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Chapter 1

Introduction

Macroscopic Maxwell’s equations form the axiomatic foundation for all models
describing electromagnetic phenomena. We specifically focus on applications in
nonlinear optics, such as the propagation of light in fiber optic cables or photonic
crystals. The corresponding nonlinear Maxwell equations still involve major math-
ematical challenges. These challenges start with the question of well-posedness,
that is the existence and uniqueness of solutions, as well as their dependence on
the input parameters, as they arise from experimental setups. Currently, these
problems are addressed by a limited number of partial results from di Cerent sub-
disciplines of mathematics. The typical course of action therefore is to choose
a specialized approach transforming these equations into quasilinear wave equa-
tions, which are then further simplified using physically motivated approxima-
tions. Applying this technique to the experiments mentioned above, yields prob-
lems of the Helmholz or nonlinear Schrédinger type.

Our objective is to undertake a first step towards a systematic investigation
of the well-posedness for a wide class of nonlinear Maxwell equations. Our tool
of choice is an approach outlined by Tosio Kato (1975) for the analysis of quasi-
linear evolution equations using operator semigroups. Inspired by this idea we
will prove an abstract result, that can be applied to both, a wide class of non-
linear Maxwell equations involving problems from nonlinear optics, as well as to
their corresponding quasilinear wave equations. By choosing this course of action,
we succeed in presenting a unified theory uniting previously known results from
di Cerknt fields and improve upon them in some aspects, such as the required reg-
ularity assumptions for the input. Additionally, our proposed framework o [erk
the possibility to further extend the class of systems under consideration. In the
following, we discuss the fundamentals of electromagnetics in order to motivate
the consideration of problems as mentioned above. Subsequently, we present our
approach in detail.
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1.1 The Fundamental Equations of Electromagnetism

The purpose of this section is to articulate the notion of the fundamental laws of
electromagnetism, and to introduce the basic tools as well as the questions arising
from this field. Our main references here are the classical treatises [18] and [16],
where we mostly follow the presentation of the latter.

Macroscopic Maxwell’s Equations
The di Cerkntial version of Maxwell’s equations in Sl units are as follows:
rotH @D J Ampére’s Law
rotE @B Faraday’s Law
divD Gauly’ Law

divB O Gauly’ Law of magnetic charge

(Mw)

where

Electric field intensity vector,
Magnetic field flux density vector,

I w m

Magnetic field intensity vector,

D Electric field flux density vector,
and the current and charge sources are described by

J  Electric current flux density vector,
Electric charge density.

By taking the divergence of the equation describing Ampére’s Law and substituting
in Gaul’ Law, we obtain the conservation of charge, i.e.,

divly @ 0:
LetJ Oand 0. If D and B are solutions of (Mw), then we derive

@t divD t divrotH t 0;

1.1
@¢divB t divrotE t 0: D

Thus the GaulZian Laws are conserved quantities.

Constitutive Laws

In general, Maxwell’s equations are insu [cieht for determining the electromag-
netic field since there are six independent equations in twelve unknowns, namely
the components of E;B; D and H. The first step to closing this gap is to introduce
constitutive laws. For stationary media, these typically take the form

D "oE P;

Cr
H LB M cn
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and, if J is not fixed, but related to E by Ohm’s law,
J E E:
The new variables are

"o  permittivity of free space 8:854 10 !? farad=meter ;

o permeability of free space 4 10 7 henry=meter ;
conductivity :R3IR;

P Polarisation,

M  Magnetisation.

There are now several ways to characterize media by means of the polarisation
and magnetisation vectors. Each physical experiment requires its own modelling
which often is of interest in itself. The detailed study of such methods which are
often founded on physical heuristics is beyond the scope of our interests. Instead
we take a look at the most important models during the last decades which have
influenced a broad range of mathematical fields, both analysis and numerics.

For example if one of the material laws (Cr) is linear, e.g., M 0, then one is
often interested in solutions of the wave equation which arises by di Lerentiating
Ampeére’s law with respect to time and then substituting @¢H 0 1rotE,ie.,

@ "0E P olrot?’E @J o' E @J ,lgraddivE: (We)

Now, we focus on the propagation of light through optic materials as for example
fibres or photonic crystals. The core of such materials are insulators so that there
are no free charges or currents, i.e., Oand J 0. These materials are further
nonmagnetic which gives M 0. A standard model used in the framework of
nonlinear optics to describe the constitutive relation of E and P then is (cf. [5],
Section 2.1)

P "o/ 1t s E X;s ds

R
"o// >t s;;t s E X;S1 E X;so> dsids;
RJR

P)
"o/// 3t st syt os3
RJRJR

E X;s1 E x;so E X;s3 ds;dsodss
Yol
where j j 2 N isatensoroforderj 1, is the usual tensor (or Kronecker)
product and denotes the contracted tensorial product. By further physically

reasonable simplifications (cf. [6], Appendix A) one approximates (P) by the so
called Kerr nonlinearity

P "oE x;t JE x;t j°E x;t 2R : (Kerr)

Di Cerknt ansatzes for the electrical field E in the wave equation (We) together with
this nonlinear relation (Kerr) usually lead either to a Helmholtz equation (cf. [35],
Section 3.3) or a nonlinear Schrédinger equation (cf. [14], Section 1.4).

11
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Boundary Conditions

In view of the propagation of light in an optical fibre (and of course in many other
experimental situations), we surely have to deal with more than one material.

Therefore let be a surface that separates two materials 1 and ». Denote
the unit normal vector on  which points from ;to 5 by n. Let Dyg; Hg; Bk and Eg
be the fields considered in material g; k 2 f1;2g. With the help of Stokes’s and
Gaufl¥’ Theorem one can then deduce (cf. [8], Chapter 1.4) the following transmission
conditions on

D, D; n ;
Ho Hi ©™n J;
B B1 n O
E> E1 ™~n O

(1.2)

where J and denote the surface current density or the surface charge density
respectively. We focus on the case in which one of the media (say ») is a perfect
conductor. In such a medium the fields D,;H>;B> and E, vanish in  ». Since the
quantitiesJ and  are in general unknown it is convenient to impose the reduced
transmission conditions (cf. [8], Example 1.2.4.3)

B n O on ;

Pc
E~n O on (Pe)

if we denote E; and B; simply by E and B. Suppose now thatJ 0 and 0.IfD
and B are solutions of (Mw), then we derive

@Bt n rotEt n divEt ~n O: (1.3)

Thus the boundary condition for B is a conserved quantity.

1.2 Strategy

In the following we are aiming for a unified theory of well-posedness, which covers
a broad range of Maxwell’s equations (in particular containing the Kerr nonlinear-
ity) and the resulting wave equations (We). More precisely, we assume that there
are no currents or charges, and that the material laws (Cr) are of the form

P PE; M MH; P;M2Cs!R%RE; (Cr-L)

where s 2 No will be specified later on. In the case of more than one material, we
will impose either the perfect conduction boundary conditions (Pc) or, even more
restrictive, full Dirichtlet boundary conditions on E, i.e.,

B n 0O, on ;

Dr
E O; on (br)
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Addressing the second order problem (We), we further restrict our attention to
the study of special divergence-free solutions, which arise by polarisation. We will
work in mathematical units such that "o o 1. We therefore consider on the
one hand the system
@t E P E t;x rotH t;x t2 O0;T ; x2 :
Gt H M H tx rotE t;x t2 O0;T ; x2 :

divP E t;x 0 t2 O0;T ; x2 :
dvH H M t;x 0 t2 O0;T ; x2 :
E t;x ™~n X 0 t2 O0;T ; x20 ; (1.4)
M H t;x n x 0 t2 O;T ; x20 ;
E O;x Eo X X 2 ;
H 0O;Xx Ho X X 2 ;
for some initial functions Eg; Hg on R3, and on the other hand the scalar
problem
Oeu ;X @ K U ;)X ut;x t2 0T ; x2
u t;x 0 t2 O;T ; x20 ;
u 0;x Ug X X 2 ; (Cp-W)
@tu O;xX Vo X X2
where K u P 0;0;u” 0;0;1~ andapriori R2. As we have seen earlier,

by means of (1.1) and (1.3), the GaulZian laws as well as the nonlinear boundary
condition in (1.4) are conserved quantities. Hence it is su [cieht to impose these
conditions for the initial values. Thus (1.4) reduces to

@Gt E P E t;x rotH t;x t2 O0;T ; x2 :
¢ H M H t;x rotE t;x t2 O0;T ; x2 :
Etx ~nx O t2 ;T ; x20@ ; (M-Pc)
E O;x Eo X X 2 ;
H 0;X%x Ho X X 2 ;

in the case of a perfect conductor, or to

@t E P E t;x rotH t;x t2 0;T ; x2 ;

Gt H M H t;x rotkE t;x t2 O;T ; x2 ;
Et;x O t2 0T ; x20 ; (M-Dr)
E O;x Eo X X 2 :
H 0O; X Ho X X 2 :
for full Dirichtlet boundary conditions. If R3, this reduces further to
0t E P E t;x rotH t;x t2 0;T ; x2R3%;
6t H M H t;x rotE t;x t2 0;T ; x2R%;
E O;x Eo X x 2 R3 ; (M-R3)
H 0;x Hp X X 2R% :

13
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Thinking of the appearing nonlinearities as substitution operators in L? 3 itis
a priori not clear whether they will be Fréchet di Cerentiable or not. Consequently
we are not sure if we may apply the chain rule to expressions like

&P E t PEt @FEt:

Therefore we rewrite the above equations by di Cerentiating their left hand sides.
We thus consider the following Cauchy-problems

I P Et;x @ t;x rotH t;x t2 0T : x2

I MYH t;x @H t;x rotE t;x t2 0T ;x2
E t;x ™"n X 0 t2 O;T ; x20 ; (1.5)
E O;x Eo X X 2 ;
H 0O;X%x Hp X X 2 ;

in the case of a perfect conductor, or

I PEt;x @Et;x rotH t;x t2 0T ;: x2
I M°H t;x @H t;x rotE ttx t2 0T :x2
E t;x 0 t2 0T ; x20 ; (1.6)
E O;x Eo X X 2 ;
H O;x Hp X X 2 ;

for full Dirichtlet boundary conditions. Finally, in the full space situation

I P E t;x @:E t;x rotH t;x t2 0;T ; x2R®;

I MYH t;x @H t;x rotE t;x t2 0;T ;x2R%; wn
EO;x Egx X 2R3 '
H O;x Hg X x 2R3 :
The second order problem now reads
1 K'ut;x @qu t)x K% ut;x @u t;x @iu t;x
u t;x t2 O;T ; x2 ;
ut;x 0 t2 O;T ; x20 ; (1.8)
u 0;x Ug X X 2 ;
@u O;x Vo X X 2

State of the Art

By means of results for general symmetric hyperbolic systems, there are already
several answers to the above posed Maxwell-type problems.

First, let R3. If we consider nonlinearities P and M of the form (Cr-L),
whose derivatives are not to negative (precisely if P’y > 1; M’y > | forall
y 2 R?), then we can apply Theorem Il in [23] for initial values

Up ™~ Eg;Hp 2HS ' R® 6, s>3=2: (1.9)

14
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We then obtain unique local solutions of (1.7) belongingto C 0;T ;HS 1 R® 6 \
Cl 0;T ;HSR3 6.

Now, let RS2 be a bounded domain whose boundary is of class C1. Suppose
that P and M are of the form (Cr-L) and satisfy P° 0 > 1; M° 0 > 1. Then we
can apply Theorem 2.1 in [37] for initial values

Uo ™ Eg;Ho 2HS 1 S\H} 65 N3s>19 (1.10)

and obtain unique solutions u 2 C 0;T ;H®S * 6 of the Dirichlet Maxwell
problem (1.6), with @tu t 2 HS 6 0 t T . Butwe also want to mention
that for so called impedance boundary conditions (which do not fit into the frame-
work 1.2), and the same class of nonlinearities, one gains solutions for nonlinear
Maxwell’s equations again for initial values of class H3, see [32]. Somehow surpris-
ingly, there do not exist positive answers for the problem (1.5) so far.

By means of Kato’s approach to quasilinear hyperbolic evolution equations it
was shown in [12] that if K 2 C* R with K’ 0 > 1, then for initial values

Uo;Vo 2 U2H®*  \H : u2H} H2  \H3 (1.11)
one obtains unique solutions
u2C 0T ;H3 \c! 0;T ;H2 \C?2 0;T ;H?

for the wave-type Cauchy problem (Cp-W).

In the following we will provide an abstract theorem (cf. Theorem 3.43) treating
a general class of nonlinear evolution equations in a Hilbert space, which o [erk a
unified approach for the above results. With the aid of this theorem we will repro-
duce the results (1.9) and (1.11). On the other hand we can significantly improve
the regularity assumptions of (1.10) and further give examples of nonlinearities
that leads to well-posedness also for the Maxwell problem with perfect conducting
boundary conditions (1.5).

Our Approach

Rewriting the dynamical part of the Maxwell-type problems (1.5)-(1.7) as
L 1 L L
I PYE 0 0 E 0 rot E
0 I MH ' OH rot 0 H

we will interpret these equations as a nonlinear evolution equation taking the form

ut Ut Aut t2 OT ;

15
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where the unknown u t is supposed to belong to some Hilbert space. Similarly,
introducing the new variables

v T 0iu; w u; v

and putting
1 1
o 0 01
W 01 Ku ° A 0
_ 0 0 -
Qw 0 KOuv

we will consider (Cp-W) as an evolution equation of the form
wt wi't Awt Qwt t2 0T ;

where again the unknown w t takes values in some Hilbert space. We want to ap-
proach these types of abstract nonlinear evolution equations by means of Banach’s
fixed point theorem, invoking the analysis of nonautonomous linear evolution evo-
lution equations. The main task therefore will be to find adequate assumptions on
the parameters for the abstract equations (such as the class of spaces under con-
sideration, estimates on the nonlinearities, requirements on the linear part), which
on the one hand lead to positive well-posedness theorems and on the other hand
allow us to apply these results to our concrete problems in an appropriate setting.
For tackling this handy interplay we thus start in Chapter 2 and 3 to introduce
the basic results on the required L2-type function spaces on the one hand, and the
theory for the study of nonautonomous Cauchy problems on the other hand. In
Chapter 4, the resulting Theorems 3.43 and 3.45 (which are of interested to their
own) will then be applied to our desired Cauchy-Problems from electromagnetics.
Each of the following chapters starts with a brief overview of what material is
covered therein, as well as of an allocation of the most important notation.



Chapter 2

Function Spaces and Di Lerkential
Operators Related to Maxwell’s
Equations

We begin with the basic objects in our analysis, namely hyperbolic di Cerkntial
operators in L? and the associated classes of functions and vector fields.

We assume that the reader is familiar with the basic concepts and most impor-
tant results concerning weakly di Cerkntiable functions in LP. If needed, however,
we refer to appendix A as well as to the references therein.

In Section 2.1, we introduce the spaces H div; and H rot; for a domain

in RY and state the main results concerning, on the one hand, approximation
by smooth functions, and on the other hand, trace theorems for tangential and
normal traces. We provide these results in the LP-framework, since there is no ad-
ditional e Cark necessary. Thereafter, in Section 2.2, we study the regularity prop-
erties of vector fields contained in the intersection of the above spaces, whose tan-
gential or normal component either vanish on the boundary, or satisfy additional
smoothness assumptions. Finally, in the last section we put all these insights to-
gether and introduce Theorem 2.43, which supplies the main properties for our
well-posedness results for Maxwell’s equations in Chapter 4.

Notation. For two normed spaces X; Y we denote the space of bounded linear
operators from X toY by B X;Y .

Weusea banda b todenote the estimatea cb ora £ cb for some
quantity c, which we call the implied constant. We will further write a b if both
a banda b hold. If we need the implied constant to depend on parame-
ters (e.g. p;d) we will indicate this by using subscripts, i.e., a p.g b and so on.
Sometimes we will also write a  cp.gb in such situations.

Given anexponent1l p 1 we will denoteitsdual by p%ie,p’ p=p 1
ifp<d1andp’ 1 else.

Given a bounded subset © of RY with 0 , we will write °

17
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2.1 Definition and Elementary Properties

For an open and non-empty set RY, let D denote the locally convex space
of test functions. If nothing else is said, then shall always be a non-empty
domain (open set) in some RY.

The Classical Operators 2.1 The operators grad, div and rot defined by
grad : D 1D d. grad ~ 017:::::0q” 7
div : D d1p ;odiv T Ty Ok ™ k;
0]
0273 @372
rot :D 31D 3 rot 7172 7; 5@3’1 0173 §;
0172 @271

are continuous with respect to the corresponding locally convex topologies on
D K wherek2f1;3;dg. ~

Therefore the related adjoint operators are well defined and weakly continuous
on the corresponding spaces of distributions D° k k2f1;3;dg .

Definition 2.2 We set
grad : D° 1D 9 grad ™ div"
div:D* dr1p’ div™ grad®;
rot:D° 3¥pD’ 3 rot rot!
which yields
gradT  @.T;:::;64qT ; T2D"
div T1;:::;Tg @1T1 ::: @gTg;
rot T1;T2; T3 @2Ts  @3T2; @3T1  @1T3; @1 T2 @2T1; Ti 2D’ DT

Remark 2.3 We denote the canonical basisof R9 by fe, : 1  k dgand introduce
the three dimensional skew symmetric matrices

(o] 1 o 1 (e] 1
0O 0 O 0O 0 1 0] 10
Jl”go 0 1§, Jz"g 0O O 0§; Jg,,gl 0 Oﬁ:
01 O 1 00 0O 0 O
Note, that
X
XNy xlky forall x;y 2 R®:
k1
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Then we can rewrite the operators from the above definition as

X b ¢
grad T ex 0T Ok exT ;

k 1 k 1
b ¢ X

divT ey 0T Ok ecT 0 T T1;::5Ta s
k 1 k 1
X X

rotT Jk 0T Ok JT ; T T1;To; T3
k 1 k 1

Therefore these operators are all first order partial di Cerkntial operators in so
called divergence form

D ¢
L:D? "¥p? ™1 O AT ;
k 1

where m;n 2 N and A 2 R™ N,

In the following, we will not use the bold letters for the classical operators,
since it is obvious from context which operator is supposed to be utilized.

Ford 2 N and v Vi;i:,Vd 2L|1oc dweput

and define Ty, ~ f Vi ~ dx, where = 2 D . Hence Ty, belongs to D° d
Distributions of this type are called regular. Given any distribution T in D° d
we say that T belongs to LP 9 if there is a vector field v 2 LP 9 such that
T Ty. From the fundamental lemma of the calculus of variations it follows that

such a function v is uniquely determined. Usually we will abbreviate T, by v.

Definition 24 Letl p < 1. We then set

n o}
(@ WP grad; — v2LP :gradT, 2 LP d . and

— P p 7P .
kv Kgrad kvkp kgradvkp 7 Tgradv QradTy:

n o
(b) WP div; ~ v2LP 9:divT, 2LP ; and

. =p )
kvkgiy = kvkp  kdivvkp © Taivy  divTy:
(0 WProt; ~ v2LP 3:rotTy2LP 3 ;and

— p p P
kV krot kV kp k I’Ot A\ kp , Trot \V2 rOt TV

Ifp 2, thenwewrite H div, ~W?2div; andH rot; ~W?2div; . ~

19
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Remark 2.5 Unless something else is said, we equip LP " n 2 N with the

norm
!l:p
kvk, /jv x jpdx v2LP N,
P Pﬂ fad > n ~
where jajp i 1JaijP fora aj;::ii;an 7 2CM

The above classes of spaces are very special types of so called graph spaces of
first order partial di Cerkntial operators in divergence form. These are the maximal
domains of operators of the form

b2 ¢
L:LP ™ p nypt m-7 @« AT BT
k 1

where m;n 2N, A, 2wt M ngndp 2Lt ™ N We put
WP L; “fv2LP m.LT,2LP "g;
and endow this space with the norm
1=-p
kvk, ™ kvkB  kLvk © Ty LTy:

There already is vast and continuously growing literature! concerning these spaces.

Remark 2.6 As an immediate consequence we obtain the following characteriza-
tion of the spaces WP grad; ; WP div; and WP rot; , which is frequently
used in the former literature as a definition.

(a) A function u 2 LP belongs to WP grad; if and only if there is some
w 2 LP  dsuch that

/ udiv 7 dx /W Zdx forall > 2D & (2.2)
In this case we have w grad u.

(b) A vector field v 2 LP d belongs to WP div; if and only if there is some
f2LP such that

/v grad 7 dx /f Zdx forall > 2D : (2.2)
In this case we have ¥ divv.

(c) A vector field v 2 LP 3 belongs to WP rot; if and only if there is some
w 2 LP 2 such that

/v rot = dx /w Zdx forall > 2D 3 (2.3)

In this case we have w  rotv.

A detailed introduction is given in [19].
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The following lemmas are direct consequences of the respective definitions.

Lemma 2.7 We have WP grad; wip with identical norms.
Lemma 2.8 The operators div : WP div; LP d x P ;v , divv and
rot:: WP rot; LP 31 LP 3 v, rotv are closed.

By definition, the spaces WP div; and WP rot; are nothing more than the
domains of the closed operators div and rot endowed with the respective graph
norms. Through this we obtain the following lemma.

Lemma 2.9 The sets WP div; and WP rot; are Banach spaces. In particular
H div; and H rot; are Hilbert spaces when endowed with the inner products
UjVv giv _ Uujv » divujdivv , u; v 2 H div; ;
UjVv ot UjV 5 rotuj rotv u; v 2 H rot;
Lemma 2.10 If u 2 wWiP d then u 2 WP div; and u 2 WP rot; , with
X X
divu @xuk; rotu Jk@ku;
k 1 k 1
where @k denotes the respective weak partial derivative. Moreover, there are con-
stants such that

kdivukp cgpkgradukp; krotukp cpkgradukp;

and therefore WP d = wP div; ,aswell as WP 3S>WPyrot; .

Mollification and Approximation

Using the techniques introduced by Meyers and Serrin in 1964 (see [1], page 67) we
derive a basic density result.

Theorem 2.11 Let RY be open and non-empty and let 1 p < 1. Then
cl  d\WP div; isdensein WP div; andC® 3\WP rot; isdensein
WP rot; .

Proof. A detailed proof, even concerning the more general spaces WP L; , can

be found in Theorem 1.2 of [19]. |

Definition 2.12 For RY we put

n (o]
D 9~ = .=72pRYd . ~

Obviously D 9 D 9 wbP dfgralll p<d2a. InparticularD 9is
contained in WP div; ,and D 2 belongs to WP rot;
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Definition 2.13 For1 p < 1 we define

Wc']o div; ““closure of D din WP div; :

W§ rot; closureof D 3in WP rot;

Equipped with the norms k kgiv; Kk Kot these are also Banach spaces. If p equals

two, we denote the resulting Hilbert spaces by Hg div; and Hq rot;

The approximating functions in Theorem 2.11 do not need to be regular up
to the boundary of the domain. To obtain stronger density results, one needs a
regularity property of the boundary.

Definition 2.14 We say that a non-empty domain RY satisfies the segment
condition ifeveryy 2@ has a neighbourhood Uy, and a non-zero vector vy, such
thatifx 2 \Uy,thenx tvy 2 forallO<t<1. ~

Uy
Vy
Q

Figure 1: The segment property.

The boundary of a domain satisfying the segment condition must be d  1-
dimensional, and the domain cannot lie on both sides of any part of its boundary.
We can actually characterize such sets as follows (see Theorem 10.24 in [25]).

Lemma 2.15 A domain RY satisfies the segment property if and only if @ is

continuous, cf. Remark A.10.

Before we state stronger approximation results for WP div; and WP rot;
we want to put a few considerations first to get a better understanding of these
insights. We thus recall the following approximation results for Sobolev spaces.
For u belonging to LP , we denote by T the zero extension in LP RY .

Proposition 2.16 Let the domain RY satisfy the segment property and let
m2Nand1l p < 1. Then the following assertions hold.

(@ IfG2wW™MP RY thenu 2 W,

(b) D  isdense inwm™P |~

Proof. An elementary proof of (a) can be found in [1] Theorem 5.29, and for (b) we
refer to [1] Theorem 3.22. |
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We will see soon that the same approximation assertions will also hold for
the spaces WP div; and WP rot; , or even more generally for the spaces
WP L; . But first we want to point out why the segment property is a kind
of canonical assumption on the geometry of the boundary for such approximation
results.

The crucial point is that mollification by convolution with a smooth function
requires an epsilon of space (see the picture below). More precisely: Let J denote
a mollifier for arbitrary > 0 and choose for example u 2 W™P for some
m2Nandl p<1.If ? , then

J?20v x @ J2?2vx x2 %jj m

forall <dist %@

supp(Jp (X —-))

Figure 2: Mollification requires space.

As we may expect by Figure 1, the definition of the segment condition allows
us to gain such a desired epsilon of space to the boundary.

Demanding the segment condition, one can prove an analog result of Proposi-
tion 2.16 for the spaces WP L; , thus particularly for the spaces WP div; and
WP rot; . In contrast to the proof for the classical Sobolev spaces, there arise
further technical problems from the loss of strong convergence in LP.

Proposition 2.17 Let the domain RY satisfy the segment property and let
1 p < 1. Then the following assertions hold.

(@ If G 2 WP div;RY and ¥ 2 WP rot;R3 , then u 2 W} div; andv 2
Wg rot;

(b) D Yisdensein WP div; andD S%isdensein WP rot; .
Proof. For a proof we refer to Theorem 4 and 5 in [4]. |

Remark 2.18 As an immediate consequence we have WP div;RY ~ W{ div;RY as
well as WP rot;R® W} rot;R3 | i.e., the test functions are dense in WP div; R
and WP rot;R® .
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Trace Theorems

First, we recall the trace theorems concerning the Sobolev spaces W 1P on the
reflexive scale p > 1. Note, that D  is dense in WLP if satisfies the
segment property.

Theorem 2.19 Let RY be a Lipschitz domain with compact boundary and let
1 < p < 1. Then the following assertions hold.

(@) Settingtrpv v 4 forv2D ~, we obtain a mapping
trp:D WP pwlPPg  wiPP g
which satisfies
ktrp Vle:pO;p @ Cd;kakwl:p

We will denote the unique continuous extension to WP by trp, too. We
have

ker trp Wol;p

(b) There is a linear and continuous operator
exp (Wt PP g wwhP
which satisfies trp,  exp  Idw1 1=pip g

Proof. For an elementary approach to these results we refer to Section 16 and 17
of Chapter IX in [11], or alternatively to Chapter 3 in [10]. |

Remark 2.20 (a) Given v 2 WP we will usually write trpv _ v 4 . In the

<

case of p 2, we will abbreviate tr, by tr as well as ex, by ex.

(b) In particular trp, WP w1l 1%PP @ | and therefore the quotient norm

n (o]
K™k, 7inf kvkyis 7V 5 ;v 2WHP kir," = ky o

Sker trp

on Wl PP @ s equivalent to its intrinsic? norm. Here #r, denotes the
canonical algebraic isomorphism between WP Zker tr, andtrp wip

(c) Sometimes it is convenient to denote the duality bracketsh ; iy of Wi=PiP’ @
and WiPP’ @ Oby [ d ,ie,

/ vTd “hv;Tig Tv va2wtrr g 72wl g 0.
@

We further putw PP @  —wi=pp’' g 0 ~

2Cf. Definition A.19
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We point out that in the Hilbert space situation Theorem 2.19 states

tr i H! T H¥2 @9 ; ex:H¥ @ 1 H!
In particular H*2 @ tr H! ,so that for 2 2 H™2 @  we have
n o
K~ Kyi2 g inf kvkg: @7 v jv2H? : (2.4)

By means of these classical trace theorems we are able to derive the important
trace theorems for WP div; and WP rot; . Sinceitis not easy to find (detailed)
proofs of these results in the literature, we decided to provide them here.

Trace Theorem for WP div; 221 letl < p < 1. Let RY be a Lip-
schitz domain with compact boundary and denote the unit outward normal by
n2L1 @ 9. Then the following assertions hold.

(@) Setting o v TTyj, pforv2D ~ 9 we obtain a mapping
n:D 9 WPdiv; ®wlPP g 0
which satisfies
inv J capkvkavk Kyipe g 2wiPP g
We will denote the unique continuous extension to WP div; by 5, too.

(b) If v 2 WP div; and 7 2 Wip’ , then the following Green’s formula

holds
E

, (2.5)

D
/v grad * dx / divv * dx trpo 75 n Vv
(c) The operator ,in B WP div; ;W 1=p;p’ @ satisfies
ker o W§ div;
(d) The mapping ,:H div; *H ¥2 @ isonto.

Proof. a : Choosev2D 9Yandlet > 2D . Applying GauR’ Theorem A.18,
we obtain

/v grad ~ dx /divv’dx /div’vdx /’v@ nd
@

Now, let = 2 WLP"  SinceD s densein WLP’ thereisasequence ~pn n
inD  which converges to ~ in w P’ sothat >, ¥ * andgrad ” ¥ grad *
inLP asn ¥ 1. The continuity of the LP-LP’ duality yields

/v grad ~ dx /divv 7 dx rI]i'rri/v grad * ,dx /divv 7 hdx
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Since z n @ trp0 z n and ktrpo > n trpo z kvvl:p;pO @ C k z n z kwl;p0 , We
further deduce from Holders’ inequality that

/trpo’v nd /’nv nd ck™n  Tkyut kv g nkppg
@ @

and hence
/v grad * dx /divv’dx / trpe” v nd nV o trpe”
@
It follows
Jnv trpe”™ j  kvkpKkjgrad 7 jookpe  kdivvkp K™ Kpe  kvKgiy K™ Kyg ot
Finally, let 2w PP’ @  Forall = 2wW1P"  with trpo ” we then know

jnv J kvkgiv k7 Ky;p0 and therefore

n o]
jnv J kvkgiy inf k7 kg : trpo 7 € kvKgiv K Ky1=pip® g

b : We have seen in (a) that formula (2.5) holds for all v 2 D 9 and
= 2 Wi’ Now, let v 2 WP div: . Since D 9 is dense in WP div;
by Proposition 2.17, there is a sequence vn n in D 9 which converges to v in
WP div; ,ie,vh ! vanddivv, ! divvinLP asn ¥ 1. The continuity of the
LP-LP’-duality thus yields

/v grad ~ dx /divv 7 dx rI1i.r71/vn grad * dx /divvn 7 dx

lim Vn trpe”
nig MO0 p

Further, from (a) we know that v, ¥ v in WP div; implies ,vph 1 L,V
inw "PP @ and hence , vn | IV forall 2 W¥PP @ | which

gives the claim.
c : We show both inclusions separately. For v 2 D dand = 2 Wip'
we infer from Green’s formula (2.5) that

nVv o trp” /v grad 7 dx /divv 7 dx O;

so that v is contained in ker |, in this case. For v 2 ch’ div; , choose a se-
quence Vp nin D d with v, ¥ v in WP div; . Then the continuity of , in
WP div; yields nva ' Vv inW ¥PP @ and therefore , v 0 for

all 2wrr’ g by approximation, which proves the first inclusion “
Conversely, let v 2 ker WP div; . We will show ¥ 2 WP div;RY so
that the assertion follows from Proposition 2.17. Let > 2 D RY 9, Because of
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nVv Oandgrad” 2D 9 wiP' d \wecompute

D E
/\7 r~ dx /v r~ dx /divv Zdx  trp”; a Vv 6
Rd

/ divv * dx / divv ~ dx:
Rd

In view of (2.2) the function ¥ belongs to WP div;RY with div¥ divv.

d : Follows from a result from elliptic partial di Cerkntial equations. Since we
will not make use of this statement, we refer to Theorem 1 of Chapter 9 in [9] for
a proof. |

Corollary 2.22 Let RY be a Lipschitz domain with compact boundary.

@ Ifv2WP div; and = 2W%'  orv2WP div; and = 2wWXP |

then
/v grad * dx /divv Zdx: T

(b) If v 2 LP d thenv 2 W(',:’ div; if and only if there exists w 2 LP
such that

/v grad = dx /w’dx forall > 2D
In this case we have w  divv.

Proof. a : This is an immediate consequence of Green’s formula (2.5) and the
-0
fact that ker trpe W, ™ aswellasker , W} div;
b : First, letv 2 W(',3 div; . Green’s formula (2.5 and , v 0 imply

D E
/v grad ~ dx /divv Z dx trpe™; n Vv 0 /divv 7 dx

forevery > 2 D . Conversely, choose v 2 LP d as in the statement of the
corollary. Due to (2.2), the function v is contained in WP div; with divv  w.
Further, forall = 2 D RY we obtain

/\7 grad ~ dx /v'\'/ 7 dx;
Rd Rd

which yields ¥ 2 WP div;RY . Hence v belongs to WS’ div; , as claimed. i

Trace Theorem for WP rot; 223 Let 1 < p < 1. Let R3 be a Lip-
schitz domain with compact boundary and denote the unit outward normal by
n2L1 @ 2. Then the following assertions hold.
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(@) Setting ¢ v "ij@ ~pforv 2D 3 we obtain a mapping
¢:D 9 WProt; 1w ¥PPg 3
which satisfies
itV § capkVkiotk Kyipe g s 2wkpp’ g 3.
We will denote the unique continuous extension to WP rot; by ¢, too.
(b) Ifv2WP rot; and = 2WZLP' 3 then the following Green’s formula

D E
/v rot 7 dx /rotv 7 dx trpo 7 ¢t Vv

holds, where trpo is understood component wise.

0 (2.6)
(c) The operator 2 B WP rot; ;W PP @ 3 satisfies

ker ¢ Wé) rot; D

Proof. a : Choosev2D 3andlet = 2D 3. Applying GauR’ Theorem A.18
we obtain

/v rot 7 dx /rotv 7 dx
/div”\v dx / v nd / v~n ~d
@ @

) . —_— . . 1) .
Now, let = 2 W1iP 3. Since D 3 isdense in WP 3, there is a sequence

. —_— . . .~0 .
”h nin D 2 which converges to * in WP 3ije, s ¥ “androt™, !

rot” inLP asn ¥ 1. The continuity of the LP-LP’ duality thus yields

/v rot 7 dx /rotv 7 dx rI]i'rrl/v rot 7 ,dx /rotv 7 hdx

Since "n 4 trpo " and Ktrpo 7 trpe "Kyyaspip? g 3 €K™ TKyupd 3, We
further derive from Hoélder’s inequality that

/trpo’ Z/~nd /’n ZN~nd
@ @

ck™n  Tkyue skvnkpeg s;

and hence

/v rot 7 dx /rotv 7 dx / v~n ~d tV trp” .
@
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Using also Lemma 2.10 we derive

jtv trp” j kvkpkrot Tky  krotvkp kT kg kvKeor K 7 Kot

Cckvkror k™ kyipo  3:

Finally, let 2 WP’ @ 3 Take = 2 WLP' 3 with trpe 7. It follows
jJtVv J  ckvkiotk” kyipe 3 and therefore
n o
jtVv J  ckvkpor inf k7 kyipo 3 trpo 7 CkVKrot K Kyi=ppt g 3

b : We have seen in (a) that formula (2.6) holds forallv 2 D 3and * 2
wLP’ 3 Now, letv 2WP rot; .SinceD ~ 3isdensein WP rot; thereisa
sequence Vp ninv 2D ~ 3 which convergestov in WP rot; ,ie,vh ¥ vand
rotvh ¥ rotv in LP as n ¥ 1. By means of the continuity of the Lp-Lpo-duaIity we
arrive at

/v rot 7 dx /rotv 7 dx Ii'ml/vrl rot 7 dx /rotvrl 7 dx
Nt

lim Vn trpe”
pni1 YN TP

Further, we know from (a) that v, ¥ v in WP rot; implies ¢vh T ¢V in
W 1%PP @ 3 and therefore ¢ vn T v forall 2w¥PP" @ 3 which
gives the claim.

c : We show both inclusions separately. Forv 2D  3and = 2 wlp’® 3

we infer from Green’s formula in (b)

tV trp” /v rot 7 dx /rotv 7 dx O;

so that v belongs to ker  in this case. For v 2 W} rot; , choose a sequence
Vn nin D Swithvpn T vinWP rot; . Then the continuity of in WP rot;
yields {van ' v inW ¥PP @ 3 and therefore v Oforall 2

w1=P:P" @ 3 py approximation, which proves the first inclusion “

Conversely, let v 2 ker WP rot; . We will show ¥ 2 WP rot;R3 so

that the assertions follows from Proposition 2.17. Let > 2 D R® 3. Because of
¢V Oandrot” 2D 3 WP 3 we calculate

D E
/\7 rot * dx /v rot * dx /rotv 7 dx trpe ™5 ¢V 0
Rd

/rotv Z dx /r_otT/ ~ dx:
R3

Due to (2.3), the vector field ¥ is contained in WP rot;R3 with rotv fotv. |

0
Corollary 224 (a) If v 2 WP rot; andu 2 Wé) rot; ,then

/v rotudx /rotv udx:
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(b) If v 2LP 3 thenv 2 W} rot; if and only if there exists w 2 LP 3
such that

/v rot * dx /w “dx forall 22D 3
In this case we have w  rotv.

Proof. a : For v 2 WP rot; andu2D 3 W rot we obtain from
Green’s formula (2.6) that

D E
/v rotudx /rotv udx trpou; ¢ v 6 /rotv udx:

Now, letu 2 Wé’o rot; .Choose up ninD  3suchthatun ¥ uin WP’ rot;
Then the claim follows by approximation.

b : First, letv 2 W(';) rot; . Forall = 2D 3, Green’s formula (2.6) and
ker ¢ W§ rot;  then yield

/v rot 7 dx /rotv 7 dx tV trp” /rotv Z dx:

Conversely, let v 2 LP 3 be as in the assertion. Due to (2.3), the vector field v
belongs to WP rot; with rotv  w. For every ” 2 D R® 2 we further calculate

/\7 rot 7 dx /v rot 7 dx /W Z dx /v"\‘/ 7 dx:
R3 R3

By means of (2.3), we conclude ¥ 2 WP rot;R3 androt¥V rotVv. Hence the vector
field v is contained in Wé) rot; . |

Connection to the Fourier Transformation

Similar to the characterization of the Sobolev spaces H™ RY as Bessel-Potential
spaces, we will describe the spaces H div;RY and H rot;R® using the Fourier
transformation. We start with the Fourier transform of our main operators.

Lemma 225 (a) If v 2H div;RY , then

F divv i Fv for almost every 2 RY:

(b) If v 2 H rot;R3 | then
F rotv i ™ Fv for almostevery 2 R3: ~

Proof. a : Let * belong to the Schwartz space S RY . We first show that

divvj”~ , vjgrad 7 ,:
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Since v belongs to H div;RY , we know from (2.2) that
divvj vjgrad , forall 2D RY :

Choose 2 D RY with

8
21 jxj L
X
70, jxj k2
and k@x ki cforalll k d,anddefine >, x — x=n * x for x 2 RY.

Obviously >n, 2D RY and ”, x ! * x forevery x 2 RY. We further have

1
k™ n X n @k X=N X X=N @~ X ¥ @k~ X nt 1

forevery x 2 R9andall1  k d. Since =; @~ 2 L" RY for every r £ 1,
Lebesque’s theorem yields =, ¥ * and grad >, ¥ grad = in L2 R9 . We thus
obtain

vjgrad 7 , r!l'rrl vjgrad 7pn 5 rl1|ln:1l_ divv]j 7 n 5 divvj = ,;
as claimed. Taking into account v 2 H div;RY and = 2S RY , we conclude

F divv JF~ , divvj~ , vjgrad 7 |2 gdd

FvjF grad” |2Rda Fvji F” |2Rdd
i FVjF~ 5.

Because F is bijective on S R4 and D RY S RY |, the claim follows by the

fundamental lemma of calculus of variations.
b : Let = 2 S R3 3. We start with the observation that

O)“( L X
F rot~ F@ J.0A JF 0k~
K 1 K 1
X
i kJk F~ i MNF”~
K 1

Let v 2 H rot;R® . Similar to (a) we prove that
rotvji” , wvjrot® , forall = 2SR 3:
We thus compute
F rotv jF~ , rotvj~ vjrot~ , FvjF rot”
.. P3
Fvji 1 kdk F~
- PS > : >
i 1 kJg FV JF 5
i ™ Fv JE” 5:
Due to F being bijectiveon S R® 2and D R® 2 S R3 3, the assertion is a conse-
quence of the fundamental lemma of calculus of variations. |
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The next result follows from the unitarity of the Fourier transformation on L? RY .
Corollary 2.26 For x 2 RY we define © x X. Then
(@ H div;Rd nv2L2 RId:. < Fv2L? Rdoand
divv F i< Fv :
(b) H rot;R3 V2L2R33:“~AFv2L2R®3 and

rotv E ! i‘"Fv :

() H div;R® \H rot;R® H! R® 3and

1=2
kvkyi gs s kvkd  kdivvks krotvk3 vV2HIR®3: ~

Proof. ¢ : From Lemma 2.10 we already know H* R® 3 H div;R® \ H rot;R3
and the corresponding estimate. The other direction is now a direct consequence
of a ; b and the Lagrange identity

ja bj* ja~bj? jaj’jbj* ab2R®;
which yields

kdivvks krotvks k< Fvk3 k®~Fvk;
kj‘ijvjk%ﬁEk@jvkkg forall j; k 2 f1;2; 3g: |

2.2 Relations between H div :H rot and H!

In the following we will restrict our investigations to the Hilbert space situation,
which builds the major framework for our upcoming investigations. The stated
results in this section will mostly remain valid also in the LP-setting, but in contrast
to the previous section, the proofs would require real additional e [ork and also the
usage of alternative methods.

Definition 2.27 We put
H div;rot; “H div; \H rot; ;
and equip this space with the inner product

UjV dgivrot  UjVv o divujdivv , rotujrotv ,;

where u; v 2 H div;rot; . We will further consider the subspaces
Hno div;rot; ““Ho div; \H rot; ;
Ho div;rot; “H div; \ Hp rot; ;
Ho div;rot; ““Hp div; \ Hg rot; T



Function Spaces and Differential Operators Related to Maxwell’s EQuations

The following remarks are a direct consequence of the considerations from the
previous section.

Remark 2.28 If satisfies the segment property, then D 3 is a dense subset of

H div;rot; ,andif iseven a Lipschitz domain with compact boundary, then
Hno div;rot; v 2 H div;rot; L n Vv 0

as well as
Hio div;rot; v 2 H div;rot; TtV 0 =

The first aim is to understand in which situations we have additional regularity
for the above spaces. More precisely, we ask if there are certain regularity assump-
tions on the boundary such that both spaces H,o div;rot; and Hyo div; rot;
can be embedded into H! 3. Therefore we state the following density result.

Lemma 2.29 Let be a bounded C*1-domain. Then Hpo div;rot; \H! 32is

dense in Hyg div;rot; and Hig div;rot; \ H! 3 is dense in Hyg div; rot;

Proof. For a proof which does not depend on the existence of vector potentials
and corresponding orthogonal decompositions of L? 3, we refer to Lemma 2.10
and Lemma 2.13 in [2]. There, a regularity result for certain associated Neumann
problems - this is where the regularity assumptions on the boundary enters - is
used to achieve the desired H' approximation. To give a deeper impression of this
approach, we sketch it for the space Hy div;rot; , adopting the notation of [2].

Given v 2 Hyo div;rot; there is a sequence vk k in D -3 converging to v
in HY, div;rot; . For each k we consider the resulting Neumann problem

k divvg in
@h k Vk N ong@

in H1. Due to the regularity assumption on the boundary we infer that the so-

lution ¢ already belongs to H?2 so that vk grad i is contained in H?* 3,

Further, by a straight forward calculation one finds that vy i converges in H* to
the solution of the Neumann problem associated to v, i.e.,
divv in ;
@n v n on@

Thus also belongs to H? . Finally, one can show that the sequence wvg
grad x grad g belongs to Hy div;rot; \ H? 3 and does the job. |
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The following technical lemma is the key to the desired embedding results of
Hno div;rot; and Hyo div; rot; into H 3,

Lemma 2.30 (a) Let R3 be a Lipschitz domain with compact boundary. For
alv2D 2 we have

/jdivvj2 jrotvij?dx /jgradvjzdx lo ;

where the remaining term is given by
8 9

< X
lg / _divv v n rotv v~™n Vi rvi n _d
e - i1 i

(b) Let RS be a bounded CY1-domainandv 2D 3 Ifv~n Oon@ ,

then
lo / 2Hjv nj?d ;
@

with the mean curvature Hof@ .Ifv n Oon@ ,then

lg / nHv~anvand g
e

with the second fundamental form Il of @

Proof. a : We recall from (2.5) and (2.6) the Green’s formulas

/divv’dx /v grad ~ dx / v nd ;
e

forv; > 2D 9 and

/rotv Z dx /v rot 7 dx / Z v~™nd ;
@

forv; > 2D 3. We deduce

/rotv rotv dx /divv divv dx

/ v rotrotv v graddivv dx / divv v . n rotv v~n d
e

/v Vv dx / divv v n rotv v~n d
@

Applying again the first mentioned Green’s formula, we further obtain

/vi Vi dx /rvi rvjdx /vi rvi nd ;
@

which yields the desired expression.

b : The proof is beyond the scope of this thesis, since it is based on advanced
methods in di Cerkential geometry. We refer the interested reader to Lemma 2.13 in
[2], as well as the references therein. |
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Corollary 2.31 We have Hg div;rot; Hé 3 with equivalent norms.
Proof. Letv 2 D 3, In view of the formula in Lemma 2.30 (a), we deduce
kvk, kdivvk, krotvk, kvky: s

The claim then follows by approximation, as executed in the proof of Theorem
2.33. 1

Remark 2.32 The above corollary is also a simple consequence of Corollary 2.26
(c). But now, with the above lemma, we have gained an alternative proof, which
does not make use of the Fourier transform.

Theorem 2.33 Let be a bounded C1'-domain. Then the spaces Hyo div; rot;
and Hy div;rot;  are continuously embedded in HY 3.~

Proof. We prove this theorem by deducing it from Lemma 2.29 and Lemma 2.30.
Letv 2D 3. By Theorem 2.19 we can estimate

/va nj°d kKHKk 1 g Kjvike g ckvkyr s
@

and similarly for f@ Iv~nv2an d . Applying Lemma 2.30 (b) thus yields
kvKkgiv:rot Ckvky:r s (?)

in both cases. Recall that D 2 is dense in Hyo div;rot;  and Hyo div; rot;

as well as in H! 3. By approximation we then find that (?) is valid for all
vector fields belonging to Hyo div;rot;  \H! 2 or Hy div;rot; \H! 3,
Now, let v be an arbitrary vector field in Hyo div;rot; [ Ho div;rot; . By
means of Lemma 2.29, there is a sequence Vg k belonging to Hyo div;rot; \
H® 3 or Hy div;rot; \ H! 3 which converges to v in Hpyo div; rot; or
Hio div;rot; respectively. Applying the estimate (?) to each vy, we see that the
sequence Vv k is bounded in H! 3. Hence, it admits a subsequence which con-
verges weakly in H* 3, Of course, this limit is nothing else but v, which proofs
the claim. |

Remark 2.34 The embeddings of Hyo div;rot; and Hyg div;rot; in H! 3
are no longer valid in general for Lipschitz domains. A counterexample can be
found in [2] on page 832. However, a comparable regularity result, first shown
in [7], states that for a bounded Lipschitz domain these spaces are continuously
embedded in H¥? 3.~

Another interesting relation is the following
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2.2. Relations between H div ;H rot and H!

Lemma 2.35 Let be a non-empty domain in R3. If v 2 C! ;RS2 | then for any
r>0andx2 withB x;r we have

1
r !
][ vyd vy Vv X / ][ rotvy “ny d y ds
@B x:r 0 @B x;s 1

r L
/ ][ divvy ny d y ds;
0 @B x;s
or equivalently

1
r 1
/ ][ gradvy ny d y ds
0 @B x;s 1

p L
/ ][ rotvy “ny d y ds
0 @B x;s 1

- L
/ f divvy ny d y ds;
0 @B x;s

where as usual

][fyd y"jlj/fyd y .

Proof. To give an impression of how to get to this expressions, assume that v
belongs to C2 ;R® . DiLerkntiating
il
P T — vy d y
J@B X;R J @B x;R

1
j@BO;lj/@Bo;lvx Ry d vy O<R r

and using Gaul’ theorem implies

1
1 r
][ vyd V X /s][ vy dy ds:
@B x;r dO B X;s

The conclusion thus follows from
v graddivv rotrotv: |

Remark 2.36 As we have already mentioned, one needs a di Cerent approach in
the case p 2 to achieve analogous results. This is because there is no such
relation involving kdivvky; krotvky, and kgrad vk, as in Lemma 2.30. Invoking
the fundamental solution of the Laplace operator in R3, which is given by

2 R%nf0g ;
4 jxj X neg

one can represent any vector field in D 3 through

1 divv y 1 rotv y
- - < - t - <
vV X 7 gradx/ X v dy 1 rox/ - —dy
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Function Spaces and Differential Operators Related to Maxwell’s EQuations

This representation is (primal in physics) referred to as the Helmholtz decompo-
sition. Employing the Calderén-Zygmund inequality (cf. [42]) one can now prove
analogous results of Theorem 2.33 in the LP-framework. For the corresponding

statements we refer the reader to Section 1 from [3].

Inhomogeneous Boundary Conditions

In the following we show that the results of Theorem 2.33 can be extended to the
case in which the boundary conditionsv n Oorv”~n Oon@ are replaced
by inhomogeneous ones. Therefore we introduce the following spaces.

Definition 2.37 Let R3 be a Lipschitz domain with compact boundary. For
s 2 N we define
n
HS div;rot; —~ v2L? 3

divv2H® 1  rotv2HS ! 3 v 2HS FZ g

and
n
H; div;rot; — v2L% 3
o)
divv2HS 1  rotv2HS ! 3 v 2HS 245 3

We further endow this spaces with the norms

kaHﬁ ”kaz kdiVVkHs 1 krOthHs 1 3 Kpv k|_2 @

kvkps 7 kvky  kdivvkys 1 krotvkys 1 s K ¢V Ki2g 35
for v 2 H div;rot; or v 2 H; div;rot; respectively.

Theorem 2.38 Lets 2 N, and assume that R3 is a bounded C%1-domain. Then
the spaces H3 div;rot; and H; div;rot; are both continuously embedded in
HS 3.~

Proof. The proof heavily depends on the following Helmholtz decomposition of
weakly di [erentiable functions in L2. For any u 2 HS 2, provided @ is of
class C%1, there is a vector potential p 2 HS 1! 3 and a function v 2 HS 3

satisfyingdivv Oand , v 0 such that
u gradp v:

A further inspection of these functions then leads to the desired claim. We refer
to Propositions 6 and 6’ in [9]. |
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Corollary 2.39 Let s 2 N, and assume that R® is a bounded CS1-domain.

Then the spaces

n
T~ v2L?2 3:divy Orot“v2L?2 231 Kk s:

tv 0 trot’kv 01 k s 1=2 ;
n
Ne ™~ v2L?2 3:divv O;rot“v2L?2 21 Kk s;

nv o0, qrot’Xlv 01 k s=2 ;
are closed subspaces of H® s, ~

Proof. We prove the assertion by induction. For s 1, we have

T1 fv 2 Hy div;rot; :divv  0Og;
N; fv 2 Hyo div;rot; . divv 0g:

Hence T1; N H?1 3 due to Theorem 2.33 and the closedness of the divergence
operator. If s > 1, then

Ts fv2Ts 1 :rotv2Ns 10;

First, let v 2 Ts. Owing to the recurrence hypotheses, we know that v and rotv
belong to HS 1 3 and satisfy divv Oaswellas Vv 0. Thus we infer
from Theorem 2.38 that v 2 HS 3. Moreover, Ts is a closed subspace of H?! 3
because of the closedness of the divergence- and the tangential trace operator .
Now, if v 2 N, we argue exactly in the same way, only replacing ¢ by . |

2.3 Properties of the Maxwell Operator

We are now able to state the main result of this chapter, concerning the di Cerkntial
operators which naturally appear in the analysis of Maxwell’s equations. First, we
recall some elementary facts about matrix valued functions.

Definition 2.40 We endow LT 3 3 with the norm

k"k, “ess-supj* xj "2Lt 33
X2

where j j denotes the matrix norm induced by the euclidean norm on R3. We
further say that " 2 L1 3 3 is bounded from below by £ 0, and write " £ if

X u uZ juj? forevery u2 R® and for almost every x 2

If we even have a strict inequality, then we say that " is strictly bounded from

below by and write " >
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Remark 2.41 If" 2 L1 2 2jsinvertible and bounded from below by > 0, then

" 1is bounded from below by k"k;' and we have k" 1k, 1

Definition 2.42 The Maxwell operator in the phase space L?> 3 L2 3is

defined by
0] 1
0] rot
AT@ A; DA THo rot; H rot; -
rot
Theorem 2.43 Let R3 be either the full space or a Lipschitz domain with

compact boundary and put X ~L? 3 L2 3 Then we have:

(@ If"; 2 LT 2 3 are symmetric and bounded from below by some = 0,
then the operator
(0] 1 (0] 1
w1 w1
@ 0 AN @ 0 rot A
0 1 1 rot 0

endowed with its maximal domain D A is skew-adjoint in X with respect to
the weighted inner product

E;H j E;A . "EjE2 Hjﬁz;
which itself is equivalent to the canonical L?-inner product.
(b) The space
Xo” E;H 2X:divE div H 0O, o H 0

is a closed subspace of X and A maps D A into Xq, i.e., AD A Xo. The
resulting restriction Ag — A xo1 D Ao D A \Xp of Ato Xg is skew-adjoint
in Xo. If in addition is a bounded C11-domain, then the domain of Ag
endowed with the graph norm of Aq is a closed subspace of H: 3 H?I 3,

(c) If is abounded C¥1-domain, then the spectrum of Ag is an imaginary point
spectrum, with no finite accumulation point.

(d) Lets 2 N. If is a bounded CS'-domain, then

n (0]
D A EH 2D Ay : AXx2D A3 D A® \ X

endowed with the graph norm is a closed subspace of H® 3 HS 3,

Proof. a : We prove the assertion by showing that this operator is closed and
skew-symmetric in X and that the sum of this operator with | has dense range
in X. The closedness is due to the closedness of rot in L? 3 and the continuity
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of the tangential trace operator . In the following we denote the considered
operator by A-. . Aiming for the skew-symmetry, we choose E;H ; E;H 2D A
and compute, invoking Corollary 2.24 (a),

A~ E;H jEHR " lrotHjE | lrotEjH
Hj rotE EjrotH
2 2
Hj LrotE Ej" lrotH
E;H jA~ EH

Finally, we will show that the dense subset L? 3 H rot; of X is contained

inran I A« . Thus given ¥ 2 L2 3and g 2 H rot; , we have to solve the
equations

E "1lrotH f; H lrotE g; (?)
with unknowns E 2 Hg rot; and H 2 H rot; . Inserting, a priori formally, the

second equation of (?) in the first one, we are now interested in solving

"E rot lrotE "f rotg: (?7?)
Note, that h ™ "f rotg 2 L? 3 by assumption. Applying test functions * on
(?7?) and integrating by parts leads to
"Ej7 lrotEjrot” , hj~ ,:
This motivates us to consider the symmetric bilinear form
aEu 7 "Eju, lrotEjrotu , E; u2Ho rot;
It is readily seen that a is continuous. For every E 2 Hg rot; , we further calcu-

late

aEE £ KEKS krotEk3 £ minflk k.1 s sgkEKZ,;

kK kla s

which means that a is also coercive. The Lax-Milgram lemma thus provides a
vector field E 2 Hg rot; such that a E;u hju , forallu 2 Hg rot; . In
particular ~ lrotEjrot” , h "Ej~” ,forall = 2D 3. Since the vector
field h " E is square integrable this just means that ! rotE belongs to H rot;
withrot rotE h "E,cf. (2.3). Hence E satisfies equation (?7?). Putting

H g 1rotE 2 H rot;

we have constructed E;H 2D A suchthat I A+ E;H f;g and we are
done.
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b : The subspace Xg is closed in X due to the closedness of div in L? and the
continuity of the normal trace operator ,. Now, we will prove that if a vector field
E belongs to H rot; , then rotE is already contained in H div; and satisfies

div rotE 0k n rotE 0:

In this sense divrot 0 is also valid for vector fields whose distributional rotation
is square integrable. In particular this proves that AD A Xp. LetE 2 H rot;
and > 2D .Sincegrad > 2D 3, we calculate

rotEjgrad 7 , Ejrotgrad” , O

so that, by means of (2.2), we deduce rotE 2 H div;  with div rotE 0. Now, let
= 2H! and choose asequence ~i xinD  which convergesto ” in H?

Due to the continuity of the trace operator tr, cf. Theorem 2.19, the sequence
tr 7y kconvergestotr 7 inH¥™ @ . As , tr” iscontainedinH 2 @  we

conclude
n rote tr~ lim , rotE tr 7 :
k®1
Applying Green’s formula 2.5 on each  rotE tr 7y , we obtain
n FOotE tr ¢ rotEjgrad 7 , divrotEj "k » O;

and therefore ,, rotE tr~ 0, as claimed. The skew-adjointness of Ag can be
deduced analogously to the procedure in a . Further, by definition, we can write

D Ag fE 2 Hyo div;rot; :divE Og
fH 2 Hyo div; rot; :divH Og:

Thus it follows from Theorem 2.33 and the closedness of the divergence operator
that D Ap is aclosed subspace of H1 3 H1 3

c :Since is a bounded CY!-domain it follows from Rellich’s theorem that
the embedding H? 1 L2 is compact. Due to the last assertion in (b), we
infer that the embedding D Ag ¥ Xg is also compact and hence the operator Ag
has a compact resolvent.

d : By definition, we have for example

D A3 nE2L2 S.divE O;rote21?2 ®* 1 k 2;
n rotE 0; t+E 0
nH2L2 S:divH O;rotkH2L2 31 k 2:
t rotH 0O, o H 0

T2 Np;
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with Ts; Ng s 2 N as in Corollary 2.39. Continuing inductively one sees that
actually D A Ts Ns. Thus the claim is a direct consequence of Corollary
2.39. 1
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Chapter 3

Evolution Equations

In this chapter we shall investigate the quasilinear evolution equations which arise
in the study of nonlinear Maxwell’s equations as introduced in Chapter 1. We are
thus interested in well-posedness results for Cauchy problems of the form

ut ut Aut Qut ut t2 0T ;

uoO Uog:

Q)

Here the unknown u takes values u t in a Hilbert space. To construct solutions of
this nonlinear Cauchy problem we use an approach introduced by T. Kato in [24].
Roughly speaking this means that we want to approach this problem in the follow-
ing way. For linearization, we fix (certain) functionst , = t suchthat ~ t is
invertible, and consider the resulting linear, but nonautonomous evolution equa-
tion

u’t "t A Q”t ut _A-tut t2 0T ;

uo Ug:

If this admits a unique solution u-, then we may consider the solution operator

7 , u-:Now, every 7 with is a solution of (Q). We thus have
transformed the problem of finding a solution of the Cauchy problem (Q) into
searching for fixed points of

So, the strategy of the upcoming chapter is as follows. First, we will introduce
from scratch the basic concepts and ideas for tackling nonautonomous evolution
equations in Section 1 and Section 2. These two sections mainly provide a sum-
mary of the existing literature working in this field, in principal we have used
the early pioneering works of Kato [20-22] and some more later works like [28-
31, 36, 39]. The main result is Theorem 3.35, but we also want to mention Lemma
3.30, which is non-standard and facilitates the control of several constants dur-
ing some exhausting calculations in Section 3. Using these insights, we will solve
the above mentioned fixed point problem by invoking the contraction principle
on adequate complete metric spaces and gain the existence of solutions for the
Cauchy problem (Q). Further, we will extend these basic existence results to the
local well-posedness Theorems 3.43 and 3.43, which are in the center of Section 3.
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Finally, in Section 4, we address second order evolution equations. By the usual or-
der reduction procedure, we will upgrade the theorems from Section 3 to Theorem
3.45.

Notation. For two normed spaces X; Y we denote the space of bounded linear
operators from X to Y by B X;Y . Given R > 0, we denote by Bx O;R ; By O;R
the closed balls of radius R in X or Y respectively.

We assume that the reader is familiar with the basic concepts and most im-
portant results concerning autonomous evolution equations and operator semi-
groups. For an introduction we refer to the monographs [13, 31, 39].



Evolution Equations

3.1 Linear Nonautonomous Equations

Though we will only consider Hilbert spaces in the later applications, we will work
out the following theory on Banach spaces, since it does not make additional
work. We first introduce the basic concepts for well-posedness of nonautonomous
Cauchy problems

Wt Atut ts2J tEs;

(CP)
us  Us;

where A T fAt DAt X ¥ X :t2Jgis afamily of linear operators on
some Banach space X, and J is a non-trivial interval.

Notation 3.1 LetJ R be an interval. We then put
3 TFts 23 J:tEsg:
For t 2 R we define

Jee “fs2J:sAtg I\ t,1;

and analogously J-¢; J ¢; J<t.

Definition 3.2 Givens2Jand us 2 D A s , we say that a continuous function
u:Jgs ¥ X is a naive solution of the associated Cauchy problem if u 2 Ct Jg: X
ut 2D At forallt2 Jgs, and u solves (CP).

The definition of well-posedness is not so straightforward as in the autonomous
case. However, the following definition, compare [13, 28, 36], seems to be appro-

priate.

Well-posedness 3.3 The nonautonomous Cauchy Problem (CP) for a family of
linear operators TA t : t 2 Jg on the Banach space X, is called well-posed on
spaces Ys if the following holds:

(@) There are dense subspaces Y s 2 J of X with Y D A s such that
for each y 2 Yg there is a unique naive solution u ;s;y of (CP) with
ut;s;y 2Y¢fort2 Jgs.

(b) Ifsh ¥ sandyn ¥ y forsp; s2Jandyn 2 Ys,; Y 2 Ys, then we have
at;sh;yn Yat;s;y inX

uniformly for t in compact subsets of J, where & t; r;y ut;r;y if
tErandat;r;y yift r.
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3.1. Linear Nonautonomous Equations

In other words, we require that there exists a unique solution for su Cciehtly many
initial values, and that the solutions depend continuously on the initial data.

(c) If in addition there are constants M £ 1 and ¥ 2 R such that
kut;s;y k Me"tskyk

forall y 2 Ys and t 2 Jgs, then the Cauchy problem is called well-posed with
exponentially bounded solutions.

Remark 3.4 Concerning part (a) and (b) of Definition 3.3, we want to emphasise
that there are examples (cf. Example 3 in [30]) in which it is not possible to choose
Ys D As ,even if each operator At t 2 J is the generator of a strongly
continuous semigroup on X.

Now, suppose that (CP) is well-posed. Then we may define
Ut;sy Tut;sy t;s 2 45,y 2Ys:

By using the continuous dependence on the data, similar as it is done in the au-
tonomous case, we can extend each U t;s to a bounded operator U t;s 2B X .
The resulting family satisfies the following properties (cf. [30], Proposition 3.10.)

U t;s UtrUr;s andU s;s | forall s;r;t2Jwiths r t,
9B X ; t;s , U t;s isstrongly continuous.
This motivates the following definitions.

Definition 3.5 (a) An evolution family, or propagator, on a Banach space X
(with parameter interval J) is a strongly continuous mappingU : ; ¥ B X
which satisfies the chain condition

U t;s UtrUr;s; Us:;s I tEr Esind:

Further, the evolution family U is called exponentially bounded if there are
M A 1and ¥ 2 R such that

kU t;s kg x Me"'ts t;s 2

(b) We say that an evolution family U ; ™ U t;s : t;s 2 ; solves the
nonautonomous Cauchy problem on spaces Ys, or that fA t : t 2 Jg gener-
ates the evolution family U ; on spaces Ys if there are dense subspaces
Ys s2J of XwithYs D A s such that

UtsYs Yy t2Jg;

andthemapt , U t;s y is a naive solution foreachs2Jandy 2 Ys.
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Remark 3.6 If fA t : t 2 Jg generates the evolution family U t;s : t;s 2
on spaces Yg, thenthe maps , U t;sy y 2 Ys will already be di Cerkntiable
from the right for s 2 J<¢ with
OI—Ut;sy U t;s Asy:
ds

For a proof we refer to [30], Lemma 3.9.

The connection of these two fundamental concepts, i.e., the language of well-
posedness as introduced in Definition 3.3, and the theory of evolution families
as indicated above, is given through the following proposition, which states that
these two things are merely two sides of the same coin.

Proposition 3.7 The nonautonomous Cauchy problem (CP) is well-posed on spaces
Ys if and only if there is an evolution family which solves (CP) on the spaces Ys.

Proof. A detailed proof is given in [30], Proposition 3.10. |

IfU: ; ¥ B X isstrongly continuous, then it is obviously separately strongly
continuous and the uniform boundedness principle yields sup . ockU t;s k<1,
for each compact set C 3. The following lemma states that the converse is also
true, provided U satisfies the chain property.

Lemma 3.8 LetU: ; ¥ B X satisfy the chain property and suppose that:
(@ Foranys2JthemapJdgs * B X ; t , U t;s ;isstrongly continuous.

(b) Foranyt 2 JthemapJ ¢ ¥ B X ;s , U t;s;isstrongly continuous at
s t

(c) U is locally bounded.

Then U is strongly continuous and hence an evolution family.

Proof. Given an arbitrary tg;so 2 3, we want to show that for every x 2 X,
UtsxTUtgsgxas t;s ¥ tg;So . Thusfix to;so 2 jand putJp 7 J<g, if
sp infJandJy fspg else. Condition (b) implies that
_ L
D U so;r X
r2Jo
is dense in X. Since U ; is locally bounded, it thus su [ced to show that
Ut;sx T Utgsgxforall x2D,ie., forall xoftheformx U sg;r X r 2
Jo; X 2 X . Now, let th;shn 2 3 witht, ¥ tg, sn ¥ sg, and without loss of
generality s, £ r for all n 2 N. Using condition (a) and (c), we conclude
Uth;shn X U th;sh X Uspr X U th;sn U spir X
Uth;sh Usor X Uspir X  Utyr X

-0 Utyr X UtgsoUsor X U tgsg X: |
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Remark 3.9 Condition (c) of the above lemma is really needed. Separate strong
continuity of a family satisfying the chain property is not su [Lcieht to obtain local
boundedness. A counterexample can be found in [41] on page 11. Note the di Cer}
ence to the autonomous case. There the local boundedness of the family T  was

indeed a consequence of the strong continuityoft , T t att O.

A Stronger Solution Concept

Of special interest for us will be the case where there is a common dense (in X)
subspace of the domains D A t ; t 2 J. More precisely:

Assumption 3.10 Suppose that there is a Banach space Y;k ky suchthatY X
and the corresponding embedding is continuous and dense. In this situation we
say that (CP) is well-posed on Y if (CP) is well-posed on the spaces fYs : s 2 Jg,
whereYs Y.

Unfortunately, even in this simple situation we still do not know any simple
conditions that guarantee the existence of naive solutions. In order to obtain such
solutions under reasonable conditions we introduce a stronger concept of solu-
tions, which for example could be motivated by Example 3.12 below and the related
constructing concept in the following Section 3.2.

Definition 3.11 Let Y be as in Assumption 3.10. For us 2 Y, a function u 2
C Jgs:Y \C! Jgs;X which satisfies (CP) is called a Y-valued solution of (CP).
Further, we say that an evolution family U t;s : t;s 2 ; solves the nonau-
tonomous Cauchy problem on Y, or that fA t : t 2 Jg generates the evolution
family U t;s : t;s 2 3 onY if

Ut,sY Y t2Jg;

andthemapt , U t;s y isaY-valued solution foreachs 2 Jandy 2 Ys.

Example 3.12 Assume J 0;1 and A t A for all t 2 J, where A is the
generator of a Co-semigroup. Then fA t : t 2 Jg generates the evolution family

Uts etsA s 2

on the space Y;k ky D A ;K ka . In particular, each solution u of the Cauchy
problem

u't Aut tEs; us YyY2DA

is a Y -valued solution and it is given by u t et sAy,
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For an inhomogeneity ¥ 2 C J; X , we also study the inhomogeneous Cauchy
problem

uwWt Atut Fft tEsind;

(iCP)
us y2Y:

Again a functionu 2 C Jgs;Y \C! Jg; X which satisfies (iCP) is called a Y -valued
solution of (iCP). Similar to the autonomous case if fA t : t 2 Jg generates an
evolution family, then any Y -valued solution is given by the variation of constants
formula.

Theorem 3.13 Let ¥ 2 C J; X and assume that fA t : t 2 Jg generates an evo-
lution family U t;s : t;s2 3 onY. Then each Y-valued solution u of (iCP) is
given through

t
ut Utsy /Ut;rfrdr:
S

In particular, each Y -valued solution of (iCP) is unique in this case.

Proof. Let u 2 C! Jgs; X solve (iCP). From Remark 3.6 we infer that the function
v t;r 77U t;r u r isdilerkntiable from the right for every r in J<¢ with
ddTvt;r utr Arur utr Arur utrftr
Uutr fr:

Thus integrating over s;t yields

t
ut Utsy /Ut;sfrdr: |
S

3.2 General Construction of an Evolution Family

In the following let fA t :t2J a;b g be a family of generators in a Banach
space X (i.e., each A t generates a strongly continuous semigroup in X) such
that there is a Banach space Y which is densely and continuously embedded in X
and which satisfies Y DAt forallt?2J,cf. Assumption 3.10. We want to
construct an evolution family U : ; ¥ B X that solves

ut Atut tEsind;
us vy,
on the space Y. To this aim, we pursue an idea going back to Tosio Kato [21]:

Approximate A by step functions Ap  for a partition P 7 ftg; t1;:::;thg of
the interval J a;b ,ie,

,’X
Ap t g ot T At ltbg A b ;
k 1
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where Iy, denotes the characteristic function of the measurable set M

COA(L) : :
. o : :
: : : o A(tn-1)
A(to) A(tz) =
o0
L : ]
I 1
a=+tp 11 to 13 s th-1 th=>b

Figure 3: Approximation scheme for a family of operators A

generates (except

I B X whichis

Then it follows (under mild additional assumptions) that Ap
N

of a finite number of values) a unique evolution family Up

given by
Up t;s “et SAt1: ’tkl s ot ty;
Up t;s et b At el 1AL 1 gt SALL . ¢ 1 s<t <t t 1:

jok1

t+1
t
tx
-1

t

)
a tp---ter -t e oo

Figure 4: Definition of Up on the triangle ;.

Remark 3.14 The following heuristic might serve as a motivation for the expres-
fa;t;;bg and assume first thats 2 a;t; . Then

sion of Up: Take a partition P
we want to solve the two systems

ult Aaut tEs t2 at ;

Uo S '

and
ult Atput tEs; t2 ti;b

u; ty Uo t1 :
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The candidate for the desired solution according to Ap  isthenu | 4, Uo
| t,:0 U1. Using Example 3.12 we obtain

Ut etsAqy tEs; t2 ajty ;

urt et Aty ettAtiglisAay s t2 t1;b
Continuing inductively we shall find the above expressions for Up.

Now, we start to examine the properties of Up. The mappingUp : ; T B X
immediately satisfies

Up t;r Up r;s Up t;s; Up s;s I tEr A£Es inJ.
Up is strongly continuous.

Where the latter can easily shown with Lemma 3.8. Hence each Up ; is an evo-
lution family. In the following we want to find out under which circumstances this
evolution family (at least almost everywhere) is generated by Ap  , and when does
the strong limit

Ut;s “slimUp t;s
kPk 10

exists locally uniformly in t;s . This limit will then serve as the candidate for our
desired evolution family generated by A . Abbreviate U, ™ Up,, for a partition
Pn " fa;tf;::;t]) ;;bgofd  ajb.

We expect that the derivatives of U, t;s are given by A, t , respective A, s
at least for almost every t or s. If this holds, we may calculate

t
d
Uhttsy Umntsy /drUmt;r Unh r;s ydr
S

t
/Um t.r Amr Anr Upr;sydr:
S

In order to estimate the integral, we need to control arbitrary products of semi-
groups eSi“* i relative to a given partition of the interval J: The next definition,
again going back to Kato, cf. [21], seems to be adequate.

Definition 3.15 A family of generators TfAt :t2 a;b g is called stable (or
Kato-stable) if there are numbers M £1and ¥ 2 Rsuchthat ¥;1 At for
allt2 a;b,and

eskAtk esk 1A t 1 e eslAt1 . Me! Sk Sk 1 i S1

forallsj £0andalla t; t; ::: tc Db. Inthiscase we will write

A 2stab X;M; ¥ : T
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Before continuing we also want to recall the concept of A-admissible subspaces
of a Banach space X.

Definition 3.16 LetA: D A X ¥ X be a linear operator in a Banach space X.
If Y is a subspace of X, then the part of Ain Y is the linear operator A  given by

DA, "ftx2D A \Y :Ax2Yg; Ay TAXx x2DA

If Y is an invariant subspace of A, ie, AD A \Y Y, then the part of A
coincides with the restriction of A to Y. Now, let A be the generator of a Cp-
semigroup T . Then, a subspace Y of X is called A-admissible if it is an invariant
subspace of T t for all t £ O; and the restrictions of T t to Y again form a
Co-semigroup on Y.

It is well known, cf. Proposition 2.3 in [21], or Theorem 5.5 in [31] that

Lemma 3.17 Let A be the generator of a Co-semigroup T  and Y be a subspace of
X. Then Y is A-admissible if and only if the following assertions hold.

(&) Thereissome ¥ 2 R such that Y is an invariant subspace of R ; ¥ for all
> 1 and

(b) A y,the partof Ain Y, is the generator of a Co-semigroup on Y.

In this case T v is generated by A , briefly

etA , e
Given a partition P,  fO;t{';:::;t] ;;Tgof O;T letUn t;s ~Up, t;s de-
note the family of operators defined at the beginning of Section 2.2. One can now
show, under the conditions H1 - H3 stated below, that for every x 2 X the limit

Utsx r|1l!r'q_Un t;s X (3.1)

exists uniformlyon0 s t T,asn ¥ 1. Theorem 3.18 indicates that the
resulting evolution family U ; indeed is a promising candidate for solving the
nonautonomous Cauchy problem on Y. In view of their applications of abstract
results to partial di Cerkntial equations, the conditions H1 - H3 are usually re-
ferred to as the hyperbolic case. The following theorem is adopted from [31], The-
orem 5.3.1.

Theorem 3.18 Suppose that there is some Banach space Y X which is densely
and continuously embedded in X. Further assume that the family of generators
fAt :t2J a; b g satisfies the following conditions:

(Hl) A 2stab X;M; T .
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(H2) Y is A t -admissible for any t 2 J, and the family of parts A t  is stable in
Y,sayA | 2stab Y;M; T .

H3) Y DAt andAt 2B Y;X forallt2J,andthemapt , At;J !
B Y;X , is continuous.

Then there exists a unique evolution family U : 3 I B X satisfying
(E1l) kU t;s kgx Me" ts t;s 2 3.

(E2) Foreveryy 2Y ands 2 Jthemap U ;s y:Jg ¥ X, is di[erkntiable from
the right at s with

d
IUt,Syts Asy

(E3) Foreveryy 2Y andt2Jthemap U t; y:J ¢ ¥ X, is di[Cerkntiable with

d
EUt;sy Ut;sAsy s2J

As a direct consequence we can rephrase Theorem 3.13 for Y -valued solutions
of the inhomogeneous Cauchy problem.

Theorem 3.19 LetfA t : t 2 Jg be a family of generators in X which satisfies the
assumptions H1 - H3 of Theorem 3.18 and let ¥ 2 C J;X . Then any Y -valued
solution u of (iCP) is given through

t
ut Utsy /Ut;rfrdr:
S
In particular, each Y -valued solution of (iCP) is unique in this case.

Proof. See Theorem 4.2 in [31]. |

Before we continue studying generation theorems concerning evolution equa-
tions, we try to find suitable conditions implying assumptions H1 - H3 for a
broad range of applications. First, we give a characterization of the Kato stability
in terms of resolvents.

Lemma 3.20 AfamilyfA t : t2 a;b gisstable if and only if one of the following

assertions hold.

(@) There are constants M £ 1 and ¥ 2 Rsuchthat I;1 At forall
t 2 J and the estimate

R Aty R JAtx:1 :::R At gx
holds forall > Y andalla t; t, ::: tx b.
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(b) There are constants M £ 1, ¥ 2 Rsuch that ;1 At forallt2]
and the estimate

R ki Aty R k1 Atc1 'R 1Aty B X Qr

holdsforall j> ! andalla t; t, ::: t b. —
Proof. Proofs can be found in [21], Proposition 3.3, or [31], Theorem 5.2.2. |

If for some ¥ 2 Rwe know that ¥ I A t generates a Cp-semigroup of con-
tractions for all t 2 J (which is usually denoted by At 2 G X;1; ¥ ), then A
clearly belongs to stab X;1; ¥ . Unfortunately, this condition is in general too
restrictive for the applications we are interested in. But it can be relaxed by the
following lemma, which indeed seems to be the only practical way to show that
a family fA t : t 2 Jg is stable. Because of its importance for our main results,
and since the proof of this lemma is merely sketched in the literature we provide
a detailed proof.

Lemma 3.21 Suppose that foreacht2J ™ a;b thereis a norm k ki on X, equiv-
alent to k k with constants k¢; K¢ >0, i.e.,

ki kxky kxk Kikxky X2 X ;
such that the family fk k; : t 2 Jg depends smoothly on t in the sense that
kxke €9t STkxks, x2X;t;s2J

for some constant c. Denote by X; the space X endowed with k k¢. Now, if for some
T 2Rwecanshow At 2G X¢1; 8 t2J ,then

K
A 2stab X;k—tezcma“; * foranyt2J: ~
t

Proof. First, we will show that A 2 stab X¢;e?°™M>J: &1 for any t 2 J. Since
At 2 G X¢1; ¥, and the norm k k¢ is equivalent to the one on X, we know
that each A t is a generator on X and that 1;1 At forallt2J. Let
bEtcE::: £ty Faand t 2 J be arbitrary. For every x 2 X and > T we obtain
the estimate

kR ;At ::R Aty Xk

IR 'Aty1 'R ;A X g

Teft %1 R SAt1 (R At X

Ket t t kxky,
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Thus for t 2 J from above we get

kR ;Ate ::R ;A t;: xkt
eCjt tj ¥ k eC t t1 kat
= 1

eC Jt tj te t1 jta tj || Kk kxkt:
We consider the three cases t £ tx; tx £t £t; and t; £ t, where

Jjt tj tk t1 jtu tj 2t t; 2maxJ;
jt tj te t1 jti tj 2t tu  2maxJ;
jt td te ti o jti tj 2t t 2maxJ;

respectively, so that
kR At ;R :At; xkg e2cmaxJ v Kk
The above claim now follows from Lemma 3.20 (b). Finally, calculating

kR At :::R ;At; xk
KikR At :::R ;A t; Xkt

K¢ eZc maxJ [ k kat
K
Nt e2c maxJ ) k kxk :
Kkt

we achieve the desired statement of the lemma. |

The following perturbation result for stable families is also an encouraging
criterion for verifying stability. It is an extension of the well known bounded per-
turbation theorem for Cyp-semigroups (see Theorem I111.1.3 in [13]).

Theorem 3.22 Suppose A 2 stab X;M; 1 andletBt 2B X t2J with
kB t kg x b for some b > 0. Then

A B 2stab X;M; " bM : T
Proof. See for example Theorem 5.2.3 in [31]. |

We sketch a typical situation, in which we want to apply these results. Suppose
that we want to verify the stability of a family of operators taking the form A t
Bt t2J. Assume further that A 2 G X¢;1; @ for a family of equivalent
norms k ki as in Lemma 3.21, and thatB t 2B X with kB t kg x b for some
positive constant b. Applying first Lemma 3.21, and then Theorem 3.22, we derive

A B 2 stab X;ﬁezcmaXJ; 1 bﬁeZcmaxJ :
kt kt
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As stated in the introduction, a precise knowledge of such stability results would
be desirable for sharp estimates in the later quasilinear problems. To this aim,
we think that it is worth mentioning that the annoying exponent ¥ b E—:ezc maxJ
is only a consequence of the manner of applying the above results. Exactly as in
Lemma 3.21, we obtain a much smaller exponent.

Lemma 3.23 As in Lemma 3.21 suppose that foreacht 2 J ™ a;b thereisanorm
k k¢ on X, which is equivalent to k k with constants k¢; K¢ > 0 such that the family
fk k¢ : t 2 Jg depends smoothly on t, i.e.,

kxke €9t STkxks x2X;t;s2J

for some constant c. Denote by X; the space X endowed with k k¢. Assume fur-
therthat At 2G X;1; 8 t2J forsome ¥ 2 R, and suppose that there are
bounded, linear operatorsB t t 2 J and some constant b such that kB t kg x

b. Then

K
A B 2stab X;k—tezcmaxj;! b: ~
t

We now want to analyse the condition H2 of Theorem 3.18. The crucial part
here is already to decide whether a given Banach space Y X is A-admissible for
some generator A, or not. So, assume that Y;k ky is a Banach space which is
continuously and densely embedded in X. From Lemma 3.17 we already know that
Y is A-admissible if and only if the Cauchy problem

vit Avt tE£O;
v 0O v,

is well-posed in Y. Suppose that there is an isomorphism S of the spaces Y and X,
i.e., a continuous mapping S : Y T X which is onto and one-to-one. Then we can
consider the new coordinates

ut “Svt 2X:
Di Cerkntiation yields

u't svit SAvt SAS lut tEO
and of course

uo Sy;

which is now an evolution equation in X. These considerations motivate the fol-
lowing result.

Proposition 3.24 Let A be the generator of a Cp-semigroup on X, and suppose
that the Banach space Y X is continuously and densely embedded in X. Assume
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further that there is an isomorphism S from Y onto X. Then Y is A-admissible if
and only if SAS ! on its maximal domain

n (o]
D SAS 1 x2X:SIx2D A AS Ix2Y ;:

is the generator of a Cp-semigroup on X. In this case

1 ~
etSAS SetA YS 1:

Proof. See Theorem 4.5.8 in [31]. |

Corollary 3.25 Let A be the generator of a Cyp-semigroup on X and suppose that
the Banach space Y X is continuously and densely embedded in X. Assume
further that there is an isomorphism S from Y onto X. If there is an operator
B 2B X such that

DSAS! DA:; SAS x Ax Bx x2DA ;

then Y is A-admissible.

Finally, the following lemma allows us to verify whether a given subspace Y
of X is A-admissible or not, by estimating the commutator of A and S on a “nice”
subset of D A . Again, since there is actually no proof in the cited literature we
will provide one here.

Lemma 3.26 Let A be the generator of a Cp-semigroup on X, and suppose that the
Banach space Y X is continuously and densely embedded in X. Further assume
that there is an isomorphism S from Y onto X. If thereisacore D D A for A
such that

(@) D D SAS 1,
(b) SAS x Ax y ckxkx X 2 D; for some positive constant c ,

then Y is A-admissible.

Proof. The assertions allow us to extend SAS * A (defined on D) to a bounded
operator B on X. Of course, SAS 1x Ax Bx for all x 2 D. We will show
that already D SAS ?! D A and SAS 1x Ax Bx forall x 2 D A . First,
let x 2 D A . Since D is a core for A there is a sequence Xp n in D such that
Xn 1 x and Axn, ¥ Ax in X. The continuity of B and S ! yields Bx,, ¥ Bx in X
andS x, 'S IxinY. Because Y is continuously embedded in X, we also obtain
S 1x, 'S 1xin X. Further, for the core elements x,, we see

AS x5 S 1Axn Bxn 'S 'Ax Bx inY;
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and again, since the norm in Y is stronger then the norm X, this limit also exists
in X. Since A is closed, it thus follows that S 'x 2D A and AS 'x S ! Ax
Bx 2 Y whichmeans x 2 D SAS ' and SAS 'x Ax Bx. For the remaining
inclusion, we take 2 A . Foreveryx 2D SAS ! we have

S Ix AS 1x Ix SAS ! x;
and hence
SR ;AS?! 1Ix sAslx x:
Conversely, let x 2 X. Clearly,
S1'SR ;As!'x R ;ASx2DA
and AS TSR ;AS 1 s Ix. Wethen obtain
AS 1SR ;Aslx six stsr ;Aslx2y:
Hence we have shown that SR ;A S x 2D SAS ! so that we may calculate
Ix SAS® SR ;Aslx s Ix ASisSrR ;Aslx x:

Therefore 2 SAS ! andR ;SAS ! SR ;A B S ! SinceB isabounded
perturbation of A, also A B generates a Cgo-semigroup and therefore A B \

A . As aresult, the larger set A B \ SAS ! is not empty, which
finally implies that SAS 1 A B. Thus the lemma is a consequence of Corollary
3.25. |

Corollary 3.27 Let the assumptions of Lemma 3.26 hold, andletD D A be a
core for A such that

(@ S D DSA \DAS,
(by SA AS S 1x x Ckxkx x 2 D; for some positive constant ¢ .

Then Y is A-admissible.

Proof. Assertion (a)impliesD D SAS ! andthen (b)alsoyields SAS x Ax
¢ kxky so that we can apply Lemma 3.26. |

Remark 3.28 Instead of verifying (b) in Corollary 3.27, it is already su [cieht to
show that

AS SA S x . Cks Ixkx x 2 D; for some positive constant ¢ ;
since automatically kS 1xkyx CemkS 1xky CemkS lky.xkxky. Denoting by
S;A 7“SA AS; D SA D SA \D AS

the commutator of S and A, we have thus shown that the commutator estimate
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@ s D D S;A ,
(b) k S;A ukyx ckukx u2S !D; for some positive constant c ,
for some core D of A implies that Y is A-admissible.

We will use these facts to analyse the condition H2 for a given operator
family fA t : t 2 Jg. There are basically two possibilities to generalize the above
results to this nonautonomous situation. We may assume that foreach At t2
J there is some isomorphism S t of Y onto X, or that there is some uniform
isomorphism S of Y onto X. We will start with the latter possibility.

Lemma 3.29 Suppose A 2 stab X;M; ¥ . If there is an isomorphism S of Y onto
X andifthereareB t 2B X withkB t kg x b for some positive b such that

DSAtS! DAt ;
SAtS I Atx Btx t2J; x2DAt ;

then Y is A t -admissible for every t 2 J and

A | 2stab Y; kSkkS 'kM; ¥ bM

In particular, H2 holds.

Proof. It is an immediate consequence of Corollary 3.25 that Y is A t -admissible
for each t 2 J. From Theorem 3.24 we also know that

At

e v S lgSAtS's o3 EOQ:

Further, the family SA S 1 A B  is stable in X with stability constants
Mand I bM, by Theorem 3.22. Let tx £ ::: £ t; and sj £ 0. We then conclude

eSkAtk Y:::eslAtl v S leSkSAtkS 1S:::S 1eS;|_SAt1$ 18 5y
BY
S leSkSA twsS?t... eS;LSA t1 S lS
' BY
kS lkkeSk Atk Bl ...gst At Bltin . kSk;

which closes the proof. |

Again, in the situation of Lemma 3.23 we can obtain a sharper constant than
1 bM.

Lemma 3.30 As in Lemma 3.21 suppose that for each t 2 J a;b there is a

norm k k¢ on X, equivalent to k k with constants k¢; K¢ = 0 such that the family
fk k¢ : t 2 Jg depends smoothly on t, i.e,,

kxke €9t STkxks x2X;t;s2J ;
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for some constant c. Denote by X; the space X endowed with k k¢. Assume futher
that At 2G X¢;1; 8 t2J forsome ¥ 2 R. If there is an isomorphism S of Y
onto X, and ifthereareB t 2B X withkB t kg x b for some positive b such
that

DSAtS! DAt ;
SAtS x Atx Btx t2J);x2DAt ;
then Y is A t -admissible for every t 2 J and
K
A, 2stab Y; kSkkS lkk—tezcma’”; ' b:
t

In particular, H2 holds.

Of course all the corollaries from the autonomous case carry over to the nonau-
tonomous case, we will only formulate one of these as an example.

Corollary 3.31 Suppose A 2 stab X;M; ¥ and that there is an isomorphism
S of Y onto X. If foreach t 2 J thereiscore D t for A t such that

@s™t D S;At ,
(b) k S;A't ukx ckukx u2S D t; for some uniform constantc ;
then H2 issatisfied and A, 2stab Y; kSkkS kM; ¥ cenkS kM :

We consider the case in which there is a family of isomorphisms St t 2 J
from Y to X. To obtain A t -admissibility for every t 2 J, one needs additional
assumptions concerningthe mapt , S t .

Lemma 3.32 Suppose A 2 stab X;M; ¥ . If for each t 2 J there is an isomor-
phism S t of Y onto X such that

kS t kgyx; kSt kg XY c t2J; for some constantc ;

JYIBY;X;t,St isofbounded variation,
and ifthereareB t 2B X withkB t kg x b for some positive b such that

DStAtSt ' DAt ;
StAtSt Ix Atx Btx t2J x2DAt

then Y is A t -admissible for every t 2 J and
A, 2stab Y;c2MeMars . 1 pMm

In particular, H2 holds.
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Proof. We can copy the proof of Lemma 3.29 by replacing S with S t until the
estimation of the products ~;S t; 'e% A% B4 S t;, since now, because of
the time dependence, we have no cancellation of the isomorphism. The remaining
part of the proof can for example be found in [21], Proposition 4.4. |

We now return to the question under which additional assumptions to H1 -
H3 we can achieve that the evolution family U ; in Theorem 3.18 is actu-
ally generated by A on Y, where we will invoke the above conditions for H2 .
We first observe that it remains to establish the invariance of Y under the family
U t;s t;s 2 3.

Lemma 333 LetfAt :t2J a; b g satisfy the conditions H1 - H3 of Theo-
rem3.18,andlet U t;s : t;s 2 j; be the corresponding evolution family given
in Theorem 3.18. If in addition

E4)ULsY Y s;t 2 5
(E5) foranyy 2Y themap ;' Y; t;s , U t;s y iscontinuous,
then U t;s : t;s 2 5 isgeneratedbyfA t :t2JgonY.

Proof. We refer to [31], Theorem 5.4.3. |

Thus we only need to look for further assumptions on A  that guarantees
that E4 and E5 are satisfied.

IfY is a Hilbert Space

By means of the Banach-Alaoglu theorem one can show (cf. [21] Theorem 5.1) that
for reflexive Y, the evolution family from Theorem 3.18 already leaves Y invariant
and is weakly continuous in Y. Now, let Y be a Hilbert space. If we further assume
that the stability condition H2 originates by a family of equivalent norms on
Y, as stated in Lemma 3.21, then we obtain the following theorem, which states
that (up to a countable number of exceptions) the evolution family constructed in
Theorem 3.18 solves the nonautonomous Cauchy problem (CP) on Y.

Theorem 3.34 Let X be a Hilbert space and suppose that there is another Hilbert
space Y X which is densely and continuously embedded in X. Assume further
that the family of generators fA t : t2J O;T g satisfies H1 ; H2 ; H3 and

(H4) For each t 2 J there is an inner product j vy. on Y such that k Ky is
equivalent to k ky P J v and the resulting family k ky.¢ : t2J de-
pends smoothly on t, i.e., there is some constant ¢ such that

kukyy €9t STkukys u2Y;ts2J:
The semigroup e At  gq is quasi contractive on Y;k ky.¢ foreveryt 2 J.
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Then the evolution family U t;s : t;s 2 3 from Theorem 3.18 satisfies, in ad-
ditionto E1 - E3:

Ut;sY Y, kUtsksy Me¥ts and t;s , U t;s isweakly contin-
uousiny.

Foreacht2Jandy 2 Y the mappingJ ¢ ¥ Y;s , U t;s vy, is continuous.

Foreachs 2 Jandy 2 Y the mapping Jgs ¥ Y;s , U t;s vy, is right-
continuous, and continuous except possibly for countable values of t.

For each s 2 J and y 2 Y the derivative of the mapping Jgzs ¥ Y;s ,
U t;s vy, exists except possibly for countable valuesoft,equals A t U t;s vy,
and is continuous in X with similar exceptions.

Proof. See [21], Theorem 5.2. |

In Remark 5.3 of [21], Kato describes one way to overcome these annoying
(possible) exceptions in the above theorem, which will indeed fit into the setting of
our desired applications. He assumed that the time reversed family A (where
At 7 AT t t2 0;T )also satisfies the conditions of the above theorem.
The following result will be crucial for our investigations of quasilinear problems
in the next section.

Theorem 3.35 Let X be a Hilbert space and suppose that there is another Hilbert
space Y X which is densely and continuously embedded in X. Assume further
that the family of generators fA t :t2J 0;T gaswellasf AT t :t2Jg
satisfy H1; H2 ; H3 and H4 . Then there exists a unique evolution family
U: ;5 I B X satisfying the following assertions:

(@ U tsY Yforeach t;s 2 ;.

(b) Foreachs 2 0O;T andeachy 2 Y,themapt , U t;s y belongs to the
spaceC s;T ;Y \C! s;T ;X and solves the nonautonomous Cauchy prob-
lem (CP) with initial value y. In particular, the derivative

d
—U t; AtUTt,
dt Sy Sy

exists in X.

(c) Foreachs 2 0;T andeachy 2Y the derivative

d
—U t; Uts A
ds sy S sy

exists in X and is continuous in t;s .
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(d) The evolution family satisfies the following estimates
kU t;sksx Me"tS: kU t;skgy Me¥ts ts 2 5

where M; ¥ and M; ¥ are the stability constants of assumption H1 and
H2 respectively.

In particular, U ; isgeneratedby A inY. —

Proof. Combining Lemma 3.33 and Theorem 3.34, it only remains to show that

1Y, tis , Ut;syiscontinous for every initial value y 2 Y. Lety 2
Y. From Theorem 3.34 we further know thats , U t;sy andt , U t;s y are
continuous from the rightand thatU ; islocally boundedinB Y . Thus t;s ,
U t;s y is right continuous due to Lemma 3.8. So, we will prove Theorem 3.35 by
showing that t;s , U t;s y is also left continuous. Applying Theorem 3.35 to
the time reversed family A we obtain an evolution family ; ¥ Y; t;s ,
V t;s y which is also continuous from the right. We will show that

Vtsy UT T sy ts 2 j; (?)

which immediately gives the claim. Let P, be a partition of the interval a;b and
let U, and V, denote the evolution families approximating U and V from (3.1). It
is readily seen by rescaling that

Vhnt;sy Uy, T T sy t;s 2 3 ;

and therefore (?) follows by approximation. |

IfY is a General Banach Space

In the Hilbert space scenario the application of Theorem 3.35 to the linearizations
of Maxwell’s equations and the quasilinear wave equation will depend, besides
the existence of a smoothly depending family of equivalent norms, basically on
the fact that the operator A even generates a Cp-group and that we are working
on interpolation spaces. Since we will work out theorems which cover somewhat
more general situations, at least in this abstract framework, we will also state the
corresponding generation theorems taken from [22].

To give an idea how to proceed here, we suppose that there is an isomorphism
S of Y onto X such that

SAtS* At Bt

forsomeB t 2 B X . The idea is the following:
If we can find a strongly continuous mappingV: ; ¥ B X such that

Ut;s SWtsS ts 2 ;;
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then U ; automatically satisfies E4 and E5 ,i.e., we are done.

So, how to find such a family of bounded operators? Formally we want to use
V t;s SU t;s S ! which does not make sense, since we do not know whether
U t;s maps Y into itself. But the expressions U t;s S Yand S U t;s are well
defined so that we may consider their di Cerknce

Ut;sS !t s U ts UtrsSWr;s
t
d
/ —UuU t;r S r;s dr:
s dr
We calculate

d
aUt;r81Ur;s Uttr ArSWr:;s UtrS™WruUr:s:

By insertingAtS ! S1TAt Bt ,wederive

d
d—rUt;r81Ur;s UtrSBruUr:s:

We thus have shown
t
Ut;sS?! s tuts /Ut;rSlBrUr;sdr:
S

Hence by formally multiplying this equation with S from the left and thinking of
V t;s SU t;s S 1, we see that the desired operators V t;s should satisfy the
integral equation

t
V t;s Ut;s / Vt,r Br Ur;s dr (3.2)
S

in B X . Now, the strategy is clear. Try to find suitable conditionson B so that
(3.2) admits a unique solution V t;s 2 B X , and try to show that the resulting
family V t;s : t;s 2 ; actually satisfies

Uts S W tssS:

In [21], Theorem 6.1 it was shown thatif B:J ¥ B X is strongly continuous, then
this can be done more or less easily. But unfortunately, this conditionon B is to
restrictive for the desired applications. Therefore we state the generalization from
Theorem | in [22], where it was shown that it is enough to require thatB :J ¥ B X
is strongly measurable and that for example kB t kg x b.

Theorem 3.36 Suppose that there is some Banach space Y X which is densely
and continuously embedded in X. Assume further that the family of generators
fAt :t2J a; b g satisfies the following conditions:

(Hl) A 2stab X;M; T .
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(H2)' There is an isomorphism S of Y onto X and there are Bt 2 B X with
kB t kg x b for some positive b such that

DSAtS! DAt ;
SAtS X Atx Btx t2J). x2DAt

and suchthatt ¥ B t is strongly measurable.

H3) Y DAt andAt 2B Y;X forallt2J,andthemapt , At;J !
B Y;X , is continuous.

Then there exists a unique evolution family U : ; ¥ B X which is generated by
fA t : t2JginY. The evolution family can further be estimated by

kU t;s kg x Me"ts ts 2 5

kKU t;s kg y MKSKkS ke * Mb ts tts 2 5 ~

Instead of requiring the rather restrictive assumption that there is a uniform
isomorphism S and a family of operators V ; such that U t;s S vV t;s S,
one can also use the ansatz

Ut;s St VitsSs tis 2 5

for a family of isomorphism S t t 2 J . This leads, in the same way as done
above, to the integral equation

t
Vts Uts /Vt;r Br Srsr ! Ur:s dr;
S

provided the existence of S’ r Sr 1 2 B X . As a result we obtain the next
result (cf. [31], Theorem 5.4.6).

Theorem 3.37 Suppose that there is some Banach space Y X which is densely
and continuously embedded in X. Assume further that the family of generators
fAt (t2J a; b g satisfies the following conditions:

(H1) A 2stab X;M; T .
(H2)” There is a family of isomorphismS t t2J of Y onto X such that

kS t kgy.x ;kS t kg XY ¢ t2J; for some constantc ;

JIX;t,Stx isdilerkntiable for any x 2 X:

Further there is a strongly measurable mapB:J ¥ B X withkB t kg x b
for some positive b such that

DStAtSt ' DAt ;
StAtSt Ix Atx Btx t2J;, x2DAt
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(H3) Y DAt andAt 2BY;X forallt2J,andthemapt , At;J 1!
B Y ;X , is continuous.

Then there exists a unique evolution family U : ;5 ¥ B X which is generated by
fA t : t2JginY. The evolution family can further be estimated by

kU t;s kgx Me'ts t;s 2 5

kKU t;s kgy Mc2eSMvars ot Mb ts tts 2 5: ~

Remark 3.38 Obviously Theorem 3.37 is a generalization of Theorem 3.36. We just
havetochooseSt S t2J.

One special case in which the conditions of Theorem 3.36 and 3.37 can be easily
verified is the case where D A t D is independent of t. In this case we equip D
with the graph normof A t forsomet2 J,e.g.t 0. Thenthespace Y;k ky ™

D;k ka o is a Banach space which is continuously and densely embedded in X.

Theorem 339 Let fAt :t2J a;b g be a stable family of generators in X,
andletD A t D; t 2 J, be independent of t. Assume further that the map

JIX;t, At x; isdilerkentiable foreveryx 2D:

Then there exists a unique evolution family U : 3 ¥ B X which is generated by
fAt :t2JginY.

Proof. Let A 2 stab X;M; ¥ . By the assumptions we can choose S t
At t2J , forsome > I and apply Theorem 3.37. |

3.3 Quasilinear Equations

In this section the linear theory developed so far will be used for the investigation
of the quasilinear system

ut Ut Aut Qut ut t2 0T ;

uo Ug

Q)

that we have brought up in the introduction. As mentioned there, we first try to
find solutions of this initial value problem by substituting certain functions ~ into
the quasilinear parts and Q such that Zt t2J isinvertible. We
then consider the resulting nonautonomous Cauchy problem

u’ t t A Q”t ut _A-tut t2 0T ;

uoO Uog:

(Qu)

Hence, we have to find “amenable” (and in view of our desired applications verifi-
able) conditions on the parameters of this equation which allows us to apply the
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theorems from the previous sections and obtain a unique solution u- of (Q). This
leads to a solution operator :u , u- for a given initial value uo, i.e.,

ot U- t;0ug u- t:
Fixed points of  will be solutions of (Q). Recall that by definition
=0t A-t T ot > 0  ug

We thus want to find suitable spaces and estimates on U- ; to apply the con-
traction mapping principle on . For stating the final theorem we recall the con-
cept of interpolation spaces.

Definition 340 Let X;k kx ; Y:;k ky and Z;k kz be Banach spaces with
Z Y X such that the corresponding canonical embeddings are continuous.
Then Y is called interpolation space between Z and X if the following holds:

IfT 2B X leaves Z invariantand T , 2B Z , then T leaves Y invariant and
T,y2BY.

Consequently (cf. [26], Lemma 0.1) there is a constant ¢ such that

kaBY C max kaBZ;kaBX

In most situations this constant equals one, particularly in our later applications.

Thus we will assume that ¢ 1 throughout the remaining chapter.

Theorem 341 Let X; j x be a Hilbert space and A: D A X ¢ X bea
skew-adjoint operator in X. Assume that there are Hilbert spaces Y; j y and
Z, J zwithz Y DA X, such that Z is densely and continuously em-
bedded in Y, and Y is densely and continuously embedded in X. Further, let Y be
an interpolation space between Z and X and let A2 B Z;Y .

Let fQ x : x 2 Xg be a family of bounded linear operators on X and sup-
pose that there is a ball W ™ By O;R in Y and a family of linear operators

y Yy 2W in X such that the following assumptions are satisfied.

(PD) y 2B X foreachy 2 W and there is a constant > 0 such that

% I y2W:

(G) Ran 1 y 1A isdensein X forally 2 W.

(LC) There is a positive constant L such that
k y Vkex Lky Vky Vyiy2W:

(LC-) y 2B Y foreachy 2 W, and there is a constant Iy such that

1 1

y loky Vky y;¥y2W:

\Y 1Y
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(LC-q)

(CE)

Let

Letr > 0 be arbitrary. Thereisaconstantq q r suchthatkQ y kg x q
forally 2 W\ Bz O;r . We further suppose that Q y 2 B Z:;Y for all
y 2 W, and that there is a constant I; such that

Qy QV gzy hy Vv y;¥y2w:

There is a continuous isomorphism S : Z ¥ X and for each r > O there are
linear operators B z 2 B X z 2 W\ Bz O;r , with kB z kg x b for
some positive b such that

S z 'A Qz st z 'A Qz Bz z2WN\BzO;r
Note that this includes the domainrelatonD S z ' A Qz S! DA.
2 0;1 and rg >0 be arbitrary and definecgy ¢cg R andciy ¢ R by

Co "kSkg zx kS 'kgxz 'k Okgx 'Pe 12k O ke'x LR,

c1 "lpl IR kP Okgzy kAkgzy Ililo0R k 0 'kgy

Then the following assertions hold.

@)

(©

For each ug 2 By O; \ Bz O;rg thereexistsatimeT T ;rog;R >0

R
Co
and a solution

u ;up u2C 0T :Z \C! O;T ;Y

of (Qwithut 2W forallt2 O;T . Moreover, we know that

Cor
kutk, =292 o0 t T
and further that
< lo kSkkS 1k 2)
T £ min — 9 : 5 . To :roR:
1=2) r g b roC§C1

Ifv2C 0;T°;Z \C! 0;T° ;Y isanother solution of (Q) which also sat-
isfiesv t 2W foreacht2 0;T? ,thenv t u t for all times t between
0 and minfT;T.

The mapping
_ R _
By O; C—\Bzo;ro Y C O;To:;Y; uUg ., u ;ug;
0

is Lipschitz continuous.
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(d) Suppose Q 0. If there is a constant " > 0 and a Fréchet di Cerkntiable
operator :By O;R " Y " Ysuchthat vy D v y2W, thenthe
assertions from a - ¢ remain true if we replace (Q) by the evolution equation

ut Aut t2 0T ;

uoO ug:
Proof. a : We divide the proof into five parts.
Step 1. Preliminaries.

Lety 2 W. Itis an immediate consequence of PD thateach Yy isinvertible

in X with uniform bounded inverse k y kg x 1. Condition LC-i further
yields
k v wky k y v 0 vky k 0 ‘vky
n o)
lokyky k 0 Ykgy kvky v2Y
so that

k v key IoR k 0 kgy . 1:

ForT>0and r; = 0 we define

ET;r;
T 72C OT;Z kT tky R kT tkz r; 7 Lp o1y
A function = 2 E T;r; thusbelongstoC O;T ;Y and =t 2W t2 O;T

so that 7 t isinvertible forallt 2 O;T . Let = 2 E T;r; . First we will
show that the family of linear operators A- t :t2 0;T given by

A-t TA-t Q- t
- zt 1A t Q~*t 0O t T

generates an evolution family in Z. Recall that A 2 B Z;Y by assumption. To
apply Theorem 3.35 we introduce new inner products on X by setting

ujv xt t ujvy uvax;

fort 2 0O;T . We denote by X; the space X endowed with this inner product.
Further, we write k kx.t for the norm associated to j x.. We next show that
each of this norms is equivalent to the norm k kx on X. Letu2 Xandt2 O;T .
Condition PD directly gives the lower bound

kukZ.¢ Zt uju x £ 2Kuki:
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For the upper estimate we first note that

k ykex k vy Oksx k OKkgx
LR Kk Oka:

Using this inequality, > 2 E T;r; ,and Cauchy-Schwarz we derive

kukZ.¢ Zt ujuy k Tt kakukin .
k Oksx LR kuki k Okgx 1 k 0kgl LR kukZ

k Okgyx €% 0k LRkukd:
Putting o ~ k 0 kg x , we have thus found

0 2e 2 o'Ryuky,  Kuky P2kukyy t2 O;T ;u2X:  (3.3)

Step 2. Stability of the unperturbed linear problem in X.

To obtain well-posedness for the linear system with respect to the family A-
we first study the family A~ and then continue by switching on the perturbation
Q- . Wenow want to establish that A- t generate contraction semigroups on
X foreveryt 2 O;T . Because of (3.3) each A- t then generates a Co-semigroup
on X. Note that

Re A- tuju ,. Re Tt A- tuju Re Auju x 0

for u 2 X, which means that each A- t is dissipative in X;. Since A is closed in
X and > t lisbounded on X, we obtain that each A- t is closed in X and
therefore also in X;.

Properties G and (3.3) yield the density of Ran I  A- t in X;. As a result
each A- t is maximal dissipative in Xg, i.e., it defines a contraction semigroup
on X for every t 2 0O;T . Our next aim is the stability of both families A-
inX. Letu2 X,t;s2 0;T and = 2E T;r; . By meansof LC and (3.3) we

estimate
kukf(;t f 7t 7 s guju yx 7 suUuju yx
k ~t > s kg x kuky  kukk.
flk= t 7 sky 2 1gkuki.
fL jt sj 2 1gkukis
P ST uk
so that

— 1=2 H H
kukyy €2 Tt STkuky.:
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In view of this relation and (3.3), Lemma 3.21 implies

A-  2stab X; 12 P2g1%2 o'LRg L T. g
Writing
ko ™ 1=2 (1):2e1:2 OlLR; Ky ™ 1=2 Kp ”CoeclT; (3.4)
this reads as
A- 2 stab X; kt;0 ;
ie.,
e kA Ttk .. g SIA- L kt:

B X

foreverysj £0and T £t £::: £t £O.
Step 3. Well-posedness of the linear problem in Y.

In the following we will concentrate only on the operators A~ t , since all the
upcoming calculations can easily be transformed to the operators A- t .

We next add the operators Q- t . Since ” t is contained in W \ Bz O;r ;
assumptions PD and LC-q yield

kQ- tkgx k ~t kgxkQ 7 t kgx
Using Lemma 3.23 we thus obtain
A- A- Q- 2stab X: kp: 3
From CE we further know that
SA-tSs?! A-t B-t;

whereB-t "B 7t 2B X, and kB- t kg x b forallt2 O;T . Due to
Lemma 3.30 it follows that Z is A - t -admissible foreachO t T and

A-  ,2stab Z;kSkg zx kS kg xz ki 2 b : (?)

Putting ¥ ~ 9 b,wehavees”A"t , eSA-tiz g lgsA-tgs2B 7 and

A- t A- t 1 1 B
Sk k z . esl 1 z kSkB Z:X kS kB X:Z kT e Sk S1

e
B zZ
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foreachs; £0and T £ tc £ ::: £ty £ 0. Because Y is an interpolation space
between Z and X, cf. Definition 3.40, it follows that also Y is A- t -admissible
forany0O t T and that

esA= t v max esA, t
BY B X

kSkg Z:X kS lkB X:Z kTe!S:

. _SA-t
;e
Z gz

Moreover,

sk A~ ty

e v ":eslA’ 1t v kSkB Z:X kS 1kB X:z kT e! Sk I S1

BY
foreachs; £0and T £tk £::: £ty £ 0, which means
A- y 2stab Y;kSkg zx kS kg xz kr; ¥ : (3.5)
We put

M+ "kSkB Z:X kS lkB X:Z kt:

From now on, we will consider Y (instead of X) as the new phase space on which
the operators

A-t “A-t ; DA-t YV2DA\Y A-ty2Y

act. We have already shown that each A- t generates a strongly continuous semi-
group on Y and that

A- 2stab Y;Mt; ¥

Reinterpreting the previous results in this way, we obtain that Z is A- t -admissible
forall0 t TandthatA-t , A-t ,, whichyields

A- z 2stab Z;M1; T (3.6)

In other words A- t :t2 O;T satisfies H1 and H2 of Theorem 3.35. We
now use the isomorphism S : Z ¥ X to introduce the inner products

VW 72+ SVjSW x+ VvV,iw2Z

on Z. Thus kvkz.: kSvkx. and we will write Z; for Z endowed with this norm.
Since S and S 1 are continuous it follows that each norm k kz.t is equivalent to
k kz, and we also have

kvkz, el 2Lt s kvkzs t,s2 O;T ;v22Z:
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Further, a second inspection of the previous calculations in X, concerning the
norms k kx.; and the operators A - t , shows that each A- t - is quasi contrac-
tive in Z¢, which proves H4 .

It only remains to verify condition H3 for A- . Therefore we invoke as-
sumption LC-q to bound the operatorsP y 2B Z;Y onW. Giveny 2 W we
estimate

kP 4 kB zY kP Y PO kB zY kP O kB zZ:Y
likyky kP 0 kg zv

so that

kP Y kB zy I1R kP O kB ZY o 2t (37)

These observations, y '2BY ,andA2B Z;Y implythatZ D A-t as
wellas A- t 2B Z;Y . More precisely, for every v 2 Z we obtain

KA- t vky k ~ t 'kgy kAkg zy kvkz
k i lkBY kP * t kB zZY kaZ

so that
KA- t kg zv 1 kAkg z;v 2! (3.8)

Concerning the map A- : O0;T ¥ B Z;Y we do the following calculation. For
t;s2 0;T andv 2 Z we have

kA- tv A-svky KA-tv A-svky KkP-tv P- s vky; (3.9
where we can further estimate

kA- tv A-svky k =t 1 >t kgy kAvky
|0 kAkB z:Y k” t 'S kakz

lo kAkg z:y _]t Sj kvkz:

The second summand in (3.9) we estimate by

kP- t v P- s vky >t Pt v ” ot lP’SVY

=t P 7s v Z s lP’va

i kP =t v P 7 s vky
BY
i s ! kP- s vky
BY

I, 1k™ t 7 s kykvkz g 2k~ t 7 s kykvkz:
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Since * 2E T;r; ,we have shown that
kP- t P- s kgzy lo 2 11 1jt sj
and therefore
kA- t  A- s Kgzy lokAkg zov  lo 2 11 1 jt sj;

which means that A~ is even Lipschitz continuous, and H3 holds.

With obvious modifications, one also shows that A- T t t2 0;T ;sat-
isfies H1 - H4 .

Theorem 3.36 thus yields forany = 2 E T;r; that the family of operators
A- generates an evolution family U- t;s : t;s 2 o7 inZ satisfying

kU- t;s kgy Mre'ts
(3.10)
kU- t;s kgz Mre"®s t;s 2 o7 ;

where Mt kSkkS kkpe*tT and ¥ 9 b. In particular for each z 2 Z and
s 2 0;T the function

U- ;sz2C s;T;Z \C! s;T ;Y
is the unique Z-valued solution of the Cauchy problem
uwWt A-tut A-tut t2 0T ; us z;

cf. Definition 3.11. For = 2E T;r; and ug 2 Z, we define the operator , by

u .t U- t;0 ug:
In the next step we show that ., defines a contraction on E T;r; for suitable
upg2Zandr; ;T >0whenitisendowed with a suitable metric.

Step 4. Solving the fixed point problem.

For =; 2E T;r; we define

d ~; “k* t t ke o7 v sup k” t t ky:
otT
Since Z is reflexive, E T;r; ;d is a complete metric space. To see this, we
first observe that C O;T ;Y ;d is a complete normed space, and the subset of
> 2C 0O;T ;Y satisfying k” t ky Rforall0O t Tand 7 [jp o7
isclosedin C O;T ;Y ;d . The reflexivity of Z implies that every ball in Z is
weakly closed. Thus, if a sequence g kin Z withk”gky Randk”gkz r for
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every Kk, converges in Y to some 7, then k”ky R and k~ky r. As a result,
E T;r; ;d iscomplete.
We next establish the estimates which imply that , leavesE T;r; invariant

and that ,, is a strict contraction. Throughout, let *; 2E T;r; and ug 2 Z.
We choose r; ;T below.

Since U- ;0 ug is a Z-valued solution the function , ~ is contained in
C O;T ;Z . Inequality 3.10 further yields

ug Tt v kU- t;0 Uoky kU- t;0 kBY kU()kY
kSkkS ‘kkoe ¥t ' T kugky;

uo t z kU- t;0 ugkz kU- t;0 kg z kugkz
kSkkS 'kkoe ¥t ' T kugks:

Lett;s 2 O;T . We write
t t 4
U- t;0ug U-s;0ug U= r;0 ug . EU’ r;0 updr
S
t
/A- r U- r;0 updr:
S
Thus, using (3.8), we can estimate
t
k uo Tt Uo 7 s ky /kA’ r kg zy kU- t;s kg z kugkz dr
S

kSkkS 1k 1 kAkg zv > koe K1 ' Tkugkz jt  sj;

so that
w T Lp ory KSKkS 'k 1 KAKg ziy 2 koe K1 ! Tkugkz:
To show contractivity of = , , ~ , we calculate
U- t;0ug U t;0ug U= t;0U O;0ug U- t;tU t;0 ug
d
—U- t;s U s;0 upgds
o ds
t
/ U- t;s A-s A s U 5s;0 ugds;
0
where we use that U s;0 Z Z and Theorem 3.35. We can further estimate
k Up = t Up t kY

t
/kU= t;skey KA- s A s kgzy kU s;0 kg z dskugkz:
0
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By definition
kA- s A s kB zy kA- s A s kB zZ:y kP- s P s kB z:y .

Assumption LC-i leads to

kA- s A s kg zy k s 1 S lkB y kKAkg zy
) kAkB z:Y k* s S ky:
For the remaining piece we use the assumptions LC-i , LC-q as well as (3.7) and
estimate
> 1 > » 1
kP- t P skegyz s P S S P S B Yz
s p s s P s
BY;z
> 1 >
S BY kP S P S kB Y;Z
7S 1 S 1 v kP s kB Y:Z

I, 1 lo 2 k™ s s ky:
Combining these estimates we obtain
kA- s A s Kkgzy lo KAkg v.z 2 I 1 K™ s s ky (3.11)
and therefore

k u .t Uo t ky
T kSkkS kko lokAkgy.z 1 2 Iy 1 koe ¥ * Tkugkzd ~; ;
so that
d Ug z 1 Ug
T kSkkS kko lokAkgy.z 1 2 1y 1 koe ¥ * Tkugkzd ~;
Recalling 3.4, we define
co TkSkkS 'kko:
c1 T co 1 kAkg 7y 2

C2 coko lokAkgzy 1 2 111

Then we have shown that we can control , through

K u = tky coe® *Tkugky; (3.12)

K u = tkz coe™ *Tkugky; (3.13)

uw - Lp oTy  cie’ ¥ Tkugkz; (3.14)

d w 7 w Tcoek * Tkugkz: (3.15)
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Fix 2 0;1. We take ug 2 By O; % \ Bz O;rg , where ro > 0 is arbitrary.
We then fix
Cor cir ¢ lo 2 )
r”oo; ”10; T~ min g . =0

kl n’ Colp

Observe that then ekt *T 1. With these numbers we define our metrical
function space E T;r;
The inequalities (3.12)-(3.14) imply that

Ku 7 thy R Ky 7 tkz r; o Lip O:T X
Thus , maps E T;r; into itself for these choices. Further, from (3.15) we
obtain
Car
d w 7 u T22%d 7; d =

so that for our choices of ug and T, the mapping , actually defines a strict
contraction on the complete metric space E T;r; ;d.

Step 5. Closing the proof.

By Banach'’s fixed point theorem there is exactly one fixed point = 2 E T;r;
of ,, this means

7t u .t U- t;0up t2 O;T
In particular, > 2C 0;T ;Z \C! 0O;T ;Y and

0t A-t Tt =t A7t t Pt *t t2 0T ;
=0  uUg;
so that indeed

>t "%t At Pt Tt t20T ; ~0 Uy

We have thus shown a .
b : Take another solutionv 2C 0;T°;Z \C! 0;T°;Y of (Q) which sat-
isfiesvt 2W t2 0;T° ,and hence

vl t vt IAvt vt PPvtvt A/t; vO ug

ForO t minfT;T% _. we then compute
‘d
vt 7t Uu- t;itvt U-t0vDO /U-t;svsds
o ds

t
/U=t;s Ay S A- s Vv s ds:
0
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Estimates 3.10 and 3.11 imply
t
kv t 7t ky /kU= t;s ksey kKAy s A- s kgzy kv s kzds
0

t
Mre' c3 supkvskz/kvs * s ky ds;
0 s 0

where cz  lg kAKg 7.y 2 I, 1. From Gronwall’s estimate we conclude
kvt ~tky O O t minfT;T%:

c : Take ug;UTp 2 By O; \ Bz O;rg . By the proof of part a there are

R
Co
fixed points u; G 2 E To;r; of ,and g, respective such that

u t;uop ut u U t;

u t; U gt go U t forall0 t To:
The strict contractivity of and estimate 3.10 then yield

ku t;up utlogky k gy u t go U t Ky
k you t w0 tky k gy GO t g, U t Ky

kK you t u 0 tky KkUgt;0ug Ugt;0 Uoky

1 . ~
Eku t;ug u t;0o ky Mre'Tkug Toky;

so that ku t;ug u t;Gg ky 2Mte !Tka Cioky.

d : Assertions a - ¢ imply that there is a solution
U u up 2C 0O;T ;Z \C* O;T ;Y
of the system

D ut ut Aut t2 0T ;

uo Uo;

satisfyingu t 2 By O;R . Since :By O;R " Y 1 Y is di [erkntiable, the
chain rule yields that

D ut u't ult t2 0T
Thus u actually is the desired solution. |
The subtle part in the verification of the assumptions of Theorem 3.43 is to
find an isomorphism S which satisfies the commutator estimate CE . Therefore

we recall the considerations from Section 3.2 concerning admissible subspaces.
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Remark 3.42 Let r > 0. Using Remark 3.28 we see that condition CE is fulfilled
if there is a core D for A in X such that

()sS'D DA,
(ii) forallu2 D andall z2 Bz 0;r \'W we can estimate

S z 'As 'u z 'Au o R kuky:

@ Nonlinearities of Defocusing Type

If we can replace W By O;R by Y in Theorem 3.43, which corresponds to the
limit R ¥ 1, we obtain for any initial value ug 2 Z the existence of a time
1

T T kuoky /£ To kugky ~ o TR >0 (3.16)

andasolutionu2C O;T ;Y \C! 0;T ;Z of(Q). So, we define for an arbitrary
Up 2 Z the maximal existence time
n o]
T o = T=>0: 9 asolutionu2C O;T ;Y \c! 0T ;z of (Q) :

We have already shown that T up 2 0;1 and further we want to prove the
following well-posedness result for the evolution equation (Q) in this special case.

Theorem 3.43 Assume that all the conditions of Theorem 3.43 are satisfied with
W Y. Letug 2 Z and let Top kugkz = 0 be given as in (3.16). Then the following
assertions hold:

(@ There is a unique maximal solution u u ;up 2 C 0;T ue ;Z \
Cl O;T up ;Y of (Q,whereT ug 2 To kugkz ;1 .

(b) IFT wug <1,thenlimet y, ku t kz 1.

(c) Choose any T 2 O;T wug . Then there exists a radius > 0 such that
T wvo >T forallvyo 2Bz ug; . Further, the map

Bz ug; YIC OT:Y: Vo, U Vo

is Lipschitz continuous.

Proof. We start with the following observations. Assume thatu2 C 0;T1 ;Z \
C! 0;T1:Y isasolutionof (Q on 0;T; with initial value ug. Then the following
assertions hold.
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i)Ifv2C 0;T, ;Z \C! 0;T, ;Y isasolution of (Q) on 0;T, with initial
value u T; , then the function w given by

8
2ut; 0O t Tq;

w t =
-vt T1; 0O t T1 Ty

belongstoC 0;T:1 To;Z \C! 0;T;y T2 :Y and solves (Q) with initial

value ug.
ii) Let 2 0;Ty . Then the function u belongs to C 0; Ty :Z \
cl 0Ty ;Y and solves (Q) with initial value u

In other words we may shift and “glue together” solutions of (Q). Using these
insights, we now can copy the proof Theorem 8.6 in [17] with obvious modifications
arising from Theorem 3.43. |

3.4 Second Order Equations

Motivated by (1.8) from Chapter 1, this section is addressed to abstract second
order Cauchy-problems of the form

ut u®t ut ut Ut CCut t2 0T ;
uo Uog; (3.17)
uwo v

Here the unknown u takes values u t in a Hilbert space X; j and C is a
densely defined, closed and invertible linear operator in X. Recall that conse-
quentlyC 1'2B X and

L~ CC

is self-adjoint withO2 L . Introducing the new variable

we obtain the reduced first order system

1 ' !
I 0 u’ t 0 I ut
0 ut vt L ut vt vt

fort 2 O;T ,withinitial valuesu 0O ugandv O Vo. We thussetw ™ u;v ~

and define

o
o
o
r O
o—
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The Cauchy problem (3.17) then reads

wt w!t Awt Pwt wt t2 0T ;
(3.18)
w O Wo;

where of course wg Ug; Vo ~. For stating the final result we recall the following
elementary definition.

Definition 3.44 Let C be an densely defined, closed linear Operator and let X be
a Hilbert space. We will write X n 2 N for the domain of the nth power of the
operator C endowed with the inner product

ujv xo = CMujClv x:
In particular X¢ D C" and X{; j xp isa Hilbert space.

Theorem 345 Let H; j 4 be a Hilbert space and C : D C H Y Hbea
self-adjoint and invertible operator in H. Suppose that there is a ball W ”EHS O;R
and families of linear operators y y2W and y 1y 2W satisfying
the following assumptions.

(PD) vy y 2B H foreveryy 2 W and there is a constant > 0 such
that

y £ Iy y2W:

(G) Ran | y C2 Hforeachy 2W.

(LC-f) There is a positive constant L such that
k y Yken Lky Vkyz VyiV2W:

(LCfi) y 2B Hé for any y 2 W and there is a constant lp such that

1 1

B H

<

y loky Vkyz y;¥y2W:

(LC-s) Letr = 0be arbitrary. Then vy1 y>2 B H foreach y;;y> 2 EHg HE O;r
and there is a constant bg bg r such that

kK yi1y2ken bo Y1, Y2 ZEHS Hz O

Further, yi1 y2 2 B H3HY _ B foreachy Y1i¥2 2Bz 3 OR
and there is a constant 1, such that

K vi1y: V1 92ke Iiky ¥kyz 2 Vi ¥ 2Bz 2 OR
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(CE)

Let

(@)

(b)

(©)

(d)

82

Letr >0. Forallz 23z 2Bz 1 O;R \ By 2z O;r there are linear
operatorsB; z; 2B Hé;H and B, z 2 B H , and constants by; b, with

kBl Z1 kB Hé;H bl; sz z kB H b2

such that
c2 z; 1t z; 'C? Bz
Cf z; Y 2z, 2z,9C 2 z1 Y z1z, Byz:

Note, that this includes the corresponding domain relations.
2 0;1 and rg = 0 be arbitrary. Then the following assertions hold.

There is a constantcg cg R > 0 such that for each

R

Uo;Vo 2Bz 1 O; .
0

\Bpz 1z Oiro
there existsatime T T ;rg;R > 0 and a solution

U ;upvo u2C O;T ;HE \C! 0;T ;HZ \C? 0O;T ;H}
of @18 withk ut;u’t kyz 2 Rforallo t T.

Ifv2C 0;T°;HE \C' 0;T%;HZ \C? 0;T°;H¢ isanother solution of
(3.18) which also satisfies k v t ;v® t k,z i Rforeacht2 0;T°, then
vt wut forall0 t minfT;T%.

The mapping
_ R _
Buz ni O o \By3 2 O;ro  HZ HZ¥C 0;To HE HE;

Uo;Vo > U ;Ug,;Vo ;
is Lipschitz continuous.

If there is a constant " > 0 and a twice Fréchet di Lerkntiable operator
Bz O;R " HZ ¥ HZ such that vy Dy y2W and vy

D2 y y 2 W ,then the assertions from a - ¢ remain true if we replace
(3.18) by the evolution equation

u®t Cut t2 0T ;
uoO Uo;

uwo wvo T
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Proof. First, we apply Theorem 3.43 to the first order problem (3.18), by the follow-
ing choice of Hilbert spaces

X 7"HE H; uv GV x 7T ujl g Vv
Y “HZ HE uv i GV v T ujl oz Vv
zZ"HE HE wv j oV 27 ujl gz ViV e

C C

It is well known that the embeddings Z = Y = X are continuous and dense, and
that Y is an interpolation space between Z and X (cf. [26], Theorem 4.36). Recall
(o] 1

1 (0]
w”@l 0 A. QW"@O 0 A.
0 u 0 u v
(0] 1
A—@ 0 IA
c?2 o

for w u;Vv . Endowing A with the domain D A ~H}! H it becomes skew-
adjoint in X. To see this, we first calculate

Au,v j O;V « vjE]Hé CujCvV 4
vija HE ujv HE
ujV e vijl g
ujv HE CvjCia

u;v jA GO;V ;

i.e., A is skew-symmetric in X. It is readily seen that A is invertible and the inverse
is given by

Al @

1 0
which is therefore bounded. In particular 0 2 A, so that 2 A for suf-
ficiently small > 0. Thus A is skew-adjoint. As a direct consequence of the
definition of H‘é we have A2 B Z;Y and furtherY D A . We now start to ver-
ify the conditions of Theorem 3.43 for the above choices of spaces and operators.

= We put W By O;R , with R = 0 from the assumption.
PD : Lety Y1;¥Y2 2Wandw u,v ;W ;v 2 X. Then we estimate

k vy Wk§< kukaé K v vk,z_| maxfl;k vyi1 kg n gkwki;
and derive
Y WjW x uja HE Y1 VjV

ujd iz vl Y1V y

Wj Y W g
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Hence vy is bounded and self-adjoint in X. We further estimate
Y WJw uju HE Y1 VjVv y £ minfl; gkwkz;

sothat y A minfl; gly.

G : Forw u;v 2Xandy Y1;¥Y2 2 W we have
(0] 1

1 u v A.
| Yy “Aw @ viCu v

Given W ;v 2 X we thus want solve the equations

u v O
(3.19)
y1 C?u v W

Because of assumption G of this theorem there is an element u 2 D C? such
that

| y: C?u O W

Putting v = U w thus yields a solution u;v of system (3.19). Therefore the
operator | y 1As even onto.

LC : Letw u;v belong to X and let y YiV2 Y V1:¥2 be
contained in W. Then we derive

k yw Vwki kK yivVv )71vk,2_|
kK yi 91 kgu kvkf
L2 ky1 y‘lszé kvk?
L2ky Tk& kwkz:
Thus LC holds.

LC-i : Lety y1.y> belong to W. The boundedness of vy; 1!in Hé
implies
o 1

lAZBY:
0 Y1

For w u;v 2 Y we further calculate
Tw v ‘wki k y; ‘v V1 1vkaé

kY11

g1 K He kvkﬁ|é
12ky1 ylszé kvkaé

I2ky Tk& kwk?;
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which gives LC-i .
LC-q : Fory vyi:y> 2W\Bz O;r we derive

kQy wki kf yi1 yaogvk? Kk yi vok3 4 kvkd
bg kwk? :
and therefore kQ y kg x bg. Now, let z Z1;Z> belongto Z. Then
kQy zk% Kk viyz2zakh Kk yiyekgkzakj,
K yi1 yaok3kzk2

sothatQy 2B Z;Y foreachy 2W. Giveny vi;¥2 ;Y V1;¥2 2Wwe
further estimate

kQ yz Q )7 zky k 91 )72 92 Y1 VY2 ysz H2:H kzkz
I1ky Vky kzkz;
i.e., LC-q holds.

CE : Givenr >0, letz z1:Z> belong to W\ Bz O;r . As the continuous
isomorphism we choose

(0] 1
2
s—@ c 0 Az x
0 c2
Because of

s z A Qz st
0

1
@ 0 ' A
C?2 z; ' C%2 zy Y z1z,9z>C 2
it follows from the assumptions that
S z 'A Qz st z 'A Qz Bz
if we put
(0] 1
_ 0
Bz —@ A2B X :
B1 z B, z
A straight forward calculation further yields kB z kg x 1 maxfbf;b%g 1=2,

which proves CE . =
Let 2 0;1 and rg > 0. By means of Theorem 3.43 there is a constant
Co Co R =0 such that for each initial value

_ R _
Wp  Ug;Vo 2By 0 o \ Bz O;rg
0
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thereisatimeT T ;rg;R >0 and a function
w  uv 2C 0T ;HE HZ \c! o1 ;HZ H
satisfying

uwt vt

ut u®t C2ut f ut u't Ltgut
andku t ;u’ t ky R. Consequently

U u ;ugVvo 2C O;T ;HE \C! O;T ;HZ \C? O;T ;H} :

The remaining assertions are now direct consequences of the corresponding re-

sults of Theorem 3.43, (b), (c) and the chain rule. |



Chapter 4

Analysis of Quasilinear Maxwell’s
and Wave Equations

In this final chapter, we apply the theory developed in the previous chapter to the
problems (M-Pc)-(M-R3) and (Cp-W), which we will interpret as Cauchy problems in
the Hilbert space of square integrable functions.

Notation. For two normed spaces X; Y we denote the space of bounded linear
operators from X to Y by B X;Y . Given R > 0, we denote by Bx O;R ; By O;R
the closed balls of radius R in X or Y respectively.

Weusea banda b todenote the estimatea cb ora & cb for some
quantity c, which we call the implied constant. We will further write a b if both
a banda b hold. If we need the implied constant to depend on parameters
(e.g. p;d) we will indicate this by using subscripts, i.e., a p,g b and so on. All
functions we will consider in this chapter are taking values in real vector spaces.
In particular we will write LP m. HS " m;n 2N etc. for the corresponding
spaces of real valued functions or vector fields.
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4.1 Maxwell’s Equations

Let RS2 be either a bounded domain with boundary @ or the full space R3. We
consider the quasilinear Maxwell’s equations without external sources or charges
given by

@D t;x rotH t;x t2 O;T ; x2 ;
@B t;x rotE t;x t2 0;T ; x2 :
divD t; x 0 t2 0;T ; x2 :
divB t; X 0 t2 0;T ; x2
If R3, we impose either perfect conducting boundary conditions
E t;:x ™~n X 0 t2 0T ;x20 ;
(Pc)
Bt:x nx 0 t2 0T :x260 ;
or Dirichlet boundary conditions
E t;x 0 t2 0T ;x20 ;
(Dr)

Bt;x nx 0O t2 0T ;x20
We restrict our studies to the local constitutive relations (Cr-L).
Material Law 4.1 We consider nonlinearities taking the form

D t;x E t;x PEtx ; BtX H t;x MHTtXx ;

for some vector fields P; M : R® I RS2, We further assume that they are su [ciehtly
smooth and not to negative, more precisely

(N1) P;M 2Cs ! R3R® , where s 2 No is specified later on.
(N2) P°0 > I; M0 > I: ~

Consequences 4.2 Since P? and M? are continuous it follows from (N2), that there
are >0and > 1 suchthat

PPyvi £ 1I; My, £ | yi1;Y22Bgs O; RS

Putting 1 > 0 we thus obtain

I PPyi £ 1, 1 My, £ 1 yi;y¥22Brs 0; (4.1)

andhencel P%y; andl M? y, areinvertible with uniformly bounded inverses

1
0 1 .
| P Y1 R3 3 -,

1 _
I My, 1R33 = Y1, Y22Bgs O;



Analysis of Quasilinear Maxwell’'s and Wave Equations

such that

DKP y1  D*P ¥ B\ Lejyr Vi

o 4.2)
D*M y, DM ¥, B, LkiY2 2| Vi Vi 2Bgrs O; ;
where > 0 is arbitrary and By is recursively defined via

Bo "R Bxi BR:EBk: ~

If we di Cerkntiate D and B with respect to t and the material laws 3.1, we obtain

1 !
I PYE t;x 0 0 E t;x
0 I M'H t:x Y Hitx
! 1
0 rot E t;x
rot 0 H t;x
We introduce
u:J R R®IR® utx Etx:Htx ~;
and define
1v1 71 Py 2ve - My, vi; yz'ZR3 ;
. 1 VY1 i _ 0 rot i
; 7 A
Yi1:¥Y2 Vo rot 0O
The equations now become
utx @ut;x Autx t2 ;T ; x2 (4.3)

Phase space 4.3 In the following we will consider (4.3) as an evolution equation
in the Hilbert space

X “Xo Xo L2 3 L2 3
endowed with the scalar product

UjVv x 7~ U1jVvi x, UzjVzayx, U Uy uz; VvV  Vivp 2X 0
We frequently use the identification of L2 ;R® with L? 3, which particularly

means

X

Ujv 2 s /ux Vv X dx /ukkaxdx ujv 2 s:

k 1

We will denote both of these inner products and the associated norms simply by
] x, and k kx, respectively.
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The substitution operators corresponding to j and are denoted by ; and
, respectively. So we have

i Vjuj X jVYixX upx x2 ;j 1,2

foryj; uj 2 Xo; j  1;2. Finally, we consider A as a the Maxwell operator from
Definition 2.42,i.e., D A Ho rot; Hrot, .

A further important ingredient for our upcoming analysis is the connection
between the substitution operators j from above and the substitution operators
indicated by the nonlinearties P and M, i.e.,

PE P E; MH ™M H:

More precisely, we want to know in which situations P and M are di Leréntiable and
their derivatives satisfy

I P'E JE; 1 M H > H :

Proposition 4.4 Let be a Lipschtizdomain and suppose that the vector fields P
and M belong to C3 R3;R3 . Then for every r > 0 the operators P; M given by

P:By2 s O;r H2 31 K2 3. Py “P vy
M:Byz =0ir H? S1HZ % My “M y;

are Fréchet di Lerkntiable and their derivatives are given by
Pyh P yh Myh M yh ~

Proof. It surely su [Ccedto consider the operator P. Let y; h belongto B2 3 O;r
such thatalsoy h 2 By2 3 O;r . By means of Taylor’s formula we obtain for
almost every x 2  the equality

Pyx hy Pyx P’y x h x
/1P°yx th x Py x h x dt_ R X :
0
We will now show that
KRnkz s r khkZ: s

which proves the claim. In the following we suppress the variable x for simplicity.
Because of (4.2) there are constants Li; k 2 f1;2; 3g such that

DPy th DKpy 5, tlihi: (?)
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The Sobolevembedding H? 3> L1 3 further implies that there issome >0
so that

kyknyz s r D kyki1 s

Consequently ify;h2By2z s 0;r ,thenky thka s 2 foreachO t 1.
The continuity assumption on the derivatives of P then implies that there are
constants ck; k 2 f1; 2; 3g such that

D*P y th Ck! (?7?)
Bk
First, we start estimating kRyk, 2 3. By means of (?) we estimate pointwise
jRnj  Lajhj*:
Invoking the Sobolev embedding H2 3 =1L1 3 we derive

kRnki> s Likjhjjhjke Likhk 1 skhkg
khkZ, s

By means of the product and chain rule for weak derivatives we (a priori formally)
calculate

1
0kRn / PYy th fixy tékhg P®y @y hdt
° (4.4)

1
/Poy th P’y @hdt
0

We see that

1
OkRph X / f t;x dt;
0

where, due to (?) and (?7?), the integrand is dominated by a constant, which is
integrable with respect to the interval 0;1 . This justifies the prior interchanging
of the integral and the partial derivative. The second summand in (4.4) equals
Re,h. Using again the Sobolev embedding H2 > L1, we get

kRghkiz s Likjhjjlkhjk Likhk 1 sk@khk s
khkZ, s

Rewriting the first integral as
1 1
/ %y th PY%y g@y hdt / t PYy th @ch hdt . Ry
0 0
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and invoking the estimates (?) and (?7?), we deduce
JR1j  Lzjhjjlkyjjhj c2j@khjjhj:
The Sobolev embedding L1 = H? thus yields

kRikiz s kjhjjekyjjhjkz kj@khjjhjk.2
khkZ, skykpe s khkZ: s
rkhk2H2 3,

so that in the end
k@kRnki> s (khk%, s 1 k 3:
For the second order derivatives we obtain

@10kRR
1

/ P™ y  th @yglky TPy @iyglky hdt

0
PPy th @by PYy @0y hdt
t fPOOO th @ 000

\Y% 1ygékh Py  th @jhglky hdt

t>fP® v th @hgeh tP® y th @@h hdt
PPy th féy tékhg P®y @y @hdt

PPy thfayy téhg P®y @Gy @khdt

Py th P’y @@khdt

By means of (?) and (??), we collect the following pointwise estimates

iTai jhjj@yjjlkyijihi;

iT2i jhjj@exyiihi;

iTai J@yjjechjjhj  j@ihjjexyjihj;
JT4j  j@ihjjechjjhj  j@i@khjjhj;
iTsi jhjjékyji@hj j@ihjjexhj;
iTel  Jhjj@yjj@khj j@xhjj@ihj;
iT7j jhjj@exhij:

T

Tz

T3

Ty

Ts

Te

T7Z
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Invoking the Sobolev embeddings H?> > LT and H: > LP 3 p 6 and also
Holder’s inequality with 1=6 1=3 1=2, we deduce

kTikiz = Kjhjj@yijjlcyijhjk.z Khk?, s k@ykes sklcykes s
khkZ. sk@iykpy: sk@kykq: s
2 khkZz s

KToki2 s kjhjj@i@kyjjhjk. khkZ, sk@iBkyke s
r khkZ, s

Concerning the remaining terms T3-T7 the only parts we have not controlled so far
are

kKj@iyjjechjjhjke ; kj@ihjjekhjjhjkez ;  kj@i@khjjhjk.z
Using exactly the same procedure from above, we obtain

kj@lyjj@khjjhj k|_2 khkLl 3 k@|yk|_e 3 khkLs 3
khkZ. skykpe s khkZ: s

kj@ihjjexhjjhj k.. khk i sk@hks skhks s
khkZ, skhkye s khkZ: s

Kj@i@khjjhjk.- kKhkir  sk@@khkez
khkZ, s

Putting all these estimates together we have shown that
k@i@kRnk > s rokhk%y: s 1 Lk 3;
which finally implies KRpkyz 3 2 khk|2_|2 . |

To include the constraints given by the Gaussian laws and the imposed bound-
ary conditions, we use the following observations.

Lemma 4.5 Letk 2 Nwith k £3,and r > 0.

(a) Let ug Eg;Ho 2 X satisfy Do 7 Eg P Eo 2 H div; and Bg 7 Hp
M Hgo 2 H div; with

divDg divBg O:
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If u EcH 2C 0O;T ;Hk 6 \Xcl 0;T ;HZ ¢ js a solution of the
initial value problem

ut Ut Aut t2 0T ; uoO ug

which also satisfiesku t kyk ¢ r,thenDt "Et PEt andBt
Ht M H t are contained in H div; forallt2 O;T ,and

divD t divB t 0O t2 O;T
(b) Let ug Eo;Ho 2 X satisfyBp “ Ho M Hp 2 Hp div; and let bea

compact Lipschitz domain. Ifu  E:H 2C 0;T ;HXK 6X\C! 0;T ;H?
withu t 2 H rot; 2 is a solution of the initial value problem

ut Wt Aut t2 0T ; uoO ug

which also satisfiesku t kyxk ¢ r,thenB t Ht MHTt 2Hgdiv;
forallt2 O;T . —

Proof. a : By means of Proposition 4.4, we may apply the chain rule to the map-
pingt , D t and get

d
—Dt | DPEt E't rotH t:
dt
Let = 2D . Integration by parts (a priori formally) implies

% Dt grad ~ dx /roth grad * dx

/Ht rotgrad * dx O:
Hence
/Dt grad 7 dx /Do grad>dx 0 t2 O;T

and the first assertion follows from (2.2). We can do exactly the same calculations
for B. So, it only remains to justify the interchanging of the di Cerkéntial d=dt and
the integral. Invoking the Sobolev embedding H?> 3 >=1L1 3 we estimate

jrotH t grad ”j krotH t kj2 sjgrad 7j
kH t kgx  sjgrad ”j rjgrad 7 j:

The integrand is thus dominated by a integrable function with respect to
b :For > 2D ,we calculate

% Bt grad” dx / rotE t grad 7 dx

/E t rotgrad 7 dx O;

so that the assertion follows from Corollary 2.22 (b). Note, that we have skipped
the technical details, since they are exactly the same as in (a). |

6
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Dirichlet Boundary Problems

Now, we are ready to tackle the Maxwell-type Cauchy problems (M-Pc)-(M-R3) in the
promised evolution framework. For treating the initial values in the way indicated
above, we define the set

n
lc™ EH 21?2 ©®:Ey PEy 2H div; ;divEy P Eg 0;
(o]
Ho M Hg 2 Hpg div; ; div Ho M Hp 0

Given real parameters r and , we further put

W ;r 7By oz o O; \ B UZHE  O\HD 6 uzHD 6 O;r \lc:
We start with the Dirichlet problem (M-Dr).
Theorem 4.6 Let R3 be a bounded C#4-domain, and let the vector fields P; M :

R3 1 RS satisfy the assumptions (N1) and (N2) fors 4, i.e.,
P,M2C®R%:R3; P'Oo> 1I; M0 > I
Further,let 2 0;1 and rp > 0 be arbitrary. Then the following assertions hold.

(@) There is a radius R > 0 and an associated constantcyg cg R > 0, satisfying
coR "1 R 1T 1, suchthatforeach

Ug Eo;Ho 2W co;ro
thereexistsatime T T R;rg; >0 and a function
u ;up E;H 2C O;T ;H* ©® \c! o;T ;H? ©&;

withku t kg2 R t2 O;T which solves the Maxwell-type Cauchy prob-
lem (M-Dr) by means of

D E°t rotHt t2 0;T ;

B H't rotE t t2 ;T ;

divD E t 0 t2 O;T ;

divB H t 0 t2 O;T ;

Et 2H] t2 ;T ;

BHt 2Hgdiv; t2 O;T ;
uo Ug;

where B H H MH and D E E P E . Moreover, we know that
ut 2H2 ®\H} Sforanyt2 O;T .
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(b)

Ifv2C 0;T°;H* 6 \XcC! 0;T°;H? 6 s another solution of this
system with kv t kg2 Rforall0 t TP then v coincides with u on the
interval O;minfT;T% . Further, the map

W corp H? ®1C 0T;H2 ©: up.,u ;ug

is Lipschitz continuous.

Proof. The results will follow from Theorem 3.43. We start with some prepara-

tions.
D »p

We denote by p the Dirichlet Laplace operator in Xo L2 3 with domain
H2 3\ H} 2 The resulting positive operator  p gives rise to the

scale of spaces

Xo L2 3 X,7D b N2 N2N :

with inner products given by

- — =2 - =2 .
ujv x, p "Cuj D "V x

The maps p: Xn 2 ¥ X, and b ™2 : X, ¥ Xg are isometric isomorphisms

for every n 2 Ng. We further introduce the Hilbert spaces

Y Yo Yo D p D D
Z7Zy Zo D p? D p?;

and recall the isomorphisms

Yo H? 3\H§ 3
n (0)
Zo u2H* B3\Hj 3®: u2H; 3 ;

cf. [15], Theorem 8.13, or [12]. It is well known that the embeddings Z =Y = X
are continuous and dense, and that Y is an interpolation space between Z and X

(cf. [26], Theorem 4.36). For the Maxwell operator A we have

DA Ho rot; H rot;

so that it becomes skew adjoint in X by Theorem 2.43 (a), and obviouslyY D A .

For 1

k 3letJkx bethe3 3 matrices from Remark 2.3. Then we put
(0] 1
A@ © T aggss
Jd O

so that A can be written as

X
A Ak @Xk ;
k 1
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and therefore obviously A2 B Z;Y . We also recall the Sobolev embeddings
H? =L ; H' >LP P2 36

Now, let > 0O be the radius from the consequences 4.2 of assumption N2 .
Because of the first Sobolev embedding we can fix some RadiusR R > 0 such
that

kuky, R D> kuka s : (4.5)
We define
_ n o
W “By O;R vi;Vs 2Y kylk\z(0 kyzk\z(0 R?

In particular kyjk 1 s forj 1;2andy Y1;¥Y2 2 W. In view of Propo-
sition 4.4, we already know that diag P;M : By O;R " Y Y Y is Fréchet
di Cerkntiable for each " > 0 and that the derivative plus the identity equals

We will now start to verify the assumptions of the mentioned theorem. We
recall that a b, for a;b 2 R; x 2 RY, means that there is some constant
¢ ¢ x dependingonlyonx 2R%suchthata c¢ x b.

= PD : Fory y1;¥2 2W and u ui;ux 2 X we obtain

k yuk)2< / 1 Y1 X Up X 2 dx / 2 Y2 X Uz X 2 dx
/ I P°yi x  Zesjup X j2dx
/ I M%ys X 2asjun X j2dx:
Estimates (4.2) and (4.5) then imply
I Plys X s 1 Ly 1 Mysx Zes 1 Ly
sothat y 2B X withk Yy kgx 1 L;. By means of (4.1), we also estimate
Y uju y /1y1x u; X U; X dx /zyzx U, X dx

E kuiky,  kuzky,  kukk;

whichmeans vy £ |I.
G : Follows from Theorem 2.43, (a).
LC : Fory;y 2W and u 2 X we get

P -
kK yu Y ukyx 2K 1y U 1 V1 uiky,

K 2 y2 uz 2 Yo Uzky, :
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Since each argument for P is exactly the same for M, it is enough to consider ;.
Using (4.2) and the Sobolev embedding, we estimate

kK 1yiur 191 uikg,
/ PYy1 X PY ¥1 X é3 sjur x jZdx
Lg/ vix Y1 x Zjup x jPdx
ky:1 $1k§, kuikk,
so that

K yu vy ukx Kky VYky kuky:

LC-i : We make some observations first. Letu 2 Y. Fory;¥ 2 Brs 0; we
have
n o]
I PPy * 1Py ' 1 Py Py Py 1 Py
Note, that we will use P%;P%;:::;P K for the kth derivative of the vector field P.

Therefore (4.1) and (4.2) yield

n [0}

PPy o1 PPyt Lz jy Vi (4.6)

The same estimate is true if we replace P by M. We further use the derivative of
the matrix valued functions Tp; Ty : Brs O; 1 RS given by

Ty 71 Py L Ty 71 My L
Sincee.g., Tp inv | P° where
I P%:Bgs O; RRYIRES: y.,1I Py

inv:RE3SIR33 A _ Al

inv

the chain rule implies DTp y Dinvl P’y D1 P° y .RecallingDinv A H
A IHA TforallH2R33andusingD 1l P’y PYPy 2BR3%R®3 we

derive
DTp y V I PPy 1TpPPy v 1 Py 1 v2R3®: 4.7)

An analogous formula holds for Ty.
For y v1;¥Y2 2 W we already know that y 2 B X is invertible with

k v Tkgx 1, We actually have
(0] 1
| PO 2
y u x @ yix Ui XA,

I MYy, x lu, x
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In particular,
o 1
0 1
0 lu x @ I P°0 u; X A;
I M°0  lu, x

which means 0 1 just multiplies u with a constant matrix. Therefore it follows

immediately that 0 2B Y withk 0 ‘kgy 1. Because of (a priori
formally)
, X 2
k v 'u Y tuky kjvi 'up o § Y tujky;
i

we again focus on ; and drop the indicees for simplicity. We have

k vy tu g tukg,

kKTp Y u Tp y Ukio < I1
X o 2

k@kTe Yy U Ok Te ¥V Uk}, 2
k1

k@@ Tp Yy U @10 Tr ¥V Ukio s
Kl 1

Applying estimate (4.6) and the Sobolev embedding, we obtain
i ky kg kukd:

The product and chain rule and formula (4.7) for DTp imply that the weak partial
derivatives in I, are given by

O TP y X U X
(4.8)

Tryx GkUx Teyx PPy @y x ToyXx ux;

P
where fex : 1 k 3g denotes the standard basis in R3. Writing I» k l2:x and

expanding
Izl:k2 Tey @ku Tp ¥V @kU <J1
Ty PYY PYy gl¥ Te ¥ U, 22
TV PPy &y fTp ¥ Ty gu J3
ey TeygP?y ¥y Try uy, cJa
Tey PPy foy GkygTe y U i, Js

we continue estimating J1-Js. First, J; can be controlled in the same way as I, i.e.,

Ji1 ky VKky,k@kukx, ky VKky,kuky,:
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By means of (4.2) we estimate

n (6]
TV PV &y Py @&y Teyu

2P0y PPy gregss OV juj
2L3jy  ¥i Y jui:

Using Holder’s inequality with 1=3 1=6 1=2 together with the Sobolev embed-
dingsH!=>LP p2 3;6 andH?=> LT we derive

J2 ky Vky, j0k¥ijuj x,
Ky VKky, @Y [skukps
Ky VKy, kY p1kukp:
ky Vky, ¥V n2 kukgy:
rR Ky VKky, kuky,:

In a similar way we estimate
Ty Ty Py &y Teyu Jjy Viiagijuj
and therefore again
J3;da rKY ¥ky, Kuky,:
Finally, for Js we conclude, again using Holder and Sobolev as done before,
Js  jiky @Vijuj x, Oy @Y pikukyi Ky YKy, Kukyg:
So, we have shown
lo rKy FKS kuk{;
and it only remains to control I3. Thus we need the second derivatives
@0k Tp Yy X U X @G 0k TPy X ux

Therefore we have to di [erkntiate expressions of the form Tp y ATp y u for a
su LCciehtly regular matrix-valued function A. We have

& Tpy ATp y u Ty PPy oy Toy ATe y u
Tpy @GATp Yy u

(4.9)
Ty ATry PPy @y Tp y u

Tp y ATp y QiU
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Introducing the matrix

dy;A” PyayTey A GA ATry PPy @y
n o
@A PPvay Try A ATry PPy ay
. 0A  [APy]ay;

we can rewrite (4.9) as

G Try ATryu TpydyATey u Tpy ATp Yy Oiu:
Applying this together with (4.8) we arrive at

@0k TP Yy u Te y @i@ku
Toy PPy @y Te y @ku
Try diy;PPy ey Tey u
Toy POy ky Te y QiU

where

dy;PPy ey @P®yey [PYy oy PyJay
P™ vy @iy 6y PYy @i0ky
PPy ey Tey PPy Gy
PPy ey Tey PPy Qiy :

Regrouping the resulting terms we thus obtain

@Ok Tp Yy u Tpy @I@rl](U

1
Try hP°° y Gy Tp y @ku

1
ey hP°° y Gy Tp y Gu
1
To y hP°° y @6y Tp y u (4.10)
1

Try PPy @ygiy Tr y u
n (6]

Ty PyvayTry PPy ey Tepyu
n (o]

Ty PyoyTry PPy aly Try u

We can repeat the procedure as done for I,. The firstpartTp y @0ku Tp ¥V @10ku
can be treated exactly in the same way as in the corresponding estimate concerning
I>. We consider the di Cerknce

h i h i
LT PPYay Teyou Ty PPy @iy Try Gku:
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We expand T3 to

L Tp PYY @y fTe ¥  Tp y glku

<1

T VPPY G @y @y gTp y @ku
TP gTPPg PYy @ygTe y Oku
flr Y Tpy gP%y @y Tp y @ku

and enumerate the four resulting terms by J1-J4. Using (4.6), Holder’s inequality
with 1=3 1=6 1=2 and the Sobolev embeddings, we estimate

kJikx, kY vk j0iyjjlkuj Xo
ky  Vky, k@1 ki s k@kuk s
Ky  Vky, k@i ky: k@cukp
Ky  Vky, k¥ky, kuky,
R KY YKy, KuKy,:

Similarly, (also invoking (4.2)) we obtain

kJ2kx, 1Y Oyjiokuj x, Gy @Y g Kke@cukyg:
Y V¥V y, Kukyg;
kJskx, kY ykir jeiyjjekuj x, rKY $Ky,kuky,;
kizkx, kY vk jeiyijecuj x, rKY YKy, kukyy;
so that in the end

kTEL kxo R ky ykyo ku kyo:

Copying the above estimates and interchanging k with I, we see that
h i h i
LTy PPY &y TeyGu Tory PPy oy Try Gu

also fulfills
szkxO R ky kaO kukyo:

Next, we investigate

h i h i
7Ty PPY Y TeYu Try PPy ity Try u

Expanding (as usual)

L fTley Tey gP® g @0y Te ¥ u
Ty PPy PPy 0oy Te ¥ u
Tpy PYy fO10kY @i0kyg Tr ¥ u

Ty PPy @y fTe ¥ Tp y gu
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and enumerating the resulting terms by J; to J4, we can estimate as follows. Using
(4.6), the Sobolev embeddings and (4.2), we estimate

kitkx, Ky Fky, kj@i@k¥ijujkx,
Ky  Vky, k@i@k¥ Kkx, Kuki 1
Ky Vky, k¥ky, kuky,
r Ky  ¥ky, kuky,

and

kdzkx, Ky Tky,kj@i@¥jjujkyx, rKY Fky,Kukyg;
kiskx, Kj@i@k¥ @i0kYijuikx, Ky Fky, Kuky,;
kdskx, Ky Tky,kj@i@¥ijujkx, rKYy Fky,Kuky,:

Summing up, we obtain
Klzkx, rRKY ¥ky, kuky,:

Now, we consider
_ h i h i
" Te g PO G aYeey Tp Fu Tpy PYy @yglky Tr y u

We use our canonical expanding procedure

o ey Ty g PP ¥ aygey Tr ¥ u
y fP® g P®y @ygey Te ¥ u
Toy PPy @Y @y 90y Te ¥ u
y PPy oygfey @ygTe ¥ u
Yy

Tp P y @rygly fTe ¥ Tr y gu

and enumerate the resulting pieces from J; to Js. By means of (4.6), Holder’s
inequality with 1=6 1=6 1=6 1=2 and the Sobolev embeddings, we estimate

kiikx, Ky kv, kj@i¥ii0k¥]iujks,
Ky  Vky, k@i¥kis k@Y ks kuks
Ky  VKy, k@iy k1 k@Y Kps kukpy:
Ky $ky, k¥kZ, kuky,
rz Ky YKy, kuky,:
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In a similar way (also using (4.2)), we further derive

kJzkx, Ky Tky,kj@i¥jjo¥ijuikx, reky Fky, Kuky,;

kiskx, Kj@iy @iyji0kyjjuikx, K@iy @rykis k@kykis kukis
R KY  ¥VKy, KuKy,;

kJakx, Kj@iyjjek¥ @xyjjujkx, k@iyksk@y @xykis Kukps
rRKY  Vky, Kuky,;

kiskx, ky Yky, rzky ¥ky,kuky,:

We thus have shown that
Klskyx, RrRKY ¥ky,kuky,:

Finally, it only remains to analyse

n (o}

6" Try PPyayTery Py ay Tryu
n o

PPy TrY PPV &Y Te ¥ u

Tp ¥

since the remaining part only di Cers from this one in k and I. For the sake of
clarity we put

Aty “PYy @y; #2fklg
and expand (one last time)

e flery TeYgA' 'y Try Ay Tepyu

Ty fAly Algglry Aty Tryu

A

Tp Algflry TeVgA*y Tryu

Y

Tp
Tp

Alg T gfaAky AKggTryu

<

Aly Ty Ay fley Tp ¥ gu;

A

where further
Aty Ag PPy PY g gty PPV flsy 0sY0

We enumerate the above summands from J; to Js. By means of (4.6), Holder’s
inequality with 1=6 1=6 1=6 1=2 and the Sobolev embeddings, we estimate
J1; Js and Js (cf. the corresponding estimates of Jy) by

Kdnkx, Ky Vky,kj@i¥ji0yijjujkx,
r2 Ky Vky,kuky, n27¥1;3;5g :
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The estimates for J, and J4 are identical, we only have to switch the roles of k and
I. Therefore we only consider J, in greater detail. Using (4.2), Holder’s inequality
with 1=6 1=6 1=6 1=2 and the Sobolev embeddings, we estimate
kd2kx, Ky  Vky, Kjl@iyjilkyijujkx, kj@y @1¥jilky]jujkx,
rR2 Ky  Vky,kuky, k@Y  @ykes k@kykis kuks
r2 Ky  Vky, kKuky,:
Consequently
kTékxO R2 ky kaO kukyo
so that finally

Is reky kg, kukd :

Putting all these these things together we have shown that

y lu Y luY oy ¥V ykuky Vy;¥2W;u22Y ; (4.11)

forsomelyp O R? andfurther 0 2B Y .In particular

y lu v u2y vy:;¥y2wW;u22y :

Hence for eachy 2 W and u 2 Y, we derive

k v 'uky k y 'u 0 ky k 0 tuky
kyky k 0 lkgy kuky
R k 0 'kgy kuky:

Consequently y 2B Y foreachy 2 W and by means of (4.11) it follows

y ' v
i.,e., LC-i holds.
CE : Recall that is a bounded C*-domain. We choose the isometric isomor-
phism
(0] 1
2.0
s—@ P Az 1x
0 2
D
and will show that for each z 2 W \ Bz O;r , where r > 0 is arbitrary, we can
estimate

S z 1As 'u z Au o riR kukx
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for all u E:H in acore of A which contains C1-functions only, i.e., for D -3

D 3. Remark 3.42 then implies CE .
Because of
0] 1
0 bTe z rot > A

s z 'ast @ )

it is enough to show that
2Tp z rot °E Tp z rotE w. TR KEKxg!
0

P
Since we are working on smooth functions, we have rot 1 k 3Jk@k and there-
fore rot °E o2 rot E, for these smooth functions E. Further, we can calculate

g through = ; 0x@x0;0;. We write v "~ rot ,°E and first consider the deriva-

tives @m@ @k Tp z v. We recall (4.10) and introduce the following notation. Given

(l) Zytr |:)N Bj Bj Bj - Bj Bj f H

(i) k z1;::552n VK, Kjzijiitjzajivikx, VvV 2Xo .

Z 1.19Z n Z1,..Zn (4.12)
for each permutation of f1;:::;ng, and
Z1,.Zn Z1,.:.Zn Z1,..,Zn - (4.13)

Using this notation we can for example rewrite (4.10) as

@@k Tr Yy u Tp y @10ku
Oy @ku ey @u
Oky; Gy 00y u:

Now, we start to derive the derivatives of order three. The starting point (as already
mentioned) is the formula for the second order derivatives (4.10), which we will
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denote in the following way

@0k TP zv Tp z @I@#V : T
Trz PPz @z Tp z Gkv T
Tp z hP°0 zZ @z Tp z v T3
Tp 2z hPOO z @|@kZITP zVv Ty
Tp z PO 2 @.zg@klep zZv _Ts
sznPooz@|z T z PY z @z c)szv _Ts
Tp 2 " PY z gz Tp z PY z @z OTP zZvVv _Tr

We will apply the formulas (4.8) and (4.9) toeachterm T; 1 j 7 . First,

OmT1 Tp 2 Om@@v Tp z PY z @mz Tp z G10kV
Tp Z @m@@kVv Omz @0kVv:

For T, we find

OmT2 Tp z TP z O0mzg@iz Tp z OV
Tp z P® 7z @@z Tp z OkV
Tp z Pz @z Tp Z Om@kV

Te z [PP z @12;P2]@mz Tp z @kV:
Because of
[P® z @iz;P.]@mz U , Ki@1ZjjOmzZjjujkx, U2Xo ;

we can use (4.12) and (4.13) to rewrite @ T2 as

OmT2 01z OmOkv 0i1z;@mz O0m@iz Okv:
Switching the roles of k and | transforms T3 into T». Thus we obtain

OmTs 0z OmOiIv 0kz;0mz Om@kz Orv:
Now, for T4 we derive

OmTa Tp z TP z @zg0i0kz Tp z v
Tpz Pz 0m@i@kz Tp z v
Tp z PP z @,0kz Tp Z @mV

Te z [PP z @10kz;P2]0mz Tp z v:
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Applying the -notation and regrouping the resulting terms yield

OmTa @10z @mvVv 0mz; @10kz Om@@kz Vv:

For Ts we further find

@mTs Tpz FP?% z @mz @1200kz Tp z V
Tp z P™ z @m@izg@kz Tp z Vv
Te z P z 812g8m@kz Tr 2 Vv
Te z P z @,2zg8kz Tp Z @mV
Te z [fP® z @1290kz;P;]@mz Tp z Vv:

Again -notation with its rules (4.12) and (4.13) and regrouping lead to

OmTs 0kz; 1z @mVv

0kz;0m@ 1z @1z; @m0Okz 0kz;@1z;0mz  V:

Deriving the desired expressions for Tg is somehow more exhausting, but the pro-
cedure is still the same. We get (the terms are already ordered with respect to the
derivatives concerning v)

@mTe Tpz PYz @z Tp z PPz @z Tp z OmV
Tp z P 2z @mzgbz TP z PPz @z Tp z v
Tpz PPz oz Tp z P 2z @zg@iz Tp z v
Tz PPz @@z Tp z PPz @z Tp z Vv
Tpz Pz @zTp z PY z @@z Tp z v
Tpz PPz@zTpz PPz2@mzTrpz PYz@izTe zV

T z [fPY z @kzgTr z PO z @12g;P,]@mz Tp z V:

Since interchanging k with I transforms Tg into T, applying the -procedure from
above yields

0mTe 0kz; @z @mVv
0kz; @m@i1z @1z;@mlkz 0z, @12;0mz VvV

OmT7:
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Combining these results we obtain

Om@@cTr z v Tp Z @m@0kV

0mz @0V 01z OmlkVv 0z @m@v
@1z;0mz Om@iz @kv
0kz;0mz @mlkz @1v
0kz; 01z @0kz @mv
0kz;@1z;@mz 0kz;0m@iz
@1z;0m0kz 0mz; @0z Om@kz Vv:

Repeating this procedure with this new starting point, we obtain a corresponding

formula for the desired derivatives of order four. Since our presentation of this

routine has been very detailed, we think that it is convenient to directly state the

result. We have

On@m@@cTr Z Vv Tp Z @n@m@GkV

0nz @m@0kv

0mz On0m@kv

01z On@mlkVv

0z @n@m@v

@mz;@nz @n@mz  @i0kVv
@01z;0nz @@z @m0kVv
1z;@mz 0m@iz OnOkVv
@01z;0nz nlkz Ombv
0kz;0mz @mlkz OV
0z, @1z @0km  @n@mVv
01z;0mz;@nz @1z;0n0mz
0mz;0n01z nz;0m@iz
0kz;0mz;0nz 0kZ;@n0mz
@mz; 0nlkz 0nz; 0mlkz
0kz;@1z;@nz @1z; @n0kz
0kz; @n@i1z @nz; 0@z
0kz;@12;@mz 0kz; 0m@1z
@1z; @m@kz @mz; @10kz

? v,

(4.14)

@n@m@lz @kV

0n@mlkz @rv

On@i0kz @mVv

Om@@kz @nVv
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where

? 0kz;@12;0mz; 0nz

0kz;@12; @n@mz 0kZ; 0mz; n01Z 0kZ;@nz;0m@ 1z
@1z;@mz; @nlkz @1z;0nz; @mlkz 0mz;@nz; @0z
@10kz; @n@mz O0mOkz; Oniz On0kz;0m@ 1z

0kZ; @n@m@ 1z @1Z;0n@m0kz

@mz; 0n@0kz 0nz; 0m@0kz

0n0m@10kz :

We recall tlgat v rot p'E, whereE is contained in the above mentioned core of A
and rot 1 k 3Jk@k. Further,z 2 W\Bz O;r sothatkzky. Randkzkgs r.
By means of (4.14), we see that in order to estimate the remainder term r of the

di Cerence
2Tp z rot °E Tp z rotE  R;

it su [ced to control the following quantities
kj@jlzjj@jz@js@jA@js D2Eijo;
kj@jl@jzzjj@js@j4@js D2Eijo;
kj@j1zjj@j2@j32jj@j4@j5 DZEijo;
kj@j, i i0j,2)§0i52) J@j,Zi i0js o Ejkxy;
k@, 05,2 105,05, i J0is o Eikxo;
kj@jl@jz@js@j4zjj@js DZEijo

kj@j, 2 05,2 j@j,05,05, b Eikxo;
Kj0,2i§0j,2j 0,2 05,05; D Eikxo;
Kj@j, 05,05,2ij05,0js p Eikxo;
Kj0j,2i 0,2 i05,05,2ij0js b Eikx,;
ki@;,2]i0;,0i505,21J8js p Eikxo;

for arbitrary jx 2 f1;2;3;4q; 1 k 5. Now, using the Sobolev embedding

H2 = L1 we estimate

Kj0j,2jj05,05,0;,05; o Ejkx, KOj,zKp2 k@j,05,05,05; 5 Ekx,
kzkpa k p2Ekz,

r kEkxO,

kj@j1zjj@jzzjj@j3@j4@j5 DzEijo k@jlzkH2 k@J'ZZkH2 k@j3@j4@j5 DZEkXo

kzk2,4

kK p’Ekz,

rz2 kEkXO,

Kj0j,05,2)§05:0;,05; o Ejkx, K0j,0j,ZzK2k@j,05,055 p°Ekx,
kzkpa k p2Ekgz,

r KEKx,;
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k05, 2j j@j,zjj0j,2] j@;,0js DzEijo k@j, zkn2k@j,zkp2k0j, zk2k0j, 05, DzEkXo
kzk3.k p2Ekz,
r3 kEkxo;

ki05,2]§05,05:2i10;,8j, p°Eikx, k0j,ZKi2kaj,05:2kn2k0;, 85, o Ekx,
kzkZ« k p2Ekz,
r2 kEkXO;

kj@jl@jz@jszjj@j4@j5 DZEijo k@jl@jz@j32kxo k@j4@j5 DZEkH2
kzkpys k p?Ekz,
r KEKx,;

k05, 2J§85,2] 10,21 105, 2] §0js o Eikx, kzkijak p’Ekg,
ré kEkxO;

kj@jlzjj@jzzjj@j3@j42jj@j5 DzEijo k@j1ZkH2k@jzzkHZK@js@thHZk@js DZEkXo
kzkP.k p2Ekgz,
r3 kEkxO;

kj@jl@jzzjj@js@hzjj@js DZEijo k@jl@jzzkHzk@js@j4ZkH2k@j5 DZEkXo
kzkZ. k p2Ekz,
r2 kEkxO;

kj@jlzjj@jz@js@hzjj@js DZEijo k@jlzkH2k@jz@js@j42kxok@j5 DZEkH2
kzkZ. Kk p2Ekz,
rz2 kEkxO;

kj@jl@jz@js@j4zjj@j5 DZEijo k@jl@jz@ja@jAZkXok@js DZEkH2
kzkpys k p?Ekz,
rkEkxO:

Putting all these estimates together we gain
k 3Tp z rot p?E  Tp z rotEky, rs KEkx,:

and we are done. =
Now, the claim follows by combining Theorem 3.45 and Lemma 4.5. |
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Remark 4.7  (a) First, we want to give interesting examples of nonlinearities

(b)

P: M which fulfill the assumptions of Theorem 4.9. Let p;m 2 C* R;R
satisfyp O > l1and m O > 1. Then one can choose P; M to be

Py “pivi‘y y2R%;

Mz "mijzj?z z2R3:

To demonstrate the conformity of this ansatz, we just have to di [erkntiate,
which yields

PPy  pivil 2p"jyi® yy7;
MYz mijzj2 1 2m® jzj® zz”:

ThusP’0 pOIl> landM®0 m O 1> I. The regularity condition
is an immediate consequence of the di Cerkntiability assumption for p and

m. Choosing p s 0 s "90>0; ;s2R andm 0, we see that these
types of nonlinearities particularly cover the Kerr-Nonlinearity

Py "y vity:

2 2

Besides S diag p; p as chosen in the above proof, we could have also

usedS diag 2"; 2" for each n 2 N. This yields solutions

u ;up 2C 0;T :H? 2 6 \c! o;T ;H® 6 ;

for adequate initial values in H?" 2 6 cf. Theorem 4.9. As for the proof,
we simply have to use generalisations of (4.14) for derivatives of higher or-
ders. If we also adopted the remaining parts of the proof, we would further
obtain solutions

u ;up 2C 0O;T ;H® 2 6 \c! oT ;H2" 6

for corresponding initial values. If we want to additionally close the gap
concerning the regularity in space from 2n 2 to 2n 1, we propose to
choose the fractional operators

S diag D% 2% n2N; nk3:
Due to the loss of formulas of type (4.14), the problem then is to find the
right commutator estimates for this operator. More precisely, choose n 3,
we then would need estimates

3=2 0 1 3=2 0 1
o I Pz rot ;77u | Pz rotu , s r Kukgz s

for certain z and u. We believe this to be true but were unable to find quotes
in the literature. We further think that the gained statement does not justify

the e [ark of the proof, thus it remains a claim.
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The Perfect Conductor

Next, we want to approach the perfect conducting boundary conditions (Pc). There-
fore we have to choose a di Cerent isomorphism S and also new spaces Z and Y.
In view of Theorem 2.43, we choose

S ,,Ao; DS DA \XoZ

Recall that

0 rot
A ;. DA Ho rot; H rot; ;
rot O
n o

Xo E;H 2X : divE div H 0, o H 0 :

Let R3 be a bounded C3!-domain and endow D S¥ ; k 2 f1;2; 3g with the cor-
responding graph norm. Then Theorem 2.43 (c) yields the following isomorphism

n (0]
D S? E;H 2H2 3% H?2 3: (E 0 \Xo
n
D s3 E;:H 2H2 3 HZ 3. (rot?E O (4.15)
(0]

where the right hand sides are equipped with the usual Sobolev norms respectively.
We thus put

Z7Z0 ZoTDS®: YTYy Yo DS?:

Consequently, we will only look for solutions which in addition to the desired
boundary conditions satisfy

divE divH O in
H n rotH n O on@ ;
rot?’E~n 0 on @

Due to (4.15) the verification of all assumptions in Theorem 3.43, besides the com-
mutator estimate CE , can be done in exactly the same way as in the proof of
Theorem 4.9. Adopting the notation of the latter one, we now take a look at the
remaining condition CE . Let u be a smooth function. Denoting

v 7 viive TAS tu

we can rewrite

rot® Tp z v

S z 'As 'u
rot3 Ty z V2

Because of

3 X
rot I Ik @m @ B;
1 mlk 3
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we can use the same calculations as in the proof of part CE in Theorem 4.9 to

obtain
X
rot®>Tp zvi Tp z rot’v; ImIid:Tp 2 @m@@kvi R
1 m;lk 3
X
rot3TM Z V2 Tm z rOt3V2 IJmhIk;Te 2 @m@@0kv2 Ro;
1 mlk 3

where (in view of the -notation) both R; and R, are of the same -class, namely

0mz @0kv @z OmOkv 0z @m@rv

@z;0mz Om@iz Okv

0kz;0mz @mlkz @v
0kz; 01z @0kz @mVv
0kz;@12;@mz 0kz;0m@iz
0z; 0mOkz 0mz; 010z Om@@kz Vv 21129 :

Hence we see that
S z Ias?t z Au Czu Bzu

where kB z ukyx  kukyx forz 2Bz 0;r and

X 0 ImIid; Te 2 Jj
Czu ’ 1 0m@0k0; S tu:
etk Imdid Tm 2 Jj 0 mEIEkES
SinceS 12 B Z;X , the estimate
kC z uk 2  kukys;

is sharp, unless the matrix coe [ciehts will vanish. Computing the matrix products
JImJdiJk one checks thatifm | Kk, then

Imdidk  eie]
where feq; es; e3g denotes the standard basis in R3. Therefore
ImIk;Tp 2 0O forallm;bk a Tp z fzl
for some scalar function f. Inserting Tp z I PYz 1thisyields
I fz11 P'°z
Thus the choice of S Ag only applies to nonlinearities N 2 fP; Mg satisfying

@1N1  @2N2  @3Ns;
@iNj o ifi J:
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Taking also the assumptions (N1) and (N2) into account this means that we can
treat polarisations and magnetisations of the form

Py pyk 11,17 Pg;

My my 1,11~ Mg y2R%; (4.16)
where K; 1 2 f1;2;3g and Pg; Mg 2 RS are arbitrary and

pm2C*R;R; p'0 > 1, m'o > 1:
We summarize these results in the following proposition.

Given real parameters r and , we put

W ;r 7By 0; \Bz O;r \lgc;
with I¢ from the definition prior to Theorem 4.9.
Proposition 4.8 Let RS2 be a bounded C31-domain, and let the vector fields

P:M : R® I RS be of the form (4.16). Further,let 2 0;1 and ro > 0 be arbitrary.
Then the following assertions hold.

(&) There is a radius R > 0 and an associated constantcyg cg R > 0, satisfying
co R "1 R 1T 1, suchthatforeach

Uog Eo;Ho 2W  co;ro
thereexistsatime T T R;rg; = 0 and a function
u ;uo E:H 2C 0;T ;H® ©® \c! o;T;H2 ©&;

withku t kg2 R t2 0O;T which solves the Maxwell-type Cauchy prob-
lem (M-Pc) by means of

D E°t rotH t t2 0;T ;
B H't rotE t t2 O;T ;
divD E t 0 t2 O;T ;
divB H t 0 t2 O;T ;
divE t 0 t2 O;T ;
divH t 0 t2 O;T ;
E t;rot?E t 2Ho rot; t2 0T ;
BHt 2Hgdiv; t2 O;T ;
H t ;rotH t 2 Hg div; t2 O;T ;
uo Ug;

where B H H MH andD E E PE.
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b Ifv2c oT°;H® & \c! 0;T°;H?2 ¢ is another solution of this
system with kv t kg2 Rforall0 t TP then v coincides with u on the
interval O;minfT;T% . Further, the map

W coiro H?2 ®1C OT;H2 ©:; up.,u ;ug
is Lipschitz continuous.

Obviously the nonlinearities of type (4.16) do not cover the Kerr nonlinearity

Py "oy jyi’y; M 0 ">0 2R y2R®:
Therefore, as a first step, we try to specify coe [ciehts Amk 2 R® © such that

X
S Amik@m @10k
1 mlk 3

leads to the identity (a priori formally)

s z !Aas tu z 'Au B zS lu;
where u is su [ciehtly smooth and B z consists of expressions having derivatives
of order less or equal than two. Denoting

v vive, TAS !

u
we compute (using again the same methods as in the case S Ag)
1

Tp z V1 X A Tp Z Om@®@kv1 R1
Ik
V2 ik m Om@ 1@k Vv2 R2|
x Te z @m@10kv1
A Bzs!?
Mok mik Om@ 0k V2

z Au Czu BzS u

1
x . 0 J
Czu Amik;diag Tp z ;1
1 Jj O
m; Lk

Om0k@@;S ‘u;

and B z only consists of expressions having the desired shape. With the same
arguments from the previous observations concerning the operator S Ag, we
need the coe [ciehts Amk to satisfy

Amik;diag Tp z ;I 0 foralll m;Lk 3:

Writing

Amik
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this implies

AR Te z  Tp z AR

mik’
12 12 .
Tr Z Ak Anik

21 21
AnikTr 2 ARk

foralll m;LLk 3:

In particular A}f,k Afnllk 0. By means of the Sherman-Morisson-Formula
(cf. [33], Problem 4.20) we then compute

1 pPlz 1 1 "ol 2 zz~

1 | 2 zz” )
1 " 1 "o 2 jzj?

Putting
— 2
fs " ———— s=>=0small;
1 " 2 s
thisreads Tp z 1 "o I ¥ jzj? zz>. Therefore we need ALY, to satisfy

AL xx”  xxAMR,  forallx2R% 1 m;Lk 3

i.e., all the matrices ALY, have to be diagonal. Thus there is unfortunately no hope

to include the vector valued mixing boundary conditions for a perfect conductor
using this approach.

Full Space Framework
Concluding we consider the full space situation, where besides the loss of the
boundary conditions, also the characterisation of Sobolev spaces in terms of the
Fourier Transformation makes the analysis more comfortable.
Given real parameters r and , we put
W ,r ”EHS R3 6 0; \§H51R36 o;r \lc,
where I¢c is defined as in the Dirichlet case.
Theorem 4.9 Let s > 3=2 and assume that the vector fields P;M : R® I RS satisfy
Pp,M2Ccs 'R%R3; PO > 1; MO > I
Further,let 2 0;1 and rp > 0 be arbitrary. Then the following assertions hold.

(&) There is a radius R > 0 and an associated constantcy cp R > 0, satisfying
coR "1 R 1T 1, suchthatforeach

Ug Eo;Ho 2W  co;ro
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thereexistsatime T T R;ro; > 0 and a function
u ;up E;H 2C O;T ;H® ' R®® \c! O;T ;H® R® 6 ;

withku t kys R t2 0O;T which solves the Maxwell-type Cauchy problem
(M-R®) by means of

D E°t rotHt t2 0;T ;

B H't rotE t t2 O;T ;

divD E t 0 t2 O;T ;

divB H t 0 t2 O;T ;
uoO Ug;

where B H H MH andD E E PE.

by Ifv2C 0;T';HS 1 R®6 \C! 0;T°;H® R® © is another solution of this
system with kv t kys R forall0 t TO then v coincides with u on the
interval O;minfT;T% . Further, the map

W corp HSR3®1®¥C OT;HR®®; wo.,u ;ug

is Lipschitz continuous.

Proof. The proof follows the same pattern as the proof of Theorem 4.9. In par-
ticular we adopt the notation concerning the substitution operators. As the phase
space triple we choose

X 7"Xo Xo TLZR3®3 2R3

Y "Yo Yo "HSR®3 HSRSE

Z7Zy ZoTHSIR®Z HSIR3S:
It is thus well known that the embeddings Z = Y = X are continuous and dense,
and that Y is an interpolation space between Z and X. In the following we will
write HS; LP and so on, instead of HS R® ™; LP R® " m;n 2 N, since it is clear
from context which dimension is needed. Again, as already done in the Dirichlet

case, by rewriting A as a first order di Cerkntial operator, we seethat A2 B Z;Y .
Recalling the Sobolev embedding

HS > L1,
we can fix some radius R > 0 such that

kukyo R ) ku k|_1
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We put W ~ By O;R and start to verify the assumptions from Theorem 3.43.

First, the verification of PD and G can be done exactly in the same way as
in the Dirichlet case. We thus start with LC . Lety Yi1,¥2 Y V1:¥V2 2W
and let u belong to X.

p_ 5
k yu y uky 2k 1y1ur 1 V1 uiky,

K 2y2 Uz 2 V2 UKy, :

Since each argument for P is exactly the same for M, it is enough to consider ;.
Using (4.2) and the Sobolev embedding, we estimate

K 1y 1 V1 Ulkio
/ Plyi x P gy x  “jup x jPdx
ky:  §ikfa kukp,
ky:  §1k§, kuik,

so that
K yu y ukx Kky Vky kuky:

LC-i : Lety Y1;¥2 .Y V1;¥2 2W and u 2 Y. As in the Dirichlet case
it is readily seen that

(0] 1
vy u @TPy1U1A;
Tm y2 uz
whereTp | P? land Ty I MO 1 Inparticular 0 '2BY .By

means of Proposition A.5, we start estimating

k 1y1 'u 2 V1 tuiky,
kTe yi Tp Y1 Uiky,
KTp Y1 Tp 371 k|_1 ku1kHs KTp Y1 Tp )7’1 kHs kulkLl:

Due to the local Lipschitz continuity of Tp and the Sobolev embedding HS > L1,
we further estimate

kTp y1 Tp Y1 kiz rKky1 ViKps;
ku1k|_1 kUkHs;

so that it only remains to show that

KTp Y1 Tp V1 kps rRKY1 Vikps:
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We write s s fsgwith s 2Ngand fsg2 0;1 . Putting
F7Tpyr Tep Y1,
we use the following representation of the H-norm (cf. Corollary A.4)

x
KFkZs  KFKZ j0 FiZ,

iis
X i F F i2

KFKZ / / 8 F > 8F X0 g dw,:
i s Jrere PXa Xpp®

Now, the estimate of the first summand for s 2 was shown at the correspond-
ing part in the Dirichlet case. For integers s /& 3 this method can be extended
inductively, though the calculation of the higher order partial derivatives of Tp y
are exhausting. Nevertheless this proof is for example executed on page 202 in
[23]. So, we turn to the second summand, where we again restrict our calculations
to the case s 1, since the cases s £ 2 then follow inductively. Using

OTp vV Ty PPy oy Try ;

the L1-boundedness as well as the local Lipschitz continuity of the quantities
Tp y and P® y | and the usual quadratic expansion of the involved terms it fol-
lows that

JOF X1 OkF X2 j2 Ri0k Y1 ¥1 X1 @k y1 Vi X2 j?
iyr Vi xa yi Y1 X2 j%

for almost every X;; X2. Hence we estimate

x x o, o
J@ F.lfsg;z R J@ Y1 Y1 stg;z kyl ylkH s s
JJ s ji s

due to Lemma A.3. Putting all these things together, we have thus shown that

X
KFkds rkyr Yik3 s 0 y1 V1 j%sg;Z
ji s
Ky: YiK3s;

and we are done.
CE :let 5 1 $=2 denote the Bessel-Potential F 1h i° F and put

S ~diag So;So ~diag S; S; S; S; S; S

Then (cf. Section 1 in Appendix A) S is an isomorphic isomorphism from Z to X.

For z belonging to Bz O;r , we can write
% (0] 1
0 Tp z J
z 1A A Z O, Ax Z P KA.
K 1 Tm z Jk 0
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Using this representation it was now shown in [24] (starting at page 51) that
S z !Aas z A

can be extended to a bounded operator B z 2 B X for each z 2 Bz O;r , and
that there isaconstantb b r suchthatkB z kg, b,i.e.,, CE holds. |

Finally, at the end of this chapter we want to give a conclusion on how to
possibly weaken the regularity assumption on the initial data ug. So far, we have
shown that we get solutions for adequate initial values

Up2HS 1 s>3=2;

Now, we suggest to attempt a linearization di [Cerent from the one described in
Section 3.3. For this purpose let ug be an arbitrary function in X L2 such that
Q ug ! exists. Inspired by an approach of C. Sogge to a class of quasilinear wave
equations (cf. [38]), we search for functions u close to ug (in way that has to be
specified later on, since it depends on later choices of function spaces) solving the

system
6t Quo 'Au Qu ! Quy *Au t2 0T ;
(4.17)
uo Ug:

We then linearize (4.17) by freezing u on the right hand side of this equation,
i.e., we substitute u by a function v (of a possibly large class) and consider the
resulting system

6t Quo 'Au Qv ! Quy *AVv_FR t t2 0T ;
uoO Uo:

The (a priori formal) solution uy, is then given by the variation of constants formula
t
u, t elRuo Ayl / et sQu 'Ap g ds v t:
0

A starting point for a promising analysis of the so defined solution operator

would thus be the establishment of Strichartz estimates for the operator
1

0 "up lrot

1
u A
Q Uo up lrot

’

i.e., for the Maxwell operator with bounded and symmetric coe [ciehts.

4.2 Wave Equations

Let RY d 3, be a bounded domain with boundary @ . We consider the
quasilinear Wave-type Cauchy problem from the introduction, i.e.,
@tu ;X @ K u t)Xx ut;x t2 0T ;x2 ;
u t;x 0 t2 O;T ; x20 ;
, _ (Cp-W)
u 0;x Ug X X 2 ;
@eu O;x  vg X X 2
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Assumption 4.10 In the following we suppose that
K2C*R;R; K'0 > 1:

By continuity there are numbers > 0and > O such that

1 Ky £ iVi : (4.18)
By means of the mean value theorem we further obtain constants Ly; k 2 f0;:::;4qg
such that

iD'Ky DMK Y Ly ¥i Yi¥2BrO; (4.19)

where > 0 is arbitrary. In particular

sup jDKK y j. ck<1 forallr >0; k2 f0;:::;4q: (4.20)
i r
Finally, we assume that RY d 3 isabounded C3-domain.

If we di Cerentiate K u twice with respect to t, we obtain
1 Kutx @qu t;x K% u t;x @u t;x @ru t; X utx:
Introducing the operators
u 1 Klu; u K%y
this equation becomes
ut;x @qu t;x utx @ut;x @u t;x utx: (4.21)

Phase Space 4.11 In the following we will consider (4.21) as an evolution equation
in the Hilbert space H ™ L2 , equipped with the canonical inner product. We
further consider as the Dirichlet Laplace operator in H, which we will denote
by p. We have already seen in the previous section that p endowed with the

domain H? \ Hé is positive and induces a scale of Hilbert spaces given by
Hn 7D b " Ujv o, b "2uj p ™v

Putting
C” op*¥™, DC H} H

yields a positive and invertible operator satisfying p C2. We further obtain

Hi HE Hz HZ Hz HE;
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where we recall the isomorphism (cf. Section 4.1)

HE HF
HE H> \Hj

n (o)
HE u2H® N\Hj : u2H}

Note, that the boundedness of implies that
kukHé kjrujkez ;
due to Poincaré’s inequality.

We are now in the position to state the well-posedness result for the second
order Cauchy-problem (Cp-W).

Theorem 4.12 Let RY d 3 be abounded C3-domain, and let the function
K : R ¥ R satisfy Assumption 4.10, i.e.,

K2C*RR: K'0 > 1:

Further,let 2 0;1 and ro > 0 be arbitrary and let H‘é; k 2 f1;2; 3g denote the
Hilbert spaces from Assumption 4.11. Then the following assertions hold.

(@) Thereisaconstantcg cg R > 0 such that for each
. D . R D .
Uo; Vo ZBHé HE 0; a \BHg H2 0;ro
there existsatime T T ;rg;R >0 and a function
U ;upivo u2C 0;T ;HE \C! 0;T ;HZ \c? 0;T ;H

which solves (Cp-W) by means of

ut K u®t ut t2 0T ;
ut 2H} t2 O;T ;
uo Uo;
uwo v

Moreover, we know thatk u t ;u’ t kyz ;2 Rforallo t T.

(b) Ifv2C 0;T°;HZ \C' 0;T°;HZ \C? 0;T°;H} isanother solution of
this system which also satisfiesk v t ;v® t kyz ;2 Rforeacht2 0;T°,
thenvt wut forallO t minfT;T.
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(c) The mapping
= . R \B . 2 1y Y 1.
Buz 1z O; o Bug g O:fo HZ HE 1 C 0;To ;HE HE;
Uo;Vo > U ,Uq,Vo ;

is Lipschitz continuous.

Proof. We prove this theorem by deducing it from Theorem 3.45. Let > O be the
radius from Assumption 4.10. Recalling the Sobolev embedding H? >t
we can fixsome R R > 0 such that

kukHé R D) kuk.
We thus put
W 7Bz O;R ;

and start to verify the assumptions from Theorem 3.45 for the operator families
y y2W and Yy 1y 2W ,where

y 1 Ky; vy Ky:
— PD :Lety 2W and u;v 2 H. Then
k yuky k1 K'y uk: 1 c; kuky;

due to (4.20). Thus y 2 B H . We further derive

y ujv /1 K’y uvdx /ul Kly vdx uj yv,
sothat vy y . By means of (4.18) we estimate
Yy uju 4 £ Kuk?,:

which finally implies PD .
G : Giveny 2 W we put

a”1 K' y2L?1

Thus we have to show that for each = 2 L2 there is a solution u 2 H?2 \
H3  of the Dirichlet problem

u au ~ in ;

u 0 on@
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But this is a standard result in the theory of elliptic partial di Cerkntial equations,
cf. [15], Theorem 8.13.

LC-f : Lety;¥y 2 W and let u belong to H. Using (4.19) and the Sobolev
embedding HZ = LT we compute

kK yu ¥ uk? /jKOy K’ ¥ j2juj? dx
L2ky ¥k?: kukd
ky ykaé Kuk?,:
which yields LC-F .
LC-fi : Giveny 2 W itis readily seen that vy is invertible with

1 1

T i 2B H;
1 Kly

b%

sothatk y kgn 1. In particular 0 * corresponds to a multiplication
with a constant, thus 0 2 B H . Now, let y;¥ 2 W and u belong to HZ.
Then we want to control
1 S 1 2 X 1 S 1 2
k y "u Y Tuki: kik Yy “u YV Tu ki
C
k1

By means of the product and chain rule for weak derivatives, we derive

KY y @y Bu
lu u :
O v 1 Ky 27 1 Ky
Hence
]
— 1 1
& Yy 'u g 'u @xu

1 Ky 1 Ky

K® ¥ 0y K® y @y
1 KOS/" 2 1 Koy 2

u:

We first use (4.18) and (4.19) to estimate

1 1 K'Y Kuyj
1 Ky 1 Ky j1 Kyjjl Kuyj

’Lijy i
Invoking the Sobolev embedding Hé = L1 then implies

k 1 K'y 1 1 K'¢ awk:e ky Fkiak@uk,:
Ky  Vkyz kuky:

Because of

1 Ky 2 1 K'¢y 2 &K'y K'§yg2 Ky K ¥
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we can use (4.18)-(4.20) to estimate
K® ¥ 0¥ KY y aky 1
1 Ky 2 1 Ky 2 1 Ky 21 K g 2
K*Y KPygy 1 Ky
Ky foy Byg 1 K'y
K'y eyf1 Ky 2 1 K'¢ %

2

2

’Lajy  9ii0kYi  cajlky @Y

C2 2 2c1 Lojlkyily Vi
Using the Sobolev embedding H! = LP 3 p 6 and Hélder’s inequality with
1=6 1=6 1=6 1=2and 1=3 1=6 1=2, then yields

kK" oy 1 Ky 2 Klyay1l K'§ 2 uke

Kiy ViieVijujke kjeky @cYijujkee
Kjy Viilkyjjujk.

ky Vkisk@kYVkis kukis  kly OkYkiskukis
ky Vkis k@kyk s kuks

Ky  Vkui k@Y kurkuky:  Kley @Y kpikukig
Ky  Yku1 k@iy Ky Kuky

ky Fkyz k¥kyz kykgz 1 kukys

RKY  Vkyz Kuky:
Putting these two estimates together we have shown that
k v u v 1ukHé RKY  Fkyz kuk: (4.22)
In particular
y lu v 'w2H! y:;y2w;u2H}:
Hence for each y 2 W and u 2 H} we obtain

k y lukHé k vy u 0 lukgyic k O 1kkukHé
rRTR k 0 ‘kgkukp:

Consequently y 2B Hé for each y 2 W and by means of (4.22) it follows

k v ' ¥ kg rKky Ykgz VIi¥2W;
i.e,, LC-Fi holds.
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LC-s : Lety belong to Bz 0;r and u be contained in H. By means of (4.20)
and the Sobolev embedding H? = L we derive

k yiy2 ukj / iK® y1 y2j2juj?dx
ky2k2H2 kukﬁz
ky k2 kuk?:

We thus obtain k  y1 y2kg 1 r. Now, lety;¥y 2 Wand u 2 Hé. We then want
to control

k yiyz2u Y1 y2 ukj

h2d
/j@k K? vi you K% ¥ $ou j?dx:
k1

Applying the product yields
0 K® y1 you 0 K2 y1y> u K%y yo @ku (4.23)

First, we expand

o Ky1y2 &K 91 9o u
K® y; K™ g glkyiyau
K™ ¥ faky: @k¥10y2u
K™ §1 0¥1fy2  Fogu
K% yi  K® ¥1 glky2u
K® ¥1 faky2 Oc¥agu:
Invoking (4.19) and (4.20), the Sobolev embeddings H? > L1 and H! > LP 3

p 6, and Holder’s inequality with 1=6 1=6 1=6 1=2 and 1=3 1=6 1=2
then yields

kO K®y1y2 @k K® 91 92 uke

ky1 Vikia Kj@kyajiyajjujkyz
Kjiky1 @kYidiyaijujkie Kj@kYiijyz VYojjujkie
ky: Vikiikjlkyzjjujkez kjlkyz2 0«¥Y2jjujk 2

kKyi  Vikyz k@kyikpt Kyakyn kuky:
KOkY1 @kYikpr Ky2kpi Kuky:  K@kYikpi Kyz  Yokpi Kuky:
ky:  Vikyz k@kyokyo Kukye  k@kyz  0kY2ki2 kukia

ky ¥ky kyki 3kyky 1 kukg:

r2 Ky  Vky kukHé:
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Rewriting the di Cerknce related to the second summand in (4.23) as

K?yiy> K% g ¥ @ku
KO yi fy, og0ku FK® yi  K® ¢ g9 0ku;

and concluding correspondingly, we obtain

kK? y1y, K?§1 ¥, Guke
Kyz Yok klkuky:  ky:  Vikyz k¥aky k@cuki
kyVky 1 Kkyky kung
r ky ykkukHé:

Putting these two estimates together and arguing as in the end of part LC-Fi
then yields

k vyiy2 Y1 YoKg iz reKY Vky YV 2W,

i.e.,, LC-s holds.
CE : Givenz 21,22 2 W\ Bz 0;r we define

Bizi 7 b 1 = D;
1 KO Z1 1 KO Z1 '

B, z — 5 KOO Z1 Z2 1 KOO Z1 Zo :
1 KOz P 1 KOz

We will now show that B; z; extends to a bounded operator from H} to H and
B, z extends to a bounded operator on H, both extensions having norms which
are uniformly bounded on Bz O;r . Thus CE holds. In the following we will omit
the subscript D. First, let u 2 HZ. Putting

. 1
f z; m;
we derive
Bziu %z jrzij?u 2f°z; rz; ru 'z, ziu; (4.24)
where
£ KO 2, 2, 2KV 2,2 1 Kzy KW 2 2:

1 KO Zq 2’ 1 KO Z1 3

Obviously (4.24) extends to Hé and by means of (4.18) and (4.20), we estimate

kfF®z; kia e % kf% 2z ke 2¢3 1 cpcr 3
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Using the Sobolev embeddings H! = LP 3 p 6 and H? = L, and applying
Holder’s inequality with 1=3 1=6 1=2 then yields

kB1 z; uky rkjrz1j2jujkLz kjrzijjujki2  Kj zijjujkiz
¢ Kirzijkf.  kirzijkye k zikpe kukgs

r kzikhs  2kzikyz kukyy:
Hence B1 z; 2B Hé; H and there is a constant b; b; r such that
kBl Zq kB Hé;H boi

Now, let u 2 H. Denoting

gzi ~ KYz fz;
we obtain
Bozu g'z1 z1z, g%z jrzij?z; 29° z1 rz: rz
1
9gz1 2z u
29z1rz; g'z zorzy r lu;
where
go , KOOO z; 1 KO z1 KOO 2] 2.
1 1
1 KO Z1 2
o 2 K4 z; 1 Kz 2 KWz KOz 1 KOz
1
1 KO 4 3
Thus
kg’ z1 k.1 2c3l ¢ c5;
kg® z; k2 Scsl c12 c3c21 c1

due to (4.18) and (4.20). We thus can estimate

kBz z uky Kj z1jizajj ‘tuikee  kjrzij?jzzjj  tujke
kjrzijjrzzjj ‘ujke ki zaji tujke
kjrzijjr ‘lujke kjrzijjzjjr ‘‘ujke:

So, once again Using the Sobolev embeddings H! =P 3 p 6 and H2 > L1,
and applying Holder’s inequality with 1=6 1=6 1=6 1=2and 1=3 1=6 1=2
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implies
kB2 z uky ¢ k zikis kzokis  Kjrzijkis kzok 1

kjrzijkis kjrzajkis k  tukgs
k zikiek ‘luk.a
kirzijks kjrzijkes kzoke kir  tujkge

r kzlng kzzng kzlng kzzng
kzikys kzokyz ko Tukye
kzikyak  tukye
kzikys  kzikys kzakyz ko tukge:

Recalling k 1ukHé kuky we thus have shown that B, z 2 B H and that there
isaconstantb, b, r3 such that

kB> z kg y  bo;

and we are done. =

In view of Theorem 3.45 it only remains to find some twice di Cerkntiable oper-
ator suchthatD vy y and D? vy y fory 2 §Hé 0;R . Therefore
let r > R be arbitrary and define

‘Buz O;r HZ ¥ HZ; y Ty Ky:

Lety;h belongtoBy2 3 O;r suchthatalsoy h2By2 3 O;r . By means of
Taylor’s formula we obtain for almost every x 2  the equalities

Kyx hy Kyx K'yv x hx
/1K°yx th x Kly x hx dt_ R} x;
0
and
Kly x hy Ky x Ky x hx
/1K°°yx th x Ky x hx dt_RZ x:
0

Now, we conclude exactly in the same way as we have done in the proof of Propo-
sition 4.4 that

k 2 . .
thng r kthg k2 f0;19 :
We have thus shown that is twice di Cerkntiable and that

Dy 1 Ky Y
D? v KY%y Y  Y2Bg Or |
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Appendix A

Function Spaces

For convenience of the reader we include the elementary definitions and basic
properties of the Sobolev spaces relevant to this treatise. For more detailed infor-
mation we refer to [1, 10, 11, 15, 25, 27, 40].

A.1 Sobolev Spaces and Fourier Transformation

Definition A.l Let RY be open and assume that1 p 1 and k 2 Ng. The
Sobolev space WKP is then defined by

wkP Ty 2P :@ v2LP  forallj j Kkg;

and endowed with the norm

(0] 1,
X
Kukyke @ k@ kap A . p<a1;
ik
kukyka T maxk@ vkia
ik
We will usually write HK instead of Wk2 |~
Now, we consider the case where RY. Then by means of the Fourier Trans-

formation we can characterize the spaces HK RY in the following way.
Proposition A.2 If k 2 Np, then
n o]
Hk RY v2L2RY ¢ [, 1 2K2y 2|2Rd

and the Sobolev-norm k kyx ga is equivalent to the norm
L2 Rd

kvkﬁ;z"/dl 2Kjw  j2d  kF hi*Fvk%, oo T
R
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Thus for arbitrary s £ 0 we consider the Bessel potential
S S2E hitF

in L2 RY . We then define the Sobolev space HS RY by

n (0]
HSRY "D 3 v2L2RY : [, 1 252y 2|2Rd

and equip this space with the Graph norm of 3, i.e,,

kukZ, “kF *h i*FvkZ, o4 / 1 ?2%%  j?d:
Rd

In the following we will need an alternative characterisation of the Sobolev-norm
k Kks:2 by means of so called Slobodetskii seminorms. These are given by

! 1=2

. jvx vyij?
Vs . . 7 O<s<l1:
Wiz /Rd /Rd ix yjd =

The key lemma to the desired description is the following, see [27], Lemma 3.15.

Lemma A.3 If 0 <s < 1, then there is a positive constant cs such that
iviZ, cs / ji®je jd;
Rd
foreachv 2HS R4 . ~

Consequently we obtain the the following characterisation.

Corollary A4 Let s > 0 be of the form s S fsg for some s 2 Np and
0 < fsg < 1. Then the norm k ks on H® RY is equivalent to the norm

X X i 2
KvkZe o / j@ v x j2dx / / v 0VYJ gy
2 . Rd -, RaJra  Jx yjd 2Mso
iis > iis
k k2 '@ 2 .~
VKL s Rd 19 Vifsgo

ii s

We will make use of the following estimate concerning products of functions,
see [34], Section 4.6.4, Theorem 3.

Proposition A5 Letd 2 N and s > d=2. Then HS RY forms an algebra and for
all u;v 2 H% RY there is some constant ¢ cs.q only depending on s and d such
that

kquHs Rd C kukHs Rd kaLl Rd kukLl Rd kukHs Rd



Function Spaces

A.2 Sobolev Spaces on Domains

For s > 0 we write
s s fsg suchthat s 2Np; fsg2 0;1:

Givens £0and 1 p < 1 we define

jvx wvyijP fep
jijsg;p - // jX yjd fsgp dXdy

and
(¢] 14
-~ @ o] x : 1Y Al i
kv ks kkaps B J0 Vifsgp
i s
Definition A.6 Let RY beopenands £0and1 p < 1. Then we put
n o]

WS ~ V2w 1j0 vjsp<dforallj j s ;

and

kaWS - kv kwysp:

A.3 Sobolev Spaces on Manifolds

Definition A7 Let N3 d £ 2, k2 Ng and O 1. A non empty domain
RY is called special C% -domain if there exists f 2 CK RY 1 such that

REpi f ;

for some rigid transformation R, i.e, Rx Ax b x 2 RY9 1 where A is some
d 1-dimensional orthogonal matrix and bisad 1-dimensional vector.

Remark A.8 Let Kk 2 N and 0O 1. If is a special C% -domain with
REpi f , then @ RGraph f . Further, for every x 2 RY 1 the unit outward
normal vectornatR X;f x 2@ isgiven by
(o]
1 rf x
n x g——— RO A
1 jrf x j2
Ifk Oand 1, then by the Rademacher theorem this remains true at least for

almost every x 2 RY 1,

Definition A9 A domain RY is called CK -domain, or we say that @ is of
class CK if forevery x 2 @ thereexistan™ "y >0 and a special C% -domain
x such that

B+ x \ B x \ x:
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Remark A.10 A C%!-domain is usually called Lipschitz domain. Further, if is a
C%0-domain we say that @ is continuous, or that has a continuous boundary.

Proposition A.11 A domain RY, whose boundary is compact, defines a CK' -
domainSif and only if there are finitely many open sets U; RY:1  j N with
@ j Uj and corresponding Cck -di Cedmorphism gj :Uj; 1 B O RY such
that

gj Ui\ B, O x%X%Xq 2B1 0 :xg>0 ;

gj Uj \@ B) 0 x%Xq 2B1 0 :xq O ;

gj Ui\ B, O x%xq 2B; 0 1xq<0 : ~
Proof. Since is compact there are finitely many X1;:::; Xy 2@ and "1;:::;"n >
0 such that @ jB+ Xj and

B+, Xj \ B+, Xj \RjEpi fj ;
with Rj and fj; 2 C% RY 1 from the definition of a bounded Lipschitz domain.

We put Uj 7 B+, X; and construct the maps gj as follows.

Graph(fj)

R! bj
2 R
_ Rd-1 d-1
Be; (R ) Be; (0) R

Bej (Xj)

Figure 5: Constructing charts.
First, we rotate and translate back with R; 1 where
1 1 H .
Rj Ui \ B Rj Xj \Epi fj :

Then we continue with 7 :RY T RY, 73 x%xg  x%xq F X" . Consequently

i By Rj'x; \Epi f; B O;
" By R;'Xj \Graph f; B2 0;
i By Ry \Epi fj © B. O:
Notice that each 7 j isaCk -di [edmorphism whose inverse is given by ’j 1 v vy

y%ya iy’ . Finally, we rescale to R% with "; . |
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Remark A.12 If we identifyB 0 RYwithB; 0 RY ! we get a parametrisation
of 7@ \Ujby j7g;':B10 RI1'1@ .Hence j jB1O . ~

So, we first investigate how to integrate on surfaces of the type U,
U RY ! open, for some CK -diedmorphism :U RY ! 1 RY9 Given such a
di Cedmorphism we define

g X “detb x°D x KO0

q
for almost every x 2 . Remember that vol fu g x dx:
Definition A.13 Let RY be a bounded C*% -domain, and @ with
U for some CK -diedmorphism U RY 11 RYI |etv: RY 1 C be

measurable. We say v 2 LP 1 p<1 ifv 2LP U; Ingdx and put

q
/jvjpd ”/jv x jP g x dx:
U

This definition is independent of the choice of

Lemma A.14 Let U be part of the boundary of a bounded CKX -domain. If
R:RY 1 RY s a rigid transformation, then gg g andv 2L? if and only if
v R '2L! R .Inthis case we have

/led /vd:"
R

Proof. Since Rx Ax b with A”A 1, we get
or detb DT “DT D detD “D g

As R R U,R is a parametrisation of R , hence we simply compute

q___
/led /v X gr X dx /vd:l
R U

We focus again on a special CK -domain . Then the canonical parametrisa-
tion is of the form x R x;f x x2B+ 0 ,for some rigid transforma-
tion R. Further, from linear algebra we know that

det 1 xy~ 1 y™x x;y2RY:
Hence ifp x ™ X;f X X 2B+ 0 ,then
gp X detDp x "Dp x detl rfxrfx~ 1 jrf xj%

So, for RGraph ¥ ,f:B~ 0 RI 1 ¥ Rwe get, thanks to lemma A.14

q____
/vd / v Rd / v RXxf x 1 jrf x j2dx:
R 1 B- 0
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Definition A.15 As we have already seen before, for a CK -domain RY with
compact boundary, we can choose finitely many "j > 0; X; 2 @ 1 ] N
such that @ jB Xj . We put Uy 7B+, xj and chose an open Ug with
UjN o- Thus fU; : 0 ] Ng is an open cover of the compact set and
hence there is a partition of unity according to the Uj, i.e. there are test functions
j2ct y; .o j 1, with

ixX 1 x2

We call a family of pairs Uj; j 1 j ~ with the above properties a localization of

Definition A.16 Let RY be a bounded Lipschitz domain with localization
Uj; j1jnandletv:@ ¥ C.Forl p <1 wesaythatv belongstolLP @
ifandonlyifv j2LP @ \U; foralll j N.We define

X
/ vd / v jd ;
@ j1 @ \Uj

where we know how to compute the terms on the right side, that is to say
q__
/ v jd / i Rj ;fj x Vv Rj x;fj x 1 jrfj x j2dx;
0 \Uj B+ O

for some rigid transformation Rj and f; 2 CK RY 1 | This Definition is indepen-
dent of the choice of the localization.

Proposition A.17 If we endow LP @  with the norm
X
kvkpo o "/ jvjPd / jiviPd ;
G i1/e\y;

then LP @ is a Banach space. In particular L2 @ is a Hilbert space with respect
to the scalar product

Ujv 24 "/ uvd
@

Gaul Theorem A.18 Let RY be a bounded Lipschitz domain with unit out-
ward normal vector n. Ifv2C ;RY withv 2C} ;RY, then

/divvdx / v nd : T
@
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Definition A.19 Suppose @ is a C% -domain with compact boundary, and let
Uj B+ Xj: j 1 j n~ bethecorresponding standard localization of . Fors £0
and1l p <1 we say

v 2WPs @ a  jv2WwPeB. 0 foralll j N;
and put
o 1,
X . . ip -
- — ] jv X iV Y A .
iVifsgpe @ / / . . d xd vy :
sg;p;@ 1o o ey X Vi d 1 pfsg
as well as
% x < N
kvkwes g @ k@ vk J0 Viggpe A -
i s jj fsg

Remark A.20 The values jvjfsgpe in the definition above actually depend on the
choice of the localization, but all the corresponding norms kvkwes g  are equiva-
lent.

We conclude with the Sobolev embedding theorems, see e.g. [10], Theorem
4.57.

Theorem A.21 Let RY either be the full space or a bounded Lipschitz-domain.
Then the following assertions hold.

If sp <d, then WSP > LY foreveryqg dp=d sp.
If sp d, then WSP > LA foreveryqg< 1.
If sp > d, then we have:

(i) Ifs d=p@N,thenwsP  >c° oP»® 9P = d»

(i) Ifs d=p 2 N, then WSP >Cp d=p L for every O <1.
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