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1 Introduction

There must be an almost infinite number of orientation week T-shirts stating

god said

∇× ~E = − 1

µ0

∂ ~H

∂t
(1.1)

∇× ~H = ε0
∂ ~E

∂t
+~j

∇ · ~E =
ρ

ε0

∇ · ~H = 0.

and there was light.

What, to the new students, seems to be an incomprehensible inside joke at first,
soon becomes the (more or less) familiar set of Maxwell’s equations, that de-
scribe the propagation of electromagnetic radiation in vacuum. Finding their
solution in the form of plane waves for the electric field ~E and the magnetic
field ~H is a standard exercise in the electromagnetism course and a straightfor-
ward task. Maxwell’s equations in material are similarly simple. This is rather
surprising, since electric and magnetic fields on subatomic length scales can be
very large and are very inhomogeneous both spatially and with respect to time.
Any radiation passing through a medium interacts with around 1022 atoms per
cm3. Therefore, one would expect that the set of equations describing wave
propagation through a medium becomes very large and complex. Instead it
turns out that the effect of electromagnetic radiation in a material can be sum-
marized by a frequency dependent polarization ~P and a magnetization ~M vector
[Jac06]. They are obtained by applying Maxwell’s equations in vacuum to in-
dividual atoms and finding the spatial average over a length scale that is short
compared to the wavelength but comprises several atoms.

In an isotropic, homogeneous medium and for sufficiently weak electromag-
netic fields, polarization and magnetization depend linearly on the ~E- and ~H-
field. In this case, their effect is included in the (scalar) material parameters,
namely electric permittivity ε = ε0εr and magnetic permeability µ = µ0µr
which replace the vacuum parameters ε0 = 8.85 · 10−12 As/(Vm) and µ0 =
4π ·10−7 Vs/(Am) in Eq. (1.1). How ε and µ are connected to the speed of light
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in the medium and that the relative parameters define the index of refraction
by n2 = εrµr is well known. For dielectrics, the positive root of this equation
describes the propagation of electromagnetic waves.

Although the dependence of the refractive index on material parameters has
been known for a long time, only less than 50 years ago, a viable question was
asked. Namely, why the negative solution for n was never considered and what
new results it would yield. The man who asked that question in 1968 was Victor
G. Veselago and he also gave the answer [Ves68]. By using Maxwell’s equations
and the boundary conditions for electric and magnetic fields at an interface, he
was able to show that a negative index of refraction (NIR) is possible if the
material parameters, ε and µ, are both simultaneously negative. Here, simulta-
neously means not only with respect to time but also with respect to frequency.
Unfortunately, no such materials were and are known to exist in nature.

Materials with a negative electric permittivity on one hand are quickly found,
namely in metals for frequencies below their plasma frequency. On the other
hand, this task is not so easy, if not impossible for the magnetic permeabil-
ity, at least in natural occurring media. It took yet another 30 years before
John Pendry [Pen+99] suggested to artificially create materials, that contain en-
gineered “atoms”, designed and fabricated such that they show the requested
response. This was the first idea in the field of so-called metamaterials, which
should prove to be full of new and exciting physical phenomena.

Metamaterials

The “meta” in metamaterials derives from the idea that the material is composed
from artificial atoms. Since these atoms, in turn, are made for normal materials
- typically highly conductive metals - they are called “meta-atoms”. In order
to correctly use the term atom and material, the wavelength needs to be much
larger than the distance between and the size of the meta-atoms, else the spa-
tial average cannot be found. Therefore, first experiments were carried out in
the microwave range (λ ∼ 10 cm), using millimeter sized meta-atoms. Their
fabrication is considerably simpler than constructing nanometer size atoms for
the visible spectrum. Apart from the increasingly complicated fabrication, the
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1 Introduction

scalability of metallic meta-atoms down to smaller size, i.e. higher frequency,
is limited by Ohmic losses [Zho+05].

In 1998 and 1999, Pendry and co-workers proposed two crucial concepts. First,
they suggested to use the plasmonic behavior of a metallic wire array to con-
struct a metamaterial with negative permittivity [Pen+98].
Second, they showed how inductively coupled LC resonators can be used as
magnetic meta-atoms [Pen+99]. The susceptibility of a driven oscillator around
its resonance frequency behaves in a well known way. While it increases from
zero to large positive values below the resonance frequency, it becomes strongly
negative directly above before it approaches zero again. By combining and av-
eraging over several of such magnetic meta-atoms, the absolute value of the av-
eraged susceptibility may become sufficiently large to result in a negative real
part of the relative magnetic permeability. The most commonly used LC os-
cillators for this application are so-called split ring resonators (SRR) [Pen+99;
Smi+00; SSS01].
By combining SRRs with an electrically coupling wire array and operating in
the band of the SRR’s resonant frequency where the magnetic permeability is
negative, indeed a NIR was observed experimentally [SSS01; HBC03; Par+03].
A beam of light, entering a medium with n < 0 from a material with positive
index of refraction, e.g. vacuum, is refracted with a negative angle to the sur-
face normal according to Snell’s law for one positive and one negative index of
refraction.

perfect lens

One of the most exciting applications of such a NIR metamaterial is its potential
use as a “perfect lens” [Pen00]. Under the condition that the lens - a thin slab of
NIR material - is impedance matched to the surrounding, positive index mate-
rial, there are no reflections. Due to the negative angle of refraction, the electric
field emitted from a dipole source, comes to focus twice, once inside the slab
and once behind the slab. Additionally, it can be shown that evanescent waves
are amplified within the NIR medium rather than decaying (energy conservation
is not violated since evanescent waves do not transport energy). Hence, since
both propagating and evanescent wave pass through the slab and no information
is lost, resolution below the refraction limit is possible. It is however crucial,
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that the object is brought close to the lens, so that the evanescent component has
not yet decayed too strongly.
Experimentally, subdiffraction imaging has been demonstrated in the microwave
regime, using a two dimensional transmission line medium [GE04] and a pat-
terned surface as near-field plate [GJM08] and also in the optical range, using
a thin silver slab with p-polarized waves [Fan+05; Lee+05]. It should be noted
that this last experiment was realized by using a material with only a negative
permittivity. As was shown in Ref. [Pen00], a negative permeability is not ne-
cessary, provided that the slab is thin and p-polarized light is used.

ε- and µ-near-zero materials

Since the material parameters of any metamaterial are negative only in a specific
and often narrow frequency range, there must be a frequency, where either one
or both parameters pass from positive to negative (or vice versa) with a nonzero
slope. When one of the material parameters is zero, so is the index of refraction
at this frequency. This means, that a medium is created in which radiation has an
infinite phase velocity and an infinite wave length. This effect was used to make
microwaves tunnel through a short, arbitrarily shaped but narrow waveguide
restriction [SE06; Edw+08]. Additionally, the phase of a wave traveling through
a material with ε or µ near zero stays constant over the full length of the material
[Zio04]. These properties offer a wide range of possibilities, such as phase front
shaping [Zio04; Al07], phase-matching in nonlinear optics [Suc+13] and the
construction of highly directive sources [Eno+02].

inhomogeneous index of refraction

Until now, we discussed metamaterials under the objective of creating media
with material parameters that are (so far) unobservable in nature. Another, and
not less viable approach is the realization of materials, that have a index of re-
fraction which changes spatially in a predefined manner. One may know the
experiment, in which a light beam is bent when passing through a water-sugar
solution, which has a higher sugar concentration (larger n) at the bottom than
at the top (lower n). The same effect is used to cloak objects. By tailoring
the index of refraction in the cloaking medium surrounding the object, the path
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1 Introduction

which the wave has to take is defined by Fermat’s principle. In the case of
proper cloaking, light exits the cloak in such a way as if the object were not
there. Using this principle, a 3D cloak was used to hide a micrometer sized
bump in a gold reflector in the optical range [Erg+10]. However, cloaking ob-
jects is only one small part of the larger topic of transformation optics which
uses coordinate transformation in order to transfer a complex geometric prob-
lem to a simpler geometry, while mapping this coordinate transformation to new
spatially inhomogeneous and anisotropic material parameters [CCS10].

tunability

Implementations of cloaking and transformation optics often employ standard
dielectrics which are spatially arranged in a very specific way. This is typically
possible in a comparatively large frequency range. However, the two previous
implementations of metamaterials, namely NIR and n-near-zero materials are
realizable only in a very narrow frequency range. For the n-near-zero mate-
rials this is because the crossover from negative to positive is at one discrete
frequency. In the case of NIR materials, meta-atoms are required, that have
a negative magnetic susceptibility. As mentioned above, this can realized by
using inductively coupled LC resonators (SRRs). On one hand, their resonant
behavior is the key ingredient, on the other it is also a very strong limitation.
Since the magnetic permeability is only negative in a small frequency range di-
rectly above the resonance frequency, the NIR exists only there. In both cases,
NIR and n-near-zero materials, the wanted behavior exist only in a certain fre-
quency range and this range is fixed by the design of the meta-atoms. One way
to circumvent this problem is to include an element, that renders the frequency
dependent behavior of the meta-atom tunable.

There have been different approaches as to how to tackle this problem [Boa+11].
One idea, that has been investigated by different groups, involves including a
varactor diode into the LC oscillator [Gil+04]. By changing the voltage applied
to the varactor diode, the total capacitance of the LC oscillator, which also com-
prises the capacitance of the diode, is tuned and so is the resonance frequency.
The voltage may be changed directly [SMK06] or by using a photodiode in the
photovoltaic mode, whose voltage output is defined by the intensity of an exter-
nal light source [Kap+11].
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Other approaches to tunable meta-atoms include the combination of magnetic
rod shaped structures [Kan+08], or the combination of liquid crystal with a mag-
netic metamaterial [Zha+07]. In the first case, applying an external magnetic
field alters the ambient permeability of the meta-atom and hence its resonance
frequency. In the second case, the resonance frequency is tuned by applying a
voltage to the liquid crystals, changing the ambient permittivity.
As a last concept, the tunable kinetic inductance of a superconductor shall be
mentioned. Whenever a superconductor is close to one of its critical values,
which are critical temperature, critical magnetic field and critical current, its
intrinsic inductance changes distinctly when either of these three parameters is
changed. Ricci et al. demonstrated that the resonance frequency of a magnetic
meta-atom made from a superconductor is tunable by changing the tempera-
ture [ROA05; RA06] and also by changing the magnetic field or driving power
[Ric+07]. This concept of tunability by temperature using superconductors was
also expanded from the microwave to the terahertz regime [Wu+11].
Common to all approaches that include tunable elements directly into the res-
onator, is the nonlinearity of this element.

Josephson Metamaterials

In this thesis, the concept and experimental realization of employing the non-
linear inductance of a Josephson tunnel contact as tunable element in a super-
conducting structure is presented. A Josephson tunnel contact consists of a
thin insulating layer between two superconductors. Provided that the insulating
layer is thin enough, a supercurrent can pass through this contact. As long as
variations of the supercurrent are small, such a device behaves like a nonlinear
inductor [Lic91] and its inductance depends (nonlinearly) on the current that
flows through it.
By including such a Josephson junction into a superconducting loop, a radio
frequency (rf-) superconducting quantum interference device (SQUID) is cre-
ated. In parallel to the junction’s inductance, there is also an intrinsic capaci-
tance, which, together with the combination of loop inductance and Josephson
inductance, forms an LC oscillator. Hence, like the SRR, the rf-SQUID shows
resonant behavior when driven by a magnetic field. However, its resonance fre-
quency, and thus the band in which a deviation of the magnetic susceptibility
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1 Introduction

from zero is observed, is tunable due to the current dependent Josephson in-
ductance. Using rf-SQUIDs as basic magnetic elements of a metamaterials that
shows a negative permeability was theoretically suggested by Du et al. [DCL06;
DCL08] and Lazarides et al. [LT07]. This thesis aims at testing the tunability
of a metamaterial consisting of rf-SQUIDs and finding its potentially negative
magnetic permeability. Additionally, the use of Josephson junctions in electri-
cally interacting meta-atoms is investigated.
The tunable meta-atoms in this work are implemented in a one-dimensional
(1D) coplanar waveguide geometry. Although this may defeat the notion of the
system being a material at first glance, it offers several advantages. Most of
the possible effects of metamaterials described above are still observable in a
1D geometry. For example, a 1D NIR metamaterial with a tunable NIR range
behaves like a tunable bandpass filter, since transmission is only possible in the
NIR frequency band. Another possible application may be a tunable version
of a series power divider which makes use of the constant phase in an n-near-
zero material [LLI05]. Additionally, the tunable 1D Josephson metamaterials in
a coplanar waveguide geometry offers a potential application in the context of
circuit quantum electrodynamic (cQED).

Apart from the tunability, the nonlinearity of the Josephson junction offers an
additional feature, namely the occurrence of multistability [LT13] at larger driv-
ing amplitudes. This multistability including all-optical switching between dif-
ferent states, corresponding to different values of the susceptibility, was exper-
imentally demonstrated by Jung et al. [Jun+14]. Additionally, also depending
on the amplitude of the magnetic drive, the existence of localized excitations in
one- and two-dimensional arrays, so-called breathers, has been predicted theo-
retically [ELT08].

Outlook

In the next chapter, the basics of relevant concepts for this work are explained.
It starts with a brief overview of superconductivity, Josephson contacts and
SQUIDs, followed by an introduction to wave propagation in coplanar wave-
guides. Next, the section on metamaterials gives details on the different kinds
of meta-atoms and explains the occurrence of a negative index of refraction and
related phenomena. The chapter ends with a detailed discussion of the electric
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and magnetic Josephson metamaterials investigated in this work. Chapter 3 of-
fers a description of the different samples and their fabrication. Furthermore,
it includes details on the measurement setup and procedure and discusses the
measures necessary to reduce stray magnetic fields which adversely affect the
performance of the metamaterial. The results of the measurements are pre-
sented, discussed and compared with calculations and simulations in Chapter 4.
The last Chapter 5 finally concludes the thesis and offers an outlook.
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2 Basic Concepts

In this chapter, all necessary basic theories and ideas shall be explained.
It starts by covering the basic principles of superconductivity and super-
conducting devices such as flux quantization, the Josephson junction
and superconducting quantum interference devices (SQUIDs). Next, the
relevant basics of transmission line theory will be discussed. After that,
we will move over to an introduction to metamaterials, which starts with
a short reminder of how Maxwell’s equations and material parameters
govern wave propagation. It continues with a review of meta-atoms, how
they can be used to achieve a negative or zero index of refraction and
what interesting effects can be observed in such media. In the last part,
these concepts will be put together by using superconducting devices
as constituents of a metamaterial in a one dimensional transmission line
setup. Thus, arriving at the central topic of this thesis, the theoretical ba-
sics and expected properties of the tunable one-dimensional Josephson
metamaterial will be presented.
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2 Basic Concepts

2.1 Superconductivity and Superconducting
Devices

Superconductivity on one hand implies the transport of electrical current with-
out dissipation [KO11], on the other hand the expulsion of any external mag-
netic field [MO33] and as such it obviously offers many applications. The van-
ishing resistance enables the construction of large coils creating magnetic fields
of up to several Tesla. Its perfect diamagnetism might one day make a new su-
perconducting design for a magnetic levitation train [Eck] possible using high
temperature superconductors. In this section, however, we will concentrate on
conventional low temperature superconductivity, mainly that of Niobium (Nb)
and on effects arising when a weak link is formed between two superconduc-
tors.

2.1.1 Superconductivity

Superconductivity can occur when certain materials are cooled below a criti-
cal temperature. Then, electron-phonon interaction leads to the formation of
so-called Cooper pairs [BCS57; Tin04] which consist of two coupled electrons
with opposite spin and momentum. As a result, the Cooper pair has zero spin,
making it a bosonic particle. Therefore, all Cooper pairs form a condensate,
described by a single state which is energetically separated from the excited
states of single electron like quasiparticles. Due to this energy gap, the Cooper
pairs pass through the superconductor without scattering, thus without resis-
tance. The wave function ψ =

√
ns/2 e

iθ describes the state of the supercon-
ducting condensate. Assuming a constant density of superconducting electrons
ns, the canonical momentum of a Cooper pair is given by

~p = ~∇θ = 2me/(nse)~js + 2e ~A. (2.1)

Here, js is the supercurrent density and ~A the vector potential. Note that e =
1.602·10−19 C is the (positive) elementary charge, hence the Cooper pair carries
a charge of −2e.

Apart from perfect conductivity, superconductivity is also accompanied by per-
fect diamagnetism. Any external magnetic field, that is smaller than a material
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2.1 Superconductivity and Superconducting Devices

and temperature dependent critical magnetic field, is expelled from the bulk
material. It can penetrate the superconductor only in a small region close to
the surface of the superconductor to which also superconducting currents are
constrained.

flux quantization

Imagine a hole going completely through a bulk superconductor. Upon circu-
lating once around this hole along a closed loop deep inside the superconductor,
the wave function ψ, describing the superconducting condensate, has to remain
single-valued. Again assuming ns to be constant in the bulk superconductor, the
phase change, when going around the closed loop once, has to be ∆θ = 2πq,
where q is an integer. Using Eq. (2.1), this condition can be written as∮

∇θd~x =
1

~

∮
~p · d~x = 2πq. (2.2)

As mentioned before, currents in a superconductor are always located at its
surface. Hence, the supercurrent density ~js vanishes, since the integration path
lies deep inside the superconductor. This leads to

qh/(2e) =

∮
~A · d~x = Φ. (2.3)

Therefore, the magnetic flux Φ enclosed in the hole is quantized with the flux
quantum Φ0 = h/(2e) [Sch97].

type I and type II superconductivity

A superconductor for which the superconducting state vanishes completely, ei-
ther when the temperature exceeds the critical temperature or when the magnetic
field rises above a critical magnetic field, is called a type I superconductor. On
the other hand, a type II superconductor has two critical magnetic fields. While
perfect superconductivity prevails in the bulk for low magnetic fields H < Hc1,
magnetic flux starts to penetrate the superconductor above a critical field Hc1

[Abr57; Sch97] in tube-shaped non-superconducting regions. Each of these re-
gions carries the flux of one flux quantum. Such a magnetic field penetration
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2 Basic Concepts

is called an Abrikosov vortex. The density of these vortices increases with in-
creasing magnetic field until, at a critical value Hc2, superconductivity vanishes
completely.

2.1.2 The Josephson Junction

When a superconductor is interrupted by a weak link, which locally suppresses
superconductivity, a so-called Josephson junction is created. If the region of
suppressed superconductivity is sufficiently thin, such a weak link is capable to
carry a supercurrent that is sustained by tunneling Cooper pairs.

(b)(a) insulator

superconductor superconductor

Ψ1 = |Ψ|e(iθ1(x)) Ψ2 = |Ψ|e(iθ2(x))

|Ψ(x)|2 |Ψ1(x)|2 |Ψ2(x)|2

x

R

Ic

C

I

Fig. 2.1: a) Top: Sketch of a Josephson tunnel junction. Bottom: Decay and
overlap of the two superconducting wave functions. b) Electric circuit
equivalent of the resistively and capacitively shunted junction.

There are several possibilities of how to construct such a weak link, for exam-
ple by a physical constriction of the superconducting material, or by inserting a
thin non-superconducting layer between two superconducting electrodes. Here,
we consider a so-called tunnel Josephson junction which uses a thin insulating
layer as weak link, shown in the upper part of Fig. 2.1(a). The lower part il-
lustrates how the superconducting wave function on either side of the barrier
decays exponentially inside this weak link. The magnitude of the tunneling
supercurrent is defined by the phase difference ϕ = θ1 − θ2 between the two
wave functions on either side of the insulator. The interdependence between
current through and phase difference ϕ across the junction is given by the first
Josephson relation [Jos65]

I = Ic sinϕ. (2.4)
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2.1 Superconductivity and Superconducting Devices

Here, Ic is the critical current, i.e. the maximal value of supercurrent that can
flow through the Josephson junction before it becomes resistive. It is defined by
the thickness, the area and the material of the insulating layer. Once a current is
applied that either exceeds the critical current or when a voltage V is applied,
the junction enters the resistive state. The resistive behavior is described by the
second Josephson equation [Jos65]

V =
Φ0

2π
ϕ̇. (2.5)

where the dot stands for the time derivative. In addition to the resistive chan-
nel, there is also a capacitive contribution due to the capacitance between the
two superconductors. The electric circuit equivalent of this resistively and ca-
pacitively shunted junction (RCSJ) model is depicted in Fig. 2.1(b). Applying
Kirchhoff’s rules and Eqs. (2.4) and (2.5) to the RSCJ model, the equation of
motion for the phase difference ϕ is

1

ω2
p

ϕ̈+
1

ωc
ϕ̇ = j − j sin(ϕ) (2.6)

with the normalized bias current j = I/Ic, the damping defined by ωc =
2πIcR/Φ0 and the plasma frequency ωp =

√
2πIc/(Φ0C). This differential

equation describes the motion of a (virtual phase) particle in a tilted washboard
potential U = −jϕ+cos(ϕ) [Sch97]. The washboard shape is due to the cosϕ,
while the tilt increases with increasing bias current.

Josephson inductance

In a linear approximation, the so-called small signal approximation, the Joseph-
son junction is interpreted as a nonlinear inductance [Lic91]: Under a small
variation of the phase difference ϕ → ϕ0 + δϕ(t), Eq. (2.4) can be expanded
in first order to I(t) = Ic(sinϕ0 + δϕ(t) cosϕ0). This yields an equation for
δϕ(t) which, in turn, is inserted in Eq. (2.5).

δϕ(t) =
I(t)

Ic cosϕ0
− sinϕ0

cosϕ0
, (2.7)

2π

Φ0
V (t) =

dϕ(t)

dt
=
dϕ0

dt
+
dδϕ(t)

dt
. (2.8)
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2 Basic Concepts

Taking into account the constant nature of ϕ0, we arrive at

V =
Φ0

2πIc cosϕ0

dI

dt
, (2.9)

which defines a nonlinear inductor, the so-called Josephson inductance

Lj =
Φ0

2πIc cosϕ
(2.10)

(from here on ϕ0 = ϕ). The value of this inductance is tunable by applying a dc
current since the phase difference and the bias current are connected via the first
Josephson equation (Eq. (2.4)). Note that this inductance becomes negative for
2πn + π/2 < ϕ < 2πn + 3π/2 and approaches ±infinity for ϕ ≈ (2n + 1)π,
i.e. I ≈ ±Ic.

2.1.3 Superconducting Quantum Interference Devices

When a Josephson junction is inserted to interrupt a closed superconducting
loop, a so-called rf-SQUID (radio frequency superconducting quantum inter-
ference device) is created. The prefix “radio frequency” originates from being
used in the radio frequency range historically. Nowadays, possible frequencies
range from MHz to several 100 GHz.
A sketch of such a device is presented in Fig. 2.2(a). Its interesting properties
become apparent once an external magnetic field ~Bext is applied perpendicu-
lar to the area of the SQUID loop. This results in an external magnetic flux
Φext =

∫
~Bext d~S, where ~S is the surface normal of the area S of the SQUID

loop.

From Sec. 2.1.1, we remember that due to the condition of a single-valued wave
function, the phase change when going once around a superconducting ring has
to be ∆θ = 2πq. This condition is weakened since the supercurrent density ~js
does not vanish in the Josephson junction along the path of integration. There-
fore, instead of omitting the contribution of ~js completely, an additional term
in the loop integral (Eq. (2.3)) along the dashed line in Fig. 2.2(a) has to be
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2.1 Superconductivity and Superconducting Devices

(a) (b)

~Bext

Lgeo R
Ic

C

Fig. 2.2: (a) Sketch of an rf-SQUID. The darker and lighter grey areas symbol-
ize superconducting and insulating material, respectively. The size of
the areas is not drawn to scale. The dashed black line indicates the
path of integration referred to in the text. (b) Equivalent circuit of the
rf-SQUID using the RCSJ model.

taken into account. Furthermore, the thickness of the junction is considered to
be small compared to the circumference of the loop [Jos65; SZ67].

2πq =
2e

~

∮ (
me

e2ns
~js + ~A

)
d~x (2.11)

≈ 2e

~

∫
junction

(
me

e2ns
~js + ~A

)
d~x+

2e

~

∮
~Ad~x (2.12)

= arcsin
I

Ic
+

2e

~
Φ (2.13)

For the last step, the gauge invariant definition of the phase difference using the
canonical momentum (Eq. (2.1))

ϕ =
1

~

∫
junction

~p d~x (2.14)

and subsequently Eq. (2.4) is employed. Together with sin(2π+x) = sinx, we
find the relation between phase and flux to be ϕ = 2πΦ/Φ0. This means that the
phase difference across the junction is proportional to the total flux enclosed in
the rf-SQUID. However, it is important to note that the flux in the rf-SQUID is
not identical to the externally applied flux Φext. Instead, Φext and Φ are related
by the self consistent equation

Φ = Φext − LgeoI(Φ). (2.15)
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Here, Lgeo is the geometric inductance of the SQUID loop. The induced flux,
LgeoI , counteracts the external flux, thus, in this notation I = Ic sinϕ, with
Ic > 0. From Eq. (2.15), the equation of motion of the phase particle for an
rf-SQUID is obtained using the RCSJ model (Eq. (2.6)).

ϕ+
2πIcL

Φ0

(
sinϕ+

1

ω2
p

ϕ̈+
1

ωc
ϕ̇

)
= ϕext (2.16)

The plasma frequency ωp and the damping 1/ωc are defined as for Eq. (2.6).
The external flux is normalized such that ϕext = 2πΦext/Φ0. This notation for
magnetic flux Φ and normalized flux ϕ will be valid throughout this work. The
prefactor 2πIcLgeo/Φ0 gives the ratio of geometric to zero flux (ϕ = 0) Joseph-
son inductance Lj0 and will be referred to as βL. In this work, only rf-SQUIDs
with βL < 1 will be considered. This mainly means that the dependence of Φ
on Φext (Eq. (2.15)) is unique (nonhysteretic) [Lic91].

Let us now consider what happens once the external flux contains a constant
and an oscillating component ϕext(t) = ϕe0 + ϕea cos(ωt). For small driving
amplitudes, the constant and the oscillating external flux components can be
considered separately. Additionally, in the small signal limit, the behavior of
the Josephson junction is that of a tunable inductor (cf. Eq. (2.9)). The constant
flux component defines a constant circulating current which, in turn, determines
the value of the Josephson inductance. The flux dependence of the Josephson in-
ductance Lj(Φe0) is obtained by solving the self-consistent equation Eq. (2.15)
for Φe0 and inserting the obtained solution for ϕ into Eq. (2.10). On the other
hand, under the influence of the oscillating flux component, the rf-SQUID be-
haves like a driven oscillator with a resonance frequency ω0 = 1/

√
LtotC. Its

equivalent electric circuit for small driving amplitudes is shown in Fig. 2.2(b).
The capacitance C comprises the intrinsic capacitance of the junction and any
additional shunt capacitance, which decreases the resonance frequency. The
total inductance is given by Ltot = LjLgeo/(Lj + Lgeo), which, due to the
Josephson inductance, is tunable by the constant external flux component Φe0.
This leads to a tunable resonance frequency ν0 of the rf-SQUID:

ν0(Φe0) =
1

2π
√
Ltot(Φe0)C

(2.17)

Using Eq. (2.15), the dependence of the resonance frequency on external flux
is calculated and plotted in Fig. 2.3 for several periods of Φ0. Parameters typ-
ical for the rf-SQUIDs used in the experiments are used for the calculation.
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2.1 Superconductivity and Superconducting Devices

The periodicity in integer numbers of flux quanta is due to flux quantization as
discussed earlier.
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Fig. 2.3: Resonance frequency of an rf-SQUID in dependence of the external
magnetic flux. The SQUID parameters are comparable to the param-
eters used in the experimental work: Ic = 2.4µA which translates
to a zero flux Josephson inductance of Lj0 = 137 pH. The geometric
inductance is Lgeo = 83 pH and the total capacitance C = 2 pF.

direct current (dc-) SQUID

So far, we considered a SQUID made of a superconducting loop interrupted by
one Josephson junction. A so-called direct current (dc)-SQUID is formed once
the loop is interrupted by two junctions. As the name already suggests, it is
typically used in the direct current regime. Therefore, it is connected to a current
source via two leads that are arranged such that the two Josephson junctions are
in parallel. A sketch of the dc-SQUID is shown in the inset of Fig. 2.4. The
boxed crosses indicate the Josephson junctions (full RCSJ model). Here, the
two junctions are considered to be identical, each with a critical current Ic.
As long as the geometric inductance of the two arms is small compared to the
Josephson inductance, it can be considered like a single junction with magnetic
flux tunable critical current [CB04]

Isq
c = 2Ic cos(2πΦ/Φ0). (2.18)
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Fig. 2.4: Flux dependence of the effective critical current and Josephson induc-
tance of a dc-SQUID with a loop inductance that is negligible com-
pared to the Josephson inductance. The critical current of the single
junction is Ic = 3.2µA. The inset shows a sketch of the dc-SQUID.
The crosses indicate the Josephson junctions in the RCSJ model.

In Fig. 2.4, the critical current Isq
c is depicted for the case of a negligible loop

inductance, i.e. Φ ≈ Φe0, by the gray curve. This means that the effective
Josephson inductance of this device does not only depend on the dc current
applied to it, but also on magnetic flux. This creates yet another element which
acts as a flux-tunable inductance and will be used as such in the superconducting
electric meta-atoms which will be introduced later in this chapter. The flux
dependence of the Josephson inductance of the full dc-SQUID is shown by a
black line in Fig. 2.4. For the calculation, the loop inductance is assumed to
be small compared to the Josephson inductance. Note the singularity of the
inductance at odd integer numbers of half flux quanta.
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2.2 Transmission Line Theory

2.2 Transmission Line Theory

The propagation of light in free space or in media always follows a path that
fulfills the principle of Fermat, which, in isotropic, homogeneous media, is a
straight line. In addition, a ray of light widens and looses part of its energy
during propagation due to scattering.
Since, in many cases, both these properties are disadvantageous for applications,
waveguides are used to control the path of propagation. Additionally, it guides
the wave with as little loss as possible. Typical examples are optical fibers in
the visible frequency range or so called transmission lines for microwaves. The
latter will be the focus of this section although most ideas can be applied to
other frequency ranges as well.
Note that for a transmission line the length in propagation direction is typically
much larger than the wavelength (consider for example optical fibers used in
submarine communications cable). Characteristic parameters are therefore de-
fined per unit length.

2.2.1 Transmission Line Basics

In order to fulfill its purpose, a waveguide has to be constructed such that it
restricts the fields attributed to the microwave in the space close to and around it.
One way to accomplish that, is to confine the electric field between a conductor
at oscillating potential V and one which is grounded. The corresponding current
that oscillates in the not-grounded conductor is responsible for the magnetic
field.

An example of such a waveguide including magnetic (circular) and electric (ra-
dial) field lines is shown in Fig. 2.5(a), in this case a coaxial cable. Another
kind of waveguide relevant in this work is the coplanar waveguide (CPW) (cf.
Fig. 2.5(b)). In principle, it is the central slice of a coaxial line (sliced along the
cylindrical axis) with extended ground planes. Both behave similar, however,
the field distribution in the CPW is no longer cylindrically symmetric. Nonethe-
less, in both waveguides the propagation mode is a so-called quasi transversal
electromagnetic (QTEM) mode. In a QTEM mode, electric and magnetic field
vectors both lie in the plane perpendicular to the direction of propagation. Other
modes are the transversal magnetic (TM) mode, where the projection of the
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g′∆z
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Fig. 2.5: (a) Sketch of a coaxial cable. The central conductor is shown in gray,
the grounded outer jacket is black. Magnetic field lines (circular) and
electric field lines (radial) are symbolically included. (b) Sketch of a
coplanar waveguide. Central conductor and ground are again shown in
gray and black, while the substrate is drawn in light gray. (c) Lumped-
element model of a transmission line [Poz05].

electric field onto the propagation direction does not vanish, and the transver-
sal electric (TE) mode, where it is vice versa. Both modes exist in the coaxial
cable and the CPW only as higher order effect above a cutoff frequency. As
will become clear later on, the QTEM mode is advantageous for the theoretical
treatment and the setup of the experiments.

The related electric quantities for magnetic and electric field are the current in
the conductor and voltage between conductor and ground, respectively. Current
and voltage are, in turn, related to the characteristic inductance l′ and capaci-
tance c′ per unit length. Losses in the conductor and the dielectric supporting
the electric field are represented by r′ and g′, respectively, also per unit length.
A sketch of this equivalent circuit of length ∆z is depicted in Fig. 2.5(c). The
wave propagates in z-direction.
Using the characteristic parameters, voltage and current in the transmission line
are related by the telegrapher’s equations [Poz05].

∂V (z, t)

∂z
= −r′I(z, t)− l′∂I(z, t)

∂t
(2.19)

∂I(z, t)

∂z
= −g′V (z, t)− c′∂V (z, t)

∂t
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2.2 Transmission Line Theory

Assuming a sinusoidal signal, the solution to the telegrapher’s equations at a
fixed time yields current and voltage as

V (z) = V +
0 e−γz + V −0 eγz, (2.20)

I(z) = I+
0 e
−γz + I−0 e

γz, (2.21)

where
γ = α+ iβ =

√
(r′ + iωl′)(g′ + iωc′) (2.22)

is the complex propagation constant. V +
0 is the voltage amplitude of the forward

propagating wave, while V −0 represents the amplitude of the reflected wave.
The same is valid for the current amplitudes. It should be noted that Eqs. (2.20)
and (2.21) represent the solution at a fixed point of time. Substituting Eqs.
(2.20) and (2.21) back into the telegrapher’s equations yields the characteristic
impedance Z0 for the forward propagating wave:

Z0 =
V +

0

I+
0

=

√
r′ + iωl′

g′ + iωc′
. (2.23)

For the reflected wave, the impedance is defined by the respective voltage V −0
and current I−0 . The networks investigated in this work are all reciprocal, there-
fore impedances for forward and backward traveling waves are identical.

Equation (2.22) shows that the propagation constant is in general a complex
number. However, often losses are small and can be neglected. This means
α = 0. Then the propagation constant and impedance are given by

γ = iβ = iω
√
l′c′, (2.24)

Z0 =

√
l′

c′
. (2.25)

From β, the wavelength λ and the corresponding phase velocity vp of the wave
are found to be

λ =
2π

β
, (2.26)

vp =
ω

β
=

1√
l′c′

. (2.27)
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The group velocity is given as vg = dω/dβ.

When changing back from current and voltage to magnetic and electric field,
the propagation constant and the wave impedance can be found in terms of
material parameters. Since the solutions for the two fields of the QTEM mode
in the waveguide have the same form as a plane wave in a dielectric material,
the propagation constant is given by [Poz05]

β = ω
√
µε (2.28)

and similarly the wave impedance, which is defined by ratio of electric and
magnetic field

Zw =

√
µ

ε
. (2.29)

Comparing Eq. (2.28) to Eq. (2.24), shows the connection between transmission
line parameters l′ and c′ and material parameters µ and ε.

2.2.2 Scattering, Transmission and Impedance Matrix

If the impedances at a connection of two waveguides are not the same, reflec-
tions occur, comparable to the case, when light passes into a material with dif-
ferent index of refraction. In order to avoid this as well as possible, transmission
lines are typically matched to a predefined characteristic impedance, which is
either 50 Ω or 75 Ω. For semi-rigid or flexible coaxial cables used in microwave
electronics, and hence in our setup, the characteristic impedance is Z0 = 50 Ω.
However, having a perfectly matched network is not always possible and scatter-
ing occurs. Thus, it is important to find a way to connect currents and voltages
at each port of a multi-port network.

impedance matrix

One possibility of describing such a microwave network is by knowledge of
the impedances which relate voltages and currents at the different ports by
[Poz05]

Zij =
Vi
Ij

∣∣∣∣
Ik=0 for k 6=j

. (2.30)
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2.2 Transmission Line Theory

The last index means that all other ports except port j are open circuited, i.e.
there is no current flowing. The inverse of the impedance matrix is called the
admittance matrix Y = Z−1.

scattering matrix

Another way of describing a microwave network is by comparing the reflected
wave V −i at port i with the driving voltage V +

j of port j. In order to avoid inter-
ference due to reflections, all other ports except the driving port are terminated
with a matched load. Thus, the elements of the so-called scattering matrix are

Sij =
V −i
V +
j

∣∣∣∣∣
V +
k =0 for k 6=j

. (2.31)

The scattering matrix is the quantity which is easiest accessible in measurement,
for example with a vector network analyzer. Of interest in this work are only
two-port networks. For this case the scattering matrix simplifies to(

V −1
V −2

)
=

(
S11 S12

S21 S22

)(
V +

1

V +
2

)
. (2.32)

By definition, S11 describes the reflections at port 1 and S21 is the transmission
coefficient from port 1 to port 2, while port 2 is terminated with a matched load.
Due to reciprocity S21 = S12.

ABCD matrix

As a third option of describing a two-port network, the so-called transmission
or ABCD matrix is often used. It relates current and voltage at the output of the
network to current and voltage at the input:(

V1

I1

)
=

(
A B
C D

)(
V2

I2

)
. (2.33)

Therefore, the transmission line parameters, i.e. impedances and admittances
need to be known. For a large network this may seem like a difficult task but
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any two-port network can be divided into a series of smaller and thus simpler
building blocks. Now, the advantage of the ABCD matrix formalism comes to
light. Since voltage and current at the (n + 1)-th port are calculated from volt-
age and current at port n, the same can be done for port n+ 2 by means of port
n + 1. Hence, the ABCD matrix of two-port network, consisting of a series of
simple building blocks, is found by simply cascading the ABCD matrices cor-
responding to the individual building blocks. The ABCD matrices for common
building blocks of transmission line circuits as well as different possibilities
of how model a simple 50 Ω matched transmission line are given in literature
[Poz05]. Note, that in order to avoid confusion with the transmission coefficient
S21 of the scattering matrix which describes the transmission from port 1 to port
2, always the term ABCD matrix will be used instead of transmission matrix.

Since impedance, scattering and ABCD matrices all describe the same system,
they can be converted into each other. The conversion formulas between differ-
ent matrices can be found in literature [Poz05] and are not given here.

2.2.3 The Periodically Loaded Transmission Line

Consider an infinitely long, reciprocal transmission line that is periodically
loaded with admittances Y3 as sketched in Fig. 2.6. The unloaded line is de-
scribed by the impedance Z0 =

√
l′/c′ and the propagation constant k = ω/c,

where c = 1/
√
l′c′ is the speed of light in the unloaded line.

......

+

- -

+

unit cell In In+1

Vn Vn+1

z

Y3

Z0, k

a

Y3 Y3 Y3 Y3

Fig. 2.6: Sketch of a periodically loaded transmission line [Poz05].
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A wave propagating in +z-direction is given by

V (z) = V (0) e−γz, (2.34)

I(z) = I(0) e−γz. (2.35)

The ABCD matrix of one unit cell of length a(
A B
C D

)
= (2.36)(

(cos ka+ b
2 sin ka) iZ0(sin ka− b

2 cos ka+ b
2)

iZ0(sin ka− b
2 cos ka− b

2) (cos ka+ b
2 sin ka)

)
,

with b = iY3Z0, is used to connect voltage and current before and after one unit
cell. Note, that this definition of b differs from the definition in Ref. [Poz05]. As
a result, a relation between the propagation constant of the unloaded line k, and
the propagation constant of the wave in the loaded line γ = α+ iβ and thus the
dispersion relation is found [Poz05]:

cosh γd = cos kd+
b

2
sin kd. (2.37)

In the case, that the admittance Y3 is purely imaginary, b can be written as b =
−Im(Y3)Z0 which is purely real. Then, the left hand side of this equation also
has to be purely real. Therefore, γ has to be either purely imaginary (γ = iβ)
or purely real (γ = α). According to the definition of the cosh

| cosh γa| =
{
| cosβa| ≤ 1, γ = iβ
| coshαa| ≥ 1, γ = α.

, (2.38)

frequency bands with propagating waves (γ = iβ), so-called pass bands, are
only possible at frequencies for which the absolute value of the right hand side
of Eq. (2.37) is less than unity. Thus, they are found by solving

| cos
ω

c
d+

b

2
sin

ω

c
d| − 1 = 0 (2.39)

with b = −Im(Y3)Z0. From Eq. (2.38), the upper cutoff frequencies of the pass
bands are extracted by finding the frequencies for which β is equal to integer
numbers of π/a. The opening of the stop bands at these β-values is a well
known property of Bloch waves [Kit05], i.e. any kind of waves propagating
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through any kind of periodic structure, as nicely pointed out in Refs. [Bri53]
and [RBLL95]. For example, Eq. (2.37) is also the result of the Kronig-Penning
model, which considers electron propagation through a periodic delta-function
potential [Kit05].

The reason for so-called stop bands, i.e. frequency bands where no wave prop-
agation is possible, is easily found. At propagation constants β = qπ/a, q ∈ Z,
integer numbers of half wavelengths are equal to the unit cell length a. In-
coming and reflected wave fulfill the Bragg condition, which creates a standing
wave. Depending on whether the superposition of incoming and reflected wave
is symmetric or antisymmetric, the resulting standing wave either decreases or
increases the energy of the system. This leads to an energy (frequency) gap be-
tween β = (π/a)− and β = (π/a)+. Here +/− stands for the limes from below
and above, respectively.
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Fig. 2.7: Dispersion relation of a infinite transmission line loaded periodically
with capacitances, such that Y3 = iωC with C = 2.6 pF, a = 5 cm.
The dashed line is given by the dispersion line of the unloaded line
(Y3 =∞) ω = βc.

Staying within the concept of Bloch waves, the full zone scheme of the disper-
sion relation ω(β) for an infinite transmission line that is periodically loaded
with a capacitance C is shown in Fig. 2.7, in addition to its reduction to the first
Brillouin zone. The length of the unit cell is a = 5 cm. The black arrows in-
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2.2 Transmission Line Theory

dicate how the reduced zone scheme is constructed by subtracting integer num-
bers of reciprocal lattice vectors G = 2π/a. Considering only the reduced zone
scheme (−1 < βa/π < 1), phase and group velocity have the same sign in the
first and third pass band. The signs of the velocities are opposite in the second
and forth pass band. This is due to the discreteness of the lattice which leads to
an ambiguity in possible wavelengths [Bri53]. Namely, the pass band between
1 < βa/π < 2 can be expressed either as a wave with βa/π > 1 and thus
λ < 2a or with −1 < βa/π < 0 and λ > 2a.

Bloch impedance

Since the periodic load of a transmission line strongly affects the wave prop-
agation, this has to be reflected also in its impedance. The so-called Bloch
impedance ZB is the characteristic impedance at the terminals of the unit cell.
Using the ABCD matrix of one unit cell Eq. (2.36), it is calculated to be [Poz05]

Z±B =
±BZ0√
A2 − 1

, (2.40)

where A and B are defined by Eq. (2.36). Again, ± indicates positively or
negatively traveling waves. IfB is purely imaginary, for exmpale in the case for
b = −Im(Y3)Z0, ZB is real for A ≤ 1. This corresponds, as expected, to the
cos solution of the cosh (cf. Eq. (2.38)).

finite length aspects

Due to the infinite number of unit cells in the transmission line, the dispersion
relation in the pass band is continuous as seen in Fig. 2.7. However, if the num-
ber of unit cells is finite, transmission is possible only for discrete frequencies.
Simplified, due to the impedance mismatch between 50 Ω and ZB of the peri-
odically loaded transmission line of finite length, its behavior is comparable to
a transmission line resonator. Wave propagation is only possible when integer
numbers of λ/2 fit into the loaded transmission line. It should be noted that
due to the nonlinear dependence ω(λ) the allowed frequencies are not equally
spaced, different from a transmission line resonator.
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2.3 Metamaterials

A metamaterial is a medium constructed from artificial elements, so-called meta-
atoms, with the purpose to manipulate wave propagation through it in a desired
fashion. As in natural occurring media, the distance between and the size of
these meta-atoms in propagation direction are small compared to the vacuum
wavelength of the incoming wave [SPW04]. Typically, this is still valid for the
propagation in the medium unless the absolute value of the index of refraction
is much larger than unity. Then, the wavelength may be shortened to be on the
order of the meta-atom size and periodicity. Such a system usually falls under
the term photonic crystals, i.e. media which are also made of artificially engi-
neered structures however with a periodicity on the order of the wavelength.
Provided that the above size restrictions are fulfilled and the term metamaterial
is applicable, such an artificial material can be treated as an effective medium.
Instead of evaluating the interaction of radiation with each meta-atom sepa-
rately, the average response of several meta-atoms is considered. Consequently,
the propagation of electromagnetic radiation is then described using the material
parameters electric permittivity and magnetic permeability.

2.3.1 Maxwell’s Equations and Material Parameters

Maxwell’s equations in vacuum were already presented in the introduction (cf.
Eq. (1.1)). In the following, Maxwell’s equation in media will be discussed
in more detail. In an isotropic, homogeneous and linear medium, polarization
and magnetization are given by ~P = ε0χe(ω) ~E and ~M = χm(ω) ~H . The scalar
susceptibilities are used to define the material parameters magnetic permeability
µ and electric permittivity ε (the latter is also known as dielectric constant).

µ(ω) = µ0(1 + χm(ω)) = µ0µr(ω) (2.41)

ε(ω) = ε0(1 + χe(ω)) = ε0εr(ω) (2.42)

The frequency dependence of the material parameters will be of importance
later and should be kept in mind, although it will omitted in the following equa-
tions for clarity.
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2.3 Metamaterials

Using the above considerations, Maxwell’s equation in media for a fixed fre-
quency are given by

∇× ~E = − ∂

∂t
~B (2.43)

∇× ~H =
∂

∂t
~D +~j (2.44)

∇ · ~D = ρ (2.45)

∇ · ~B = 0 (2.46)

for electric field ~E and magnetic field ~H and taking into account charge and
current density ρ and ~j, respectively. The dielectric displacement ~D = ε ~E and
the magnetic induction ~B = µ ~H will be of use later on.

In a dielectric material at optical frequencies, the relative permittivity εr is typ-
ically larger than unity, while µr = 1. It should be noted that, in general, the
relative material parameters are complex numbers, but unless stated otherwise
they are considered to be real in this section for simplicity. In this case, the
index of refraction, which is defined by

n2 = εrµr, (2.47)

is a real number. The speed of light in the medium is given by

c =
1
√
εµ
. (2.48)

Note the similarity to the definition of c in a transmission line as given in
Sec. 2.2.1. A plane wave propagating with speed c through a medium with an
refractive index n is described by eiωt−i~k~r. Here, ~k = n~k0 is the wave vector in
the medium and |~k0| = ω/c0 is the length of the wave vector in vacuum.

On the other hand, the opacity and reflectivity of metals in and below the optical
spectrum is due to a negative electric permittivity (and simultaneously positive
permeability). This yields an imaginary value for n, which in turns leads to
an exponentially decaying wave. Therefore, radiation in and below the optical
range cannot penetrate a metal. The same would be valid for a hypothetical
material with µr < 0 and εr > 0, but in nature there are no materials with
µr < 0.
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Being able to influence and tune these two parameters at will is the main ob-
jective when constructing and using metamaterials. As already pointed out in
the introduction, two different, although connected, motivations are distinguish-
able. On one hand, metamaterials are constructed such that, due to a spatially
varying index of refraction, waves are conducted along a predefined path. This
concept is for example used for cloaking. On the other hand, new meta-atoms
are invented that enable the creation of materials that have material parame-
ters which are not positive and larger or equal to unity. This work is involved
solely with the latter motivation. Therefore, meta-atoms have to be designed
that have a susceptibility which is less than zero, i.e. that are able to counteract
an incoming wave.

2.3.2 Typical Meta-Atoms and their Response

The electric and magnetic interactions of media with electromagnetic radiation
are fundamentally different. There is a monopole charge corresponding to the
electric field but no corresponding monopole for the magnetic field. Therefore,
the coupling mechanisms and hence the approaches as to how to design meta-
atoms for interaction with either electric or magnetic field component differ. As
a result, the task of creating a metamaterial is strongly simplified by designing
separate meta-atoms for the interaction with the electric and with the magnetic
field component and combining them afterwards.

electrically interacting elements

The propagation of electromagnetic radiation through a transparent dielectric
medium is defined only by the interaction with the electric field. The electronic
cloud is localized and oscillates, driven by the electric field, around the atom’s
core, creating on oscillating dipole. The spatially averaged result is an effective
wave, that travels at a speed c = c0/n. The refractive index n depends only
on the relative electric permeability εr (since µr = 1). The relative electric
permittivity, in turn, is defined by the electric susceptibility of the electronic
cloud to the incoming wave.
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Metals, on the other hand, have electrons that are delocalized and therefore their
response to an incoming electromagnetic wave is different from that of a dielec-
tric. Two cases have to be distinguished. Radiation with a frequency below the
plasma frequency ωp of the free electrons in the metal will be reflected, due
to the moving electrons. Above the plasma frequency, however, the electrons
cannot follow and screen the electric wave anymore, and the medium becomes
transparent. The relative electric permittivity of metals in dependence on fre-
quency and without considering dissipative effects is given by

εr = 1−
ω2
p

ω2
, (2.49)

with ω2
p =

nee
2

ε0me
, (2.50)

where ne is the electron density and me the electron mass. For conventional
metals, the plasma frequency is in the ultraviolet region. They are therefore
reflective and have a negative electric permittivity in the optical and microwave
frequency range.

It seems obvious to make use of this plasmonic behavior of metals below the
plasma frequency. The rather ingenious idea by Pendry et al. [Pen+98] was to
remove almost all of a bulk metal and only leave a periodic array of thin wires
standing. The plasma frequency of such a medium is lower than the plasma
frequency of the bulk material since the effective mass of the electrons increases
for two reasons. First, due to the wire structure the inductance is increased and
second, the average effective electron density decreases due to the loss of bulk
material. Hence the medium becomes transparent with εr > 0 already at lower
frequencies.
The predicted behavior was successfully tested in the aforementioned initial
work by Pendry as well as in various other works [Smi+00; GBMM02], for
example also for superconducting wires [ROA05]. The biggest advantage of
stripping most of the metallic material away is that there is space for a sub-
lattice consisting of magnetically coupling meta-atoms, as also shown in Ref.
[Smi+00].
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magnetically interacting elements

The relative magnetic permeability of any natural dielectric material does not
deviate much from unity. In fact, the only dielectric materials with µr > 1
are artificial materials, where nanometer-size magnetic particles are embedded
into a dielectric matrix. For such materials, values of µr up to 30 are possible
[Pie+07]. Much larger permeabilities are found in magnetic materials (metals).
Additionally, there are no natural materials that have a negative magnetic sus-
ceptibility (in zero external magnetic field) at high frequencies.

The approach of how to construct a meta-atom that couples to the magnetic
component of an electromagnetic wave is quite different from the previously
introduced wire array for the ~E-field. Since there is no magnetic charge, there
is no plasma frequency. The idea to use a resonant RLC circuit and employ
its non-zero susceptibility around the resonance frequency was again first intro-
duced by Pendry et al. [Pen+99]. A loop or cylinder with its rotational axis ori-
ented parallel to the magnetic field ~B is employed together with a capacitance.
The initial proposal included swiss roll cylinders and open cylinders or open
rings within each other. The example of a double split ring resonator (SRR)
is sketched in Fig. 2.8(a). It consists of two concentric conducting loops with
different radii that are both interrupted at one point. Its capacitance is defined
by the width of the gaps between the two rings and the width of the interruption.
In order to understand the response of an SRR to a sinusoidal magnetic driving
field perpendicular to the loop area, it suffices to consider a simple RLC circuit
as depicted in Fig. 2.8(b). Taking into account the loop area, the magnetic field
is replaced by the corresponding magnetic flux threading the loop as was done
in Sec 2.1.3 for the rf-SQUID. This spares us the consideration of the spatial
dependence of the magnetic field.
The induced magnetic flux response of the RLC resonator to the flux drive
Φext = Φeae

iωt + c.c. is given by Φres = Φrae
i(ωt+δ) + c.c.. Here, ω is the

frequency of the driving signal, δ is the relative phase between incoming and
induced signal and c.c. stands for the complex conjugate. In a frequency range
around the resonance frequency ω0 = 1/

√
LC, the amplitude of the response

Φra of the resonator is larger than the amplitude of driving field Φea. Addi-
tionally, the relative phase δ between the two signals shifts quickly from zero
around the resonance frequency and approaches π asymptotically for ω → ∞.
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Fig. 2.8: (a) Sketch of a double split ring resonator as suggested in
Ref. [Pen+99]. (b) Resonant RLC circuit as simplified electric circuit
equivalent of the SRR, including external, magnetic drive Φext. (c)
Frequency dependence of the magnetic susceptibility χs of the single
RLC resonator. The quality factor Q of the resonance is higher the
darker the color.

Combining amplitude and phase of the incoming and induced signal, the sus-
ceptibility of the single element is defined as

χs = 〈Φres − Φext

Φext
〉t. (2.51)

Here, 〈〉t stands for the time average. Its frequency dependence is depicted in
Fig. 2.8(c). Around the resonance frequency, the susceptibility clearly deviates
from zero and even becomes negative. Thus, a material that consists of many of
these oscillators exhibits a magnetic permeability µr = 1 + F̃χs that deviates
from unity around the resonance frequency and may even become negative. F̃
accounts for a filling factor and depends on the geometry of the meta-atom and
the spatial composition of the corresponding metamaterial. It should be noted
that this definition of the relative magnetic permeability including Eq. (2.51) is
valid only up to a frequency ω <

√
3ω0 [Cap09], since µr does not approach

unity for ω → ∞. In order to avoid this unphysical behavior, another expres-
sion for the magnetic permeability can be found [SK00], with the draw back
that here unity is not reached in the low frequency limit. Since both expres-
sions describe the behavior at resonance correctly, and the high frequency limit
is not of interest in this work, we will use the given expression together with
Eq. (2.51).
Apart from a large filling factor F̃ , a high quality factor Q of the resonance is
crucial to obtain a negative permeability. With increasing losses, the maximal
relative amplitude and the steepness of the phase shift decrease. This, in turn,
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decreases the deviation of the susceptibility from zero (cf. Fig. 2.8(c)). Conse-
quently, if dissipation in the resonator is too large, the variation of the magnetic
permeability may not go below zero anymore.

There are many different designs for magnetic meta-atoms [Pen+99; Sha07],
however, common to all is the resonant nature. Being unavoidable, the resonant
behavior is also a strong limitation. From Fig. 2.8(c), it is obvious that a spe-
cific value of χs and thus a specific value for µr is achievable only at a fixed
frequency. Additionally, the frequency range, where a negative µr is feasible
(i.e. where F̃χs < −1) is narrow and close to resonance, where losses in the
resonator are highest.

As a side note, referring to a statement from the beginning “there are no nat-
ural materials that have a negative, high frequency magnetic susceptibility (in
zero external magnetic field)”: This is no longer true, once a magnetic field
is applied to materials with permanent magnetic dipole moments. This mag-
netic field may also be caused locally within the medium by the material itself.
Due to the Zeeman effect [Zee97], its degenerate energy levels, defined by the
magnetic quantum number, split up. Such a material exhibits paramagnetic res-
onances (EPR) whenever a magnetic driving field is in resonance with one of
the transition between these levels [AB70]. As for the RLC circuits, the relative
magnetic permeability of such a material at resonance deviates from unity. To
the author’s knowledge, there has been no investigation considering the EPR in
the context of metamaterials, although the effect of EPR is well understood and
widely used.

2.3.3 Negative Index of Refraction

Victor G. Veselago was among the first who considered the possibility that
Eq. (2.47), which defines the index of refraction, allows in fact two solutions
for n, namely n = ±√εrµr [Ves68]. He claimed that simultaneously negative
relative material parameters εr, µr compel the selection of the negative root for
the index of refraction while the positive index of refraction is valid for positive
relative material parameters.

In order to verify this claim, a closer look has to be taken at Maxwell’s equa-
tions in media (cf. Eqs. (2.43)-(2.46)) and the direction of electric field ~E and
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magnetic induction ~B = µ ~H . Assuming a plane wave for the electric field
~E = ~E0 exp(i(ωt−~k~x)) (and the same for the magnetic induction ~B), together
with a current and source free environment, they can be simplified to

~k × ~B = −ωεµ~E (2.52)
~k × ~E = ω ~B.

In Fig. 2.9, an interface between a conventional material at the top with ε1, µ1 >
0 and a material with both ε2, µ2 < 0 at the bottom is displayed. The arrows de-
note the direction of ~E- and ~B-field and corresponding dielectric displacement
~D and magnetic field ~H .

The propagation of light in an isotropic medium with positive n is well known:
~E, ~B and the propagation ~k form a right-handed system, so does by definition
the combination of ~E, ~B and Poynting vector ~S.

In order to find the behavior in a medium with simultaneously negative per-
mittivity and permeability, the behavior of the four fields when crossing the
interface needs to be investigated. Therefore, the field vectors are split into
components tangential and normal to the interface.
Due to Faraday’s law of induction the parallel field component of ~E is continu-
ous when crossing the interface [Jac06]. The ratio of the normal components on
either side of the interface is determined by the ratio of the two different values
for the permittivity ε1, ε2. Thus, after crossing from a medium with positive ε
into a medium with negative ε, the normal component of the electric field points
into the opposite direction. The reconstruction of the magnetic induction vector
~B works in a similar way.
By applying Eqs. (2.43)-(2.46) to the these newly constructed vectors, it turns
out that a beam of light is refracted with an negative angle θ2. The propagation
direction ~k is now antiparallel to the direction of energy flow, i.e. ~S. This also
means, that ~B, ~E and ~k form a left-handed system and that phase and group
velocities have opposite signs. The group velocity vg, defining the direction of
energy flow, follows ~S while the phase velocity vph is in direction of ~k.
Applying Snell’s law to the left-handed system shows that the beam propagation
in the second medium is described by a negative index of refraction. In conclu-
sion, Veselago’s claim, that negative material parameters require the choice of
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θ1

θ2

ε1, µ1 > 0

ε2, µ2 < 0

~B
~k

~Et1

~En1

~En2

~Et2

~E ‖ ~D

‖ ~H
‖ ~S

~E ‖ − ~D
~B ‖ − ~H

~k ‖ −~S

Fig. 2.9: Interface between a medium with purely positive material parameters
ε1, µ1 (top) and one with negative material parameters ε2, µ2 (bottom).
Both materials are isotropic. The field vectors of an electromagnetic
wave under oblique incidence from the top are given as well as wave
vector ~k and Poynting vector ~S. When passing through the interface,
the ratio of the normal components is given by the ratio of ε1 and ε2.
Hence, ~En1 is anti-parallel to ~En2. The tangential component is not
affected. Combining both components in the NIR medium yields the
new ~E-field vector. Similar considerations apply for ~B. Note that in
the NIR material ~k and ~S point in opposite direction, as do ~E and ~D
as well as ~B and ~H .
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the negative root of Eq. (2.47), is indeed true: In order to observe a negative in-
dex of refraction, a material has to be found with simultaneously negative elec-
tric permittivity and magnetic permeability. Simultaneous in this context means
not only with respect to time but also in an overlapping frequency range.

experimental realization of materials with n < 0

As briefly mentioned before, wave propagation through a medium with only
one negative material parameter is not possible. However, at frequencies where
both material parameters are negative, transmission through this negative index
of refraction (NIR) material is finite as was shown in Ref. [Smi+00]. One year
later, negative refraction was for the first time experimentally tested in a wedge-
shaped piece of material for a frequency of 10.5 GHz [SSS01].

Since the maximal possible transmission is limited by losses in the material,
they have to be reduced as much as possible. This becomes increasingly diffi-
cult as the size of the meta-atoms is decreased in order to reach higher frequen-
cies.
Nonetheless, since the first realization in 2000, materials with negative index
of refraction have been built for frequencies up to the optical range [Sha07].
For this purpose, the meta-atoms have to been miniaturized. Unfortunately, the
resonance frequency of the SRR does not increase linearly with decreasing size
anymore when approaching the optical frequency range. Instead it saturates,
while the amplitude of the resonance decreases until µr < 0 is no longer reach-
able [Zho+05]. Therefore, the shape of the meta-atoms has to be optimized
[Lin+04] for the THz-frequency region and, in order to obtain a negative in-
dex of refraction in the visible range, magnetic and electric components were
combined to a so-called fishnet structure [Dol+06; Dol+07].

negative index of refraction in transmission lines

Another approach, as to how a material with a negative index of refraction can
be realized, was introduced in 2002 by Eleftheriades et al. [EIK02]. Instead
of considering light propagation in bulk-like materials constructed from an ar-
rangement of individual meta-atoms, they investigated the possibility of achiev-
ing a NIR in a distributed transmission line network.
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Already 70 years ago, Maxwell’s equation in 1D, 2D or 3D media were mod-
eled by 1D, 2D or 3D transmission line networks [Kro44]. By comparing the
equations describing electric and magnetic field (from Maxwell’s equations Eqs.
(2.43)-(2.46)) to the equations describing voltage and current respectively (from
the telegrapher’s equations Eq. (2.19)), a relation between transmission line pa-
rameters, i.e. impedance Z = iωL and admittance Y = iωC as illustrated for
1D in Fig. 2.10(a), and material parameters per unit cell with length a is found
[EIK02].

µ(ω) =
Z(ω)/a

iω
(2.53)

ε(ω) =
Y (ω)/a

iω
(2.54)

These two equations yield Z = iωµa and Y = iωεa for one unit cell which, in
turn, defines L = µa and C = εa. The proportionality of L and µ as well as
C and ε leads to the conclusion, that by implementing elements with negative
values for L and C, a medium with both µ, ε < 0 is created.

(a)

a

L

C

(b)

a

Clh

Llh

Lrh

Crh

Fig. 2.10: (a) Sketch of one unit cell of a right-handed (standard) transmission
line in 1D loaded with an inductance L and capacitanceC. (b) Sketch
of one unit cell of a left-handed transmission line. The (right-handed)
host transmission line is defined by Lrh and Crh. The (dominant)
left-handed behavior is given by Llh and Clh.

The question is now, how negative values for inductance and capacitance can
be engineered. In the telegrapher’s equations, the minus sign in front of L
and C leads to an effective phase shift of π between current and voltage. The
same phase change would be observed, if inductance and capacitance in the
transmission line were exchanged. Therefore and by also taking into account
the frequency dependence of Z and Y , we can rewrite −L = 1/(ω2Clh) and
vice versa. A sketch of such a left-handed transmission line in 1D is given
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in Fig. 2.10(b). Due to the frequency dependence, the left-handed inductance
is not identical to the inductance in the right handed medium and Clh 6= C.
Nonetheless, by designing a transmission line from lumped elements with ca-
pacitances in series and shunt inductances, a left-handed medium can be built.
It should be noted, that such a transmission line also always comprises a (small)
right-handed contribution (Lrh and Crh) due to the host transmission line. But
this is of course also true for the bulk metamaterials introduced in the previous
subsection.

While the NIR in 2D distributed networks has been used to demonstrate imag-
ing with a resolution better than the diffraction limit [GE04], reducing the trans-
mission line metamaterial to one dimension sacrifices the refractive, i.e. angle
dependent properties of a NIR material. Nonetheless, the effective parameters
still define the impedance and the propagation vector in the medium. One di-
mensional NIR transmission lines were for example used to realize compact
phase-shifters [AE03] or N-port series power dividers [LLI05].

backward traveling waves vs. negative index of refraction

As previously discussed, a negative index of refraction leads to opposite signs
for phase and group velocity. The same was found in Sec. 2.2.3 for the sec-
ond and the forth pass band in the reduced zone scheme of a transmission line
loaded periodically with capacitances C. Hence, the question may come up,
what the difference between the two effects is. The answer was also already
given in Sec. 2.2.3. A negative n is a (meta)material effect, which means, that
the wavelength is much larger than the unit cell length. On the other hand, the
opposite sign of phase and group velocity in a periodically loaded transmission
line arises from an ambiguity in wave vector definition by adding or subtract-
ing integer numbers of reciprocal lattice vectors. In terms of wavelengths, this
relates to a subtraction or addition of integer numbers of unit cell length. The
second pass band in the reduced zone scheme (cf. Fig. 2.7) corresponds in fact
to a wave with positive phase and group velocity and with a wavelength between
a < λ < 2a. Hence, the condition of λ� a is no longer satisfied.
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2.3.4 Material Parameters close to Zero

In this section on metamaterials, we have learned so far that the material param-
eters of a linear medium constructed of meta-atoms can vary between positive
and negative values depending on frequency. Consequently, there is a frequency
where either one or both parameters pass through zero. Using Eq. (2.47), the
index of refraction at that frequency is also zero.

First, consider the case when µ = ε = 0 and the electric (and magnetic) field is
of the form ~E(~r) exp(iωt)+c.c. (and respective for ~H). Under these conditions
Maxwell’s equations in media (Eqs. (2.43)-(2.46)) reduce to the expressions

∇× ~E(~r) = 0 (2.55)

∇× ~H(~r) = ~j (2.56)

which describe spatially static electric and magnetic fields. This translates into
an infinite wavelength, as can also be seen from λ = λ0/n. On the other hand,
the phase velocity is infinite. This results in rather interesting properties.
For example, it was shown using finite difference time domain (FDTD) simu-
lations [Zio04] that the phase of a wave that travels through a slab of n = 0
material stays constant across the slab. This reflects both infinite wavelength
and infinite phase velocity. Although the phase is spatially constant, the ampli-
tude changes with time according to the oscillating amplitude of the wave at the
interface between normal and n-near-zero material. The results in Ref. [Zio04]
were obtained for a Drude type permittivity and permeability with identical fre-
quency dependence and identical losses Γ

ε(ω) = ε0

[
1−

ω2
p

ω(ω − iΓ)

]
(2.57)

µ(ω) = µ0

[
1−

ω2
p

ω(ω − iΓ)

]
.

Unfortunately, the above assumptions of identical frequency dependence - im-
plying an impedance match to vacuum -, as well as identical losses are difficult
or even impossible to implement. On the other hand, in order to obtain an index
of refraction that is zero, only one of the two material parameters needs to be
zero.
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This leads to the second case, namely ε-near-zero (ENZ) materials. Since
µ 6= 0, the rotation of the electric field (Eq. (2.55)) does not vanish. However,
assuming without loss of generality ~H(~r) = Hz(~r)êz , the second Maxwell
equation (cf. Eqs. (2.43)-(2.46)) can be transformed to

∇Hz(~r)× êz
−iωε

= ~E(~r). (2.58)

Since ~E(~r) has to be finite,∇Hz(~r) must be zero, which, in turn means, thatHz

and hence the phase of the full electromagnetic wave is constant inside a ENZ
material [SE06]. Using this result, the authors of Ref. [SE06] theoretically pre-
dicted that light can tunnel through an arbitrarily shaped 2D waveguide section
consisting of an ENZ material as long as its cross-section is small compared
to the vacuum wavelength and under the assumption, that light enters the ENZ
material perpendicular to its surface. This theoretical prediction was later ex-
perimentally verified [Edw+08]. Other potential applications of ENZ materials
include their use as wave front transformers [Zio04; Al07] and the development
of highly directive sources [Eno+02]. The opposite effect, namely all-angle col-
limation was predicted by Feng [Fen12] for the case, when p-polarized light
enters a lossy ENZ medium.

Although less research was done on the topic of µ-near-zero (MNZ) materials,
this last effect was also found for the case, when s-polarized light enters a MNZ
medium [FN13]. For a MNZ material, the same considerations are applicable
as for the ENZ medium, except that now ∇ × ~E(~r) has to be used and the
polarization has to be adjusted to s-polarised light, accordingly.
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2.4 Josephson Metamaterials

2.4.1 The rf-SQUID as Meta-Atom

In Sec. 2.3 of this chapter, it was explained how to build a magnetic meta-atom
using a split ring resonator. It was shown why the resonant behavior of the SRR
is crucial for achieving values for µr that are less than unity or even negative.
On the other hand, it was pointed out that due to the resonant nature of such a
meta-atom, the frequency range where µr deviates from unity is limited.

Considering the properties of the rf-SQUID as presented in Sec. 2.1.3, it seems
to be obvious to replace the SRR with the rf-SQUID as suggested previously in
Refs. [DCL06; LT07]. Thereby the strong frequency limitation of the SRR is cir-
cumvented due to the tunable resonance frequency (Eq. (2.17)) of the SQUID.
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Fig. 2.11: Measured transmission magnitude through a coplanar waveguide
containing one rf-SQUID in dependence of frequency and mag-
netic flux. The calculated magnetic flux dependent resonance curve
(Eq. 2.17) is shown by a dashed blue line. Figure courtesy of
Ref. [Jun+13].

In Ref. [Jun+13], it was shown that for small driving power, the single rf-SQUID
indeed behaves as predicted. The SQUID was placed into a coplanar waveguide
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(CPW), oriented such that the inductive coupling to the magnetic field compo-
nent was maximized. The transmission magnitude and phase through this CPW
was recorded over a wide frequency range in dependence of an additional, exter-
nally applied, constant magnetic field. Whenever the microwave signal was in
resonance with the rf-SQUID, a decreased transmission was observed as shown
in Fig. 2.11. The measured resonance curve agrees well with the curve calcu-
lated from the SQUID parameters and is periodic in Φ0.
It should be noted, that an additional parallel plate shunt capacitance is included
in the SQUID in parallel to the Josephson junction. This is necessary to de-
crease the resonance frequency, since the measurement setup does not support
frequencies above 20 GHz. Nonetheless, the zero flux resonance frequency of
this particular SQUID lies still above the 20 GHz and the part of the resonance
curve continuing to higher frequencies cannot be shown.

2.4.2 Transmission Line Setup

In the common understanding, a material extends in three dimensions, espe-
cially in the context of refraction. On the other hand, the construction of a
material out of artificial meta-atoms is easier, the lower the dimensionality. For
example, the first experiment demonstrating a negative index of refraction in-
volved a quasi two dimensional metamaterial. The thickness of the medium
was only three meta-atomic layers. A 2D waveguide defined the direction of
propagation, which lay in the quasi 2D plane [SSS01]. Since in an isotropic
and homogeneous medium, incoming and refracted beam lie in one plane, such
a 2D approach is a valid design for a metamaterial. When extending the con-
cept of metamaterials to media that are built using superconducting meta-atoms,
the low temperature setup and potential application in combination with circuit
quantum electrodynamics suggests the implementation of a 1D metamaterial.

For this work, a coplanar design is chosen, where one dimensional arrays of,
for example, rf-SQUIDs are placed in the two gaps of a transmission line as
schematically shown in Fig. 2.12(a). This setup makes it possible to use pre-
existing electronic microwave devices and a technically fully developed exper-
imental setup. Additionally, a good coupling between transmission line, i.e.
microwave signal, and rf-SQUID is achieved which is relevant especially for
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first proof-of-principle measurements on this novel metamaterial. Further ad-
vantages include a simple, quasi TEM mode structure in the coplanar waveg-
uide (cf. Sec. 2.2.1). Since other, non QTEM modes are not supported in the
CPW (unlike e.g. rectangular waveguides), this leads to a favorable magnetic
and electric field orientation in the gap. Additionally, the CPW design offers
the possibility to use the central conductor also for a constant magnetic field
bias. For this last purpose, a constant bias current Ib is applied to the central
conductor in addition to the microwave signal.
Although this work will focus solely on the 1D coplanar waveguide setup, it
should be noted that rf-SQUIDs have been successfully employed as magnetic
meta-atoms in a 2D geometry inside a rectangular waveguide [Tre+13]. As ex-
pected, the coupling and hence the signal of the resonance of the rf-SQUIDs
was much weaker in this setup.

(a) (b)

(c)

Lgeo

L′

C′

µrL′

C′

~E ~S

a

Ib

~H

Fig. 2.12: (a) Sketch of a SQUID loaded coplanar waveguide as seen in top
view. The ground plane is illustrated in dark, the central conductor
in light gray. The dashed rectangle indicates one unit cell of length
a. (b) Lumped-element equivalent circuit of the unloaded transmis-
sion line (L′ = l′a, C ′ = c′a) and the inductive coupling of the
rf-SQUIDs. (c) The effect of the rf-SQUIDs is included into the ef-
fective magnetic permeability of the transmission line.

retrieval of the magnetic permeability

Already before the invention of metamaterials, the question of how to extract the
material parameters from reflection and transmission coefficient was answered.
Nicolson and Ross [NR70] and Weir [Wei74] considered a 50 Ω transmission
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line that contained a dielectric material of thickness d with material parameters
µ and ε. They showed, that by knowledge of the scattering matrix S at pre-
defined reference planes, these parameters can be determined. Therefore, they
used the reflection coefficient Γ and the transmission coefficient z at the inter-
face of and through the dielectric, respectively. The transmission coefficient
z = exp(−iω√µεd) contains the material parameters directly.
The approach developed in this thesis differs from the above procedure only in
the means used to connect S-matrix and material parameters. Employing z and
Γ requires exact knowledge of the position of the reference planes, i.e. their dis-
tance to the surfaces of the dielectric and the length of the dielectric. This is not
possible in our measurements, since the setup does not allow a full calibration.
Instead, the ABCD matrix of one unit cell is used. This effectively places the
reference planes directly in front of and behind the sample.

Since the capacitive coupling of the SQUID to the microwave signal is negligi-
ble compared to the inductive coupling, the SQUIDs only couple to the induc-
tance of the line. This effect is projected onto a relative magnetic permeability
µr which in turn modifies the inductance of the transmission line as illustrated
in Fig. 2.12(b) and (c). Note that this approach is similar as the one presented
in Sec. 2.3.3 for transmission line metamaterials. The ABCD matrix of one unit
cell can then be written as

Tm =

(
ZµL
ZC

+ 1 ZµL
1
ZC

1

)
. (2.59)

Here, ZµL = iωµrl
′a is the impedance of the inductance and ZC = 1/(iωc′a) is

the impedance of the capacitance for a unit cell of length a. As a next step, the
ABCD matrix of N unit cells is found by cascading the matrix Tm N times (cf.
Sec. 2.2.2). Therefore, it is useful to find the diagonalizing and diagonalized
matrices. Hence, the eigenvalues

l1 =
ZµL + 2ZC −

√
(ZµL)2 + 4ZµLZC

2ZC
, (2.60)

l2 =
Zµ

L
+ 2ZC +

√
(ZµL )2 + 4ZµLZC

2ZC
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and eigenvectors

e1 =

(
1, − l2 − 1

ZµL

)T
, e2 =

(
1, − l1 − 1

ZµL

)T
(2.61)

of the ABCD matrix Tm need to be found. Then Tm can be rewritten as

Tm = D ·
(
l1 0
0 l2

)
·D−1 (2.62)

with D =
(
e1, e2

)
. (2.63)

This ABCD matrix Tm then is cascaded N times in order to obtain the full
ABCD matrix Tm of the metamaterial:

Tm = TNm = D ·
(
lN1 0

0 lN2

)
·D−1. (2.64)

As mentioned above, there are several approaches, about how to extract the
complex material parameters ε and µ from the scattering matrix, using S11 and
S21 [NR70; Wei74; BJVK90]. Since the deviation of the electric permittivity
from unity is negligible for this metamaterial, we are looking only to find the
magnetic permeability. By eliminating one complex unknown quantity, i.e. εr,
using only the transmission coefficient S21 is sufficient to determine µr.

In order to find the relative magnetic permeability, the elements of the ABCD
matrix Tm of the full metamaterial are expressed in two different ways. First,
in dependence of the S-matrix elements [Poz05], it is given by

Tm,S =

(
− (S11+1)S22−S12S21−S11−1

2S21

((S11+1)S22−S12S21+S11+1)Z0

2S21
(S11−1)S22−S12S21−S11+1

2S21Z0
− (S11−1)S22−S12S21+S11−1

2S21

)
.(2.65)

Second, the matrix Tm is written in terms of eigenvalues l1 and l2 of the ABCD
matrix of the unit cell and its impedance parametersZL andZC , i.e. substituting
Eqs. (2.60), (2.61) and (2.63) into Eq. (2.64):

Tm, eig =

 − (l2−1)lN2 −(l1−1)lN1
l1−l2

(lN1 −lN2 )ZµL
l1−l2

− (l1−1)lN1 l2−(l1−1)lN1 −((l1−1)l2−l1+1)lN2
(l1−l2)ZµL

(l1−1)lN2 −lN1 l2+lN1
l1−l2

 .(2.66)
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By equating both expressions for Tm, a coupled system of four nonlinear equa-
tions is obtained. The corresponding four unknown (complex) variables are S11,
S12, S22, and µr. The latter is hidden in ZµL , which in turn is included in l1 and
l2. S21 is the measured quantity and all other parameters (e.g. L′ and C ′) are
known from either design considerations or simulations.

Although the approach uses the ABCD matrix of the system instead of trans-
mission (z) and reflection (Γ) coefficient at the interface (cf. Refs. [NR70;
Wei74; BJVK90]), similar problems arise. Reference planes directly in front of
and behind the sample are chosen, which still requires a suitable calibration as
detailed later in Sec. 3.2.4. Also, there can be up to N different solutions when
extracting theN -th root during the retrieval process. In order to test whether the
correct root is found, the measured phase delay is compared to the calculated
phase delay, as suggested also by Weir [Wei74]. For the calculated delay, the
obtained result of µr is used. Another option involves testing of energy con-
servation by making sure that the determinant of the scattering matrix S is less
than unity.

The task of solving the system of equations and testing the obtained solution is
left to a computer. In order to facilitate the search for the correct root, suitable
start values have to be supplied to the solver. Far away from resonance, i.e. for
frequencies where µr ≈ 1, the transmission line can be considered to behave
like an unloaded transmission line matched to 50 Ω. Hence, acceptable start
values would be ZL = iωlra, S21 = S12 = 1 and S11 = S22 = 0.
As the frequency approaches the resonance frequency, µr changes continuously.
It is thus reasonable to assume, that the solution of the previous frequency value
is a good start value for the next frequency point, provided that the step be-
tween two frequency points is sufficiently small. The latter requirement is also
necessary for the phase delay test. Hence, as first start values, parameters cor-
responding to an unloaded transmission line are chosen at low frequency. The
solution of this first result is used as new start value for the next frequency value
and so forth until the highest frequency is reached.

This procedure will be applied to the calibrated transmission data measured
from the magnetic metamaterial in Chapter 4.

49



2 Basic Concepts

2.4.3 A Metamaterial made from Tunable, Electric
Meta-Atoms

In Sec. 2.3.2, thin metallic wires were introduced as one way of constructing an
electrically interacting metamaterial. This approach is not feasible in the cho-
sen CPW design discussed above. Adding thin superconducting wires in the
two gaps oriented parallel to the electric field component comes with the prob-
lem that the coupling between ~E-field and rods is negligible. A strong coupling
could be achieved by connecting the wires galvanically to central conductor and
ground. In this case, the CPW is shortened periodically to ground. Note, that a
similar setup is often used in the case of a rectangular or parallel plate waveg-
uides. In this case, the wires are also connected to the conducting plates of the
waveguide, but the mode structure and the field distribution in these waveguides
is not comparable to the CPW.

dc SQUID

single JJ

Lgeo

Cc

(a) (b)

Cc/2

Fig. 2.13: (a) Sketch of a CPW loaded with capacitively coupled rods. The
ground planes are illustrated in dark, the central conductor in light
gray. The black rectangles symbolize parallel plate capacitors be-
tween rods and waveguide. Crosses in boxes are Josephson junctions.
The unit cell is indicated by the dashed rectangle. (b) Electric circuit
equivalent of one rod structure coupling to the transmission line.

To circumvent these problems, an electrically coupling meta-atom was devel-
oped that couples capacitively to the CPW. Since it also comprises an induc-
tance, such a structure is of resonant nature. As for SRR and rf-SQUID, the
interesting behavior is in the frequency range around and above the resonance
frequency, where its susceptibility deviates from zero.
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2.4 Josephson Metamaterials

A sketch of a CPW containing five of these structure coupled to the transmis-
sion line is shown in Fig. 2.13(a).
A dc-SQUID is installed in the wire to create a magnetic field tunable induc-
tance (cf. Sec. 2.1.3). Since its loop inductance is small compared to the Joseph-
son inductance, it behaves like a single junction but with magnetic field tunable
critical current. Additionally, it decreases the resonance frequency of the rod
structure. Since this decrease is not sufficient to reach a resonance frequency
accessible by the measurement setup, an additional single Josephson junction is
included in series to the dc-SQUID. Junctions are symbolized as black crosses
in Fig. 2.13(a). The critical current of the junctions is optimized, so that res-
onance frequency of the rods is within the range of tunability of the magnetic
meta-atom. Only then a combination of both kinds of meta-atoms may yield an
overlapping range of negative µ and ε.

The electric circuit equivalent of one rod is shown in Fig. 2.13(b). The dc-
SQUID is depicted as a single Josephson junction with a tunable critical current,
i.e. Josephson inductance. The maximum critical current of this effective junc-
tion is twice the critical current of the single junction, hence its zero magnetic
field inductance is only half the inductance of the single junction. The same is
true for the resistance, while the capacitance is doubled compared to the single
junction.

In order to understand the transmission properties of such a transmission line
loaded with electrically coupling elements, the ABCD matrix of one unit cell is
found

Te =

(
ZL
ZC

+ 1 ZL
1
ZC

1

)(
1 0
1

Zrod
1

)( ZL
ZC

+ 1 ZL
1
ZC

1

)
. (2.67)

Here, the first and the last matrix combined describe the effect of the unloaded
transmission line and are defined for half the length of a unit cell by ZL =
iωL′/2 and ZC = 2/(iωC ′). L′ and C ′ are the characteristic inductance and
impedance of the unloaded line per unit length a. The symmetric arrangement
insures a symmetric and thus reciprocal unit cell. However, it should be noted
that the use of a symmetric cell is no longer crucial, if a larger number of unit
cells is cascaded. The matrix in the center is the ABCD matrix of only the
rod.
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The impedance of the rod Zrod is a combination of the impedances of the dif-
ferent elements (cf. Fig. 2.13(b)) and given by

Zrod =
2

iωCc
+

1

2
(Zgeo + ZJJ + ZSQ(Φe0)), (2.68)

with

Zgeo = iωLgeo, (2.69)

ZJJ =

(
1

iωLj0
+

1

R
+ iωCin

)−1

, (2.70)

ZSQ(Φe0) =

(
2 cos(2πΦe0/Φ0)

iωLj0
+

2

R
+ 2iωCin

)−1

. (2.71)

The definitions of Lgeo and Cc are given in Fig. 2.13(b). Lj0 is the Josephson
inductance of the single junction,R and Cin are its normal resistance and intrin-
sic capacitance. The first term of impedance of the dc-SQUID ZSQ takes into
account the flux tunability of the effective critical current of the SQUID.

Due to the combination of inductive, resistive and capacitive elements in the
rod, the impedance of the rod is no longer purely imaginary and, additionally, it
is of resonant nature.

periodically loaded line

By cascading the ABCD matrix Te of the unit cell (Eq. (2.67)) N times, the
ABCD matrix Te of the complete, loaded transmission line is found. From Te,
the transmission coefficient S21 can be determined. Its frequency dependence
at zero magnetic flux for a transmission line loaded with 27 rod structures is
shown in Fig. 2.14(a).
Next, using Eq. (2.37), the dispersion relation is calculated by combining phase
advance and ABCD matrix of one unit cell as explained in Sec. 2.2.3. Fig-
ure 2.14(b) shows the real part β (blue) and the imaginary part α (red) of the
resulting propagation constant. Since the rod impedance is of resonant nature
and lossy, there is a frequency range around the resonance frequency where β
and α are simultaneously nonzero. The resonance is also the reason why the dis-
persion relation is not unique in this frequency range. However, as soon as α is
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nonzero, the corresponding wave is strongly attenuated. Comparing Fig. 2.14(a)
and (b) shows how the onset of the stop band (β ≈ 0) coincides with the onset
of the resonance at about 10.2 GHz.

Furthermore, below the resonance frequency, i.e. below 10 GHz, good trans-
mission is observed only at discrete frequencies. This is due to the finite length
of the periodic loading, as explained in Sec. 2.2.3. In order to illustrate this
effect, Fig. 2.14(c) shows the wavelength in units of unit cells in dependence
of frequency. The solid line depicts the continuous case which is valid for an
infinite transmission line. It is calculated from the imaginary part of the propa-
gation constant, β. Once β ≈ 0 (it never becomes truly zero) above 10.2 GHz,
the wavelength jumps to large values at that frequency.
The red circles mark the frequencies of good transmission. At these frequencies
integer numbers of half wavelengths are equal to the length of the loaded line
(27 unit cells). The first circles are at λ = 54a, 27a, and 13.5a. This is an ef-
fect which is also known from transmission line resonators. Good transmission
in such a resonator is observed when it is at resonance, i.e. whenever integer
numbers of half wavelength fit into the length of the resonator. The same prin-
ciple applies for the rod loaded transmission line since there is an discontinuity
in impedance at both ends.

Unlike the rf-SQUIDs, whose interaction with the transmission line is negligi-
ble as long as they are not at resonance, the 1D rod array affects the transmission
strongly at any frequency. This is clearly visible when comparing the frequency
dependence of the real part of the Bloch impedance (cf. Eq. (2.40)) as shown
in blue Fig. 2.14(d) to the standard 50 Ω. The real part of the impedance is less
than 10 % of the impedance of the unloaded line. At resonance (ν ≈ 10.2 GHz),
the imaginary part of the Bloch impedance starts to deviate from zero and no
transmission is possible anymore.
Considering the small Bloch impedance (compared to 50 Ω) and corresponding
short wavelength, the question needs to be asked, to which extend the definition
of effective parameters and an index of refraction makes sense.
As explained in Ref. [Smi+05], in a periodic system an effective index of re-
fraction can be defined even for λ ∼ a, since the dispersion relation is known
from only one unit cell. This index of refraction can be related to frequency
dependent “material parameters” although the concept of homogenization does
not apply anymore. Similarly, the electric permittivity of the rod array can be
determined from the dispersion relation under the assumption that the magnetic
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Fig. 2.14: (a) Transmission magnitude |S21| through a transmission line loaded
with 27 rod structures at Φe0/Φ0 = 0 calculated from the ABCD
matrix of the full metamaterial. (b) Corresponding real (blue) and
imaginary (red) frequency dependence of the wave vector β + iα.
(c) Frequency dependent wavelength λ in units of unit cell lengths.
The blue line depicts the continuous case, while the red circles indi-
cate the discrete frequencies and corresponding wavelengths of good
transmission. (d) Real (blue) and imaginary (red) part of the Bloch
impedance ZB of one unit cell.
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permeability of the rod array is µr = 1. In the stop band, the value of the permit-
tivity is strongly negative, as expected from the large impedance mismatch.

tunability

In the frequency range shown in Fig. 2.14, only the first pass band and the stop
band is observable. The second pass band cannot be observed since it starts at
approximately 40 GHz at zero flux.
Figure 2.15 shows the calculated transmission magnitude in gray scale for an
external flux Φe0 that varies between ±0.52Φ0. Since the inductance of the
dc-SQUID approaches infinity, the onset of the stop band and also of the sec-
ond pass band approaches zero. Therefore, the onset of the second pass band
becomes visible as Φe0 approaches ±0.5 Φ0.
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Fig. 2.15: Flux and frequency dependence of the transmission magnitude
through a transmission line loaded with 27 rod structures.
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2.4.4 Tunable Composite Metamaterial

By combining both tunable rf-SQUIDs and tunable rods in the CPW, a one
dimensional tunable metamaterial is created. In the stop band of the rod ar-
ray, only decaying waves exists due to the negative permittivity. However, at
frequencies for which the magnetic permeability of the magnetic SQUID sub-
material becomes also negative, wave propagation is allowed. This is illustrated
in Fig. 2.16, which depicts the calculated transmission magnitude of the bare
rod (black), bare SQUID (blue) and composite (red) medium. The transmission
coefficient is obtained in all three cases by cascading the respective unit cell N
times, where N is again the number of unit cells.
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Fig. 2.16: Transmission magnitude through a medium containing 27 rod struc-
tures (black) at a flux Φe0 = 0.44Φrod

0 , 27× 2 rf-SQUIDs (blue) at a
flux Φe0 = 0.37ΦSQUID

0 and 27 composite unit cells (red). For better
visibility, the transmission magnitude through the SQUID metamate-
rial is multiplied with a factor 5.

The ABCD matrix of the rf-SQUID loaded transmission line unit cell is given
by Eq. (2.59). It contains the magnetic permeability which needs to be obtained
from simulation as follows. First, the single meta-atom susceptibility as given
in Eq. (2.51) is calculated from the time average of the simulated steady state
solution of the differential equation describing the dynamics of the rf-SQUID
(cf. Eq. (2.16)). Second, the filling factor F̃ (cf. Sec. 2.3.2), necessary to
determine the relative magnetic permeability, has to be found. The relevant
volume is approximated by a torus shape with its axis oriented along and placed
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in the center of the central conductor of the CPW. The gap of the coplanar
waveguide defines inner and outer radius of the torus and the length of the unit
cell a defines its width. The magnetic moment in this volume is given by the
ratio of area and loop inductance of the SQUID. More details concerning the
filling factor F̃ are given in Ref. [Jun+13].
Combining filling factor and single meta-atom susceptibility yields the magnetic
permeability. It is then included into ZµL which contains also the contribution of
the unloaded line (cf. Eq. (2.59)).

The ABCD matrix for the electrical component is given in Eq. (2.67). This
equation is also used to find the ABCD matrix of the unit cell of the composite
medium. Therefore, the ABCD matrix of the unloaded transmission line in
Eq. (2.67) is replaced by the ABCD matrix of a transmission line containing
one rf-SQUID (cf. Eq. (2.59)). The combined matrix of one unit cell is then

Tcomp =

(
ZµL
ZC

+ 1 ZµL
1
ZC

1

)(
1 0
1

Zrod
1

)
. (2.72)

This ABCD matrix is not symmetric which allows us to use the ABCD matrix
of SQUID loaded unit cell as defined in Eq. (2.59). However, as pointed out
above, a symmetric definition is not necessary since only the ABCD matrix of
N unit cells is of interest. However, if necessary, a symmetric unit cell could be
defined easily.

Due to the different areas of the rf-SQUID and the small dc-SQUID in the rod
structure, their periodicity in external flux is different. One flux quantum in the
small dc-SQUID corresponds to approximately 30 flux quanta in the rf-SQUID.
This means, that the position of the resonance of the magnetic sub-material can
be chosen almost arbitrarily with respect to the resonance of the electric sub-
material.
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3 Experimental Setup and
Procedures

This chapter starts by presenting the different samples used in this work
including a brief description of the fabrication process. Next, it introduces
the experimental principles, for example the used setup and details on
the measurement calibration. Additionally, it demonstrates how the setup
has to be optimized in order to overcome one of the biggest obstacles,
namely the effect of stray magnetic fields which destroys the common
resonance of the magnetic meta-atoms.

59



3 Experimental Setup and Procedures

3.1 Sample Design and Fabrication

The metamaterials under consideration in this thesis are all implemented in a 1D
waveguide geometry as sketched in Fig. 2.12 in the previous chapter. The pa-
rameters, i.e. critical current, inductances and capacitances, of both electric and
magnetic meta-atoms define the range of tunability of the respective resonance
frequency and have to be chosen accordingly.

3.1.1 Fabrication

All samples discussed in this work were produced at the Kotel’nikov Institute
of Radio Engineering and Electronics (IREE RAS) in Moscow, Russia. In each
fabrication run, an array of 16 samples is fabricated on a 1 inch silicon wafer
using a Nb/Al0x/Nb trilayer process. After fabrication, the wafer is diced into
4×4 mm2 chips, each containing one or two coplanar waveguides with the re-
spective structures.

The fabrication process starts by depositing the Nb/AlOx/Nb trilayer. It con-
sists of the Nb base electrode with a thickness of 300 nm, a thin (∼1 nm) layer
of AlOx, which later serves as the isolating layer of the Josephson junction and
another Nb layer on top. After deposition, the shape of the base electrode is
patterned into the trilayer. Subsequently, the top Nb layer is removed in the area
where the parallel plate shunt capacitor will be located. This area is anodized
with 40 V to create a Nb2O5 layer with a thickness of 30 nm (in addition to the
1 nm AlOx of the trilayer).
Some samples use normal metal ground plates made from palladium (Pd) in-
stead of superconducting ones. This resistive layer is deposited after the an-
odization process.
In the next step, the area of Josephson junctions and vias is defined by first
removing the top Nb layer everywhere except where junctions and vias are sup-
posed to be later (for the capacitor it was already removed in the previous step).
Then, the uncovered area, i.e., the area of the base electrode with exception of
the junctions, the vias and the parallel plate capacitor, is lightly anodized (10V).
This forms an insulating, mechanically stabilizing wall around the junctions and
vias. Finally, SiO2 is deposited on the same area.

60



3.1 Sample Design and Fabrication

Before the Nb layer, which will form the top electrode of the structure, is de-
posited, the top layer and the AlOx layer of the trilayer has to be etched away
wherever direct contact between top and bottom electrode is needed, i.e. at the
vias. In order to obtain good contact between the top electrode and the top of
the junction or the bottom electrode, an additional etching process is used just
before the top electrode Nb deposition. As a last step, a gold layer is deposited
at the contact pads, in order to provide bonding pads with good bonding prop-
erties.

3.1.2 Samples

The experimental results that will be presented in this thesis are obtained from
three different samples. Each sample contains different meta-atoms, either only
magnetically coupling rf-SQUIDs (M) or only electrically coupling rods (E).
Except where stated otherwise, the ground planes are made from the normal
metal Pd instead of superconducting Nb. The CPW parameters are adjusted to
the size of the respective meta-atom and chosen such that the unloaded trans-
mission line is matched to Z0 = 50 Ω. They are

w width of the central conductor in [µm]
g width of the gap in [µm]
l′ inductance per unit length in [nH/m]
c′ capacitance per unit length in in [pF/m].

Additionally, the number of unit cells N and the length of the unit cell a define
the transmission line metamaterial. The parameters of the transmission lines are
given in Tab. 3.3 at the end of this section on p. 67.

magnetic meta-atom

As magnetic meta-atom two different variations of the rf-SQUID are used. The
relevant parameters that define the flux and the frequency dependence are

Ic the critical current of the junction in [µA]
Lj0 the Josephson inductance at zero magnetic field in [pH]
Lgeo the geometric inductance of the SQUID loop in [pH]
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βL the ratio of Lgeo/Lj0

C capacitance of the additional parallel plate shunt capacitor together with
the intrinsic capacitance of the junction in [pF]

R normal resistance of the junction in [Ω]
M mutual inductance between transmission line and SQUID in [pH].

As already mentioned, the additional parallel plate capacitor is necessary to de-
crease the resonance frequency of the SQUID to a frequency range, that is ac-
cessible with the available measurement setup. The parameters of the SQUIDs
used in sample M1 and M2 are given in Tab. 3.4 p. 67.

An optical micrograph of sample M1 (U02 32 chip1A) is depicted in Fig. 3.1(a).
The picture was taken using a optical stereo microscope. The chip contains two
transmission lines, one incorporating two (bottom) and one incorporating 54 rf-
SQUID meta-atoms (top).
The 54 SQUIDs (N = 27) in the latter are evenly spaced with a unit cell length
a = 92µm and distributed symmetrically in the two gaps. Only results obtained
with this transmission line are shown later, the transmission line containing only
two SQUIDs is not considered. The white lines connecting to the edges of the
chip and to the ground plane in the center are bond wires.
Part of the waveguide is shown in Fig. 3.1(b), 2× 4 SQUIDs are located in the
two gaps of the waveguide. This picture is taken with the optical polarization
microscope which yields different colors depending on the film thickness nnd
material of the different structures. One single SQUID finally is zpresented in
Fig. 3.1(c). Its different components are best explained using the design shown
in Fig. 3.1(b).
The black rectangle with the quadratic hole in the center is the parallel plate
capacitor, the small dark square in its center the Josephson junction. The small
rectangle in the lower left corner is the via connecting top and bottom elec-
trode. The connection between central conductor and SQUID at the bottom
of Fig. 3.1(a), is required during the fabrication process. For anodization, the
SQUID has to be galvanically connected to a voltage source. This connection
is removed later in the fabrication process by etching.

The main difference between sample M2 (U12 22 chip3B) and sample M1 is the
width of the superconducting structures and the superconducting ground planes.
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(c)

100µm

(b)

(a) 500µm

top layer

bottom layer

via

junction

40V anodization

(d)

Fig. 3.1: (a) Optical micrograph of the full chip of sample M1. The structures
at the bottom of the picture are test junctions. (b) Zoom to part of
the CPW loaded with rf-SQUIDs. The central conductor is shown in
green, the ground plates in yellow. (c) Optical micrograph of the indi-
vidual SQUID used in sample M1. (d) Picture of the design of one rf-
SQUID used in sample M1. The relevant details and layers are pointed
out in the figure.
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It is used in Sec. 3.3 to demonstrate how changes to the SQUID design affect the
probability to trap Abrikosov vortices, which in turn influences the performance
of the metamaterial. In Fig. 3.2, an optical micrograph of the SQUID is shown
including the definitions of the structure width d and the area of the via A. The
relevance of these quantities will be explained in Sec. 3.3.

2
0
µ

m

A

d

Fig. 3.2: Optical micrograph of the rf-SQUID used in sample M2. The width of
the SQUID arms d and the area of the via A is illustrated.

electric meta-atom

As electrically coupling elements, the rods introduced in Sec. 2.4.3 are used.
They couple capacitively to the central conductor and the ground planes of the
waveguide. A small dc-SQUID is used as tunable inductor and an additional
Josephson junction is used to decrease its resonance frequency. A sketch of the
rod is found in Fig. 3.3. The parameters defining its resonance frequency and
frequency dependent behavior are

Ic the critical current of the junctions in [µA]
Lj0 the Josephson inductance of single junction in [pH]
R normal resistance of the junction in [Ω]
Cin intrinsic capacitance of the junction in [pF]
Lgeo the geometric inductance of one arm comprising rod and dc-SQUID

loop in [pH]
Cc the capacitance to central conductor which is twice the capacitance to

ground in [pF].
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(c)

100µm

(b)

(d)

500µm

(a)

Fig. 3.3: (a) Optical micrograph of the chip, containing the waveguide and test
structures (on top and bottom). (b) Optical micrograph of part of the
waveguide showing five rods. The light blue, wide strip through the
center is the central conductor, the white areas on the top and the bot-
tom are the ground planes. (c) Optical micrograph of one rod struc-
ture. (d) Sketch of the rod structure. The black rectangles indicate
the parallel plate capacitors, the crossed boxes are again the Josephson
junctions.

Due to its small loop inductance, the dc-SQUID is considered as an effective
single junction with a magnetic field tunable critical current. Its effective zero
field critical current and its intrinsic capacitance is twice the critical current
of the single junction whose parameters are given in the table above. Normal
resistance and zero field inductance, on the other hand, are only half the values
of the single junction.
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Sample E1 (U04 22 chip7B) contains only one transmission line with 27 unit
cells of length a = 100µm, i.e. 27 rods. The full chip is shown in Fig. 3.3(a).
The picture is taken using the stereo microscope.
In Fig. 3.3(b) part of the transmission line and five rod structures are shown.
The pictures was taken with a polarization microscope which causes the color
palette. A zoom to only one rod is shown in (c) and a sketch of one rod structure
is presented in Fig. 3.3(d). The parameters of sample E1 are also given on p. 67
in Tab. 3.5. The rectangles at either end of the structure and in the center are
parallel plate capacitors coupling to the waveguide. A Nb strip of width 4µm
connects the central capacitor to the single Josephson junction, corresponding to
a crossed box in Fig. 3.3(d), the single Josephson junction to the dc-SQUID and
the dc-SQUID to the ground capacitor. The F-shaped structures in dark blue are
necessary during fabrication, since they provide the galvanic contact necessary
for anodization. This contact is removed later in the process, however, the effect
of the etching process is still visible under the microscope.
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3.1 Sample Design and Fabrication

parameters

w g l′ c′ a N

M1 100 59 400 160 92 27
M2 130 82 390 155 90 27
E1 124 84 420 164 100 27

Table 3.3: Transmission line parameters. Width of central conductor w, width
of gap g, inductance and capacitance per unit lengthL′ andC ′, length
of unit cell a and number of unit cells N . Units on p. 61.

Ic Lj0 Lgeo βL C R M

M1 1.8 183 83 0.45 2.0 1600 5.7
M2 3.4 97 79 0.80 1.5 890 7.4

Table 3.4: Parameters of the magnetic meta-atom (rf-SQUID). Critical current
Ic, geometric inductance Lgeo, Josephson inductance at zero mag-
netic field Lj0, ratio of the two inductances βL, mutual inductance
between SQUID and transmission line M and capacitance C. Units
on p. 62.

Ic Lj0 R Cin Lgeo Cc
E1 3.2 103 950 0.13 115 3.3

Table 3.5: Parameters of the electric meta-atom (rod). Critical current Ic of the
single junction, Josephson inductance at zero magnetic flux Lj0, nor-
mal resistance R and intrinsic capacitance Cin of the single junction,
geometric inductance of one armLgeo and capacitance to central con-
ductor Cc which is twice the capacitance to each ground. Units on
p. 64.
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3.2 Experimental Setup

The physical properties that are of interest for this thesis are defined solely by
the metamaterial in the waveguide on the chip as discussed in the previous sec-
tion. In order to investigate these properties, however, the sample has to be
connected to a microwave measurement setup. As we will see, the different
parts necessary for this connection and the measurement come with properties
of their own. Their effect on the actual result must be understood and reduced
as much as possible or even eliminated.

3.2.1 Mounting of the Sample

As a first step, the chip is glued to a Printed Circuit Board (PCB). A photograph
of the PCB including a chip is shown in Fig. 3.4. The PCB itself consists of a
ceramic substrate between two copper layers. Into the top copper layer one (or
two) coplanar waveguides are structured. They lead from opposite sides of the
PCB to the center, where a rectangular hole for the chip is milled. At the other
end of each CPW a connector (gold) is soldered that creates the transition from
coplanar to coaxial waveguide. The small circular features in the ground plane
of the PCB are so-called vias, small holes drilled through the ceramic and filled
with conducting material to connect the copper ground plane on top of the PCB
with the bottom copper plane.

connector
via

chip bond wires

CPW

5
m

m

Fig. 3.4: Printed circuit board with chip.
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(a)

(b)

20 mm

20 mm

Fig. 3.5: (a) Photograph of sample holder S1, including PCB and chip. It is de-
signed for chips with two transmission lines. (b) Photograph of sample
holder S2. When the sample holder is closed, the two halves touch ev-
erywhere, except in the area above the chip and above the transmission
line on the PCB.
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The chip is connected to its environment by wire bonding the central conductor
of the CPW on the chip at both ends to the central conductor of the CPWs
on the PCB. Additionally, many wire bonds are used to connect the ground
planes of the chip to the ground of the PCB. The bonds, visible as white lines
in Fig. 3.4 are Al wires with a 25µm diameter. While the CPW on chip and
PCB are matched to Z0 = 50 Ω, the bond connection is not, which may cause
reflections.

As second step, the PCB with the chip is installed in one of the two copper
sample holders that are depicted in Fig. 3.5. The sample holder stabilizes the
connection between connectors on the PCB and the coaxial cables and it pro-
tects the sample. Additionally, it serves as body for an coil that produces a
magnetic field perpendicular to the area of the chip.
Unfortunately, the copper sample holder is a cavity resonator which, depending
on design, can have resonant modes within the frequency range of interest for
the measurement. These resonant modes are observed as typically sharp dips in
the transmission magnitude at the corresponding frequencies.

The differences in the two sample holders shown in Fig. 3.5 are the volume of
the inner cavity and the number and arrangement of transmission lines that are
on the corresponding PCB. Sample holder S1, shown in Fig. 3.5(a) is suitable
and used for sample M1 and M2. Because of the two transmission lines on the
chip, there are four connectors on the PCB and four corresponding holes in the
top part of the sample holder. Two of these holes were later closed with a mix-
ture of copper powder and stycast in an attempt to remove parasitic resonances
in the sample holder. Although some resonant modes were removed, others
occurred and overall, no improvement was detectable.

Sample holder S2 was developed with the goal to shift internal sample holder
resonances to higher frequencies. Therefore, the internal cavity was decreased
in size as much as possible as can be seen in the left part of Fig. 3.5(b). Only the
area is left free which is positioned directly above the chip and above the trans-
mission line on the PCB after closing the sample holder. All the rest touches
with the copper of the bottom part (right) in Fig. 3.5. Also for this sample
holder, the expected improvement could not be observed.

The reason why no serious improvement was observed is most probably in both
cases, that the resonant modes are not located in the empty cavity volume above
in the chip, but instead in the dielectric of the chip and the PCB.
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3.2.2 Transmission Measurement Setup

Now, that the metamaterial has a connection to the outside world, it can be
connected to an experimental setup which allows transmission measurements.
The two ports of an Anritsu VectorStar (MS4642A) vector network analyzer
(VNA) with a frequency range between 10 MHz and 20 GHz is used as source
and detector. It sweeps the frequency at the input and measures the relative
complex transmission S21.

Since a logarithmic scale allows a more detailed view of the data at low trans-
mission magnitudes, the data in the next chapter will be shown in logarithmic
power scale in units of [dB]. The conversion is given by

|S21| [dB] = 20 · log10 |S21|, (3.1)

|S21| [dBV] = 10 · log10 |S21|. (3.2)

The last equation, showing |S21| in logarithmic voltage scale will not be used
and is given only of completeness. Note, that only the transmission magnitude
is affected, the relative phase δ is the same in all three scales.

A schematic of the whole setup is depicted in Fig. 3.6(a). Since the power of
the input signal at the sample needs to be small (Pin ∼ −85 dBm), the source
attenuation of the VNA is employed and additional attenuators (INMET 18AH)
are installed in the input line (port 1). The attenuators are specified for room
temperature and up to 18 GHz. However, tests showed that their performance
does not decrease up to 20 GHz and at low temperatures. After being attenuated
the signal then passes through the sample.

A Low Noise Factory amplifier (LNF-LNC6 20A) with a gain of 30 dB between
6-20 GHz is installed after the sample to amplify the output signal. Typically,
there are reflections from the amplifier back into the sample. This parasitic ef-
fect is counteracted by installing either a small attenuator (3 dB) or a Pasternak
circulator (PE8403 with a frequency range from 7 GHz to 12.4 GHz) between
the sample and the amplifier. Although the mode of operation of the circulator
allows a better performance than the attenuator, it emanates strong magnetic
fields. Due to the high sensitivity of the SQUID meta-atom to magnetic field, it
can therefore not be employed in the experiments. In order to shield the sample
from other, weaker magnetic fields, e.g. the earth’s magnetic field or fields due
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to weakly magnetic electric components, a cryoperm shield is installed around
the sample. Cryoperm is a mu-metal, i.e. a metal with a high magnetic perme-
ability (µ = 50000 − 140000), that has good magnetic shielding properties at
low temperatures. More details on the sensitivity and protection of the sample
against magnetic field will be given in Sec. 3.3.

Ib

4.2K

-3dB

-30dB

S
am

pl
e

amplifier

3dB attenuator

30dB attenuator

bias tees

cryoperm shield

sample holder

coil

1 2

(a)

(b)

Fig. 3.6: (a) Sketch of the experimental setup together with a photograph of the
VNA. (b) Photograph of the cold part of the electronic setup. The
cryoperm shield is not yet installed, but the wide black arrow shows
where it will be fixed and its horizontal position indicates how much
of the setup will be covered.

The blue rectangle in Fig. 3.6 indicates the part of the setup (including the
sample) which is immersed in liquid helium at a temperature T = 4.2 K. Fig-
ure 3.6(b) shows a photograph of this part of the setup. The cylindric magnetic
shield in the photograph is not yet attached but the wide black arrow indicates
where it will be fixed.

Apart from the high frequency setup described to far, there is also a direct cur-
rent (dc) component. A dc current source and Marki bias tees (BT-0025) with a
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3.2 Experimental Setup

range from 40 kHz to 25 GHz are used to superpose the microwave signal with
a constant current. This current Ib in the central conductor creates a constant
magnetic field which, as elucidated in Sec. 2.1.3, tunes the resonance frequency
of the rf-SQUIDs.

3.2.3 Magnetic Field Bias

Apart from the magnetic field bias by means of the bias tees, there is also a
coil around the sample holder (cf. Fig. 3.6). It creates a field perpendicular to
the area of the chip, i.e., perpendicular to the area of the SQUID loop. Both
magnetic fields can be used to tune the resonance frequency of the meta-atoms.
The main difference between the two options is the symmetry of the field with
respect to the gap as illustrated in Fig. 3.7.

~Bcond

~Bcoil

y

z
x

~Bstray

Fig. 3.7: Sketch of the magnetic field directions ~Bcoil (red) and ~Bcond (blue)
in the two gaps of the CPW. As an example, the stray magnetic field
~Bstray (dark gray) is assumed to be homogeneous in the two gaps. The
density and location of the arrows does not denote the respective field
strength or distribution in space.
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While the magnetic field in one gap is

Bgap1 = Bstray1 +Bcoil + |Bcond|, (3.3)

the field in the second gap is

Bgap2 = Bstray2 +Bcoil − |Bcond|. (3.4)

Here, only the y-component of the corresponding ~B-field is considered. ~Bstray

takes into account any homogeneous fields which are not applied intentionally,
e.g. the earth’s magnetic field. Ideally, the sample is protected from such fields.
However, depending on the quality of the magnetic shielding, stray fields may
linger. In this case, the y-component of the stray magnetic field is not zero, and
as a result there may be a small offset in magnetic field between the two gaps.
Then, the resonance curves of SQUIDs in different gaps do not lie on top of
each other, which decreases the maximum possible signal. Depending on which
means (bias tees or coil) is used for the magnetic field tuning of the SQUID
resonance frequency, the other (coil or bias tees) has to be used to counteract the
stray magnetic field. In Fig. 3.7 the example of magnetic field bias by the central
conductor and the coil as opposition for the (homogeneous) stray magnetic field
is shown.

Which means is chosen for the magnetic field bias depends on the circum-
stances. Typically, the field produced by the dc current in the central conductor
is homogeneous along the CPW on the chip, while the field of the coil decays
slightly when moving away from the center. Hence, the magnetic field bias with
the central conductor would be favorable to the one by the coil. However, if due
to a inaccuracy in the fabrication process, the SQUIDs inside one gap are po-
sitioned closer to the central conductor than in the other, the coil is favorable,
since its field across the whole chip is much more homogeneous than that of the
central conductor.
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3.2 Experimental Setup

3.2.4 Calibration Methods

Part of the content of this section is taken from Ref. [But+13a].

In Sec. 2.4.2, it was explained how the effective, relative permeability is re-
trieved from transmission data. For this procedure, it is assumed that the corre-
sponding ports, i.e. the reference planes, of the scattering matrix are positioned
directly in front of and behind the metamaterial. The transmission coefficient
S21 measured by the VNA, however, comprises the transmission data through
the full setup. Therefore, the measured data has to be calibrated properly to
eliminate the effect of the setup.

In a real experiment, the best set of reference planes achievable for a full cal-
ibration of such a measurement is located at the microwave connectors closest
to the sample at cryogenic temperatures. This, however, does not only require a
more complex experimental setup [YA13], it is also insufficient for our retrieval
method.

To solve this issue, measurement and simulation are combined to prepare the
data for the retrieval algorithm. First of all, we divide the experimental setup
into three parts, each of which can be described individually by a two-port scat-
tering matrix:

Sin describes the input part of the setup, from port 1 of the network
analyzer to the beginning of the SQUID loaded section of the CPW.

Sstl describes the SQUID loaded section of the CPW.
Sout describes the output part of the setup from the end of the SQUID

loaded section of the CPW to port 2 of the network analyzer.

We measure the total transmission from VNA port 1 to port 2 which can be
written as

Stot
21 = − Sin

21S
stl
21S

out
21(

Sin
22S

stl
12S

stl
21 −

(
Sin

22S
stl
11 − 1

)
Sstl

22

)
Sout

11 + Sin
22S

stl
11 − 1

. (3.5)

If we assume that the waveguides leading to the sample are well matched (i.e.
no reflections at the waveguide connections to the sample: Sin

22 = Sout
11 = 0),

the expression simplifies to

Stot
21 = Sin

21S
stl
21S

out
21 . (3.6)
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Clearly, all of the above matrix elements are frequency dependent. Sstl
21 , how-

ever, also depends on the dc magnetic field. It can be decomposed into two
factors by assuming Sstl

21 = S̃stl
21 (ω) · α (ω,Φe0).

S̃stl
21 (ω) is the transmission through the loaded waveguide section with-

out the effect of the SQUID resonance. Consequently, this fac-
tor does not depend on magnetic field.

α (ω,Φe0) describes the change in the transmission through the loaded
waveguide due to the SQUID resonance. Therefore, this fac-
tor is frequency and field dependent.

The total transmission then reads

Stot
21 (ω,Φe0) = Sin

21 (ω) S̃stl
21 (ω)α (ω,Φe0)Sout

21 (ω) . (3.7)

The goal of the calibration is to extract the term Sstl
21 from the measured Stot

21

since the former is the quantity needed for the effective µr retrieval. If we re-
strict our investigation to a limited frequency range bounded by ωmin and ωmax,
we can usually find a value of the flux Φe0 = Φcal for which α (ω,Φcal) ≈ 1.
Thus, by dividing all the measured data in the specified frequency range by the
corresponding value at the calibration flux, we can extract α:

Stot,cal
21 (ω,Φe0) =

Stot
21 (ω,Φe0)

Stot
21 (ω,Φcal)

≈ α (ω,Φe0) (3.8)

As a last step, we have to reconstruct Sstl
21 from the calibrated data Stot,cal

21 .
Therefore, we simulate the transmission through the loaded waveguide without
the SQUID resonance S̃stl

21 (ω) using the finite element software “SONNET”
and multiply it by the calibrated data:

Sstl,reconstructed
21 (ω,Φe0) = Stot,cal

21 (ω,Φe0) · S̃stl,simulated
21 (ω) (3.9)

This result can then be used in the algorithm outlined in Sec. 2.4.2. It should be
stressed, however, that this method is only valid if the effect of the SQUID res-
onance at the calibration flux is negligible in the frequency range of interest.
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‘thru’ calibration

The easiest way to obtain the calibrated transmission data Stot,cal
21 is to use the

built-in ‘thru’ calibration function of the VNA. This function effectively sub-
tracts the reference data Stot

21 (ω,Φcal) in [dB] from the rest of the measurement
in [dB]. For the reference data, an external flux value of Φcal = ±0.5Φ0 is
typically chosen. At this flux value, the resonance frequency of the SQUID
meta-atoms is at its minimal value ω0,min. Sufficiently above the resonance
frequency, the effect of the SQUIDs on the transmission through the CPW is
small. Thus, using this calibration, Stot,cal

21 is measured directly provided that
the frequency range of interest is sufficiently (more than the bandwidth of the
resonance) above ω0,min.

artificial calibration after the measurement

In the case that no calibration is used during the measurement, the subtraction
of the data (in [dB]) measured at Stot

21 (ω,Φcal) Φcal = ±0.5Φ0 can be also
be done by hand after the measurement. This is often helpful to improve the
clarity of the measurement result, since parasitic, not magnetic field dependent
resonances are canceled. While it is possible to use the artificially calibrated
data for the µr retrieval, this artificial calibration method will only be used in
order to improve the data visibility.

As a last option, instead of using the data at a fixed flux value Φcal, the trans-
mission data is averaged along the flux axis at each frequency point. This data is
subsequently subtracted from the measured data. This option is used only in the
next section in order to improve the clarity of data that has a statistical spread
of resonance lines along the flux axis and it is not employed for quantitative
analysis.
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3.3 Protecting the Samples against Stray Magnetic
Flux

Part of the content of this section is published in Ref. [But+13b].

3.3.1 Abrikosov Vortices

As already briefly outlined in Sec. 2.1.1, Abrikosov vortices are magnetic field
penetrations in a superconducting material. They are tube-shaped with the axis
oriented along the magnetic field lines. The superconducting order parameter
is suppressed towards the axis of the tube and zero directly at the center. The
magnetic flux trapped inside such a vortex always carries one flux quantum.
In a bulk type II superconductor, such as Nb, at temperature T = 0, they occur
only once a critical magnetic field Hc1(T = 0) is exceeded. However, this criti-
cal field decreases as the temperature approaches the critical temperature of the
superconductor. Therefore, already small magnetic fields can cause Abrikosov
vortices if the field is present while the superconductor is cooled from above to
below the critical temperature. The vortices then remain trapped in the super-
conductor even as the temperature is further decreased and Hc1 increased.
Additionally, the trapping is increasingly easier, the thinner the film becomes.
On the other hand, decreasing the width (and not the length) of such a film,
lessens the probability of trapping vortices [SFM04; PNS07]. In fact, Stan et al.
[SFM04] showed that decreasing the width of a strip of Nb leads to an increased
critical field Hc1(Tc). If the sample is cooled from above to below Tc in a field
H < Hc1(Tc), no Abrikosov vortices occur. Hence, the smaller the width of the
film, the less vortices are trapped. Additionally, vortices are trapped preferably
at inhomogeneities in the superconductor [PNS07], for example at vias where
two layers of superconductor connect. -

3.3.2 The Effect of Stray Magnetic Fields

As explained in the previous chapter and the previous section, the samples used
in this work are made from thin-film Nb structures. Especially the magnetic
meta-atoms, i.e. the rf-SQUIDs, are extremely sensitive to any magnetic field.
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Already a field of about 1.2µT creates a flux in the SQUID loop that equals one
flux quantum.

An Abrikosov vortex creates a local distortion to the magnetic field which
affects only SQUIDs in close vicinity to the vortex. This leads to an non-
negligible offset in magnetic field between different SQUIDs. As a result, the
resonance curves (cf. Fig. 2.3) of individual SQUIDs are shifted against each
other.
In the case of a single meta-atom as discussed in Sec. 2.4.1 (cf. Fig. 2.11), the
trapping of vortices is not a problem. It only shifts the resonance curve along the
flux axis, without deforming it. In a symmetric arrangement, with one SQUID
in each gap, flux inhomogeneities lead to two resonance curves that are shifted
against each other. This effect can be counteracted using the antisymmetric
magnetic flux bias of the bias tees to make the two curves overlap as explained
in Sec. 3.2.3.
However, this is no longer possible for any larger number of SQUIDs if the
stray flux is not homogeneous. Therefore, in order to observe a collective reso-
nance curve of all SQUIDs in the sample, care has to be taken to avoid any stray
magnetic field. First, if the stray magnetic field is large and inhomogeneous, it
itself leads to a inhomogeneous flux bias of individual SQUIDs. But even if the
field is small, it may cause Abrikosov vortices, which, in turn, destroy the field
homogeneity. Such stray magnetic fields are either caused by magnetic com-
ponents used in the experimental setup or external sources such as the earth’s
magnetic field. The first negative effect of the field itself may be counteracted
by shielding the sample from any such fields as well as possible.
Additionally, the sample has to be designed in such a way as to discourage the
trapping of Abrikosov vortices in order to suppress the second effect. This can
be done by using normal metal instead of superconductors where possible and
by decreasing the width of the superconducting structures in order to reduce
their demagnetization factor, as mentioned above [SFM04].

sample description

In the following, the results of transmission measurements on two different sam-
ples M1 and M2 will be used to demonstrate the means necessary to obtain one
collective resonance curve for (almost) all meta-atoms. Each sample contains
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54 SQUIDs, 27 per gap. In sample M2, a fully superconducting waveguide
made of Nb is employed. The SQUID meta-atom used in sample M2 is shown
in Fig. 3.2. Its parameters are given in Tab. 3.4. An optical micrograph of the
rf-SQUID of the second sample M1 is shown in Fig. 3.1(b). Its specific param-
eters are also given in Tab. 3.4. The general behavior of the two SQUIDs is the
same. However, since their parameters differ, the SQUIDs in the two samples
have a different minimal and maximal resonance frequency.

In order to suppress the occurrence of Abrikosov vortices in sample M1, two
measures were taken. First, the ground planes of the CPW of sample M1 are
made of normal metal (Pd) instead of Nb. The central conductor is still made
from Nb, due to requirements of the fabrication process (voltage bias during
anodization of the SQUIDs). Second, the SQUIDs used in M1 have a smaller
width d of the superconducting leads and area of the via A (cf. Fig. 3.2 and
3.1). As explained above, this should considerably suppress the trapping of
Abrikosov vortices in sample M1 due to the different design.

results

The field (bias current) and frequency dependent complex transmission S21

through the samples is measured using a setup similar to the one presented in
Sec. 3.2.2. The main differences are that the complete cold part of the electronic
setup is inside the cryoperm shield. Additionally, a circulator with a range from
7 GHz to 12.4 GHz is used instead of the 3 dB attenuator in front of the ampli-
fier and flexible microwave cables connect to the sample holder. Contrary to its
specifications the measurement shows that the performance of the circulator is
not noticeably decreased up to 20 GHz.

All measurements except the one shown in Fig. 3.11 are calibrated using the
average after measuring as explained in Sec. 3.2.4) only to improve clarity. The
resulting transmission data for sample M2 in the initial setup is presented color
coded in Fig. 3.8. Decreased transmission is shown in blue. The picture shows
many lines spread randomly over the full current range which is proportional
to the magnetic flux. Each line corresponds to the magnetic flux dependent
resonance curve of one or a small number of rf-SQUIDs. The shift between
these lines reflects the inhomogeneity of magnetic flux across the sample. The
horizontal lines at approximately 12.2 GHz, 15.5 GHz and 18 GHz are parasitic
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sample holder resonances that couple to the SQUIDs and distort the resonance
lines.
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Fig. 3.8: Transmission magnitude through sample M2 in dependence on flux
and frequency.

When sample M1 is used to replace sample M2, an improved result is expected
due to the different design. However, the resulting transmission again shows
again a multitude of resonance lines (not shown here). Thus, further measures
to improve the setup had to be taken.

All electronic components were examined with an axial magnetic probe (Tes-
lameter FM302 by Projekt Elektronik) to determine if and how strongly they
are magnetic.
The magnetic field probe is positioned inside and parallel to the axis of a verti-
cally oriented cylindrical cryoperm shield as shown in Fig. 3.6. The probe rests
approximately 5 cm above the bottom of the shield, which has a total length of
20 cm. The offset magnetic field in the empty shield amounts to about 15 nT.
Each component is then lowered with a nonmagnetic string into the shield until
it rests a few millimeter below the lower end of the probe. Subsequently, the
magnetic field due to the electronic component is measured. The resulting value
depends on the orientation of the component with respect to the probe and not
all orientations are tested. The measured values are listed in Tab. 3.6.
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amplifier bias tee flexible microwave
cable (10 cm)

attenuator circulator
(unshielded)

0.1 6 1 0.03 150

Table 3.6: Average magnetic fields created by various components in [µT]. All
fields were measured at a distance of a few millimeters by an axial
magnetic field probe inside a cylindric cryoperm shield.

The circulator is by far the component with the strongest magnetic field, which
cannot be sufficiently screened by the cryoperm shield anymore. It is there-
fore replaced by an attenuator as mentioned already in the previous section.
Irreplaceable are the amplifier and the bias tees which, unfortunately, are also
magnetic. In order to protect the sample from their fields, they a placed outside
the cryoperm shield.
How these measures improve the behavior of the SQUID metamaterial sample
M1 is shown in Fig. 3.9: The spread of the lines is strongly reduced.
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Fig. 3.9: Flux and frequency dependent transmission magnitude through sample
M1 with improved magnetic environment: The circulator is replaced
by a 3 dB attenuator and amplifier and bias tees are installed outside
the cryoperm shield.
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bias current [mA]
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Fig. 3.10: Transmission magnitude through sample M1. Compare to Fig. 3.9,
the sample is moved deeper into the shield (lower third) and the mi-
crowave cable passes at the side of the sample.

Yet, the overlap of the lines is still not good enough. There are two reasons for
that. First, the sample is positioned in the upper half of the cryoperm shield, i.e.
close to the magnetic electronics. Second, the flexible microwave cables used to
connect to the connectors in the sample holder are also magnetic (cf. Tab. 3.6).
Since the cables cannot be removed or installed outside the cryoperm shield,
either care has to be taken that they pass by the sample without affecting it or
they have to be replaced by non-magnetic, semi-rigid cables, e.g. pure copper
or brass. Interestingly, many microwave cables, that seemingly consist only of
copper contain ferromagnetic material in the inner core of the central conduc-
tor.
The comparison of Figs. 3.9, 3.10 and 3.11 shows how the magnetic environ-
ment is considerably improved by careful arrangement of the cables. In Fig. 3.9,
one cable passes on top of the sample holder with a distance of approximately
10 mm to the sample. In Fig. 3.10, this cable is moved to pass along the side
of the sample and the sample is moved deeper into the cylindrical cryoperm
shield. It now rests in the lower third of the shield. In Fig. 3.11, a different
sample holder, namely sample holder S1, at the same position deep inside the
cryoperm shield is used. Although the shape of the inner volume of the sample
holder stays the same, it is rotated by 90◦ around its axis. This allows for the
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microwave cables to be led away from the sample without passing it. Addition-
ally, it leads to an orientation of the waveguide on the chip that is perpendicular
to the axis of the magnetic shield.
The strength of the magnetic field that is residual in the cryoperm shield is not
constant along the axis of the shield while almost constant in the radial direc-
tion. Therefore, this new orientation of the waveguide decreases the spread in
magnetic field along one gap. On the other hand, the field bias of the two gaps
may differ slight. This effect, however, can be counteracted by the dc current
in the central conductor (cf. Fig. 3.7). Finally, with this improved setup, one
main resonance curve is clearly visible. As expected, the same result (shown
in the next chapter) is obtained, when the microwave cables are replaced by
non-magnetic ones instead of just carefully arranging them.
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Fig. 3.11: Transmission magnitude through sample M1 in the improved sample
holder. The microwave cable does not pass the sample anymore. Note
that the calibration for this measurement was done in situ, using the
through calibration function of the VNA at an external flux Φe0 =
0.5Φ0, i.e. at a bias current of −0.53 mA.

From Figs. 3.9 to 3.11, it becomes clear, that protecting the sample from mag-
netic fields is crucial. Even the magnetic fields of microwave cables affect the
quality of the result. It should be emphasized, that the result in Fig. 3.11 was
obtained with sample M1.
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Fig. 3.12: Transmission magnitude through sample M2 with the same setup
used in the measurement shown in Fig. 3.11.

We now change back to sample design M2. When it is installed in exactly the
same setup as the one used for the measurement on sample M1 in Fig. 3.11,
the quality of the result is degraded again (see Fig. 3.12). The main difference
between the two samples M2 and M1 is their affinity to trap Abrikosov vor-
tices. Thus, the vortices are the reason for the degradation of the performance
of sample M2 under otherwise identical measurement conditions as for sample
M1.

conclusion

Before a tunable magnetic metamaterials as described in Sec. 2.4.2 could be in-
vestigated, one main challenge had to be overcome. Magnetic components in
the setup and trapped Abrikosov vortices give rise to an inhomogeneous mag-
netic environment.
In order to avoid this, an optimized positioning of sample, electronic compo-
nents and even coaxial cables as well as proper magnetic shielding is crucial.
Additionally, the trapping of Abrikosov vortices has to be prevented. There-
fore, superconducting planes, e.g. large ground planes, have to be avoided, if
possible. Moreover, wide structures in the rf-SQUID have to be reduced in
one dimension to discourage the trapping of vortices, also the area of contact
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between two superconductors needs to be reduced as much as possible. By ap-
plying all these measures, a collective, tunable resonance curve of almost all 54
rf-SQUIDs was achieved.
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4 Experimental Results

In this chapter, experimental results obtained with a purely magnetic and
a purely electric one-dimensional metamaterial are presented. For the
magnetic medium, flux and frequency dependent transmission data is
shown and discussed. From the transmission coefficient, the effective
magnetic permeability of the magnetic medium is determined. Trans-
mission data is also presented for the electric metamaterial. Additionally,
finite element simulations are used to further understand its behavior.
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4.1 A One-Dimensional Magnetic Metamaterial

The one-dimensional magnetic metamaterial consists of 54 rf-SQUIDs as mag-
netically interacting elements. In the following, the experimental results ob-
tained with sample M1 are presented and discussed.

4.1.1 Transmission Measurements at 4.2 K

initial measurement

Sample M1 is installed in the experimental setup and cooled to liquid helium
temperature, T = 4.2 K. Subsequently, a first measurement of the transmis-
sion coefficient over a wide range of frequency and magnetic flux is produced.
Therefore, a fixed current is applied to the coil, while the VNA is used to sweep
navg times the given frequency range, which is divided into nfreq points. The
resulting frequency dependent transmission coefficient S21 is obtained by aver-
aging over the navg sweeps. Whenever the frequency of the input signal is the
same as that of a resonance within the setup, a dip in the transmission magni-
tude and a change in the transmission phase is observed. The frequency sweeps
including the averaging are then repeated for nflux coil current values.
The result for the transmission magnitude |S21| in [dB] with respect to the input
signal (Pinput = −15 dBm) of such a measurement is shown in Fig. 4.1. The
frequency range from 2−20 GHz is divided into nfreq = 300 points and the cur-
rent axis contains nflux = 800 values within a current range between −80 and
+80µA. Each trace corresponding to a fixed current value is averaged twice.
The result is then used to determine the range of tunability, i.e. the frequency
range of interest, which lies between 8 and 16 GHz for sample M1. Addition-
ally, the periodicity in coil current is used to determine the current correspond-
ing to one flux quantum. For this sample, one Φ0 corresponds to a magnetic
field of 1.2µT and equates to a coil current of 53.2µA. This value is used to
normalize the current or, respective, flux axis with respect to Φ0.

The measurement in Fig. 4.1 is not calibrated. The power in [dBm] at the sample
is

Psample = Pinput + PSatt + Pcold att + Pcoax ≈ −95 dBm (4.1)

88



4.1 A One-Dimensional Magnetic Metamaterial

-60 -40 -20 0 20 40 60

5

10

15

20

-80
coil current [µA]

fr
eq

u
en

cy
[G

H
z]

-85

-80

-75

-65

-60

-55

|S
2
1
|[

d
B

]

-70

Fig. 4.1: Uncalibrated transmission magnitude through sample M1 containing
27 rf-SQUIDs in each of the two gaps. The transmission is presented
in color code in dependence of frequency and bias current through the
external coil. The black line indicates the flux dependent resonance
frequency calculated from the sample parameters.

with PSatt = −40 dB being the source attenuation of the VNA, Pcold att =
−30 dB the cold attenuation, and the attenuation in the coaxial cables is ap-
proximately Pcoax = −10 dB. Due to this strong attenuation ( ≈ −80 dB in
total), the transmission magnitude is comparatively low although the cold am-
plifier (≈ +30 dB) is used. Resonances, in this setup, are visible as dips (white
or blue color) in the transmission magnitude. Any resonance line with a flux in-
dependent resonance frequency is a parasitic resonance of the setup. These lines
are calibrated out in later measurements. However, any resonance that produces
a magnetic field perpendicular to the SQUID area couples to the SQUID reso-
nance curves, thus affecting their shape. This effect cannot be calibrated out.

In Fig. 4.1, two resonance lines are visible that change their frequency with
changing coil current, i.e. magnetic flux. These are the resonance curves of
the 1D metamaterial on sample M1, which consists of 2×27 rf-SQUIDs. The
offset between the two lines is due to an offset in magnetic flux between the
SQUIDs in both gaps. As pointed out in Sec. 3.2.3, the reason for this offset
is the residual magnetic field in the cryoperm cylinder that changes along the
vertical axis of the shield. A closer look at both SQUID resonance curves re-
veals that the decrease in transmission is not the same for both lines although
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each gap contains the same number of meta-atoms. This is for two reasons.
First, due to slight uncertainties in the fabrication process, the distance between
central conductor and the chain of SQUIDs in one gap is less than in the other.
Hence the coupling to the microwave is weaker for one line than for the other.
Second, the chip containing sample M1 is not symmetric, it contains a second
transmission line. Simulations showed, that the SQUIDs in one gap couple, i.e.
radiate, more strongly to the sample holder resonance at 15 GHz, which further
decreases their signal.

The black line in Fig. 4.1 following the most pronounced curve between−80µA
and −30µA shows the calculated flux dependent resonance curve. It is deter-
mined by using the parameters of sample M1 as given in Tab. 3.1 with Eq. (2.17).
The calculated flux dependent position of the resonance frequency agrees very
well with the measured data.

As explained in Sec. 3.2.3, the two resonances are superposed by applying a
small magnetic field via the central conductor. All other, hardly visible, reso-
nance lines correspond to the resonance curves of single SQUIDs that are offset
in magnetic flux most probably due to trapped Abrikosov vortices. The vortices
distort the magnetic field of the respective rf-SQUID locally. Unfortunately,
this effect cannot be completely avoided with the available measurement setup.
These lines will be visible more clearly when the measurement is calibrated.

After the appropriate current in the central conductor necessary to superpose the
two relevant resonance lines is found, it suffices to concentrate on the relevant
frequency range and only one period of Φ0.

high resolution transmission measurement

Figure 4.2 shows the section ranging from −0.6 < Φe0/Φ0 < 0.6 in the flux
axis and from 8 GHz to 16 GHz in the frequency axis with higher resolution in
both axes (nfreq = 801 and nflux = 800). The measurement is calibrated using
the ‘thru’ calibration of the VNA (cf. Sec. 3.2.4) at Φe0/Φ0 = −0.5. Since a dip
is subtracted around 9 GHz, a transmission larger than 0 dB is observed in this
frequency range at flux values where the resonance frequency of the SQUIDs is
higher.
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Fig. 4.2: Calibrated complex transmission. (a) Frequency and flux dependent
transmission magnitude and (b) phase through sample M1 containing
54 rf-SQUIDS.
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The transmission on resonance is reduced by up to 11 dB as shown in color
scale in Fig. 4.2. Due to the calibration, the aforementioned resonance lines
of single SQUIDs are now clearly visible as white or light blue lines. These
SQUIDs do not contribute to the collective resonance. Nonetheless, the remain-
ing SQUIDs, approximately 50, show one common resonance curve. Small
deformations of the resonance line due to the coupling to parasitic resonances
are most pronounced for example at ν ≈ 14.5 GHz and ν ≈ 13.6 GHz.

Figure 4.2(b) shows the corresponding transmission phase also in color scale.
It is defined as the phase difference between input and output signal. At reso-
nance, the phase changes quickly from negative to positive values. As for the
magnitude, around 9 GHz, the “subtracted” resonance due to calibration is visi-
ble.
A closer look at the 2D plot of the phase far away from resonance reveals that
the phase drifts slightly during the measurement from left to right. The phase
signal of the VNA is not completely stable. Since a measurement takes several
hours, this small instability is observable as a small drift in the data. Addition-
ally, the phase drifts because the helium level in the dewar decreases slowly
during the measurement which affects the temperature gradient along the coax-
ial cables. This, in turn, changes the phase along the cables which is mapped
onto the metamaterial due to calibration. Both effects lead to a very small in-
crease of the phase from negative to positive flux. This will be visible again
later, when the magnetic permeability of this system is calculated.

single traces

A more detailed look at transmission magnitude and phase is possible if only
the frequency dependence at a fixed flux value and in a narrower frequency
range around the resonance frequency is considered. The traces of |S21| and
arg(S21) at flux values Φe0/Φ0 = 0 (red),−0.1 (blue),−0.17 (pink) and−0.21
(green) are shown in Fig. 4.3(a) and (b), respectively. The transmission magni-
tude shows the expected dip with a decrease of about −10 dB. All but the pink
curve (Φe0/Φ0 = −0.17) show side minima or maxima. These are the effect
of parasitic resonances that couple to the SQUIDs. Nonetheless, the shift of the
position of the resonance with changing magnetic flux is indisputable.
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Fig. 4.3: Frequency dependence of transmission (a) magnitude and (b) phase at
normalized external flux values Φe0/Φ0 = 0 (red),−0.1 (blue),−0.17
(pink) and −0.21 (green). The thin black lines in (a) correspond to the
Lorentzian fit result.

The corresponding behavior is observed in Fig. 4.3(b), which shows the fre-
quency dependence of the transmission phase for the same flux values. The
expected steep phase change at resonance is clearly visible, as is, again, the
effect of parasitic resonances.

Although the shape of the resonances is far from perfect, the transmission mag-
nitude can be used to fit a Lorentzian of the form

A(ω) =
A0γ

2

(ω − ω0)2 + γ2
+ 1 (4.2)

to the data. Therefore, the measured linear data in [V ] is inverted and squared,
in order to show a positive peak and to obtain an energy scale. A0 is the ampli-
tude of the Lorentz curve, ω0 the position of the resonance and 2γ the full width
at half maximum. The +1 is added to account for the offset of +1 of the data
from zero. The result of the fit is shown in Fig. 4.3(a) with thin black lines on
top of the corresponding resonance curves. From the Lorentzian, a result for the
different quality factors Q = ω0/(2γ) is extracted and given in Tab. 4.1. The
errors represent the 95% confidence bounds.
Except for the resonance at zero flux, these quality factors are comparable to the
quality factor obtained by fitting Eq. (4.2) to the resonance curve of one of the
stray single SQUID lines pointed out previously. In this case, the line that has
a resonance frequency of 13.56 GHz at a flux of Φe0/Φ0 ≈ 0.38 is used. The
extracted value for one single rf-SQUID is Q = 94 ± 13. The error is so large
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Φe0/Φ0 0 (red) −0.1 (blue) −0.17 (pink) −0.21 (green)
Q 188± 8 96± 4 101± 3 82± 4

Table 4.1: Quality factors and errors obtained from a Lorentzian fit to the trans-
mission data shown in Fig. 4.3(a). The errors represent the 95 %
confidence bounds.

because the signal to noise ratio for the single SQUID resonance is rather poor.
Since the quality factor of the collective resonance is comparable to the quality
factor of the single SQUID resonance, we can conclude, that there is no synchro-
nization between the meta-atoms. Due to the small coupling between nearest
neighbor SQUIDs which is about 1/20 of the coupling to the transmission line,
this is expected.

4.1.2 Magnetic Permeability at 4.2 K

With the knowledge of the complex transmission S21 = |S21| exp(i ·arg(S21)),
we are now able to retrieve the relative magnetic permeability of the SQUID
metamaterial. As start frequency for the retrieval process νmin = 10 GHz is
chosen, in order to ensure that the effect of the ‘thru’ calibration at 9 GHz is
as small as possible. Using the procedure explained in Sec. 2.4.2, the complex,
relative magnetic permeability of the sample is calculated.
As mentioned in Sec. 2.4.2, finding the correct root relies strongly on and is
sensitive to the initial parameters. A stable approach was found by using the
solution of the previous frequency point as the initial value for the root finding
algorithm of the next higher frequency point. To find the initial values at the
lowest frequency point νmin, it is assumed that the SQUIDs have no effect at
that frequency and corresponding start values, namely µr = 1, S11 = S22 = 0
and S12 = S21 are chosen. The resulting real part of the relative magnetic
permeability is shown in Fig. 4.4(a), the imaginary part, which corresponds to
losses, in Fig. 4.4(b). Both are depicted between −0.6 < Φe0/Φ0 < 0.6.

In Sec. 2.4.2, two possibilities as to how to test the reliability of the result were
explained. Here, only the phase delay method is used. Therefore, the phase de-
lay τδ,calc, which is calculated from the retrieved data (Fig. 4.5(a)), is compared
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Fig. 4.5: Comparison of the (a) calculated and (b) measured phase delay τδ.
(c) Difference between the calculated and measured phase delay. Note
the different scaling of the color scale.
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to the measured phase delay τδ,meas (Fig. 4.5(b)). The difference of the two val-
ues is given in Fig. 4.5(a). As required for the correct solution, the difference
between the two values is close to zero.

Now, that the validity of the calculated relative magnetic permeability is en-
sured, a closer look at the results is justified. First of all, Fig. 4.4(a) and (b)
clearly show how the magnetic permeability is tunable with magnetic flux as ex-
pected from the transmission data. The color scale of Fig. 4.4(a) shows that the
real part of µr varies between 0 and 2.6. However, these values are not reached
for every frequency. This becomes even more clear when looking at single
traces. Figure 4.6(a) and (b) show real and imaginary part of µr at flux values
Φe0/Φ0 = 0 (red), −0.1 (blue), −0.17 (pink) and −0.21 (green). The colors
and the flux values are the sames as for the single traces shown in Fig. 4.3.
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Fig. 4.6: Frequency dependence of the (a) real and (b) imaginary part of the
magnetic permeability at flux values Φe0/Φ0 = 0 (red), −0.1 (blue),
−0.17 (pink) and −0.21 (green) corresponding to the single traces of
transmission data shown in Fig. 4.3.

None of the depicted curves in Fig. 4.6(a) reaches zero. Nonetheless, as pre-
dicted, by changing the external magnetic flux, the magnetic permeability can
be tuned. The tunability is further illustrated in Fig. 4.7(a) and (b).
Figure 4.7(a) shows how, at a frequency of 12.96 GHz (red) and 14.01 GHz
(blue), any value between 0.3 and 1.6 can be chosen for the real part of µr sim-
ply by changing the external flux Φe0 applied to the metamaterial. Instead of
changing the magnetic permeability at one fixed frequency, one can also use the
flux tunability to have the same value of Re(µr) at different frequencies. This is
demonstrated in Fig. 4.7(b). The blue dots indicate the flux values at which the
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Re(µr) = 0.6 at the corresponding frequency. The blue line is a guide
to the eye.

real part of the relative magnetic permeability is 0.6 for the corresponding fre-
quency. Usually, this value is reached twice for one flux value. Once directly at
or very close to the resonance, where losses are large, and a second time, when
Re(µr) increases to unity again (cf. Fig. 4.6(a)). Since losses are less at that
second frequency value, this higher frequency is used in the plot. Figure 4.7(b)
also shows that the value Re(µr) = 0.6 is not reached for every frequency. The
jumps at Φe0/Φ0 ≈ ±0.06 and ±0.15 are an artifact of parasitic resonances as
can be seen from Fig. 4.2(a). To summarize the experimental results: Although
a metamaterial was created that clearly shows a tunable relative magnetic per-
meability, the real part of this permeability never becomes negative.

In Fig. 2.8 in Sec. 2.3.2, it was shown that the quality factor of the resonance
is connected to the magnetic susceptibility of the resonator. Therefore, a closer
look at the quality factor shall be taken. For all nflux resonance curves in the
measurement, Eq. (4.2) is fitted to data in order to obtain the respective quality
factor. The result is shown in Fig. 4.8(a) in blue.
For comparison, the theoretical flux dependence of the quality factor Qcalc is
also shown in green. The quality factor of a parallel RLC circuit is given
by Qcalc = 1/(ω0RC). In terms of the rf-SQUID this can be written as
Qcalc = ωcω0/ω

2
p . The frequencies describing the damping ωc and junction

plasma frequency ωp are defined in Sec. 2.1.2, ω0 is the flux dependent reso-

98



4.1 A One-Dimensional Magnetic Metamaterial

nance frequency. Since the resonance frequency ω0 changes with external flux
while ωc and ωp are constants, the quality factor decreases as Φe0 deviates from
zero.
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Fig. 4.8: (a) Calculated quality factor Qcalc (green) of the single SQUID and
experimental results Qexp obtained from ∼ 54 SQUIDs (blue). (b)
Minimal value of Re(µr) at different flux values. The gray areas in-
dicate flux values that have a Qexp > 75 and correspondingly smaller
minimal values of Re(µr).

This dependence on magnetic flux is in general also observed in the measured
data, Qexp. On the other hand, the flux dependence of the experimental result
for the quality factor is clearly non-monotonic. The reason therefore is that the
experiment does not reflect a constant γ, i.e. ω2

p/ωc, due to a non-ideal electro-
magnetic environment. Additionally, the comparison of Qexp and Qcalc shows,
that the experimental values stay mostly below the theoretical value which is
the quality factor of the single SQUID. First, again the parasitic resonances in
the sample holder have to be named as one origin. Second, it may be that the
superposition of the SQUIDs with respect to the flux axis is not perfect. This
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explains the conclusion that no synchronization is observed as already stated
earlier.

Let us return to the connection between quality factor and magnetic suscepti-
bility. A decreased quality factor leads to a decreased deviation from zero of
the susceptibility in either positive or negative direction. In turn, for a mate-
rial consisting of many such resonators, the deviation from unity of the relative
magnetic permeability decreases. This connection between minimal value of
Re(µr) and the quality factor Q of the resonance is also found in our measure-
ments. The quality factor is compared to the corresponding minimal value of
Re(µr) (cf. Fig. 4.8(b)). Since the result for the quality factor is a fit result,
this curve is smoother than min(Re(µr)) which is extracted directly from the
measured data.
The gray areas indicate flux values where a quality factor above 75 is ob-
served. In these areas, the real part of the relative magnetic permeability typ-
ically assumes low values. On the other hand, there are also deviations from
this observation. Especially at flux values that deviate by more than 0.25Φ0

from zero flux, the correlation is no longer unambiguous. This is because not
only the quality of the resonance, i.e. the transmission magnitude, affects the
magnetic permeability, but also the variation in phase. The abrupt changes in
min(Re(µr)) at Φe0/Φ0 ≈ ±0.06 and ±0.15 are due to the coupling of the
meta-atoms to parasitic resonances.

Nonetheless, from Fig. 4.8 one can infer that increasing the quality factor of
the metamaterial’s collective resonance will lead to smaller and maybe even
negative values of the magnetic permeability.

4.1.3 Transmission and Magnetic Permeability at 2.1 K

The critical temperature of bulk Nb is Tc = 9.2 K. For thin films, the critical
temperature is in general decreased but for film thicknesses above∼ 200 nm, as
in our case, this decrease is negligible [Gub+05]. Thus, at 4.2 K, the sample is
at a temperature less than half its critical temperature, where the energy gap is
already very close to that at zero temperature.

However, the density of quasiparticles, i.e. single electron like excitations, is
not zero and changes with temperature. Together with the Cooper pairs, they
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can be described by a two-fluid model [Tin04], which is reflected in a complex
conductivity. The quasiparticles yield the real part σ1 (resistive contribution),
while the Cooper pairs are responsible for the imaginary part σ2 (inductive con-
tribution). Both fluids are driven by the oscillating magnetic field. The quality
factor of the corresponding resonance is proportional to the ratio σ2/σ1 (in the
dirty superconductor limit, which is applicable in our case) [Bar09]. Since the
density of quasiparticles decreases with decreasing temperature by several or-
ders of magnitude between 0.5 > T/Tc > 0.1, so does σ1 [Bar09]. As a result
(the density of superconducting electrons stays approximately constant), the ra-
tio σ2/σ1 and hence the quality factor increases with decreasing temperature.

In order to achieve a better quality factor of the metamaterial’s resonance, the
same setup as before is used but the sample is cooled to 2.1 K by pumping on
the liquid helium. Since the dissipation in all components is decreased, the sen-
sitivity of the measurement is increased. While this is in principle positive, the
measurement is also more sensitive to parasitic effects. For example, the small
period oscillations in the frequency axis around the resonance frequency due to
reflections are more pronounced. The reflections are a result of the mismatch
of the SQUID loaded transmission line at resonance and 50 Ω. In order to mini-
mize this effect, 3dB attenuators are installed directly in front of and behind the
sample.
Additionally, the phase stability of the whole setup (not only the VNA) is dis-
turbed by two factors: the mechanical vibrations caused by the pumping and
the changing temperature gradient due to a helium level that decreases faster
than in the 4.2 K measurements. As we will see, this affects the result for the
transmission phase. Since the time for this measurement is limited, only the flux
range between−0.3 < Φe0/Φ0 < 0.3 and the corresponding relevant frequency
range is measured.

transmission coefficient

The measurment was also calibrated using the ‘thru’ calibration of the network
analyzer at a flux of Φe0/Φ0 = −0.5. The power at the sample is reduced to
Psample ≈ −100 dBm. The resulting frequency and flux dependent transmission
magnitude and phase are depicted in Fig. 4.9(a) and (b), respectively. Again, the
magnetic flux tunable resonance frequency is clearly observable. A closer look
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Fig. 4.9: (a) Transmission magnitude of measured on sample M1 at a tempera-
ture of 2.1K̇. Due to the enhanced quality factor, the decrease in trans-
mission reaches down to −21 dB. (b) Transmission phase.
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4.1 A One-Dimensional Magnetic Metamaterial

shows that there seem to be two resonance lines above 14 GHz and that the cou-
pling of the lower curve to the parasitic resonance at 14 and 14.5 GHz, i.e. its
deformation, is stronger. The reason for the latter was already mentioned in the
previous subsection. Since the SQUIDs in one gap are positioned closer to the
central line than the SQUIDs in the other gap, they couple differently to para-
sitic resonances. Additionally, the SQUIDs in different gaps could have slightly
different parameters, e.g. critical currents, which would lead to different maxi-
mal resonance frequencies.
Due to the decreased sensitivity at higher temperature, this effect is not resolv-
able in the measurement at 4.2 K. At that temperature, the transmission magni-
tude never drops below −11 dB while at 2.1 K, it reaches down to −21 dB.

The transmission phase in Fig. 4.9(b) also shows the typical resonance behavior
and the splitting of the resonances. Additionally, the phase is not constant dur-
ing the measurement. Since the phase is very sensitive to smallest changes in the
experimental setup, this is not surprising considering, that the data was recorded
while pumping on the helium dewar. Due to the calibration, any phase change
along the full experimental setup is mapped onto the short length of the loaded
transmission line. This yields a measured phase drift that is not connected to
physical properties and behavior of the metamaterial. Hence, the effect of this
phase instability has to be counteracted. From Sec. 2.3.2, we remember, that the
susceptibility of the single resonant meta-atom is close to zero at frequencies
sufficiently below the resonance frequency. The same is valid for the transmis-
sion phase. Therefore, the phase is normalized by subtracting the average of
the first 20 measurement points (12.0 GHz - 12.1 GHz) from each trace. This
effectively defines to phase at 12 GHz to be zero.

As was already done in the previous subsection, the quality factor of the individ-
ual resonance curves is obtained by fitting a Lorentz distribution to the measured
data. Four examples at different flux values Φe0/Φ0 = 0 (red), −0.18 (blue),
−0.24 (pink) and −0.26 (green) are depicted in Fig. 4.10(a). The fit results are
again shown as thin black lines on top of the corresponding measured curve.
The results for the quality factor are given in Tab. 4.2.

Figure 4.10(b) shows the corresponding transmission phase. The phase insta-
bility is corrected by subtracting the average of the first 20 points as explained
above.
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Fig. 4.10: (a) Transmission magnitude at flux values Φe0/Φ0 = 0 (red), −0.18
(blue), −0.24 (pink) and −0.26 (green) and fit results. (b) Corre-
sponding phase with corrected phase drift.

Due to the splitting of the resonance at higher frequencies and due to the oscil-
lations at low transmission magnitude, the result of the fit at Φe0/Φ0 = 0 does
no longer reproduce the corresponding data (red). This is also reflected in the
low quality factor and comparatively large error (cf.Tab. 4.2). The best quality
factor in Tab. 4.2 is found at Φe0/Φ0 = −0.26. Around this flux value, the best
(i.e. negative) results for µr are expected.

Φe0/Φ0 0 (red) −0.18 (blue) −0.24 (pink) −0.26 (green)
Q 93± 13 142± 13 140± 10 206± 9

Table 4.2: Quality factors and errors obtained from a Lorentzian fit to the trans-
mission data shown in Fig. 4.3(a). The errors reflect again the 95 %
confidence bounds of the fit result.

magnetic permeability

The relative magnetic permeability µr is obtained by the procedure described
in Sec. 2.4.2 and the validity of the result is again confirmed by the phase delay
comparison.
A brief look at the color scale of Fig. 4.11(a) confirms that the real part of the
magnetic permeability indeed becomes negative and even reaches−1. As guide
to the eye, the black lines in Fig. 4.11(a) represent the contour of Re(µr) = 0.
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Fig. 4.11: Flux and frequency dependent (a) real and (b) imaginary part of the
relative magnetic permeability calculated from the data measured at
2.1 K and presented in Fig. 4.9. The black lines in (a) indicate the
Re(µr) = 0 contour.
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Hence, negative permeability does not prevail for all resonance frequencies.
The results for real and imaginary part of the relative permeability are shown in
Fig. 4.11(a) and (b), respectively. Only the flux interval −0.3 < Φe0/Φ0 < 0
is shown to improve the visibility of details. The result for µr was obtained
using the corrected phase data. Therefore, both real and imaginary part of µr
are homogeneous along the flux axis for frequencies sufficiently far away from
the flux dependent resonance frequency.

Figure 4.11(b) shows the imaginary part of the relative magnetic permeability.
As expected, the decreased transmission magnitude on resonance comes at the
cost of increased losses in the material. The imaginary part of µr becomes as
small as −4.2.
Since Im(µr) is not relevant for the further discussion, only single traces of the
real part are shown in Fig. 4.12 for flux values Φe0/Φ0 = 0 (red), −0.18 (blue),
−0.24 (pink) and −0.26 (green).
Comparing the green and the red curve illustrates a peculiarity of the measure-
ment. While the green curve clearly inhibits a negative magnetic permeability in
a small but finite frequency range, the red curve reaches negative values only at
two singular frequency points. This is also reflected in the Re(µr) = 0 contour
in Fig. 4.11(a). At frequencies above 13.5 GHz, the contour never encloses an
area but rather indicates singular, fixed frequency values that seem to be periodic
in the frequency axis. In fact, the periodic oscillations are a result of internal
reflections due to the impedance mismatch once the SQUIDs are in resonance
with the incoming signal. Including the aforementioned 3 dB attenuation before
and after the sample reduced the oscillation amplitude but did not eliminate it
completely.

In Fig. 4.10(a), the effect of the oscillations is strongest for the curve at zero
flux. Considering the steepness of the decrease in transmission magnitude at
the onset of the resonance, suggests that the real decrease in transmission is
obscured by these standing wave patterns (and the splitting of the resonance
peak). This means that Re(µr) would probably become much lower at Φe0 = 0
without these oscillations.
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Fig. 4.12: Frequency dependent single traces of the real part of the relative mag-
netic permeability at flux values Φe0/Φ0 = 0 (red), −0.18 (blue),
−0.24 (pink) and −0.26 (green). The curves correspond to the single
traces of transmission magnitude and phase shown in Fig. 4.10.

4.1.4 Discussion & Conclusion

The experimental results presented in this section demonstrated the tunable
resonance frequency of a transmission line metamaterial consisting of 54 rf-
SQUIDs as magnetic meta-atoms. Using the retrieval method introduced in
Sec. 2.4.2, it was shown that the tunable resonance frequency leads to a tunable
relative magnetic permeability.
The measurements at 4.2 K showed a relative magnetic permeability, with a real
part ranging between 0 < Re(µr) < 2.6. Although the tunability of the mag-
netic permeability was demonstrated for all frequencies between 10 GHz and
14.5 GHz, the minimal and maximal values of Re(µr) could not be reached for
every frequency. By comparing the quality factor of the individual resonance
curves to the corresponding minimal values of the real part of µr, a correlation
between large quality factor and low minimal value of Re(µr) was found.

Since a decreased density of quasiparticles leads to an enhanced quality fac-
tor, the transmission coefficient was measured at a decreased temperature of
T = 2.1 K. As expected, the range of Re(µr) increased to vary between−1.0 <
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Re(µr) < 3.6. Again, the minimal and maximal values were not observable at
every frequency.
Instead, the frequency range between 13.18 GHz and 13.28 GHz, where the
magnetic permeability was less than zero in a finite frequency range was small
compared to the full range of tunability (∼ 5 GHz) of the metamaterial. How-
ever, this frequency range was on the order of or even larger than the full range
of frequency tunability reached for other tunable magnetic meta-atoms. For su-
perconducting SRRs a frequency range of 50 MHz was achieved at a frequency
of 10.77 GHz [RA06]. SRRs loaded with varactor diodes reached a larger range
of about 500 MHz at 2.5 GHz [SMK06], the range of light tunable varactor
loaded SRRs is considerably smaller, ∼ 20 MHz at 2.3 GHz. Additionally, for
neither of these meta-atoms and corresponding materials the magnetic perme-
ability was determined.

The reason, why a negative magnetic permeability like at Φe0/Φ0 = −0.26 was
not reached in the full range of tunability, was not a physical but a technical one.
By further decreasing the parameter spread of the SQUIDs and by improving the
sample holder, i.e. the electromagnetic environment for the sample, a negative
permeability should be observable in the full 5 GHz range of tunability.
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4.2 A One-Dimensional Electric Metamaterial

4.2 A One-Dimensional Electric Metamaterial

In this section, the experimental results measured on sample E1 are presented
and discussed. Sample E1 contains 27 electric meta-atoms that couple capaci-
tively to the coplanar waveguide. As for the magnetic meta-atom, transmission
magnitude and phase are measured using the setup introduced in Sec. 3.2.2,
however with less attenuation. The power at the sample isPsample ≈ −88 dBm.

4.2.1 Measurement results and Comparison to Calculations

As elucidated in Sec. 2.4.3, the capacitors that couple to ground and central con-
ductor of the CPW are connected by a superconducting rod that is interrupted by
a small dc-SQUID and a single Josephson junction in series. Due to the small
loop area, the dc-SQUID is considered to behave like a single junction but with
a magnetic field tunable critical current. Thus, it serves as tunable inductor. Its
coupling to the magnetic component of the microwave signal is negligible.
The impedance of the single rod structure, that spans both gaps, was found and
used in Sec. 2.4.3 (in combination with the ABCD matrix of the unloaded line)
to calculate the transmission coefficient S21. The frequency and flux dependent
result of the transmission magnitude in [dB] is depicted in Fig. 4.13. This fig-
ure is the same as Fig. 2.15 in Sec. 2.4.3. Since it will be helpful to compare
calculated and measured results, it is shown here again.

The measurement procedure is the same as for the magnetic metamaterial, ex-
cept that the central conductor is used for the magnetic field bias instead of the
coil. From the periodicity in the horizontal axis, the current necessary for one
Φ0 is found to be 12 mA and used to normalize the flux axis. The loop of the
dc-SQUID is only 1/17 of the area of the loop of rf-SQUID which is used as
magnetic meta-atom, therefore a larger magnetic field is necessary for one flux
quantum.

In Fig. 4.13, the calculated and measured transmission magnitude is shown in
the flux interval −0.52 < Φe0/Φ0 < 0.52 for two different frequency ranges.
Figure 4.13(a) shows the calculated result between 1− 20 GHz, in Fig. 4.13(b)
the calibrated experimental results are shown for a smaller frequency range be-
tween 2−12 GHz. The measurement was calibrated using the ‘thru’ calibration,
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Fig. 4.13: Comparison of (a) calculated, (b) measured and calibrated and (c)
measured and uncalibrated flux and frequency dependent transmis-
sion magnitude through sample E1 consisting of 27 rods.
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while the sample (and amplifier) were at room temperature. At that temperature,
the superconducting central conductor and the junctions behave purely resistive.
As a result, the rods are no longer resonant in the depicted frequency range and
their effect on the transmission is purely dissipative. However, at room temper-
ature parasitic resonances and reflections in the setup are still present although
less pronounced. Therefore, their effect is partially calibrated out. The maxi-
mum of the transmission magnitude in the calibrated measurement is above zero
since the transmission improves due to decreased dissipation once the sample
is at 4.2 K. Figure 4.13(c), finally, shows the uncalibrated measurement result
again in the frequency range 1− 20 GHz.

We will concentrate on the features that are common to experimental and cal-
culated results first and on the discrepancies later.
Comparing Fig. 4.13(a) and Figs 4.13(b),(c), shows that both, measurement and
calculation, show similar features in the lower frequency range between 1 GHz
and 9 GHz. For the comparison with the calculation, the calibrated data in
Fig. 4.13(b) is used.
Both, calculation and measurement, show large period oscillations along the fre-
quency axis. They are due to finite size aspects of the metamaterial as discussed
in Sec. 3.2.2. In addition, the position of the peaks (and dips) is shifted to lower
frequencies once the flux deviates from zero. Also common to both plots are
the features close to Φe0/Φ0 = ±0.5 that span the full frequency range. They
correspond to the onset of the second pass band. As the external flux in the
dc-SQUID loop approaches ±Φ0/2, its inductance approaches infinity. There-
fore, the resonance frequency of the rod and the cut-off frequency of all bands
decreases to zero.
From these common features we can conclude, that our description of the fre-
quency and flux dependence of the metamaterial is in principle correct.
Returning to the uncalibrated data shown in Fig. 4.13(c), this leaves the ques-
tion, why there is a strong discrepancy between calculation and measurement in
the frequency range from 9 GHz to 20 GHz. The discrepancy is visible in more
detail when comparing the measured (red) and calculated (blue) frequency de-
pendent transmission magnitude at zero flux as depicted in Fig. 4.14.

Starting with the measured curve (red), small period oscillations are visible on
top of the large period oscillations. While the latter are due to finite size ef-
fects of the material, the small period oscillations are most probably the effect
of reflections at the mismatched electrically loaded waveguide. The origin of
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Fig. 4.14: Comparison of the calculated (blue) and measured (red) transmission
magnitude at Φe0/Φ0 = 0. The calculated curve is shifted by−46 dB
to facilitate the comparison.

these reflections and why they disappear above 10 GHz is unclear. The period
of 240 MHz and related half wavelength of 90 cm does not correspond to any
typical length in the setup directly. Further investigations would be necessary to
identify the origin of these reflections. However, they do not affect the behavior
of the electric metamaterial and can be calibrated out.

For better comparison, the calculated curve is shifted by −46 dB, which is ap-
proximately consistent with the value of the attenuation minus the amplification.
Note, that the decrease in measured transmission magnitude at low frequen-
cies is due to the performance of the amplifier which is specified only down to
6 GHz. At frequencies below 6 GHz, the amplification decreases. Nonetheless,
the finite size effect in the passband, which allows good transmission only at
specific frequencies, is reproduced by the measurement and in good agreement
with the calculation up to 9 GHz. However, the expected strong decrease in
transmission above ≈ 10 GHz due to the onset of the stop band is not observed.
On the contrary, the measured transmission goes slightly up instead of strongly
down. In order to understand this behavior, the three-dimensional setup of the
sample holder together with PCB and chip was simulated using the frequency
domain solver of CST Microwave Studio [BTW13].
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4.2 A One-Dimensional Electric Metamaterial

4.2.2 CST Simulations and Comparison to Measurement

The three dimensional design of the sample holder S2, the PCB and the Si chip
(cf. Sec. 3.2.1) are loaded as 3D model into CST Microwave Studio. The copla-
nar waveguide on the chip is included as a 2D structure. In order to simplify
the problem, the copper of the sample holder and the metallic layer on the chip
are modeled as perfect conductor. The two copper layers of the PCB, however,
are considered to be real copper. The silicon of the chip and the ceramic layer
in the PCB are modeled lossless. Figure 4.15(a) and (b) show the top and the
bottom part of the model, respectively. The parts of the sample holder are in
beige (light brown), the PCB is shown in yellow, the chip again in beige. The
blue stripes around the chip are the wire bonds used to connect the sample to
the PCB. The two red planes that are oriented perpendicular to the waveguide
on the PCB symbolize the input and output waveguide ports.

CST Microwave Studio simulates 3D electromagnetic high frequency fields.
Therefore in frequency domain, port 1 is driven by a QTEM mode of the re-
spective frequency. By using a finite element method, the spatial distribution
of the fields is simulated. The result is then used to calculate the magnitude of
the signal transmitted from port 1 to port 2. CST can also be employed to find
the spatial mode structure at defined frequencies, for example at sample holder
resonances.

In order to simulate the frequency dependent response of the rod loaded trans-
mission line, 2 × 27 additional differential ports were included into the CPW
on the chip. Any port, apart from the input and output port (red planes in
Fig. 4.15(b)), always has two ends. For a standard port, in contrast to differen-
tial, the potential at one end of the port is automatically set to be at the common
ideal circuit ground. Differential, on the other hand, means that the potential at
either end of the port is defined by its position on the model. Hence, it allows
us to chose the ground planes of the CPW on the chip as the reference ground
of the differential port.
Figure 4.15(c) shows part of the coplanar waveguide on the chip and the differ-
ential ports between ground plane and central conductor. The ports are arranged
periodically with a distance of 100µm along the waveguide in each gap repro-
ducing the experimental setup. On the right of Fig. 4.15(c), the schematic of
the electric circuit equivalent of half the rod is shown. This circuit is included
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Fig. 4.15: 3D model of the sample holder (a) top part and (b) bottom part in-
cluding PCB, chip and bond wires. (c) Zoom to the waveguide loaded
with differential ports including a schematic of the SPICE model in-
cluded between the two ends of the differential port.
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as a SPICE model in between two pins of the differential port as indicated in
Fig. 4.15(c). SPICE, Simulation Program with Integrated Circuit Emphasis, is
”a general-purpose circuit simulation program for nonlinear dc, nonlinear tran-
sient, and linear ac analyses” [Qua+].
The SPICE model describes half of one rod, which leads from the central con-
ductor across one gap to the ground plane and the term semi-rod will be used for
it throughout the text. The parameters used in the model are given in Tab. 4.3.
The value of the capacitance to central conductor Cc is slightly less than the
value used for the calculation as given in Tab. 3.5. This improves the agree-
ment between simulation and calculation, i.e. measurement. The calculation
(cf. previous subsection) uses a simple two port lumped element transmission
line model. Therefore, the slightly different values for Cc are not a big surprise,
considering that the 3D environment influences the effective capacitance of the
structure. As inductance of the dc-SQUID, the zero field inductance is used.

The agreement between the measured result of the transmission magnitude at
zero flux in Fig. 4.16(a) and the simulated result (blue) in Fig. 4.16(b) is clearly
visible although not perfect. The simulation also shows the periodicity due to
the finite size of the metamaterial. But, like the measurement, it does not dis-
play the stop band. Instead, the transmission magnitude stays at a high level.
Additionally, the peaks at around 8 GHz, 12 GHz and 15 GHZ, as well as the
double dip around 16 GHz are also found in the measured result, although not
as pronounced and slightly shifted with respect to frequency.
The shift can be explained by details in the real setup which the model does
not reproduce. For example, the position of the input and output port (red lines
in Fig. 4.15(b)) influences the position of the peaks and the double resonance.
The chip height in the experiment is also not exactly defined due to the dielec-
tric glue between chip and PCB and an uncertainty in the milling of the hole.
Nonetheless, considering the complexity of the model, it reproduces the ex-

Ic [µA] Lj0 [pH] R [Ω] Cin [pF] Lgeo [pH] Cc/2 [pF]
3.2 103 950 0.13 115 3.0

Table 4.3: Parameters of the semi-rod structures included in the differential port
as shown in Fig. 4.15(c). The values are the same as given in Tab. 3.5,
except for the capacitance Cc.
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Fig. 4.16: Comparison of measured transmission magnitude with simulation re-
sults. (a) Measurement at Φe0/Φ0 = 0. (b) Simulation result with 54
semi-rods included between the two pins of a differential port (blue).
Simulation result with an empty waveguide (green). (c) The same
simulation result using differential ports as above (blue). Simulation
results using the simplified lumped element model introduced in the
text (black).
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perimental result reasonably well. However, the question why no stop band is
observed still remains.

The green curve in Fig. 4.16(b), represents the simulated transmission magni-
tude through the empty CPW, i.e without rods. The comparison of green and
blue line in Fig. 4.16(b) clearly shows that the transmission through the empty
CPW exhibits dips, i.e. parasitic resonances, at the position where the transmis-
sion through the rod loaded waveguide shows peaks.
We will employ 3D field monitors at the frequency of dip and respective peak,
e.g. 12.5 GHz, to show that both, dip and peak, are due to the same mode. These
field monitors calculate the 3D field distribution of electric field, magnetic field
and corresponding surface currents. Furthermore, we will the use the field mon-
itors to demonstrate that the finite transmission in the frequency band of the stop
band is due to parasitic transmission through the sample holder. Additionally,
the field distribution indicates a possible reason for the different line shapes of
peaks, which seem to be of Lorentzian shape, and dips, which look like Fano
resonances.

The initial model containing the rods as SPICE elements between pins of dif-
ferential ports cannot be used to get the 3D field distribution. Including the
semi-rod as SPICE model requires a co-simulation of the circuit in addition to
the finite element simulation. This configuration prohibits the use of the 3D
field monitors. As replacement for the SPICE model, the rods have to be re-
duced and simplified to a RLC series element so that they can be included as
lumped element ports.
In order to obtain this RLC lumped element circuit, first of all, the intrinsic ca-
pacitances in the RCSJ model of single junction and dc-SQUID are neglected.
Next, the leftover inductance Lp and resistance Rp of the single junction are
turned from a parallel to a series circuit defined by Ls and Rs at a frequency of
10 GHz. The resulting values are given in Tab. 4.4. The corresponding values
for the dc-SQUID are half the values of the single junction. Note that the trans-
formation is correct only at this frequency but the deviations especially of the
prominent inductive part are small.
Finally, the values of the full lumped element circuit are the total capacitance
Cs,tot comprising the capacitance of one rod arm to ground and to the central
conductor, the total inductance Ls,tot which includes the Lgeo and Ls of single
junction and dc-SQUID and the total resistance Rs,tot consisting of the series
value Rs of single junction and dc-SQUID. The resulting values are given in
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Tab. 4.4. In Fig. 4.17, the frequency dependences of real (inset) and imaginary
parts of the impedance of the rod, Zrod, as given by Eq. (2.68) and impedance
of the simplified RLC series circuit, ZLE, are compared. The blue line shows
the frequency dependence of Zrod, while the black curve describes ZLE.
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Fig. 4.17: Comparison of the imaginary and real (inset) part of the impedance
Zrod (blue) as given by Eq. (2.68) and the impedance of the simplified
RLC series circuit (black).

Since Rs and Ls are calculated at a fixed frequency, the real part of ZLE (inset)
is constant unlike the real part of Zrod (inset). This discrepancy, however, does
not have a strong effect on the result, since the real part is small compared to
the imaginary part. The deviation of the two imaginary parts at high frequen-
cies is the result of neglecting the intrinsic Josephson capacitance. Overall, the
agreement is sufficiently good to use the simplified structure instead of the rods
in the simulation.

Ls [pH] Rs [Ω] Cs,tot [pF] Ls,tot [pH] Rs,tot [Ω]

103 0.04 0.75 269 0.06

Table 4.4: Parameters of the simplified RLC lumped element circuit. The de-
scription is found in the main text. Ls and Rs are the values for
the series equivalent of the single Josephson junction neglecting the
intrinsic capacitance.
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4.2 A One-Dimensional Electric Metamaterial

The simulation result of |S21| for rods (blue) and RLC circuit (black) are shown
in Fig. 4.16(c). Although the lumped element simulation does not reproduce the
low frequency features accurately, the general shape of the transmission magni-
tude is reproduced. The agreement is best between 10 GHz and 14 GHz.
With the lumped element model, it is now possible to use the field monitors at
specific frequencies and find the corresponding 3D field distribution for the case
of the loaded and the unloaded waveguide. As frequencies for the field moni-
tors, the resonance dips and peaks of the empty and loaded CPW are employed.
Since the agreement between rods and series circuit is best at that frequency,
the resonance dip of unloaded line (green) at 12.6 GHz and the respective peak
of the loaded waveguide (black) at 12.3 GHz are chosen.

4.2.3 Simulated Field Distribution at 12.3 GHz and 12.6 GHz

Using the field monitors in the CST simulation, the 3D electric and magnetic
field distribution is simulated as well as the surface currents induced by the
fields. In order to understand the difference between the unloaded and the
loaded waveguide, the amplitude of the absolute value of the surface currents
offers the clearest picture.

The result of the simulation of the unloaded sample is presented in Fig. 4.18.
The amplitude of the absolute value of the surface current between the input and
output port (red lines) is illustrated in color scale. Figure 4.18(a) shows the top
view of the PCB together with the waveguide on the chip. The inset indicates
what part of the PCB is depicted for orientation. Since only dielectric material
appears transparent in the figure, Fig. 4.18(b) shows the same view but with the
chip removed. Now, the surface currents in the lower copper plane of the PCB
are visible.
In the same way, the simulation result of the waveguide loaded with the RLC
replacement of the rods is given in Fig. 4.19. Again, the amplitude of the sur-
face current is shown once with (Fig. 4.19(a)) and once without (Fig. 4.19(b))
displayed chip.
In both plots, the shape of the resonance in the sample holder, as seen in (b) of
both figures, is very similar. It is the same mode, however with a slight asym-
metric deformation in the case of the unloaded waveguide.
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Fig. 4.18: Spatial distribution of the absolute value of the amplitude of the sur-
face current density on the PCB and the unloaded waveguide on the
chip at 12.6 GHz. (a) Top view on PCB and chip. The inset indicates
which area of the sample holder is shown. (b) Same picture as in (a)
but with removed chip to uncover the current distribution below.
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Fig. 4.19: Spatial distribution of the absolute value of the amplitude of the sur-
face current density on the PCB and the waveguide on the chip loaded
with rods (not shown) at 12.3 GHz. (a) Top view on PCB and chip.
(b) Same picture as in (a) but with removed chip to uncover the cur-
rent distribution below.
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Considering the surface currents in the waveguide of the unloaded sample first,
a current node in the middle of left waveguide section on the PCB indicates that
a standing wave is created. The current anti-node on the chip feeds the reso-
nance.
Since the standing wave is not symmetric with respect to the chip center, this
asymmetry is reflected in the shape of the resonance mode. The coupling
of the two resonances, the one in the waveguide and the one in the sample
holder, yields a Fano like resonance [Fan61] and explains the slight frequency
shift between the position of the dip (12.6 GHz) of the unloaded and the peak
(12.3 GHz) of the loaded waveguide.

While the situation is similar in the periodically loaded sample, there is no
standing wave pattern (no node) visible.
Due to the stop band, which does not allow the wave to propagate far into the
loaded transmission line, the waveguide on the chip is effectively split in half.
This creates two waveguide stumps that act as antennas. The one on the left
feeds the resonance, while, due to symmetry, the antenna on the right couples
energy out of the resonance. Therefore, transmission from port 1 on the left
hand side to port 2 on the right hand side is finite but not by means of the waveg-
uide on the chip. Instead, the detour through a sample holder resonance is taken.
The Lorentzian line shape of the peaks in the blue curve shown in Fig. 4.16(b)
arises since only one resonance (that of the sample holder) is present.

This behavior is the same for all resonance frequencies observed in the green
curve in Fig. 4.16(b). The resonant mode is always located in or around the hole
in the PCB that contains the chip, its structure, however, differs.

simulation result of sample holder with hole

Due to the location of the resonance in the PCB, it seems to be a reasonable idea
that by removing all metal below the chip, the resonances are deprived of the
basis of their existence. In the simulation model this is easily done: A octagonal
hole is “milled” through the PCB and the bottom part of the sample holder. The
chip is now supported by the PCB only at its corners. Figure 4.20 displays a 3D
view of the bottom part of the sample holder with the hole but without the chip.
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4.2 A One-Dimensional Electric Metamaterial

Fig. 4.20: Bottom part of the sample holder with octagonal hole below the chip
position. The chip is not shown since it would cover the hole.
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Fig. 4.21: Simulation results of the rod loaded transmission line. The result ob-
tained from the sample holder with hole is shown by the red curve.
For comparison the blue curve depicts the known result obtained
without hole.
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The simulated transmission magnitude for the waveguide that uses the SPICE
model of the rods, and not the lumped element description, is shown by the red
line in Fig. 4.21. Compared to the sample holder without hole (blue), less reso-
nances (peaks) are present. A double resonance at∼ 12.5 GHz, however, is still
present and prevents the appearance of the stop band.
By comparison of the 3D field structure of the resonance modes, it can be shown
that the two maxima of the double peak correspond to the modes that are located
at 8.3 GHz and 12.3 GHz of the sample holder without hole. The mode corre-
sponding to higher frequency peak is about identical to the mode at 12.3 GHz,
while lower frequency peak mode comprises features of the mode at 8.3 GHz
and of the mode at 12.3 GHz.

Shifting our focus to the pass band below the supposed onset of the stop band,
we observe that the transmission decreases as the frequency increases and ap-
proaches the stop band. Exactly at the onset of the stop band, the transmission
starts to rise again. This is consistent with the claim above. Once the frequency
is reached, where waves cannot propagate anymore, the waveguide starts to be-
have like two antennas, opening the door for the detour.

4.2.4 Magnetic Flux Dependence

As a last point, the magnetic flux dependence of the rod loaded waveguide shall
be discussed. This is of special interest, since the upper cut-off frequency of the
pass band decreases in frequency as the flux is tuned away from zero. Hence,
the onset of the stop band moves away from the lowest parasitic resonance and
is less affected by it.

Figure 4.22(a) shows the frequency dependence of the measured transmission
magnitude (uncalibrated) at flux values Φe0/Φ0 = −0.4 (blue), −0.45 (red)
and −0.47 (black). Unfortunately, the quality of the data suffers from the small
period oscillations along the frequency axis which are most probably due to
reflections in the setup. Nonetheless, two main features are visible. First, above
9 GHz, the plots do not change with changing flux anymore except around the
resonance at 16.6 GHz. At this latter frequency, the second pass band crosses
between −0.48 < Φe0/Φ0 < −0.45 (cf. Fig. 4.13(c)). Second, the onset of
the stop band moves to lower frequencies, leaving an increasing frequency band
between this onset and the lowest parasitic resonance at 10 GHz.
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Fig. 4.22: (a) Measured transmission magnitude at flux values Φe0/Φ0 = −0.4
(blue), −0.45 (red) and −0.47 (black). Simulated transmission mag-
nitude at the same flux values and in corresponding colors is shown
as obtained with (b) the model without hole below the chip (c) the
model containing the hole. (d) Calculated transmission magnitude
using the transmission line approach discussed above in Sec. 4.2.1
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The same behavior is observed more clearly when considering the simulation
data. The inductance of the dc-SQUID is calculated for the above three flux
values and is then implemented in the SPICE model. The result for |S21| is
plotted in Fig. 4.22(b) in the corresponding colors. Figure 4.22(c) presents the
same results but obtained using the CST model with the hole below the chip (cf.
Fig. 4.20).
Both figures exhibit the decreasing onset of the stop band as the flux approaches
−Φ0/2. The further this onset is separated from the lowest parasitic resonance
frequency, the more the transmission at the onset decreases. The data also
clearly shows how the transmission through the sample holder, which is mag-
netic field independent, takes over as soon as the upper cut-off frequency of the
pass band is reached.
Additionally, the calculated transmission magnitude is shown at the same flux
values in Fig. 4.22(d). The calculation uses the ideal two port transmission line
model. The blue line (Φe0/Φ0 = −0.4) does not reappear at higher frequen-
cies, since the second pass band has not yet moved to below 20 GHz at that
flux value. The comparison between calculation and simulation demonstrates
clearly, how the sample holder resonance counteracts the stop band.

The stop band, however, is necessary in order to observe a NIR pass band once
electric and magnetic meta-atoms are combined (cf. Sec. 2.4.4). As long as
the parasitic transmission through the sample holder is larger than the trans-
mission in the NIR pass band of the composite medium, the parasitic trans-
mission will be the dominant process. This changes however, if the situation
is reversed. When the parasitic transmission is low enough, the tunable NIR
pass band will be the dominant process and, hence, should be observable. For
the model with the hole, the transmission shown in Fig. 4.22(c) goes down to
−90 dB for Φe0/Φ0 = −0.45. This value may be sufficiently low so that the
predicted NIR pass band can occur. However, it may appear only in the narrow
frequency range between the onset of the stop band and the frequency, where
the parasitic transmission has increased enough to become the dominant process
again.
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4.2 A One-Dimensional Electric Metamaterial

4.2.5 Discussion & Conclusion

The presented transmission data, measured on a waveguide that couples electri-
cally to rod-like structures, partially confirm and partially disagree with the be-
havior predicted by a simple transmission line model. While the low frequency
dependence of the transmission magnitude in the pass band was consistent with
expectations, the anticipated stop band was not observable.
The same result was obtained from simulations, which pinpointed the nonexis-
tent stop band to parasitic transmission through the sample holder. First investi-
gations in the matter showed that alterations to the sample holder design should
improve the situation and, if a suitable design was found, may finally overcome
this problem.

Using the field monitors of the simulation at the parasitic resonances, the 3D
field distribution with and without electric structures was determined. It showed
that at the stop band, the microwave traveling along the waveguide was strongly
attenuated on the length scale of one or two unit cells. The question arises
if by also including magnetically coupled structures, this penetration is suffi-
cient to create a negative index “material”, which would then allow transmission
through the composite medium. In this context, it may be sensible to develop
an improved rod design, that couples less strongly to the waveguide, hence de-
creasing the impedance mismatch at the interface of the 50 Ω transmission line
and loaded waveguide.

Nonetheless, with this investigation of a waveguide loaded with capacitively
coupled structures, the first milestone for the development of a tunable super-
conducting negative index material was set.
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5 Conclusion & Outlook

This Chapter concludes the thesis. It offers a brief summary of what
has been achieved and how the results are interpreted. Additionally, it
includes suggestions about further improvements that could be imple-
mented and what outcome could be expected.
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This thesis presents a novel approach to the topic of tunable metamaterials.
The resonant behavior of the commonly used meta-atom, e.g. the split ring
resonator, imposes a strong limitation. Specific values, for example zero or
negative values, of the magnetic permeability are achievable only in a narrow
frequency band. By including tunable elements into the resonator, its reso-
nance frequency and thus the magnetic permeability of the material becomes
tunable.

In this work, the Josephson junction was employed as tunable inductor in super-
conducting meta-atoms. The meta-atoms were included into a coplanar wave-
guide, creating a one-dimensional metamaterial.
Two different kinds of meta-atoms were introduced. The rf-SQUID, a supercon-
ducting loop interrupted by a single Josephson junction with a shunt capacitance
in parallel, was employed as magnetic meta-atom. It was placed in the gap of
the coplanar waveguide, oriented with its area perpendicular to the magnetic
field in the gap. The electric meta-atom couples capacitively to the waveguide
and contains a dc-SQUID as tunable element in addition to a single junction.
The resonance frequency of both meta-atoms was tunable by a constant mag-
netic field perpendicular to the (rf-/dc-) SQUID loop. By measuring the com-
plex transmission coefficient with a vector network analyzer, the frequency and
magnetic flux dependent transmission properties of the metamaterial were in-
vestigated.

The rf-SQUID, i.e. the magnetic meta-atom, has a resonance frequency that
is tunable over a range of 5 GHz (30 % of the central frequency of 12 GHz)
by applying a magnetic field in situ as shown in Sec. 4.1. On the other hand,
its sensitivity to magnetic field also posed the biggest challenge for the imple-
mentation of a SQUID metamaterial with a collective resonance. In Sec. 3.3,
measures were discussed that are necessary to protect the magnetic metamate-
rial from stray magnetic fields and the occurrence of Abrikosov vortices. Only
an optimized experimental setup and sample design permitted the collective re-
sponse of almost all meta-atoms in the coplanar waveguide.
Once a collective resonance of the magnetic metamaterial was achieved, the
corresponding transmission data was used to extract its frequency and flux de-
pendent effective, relative magnetic permeability. Therefore, in Sec. 2.4.2, a
novel technique, inspired by Nicholson, Ross and Weir, was developed that
allows the retrieval of the relative magnetic permeability from only the trans-
mission data. Using this technique together with a plausibility test suggested by
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Weir, the tunability of the magnetic permeability was clearly demonstrated. By
decreasing the temperature, thus improving the quality factor, it was even possi-
ble to achieve negative values for the permeability in an appreciable frequency
range.

Further work on this material has to aim at widening the frequency range where
the permeability is less than zero. Therefore, the design of the sample needs to
be adjusted to achieve a better quality factor. This should go hand in hand with
an even more precise fabrication process, to further decrease the spread of pa-
rameters of the SQUIDs. Additionally, a quality factor that shows a monotonous
dependence on flux between zero and half flux quantum has to be ensured. Only
then a consistent range of tunability of the magnetic permeability is guaran-
teed within the minimal and maximal resonance frequency. Therefore, a sam-
ple holder needs to be developed without parasitic resonances in the frequency
range of interest.

Parasitic resonances in the sample holder were also the main challenge that had
and still has to be overcome in order to observe a stop band in the electric meta-
material discussed in Sec. 4.2.
The measured transmission data through a coplanar waveguide loaded with
electrically coupling structures showed good agreement with the expected fre-
quency and flux dependent behavior detailed in Sec. 2.4.3 but only in the low
frequency pass band. The predicted stop band was not observed. Without an
observable stop band or at least sufficiently low transmission in the electric
metamaterial, the realization of a composite medium of tunable magnetic meta-
atoms and electric structures was not possible.

Finite element simulations of the full 3D system indicated that the finite trans-
mission in the stop band is due to parasitic transmission through the sample
holder. The simulations also showed that by “pulling the rug out” from under
the resonance, i.e. by removing any metallic material below the chip, the effect
of the sample holder resonances is decreased. Resonances at lower frequencies
were removed or rather pushed to higher frequencies. However, the resonances
at higher frequencies still affected the stop band. On the other hand the parasitic
effect was decreased the further the pass band was pushed to lower frequencies
as the flux approaches odd integers of half flux quanta. It may be possible to
observe the expected tunable NIR pass band of the composite medium at these
low frequencies and flux values close to half flux quantum.
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5 Conclusion & Outlook

Samples containing a composite one-dimensional tunable metamaterial consist-
ing of both kinds of meta-atoms already exist. Hence, improving the sample
holder by milling a hole through PCB and bottom part at the position of the
chip may in fact lead to an observable tunable NIR pass band for flux values
close to Φ0/2 of the dc-SQUID in the rod structure. An experiment that may be
carried out in the not so distant future.
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Zusammenfassung & Ausblick
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Diese Dissertation stellt einen neuen Ansatz zum Thema stimmbare Metama-
terialien vor. Das resonante Verhalten gemeinhin gebräuchlicher Meta-Atome,
z.B. des Split-Ring-Resonators, stellt eine starke Einschränkung dar. Bestimmte
Werte, wie zum Beispiel Null oder negative Werte, nimmt die magnetische Per-
meabilität eines Materials bestehend aus Split-Ring-Resonatoren nur in einem
engen Frequenzband an. Indem man nun stimmbare Elemente in den Resonator
einfügt, wird seine Resonanzfrequenz und damit auch die magnetische Perme-
abilität des betreffenden Materials einstellbar.

In dieser Arbeit wird ein Josephson Kontakt als stimmbare Induktivität in sup-
raleitenden Meta-Atomen verwendet. Die Meta-Atome sind in einen ebenen
Wellenleiter eingebettet und stellen so ein eindimensionales Metamaterial dar.
Zwei unterschiedliche Arten von Meta-Atomen wurden vorgestellt. Das rf-
SQUID ist ein supraleitender Ring unterbrochen von einem einzelnen Joseph-
son Kontakt parallel geschaltet mit einem Kondensator und wird als magneti-
sches Meta-Atom verwendet. Es befindet sich im Schlitz eines koplanaren Wel-
lenleiters und liegt mit seiner Fläche senkrecht zu den magnetischen Feldlinien
im Schlitz. Die elektrischen Meta-Atome koppeln kapazitiv an den Wellenleiter
und enthalten ein dc-SQUID als stimmbares Bauelement zusätzlich zu einem
einzelnem Josephson Kontakt. Die Resonanzfrequenz beider Meta-Atome ist
stimmbar mittels Anlegen eines konstanten magnetischen Feldes senkrecht zum
Ring des (rf/dc)-SQUIDs. Die frequenz- und flussabhängigen Transmissionsei-
genschaften des jeweiligen Metamaterials wurden durch das Messen des kom-
plexen Transmissionskoeffizienten mit Hilfe eines Vektornetzwerkanalysators
untersucht.

Das rf-SQUID, d.h. das magnetische Meta-Atom, besitzt eine Resonanzfre-
quenz, die über einen Bereich von 5 GHz (entspricht 30 % der mittleren Fre-
quenz von 12 GHz) durch Anlegen eines magnetischen Feldes stimmbar ist, wie
in Abschn. 4.1 gezeigt wurde. Auf der anderen Seite stellt seine Empfindlichkeit
gegenüber magnetischen Feldern gleichzeitig die größte Herausforderung bei
der Verwirklichung eines SQUID-Metamaterials mit einer kollektiven Reso-
nanz dar. In Abschn. 3.3 wurden die Maßnahmen diskutiert, die notwendig
waren um das magnetische Metamaterial gegen magnetische Störfelder und das
Auftreten von Abrikosov Vortizes zu schützen. Nur mit einem optimierten ex-
perimentellen Aufbau und Probendesign konnte die gemeinsame Anregung fast
aller Meta-Atome im Wellenleiter verwirklicht werden.
Nachdem eine kollektive Resonanz des Metamaterials erzielt war, wurden die
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entsprechenden Transmissionsdaten dazu verwendet um die frequenz- und fluss-
abhängige, relative magnetische Permeabilität zu extrahieren. Dazu wurde in
Abschn. 2.4.2 eine neue Technik, inspiriert von Nicholson, Ross und Weir, vor-
gestellt, die es ermöglichte die relative magnetische Permeabilität nur aus den
Transmissionsdaten zu gewinnen. Mit dieser Technik, in Verbindung mit einem
von Weir vorgeschlagenen Plausibilitätstest, konnte die Stimmbarkeit der mag-
netischen Permeabilität eindeutig demonstriert werden. Durch Erniedrigen der
Temperatur wurde außerdem der Qualitätsfaktor der Resonanz verbessert. Da-
mit war es sogar möglich, in einem endlichen Frequenzbereich negative Werte
für die Permeabilität zu erzielen.

Jegliche weitere Arbeit zu diesem Material sollte darauf abzielen, den Fre-
quenzbereich, in dem die Permeabilität negativ ist, aufzuweiten. Dafür muss das
Design der Probe angepasst werden um einen besseren Qualitätsfaktor zu errei-
chen. Parallel dazu sollte durch einen noch präziseren Fabrikationsprozess die
Streuung der Parameter der SQUIDs, wie zum Beispiel der kritische Strom des
Kontaktes, weiter verringert werden. Zusätzlich muss gewährleistet sein, dass
der Qualitätsfaktor eine monotone Flussabhängigkeit zwischen Null und einem
halben Flussquant aufweist. Nur dann kann die gleichmäßige Stimmbarkeit
der magnetischen Permeabilität im gesamten Bereich zwischen minimaler und
maximaler Resonanzfrequenz der SQUIDs sichergestellt werden. Um dies zu
erreichen muss eine Probenhalter entwickelt werden, der keine parasitären Re-
sonanzen im relevanten Frequenzbereich aufweist.

Parasitäre Resonanzen des Probenhalters stellten auch die größte zu bewälti-
gende Herausforderung dar auf dem Weg hin zu einem beobachtbaren Stopband
im elektrischen Metamaterial, das in Abschn. 4.2 behandelt wurde.
Die gemessene Transmission durch den ebenen Wellenleiter mit elektrisch kop-
pelnde Strukturen ist in guter Übereinstimmung mit dem in Abschn. 2.4.3 be-
handelten frequenz- und flussabhängigen Verhalten, aber nur im Durchlass-
bereich bei niedrigeren Frequenzen. Das vorhergesagte Stopband wurde nicht
beobachtet. Ohne ein beobachtbares Stopband oder zumindest ausreichend
niedriger Transmission im elektrischen Metamaterial, ist die Umsetzung eines
kombinierten Mediums aus stimmbaren magnetischen und elektrischen Meta-
Atomen nicht möglich.

Finite Elemente Simulationen des gesamten dreidimensionalen Systems deute-
ten darauf hin, dass die nicht verschwindende Transmission im Stopband auf
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parasitäre Transmission durch den Probenhalter zurückzuführen ist. Die Simu-
lationen zeigten auch, dass der negative Einfluss der Probenhalterresonanzen
verringert werden kann, indem das Metall unter dem Chip entfernt wird. Da-
mit wird der Resonanz sozusagen der Boden unter den Füßen entzogen. Reso-
nanzen im Probenhalter bei niedrigeren Frequenzen wurden dadurch beseitigt
bzw. zu höheren Frequenzen verschoben. Allerdings beeinflussen die Reso-
nanzen bei höheren Frequenzen nach wie vor das Stopband. Ihr parasitärer
Effekt wurde jedoch kleiner, je weiter das obere Ende des Durchlassbereichs zu
niedrigeren Frequenzen verschoben wurde. Das wurde erreicht, in dem mag-
netische Flusswerte nahe bei ungeradzahligen Vielfachen von halben Flussquan-
ten angelegt wurden. Unter Umständen ist es möglich das, im kombinierten Me-
dium erwartete, stimmbare Durchlassfrequenzband mit negativem Brechungs-
index bei diesen niedrigen Frequenzen und Flusswerten nahe von halben Fluss-
quanten zu beobachten.

Proben mit dem kombinierten, eindimensionalen und stimmbaren Metamate-
rial, das beide Arten von Meta-Atomen enthält, sind bereits hergestellt. Somit
könnte das Anpassen des Probenhalters zu einer erfolgreichen Umsetzung eines
stimmbaren Metamaterials mit einem stimmbaren negativem Brechungsindex,
also zu einem stimmbaren Durchlassfrequenzband führen. Diese Experiment
könnte in nicht allzu ferner Zukunft durchgeführt werden.
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