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Abstract

Pair production of electroweak (EW) vector bosons in association with two jets constitutes
an important set of processes at the CERN Large Hadron Collider. Besides their contri-
bution as a background to various searches for physics beyond the Standard Model, these
processes allow one to probe the mechanism of EW symmetry breaking, since they include
vector boson scattering and they are sensitive to triple and quartic gauge couplings.
In this thesis, the QCD-induced contributions to W±W±jj, W±Zjj, W±γjj and ZZjj
production are studied. The next-to-leading order (NLO) QCD corrections to the pro-
duction cross sections, including leptonic decays of the massive vector bosons, have been
implemented into the flexible Monte Carlo program VBFNLO. The corrections lead to a
significant reduction of the scale uncertainty and show a non-trivial phase space depen-
dence: While in most phase space regions, corrections of 10-20% are obtained, they can
reach up to a factor of two if the separation or the invariant mass of the two tagging jets is
large. This phase space region is of particular interest for studying vector boson scattering.
Using different choices for the factorization and renormalization scales, we show that these
large corrections are due to the large scale uncertainty of the leading order results. The
effect of the NLO corrections on various differential cross sections is discussed in detail.

Zusammenfassung

Paarproduktion elektroschwacher Eichbosonen in Assoziation mit zwei Jets bildet eine
wichtige Klasse von Prozessen für die Experimente am Large Hadron Collider am CERN.
Neben ihrem Beitrag als Untergrund bei der Suche nach Physik jenseits des Standard-
modells lässt sich mit diesen Prozessen der Mechanismus der elektroschwachen Symme-
triebrechung untersuchen, da sie sowohl Vektorboson-Streuung als auch Dreier- und Vier-
erkopplungen der elektroschwachen Eichbosonen beinhalten.
In dieser Arbeit werden die QCD-induzierten Beiträge zur Produktion von W±W±jj,
W±Zjj, W±γjj und ZZjj untersucht. Diese wurden in nächst-führenden Ordnung in
QCD in das flexible Monte Carlo Programm VBFNLO implementiert, wobei leptonische
Zerfälle der massiven Eichbosonen berücksichtigt wurden. Die Korrekturen führen zu einer
signifikanten Reduktion der Skalenunsicherheit und weisen eine nicht-triviale Abhängigkeit
vom Phasenraum auf: Während die Korrekturen in den meisten Phasenraumbereichen
geringer als 20% sind, können diese bei großer Separation oder hoher invarianter Masse der
Jets auf bis zu einen Faktor zwei anwachsen. Für das Studium der Vektorboson-Streuung
ist diese Phasenraumregion von besonderem Interesse. Wir zeigen, dass die großen Kor-
rekturen auf die große Skalenunsicherheit der führenden Ordnung zurückzuführen sind,
indem die Wirkungsquerschnitte für verschiedene Wahlen der Renormierungs- und Fak-
torisierungsskala berechnet werden. Die Effekte der nächst-führenden Ordnung auf ver-
schiedene differentielle Verteilungen werden ausführlich untersucht.
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CHAPTER 1

Introduction

In July 2012, the experiments ATLAS and CMS at the CERN Large Hadron Collider
(LHC) reported the discovery of a new boson with a mass of about 126 GeV [1, 2]. Its
spin is different from one [3–5] and the production and decay rates resemble the properties
of the Standard Model (SM) Higgs boson. If the SM hypothesis is confirmed in the next
round of data taken at the LHC, this discovery would add another milestone to a long path
of success representing the SM. Except for gravitation, all known interactions between the
fundamental particles are described by this model. The strong interaction of quarks and
gluons is described by Quantum Chromodynamics (QCD) [6–8], which exhibits the two
characteristic features of confinement and asymptotic freedom. As a consequence, the
quarks and gluons become weakly interacting at high energies, allowing for perturbative
calculations, while in the low energy regime, a large spectrum of hadrons arises, which
are bound states of these. The electromagnetic and weak interactions are included in the
Glashow-Weinberg-Salam theory [9–11], giving rise to the electroweak (EW) sector of the
SM. Via the Higgs mechanism [12–14], the EW symmetry is spontaneously broken, which
allows one to consistently introduce mass terms to fermions and weak bosons. Besides the
discoveries of the W and Z bosons [15, 16] as well as of the top quark [17], which have
been predicted by the SM, further milestones along the path of success of the SM are,
e.g., the excellent agreement of the magnetic moment of the electron with its theoretical
prediction [18], or the prediction of the rare decay B0

s → µ+µ− [19].

Despite the great success of the SM, it cannot explain all phenomena observed in nature.
The gravitational force is described by general relativity, which leads to conceptual prob-
lems because at energies close to the Planck scale of O(1019 GeV), a unified description of
quantum theory and gravity is required. In addition, there exist some observations that
cannot be explained within the SM or general relativity: The observed rotational veloc-
ity of galaxies indicates the existence of dark matter which, besides its influence on the
gravitational force, has not shown any interactions with the SM particles, yet. Also the
abundance of matter compared to antimatter in the universe cannot be accounted for by
the CP violating mechanism existing in the SM. Furthermore, the SM does not provide a
satisfactory explanation for the large differences in the masses of the elementary particles.
Hence, at some point the path of the SM will fork, opening up a way for a new theory.
A first hint towards physics beyond the Standard Model (BSM) might appear in the self
interactions of the EW gauge bosons, which in the SM are determined by the gauge group
and the mechanism of EW symmetry breaking.



2 1. Introduction

V

V

j

j

j

j

j

j

V

V

V

V

j

j

Figure 1.1.: Feynman diagrams representing the three mechanisms for production of
electroweak vector boson pairs in association with two jets.

At the LHC, these self interactions can be studied in the production of EW vector boson
pairs in association with two jets. These processes not only allow one to scrutinize the
mechanism of electroweak symmetry breaking, but they also serve as a background in
various searches for BSM physics.
V V jj production can be classified into three contributions as illustrated in Fig. 1.1: The
first and second diagram represent EW contributions of O(α4), which can be further
classified into vector boson fusion (VBF) and triboson production with one vector boson
decaying hadronically. Since these contributions include triple and quartic gauge cou-
plings, they can be used to probe the structure of the EW sector of the standard model.
In particular, the VBF contributions are of high interest, since they produce character-
istic detector signals with relatively small backgrounds and they are sensitive to vector
boson scattering, which in the SM is unitarized by contributions of the Higgs boson. First
experimental evidence for the EW production of W±W±jj via VBF has recently been
reported [20], showing that the experimental study of vector boson scattering just started.
The QCD-induced contributions of O(α2

sα
2), which are the subject of this thesis, are rep-

resented by the third diagram. In addition to the contribution shown in Fig. 1.1, with
a gluon being exchanged between two quark lines, there are additional subprocesses with
external gluons attached to one quark line. Due to the appearance of gluon-induced sub-
processes and the larger value of αs compared to α, the QCD-induced processes typically
have larger cross sections than the EW ones and lead to softer events.

Studying V V jj production not only requires precise measurements, but also precise the-
oretical predictions of the cross sections – for the EW processes as well as for the QCD-
induced backgrounds – and the calculation of the next-to-leading order (NLO) QCD cor-
rections to these processes is mandatory. Therefore, these procesees have been listed in the
NLO wishlist [21], formulated at the Les Houches workshop in 2005. While the NLO QCD
corrections to the EW contributions have been known for a few years [22–40], NLO cal-
culations of the more challenging QCD-induced contributions have become available only
recently [41–51]. They involve virtual corrections with up to hexagon one-loop integrals of
rank five, which are not only computing intensive, but their numerical evaluation can also
lead to instabilities. Furthermore, the cross section calculation requires the evaluation of
many subprocesses, each consisting of a large number of Feynman diagrams.

Many NLO calculations of similar complexity heavily rely on automated tools for the
generation of the virtual amplitudes (see e.g. [52–54]) and for performing the phase space
integration (see e.g. [54, 55]), and they typically require the use of a computer cluster.
In this work, a different approach is chosen, aiming for a fast and numerically stable
implementation of the considered processes. The QCD-induced contributions toW±W±jj,
W±Zjj, W±γjj and ZZjj production are implemented at NLO QCD into the flexible
Monte Carlo program VBFNLO [56–58], including full leptonic decays of the massive
vector bosons. We explicitly exploit the specific features of the individual processes to
obtain a highly optimized program, allowing for cross section calculations within a few
hours on a single computer core.
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This thesis is organized as follows: Chapter 2 gives a brief introduction to the SM and
presents the basic principles for calculating cross sections in hadron-hadron collisions with
NLO accuracy. Chapter 3 is devoted to the implementation of QCD-induced V V jj pro-
duction into the Monte Carlo program VBFNLO. The implementation of the amplitudes
and the subtraction terms, needed to handle infrared singularities, is described in detail. In
addition, checks that have been used to validate the implementation are presented and the
performance of the program is shown. In Chapter 4, the phenomenology of the processes
is discussed. The scale dependence of the leading order (LO) and NLO cross sections for
various choices of the factorization- and renormalization-scale is given and the effect of
the NLO corrections on differential distributions is described in detail. Finally, Chapter 5
summarizes the work presented here.





CHAPTER 2

Theoretical Foundations

2.1. The Standard Model

In this section, a brief introduction to the Standard Model of particle physics is pre-
sented, which is a relativistic quantum field theory based on the gauge symmetry group
SU(3)C × SU(2)L × U(1)Y . Quantum chromodynamics [6–8], which describes the strong
interactions between quarks and gluons, is determined by the group SU(3)C . The elec-
troweak interactions are given by the SU(2)L×U(1)Y symmetry of the Glashow-Weinberg-
Salam theory [9–11], which is spontaneously broken via the Higgs mechanism [12–14]. The
SM therefore allows to describe all known fundamental interactions of particles, except for
the gravitational force. Detailed discussions of the SM are found in many textbooks about
quantum field theory (see e.g. [59–61]).

Electroweak sector

The fermions of the SM can be classified into quarks and leptons, which are grouped into
three generations as shown in Table 2.1. While the left-handed fermions form doublets,
transforming under the fundamental representation of the SU(2)L group, the right-handed
ones are singlets. The quantum numbers related to the gauge group SU(2)L × U(1)Y are
the weak isospin T 3 and the hypercharge Y. From these, the electric charge Q is given by

Q = T 3 +
Y

2
. (2.1)

To obtain local gauge invariance, the introduction of the four vector fields W i
µ and Bµ is

required, which transform under the adjoint representation of the corresponding symme-
try group. The interactions of these gauge fields with the fermions is described by the
Lagrangian

LEW =
∑

i∈fermions

Ψii /DΨi −
1

4
W a
µνW

a,µν − 1

4
BµνB

µν , (2.2)

with

W a
µν = ∂µW

a
ν − ∂νW a

µ − g2ε
abcW b

µW
c
ν , (2.3)

Bµν = ∂µBν − ∂νBµ. (2.4)
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L
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+1/3

+2/3

−1/3

uR cR tR 0 +4/3 +2/3

dR sR bR 0 −2/3 −1/3

leptons

(
νe
e−

)

L

(
νµ
µ−

)

L

(
ντ
τ

)

L

+1/2

−1/2
−1

0

−1

e−R µ−R τ−R 0 −2 −1

Table 2.1.: Fermions of the Standard Model and their quantum numbers related to the
gauge group SU(2)L × U(1)Y .

and the covariant derivative

Dµ = ∂µ + ig2W
a
µ T

a + ig1Bµ
Y

2
. (2.5)

The generators of the weak isospin are T a = σa

2 if they act on the doublet fields of the
left handed fermions, while they are T a = 0 when acting on right-handed fermions. g2

and g1 are the coupling constants corresponding to the gauge groups SU(2)L and U(1)Y ,
respectively.

So far, all particles appearing in the Lagrangian of Eq. (2.2) are massless and the intro-
duction of mass terms of the form

−mfΨΨ = −mf

(
ΨLΨR + ΨRΨL

)
(2.6)

or 1
2M

2
V VµV

µ would explicitly break gauge invariance, since these terms are not invari-
ant under SU(2)L transformations. In the SM, the masses are generated via the Higgs
mechanism, which introduces a SU(2)L doublet of complex scalar fields

Φ =

(
φ+

φ0

)
(2.7)

with hypercharge Y = 1. The Lagrangian of this doublet field reads

LH = DµΦ†DµΦ +µ2Φ†Φ− λ(Φ†Φ)2

︸ ︷︷ ︸
−V (Φ†Φ)

. (2.8)

For µ, λ > 0, the potential V (Φ†Φ) has the shape of a mexican hat and features a minimum

at 〈Φ†Φ〉 = µ2

2λ = v2. Due to the non-zero vacuum expectation value and the SU(2)L
symmetry of the Lagrangian, the ground state is not unique and by selecting one of these,
the gauge symmetry is spontaneously broken. The doublet Φ can then be parameterized
by an expansion around the vacuum expectation value. In this parameterization, only
one physical field, the Higgs field H, is obtained, while the other three degrees of freedom
vanish, if the unitary gauge with

Φ =
1√
2

(
0

v +H

)
(2.9)

is used. The kinetic term of Eq. (2.8) includes the contribution

∆L =
1

2

(
0 v

)(
g2W

a
µ

σa

2
+

1

2
g1Bµ

)(
g2W

µbσ
b

2
+

1

2
g1B

µ

)(
0
v

)
(2.10)

=
1

2
M2
W (W−µ W

+µ +W+
µ W

−µ) +
1

2
M2
ZZµZ

µ, (2.11)
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which are the mass terms of the physical fields

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.12)

Zµ =
1√

g2
1 + g2

2

(
g2W

3
µ − g1Bµ

)
, (2.13)

Aµ =
1√

g2
1 + g2

2

(
g1W

3
µ + g2Bµ

)
(2.14)

with masses

MW = g2
v

2
, MZ =

√
g2

1 + g2
2

v

2
and MA = 0. (2.15)

Hence, the Higgs mechanism generates masses of the weak bosons W± and Z, while the
photon remains massless. It also allows the introduction of fermion masses via Yukawa
couplings of the fermions with the Higgs doublet. The corresponding Lagrangian reads

Lmf
=

∑

i,j∈generations

−λijl L
i
Φ ejR − λ

ij
d Q

i
Φ dj − λiju Q

i
iσ2Φ∗uj + h.c., (2.16)

where Q and L represent the quark and lepton doublets, respectively. The matrices λ can
be diagonalized to obtain the mass eigenstates of the fermions.

Quantum chromodynamics

The fermions of the SM also have specific transformation properties according to the
color group SU(3)C . While the leptons are singlets and do not contribute to the strong
interaction, each quark comes as a triplet with three different color charges. The gauge
interactions are mediated by the eight gluon fields Gaµ. Using an Rξ gauge, the QCD
Lagrangian reads

LQCD =
∑

q

q(i /D −mq)q −
1

4
GaµνG

a,µν +
1

2ξ
(∂µG

µ)2 − ca∂µDab
µ c

b (2.17)

with

Dµ = ∂µ + igsG
a
µt
a, (2.18)

Gaµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcν . (2.19)

Hence, the strong interactions are determined by the strong coupling constant gs, as well
as the generators ta of the fundamental representation and the structure constants fabc,
which are related by

[ta, tb] = ifabctc. (2.20)

Important constants for QCD calculations are the quadratic Casimir invariants CF = 4
3

and CA = 3 of the fundamental and adjoint representation, respectively, as well as the
Dynkin index TR = 1

2 , which are defined by

tata = CF 1, facdf bcd = CA δ
ab, Tr(tatb) = TRδ

ab. (2.21)

The last term of Eq. (2.17) contains the anticommuting ghost fields that are needed to
remove the two unphysical degrees of freedom of the gluon field.
In Section 2.2.3, it will be discussed that the non-abelian structure of the QCD interactions
leads to asymptotic freedom and confinement of the quarks and gluons.
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2.2. Cross Sections at Next-to-Leading Order in αs

2.2.1. Perturbative Expansion

The theoretical tool to obtain cross section predictions for collider experiments is pertur-
bation theory, improved by the application of renormalization group equations. At hadron
colliders, the parton model is used to describe the collisions of the hadrons as a scattering
of quarks and gluons, which carry a fraction xi of the hadron momenta Pi. Using the fac-
torization theorem (see e.g. Ref. [62]), the cross section for the collision of two hadrons Hi

producing a final state observable X can be written in terms of parton-parton interactions
as

σ(H1H2 → X) =
∑

a,b

∫ 1

0
dxadxb fa/H1

(xa, µ
2
F )fb/H2

(xb, µ
2
F )σab(ab→ X;µ2

F ), (2.22)

where µF is called factorization scale. The process-independent parton distribution func-
tions (pdfs) f have to be determined experimentally since the particle content of the
hadrons cannot be described perturbatively. At leading order (LO), they can be inter-
preted as probability densities for finding a parton i with momentum fraction xi in the
hadron. When considering higher order corrections, this interpretation does not hold since
collinear radiations off the partons a and b lead to a more involved convolution of the hard
process σab with the pdfs. These initial state splittings involve logarithmic contributions
αns lnn(µ2

F /m
2
ij) of the invariant parton masses mij appearing in the hard process and the

factorization scale µF , that has been introduced in the above equation. To avoid large
contributions of these logarithms, which can spoil the convergence of the perturbative ex-
pansion, a characteristic energy scale of the hard process should be used as factorization
scale. The corresponding shifts of the factorization scale from µF to a scale µ′F lead to
the logarithms αns lnn(µ′2F /µ

2
F ), which can be resummed to all orders in αs into the parton

distribution functions. This introduces a µF dependence of the pdfs, which is determined
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [63–65]. Since the
cross section cannot depend on the, in principle, arbitrary scale µF , the dependence of a
fixed order calculation on this parameter can be used to estimate the size of the neglected
higher order terms.

In general, the final state observable X does not determine a specific final state config-
uration with a fixed number of particles. In particular, it must not depend on soft or
collinear parton radiation. Such splittings cannot be resolved experimentally and lead to
the appearance of divergences in the cross section calculation. According to the Kinoshita-
Lee-Nauenberg (KLN) theorem [66, 67], those divergences cancel for sufficiently inclusive
observables X after the inclusion of various final state multiplicities. Including the inte-
gration over the phase space for n final state particles, represented by dΦn, the partonic
cross section can therefore be written as

σab(ab→ X) =
1

4papb

∑

n

∑

{fn}

∫
dΦn(pa, pb; pf1 , . . . , pfn)dσab(ab→ f1 . . . fn) · Fn(X; {fn}),

(2.23)

where Fn(X, {fn}) includes a jet definition function, as well as phase space cuts which
specify if the final state matches the observable X. For the KLN theorem to hold, the
observable X has to be infrared-safe, meaning that for any parton pair i, j, one obtains

Fn(X; pf1 , . . . , pfi , . . . , pfj , . . . , pfn)
pi·pj→ 0−−−−−→ Fn−1(X; pf1 , . . . , pfi + pfj , . . . , pfn). (2.24)

The partonic subprocesses,dσab, are given by the corresponding scattering amplitudes and
can be calculated perturbatively.
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At LO, Eq. (2.22) can be written as

σLO =
∑

a,b

∫ 1

0
dxadxb f

LO
a (xa, µ

2
F )fLOb (xb, µ

2
F )σBab, (2.25)

where σB is given by the Born-level contribution to the amplitude. The corresponding
next-to-leading order (NLO) cross section reads

σNLO =
∑

a,b

∫ 1

0
dxadxb f

NLO
a (xa, µ

2
F )fNLOb (xb, µ

2
F )
[
σB + σV + σR + σC

]
ab
. (2.26)

The virtual corrections σV contain the interferences of the one-loop diagrams with the
Born contribution, dσV = 2 Re(M∗1−loop · MB). The real emission dσR includes all tree-
level processes with an additional parton in the final state. In contrast to the other
contributions, it therefore has to be integrated over the phase space of n + 1 particles.
The collinear counter term dσC , acting as a pdf counter term, absorbs the remaining
divergences of collinear initial state parton splittings from (σV + σR).

2.2.2. Infrared Singularities and Dipole Subtraction

While the KLN theorem guarantees finite results for the total cross section, the individual
contributions on the right hand side of Eq. (2.26), with exception of σB, are divergent.
Besides the ultraviolet (UV) singularities, appearing in the calculation of σV and discussed
in Section 2.2.3, the contributions involve infrared (IR) divergences, stemming from soft
or collinear parton splittings.

The common procedure to handle these divergences is dimensional regularization, where
the phase space integration over the four-dimensional momenta is replaced by a d = 4−2ε
dimensional integration,

∫
d4p −−→ µ2ε

∫
ddp. (2.27)

Here, an arbitrary mass parameter µ has been introduced to keep the overall mass dimen-
sion of the results. The divergences then manifest as poles in ε and the limit d→ 4 has to
be applied after those poles cancel in the sum of all contributions.

This regularization procedure, however, leads to technical difficulties, since the d-dimen-
sional integrals cannot be calculated using Monte Carlo techniques. A method to overcome
these difficulties is the use of subtraction algorithms: Since the divergent parts of the in-
dividual contributions in Eq. (2.26) factorize in the IR limit and are proportional to the
Born-level contribution, the cross section can be written as [68]

σNLO = σB +

∫

n+1

[(
dσR

)
ε=0
−
(
dσA

)
ε=0

]
+

∫

n

[
dσV +dσC +

∫

1
dσA

]

ε=0

. (2.28)

The subtraction term dσA has to be chosen such that it approaches the contribution dσR

in the phase space regions with soft or collinear parton splittings. Furthermore, it has to
be partly∗ analytically integrable over the phase space of the additional parton emission.
This integration leads to a contribution proportional to the Born-level matrix elements
and contains poles in ε that exactly cancel the poles appearing in dσV and dσC . After
that, the limit ε→ 0 can be applied and the phase space integrals in Eq. (2.28) over the n
and n + 1 final state particles can be evaluated separately in four space-time dimensions
using Monte Carlo integration.

∗d-independent integrations, such as the x integration of dipoles [68] involving initial state particles, can be
done numerically.
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Figure 2.1.: Classification of the dipoles according to the position of the emitter pair and
the spectator parton. The momentum flow is indicated by the arrows.

Catani-Seymour Dipole Subtraction

In this thesis, the Catani-Seymour dipole subtraction [68] algorithm is used and will be
explained in the following. Within this algorithm, the subtraction term is constructed as
a sum of dipoles†

dσA =
∑

pairs
i,j


∑

k 6=i,j
Dij,k +

∑

a

Daij


+

∑

pairs
a,i


∑

k 6=i
Daik +

∑

b 6=a
Dai,b


 , (2.29)

where for each emitter pair i, j or a, i, the corresponding term in the brackets reproduces
the singular behavior ofdσR in the limit pi ·pj → 0 or pa ·pi → 0, respectively. The dipoles
appearing in the first bracket therefore describe soft and collinear final-state splittings,
whereas the contributions in the second bracket include all initial-state singularities.

Each dipole can symbolically be written as

D = V ⊗ |MB|2, (2.30)

where the operator V acts on the spin and color indices of the corresponding Born-level
process, which is obtained by combining the emitter pair to one parent parton. The
kinematics of the Born-level process are obtained from the full real-emission kinematics
by combining the momenta of the emitter particles and shifting a part of this momentum
to another parton, which is called the spectator parton, to fulfill the on-shell condition of
all partons. Since the spectator parton can either be in the initial or in the final state of
the process, one obtains a further classification of the dipoles as illustrated by Fig. 2.1.

The dipole formulas for the various configurations can be found in Ref. [68]. In the fol-
lowing, the dipoles will be explained taking the dipoles for final state splittings with final

†Following the notation of Ref. [68], the indices i, j and k correspond to final state partons, whereas the
partons a and b are in the initial state. The sum

∑
b 6=a therefore only includes one dipole term.
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state spectator, Dij,k, as an example. These dipoles can be written as

Dij,k = − 1

2pi · pj
· 〈ĩj, k̃, . . . |TijTk

T2
ij

Vij,k|ĩj, k̃, . . . 〉, (2.31)

where the bra-ket notation is used to represent the Born-level matrix element and its
complex conjugate of the underlying process. The momenta of the emitter parton ĩj and
of the spectator k̃ are given by [68]

p̃µij = pi + pj −
1

1− yij,k
pµk and p̃µk =

1

1− yij,k
pµk , (2.32)

with

yij,k =
pipj

pipj + pjpk + pkpi
, (2.33)

while the momenta of all other particles involved in the process are not modified. With
this definition of the momenta p̃ij and p̃k, the four momentum in the Born-level process
is conserved, since

pµi + pµj + pµk = p̃µij + p̃µk , (2.34)

and the emitter and spectator partons are on-shell, p̃ 2
ij = p̃ 2

k = 0.

The Lorentz-structure of the splitting ĩj → i, j is contained in the matrices Vij,k, which
introduce a correlation between the Born-level matrix element and its complex conjugate
in the spin of the emitter parton. In the following, the Born-level matrix elements are
specified by the spin of the emitter particle, with s or s′ denoting the spin of quarks and

µ, ν being the spin indices of gluons. With this convention, the matrices Vij,k for
(–)
q → (–)

q g,
g → qq̄ and g → gg splitting read [68]

〈s|Vqigj ,k|s′〉 = 8παsCF δss′

[
2

1− zi(1− yij,k)
− (1 + zi)

]
+O(ε),

〈µ|Vqiq̄j ,k|ν〉 = 8παsTR

[
−gµν − 2

pipj
(zip

µ
i − zjp

µ
j )(zip

ν
i − zjpνj )

]
+O(ε),

〈µ|Vgigj ,k|ν〉 = 16παsCA

[
− gµν

(
1

1− zi(1− yij,k)
+

1

1− zj(1− yij,k)
− 2

)

+
1

pipj
(zip

µ
i − zjp

µ
j )(zip

ν
i − zjpνj )

]
+O(ε),

(2.35)

with

zi =
pipk

(pi + pj) pk
, zj =

pjpk
(pi + pj) pk

. (2.36)

In the collinear limit of the particles i and j, the splitting kernels defined in Eq. (2.35)
become proportional to the Altarelli-Parisi splitting functions [64] and they therefore re-
produce the correct asymptotic behavior in this phase space region.

The correct treatment of soft gluon radiation requires the introduction of color correlations
between the Born-level matrix elements since the gluon can be emitted from any external
parton involved in the process. This color correlation is given by the operators TijTk ap-
pearing in Eq. (2.31), which contain the additional generators of the SU(3) group for gluon
exchange between the particles ĩj and k̃. Hence, the factor T2

ij appearing in Eq. (2.31) is
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the quadratic Casimir invariant in the representation given by the particle ĩj. Since color
conservation guaranties

∑

j 6=i
TiTj = −T2

i , (2.37)

the color factors in Eq. (2.31) do not modify the behavior of the subtraction term in the
collinear regions and lead to the correct asymptotic behavior in the soft limit [68]. The
color correlated matrix elements that are needed for the processes under consideration are
given in Appendix A and the implementation of the dipoles is presented in Section 3.2.

Integrated dipoles

The analytical integration of the dipoles over the phase space of the real parton radiation
in d space-time dimensions is presented in Ref. [68] and the resulting contributions can
be added to dσV and dσC . The collinear counter term dσC absorbs some of the diver-
gences resulting from collinear initial state splittings into a redefinition of the pdfs. These
divergences appear because the pdfs of the initial state partons are evaluated at different
momentum fractions for the real emission contribution and the underlying Born-process.
In the MS scheme, dσC reads [68]

dσCab(pa, pb) = −αs
2π

1

Γ(1− ε)
∑

c,d

∫ 1

0
dzazbdσ

B
cd(zapa, zbpb)

·
{
− δbdδ(1− zb)

1

ε

(
4πµ2

µ2
F

)ε
P ac(za)− δacδ(1− za)

1

ε

(
4πµ2

µ2
F

)ε
P bd(zb)

}
,

(2.38)

where P ab(z) are the Altarelli-Parisi splitting functions [64] for collinear parton splittings
a(p)→ b(zp) + b′(p− zp).
The sum of the integrated dipoles and the pdf counter term is

dσC +

∫

1
dσA =dσB ⊗

[
I +

∫ 1

0
dx (P(x, µF ) + K(x))

]
, (2.39)

where ⊗ stands for appropriate color correlations of the operators I, P and K with the
Born-level contribution dσB. The endpoint function I cancels the infrared singularities of
the virtual contribution dσV (see Section 3.3), whereas the operators P and K are the finite
remnants of the collinear initial state splittings, which will be discussed in Section 3.4.

2.2.3. Virtual Corrections, Renormalization and Running Coupling

The one-loop integrals appearing in the virtual amplitude are of the general form

T µ1,...,µmn =
(2πµ)2ε

iπ2

∫
ddl

lµ1 · · · lµm
D0 · · · Dn−1

, with Di =


l +

i∑

j=1

pj




2

−m2
i + i0, (2.40)

where the momenta of the external particles pi are defined as flowing in and dimensional
regularization is used as defined by Eq. (2.27). If some of the masses mi appearing in
the loop are zero, the integration over the loop momentum l includes regions where the
integrand is singular because some of the denominators D get zero. This leads to the
appearance of mass singularities [66], which exactly correspond to the infrared divergences
of the real emission contribution. These divergences cancel in the sum of the one-loop
amplitude and the endpoint function I (see Section 2.2.2).
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In addition, the integral in Eq. (2.40) might diverge for n ≤ 4 since the integral includes
the limit |l| → ∞. These singularities of ultraviolet origin can be absorbed into a renor-
malization of the fields and coupling constants as described in many quantum field theory
text books (see e.g. [59–61]). Using multiplicative renormalization, the bare quantities, as
given by the Lagrangian, are replaced by renormalized ones according to

Ψ0 = Z
1/2
Ψ Ψr, A0

µ = Z
1/2
A Arµ, g0

s = µεZgg
r
s , (2.41)

where in the renormalization of the coupling constant gs, a factor of µε has been included
to obtain a dimensionless renormalized coupling‡. The last equation also shows that the
renormalized coupling has to be scale dependent, since the right hand side of the equation
depends on the mass scale µ whereas g0

s is scale independent.

The renormalization constants can be written as a series expansion in αs and they are
fixed by the specification of renormalization conditions. Using on-shell renormalization of
the fields, the renormalization constants of the massless quark and gluon fields are given
by§ [69]

ZΨ = 1 + δΨ = 1− αs
4π
CF
(
∆UV(µ)−∆IR(µ)

)
, (2.42)

ZA = 1 + δA

= 1− αs
4π

[(
4

3
NFTR −

5

3
CA

)(
∆UV(µ)−∆IR(µ)

)
+

4

3
TR

(
∆UV(µ) + ln

M2

m2
t

)]
,

(2.43)

where NF = 5 quark flavors are considered to be massless. The Casimir invariants CF , CA
and the Dynkin index TR are given in Eq. (2.21) and the IR and UV poles are comprised
in

∆(µ) =

(
4πµ2

M2

)ε
Γ(1 + ε)

1

ε
, (2.44)

with an arbitrary mass parameter M .

The renormalization of the coupling constant is fixed by applying a renormalization con-
dition that determines the three point function at a renormalization scale µR. This scale
does not have to coincide with µ, leading to additional logarithms ln(µ2/µ2

R) due to fac-
tors of (µ2/µ2

R)ε multiplying the UV pole. At any order in perturbation theory, the results
must not depend on the scale µ, which can serve as a check of the calculation. In the MS
scheme, the renormalization constant reads§ [69]

Zg = 1 + δg

= 1− αs
4π

[(
2

3
NFTR −

11

6
CA

)(
∆UV(µ)− ln

µ2
R

M2

)
+

2

3
TR

(
∆UV(µ) + ln

M2

m2
t

)]
.

(2.45)

The relation of the bare and renormalized coupling constant in Eq. (2.41) leads to a con-
nection between the µR dependence of the renormalized coupling and the renormalization
constant Zg. Since g0

s does not depend on the scale, we obtain the β function of QCD

β(gs) =
∂

∂ lnµR
gs = − gs

Zg

∂

∂ lnµR
Zg = − gs

Zg

∂

∂ lnµR
δg

= − g3
s

16π2
β0 −

g5
s

(16π2)2
β1 +O(g7

s),

(2.46)

‡The mass parameter µ appearing in the renormalization of gs motivates the appearance of µ2ε in Eqs. (2.27)
and (2.40).

§The renormalization constants given here differ from the usual ones by terms of O(ε), which do not
contribute at NLO.
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with the coefficients [8, 70]

β0 =
11

3
CA −

4

3
NFTR = 11− 2

3
NF , (2.47)

β1 =
34

3
C2
A −

20

3
CANFTR − 4CFNFTR = 102− 38

3
NF . (2.48)

In contrast to quantum electrodynamics, the β function of QCD is negative for NF <
16, leading to vanishing couplings in the limit Q2 → ∞, which is known as asymptotic
freedom [8].

The scale dependence of αs = g2s
4π is obtained by solving the differential equation (2.46).

Including only the one-loop contribution β0, it is

αs(Q
2) =

αs(µ
2
R)

1 +
αs(µ2R)

4π β0 ln Q2

µ2R

. (2.49)

Hence, αs(Q
2) becomes large at small energy scales Q and diverges at

ΛQCD = µR exp

( −2π

β0 αs(µ2
R)

)
, (2.50)

leading to a hadronization of the strongly interacting partons at low energy scales.

Using the scale ΛQCD, the one-loop running of αs, Eq. (2.49) can be rewritten as

αs(Q
2) =

4π

β0 ln(Q2/Λ2
QCD)

. (2.51)

Similarly, including the two-loop coefficient β1, the scale dependence is

αs(Q
2) =

4π

β0 ln(Q2/Λ2
QCD)


1− 2β1

β0

ln
[
ln(Q2/Λ2

QCD)
]

ln(Q2/Λ2
QCD)


 , (2.52)

which is used for cross section calculations with NLO accuracy. In Eq. (2.52), the param-
eter ΛQCD has to be fixed by the value of αs at an arbitrary scale.

By solving the differential equation Eq. (2.46) to obtain the scale dependence of αs, the
leading logarithms lnn(Q2/µ2

R) are resummed to all orders in αs. In perturbation theory,
the cross section is written as an expansion in αs,

σ =
∑

n

αns (µ2
R)σn(µ2

R), (2.53)

which is independent on the value of µR if all orders are included and a change of the
renormalization scale therefore only corresponds to a reordering of this perturbative ex-
pansion. Truncating the perturbative expansion at a fixed order, however, leads to an
artificial scale dependence, which shows the influence of the leading logarithmic terms of
the neglected contributions.

2.2.4. Monte Carlo Integration and Phase Space Generation

Cross section calculations require the evaluation of the phase space integral as well as an
integration over the momentum fractions of the two initial state partons. For a 2 → n
process, these are 3n − 3 nontrivial integrals, which are usually evaluated using Monte
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Carlo techniques with importance sampling. Since the convergence of Monte Carlo inte-
grations is independent of the dimensionality of the integrals (see Eq. (2.56)), this method
is predestined for multidimensional integrations. Furthermore, nontrivial phase space cuts
can be applied and one can obtain arbitrary differential distributions without separated
runs of the program.

Within Monte Carlo algorithms, the integral I of a n-dimensional function f is expressed
as

I =

∫
dnxf(~x) =

∫
dnx

f(~x)

g(~x)
g(~x) ≈ IN =

V

N

N∑

j=1

f(~xj)

g(~xj)
, (2.54)

where V is the volume of the integration region and the estimate IN of the integral I is
obtained by evaluating the function f(~x) at N sample points, which are randomly chosen
according to the probability density g(~x). The sequence IN is guaranteed to converge to
I in the limit N → ∞ and an estimate of the deviation of IN from I can be obtained by
calculating the variance of IN , [71]

Var(IN ) = (∆IN )2 =
V 2

N
Var

(
f

g

)
. (2.55)

Therefore, the relative accuracy of the estimate behaves as

∆IN
IN
∝ 1√

N

√
Var

(
f

g

)
(2.56)

and hence does not depend on the dimension n of the integration. To improve the con-
vergence of the integral, one can try to minimize the variance of f/g. In principle, this
minimum is obtained if g ∝ |f |. This is the basis of importance sampling algorithms,
where the function g is modeled such that it approximates the function f .

In the VEGAS algorithm [71], the sampling points are generated considering all dimensions
of the integration domain as independent. The function g(~x) can therefore be written in
a factorized form

g(~x) =
n∏

i=1

gi(xi). (2.57)

The generation of sampling points is split into multiple iterations, which allows to adjust
the functions gi after each iteration to improve its approximation of the integrand, starting
with a uniform distribution for g in the first iteration. The functions gi are implemented
as step functions with M steps of different widths and the same number of sampling points
is generated for all of the M regions. After each iteration the boundaries of the regions
are adjusted such that each region gives the same contribution to the integral.

The calculation presented in this thesis is done within the VBFNLO [56–58] framework,
where a modified version of the VEGAS algorithm, called MONACO, is implemented.
After each iteration, the boundaries of the various regions are written into grid-files, which
can be used as input for further program executions to start the integration with previously
adjusted functions gi.

The program VBFNLO also provides various routines that allow to construct phase space
generators for an efficient mapping of the sampling points ~x to the momenta pµi of the
particles. This mapping is crucial to further reduce the variance appearing in Eq. (2.56).
In particular, the resonances appearing due to s-channel contributions of heavy particles
should be mapped with an appropriately chosen Breit-Wigner distribution.
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Figure 2.2.: Schematic representation of the phase space generation for V V jj production.
On the left, the momenta of the four final state leptons are generated by subsequent two
body decays X → V V → 4l. The W±γjj production peaks in two distinct phase space
regions and requires the application of both depicted phase space generators as explained
in the text.

The phase space for V V jj production with leptonic decay of the vector boson can be
generated as depicted in the left hand side of Fig. 2.2, using subsequent two body decays
of a pseudo particle X, which is produced in association with the massless partons. This
method allows to directly map the invariant mass of the two vector bosons, mV V = mX ,
to one of the components of the sampling points ~x. The invariant masses of the two lepton
pairs can be generated according to Breit-Wigner distributions corresponding to the mass
and width of the corresponding vector boson Vi.

The calculation of Wγjj production requires more attention since the amplitude peaks in
two distinct regions of the phase space: The process includes Wγjj production with the
two body decay W → lν as well as Wjj production with the radiative decay W → lνγ.
An appropriate phase space mapping of the first contribution can be achieved by removing
the two body decay of V2 from the general process V1V2jj and setting mV 2 = 0 in the
phase space generator for the production of two massive vector bosons. In the phase space
regions where the radiative decay is dominating, a phase space generator as shown in the
right hand side of Fig. 2.2 should be used.

The phase space integration for W±γjj production can therefore be split into two in-
tegrations if an additional cut is applied, which separates the two phase space regions.
The appropriate phase space generator can efficiently be chosen by testing which of the
invariant masses mlν and mlνγ is closest to mW .

2.2.5. Photon Isolation

A further subtlety arises in the NLO calculation of W±γjj production, since the splitting
q → qγ diverges in the collinear limit. These divergences can in principle be mended by
absorbing these divergences into a photon fragmentation function [72–74], which has to
be determined experimentally. This procedure is similar to the factorization of collinear
initial state splittings into the pdfs of the hadrons.

In this thesis, the singularities stemming from collinear quark-photon splittings are cir-
cumvented by applying an appropriate separation cut. At LO, these divergences can be
removed by a cut on the R-separation of the photon and the jets, with

Rjγ =
√

(∆yjγ)2 + (∆ηjγ)2. (2.58)

However, applying this cut on the photon-jet separation does not remove all collinear
divergences appearing in the NLO calculation since one has to use inclusive observables,
where not all quarks have to be clustered into jets. In addition, a simple separation cut
applied to all photon-parton pairs would spoil the cancellation of infrared singularities due
to the restriction of the phase space for soft gluon radiation.
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An IR-safe method to isolate the photon was proposed by S. Frixione [75], where in a
smooth cone around the photon, collinear particle splittings are removed while keeping
the full phase space for soft emissions. This can be achieved by requiring

∑

i∈partons

pT,iθ(R−Rγi) ≤ pT,γ
1− cosR

1− cos δ0
∀R < δ0, (2.59)

such that the allowed partonic energy increases with the distance to the photon. Parton
radiations with the separation to the photon being larger than δ0 are not restricted.

The results for W±γjj production presented in Section 4.6 are obtained using this cut.





CHAPTER 3

Implementation

To study vector boson pair production in association with two jets, the QCD-induced
contributions to the processes

pp→ e+νe µ
+µ− jj +X,

pp→ e−ν̄e µ
+µ− jj +X,

(3.1a)

pp→ e+νe γ jj +X,

pp→ e−ν̄e γ jj +X,
(3.1b)

pp→ e+νe µ
+νµ jj +X,

pp→ e−ν̄e µ
−ν̄µ jj +X

(3.1c)

and

pp→ e+e− µ+µ− jj +X (3.1d)

have been implemented into the flexible parton level Monte Carlo program VBFNLO [56–58]
at next-to-leading order in the strong coupling constant, including all spin correlations
and off-shell effects. For simplicity, the processes (3.1) are referred to as W±Zjj, W±γjj,
W±W±jj and ZZjj production, respectively. The calculation of above processes can be
used to obtain the cross sections of the corresponding processes with leptons of the same
generation in the final state, as well. In this case, an additional symmetry factor of 1

2 has
to be included for W±W±jj and ZZjj production∗. The implementation of the processes
Zγjj and W+W−jj is left for future work.

The focus of this chapter will be on the implementation of the amplitudes and subtraction
terms (see Section 2.2.2). The other ingredients of the calculation, including an efficient
phase space generator for the Monte Carlo integration, are already included in VBFNLO.
Details of the implementation are presented taking ZZjj production as an example, which
is the most challenging process under consideration. It involves the summation over many
spin configurations of the external particles and the virtual amplitudes include, besides
hexagon diagrams appearing in all processes, closed quark loops with up to rank-five pen-
tagon integrals. The implementation of the other processes is similar to ZZjj production
and the major differences will be pointed out in the text.

∗The neglected interferences due to identical leptons are expected to be small (see e.g. [34]).
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This chapter is organized as follows. In Section 3.1, the implementation of the processes at
LO is described and general methods are presented, which are used for the other contribu-
tions as well. In Sections 3.2 and 3.3 the real emission contribution and virtual corrections
are considered. The finite collinear subtraction term is discussed in Section 3.4. Finally, in
Sections 3.5 and 3.6 some additional checks and optimizations are presented. Furthermore,
the runtime of individual contributions is studied.

3.1. Born Contributions

The partonic subprocesses contributing to the processes under consideration can be clas-
sified into two groups, namely

qq → qq + V1 V2 and qg → qg + V1 V2, (3.2)

which are referred to as 4-quark and 2-quark-2-gluon subprocesses in the following and
also include crossing related contributions. Due to electric charge conservation, only the
4-quark subprocesses contribute to W±W±jj production.

To evaluate the contributions of the individual subprocesses, the corresponding squared
matrix elements have to be implemented, which is done using the helicity method of
Ref. [76]. The processes W+Zjj, W−Zjj, W+γjj and W−γjj are very similar and
therefore the same routines to evaluate the matrix elements are used, which internally
take into account the minor differences of the four processes. Similarly, the processes
W+W+jj and W−W−jj share the same implementation.

For a given process, the leptonic decay of the EW vector bosons is the same for all subpro-
cesses and can be classified into two contributions. Either two vector bosons are emitted
from the quark lines and each of them decays into a lepton pair, e.g. for ZZjj production
V1 → e+e− and V2 → µ+µ−, or one vector boson couples to the quarks and decays into four
leptons, Ṽ → e+e− µ+µ−. Besides the contributions with Vi and Ṽ being Z bosons, off-
shell photons have to be taken into account to preserve gauge invariance. Hence, for each
of the 4 spin configurations of the leptons, the decay currents Zµi , A

µ
i , Z̃

µ and Ãµ, which
are illustrated in Fig. 3.1 have to be calculated, which is done using HELAS routines [77].
Furthermore, it can be advantageous to combine the corresponding Z and photon currents
to an effective current including the coupling constants to a quark of type f ∈ {u, d} and
helicity τ ,

V µ
i,qf τ

= gγff ·Aµi + gZffτ · Zµi (3.3)

and correspondingly for Ṽqf τ . This method allows to reduce the computing time of various
contributions by a factor of two as shown later.

Using crossing symmetry, all subprocesses of ZZjj production can be obtained using an
implementation of the matrix elements for the subprocesses

q1q2 → q3q4 e
+e− µ+µ− and q1g2 → q3g4 e

+e− µ+µ− . (3.4)

The corresponding two routines are called ME4q and ME2q2g in the following. To obtain
a fast program, they evaluate all combinations of external quark flavors at once. If one
considers five light quark flavors, this allows to evaluate all 140 subprocesses of the 4-quark
type with only four calls to the ME4q routine.

First, the implementation of the matrix elements for the 2-quark-2-gluon subprocesses is
discussed. The routine ME2q2g has the momenta, as they are generated by the phase
space generator, and their assignment to the particles qi and gi as input parameters. In
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Figure 3.1.: Leptonic decays of the EW bosons for ZZjj production. In the first group,
each of the two vector bosons decays into a lepton pair. The decay of one vector boson
into 4 leptons with 16 contributing Feynman diagrams is represented by the diagrams on
the right hand side.

the following, the momenta pi are defined as flowing in and the indices correspond to
the particles as they appear in the Feynman diagrams. First, the wave functions of the
external partons are calculated. Since these are assumed to be massless, two-component
Weyl spinors can be used for the quarks, which are calculated for both helicity states τ
and are denoted as |q1; τ〉 and 〈τ ; q3| in the following. Depending on the assignment of
the quarks to the phase space momenta, these are spinors for either incoming or outgoing
fermions. The wave functions of the gluons εµi,λi can be chosen to be real-valued using a
rectangular polarization basis.

The following figure shows a representative Feynman diagram including color indices of
the partons, needed when writing the full matrix element.

〈τ, q3||q1, τ〉

ε2,λ2
ε4,λ4 V1,qfτ V2,qfτ

i j

a b

The wave functions can be contracted with each other to obtain off-shell wave functions
of internal particles. Following the notation of Ref. [76], the contraction of e.g. the spinor
|q1; τ〉 with the current V1,qf τ is denoted as |V1, q1; τ f〉. Note that the latter wave function
not only has to be calculated for the two possible quark helicities, but also for the two
quark types f . Wave functions with a different permutation of the same particles can
be combined, resulting in an efficient summation over the contributions of all Feynman
diagrams. E.g. the emission of both EW vector bosons from the quark q1 can be calculated
as

|V1V2q1; τf〉 = |V1, V2, q1; τ f〉+ |V2, V1, q1; τ f〉+ |Ṽ , q1; τ f〉, (3.5)

where the permutation of the vector bosons is fixed for the contributions on the right
hand side, whereas all contributions are included on the left. Here, the advantage of the
effective currents defined in Eq. (3.3) becomes apparent: Keeping the helicity τ fixed, the
above expression only has to be evaluated twice to obtain the contributions for up- and
down-type quarks. Without the effective current, the quark flavor would not be fixed in
the above expression, but the four combinations of photon and Z contributions would have
to be taken into account.

For diagrams involving a triple gluon vertex, the off-shell current

g∗µλ2λ4 =
[
ε2,λ2 · ε4,λ4 (p2 − p4)µ + 2 p4 · ε2,λ2 ε

µ
4,λ4
− 2 p2 · ε4,λ4 ε

µ
2,λ2

] 1

(p2 + p4)2
(3.6)
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with color factor ifabc is used.

Using the wave functions defined above, the full matrix elements can be obtained. Thereby,
the individual contributions have to be assigned to the two color structures

C1 = (tbta)ji and C2 = (tatb)ji, (3.7)

depending on the order in which the gluons are attached to the quark line. The diagrams
with a triple gluon vertex have the color structure ifabctcji = C2 − C1 and therefore con-
tribute to both structures. For a fixed combination of quark flavor f , helicity τ and gluon
polarizations λ2, λ4, the full matrix element is

Mf,τλ2λ4 =
(
〈q3|g∗|V1V2q1〉+ 〈q3V1V2|g∗|q1〉+ 〈q3V1|g∗|V2q1〉+ 〈q3V2|g∗|V1q1〉

)
· (C2 − C1)

+
(
〈q3V1g2|g4|V2q1〉+ 〈q3V2g2|g4|V1q1〉+ 〈q3V1g2|V2|g4q1〉+ 〈q3V2g2|V1|g4q1〉

+ 〈q3g2|g4|V1V2q1〉+ 〈q3g2|Ṽ |g4q1〉+ 〈q3V1V2|g2|g4q1〉
)
· C2

+
(
〈q3V1g4|g2|V2q1〉+ 〈q3V2g4|g2|V1q1〉+ 〈q3V1g4|V2|g2q1〉+ 〈q3V2g4|V1|g2q1〉

+ 〈q3g4|g2|V1V2q1〉+ 〈q3g4|Ṽ |g2q1〉+ 〈q3V1V2|g4|g2q1〉
)
· C1

= M1C1 +M2C2,

(3.8)

where the flavor and helicity indices have been omitted on the right hand side. This matrix
element has to be squared and summed over the colors of the partons, leading to

|Mf,τλ2λ4 |2 = |M1|2 〈C1|C1〉 + |M2|2 〈C2|C2〉 + 2 Re(M∗1M2)〈C1|C2〉. (3.9)

The calculation of the color factors

〈C1|C1〉 = 〈C2|C2〉 = N · CF =
16

3
, (3.10)

〈C1|C2〉 = N · CF ·
(
CF −

CA
2

)
= −2

3
(3.11)

is presented in Appendix A. Furthermore, the squared matrix element has to be multiplied
with the appropriate power of the, so far neglected, strong coupling constant evaluated at
the renormalization scale µR.

Eqs. (3.8)-(3.11) have to be evaluated for all combinations of the parton spins. Since the
(off-shell) wave functions are calculated before the evaluation of the full matrix elements,
many contributions can be used for various spin combinations and e.g. the contribution
|g4q1〉, which does not depend on f and λ2, does not has to be evaluated each time. After
the summation over the parton spins, the routine returns the squared amplitude for the
two distinct quark flavors.

The summation over the lepton helicities is performed using another method. Instead of
calculating all spin configurations at each phase space point, a “random helicity summa-
tion” is applied. The simplest method would be to randomly choose and evaluate only
one of the possible spin configurations at each phase space point. If its contribution is
multiplied with the number of spin configurations, one obtains the same results after do-
ing the Monte Carlo integration. The runtime of each phase space point can therefore be
significantly reduced, but the Monte Carlo integration has to be done with more points
since the fluctuations of the integrand increase. With the above method of random he-
licity summation, these fluctuations can become large since some phase space regions can
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be dominated by a specific spin configuration. Therefore another method is used in this
implementation, where all spin configurations contribute with randomly selected phase
factors [78]. The spinor of an external fermion can be replaced by

u(φ) = eiφu+ + e−iφu−, (3.12)

where u± are the two spin states of the particle and φ is a random phase. Integrating
the squared matrix elements over the random phase, which can be done together with the
phase space integration using Monte Carlo techniques, one obtains

∫ 2π

0

dφ

2π
|Mu(φ)|2 =

∑

λ

|Muλ|2, (3.13)

where the mixed contributions involving the factors e2iφ ū±u∓ vanish due to the inte-
gration. For the vector boson pair production processes studied here, one can use two
independent phases to get the decay currents

V µ
i (φi) =

∑

τi

e2τi iφi V µ
i,τ and Ṽ µ(φ1, φ2) =

∑

τ1,τ2

e2τ1 iφ1e2τ2 iφ2 Ṽ µ
τ1τ2 , (3.14)

where the helicities τi refer to the helicities of the leptons. Random helicity summation
could also be used for the summation over parton spins. However, as explained above
the full summation can be done very efficiently. Furthermore, the Born amplitudes are
needed for the real emission contribution as well, where the use of the full spin sum is
advantageous to obtain full information about spin correlations.

The routine to evaluate the squared matrix elements has to be called seven times to obtain
all crossing related contributions

q1 g2 → q3 g4 g2 q1 → q3 g4 (3.15a)

q̄3 g2 → q̄1 g4 g2 q̄3 → q̄1 g4 (3.15b)

q1 q̄3 → g2 g4 q̄3 q1 → g2 g4 (3.15c)

and

g2 g4 → q̄1 q3. (3.15d)

Using the results of the squared matrix elements for up- and down-type quarks, one can
sum over all five light quark flavors of the quark line q1 → q3 for each of the above
subprocess groups. Thereby, the matrix elements have to be multiplied with the parton
density functions of the initial state partons, the factors for averaging over initial state
spins and colors, as well as with the symmetry factor of the final state.

The same methods can be used to obtain the Born contributions of the 4-quark subpro-
cesses. The wave functions of the quarks and their contractions with the EW bosons are
evaluated using the conventions as shown in the following representative diagram.

〈τ3, q3||q1, τ1〉

V1,qf3τ3

V2,qf4τ4

i k

〈τ4, q4||q2, τ2〉
lj
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From these, the following currents are calculated (a ∈ {3, 4}, b ∈ {1, 2})

Jµab,τ =〈τa = τ ; qa|γµ|qb; τb = τ〉
JµaVib,fτ =〈τa = τ ; qa|γµ|Viqb; τb = τ, f〉+ 〈τa = τ, f ; qaVi|γµ|qb; τb = τ〉
Jµ
aṼ b,fτ

=〈τa = τ ; qa|γµ|V1V2qb; τb = τ, f〉+ 〈τa = τ, f ; qaV1V2|γµ|qb; τb = τ〉
+〈τa = τ, f ; qaV1|γµ|V2qb; τb = τ, f〉+ 〈τa = τ, f ; qaV2|γµ|V1qb; τb = τ, f〉.

(3.16)

The full Born matrix elements are then obtained by contracting these currents with the
propagator of the exchange gluon. All Feynman diagrams with a t-channel exchange
between the two quark lines q1 → q3 and q2 → q4 with quark flavors f1, f2 and helicities
τ1, τ2 are included in

Mt,f1f2,τ1τ2 = g2
s Ct gµν ·(

Jµ13,τ1
Jν

2Ṽ 4,f2τ2

(p1 + p3)2
+
Jµ1V13,f1τ1

Jν2V24,f2τ2

(p1 + p3 + pV1)2
+
Jµ1V23,f1τ1

Jν2V14,f2τ2

(p1 + p3 + pV2)2
+
Jµ

1Ṽ 3,τ1
Jν24,f2τ2

(p2 + p4)2

)
, (3.17)

with the color factor Ct = takit
a
lj . Furthermore, the corresponding contributions Mu for

gluon exchange between the quark lines q1 → q4 and q2 → q3 is needed for subprocesses
with identical quarks and for further optimizations. The matrix elements can be squared
and summed over parton helicities to obtain 10 contributions

|Mt,f1f2 |2 =
∑

τ1,τ2

|Mt,f1f2,τ1τ2 |2,

|Mu,f1f2 |2 =
∑

τ1,τ2

|Mu,f1f2,τ1τ2 |2,

|Mtu,f=f1=f2 |2 =
∑

τ

|Mt,f,τ +Mu,f,τ |2 +
∑

τ1 6=τ2

|Mt,f,τ1τ2 |2 + |Mu,f,τ1τ2 |2
(3.18)

for the various combinations of quark flavors. Note the difference between, e.g., |Mt,dd|2
and |Mtu,dd|2, which both only involve down type quarks. The former one has to be used
for down-type quarks of different generations while the latter one involves identical quarks
of the same generation. The products of the color factors appearing in the squared matrix
elements can be found in Appendix A.

It is worth noting the color structure of the corresponding EW vector boson scattering
processes, as well. These are CEWt = δkiδlj and CEWu = δkjδli. Hence, one obtains for the
interferences of the EW and QCD processes 〈Ct|CEWt 〉 = 〈Cu|CEWu 〉 = 0 and 〈Ct|CEWu 〉 =
N · CF = 4. Interferences are therefore only possible between t-channel diagrams of
the QCD and u-channel diagrams of the EW process, or vice versa, leading to a large
suppression of the interferences.

Calculating the squared matrix element for the four crossings

q1 q2 → q3 q4, (3.19a)

q̄3 q̄4 → q̄1 q̄2, (3.19b)

q1 q̄3 → q̄2 q4 and q̄3 q1 → q̄2 q4, (3.19c)

all 140 subprocesses of the 4-quark type can be obtained. Especially both contributions in
the last line of Eq. (3.19) include 45 different subprocesses, as shown in Table 3.1, since the
Mt, Mu and Mtu contributions can be used. For the other two crossings, which involve
25 subprocesses, Mt and Mu are the same, so that only one of these has to be used. As
for the 2-quark-2-gluon subprocesses, the squared matrix element for each subprocess has
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Mtu,uu u ū→ ū u, c c̄→ c̄ c

Mtu,dd d d̄→ d̄ d, s s̄→ s̄ s, b b̄→ b̄ b

Mt,uu u ū→ c̄ c, c c̄→ ū u

Mt,ud u ū→ d̄ d, u ū→ s̄ s, u ū→ b̄ b, c c̄→ d̄ d, c c̄→ s̄ s, c c̄→ b̄ b

Mt,du d d̄→ ū u, d d̄→ c̄ c, s s̄→ ū u, s s̄→ c̄ c, b b̄→ ū u, b b̄→ c̄ c

Mt,dd d d̄→ s̄ s, d d̄→ b̄ b, s s̄→ d̄ d, s s̄→ b̄ b, b b̄→ d̄ d, b b̄→ s̄ s

Mu,uu u c̄→ c̄ u, c ū→ ū c

Mu,ud u d̄→ d̄ u, u s̄→ s̄ u, u b̄→ b̄ u, c d̄→ d̄ c, c s̄→ s̄ c, c b̄→ b̄ c

Mu,du d ū→ ū d, d c̄→ c̄ d, s ū→ ū s, s c̄→ c̄ s, b ū→ ū b, b c̄→ c̄ b

Mu,dd d s̄→ s̄ d, d b̄→ b̄ d, s d̄→ d̄ s, s b̄→ b̄ s, b d̄→ d̄ b, b s̄→ s̄ b

Table 3.1.: Subprocesses of the type q1 q̄3 → q̄2 q4 ZZ, where the weak bosons are omitted
in the table. The matrix elements of all 45 subprocess are evaluated at once with one
subroutine call.

to be multiplied with the corresponding parton density functions and the factors to take
into account the multiplicity of initial state spins and colors. Furthermore, the symmetry
factor of the final state has to be included.

The method described here allows for a very efficient summation over subprocesses and
particle spins. For the 4-quark contributions, the calculation of the squared amplitude,
which can be used to evaluate up to 45 subprocesses, has a runtime† of 7.6µs, where one
third of the runtime is needed for the evaluation of the EW decay currents. In contrast
to this, the runtime of the matrix element uu → uu e+e− µ+µ− using MadGraph 4 [79],
summing over all non-zero helicity configurations, is 520µs and the matrix element can
not be used for subprocesses involving down-type quarks‡. It should be noted, that Mad-

Graph 5 [54] came with a lot of speed improvements, however MadDipole [80], which has
been used for various NLO calculations, is based on the older MadGraph version.

To further speed up the runtime of the cross section calculation, the contributions listed
in the individual lines of Eqs. (3.15) and (3.19) are calculated in separate phase space
integrations. This allows to evaluate the contributions which contribute less to the cross
section with a smaller number of phase space points. This is discussed in more details in
Section 3.5.

The implementation of the other processes can be done using the same methods described
above. However, they involve other configurations of external quarks. For W±Zjj and
W±γjj production, the quark flavors of one quark line is fixed, with e.g. an incoming
up-type quark converting into a down-type quark where a W+ boson is emitted. Since
the helicity of this quark line is fixed, only a reduced set of off-shell wave functions has to
be calculated. A minor complication occurs during the evaluation of the matrix elements
Mu of the 4-quark subprocesses. Depending on the charge of the W boson and the quark
type of the second quark line, either the incoming quarks q1, q2 or outgoing quarks q3, q4

have to be interchanged to obtain the u-channel contribution. For the same reason, more
crossings have to be evaluated to obtain all subprocesses.

For W±W±jj production only processes of the 4-quark type appear due to electric charge

†All runtimes shown here are obtained on an Intel i5-3470 computer with one core and using the Intel-ifort
version 12.1.0.

‡Using the matrix element for up-type quarks of different generations is possible with minor modifications
of the code.
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Figure 3.2.: Representative Feynman diagrams of the real emission contribution.

conservation. Since one W boson has to couple to each quark line, all external quark
types and helicities are fixed, leading to a significant simplification of the implementation.
Except for the quark-types being fixed, the subprocess summation can be done similar to
ZZjj production.

3.2. Real Emission

The calculation of the real emission contribution requires the evaluation of a large number
of subprocesses with seven final state particles, which can be obtained by adding an addi-
tional gluon to the subprocesses of the Born level contribution. This leads to subprocesses
with 2 quarks and 3 gluons as external partons as well as subprocesses with 4 quarks and
one gluon as shown in Fig 3.2. The additional gluon is either added to the final state of
the subprocesses listed in Eqs. (3.15) and (3.19), or it is in the initial state giving rise to
subprocesses of the type

q1 g5 → q̄2 q3 q4, g5 q1 → q̄2 q3 q4 (3.20a)

and

q̄3 g5 → q̄1 q̄2 q4, g5 q̄3 → q̄1 q̄2 q4. (3.20b)

The matrix elements can be calculated using the same methods as for the Born contribution
presented in the previous section. However, it involves more color structures and diagrams
with four-gluon vertices or multiple triple-gluon vertices, which are handled using the
prescription of Ref. [76].

In addition to the squared matrix elements, subtraction terms have to be constructed for
each of the subprocesses to obtain a finite phase space integral at NLO. As explained in
Section 2.2.2, this can be done following the dipole subtraction algorithm [68], where the
subtraction term for each subprocess is expressed as a sum of dipoles. This sum involves
up to 27 dipoles, as obtained for subprocesses of the type

q1 q̄3 → g2 g4 g5, (3.21)

that has 9 emitter pairs and each of these has three possible spectator partons.

Each dipole requires the evaluation of a squared matrix element of the underlying Born
process, that has to be calculated using the tilde-kinematics defined in Ref. [68]. These
kinematics are obtained right after the generation of the phase space point. Exploiting
symmetries of the dipoles, the 27 configurations of emitter pairs and spectator partons
require the generation of 15 distinct tilde-kinematics as explained in the following.

For the dipoles with final state emitter and final state spectator, Dij,k, interchanging
the phase space positions i and j of the emitter pair leads to the same tilde-kinematic,
however, one has to interchange the splitting parameters z̃i and z̃j as well, which are
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related by z̃i+ z̃j = 1. Hence, there are three tilde-kinematics for this type of dipoles. The
same symmetry can be applied to the dipoles of the final-initial type, Daij , leading to six
kinematics. Furthermore, these kinematics are identical with the ones of the initial-final
dipoles, Daik . To the initial-initial dipoles, Dai,b, no such symmetry can be applied, leading
to six tilde-kinematics. Including the real emission phase space, 16 different kinematics
appear during the evaluation of one phase space point.

In the implementation, a unique convention for mapping the momenta of the real emission
configuration to the phase space positions of the tilde kinematics is used. The tilde-
kinematics are, after generation, passed to the routine which evaluates the phase-space
cuts and only the kinematics passing these are used in the following calculation of the real
emission amplitude including the subtraction terms. Furthermore, the factorization and
renormalization scale are evaluated for each of the kinematics.

In contrast to the Born contribution, the evaluation of the individual crossings, which are
used to obtain all subprocesses, is not split into separated phase-space integrals. Instead,
all subprocesses are evaluated for each phase space point, which allows to pre-calculate
contributions, that are the same for various processes. Besides the decay currents of the
EW vector bosons, which are common to all subprocesses, the wave functions of the partons
are calculated and stored. This is done for gluons as well as (anti)quarks, including the
two spin states, and at all phase space positions and for all of the 16 kinematics passing
the cuts. Furthermore, the contraction of the quarks with up to two vector bosons is
pre-calculated.

For each crossing, the squared matrix element is calculated, making use of the previously
calculated wave functions. For the calculation of the dipoles, a process independent routine
has been implemented which, in particular, requires the specification of a subroutine for
the calculation of the underlying Born level amplitude. Depending on the splitting type
and phase space positions of the emitter and spectator, which are further inputs to the
routine, the correct dipole formula is selected and calculated according to Ref. [68]. In
the following, the utilization of this routine will be explained, taking two subprocesses as
examples.

The 2-quark-3-gluon subprocesses, e.g.

q̄3 g2 → q̄1 g4 g5, (3.22)

require the evaluation of dipoles with quark-gluon, or gluon-gluon splittings. There are
six quark-gluon emitter pairs (i, j), with i ∈ {1, 3}, j ∈ {2, 4, 5}, and three gluon-gluon
emitter pairs (i, j), with i, j ∈ {2, 4, 5} and i 6= j. For each of the emitter pairs, and under
the condition that at least one of the particles i, j is in the final state, there are three
dipoles with the spectators k /∈ {i, j}. As an example, the dipole (1, 2) with k = 5 is
considered in the following. Before the routine for evaluating the dipole can be called, the
crossing in the corresponding tilde-kinematics has to be specified, which is given by

q̄3 q
e
1 → gs2 g4, (3.23)

where the superscripts e and s specify the emitter and spectator particles. The assignment
of g2 and not g4 being the spectator is arbitrary, but the phase space position of each
particle is fixed by the conventions used for the calculation of the tilde-kinematics. The
various dipole formulas of Ref. [68] have been implemented in a FORTRAN routine Dipole,
which has to be called for each possible combination of i, j and k. For above example, the
corresponding call to this function can symbolically be written as

Dipole( pµi,kin, kin, ’qg’, 3, 2, 5, ColCorrME2q2g, (3, 1 → 2, 4), 1, 2, results, Nresults).
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The first parameter is an array of all parton momenta in the real emission and the tilde-
kinematics. The tilde-kinematics that have to be used for the evaluation of the Born
matrix element and the splitting type are specified by the following two parameters. After
that, the phase space positions of the emitter pair and spectator are given. The next four
parameters specify the calculation of the color- and spin-correlated Born matrix elements.
The subroutine ColCorrME2q2g will be discussed later. Besides the crossing of the Born
matrix element, the diagram indices of the emitter and spectator are given. Similar to the
routines that are used to evaluate the squared matrix elements, various configurations of
the quarks can be evaluated at once. The dipoles of these configurations only differ by the
Born matrix element. Therefore, with Nresults one can specify the number of contributions
that are calculated by the routine ColCorrME2q2g and the dipoles are evaluated for each
of these.

The routine ColCorrME2q2g is used as an interface to the routine ME2q2g, which is called
with a special entry point. Using this entry point, not only the squared matrix element
for the various quark configurations is calculated, but also a minimal set of color- and
spin-correlated matrix elements is returned. The spin correlation of dipoles with a quark
as emitter parton is trivial, since for massless quarks the dipoles are diagonal in spin
space. For gluon emitters, the spin- and color correlated matrix elements are of the form
〈µ|TeTs|ν〉, where 〈µ| and |ν〉 are the matrix elementsM∗µ andMν with the polarization
vector of the emitter gluon being stripped off and TeTs is the color correlation of the
emitter and spectator, that will be treated later. Using a real-valued, rectangular basis of
polarization vectors ελµ, the dipoles can be written in the general form

D = Dµν 〈µ|TeTs|ν〉 =
∑

λ1,λ2

Dµν ελ1µ ε
λ1
µ′ 〈µ′|TeTs|ν ′〉 ελ2ν ελ2ν′

=
∑

λ

(
Dµν ελµε

λ
ν

)
〈λ|TeTs|λ〉+

(
Dµν ε1

µε
2
ν

)
· 2 Re 〈1|TeTs|2〉,

(3.24)

where Dµν contains the splitting functions 〈µ|V|ν〉 defined in Ref. [68] (see also Sec-
tion 2.2.2). Therefore, the Born level matrix elements can be calculated with the usual
polarization vectors, however, when squaring the amplitude, the results have to be split
into the above distinct configurations of the emitter polarization. The sum over the spins
of the other partons can be obtained as usual.

Due to color conservation, there are three independent color correlations, T1Ti, with
i ∈ {1, 2, 3}. These modify the color factors appearing in Eq. (3.9), where instead the
factors 〈Ci|T1Tj |Cj〉 have to be used, which are listed in Appendix A. To allow using
the result of the entry point to the ME2q2g subroutine for all combinations of emitter
and spectator partons, the 9 results 〈1|T1Ti|1〉, 〈2|T1Ti|2〉 and 2 Re 〈1|T1Ti|2〉, with
i ∈ {1, 2, 3}, are calculated for both gluons (and for the two configurations of quark
flavors). Similarly, the color-correlated matrix elements with the emitter being a quark
can be obtained from above results.

One task of the routine ColCorrME2q2g is to call the entry point to ME2q2g to obtain the
color- and spin-correlated matrix element for a given emitter and spectator. However, it
also caches the results of the matrix elements to avoid the recalculation of matrix elements
appearing in various dipoles. This caching system uses the unique identifier of the tilde-
kinematic as well as the phase space positions of the quarks q1 and q3 to identify the matrix
elements. Bose symmetry can be used to define a unique order of the gluons g2 and g4 in
terms of phase space positions. However, when interchanging the gluons, one has to take
care of this redefinition when calculating the spin- and color-correlated matrix element in
case that one of the gluons is the emitter or a spectator parton.
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After calculating the squared matrix elements and all possible dipoles for a given crossing
with general quark flavor types, the summation over the five light quark flavors can be done.
Each subprocess has to be multiplied with the corresponding spin and color averaging
factors as well as the parton density functions of the initial state partons. For the dipole
contributions, the pdfs and the strong coupling constant have to be evaluated at the
factorization and renormalization scales determined by the corresponding tilde-kinematics.

The same strategy can be applied to the subprocesses with four quarks and one gluon, e.g.

q1 g5 → q̄2 q3 q4. (3.25)

The dipoles with quark-gluon splittings involve the calculation of color-correlated ampli-
tudes of the 4-quark type. This is done by the routine ColCorrME4q, similar to ColCorr-

ME2q2g, which calls an entry point of the ME4q routine. Again, the matrix elements are
cached, taking into account that simultaneously changing the quarks q3 and q4 as well as
Mt and Mu reproduces the same results. The dipoles can be calculated by calling the
routine Dipole. For the quark-gluon splittings, the corresponding Born level process is
obtained by removing the gluon from the process and moving the emitter quark to its
position. For the above crossing, e.g. the emitter pair (3, 5) leads to the Born level process

q1 q̄
e
3 → q̄2 q4, (3.26)

where the emitter particle is specified by a superscript e and each of the other partons can
serve as an spectator. The dipoles are then calculated by calling the routine Dipole with
the splitting type ’qg’ and specifying the routine ME4q for the calculation of the Born level
matrix element. In addition, dipoles with a gluon splitting into a quark-antiquark pair
have to be considered. For processes of the typeMt (see Table 3.1), the quark pair (q1, q3)
or (q2, q4) can be replaced by a gluon. The pairs (q1, q4) and (q2, q3) have to be replaced
for the subprocesses of the Mu process and all four replacements have to be done for the
Mtu subprocesses. After this, the corresponding Born level process of the 2-quark-2-gluon
type has to be specified, e.g. for the emitter pair (q2, q4) in above process, one obtains the
Born level process

q1 g2 → ge4 q3. (3.27)

The corresponding dipole can be evaluated by calling the Dipole routine with the splitting
type ’qq’ and the routine ME2q2g as arguments.

Since the dipoles cancel the divergent contributions of the real emission matrix elements
in the infrared regions, the dipoles can be tested by evaluating

R =

∣∣∣∣
|M|2 +D
|M|2

∣∣∣∣ , (3.28)

where D represents the sum of the dipoles. This ratio should go to zero, as the invariant
mass mij of an emitter pair or the energy of a final state gluon Ei decrease. This has
been checked for the individual real emission subprocesses in the various soft and collinear
regions. Fig. 3.3 shows the cancellation after summing over all subprocesses. Besides
the convergence of the subtraction terms towards the real emission matrix elements, it
also shows that numerical problems might appear in the far collinear region, as it can be
seen in the upper left panel for mai . 1 MeV. To avoid such problems, a technical cut
m > 0.1 GeV on the invariant mass of all parton pairs is applied in VBFNLO. It has been
checked that the results are insensitive to this cut.
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(1) Collinear initial state radiation. (2) Collinear final state radiation.

(3) Soft radiation.

Figure 3.3.: Cancellation of the real emis-
sion amplitudes with the subtraction terms
in the soft and collinear regions for the pro-
cess ZZjj. All subprocesses and all com-
binations a ∈ {1, 2} and i, j ∈ {3, 4, 5} are
included. The cancellation is specified by
the relative difference R of the real emission
amplitudes and subtraction terms as given
by Eq. (3.28).

3.3. Virtual Amplitudes

3.3.1. Building Blocks

The implementation of the virtual amplitudes, including up to hexagon contributions, is
the most challenging part of the calculation. To deal with the large number of Feynman
diagrams, the amplitudes are constructed using building blocks, that combine the evalua-
tion of various diagrams with identical ordering of the external particles. These building
blocks, which have been implemented by another member of the collaboration, use exter-
nal currents as inputs and assume a general coupling structure of the vector bosons to
fermions with the coupling constants stripped off. They are therefore very generic and can
be used for the calculations of other processes in VBFNLO [56–58]. In the following, we
concentrate on the building blocks containing the hexagon diagrams.

Two of these building blocks, which have already been used for the calculation of Wγγj
in Ref. [81], are shown in Figs. 3.4 and 3.5. The “HexLine” routines collect one-loop
corrections to Born topologies where four vector bosons are attached to a quark line.
These vector bosons can be general effective currents as already used in Section 3.1. To
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9) (10)

(11) (12) (13)

Figure 3.4.: The “HexLine Abelian” contribution collects one-loop corrections to a quark-
line with four vector bosons attached. It includes Hexagon, Pentagon, Box, Vertex and
Self-energy corrections.

allow gluons being attached to the quark line as well, the number and position of these
have to be assigned to the routines and the result is then split into the contributions
to the individual color structures. A calculation of the color factors can be found in
Appendix A. In the “HexLine Abelian” (Fig. 3.4), the diagrams with at most one external
gluon being attached inside the loop contribute to the corresponding color structure of the
Born diagram with an additional factor of CF or (CF − CA/2) for the case of no and one
gluon, respectively. The option to allow two external gluons being attached to the loop
had to be added to the routine. In this case the color structure is given by

tctatbtc =

(
CF −

CA
2

)
tatb +

1

2N
CATRδ

ab
1 = −1

6
tatb +

1

4
δab1, (3.29)

or the corresponding one with the indices a and b interchanged. It therefore contributes
to the color structure of the corresponding Born diagram, as well as the color structure
δab1, which doesn’t appear at LO.

In the “HexLine NonAbelian” routine, one of the vector bosons is a gluon attached to the
gluon arc. The option that one of the three vector bosons attached to the quark line can be
a gluon, had to be added here, as well. Depending on its position, the diagrams contribute
to different color structures: if e.g. in Fig. 3.5 the gluon at the top of the diagrams has
color index a and the middle one of the lower vector bosons is a gluon with color index
b, the diagrams (4)-(6) contribute to the color structures tbta, δab1 and tatb, respectively.
The corresponding color factors can be found in Appendix A.

Similar to the Abelian and NonAbelian HexLine building blocks, there are PenLine and
BoxLine routines, that collect one-loop corrections to a quark line with three or two vector
bosons attached to it. Again, the option to have two external gluons has to be added to
the existing routines.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9) (10)

Figure 3.5.: The “HexLine NonAbelian” involves diagrams with three vector bosons at-
tached to the quark line and a gluon attached to the gluon arc.

In addition to the above routines that only have to be modified, there are some new
building blocks that explicitly involve four external partons. Fig. 3.6 shows new hexagon
topologies appearing in the virtual amplitude of the 2-quark-2-gluon subprocesses. The left
diagram involves two 3-gluon vertices and a new building block is assembled, combining
this diagram with the corresponding two pentagon and three box diagrams that one obtains
by moving the vector bosons along the quark line. Similarly a building block consisting of
six diagrams is created by combining diagrams with a 4-gluon vertex. The right diagram
of Fig. 3.6 represents this building block. The color structure of these contributions is
presented in Appendix A. In addition to these two new HexLine building blocks, two
similar PenLine building blocks have to be created, where only one external vector boson
is attached to the quark.

In the 4-quark amplitudes, there are additional building blocks collecting Feynman di-
agrams with two gluons being exchanged between the two quark lines. Fig. 3.7 shows
four diagrams representing four new building blocks. As for the other building blocks,
the hexagon diagrams shown in Fig. 3.7 are combined with the diagrams one obtains by
moving the external vector bosons along the quark lines, thereby including pentagon and
box contributions. The four building blocks are therefore called “HexBox” contributions.
The top row of Fig. 3.7 represents the “HexBox1” contributions, where the two vector
bosons are coupled to the same quark line. They can be further classified into a “direct”
(left diagram) and a “crossed” (right diagram) contribution, depending on the ordering of
the internal gluons. As shown in Appendix A, they contribute with different color factors
to the color structures Ct and Cu. Each of this two HexBox1 contributions consists of 6
Feynman diagrams. The lower row of Fig. 3.7 represents the “HexBox2” building blocks,
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Figure 3.6.: Representative Feynman diagrams of two new building blocks appearing in
the virtual amplitude of the 2-quark-2-gluon subprocesses. In the building blocks, the
diagrams shown here are combined with the corresponding ones, where the EW vector
bosons are moved along the quark line to the positions indicated with a cross. Therefore,
each building block consists of 6 diagrams.

Figure 3.7.: Representative Feynman diagrams of new building blocks appearing in the
virtual amplitude of the 4-quark subprocesses. In the building blocks, the diagrams shown
here are combined with the corresponding ones, where the EW vector bosons are moved
along the quark line to the positions indicated with a cross. Therefore, each of the diagrams
shown in the upper row, which represents the “HexBox1” building block represents 6
diagrams. The “HexBox2” building block is represented by the diagrams in the lower
row, which represent 9 diagrams.

Figure 3.8.: Fermion loop diagrams appearing in the virtual amplitudes. The Higgs
contributions shown in the second row only contribute to the process ZZjj.
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in which one vector boson is attached to each quark line. Similar to the HexBox1, it is
split into a direct and crossed contribution, each including nine diagrams. Furthermore,
there are direct and crossed “PenBox” routines, where only one vector boson is coupled to
a quark line.

Besides the above explained building blocks, the one-loop amplitude involves further self
energy and vertex corrections as well as closed quark loops (see Fig. 3.8). The latter
ones include up to pentagon diagrams of rank five in the case of ZZjj production and
involve massless as well as the massive top quarks. For this specific process, there are also
contributions with a Higgs boson coupling to a closed top quark loop and the Higgs boson
decaying to a Z boson pair. To deal with the large number of fermion loop contributions
in ZZjj production, parts of the code for gluon-induced ZZj production [82] have been
used. For the other processes, an own implementation has been created using the general
building blocks for the fermion loops. Where possible, Furry’s theorem has been used to
reduce the number of subroutine calls.

To compute the individual building blocks, we used the program described in Ref. [83].
The method is summarized in the following. The strategy is to use the Mathematica

program with the FeynCalc [84] package to do algebraic simplifications in D dimensions
and to obtain expressions for the Feynman diagrams that can be calculated numerically.
The Feynman gauge as well as the anticommuting prescription of γ5 [85] are used. Except
for the fermion loop contributions, all quarks appearing in the diagrams are massless, and
therefore their helicity can be fixed and is used as an input parameter to the building
blocks. Hence, the coupling constants can be stripped off and the vector bosons can be
assumed to be general effective currents with a vector-like coupling to the quark. For the
closed quark loop diagrams, this method cannot be used in case of massive quarks and a
general coupling

γµ (gLPL + gRPR) (3.30)

of the vector bosons to the quark is applied, where PL,R = (1 ∓ γ5)/2 are the projection
operators onto left- and right-handed spinor components and gL,R are the corresponding
coupling constants, which are input parameters to the building blocks.

With this general couplings, the Feynman rules are applied to the diagrams of a building
block to obtain analytic expressions of the matrix elements in d dimensions. Then, the
Dirac matrices are reordered to collect repeated indices and the contraction γµγµ = D
is applied. Note that the result of this contraction is D, whereas the dimensionality of
the loop momentum is d. This allows to obtain results using conventional dimensional
regularization in the t’Hooft Veltman scheme [86] where D = d or in the four-dimensional
helicity scheme [87] where D = 4. An overview of the different regularization schemes can
be found in Ref. [88].

In addition to the contraction of repeated indices, all γ5 matrices appearing in the fermion
loop contributions are moved to the right using the anti-commutation relation. Similarly,
the Dirac matrices contracted with the loop momentum l are moved to the right and the
terms containing /l/l = l2 or l ·pi are canceled with the denominators to obtain simpler one-
loop integrals. The results of the individual diagrams i are then split into two contributions,

Mi =MD=4
i + (D − 4)MDR

i , (3.31)

where MD=4
i are the results one obtains in dimensional reduction by setting D = 4. The

poles of MDR
i lead to rational terms when using conventional dimensional regularization

(D = d), which factorize against the corresponding Born matrix elements. Therefore, the
building blocks only contain the contributions MD=4

i and the additional rational terms
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can be added manually to the amplitude to obtain results in conventional dimensional
regularization. Since except for wave function renormalization graphs, all rational terms
are of UV origin [89], the second term of Eq. (3.31) does not lead to additional contributions
to the poles of the amplitude.

The two contributions of Eq. (3.31) are then decomposed into spinor chains, called standard
matrix elements SMj , that can be evaluated using the helicity method [76] with a fixed
helicity τ , and additional factors Tk and Fk which are calculated from the kinematic
variables and polarization vectors

MD=4,DR
i =

∑

j,k,τ

SMj,τ Fk Tk. (3.32)

The full dependence on the polarization vectors is included in Tk, whereas Fk in particular
includes the scalar and tensor one-loop integral coefficients. After this decomposition, a
FORTRAN code for the building block is generated. The tensor coefficients appearing in
Fk are evaluated numerically using the reduction formalism of Passarino and Veltman [90]
for up to four point functions and the method by Denner and Dittmaier [91] for the
pentagon and hexagon integrals. The latter reduction algorithm has been implemented in
terms of the momenta external to the loop, using the notation of Ref. [90] as presented
in Ref. [83]. Additional rational terms appearing in the tensor reduction are included and
the scalar integrals are calculated as in Refs. [92–96].

An additional input parameter of the building blocks allows to switch between the eval-
uation of the finite part or the ε−2 and ε−1 poles of the one-loop integrals. Using these
building blocks to create the scattering amplitudes therefore allows to calculate the finite
parts and the poles with the same code and the cancellation of the poles with the endpoint
function I (see Section 2.2.2) is a first check of the calculation. Since the factor Fk in
Eq. (3.32) does not contain the polarization vectors of the external currents, an efficient
summation over configurations with identical kinematics is possible, thereby avoiding the
time consuming recalculation of the tensor integrals. With only a minor increase of com-
puting time, this allows the evaluation of e.g. various helicity combinations, contributions
of a Z boson and the corresponding virtual photon, or replacing a polarization vector with
its momentum to apply gauge tests (see Section 3.3.2). This is crucial to obtain a fast
code.

The evaluation of the HexBox and PenBox contributions (see Fig. 3.7) involves standard
matrix elements of the type

SMi,±,± = ū(p3)Γµ1...µnPL,Ru(p1)⊗ ū(p4)Γµ1...µnPL,Ru(p2), (3.33)

where Γ represents a chain of γ-matrices and n matrices γµi have to be contracted with
the corresponding matrix in the second spinor chain. The numerical evaluation of these
tensor contractions is very time consuming and Chisholm identities [97], such as

γµ1γµ2γµ3PL,R ⊗ γµ1γµ2γµ3PL,R = 16γµ1PL,R ⊗ γµ1PL,R (3.34)

and

γαγβγµ1PL,R ⊗ γµ1PL,R = γµ1PL,R ⊗ γβγαγµ1PL,R (3.35)

can be used to simplify this expressions. As an example, one obtains

ū(p3)γµ1γµ2γµ3PL,Ru(p1)⊗ ū(p4)/ε5/p3
γµ1γµ2γµ3PL,Ru(p2)

= 16 ū(p3)γµ1PL,Ru(p1)⊗ ū(p4)/ε5/p3
γµ1PL,Ru(p2)

= 16 ū(p3)/p3
/ε5γ

µ1PL,Ru(p1)⊗ ū(p4)γµ1PL,Ru(p2)

= 0,

(3.36)
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where in the last step the Dirac equation for particle 3 has been applied. Therefore, the
corresponding standard matrix element involving a rank three tensor contraction does not
have to be evaluated.

3.3.2. Gauge Tests and Rescue System

The reduction of tensor one-loop integrals into scalar integrals involves the evaluation of
determinants, that occur in denominators. In some phase space regions, large numerical
cancellations appear leading to bad numerical accuracy if the determinants are small.
Especially the inverse Gram determinants appearing in the reduction formalism of Ref. [90]
can lead to numerical instabilities, but also the Cayley determinants appearing in Ref. [91]
can be problematic. It is therefore necessary to identify these instabilities and to treat the
corresponding contributions separately to obtain more stable results.

The strategy used here is to identify instabilities using “gauge tests” that are obtained by
replacing polarization vectors by their four-momenta,

εµ(p)→ pµ. (3.37)

These replacements lead to exact algebraic relations between various Feynman diagrams
and evaluating these allows to estimate the numerical accuracy of the contributions. As has
been explained earlier, the building blocks can be reevaluated using the above replacement
with only a minor increase in computing time. This method has also been used for all
other processes implemented in VBFNLO. However, in contrast to most other processes,
where the phase space point is discarded if a gauge test fails, a “rescue system” is called,
which reevaluates the tensor and scalar integrals of the corresponding building block with
quadruple precision. If the results obtained with this method still fail the gauge test, the
amplitude is set to zero and the phase space point is discarded.

There are two types of gauge tests that can be constructed. The first one relates N -point
functions with a difference of two (N − 1)-point functions as shown in the following for a
box diagram for simplicity. The diagram in the left of Fig. 3.9 can be written as

εµ2ε
ν
3Mµν ∝ εµ2εν3

∫
ddq

(2π)d
1

q2
ū(p4)γα

1

/q3

γν
1

/q2

γµ
1

/q1

γαu(p1), (3.38)

where the convention

qi = q +
i∑

j=1

pj (3.39)

is used to add the external momenta pj to the loop momentum q. Applying the replacement
ε2 → p2 in Eq. (3.38), one obtains

pµ2ε
ν
3Mµν ∝ pµ2εν3

∫
ddq

(2π)d
1

q2
ū(p4)γα

1

/q3

γν
1

/q2

γµ
1

/q1

γαu(p1)

= εν3

∫
ddq

(2π)d
1

q2
ū(p4)γα

1

/q3

γν
1

/q2

(/q2
− /q1

)
1

/q1

γαu(p1)

= εν3

∫
ddq

(2π)d
1

q2

(
ū(p4)γα

1

/q3

γν
1

/q1

γαu(p1)− ū(p4)γα
1

/q3

γν
1

/q2

γαu(p1)

)
.

(3.40)

This corresponds to a difference of two three-point functions, where the momentum of the
removed particle 2 is added to the adjacent particles 3 or 1, respectively. The accuracy
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pµ2 ε
ν
3 · p1

p2 p3

p4

µ ν

q

= εν3 · p1 p4

q

p2 + p3ν

− εν3 ·
p1 + p2

p4

q

p3ν

Figure 3.9.: Replacing the polarization vector ε2 of the box diagram with the correspond-
ing momentum p2 leads to a difference of two vertex diagrams.

of the box diagram can be estimated by evaluating the above expressions numerically and
calculating

GaugeTestResult =
Mbox −Mvert,1 +Mvert,2

max(|Mbox|, |Mvert,1|, |Mvert,2|) , (3.41)

where the individual contributions correspond to the terms in Eq. (3.40). The normaliza-
tion with the maximum of the individual contributions is done to obtain a dimensionless
quantity§.

The second method for the construction of gauge tests explicitly uses the gauge invariance
of the amplitudes. After the replacement of Eq. (3.37), the sum of all diagrams belonging
to the same gauge invariant subset is zero. Therefore, one can evaluate the building
blocks for different permutations of the external vector bosons and apply a test similar
to Eq. (3.41). To obtain small gauge invariant sets of diagrams, one can assume that the
vector bosons belong to different U(1) gauge groups¶. Then it is enough to permute the
current that has been replaced by its momentum to all positions, while keeping the order
of the other particles fixed.

At least one of the above tests is applied to all diagrams to estimate the accuracy of
the result. If the GaugeTestResult is larger than a fixed limit, typically set to 0.01, the
rescue system is called to evaluate the corresponding contributions with higher numerical
accuracy. Knowing that the numerical problems typically arise in the tensor reduction of
the one-loop integrals, only the scalar and tensor integrals are reevaluated with quadruple
precision. To achieve an improvement, one has to convert the momenta of the particles,
which are given in double precision, to quadruple precision. To ensure that the condition
p2 = 0 is fulfilled with quadruple precision for massless on-shell particles, the energy of
these particles has to be reevaluated using p0 = |~p|. Similarly, the four-momentum of
one off-shell particle has to be reevaluated from the other momenta to ensure momentum
conservation being fulfilled with quadruple precision. The results of the building block
and the gauge test are then reevaluated with the tensor reduction being performed in
quadruple precision. If the gauge test still indicates numerical instabilities, the complete
amplitude is set to zero to avoid incomplete gauge cancellations of the other contributions
to the amplitude. As shown in Fig. 3.10, the error due to neglecting these points is well
below the per mill level, if the limit to the GaugeTestReuslt is chosen to be in the range
[10−3; 10−1].

3.3.3. Implementation of the Amplitudes

Using the building blocks defined in Section 3.3.1 with different permutations and combi-
nations of external currents, the amplitudes can be constructed. As for the Born and real

§If the denominator of Eq. (3.41) is zero, one has to set GaugeTestResult = 0.
¶This is possible, since the coupling constants are not included in the building blocks.
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Figure 3.10.: Dependence of the vir-
tual contribution on the limit to the
GaugeTestResult. The reults are obtained
using the cuts and input parameters pre-
sented in Section 4.2 and using the same
phase space points for the individual results.
The yellow band with a width of 0.001·σNLO
is shown for comparison.

emission contributions, the EW coupling constants of the vector bosons to the fermions
are already included in the effective currents, thereby combining contributions of a Z bo-
son and the corresponding virtual photon. Only for the fermion loop diagrams the Z and
γ∗ contributions have to be separated and the EW coupling constants are provided as
inputs to the building blocks. In the evaluation of the scalar integrals, which appear in
the calculation of the one-loop diagrams, the common factor

F =
1

16π2
µ−2ε Γ(1 + ε) (4π)ε =

1

16π2
µ−2ε Sε (3.42)

is dropped, where µ is the arbitrary mass parameter of the dimensional regularization. To
obtain the full one-loop matrix elementM1-loop, the results of all building blocks, denoted
asM′1-loop, have to be summed and multiplied with the above factor as well as the proper
power of the strong coupling constants g0

s,

M1-loop = (g0
s)

4 · F · M′1-loop. (3.43)

To obtain M′1-loop, the results of the individual building blocks are added up, separating
them into the basic color structures. For the 4-quark processes these are the same as for
the Born amplitudes, Ct and Cu. However, compared to the Born amplitude there is no
one-to-one relationship between the color structures and the s- and t-channel diagrams.
The 2-quark-2-gluon amplitudes involve a new color structure C3 = δab1 as well as those
of the Born amplitude, C1 and C2.

Figures 3.11 and 3.12 show how the full virtual amplitudes of the 2-quark-2-gluon and
4-quark subprocesses can be constructed. The individual building blocks appearing there
have to be called for the various permutations of external vector bosons. As for the Born
and real emission contributions, the summation over the lepton and photon helicities is
done using a random phase as described in Section 3.1. Furthermore, a full summation
over parton helicities is applied for the 4-quark subprocesses, making use of the efficient
caching system of the building blocks. For the 2-quark-2-gluon subprocesses the amplitudes
are calculated with fixed parton helicities using the simple random helicity summation.
Based on the additional computing time of the building blocks for evaluating additional
helicity configurations and the runtime of the LO processes, it has been estimated that
both methods for the helicity summation would lead to a similar runtime of the Monte
Carlo integration.
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(1) HexLine contributions.

(2) PenLine contributions. In the first row, the EW vector boson is the current Ṽ . The external
gluon in the second row is the off-shell current g∗.

(3) BoxLine contributions. The external vector bosons are the currents Ṽ and g∗.

(4) Self energy and vertex corrections. The circles represent all quark, gluon and ghost contribu-
tions.

(5) Additional fermion loop contributions. The first and second diagram only appear in the
calculation of ZZjj and include the contribution of a Higgs boson, which is coupled to a top loop
and decays into the Z boson pair. Furthermore, for the diagrams with three gluons being attached
to the loop, there are additional contributions with a three-gluon vertex outside the loop.

Figure 3.11.: Topologies appearing in the 2-quark-2-gluon amplitudes. The Feynman
diagrams represent the corresponding building block. These have to be called with all
permutations of the external vector bosons.
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(1) HexBox contributions.

(2) PenBox contributions with the external cur-
rent Ṽ .

(3) PenLine contributions.

(4) BoxLine contributions. The current Ṽ has to be used in diagrams 3 and 4.

(5) Self energy and vertex corrections.

(6) Additional fermion loop contributions. Diagrams 1-3 only contribute to ZZjj production.

Figure 3.12.: Topologies appearing in the 4-quark amplitudes where the Feynman dia-
grams represent the corresponding building block. These have to be called with all per-
mutations of the external vector bosons. For W±W±jj production only the contributions
with one EW gauge boson being coupled to each external quark line contribute.
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To obtain UV finite amplitudes, the quark and gluon fields as well as the strong coupling
constant have to be renormalized as explained in Section 2.2.3. For the sum of Born and
one-loop matrix elements, one obtains

Mr
Born +Mr

1-loop = (g0
s)

2
(
MBorn + (g0

s)
2 FM′1-loop

)
· ZWF

= (gr
s)

2µ2εZ2
g

(
MBorn +

αs
4π
Z2
g SεM′1-loop

)
· ZWF

= (gr
s)

2µ2ε
(
MBorn(1 + 2 δZg + δZWF ) +

αs
4π
SεM′1-loop +O(α2)

)
,

(3.44)
where an index r indicates renormalized quantities and the strong coupling constants of
the unrenormalized matrix elements have been written explicitly. In the second line, the
relation between the bare and renormalized coupling constant (see Eq. (2.41)) has been
used.

The factor ZWF represents the wave function renormalization constants of the external
fields. For the 2-quark-2-gluon subprocesses, it is

ZWF = 1 + δZq + δZA (3.45)

and the UV counter terms can be written as [69]

M2q2g
ct =MBorn (2 δZg + δZq + δZA)

= −MBorn
αs
4π

Sε β0
1

ε

(
µ2

µ2
R

)ε

= −MBorn
αs
4π

Sε β0

(
1

ε
+ ln

µ2

µ2
R

+O(ε)

)

= −MBorn
αs
4π

β0

(
1

ε
− γE + ln 4π + ln

µ2

µ2
R

+O(ε)

)
.

(3.46)

Since the factor Sε can be factored out in the one-loop contributions as well as in the
counter terms, the expression in the third line of Eq. (3.46) is used in the implementation.

Similarly, one obtains for the 4-quark amplitudes

ZWF = 1 + 2 δZq (3.47)

and

M4q
ct =MBorn (2 δZg + 2 δZqZA)

=MBorn
αs
4π

Sε 2
1

ε

[
−β0

2

(
µ2

µ2
R

)ε
+

2

3
TR

(
µ2

m2
t

)ε ]

=MBorn
αs
4π

Sε 2

[(
−β0

2
+

2

3
TR

)
1

ε
− β0

2
ln
µ2

µ2
R

+
2

3
TR ln

µ2

m2
t

+O(ε)

]
.

(3.48)

After summing up the results of the one-loop diagrams and including the counter terms,
the renormalized one-loop matrix element can be interfered with the Born contribution to
obtain

dσV = 2 Re(M∗BornM1-loop), (3.49)

where the multiplication of the color structures can be done as in Section 3.1. Note that
Eq. (3.49) still contains IR singularities and Sε as defined in Eq. (3.44) is factored out.
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Figure 3.13.: Cancellation of the εi poles for the subprocesses uu→ uu e+e− µ+µ− and
ug → ug e+e− µ+µ− using 105 phase space points. The amplitudes are evaluated with
double precision and the cancellation is defined as log10(dσV +dσA ) /dσA.

To cancel the IR singularities the contribution of the I operator

dσA = I ⊗ dσB, (3.50)

which results from the integration of the dipoles [68], has to be added to the virtual
amplitude. The operator I can be written as

I = −αs
2π

Sε
∑

i

1

T2
i

[
T2
i

(
1

ε2
− π2

2

)
+ γi

1

ε
+ γi +Ki +O(ε)

] ∑

j 6=i
TiTj

(
µ2

2 pi · pj

)ε

(3.51)

with

γq =
3

2
CF , γg =

11

6
CA −

2

3
NFTR, (3.52)

Kq =

(
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2
− π2

6

)
CF , Kg =

(
67

18
− π2

6

)
CA −

10

9
NFTR. (3.53)

Note the minor differences in the two round brackets of Eq. (3.51) compared to Ref. [68],
that result from factoring out Sε. For the implementation of this contribution, a Mathe-

matica file has been created that expresses the color correlations 〈MBorn|TiTj |MBorn〉 in
terms of Born contributions to the basic color structures. Furthermore, the series expan-
sion in ε is calculated and a FORTRAN code for the evaluation of the ε−2 and ε−1 poles
as well as the finite contributions is generated.

After summing the contributions dσV and dσA, the result is independent on the arbitrary
mass scale µ of dimensional regularization and the poles in ε cancel, which has been checked
numerically. The cancellation of the poles appearing in Eqs. (3.49) and (3.50) is shown
in Fig. 3.13. Using double precision arithmetics, a cancellation of about 10 decimal digits
is observed for the bulk of phase space points. However, for a few per mill of the phase
space points the agreement is worse than 2 digits. This is due to instabilities in the tensor
reduction and shows that a rescue system, as the one described in Section 3.3.2, is needed.
After the cancellation of all poles, the limit ε → 0 can be applied. Therefore, the factor
Sε which has been factored out in all contributions becomes 1.
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3.4. Finite Collinear Remainder

The remaining collinear divergences stemming from initial-state parton splittings can be
factorized into a redefinition of the parton distribution functions. After the divergences
have been canceled, the additional finite parts, can be written as [68]

dσC,fin
ab =

∫ 1

0
dx

[ ∑

a′

(
K(x) + P(x, xpa, {p}, µ2

F )
)aa′ ⊗ dσBa′b→X(xpa, pb)

+
∑

b′

(
K(x) + P(x, xpb, {p}, µ2

F )
)bb′ ⊗ dσBab′→X(pa, xpb)

]
.

(3.54)

These contributions have to be convoluted with the parton density functions fa(xa, µ
2
F )

and fb(xb, µ
2
F ) and integrated over the phase space of the corresponding Born process.

In the following, only the contribution of the first line of Eq. (3.54), denoted as dσCa′b,
will be considered, which results from collinear splittings of a parton a into the parton a′

entering the hard matrix element, and an additional unobserved parton as illustrated by
the following figure.

a
a′ |MB|2

b

X

h
a
d
ro
n

Pa pa pa′

= xaPa = xpa

The methods used here closely follow the description of Refs. [34, 98, 99] and can be
similarly applied to obtain the second contribution dσCab′ . Including the parton density
function of particle a, one obtains

∫ 1

0
dxafa(xa, µ

2
F )dσC,fin

ab =

∫ 1

0
dz

∫ 1

z
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x

∑
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( z
x

) (
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F )
)aa′ ⊗ dσBa′b→X(pa′ , pb), (3.55)

where the substitution z = xxa has been applied to rewrite all momenta in terms of the
corresponding Born phase space with incoming momenta pa′ = zPa and pb = xbPb.

The further evaluation leads to lengthy expressions and requires the proper treatment of
the non-trivial color-correlations between the operators K and P with the Born matrix
elements. However, the result can be written in the compact form

∫ 1

0
dxafa(xa, µ

2
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·
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F )
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( z
x
, µ2

F

)
Caa′

]
. (3.56)

The coefficients Aa, Ba and Caa′ are given in Appendix B, which also lists integrals of the
plus-distribution needed for the calculation of the coefficients. It is convenient to organize
the summation over subprocesses in terms of the Born configurations appearing in the
finite collinear terms. For a Born level subprocess a′b → X, the flavor of the coefficients
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Aa and Ba and the corresponding parton density function is fixed. For a′ being a quark
of flavor f , the last contribution of Eq. (3.56) is
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·
∫ 1

0
dz

∫ 1

z
dx
[
fqf

( z
x
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F

)
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)
Cgq
]
. (3.57)

The corresponding expression for a′ being a gluon is
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·
∫ 1
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∫ 1
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dx
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)
Cgg +

∑

f
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( z
x
, µ2

F

)
Cqg

 , (3.58)

where the sum includes all massless quarks and anti-quarks. The color correlated matrix
elements appearing in the coefficients Aa, Ba and Caa′ can be evaluated using the routines
ColCorrME2q2g and ColCorrME4q (see Section 3.2).

Differently from the other processes implemented in VBFNLO, the integration of the finite
collinear terms is done using the phase space generator of the Born contribution. This
not only allows to reuse large parts of the code for the summation over subprocesses,
but also the adapted grid files generated during the Monte Carlo integration of the Born
contribution can be reused. For the additional x integration, an additional random number
xi ∈ [z; 1] is generated for each phase space point‖.

3.5. Further Checks

In addition to the checks mentioned in the previous sections, further tests have been done
at the level of individual phase space points and on the level of integrated cross sections.

In particular, all parts of the calculation have been checked by comparison with an inde-
pendent calculation, which was done by another member of the collaboration. There, the
tree-level amplitudes were calculated using HELAS [77] routines. FeynArts-3.4 [100] and
FormCalc-6.2 [101] were used to obtain the virtual amplitudes. An inhouse loop library
LoopInts [102] is used to calculate the scalar and tensor integrals of up to rank 5 hexagons.
The two implementations have been compared at individual phase space points and full
agreement of all Born and virtual amplitudes has been found for all subprocesses. The
virtual contribution typically agrees with 6-12 identical digits while it is 9-12 digits for the
Born. Furthermore, the real emission contribution, including the subtraction terms, has
been validated at individual phase space points. At the level of integrated cross sections,
the LO contribution and the finite collinear remainder have been compared and agreement
within the Monte-Carlo error has been found.

As a further test of the subtraction terms, these have been adapted using the method
of Refs. [103, 104] to restrict the phase space integration of the subtraction terms to the
infrared regions. This method was primarily introduced to reduce the number of dipoles
that have to be evaluated at the individual phase space points. However, due to the efficient
calculation of the dipole terms, as described in Section 3.2, no significant improvement of
the runtime has been obtained and this method is therefore only used as an additional
check. Varying the α parameter introduced in Refs. [103, 104], the contributions of the
real emission and the I- and K-operator change by factors of O(1), while the total NLO
cross section remains unmodified.

In addition, some contributions of the implementation have been validated by comparison
with other programs. At the amplitude level, the squared matrix elements for all sub-
process types have been compared with MadGraph-4 [79]. The LO cross sections of all

‖This random number is not driven by the adaptive Monte Carlo algorithm.
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W±W±jj W±Zjj W±γjj ZZjj

Virtual 4q-type 91 µs 3.4 ms 3.4 ms 6.7 ms (29 ms)
Amplitude 2q2g-type – 23 ms 23 ms 28 ms (120 ms)

σLO (0.1% MC error) 12 min 7 min 9 min 12 min
σNLO (1% MC error) 20 min 2.5 h 3 h 3.5 h

Table 3.2.: Runtime∗∗ of the virtual amplitudes and cross section calculations with all
contributions included. The runtime of the virtual amplitudes of the 4-quark type include
the full summation over parton spins, whereas only one spin configuration is considered in
the 2-quark-2-gluon amplitudes. For both types, only one spin configuration of the EW
system is calculated. All configurations of the quark types are calculated as described in
Section 3.1. The runtime of the virtual amplitude for ZZjj production is split into the
contribution without closed fermion loops, where at least one EW boson couples to the
loop, and the additional time for evaluating these is shown in brackets. The cross sections
are evaluated using the input parameters listed in Section 4.2.

processes under consideration, as well as the corresponding processes with an additional
jet, i.e. QCD-induced V V jjj production, have been validated against Sherpa-1.4 [55]
using the Comix [105] generator. Full agreement within an MC error of less than 0.1 %
has been found. Furthermore, the implementations of W±Zjj and ZZjj production have
been adapted to allow the calculation of W±jj and Zjj production at NLO QCD, as well.
For these processes, the real emission contribution, including the subtraction terms, agrees
with Sherpa within an MC error of less than 0.3 %. Due to the substantial runtime, which
is more than a factor of 100 larger using the latter program, this test has only been done
with a precision better than 1% for the V V jj production.

The full NLO results for Wjj production have been compared with MCFM [106, 107] and
agreement at the per mill level has been found. Similarly, NLO results for W±W±jj pro-
duction have been validated against the implementation of Ref. [41, 42] into the POWHEG-

BOX [108] framework and both results agree within a MC error of less than 0.5%.

3.6. Runtime and additional Optimizations

The runtime∗∗ for evaluating the virtual amplitudes and the calculation of total cross
sections is listed in Table 3.2. It shows, that the runtime of the virtual amplitudes of the
2-quark-2-gluon processes is much larger than for the processes of the 4-quark type, even
though the latter include the full summation over parton spins, whereas for the former only
one spin configuration is considered. The amplitudes of the 2-quark-2-gluon type involve
up to hexagon contributions of rank five, whereas the hexagons appearing in the 4-quark
subprocesses are of maximally rank four. Furthermore, the use of Chisholm identities
(see Section 3.3) allows to significantly simplify the HexBox and PenBox contributions
appearing in the subprocesses of the 4-quark type.

The table also shows that the virtual amplitude of the W±W±jj process is very fast
in comparison to the other processes. This is due to the restriction, that the two W
bosons have to couple to different quark lines due to electric charge conservation, which
largely reduces the number of involved diagrams. In particular, there are no PenLine
contributions, which for the other processes appear in the subprocesses of the 4-quark
type. The implementation of the amplitudes for W±Zjj and W±γjj production are the
same, leading to the same runtimes. The runtime of the ZZjj amplitudes are slightly

∗∗All runtimes shown here are obtained on an Intel i5-3470 computer with one core and using the Intel-ifort
version 12.1.0.



46 3. Implementation

larger, since for W±Zjj and W±γjj production the quark-types of one quark-line are
fixed, whereas for ZZjj, all combinations have to be considered. In addition, the ZZjj
calculation involves closed fermion loops with both Z bosons being coupled to it. This
leads to rank five pentagons in the 2-quark-2-gluon amplitude and rank four boxes in
the 4-quark subprocesses, which require the summation over the various quarks in the
fermion loop, including the massive top quark. In total, these fermion loop contributions
are much slower than the other contributions of the virtual amplitude. Since they are a
gauge-invariant set of diagrams, they can be calculated separately and due to their small
contribution to the cross section, they can be calculated with a reduced number of phase
space points as explained in the following.

The full cross section calculation involves many contributions that can be calculated sep-
arately. They can be split according to

• subprocess

• NLO contribution (σB, σV , σR, σC , additional fermion loops in ZZjj production)

• phase space generator (only for W±γjj production, see Section 2.2.4).

Calculating the Born contributions first allows to use the adapted grids of the Monte-
Carlo integration for the contributions σC and σV , such that the time consuming virtual
amplitudes are predominantly evaluated in the phase space regions with large contributions
to the cross section. In contrast to the other contributions, the full sum over subprocesses
is done for the real emission to make use of the caching system described earlier. The
phase space integration of the other contributions is split into the various subprocess
types according to the individual lines of Eqs. (3.15) and (3.19).

The Monte Carlo integration of a contribution i leads to a specific runtime ti and estimate

of the absolute error ∆σi for the integral, which are related by the relation ∆σi ∼ t−1/2
i ∼

N
−1/2
i , where Ni is the number of evaluated phase space points. Minimizing the total

runtime

T =
∑

i

ti (3.59)

of the full calculation, while keeping the combined error

∆σ =

√∑

i

∆σ2
i (3.60)

fixed, leads to the condition

∆σ1

∆σi
·
√
ti
t1

= Ci
!

= 1 ∀i, (3.61)

where the first contribution is chosen as an arbitrary reference. The optimal number for
phase space points for each contribution can be obtained by running all contributions
once to obtain the coefficients Ci. Afterwards, the number of phase space points can
be adjusted according to Ni → Ni/Ci, such that the condition of Eq. (3.61) is fulfilled.
Using this method, e.g. the computing intensive virtual amplitudes or subprocesses with a
minor contribution to the total cross section are evaluated with a reduced number of phase
space points. This is shown in Table 3.3, where the result of a run for the cross section
calculation of ZZjj production is split into individual subprocesses and contributions to
the NLO cross section.
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classification contribution σi [ fb ] ∆σi [ab] ∆σi/σi [ % ] ti Ni/N1 Ci

subprocess

qg → qg 3.002 7.84 0.26 6.8 h 1 1.00

q̄g → q̄g 1.468 4.27 0.29 3.4 h 2−1 1.29

qq̄ → gg 1.594 4.03 0.25 4.2 h 2−1 1.53

gg → qq̄ 0.364 1.59 0.44 34 min 2−3 1.44

qq → qq 0.511 1.90 0.37 59 min 1 1.57

qq̄ → qq̄ 0.628 2.08 0.33 57 min 2−1 1.41

q̄q̄ → q̄q̄ 0.083 0.77 0.93 8.2 min 2−3 1.45

NLO
contribution

σB 4.182 1.83 0.04 57 min 1 1.00

σV (no QL) 1.916 9.50 0.50 13.3 h 2−5 0.75

σC 1.561 1.27 0.08 52 min 2−1 1.16

σV (QL) -0.009 3.44 39.5 2.3 h 2−10 0.86

σR -2.580 6.81 0.26 20 h 22 1.63

σNLO all 5.070 12.39 0.24 37 h

Table 3.3.: Cross section and runtime∗∗ of the program for ZZjj production split into the
various subprocess types and NLO contributions using optimized grids (see Section 2.2.4).
The calculation of the virtual contributions is split into contributions of closed quark loops
with at least one EW gauge boson being attached to the loop (QL) and the evaluation of
all other one-loop diagrams. The factors Ci (defined in Eq. (3.61)) are close to one, which
indicates that the number of phase space point Ni for all contributions i is close to the
optimum value. The factor Ci for the real emission contribution is calculated with respect
to all other contributions.

For ZZjj production, the number of phase space points for the evaluation of the virtual
contributions is reduced by a factor 25 compared to the corresponding Born level contri-
bution. For the calculation of the very time consuming fermion loop contributions, which
constitute less than 0.5% of the cross section, the number of phase space points is reduced
by a further factor of 25. It has been checked that, using the adapted grids of the Born
calculation, the error estimate for the Monte Carlo integration of this closed quark-loops is
reliable, even though the relative error of this contribution can be close to 100%. For the
various subprocesses, the number of evaluated phase space points varies within an factor
of 25. The number of phase space points for the real emission contribution can be adjusted
according to the combined error estimate and runtime of the other contributions.

With the optimizations presented here and in the previous sections, the calculation of LO
and NLO cross sections is very fast, as shown in Table 3.2. The LO cross sections can be
evaluated within a few minutes with per mill level accuracy. For W±W±jj production,
the calculation of the amplitudes only constitutes ∼ 10% of the calculation of the LO
cross section and the increased runtime is probably due to a worse convergence of the
phase space integration. The runtime of the NLO calculations shows that W±W±jj
production is very simple in comparison to the other processes, due to the limited number of
contributing subprocesses and diagrams. The calculation of W±γjj production is slightly
slower than W±Zjj production, since the second phase space region where the three-
body decay W → lνγ dominates is important and must be calculated separately. ZZjj
production, which involves many spin configurations and fermion loop contributions is the
slowest process, with a runtime of 3.5h to obtain the NLO cross section with 1% accuracy.





CHAPTER 4

Phenomenological Results

4.1. Overview

In this chapter, the phenomenology of inclusive V V jj + X production at the LHC will
be discussed. The focus will be on the QCD-induced contributions of O(α2

sα
2) for on-

shell production, whose implementation has been presented in the previous chapter. In
addition there are purely electroweak contributions of O(α4) as well as interferences be-
tween these two production mechanisms. Representative Feynman diagrams for the various
contributions are shown in Fig. 4.1. The EW channel can be further split into “vector-
boson-fusion” (VBF) processes, which include all diagrams with t- or u-channel EW gauge
boson exchange between the two quark lines, and into s-channel contributions, that in
particular include the production of three vector bosons, with one vector boson decaying
into a quark-antiquark pair.

The phenomenology of the QCD-induced processes W±W±jj, W±Zjj, W±γjj and ZZjj
will be discussed in Sections 4.4-4.7. The corresponding results have been published in
Refs. [44, 47–49]. Before studying the individual processes in detail, in the rest of this
section, their relevance shall be discussed and an overview of the available calculations
will be given. In Section 4.2, the input parameters as well as the phase space cuts used
are defined. In Section 4.3, the scale dependence of the processes will be discussed. For
processes with a W boson, the focus will be on the positively charged final states and
it can be expected that, apart from the overall normalization due to different total cross
sections, the results for the corresponding negatively charged final states are similar.

4.1.1. Importance of V V jj Production in Particle Physics

Studying V V jj production is an important part of the physics program at the LHC since
it allows to probe the mechanism of EW symmetry breaking. In particular, the VBF
contributions, including the V V → V V scattering, are sensitive to the self interactions of
the EW gauge bosons. This scattering also includes contributions of the recently discovered
Higgs boson [1, 2], which are needed to unitarize the amplitudes in the SM. In particular,
the VBF processes ZZjj and W+W−jj include Higgs production via qq → Hjj in VBF,
with the Higgs decaying into ZZ or W+W−. The VBF mechanism is one of the most
important Higgs production channels. It not only constitutes the second largest production
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Figure 4.1.: Representative Feynman diagrams for the QCD-induced and EW contribu-
tions to V V jj production.

cross sections, but also features very characteristic signatures in detectors, which allow for
an efficient background suppression. These signatures are common to all VBF processes
and will be discussed in the following paragraph.

The VBF processes only include EW t- and u-channel exchange between two quark lines.
The corresponding contributions peak at low virtualities of the exchanged vector bosons
leading to a relatively small momentum transfer between the quark lines. Hence, the
final state quarks lead to two jets in the far forward regions of the detector with a large
rapidity separation and a large invariant mass, while their transverse momenta can be
relatively small. The electroweak bosons are typically produced in the central region
of the detector, with their decay products lying in the rapidity region between the two
hardest jets. This characteristic signature of the VBF processes can be used to reduce large
parts of the backgrounds, including the corresponding QCD-induced processes∗. A second
characteristic feature of the VBF processes is the suppression of additional jet activity in
the central detector region: Due to the absence of color exchange between the two quark
lines, additional gluon radiation predominantly appears in the vicinity of the final state
quarks, similar to bremsstrahlung in QED. In contrast, the corresponding QCD-induced
processes develop more radiation in the central region. A veto on events with additional
jets in the central region can therefore be used to reduce the QCD-induced contributions.
See e.g. Refs. [110, 111] for discussions of this central jet veto.

The characteristic signatures of the VBF processes allow for precision measurements of
vector boson scattering and the Higgs boson. In the SM, these are determined by the EW
symmetry group SU(2)⊗ U(1) and the Higgs potential. Measurements of these processes
therefore allow for a test of the fundamental structures of the SM. Even though the pre-
dictions made within the SM are in very good agreement with the experimental results
obtained at collider experiments, physics beyond the standard model (BSM) could lead to,
yet unobserved, modifications of the gauge boson self interactions. While modifications to
the triple gauge couplings can be determined in the production of vector boson pairs, the
determination of the quartic gauge couplings requires the measurement of vector boson
scattering or the production of three EW gauge bosons. In addition, new heavy particles
in models beyond the SM can manifest as resonances appearing in the invariant mass
distribution of vector boson pairs. See e.g. Ref. [112] for a phenomenological discussion.

Besides the direct sensitivity of V V jj production processes to BSM physics, they also
constitute backgrounds to various other BSM searches. Most supersymmetric models
obey the conservation of R-parity, which leads to cascade decays of SUSY particles into
the lightest supersymmetric particle and additional SM particles. These cascades result
in events with many leptons, jets and missing transverse momentum. Similar signatures
can be obtained by the processes considered in this thesis, which is why they constitute
an important background to BSM searches. A recent experimental analysis with this type
of final states can be found in Ref. [113].

∗see e.g. Ref. [109] and references therein.
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In addition, the processes studied here are important to test double parton scattering,
i.e. the simultaneous occurrence of two hard interactions (see e.g. Ref. [114] for a defini-
tion). To observe these, one typically looks for final states, which have a small production
cross section when producing them in a single interaction, but can be produced by two
interactions with significant cross sections as well. In this regard, a final state with two
identically charged leptons and missing transverse energy is quite promising since in a
single interaction it only can be produced by W±W±jj, which is suppresses by O(α2

s),
compared to the production of two W bosons in different interactions [115–117]. Note that
the W±W±jj cross section is finite, even if the usual kinematic cuts on the two jets are not
applied. Further backgrounds for double parton interactions are diboson production with
undetected or misidentified leptons. Hence, the other processes discussed in this thesis can
become important for double parton scattering, as well.

4.1.2. Available Calculations

Precise measurements in the EW sector, in V V jj production processes for example, re-
quire precise theoretical predictions of these processes as well. The VBF contributions
have been calculated to NLO accuracy in QCD in Refs. [22–26] for processes with all com-
binations of massive gauge bosons and in Ref. [27] for the production of a W boson in
association with a real photon in the final state. Common to these calculations is that
they neglect interferences between the t- and u-channel diagrams to avoid the calculation
of up to eight-point one-loop integrals, when off-shell effects are included. This “VBF
approximation” is justified, because the interferences are small if a large separation and
invariant mass of the two hardest jets is demanded. The calculations of Refs. [22–25, 27]
are publicly available in the flexible parton level Monte Carlo program VBFNLO [56–58].
This program also provides NLO QCD corrections to triboson production, which consti-
tutes the EW s-channel contribution to V V jj production. Details on the calculation of
triboson production with full leptonic decay can be found in Refs. [28–34]. The corre-
sponding processes with one vector boson decaying hadronically, leading to the final state
V V jj, have recently been presented in Ref. [35] including all off-shell effects. In addition,
NLO QCD corrections to on-shell production have been presented in Refs. [36–40] and in
Ref. [39] NLO EW corrections to on-shell WWZ production have been discussed. Fur-
thermore, the production of Wγγ in association with one jet is known at NLO accuracy
in QCD [81].

The calculation of the QCD-induced processes is more complicated, due to the contri-
butions of up to six-point one-loop diagrams and non trivial color structures. However,
these calculations have become possible in the last few years and results for basically all
combinations of vector bosons are known with the exception of Zγjj. Calculations for the
production of W±W±jj [41–44], W+W−jj [45, 46], W±Zjj [47], W±γjj [48], ZZjj [49]
and γγjj [50, 51] have been presented. Furthermore photon pair production in association
with three jets has been calculated in Ref. [51]. The missing Zγjj process can, in principle,
be obtained with minor modifications from the ZZjj calculation.



52 4. Phenomenological Results

4.2. Selection Cuts and Input Parameters

To allow for a comparison of the individual processes, a common set of cuts and input
parameters is used. For the final state leptons we demand

pT l > 20 GeV, |yl| < 2.5, Rll > 0.4, Rjl > 0.4, (4.1)

where R =
√

(∆φ)2 + (∆y)2 is the separation in the azimuthal angle – rapidity plane.
The jets are clustered using the anti-kT algorithm [118] with a cone radius R = 0.4 and
they are required to fulfill

pTj > 20 GeV and |yj | < 4.5. (4.2)

They are ordered in transverse momentum and the two hardest jets are sometimes refered
to as tagging jets. For processes involving W bosons an additional cut on the missing
transverse momentum of

/pT > 30 GeV (4.3)

is applied, which is defined by the momentum of the neutrino system. For photons, the
isolation criterion proposed by Frixione [75] (see Section 2.2.5) is applied with separation
parameter δ0 = 0.7. In addition, the following cuts are applied,

pTγ > 30 GeV, |yγ | < 2.5, Rlγ > 0.4, Rjγ > 0.7. (4.4)

As EW input parameters, we use MW = 80.385 GeV, MZ = 91.1876 GeV and GF =
1.16637×10−5 GeV−2. From this, the weak mixing angle and the electromagnetic coupling
constant are calculated using the standard model tree level relations

cos θW =
MW

MZ
and α =

√
2

π
GFM

2
W sin2 θW . (4.5)

We use the MSTW2008 parton distribution functions [119] with αLOs (MZ) = 0.13939 and
αNLOs (MZ) = 0.12018. All fermions, except for the top quark with mt = 173.1 GeV,
are assumed massless. We use MS renormalization for the strong coupling constant and
decouple the top quark from the running of αs. The decay widths of the weak bosons are
calculated to be ΓZ = 2.50890 GeV and ΓW = 2.09761 GeV. The calculation for ZZjj
and of the EW contributions in Section 4.4 involve contributions of the Higgs boson with
MH = 126 GeV and ΓH = 4.195 MeV. All calculations are performed in the context of
proton-proton collisions at the LHC with a center of mass energy of

√
s = 14 TeV.

We present our results using three different choices of the renormalization and factorization
scale. Since a fixed scale cannot represent all the kinematical configurations appearing in
the calculation, dynamical scales are used, that take into account the momentum config-
uration at each phase space point. A common scale choice in multi-leg calculations is the
total transverse energy of the event, and we therefore define

µHT =
1

2


 ∑

i∈ partons

pTi +
∑

Vi

ET i


 , (4.6)

where the transverse energy is given by

ET =
√
p2
T +m2, (4.7)
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with m being the reconstructed mass of the particle†. In addition, the scale choices

µ′HT =
1

2


 ∑

i∈ jets

pT i e |yi−y12| +
∑

Vi

ET i


 , with y12 =

1

2
(y1 + y2), (4.8)

and

µET =
1

2
(ET (j1j2) + ET (V1V2)) (4.9)

are used, which take into account the invariant mass of the tagging jet system (see Sec-
tion 4.3). Note that in the definition of µHT the sum of the transverse parton momenta is
calculated, whereas for µ′HT the corresponding sum is done for the jets to avoid large con-
tributions by partons collinear to the beam. If not stated otherwise, the renormalization
and factorization scales are set equal.

The results are obtained by simulating the decay of the vector bosons into a specific
leptonic final state without identical leptons and are then multiplied by an appropriate
factor to account for all possible combinations of leptons of the first and second generation.
This is a factor of 4 for the WZjj production and a factor of 2 for the other processes.
The neglected Pauli interferences due to identical leptons in the final state are expected
to be less than 0.1% (see e.g. [28] for a discussion of this effect for WWZ production).

4.3. Scale Dependence

Calculating cross sections for hadron collisions at a fixed order in perturbation theory
leaves a dependence of the results on the unphysical renormalization and factorization
scales. These dependences are canceled by higher order terms and therefore a variation
of these scales can be used to estimate the size of the neglected contributions. However,
this error estimate should not be considered as the true theoretical uncertainty since this
variation does not affect all the higher order terms.

In this section, the scale dependence of the total cross sections is studied. The scales, as
defined in Eqs. (4.6), (4.8) and (4.9), are multiplied by factors ξ ∈ [1/10, 10]. Fig. 4.2
shows the dependence of the cross sections on simultaneous variation of the factorization
and renormalization scales as well as the dependence on varying the scales individually
for the processes W+γjj and W+W+jj using µ′HT as the central scale. It is striking
that the scale uncertainty is dominated by the dependence of the cross section on the
renormalization scale. At LO this is determined by the running of α2

s and results in
differences of about 40% for scale variations by a factor of two around the central value.
The next-to-leading order corrections partly compensate the dependence of the LO results
leading to a scale dependence that is typical for NLO calculations: For large values of µR,
the smallness of αs is compensated by positive corrections, whereas for small scales one
obtains negative corrections. This leads to a significant reduction of the scale dependence
in the NLO result, especially in the region close to the maximum.

For variations by a factor of 2 around the central value, the variation of the cross sections
is reduced to 6% for W+γjj and 17% for W+W+jj. The dependence on the factorization
scale is rather small with variations of the LO (NLO) results by 3% (2%) for W+γjj and
4% (1%) for W+W+jj. The larger scale dependence of W+W+jj production compared
to the results of Ref. [41], where a dependence of less than 10% was obtained, is due to
the different scales used. The latter results use fixed values for the scales, which are too
low for the high transverse momentum and high invariant mass regions. When comparing
the distributions in Section 4.4 with the ones presented in Ref. [41], it can be seen that
the fixed scale leads to much larger uncertainties in those phase space regions.

†The reconstructed mass of a W bosons can be used in the calculation, even though it cannot be determined
experimentally.
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Figure 4.2.: Scale dependence of the total cross section for W±γjj and W±W±jj pro-
duction processes at LO and NLO with µ′HT as central scale. For both processes there is
no visible dependence on the factorization scale and the simultaneous variation of both
scales matches the dependence on the renormalization scale.

In the following, the factorization and renormalization scales will be set equal. The simul-
taneous variation of both scales is shown in Fig. 4.3 for the individual processes using the
three scale definitions of Eqs. (4.6), (4.8) and (4.9) as central scale. Except for W±W±jj
production, which is special due to the absence of gluon induced processes at LO, all pro-
cesses show a similar behavior in scale dependence. The appearance of new contributions
at NLO often leads to large K-factors, which is defined as the ratio of the NLO and LO
result. This large K-factors can be seen in e.g. diboson production [120–122] and Higgs
boson production via gluon fusion [123, 124]. Also in W±W±jj production a larger K-
factor of 1.20-1.38 (depending on the scale choice) at ξ = 1 is observed, whereas for the
other processes, the K-factor is close to one with corrections of less than 10% in most
cases. However, one should keep in mind that there is a large scale dependence at LO and
that this discussion depends on the definition of the central scale.

At leading order, the variations of the scales by a factor of two around the central values
leads to differences in the cross sections of about 40-50% with respect to the central scale.
This scale dependence is smallest for W±W±jj production with differences of 42% for
the scale choices µ′HT and µET . For W±γjj and ZZjj production, they are about 45%
and the largest uncertainties of 49% are obtained for W±Zjj production using the scale
choice µHT . The scale dependence is largely reduced after including the next-to-leading
order corrections, which yields about 17-20% for W±W±jj production and less than 10%
for the other processes. A more conservative estimate of the scale uncertainties is obtained
by combining the scale variations by a factor of two with the selection of the three different
central scales. Using this method, scale uncertainties of 59-64% are obtained at LO. The
NLO corrections reduce these to 25% for W±W±jj production and to 11-14% for the
other processes.

From the definition of the scales, it is clear that the value for µHT is smaller than the
other two choices, resulting in the largest LO results in Fig. 4.3. The scale choices µ′HT
and µET have very similar shapes of the scale variation – not only at LO, but also at NLO.
Furthermore, they lead to nearly identical cross section for W±W±jj production, which is
due to very similar differential distributions dσ

dµ′HT
and dσ

dµET
for these processes. Except for

W±W±jj production, the cross sections rapidly decrease for small values of ξ, especially
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Figure 4.3.: Scale dependence of the total cross sections for W±γjj, W±Zjj, W±W±jj
and ZZjj production (from top to bottom). The renormalization and factorization scales
are set to µR = µF = µ and varied around the various central scales defined in Eqs. (4.6),
(4.8) and (4.9).
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when using µHT . In this region, the scales are too small, being of the order of 10 GeV at
ξ = 0.1, which is inappropriate for representing the kinematics of these processes. The
maxima of the graphs σNLO(µ) are close to ξ = 1 and one often argues, that this region
indicates a good scale, because it features the minimal dependence on scale variations. In
addition, the intersections of the LO and NLO results are close to ξ = 1, which is a further
hint towards the goodness of the scales used here.

In the following four sections, we will analyze various differential distributions of the
processes W+W+jj, W+Zjj, W+γjj and ZZjj in further detail.
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4.4. W±W±jj

Compared with the other processes under consideration, the QCD-induced production of
same-sign W±W±jj is special since it does not involve gluon induced subprocesses at
LO. Their absence leads to a relatively small cross section that is of similar size as for
the corresponding electroweak process. For the same reason it can be expected that the
interferences between the EW and QCD production modes are largest for this process.
Therefore, before further discussion of the NLO correction to the QCD-induced processes,
the full LO process, involving QCD as well as electroweak contributions, will be discussed.

Figure 4.4.: Representative tree-level Feynman diagrams of the process
pp→ e+νeµ

+νµjj. The left diagram contributes to the QCD-induced channel. The
EW contributions can be split into VBF-like topologies (middle) and s-channel contri-
butions (right). The double lines represent either a neutral EW gauge boson or the
Higgs.

4.4.1. Full LO Results including QCD and EW Production Modes

As mentioned earlier, the production of V V jj final states can be split into the QCD
contributions of O(α2

sα
2), EW contributions of O(α4) and interferences between these

of order O(αsα
3). The EW contributions can be further split into VBF-like parts that

involve electroweak t- or u-channel exchanges between the two quark lines and additional
s-channel contributions. Some representative diagrams are shown in Fig. 4.4.

Fig. 4.5 shows differential cross sections of the individual contributions to W+W+jj pro-
duction. Here, the scale µHT (see Eq. (4.6)) is used as central scale in all production
channels. For the VBF contributions, a common choice is the momentum transfer Q off
the quark lines. However, this scale is not reasonable for the other contributions and for
the sake of comparison, the same scale is used for all contributions.

In the bottom-right panel of Fig. 4.5, the distribution in the rapidity difference of the two
tagging jets, defined as the two jets with the highest pT , shows that the individual channels
peak in different phase space regions. The electroweak contribution exhibits two maxima
that can be assigned to the VBF and the s-channel contributions. The VBF contribution
is in very good agreement with the full EW result for ∆ytags > 3, but fails in describing
the region of low ∆ytags, where the contributions of the s-channel diagrams dominate. The
QCD contribution peaks at low ∆ytags.

A similar assignment can be made for the mjj distribution. The electroweak s-channel con-
tributions peak at MW due to the W− splitting into a quark pair. For mjj > 150 GeV the
electroweak production is dominated by the VBF channels leading to a very good agree-
ment between these two contributions. Comparing the VBF and the QCD channel, one
observes large differences as well: While the QCD contribution peaks at mjj ≈ 150 GeV,
the VBF contribution is maximal for mjj ≈ 500 GeV.

These differences can be used to enhance the EW process compared to the QCD one.
Applying additional cuts of e.g.

mjj > 200 GeV, ∆ytags > 2.5 (4.10)
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Figure 4.5.: Differential cross sections of the process W+W+jj for the transverse mo-
menta of the two tagging jets as well as their invariant mass and separation. The distribu-
tions are split into various contributions and are calculated at LO using the scale µHT (see
Eq. (4.6)). The small panels show the relative EW, QCD and interference contributions
compared to the full LO results.

not only reduces the contribution of the QCD process from 37% to 16%, but also legitimates
the use of the VBF approximation for the EW process.

The interferences between the QCD and EW channels only contribute with about 5% to the
total cross section. However, as it can be seen in Fig. 4.5, they can get large in phase space
regions that only give a small contribution to the total cross section. Their contribution
increases for high pT of the jets up to about 20% for pT,j1 ≈ 900 GeV or pT,j2 ≈ 600 GeV.
In the ∆ytags distribution, the contribution of the interferences decreases from 9% to less
than 1% in regions of large ∆ytags. This effect can be explained by the color structure of
the amplitudes (see Section 3.1). For large jet separations ∆ytags, the effects of s-channel
diagrams are largely suppressed and only interferences of the EW t-channel diagrams
with the u-channel diagrams of the QCD process (or vice versa) contribute. Since only
one of these channels can get large, this leads to a large suppression of the interference
effects. In the mjj distribution, the interference effects only show a small dependence for
mjj > 200 GeV. However, in the low mass region there are some sign changes that relate



4.4. W±W±jj 59

to the propagators of the electroweak s-channel contributions as depicted in Fig. 4.5. The
most striking one takes place at mjj = MW , where the propagator of the W− boson,
which splits into a quark-antiquark pair, changes its sign. Further sign changes close to
this region occur, when the invariant mass of the two jets and one of the vector bosons,
mjjV , passes MZ or MH .

Since the interference effects are small, one can study the QCD and EW processes sepa-
rately. Therefore, in the following only the QCD-induced contributions are considered at
next-to-leading order. When combining these results with the corresponding EW ones, it
is possible to add the interference contributions at LO. Once more, it should be mentioned
that the interference effects are expected to be largest for W±W±jj production due to
the absence of gluon induced subprocesses and because both QCD and EW amplitudes
involve only left-chiral quarks and leptons. For the other processes, one can expect to
obtain interference effects smaller than 5% of the total cross section.

4.4.2. NLO QCD Corrections to QCD-induced W+W+jj Production

The effects of the QCD corrections on the total cross section have already been shown in
Section 4.3. The K-factor, defined as the ratio of the NLO to the LO result, is 1.20 when
using µHT as factorization and renormalization scales. However, this factor cannot reflect
the dependence of the QCD corrections on kinematical quantities and a discussion based
on differential cross sections is mandatory. Fig. 4.6 shows important distributions at LO
and NLO as well as the corresponding differential K-factors.

In the pT distributions of the jets in Fig. 4.6, the NLO corrections show, except for the
low pT region, only a modest phase space dependence: The differential K-factors are
monotonically falling, leading to slightly softer jets at NLO. This might be due to the
three jet events, which account for about 65% of the NLO cross section, where the third
jet carries away momentum from the tagging jets. While for pT,j1 < 100 GeV the K-factor
increases up to 1.5, beyond this low pT region the K-factor slightly decreases from 1.2 to
1.1; in the pT,j2 distributions the K-factor drops from 1.25 in the low pT region to 1.05 at
pT,j2 = 700 GeV.

The NLO corrections to the invariant mass and rapidity separation of the two tagging jets
exhibit a more striking dependence, with corrections of about a factor of two appearing
in both distributions. The K-factor is close to two in the low mjj region and rapidly
drops for mjj < 200 GeV. After that, it slowly decreases further, being less than one
for mjj > 1 TeV. The differential K-factor to the rapidity separation of the tagging jets
constantly decreases from 1.4 at ∆ytags = 0, reaching 0.6 at ∆ytags = 6. Understanding
these large corrections is important, because one typically demands large separations of
the tagging jets when studying vector boson scattering. It turns out that these large
corrections are mostly caused by the use of the scale µHT , which is not appropriate in
this phase space region: The invariant mass mij of two massless particles i and j can be
expressed as

m2
ij = 2pT,ipT,j (cosh ∆yij − cos ∆φij) , (4.11)

where ∆yij and ∆φij are their rapidity and azimuthal angle separations, respectively.
Hence, the invariant mass mij , which certainly is a relevant scale of the process, largely
increases with the rapidity separation ∆yij , while the transverse momenta can be small.
Since the scale µHT only includes the transverse momenta of the jets, it is too small in
the high ∆ytags region. Therefore, one uses a too large value of αs which is compensated
by large negative NLO corrections. A more suitable scale should therefore include the
invariant mass as well as the pT of the jets. This justifies the use of the scales µ′HT and
µET defined in Eqs. (4.8) and (4.9). Due to the additional exponential in µ′HT , this scale
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Figure 4.6.: Differential cross sections at LO and NLO as well as the corresponding
differential K-factors for QCD-induced W+W+jj production. The upper row shows the
transverse momentum of the two hardest jets, ordered in pT . In the middle, the distri-
butions of their invariant mass and rapidity separation are shown. In the lower row the
azimuthal angle difference of the hardest jets as well as the missing transverse momentum
are shown. The bands describe scale variations by a factor of two around the central scale
µHT . The K-factor bands are due to the scale variation of the NLO results, with respect
to σLO(µHT ).
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Figure 4.7.: Differential cross sections for W±W±jj production showing the distribution
of the invariant mass and rapidity separation of the tagging jets. The top and middle
panels are as in Fig. 4.6, but using the modified scale µ′HT . The lower panel shows the
ratio of the differential cross sections using the scale ξ µHT over the modified scale µ′HT
at LO and NLO with ξ ∈ [1/2, 2].

is equal to µHT for ∆ytags = 0, but resembles the invariant mass for large separations. A
similar scale choice has been used in Ref. [125] for dijet production at NLO QCD. The
scale µET features a similar behavior. If the jets are close to each other, they typically
have a low invariant mass and for the (vectorial) sum of the transverse momenta holds
pT,jj ≈ pT,j1 + pT,j2 ≈ ET (jj). However, for large separations, pT (jj) typically gets small
and one obtains ET (jj) ≈ mjj .

Figs. 4.7 and 4.8 show the distributions of the invariant mass and rapidity separation of the
tagging jets using the modified scales µ′HT and µET . Except for the region mjj < 200 GeV,
the phase space dependence of the K-factors is largely reduced, being nearly flat for µ′HT .
In addition, the plots show the ratio of the cross sections evaluated with µHT and µET
compared to σ(µ′HT ). There, one observes that the three scale choices lead to a very good
agreement of the shapes at NLO and the differences basically reduce to the overall scale
uncertainty of about 15%. While the LO results using µ′HT and µET are in good agreement
within the scale uncertainty, σ(µHT ) differs from the other results by a factor of two in the
high ∆ytags region. Hence, the K-factor of 0.6 observed in the high region of the ∆ytags

distributions shown in Fig. 4.6 is due to the too large LO result caused by the use of the
improper scale µHT . A further indication of the failing of this scale in this region is the
increasing width of the scale uncertainty band at NLO. This is primarily due to the result
of σNLO(µHT /2) which shows that this scale is too small here.

As it can be seen in Fig. 4.6, the azimuthal angle difference of the tagging jets peaks
at ∆φtags = π. This reflects a different behavior compared to the processes that will be
discussed in the following sections and can be explained by the special structure of this
process: It does not involve external gluons at LO, whereas for the other processes the
LO subprocesses with external gluons constitute ∼ 85% of the cross section. The quark-
gluon and gluon-gluon splittings appearing in the other processes lead to more events
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Figure 4.8.: Differential cross sections for W±W±jj production showing the distribution
of the invariant mass and rapidity separation of the tagging jets. The top and middle
panels are as in Fig. 4.6, but using the modified scale µET . The lower panel shows the
ratio of the differential cross sections using the scale ξ µET over the scale µ′HT at LO and
NLO with ξ ∈ [1/2, 2].

with smaller separations of the jets. Another feature of this process is its symmetry: The
dominant subprocesses are of the type

qq →W+W+qq → l+ν l+ν qq, (4.12)

where each initial and final state particle appears in pairs. This leads to more symmetric
final states with identical particles preferential recoiling against each other. The same
argument holds for the subprocesses with q̄q̄ in the initial state and for the qq̄ initiated
subprocesses only the appearance of suppressed s-channel contributions might lead to a
different behavior.

The distribution of missing transverse momentum, shown in the bottom right of Fig. 4.6,
obeys a nearly flat K-factor. In general, the distributions of W decay products, which are
not shown here, have only a small phase space dependence. In the pT distributions of the
leptons and the distribution of their invariant mass, the K-factor decreases from 1.2 to 1.0
in the tails of the distributions, similar to the pT,j2 distribution. The rapidity distributions
of the leptons have a nearly constant K-factor with a slightly increasing scale uncertainty
for large |yl|.
It remains to discuss the large K-factor for mjj < 200 GeV, which is common for all three
scale choices. Although the identical behavior of the scales can be expected here, since
they agree in the low mjj limit as discussed, it turns out that this increase is due to a new
configuration opening up at NLO. The gluon appearing in the real emission can become
a jet on its own, while the quarks only lead to one further jet. This contribution peaks
at low invariant masses of the jets due to the quark-gluon splitting depicted in Fig. 4.9.
We have confirmed that this effect indeed causes the observed increase of the K-factor
by separately calculating the real emission contributions with one gluon jet and only one
further jet.
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Figure 4.9.: Feynman diagram representing the new contributions appearing at NLO,
which causes the large K-factor in the region mjj < 200 GeV in Figs. 4.6 through 4.8.

Knowing that the scale µHT is too small for large separations or invariant masses of the
jets, we will not use it further in the following discussions of the other processes. Since
the scales µ′HT and µET are in good agreement, both at LO and NLO, only one of those
will be used respectively in the following sections.
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4.5. W±Zjj: QCD-induced Production

For the production of W±Zjj, no new channels open up at NLO and therefore one does not
expect phase space regions with large K-factors as it is the case in W+W+jj production.
Fig. 4.10 shows kinematical distributions of the tagging jets for W+Zjj production using
the scale µ′HT (see Eq. (4.8)).

Comparing the pT,j distributions of Fig. 4.6 and Fig. 4.10, one notes that in W+Zjj more
soft events are produced than in W+W+jj production: While in the former process the
transverse momentum distribution of the second jet drops by four orders of magnitude in
the range pT,j2 < 700 GeV, it only reduces by 2-3 orders in the latter process. A similar
effect, but not as pronounced, can also be seen in the pT,j1 distribution. This is due to the
appearance of subprocesses with external gluons, which contribute about 85% of the cross
section. The initial state gluons carry not only typically smaller momentum fractions of
the initial state protons, but also gluon radiation peaks at low gluon momenta and low
parton separations‡. The absence of gluonic subprocesses in W+W+jj production also
leads to a largely reduced cross section in the first bin of the pT,j1 distribution.

The K-factor of the mjj distribution increases from 0.8 to 1.1 in the range 0 < mjj <
600 GeV. Beyond this region, it stays nearly constant. For the ∆ytags distribution, the
K-factor increases from 0.8 to 1.2 in the range 0 < ∆ytags < 6. The NLO corrections of
. 20% and a nearly flat K-factor in the mjj distribution show that µ′HT is a good scale
choice for this process, even though it does not produce as flat K-factors as in W+W+jj
production (Fig. 4.7).

Compared toW+W+jj production, the gluonic subprocesses lead to a significant difference
in the distribution of the azimuthal angle difference of the tagging jets, with only a small
dependence on ∆φtags. However, the cross section would diverge in the low ∆φtags region,
if no separation cut on the jets would be applied. The effects of this cut are clearly visible
at ∆φtags = 0.4 and ∆ytags = 0.4, and the effects are much stronger than in W+W+jj
production.

It is important to study the kinematical distributions of the electroweak decay products,
since also effects of new physics beyond the SM are expected to have an influence here.
Typical BSM signals are e.g. new resonances in the invariant mass distribution of the EW
vector bosons, enhanced contributions in the tails of the total transverse energy,

HT =
∑

i∈ jets

pT,i +
∑

i∈ leptons

pT,i + /pT , (4.13)

or transverse momentum distributions [112, 113, 126, 127]. Therefore, knowing the next-
to-leading order corrections in the SM is very important, since an enhancement due to
these could be misinterpreted as an indication for BSM physics. Higher order terms can
lead to large corrections in the tails of distributions, if new channels open up in the real
emission contributions. This has been shown in Refs. [128–131], where NLO results for
vector boson (pair) production with different jet multiplicities have been merged to obtain
approximate NNLO results using the LoopSim method [128].

Important distributions of the EW system are shown in Fig. 4.11. The upper left distri-
bution shows the invariant mass of the WZ system, which cannot be fully reconstructed
experimentally due to the unknown longitudinal momentum of the neutrino. However,
the invariant mass can be estimated by either assuming the W boson to be on-shell and

‡Here, we are interested in the non-singular region, where the radiated gluon and the emitter produce two
separate jets.
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Figure 4.10.: Differential cross sections at LO and NLO as well as the corresponding
differential K-factors for W+Zjj production, similar to Fig. 4.6, but using the central scale
µ′HT . In addition to the transverse momentum, invariant mass and rapidity separation of
the tagging jets, the rapidity distribution of the hardest jet as well as the azimuthal angle
difference of the tagging jets are shown.
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Figure 4.11.: Differential cross sections at LO and NLO as well as the corresponding
differential K-factors for W+Zjj production, similar to Fig. 4.6, but using the central
scale µ′HT . The upper row shows the invariant mass of the WZ system and its cluster
transverse mass as defined in Eq. (4.14). In the lower row, the transverse momentum
distribution of the hardest lepton as well as the distribution of the total transverse energy
HT , defined in Eq. (4.13), are shown.

reconstructing the longitudinal neutrino momentum from this assumption, or using the
cluster transverse mass [112, 132]

m2
T,WZ =

(√
m2(```) + p2

T (```) + |pT,miss|
)2

− (~pT (```) + ~pT,miss)
2 , (4.14)

which is shown in the upper right. Compared to the true value of mWZ , the missing
information of the longitudinal momentum leads to a small shift towards lower values of
mT,WZ . The NLO corrections show only a minor dependence on the electroweak system,
with a slightly increasing K-factor in the low pT and low mass regions. Only the HT

distribution, which includes the transverse momenta of the jets as well, has an increasing
K-factor in the tail of the distribution, indicating that the scale is chosen slightly too high
in this region.
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4.6. W±γjj: QCD-induced Production

Compared to the other processes under consideration, there is only one vector boson de-
caying into leptons in W±γjj production. The missing branching ratio of the second boson
leads to a significantly larger cross section in W±γjj production, allowing for measure-
ments with much higher event rates. Since the structure of this process is very similar to
W±Zjj production, one can expect to obtain similar results for the shapes of the distri-
butions. This can be seen by comparing the jet distributions of these processes, which are
shown in Figs. 4.10 and 4.12. Not only the shapes of the distributions are similar, but also
the differential K-factors show the same behavior.

Since the distributions of the jets closely follow the results of Section 4.5, the focus of this
section will be on the kinematical distributions of the Wγ system, which are presented in
Figs. 4.13 and 4.14. The distribution of the invariant mass mWγ exhibits two maxima,
with a sharp peak at mWγ = MW being due to the three body decay of W → `νγ. The
corresponding contribution in W±Zjj production is largely suppressed, since one of the
vector boson propagators would have to be far off-shell. Beyond this first sharp peak, the
distribution is similar to the one in W±Zjj production, but due to the production of only
one massive vector boson, it is shifted towards lower values of the invariant mass. As in
W±Zjj production, the invariant mass cannot be reconstructed experimentally and one
has to use the cluster transverse mass [132, 133]

m2
T,Wγ =

(√
m2(`γ) + p2

T (`γ) + |pT,miss|
)2

− (~pT (`γ) + ~pT,miss)
2 , (4.15)

similar to Eq. (4.14). Comparing the distributions of mT,Wγ and mWγ , one observes poor
agreement in the low mass region, with more low mass events in the distribution of mT,Wγ .

When studying the gauge interactions of the EW bosons, one is not interested in the
final state radiation with the photon being emitted from the lepton. This contributions
can be reduced by applying a cut on the cluster transverse mass of mT,Wγ > 90 GeV.
The results obtained with this additional cut are shown in Figs. 4.13 and 4.14 as well.
Comparing the mWγ and mT,Wγ distributions shows, that the three body decay of the W
boson can be reduced with this cut, even though the cluster transverse mass yields only a
poor approximation of the true invariant mass in this region. The reduction of events due
to radiative W decays, by applying the additional cut, is also apparent in the distributions
showing the separation of the lepton and photon in Fig. 4.13. Especially in the R`γ and
∆φ`γ distributions, the peak at low separations is completely removed.

The K-factors in the mWγ , mT,Wγ and ∆φ`γ distributions show only minor dependences.
Larger phase space dependences can be observed in the distributions of R separation
and rapidity difference. While the K-factor steadily increases in the ∆y`γ distribution, it
shows a more complicated structure in the R separation distributions. There, it is nearly
constant for R < π, because the separation can be increased by changing the azimuthal
angle difference, which only has a small effect on the NLO corrections. Beyond this region,
a further increase of the R separation is only possible by increasing the rapidity separation
leading to an increase of the K-factor. In this region, one can also observe an increase of
the scale uncertainty.

Fig. 4.14 shows the transverse momenta distributions of the photon, the lepton and the
neutrino as well as the distribution of the invariant mass m`γ . The K-factor has a similar
behavior for all these distributions: It drops from 1 at low values to about 0.8 at 500 GeV.
Therefore, the dependence of the K-factor on these variables is of similar size as on the jet
distributions in Fig. 4.12.
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Figure 4.12.: Differential cross sections at LO and NLO as well as the corresponding
differential K-factors for W+γjj production, similar to Fig. 4.6, but using the central
scale µ′HT . The transverse momentum distribution of the tagging jets as well as their
invariant mass and rapidity separation are shown.

It is worth noting that the K-factors of the results obtained with the additional mT,Wγ cut
closely follow the corresponding K-factor without this cut for all the distributions discussed
here.
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Figure 4.13.: Differential cross sections at LO and NLO as well as the corresponding
differential K-factors for W+γjj production, similar to Fig. 4.6, but using the central
scale µ′HT . In addition to the results which are obtained using the cuts as defined in
Section 4.2, also the results for σNLO(µ′HT ) with an additional cut of mT,Wγ > 90 GeV
are shown. The distributions of the invariant mass as well as the cluster transverse mass
of the Wγ system are shown in the top row. The middle row shows the distribution of
the R separation of the photon to the lepton and jets. The rapidity and azimuthal angle
separation of the photon and lepton are shown in the lower row.
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Figure 4.14.: Differential cross sections at LO and NLO as well as the corresponding
differential K-factors for W+γjj production, similar to Fig. 4.6, but using the central
scale µ′HT . In addition to the results which are obtained using the cuts as defined in
Section 4.2, also the results for σNLO(µ′HT ) with an additional cut of mT,Wγ > 90 GeV are
shown. The distributions show the transverse momentum of the photon, the lepton and
the neutrino (pT,miss) as well as of the lepton-photon invariant mass.
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4.7. ZZjj: QCD-induced Production

In contrast to the other processes discussed in this thesis, ZZjj production has an ex-
perimentally fully reconstructible leptonic final state. It is of high importance, since the
corresponding EW contribution includes Higgs production via vector boson fusion, with
decay of the Higgs boson to four charged leptons. This experimentally clear final state
allows for precise measurements of the Higgs mass and coupling to the Z bosons.

In the following, the QCD process is calculated using µET as the central value for the
factorization and renormalization scales. It has been checked that the results using µ′HT
as the central scale are very close to the ones presented here, as it has also been shown
in Section 4.4 in W+W+jj production. The distributions related to the two hardest jets
are shown in Fig. 4.15. The shape and the corresponding K-factors are very similar to the
ones obtains in W±Zjj and W±γjj production. Only the rapidity separation distribution
of the tagging jets shows a larger difference, with the K-factor significantly increasing with
the jet separation. This difference does not occur due to the different choice of the scales,
but is likely a process specific effect.

The invariant mass distribution of the four lepton system is shown in the top left of
Fig. 4.16. Below the large continuum contribution in the phase space region of mZZ &
2MZ , where on-shell production of both Z bosons is possible, there is an additional peak
at mZZ = MZ due to the four lepton decay of a Z boson. At NLO a contribution with a
s-channel Higgs boson exchange appears in the virtual amplitude, which for mZZ ≈ MH

behaves as

MV (m2
ZZ) ∼ 1

m2
ZZ −M2

H + iMHΓH
. (4.16)

Because the virtual amplitude is interfered with the Born amplitude, which does not involve
the Higgs propagator, one does not obtain a Breit-Wigner distribution in this region, but
the structure of a single pole. Therefore, in the vicinity of mZZ = MH the contributions
below and above this threshold nearly cancel. The contribution due to the Higgs boson
therefore peaks in the continuum region at about mZZ = 200 GeV and contributes with
about 0.3% to the cross section. The corresponding contribution is shown separately in
the top left plot of Fig. 4.16.

For a full description of ZZjj production, not only the corresponding EW processes, but
also the Hjj production via gluon fusion, with the Higgs boson decaying into four leptons,
should be added to the results shown here. The gluon fusion contribution can be added
without double counting the Higgs contributions: The diagrams in the virtual amplitude
involving the Higgs boson are only interfered with the continuum of ZZjj production,
whereas the corresponding squared matrix elements appear in the gluon fusion process.
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Figure 4.15.: Differential cross sections at LO and NLO as well as the corresponding
differential K-factors for ZZjj production, similar to Fig. 4.6, but using the central scale
µET . The transverse momentum of the tagging jets as well as their invariant mass and
rapidity separation are shown.
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Figure 4.16.: Differential cross sections at LO and NLO as well as the corresponding
differential K-factors for ZZjj production, similar to Fig. 4.6, but using the central scale
µET . The invariant mass distribution of the four leptons is shown in the upper left panel,
where the contribution of the Higgs boson to σNLO(µET ) is shown separately. In the top
right panel, the distribution of the total transverse momentum HT defined in Eq. (4.13)
is shown. In the middle row, the distributions of the maximum and minimum lepton
transverse momenta are shown. The lower row shows the rapidity distribution of the
leptons as well as the minimum of the lepton-jet R separation.





CHAPTER 5

Summary and Outlook

In this thesis, the QCD-induced contributions to W±W±jj, W±Zjj, W±γjj and ZZjj
production at hadron colliders, including the full leptonic decay of the massive vector
bosons, have been calculated at NLO accuracy in QCD. The cross section calculations
have been implemented into the Monte Carlo program VBFNLO, where special focus has
been put on fast and stable numerical evaluation.

The details of the calculation have been presented in Chapter 3, focusing on the implemen-
tation of the virtual and real emission amplitudes as well as on the optimizations, that are
used to obtain an efficient summation over Feynman diagrams, spin configurations, dipole
subtraction terms and subprocesses. To guarantee the numerically stable evaluation of
the virtual amplitudes, we have implemented a trigger system based on Ward identities,
which allows to identify the occurrence of numerical instabilities. The corresponding con-
tributions are then reevaluated using higher precision.
Furthermore, various checks to confirm the correctness of the code have been presented:
The individual parts of the implementation have carefully been compared with an inde-
pendent calculation, showing full agreement of both codes. At the level of the integrated
cross sections, the Born as well as the real emission contributions have been compared with
results generated with the program Sherpa. The full NLO cross sections of W±W±jj and
W±jj production have been compared with results obtained with the programs POWHEG-
BOX and MCFM, respectively and agreement within the Monte Carlo errors has been
found in both cases.

The phenomenology of the processes under consideration has been discussed in Chapter 4.
LO results of W+W+jj production have been presented, taking into account the various
EW- and QCD-induced contributions, as well as the interferences between these. We found
that the interference effects account for less than 5% of the cross section in most phase
space regions. The interference effects being small legitimates the separate calculation of
the NLO corrections to the EW- and QCD-induced contributions of V V jj production.
The effects of the NLO corrections to the QCD-induced contributions have been discussed
in detail. There, a significant reduction of the scale dependence of the cross section pre-
dictions has been obtained for all processes: Varying the factorization and renormalization
scales by a factor of two around a central scale at LO leads to theoretical uncertainties
close to 50%, which are reduced to about 10-20% at NLO.
While in most phase space regions the corrections are of the order of 20% or less, we
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observed large corrections by up to a factor of two in regions with large separation or
invariant mass of the two tagging jets. In these regions, the invariant mass mjj is much
larger than the transverse momenta of the jets or the invariant masses of the electroweak
bosons, which are all relevant scales of the processes. Hence, it is highly non-trivial to
choose an appropriate value for the renormalization and factorization scale. Results using
three different choices for the central values of these scales have been presented. We have
shown that the large corrections are due to the large scale uncertainties at LO, while at
NLO the results obtained with the different scale choices agree within the scale uncertainty
of 10-20%.

The code for the calculation of QCD-induced W±W±jj, W±Zjj and W±γjj production
has been included in the latest release of the program VBFNLO [58], which allows to extend
the results presented in this thesis to arbitrary phase space cuts and input parameters.
The ZZjj production will be added in an upcoming version. Furthermore, we plan to
extend the implementation to include the Zγjj, γγjj and W+W−jj production.
With the QCD-induced processes being included in VBFNLO, this program now allows to
calculate all contributions to V V jj production – the EW contributions, which are sensitive
to vector boson scattering and quartic gauge couplings, as well as the QCD-induced V V jj
production.



APPENDIX A

Color Algebra

A.1. Basics

Here, the color structures needed in this thesis are given. Before the discussion of the
process specific ones, a summary of the basic relations, as they can be found in most
text books about quantum field theory [59–61] and QCD [134, 135], are given. The color
structure of QCD is determined by the properties of the symmetry group SU(3), which is
defined by the commutation relation

[tar , t
b
r] = ifabctcr, (A.1)

where tr are the generators of a representation r and fabc are the structure constants of the
group. In the following, the index r is neglected, if the fundamental representation is used.
The adjoint representation A is given by the structure constants with (taA)bc = −ifabc.
The quadratic Casimir invariants Cr are defined by

tart
a
r = Cr 1r. (A.2)

In the fundamental and adjoint representation, they are

CF =
N2 − 1

2N
=

4

3
and CA = N = 3, (A.3)

respectively. In addition, the Dynkin index TR of the fundamental representation is defined
by

Tr(tatb) = TR δ
ab =

1

2
δab. (A.4)

The invariants are related by

Tr dA = Cr dr, (A.5)

where Cr, Tr and dr are the quadratic Casimir invariant Dynkin index and the dimension
of representation r. dA = 8 is the dimension of the adjoint representation.
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All results presented in the following can be obtained using relations presented previously.
Common structures appearing in the calculation are

ifabctbtc = −CA
2
ta = −3

2
ta (A.6)

and

tatbta =

(
CF −

CA
2

)
tb = −1

6
tb. (A.7)

The last equation can be generalized for arbitrary expressions of the type taΓta, where
Γ represents a product of generators ti in the fundamental representation. Knowing that
Γ has to be a linear combination of the generators and the identity, it is clear, that the
general expression has the form

taΓta = x · Γ + y · 1. (A.8)

Using the special case of Eq. (A.7) and taking the trace of Eq. (A.8), one obtains

taΓta =

(
CF −

1

2
CA

)
Γ +

1

2N
CA Tr(Γ) 1 = −1

6
Γ +

1

2
Tr(Γ) 1. (A.9)

A further useful relation is the Fierz-identity,

takit
a
lj = TR

(
δliδkj −

1

N
δkiδlj

)
. (A.10)

A.2. Color Structure of the Born Amplitudes

At tree level, the color structures appearing in the amplitudes with two quarks and two
gluons are

C1 = (tbta)ji and C2 = (tatb)ji, (A.11)

and a further color structure appears in the virtual amplitudes:

C3 = δab 1ji. (A.12)

For the four quark amplitudes, the color structures are

Ct = takit
a
lj and Cu = takjt

a
li, (A.13)

corresponding to the t- and u-channel diagrams. At tree level, only one of these color
structures appears, if there are no identical external quarks. Fig. A.1 diagrammatically
shows the color structures C1 and Ct.

Figure A.1.: Color structures C1 and Ct for the two classes of subprocesses at tree level.
The other color structures are obtained by interchanging the labels a and b in the two
quark two gluon amplitude, or i and j in the four quark processes.



A.3 Color Correlated Born Matrix Elements 79

In the following, the bra-ket notation is used to represent the color structures and their
complex conjugates. With this, the squared matrix elements can be written as

〈C1|C1〉 = 〈C2|C2〉 = Tr(tatbtbta) = N · C2
F =

16

3
(A.14)

〈C1|C2〉 = 〈C2|C1〉 = Tr(tatbtatb) = N · CF ·
(
CF −

1

2
CA

)
= −2

3
(A.15)

〈C1|C3〉 = 〈C3|C1〉 = 〈C2|C3〉 = 〈C3|C2〉 = δab Tr(tatb) = N · CF = 4 (A.16)

〈C3|C3〉 = δabδab Tr(1) = dA ·N = 24 (A.17)

and

〈Ct|Ct〉 = 〈Cu|Cu〉 = Tr(tatb)Tr(tatb) = N · TR · CF = 2 (A.18)

〈Ct|Cu〉 = 〈Cu|Ct〉 = Tr(tatbtatb) = N · CF ·
(
CF −

1

2
CA

)
= −2

3
, (A.19)

where dA = 8 is the dimension of the adjoint representation. For the real emission ampli-
tudes, an orthogonal color basis is constructed following the method of Ref. [76].

A.3. Color Correlated Born Matrix Elements

The evaluation of the subtraction terms as defined in Ref. [68] requires the evaluation of
color correlated Born amplitudes

〈C|TxTy|C〉, (A.20)

where x and y each denote an external parton of the Born amplitude. For x = y, it
is given by the squared Born amplitude multiplied with the quadratic Casimir invariant
of the representation, under which the corresponding parton transforms. For the color
structure as depicted in Fig. A.1, this is a factor of CA for x being a or b and a factor of
CF in all other cases. Exploiting the color conservation

Tx ·
∑

y

Ty|C〉 = 0, (A.21)

there are only two more independent color correlated amplitudes for each subprocess.

For the subprocesses with two quarks and two gluons, one gets (using the external labels
as in Fig. A.1)

TiTa|C1〉 = −tbta′tc · ifaca′ = −3

2
tbta (A.22)

TiTj |C1〉 = −tctbtatc =
1

6
tbta − 1

4
δab1. (A.23)

Therefore, the color correlated matrix elements read
(
〈C1|
〈C2|

)
TiTa

(
|C1〉 |C2〉

)
=

(
1 1
1 −8

)
(A.24)

and (
〈C1|
〈C2|

)
TiTj

(
|C1〉 |C2〉

)
= −1

9

(
1 10
10 1

)
. (A.25)

Similarly, one obtains for the four quark subprocesses
(
〈Ct|
〈Cu|

)
TiTj

(
|Ct〉 |Cu〉

)
=

1

9

(
−6 10
10 −6

)
(A.26)

and (
〈Ct|
〈Cu|

)
TiTk

(
|Ct〉 |Cu〉

)
=

1

9

(
3 −1
−1 3

)
. (A.27)
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Figure A.2.: Color structures appearing in the virtual amplitude of the 2-quark-2gluon
subprocesses.

A.4. Color Structures of the one-loop Amplitudes

Each diagram of the virtual amplitude can be assigned to one or more of the color structures
defined in Section A.2. Fig. A.2 shows the basic one-loop diagrams neglecting colorless
particles. The corresponding color factors are

diagram (1): tctc =CF 1 =
4

3
1 (A.28)

diagram (2): tctatc =

(
CF −

CA
2

)
ta =− 1

6
ta (A.29)

diagram (3): tctbtatc =

(
CF −

CA
2

)
tbta +

CA
2N

TR δ
ab
1 =− 1

6
tbta +

1

4
δab 1

(A.30)

diagram (4): ifacdtdtc =
CA
2
ta =

3

2
ta (A.31)

diagram (5): ifacdtdtbtc =− CA
2N

TR δ
ab
1 =− 1

4
δab 1 (A.32)

diagram (6): ifaceifedbtdtc =
CA
2
tbta +

CA
2N

TR δ
ab
1 =

3

2
tbta +

1

4
δab 1

(A.33)

Diagrams (1), (2) and (4) factorize against the corresponding Born diagram and therefore
further gluons can easily be added to the quark line outside of the loop. Diagram (7)
contains various combinations of the structure constants and the metric tensor. The
individual terms can be easily obtained using Eqs. (A.31) and (A.33).
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(1) (2)

Figure A.3.: Color structures appearing in the virtual amplitude of the 4-quark subpro-
cesses.

The color factors of the diagrams shown in Fig. A.3, which appear in the four-quark
amplitudes are

diagram (1): (tbta)ki(t
bta)lj =

(
CF −

CA
2

)
takit

a
lj + TR t

a
kjt

a
li = −1

6
Ct +

1

2
Cu (A.34)

diagram (2): (tatb)ki(t
bta)lj =CF t

a
kit

a
lj + TR t

a
kjt

a
li =

4

3
Ct +

1

2
Cu. (A.35)





APPENDIX B

Evaluation of Finite Collinear Terms

B.1. Plus- and β-distribution

The evaluation of the K-operator [68] requires the calculation of integrals involving the
+-distribution, which is defined by

∫ 1

0
dx f(x) [g(x)]+ =

∫ 1

0
dx [f(x)− f(1)] g(x). (B.1)

For the calculation presented in this thesis, the method of Refs. [34, 99] is used. With the
same method, one can integrate contributions involving the β-description,

∫ 1

0
dx f(x) [g(x)]β =

∫ 1

β
dx [f(x)− f(1)] g(x), (B.2)

which is a generalization of the +-distribution. It appears in the implementation of the
α-parameter [103, 104], which is used to test the subtraction terms (see Section 3.5). The
integrals appearing in the calculation are

∫ 1

0
dx f

( z
x

)( 1

1− x ln

(
1− x
x

))

+

θ(x− z) =

∫ 1

z

dx

x

(
f
( z
x

)
− xf(z)

) ln(1− x)

1− x −
∫ 1

z

dx

x
f
( z
x

) lnx

1− x

+ f(z)

(
1

2
ln2(1− z)− π2

6

)
, (B.3)

∫ 1

0
dx f

( z
x

)(1 + x2

1− x

)

+

θ(x− z) =

∫ 1

z

dx

x

(
f
( z
x

)
− xf(z)

) 2

1− x −
∫ 1

z

dx

x
f
( z
x

)
(1 + x)

+ f(z)

(
2 ln(1− z) +

3

2

)
, (B.4)
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∫ 1

0
dx f

( z
x

)( ln(1− x)

1− x

)

β

θ(x− z) =

θ(x− β)

[∫ 1

z

dx

x

(
f
( z
x

)
− xf(z)

) ln(1− x)

1− x + f(z)
1

2

[
ln2(1− z)− ln2(1− β)

]]
, (B.5)

∫ 1

0
dx f

( z
x

)( 1

1− x

)

β

θ(x− z) =

θ(x− β)

[∫ 1

z

dx

x

(
f
( z
x

)
− xf(z)

) 1

1− x + f(z) [ln(1− z)− ln(1− β)]

]
. (B.6)

Results for the missing integrals of the +-distribution can be obtained by setting β = 0.

B.2. Splitting Kernels and Insertion Operators

In the following, the results of Ref. [68] needed for the evaluation of the finite collinear terms
are summarized and the coefficients appearing in Eq. (3.56) are listed. The basis for the
dipole subtraction terms and their integrated counter parts are the Altarelli-Parisi splitting
functions. After regularizing these by adding the corresponding virtual contribution, their
four-dimensional contributions are

P qg(x) = CF
1 + (1− x)2

x
, (B.7)

P gq(x) = TR
[
x2 + (1− x)2

]
, (B.8)

P qq(x) = CF

(
1 + x2

1− x

)

+

(B.9)

and

P gg = 2CA

[(
1

1− x

)

+

+
1− x
x
− 1 + x(1− x)

]
+ δ(1− x)

(
11

6
CA −

2

3
NfTR

)
. (B.10)

Their regular parts are

P qqreg(x) = −CF (1 + x) , (B.11)

P ggreg(x) = 2CA

[
1− x
x
− 1 + x(1− x)

]
, (B.12)

P aa
′

reg (x) = P aa
′
, if a 6= a′. (B.13)

Furthermore, the functions

K̄qg(x) = P qg(x) ln
1− x
x

+ CF x, (B.14)

K̄gq(x) = P gq(x) ln
1− x
x

+ TR 2x(1− x), (B.15)

K̄qq(x) = CF

[
2

(
1

1− x ln
1− x
x

)

+

− (1 + x) ln
1− x
x

+ (1− x)

]

− δ(1− x)

[(
50

9
− π2

)
CA −

16

9
TRNf

]
,

(B.16)

K̄gg(x) = 2CA

[(
1

1− x ln
1− x
x

)

+

−
(

1− x
x
− 1 + x(1− x)

)
ln

1− x
x

+ (1− x)

]

− δ(1− x)
(
5− π2

)
CF

(B.17)
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and

K̃aa′(x) = P aa
′

reg (x) ln(1− x) + δaa
′
T2
a

[
2

(
1

1− x ln (1− x)

)

+

− π2

3
δ(1− x)

]
(B.18)

are required.

In contrast to all other sections, the indices of the color operators T appearing in the
following refer to the phase space positions. The particles involved in the initial state
splitting are denoted as a and a′ with the particles a′ and b entering the matrix element of
the hard process. The index i is used for summations over the final state partons, whereas
the summation over I additionally includes the particle b.

With this conventions, the operator P can then be written as

Paa′(x, pa′ , {p}, µ2
F ) =

αs
2π
P aa

′
(x)

1

T2
a′

∑

I 6=a′
TITa′ ln

µ2
F

2pa′pI
. (B.19)

The K operator in the MS scheme is

Kaa′(x) =
αs
2π

{
K̄aa′(x) + δaa

′∑

i

TiTa
γi
T2
i

[(
1

1− x

)

+

+ δ(1− x)

]
−Ta′Tb

1

Ta′
K̃aa′

}
,

(B.20)

where γi is determined by the parton type of particle i, with

γq =
3

2
CF , γg =

11

6
CA −

2

3
TRNf . (B.21)

These operators can be plugged into Eq. (3.55). Using the integrals of the plus-distributions
listed in Appendix B.1, one obtains the coefficients appearing in Eq. (3.56)

Aq = CF · 1
[
ln2(1− z) +

2π2

3
− 5

]
− CF
CA

TbTa′

[
ln2(1− z)− π2

3

]

+
∑

i

γi
TiTa′

T2
i

[ln(1− z) + 1] +
∑

I 6=a′
TITa′

[
2 ln(1− z) +

3

2

]
ln

µ2
F

2pa′pI
,

(B.22)

Bq = 2 (CF 1−Ta′Tb)
ln(1− x)

1− x +
∑

i

γi
TiTa′

T2
i

1

1− x

+
∑

I 6=a′
TITa′

2

1− x ln
µ2
F

2pa′pI
,

(B.23)

Cqq = CF 1

[
− lnx

1− x − (1 + x) ln
1− x
x

+ 1− x
]

+ TbTa′(1 + x) ln(1− x)

−
∑

I 6=a′
TITa′(1 + x) ln

µ2
F

2pa′pI
,

(B.24)

Cgq = TR 1

[(
x2 − (1− x)2

)
ln

1− x
x

+ 2x(1− x)

]

+
TR
CF

(
x2 + (1− x)2

)

−TbTa′ ln(1− x) +

∑

I 6=a′
TITa′ ln

µ2
F

2pa′pI
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Ag = CA · 1
[
ln2(1− z) + π2 − 50

9

]
+

16
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3
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+
∑

i
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[ln(1− z) + 1]

+
∑
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2CA ln(1− z) +

11

6
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2

3
TRNf

]
ln

µ2
F

2pa′pI
,

(B.26)

Bg = CA · 1 · 2
ln(1− x)

1− x +
∑

i

γi
TiTa′

T2
i

1

1− x −TbTa′ · 2
ln(1− x)

1− x

+
∑

I 6=a′
TITa′

2

1− x ln
µ2
F

2pa′pI
,

(B.27)

Cgg = 2CA · 1 ·
lnx

1− x

+ 2

(
1− x
x
− 1 + x(1− x)

)
1 · CA ln

1− x
x
−TbTa′ ln(1− x) +

∑

I 6=a′
TITa′ ln

µ2
F

2pa′pI


 ,

(B.28)

Cqg = 1 · CF x+ CF
1 + (1− x)2

x


1 · ln 1− x

x
− TbTa′
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ln(1− x) +

∑

I 6=a′
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ln

µ2
F
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 .
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