KIT | KIT-Bibliothek | Impressum | Datenschutz

Numerically Efficient Gradient Crystal Plasticity with a Grain Boundary Yield Criterion and Dislocation-based Work-Hardening

Wulfinghoff, Stephan

Abstract:

This book is a contribution to the further development of gradient plasticity. Several open questions are addressed, where the efficient numerical implementation is particularly focused on. The book inspects an equivalent plastic strain gradient plasticity theory and a grain boundary yield model. Experiments can successfully be reproduced. The hardening model is based on dislocation densities evolving according to partial differential equations taking into account dislocation transport.

Abstract (englisch):

This book is a contribution to the further development of gradient plasticity. Several open questions are addressed, where the efficient numerical implementation is particularly focused on. Thebook inspects an equivalent plastic strain gradient plasticity theory and a grain boundary yield model. Experiments can successfully be reproduced. The hardening model is based on dislocation densities evolving according to partial differential equations taking into account dislocation transport.


Volltext §
DOI: 10.5445/KSP/1000042280
Die gedruckte Version dieser Publikation können Sie hier kaufen.
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Hochschulschrift
Publikationsjahr 2014
Sprache Englisch
Identifikator ISBN: 978-3-7315-0245-6
ISSN: 2192-693X
urn:nbn:de:0072-422808
KITopen-ID: 1000042280
Verlag KIT Scientific Publishing
Umfang XIII, 260 S.
Serie Schriftenreihe Kontinuumsmechanik im Maschinenbau / Karlsruher Institut für Technologie, Institut für Technische Mechanik - Bereich Kontinuumsmechanik ; 5
Art der Arbeit Dissertation
Fakultät Fakultät für Maschinenbau (MACH)
Institut Institut für Technische Mechanik (ITM)
Prüfungsdaten 19.05.2014
Schlagwörter Versetzungen, Plastizität, Kristalle, Größeneffekt, Verfestigung, Dislocations, plasticity, crystals, size effect, hardening
Referent/Betreuer Böhlke, T.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page