinning for the sampled results. Because

of the curse of dimensionality, we restrict ourselves to small parameter values.

Computational experiments were performed on a personal computer with AMD Phenom II

X6 1100T 3.31 GHz processor and 16 GB RAM under Microsoft Windows 7 (64-bit). All

algorithms were implemented in C++ and arising instances of IP and MIP formulations were

solved using IBM ILOG CPLEX 12.5 with a prescribed time limit of 120 seconds. A detailed

summary of statistical key figures for each experiment is given in Appendix A.2.

148 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

5.1 Online Ski Rental with Lookahead

A specification of the online ski rental problem with lookahead and corresponding algorithms

is given in Chapter 4.1. Because exact expressions for the counting distribution functions

of the objective value and the performance ratio have been derived, we only present a brief

(exact) numerical analysis for fixed parameters nmax = 100, B = 50, r = 1 to see the magni-

tude of the lookahead impact. Recall that an input sequence σ corresponds to a prescribed

number of skiing days n ∈ {1, 2, . . . , nmax}. For better readability, we denote algorithm

ConditionalBuyk,l as Algk,l; the optimal offline algorithm is called Opt. Observe that

Algk,l coincides with Opt for l ≥ dB
r
e = d50

1
e = 50 and with Buyk for l = 1. Algorithms

are tested with variable purchase time k ∈ {1, 25, 50, 75, 100} and variable lookahead sizes

l ∈ {1, 5, 10, 20, . . . , 100}.

5.1.1 Average Results

From Figure 5.1, we see that lookahead leads to drastic reductions in the average costs

required for skiing over all input sequences when each of the nmax = 100 days is equally

probable to be the last skiing day. Comparing the online and offline situation, average cost

reductions vary between 24.5 % and 39.8 % depending on the appointed day of purchase.

0 10 20 30 40 50 60 70 80 90 100

40

45

50

55

60

65

Lookahead size l

A
ve
ra
g
e
co
st
s

Alg1,l

Alg25,l

Alg50,l

Alg75,l

Alg100,l

Figure 5.1: Average costs for different lookahead sizes and nmax = 100 in the ski rental problem.

For fixed k, consider two lookahead levels l1, l2 with l1 < l2 and l1, l2 < dBr e = 50. From

the cost profile of Algk,l it follows that Algk,l1 [σ] ≥ Algk,l2 [σ] for all input sequences σ.

5.1 Online Ski Rental with Lookahead 149

Hence, additional lookahead proves exclusively beneficial and the average savings is

∑
σ

Algk,l1 [σ]−Algk,l2 [σ]

nmax
=

k+l2−2∑
t=k+l1−1

r(k − 1) +B − rt
nmax

=

k+l2−2∑
t=k+l1−1

k + 49− t
100

≥ 0.

For fixed lookahead l, the relation of the average costs incurred by Algk1,l and Algk2,l with

k1 < k2 is determined by the value

∑
σ

Algk1,l[σ]−Algk2,l[σ]

nmax
=

k2+l−2∑
t=k1+l−1

(r(k1 − 1) +B − rt)−
nmax∑

t=k2+l−1

r(k2 − k1)

nmax

=

k2+l−2∑
t=k1+l−1

(k1 + 49− t)− (102− k2 − l)(k2 − k1)

100

whose sign depends on the choices of k1 and k2. For the given parameters, the average

of Alg1,l, i.e., k1 = 1, is not larger than that of Algk2,l for all k2 ∈ {2, . . . , 100} and

all l as indicated by the red line in Figure 5.1: The savings of Alg1,l for all σ = {1}n
with n ≥ k2 + l − 1 cannot be exceeded by its excess expenditures for all σ = {1}n with

k1 + l − 1 = l ≤ n ≤ k2 + l − 2. This can be seen by

k2+l−2∑
t=l

(50− t)− (102− k2 − l)(k2 − 1) = 50(k2 − 1)−
k2+l−2∑
t=l

t− (102− k2 − l)(k2 − 1)

=
k2

2
(k2 − 103) + 51

which is smaller than 0 for k2 ≤ 100. We remark that the order relation between the average

of Algk,l[σ] for varying k and fixed l is strongly affected by the skier’s expectation for the

length of the skiing trip: Buying early should pay off whenever skis are expected to be in

need for a long time; vice versa, buying late should pay off whenever skis are expected to

be in need only shortly. Incorporating these considerations by weighting of input sequences,

superiority of Alg1,l as displayed in Figure 5.1 is obtained by attributing equal weights 1
nmax

to all input sequences. Because of the parameter choices, this weighting already suffices to

suggest earliest possible buying. Weightings which favor ski trips of short duration tend to

shift lower costs to algorithms which buy late; vice versa, weightings which favor ski trips of

long duration tend to shift lower costs to algorithms which buy early.

150 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

5.1.2 Distributional Results

Figure 5.2 displays the counting distribution functions of the objective value for Algk,l

and benchmarks them with the objective value distribution of Opt. Since for l ≥ 50, the

distributions of Algk,l coincide with that of Opt, their plots are omitted.

Note that it is not possible for any of the algorithms to incur a deterioration in the objective

value when more information is provided. In each of the diagrams, this can be seen from the

perfect (stochastic) ordering of the counting distribution functions for prescribed purchase

time k. Since Alg1,l is the only family of algorithms which considers buying at the outset of

the dynamic problem, it is the only algorithm family which approximates Opt for increasing

l. For all other Algk,l with k > 1, a gap remains for increasing l with l < 50 due to

non-optimal buying decisions before day k. Clearly, for l ≥ 50 the plot of any algorithm

Algk,l would snap to that of Opt. For fixed lookahead l, the range of occurring objective

values broadens to larger values for increased k, thereby confirming the previously described

superiority of Alg1,l in the given parameter constellation.

Although the average objective values and the objective value distributions suggest to buy

at the very beginning of the planning horizon, the counting distribution functions of the

performance ratio of each algorithm relative to Opt in Figure 5.3 show that there is a high

risk of incurring large multiples of the optimal objective value for these algorithms. For

instance, on the input sequence σ corresponding to one skiing day, Alg1,1[σ] charges costs

of 50, whereas Opt only incurs a unit cost. Hence, the performance ratio is 50, emphasizing

the potential risk of buying too early. This result is also confirmed by the comparatively

large coefficients of variation for the performance ratios when k is small and the reduction

in the confidence interval width for increasing k as shown in Table A.2 of Appendix A.2.1.

Similar conclusions as found previously are discovered regarding the benefit of lookahead

within an algorithm family Algk,l with fixed k and variable l. Additional information leads

to a considerable risk mitigation in form of a diminished competitive ratio that is attained

by Algk,l for increasing values of l. Note that in general no deterministic algorithm can be

better than (2− 1
B

= 1.98)-competitive ([107]).

In case of comparing to the pure online versions Algk,1 of the algorithms rather than to Opt,

the variability of performance ratios for small k becomes evident in the immense width of

their range for k = 1 as compared to larger values of k (see Figure 5.4 and Table A.3 of

Appendix A.2.1). From this point of view, we also find that additional lookahead exclusively

leads to lower costs as reflected by all performance ratios being smaller than 1 and confidence

intervals shifting to regions with smaller values for increasing l.

5.1 Online Ski Rental with Lookahead 151

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg1,1 Alg1,5

Alg1,10 Alg1,20

Alg1,30 Alg1,40

Alg1,50 = Opt

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg25,1 Alg25,5

Alg25,10 Alg25,20

Alg25,30 Alg25,40

Alg25,50 = Opt

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg50,1 Alg50,5

Alg50,10 Alg50,20

Alg50,30 Alg50,40

Alg50,50 = Opt

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg75,1 Alg75,5

Alg75,10 Alg75,20

Alg75,30 Alg75,40

Alg75,50 = Opt

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg100,1 Alg100,5

Alg100,10 Alg100,20

Alg100,30 Alg100,40

Alg100,50 = Opt

Figure 5.2: Counting distribution functions of costs for nmax = 100 in the ski rental problem.

152 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg1,1 Alg1,5

Alg1,10 Alg1,20

Alg1,30 Alg1,40

Alg1,50 = Opt

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg25,1 Alg25,5

Alg25,10 Alg25,20

Alg25,30 Alg25,40

Alg25,50 = Opt

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg50,1 Alg50,5

Alg50,10 Alg50,20

Alg50,30 Alg50,40

Alg50,50 = Opt

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg75,1 Alg75,5

Alg75,10 Alg75,20

Alg75,30 Alg75,40

Alg75,50 = Opt

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg100,1 Alg100,5

Alg100,10 Alg100,20

Alg100,30 Alg100,40

Alg100,50 = Opt

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Figure 5.3: Counting distribution functions of performance ratio of costs relative to Opt for
nmax = 100 in the ski rental problem.

5.1 Online Ski Rental with Lookahead 153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg1,1 Alg1,5

Alg1,10 Alg1,20

Alg1,30 Alg1,40

Alg1,50 = Opt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg25,1 Alg25,5

Alg25,10 Alg25,20

Alg25,30 Alg25,40

Alg25,50 = Opt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg50,1 Alg50,5

Alg50,10 Alg50,20

Alg50,30 Alg50,40

Alg50,50 = Opt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg75,1 Alg75,5

Alg75,10 Alg75,20

Alg75,30 Alg75,40

Alg75,50 = Opt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg100,1 Alg100,5

Alg100,10 Alg100,20

Alg100,30 Alg100,40

Alg100,50 = Opt

Figure 5.4: Counting distribution functions of performance ratio of costs relative to the online
version for nmax = 100 in the ski rental problem.

154 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

Since there is only one input sequence of a given length n and an expression for the costs on

a given input sequence is known for all algorithms, Markov chain analysis becomes obsolete;

all results are already included in the theoretical analysis in Chapter 4.1.

We conclude this section by pointing out that the computational experiments on the ski

rental problem merely serve as an illustration for the results obtained by the exact analysis

in Chapter 4.1. For nmax = 100, the exclusive benefit from lookahead is apparent from the

clear-cut gaps between the counting distribution function plots of successive lookahead levels.

Advantages arise by the fact that the ski rental problem is a one-shot decision problem where

more information never leads to worse decisions.

5.2 Online Paging with Lookahead

Paging deals with the organization of a two-level memory system for sequential requests on

elements (pages) of an alphabet A ([74], [164]). The large and slow main memory holds

all pages of A, whereas the small and fast cache memory can only hold k < |A| pages (or

pointers to them). A requested page currently not in the cache produces a page fault, and

whenever a page fault occurs, the page has to be brought to the cache first before it can be

accessed. The goal is to minimize the number of page faults. For fixed n ∈ N, the set of all

input sequences is given by

Σn =
{

(σ1, σ2, . . . , σn) |σi ∈ A, i = 1, . . . , n
}

and comprises all page sequences of length n. Typically, pages must be brought to the

cache in their order of appearance in the input sequence – regardless of the type and size of

lookahead. In the online version, only σi with i = 1, . . . , n is known when σi is requested. In

the online version with lookahead of size l, σi with i = 1, . . . , n and l− 1 successive requests

σi+1, . . . , σi+l−1 are known if i + l − 1 ≤ n, otherwise σi and additional n − i successive

requests σi+1, . . . , σn are known. In the offline version, all requested pages are known at the

beginning. Subsequently, a page that is already in the cache is called a cache page.

In our experiment, we draw m = 1000 independent request sequences where each one of

them consists of n = 100 pages. The cache has a capacity of k = 10 pages and the alphabet

corresponds to the 26 standard letters, i.e., A = {A,B, . . . , Z}. Lookahead sizes l are chosen

from {1, 5, 10, 20, 40, . . . , 100}. In accordance with mainstream research on paging (see, e.g.,

[4], [33]), also our analysis takes into account different levels of locality of reference in the

input sequence:

5.2 Online Paging with Lookahead 155

• No locality at all, i.e., at any time each page is equally probable.

• Locality by generating input sequences according to an access graph, i.e., page se-

quences are generated by traversing the edges of a graph whose vertices are labeled

with the pages. Pages could, for instance, be understood as the subpages of an internet

homepage, i.e., the access graph amounts to the homepage navigation scheme.

• Locality by assigning each page a fixed probability for occurring next based on relative

letter frequencies in texts as elicited by statistical evaluations.

We restrict the discussion to the first two cases and refer to Appendix A.2.2 for more infor-

mation on the third case.

A decision by an algorithm is required only when a page fault occurs and merely consists of

selecting the cache page to be evicted in order to make way for the current request.

Online algorithms

• FirstInFirstOut (Fifo): In case of a page fault, evict a cache page which entered

the cache first ([149]).

• LastInFirstOut (Lifo): In case of a page fault, evict a cache page which entered

the cache last ([149]).

• LeastFrequentlyUsed (Lfu): In case of a page fault, evict a cache page which has

been requested least frequently ([149]).

• LeastRecentlyUsed (Lru): In case of a page fault, evict a cache page which has

been requested least recently ([149]).

Online algorithms with lookahead of size l

• FirstInFirstOutl (Fifol): In case of a page fault, if there are cache pages which

are not requested in the lookahead, evict a cache page which entered the cache first

among these pages; otherwise evict a cache page whose next request is farthest ahead.

• LastInFirstOutl (Lifol): In case of a page fault, if there are cache pages which are

not requested in the lookahead, evict a cache page which entered the cache last among

these pages; otherwise evict a cache page whose next request is farthest ahead.

• LeastFrequentlyUsedl (Lful): In case of a page fault, if there are cache pages

which are not requested in the lookahead, evict a cache page which has been requested

least frequently among these pages; otherwise evict a cache page whose next request

is farthest ahead.

156 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

• LeastRecentlyUsedl (Lrul): In case of a page fault, if there are cache pages which

are not requested in the lookahead, evict a cache page which has been requested least

recently among these pages; otherwise evict a cache page whose next request is farthest

ahead.

Optimal offline algorithm

• Optimal (Opt): In case of a page fault, evict a cache page whose next request is

farthest ahead (Belady’s optimal replacement algorithm in [17]).

Note that Fifol, Lifol, Lful and Lrul all coincide with Opt for l = n = 100 and with

Fifo, Lifo, Lfu and Lru, respectively, for l = 1.

Besides regular request lookahead, we also include batched request lookahead of size l into

our experiment to find out whether a steady supply with input elements is really needed

or whether input element release in blocks suffices to obtain satisfying results: During the

processing of a batch of input elements, the number of pages seen by the algorithm gradually

reduces by one in each processing step. Since data is often organized in blocks or packages,

batched lookahead is realistic for practical applications. If algorithms operate under batched

lookahead, we indicate them with an added suffix B in the algorithm name.

5.2.1 Average Results

Figure 5.5 displays that each algorithm class performs equally good under the same lookahead

regime when each page is equally probable to be the next one encountered in an input

sequence. Because of this assumption, the probability for a page fault is identical for each

possible current cache configuration, i.e., irrespective of an algorithm’s previous organization

of the cache. Lookahead leads to a substantial decrease in the number of page faults: Between

the extreme cases of online and offline optimization, average page fault reductions of 36.7 %

are observed. However, the marginal benefit of lookahead is strictly decreasing, i.e., the first

lookahead units are the most valuable. Because all algorithms collapse into Opt for l = 100,

every algorithm yields the optimal number of average page faults in this case. Applying

regular lookahead instead of batched lookahead pays off by up to 15.4 % for l = 20.

When a (non-trivial) stochastic model about page occurrences is imputed by locality of

reference in form of an access graph, algorithms behave differently as can be seen in Figure

5.6. Algorithm Lrul now outperforms the other algorithms for fixed l because construing

input sequences according to the access graph implies that recently requested pages are more

likely for being next than pages requested a long time ago as a result of their (shortest path)

5.2 Online Paging with Lookahead 157

0 10 20 30 40 50 60 70 80 90 100

40

45

50

55

60

65

Lookahead size l

A
ve
ra
ge

co
st
s

Fifol

Lifol

Lful

Lrul

Fifol,B

Lifol,B

Lful,B

Lrul,B

Figure 5.5: Average costs for different lookahead sizes and n = 100 in the paging problem when
each page is equally probable.

distance to the vertex labeled with the current page. This is in line with Lrul’s behavior of

keeping recent requests and evicting requests from long ago. Likewise, Fifol fares relatively

good as it also sticks to deleting older pages first. Quite contrary, both Lifol and Lful

counteract the rationale of locality of reference imputed by an access graph: Because they

evict pages that just joined the cache or yet have a small frequency count since they have

just joined the cache, they make page faults much more likely as the evicted pages are near

to the current page in terms of the distance in the access graph.

0 10 20 30 40 50 60 70 80 90 100

20

25

30

35

40

45

Lookahead size l

A
ve
ra
g
e
co
st
s

Fifol

Lifol

Lful

Lrul

Fifol,B

Lifol,B

Lful,B

Lrul,B

Figure 5.6: Average costs for different lookahead sizes and n = 100 in the paging problem when
page sequences are generated according to an access graph.

158 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

The positive effect of lookahead is retained also under locality of reference, albeit for Lrul and

Fifol its magnitude is diminished strongly as a result of the already satisfying performance

of the pure online algorithms. For these two algorithms, the lookahead effect is up to 11.5 %

and 18.4 %, respectively, when online and offline optimization are compared. We conclude

that locality of reference makes the future more predictive such that suitable algorithms can

capitalize already from this circumstance substantially. For these algorithms, it is nearly

irrelevant whether lookahead is provided on a rolling time horizon or in batches.

We remark that in locality of reference with preassigned page probabilities, Lful excels

the other algorithms for fixed l because it bases its decision on frequency counts which are

expected to comply with prescribed page probabilities that have been derived from letter

frequencies. This result is in sharp contrast to competitive analysis where Lfu and Lifo are

known to be non-competitive, whilst Fifo and Lru are (k = 10)-competitive.

The impact of lookahead on the given algorithms is exclusively beneficial in case of regular

lookahead which is seen by two arguments: First, evicting a page seen in the lookahead

would lead to a guaranteed page fault within the time window of the lookahead size, whereas

evicting one that is not seen does not lead to a page fault in the same time window. Sec-

ond, the worst-case concerning the obtained cache configuration would be that the evicted

page would be needed immediately after the lookahead time window. However, the needed

cache configuration could then be produced with one page fault in total by reinserting the

evicted page in the cache again. In summary, evicting a page not seen in the lookahead

can never be worse than evicting a page seen in the lookahead, and it maintains the chance

of avoiding unnecessary page faults. In case of batched lookahead, there may be instances

with degradations in the objective value although more lookahead was provided as seen in

the last column of Table A.7 in Appendix A.2.2. This effect is due to the variable size of

the information preview window under batched lookahead where algorithms operate under

successively tightened lookahead within each batch.

5.2.2 Distributional Results

Because algorithms behave identically when each page is equally probable and due to the

small width of confidence intervals as seen in Tables A.4 to A.6 of Appendix A.2.2, we omit

a discussion of this case and concentrate on the results found under locality of reference in

the access graph model.

In Figure 5.7, the stable and superior performance of Lrul and Fifol is seen by the narrow

interval of observed objective intervals for each lookahead level and the relative closeness of

5.2 Online Paging with Lookahead 159

20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fifo1

Fifo5

Fifo10

Fifo20

Fifo40

Fifo60

Fifo80

Fifo100 = Opt

20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fifo1,B

Fifo5,B

Fifo10,B

Fifo20,B

Fifo40,B

Fifo60,B

Fifo80,B

Fifo100,B = Opt

20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lifo1

Lifo5

Lifo10

Lifo20

Lifo40

Lifo60

Lifo80

Lifo100 = Opt

20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lifo1,B

Lifo5,B

Lifo10,B

Lifo20,B

Lifo40,B

Lifo60,B

Lifo80,B

Lifo100,B = Opt

20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lfu1

Lfu5

Lfu10

Lfu20

Lfu40

Lfu60

Lfu80

Lfu100 = Opt

20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lfu1,B

Lfu5,B

Lfu10,B

Lfu20,B

Lfu40,B

Lfu60,B

Lfu80,B

Lfu100,B = Opt

20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lru1

Lru5

Lru10

Lru20

Lru40

Lru60

Lru80

Lru100 = Opt

20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lru1,B

Lru5,B

Lru10,B

Lru20,B

Lru40,B

Lru60,B

Lru80,B

Lru100,B = Opt

Figure 5.7: Empirical counting distribution functions of costs for n = 100 in the paging problem
when page sequences are generated according to an access graph.

160 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fifo1

Fifo5

Fifo10

Fifo20

Fifo40

Fifo60

Fifo80

Fifo100 = Opt

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fifo1,B

Fifo5,B

Fifo10,B

Fifo20,B

Fifo40,B

Fifo60,B

Fifo80,B

Fifo100,B = Opt

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lifo1

Lifo5

Lifo10

Lifo20

Lifo40

Lifo60

Lifo80

Lifo100 = Opt

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lifo1,B

Lifo5,B

Lifo10,B

Lifo20,B

Lifo40,B

Lifo60,B

Lifo80,B

Lifo100,B = Opt

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lfu1

Lfu5

Lfu10

Lfu20

Lfu40

Lfu60

Lfu80

Lfu100 = Opt

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lfu1,B

Lfu5,B

Lfu10,B

Lfu20,B

Lfu40,B

Lfu60,B

Lfu80,B

Lfu100,B = Opt

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lru1

Lru5

Lru10

Lru20

Lru40

Lru60

Lru80

Lru100 = Opt

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lru1,B

Lru5,B

Lru10,B

Lru20,B

Lru40,B

Lru60,B

Lru80,B

Lru100,B = Opt

Figure 5.8: Empirical counting distribution functions of performance ratio of costs relative to Opt
for n = 100 in the paging problem when page sequences are generated according to
an access graph.

5.2 Online Paging with Lookahead 161

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fifo1

Fifo5

Fifo10

Fifo20

Fifo40

Fifo60

Fifo80

Fifo100 = Opt

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Fifo1,B

Fifo5,B

Fifo10,B

Fifo20

Fifo40,B

Fifo60,B

Fifo80,B

Fifo100,B = Opt

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lifo1

Lifo5

Lifo10

Lifo20

Lifo40

Lifo60

Lifo80

Lifo100 = Opt

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lifo1,B

Lifo5,B

Lifo10,B

Lifo20,B

Lifo40,B

Lifo60,B

Lifo80,B

Lifo100,B = Opt

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lfu1

Lfu5

Lfu10

Lfu20

Lfu40

Lfu60

Lfu80

Lfu100 = Opt

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lfu1,B

Lfu5,B

Lfu10,B

Lfu20,B

Lfu40,B

Lfu60,B

Lfu80,B

Lfu100,B = Opt

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lru1

Lru5

Lru10

Lru20

Lru40

Lru60

Lru80

Lru100 = Opt

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lru1,B

Lru5,B

Lru10,B

Lru20,B

Lru40,B

Lru60,B

Lru80,B

Lru100,B = Opt

Figure 5.9: Empirical counting distribution functions of performance ratio of costs relative to the
online version for n = 100 in the paging problem when page sequences are generated
according to an access graph.

162 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

the plots to each other for all pairs of lookahead levels. This is also confirmed by the widths

and positions of the confidence intervals in Table A.7 of Appendix A.2.2. Lookahead leads

to improvement as seen by the ordering of the empirical counting distribution functions,

although not as drastically as for Lifol and Lful. For these algorithms, stable behavior

is reached only if there is a (real) lookahead of size larger than 1. Accordingly, additional

lookahead leads to a much higher percentage of decrease in the objective value than for Lrul

and Fifol.

Experimental competitive ratios as displayed in Figure 5.8 and indicated in the column for

the maximum observed value in Table A.8 of Appendix A.2.2 are consistently smaller than

2 for Fifo1 and Lru1; hence, they are much better than the theoretical value of k = 10

would suggest. Already for Lru1 and Fifo1 the fraction of admissible input sequences with

the minimum number of page faults amounts to 20.2 % and 28 %, respectively. Yet, even

under locality of reference, instances are encountered where Lru1 and Fifo1 miss optimality

by 50 % and 94 %, respectively. For l = 80, the worst observed performance ratio drops

to 1.06 for both algorithms. For high lookahead values, the empirical counting distribution

functions of the performance ratios are moving closer to 1 and become steeper, i.e., with

a fair amount of lookahead the deviation from optimality can be preestimated. From the

(local) optimality of evicting a cache page which lies farthest in the future, it follows that

for l tending to n = 100 the number of page sequences with performance ratio larger than 1

is non-increasing.

Comparing algorithms to their respective online version as illustrated in Figure 5.9 approves

the exclusive benefit of additionally provided information under regular lookahead because all

performance ratios encountered are smaller than 1. For Lrul and Fifol, there are instances

where full lookahead leads to a reduction to only 67 % and 52 % of the number of page

faults from the online case, respectively. For batched lookahead, improvements are slightly

smaller; instances sporadically experience an objective value degradation upon additional

information.

5.2.3 Markov Chain Results

The elements of the state space S subsume the cache configuration c = (c1, . . . , ck) whose el-

ements are ordered lexicographically, the lookahead pages p = (p1, . . . , pl), the page attribute

configurations a = (a1, . . . , a|A|) and the number of page faults v so far, i.e.,

S =
{

(c, p, a, v) | c ∈ Ak, p ∈ Al, a ∈ N|A|, v ∈ N0

}
.

5.2 Online Paging with Lookahead 163

Page attribute aj with j ∈ {1, 2, . . . , |A|} holds information concerning page j relevant to

successive algorithm computations. For instance, aj may hold the last time that j entered

the cache, the number of requests on j so far or the number of requests that lie between the

current and the last request on j. Upon arrival of a new page, each algorithm Alg decides

which page to evict from the cache – if necessary – in order to bring p1 into the cache. Hence,

Alg is a function

Alg : S ×A → {0, 1, 2, . . . , k}

which gives the cache position to be evicted where Alg(·) = 0 means that no page needs

to be evicted. The successor state of s = (c, p, a, v) upon arrival of page pnew is given by

s′ = (c′, p′, a′, v′) where c′ arises from c by removing element cAlg(s,pnew), appending element

p1 and ordering lexicographically, p′ arises from p by removing p1 and appending pnew,

a′j =



aj if Alg ∈ {Fifo,Lifo},Alg(s, pnew) = 0,

aj if Alg ∈ {Fifo,Lifo},Alg(s, pnew) 6= 0, p1 6= j,

max{ai}+ 1 if Alg ∈ {Fifo,Lifo},Alg(s, pnew) 6= 0, p1 = j,

aj if Alg = Lfu, p1 6= j,

aj + 1 if Alg = Lfu, p1 = j,

aj + 1 if Alg = Lru, p1 6= j,

0 if Alg = Lru, p1 = j.

for j = 1, . . . , |A| and

v′ =

v if Alg(s, pnew) = 0,

v + 1 otherwise.

Finally, we have to specify the initial state of the cache.

Since all algorithms include past information into their decision making, the Markov property

is lost in the ordinary sense. We artificially make Markov chain analysis applicable by

integrating all necessary information from the past in form of the page attributes a into the

state space. For this trick, we have to pay the price of an increased state space size, namely

|S| =
(|A|
k

)
· |A|l · (n+ 1)|A| · (n+ 1).

For Alg ∈ {Fifol,Lifol,Lful,Lrul} and selected lookahead level l, we now determine the

successor for each state and each new page request to obtain the one-step frequency matrix

164 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

FAlg = (fAlg
ij) of the Markov chain. Entry fAlg

ij gives the number of page requests which

lead from state i ∈ S to state j ∈ S by applying Alg in i. We get the n-step frequency

matrix FAlg,n = (fAlg,n
ij) as the nth power of FAlg, i.e., FAlg,n = (FAlg)n. Entry fAlg,n

ij

gives the number of permutations of n page requests, i.e., the number of input sequences

of length n which lead from state i ∈ S to state j ∈ S by applying Alg n times in a row

starting in i.

In our numerical experiment, we use the parametrization n = 5, A = {A,B,C}, k = 2 and

l ∈ {1, 2, . . . , 5}. For this small exemplary setting, the state space size already amounts to(
3
2

)
·35 ·63 ·6 = 944 784 elements for l = 5 which is mainly due to the artificial extension of the

state space in order to include information concerning the past behavior of the algorithms.

Since we consider no locality of reference, we have that Fifol,Lifol,Lful,Lrul all lead to

identical objective value distributions for fixed l. Therefore, we speak of Algl in the sequel

and refer to each of the algorithms.

In consonance with Figure 5.5, also Figure 5.10 affirms the positive impact of lookahead on

the number of page faults encountered. From the area between the plots of two successive

lookahead levels, we find that already for relatively short input sequences it is seen that the

first lookahead units prove most valuable.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg1

Alg2

Alg3

Alg4

Alg5

Figure 5.10: Exact distribution functions of costs for n = 5 in the paging problem when pages
are equally distributed.

We conclude that the positive effect of lookahead has its roots in the immediate reduction

of the number of page faults by not deleting a page whenever it is seen in the lookahead as

compared to the case where it may be deleted as it cannot be seen due to a more limited

information preview window. Hence, lookahead can never be harmful in the paging problem.

Observe that there is no change in the rule set of paging under additional lookahead due

to the sequential character of page requests; all improvements are a result of advanced

information.

5.3 Online Bin Packing with Lookahead 165

5.3 Online Bin Packing with Lookahead

A specification of the online bin packing problem with lookahead and algorithms BestFit

and BestFitl is given in Chapter 4.2. In the numerical analysis, we take into account

further algorithms and consider two cases with respect to the rule set: Item permutations

may be allowed when items have small physical dimensions such that sorting is done easily,

or item permutations may be forbidden when items are physically too large to be rearranged.

In applications, the restriction of a bounded number of open bins at a time is encountered

frequently due to capacity or space limitations. The latter problem is called the bounded-

space bin packing problem with lookahead. We obtain four problem settings:

• Classical bin packing with item permutations

• Classical bin packing without item permutations

• Bounded-space bin packing with item permutations

• Bounded-space bin packing without item permutations

For fixed n ∈ N, the set of all input sequences of length n is given by

Σn =
{

(σ1, σ2, . . . , σn) |σi := si ∈ (0, 1], i = 1, . . . , n
}

and comprises all item sequences of length n where σi is identified with the size of the ith

item. In the online version, only σi with i = 1, . . . , n is known when σi has to be packed.

When σi with i = 1, . . . , n has to be packed in the online version with lookahead of size l

under order preservation, also l−1 successive items σi+1, . . . , σi+l−1 are known if i+l−1 ≤ n,

otherwise σi and additional n−i successive items σi+1, . . . , σn are known. When known items

may be packed in arbitrary order, then at the ith packing time, the l unpacked items from

σ1, σ2, . . . , σi+l−1 with i = 1, . . . , n are known if i + l − 1 ≤ n, otherwise the n − i + 1

unpacked items from σ1, σ2, . . . , σn are known. In the offline version, all items are known at

the beginning.

We select two settings for our numerical experiments which both feature m = 1000 indepen-

dently drawn item sequences: In the first setting, we have n = 25 items per item sequence;

in the second setting, an item sequence consists of n = 100 items. Item sizes are drawn from

(0, 1] and each bin has unit capacity. In the bounded-space version, only k = 3 bins are

allowed to be open at the same time. For n = 25, lookahead sizes are l ∈ {1, 5, 10, . . . , 25};
for n = 100, we have l ∈ {1, 5, 10, 20, 40, . . . , 100}. We discuss results for n = 25 and refer

the reader to Appendix A.2.3 for n = 100.

166 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

We consider both regular and batched request lookahead of size l in order to see whether

a steady information about future items leads to mentionable improvements or whether it

suffices to release the items in batches in order to obtain satisfactory results. If algorithms

operate under batched lookahead, we indicate them with an added suffix B in the algorithm

name.

A decision by an algorithm is required for every item that has to be packed and consists of

selecting the bin in which this item should be put.

5.3.1 Classical Bin Packing

Because a bin once opened is never closed again, each of the following algorithms can be used

irrespective of whether item permutations are allowed or not: An item to bin assignment

determined by any of the algorithms can be realized also in case of forbidden permutations

by fictively rearranging all items assigned to the same bin such that their order in a bin

complies with their release order.

Online algorithms

• FirstFit (Ff): If there is at least one open bin that can accommodate the item to

be packed, put the item in the bin that was opened first among these bins; otherwise

open a new bin and put the item in ([55]).

• BestFit (Bf): If there is at least one open bin that can accommodate the item to be

packed, put the item in the fullest among these bins; otherwise open a new bin and

put the item in ([55]).

Online algorithms with lookahead of size l

• FirstFitl (Ffl): Sort the items in the lookahead by non-increasing size and fictively

pack them with Ff. If the item to be packed is put in a new bin, open a new bin and

put the item in; otherwise put the item in the bin from the fictive assignment ([55]).

• BestFitl (Bfl): Sort the items in the lookahead by non-increasing size and fictively

pack them with Bf. If the item to be packed is put in a new bin, open a new bin and

put the item in; otherwise put the item in the bin from the fictive assignment ([55]).

• Optimall (Optl): In Figure 5.11, set N,N o, s and f according to the current bin

configuration and items seen in the lookahead. Solve the resulting IP formulation in

Figure 5.12. If the item to be packed is put in a new bin, open a new bin and put the

item in; otherwise put the item in the bin from the obtained assignment.

5.3 Online Bin Packing with Lookahead 167

Sets

I set of items with I = {1, . . . , N}
J set of potential new bins with J = {1, . . . , N}
Jo set of already used bins with Jo = {1, . . . , N o}
L set of fill levels ` with L = {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}

Parameters

N number of items and potential new bins
N o number of bins already used
si size of item i ∈ I
fjo fill level of already used bin jo ∈ Jo
w` weight of fill level ` ∈ L with w0.7 = 0.01, w0.75 = 0.02,

w0.8 = 0.04, w0.85 = 0.08, w0.9 = 0.16, w0.95 = 0.32

Variables

xij =

{
1 if item i ∈ I is put in bin j ∈ J,
0 else

xoijo =

{
1 if item i ∈ I is put in already used bin jo ∈ Jo,
0 else

yj =

{
1 if bin j ∈ J is used,

0 else

αj` =


1 if bin j ∈ J has fill level in [`, `+ 0.05) for ` ∈ L with ` 6= 0.95,

or [`, `+ 0.05] for ` = 0.95,

0 else

αojo` =


1 if already used bin jo ∈ Jo has fill level in [`, `+ 0.05) for ` ∈ L

with ` 6= 0.95, or [`, `+ 0.05] for ` = 0.95,

0 else

Figure 5.11: Sets, parameters and variables in the IP formulation of the bin packing problems
(see also [72]).

168 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

min
∑
j∈J

yj + |Jo| (5.1)

s.t.
∑
j∈J

xij +
∑
jo∈Jo

xoijo = 1 i ∈ I (5.2)∑
i∈I

sixij ≤ yj j ∈ J (5.3)∑
i∈I

six
o
ijo ≤ 1− fjo jo ∈ Jo (5.4)

xij, x
o
ijo , yj ∈ {0, 1} i ∈ I, j ∈ J, jo ∈ Jo (5.5)

Figure 5.12: IP formulation of the bin packing problem.

• Optimal′l (Opt′l): In Figure 5.11, set N,N o, s and f according to the current bin

configuration and items seen in the lookahead. Solve the IP formulation in Figure

5.12 after extending it with expressions from Figure 5.13 as follows: Replace Objective

Function (5.1) by (5.6) and include Constraints (5.7) to (5.11). If the item to be packed

is put in a new bin, open a new bin and put the item in; otherwise put the item in the

bin from the obtained assignment.

min
∑
j∈J

yj + |Jo| − 1
|J |+|Jo|

(∑
j∈J

∑
`∈L

w`αj` +
∑
jo∈Jo

∑
`∈L

w`α
o
jo`

)
(5.6)∑

`∈L
αj` ≤ 1 j ∈ J (5.7)∑

`∈L
αojo` ≤ 1 jo ∈ Jo (5.8)

`αj` ≤
∑
i∈I

sixij j ∈ J, ` ∈ L (5.9)

`αojo` ≤
∑
i∈I

six
o
ijo jo ∈ Jo, ` ∈ L (5.10)

αj`, α
o
jo` ∈ {0, 1} j ∈ J, jo ∈ Jo, ` ∈ L (5.11)

Figure 5.13: Objective function and additional constraints for the modified IP formulation of the
bin packing problem (see also [72]).

Optimal offline algorithm

• Optimal (Opt): In Figure 5.11, set N := n, N o := 0, f := 0 and s according to all

items seen. Solve the resulting IP formulation in Figure 5.12. Pack the items according

to the obtained assignment. If necessary, sort items of a bin first.

5.3 Online Bin Packing with Lookahead 169

While Optl only considers the number of bins in the objective, Opt′l secondarily searches

for an item to bin assignment with bins as full or empty as possible, but not with medium

fill levels. This is done by promoting bins with large fill levels in Objective Function 5.6

in such a way that the total number of bins used stays unaffected. Constraints 5.7 to 5.11

ensure that at most one fill level is attained according to the combined item sizes in a bin.

Thereby, the initial position for successive items is improved because in case of large item

sizes, empty bins are more valuable. This approach of using a surrogate objective function

in order to improve the initial position for future steps is due to Esen ([72]).

5.3.1.1 Average Results

Average algorithm behavior is displayed in Figures 5.14 and 5.15 for the cases of allowed and

forbidden item permutations, respectively. The positive effect of allowing item permutations

is virtually non-existent as compared to forbidden item permutations as can be seen from

the nearly identical shapes of the corresponding plots in both diagrams.

2 4 6 8 10 12 14 16 18 20 22 24

14.2

14.4

14.6

14.8

Lookahead size l

A
ve
ra
ge

co
st
s

Bfl
Ffl
Optl

Opt′
l

Bfl,B
Ffl,B
Optl,B

Opt′
l,B

Figure 5.14: Average costs for different lookahead sizes and n = 25 in the classical bin packing
problem when item permutations are allowed.

Recall that in Example 2.37 there was no value of permuting items at all in online bin

packing with two item sizes. Moreover, as pointed out earlier, all algorithms under allowed

item permutations can also be applied under forbidden item permutations to first determine

a fictive assignment before packing an item. However, due to new items, the obtained bin

configurations are not necessarily identical; yet, in both cases algorithms combine items to

fit a bin, and the overall character of the bin configurations is approximately the same.

170 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

2 4 6 8 10 12 14 16 18 20 22 24

14.2

14.4

14.6

14.8

Lookahead size l

A
ve
ra
ge

co
st
s

Bfl
Ffl
Optl

Opt′
l

Bfl,B
Ffl,B
Optl,B

Opt′
l,B

Figure 5.15: Average costs for different lookahead sizes and n = 25 in the classical bin packing
problem when item permutations are forbidden.

From Tables A.13 and A.14 of Appendix A.2.3, we conclude that it may be slightly beneficial

to be allowed to pack large items earlier, but we consider the overall effect as negligible, e.g.,

Opt15 needs an average of 14.12 bins in case of allowed item permutations as opposed to

14.2 bins in case of no item permutations which is a relative advantage of less than 1 %.

For this reason, we will restrict our discussion only to the case of allowed item permutations

from now on.

In accordance with the theoretical analysis in Chapter 4.2, also for arbitrary item sizes only

small gains can be achieved by additional lookahead. Between the pure online and offline

situations only 0.53 to 0.7 bins could be saved on average depending on the algorithm used

which amounts to an improvement of 3.6 % to 4.7 %. Moreover, we find that relatively simple

algorithms like Bfl and Ffl outperform exact reoptimization methods for all lookahead sizes

l with l < 15. Bfl produces the best overall results in this information regime. Algorithms

Optl and Opt′l beat the rule-based algorithms only for sufficiently large lookahead l ≥ 15 by

a rather slight margin. Hence, we infer that exact reoptimization is not needed in bin packing

problems when a too large part of the future is unseen. The stability granted by Bfl and Ffl

for small to medium lookahead sizes which is achieved by packing large items first proves

advantageous over the “local” optimality of exact solutions to snapshot problems; these

solutions are fragile once the situation changes due to newly announced lookahead items.

Optimality of partial solutions becomes important only if their benefit cannot be undone

by future decisions on upcoming items. Algorithms collectively show a decreasing marginal

benefit from lookahead, i.e., the first lookahead units are most valuable and sufficient to

5.3 Online Bin Packing with Lookahead 171

drive item to bin assignments towards an optimal solution. In order to take full advantage of

possible improvements due to additional information, it is recommended to use the regular

type of lookahead rather than the batched type: For instance, Bf10 shows an improvement

of 3.5 % compared to the online case, whilst Bf10,B accounts for an improvement of 2.1 %.

From the percentage of item sequences with degraded objective value in case of additional

lookahead in Tables A.13 and A.14 of Appendix A.2.3, we find that exclusive benefit from

lookahead cannot be guaranteed. However, instances with a deterioration are encountered

rarely. For n = 100 items per sequence, the picture remains the same and improvements are

between 3.8 % and 4.9 %; for details, see Appendix A.2.3.

5.3.1.2 Distributional Results

The distributional results with respect to obtained objective values as shown in Figure 5.16

are affirmative to the minor positive effect of lookahead. This can be seen from the relative

closeness of the plots of two successive lookahead levels to each other. For medium to large

lookahead, differences in the counting distribution functions are even hardly perceivable.

The small lookahead impact is further witnessed by the position of the confidence intervals

(cf. Tables A.13 and A.14 of Appendix A.2.3): For two successive lookahead levels, they

lie intimately close to each other on the objective value axis, sometimes even overlapping.

Moreover, the width of all confidence intervals is smaller than 0.3 irrespective of the algorithm

and lookahead level used which implies that results can be considered representative for

typical item sequences. From the left column in Figure 5.16, we see that under regular

request lookahead the effect of the first lookahead units is stronger than those of successive

lookahead levels, whereas for algorithms using the batched type of lookahead on the right

column the impact of further lookahead units appears more evenly distributed.

The most striking conclusion that can be drawn from the empirical counting distribution

functions of the performance ratios relative to Opt in Figure 5.17 is that there is an im-

mense fraction of item sequences which already lead to a performance ratio of 1 even if

the algorithm that has to compete with Opt is not supplied any lookahead item at all. In

this category, Bf performs best with nearly half of all item sequences leading to an optimal

number of bins used. The worst deviation from optimality as a result of informational ne-

science is approximately 23 % attained on an item sequence by Opt1. Confidence intervals

of the performance ratios (see Tables A.15 and A.16 of Appendix A.2.3) reduce to one point

if rounded to two decimal places for all algorithms and lookahead levels. The largest en-

countered performance ratio in a confidence interval is 1.05 obtained for Bf1,B, Ff1, Ff1,B,

Opt1, Opt1,B, Opt′1 and Opt′1,B. More than 90 % of all experimental competitive ratios

172 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf1

Bf5

Bf10

Bf15

Bf20

Bf25

Opt

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf1,B
Bf5,B
Bf10,B
Bf15,B
Bf20,B
Bf25,B
Opt

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ff1

Ff5

Ff10

Ff15

Ff20

Ff25

Opt

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ff1,B
Ff5,B
Ff10,B
Ff15,B
Ff20,B
Ff25,B
Opt

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt1

Opt5

Opt10

Opt15

Opt20

Opt25 = Opt

Opt

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt1,B

Opt5,B

Opt10,B

Opt15,B

Opt20,B

Opt25,B = Opt

Opt

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt′
1

Opt′
5

Opt′
10

Opt′
15

Opt′
20

Opt′
25 = Opt

Opt

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt′
1,B

Opt′
5,B

Opt′
10,B

Opt′
15,B

Opt′
20,B

Opt′
25,B = Opt

Opt

Figure 5.16: Empirical counting distribution functions of costs for n = 25 in the classical bin
packing problem when item permutations are allowed.

5.3 Online Bin Packing with Lookahead 173

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Bf1

Bf5

Bf10

Bf15

Bf20

Bf25

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Bf1,B

Bf5,B
Bf10,B
Bf15,B
Bf20,B
Bf25,B

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Ff1

Ff5

Ff10

Ff15

Ff20

Ff25

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Ff1,B

Ff5,B
Ff10,B
Ff15,B
Ff20,B
Ff25,B

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Opt1

Opt5

Opt10

Opt15

Opt20

Opt25 = Opt

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Opt1,B

Opt5,B

Opt10,B

Opt15,B

Opt20,B

Opt25,B = Opt

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Opt′

1

Opt′
5

Opt′
10

Opt′
15

Opt′
20

Opt′
25 = Opt

0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Opt′

1,B

Opt′
5,B

Opt′
10,B

Opt′
15,B

Opt′
20,B

Opt′
25,B = Opt

Figure 5.17: Empirical counting distribution functions of performance ratio of costs relative to
Opt for n = 25 in the classical bin packing problem when item permutations are
allowed.

174 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf1

Bf5

Bf10

Bf15

Bf20

Bf25

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bf1,B
Bf5,B
Bf10,B
Bf15,B
Bf20,B
Bf25,B

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ff1

Ff5

Ff10

Ff15

Ff20

Ff25

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ff1,B
Ff5,B
Ff10,B
Ff15,B
Ff20,B
Ff25,B

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt1

Opt5

Opt10

Opt15

Opt20

Opt25 = Opt

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt1,B

Opt5,B

Opt10,B

Opt15,B

Opt20,B

Opt25,B = Opt

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt′
1

Opt′
5

Opt′
10

Opt′
15

Opt′
20

Opt′
25 = Opt

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt′
1,B

Opt′
5,B

Opt′
10,B

Opt′
15,B

Opt′
20,B

Opt′
25,B = Opt

Figure 5.18: Empirical counting distribution functions of performance ratio of costs relative to the
online version for n = 25 in the classical bin packing problem when item permutations
are allowed.

5.3 Online Bin Packing with Lookahead 175

are smaller than 1.1 for all algorithms and lookahead levels which additionally shows that

lookahead benefits are of a rather small magnitude. The satisfactory behavior of the online

algorithms can be explained by two reasons: First, since any bin is left open forever, a solid

utilization of each bin is probable in the long term also in the online setting and the impli-

cations of bad decisions are either unnoticeable or rather small. Second, it is known that

the competitive ratio of Bf and Ff is 17
10

and that of Bfn and Ffn is 11
9

([14], [147]). Thus,

algorithms endowed with lookahead cannot deviate more from optimality than suggested

by these ratios, especially not under representative item sequences that look significantly

different from pathologic worst-case sequences for which the above ratios were derived. Note

that some few of the m = 1000 instances could not be solved to optimality in the prescribed

time limit of 120 seconds. However, their proportion is so tiny such that performance ratios

smaller than 1 are nearly unnoticeable in Figure 5.17 (cf. also Tables A.15 and A.16 of

Appendix A.2.3).

Figure 5.18 yields plots of the empirical counting distributions functions for the performance

ratio that result from comparing the algorithms to their respective online versions without

lookahead. We derive two distinctive features of online bin packing with lookahead from these

diagrams: First, it is seen from the plots of Ff5,B and all exact reoptimization approaches

that additional information may also lead to a deterioration in the objective value if item

sequences were leading algorithms to disadvantageous decisions that cannot necessarily be

corrected later. Second, the largest part of the item sequences leads to performance ratios

in the range between 0.9 and 1 irrespective of the chosen algorithm, lookahead type and

batching mode. The counting distributions of attained performance ratios for the respective

algorithms mostly differ within this group of item sequences depending on the lookahead level

l. Confidence intervals and coefficients of variations of the performance ratios are negligibly

small and collectively have lower bounds larger than 0.95 as listed in Tables A.17 and A.18

of Appendix A.2.3. Hence, there is also no great potential for improving the outcome of

online algorithms by providing additional lookahead with respect to the performance ratio

on typical item sequences.

We left out an experiment on Markov chains for the classical bin packing problem because of

state space considerations: Since a bin once opened remains open for the rest of the packing

process, the state space representation would have to account for that by including each

possible bin configuration of up to n bins. In the bounded-space bin packing problem, this

issue is mitigated due to the limited number of bins. Therefore, we include a Markov chain

analysis in the following section on numerical experiments for the bounded-space bin packing

problem.

176 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

5.3.2 Bounded-Space Bin Packing

Recall that k ∈ N gives the number of maximum allowed open bins and that whenever a

new bin would need to be opened, one of the k open bins has to be closed first. A fictive

assignment of the l lookahead items to bins based on an item list sorted by non-increasing

item sizes only guarantees feasibility under allowed item permutations. When the item

appearance order has to be respected also during packing, such a fictive assignment only

guarantees feasibility for the first k items of the list of items sorted by non-increasing sizes:

From the pigeonhole principle, it follows for l ≤ k that for each of the l items which requires

a new bin, one of the already open bins will not be occupied with any of the l − 1 other

items. For l > k, it could occur that the list assignment would put an item in a bin which

had to be closed already before. The fullest of the k open bins is closed whenever a new

bin is required. As a result, the algorithms with lookahead which rely on reordering items

according to their sizes can exploit only min{k, l} lookahead units.

Online algorithms

• FirstFitBounded (Ffb): If there is at least one open bin that can accommodate the

item to be packed, put it in the bin that was opened first among these bins; otherwise

close the fullest open bin if k bins are open, open a new bin and put the item in ([55]).

• BestFitBounded (Bfb): If there is at least one open bin that can accommodate the

item to be packed, put the item in the fullest among these bins; otherwise close the

fullest open bin if k bins are open, open a new bin and put the item in ([55]).

Online algorithms with lookahead of size l

• FirstFitBoundedl (Ffbl):

Item permutations allowed

Sort the items in the lookahead by non-increasing size and fictively pack them with

Ff. If the item to be packed is put in a new bin, close the fullest open bin if k bins

are open, open a new bin and put the item in; otherwise put the item in the bin from

the fictive assignment.

Item permutations forbidden

Sort the first min{k, l} items in the lookahead by non-increasing size and fictively pack

them with Ff. If the item to be packed is put in a new bin, close the fullest open bin

if k bins are open, open a new bin and put the item in; otherwise put the item in the

bin from the fictive assignment.

5.3 Online Bin Packing with Lookahead 177

• BestFitBoundedl (Bfbl):

Item permutations allowed

Sort the items in the lookahead by non-increasing size and fictively pack them with

Bf. If the item to be packed is put in a new bin, close the fullest open bin if k bins

are open, open a new bin and put the item in; otherwise put the item in the bin from

the fictive assignment.

Item permutations forbidden

Sort the first min{k, l} items in the lookahead by non-increasing size and fictively pack

them with Bf. If the item to be packed is put in a new bin, close the fullest open bin

if k bins are open, open a new bin and put the item in; otherwise put the item in the

bin from the fictive assignment.

• OptimalBoundedl (Optbl):

Item permutations allowed

In Figure 5.11, set N,N o, s and f according to the current configuration of open bins

and items seen in the lookahead. Solve the resulting IP formulation in Figure 5.12.

If the item to be packed is put in a new bin, close the fullest open bin if k bins are

open, open a new bin and put the item in; otherwise put the item in the bin from the

obtained assignment.

Item permutations forbidden

In Figures 5.11 and 5.19, set N,N o, s, f and k according to the current configuration

of open bins and items seen in the lookahead. Solve the resulting IP formulation in

Figure 5.20. If the item to be packed is put in a new bin, close the fullest open bin if k

bins are open, open a new bin and put the item in; otherwise put the item in the bin

from the obtained assignment.

• OptimalBounded′l (Optb′l):

Item permutations allowed

In Figure 5.11, set N,N o, s and f according to the current bin configuration and items

seen in the lookahead. Solve the IP formulation in Figure 5.12 after extending it with

expressions from Figure 5.13 as follows: Replace Objective Function (5.1) by (5.6) and

include Constraints (5.7) to (5.11). If the item to be packed is put in a new bin, close

the fullest open bin if k bins are open, open a new bin and put the item in; otherwise

put the item in the bin from the obtained assignment.

Item permutations forbidden

In Figures 5.11 and 5.19, set N,N o, s, f and k according to the current configuration

of open bins and items seen in the lookahead. Solve the IP formulation in Figure 5.20

after extending it with expressions from Figure 5.13 as follows: Replace Objective

178 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

Sets

T set of time instants with T = {1, . . . , N}

Parameters

k maximum number of open bins at a time

Variables

xijt =

{
1 if item i ∈ I is put in bin j ∈ J at time t ∈ T,
0 else

xoijot =

{
1 if item i ∈ I is put in already used bin jo ∈ Jo at time t ∈ T,
0 else

yjt =

{
1 if bin j ∈ J is open at time t ∈ T,
0 else

yojot =

{
1 if already used bin jo ∈ Jo is still open at time t ∈ T,
0 else

zopenjt =

{
1 if bin j ∈ J is opened at time t ∈ T,
0 else

zclosejt =

{
1 if bin j ∈ J is closed at time t ∈ T,
0 else

zo,closejot =

{
1 if already used bin jo ∈ Jo is closed at time t ∈ T,
0 else

Figure 5.19: Additional sets, parameters and variables in the IP formulation of the bounded-space
bin packing problem when item permutations are forbidden.

Function (5.12) by (5.6) and include Constraints (5.7) to (5.11). If the item to be

packed is put in a new bin, close the fullest open bin if k bins are open, open a new bin

and put the item in; otherwise put the item in the bin from the obtained assignment.

Optimal offline algorithm

• OptimalBounded (Optb):

Item permutations allowed

In Figure 5.11, set N := n, N o := 0, f := 0 and s according to all items seen. Solve

the resulting IP formulation in Figure 5.12. Pack the items according to the obtained

assignment bin after bin.

5.3 Online Bin Packing with Lookahead 179

min
∑
j∈J

yj + |Jo| (5.12)

s.t.
∑
j∈J

∑
t∈T

xijt +
∑
jo∈Jo

∑
t∈T

xoijot = 1 i ∈ I (5.13)∑
i∈I

sixij ≤ yj j ∈ J (5.14)∑
i∈I

six
o
ijo ≤ 1− fjo jo ∈ Jo (5.15)

xijt ≤ xij i ∈ I, j ∈ J, t ∈ T (5.16)

xoijot ≤ xoijo i ∈ I, jo ∈ Jo, t ∈ T (5.17)

xijt ≤ yjt i ∈ I, j ∈ J, t ∈ T (5.18)

xoijot ≤ yojot i ∈ I, jo ∈ Jo, t ∈ T (5.19)

yjt ≤ yj j ∈ J, t ∈ T (5.20)∑
j∈J

yjt +
∑
jo∈Jo

yojot ≤ k t ∈ T (5.21)∑
j∈J

zopenjt ≤ 1 t ∈ T (5.22)∑
t∈T

zopenjt ≤ yj j ∈ J (5.23)∑
t∈T

zclosejt ≤ yj j ∈ J (5.24)∑
t∈T

zo,closejot ≤ 1 jo ∈ Jo (5.25)

t∑
t′=1

(zopenjt′ − zclosejt′) ≤ yjt j ∈ J, t ∈ T (5.26)

1−
t∑

t′=1

zo,closejt′ ≤ yojot jo ∈ Jo, t ∈ T (5.27)

t∑
t′=1

(zopenjt′ − zclosejt′) ≥ xijt i ∈ I, j ∈ J, t ∈ T (5.28)

1−
t∑

t′=1

zo,closejt′ ≥ xoijot i ∈ I, jo ∈ J, t ∈ T (5.29)

xij, x
o
ijo , yj ∈ {0, 1} i ∈ I, j ∈ J, jo ∈ Jo (5.30)

Figure 5.20: IP formulation of the bounded-space bin packing problem when item permutations
are forbidden.

180 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

Item permutations forbidden

In Figures 5.11 and 5.19, set N := n, N o := 0, f := 0, k and s according to all items

seen. Solve the resulting IP formulation in Figure 5.20. Pack the items according to

the obtained assignment item after item.

In the IP formulation for forbidden item permutations in Figure 5.20, we have to account

for the time dimension to make sure that an item is put into a bin that is open at packing

time: In addition to xij, x
o
ijo and yj, y

o
jo , we introduce decision variables xijt, x

o
ijot and yjt, y

o
jot

where t refers to the time instant. Constraints 5.13 to 5.21 ensure that each item is packed in

a bin, that each bin capacity is not exceeded and that at each time at most k bins are open.

To facilitate the operations of openening and closing a bin at time t, we introduce variables

zopenjt , zclosejt and zo,closejot . Constraints 5.22 to 5.25 take care that at each time and for each bin

only one respective operation is carried out. Constraints 5.26 to 5.29 guarantee that opening

and closing operations are consistent with bin statuses and packing operations.

5.3.2.1 Average Results

In Figures 5.21 and 5.22, the average algorithm behavior in the cases of allowed and forbidden

permutations shows that although we are restricted to keep at most k = 3 bins open at a

time there is no significant surplus of lookahead as opposed to classical bin packing. Our first

intuition was that being forced to close a bin upon opening a new one would lead to a higher

value of information since for late items not all but only the currently open bins are ready to

accept an item such that careful decision making should pay off. While this is probable to

be the reason for the slight boost in the lookahead effect under allowed item permutations,

computational results show that the magnitude of this effect is rather small.

In classical bin packing, maximum improvements between online and offline situations were

between 3.6 % and 4.7 % irrespective of item permutations. Now, in bounded-space bin

packing, the improvement increases to levels between 4.6 % and 5.6 % under allowed per-

mutations; under forbidden permutations, the benefit of lookahead drops to at most 3.7 %

due to the additional restriction on the number of open bins. For l = n = 25, the optimal

number of bins coincides with that of the classical problem for allowed item permutations. In

case of forbidden item permutations, this value augments to 14.41, while in the unbounded

case it was 14.12. The average number of bins also slightly increases under forbidden item

permutations for small lookahead levels l < n = 25. Hence, we judge the delimiting influence

of the bounded-space feature in bin packing as rather modest. Confidence intervals, coef-

ficients of variation and objective deterioration under additional lookahead have analogous

dimensions as in classical bin packing (cf. Tables A.25 and A.26 of Appendix A.2.3).

5.3 Online Bin Packing with Lookahead 181

2 4 6 8 10 12 14 16 18 20 22 24

14.2

14.4

14.6

14.8

15

Lookahead size l

A
ve
ra
ge

co
st
s

Bfbl

Ffbl

Optbl

Optb′
l

Bfbl,B

Ffbl,B

Optbl,B

Optb′
l,B

Figure 5.21: Average costs for different lookahead sizes and n = 25 in the bounded-space bin
packing problem when item permutations are allowed.

2 4 6 8 10 12 14 16 18 20 22 24

14.4

14.5

14.6

14.7

14.8

14.9

15

Lookahead size l

A
ve
ra
ge

co
st
s

Bfbl

Ffbl

Optbl

Optb′
l

Bfbl,B

Ffbl,B

Optbl,B

Optb′
l,B

Figure 5.22: Average costs for different lookahead sizes and n = 25 in the bounded-space bin
packing problem when item permutations are forbidden.

We recognize that because of closing restrictions the degrees of freedom of an algorithm

while packing an item are pruned to a large extent such that additional information is hard

to process for achieving guaranteed improvement due to lookahead. The improvement cutoff

of the rule-based algorithms in case of forbidden item permutations is due to the restriction to

min{k, l} lookahead units in order to ensure feasibility. The deviation between Optb25 and

Optb’25 as well as between Optb′25,B and Optb′25,B stems from some few of the m = 1000

182 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

instances whose IP formulation in Figure 5.20 could not be solved to optimality within the

prescribed time limit of 120 seconds.

We note that for item sequences of length n = 100, the improvement as a result of full

lookahead amounts to values between 7.9 % and 9.1 % depending on the algorithm used

when item permutations are allowed. Because we only consider the rule-based algorithms

which are restricted to min{k, l} lookahead units for n = 100, improvement due to lookahead

vanishes in the case of forbidden item permutations; for details, see Appendix A.2.3. We

will restrict our discussion only to allowed item permutations from now on.

5.3.2.2 Distributional Results

The gap between the red and green curve in the plots of algorithm families Bfbl and Ffbl

in Figure 5.23 implies that for the rule-based algorithms the first lookahead units are most

valuable in terms of a reduction of the number of bins used. From Figure 5.21, we already

knew that especially under these lookahead sizes the rule-based algorithms outperform the

exact reoptimization strategies. Hence, we come to the overall recommendation to relinquish

exact reoptimization methods in favor of stability-oriented rule-based algorithms in bounded-

space bin packing. All plots in Figure 5.23 underline the small positive effect to be expected

through additional lookahead by the ordering of the empirical counting distribution functions

depending on the lookahead size l for each algorithm family. Under batched lookahead, the

positive effect is acquired more evenly among additional lookahead units as opposed to the

regular type of lookahead where the effect is mainly attributable to the first units. Confidence

intervals of width smaller than 0.3 for all algorithms and lookahead levels in Tables A.25 and

A.26 of Appendix A.2.3 provide sufficient statistical evidence for the validity of the observed

algorithm performance on random input sequences. As seen from the percentage of item

sequences with a deterioration between successive lookahead levels, exact reoptimization

is more susceptible to misinterpretation of additional lookahead than rule-based heuristics

are.

Figures 5.24 and 5.25 show the empirical counting distributions of the performance ratio rel-

ative to Opt and the online variants of the algorithms, respectively. Both from a qualitative

and quantitative point of view, we draw the same conclusions as in classical bin packing:

• A large fraction of all item sequences already leads to an optimal number of bins even

if no lookahead or few lookahead units are given.

• The maximum deviation from optimality is below 20 % for all algorithms.

5.3 Online Bin Packing with Lookahead 183

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bfb1

Bfb5

Bfb10

Bfb15

Bfb20

Bfb25

Optb

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bfb1,B

Bfb5,B

Bfb10,B

Bfb15,B

Bfb20,B

Bfb25,B

Optb

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ffb1

Ffb5

Ffb10

Ffb15

Ffb20

Ffb25

Optb

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ffb1,B

Ffb5,B

Ffb10,B

Ffb15,B

Ffb20,B

Ffb25,B

Optb

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Optb1

Optb5

Optb10

Optb15

Optb20

Optb25 = Opt

Optb

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Optb1,B

Optb5,B

Optb10,B

Optb15,B

Optb20,B

Optb25,B = Opt

Optb

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Optb′
1

Optb′
5

Optb′
10

Optb′
15

Optb′
20

Optb′
25 = Opt

Optb

10 15 20 25
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Optb′
1,B

Optb′
5,B

Optb′
10,B

Optb′
15,B

Optb′
20,B

Optb′
25,B = Opt

Optb

Figure 5.23: Empirical counting distribution functions of costs for n = 25 in the bounded-space
bin packing problem when item permutations are allowed.

184 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Bfb1

Bfb5

Bfb10

Bfb15

Bfb20

Bfb25

1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Bfb1,B

Bfb5,B

Bfb10,B

Bfb15,B

Bfb20,B

Bfb25,B

1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Ffb1

Ffb5

Ffb10

Ffb15

Ffb20

Ffb25

1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Ffb1,B

Ffb5,B

Ffb10,B

Ffb15,B

Ffb20,B

Ffb25,B

1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Optb1

Optb5

Optb10

Optb15

Optb20

Optb25 = Optb

1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Optb1,B

Optb5,B

Optb10,B

Optb15,B

Optb20,B

Optb25,B = Optb

1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Optb′
1

Optb′
5

Optb′
10

Optb′
15

Optb′
20

Optb′
25 = Optb

1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Optb′

1,B

Optb′
5,B

Optb′
10,B

Optb′
15,B

Optb′
20,B

Optb′
25,B = Optb

Figure 5.24: Empirical counting distribution functions of performance ratio of costs relative to
Opt for n = 25 in the bounded-space bin packing problem when item permutations
are allowed.

5.3 Online Bin Packing with Lookahead 185

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bfb1

Bfb5

Bfb10

Bfb15

Bfb20

Bfb25

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bfb1,B

Bfb5,B

Bfb10,B

Bfb15,B

Bfb20,B

Bfb25,B

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ffb1

Ffb5

Ffb10

Ffb15

Ffb20

Ffb25

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ffb1,B

Ffb5,B

Ffb10,B

Ffb15,B

Ffb20,B

Ffb25,B

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Optb1

Optb5

Optb10

Optb15

Optb20

Optb25 = Optb

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Optb1,B

Optb5,B

Optb10,B

Optb15,B

Optb20,B

Optb25,B = Optb

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Optb′
1

Optb′
5

Optb′
10

Optb′
15

Optb′
20

Optb′
25 = Optb

0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Optb′
1,B

Optb′
5,B

Optb′
10,B

Optb′
15,B

Optb′
20,B

Optb′
25,B = Optb

Figure 5.25: Empirical counting distribution functions of performance ratio of costs relative to
the online version for n = 25 in the bounded-space bin packing problem when item
permutations are allowed.

186 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

• Algorithms may interpret lookahead disadvantageously; however, this happens only

very rarely.

• Most item sequences experience a lookahead effect of at most 10 %.

For a detailed statistical summary, see Tables A.27 to A.30 of Appendix A.2.3.

5.3.2.3 Markov Chain Results

Consider the online bounded-space bin packing problem with lookahead l and a maximum

number k of open bins at a time under allowed item permutations. The elements of the state

space S subsume the fill levels f = (f1, . . . , fk) of the k open bins, the sizes s = (s1, . . . , sl)

of the lookahead items which are ordered non-increasingly and the number of bins v used so

far, i.e.,

S =
{

(f, s, v) | f ∈ [0, 1]k, s ∈ (0, 1]l, v ∈ N0

}
.

Upon arrival of a new item, each algorithm Alg assigns the largest item in the current

lookahead to one of the k open bins or to a new bin. In the latter case, an open bin is closed

first and the objective value increases by one unit. Hence, Alg is a function

Alg : S × (0, 1]→ {1, 2, . . . , k + 1}

which gives the bin into which the largest item will be put where Alg(s, snew) = k+1 means

that a new bin needs to be opened. The successor state of s = (f, s, v) upon arrival of an item

with size snew is given by s′ = (f ′, s′, v′) where f ′ arises from f by adding s1 to fAlg(s,snew) if

Alg(s, snew) 6= k+1 or replacing the largest component of f with s1 if Alg(s, snew) = k+1,

s′ arises from s by removing s1, appending snew and ordering non-increasingly, and

v′ =

v if Alg(s, snew) ∈ {1, . . . , k},
v + 1 otherwise.

In order to obtain a finite state space representation, we have to discretize item sizes: To

this end, denote the number of possible item sizes by ns and the resulting number of item

size combinations with total size not larger than 1 by nc, then the state space size amounts

to |S| = nkc ·
(
ns+l−1

l

)
· (n+ 1)14.

14The number of combinations with repetition where n is the number of elements to choose from and r
elements have to be chosen is

(
n+r−1

r

)
([137]).

5.3 Online Bin Packing with Lookahead 187

For Alg ∈ {Bfbl,Ffbl,Optbl} and selected lookahead level l, we determine the successor

for each state and each new item to obtain the one-step frequency matrix and the n-step

frequency matrix of the Markov chain.

In our numerical experiment, we use the parametrization n = 25, k = 3, l ∈ {1, 2, . . . , 5}
and restrict item sizes to {0.4, 0.5, 0.6}. Hence, we have ns = 3 and nc = |{0.4, 0.5, 0.6, 0.4 +

0.4, 0.4 + 0.5, 0.4 + 0.6}| = 6. For this small exemplary setting, the state space size amounts

to 63 ·
(

3+5−1
5

)
· 26 = 117 936 elements for l = 5.

The resulting exact distribution functions in Figure 5.26 are affirmative to the main result

found for bin packing, namely that lookahead has a benefit, albeit a rather small one.

14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Bfb1

Bfb2

Bfb3

Bfb4

Bfb5

14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ffb1

Ffb2

Ffb3

Ffb4

Ffb5

14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Optb1

Optb2

Optb3

Optb4

Optb5

Figure 5.26: Exact distribution functions of costs for n = 25 in the bounded-space bin packing
problem.

Moreover, we see that already in the case of no or few lookahead units the number of item

sequences which lead to the smallest objective value of 13 is consistently larger than 25 %

of the number of all item sequences. We conclude that online bin packing algorithms have

quite a good chance of obtaining an optimal number of bins and that maximum deviations

from optimality as suggested by (asymptotic) competitive ratios in both types of bin packing

problems of 70 % ([55]) are quite untypical.

188 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

We conclude this section by pointing out that the results of the computational experiments on

the bin packing problem are in line with the minor positive effect of lookahead as determined

by exact analysis in Chapter 4.2 for a basic setting with two item sizes and l = 2. Hence,

significant savings in the number of bins used can also not be expected for arbitrary item

sizes. Nonetheless, the impact of lookahead is slightly stronger as a result of the increased

number of item combinations which lead to a saving of a bin.

5.4 Online Traveling Salesman Problem with Lookahead

A specification of the online traveling salesman problem (TSP) with lookahead and algo-

rithms FirstComeFirstServed and NearestNeighborl is given in Chapter 4.3. Fur-

ther algorithms for the online version with lookahead will be introduced in the sequel. For

fixed n ∈ N and metric space (M, d), the set of all input sequences of length n is given by

Σn =
{

(σ1, σ2, . . . , σn) |σi := xi ∈M, i = 1, . . . , n
}

and comprises all request sequences of length n where σi is identified with point xi ∈ M to

be visited. Because in an optimal solution to an instance of the offline problem, all points

will be approached exactly once, all σi are assumed pairwise different in the offline TSP. In

the dynamic setting, of course, we have to allow multiple requests on the same location. In

the online version, only σi with i = 1, . . . , n is known when σi has to be visited. In the online

version with lookahead of size l, when for the ith time it has to be decided which location

to be visited, the l unvisited locations from σ1, σ2, . . . , σi+l−1 with i = 1, . . . , n are known if

i+ l− 1 ≤ n, otherwise the n− i+ 1 unvisited locations from σ1, σ2, . . . , σn are known15. In

the offline version, all locations are known at the beginning.

Computational experiments feature two problem settings each of which underlies m = 1000

independently drawn request sequences. In the first setting, each sequence consists of n = 25

requests, while the second setting has n = 100 requests per sequence. Requests are located

in the planar unit squareM = [0, 1]× [0, 1] ⊂ R2 and distance is measured by the Euclidean

metric. A set of requests establishes a complete graph consisting of vertices labeled with the

requests as well as additional vertices for the current server location and the origin; edge

weights correspond to distances between respective locations. For n = 25, lookahead sizes

are l ∈ {1, 5, 10, . . . , 25}; for n = 100, we have l ∈ {1, 5, 10, 20, 40, . . . , 100}. We discuss

results for n = 25 and refer the reader to Appendix A.2.4 for n = 100.

15 In Chapter 6, we take into account time lookahead for the pickup and delivery problem with time windows
– a problem closely related to the TSP.

5.4 Online Traveling Salesman Problem with Lookahead 189

A decision by an algorithm is required when the server starts initially or a request is reached;

it consists of selecting the request to be visited next from the set of known requests. Note

that any online algorithm without lookahead is trivial since it only sees the current request

and has to visit it, i.e., it has no degrees of freedom at all.

Online algorithm

• FirstComeFirstServed (Fcfs): Choose the only unvisited known request next.

Online algorithms with lookahead of size l

• NearestNeighborl (Nnl): From the requests in the lookahead, choose a request

closest to the server’s current location next (see also [120]).

• Insertionl (Insl): Construct a Hamiltonian path H visiting each of the requests in the

lookahead starting in the server’s current location and ending in the origin as follows:

1. At the beginning, H consists of the invariant starting and ending point only.

2. Insert a request whose distance to the starting point is largest possible into H.

3. Successively insert requests by choosing in each iteration a request whose smallest

distance to a request in H is largest and insert it at a best possible position in

terms of a smallest tour length increase.

Choose the first request from H following the starting point next (see also [120]).

• 2Optl: Construct a Hamiltonian path H visiting each of the requests in the lookahead

starting in the server’s current location and ending in the origin as follows:

1. Obtain H initially by applying Nnl or Insl.

2. Choose two requests from H and reverse the order of requests between them to

obtain H ′.

3. If H ′ is shorter than H, set H := H ′.

4. Return to step 2 until no further improvement is possible.

Choose the first request from H following the starting point next (see also [120]).

• 3Optl: Construct a Hamiltonian path H visiting each of the requests in the lookahead

starting in the server’s current location and ending in the origin as follows:

1. Obtain H initially by applying Nnl or Insl.

190 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

2. Choose three edges from H such that neither of them is incident to the starting

or ending point and reorganize H as follows:

– Form three new edges using the requests incident to the three edges.

– Choose an order for the three new edges.

– Adjust the order of the requests between the edges such that a feasible Hamil-

tonian path H ′ starting in the server’s current location and ending in the

origin is obtained if possible at all.

– If H ′ is feasible and shorter than H, set H := H ′.

3. Return to step 2 until no further improvement is possible.

Choose the first request from H following the starting point next (see also [120]).

• SimulatedAnnealingl (Sal): Construct a Hamiltonian path H visiting each of the

requests in the lookahead starting in the server’s current location and ending in the

origin as follows:

1. Obtain H initially by applying Nnl or Insl.

2. Select initial temperature T0 ∈ R, minimum temperature Tmin ∈ R with Tmin <

T0, maximum number of iterations Lmax ∈ N with unchanged temperature and

set T := T0, L := 0.

3. If L = Lmax, set T := 0.9 · T and L := 1; else set L := L+ 1.

4. Choose two requests from H and reverse the order of requests between them to

obtain H ′.

5. If H ′ is shorter than H, set H := H ′; else set H := H ′ with probability exp(−∆
T

)

where ∆ is the difference between the length of H ′ and the length of H.

6. Return to step 3 until T < Tmin.

Choose the first request following the starting point from the shortest Hamiltonian

path obtained throughout the procedure next (see also [120]).

• TabuSearchl (Tsl): Construct a Hamiltonian path H visiting each of the lookahead

points starting in the server’s current location and ending in the origin as follows:

1. Obtain H initially by applying Nnl or Insl.

2. Select tabu time T ∈ N, maximum number Dmax of diversifications, number of

swaps s per diversification and set D := 0.

5.4 Online Traveling Salesman Problem with Lookahead 191

3. Choose two requests from H and swap them to obtain H ′.

4. If H ′ is shorter than H and the swapped request pair is not included in the tabu

list, set H := H ′ and add the swapped request pair to the tabu list with remaining

tabu time T ; else if H ′ is shorter than the best Hamiltonian path obtained so far

and the swapped request pair is tabu, set H := H ′ (aspiration).

5. For all tabu list entries except the new one, decrease the remaining tabu time by

one iteration; return to step 3 until all pairs of points have been examined.

6. Perform a swap of two random points in H ′ for s times (diversification), set

H := H ′, D := D + 1.

7. Return to step 3 until D ≥ Dmax.

Choose the first request following the starting point from the shortest Hamiltonian

path obtained throughout the procedure next (see also [79]).

Sets

J set of requests with J = {1, . . . , N}

Parameters

N number of requests
cij distance between requests i, j ∈ J
cstartj distance of request j ∈ J to current server position
cendj distance of request j ∈ J to origin
M sufficiently large constant (big M)

Variables

xij =

{
1 if request i ∈ J immediately precedes request j ∈ J,
0 else

xstartj =

{
1 if request j ∈ J is visited first,

0 else

xendj =

{
1 if request j ∈ J is visited last,

0 else

Tj ≥ 0 start time of request j ∈ J

Figure 5.27: Sets, parameters and variables in the MIP formulation of the Hamiltonian path
problem with fixed starting and ending point.

192 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

• Optimall (Optl): In Figure 5.27, set N , c, cstart and cend according to the distances

between current lookahead requests to each other and to the current server location.

Solve the MIP formulation in Figure 5.28. Choose the first request following the

starting point in the obtained solution next.

min
∑
i∈J

∑
j∈J

cijxij +
∑
j∈J

cstartj xstartj +
∑
j∈J

cendj xendj (5.31)

s.t.
∑
j∈J,
j 6=i

xij + xendi = 1 i ∈ J (5.32)

∑
i∈J,
i 6=j

xij + xstartj = 1 j ∈ J (5.33)

∑
j∈J

xstartj = 1 (5.34)∑
j∈J

xendj = 1 (5.35)

Ti + 1 ≤ Tj + M · (1− xij) i, j ∈ J (5.36)

xij, x
start
j , xendj ∈ {0, 1} i, j ∈ J (5.37)

Tj ≥ 0 j ∈ J (5.38)

Figure 5.28: MIP formulation of the Hamiltonian path problem with fixed starting and ending
point.

Optimal offline algorithm

• Optimal (Opt): In Figure 5.27, set N , c, cstart and cend according to the distances

between all requests to each other and to the initial server location. Solve the MIP

formulation in Figure 5.28. Visit the requests according to the obtained solution.

Note that all algorithms with lookahead collapse into Fcfs for l = 1. There are plenty of

IP and MIP formulations for the TSP (see, e.g., [120]); in the MIP formulation in Figure

5.28, we decide to get rid of the subtour elimination constraints by establishing precedence

relations in Constraint 5.36 between requests based on decision variables for time instants

at which requests are served ([132]).

Similar to the previous problems, we check whether regular request lookahead of size l leads

to significantly better algorithm behavior as opposed to batched provision of lookahead units.

If algorithms operate under batched lookahead, we indicate them with an added suffix B in

the algorithm name.

5.4 Online Traveling Salesman Problem with Lookahead 193

5.4.1 Average Results

As Figure 5.29 shows for four requests with origin in request 1, providing an algorithm with

only one additional unit of lookahead already leads to an order readjustment which avoids

frequent detours. We recognize that – in contrast to bin packing – the objective value is

immediately and heavily affected by the selected order of input element processing. We

conclude that there should be a substantial effect of lookahead which results from visiting

requests in an order different from their release order, i.e., from a rule set substitution.

1

2

4

3

x1

x
2

a)

1

2

4

3

x1

x
2

b)

Figure 5.29: Comparison of routes obtained in the TSP. a) Without lookahead (l = 1). b) With
lookahead of only one additional request (l = 2).

Figure 5.30 confirms the huge benefit attainable by providing the server with lookahead in

form of a preview of future requests and allowing it to visit known requests in arbitrary

order. Comparing the online with the offline case, reductions in the overall tour length

of 60.5 % to 67.8 % are achieved depending on the algorithm used. Lookahead positively

affects all algorithms in the same order of magnitude. Confidence interval widths smaller

than 0.2 for all algorithms and lookahead levels as well as comparatively small coefficients

of variation in Table A.37 of Appendix A.2.4 support the statistical validity of the results

on lookahead improvements found over the randomly chosen input instances. The marginal

benefit of an additional lookahead unit is strictly decreasing for all algorithms. In this sense,

already provisioning an algorithm with small lookahead leads to considerable improvement.

For instance, already for l = 5 overall tour lengths are reduced to between 57.5 % and 74.1 %

of the online tour length depending on the algorithm used. Finally, we observe improved

behavior of algorithms with regular request lookahead over those which have to adhere to

batched lookahead as a result of the potential for tour length reduction that any additional

lookahead unit has.

194 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

2 4 6 8 10 12 14 16 18 20 22 24

4

6

8

10

12

14

Lookahead size l

A
ve
ra
ge

co
st
s

Nnl Nnl,B

Insl Insl,B
2Optl 2Optl,B

3Optl 3Optl,B

Sal Sal,B

Tsl Tsl,B
Optl Optl,B

Figure 5.30: Average costs for different lookahead sizes and n = 25 in the TSP.

In a more detailed view, it is seen that for information regimes corresponding to small

lookahead the simple algorithm Nnl fares best; only for large lookahead sizes the more

sophisticated algorithms exhibit superior performance. We conclude that a surplus of using

refined algorithms rather than simple algorithms can only be realized when the overseen time

horizon is as large as to guarantee that no severe deviations between previously calculated

routes and recalculated routes upon additional request arrivals will occur. Clearly, for small

lookahead this requirement is likely to be violated due to newly arriving requests rendering

once calculated “locally optimal” plans obsolete.

We illustrate this result by contrasting Nnl and Optl: Nnl proves superior for small and

medium lookahead sizes l because of its consistent behavior which results from always choos-

ing the closest known request next, whereas Optl may choose a request from a distant region

next if suggested by an optimal solution of the snapshot problem. Hence, the danger of a

zigzag route is increased for Optl. Consider Figure 5.31 with n = 10 requests where requests

are labeled as (1, 2, . . . , 10) and also released in that order, current server position and origin

in request 1, and lookahead l = 2. After arrival in request 2, the lookahead comprises re-

quests 3 and 4 for both algorithms. Opt2 (in Figure 5.31 b)) next chooses request 3 because

route (2, 3, 4, 1) is shorter than (2, 4, 3, 1). Later, when request 6 is reached, the lookahead

consists of requests 4 and 7 such that a distant region has to be revisited although the server

had initially been there. Contrarily, Nn2 (in Figure 5.31 a)) avoids revisiting this region by

choosing request 4 as successor of request 2. Hence, the probability for zigzagging is reduced

under Nnl compared to Optl, albeit returning to previously seen regions cannot be excluded

in general because of future requests.

5.4 Online Traveling Salesman Problem with Lookahead 195

1

2
3

4

5

6

7

8 9 10

x1

x
2

a)

1

2
3

4

5

6

7

8 9 10

x1

x
2

b)

Figure 5.31: Threat of bad decisions in the TSP. a) Low risk for stability-oriented algorithm Nn2.
b) High risk for exact reoptimization algorithm Opt2.

For n = 100 items per sequence, the same qualitative effects are observed: The simple al-

gorithm Nnl excels the sophisticated algorithms for small lookahead; for medium to large

lookahead it is recommended to use the elaborated algorithms. The marginal benefit of

additional lookahead is strictly decreasing. Comparing the online and offline situation, im-

provements are even higher – between 81.3 % and 84.6 % depending on the algorithm – than

for n = 25; for details, see Appendix A.2.4.

5.4.2 Distributional Results

Empirical counting distribution functions of objective values and performance ratios as shown

in Figures 5.32 to 5.34 appear clearly segregated from each other for successive lookahead

levels of small to medium size with decreasing gap for increasing lookahead level. Moreover,

confidence intervals both of objective values and performance ratios as listed in Tables A.37

to A.39 of Appendix A.2.4 are predominantly disjunct and have small width. Conjointly,

these findings are affirmative both to the huge magnitude of lookahead and the decreasing

marginal value of information.

From Figure 5.32, it is seen that the absolute value of tour lengths reduces drastically under

lookahead. The reduction is as substantial as to cause the supports of the density functions

related to the given plots not to come to an overlap for l = 1 and l = 10. Moreover, we

recommend to exclude algorithm family Insl from further consideration by cause of poor

behavior over all lookahead levels l as compared to Nnl on small to medium lookahead

levels and compared to the sophisticated algorithms on medium to large lookahead levels.

196 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Nn1 Nn5

Nn10 Nn15

Nn20 Nn25

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Nn1,B Nn5,B

Nn10,B Nn15,B

Nn20,B Nn25,B

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ins1 Ins5

Ins10 Ins15

Ins20 Ins25

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ins1,B Ins5,B
Ins10,B Ins15,B
Ins20,B Ins25,B
Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

2Opt1 2Opt5

2Opt10 2Opt15

2Opt20 2Opt25

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

2Opt1,B 2Opt5,B

2Opt10,B 2Opt15,B

2Opt20,B 2Opt25,B

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

3Opt1 3Opt5

3Opt10 3Opt15

3Opt20 3Opt25

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

3Opt1,B 3Opt5,B

3Opt10,B 3Opt15,B

3Opt20,B 3Opt25,B

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Sa1 Sa5

Sa10 Sa15

Sa20 Sa25

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Sa1,B Sa5,B

Sa10,B Sa15,B

Sa20,B Sa25,B

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts1 Ts5

Ts10 Ts15

Ts20 Ts25

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts1,B Ts5,B
Ts10,B Ts15,B
Ts20,B Ts25,B
Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt1 Opt5

Opt10 Opt15

Opt20 Opt25 = Opt

Opt

5 10 15 20
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt1,B Opt5,B

Opt10,B Opt15,B

Opt20,B Opt25,B = Opt

Opt

Figure 5.32: Empirical counting distribution functions of costs for n = 25 in the TSP.

5.4 Online Traveling Salesman Problem with Lookahead 197

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Nn1 Nn5

Nn10 Nn15

Nn20 Nn25

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Nn1,B Nn5,B

Nn10,B Nn15,B

Nn20,B Nn25,B

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ins1 Ins5

Ins10 Ins15

Ins20 Ins25

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ins1,B Ins5,B
Ins10,B Ins15,B
Ins20,B Ins25,B

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

2Opt1 2Opt5

2Opt10 2Opt15

2Opt20 2Opt25

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

2Opt1,B 2Opt5,B

2Opt10,B 2Opt15,B

2Opt20,B 2Opt25,B

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

3Opt1 3Opt5

3Opt10 3Opt15

3Opt20 3Opt25

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

3Opt1,B 3Opt5,B

3Opt10,B 3Opt15,B

3Opt20,B 3Opt25,B

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Sa1 Sa5

Sa10 Sa15

Sa20 Sa25

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Sa1,B Sa5,B

Sa10,B Sa15,B

Sa20,B Sa25,B

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts1 Ts5

Ts10 Ts15

Ts20 Ts25

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts1,B Ts5,B
Ts10,B Ts15,B
Ts20,B Ts25,B

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt1 Opt5

Opt10 Opt15

Opt20 Opt25 = Opt

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt1,B Opt5,B

Opt10,B Opt15,B

Opt20,B Opt25,B = Opt

Figure 5.33: Empirical counting distribution functions of performance ratio of costs relative to
Opt for n = 25 in the TSP.

198 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Nn1 Nn5

Nn10 Nn15

Nn20 Nn25

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Nn1,B Nn5,B

Nn10,B Nn15,B

Nn20,B Nn25,B

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ins1 Ins5

Ins10 Ins15

Ins20 Ins25

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ins1,B Ins5,B
Ins10,B Ins15,B
Ins20,B Ins25,B

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

2Opt1 2Opt5

2Opt10 2Opt15

2Opt20 2Opt25

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

2Opt1,B 2Opt5,B

2Opt10,B 2Opt15,B

2Opt20,B 2Opt25,B

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

3Opt1 3Opt5

3Opt10 3Opt15

3Opt20 3Opt25

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

3Opt1,B 3Opt5,B

3Opt10,B 3Opt15,B

3Opt20,B 3Opt25,B

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Sa1 Sa5

Sa10 Sa15

Sa20 Sa25

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Sa1,B Sa5,B

Sa10,B Sa15,B

Sa20,B Sa25,B

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts1 Ts5

Ts10 Ts15

Ts20 Ts25

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts1,B Ts5,B
Ts10,B Ts15,B
Ts20,B Ts25,B

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt1 Opt5

Opt10 Opt15

Opt20 Opt25 = Opt

0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt1,B Opt5,B

Opt10,B Opt15,B

Opt20,B Opt25,B = Opt

Figure 5.34: Empirical counting distribution functions of performance ratio of costs relative to
the online version for n = 25 in the TSP.

5.4 Online Traveling Salesman Problem with Lookahead 199

Furthermore, exact reoptimization approach Optl is outperformed by 2Optl, 3Optl, Sal

and Tsl for all lookahead levels l except for the state of full informational knowledge (l =

25). The latter algorithms are considered to have equal performance. However, from the

percentage of request sequences with a deterioration between two successive lookahead levels

in the last column of Table A.37 of Appendix A.2.4, we see that there are sporadic instances

where additional lookahead was misleading for an algorithm.

While performance ratios relative to Opt were below 1.25 for all instances of the bin pack-

ing problems, the picture remarkably changes in the TSP as seen in Figure 5.33. Here,

performance ratios larger than 4.5 are encountered. However, already for l = 10 none of

the algorithms endowed with regular request lookahead except for Insl incurred a perfor-

mance ratio larger than 2 on any instance which points towards the huge impact of the

first lookahead requests and the decreasing marginal benefit of additional lookahead units.

The proportion of instances which lead to a performance ratio of 1 is rather modest for all

lookahead levels smaller than l = n = 25. Thus, each additional lookahead request tends

to unfold its potential for tour length reduction over the course of requests revealed in a

sequence. As can be seen from the minimum performance ratios and the percentage with

performance ratio smaller than 1 in Table A.38 of Appendix A.2.4, not all of the m = 1000

instances could be solved to optimality within 120 seconds. Hence, in some few cases Opt

could be outperformed by some of the other algorithms.

The empirical counting distribution functions relative to the respective online versions of

the algorithms in Figure 5.34 lead to the same conclusions that could be drawn from the

previous figures. Note that no instance exists for which the provision of lookahead leads to

a deterioration in the resulting tour length of any algorithm when compared to the online

case without lookahead. Confidence intervals shrink to a single point when the bounds are

rounded to two decimal places (cf. also Table A.39 of Appendix A.2.4).

Observe that for large lookahead all counting distribution functions are relatively steep in

a characteristic interval which illustrates the homogenous positive effect of additional infor-

mation on all kinds of request sequences.

5.4.3 Markov Chain Results

Assume all requests inM are given a name which allows to establish a lexicographical order

among them. The elements of the state space S subsume the current server location xs, the

requests x = (x1, . . . , xl) in the lookahead in lexicographical order of their name and the

200 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

distance v traveled by the server so far, i.e.,

S =
{

(xs, x, v) |xs ∈M, x ∈Ml, v ∈ R≥0
}
.

Upon arrival of a new request to be visited, each algorithm Alg decides which one of the

requests in the lookahead is visited next. Hence, Alg is a function

Alg : S ×M→ {1, . . . , l}

which gives the position of the request to be visited next in the lookahead. The successor state

of s = (xs, x, v) upon arrival of request xnew is given by s′ = (x′s, x
′, v′) where x′s = xAlg(s,xnew),

x′ arises from x by removing element xAlg(s,xnew), appending element xnew and ordering

lexicographically, and v′ = v + d(xs, xAlg(s,xnew)) with distance function d on M.

In order to obtain a finite state space representation, we have to ensure that M is a finite

metric space and that the possible values for v form a finite set: To this end, denote the

diameter of M by dmax, then for integer distances the state space size amounts to

|S| = |M| ·
(|M|+ l − 1

l

)
·
(
(n+ 1) · dmax

)
.

For Alg ∈ {Nnl, Insl, 2Optl,Optl} and selected lookahead level l, we determine the suc-

cessor for each state and each new request to obtain the one-step frequency matrix and the

n-step frequency matrix of the Markov chain.

In our numerical experiment, we use the parametrization n = 25, |M| = 4, dmax = 3

and l ∈ {1, 2, . . . , 5}. For this small exemplary setting, the state space size amounts to

4 ·
(

4+5−1
5

)
· (26 · 3) = 17 472 elements for l = 5.

Figure 5.35 displays the exact distribution functions of the objective values obtained for the

four algorithm families. The overall picture shows that each additional lookahead unit corre-

sponds to a decrease in the objective value for the vast majority of all request sequences.

Algorithms Nnl, Insl and 2Optl exhibit exclusive improvement due to lookahead which is

seen by the perfect ordering of the plots corresponding to different lookahead levels. For

exact reoptimization algorithms in Optl, we realize that the provided lookahead levels l ∈
{1, 2, . . . , 5} are too small to be exploited more advantageously than by the other algorithms.

Moreover, we find that the distribution functions for Opt4 and Opt5 intersect such that no

exclusive benefit of lookahead can be attested. Opt2 if found to score poorly compared to

Opt1 considering that it is provided an additional lookahead request.

5.5 Online Scheduling with Lookahead 201

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Nn1

Nn2

Nn3

Nn4

Nn5

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ins1

Ins2

Ins3

Ins4

Ins5

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

2Opt1

2Opt2

2Opt3

2Opt4

2Opt5

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt1

Opt2

Opt3

Opt4

Opt5

Figure 5.35: Exact distribution functions of costs for n = 25 in the TSP.

We conclude this section by pointing out that the computational experiments on the TSP

confirm the large positive effect of lookahead on the objective value as determined by exact

analysis for a basic setting with two request locations and l = 2 in Chapter 4.3. Hence,

significant savings in the total distance can also be obtained in R2, although the impact of

lookahead – in comparison to the case of M = {0, 1} from Chapter 4.3 – is mitigated to a

certain extent by requests now being scattered over R2 rather than over {0, 1}.

5.5 Online Scheduling with Lookahead

Scheduling deals with the allocation of tasks to a set of resources over a given time horizon

in order to meet some objective ([30], [138]). In the sequel, resources are called machines and

tasks are referred to as jobs. Problem types differ in the machine environment, the processing

restrictions and the objective(s) to be optimized. Frequent machine environments are a single

machine, parallel machines, flow shops or job shops; processing restrictions may include

precedence constraints, preemptions, release times or due dates; and common objectives are

to minimize the maximum completion time (makespan), the total completion time or the

202 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

maximum lateness. A problem can be classified using the three position scheme α | β | γ of

Graham ([81]) with α indicating the machine environment, β the processing restrictions and

γ the objective.

Since our analysis encompasses online scheduling with lookahead, we face online counterparts

of offline scheduling problems; we indicate this with an additional entry on in β. Moreover,

we distinguish whether a job is allowed to be processed immediately when it becomes known

due to lookahead or whether it has to wait until its time of notification in the case without

lookahead. The latter time is called the release time rj of a job j. For job set J , the required

processing time of job j ∈ J is given as pj; the completion time of j is denoted by Cj. The

total completion time of all jobs in J is denoted symbolically by
∑
Cj :=

∑
j∈J Cj and the

makespan by Cmax := max{Cj | j ∈ J}. We study problems for a single machine (α = 1)

and two identical parallel machines (α = P2). Overall, we obtain four problem settings:

• Online single machine with total completion time objective: 1 | on | ∑Cj

• Online single machine with release times and total completion time objective:

1 | on, rj |
∑
Cj

• Online parallel machines with makespan objective: P2 | on |Cmax

• Online parallel machines with release times and makespan objective: P2 | on, rj |Cmax

Under total completion time objective, a job sequence has to be found which schedules short

jobs as early as possible; under makespan objective, machines have to cooperate so as to find

balanced workloads over the machines ([138]).

For fixed n ∈ N, the set of all input sequences of length n is given by

Σn =
{

(σ1, σ2, . . . , σn) |σi := pi ∈ R>0, i = 1, . . . , n
}

and comprises all job sequences of length n where σi is identified with the processing time

pi of the ith job. In the online version, σi with i = 1, . . . , n is known when the current

time reaches release time ri. In the online version with lookahead of duration D, σi with

i = 1, . . . , n is known when the current time reaches its forwarded release time max{0, ri−D}.
In the offline version, all jobs are known at the beginning.

Our numerical experiments examine two problem settings each of which features m = 1000

independently drawn job sequences. In the first setting, each sequence consists of n = 25

jobs, while the second setting has n = 100 jobs per sequence. Jobs are assumed to have a

regular release time in time interval [0, 100] and a processing time from (0, 4]. Lookahead

5.5 Online Scheduling with Lookahead 203

levels correspond to lookahead durations of D ∈ {0, 5, 10, 25, 50, 100} time units. We discuss

results for n = 25 and refer the reader to Appendix A.2.5 for n = 100.

A decision by an algorithm is required in two situations: First, a machine is freed and

processable jobs are available; second, the machine is idle and a job becomes processable.

The decision amounts to selecting a known processable job to be started on a free machine.

The earliest start time of a job is the earliest time where it is allowed to go on a machine: In

the case of allowed immediate processing, the earliest start time of a job coincides with its

notification time; in the case of forbidden immediate processing, the earliest start time of a

job is its (regular) release time from the case without lookahead.

5.5.1 Online Single Machine Scheduling

For the offline problem without release times (1 | | ∑Cj), it is optimal to schedule jobs in

order of non-decreasing processing times as can be shown easily by contradiction ([138]).

The following algorithms mimic this behavior on the known jobs in the lookahead set.

Online algorithm

• ShortestProcessingTime (Spt): If a new job arrives at time rj and the machine

is idle, start the shortest job with release time rj; if the machine finishes a job and

unprocessed jobs are known, start a job with shortest processing time among these

jobs ([138]).

Online algorithms with lookahead of duration D

• ShortestProcessingTimeD (SptD):

If the earliest start time of a job is reached and the machine is idle, start the shortest

job whose earliest start time is reached; if the machine finishes a job and there are

unprocessed jobs whose earliest start time has already been reached, start a job with

shortest processing time among these jobs.

• OptimalD (OptD): If the earliest start time of a job is reached and the machine is

idle or if the machine finishes a job and unprocessed jobs are known whose earliest start

time has already been reached, then in Figure 5.36, set M := 1 and N, e, p according

to the current jobs in the lookahead set. Solve the MIP formulation in Figure 5.37.

Start the first processable job as suggested by the obtained schedule.

Optimal offline algorithm

• Optimal (Opt): In Figure 5.36, set N := n,M := 1 and e, p according to the known

jobs. Solve the MIP formulation in Figure 5.37. Execute the obtained schedule.

204 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

Sets

J set of jobs with J = {1, . . . , N}
K set of machines with K = {1, . . . ,M}

Parameters

N number of jobs
M number of machines
ej earliest start time of job j ∈ J
pj processing time of job j ∈ J
ck next completion time of machine k ∈ K
M sufficiently large constant (big M)

Variables

xij =

{
1 if job i ∈ J precedes job j ∈ J,
0 else

xijk =

{
1 if job i ∈ J precedes job j ∈ J on machine k ∈ K,
0 else

zjk =

{
1 if job j ∈ J is scheduled on machine k ∈ K,
0 else

sj ≥ 0 start time of job j ∈ J
sjk ≥ 0 start time of job j ∈ J on machine k ∈ K

Figure 5.36: Sets, parameters and variables in the MIP formulations of the scheduling problems.

min
∑
j∈J

(sj + pj) (5.39)

s.t. xij + xji = 1 i, j ∈ J, i 6= j (5.40)

xjj = 0 j ∈ J (5.41)

sj ≥ ej j ∈ J (5.42)

si + pi ≤ sj + M · (1− xij) i, j ∈ J, i 6= j (5.43)

xij ∈ {0, 1} i, j ∈ J (5.44)

sj ≥ 0 j ∈ J (5.45)

Figure 5.37: MIP formulation of the scheduling problem 1 | ej |
∑
Cj .

5.5 Online Scheduling with Lookahead 205

In case of allowed immediate processing, we expect SptD and OptD to coincide because in

a reoptimization step it should never be advantageous for
∑
Cj to schedule a long job before

a short one when both may be scheduled. In case of forbidden immediate processing, we

do not expect much: SptD collapses into Spt for arbitrary D because it has to wait until

the regular release time of a job to start processing; OptD may only profit from lookahead

when jobs accumulate while the machine is idle and it is “locally” advantageous to delay a

job although it could be scheduled because a shorter job reaches its release date soon. This

situation is displayed in Figure 5.38 where it is better not to schedule job 1 at time 0 but to

wait for job 2 to start it at time 1; observe also that for all successive jobs the initial position

as incurred by OptD is worse than that incurred by SptD.

0 1 2 3 4 5 6

Optl

Sptl

Time

Figure 5.38: Local improvement of OptD over SptD. For two jobs with (r1, p1) = (0, 4)
and (r2, p2) = (1, 1), we have that C1(SptD) + C2(SptD) = 9 > C1(OptD) +
C2(OptD) = 8.

5.5.1.1 Average Results

From the average total completion times in Figures 5.39 and 5.40, we conclude that for the

algorithms under investigation mentionable improvements in the objective value can only be

realized when immediate processing is allowed. In this case, SptD and OptD yield identical

schedules as expected and there is no necessity of applying exact reoptimization. Comparing

the extreme cases of the online and offline setting, improvements of up to 60.8 % are possible

if all jobs were known at the beginning. The marginal benefit of an additional time unit of

lookahead appears nearly constant over the first lookahead time units; for higher lookahead

levels the marginal benefit decreases more and more. Considering the small coefficients of

variation and the relatively small width of confidence intervals in Table A.43 of Appendix

A.2.5, we regard the results as representative for randomly drawn job sequences. Also note

that no instances can occur where additional lookahead leads to a larger total completion

time.

206 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

0 10 20 30 40 50 60 70 80 90 100

600

800

1000

1200

Lookahead duration D

A
ve
ra
ge

co
st
s

SptD

OptD

Figure 5.39: Average costs for different lookahead durations and n = 25 in the single machine
scheduling problem when immediate processing is allowed.

0 10 20 30 40 50 60 70 80 90 100

1317.61

1317.62

1317.63

1317.64

1317.65

Lookahead duration D

A
ve
ra
ge

co
st
s

SptD

OptD

Figure 5.40: Average costs for different lookahead durations and n = 25 in the single machine
scheduling problem when immediate processing is forbidden.

For algorithm family SptD it was already clear from the algorithm description that additional

lookahead cannot be exploited at all when immediate processing is prohibited, whereas for

algorithm family OptD there was hope that deciding to delay a job although it was available

to be processed could pay off when another shorter job jumps in quickly after that decision (cf.

Figure 5.38). Regrettably, this approach leads for the given parameters only to an average

improvement of 0.04 time units, i.e., 0.003 %, when Opt100 is used instead of Opt0.

5.5 Online Scheduling with Lookahead 207

We conclude that the value of lookahead is attributable solely to the change of the rule set

in form of allowed immediate processing which comes along with the provision of lookahead.

We focus on the case of allowed immediate processing in the sequel. Note that the potential

for improvement due to lookahead is strongly affected by the utilization of the machine: In

the case of n = 100 jobs per sequence, improvements were much smaller – on average up

to 8.7 % when the offline situation is compared to the online situation – since the 100 jobs

are released over the same interval of 100 time units such that at any time there are more

than enough short jobs as desired by the total completion time objective; for details, see

Appendix A.2.5.

5.5.1.2 Distributional Results

Since SptD has been found to coincide with OptD in the case of allowed immediate process-

ing, Figure 5.41 displays the objective value distribution of AlgD for Alg ∈ {Spt,Opt}.
The gap between the plots of successive lookahead levels is affirmative to the first additional

lookahead time units’ value being of comparable magnitude, whereas for medium to larger

lookahead durations the benefit of additional lookahead time decreases. Non-overlapping

confidence intervals and no degradations under additional lookahead as listed in Table A.43

of Appendix A.2.5 support the result of exclusively positive effects. The development of

the distance between the bounds for confidence intervals of two successive lookahead levels

confirms the decreasing marginal benefit of additional lookahead time units.

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg0

Alg5

Alg10

Alg25

Alg50

Alg100 = Opt

Opt

Figure 5.41: Empirical counting distribution functions of costs for n = 25 in the single machine
scheduling problem when immediate processing is allowed.

From the empirical counting distribution functions of the performance ratios relative to

Opt and relative to Alg0 in Figures 5.42 and 5.43, we see the exclusively positive impact of

lookahead which is also confirmed by the last columns in Tables A.45 and A.47 of Appendix

208 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

A.2.5 showing that no degradation of the total completion time occurs whenever additional

lookahead is supplied as compared to the optimal offline algorithm and the algorithm’s online

version, respectively.

1 2 3 4
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Alg0

Alg5

Alg10

Alg25

Alg50

Alg100 = Opt

Figure 5.42: Empirical counting distribution functions of performance ratio of costs relative to
Opt for n = 25 in the single machine scheduling problem when immediate processing
is allowed.

0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg0

Alg5

Alg10

Alg25

Alg50

Alg100 = Opt

Figure 5.43: Empirical counting distribution functions of performance ratio of costs relative to the
online version for n = 25 in the single machine scheduling problem when immediate
processing is allowed.

Observe that for large lookahead all counting distribution functions are relatively steep in

a characteristic interval which illustrates the homogenous positive effect of additional infor-

mation on all kinds of request sequences.

5.5.1.3 Markov Chain Results

In the Markov chain analysis, we consider the case of allowed immediate processing. In

order to facilitate an analysis in reasonable computing time, we abandon time lookahead

5.5 Online Scheduling with Lookahead 209

and switch to request lookahead of size l. The elements of the state space S subsume the

last completion time c of a job scheduled on the machine, the processing times p = (p1, . . . , pl)

of the lookahead jobs in non-decreasing order and the current objective value v of the total

completion time, i.e.,

S =
{

(c, p, v) | c ∈ R≥0, p ∈ (R>0)l, v ∈ R≥0
}
.

Note that completion of a job and arrival of a new job coincide under request lookahead.

Upon arrival of a new job, each algorithm Alg chooses a job from the lookahead to be

scheduled next on the machine. Hence, Alg is a function

Alg : S × R>0 → {1, 2, . . . , l}

which gives the position of the selected job in the lookahead. The successor state of s =

(c, p, v) upon arrival of a job with processing time pnew is given by s′ = (c′, p′, v′) where

c′ = c + pAlg(s,pnew), p
′ arises from p by removing element pAlg(s,pnew), appending pnew and

ordering non-decreasingly, and v′ = v + c′.

In order to obtain a finite state space representation, we have to discretize job processing

times: To this end, denote the number of possible processing times by np and the maximum

possible processing time by pmax, then the state space size amounts to

|S| = (npmax + 1) ·
(
np + l − 1

l

)
·
(n(n+ 1)

2
pmax + 1

)
.

When immediate processing is allowed, deviating from the shortest processing time first rule

would lead to a deterioration in the objective value as shown easily by a job interchange

argument. Hence, Sptl and Optl coincide. For Algl with Alg ∈ {Spt,Opt} and selected

lookahead level l, we determine the successor for each state and each new job to obtain the

one-step frequency matrix and the n-step frequency matrix of the Markov chain.

In our numerical experiment, we use the parameterization n = 25, np = 2, pmax = 2

and l ∈ {1, 2, . . . , 5}. For this small exemplary setting, the state space size amounts to

(25 · 2 + 1) ·
(

2+5−1
5

)
· (25·26

2
· 2 + 1) = 199 206 elements for l = 5.

The exclusively beneficial effect of lookahead for the resulting objective value distributions is

presented in Figure 5.44. The horizontal distance between the plots of two successive looka-

head levels suggests that the marginal improvement attainable by an additional lookahead

unit remains the same for increasing lookahead size.

210 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

400 500 600
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Alg1

Alg2

Alg3

Alg4

Alg5

Figure 5.44: Exact distribution functions of costs for n = 25 in the single machine scheduling
problem when immediate processing is allowed.

5.5.2 Online Parallel Machines Scheduling

Similar to ordering items by non-increasing size in bin packing, ordering jobs by non-

increasing processing times is a reasonable strategy to balance workload among parallel

machines. For the offline problem without release times (Pm | |Cmax), this strategy is a

(4
3
− 1

3m
)-approximation algorithm as shown easily by contradiction ([138]). For m = 2,

we get a 7
6
-approximation algorithm. The following algorithms mimic this behavior on the

known jobs in the lookahead set. Note that the problem is NP-hard for m ≥ 2 by reduction

from NP-complete problem Partition.

Online algorithm

• LongestProcessingTime (Lpt): If a new job j arrives at time rj and a machine is

idle, start the longest job with release time rj on this machine; if a machine finishes a

job and unprocessed jobs are known, start a job with longest processing time among

these jobs on this machine ([138]).

Online algorithms with lookahead of duration D

• LongestProcessingTimeD (LptD):

If the earliest start time of a job is reached and the machine is idle, start the longest

job whose earliest start time is reached; if a machine finishes a job and there are

unprocessed jobs whose earliest start time has already been reached, start a job with

longest processing time among these jobs on this machine.

• OptimalD (OptD): If the earliest start time of a job is reached and a machine is

idle or if a machine finishes a job and unprocessed jobs are known whose earliest start

time has already been reached, then in Figure 5.36, set M := 2 and N, e, p, c according

5.5 Online Scheduling with Lookahead 211

to the current jobs in the lookahead set and the current machine statuses. Solve the

MIP formulation in Figure 5.45. Start the first processable job on the free machine as

suggested by the obtained schedule.

min Cmax (5.46)

s.t. xijk + xjik ≤ zik i, j ∈ J, i 6= j, k ∈ K (5.47)

xijk + xjik ≥ zik + zjk − 1 i, j ∈ J, i 6= j, k ∈ K (5.48)

xjjk = 0 j ∈ J, k ∈ K (5.49)∑
k∈K

zjk = 1 j ∈ J (5.50)

sjk ≥ max{ej, ck}zjk j ∈ J, k ∈ K (5.51)

sik + pi ≤ sjk + M · (1− xijk) i, j ∈ J, i 6= j, k ∈ K (5.52)

Cmax ≥ sjk + pj j ∈ J, k ∈ K (5.53)

xijk, zjk ∈ {0, 1} i, j ∈ J, k ∈ K (5.54)

sjk ≥ 0 j ∈ J, k ∈ K (5.55)

Figure 5.45: MIP formulation of the scheduling problem Pm | ej |Cmax.

Optimal offline algorithm

• Optimal (Opt): In Figure 5.36, set N := n,M := 2, c := 0 and e, p according to the

known jobs. Solve the MIP formulation in Figure 5.45. Execute the obtained schedule.

In the MIP formulation in Figure 5.45, we use additional decision variables zik in order to

express on which machine k job i is processed. Cmax is used as an auxiliary variable to indicate

the end of the schedule. All other variables are also extended with an additional index

referring to the machine. In particular, Constraint 5.48 ensures that there is a precedence

relation between each pair of jobs that goes on the same machine.

In case of forbidden immediate processing, we do not expect lookahead to be exploited

much: LptD cannot take advantage of lookahead at all because it collapses into Lpt; for

OptD in order to excel LptD, job processing times have to be such that arranging them

“locally” optimal on the two machines leads to a deviation from LptD as shown in Figure

5.46. Clearly, the probability for such a pathologic construction is not too high. Note that

this effect also occurs under allowed immediate processing. However, the lookahead effect

there is mainly attributed to the rule set substitution, whereas under forbidden immediate

processing could only be attributed to OptD’s farsightedness.

212 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

0 1 2 3 4 5 6 7

Optl

Lptl

machine 1

machine 2

machine 1

machine 2

Time

Figure 5.46: Local improvement of OptD over LptD. For five jobs with (r1, p1) = (r2, p2) =
(0, 3), (r3, p3) = (r4, p4) = (r5, p5) = (0, 2), we have that Cmax(LptD) = 7 >
Cmax(OptD) = 6.

5.5.2.1 Average Results

We find massive makespan reductions when immediate processing is allowed and virtually

no effect when immediate processing is forbidden as depicted in Figures 5.47 and 5.48. In

case of allowed immediate processing, the makespan can be drastically reduced as a result

of avoided idle times on the machines and the privilege of not having to wait until regular

release times. Between online and offline situations, algorithm performance can be enhanced

such that makespan reductions of up to 74.5 % are incurred. Additionally, the potential

of sophisticated exact reoptimization in order to capitalize from situations as displayed in

Figure 5.46 is considered insignificant. Small coefficients of variation and tight confidence

intervals indicate statistical validity of the obtained results (cf. also Table A.55 of Appendix

A.2.5). As in the single machine problem, no instance encountered exhibits a deterioration

in the objective value when algorithms are provided additional lookahead time.

Contrarily, under forbidden immediate processing the makespan is by definition crucially

determined by the release times of the last jobs to finish processing on the machines; this

holds especially true in case of low to moderate machine utilization as given for n = 25 with

an overall horizon of 100 time units: Looking at the scale in Figure 5.48, we declare the

improvement under forbidden immediate processing as negligible. For LptD it was already

clear from the algorithm description that no lookahead value exists at all; whereas for OptD

we found that there are too few situations that would allow to determine an elaborate partial

schedule by applying exact reoptimization techniques similar to the one shown in Figure 5.46

so as to influence the overall makespan attained at the end of the time horizon.

5.5 Online Scheduling with Lookahead 213

0 10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

Lookahead duration D

A
ve
ra
ge

co
st
s

LptD

OptD

Figure 5.47: Average costs for different lookahead durations and n = 25 in the parallel machines
scheduling problem when immediate processing is allowed.

0 10 20 30 40 50 60 70 80 90 100

98.79

98.79

98.79

98.8

98.8

98.8

Lookahead duration D

A
ve
ra
ge

co
st
s

LptD

OptD

Figure 5.48: Average costs for different lookahead durations and n = 25 in the parallel machines
scheduling problem when immediate processing is forbidden.

In summary, makespan reductions are achieved only as a result of a changed problem setting

in favor of the decision maker by allowing immediate processing. Hence, we concentrate on

this setting subsequently. As seen in Appendix A.2.5, also for n = 100 jobs per sequence

makespan reductions are achieved. However, as in the single machine problem, the reduction

is sharply constricted by the high machine utilization which makes sure that most of the times

when a machine is freed there are plenty of long jobs to go on that machine.

214 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lpt0

Lpt5

Lpt10

Lpt25

Lpt50

Lpt100

Opt

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt0

Opt5

Opt10

Opt25

Opt50

Opt100 = Opt

Opt

Figure 5.49: Empirical counting distribution functions of costs for n = 25 in the parallel machines
scheduling problem when immediate processing is allowed.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Lpt0

Lpt5

Lpt10

Lpt25

Lpt50

Lpt100

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

v

F
(v
) Opt0

Opt5

Opt10

Opt25

Opt50

Opt100 = Opt

Figure 5.50: Empirical counting distribution functions of performance ratio of costs relative to
Opt for n = 25 in the parallel machines scheduling problem when immediate pro-
cessing is allowed.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Lpt0

Lpt5

Lpt10

Lpt25

Lpt50

Lpt100

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt0

Opt5

Opt10

Opt25

Opt50

Opt100 = Opt

Figure 5.51: Empirical counting distribution functions of performance ratio of costs relative to
the online version for n = 25 in the parallel machines scheduling problem when
immediate processing is allowed.

5.6 Concluding Discussion 215

5.5.2.2 Distributional Results

Figure 5.49 illustrates the huge benefit of lookahead when immediate processing is allowed

in terms of a left shift of the plots of the empirical counting distribution functions of the

objective value when additional time units of lookahead are supplied. Algorithm families

LptD and OptD lead to schedules of the same quality such that it is not necessary to

apply exact reoptimization methods. From the large slope value of the empirical counting

distribution functions in a characteristic interval for each combination of algorithm and

lookahead level as well as from the width of all confidence intervals being smaller than one

time unit (cf. Table A.55 of Appendix A.2.5), we infer that the sampled results give a

profound impression of the performance of the respective algorithms. From the distance

of the curves to each other, we see that for small to medium lookahead levels the marginal

benefit of an additional time unit of lookahead stays constant and that it gradually decreases

for larger lookahead durations.

Figures 5.50 and 5.51 display the empirical counting distribution functions of the performance

ratios relative to Opt and the online versions of the algorithms, respectively. Confidence

interval widths collectively smaller than 0.04 in the case relative to Opt and even coinciding

at the second decimal place in the case relative to the online version imply the characteristic

improvement for each lookahead level (cf. Tables A.57 and A.59 of Appendix A.2.5). No

algorithm exhibits worsened performance on any instance when lookahead is supplied.

We conclude this section by pointing out the similarities between the computational results

for the scheduling problem and those for the TSP. In both cases, being allowed to process

an input element as soon as its existence emerges leads to the major impact of lookahead.

5.6 Concluding Discussion

The computational experiments from this chapter covered different problem classes:

• In the ski rental problem, an instance of a one-shot rent-or-buy problem was solved.

• In paging, instances of replacement problems were solved repetitively.

• In bin packing, instances of packing problems were solved repetitively.

• In the TSP, instances of sequencing problems were solved repetitively.

• In scheduling, instances of (combined) packing, sequencing and timing problems were

solved repetitively.

216 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

Numerical results in each problem setting suggest that there is an overall positive effect on

the objective value that can be obtained if algorithms are designed and allowed to take ad-

vantage of lookahead. However, the magnitude of the effect is strongly problem-specific: In

the TSP and in scheduling with allowed immediate processing, exploiting additional looka-

head directly paid off upon changing the processing order of input elements because of the

direct impact on the objective value. In bin packing, the observed effect was much smaller as

a result of the indirect impact of item assignments on the objective value: An item occupies

the same bin capacity no matter in which bin it lies and at which time it is packed. More-

over, we found that improvements in packing problems could only be attained by a clever

arrangement of the small objects that have to be put in the large objects. Unfortunately,

constellations where such improvements can be made are encountered rarely in typical item

or job sequences. Lookahead in the paging and ski rental problem was also found to have

a major positive impact on the costs incurred by respective algorithms. The explanation

lies in the risk-free exploitation of additional lookahead based on a larger part of the time

horizon that is overseen. The additional knowledge allows an algorithm to make a decision

that is guaranteed to have no future ramifications as compared to a decision made under

fewer available lookahead information. Hence, in these types of problems there is no threat

of bad decisions.

In some problem settings, it was possible to devise algorithms such that additional lookahead

proved exclusively beneficial, whereas in others there were instances with degraded algorithm

performance for any of the devised algorithms since lookahead was leading them towards a

wrong direction as discovered only later in the processing of the input sequence. Yet, such

instances were encountered only sporadically in all problem settings.

Concerning the usage of exact reoptimization algorithms for the subproblems, we found that

the role of exact reoptimization methods to unveil improvement by lookahead is smaller than

previously expected: Although in some problems these methods led to a slight performance

enhancement especially for large lookahead sizes, they also tended to be of nearly no benefit

for small lookahead sizes when compared to heuristic reoptimization strategies: Optimality

of a partial solution often does not migrate to the overall solution because substructures in

partial solutions with a positive influence on the objective value are likely to be relinquished

during the future solution process. In the case of the TSP, we also discovered that applying

sophisticated reoptimization methods could be harmful since stability as imposed by simple

algorithms may get lost; for small to medium lookahead sizes, exact reoptimization was

frequently beaten by much simpler heuristic approaches. It is up to the decision maker to

figure out whether the computationally intense usage of exact reoptimization methods is

worth the effort or not.

5.6 Concluding Discussion 217

Table 5.1 subsumes the findings from this chapter on a granular level: The column for the

total lookahead effect (∆f r,r
′,P,P ′

Alg,Alg′) admits that observed lookahead effects strongly relied on

the problem settings themselves. The two columns for the partial lookahead effects due to

instance revelation rule substitution (∆f r,r
′

Alg) and due to rule set substitution (∆fP,P
′

Alg,Alg′)

show that in the ski rental, paging and bin packing problem merely the additional information

was responsible for improvements, whereas in the TSP and the scheduling problem the

change of the rule set lead to improved objective values in the first place. Column Alg∗

tells us whether there was one algorithm (or several comparably good algorithms) that

could be considered the champion over all lookahead levels. Although this happened only

rarely, we often observed that heuristics did especially well for small lookahead sizes, whereas

exact reoptimization approaches outperformed heuristics by a very slight margin for large

lookahead sizes, i.e., when the problem approaches its offline version. Column Opt indicates

whether exact reoptimization lead to significant improvements. As shown before, only minor

improvements were observed such that exact reoptimization is not deemed a must-have in

online optimization. There was no homogeneous picture about whether additional lookahead

can also lead to objective value deterioration or not (column Deterioration).

We remark that the computational results from this chapter are affirmative to the findings of

the exact analysis in the previous chapter concerning the magnitude of the lookahead impact

as well as its primarily responsible factors.

Our approach of evaluating algorithm performance in the context of a potential provision

of lookahead encompassed two stages: In the first stage, an average-case analysis allowed

us to find the most promising algorithm candidates for a given lookahead level in terms

of expected algorithm behavior. In the second stage, distributional analysis lead to a fine-

grained assessment of each candidate’s individual risk profile with respect to attainable

objective values and performance ratios.

218 5 Experimental Analysis of Algorithms for Online Optimization with Lookahead

P
ro

b
le

m
T

y
p

e
A

tt
ri

b
u
te

R
u
le

∆
f
r,
r
′ ,
P
,P
′

A
l
g
,A

l
g
′

∆
f
r,
r
′

A
l
g

∆
f
P
,P
′

A
l
g
,A

l
g
′

A
l
g
∗

O
p
t

D
et

er
io

ra
ti

on

S
k
i

re
n
ta

l
re

q
u
es

t
lo

o
ka

h
ea

d
–

–
la

rg
e

la
rg

e
ze

ro
ye

s
–

n
o

P
a
g
in

g
re

q
u
es

t
lo

o
ka

h
ea

d

eq
u
a
l

p
ro

b
a
b
il
it

ie
s

–
la

rg
e

la
rg

e
ze

ro
n
o

–
n

o/
ye

s*

ac
ce

ss
g
ra

p
h

–
m

ed
iu

m
m

ed
iu

m
ze

ro
ye

s
–

n
o
/y

es
*

p
a
ge

fr
eq

u
en

ci
es

–
la

rg
e

la
rg

e
ze

ro
ye

s
–

n
o/

ye
s*

B
in

p
a
ck

in
g

re
q
u
es

t
lo

o
ka

h
ea

d

cl
as

si
ca

l
p

er
m

u
ta

ti
on

s
sm

al
l

sm
al

l
ze

ro
n
o

n
o

ye
s

n
o

p
er

m
u

ta
ti

on
s

sm
al

l
sm

al
l

ze
ro

n
o

n
o

ye
s

b
ou

n
d

ed
-

sp
ac

e

p
er

m
u
ta

ti
on

s
sm

al
l

sm
al

l
n

eg
li
g
ib

le
ye

s
n
o

y
es

n
o

p
er

m
u

ta
ti

on
s

sm
al

l
sm

al
l

n
eg

li
gi

b
le

n
o

n
o

ye
s

T
S
P

re
q
u
es

t
lo

o
ka

h
ea

d
–

–
la

rg
e

ze
ro

la
rg

e
n
o

n
o

ye
s

S
ch

ed
u

li
n
g

ti
m

e
lo

o
ka

h
ea

d

si
n
gl

e
m

ac
h

in
e

im
m

ed
ia

te
p
ro

ce
ss

in
g

la
rg

e
n

eg
li
gi

b
le

la
rg

e
n
o

n
o

n
o

n
o

im
m

ed
ia

te
p
ro

ce
ss

in
g

n
eg

li
gi

b
le

n
eg

li
gi

b
le

ze
ro

n
o

n
o

ye
s

p
ar

al
le

l
m

a
ch

in
es

im
m

ed
ia

te
p
ro

ce
ss

in
g

la
rg

e
n

eg
li
gi

b
le

la
rg

e
n
o

n
o

n
o

n
o

im
m

ed
ia

te
p
ro

ce
ss

in
g

n
eg

li
gi

b
le

n
eg

li
gi

b
le

ze
ro

n
o

n
o

n
o

*I
n
st

a
n
ce

s
w

it
h

d
et

er
io

ra
te

d
ob

je
ct

iv
e

va
lu

e
in

th
e

p
ag

in
g

p
ro

b
le

m
w

er
e

on
ly

ob
se

rv
ed

fo
r

b
at

ch
in

g
a
lg

o
ri

th
m

s.

T
a
b
le

5
.1
:

Q
u

a
li
ta

ti
v
e

su
m

m
ar

y
of

th
e

ex
p

er
im

en
ta

l
re

su
lt

s
fr

om
C

h
ap

te
r

5.

219

6 Simulation of Real World Applications

In the previous two chapters, we studied the influence of lookahead on solution quality in

standard online optimization problems. This chapter extends our analysis to more complex

dynamic systems. We consider two real world applications which reveal their online character

not only in form of an input element disclosure over time but also in form of additional

unforeseeable events:

• Online Order Picking with Lookahead

• Online Pickup and Delivery with Lookahead

Examples for additional random events are breakdowns, no-shows or processing time varia-

tions. Since future implications of these event types are uncertain due to our non-clairvoyance,

it is now not even possible to provide an exact formulation of the snapshot problem at a

given time. Moreover, since applications originate from practice, typically not only one but

a set of objectives is relevant to the decision maker. Accordingly, we find ourselves in the

intrinsically more difficult setting of multicriteria optimization. We are concerned with the

question whether endowing algorithms with lookahead proves beneficial to their outcome

given that we have to regard several optimization goals and additional random influences.

Due to the high complexity incurred by a large number of dependent random variables and

the existence of several optimization goals, we use simulation models to derive statements

about algorithm performance. Optimization algorithms are integrated into the simulation

environment such that whenever the logic of the simulation requires a decision, a correspond-

ing algorithm is invoked to deliver that decision (see also Chapter 2.4.4 and [68]).

Computational experiments were performed on the same hardware as specified at the be-

ginning of Chapter 5. All simulation models were developed in AnyLogic 6.9.0 as discrete

event models. Algorithms were implemented in the native Java environment of AnyLogic

and arising instances of IP and MIP formulations were solved using IBM ILOG CPLEX 12.5

with a prescribed time limit of 120 seconds. A detailed summary of statistical key figures

for each experiment is given in Appendix A.3.

220 6 Simulation of Real World Applications

6.1 Online Order Picking with Lookahead

In a manual order picking system, pickers move through the aisles of a warehouse to retrieve

items packed in boxes as demanded by the orders from external customers. When a picker

has collected all boxes assigned to him, he returns to a depot to unload the boxes and wait

for the next assignment of boxes to be picked ([89], [92]).

Efficiently managing an order picking system is a crucial task both in manufacturing and

distribution logistics which is underlined by the fact that more than the half of all warehouse

operating costs can be attributed to order picking ([57]).

Typically, customer orders arrive throughout the day and the objective is to make the pickers

collect all boxes of the customer orders in a way that meets the decision maker’s goal system

best. Figure 6.1 displays the warehouse under consideration along with charts for some

performance indicators of interest.

Figure 6.1: Animation of the simulation model for an order picking system in AnyLogic.

6.1 Online Order Picking with Lookahead 221

The warehouse layout consists of ten aisles arranged in a lower and an upper block of five

aisles each. Each aisle has 20 storage locations, ten to the left and right, respectively. Depot

and break location are positioned in the lower left corner of the warehouse. The length of

each aisle amounts to 30 meters, the horizontal (vertical) distance between two aisles is 8

(2.5) meters. On average, pickers move at a speed of 1 meter per second. When a picker

is not working and absent without leave, he is displayed in the no-show area. Five pickers

have to commission n = 625 orders over a work day of 600 minutes plus potential overtime.

An order may consist of up to three boxes and the picker capacity amounts to ten boxes.

Aisle traversal is subject to blocking effects ([92]), e.g., because of security or space consid-

erations: Only one picker is allowed inside an aisle at a time. For this reason, each aisle has

a traffic light at its front and rear entry (cf. Figure 6.1) to signal that the aisle is acces-

sible (green light) or inaccessible (red light) at the moment. Pickers that need to enter an

inaccessible aisle have to enqueue at an aisle entry point and wait until the aisle is freed.

Order arrival and data are random, i.e., release time, number of boxes, pick time, drop

time and location of an order are realizations of random variables that are unknown to

the algorithms which have to determine pick lists and routes. In addition, order picking

operations underlie the following random influences:

• Picker velocity profile

• Picker break start and end time

• Picker no-show occurrence

• If applicable, picker no-show start and end time

Because of blocking effects and the large number of random processes, it is out of scope to

give an exact formulation of an optimization problem that takes into account all of these

features. Hence, simulation is deemed a suitable method of analysis.

At the end of a run of an independent simulation replication, the decision maker is supplied

with the following quality indicators for the pick lists and routes which are used to judge on

the quality of the responsible algorithm:

• Makespan, i.e., the time when the last box is unloaded at the depot

• Total distance covered by all pickers

• Picker utilization, i.e., the mean percentage of working pickers over the time horizon

• Box throughput, i.e., the box delivery rate at the depot

222 6 Simulation of Real World Applications

Lookahead appears as time lookahead of duration D ∈ {0, 60, 120, . . . , 600} minutes. We

assume that the warehouse initially contains all items in a quantity sufficient to satisfy all

customer orders arriving over the day such that no additional storage operations are required

in the course of a day. Once an order arrives, its contents are ready to be picked by a picker.

Hence, lookahead forwards the earliest start time of an order, and waiting until the regular

release time from the pure online case is not necessary. In this way, lookahead implies a

change of the rule set in favor of the decision maker.

In our computational experiments, we draw m = 50 independent simulation replications by

initializing the random number generator with a different seed and ensuring independence

of all stochastic processes in each replication.

An algorithm is required to determine the pick lists and routes for all pickers available at

that time so as to fulfill the known and yet unfulfilled customer orders in a way that best

matches the decision maker’s preferences with respect to the quality criteria specified above.

We agree upon algorithm execution whenever the current situation changes as a result of a

customer order arrival, a picker’s re-entry in the system after a break or no-show, or a picker

becoming available upon finished unloading at the depot.

Commonly, all boxes of an order are picked by the same picker in a single route such that

no sorting device needs to be installed. Hence, managing an order picking system consists

of repetitively solving two interrelated subproblems for yet unserved orders:

1. Assignment of orders to pickers such that the total number of boxes of assigned orders

does not exceed the picker capacity (batching).

2. Route calculation16 for each picker such that all boxes of assigned orders are visited

and the route starts and ends at the depot (routing).

Algorithms solve these tasks either sequentially or simultaneously. Sequential methods cope

with the complexity of the problem by decoupling the subproblems from each other similar

to cluster-first route-second approaches for vehicle routing ([101]); the batching algorithm

first assigns orders to pickers; afterwards the routing algorithm determines picker traversal

paths through the aisles including aisle entry and exit points. Note that some batching

algorithms take potential routes as determined by a routing algorithm into account. Due to

the multitude of different batching and routing algorithms, our computational experiments

check which combination of a batching and routing policy is most promising. Simultaneous

methods solve the batching and routing problem at the same time. Only simultaneous

16Because a route in an order picking system has to start and end in the depot, the decision version of the
“problem” contains Hamiltonian Circuit which is known to be an NP-complete problem.

6.1 Online Order Picking with Lookahead 223

methods provide exact solutions to snapshot problem instances. Unfortunately, when many

customer orders are known, e.g., due to lookahead of large duration, problem instances

become huge and solving them almost surely exceeds the prescribed time limit of 120 seconds.

In this case, a substitute solution is retrieved by applying a sequential method. Except for

the exact reoptimization approaches, all of the following algorithms represent well-known

and commonly accepted algorithms for order picking systems (see the survey in [89] and the

included references).

Batching Algorithms

• PriorityBatching (Prio): Sort orders according to a criterion, e.g., non-increasingly

according to their number of boxes. Assign orders successively to batches in a first fit

manner ([89]).

• SeedBatching (Seed): Batches are built sequentially: Initialize each batch with a

seed order, e.g., by selecting an order with the largest number of boxes; fill the batch

with additional orders according to an order congruency rule, e.g., select an order with

the smallest number of additional aisles ([89]).

• SavingsBatching (Svgs): Batches are built simultaneously: Initialize the batch

building process with each order forming a separate batch. In the improvement phase,

combine orders of two batches into one batch if the total distance is reduced according

to the routing algorithm applied until no further improvement is possible ([89]).

• LocalSearchBatching (Ls): Let the neighborhood of a batch set be given by all

batch sets which are obtained by a swap or shift move. A swap move exchanges one

selected order per batch between two batches; a shift move transfers a selected order

from one batch to another. A perturbation of a batch set consists of transferring a

random number of orders from one batch to another if the receiving batch remains

feasible. Execute the following two steps until the total distance of all batches cannot

be reduced in either step: Search within the neighborhood of the current batch set

for a batch set with smaller total distance. Perturb the current batch set for a fixed

number of times to find a batch set with smaller total distance ([89]).

• TabuSearchBatching (Ts): Apply Ls with the modifications that a swap or shift

move that has just been carried out is forbidden along with its inverse move for a pre-

scribed number of iterations and that always the best solution within the neighborhood

of the current batch set is selected even if it leads to a longer total distance ([89]).

224 6 Simulation of Real World Applications

Routing Algorithms

• ReturnRouting (Ret): Lower aisles with boxes are visited first from left to right;

upper aisles with boxes are visited afterwards from right to left. Each aisle except for

the last lower aisle with a box is entered and exited at its front entry; the last lower

aisle with a box is traversed entirely ([89]).

• S-ShapedRouting (S): First, the two leftmost aisles with boxes of both blocks are

traversed upwards entirely. Second, upper aisles with boxes are visited from left to

right where each aisle except for the rightmost is traversed entirely in the direction

opposite to that of the previous aisle; the rightmost aisle is traversed entirely if it is

entered at its rear entry, otherwise it is entered and exited at its front entry. Third,

lower aisles with boxes are visited from right to left where each aisle except for the

rightmost is traversed entirely in the direction opposite to that of the previous aisle;

the rightmost aisle is traversed downwards entirely ([89]).

• LargestGapRouting (Gap): The largest gap of an aisle is its largest segment that

contains no box, i.e., either the segment between two adjacent boxes, between front

entry and lowermost box, or between rear entry and uppermost box. The largest gap

of an aisle separates two parts of the aisle from each other: The lower (upper) part

starts at the front (rear) entry and finishes at the lowermost (uppermost) point of the

largest gap. First, lower parts of lower aisles with boxes are visited from left to right.

Second, upper parts of lower aisles with boxes are visited from right to left. Third,

lower parts of upper aisles with boxes are visited from left to right. Fourth, upper

parts of upper aisles with boxes are visited from right to left. The rightmost aisle of

each block is traversed entirely; in all other aisles, lower (upper) parts are entered and

exited at the front (rear) entry ([89]).

• OptimalRouting (Opt): In Figure 6.2, set N according to the number of boxes in

the batch assigned to the picker and c according to the distances between the boxes to

each other and to the depot. Solve the MIP formulation in Figure 6.3. Visit the boxes

in the order suggested by the obtained solution.

Simultaneous Batching and Routing Algorithm

• Optimal,Optimal (Opt,Opt): In Figure 6.4, set K,M,N, s, κ, u according to the

available pickers and orders in the lookahead and c according to the distances between

the boxes to each other and to the depot. Solve the MIP formulation in Figure 6.5.

Assign orders to pickers and apply for each picker’s boxes the visiting order as suggested

by the obtained solution.

6.1 Online Order Picking with Lookahead 225

Sets

V set of boxes and box locations with V = {1, . . . , N}
Parameters

N number of boxes
cij travel costs between boxes i ∈ V and j ∈ V
c0j travel costs between depot and box j ∈ V
cj0 travel costs between box j ∈ V and depot
M sufficiently large constant (big M)

Variables

xij =

{
1 if box i ∈ V is picked immediately before box j ∈ V,
0 else

x0j =

{
1 if box j ∈ V is the first box picked,

0 else

xj0 =

{
1 if box j ∈ V is the last box picked,

0 else

Tj ≥ 0 picking start time of box j ∈ V

Figure 6.2: Sets, parameters and variables in the MIP formulation of the order routing problem.

min
∑
i∈V

∑
j∈V

cijxij +
∑
j∈V

c0jx0j +
∑
j∈V

cj0xj0 (6.1)

s.t.
∑
j∈V,
j 6=i

xij + xi0 = 1 i ∈ V (6.2)

∑
i∈V,
i 6=j

xij + x0j = 1 j ∈ V (6.3)

∑
j∈V

x0j = 1 (6.4)∑
j∈V

xj0 = 1 (6.5)

Ti + 1 ≤ Tj + M · (1− xij) i, j ∈ V (6.6)

xij ∈ {0, 1} i, j ∈ V (6.7)

x0j, xj0 ∈ {0, 1} j ∈ V (6.8)

Tj ≥ 0 j ∈ V (6.9)

Figure 6.3: MIP formulation of the order routing problem.

226 6 Simulation of Real World Applications

Sets

P set of pickers including dummy picker with P = {1, . . . , K + 1}
V set of boxes and box locations with V = {1, . . . , N}
O set of orders with O = {1, . . . ,M}

Parameters

K number of pickers
M number of orders
N number of boxes
si number of boxes in order i ∈ O
κk capacity of picker k ∈ P
cj1j2k travel costs of picker k ∈ P between boxes j1 ∈ V and j2 ∈ V
c0jk travel costs of picker k ∈ P between depot and box j ∈ V
cj0k travel costs of picker k ∈ P between box and depot j ∈ V
M sufficiently large constant (big M)

uij =

{
1 if box j belongs to order i,

0 else

Variables

xj1j2k =


1 if box j1 ∈ V is picked immediately before box j2 ∈ V

by picker k ∈ P,
0 else

x0jk =

{
1 if box j ∈ V is the first box picked by picker k ∈ P,
0 else

xj0k =

{
1 if box j ∈ V is the last box picked by picker k ∈ P,
0 else

yik =

{
1 if order i ∈ V is served by picker k ∈ P,
0 else

zjk =

{
1 if box j ∈ V is picked by picker k ∈ P,
0 else

Tjk ≥ 0 picking start time of box j ∈ V for picker k ∈ P

Figure 6.4: Sets, parameters and variables in the MIP formulation of the order batching and
routing problem.

6.1 Online Order Picking with Lookahead 227

min
∑
k∈P

∑
j1∈V

∑
j2∈V

cj1j2kxj1j2k +
∑
k∈P

∑
j∈V

c0jkx0jk +
∑
k∈P

∑
j∈V

cj0kxj0k (6.10)

s.t.
∑
k∈K1

∑
j2∈V,
j2 6=j1

xj1j2k +
∑
k∈P

xj10k = 1 j1 ∈ V (6.11)

∑
k∈P

∑
j1∈V,
j1 6=j2

xj1j2k +
∑
k∈P

x0j2k = 1 j2 ∈ V (6.12)

∑
j1∈V

xj1jk + x0jk =
∑
j2∈V

xjj2k + xj0k j ∈ V, k ∈ P (6.13)∑
j∈V

x0jk ≤ 1 k ∈ P (6.14)∑
j∈V

xj0k ≤ 1 k ∈ P (6.15)∑
j∈V

x0jk = yik i ∈ O, k ∈ P (6.16)∑
j∈V

xj0k = yik i ∈ O, k ∈ P (6.17)∑
i∈O

siyik ≤ κk k ∈ P (6.18)∑
j2∈V

xj1j2k ≤ zj1k j1 ∈ V, k ∈ P (6.19)∑
j1∈V

xj1j2k ≤ zj2k j2 ∈ V, k ∈ P (6.20)∑
j∈V

uijzjk = siyik i ∈ O, k ∈ P (6.21)∑
k∈P

yik = 1 i ∈ O (6.22)

Tj1k + 1 ≤ Tj2k + M · (1− xj1j2k) j1, j2 ∈ V, k ∈ P (6.23)

xj1j2k ∈ {0, 1} j1, j2 ∈ V, k ∈ P (6.24)

x0jk, xj0k, zjk ∈ {0, 1} j ∈ V, k ∈ P (6.25)

yik ∈ {0, 1} i ∈ O, k ∈ P (6.26)

Tjk ≥ 0 j ∈ V, k ∈ P (6.27)

Figure 6.5: MIP formulation of the order batching and routing problem.

228 6 Simulation of Real World Applications

In the MIP formulations in Figures 6.3 and 6.5, we decide to get rid of the subtour elimination

constraints by establishing precedence relations between pick operations based on decision

variables for time instants at which boxes are picked in Constraints 6.6 and 6.23, respectively

([132]). In the order batching and routing problem (cf. Figure 6.5), we have to introduce

additional variables yik and zjk to express the (exclusive) assignment of order i (i.e., all of

its associated boxes j) to picker k. In particular, Constraints 6.18 to 6.22 ensure that picker

capacities are respected and that all boxes of an order are picked by the same picker.

6.1.1 Average Results

All combinations of batching and routing algorithms as well as the simultaneous algorithm

were tested. We preface the discussion by noting that rule-based routing policies like Ret, S

or Gap are commonly accepted in practice because of their simplicity, whilst optimal routes

as calculated by Opt or the simultaneous approach in general yield shapelessness routes

which my be hard to follow for a picker and thereby represent an additional source of failure.

A summary of the simulation results obtained for all considered performance criteria is given

in Appendix A.3.1; we restrict attention to two selected performance criteria:

• Total travel distance in kilometers

• Box throughput in boxes per hour

Figure 6.6 shows that – apart from algorithms which rely on a batching determined by Prio

– a substantial reduction in the total distance covered by all pickers is achieved as a result

of providing time lookahead. For lookahead durations D ≥ 300, the optimization potential

appears satiated and the marginal benefit of an additional minute of lookahead becomes

approximately zero.

The positive effect is explained by the same change of the rule set as experienced already

in the TSP in Chapters 4.3 and 5.4: Since a box may be picked up as soon as it becomes

known, increasing the lookahead duration leads to increased probabilities for encountering

spatially proximate boxes which then can be consolidated in a tour. Hence, distance savings

as observed in the TSP carry over to this realistic problem setting which takes random

disturbances into account. However, there are slight differences: Because of the bounded

picker capacity, lookahead cannot be exploited as excessively as in the unrestricted case.

Pickers must return to the depot after ten boxes have been picked; if picker capacities were

unlimited, they could pick all boxes assigned to them in a single tour if full a-priori knowledge

was provided.

6.1 Online Order Picking with Lookahead 229

0 50 100 150 200 250 300 350 400 450 500 550 600

60

70

80

90

100

Lookahead duration D

A
ve
ra
g
e
d
is
ta
n
ce

Prio,RetD Prio,SD Prio,GapD Prio,OptD

Seed,RetD Seed,SD Seed,GapD Seed,OptD

Svgs,RetD Svgs,SD Svgs,GapD Svgs,OptD

Ls,RetD Ls,SD Ls,GapD Ls,OptD

Ts,RetD Ts,SD Ts,GapD Ts,OptD

Opt,OptD

Figure 6.6: Average distances for different lookahead sizes and n = 625 in the order picking
system.

Batching by Prio suffers poor overall performance regardless of the lookahead level and is

eliminated from further consideration; Svgs is also considered inferior and repelled as it

consistently loses to all remaining batching policies; these two batching algorithms are also

outperformed on the other objectives (see Appendix A.3.1). We recognize that the right

batching decision is an essential first step to capitalize from the potential of lookahead.

Batching policies Seed, Ls and Ts exhibit comparable but not identical behavior. We draw

a more precise picture based on the selected routing strategy: Routing policy Ret fails

in comparison to the other routing strategies by cause of its naive approach. Concerning

routing policy Opt, all three batching algorithms are considered equal. Under Gap routing

and small lookahead, Ls batching has slight advantages over the two other batching rules,

whereas in case of medium to large information preview Ts excels Ls and Seed. Under

routing policy S, all algorithms exhibit the same quality; however, performance is degraded

as compared to Opt’s routing for small lookahead. Note that there are no deadheads after

all boxes in an aisle have been collected in S’s routing as opposed to Gap’s routing.

Simultaneously solving the batching and routing problem as targeted by Opt,Opt is found

computationally impracticable to obtain solutions quickly: Whenever more than ten orders,

230 6 Simulation of Real World Applications

i.e., up to 30 boxes, are open, we had to forfeit almost always the exact reoptimization

approach in favor of applying Seed,Gap as a substitute to keep computational efforts low.

For this reason, the plots of Opt,Opt and Seed,Gap coincide for D ≥ 180. This means

that under a three-hour lookahead too many orders and boxes are known as to guarantee

that Opt,Opt could terminate within less than 120 seconds. For the order routing problem

alone, computing time is uncritical because of picker capacities delimiting problem sizes.

Based on the total distance objective function only, we come to the interim conclusion that

Ts, Ls and Seed are deemed the most promising batching policies along with either S or Opt

as recommendable routing strategies. Exact reoptimization is found to be computationally

too hard so as to elicit its full potential.

Before we proceed with the assessment of the results on the box throughput, we first note that

total travel distance and box throughput are no competing optimization goals by definition.

Thus, we do not expect throughput to be negatively affected by the implicit rationale of all

batching and routing policies which lies in finding routes as short as possible. Note that

throughput is to be maximized and used as a frequent key performance indicator for chief

operating officers in warehouses to estimate the overall efficiency of the system consisting of

pickers, orders and the warehouse configuration.

0 50 100 150 200 250 300 350 400 450 500 550 600

120

130

140

150

160

Lookahead duration D

A
ve
ra
ge

th
ro
u
gh

p
u
t

Prio,RetD Prio,SD Prio,GapD Prio,OptD

Seed,RetD Seed,SD Seed,GapD Seed,OptD

Svgs,RetD Svgs,SD Svgs,GapD Svgs,OptD

Ls,RetD Ls,SD Ls,GapD Ls,OptD

Ts,RetD Ts,SD Ts,GapD Ts,OptD

Opt,OptD

Figure 6.7: Average throughput for different lookahead sizes and n = 625 in the order picking
system.

6.1 Online Order Picking with Lookahead 231

The box throughput attained by the pickers as imputed by the decisions of respective al-

gorithms is entirely affirmative to the previously found ranking of batching and routing

algorithms based on the total distance objective as can be seen in Figure 6.7.

While differences in throughput as accomplished by the different algorithms are virtually

non-existent for small lookahead durations, batching algorithms Ts, Ls and Seed unfold

their potential and consistently outperform all other batching policies as well as the exact

reoptimization method for medium to large lookahead window. Routings determined by S

and Opt clearly outperform the other routing strategies.

6.1.2 Distributional Results

Since routing policy Opt intrinsically leads to the shortest route for a given batch, we restrict

the discussion to this routing strategy. Analogous results can be derived for all other routing

policies by consulting Appendix A.3.1. Because batching algorithm Ts has been identified

as one of the top candidates, we select the combined batching and routing policy Ts,Opt600

to be the reference for performance ratios relative to the “best” offline algorithm.

Figure 6.8 confirms the positive effect of lookahead on the total distance. Concerning batch-

ing algorithm candidates Ts, Ls and Seed, a perfect ordering of the empirical counting

distribution functions is observed for successive lookahead durations when the larger one of

them is at most D = 240. Hence, the results point to an exclusive lookahead effect for these

information regimes. For lookahead durations D ≥ 300, we find that empirical counting

distribution functions intransparently cross each other for countless times; hence, no exclu-

sive benefit can be attested for these lookahead durations and the marginal benefit of an

additional time unit of lookahead is approximately zero. Each of the plots has a large steep-

ness in a characteristic interval of total distance values and nearly no steepness elsewhere

indicating that each algorithm corresponds to a specific range of total distances. From the

small confidence intervals with widths collectively smaller than 1 kilometer for each com-

bination of algorithm and lookahead level as well as from the tiny coefficients of variation

collectively not larger than 0.03 in Table A.70 of Appendix A.3.1, we infer representativeness

of the obtained total distances for the given warehouse and picker configuration. However,

we also discover in the table that for larger lookahead durations, instances where additional

lookahead leads to a degradation in the objective value are encountered every now and then.

Yet, since the marginal benefit of lookahead in this information regime is negligible anyway,

this effect is considered unimportant. In fact, the numerous intersection points of the plots

corresponding to these lookahead durations are explained by this observation.

232 6 Simulation of Real World Applications

The empirical counting distribution functions of the performance ratio for the total distance

relative to Ts,Opt600 and relative to the online version of the algorithms are displayed in

Figures 6.9 and 6.10, respectively. Experimental competitive ratios are not larger than 1.33

for batching algorithms Ts, Ls and Seed as also seen in Table A.71 of Appendix A.3.1.

The distance of the plots for two successive lookahead levels to each other admits the same

conclusions as already drawn from the total distance distributions. For lookahead durations

D ≥ 300, performance ratios relative to Ts,Opt600 appear centered around the value 1, i.e.,

deterioration – albeit only at a small magnitude – in consequence of additional lookahead is

encountered on a regular basis. Relative to the pure online version of an algorithm, additional

lookahead leads to performance ratios smaller than 1 for batching algorithm candidates Ts,

Ls and Seed on the largest part of input sequences (cf. Table A.71 of Appendix A.3.1).

Figures 6.11 to 6.13 illustrate the distributional results for the box throughput. For the em-

pirical counting distribution functions of the throughput it is desirable to have larger parts

of the distribution on larger values, i.e., by lookahead we intend to shift the plots to the

right. We observe a qualitative difference compared to the distributional results of the total

distance: The variability of the throughput as well as of performance ratios relative to the

online versions of the algorithms increases considerably for increasing lookahead durations

as confirmed by the coefficients of variation and confidence intervals in Tables A.76 and A.78

of Appendix A.3.1; likewise, the variability of performance ratios relative to Ts,Opt600 de-

creases considerably for increasing lookahead durations (see Table A.77 of Appendix A.3.1):

In the pure online case, orders arrive over the whole time horizon of 600 minutes and the

throughput is considerably influenced by the arrival process, particularly by the last orders;

under full lookahead the throughput is a sole consequence of the pickers’ efficiency on coping

with the input sequence that was revealed at the outset. Hence, throughput is inherently

throttled and regulated in the online case leading to a much more invariant behavior as when

the system is allowed to unfold its throughput freely. This explains the high throughput vari-

ability in the case of large lookahead as opposed to small informational preview.

We conclude this section by pointing out that in order picking where boxes can be picked

up once they are known, massive improvements in all goals could be observed as a result of

an enlarged planning basis for pick list and route generation when additional information is

provided. Since objectives are not conflicting, all goals can be improved and no trade-offs

between different goals have to be taken into account by the algorithms. From a managerial

point of view, we recommend to install technical devices which allow for the retrieval of

lookahead information and to check whether operating strategies currently implemented in

the warehouse are conform with potential warehouse efficiency as extracted by simulation

under batching policies Ts, Ls and Seed combined with routing policies S and Opt.

6.1 Online Order Picking with Lookahead 233

50 60 70 80
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Prio,Opt0 Prio,Opt60

Prio,Opt120 Prio,Opt180

Prio,Opt240 Prio,Opt300

Prio,Opt360 Prio,Opt420

Prio,Opt480 Prio,Opt540

Prio,Opt600 Ts,Opt600

50 60 70 80
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Seed,Opt0 Seed,Opt60

Seed,Opt120 Seed,Opt180

Seed,Opt240 Seed,Opt300

Seed,Opt360 Seed,Opt420

Seed,Opt480 Seed,Opt540

Seed,Opt600 Ts,Opt600

50 60 70 80
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Svgs,Opt0 Svgs,Opt60

Svgs,Opt120 Svgs,Opt180

Svgs,Opt240 Svgs,Opt300

Svgs,Opt360 Svgs,Opt420

Svgs,Opt480 Svgs,Opt540

Svgs,Opt600 Ts,Opt600

50 60 70 80
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ls,Opt0 Ls,Opt60

Ls,Opt120 Ls,Opt180

Ls,Opt240 Ls,Opt300

Ls,Opt360 Ls,Opt420

Ls,Opt480 Ls,Opt540

Ls,Opt600 Ts,Opt600

50 60 70 80
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts,Opt0 Ts,Opt60

Ts,Opt120 Ts,Opt180

Ts,Opt240 Ts,Opt300

Ts,Opt360 Ts,Opt420

Ts,Opt480 Ts,Opt540

Ts,Opt600 Ts,Opt600

50 60 70 80
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt,Opt0 Opt,Opt60

Opt,Opt120 Opt,Opt180

Opt,Opt240 Opt,Opt300

Opt,Opt360 Opt,Opt420

Opt,Opt480 Opt,Opt540

Opt,Opt600 Ts,Opt600

Figure 6.8: Empirical counting distribution functions of distance for n = 625 in the order picking
system.

234 6 Simulation of Real World Applications

1 1.1 1.2 1.3 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Prio,Opt0 Prio,Opt60

Prio,Opt120 Prio,Opt180

Prio,Opt240 Prio,Opt300

Prio,Opt360 Prio,Opt420

Prio,Opt480 Prio,Opt540

Prio,Opt600

1 1.1 1.2 1.3 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Seed,Opt0 Seed,Opt60

Seed,Opt120 Seed,Opt180

Seed,Opt240 Seed,Opt300

Seed,Opt360 Seed,Opt420

Seed,Opt480 Seed,Opt540

Seed,Opt600

1 1.1 1.2 1.3 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Svgs,Opt0 Svgs,Opt60

Svgs,Opt120 Svgs,Opt180

Svgs,Opt240 Svgs,Opt300

Svgs,Opt360 Svgs,Opt420

Svgs,Opt480 Svgs,Opt540

Svgs,Opt600

1 1.1 1.2 1.3 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ls,Opt0 Ls,Opt60

Ls,Opt120 Ls,Opt180

Ls,Opt240 Ls,Opt300

Ls,Opt360 Ls,Opt420

Ls,Opt480 Ls,Opt540

Ls,Opt600

1 1.1 1.2 1.3 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts,Opt0 Ts,Opt60

Ts,Opt120 Ts,Opt180

Ts,Opt240 Ts,Opt300

Ts,Opt360 Ts,Opt420

Ts,Opt480 Ts,Opt540

Ts,Opt600

1 1.1 1.2 1.3 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt,Opt0 Opt,Opt60

Opt,Opt120 Opt,Opt180

Opt,Opt240 Opt,Opt300

Opt,Opt360 Opt,Opt420

Opt,Opt480 Opt,Opt540

Opt,Opt600

Figure 6.9: Empirical counting distribution functions of performance ratio of distance relative to
Ts,Opt600 for n = 625 in the order picking system.

6.1 Online Order Picking with Lookahead 235

0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Prio,Opt0 Prio,Opt60

Prio,Opt120 Prio,Opt180

Prio,Opt240 Prio,Opt300

Prio,Opt360 Prio,Opt420

Prio,Opt480 Prio,Opt540

Prio,Opt600

0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Seed,Opt0 Seed,Opt60

Seed,Opt120 Seed,Opt180

Seed,Opt240 Seed,Opt300

Seed,Opt360 Seed,Opt420

Seed,Opt480 Seed,Opt540

Seed,Opt600

0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Svgs,Opt0 Svgs,Opt60

Svgs,Opt120 Svgs,Opt180

Svgs,Opt240 Svgs,Opt300

Svgs,Opt360 Svgs,Opt420

Svgs,Opt480 Svgs,Opt540

Svgs,Opt600

0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ls,Opt0 Ls,Opt60

Ls,Opt120 Ls,Opt180

Ls,Opt240 Ls,Opt300

Ls,Opt360 Ls,Opt420

Ls,Opt480 Ls,Opt540

Ls,Opt600

0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts,Opt0 Ts,Opt60

Ts,Opt120 Ts,Opt180

Ts,Opt240 Ts,Opt300

Ts,Opt360 Ts,Opt420

Ts,Opt480 Ts,Opt540

Ts,Opt600

0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt,Opt0 Opt,Opt60

Opt,Opt120 Opt,Opt180

Opt,Opt240 Opt,Opt300

Opt,Opt360 Opt,Opt420

Opt,Opt480 Opt,Opt540

Opt,Opt600

Figure 6.10: Empirical counting distribution functions of performance ratio of throughput relative
to the online version for n = 625 in the order picking system.

236 6 Simulation of Real World Applications

100 120 140 160 180 200
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Prio,Opt0 Prio,Opt60

Prio,Opt120 Prio,Opt180

Prio,Opt240 Prio,Opt300

Prio,Opt360 Prio,Opt420

Prio,Opt480 Prio,Opt540

Prio,Opt600 Ts,Opt600

100 120 140 160 180 200
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Seed,Opt0 Seed,Opt60

Seed,Opt120 Seed,Opt180

Seed,Opt240 Seed,Opt300

Seed,Opt360 Seed,Opt420

Seed,Opt480 Seed,Opt540

Seed,Opt600 Ts,Opt600

100 120 140 160 180 200
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Svgs,Opt0 Svgs,Opt60

Svgs,Opt120 Svgs,Opt180

Svgs,Opt240 Svgs,Opt300

Svgs,Opt360 Svgs,Opt420

Svgs,Opt480 Svgs,Opt540

Svgs,Opt600 Ts,Opt600

100 120 140 160 180 200
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ls,Opt0 Ls,Opt60

Ls,Opt120 Ls,Opt180

Ls,Opt240 Ls,Opt300

Ls,Opt360 Ls,Opt420

Ls,Opt480 Ls,Opt540

Ls,Opt600 Ts,Opt600

100 120 140 160 180 200
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts,Opt0 Ts,Opt60

Ts,Opt120 Ts,Opt180

Ts,Opt240 Ts,Opt300

Ts,Opt360 Ts,Opt420

Ts,Opt480 Ts,Opt540

Ts,Opt600 Ts,Opt600

100 120 140 160 180 200
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt,Opt0 Opt,Opt60

Opt,Opt120 Opt,Opt180

Opt,Opt240 Opt,Opt300

Opt,Opt360 Opt,Opt420

Opt,Opt480 Opt,Opt540

Opt,Opt600 Ts,Opt600

Figure 6.11: Empirical counting distribution functions of throughput for n = 625 in the order
picking system.

6.1 Online Order Picking with Lookahead 237

0.6 0.8 1 1.2 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Prio,Opt0 Prio,Opt60

Prio,Opt120 Prio,Opt180

Prio,Opt240 Prio,Opt300

Prio,Opt360 Prio,Opt420

Prio,Opt480 Prio,Opt540

Prio,Opt600

0.6 0.8 1 1.2 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Seed,Opt0 Seed,Opt60

Seed,Opt120 Seed,Opt180

Seed,Opt240 Seed,Opt300

Seed,Opt360 Seed,Opt420

Seed,Opt480 Seed,Opt540

Seed,Opt600

0.6 0.8 1 1.2 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Svgs,Opt0 Svgs,Opt60

Svgs,Opt120 Svgs,Opt180

Svgs,Opt240 Svgs,Opt300

Svgs,Opt360 Svgs,Opt420

Svgs,Opt480 Svgs,Opt540

Svgs,Opt600

0.6 0.8 1 1.2 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ls,Opt0 Ls,Opt60

Ls,Opt120 Ls,Opt180

Ls,Opt240 Ls,Opt300

Ls,Opt360 Ls,Opt420

Ls,Opt480 Ls,Opt540

Ls,Opt600

0.6 0.8 1 1.2 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts,Opt0 Ts,Opt60

Ts,Opt120 Ts,Opt180

Ts,Opt240 Ts,Opt300

Ts,Opt360 Ts,Opt420

Ts,Opt480 Ts,Opt540

Ts,Opt600

0.6 0.8 1 1.2 1.4
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt,Opt0 Opt,Opt60

Opt,Opt120 Opt,Opt180

Opt,Opt240 Opt,Opt300

Opt,Opt360 Opt,Opt420

Opt,Opt480 Opt,Opt540

Opt,Opt600

Figure 6.12: Empirical counting distribution functions of performance ratio of throughput relative
to Ts,Opt600 for n = 625 in the order picking system.

238 6 Simulation of Real World Applications

1 1.2 1.4 1.6
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Prio,Opt0 Prio,Opt60

Prio,Opt120 Prio,Opt180

Prio,Opt240 Prio,Opt300

Prio,Opt360 Prio,Opt420

Prio,Opt480 Prio,Opt540

Prio,Opt600

1 1.2 1.4 1.6
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Seed,Opt0 Seed,Opt60

Seed,Opt120 Seed,Opt180

Seed,Opt240 Seed,Opt300

Seed,Opt360 Seed,Opt420

Seed,Opt480 Seed,Opt540

Seed,Opt600

1 1.2 1.4 1.6
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Svgs,Opt0 Svgs,Opt60

Svgs,Opt120 Svgs,Opt180

Svgs,Opt240 Svgs,Opt300

Svgs,Opt360 Svgs,Opt420

Svgs,Opt480 Svgs,Opt540

Svgs,Opt600

1 1.2 1.4 1.6
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ls,Opt0 Ls,Opt60

Ls,Opt120 Ls,Opt180

Ls,Opt240 Ls,Opt300

Ls,Opt360 Ls,Opt420

Ls,Opt480 Ls,Opt540

Ls,Opt600

1 1.2 1.4 1.6
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Ts,Opt0 Ts,Opt60

Ts,Opt120 Ts,Opt180

Ts,Opt240 Ts,Opt300

Ts,Opt360 Ts,Opt420

Ts,Opt480 Ts,Opt540

Ts,Opt600

1 1.2 1.4 1.6
0

0.2
0.4
0.6
0.8
1

v

F
(v
)

Opt,Opt0 Opt,Opt60

Opt,Opt120 Opt,Opt180

Opt,Opt240 Opt,Opt300

Opt,Opt360 Opt,Opt420

Opt,Opt480 Opt,Opt540

Opt,Opt600

Figure 6.13: Empirical counting distribution functions of performance ratio of throughput relative
to the online version for n = 625 in the order picking system.

6.2 Online Pickup and Delivery with Lookahead 239

6.2 Online Pickup and Delivery with Lookahead

In a pickup and delivery service, customers specify transportation orders between individual

origins and destinations in a road network. In addition, customers provide preferred time

windows for their pickup and delivery time. Transportation orders are served by a fleet of

vehicles and each vehicle has to start and end its routes at an individual depot ([27], [53]).

Dial-a-ride problems are special types of pickup and delivery problems where apart from

travel costs also user convenience in the sense of service quality matters ([53]). While this

may not be relevant to the transportation of goods, it definitely is for the transportation of

persons or perishable freight, e.g., in patient ambulance, taxi services, school bus routing,

or food provision ([158]). Real world pickup and delivery services have to take into account

multiple criteria as intended by dial-a-ride problems due to customer requirements.

Typically, transportation orders arrive throughout the day and the objective is to make the

vehicles pick up and deliver all transportation orders in a way that meets the decision maker’s

goal system best. Figure 6.14 shows the road network under consideration along with charts

for some performance indicators of interest.

Figure 6.14: Animation of the simulation model for a pickup and delivery service in AnyLogic.

240 6 Simulation of Real World Applications

The network represents the urban and suburban region of Karlsruhe and consists of 269

central points and 449 major roads between them. The diameter of the network is 28.5

kilometers; each road is prescribed a specific maximum allowed speed limit. Three vehicles

have to serve n = 50 customer orders arriving over a work day of 600 minutes plus potential

overtime. When a vehicle is not working because of a break or absence without leave (no-

show), its loading space is displayed in gray (cf. Figure 6.14). An order may consist of up

to two units to be transported and the vehicle capacity amounts to five units.

Vehicles are subject to the traffic scene encountered during their service rides, i.e., they have

to adapt to reduced speed limits whenever a traffic jam forbids traveling at regular speed on

a road. Hence, traffic jams represent additional random events in our simulation model.

Order arrival and data are random, i.e., release time, number of units to be transported,

pickup time, delivery time, pickup time window, delivery time window, pickup location and

delivery location of an order are realizations of random variables that are unknown to the

algorithms which have to determine the routes of the vehicles. Pickup and delivery time

windows refer to the preferred service start times of pickups and deliveries, respectively. In

addition, pickup and delivery operations underlie the following random influences:

• Vehicle break start and end time

• Vehicle no-show occurrence

• If applicable, vehicle no-show start and end time

Because of traffic jams and the large number of random processes, it is out of scope to give

an exact formulation of an optimization problem that takes into account all of these features.

Hence, simulation is deemed a suitable method of analysis.

At the end of a run of an independent simulation replication, the decision maker is supplied

with the following quality indicators for the routes which are used to judge on the quality of

the responsible algorithm:

• Makespan, i.e., the time when the last vehicle returns to its depot

• Total distance covered by all vehicles

• Tardiness, i.e., the mean tardiness over all pickup and delivery orders

• Maximum tardiness, i.e., the maximum tardiness over all pickup and delivery orders

• Vehicle utilization, i.e., the mean percentage of working vehicles over the time horizon

• Order throughput, i.e., order fulfillment rate

6.2 Online Pickup and Delivery with Lookahead 241

Lookahead appears as time lookahead of duration D ∈ {0, 60, 120, . . . , 600} minutes. Once

a transportation request arrives, it has to be waited until the corresponding time window

starts before the order can be picked up or delivered, respectively: It is not allowed to incur

an earliness both in the pickup and delivery of an order. Hence, earliest start times of

transportation orders under lookahead are preserved from the pure online case. Lookahead

does not imply a change of the rule set in favor of the decision maker and only serves as a

means of forwarded information release.

In our computational experiments, we draw m = 100 independent simulation replications by

initializing the random number generator with a different seed and ensuring independence

of all stochastic processes in each replication.

An algorithm is required to determine the routes for all vehicles available at that time so

as to fulfill the known and yet unfulfilled transportation orders in a way that best matches

the decision maker’s preferences with respect to the quality criteria specified above. We

agree upon algorithm execution whenever the current situation changes as a result of a

transportation order arrival or a vehicle’s re-entry in the system after a break or no-show.

Despite obvious similarities to the order picking system, some features make the pickup and

delivery service substantially different and demand for other algorithmic approaches:

• Temporal restrictions have to be regarded.

• Earliest start times for pickups and deliveries are not forwarded but retained from the

pure online setting.

• Assignment decisions may be revoked as long as an order has not yet been picked up,

i.e., a route assigned to a vehicle is not fixed when the vehicle leaves the depot.

Managing a pickup and delivery service comprises solving the two interrelated subproblems

of assigning each customer order to a vehicle (batching) and calculating scheduled routes17

for each vehicle according to the assigned orders (routing). Because of the factor time,

not only spatial proximity of locations with respect to a vehicle’s current position but also

temporal proximity of time windows with respect to the current time has to be taken into

account by an algorithm both in its batching and routing decisions. Moreover, each pickup

of an order has to be seen in logical conjunction with the corresponding delivery operation.

Therefore, the variety of solution methods is more limited than for similar problems without

time windows and there is no a-priori subdivision into batching and routing algorithms as

outlined in the order picking system (cf. Chapter 6.1).

17Because a route in a pickup and delivery service has to start and end in the vehicle’s depot, the decision
version of the “problem” contains Hamiltonian Circuit which is known to be an NP-complete problem.

242 6 Simulation of Real World Applications

Note that earliest pickup and delivery times represent hard constraints which may not be

violated. As a result, incurring earliness is not possible and the scheduling problem of finding

the timings for a given sequence of pickup and delivery operations becomes trivial since we

schedule each operation as early as possible. In the following, we tacitly assume rescheduling

in this form to be carried out upon each change of a vehicle’s route.

Some algorithms resort to a performance measure for the quality of a route during their

computations. To this end, the quality of a route is evaluated by aggregating total travel

distance, average tardiness and maximum tardiness into an auxiliary objective function in

form of a linear combination of these three performance indicators (scalarization). Low

objective values are deemed to correlate with high quality routes. We remark that each

of the following algorithms takes into account that a vehicle may currently have already

picked up but not yet delivered units on board, e.g., by inserting a time-uncritical dummy

pickup of load zero at the delivery location. Except for the tabu search heuristic and the

exact reoptimization approach, all of the following algorithms represent modified versions of

the algorithms provided by Kallrath ([101]) for vehicle routing problems arising on hospital

campuses. The neighborhood structure in the tabu search algorithm is taken from the setting

of dial-a-ride problems discussed by Cordeau and Laporte ([53]).

Sequential algorithms

• SequencingReassignmentHeuristic (Srh):

1. Assignment of orders to vehicles : Sort unassigned orders by non-decreasing ear-

liest pickup times and assign orders within a time slice of prescribed length (e.g.,

100 minutes) to vehicles by a modified first fit rule which ensures that orders with

close earliest pickup time (e.g., less than 25 minutes) are not assigned to the same

vehicle. Assign previously unassigned orders by the common first fit rule.

2. Route construction: Create a route for each vehicle by successively inserting its

assigned pickup and delivery locations at best possible points in terms of a mini-

mum objective value increase.

3. Route improvement by resequencing : Remove in each vehicle’s route an order

(both pickup and delivery location) with maximum tardiness, if any, and reinsert

its pickup and delivery locations at best possible points in terms of a maximum

objective value decrease until no further improvement is possible.

4. Route improvement by reassignment : Remove an order with maximum lateness in

each vehicle’s route, if any, and reinsert its pickup and delivery locations in another

vehicle’s route at best possible points in terms of a maximum total objective value

6.2 Online Pickup and Delivery with Lookahead 243

decrease until no further improvement is possible. In order to choose the vehicle

which receives the order, check all vehicles and select one that leads to smallest

total objective value.

5. Route improvement by resequencing : See step 3 ([101]).

• 2Opt (2Opt): Obtain initial routes for each available vehicle by applying Srh. Apply

to each vehicle’s route algorihm 2Optl as outlined in Chapter 5.4 for the TSP without

the first step where l equals the number of pickup and delivery locations; use route

quality as the objective and ensure that feasible sequences of pickup and delivery

locations are obtained (see also [101], [120]).

• SimulatedAnnealing (Sa): A swap move in a route consists of exchanging the

positions of two locations if a feasible sequence of pickup and delivery locations is

obtained; a shift move in a route consists of shifting a number of successive locations

to another position in the route if a feasible sequence of pickup and delivery locations

is obtained. Obtain initial routes for each available vehicle by applying Srh. Apply to

each vehicle’s route algorihm Sal as outlined in Chapter 5.4 for the TSP without the

first step and step 4 replaced by

4. Obtain H ′ by performing a swap or shift move on H at random.

where l equals the number of pickup and delivery locations; use route quality as the

objective ([101])

• TabuSearch (Ts): Let the neighborhood of a route set consist of all route sets which

emanate from removing the pickup and delivery locations of an order from a first route

and inserting them at the best possible points of a second route in terms of a minimum

objective value increase. In Ts, the auxiliary objective function for route quality is

modified by adding a penalty term proportional to the number of times that the move

resulting in the neighboring route set has been applied previously. A route is called

tabu if it results from reinserting an order which has been removed from it within a

prescribed maximum number of immediately preceding iterations. Obtain initial routes

for each available vehicle by applying Srh and set the current route set to this solution.

Repeatedly set the current route set to a route set with minimum total objective value

among all route sets in the neighborhood of the current route set such that each of the

contained routes is non-tabu until no further improvement is made over a prescribed

number of iterations ([53]).

244 6 Simulation of Real World Applications

Simultaneous algorithm

• Optimal (Opt): In Figure 6.15, set K, N , s, l, a, b, κ, linit according to the available

vehicles and orders in the lookahead and c, t according to the distances and travel times

between the locations to each other, to the depots and to the current vehicle locations.

Solve the MIP formulation in Figure 6.16. Assign orders to vehicles and route them as

suggested by the obtained solution.

Sets

C set of vehicles and current vehicle locations with C = {1, . . . , K}
P set of pickup locations with P = {K + 1, . . . , K +N}
C ′ set of vehicle depot locations with C ′ = {K +N + 1, . . . , 2K +N}
D set of delivery locations with D = {2K +N + 1, . . . , 2K + 2N}
V set of all locations with V = C ∪ C ′ ∪ P ∪D

Parameters

K number of vehicles
N number of transportation orders
cijk travel costs (e.g., distance) between locations i ∈ V and j ∈ V
tijk travel time between locations i ∈ V and j ∈ V
si service time at location i ∈ V
li load to be picked up / delivered at location i ∈ V ;

delivery loads are the negative value of corresponding pickup loads
ai earliest possible service start time at location i ∈ V
bi latest possible service start time at location i ∈ V
κk capacity of vehicle k ∈ C
linitk initial load of vehicle k ∈ C
α1, α2, α3 weights for distance (α1), tardiness (α2), maximum tardiness (α3)
M sufficiently large constant (big M)

Variables

xijk =

{
1 if vehicle k ∈ C visits location j ∈ V immediately after location i ∈ V,
0 else

Tik ≥ 0 service start time of vehicle k ∈ C at location i ∈ V
T tardyik ≥ 0 tardiness of service start time of vehicle k ∈ C at location i ∈ V
dmax ≥ 0 maximum tardiness of service start times
Lik ≥ 0 load of vehicle k ∈ C after service at location i ∈ V

Figure 6.15: Sets, parameters and variables in the MIP formulation of the pickup and delivery
problem.

6.2 Online Pickup and Delivery with Lookahead 245

min α1

∑
k∈C

∑
i∈V

∑
j∈V

cijkxijk + α2

∑
k∈C

∑
i∈V

T tardyik + α3dmax (6.28)

s.t.
∑
k∈C

∑
j∈P∪D

xijk + xi,K+N+k,k = 1 i ∈ P ∪D (6.29)∑
j∈P∪D

xijk =
∑

j∈P∪D
xj,K+N+i,k i ∈ P, k ∈ C (6.30)∑

i∈P∪D
xijk + xkjk =

∑
i∈P∪D

xjik + xj,K+N+k,k j ∈ P ∪D, k ∈ C (6.31)∑
j∈P

xkjk + xk,K+N+k,k = 1 k ∈ C (6.32)∑
i∈D

xi,K+N+k,k + xk,K+N+k,k = 1 k ∈ C (6.33)

ai ≤ Tik ≤ bi + T tardyik i ∈ P ∪D, k ∈ C (6.34)

T tardyik ≤ dmax i ∈ V, k ∈ C (6.35)

Tik + si + tijk ≤ Tjk + M · (1− xijk) i, j ∈ V, k ∈ C (6.36)

Tik + ti,K+N+i,k ≤ TK+N+i,k i ∈ P, k ∈ C (6.37)

Lik + lj ≤ Ljk + M · (1− xijk) i, j ∈ V, k ∈ C (6.38)

Ljk − lj ≤ Lik + M · (1− xijk) i, j ∈ V, k ∈ C (6.39)

li ≤ Lik ≤ κk i ∈ P ∪D, k ∈ C (6.40)

Lkk = linitk k ∈ C (6.41)

xijk ∈ {0, 1} i, j ∈ V, k ∈ C (6.42)

Tik, T
tardy
ik , Lik, dmax ≥ 0 i ∈ V, k ∈ C (6.43)

Figure 6.16: MIP formulation of the pickup and delivery problem.

In the MIP formulation in Figure 6.16, the Objective Function 6.28 minimizes the auxiliary

objective function which takes into account travel costs and tardinesses. Constraints 6.29 to

6.33 make sure that each pickup and delivery location is serviced, that a pickup by vehicle

k is also associated with a delivery by vehicle k, that each approached location is left again,

and that each vehicle starts in its current location and ends in its depot. Constraints 6.34

to 6.37 govern the temporal course of events such that time windows are met as good as

possible, travel and service times are respected, and pickups are scheduled before deliveries.

Constraints 6.38 to 6.41 take care of the loads of the vehicles at each time.

246 6 Simulation of Real World Applications

6.2.1 Average Results

All sequential algorithms as well as the simultaneous algorithm were tested. A summary of

the simulation results obtained for all considered performance criteria is given in Appendix

A.3.2; we restrict attention to three selected performance criteria which already illustrate

the trade-offs between competing goals:

• Total travel distance in kilometers

• Tardiness of pickup and delivery operations in minutes

• Order throughput in orders per hour

Figure 6.17 shows the average total distance covered by all vehicles for different lookahead

durations. Apart from Opt, all algorithms possess the potential to acquire reductions in

the total travel distance by providing additional lookahead time. However, because of time

windows, improvement through lookahead in the total travel distance appears neither as

drastic nor as reliable as in all previously considered problem settings that were based on

the TSP with allowed immediate service of requests. We attribute the major degree of

unpredictability concerning the travel distance to the algorithms’ rationale which also opts at

minimizing average and maximum tardiness by means of the auxiliary objective function.

0 50 100 150 200 250 300 350 400 450 500 550 600

1600

1650

1700

1750

Lookahead duration D

A
ve
ra
g
e
d
is
ta
n
ce

SrhD = 2OptD = SaD TsD OptD

Figure 6.17: Average distances for different lookahead sizes and n = 50 in the pickup and delivery
service.

6.2 Online Pickup and Delivery with Lookahead 247

Srh, 2Opt and Sa are found to fare best. These algorithms exhibit identical behavior which

means that applying edge exchanging moves as well as swap and shift moves on the route set

determined by Srh did not result in a single route improvement. Hence, algorithms 2Opt

and Sa which are focused on intra-route improvement ([101]) offer no additional benefit. This

is explained by the already elaborate route construction of Srh based on a best insertion

policy and the problem-related difficulty of obtaining feasible routes upon route modifications

due to time windows in conjunction with logical precedence restrictions between pickup and

delivery operations. Although Ts also resorts to routes initially determined by Srh, the

added possibility of order reassignments from one route to another – which was not taken

into account by 2Opt and Sa – leads to structurally different routes that are obviously

worse for the total distance criterion. Yet, for other objective functions we will see that the

inter-route improvement ([101]) approach of Ts is profitable. Concerning the behavior of

exact reoptimization by Opt, we observe that lookahead seems to lead to unstable routings as

already figured out for the TSP in Chapter 5.4: Partial solutions which may be advantageous

for the given snapshot situation may turn out disastrous whenever the current situation

changes as new transportation orders pop up; as a result, subsequent partial solutions may

exhibit a substantially different character.

0 50 100 150 200 250 300 350 400 450 500 550 600

22

24

26

28

Lookahead duration D

A
ve
ra
ge

ta
rd
in
es
s

SrhD = 2OptD = SaD TsD OptD

Figure 6.18: Average tardinesses for different lookahead sizes and n = 50 in the pickup and
delivery service.

The drawn picture of algorithm quality overly changes when the average tardiness of the

vehicles over all pickup and delivery operations is deemed the predominant performance

yardstick: Figure 6.18 suggests algorithms Ts and Opt as the most promising algorithm

248 6 Simulation of Real World Applications

candidates in order to keep tardiness low which is in sharp contrast to superiority of Srh-

based algorithms with respect to the total distance criterion. At this point, we recall that

route quality is assessed by an auxiliary objective function that takes on the form of a linear

combination of total distance, mean tardiness and maximum tardiness. Hence, algorithms

tend to shift their focus on whatever optimization goal can be addressed best by their ra-

tionale. In this sense, algorithm Ts fares best with respect to tardiness-related objectives

by trading an increase in the total distance for a decrease in the average (and maximum)

tardiness. We note that with respect to our selected objective function, Ts yielded routes

with lower aggregated objective value; however, we refrain from drawing general conclusions

upon the objective value dimension due to the drawbacks of scalarization in multicriteria

optimization (see also [70]).

Unfortunately, none of the algorithms is found to benefit from lookahead with respect to

tardiness-related goals. Quite to the contrary, even sophisticated algorithms like Ts and Opt

have to struggle with the instability of “locally” good solutions whose advantages are likely

to be relinquished in the upcoming part of the request sequence. Instead, ad-hoc planning

without taking into account any additionally provided future information is advisable because

large deviations between previously calculated routes and actual travel routes are likely to

occur anyway as a result of changed circumstances once new orders arrive. Because already in

the pure online setting, at each time there are enough unfulfilled orders to induce high vehicle

utilization (cf. Table A.91 of Appendix A.3.2), it suffices to consider the transportation orders

known in this case. The parallel behavior of Ts and Opt is due to our stipulation to use

Ts as a substitute for Opt in case of more than ten orders so as to guarantee reasonable

computational effort. After a closer look at the average distance in Figure 6.17, we also

recognize the parallel behavior of Ts and Opt in this objective for D ≥ 180. Hence, we

draw the same conclusion as in the order picking system: When the lookahead duration

exceeds three hours, problem sizes become too large as to guarantee that instances of Opt

can be solved within the prescribed computing time limit of 120 seconds. Observe that the

parallel but shifted behavior also illustrates the different trade-offs of the algorithms.

After a glance at the first two objectives, we come to the interim conclusion that the general

dilemma of multicriteria optimization is preserved even if large lookahead capabilities are

provided and that it is not as easy to design algorithms compliant with all objectives in a

system of conflicting goals as in a system of complementing or independent goals like in the

order picking system in Chapter 6.1. Since creating short distance routes may only come

along with the price of large violations in the time window constraints, we recognize that in

the application under consideration the decision maker has to be aware of his own trade-off

relations for different goals in order to reach a final decision on algorithm quality.

6.2 Online Pickup and Delivery with Lookahead 249

The average throughput of transportation orders as achieved by the different algorithms is

shown in Figure 6.19.

0 50 100 150 200 250 300 350 400 450 500 550 600

3.66

3.67

3.68

3.69

3.7

3.71

Lookahead duration D

A
ve
ra
g
e
th
ro
u
gh

p
u
t

SrhD = 2OptD = SaD TsD OptD

Figure 6.19: Average throughput for different lookahead sizes and n = 50 in the pickup and
delivery service.

Looking at the scale of the diagram, we find that differences between the algorithms are only

of minor magnitude. This observation is explained by the hard restriction on the earliest

possible start time of pickup and delivery operations at the lower bound of coresponding time

window intervals that any algorithm has to respect. Thus, we refrain from deriving further

judgments on algorithm quality based upon the throughput attained by the vehicles.

We come to the overall conclusion that in the problem setting under consideration with

time windows and multiple types of unpredictable events, there is no essential benefit from

lookahead in terms of major improvements in the overall route plan. Immediate planning

upon arrival of transportation orders that does not account for too much future information

proves to be a sufficient methodology to determine feasible routes of fair quality. However,

this recommendation only holds true for the investigated setting with an order dispatching

of n = 50 orders which leads to almost full vehicle utilization (cf. also Table A.91 of

Appendix A.3.2). The decision maker is left over with the task of choosing the algorithm

candidate most consonant with his individual preferences: If goals are equally important,

Opt leads to balanced results concerning several objectives; if travel distance (tardiness and

maximum tardiness) minimization is considered the most important goal, Srh (Ts) is the

most promising candidate.

250 6 Simulation of Real World Applications

6.2.2 Distributional Results

The empirical counting distribution functions incurred by the algorithms with respect to the

total travel distance and tardiness are displayed in Figures 6.20 to 6.22 and in Figures 6.23

to 6.25, respectively. A discussion of the distributional results for the order throughput is

omitted because of the criterion’s irrelevance to the decision making process concerning the

selection of a most appropriate algorithm in the given setting.

In Figure 6.20, the empirical counting distribution functions of the total distance are found to

lie close to each other for different lookahead durations and there are countless intersections

of the plots contradicting an exclusively positive benefit from lookahead. Table A.82 of Ap-

pendix A.3.2 also shows that instances with deteriorated total distance value are encountered

every now and then, even if more lookahead was provided. Nevertheless, the slight positive

influence of lookahead can clearly be seen by the relative position of the plots of successive

lookahead levels to each other. Medium widths of confidence intervals and coefficients of

variation admit that the distance to be expected cannot be preestimated as accurately as

in the simulation of the order picking system in Chapter 6.1. Yet, results are representative

because of a fair average deviation of 70 meters per kilometer of the average total distance.

Performance ratios of the total distance incurred by the online algorithms under lookahead

relative to Ts,Opt600 in Figure 6.21 appear centered around the value of 1. This means that

– albeit their informational state is worse – online algorithms under lookahead lead to shorter

routes on a considerable proportion of instances as compared to the routes determined under

complete information. The plots of the empirical counting distribution functions exhibit

numerous intersection points with each other, yet allow to establish an approximate order

by their relative positions to each other for different lookahead durations. Table A.83 of

Appendix A.3.2 confirms that a significant fraction of input instances has experimental

competitive ratio smaller than 1. Analogous statements are derived for the performance

ratio of the total distance relative to the online version of an algorithm (cf. Figure 6.22 and

Table A.84 of Appendix A.3.2).

Concerning the distributional results with respect to the tardiness over all pickup and delivery

operations as incurred by the different algorithms, Figures 6.23 to 6.25 in combination with

Tables A.85 to A.87 of Appendix A.3.2 are affirmative to the ineffectiveness of additional

time units of lookahead: Plots of all different lookahead durations intersect with each other

in a disordered fashion for countless times such that no order relation between any of the

empirical counting distribution functions from different information regimes is recognizable

at all.

6.2 Online Pickup and Delivery with Lookahead 251

1400 1600 1800 2000 2200
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Srh0 Srh60

Srh120 Srh180

Srh240 Srh300

Srh360 Srh420

Srh480 Srh540

Srh600 Opt600

1400 1600 1800 2000 2200
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

2Opt0 2Opt60

2Opt120 2Opt180

2Opt240 2Opt300

2Opt360 2Opt420

2Opt480 2Opt540

2Opt600 Opt600

1400 1600 1800 2000 2200
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Sa0 Sa60

Sa120 Sa180

Sa240 Sa300

Sa360 Sa420

Sa480 Sa540

Sa600 Opt600

1400 1600 1800 2000 2200
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ts0 Ts60

Ts120 Ts180

Ts240 Ts300

Ts360 Ts420

Ts480 Ts540

Ts600 Opt600

1400 1600 1800 2000 2200
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt0 Opt60

Opt120 Opt180

Opt240 Opt300

Opt360 Opt420

Opt480 Opt540

Opt600 Opt600

Figure 6.20: Empirical counting distribution functions of distance for n = 50 in the pickup and
delivery service.

252 6 Simulation of Real World Applications

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Srh0 Srh60

Srh120 Srh180

Srh240 Srh300

Srh360 Srh420

Srh480 Srh540

Srh600

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

2Opt0 2Opt60

2Opt120 2Opt180

2Opt240 2Opt300

2Opt360 2Opt420

2Opt480 2Opt540

2Opt600

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Sa0 Sa60

Sa120 Sa180

Sa240 Sa300

Sa360 Sa420

Sa480 Sa540

Sa600

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ts0 Ts60

Ts120 Ts180

Ts240 Ts300

Ts360 Ts420

Ts480 Ts540

Ts600

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt0 Opt60

Opt120 Opt180

Opt240 Opt300

Opt360 Opt420

Opt480 Opt540

Opt600

Figure 6.21: Empirical counting distribution functions of performance ratio of distance relative
to Ts,Opt600 for n = 50 in the pickup and delivery service.

6.2 Online Pickup and Delivery with Lookahead 253

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Srh0 Srh60

Srh120 Srh180

Srh240 Srh300

Srh360 Srh420

Srh480 Srh540

Srh600

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

2Opt0 2Opt60

2Opt120 2Opt180

2Opt240 2Opt300

2Opt360 2Opt420

2Opt480 2Opt540

2Opt600

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Sa0 Sa60

Sa120 Sa180

Sa240 Sa300

Sa360 Sa420

Sa480 Sa540

Sa600

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ts0 Ts60

Ts120 Ts180

Ts240 Ts300

Ts360 Ts420

Ts480 Ts540

Ts600

0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt0 Opt60

Opt120 Opt180

Opt240 Opt300

Opt360 Opt420

Opt480 Opt540

Opt600

Figure 6.22: Empirical counting distribution functions of performance ratio of distance relative
to the online version for n = 50 in the pickup and delivery service.

254 6 Simulation of Real World Applications

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Srh0 Srh60

Srh120 Srh180

Srh240 Srh300

Srh360 Srh420

Srh480 Srh540

Srh600 Opt600

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

2Opt0 2Opt60

2Opt120 2Opt180

2Opt240 2Opt300

2Opt360 2Opt420

2Opt480 2Opt540

2Opt600 Opt600

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Sa0 Sa60

Sa120 Sa180

Sa240 Sa300

Sa360 Sa420

Sa480 Sa540

Sa600 Opt600

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ts0 Ts60

Ts120 Ts180

Ts240 Ts300

Ts360 Ts420

Ts480 Ts540

Ts600 Opt600

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt0 Opt60

Opt120 Opt180

Opt240 Opt300

Opt360 Opt420

Opt480 Opt540

Opt600 Opt600

Figure 6.23: Empirical counting distribution functions of tardiness for n = 50 in the pickup and
delivery service.

6.2 Online Pickup and Delivery with Lookahead 255

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Srh0 Srh60

Srh120 Srh180

Srh240 Srh300

Srh360 Srh420

Srh480 Srh540

Srh600

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

2Opt0 2Opt60

2Opt120 2Opt180

2Opt240 2Opt300

2Opt360 2Opt420

2Opt480 2Opt540

2Opt600

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Sa0 Sa60

Sa120 Sa180

Sa240 Sa300

Sa360 Sa420

Sa480 Sa540

Sa600

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ts0 Ts60

Ts120 Ts180

Ts240 Ts300

Ts360 Ts420

Ts480 Ts540

Ts600

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt0 Opt60

Opt120 Opt180

Opt240 Opt300

Opt360 Opt420

Opt480 Opt540

Opt600

Figure 6.24: Empirical counting distribution functions of performance ratio of tardiness relative
to Ts,Opt600 for n = 50 in the pickup and delivery service.

256 6 Simulation of Real World Applications

0 2 4 6
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Srh0 Srh60

Srh120 Srh180

Srh240 Srh300

Srh360 Srh420

Srh480 Srh540

Srh600

0 2 4 6
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

2Opt0 2Opt60

2Opt120 2Opt180

2Opt240 2Opt300

2Opt360 2Opt420

2Opt480 2Opt540

2Opt600

0 2 4 6
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Sa0 Sa60

Sa120 Sa180

Sa240 Sa300

Sa360 Sa420

Sa480 Sa540

Sa600

0 2 4 6
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Ts0 Ts60

Ts120 Ts180

Ts240 Ts300

Ts360 Ts420

Ts480 Ts540

Ts600

0 2 4 6
0

0.2

0.4

0.6

0.8

1

v

F
(v
)

Opt0 Opt60

Opt120 Opt180

Opt240 Opt300

Opt360 Opt420

Opt480 Opt540

Opt600

Figure 6.25: Empirical counting distribution functions of performance ratio of tardiness relative
to the online version for n = 50 in the pickup and delivery service.

6.3 Concluding Discussion 257

We conclude this section by pointing out that hard constraints, such as retained earliest

service times, and competing objectives, such as distance and tardiness, make it considerably

harder for algorithms to elicit any improvement out of additional information preview at all.

In particular, straight-forward extensions of pure online algorithms to the lookahead case are

of no use. From a managerial point of view, we recommend not to blindly install technical

devices for the retrieval of lookahead information and not to hope for improvement without

having an algorithm at hand which could reliably make use of lookahead in the face of

competing objectives. Instead of that, it is advisable to spend more money on research for

algorithms that align their rationale with lookahead and multiple goals.

6.3 Concluding Discussion

We analyzed the effect of lookahead on the quality of solutions obtained by several algorithm

candidates in two real world applications by means of simulation studies. In contrast to

the standard online optimization problems examined in Chapters 4 and 5, the settings are

characterized by a higher degree of complexity as a result of additional random events,

realistic restrictions upon system operations and relevance of multiple performance criteria.

We found that lookahead can be exploited to a fair extent similar as in the underlying

standard problems whenever goals are complementary to each other. Under conflicting ob-

jectives, however, we discovered that the positive effects of lookahead found in corresponding

standard problems with only one objective could not be adapted to the multicriteria case.

The future challenge in this field mainly lies in designing algorithms which are able to cope

with the relations of several objectives to each other and also capitalize from lookahead.

Concerning the transferability of statements about the lookahead effect from standard prob-

lems to complex dynamic settings, we recognize that a one-to-one mapping is not possible.

Yet, the standard problems still deliver the vast majority of explanations for the effects that

are observed also in the more realistic settings. For instance, the large difference in the

impact of lookahead in the two applications from this chapter is mainly attributable to the

rule set exchange in form of allowed immediate processing that was invoked in the order

picking system but not in the pickup and delivery service because of time windows.

Added practical features may counteract the effects from the standard problems: The set of

constraints in an application determines the degrees of freedom that an algorithm can take

advantage of to calculate its solution proposal. As a result, a problem’s constraint set already

implies the optimization potential that may be exploited by appropriate algorithms. In this

258 6 Simulation of Real World Applications

context, specified time windows in the pickup and delivery service which are retained under

lookahead appeared as the major spoiler for performance improvement upon provision of

additional information by pruning the problem’s optimization potential already in advance.

Blocking effects in the order picking system had no influence on the total distance objective,

but lead to minor degradations in the throughput and makespan objectives.

Algorithms based on exact reoptimization showed no additional benefit compared to heuristic

methods. In particular, the computing time limit of 120 seconds per snapshot problem as

prescribed by real-time requirements in both applications was exceeded almost surely for

lookahead duration D ≥ 180 minutes due to the size of the resulting IP and MIP models

such that substitute solutions had to be determined by heuristic approaches anyway.

Table 6.1 displays the results of the simulation studies in a condensed form: For the order

picking system, we found considerable improvement in all goals through additional lookahead

(column ∆f r,r
′,P,P ′

Alg,Alg′). The benefit is accrued through allowed immediate processing of boxes

and not having to wait for their arrivals (column ∆fP,P
′

Alg,Alg′). As a consequence, the mere

benefit of information is deemed negligible (column ∆f r,r
′

Alg). Quite to the contrary, in the

pickup and delivery service hardly any improvement occurred because of the algorithms’

incapability to deal with competing objectives in general. Since time windows were retained,

the minor lookahead effects are attributed to their informational component. The column

Alg∗ indicates whether there was some algorithm or a group of comparably good algorithms

that outperformed the remaining algorithms. In the order picking system, routing strategies

Opt and S along with batching algorithms Ls, Ts and Seed excelled remaining strategy

combinations for three of the four objectives; in the remaining objective there were no

remarkable differences. In the pickup and delivery service, each algorithm exhibited a trade-

off between competing objectives. While Srh, 2Opt and Sa lead to shorter total distances

than Ts and Opt, the latter group did considerably better with respect to the objectives

related to tardiness. In both applications, exact reoptimization did not result in significant

advantages compared to heuristics (column Opt) and deterioration in the objective value

could occur although additional lookahead was provided (column Deterioration).

While in standard problems viable algorithms often perform at comparable quality levels,

the simulation studies revealed that algorithms may exhibit fundamentally different perfor-

mance in realistic settings. Hence, the first step towards efficient logistics operations consists

of selecting the right algorithm which matches the decision maker’s preferences best. We

conclude that simulation is a suitable method to elicit the information (e.g., key performance

indicators or counting distributions of algorithm performance for multiple goals) needed by

managers of real world systems to successfully deploy their decision making processes.

6.3 Concluding Discussion 259

A
p
p

li
ca

ti
on

R
u

le
s

T
y
p

e
O

b
je

ct
iv

e
∆
f
r,
r
′ ,
P
,P
′

A
l
g
,A

l
g
′

∆
f
r,
r
′

A
l
g

∆
f
P
,P
′

A
l
g
,A

l
g
′

A
l
g
∗

O
p
t

D
et

er
io

ra
ti

o
n

O
rd

er
p
ic

k
in

g
p

er
m

u
ta

ti
on

s,
b
lo

ck
in

g
ti

m
e

lo
ok

a
h

ea
d

m
ak

es
p
an

la
rg

e
n
eg

li
gi

b
le

la
rg

e
n
o

n
o

y
es

d
is

ta
n

ce
la

rg
e

n
eg

li
gi

b
le

la
rg

e
y
es

n
o

y
es

u
ti

li
za

ti
on

la
rg

e
n
eg

li
gi

b
le

la
rg

e
y
es

ye
s

y
es

th
ro

u
gh

p
u
t

la
rg

e
n

eg
li
gi

b
le

la
rg

e
ye

s
n
o

y
es

P
ic

k
u

p
an

d
d
el

iv
er

y
ti

m
e

w
in

d
ow

s,
tr

a
ffi

c
sc

en
e

ti
m

e
lo

ok
ah

ea
d

m
ak

es
p
an

n
eg

li
gi

b
le

n
eg

li
gi

b
le

ze
ro

ye
s

n
o

y
es

d
is

ta
n

ce
sm

al
l

sm
al

l
ze

ro
y
es

n
o

ye
s

ta
rd

in
es

s
ze

ro
ze

ro
ze

ro
ye

s
n
o

ye
s

m
ax

im
u
m

ta
rd

in
es

s
ze

ro
ze

ro
ze

ro
ye

s
n
o

y
es

u
ti

li
za

ti
on

m
ed

iu
m

m
ed

iu
m

ze
ro

n
o

n
o

ye
s

th
ro

u
gh

p
u
t

n
eg

li
gi

b
le

n
eg

li
gi

b
le

ze
ro

ye
s

n
o

ye
s

T
a
b
le

6
.1
:

Q
u

al
it

at
iv

e
su

m
m

ar
y

of
th

e
si

m
u
la

ti
on

re
su

lt
s

fr
o
m

C
h
ap

te
r

6
.

261

7 Conclusion and Outlook

In this thesis, the topic of online optimization with lookahead was addressed from a multi-

faceted point of view with the intention to lay out generically applicable methodologies for

the analysis of algorithms and to demonstrate their applicability in different problem settings.

We close this thesis by summarizing the main contributions, relating them to the research

questions introduced in Chapter 1 and pointing out to directions for future research.

7.1 Conclusion

Catalyzed by dozens of applications featuring online optimization problems with lookahead

on the one hand, but given the poor set of comprehensive methods for algorithm analysis

in this optimization paradigm on the other hand, we started our research in the fundamen-

tals of the concepts of online optimization and lookahead information. Since both terms

are understood and used in a versatile fashion, we first established clear, but yet flexible

definitions for these terms which facilitate a modeling of lookahead in different online opti-

mization problems using the same taxonomy and notation. Additionally, we subdivided the

mechanism of lookahead into an informational and a processual component. Referring to

Chapter 2, this leads us to the answer of the first research question:

RQ1 What do we understand by lookahead?

Lookahead is a mechanism of information release that specifies the difference in the

process of information disclosure as compared to a reference online optimization prob-

lem (instance revelation rule substitution) and that might impose a set of constraints

differing from the set of constraints in the reference online optimization problem upon

the processing of the input elements (rule set substitution).

In conjunction with the answer of this question, we emphasize that lookahead – both the

way it leads to forwarded information release and also the way it affects processing of input

262 7 Conclusion and Outlook

elements – is defined in existing literature only in problem-specific contexts of publications

which prohibits a structurally-oriented view on the effects caused by it. Using the approach

outlined in this thesis, we are able to attribute a reason to lookahead effects observed in

problems and to transfer that knowledge also to other settings.

We realized that in order to design algorithms for online optimization problems with looka-

head, we first need to understand how they should act within the solution process of an

instance. Driven by the sequentiality in the information element release process, we found a

large number of analogies to the control of discrete event dynamic systems (cf. Chapter 2).

As a result, we adapted the concepts from this domain and coined them towards the needs of

the solution process in an instance of an online optimization problem with lookahead. This

allows us to address research question RQ2 based on the general modeling framework for

online optimization with lookahead developed in Chapter 3:

RQ2 Which formalism can be used to model the solution process in an online optimization

problem with lookahead in a generally applicable framework?

The solution process is abstractly emulated as the state trajectory of our state-based

discrete event modeling framework. The evolution of the state trajectory over time

is induced by the decisions of an algorithm for the snapshot problems of the online

optimization problem under consideration. Algorithm execution occurs whenever the

state is stimulated to advance, e.g., upon an external trigger in form of an event such

as the release of a new input element.

A particular emphasis in the modeling framework is put on lookahead-related issues such

as processing modes, orders and accessibilities. Hence, devising algorithms for online opti-

mization with lookahead is no more seen as a problem-specific task independent of a general

optimization paradigm, but closely intertwined with the abstract concept of lookahead as

introduced in Chapter 2 and the framework from Chapter 3. Moreover, solution concepts can

now be described independent of domains in an abstract way using a unified taxonomy.

The commonly used standard performance yardstick for online algorithms is competitive

analysis although there is undisputed agreement that this worst-case analysis lacks display-

ing the typical behavior of an algorithm over all input sequences and has numerous other

drawbacks ([65], [73]). We are lead to the conclusion that other, more comprehensive anal-

ysis methods are required in practice: According to the very nature of online optimization,

no stochastic information is given, i.e., one has to hedge against all possible scenarios. As

a consequence, we impute the uniform distribution as the distribution of maximum entropy

(or analogously of minimum prior information) on the release of input elements ([97], [98]).

7.1 Conclusion 263

What we obtain are counting results yielding frequency information about the occurrences

of specific objective function or performance ratio values. We called the corresponding dis-

tribution functions the counting distribution functions of the objective value and of the

performance ratio, respectively (see Chapter 2); they form the basis of our approach to

performance measurement in online optimization with lookahead as addressed in RQ3 and

conducted in Chapters 4 to 6:

RQ3 Which performance measurement approach is best suitable to analyze the performance

of algorithms in online optimization problems with lookahead and to relate the quality

of algorithms to each other?

Algorithm performance is not measured based on a single performance indicator. Algo-

rithm performance is evaluated by the decision maker with his individual preferences

based on the counting distribution functions of the objective value and of the per-

formance ratio for candidate algorithms relative to each other. The objective value

distribution yields global information concerning the absolute performance achieved

by individual algorithms, whereas performance ratio distributions indicate the relative

performance of algorithms to each other on the same input instance, i.e., a type of local

information. Different lookahead regimes are accounted for by relating algorithm per-

formance to some reference information regime which yields the baseline for counting

distributions both of the objective value and of the performance ratio.

Presenting a decision maker with the counting distribution functions instead of single per-

formance indicators puts the burden of defining trade-offs between worst case, best case and

average case off our shoulders. The decision maker is equipped with all possible information

except for the direct mapping of objective values and performance ratios to input instances.

For holistic decision making, we cannot think of a more comprehensive way to supply a

decision maker with information about algorithm behavior. In case of a high number of

algorithm alternatives, one can conduct an average-case analysis in the first step to filter out

algorithms which shall be investigated by distributional analysis in the second step.

Knowing the magnitude of the lookahead impact on solution quality for different algorithms

in a given application is important to practitioners when they have to decide whether it

would be beneficial to invest in new machinery with lookahead devices, and if so, what

level of lookahead capability should be selected. From an academic point of view, it is of

interest which kinds of problems are amenable to lookahead in terms of improved algorithm

performance and which are not. We studied the impact of lookahead in theory (cf. Chapter

4), in basic practical settings (cf. Chapter 5), and in real world applications (cf. Chapter 6)

which brings us in a position to answer the last research question:

264 7 Conclusion and Outlook

RQ4 What is the value of different degrees of lookahead in specific online optimization

problems with lookahead?

The extent of the lookahead effect clearly depends on the problem setting under in-

vestigation. Overall, we found that there is a positive effect on objective values and

on performance ratios when algorithms are supplied with lookahead. However, the

magnitude of the effect depends on several key characteristics of the problem such as:

• Allowance of algorithms to take advantage of lookahead by rule set substitution

• Admissible degrees of freedom for algorithms as imposed by problem constraints

• Possibility of bad decisions and risk of deterioration upon lookahead provision

• Performance quality gap between offline algorithms and pure online algorithms

without lookahead

Details on the magnitude of the lookahead effects for different levels of information

preview as determined for a large number of problem classes can be looked up in

Chapters 4 to 6 along with corresponding explanations. We remark that problems

where solution quality is strongly affected by permuting the input element release

order during processing and where algorithms are allowed to change that order have a

high potential for significant benefits from lookahead as long as the feasible set of the

instance admits the necessary degrees of freedom. Moreover, there are problem types

where more information never leads to a degradation in performance, but also problem

types where “wrong” decisions may be made although more information was provided.

To the best of our knowledge, our exact analyses in Chapter 4 are the first to give an exact

image reproducing algorithm behavior over all input sequences in the respective problems.

Despite the small size of the basic settings, as a byproduct, the proofs already provided

explanations for the lookahead effects which were also encountered in the more realistic

settings. The computational results of Chapter 5 may serve to future works in the field of

online optimization as an information pool concerning the impact of lookahead in several

standard problems. In Chapter 6, we already took advantage of this information pool by

easily delivering explanations for the effects of lookahead in two real world applications.

Nonetheless, in this context it became clear that results can never be transferred in a one-

to-one fashion due to additional constraints in practical problems. We recognized that in

real world applications there is an additional dimension of onlineness in form of random

occurrences that are out of control in operations and hardly calculable at all. Due to the

complexity of the settings, we used simulation models to study the influence of lookahead with

respect to the input element disclosure when systems are additionally subject to unforeseeable

7.2 Outlook 265

random events. We recommend to make use of simulation studies in order to determine the

lookahead effect prior to operating a system whenever an algorithm needs to be selected but

the number of dependent random variables – whose realizations taken together lead to the

realization of the random variable for the attained objective value – is too large.

Algorithms in online optimization are required to respond to the arrival of input data within

few seconds, i.e., they have to be real-time compliant. Throughout our computational experi-

ments, we could not observe an advantage of exact reoptimization over heuristic methods in

solving the snapshot problems: “Locally” optimal solutions lost their efficacy once the situa-

tion changed upon arrival of new input elements. Quite to the contrary, computational effort

is out of scale compared to heuristics such that no need is seen for exact reoptimization.

Overall, this thesis

• provided a clear and versatile definition of the optimization paradigm of online opti-

mization with lookahead,

• related it to the established paradigms of online and offline optimization,

• characterized components of the lookahead effect,

• presented a holistic approach to performance assessment of candidate algorithms which

may resort to different information regimes,

• developed a generic modeling framework for online optimization with lookahead, and

• determined the value of information using exact analysis in basic problem settings,

extensive sample-based analysis in standard problem settings and simulation studies

in real world applications.

7.2 Outlook

Future research directions in the field of online optimization with lookahead emerge from

limitations of the presented approaches on the one hand and from related topics that were

not addressed in this thesis on the other hand.

The derivation of exact expressions for the counting distribution functions in Chapter 4

showed that already in basic settings it is hard to gain access to the combinatorial structures

that govern the behavior of algorithms during input element processing. We recognize that

for more complex settings an analysis of this type is likely to be out of scope such that the

approach has to be transferred to sample-based methods (cf. Chapters 5 and 6) or reduced

266 7 Conclusion and Outlook

to order relations between objective value distributions of algorithms (cf. also [9], [10], [90]).

With respect to the first direction, we identify the need for a thorough examination of how to

propagate methods of distributional analysis to experimental algorithm analysis in general

and especially in settings which involve multicriteria online optimization with lookahead;

concerning the second direction, it has to be checked which types of mathematical statements

are realistic to be elicited in further exact analysis.

Because the provision of lookahead may intrinsically yield an altered set of constraints as a

consequence of a rule set substitution, we argue that defining the snapshot problem to be

solved in each reoptimization step in a way different from just adapting the overall problem

to the current lookahead set could contribute to enhanced algorithm performance. The

rationale behind this idea is to bring the algorithm in a best possible position for future

steps at the end of each reoptimization step. As an example, we suggest in the snapshot

problems of the TSP not to compute a Hamiltonian path that returns to the origin but

to a point that minimizes the (expectation of the) total distance of all locations to that

point (median); likewise, one could avoid zig-zagging in routes by additionally incorporating

enforced stability constraints which forbid frequent moves to distant regions. For the bin

packing problem, we carried out this approach by modifying the objective function such

that not only the total number of bins is minimized but also that bins as full and empty

as possible are generated and not bins at medium capacity (see also [72]). The stream of

publications on online stochastic combinatorial optimization by Bent and Van Hentenryck

([22], [23], [24], [25]) represents a first step in this direction by taking into account several

alternative objective functions. Future research could also consider variable forms of the

snapshot problem as input to algorithms already in their design phase, and the goal would

be to determine the snapshot problem type which yields the best algorithm performance.

In the same line of argumentation, we point out that stability (in the sense of consistency over

time) of the partial solutions with regard to some problem-related criterion could be a major

contributor to solid decision making: For instance, in the TSP, “nearness”-oriented algorithm

NearestNeighbor lead to routes that were more robust under future scenarios than those

determined by exact reoptimization. Similar results are also known for (reactive) project

scheduling ([58]) where it is recommended to insert time buffers in schedules to make them

robust for future deviations. Hence, we conclude that the inclusion of stability-enforcing

constraints into subproblem formulations should be addressed in future works.

Throughout this thesis, we were only concerned with the value of lookahead but not with

the costs that are related to it. Realizing lookahead in practice amounts to the installation

of costly technical devices such as barcode or radio-frequency identification (RFID) tag

7.2 Outlook 267

scanners which facilitate transmitting information about input elements at an earlier point

in time. Installation and operation of such machinery induces a fair amount of costs, and it

needs to be checked whether the benefits of lookahead exceed the costs of lookahead device

installation and operations. To this end, economic models and methods that translate the

value of lookahead into a monetary equivalent are still needed.

Real world applications typically feature multiple, oftentimes conflicting optimization goals.

As figured out in Chapter 6, the task of designing algorithms which are able to exploit looka-

head in more than one goal at the same time is not trivial and requires more sophisticated

approaches than mere adaptation of pure online algorithms to the lookahead case. Future re-

search in this direction would comprise devising algorithms for practical settings specifically

tailored towards lookahead utilization that take several objectives as well as their trade-offs

into account in their rationale.

With the paging and ski rental problem, we identified two problem classes where algorithms

could not go wrong by using additional information. Contrarily, in all other problems we

encountered instances with objective value degradation although lookahead capabilities were

enlarged. It is of general interest to find characterizations for problem settings where it can

be guaranteed that additional information never leads to worse decisions (similar to matroid

structures ensuring optimality of greedy choices in offline optimization ([82])). We conjecture

that properties akin to those required for employing dynamic programming upon a given

problem, namely optimality of subsolutions and independence of substructures ([54]), are

required in order to assure no threat by providing additional lookahead information. We

leave a detailed examination of this question to future research.

Another interesting research question encompasses the relation between resource augmenta-

tion and lookahead: We might ask whether physical resources and informational resources

are interchangeable. In the framework of competitive analysis, it has been shown for two

single machine scheduling problems that increasing processor speed is more valuable than

allowing an algorithm to foresee the future ([28], [102]). The effect of resource augmen-

tation on competitive ratios has also been investigated in paging (by increased cache size

([149])) and bin packing (by increased bin sizes ([56], [71])). In these problems, the connec-

tion of resource augmentation to lookahead – not only in competitive analysis but also in

distributional analysis – remains an open question.

Although tremendous research effort has been spent on online optimization over the past two

decades, it is still widely believed that the state of the art is yet far from reaching maturity

([84], [85]). In particular, there is no agreed groundwork of methods and tools for compre-

hensive algorithm analysis in online optimization, not to mention in online optimization with

268 7 Conclusion and Outlook

lookahead. This thesis aimed at contributing towards the elimination of this deficiency by

providing a commonly agreeable basis for the modeling and the analysis of algorithms in this

optimization paradigm in order to establish a harmonized understanding of the mechanism

of information preview and to foster the use of holistic algorithm assessment methods across

application domains. We recognize that there is still a long way to go in this direction,

but we hope for future research to revisit, foster or extend some of the ideas and concepts

brought up in this thesis.

269

A Appendix

A.1 Additional Proofs from Chapter 4

A.1.1 Proof of Lemma 4.4

a) See [131], chapter 7, pages 115 and 116.

b) The proof is a modification of [127]: The number of recurring unit-sloped paths of

length 2i with sk ≥ −1 for k = 0, 1, 2, . . . , 2i is the number of all recurring unit-sloped

paths of length 2i minus the number of all recurring unit-sloped paths of length 2i

which hit the number −2 at least once.

For each of these paths hitting −2 at least once, define T as the first time −2 is hit by

the path (see Figure A.1). According to the reflection principle, we can start a mirror

path at T with respect to the horizontal axis with ordinate −2 that necessarily ends

at height −4 at time 2k (the mirror position of 0 with respect to −2).

1 T 2i

1

Figure A.1: Reflection principle.

Thus, counting the paths from (0, 0) to (2k, 0) hitting −2 at least once is the same

as counting the paths from (0, 0) to (2k,−4) hitting −2 at least once. But any such

path must hit −2 at some point, i.e., we are computing the total number of paths from

(0, 0) to (2k,−4).

270 A Appendix

In total, we obtain that the number of recurring unit-sloped paths of length 2i with

sk ≥ −1 for k = 0, 1, 2, . . . , 2i is equal to the total number of paths from (0, 0) to

(2k, 0) minus the total number of paths from (0, 0) to (2k,−4) which is equal to(
2k

k

)
−
(

2k

k + 2

)
=

(2k)!

(k!)2
− (2k)!

(k + 2)!(k − 2)!

=
(2k)!

(k!)2

(
1− k(k − 1)

(k + 1)(k + 2)

)

=
(2k)!

(k!)2

(k + 1)(k + 2)− k(k − 1)

(k + 1)(k + 2)

=
(2k)!

(k!)2

4k + 2

(k + 1)(k + 2)

=
1

k + 2

1

(k + 1)!

(2k)!(4k + 2)

k!

=
1

k + 2

1

(k + 1)!

(2k)!(4k + 2)(k + 1)

(k + 1)!

=
1

k + 2

1

(k + 1)!

(2k)!(4k2 + 6k + 2)

(k + 1)!

=
1

k + 2

1

(k + 1)!

(2k)!(2k + 1)(2k + 2)

(k + 1)!

=
1

k + 2

(
2k + 2

k + 1

)
= Ck+1.

A.1.2 Proof of Lemma 4.9

We show that ∑
i≥1

Ci

(
2n− 2i

m− i

)
−
∑
i≥1

Ci−1

(
2n− 2i+ 1

m− i+ 1

)
= 0.

Notice that from the definition of the binomial coefficient, i ranges in {1, 2, . . . , 2n−m} in

both terms.

A.1 Additional Proofs from Chapter 4 271

Hence,

∑
i≥1

Ci

(
2n− 2i

m− i

)
−
∑
i≥1

Ci−1

(
2n− 2i+ 1

m− i+ 1

)

= C1

(
2n− 2

m− 1

)
+ C2

(
2n− 4

m− 2

)
+ C3

(
2n− 6

m− 3

)
+ . . .+ C2n−m

(
2m− n
2m− n

)

−
(
C0

(
2n− 1

m

)
+ C1

(
2n− 3

m− 1

)
+ C2

(
2n− 5

m− 2

)
+ . . .+ C2n−m−1

(
2m− n+ 1

2m− n+ 1

))

= C1

(
2n− 3

m− 2

)
+ C2

(
2n− 5

m− 3

)
+ . . .+ C2n−m−1

(
2m− n+ 1

2m− 2n

)
+ C2n−m −

(
2n− 1

m

)

=
2n−m−1∑
i=1

Ci

(
2n− 2i− 1

m− i− 1

)
+ C2n−m −

(
2n− 1

m

)

=
2n−m−1∑
i=0

Ci

(
2n− 2i− 1

m− i− 1

)
−
(

2n− 1

m− 1

)
+ C2n−m −

(
2n− 1

m

)

=
2n−m∑
i=0

Ci

(
2n− 2i− 1

m− i− 1

)
− C2n−m

(
2m− 2n− 1

2m− 2n− 1

)
−
(

2n− 1

m− 1

)
+ C2n−m −

(
2n− 1

m

)

=
∑
i≥0

Ci

(
2n− 2i− 1

m− i− 1

)
− C2n−m −

(
2n− 1

m− 1

)
+ C2n−m −

(
2n− 1

m

)

=

(
2n

m

)
−
(

2n− 1

m− 1

)
−
(

2n− 1

m

)
=

(
2n

m

)
−
(

2n

m

)
= 0.

272 A Appendix

A.2 Numerical Results from Chapter 5

This section contains a detailed statistical summary of the numerical results gathered during

the experimental analysis in Chapter 5. For each problem, we give three tables:

• The first table subsumes in one line per algorithm and lookahead level the key figures

with respect to the objective values incurred over the set of sampled input instances.

• The second table subsumes in one line per algorithm and lookahead level the key

figures with respect to the performance ratio relative to an optimal offline algorithm if

available, or relative to the best offline algorithm applied.

• The third table subsumes in one line per algorithm and lookahead level the key figures

with respect to the performance ratio relative to an online algorithm from the same

class of algorithms.

The following key figures were calculated from the samples of random input instances:

µ Average of objective value or performance ratio

CV Coefficient of variation of objective value or performance ratio

95 % CI 95 % confidence interval of objective value or performance ratio

min Minimum objective value or performance ratio

max Maximum objective value or performance ratio

q0.01 First percentile of objective value or performance ratio counting distribution

q0.5 Median of objective value or performance ratio counting distribution

q0.99 99th percentile of objective value or performance ratio counting distribution

% det. Fraction of samples with deterioration in the objective value when compared to the

same algorithm with the lookahead level preceding the algorithm’s lookahead level

F (1) Fraction of samples with performance ratio smaller than 1 relative to the optimal

offline algorithm if available, or relative to a best possible offline algorithm among

those offline algorithms which terminated

1 − F (1) Fraction of samples with performance ratio larger than 1 relative to an online

algorithm from the same class of algorithms

A.2 Numerical Results from Chapter 5 273

A.2.1 Online Ski Rental with Lookahead

Costs for nmax = 100

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Alg1,1 50 0 [50, 50] 50 50 50 50 50
Alg1,5 48.1 0.19 [46.3, 49.9] 1 50 1.5 50 50 0
Alg1,10 45.95 0.28 [43.42, 48.48] 1 50 1.5 50 50 0
Alg1,20 42.4 0.37 [39.31, 45.49] 1 50 1.5 50 50 0
Alg1,30 39.85 0.41 [36.63, 43.07] 1 50 1.5 50 50 0
Alg1,40 38.3 0.42 [35.13, 41.47] 1 50 1.5 50 50 0

Alg1,50...100 37.75 0.42 [34.63, 40.87] 1 50 1.5 50 50 0
Alg25,1 59.24 0.45 [53.99, 64.49] 1 74 1.5 74 74
Alg25,5 57.34 0.47 [52.03, 62.65] 1 74 1.5 74 74 0
Alg25,10 55.19 0.5 [49.75, 60.63] 1 74 1.5 74 74 0
Alg25,20 51.64 0.52 [46.35, 56.93] 1 74 1.5 74 74 0
Alg25,30 49.09 0.53 [43.96, 54.22] 1 74 1.5 50.5 74 0
Alg25,40 47.54 0.52 [42.67, 52.41] 1 74 1.5 50.5 74 0

Alg25,50...100 37.75 0.42 [34.63, 40.87] 1 50 1.5 50 50 0
Alg50,1 62.74 0.61 [55.2, 70.28] 1 99 1.5 99 99
Alg50,5 60.84 0.62 [53.41, 68.27] 1 99 1.5 50.5 99 0
Alg50,10 58.69 0.62 [51.52, 65.86] 1 99 1.5 50.5 99 0
Alg50,20 55.14 0.62 [48.41, 61.87] 1 99 1.5 50.5 99 0
Alg50,30 52.59 0.6 [46.37, 58.81] 1 99 1.5 50.5 99 0
Alg50,40 51.04 0.58 [45.21, 56.87] 1 99 1.5 50.5 99 0

Alg50,50...100 37.75 0.42 [34.63, 40.87] 1 50 1.5 50 50 0
Alg75,1 59.99 0.7 [51.72, 68.26] 1 124 1.5 50.5 124
Alg75,5 58.09 0.69 [50.19, 65.99] 1 124 1.5 50.5 124 0
Alg75,10 55.94 0.67 [48.56, 63.32] 1 124 1.5 50.5 124 0
Alg75,20 52.39 0.62 [45.99, 58.79] 1 124 1.5 50.5 124 0
Alg75,30 50.5 0.57 [44.83, 56.17] 1 100 1.5 50.5 99.5 0
Alg75,40 50.5 0.57 [44.83, 56.17] 1 100 1.5 50.5 99.5 0

Alg75,50...100 37.75 0.42 [34.63, 40.87] 1 50 1.5 50 50 0
Alg100,1 50.99 0.59 [45.06, 56.92] 1 149 1.5 50.5 124
Alg100,5 50.5 0.57 [44.83, 56.17] 1 100 1.5 50.5 99.5 0
Alg100,10 50.5 0.57 [44.83, 56.17] 1 100 1.5 50.5 99.5 0
Alg100,20 50.5 0.57 [44.83, 56.17] 1 100 1.5 50.5 99.5 0
Alg100,30 50.5 0.57 [44.83, 56.17] 1 100 1.5 50.5 99.5 0
Alg100,40 50.5 0.57 [44.83, 56.17] 1 100 1.5 50.5 99.5 0

Alg100,50...100 37.75 0.42 [34.63, 40.87] 1 50 1.5 50 50 0

Table A.1: Costs in the ski rental problem.

274 A Appendix

Performance ratios of costs relative to Opt for nmax = 100

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Alg1,1 2.75 2.11 [1.61, 3.89] 1 50 1 1 37.5 0
Alg1,5 1.75 0.91 [1.44, 2.06] 1 10 1 1 9.17 0
Alg1,10 1.43 0.58 [1.27, 1.59] 1 5 1 1 4.77 0
Alg1,20 1.17 0.29 [1.1, 1.24] 1 2.5 1 1 2.44 0
Alg1,30 1.06 0.14 [1.03, 1.09] 1 1.67 1 1 1.64 0
Alg1,40 1.01 0.04 [1, 1.02] 1 1.25 1 1 1.23 0

Alg1,50...100 1 0 [1, 1] 1 1 1 1 1 0
Alg25,1 1.52 0.29 [1.43, 1.61] 1 2.96 1 1.48 2.9 0
Alg25,5 1.44 0.25 [1.37, 1.51] 1 2.55 1 1.48 2.51 0
Alg25,10 1.37 0.22 [1.31, 1.43] 1 2.18 1 1.48 2.15 0
Alg25,20 1.28 0.19 [1.23, 1.33] 1 1.68 1 1.48 1.66 0
Alg25,30 1.23 0.19 [1.18, 1.28] 1 1.48 1 1.01 1.48 0
Alg25,40 1.2 0.19 [1.16, 1.24] 1 1.48 1 1.01 1.48 0

Alg25,50...100 1 0 [1, 1] 1 1 1 1 1 0
Alg50,1 1.5 0.33 [1.4, 1.6] 1 1.98 1 1.98 1.98 0
Alg50,5 1.46 0.33 [1.37, 1.55] 1 1.98 1 1.01 1.98 0
Alg50,10 1.42 0.34 [1.32, 1.52] 1 1.98 1 1.01 1.98 0
Alg50,20 1.35 0.33 [1.26, 1.44] 1 1.98 1 1.01 1.98 0
Alg50,30 1.3 0.3 [1.22, 1.38] 1 1.98 1 1.01 1.98 0
Alg50,40 1.27 0.27 [1.2, 1.34] 1 1.98 1 1.01 1.98 0

Alg50,50...100 1 0 [1, 1] 1 1 1 1 1 0
Alg75,1 1.44 0.43 [1.32, 1.56] 1 2.48 1 1.01 2.48 0
Alg75,5 1.41 0.42 [1.29, 1.53] 1 2.48 1 1.01 2.48 0
Alg75,10 1.36 0.4 [1.25, 1.47] 1 2.48 1 1.01 2.48 0
Alg75,20 1.29 0.33 [1.21, 1.37] 1 2.48 1 1.01 2.48 0
Alg75,30 1.25 0.26 [1.19, 1.31] 1 2 1 1.01 1.99 0
Alg75,40 1.25 0.26 [1.19, 1.31] 1 2 1 1.01 1.99 0

Alg75,50...100 1 0 [1, 1] 1 1 1 1 1 0
Alg100,1 1.26 0.29 [1.19, 1.33] 1 2.98 1 1.01 2.48 0
Alg100,5 1.25 0.26 [1.19, 1.31] 1 2 1 1.01 1.99 0
Alg100,10 1.25 0.26 [1.19, 1.31] 1 2 1 1.01 1.99 0
Alg100,20 1.25 0.26 [1.19, 1.31] 1 2 1 1.01 1.99 0
Alg100,30 1.25 0.26 [1.19, 1.31] 1 2 1 1.01 1.99 0
Alg100,40 1.25 0.26 [1.19, 1.31] 1 2 1 1.01 1.99 0

Alg100,50...100 1 0 [1, 1] 1 1 1 1 1 0

Table A.2: Performance ratios of costs relative to Opt in the ski rental problem.

A.2 Numerical Results from Chapter 5 275

Performance ratios of costs relative to online version for nmax = 100

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Alg1,1 1 0 [1, 1] 1 1 1 1 1 0
Alg1,5 0.96 0.19 [0.92, 1] 0.02 1 0.03 1 1 0
Alg1,10 0.92 0.28 [0.87, 0.97] 0.02 1 0.03 1 1 0
Alg1,20 0.85 0.37 [0.79, 0.91] 0.02 1 0.03 1 1 0
Alg1,30 0.8 0.41 [0.74, 0.86] 0.02 1 0.03 1 1 0
Alg1,40 0.77 0.42 [0.71, 0.83] 0.02 1 0.03 1 1 0

Alg1,50...100 0.76 0.42 [0.7, 0.82] 0.02 1 0.03 1 1 0
Alg25,1 1 0 [1, 1] 1 1 1 1 1 0
Alg25,5 0.97 0.13 [0.95, 0.99] 0.34 1 0.34 1 1 0
Alg25,10 0.95 0.18 [0.92, 0.98] 0.34 1 0.34 1 1 0
Alg25,20 0.9 0.24 [0.86, 0.94] 0.34 1 0.34 1 1 0
Alg25,30 0.86 0.26 [0.82, 0.9] 0.34 1 0.34 1 1 0
Alg25,40 0.84 0.26 [0.8, 0.88] 0.34 1 0.34 1 1 0

Alg25,50...100 0.71 0.26 [0.67, 0.75] 0.34 1 0.34 0.68 1 0
Alg50,1 1 0 [1, 1] 1 1 1 1 1 0
Alg50,5 0.98 0.1 [0.96, 1] 0.51 1 0.51 1 1 0
Alg50,10 0.96 0.14 [0.93, 0.99] 0.51 1 0.51 1 1 0
Alg50,20 0.92 0.17 [0.89, 0.95] 0.51 1 0.51 1 1 0
Alg50,30 0.9 0.19 [0.87, 0.93] 0.51 1 0.51 1 1 0
Alg50,40 0.88 0.19 [0.85, 0.91] 0.51 1 0.51 1 1 0

Alg50,50...100 0.75 0.33 [0.7, 0.8] 0.51 1 0.51 0.51 1 0
Alg75,1 1 0 [1, 1] 1 1 1 1 1 0
Alg75,5 0.98 0.08 [0.96, 1] 0.6 1 0.61 1 1 0
Alg75,10 0.97 0.11 [0.95, 0.99] 0.6 1 0.61 1 1 0
Alg75,20 0.94 0.14 [0.91, 0.97] 0.6 1 0.61 1 1 0
Alg75,30 0.92 0.14 [0.89, 0.95] 0.6 1 0.61 1 1 0
Alg75,40 0.92 0.14 [0.89, 0.95] 0.6 1 0.61 1 1 0

Alg75,50...100 0.8 0.31 [0.75, 0.85] 0.4 1 0.4 0.99 1 0
Alg100,1 1 0 [1, 1] 1 1 1 1 1 0
Alg100,5 1 0.03 [0.99, 1.01] 0.67 1 0.84 1 1 0
Alg100,10 1 0.03 [0.99, 1.01] 0.67 1 0.84 1 1 0
Alg100,20 1 0.03 [0.99, 1.01] 0.67 1 0.84 1 1 0
Alg100,30 1 0.03 [0.99, 1.01] 0.67 1 0.84 1 1 0
Alg100,40 1 0.03 [0.99, 1.01] 0.67 1 0.84 1 1 0

Alg100,50...100 0.84 0.22 [0.8, 0.88] 0.34 1 0.42 0.99 1 0

Table A.3: Performance ratios of costs relative to the online version of an algorithm in the ski
rental problem.

276 A Appendix

A.2.2 Online Paging with Lookahead

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Fifo1 63.71 0.07 [63.43, 63.99] 46 77 52 64 74
Fifo5 56.49 0.07 [56.24, 56.74] 44 72 46.5 56.5 66 0
Fifo10 50.34 0.07 [50.12, 50.56] 40 66 42 50 58.5 0
Fifo20 42.69 0.06 [42.53, 42.85] 35 52 37 43 49 0
Fifo40 40.31 0.06 [40.16, 40.46] 33 48 34 40 47 0
Fifo60 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Fifo80 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Fifo100 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Fifo1,B 63.71 0.07 [63.43, 63.99] 46 77 52 64 74
Fifo5,B 60.29 0.07 [60.03, 60.55] 46 76 49.5 60 70 0.01
Fifo10,B 56.11 0.07 [55.87, 56.35] 44 74 46 56 66 0.04
Fifo20,B 49.97 0.07 [49.75, 50.19] 40 65 42 50 58 0.01
Fifo40,B 44.89 0.07 [44.7, 45.08] 35 55 38 45 52 0.01
Fifo60,B 42.57 0.07 [42.39, 42.75] 34 53 36 42 49 0.1
Fifo80,B 42.76 0.07 [42.57, 42.95] 35 52 36 43 50 0.43
Fifo100,B 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0

Lifo1 63.97 0.07 [63.69, 64.25] 52 78 53 64 75
Lifo5 56.82 0.07 [56.57, 57.07] 45 69 47 57 67 0
Lifo10 50.48 0.07 [50.26, 50.7] 40 61 43 50 59 0
Lifo20 42.77 0.07 [42.58, 42.96] 35 51 36.5 43 49.5 0
Lifo40 40.31 0.06 [40.16, 40.46] 33 48 34 40 47 0
Lifo60 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Lifo80 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Lifo100 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Lifo1,B 63.97 0.07 [63.69, 64.25] 52 78 53 64 75
Lifo5,B 60.51 0.07 [60.25, 60.77] 49 73 51 60 71 0.04
Lifo10,B 56.39 0.07 [56.15, 56.63] 44 69 47 56 65.5 0.04
Lifo20,B 49.98 0.07 [49.76, 50.2] 40 61 42 50 58 0.01
Lifo40,B 44.96 0.07 [44.76, 45.16] 36 55 38 45 52 0.01
Lifo60,B 42.58 0.07 [42.4, 42.76] 33 52 36 42.5 49 0.08
Lifo80,B 42.79 0.07 [42.6, 42.98] 34 53 36 43 49 0.45
Lifo100,B 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0

Lfu1 63.89 0.07 [63.61, 64.17] 50 77 53 64 74
Lfu5 56.86 0.07 [56.61, 57.11] 45 69 47 57 67 0
Lfu10 50.53 0.07 [50.31, 50.75] 40 63 42.5 50 59.5 0
Lfu20 42.75 0.07 [42.56, 42.94] 34 51 36 43 49.5 0
Lfu40 40.31 0.06 [40.16, 40.46] 33 48 34 40 47 0
Lfu60 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Lfu80 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Lfu100 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Lfu1,B 63.89 0.07 [63.61, 64.17] 50 77 53 64 74
Lfu5,B 60.59 0.07 [60.33, 60.85] 47 73 50 60 71 0
Lfu10,B 56.4 0.07 [56.16, 56.64] 43 69 47 56 66 0.03
Lfu20,B 49.97 0.07 [49.75, 50.19] 41 62 42 50 59 0
Lfu40,B 44.94 0.07 [44.74, 45.14] 37 55 39 45 52 0
Lfu60,B 42.5 0.07 [42.32, 42.68] 33 52 36 42 49 0.08
Lfu80,B 42.77 0.07 [42.58, 42.96] 34 51 36.5 43 50 0.44
Lfu100,B 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0

Lru1 63.63 0.07 [63.35, 63.91] 46 78 52 64 74
Lru5 56.68 0.07 [56.43, 56.93] 44 72 48 57 66.5 0
Lru10 50.41 0.07 [50.19, 50.63] 38 64 42 50 58 0
Lru20 42.71 0.07 [42.52, 42.9] 35 51 36 43 49 0
Lru40 40.31 0.06 [40.16, 40.46] 33 48 34 40 47 0
Lru60 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Lru80 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Lru100 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0
Lru1,B 63.63 0.07 [63.35, 63.91] 46 78 52 64 74
Lru5,B 60.39 0.07 [60.13, 60.65] 46 76 50 60 70 0
Lru10,B 56.15 0.07 [55.91, 56.39] 44 72 46.5 56 66 0.01
Lru20,B 49.86 0.07 [49.64, 50.08] 39 64 42 50 58 0
Lru40,B 44.94 0.07 [44.74, 45.14] 37 55 38 45 52 0
Lru60,B 42.52 0.07 [42.34, 42.7] 33 54 36 42 49 0.04
Lru80,B 42.81 0.07 [42.62, 43] 35 51 36 43 49.5 0.45
Lru100,B 40.3 0.06 [40.15, 40.45] 33 48 34 40 47 0

Table A.4: Costs in the paging problem when each page is equally probable.

A.2 Numerical Results from Chapter 5 277

Performance ratios of costs relative to Opt for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Fifo1 1.58 0.05 [1.58, 1.58] 1.29 1.86 1.39 1.58 1.79 0
Fifo5 1.4 0.05 [1.4, 1.4] 1.18 1.6 1.24 1.4 1.55 0
Fifo10 1.25 0.04 [1.25, 1.25] 1.07 1.42 1.12 1.25 1.38 0
Fifo20 1.06 0.03 [1.06, 1.06] 1 1.21 1 1.05 1.16 0
Fifo40 1 0 [1, 1] 1 1.03 1 1 1 0
Fifo60 1 0 [1, 1] 1 1 1 1 1 0
Fifo80 1 0 [1, 1] 1 1 1 1 1 0
Fifo100 1 0 [1, 1] 1 1 1 1 1 0
Fifo1,B 1.58 0.05 [1.58, 1.58] 1.29 1.86 1.39 1.58 1.79 0
Fifo5,B 1.5 0.05 [1.5, 1.5] 1.28 1.73 1.32 1.5 1.66 0
Fifo10,B 1.39 0.05 [1.39, 1.39] 1.16 1.61 1.23 1.39 1.55 0
Fifo20,B 1.24 0.05 [1.24, 1.24] 1.07 1.41 1.11 1.24 1.38 0
Fifo40,B 1.11 0.04 [1.11, 1.11] 1 1.32 1.02 1.11 1.23 0
Fifo60,B 1.06 0.03 [1.06, 1.06] 1 1.17 1 1.05 1.13 0
Fifo80,B 1.06 0.03 [1.06, 1.06] 1 1.18 1 1.05 1.14 0
Fifo100,B 1 0 [1, 1] 1 1 1 1 1 0

Lifo1 1.59 0.08 [1.58, 1.6] 1.2 2.14 1.31 1.59 1.95 0
Lifo5 1.41 0.07 [1.4, 1.42] 1.14 1.74 1.21 1.41 1.69 0
Lifo10 1.25 0.06 [1.25, 1.25] 1.07 1.51 1.11 1.25 1.44 0
Lifo20 1.06 0.03 [1.06, 1.06] 1 1.19 1 1.05 1.15 0
Lifo40 1 0 [1, 1] 1 1.03 1 1 1 0
Lifo60 1 0 [1, 1] 1 1 1 1 1 0
Lifo80 1 0 [1, 1] 1 1 1 1 1 0
Lifo100 1 0 [1, 1] 1 1 1 1 1 0
Lifo1,B 1.59 0.08 [1.58, 1.6] 1.2 2.14 1.31 1.59 1.95 0
Lifo5,B 1.5 0.08 [1.49, 1.51] 1.2 1.89 1.26 1.5 1.81 0
Lifo10,B 1.4 0.07 [1.39, 1.41] 1.16 1.8 1.2 1.4 1.67 0
Lifo20,B 1.24 0.05 [1.24, 1.24] 1.04 1.49 1.1 1.24 1.41 0
Lifo40,B 1.12 0.04 [1.12, 1.12] 1 1.29 1.02 1.11 1.23 0
Lifo60,B 1.06 0.03 [1.06, 1.06] 1 1.19 1 1.05 1.14 0
Lifo80,B 1.06 0.03 [1.06, 1.06] 1 1.19 1 1.06 1.14 0
Lifo100,B 1 0 [1, 1] 1 1 1 1 1 0

Lfu1 1.59 0.07 [1.58, 1.6] 1.3 1.89 1.36 1.59 1.85 0
Lfu5 1.41 0.06 [1.4, 1.42] 1.15 1.72 1.22 1.41 1.62 0
Lfu10 1.25 0.05 [1.25, 1.25] 1.07 1.49 1.11 1.25 1.42 0
Lfu20 1.06 0.03 [1.06, 1.06] 1 1.19 1 1.05 1.15 0
Lfu40 1 0 [1, 1] 1 1.03 1 1 1 0
Lfu60 1 0 [1, 1] 1 1 1 1 1 0
Lfu80 1 0 [1, 1] 1 1 1 1 1 0
Lfu100 1 0 [1, 1] 1 1 1 1 1 0
Lfu1,B 1.59 0.07 [1.58, 1.6] 1.3 1.89 1.36 1.59 1.85 0
Lfu5,B 1.51 0.06 [1.5, 1.52] 1.24 1.79 1.29 1.51 1.72 0
Lfu10,B 1.4 0.06 [1.39, 1.41] 1.13 1.69 1.22 1.4 1.61 0
Lfu20,B 1.24 0.05 [1.24, 1.24] 1.07 1.51 1.11 1.24 1.41 0
Lfu40,B 1.12 0.04 [1.12, 1.12] 1 1.26 1.02 1.11 1.23 0
Lfu60,B 1.05 0.03 [1.05, 1.05] 1 1.19 1 1.05 1.14 0
Lfu80,B 1.06 0.03 [1.06, 1.06] 1 1.18 1 1.05 1.15 0
Lfu100,B 1 0 [1, 1] 1 1 1 1 1 0

Lru1 1.58 0.05 [1.58, 1.58] 1.3 1.82 1.41 1.58 1.77 0
Lru5 1.41 0.04 [1.41, 1.41] 1.21 1.61 1.26 1.41 1.54 0
Lru10 1.25 0.04 [1.25, 1.25] 1.08 1.43 1.14 1.25 1.37 0
Lru20 1.06 0.03 [1.06, 1.06] 1 1.17 1 1.05 1.15 0
Lru40 1 0 [1, 1] 1 1.03 1 1 1 0
Lru60 1 0 [1, 1] 1 1 1 1 1 0
Lru80 1 0 [1, 1] 1 1 1 1 1 0
Lru100 1 0 [1, 1] 1 1 1 1 1 0
Lru1,B 1.58 0.05 [1.58, 1.58] 1.3 1.82 1.41 1.58 1.77 0
Lru5,B 1.5 0.05 [1.5, 1.5] 1.23 1.7 1.34 1.5 1.65 0
Lru10,B 1.39 0.04 [1.39, 1.39] 1.21 1.57 1.24 1.39 1.53 0
Lru20,B 1.24 0.04 [1.24, 1.24] 1.1 1.39 1.12 1.24 1.35 0
Lru40,B 1.12 0.03 [1.12, 1.12] 1.02 1.24 1.03 1.12 1.22 0
Lru60,B 1.06 0.03 [1.06, 1.06] 1 1.15 1 1.05 1.12 0
Lru80,B 1.06 0.03 [1.06, 1.06] 1 1.15 1 1.07 1.14 0
Lru100,B 1 0 [1, 1] 1 1 1 1 1 0

Table A.5: Performance ratios of costs relative to Opt in the paging problem when each page is
equally probable.

278 A Appendix

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Fifo1 1 0 [1, 1] 1 1 1 1 1 0
Fifo5 0.89 0.05 [0.89, 0.89] 0.73 1 0.77 0.89 0.98 0
Fifo10 0.79 0.06 [0.79, 0.79] 0.66 0.93 0.69 0.79 0.9 0
Fifo20 0.67 0.06 [0.67, 0.67] 0.56 0.81 0.59 0.67 0.77 0
Fifo40 0.63 0.05 [0.63, 0.63] 0.54 0.78 0.56 0.63 0.72 0
Fifo60 0.63 0.05 [0.63, 0.63] 0.54 0.78 0.56 0.63 0.72 0
Fifo80 0.63 0.05 [0.63, 0.63] 0.54 0.78 0.56 0.63 0.72 0
Fifo100 0.63 0.05 [0.63, 0.63] 0.54 0.78 0.56 0.63 0.72 0
Fifo1,B 1 0 [1, 1] 1 1 1 1 1 0
Fifo5,B 0.95 0.04 [0.95, 0.95] 0.76 1.04 0.83 0.95 1 0.01
Fifo10,B 0.88 0.06 [0.88, 0.88] 0.7 1 0.77 0.88 0.98 0
Fifo20,B 0.79 0.06 [0.79, 0.79] 0.65 0.96 0.68 0.78 0.9 0
Fifo40,B 0.71 0.06 [0.71, 0.71] 0.59 0.87 0.61 0.7 0.81 0
Fifo60,B 0.67 0.06 [0.67, 0.67] 0.56 0.8 0.59 0.67 0.76 0
Fifo80,B 0.67 0.06 [0.67, 0.67] 0.54 0.8 0.59 0.67 0.77 0
Fifo100,B 0.63 0.05 [0.63, 0.63] 0.54 0.78 0.56 0.63 0.72 0

Lifo1 1 0 [1, 1] 1 1 1 1 1 0
Lifo5 0.89 0.05 [0.89, 0.89] 0.74 1.02 0.77 0.89 1 0
Lifo10 0.79 0.07 [0.79, 0.79] 0.62 1 0.67 0.79 0.92 0
Lifo20 0.67 0.08 [0.67, 0.67] 0.52 0.85 0.56 0.67 0.8 0
Lifo40 0.63 0.08 [0.63, 0.63] 0.47 0.83 0.51 0.63 0.76 0
Lifo60 0.63 0.08 [0.63, 0.63] 0.47 0.83 0.51 0.63 0.76 0
Lifo80 0.63 0.08 [0.63, 0.63] 0.47 0.83 0.51 0.63 0.76 0
Lifo100 0.63 0.08 [0.63, 0.63] 0.47 0.83 0.51 0.63 0.76 0
Lifo1,B 1 0 [1, 1] 1 1 1 1 1 0
Lifo5,B 0.95 0.04 [0.95, 0.95] 0.8 1.05 0.85 0.95 1.03 0.04
Lifo10,B 0.88 0.06 [0.88, 0.88] 0.68 1.03 0.76 0.88 1 0
Lifo20,B 0.78 0.07 [0.78, 0.78] 0.63 0.96 0.65 0.78 0.9 0
Lifo40,B 0.71 0.08 [0.71, 0.71] 0.55 0.89 0.58 0.7 0.85 0
Lifo60,B 0.67 0.08 [0.67, 0.67] 0.5 0.87 0.54 0.67 0.8 0
Lifo80,B 0.67 0.09 [0.67, 0.67] 0.51 0.89 0.55 0.67 0.81 0
Lifo100,B 0.63 0.08 [0.63, 0.63] 0.47 0.83 0.51 0.63 0.76 0

Lfu1 1 0 [1, 1] 1 1 1 1 1 0
Lfu5 0.89 0.04 [0.89, 0.89] 0.76 1 0.79 0.89 0.97 0
Lfu10 0.79 0.05 [0.79, 0.79] 0.65 0.95 0.7 0.79 0.9 0
Lfu20 0.67 0.06 [0.67, 0.67] 0.54 0.8 0.58 0.67 0.78 0
Lfu40 0.63 0.07 [0.63, 0.63] 0.53 0.77 0.54 0.63 0.73 0
Lfu60 0.63 0.07 [0.63, 0.63] 0.53 0.77 0.54 0.63 0.73 0
Lfu80 0.63 0.07 [0.63, 0.63] 0.53 0.77 0.54 0.63 0.73 0
Lfu100 0.63 0.07 [0.63, 0.63] 0.53 0.77 0.54 0.63 0.73 0
Lfu1,B 1 0 [1, 1] 1 1 1 1 1 0
Lfu5,B 0.95 0.03 [0.95, 0.95] 0.82 1.03 0.87 0.95 1 0
Lfu10,B 0.88 0.04 [0.88, 0.88] 0.75 1 0.79 0.89 0.97 0
Lfu20,B 0.78 0.06 [0.78, 0.78] 0.65 0.93 0.68 0.78 0.89 0
Lfu40,B 0.71 0.06 [0.71, 0.71] 0.57 0.85 0.6 0.7 0.81 0
Lfu60,B 0.67 0.07 [0.67, 0.67] 0.53 0.8 0.57 0.67 0.77 0
Lfu80,B 0.67 0.07 [0.67, 0.67] 0.55 0.82 0.58 0.67 0.78 0
Lfu100,B 0.63 0.07 [0.63, 0.63] 0.53 0.77 0.54 0.63 0.73 0

Lru1 1 0 [1, 1] 1 1 1 1 1 0
Lru5 0.89 0.04 [0.89, 0.89] 0.78 0.98 0.81 0.89 0.97 0
Lru10 0.79 0.05 [0.79, 0.79] 0.66 0.92 0.7 0.79 0.9 0
Lru20 0.67 0.06 [0.67, 0.67] 0.57 0.83 0.59 0.67 0.77 0
Lru40 0.63 0.05 [0.63, 0.63] 0.55 0.77 0.57 0.63 0.71 0
Lru60 0.63 0.05 [0.63, 0.63] 0.55 0.77 0.57 0.63 0.71 0
Lru80 0.63 0.05 [0.63, 0.63] 0.55 0.77 0.57 0.63 0.71 0
Lru100 0.63 0.05 [0.63, 0.63] 0.55 0.77 0.57 0.63 0.71 0
Lru1,B 1 0 [1, 1] 1 1 1 1 1 0
Lru5,B 0.95 0.03 [0.95, 0.95] 0.86 1 0.88 0.95 1 0
Lru10,B 0.88 0.04 [0.88, 0.88] 0.77 0.98 0.79 0.88 0.97 0
Lru20,B 0.78 0.05 [0.78, 0.78] 0.66 0.9 0.69 0.78 0.89 0
Lru40,B 0.71 0.05 [0.71, 0.71] 0.59 0.83 0.63 0.71 0.8 0
Lru60,B 0.67 0.05 [0.67, 0.67] 0.58 0.81 0.6 0.67 0.75 0
Lru80,B 0.67 0.05 [0.67, 0.67] 0.57 0.79 0.6 0.68 0.76 0
Lru100,B 0.63 0.05 [0.63, 0.63] 0.55 0.77 0.57 0.63 0.71 0

Table A.6: Performance ratios of costs relative to the online version of an algorithm in the paging
problem when each page is equally probable.

A.2 Numerical Results from Chapter 5 279

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Fifo1 22.77 0.26 [22.4, 23.14] 6 42 10 23 37
Fifo5 21.78 0.25 [21.44, 22.12] 6 40 10 22 35 0
Fifo10 21.05 0.25 [20.72, 21.38] 6 35 10 21 33.5 0
Fifo20 19.91 0.23 [19.63, 20.19] 6 35 10 20 30 0
Fifo40 18.88 0.21 [18.63, 19.13] 6 31 10 19 28 0
Fifo60 18.64 0.2 [18.41, 18.87] 6 29 10 19 27 0
Fifo80 18.6 0.2 [18.37, 18.83] 6 29 10 19 27 0
Fifo100 18.59 0.2 [18.36, 18.82] 6 29 10 19 27 0
Fifo1,B 22.77 0.26 [22.4, 23.14] 6 42 10 23 37
Fifo5,B 22.28 0.26 [21.92, 22.64] 6 42 10 22 36 0
Fifo10,B 21.84 0.25 [21.5, 22.18] 6 40 10 22 34.5 0.05
Fifo20,B 21.02 0.24 [20.71, 21.33] 6 35 10 21 33 0.03
Fifo40,B 20.26 0.23 [19.97, 20.55] 6 35 10 20 31 0.05
Fifo60,B 19.66 0.22 [19.39, 19.93] 6 32 10 20 29 0.15
Fifo80,B 19.6 0.22 [19.33, 19.87] 6 33 10 20 29 0.27
Fifo100,B 18.59 0.2 [18.36, 18.82] 6 29 10 19 27 0

Lifo1 45.08 0.41 [43.93, 46.23] 6 90 10 46 86
Lifo5 23.92 0.27 [23.52, 24.32] 6 46 10 24 39 0
Lifo10 21.67 0.25 [21.33, 22.01] 6 36 10 22 33 0
Lifo20 19.97 0.22 [19.7, 20.24] 6 33 10 20 30 0
Lifo40 18.88 0.21 [18.63, 19.13] 6 30 10 19 27.5 0
Lifo60 18.63 0.2 [18.4, 18.86] 6 29 10 19 27 0
Lifo80 18.59 0.2 [18.36, 18.82] 6 29 10 19 27 0
Lifo100 18.59 0.2 [18.36, 18.82] 6 29 10 19 27 0
Lifo1,B 45.08 0.41 [43.93, 46.23] 6 90 10 46 86
Lifo5,B 27.45 0.3 [26.94, 27.96] 6 52 10 28 46.5 0.01
Lifo10,B 24.53 0.28 [24.1, 24.96] 6 49 10 25 40.5 0.1
Lifo20,B 22.03 0.25 [21.69, 22.37] 6 37 10 22 35 0.08
Lifo40,B 20.66 0.23 [20.37, 20.95] 6 34 10 21 32 0.08
Lifo60,B 19.84 0.22 [19.57, 20.11] 6 32 10 20 29 0.19
Lifo80,B 19.71 0.21 [19.45, 19.97] 6 31 10 20 29 0.28
Lifo100,B 18.59 0.2 [18.36, 18.82] 6 29 10 19 27 0

Lfu1 30.55 0.32 [29.94, 31.16] 6 55 10 31 51
Lfu5 22.6 0.26 [22.24, 22.96] 6 38 10 23 35 0
Lfu10 21.09 0.24 [20.78, 21.4] 6 36 10 21 32 0
Lfu20 19.79 0.22 [19.52, 20.06] 6 33 10 20 29 0
Lfu40 18.83 0.21 [18.58, 19.08] 6 29 10 19 27 0
Lfu60 18.63 0.2 [18.4, 18.86] 6 29 10 19 27 0
Lfu80 18.6 0.2 [18.37, 18.83] 6 29 10 19 27 0
Lfu100 18.59 0.2 [18.36, 18.82] 6 29 10 19 27 0
Lfu1,B 30.55 0.32 [29.94, 31.16] 6 55 10 31 51
Lfu5,B 24.85 0.28 [24.42, 25.28] 6 44 10 25 39 0
Lfu10,B 23.16 0.26 [22.79, 23.53] 6 40 10 23 36.5 0.11
Lfu20,B 21.52 0.24 [21.2, 21.84] 6 36 10 22 33 0.08
Lfu40,B 20.45 0.23 [20.16, 20.74] 6 33 10 21 31 0.08
Lfu60,B 19.72 0.22 [19.45, 19.99] 6 31 10 20 29 0.19
Lfu80,B 19.67 0.22 [19.4, 19.94] 6 31 10 20 29 0.28
Lfu100,B 18.59 0.2 [18.36, 18.82] 6 29 10 19 27 0

Lru1 21 0.24 [20.69, 21.31] 6 38 10 21 33
Lru5 20.61 0.24 [20.3, 20.92] 6 37 10 21 32 0
Lru10 20.18 0.23 [19.89, 20.47] 6 34 10 20 31 0
Lru20 19.47 0.22 [19.2, 19.74] 6 32 10 20 29 0
Lru40 18.78 0.21 [18.54, 19.02] 6 29 10 19 27.5 0
Lru60 18.61 0.2 [18.38, 18.84] 6 29 10 19 27 0
Lru80 18.6 0.2 [18.37, 18.83] 6 29 10 19 27 0
Lru100 18.59 0.2 [18.36, 18.82] 6 29 10 19 27 0
Lru1,B 21 0.24 [20.69, 21.31] 6 38 10 21 33
Lru5,B 20.83 0.24 [20.52, 21.14] 6 37 10 21 33 0
Lru10,B 20.56 0.24 [20.25, 20.87] 6 36 10 21 32 0.02
Lru20,B 20.14 0.23 [19.85, 20.43] 6 36 10 20 31 0.04
Lru40,B 19.65 0.22 [19.38, 19.92] 6 34 10 20 30 0.03
Lru60,B 19.29 0.22 [19.03, 19.55] 6 31 10 19 28.5 0.15
Lru80,B 19.17 0.21 [18.92, 19.42] 6 30 10 19 28.5 0.2
Lru100,B 18.59 0.2 [18.36, 18.82] 6 29 10 19 27 0

Table A.7: Costs in the paging problem when page sequences are generated according to an access
graph.

280 A Appendix

Performance ratios of costs relative to Opt for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Fifo1 1.22 0.14 [1.21, 1.23] 1 1.94 1 1.21 1.69 0
Fifo5 1.16 0.11 [1.15, 1.17] 1 1.65 1 1.16 1.49 0
Fifo10 1.13 0.1 [1.12, 1.14] 1 1.5 1 1.11 1.4 0
Fifo20 1.07 0.07 [1.07, 1.07] 1 1.33 1 1.05 1.28 0
Fifo40 1.01 0.03 [1.01, 1.01] 1 1.19 1 1 1.15 0
Fifo60 1 0.01 [1, 1] 1 1.16 1 1 1.06 0
Fifo80 1 0 [1, 1] 1 1.06 1 1 1 0
Fifo100 1 0 [1, 1] 1 1 1 1 1 0
Fifo1,B 1.22 0.14 [1.21, 1.23] 1 1.94 1 1.21 1.69 0
Fifo5,B 1.19 0.13 [1.18, 1.2] 1 1.76 1 1.18 1.58 0
Fifo10,B 1.17 0.12 [1.16, 1.18] 1 1.58 1 1.16 1.5 0
Fifo20,B 1.12 0.1 [1.11, 1.13] 1 1.53 1 1.11 1.39 0
Fifo40,B 1.09 0.08 [1.08, 1.1] 1 1.39 1 1.06 1.31 0
Fifo60,B 1.05 0.07 [1.05, 1.05] 1 1.33 1 1.04 1.27 0
Fifo80,B 1.05 0.06 [1.05, 1.05] 1 1.35 1 1.04 1.24 0
Fifo100,B 1 0 [1, 1] 1 1 1 1 1 0

Lifo1 2.38 0.35 [2.33, 2.43] 1 5.47 1 2.31 4.63 0
Lifo5 1.28 0.16 [1.27, 1.29] 1 2.18 1 1.24 1.89 0
Lifo10 1.16 0.12 [1.15, 1.17] 1 1.76 1 1.14 1.53 0
Lifo20 1.07 0.07 [1.07, 1.07] 1 1.47 1 1.05 1.3 0
Lifo40 1.01 0.03 [1.01, 1.01] 1 1.22 1 1 1.16 0
Lifo60 1 0.01 [1, 1] 1 1.19 1 1 1.06 0
Lifo80 1 0 [1, 1] 1 1 1 1 1 0
Lifo100 1 0 [1, 1] 1 1 1 1 1 0
Lifo1,B 2.38 0.35 [2.33, 2.43] 1 5.47 1 2.31 4.63 0
Lifo5,B 1.46 0.2 [1.44, 1.48] 1 2.6 1 1.44 2.3 0
Lifo10,B 1.31 0.16 [1.3, 1.32] 1 2.33 1 1.28 1.89 0
Lifo20,B 1.18 0.12 [1.17, 1.19] 1 1.76 1 1.15 1.58 0
Lifo40,B 1.11 0.08 [1.1, 1.12] 1 1.59 1 1.1 1.38 0
Lifo60,B 1.07 0.07 [1.07, 1.07] 1 1.41 1 1.05 1.26 0
Lifo80,B 1.06 0.06 [1.06, 1.06] 1 1.36 1 1.05 1.25 0
Lifo100,B 1 0 [1, 1] 1 1 1 1 1 0

Lfu1 1.61 0.19 [1.59, 1.63] 1 2.45 1 1.62 2.3 0
Lfu5 1.2 0.11 [1.19, 1.21] 1 1.71 1 1.2 1.53 0
Lfu10 1.13 0.08 [1.12, 1.14] 1 1.5 1 1.12 1.35 0
Lfu20 1.06 0.06 [1.06, 1.06] 1 1.29 1 1.05 1.24 0
Lfu40 1.01 0.03 [1.01, 1.01] 1 1.19 1 1 1.13 0
Lfu60 1 0.01 [1, 1] 1 1.12 1 1 1.06 0
Lfu80 1 0 [1, 1] 1 1.06 1 1 1 0
Lfu100 1 0 [1, 1] 1 1 1 1 1 0
Lfu1,B 1.61 0.19 [1.59, 1.63] 1 2.45 1 1.62 2.3 0
Lfu5,B 1.32 0.14 [1.31, 1.33] 1 2.05 1 1.3 1.77 0
Lfu10,B 1.23 0.11 [1.22, 1.24] 1 1.71 1 1.22 1.6 0
Lfu20,B 1.15 0.09 [1.14, 1.16] 1 1.5 1 1.14 1.42 0
Lfu40,B 1.1 0.07 [1.1, 1.1] 1 1.44 1 1.09 1.33 0
Lfu60,B 1.06 0.06 [1.06, 1.06] 1 1.26 1 1.05 1.22 0
Lfu80,B 1.06 0.06 [1.06, 1.06] 1 1.31 1 1.05 1.23 0
Lfu100,B 1 0 [1, 1] 1 1 1 1 1 0

Lru1 1.12 0.1 [1.11, 1.13] 1 1.5 1 1.11 1.4 0
Lru5 1.1 0.09 [1.09, 1.11] 1 1.43 1 1.08 1.35 0
Lru10 1.08 0.08 [1.07, 1.09] 1 1.36 1 1.06 1.3 0
Lru20 1.04 0.06 [1.04, 1.04] 1 1.32 1 1 1.22 0
Lru40 1.01 0.03 [1.01, 1.01] 1 1.19 1 1 1.12 0
Lru60 1 0.01 [1, 1] 1 1.12 1 1 1.05 0
Lru80 1 0 [1, 1] 1 1.06 1 1 1 0
Lru100 1 0 [1, 1] 1 1 1 1 1 0
Lru1,B 1.12 0.1 [1.11, 1.13] 1 1.5 1 1.11 1.4 0
Lru5,B 1.11 0.09 [1.1, 1.12] 1 1.5 1 1.1 1.39 0
Lru10,B 1.1 0.09 [1.09, 1.11] 1 1.41 1 1.09 1.33 0
Lru20,B 1.08 0.07 [1.08, 1.08] 1 1.36 1 1.06 1.3 0
Lru40,B 1.05 0.06 [1.05, 1.05] 1 1.33 1 1.04 1.25 0
Lru60,B 1.04 0.05 [1.04, 1.04] 1 1.33 1 1 1.21 0
Lru80,B 1.03 0.05 [1.03, 1.03] 1 1.25 1 1 1.2 0
Lru100,B 1 0 [1, 1] 1 1 1 1 1 0

Table A.8: Performance ratios of costs relative to Opt in the paging problem when page sequences
are generated according to an access graph.

A.2 Numerical Results from Chapter 5 281

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Fifo1 1 0 [1, 1] 1 1 1 1 1 0
Fifo5 0.96 0.06 [0.96, 0.96] 0.7 1.04 0.73 1 1 0
Fifo10 0.93 0.08 [0.93, 0.93] 0.59 1.04 0.69 0.95 1 0
Fifo20 0.89 0.11 [0.88, 0.9] 0.59 1 0.64 0.91 1 0
Fifo40 0.85 0.14 [0.84, 0.86] 0.52 1 0.59 0.85 1 0
Fifo60 0.84 0.14 [0.83, 0.85] 0.52 1 0.59 0.83 1 0
Fifo80 0.84 0.14 [0.83, 0.85] 0.52 1 0.59 0.83 1 0
Fifo100 0.84 0.14 [0.83, 0.85] 0.52 1 0.59 0.83 1 0
Fifo1,B 1 0 [1, 1] 1 1 1 1 1 0
Fifo5,B 0.98 0.04 [0.98, 0.98] 0.71 1.12 0.78 1 1 0
Fifo10,B 0.96 0.06 [0.96, 0.96] 0.67 1.05 0.74 1 1 0
Fifo20,B 0.93 0.09 [0.92, 0.94] 0.62 1.04 0.68 0.96 1 0
Fifo40,B 0.9 0.11 [0.89, 0.91] 0.6 1 0.64 0.92 1 0
Fifo60,B 0.88 0.12 [0.87, 0.89] 0.52 1.05 0.62 0.89 1 0
Fifo80,B 0.88 0.12 [0.87, 0.89] 0.57 1 0.62 0.89 1 0
Fifo100,B 0.84 0.14 [0.83, 0.85] 0.52 1 0.59 0.83 1 0

Lifo1 1 0 [1, 1] 1 1 1 1 1 0
Lifo5 0.59 0.29 [0.58, 0.6] 0.24 1.06 0.29 0.56 1 0
Lifo10 0.54 0.33 [0.53, 0.55] 0.22 1 0.26 0.51 1 0
Lifo20 0.51 0.36 [0.5, 0.52] 0.2 1 0.24 0.47 1 0
Lifo40 0.48 0.38 [0.47, 0.49] 0.18 1 0.22 0.44 1 0
Lifo60 0.48 0.39 [0.47, 0.49] 0.18 1 0.22 0.43 1 0
Lifo80 0.48 0.39 [0.47, 0.49] 0.18 1 0.22 0.43 1 0
Lifo100 0.48 0.39 [0.47, 0.49] 0.18 1 0.22 0.43 1 0
Lifo1,B 1 0 [1, 1] 1 1 1 1 1 0
Lifo5,B 0.66 0.25 [0.65, 0.67] 0.3 1.28 0.35 0.64 1 0.01
Lifo10,B 0.6 0.29 [0.59, 0.61] 0.26 1.06 0.3 0.58 1 0
Lifo20,B 0.55 0.32 [0.54, 0.56] 0.2 1 0.26 0.52 1 0
Lifo40,B 0.52 0.35 [0.51, 0.53] 0.2 1 0.24 0.48 1 0
Lifo60,B 0.51 0.36 [0.5, 0.52] 0.2 1 0.23 0.46 1 0
Lifo80,B 0.5 0.37 [0.49, 0.51] 0.18 1 0.23 0.46 1 0
Lifo100,B 0.48 0.39 [0.47, 0.49] 0.18 1 0.22 0.43 1 0

Lfu1 1 0 [1, 1] 1 1 1 1 1 0
Lfu5 0.77 0.14 [0.76, 0.78] 0.51 1 0.55 0.75 1 0
Lfu10 0.72 0.17 [0.71, 0.73] 0.46 1 0.51 0.7 1 0
Lfu20 0.68 0.19 [0.67, 0.69] 0.43 1 0.48 0.66 1 0
Lfu40 0.65 0.21 [0.64, 0.66] 0.41 1 0.44 0.63 1 0
Lfu60 0.65 0.21 [0.64, 0.66] 0.41 1 0.43 0.62 1 0
Lfu80 0.65 0.21 [0.64, 0.66] 0.41 1 0.43 0.62 1 0
Lfu100 0.65 0.21 [0.64, 0.66] 0.41 1 0.43 0.62 1 0
Lfu1,B 1 0 [1, 1] 1 1 1 1 1 0
Lfu5,B 0.83 0.12 [0.82, 0.84] 0.55 1 0.63 0.83 1 0
Lfu10,B 0.78 0.14 [0.77, 0.79] 0.48 1 0.57 0.77 1 0
Lfu20,B 0.74 0.16 [0.73, 0.75] 0.49 1 0.53 0.72 1 0
Lfu40,B 0.7 0.18 [0.69, 0.71] 0.46 1 0.49 0.68 1 0
Lfu60,B 0.68 0.19 [0.67, 0.69] 0.42 1 0.47 0.66 1 0
Lfu80,B 0.68 0.19 [0.67, 0.69] 0.44 1 0.46 0.66 1 0
Lfu100,B 0.65 0.21 [0.64, 0.66] 0.41 1 0.43 0.62 1 0

Lru1 1 0 [1, 1] 1 1 1 1 1 0
Lru5 0.98 0.03 [0.98, 0.98] 0.79 1 0.86 1 1 0
Lru10 0.97 0.05 [0.97, 0.97] 0.74 1 0.8 1 1 0
Lru20 0.94 0.07 [0.94, 0.94] 0.71 1 0.75 0.95 1 0
Lru40 0.91 0.09 [0.9, 0.92] 0.67 1 0.71 0.92 1 0
Lru60 0.9 0.1 [0.89, 0.91] 0.67 1 0.71 0.9 1 0
Lru80 0.9 0.1 [0.89, 0.91] 0.67 1 0.71 0.9 1 0
Lru100 0.9 0.1 [0.89, 0.91] 0.67 1 0.71 0.9 1 0
Lru1,B 1 0 [1, 1] 1 1 1 1 1 0
Lru5,B 0.99 0.02 [0.99, 0.99] 0.83 1 0.89 1 1 0
Lru10,B 0.98 0.04 [0.98, 0.98] 0.79 1 0.85 1 1 0
Lru20,B 0.96 0.05 [0.96, 0.96] 0.71 1 0.8 1 1 0
Lru40,B 0.94 0.07 [0.94, 0.94] 0.68 1 0.75 0.96 1 0
Lru60,B 0.93 0.08 [0.93, 0.93] 0.67 1 0.72 0.95 1 0
Lru80,B 0.92 0.09 [0.91, 0.93] 0.67 1 0.74 0.95 1 0
Lru100,B 0.9 0.1 [0.89, 0.91] 0.67 1 0.71 0.9 1 0

Table A.9: Performance ratios of costs relative to the online version of an algorithm in the paging
problem when page sequences are generated according to an access graph.

282 A Appendix

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Fifo1 44.55 0.12 [44.22, 44.88] 27 60 33 44.5 56.5
Fifo5 39.3 0.11 [39.03, 39.57] 26 52 29 39 49.5 0
Fifo10 34.46 0.11 [34.22, 34.7] 23 46 26 34 43 0
Fifo20 28.87 0.1 [28.69, 29.05] 18 37 22 29 36 0
Fifo40 26.62 0.1 [26.45, 26.79] 18 35 21 27 33 0
Fifo60 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Fifo80 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Fifo100 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Fifo1,B 44.55 0.12 [44.22, 44.88] 27 60 33 44.5 56.5
Fifo5,B 42.16 0.11 [41.87, 42.45] 25 56 31 42 53 0.03
Fifo10,B 39 0.11 [38.73, 39.27] 24 53 29 39 50 0.05
Fifo20,B 34.16 0.11 [33.93, 34.39] 23 45 26 34 43 0.01
Fifo40,B 30.69 0.11 [30.48, 30.9] 21 40 23 31 38 0.02
Fifo60,B 28.55 0.11 [28.36, 28.74] 19 37 22 28 36 0.1
Fifo80,B 28.88 0.11 [28.68, 29.08] 18 37 22 29 36 0.45
Fifo100,B 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0

Lifo1 41.78 0.16 [41.37, 42.19] 25 67 28 41 59
Lifo5 36.28 0.13 [35.99, 36.57] 24 54 26 36 48 0
Lifo10 32.4 0.12 [32.16, 32.64] 21 47 24 32 42 0
Lifo20 28.19 0.1 [28.02, 28.36] 19 36 22 28 35 0
Lifo40 26.61 0.1 [26.44, 26.78] 18 35 21 27 33 0
Lifo60 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Lifo80 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Lifo100 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Lifo1,B 41.78 0.16 [41.37, 42.19] 25 67 28 41 59
Lifo5,B 38.94 0.14 [38.6, 39.28] 24 60 27 39 52 0.08
Lifo10,B 35.9 0.13 [35.61, 36.19] 23 52 26 36 47.5 0.07
Lifo20,B 31.89 0.11 [31.67, 32.11] 21 43 24 32 40 0.02
Lifo40,B 29.27 0.1 [29.09, 29.45] 19 38 22.5 29 36 0.04
Lifo60,B 27.69 0.1 [27.52, 27.86] 20 37 22 28 34 0.1
Lifo80,B 27.92 0.1 [27.75, 28.09] 19 37 22 28 35 0.44
Lifo100,B 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0

Lfu1 37.46 0.13 [37.16, 37.76] 23 54 27 37 50
Lfu5 34.18 0.12 [33.93, 34.43] 22 45 25 34 44 0
Lfu10 31.27 0.11 [31.06, 31.48] 22 42 24 31 39.5 0
Lfu20 27.88 0.1 [27.71, 28.05] 20 36 21.5 28 34.5 0
Lfu40 26.62 0.1 [26.45, 26.79] 18 35 21 27 33 0
Lfu60 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Lfu80 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Lfu100 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Lfu1,B 37.46 0.13 [37.16, 37.76] 23 54 27 37 50
Lfu5,B 35.93 0.13 [35.64, 36.22] 23 50 26.5 36 46.5 0
Lfu10,B 33.99 0.12 [33.74, 34.24] 22 46 26 34 43.5 0.06
Lfu20,B 31.15 0.11 [30.94, 31.36] 23 43 24 31 39.5 0.03
Lfu40,B 28.96 0.1 [28.78, 29.14] 20 37 22.5 29 36 0.04
Lfu60,B 27.58 0.1 [27.41, 27.75] 20 37 21.5 27 34 0.1
Lfu80,B 27.76 0.1 [27.59, 27.93] 19 36 21 28 34 0.39
Lfu100,B 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0

Lru1 41.49 0.13 [41.16, 41.82] 25 61 30 41 53
Lru5 36.65 0.12 [36.38, 36.92] 20 51 27 37 47 0
Lru10 32.77 0.11 [32.55, 32.99] 20 44 25 33 41 0
Lru20 28.37 0.1 [28.19, 28.55] 18 36 22 28 35 0
Lru40 26.62 0.1 [26.45, 26.79] 18 35 21 27 33 0
Lru60 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Lru80 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Lru100 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0
Lru1,B 41.49 0.13 [41.16, 41.82] 25 61 30 41 53
Lru5,B 39.16 0.12 [38.87, 39.45] 23 56 29 39 49 0
Lru10,B 36.47 0.12 [36.2, 36.74] 22 51 26.5 36 47 0.03
Lru20,B 32.55 0.11 [32.33, 32.77] 21 44 25 32.5 41 0.01
Lru40,B 29.73 0.11 [29.53, 29.93] 20 40 23 30 37 0.01
Lru60,B 27.98 0.1 [27.81, 28.15] 18 37 22 28 34 0.08
Lru80,B 28.21 0.1 [28.04, 28.38] 19 37 22 28 35 0.41
Lru100,B 26.59 0.1 [26.43, 26.75] 18 35 21 27 33 0

Table A.10: Costs in the paging problem when pages are stochastically distributed.

A.2 Numerical Results from Chapter 5 283

Performance ratios of costs relative to Opt for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Fifo1 1.68 0.07 [1.67, 1.69] 1.32 2.04 1.42 1.68 1.96 0
Fifo5 1.48 0.06 [1.47, 1.49] 1.12 1.78 1.27 1.48 1.7 0
Fifo10 1.3 0.06 [1.3, 1.3] 1.08 1.56 1.13 1.3 1.46 0
Fifo20 1.09 0.05 [1.09, 1.09] 1 1.29 1 1.08 1.22 0
Fifo40 1 0.01 [1, 1] 1 1.09 1 1 1.04 0
Fifo60 1 0 [1, 1] 1 1.04 1 1 1 0
Fifo80 1 0 [1, 1] 1 1 1 1 1 0
Fifo100 1 0 [1, 1] 1 1 1 1 1 0
Fifo1,B 1.68 0.07 [1.67, 1.69] 1.32 2.04 1.42 1.68 1.96 0
Fifo5,B 1.59 0.06 [1.58, 1.6] 1.28 1.88 1.36 1.58 1.83 0
Fifo10,B 1.47 0.06 [1.46, 1.48] 1.19 1.74 1.28 1.46 1.69 0
Fifo20,B 1.29 0.06 [1.29, 1.29] 1.05 1.52 1.11 1.29 1.46 0
Fifo40,B 1.16 0.05 [1.16, 1.16] 1 1.41 1.03 1.15 1.32 0
Fifo60,B 1.07 0.04 [1.07, 1.07] 1 1.25 1 1.07 1.2 0
Fifo80,B 1.09 0.04 [1.09, 1.09] 1 1.24 1 1.08 1.21 0
Fifo100,B 1 0 [1, 1] 1 1 1 1 1 0

Lifo1 1.57 0.14 [1.56, 1.58] 1.1 2.79 1.16 1.55 2.21 0
Lifo5 1.37 0.1 [1.36, 1.38] 1.07 1.83 1.11 1.36 1.72 0
Lifo10 1.22 0.08 [1.21, 1.23] 1.03 1.62 1.04 1.21 1.45 0
Lifo20 1.06 0.04 [1.06, 1.06] 1 1.27 1 1.05 1.2 0
Lifo40 1 0.01 [1, 1] 1 1.1 1 1 1.04 0
Lifo60 1 0 [1, 1] 1 1 1 1 1 0
Lifo80 1 0 [1, 1] 1 1 1 1 1 0
Lifo100 1 0 [1, 1] 1 1 1 1 1 0
Lifo1,B 1.57 0.14 [1.56, 1.58] 1.1 2.79 1.16 1.55 2.21 0
Lifo5,B 1.47 0.12 [1.46, 1.48] 1.08 2.13 1.13 1.45 1.96 0
Lifo10,B 1.35 0.1 [1.34, 1.36] 1.07 1.83 1.11 1.34 1.72 0
Lifo20,B 1.2 0.07 [1.19, 1.21] 1 1.5 1.04 1.19 1.42 0
Lifo40,B 1.1 0.05 [1.1, 1.1] 1 1.29 1 1.1 1.24 0
Lifo60,B 1.04 0.03 [1.04, 1.04] 1 1.2 1 1.04 1.14 0
Lifo80,B 1.05 0.04 [1.05, 1.05] 1 1.21 1 1.04 1.16 0
Lifo100,B 1 0 [1, 1] 1 1 1 1 1 0

Lfu1 1.41 0.09 [1.4, 1.42] 1.07 1.84 1.13 1.41 1.77 0
Lfu5 1.29 0.08 [1.28, 1.3] 1 1.64 1.08 1.28 1.55 0
Lfu10 1.18 0.06 [1.18, 1.18] 1 1.5 1.03 1.17 1.36 0
Lfu20 1.05 0.04 [1.05, 1.05] 1 1.27 1 1.04 1.17 0
Lfu40 1 0.01 [1, 1] 1 1.05 1 1 1.04 0
Lfu60 1 0 [1, 1] 1 1.04 1 1 1 0
Lfu80 1 0 [1, 1] 1 1 1 1 1 0
Lfu100 1 0 [1, 1] 1 1 1 1 1 0
Lfu1,B 1.41 0.09 [1.4, 1.42] 1.07 1.84 1.13 1.41 1.77 0
Lfu5,B 1.35 0.09 [1.34, 1.36] 1.07 1.8 1.12 1.35 1.65 0
Lfu10,B 1.28 0.08 [1.27, 1.29] 1.03 1.6 1.08 1.27 1.54 0
Lfu20,B 1.17 0.06 [1.17, 1.17] 1 1.44 1.02 1.17 1.36 0
Lfu40,B 1.09 0.05 [1.09, 1.09] 1 1.29 1 1.08 1.21 0
Lfu60,B 1.04 0.03 [1.04, 1.04] 1 1.18 1 1.04 1.14 0
Lfu80,B 1.04 0.03 [1.04, 1.04] 1 1.21 1 1.04 1.13 0
Lfu100,B 1 0 [1, 1] 1 1 1 1 1 0

Lru1 1.56 0.07 [1.55, 1.57] 1.25 2 1.32 1.56 1.81 0
Lru5 1.38 0.06 [1.37, 1.39] 1.11 1.61 1.2 1.38 1.55 0
Lru10 1.23 0.05 [1.23, 1.23] 1.08 1.38 1.11 1.23 1.37 0
Lru20 1.07 0.04 [1.07, 1.07] 1 1.21 1 1.07 1.18 0
Lru40 1 0.01 [1, 1] 1 1.1 1 1 1.04 0
Lru60 1 0 [1, 1] 1 1.04 1 1 1 0
Lru80 1 0 [1, 1] 1 1 1 1 1 0
Lru100 1 0 [1, 1] 1 1 1 1 1 0
Lru1,B 1.56 0.07 [1.55, 1.57] 1.25 2 1.32 1.56 1.81 0
Lru5,B 1.47 0.06 [1.46, 1.48] 1.17 1.75 1.26 1.47 1.69 0
Lru10,B 1.37 0.06 [1.36, 1.38] 1.15 1.67 1.19 1.37 1.56 0
Lru20,B 1.22 0.05 [1.22, 1.22] 1.04 1.42 1.08 1.22 1.38 0
Lru40,B 1.12 0.05 [1.12, 1.12] 1 1.32 1.02 1.12 1.25 0
Lru60,B 1.05 0.03 [1.05, 1.05] 1 1.18 1 1.04 1.14 0
Lru80,B 1.06 0.03 [1.06, 1.06] 1 1.2 1 1.06 1.15 0
Lru100,B 1 0 [1, 1] 1 1 1 1 1 0

Table A.11: Performance ratios of costs relative to Opt in the paging problem when pages are
stochastically distributed.

284 A Appendix

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Fifo1 1 0 [1, 1] 1 1 1 1 1 0
Fifo5 0.88 0.07 [0.88, 0.88] 0.67 1.03 0.74 0.89 1 0
Fifo10 0.78 0.07 [0.78, 0.78] 0.6 0.94 0.64 0.78 0.9 0
Fifo20 0.65 0.08 [0.65, 0.65] 0.49 0.86 0.55 0.65 0.78 0
Fifo40 0.6 0.07 [0.6, 0.6] 0.49 0.76 0.51 0.6 0.71 0
Fifo60 0.6 0.07 [0.6, 0.6] 0.49 0.76 0.51 0.6 0.71 0
Fifo80 0.6 0.07 [0.6, 0.6] 0.49 0.76 0.51 0.6 0.71 0
Fifo100 0.6 0.07 [0.6, 0.6] 0.49 0.76 0.51 0.6 0.71 0
Fifo1,B 1 0 [1, 1] 1 1 1 1 1 0
Fifo5,B 0.95 0.05 [0.95, 0.95] 0.76 1.09 0.8 0.96 1.03 0.03
Fifo10,B 0.88 0.07 [0.88, 0.88] 0.65 1 0.73 0.88 1 0
Fifo20,B 0.77 0.08 [0.77, 0.77] 0.59 0.97 0.64 0.77 0.91 0
Fifo40,B 0.69 0.08 [0.69, 0.69] 0.54 0.89 0.57 0.69 0.83 0
Fifo60,B 0.64 0.08 [0.64, 0.64] 0.5 0.85 0.54 0.64 0.77 0
Fifo80,B 0.65 0.08 [0.65, 0.65] 0.51 0.81 0.54 0.65 0.78 0
Fifo100,B 0.6 0.07 [0.6, 0.6] 0.49 0.76 0.51 0.6 0.71 0

Lifo1 1 0 [1, 1] 1 1 1 1 1 0
Lifo5 0.88 0.09 [0.88, 0.88] 0.6 1.07 0.66 0.88 1.03 0
Lifo10 0.79 0.11 [0.78, 0.8] 0.46 1.03 0.57 0.79 0.97 0
Lifo20 0.69 0.13 [0.68, 0.7] 0.39 0.97 0.48 0.68 0.89 0
Lifo40 0.65 0.14 [0.64, 0.66] 0.36 0.93 0.45 0.65 0.86 0
Lifo60 0.65 0.14 [0.64, 0.66] 0.36 0.91 0.45 0.65 0.86 0
Lifo80 0.65 0.14 [0.64, 0.66] 0.36 0.91 0.45 0.65 0.86 0
Lifo100 0.65 0.14 [0.64, 0.66] 0.36 0.91 0.45 0.65 0.86 0
Lifo1,B 1 0 [1, 1] 1 1 1 1 1 0
Lifo5,B 0.94 0.07 [0.94, 0.94] 0.63 1.13 0.75 0.95 1.07 0.08
Lifo10,B 0.87 0.1 [0.86, 0.88] 0.55 1.07 0.67 0.87 1.03 0.02
Lifo20,B 0.77 0.12 [0.76, 0.78] 0.48 1 0.55 0.77 0.97 0
Lifo40,B 0.71 0.13 [0.7, 0.72] 0.44 1 0.48 0.71 0.92 0
Lifo60,B 0.67 0.14 [0.66, 0.68] 0.37 0.94 0.46 0.67 0.89 0
Lifo80,B 0.68 0.14 [0.67, 0.69] 0.4 0.97 0.47 0.68 0.91 0
Lifo100,B 0.65 0.14 [0.64, 0.66] 0.36 0.91 0.45 0.65 0.86 0

Lfu1 1 0 [1, 1] 1 1 1 1 1 0
Lfu5 0.91 0.05 [0.91, 0.91] 0.72 1.04 0.8 0.92 1 0
Lfu10 0.84 0.07 [0.84, 0.84] 0.67 1 0.71 0.83 0.97 0
Lfu20 0.75 0.09 [0.75, 0.75] 0.57 0.96 0.6 0.75 0.91 0
Lfu40 0.72 0.09 [0.72, 0.72] 0.54 0.94 0.57 0.71 0.89 0
Lfu60 0.72 0.09 [0.72, 0.72] 0.54 0.94 0.57 0.71 0.89 0
Lfu80 0.72 0.09 [0.72, 0.72] 0.54 0.94 0.57 0.71 0.89 0
Lfu100 0.72 0.09 [0.72, 0.72] 0.54 0.94 0.57 0.71 0.89 0
Lfu1,B 1 0 [1, 1] 1 1 1 1 1 0
Lfu5,B 0.96 0.04 [0.96, 0.96] 0.81 1.1 0.86 0.97 1 0
Lfu10,B 0.91 0.06 [0.91, 0.91] 0.72 1 0.78 0.91 1 0
Lfu20,B 0.84 0.07 [0.84, 0.84] 0.62 1 0.69 0.84 0.97 0
Lfu40,B 0.78 0.09 [0.78, 0.78] 0.58 1 0.63 0.78 0.94 0
Lfu60,B 0.74 0.09 [0.74, 0.74] 0.55 0.96 0.6 0.74 0.89 0
Lfu80,B 0.75 0.09 [0.75, 0.75] 0.56 0.97 0.59 0.74 0.91 0
Lfu100,B 0.72 0.09 [0.72, 0.72] 0.54 0.94 0.57 0.71 0.89 0

Lru1 1 0 [1, 1] 1 1 1 1 1 0
Lru5 0.89 0.05 [0.89, 0.89] 0.74 1 0.77 0.89 0.98 0
Lru10 0.79 0.07 [0.79, 0.79] 0.64 0.94 0.67 0.79 0.93 0
Lru20 0.69 0.08 [0.69, 0.69] 0.54 0.87 0.58 0.68 0.83 0
Lru40 0.65 0.07 [0.65, 0.65] 0.5 0.8 0.55 0.64 0.76 0
Lru60 0.64 0.07 [0.64, 0.64] 0.5 0.8 0.55 0.64 0.76 0
Lru80 0.64 0.07 [0.64, 0.64] 0.5 0.8 0.55 0.64 0.76 0
Lru100 0.64 0.07 [0.64, 0.64] 0.5 0.8 0.55 0.64 0.76 0
Lru1,B 1 0 [1, 1] 1 1 1 1 1 0
Lru5,B 0.94 0.04 [0.94, 0.94] 0.81 1 0.85 0.95 1 0
Lru10,B 0.88 0.05 [0.88, 0.88] 0.7 1 0.77 0.88 0.97 0
Lru20,B 0.79 0.07 [0.79, 0.79] 0.63 0.97 0.65 0.79 0.92 0
Lru40,B 0.72 0.07 [0.72, 0.72] 0.58 0.9 0.6 0.72 0.85 0
Lru60,B 0.68 0.07 [0.68, 0.68] 0.54 0.84 0.57 0.68 0.8 0
Lru80,B 0.68 0.07 [0.68, 0.68] 0.52 0.87 0.58 0.68 0.8 0
Lru100,B 0.64 0.07 [0.64, 0.64] 0.5 0.8 0.55 0.64 0.76 0

Table A.12: Performance ratios of costs relative to the online version of an algorithm in the paging
problem when pages are stochastically distributed.

A.2 Numerical Results from Chapter 5 285

A.2.3 Online Bin Packing with Lookahead

A.2.3.1 Classical Problem

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Bf1 14.66 0.13 [14.54, 14.78] 9 21 11 15 19
Bf5 14.33 0.13 [14.21, 14.45] 9 21 10 14 19 0
Bf10 14.14 0.14 [14.02, 14.26] 9 21 10 14 19 0
Bf15 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Bf20 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Bf25 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Bf1,B 14.66 0.13 [14.54, 14.78] 9 21 11 15 19
Bf5,B 14.48 0.13 [14.36, 14.6] 9 21 11 14 19 0.01
Bf10,B 14.35 0.13 [14.23, 14.47] 9 21 10.5 14 19 0
Bf15,B 14.26 0.13 [14.15, 14.37] 9 21 10 14 19 0.04
Bf20,B 14.23 0.14 [14.11, 14.35] 9 21 10 14 19 0.05
Bf25,B 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0

Ff1 14.76 0.13 [14.64, 14.88] 9 21 11 15 19
Ff5 14.39 0.13 [14.27, 14.51] 9 21 10.5 14 19 0
Ff10 14.15 0.14 [14.03, 14.27] 9 21 10 14 19 0
Ff15 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Ff20 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Ff25 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Ff1,B 14.76 0.13 [14.64, 14.88] 9 21 11 15 19
Ff5,B 14.54 0.13 [14.42, 14.66] 9 21 11 15 19 0.01
Ff10,B 14.38 0.13 [14.26, 14.5] 9 21 11 14 19 0
Ff15,B 14.27 0.13 [14.15, 14.39] 9 21 10 14 19 0.04
Ff20,B 14.24 0.13 [14.13, 14.35] 9 21 10 14 19 0.05
Ff25,B 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Opt1 14.76 0.13 [14.64, 14.88] 9 21 11 15 19
Opt5 14.63 0.12 [14.52, 14.74] 10 21 11 15 19 0.11
Opt10 14.21 0.13 [14.1, 14.32] 9 21 10 14 19 0
Opt15 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Opt20 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Opt25 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Opt1,B 14.76 0.13 [14.64, 14.88] 9 21 11 15 19
Opt5,B 14.73 0.13 [14.61, 14.85] 9 21 11 15 19.5 0.09
Opt10,B 14.63 0.13 [14.51, 14.75] 10 21 11 15 19 0.07
Opt15,B 14.46 0.13 [14.34, 14.58] 9 21 10 14 19 0.06
Opt20,B 14.42 0.13 [14.3, 14.54] 10 21 11 14 19 0.11
Opt25,B 14.12 0.14 [14, 14.24] 9 21 10 14 19 0

Opt′1 14.84 0.13 [14.72, 14.96] 10 21 11 15 19
Opt′5 14.54 0.13 [14.42, 14.66] 9 21 11 15 19 0.04
Opt′10 14.19 0.13 [14.08, 14.3] 9 21 10 14 19 0
Opt′15 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Opt′20 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Opt′25 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Opt′1,B 14.84 0.13 [14.72, 14.96] 10 21 11 15 19

Opt′5,B 14.64 0.13 [14.52, 14.76] 10 21 11 15 19 0.04

Opt′10,B 14.42 0.13 [14.3, 14.54] 9 21 10 14 19 0.02

Opt′15,B 14.29 0.13 [14.17, 14.41] 9 21 10 14 19 0.04

Opt′20,B 14.27 0.13 [14.15, 14.39] 9 21 10 14 19 0.07

Opt′25,B 14.12 0.14 [14, 14.24] 9 21 10 14 19 0

Table A.13: Costs in the classical bin packing problem when item permutations are allowed.

286 A Appendix

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Bf1 14.66 0.13 [14.54, 14.78] 9 21 11 15 19
Bf5 14.34 0.13 [14.22, 14.46] 9 21 10.5 14 19 0
Bf10 14.2 0.14 [14.08, 14.32] 9 21 10 14 19 0.01
Bf15 14.16 0.14 [14.04, 14.28] 9 21 10 14 19 0.01
Bf20 14.15 0.14 [14.03, 14.27] 9 21 10 14 19 0
Bf25 14.15 0.14 [14.03, 14.27] 9 21 10 14 19 0
Bf1,B 14.66 0.13 [14.54, 14.78] 9 21 11 15 19
Bf5,B 14.48 0.13 [14.36, 14.6] 9 21 11 14 19 0.01
Bf10,B 14.37 0.13 [14.25, 14.49] 9 21 11 14 19 0.01
Bf15,B 14.28 0.13 [14.16, 14.4] 9 21 10 14 19 0.04
Bf20,B 14.25 0.13 [14.14, 14.36] 9 21 10 14 19 0.06
Bf25,B 14.15 0.14 [14.03, 14.27] 9 21 10 14 19 0.01

Ff1 14.76 0.13 [14.64, 14.88] 9 21 11 15 19
Ff5 14.42 0.13 [14.3, 14.54] 9 21 10 14 19 0.01
Ff10 14.24 0.14 [14.12, 14.36] 9 21 10 14 19 0.01
Ff15 14.17 0.14 [14.05, 14.29] 9 21 10 14 19 0.01
Ff20 14.14 0.14 [14.02, 14.26] 9 21 10 14 19 0.01
Ff25 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Ff1,B 14.76 0.13 [14.64, 14.88] 9 21 11 15 19
Ff5,B 14.54 0.13 [14.42, 14.66] 9 21 11 15 19 0.01
Ff10,B 14.38 0.13 [14.26, 14.5] 9 21 11 14 19 0
Ff15,B 14.27 0.13 [14.15, 14.39] 9 21 10 14 19 0.04
Ff20,B 14.24 0.13 [14.13, 14.35] 9 21 10 14 19 0.05
Ff25,B 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Opt1 14.76 0.13 [14.64, 14.88] 9 21 11 15 19
Opt5 14.63 0.13 [14.51, 14.75] 10 21 11 15 19 0.07
Opt10 14.36 0.13 [14.24, 14.48] 9 21 10 14 19 0.02
Opt15 14.2 0.14 [14.08, 14.32] 9 21 10 14 19 0.02
Opt20 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0.01
Opt25 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Opt1,B 14.76 0.13 [14.64, 14.88] 9 21 11 15 19
Opt5,B 14.73 0.13 [14.61, 14.85] 9 21 11 15 19.5 0.09
Opt10,B 14.63 0.13 [14.51, 14.75] 10 21 11 15 19 0.07
Opt15,B 14.46 0.13 [14.34, 14.58] 9 21 10 14 19 0.06
Opt20,B 14.42 0.13 [14.3, 14.54] 10 21 11 14 19 0.11
Opt25,B 14.12 0.14 [14, 14.24] 9 21 10 14 19 0

Opt′1 14.84 0.13 [14.72, 14.96] 10 21 11 15 19
Opt′5 14.52 0.13 [14.4, 14.64] 10 21 11 15 19 0.02
Opt′10 14.29 0.13 [14.17, 14.41] 9 21 10.5 14 19 0.02
Opt′15 14.18 0.14 [14.06, 14.3] 9 21 10 14 19 0.02
Opt′20 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0.01
Opt′25 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Opt′1,B 14.84 0.13 [14.72, 14.96] 10 21 11 15 19

Opt′5,B 14.64 0.13 [14.52, 14.76] 10 21 11 15 19 0.04

Opt′10,B 14.42 0.13 [14.3, 14.54] 9 21 10 14 19 0.02

Opt′15,B 14.29 0.13 [14.17, 14.41] 9 21 10 14 19 0.04

Opt′20,B 14.27 0.13 [14.15, 14.39] 9 21 10 14 19 0.07

Opt′25,B 14.12 0.14 [14, 14.24] 9 21 10 14 19 0

Table A.14: Costs in the classical bin packing problem when item permutations are forbidden.

A.2 Numerical Results from Chapter 5 287

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Bf1 1.04 0.04 [1.04, 1.04] 1 1.2 1 1.06 1.15 0
Bf5 1.02 0.03 [1.02, 1.02] 0.94 1.17 1 1 1.1 0
Bf10 1 0.02 [1, 1] 0.94 1.11 1 1 1.09 0
Bf15 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Bf20 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Bf25 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Bf1,B 1.04 0.04 [1.04, 1.04] 1 1.2 1 1.06 1.15 0
Bf5,B 1.03 0.04 [1.03, 1.03] 1 1.2 1 1 1.12 0
Bf10,B 1.02 0.03 [1.02, 1.02] 1 1.2 1 1 1.1 0
Bf15,B 1.01 0.03 [1.01, 1.01] 0.94 1.15 1 1 1.09 0
Bf20,B 1.01 0.03 [1.01, 1.01] 0.94 1.17 1 1 1.09 0
Bf25,B 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0

Ff1 1.05 0.04 [1.05, 1.05] 1 1.23 1 1.07 1.17 0
Ff5 1.02 0.04 [1.02, 1.02] 0.94 1.2 1 1 1.1 0
Ff10 1 0.02 [1, 1] 0.94 1.11 1 1 1.09 0
Ff15 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Ff20 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Ff25 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Ff1,B 1.05 0.04 [1.05, 1.05] 1 1.23 1 1.07 1.17 0
Ff5,B 1.03 0.04 [1.03, 1.03] 1 1.2 1 1 1.14 0
Ff10,B 1.02 0.03 [1.02, 1.02] 1 1.2 1 1 1.1 0
Ff15,B 1.01 0.03 [1.01, 1.01] 0.94 1.15 1 1 1.09 0
Ff20,B 1.01 0.03 [1.01, 1.01] 0.94 1.17 1 1 1.09 0
Ff25,B 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Opt1 1.05 0.04 [1.05, 1.05] 1 1.23 1 1.07 1.17 0
Opt5 1.04 0.04 [1.04, 1.04] 0.94 1.2 1 1 1.18 0
Opt10 1.01 0.02 [1.01, 1.01] 0.94 1.11 1 1 1.09 0
Opt15 1 0 [1, 1] 0.94 1.08 1 1 1 0
Opt20 1 0 [1, 1] 0.94 1.08 1 1 1 0
Opt25 1 0 [1, 1] 1 1 1 1 1 0
Opt1,B 1.05 0.04 [1.05, 1.05] 1 1.23 1 1.07 1.17 0
Opt5,B 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.06 1.17 0
Opt10,B 1.04 0.04 [1.04, 1.04] 1 1.2 1 1 1.15 0
Opt15,B 1.03 0.04 [1.03, 1.03] 1 1.18 1 1 1.14 0
Opt20,B 1.02 0.04 [1.02, 1.02] 1 1.17 1 1 1.1 0
Opt25,B 1 0 [1, 1] 1 1 1 1 1 0

Opt′1 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.07 1.17 0
Opt′5 1.03 0.04 [1.03, 1.03] 0.94 1.18 1 1 1.15 0
Opt′10 1.01 0.02 [1.01, 1.01] 0.94 1.11 1 1 1.09 0
Opt′15 1 0.01 [1, 1] 0.94 1.11 1 1 1 0
Opt′20 1 0 [1, 1] 0.94 1.08 1 1 1 0
Opt′25 1 0 [1, 1] 0.94 1.08 1 1 1 0
Opt′1,B 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.07 1.17 0

Opt′5,B 1.04 0.04 [1.04, 1.04] 1 1.2 1 1 1.15 0

Opt′10,B 1.02 0.04 [1.02, 1.02] 0.94 1.2 1 1 1.1 0

Opt′15,B 1.01 0.03 [1.01, 1.01] 0.94 1.15 1 1 1.09 0

Opt′20,B 1.01 0.03 [1.01, 1.01] 0.94 1.17 1 1 1.09 0

Opt′25,B 1 0 [1, 1] 0.94 1.08 1 1 1 0

Table A.15: Performance ratios of costs relative to Opt in the classical bin packing problem when
item permutations are allowed.

288 A Appendix

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Bf1 1.04 0.04 [1.04, 1.04] 1 1.2 1 1.06 1.15 0
Bf5 1.02 0.03 [1.02, 1.02] 0.94 1.15 1 1 1.1 0
Bf10 1.01 0.02 [1.01, 1.01] 0.94 1.11 1 1 1.09 0
Bf15 1 0.02 [1, 1] 0.94 1.11 1 1 1.09 0
Bf20 1 0.02 [1, 1] 0.94 1.11 1 1 1.09 0
Bf25 1 0.02 [1, 1] 0.94 1.11 1 1 1.09 0
Bf1,B 1.04 0.04 [1.04, 1.04] 1 1.2 1 1.06 1.15 0
Bf5,B 1.03 0.04 [1.03, 1.03] 1 1.2 1 1 1.12 0
Bf10,B 1.02 0.03 [1.02, 1.02] 1 1.2 1 1 1.1 0
Bf15,B 1.01 0.03 [1.01, 1.01] 0.94 1.14 1 1 1.09 0
Bf20,B 1.01 0.03 [1.01, 1.01] 1 1.17 1 1 1.09 0
Bf25,B 1 0.02 [1, 1] 0.94 1.11 1 1 1.09 0

Ff1 1.05 0.04 [1.05, 1.05] 1 1.23 1 1.07 1.17 0
Ff5 1.02 0.04 [1.02, 1.02] 0.94 1.15 1 1 1.1 0
Ff10 1.01 0.03 [1.01, 1.01] 0.94 1.1 1 1 1.09 0
Ff15 1 0.02 [1, 1] 0.94 1.1 1 1 1.09 0
Ff20 1 0.01 [1, 1] 0.94 1.11 1 1 1.09 0
Ff25 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Ff1,B 1.05 0.04 [1.05, 1.05] 1 1.23 1 1.07 1.17 0
Ff5,B 1.03 0.04 [1.03, 1.03] 1 1.2 1 1 1.14 0
Ff10,B 1.02 0.03 [1.02, 1.02] 1 1.2 1 1 1.1 0
Ff15,B 1.01 0.03 [1.01, 1.01] 0.94 1.15 1 1 1.09 0
Ff20,B 1.01 0.03 [1.01, 1.01] 0.94 1.17 1 1 1.09 0
Ff25,B 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Opt1 1.05 0.04 [1.05, 1.05] 1 1.23 1 1.07 1.17 0
Opt5 1.04 0.04 [1.04, 1.04] 1 1.2 1 1 1.16 0
Opt10 1.02 0.03 [1.02, 1.02] 0.94 1.15 1 1 1.09 0
Opt15 1.01 0.02 [1.01, 1.01] 0.94 1.15 1 1 1.09 0
Opt20 1 0.01 [1, 1] 0.94 1.1 1 1 1.07 0
Opt25 1 0 [1, 1] 1 1 1 1 1 0
Opt1,B 1.05 0.04 [1.05, 1.05] 1 1.23 1 1.07 1.17 0
Opt5,B 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.06 1.17 0
Opt10,B 1.04 0.04 [1.04, 1.04] 1 1.2 1 1 1.15 0
Opt15,B 1.03 0.04 [1.03, 1.03] 1 1.18 1 1 1.14 0
Opt20,B 1.02 0.04 [1.02, 1.02] 1 1.17 1 1 1.1 0
Opt25,B 1 0 [1, 1] 1 1 1 1 1 0

Opt′1 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.07 1.17 0
Opt′5 1.03 0.04 [1.03, 1.03] 0.94 1.18 1 1 1.11 0
Opt′10 1.01 0.03 [1.01, 1.01] 0.94 1.18 1 1 1.1 0
Opt′15 1.01 0.02 [1.01, 1.01] 0.94 1.15 1 1 1.09 0
Opt′20 1 0.01 [1, 1] 0.94 1.09 1 1 1.07 0
Opt′25 1 0 [1, 1] 0.94 1.08 1 1 1 0
Opt′1,B 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.07 1.17 0

Opt′5,B 1.04 0.04 [1.04, 1.04] 1 1.2 1 1 1.15 0

Opt′10,B 1.02 0.04 [1.02, 1.02] 0.94 1.2 1 1 1.1 0

Opt′15,B 1.01 0.03 [1.01, 1.01] 0.94 1.15 1 1 1.09 0

Opt′20,B 1.01 0.03 [1.01, 1.01] 0.94 1.17 1 1 1.09 0

Opt′25,B 1 0 [1, 1] 0.94 1.08 1 1 1 0

Table A.16: Performance ratios of costs relative to Opt in the classical bin packing problem when
item permutations are forbidden.

A.2 Numerical Results from Chapter 5 289

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Bf1 1 0 [1, 1] 1 1 1 1 1 0
Bf5 0.98 0.03 [0.98, 0.98] 0.88 1.1 0.92 1 1 0
Bf10 0.97 0.04 [0.97, 0.97] 0.83 1.1 0.87 1 1 0
Bf15 0.96 0.04 [0.96, 0.96] 0.83 1 0.87 1 1 0
Bf20 0.96 0.04 [0.96, 0.96] 0.83 1 0.87 1 1 0
Bf25 0.96 0.04 [0.96, 0.96] 0.83 1 0.87 1 1 0
Bf1,B 1 0 [1, 1] 1 1 1 1 1 0
Bf5,B 0.99 0.03 [0.99, 0.99] 0.91 1.1 0.92 1 1 0.01
Bf10,B 0.98 0.03 [0.98, 0.98] 0.87 1.1 0.92 1 1 0
Bf15,B 0.97 0.04 [0.97, 0.97] 0.85 1.1 0.9 1 1 0
Bf20,B 0.97 0.04 [0.97, 0.97] 0.83 1.09 0.88 1 1 0
Bf25,B 0.96 0.04 [0.96, 0.96] 0.83 1 0.87 1 1 0

Ff1 1 0 [1, 1] 1 1 1 1 1 0
Ff5 0.98 0.03 [0.98, 0.98] 0.88 1.09 0.92 1 1 0
Ff10 0.96 0.04 [0.96, 0.96] 0.81 1 0.87 0.94 1 0
Ff15 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Ff20 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Ff25 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Ff1,B 1 0 [1, 1] 1 1 1 1 1 0
Ff5,B 0.99 0.03 [0.99, 0.99] 0.85 1.08 0.92 1 1 0.01
Ff10,B 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.91 1 1 0
Ff15,B 0.97 0.04 [0.97, 0.97] 0.83 1.08 0.88 1 1 0
Ff20,B 0.96 0.04 [0.96, 0.96] 0.83 1.08 0.87 1 1 0
Ff25,B 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Opt1 1 0 [1, 1] 1 1 1 1 1 0
Opt5 0.99 0.04 [0.99, 0.99] 0.88 1.11 0.92 1 1.09 0.11
Opt10 0.96 0.04 [0.96, 0.96] 0.81 1.1 0.87 0.94 1 0
Opt15 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Opt20 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Opt25 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Opt1,B 1 0 [1, 1] 1 1 1 1 1 0
Opt5,B 1 0.03 [1, 1] 0.89 1.1 0.92 1 1.08 0.09
Opt10,B 0.99 0.04 [0.99, 0.99] 0.88 1.11 0.92 1 1.08 0.07
Opt15,B 0.98 0.04 [0.98, 0.98] 0.85 1.09 0.91 1 1.07 0.02
Opt20,B 0.98 0.04 [0.98, 0.98] 0.85 1.11 0.89 1 1.08 0.03
Opt25,B 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0

Opt′1 1 0 [1, 1] 1 1 1 1 1 0
Opt′5 0.98 0.04 [0.98, 0.98] 0.87 1.1 0.91 1 1.08 0.04
Opt′10 0.96 0.04 [0.96, 0.96] 0.85 1 0.86 0.94 1 0
Opt′15 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Opt′20 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Opt′25 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Opt′1,B 1 0 [1, 1] 1 1 1 1 1 0

Opt′5,B 0.99 0.03 [0.99, 0.99] 0.88 1.09 0.92 1 1.08 0.04

Opt′10,B 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.89 1 1 0.01

Opt′15,B 0.96 0.04 [0.96, 0.96] 0.85 1.07 0.87 0.94 1 0

Opt′20,B 0.96 0.04 [0.96, 0.96] 0.85 1.07 0.88 0.94 1 0

Opt′25,B 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0

Table A.17: Performance ratios of costs relative to the online version of an algorithm in the
classical bin packing problem when item permutations are allowed.

290 A Appendix

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Bf1 1 0 [1, 1] 1 1 1 1 1 0
Bf5 0.98 0.03 [0.98, 0.98] 0.85 1.1 0.92 1 1 0
Bf10 0.97 0.04 [0.97, 0.97] 0.83 1.1 0.87 1 1 0.01
Bf15 0.97 0.04 [0.97, 0.97] 0.85 1.09 0.87 1 1 0
Bf20 0.97 0.04 [0.97, 0.97] 0.83 1.09 0.87 1 1 0
Bf25 0.97 0.04 [0.97, 0.97] 0.83 1.09 0.87 1 1 0
Bf1,B 1 0 [1, 1] 1 1 1 1 1 0
Bf5,B 0.99 0.03 [0.99, 0.99] 0.91 1.1 0.92 1 1 0.01
Bf10,B 0.98 0.03 [0.98, 0.98] 0.87 1.1 0.92 1 1 0
Bf15,B 0.97 0.04 [0.97, 0.97] 0.85 1.1 0.89 1 1 0.01
Bf20,B 0.97 0.04 [0.97, 0.97] 0.83 1.09 0.9 1 1 0
Bf25,B 0.97 0.04 [0.97, 0.97] 0.83 1.09 0.87 1 1 0

Ff1 1 0 [1, 1] 1 1 1 1 1 0
Ff5 0.98 0.04 [0.98, 0.98] 0.85 1.09 0.91 1 1 0.01
Ff10 0.97 0.04 [0.97, 0.97] 0.83 1.08 0.87 1 1 0
Ff15 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Ff20 0.96 0.04 [0.96, 0.96] 0.81 1.08 0.86 0.94 1 0
Ff25 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Ff1,B 1 0 [1, 1] 1 1 1 1 1 0
Ff5,B 0.99 0.03 [0.99, 0.99] 0.85 1.08 0.92 1 1 0.01
Ff10,B 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.91 1 1 0
Ff15,B 0.97 0.04 [0.97, 0.97] 0.83 1.08 0.88 1 1 0
Ff20,B 0.96 0.04 [0.96, 0.96] 0.83 1.08 0.87 1 1 0
Ff25,B 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Opt1 1 0 [1, 1] 1 1 1 1 1 0
Opt5 0.99 0.04 [0.99, 0.99] 0.87 1.11 0.92 1 1.08 0.07
Opt10 0.97 0.04 [0.97, 0.97] 0.83 1.08 0.88 1 1.03 0.01
Opt15 0.96 0.04 [0.96, 0.96] 0.83 1.07 0.87 0.94 1 0
Opt20 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Opt25 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0
Opt1,B 1 0 [1, 1] 1 1 1 1 1 0
Opt5,B 1 0.03 [1, 1] 0.89 1.1 0.92 1 1.08 0.09
Opt10,B 0.99 0.04 [0.99, 0.99] 0.88 1.11 0.92 1 1.08 0.07
Opt15,B 0.98 0.04 [0.98, 0.98] 0.85 1.09 0.91 1 1.07 0.02
Opt20,B 0.98 0.04 [0.98, 0.98] 0.85 1.11 0.89 1 1.08 0.03
Opt25,B 0.96 0.04 [0.96, 0.96] 0.81 1 0.86 0.94 1 0

Opt′1 1 0 [1, 1] 1 1 1 1 1 0
Opt′5 0.98 0.04 [0.98, 0.98] 0.85 1.09 0.91 1 1.07 0.02
Opt′10 0.96 0.04 [0.96, 0.96] 0.85 1.08 0.87 0.94 1 0
Opt′15 0.96 0.04 [0.96, 0.96] 0.83 1.08 0.86 0.94 1 0
Opt′20 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Opt′25 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Opt′1,B 1 0 [1, 1] 1 1 1 1 1 0

Opt′5,B 0.99 0.03 [0.99, 0.99] 0.88 1.09 0.92 1 1.08 0.04

Opt′10,B 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.89 1 1 0.01

Opt′15,B 0.96 0.04 [0.96, 0.96] 0.85 1.07 0.87 0.94 1 0

Opt′20,B 0.96 0.04 [0.96, 0.96] 0.85 1.07 0.88 0.94 1 0

Opt′25,B 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0

Table A.18: Performance ratios of costs relative to the online version of an algorithm in the
classical bin packing problem when item permutations are forbidden.

A.2 Numerical Results from Chapter 5 291

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Bf1 54.94 0.07 [54.7, 55.18] 44 68 47 55 64.5
Bf5 54.73 0.07 [54.49, 54.97] 44 67 47 55 64.5 0.02
Bf10 54.37 0.07 [54.13, 54.61] 44 67 46 54 64 0.01
Bf20 53.65 0.07 [53.42, 53.88] 43 66 46 54 63 0
Bf40 52.88 0.07 [52.65, 53.11] 43 66 45 53 63 0
Bf60 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Bf80 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Bf100 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Bf1,B 54.94 0.07 [54.7, 55.18] 44 68 47 55 64.5
Bf5,B 54.68 0.07 [54.44, 54.92] 44 67 46 55 64.5 0.02
Bf10,B 54.42 0.07 [54.18, 54.66] 44 67 46 54 64 0.02
Bf20,B 54.03 0.07 [53.8, 54.26] 44 67 46 54 64 0
Bf40,B 53.62 0.07 [53.39, 53.85] 43 67 46 54 63 0
Bf60,B 53.38 0.07 [53.15, 53.61] 43 66 46 53 63 0.09
Bf80,B 53.22 0.07 [52.99, 53.45] 43 66 45 53 63 0.1
Bf100,B 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0

Ff1 55.61 0.07 [55.37, 55.85] 45 68 48 56 65
Ff5 55.34 0.07 [55.1, 55.58] 45 67 47 55 65 0.01
Ff10 54.89 0.07 [54.65, 55.13] 45 67 47 55 64 0
Ff20 53.89 0.07 [53.66, 54.12] 44 66 46 54 63 0
Ff40 52.9 0.07 [52.67, 53.13] 43 66 45 53 63 0
Ff60 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Ff80 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Ff100 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Ff1,B 55.61 0.07 [55.37, 55.85] 45 68 48 56 65
Ff5,B 55.14 0.07 [54.9, 55.38] 44 68 47 55 65 0.01
Ff10,B 54.69 0.07 [54.45, 54.93] 44 68 47 55 64 0.01
Ff20,B 54.14 0.07 [53.9, 54.38] 44 67 46 54 64 0
Ff40,B 53.64 0.07 [53.41, 53.87] 43 67 46 54 63 0
Ff60,B 53.39 0.07 [53.16, 53.62] 43 66 46 53 63 0.08
Ff80,B 53.23 0.07 [53, 53.46] 43 66 45.5 53 63 0.1
Ff100,B 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0

Table A.19: Costs in the classical bin packing problem when item permutations are allowed.

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Bf1 54.94 0.07 [54.7, 55.18] 44 68 47 55 64.5
Bf5 54.4 0.07 [54.16, 54.64] 44 67 46 54 64 0.01
Bf10 53.93 0.07 [53.7, 54.16] 44 67 46 54 64 0.02
Bf20 53.41 0.07 [53.18, 53.64] 43 66 46 53 63 0
Bf40 53.05 0.07 [52.82, 53.28] 43 66 45 53 63 0
Bf60 52.96 0.07 [52.73, 53.19] 43 66 45 53 63 0.01
Bf80 52.93 0.07 [52.7, 53.16] 43 66 45 53 63 0.01
Bf100 52.93 0.07 [52.7, 53.16] 43 66 45 53 63 0
Bf1,B 54.94 0.07 [54.7, 55.18] 44 68 47 55 64.5
Bf5,B 54.67 0.07 [54.43, 54.91] 44 67 46 55 64.5 0.02
Bf10,B 54.43 0.07 [54.19, 54.67] 44 67 46 54 64 0.02
Bf20,B 54.09 0.07 [53.86, 54.32] 43 67 46 54 64 0.01
Bf40,B 53.7 0.07 [53.47, 53.93] 43 67 46 54 63 0.01
Bf60,B 53.46 0.07 [53.23, 53.69] 43 66 46 53 63 0.09
Bf80,B 53.3 0.07 [53.07, 53.53] 43 66 46 53 63 0.1
Bf100,B 52.93 0.07 [52.7, 53.16] 43 66 45 53 63 0.01

Ff1 55.61 0.07 [55.37, 55.85] 45 68 48 56 65
Ff5 54.85 0.07 [54.61, 55.09] 44 68 47 55 64 0
Ff10 54.23 0.07 [53.99, 54.47] 44 67 46 54 64 0.01
Ff20 53.52 0.07 [53.29, 53.75] 43 67 46 53 63 0
Ff40 53.07 0.07 [52.84, 53.3] 43 66 45.5 53 63 0.01
Ff60 52.96 0.07 [52.73, 53.19] 43 66 45 53 63 0.02
Ff80 52.9 0.07 [52.67, 53.13] 43 66 45 53 63 0.02
Ff100 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Ff1,B 55.61 0.07 [55.37, 55.85] 45 68 48 56 65
Ff5,B 55.14 0.07 [54.9, 55.38] 44 68 47 55 65 0.01
Ff10,B 54.69 0.07 [54.45, 54.93] 44 68 47 55 64 0.01
Ff20,B 54.14 0.07 [53.9, 54.38] 44 67 46 54 64 0
Ff40,B 53.64 0.07 [53.41, 53.87] 43 67 46 54 63 0
Ff60,B 53.39 0.07 [53.16, 53.62] 43 66 46 53 63 0.08
Ff80,B 53.23 0.07 [53, 53.46] 43 66 45.5 53 63 0.1
Ff100,B 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0

Table A.20: Costs in the classical bin packing problem when item permutations are forbidden.

292 A Appendix

Performance ratios of costs relative to Bf100 for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Bf1 1.04 0.02 [1.04, 1.04] 1 1.12 1 1.04 1.1 0
Bf5 1.04 0.02 [1.04, 1.04] 1 1.12 1 1.04 1.1 0
Bf10 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.02 1.09 0
Bf20 1.02 0.02 [1.02, 1.02] 1 1.08 1 1.02 1.06 0
Bf40 1 0 [1, 1] 1 1.02 1 1 1.02 0
Bf60 1 0 [1, 1] 1 1 1 1 1 0
Bf80 1 0 [1, 1] 1 1 1 1 1 0
Bf100 1 0 [1, 1] 1 1 1 1 1 0
Bf1,B 1.04 0.02 [1.04, 1.04] 1 1.12 1 1.04 1.1 0
Bf5,B 1.04 0.02 [1.04, 1.04] 1 1.1 1 1.04 1.09 0
Bf10,B 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.02 1.08 0
Bf20,B 1.02 0.02 [1.02, 1.02] 1 1.1 1 1.02 1.06 0
Bf40,B 1.02 0.02 [1.02, 1.02] 1 1.07 1 1.02 1.06 0
Bf60,B 1.01 0.01 [1.01, 1.01] 1 1.08 1 1 1.05 0
Bf80,B 1.01 0.01 [1.01, 1.01] 1 1.06 1 1 1.04 0
Bf100,B 1 0 [1, 1] 1 1 1 1 1 0

Ff1 1.05 0.02 [1.05, 1.05] 1 1.14 1.02 1.05 1.11 0
Ff5 1.05 0.02 [1.05, 1.05] 1 1.12 1 1.04 1.1 0
Ff10 1.04 0.02 [1.04, 1.04] 1 1.12 1 1.04 1.1 0
Ff20 1.02 0.02 [1.02, 1.02] 1 1.08 1 1.02 1.07 0
Ff40 1 0 [1, 1] 1 1.02 1 1 1.02 0
Ff60 1 0 [1, 1] 0.98 1.02 1 1 1 0
Ff80 1 0 [1, 1] 1 1.02 1 1 1 0
Ff100 1 0 [1, 1] 1 1.02 1 1 1 0
Ff1,B 1.05 0.02 [1.05, 1.05] 1 1.14 1.02 1.05 1.11 0
Ff5,B 1.04 0.02 [1.04, 1.04] 1 1.12 1 1.04 1.1 0
Ff10,B 1.04 0.02 [1.04, 1.04] 1 1.1 1 1.04 1.08 0
Ff20,B 1.02 0.02 [1.02, 1.02] 1 1.1 1 1.02 1.07 0
Ff40,B 1.02 0.02 [1.02, 1.02] 1 1.07 1 1.02 1.06 0
Ff60,B 1.01 0.01 [1.01, 1.01] 1 1.08 1 1 1.05 0
Ff80,B 1.01 0.01 [1.01, 1.01] 1 1.06 1 1 1.04 0
Ff100,B 1 0 [1, 1] 1 1.02 1 1 1 0

Table A.21: Performance ratios of costs relative to Bf100 in the classical bin packing problem
when item permutations are allowed.

Performance ratios of costs relative to Bf100 for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Bf1 1.04 0.02 [1.04, 1.04] 1 1.12 1 1.04 1.1 0
Bf5 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.02 1.08 0
Bf10 1.02 0.02 [1.02, 1.02] 0.98 1.08 1 1.02 1.06 0
Bf20 1.01 0.01 [1.01, 1.01] 0.98 1.08 1 1 1.04 0
Bf40 1 0.01 [1, 1] 0.98 1.04 1 1 1.02 0.01
Bf60 1 0 [1, 1] 0.98 1.02 1 1 1.02 0.01
Bf80 1 0 [1, 1] 0.98 1.02 1 1 1 0
Bf100 1 0 [1, 1] 1 1 1 1 1 0
Bf1,B 1.04 0.02 [1.04, 1.04] 1 1.12 1 1.04 1.1 0
Bf5,B 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.04 1.08 0
Bf10,B 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.02 1.08 0
Bf20,B 1.02 0.02 [1.02, 1.02] 0.98 1.1 1 1.02 1.07 0
Bf40,B 1.01 0.02 [1.01, 1.01] 0.98 1.07 1 1.02 1.06 0
Bf60,B 1.01 0.01 [1.01, 1.01] 0.98 1.08 1 1 1.06 0.01
Bf80,B 1.01 0.01 [1.01, 1.01] 0.98 1.06 1 1 1.04 0.01
Bf100,B 1 0 [1, 1] 1 1 1 1 1 0

Ff1 1.05 0.02 [1.05, 1.05] 1 1.14 1.02 1.05 1.1 0
Ff5 1.04 0.02 [1.04, 1.04] 1 1.1 1 1.04 1.08 0
Ff10 1.02 0.02 [1.02, 1.02] 1 1.1 1 1.02 1.06 0
Ff20 1.01 0.01 [1.01, 1.01] 0.98 1.06 1 1.02 1.04 0
Ff40 1 0.01 [1, 1] 0.98 1.04 0.98 1 1.02 0.02
Ff60 1 0.01 [1, 1] 0.98 1.04 0.98 1 1.02 0.03
Ff80 1 0.01 [1, 1] 0.98 1.02 0.98 1 1.02 0.06
Ff100 1 0.01 [1, 1] 0.98 1.02 0.98 1 1 0.09
Ff1,B 1.05 0.02 [1.05, 1.05] 1 1.14 1.02 1.05 1.1 0
Ff5,B 1.04 0.02 [1.04, 1.04] 1 1.1 1 1.04 1.1 0
Ff10,B 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.04 1.08 0
Ff20,B 1.02 0.02 [1.02, 1.02] 0.98 1.1 1 1.02 1.07 0
Ff40,B 1.01 0.01 [1.01, 1.01] 0.98 1.07 1 1.02 1.06 0
Ff60,B 1.01 0.01 [1.01, 1.01] 0.98 1.08 0.98 1 1.05 0.02
Ff80,B 1.01 0.01 [1.01, 1.01] 0.98 1.06 0.98 1 1.04 0.02
Ff100,B 1 0.01 [1, 1] 0.98 1.02 0.98 1 1 0.09

Table A.22: Performance ratios of costs relative to Bf100 in the classical bin packing problem
when item permutations are forbidden.

A.2 Numerical Results from Chapter 5 293

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Bf1 1 0 [1, 1] 1 1 1 1 1 0
Bf5 1 0.01 [1, 1] 0.98 1.02 0.98 1 1.02 0.02
Bf10 0.99 0.01 [0.99, 0.99] 0.95 1.02 0.96 0.98 1 0.01
Bf20 0.98 0.01 [0.98, 0.98] 0.93 1 0.94 0.98 1 0
Bf40 0.96 0.02 [0.96, 0.96] 0.89 1 0.91 0.96 1 0
Bf60 0.96 0.02 [0.96, 0.96] 0.89 1 0.91 0.96 1 0
Bf80 0.96 0.02 [0.96, 0.96] 0.89 1 0.91 0.96 1 0
Bf100 0.96 0.02 [0.96, 0.96] 0.89 1 0.91 0.96 1 0
Bf1,B 1 0 [1, 1] 1 1 1 1 1 0
Bf5,B 1 0.01 [1, 1] 0.97 1.02 0.98 1 1.02 0.02
Bf10,B 0.99 0.01 [0.99, 0.99] 0.96 1.02 0.96 0.99 1 0.01
Bf20,B 0.98 0.01 [0.98, 0.98] 0.94 1.02 0.95 0.98 1 0
Bf40,B 0.98 0.01 [0.98, 0.98] 0.93 1 0.94 0.98 1 0
Bf60,B 0.97 0.02 [0.97, 0.97] 0.91 1 0.93 0.97 1 0
Bf80,B 0.97 0.02 [0.97, 0.97] 0.91 1 0.93 0.97 1 0
Bf100,B 0.96 0.02 [0.96, 0.96] 0.89 1 0.91 0.96 1 0

Ff1 1 0 [1, 1] 1 1 1 1 1 0
Ff5 1 0.01 [1, 1] 0.98 1.02 0.98 1 1 0.01
Ff10 0.99 0.01 [0.99, 0.99] 0.95 1.02 0.96 0.98 1 0
Ff20 0.97 0.01 [0.97, 0.97] 0.93 1 0.94 0.97 1 0
Ff40 0.95 0.02 [0.95, 0.95] 0.89 1 0.91 0.95 0.98 0
Ff60 0.95 0.02 [0.95, 0.95] 0.88 1 0.9 0.95 0.98 0
Ff80 0.95 0.02 [0.95, 0.95] 0.88 1 0.9 0.95 0.98 0
Ff100 0.95 0.02 [0.95, 0.95] 0.88 1 0.9 0.95 0.98 0
Ff1,B 1 0 [1, 1] 1 1 1 1 1 0
Ff5,B 0.99 0.01 [0.99, 0.99] 0.96 1.02 0.96 1 1 0.01
Ff10,B 0.98 0.01 [0.98, 0.98] 0.94 1 0.96 0.98 1 0
Ff20,B 0.97 0.01 [0.97, 0.97] 0.93 1 0.94 0.98 1 0
Ff40,B 0.96 0.02 [0.96, 0.96] 0.92 1 0.93 0.96 1 0
Ff60,B 0.96 0.02 [0.96, 0.96] 0.91 1 0.92 0.96 1 0
Ff80,B 0.96 0.02 [0.96, 0.96] 0.91 1 0.92 0.96 0.98 0
Ff100,B 0.95 0.02 [0.95, 0.95] 0.88 1 0.9 0.95 0.98 0

Table A.23: Performance ratios of costs relative to the online version of an algorithm in the
classical bin packing problem when item permutations are allowed.

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Bf1 1 0 [1, 1] 1 1 1 1 1 0
Bf5 0.99 0.01 [0.99, 0.99] 0.96 1.02 0.96 0.98 1 0.01
Bf10 0.98 0.01 [0.98, 0.98] 0.94 1.02 0.95 0.98 1 0
Bf20 0.97 0.02 [0.97, 0.97] 0.92 1.02 0.93 0.98 1 0
Bf40 0.97 0.02 [0.97, 0.97] 0.89 1 0.92 0.96 1 0
Bf60 0.96 0.02 [0.96, 0.96] 0.89 1 0.91 0.96 1 0
Bf80 0.96 0.02 [0.96, 0.96] 0.89 1 0.91 0.96 1 0
Bf100 0.96 0.02 [0.96, 0.96] 0.89 1 0.91 0.96 1 0
Bf1,B 1 0 [1, 1] 1 1 1 1 1 0
Bf5,B 1 0.01 [1, 1] 0.96 1.02 0.98 1 1.02 0.02
Bf10,B 0.99 0.01 [0.99, 0.99] 0.96 1.02 0.96 1 1 0.01
Bf20,B 0.98 0.01 [0.98, 0.98] 0.94 1.02 0.96 0.98 1 0.01
Bf40,B 0.98 0.01 [0.98, 0.98] 0.93 1 0.94 0.98 1 0
Bf60,B 0.97 0.02 [0.97, 0.97] 0.91 1 0.93 0.98 1 0
Bf80,B 0.97 0.02 [0.97, 0.97] 0.91 1 0.93 0.97 1 0
Bf100,B 0.96 0.02 [0.96, 0.96] 0.89 1 0.91 0.96 1 0

Ff1 1 0 [1, 1] 1 1 1 1 1 0
Ff5 0.99 0.01 [0.99, 0.99] 0.96 1.02 0.96 0.98 1 0
Ff10 0.98 0.01 [0.98, 0.98] 0.93 1 0.94 0.98 1 0
Ff20 0.96 0.02 [0.96, 0.96] 0.91 1 0.92 0.96 1 0
Ff40 0.95 0.02 [0.95, 0.95] 0.89 1 0.91 0.96 0.99 0
Ff60 0.95 0.02 [0.95, 0.95] 0.89 1 0.91 0.95 0.98 0
Ff80 0.95 0.02 [0.95, 0.95] 0.89 1 0.91 0.95 0.98 0
Ff100 0.95 0.02 [0.95, 0.95] 0.88 1 0.9 0.95 0.98 0
Ff1,B 1 0 [1, 1] 1 1 1 1 1 0
Ff5,B 0.99 0.01 [0.99, 0.99] 0.96 1.02 0.96 1 1 0.01
Ff10,B 0.98 0.01 [0.98, 0.98] 0.94 1 0.96 0.98 1 0
Ff20,B 0.97 0.01 [0.97, 0.97] 0.93 1 0.94 0.98 1 0
Ff40,B 0.96 0.02 [0.96, 0.96] 0.92 1 0.93 0.96 1 0
Ff60,B 0.96 0.02 [0.96, 0.96] 0.91 1 0.92 0.96 1 0
Ff80,B 0.96 0.02 [0.96, 0.96] 0.91 1 0.92 0.96 0.98 0
Ff100,B 0.95 0.02 [0.95, 0.95] 0.88 1 0.9 0.95 0.98 0

Table A.24: Performance ratios of costs relative to the online version of an algorithm in the
classical bin packing problem when item permutations are forbidden.

294 A Appendix

A.2.3.2 Bounded-Space Problem

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Bfb1 14.81 0.13 [14.69, 14.93] 9 21 11 15 19
Bfb5 14.24 0.13 [14.13, 14.35] 9 21 10 14 19 0
Bfb10 14.14 0.14 [14.02, 14.26] 9 21 10 14 19 0
Bfb15 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Bfb20 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Bfb25 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Bfb1,B 14.81 0.13 [14.69, 14.93] 9 21 11 15 19
Bfb5,B 14.52 0.13 [14.4, 14.64] 9 21 11 15 19 0
Bfb10,B 14.37 0.13 [14.25, 14.49] 9 21 10.5 14 19 0
Bfb15,B 14.27 0.13 [14.15, 14.39] 9 21 10 14 19 0.05
Bfb20,B 14.24 0.14 [14.12, 14.36] 9 21 10 14 19 0.06
Bfb25,B 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0

Ffb1 14.96 0.13 [14.84, 15.08] 9 21 11 15 20
Ffb5 14.24 0.13 [14.13, 14.35] 9 21 10 14 19 0
Ffb10 14.14 0.14 [14.02, 14.26] 9 21 10 14 19 0
Ffb15 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Ffb20 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Ffb25 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Ffb1,B 14.96 0.13 [14.84, 15.08] 9 21 11 15 20
Ffb5,B 14.57 0.13 [14.45, 14.69] 9 21 11 15 19 0
Ffb10,B 14.4 0.13 [14.28, 14.52] 9 21 11 14 19 0
Ffb15,B 14.28 0.13 [14.16, 14.4] 9 21 10 14 19 0.04
Ffb20,B 14.24 0.13 [14.13, 14.35] 9 21 10 14 19 0.06
Ffb25,B 14.13 0.14 [14.01, 14.25] 9 21 10 14 19 0
Optb1 14.96 0.13 [14.84, 15.08] 9 21 11 15 20
Optb5 14.73 0.13 [14.61, 14.85] 9 21 11 15 19 0.05
Optb10 14.45 0.13 [14.33, 14.57] 9 21 10.5 14 19 0.03
Optb15 14.29 0.14 [14.17, 14.41] 9 21 10 14 19 0.04
Optb20 14.17 0.14 [14.05, 14.29] 9 21 10 14 19 0.03
Optb25 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Optb1,B 14.96 0.13 [14.84, 15.08] 9 21 11 15 20
Optb5,B 14.78 0.13 [14.66, 14.9] 10 21 11 15 19.5 0.06
Optb10,B 14.65 0.13 [14.53, 14.77] 10 21 11 15 19 0.06
Optb15,B 14.47 0.13 [14.35, 14.59] 9 21 10 15 19 0.06
Optb20,B 14.43 0.13 [14.31, 14.55] 10 21 11 14 19 0.11
Optb25,B 14.12 0.14 [14, 14.24] 9 21 10 14 19 0

Optb′1 14.96 0.13 [14.84, 15.08] 9 21 11 15 19.5
Optb′5 14.68 0.13 [14.56, 14.8] 9 21 10.5 15 19 0.03
Optb′10 14.38 0.14 [14.26, 14.5] 9 21 10 14 19 0.03
Optb′15 14.26 0.14 [14.14, 14.38] 9 21 10 14 19 0.04
Optb′20 14.17 0.14 [14.05, 14.29] 9 21 10 14 19 0.02
Optb′25 14.12 0.14 [14, 14.24] 9 21 10 14 19 0
Optb′1,B 14.96 0.13 [14.84, 15.08] 9 21 11 15 19.5

Optb′5,B 14.71 0.13 [14.59, 14.83] 10 21 11 15 19.5 0.04

Optb′10,B 14.47 0.13 [14.35, 14.59] 9 21 10 14 19 0.02

Optb′15,B 14.31 0.13 [14.19, 14.43] 9 21 10 14 19 0.05

Optb′20,B 14.28 0.13 [14.16, 14.4] 9 21 10 14 19 0.08

Optb′25,B 14.12 0.14 [14, 14.24] 9 21 10 14 19 0

Table A.25: Costs in the bounded-space bin packing problem when item permutations are allowed.

A.2 Numerical Results from Chapter 5 295

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Bfb1 14.81 0.13 [14.69, 14.93] 9 21 11 15 19
Bfb5 14.76 0.14 [14.63, 14.89] 9 21 10.5 15 20 0.12
Bfb10 14.76 0.14 [14.63, 14.89] 9 21 10.5 15 20 0
Bfb15 14.76 0.14 [14.63, 14.89] 9 21 10.5 15 20 0
Bfb20 14.76 0.14 [14.63, 14.89] 9 21 10.5 15 20 0
Bfb25 14.76 0.14 [14.63, 14.89] 9 21 10.5 15 20 0
Bfb1,B 14.81 0.13 [14.69, 14.93] 9 21 11 15 19
Bfb5,B 14.78 0.13 [14.66, 14.9] 9 21 11 15 20 0.11
Bfb10,B 14.77 0.14 [14.64, 14.9] 9 21 11 15 20 0.03
Bfb15,B 14.76 0.14 [14.63, 14.89] 9 21 10.5 15 20 0.05
Bfb20,B 14.75 0.14 [14.62, 14.88] 9 21 11 15 20 0.03
Bfb25,B 14.76 0.14 [14.63, 14.89] 9 21 10.5 15 20 0.02

Ffb1 14.96 0.13 [14.84, 15.08] 9 21 11 15 20
Ffb5 14.83 0.14 [14.7, 14.96] 9 21 11 15 20 0.09
Ffb10 14.83 0.14 [14.7, 14.96] 9 21 11 15 20 0
Ffb15 14.83 0.14 [14.7, 14.96] 9 21 11 15 20 0
Ffb20 14.83 0.14 [14.7, 14.96] 9 21 11 15 20 0
Ffb25 14.83 0.14 [14.7, 14.96] 9 21 11 15 20 0
Ffb1,B 14.96 0.13 [14.84, 15.08] 9 21 11 15 20
Ffb5,B 14.86 0.13 [14.74, 14.98] 9 21 11 15 20 0.08
Ffb10,B 14.84 0.13 [14.72, 14.96] 9 21 11 15 20 0.02
Ffb15,B 14.84 0.14 [14.71, 14.97] 9 21 11 15 20 0.05
Ffb20,B 14.83 0.13 [14.71, 14.95] 9 21 11 15 20 0.03
Ffb25,B 14.83 0.14 [14.7, 14.96] 9 21 11 15 20 0.02
Optb1 14.96 0.13 [14.84, 15.08] 9 21 11 15 20
Optb5 14.71 0.13 [14.59, 14.83] 10 21 11 15 19.5 0.02
Optb10 14.54 0.13 [14.42, 14.66] 9 21 11 15 19 0.02
Optb15 14.46 0.13 [14.34, 14.58] 9 21 11 14 19 0.02
Optb20 14.4 0.13 [14.28, 14.52] 9 21 10 14 19 0.01
Optb25 14.41 0.13 [14.29, 14.53] 9 21 10 14 19 0.05
Optb1,B 14.96 0.13 [14.84, 15.08] 9 21 11 15 20
Optb5,B 14.8 0.13 [14.68, 14.92] 10 21 11 15 19.5 0.03
Optb10,B 14.71 0.13 [14.59, 14.83] 10 21 11 15 19 0.06
Optb15,B 14.6 0.13 [14.48, 14.72] 9 21 10.5 15 19 0.07
Optb20,B 14.6 0.13 [14.48, 14.72] 10 21 11 15 19.5 0.12
Optb25,B 14.41 0.13 [14.29, 14.53] 9 21 10 14 19 0.03

Optb′1 14.96 0.13 [14.84, 15.08] 9 21 11 15 20
Optb′5 14.68 0.13 [14.56, 14.8] 10 21 11 15 19 0.01
Optb′10 14.55 0.13 [14.43, 14.67] 9 21 10.5 15 19 0.03
Optb′15 14.53 0.13 [14.41, 14.65] 9 21 10.5 15 19 0.08
Optb′20 14.43 0.13 [14.31, 14.55] 9 21 10 14 19.5 0.04
Optb′25 14.44 0.14 [14.31, 14.57] 9 21 10 14 19 0.06
Optb′1,B 14.96 0.13 [14.84, 15.08] 9 21 11 15 20

Optb′5,B 14.78 0.13 [14.66, 14.9] 10 21 11 15 20 0.04

Optb′10,B 14.77 0.13 [14.65, 14.89] 10 21 11 15 20 0.12

Optb′15,B 14.66 0.13 [14.54, 14.78] 9 21 10 15 19 0.11

Optb′20,B 14.69 0.13 [14.57, 14.81] 10 21 11 15 19.5 0.18

Optb′25,B 14.44 0.14 [14.31, 14.57] 9 21 10 14 19 0.05

Table A.26: Costs in the bounded-space bin packing problem when item permutations are forbid-
den.

296 A Appendix

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Bfb1 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.07 1.17 0
Bfb5 1.01 0.03 [1.01, 1.01] 0.94 1.11 1 1 1.09 0
Bfb10 1 0.01 [1, 1] 0.94 1.11 1 1 1.09 0
Bfb15 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Bfb20 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Bfb25 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Bfb1,B 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.07 1.17 0
Bfb5,B 1.03 0.04 [1.03, 1.03] 1 1.2 1 1 1.12 0
Bfb10,B 1.02 0.03 [1.02, 1.02] 1 1.2 1 1 1.1 0
Bfb15,B 1.01 0.03 [1.01, 1.01] 0.94 1.15 1 1 1.09 0
Bfb20,B 1.01 0.03 [1.01, 1.01] 0.94 1.17 1 1 1.09 0
Bfb25,B 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0

Ffb1 1.06 0.04 [1.06, 1.06] 1 1.23 1 1.07 1.18 0
Ffb5 1.01 0.03 [1.01, 1.01] 0.94 1.11 1 1 1.09 0
Ffb10 1 0.01 [1, 1] 0.94 1.11 1 1 1.09 0
Ffb15 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Ffb20 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Ffb25 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Ffb1,B 1.06 0.04 [1.06, 1.06] 1 1.23 1 1.07 1.18 0
Ffb5,B 1.03 0.04 [1.03, 1.03] 1 1.2 1 1 1.14 0
Ffb10,B 1.02 0.03 [1.02, 1.02] 1 1.2 1 1 1.1 0
Ffb15,B 1.01 0.03 [1.01, 1.01] 0.94 1.15 1 1 1.09 0
Ffb20,B 1.01 0.03 [1.01, 1.01] 0.94 1.17 1 1 1.09 0
Ffb25,B 1 0.01 [1, 1] 0.94 1.11 1 1 1.08 0
Optb1 1.06 0.04 [1.06, 1.06] 1 1.23 1 1.07 1.18 0
Optb5 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.06 1.17 0
Optb10 1.02 0.04 [1.02, 1.02] 1 1.15 1 1 1.1 0
Optb15 1.01 0.03 [1.01, 1.01] 0.94 1.14 1 1 1.09 0
Optb20 1 0.02 [1, 1] 0.94 1.1 1 1 1.09 0
Optb25 1 0 [1, 1] 1 1 1 1 1 0
Optb1,B 1.06 0.04 [1.06, 1.06] 1 1.23 1 1.07 1.18 0
Optb5,B 1.05 0.04 [1.05, 1.05] 1 1.2 1 1.07 1.17 0
Optb10,B 1.04 0.04 [1.04, 1.04] 1 1.2 1 1.06 1.15 0
Optb15,B 1.03 0.04 [1.03, 1.03] 1 1.18 1 1 1.14 0
Optb20,B 1.02 0.04 [1.02, 1.02] 1 1.17 1 1 1.1 0
Optb25,B 1 0 [1, 1] 1 1 1 1 1 0

Optb′1 1.06 0.04 [1.06, 1.06] 1 1.2 1 1.07 1.18 0
Optb′5 1.04 0.04 [1.04, 1.04] 1 1.2 1 1.06 1.15 0
Optb′10 1.02 0.03 [1.02, 1.02] 0.94 1.14 1 1 1.1 0
Optb′15 1.01 0.03 [1.01, 1.01] 0.94 1.14 1 1 1.09 0
Optb′20 1 0.02 [1, 1] 0.94 1.11 1 1 1.09 0
Optb′25 1 0 [1, 1] 0.94 1.08 1 1 1 0
Optb′1,B 1.06 0.04 [1.06, 1.06] 1 1.2 1 1.07 1.18 0

Optb′5,B 1.04 0.04 [1.04, 1.04] 1 1.2 1 1.06 1.15 0

Optb′10,B 1.03 0.04 [1.03, 1.03] 0.94 1.2 1 1 1.11 0

Optb′15,B 1.02 0.03 [1.02, 1.02] 0.94 1.17 1 1 1.1 0

Optb′20,B 1.01 0.03 [1.01, 1.01] 0.94 1.17 1 1 1.09 0

Optb′25,B 1 0 [1, 1] 0.94 1.08 1 1 1 0

Table A.27: Performance ratios of costs relative to Optb in the bounded-space bin packing prob-
lem when item permutations are allowed.

A.2 Numerical Results from Chapter 5 297

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Bfb1 1.03 0.04 [1.03, 1.03] 0.89 1.18 0.94 1 1.1 0.01
Bfb5 1.02 0.04 [1.02, 1.02] 0.88 1.15 0.94 1 1.12 0.02
Bfb10 1.02 0.04 [1.02, 1.02] 0.88 1.15 0.94 1 1.12 0.02
Bfb15 1.02 0.04 [1.02, 1.02] 0.88 1.15 0.94 1 1.12 0.02
Bfb20 1.02 0.04 [1.02, 1.02] 0.88 1.15 0.94 1 1.12 0.02
Bfb25 1.02 0.04 [1.02, 1.02] 0.88 1.15 0.94 1 1.12 0.02
Bfb1,B 1.03 0.04 [1.03, 1.03] 0.89 1.18 0.94 1 1.1 0.01
Bfb5,B 1.03 0.04 [1.03, 1.03] 0.88 1.15 0.94 1 1.13 0.01
Bfb10,B 1.03 0.04 [1.03, 1.03] 0.88 1.15 0.94 1 1.13 0.02
Bfb15,B 1.02 0.04 [1.02, 1.02] 0.88 1.15 0.94 1 1.12 0.02
Bfb20,B 1.02 0.04 [1.02, 1.02] 0.88 1.15 0.94 1 1.13 0.02
Bfb25,B 1.02 0.04 [1.02, 1.02] 0.88 1.15 0.94 1 1.12 0.02

Ffb1 1.04 0.04 [1.04, 1.04] 0.89 1.2 0.94 1.06 1.14 0.01
Ffb5 1.03 0.04 [1.03, 1.03] 0.93 1.2 0.94 1 1.13 0.01
Ffb10 1.03 0.04 [1.03, 1.03] 0.93 1.2 0.94 1 1.13 0.01
Ffb15 1.03 0.04 [1.03, 1.03] 0.93 1.2 0.94 1 1.13 0.01
Ffb20 1.03 0.04 [1.03, 1.03] 0.93 1.2 0.94 1 1.13 0.01
Ffb25 1.03 0.04 [1.03, 1.03] 0.93 1.2 0.94 1 1.13 0.01
Ffb1,B 1.04 0.04 [1.04, 1.04] 0.89 1.2 0.94 1.06 1.14 0.01
Ffb5,B 1.03 0.04 [1.03, 1.03] 0.92 1.2 0.94 1 1.13 0.01
Ffb10,B 1.03 0.04 [1.03, 1.03] 0.93 1.2 0.94 1 1.13 0.01
Ffb15,B 1.03 0.04 [1.03, 1.03] 0.92 1.2 0.94 1 1.13 0.01
Ffb20,B 1.03 0.04 [1.03, 1.03] 0.93 1.2 0.94 1 1.13 0.01
Ffb25,B 1.03 0.04 [1.03, 1.03] 0.93 1.2 0.94 1 1.13 0.01
Optb1 1.04 0.04 [1.04, 1.04] 0.89 1.2 0.94 1.06 1.14 0.01
Optb5 1.02 0.04 [1.02, 1.02] 0.89 1.17 0.94 1 1.09 0.02
Optb10 1.01 0.03 [1.01, 1.01] 0.89 1.1 0.93 1 1.09 0.03
Optb15 1 0.03 [1, 1] 0.88 1.1 0.93 1 1.09 0.04
Optb20 1 0.02 [1, 1] 0.88 1.1 0.93 1 1.08 0.05
Optb25 1 0 [1, 1] 1 1 1 1 1 0
Optb1,B 1.04 0.04 [1.04, 1.04] 0.89 1.2 0.94 1.06 1.14 0.01
Optb5,B 1.03 0.04 [1.03, 1.03] 0.89 1.2 0.94 1 1.09 0.02
Optb10,B 1.02 0.04 [1.02, 1.02] 0.88 1.2 0.93 1 1.09 0.03
Optb15,B 1.01 0.03 [1.01, 1.01] 0.88 1.1 0.93 1 1.09 0.03
Optb20,B 1.01 0.03 [1.01, 1.01] 0.88 1.11 0.93 1 1.09 0.03
Optb25,B 1 0.01 [1, 1] 0.88 1.07 1 1 1 0

Optb′1 1.04 0.04 [1.04, 1.04] 0.89 1.2 0.94 1.06 1.14 0.01
Optb′5 1.02 0.03 [1.02, 1.02] 0.89 1.11 0.94 1 1.09 0.02
Optb′10 1.01 0.03 [1.01, 1.01] 0.89 1.1 0.93 1 1.09 0.03
Optb′15 1.01 0.03 [1.01, 1.01] 0.88 1.13 0.93 1 1.09 0.03
Optb′20 1 0.03 [1, 1] 0.88 1.17 0.93 1 1.08 0.05
Optb′25 1 0.01 [1, 1] 0.88 1.13 1 1 1.07 0.01
Optb′1,B 1.04 0.04 [1.04, 1.04] 0.89 1.2 0.94 1.06 1.14 0.01

Optb′5,B 1.03 0.04 [1.03, 1.03] 0.89 1.18 0.94 1 1.11 0.02

Optb′10,B 1.03 0.04 [1.03, 1.03] 0.89 1.2 0.93 1 1.12 0.03

Optb′15,B 1.02 0.04 [1.02, 1.02] 0.89 1.14 0.93 1 1.09 0.03

Optb′20,B 1.02 0.04 [1.02, 1.02] 0.88 1.15 0.93 1 1.1 0.04

Optb′25,B 1 0.01 [1, 1] 0.88 1.13 1 1 1.07 0.01

Table A.28: Performance ratios of costs relative to Optb in the bounded-space bin packing prob-
lem when item permutations are forbidden.

298 A Appendix

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Bfb1 1 0 [1, 1] 1 1 1 1 1 0
Bfb5 0.96 0.04 [0.96, 0.96] 0.85 1 0.87 0.94 1 0
Bfb10 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Bfb15 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Bfb20 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Bfb25 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Bfb1,B 1 0 [1, 1] 1 1 1 1 1 0
Bfb5,B 0.98 0.03 [0.98, 0.98] 0.85 1.08 0.92 1 1 0
Bfb10,B 0.97 0.04 [0.97, 0.97] 0.85 1 0.88 1 1 0
Bfb15,B 0.96 0.04 [0.96, 0.96] 0.85 1 0.87 0.95 1 0
Bfb20,B 0.96 0.04 [0.96, 0.96] 0.83 1.05 0.87 0.94 1 0
Bfb25,B 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0

Ffb1 1 0 [1, 1] 1 1 1 1 1 0
Ffb5 0.95 0.04 [0.95, 0.95] 0.81 1 0.86 0.94 1 0
Ffb10 0.94 0.04 [0.94, 0.94] 0.81 1 0.85 0.94 1 0
Ffb15 0.94 0.04 [0.94, 0.94] 0.81 1 0.85 0.93 1 0
Ffb20 0.94 0.04 [0.94, 0.94] 0.81 1 0.85 0.93 1 0
Ffb25 0.94 0.04 [0.94, 0.94] 0.81 1 0.85 0.93 1 0
Ffb1,B 1 0 [1, 1] 1 1 1 1 1 0
Ffb5,B 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.89 1 1 0
Ffb10,B 0.96 0.04 [0.96, 0.96] 0.85 1 0.87 0.94 1 0
Ffb15,B 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Ffb20,B 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Ffb25,B 0.94 0.04 [0.94, 0.94] 0.81 1 0.85 0.93 1 0
Optb1 1 0 [1, 1] 1 1 1 1 1 0
Optb5 0.98 0.04 [0.98, 0.98] 0.85 1.1 0.91 1 1.08 0.05
Optb10 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.87 1 1 0.01
Optb15 0.95 0.04 [0.95, 0.95] 0.83 1.1 0.86 0.94 1 0
Optb20 0.95 0.04 [0.95, 0.95] 0.83 1.08 0.85 0.94 1 0
Optb25 0.94 0.04 [0.94, 0.94] 0.81 1 0.85 0.93 1 0
Optb1,B 1 0 [1, 1] 1 1 1 1 1 0
Optb5,B 0.99 0.04 [0.99, 0.99] 0.86 1.11 0.92 1 1.08 0.06
Optb10,B 0.98 0.04 [0.98, 0.98] 0.85 1.11 0.9 1 1.08 0.03
Optb15,B 0.97 0.04 [0.97, 0.97] 0.85 1.09 0.87 1 1.06 0.01
Optb20,B 0.96 0.04 [0.96, 0.96] 0.85 1.11 0.87 0.94 1.07 0.02
Optb25,B 0.94 0.04 [0.94, 0.94] 0.81 1 0.85 0.93 1 0

Optb′1 1 0 [1, 1] 1 1 1 1 1 0
Optb′5 0.98 0.04 [0.98, 0.98] 0.86 1.09 0.91 1 1.07 0.03
Optb′10 0.96 0.04 [0.96, 0.96] 0.85 1.07 0.86 0.94 1.03 0.01
Optb′15 0.95 0.04 [0.95, 0.95] 0.83 1.07 0.86 0.94 1 0
Optb′20 0.95 0.04 [0.95, 0.95] 0.83 1 0.86 0.94 1 0
Optb′25 0.94 0.04 [0.94, 0.94] 0.83 1 0.85 0.93 1 0
Optb′1,B 1 0 [1, 1] 1 1 1 1 1 0

Optb′5,B 0.98 0.04 [0.98, 0.98] 0.87 1.11 0.91 1 1.08 0.04

Optb′10,B 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.88 1 1 0.01

Optb′15,B 0.96 0.04 [0.96, 0.96] 0.85 1 0.86 0.94 1 0

Optb′20,B 0.95 0.04 [0.95, 0.95] 0.85 1.07 0.86 0.94 1 0

Optb′25,B 0.94 0.04 [0.94, 0.94] 0.83 1 0.85 0.93 1 0

Table A.29: Performance ratios of costs relative to the online version of an algorithm in the
bounded-space bin packing problem when item permutations are allowed.

A.2 Numerical Results from Chapter 5 299

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Bfb1 1 0 [1, 1] 1 1 1 1 1 0
Bfb5 1 0.04 [1, 1] 0.87 1.13 0.92 1 1.08 0.12
Bfb10 1 0.04 [1, 1] 0.87 1.13 0.92 1 1.08 0.12
Bfb15 1 0.04 [1, 1] 0.87 1.13 0.92 1 1.08 0.12
Bfb20 1 0.04 [1, 1] 0.87 1.13 0.92 1 1.08 0.12
Bfb25 1 0.04 [1, 1] 0.87 1.13 0.92 1 1.08 0.12
Bfb1,B 1 0 [1, 1] 1 1 1 1 1 0
Bfb5,B 1 0.03 [1, 1] 0.91 1.11 0.92 1 1.08 0.11
Bfb10,B 1 0.04 [1, 1] 0.87 1.13 0.92 1 1.08 0.11
Bfb15,B 1 0.04 [1, 1] 0.87 1.13 0.92 1 1.08 0.12
Bfb20,B 1 0.04 [1, 1] 0.87 1.13 0.92 1 1.08 0.11
Bfb25,B 1 0.04 [1, 1] 0.87 1.13 0.92 1 1.08 0.12

Ffb1 1 0 [1, 1] 1 1 1 1 1 0
Ffb5 0.99 0.04 [0.99, 0.99] 0.87 1.13 0.92 1 1.08 0.09
Ffb10 0.99 0.04 [0.99, 0.99] 0.87 1.13 0.92 1 1.08 0.09
Ffb15 0.99 0.04 [0.99, 0.99] 0.87 1.13 0.92 1 1.08 0.09
Ffb20 0.99 0.04 [0.99, 0.99] 0.87 1.13 0.92 1 1.08 0.09
Ffb25 0.99 0.04 [0.99, 0.99] 0.87 1.13 0.92 1 1.08 0.09
Ffb1,B 1 0 [1, 1] 1 1 1 1 1 0
Ffb5,B 0.99 0.03 [0.99, 0.99] 0.89 1.08 0.92 1 1.07 0.08
Ffb10,B 0.99 0.04 [0.99, 0.99] 0.87 1.13 0.92 1 1.08 0.08
Ffb15,B 0.99 0.04 [0.99, 0.99] 0.87 1.13 0.92 1 1.08 0.09
Ffb20,B 0.99 0.04 [0.99, 0.99] 0.87 1.13 0.92 1 1.08 0.08
Ffb25,B 0.99 0.04 [0.99, 0.99] 0.87 1.13 0.92 1 1.08 0.09
Optb1 1 0 [1, 1] 1 1 1 1 1 0
Optb5 0.98 0.03 [0.98, 0.98] 0.88 1.11 0.92 1 1.08 0.02
Optb10 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.89 1 1 0
Optb15 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.88 1 1 0
Optb20 0.96 0.04 [0.96, 0.96] 0.85 1.08 0.88 0.94 1 0
Optb25 0.96 0.04 [0.96, 0.96] 0.83 1.13 0.88 0.94 1.06 0.01
Optb1,B 1 0 [1, 1] 1 1 1 1 1 0
Optb5,B 0.99 0.03 [0.99, 0.99] 0.88 1.11 0.92 1 1.08 0.03
Optb10,B 0.98 0.04 [0.98, 0.98] 0.87 1.11 0.92 1 1.08 0.03
Optb15,B 0.98 0.04 [0.98, 0.98] 0.85 1.09 0.88 1 1.08 0.02
Optb20,B 0.98 0.04 [0.98, 0.98] 0.85 1.11 0.91 1 1.07 0.03
Optb25,B 0.96 0.04 [0.96, 0.96] 0.83 1.13 0.88 0.94 1.06 0.01

Optb′1 1 0 [1, 1] 1 1 1 1 1 0
Optb′5 0.98 0.03 [0.98, 0.98] 0.86 1.11 0.91 1 1.03 0.01
Optb′10 0.97 0.04 [0.97, 0.97] 0.85 1.08 0.88 1 1.03 0.01
Optb′15 0.97 0.04 [0.97, 0.97] 0.85 1.09 0.89 1 1.07 0.02
Optb′20 0.96 0.04 [0.96, 0.96] 0.85 1.08 0.88 0.94 1.06 0.01
Optb′25 0.96 0.04 [0.96, 0.96] 0.83 1.13 0.88 0.94 1.07 0.02
Optb′1,B 1 0 [1, 1] 1 1 1 1 1 0

Optb′5,B 0.99 0.03 [0.99, 0.99] 0.88 1.11 0.92 1 1.08 0.04

Optb′10,B 0.99 0.04 [0.99, 0.99] 0.87 1.11 0.92 1 1.08 0.07

Optb′15,B 0.98 0.04 [0.98, 0.98] 0.86 1.09 0.88 1 1.08 0.04

Optb′20,B 0.98 0.04 [0.98, 0.98] 0.85 1.13 0.88 1 1.08 0.06

Optb′25,B 0.96 0.04 [0.96, 0.96] 0.83 1.12 0.88 0.94 1.07 0.02

Table A.30: Performance ratios of costs relative to the online version of an algorithm in the
bounded-space bin packing problem when item permutations are forbidden.

300 A Appendix

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Bfb1 57.36 0.07 [57.11, 57.61] 47 70 49 57 67
Bfb5 54.48 0.07 [54.24, 54.72] 45 67 47 54 64 0
Bfb10 53.62 0.07 [53.39, 53.85] 44 66 46 54 63 0
Bfb20 53.19 0.07 [52.96, 53.42] 43 66 45.5 53 63 0
Bfb40 52.92 0.07 [52.69, 53.15] 43 66 45 53 63 0
Bfb60 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Bfb80 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Bfb100 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Bfb1,B 57.36 0.07 [57.11, 57.61] 47 70 49 57 67
Bfb5,B 55.83 0.07 [55.59, 56.07] 45 68 47 56 65.5 0
Bfb10,B 55.14 0.07 [54.9, 55.38] 45 68 47 55 65 0.01
Bfb20,B 54.4 0.07 [54.16, 54.64] 44 67 46 54 64 0.01
Bfb40,B 53.81 0.07 [53.58, 54.04] 43 67 46 54 63.5 0
Bfb60,B 53.47 0.07 [53.24, 53.7] 43 66 46 53 63 0.09
Bfb80,B 53.28 0.07 [53.05, 53.51] 43 66 45 53 63 0.12
Bfb100,B 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0

Ffb1 58.15 0.06 [57.93, 58.37] 47 70 50 58 68
Ffb5 54.57 0.07 [54.33, 54.81] 45 66 47 54 64 0
Ffb10 53.68 0.07 [53.45, 53.91] 44 66 46 54 63.5 0
Ffb20 53.19 0.07 [52.96, 53.42] 43 66 45.5 53 63 0
Ffb40 52.92 0.07 [52.69, 53.15] 43 66 45 53 63 0
Ffb60 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Ffb80 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Ffb100 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0
Ffb1,B 58.15 0.06 [57.93, 58.37] 47 70 50 58 68
Ffb5,B 56.35 0.07 [56.11, 56.59] 45 69 48 56 66 0
Ffb10,B 55.4 0.07 [55.16, 55.64] 45 68 47 55 65 0
Ffb20,B 54.47 0.07 [54.23, 54.71] 44 67 46 54 64.5 0
Ffb40,B 53.82 0.07 [53.59, 54.05] 43 67 46 54 63.5 0
Ffb60,B 53.48 0.07 [53.25, 53.71] 43 66 46 53 63 0.09
Ffb80,B 53.3 0.07 [53.07, 53.53] 43 66 45.5 53 63 0.11
Ffb100,B 52.85 0.07 [52.62, 53.08] 43 66 45 53 63 0

Table A.31: Costs in the bounded-space bin packing problem when item permutations are allowed.

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Bfb1 57.36 0.07 [57.11, 57.61] 47 70 49 57 67
Bfb5 57.42 0.07 [57.17, 57.67] 46 71 49 57 67 0.29
Bfb10 57.42 0.07 [57.17, 57.67] 46 71 49 57 67 0
Bfb20 57.42 0.07 [57.17, 57.67] 46 71 49 57 67 0
Bfb40 57.42 0.07 [57.17, 57.67] 46 71 49 57 67 0
Bfb60 57.42 0.07 [57.17, 57.67] 46 71 49 57 67 0
Bfb80 57.42 0.07 [57.17, 57.67] 46 71 49 57 67 0
Bfb100 57.42 0.07 [57.17, 57.67] 46 71 49 57 67 0
Bfb1,B 57.36 0.07 [57.11, 57.61] 47 70 49 57 67
Bfb5,B 57.46 0.07 [57.21, 57.71] 47 71 49 57 67 0.31
Bfb10,B 57.44 0.07 [57.19, 57.69] 46 71 49 57 67 0.14
Bfb20,B 57.43 0.07 [57.18, 57.68] 46 71 49 57 67 0.1
Bfb40,B 57.43 0.07 [57.18, 57.68] 46 71 49 57 67 0.04
Bfb60,B 57.42 0.07 [57.17, 57.67] 46 71 49 57 67 0.05
Bfb80,B 57.43 0.07 [57.18, 57.68] 46 71 49 57 67 0.05
Bfb100,B 57.42 0.07 [57.17, 57.67] 46 71 49 57 67 0.02

Ffb1 58.15 0.06 [57.93, 58.37] 47 70 50 58 68
Ffb5 57.87 0.07 [57.62, 58.12] 46 71 49 58 68 0.2
Ffb10 57.87 0.07 [57.62, 58.12] 46 71 49 58 68 0
Ffb20 57.87 0.07 [57.62, 58.12] 46 71 49 58 68 0
Ffb40 57.87 0.07 [57.62, 58.12] 46 71 49 58 68 0
Ffb60 57.87 0.07 [57.62, 58.12] 46 71 49 58 68 0
Ffb80 57.87 0.07 [57.62, 58.12] 46 71 49 58 68 0
Ffb100 57.87 0.07 [57.62, 58.12] 46 71 49 58 68 0
Ffb1,B 58.15 0.06 [57.93, 58.37] 47 70 50 58 68
Ffb5,B 57.95 0.07 [57.7, 58.2] 48 71 49.5 58 68 0.19
Ffb10,B 57.91 0.07 [57.66, 58.16] 47 71 49 58 68 0.13
Ffb20,B 57.88 0.07 [57.63, 58.13] 47 71 49 58 68 0.08
Ffb40,B 57.87 0.07 [57.62, 58.12] 46 71 49 58 68 0.03
Ffb60,B 57.88 0.07 [57.63, 58.13] 47 71 49 58 68 0.05
Ffb80,B 57.88 0.07 [57.63, 58.13] 46 71 49 58 68 0.04
Ffb100,B 57.87 0.07 [57.62, 58.12] 46 71 49 58 68 0.01

Table A.32: Costs in the bounded-space bin packing problem when item permutations are forbid-
den.

A.2 Numerical Results from Chapter 5 301

Performance ratios of costs relative to Bfb100 for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Bfb1 1.09 0.02 [1.09, 1.09] 1.02 1.15 1.03 1.09 1.14 0
Bfb5 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.04 1.07 0
Bfb10 1.01 0.01 [1.01, 1.01] 1 1.08 1 1.02 1.04 0
Bfb20 1.01 0.01 [1.01, 1.01] 1 1.04 1 1 1.04 0
Bfb40 1 0.01 [1, 1] 1 1.02 1 1 1.02 0
Bfb60 1 0 [1, 1] 1 1.02 1 1 1 0
Bfb80 1 0 [1, 1] 1 1 1 1 1 0
Bfb100 1 0 [1, 1] 1 1 1 1 1 0
Bfb1,B 1.09 0.02 [1.09, 1.09] 1.02 1.15 1.03 1.09 1.14 0
Bfb5,B 1.06 0.02 [1.06, 1.06] 1 1.13 1.02 1.06 1.1 0
Bfb10,B 1.04 0.02 [1.04, 1.04] 1 1.1 1 1.04 1.1 0
Bfb20,B 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.02 1.08 0
Bfb40,B 1.02 0.01 [1.02, 1.02] 1 1.08 1 1.02 1.06 0
Bfb60,B 1.01 0.01 [1.01, 1.01] 1 1.08 1 1.02 1.05 0
Bfb80,B 1.01 0.01 [1.01, 1.01] 1 1.06 1 1 1.04 0
Bfb100,B 1 0 [1, 1] 1 1 1 1 1 0

Ffb1 1.1 0.02 [1.1, 1.1] 1.03 1.19 1.05 1.1 1.16 0
Ffb5 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.04 1.08 0
Ffb10 1.02 0.01 [1.02, 1.02] 1 1.06 1 1.02 1.04 0
Ffb20 1.01 0.01 [1.01, 1.01] 1 1.04 1 1 1.04 0
Ffb40 1 0.01 [1, 1] 1 1.02 1 1 1.02 0
Ffb60 1 0 [1, 1] 1 1.02 1 1 1 0
Ffb80 1 0 [1, 1] 1 1.02 1 1 1 0
Ffb100 1 0 [1, 1] 1 1.02 1 1 1 0
Ffb1,B 1.1 0.02 [1.1, 1.1] 1.03 1.19 1.05 1.1 1.16 0
Ffb5,B 1.07 0.02 [1.07, 1.07] 1 1.14 1.02 1.07 1.12 0
Ffb10,B 1.05 0.02 [1.05, 1.05] 1 1.12 1.02 1.05 1.1 0
Ffb20,B 1.03 0.02 [1.03, 1.03] 1 1.1 1 1.03 1.08 0
Ffb40,B 1.02 0.01 [1.02, 1.02] 1 1.08 1 1.02 1.06 0
Ffb60,B 1.01 0.01 [1.01, 1.01] 1 1.08 1 1.02 1.05 0
Ffb80,B 1.01 0.01 [1.01, 1.01] 1 1.06 1 1 1.04 0
Ffb100,B 1 0 [1, 1] 1 1.02 1 1 1 0

Table A.33: Performance ratios of costs relative to Bfb100 in the bounded-space bin packing
problem when item permutations are allowed.

Performance ratios of costs relative to Bfb100 for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Bfb1 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb5 1 0 [1, 1] 1 1 1 1 1 0
Bfb10 1 0 [1, 1] 1 1 1 1 1 0
Bfb20 1 0 [1, 1] 1 1 1 1 1 0
Bfb40 1 0 [1, 1] 1 1 1 1 1 0
Bfb60 1 0 [1, 1] 1 1 1 1 1 0
Bfb80 1 0 [1, 1] 1 1 1 1 1 0
Bfb100 1 0 [1, 1] 1 1 1 1 1 0
Bfb1,B 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb5,B 1 0.01 [1, 1] 0.96 1.05 0.97 1 1.04 0.2
Bfb10,B 1 0.01 [1, 1] 0.96 1.04 0.98 1 1.02 0.14
Bfb20,B 1 0.01 [1, 1] 0.96 1.04 0.98 1 1.02 0.07
Bfb40,B 1 0 [1, 1] 0.98 1.02 0.98 1 1.02 0.03
Bfb60,B 1 0 [1, 1] 0.97 1.02 0.98 1 1.02 0.02
Bfb80,B 1 0 [1, 1] 0.98 1.02 0.98 1 1.02 0.02
Bfb100,B 1 0 [1, 1] 1 1 1 1 1 0

Ffb1 1.01 0.02 [1.01, 1.01] 0.96 1.08 0.97 1.02 1.06 0.1
Ffb5 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.03
Ffb10 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.03
Ffb20 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.03
Ffb40 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.03
Ffb60 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.03
Ffb80 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.03
Ffb100 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.03
Ffb1,B 1.01 0.02 [1.01, 1.01] 0.96 1.08 0.97 1.02 1.06 0.1
Ffb5,B 1.01 0.01 [1.01, 1.01] 0.97 1.06 0.98 1 1.04 0.08
Ffb10,B 1.01 0.01 [1.01, 1.01] 0.97 1.06 0.98 1 1.04 0.06
Ffb20,B 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.05
Ffb40,B 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.04
Ffb60,B 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.04
Ffb80,B 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.04
Ffb100,B 1.01 0.01 [1.01, 1.01] 0.96 1.06 0.98 1 1.04 0.03

Table A.34: Performance ratios of costs relative to Bfb100 in the bounded-space bin packing
problem when item permutations are forbidden.

302 A Appendix

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Bfb1 1 0 [1, 1] 1 1 1 1 1 0
Bfb5 0.95 0.02 [0.95, 0.95] 0.9 1 0.91 0.95 0.98 0
Bfb10 0.93 0.02 [0.93, 0.93] 0.88 0.98 0.89 0.93 0.97 0
Bfb20 0.93 0.02 [0.93, 0.93] 0.87 0.98 0.88 0.93 0.97 0
Bfb40 0.92 0.02 [0.92, 0.92] 0.87 0.98 0.88 0.92 0.97 0
Bfb60 0.92 0.02 [0.92, 0.92] 0.87 0.98 0.88 0.92 0.97 0
Bfb80 0.92 0.02 [0.92, 0.92] 0.87 0.98 0.88 0.92 0.97 0
Bfb100 0.92 0.02 [0.92, 0.92] 0.87 0.98 0.88 0.92 0.97 0
Bfb1,B 1 0 [1, 1] 1 1 1 1 1 0
Bfb5,B 0.97 0.01 [0.97, 0.97] 0.93 1.02 0.94 0.97 1 0
Bfb10,B 0.96 0.02 [0.96, 0.96] 0.92 1 0.93 0.96 1 0
Bfb20,B 0.95 0.02 [0.95, 0.95] 0.89 1 0.91 0.95 0.98 0
Bfb40,B 0.94 0.02 [0.94, 0.94] 0.89 0.98 0.89 0.94 0.98 0
Bfb60,B 0.93 0.02 [0.93, 0.93] 0.87 0.98 0.89 0.93 0.97 0
Bfb80,B 0.93 0.02 [0.93, 0.93] 0.87 0.98 0.88 0.93 0.97 0
Bfb100,B 0.92 0.02 [0.92, 0.92] 0.87 0.98 0.88 0.92 0.97 0

Ffb1 1 0 [1, 1] 1 1 1 1 1 0
Ffb5 0.94 0.02 [0.94, 0.94] 0.88 0.98 0.9 0.94 0.97 0
Ffb10 0.92 0.02 [0.92, 0.92] 0.85 0.98 0.88 0.92 0.97 0
Ffb20 0.91 0.02 [0.91, 0.91] 0.84 0.97 0.87 0.92 0.96 0
Ffb40 0.91 0.02 [0.91, 0.91] 0.84 0.97 0.86 0.91 0.95 0
Ffb60 0.91 0.02 [0.91, 0.91] 0.84 0.97 0.86 0.91 0.95 0
Ffb80 0.91 0.02 [0.91, 0.91] 0.84 0.97 0.86 0.91 0.95 0
Ffb100 0.91 0.02 [0.91, 0.91] 0.84 0.97 0.86 0.91 0.95 0
Ffb1,B 1 0 [1, 1] 1 1 1 1 1 0
Ffb5,B 0.97 0.02 [0.97, 0.97] 0.92 1 0.93 0.97 1 0
Ffb10,B 0.95 0.02 [0.95, 0.95] 0.89 1 0.91 0.95 0.98 0
Ffb20,B 0.94 0.02 [0.94, 0.94] 0.87 1 0.89 0.93 0.98 0
Ffb40,B 0.93 0.02 [0.93, 0.93] 0.86 0.98 0.88 0.93 0.97 0
Ffb60,B 0.92 0.02 [0.92, 0.92] 0.84 0.97 0.87 0.92 0.96 0
Ffb80,B 0.92 0.02 [0.92, 0.92] 0.85 0.97 0.87 0.92 0.96 0
Ffb100,B 0.91 0.02 [0.91, 0.91] 0.84 0.97 0.86 0.91 0.95 0

Table A.35: Performance ratios of costs relative to the online version of an algorithm in the
bounded-space bin packing problem when item permutations are allowed.

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Bfb1 1 0 [1, 1] 1 1 1 1 1 0
Bfb5 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb10 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb20 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb40 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb60 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb80 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb100 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb1,B 1 0 [1, 1] 1 1 1 1 1 0
Bfb5,B 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.31
Bfb10,B 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.3
Bfb20,B 1 0.02 [1, 1] 0.95 1.06 0.96 1 1.04 0.3
Bfb40,B 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb60,B 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb80,B 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29
Bfb100,B 1 0.02 [1, 1] 0.95 1.05 0.96 1 1.04 0.29

Ffb1 1 0 [1, 1] 1 1 1 1 1 0
Ffb5 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb10 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb20 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb40 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb60 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb80 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb100 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb1,B 1 0 [1, 1] 1 1 1 1 1 0
Ffb5,B 1 0.02 [1, 1] 0.93 1.05 0.96 1 1.03 0.19
Ffb10,B 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.21
Ffb20,B 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb40,B 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb60,B 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb80,B 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2
Ffb100,B 1 0.02 [1, 1] 0.95 1.05 0.95 1 1.03 0.2

Table A.36: Performance ratios of costs relative to the online version of an algorithm in the
bounded-space bin packing problem when item permutations are forbidden.

A.2 Numerical Results from Chapter 5 303

A.2.4 Online Traveling Salesman with Lookahead

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Nn1 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Nn5 8.09 0.1 [8.04, 8.14] 6 10.2 6.4 8 9.95 0
Nn10 6.43 0.11 [6.39, 6.47] 4.2 8.8 5 6.4 8 0.02
Nn15 5.77 0.1 [5.73, 5.81] 3.8 7.9 4.5 5.8 7.3 0.13
Nn20 5.48 0.1 [5.45, 5.51] 3.6 7.2 4.25 5.5 6.8 0.23
Nn25 5.39 0.1 [5.36, 5.42] 3.8 7.2 4.1 5.4 6.6 0.09
Nn1,B 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Nn5,B 9.76 0.09 [9.71, 9.81] 7 13 7.65 9.8 11.95 0
Nn10,B 8.06 0.1 [8.01, 8.11] 5.6 10.8 6.25 8.1 10 0.02
Nn15,B 6.94 0.1 [6.9, 6.98] 5 9 5.45 6.9 8.5 0.08
Nn20,B 6.57 0.1 [6.53, 6.61] 4.4 9 5.2 6.6 8.1 0.26
Nn25,B 5.39 0.1 [5.36, 5.42] 3.8 7.2 4.1 5.4 6.6 0.03

Ins1 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Ins5 8.61 0.11 [8.55, 8.67] 6.1 11.9 6.6 8.6 11 0
Ins10 6.93 0.12 [6.88, 6.98] 4.1 10.1 5.15 6.9 9.1 0.06
Ins15 5.9 0.11 [5.86, 5.94] 4.2 8.4 4.5 5.9 7.5 0.13
Ins20 5.56 0.08 [5.53, 5.59] 4.2 7 4.5 5.5 6.6 0.28
Ins25 5.55 0.06 [5.53, 5.57] 4.4 6.5 4.7 5.6 6.3 0.46
Ins1,B 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Ins5,B 9.91 0.1 [9.85, 9.97] 7.1 13 7.8 9.9 12.3 0
Ins10,B 8.29 0.09 [8.24, 8.34] 6 10.4 6.55 8.3 10.05 0.02
Ins15,B 6.52 0.08 [6.49, 6.55] 4.4 8.2 5.2 6.5 7.7 0.01
Ins20,B 6.17 0.09 [6.14, 6.2] 4.4 8.1 5 6.2 7.45 0.19
Ins25,B 5.55 0.06 [5.53, 5.57] 4.4 6.5 4.7 5.6 6.3 0.06
2Opt1 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
2Opt5 8.81 0.12 [8.74, 8.88] 5.7 12.2 6.45 8.7 11.5 0
2Opt10 6.24 0.11 [6.2, 6.28] 4.2 8.8 4.85 6.2 8 0.01
2Opt15 5.27 0.1 [5.24, 5.3] 3.6 7.2 4.2 5.3 6.5 0.05
2Opt20 4.79 0.08 [4.77, 4.81] 3.6 6.2 3.95 4.8 5.7 0.1
2Opt25 4.66 0.07 [4.64, 4.68] 3.6 5.8 3.9 4.7 5.5 0.18
2Opt1,B 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
2Opt5,B 9.99 0.09 [9.93, 10.05] 7.6 12.9 7.9 10 12 0
2Opt10,B 7.93 0.08 [7.89, 7.97] 6 9.9 6.5 7.9 9.4 0
2Opt15,B 6.42 0.08 [6.39, 6.45] 5 8 5.3 6.4 7.7 0.01
2Opt20,B 6.29 0.08 [6.26, 6.32] 4.6 7.8 4.95 6.3 7.5 0.32
2Opt25,B 4.66 0.07 [4.64, 4.68] 3.6 5.8 3.9 4.7 5.5 0

3Opt1 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
3Opt5 8.75 0.12 [8.68, 8.82] 5.7 12.3 6.4 8.7 11.4 0
3Opt10 6.15 0.1 [6.11, 6.19] 4.2 8.8 4.8 6.1 7.85 0
3Opt15 5.16 0.09 [5.13, 5.19] 3.6 6.5 4.2 5.1 6.2 0.03
3Opt20 4.68 0.07 [4.66, 4.7] 3.6 6.2 3.9 4.7 5.5 0.05
3Opt25 4.57 0.07 [4.55, 4.59] 3.6 5.6 3.9 4.6 5.2 0.12
3Opt1,B 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
3Opt5,B 9.96 0.09 [9.9, 10.02] 7.6 12.9 7.85 10 12 0
3Opt10,B 7.88 0.08 [7.84, 7.92] 6 9.8 6.5 7.9 9.3 0
3Opt15,B 6.36 0.07 [6.33, 6.39] 5 7.9 5.3 6.4 7.45 0
3Opt20,B 6.23 0.08 [6.2, 6.26] 4.6 7.7 5 6.2 7.35 0.3
3Opt25,B 4.57 0.07 [4.55, 4.59] 3.6 5.6 3.9 4.6 5.2 0

Sa1 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Sa5 8.92 0.13 [8.85, 8.99] 6.1 12.9 6.6 8.8 11.95 0
Sa10 6.24 0.11 [6.2, 6.28] 4.2 9.2 4.85 6.2 8.05 0
Sa15 5.27 0.1 [5.24, 5.3] 3.6 7.2 4.2 5.3 6.5 0.05
Sa20 4.79 0.08 [4.77, 4.81] 3.6 6.2 3.95 4.8 5.7 0.1
Sa25 4.66 0.07 [4.64, 4.68] 3.6 5.8 3.9 4.7 5.5 0.18
Sa1,B 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Sa5,B 10.08 0.09 [10.02, 10.14] 7.6 13.1 8 10.1 12.25 0
Sa10,B 7.92 0.08 [7.88, 7.96] 6 9.9 6.5 7.9 9.4 0
Sa15,B 6.42 0.08 [6.39, 6.45] 5 8 5.3 6.4 7.7 0.01
Sa20,B 6.28 0.08 [6.25, 6.31] 4.6 7.8 4.95 6.3 7.5 0.31

...
...

...
...

...
...

...
...

...
...

304 A Appendix

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

...
...

...
...

...
...

...
...

...
...

Sa25,B 4.66 0.07 [4.64, 4.68] 3.6 5.8 3.9 4.7 5.5 0
Ts1 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Ts5 8.9 0.12 [8.83, 8.97] 6.1 13.1 6.6 8.8 11.85 0
Ts10 6.22 0.11 [6.18, 6.26] 4.2 8.6 4.8 6.2 7.95 0.01
Ts15 5.21 0.09 [5.18, 5.24] 3.6 6.8 4.2 5.2 6.4 0.05
Ts20 4.76 0.08 [4.74, 4.78] 3.6 6.5 3.95 4.75 5.6 0.11
Ts25 4.64 0.07 [4.62, 4.66] 3.6 5.7 3.9 4.7 5.4 0.2
Ts1,B 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Ts5,B 10.07 0.09 [10.01, 10.13] 7.6 13.1 8 10.1 12.2 0
Ts10,B 7.97 0.08 [7.93, 8.01] 6 9.6 6.5 8 9.4 0
Ts15,B 6.42 0.08 [6.39, 6.45] 5 7.9 5.3 6.4 7.6 0
Ts20,B 6.3 0.08 [6.27, 6.33] 4.6 7.9 4.95 6.3 7.45 0.33
Ts25,B 4.65 0.07 [4.63, 4.67] 3.6 5.7 3.9 4.7 5.4 0
Opt1 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Opt5 9.55 0.1 [9.49, 9.61] 6.8 13 7.55 9.5 11.8 0
Opt10 6.89 0.1 [6.85, 6.93] 5.1 9.6 5.3 6.9 8.5 0
Opt15 5.67 0.1 [5.63, 5.71] 4.1 11.2 4.4 5.6 7.15 0.01
Opt20 4.89 0.08 [4.87, 4.91] 3.6 6.5 4 4.9 5.9 0.02
Opt25 4.52 0.06 [4.5, 4.54] 3.6 5.5 3.85 4.5 5.15 0.02
Opt1,B 14.05 0.1 [13.96, 14.14] 10.5 19.2 10.8 14.05 17.5
Opt5,B 10.41 0.09 [10.35, 10.47] 7.4 13.8 8.35 10.4 12.6 0
Opt10,B 8.13 0.08 [8.09, 8.17] 6 10 6.7 8.1 9.5 0
Opt15,B 6.55 0.07 [6.52, 6.58] 5.1 7.9 5.4 6.6 7.6 0
Opt20,B 6.4 0.08 [6.37, 6.43] 4.8 7.7 5 6.4 7.5 0.3
Opt25,B 4.53 0.06 [4.51, 4.55] 3.6 5.4 3.85 4.5 5.2 0

Table A.37: Costs in the TSP.

A.2 Numerical Results from Chapter 5 305

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Nn1 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Nn5 1.79 0.1 [1.78, 1.8] 1.25 2.49 1.4 1.78 2.21 0
Nn10 1.42 0.1 [1.41, 1.43] 1.07 1.98 1.12 1.42 1.74 0
Nn15 1.28 0.09 [1.27, 1.29] 1 1.78 1.05 1.27 1.56 0
Nn20 1.21 0.09 [1.2, 1.22] 1 1.68 1.02 1.21 1.48 0
Nn25 1.19 0.08 [1.18, 1.2] 1 1.5 1 1.19 1.43 0
Nn1,B 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Nn5,B 2.16 0.1 [2.15, 2.17] 1.49 2.93 1.69 2.15 2.63 0
Nn10,B 1.78 0.09 [1.77, 1.79] 1.24 2.35 1.43 1.77 2.22 0
Nn15,B 1.54 0.09 [1.53, 1.55] 1.14 1.93 1.25 1.53 1.85 0
Nn20,B 1.45 0.09 [1.44, 1.46] 1.08 2 1.18 1.45 1.76 0
Nn25,B 1.19 0.08 [1.18, 1.2] 1 1.5 1 1.19 1.43 0

Ins1 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Ins5 1.91 0.11 [1.9, 1.92] 1.37 2.8 1.48 1.89 2.44 0
Ins10 1.53 0.11 [1.52, 1.54] 1.11 2.2 1.18 1.52 1.97 0
Ins15 1.31 0.11 [1.3, 1.32] 0.96 1.77 1.02 1.3 1.67 0
Ins20 1.23 0.08 [1.22, 1.24] 0.92 1.67 1.03 1.23 1.5 0.01
Ins25 1.23 0.05 [1.23, 1.23] 1.02 1.45 1.08 1.23 1.38 0
Ins1,B 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Ins5,B 2.19 0.1 [2.18, 2.2] 1.62 3.05 1.69 2.19 2.75 0
Ins10,B 1.84 0.09 [1.83, 1.85] 1.29 2.41 1.41 1.84 2.24 0
Ins15,B 1.44 0.07 [1.43, 1.45] 1.15 1.81 1.2 1.44 1.69 0
Ins20,B 1.37 0.08 [1.36, 1.38] 1.09 1.67 1.14 1.36 1.62 0
Ins25,B 1.23 0.05 [1.23, 1.23] 1.02 1.45 1.08 1.23 1.38 0
2Opt1 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
2Opt5 1.95 0.13 [1.93, 1.97] 1.33 3.05 1.43 1.93 2.56 0
2Opt10 1.38 0.1 [1.37, 1.39] 1.04 2.02 1.11 1.37 1.74 0
2Opt15 1.17 0.08 [1.16, 1.18] 0.95 1.51 1 1.16 1.39 0
2Opt20 1.06 0.05 [1.06, 1.06] 0.9 1.3 0.98 1.05 1.22 0.02
2Opt25 1.03 0.04 [1.03, 1.03] 0.87 1.23 0.96 1.02 1.14 0.03
2Opt1,B 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
2Opt5,B 2.21 0.1 [2.2, 2.22] 1.62 3.15 1.73 2.2 2.78 0
2Opt10,B 1.76 0.08 [1.75, 1.77] 1.31 2.25 1.43 1.75 2.12 0
2Opt15,B 1.42 0.07 [1.41, 1.43] 1.15 1.69 1.21 1.41 1.66 0
2Opt20,B 1.39 0.07 [1.38, 1.4] 1.09 1.71 1.15 1.4 1.62 0
2Opt25,B 1.03 0.04 [1.03, 1.03] 0.87 1.23 0.96 1.02 1.14 0.03

3Opt1 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
3Opt5 1.94 0.13 [1.92, 1.96] 1.33 3.05 1.43 1.93 2.59 0
3Opt10 1.36 0.09 [1.35, 1.37] 1.04 1.91 1.09 1.35 1.7 0
3Opt15 1.14 0.08 [1.13, 1.15] 0.89 1.44 1 1.13 1.37 0.01
3Opt20 1.03 0.04 [1.03, 1.03] 0.87 1.28 0.96 1.02 1.18 0.03
3Opt25 1.01 0.02 [1.01, 1.01] 0.85 1.13 0.94 1 1.08 0.06
3Opt1,B 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
3Opt5,B 2.21 0.1 [2.2, 2.22] 1.56 3.15 1.73 2.19 2.76 0
3Opt10,B 1.75 0.08 [1.74, 1.76] 1.33 2.2 1.43 1.74 2.1 0
3Opt15,B 1.41 0.06 [1.4, 1.42] 1.13 1.69 1.2 1.4 1.61 0
3Opt20,B 1.38 0.07 [1.37, 1.39] 1.06 1.71 1.15 1.38 1.6 0
3Opt25,B 1.01 0.02 [1.01, 1.01] 0.85 1.13 0.94 1 1.08 0.06

Sa1 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Sa5 1.98 0.13 [1.96, 2] 1.4 3.05 1.48 1.95 2.75 0
Sa10 1.38 0.1 [1.37, 1.39] 1.04 2.02 1.11 1.37 1.74 0
Sa15 1.17 0.08 [1.16, 1.18] 0.95 1.51 1 1.16 1.39 0
Sa20 1.06 0.05 [1.06, 1.06] 0.9 1.3 0.98 1.05 1.22 0.02
Sa25 1.03 0.04 [1.03, 1.03] 0.87 1.23 0.96 1.02 1.14 0.03
Sa1,B 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Sa5,B 2.23 0.1 [2.22, 2.24] 1.6 2.98 1.74 2.23 2.75 0
Sa10,B 1.75 0.08 [1.74, 1.76] 1.33 2.25 1.43 1.74 2.12 0
Sa15,B 1.42 0.07 [1.41, 1.43] 1.15 1.69 1.21 1.41 1.66 0
Sa20,B 1.39 0.07 [1.38, 1.4] 1.06 1.71 1.15 1.39 1.62 0
Sa25,B 1.03 0.04 [1.03, 1.03] 0.87 1.23 0.96 1.02 1.14 0.03

Ts1 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Ts5 1.97 0.13 [1.95, 1.99] 1.4 3.05 1.48 1.95 2.72 0
Ts10 1.38 0.1 [1.37, 1.39] 1.02 1.87 1.1 1.36 1.71 0

...
...

...
...

...
...

...
...

...
...

306 A Appendix

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

...
...

...
...

...
...

...
...

...
...

Ts15 1.15 0.08 [1.14, 1.16] 0.96 1.49 1 1.14 1.41 0
Ts20 1.05 0.05 [1.05, 1.05] 0.88 1.25 0.97 1.04 1.19 0.02
Ts25 1.03 0.03 [1.03, 1.03] 0.87 1.23 0.95 1.02 1.13 0.03
Ts1,B 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Ts5,B 2.23 0.1 [2.22, 2.24] 1.6 2.98 1.75 2.22 2.74 0
Ts10,B 1.77 0.08 [1.76, 1.78] 1.33 2.24 1.43 1.76 2.13 0
Ts15,B 1.42 0.07 [1.41, 1.43] 1.13 1.68 1.21 1.42 1.64 0
Ts20,B 1.39 0.07 [1.38, 1.4] 1.06 1.71 1.15 1.4 1.62 0
Ts25,B 1.03 0.03 [1.03, 1.03] 0.87 1.2 0.95 1.02 1.13 0.03
Opt1 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Opt5 2.12 0.1 [2.11, 2.13] 1.55 2.88 1.66 2.09 2.64 0
Opt10 1.52 0.1 [1.51, 1.53] 1.1 2.02 1.23 1.52 1.91 0
Opt15 1.25 0.09 [1.24, 1.26] 0.96 2.24 1.04 1.25 1.54 0
Opt20 1.08 0.06 [1.08, 1.08] 0.87 1.34 0.98 1.07 1.27 0.02
Opt25 1 0 [1, 1] 1 1 1 1 1 0
Opt1,B 3.11 0.11 [3.09, 3.13] 2.19 4.68 2.37 3.1 3.98 0
Opt5,B 2.31 0.1 [2.3, 2.32] 1.66 3 1.82 2.3 2.89 0
Opt10,B 1.8 0.08 [1.79, 1.81] 1.4 2.34 1.48 1.79 2.16 0
Opt15,B 1.45 0.07 [1.44, 1.46] 1.13 1.74 1.21 1.45 1.66 0
Opt20,B 1.42 0.07 [1.41, 1.43] 1.11 1.71 1.16 1.42 1.63 0
Opt25,B 1 0.01 [1, 1] 0.9 1.08 1 1 1.02 0.01

Table A.38: Performance ratios of costs relative to Opt in the TSP.

A.2 Numerical Results from Chapter 5 307

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Nn1 1 0 [1, 1] 1 1 1 1 1 0
Nn5 0.58 0.11 [0.58, 0.58] 0.41 0.79 0.45 0.57 0.74 0
Nn10 0.46 0.12 [0.46, 0.46] 0.29 0.66 0.33 0.46 0.6 0
Nn15 0.41 0.13 [0.41, 0.41] 0.27 0.62 0.29 0.41 0.56 0
Nn20 0.39 0.14 [0.39, 0.39] 0.23 0.61 0.28 0.39 0.54 0
Nn25 0.39 0.13 [0.39, 0.39] 0.23 0.61 0.27 0.38 0.53 0
Nn1,B 1 0 [1, 1] 1 1 1 1 1 0
Nn5,B 0.7 0.1 [0.7, 0.7] 0.52 0.9 0.55 0.7 0.86 0
Nn10,B 0.58 0.11 [0.58, 0.58] 0.39 0.78 0.44 0.57 0.74 0
Nn15,B 0.5 0.12 [0.5, 0.5] 0.33 0.71 0.37 0.49 0.66 0
Nn20,B 0.47 0.12 [0.47, 0.47] 0.31 0.68 0.36 0.47 0.62 0
Nn25,B 0.39 0.13 [0.39, 0.39] 0.23 0.61 0.27 0.38 0.53 0

Ins1 1 0 [1, 1] 1 1 1 1 1 0
Ins5 0.62 0.12 [0.62, 0.62] 0.44 0.87 0.46 0.61 0.79 0
Ins10 0.5 0.14 [0.5, 0.5] 0.29 0.82 0.35 0.49 0.67 0
Ins15 0.42 0.15 [0.42, 0.42] 0.27 0.68 0.29 0.42 0.57 0
Ins20 0.4 0.12 [0.4, 0.4] 0.27 0.57 0.31 0.39 0.54 0
Ins25 0.4 0.11 [0.4, 0.4] 0.29 0.57 0.32 0.4 0.52 0
Ins1,B 1 0 [1, 1] 1 1 1 1 1 0
Ins5,B 0.71 0.09 [0.71, 0.71] 0.51 0.92 0.56 0.71 0.86 0
Ins10,B 0.59 0.1 [0.59, 0.59] 0.43 0.8 0.47 0.59 0.73 0
Ins15,B 0.47 0.11 [0.47, 0.47] 0.31 0.66 0.36 0.47 0.59 0
Ins20,B 0.44 0.11 [0.44, 0.44] 0.31 0.61 0.34 0.44 0.57 0
Ins25,B 0.4 0.11 [0.4, 0.4] 0.29 0.57 0.32 0.4 0.52 0
2Opt1 1 0 [1, 1] 1 1 1 1 1 0
2Opt5 0.63 0.12 [0.63, 0.63] 0.42 0.85 0.47 0.63 0.81 0
2Opt10 0.45 0.13 [0.45, 0.45] 0.29 0.72 0.33 0.44 0.6 0
2Opt15 0.38 0.13 [0.38, 0.38] 0.25 0.63 0.28 0.38 0.5 0
2Opt20 0.34 0.12 [0.34, 0.34] 0.22 0.52 0.26 0.34 0.46 0
2Opt25 0.33 0.12 [0.33, 0.33] 0.22 0.49 0.26 0.33 0.44 0
2Opt1,B 1 0 [1, 1] 1 1 1 1 1 0
2Opt5,B 0.71 0.09 [0.71, 0.71] 0.54 0.95 0.57 0.71 0.87 0
2Opt10,B 0.57 0.1 [0.57, 0.57] 0.42 0.75 0.45 0.57 0.71 0
2Opt15,B 0.46 0.1 [0.46, 0.46] 0.31 0.65 0.35 0.46 0.58 0
2Opt20,B 0.45 0.1 [0.45, 0.45] 0.31 0.62 0.36 0.45 0.57 0
2Opt25,B 0.33 0.12 [0.33, 0.33] 0.22 0.49 0.26 0.33 0.44 0

3Opt1 1 0 [1, 1] 1 1 1 1 1 0
3Opt5 0.63 0.12 [0.63, 0.63] 0.42 0.85 0.47 0.62 0.8 0
3Opt10 0.44 0.12 [0.44, 0.44] 0.29 0.71 0.33 0.44 0.58 0
3Opt15 0.37 0.12 [0.37, 0.37] 0.25 0.55 0.28 0.37 0.48 0
3Opt20 0.34 0.11 [0.34, 0.34] 0.22 0.47 0.26 0.33 0.45 0
3Opt25 0.33 0.11 [0.33, 0.33] 0.22 0.46 0.25 0.33 0.43 0
3Opt1,B 1 0 [1, 1] 1 1 1 1 1 0
3Opt5,B 0.71 0.09 [0.71, 0.71] 0.54 0.95 0.58 0.71 0.87 0
3Opt10,B 0.56 0.09 [0.56, 0.56] 0.43 0.76 0.45 0.56 0.7 0
3Opt15,B 0.46 0.1 [0.46, 0.46] 0.31 0.65 0.35 0.45 0.57 0
3Opt20,B 0.45 0.1 [0.45, 0.45] 0.31 0.59 0.36 0.45 0.56 0
3Opt25,B 0.33 0.11 [0.33, 0.33] 0.22 0.46 0.25 0.33 0.43 0

Sa1 1 0 [1, 1] 1 1 1 1 1 0
Sa5 0.64 0.12 [0.64, 0.64] 0.45 0.89 0.48 0.63 0.82 0
Sa10 0.45 0.13 [0.45, 0.45] 0.29 0.72 0.33 0.44 0.6 0
Sa15 0.38 0.13 [0.38, 0.38] 0.25 0.63 0.28 0.38 0.5 0
Sa20 0.34 0.12 [0.34, 0.34] 0.22 0.52 0.26 0.34 0.46 0
Sa25 0.33 0.12 [0.33, 0.33] 0.22 0.49 0.26 0.33 0.44 0
Sa1,B 1 0 [1, 1] 1 1 1 1 1 0
Sa5,B 0.72 0.09 [0.72, 0.72] 0.53 0.95 0.58 0.72 0.87 0
Sa10,B 0.57 0.1 [0.57, 0.57] 0.42 0.75 0.45 0.57 0.71 0
Sa15,B 0.46 0.1 [0.46, 0.46] 0.31 0.65 0.35 0.46 0.58 0
Sa20,B 0.45 0.1 [0.45, 0.45] 0.3 0.62 0.35 0.45 0.57 0
Sa25,B 0.33 0.12 [0.33, 0.33] 0.22 0.49 0.26 0.33 0.44 0

Ts1 1 0 [1, 1] 1 1 1 1 1 0
Ts5 0.64 0.12 [0.64, 0.64] 0.43 0.88 0.47 0.63 0.82 0
Ts10 0.45 0.13 [0.45, 0.45] 0.29 0.71 0.33 0.44 0.59 0

...
...

...
...

...
...

...
...

...
...

308 A Appendix

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

...
...

...
...

...
...

...
...

...
...

Ts15 0.37 0.13 [0.37, 0.37] 0.24 0.6 0.28 0.37 0.5 0
Ts20 0.34 0.12 [0.34, 0.34] 0.21 0.49 0.26 0.34 0.46 0
Ts25 0.33 0.11 [0.33, 0.33] 0.22 0.48 0.26 0.33 0.44 0
Ts1,B 1 0 [1, 1] 1 1 1 1 1 0
Ts5,B 0.72 0.09 [0.72, 0.72] 0.54 0.95 0.58 0.72 0.87 0
Ts10,B 0.57 0.09 [0.57, 0.57] 0.43 0.75 0.45 0.57 0.71 0
Ts15,B 0.46 0.1 [0.46, 0.46] 0.31 0.63 0.35 0.46 0.58 0
Ts20,B 0.45 0.1 [0.45, 0.45] 0.3 0.6 0.35 0.45 0.57 0
Ts25,B 0.33 0.11 [0.33, 0.33] 0.22 0.48 0.26 0.33 0.44 0
Opt1 1 0 [1, 1] 1 1 1 1 1 0
Opt5 0.68 0.09 [0.68, 0.68] 0.5 0.87 0.54 0.68 0.83 0
Opt10 0.49 0.12 [0.49, 0.49] 0.35 0.7 0.37 0.49 0.64 0
Opt15 0.41 0.13 [0.41, 0.41] 0.28 0.67 0.3 0.4 0.54 0
Opt20 0.35 0.12 [0.35, 0.35] 0.23 0.53 0.26 0.35 0.47 0
Opt25 0.32 0.11 [0.32, 0.32] 0.21 0.46 0.25 0.32 0.42 0
Opt1,B 1 0 [1, 1] 1 1 1 1 1 0
Opt5,B 0.74 0.09 [0.74, 0.74] 0.54 0.97 0.6 0.74 0.89 0
Opt10,B 0.58 0.09 [0.58, 0.58] 0.43 0.78 0.47 0.58 0.72 0
Opt15,B 0.47 0.1 [0.47, 0.47] 0.31 0.64 0.37 0.47 0.58 0
Opt20,B 0.46 0.1 [0.46, 0.46] 0.33 0.59 0.36 0.46 0.57 0
Opt25,B 0.32 0.11 [0.32, 0.32] 0.21 0.46 0.25 0.32 0.42 0

Table A.39: Performance ratios of costs relative to the online version of an algorithm in the TSP.

A.2 Numerical Results from Chapter 5 309

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Nn1 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
Nn5 28.36 0.05 [28.27, 28.45] 24.1 34.1 25.4 28.3 31.75 0
Nn10 20.93 0.05 [20.87, 20.99] 18 24.8 18.6 20.9 23.65 0
Nn20 15.72 0.06 [15.66, 15.78] 13.1 18.1 13.8 15.7 17.7 0
Nn40 12.22 0.06 [12.17, 12.27] 10.2 15 10.6 12.2 14.05 0
Nn60 10.82 0.06 [10.78, 10.86] 8.7 13 9.5 10.8 12.3 0.05
Nn80 10.15 0.06 [10.11, 10.19] 8.5 12 8.8 10.1 11.6 0.14
Nn100 9.95 0.06 [9.91, 9.99] 8.5 11.9 8.7 9.9 11.3 0.2
Nn1,B 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
Nn5,B 36.26 0.05 [36.15, 36.37] 31.1 43.3 32.5 36.2 40.65 0
Nn10,B 27.89 0.05 [27.8, 27.98] 23.3 31.9 25 27.9 30.8 0
Nn20,B 20.74 0.05 [20.68, 20.8] 17.5 24.4 18.3 20.8 23.15 0
Nn40,B 16.28 0.05 [16.23, 16.33] 13.5 19 14.2 16.3 18.35 0
Nn60,B 13.58 0.06 [13.53, 13.63] 11 16.2 11.9 13.6 15.4 0
Nn80,B 12.92 0.06 [12.87, 12.97] 11 15.5 11.3 12.9 14.8 0.21
Nn100,B 9.95 0.06 [9.91, 9.99] 8.5 11.9 8.7 9.9 11.3 0

Ins1 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
Ins5 31.14 0.06 [31.02, 31.26] 25.8 37.4 26.8 31.1 35.6 0
Ins10 25.11 0.07 [25, 25.22] 19.8 31.3 21.25 25.1 29.5 0.01
Ins20 19.11 0.08 [19.02, 19.2] 14.7 24.7 15.7 19.1 23.1 0.01
Ins40 13.88 0.09 [13.8, 13.96] 10.9 18.3 11.5 13.8 17.4 0.01
Ins60 11.24 0.08 [11.18, 11.3] 8.9 14.6 9.4 11.2 13.45 0.02
Ins80 9.95 0.05 [9.92, 9.98] 8.5 11.8 8.8 9.9 11.1 0.06
Ins100 9.65 0.03 [9.63, 9.67] 8.5 10.4 8.9 9.7 10.3 0.23
Ins1,B 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
Ins5,B 36.37 0.05 [36.26, 36.48] 30.7 43.5 32.05 36.3 41.1 0
Ins10,B 27.73 0.05 [27.64, 27.82] 23.8 32.7 24.9 27.8 31 0
Ins20,B 20.31 0.04 [20.26, 20.36] 17.3 22.7 18.3 20.4 22.05 0
Ins40,B 15.66 0.04 [15.62, 15.7] 14.1 17.4 14.4 15.7 16.9 0
Ins60,B 11.94 0.04 [11.91, 11.97] 10.4 13.2 11 11.9 12.9 0
Ins80,B 11.51 0.04 [11.48, 11.54] 10 13.6 10.5 11.5 12.6 0.14
Ins100,B 9.65 0.03 [9.63, 9.67] 8.5 10.4 8.9 9.7 10.3 0
2Opt1 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
2Opt5 42.03 0.09 [41.8, 42.26] 32.2 55.6 33.75 42 50.75 0
2Opt10 30.22 0.11 [30.01, 30.43] 21.1 44.6 22.95 30.15 38.9 0
2Opt20 19.01 0.11 [18.88, 19.14] 14.1 30.5 15.3 18.8 24.4 0
2Opt40 12.47 0.09 [12.4, 12.54] 9.7 16.9 10.4 12.3 15.65 0
2Opt60 10.08 0.06 [10.04, 10.12] 8.5 12.8 8.9 10 11.75 0.01
2Opt80 8.87 0.05 [8.84, 8.9] 7.7 10.4 8 8.9 9.9 0.01
2Opt100 8.39 0.03 [8.37, 8.41] 7.6 9.3 7.7 8.4 9.05 0.08
2Opt1,B 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
2Opt5,B 38.31 0.05 [38.19, 38.43] 32.9 45 34.15 38.3 42.5 0
2Opt10,B 27.61 0.04 [27.54, 27.68] 24.2 31.1 25.1 27.6 30.4 0
2Opt20,B 19.39 0.04 [19.34, 19.44] 16.6 21.8 17.6 19.4 21.3 0
2Opt40,B 14.78 0.04 [14.74, 14.82] 13.1 16.9 13.5 14.8 16.1 0
2Opt60,B 11.95 0.04 [11.92, 11.98] 10.4 13.4 10.95 11.9 13 0
2Opt80,B 11.51 0.04 [11.48, 11.54] 10.1 13.1 10.55 11.5 12.5 0.14
2Opt100,B 8.39 0.03 [8.37, 8.41] 7.6 9.3 7.7 8.4 9.05 0

3Opt1 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
3Opt5 41.59 0.09 [41.36, 41.82] 31.2 53.9 33.15 41.75 50.75 0
3Opt10 29.23 0.11 [29.03, 29.43] 20.3 40.8 22.4 29 37.95 0
3Opt20 18.33 0.1 [18.22, 18.44] 13.9 26.1 14.8 18.2 23.3 0
3Opt40 12.17 0.09 [12.1, 12.24] 10 17.4 10.2 12.1 15.15 0
3Opt60 9.81 0.06 [9.77, 9.85] 8.3 12 8.8 9.7 11.4 0.01
3Opt80 8.62 0.04 [8.6, 8.64] 7.7 9.9 7.9 8.6 9.5 0.01
3Opt100 8.2 0.03 [8.18, 8.22] 7.4 9 7.6 8.2 8.8 0.05
3Opt1,B 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
3Opt5,B 38.23 0.05 [38.11, 38.35] 32.5 44.9 34.05 38.3 42.6 0
3Opt10,B 27.42 0.04 [27.35, 27.49] 24.2 30.8 24.9 27.4 30.1 0
3Opt20,B 19.07 0.04 [19.02, 19.12] 16.6 21.5 17.2 19.1 20.8 0
3Opt40,B 14.46 0.04 [14.42, 14.5] 13 16.2 13.35 14.5 15.6 0
3Opt60,B 11.66 0.03 [11.64, 11.68] 10.3 12.8 10.8 11.7 12.6 0
3Opt80,B 11.26 0.03 [11.24, 11.28] 10 12.9 10.4 11.25 12.2 0.13

...
...

...
...

...
...

...
...

...
...

310 A Appendix

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

...
...

...
...

...
...

...
...

...
...

3Opt100,B 8.2 0.03 [8.18, 8.22] 7.4 9 7.6 8.2 8.8 0
Sa1 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
Sa5 41.63 0.09 [41.4, 41.86] 29.8 54.6 33.7 41.4 50.5 0
Sa10 30.19 0.11 [29.98, 30.4] 21.1 44.6 22.95 30 38.55 0
Sa20 19.02 0.11 [18.89, 19.15] 14.1 30.5 15.3 18.8 24.4 0
Sa40 12.47 0.09 [12.4, 12.54] 9.7 16.9 10.4 12.3 15.65 0
Sa60 10.08 0.06 [10.04, 10.12] 8.5 12.8 8.9 10 11.75 0.01
Sa80 8.87 0.05 [8.84, 8.9] 7.7 10.4 8 8.9 9.9 0.01
Sa100 8.39 0.03 [8.37, 8.41] 7.6 9.3 7.7 8.4 9.05 0.08
Sa1,B 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
Sa5,B 38.34 0.05 [38.22, 38.46] 32.9 44.7 34.25 38.3 42.65 0
Sa10,B 27.6 0.04 [27.53, 27.67] 24.2 31.1 25.1 27.6 30.4 0
Sa20,B 19.39 0.04 [19.34, 19.44] 16.6 21.8 17.6 19.4 21.3 0
Sa40,B 14.78 0.04 [14.74, 14.82] 13.1 16.9 13.5 14.8 16.1 0
Sa60,B 11.95 0.04 [11.92, 11.98] 10.4 13.4 10.95 11.9 13 0
Sa80,B 11.51 0.04 [11.48, 11.54] 10.1 13.1 10.55 11.5 12.5 0.14
Sa100,B 8.39 0.03 [8.37, 8.41] 7.6 9.3 7.7 8.4 9.05 0

Ts1 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
Ts5 41.62 0.09 [41.39, 41.85] 31.3 54.6 33.8 41.4 50.95 0
Ts10 29.84 0.11 [29.64, 30.04] 20.3 41.1 22.85 29.7 38 0
Ts20 18.88 0.11 [18.75, 19.01] 14.9 26.6 15.4 18.5 24.4 0
Ts40 12.46 0.09 [12.39, 12.53] 9.7 16.9 10.4 12.3 15.65 0
Ts60 10.08 0.06 [10.04, 10.12] 8.5 12.8 8.9 10 11.75 0.01
Ts80 8.87 0.05 [8.84, 8.9] 7.7 10.4 8 8.9 9.9 0.01
Ts100 8.39 0.03 [8.37, 8.41] 7.6 9.3 7.7 8.4 9.05 0.08
Ts1,B 53.11 0.05 [52.95, 53.27] 45.3 64.3 47.1 53.1 60.05
Ts5,B 38.33 0.05 [38.21, 38.45] 32.9 44.7 34.15 38.3 42.7 0
Ts10,B 27.48 0.04 [27.41, 27.55] 24 30.8 24.9 27.5 30.15 0
Ts20,B 19.32 0.04 [19.27, 19.37] 16.6 21.7 17.6 19.3 21.1 0
Ts40,B 14.76 0.04 [14.72, 14.8] 13.1 16.4 13.5 14.8 16.1 0
Ts60,B 11.95 0.04 [11.92, 11.98] 10.4 13.4 10.95 11.9 13 0
Ts80,B 11.5 0.04 [11.47, 11.53] 10.1 13 10.5 11.5 12.5 0.13
Ts100,B 8.39 0.03 [8.37, 8.41] 7.6 9.3 7.7 8.4 9.05 0

Table A.40: Costs in the TSP.

A.2 Numerical Results from Chapter 5 311

Performance ratios of costs relative to 3Opt100 for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Nn1 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
Nn5 3.46 0.06 [3.45, 3.47] 2.84 4.16 3.03 3.45 3.97 0
Nn10 2.56 0.06 [2.55, 2.57] 2.14 3 2.23 2.55 2.91 0
Nn20 1.92 0.06 [1.91, 1.93] 1.52 2.35 1.67 1.92 2.18 0
Nn40 1.49 0.06 [1.48, 1.5] 1.24 1.78 1.29 1.49 1.72 0
Nn60 1.32 0.06 [1.32, 1.32] 1.1 1.56 1.16 1.32 1.49 0
Nn80 1.24 0.06 [1.24, 1.24] 1.05 1.46 1.09 1.24 1.4 0
Nn100 1.21 0.05 [1.21, 1.21] 1.06 1.4 1.09 1.21 1.37 0
Nn1,B 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
Nn5,B 4.43 0.06 [4.41, 4.45] 3.74 5.28 3.9 4.42 5.09 0
Nn10,B 3.41 0.05 [3.4, 3.42] 2.77 4.04 3 3.4 3.85 0
Nn20,B 2.53 0.06 [2.52, 2.54] 2.08 3.03 2.21 2.53 2.88 0
Nn40,B 1.99 0.05 [1.98, 2] 1.66 2.38 1.73 1.99 2.26 0
Nn60,B 1.66 0.06 [1.65, 1.67] 1.38 2.01 1.45 1.65 1.88 0
Nn80,B 1.58 0.06 [1.57, 1.59] 1.31 1.85 1.39 1.57 1.8 0
Nn100,B 1.21 0.05 [1.21, 1.21] 1.06 1.4 1.09 1.21 1.37 0

Ins1 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
Ins5 3.8 0.07 [3.78, 3.82] 3.1 4.64 3.26 3.79 4.47 0
Ins10 3.07 0.07 [3.06, 3.08] 2.28 3.79 2.55 3.06 3.61 0
Ins20 2.33 0.09 [2.32, 2.34] 1.78 3.09 1.91 2.33 2.87 0
Ins40 1.69 0.09 [1.68, 1.7] 1.34 2.3 1.4 1.68 2.14 0
Ins60 1.37 0.08 [1.36, 1.38] 1.12 1.73 1.15 1.37 1.63 0
Ins80 1.21 0.05 [1.21, 1.21] 1.05 1.4 1.08 1.21 1.36 0
Ins100 1.18 0.03 [1.18, 1.18] 1.08 1.35 1.11 1.18 1.25 0
Ins1,B 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
Ins5,B 4.44 0.06 [4.42, 4.46] 3.7 5.42 3.87 4.43 5.1 0
Ins10,B 3.39 0.05 [3.38, 3.4] 2.83 4.03 2.98 3.38 3.83 0
Ins20,B 2.48 0.05 [2.47, 2.49] 2.07 3.07 2.19 2.48 2.75 0
Ins40,B 1.91 0.04 [1.91, 1.91] 1.64 2.2 1.74 1.91 2.08 0
Ins60,B 1.46 0.04 [1.46, 1.46] 1.29 1.69 1.33 1.46 1.59 0
Ins80,B 1.41 0.04 [1.41, 1.41] 1.19 1.62 1.27 1.41 1.54 0
Ins100,B 1.18 0.03 [1.18, 1.18] 1.08 1.35 1.11 1.18 1.25 0
2Opt1 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
2Opt5 5.13 0.1 [5.1, 5.16] 3.79 7.01 4.08 5.13 6.33 0
2Opt10 3.69 0.12 [3.66, 3.72] 2.51 5.37 2.75 3.67 4.86 0
2Opt20 2.32 0.11 [2.3, 2.34] 1.7 3.63 1.85 2.29 2.99 0
2Opt40 1.52 0.09 [1.51, 1.53] 1.2 2.14 1.28 1.51 1.9 0
2Opt60 1.23 0.06 [1.23, 1.23] 1.05 1.6 1.09 1.22 1.44 0
2Opt80 1.08 0.04 [1.08, 1.08] 0.98 1.25 0.99 1.08 1.19 0.02
2Opt100 1.02 0.02 [1.02, 1.02] 1 1.12 1 1.02 1.07 0
2Opt1,B 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
2Opt5,B 4.68 0.06 [4.66, 4.7] 3.93 5.58 4.1 4.68 5.32 0
2Opt10,B 3.37 0.05 [3.36, 3.38] 2.86 4.2 3.01 3.37 3.79 0
2Opt20,B 2.37 0.05 [2.36, 2.38] 2.06 2.92 2.13 2.36 2.65 0
2Opt40,B 1.8 0.04 [1.8, 1.8] 1.6 2.06 1.63 1.8 1.99 0
2Opt60,B 1.46 0.04 [1.46, 1.46] 1.24 1.64 1.33 1.46 1.59 0
2Opt80,B 1.41 0.04 [1.41, 1.41] 1.23 1.59 1.29 1.4 1.54 0
2Opt100,B 1.02 0.02 [1.02, 1.02] 1 1.12 1 1.02 1.07 0

3Opt1 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
3Opt5 5.08 0.1 [5.05, 5.11] 3.65 7.01 4.01 5.09 6.21 0
3Opt10 3.57 0.12 [3.54, 3.6] 2.36 5.1 2.71 3.53 4.76 0
3Opt20 2.24 0.1 [2.23, 2.25] 1.65 3.11 1.79 2.22 2.86 0
3Opt40 1.49 0.09 [1.48, 1.5] 1.19 2.1 1.26 1.47 1.85 0
3Opt60 1.2 0.06 [1.2, 1.2] 1.02 1.44 1.07 1.19 1.4 0
3Opt80 1.05 0.04 [1.05, 1.05] 0.96 1.21 0.98 1.05 1.14 0.05
3Opt100 1 0 [1, 1] 1 1 1 1 1 0
3Opt1,B 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
3Opt5,B 4.67 0.06 [4.65, 4.69] 3.93 5.49 4.1 4.67 5.3 0
3Opt10,B 3.35 0.05 [3.34, 3.36] 2.92 4.16 3 3.34 3.75 0
3Opt20,B 2.33 0.05 [2.32, 2.34] 2.04 2.82 2.11 2.33 2.58 0
3Opt40,B 1.77 0.04 [1.77, 1.77] 1.57 2.01 1.61 1.77 1.92 0
3Opt60,B 1.42 0.04 [1.42, 1.42] 1.24 1.61 1.31 1.42 1.54 0
3Opt80,B 1.38 0.04 [1.38, 1.38] 1.22 1.53 1.27 1.38 1.5 0

...
...

...
...

...
...

...
...

...
...

312 A Appendix

Performance ratios of costs relative to 3Opt100 for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

...
...

...
...

...
...

...
...

...
...

3Opt100,B 1 0 [1, 1] 1 1 1 1 1 0
Sa1 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
Sa5 5.09 0.1 [5.06, 5.12] 3.47 6.83 4.05 5.07 6.31 0
Sa10 3.69 0.12 [3.66, 3.72] 2.51 5.31 2.79 3.66 4.86 0
Sa20 2.32 0.11 [2.3, 2.34] 1.7 3.63 1.86 2.3 2.99 0
Sa40 1.52 0.09 [1.51, 1.53] 1.2 2.14 1.28 1.51 1.9 0
Sa60 1.23 0.06 [1.23, 1.23] 1.05 1.6 1.09 1.22 1.44 0
Sa80 1.08 0.04 [1.08, 1.08] 0.98 1.25 0.99 1.08 1.19 0.02
Sa100 1.02 0.02 [1.02, 1.02] 1 1.12 1 1.02 1.07 0
Sa1,B 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
Sa5,B 4.68 0.06 [4.66, 4.7] 3.93 5.49 4.12 4.69 5.34 0
Sa10,B 3.37 0.05 [3.36, 3.38] 2.86 4.2 3.01 3.37 3.79 0
Sa20,B 2.37 0.05 [2.36, 2.38] 2.06 2.92 2.13 2.36 2.65 0
Sa40,B 1.8 0.04 [1.8, 1.8] 1.6 2.06 1.63 1.8 1.99 0
Sa60,B 1.46 0.04 [1.46, 1.46] 1.24 1.64 1.33 1.46 1.59 0
Sa80,B 1.41 0.04 [1.41, 1.41] 1.23 1.59 1.29 1.4 1.54 0
Sa100,B 1.02 0.02 [1.02, 1.02] 1 1.12 1 1.02 1.07 0

Ts1 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
Ts5 5.08 0.1 [5.05, 5.11] 3.64 6.83 4.04 5.06 6.33 0
Ts10 3.65 0.12 [3.62, 3.68] 2.42 5.14 2.8 3.62 4.69 0
Ts20 2.3 0.11 [2.28, 2.32] 1.8 3.47 1.85 2.26 2.95 0
Ts40 1.52 0.09 [1.51, 1.53] 1.2 2.14 1.28 1.51 1.9 0
Ts60 1.23 0.06 [1.23, 1.23] 1.05 1.6 1.09 1.22 1.44 0
Ts80 1.08 0.04 [1.08, 1.08] 0.98 1.25 0.99 1.08 1.19 0.02
Ts100 1.02 0.02 [1.02, 1.02] 1 1.12 1 1.02 1.07 0
Ts1,B 6.49 0.06 [6.47, 6.51] 5.27 8.13 5.64 6.48 7.52 0
Ts5,B 4.68 0.06 [4.66, 4.7] 3.93 5.49 4.12 4.69 5.34 0
Ts10,B 3.36 0.05 [3.35, 3.37] 2.9 4.11 2.99 3.35 3.75 0
Ts20,B 2.36 0.05 [2.35, 2.37] 2.06 2.89 2.13 2.35 2.63 0
Ts40,B 1.8 0.04 [1.8, 1.8] 1.6 2.06 1.63 1.8 1.99 0
Ts60,B 1.46 0.04 [1.46, 1.46] 1.24 1.64 1.33 1.46 1.59 0
Ts80,B 1.4 0.04 [1.4, 1.4] 1.23 1.58 1.29 1.4 1.53 0
Ts100,B 1.02 0.02 [1.02, 1.02] 1 1.12 1 1.02 1.07 0

Table A.41: Performance ratios of costs relative to 3Opt100 in the TSP.

A.2 Numerical Results from Chapter 5 313

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Nn1 1 0 [1, 1] 1 1 1 1 1 0
Nn5 0.53 0.06 [0.53, 0.53] 0.43 0.63 0.47 0.53 0.6 0
Nn10 0.39 0.07 [0.39, 0.39] 0.32 0.48 0.34 0.39 0.46 0
Nn20 0.3 0.07 [0.3, 0.3] 0.24 0.37 0.25 0.3 0.35 0
Nn40 0.23 0.08 [0.23, 0.23] 0.18 0.3 0.19 0.23 0.28 0
Nn60 0.2 0.08 [0.2, 0.2] 0.16 0.27 0.17 0.2 0.25 0
Nn80 0.19 0.08 [0.19, 0.19] 0.15 0.26 0.16 0.19 0.23 0
Nn100 0.19 0.08 [0.19, 0.19] 0.14 0.24 0.16 0.19 0.22 0
Nn1,B 1 0 [1, 1] 1 1 1 1 1 0
Nn5,B 0.68 0.05 [0.68, 0.68] 0.59 0.79 0.61 0.68 0.76 0
Nn10,B 0.53 0.06 [0.53, 0.53] 0.43 0.63 0.46 0.53 0.6 0
Nn20,B 0.39 0.07 [0.39, 0.39] 0.32 0.49 0.33 0.39 0.46 0
Nn40,B 0.31 0.07 [0.31, 0.31] 0.24 0.38 0.26 0.31 0.36 0
Nn60,B 0.26 0.08 [0.26, 0.26] 0.2 0.33 0.21 0.26 0.31 0
Nn80,B 0.24 0.08 [0.24, 0.24] 0.18 0.33 0.2 0.24 0.29 0
Nn100,B 0.19 0.08 [0.19, 0.19] 0.14 0.24 0.16 0.19 0.22 0

Ins1 1 0 [1, 1] 1 1 1 1 1 0
Ins5 0.59 0.06 [0.59, 0.59] 0.49 0.7 0.51 0.59 0.67 0
Ins10 0.47 0.08 [0.47, 0.47] 0.36 0.63 0.4 0.47 0.56 0
Ins20 0.36 0.09 [0.36, 0.36] 0.26 0.5 0.29 0.36 0.44 0
Ins40 0.26 0.1 [0.26, 0.26] 0.2 0.36 0.21 0.26 0.33 0
Ins60 0.21 0.09 [0.21, 0.21] 0.15 0.29 0.17 0.21 0.26 0
Ins80 0.19 0.07 [0.19, 0.19] 0.15 0.23 0.16 0.19 0.22 0
Ins100 0.18 0.06 [0.18, 0.18] 0.14 0.22 0.16 0.18 0.21 0
Ins1,B 1 0 [1, 1] 1 1 1 1 1 0
Ins5,B 0.69 0.05 [0.69, 0.69] 0.59 0.8 0.61 0.68 0.77 0
Ins10,B 0.52 0.05 [0.52, 0.52] 0.44 0.64 0.46 0.52 0.6 0
Ins20,B 0.38 0.06 [0.38, 0.38] 0.32 0.45 0.33 0.38 0.44 0
Ins40,B 0.3 0.06 [0.3, 0.3] 0.24 0.36 0.26 0.29 0.34 0
Ins60,B 0.23 0.06 [0.23, 0.23] 0.18 0.27 0.19 0.22 0.26 0
Ins80,B 0.22 0.07 [0.22, 0.22] 0.17 0.26 0.19 0.22 0.25 0
Ins100,B 0.18 0.06 [0.18, 0.18] 0.14 0.22 0.16 0.18 0.21 0
2Opt1 1 0 [1, 1] 1 1 1 1 1 0
2Opt5 0.79 0.07 [0.79, 0.79] 0.6 0.94 0.64 0.79 0.91 0
2Opt10 0.57 0.11 [0.57, 0.57] 0.4 0.79 0.45 0.57 0.72 0
2Opt20 0.36 0.12 [0.36, 0.36] 0.27 0.54 0.28 0.35 0.48 0
2Opt40 0.24 0.1 [0.24, 0.24] 0.17 0.32 0.19 0.23 0.29 0
2Opt60 0.19 0.08 [0.19, 0.19] 0.15 0.24 0.16 0.19 0.23 0
2Opt80 0.17 0.07 [0.17, 0.17] 0.13 0.21 0.14 0.17 0.2 0
2Opt100 0.16 0.06 [0.16, 0.16] 0.12 0.2 0.14 0.16 0.18 0
2Opt1,B 1 0 [1, 1] 1 1 1 1 1 0
2Opt5,B 0.72 0.05 [0.72, 0.72] 0.61 0.82 0.64 0.72 0.81 0
2Opt10,B 0.52 0.05 [0.52, 0.52] 0.45 0.61 0.46 0.52 0.58 0
2Opt20,B 0.37 0.06 [0.37, 0.37] 0.31 0.43 0.32 0.36 0.42 0
2Opt40,B 0.28 0.06 [0.28, 0.28] 0.23 0.34 0.24 0.28 0.32 0
2Opt60,B 0.23 0.06 [0.23, 0.23] 0.18 0.28 0.2 0.23 0.26 0
2Opt80,B 0.22 0.06 [0.22, 0.22] 0.18 0.26 0.19 0.22 0.25 0
2Opt100,B 0.16 0.06 [0.16, 0.16] 0.12 0.2 0.14 0.16 0.18 0

3Opt1 1 0 [1, 1] 1 1 1 1 1 0
3Opt5 0.78 0.07 [0.78, 0.78] 0.61 0.94 0.65 0.79 0.9 0
3Opt10 0.55 0.11 [0.55, 0.55] 0.4 0.75 0.43 0.55 0.7 0
3Opt20 0.35 0.11 [0.35, 0.35] 0.25 0.49 0.26 0.34 0.45 0
3Opt40 0.23 0.1 [0.23, 0.23] 0.17 0.33 0.19 0.23 0.3 0
3Opt60 0.19 0.08 [0.19, 0.19] 0.13 0.23 0.16 0.18 0.22 0
3Opt80 0.16 0.07 [0.16, 0.16] 0.13 0.2 0.14 0.16 0.19 0
3Opt100 0.15 0.07 [0.15, 0.15] 0.12 0.19 0.13 0.15 0.18 0
3Opt1,B 1 0 [1, 1] 1 1 1 1 1 0
3Opt5,B 0.72 0.05 [0.72, 0.72] 0.6 0.82 0.64 0.72 0.81 0
3Opt10,B 0.52 0.05 [0.52, 0.52] 0.44 0.61 0.46 0.52 0.58 0
3Opt20,B 0.36 0.06 [0.36, 0.36] 0.3 0.42 0.31 0.36 0.41 0
3Opt40,B 0.27 0.06 [0.27, 0.27] 0.22 0.33 0.24 0.27 0.31 0
3Opt60,B 0.22 0.06 [0.22, 0.22] 0.18 0.27 0.19 0.22 0.25 0
3Opt80,B 0.21 0.06 [0.21, 0.21] 0.18 0.26 0.18 0.21 0.24 0

...
...

...
...

...
...

...
...

...
...

314 A Appendix

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

...
...

...
...

...
...

...
...

...
...

3Opt100,B 0.15 0.07 [0.15, 0.15] 0.12 0.19 0.13 0.15 0.18 0
Sa1 1 0 [1, 1] 1 1 1 1 1 0
Sa5 0.78 0.08 [0.78, 0.78] 0.59 0.94 0.65 0.79 0.9 0
Sa10 0.57 0.11 [0.57, 0.57] 0.4 0.75 0.45 0.57 0.71 0
Sa20 0.36 0.12 [0.36, 0.36] 0.27 0.54 0.28 0.35 0.48 0
Sa40 0.24 0.1 [0.24, 0.24] 0.17 0.32 0.19 0.23 0.29 0
Sa60 0.19 0.08 [0.19, 0.19] 0.15 0.24 0.16 0.19 0.23 0
Sa80 0.17 0.07 [0.17, 0.17] 0.13 0.21 0.14 0.17 0.2 0
Sa100 0.16 0.06 [0.16, 0.16] 0.12 0.2 0.14 0.16 0.18 0
Sa1,B 1 0 [1, 1] 1 1 1 1 1 0
Sa5,B 0.72 0.05 [0.72, 0.72] 0.6 0.83 0.65 0.72 0.81 0
Sa10,B 0.52 0.05 [0.52, 0.52] 0.45 0.61 0.46 0.52 0.58 0
Sa20,B 0.37 0.06 [0.37, 0.37] 0.31 0.43 0.32 0.36 0.42 0
Sa40,B 0.28 0.06 [0.28, 0.28] 0.23 0.34 0.24 0.28 0.32 0
Sa60,B 0.23 0.06 [0.23, 0.23] 0.18 0.28 0.2 0.23 0.26 0
Sa80,B 0.22 0.06 [0.22, 0.22] 0.18 0.26 0.19 0.22 0.25 0
Sa100,B 0.16 0.06 [0.16, 0.16] 0.12 0.2 0.14 0.16 0.18 0

Ts1 1 0 [1, 1] 1 1 1 1 1 0
Ts5 0.78 0.08 [0.78, 0.78] 0.58 0.93 0.65 0.78 0.91 0
Ts10 0.56 0.11 [0.56, 0.56] 0.39 0.75 0.43 0.56 0.71 0
Ts20 0.36 0.11 [0.36, 0.36] 0.26 0.52 0.28 0.35 0.47 0
Ts40 0.24 0.1 [0.24, 0.24] 0.17 0.32 0.19 0.23 0.29 0
Ts60 0.19 0.08 [0.19, 0.19] 0.15 0.24 0.16 0.19 0.23 0
Ts80 0.17 0.07 [0.17, 0.17] 0.13 0.21 0.14 0.17 0.2 0
Ts100 0.16 0.06 [0.16, 0.16] 0.12 0.2 0.14 0.16 0.18 0
Ts1,B 1 0 [1, 1] 1 1 1 1 1 0
Ts5,B 0.72 0.05 [0.72, 0.72] 0.6 0.84 0.65 0.72 0.81 0
Ts10,B 0.52 0.05 [0.52, 0.52] 0.45 0.61 0.45 0.52 0.58 0
Ts20,B 0.36 0.06 [0.36, 0.36] 0.31 0.43 0.32 0.36 0.42 0
Ts40,B 0.28 0.06 [0.28, 0.28] 0.23 0.34 0.24 0.28 0.32 0
Ts60,B 0.23 0.06 [0.23, 0.23] 0.18 0.28 0.2 0.23 0.26 0
Ts80,B 0.22 0.06 [0.22, 0.22] 0.18 0.26 0.19 0.22 0.25 0
Ts100,B 0.16 0.06 [0.16, 0.16] 0.12 0.2 0.14 0.16 0.18 0

Table A.42: Performance ratios of costs relative to the online version of an algorithm in the TSP.

A.2 Numerical Results from Chapter 5 315

A.2.5 Online Scheduling with Lookahead

A.2.5.1 Single Machine Problem

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Spt0 1317.65 0.11 [1308.66, 1326.64] 838 1727 994.5 1316.5 1660
Spt5 1198.64 0.12 [1189.72, 1207.56] 734 1602 877.5 1196 1538.5 0
Spt10 1089.86 0.12 [1081.75, 1097.97] 666 1482 797 1083 1419 0
Spt25 825.93 0.12 [819.78, 832.08] 561 1136 617.5 819 1083.5 0
Spt50 584.61 0.09 [581.35, 587.87] 426 753 466 581 711.5 0
Spt100 516.11 0.1 [512.91, 519.31] 359 706 399.5 514 647 0
Opt0 1317.65 0.11 [1308.66, 1326.64] 838 1727 994.5 1316.5 1660
Opt5 1198.64 0.12 [1189.72, 1207.56] 734 1602 877.5 1196 1538.5 0
Opt10 1089.86 0.12 [1081.75, 1097.97] 666 1482 797 1083 1419 0
Opt25 825.93 0.12 [819.78, 832.08] 561 1136 617.5 819 1083.5 0
Opt50 584.61 0.09 [581.35, 587.87] 426 753 466 581 711.5 0
Opt100 516.11 0.1 [512.91, 519.31] 359 706 399.5 514 647 0

Table A.43: Costs in the single machine scheduling problem when immediate processing is allowed.

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Spt0 1317.65 0.11 [1308.66, 1326.64] 838 1727 994.5 1316.5 1660
Spt5 1317.65 0.11 [1308.66, 1326.64] 838 1727 994.5 1316.5 1660 0
Spt10 1317.65 0.11 [1308.66, 1326.64] 838 1727 994.5 1316.5 1660 0
Spt25 1317.65 0.11 [1308.66, 1326.64] 838 1727 994.5 1316.5 1660 0
Spt50 1317.65 0.11 [1308.66, 1326.64] 838 1727 994.5 1316.5 1660 0
Spt100 1317.65 0.11 [1308.66, 1326.64] 838 1727 994.5 1316.5 1660 0
Opt0 1317.65 0.11 [1308.66, 1326.64] 838 1727 994.5 1316.5 1660
Opt5 1317.64 0.11 [1308.65, 1326.63] 838 1727 994.5 1316.5 1660 0.01
Opt10 1317.61 0.11 [1308.62, 1326.6] 838 1727 994.5 1316.5 1660 0
Opt25 1317.61 0.11 [1308.62, 1326.6] 838 1727 994.5 1316.5 1660 0
Opt50 1317.61 0.11 [1308.62, 1326.6] 838 1727 994.5 1316.5 1660 0
Opt100 1317.61 0.11 [1308.62, 1326.6] 838 1727 994.5 1316.5 1660 0

Table A.44: Costs in the single machine scheduling problem when immediate processing is for-
bidden.

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Spt0 2.58 0.15 [2.56, 2.6] 1.52 3.85 1.75 2.55 3.66 0
Spt5 2.35 0.15 [2.33, 2.37] 1.33 3.55 1.57 2.32 3.37 0
Spt10 2.13 0.16 [2.11, 2.15] 1.21 3.25 1.44 2.11 3.07 0
Spt25 1.61 0.15 [1.6, 1.62] 1.07 2.5 1.18 1.59 2.3 0
Spt50 1.14 0.07 [1.14, 1.14] 1 1.52 1.02 1.13 1.41 0
Spt100 1 0 [1, 1] 1 1 1 1 1 0
Opt0 2.58 0.15 [2.56, 2.6] 1.52 3.85 1.75 2.55 3.66 0
Opt5 2.35 0.15 [2.33, 2.37] 1.33 3.55 1.57 2.32 3.37 0
Opt10 2.13 0.16 [2.11, 2.15] 1.21 3.25 1.44 2.11 3.07 0
Opt25 1.61 0.15 [1.6, 1.62] 1.07 2.5 1.18 1.59 2.3 0
Opt50 1.14 0.07 [1.14, 1.14] 1 1.52 1.02 1.13 1.41 0
Opt100 1 0 [1, 1] 1 1.01 1 1 1 0

Table A.45: Performance ratios of costs relative to Opt in the single machine scheduling problem
when immediate processing is allowed.

316 A Appendix

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Spt0 1 0 [1, 1] 1 1 1 1 1 0
Spt5 1 0 [1, 1] 1 1 1 1 1 0
Spt10 1 0 [1, 1] 1 1 1 1 1 0
Spt25 1 0 [1, 1] 1 1 1 1 1 0
Spt50 1 0 [1, 1] 1 1 1 1 1 0
Spt100 1 0 [1, 1] 1 1 1 1 1 0
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt5 1 0 [1, 1] 1 1.01 1 1 1 0.04
Opt10 1 0 [1, 1] 1 1 1 1 1 0.04
Opt25 1 0 [1, 1] 1 1 1 1 1 0.04
Opt50 1 0 [1, 1] 1 1 1 1 1 0.04
Opt100 1 0 [1, 1] 1 1 1 1 1 0.04

Table A.46: Performance ratios of costs relative to Opt in the single machine scheduling problem
when immediate processing is forbidden.

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Spt0 1 0 [1, 1] 1 1 1 1 1 0
Spt5 0.91 0.01 [0.91, 0.91] 0.88 0.95 0.88 0.91 0.93 0
Spt10 0.83 0.02 [0.83, 0.83] 0.77 0.91 0.78 0.83 0.86 0
Spt25 0.63 0.05 [0.63, 0.63] 0.51 0.8 0.56 0.63 0.7 0
Spt50 0.45 0.11 [0.45, 0.45] 0.32 0.68 0.35 0.44 0.6 0
Spt100 0.4 0.15 [0.4, 0.4] 0.26 0.66 0.27 0.39 0.57 0
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt5 0.91 0.01 [0.91, 0.91] 0.88 0.95 0.88 0.91 0.93 0
Opt10 0.83 0.02 [0.83, 0.83] 0.77 0.91 0.78 0.83 0.86 0
Opt25 0.63 0.05 [0.63, 0.63] 0.51 0.8 0.56 0.63 0.7 0
Opt50 0.45 0.11 [0.45, 0.45] 0.32 0.68 0.35 0.44 0.6 0
Opt100 0.4 0.15 [0.4, 0.4] 0.26 0.66 0.27 0.39 0.57 0

Table A.47: Performance ratios of costs relative to the online version of an algorithm in the single
machine scheduling problem when immediate processing is allowed.

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Spt0 1 0 [1, 1] 1 1 1 1 1 0
Spt5 1 0 [1, 1] 1 1 1 1 1 0
Spt10 1 0 [1, 1] 1 1 1 1 1 0
Spt25 1 0 [1, 1] 1 1 1 1 1 0
Spt50 1 0 [1, 1] 1 1 1 1 1 0
Spt100 1 0 [1, 1] 1 1 1 1 1 0
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt5 1 0 [1, 1] 1 1.01 1 1 1 0.01
Opt10 1 0 [1, 1] 1 1 1 1 1 0
Opt25 1 0 [1, 1] 1 1 1 1 1 0
Opt50 1 0 [1, 1] 1 1 1 1 1 0
Opt100 1 0 [1, 1] 1 1 1 1 1 0

Table A.48: Performance ratios of costs relative to the online version of an algorithm in the single
machine scheduling problem when immediate processing is forbidden.

A.2 Numerical Results from Chapter 5 317

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Spt0 8638.98 0.05 [8612.19, 8665.77] 7435 9858 7643 8627.5 9647.5
Spt5 8433.25 0.05 [8407.1, 8459.4] 7187 9659 7462 8414 9393.5 0
Spt10 8323.98 0.05 [8298.17, 8349.79] 7066 9572 7360.5 8304 9297 0
Spt25 8120.26 0.05 [8095.08, 8145.44] 6801 9428 7175 8107 9115 0
Spt50 7931.43 0.05 [7906.84, 7956.02] 6625 9336 6962.5 7914.5 8933.5 0
Spt100 7888.5 0.05 [7864.04, 7912.96] 6625 9307 6943.5 7861 8841.5 0

Table A.49: Costs in the single machine scheduling problem when immediate processing is allowed.

Costs n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Spt0 8638.98 0.05 [8612.19, 8665.77] 7435 9858 7643 8627.5 9647.5
Spt5 8638.98 0.05 [8612.19, 8665.77] 7435 9858 7643 8627.5 9647.5 0
Spt10 8638.98 0.05 [8612.19, 8665.77] 7435 9858 7643 8627.5 9647.5 0
Spt25 8638.98 0.05 [8612.19, 8665.77] 7435 9858 7643 8627.5 9647.5 0
Spt50 8638.98 0.05 [8612.19, 8665.77] 7435 9858 7643 8627.5 9647.5 0
Spt100 8638.98 0.05 [8612.19, 8665.77] 7435 9858 7643 8627.5 9647.5 0

Table A.50: Costs in the single machine scheduling problem when immediate processing is for-
bidden.

Performance ratios of costs relative to Spt100 n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Spt0 1.1 0.02 [1.1, 1.1] 1.04 1.18 1.05 1.09 1.16 0
Spt5 1.07 0.02 [1.07, 1.07] 1.03 1.12 1.04 1.07 1.11 0
Spt10 1.06 0.01 [1.06, 1.06] 1.02 1.1 1.03 1.05 1.09 0
Spt25 1.03 0.01 [1.03, 1.03] 1.01 1.06 1.01 1.03 1.05 0
Spt50 1.01 0.01 [1.01, 1.01] 1 1.02 1 1.01 1.01 0
Spt100 1 0 [1, 1] 1 1 1 1 1 0

Table A.51: Performance ratios of costs relative to Spt100 in the single machine scheduling prob-
lem when immediate processing is allowed.

Performance ratios of costs relative to Spt100 n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Spt0 1 0 [1, 1] 1 1 1 1 1 0
Spt5 1 0 [1, 1] 1 1 1 1 1 0
Spt10 1 0 [1, 1] 1 1 1 1 1 0
Spt25 1 0 [1, 1] 1 1 1 1 1 0
Spt50 1 0 [1, 1] 1 1 1 1 1 0
Spt100 1 0 [1, 1] 1 1 1 1 1 0

Table A.52: Performance ratios of costs relative to Spt100 in the single machine scheduling prob-
lem when immediate processing is forbidden.

318 A Appendix

Performance ratios of costs relative to online version n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Spt0 1 0 [1, 1] 1 1 1 1 1 0
Spt5 0.98 0.01 [0.98, 0.98] 0.94 0.99 0.95 0.98 0.99 0
Spt10 0.96 0.01 [0.96, 0.96] 0.9 0.99 0.92 0.97 0.99 0
Spt25 0.94 0.02 [0.94, 0.94] 0.87 0.98 0.89 0.94 0.97 0
Spt50 0.92 0.02 [0.92, 0.92] 0.85 0.97 0.87 0.92 0.96 0
Spt100 0.91 0.02 [0.91, 0.91] 0.85 0.96 0.86 0.91 0.95 0

Table A.53: Performance ratios of costs relative to the online version of an algorithm in the single
machine scheduling problem when immediate processing is allowed.

Performance ratios of costs relative to online version n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Spt0 1 0 [1, 1] 1 1 1 1 1 0
Spt5 1 0 [1, 1] 1 1 1 1 1 0
Spt10 1 0 [1, 1] 1 1 1 1 1 0
Spt25 1 0 [1, 1] 1 1 1 1 1 0
Spt50 1 0 [1, 1] 1 1 1 1 1 0
Spt100 1 0 [1, 1] 1 1 1 1 1 0

Table A.54: Performance ratios of costs relative to the online version of an algorithm in the single
machine scheduling problem when immediate processing is forbidden.

A.2 Numerical Results from Chapter 5 319

A.2.5.2 Parallel Machines Problem

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Lpt0 98.79 0.04 [98.54, 99.04] 78 104 85 100 103
Lpt5 93.79 0.04 [93.56, 94.02] 73 99 80 95 98 0
Lpt10 88.79 0.04 [88.57, 89.01] 68 94 75 90 93 0
Lpt25 73.79 0.05 [73.56, 74.02] 53 79 60 75 78 0
Lpt50 48.79 0.08 [48.55, 49.03] 28 54 35 50 53 0
Lpt100 25.23 0.08 [25.1, 25.36] 17 31 20 25 30 0
Opt0 98.79 0.04 [98.54, 99.04] 78 104 85 100 103
Opt5 93.79 0.04 [93.56, 94.02] 73 99 80 95 98 0
Opt10 88.79 0.04 [88.57, 89.01] 68 94 75 90 93 0
Opt25 73.79 0.05 [73.56, 74.02] 53 79 60 75 78 0
Opt50 48.79 0.08 [48.55, 49.03] 28 54 35 50 53 0
Opt100 25.23 0.08 [25.1, 25.36] 17 31 20 25 30 0

Table A.55: Costs in the parallel machines scheduling problem when immediate processing is
allowed.

Costs for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Lpt0 98.79 0.04 [98.54, 99.04] 78 104 85 100 103
Lpt5 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0
Lpt10 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0
Lpt25 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0
Lpt50 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0
Lpt100 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0
Opt0 98.79 0.04 [98.54, 99.04] 78 104 85 100 103
Opt5 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0
Opt10 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0
Opt25 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0
Opt50 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0
Opt100 98.79 0.04 [98.54, 99.04] 78 104 85 100 103 0

Table A.56: Costs in the parallel machines scheduling problem when immediate processing is
forbidden.

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Lpt0 3.94 0.09 [3.92, 3.96] 2.9 5.76 3.19 3.92 4.83 0
Lpt5 3.74 0.09 [3.72, 3.76] 2.73 5.47 3 3.73 4.6 0
Lpt10 3.54 0.09 [3.52, 3.56] 2.57 5.18 2.82 3.54 4.36 0
Lpt25 2.94 0.1 [2.92, 2.96] 2.07 4.29 2.27 2.96 3.64 0
Lpt50 1.95 0.11 [1.94, 1.96] 1.12 2.82 1.32 1.96 2.44 0
Lpt100 1 0 [1, 1] 1 1 1 1 1 0
Opt0 3.94 0.09 [3.92, 3.96] 2.9 5.76 3.19 3.92 4.83 0
Opt5 3.74 0.09 [3.72, 3.76] 2.73 5.47 3 3.73 4.6 0
Opt10 3.54 0.09 [3.52, 3.56] 2.57 5.18 2.82 3.54 4.36 0
Opt25 2.94 0.1 [2.92, 2.96] 2.07 4.29 2.27 2.96 3.64 0
Opt50 1.95 0.11 [1.94, 1.96] 1.12 2.82 1.32 1.96 2.44 0
Opt100 1 0 [1, 1] 1 1 1 1 1 0

Table A.57: Performance ratios of costs relative to Opt in the parallel machines scheduling prob-
lem when immediate processing is allowed.

320 A Appendix

Performance ratios of costs relative to Opt for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Lpt0 1 0 [1, 1] 1 1.01 1 1 1 0
Lpt5 1 0 [1, 1] 1 1.01 1 1 1 0
Lpt10 1 0 [1, 1] 1 1.01 1 1 1 0
Lpt25 1 0 [1, 1] 1 1.01 1 1 1 0
Lpt50 1 0 [1, 1] 1 1.01 1 1 1 0
Lpt100 1 0 [1, 1] 1 1.01 1 1 1 0
Opt0 1 0 [1, 1] 1 1.01 1 1 1 0
Opt5 1 0 [1, 1] 1 1 1 1 1 0
Opt10 1 0 [1, 1] 1 1 1 1 1 0
Opt25 1 0 [1, 1] 1 1 1 1 1 0
Opt50 1 0 [1, 1] 1 1 1 1 1 0
Opt100 1 0 [1, 1] 1 1 1 1 1 0

Table A.58: Performance ratios of costs relative to Opt in the parallel machines scheduling prob-
lem when immediate processing is forbidden.

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Lpt0 1 0 [1, 1] 1 1 1 1 1 0
Lpt5 0.95 0 [0.95, 0.95] 0.94 0.95 0.94 0.95 0.95 0
Lpt10 0.9 0 [0.9, 0.9] 0.87 0.9 0.88 0.9 0.9 0
Lpt25 0.75 0.01 [0.75, 0.75] 0.68 0.76 0.71 0.75 0.76 0
Lpt50 0.49 0.04 [0.49, 0.49] 0.36 0.52 0.41 0.5 0.51 0
Lpt100 0.26 0.09 [0.26, 0.26] 0.17 0.34 0.21 0.25 0.31 0
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt5 0.95 0 [0.95, 0.95] 0.94 0.95 0.94 0.95 0.95 0
Opt10 0.9 0 [0.9, 0.9] 0.87 0.9 0.88 0.9 0.9 0
Opt25 0.75 0.01 [0.75, 0.75] 0.68 0.76 0.71 0.75 0.76 0
Opt50 0.49 0.04 [0.49, 0.49] 0.36 0.52 0.41 0.5 0.51 0
Opt100 0.26 0.09 [0.26, 0.26] 0.17 0.34 0.21 0.25 0.31 0

Table A.59: Performance ratios of costs relative to the online version of an algorithm in the parallel
machines scheduling problem when immediate processing is allowed.

Performance ratios of costs relative to online version for n = 25 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Lpt0 1 0 [1, 1] 1 1 1 1 1 0
Lpt5 1 0 [1, 1] 1 1 1 1 1 0
Lpt10 1 0 [1, 1] 1 1 1 1 1 0
Lpt25 1 0 [1, 1] 1 1 1 1 1 0
Lpt50 1 0 [1, 1] 1 1 1 1 1 0
Lpt100 1 0 [1, 1] 1 1 1 1 1 0
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt5 1 0 [1, 1] 0.99 1 1 1 1 0
Opt10 1 0 [1, 1] 0.99 1 1 1 1 0
Opt25 1 0 [1, 1] 0.99 1 1 1 1 0
Opt50 1 0 [1, 1] 0.99 1 1 1 1 0
Opt100 1 0 [1, 1] 0.99 1 1 1 1 0

Table A.60: Performance ratios of costs relative to the online version of an algorithm in the parallel
machines scheduling problem when immediate processing is forbidden.

A.2 Numerical Results from Chapter 5 321

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Lpt0 107.35 0.04 [107.08, 107.62] 99 123 101 107 118
Lpt5 103.01 0.04 [102.75, 103.27] 95 118 96 103 113 0
Lpt10 100.73 0.04 [100.48, 100.98] 92 113 92 101 110 0
Lpt25 100.14 0.04 [99.89, 100.39] 87 113 90 100 109 0
Lpt50 100.14 0.04 [99.89, 100.39] 87 113 90 100 109 0
Lpt100 100.14 0.04 [99.89, 100.39] 87 113 90 100 109 0

Table A.61: Costs in the parallel machines scheduling problem when immediate processing is
allowed.

Costs for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Lpt0 107.35 0.04 [107.08, 107.62] 99 123 101 107 118
Lpt5 107.35 0.04 [107.08, 107.62] 99 123 101 107 118 0
Lpt10 107.35 0.04 [107.08, 107.62] 99 123 101 107 118 0
Lpt25 107.35 0.04 [107.08, 107.62] 99 123 101 107 118 0
Lpt50 107.35 0.04 [107.08, 107.62] 99 123 101 107 118 0
Lpt100 107.35 0.04 [107.08, 107.62] 99 123 101 107 118 0

Table A.62: Costs in the parallel machines scheduling problem when immediate processing is
forbidden.

Performance ratios of costs relative to Lpt100 for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Lpt0 1.07 0.04 [1.07, 1.07] 1 1.22 1 1.07 1.18 0
Lpt5 1.03 0.03 [1.03, 1.03] 1 1.16 1 1.02 1.12 0
Lpt10 1.01 0.02 [1.01, 1.01] 1 1.11 1 1 1.07 0
Lpt25 1 0 [1, 1] 1 1 1 1 1 0
Lpt50 1 0 [1, 1] 1 1 1 1 1 0
Lpt100 1 0 [1, 1] 1 1 1 1 1 0

Table A.63: Performance ratios of costs relative to Lpt100 in the parallel machines scheduling
problem when immediate processing is allowed.

Performance ratios of costs relative to Lpt100 for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Lpt0 1 0 [1, 1] 1 1 1 1 1 0
Lpt5 1 0 [1, 1] 1 1 1 1 1 0
Lpt10 1 0 [1, 1] 1 1 1 1 1 0
Lpt25 1 0 [1, 1] 1 1 1 1 1 0
Lpt50 1 0 [1, 1] 1 1 1 1 1 0
Lpt100 1 0 [1, 1] 1 1 1 1 1 0

Table A.64: Performance ratios of costs relative to Lpt100 in the parallel machines scheduling
problem when immediate processing is forbidden.

322 A Appendix

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Lpt0 1 0 [1, 1] 1 1 1 1 1 0
Lpt5 0.96 0.01 [0.96, 0.96] 0.95 1 0.95 0.95 1 0
Lpt10 0.94 0.03 [0.94, 0.94] 0.9 1 0.9 0.93 1 0
Lpt25 0.93 0.04 [0.93, 0.93] 0.82 1 0.85 0.93 1 0
Lpt50 0.93 0.04 [0.93, 0.93] 0.82 1 0.85 0.93 1 0
Lpt100 0.93 0.04 [0.93, 0.93] 0.82 1 0.85 0.93 1 0

Table A.65: Performance ratios of costs relative to the online version of an algorithm in the parallel
machines scheduling problem when immediate processing is allowed.

Performance ratios of costs relative to online version for n = 100 (1000 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Lpt0 1 0 [1, 1] 1 1 1 1 1 0
Lpt5 1 0 [1, 1] 1 1 1 1 1 0
Lpt10 1 0 [1, 1] 1 1 1 1 1 0
Lpt25 1 0 [1, 1] 1 1 1 1 1 0
Lpt50 1 0 [1, 1] 1 1 1 1 1 0
Lpt100 1 0 [1, 1] 1 1 1 1 1 0

Table A.66: Performance ratios of costs relative to the online version of an algorithm in the parallel
machines scheduling problem when immediate processing is forbidden.

A.3 Numerical Results from Chapter 6 323

A.3 Numerical Results from Chapter 6

This section contains a detailed statistical summary of the numerical results gathered during

the experimental analysis in Chapter 6. The presentation is carried out in the same form as

described at the beginning of Appendix A.2. Because of space restrictions, we omit results

for lookahead durations D ∈ {180, 240, 300, 420, 480, 540} minutes and only list results for

D ∈ {0, 60, 120, 360, 600} minutes.

A.3.1 Online Order Picking with Lookahead

Makespan for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Prio,Ret0 624.81 0.05 [615.97, 633.65] 608.2 742.6 608.2 614.9 742.6
Prio,Ret60 562.51 0.03 [557.74, 567.28] 548.9 680 548.9 556.7 680 0.02
Prio,Ret120 534.27 0.07 [523.69, 544.85] 493.6 725.7 493.6 524.3 725.7 0.08
Prio,Ret360 519.58 0.06 [510.76, 528.4] 445.3 664.9 445.3 517.6 664.9 0.43
Prio,Ret600 519.9 0.06 [511.08, 528.72] 443.4 664.9 443.4 519.2 664.9 0.45

Prio,S0 619.17 0.04 [612.16, 626.18] 607.9 725.7 607.9 614.1 725.7
Prio,S60 567.5 0.06 [557.87, 577.13] 547.7 698.5 547.7 555.6 698.5 0.06
Prio,S120 534.15 0.09 [520.55, 547.75] 491.2 725.7 491.2 526.2 725.7 0.12
Prio,S360 505.79 0.09 [492.91, 518.67] 430.3 664.9 430.3 502.1 664.9 0.31
Prio,S600 507.94 0.09 [495.01, 520.87] 425.7 664.9 425.7 505.5 664.9 0.41
Prio,Gap0 622.08 0.04 [615.04, 629.12] 606.9 742.6 606.9 615.2 742.6
Prio,Gap60 568.84 0.06 [559.18, 578.5] 550.4 693 550.4 556.5 693 0.08
Prio,Gap120 531.74 0.08 [519.71, 543.77] 490.2 725.7 490.2 524.4 725.7 0.08
Prio,Gap360 513.43 0.08 [501.81, 525.05] 437.3 664.9 437.3 511.9 664.9 0.31
Prio,Gap600 513.83 0.08 [502.2, 525.46] 434.9 664.9 434.9 510.1 664.9 0.39
Prio,Opt0 619.94 0.04 [612.92, 626.96] 607.6 742.6 607.6 613.3 742.6
Prio,Opt60 558.79 0.03 [554.05, 563.53] 547.1 657.6 547.1 553.6 657.6 0.02
Prio,Opt120 531.51 0.09 [517.98, 545.04] 488 725.7 488 522.8 725.7 0.08
Prio,Opt360 495.92 0.11 [480.49, 511.35] 419.2 669.5 419.2 486 669.5 0.37
Prio,Opt600 500.44 0.11 [484.87, 516.01] 414.9 669.5 414.9 495.8 669.5 0.45
Seed,Ret0 616.8 0.03 [611.57, 622.03] 608.5 725.7 608.5 614.4 725.7
Seed,Ret60 563.42 0.05 [555.45, 571.39] 546 712.5 546 555.8 712.5 0.04
Seed,Ret120 535.86 0.09 [522.22, 549.5] 490.2 725.7 490.2 527.5 725.7 0.12
Seed,Ret360 493.33 0.12 [476.58, 510.08] 408.4 669.5 408.4 486.3 669.5 0.2
Seed,Ret600 491.71 0.1 [477.8, 505.62] 408.6 664.9 408.6 490 664.9 0.35

Seed,S0 620.27 0.04 [613.25, 627.29] 609.5 725.7 609.5 613.1 725.7
Seed,S60 569.04 0.07 [557.77, 580.31] 546.2 712.5 546.2 555.1 712.5 0.08
Seed,S120 528.66 0.08 [516.7, 540.62] 488.3 725.7 488.3 521.4 725.7 0.04
Seed,S360 465.52 0.12 [449.72, 481.32] 357.6 664.9 357.6 462.8 664.9 0.43
Seed,S600 470.2 0.13 [452.91, 487.49] 373.2 669.5 373.2 462.8 669.5 0.27
Seed,Gap0 619.82 0.03 [614.56, 625.08] 607.4 725.7 607.4 614.4 725.7
Seed,Gap60 562.44 0.04 [556.08, 568.8] 548.4 698.5 548.4 556 698.5 0.04
Seed,Gap120 533.08 0.08 [521.02, 545.14] 491.3 725.7 491.3 520.6 725.7 0.08
Seed,Gap360 514.45 0.09 [501.35, 527.55] 434.4 669.5 434.4 513.7 669.5 0.35
Seed,Gap600 508.14 0.08 [496.64, 519.64] 437.4 664.9 437.4 509.7 664.9 0.33
Seed,Opt0 619.73 0.04 [612.72, 626.74] 606.4 725.7 606.4 613 725.7
Seed,Opt60 557.79 0.03 [553.06, 562.52] 546 680 546 553.7 680 0
Seed,Opt120 528.99 0.08 [517.02, 540.96] 488.8 725.7 488.8 525.1 725.7 0.08
Seed,Opt360 468.29 0.13 [451.07, 485.51] 357.4 664.9 357.4 467.8 664.9 0.33
Seed,Opt600 463.41 0.12 [447.68, 479.14] 374.5 664.9 374.5 458.8 664.9 0.41

Svg,Ret0 619.45 0.04 [612.44, 626.46] 607.5 741 607.5 614.7 741
...

...
...

...
...

...
...

...
...

...

324 A Appendix

Makespan for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

...
...

...
...

...
...

...
...

...
...

Svg,Ret60 561.11 0.03 [556.35, 565.87] 548.2 680 548.2 555.9 680 0.02
Svg,Ret120 532.02 0.08 [519.98, 544.06] 492.7 725.7 492.7 527 725.7 0.06
Svg,Ret360 507.09 0.1 [492.74, 521.44] 438.8 669.5 438.8 496.7 669.5 0.45
Svg,Ret600 514.56 0.1 [500, 529.12] 431.3 669.5 431.3 511.6 669.5 0.37

Svg,S0 615.81 0.03 [610.58, 621.04] 607.5 725.7 607.5 613.5 725.7
Svg,S60 557.53 0.02 [554.38, 560.68] 548.1 623.2 548.1 554.8 623.2 0
Svg,S120 531.09 0.08 [519.07, 543.11] 488.7 725.7 488.7 525.4 725.7 0.08
Svg,S360 492.56 0.12 [475.84, 509.28] 409.4 669.5 409.4 487.8 669.5 0.27
Svg,S600 494.32 0.11 [478.94, 509.7] 415.1 669.5 415.1 483.3 669.5 0.24
Svg,Gap0 621.23 0.04 [614.2, 628.26] 609.2 742.6 609.2 614.4 742.6
Svg,Gap60 560.55 0.04 [554.21, 566.89] 549.3 712.5 549.3 555.7 712.5 0
Svg,Gap120 531.5 0.08 [519.47, 543.53] 491.8 725.7 491.8 526.3 725.7 0.08
Svg,Gap360 508.96 0.08 [497.44, 520.48] 430.5 664.9 430.5 505.8 664.9 0.47
Svg,Gap600 514.31 0.08 [502.67, 525.95] 429.4 664.9 429.4 517.9 664.9 0.47
Svg,Opt0 622.92 0.05 [614.11, 631.73] 607.6 742.6 607.6 613.8 742.6
Svg,Opt60 558.43 0.04 [552.11, 564.75] 548.1 698.5 548.1 553.3 698.5 0.02
Svg,Opt120 531.93 0.08 [519.89, 543.97] 491.6 725.7 491.6 525.5 725.7 0.12
Svg,Opt360 489.01 0.12 [472.41, 505.61] 409.7 669.5 409.7 483.8 669.5 0.31
Svg,Opt600 492.16 0.1 [478.24, 506.08] 412.4 664.9 412.4 489.4 664.9 0.39

Ls,Ret0 620.74 0.04 [613.72, 627.76] 608.6 741 608.6 614.8 741
Ls,Ret60 562.53 0.05 [554.57, 570.49] 546.2 693 546.2 556.3 693 0.04
Ls,Ret120 530 0.08 [518, 542] 490.8 725.7 490.8 523.4 725.7 0.06
Ls,Ret360 491.63 0.12 [474.94, 508.32] 406.2 669.5 406.2 481.4 669.5 0.29
Ls,Ret600 492.09 0.12 [475.38, 508.8] 407.8 669.5 407.8 487.9 669.5 0.2

Ls,S0 621.5 0.05 [612.71, 630.29] 608.7 741 608.7 613.3 741
Ls,S60 557.83 0.03 [553.1, 562.56] 547.2 657.6 547.2 554.1 657.6 0.02
Ls,S120 528.88 0.08 [516.91, 540.85] 488.6 725.7 488.6 525.7 725.7 0.06
Ls,S360 467.4 0.12 [451.53, 483.27] 379 664.9 379 463.3 664.9 0.33
Ls,S600 464.93 0.12 [449.15, 480.71] 357.7 664.9 357.7 462.8 664.9 0.33
Ls,Gap0 622.76 0.05 [613.95, 631.57] 608.6 741 608.6 614.3 741
Ls,Gap60 562.47 0.05 [554.51, 570.43] 547.8 712.5 547.8 554.5 712.5 0
Ls,Gap120 532.31 0.09 [518.76, 545.86] 491.6 725.7 491.6 523.3 725.7 0.08
Ls,Gap360 484.77 0.11 [469.68, 499.86] 404.6 664.9 404.6 480.5 664.9 0.24
Ls,Gap600 487.55 0.11 [472.38, 502.72] 403.5 664.9 403.5 481 664.9 0.31
Ls,Opt0 617.52 0.03 [612.28, 622.76] 607.6 725.7 607.6 613 725.7
Ls,Opt60 562.69 0.05 [554.73, 570.65] 548.4 712.5 548.4 554.4 712.5 0.04
Ls,Opt120 528.22 0.08 [516.27, 540.17] 489.7 725.7 489.7 520.4 725.7 0.08
Ls,Opt360 467.18 0.12 [451.32, 483.04] 373.3 664.9 373.3 462.7 664.9 0.31
Ls,Opt600 472.86 0.12 [456.81, 488.91] 392.7 664.9 392.7 472 664.9 0.2
Ts,Ret0 619.58 0.03 [614.32, 624.84] 608.2 725.7 608.2 615 725.7
Ts,Ret60 567.43 0.06 [557.8, 577.06] 547.6 712.5 547.6 556.3 712.5 0.08
Ts,Ret120 530.88 0.08 [518.87, 542.89] 493.8 725.7 493.8 523.4 725.7 0.1
Ts,Ret360 489.94 0.12 [473.31, 506.57] 411.7 669.5 411.7 484.4 669.5 0.29
Ts,Ret600 487.26 0.1 [473.48, 501.04] 411 664.9 411 485.7 664.9 0.33

Ts,S0 622.39 0.05 [613.59, 631.19] 608.5 742.6 608.5 613.6 742.6
Ts,S60 559.28 0.04 [552.95, 565.61] 549 698.5 549 554.8 698.5 0
Ts,S120 527.52 0.08 [515.58, 539.46] 488.4 725.7 488.4 523.8 725.7 0.06
Ts,S360 469.72 0.13 [452.45, 486.99] 371.6 669.5 371.6 462.8 669.5 0.29
Ts,S600 466.62 0.12 [450.78, 482.46] 372.1 664.9 372.1 462.8 664.9 0.27
Ts,Gap0 621.1 0.04 [614.07, 628.13] 608.3 742.6 608.3 614.4 742.6
Ts,Gap60 563.89 0.06 [554.32, 573.46] 548.1 712.5 548.1 556.4 712.5 0.06
Ts,Gap120 532.84 0.09 [519.27, 546.41] 488.7 725.7 488.7 525.1 725.7 0.1
Ts,Gap360 489.69 0.12 [473.07, 506.31] 405.7 669.5 405.7 481.6 669.5 0.39
Ts,Gap600 488.31 0.12 [471.73, 504.89] 414.3 669.5 414.3 476.4 669.5 0.35
Ts,Opt0 614.88 0.03 [609.66, 620.1] 606.6 725.7 606.6 612.5 725.7
Ts,Opt60 561.7 0.05 [553.75, 569.65] 547.4 712.5 547.4 554.2 712.5 0.04
Ts,Opt120 531.77 0.09 [518.23, 545.31] 488 725.7 488 526.3 725.7 0.08
Ts,Opt360 474.58 0.14 [455.78, 493.38] 357.4 669.5 357.4 469.1 669.5 0.31
Ts,Opt600 469.68 0.13 [452.41, 486.95] 376.9 669.5 376.9 464.9 669.5 0.31
Opt,Opt0 615.99 0.06 [605.53, 626.45] 507.7 741 507.7 613.3 741
Opt,Opt60 566.2 0.06 [556.59, 575.81] 507.7 712.5 507.7 554.5 712.5 0.08
Opt,Opt120 533.08 0.08 [521.02, 545.14] 489.9 725.7 489.9 525 725.7 0.14
Opt,Opt360 513.23 0.09 [500.16, 526.3] 434.4 669.5 434.4 510.8 669.5 0.31
Opt,Opt600 507.97 0.08 [496.47, 519.47] 436.3 664.9 436.3 509.7 664.9 0.27

Table A.67: Makespans in the order picking system.

A.3 Numerical Results from Chapter 6 325

Performance ratios of makespan relative to Ts,Opt600 for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Prio,Ret0 1.35 0.13 [1.3, 1.4] 0.92 1.66 0.92 1.39 1.66 0.04
Prio,Ret60 1.22 0.13 [1.18, 1.26] 0.83 1.67 0.83 1.2 1.67 0.04
Prio,Ret120 1.15 0.14 [1.1, 1.2] 0.78 1.66 0.78 1.13 1.66 0.02
Prio,Ret360 1.12 0.12 [1.08, 1.16] 0.77 1.39 0.77 1.06 1.39 0.02
Prio,Ret600 1.12 0.12 [1.08, 1.16] 0.77 1.39 0.77 1.08 1.39 0.02

Prio,S0 1.34 0.13 [1.29, 1.39] 0.92 1.67 0.92 1.32 1.67 0.04
Prio,S60 1.23 0.15 [1.18, 1.28] 0.83 1.68 0.83 1.2 1.68 0.04
Prio,S120 1.15 0.13 [1.11, 1.19] 0.99 1.66 0.99 1.12 1.66 0.02
Prio,S360 1.09 0.14 [1.05, 1.13] 0.73 1.61 0.73 1.02 1.61 0.04
Prio,S600 1.1 0.14 [1.06, 1.14] 0.74 1.61 0.74 1.02 1.61 0.06
Prio,Gap0 1.35 0.12 [1.3, 1.4] 0.92 1.66 0.92 1.37 1.66 0.04
Prio,Gap60 1.23 0.14 [1.18, 1.28] 0.82 1.68 0.82 1.2 1.68 0.04
Prio,Gap120 1.15 0.14 [1.1, 1.2] 0.76 1.66 0.76 1.11 1.66 0.02
Prio,Gap360 1.11 0.13 [1.07, 1.15] 0.76 1.61 0.76 1.05 1.61 0.02
Prio,Gap600 1.11 0.13 [1.07, 1.15] 0.76 1.61 0.76 1.04 1.61 0.04
Prio,Opt0 1.34 0.13 [1.29, 1.39] 0.92 1.66 0.92 1.36 1.66 0.04
Prio,Opt60 1.21 0.13 [1.17, 1.25] 0.85 1.54 0.85 1.2 1.54 0.04
Prio,Opt120 1.15 0.14 [1.1, 1.2] 0.98 1.66 0.98 1.07 1.66 0.02
Prio,Opt360 1.06 0.12 [1.02, 1.1] 0.99 1.61 0.99 1.02 1.61 0.1
Prio,Opt600 1.08 0.12 [1.04, 1.12] 0.99 1.61 0.99 1.02 1.61 0.04
Seed,Ret0 1.33 0.13 [1.28, 1.38] 0.92 1.66 0.92 1.33 1.66 0.04
Seed,Ret60 1.22 0.13 [1.18, 1.26] 0.85 1.53 0.85 1.2 1.53 0.04
Seed,Ret120 1.16 0.13 [1.12, 1.2] 0.99 1.66 0.99 1.12 1.66 0.02
Seed,Ret360 1.06 0.12 [1.02, 1.1] 0.98 1.61 0.98 1.01 1.61 0.06
Seed,Ret600 1.06 0.13 [1.02, 1.1] 0.73 1.61 0.73 1.01 1.61 0.06

Seed,S0 1.34 0.13 [1.29, 1.39] 0.92 1.68 0.92 1.36 1.68 0.04
Seed,S60 1.23 0.14 [1.18, 1.28] 0.85 1.67 0.85 1.23 1.67 0.04
Seed,S120 1.14 0.14 [1.09, 1.19] 0.75 1.66 0.75 1.07 1.66 0.04
Seed,S360 0.99 0.05 [0.98, 1] 0.73 1.03 0.73 1 1.03 0.29
Seed,S600 1 0.01 [1, 1] 0.98 1.03 0.98 1 1.03 0.31
Seed,Gap0 1.34 0.13 [1.29, 1.39] 0.92 1.66 0.92 1.33 1.66 0.04
Seed,Gap60 1.22 0.13 [1.18, 1.26] 0.83 1.5 0.83 1.2 1.5 0.04
Seed,Gap120 1.15 0.13 [1.11, 1.19] 1 1.66 1 1.08 1.66 0
Seed,Gap360 1.11 0.13 [1.07, 1.15] 0.99 1.61 0.99 1.02 1.61 0.02
Seed,Gap600 1.1 0.13 [1.06, 1.14] 0.74 1.61 0.74 1.03 1.61 0.04
Seed,Opt0 1.34 0.13 [1.29, 1.39] 0.91 1.68 0.91 1.32 1.68 0.04
Seed,Opt60 1.21 0.13 [1.17, 1.25] 0.82 1.67 0.82 1.19 1.67 0.04
Seed,Opt120 1.14 0.14 [1.09, 1.19] 0.81 1.66 0.81 1.11 1.66 0.04
Seed,Opt360 1 0.11 [0.97, 1.03] 0.74 1.61 0.74 1 1.61 0.39
Seed,Opt600 0.99 0.05 [0.98, 1] 0.73 1.07 0.73 1 1.07 0.43

Svg,Ret0 1.34 0.13 [1.29, 1.39] 0.92 1.66 0.92 1.32 1.66 0.04
Svg,Ret60 1.21 0.13 [1.17, 1.25] 0.83 1.67 0.83 1.2 1.67 0.04
Svg,Ret120 1.15 0.14 [1.1, 1.2] 0.81 1.66 0.81 1.09 1.66 0.04
Svg,Ret360 1.09 0.12 [1.05, 1.13] 0.98 1.61 0.98 1.03 1.61 0.04
Svg,Ret600 1.11 0.13 [1.07, 1.15] 1 1.61 1 1.03 1.61 0.02

Svg,S0 1.33 0.13 [1.28, 1.38] 0.92 1.66 0.92 1.32 1.66 0.04
Svg,S60 1.21 0.13 [1.17, 1.25] 0.82 1.5 0.82 1.19 1.5 0.04
Svg,S120 1.15 0.14 [1.1, 1.2] 0.81 1.66 0.81 1.09 1.66 0.04
Svg,S360 1.06 0.12 [1.02, 1.1] 0.99 1.61 0.99 1 1.61 0.08
Svg,S600 1.06 0.12 [1.02, 1.1] 0.98 1.61 0.98 1 1.61 0.04
Svg,Gap0 1.34 0.13 [1.29, 1.39] 0.92 1.66 0.92 1.36 1.66 0.04
Svg,Gap60 1.21 0.13 [1.17, 1.25] 0.82 1.53 0.82 1.2 1.53 0.04
Svg,Gap120 1.15 0.14 [1.1, 1.2] 0.75 1.66 0.75 1.12 1.66 0.04
Svg,Gap360 1.1 0.13 [1.06, 1.14] 0.73 1.61 0.73 1.03 1.61 0.02
Svg,Gap600 1.11 0.13 [1.07, 1.15] 0.75 1.61 0.75 1.06 1.61 0.02
Svg,Opt0 1.35 0.13 [1.3, 1.4] 0.91 1.67 0.91 1.36 1.67 0.04
Svg,Opt60 1.21 0.13 [1.17, 1.25] 0.83 1.49 0.83 1.2 1.49 0.04
Svg,Opt120 1.15 0.14 [1.1, 1.2] 0.81 1.66 0.81 1.12 1.66 0.04
Svg,Opt360 1.05 0.11 [1.02, 1.08] 0.98 1.61 0.98 1.01 1.61 0.06
Svg,Opt600 1.06 0.13 [1.02, 1.1] 0.73 1.61 0.73 1.01 1.61 0.1

Ls,Ret0 1.34 0.13 [1.29, 1.39] 0.92 1.66 0.92 1.36 1.66 0.04
Ls,Ret60 1.22 0.14 [1.17, 1.27] 0.83 1.68 0.83 1.2 1.68 0.04
Ls,Ret120 1.15 0.14 [1.1, 1.2] 0.74 1.66 0.74 1.07 1.66 0.04

...
...

...
...

...
...

...
...

...
...

326 A Appendix

Performance ratios of makespan relative to Ts,Opt600 for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 1.05 0.12 [1.01, 1.09] 0.99 1.61 0.99 1 1.61 0.1
Ls,Ret600 1.06 0.12 [1.02, 1.1] 0.98 1.61 0.98 1.01 1.61 0.12

Ls,S0 1.35 0.13 [1.3, 1.4] 0.92 1.67 0.92 1.36 1.67 0.04
Ls,S60 1.21 0.13 [1.17, 1.25] 0.83 1.49 0.83 1.19 1.49 0.04
Ls,S120 1.14 0.14 [1.09, 1.19] 0.74 1.66 0.74 1.06 1.66 0.04
Ls,S360 1 0.04 [0.99, 1.01] 0.74 1.07 0.74 1 1.07 0.27
Ls,S600 0.99 0.05 [0.98, 1] 0.73 1.02 0.73 1 1.02 0.31
Ls,Gap0 1.35 0.13 [1.3, 1.4] 0.92 1.66 0.92 1.39 1.66 0.04
Ls,Gap60 1.22 0.13 [1.18, 1.26] 0.85 1.53 0.85 1.23 1.53 0.04
Ls,Gap120 1.15 0.13 [1.11, 1.19] 0.98 1.66 0.98 1.06 1.66 0.02
Ls,Gap360 1.04 0.12 [1, 1.08] 0.73 1.61 0.73 1 1.61 0.12
Ls,Gap600 1.05 0.13 [1.01, 1.09] 0.73 1.61 0.73 1 1.61 0.16
Ls,Opt0 1.34 0.13 [1.29, 1.39] 0.91 1.67 0.91 1.32 1.67 0.04
Ls,Opt60 1.22 0.13 [1.18, 1.26] 0.85 1.54 0.85 1.23 1.54 0.04
Ls,Opt120 1.14 0.14 [1.09, 1.19] 0.74 1.66 0.74 1.07 1.66 0.04
Ls,Opt360 1 0.04 [0.99, 1.01] 0.73 1.03 0.73 1 1.03 0.27
Ls,Opt600 1.01 0.1 [0.98, 1.04] 0.73 1.61 0.73 1 1.61 0.24
Ts,Ret0 1.34 0.13 [1.29, 1.39] 0.92 1.66 0.92 1.33 1.66 0.04
Ts,Ret60 1.23 0.15 [1.18, 1.28] 0.83 1.68 0.83 1.2 1.68 0.04
Ts,Ret120 1.15 0.14 [1.1, 1.2] 0.75 1.66 0.75 1.12 1.66 0.04
Ts,Ret360 1.05 0.12 [1.01, 1.09] 0.99 1.61 0.99 1.01 1.61 0.08
Ts,Ret600 1.05 0.12 [1.01, 1.09] 0.73 1.61 0.73 1.01 1.61 0.08

Ts,S0 1.35 0.13 [1.3, 1.4] 0.91 1.67 0.91 1.36 1.67 0.04
Ts,S60 1.21 0.13 [1.17, 1.25] 0.83 1.49 0.83 1.19 1.49 0.04
Ts,S120 1.14 0.14 [1.09, 1.19] 0.74 1.66 0.74 1.07 1.66 0.04
Ts,S360 1 0.01 [1, 1] 0.97 1.02 0.97 1 1.02 0.24
Ts,S600 1 0.04 [0.99, 1.01] 0.73 1.07 0.73 1 1.07 0.31
Ts,Gap0 1.34 0.13 [1.29, 1.39] 0.92 1.66 0.92 1.37 1.66 0.04
Ts,Gap60 1.22 0.14 [1.17, 1.27] 0.83 1.67 0.83 1.2 1.67 0.04
Ts,Gap120 1.15 0.13 [1.11, 1.19] 0.99 1.66 0.99 1.08 1.66 0.02
Ts,Gap360 1.05 0.12 [1.01, 1.09] 0.99 1.61 0.99 1 1.61 0.14
Ts,Gap600 1.05 0.11 [1.02, 1.08] 0.97 1.61 0.97 1 1.61 0.12
Ts,Opt0 1.33 0.13 [1.28, 1.38] 0.91 1.66 0.91 1.32 1.66 0.04
Ts,Opt60 1.22 0.14 [1.17, 1.27] 0.82 1.68 0.82 1.2 1.68 0.04
Ts,Opt120 1.15 0.13 [1.11, 1.19] 0.98 1.66 0.98 1.07 1.66 0.02
Ts,Opt360 1.01 0.09 [0.98, 1.04] 0.83 1.61 0.83 1 1.61 0.31
Ts,Opt600 1 0 [1, 1] 1 1 1 1 1 0
Opt,Opt0 1.33 0.13 [1.28, 1.38] 0.92 1.73 0.92 1.32 1.73 0.02
Opt,Opt60 1.23 0.15 [1.18, 1.28] 0.85 1.68 0.85 1.24 1.68 0.06
Opt,Opt120 1.15 0.13 [1.11, 1.19] 0.92 1.66 0.92 1.11 1.66 0.04
Opt,Opt360 1.11 0.13 [1.07, 1.15] 0.99 1.61 0.99 1.02 1.61 0.04
Opt,Opt600 1.1 0.13 [1.06, 1.14] 0.74 1.61 0.74 1.03 1.61 0.04

Table A.68: Performance ratios of makespan relative to Ts,Opt600 in the order picking system.

A.3 Numerical Results from Chapter 6 327

Performance ratios of makespan relative to online version for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Prio,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Ret60 0.9 0.06 [0.88, 0.92] 0.74 1.1 0.74 0.9 1.1 0.02
Prio,Ret120 0.86 0.08 [0.84, 0.88] 0.68 1.08 0.68 0.86 1.08 0.02
Prio,Ret360 0.83 0.08 [0.81, 0.85] 0.66 1.08 0.66 0.84 1.08 0.02
Prio,Ret600 0.83 0.08 [0.81, 0.85] 0.66 1.08 0.66 0.84 1.08 0.02

Prio,S0 1 0 [1, 1] 1 1 1 1 1 0
Prio,S60 0.92 0.06 [0.9, 0.94] 0.77 1.15 0.77 0.9 1.15 0.06
Prio,S120 0.86 0.08 [0.84, 0.88] 0.7 1.09 0.7 0.85 1.09 0.04
Prio,S360 0.82 0.1 [0.8, 0.84] 0.62 1.08 0.62 0.82 1.08 0.04
Prio,S600 0.82 0.1 [0.8, 0.84] 0.62 1.08 0.62 0.82 1.08 0.04
Prio,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Gap60 0.92 0.07 [0.9, 0.94] 0.74 1.12 0.74 0.9 1.12 0.08
Prio,Gap120 0.86 0.07 [0.84, 0.88] 0.7 1.07 0.7 0.85 1.07 0.02
Prio,Gap360 0.83 0.09 [0.81, 0.85] 0.63 1.07 0.63 0.82 1.07 0.02
Prio,Gap600 0.83 0.09 [0.81, 0.85] 0.65 1.07 0.65 0.82 1.07 0.02
Prio,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Opt60 0.9 0.05 [0.89, 0.91] 0.74 1.07 0.74 0.9 1.07 0.02
Prio,Opt120 0.86 0.08 [0.84, 0.88] 0.68 1.09 0.68 0.85 1.09 0.04
Prio,Opt360 0.8 0.12 [0.77, 0.83] 0.6 1.09 0.6 0.79 1.09 0.04
Prio,Opt600 0.81 0.12 [0.78, 0.84] 0.61 1.09 0.61 0.8 1.09 0.04
Seed,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Ret60 0.91 0.05 [0.9, 0.92] 0.78 1.16 0.78 0.9 1.16 0.04
Seed,Ret120 0.87 0.07 [0.85, 0.89] 0.8 1.09 0.8 0.86 1.09 0.04
Seed,Ret360 0.8 0.12 [0.77, 0.83] 0.6 1.09 0.6 0.8 1.09 0.04
Seed,Ret600 0.8 0.11 [0.78, 0.82] 0.6 1.08 0.6 0.8 1.08 0.02

Seed,S0 1 0 [1, 1] 1 1 1 1 1 0
Seed,S60 0.92 0.07 [0.9, 0.94] 0.8 1.16 0.8 0.9 1.16 0.08
Seed,S120 0.85 0.07 [0.83, 0.87] 0.71 1.09 0.71 0.85 1.09 0.02
Seed,S360 0.75 0.13 [0.72, 0.78] 0.58 1.09 0.58 0.75 1.09 0.02
Seed,S600 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.74 1.09 0.04
Seed,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Gap60 0.91 0.05 [0.9, 0.92] 0.78 1.14 0.78 0.9 1.14 0.04
Seed,Gap120 0.86 0.08 [0.84, 0.88] 0.71 1.09 0.71 0.85 1.09 0.04
Seed,Gap360 0.83 0.1 [0.81, 0.85] 0.64 1.09 0.64 0.83 1.09 0.04
Seed,Gap600 0.82 0.09 [0.8, 0.84] 0.62 1.08 0.62 0.83 1.08 0.02
Seed,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Opt60 0.9 0.04 [0.89, 0.91] 0.77 1 0.77 0.9 1 0
Seed,Opt120 0.85 0.07 [0.83, 0.87] 0.69 1.08 0.69 0.85 1.08 0.02
Seed,Opt360 0.76 0.14 [0.73, 0.79] 0.59 1.08 0.59 0.77 1.08 0.02
Seed,Opt600 0.75 0.13 [0.72, 0.78] 0.58 1.08 0.58 0.73 1.08 0.02

Svg,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Ret60 0.91 0.05 [0.9, 0.92] 0.75 1.11 0.75 0.91 1.11 0.02
Svg,Ret120 0.86 0.07 [0.84, 0.88] 0.67 1.08 0.67 0.86 1.08 0.02
Svg,Ret360 0.82 0.11 [0.79, 0.85] 0.61 1.09 0.61 0.81 1.09 0.04
Svg,Ret600 0.83 0.11 [0.8, 0.86] 0.62 1.09 0.62 0.83 1.09 0.06

Svg,S0 1 0 [1, 1] 1 1 1 1 1 0
Svg,S60 0.91 0.03 [0.9, 0.92] 0.78 1 0.78 0.9 1 0
Svg,S120 0.86 0.07 [0.84, 0.88] 0.8 1.08 0.8 0.86 1.08 0.02
Svg,S360 0.8 0.12 [0.77, 0.83] 0.59 1.09 0.59 0.8 1.09 0.04
Svg,S600 0.8 0.12 [0.77, 0.83] 0.59 1.09 0.59 0.79 1.09 0.04
Svg,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Gap60 0.9 0.04 [0.89, 0.91] 0.74 1 0.74 0.9 1 0
Svg,Gap120 0.86 0.07 [0.84, 0.88] 0.7 1.08 0.7 0.85 1.08 0.02
Svg,Gap360 0.82 0.1 [0.8, 0.84] 0.62 1.08 0.62 0.82 1.08 0.02
Svg,Gap600 0.83 0.09 [0.81, 0.85] 0.65 1.08 0.65 0.83 1.08 0.02
Svg,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Opt60 0.9 0.06 [0.88, 0.92] 0.74 1.15 0.74 0.9 1.15 0.02
Svg,Opt120 0.86 0.08 [0.84, 0.88] 0.67 1.08 0.67 0.86 1.08 0.02
Svg,Opt360 0.79 0.13 [0.76, 0.82] 0.59 1.09 0.59 0.78 1.09 0.04
Svg,Opt600 0.79 0.12 [0.76, 0.82] 0.59 1.08 0.59 0.79 1.08 0.02

Ls,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Ret60 0.91 0.06 [0.89, 0.93] 0.74 1.13 0.74 0.9 1.13 0.04
Ls,Ret120 0.85 0.07 [0.83, 0.87] 0.67 1.08 0.67 0.85 1.08 0.02

...
...

...
...

...
...

...
...

...
...

328 A Appendix

Performance ratios of makespan relative to online version for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 0.79 0.13 [0.76, 0.82] 0.6 1.09 0.6 0.78 1.09 0.04
Ls,Ret600 0.79 0.13 [0.76, 0.82] 0.61 1.09 0.61 0.78 1.09 0.04

Ls,S0 1 0 [1, 1] 1 1 1 1 1 0
Ls,S60 0.9 0.05 [0.89, 0.91] 0.75 1.07 0.75 0.9 1.07 0.02
Ls,S120 0.85 0.08 [0.83, 0.87] 0.67 1.08 0.67 0.86 1.08 0.02
Ls,S360 0.75 0.13 [0.72, 0.78] 0.59 1.08 0.59 0.74 1.08 0.02
Ls,S600 0.75 0.13 [0.72, 0.78] 0.59 1.08 0.59 0.73 1.08 0.02
Ls,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Gap60 0.9 0.04 [0.89, 0.91] 0.75 1 0.75 0.9 1 0
Ls,Gap120 0.86 0.09 [0.84, 0.88] 0.67 1.09 0.67 0.85 1.09 0.04
Ls,Gap360 0.78 0.12 [0.75, 0.81] 0.61 1.08 0.61 0.78 1.08 0.02
Ls,Gap600 0.78 0.12 [0.75, 0.81] 0.59 1.08 0.59 0.78 1.08 0.02
Ls,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Opt60 0.91 0.06 [0.89, 0.93] 0.78 1.16 0.78 0.9 1.16 0.04
Ls,Opt120 0.86 0.07 [0.84, 0.88] 0.75 1.08 0.75 0.85 1.08 0.02
Ls,Opt360 0.76 0.12 [0.73, 0.79] 0.6 1.08 0.6 0.76 1.08 0.02
Ls,Opt600 0.77 0.13 [0.74, 0.8] 0.59 1.08 0.59 0.77 1.08 0.02
Ts,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Ret60 0.92 0.07 [0.9, 0.94] 0.78 1.16 0.78 0.9 1.16 0.08
Ts,Ret120 0.86 0.07 [0.84, 0.88] 0.71 1.08 0.71 0.85 1.08 0.02
Ts,Ret360 0.79 0.12 [0.76, 0.82] 0.6 1.09 0.6 0.78 1.09 0.04
Ts,Ret600 0.79 0.11 [0.77, 0.81] 0.6 1.08 0.6 0.79 1.08 0.02

Ts,S0 1 0 [1, 1] 1 1 1 1 1 0
Ts,S60 0.9 0.04 [0.89, 0.91] 0.75 1 0.75 0.9 1 0
Ts,S120 0.85 0.07 [0.83, 0.87] 0.69 1.09 0.69 0.85 1.09 0.02
Ts,S360 0.76 0.14 [0.73, 0.79] 0.58 1.09 0.58 0.75 1.09 0.04
Ts,S600 0.75 0.13 [0.72, 0.78] 0.59 1.09 0.59 0.74 1.09 0.02
Ts,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Gap60 0.91 0.07 [0.89, 0.93] 0.74 1.16 0.74 0.9 1.16 0.06
Ts,Gap120 0.86 0.08 [0.84, 0.88] 0.69 1.09 0.69 0.86 1.09 0.04
Ts,Gap360 0.79 0.12 [0.76, 0.82] 0.6 1.09 0.6 0.78 1.09 0.04
Ts,Gap600 0.79 0.12 [0.76, 0.82] 0.6 1.09 0.6 0.77 1.09 0.04
Ts,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Opt60 0.91 0.06 [0.89, 0.93] 0.78 1.17 0.78 0.9 1.17 0.04
Ts,Opt120 0.86 0.07 [0.84, 0.88] 0.8 1.09 0.8 0.86 1.09 0.04
Ts,Opt360 0.77 0.14 [0.74, 0.8] 0.59 1.09 0.59 0.77 1.09 0.04
Ts,Opt600 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.76 1.09 0.04
Opt,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt,Opt60 0.92 0.08 [0.9, 0.94] 0.76 1.16 0.76 0.9 1.16 0.08
Opt,Opt120 0.87 0.07 [0.85, 0.89] 0.67 1 0.67 0.86 1 0.02
Opt,Opt360 0.84 0.11 [0.81, 0.87] 0.59 1.09 0.59 0.84 1.09 0.04
Opt,Opt600 0.83 0.09 [0.81, 0.85] 0.6 1 0.6 0.84 1 0.02

Table A.69: Performance ratios of makespan relative to the online version of an algorithm in the
order picking system.

A.3 Numerical Results from Chapter 6 329

Distance for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Prio,Ret0 96.91 0.02 [96.36, 97.46] 92.7 100.6 92.7 96.8 100.6
Prio,Ret60 96.21 0.02 [95.67, 96.75] 92.3 99.5 92.3 95.8 99.5 0.22
Prio,Ret120 95.74 0.02 [95.2, 96.28] 91.1 98.1 91.1 95.8 98.1 0.35
Prio,Ret360 95.52 0.02 [94.98, 96.06] 92.1 98.7 92.1 95.3 98.7 0.61
Prio,Ret600 95.29 0.02 [94.75, 95.83] 90.9 97.8 90.9 95.4 97.8 0.43

Prio,S0 86.42 0.02 [85.93, 86.91] 82.7 88.9 82.7 86.3 88.9
Prio,S60 85.76 0.02 [85.27, 86.25] 82.8 88.3 82.8 85.9 88.3 0.2
Prio,S120 85.13 0.02 [84.65, 85.61] 82.2 88 82.2 85 88 0.2
Prio,S360 84.75 0.02 [84.27, 85.23] 81.9 87.5 81.9 84.9 87.5 0.55
Prio,S600 84.56 0.02 [84.08, 85.04] 81.8 87.2 81.8 84.9 87.2 0.59
Prio,Gap0 85.05 0.01 [84.81, 85.29] 82.7 87.9 82.7 84.9 87.9
Prio,Gap60 84.47 0.01 [84.23, 84.71] 81.6 86.9 81.6 84.4 86.9 0.31
Prio,Gap120 83.85 0.02 [83.38, 84.32] 81.5 86.8 81.5 83.9 86.8 0.2
Prio,Gap360 83.61 0.02 [83.14, 84.08] 80.6 86.9 80.6 83.5 86.9 0.55
Prio,Gap600 83.47 0.02 [83, 83.94] 80.8 86 80.8 83.6 86 0.51
Prio,Opt0 75.56 0.01 [75.35, 75.77] 72.8 78.5 72.8 75.8 78.5
Prio,Opt60 74.99 0.01 [74.78, 75.2] 72.6 76.8 72.6 75 76.8 0.16
Prio,Opt120 74.51 0.01 [74.3, 74.72] 72.5 76.7 72.5 74.8 76.7 0.2
Prio,Opt360 73.89 0.02 [73.47, 74.31] 71.6 76.1 71.6 74 76.1 0.47
Prio,Opt600 73.73 0.01 [73.52, 73.94] 71.4 75.4 71.4 73.9 75.4 0.47
Seed,Ret0 94.42 0.02 [93.89, 94.95] 89.6 98.8 89.6 94.3 98.8
Seed,Ret60 89.65 0.02 [89.14, 90.16] 85.1 94 85.1 89.6 94 0.02
Seed,Ret120 82.08 0.02 [81.62, 82.54] 78.5 88.3 78.5 82.1 88.3 0
Seed,Ret360 67.49 0.02 [67.11, 67.87] 64.8 69.9 64.8 67.4 69.9 0.33
Seed,Ret600 67.49 0.02 [67.11, 67.87] 65.4 70.1 65.4 67.3 70.1 0.49

Seed,S0 84.67 0.02 [84.19, 85.15] 79.6 87.7 79.6 85.2 87.7
Seed,S60 80.39 0.02 [79.94, 80.84] 76.6 84 76.6 80.5 84 0
Seed,S120 73.92 0.03 [73.29, 74.55] 69.3 79.8 69.3 74 79.8 0
Seed,S360 59.62 0.02 [59.28, 59.96] 57.4 62 57.4 59.7 62 0.33
Seed,S600 59.63 0.02 [59.29, 59.97] 57.1 61.8 57.1 59.9 61.8 0.49
Seed,Gap0 83.25 0.02 [82.78, 83.72] 78.9 86.4 78.9 83.1 86.4
Seed,Gap60 79.19 0.02 [78.74, 79.64] 76.4 83.3 76.4 79.3 83.3 0.02
Seed,Gap120 72.26 0.03 [71.65, 72.87] 68.2 77.5 68.2 72.2 77.5 0
Seed,Gap360 63.49 0.02 [63.13, 63.85] 61.1 66.2 61.1 63.5 66.2 0.45
Seed,Gap600 63.52 0.02 [63.16, 63.88] 60.6 65.8 60.6 63.5 65.8 0.59
Seed,Opt0 74.76 0.02 [74.34, 75.18] 71.5 77.5 71.5 74.8 77.5
Seed,Opt60 72.01 0.02 [71.6, 72.42] 69.1 74.7 69.1 72.1 74.7 0
Seed,Opt120 67.8 0.02 [67.42, 68.18] 64 71.8 64 67.9 71.8 0
Seed,Opt360 57.75 0.02 [57.42, 58.08] 55.6 59.8 55.6 57.9 59.8 0.29
Seed,Opt600 57.83 0.02 [57.5, 58.16] 55.5 59.8 55.5 57.9 59.8 0.47

Svg,Ret0 93.57 0.02 [93.04, 94.1] 88.5 97.9 88.5 93.3 97.9
Svg,Ret60 89.19 0.02 [88.69, 89.69] 85.7 93.9 85.7 89 93.9 0.02
Svg,Ret120 83.2 0.02 [82.73, 83.67] 78.6 89.1 78.6 83.3 89.1 0
Svg,Ret360 78.51 0.02 [78.07, 78.95] 75.3 82.3 75.3 78.2 82.3 0.65
Svg,Ret600 80.94 0.02 [80.48, 81.4] 77.1 85.6 77.1 80.8 85.6 0.59

Svg,S0 83.98 0.02 [83.5, 84.46] 80.2 88 80.2 84.2 88
Svg,S60 80.46 0.02 [80, 80.92] 76.5 84 76.5 80.2 84 0
Svg,S120 76.14 0.02 [75.71, 76.57] 72.8 80.9 72.8 76.3 80.9 0.02
Svg,S360 70.33 0.02 [69.93, 70.73] 66.9 74.6 66.9 70.2 74.6 0.59
Svg,S600 72.72 0.02 [72.31, 73.13] 69.8 76.3 69.8 72.9 76.3 0.53
Svg,Gap0 82.91 0.02 [82.44, 83.38] 79.2 86.6 79.2 82.9 86.6
Svg,Gap60 79.84 0.02 [79.39, 80.29] 77.1 82.7 77.1 79.9 82.7 0
Svg,Gap120 76.61 0.02 [76.18, 77.04] 72.7 83.2 72.7 76.5 83.2 0.02
Svg,Gap360 74.28 0.03 [73.65, 74.91] 69.1 81.9 69.1 74.2 81.9 0.59
Svg,Gap600 76.74 0.03 [76.09, 77.39] 71.6 80.8 71.6 76.8 80.8 0.67
Svg,Opt0 74.46 0.02 [74.04, 74.88] 71.9 77.3 71.9 74.6 77.3
Svg,Opt60 72.37 0.02 [71.96, 72.78] 70.2 75.1 70.2 72.3 75.1 0.04
Svg,Opt120 70.12 0.02 [69.72, 70.52] 67.1 73.5 67.1 70.1 73.5 0
Svg,Opt360 67.43 0.03 [66.86, 68] 64.6 72.7 64.6 67.3 72.7 0.67
Svg,Opt600 70.24 0.02 [69.84, 70.64] 66.6 72.5 66.6 70.2 72.5 0.63

Ls,Ret0 92.7 0.03 [91.91, 93.49] 85.7 97.3 85.7 92.7 97.3
Ls,Ret60 87.26 0.02 [86.77, 87.75] 83.2 92 83.2 87.1 92 0.02
Ls,Ret120 79.57 0.02 [79.12, 80.02] 75.7 84.7 75.7 79.4 84.7 0

...
...

...
...

...
...

...
...

...
...

330 A Appendix

Distance for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 66.09 0.02 [65.72, 66.46] 63.7 68.7 63.7 66.1 68.7 0.45
Ls,Ret600 65.97 0.02 [65.6, 66.34] 63.8 68.6 63.8 65.9 68.6 0.37

Ls,S0 83.17 0.02 [82.7, 83.64] 79.3 87.2 79.3 83 87.2
Ls,S60 78.13 0.02 [77.69, 78.57] 74.3 81.6 74.3 78.1 81.6 0
Ls,S120 71.87 0.02 [71.46, 72.28] 68.4 75.2 68.4 72 75.2 0
Ls,S360 58.4 0.02 [58.07, 58.73] 55.5 60.8 55.5 58.4 60.8 0.37
Ls,S600 58.42 0.02 [58.09, 58.75] 56.2 60.7 56.2 58.5 60.7 0.45
Ls,Gap0 81.22 0.02 [80.76, 81.68] 76.8 85 76.8 81.1 85
Ls,Gap60 76.74 0.02 [76.31, 77.17] 72.9 79.9 72.9 76.8 79.9 0
Ls,Gap120 70.63 0.03 [70.03, 71.23] 66.4 74.5 66.4 70.7 74.5 0
Ls,Gap360 59.8 0.02 [59.46, 60.14] 57 62.4 57 59.8 62.4 0.35
Ls,Gap600 59.89 0.02 [59.55, 60.23] 56.8 62.2 56.8 59.8 62.2 0.47
Ls,Opt0 73.6 0.02 [73.18, 74.02] 70.3 76.4 70.3 73.8 76.4
Ls,Opt60 70.86 0.02 [70.46, 71.26] 68.1 73.3 68.1 71.1 73.3 0.02
Ls,Opt120 66.92 0.02 [66.54, 67.3] 64.3 69.3 64.3 67 69.3 0
Ls,Opt360 58.26 0.02 [57.93, 58.59] 55.5 60.6 55.5 58.2 60.6 0.24
Ls,Opt600 58.36 0.02 [58.03, 58.69] 55.7 60.4 55.7 58.2 60.4 0.49
Ts,Ret0 93.23 0.03 [92.44, 94.02] 85.9 98.6 85.9 93.3 98.6
Ts,Ret60 87.51 0.03 [86.77, 88.25] 82.9 92.3 82.9 87.2 92.3 0
Ts,Ret120 80.27 0.03 [79.59, 80.95] 75.9 86.2 75.9 80.3 86.2 0
Ts,Ret360 66.01 0.02 [65.64, 66.38] 63.3 68.6 63.3 66.1 68.6 0.39
Ts,Ret600 65.99 0.02 [65.62, 66.36] 63.8 68.5 63.8 65.9 68.5 0.51

Ts,S0 83.48 0.03 [82.77, 84.19] 78.8 87.6 78.8 83.6 87.6
Ts,S60 78.54 0.02 [78.1, 78.98] 75.1 82.3 75.1 78.7 82.3 0.02
Ts,S120 72.38 0.03 [71.77, 72.99] 67.6 76.6 67.6 72.2 76.6 0.02
Ts,S360 58.38 0.02 [58.05, 58.71] 56 60.6 56 58.4 60.6 0.37
Ts,S600 58.36 0.02 [58.03, 58.69] 56.1 60.4 56.1 58.3 60.4 0.35
Ts,Gap0 81.98 0.02 [81.52, 82.44] 77.3 86 77.3 81.9 86
Ts,Gap60 77.41 0.02 [76.97, 77.85] 74.6 80.7 74.6 77.3 80.7 0
Ts,Gap120 70.95 0.02 [70.55, 71.35] 67.5 74.9 67.5 71.2 74.9 0
Ts,Gap360 59.28 0.02 [58.94, 59.62] 57 62.1 57 59.2 62.1 0.35
Ts,Gap600 59.46 0.02 [59.12, 59.8] 56.9 61.8 56.9 59.4 61.8 0.43
Ts,Opt0 74.12 0.02 [73.7, 74.54] 70.4 76.6 70.4 74.1 76.6
Ts,Opt60 71.24 0.02 [70.84, 71.64] 68.7 73.8 68.7 71.4 73.8 0.02
Ts,Opt120 67.17 0.02 [66.79, 67.55] 63.8 70.6 63.8 67.1 70.6 0
Ts,Opt360 57.69 0.02 [57.36, 58.02] 55.3 60 55.3 57.9 60 0.41
Ts,Opt600 57.77 0.02 [57.44, 58.1] 55 60.5 55 57.8 60.5 0.35
Opt,Opt0 75 0.02 [74.58, 75.42] 69.3 78.2 69.3 75.1 78.2
Opt,Opt60 73.66 0.02 [73.24, 74.08] 69.3 76.2 69.3 73.7 76.2 0.14
Opt,Opt120 69.94 0.02 [69.54, 70.34] 67 74.6 67 69.8 74.6 0.06
Opt,Opt360 63.37 0.02 [63.01, 63.73] 61 66 61 63.3 66 0.33
Opt,Opt600 63.39 0.02 [63.03, 63.75] 60.3 65.6 60.3 63.4 65.6 0.51

Table A.70: Distances in the order picking system.

A.3 Numerical Results from Chapter 6 331

Performance ratios of distance relative to Ts,Opt600 for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Prio,Ret0 1.68 0.02 [1.67, 1.69] 1.63 1.74 1.63 1.68 1.74 0
Prio,Ret60 1.67 0.02 [1.66, 1.68] 1.62 1.72 1.62 1.66 1.72 0
Prio,Ret120 1.66 0.01 [1.66, 1.66] 1.62 1.7 1.62 1.65 1.7 0
Prio,Ret360 1.65 0.01 [1.65, 1.65] 1.59 1.72 1.59 1.65 1.72 0
Prio,Ret600 1.65 0.01 [1.65, 1.65] 1.6 1.7 1.6 1.65 1.7 0

Prio,S0 1.5 0.01 [1.5, 1.5] 1.45 1.54 1.45 1.5 1.54 0
Prio,S60 1.48 0.01 [1.48, 1.48] 1.45 1.54 1.45 1.48 1.54 0
Prio,S120 1.47 0.01 [1.47, 1.47] 1.43 1.52 1.43 1.47 1.52 0
Prio,S360 1.47 0.01 [1.47, 1.47] 1.43 1.53 1.43 1.47 1.53 0
Prio,S600 1.46 0.01 [1.46, 1.46] 1.42 1.51 1.42 1.46 1.51 0
Prio,Gap0 1.47 0.01 [1.47, 1.47] 1.43 1.52 1.43 1.47 1.52 0
Prio,Gap60 1.46 0.01 [1.46, 1.46] 1.42 1.5 1.42 1.46 1.5 0
Prio,Gap120 1.45 0.01 [1.45, 1.45] 1.4 1.5 1.4 1.45 1.5 0
Prio,Gap360 1.45 0.01 [1.45, 1.45] 1.4 1.49 1.4 1.45 1.49 0
Prio,Gap600 1.45 0.01 [1.45, 1.45] 1.4 1.49 1.4 1.45 1.49 0
Prio,Opt0 1.31 0.01 [1.31, 1.31] 1.28 1.35 1.28 1.31 1.35 0
Prio,Opt60 1.3 0.01 [1.3, 1.3] 1.27 1.33 1.27 1.3 1.33 0
Prio,Opt120 1.29 0.01 [1.29, 1.29] 1.24 1.33 1.24 1.29 1.33 0
Prio,Opt360 1.28 0.01 [1.28, 1.28] 1.25 1.32 1.25 1.28 1.32 0
Prio,Opt600 1.28 0.01 [1.28, 1.28] 1.24 1.31 1.24 1.28 1.31 0
Seed,Ret0 1.63 0.02 [1.62, 1.64] 1.54 1.71 1.54 1.63 1.71 0
Seed,Ret60 1.55 0.03 [1.54, 1.56] 1.47 1.65 1.47 1.55 1.65 0
Seed,Ret120 1.42 0.03 [1.41, 1.43] 1.35 1.49 1.35 1.42 1.49 0
Seed,Ret360 1.17 0.01 [1.17, 1.17] 1.14 1.2 1.14 1.17 1.2 0
Seed,Ret600 1.17 0.01 [1.17, 1.17] 1.14 1.19 1.14 1.17 1.19 0

Seed,S0 1.47 0.02 [1.46, 1.48] 1.38 1.54 1.38 1.47 1.54 0
Seed,S60 1.39 0.02 [1.38, 1.4] 1.31 1.48 1.31 1.4 1.48 0
Seed,S120 1.28 0.03 [1.27, 1.29] 1.18 1.35 1.18 1.28 1.35 0
Seed,S360 1.03 0.01 [1.03, 1.03] 1.01 1.05 1.01 1.03 1.05 0
Seed,S600 1.03 0.01 [1.03, 1.03] 1.02 1.05 1.02 1.03 1.05 0
Seed,Gap0 1.44 0.02 [1.43, 1.45] 1.38 1.49 1.38 1.45 1.49 0
Seed,Gap60 1.37 0.02 [1.36, 1.38] 1.3 1.44 1.3 1.38 1.44 0
Seed,Gap120 1.25 0.03 [1.24, 1.26] 1.19 1.32 1.19 1.25 1.32 0
Seed,Gap360 1.1 0.01 [1.1, 1.1] 1.07 1.12 1.07 1.1 1.12 0
Seed,Gap600 1.1 0.01 [1.1, 1.1] 1.08 1.12 1.08 1.1 1.12 0
Seed,Opt0 1.29 0.01 [1.29, 1.29] 1.25 1.33 1.25 1.29 1.33 0
Seed,Opt60 1.25 0.02 [1.24, 1.26] 1.19 1.29 1.19 1.25 1.29 0
Seed,Opt120 1.17 0.02 [1.16, 1.18] 1.11 1.21 1.11 1.18 1.21 0
Seed,Opt360 1 0.01 [1, 1] 0.98 1.01 0.98 1 1.01 0.41
Seed,Opt600 1 0.01 [1, 1] 0.99 1.02 0.99 1 1.02 0.43

Svg,Ret0 1.62 0.02 [1.61, 1.63] 1.53 1.68 1.53 1.63 1.68 0
Svg,Ret60 1.54 0.02 [1.53, 1.55] 1.47 1.64 1.47 1.54 1.64 0
Svg,Ret120 1.44 0.03 [1.43, 1.45] 1.37 1.53 1.37 1.44 1.53 0
Svg,Ret360 1.36 0.02 [1.35, 1.37] 1.31 1.41 1.31 1.36 1.41 0
Svg,Ret600 1.4 0.02 [1.39, 1.41] 1.35 1.44 1.35 1.41 1.44 0

Svg,S0 1.45 0.02 [1.44, 1.46] 1.39 1.51 1.39 1.45 1.51 0
Svg,S60 1.39 0.02 [1.38, 1.4] 1.32 1.45 1.32 1.39 1.45 0
Svg,S120 1.32 0.02 [1.31, 1.33] 1.26 1.38 1.26 1.32 1.38 0
Svg,S360 1.22 0.02 [1.21, 1.23] 1.18 1.25 1.18 1.22 1.25 0
Svg,S600 1.26 0.02 [1.25, 1.27] 1.21 1.31 1.21 1.26 1.31 0
Svg,Gap0 1.44 0.02 [1.43, 1.45] 1.38 1.48 1.38 1.44 1.48 0
Svg,Gap60 1.38 0.02 [1.37, 1.39] 1.33 1.43 1.33 1.38 1.43 0
Svg,Gap120 1.33 0.02 [1.32, 1.34] 1.27 1.4 1.27 1.33 1.4 0
Svg,Gap360 1.29 0.03 [1.28, 1.3] 1.23 1.38 1.23 1.28 1.38 0
Svg,Gap600 1.33 0.02 [1.32, 1.34] 1.28 1.39 1.28 1.33 1.39 0
Svg,Opt0 1.29 0.01 [1.29, 1.29] 1.25 1.32 1.25 1.29 1.32 0
Svg,Opt60 1.25 0.01 [1.25, 1.25] 1.2 1.29 1.2 1.26 1.29 0
Svg,Opt120 1.21 0.02 [1.2, 1.22] 1.16 1.25 1.16 1.22 1.25 0
Svg,Opt360 1.17 0.02 [1.16, 1.18] 1.13 1.23 1.13 1.16 1.23 0
Svg,Opt600 1.22 0.01 [1.22, 1.22] 1.18 1.25 1.18 1.21 1.25 0

Ls,Ret0 1.6 0.02 [1.59, 1.61] 1.48 1.67 1.48 1.61 1.67 0
Ls,Ret60 1.51 0.03 [1.5, 1.52] 1.44 1.59 1.44 1.51 1.59 0
Ls,Ret120 1.38 0.03 [1.37, 1.39] 1.29 1.46 1.29 1.37 1.46 0

...
...

...
...

...
...

...
...

...
...

332 A Appendix

Performance ratios of distance relative to Ts,Opt600 for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 1.14 0.01 [1.14, 1.14] 1.12 1.17 1.12 1.14 1.17 0
Ls,Ret600 1.14 0.01 [1.14, 1.14] 1.12 1.17 1.12 1.14 1.17 0

Ls,S0 1.44 0.02 [1.43, 1.45] 1.37 1.5 1.37 1.44 1.5 0
Ls,S60 1.35 0.03 [1.34, 1.36] 1.28 1.44 1.28 1.35 1.44 0
Ls,S120 1.24 0.03 [1.23, 1.25] 1.16 1.32 1.16 1.24 1.32 0
Ls,S360 1.01 0.01 [1.01, 1.01] 0.99 1.03 0.99 1.01 1.03 0.08
Ls,S600 1.01 0.01 [1.01, 1.01] 1 1.03 1 1.01 1.03 0.06
Ls,Gap0 1.41 0.02 [1.4, 1.42] 1.33 1.46 1.33 1.41 1.46 0
Ls,Gap60 1.33 0.02 [1.32, 1.34] 1.26 1.41 1.26 1.33 1.41 0
Ls,Gap120 1.22 0.03 [1.21, 1.23] 1.13 1.29 1.13 1.22 1.29 0
Ls,Gap360 1.04 0.01 [1.04, 1.04] 1.01 1.06 1.01 1.04 1.06 0
Ls,Gap600 1.04 0.01 [1.04, 1.04] 1.02 1.06 1.02 1.04 1.06 0
Ls,Opt0 1.27 0.02 [1.26, 1.28] 1.21 1.31 1.21 1.28 1.31 0
Ls,Opt60 1.23 0.02 [1.22, 1.24] 1.18 1.27 1.18 1.23 1.27 0
Ls,Opt120 1.16 0.02 [1.15, 1.17] 1.1 1.2 1.1 1.16 1.2 0
Ls,Opt360 1.01 0.01 [1.01, 1.01] 0.99 1.04 0.99 1.01 1.04 0.2
Ls,Opt600 1.01 0.01 [1.01, 1.01] 0.99 1.03 0.99 1.01 1.03 0.08
Ts,Ret0 1.61 0.02 [1.6, 1.62] 1.48 1.69 1.48 1.61 1.69 0
Ts,Ret60 1.52 0.03 [1.51, 1.53] 1.43 1.61 1.43 1.52 1.61 0
Ts,Ret120 1.39 0.03 [1.38, 1.4] 1.3 1.48 1.3 1.39 1.48 0
Ts,Ret360 1.14 0.01 [1.14, 1.14] 1.12 1.17 1.12 1.14 1.17 0
Ts,Ret600 1.14 0.01 [1.14, 1.14] 1.12 1.17 1.12 1.14 1.17 0

Ts,S0 1.45 0.03 [1.44, 1.46] 1.37 1.51 1.37 1.45 1.51 0
Ts,S60 1.36 0.03 [1.35, 1.37] 1.28 1.44 1.28 1.36 1.44 0
Ts,S120 1.25 0.03 [1.24, 1.26] 1.15 1.35 1.15 1.25 1.35 0
Ts,S360 1.01 0.01 [1.01, 1.01] 0.99 1.03 0.99 1.01 1.03 0.1
Ts,S600 1.01 0.01 [1.01, 1.01] 0.99 1.03 0.99 1.01 1.03 0.1
Ts,Gap0 1.42 0.02 [1.41, 1.43] 1.35 1.47 1.35 1.43 1.47 0
Ts,Gap60 1.34 0.02 [1.33, 1.35] 1.29 1.4 1.29 1.34 1.4 0
Ts,Gap120 1.23 0.03 [1.22, 1.24] 1.15 1.31 1.15 1.22 1.31 0
Ts,Gap360 1.03 0.01 [1.03, 1.03] 1 1.05 1 1.03 1.05 0.02
Ts,Gap600 1.03 0.01 [1.03, 1.03] 1.02 1.04 1.02 1.03 1.04 0
Ts,Opt0 1.28 0.02 [1.27, 1.29] 1.23 1.32 1.23 1.29 1.32 0
Ts,Opt60 1.23 0.02 [1.22, 1.24] 1.17 1.27 1.17 1.23 1.27 0
Ts,Opt120 1.16 0.02 [1.15, 1.17] 1.08 1.21 1.08 1.17 1.21 0
Ts,Opt360 1 0.01 [1, 1] 0.98 1.01 0.98 1 1.01 0.51
Ts,Opt600 1 0 [1, 1] 1 1 1 1 1 0
Opt,Opt0 1.3 0.02 [1.29, 1.31] 1.19 1.39 1.19 1.3 1.39 0
Opt,Opt60 1.28 0.02 [1.27, 1.29] 1.19 1.33 1.19 1.28 1.33 0
Opt,Opt120 1.21 0.03 [1.2, 1.22] 1.13 1.3 1.13 1.21 1.3 0
Opt,Opt360 1.1 0.01 [1.1, 1.1] 1.07 1.12 1.07 1.1 1.12 0
Opt,Opt600 1.1 0.01 [1.1, 1.1] 1.08 1.12 1.08 1.1 1.12 0

Table A.71: Performance ratios of distance relative to Ts,Opt600 in the order picking system.

A.3 Numerical Results from Chapter 6 333

Performance ratios of distance relative to online version for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Prio,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Ret60 0.99 0.01 [0.99, 0.99] 0.98 1.01 0.98 0.99 1.01 0.22
Prio,Ret120 0.99 0.01 [0.99, 0.99] 0.97 1.01 0.97 0.99 1.01 0.14
Prio,Ret360 0.99 0.01 [0.99, 0.99] 0.96 1 0.96 0.99 1 0.1
Prio,Ret600 0.98 0.01 [0.98, 0.98] 0.96 1.01 0.96 0.98 1.01 0.06

Prio,S0 1 0 [1, 1] 1 1 1 1 1 0
Prio,S60 0.99 0.01 [0.99, 0.99] 0.97 1.02 0.97 0.99 1.02 0.2
Prio,S120 0.99 0.01 [0.99, 0.99] 0.97 1.01 0.97 0.98 1.01 0.08
Prio,S360 0.98 0.01 [0.98, 0.98] 0.96 1.02 0.96 0.98 1.02 0.04
Prio,S600 0.98 0.01 [0.98, 0.98] 0.95 1.01 0.95 0.98 1.01 0.06
Prio,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Gap60 0.99 0.01 [0.99, 0.99] 0.97 1.02 0.97 0.99 1.02 0.31
Prio,Gap120 0.99 0.01 [0.99, 0.99] 0.96 1.01 0.96 0.99 1.01 0.08
Prio,Gap360 0.98 0.01 [0.98, 0.98] 0.96 1.01 0.96 0.98 1.01 0.04
Prio,Gap600 0.98 0.01 [0.98, 0.98] 0.95 1.02 0.95 0.98 1.02 0.04
Prio,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Opt60 0.99 0.01 [0.99, 0.99] 0.97 1.01 0.97 0.99 1.01 0.16
Prio,Opt120 0.99 0.01 [0.99, 0.99] 0.96 1 0.96 0.99 1 0.02
Prio,Opt360 0.98 0.01 [0.98, 0.98] 0.96 0.99 0.96 0.98 0.99 0
Prio,Opt600 0.98 0.01 [0.98, 0.98] 0.96 1 0.96 0.98 1 0.02
Seed,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Ret60 0.95 0.02 [0.94, 0.96] 0.89 1.01 0.89 0.95 1.01 0.02
Seed,Ret120 0.87 0.03 [0.86, 0.88] 0.81 0.94 0.81 0.87 0.94 0
Seed,Ret360 0.71 0.02 [0.71, 0.71] 0.69 0.76 0.69 0.71 0.76 0
Seed,Ret600 0.71 0.02 [0.71, 0.71] 0.69 0.75 0.69 0.71 0.75 0

Seed,S0 1 0 [1, 1] 1 1 1 1 1 0
Seed,S60 0.95 0.02 [0.94, 0.96] 0.89 1 0.89 0.95 1 0
Seed,S120 0.87 0.03 [0.86, 0.88] 0.82 0.94 0.82 0.87 0.94 0
Seed,S360 0.7 0.02 [0.7, 0.7] 0.68 0.74 0.68 0.7 0.74 0
Seed,S600 0.7 0.02 [0.7, 0.7] 0.68 0.74 0.68 0.7 0.74 0
Seed,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Gap60 0.95 0.02 [0.94, 0.96] 0.89 1 0.89 0.95 1 0.02
Seed,Gap120 0.87 0.03 [0.86, 0.88] 0.81 0.93 0.81 0.87 0.93 0
Seed,Gap360 0.76 0.02 [0.76, 0.76] 0.73 0.81 0.73 0.76 0.81 0
Seed,Gap600 0.76 0.02 [0.76, 0.76] 0.74 0.8 0.74 0.76 0.8 0
Seed,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Opt60 0.96 0.02 [0.95, 0.97] 0.92 1 0.92 0.97 1 0
Seed,Opt120 0.91 0.02 [0.9, 0.92] 0.87 0.94 0.87 0.91 0.94 0
Seed,Opt360 0.77 0.01 [0.77, 0.77] 0.75 0.79 0.75 0.77 0.79 0
Seed,Opt600 0.77 0.01 [0.77, 0.77] 0.75 0.8 0.75 0.77 0.8 0

Svg,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Ret60 0.95 0.02 [0.94, 0.96] 0.88 1.02 0.88 0.95 1.02 0.02
Svg,Ret120 0.89 0.03 [0.88, 0.9] 0.84 0.95 0.84 0.89 0.95 0
Svg,Ret360 0.84 0.02 [0.84, 0.84] 0.8 0.91 0.8 0.84 0.91 0
Svg,Ret600 0.87 0.02 [0.87, 0.87] 0.83 0.93 0.83 0.86 0.93 0

Svg,S0 1 0 [1, 1] 1 1 1 1 1 0
Svg,S60 0.96 0.02 [0.95, 0.97] 0.91 1 0.91 0.96 1 0
Svg,S120 0.91 0.03 [0.9, 0.92] 0.85 0.96 0.85 0.91 0.96 0
Svg,S360 0.84 0.02 [0.84, 0.84] 0.8 0.89 0.8 0.84 0.89 0
Svg,S600 0.87 0.02 [0.87, 0.87] 0.84 0.93 0.84 0.87 0.93 0
Svg,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Gap60 0.96 0.02 [0.95, 0.97] 0.92 1 0.92 0.97 1 0
Svg,Gap120 0.92 0.03 [0.91, 0.93] 0.87 0.98 0.87 0.93 0.98 0
Svg,Gap360 0.9 0.03 [0.89, 0.91] 0.85 0.97 0.85 0.89 0.97 0
Svg,Gap600 0.93 0.02 [0.92, 0.94] 0.89 0.97 0.89 0.92 0.97 0
Svg,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Opt60 0.97 0.02 [0.96, 0.98] 0.93 1.01 0.93 0.97 1.01 0.04
Svg,Opt120 0.94 0.02 [0.93, 0.95] 0.91 0.98 0.91 0.94 0.98 0
Svg,Opt360 0.91 0.02 [0.9, 0.92] 0.88 0.96 0.88 0.9 0.96 0
Svg,Opt600 0.94 0.02 [0.93, 0.95] 0.91 1 0.91 0.94 1 0

Ls,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Ret60 0.94 0.03 [0.93, 0.95] 0.9 1 0.9 0.95 1 0.02
Ls,Ret120 0.86 0.03 [0.85, 0.87] 0.81 0.92 0.81 0.85 0.92 0

...
...

...
...

...
...

...
...

...
...

334 A Appendix

Performance ratios of distance relative to online version for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 0.71 0.02 [0.71, 0.71] 0.68 0.77 0.68 0.71 0.77 0
Ls,Ret600 0.71 0.02 [0.71, 0.71] 0.69 0.77 0.69 0.71 0.77 0

Ls,S0 1 0 [1, 1] 1 1 1 1 1 0
Ls,S60 0.94 0.02 [0.93, 0.95] 0.88 0.98 0.88 0.94 0.98 0
Ls,S120 0.86 0.03 [0.85, 0.87] 0.81 0.92 0.81 0.86 0.92 0
Ls,S360 0.7 0.02 [0.7, 0.7] 0.68 0.74 0.68 0.7 0.74 0
Ls,S600 0.7 0.02 [0.7, 0.7] 0.68 0.74 0.68 0.7 0.74 0
Ls,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Gap60 0.95 0.02 [0.94, 0.96] 0.89 1 0.89 0.94 1 0
Ls,Gap120 0.87 0.03 [0.86, 0.88] 0.81 0.94 0.81 0.87 0.94 0
Ls,Gap360 0.74 0.02 [0.74, 0.74] 0.71 0.78 0.71 0.74 0.78 0
Ls,Gap600 0.74 0.02 [0.74, 0.74] 0.71 0.77 0.71 0.74 0.77 0
Ls,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Opt60 0.96 0.02 [0.95, 0.97] 0.91 1 0.91 0.96 1 0.02
Ls,Opt120 0.91 0.02 [0.9, 0.92] 0.87 0.96 0.87 0.91 0.96 0
Ls,Opt360 0.79 0.02 [0.79, 0.79] 0.76 0.83 0.76 0.79 0.83 0
Ls,Opt600 0.79 0.02 [0.79, 0.79] 0.77 0.83 0.77 0.79 0.83 0
Ts,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Ret60 0.94 0.03 [0.93, 0.95] 0.88 1 0.88 0.94 1 0
Ts,Ret120 0.86 0.03 [0.85, 0.87] 0.81 0.93 0.81 0.86 0.93 0
Ts,Ret360 0.71 0.02 [0.71, 0.71] 0.68 0.76 0.68 0.7 0.76 0
Ts,Ret600 0.71 0.02 [0.71, 0.71] 0.68 0.76 0.68 0.7 0.76 0

Ts,S0 1 0 [1, 1] 1 1 1 1 1 0
Ts,S60 0.94 0.03 [0.93, 0.95] 0.86 1 0.86 0.95 1 0.02
Ts,S120 0.87 0.04 [0.86, 0.88] 0.78 0.94 0.78 0.87 0.94 0
Ts,S360 0.7 0.02 [0.7, 0.7] 0.67 0.74 0.67 0.7 0.74 0
Ts,S600 0.7 0.02 [0.7, 0.7] 0.67 0.74 0.67 0.7 0.74 0
Ts,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Gap60 0.94 0.02 [0.93, 0.95] 0.9 1 0.9 0.94 1 0
Ts,Gap120 0.87 0.03 [0.86, 0.88] 0.81 0.93 0.81 0.86 0.93 0
Ts,Gap360 0.72 0.02 [0.72, 0.72] 0.7 0.77 0.7 0.72 0.77 0
Ts,Gap600 0.73 0.02 [0.73, 0.73] 0.7 0.77 0.7 0.72 0.77 0
Ts,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Opt60 0.96 0.02 [0.95, 0.97] 0.92 1 0.92 0.96 1 0.02
Ts,Opt120 0.91 0.02 [0.9, 0.92] 0.86 0.95 0.86 0.9 0.95 0
Ts,Opt360 0.78 0.02 [0.78, 0.78] 0.76 0.82 0.76 0.78 0.82 0
Ts,Opt600 0.78 0.02 [0.78, 0.78] 0.76 0.81 0.76 0.78 0.81 0
Opt,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt,Opt60 0.98 0.02 [0.97, 0.99] 0.93 1.02 0.93 0.98 1.02 0.14
Opt,Opt120 0.93 0.03 [0.92, 0.94] 0.86 1 0.86 0.93 1 0
Opt,Opt360 0.85 0.02 [0.85, 0.85] 0.8 0.93 0.8 0.84 0.93 0
Opt,Opt600 0.85 0.03 [0.84, 0.86] 0.79 0.94 0.79 0.84 0.94 0

Table A.72: Performance ratios of distance relative to the online version of an algorithm in the
order picking system.

A.3 Numerical Results from Chapter 6 335

Utilization for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Prio,Ret0 0.79 0.05 [0.78, 0.8] 0.6 0.8 0.6 0.8 0.8
Prio,Ret60 0.88 0.05 [0.87, 0.89] 0.7 0.9 0.7 0.9 0.9 0.02
Prio,Ret120 0.92 0.09 [0.9, 0.94] 0.6 1 0.6 0.9 1 0.06
Prio,Ret360 0.94 0.07 [0.92, 0.96] 0.7 1 0.7 0.9 1 0.04
Prio,Ret600 0.94 0.07 [0.92, 0.96] 0.7 1 0.7 0.9 1 0.06

Prio,S0 0.73 0.07 [0.72, 0.74] 0.6 0.8 0.6 0.7 0.8
Prio,S60 0.81 0.07 [0.79, 0.83] 0.6 0.9 0.6 0.8 0.9 0.04
Prio,S120 0.86 0.1 [0.84, 0.88] 0.6 1 0.6 0.9 1 0.1
Prio,S360 0.91 0.1 [0.88, 0.94] 0.6 1 0.6 0.9 1 0.04
Prio,S600 0.91 0.1 [0.88, 0.94] 0.7 1 0.7 0.9 1 0.04
Prio,Gap0 0.78 0.06 [0.77, 0.79] 0.6 0.8 0.6 0.8 0.8
Prio,Gap60 0.85 0.08 [0.83, 0.87] 0.7 0.9 0.7 0.9 0.9 0.06
Prio,Gap120 0.91 0.09 [0.89, 0.93] 0.6 1 0.6 0.9 1 0.08
Prio,Gap360 0.92 0.09 [0.9, 0.94] 0.7 1 0.7 0.9 1 0.1
Prio,Gap600 0.93 0.09 [0.91, 0.95] 0.7 1 0.7 0.9 1 0.08
Prio,Opt0 0.71 0.06 [0.7, 0.72] 0.6 0.8 0.6 0.7 0.8
Prio,Opt60 0.8 0.05 [0.79, 0.81] 0.7 0.9 0.7 0.8 0.9 0
Prio,Opt120 0.84 0.09 [0.82, 0.86] 0.6 1 0.6 0.8 1 0.08
Prio,Opt360 0.9 0.11 [0.87, 0.93] 0.6 1 0.6 0.9 1 0.02
Prio,Opt600 0.89 0.11 [0.86, 0.92] 0.6 1 0.6 0.9 1 0.08
Seed,Ret0 0.79 0.05 [0.78, 0.8] 0.6 0.8 0.6 0.8 0.8
Seed,Ret60 0.84 0.07 [0.82, 0.86] 0.7 0.9 0.7 0.8 0.9 0.04
Seed,Ret120 0.86 0.09 [0.84, 0.88] 0.6 1 0.6 0.9 1 0.2
Seed,Ret360 0.88 0.12 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.06
Seed,Ret600 0.88 0.12 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.1

Seed,S0 0.73 0.07 [0.72, 0.74] 0.6 0.8 0.6 0.7 0.8
Seed,S60 0.79 0.08 [0.77, 0.81] 0.6 0.9 0.6 0.8 0.9 0.08
Seed,S120 0.84 0.09 [0.82, 0.86] 0.6 0.9 0.6 0.8 0.9 0.06
Seed,S360 0.89 0.13 [0.86, 0.92] 0.6 1 0.6 0.9 1 0.08
Seed,S600 0.88 0.13 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.02
Seed,Gap0 0.77 0.06 [0.76, 0.78] 0.6 0.8 0.6 0.8 0.8
Seed,Gap60 0.84 0.06 [0.83, 0.85] 0.7 0.9 0.7 0.8 0.9 0.02
Seed,Gap120 0.88 0.09 [0.86, 0.9] 0.6 1 0.6 0.9 1 0.1
Seed,Gap360 0.91 0.1 [0.88, 0.94] 0.7 1 0.7 0.9 1 0.12
Seed,Gap600 0.92 0.09 [0.9, 0.94] 0.7 1 0.7 0.9 1 0.06
Seed,Opt0 0.7 0.06 [0.69, 0.71] 0.6 0.8 0.6 0.7 0.8
Seed,Opt60 0.8 0.05 [0.79, 0.81] 0.6 0.9 0.6 0.8 0.9 0
Seed,Opt120 0.82 0.09 [0.8, 0.84] 0.6 0.9 0.6 0.8 0.9 0.14
Seed,Opt360 0.88 0.13 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.08
Seed,Opt600 0.89 0.12 [0.86, 0.92] 0.6 1 0.6 0.9 1 0.08

Svg,Ret0 0.79 0.05 [0.78, 0.8] 0.6 0.8 0.6 0.8 0.8
Svg,Ret60 0.85 0.06 [0.84, 0.86] 0.7 0.9 0.7 0.9 0.9 0.02
Svg,Ret120 0.87 0.09 [0.85, 0.89] 0.6 1 0.6 0.9 1 0.14
Svg,Ret360 0.9 0.11 [0.87, 0.93] 0.6 1 0.6 0.9 1 0.06
Svg,Ret600 0.9 0.11 [0.87, 0.93] 0.6 1 0.6 0.9 1 0.1

Svg,S0 0.73 0.07 [0.72, 0.74] 0.6 0.8 0.6 0.7 0.8
Svg,S60 0.8 0.04 [0.79, 0.81] 0.7 0.9 0.7 0.8 0.9 0.02
Svg,S120 0.84 0.09 [0.82, 0.86] 0.6 1 0.6 0.9 1 0.06
Svg,S360 0.88 0.13 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.06
Svg,S600 0.9 0.11 [0.87, 0.93] 0.6 1 0.6 0.9 1 0.04
Svg,Gap0 0.77 0.07 [0.75, 0.79] 0.6 0.8 0.6 0.8 0.8
Svg,Gap60 0.83 0.06 [0.82, 0.84] 0.7 0.9 0.7 0.8 0.9 0
Svg,Gap120 0.88 0.09 [0.86, 0.9] 0.6 1 0.6 0.9 1 0.08
Svg,Gap360 0.92 0.09 [0.9, 0.94] 0.7 1 0.7 0.9 1 0.08
Svg,Gap600 0.92 0.08 [0.9, 0.94] 0.7 1 0.7 0.9 1 0.08
Svg,Opt0 0.71 0.06 [0.7, 0.72] 0.6 0.8 0.6 0.7 0.8
Svg,Opt60 0.79 0.05 [0.78, 0.8] 0.6 0.9 0.6 0.8 0.9 0.02
Svg,Opt120 0.83 0.1 [0.81, 0.85] 0.6 0.9 0.6 0.8 0.9 0.1
Svg,Opt360 0.88 0.12 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.04
Svg,Opt600 0.89 0.11 [0.86, 0.92] 0.6 1 0.6 0.9 1 0.06

Ls,Ret0 0.78 0.06 [0.77, 0.79] 0.6 0.8 0.6 0.8 0.8
Ls,Ret60 0.83 0.06 [0.82, 0.84] 0.7 0.9 0.7 0.8 0.9 0.04
Ls,Ret120 0.86 0.08 [0.84, 0.88] 0.6 1 0.6 0.9 1 0.16

...
...

...
...

...
...

...
...

...
...

336 A Appendix

Utilization for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 0.88 0.12 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.02
Ls,Ret600 0.88 0.13 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.08

Ls,S0 0.71 0.06 [0.7, 0.72] 0.6 0.8 0.6 0.7 0.8
Ls,S60 0.8 0.04 [0.79, 0.81] 0.7 0.9 0.7 0.8 0.9 0
Ls,S120 0.83 0.08 [0.81, 0.85] 0.6 0.9 0.6 0.8 0.9 0.1
Ls,S360 0.89 0.12 [0.86, 0.92] 0.6 1 0.6 0.9 1 0.06
Ls,S600 0.88 0.13 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.04
Ls,Gap0 0.75 0.07 [0.74, 0.76] 0.6 0.8 0.6 0.8 0.8
Ls,Gap60 0.8 0.05 [0.79, 0.81] 0.6 0.9 0.6 0.8 0.9 0.02
Ls,Gap120 0.84 0.08 [0.82, 0.86] 0.6 0.9 0.6 0.8 0.9 0.1
Ls,Gap360 0.89 0.13 [0.86, 0.92] 0.6 1 0.6 0.9 1 0.06
Ls,Gap600 0.88 0.12 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.08
Ls,Opt0 0.72 0.07 [0.71, 0.73] 0.6 0.8 0.6 0.7 0.8
Ls,Opt60 0.79 0.07 [0.77, 0.81] 0.6 0.9 0.6 0.8 0.9 0.04
Ls,Opt120 0.82 0.09 [0.8, 0.84] 0.6 0.9 0.6 0.8 0.9 0.1
Ls,Opt360 0.89 0.12 [0.86, 0.92] 0.6 1 0.6 0.9 1 0.04
Ls,Opt600 0.88 0.13 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.04
Ts,Ret0 0.78 0.05 [0.77, 0.79] 0.6 0.8 0.6 0.8 0.8
Ts,Ret60 0.84 0.07 [0.82, 0.86] 0.7 0.9 0.7 0.8 0.9 0.04
Ts,Ret120 0.86 0.08 [0.84, 0.88] 0.6 1 0.6 0.9 1 0.16
Ts,Ret360 0.88 0.13 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.06
Ts,Ret600 0.88 0.12 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.06

Ts,S0 0.72 0.07 [0.71, 0.73] 0.6 0.8 0.6 0.7 0.8
Ts,S60 0.8 0.05 [0.79, 0.81] 0.6 0.9 0.6 0.8 0.9 0.02
Ts,S120 0.84 0.08 [0.82, 0.86] 0.6 0.9 0.6 0.8 0.9 0.06
Ts,S360 0.88 0.13 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.06
Ts,S600 0.89 0.12 [0.86, 0.92] 0.6 1 0.6 0.9 1 0.02
Ts,Gap0 0.75 0.08 [0.73, 0.77] 0.6 0.8 0.6 0.8 0.8
Ts,Gap60 0.8 0.06 [0.79, 0.81] 0.6 0.9 0.6 0.8 0.9 0.04
Ts,Gap120 0.84 0.09 [0.82, 0.86] 0.6 1 0.6 0.8 1 0.08
Ts,Gap360 0.87 0.13 [0.84, 0.9] 0.6 1 0.6 0.9 1 0.06
Ts,Gap600 0.89 0.12 [0.86, 0.92] 0.6 1 0.6 0.9 1 0.06
Ts,Opt0 0.71 0.06 [0.7, 0.72] 0.6 0.8 0.6 0.7 0.8
Ts,Opt60 0.79 0.06 [0.78, 0.8] 0.6 0.9 0.6 0.8 0.9 0.04
Ts,Opt120 0.82 0.09 [0.8, 0.84] 0.6 0.9 0.6 0.8 0.9 0.12
Ts,Opt360 0.87 0.14 [0.84, 0.9] 0.6 1 0.6 0.9 1 0.08
Ts,Opt600 0.88 0.13 [0.85, 0.91] 0.6 1 0.6 0.9 1 0.04
Opt,Opt0 0.72 0.09 [0.7, 0.74] 0.6 0.9 0.6 0.7 0.9
Opt,Opt60 0.79 0.07 [0.77, 0.81] 0.6 0.9 0.6 0.8 0.9 0.04
Opt,Opt120 0.86 0.09 [0.84, 0.88] 0.6 1 0.6 0.9 1 0.1
Opt,Opt360 0.91 0.1 [0.88, 0.94] 0.7 1 0.7 0.9 1 0.08
Opt,Opt600 0.92 0.09 [0.9, 0.94] 0.7 1 0.7 0.9 1 0.06

Table A.73: Picker utilizations in the order picking system.

A.3 Numerical Results from Chapter 6 337

Performance ratios of utilization relative to Ts,Opt600 for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Prio,Ret0 0.91 0.16 [0.87, 0.95] 0.67 1.33 0.67 0.89 1.33 0.12
Prio,Ret60 1.02 0.16 [0.97, 1.07] 0.7 1.5 0.7 1 1.5 0.37
Prio,Ret120 1.07 0.17 [1.02, 1.12] 0.67 1.67 0.67 1.11 1.67 0.53
Prio,Ret360 1.09 0.15 [1.04, 1.14] 0.8 1.67 0.8 1.11 1.67 0.57
Prio,Ret600 1.09 0.15 [1.04, 1.14] 0.8 1.67 0.8 1.11 1.67 0.57

Prio,S0 0.85 0.2 [0.8, 0.9] 0.67 1.33 0.67 0.8 1.33 0.1
Prio,S60 0.94 0.18 [0.89, 0.99] 0.6 1.5 0.6 0.9 1.5 0.2
Prio,S120 1 0.14 [0.96, 1.04] 0.67 1.29 0.67 1 1.29 0.41
Prio,S360 1.05 0.15 [1.01, 1.09] 0.7 1.67 0.7 1.11 1.67 0.57
Prio,S600 1.05 0.16 [1, 1.1] 0.7 1.67 0.7 1.11 1.67 0.55
Prio,Gap0 0.9 0.17 [0.86, 0.94] 0.67 1.33 0.67 0.89 1.33 0.12
Prio,Gap60 0.99 0.18 [0.94, 1.04] 0.7 1.5 0.7 1 1.5 0.35
Prio,Gap120 1.05 0.16 [1, 1.1] 0.67 1.67 0.67 1.11 1.67 0.51
Prio,Gap360 1.07 0.16 [1.02, 1.12] 0.7 1.67 0.7 1.11 1.67 0.59
Prio,Gap600 1.08 0.15 [1.03, 1.13] 0.7 1.67 0.7 1.11 1.67 0.59
Prio,Opt0 0.82 0.17 [0.78, 0.86] 0.67 1.17 0.67 0.78 1.17 0.06
Prio,Opt60 0.93 0.17 [0.89, 0.97] 0.7 1.5 0.7 0.89 1.5 0.16
Prio,Opt120 0.97 0.14 [0.93, 1.01] 0.67 1.17 0.67 1 1.17 0.33
Prio,Opt360 1.03 0.11 [1, 1.06] 0.7 1.25 0.7 1 1.25 0.41
Prio,Opt600 1.02 0.11 [0.99, 1.05] 0.7 1.25 0.7 1 1.25 0.39
Seed,Ret0 0.92 0.16 [0.88, 0.96] 0.67 1.33 0.67 0.89 1.33 0.12
Seed,Ret60 0.98 0.18 [0.93, 1.03] 0.7 1.5 0.7 1 1.5 0.33
Seed,Ret120 1 0.14 [0.96, 1.04] 0.67 1.29 0.67 1 1.29 0.41
Seed,Ret360 1.01 0.11 [0.98, 1.04] 0.7 1.25 0.7 1 1.25 0.27
Seed,Ret600 1.01 0.13 [0.97, 1.05] 0.6 1.5 0.6 1 1.5 0.27

Seed,S0 0.85 0.19 [0.8, 0.9] 0.67 1.33 0.67 0.8 1.33 0.08
Seed,S60 0.92 0.19 [0.87, 0.97] 0.6 1.5 0.6 0.89 1.5 0.16
Seed,S120 0.97 0.16 [0.93, 1.01] 0.67 1.5 0.67 1 1.5 0.33
Seed,S360 1.01 0.07 [0.99, 1.03] 0.87 1.33 0.87 1 1.33 0.1
Seed,S600 1.01 0.04 [1, 1.02] 0.89 1.14 0.89 1 1.14 0.1
Seed,Gap0 0.9 0.18 [0.85, 0.95] 0.67 1.33 0.67 0.89 1.33 0.12
Seed,Gap60 0.98 0.17 [0.93, 1.03] 0.78 1.5 0.78 1 1.5 0.29
Seed,Gap120 1.02 0.15 [0.98, 1.06] 0.67 1.29 0.67 1 1.29 0.47
Seed,Gap360 1.05 0.14 [1.01, 1.09] 0.7 1.29 0.7 1.11 1.29 0.59
Seed,Gap600 1.07 0.15 [1.02, 1.12] 0.7 1.67 0.7 1.11 1.67 0.59
Seed,Opt0 0.82 0.18 [0.78, 0.86] 0.6 1.33 0.6 0.78 1.33 0.04
Seed,Opt60 0.93 0.16 [0.89, 0.97] 0.6 1.33 0.6 0.89 1.33 0.12
Seed,Opt120 0.95 0.17 [0.9, 1] 0.67 1.5 0.67 1 1.5 0.22
Seed,Opt360 1.01 0.1 [0.98, 1.04] 0.6 1.33 0.6 1 1.33 0.1
Seed,Opt600 1.01 0.09 [0.98, 1.04] 0.87 1.5 0.87 1 1.5 0.12

Svg,Ret0 0.91 0.16 [0.87, 0.95] 0.67 1.33 0.67 0.89 1.33 0.12
Svg,Ret60 0.99 0.17 [0.94, 1.04] 0.7 1.5 0.7 1 1.5 0.33
Svg,Ret120 1.01 0.17 [0.96, 1.06] 0.67 1.67 0.67 1 1.67 0.43
Svg,Ret360 1.04 0.12 [1, 1.08] 0.7 1.25 0.7 1.11 1.25 0.53
Svg,Ret600 1.04 0.14 [1, 1.08] 0.7 1.29 0.7 1.11 1.29 0.57

Svg,S0 0.85 0.18 [0.81, 0.89] 0.67 1.33 0.67 0.8 1.33 0.08
Svg,S60 0.93 0.16 [0.89, 0.97] 0.7 1.33 0.7 0.89 1.33 0.12
Svg,S120 0.98 0.17 [0.93, 1.03] 0.67 1.5 0.67 1 1.5 0.37
Svg,S360 1.01 0.11 [0.98, 1.04] 0.6 1.25 0.6 1 1.25 0.31
Svg,S600 1.03 0.11 [1, 1.06] 0.7 1.25 0.7 1 1.25 0.37
Svg,Gap0 0.89 0.18 [0.84, 0.94] 0.67 1.33 0.67 0.87 1.33 0.12
Svg,Gap60 0.97 0.16 [0.93, 1.01] 0.78 1.5 0.78 1 1.5 0.22
Svg,Gap120 1.02 0.17 [0.97, 1.07] 0.67 1.67 0.67 1 1.67 0.43
Svg,Gap360 1.06 0.15 [1.02, 1.1] 0.7 1.67 0.7 1.11 1.67 0.59
Svg,Gap600 1.07 0.15 [1.02, 1.12] 0.7 1.67 0.7 1.11 1.67 0.57
Svg,Opt0 0.82 0.17 [0.78, 0.86] 0.67 1.33 0.67 0.78 1.33 0.04
Svg,Opt60 0.92 0.16 [0.88, 0.96] 0.67 1.33 0.67 0.89 1.33 0.14
Svg,Opt120 0.97 0.17 [0.92, 1.02] 0.67 1.5 0.67 1 1.5 0.31
Svg,Opt360 1.01 0.1 [0.98, 1.04] 0.7 1.17 0.7 1 1.17 0.29
Svg,Opt600 1.02 0.12 [0.99, 1.05] 0.7 1.5 0.7 1 1.5 0.33

Ls,Ret0 0.91 0.16 [0.87, 0.95] 0.67 1.33 0.67 0.89 1.33 0.12
Ls,Ret60 0.97 0.18 [0.92, 1.02] 0.7 1.5 0.7 0.9 1.5 0.27
Ls,Ret120 0.99 0.17 [0.94, 1.04] 0.67 1.67 0.67 1 1.67 0.35

...
...

...
...

...
...

...
...

...
...

338 A Appendix

Performance ratios of utilization relative to Ts,Opt600 for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 1.01 0.1 [0.98, 1.04] 0.7 1.25 0.7 1 1.25 0.29
Ls,Ret600 1 0.1 [0.97, 1.03] 0.6 1.17 0.6 1 1.17 0.24

Ls,S0 0.82 0.16 [0.78, 0.86] 0.67 1.17 0.67 0.78 1.17 0.04
Ls,S60 0.93 0.16 [0.89, 0.97] 0.7 1.33 0.7 0.89 1.33 0.16
Ls,S120 0.96 0.16 [0.92, 1] 0.67 1.5 0.67 1 1.5 0.24
Ls,S360 1.02 0.08 [1, 1.04] 0.87 1.5 0.87 1 1.5 0.1
Ls,S600 1.01 0.09 [0.98, 1.04] 0.87 1.5 0.87 1 1.5 0.08
Ls,Gap0 0.87 0.17 [0.83, 0.91] 0.67 1.33 0.67 0.87 1.33 0.1
Ls,Gap60 0.93 0.17 [0.89, 0.97] 0.67 1.5 0.67 0.89 1.5 0.14
Ls,Gap120 0.97 0.15 [0.93, 1.01] 0.67 1.17 0.67 1 1.17 0.35
Ls,Gap360 1.02 0.13 [0.98, 1.06] 0.6 1.5 0.6 1 1.5 0.27
Ls,Gap600 1.01 0.13 [0.97, 1.05] 0.6 1.5 0.6 1 1.5 0.27
Ls,Opt0 0.84 0.19 [0.79, 0.89] 0.6 1.33 0.6 0.8 1.33 0.08
Ls,Opt60 0.91 0.17 [0.87, 0.95] 0.67 1.33 0.67 0.89 1.33 0.12
Ls,Opt120 0.95 0.17 [0.9, 1] 0.67 1.5 0.67 1 1.5 0.24
Ls,Opt360 1.01 0.08 [0.99, 1.03] 0.89 1.5 0.89 1 1.5 0.08
Ls,Opt600 1.01 0.1 [0.98, 1.04] 0.6 1.5 0.6 1 1.5 0.08
Ts,Ret0 0.91 0.17 [0.87, 0.95] 0.67 1.33 0.67 0.89 1.33 0.12
Ts,Ret60 0.98 0.18 [0.93, 1.03] 0.7 1.5 0.7 1 1.5 0.29
Ts,Ret120 1 0.17 [0.95, 1.05] 0.67 1.67 0.67 1 1.67 0.37
Ts,Ret360 1.01 0.1 [0.98, 1.04] 0.7 1.25 0.7 1 1.25 0.27
Ts,Ret600 1.01 0.12 [0.98, 1.04] 0.6 1.5 0.6 1 1.5 0.24

Ts,S0 0.84 0.18 [0.8, 0.88] 0.67 1.33 0.67 0.78 1.33 0.08
Ts,S60 0.93 0.16 [0.89, 0.97] 0.67 1.33 0.67 0.89 1.33 0.14
Ts,S120 0.97 0.17 [0.92, 1.02] 0.67 1.5 0.67 1 1.5 0.31
Ts,S360 1.01 0.04 [1, 1.02] 0.9 1.13 0.9 1 1.13 0.08
Ts,S600 1.01 0.08 [0.99, 1.03] 0.87 1.5 0.87 1 1.5 0.08
Ts,Gap0 0.87 0.19 [0.82, 0.92] 0.67 1.33 0.67 0.87 1.33 0.12
Ts,Gap60 0.93 0.17 [0.89, 0.97] 0.67 1.5 0.67 0.89 1.5 0.16
Ts,Gap120 0.97 0.14 [0.93, 1.01] 0.67 1.17 0.67 1 1.17 0.35
Ts,Gap360 1 0.11 [0.97, 1.03] 0.6 1.25 0.6 1 1.25 0.18
Ts,Gap600 1.02 0.11 [0.99, 1.05] 0.6 1.17 0.6 1 1.17 0.33
Ts,Opt0 0.83 0.17 [0.79, 0.87] 0.67 1.33 0.67 0.78 1.33 0.04
Ts,Opt60 0.92 0.17 [0.88, 0.96] 0.6 1.33 0.6 0.89 1.33 0.14
Ts,Opt120 0.94 0.15 [0.9, 0.98] 0.67 1.17 0.67 1 1.17 0.22
Ts,Opt360 0.99 0.08 [0.97, 1.01] 0.6 1.25 0.6 1 1.25 0.06
Ts,Opt600 1 0 [1, 1] 1 1 1 1 1 0
Opt,Opt0 0.83 0.18 [0.79, 0.87] 0.67 1.33 0.67 0.78 1.33 0.06
Opt,Opt60 0.93 0.18 [0.88, 0.98] 0.6 1.5 0.6 0.89 1.5 0.16
Opt,Opt120 1 0.15 [0.96, 1.04] 0.67 1.33 0.67 1 1.33 0.41
Opt,Opt360 1.05 0.14 [1.01, 1.09] 0.7 1.29 0.7 1.11 1.29 0.59
Opt,Opt600 1.07 0.15 [1.02, 1.12] 0.7 1.67 0.7 1.11 1.67 0.59

Table A.74: Performance ratios of picker utilization relative to Ts,Opt600 in the order picking
system.

A.3 Numerical Results from Chapter 6 339

Performance ratios of utilization relative to online version for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Prio,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Ret60 1.12 0.07 [1.1, 1.14] 0.87 1.33 0.87 1.13 1.33 0.02
Prio,Ret120 1.17 0.09 [1.14, 1.2] 0.87 1.43 0.87 1.13 1.43 0.02
Prio,Ret360 1.2 0.1 [1.17, 1.23] 0.87 1.67 0.87 1.25 1.67 0.02
Prio,Ret600 1.2 0.1 [1.17, 1.23] 0.87 1.67 0.87 1.13 1.67 0.02

Prio,S0 1 0 [1, 1] 1 1 1 1 1 0
Prio,S60 1.11 0.09 [1.08, 1.14] 0.86 1.33 0.86 1.14 1.33 0.04
Prio,S120 1.19 0.1 [1.16, 1.22] 0.87 1.5 0.87 1.14 1.5 0.04
Prio,S360 1.25 0.14 [1.2, 1.3] 0.75 1.67 0.75 1.29 1.67 0.02
Prio,S600 1.25 0.13 [1.2, 1.3] 0.87 1.67 0.87 1.29 1.67 0.02
Prio,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Gap60 1.1 0.09 [1.07, 1.13] 0.87 1.33 0.87 1.13 1.33 0.06
Prio,Gap120 1.17 0.09 [1.14, 1.2] 0.87 1.43 0.87 1.13 1.43 0.02
Prio,Gap360 1.2 0.11 [1.16, 1.24] 0.87 1.67 0.87 1.25 1.67 0.04
Prio,Gap600 1.2 0.12 [1.16, 1.24] 0.87 1.67 0.87 1.25 1.67 0.04
Prio,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Opt60 1.14 0.07 [1.12, 1.16] 1 1.33 1 1.14 1.33 0
Prio,Opt120 1.19 0.1 [1.16, 1.22] 0.86 1.5 0.86 1.14 1.5 0.02
Prio,Opt360 1.28 0.14 [1.23, 1.33] 0.86 1.67 0.86 1.29 1.67 0.02
Prio,Opt600 1.26 0.13 [1.21, 1.31] 0.86 1.67 0.86 1.29 1.67 0.02
Seed,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Ret60 1.07 0.08 [1.05, 1.09] 0.87 1.33 0.87 1.13 1.33 0.04
Seed,Ret120 1.09 0.07 [1.07, 1.11] 0.87 1.25 0.87 1.13 1.25 0.04
Seed,Ret360 1.12 0.14 [1.08, 1.16] 0.75 1.67 0.75 1.13 1.67 0.1
Seed,Ret600 1.12 0.13 [1.08, 1.16] 0.75 1.5 0.75 1.13 1.5 0.08

Seed,S0 1 0 [1, 1] 1 1 1 1 1 0
Seed,S60 1.09 0.09 [1.06, 1.12] 0.86 1.29 0.86 1.14 1.29 0.08
Seed,S120 1.16 0.09 [1.13, 1.19] 0.75 1.29 0.75 1.14 1.29 0.02
Seed,S360 1.23 0.16 [1.17, 1.29] 0.75 1.5 0.75 1.25 1.5 0.06
Seed,S600 1.22 0.16 [1.16, 1.28] 0.75 1.5 0.75 1.25 1.5 0.06
Seed,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Gap60 1.09 0.07 [1.07, 1.11] 0.87 1.33 0.87 1.13 1.33 0.02
Seed,Gap120 1.14 0.09 [1.11, 1.17] 0.87 1.43 0.87 1.13 1.43 0.04
Seed,Gap360 1.18 0.13 [1.14, 1.22] 0.87 1.67 0.87 1.13 1.67 0.04
Seed,Gap600 1.2 0.11 [1.16, 1.24] 0.87 1.67 0.87 1.25 1.67 0.02
Seed,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Opt60 1.14 0.06 [1.12, 1.16] 1 1.33 1 1.14 1.33 0
Seed,Opt120 1.17 0.1 [1.14, 1.2] 0.86 1.5 0.86 1.14 1.5 0.02
Seed,Opt360 1.26 0.16 [1.2, 1.32] 0.86 1.67 0.86 1.29 1.67 0.04
Seed,Opt600 1.27 0.14 [1.22, 1.32] 0.86 1.67 0.86 1.29 1.67 0.02

Svg,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Ret60 1.09 0.07 [1.07, 1.11] 0.87 1.33 0.87 1.13 1.33 0.02
Svg,Ret120 1.11 0.09 [1.08, 1.14] 0.87 1.43 0.87 1.13 1.43 0.02
Svg,Ret360 1.15 0.13 [1.11, 1.19] 0.75 1.67 0.75 1.13 1.67 0.06
Svg,Ret600 1.16 0.13 [1.12, 1.2] 0.75 1.67 0.75 1.13 1.67 0.08

Svg,S0 1 0 [1, 1] 1 1 1 1 1 0
Svg,S60 1.11 0.07 [1.09, 1.13] 0.87 1.33 0.87 1.14 1.33 0.02
Svg,S120 1.16 0.09 [1.13, 1.19] 0.86 1.43 0.86 1.14 1.43 0.04
Svg,S360 1.22 0.15 [1.17, 1.27] 0.86 1.67 0.86 1.25 1.67 0.08
Svg,S600 1.24 0.14 [1.19, 1.29] 0.86 1.67 0.86 1.29 1.67 0.06
Svg,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Gap60 1.09 0.09 [1.06, 1.12] 1 1.5 1 1.13 1.5 0
Svg,Gap120 1.15 0.1 [1.12, 1.18] 0.87 1.5 0.87 1.13 1.5 0.02
Svg,Gap360 1.2 0.13 [1.16, 1.24] 0.87 1.67 0.87 1.25 1.67 0.04
Svg,Gap600 1.21 0.12 [1.17, 1.25] 0.87 1.67 0.87 1.25 1.67 0.04
Svg,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Opt60 1.13 0.07 [1.11, 1.15] 0.86 1.33 0.86 1.14 1.33 0.02
Svg,Opt120 1.18 0.11 [1.14, 1.22] 0.86 1.5 0.86 1.14 1.5 0.02
Svg,Opt360 1.26 0.14 [1.21, 1.31] 0.86 1.67 0.86 1.29 1.67 0.04
Svg,Opt600 1.27 0.14 [1.22, 1.32] 0.86 1.67 0.86 1.29 1.67 0.02

Ls,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Ret60 1.06 0.08 [1.04, 1.08] 0.87 1.33 0.87 1 1.33 0.04
Ls,Ret120 1.1 0.08 [1.08, 1.12] 0.87 1.29 0.87 1.13 1.29 0.02

...
...

...
...

...
...

...
...

...
...

340 A Appendix

Performance ratios of utilization relative to online version for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 1.14 0.15 [1.09, 1.19] 0.75 1.67 0.75 1.13 1.67 0.12
Ls,Ret600 1.12 0.15 [1.07, 1.17] 0.75 1.5 0.75 1.13 1.5 0.12

Ls,S0 1 0 [1, 1] 1 1 1 1 1 0
Ls,S60 1.14 0.06 [1.12, 1.16] 1 1.33 1 1.14 1.33 0
Ls,S120 1.17 0.1 [1.14, 1.2] 1 1.5 1 1.14 1.5 0
Ls,S360 1.26 0.14 [1.21, 1.31] 0.86 1.5 0.86 1.29 1.5 0.02
Ls,S600 1.25 0.14 [1.2, 1.3] 0.86 1.5 0.86 1.29 1.5 0.02
Ls,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Gap60 1.07 0.08 [1.05, 1.09] 0.86 1.33 0.86 1 1.33 0.02
Ls,Gap120 1.12 0.09 [1.09, 1.15] 0.87 1.29 0.87 1.13 1.29 0.02
Ls,Gap360 1.19 0.15 [1.14, 1.24] 0.86 1.67 0.86 1.14 1.67 0.08
Ls,Gap600 1.18 0.15 [1.13, 1.23] 0.86 1.67 0.86 1.14 1.67 0.06
Ls,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Opt60 1.09 0.08 [1.07, 1.11] 0.86 1.33 0.86 1.14 1.33 0.04
Ls,Opt120 1.14 0.1 [1.11, 1.17] 0.75 1.33 0.75 1.14 1.33 0.04
Ls,Opt360 1.24 0.16 [1.18, 1.3] 0.75 1.67 0.75 1.25 1.67 0.06
Ls,Opt600 1.22 0.16 [1.16, 1.28] 0.75 1.67 0.75 1.14 1.67 0.06
Ts,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Ret60 1.07 0.08 [1.05, 1.09] 0.87 1.33 0.87 1.13 1.33 0.04
Ts,Ret120 1.1 0.08 [1.08, 1.12] 0.87 1.29 0.87 1.13 1.29 0.02
Ts,Ret360 1.13 0.15 [1.08, 1.18] 0.75 1.67 0.75 1.13 1.67 0.12
Ts,Ret600 1.13 0.14 [1.09, 1.17] 0.75 1.5 0.75 1.13 1.5 0.1

Ts,S0 1 0 [1, 1] 1 1 1 1 1 0
Ts,S60 1.11 0.07 [1.09, 1.13] 0.86 1.33 0.86 1.14 1.33 0.02
Ts,S120 1.17 0.08 [1.14, 1.2] 1 1.5 1 1.14 1.5 0
Ts,S360 1.23 0.16 [1.17, 1.29] 0.75 1.5 0.75 1.29 1.5 0.08
Ts,S600 1.24 0.15 [1.19, 1.29] 0.86 1.5 0.86 1.29 1.5 0.04
Ts,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Gap60 1.07 0.09 [1.04, 1.1] 0.86 1.33 0.86 1 1.33 0.04
Ts,Gap120 1.12 0.12 [1.08, 1.16] 0.75 1.5 0.75 1.13 1.5 0.04
Ts,Gap360 1.17 0.16 [1.12, 1.22] 0.75 1.5 0.75 1.14 1.5 0.12
Ts,Gap600 1.19 0.16 [1.14, 1.24] 0.75 1.67 0.75 1.25 1.67 0.08
Ts,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Opt60 1.11 0.07 [1.09, 1.13] 0.86 1.17 0.86 1.14 1.17 0.04
Ts,Opt120 1.14 0.09 [1.11, 1.17] 0.75 1.29 0.75 1.14 1.29 0.02
Ts,Opt360 1.22 0.16 [1.16, 1.28] 0.75 1.5 0.75 1.29 1.5 0.06
Ts,Opt600 1.23 0.15 [1.18, 1.28] 0.75 1.5 0.75 1.29 1.5 0.04
Opt,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt,Opt60 1.11 0.1 [1.08, 1.14] 0.86 1.33 0.86 1.14 1.33 0.04
Opt,Opt120 1.21 0.1 [1.18, 1.24] 1 1.5 1 1.17 1.5 0
Opt,Opt360 1.28 0.12 [1.24, 1.32] 0.87 1.67 0.87 1.29 1.67 0.02
Opt,Opt600 1.29 0.11 [1.25, 1.33] 1 1.67 1 1.29 1.67 0

Table A.75: Performance ratios of picker utilization relative to the online version of an algorithm
in the order picking system.

A.3 Numerical Results from Chapter 6 341

Throughput for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Prio,Ret0 120.03 0.05 [118.33, 121.73] 100.6 125.9 100.6 122.1 125.9
Prio,Ret60 133.14 0.03 [132.01, 134.27] 109.2 137.7 109.2 133.9 137.7 0.02
Prio,Ret120 140.71 0.07 [137.92, 143.5] 101.4 153.4 101.4 142.1 153.4 0.06
Prio,Ret360 144.51 0.06 [142.06, 146.96] 109.6 164 109.6 144.3 164 0.43
Prio,Ret600 144.39 0.06 [141.94, 146.84] 109.6 164.7 109.6 145 164.7 0.45

Prio,S0 120.99 0.04 [119.62, 122.36] 101.4 126.3 101.4 122.4 126.3
Prio,S60 132.29 0.06 [130.04, 134.54] 105.9 138.3 105.9 134.4 138.3 0.06
Prio,S120 140.96 0.08 [137.77, 144.15] 101.4 153.9 101.4 142.6 153.9 0.12
Prio,S360 149.07 0.09 [145.27, 152.87] 109.6 172.2 109.6 149 172.2 0.29
Prio,S600 148.47 0.09 [144.69, 152.25] 109.6 173.1 109.6 149 173.1 0.41
Prio,Gap0 120.47 0.04 [119.11, 121.83] 101.4 126.5 101.4 121.5 126.5
Prio,Gap60 131.93 0.05 [130.06, 133.8] 105.9 138.2 105.9 133.9 138.2 0.08
Prio,Gap120 141.43 0.07 [138.63, 144.23] 101.4 154.1 101.4 143.4 154.1 0.08
Prio,Gap360 146.48 0.07 [143.58, 149.38] 109.6 167 109.6 146.2 167 0.31
Prio,Gap600 146.34 0.07 [143.44, 149.24] 109.6 167.9 109.6 148 167.9 0.39
Prio,Opt0 120.89 0.04 [119.52, 122.26] 101.4 126.6 101.4 122.5 126.6
Prio,Opt60 134 0.03 [132.86, 135.14] 112.8 139 112.8 134.7 139 0.02
Prio,Opt120 141.69 0.08 [138.48, 144.9] 101.4 154.3 101.4 143.4 154.3 0.08
Prio,Opt360 152.51 0.1 [148.2, 156.82] 109.6 179 109.6 154.9 179 0.37
Prio,Opt600 151.01 0.1 [146.74, 155.28] 109.6 177.6 109.6 151.8 177.6 0.43
Seed,Ret0 121.37 0.03 [120.34, 122.4] 101.4 125.7 101.4 122.1 125.7
Seed,Ret60 133.05 0.04 [131.54, 134.56] 102.7 138.5 102.7 134.7 138.5 0.04
Seed,Ret120 140.5 0.08 [137.32, 143.68] 101.4 153.6 101.4 141.9 153.6 0.12
Seed,Ret360 153.43 0.1 [149.09, 157.77] 109.6 180.4 109.6 153.7 180.4 0.2
Seed,Ret600 153.62 0.09 [149.71, 157.53] 109.6 180.3 109.6 153 180.3 0.35

Seed,S0 120.79 0.04 [119.42, 122.16] 101.4 126 101.4 122.1 126
Seed,S60 132 0.06 [129.76, 134.24] 102.7 138.4 102.7 134.6 138.4 0.08
Seed,S120 142.29 0.07 [139.47, 145.11] 101.4 154.2 101.4 143.8 154.2 0.04
Seed,S360 162.96 0.11 [157.89, 168.03] 109.6 204.2 109.6 158.6 204.2 0.43
Seed,S600 161.61 0.12 [156.12, 167.1] 109.6 200.3 109.6 159 200.3 0.27
Seed,Gap0 120.85 0.04 [119.48, 122.22] 101.4 125.8 101.4 122.1 125.8
Seed,Gap60 133.22 0.04 [131.71, 134.73] 107 137.9 107 134.6 137.9 0.04
Seed,Gap120 141.21 0.07 [138.41, 144.01] 101.4 153.7 101.4 143.1 153.7 0.08
Seed,Gap360 146.56 0.08 [143.24, 149.88] 109.6 170.5 109.6 147.1 170.5 0.35
Seed,Gap600 148.07 0.07 [145.14, 151] 109.6 168.4 109.6 148.4 168.4 0.31
Seed,Opt0 120.93 0.04 [119.56, 122.3] 101.4 126.4 101.4 122.6 126.4
Seed,Opt60 134.26 0.03 [133.12, 135.4] 109.2 139.4 109.2 135.3 139.4 0
Seed,Opt120 142.21 0.07 [139.39, 145.03] 101.4 154.2 101.4 143.4 154.2 0.08
Seed,Opt360 162.27 0.12 [156.76, 167.78] 109.6 204.3 109.6 159.7 204.3 0.33
Seed,Opt600 163.68 0.11 [158.59, 168.77] 109.6 199.6 109.6 164.5 199.6 0.39

Svg,Ret0 120.93 0.04 [119.56, 122.3] 100.6 125.9 100.6 121.9 125.9
Svg,Ret60 133.46 0.03 [132.33, 134.59] 109.2 137.9 109.2 134.2 137.9 0.02
Svg,Ret120 141.33 0.07 [138.53, 144.13] 101.4 153.2 101.4 142.3 153.2 0.06
Svg,Ret360 148.82 0.09 [145.03, 152.61] 109.6 171.1 109.6 149.7 171.1 0.45
Svg,Ret600 146.66 0.09 [142.93, 150.39] 109.6 171.9 109.6 147.4 171.9 0.37

Svg,S0 121.57 0.03 [120.54, 122.6] 101.4 126.1 101.4 122.3 126.1
Svg,S60 134.26 0.03 [133.12, 135.4] 115.4 139.1 115.4 134.9 139.1 0
Svg,S120 141.7 0.07 [138.89, 144.51] 101.4 154.1 101.4 143.4 154.1 0.08
Svg,S360 153.73 0.1 [149.38, 158.08] 109.6 181 109.6 154.4 181 0.27
Svg,S600 153.06 0.1 [148.73, 157.39] 109.6 177.5 109.6 153.7 177.5 0.24
Svg,Gap0 120.63 0.04 [119.26, 122] 101.4 126.2 101.4 122.2 126.2
Svg,Gap60 133.66 0.04 [132.15, 135.17] 102.7 138.3 102.7 134.7 138.3 0
Svg,Gap120 141.49 0.07 [138.69, 144.29] 101.4 153.9 101.4 142.7 153.9 0.08
Svg,Gap360 147.91 0.08 [144.56, 151.26] 109.6 173.4 109.6 147.4 173.4 0.45
Svg,Gap600 146.27 0.07 [143.37, 149.17] 109.6 171.6 109.6 146.3 171.6 0.47
Svg,Opt0 120.37 0.05 [118.67, 122.07] 100.6 126.3 100.6 122.3 126.3
Svg,Opt60 134.14 0.04 [132.62, 135.66] 107 139 107 135.3 139 0.02
Svg,Opt120 141.44 0.07 [138.64, 144.24] 101.4 153.6 101.4 142.6 153.6 0.12
Svg,Opt360 154.87 0.11 [150.05, 159.69] 109.6 180 109.6 155 180 0.31
Svg,Opt600 153.44 0.09 [149.53, 157.35] 109.6 178.6 109.6 152.8 178.6 0.39

Ls,Ret0 120.72 0.04 [119.35, 122.09] 100.6 125.9 100.6 121.9 125.9
Ls,Ret60 133.25 0.04 [131.74, 134.76] 105.9 138.4 105.9 134.8 138.4 0.04
Ls,Ret120 141.92 0.07 [139.11, 144.73] 101.4 153.4 101.4 142.8 153.4 0.06

...
...

...
...

...
...

...
...

...
...

342 A Appendix

Throughput for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 153.99 0.1 [149.63, 158.35] 109.6 181.4 109.6 154.9 181.4 0.29
Ls,Ret600 153.88 0.1 [149.53, 158.23] 109.6 181.1 109.6 153.7 181.1 0.18

Ls,S0 120.62 0.05 [118.91, 122.33] 100.6 125.8 100.6 122.3 125.8
Ls,S60 134.21 0.03 [133.07, 135.35] 112.8 138.8 112.8 134.7 138.8 0.02
Ls,S120 142.22 0.07 [139.4, 145.04] 101.4 154.1 101.4 143.7 154.1 0.06
Ls,S360 162.22 0.11 [157.17, 167.27] 109.6 197.3 109.6 159.3 197.3 0.33
Ls,S600 163.22 0.12 [157.68, 168.76] 109.6 204.2 109.6 159.1 204.2 0.31
Ls,Gap0 120.38 0.05 [118.68, 122.08] 100.6 126 100.6 122.2 126
Ls,Gap60 133.34 0.05 [131.45, 135.23] 102.7 138.8 102.7 134.7 138.8 0
Ls,Gap120 141.44 0.08 [138.24, 144.64] 101.4 153.9 101.4 142.7 153.9 0.08
Ls,Gap360 155.96 0.1 [151.55, 160.37] 109.6 182.5 109.6 156.3 182.5 0.24
Ls,Gap600 155 0.1 [150.62, 159.38] 109.6 183.2 109.6 156.4 183.2 0.31
Ls,Opt0 121.27 0.03 [120.24, 122.3] 101.4 125.9 101.4 122.5 125.9
Ls,Opt60 133.29 0.05 [131.4, 135.18] 102.7 138.8 102.7 134.9 138.8 0.04
Ls,Opt120 142.41 0.07 [139.59, 145.23] 101.4 153.9 101.4 143.7 153.9 0.08
Ls,Opt360 162.2 0.11 [157.15, 167.25] 109.6 200.3 109.6 158.2 200.3 0.31
Ls,Opt600 160.3 0.11 [155.31, 165.29] 109.6 189.8 109.6 157.3 189.8 0.2
Ts,Ret0 120.88 0.03 [119.85, 121.91] 101.4 125.8 101.4 122.1 125.8
Ts,Ret60 132.31 0.06 [130.06, 134.56] 102.7 138.3 102.7 134.7 138.3 0.08
Ts,Ret120 141.67 0.07 [138.86, 144.48] 101.4 153.3 101.4 142.6 153.3 0.1
Ts,Ret360 154.57 0.1 [150.2, 158.94] 109.6 179 109.6 154.4 179 0.29
Ts,Ret600 155.05 0.1 [150.66, 159.44] 109.6 179.4 109.6 153.8 179.4 0.33

Ts,S0 120.43 0.04 [119.07, 121.79] 101.4 125.9 101.4 122.1 125.9
Ts,S60 133.93 0.03 [132.79, 135.07] 107 138.8 107 134.7 138.8 0
Ts,S120 142.58 0.07 [139.76, 145.4] 101.4 154.6 101.4 143.4 154.6 0.06
Ts,S360 161.82 0.12 [156.33, 167.31] 109.6 201.2 109.6 158.7 201.2 0.29
Ts,S600 162.57 0.11 [157.51, 167.63] 109.6 200.9 109.6 158.6 200.9 0.27
Ts,Gap0 120.65 0.04 [119.28, 122.02] 101.4 125.8 101.4 121.8 125.8
Ts,Gap60 133.05 0.05 [131.17, 134.93] 102.7 139.3 102.7 135 139.3 0.06
Ts,Gap120 141.32 0.08 [138.12, 144.52] 101.4 153.9 101.4 143 153.9 0.1
Ts,Gap360 154.67 0.11 [149.86, 159.48] 109.6 183.3 109.6 155.1 183.3 0.37
Ts,Gap600 155.08 0.1 [150.69, 159.47] 109.6 178.3 109.6 157.3 178.3 0.35
Ts,Opt0 121.76 0.03 [120.73, 122.79] 101.4 126 101.4 122.6 126
Ts,Opt60 133.53 0.05 [131.64, 135.42] 102.7 139.3 102.7 135.2 139.3 0.04
Ts,Opt120 141.61 0.08 [138.41, 144.81] 101.4 154.3 101.4 143.3 154.3 0.08
Ts,Opt360 160.41 0.13 [154.51, 166.31] 109.6 204.3 109.6 159 204.3 0.31
Ts,Opt600 161.83 0.12 [156.34, 167.32] 109.6 198.4 109.6 159.8 198.4 0.31
Opt,Opt0 121.91 0.06 [119.84, 123.98] 100.6 149.7 100.6 122.4 149.7
Opt,Opt60 132.63 0.06 [130.38, 134.88] 102.7 149.7 102.7 134.3 149.7 0.06
Opt,Opt120 141.13 0.07 [138.34, 143.92] 101.4 153.6 101.4 143.2 153.6 0.16
Opt,Opt360 146.93 0.08 [143.6, 150.26] 109.6 170.1 109.6 147.6 170.1 0.33
Opt,Opt600 148.13 0.07 [145.2, 151.06] 109.6 168.9 109.6 148.4 168.9 0.24

Table A.76: Box throughputs in the order picking system.

A.3 Numerical Results from Chapter 6 343

Performance ratios of throughput relative to Ts,Opt600 for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Prio,Ret0 0.75 0.14 [0.72, 0.78] 0.6 1.09 0.6 0.72 1.09 0.04
Prio,Ret60 0.84 0.14 [0.81, 0.87] 0.6 1.2 0.6 0.83 1.2 0.04
Prio,Ret120 0.88 0.14 [0.85, 0.91] 0.6 1.29 0.6 0.89 1.29 0.02
Prio,Ret360 0.9 0.12 [0.87, 0.93] 0.72 1.3 0.72 0.94 1.3 0.02
Prio,Ret600 0.9 0.12 [0.87, 0.93] 0.72 1.3 0.72 0.93 1.3 0.02

Prio,S0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.75 1.09 0.04
Prio,S60 0.83 0.15 [0.79, 0.87] 0.59 1.21 0.59 0.83 1.21 0.04
Prio,S120 0.88 0.12 [0.85, 0.91] 0.6 1.01 0.6 0.9 1.01 0.02
Prio,S360 0.93 0.13 [0.9, 0.96] 0.62 1.37 0.62 0.98 1.37 0.04
Prio,S600 0.93 0.13 [0.9, 0.96] 0.62 1.35 0.62 0.98 1.35 0.06
Prio,Gap0 0.76 0.14 [0.73, 0.79] 0.6 1.08 0.6 0.73 1.08 0.04
Prio,Gap60 0.83 0.15 [0.79, 0.87] 0.59 1.21 0.59 0.83 1.21 0.04
Prio,Gap120 0.89 0.14 [0.85, 0.93] 0.6 1.31 0.6 0.9 1.31 0.02
Prio,Gap360 0.92 0.12 [0.89, 0.95] 0.62 1.31 0.62 0.96 1.31 0.02
Prio,Gap600 0.92 0.12 [0.89, 0.95] 0.62 1.31 0.62 0.96 1.31 0.04
Prio,Opt0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.74 1.09 0.04
Prio,Opt60 0.84 0.13 [0.81, 0.87] 0.65 1.18 0.65 0.84 1.18 0.04
Prio,Opt120 0.89 0.12 [0.86, 0.92] 0.6 1.02 0.6 0.93 1.02 0.02
Prio,Opt360 0.95 0.09 [0.93, 0.97] 0.62 1.01 0.62 0.99 1.01 0.1
Prio,Opt600 0.94 0.1 [0.91, 0.97] 0.62 1.01 0.62 0.98 1.01 0.04
Seed,Ret0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.75 1.09 0.04
Seed,Ret60 0.83 0.14 [0.8, 0.86] 0.65 1.18 0.65 0.84 1.18 0.04
Seed,Ret120 0.88 0.12 [0.85, 0.91] 0.6 1.01 0.6 0.9 1.01 0.02
Seed,Ret360 0.95 0.09 [0.93, 0.97] 0.62 1.02 0.62 0.99 1.02 0.06
Seed,Ret600 0.96 0.11 [0.93, 0.99] 0.62 1.37 0.62 0.99 1.37 0.06

Seed,S0 0.76 0.14 [0.73, 0.79] 0.59 1.09 0.59 0.73 1.09 0.04
Seed,S60 0.83 0.15 [0.79, 0.87] 0.6 1.18 0.6 0.81 1.18 0.04
Seed,S120 0.89 0.14 [0.85, 0.93] 0.6 1.34 0.6 0.93 1.34 0.04
Seed,S360 1.01 0.06 [0.99, 1.03] 0.97 1.37 0.97 1 1.37 0.29
Seed,S600 1 0.01 [1, 1] 0.97 1.02 0.97 1 1.02 0.31
Seed,Gap0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.75 1.09 0.04
Seed,Gap60 0.84 0.14 [0.81, 0.87] 0.67 1.2 0.67 0.83 1.2 0.04
Seed,Gap120 0.88 0.12 [0.85, 0.91] 0.6 1 0.6 0.92 1 0
Seed,Gap360 0.92 0.11 [0.89, 0.95] 0.62 1.01 0.62 0.98 1.01 0.02
Seed,Gap600 0.93 0.12 [0.9, 0.96] 0.62 1.34 0.62 0.97 1.34 0.04
Seed,Opt0 0.76 0.14 [0.73, 0.79] 0.59 1.09 0.59 0.76 1.09 0.04
Seed,Opt60 0.84 0.14 [0.81, 0.87] 0.6 1.21 0.6 0.84 1.21 0.04
Seed,Opt120 0.89 0.13 [0.86, 0.92] 0.6 1.24 0.6 0.9 1.24 0.04
Seed,Opt360 1.01 0.09 [0.98, 1.04] 0.62 1.36 0.62 1 1.36 0.39
Seed,Opt600 1.01 0.06 [0.99, 1.03] 0.93 1.36 0.93 1 1.36 0.43

Svg,Ret0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.76 1.09 0.04
Svg,Ret60 0.84 0.14 [0.81, 0.87] 0.6 1.2 0.6 0.84 1.2 0.04
Svg,Ret120 0.89 0.13 [0.86, 0.92] 0.6 1.24 0.6 0.92 1.24 0.04
Svg,Ret360 0.93 0.1 [0.9, 0.96] 0.62 1.02 0.62 0.97 1.02 0.04
Svg,Ret600 0.92 0.11 [0.89, 0.95] 0.62 1 0.62 0.97 1 0.02

Svg,S0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.75 1.09 0.04
Svg,S60 0.84 0.14 [0.81, 0.87] 0.67 1.21 0.67 0.84 1.21 0.04
Svg,S120 0.89 0.14 [0.85, 0.93] 0.6 1.24 0.6 0.92 1.24 0.04
Svg,S360 0.96 0.09 [0.94, 0.98] 0.62 1.01 0.62 1 1.01 0.08
Svg,S600 0.95 0.09 [0.93, 0.97] 0.62 1.02 0.62 1 1.02 0.04
Svg,Gap0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.73 1.09 0.04
Svg,Gap60 0.84 0.14 [0.81, 0.87] 0.65 1.21 0.65 0.84 1.21 0.04
Svg,Gap120 0.89 0.14 [0.85, 0.93] 0.6 1.33 0.6 0.89 1.33 0.04
Svg,Gap360 0.93 0.12 [0.9, 0.96] 0.62 1.37 0.62 0.97 1.37 0.02
Svg,Gap600 0.92 0.12 [0.89, 0.95] 0.62 1.32 0.62 0.94 1.32 0.02
Svg,Opt0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.74 1.09 0.04
Svg,Opt60 0.84 0.14 [0.81, 0.87] 0.67 1.21 0.67 0.83 1.21 0.04
Svg,Opt120 0.89 0.13 [0.86, 0.92] 0.6 1.24 0.6 0.9 1.24 0.04
Svg,Opt360 0.96 0.08 [0.94, 0.98] 0.62 1.02 0.62 0.99 1.02 0.06
Svg,Opt600 0.96 0.11 [0.93, 0.99] 0.62 1.37 0.62 0.99 1.37 0.08

Ls,Ret0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.74 1.09 0.04
Ls,Ret60 0.84 0.14 [0.81, 0.87] 0.59 1.21 0.59 0.84 1.21 0.04
Ls,Ret120 0.89 0.14 [0.85, 0.93] 0.6 1.35 0.6 0.93 1.35 0.04

...
...

...
...

...
...

...
...

...
...

344 A Appendix

Performance ratios of throughput relative to Ts,Opt600 for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 0.96 0.09 [0.94, 0.98] 0.62 1.01 0.62 1 1.01 0.1
Ls,Ret600 0.96 0.09 [0.94, 0.98] 0.62 1.02 0.62 0.99 1.02 0.12

Ls,S0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.73 1.09 0.04
Ls,S60 0.84 0.14 [0.81, 0.87] 0.67 1.21 0.67 0.84 1.21 0.04
Ls,S120 0.89 0.14 [0.85, 0.93] 0.6 1.35 0.6 0.94 1.35 0.04
Ls,S360 1 0.05 [0.99, 1.01] 0.93 1.36 0.93 1 1.36 0.24
Ls,S600 1.01 0.06 [0.99, 1.03] 0.98 1.37 0.98 1 1.37 0.31
Ls,Gap0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.72 1.09 0.04
Ls,Gap60 0.84 0.14 [0.81, 0.87] 0.65 1.18 0.65 0.81 1.18 0.04
Ls,Gap120 0.88 0.12 [0.85, 0.91] 0.6 1.02 0.6 0.94 1.02 0.02
Ls,Gap360 0.97 0.1 [0.94, 1] 0.62 1.36 0.62 1 1.36 0.12
Ls,Gap600 0.97 0.1 [0.94, 1] 0.62 1.36 0.62 1 1.36 0.16
Ls,Opt0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.76 1.09 0.04
Ls,Opt60 0.84 0.14 [0.81, 0.87] 0.65 1.18 0.65 0.82 1.18 0.04
Ls,Opt120 0.89 0.14 [0.85, 0.93] 0.6 1.36 0.6 0.94 1.36 0.04
Ls,Opt360 1 0.05 [0.99, 1.01] 0.97 1.37 0.97 1 1.37 0.27
Ls,Opt600 1 0.08 [0.98, 1.02] 0.62 1.37 0.62 1 1.37 0.24
Ts,Ret0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.75 1.09 0.04
Ts,Ret60 0.83 0.15 [0.79, 0.87] 0.59 1.21 0.59 0.83 1.21 0.04
Ts,Ret120 0.89 0.14 [0.85, 0.93] 0.6 1.33 0.6 0.89 1.33 0.04
Ts,Ret360 0.96 0.09 [0.94, 0.98] 0.62 1.01 0.62 0.99 1.01 0.08
Ts,Ret600 0.97 0.1 [0.94, 1] 0.62 1.36 0.62 0.99 1.36 0.08

Ts,S0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.73 1.09 0.04
Ts,S60 0.84 0.14 [0.81, 0.87] 0.67 1.21 0.67 0.84 1.21 0.04
Ts,S120 0.89 0.14 [0.85, 0.93] 0.6 1.36 0.6 0.94 1.36 0.04
Ts,S360 1 0.01 [1, 1] 0.98 1.03 0.98 1 1.03 0.24
Ts,S600 1.01 0.05 [1, 1.02] 0.93 1.36 0.93 1 1.36 0.31
Ts,Gap0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.73 1.09 0.04
Ts,Gap60 0.84 0.15 [0.8, 0.88] 0.6 1.21 0.6 0.83 1.21 0.04
Ts,Gap120 0.88 0.12 [0.85, 0.91] 0.6 1.01 0.6 0.93 1.01 0.02
Ts,Gap360 0.96 0.09 [0.94, 0.98] 0.62 1.02 0.62 1 1.02 0.14
Ts,Gap600 0.96 0.08 [0.94, 0.98] 0.62 1.03 0.62 1 1.03 0.12
Ts,Opt0 0.76 0.14 [0.73, 0.79] 0.6 1.09 0.6 0.75 1.09 0.04
Ts,Opt60 0.84 0.14 [0.81, 0.87] 0.59 1.21 0.59 0.83 1.21 0.04
Ts,Opt120 0.89 0.12 [0.86, 0.92] 0.6 1.02 0.6 0.94 1.02 0.02
Ts,Opt360 0.99 0.07 [0.97, 1.01] 0.62 1.2 0.62 1 1.2 0.31
Ts,Opt600 1 0 [1, 1] 1 1 1 1 1 0
Opt,Opt0 0.76 0.14 [0.73, 0.79] 0.59 1.09 0.59 0.73 1.09 0.02
Opt,Opt60 0.83 0.15 [0.79, 0.87] 0.59 1.18 0.59 0.8 1.18 0.06
Opt,Opt120 0.88 0.12 [0.85, 0.91] 0.6 1.09 0.6 0.89 1.09 0.02
Opt,Opt360 0.92 0.11 [0.89, 0.95] 0.62 1.01 0.62 0.98 1.01 0.04
Opt,Opt600 0.93 0.12 [0.9, 0.96] 0.62 1.34 0.62 0.97 1.34 0.04

Table A.77: Performance ratios of box throughput relative to Ts,Opt600 in the order picking
system.

A.3 Numerical Results from Chapter 6 345

Performance ratios of throughput relative to online version for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Prio,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Ret60 1.11 0.06 [1.09, 1.13] 0.91 1.34 0.91 1.11 1.34 0.02
Prio,Ret120 1.17 0.08 [1.14, 1.2] 0.93 1.46 0.93 1.17 1.46 0.02
Prio,Ret360 1.21 0.09 [1.18, 1.24] 0.93 1.51 0.93 1.19 1.51 0.02
Prio,Ret600 1.21 0.08 [1.18, 1.24] 0.93 1.52 0.93 1.19 1.52 0.02

Prio,S0 1 0 [1, 1] 1 1 1 1 1 0
Prio,S60 1.09 0.06 [1.07, 1.11] 0.87 1.29 0.87 1.11 1.29 0.06
Prio,S120 1.17 0.07 [1.15, 1.19] 0.92 1.43 0.92 1.17 1.43 0.04
Prio,S360 1.23 0.1 [1.2, 1.26] 0.92 1.62 0.92 1.22 1.62 0.04
Prio,S600 1.23 0.1 [1.2, 1.26] 0.92 1.6 0.92 1.22 1.6 0.04
Prio,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Gap60 1.1 0.07 [1.08, 1.12] 0.89 1.34 0.89 1.11 1.34 0.08
Prio,Gap120 1.17 0.07 [1.15, 1.19] 0.93 1.43 0.93 1.18 1.43 0.02
Prio,Gap360 1.22 0.09 [1.19, 1.25] 0.93 1.58 0.93 1.21 1.58 0.02
Prio,Gap600 1.22 0.09 [1.19, 1.25] 0.93 1.54 0.93 1.21 1.54 0.02
Prio,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Prio,Opt60 1.11 0.05 [1.09, 1.13] 0.93 1.35 0.93 1.11 1.35 0.02
Prio,Opt120 1.17 0.08 [1.14, 1.2] 0.92 1.46 0.92 1.17 1.46 0.04
Prio,Opt360 1.26 0.12 [1.22, 1.3] 0.92 1.67 0.92 1.26 1.67 0.04
Prio,Opt600 1.25 0.11 [1.21, 1.29] 0.92 1.63 0.92 1.25 1.63 0.04
Seed,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Ret60 1.1 0.04 [1.09, 1.11] 0.86 1.27 0.86 1.11 1.27 0.04
Seed,Ret120 1.16 0.06 [1.14, 1.18] 0.92 1.25 0.92 1.16 1.25 0.04
Seed,Ret360 1.27 0.11 [1.23, 1.31] 0.92 1.67 0.92 1.26 1.67 0.04
Seed,Ret600 1.27 0.1 [1.23, 1.31] 0.93 1.66 0.93 1.25 1.66 0.02

Seed,S0 1 0 [1, 1] 1 1 1 1 1 0
Seed,S60 1.09 0.06 [1.07, 1.11] 0.87 1.25 0.87 1.11 1.25 0.08
Seed,S120 1.18 0.07 [1.16, 1.2] 0.92 1.42 0.92 1.17 1.42 0.02
Seed,S360 1.35 0.13 [1.3, 1.4] 0.92 1.71 0.92 1.33 1.71 0.02
Seed,S600 1.34 0.13 [1.29, 1.39] 0.92 1.68 0.92 1.36 1.68 0.04
Seed,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Gap60 1.1 0.05 [1.08, 1.12] 0.87 1.29 0.87 1.11 1.29 0.04
Seed,Gap120 1.17 0.07 [1.15, 1.19] 0.92 1.41 0.92 1.18 1.41 0.04
Seed,Gap360 1.22 0.1 [1.19, 1.25] 0.92 1.56 0.92 1.2 1.56 0.04
Seed,Gap600 1.23 0.09 [1.2, 1.26] 0.92 1.6 0.92 1.2 1.6 0.02
Seed,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Seed,Opt60 1.11 0.04 [1.1, 1.12] 1 1.29 1 1.11 1.29 0
Seed,Opt120 1.18 0.07 [1.16, 1.2] 0.92 1.44 0.92 1.17 1.44 0.02
Seed,Opt360 1.35 0.14 [1.3, 1.4] 0.92 1.71 0.92 1.3 1.71 0.02
Seed,Opt600 1.36 0.13 [1.31, 1.41] 0.92 1.71 0.92 1.36 1.71 0.02

Svg,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Ret60 1.1 0.05 [1.08, 1.12] 0.9 1.34 0.9 1.11 1.34 0.02
Svg,Ret120 1.17 0.07 [1.15, 1.19] 0.93 1.49 0.93 1.17 1.49 0.02
Svg,Ret360 1.23 0.1 [1.2, 1.26] 0.92 1.64 0.92 1.24 1.64 0.04
Svg,Ret600 1.22 0.11 [1.18, 1.26] 0.92 1.61 0.92 1.21 1.61 0.06

Svg,S0 1 0 [1, 1] 1 1 1 1 1 0
Svg,S60 1.1 0.03 [1.09, 1.11] 1 1.27 1 1.11 1.27 0
Svg,S120 1.16 0.06 [1.14, 1.18] 0.92 1.25 0.92 1.17 1.25 0.02
Svg,S360 1.27 0.12 [1.23, 1.31] 0.92 1.68 0.92 1.25 1.68 0.04
Svg,S600 1.26 0.11 [1.22, 1.3] 0.92 1.68 0.92 1.27 1.68 0.04
Svg,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Gap60 1.11 0.04 [1.1, 1.12] 1 1.34 1 1.11 1.34 0
Svg,Gap120 1.17 0.07 [1.15, 1.19] 0.93 1.44 0.93 1.17 1.44 0.02
Svg,Gap360 1.23 0.1 [1.2, 1.26] 0.93 1.62 0.93 1.22 1.62 0.02
Svg,Gap600 1.22 0.09 [1.19, 1.25] 0.93 1.53 0.93 1.2 1.53 0.02
Svg,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Svg,Opt60 1.12 0.06 [1.1, 1.14] 0.87 1.35 0.87 1.11 1.35 0.02
Svg,Opt120 1.18 0.08 [1.15, 1.21] 0.92 1.5 0.92 1.17 1.5 0.02
Svg,Opt360 1.29 0.12 [1.25, 1.33] 0.91 1.69 0.91 1.28 1.69 0.04
Svg,Opt600 1.28 0.11 [1.24, 1.32] 0.92 1.69 0.92 1.27 1.69 0.02

Ls,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Ret60 1.11 0.06 [1.09, 1.13] 0.88 1.34 0.88 1.11 1.34 0.04
Ls,Ret120 1.18 0.07 [1.16, 1.2] 0.92 1.5 0.92 1.18 1.5 0.02

...
...

...
...

...
...

...
...

...
...

346 A Appendix

Performance ratios of throughput relative to online version for n = 625 (50 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

...
...

...
...

...
...

...
...

...
...

Ls,Ret360 1.28 0.12 [1.24, 1.32] 0.92 1.67 0.92 1.28 1.67 0.04
Ls,Ret600 1.28 0.12 [1.24, 1.32] 0.92 1.65 0.92 1.28 1.65 0.04

Ls,S0 1 0 [1, 1] 1 1 1 1 1 0
Ls,S60 1.11 0.05 [1.09, 1.13] 0.94 1.34 0.94 1.11 1.34 0.02
Ls,S120 1.18 0.08 [1.15, 1.21] 0.92 1.5 0.92 1.17 1.5 0.02
Ls,S360 1.35 0.12 [1.3, 1.4] 0.92 1.69 0.92 1.35 1.69 0.02
Ls,S600 1.36 0.13 [1.31, 1.41] 0.92 1.7 0.92 1.36 1.7 0.02
Ls,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Gap60 1.11 0.04 [1.1, 1.12] 1 1.33 1 1.11 1.33 0
Ls,Gap120 1.18 0.09 [1.15, 1.21] 0.92 1.49 0.92 1.17 1.49 0.04
Ls,Gap360 1.3 0.11 [1.26, 1.34] 0.92 1.65 0.92 1.28 1.65 0.02
Ls,Gap600 1.29 0.12 [1.25, 1.33] 0.92 1.69 0.92 1.28 1.69 0.02
Ls,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Ls,Opt60 1.1 0.05 [1.08, 1.12] 0.86 1.27 0.86 1.11 1.27 0.04
Ls,Opt120 1.17 0.06 [1.15, 1.19] 0.92 1.33 0.92 1.18 1.33 0.02
Ls,Opt360 1.34 0.12 [1.29, 1.39] 0.92 1.68 0.92 1.32 1.68 0.02
Ls,Opt600 1.32 0.12 [1.28, 1.36] 0.92 1.69 0.92 1.29 1.69 0.02
Ts,Ret0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Ret60 1.1 0.06 [1.08, 1.12] 0.86 1.28 0.86 1.11 1.28 0.08
Ts,Ret120 1.17 0.07 [1.15, 1.19] 0.92 1.41 0.92 1.18 1.41 0.02
Ts,Ret360 1.28 0.12 [1.24, 1.32] 0.92 1.68 0.92 1.28 1.68 0.04
Ts,Ret600 1.28 0.11 [1.24, 1.32] 0.92 1.67 0.92 1.27 1.67 0.02

Ts,S0 1 0 [1, 1] 1 1 1 1 1 0
Ts,S60 1.11 0.04 [1.1, 1.12] 1 1.34 1 1.11 1.34 0
Ts,S120 1.19 0.07 [1.17, 1.21] 0.92 1.45 0.92 1.17 1.45 0.02
Ts,S360 1.35 0.13 [1.3, 1.4] 0.91 1.71 0.91 1.34 1.71 0.04
Ts,S600 1.35 0.12 [1.3, 1.4] 0.92 1.68 0.92 1.34 1.68 0.02
Ts,Gap0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Gap60 1.1 0.06 [1.08, 1.12] 0.86 1.35 0.86 1.11 1.35 0.06
Ts,Gap120 1.17 0.08 [1.14, 1.2] 0.92 1.46 0.92 1.17 1.46 0.04
Ts,Gap360 1.28 0.12 [1.24, 1.32] 0.92 1.67 0.92 1.28 1.67 0.04
Ts,Gap600 1.29 0.11 [1.25, 1.33] 0.92 1.68 0.92 1.29 1.68 0.04
Ts,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Ts,Opt60 1.1 0.05 [1.08, 1.12] 0.86 1.27 0.86 1.11 1.27 0.04
Ts,Opt120 1.16 0.06 [1.14, 1.18] 0.91 1.25 0.91 1.17 1.25 0.04
Ts,Opt360 1.32 0.13 [1.27, 1.37] 0.91 1.71 0.91 1.3 1.71 0.04
Ts,Opt600 1.33 0.13 [1.28, 1.38] 0.91 1.66 0.91 1.32 1.66 0.04
Opt,Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt,Opt60 1.09 0.07 [1.07, 1.11] 0.86 1.29 0.86 1.11 1.29 0.06
Opt,Opt120 1.16 0.08 [1.13, 1.19] 1 1.5 1 1.16 1.5 0.02
Opt,Opt360 1.21 0.11 [1.17, 1.25] 0.92 1.67 0.92 1.2 1.67 0.04
Opt,Opt600 1.22 0.1 [1.19, 1.25] 1 1.63 1 1.2 1.63 0.02

Table A.78: Performance ratios of box throughput relative to the online version of an algorithm
in the order picking system.

A.3 Numerical Results from Chapter 6 347

A.3.2 Online Pickup and Delivery with Lookahead

Makespan for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Srh0 819.73 0.04 [813.27, 826.19] 753.3 943 755.8 814.8 928.55
Srh60 819.73 0.04 [813.27, 826.19] 748.8 908.1 749.25 813.8 902.9 0.43
Srh120 814.83 0.04 [808.41, 821.25] 736.8 898.8 745.05 812.9 894.6 0.38
Srh360 815.41 0.04 [808.98, 821.84] 753.3 938.3 757.1 811.6 906.8 0.52
Srh600 813.69 0.04 [807.28, 820.1] 757.7 891.1 758.8 810.25 884.05 0.42
2Opt0 819.73 0.04 [813.27, 826.19] 753.3 943 755.8 814.8 928.55
2Opt60 819.73 0.04 [813.27, 826.19] 748.8 908.1 749.25 813.8 902.9 0.43
2Opt120 814.83 0.04 [808.41, 821.25] 736.8 898.8 745.05 812.9 894.6 0.38
2Opt360 815.41 0.04 [808.98, 821.84] 753.3 938.3 757.1 811.6 906.8 0.52
2Opt600 813.69 0.04 [807.28, 820.1] 757.7 891.1 758.8 810.25 884.05 0.42

Sa0 819.73 0.04 [813.27, 826.19] 753.3 943 755.8 814.8 928.55
Sa60 819.73 0.04 [813.27, 826.19] 748.8 908.1 749.25 813.8 902.9 0.43
Sa120 814.83 0.04 [808.41, 821.25] 736.8 898.8 745.05 812.9 894.6 0.38
Sa360 815.41 0.04 [808.98, 821.84] 753.3 938.3 757.1 811.6 906.8 0.52
Sa600 813.69 0.04 [807.28, 820.1] 757.7 891.1 758.8 810.25 884.05 0.42
Ts0 813.35 0.03 [808.54, 818.16] 743.9 883 750.25 810.6 878.9
Ts60 812.15 0.04 [805.75, 818.55] 752.4 919.2 753.35 808.9 905.55 0.48
Ts120 812.46 0.03 [807.66, 817.26] 756.7 924.6 761.15 807.35 909.85 0.49
Ts360 811.49 0.03 [806.69, 816.29] 735.7 870.4 749.25 810.1 864.75 0.45
Ts600 813.64 0.03 [808.83, 818.45] 735.9 921.9 739.15 812.55 895.25 0.53
Opt0 819.12 0.03 [814.28, 823.96] 752.5 885.1 752.9 821.3 883.15
Opt60 817.59 0.03 [812.76, 822.42] 750.6 894.4 758.5 812.9 889.8 0.48
Opt120 818.08 0.04 [811.63, 824.53] 749.2 897 749.95 819.6 895.1 0.5
Opt360 816.9 0.03 [812.07, 821.73] 727.6 879.1 743.3 814.85 876.95 0.56
Opt600 817.7 0.03 [812.87, 822.53] 745.1 910.8 746.9 816.5 906.65 0.46

Table A.79: Makespans in the pickup and delivery service.

Performance ratios of makespan relative to Opt for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Srh0 1 0.04 [0.99, 1.01] 0.91 1.12 0.92 1 1.12 0.54
Srh60 1 0.04 [0.99, 1.01] 0.89 1.15 0.91 1 1.12 0.51
Srh120 1 0.04 [0.99, 1.01] 0.92 1.13 0.92 0.99 1.11 0.59
Srh360 1 0.03 [0.99, 1.01] 0.9 1.09 0.92 0.99 1.09 0.59
Srh600 1 0.03 [0.99, 1.01] 0.88 1.08 0.91 1 1.07 0.59
2Opt0 1 0.04 [0.99, 1.01] 0.91 1.12 0.92 1 1.12 0.54
2Opt60 1 0.04 [0.99, 1.01] 0.89 1.15 0.91 1 1.12 0.51
2Opt120 1 0.04 [0.99, 1.01] 0.92 1.13 0.92 0.99 1.11 0.59
2Opt360 1 0.03 [0.99, 1.01] 0.9 1.09 0.92 0.99 1.09 0.59
2Opt600 1 0.03 [0.99, 1.01] 0.88 1.08 0.91 1 1.07 0.59

Sa0 1 0.04 [0.99, 1.01] 0.91 1.12 0.92 1 1.12 0.54
Sa60 1 0.04 [0.99, 1.01] 0.89 1.15 0.91 1 1.12 0.51
Sa120 1 0.04 [0.99, 1.01] 0.92 1.13 0.92 0.99 1.11 0.59
Sa360 1 0.03 [0.99, 1.01] 0.9 1.09 0.92 0.99 1.09 0.59
Sa600 1 0.03 [0.99, 1.01] 0.88 1.08 0.91 1 1.07 0.59
Ts0 1 0.03 [0.99, 1.01] 0.91 1.07 0.92 1 1.06 0.59
Ts60 0.99 0.03 [0.98, 1] 0.89 1.14 0.9 0.99 1.11 0.61
Ts120 0.99 0.04 [0.98, 1] 0.88 1.14 0.91 0.99 1.11 0.6
Ts360 0.99 0.03 [0.98, 1] 0.89 1.05 0.91 0.99 1.05 0.64
Ts600 1 0.02 [1, 1] 0.88 1.05 0.91 1 1.04 0.52
Opt0 1 0.03 [0.99, 1.01] 0.9 1.1 0.92 1 1.09 0.5
Opt60 1 0.03 [0.99, 1.01] 0.91 1.1 0.92 1 1.09 0.51
Opt120 1 0.05 [0.99, 1.01] 0.9 1.15 0.9 1 1.14 0.47
Opt360 1 0.03 [0.99, 1.01] 0.89 1.07 0.92 1 1.07 0.54
Opt600 1 0 [1, 1] 1 1 1 1 1 0

Table A.80: Performance ratios of makespan relative to Opt in the pickup and delivery service.

348 A Appendix

Performance ratios of makespan relative to online version for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Srh0 1 0 [1, 1] 1 1 1 1 1 0
Srh60 1 0.04 [0.99, 1.01] 0.91 1.09 0.92 1 1.09 0.43
Srh120 0.99 0.04 [0.98, 1] 0.89 1.1 0.9 1 1.09 0.39
Srh360 1 0.03 [0.99, 1.01] 0.89 1.1 0.9 1 1.09 0.42
Srh600 0.99 0.04 [0.98, 1] 0.91 1.07 0.91 1 1.07 0.39
2Opt0 1 0 [1, 1] 1 1 1 1 1 0
2Opt60 1 0.04 [0.99, 1.01] 0.91 1.09 0.92 1 1.09 0.43
2Opt120 0.99 0.04 [0.98, 1] 0.89 1.1 0.9 1 1.09 0.39
2Opt360 1 0.03 [0.99, 1.01] 0.89 1.1 0.9 1 1.09 0.42
2Opt600 0.99 0.04 [0.98, 1] 0.91 1.07 0.91 1 1.07 0.39

Sa0 1 0 [1, 1] 1 1 1 1 1 0
Sa60 1 0.04 [0.99, 1.01] 0.91 1.09 0.92 1 1.09 0.43
Sa120 0.99 0.04 [0.98, 1] 0.89 1.1 0.9 1 1.09 0.39
Sa360 1 0.03 [0.99, 1.01] 0.89 1.1 0.9 1 1.09 0.42
Sa600 0.99 0.04 [0.98, 1] 0.91 1.07 0.91 1 1.07 0.39
Ts0 1 0 [1, 1] 1 1 1 1 1 0
Ts60 1 0.03 [0.99, 1.01] 0.91 1.15 0.92 1 1.11 0.48
Ts120 1 0.03 [0.99, 1.01] 0.92 1.17 0.93 1 1.14 0.45
Ts360 1 0.03 [0.99, 1.01] 0.92 1.07 0.93 1 1.06 0.46
Ts600 1 0.03 [0.99, 1.01] 0.94 1.08 0.94 1 1.07 0.51
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt60 1 0.04 [0.99, 1.01] 0.92 1.1 0.92 1 1.09 0.48
Opt120 1 0.05 [0.99, 1.01] 0.87 1.13 0.88 1 1.12 0.51
Opt360 1 0.04 [0.99, 1.01] 0.91 1.1 0.91 1 1.09 0.47
Opt600 1 0.03 [0.99, 1.01] 0.91 1.11 0.92 1 1.08 0.5

Table A.81: Performance ratios of makespan relative to the online version of an algorithm in the
pickup and delivery service.

Distances for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Srh0 1677.4 0.07 [1654.27, 1700.53] 1420.3 2120.7 1421.8 1688.25 2022.65
Srh60 1645.6 0.07 [1622.91, 1668.29] 1318.2 2003.4 1353.65 1641.45 1953.05 0.35
Srh120 1610.23 0.08 [1584.85, 1635.61] 1342.6 1898.3 1351.55 1592.05 1885.85 0.34
Srh360 1611.39 0.07 [1589.17, 1633.61] 1364.6 1931.9 1369.95 1620.9 1930.6 0.51
Srh600 1612.54 0.07 [1590.3, 1634.78] 1328.9 1859.6 1350.65 1609.65 1838.1 0.41
2Opt0 1677.4 0.07 [1654.27, 1700.53] 1420.3 2120.7 1421.8 1688.25 2022.65
2Opt60 1645.6 0.07 [1622.91, 1668.29] 1318.2 2003.4 1353.65 1641.45 1953.05 0.35
2Opt120 1610.23 0.08 [1584.85, 1635.61] 1342.6 1898.3 1351.55 1592.05 1885.85 0.34
2Opt360 1611.39 0.07 [1589.17, 1633.61] 1364.6 1931.9 1369.95 1620.9 1930.6 0.51
2Opt600 1612.54 0.07 [1590.3, 1634.78] 1328.9 1859.6 1350.65 1609.65 1838.1 0.41

Sa0 1677.4 0.07 [1654.27, 1700.53] 1420.3 2120.7 1421.8 1688.25 2022.65
Sa60 1645.6 0.07 [1622.91, 1668.29] 1318.2 2003.4 1353.65 1641.45 1953.05 0.35
Sa120 1610.23 0.08 [1584.85, 1635.61] 1342.6 1898.3 1351.55 1592.05 1885.85 0.34
Sa360 1611.39 0.07 [1589.17, 1633.61] 1364.6 1931.9 1369.95 1620.9 1930.6 0.51
Sa600 1612.54 0.07 [1590.3, 1634.78] 1328.9 1859.6 1350.65 1609.65 1838.1 0.41
Ts0 1759.03 0.07 [1734.77, 1783.29] 1481.9 2059.4 1483.35 1753.5 2037.85
Ts60 1756.27 0.08 [1728.59, 1783.95] 1439 2090.4 1439.1 1752.2 2070.75 0.44
Ts120 1745 0.1 [1710.63, 1779.37] 1409.4 2332.6 1414.4 1733.3 2241.65 0.42
Ts360 1706.83 0.09 [1676.57, 1737.09] 1315.9 2110.7 1351.65 1693.5 2092.05 0.4
Ts600 1698.68 0.08 [1671.91, 1725.45] 1363.9 2045 1401.85 1703.9 2044.15 0.5
Opt0 1637.32 0.08 [1611.52, 1663.12] 1332.3 2077 1334.2 1633.45 2012.35
Opt60 1669.62 0.08 [1643.31, 1695.93] 1279.6 1972.8 1322.8 1672.4 1956.05 0.59
Opt120 1695.97 0.09 [1665.9, 1726.04] 1362.4 2134.7 1364.95 1688.15 2098.35 0.52
Opt360 1665.57 0.1 [1632.76, 1698.38] 1287.8 2035.5 1299.3 1648.2 2026.25 0.4
Opt600 1660.2 0.08 [1634.04, 1686.36] 1334.1 2024.4 1372.75 1665.1 1992.45 0.49

Table A.82: Distances in the pickup and delivery service.

A.3 Numerical Results from Chapter 6 349

Performance ratios of distance relative to Opt for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Srh0 1.01 0.07 [1, 1.02] 0.86 1.23 0.86 1.01 1.22 0.46
Srh60 0.99 0.08 [0.97, 1.01] 0.78 1.17 0.81 0.98 1.16 0.57
Srh120 0.97 0.08 [0.95, 0.99] 0.72 1.16 0.77 0.98 1.14 0.62
Srh360 0.97 0.07 [0.96, 0.98] 0.8 1.14 0.8 0.97 1.14 0.69
Srh600 0.97 0.07 [0.96, 0.98] 0.82 1.19 0.82 0.98 1.16 0.66
2Opt0 1.01 0.07 [1, 1.02] 0.86 1.23 0.86 1.01 1.22 0.46
2Opt60 0.99 0.08 [0.97, 1.01] 0.78 1.17 0.81 0.98 1.16 0.57
2Opt120 0.97 0.08 [0.95, 0.99] 0.72 1.16 0.77 0.98 1.14 0.62
2Opt360 0.97 0.07 [0.96, 0.98] 0.8 1.14 0.8 0.97 1.14 0.69
2Opt600 0.97 0.07 [0.96, 0.98] 0.82 1.19 0.82 0.98 1.16 0.66

Sa0 1.01 0.07 [1, 1.02] 0.86 1.23 0.86 1.01 1.22 0.46
Sa60 0.99 0.08 [0.97, 1.01] 0.78 1.17 0.81 0.98 1.16 0.57
Sa120 0.97 0.08 [0.95, 0.99] 0.72 1.16 0.77 0.98 1.14 0.62
Sa360 0.97 0.07 [0.96, 0.98] 0.8 1.14 0.8 0.97 1.14 0.69
Sa600 0.97 0.07 [0.96, 0.98] 0.82 1.19 0.82 0.98 1.16 0.66
Ts0 1.06 0.07 [1.05, 1.07] 0.88 1.25 0.89 1.06 1.24 0.14
Ts60 1.06 0.07 [1.05, 1.07] 0.84 1.24 0.85 1.05 1.24 0.18
Ts120 1.05 0.08 [1.03, 1.07] 0.86 1.3 0.87 1.05 1.28 0.28
Ts360 1.03 0.07 [1.02, 1.04] 0.9 1.22 0.9 1.02 1.21 0.39
Ts600 1.02 0.02 [1.02, 1.02] 0.96 1.1 0.97 1.02 1.09 0.11
Opt0 0.99 0.07 [0.98, 1] 0.83 1.15 0.83 0.99 1.15 0.56
Opt60 1.01 0.08 [0.99, 1.03] 0.83 1.24 0.84 1.01 1.21 0.46
Opt120 1.03 0.1 [1.01, 1.05] 0.76 1.34 0.77 1.03 1.28 0.35
Opt360 1 0.07 [0.99, 1.01] 0.87 1.21 0.88 1 1.19 0.55
Opt600 1 0 [1, 1] 1 1 1 1 1 0

Table A.83: Performance ratios of distance relative to Opt in the pickup and delivery service.

Performance ratios of distance relative to online version for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Srh0 1 0 [1, 1] 1 1 1 1 1 0
Srh60 0.98 0.07 [0.97, 0.99] 0.84 1.19 0.85 0.97 1.15 0.35
Srh120 0.96 0.07 [0.95, 0.97] 0.78 1.17 0.8 0.96 1.14 0.27
Srh360 0.96 0.06 [0.95, 0.97] 0.8 1.17 0.81 0.96 1.12 0.26
Srh600 0.96 0.06 [0.95, 0.97] 0.82 1.09 0.83 0.96 1.09 0.35
2Opt0 1 0 [1, 1] 1 1 1 1 1 0
2Opt60 0.98 0.07 [0.97, 0.99] 0.84 1.19 0.85 0.97 1.15 0.35
2Opt120 0.96 0.07 [0.95, 0.97] 0.78 1.17 0.8 0.96 1.14 0.27
2Opt360 0.96 0.06 [0.95, 0.97] 0.8 1.17 0.81 0.96 1.12 0.26
2Opt600 0.96 0.06 [0.95, 0.97] 0.82 1.09 0.83 0.96 1.09 0.35

Sa0 1 0 [1, 1] 1 1 1 1 1 0
Sa60 0.98 0.07 [0.97, 0.99] 0.84 1.19 0.85 0.97 1.15 0.35
Sa120 0.96 0.07 [0.95, 0.97] 0.78 1.17 0.8 0.96 1.14 0.27
Sa360 0.96 0.06 [0.95, 0.97] 0.8 1.17 0.81 0.96 1.12 0.26
Sa600 0.96 0.06 [0.95, 0.97] 0.82 1.09 0.83 0.96 1.09 0.35
Ts0 1 0 [1, 1] 1 1 1 1 1 0
Ts60 1 0.07 [0.99, 1.01] 0.86 1.17 0.87 0.99 1.16 0.44
Ts120 0.99 0.09 [0.97, 1.01] 0.85 1.28 0.85 0.98 1.25 0.44
Ts360 0.97 0.08 [0.95, 0.99] 0.82 1.21 0.82 0.96 1.19 0.32
Ts600 0.97 0.07 [0.96, 0.98] 0.85 1.15 0.85 0.96 1.15 0.26
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt60 1.02 0.08 [1, 1.04] 0.76 1.27 0.81 1.01 1.27 0.59
Opt120 1.04 0.11 [1.02, 1.06] 0.75 1.44 0.78 1.04 1.41 0.6
Opt360 1.02 0.07 [1.01, 1.03] 0.83 1.19 0.84 1.01 1.18 0.62
Opt600 1.02 0.07 [1.01, 1.03] 0.87 1.21 0.87 1.01 1.2 0.56

Table A.84: Performance ratios of distance relative to the online version of an algorithm in the
pickup and delivery service.

350 A Appendix

Tardiness for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Srh0 25.8 0.48 [23.36, 28.24] 7 75.6 7.45 22.75 72.15
Srh60 27.39 0.51 [24.64, 30.14] 6.8 76 7.35 24.2 72.55 0.53
Srh120 26.21 0.41 [24.09, 28.33] 10.4 54.7 10.9 23.4 54.55 0.45
Srh360 26.75 0.53 [23.96, 29.54] 8.3 120.9 9.15 24.85 93 0.54
Srh600 26.28 0.4 [24.21, 28.35] 6.8 62.4 6.9 25.05 60 0.4
2Opt0 25.8 0.48 [23.36, 28.24] 7 75.6 7.45 22.75 72.15
2Opt60 27.39 0.51 [24.64, 30.14] 6.8 76 7.35 24.2 72.55 0.53
2Opt120 26.21 0.41 [24.09, 28.33] 10.4 54.7 10.9 23.4 54.55 0.45
2Opt360 26.75 0.53 [23.96, 29.54] 8.3 120.9 9.15 24.85 93 0.54
2Opt600 26.28 0.4 [24.21, 28.35] 6.8 62.4 6.9 25.05 60 0.4

Sa0 25.8 0.48 [23.36, 28.24] 7 75.6 7.45 22.75 72.15
Sa60 27.39 0.51 [24.64, 30.14] 6.8 76 7.35 24.2 72.55 0.53
Sa120 26.21 0.41 [24.09, 28.33] 10.4 54.7 10.9 23.4 54.55 0.45
Sa360 26.75 0.53 [23.96, 29.54] 8.3 120.9 9.15 24.85 93 0.54
Sa600 26.28 0.4 [24.21, 28.35] 6.8 62.4 6.9 25.05 60 0.4
Ts0 21.08 0.43 [19.29, 22.87] 5.5 43.5 6.2 19.6 43.15
Ts60 21.77 0.39 [20.1, 23.44] 6.3 45.9 6.85 21.4 44.4 0.51
Ts120 21.66 0.42 [19.87, 23.45] 7.9 58.8 8.2 19.6 56.5 0.5
Ts360 21.04 0.4 [19.38, 22.7] 8.8 55.4 8.8 19.35 50.1 0.55
Ts600 21.96 0.5 [19.8, 24.12] 3.9 59 4.3 19.75 57.15 0.44
Opt0 20.74 0.38 [19.19, 22.29] 7.3 48.8 7.6 20.05 43.65
Opt60 20.81 0.43 [19.05, 22.57] 6.5 48.3 7 19.25 47.35 0.5
Opt120 21.75 0.41 [19.99, 23.51] 8.7 58.8 9.05 20.15 55.15 0.51
Opt360 21.52 0.4 [19.82, 23.22] 8.5 56.1 8.95 20.4 51.6 0.57
Opt600 22.33 0.49 [20.17, 24.49] 4.3 59.3 4.5 20.15 57.2 0.46

Table A.85: Tardinesses in the pickup and delivery service.

Performance ratios of tardiness relative to Opt for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Srh0 1.32 0.52 [1.18, 1.46] 0.42 3.84 0.46 1.12 3.65 0.39
Srh60 1.44 0.61 [1.27, 1.61] 0.21 4.28 0.29 1.19 4.18 0.36
Srh120 1.4 0.64 [1.22, 1.58] 0.3 6.16 0.4 1.21 5.84 0.37
Srh360 1.34 0.49 [1.21, 1.47] 0.46 4.84 0.46 1.2 4.01 0.35
Srh600 1.4 0.65 [1.22, 1.58] 0.4 5.76 0.43 1.17 5.55 0.35
2Opt0 1.32 0.52 [1.18, 1.46] 0.42 3.84 0.46 1.12 3.65 0.39
2Opt60 1.44 0.61 [1.27, 1.61] 0.21 4.28 0.29 1.19 4.18 0.36
2Opt120 1.4 0.64 [1.22, 1.58] 0.3 6.16 0.4 1.21 5.84 0.37
2Opt360 1.34 0.49 [1.21, 1.47] 0.46 4.84 0.46 1.2 4.01 0.35
2Opt600 1.4 0.65 [1.22, 1.58] 0.4 5.76 0.43 1.17 5.55 0.35

Sa0 1.32 0.52 [1.18, 1.46] 0.42 3.84 0.46 1.12 3.65 0.39
Sa60 1.44 0.61 [1.27, 1.61] 0.21 4.28 0.29 1.19 4.18 0.36
Sa120 1.4 0.64 [1.22, 1.58] 0.3 6.16 0.4 1.21 5.84 0.37
Sa360 1.34 0.49 [1.21, 1.47] 0.46 4.84 0.46 1.2 4.01 0.35
Sa600 1.4 0.65 [1.22, 1.58] 0.4 5.76 0.43 1.17 5.55 0.35
Ts0 1.07 0.48 [0.97, 1.17] 0.33 2.68 0.33 0.94 2.53 0.57
Ts60 1.11 0.46 [1.01, 1.21] 0.34 2.89 0.34 1.03 2.75 0.48
Ts120 1.1 0.48 [1, 1.2] 0.4 3.98 0.41 0.97 3.2 0.54
Ts360 1.1 0.6 [0.97, 1.23] 0.23 5.91 0.37 0.92 4.51 0.55
Ts600 0.98 0.05 [0.97, 0.99] 0.74 1.07 0.76 0.99 1.06 0.63
Opt0 1.09 0.55 [0.97, 1.21] 0.19 4.3 0.26 0.95 3.81 0.52
Opt60 1.07 0.47 [0.97, 1.17] 0.12 3.38 0.16 0.94 2.9 0.54
Opt120 1.25 0.8 [1.05, 1.45] 0.16 8.57 0.22 1.01 6.33 0.47
Opt360 1.12 0.63 [0.98, 1.26] 0.25 6.4 0.38 0.96 4.86 0.53
Opt600 1 0 [1, 1] 1 1 1 1 1 0

Table A.86: Performance ratios of tardiness relative to Opt in the pickup and delivery service.

A.3 Numerical Results from Chapter 6 351

Performance ratios of tardiness relative to online version for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Srh0 1 0 [1, 1] 1 1 1 1 1 0
Srh60 1.22 0.6 [1.08, 1.36] 0.23 5.16 0.26 1.06 4.11 0.53
Srh120 1.17 0.49 [1.06, 1.28] 0.33 2.9 0.35 0.99 2.76 0.49
Srh360 1.14 0.46 [1.04, 1.24] 0.24 2.95 0.36 1.03 2.84 0.52
Srh600 1.16 0.48 [1.05, 1.27] 0.36 2.93 0.38 1.07 2.88 0.55
2Opt0 1 0 [1, 1] 1 1 1 1 1 0
2Opt60 1.22 0.6 [1.08, 1.36] 0.23 5.16 0.26 1.06 4.11 0.53
2Opt120 1.17 0.49 [1.06, 1.28] 0.33 2.9 0.35 0.99 2.76 0.49
2Opt360 1.14 0.46 [1.04, 1.24] 0.24 2.95 0.36 1.03 2.84 0.52
2Opt600 1.16 0.48 [1.05, 1.27] 0.36 2.93 0.38 1.07 2.88 0.55

Sa0 1 0 [1, 1] 1 1 1 1 1 0
Sa60 1.22 0.6 [1.08, 1.36] 0.23 5.16 0.26 1.06 4.11 0.53
Sa120 1.17 0.49 [1.06, 1.28] 0.33 2.9 0.35 0.99 2.76 0.49
Sa360 1.14 0.46 [1.04, 1.24] 0.24 2.95 0.36 1.03 2.84 0.52
Sa600 1.16 0.48 [1.05, 1.27] 0.36 2.93 0.38 1.07 2.88 0.55
Ts0 1 0 [1, 1] 1 1 1 1 1 0
Ts60 1.15 0.48 [1.04, 1.26] 0.47 3.4 0.47 1.02 3.37 0.51
Ts120 1.12 0.38 [1.04, 1.2] 0.42 2.25 0.44 1.04 2.17 0.53
Ts360 1.12 0.41 [1.03, 1.21] 0.28 2.51 0.33 1.08 2.49 0.55
Ts600 1.13 0.48 [1.02, 1.24] 0.37 3.06 0.38 1.04 3.04 0.53
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt60 1.07 0.43 [0.98, 1.16] 0.35 2.75 0.37 1 2.66 0.5
Opt120 1.2 0.58 [1.06, 1.34] 0.3 3.77 0.3 0.99 3.71 0.48
Opt360 1.12 0.39 [1.03, 1.21] 0.39 2.45 0.4 1.08 2.35 0.57
Opt600 1.16 0.56 [1.03, 1.29] 0.23 5.16 0.27 1.05 4.11 0.52

Table A.87: Performance ratios of tardiness relative to the online version of an algorithm in the
pickup and delivery service.

Maximum tardiness for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Srh0 172.29 0.33 [161.09, 183.49] 89 409.3 92.1 161.3 372.35
Srh60 178.52 0.34 [166.56, 190.48] 88.3 342.6 88.4 163.9 334.6 0.56
Srh120 176.33 0.27 [166.95, 185.71] 94.4 316 96.4 174.25 305.5 0.51
Srh360 186.76 0.31 [175.36, 198.16] 87.3 401.8 88.7 179.4 389.5 0.56
Srh600 181.5 0.32 [170.06, 192.94] 82.5 351.2 82.7 164.05 345.55 0.43
2Opt0 172.29 0.33 [161.09, 183.49] 89 409.3 92.1 161.3 372.35
2Opt60 178.52 0.34 [166.56, 190.48] 88.3 342.6 88.4 163.9 334.6 0.56
2Opt120 176.33 0.27 [166.95, 185.71] 94.4 316 96.4 174.25 305.5 0.51
2Opt360 186.76 0.31 [175.36, 198.16] 87.3 401.8 88.7 179.4 389.5 0.56
2Opt600 181.5 0.32 [170.06, 192.94] 82.5 351.2 82.7 164.05 345.55 0.43

Sa0 172.29 0.33 [161.09, 183.49] 89 409.3 92.1 161.3 372.35
Sa60 178.52 0.34 [166.56, 190.48] 88.3 342.6 88.4 163.9 334.6 0.56
Sa120 176.33 0.27 [166.95, 185.71] 94.4 316 96.4 174.25 305.5 0.51
Sa360 186.76 0.31 [175.36, 198.16] 87.3 401.8 88.7 179.4 389.5 0.56
Sa600 181.5 0.32 [170.06, 192.94] 82.5 351.2 82.7 164.05 345.55 0.43
Ts0 139.76 0.29 [131.78, 147.74] 81.3 306.3 81.95 132.1 281.1
Ts60 142.93 0.24 [136.17, 149.69] 55.1 266.8 61.95 137.05 249.05 0.55
Ts120 153.52 0.29 [144.75, 162.29] 82.6 298.4 83 145.75 280.95 0.59
Ts360 144.71 0.29 [136.44, 152.98] 70.5 296.5 71.3 138.35 287.75 0.39
Ts600 143.5 0.33 [134.17, 152.83] 51.5 353.9 52.55 133.45 307 0.42
Opt0 144.53 0.23 [137.98, 151.08] 78.4 251.2 84.1 139.7 242.3
Opt60 136.93 0.26 [129.92, 143.94] 55.1 243.1 69.6 127.85 234.3 0.43
Opt120 149.16 0.3 [140.35, 157.97] 81.2 319.9 81.65 144 314.4 0.57
Opt360 148.55 0.3 [139.77, 157.33] 70.5 304.1 74.85 143.05 300.3 0.38
Opt600 145.55 0.32 [136.38, 154.72] 53.3 353.9 53.45 140.4 313.95 0.42

Table A.88: Maximum tardinesses in the pickup and delivery service.

352 A Appendix

Performance ratios of maximum tardiness relative to Opt for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Srh0 1.28 0.4 [1.18, 1.38] 0.42 3.27 0.49 1.17 2.91 0.32
Srh60 1.34 0.43 [1.23, 1.45] 0.27 3.23 0.36 1.22 3.08 0.3
Srh120 1.35 0.52 [1.21, 1.49] 0.37 5.09 0.44 1.21 4.83 0.34
Srh360 1.39 0.4 [1.28, 1.5] 0.41 3.32 0.47 1.32 3.16 0.25
Srh600 1.39 0.56 [1.24, 1.54] 0.41 6.59 0.49 1.19 5.14 0.29
2Opt0 1.28 0.4 [1.18, 1.38] 0.42 3.27 0.49 1.17 2.91 0.32
2Opt60 1.34 0.43 [1.23, 1.45] 0.27 3.23 0.36 1.22 3.08 0.3
2Opt120 1.35 0.52 [1.21, 1.49] 0.37 5.09 0.44 1.21 4.83 0.34
2Opt360 1.39 0.4 [1.28, 1.5] 0.41 3.32 0.47 1.32 3.16 0.25
2Opt600 1.39 0.56 [1.24, 1.54] 0.41 6.59 0.49 1.19 5.14 0.29

Sa0 1.28 0.4 [1.18, 1.38] 0.42 3.27 0.49 1.17 2.91 0.32
Sa60 1.34 0.43 [1.23, 1.45] 0.27 3.23 0.36 1.22 3.08 0.3
Sa120 1.35 0.52 [1.21, 1.49] 0.37 5.09 0.44 1.21 4.83 0.34
Sa360 1.39 0.4 [1.28, 1.5] 0.41 3.32 0.47 1.32 3.16 0.25
Sa600 1.39 0.56 [1.24, 1.54] 0.41 6.59 0.49 1.19 5.14 0.29
Ts0 1.04 0.38 [0.96, 1.12] 0.31 2.9 0.4 0.97 2.7 0.53
Ts60 1.07 0.43 [0.98, 1.16] 0.43 3.93 0.44 1 3.08 0.5
Ts120 1.15 0.44 [1.05, 1.25] 0.26 4.57 0.37 1.06 3.49 0.44
Ts360 1.09 0.54 [0.97, 1.21] 0.45 5.56 0.45 0.99 3.99 0.51
Ts600 0.99 0.07 [0.98, 1] 0.68 1.28 0.69 1 1.22 0.2
Opt0 1.1 0.48 [1, 1.2] 0.26 4.71 0.39 0.99 3.79 0.51
Opt60 1.02 0.39 [0.94, 1.1] 0.44 3.1 0.45 0.93 2.88 0.58
Opt120 1.14 0.5 [1.03, 1.25] 0.4 4.57 0.42 1.05 3.95 0.44
Opt360 1.12 0.53 [1, 1.24] 0.45 5.56 0.45 1.02 4.02 0.49
Opt600 1 0 [1, 1] 1 1 1 1 1 0

Table A.89: Performance ratios of maximum tardiness relative to Opt in the pickup and delivery
service.

Performance ratios of maximum tardiness relative to online version for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Srh0 1 0 [1, 1] 1 1 1 1 1 0
Srh60 1.12 0.4 [1.03, 1.21] 0.32 2.31 0.37 1.08 2.24 0.56
Srh120 1.11 0.39 [1.02, 1.2] 0.36 3.06 0.41 1.01 3.01 0.52
Srh360 1.16 0.35 [1.08, 1.24] 0.35 2.48 0.43 1.04 2.45 0.55
Srh600 1.15 0.43 [1.05, 1.25] 0.43 3.48 0.46 1.03 2.97 0.53
2Opt0 1 0 [1, 1] 1 1 1 1 1 0
2Opt60 1.12 0.4 [1.03, 1.21] 0.32 2.31 0.37 1.08 2.24 0.56
2Opt120 1.11 0.39 [1.02, 1.2] 0.36 3.06 0.41 1.01 3.01 0.52
2Opt360 1.16 0.35 [1.08, 1.24] 0.35 2.48 0.43 1.04 2.45 0.55
2Opt600 1.15 0.43 [1.05, 1.25] 0.43 3.48 0.46 1.03 2.97 0.53

Sa0 1 0 [1, 1] 1 1 1 1 1 0
Sa60 1.12 0.4 [1.03, 1.21] 0.32 2.31 0.37 1.08 2.24 0.56
Sa120 1.11 0.39 [1.02, 1.2] 0.36 3.06 0.41 1.01 3.01 0.52
Sa360 1.16 0.35 [1.08, 1.24] 0.35 2.48 0.43 1.04 2.45 0.55
Sa600 1.15 0.43 [1.05, 1.25] 0.43 3.48 0.46 1.03 2.97 0.53
Ts0 1 0 [1, 1] 1 1 1 1 1 0
Ts60 1.08 0.32 [1.01, 1.15] 0.47 2.19 0.51 1.03 2.09 0.55
Ts120 1.16 0.34 [1.08, 1.24] 0.45 2.52 0.48 1.11 2.45 0.63
Ts360 1.1 0.36 [1.02, 1.18] 0.44 2.88 0.45 1.03 2.5 0.53
Ts600 1.08 0.39 [1, 1.16] 0.34 3.27 0.37 0.98 2.64 0.5
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt60 0.99 0.31 [0.93, 1.05] 0.36 2.08 0.39 0.94 1.99 0.43
Opt120 1.08 0.35 [1.01, 1.15] 0.53 2.15 0.54 0.99 2.03 0.49
Opt360 1.07 0.34 [1, 1.14] 0.47 2.03 0.48 0.99 2.02 0.49
Opt600 1.06 0.41 [0.97, 1.15] 0.21 3.9 0.28 1.01 2.91 0.51

Table A.90: Performance ratios of maximum tardiness relative to the online version of an algo-
rithm in the pickup and delivery service.

A.3 Numerical Results from Chapter 6 353

Utilization for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Srh0 0.93 0.05 [0.92, 0.94] 0.9 1 0.9 0.9 1
Srh60 0.98 0.04 [0.97, 0.99] 0.9 1 0.9 1 1 0.01
Srh120 0.99 0.03 [0.98, 1] 0.9 1 0.9 1 1 0.05
Srh360 0.99 0.03 [0.98, 1] 0.9 1 0.9 1 1 0.04
Srh600 0.99 0.04 [0.98, 1] 0.9 1 0.9 1 1 0.09
2Opt0 0.93 0.05 [0.92, 0.94] 0.9 1 0.9 0.9 1
2Opt60 0.98 0.04 [0.97, 0.99] 0.9 1 0.9 1 1 0.01
2Opt120 0.99 0.03 [0.98, 1] 0.9 1 0.9 1 1 0.05
2Opt360 0.99 0.03 [0.98, 1] 0.9 1 0.9 1 1 0.04
2Opt600 0.99 0.04 [0.98, 1] 0.9 1 0.9 1 1 0.09

Sa0 0.93 0.05 [0.92, 0.94] 0.9 1 0.9 0.9 1
Sa60 0.98 0.04 [0.97, 0.99] 0.9 1 0.9 1 1 0.01
Sa120 0.99 0.03 [0.98, 1] 0.9 1 0.9 1 1 0.05
Sa360 0.99 0.03 [0.98, 1] 0.9 1 0.9 1 1 0.04
Sa600 0.99 0.04 [0.98, 1] 0.9 1 0.9 1 1 0.09
Ts0 0.91 0.04 [0.9, 0.92] 0.8 1 0.85 0.9 1
Ts60 0.96 0.05 [0.95, 0.97] 0.9 1 0.9 1 1 0.04
Ts120 0.98 0.04 [0.97, 0.99] 0.9 1 0.9 1 1 0.09
Ts360 0.99 0.04 [0.98, 1] 0.9 1 0.9 1 1 0.07
Ts600 0.99 0.03 [0.98, 1] 0.9 1 0.9 1 1 0.05
Opt0 0.88 0.05 [0.87, 0.89] 0.8 0.9 0.8 0.9 0.9
Opt60 0.91 0.04 [0.9, 0.92] 0.8 1 0.8 0.9 1 0.01
Opt120 0.96 0.05 [0.95, 0.97] 0.9 1 0.9 1 1 0.02
Opt360 0.96 0.05 [0.95, 0.97] 0.9 1 0.9 1 1 0.26
Opt600 0.97 0.05 [0.96, 0.98] 0.9 1 0.9 1 1 0.13

Table A.91: Vehicle utilizations in the pickup and delivery service.

Performance ratios of utilization relative to Opt for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Srh0 0.96 0.06 [0.95, 0.97] 0.9 1.11 0.9 1 1.11 0.04
Srh60 1.01 0.06 [1, 1.02] 0.9 1.11 0.9 1 1.11 0.2
Srh120 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.22
Srh360 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.24
Srh600 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.2
2Opt0 0.96 0.06 [0.95, 0.97] 0.9 1.11 0.9 1 1.11 0.04
2Opt60 1.01 0.06 [1, 1.02] 0.9 1.11 0.9 1 1.11 0.2
2Opt120 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.22
2Opt360 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.24
2Opt600 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.2

Sa0 0.96 0.06 [0.95, 0.97] 0.9 1.11 0.9 1 1.11 0.04
Sa60 1.01 0.06 [1, 1.02] 0.9 1.11 0.9 1 1.11 0.2
Sa120 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.22
Sa360 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.24
Sa600 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.2
Ts0 0.94 0.06 [0.93, 0.95] 0.8 1.11 0.85 0.9 1.11 0.03
Ts60 0.99 0.06 [0.98, 1] 0.9 1.11 0.9 1 1.11 0.15
Ts120 1.01 0.05 [1, 1.02] 0.9 1.11 0.9 1 1.11 0.19
Ts360 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.21
Ts600 1.02 0.05 [1.01, 1.03] 0.9 1.11 0.9 1 1.11 0.2
Opt0 0.91 0.07 [0.9, 0.92] 0.8 1 0.8 0.9 1 0
Opt60 0.94 0.06 [0.93, 0.95] 0.8 1.11 0.8 0.9 1.11 0.02
Opt120 0.99 0.07 [0.98, 1] 0.9 1.11 0.9 1 1.11 0.17
Opt360 0.99 0.06 [0.98, 1] 0.9 1.11 0.9 1 1.11 0.13
Opt600 1 0 [1, 1] 1 1 1 1 1 0

Table A.92: Performance ratios of vehicle utilization relative to Opt in the pickup and delivery
service.

354 A Appendix

Performance ratios of utilization relative to online version for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Srh0 1 0 [1, 1] 1 1 1 1 1 0
Srh60 1.06 0.05 [1.05, 1.07] 0.9 1.11 0.95 1.11 1.11 0.01
Srh120 1.07 0.05 [1.06, 1.08] 0.9 1.11 0.9 1.11 1.11 0.02
Srh360 1.07 0.05 [1.06, 1.08] 0.9 1.11 0.9 1.11 1.11 0.02
Srh600 1.07 0.06 [1.06, 1.08] 0.9 1.11 0.9 1.11 1.11 0.03
2Opt0 1 0 [1, 1] 1 1 1 1 1 0
2Opt60 1.06 0.05 [1.05, 1.07] 0.9 1.11 0.95 1.11 1.11 0.01
2Opt120 1.07 0.05 [1.06, 1.08] 0.9 1.11 0.9 1.11 1.11 0.02
2Opt360 1.07 0.05 [1.06, 1.08] 0.9 1.11 0.9 1.11 1.11 0.02
2Opt600 1.07 0.06 [1.06, 1.08] 0.9 1.11 0.9 1.11 1.11 0.03

Sa0 1 0 [1, 1] 1 1 1 1 1 0
Sa60 1.06 0.05 [1.05, 1.07] 0.9 1.11 0.95 1.11 1.11 0.01
Sa120 1.07 0.05 [1.06, 1.08] 0.9 1.11 0.9 1.11 1.11 0.02
Sa360 1.07 0.05 [1.06, 1.08] 0.9 1.11 0.9 1.11 1.11 0.02
Sa600 1.07 0.06 [1.06, 1.08] 0.9 1.11 0.9 1.11 1.11 0.03
Ts0 1 0 [1, 1] 1 1 1 1 1 0
Ts60 1.05 0.06 [1.04, 1.06] 0.9 1.13 0.9 1.11 1.12 0.04
Ts120 1.08 0.05 [1.07, 1.09] 1 1.25 1 1.11 1.18 0
Ts360 1.08 0.05 [1.07, 1.09] 1 1.25 1 1.11 1.18 0
Ts600 1.08 0.05 [1.07, 1.09] 1 1.25 1 1.11 1.18 0
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt60 1.03 0.05 [1.02, 1.04] 0.89 1.13 0.94 1 1.13 0.01
Opt120 1.09 0.07 [1.07, 1.11] 1 1.25 1 1.11 1.25 0
Opt360 1.1 0.06 [1.09, 1.11] 1 1.25 1 1.11 1.25 0
Opt600 1.1 0.07 [1.08, 1.12] 1 1.25 1 1.11 1.25 0

Table A.93: Performance ratios of vehicle utilization relative to the online version of an algorithm
in the pickup and delivery service.

Throughput for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 % det.

Srh0 3.67 0.04 [3.64, 3.7] 3.2 4 3.25 3.7 4
Srh60 3.66 0.04 [3.63, 3.69] 3.3 4 3.3 3.7 4 0.29
Srh120 3.68 0.04 [3.65, 3.71] 3.3 4.1 3.35 3.7 4.05 0.2
Srh360 3.69 0.04 [3.66, 3.72] 3.2 4 3.3 3.7 3.95 0.29
Srh600 3.69 0.04 [3.66, 3.72] 3.4 4 3.4 3.7 3.95 0.27
2Opt0 3.67 0.04 [3.64, 3.7] 3.2 4 3.25 3.7 4
2Opt60 3.66 0.04 [3.63, 3.69] 3.3 4 3.3 3.7 4 0.29
2Opt120 3.68 0.04 [3.65, 3.71] 3.3 4.1 3.35 3.7 4.05 0.2
2Opt360 3.69 0.04 [3.66, 3.72] 3.2 4 3.3 3.7 3.95 0.29
2Opt600 3.69 0.04 [3.66, 3.72] 3.4 4 3.4 3.7 3.95 0.27

Sa0 3.67 0.04 [3.64, 3.7] 3.2 4 3.25 3.7 4
Sa60 3.66 0.04 [3.63, 3.69] 3.3 4 3.3 3.7 4 0.29
Sa120 3.68 0.04 [3.65, 3.71] 3.3 4.1 3.35 3.7 4.05 0.2
Sa360 3.69 0.04 [3.66, 3.72] 3.2 4 3.3 3.7 3.95 0.29
Sa600 3.69 0.04 [3.66, 3.72] 3.4 4 3.4 3.7 3.95 0.27
Ts0 3.69 0.03 [3.67, 3.71] 3.4 4 3.4 3.7 4
Ts60 3.7 0.04 [3.67, 3.73] 3.3 4 3.35 3.7 4 0.29
Ts120 3.7 0.04 [3.67, 3.73] 3.2 4 3.3 3.7 3.95 0.21
Ts360 3.7 0.03 [3.68, 3.72] 3.4 4.1 3.45 3.7 4 0.28
Ts600 3.69 0.03 [3.67, 3.71] 3.3 4.1 3.4 3.7 4.05 0.34
Opt0 3.67 0.03 [3.65, 3.69] 3.4 4 3.4 3.65 4
Opt60 3.67 0.03 [3.65, 3.69] 3.4 4 3.4 3.7 3.95 0.36
Opt120 3.67 0.04 [3.64, 3.7] 3.3 4 3.35 3.7 4 0.35
Opt360 3.68 0.04 [3.65, 3.71] 3.4 4.1 3.4 3.7 4.05 0.39
Opt600 3.68 0.03 [3.66, 3.7] 3.3 4 3.3 3.7 4 0.3

Table A.94: Job throughputs in the pickup and delivery service.

A.3 Numerical Results from Chapter 6 355

Performance ratios of throughput relative to Opt for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 F (1)

Srh0 1 0.04 [0.99, 1.01] 0.89 1.09 0.89 1 1.09 0.27
Srh60 1 0.04 [0.99, 1.01] 0.87 1.12 0.88 1 1.1 0.29
Srh120 1 0.04 [0.99, 1.01] 0.89 1.09 0.89 1 1.09 0.37
Srh360 1 0.03 [0.99, 1.01] 0.91 1.12 0.92 1 1.09 0.37
Srh600 1 0.04 [0.99, 1.01] 0.92 1.15 0.93 1 1.12 0.35
2Opt0 1 0.04 [0.99, 1.01] 0.89 1.09 0.89 1 1.09 0.27
2Opt60 1 0.04 [0.99, 1.01] 0.87 1.12 0.88 1 1.1 0.29
2Opt120 1 0.04 [0.99, 1.01] 0.89 1.09 0.89 1 1.09 0.37
2Opt360 1 0.03 [0.99, 1.01] 0.91 1.12 0.92 1 1.09 0.37
2Opt600 1 0.04 [0.99, 1.01] 0.92 1.15 0.93 1 1.12 0.35

Sa0 1 0.04 [0.99, 1.01] 0.89 1.09 0.89 1 1.09 0.27
Sa60 1 0.04 [0.99, 1.01] 0.87 1.12 0.88 1 1.1 0.29
Sa120 1 0.04 [0.99, 1.01] 0.89 1.09 0.89 1 1.09 0.37
Sa360 1 0.03 [0.99, 1.01] 0.91 1.12 0.92 1 1.09 0.37
Sa600 1 0.04 [0.99, 1.01] 0.92 1.15 0.93 1 1.12 0.35
Ts0 1 0.03 [0.99, 1.01] 0.95 1.09 0.95 1 1.09 0.36
Ts60 1.01 0.03 [1, 1.02] 0.89 1.12 0.91 1 1.1 0.36
Ts120 1 0.04 [0.99, 1.01] 0.86 1.12 0.89 1 1.1 0.35
Ts360 1.01 0.03 [1, 1.02] 0.95 1.12 0.95 1 1.11 0.41
Ts600 1 0.03 [0.99, 1.01] 0.95 1.15 0.96 1 1.11 0.28
Opt0 1 0.03 [0.99, 1.01] 0.92 1.09 0.92 1 1.08 0.3
Opt60 1 0.03 [0.99, 1.01] 0.92 1.09 0.92 1 1.09 0.31
Opt120 1 0.05 [0.99, 1.01] 0.87 1.14 0.87 1 1.13 0.34
Opt360 1 0.03 [0.99, 1.01] 0.92 1.12 0.93 1 1.09 0.34
Opt600 1 0 [1, 1] 1 1 1 1 1 0

Table A.95: Performance ratios of job throughput relative to Opt in the pickup and delivery
service.

Performance ratios of throughput relative to online version for n = 50 (100 samples)

Algorithm µ CV 95% CI min max q0.01 q0.5 q0.99 1− F (1)

Srh0 1 0 [1, 1] 1 1 1 1 1 0
Srh60 1 0.04 [0.99, 1.01] 0.92 1.09 0.92 1 1.09 0.29
Srh120 1.01 0.04 [1, 1.02] 0.89 1.12 0.91 1 1.12 0.25
Srh360 1.01 0.03 [1, 1.02] 0.91 1.13 0.92 1 1.12 0.24
Srh600 1.01 0.04 [1, 1.02] 0.92 1.12 0.92 1 1.1 0.29
2Opt0 1 0 [1, 1] 1 1 1 1 1 0
2Opt60 1 0.04 [0.99, 1.01] 0.92 1.09 0.92 1 1.09 0.29
2Opt120 1.01 0.04 [1, 1.02] 0.89 1.12 0.91 1 1.12 0.25
2Opt360 1.01 0.03 [1, 1.02] 0.91 1.13 0.92 1 1.12 0.24
2Opt600 1.01 0.04 [1, 1.02] 0.92 1.12 0.92 1 1.1 0.29

Sa0 1 0 [1, 1] 1 1 1 1 1 0
Sa60 1 0.04 [0.99, 1.01] 0.92 1.09 0.92 1 1.09 0.29
Sa120 1.01 0.04 [1, 1.02] 0.89 1.12 0.91 1 1.12 0.25
Sa360 1.01 0.03 [1, 1.02] 0.91 1.13 0.92 1 1.12 0.24
Sa600 1.01 0.04 [1, 1.02] 0.92 1.12 0.92 1 1.1 0.29
Ts0 1 0 [1, 1] 1 1 1 1 1 0
Ts60 1 0.03 [0.99, 1.01] 0.87 1.09 0.89 1 1.09 0.29
Ts120 1 0.04 [0.99, 1.01] 0.84 1.09 0.88 1 1.09 0.3
Ts360 1 0.03 [0.99, 1.01] 0.92 1.06 0.92 1 1.06 0.25
Ts600 1 0.03 [0.99, 1.01] 0.92 1.06 0.93 1 1.06 0.29
Opt0 1 0 [1, 1] 1 1 1 1 1 0
Opt60 1 0.04 [0.99, 1.01] 0.92 1.11 0.92 1 1.1 0.36
Opt120 1 0.05 [0.99, 1.01] 0.88 1.14 0.89 1 1.13 0.38
Opt360 1 0.04 [0.99, 1.01] 0.89 1.11 0.91 1 1.1 0.29
Opt600 1 0.04 [0.99, 1.01] 0.92 1.09 0.93 1 1.09 0.3

Table A.96: Performance ratios of job throughput relative to the online version of an algorithm
in the pickup and delivery service.

357

References

[1] Ahlroth, L.; Schumacher, A.; Haanpää, H.: On the power of lookahead in
online lot-sizing. In: Operations Research Letters, 38 (6), 522–526, 2010. 5, 89

[2] Albers, S.: On the influence of lookahead in competitive paging algorithms. In:
Algorithmica, 18 (3), 283–305, 1997. 5, 12, 24, 81, 89

[3] Albers, S.: A competitive analysis of the list update problem with lookahead. In:
Theoretical Computer Science, 197 (1-2), 95–109, 1998. 5, 89

[4] Albers, S.; Favrholdt, L.; Giel, O.: On paging with locality of reference. In:
Journal of Computer and System Sciences, 70 (2), 145–175, 2005. 38, 40, 154

[5] Albers, S.; Möhring, R.; Pflug, G.; Schultz, R.: Summary. In: S. Albers;
R. Möhring; G. Pflug; R. Schultz (eds.), Algorithms for Optimization with
Incomplete Information, 2005. 6

[6] Albers, S.; Mitzenmacher, M.: Average-case analyses of first fit and random fit
bin packing. In: Random Structures and Algorithms, 16 (3), 240–259, 2000. 46

[7] Allulli, L.; Ausiello, G.; Bonifaci, V.; Laura, L.: On the power of lookahead
in on-line server routing problems. In: Theoretical Computer Science, 408 (2-3), 116–
128, 2008. 5, 8, 31, 81, 89

[8] Allulli, L.; Ausiello, G.; Laura, L.: On the power of lookahead in on-line
vehicle routing problems. In: L. Wang (ed.), Computing and Combinatorics, 728–
736, Springer, 2005. 5, 8, 89

[9] Angelopoulos, S.; Dorrigiv, R.; López-Ortiz, A.: On the separation and
equivalence of paging strategies. In: Proceedings of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 229–237, 2007. 38, 49, 50, 266

[10] Angelopoulos, S.; Schweitzer, P.: Paging and list update under bijective anal-
ysis. In: Journal of the ACM, 60 (2), article no. 7, 2013. 38, 50, 266

[11] Ausiello, G.; Allulli, L.; Bonifaci, V.; Laura, L.: On-line algorithms, real
time, the virtue of laziness, and the power of clairvoyance. In: J. Cai; S. Cooper;
A. Li (eds.), Theory and Applications of Models of Computation, 1–20, Springer, 2006.
5, 8, 38, 40, 89

358 References

[12] Ausiello, G.; Crescenzi, P.; Kann, V.; Marchetti-Spaccalema, A.; Gam-
bosi, G.; Spaccamela, A.: Complexity and Approximation: Combinatorial Opti-
mization Problems and their Approximability Properties. Springer, 2nd edition, 2003.
16, 17, 25, 27, 28, 29

[13] Ausiello, G.; Feuerstein, E.; Leonardi, S.; Stougie, L.; Talamo, M.:
Competitive algorithms for the on-line traveling salesman. In: S. Akl; F. Dehne;
J. Sack; N. Santoro (eds.), Algorithms and Data Structures, 206–217, Springer,
1995. 31

[14] Baker, B.: A new proof for the first-fit decreasing bin-packing algorithm. In: Journal
of Algorithms, 6 (1), 49–70, 1985. 175

[15] Becchetti, L.: Modeling locality: A probabilistic analysis of LRU and FWF. In:
S. Albers; T. Radzik (eds.), Algorithms ESA 2004, 98–109, Springer, 2004. 38, 47

[16] Becchetti, L.; Leonardi, S.; Marchetti-Spaccamela, A.; Schäfer, G.;
Vredeveld, T.: Average-case and smoothed competitive analysis of the multilevel
feedback algorithm. In: Mathematics of Operations Research, 31 (1), 85–108, 2006. 38,
44

[17] Belady, L.: A study of replacement algorithms for a virtual-storage computer. In:
IBM Systems Journal, 5 (2), 78–101, 1966. 11, 156

[18] Bellman, R.: Dynamic Programming. Princeton University Press, 1957. 92

[19] Bellmore, M.; Nemhauser, G.: The traveling salesman problem: A survey. In:
Operations Research, 16 (3), 538–558, 1968. 30

[20] Ben-David, S.; Borodin, A.: A new measure for the study of on-line algorithms.
In: Algorithmica, 11 (1), 73–91, 1994. 5, 38, 42, 89

[21] Ben-David, S.; Borodin, A.; Karp, R.; Tardos, G.; Wigderson, A.: On the
power of randomization in on-line algorithms. In: Algorithmica, 11 (1), 2–14, 1994. 38,
45, 73, 74

[22] Bent, R.; Van Hentenryck, P.: Regrets only! Online stochastic optimization
under time constraints. In: Proceedings of the 19th National Conference on Artificial
Intelligence, 501–506, 2004. 6, 266

[23] Bent, R.; Van Hentenryck, P.: The value of consensus in online stochastic
scheduling. In: Proceedings of the 14th International Conference on Automated Plan-
ning and Scheduling, 219–226, 2004. 266

[24] Bent, R.; Van Hentenryck, P.: Online stochastic and robust optimization. In:
M. Maher (ed.), Advances in Computer Science - ASIAN 2004: Higher-Level Decision
Making, 3237–3238, Springer, 2005. 4, 6, 266

[25] Bent, R.; Van Hentenryck, P.: Online Stochastic Combinatorial Optimization.
The MIT Press, 2006. 266

References 359

[26] Bentley, J.; Johnson, D.; Leighton, F.; McGeoch, C.; McGeoch, L.: Some
unexpected expected behavior results for bin packing. In: Proceedings of the 16th
Annual ACM Symposium on Theory of Computing, 279–288, 1984. 46

[27] Berbeglia, G.; Cordeau, J.; Laporte, G.: Dynamic pickup and delivery prob-
lems. In: European Journal of Operational Research, 202 (1), 8–15, 2010. 239

[28] Berman, P.; Coulston, C.: Speed is more powerful than clairvoyance. In: Nordic
Journal of Computing, 6 (2), 181–193, 1999. 267

[29] Bertsimas, D.; Brown, D.; Caramanis, C.: Theory and applications of robust
optimization. In: SIAM Review, 53 (3), 464–501, 2011. 6

[30] B lažewicz, J.; Ecker, K.; Pesch, E.; Schmidt, G.; Wȩglarz, J. (eds.): Hand-
book on Scheduling: From Theory to Applications. Springer, 2007. 201

[31] Blom, M.; Krumke, S.; de Paepe, W.; Stougie, L.: The online TSP against fair
adversaries. In: G. Bongiovanni; R. Petreschi; G. Gambosi (eds.), Algorithms
and Complexity, 137–149, Springer, 2000. 38, 40

[32] Borodin, A.; El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998. 4, 5, 11, 30, 38, 39, 45, 74, 86

[33] Borodin, A.; Irani, S.; Raghavan, P.; Schieber, B.: Competitive paging with
locality of reference. In: Journal of Computer and System Sciences, 50 (2), 244 – 258,
1995. 38, 40, 154

[34] Bosman, P.; La Poutré, H.: Online transportation and logistics using compu-
tationally intelligent anticipation. In: A. Fink; F. Rothlauf (eds.), Advances in
Computational Intelligence in Transport, Logistics, and Supply Chain Management,
185–208, Springer, 2008. 5, 89

[35] Boyar, J.; Favrholdt, L.: The relative worst order ratio for online algorithms. In:
ACM Transactions on Algorithms, 3 (2), article no. 22, 2007. 38, 43

[36] Boyar, J.; Favrholdt, L.; Larsen, K.: The relative worst order ratio applied
to paging. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, 718–727, 2005. 43

[37] Boyar, J.; Favrholdt, L.; Larsen, K.; Nielsen, M.: Extending the accommo-
dating function. In: Acta Informatica, 40 (1), 3–35, 2003. 38, 41

[38] Boyar, J.; Irani, S.; Larsen, K.: A comparison of performance measures for online
algorithms. In: Proceedings of the 11th International Symposium on Algorithms and
Data Structures, 119–130, 2009. 37, 43

[39] Boyar, J.; Larsen, K.; Nielsen, M.: The accommodating function: A generaliza-
tion of the competitive ratio. In: SIAM Journal on Computing, 31 (1), 233–258, 2002.
38, 41

[40] Boyar, J.; Medvedev, P.: The relative worst order ratio applied to seat reservation.
In: ACM Transactions on Algorithms, 4 (4), article no. 48, 2008. 43

360 References

[41] Breslauer, D.: On competitive on-line paging with lookahead. In: Theoretical Com-
puter Science, 209 (1–2), 365 – 375, 1998. 5, 12, 13, 89

[42] Burkard, R.: Travelling salesman and assignment problems: A survey. In: Discrete
Optimization I Proceedings of the Advanced Research Institute on Discrete Optimiza-
tion and Systems Applications of the Systems Science Panel of NATO and of the
Discrete Optimization Symposium, 193–215, 1979. 30

[43] Cassandras, C.; Lafortune, S.: Introduction to Discrete Event Systems. Springer,
2nd edition, 2008. 62, 63, 65, 67, 68

[44] Christofides, N.: Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University, 1976. 31

[45] Chung, F.; Graham, R.; Saks, M.: A dynamic location problem for graphs. In:
Combinatorica, 9 (2), 111–131, 1989. 5, 89

[46] Coffman, Jr., E.; Courcoubetis, C.; Garey, M.; Johnson, D.; Shor, P.;
Weber, R.; Yannakakis, M.: Perfect packing theorems and the average-case be-
havior of optimal and online bin packing. In: SIAM Review, 44 (1), 95–108, 2002.
46

[47] Coffman, Jr., E.; Garey, M.; Johnson, D.: Approximation algorithms for bin
packing: A survey. In: D. Hochbaum (ed.), Approximation Algorithms for NP-Hard
Problems, 46–93, PWS Publishing, 1997. 46

[48] Coffman, Jr., E.; Gilbert, E.: On the expected relative performance of list
scheduling. In: Operations Research, 33 (3), pp. 548–561, 1985. 46

[49] Coffman, Jr., E.; Johnson, D.; Shor, P.; Weber, R.: Markov chains, computer
proofs, and average-case analysis of best fit bin packing. In: Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, 412–421, 1993. 46

[50] Coffman, Jr., E.; So, K.; Hofri, M.; Yao, A.: A stochastic model of bin-packing.
In: Information and Control, 44 (2), 105–115, 1980. 46

[51] Coleman, B.: Quality vs. performance in lookahead scheduling. In: Proceedings of
the 9th International Joint Conference on Information Science, 324–327, 2006. 5, 89

[52] Cook, S.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, 151–158, 1971. 27

[53] Cordeau, J.; Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-
a-ride problem. In: Transportation Research Part B: Methodological, 37 (6), 579–594,
2003. 239, 242, 243

[54] Cormen, T.; Leiserson, C.; Rivest, R.; Stein, C.: Introduction to Algorithms.
The MIT Press, 3rd edition, 2009. 15, 25, 26, 29, 267

References 361

[55] Csirik, J.; Woeginger, G.: On-line packing and covering problems. In: A. Fiat;
G. Woeginger (eds.), Online Algorithms: The State of the Art, 147–177, Springer,
1998. 11, 46, 111, 112, 166, 176, 187

[56] Csirik, J.; Woeginger, G.: Resource augmentation for online bounded space bin
packing. In: Journal of Algorithms, 44 (2), 308–320, 2002. 38, 39, 267

[57] de Koster, R.; Le-Duc, T.; Roodbergen, K.: Design and control of warehouse
order picking: A literature review. In: European Journal of Operational Research,
182 (2), 481–501, 2007. 220

[58] Demeulemeester, E.; Herroelen, W.: Project Scheduling: A Research Hand-
book. Kluwer, 2002. 266

[59] Denning, P.: The working set model for program behavior. In: Communications of
the ACM, 11 (5), 323–333, 1968. 40

[60] Denning, P.: Working sets past and present. In: IEEE Transactions on Software
Engineering, 6 (1), 64–84, 1980. 40

[61] Desaulniers, G.; Desrosiers, J.; Solomon, M. (eds.): Column Generation.
Springer, 2005. 98

[62] Deutsch, E.: Dyck path enumeration. In: Discrete Mathematics, 204 (1–3), 167–202,
1999. 119

[63] Deutsch, E.; Shapiro, L.: A survey of the Fine numbers. In: Discrete Mathematics,
241 (1-3), 241–265, 2001. 119, 121

[64] Dooly, D.; Goldman, S.; Scott, S.: On-line analysis of the TCP acknowledgment
delay problem. In: Journal of the ACM, 48 (2), 243–273, 2001. 5, 89

[65] Dorrigiv, R.: Alternative Measures for the Analysis of Online Algorithms. Ph.D.
thesis, University of Waterloo, 2010. 36, 37, 50, 262

[66] Dorrigiv, R.; López-Ortiz, A.: Closing the gap between theory and practice:
New measures for on-line algorithm analysis. In: Proceedings of the 2nd International
Conference on Algorithms and Computation, 13–24, 2008. 38, 41

[67] Dorrigiv, R.; López-Ortiz, A.; Munro, J.: On the relative dominance of paging
algorithms. In: Theoretical Computer Science, 410 (38-40), 3694–3701, 2009. 38, 47,
48

[68] Dunke, F.; Nickel, S.: Simulative algorithm analysis in online optimization with
lookahead. In: W. Dangelmaier; C. Laroque; A. Klaas (eds.), Simulation
in Produktion und Logistik: Entscheidungsunterstützung von der Planung bis zur
Steuerung, 405–416, HNI-Verlagsschriftenreihe, 2013. 38, 75, 219

[69] Dyckhoff, H.; Finke, U.: Cutting and Packing in Production and Distribution: A
Typology and Bibliography. Physica, 1992. 9

[70] Ehrgott, M.: Multicriteria Optimization. Springer, 2nd edition, 2005. 248

362 References

[71] Epstein, L.; van Stee, R.: Online bin packing with resource augmentation. In:
G. Persiano; R. Solis-Oba (eds.), Approximation and Online Algorithms, 23–35,
Springer, 2005. 38, 39, 267

[72] Esen, M.: Design, Implementation and Analysis of Online Bin Packing Problems.
Master’s thesis, Technische Universität Kaiserslautern, 2000. 167, 168, 169, 266

[73] Fiat, A.; Woeginger, G.: Competitive odds and ends. In: A. Fiat; G. Woeg-
inger (eds.), Online Algorithms: The State of the Art, 385–394, Springer, 1998. 36,
262

[74] Fiat, A.; Woeginger, G. (eds.): Online Algorithms: The State of the Art. Springer,
1998. 4, 5, 15, 154

[75] Franaszek, P.; Wagner, T.: Some distribution-free aspects of paging algorithm
performance. In: Journal of the ACM, 21 (1), 31–39, 1974. 46

[76] Fujiwara, H.; Iwama, K.: Average-case competitive analyses for ski-rental prob-
lems. In: Algorithmica, 42 (1), 95–107, 2005. 46

[77] Garey, M.; Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979. 9, 16, 25, 26, 27, 28

[78] Ghiani, G.; Laporte, G.; Musmanno, R.: Introduction to Logistics Systems
Planning and Control. Wiley, 2004. 1

[79] Glover, F.: Tabu search – Part I. In: ORSA Journal on Computing, 1 (3), 190–206,
1989. 191

[80] Graham, R.: Bounds for certain multiprocessing anomalies. In: Bell System Technical
Journal, 45 (9), 1563–1581, 1966. 38, 39

[81] Graham, R.; Lawler, E.; Lenstra, J.; Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: A survey. In: Discrete Optimiza-
tion II Proceedings of the Advanced Research Institute on Discrete Optimization and
Systems Applications of the Systems Science Panel of NATO and of the Discrete Op-
timization Symposium, 287 – 326, 1979. 87, 202

[82] Gross, J.; Yellen, J. (eds.): Handbook of Graph Theory. CRC Press, 2004. 267

[83] Grove, E.: Online bin packing with lookahead. In: Proceedings of the 6th Annual
ACM-SIAM Symposium on Discrete Algorithms, 430–436, 1995. 5, 9, 10, 11, 81, 89

[84] Grötschel, M.; Krumke, S.; Rambau, J. (eds.): Online Optimization of Large
Scale Systems. Springer, 2001. 3, 4, 74, 267

[85] Grötschel, M.; Krumke, S.; Rambau, J.; Winter, T.; Zimmermann, U.:
Combinatorial online optimization in real time. In: M. Grötschel; S. Krumke;
J. Rambau (eds.), Online Optimization of Large Scale Systems, 679–704, Springer,
2001. 3, 4, 6, 20, 74, 267

[86] Gutin, G.; Jensen, T.; Yeo, A.: Batched bin packing. In: Discrete Optimization,
2 (1), 71–82, 2005. 5, 89

References 363

[87] Halldórsson, M.; Szegedy, M.: Lower bounds for on-line graph coloring. In:
Theoretical Computer Science, 130 (1), 163–174, 1994. 5, 89

[88] Heinz, S.: The Online Target Date Assignment Problem. Master’s thesis, Konrad-
Zuse-Zentrum für Informationstechnik Berlin, 2005. 2

[89] Henn, S.; Koch, S.; Wäscher, G.: Order batching in order picking warehouses:
A survey of solution approaches. In: R. Manzini (ed.), Warehousing in the Global
Supply Chain, 105–137, Springer, 2012. 220, 223, 224

[90] Hiller, B.: Online Optimization: Probabilistic Analysis and Algorithm Engineering.
Ph.D. thesis, Technische Universität Berlin, 2009. 38, 47, 48, 49, 51, 68, 69, 266

[91] Hiller, B.; Vredeveld, T.: Probabilistic alternatives for competitive analysis. In:
Computer Science - Research and Development, 27 (3), 189–196, 2012. 37

[92] Huber, C.: Throughput Analysis of Manual Order Picking Systems with Congestion
Consideration. Ph.D. thesis, Karlsruher Institut für Technologie, 2011. 220, 221

[93] Imreh, C.; Németh, T.: On time lookahead algorithms for the online data acknowl-
edgement problem. In: L. Kucera; A. Kucera (eds.), Mathematical Foundations
of Computer Science 2007, 288–297, Springer, 2007. 5, 89

[94] Irani, S.: Coloring inductive graphs on-line. In: Algorithmica, 11 (1), 53–72, 1994. 5,
89

[95] Jaillet, P.; Lu, X.: Online traveling salesman problems with service flexibility. In:
Networks, 58 (2), 137–146, 2011. 5, 89

[96] Jaillet, P.; Wagner, M.: Online routing problems: Value of advanced information
as improved competitive ratios. In: Transportation Science, 40 (2), 200–210, 2006. 5,
8, 89

[97] Jaynes, E.: Information theory and statistical mechanics. In: Physical Review,
106 (4), 620–630, 1957. 51, 92, 262

[98] Jaynes, E.: Information theory and statistical mechanics II. In: Physical Review,
108 (2), 171–190, 1957. 51, 92, 262

[99] Johnson, D.: Near-Optimal Bin Packing Algorithms. Ph.D. thesis, Massachusetts
Institute of Technology, 1973. 38, 39

[100] Johnson, D.: Fast algorithms for bin packing. In: Journal of Computer and System
Sciences, 8 (3), 272–314, 1974. 38, 39

[101] Kallrath, J.: Online Storage Systems and Transportation Problems with Applica-
tions: Optimization Models and Mathematical Solutions. Springer, 2005. 8, 10, 222,
242, 243, 247

[102] Kalyanasundaram, B.; Pruhs, K.: Speed is as powerful as clairvoyance. In: Jour-
nal of the ACM, 47 (4), 617–643, 2000. 38, 39, 267

364 References

[103] Karlin, A.: On the performance of competitive algorithms in practice. In: A. Fiat;
G. Woeginger (eds.), Online Algorithms: The State of the Art, 373–384, Springer,
1998. 101

[104] Karlin, A.; Manasse, M.; Rudolph, L.; Sleator, D.: Competitive snoopy
caching. In: Algorithmica, 3 (1-4), 79–119, 1988. 38, 39

[105] Karlin, A.; Phillips, S.; Raghavan, P.: Markov paging. In: SIAM Journal on
Computing, 30 (3), 906–922, 2000. 46

[106] Karmarkar, N.: Probabilistic analysis of some bin-packing problems. In: Proceed-
ings of the 23rd Annual Symposium on Foundations of Computer Science, 107–111,
1982. 46

[107] Karp, R.: On-line algorithms versus off-line algorithms: How much is it worth to
know the future? In: Proceedings of the IFIP 12th World Computer Congress on
Algorithms, Software, Architecture, 416–429, 1992. 150

[108] Kenyon, C.: Best-fit bin-packing with random order. In: Proceedings of the 7th
Annual ACM-SIAM Symposium on Discrete Algorithms, 359–364, 1996. 38, 44, 45

[109] Kenyon, C.; Rabani, Y.; Sinclair, A.: Biased random walks, Lyapunov functions,
and stochastic analysis of best fit bin packing. In: Journal of Algorithms, 27 (2), 218–
235, 1998. 46

[110] Khachiyan, L.: On the complexity of computing the volume of a polytope. In: En-
gineering Cybernet, 3, 45–46, 1988. 62

[111] Khachiyan, L.: Computing the volume of polytopes and polyhedra is hard. In: Rus-
sian Mathematical Surveys, 44 (3), 199–200, 1989. 62

[112] Khachiyan, L.: Complexity of polytope volume computation. In: New Trends in
Discrete and Computational Geometry, 3, 91–101, 1993. 62

[113] Kiniwa, J.; Hamada, T.; Mizoguchi, D.: Lookahead scheduling requests for mul-
tisize page caching. In: IEEE Transactions on Computers, 50 (9), 972–983, 2001. 5,
89

[114] Königsberger, K.: Analysis 1. Springer, 5th edition, 2001. 130

[115] Koutsoupias, E.; Papadimitriou, C.: Beyond competitive analysis. In: SIAM
Journal of Computing, 30 (1), 300–317, 2000. 5, 38, 42, 47, 89

[116] Krumke, S.: Online Optimization: Competitive Analysis and Beyond. Habilitation,
Technische Universität Berlin, 2002. 20, 31

[117] Krumke, S.; de Paepe, W.; Poensgen, D.; Stougie, L.: News from the online
traveling repairman. In: Theoretical Computer Science, 295 (1–3), 279 – 294, 2003. 31

[118] Larsen, A.; Madsen, O.; Solomon, M.: Recent developments in dynamic vehicle
routing systems. In: B. Golden; S. Raghavan; E. Wasil (eds.), The Vehicle
Routing Problem: Latest Advances and New Challenges, 199–218, Springer, 2008. 7

References 365

[119] Lavrov, A.; Nickel, S.: Simulation und Optimierung zur Planung von Kommis-
sionierungssystemen. VDI-Seminar, 2005. 2, 70

[120] Lawler, E.; Lenstra, J.; Rinnooy Kan, A.; Shmoys, D. (eds.): The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, 1985. 189,
190, 192, 243

[121] Lee, C.; Lee, D.: A simple on-line bin-packing algorithm. In: Journal of the ACM,
32 (3), 562–572, 1985. 46

[122] Lenstra, J.; Rinnooy Kan, A.: Some simple applications of the travelling salesman
problem. In: Operational Research Quarterly, 26 (4), 717–733, 1975. 134

[123] Li, W.; Yuan, J.; Cao, J.; Bu, H.: Online scheduling of unit length jobs on a
batching machine to maximize the number of early jobs with lookahead. In: Theoretical
Computer Science, 410 (47–49), 5182–5187, 2009. 5, 89

[124] Lin, S.; Kernighan, B.: An effective heuristic algorithm for the travelling-salesman
problem. In: Operations Research, 21 (2), 498–516, 1973. 31

[125] Lucas, K.; Roosen, P. (eds.): Emergence, Analysis and Evolution of Structures:
Concepts and Strategies across Disciplines. Springer, 2010. 3

[126] Lunze, J.: Ereignisdiskrete Systeme: Modellierung und Analyse dynamischer Systeme
mit Automaten, Markovketten und Petrinetzen. Oldenbourg, 2006. 62, 63, 64, 65, 67,
68

[127] Lévêque, O.: Random matrices and communication systems. Lecture Notes,
École Polytechnique Fédérale de Lausanne, available online at http://ipg.epfl.

ch/~leveque/LectureNotes/rm_lecture_notes.pdf (visited on January 2nd, 2014),
2012. 269

[128] Manasse, M.: Ski rental problem. In: M. Kao (ed.), Encyclopedia of Algorithms,
849–851, Springer, 2008. 101, 103

[129] Mandelbaum, M.; Shabtay, D.: Scheduling unit length jobs on parallel machines
with lookahead information. In: Journal of Scheduling, 14 (4), 335–350, 2011. 5, 89

[130] Mao, W.; Kincaid, R.: A look-ahead heuristic for scheduling jobs with release dates
on a single machine. In: Computers and Operations Research, 21 (10), 1041 – 1050,
1994. 5, 89

[131] Michaels, J.; Rosen, K.: Applications of Discrete Mathematics. McGraw-Hill,
1991. 119, 269

[132] Miller, C.; Tucker, A.; Zemlin, R.: Integer programming formulation of travel-
ing salesman problems. In: Journal of the ACM, 7 (4), 326–329, 1960. 192, 228

[133] Müller, A.; Stoyan, D.: Comparison Methods for Stochastic Models and Risks.
Wiley, 2002. 48

http://ipg.epfl.ch/~leveque/LectureNotes/rm_lecture_notes.pdf
http://ipg.epfl.ch/~leveque/LectureNotes/rm_lecture_notes.pdf

366 References

[134] Motwani, R.; Saraswat, V.; Torng, E.: Online scheduling with lookahead:
Multipass assembly lines. In: INFORMS Journal on Computing, 10 (3), 331–340, 1998.
5, 89

[135] März, L.; Krug, W.: Kopplung von Simulation und Optimierung. In: W. Krug;
O. Rose; G. Weigert (eds.), Simulation und Optimierung in Produktion und Lo-
gistik: Praxisorientierter Leitfaden mit Fallbeispielen, 41–45, Springer, 2011. 1, 70

[136] Naaman, N.; Rom, R.: Average case analysis of bounded space bin packing algo-
rithms. In: Algorithmica, 50 (1), 72–97, 2007. 38, 45, 46

[137] Papula, L.: Mathematische Formelsammlung. Vieweg+Teubner, 10th edition, 2009.
186

[138] Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, 4th edition,
2012. 201, 202, 203, 210

[139] Psaraftis, H.: Dynamic vehicle routing: Status and prospects. In: Annals of Oper-
ations Research, 61 (1), 143–164, 1995. 7

[140] Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, 2005. 92

[141] Rabe, M.; Spieckermann, S.; Wenzel, S.: Verifikation und Validierung für die
Simulation in Produktion und Logistik: Vorgehensmodelle und Techniken. Springer,
2008. 70

[142] Ramanan, P.: Average-case analysis of the smart next fit algorithm. In: Information
Processing Letters, 31 (5), 221–225, 1989. 46

[143] Regev, A.: A proof of Catalan’s convolution formula. In: Integers, 12 (5), 929–934,
2012. 126, 128

[144] Remy, J.; Souza, A.; Steger, A.: On an online spanning tree problem in randomly
weighted graphs. In: Combinatorics, Probability and Computing, 16 (1), 127–144, 2007.
46

[145] Scharbrodt, M.; Schickinger, T.; Steger, A.: A new average case analysis for
completion time scheduling. In: Journal of the ACM, 53 (1), 121–146, 2006. 38, 46

[146] Shapiro, L.: A Catalan triangle. In: Discrete Mathematics, 14 (1), 83–90, 1976. 114,
121, 125

[147] Shor, P.: The average-case analysis of some on-line algorithms for bin packing. In:
Combinatorica, 6 (2), 179–200, 1986. 46, 175

[148] Simchi-Levi, D.; Kaminsky, P.; Simchi-Levi, E.: Designing and Managing the
Supply Chain: Concepts, Strategies, and Case Studies. McGraw-Hill, 3rd edition, 2008.
1

[149] Sleator, D.; Tarjan, R.: Amortized efficiency of list update and paging rules. In:
Communications of the ACM, 28 (2), 202–208, 1985. 11, 38, 39, 155, 267

References 367

[150] Sleator, D.; Tarjan, R.: Self-adjusting binary search trees. In: Journal of the
ACM, 32 (3), 652–686, 1985. 38, 39

[151] Souza, A.: Average Performance Analysis. Ph.D. thesis, Eidgenössische Technische
Hochschule Zürich, 2006. 5, 38, 45, 46

[152] Souza, A.; Steger, A.: The expected competitive ratio for weighted completion
time scheduling. In: V. Diekert; M. Habib (eds.), STACS 2004, 620–631, Springer,
2004. 46

[153] Spielman, D.; Teng, S.: Smoothed analysis of algorithms: Why the simplex algo-
rithm usually takes polynomial time. In: Journal of the ACM, 51 (3), 385–463, 2004.
38, 44

[154] Stadtler, H.; Kilger, C. (eds.): Supply Chain Management and Advanced Plan-
ning: Concepts, Models, Software, and Case Studies. Springer, 4th edition, 2008. 1

[155] Tinkl, M.: Online-Optimierung der Rundreise auf der Kreislinie mit Informationsvor-
lauf. Ph.D. thesis, Universität Augsburg, 2011. 5, 11, 18, 33, 80, 81, 85, 89

[156] Torng, E.: A unified analysis of paging and caching. In: Algorithmica, 20 (2), 175–
200, 1998. 5, 89

[157] Torres, L.: Online Vehicle Routing: Set Partitioning Problems. Cuvillier, 2004. 20

[158] Toth, P.; Vigo, D. (eds.): The Vehicle Routing Problem. SIAM, 2002. 8, 239

[159] Verein Deutscher Ingenieure (VDI): VDI-Richtlinie 3633. Simulation von
Logistik-, Materialfluß- und Produktionssystemen: Begriffsdefinitionen. In: VDI-
Handbuch Materialfluß und Fördertechnik, Beuth, 1996. 62, 69

[160] Woeginger, G.: Exact algorithms for NP-hard problems: A survey. In: M. Jünger;
G. Reinelt; G. Rinaldi (eds.), Combinatorial Optimization - Eureka, You Shrink!,
185–207, Springer, 2003. 28

[161] Yang, D.; Nair, G.; Sivaramakrishnan, B.; Jayakumar, H.: Round robin with
look ahead: A new scheduling algorithm for bluetooth. In: Proceedings of the 2002
International Conference on Parallel Processing Workshops, 45–50, 2002. 5, 89

[162] Ye, Y.; Agrawal, S.; Wang, Z.: A dynamic near-optimal algorithm for online
linear programming. Working Paper, available online at http://www.stanford.edu/

~yyye/onlineLPv4.pdf (visited on January 2nd, 2014), 2009. 97, 98

[163] Yeh, T.; Kuo, C.; Lei, C.; Yen, H.: Competitive analysis of on-line disk schedul-
ing. In: T. Asano; Y. Igarashi; H. Nagamochi; S. Miyano; S. Suri (eds.),
Algorithms and Computation, 356–365, Springer, 1996. 5, 89

[164] Young, N.: Competitive Paging And Dual-Guided On-Line Weighted Caching And
Matching Algorithms. Ph.D. thesis, Princeton University, 1991. 5, 12, 89, 154

[165] Young, N.: The k -server dual and loose competitiveness for paging. In: Algorithmica,
11 (6), 525–541, 1994. 38, 40

http://www.stanford.edu/~yyye/onlineLPv4.pdf
http://www.stanford.edu/~yyye/onlineLPv4.pdf

368 References

[166] Young, N.: Bounding the diffuse adversary. In: Proceedings of the 9th Annual ACM-
SIAM Symposium on Discrete Algorithms, 420–425, 1998. 38, 47

[167] Young, N.: On-line file caching. In: Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, 82–86, 1998. 38, 41

[168] Zheng, F.; Cheng, Y.; Liu, M.; Xu, Y.: Online interval scheduling on a single
machine with finite lookahead. In: Computers and Operations Research, 40 (1), 180 –
191, 2013. 5, 89

[169] Zheng, F.; Xu, Y.; Zhang, E.: How much can lookahead help in online single
machine scheduling. In: Information Processing Letters, 106 (2), 70–74, 2008. 5, 89

369

List of Figures

1.1 Hierarchical relation between operations and control of a dynamic system and
online optimization with lookahead. 2

1.2 Comparison of optimization paradigms. 3
1.3 Everyday life situations where decisions can be improved due to lookahead. . 4
1.4 Vehicle routing. 8
1.5 Bin packing. 10
1.6 Paging. 12
1.7 Structure of the thesis. 13

2.1 Change of problem instances and problem through application of lookahead. 23
2.2 Relations between complexity classes. 28
2.3 Stochastic dominance relations between Alg1,Alg2,Alg3. 49
2.4 Counting distribution functions. 52
2.5 Graphical illustration of instance set I. 54
2.6 Objective value of Alg1 over instance set I. 55
2.7 Distributions of objective value of Alg1, Alg2, Alg3 over I. 57
2.8 Performance ratio rAlg1,Alg2(x) over instance set I. 58
2.9 Instance set I with regions A1, A2, A3. 58
2.10 Distribution of performance ratio of Algi relative to Algj. 61
2.11 Event-based input-output model of discrete event systems. 64
2.12 Automaton as a formal means to process elements of an event sequence. . . . 65
2.13 Coupling of two automata. 67
2.14 Analysis methods for online algorithms. 72

3.1 State trajectory in the process model for online optimization with lookahead. 91

4.1 Counting distribution functions of costs in the ski rental problem with k ≥ B
r

. 106
4.2 Counting distribution function of performance ratio of costs in the ski rental

problem. 108
4.3 Counting distribution function of performance ratio of costs in the ski rental

problem with k + l − 1 ≤ dB
r
e. 109

4.4 Counting distribution function of performance ratio of costs in the ski rental
problem with k + l − 1 > dB

r
e. 110

4.5 Recurring unit sloped paths. 119
4.6 Counting distribution functions of costs in the bin packing problem. 131

370 List of Figures

4.7 Counting distribution functions of performance ratio of costs in the bin pack-
ing problem. 133

4.8 Counting distribution functions of costs in the TSP. 140

4.9 Counting distribution functions of performance ratio of costs in the TSP. . . 143

5.1 Average costs for different lookahead sizes and nmax = 100 in the ski rental
problem. 148

5.2 Counting distribution functions of costs for nmax = 100 in the ski rental problem.151

5.3 Counting distribution functions of performance ratio of costs relative to Opt
for nmax = 100 in the ski rental problem. 152

5.4 Counting distribution functions of performance ratio of costs relative to the
online version for nmax = 100 in the ski rental problem. 153

5.5 Average costs for different lookahead sizes and n = 100 in the paging problem
when each page is equally probable. 157

5.6 Average costs for different lookahead sizes and n = 100 in the paging problem
when page sequences are generated according to an access graph. 157

5.7 Empirical counting distribution functions of costs for n = 100 in the paging
problem when page sequences are generated according to an access graph. . . 159

5.8 Empirical counting distribution functions of performance ratio of costs relative
to Opt for n = 100 in the paging problem when page sequences are generated
according to an access graph. 160

5.9 Empirical counting distribution functions of performance ratio of costs relative
to the online version for n = 100 in the paging problem when page sequences
are generated according to an access graph. 161

5.10 Exact distribution functions of costs for n = 5 in the paging problem when
pages are equally distributed. 164

5.11 Sets, parameters and variables in the IP formulation of the bin packing problems.167

5.12 IP formulation of the bin packing problem. 168

5.13 Objective function and additional constraints for the modified IP formulation
of the bin packing problem. 168

5.14 Average costs for different lookahead sizes and n = 25 in the classical bin
packing problem when item permutations are allowed. 169

5.15 Average costs for different lookahead sizes and n = 25 in the classical bin
packing problem when item permutations are forbidden. 170

5.16 Empirical counting distribution functions of costs for n = 25 in the classical
bin packing problem when item permutations are allowed. 172

5.17 Empirical counting distribution functions of performance ratio of costs rel-
ative to Opt for n = 25 in the classical bin packing problem when item
permutations are allowed. 173

5.18 Empirical counting distribution functions of performance ratio of costs relative
to the online version for n = 25 in the classical bin packing problem when
item permutations are allowed. 174

5.19 Additional sets, parameters and variables in the IP formulation of the bounded-
space bin packing problem when item permutations are forbidden. 178

List of Figures 371

5.20 IP formulation of the bounded-space bin packing problem when item permu-
tations are forbidden. 179

5.21 Average costs for different lookahead sizes and n = 25 in the bounded-space
bin packing problem when item permutations are allowed. 181

5.22 Average costs for different lookahead sizes and n = 25 in the bounded-space
bin packing problem when item permutations are forbidden. 181

5.23 Empirical counting distribution functions of costs for n = 25 in the bounded-
space bin packing problem when item permutations are allowed. 183

5.24 Empirical counting distribution functions of performance ratio of costs relative
to Opt for n = 25 in the bounded-space bin packing problem when item
permutations are allowed. 184

5.25 Empirical counting distribution functions of performance ratio of costs relative
to the online version for n = 25 in the bounded-space bin packing problem
when item permutations are allowed. 185

5.26 Exact distribution functions of costs for n = 25 in the bounded-space bin
packing problem. 187

5.27 Sets, parameters and variables in the MIP formulation of the Hamiltonian
path problem with fixed starting and ending point. 191

5.28 MIP formulation of the Hamiltonian path problem with fixed starting and
ending point. 192

5.29 Comparison of routes obtained in the TSP. 193
5.30 Average costs for different lookahead sizes and n = 25 in the TSP. 194
5.31 Threat of bad decisions in the TSP. 195
5.32 Empirical counting distribution functions of costs for n = 25 in the TSP. . . 196
5.33 Empirical counting distribution functions of performance ratio of costs relative

to Opt for n = 25 in the TSP. 197
5.34 Empirical counting distribution functions of performance ratio of costs relative

to the online version for n = 25 in the TSP. 198
5.35 Exact distribution functions of costs for n = 25 in the TSP. 201
5.36 Sets, parameters and variables in the MIP formulations of the scheduling

problems. 204
5.37 MIP formulation of the scheduling problem 1 | ej |

∑
Cj. 204

5.38 Local improvement of OptD over SptD. 205
5.39 Average costs for different lookahead durations and n = 25 in the single

machine scheduling problem when immediate processing is allowed. 206
5.40 Average costs for different lookahead durations and n = 25 in the single

machine scheduling problem when immediate processing is forbidden. 206
5.41 Empirical counting distribution functions of costs for n = 25 in the single

machine scheduling problem when immediate processing is allowed. 207
5.42 Empirical counting distribution functions of performance ratio of costs relative

to Opt for n = 25 in the single machine scheduling problem when immediate
processing is allowed. 208

5.43 Empirical counting distribution functions of performance ratio of costs relative
to the online version for n = 25 in the single machine scheduling problem when
immediate processing is allowed. 208

372 List of Figures

5.44 Exact distribution functions of costs for n = 25 in the single machine schedul-
ing problem when immediate processing is allowed. 210

5.45 MIP formulation of the scheduling problem Pm | ej |Cmax. 211

5.46 Local improvement of OptD over LptD. 212

5.47 Average costs for different lookahead durations and n = 25 in the parallel
machines scheduling problem when immediate processing is allowed. 213

5.48 Average costs for different lookahead durations and n = 25 in the parallel
machines scheduling problem when immediate processing is forbidden. 213

5.49 Empirical counting distribution functions of costs for n = 25 in the parallel
machines scheduling problem when immediate processing is allowed. 214

5.50 Empirical counting distribution functions of performance ratio of costs rela-
tive to Opt for n = 25 in the parallel machines scheduling problem when
immediate processing is allowed. 214

5.51 Empirical counting distribution functions of performance ratio of costs relative
to the online version for n = 25 in the parallel machines scheduling problem
when immediate processing is allowed. 214

6.1 Animation of the simulation model for an order picking system in AnyLogic. 220

6.2 Sets, parameters and variables in the MIP formulation of the order routing
problem. 225

6.3 MIP formulation of the order routing problem. 225

6.4 Sets, parameters and variables in the MIP formulation of the order batching
and routing problem. 226

6.5 MIP formulation of the order batching and routing problem. 227

6.6 Average distances for different lookahead sizes and n = 625 in the order
picking system. 229

6.7 Average throughput for different lookahead sizes and n = 625 in the order
picking system. 230

6.8 Empirical counting distribution functions of distance for n = 625 in the order
picking system. 233

6.9 Empirical counting distribution functions of performance ratio of distance
relative to Ts,Opt600 for n = 625 in the order picking system. 234

6.10 Empirical counting distribution functions of performance ratio of throughput
relative to the online version for n = 625 in the order picking system. 235

6.11 Empirical counting distribution functions of throughput for n = 625 in the
order picking system. 236

6.12 Empirical counting distribution functions of performance ratio of throughput
relative to Ts,Opt600 for n = 625 in the order picking system. 237

6.13 Empirical counting distribution functions of performance ratio of throughput
relative to the online version for n = 625 in the order picking system. 238

6.14 Animation of the simulation model for a pickup and delivery service in AnyLogic.239

6.15 Sets, parameters and variables in the MIP formulation of the pickup and
delivery problem. 244

6.16 MIP formulation of the pickup and delivery problem. 245

List of Figures 373

6.17 Average distances for different lookahead sizes and n = 50 in the pickup and
delivery service. 246

6.18 Average tardinesses for different lookahead sizes and n = 50 in the pickup and
delivery service. 247

6.19 Average throughput for different lookahead sizes and n = 50 in the pickup
and delivery service. 249

6.20 Empirical counting distribution functions of distance for n = 50 in the pickup
and delivery service. 251

6.21 Empirical counting distribution functions of performance ratio of distance
relative to Ts,Opt600 for n = 50 in the pickup and delivery service. 252

6.22 Empirical counting distribution functions of performance ratio of distance
relative to the online version for n = 50 in the pickup and delivery service. . 253

6.23 Empirical counting distribution functions of tardiness for n = 50 in the pickup
and delivery service. 254

6.24 Empirical counting distribution functions of performance ratio of tardiness
relative to Ts,Opt600 for n = 50 in the pickup and delivery service. 255

6.25 Empirical counting distribution functions of performance ratio of tardiness
relative to the online version for n = 50 in the pickup and delivery service. . 256

A.1 Reflection principle. 269

375

List of Tables

2.1 Performance measures for algorithms in online optimization problems. 38
2.2 Analogies between online optimization and discrete event systems. 64

3.1 Classification of lookahead concepts in papers on online optimization with
lookahead. 89

4.1 Costs in the ski rental problem with l < dB
r
e. 105

4.2 Counting distribution functions of costs in the ski rental problem with l < dB
r
e.107

4.3 Counting distribution function of performance ratio of costs in the ski rental
problem. 108

4.4 Counting distribution functions of performance ratio of costs in the ski rental
problem. 109

4.5 Qualitative summary of the exact results from Chapter 4. 146

5.1 Qualitative summary of the experimental results from Chapter 5. 218

6.1 Qualitative summary of the simulation results from Chapter 6. 259

A.1 Costs in the ski rental problem. 273
A.2 Performance ratios of costs relative to Opt in the ski rental problem. 274
A.3 Performance ratios of costs relative to the online version of an algorithm in

the ski rental problem. 275
A.4 Costs in the paging problem when each page is equally probable. 276
A.5 Performance ratios of costs relative to Opt in the paging problem when each

page is equally probable. 277
A.6 Performance ratios of costs relative to the online version of an algorithm in

the paging problem when each page is equally probable. 278
A.7 Costs in the paging problem when page sequences are generated according to

an access graph. 279
A.8 Performance ratios of costs relative to Opt in the paging problem when page

sequences are generated according to an access graph. 280
A.9 Performance ratios of costs relative to the online version of an algorithm in

the paging problem when page sequences are generated according to an access
graph. 281

A.10 Costs in the paging problem when pages are stochastically distributed. . . . 282

376 List of Tables

A.11 Performance ratios of costs relative to Opt in the paging problem when pages
are stochastically distributed. 283

A.12 Performance ratios of costs relative to the online version of an algorithm in
the paging problem when pages are stochastically distributed. 284

A.13 Costs in the classical bin packing problem when item permutations are allowed.285

A.14 Costs in the classical bin packing problem when item permutations are forbidden.286

A.15 Performance ratios of costs relative to Opt in the classical bin packing prob-
lem when item permutations are allowed. 287

A.16 Performance ratios of costs relative to Opt in the classical bin packing prob-
lem when item permutations are forbidden. 288

A.17 Performance ratios of costs relative to the online version of an algorithm in
the classical bin packing problem when item permutations are allowed. . . . 289

A.18 Performance ratios of costs relative to the online version of an algorithm in
the classical bin packing problem when item permutations are forbidden. . . 290

A.19 Costs in the classical bin packing problem when item permutations are allowed.291

A.20 Costs in the classical bin packing problem when item permutations are forbidden.291

A.21 Performance ratios of costs relative to Bf100 in the classical bin packing prob-
lem when item permutations are allowed. 292

A.22 Performance ratios of costs relative to Bf100 in the classical bin packing prob-
lem when item permutations are forbidden. 292

A.23 Performance ratios of costs relative to the online version of an algorithm in
the classical bin packing problem when item permutations are allowed. . . . 293

A.24 Performance ratios of costs relative to the online version of an algorithm in
the classical bin packing problem when item permutations are forbidden. . . 293

A.25 Costs in the bounded-space bin packing problem when item permutations are
allowed. 294

A.26 Costs in the bounded-space bin packing problem when item permutations are
forbidden. 295

A.27 Performance ratios of costs relative to Optb in the bounded-space bin packing
problem when item permutations are allowed. 296

A.28 Performance ratios of costs relative to Optb in the bounded-space bin packing
problem when item permutations are forbidden. 297

A.29 Performance ratios of costs relative to the online version of an algorithm in
the bounded-space bin packing problem when item permutations are allowed. 298

A.30 Performance ratios of costs relative to the online version of an algorithm in
the bounded-space bin packing problem when item permutations are forbidden.299

A.31 Costs in the bounded-space bin packing problem when item permutations are
allowed. 300

A.32 Costs in the bounded-space bin packing problem when item permutations are
forbidden. 300

A.33 Performance ratios of costs relative to Bfb100 in the bounded-space bin pack-
ing problem when item permutations are allowed. 301

A.34 Performance ratios of costs relative to Bfb100 in the bounded-space bin pack-
ing problem when item permutations are forbidden. 301

List of Tables 377

A.35 Performance ratios of costs relative to the online version of an algorithm in
the bounded-space bin packing problem when item permutations are allowed. 302

A.36 Performance ratios of costs relative to the online version of an algorithm in
the bounded-space bin packing problem when item permutations are forbidden.302

A.37 Costs in the TSP. 304

A.38 Performance ratios of costs relative to Opt in the TSP. 306

A.39 Performance ratios of costs relative to the online version of an algorithm in
the TSP. 308

A.40 Costs in the TSP. 310

A.41 Performance ratios of costs relative to 3Opt100 in the TSP. 312

A.42 Performance ratios of costs relative to the online version of an algorithm in
the TSP. 314

A.43 Costs in the single machine scheduling problem when immediate processing is
allowed. 315

A.44 Costs in the single machine scheduling problem when immediate processing is
forbidden. 315

A.45 Performance ratios of costs relative to Opt in the single machine scheduling
problem when immediate processing is allowed. 315

A.46 Performance ratios of costs relative to Opt in the single machine scheduling
problem when immediate processing is forbidden. 316

A.47 Performance ratios of costs relative to the online version of an algorithm in
the single machine scheduling problem when immediate processing is allowed. 316

A.48 Performance ratios of costs relative to the online version of an algorithm in
the single machine scheduling problem when immediate processing is forbidden.316

A.49 Costs in the single machine scheduling problem when immediate processing is
allowed. 317

A.50 Costs in the single machine scheduling problem when immediate processing is
forbidden. 317

A.51 Performance ratios of costs relative to Spt100 in the single machine scheduling
problem when immediate processing is allowed. 317

A.52 Performance ratios of costs relative to Spt100 in the single machine scheduling
problem when immediate processing is forbidden. 317

A.53 Performance ratios of costs relative to the online version of an algorithm in
the single machine scheduling problem when immediate processing is allowed. 318

A.54 Performance ratios of costs relative to the online version of an algorithm in
the single machine scheduling problem when immediate processing is forbidden.318

A.55 Costs in the parallel machines scheduling problem when immediate processing
is allowed. 319

A.56 Costs in the parallel machines scheduling problem when immediate processing
is forbidden. 319

A.57 Performance ratios of costs relative to Opt in the parallel machines scheduling
problem when immediate processing is allowed. 319

A.58 Performance ratios of costs relative to Opt in the parallel machines scheduling
problem when immediate processing is forbidden. 320

378 List of Tables

A.59 Performance ratios of costs relative to the online version of an algorithm in
the parallel machines scheduling problem when immediate processing is allowed.320

A.60 Performance ratios of costs relative to the online version of an algorithm in the
parallel machines scheduling problem when immediate processing is forbidden. 320

A.61 Costs in the parallel machines scheduling problem when immediate processing
is allowed. 321

A.62 Costs in the parallel machines scheduling problem when immediate processing
is forbidden. 321

A.63 Performance ratios of costs relative to Lpt100 in the parallel machines schedul-
ing problem when immediate processing is allowed. 321

A.64 Performance ratios of costs relative to Lpt100 in the parallel machines schedul-
ing problem when immediate processing is forbidden. 321

A.65 Performance ratios of costs relative to the online version of an algorithm in
the parallel machines scheduling problem when immediate processing is allowed.322

A.66 Performance ratios of costs relative to the online version of an algorithm in the
parallel machines scheduling problem when immediate processing is forbidden. 322

A.67 Makespans in the order picking system. 324
A.68 Performance ratios of makespan relative to Ts,Opt600 in the order picking

system. 326
A.69 Performance ratios of makespan relative to the online version of an algorithm

in the order picking system. 328
A.70 Distances in the order picking system. 330
A.71 Performance ratios of distance relative to Ts,Opt600 in the order picking system.332
A.72 Performance ratios of distance relative to the online version of an algorithm

in the order picking system. 334
A.73 Picker utilizations in the order picking system. 336
A.74 Performance ratios of picker utilization relative to Ts,Opt600 in the order

picking system. 338
A.75 Performance ratios of picker utilization relative to the online version of an

algorithm in the order picking system. 340
A.76 Box throughputs in the order picking system. 342
A.77 Performance ratios of box throughput relative to Ts,Opt600 in the order pick-

ing system. 344
A.78 Performance ratios of box throughput relative to the online version of an

algorithm in the order picking system. 346
A.79 Makespans in the pickup and delivery service. 347
A.80 Performance ratios of makespan relative to Opt in the pickup and delivery

service. 347
A.81 Performance ratios of makespan relative to the online version of an algorithm

in the pickup and delivery service. 348
A.82 Distances in the pickup and delivery service. 348
A.83 Performance ratios of distance relative to Opt in the pickup and delivery

service. 349
A.84 Performance ratios of distance relative to the online version of an algorithm

in the pickup and delivery service. 349

List of Tables 379

A.85 Tardinesses in the pickup and delivery service. 350
A.86 Performance ratios of tardiness relative to Opt in the pickup and delivery

service. 350
A.87 Performance ratios of tardiness relative to the online version of an algorithm

in the pickup and delivery service. 351
A.88 Maximum tardinesses in the pickup and delivery service. 351
A.89 Performance ratios of maximum tardiness relative to Opt in the pickup and

delivery service. 352
A.90 Performance ratios of maximum tardiness relative to the online version of an

algorithm in the pickup and delivery service. 352
A.91 Vehicle utilizations in the pickup and delivery service. 353
A.92 Performance ratios of vehicle utilization relative to Opt in the pickup and

delivery service. 353
A.93 Performance ratios of vehicle utilization relative to the online version of an

algorithm in the pickup and delivery service. 354
A.94 Job throughputs in the pickup and delivery service. 354
A.95 Performance ratios of job throughput relative to Opt in the pickup and de-

livery service. 355
A.96 Performance ratios of job throughput relative to the online version of an al-

gorithm in the pickup and delivery service. 355

Erklärung

gemäß § 4, Abs. 4 der Promotionsordnung vom 15. August 2006:

Ich versichere wahrheitsgemäß, die Dissertation bis auf die in der Abhandlung angegebene
Hilfe selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben
und genau kenntlich gemacht zu haben, was aus Arbeiten anderer und aus eigenen Veröf-
fentlichungen unverändert oder mit Abänderungen entnommen wurde.

Eggenstein, 24. Juli 2014

Fabian Dunke

	Frontpage
	Acknowledgements
	Abstract
	Contents
	Introduction
	Problem Statement and Scope of the Thesis
	Applications of Online Optimization with Lookahead
	Overview of the Thesis

	Analysis of Optimization Algorithms
	Optimization Paradigms
	Offline Optimization
	Online Optimization
	Online Optimization with Lookahead

	Algorithm Analysis
	Complexity of Problems and Algorithms
	Classification of Optimization Algorithms
	Algorithms and Lookahead

	Performance of Optimization Algorithms
	Performance Measures for Online Optimization Algorithms
	Deterministic Worst-Case Performance Measures
	Probabilistic Worst-Case Performance Measures
	Average-Case Performance Measures
	Distributional Performance Measures

	Performance Comparison of Optimization Algorithms

	Optimization Algorithms and Discrete Event Systems
	Discrete Event Systems
	Automata
	Markov Chains
	Discrete Event Simulation

	Concluding Discussion

	A Modeling Framework for Online Optimization with Lookahead
	Modeling Prototypes
	Modeling Framework Components
	Basic Modeling Elements
	Lookahead Type
	Processing Mode and Order
	Processing Accessibility
	Algorithm Execution Mode

	A Classification Scheme
	Discrete Event Process Model
	Relation to Markov Chains
	Instantiations of the Framework
	Concluding Discussion

	Theoretical Analysis of Algorithms for Online Optimization with Lookahead
	Online Ski Rental with Lookahead
	Online Bin Packing with Lookahead
	Online Traveling Salesman Problem with Lookahead
	Concluding Discussion

	Experimental Analysis of Algorithms for Online Optimization with Lookahead
	Online Ski Rental with Lookahead
	Average Results
	Distributional Results

	Online Paging with Lookahead
	Average Results
	Distributional Results
	Markov Chain Results

	Online Bin Packing with Lookahead
	Classical Bin Packing
	Average Results
	Distributional Results

	Bounded-Space Bin Packing
	Average Results
	Distributional Results
	Markov Chain Results

	Online Traveling Salesman Problem with Lookahead
	Average Results
	Distributional Results
	Markov Chain Results

	Online Scheduling with Lookahead
	Online Single Machine Scheduling
	Average Results
	Distributional Results
	Markov Chain Results

	Online Parallel Machines Scheduling
	Average Results
	Distributional Results

	Concluding Discussion

	Simulation of Real World Applications
	Online Order Picking with Lookahead
	Average Results
	Distributional Results

	Online Pickup and Delivery with Lookahead
	Average Results
	Distributional Results

	Concluding Discussion

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix
	Additional Proofs from Chapter 4
	Proof of Lemma 4.4
	Proof of Lemma 4.9

	Numerical Results from Chapter 5
	Online Ski Rental with Lookahead
	Online Paging with Lookahead
	Online Bin Packing with Lookahead
	Classical Problem
	Bounded-Space Problem

	Online Traveling Salesman with Lookahead
	Online Scheduling with Lookahead
	Single Machine Problem
	Parallel Machines Problem

	Numerical Results from Chapter 6
	Online Order Picking with Lookahead
	Online Pickup and Delivery with Lookahead

	References
	List of Figures
	List of Tables
	Erklärung

