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Deutsche Zusammenfassung

Proteine sind hoch komplexe Biomoleküle, die viele biologische Prozesse in lebenden Organismen er-

möglichen oder regeln. Sie bestehen aus einer Kette verschiedener Aminosäuren, die meist in eine

einzigartige dreidimensionale Struktur faltet. Neben der Sequenz spielt bei der Faltung auch die

physiologische Umgebung des Proteins eine entscheidende Rolle. Durch die einzigartige Struktur der

Proteine bilden sich aktive Zentren und Ober�ächen, die Wechselwirkungen mit anderen Proteinen

oder Molekülen ermöglichen, welche wiederum Strukturveränderungen der Proteine hervorrufen kön-

nen. Dadurch können Proteine viele verschiedene Funktionen wie beispielsweise die Katalyse von bio-

chemischen Reaktionen, Signalübermittlung, Sto�transport oder die Bewegung von Muskeln ausführen.

Fehlfaltungen oder Mutationen können die Funktion von Proteinen beeinträchtigen, was zum Beispiel

zu Krankheiten wie Alzheimer oder Krebs führen kann. Um die Funktion oder auch Fehlfunktion von

Proteinen zu verstehen, ist daher die Kenntnis ihrer Struktur von groÿer Bedeutung. Dies kann zur

Entwicklung neuer Medikamente und Therapien genutzt werden.

Experimentelle Methoden wie NMR-Spektroskopie oder Röntgen-Kristallographie können zur Struk-

turaufklärung von Proteinen beitragen. Allerdings schränken notwendige experimentelle Bedingungen

wie das Nachbilden physiologischer Bedingungen oder das Vorhandensein einer Kristallstruktur die

Möglichkeiten ein. Auÿerdem liefern solche Experimente meist nur statische Momentaufnahmen und

sind deshalb für das Verständnis dynamischer Prozesse unzureichend.

Computersimulationen stellen eine weitere Möglichkeit zur Untersuchung von Proteinstrukturen dar

und können auch bei dynamischen Prozessen zu wertvollem Erkenntnisgewinn führen. Weit verbreitet

sind dabei Verfahren der Molekulardynamik, die das Protein mit Hilfe eines klassischen Kraftfeldes

iii



Deutsche Zusammenfassung

beschreiben. Solche Kraftfelder sind ein fundamentaler Bestandteil der 2013 mit dem Nobelpreis in

Chemie gewürdigten Multiskalen-Modellierung atomarer Systeme. Ein Nachteil von Molekulardynamik-

Simulationen sind die benötigten Zeitschritte, die normalerweise im Bereich einer Femtosekunde liegen.

Da sich biologische Prozesse auf wesentlich längeren Zeitskalen abspielen, sind sehr viele Simulations-

schritte nötig, um diese Zeitskalen zu erreichen. Die hohe benötigte Rechenleistung kann dabei durch

implizite Lösungsmittelmodelle reduziert werden, welche die Wechselwirkungen eines Systems mit seiner

Umgebung durch ein zusätzliches Potential modellieren.

Eine Alternative zu Molekulardynamik-Simulationen sind Monte-Carlo-Simulationen, mit denen sich

thermodynamische Eigenschaften anhand eines repräsentativen Ensembles bestimmen lassen. Da diese

Methode das Zeitschrittproblem von Molekulardynamik-Simulationen umgeht, kann sie zu einer erheb-

lichen Einsparung von Rechenzeit führen.

Etwa 20 - 30% aller Proteine haben als physiologische Umgebung eine biologische Membran. Diese

sind zusammengesetzt aus amphiphilen Lipiden, die eine Lipiddoppelschicht bilden. Membranen sind

die natürliche Barriere einer Zelle und sorgen für den kontrollierten Austausch zwischen Zellinnerem

und der äuÿeren Umgebung. Fehlfunktionen oder Beschädigung dieser natürlichen Barriere führen zum

Tod der Zelle. Normalerweise ist die Zerstörung der Membran unerwünscht, jedoch basiert die Wirkung

bakterizider Antibiotika oder antimikrobieller Peptide auf diesem E�ekt. Letztere stellen eine vielver-

sprechende Alternative zu Antibiotika dar, welche durch zunehmende Resistenz von Bakterien immer

wirkungsloser werden.

Neben der natürlichen Barriere ist die selektive Struktur einer Membran überlebenswichtig, die durch

bestimmte Membranproteine geregelt wird. Ein Beispiel für solch ein Protein ist der hERG-Kanal, der

durch den geregelten Fluss von Kalium-Ionen für eine normale Herzaktivität beim Menschen sorgt. Da

Nebenwirkungen vieler Medikamente auf die Beeinträchtigungen dieses Kanals zurückgeführt wurden,

müssen potentielle neue Wirksto�e vorklinisch auf Wechselwirkungen mit ihm untersucht werden. So

zeigten Untersuchungen mit Goldnanoteilchen überraschenderweise, dass diese unter bestimmten Be-

dingungen diesen Kanal blockieren können. Da Goldnanoteilchen als Kontrastmittel, Wirksto�trans-

porter oder Therapeutika vielversprechende Kandidaten für biomedizinische Anwendungen darstellen,
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müssen solche Nebenwirkungen näher untersucht werden, bevor Goldnanoteilchen ohne Bedenken ange-

wandt werden dürfen.

Leider ist das Wissen über die Wechselwirkungen von Goldnanoteilchen oder anderen Molekülen mit

Membranproteinen, oder auch Membranen selbst, noch sehr begrenzt, weshalb Experimente mit künst-

lichen Membranen, sogenannte Black Lipid Bilayer Experimente, das Verständnis vertiefen können.

Um auch die zugrunde liegenden atomaren Mechanismen zu verstehen, können Computersimulationen

Experimente unterstützen und ergänzen. Doch auch hier stellt die komplexe Struktur einer Membran

eine groÿe Herausforderung bei der Simulation von Membranproteinen dar. Der hohe Rechenaufwand

durch die Berücksichtigung jedes einzelnen Atoms einer Membran schränkt die Zahl der untersuchbaren

Prozesse stark ein.

Das erste Ziel der hier vorliegenden Arbeit ist die Entwicklung neuer computergestützter Methoden,

die die Beschränkungen aufgrund des enormen Rechenaufwands von Molekulardynamik-Simulationen

umgehen. Neue Monte-Carlo basierte Simulationsprotokolle, an denen ich mitgearbeitet habe, werden

in dieser Arbeit validiert. Zusammen mit Martin Brieg und Carolin Seith habe ich im Rahmen dieser

Dissertation ein neues implizites Membranmodell entwickelt, parametrisiert und validiert.

Ein weiteres Ziel war die Kombination von experimentellen und theoretischen Untersuchungen, um

Wechselwirkungen zwischen Wirksto�kandidaten und Membranen oder Membranproteinen besser zu

verstehen. Neben Black Lipid Bilayer Experimenten, in denen der Ein�uss von Goldnanoteilchen auf

Membrane untersucht wurde, habe ich auch die Blockierung des hERG-Kanals durch Goldnanoteilchen

in Simulationen untersucht.

Alle Simulationen, die in dieser Arbeit beschrieben werden, wurden mit demMonte-Carlo-Simulationspaket

SIMONA durchgeführt. Im Vergleich zu expliziten Molekulardynamik-Simulationen werden in SI-

MONA nur Änderungen der Dihedralwinkel, aber keine Änderung der Bindungslängen oder Bindungswinkel

als Freiheitsgrade genutzt. Nach der Implementierung eines Dihedralpotentials und zusätzlichen Di-

hedralfreiheitsgraden für die Seitenketten von Aminosäuren habe ich die Freie Energie-Landschaft für
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Dipeptide untersucht. Diese Simulationen zeigen die erwarteten Minima in der Freien Energie, welche

mit den charakteristischen Winkeln für die Sekundärstruktur in Proteinen korrespondieren und mit

Daten aus der Literatur vergleichbar sind. Ein direkter Vergleich zu expliziten Molekulardynamik-

Simulationen zeigt gute Übereinstimmung in der Nähe der Minima, jedoch steilere Barrieren in den

Monte-Carlo-Simulationen, welche durch die zusätzlichen Freiheitsgrade der Änderung von Bindungslän-

gen und Bindungswinkel in der Molekulardynamik erklärt werden können. Durch diese kann die Über-

lappung von Lennard-Jones-Radien vermieden werden.

Um die Stabilität der Tertiärstruktur im neuen SIMONA Kraftfeld zu testen, habe ich verschiedene

kleine Proteine untersucht; erste Ergebnisse dieser Simulationen für das Villin Headpiece und die

WW-Domäne werden in der Arbeit vorgestellt. Diese beiden Proteine wurden aufgrund ihrer unter-

schiedlichen Sekundärstruktur ausgewählt und zeigen beide eine Stabilisierung des nativen Zustandes

bei niedrigeren Temperaturen und sowohl Entfaltungs- als auch Faltungsereignisse bei höheren Tempe-

raturen. Die Bestimmung der Faltungstemperatur hat sich dabei als schwierig herausgestellt, weshalb

zukünftig Methoden wie �Parallel Tempering� eingesetzt werden sollten, um diese Problem zu beheben.

Weiterhin haben meine Simulationen gezeigt, dass zwischen experimentell ermittelter Faltungstempe-

ratur und der aus Simulationen bestimmten Faltungstemperatur Unterschiede bestehen. Diese sollten

in Zukunft genauer untersucht werden.

Eine mögliche Fehlerquelle, die diesen Temperaturunterschied verursachen kann, stellt dabei das im-

plizite Lösungsmittel dar. Der letzte Abschnitt in Kapitel 3 beschreibt deshalb den Vergleich von drei

verschiedenen Modellen für den nichtpolaren Anteil der freien Lösungsenergie bei der Berechnung von

Hydratationsenergien kleiner Moleküle. Dieser Beitrag ist wichtig in Anwendungen der Medikamen-

tenentwicklung und der Bestimmung der Bindungsa�nität eines Liganden zu seinem Zielprotein. Um

einen fairen Vergleich der Modelle zu gewährleisten, wurden alle freien Parameter der Modelle optimiert.

Meine Analyse zeigt, dass implizite Modelle sogar explizite Wassermodelle in der Genauigkeit übertref-

fen können und dass Elemente, die sowohl negative als auch positive Partialladungen in Molekülen

tragen können, eine groÿe Fehlerquelle für implizite Modelle darstellen [1]. Um diese Erkenntnisse in

SIMONA nutzen zu können, sollte in weiteren Untersuchungen geklärt werden, ob die Genauigkeit der

Modelle auch auf gröÿere Moleküle wie Proteine übertragen werden kann.
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Da Membranproteine für viele biologische Prozesse sehr wichtig sind, jedoch die komplexe hydrophobe

Umgebung experimentelle und computergestützte Untersuchungen erheblich erschwert, haben wir ein

neues implizites Membranmodell basierend auf dem verallgemeinerten Born-Modell entwickelt. SLIM

(SIMONA layered implicit membrane) nutzt Vorteile verschiedener bereits etablierter Modelle und

erzielt damit bessere Ergebnisse beim Modellieren elektrostatischer E�ekte in der Membran. Kapitel

4 fasst die Idee, sowie Parametrisierung und Validierung dieses Modells zusammen. Anhand von Ver-

gleichen zwischen dem verallgemeinerten Born-Modell aus dem impliziten Membranmodell zu Poisson-

Boltzmann-Referenzrechnungen zeige ich die Genauigkeit von SLIM. Alle Eigenschaften der Poisson-

Boltzmann-Ergebnisse werden trotz des viel geringeren Rechenaufwands für das verallgemeinerte Born-

Modell wiedergegeben. Neben den Selbstenergietermen für einfache und komplexere Moleküle wird

auch die Wechselwirkung von geladenen Ionen in der Membran im Vergleich zu Poisson-Boltzmann

qualitativ und quantitativ richtig approximiert.

Für die Validierung des Modells habe ich im letzten Abschnitt dieses Kapitels Simulationsergebnisse

und Vergleiche zu anderen Modellen oder experimentellen Untersuchungen zusammengefasst. Dafür

habe ich zusammen mit der Diplomandin Carolin Seith drei gut untersuchte Membranproteine ver-

wendet. Sowohl die Position des Melittin Proteins relativ zur Membran, als auch Neigungswinkel und

Kreuzungswinkel für das M2-Protein und Glycophorin A wurden untersucht. Diese zeigen gute Über-

einstimmungen mit Literaturwerten.

Das neue Membranmodell ist also in der Lage, Proteineigenschaften zu reproduzieren und kann des-

halb künftig zur Untersuchung vieler interessanter Prozesse verwendet werden [2]. Damit rückt die

Untersuchung von Prozessen wie der Proteinassemblierung oder die Wechselwirkung mehrerer Proteine

in der Membran in greifbare Nähe und ist nicht mehr durch den zu hohen Rechenaufwand wie bei

Molekulardynamik-Simulationen limitiert.

Im experimentellen Teil meiner Arbeit standen Black Lipid Bilayer Experimente mit Goldnanoteilchen

im Fokus, die im Labor von Prof. Dr. Dr. h.c. Dr. h.c. Roland Benz in Würzburg durchgeführt wur-

den. Nachdem eine gröÿenabhängige Toxizität für Goldnanoteilchen festgestellt wurde, ist ein besseres
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Verständnis der Wechselwirkungen dieser Goldnanoteilchen mit biologischen Membranen essentiell. In

den Experimenten habe ich unterschiedlich groÿe und mit verschiedenen Liganden stabilisierte Teilchen

untersucht. Nachdem der experimentelle Aufbau zusammen mit der Diplomandin Yvonne Klapper

anhand antimikrobieller Peptide getestet war, habe ich bei Experimenten mit Goldnanoteilchen einen

Anstieg der Membranleitfähigkeit in Abhängigkeit der Gröÿe der Nanoteilchen festgestellt. Zusätzlich

konnte ich zeigen, dass neben der Gröÿe auch die Liganden, die zur Stabilisierung genutzt werden,

einen Ein�uss auf die Membranleitfähigkeit haben. Für die Interpretation der Ergebnisse wird in Kapi-

tel 5 neben den experimentellen Ergebnissen ein von mir entwickeltes Modell zur Liganden-Verdrängung

vorgestellt, das die experimentellen Beobachtungen erklärt und in ersten weiterführenden Experimenten

meiner Kooperationspartner bestätigt werden konnte.

Der letzte Teil der Arbeit beschreibt Simulationen, die das Andocken von bestimmten Goldnanoteilchen

an den hERG-Kanal untersuchen. Simulationen mit Goldnanoteilchen, die unterschiedlich viele Li-

ganden tragen, wurden genutzt, um den Blockierungsmechanismus, der in Experimenten meiner Ko-

operationspartner beobachtet wurde, besser verstehen zu können. Dafür wurden zwei verschiedene

Parametrisierungen des Kanals verwendet, bei denen ich das Andocken von Nanoteilchen mit einer

unterschiedlichen Anzahl von Liganden untersucht habe. Die Simulationsergebnisse zeigen, dass das

Andocken mit abnehmender Zahl von Liganden auf der Goldober�äche wahrscheinlicher wird. Diese

Ergebnisse ergänzen experimentelle Beobachtung, bei denen ein Überschuss von Liganden eine Block-

ade verhindern [3].

Insgesamt konnte gezeigt werden, dass das Bindungsverhalten der Goldnanoteilchen von den funk-

tionellen Gruppen auf der Goldober�äche abhängt. Sicherheitsbestimmungen für die Nutzung von Gold-

nanoteilchen in industriellen oder medizinischen Produkten sollten deshalb überdacht und angepasst

werden [3].
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1. Overview and Outline

Proteins are highly complex biomolecules involved in many biological processes in every living orga-

nism. They are composed of a sequence of di�erent amino acids encoded in the DNA and mostly fold

into a unique three dimensional structure. For many proteins, this structure depends only on the amino

acid sequence and the physiological environment of the protein. Functional groups or binding inter-

faces in these structures allow interactions with other molecules or proteins, which can cause structural

changes. Mediated by these changes, proteins can ful�l various functions: They catalyse biochemical

reactions, exert physical forces by muscle contraction, are responsible for the structural integrity of

cells, skin and hairs, act as transport proteins or guide other transport mechanisms. This years Nobel

Prize in Physiology or Medicine was awarded to three scientists who investigated how cells organize

their transport systems, a process in which proteins play a crucial role.

While experimental structure investigations like NMR spectroscopy or X-ray crystallography result in

a large database of known protein structures, the protein database (PDB), the experimental methods

still possess several limitations. Experimental conditions, such as the need for crystallization of a pro-

tein in X-ray experiments, can in�uence the protein structure. Other conditions, such as the native

environment, can render experiments near impossible, which is especially true for membrane proteins.

Although a known protein structure is a valuable starting point for investigating its function, experi-

ments mostly provide static snapshots or ensembles of snapshots of these functions, while the processes

underlying these functions are dynamic. Where experimental methods fail to provide a complete pic-

ture of the processes that govern protein function, computational methods provide the means to �ll

these gaps in our knowledge.

A widely used technique is Molecular Dynamics simulation, which solves Newton's equations of motion.

Therefore, the protein energy landscape has to be described by a classical force �eld. These simula-
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1. Overview and Outline

tions have become one of the fundamental building blocks of multi-scale modelling, a �eld which was

recognized with the Nobel Prize in Chemistry this year. The time step used in Molecular Dynamics

simulations is typically in the low femtosecond range, wherefore many iterations are necessary to reach

biologically interesting timescales. One possibility to reduce the computational cost is the use of implicit

solvent models. In these models, interactions between a system and its environment are captured by an

additional potential of mean force, and not by computation of the interactions with every single atom

of the environment. Another possibility to accelerate simulations is the use of Monte Carlo methods

instead of Molecular Dynamics simulations. Monte Carlo methods estimate thermodynamic properties

by a representative conformational ensemble of the molecule in question. Although these methods

eliminate the time step problem of Molecular Dynamics simulations, Monte Carlo simulations have

not been used extensively in the last decades to study the thermodynamic properties of biomolecular

systems.

A substantial part of 20 to 30 % of all proteins is embedded in biological membranes. These membranes

are composed of amphiphilic phospholipids and form a bilayer. Membranes are a hydrophobic barrier

to prevent soluble particles to enter or leave the cell. Damage or malfunction of this natural barrier

causes the death of the cell. One application that exploits intentional cell death is the treatment of

bacterial diseases or cancer. Antimicrobial peptides can cause the destruction of bacterial membranes

and are a promising alternative to antibiotics which are becoming increasingly ine�ective due to the

emergence of resistant bacteria.

Another important property of membranes is the selectively permeable structure, which is mediated

by special membrane proteins. An example for such a protein is the hERG potassium ion channel,

whose function is crucial for normal activity of the human heart and is used in pre-clinical testing for

essentially all drug candidates. Recent experimental investigations for two di�erent gold nanoparticles

showed that the channel function is in�uenced by one of them under certain conditions. Since gold

nanoparticles in general have promising biomedical applications as drug carriers, therapeutics or con-

trast agents, side e�ects like the in�uence on the hERG channel are undesired and must be investigated

before gold nanoparticles can safely be used in these applications. In general, the knowledge about

the interaction of nanoparticles or other chemical compounds with membrane bound proteins, or even

2



membranes themselves, is still limited. A �rst step characterizing interactions of therapeutics, drug

candidates or proteins with membranes is the use of arti�cial membranes, so called black lipid bilayers,

in experiments. These allow tests of the membrane's hydrophobic barrier by conductivity and selecti-

vity measurements.

For investigations on a molecular level, computational studies represent an increasingly attractive ap-

proach to complement experiments. Unfortunately, the complex biological environment of membrane

proteins poses a signi�cant challenge for explicit membrane studies. The high computational e�ort of

all atom membrane representations severely limits the processes that can be studied with presently

available techniques. To overcome this obstacle, implicit membrane models can be used.

The �rst objective of the work presented here is to establish new computational methods to reduce the

limitations caused by the high computational cost of explicit Molecular Dynamics simulations. There-

fore, I participated in implementing a new Monte Carlo based simulation protocol for proteins, which

I validate in this thesis. Together with Martin Brieg and Carolin Seith I developed and parametrized a

new implicit membrane model, for which I show di�erent tests and validations. The second objective is

a combined experimental and theoretical investigation of the interactions of drug candidates with mem-

branes and membrane embedded proteins. Therefore, I have performed black lipid bilayer experiments.

The results of these experiments presented here characterize the in�uence of antimicrobial peptides and

gold nanoparticles on the membrane's hydrophobic barrier. Based on these results, I have developed a

simple model that can explain my experimental observations. Additionally, I have studied the blocking

of the hERG ion channel by coated gold nanoparticles in simulations. From these simulations I deduce

a general requirement for a stable complex formation between gold nanoparticles and the hERG ion

channel.

This thesis is structured as follows: I provide a short introduction to proteins and biomolecular mem-

branes in Chapter 2, which summarizes the basics to understand the investigations and results reported

in the following chapters.
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1. Overview and Outline

The third chapter introduces Monte Carlo methods and the force �elds used in the software pack-

age SIMONA. I summarize the new degrees of freedom which I have added to the simulation protocol,

together with the diploma student Carolin Seith, and describe how I validate them by simulations of

small peptides. The free energy landscapes of these peptides show the expected minima, which are

essential to describe the secondary structure of proteins. I have performed Monte Carlo simulations

based on the new protocol to test the stability of the tertiary structure of several small proteins. My

simulations allow me to compare the computational e�ort required for such studies to that of other

methods. After that, I present an investigation on how to further enhance the accuracy of implicit

solvent models, where I analysed the performance of three implicit solvent models that use di�erent

methods to treat nonpolar solvation e�ects. My analysis shows that one of these models can match

the accuracy of the explicit water TIP3P model with a minimal set of optimized parameters. It also

points out a general problem of many commonly used implicit solvent models. Therefore, my analysis

provides valuable insights on how to improve implicit solvent models in the future.

Chapter 4 introduces a new implicit membrane model to study orientation, folding or assembly of

membrane proteins. This SLIM (SIMONA layered implicit membrane) model combines advantages of

other previous published models regarding the accurate modelling of electrostatic e�ects inside mem-

branes. I demonstrate this by performing comparisons to PB reference calculations, which also �x the

free parameters of this model. Afterwards, I present results of Monte Carlo simulations for three well

studied membrane proteins, Melittin of bee venom, the transmembrane domain of the M2 protein and

the transmembrane domain of Glycophorin A. They are compared to other computational and expe-

rimental studies to demonstrate that the SLIM model is able to reproduce known properties of these

proteins.

Gold nanoparticles are possible drug candidates, wherefore their interactions with membranes have

to be understood. In Chapter 5 I explain the experimental investigations with the black lipid bilayer

method, which I used to characterize such interactions. The experimental setup for the bilayer experi-

ments, which I used together with the diploma student Yvonne Klapper, is validated by measurements
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for antimicrobial peptides, also presented in this chapter. My bilayer experiments characterize the

e�ects of di�erently sized and coated gold nanoparticles on the membrane's hydrophobic barrier. I

present a simple model that explains my experimental observations and provide a foundation to better

understand the interaction of the membranes with gold nanoparticles.

Gold nanoparticles may not only interact with a biological membrane, but also with the proteins embed-

ded in that membrane. I investigated a mechanism that is known to cause cytotoxicity, the blocking

of the hERG channel by speci�cly coated gold nanoparticles with atomistic simulations. Chapter 6

describes the channel parametrisation at di�erent environmental conditions and how I generated gold

nanoparticles coated with di�erent numbers of ligands. Afterwards, I estimate the probability for com-

plex formation between the gold nanoparticles and the hERG channel using docking simulations. The

conclusion I present highlights the important role of the ligands coating the nanoparticle to form a

stable complex and complement the experimental �ndings of my co-workers.

This thesis closes with a summary of the results I have achieved and a discussion of their relevance for

future investigations and applications.
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2. Introduction to Biomolecular Systems

This chapter provides an introduction into the relevant background on proteins and biological mem-

branes, which are crucial for understanding the investigations reported in this thesis. The composition

and function of proteins is summarized in Section 2.1, while folding into their distinct structure is

described in Section 2.2. Biological membranes, their function and composition, as well as the function

of membrane proteins are explained in Section 2.3.

2.1. Proteins

Proteins are the nano-scale machinery of living cells and involved in many biological activities. Proteins

catalyse chemical reactions, transport ions or metabolites across membranes, act as signal receptors or

are involved in energy conversation [4�6]. While some proteins exist in solvent, others are partially or

fully embedded in membranes. The three-dimensional structure, which many proteins spontaneously

assume is important for their function. Functional groups or binding interfaces in these structures allow

interactions with other proteins or molecules. Protein function often entails structural changes that

are di�cult to characterize by static structures, such as those obtained from x-ray crystallography. To

understand processes in which proteins are involved, the knowledge of their structure and dynamics is

crucial.

2.1.1. Amino Acids

Amino acids are the fundamental building blocks of peptides and proteins. They have two common

functional groups, the amine- and the carboxyl-group, but di�er in the side chains. Amine-group,

carboxyl-group as well as the speci�c side chain are bound to the Cα-atom of the amino acid. A
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2. Introduction to Biomolecular Systems

sequence of di�erent amino acids, also called residues, speci�es a peptide or protein. The single amino

acids are linked via the peptide bond displayed in 2.1.

Figure 2.1.: Peptide bond formation. The carboxyl group of the �rst amino acid reacts with the amino
group of the second one to form a peptide bond.

The periodic occuring units, NH-Cα-CO, are the backbone that build the main chain of the peptide.

The carboxyl group of the previous amino acids reacts with the amino group of the following one,

thus only the amino group of the �rst amino acid (N-terminus) and the carboxyl group of the last one

(C-terminus) remain.

Proteinogenic amino acids, displayed in Figure 2.2, are encoded by the universal genetic code and can

be grouped into charged, polar, hydrophobic amino acids and special cases. For every amino acid there

are abbreviations for their names, a three letter and a one letter code. In context of this thesis the

three letter code will be used. The human body is able to synthesize only some amino acids, all others

have to be consumed and are therefore called essential amino acids.

• Non-essential amino acids:

alanine=ALA, arginine=ARG, aspartic acid=ASP, asparagine=ASN, cysteine=CYS, glutamine=GLU,

glycine=GLY, proline=PRO, serine=SER, tyrosine=TYR.

• Essential amino acids:

histidine=HIS, isoleucine=ILE, leucine=LEU, lysine=LYS, methionine=MET, phenylalanine=PHE,

threonine=THR, tryptophane=TRP, valine=VAL.

Non-natural amino acids like norleucine and peptide caps used for simulations in this thesis are described

later in the corresponding chapters.
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2.1. Proteins

Figure 2.2.: 20 proteinogenic amino acids: positive or negative charged amino acids, special cases

and polar or hydrophobic amino acids.
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2. Introduction to Biomolecular Systems

2.1.2. Protein Structure

The physiological environment together with the amino acid sequence determines the three-dimensional

structure of many proteins [7]. For the protein structure, four di�erent classes can be distinguished.

These are the sequence, formation of secondary structure elements like helices or β-sheets, a global

three-dimensional structure and the agglomeration of di�erent single chains. They are summarized in

the following sections.

Experimentally determined structures can be found in the protein database (www.pdb.org [8]). The

provided �les with atoms, residues and coordinates can be used as input �les for simulations.

Primary Structure

The primary structure describes the sequence of the amino acids (residues) along the main chain (see

also Section 2.1.1). The �rst known sequence was determined 1949 by Sanger et al. for the essential

hormone insulin [9].

Covalent bonds in the main chain and the dihedral angles they form are the same for each residue.

An dihedral angle is de�ned by four atoms and describe the angle between two planes. The �rst three

atoms span the �rst plane the second, third and fourth atom the second plane. To a large extend main

chain dihedrals can be used to characterize the three-dimensional structure of a protein. The three

main chain dihedrals are de�ned by the following atoms with atoms indicating atoms of a neighbouring

amino acid.

• Dihedral angle Φ: C' - N - Ca -C

The covalent bond between N and Ca is one of the main degree of freedom of the main chain.

• Dihedral angle Ψ: N - Ca - C - N'

This dihedral is also �exible and a second main degree of freedom.

• Dihedral angle Ω: Ca - C - N' - Ca'

This bond is a partial double bond due to mesomerism of the free electron pair of the nitrogen

atom. Therefore the dihedral is not very �exible. In some models Ω is therefore treated as rigid,

but simulations of this thesis were performed with �exible Ω.
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2.1. Proteins

Although φ and ψ are very �exible, some combinations for dihedral angles are not possible due to steric

restrains. Ramachandran et al. visualised the backbone dihedrals in the so called Ramachandran Plot

[10], where allowed dihedral angle combinations are displayed. The most populated regions refer to the

secondary structures α-helix and β-sheet.

Secondary Structure

In proteins, regular structures can be found, which are called secondary structure elements. The

dihedral angles of the residues in these structures have similar values. Two major types of secondary

structure, α-helix and β-sheet, can be distinguished [5]. They are stabilized by hydrogen bonds between

the polar atom groups NH and CO of the backbone. Pauling and Corey �rst proposed these structures

in 1951 and used them to characterize protein structures [11�17]. To get a better understanding of

a three-dimensional protein structure, they are usually depicted in a reduced representation of the

molecule, where only the backbone is represented by a tube. Secondary structure elements, such as α-

helices or β-sheets are usually highlighted in this representation as depicted in Figure 2.3. The picture

shows the cartoon representation for an α-helix and a β-sheet where hydrogen bonds are displayed with

dashed red lines.

Figure 2.3.: Secondary structure elements: (a) α-helix (PDB-code: 2A3D [18]) and (b) β-sheet (PDB-
code: 2F21 [19]) in the cartoon representation. Hydrogen bonds are shown with dashed,
red lines.
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2. Introduction to Biomolecular Systems

Tertiary Structure

The global three-dimensional structure is the tertiary structure of a protein. Proteins with similar

amino acid sequences often show similar tertiary structures. Therefore known structures can be used

for homology models of unknown structures, if the sequences match well [20]. The three-dimensional

structure can form binding pockets or active sites which are important for the interactions with other

molecules and therefore crucial for the protein function. An example for a tertiary structure is shown

in Figure 2.4. Secondary structure elements of Myoglobin [21] are coloured di�erently and merge into

global three-dimensional structure with a binding pocket.

Figure 2.4.: Secondary structure elements (colored di�erently) of Myoglobin (PDB-code: 1MBN [21])
fold into a global three-dimensional structure, the tertiary structure of the protein.

Quaternary Structure

The quaternary structure describes how di�erent amino acid chains of a single protein are orientated

with respect to each other. Di�erent chains in one protein are not covalently bound.

Figure 2.5 shows one protein, haemoglobin [22], consisting of four di�erent chains colored in blue, red,

purple and orange.
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2.2. Protein Folding

Figure 2.5.: Di�erent chains (colored di�erently) of Haemoglobin (PDB-code: 1HDA [22]) form the
quaternary structure of the protein.

2.2. Protein Folding

In contrast to many other polymers, many proteins spontaneously assume a three-dimensional struc-

ture. For this reason, a large number of models and investigations have been devoted to elucidate this

mechanism. Levinthal noted that the large number of degrees of freedom excludes folding by di�usive

search of the energy landscape. There exists an astronomical number of possible conformations for

the protein chain, which leads to the �nding that proteins do not sample their conformational space

randomly [23].

Today our understanding of protein folding is based on An�nsen's thermodynamic hypothesis, which

was awarded with the Nobel Prize in 1972. It postulates that the folding of a protein in its physio-

logical environment occurs by minimizing the Gibbs free energy and depends only on the amino acid

sequence. An�nsen et al. showed in their experiments that proteins refold into their native structure

after denaturation [7].
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2. Introduction to Biomolecular Systems

As solution to Levinthal's paradox is the funnel theory based on An�nsen's hypothesis: The free energy

landscape, displayed in Figure 2.6, of a protein consists of funnels with an energy gradient pointing

towards the native structure [24, 25]. How fast a protein folds depends on the channel.

Figure 2.6.: The minimum of the free energy landscape of a protein is the native structure. The folding
funnel shows an energy gradient pointing towards the native structure.

For the folding mechanism three di�erent models are established [26]:

• Framework model [27]:

1. The secondary structure elements are formed.

2. Secondary structure elements di�use and form the tertiary structure.

• Hydrophobic collapse [28]:

1. A hydrophobic core is formed.

2. Local secondary structure elements further stabilize the hydrophobic core.

• Nucleation model [29]:

1. A local segment folds into its secondary structure.

2. Subsequently the folding in a tertiary structure is permitted.

Framework model and hydrophobic collapse require intermediate states which were found to be nec-

essary [30]. Therefore the nucleation model was enhanced to a nucleation-condensation model which

combines all models described above [26].
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2.3. Biological Membranes

2.3. Biological Membranes

Biological membranes are selective barriers around a cell. They are composed of a bilayer of amphiphilic

lipids which shield the cell from the exterior [31]. A hydrophobic core prohibits the di�usion of solved

particles through the membrane. Transport through this barrier is mainly established by membrane

proteins.

2.3.1. Membrane Composition

Biological membranes are composed of lipids, proteins and carbohydrates [32]. The lipids show an

amphiphatic structure with a polar headgroup and a hydrophobic core. The lipids form a bilayer

(Figure 2.7) with the hydrophobic tails in the membrane center and the polar groups facing the aqueous

solution both in the cell interior and outside the cell.

Figure 2.7.: A bilayer is composed of two layers of lipids. The polar heads facing the aqueous phases
and the hydrophobic lipid tails are in the interior of the bilayer. (Image source: [31])

The lipid tails, which are fatty acid chains, show a varying number of carbon atoms and therefore

have a di�erent length. Unsaturated fatty acids have double bonds which cause bends in the tails

and therefore are responsible for a bigger distance between the lipids [33]. Most membrane lipids are

phopholipids which contain diglyceride, a phosphate group and e.g. choline or glycerol as the head-

group. Diglycerides are two fatty acids bound to a glycerol.
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2. Introduction to Biomolecular Systems

Figure 2.8.: Chemical structure of diphytanoyl-phosphatidylcholine (DiphPC). Labeled are the three
di�erent building blocks of the lipid: a diglyceride, a phosphate group and choline.

An examples for a phospholipid is shown in Figure 2.8.

In contrast to phospholipids in glycolipids the phosphate group is replaced by a sugar molecule. These

lipids have important roles in cell signalling and the immune system [34].

Varying composition, head groups and lengths of lipid tails result in many di�erent biological mem-

branes. All these membranes have a hydrophobic core and a polar headgroup with varying sizes.

2.3.2. Membrane Proteins

Membrane proteins can be divided into two main classes: Peripheral proteins, which do not interact

with the membrane core and integral proteins, which penetrate or span the bilayer [35]. Depending if

they are membrane spanning or bound to the surface, their composition of hydrophobic and hydrophilic

residues varies. Membrane proteins very often show an amphiphilic character. While the part inside

the membrane mainly consists of hydrophobic residues, regions ranging into the headgroup region or

the solvent have hydrophilic residues. The transmembrane region of a membrane protein shows mainly

helical structures, since hydrophilic parts of the main chain are shielded in a helix [6].

Membrane proteins ful�l di�erent functions: They are involved in biological energy conversion, en-

able the speci�c transport of metabolites and ions across the membrane, act as signal receptors and

catalyze biochemical reactions [4]. Antimicrobial peptides can destroy bacterial membranes and are an

alternative to antibiotics [36, 37]. Their structure and the mode of action are discussed in Chapter 5.2,

where their e�ects on arti�cial bilayer experiments are presented.
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3. Atomistic Simulation of Biomolecular Systems

The increasing availability of computational resources allows simulations to supplement experimental

investigations. In life- and material science, simulations can be used to understand or predict properties

of molecular or nano-scale systems, like structural changes of proteins, drug binding or self-assembly

[38�41].

This chapter summarizes computational methods like Molecular Dynamics and Monte Carlo methods

in general (Section 3.1) and introduces the Metropolis Monte Carlo based software package SIMONA

as well as the force �elds relevant for protein simulations (Section 3.2). The parametrization of non

standard residues, such as non-proteinogenic amino acids, is explained. Furthermore the results of test-

ing newly implemented force �elds and additional degrees of freedom (Section 3.3 and 3.4) are shown.

In the last paragraph an outline to model the solvation free energy of very small, drug-like molecules

(Section 3.5), published in Brieg et al. [1], better, is given.

3.1. Methods

3.1.1. Molecular Dynamics

A very common tool are Molecular Dynamics (MD) simulations, which solve Newton's equations of

motion (equation 3.1) numerically for every atom i with mass mi and position ~ri [42�44].

~Fi(t) = mi ·
∂2~r

∂t2
(3.1)

To simulate a system of particles, for instance a molecule, it has to be described by a classical force �eld.

This approximation requires that the processes of interest are not governed by quantum mechanical
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3. Atomistic Simulation of Biomolecular Systems

e�ects. Calculating the forces and using numerical integration techniques results in a time-resolved

trajectory of the system. The Verlet-Störmer integration algorithm is widely used [45]. For every time

step ∆t the positions and velocities are calculated. To avoid instabilities, the time step has to be chosen

carefully with respect to the shortest timescales processes occurring in the system of interest. These

are typically atomic oscillations and require a time step in the low femto second range, so ∆t = 1fs is

very common in MD simulations.

Most biological processes happen on a time scale of microsecond (ms) to second range (s) [46], so about

1012 iterations are necessary to reach biologically interesting timescales. With increasing system size

or longer timescales, the computational cost increases rapidly and despite recent progress in hard- and

software, only expensive specialised computers are able to reach the low millisecond range [47�51].

One possibility to reduce the computational e�ort is the use of implicit solvent models. Interactions

between system and environment are captured by an additional potential of mean force, where the

surrounding water or biological membrane may be represented by di�erent dielectric regions instead of

every single atom. While losing some accuracy, it is possible to reduce the large number of atoms and to

avoid the need of periodic boundary conditions. Figure 3.1A illustrates the immense number of explicit

water molecules in a simulation box or in an explicit representation of a Dipalmitoylphosphatidylcholine

(DPPC) membrane embedded in water.

Using an implicit environment, only the forces between atoms within the molecule in question have to

be computed, thus drastically decreasing the computational cost.

3.1.2. Monte Carlo Simulations

An alternative to MD simulations are Monte Carlo (MC) simulations, which are used to estimate ther-

modynamic properties by a representative ensemble of conformations. A chain of conformations is

generated by randomly disturbing the prior conformation and rejecting or accepting the new confor-

mation according to an acceptance criterion. This approach eliminates the time step problem at the

expense of loosing information about the timescales at witch the processes occur.
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3.1. Methods

Figure 3.1.: Simulations with explicit water molecules or with an explicit membrane representation
require a simulation box with periodic boundary conditions. Panel A shows a cubic box
�lled with TIP3P water molecules. Panel B (image source: [52]) shows a DPPC-membrane
with more than 30.000 atoms.

Metropolis Monte Carlo

MC methods rely on a chain of random conformations. The sampling with Metropolis MC allows to

evaluate thermodynamic expectation values according to an equilibrium distribution [53].

Starting from a conformation ~R(i), a new conformation ~R(p) is generated by a random perturbation. If

the transition probability Πi→j between conformation i and j is larger than a random number r ∈ [0, 1],

the new conformation ~R(p) will be accepted (see also Figure 3.2).

The conformations of the ensemble are Boltzmann distributed because of the used acceptance criterion

for Metropolis MC:

Πi→j =


e
−

∆Eij
kBT ∆Eij > 0

1 ∆Eij < 0

(3.2)
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3. Atomistic Simulation of Biomolecular Systems

Figure 3.2.: Metropolis Monte Carlo algorithm: new conformations are generated by random pertur-
bations and accepted depending on the transition probability Πi→p.

3.2. SIMONA - A Monte Carlo Simulation Package

SIMONA - SImulation of MOlecular and NAnoscale systems - is a Metropolis MC simulation package

which combines force �elds and algorithms to simulate protein conformational changes, protein-protein

association, small-molecule protein docking and the growth of nanoscale clusters of organic molecules

[54]. The program was developed in our group in the last decade and includes former programs like

POEM (Protein Optimization with free Energy Methods) [55, 56], FlexScreen [57] or Deposit.

3.2.1. Force Fields

In all computational studies of molecular systems, potential functions that approximate the motion

of atoms, so called molecular force �elds, are very common. This section introduces the force �elds
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3.2. SIMONA - A Monte Carlo Simulation Package

currently implemented in SIMONA which are relevant for protein simulations. The force �eld terms

can be divided in bonded and non-bonded interactions respectively:

• Non-bonded interactions:

� Lennard-Jones Potential: Van der Waals interaction and Pauli repulsion

� Electrostatic interactions (Coulomb Potential)

� Solvation free energy: Polar part and nonpolar part

• Bonded interactions:

� Dihedral Potential

Non-bonded interactions are typically long range interactions and the atoms are not necessarily bound.

Unless stated otherwise, no cut-o�s for the computation of these potentials are used. Very often MD

simulations have two additional potentials for bonded interactions: bond angles and distances. These

potentials take into account that angles can bend and bonds can be stretched. Investigating proteins

and large conformational changes, it is assumed that these degrees of freedom can be neglected. Due

to the higher sampling e�ciency they are not modelled in SIMONA.

All SIMONA force �elds terms are described by equations 3.3 - 3.7.

Natoms∑
i 6=j

4εij{(
σij
rij

)12 − (
σij
rij

)6} Lennard-Jones Potential (3.3)

Natoms∑
i 6=j

qiqj
4πεpε0rij

Coulomb Potential (3.4)

− α

2
(

1

εp
− 1

εw
)

Natoms∑
i,j

qiqj√
r2ij +RiRjexp(−

r2
ij

4RiRj
)

Solvation Free Energy - Polar Part (3.5)

γ

Natoms∑
i

Ai Solvation Free Energy - Nonpolar Part (3.6)

Nangles∑
i

3∑
n=1

Vni(1 + cos(niΘ− γni)) Dihedral Potential (3.7)
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Lennard-Jones Potential

The Lennard-Jones 6-12 potential (equation 3.3) proposed by John Lennard-Jones in 1924 models the

interaction between two uncharged atoms and is comprised of two terms. The r12 summand models the

Pauli repulsion due to overlapping electron orbitals, the r6 summand is the attractive van der Waals

term that models dispersion interactions between these atoms. The Lennard-Jones parameters σ and

ε are taken from the widely used AMBER99SB*-ildn force �eld [58�60].

Coulomb Potential

The electrostatic interactions between atoms carrying partial charges are modeled via the common

Coulomb potential, �rst published 1785 by Charles Augustin de Coulomb. The potential depends on

the partial atomic charges qi and qj and the distance between the two atoms rij . Further parameters

are the permittivity ε0 and the relative permittivity εr of the material. The charges qi are also taken

from the AMBER99SB*-ildn force �eld [58�60].

Solvation Free Energy

Polar Part

Implicit solvent models treat the solvent as a continuous dielectricum that can be described with

Poisson-Boltzmann (PB) theory [61]. PB theory is further approximated by the less computational

demanding generalized Born (GB) model. Equation 3.5 is the GB formula proposed by Still et al. [62].

Beside the permittivities of the protein εp = 1 and the surrounding water εw = 80, α = 331.84kcal/mol

is a third constant. Other parameters are the partial charges qi and qj , the distance between the atoms

rij and the Born radii Ri and Rj . The Born radii are computed with PowerBorn, a fast and accurate

method by Brieg et al. [63] and are a measure for the polarization of the solvent induced by the charges

of the solute.

Nonpolar Part

The nonpolar part penalizes cavity formation in water and is usually described by a solvent accessible

surface area (SASA) based term [64]. Di�erent nonpolar models are discussed as well in the literature
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[64�72] as in Section 3.5. In SIMONA the constant γ = 5.42cal/(molÅ2) is used [73].

Dihedral Potential

The dihedral potential models energy changes by torsion of dihedral angles in SIMONA and is adapted

from the AMBER dihedral potential. The proper dihedral angles are de�ned by four atoms joined

through covalent bonds (see also Section 3.3). Improper dihedral angles penalize the distortion of

rings and other planar groups. The list of the dihedral angle terms is generated automatically using

GROMACS [74].

3.2.2. Using Non-Proteinogenic Amino Acids in SIMONA

New residues like non-proteinogenic amino acids (e.g. norleucine), peptide caps (e.g. ACE or NME)

or other molecules not implemented in SIMONA can be added with a few steps. Since force �eld

parameters are taken from GROMACS [74], all needed residues must be known to GROMACS as well.

If the residue already exists in GROMACS, step 1 can be skipped.

• Step 1: Adding a new residue in GROMACS

Each force �eld has an own folder, p.e. for the AMBER99SB*-ildn [58�60] the folder amber99sb-

star-ildn.�/ which is by default in /usr/share/gromacs/top/ . In addition to this force �eld

folder a �le residuetypes.dat with a list of all residues exists. The complete force �eld folder

and the �le residuetypes.dat should be copied to the working directory to avoid major changes

in the program. Using the GROMACS program pdb2gmx [74] in the same working directory will

automatically use the modi�ed force �eld �les for the parametrization.

First of all, a new label for the residue is necessary. The labeling should be done very carefully!

A label with three characters should work without trouble, otherwise correct spacing in all �les

is required. E.g. the label �NLE� for norleucine could cause problems because of the N-terminus

leucine with the name �NLEU�. With the wrong spacing, the molecule will be parametrized

wrongly, so the label �ZLE� was used in this case. This label and appropriate speci�cation like

�protein� needs to be added to the list in residuetypes.dat . Then a list with the atom names,

atom types, charges and a counter, as well as a list with bonds, dihedrals and impropers has
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to be added to the �le aminoacids.rtp. Charges can be generated with other programs like

e.g. Yasara [75] or DFT calculations using Turbomole [76]. If the option -ignh is used in the

parametrization step with GROMACS, a list of the residues hydrogen atoms needs to be added

in the �le aminoacids.hdb. Useful hints and explanations can be found on the GROMACS

manual and webpage (www.gromacs.org).

• Step 2: Adding a new residue in SIMONA

Each residue has an own amino acid xml in the folder simona/python/con�gs/poem_residues.

Beside the atomlist (alternate names can be skipped), the main- and side-chain dihedrals must be

listed with up to four anchor atoms. �Right� and �left� speci�es the connections to neighbouring

residues. Bond distances and coordinates are not necessary, but the �rst and second atom of the

bond must be declared in the bond list. At the end of the �le, C and N terminus atoms can be

speci�ed.

For SIMONA, the formatting of the �le is instrumental in order to correctly parse the �le. It is

recommended to copy the amino acid xml of a similar residue and to adapt that �le.

3.3. Validation of Dihedral Angle Distributions of Dipeptides in Monte

Carlo Simulations

The thermodynamicly most accessible degrees of freedom in proteins are the dihedral angles. In simu-

lations with the former program POEM [56], only the backbone dihedrals φ and ψ were moved (see

Figure 3.3B). In SIMONA [54] it is also possible to move Ω, χ and ν dihedrals. Ω is the dihedral angle

between two amino acids and belongs to the backbone dihedral group. χ and ν are side chain dihedrals.

• Backbone dihedrals: φ, ψ, Ω

• side chain dihedrals: χ and ν

ψ is de�ned by the atoms N, CA, C and the N' atom of the prior amino acid. For the φ angle de�nition

the C' atom of the following amino acid and N, CA and C are necessary. Ω is the dihedral of the peptide

bond and de�ned by CA and C as well as N' and CA' of the prior amino acid. χ and ν dihedrals depend
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on the amino acid side chain. An example for angle de�nition of the amino acid leucine is summarized

in table 3.1 and Figure 3.3.

Table 3.1.: De�nitions of the dihedral angles for the leucine residue. Each dihedral is de�ned by four
atoms. Primed atoms belong to the neighbouring residues, the �rst three dihedral angles
have the same de�nition in each amino acid.

φ C' N CA C
ψ N CA C N'
Ω CA C N' CA'
χ1 N CA CB CG
χ2 CA CB CG CD1
ν1 CB CG CD1 HD11
ν2 CB CG CD2 HD21

Figure 3.3.: Four atoms of an amino acid de�ne a dihedral angle. Panel A shows the leucine residue with
its atoms and the corresponding dihedral angles (Panel B). φ, ψ and Ω are the backbone
dihedrals (same de�nition in all residues), while χ and ν describe side chain dihedrals and
are amino acid speci�c. The connections to neighbouring amino acids are indicated by
arrows in panel B.

The ν dihedrals (number in brackets) were missing in SIMONA and have been added to the following

amino acids:

alanine (1), arginine (1), asparagine (1), cysteine (1), glutamine (1), isoleucine (2), leucine (2), lysine

(1), methionine (1), serine (1), threonine (2), tyrosine (1), valine (2).
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Dipeptide Simulations

To test the force �eld in the reduced conformation space by choosing rigid bond lengths and bond angles,

I have examined dipeptides by performing MC simulation to sample their free energy landscapes. The

20 dipeptides are composed out of the 20 amino acids respectively with neutral peptide caps ACE

(acetyl) and NME (N-methyl) on either end. The system has two peptide bonds, hence the name

dipeptide. ACE and NME are displayed in Figure 3.4 and in the context of this thesis added to the

available residues in SIMONA. Section 3.2.2 summarizes how this can be done in SIMONA.

Figure 3.4.: An alanine dipeptide is composed out of the alanine amino acid with neutral peptide caps
ACE and NME on both sides. The free energy landscape is sampled and projected onto
the phi and psi backbone dihedrals.

For each dipeptide, MC simulations with 20 million steps and all dihedrals as degrees of freedom were

performed at 300K. The dihedral space [−π/+π] for Φ and Ψ was divided into 50 equal sized bins. The

free energy could be calculated with the occurence Z of a given dihedral pair in the generated ensemble:

∆G(Φ,Ψ) = −RTln(Z(Φ,Ψ)). (3.8)

In SIMONA energies are given in kcal/mol. For the comparison with other free energy plots of dipeptides

computed by others, the values are converted to kJ/mol with the factor 4.1868. The plots in Figure

3.5 are generated with matplotlib [77]. Free energies above 40kJ/mol are coloured white. These

energetically disfavoured regions arise mainly due to Lennard-Jones clashes when di�erent van der

Waals radii overlap.
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Figure 3.5.: Free energy landscape of dipeptides. Most of the plots show the typical minima for α-
helices, β-sheets and left-handed helices.

Vymetal et al. [78] performed dipeptide MD simulations with GROMACS [74] and used the AM-

BER99SB force �eld [58].

A comparison of the alanine dipeptide, Figure 3.6, shows reasonable agreement. MD simulations with

additional degrees of freedom (see also Section 3.2) have smaller forbidden areas. Bonds can be streched

and angles can bend, so the peptide can avoid Lennard-Jones clashes, which results in a smoother in-
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crease of the energy towards prohibited areas. In general, the computed free energy landscapes show

that all dipeptides posses their typical minima in the free energy landscape: α-helix, β-sheet and left-

handed helix. Noticeable are aspartic acid, glycine, isoleucine, proline and valine (see Figure 3.5).

The amino acid proline has a covalent bond between the side chain and the nitrogen of the peptide

backbone. Therefore the dihedral angle φ is in a �ve-membered ring and rather rigid. Proline has the

largest energetically disfavoured regions. In contrast, the amino acid glycine, with only a hydrogen

atom as side chain, shows the least restricted free energy landscape. Valine has a very compact form,

with a methyl group as side chain. Clashes with the side chain are likely. Beside valine, isoleucine

never samples regions of a left-handed α-helix. These �ndings are in agreement with the results of

Feig et al. who reported that isoleucine and valine never sample the area of left-handed helices due to

unfavourable side chain backbone interactions [79].

Figure 3.6.: Comparison of alanine dipeptide free energy landscapes generated with SIMONA MC si-
mulations (panel A) and MD simulations by Vymětal et al. (panel B) [78] (copyright
(2011), Elsevier) show agreeing minima, but steeper transitions to prohibited areas. MC
simulations are performed without degrees of freedom for bond length and bond angles (see
Section 3.2).

3.4. Protein Stability in Monte Carlo Simulations

Proteins are involved in almost all biological processes, so their structure and conformational changes

are of great interest to deduce their functions. Recent progress in hard- and software enables folding

studies of small proteins with MD simulations [39, 80]. Unfortunately, the high costs and need for

specialized hardware, only available for a few scientists, generates demand for an alternative method.
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We believe that MC simulations with SIMONA will be such an alternative, because they do not su�er

from the timestep problem of MD and are computationally e�cient due to implicit solvent. To test the

method, protein stability studies have been carried out.

First stability simulations with SIMONA show promising results. Reproducible folding and unfolding

events could be observed using single CPU core MC simulations. These results suggest that MC

methods could provide a widely accessible alternative, but have to be investigated further. First results

are summarized here for the villin headpiece mutant 2f4k [81] and the WW-domain 2f21 [19].

3.4.1. Villin Headpiece

The chicken villin headpeace is known as a fast folding three helix bundle [81] (Figure 3.7). Nana

Heilmann investigated mainly the folding of the PDB structure 1vii [82] in her diploma thesis [83] while

I studied the muntant with the PDB code 2f4k [81].

Figure 3.7.: Villin headpeace is comprised of 35 amino acids and folds into a three helix bundle. Positive
or negative charged amino acids are coloured in blue and red, special cases and polar or
hydrophobic amino acids in green, cyan and yellow. The sequence of the mutant 2f4k
contains a histidine residue, by default uncharged in SIMONA simulations.

The substitution of two lysine residues with norleucine stabilizes the protein by 1 kcal/mol and in-

creases the folding rate [81]. Di�erences between the mutants are displayed in Figure 3.8. Norleucine

is a non standard amino acid and an isomer of leucine used for experimental studies.

Figure 3.9 shows the di�erent chemical structures of leucine (panel A) and the norleucine isomer (panel

B). The parametrization of the new residue is discussed in Section 3.2.2.
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Figure 3.8.: Comparison of the villin headpeace structure (PDB 1vii) in blue and a mutant (PDB 2f4k)
in red. Three residues are substituted (two lysine residues and an asparagin). The coil
region is shorter by one residue.

Figure 3.9.: Chemical structure of the amino acid leucine (A) and its isomer norleucine (B).

The experimental folding temperature of the villin mutant is 361K [81]. Simulations with SIMONA

show a completely stable protein around the experimental folding temperature, so simulations at higher

temperatures (between 380K and 480K) were carried out. Simulations of other proteins as well as the

villin simulations by Nana Heilmann [83] also show such di�erences between the computed and expe-

rimental folding temperatures. Since this was not observed in explicit water MD simulations [39, 80],

possible explanations are the implicit solvent model or the missing degrees of freedom in SIMONA.

This has to be investigated further.

To analyse protein folding or stability simulations, calculating the root mean square deviation (RMSD)

[84] of each conformation compared to the native state of the protein is very common. Structures

with low RMSD values are folded, while higher RMSD values indicate that a protein is partially or

fully unfolded. Another possibility is to de�ne a reaction coordinate Q [85], e.g. the number of native

contacts. These can be calculated based on the method proposed by Noel et al. [86]. The protein in its
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native conformation has a high fraction of native contacts (around 0.7). The number decreases when

the protein unfolds. Piana et al. reported that a reaction coordinate based on the formation of native

contacts is a good variable to study the folding of complex proteins like ubiquitin [87].

Figure 3.10.: Q-values (native contacts) based on a shadow-map [86] and free energy landscape for a
villin mutant simulation at 440K.

Figure 3.10 shows the free energy plot in combination with a q-plot for a simulation at 440K and all

dihedrals as degrees of freedom. The plots show a slight preference of the folded state and some transi-

tions between folded and unfolded conformations. Analysing the corresponding RMSD-plot in Figure

3.11, �ve snapshots illustrate the transitions.

Figure 3.11.: RMSD plot for a simulation at 440K of the villin mutant 2f4k. The native conformation
is coloured in green, snapshots out of the simulation in blue. Unfolding (conformation A,
C, D) and refolding (conformation B, E) can be observed.

The unfolded structures, snapshots A, C and D in Figure 3.11, have RMSD values of 8.79Å (snapshot

C - step 83.992.000) or 16.11Å and 14.99Å (snapshot A - step 60.165.000 and D - step 90.495.000).
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Refolding events like snapshot B (step 72707) or snapshot E (step 938949) show a Cα-backbone RMSD

of 0.59 or 0.91Å.

3.4.2. WW Domain

The WW domain folds into a three stranded β-sheet (Figure 3.12) and is comprised of 35 amino acids

[19].

100 million MC steps at simulation temperatures between 460K and 500K and all dihedrals as degrees

of freedom were carried out. The analysis in this section is performed with 20 simulations at 490K.

Figure 3.12.: The 35 amino acid protein WW domain folds into a three stranded β-sheet. Positive or
negative charged amino acids are coloured in blue and red, special cases and polar or
hydrophobic amino acids in green, cyan and yellow.

Figure 3.13.: Free energy and q-plot for a WW domain simulation at 490K.
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Figure 3.13 shows the free energy plot and the q-plot for the native contacts. The plots suggest

that the simulation temperature is above the folding temperature where folded and unfolded structures

are equally likely. Copies with the same simulation set up show similar results. While some of the

simulation show unfolding and refolding events, most of the simulations show a complete absence of

secondary structure after several million steps. In all simulations, unfolding intermediates could be

observed.

Analysing the RMSD plot for the WW domain at 490K (Figure 3.14), di�erent intermediates can be

identi�ed. Conformation B (step 43.525.000) with an RMSD value of 11.93Å has only two β-strands left

and a kink in the loop between the remaining sheets. The main contribution to the RMSD of 10.34Å of

conformation D (step 59.003.000) is due to the coil regions of both termini. The refolded conformation

C (step 53.449.000) shows an RMSD of 1.47Å while the completely unfolded conformation E (step

77.222.000) has an RMSD of 29.02Å.

Figure 3.14.: RMSD plot for a simulation at 490K of the WW domain 2f21. The native conformation is
coloured in green, snapshot out of the simulation in blue. Unfolding (conformation A, B,
D) and refolding (conformation C) can be observed. The simulation temperature is too
high, wherefore the protein ends with a completely unfolded structure with no contacts
left (conformation E).

Simulations with lower temperatures are more promising, but the right temperature must be found in

additional simulations in the future or with advanced techniques like parallel tempering (PT) [88].

Nevertheless protein stability simulations with SIMONA show �rst promising results. A protein folding

process can be also sampled using conventional computer architectures. Investigations of other fast-

folding proteins and additional simulations with proteins having a mixed sheet/helix structure are still

ongoing.
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3.5. Small Molecule Hydration Free Energies

This work will be published in [1] and is used here in agreement with all authors.

The correct estimation of hydratation free energies (HFE) is very important, for instance, for drug

discovery and the prediction of binding a�nities [89�91]. Furthermore force �elds for simulations of

molecules in solution should be able to reproduce HFEs with reasonably accuracy, thus providing a

good test case.

Unfortunately, recent studies show a gap in the errors of estimating HFEs between explicit TIP3P

solvent and implicit solvent models [72, 92].

How to improve this situation is an open question. To address this question, we provide a thorough

performance comparison of three GB models with di�erent nonpolar terms to estimate HFEs. We have

optimized parameters for these models for two sets of atom types. The results published in Brieg et

al. [1] show that implicit models are able to reproduce experimental HFEs with the same or higher

accuracy than explicit TIP3P simulations [1].

3.5.1. Solvation Free Energy

The solvation free energy can be seperated in an electrostatic and a nonpolar contribution [93] also

mentioned in the force �eld Section 3.2:

∆G = ∆GGB + ∆GNP (3.9)

GB models like GBMV [94] or GB models using PowerBorn radii o�er the same accuracy like Poisson-

Boltzmann calculations [63]. Therefore the focus of this study was the contribution of the nonpolar

part. Nonpolar solvation e�ects are often described by a SASA term. This term describes the work

required to form a cavity for the solute inside the solvent and the dispersion interactions between

solvent and solute [62].

In the literature, extensions of the SASA based energy evaluation, like including the volume of the

cavity or explicit modelling of dispersion interactions, are proposed to improve the accuracy of nonpolar
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models [67�71, 95�97].

3.5.2. Nonpolar Solvent Interaction Models

• NP1 is a simple nonpolar model that penalizes cavity formation in water based on a SASA term.

The penalty is proportional to the surface area of the cavity via the surface tension γ [97].

∆GNP1 = γ

N∑
i=1

Ai (3.10)

• Eisenberg et al. and Ooi et al. suggested to replace the global surface tension value with one for

each atom type [65, 66].

∆GNP2 =
N∑
i=1

γiAi (3.11)

• Additional to the SASA term, a repulsion and an attractive dispersion term are used in the most

complex model [67, 68, 70, 71, 95�97].

∆GNP3 = γ

N∑
i=1

Ai + p

N∑
i=1

Vi −
N∑
i=1

αi
(Ri +B)3

(3.12)

In addition to the free parameters of the NP part, summarized in table 3.2, each parameter set contains

the 1+N parameters of the GB part. N is the number of atomtypes, in this case the number of elements.

Table 3.2.: Di�erent nonpolar solvent models and their number of free parameters.
NP1 NP2 NP3

number of parameters 1 N N+2

3.5.3. Data Set and Model Parametrisation

For this study, a database provided by David Mobley [92] with 499 small molecules was used. The

data includes vacuum and implicit solvent trajectories, generated with AMBER, and the experimental

HFEs.

According to Mobley et al., the energy for the lowest energy snapshots from the vacuum trajectory
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should be in good agreement with the HFE resulting from the whole trajectory [92].

To �nd the lowest energy snapshot, all energies for the vacuum trajectories were recalculated using the

general AMBER force �eld (GAFF) [98, 99] with AMBER11 [43].

For the parametrisation the solvation free energy (equation 3.9) for the lowest energy vacuum snapshot

was calculated using AM1-BCC charges [100, 101] and the model parameters. Optimization goal was

the minimization of the root mean square error (RMSE) to the experimental HFEs by �nding suitable

parameters for the di�erent GBNP models.

RMSEfit =

√√√√ 1

N

N∑
i

(∆GiGB + ∆GiNP −∆Giexp)
2 (3.13)

The parametrisation was performed 81 times in two steps, one global optimization with the parti-

cle swarm optimization method by Kondov et al. [102], followed by a local minimization using Powells

method [103] implemented in the SciPy package.

3.5.4. Assessment of Nonpolar Solvent Interaction Models

Knight et al. showed in their survey that a gap between hydration free energies of implicit solvent and

explicit TIP3P simulations exists [72]. For the explicit TIP3P simulations, Mobley et al. found a root-

mean-square error (RMSE) of RMSEHFE = 1.26kcal/mol and a correlation coe�cient of R2 = 0.888

[104]. In the survey, it turned out that the GBSW model [105] has the lowest RMSE with 1.52kcal/mol,

GBMV [94] the best correlation coe�cient R2 = 0.809 [72].

For a comparison between the NP models (Section 3.5.2) with explicit TIP3P simulations [104] or

the GBSW [105] and GBMV [94] model, the HFEs are computed using the Multistate Bennett ac-

ceptance ratio method [106]. Besides vacuum trajectory energies, the method requires energies of the

implicit solvent trajectories, which are calculated using AMBER [43].

HFEs computed with the models GBNP1, GBNP2 and GBNP3 are summarized in table 3.3.

While GBNP1 still shows a gap between the accuracy of implicit and explicit HFEs, GBNP2 outper-
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Table 3.3.: RMSE of the solvation free energy parametrisation and the HFEs of the trajectories for the
di�erent nonpolar models in comparison to the explicit TIP3P results by Mobley et al.[104].
The last column shows the correlation coe�cient of the hydration free energies.

RMSEFit[kcal/mol] RMSEHFE [kcal/mol] R2

GBNP1 1.32 1.30 0.826
GBNP2 1.00 0.99 0.900
GBNP3 1.21 1.19 0.853

TIP3P [104] � 1.26 0.89

forms the results of the TIP3P and the implicit competitor models with a smaller RMSEHFE and a

higher correlation coe�cient. Although GBNP3 is the most complex model in the study and has the

highest number of parameters, it performs worse than GBNP2. All GBNP models perform better than

the implicit models investigated by Knight et al. [72].

Figure 3.15 shows the HFEs for the GBNP2 model, compared to the experimental HFEs.

Figure 3.15.: Comparison of computed HFEs to experimental HFEs for a set with 499 small molecules.
The RMSE for the data calculated with the GBNP2 model RMSEHFE = 0.99kcal/mol
and the result of �tting single conformation solvation free energies to experimental HFEs
RMSEfit = 1.00 are nearly identical. The GBNP2 model outperforms the results of
explicit TIP3P HFEs. The correlation coe�cient of the GBNP2 model is with R2 = 0.900
slightly higher than the R2 of the explicit calculations [1].
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To investigate the possibility of adding more parameters by additional atomtypes, the molecules were

grouped by the elements they are comprised of and the RMSEs were calculated for these groups (see

table 3.4).

Table 3.4.: Root-mean-square errors for each element for the GBNP3 model.
N F O I S P Br Cl

RMSEHFE [kcal/mol] 1.76 1.56 1.41 1.18 0.84 0.82 0.56 0.24

Molecules containing nitrogen, �uorine and oxygen show the largest RMSEs. The largest outlier for

�uorine molecules is hexa�uoropropene, which also shows large deviations of the explicit HFE estimate

to the experimental values. Since both models use the same partial charges, this could be one reason for

the large error. The RMSE for the �uorine molecules discarding hexa�uoropropene leads to an RMSE

of 1.04kcal/mol. Very often outliers with oxygen also contain nitrogen atoms, so that a new nitrogen

atom type could lead to an improved accuracy. To further examine molecules with nitrogen atoms,

di�erent AMBER atomtypes [98, 99] can be distinguished. Figure 3.16 shows the HFEs for molecules

containing nitrogen atoms.

Figure 3.16.: Hydration free energies of molecules containing nitrogen atoms. The energies are calcu-
lated with the GBNP3 model [1].

The �no� atoms (triangle down, cyan, in Figure 3.16) show a strikingly low agreement with systematic
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more negative computed HFEs than experimental HFEs. This can be understood by looking at the

partial charges of the nitrogen atoms. While all other nitrogen atom types are negatively charged,

�no� atoms carry a positive partial charge. This di�erence in�uences the solvation properties and is

known as the asymmetry of water [107�109]. In our �rst parametrization, all nitrogens have the same

parameter, but an additional nitrogen atom type to distinguish between these two opposite charged

nitrogen atom types can be established.

Repeating the parametrisation procedure with two nitrogen atom types, �nn� for negatively charged

nitrogens, �np� for positively charged atoms, the RMSE for the molecules with nitrogen atoms decreases

from 1.76kcal/mol to 1.13kcal/mol. Improved RMSEs for the comparison of computed and experi-

mental HFEs of the GBNP* models with a second nitrogen atom type are summarized in table 3.5.

Table 3.5.: RMSEs of the solvation free energy parametrisation and the HFEs computed from the
trajectories for the di�erent nonpolar solvent models with a second atomtype for nitrogen
in comparison to the explicit TIP3P results by Mobley et al.[104]. The last column shows
the correlation coe�cient of the HFEs.

RMSEFit[kcal/mol] RMSEHFE [kcal/mol] R2

GBNP1* 1.17 1.16 0.860
GBNP2* 1.00 0.96 0.903
GBNP3* 1.04 1.01 0.894

TIP3P [104] � 1.26 0.888

The GBNP2* model still performs better than GBNP1* or GBNP3*, although GBNP3* comes very

close to its performance with the new parameterization. All three models show lower RMSEs than the

explicit TIP3P water model, but the squared correlation coe�cient of GBNP1* is still worse than that

of TIP3P [1].

The comparison of the performance of three generalized Born based implicit solvent models with dif-

ferent nonpolar contributions to estimate experimental hydration free energies shows that the gap [72]

in the errors between explicit TIP3P solvent and implicit models can be closed. It turns out that the

most common nonpolar term (GBNP1) performs worst in combination with our optimized parame-

ters. The most complex model in the investigation (GBNP3) improves the accuracy of the HFEs but

has also a much larger set of free parameters. The best performing model is GBNP2 with an atom
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type dependent surface tension coe�cient as proposed by Eisenberg et al. [65] and Ooi et al. [66].

For the future, studies should investigate how these models and parameters, which are optimized for

small molecules, perform for macromolecules like proteins. Accounting for the asymmetry of water in

the parameterization via a new atom type resulted in better agreement between estimated HFEs and

experimental values for all models, suggesting this as a general strategy for improving any GB based

implicit solvent model [1].
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Membrane Model - SLIM: Model, Simulations

and Results

Part of this work is accepted for the publication in the Journal of Computational Chemistry [2] and

used here in agreement with all authors.

Simulations of complex biological environments, such as lipid bilayers remain a very challenging task.

Due to the complexity and size of such systems, most of the computer time is spent on computing

the surrounding environment instead of the membrane protein which is of scienti�c interest. Although

explicit membrane simulations provide a very detailed representation, implicit membrane models o�er

a computational less expensive alternative.

SLIM [2] is a generalized Born (GB) based implicit membrane model, which combines advantages

of other previous published models and therefore outperforms these models regarding the accuracy of

electrostatics in the membrane. While implicit and explicit simulations in general are discussed in

Chapter 3, section 4.1 describes GB based implicit models. The implementation of the model itself and

di�erences to other GB based models are summarized in section 4.2. To validate energies calculated

with SLIM, a comparison to Poisson-Boltzmann (PB) reference calculations is presented in section 4.3.

The e�ects of our model parameters are investigated in Monte Carlo simulations of three well studied

membrane proteins: Melittin of bee venom (section 4.4), the transmembrane domain of the M2 protein

(section 4.5) and the transmembrane domain of Glycophorin A (section 4.6). Comparisons to other
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computational and experimental studies show reproducibility of properties and behavior in simulations

using the SLIM model for these three proteins.

4.1. Generalized Born Based Implicit Membrane Models

In implicit models, the solvation free energy (see also section 3.2) can be modeled by separating it into

a polar part, describing electrostatic e�ects, and a nonpolar part [93]:

∆G = ∆Gelec + ∆Gnp (4.1)

While the nonpolar part of equation 4.1 is usually modeled by a SASA term (see also Chapter 3.2 and

3.5), the electrostatic interactions between the environment and the molecule can be approximated via

the PB equation [61]. Due to the high computational cost of solving the associated partial di�erential

equations, it is common to model the electrostatic interactions with a GB model, using Still's formula

(equation 3.5) [62].

GB models are limited to two dielectric regions. For a model of the membrane environment in addition

to implicit water, consideration of more than two regions with di�erent dielectric constants is required.

In addition to the protein and the water region, at least one low dielectric membrane region is necessary.

Spassov et al. [110] avoid the problem of only two dielectric regions by treating membrane and protein

as one region with the same dielectric constant. Electrostatic e�ects caused by the membrane are

encoded in the Born radii, so all atom positions relative to the membrane are considered. Im [111] and

Ulmschneider [112] also published implicit membrane models based on this work.

Tanizaki et al. [113] proposed another method to incorporate the membrane in the GB approach.

They use a local dielectric constant ε(r) which varies between the dielectric constant of the membrane

and that of the surrounding water. In contrast to the Spassov model, they can include any number

of additional dielectric regions, also with di�erent dielectric constants. A disadvantage of the model is

that some features of PB electrostatics cannot be modeled. This will be discussed in section 4.3).

The possibility to include more than two dielectric regions while membrane induced electrostatic e�ects

are encoded in the Born radii turns the SLIM model to a promising alternative to other implicit
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membrane models. The implementation in the MC package SIMONA [54] will provide an easy accessible

tool free of charge for the scienti�c community.

4.2. SLIM - SIMONA Layered Implicit Membrane

SLIM [2], an improved GB based implicit membrane model, was developed together with Martin Brieg

and Carolin Seith as part of this thesis. As mentioned in the previous section, SLIM combines the

advantages of the models by Spassov et al. [110] and Tanizaki et al. [113]: Accurate GB energies close

to PB energies and the possibility to include several dielectric slabs to model the membrane.

For the implicit membrane three di�erent dielectric slabs are used:

• The membrane core region Vc with a dielectric constant εc and a thickness hc

• Next to the core region two headgroup regions Vh with εh and hh

• A in�nite implicit water region Vw with εw encloses the membrane

In the literature, membrane models with di�erent numbers of dielectric slabs are discussed: They vary

between only one slab for the membrane [110�113] or multi layer dielectric pro�les [114]. In between,

models with for instance two (core and headgroup region) or four (hydrocarbon tail, ester group, head

group, interfacial region) can be found [113]. Tanizaki et al. investigated membrane models with

Figure 4.1.: In a three dielectric continuum model of a membrane-water system, a membrane core
region, a headgroup region and the bulk water region can be distinguished.
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di�erent numbers of additional layers and showed that three di�erent dielectrics (see Figure 4.1) are

su�cient to model a biological membrane and the surrounding water [113].

To model these three di�erent slabs in the SLIM model, the polar part of the solvation free energy

∆Gelec can be described by a sum of two GB terms.

∆Gelec(εc, Vc; εh, Vh; εw, Vw) ≈ ∆GGB(εc, Vc; εh, Vh∪Vw; {R}1)+∆GGB(εh, Vc∪Vh; εw, Vw; {R}2) (4.2)

This approach is also depicted in Figure 4.2 and o�ers the possibility to consider membrane e�ects on

electrostatic interactions with the assumption by Spassov et al. encoded in the Born radii.

Figure 4.2.: Sketch of decomposing a biological membrane model with regions of three di�erent dielectric
constants into a sum of two models with only two di�erent dielectric regions each, for
which the electrostatic part of the solvation free energy can be computed using a standard
generalized Born model [2].

For every single GB term a di�erent set of Born radii {R}i is necessary. They can be computed with the

fast and accurate PowerBorn method [63] implemented in SIMONA [54]. The necessary modi�cations

and extensions of the PowerBorn algorithm are summarized in Setzler et al. [2]. Furthermore, values

for the dielectric constants and dimensions of the two membrane regions are required for computing

the polar part of the solvation free energy. For the �rst summand of equation 4.2 (see also �g. 4.2),

protein and membrane core have the same dielectric constant εp = εc, the headgroup and water region

are merged Vh ∪ Vw and have the same dielectric constant εh. For the second summand (�g. 4.2 and
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equation 4.2), the dielectric constant for protein and membrane core are set to the dielectric constant

of the headgroup region εp = εc = εh and both membrane regions are merged Vc ∪ Vh.

When the protein is far away from the membrane, the SLIM model converges into an implicit GB

water model, due to the fact that contributions by the membrane to the Born radii are negligible and

therefore all terms of the right hand side of equation 4.2 will have the same set of Born radii and Still`s

formula (equation 3.5) is additive if the same set of Born radii is used [2].

Using only one dielectric for the membrane, the SLIM model resembles that of Spassov et al. [110],

but uses a di�erent underlying method to compute the Born radii.

To model membranes composed of di�erent lipids, the parameters (thickness and dielectric constant)

for the slabs have to be adapted. Standard settings for the SLIM model are discussed in section 4.3.

The total membrane thickness hm is the sum of the core and two headgroup regions: hm = hc + 2hh.

The membrane normal is the direction of the z-axis and the membrane center is taken to be z=0 in the

following.

To complete the solvation free energy, the nonpolar part of equation 4.1 needs to be modeled. Normally

a SASA based term is used, which can be adapted by a scaling function S(zi) like proposed by Tanizaki

et al. [113]:

∆Gnp = γ

n∑
i=1

S(zi)Ai (4.3)

S(z) =


c(|z| − za)2(3zb − 2|z| − za)/(zb − za)3 (0 6 |z| < zb)

(1− c)(|z|2 − z2b )2(3z2c − 2|z|2 − z2b )/(z2c − z2b )3 (zb 6 |z| < zc)

1 (otherwise).

(4.4)

with the parameters c = 0.32, za = 0.5, zb = 9.2 and zc = 25Å.

They use a membrane with a thickness hm = 30Å and for membranes with hm 6= 30Å the scaling

function S(z) in equation 4.3 will be stretched or compressed in the SLIM model:

S̃(zi) = S(
30.0

hm
· |zi|) (4.5)
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4.3. Comparison with the Poisson-Boltzmann Model

Solving the PB equation is an accurate but also computationally very expensive way of computing

the electrostatic component of solvation free energies. SLIM uses the less expensive GB alternative,

therefore comparative calculations should be performed to ensure reasonable errors with respect to PB

calculations.

The simplest test is to pull a single ion through the membrane and to compare the pro�les of the

electrostatic self-energy. Self-energy terms are described by terms with i=j in equation 3.5.

PB calculations were performed with the PBEQ solver [115, 116]. All settings for the PBEQ-solver

can be found in the Appendix A. The membrane geometry for PB calculations was chosen as proposed

by Tanizaki et al. [113], with εc = 2, hc = 20Å for the membrane core and a headgroup region with

εh = 7, hh = 5Å on both sides of the core. The membrane has a total thickness of hm = 30Å and is

embedded in implicit water with εw = 80. To compare SLIM energies with the PB pro�le, the same

parameters as for the PB calculations were used. Additional modi�ed parameters for the SLIM model

were tested. A calculation with only one membrane dielectric to resemble Spassov`s model completes

the PB comparison. The pro�les are shown in Figure 4.3, all parameters are summarized in table 4.1.

For the Spassov like model (blue) a much steeper transition compared to the PB energies (black) can

Table 4.1.: Di�erent membrane parameters used for the PB and GB comparison.

model hc[Å] hh[Å] εc εc εw color and style

PB 20 5 2 7 80 solid black line
GB 20 5 2 7 80 dotted red line
GB 22 4 2 6 80 dashed orange line
GB 30 - 2 - 80 dot-dashed blue line

be observed. The GB model with the same parameters as in the PB calculation provides a smoother

transition (red). Deviations to the PB results occur mainly near the slab interfaces around z = 10Å.

Using modi�ed parameters hc = 22Å and εc = 6 results in good agreement between PB calculations

and the SLIM model.

The second test uses a more complex structure. A protein with all charges set to zero except one allows
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Figure 4.3.: Comparison of the electrostatic solvation free energy pro�le from PB calculations (solid
black line) to our proposed GB based SLIM model with the same membrane parameters
as in PB (dotted red line), with modi�ed membrane parameters (dashed orange line), and
with only one low dielectric slab resembling the model of Spassov et al. [110] (dot-dashed
blue line) for pulling a single ion through a membrane [2]

.

a more advanced test. The native conformation of Magainin (pdb code: 2MAG [117]) in three di�erent

orientations was pulled through the membrane.

The helices are oriented more or less horizontally (blue helix) or vertically (green and magenta helices)

in the membrane as displayed in Figure 4.4A. The charge is located at the Cα-atom of residue Asn22

and displayed in Figure 4.4 as a red sphere between the three helices. The z-values of the pro�le al-

ways correspond to the location of the charge. The pro�les in 4.4B show that conformations with the

uncharged part of the protein inside the membrane and the charge close or in the headgroup region

are energetically favoured compared to the other orientations with the charge at the same position. A

comparison of the green and magenta helix with the charge located at z = 10Å (Figure 4.4A) illustrates

this. Moving the charge deeper into or out of the membrane results in the disappearance of the energy

di�erences between the di�erent orientations.

Implicit membrane models with a dielectric pro�le, like proposed by Tanizaki et al. [113], are unable

to account for such energy di�erences, because their self-energy depends only on the z-position of the

charged atom and not on the overall orientation of the other atoms with respect to the membrane.

Another basic test is to compare the interaction terms of equation 3.5 by calculating the total polar
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Figure 4.4.: (A) Four snapshots of pulling three di�erent oriented native Magainin conformations
through the membrane. The z-values denote the z-position of the only charged atom
used in this test, which is located in between the helices at the same position for all three
orientations (red sphere). (B) Resulting GB based SLIM and PB electrostatic free energy
of solvation pro�les. Colors of the GB graphs correspond to the colors of the helices in (A)
[2].

solvation free energy of two ions and subtracting their self-energies. The ions carry a proton charge

and are placed in the membrane center and 4Å apart along the x-direction. One ion is pulled out of

the membrane along the z-direction. The same parameters as summarized in table 4.1 are used. The

corresponding pro�les are shown in Figure 4.5.

The model with only one dielectic slab (dot dashed blue line) underestimates the energy compared

to the PB model (solid black line). The SLIM model with the same parameters as the PB model

overestimates the energy up to 2.19 kcal/mol (dotted red line) and the SLIM model with improved

parameters (dashed orange line) reduces the error to a maximum of 1.03 kcal/mol.

The results presented so far show that electrostatic solvation free energies show good agreement be-

tween PB calculations and energies calculated with the SLIM model with improved parameters. These

parameters are used from now on, unless mentioned otherwise. Remaining variable membrane param-

eters are the total thickness and surface tension coe�cient for the nonpolar part (equation 4.2). The

following protein studies and comparisons to experimental results should provide a guide for the right
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Figure 4.5.: Comparison of the interaction energy between two ions with proton charge placed 4 Å apart
along the x-direction in the center of the core region. One is pulled out of the membrane
along the z-direction for PB (solid black line), GB with same membrane parameters as PB
(dotted red line), GB with improved membrane parameters (dashed orange line) and GB
with only one low dielectric slab (dot-dashed blue line) [2]

.

choice of these parameters, to respect the desired membrane type.

4.4. Melittin

Melittin of bee venom is a small, helical, amphipatic membrane protein, which frequently serves as a

test system for membrane models [111, 113, 118�120]. For simulations the structure with the PDB-code

2MLT [121�123] composed of the following 26 amino acids was used:

GLY1- ILE2-GLY3-ALA4-VAL5- LEU6- LYS7-VAL8- LEU9- THR10- THR11-GLY12- LEU13-

PRO14- ALA15- LEU16- ILE17- SER18- TRP19- ILE20- LYS21- ARG22- LYS23- ARG24- GLN25-

GLN26.

The color code corresponds to the code used in Figure 2.2 and in most of the 3D representations of

the molecules: positive or negative charged amino acids in blue and red, special cases and polar or hy-

drophobic amino acids in green, cyan and yellow. The majority of the Melittin residues is hydrophobic.

A few charged residues are located close to the C-terminus, wherefore the protein has an amphiphilic

character. The proline residue, known to destroy helical structures [124, 125], in the center of the
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sequence causes a kink [126, 127]. The de�nition of the Melittin kink angle and the structure with

coloured residues is shown in Figure 4.6.

Figure 4.6.: The kink angle for Melittin is de�ned as the angle between the vectors connecting the Cα
atoms of residues Val5 and Gly12 as well as Leu16and Lys23.

While Melittin, an antimicrobial peptide (see also Chapter 5.2), is predominantly bound to the mem-

brane interface with an orientation perpendicular to the membrane normal, a transmembrane orienta-

tion parallel to the membrane normal exists as well. The orientation depends on peptide concentration

and protonation, membrane composition and thickness. The membrane spanning conformation plays

a crucial role in the membrane lytic process [120, 122, 126, 128�132]. Due to the amphiphilic structure

Melittin can cover the membrane surfaces or stabilizes pores with the hydrophilic surface facing the

pore interior (see also Figure 5.4). These pores make the bacterial membrane permeable and causes

the breakdown of the cell. Computer simulations of Melittin should be able to reproduce or predict

such a behaviour.

Melittin simulations with the SLIM model are performed to predict the position and orientation of

Melittin relativ to the membrane. To test the SLIM model the computed values can then be compared

to experimental results. Simulations with a total membrane thickness of hm = 30Å and a surface

tension of γ = 30cal/molÅ2 were performed. Three di�erent starting conformations as displayed in

Figure 4.7 were chosen:

• A: Conformation similar to an explicit MD simulation result of Bernèche et al. [118] (Figure

4.7A)

• B: Melittin in a orientation perpendicular to the membrane normal in the membrane center

(Figure 4.7B)

50



4.4. Melittin

• C: The peptide in a starting conformation parallel to the membrane normal (Figure 4.7C)

Figure 4.7.: Di�erent starting conformations for Melittin simulations with the SLIM model. The con-
formations are (A) similar to an explicit MD result, (B) horizontal in the membrane center
and (C) parallel to the membrane normal.

20 independent MC simulations with 20 million steps each were performed for all three starting con-

formations, simulation temperature was 300K. The �rst one million steps were discarded for the data

analysis regarding the sampled orientation and center of mass positions. Figure 4.8 shows histograms

for the center of mass probability, the starting conformation is depicted in each histogram.

Starting conformation A remains at the membrane interface and is distributed around z = 15.11±0.9Å,

while conformation C remains parallel to the membrane normal with a center of mass around z =

3.75± 0.59Å. Conformation B, at the beginning completely buried in the membrane, can be found on

both interfaces |z| = 15.55 ± 1.0Å and in a membrane spanning conformation with z = 3.77 ± 0.59Å.

Panel D shows two exemplary conformations corresponding to the two peaks C1 and C2 in the his-

tograms. Similar orientations were also observed in other studies [111, 118, 120, 129].

Hristova et al. showed in x-ray experiments that Melittin in DOPC membranes is gaussian distributed

around z = 17.5Å with a width of z = 4.3Å [129]. At a �rst glance, these �ndings seems to contradict

the SLIM results, but according to Nagle et al., the core of a DOPC membrane is 27.1Å thick [133].

The core of the SLIM membrane is with 22Å much thinner. Taking this into account, the shift of the

peak position can be explained.
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Figure 4.8.: Histograms (A-C) for the center of mass probability for Melittin simulations using our
proposed membrane model. The corresponding starting conformation is depicted in each
histogram. Panel (D) shows exemplary conformations for C1 and C2 peaks in the his-
tograms [2].

The kink angle of the Melittin peptide, Figure 4.6, is de�ned as the angle between the vectors of the

Cα atoms Val5 and Gly12 as well as Leu16 and Lys23. In simulations, excessively kinked helices can be

observed, therefore two di�erent regions for the kink angle were de�ned: excessively kinked helices with

an kink angle ≤ 60◦ and normally kinked helices with kink angles > 120◦. Table 4.2 summarizes the

kink angles for the end conformations of the simulations at 300K. Simulations with further temperatures

are summarized in the diploma thesis of Carolin Seith [134] and show the same behaviour in general.

Snapshots for the normally kinked and excessive kinked peptides are depicted in Figure 4.9. While in
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Table 4.2.: Kink angle occurrence for the 300K Melittin simulations with three di�erent starting con-
formations.
starting conformation kink angle ≤ 60◦ kink angle > 120◦

A - membrane interface 3 17
B - horizontal in the membrane centre 4 16
C - membrane spanning 1 19

Figure 4.9.: Example for a normally kinked Melittin (A) and an excessively kinked conformation (B)
taken from simulations with a starting conformation similar to explicit molecular dynamics
results [2]

.

experiments no excessively kinked helices were observed, the measured kink angles vary between 120◦

in x-ray structures or in methanol [122, 135], 140◦ and 160◦ in the lipid bilayer [136] and 160◦ in water

[135]. Other implicit membrane simulations also found a kink angle of 48◦ [111].

To understand why Melittin occurs excessively kinked in simulations but not in experiments, for three

out of the 60 simulations the energies were analysed. Histograms for all energy contributions, Figure

4.10, show the energies of a simulation with an excessive kinked helix (red histograms) in comparison

to energies of simulations with normally kinked helices (green and blue histograms) respectively.

The Lennard-Jones energies, Figure 4.10E, show signi�cant di�erences larger than 10[kcal/mol] between

simulations of excessively kinked (red) and normally kinked helices (green and blue). This suggest

kinked helices are energetically favoured.

Because proteins in water or membranes form a densely packed system, the Lennard-Jones minima of

an atom are usually occupied by its nearest neighbours. Therefore large energy di�erences are not to

be expected. In contrast to this expectation, large energy di�erences were observed in the Melittin

simulations, wherefore the modelling of solute-solvent Lennard-Jones interactions in implicit solvent

models seem to be insu�cient by the current nonpolar term.

53



4. An Improved Generalized Born Implicit Membrane Model - SLIM: Model, Simulations and Results

Figure 4.10.: Histograms of three Melittin simulations, one simulation with an excessively kinked pro-
tein in the end (red) and two with a normal kink angle (green and blue). Panel A-E show
the di�erent energy contributions, panel F the total energy. Conspicuously is the en-
ergy gap larger than 10[kcal/mol] in the Lennard-Jones energy between the two di�erent
conformations.

To test this hypothesis, a simple Melittin model is discussed in the diploma thesis by Carolin Seith

[134]. The results of this test in table 4.3 show that explicitly accounting for solute-solvent Lennard-

Jones interactions energetically favours normally kinked Melittin conformations, while discarding these

interactions favours excessively kinked conformations.

This problem of current implicit solvent models has to be investigated further. Solutions for this

problem must be found, discussed and implemented.
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Table 4.3.: Lennard-Jones energies for a simple Melittin model with and without accounting for solute-
solvent Lennard-Jones interactions. Summarized are the energies of the normally kinked
helices and the excessively kinked protein. The last column shows the energy di�erence ∆E
between the normal and the kinked structure [134].

normally kinked helices excessively kinked helices ∆E

without solvent-solute
LJ interactions

-0.02 [kcal/mol] -30.5 [kcal/mol] -30.48 [kcal/mol]

with solvent-solute LJ
interactions

-33.71 [kcal/mol] -30.54 [kcal/mol] +3.17 [kcal/mol]

4.5. M2 Protein

The SLIM model has two main parameters which can be used to adjust the model membrane to that in

related studies or experiments. These are the membrane thickness hm and the surface tension coe�cient

γ. To examine the in�uence of both, we simulated the M2 protein, another well-studied membrane

protein [111, 137, 138]. The protein from In�uenza A virus forms a tetrameric proton channel [139]

activated by low pH [140]. For simulations with the SLIM model, a single transmembrane domain (see

Figure 4.11), structurally characterized by Wang et al. (PDB code: 1MP6) [141], was used:

SER22- SER23- ASP24- PRO25- LEU26- VAL27- VAL28- ALA29- ALA30- SER31- ILE32- ILE33-

GLY34- ILE35- LEU36- HIS37- LEU38- ILE39- LEU40- TRP41- ILE42- LEU43- ASP44- ARG45-

LEU46.

Figure 4.11.: The transmembrane domain of the M2 protein consits mainly of hydrophobic amino acids
(yellow) �anked by positive (blue) or negative (red) charged amino acids as well as polar
(cyan) residues on either end of the hydrophobic part.

Membrane spanning proteins show normally an amphiphilic character. Residues in the membrane are

hydrophobic, while residues in the headgroup or water region are polar or charged. Energetically it is
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unfavourable when a hydrophobic surface reaches into a hydrophilic environment. If a protein is too

long to match the membrane, the proteins can kink or tilt to reach more favourable conformations. This

e�ect is also known as hydrophobic mismatch [142]. For instance, in NMR experiments it is possible

to investigate tilt angles of membrane proteins, as done by Kovacs et al. for the M2 protein [143],

wherefore this property was used as a test parameter for the in�uence of our model parameters.

Since the surface tension value γ is a empirical parameter, 80 simulations with four di�erent values

between γ = 20cal/(molÅ2) and γ = 50cal/(molÅ2) were performed with a membrane thickness of

hm = 30Å and a simulation temperature of 300K. For the analysis, the �rst one million steps out of 20

million MC steps were discarded.

The starting conformation (see Figure 4.12A) was horizontal in the membrane center. In addition

the expected membrane spanning conformation, some kinked proteins similar to the excessively kinked

Melittin peptides (see Section 4.4), could be found.

Figure 4.12.: Starting conformation for M2 protein simulations with hm = 30Å horizontal in the mem-
brane center and for simulations with hm = 25Å parallel to the membrane normal.

For the M2 simulations, the kink angle was de�ned as depicted in Figure 4.13. Due to a missing helix

breaker in the middle of the helix, like proline in Melittin, and a varied breaking residue, the kinks

occur at various positions. The choice of the vector spanning Cα atoms of residues Leu26 and Ile33 as

well as Ile33 and Leu40 is made by visual inspection of kinked proteins.

The analysis for the 80 simulations yields an averaged kink angle for an unkinked M2 protein of 171◦.

Kinked helices can be identi�ed by outliers in histograms of the minimum kink, Figure 4.14, or in the

standard deviation, Figure 4.15. Both �gures show histograms of four di�erent surface tension values

56



4.5. M2 Protein

Figure 4.13.: The kink angle for the M2 protein is de�ned as the angle between the vectors connecting
the Cα atoms of residues Leu26 and Ile33 as well as Ile33 and Leu40 [2].

γ ranging from 20 to 50cal/(molÅ2). Each panel shows the data for 20 simulations averaged over 19

million Monte Carlo steps. Simulations in which the protein does not kink in the �rst steps show a

higher minimum kink angle than proteins kinking from the very beginning.

Figure 4.14.: Occurrence of the minimum kink angle for simulations with hm = 30Å and γ =
20cal/(molÅ2) (Panel A), γ = 30cal/(molÅ2) (Panel B), γ = 40cal/(molÅ2) (Panel C),
γ = 50cal/(molÅ2) (Panel D) is shown in this �gure. The starting structure was parallel
to the membrane interface in the membrane center. Kinked helices can be distinguished
by the outliers in panels A-C.

Analysing the data for the di�erent surface tension values γ, it can be observed that the minimum,

maximum and average kink angles for unkinked helices are in the same range (see table 4.4).
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Figure 4.15.: The standard deviation of the kink angle is depicted here. Kinked helices in simulations
with hm = 30Å and γ = 20cal/(molÅ2) (Panel A), γ = 30cal/(molÅ2) (Panel B),
γ = 40cal/(molÅ2) (Panel C) can be identi�ed by high standard deviations. Simulations
with γ = 50cal/(molÅ2) (Panel D) show no kinked helices.

In the following, the data of simulations with kinked helices having a minimum kink angle smaller than

100◦ are discarded, since a tilt angle analysis is only possible for more or less unkinked helices. Again

the assumption that the reason for the kinks is a general problem of implicit models (see also Section

4.4) can be made and should be investigated in the future.

Beside kink angle analysis, Φ−Ψ plots are another possibility to check the helix stability. The backbone

dihedrals Φ and Ψ in proteins with a helical structure usually have repeating constant values (see also

Section 2.1.2). Calculating these dihedral angles as a function of the residue number for the remaining

72 unkinked simulations with hm = 30Å results in the graphs of Figure 4.16. The average angles and

their standard deviation are shown. The values agree with those of the native M2 protein conformation.

Only the residues near the headgroup regions show larger �uctuations.

For the comparison of computed tilt angles with experimental data, the tilt angle is de�ned as the angle

between the membrane normal and the principal axis of the backbone heavy atoms with the lowest

moment of inertia. The latter corresponds to the axis of the α-helix for not too strongly kinked helices

[2]. For the 72 simulations, the �rst one million steps are also discarded, thus the tilt angle is averaged
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Table 4.4.: The average values for 20 replica for each surface coe�cients γ show that the kink angles are
all in the same range. The starting structure for all M2 protein simulations was horizontal
in the membrane center in a hm = 30Å membrane with surface tension coe�cients γ =
20− 50cal/(molÅ2). Kinked simulations are discarded.

γ[cal/(molÅ2)] minimum [◦] maximum [◦] average [◦] standard deviation [◦]

20 139.6 179.9 171.1 5.2
30 137.6 179.9 171.4 5.0
40 137.5 179.9 171.4 5.1
50 138.4 179.9 171.6 5.0

Figure 4.16.: Averaged φ and ψ backbone dihedral angles with standard deviations for the transmem-
brane domain (Leu26 to Leu43) of the M2 protein as a function of the membrane thickness
hm and the surface tension γ. Data basis for hm = 30Å are the 72 simulations with un-
kinked helices and for hm = 25Å the 20 simulations with γ = 30cal/(molÅ2), where no
kinked helices are present in the simulations [2].

over the remaining 19 million MC steps. Figure 4.17 shows the tilt angle dependence on di�erent surface

tension values γ for the simulations with hm = 30Å (Panel A red squares and Panel B). With increasing

γ, the tilt angle increases from 15.8◦ up to 30.0◦. The large variation of the tilt angles is explained by

the shifted balance between nonpolar and electrostatic solvation e�ects due to the increasing surface

tension γ. This forces the polar termini regions of the M2 transmembrane domain deeper into the

headgroup regions as depicted in 4.17B. The protein accommodates this tension through a higher tilt

angle [2].
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Figure 4.17.: Tilt angle dependence of the transmembrane domain of the M2 protein on the membrane
thickness hm and the surface tension parameter γ in the SLIM model (A). Exemplary
conformations (from left to right γ = 20, 30, 40, 50cal/(molÅ2)) with the average tilt
angle in a membrane with hm = 30Å thickness (B) and hm = 25Å (C) [2]

.

These �ndings are in agreement with those of Im et al. [111], who also observed an increasing tilt angle

for larger γ, but the values are much smaller than the experimental ones by Kovacs et al. [143] (see

also table 4.5). Regarding the concept of hydrophobic mismatch, a thinner membrane should lead to

higher tilt angles. To test this, simulations with hm = 25Å were performed. The starting conformation

was parallel to the membrane normal in the membrane center (see Figure 4.12B). No kinked helices

could be observed in the simulations. The tilt angle increases from 34◦ up to 49.5◦ and is also shown in

Figure 4.17 and table 4.5. Figure 4.17A shows the averaged tilt angles for simulations in a membrane

with hm = 25Å and surface tension values of γ = 20 up to 50cal/(molÅ2) (blue dots). Panel C shows

that the proteins have higher tilt angles in thinner membranes, as expected before.

Analysing the Φ−Ψ plot for simulations with hm = 25Å leads to the same conclusions as for the thicker

membrane. The helix is stable and the values are in agreement with those of the native conformation.

A graph for 20 simulations with hm = 25Å and γ = 30cal/(molÅ2) is also displayed in Figure 4.16.

The tilt angles in table 4.5 display a correct behaviour of the SLIM model with respect to the concept

of hydrophobic mismatch and show good agreement with the angles calculated by Im et al.[111] using

a di�erent implicit membrane model.
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Table 4.5.: Tilt angles of the M2 protein. Summarized are values derived from NMR experiments by
Kovacs et al. [143], values from implicit membrane simulations by Im et al. [111] and tilt
angles calculated with the SLIM model. For the implicit models, the surface tension values
γ and γ̃ as well as the membrane thickness hm is speci�ed.

Membrane NMR [143] SLIM Im [111]
20[cal/molÅ2] 30[cal/molÅ2] 40[cal/molÅ2] 50[cal/molÅ2] 40[cal/molÅ2]

hm = 25Å � 34.0◦ ± 9.4◦ 43.1◦ ± 6.0◦ 48.1◦ ± 4.4◦ 49.5◦ ± 4.3◦ 43.1◦ ± 3.3◦

hm = 29Å � � � � � 28.5◦ ± 5.1◦

hm = 30Å � 15.8◦ ± 7.3◦ 20.6◦ ± 8.0◦ 26.4◦ ± 7.7◦ 30.0◦ ± 7.0◦ �

DMPC 37.3◦ � � � � �
DOPC 33.3◦ � � � � �

However, a discrepancy between experimental and theoretical values is indisputable. The Melittin

Section 4.4 revealed that the SLIM membrane with hm = 30Å is rather thin compared to hydrophobic

core measurements for DOPC by Nagle et al. [133], but only decreasing the membrane thickness leads

to a tilt angle range in the experimental dimension. Im et al. proposed another possibility to explain

these discrepancies: In NMR experiments tetramers of the M2 protein are analysed, in the simulations

only monomers. To investigate the transferability of this argument on the SLIM model, Glycophorin A,

a simpler but also well studied membrane protein was simulated [2]. The investigation of M2 oligomers

should be a future project.

4.6. Glycophorin A

Glycophorin A (GpA), the primary sialoglycoprotein of human erythrocyte membranes forms a dimer

in the membrane [137, 144]. The protein is comprised of 40 residues and structurally characterized both

by solution NMR solubilized in aqueous detergent micelles by MacKenzie et al. [145] and by solid-state

NMR in lipid bilayers by Smith et al. [146, 147]. For the simulations the transmembrane residues of

the PDB 1afo was used [145] (Figure 4.18):

PRO71- GLU72- ILE73- THR74- LEU75- ILE76- ILE77- PHE78- GLY79- VAL80-MET81- ALA82-

GLY83- VAL84- ILE85- GLY86- THR87- ILE88- LEU89- LEU90- ILE91- SER92- TYR93- LEU94-

ILE95.

To investigate if the tilt angles of monomers and dimers behave di�erently in the same membrane,
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Figure 4.18.: The transmembrane domain of Glycophorin A mainly consits of hydrophobic amino acids
(yellow) and special cases (green) �anked by negative charged (red) amino acids as well
as polar residues (cyan) on either end of the hydrophobic part. For monomer and dimer
simulations a orientation parallel to the membrane normal was used as starting confor-
mation.

simulations of both monomers and dimers were performed for the transmembrane domain of GpA.

The starting conformation for all simulations was parallel to the membrane normal (see also Figure

4.18). For surface tension values between γ = 20 and γ = 50[cal/molÅ2] and a membrane thickness

of hm = 30Å, 20 independent simulations with 10 million MC steps were performed. In analogy to

Section 4.5, the �rst one million steps were discarded for the tilt angle analysis. The average tilt angles

are depicted in Figure 4.19. The dimer simulations show a di�erent behaviour. The angles range from

21.43◦ ± 5.62◦ to 24.07◦ ± 8.55◦ (see table 4.6) and therefore vary only 2.64◦ in contrast to the 16.15◦

of the monomer.

For the monomer, the tilt angles increase with higher surface tension values and range from 14.08◦±6.95◦

(γ = 20[cal/molÅ2]) to 30.23◦ ± 8.82◦ (γ = 50[cal/molÅ2]) (see also table 4.6).

Table 4.6.: Tilt angles of Glycophorin A monomers and dimers, calculated with the SLIM model.
Tilt angles calculated with the SLIM model

γ = 20[cal/molÅ2] γ = 30[cal/molÅ2] γ = 40[cal/molÅ2] γ = 50[cal/molÅ2]

monomer 14.08◦ ± 6.95◦ 17.55◦ ± 8.29◦ 23.87◦ ± 9.03◦ 30.23◦ ± 8.82◦

dimer 21.43◦ ± 5.62◦ 22.15◦ ± 6.07◦ 22.93◦ ± 6.95◦ 24.07◦ ± 8.55◦

The average tilt angles are more sensitive to di�erent surface tension values for the monomers than the
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4.6. Glycophorin A

Figure 4.19.: Averaged tilt angles and standard deviations for a monomer and the dimer of the trans-
membrane domain of Glycophorin A for di�erent surface tension coe�cients γ [2].

dimers. These �ndings agree with those of Im et al. [111]. An explicit membrane study by Petrache

et al. [148] found much larger tilt angles for dimeric transmembrane helices than for monomeric ones

[2]. This suggests that surface tension values > 30[cal/molÅ2] may lead to a non realistic behaviour

of GpA in the SLIM model. Interestingly Petrache et al. observed that the average explicit membrane

thickness varies in monomer and dimer simulations. In dimer simulations, the thickness is up to 2.4Å

smaller [148]. The SLIM membrane is not in�uenced by the inserted protein, therefore this e�ect should

be modeled by a careful parameter selection in future simulations.

Figure 4.20.: Crossing angle of the Glycophorin A dimer. (A-D) Histograms of the crossing angles
of simulations with di�erent surface tension values γ. The crossing angle is de�ned as
the angle between the principal axes of the backbone heavy atoms of the transmembrane
domain (Leu26-Leu43) of the two chains.
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For a dimer simulation, the orientation of the two proteins relative to each other is also very important.

The crossing angle, de�ned by the angle between the principal axes of the backbone heavy atoms

of the transmembrane domain (Leu26-Leu43) of the two chains, is with an average of 41.2◦ − 43.1◦

(for di�erent surface tension values) in good agreement to the experimental value of 40◦ measured by

MacKenzie et al. [145]. Histograms for crossing angles are depicted in Figure 4.20.

4.7. Summary

Implicit membrane o�er a computationally e�cient method to study certain properties and interactions

of membrane proteins. The new implicit membrane model SLIM (SIMONA layered implicit membrane)

combines advantages of previously published models. Comparisons to Poisson-Boltzmann calculations

show that SLIM outperforms other implicit membrane models regarding the accurate description of

electrostatic interactions inside the membrane. The results show good quantitative and qualitative

agreement of self-energy terms for single ions and a protein with a single charge as well for the interaction

terms of two proteins inside the membrane. Simulations of three well-studied membrane proteins showed

that known properties of these proteins are reproduced by the SLIM model.

Future investigations include the improvement of the e�ciency of the simulations, using di�erent Monte

Carlo moves and a parallelized version of the code. The low computational cost of the implicit model

enables the investigation of processes like protein assembly inside the membrane, which are out of

reach for explicit membrane simulations. Di�erent studies regarding the interactions between di�erent

membrane proteins, protein folding in membranes and dimerization of proteins are already in progress.
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Arti�cial bilayer membrane (in vitro) experiments can help to shed light on the complex interactions be-

tween molecules and membranes. The earliest model system was the black lipid bilayer system (BLB),

where a membrane is formed between two compartments �lled with salt solution [149]. The method is

named �black� lipid bilayer due to the fact that a membrane appears �black� when viewed by re�ected

light [150, 151]. In addition to the BLB, there are many other systems like detergent micelles, bicells,

nanodiscs, vesicles, tethered lipid bilayer membranes and supported lipid bilayers [152�157] which are

used in experiments nowadays.

In this chapter the experimental setup used for BLB experiments is discussed in Section 5.1. A gen-

eral introduction to antimicrobial peptides and gold nanoparticles can be found at the beginning of

Section 5.2 and 5.3. Furthermore, experimental results on membrane conductivity changes induced by

Gramicidin A and S, as well as di�erent sized gold nanoparticles are discussed.

5.1. Experimental Setup

BLB experiments [158] were performed in the lab of Prof. Dr. Dr. h.c. Dr. h.c. Roland Benz at

the Julius Maximilian University of Würzburg. Except Gramicidin A all investigated compounds were

provided by our co-workers, the Ulrich group at Karlsruhe Institute of Technology and the Simon group

at the University of Aachen.

The schematic setting of the experiment is shown in Figure 5.1: The crucial component is the bilayer

in the septum of an aqueous �lled Te�on chamber. Using two electrodes, it is possible to apply an

external potential. A signal ampli�er and oscilloscope or strip chart recorder enable the measurement
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of the membrane conductivity.

Figure 5.1.: Schematic setting of the bilayer experiments. The bilayer forms over a small hole in the
septum of an aqueous �lled Te�on chamber. Two electrodes enable to apply an external
potential to the membrane. The measurement can be performed with an oscilloscope or
strip chart recorder.

Figure 5.2 shows the measuring and membrane painting equipment. The Te�on chamber and the

silver/silver-chloride electrodes (�g. 5.2(B)) are mounted in a Faraday cage on a vibration free table to

shield the measurement from external perturbations (�g. 5.2(A)). On top of this cage is a Burr Brown

operational ampli�er, which allows the measurement of the membrane current by a strip chart recorder

(�g. 5.2(E)).

The Te�on chamber has two compartments (named as cis-side and trans-side) each �lled with 5ml salt

solution and connected by a small hole with 0.5mm2 surface area.

To form the membrane in the hole, two steps are necessary:

1. Pre-preparation with a 2% solution of the lipid

2. Painting of the membrane with a small Te�on loop and a 1% solution of the lipid

For the pre-preparation, a 2% solution of the lipid in chloroform was used. The lipid was applied to

the hole in the septum before �lling the compartments with the salt solution. After insertion of the

Te�on chamber in the Faraday cage and the arrangement of the electrodes, the membrane was painted
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with a 1% solution of the lipid and the aid of a small Te�on loop (�g. 5.2(C)+(D)). For production of

this 1% solution, 50µl of a 4% solution was dried in a rotary evaporator, 200µl of the desired solvent

and 20µl n-butanol were added.

Figure 5.2.: Experimental setup for the black lipid bilayer experiments: (A) The measuring equipment
is placed on a vibration free table. A Faraday cage contains the Te�on chamber with salt
solution and two electrodes (B). A small Te�on loop (C) is used to paint the membrane
(D). Current can be measured with the strip chart recorder (E).

Besides the lipid, the desired solvent for the 1% solution of the lipid used for the membrane painting

e�ects membrane properties like thickness and capacity as well [159, 160]. Therefore di�erent lipids and

mixtures were used for the experiments. These contained diphytanoyl-phosphatidylcholine (DiphPC)

(�g.5.3(A)) in n-decane or a mixture of DiphPC and diphytanoyl-phosphatidylglycerol (DiphPG)

(�g.5.3(B)) in n-decan (C10H22) as well as in hexadecan (C16H34). Hexadecan is in a solid state

below room temperature, therefore the temperature during the experiment is very crucial.

To apply a potential to the membrane, silver/silver-chloride electrodes were inserted into the aqueous

salt solutions on both sides of the membrane (see Figure 5.2B). Asymmetries of the electrodes, which

can occur due to careless storage or handling, were checked regularly.

The potential has to be changed several times during a single experiment and always refers to the

67
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Figure 5.3.: Chemical structure of the lipids used in BLB experiments. (A) diphytanoyl-
phosphatidylcholine (DiphPC) and (B) diphytanoyl-phosphatidylglycerol (DiphPG).

cis-side of the chamber; at the trans-site inverse polarity was applied. The membrane current was

recorded by a strip chart recorder, using a current-to-voltage converter constructed with a Burr Brown

operational ampli�er.

Control experiments without addition of the solute were performed for all the measurements to avoid

misinterpretation of data due to contaminations of the Te�on chamber with solutes from previous ex-

periments. All experiments were repeated several times, further informations are given in each section.

5.1.1. Conductivity Measurements

After preparation of the Te�on chamber and painting of the membrane, control experiments without

addition of the solute were performed. A membrane potential Va was applied and the membrane current

I was recorded up to 30 minutes. Then the voltage could be increased or the polarity reversed. The

membrane conductivity can be calculated via equation 5.1.

G[S] =
I[A]

Va[V ]
(5.1)

The unit for the conductivity G is Siemens [S] and de�ned as A
V .

For conductivity measurements itself, the solute was usually added to the cis-site of the chamber. After

the solute was added, currents for di�erent potentials were measured in serial. The experiment was
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stopped when the bilayer dissolved.

5.1.2. Selectivity Measurements

The selectivity measurements began with the same set up as for conductivity measurements. After a

control experiment a conductivity measurement with settings taken from a previous measurement was

performed until an increase of the conductivity was observed. After that, the selectivity measurement

was started.

The measuring instrument was changed to a voltmeter instead of the strip chart recorder to measure

the membrane potential Vm. A salt concentration gradient was established in the Te�on chamber by

adding a higher concentrated salt solution to the cis-side. To avoid hydrostatic pressure di�erences,

the same amount of the stock solution was added to the trans-side of the membrane at the same time.

Based on the concentration gradient, the ions di�use through the membrane and form a potential

di�erence until a new equilibrium is reached. With the measurement of the potential and the known

concentration gradient, the analysis using the Goldman-Hodgkin-Katz equation was performed [161].

Vm =
R · T
F
· lnPc · c2 + Pa · c1

Pc · c1 + Pa · c2
(5.2)

R is the gas constant, T the absolute temperature and F the Faraday constant. With the membrane

potential Vm and the salt concentrations c1 on the cis-side and c2 on the trans-side, the cation/anion

permeability ratio between Pc and Pa can be determined.

Pa
Pc

=
c1 · e0.025·Vm − c2
c1 − c2 · e0.025·Vm

(5.3)

5.2. Antimicrobial Peptides

5.2.1. Introduction

In the 1940s and 50s antibiotics such as penicilin were dealt as miracle drugs, which were able to kill the

bacteria that caused many of human-kinds worst infections [162]. Today the emergence of resistances
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necessitate alternative drugs like peptide antibiotics [36]. Antimicrobial peptides, also called cationic

host defence peptides, can show antibacterial, anti fungal, antiviral, anti protozoan and antisepsic

properties and are found in all living cells [37].

Antimicrobial peptides are between 11 and 50 amino acids long and have a net positive charge of

+2 to +7 proton charges [36]. In addition to at least two positively charged residues like arginine,

lysine or histidine, they are composed of a large proportion of hydrophobic residues (≥ 30%) [37, 163].

Structurally, there are four di�erent groups: β-sheet peptides stabilized by two to four disul�de bridges,

α-helical peptides, extended peptides and loop peptides with one single disul�de bond [164]. The α-

helical peptides are unstructured in solution and only fold into amphiphatic α-helices upon contact

with membranes [37].

Their activity is related to the cationic and amphiphilic nature of the peptides. They contact the

anionic surface of the cytoplasmic membrane and insert themselves in a way that they initially straddle

the interface of the hydrophilic head groups and the fatty acyl chains of the membrane phospholipids.

After insertion they act by disrupting the physical integrity of the bilayer via membrane thinning,

transient poration and/or disruption of the barrier function. Moreover, they can translocate across the

membrane and act on internal targets [163]. Several models, like the barrel-stave, toroidal worm hole

or carpet model are summarized in di�erent reviews [165, 166].

Figure 5.4.: Di�erent models for membrane permeation of antimicrobial peptides (A) toroidal model
(B) carpet model (C) barrel-stave model [166]. Copyright 2005 Nature Publishing Group.
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Gramicidin

Gramicidin, a polypeptide antibiotic, kills Gram-positive bacteria and is produced by the soil bacteria

Bacillus brevis [167]. Gramicidin forms dimeric channels speci�cally for the transport of monovalent

cations across membranes. It adopts several di�erent conformations, most notably double helical (pore)

and helical dimer (channels) forms, which have very di�erent structural and functional characteristics.

It has been the subject of a wide number of biophysical, biochemical and physiological investigations,

and is probably one of the best studied and understood ion channels [168]. Gramicidin, more precisely

Gramicidin D, is a mixture of 80% Gramicidin A (GramA), 6% Gramicidin B and 14 % Gramicidin

C [169] linear petadecapeptides. In contrast, Gramicidin S (GramS), discovered in 1942, is a cyclic

peptide [170] which has activity against Gram-positive and Gram-negative bacteria [171, 172].

5.2.2. Experimental Results and Discussion

Within the scope of this thesis and the diploma thesis of Yvonne Klapper [173], a collaboration with

both the group of Prof. Dr. Anne S. Ulrich from the Karlsruhe Institute of Technology in Karlsruhe

and the group of Prof. Dr. Dr. h.c. Dr. h.c. Roland Benz at the Julius Maximilian University in

Würzburg was arranged. Beside the bilayer expertise in the Benz group, the Ulrich BioNMR group

focuses on peptides interacting with biological membranes. Peptides of the Ulrich group were investi-

gated in the Benz lab. Complement computational studies with the SLIM model (section 4) [2] are still

under investigation. Di�erent studies of GramS in the literature show opposed results regarding the

membrane activity: Heitz et al. [174] and Wu et al. [175] reported channel-like activity of GramS. In

contrast Ashrafuzzaman et al. [176] suggest GramS induces defects in the phospholipid bilayer instead

of forming pores.

Due to several reasons such as a known and simple structure or the availability in large quantities,

Gramicidin A (GramA) [177, 178] is a widely used cation selective channel [179]. Hladky et al. per-

formed lipid bilayer experiments to investigate channels induced by Gramicidin A and showed pore

formation and increased conductivity already in the 1972 [180].

On the one hand, bilayer experiments with Gramicidin were performed to validate our experimental

set up, and on the other hand to provide data for later simulations with the newly developed implicit
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membrane model SLIM (Chapter 4).

Gramicidin S

The cyclic peptide Gramicidin S (GramS) was investigated in �ve di�erent conductivity measure-

ments. The Te�on chamber was �lled with 1M KCl in all experiments and the lipid mixture was

DihPC/DiphPG(80:20)(in n-decan or hexadecan). For one experiment with a DiphPC (in n-decan)

membrane 150mM KCl was used, due to parallel test experiments with the gold nanoparticles which

are not stable in 1M KCl solution. The peptide was provided by the Ulrich group at the Karlsruhe

Institute of Technology.

Reference Measurement

At the beginning of all experiments, a reference measurement was performed. Figure 5.5 shows a

representative snapshot out of a strip chart record of a reference measurement for GramS experiments.

.

Figure 5.5.: Reference measurement for a bilayer conductivity experiment with GramS. A Dih-
phPC/DiphPG lipid mixture in hexadecan was used for the membrane. The applied po-
tential was Va = +120mV .

Conductivity Measurement

The conductivity measurements show the following results: While one experiment with a DiphPC

(n-decan) membrane showed no increase of the conductivity with the peptide on the cis-side with an

applied potential of maximum |Va| = 100mV and an end concentration of 1mM, three experiments
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with membranes composed out of a lipid mixture DiphPC/DiphPG(80:20) in n-decan or hexadecan

showed an increase of the conductivity. The peptide concentration was higher - 1mM on both sides

of the membrane and the applied potential was between |Va| = 120mV and |Va| = 180mV . In a �fth

measurement the membrane converted to a multi-layer during the experiment (even very high applied

voltages could not destroy the membrane), therefore no e�ect could be observed. In further experiments

the membranes were observed during the measurement to directly stop experiments when a multi-layer

was formed. A part of a strip chart record for the measurement with an increased conductivity is shown

in Figure 5.6.

Figure 5.6.: Conductivity measurement for a membrane with DiphPC/DiphPG lipids in hexadecan and
the peptide GramS. The increased conductivity was observed with an applied potential of
Va = +120mV .

Almost the same experimental set up like Wu et al. [175] was used and their results were con�rmed.

Heitz et al. [174] and Wu et al. [175] reported channel-like activity of GramS. In contrast Ashrafuzza-

man et al. [176] suggested GramS induces defects in the phospholipid bilayer instead of forming pores.

However the membrane activity of GramS is indisputable in all experiments and could be con�rmed

with these bilayer experiments.

Gramicidin A

In bilayer experiments for the peptide Gramicidin A (Gram A; source: company Sigma-Aldrich) an

increase of the conductivity could be observed in �ve out of six experiments. In all experiments a 1M

KCl solution was used in combination with a membrane of DiphPC/DiphPG(80:20) lipids in n-decan

or hexadecan.
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Reference Measurement

A reference measurement representative for all GramA experiments is shown in Figure 5.7. These were

performed before all other measurements.

Figure 5.7.: Reference measurement for a bilayer conductivity experiment with GramA. A Dih-
phPC/DiphPG lipid mixture in hexadecan was used for the membrane. The applied po-
tential was Va = +180mV .

Conductivity Measurement

One of the six conductivity measurements with GramA was performed with a concentration of 0.1mM

at the cis-side. The applied potential was only |Va| = 80mV and the measuring time was comparatively

short. No increase of the conductivity could be observed. A longer measuring time as well as higher

applied voltages and higher peptide concentrations (end concentration between 0.1mM - 1mM) were

tested in the other experiments. The remaining �ve conductivity measurements showed an enormous

increase of the membrane conductivity. Three of them had a continuous increase while in two of the

experiments single pores could be observed. A snapshot of the strip-chart record is shown in Figure

5.8.

An analysis for the pores observed within a snapshot of, for instance, three minutes can be performed.

Every single line parallel to the y-axis characterizes the opening or closing of a pore. The pore size is

determined by counting the small boxes on the strip chart record. The number of pores of the same

size is counted and results in Figure 5.9. The measured current on the y-axis of the strip chart record

can be converted (via equation 5.1) into the conductivity of the pore. In Figure 5.9, the maximum

number of pores (28), observed within three minutes, shows a pore size of 5pS.
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Figure 5.8.: Conductivity measurement for a membrane with DiphPC/DiphPG lipids in hexadecan and
the peptide GramA. The increased conductivity was observed with an applied potential of
Va = +80mV .

Figure 5.9.: The number of pores and their size in a snapshot (3 minutes) of a bilayer experiment with
GramA.

The bilayer experiments showed pore forming of the peptide GramA as described �rst by Hladky

et al. [180]. This assumes that bilayer experiments can be also used to investigate molecules where the

behaviour with membranes is still unknown.

5.3. Gold Nanoparticles

5.3.1. Introduction

Nowadays gold nanoparticles (AuNPs) are widely used in chemistry and biology or technical and med-

ical applications, but their history goes back to ancient rome where the particles were used to produce

a red glass color [181]. In biomedical applications they are very promising candidates for diagnostics,
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therapies for various diseases like cancer, Alzheimer, HIV and diabetes [182�187]. AuNPs are available

in a wide range of sizes from 1 to more than 120nm [182]. The nanoparticles used in this thesis have a

size between 1.4 and 15nm. Among a large number of di�erent possibilities for synthesis and stabiliza-

tion [182], the AuNPs provided by the Simon group in Aachen are stabilized with phosphine-ligands.

Pan et al. reported unexpected cytotoxicity of ultrasmall AuNPs, stabilized with phosphine ligands

[188]. They investigated nanoparticles from 0.8nm to 1.8nm and 15nm size and found cytotoxicity

for particles between 1 and 2nm size [188]. In the following, results of black lipid bilayer experiments

performed with nanoparticles of 1.4nm to 15nm size are presented and discussed.

The synthesis of AuNPs with di�erent size and lipids was done by Annika Leifert and Janine Broda

(both Simon group, university of Aachen). In the bilayer experiments, AuNPs stabilized with two dif-

ferent phosphine ligands, triphenylphosphine monosulfate (TPPMS) and triphenylphosphine trisulfate

(TPPTS), were investigated. Chemical structures for both triphenylphosine ligands are displayed in

Figure 5.10. The ligands are bound via the phosphor atom to the gold surface.

Figure 5.10.: Chemical structure of di�erent ligands used to stabilize gold nanoparticles with a size
between 1.4nm and 15nm. (A) Triphenylphosphine monosulfate (TPPMS) and (B) triph-
enylphosphine trisulfate (TPPTS).

5.3.2. Experimental Results

Bilayer experiments were performed as described in section 5.1. The salt solution was 5mM KCl due to

instabilities of the gold nanoparticles with higher concentrated salt solutions. The investigated AuNPs

are listed in table 5.1. Beside size and ligand, the concentrations of the probes received from Aachen

is speci�ed. These concentrations were important to calculate the amount of the probe which has to

76



5.3. Gold Nanoparticles

be added to receive a distinct end concentration in the Te�on chamber.

Table 5.1.: Gold nanoparticles investigated in black lipid bilayer experiments. The table shows the
di�erent sizes and ligands as well as the label of the probes. The ligands triphenylphosphine
monosulfate and triphenylphosphine trisulfate are abbreviated with TPPMS and TPPTS
respectively. The column headings indicate the labels used in the following sections.

Au1.4MS Au4.7MS Au4.7TS Au8.2MS Au10.5TS

size [nm] 1.4 4.7 4.7 8.2 10.5
ligand TPPMS TPPMS TPPTS TPPMS TPPTS
concentration [mM] 22.1 25.0 21.8 9.3 71.4

Au10.6MS Au10.7MS Au12.0MS Au12.1MS Au15MS

size [nm] 10.6 10.7 12.0 12.1 15
ligand TPPMS TPPMS TPPMS TPPMS TPPMS
concentration [mM] 4.4 63.1 5.4 8.0 28.5

The probes for Au10.6MS and 10.7MS were analysed together as well as the probes for Au12.0MS and

Au12.1MS. For the probe Au8.2MS, only one experiment was performed, so the analysis is not shown

here. Before the experimental results are discussed, an excerpt of a reference measurement is shown.

Reference Measurement

Reference measurements were performed at the beginning of each experiment. Since all experiments

with AuNPs were performed with a membrane composed out of DiphPC lipids in n-decan, only one

snapshot out of all reference measurements is shown in Figure 5.11. The applied potential was between

|Va| = 50mV and |Va| = 150mV in the experiments. The snapshot shows a part of a measurement

with Va = −150mV .

When reference measurements showed no increase of the conductivity and the bilayer seemed to be

still stable (visual inspection), the conductivity measurements were performed. In case that visual

inspection showed a multi-layer membrane (the membrane is not black anymore), the membrane was

destroyed, a new one inserted and the reference measurements repeated. Each time the observation

of increased conductivity indicated that the Te�on chamber or other equipment was contaminated by

membrane active compounds from previous experiments, the experiment was completely stopped and

the preparation of the experimental set up was started again.
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Figure 5.11.: Conductivity measurement without addition of gold nanoparticles. The strip-chart record-
ing of a measurement with a DiphPC bilayer and an applied voltage of -150mV is shown
as a representative snapshot for all reference measurements, which were performed at the
beginning of every single experiment.

Conductivity Measurements

Conductivity measurements were performed for di�erent sized AuNPs stabilized by TPPMS. While

all particles smaller than 12nm showed no increase of the conductivity, the conductivity showed an

increase in experiments with Au12MS, Au12.1MS and Au15MS. Representative snapshots out of the

strip-chart records for experiments with TPPMS stabilized AuNPs are displayed in the following two

paragraphs discussing these experiments.

Results for Au1.4MS, Au4.7MS and Au10.7MS

Four di�erent conductivity measurements for Au1.4MS were performed. The end concentration was

usually 0.5mM at the cis-side of the membrane and was increased to 1mM in one experiment. The max-

imum applied potential was 100mV. Nevertheless, an increase of the conductivity was never observed

for Au1.4MS. Figure 5.12 shows a part of the strip-chart recording for one of these measurements.

For Au4.7MS, only one experiment could be performed due to the restricted time in the lab. Again the

end concentration was 0.5mM at the cis-side of the membrane. The applied maximum potential was

|Va| = 150mV . Figure 5.13 shows a part of the strip chart record. Although only one measurement was

performed, the result is shown here because of the possibility to compare TPPMS stabilized AuNPs

directly with TPPTS stablized particles of the same size. This comparison is made in the discussion in
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Figure 5.12.: Conductivity measurement for a DiphPC bilayer after addition of Au1.4MS. The applied
voltage was Va = 0mV, Va = −100mV, Va = 0mV . No increase of the conductivity was
observed.

Section 5.3.3.

Figure 5.13.: Conductivity measurement with Au4.7MS. The applied voltage was -150mV.

For Au10.6MS and Au10.7MS, in total seven experiments were performed with an AuNP concen-

tration of 0.5mM at the cis-side. Two of the measurements had a maximum potential of |Va| = 470mV

and are not discussed further. The possibility to apply such a high voltage indicates the forming of

a multi-layer during the experiment. Unfortunately, the membrane cannot be observed during exper-

iments with AuNPs due to the red tinting of the solution after addition of the compound. Therefore

the measurements were performed as usual but such high voltages were used as criterion to discard the

measurement. The maximum potential in the remaining �ve experiments are in the same range as in

other experiments with AuNPs, e.g. between 100mV and 180mV. All measurements show no increase

of the conductivity. The increase of the concentration of the AuNPs to 1mM in one of the experiments
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also showed no e�ect. The strip chart record for an applied potential of -150mV and Au10.7MS is

shown in Figure 5.14.

Figure 5.14.: Conductivity measurement with Au10.7MS. The applied voltage was Va = −150mV . No
increase of the conductivity was observed.

Results for Au12MS and Au15MS

Six experiments with Au12MS and Au12.1MS were performed with an end concentration of 0.5mM at

the cis-side of the Te�on chamber. In one experiment the membrane seemed to be a multi-layer, but

all the remaining �ve experiments show an increase of the conductivity. A snapshot for an experiment

with Au12.0MS is shown in Figure 5.15.

Figure 5.15.: Conductivity measurement with Au12MS. The applied voltage was Va = −150mV . An
increase of the conductivity was observed.

For the Au15MS, di�erent results were obtained. While experiments in the �rst weeks in the lab

showed an increase of the conductivity for four experiments, one experiment with the same solution
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more than 1.5 years later showed no increase of the conductivity. Here it can be assumed that this

result was due to the use of the old solution, but only one experiment is not really su�cient to interpret

the result. The strip chart record for one of the �rst four experiments is shown in Figure 5.16. The

applied potential was only |Va| = 50mV . The end concentration of Au15MS was 0.5mM at the cis-side.

Figure 5.16.: Conductivity measurement with Au15MS. The applied voltage was Va = −50mV . An
increase of the conductivity was observed.

Conductivity measurements in bilayer experiments for TPPMS stabilized AuNPs show a size dependent

e�ect. While particles smaller then 12nm show no e�ect on the membrane conductivity, experiments

with bigger nanoparticles lead to an increase of the conductivity.

Results for Au4.7TS and Au10.5TS

To investigate if not only the size of the nanoparticles, but also the ligands with which their stabilized

is crucial for interactions between membrane and AuNPs, two TPPTS-stabilized nanoparticles with

similar size to TPPMS-stabilized particles were investigated.

Four experiments with an end concentration of 0.5mM Au4.7TS at the cis-side were performed. All

experiments showed an increase of the conductivity. A snapshot is displayed in Figure 5.17.

With Au10.5TS three experiments were performed. The end concentration in the Te�on chamber was

0.5mM at the cis-side. The applied maximum potential was |Va| = 150mV .

These results of the bilayer experiments with TPPTS-stabilized nanoparticles show that also the lig-
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Figure 5.17.: The conductivity measurement with 0.5mM concentration of Au4.7MS at the cis-side
of the Te�on chamber show an increase of the conductivity. The applied potential was
Va = −100mV .

Figure 5.18.: Conductivity measurement of a DiphPC membrane with Au10.5TS. The concentration of
the nanoparticles was 0.5mM at the cis-side. The applied potential was Va = −150mV .
An increase of the conductivity was observed.

ands play an important role in the interactions of membranes and ligand stabilized AuNPs. Both

TPPTS-stabilized AuNPs show an increase of the membrane conductivity, whereas TPPMS-stabilized

nanoparticles of the same size show no e�ect.

Selectivity Measurements

The results of the conductivity measurements, which show size-dependent membrane interactions of

AuNPs as well as di�erent behaviour for di�erent ligands stabilizing the AuNPs allows further investi-

gation of the membrane in�uenced with AuNPs by selectivity measurements.

The selectivity measurements (see also Section 5.1.2) were performed four times for Au15MS and started

with a conductivity measurement. After an increase of the conductivity the applied voltage was turned
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of and a voltmeter was used instead of the strip chart recorder to measure the membrane potential. To

establish a salt concentration gradient, 100µl 50mM KCl were added to the cis-side of the membrane

and to avoid hydrostatic pressure di�erences 100µl 5mM KCl were added to the trans-side. The mem-

brane potential was measured after �ve minutes and the procedure was repeated till the membrane

broke. The results of the measurement are displayed in Figure 5.19.

Figure 5.19.: The plot shows results for four selectivity measurements (coloured in di�erent colours) of
a DiphPC membrane with Au15MS. The average and variance of the permeability ratio
between Pc and Pa is denoted in the legend.

The cation/anion permeability ratio is positive in all measurements. This indicates that the membrane

is selective for cations.

5.3.3. Discussion

Gold nanoparticles are very promising for biomedical applications [182�187], but the knowledge about

their interactions with other biomolecules and membranes is still limited and needs to be investigated.

For instance, experiments by Pan et al. surprisingly showed size dependent cytotoxicity of TPPMS

stabilized nanoparticles. Au1.4MS as well as Au1.4TS were highly toxic, while Au15MS was compara-

tively nontoxic [188].

In order to understand possible mechanisms, interactions with membranes must be investigated. There-
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fore di�erent gold nanoparticles stabilized with TPPMS ligands were used in bilayer experiments.

They show a size dependent membrane activity: Experiments with DiphPC membranes and Au1.4MS,

Au4.7MS, Au10.6MS or Au10.7MS show no increase of the membrane conductivity, while Au12.0MS

and Au15.0MS increased the membrane conductivity. Gold nanoparticles with a similar size, stabilized

with TPPTS, show a di�erent behaviour. Experiments with Au4.7TS and Au10.5TS show membrane

interactions leading to an increased conductivity, whereas TPPMS stabilized AuNPs of the same size

had no e�ect. Therefore not only the size, but also the ligands on the gold cluster play an important

role for size dependent interactions of gold nanoparticles with membranes.

In order to understand the membrane activity, a model was developed. The membrane in bilayer

experiments is assumed to be between 5nm and 8nm thick [189] and is composed of a hydrophobic core

embedded in two hydrophylic headgroup regions. The gold nanoparticle is a hydrophobic core stabilized

by phosphine ligands. The TPPMS ligands carry one unit charge, TPPTS ligands carries three unit

charges. For the di�erent nanoparticles the number of ligands as function of the nanoparticles size was

estimated. While a completely covered 1.4nm sized AuNP has 12 ligands, for bigger nanoparticles, the

number of ligands n can be calculated by the following equation:

n =
AAuNP
ATPPMS

(5.4)

where AAuNP is the surface of the AuNP and ATPPMS = 1.23nm2 is the area covered by a TPPMS

ligand. For instance calculating the surface of Au15MS with a radius of 7.5nm, the surface results in

AAuNP = 706.86nm2. The number of ligands on the surface of Au15MS is therefore n = 706.86nm2

1.23nm2 ≈

575. Numbers for all particle sizes used in the experiment can be found in table 5.2.

In addition to the maximum number of ligands n, the number of ligands inside the membrane is calcu-

lated under the assumption that the AuNP is in the center of the membrane. For a thickness of 5nm

and 8nm, the numbers are shown in table 5.2. A visualisation of the number is displayed in Figure

5.20.

Since the transfer of charged groups from highly polar regions like water to hydrophobic regions like

the membrane core is energetically unfavourable, these numbers suggest that nanoparticles with bound
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Table 5.2.: This table shows the size and the corresponding maximum number n of ligands for AuNPs
used in the bilayer experiments. Assuming that the AuNP sits in the membrane center and
the bilayer is between 5nm (membrane-5) and 8nm (membrane-8) thick in the experiments,
the number of ligands which should be inside the membrane is given by nmembrane−5 and
nmembrane−8.

size[nm] n nmembrane−5 nmembrane−8

1.4 12 12 12
4.7 56 56 56
10.6 287 135 217
12.0 368 153 245
15.0 575 192 307

ligands cannot enter the hydrophobic membrane region. Therefore the question arises if the ligands

unbind before they enter the membrane.

Since for triphenylphosphine-stabilized AuNPs a dissociation equilibrium of bound and free ligand

molecules in solution is known [190], the di�erent behaviour of TPPMS and TPPTS in membrane

activity can only be understood, if TPPTS ligands are more weakly bound than TPPMS. First sta-

bility test of our co-workers con�rm this assumption: For TPPMS- and TPPTS-stabilized particles of

the same size more TPPTS-stabilized AuNPs are dissociated in solution than particles stabilized with

TPPMS ligands.

Both of these ligands are bound to the gold surface via a phosphorus atom. Since the electronega-

tivity of phosphorus is 2.19 and the electronegativity of gold is 2.54, a small amount of negative charge

will be induced in the gold surface. This would enable a cation transport through the membrane if the

gold nanoparticles sat inside the membrane. The selectivity measurements in the bilayer experiments

performed with Au15MS showed that the membrane is cation selective. Therefore the model is in good

agreement with the experimental results.

All these �ndings support a mechanism that ligands dissociate when the particles enter the membrane

and are consistent with the observation that small nanoparticles which cannot span the membrane

show no e�ect.
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5. Black Lipid Bilayer Experiments

Figure 5.20.: The maximum number of ligands for AuNPs with di�erent size (black circle) is shown.
When the particle's center is assumed to be in the membrane center, for each particle size
a di�erent number of ligands is bound to the surface of the AuNP inside the membrane.
These numbers are displayed for a 5nm (red triangle) and a 8nm (blue square) thick
membrane.
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6. Interaction Between the hERG Ion Channel

and Gold Nanoparticles

This work is published in Proceedings of the National Academy of Sciences (PNAS) as part of Leifert

et al. [3].

Gold nanoparticles are promising compounds for many applications in medical research. They are

used in bioimaging, gene delivery, drug delivery and other therapeutic and diagnostic applications

[183�187]. In pre-clinical testing, essentially all drug candidates are investigated together with the

hERG channel. The hERG (human ether-a-go-go-related gene) [191] potassium channel is essential for

normal electric activity in the human heart [192�194]. Due to the known interaction of many drug

candidates [194], this testing was performed also for gold nanoparticles.

The Simon group in Aachen observed that phosphine-stabilized gold nanoparticles (AuNPs) irreversibly

block hERG channels in patch-clamp experiments, whereas thiol-stabilized AuNPs of similar size had

no e�ect on the channel function in vitro, and neither particle blocked the channel in vivo [3]. The

nanoparticle is covered with ligands, but some experimental and theoretical results, discussed in this

chapter, lead to the assumption that displacement of ligands and therefore the accessibility of the gold

core surface is crucial for the blocking mechanism of phosphine-stabilized AuNPs. To test this assump-

tion, docking simulations were performed.

The docking simulations for gold nanoparticles to the hERG channel were performed with SIMONA

[54] and are discussed in Section 6.3. Section 6.1 explains the function of the hERG potassium channel
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and summarizes the basics of the human ventricular action potential. Results of patch-clamp experi-

ments by Leifert et al. [3] are summarized in 6.2. While basics for the gold nanoparticles in general can

be found in Section 5.3 of the previous chapter, the input structures used for this study and simulation

details are described in Section 6.3.

6.1. The hERG Channel and the Long QT Syndrome

The hERG potassium channel [191] is essential for normal electric activity in the heart [192�194]. The

ion channel is voltage-gated and, together with other ion channels regulates the cardiac action potential

and the heartbeat.

The human heart has four chambers, two atria and two ventricles, which contract consecutively in

a cardiac cycle. During such a cycle, which corresponds a single heartbeat, electric currents can be

measured with electrodes attached to the surface of the skin. The current can be displayed in an

electrocardiogram (Figure 6.1A). In the scheme a P wave, a QRS complex and a T wave can be

distinguished. While the P wave displays the atrial depolarisation, the QRS complex re�ects the rapid

depolarisation of both ventricles. The T wave indicates the repolarisation of the ventricles. Focusing

on the ventricular action potential in Figure 6.1B, �ve di�erent phases can be distinguished: While

phase 0 describes the rapid depolarisation of the membrane, the repolarisation is devided into three

phases. After a short rapid repolarisation (phase 1), the repolarisation plateau is reached (phase 2),

followed by phase 3 which terminates the action potential and returns the potential to the resting level

(phase 4) [194]. Therefore phase 0 corresponds to the QRS complex, while the T wave re�ects the

repolarisation in phase 1-3. The complete ventricular action is therefore described by the QT interval

of the electrocardiogram.

The hERG channel is responsible for the rapid delayed recti�er K+ current in phase 3 [192�194].

Mutations or blocking of the channel cause the long QT syndrome [195]. A prolongation of this interval

characterises the long QT syndrom [195], which causes arrhythmia, rapid irregular heart beats that can

lead to fainting and sudden death [194]. The syndrome can be either a rare inborn heart condition or

a side-e�ect of drugs.

In the past, promising drug candidates that passed initial cytotoxicity screens turned out to be highly
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Figure 6.1.: (A) An electrocardiogram displays the cardiac cycle of a heartbeat. The P wave describes
the depolarisation of the atria while the QRS complex refers to the depolarisation of the
ventricles. The QT interval incorporates the depolarisation as well as the repolarisation
of the ventricles and therefore describes the whole ventricular action potential. (B) The
human ventricular action potential shows four di�erent phases: a rapid depolarisation of
the membrane (phase 0), repolarisation (phase 1 - 3) and the resting level (phase 4).

cardiotoxic in preclinical trials due to their interaction with the hERG/Kv11.1 channel [3, 194], thus

several drugs had to be removed from the market [196]. Today, tests for hERG channel activity are a

signi�cant hurdle in the development of new drugs [197].

6.2. Experimental Results

Gold nanoparticles play an important role in medical research. They can be used in bioimaging, gene

delivery, drug delivery and other therapeutic and diagnostic applications [183�187]. Due to the known

interaction of the hERG channel with many drug candidates [194], a non-clinical testing strategy is

recommeded to determine if a delay of the ventricular repolarisation is caused by the compound in

question [198].

Leifert et al. performed whole-cell patch-clamp recordings to evaluate the e�ect of phosphine-stabilized

(TPPMS) AuNPs, Au1.4MS, on the hERG tail currents [3]. They found an irreversible blocking of

the channel for Au1.4MS, while tests with TPPMS ligands only had no e�ect on the hERG current

amplitudes [3]. Thiol-stabilized particles show no e�ect in patch-clamp experiments as well. It is

assumed that the gold cores of thiol-stabilized AuNPs are shielded su�ciently to prevent interaction

with biological targets, whereas Au1.4MS can shed o� its weaker bound phosphine shell and thus
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interact with biological target molecules [3]. A recent study by Pan et al. showed that cytotoxicity

of Au1.4MS can be suppressed by an excess of TPPMS [199]. Additional patch-clamp experiments

with a mixture of Au1.4MS and TPPMS or preincubated cells were performed. The addition of excess

free TPPMS ligands abolished the hERG channel block by Au1.4MS, while a preincubation of the

cells with TPPMS before application of Au1.4MS did not prevented the current inhibition [3]. Since a

dissociation equilibrium of bound and free ligand molecules is known for triphenylphosphine-stabilized

AuNPs [200] it can be assumed that an excess of TPPMS shifts the equilibrium and therefore makes

the particle surface less accessible [3].

6.3. Docking Simulations

Docking simulations are used to predict preferred orientations between a small molecule to a large

protein target and to estimate binding a�nities [201, 202]. To prove the hypothesis that the accessibility

of the gold core surface is crucial for the blocking mechanism of Au1.4MS [3], such simulations were

performed using SIMONA [54].

6.3.1. Gold Nanoparticles

In the experimental studies, 1.4nm sized nanoparticles with 55 gold atoms were used. The AUNPs are

stabilized with triphenylphosphine monosulfate (TPPMS) (for the chemical structure see Chapter 5.3),

wherefore the nanoparticles are labeled as Au1.4MS.

The TPPMS ligands were attached to the apex gold atoms of the cluster. Since SIMONA [54] uses

classical force �elds, binding and unbinding of ligands cannot be modelled, wherefore structures with

varying numbers of ligands were generated. Due to a maximum number of twelve ligands for the Au1.4

molecules with n = 0, 2, 4, 6, 12 were prepared, labeled as Au1.4MS(n) in the following.

To obtain the input structures in Figure 6.2, SIMONA [54] simulations had to be performed. A structure

for the icosahedron Au55 cluster was obtained from the Cambridge Cluster database [203, 204]. The

TPPMS ligands were constructed with PyMol [205] and their charge distribution was calculated by

Gesa Lüdemann using DFT calculations with Turbomole [76]. The desired number of ligands was

added close to the gold cluster and relaxed with a distance constraint such that the distance of the
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Figure 6.2.: Phosphine-stabilized gold nanoparticles with di�erent numbers of ligands n = 0, 2, 4, 6, 12.
The gold nanoparticle is comprised of 55 gold atoms and stabilized by triphenylphosphine
monosulfate (TPPMS). The �gure shows input structures for docking simualtions without
ligands (A), partially covered with two (B), four (C) or six (D) ligands. The completely
covered nanoparticle with twelve ligands is displayed in the last panel (E).

phosphine atom of the ligand to the apex gold atom equals the usual bond length.

6.3.2. Homology Model for the hERG Channel

Despite enormous e�orts, crystal structures of membrane-bound receptors and ion channels are still

rare [4, 206, 207]. Therefore homology modelling is widely used to build structural protein models used

to study interactions between small ligands and these channels [208, 209]. Due to homology to the

Mammalian Shaker Kv1.2 potassium channel (PDB: 2a79) [210], Irene Meliciani constructed a model

for the hERG channel which agrees well with the hERG consesus model [211]. Top and side view of

the model are displayed in Figure 6.3.
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Figure 6.3.: Top (A) and side (B) view of the homology model to the Mammalian Shaker Kv1.2 potas-
sium channel [210]. The top view of the channel shows the intracellular entry side.

6.3.3. Docking Results

For Au1.4MS(12) MC simulations with starting conformations on both the intra- and the extracellular

entrances of the channel were performed. The nanoparticle explores the vicinity of the channel entrance

of the pore but does not dock. Since parametrisation at pH 7.4 results in a total charge of -11 for

the hERG channel (the electrostatic potential is shown in 6.4) and -12 for Au1.4MS(12), docking is

prevented by the large Coulomb repulsion.

Figure 6.4.: The electrostatic potential on the molecular surface of the hERG channel parametrised at
pH=7.4 was calculated using the adaptive Poisson-Boltzmann Solver (APBS) [212] tool in
PyMol [205]. Panel A shows the entry side of the channel, Panel B the exit side.

As a result, additional simulations with a channel parametrized at pH 6.7 were performed. The total
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charge for a pH 6.7 channel is zero. Figure 6.5 shows the electrostatic potential on the channel surface

di�ers signi�cantly from the pH 7.4 model. Simulations with Au1.4MS(12) show that the nanoparticle

binds weakly to this channel at the lower pH value.

Figure 6.5.: The electrostatic potential on the molecular surface of the hERG channel parametrised at
pH=6.7 was calculated using the adaptive Poisson-Boltzmann Solver (APBS) [212] tool in
PyMol [205]. Panel A shows the entry side of the channel, Panel B the exit side.

The fact that Au1.4MS(12) binds to the hERG channel at pH=6.7 whereas Au1.4MS(12) shows no

binding to the more negatively charged pH=7.4 channel suggests that displacement of ligands could

lead to binding of the nanoparticles to the channel. Therefore Au1.4MS(8), Au1.4MS(6), Au1.4MS(4)

and Au1.4MS(2) were simulated analogously to Au1.4MS(12) with the same simulation set up.

The results show that binding becomes increasingly likely as the number of ligands on the nanoparticles

decreases and therefore con�rm the hypotheses that the accessibility of the gold surface is crucial for the

blocking mechanism. Interpolation between the docking results for the two channel models indicates

that at least some ligands need to be displaced from the Au55 core to obtain a stable complex between

the channel and the AuNP, even if the complex environment of membrane and ions is not fully accounted

for in the simulations [3].

6.3.4. Summary

Patch-clamp experiments of the Simon group in Aachen showed that some gold nanoparticles irre-

versibly block the hERG channel. The atomic interactions that lead to this irreversible blocking of
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Figure 6.6.: (a) The hERG channel and snapshots for the docking simulations of (b) Au1.4MS(0), (c)
Au1.4MS(6) and (d) Au1.4MS(12). The channel surface is coloured in blue, the ligand is
coloured element speci�c (C: green, O: red, S: yellow, P: orange, H: white) (image similar
to [3]).

the channel for triphenylphosphine monosulfonate stabilized nanoparticles were studied as part of this

dissertation by docking simulations for gold nanoparticles coated with a di�erent number of ligands.

Interpolation between the docking results for two di�erent channel models indicated that at least some

ligands need to be displaced from the gold cluster to obtain a stable complex between the channel and

the gold nanoparticle. These results complement the experimental observation of co-workers in Aachen.

They found that a mixture of Au1.4MS with an excess of the phosphine ligands led to a disappearance

of the channel blocking behavior [3]. This study demonstrates that binding modality of surface func-

tional groups to nanoparticles have a strong in�uence on their interactions with biomolecules. Therefore

safety regulations for using gold nanoparticles in industrial or medical products will have to be adapted

[3].
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Proteins are the nano-scale machinery of living cells and involved in many biological activities, such as

catalysis of biochemical reactions, transport mechanisms, signaling or energy conversion. The unique

structures into which many proteins fold enables them to ful�ll this wide range of functions. Therefore,

structural knowledge is crucial for determining the function of proteins or understanding the mechanism

behind their function. Their three dimensional structure depends on the amino acid sequence and the

physiological environment of the protein. Beside proteins in solution, around 20 to 30 % of all proteins

are embedded in biological membranes. Experimental structure investigations, like NMR spectroscopy

or X-ray crystallography, are especially challenging for the latter group due to the hydrophobic en-

vironment that the membrane presents. In addition, those experiments provide mostly static views

of proteins and their interaction partners, while protein functions are inherent dynamic processes. A

helpful tool for investigating protein structures and functions are computational methods. Nowadays,

these methods are also common in drug development, because malfunction of proteins is the cause of

many diseases.

The main focus of my thesis was theoretical and experimental investigations of biomolecular pro-

cesses related to the interaction of proteins and gold nanoparticles with biological membranes and

membrane-bound proteins. In order to perform the necessary simulations for this study, I participated

in developing, implementing and validating computational methods that enable these studies. To

characterize the in�uence of antimicrobial peptides and gold nanoparticles on the hydrophobic barrier

established by a biological membrane, I performed and analyzed black lipid bilayer experiments. To

understand the interactions of certain gold nanoparticles with the membrane bound hERG ion channel

in more detail, I studied the requirements to form a stable complex between these two with atomistic si-
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mulations. The results of these investigations will be explained in more detail in the rest of this chapter.

Since proteins and membranes play a fundamental role in this thesis, their composition and main

functions are summarized in Chapter 2. Docking simulations and implicit membrane simulations were

performed using the Monte Carlo software package SIMONA. The basic theory behind Monte Carlo

simulations is reviewed in the beginning of Chapter 3. All Monte Carlo simulations I have presented in

this thesis use a reduced set of degrees of freedom compared to explicit all-atom Molecular Dynamics

simulations. Therefore, I validated a new dihedral potential implementation in combination with ad-

ditional amino acid side chain degrees of freedom. I computed the free energy landscapes of dipeptides

with this new method. These possess the expected minima for the well-known regions of secondary

structure in good agreement with prior investigations by others. I compared the alanine dipeptide in

more detail to explicit solvent simulations with a similar force �eld, where I found a comparable free

energy landscape in the low-energy region, but steeper barriers. This can be explained by the existence

of additional degrees of freedom for bond stretching and angle bending in Molecular Dynamics simula-

tions, which allows the atoms to avoid Lennard-Jones clashes.

Encouraged by this result, I investigated the stability of several small proteins, a Villin headpiece

mutant and the WW-domain. These two proteins were chosen because of their completely di�erent

secondary structure. While the native structure of both proteins is stabilized at low temperatures, fold-

ing and unfolding events could be observed at higher temperatures. In comparison to other methods,

the computational e�ort to observe such events is extremely low. However, my simulations showed

that the estimation of the folding temperatures is di�cult, wherefore advanced techniques like Parallel

Tempering should be used in the future. Since di�erences between the computed and experimental

temperatures were observed, further studies have to determine the reason for that behavior.

An important aspect of this problem is the implicit treatment of the solvent. In the last paragraph

of Chapter 3, I have compared three di�erent models to describe the nonpolar contribution to the

solvation free energy using optimized parameters for small organic molecules. This energy contribution

is crucial for the correct estimation of hydration free energies, which are very important in drug devel-

opment for the prediction of ligand binding a�nities to target proteins. My analysis of the computed
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hydration free energies using these models and optimized parameters showed that implicit models can

outperform the TIP3P explicit water models in accurately estimating hydration free energies of small

molecules [1], but they also highlighted that atoms with the same atom type but di�ering partial charge

are one source of main error for these models. In a next step, hydration free energy comparisons for

larger molecules should be performed to determine if the performance of these models also holds for

macromolecules such as proteins. The analysis will also help to improve the large number of other

implicit solvent models implemented in molecular simulation packages.

Membrane proteins are essential for many biological activities, but the complex hydrophobic envi-

ronment makes experimental and computational studies challenging. I therefore participated in the

development of an implicit membrane model SLIM (SIMONA layered implicit membrane), which com-

bines advantages of other previous published models regarding the accurate modeling of electrostatic

e�ects inside membranes. In Chapter 4, I have explained the underlying idea of this model and provide

a comparison to Poisson-Boltzmann reference calculations to validate the accuracy of the model. The

results highlight that the model captures all features of Poisson-Boltzmann electrostatics at a fraction

of the computational cost. The features include good quantitative and qualitative agreement of self-

energy terms for simple and complex molecular geometries, as well as the interaction of charged ions

inside the membrane.

In the last part of Chapter 4, I have shown a comparison of simulation results of three well-studied

membrane proteins to experimental and theoretical data. A diploma student of mine and I used Melit-

tin of bee venom to compare the center of mass position of the protein relative to the membrane with

experimental measurements. Tilt angles of a monomeric M2 transmembrane domain and both tilt and

crossing angles of a Glycophorin A transmembrane dimer were compared to experiments and other

computational studies. The results demonstrate that this new implicit membrane model is able to

reproduce known properties of these proteins [2].

For the future, di�erent Monte Carlo moves should be tested to improve the e�ciency of the simulation

protocol. Further optimizations can be done with a parallelization of the code to achieve better sam-

pling and to reach converged results faster. The use of this implicit model will enable the investigation
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of processes like protein assembly inside the membrane, which are out of reach for explicit membrane

simulations due to the high computational cost. Currently, I use this model to investigate the interac-

tions between di�erent membrane proteins in cooperation with the Ulrich NMR group at the Karlsruhe

Institute of Technology.

Chapter 5 describes the black lipid bilayer experiments we performed with antimicrobial peptides and

di�erently sized gold nanoparticles in the lab of Prof. Dr. Dr. h.c. Dr. h.c. Roland Benz in Würzburg.

Ultrasmall gold nanoparticles have recently been reported to show toxicity, but the mechanism behind

this toxicity is still not understood. In this work I performed experiments to investigate the interaction

of gold nanoparticles as function of their size and functionalization to address the obvious question

how these particles interact with biological membranes as the natural barrier of the cell. Together

with a diploma student, Yvonne Klapper, I used the bilayer experiments with antimicrobial peptides to

establish a working experimental setup. I subsequently performed experiments with gold nanoparticles

of di�erent sizes to get a complete picture of the size-dependent cytotoxicity found by our co-workers

from Aachen. I observed a size-dependent increase of the membrane conductivity in my experiments.

In addition, I was able to show that gold nanoparticles stabilized with triphenylphosphine trisulfonate

instead of triphenylphosphine monosulfonate show a di�erent behavior in the experiments. I estab-

lished a model for ligand displacement when the gold nanoparticles enter the membrane to explain the

possible underlying process, which is supported by additional experiments of my co-workers. Future

investigation of �uorescence labeled nanoparticles as well as further experiments with smaller triph-

enylphosphine trisulfonate stabilized nanoparticles will provide further insights into the e�ects these

nanoparticles have on living cells.

Chapter 6 focuses on the docking simulations between triphenylphosphine monosulfonate stabilized

gold nanoparticles and the hERG (human ether-a-go-go-related gene) potassium ion channel. The

channel is crucial for normal activity of the human heart and used in pre-clinical testing for essentially

all drug candidates. I performed docking simulations for gold nanoparticles coated with a di�erent

number of ligands and the hERG channel to study the atomic interactions that lead to irreversible
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blocking of the channel for phosphine-stabilized nanoparticles. Interpolation between the docking re-

sults for two di�erent channel models indicated that at least some ligands need to be displaced from

the gold cluster to obtain a stable complex between the channel and the gold nanoparticle. My �ndings

complement the experimental observation of my co-workers in Aachen that an excess of the phosphine

ligands led to a disappearance of the channel blocking behavior of the gold nanoparticle. These re-

sults help to demonstrate that binding modality of surface functional groups to nanoparticles have a

strong in�uence on their interactions with biomolecules. Therefore, safety regulations for using gold

nanoparticles in industrial or medical products will have to be adapted [3].
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A. PBEQ-Solver Settings

PB calculations were performed with the PBEQ solver [115, 116]:

! adjustable PBEQ parameters

set EpsR = 2 ! dielectric constant for the reference environment

set EpsP = 2 ! dielectric constant for the protein interior

set EpsW = 80 ! solvent dielectric constant

set Conc = 0 ! salt concentration

set Focus = 1 ! to have a re�ned calculation focused on the site using a �nner grid

set Dcelc = 1.0 ! the grid spacing in the �nite-di�erence (centered on Xcen,Ycen,Zcen)

set Dcelf = 0.25 ! the grid spacing in the �nite-di�erence (centered on Xcen,Ycen,Zcen)

set Ledge = 25 ! distance between a protein atom and a grid LEdge*2 for coarse-gird calculations and

LEdge/2 for �ne-grid calculations (see below)

set Options = watr 1.4 reentrant ! Let's use the molecular surface

! membrane stu�

set Tmemb = 30 ! thickness of membrane (along Z)

set Zmemb = 0 ! center of membrane (along Z)

set epsM = 2 ! membrane dielectric constant

set Htmemb = 5 ! thickness of headgroup region

set epsH = 7 ! membrane headgroup dielectric constant
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B. SIMONA Simulations

PDB �les were read in and processed by pdb2gmx from the GROMACS package [42, 74], using the

Amber99SB*-ILDN force �eld [58�60]. Structures were energetically minimized using GROMACS. Re-

sulting structures were used as input structures for SIMONA [2, 54] simulations. No force �eld cuto�s

were used during the simulations.

We gratefully thank the bwGRiD project[213] for the computational resources.
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C. Additional Software Used in This Thesis

• PyMol [205]

• Gimp [214]

• Xmgrace [215]

• QtiPlot [216]

• LibreO�ce [217]

• Matplotlib [77]

• Bkchem [218]

• Open Babel [219]

• PDB2PQR [220]

• Inkscape [221]
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