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Abstract

With the advantages of pay-per-use, easy access and on-demand resource customiza-
tion, the Cloud computing concept was quickly adopted by both the industry and
the academia. Over the last decade, the many Cloud infrastructures that have been
built have distinguished themselves in the variety of offered services, access inter-
faces, costs and Service Level Agreement (SLA). On the other hand, “vendor lock-in”
issues and the lack of common Cloud standards hinder the interoperability across
Cloud providers. Thus, Cloud users have to manually make decisions about which
Cloud to choose in order to meet their functional and non-functional service require-
ments while keeping the payment low. This task is clearly a burden for the users
because they have to go through web pages of Cloud providers to compare their ser-
vices and pricing policies. Furthermore, it is hard for them to collect and maintain
all the needed information from current commercial Clouds to make accurate deci-
sions.

The aim of the work presented in this thesis is to facilitate users’ ability to find the
most suitable Cloud services by taking their functional and non-functional SLA re-
quirements into account. A key contribution of the thesis is the design of a multi-
Cloud service broker framework acting as a mediator between consumers and mul-
tiple Cloud providers to automate the service selection and deployment. The frame-
work contains components for decision-making, monitoring and SLA management,
as well as an interoperability layer to interact with heterogeneous Clouds.

In addition, the thesis addresses the multi-Cloud service selection problem by propos-
ing a utility-based matching algorithm adopted from the economic theory which se-
lects the Clouds, maximizing the user utility. To facilitate the matching of large-scale
composite services, we introduce a hybrid utility-based genetic algorithm (HU-GA)
that applies the user utility as an objective function. Furthermore, we present an
ontological model to semantically describe the service requirements and Cloud char-
acteristics.

Moreover, the thesis investigates the optimal broker-based deployment of multi-Cloud
workflows while taking into account data locality, resource heterogeneity, and task
dependencies. For this purpose, a two-stage multi-dimensional resource allocation
scheme is proposed, where the suitable Clouds are first selected using the HU-GA
matching algorithm and then the workflow tasks are distributed to the selected Cloud
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resources using a data-aware scheduling policy. To optimize the Cloud-to-Cloud (In-
tercloud) data transfer during the workflow execution, a replica-based data manage-
ment policy is introduced.

To evaluate the proposed service broker framework and the associated matching and
scheduling mechanisms, a realistic simulation environment is implemented. Using
simulation scenarios with real application workloads and a case study, we demon-
strate from the experiment results the benefits of the utility-based matching algorithm
in terms of cost and service quality. In addition, we demonstrate the efficiency of the
multi-dimensional resource allocation scheme in improving the workflow execution
performance and reducing the amount and costs of Intercloud data transfers.
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Zusammenfassung

Durch Vorteile wie Pay-per-use, einfache Zugriffsmethoden und On-demand maß-
geschneiderte Ressourcen wurde das Cloud Computing-Konzept schnell von der In-
dustrie und der Wissenschaft angenommen. Die im Laufe des letzten Jahrzehnts ent-
standenen Cloud-Infrastrukturen weisen eine Vielzahl von angebotenen Services, Zu-
griffsschnittstellen, Kostenmodelle sowie Service Level Agreement (SLA). Trotzdem
behindern Probleme wie das “Vendor Lock-in” sowie das Fehlen von Standards die
Interoperabilität zwischen den Cloud-Anbietern. Bei der Auswahl eines passenden
Cloud-Anbieters bezüglich funktionaler, nicht-funktionaler sowie monetärer Anfor-
derungen müssen Cloud-Nutzer daher manuelle Entscheidungen treffen. Diese Auf-
gabe stellt eine große Herausforderung für sie dar, da zunächst die Webseiten der
Cloud-Anbieter durchsucht werden müssen, um angebotene Dienste und Preismod-
elle überhaupt vergleichen zu können. Außerdem ist es schwer, alle benötigten In-
formationen kommerzieller Anbieter zu sammeln und stets aktuell zu halten, um
adäquate Entscheidungen zu treffen.

Die vorliegende Dissertation hat zum Ziel, die Cloud-Nutzer bei der Suche der best-
geeigneten Cloud-Ressourcen unter Erfüllung ihrer funktionellen und nicht-funktio-
nalen Anforderungen zu unterstützen. Ein Hauptbeitrag dieser Arbeit ist die En-
twicklung eines multi-Cloud Service-Broker-Frameworks, das als Vermittler zwis-
chen Nutzern und verschiedenen Cloud-Anbietern agiert, um die Auswahl und Bere-
itstellung von Diensten zu automatisieren. Das Framework beinhaltet Komponenten
zur Entscheidungsfindung, zum Monitoring, SLA-Management sowie eine Interop-
erabilitätsschicht zur Interaktion mit heterogenen Clouds.

Außerdem beschäftigt sich diese Dissertation mit dem Problem der Dienstauswahl in
multi-Cloud Umgebungen. Hierzu wird ein aus der Wirtschaftstheorie übernommenes
nutzenorientiertes Matching-Verfahren vorgestellt, das die geeigneten Cloud-Services
unter Maximierung des Kundennutzens auswählt. Um die Kompositionen von Dien-
sten zu erleichtern, präsentieren wir einen hybriden nutzenorientierten genetischen
Algorithmus (HU-GA), der das Kundennutzen als Zielfunktion anwendet. Darüber
hinaus präsentieren wir ein ontologisches Modell zur semantischen Beschreibung der
SLA-Dienstanforderungen und der Cloud-Eigenschaften.

Des Weiteren untersucht diese Dissertation die optimale Broker-basierte Ausführung
von multi-Cloud Workflows unter Berücksichtigung der Datenlokalität, Ressourcen-
Heterogenität und Abhängigkeiten innerhalb von Tasks. Hierzu, wird ein zweistu-
figes mehrdimensionales Ressourcen-Allokationsverfahren vorgestellt: zunächst wer-
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den geeignete Cloud-Services mit dem HU-GA Matching Algorithmus ausgewählt
und anschließend die Workflow-Tasks mit einem Daten-orientierten Scheduler auf
den ausgewählten Cloud-Ressourcen verteilt. Um die Cloud-zu-Cloud (Intercloud)
Datenübertragung während der Workflow-Ausführung zu optimieren, wird eine Rep-
lika-basierte Daten-Management-Policy eingeführt.

Um das entwickelte Service-Broker-Framework und die dazugehörigen Matching
und Scheduling Mechanismen zu evaluieren, wurde eine realistische Simulationsumge-
bung implementiert. Mit Hilfe von modellierten Simulationsszenarien mit realen
Anwendungsworkloads und einer Fallstudie demonstrieren wir, basierend auf den
Ergebnissen, die Kundenvorteile durch den Einsatz des nutzenorientierten Matching-
Verfahrens hinsichtlich Kosten und Dienstqualität. Abschließend demonstrieren wir
die Effizienz des mehrdimensionalen Ressourcen-Allokationsverfahrens hinsichtlich
der Verbesserung der Workflow-Performanz und der Reduzierung der Menge und
Kosten der Intercloud Datenübertragungen.
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1. Introduction

In the recent years, Cloud computing was introduced as a novel computing paradigm
that offers computing facilities as a service, bringing us a step closer to the long-held
dream of computing as the fifth utility [19, 129]. A specific feature of Cloud com-
puting, in comparison with other computing paradigms like Grid computing [58],
is that it allows the provision of on-demand, scalable storage resources and cus-
tomized computing environments, using an easy, pay-as-you-go pricing model. The
base for such elasticity, reliability and customization is a dynamically scalable re-
source pool, often virtualized [61], that contains both a large number of servers and
a high storage capacity. The service provisioning in the Cloud relies on Service Level
Agreement (SLA), which represents a contract, signed between the customer and the
service provider, including non-functional requirements of the service specified as
Quality of Service (QoS) and penalties in case of violations [45]. This new comput-
ing business model has encouraged an increasing number of users and companies
to move their applications to Cloud in order to benefit from the low cost and usage
flexibility. Furthermore, with the emergence of Cloud computing, many public and
private Cloud infrastructures have been built to provide different services that can be
classified into the following three categories: Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS) and Software as a Service (SaaS) [154]. While IaaS mainly
targets the on-demand provision of computational and storage resources, SaaS and
PaaS provide on-demand access to applications and development environments, re-
spectively, through the Internet. The current public Cloud infrastructures differ from
one another in cost, offered QoS, and access interfaces, which raises the challenge
of provisioning services on multiple Clouds, called multi-Cloud. The main reasons
for using a multi-Cloud are the low cost and better availability, as Dana Petcu [130]
said:

“The use of resources and services from multiple Clouds for reasons like
high availability, cost reductions or special features is a natural evolution
from in-silo Clouds.”

The research challenges addressed by multi-Cloud are aligned with the vision of
global interconnected Clouds called Intercloud computing [13], much like the Inter-
net as a network of networks. Hereby Cloud consumers should be able to freely
choose and seamlessly switch between different Cloud platforms without concerns
of interoperability.
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In this thesis, we investigate how users can be assisted in the task of the selection
and deployment of single and composite IaaS Cloud services in a multi-Cloud en-
vironment to increase their benefits in terms of cost, quality, and performance. In
particular, we examine and evaluate the frameworks and methods needed to auto-
mate the selection and deployment processes for different types of user applications,
including scientific workflows. To shortly introduce the work carried out in this the-
sis, in Section 1.1, we present our problem statement, detailing the motivation for
this work. In Section 1.2, we present the research questions that will be addressed in
this thesis. Major scientific contributions of the thesis are summarized in Section 1.3.
Finally, in Section 1.4 we present the organization of the remainder of the thesis.

1.1. Problem Statement

Due to the fast-emerging Cloud computing market over the last several years, the
number of Cloud service providers has significantly increased. On the other hand,
“vendor lock-in” issues and the lack of common Cloud standards hinder the interop-
erability across these providers, which constitutes one of the obstacles to the growth
of Cloud computing [8]. Thus, today the Cloud customer is facing a challenging
problem of selecting the appropriate Cloud offers that fit his needs. Therefore, stan-
dardized interfaces and intermediate services are needed to prevent monopolies of
single Cloud providers. One of the promising use cases of the Intercloud vision de-
fined by the Global Inter-Cloud Technology Forum (GICTF) [56] is the possibility of
market transactions via brokers. In such a use case, a broker entity acts as a mediator
between the Cloud consumer and multiple Cloud providers to support the former in
selecting the provider that better meets his requirements. Another value-added bro-
ker service is the easy deployment and management of the user service, regardless
of the selected provider, through a uniform interface. Frank Kenney, former research
director at Gartner [65], elaborated the need for Cloud brokers, saying:

“The future of Cloud computing will be permeated with the notion of bro-
kers negotiating relationships between providers of Cloud services and
the service customers.”

We argue also that brokers are necessary to free users from the task of selecting and
managing multi-Cloud services and to hide the technical details of the underlying
Cloud infrastructures. However, there are still many unsolved research and technical
challenges facing the design and use of Cloud brokers. In the following, we identify
the major problems that need to be addressed.

Problem 1
The “vendor lock-in” problem and the lack of standardization hinder the

implementation of generic multi-Cloud service brokers.
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We argue that a full-functional broker should assist users in all the steps needed
to manage the SLA between them and the Cloud provider candidates. These steps
include service description, selection, deployment, and monitoring. However, the
implementation of a full-functional multi-Cloud broker is still expected, despite re-
search projects focusing on the development of multi-Cloud broker frameworks. In
fact, most of the proposed architectures are either still visionary [17], or have only
prototypical implementations [53]. These latter, like most of the existing commercial
brokerage solutions [142], support specific Cloud platforms and offer limited broker
functionality; thus, their current added-values are not yet attractive enough for users.
One of the big issues that hinders the realization of a multi-Cloud broker is the lack
of common Cloud standards and interoperability across the current heterogeneous
Cloud platforms. We believe that the standardization of the technology is the key
to enabling the interoperability across Clouds and to permitting their orchestration
through centralized broker entities.

Problem 2
The heterogeneity of Cloud services hinders the building of composite multi-Cloud

services.

One of the promising features of the multi-Cloud vision is that users should be able to
compose services from multiple providers to deploy complex services such as multi-
tier or workflow applications. However, the heterogeneity of the currently offered
Cloud services, which differ in their QoS, cost, and functionality, makes the manual
composition of services a big challenge for users. Although there is a plethora of
research concerning the semantic description of Cloud services [114], most of them
focus on single services and are not suitable enough for describing composite ser-
vices provisioned by different Cloud providers. Therefore, an extended description
is needed to consider the connectivity and dependability between the single services
forming a composite service. This semantic description can be used to automatically
build service and provider repositories, which can be consumed by the broker for the
purpose of discovery and selection.

Problem 3
Due to the lack of efficient and automatic service selection methods on Cloud, users

have to cope with the complexity of the decision-making.

Current commercial Cloud providers guarantee their customers only a static, non-
negotiable SLA, which is usually categorized into a gold, silver, or bronze SLA. Hence,
the users must manually make decisions about which Cloud to choose in order to
meet their functional and non-functional service requirements while keeping the pay-
ment low. The task of manually going through the web pages of Cloud providers to
compare their services and billing policies is clearly a burden for the users, especially
considering the difficulty of collecting and maintaining the needed information from

3



1. Introduction

the Clouds to make accurate decisions. All these justify the need for automated SLA-
based brokering policies to match user requirements with underlying Cloud policies.
While Grid brokers [66] usually involve only functional SLA parameters (e.g. CPU
cores, RAM size, number of servers), in Cloud computing, non-functional parameters
such as cost are also crucial for the customers. In contrast to the functional parame-
ters that often require an exact match, non-functional parameters give the matching
algorithms more flexibility to make trade-off between quality and cost. Current ap-
proaches for matching Cloud services [63] concentrate on fulfilling functional require-
ments with minimal costs and high reliability, ignoring the support for other QoS
parameters such as response time and latency. Furthermore, only few approaches
support SLA-based composite services selection [32]. In the course of this thesis, our
goal is to implement efficient, SLA-aware matching algorithms for automating the se-
lection of composite Cloud services, which is known as an np-hard problem [131].

Problem 4
Current scheduling and data management policies for workflow applications may

not be efficient enough in terms of cost and performance in a multi-Cloud
environment.

Since the multi-Cloud research is still in its infancy, the deployment of workflows on
top of composite multi-Cloud services have been addressed by few works [72, 127].
Most of these works concentrate on solving the technical challenges to running work-
flows on multiple Clouds without providing solutions to manage the Intercloud data
transfer at runtime, which can affect costs and performance. Furthermore, today,
related work on resource allocation for Cloud workflows is typically restricted to op-
timizing up to three objectives: cost, makespan and data locality [38]. Attempts to
support other objectives (e.g. reliability, energy efficiency) [50, 148] cannot be ap-
plied directly to multi-Cloud environments. However, the support for more SLA
constraints, like Cloud-to-Cloud latency and client-to-Cloud throughput, which both
have high importance for data-intensive workflow applications, is still missing. In
addition, their scheduling policies do not exploit the QoS of the Clouds on which the
workflow is deployed nor their impact on workflow execution performance. By im-
plementing efficient SLA-aware scheduling and data management policies, we target
an optimal and cost-effective deployment of multi-Cloud workflows.

1.2. Research Questions

The main question underlying this thesis is:

How can an adequate broker framework for automating and optimizing the deployment of
multi-Cloud applications be realized?
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The desired broker framework should satisfy the user SLA requirements in terms of
QoS and cost while assuring an acceptable application performance, thus ensuring its
market success. As an example of common multi-Cloud applications serving for the
validation and evaluation of the framework, we consider scientific workflows. On
our journey towards a multi-Cloud service broker, the following research questions
have arisen:

Research Question 1
How can a generic architecture of a multi-Cloud service broker framework be

designed?

In a broker-based multi-Cloud framework, a centralized broker entity should be able
to interact on behalf of the user with multiple, interoperable Clouds to perform dif-
ferent management and monitoring tasks. In order to implement generic multi-Cloud
broker architectures, a standardized abstract layer between the broker and the providers
is necessary. Herewith, the broker will be able to consume the uniform monitoring
and management interfaces offered by the Cloud providers by adding new service
values like matchmaking and data management on top of them. On the other hand,
an adequate user interface is needed to acquire the SLA requirements of different ap-
plications from the user and let him monitor the service provisioning and execution
status. This research question mainly addresses Problem 1.

Research Question 2
How can a composite multi-Cloud service be semantically described?

A semantic description of the composite Cloud service requests and offers is required
by a broker to perform an efficient matchmaking process based on the user require-
ments and Cloud monitoring information. To achieve this goal, the collected Cloud
providers’ monitoring data and service descriptions need to be stored in an abstract
manner within data repositories. Therefore, semantic techniques for describing the
provider service offerings, their QoS metrics and prices, as well as the complex SLA
requirements of composite services are required. These techniques should be easily
adaptable and extendable to support more SLA parameters and service types. This
research question is associated to Problem 2, presented in the previous section.

Research Question 3
How can the best Clouds be selected while fulfilling the user’s SLA requirements

and maximizing their benefits?

The automated selection of Cloud services is complicated because QoS parameters
and pricing information also need to be involved in the selection procedure, in addi-
tion to the functional parameters. Since the purpose of the selection is to benefit users,
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the matching scheme should select the Cloud services that result in the lowest cost
and best fulfillment of the SLA. In order to address these challenges, it is necessary
to automate the decision-making process in the broker by using efficient SLA-aware
matching algorithms. Since the selection of composite services is more complex due
to the large solution space, meta-heuristic methods need to be addressed. This re-
search question addresses Problem 3, discussed in the previous section.

Research Question 4
How can workflows be efficiently deployed on a multi-Cloud environment?

Since the QoS of the Clouds on which the workflow is deployed also heavily impacts
the performance and cost of the deployment, the scheduling and data management
policies should consider user SLA requirements. In order to solve this issue, schedul-
ing and data management components should be included in the broker framework
to support more high-level SLA parameters, like cost and availability. Furthermore,
in order to optimize the Intercloud data transfer, data locality and replication need
to be considered in the data management and scheduling policies. The impact of the
matching policies currently in use on the workflow execution performance would
also be interesting to study. This research question is associated with Problem 4.

Research Question 5
How can the proposed multi-Cloud broker framework and the resource allocation

policies be evaluated?

The evaluation of complex multi-Cloud usage scenarios and resource allocation poli-
cies on real Clouds requires different Cloud platforms with various properties in in-
frastructure, QoS, and cost. This constitutes a big challenge for Cloud developers and
researchers. A common solution is for them to use Cloud simulation environments
that permit them to conduct reproducible experiments with various scenarios with-
out any charged costs. Alternatively, it is possible for them to model heterogeneous
IaaS Cloud infrastructures with different pricing policies, QoS metrics, and service
offers, including computing and storage resources. Furthermore, simulation allows
them to evaluate and validate the functionally of different multi-Cloud matching and
scheduling policies with different applications scenarios and user SLA constraints.
Since existing simulations frameworks [20] offer only limited support to model com-
plex multi-Cloud usage and brokering scenarios, their use requires further extensions
and development work. Besides that, the simulation should be made realistic as pos-
sible in order to get more convincing results. In order to build a realistic simulation
testbed for a multi-Cloud broker framework, current simulation tools need to be ex-
tended to collect the needed monitoring information and to dynamically manage the
modeled Clouds. Lastly, real workload traces should be exploited by the simulation
and a workflow management system should be integrated in order to model real
multi-Cloud applications such as workflows.
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1.3. Scientific Contributions

In this section we highlight our scientific contributions to the research on SLA-based
service brokering for multi-Cloud, thereby concretely answering the research ques-
tions addressed in the previous section. In addition, we specify for each contribution,
the references where it has been published. As our first contribution, we propose
the generic architecture of a full-functional broker-based framework to assist users
in deploying simple and workflow-based services on multi-Cloud. We enhanced the
framework with two ontologies allowing the semantic description of the service re-
quests and Cloud provider offerings. For the efficient matching of Cloud resources
with respect to the user SLA requirements, we propose, as our third contribution,
a utility-based algorithm adopted from the auction theory. In order to optimize the
deployment of multi-Cloud workflows, we present a multi-dimensional resource al-
location scheme based on utility-based matching and data locality-driven scheduling
combined with a replica-based data management policy. Four our final contribution,
we implemented the broker framework into a realistic simulation environment to val-
idate its functionality and evaluate all the proposed resource allocation approaches.
Overall, the following contributions have been achieved:

Contribution 1
The conceptual design and implementation of a generic multi-Cloud service broker

framework.

In order to automate the deployment and management of simple and composite IaaS
Cloud services in a multi-Cloud environment, we propose a generic architecture of a
fully functional multi-Cloud broker framework. The main purpose of the broker is
to match the user requirements to current Cloud providers and manage the service
provisioning and execution on behalf of the user. In addition, the framework contains
components for interacting with the underlying Clouds, delivering Cloud informa-
tion, managing SLA issues, and authenticating users. The interoperability between
the broker and the Cloud providers is assured using an abstract Cloud Application
Programming Interface (API), which interacts with multiple provider specific gate-
ways offering standardized monitoring and management interfaces for the broker.
Furthermore, the broker supports the execution of multi-Cloud workflows by offer-
ing scheduling and data management capabilities. This contribution addresses our
first research question, discussed in the previous section. It has been previously pub-
lished in [90] and [89] and will be presented in Chapter 4.

Contribution 2
An ontological model for semantically describing IaaS composite service requests

and provider offerings.
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To store the SLA requirements and provider service offerings and to facilitate the
automatic building of composite IaaS services on multi-Cloud, we present an onto-
logical model consisting of a composite service requester ontology and a provider
ontology. The former ontology allows a semantic representation of the functional
and non-functional service SLA requirements, while the latter is used to describe the
characteristics of the underlying Clouds including their SLA metrics, pricing infor-
mation, geographical location and offered service types. This contribution addresses
Research question 2 presented in the previous section, which has been published in
[87] and will be presented in Chapter 4.

Contribution 3
An efficient utility-based matchmaking algorithm for composite services selection

on multi-Cloud.

In this thesis we propose a utility-based approach for selecting Cloud services by con-
sidering both functional and non-functional SLA requirements, including availability,
response time, latency, throughput, and cost. The approach is based on an economic
model adopted from the multi-attribute auction theory [9] to describe the user pref-
erences and his payment willingness as a function of weighted, non-functional SLA
attribute values. This strategy selects only the Cloud services that maximize user util-
ity while fulfilling the service functionality. To tackle the problem of composite ser-
vices selection, we make use of a graph-based mathematical model serving as input
for the matching algorithm. In addition, we propose an evolutionary genetic algo-
rithm called HU-GA, which uses the utility-based economic model as the objective
function. For a comparative study, we present a simple matching algorithm called
sieving, which randomly selects the Clouds that fulfill all the user SLA requirements.
Using realistic, simulation-based evaluation scenarios, we demonstrate the benefit of
utility-based matching compared to sieving in terms of cost and QoS. The detailed
description of both matching algorithms will be elaborated in Chapter 5 and the eval-
uation results will be presented in Chapter 7. This contribution has been previously
published in [88] and [87]. It addresses the Research question 3 from Section 1.2.

Contribution 4
A multi-dimensional resource allocation scheme and data management policy for

deploying multi-Cloud workflows.

In this thesis, we present a multi-dimensional resource allocation scheme to optimize
the deployment of large-scale workflow applications in multi-Cloud environments.
The scheme applies a two-level approach in which the target Clouds are first se-
lected using the utility-based HU-GA matching algorithm, and then the application
workloads are distributed to the selected Clouds using a data locality-driven task
scheduling policy. In addition, we apply a replica-based data management policy to
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reduce the data transfer between the Clouds during the execution. Using simulation-
based evaluation with a real, data-intensive workflow application, we demonstrate
the effectiveness of our proposed multi-dimensional scheme and data management
policy in improving the workflow execution performance and reducing the amount
and costs of Intercloud data transfers. In addition, we study the effect of combin-
ing different matching and scheduling policies on the workflow performance. The
multi-dimensional resource allocation scheme, data-aware scheduling and data man-
agement policies will be presented in Chapter 6 and will be evaluated in Chapter 7.
These contributions have been previously published in [86]. They address the afore-
mentioned Research question 4.

Contribution 5
The evaluation of the contributions using a realistic simulation framework.

To evaluate the contributions of this thesis and validate the full-functionality of the
designed broker framework, we present the implementation of a simulation envi-
ronment based on the CloudSim [20] simulation toolkit. In addition, to evaluate the
multi-Cloud workflow deployment, we integrate WorkflowSim [24] within the simu-
lation environment to model a workflow management system. Using the simulation
environment, we are able to model a multi-Cloud infrastructure and different appli-
cation scenarios for single and composite services deployment. To make the simula-
tion more realistic, we import real workflow applications traces to the simulation and
collect QoS metrics and pricing information from real Clouds to model the infrastruc-
ture characteristics. The simulation environment will be detailed in Chapter 4 and the
simulation scenarios and setup will be presented in Chapter 7. These contributions
have been previously published in [89] and [91]. They address Research question 5
from the previous section.

1.4. Thesis Structure

The outline of this work is structured according to the depiction in Figure 1.1, which
shows the relationship between the chapters and the scientific contributions they dis-
cuss. The remainder of this thesis is organized as follows:

• Chapter 2 presents the background information relevant to the research con-
ducted within this thesis. It includes first a short definition for Cloud and
Intercloud computing and then provides a short overview on current Cloud
standards. Then, it introduces the terms SLA and service brokering in con-
text of Cloud computing. After that, it defines composite Cloud services and
multi-Cloud workflows. Finally, it gives a short overview on the multi-criteria
decision-making and auction theory.
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(Ch.4)

Sieving Matching

SC1&SC5: Multi-Cloud Service Broker Framework Design and Implementation (Ch. 4)

SC3: SLA-based Match-Making (Ch. 5)

Multi-dimensional 

Resource Allocation

SC5: Simulation-based Evaluation (Ch. 7) 

SC4: Optimized Multi-Cloud Workflow Deployment (Ch. 6)

Figure 1.1.: Structure of the thesis and scientific contributions (SC).

• Chapter 3 presents the work relevant to the research topics addressed in this the-
sis and compares them to the contributions of therein. First, it presents the work
regarding multi-Cloud orchestration frameworks and then gives an overview
of existing work related to the SLA-based matchmaking of Cloud services. Af-
ter that, it discusses related work on multi-Cloud workflow frameworks and
on data locality-driven scheduling policies for Cloud workflows. Finally, it
presents and compares the features of existing Cloud simulation frameworks.

• Chapter 4 presents the fundamental architecture for our multi-Cloud service
broker framework design and details its components as discussed in Contri-
bution 1. Secondly, it describes how the SLA-based brokering of multi-Cloud
services is realized using our framework. After that, it presents the used on-
tologies, discussed in Contribution 2, to describe the IaaS provider offerings
and composite service requests. Finally, it highlights the solved challenges to
implement the simulation environment used to validate and evaluate the thesis
contributions.

• Chapter 5, introduces the SLA-based utility and sieving matching algorithms
as discussed in Contribution 3. First, it presents a graph-based mathematical
formulation of the matchmaking problem with composite multi-Cloud services.
Then, it describes the sieving algorithm and utility-based matching algorithm
functionalities. Finally, it presents the HU-GA utility-based genetic matching
algorithm implemented for matching large-scale service compositions.

10



1.4. Thesis Structure

• Chapter 6 presents the proposed multi-dimensional resource allocation scheme
to optimize the deployment of multi-Cloud workflows as discussed in Contri-
bution 4. First, it describes how the workflow deployment is performed using
our multi-Cloud service broker framework. Then, it describes the functionality
of the multi-dimensional resource allocation approach composed of the HU-
GA utility-based matching and data locality-driven scheduling (marked with
a dashed-box in Figure 1.1). Finally, it details the implemented data-aware
scheduling and data management policies.

• Chapter 7 discusses the simulation-based evaluations of the framework and ap-
proaches addressed in Chapters 4-6. First, it presents the simulation testbed
used to conduct all of our simulation experiments. Next, it evaluates and val-
idates the multi-Cloud service broker framework functionality. Then, it eval-
uates the utility-based matchmaking algorithm using several simulation sce-
narios with simple and composite services and shows its benefits compared
to the sieving matching algorithm. After that, we use a simulated, real world
case study to compare the matching efficiency of the utility-based algorithm
with a prospect-based matching algorithm. Furthermore, we evaluate the intro-
duced multi-dimensional resource allocation scheme using a real data-intensive
workflow application and discuss the cost and performance benefits that this
approach brings. Finally, the chapter summarizes the evaluations results and
makes final conclusions about their benefits and shortcomings.

• Chapter 8 summarizes the contributions of this thesis and their constraints and
presents possible extensions and future research directions.
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This chapter describes the background information on essential concepts necessary
for the understanding of the research presented in this thesis. We first present in Sec-
tions 2.1 and 2.2 the concepts of Cloud and Intercloud computing, which constitute
the target platforms addressed in this thesis. In Section 2.3, we give a short overview
on current Cloud standardization approaches. Then, we discuss in Sections 2.4 and
2.5 the concepts of Service Level Agreement and Cloud service brokering, on which
the thesis contributions presented in Chapter 1 are based. After that, we define in
Sections 2.6 and 2.7 the terms composite Cloud services and multi-Cloud workflows,
which are our target applications in this thesis. Finally, Section 2.8 gives a short intro-
duction to multi-criteria decision-making and auction theory, on which our proposed
multi-Cloud matchmaking approach is based.

2.1. Cloud Computing

Cloud computing extends the resource-sharing concept recently used in utility and
Grid computing with a business model, where resources are provisioned as services
to customers. Based on the web services [79] and virtualization technology, Cloud
computing provides on-demand customized computing environments with a simple
access interface to private and enterprise users. Since a precise definition for Cloud
computing is difficult to find, we refer to the well-known National Institute of Stan-
dards and Technology (NIST) [111] definition:

“Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing re-
sources (e.g. networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction.”

Overall, Cloud has the following main characteristics [23]:

• Resource pooling: A multi-tenant access to shared resources.

• Resource elasticity: The ability to scale resources up and out as needed.

• On-demand access: An automatic ubiquitous access over the Internet to the
resources.
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• Pay-per-use: The requested resources are charged only when used.

As shown from the left side of Figure 2.1, according to the NIST definition, Cloud
services can be classified into three delivery models:

• Infrastructure as a Service (IaaS) provides customers with on-demand compu-
tational resources in the form of Virtual Machine (VM), storage or network. Cus-
tomers can install operating systems and software packages on the machines to
establish their own computing environments.

• Platform as a Service (PaaS) provides customers an entire hosting environment
to develop their applications. The customer uses the environment without con-
trol over the operating system, hardware, or network infrastructure on which
they are running. Examples of PaaS-featured Clouds are the Google App En-
gine [62] and Microsoft Azure [10].

• Software as a Service (SaaS) provides the customers a functionality of using
the provider’s applications that run centrally on its Cloud in the form of web
services. The applications are accessible from various client devices through a
thin client interface. A well-known example of SaaS is Google Doc [68], which
provides a platform to produce and work with on-line documents.

Furthermore, as depicted on the right side of Figure 2.1, the NIST definition identifies
four possible Cloud deployment models:

• Public Cloud: provides on-demand services via the Internet to the general pub-
lic.

• Private Cloud: provides services restricted to the organization that owns and
manages the infrastructure.

• Community Cloud: provides services to a group of organizations that have
shared interests.

• Hybrid Cloud: provides services owned by public and private Clouds.

The understanding about Cloud computing has become more comprehensive since
Amazon published its Elastic Compute Services (EC2) [5] in 2006, the first worldwide
commercial computing Cloud, and its storage Cloud - the Simple Storage System (S3)
[6] to allow users to rent a server and store data on Amazon’s hosted computing and
storage infrastructures. In addition, many commercial and research institutions are
developing middleware stacks to build IaaS Clouds. Examples include Eucalyptus
[118], Zimory [174], OpenNebula [145], Nimbus [98] and Openstack [122, 133].

As previously mentioned in Chapter 1, this work focuses on Cloud services offered
by public IaaS Clouds. Nevertheless, the developed concepts and approaches can be
easily propagated to PaaS and SaaS Clouds. Throughout this thesis, we refer to IaaS
by “the Cloud provider” or “the Cloud” unless otherwise specified.
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Figure 2.1.: Cloud computing delivery (left) and deployment (right) models.

2.2. Intercloud Computing

Intercloud [13] is a recently introduced vision of globally interconnected Clouds (Cloud
of Clouds), much like the Internet as a network of networks. This vision addresses
interoperability across Clouds, focusing on the use of open Cloud standards. Hereby,
Cloud consumers should be able to freely choose and effortlessly switch between dif-
ferent Clouds. On the other hand, providers should be able to distribute their load
among geographically distributed datacenters in case of workload spikes or outages
in order to meet the availability agreed upon with their customers [70]. The common
future use cases and functional requirements for Intercloud computing are published
in a white paper by the Global Inter-Cloud Technology Forum (GICTF) [56], which is
an initiative started to foster the development of Intercloud technologies in industry
and academia.

Based on the strength of the relation between the participating Clouds in an Inter-
cloud environment, we distinguish between two usage scenarios: multi-Cloud and
federated Clouds. While in the former the Clouds are used independently of one
another, in the latter case the Clouds establish agreements with each other in order
to use the resources of the other Clouds [158]. An example of a Cloud middleware
supporting Cloud federations is RESERVOIR [138]. The main difference between a
multi-Cloud and a federated Cloud architecture is illustrated in Figure 2.2.

In this thesis we address multi-Cloud environments formed by independent public
Clouds. However, many of the proposed concepts can easily be adapted to federated
Clouds.
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Figure 2.2.: Intercloud computing architectures.

2.3. Cloud Standards

Current public Clouds offer proprietary APIs to their customers to manage and mon-
itor their Cloud services. Thus, there is strong potential for “vendor lock-in”, which
hinders users’ migration from one Cloud to another. To address the interoperability
and portability in Cloud, organizations like the Distributed Management Task Force
(DMTF), Cloud Security Alliance (CSA), Open Grid Forum (OGF), and the Storage
Networking Industry Association (SNIA) have formed working groups to determine
the details of Cloud standards. A list of their important deliverables is presented in
Table 2.1. The complete list can be seen under the Cloud standards wiki 1.

Table 2.1.: An overview of current Cloud standards.
Name Body Focus Last version
OCCI OGF IaaS Clouds management and monitoring Version 1.1
OVF DMTF Open virtualization format for VM images Version 2.1

CDMI SNIA Cloud data management interface Version 1.0.2
CIMI DMTF Cloud infrastructure management interface Version 1.0.1

As the table shows, most standards are still in the initial development stage and their
use is still restricted to the research community. We believe that the actual establish-
ment of Cloud standards in the coming years will play an important role in the fast
adoption of the Intercloud computing vision.

1http://Cloud-standards.org
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2.4. Service Level Agreement

A Service Level Agreement (SLA) is defined as a formal contract between service
providers and consumers to guarantee that the consumers’ service quality expecta-
tions can be achieved [161]. This widely-used term in context of telecommunication
and networking services has been adopted for Internet-based services since the start
of utility computing.

As Cloud computing is based on a business model where service consumers and
providers are isolated from each other (loosely coupled), SLA plays an important role
for the management of service provisioning. Thus, consumers and Cloud providers
should establish an agreement on the predefined service usage terms, which include
the metric of each agreed SLA parameter, service cost and the penalty terms for SLA
violation. The SLA parameters can be categorized into functional and non-functional
parameters. While the former describe the functional requirements for the service
operation, the latter assess QoS during its operation as well its usage cost. Some
typical functional and non-functional SLA parameters used in context with the IaaS
Cloud provisioning are provided in Table 2.2.

Table 2.2.: Typical functional and non-functional SLA for IaaS.
Functional-SLA parameter Non-functional SLA parameter

CPU cores (number) latency (time unit)
memory size (Gigabyte) throughput (Mbit/s)

operating system (e.g. Linux, Windows) availability (%)
storage size (Gigabyte) reputation

VM image size (Gigabyte) budget (cost unit)

According to [161], the SLA life cycle in utility computing systems has six steps,
which are to discover service providers, define SLA, establish agreement, monitor
SLA violation, terminate SLA, and enforce penalties for violation. The proposed ap-
proaches in this thesis address the different steps of the SLA management on Cloud,
except the SLA violation and penalty enforcement, which are outside of this thesis’
focus.

Current commercial Cloud services are offered with a very limited range of fixed
SLAs in a best-effort manner [100]. Most Clouds usually guarantee one QoS param-
eter, that is, availability, by paying penalties in form of monetary discounts to their
users in case of violations. Furthermore, the users must go to the corresponding
provider’s web page to read and accept the SLA terms. Thus, many research works,
including this work, are investigating the automation and full support of the SLA
management in Cloud.
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2.5. Cloud Service Brokering

Service brokering is a business model where services are delivered to the consumer
through a third party entity or company called a broker, who acts as mediator be-
tween the two parties. This concept has already been used in Grid computing to
distribute computing jobs to the Grid sites and monitor their status on behalf the user
[69, 66]. With the emergence of Cloud computing, service brokering has been adopted
to add new business values to Cloud services. Among them is the support of the user
in selecting the provider that better meets his SLA requirements. The basic interac-
tions needed between the broker, user, and provider during the selection process are
depicted in Figure 2.3.
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Figure 2.3.: Service brokering concept.

The market research company Gartner [65] has defined three opportunities to use a
Cloud broker:

• Cloud Service Intermediation: Building services on top of an existing Cloud
platform, such as additional security or management capabilities.

• Cloud Service Aggregation: Deploying customer services over multiple Cloud
platforms.

• Cloud Service Arbitrage: Brokers supply flexibility and opportunistic choices
and foster competition between Clouds.

The lack of standardization and interoperability across Cloud providers makes the
deployment of Cloud service brokers on current production Clouds a challenging
task. Therefore most existing commercial companies offering Cloud brokering solu-
tions use proprietary adapters to interface the Clouds that are limited in their func-
tionality. As depicted in Figure 2.4 the service brokering life cycle for Cloud consists
of the following steps:

1. Request Formulation: The user defines at design time the functional and non-
functional SLA requirements for the requested Cloud service.
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2. Discovery and Monitoring: The broker discovers the candidate service offers
and stores their monitored SLA metrics and pricing information in different
data repositories.

3. Matchmaking: The broker selects the suitable Clouds for provisioning the re-
quested service by matching the SLA requirements to the candidate computing
and storage resources.

4. Deployment: The broker deploys the service components on the selected providers.

5. Execution: The service is executed and its status is continually monitored at the
runtime.

6. Termination: The service can be terminated upon user request or by the broker
(e.g., in case of repeated SLA violations).
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Figure 2.4.: Cloud service brokering life cycle.

As previously mentioned in Chapter 1, we propose in this thesis a broker frame-
work that acts as mediator between the Cloud user and multiple interoperable Cloud
providers and supports the above-described brokering steps.

2.6. Composite Cloud Service

A composite service is defined as follows [128]:

“Complex (or composite) services typically involve the assembly and in-
vocation of many pre-existing services possibly found in diverse enter-
prises to complete a multi-step business interaction.”

According to the above definition, and compared to single Cloud services, which
provide a simple function, composite or complex Cloud services combine multiple
services in order to generate an added value [16]. The composition of services is a
widely used technique in the context of web service to implement business workflows
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(e.g., payment processing services). A composite Cloud service, which is composed
of single services provisioned by different Clouds, is called a composite multi-Cloud
service.

The operation and management of composite services in multi-Cloud environments
is very challenging, because the component services operate in a highly variable envi-
ronment and their QoS changes very frequently. In addition, there are no common in-
terfaces to access the component services belonging to different Clouds in a uniform
way. All of these raise the need for dynamic automated service composition tech-
niques. In this thesis, we address the selection and deployment of composite Cloud
services in multi-Cloud environments while taking SLA user requirements into ac-
count.

2.7. Multi-Cloud Workflows

Workflow is a technology that allows users to split a complex problem into smaller
parts that can be solved using a single computing unit, like a computing node of a
cluster system. According to [94], workflows are:

“coarse-grained parallel applications that consist of a series of computa-
tional tasks logically connected by data- and control-flow dependencies”

Over the last decade, many scientific communities in the field of astronomy, grav-
itational physics, computational biology, climate modeling, and life-sciences have
successfully used workflow technology to carry out large-scale experiments [126] on
Grid like Datagrid and Medigrid [110].

A simple workflow can be represented in the form of a Directed Acyclic Graph (DAG),
where nodes represent the single computing tasks and the edges represent the data
flow between them. Figure 2.5 depicts a simple DAG workflow consisting of sequen-
tial and parallel tasks. In this example, tasks are executed according to the alpha-
betical order of the letters assigned to their names. For example, task C cannot be
executed only if tasks A and B are finished, whereas tasks D and E can be executed in
parallel after task C is finished.

FD

E G

CBA H

Sequential pattern

Parallel pattern

Figure 2.5.: Sample sequential and parallel workflow patterns presented as DAG.
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The automated execution of workflows requires the use of a middleware called
Workflow Management System (WfMS), such us Pegasus [39] or Gridbus WfMS [69].
The WfMS takes the workflow description as input and coordinates the execution of
workflow tasks with respect to their order. The mapping of workflow tasks to com-
pute resources and the inter-task data transfer are performed using different schedul-
ing and data management policies [166].

On the one hand, the use of Cloud as a computing infrastructure to run workflows
brings many technological benefits to the workflow users, such as on-demand pro-
visioning, elasticity, provenance, and reproducibility [37]. On the other hand, it also
presents them with new challenges, like resource heterogeneity and “vendor lock-in”,
which hinder the adoption of workflows to Cloud. In addition, other factors such as
the economic and the QoS considerations become crucial with the execution of work-
flows on the Cloud. Furthermore, data management and security issues need to be
addressed before the migration to Cloud can be implemented.

In this thesis, we address the scheduling and deployment of multi-Cloud workflow
applications, focusing on scientific workflows. Multi-Cloud workflows are a partic-
ular type of Cloud workflow applications running on top of composite multi-Cloud
services, where the workflow tasks are executed across multiple Clouds.

2.8. Multi-Criteria Decision-Making and Auction
Theory

The Multi-Criteria Decision-Making (MCDM)[168] theory is a research field belong-
ing to operations research concerned with solving decision problems involving mul-
tiple, and often conflicting, criteria. Based on the goal of the decision maker, decision
problems are classified into choosing, ranking and sorting problems. In the literature
there are three basic methods for solving MCDM problems: Multi-Attribute Utility
Theory (MAUT), outranking, and the Analytic Hierarchy Process (AHP). These meth-
ods differ in the amount of input required from the decision maker and in their used
objective functions, however their input and output parameters are similar. The ba-
sic input parameters (i.e., criteria and alternatives) and the required inputs from the
decision maker to perform a MCDM process are depicted in Figure 2.6.

In MAUT [99], the preferences of the decision maker for or against each criterion are
quantified using utility functions and their weight values. The decision problem is
then simplified into a single objective function by aggregating the weighted utility
functions of the decision criteria. Thus, the best solution should maximize this objec-
tive function.

The outranking MCDM method [54] checks the degree of dominance of one alterna-
tive over another by comparing its performance against all decision criteria. Unlike
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Figure 2.6.: The Multi-Criteria Decision-Making (MCDM) process.

the other methods, the scaling and weighting of criteria is not required for the de-
cision process. Since the outranking method is in some cases unable to find a non-
dominant alternative, it is usually combined with other MCDM methods as a pre-step
to reduce the number of alternatives.

The AHP [139] methods solve decision problems by arranging the criteria and their
alternatives into a hierarchy structure. Unlike MAUT, AHP is based on pairwise
comparisons of decision criteria (using a numerical scale ranging from 1 (equal) to
9 (extremely important)) rather than using utility and weighting functions [63]. The
unique features of AHP compared to other MCDM methods are the capabilities to
support the interdependence among criteria and to check inconsistencies in the solu-
tions found.

The auction theory is a sub field of the game theory, widely applied in economy,
that deals with market auctions, assuming the presence of asymmetric information
among the participants. These latter, bidders, auctioneers, and vendors, follow dif-
ferent strategies to handle their revenues. In contrast to classical auction types, such
as English auctions [22], where only a single criterion (cost) is addressed, a multi-
attribute auction involves other criteria, such as the quality of the goods and the rep-
utation of the sellers. Many multi-attribute auction approaches adopt MAUT meth-
ods to rank the bids based on the additive weighting of different criteria [15]. Other
approaches use a quasi-linear utility function to manage the cost quality trade-off [9].
In these approaches, the buyers assign relative weights and scoring functions to each
of the auction attributes in addition to their payment willingness. The bids that max-
imize their revenues are then selected. In this thesis, we apply a similar method to
match Cloud services offered with different QoS and price policies.
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2.9. Summary

This chapter presented the background information on Cloud computing, Intercloud
computing, SLA, and service brokering, which are helpful for readers who may not
be familiar with some of the material needed to follow this thesis. Firstly, the con-
cepts of Cloud and Intercloud Computing were presented. After that, we discussed
some state-of-the-art Cloud standardization approaches. Then, the terms SLA and
service brokering were introduced in the context of Cloud. After defining composite
services, the chapter presented the challenges related to the execution of multi-Cloud
workflows on top of composite Cloud services, since they are the type of Cloud ap-
plications addressed in this thesis. Finally, we briefly introduced the methods for
multi-criteria decision-making and the multi-attribute auction theory, which are the
main ideas behind our proposed matchmaking approach on multi-Cloud.
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In this chapter we present related work relevant to the research topics addressed in
this thesis. In Section 3.1 we present related work regarding multi-Cloud orches-
tration frameworks. An overview of existing work related to the matchmaking of
Cloud services is provided in Section 3.2. After that, we discuss in Section 3.3 re-
lated work on multi-Cloud workflow frameworks. In Section 3.4 we present related
work on data-driven scheduling policies for Cloud workflows. Finally, Section 3.5
presents existing Cloud simulation frameworks. Many parts of this chapter are based
on [89, 88, 91, 86, 87].

3.1. Multi-Cloud Orchestration Frameworks

The research on multi-Cloud orchestration is still in its infancy stage. In fact, most
of the research conducted in this field has been undertaken by academic research
projects and early adopters from the industry. A taxonomy of the existing Intercloud
architectures and their brokering features with current research challenges is pro-
vided in [71]. In the following we list the main previous works in this area.

The CloudBus research project [17] provides a visionary architecture for market-oriented
Cloud computing. The three key components of this architecture are a Cloud broker, a
market maker and an InterCloud. The Cloud broker schedules applications on behalf
of the user by specifying the desired QoS requirements, whereas the market maker
acts as a mediator bringing together Cloud providers and customers. It aggregates in-
frastructure demands from the Cloud broker and matches them against the available
resources published by the Cloud providers. The InterCloud [18] provides a scal-
able, federated computing environment composed of heterogeneous, interconnected
Clouds, enabling Intercloud resource sharing. The development of the CloudBus ar-
chitectural framework is still ongoing. However, the initial experimental results using
Aneka [21] and Amazon EC2-based Clouds demonstrated that the market-oriented
CloudBus architecture and the proposed federation approach bring benefits to user’s
application performance in optimizing the cost and execution time. Although the
focus of this project is market-oriented, federated Clouds, some components of the
proposed multi-Cloud service broker framework in this thesis are inspired from the
CloudBus architecture.
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Theilmann et al. [75] presented a flexible framework for multi-level SLA manage-
ment within Clouds developed in context of the SLA@SOI EU project [144]. The core
framework consists of a business manager and an SLA manager. The business man-
ager controls relations between customers and providers, whereas the SLA manager
deals with SLA related issues, including negotiation, provisioning, and monitoring.
Besides the core framework, a domain-specific service manager provides manage-
ment functionalities for the SLA manager by interfacing the native provisioning sys-
tem. The main contribution of the SLA@SOI framework is that the service quality can
be predicted and enforced at runtime through automated SLA management. How-
ever, the implemented SLA framework lacks the support for service selection, which
is mainly addressed in this thesis.

Metsch et al. [149] implemented a prototype broker architecture by integrating the
above described core SLA@SOI framework and the RESERVOIR framework, which
offers an open platform for federated Cloud computing. In their presented architec-
ture, the core SLA@SOI framework acts as an SLA-based broker, whereas the RESER-
VOIR enabled sites act as candidate Cloud providers for the broker. The interop-
erability between the two Cloud frameworks is achieved by implementing a stan-
dardized SLA@SOI service manager interface using the Open Cloud Computing In-
terface (OCCI). The main contribution from their implementation was to validate
the use of Cloud standards as enabling technology for Cloud brokering. This result
inspired us in this thesis to use OCCI as standard Cloud API for managing heteroge-
neous IaaS Clouds.

The EU funded OPTIMIS project [53] developed a toolkit based on agent technology
to optimize the full service life cycle in Cloud. The flexible OPTIMIS architecture
supports multi-Cloud as well as Cloud federations. One of its key components is a
deployment engine, acting as a service broker that allows a decision to be made based
upon business aspects like trust, cost and risk. The toolkit has been validated with
real application use cases. In addition, the initial simulation experiments conducted
with real workload traces proved the benefits from the use of cost and risk aspects
as elasticity policies in the decision-making. A major drawback of the OPTIMIS ar-
chitecture in terms of interoperability is that the participating Cloud providers need
to develop and maintain multiple vendor-specific OPITMIS adapters to benefit from
the entire toolkit.

Another EU funded project is mOSAIC [115] which aims to simplify the development
and deployment of multi-Cloud applications. It proposes an agent-based framework
composed of a Cloud agency, which maintains the best resources configuration that
satisfies the application SLA and cost requirements, and a platform-independent pro-
gramming model for developers called mOSAIC API. One of the shortcomings of this
approach is that the developers need to rebuild their applications to integrate the mO-
SAIC API before using the framework.

Kertesz et al. [101] investigated the use of autonomic computing principles for re-
source management and SLA enforcement in Cloud environments. They proposed
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an SLA-based Service Virtualization (SSV) architecture, which is built on three main
components: a meta-negotiator responsible for SLA agreement negotiations, a meta-
broker for selecting the proper execution environment and an automatic service de-
ployer for service virtualization and on-demand deployment. The proposed service
virtualization architecture has been validated in a simulation environment based on
CloudSim using a real biochemical application as a case study. The simulation re-
sults showed performance gains in terms of execution time from the SSV architecture
compared to a less heterogeneous Grid meta-brokering solution.

The recently started MODAClouds, an EU funded research project [7], aims to deliver
model-driven design tools and a runtime environment to simplify the development
and deployment of applications on multi-Clouds with guaranteed QoS. The MODA-
Clouds architecture features a decision support system that supports the costs and
risks assessment at design time and a monitoring system to guarantee the quality as-
surance at runtime. As the project is still in the initial phase, no evaluation results
have been published yet.

As the first industry-driven project, the TM Forum Cloud service broker catalyst [57]
explored the role of a value-added service broker by demonstrating a proof of concept
for a trusted, transparent Cloud management platform. In contrast to our work, their
main purpose of using a broker was to enable Cloudbursting capability for applica-
tions using a hybrid Cloud delivery model with respect to the SLA requirements.

Besides the above-mentioned research projects, some companies have started to pro-
vide commercial Cloud brokering solutions as ready PaaS and SaaS products to Small
and Medium Enterprises (SME) customers. Their solutions are mainly implemented
to facilitate the aggregation and mediation of customer services, which are deployed
on different, public IaaS Cloud providers. Herewith they solved vendor lock-in is-
sues by providing integrated management and monitoring interfaces. In fact, the cus-
tomers do not need to use a multi-Cloud library (e.g., jclouds [84]) or write specific
adapters to access multiple Clouds at the same time. Two examples of the compa-
nies providing such solutions are RightScale [137] and Jamcracker [83]. Nevertheless,
few companies offer additional brokering features like automated SLA-based multi-
Cloud management and Cloud service selection. Among those companies we refer,
for example, to SensibleCloud [142] and CloudSwitch [29].

In summary, the above discussed multi-Cloud orchestration frameworks such as [17,
101, 149] are mostly based on centralized broker components, which are acting as
mediators between the user and providers. The proposed multi-Cloud broker frame-
work, presented in Chapter 4, acquired some ideas from these previous works. How-
ever, we have designed a high-level, generic architecture by integrating several state
of the art technologies and standards. First, our solution combines all the brokering
features included in the previous works, like SLA management, service deployment,
and monitoring and SLA-aware resource matchmaking. Secondly, we provide an ab-
straction layer to hide the technical details of Cloud providers by using current Cloud
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standards. Finally, we support the deployment of scientific multi-Cloud workflow
applications.

3.2. Matchmaking of Composite Cloud Services

The brokering policies currently in use for matching the user requirements to the
underlying Cloud services directly influence the quality of the service at runtime, as
well as the service usage cost. While Grid brokers usually involve only functional
SLA parameters in the process of seeking an appropriate computing element for a
submitted job, in Cloud computing, non-functional parameters, including cost, are
also crucial for customers. In contrast to the functional parameters that often require
an exact matching, non-functional parameters give the matching algorithms more
flexibility to enable trade-off between quality and cost.

A lot of early work on SLA-based service matching was done in the context of web
services as described in [42]. A wide range of different methods has been proposed
for determining suitable web service compositions for users. Most of these approaches
rely on artificial intelligence planning algorithms and apply backward chaining to
derive suitable compositions from a certain goal. Such an approach is either for state-
ful [107] or for stateless services [143]. Often such approaches are based on formal
descriptions of service functionality using the SAWSDL, OWL-S and WSMO descrip-
tion languages. Composition that includes additional information about the temporal
behavior of a service is presented in [11]. All these approaches consider service func-
tionality as the only composition criteria and largely disregard other non-functional,
particularly business-related, service properties used for service differentiation (e.g.,
QoS or prices).

Several approaches are proposed to solve QoS-based web service composition prob-
lems, as described in [4, 156, 2]. A detailed evaluation of these techniques is presented
in [140]. Most of these approaches like in [169, 12] are based on linear programming
methods, which are not applicable for large-scale service composition problems as
in Cloud computing. Besides, these approaches do not provide declarative represen-
tations of service offers and requests as required in a Cloud scenario. An approach
for an ontology-based representation of configurable web service requests and offers
with complex pricing and utility-based preference functions is presented in [106].
Although this approach supports multiple service configurations and features in a
service selection algorithm, it is restricted to the selection of single services and is not
applicable for service networks. Nevertheless, this approach serves as basis for our
proposed SLA-based matchmaking algorithm, presented in Chapter 5, which adopts
the efficient utility-based selection algorithm to match composite Cloud services.

There is preliminary work in the field of QoS-based service selection in Cloud envi-
ronments. A broad overview of the commonly used selection methodologies with
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some related research issues is given in [33]. Clark et al. [26] proposed a priority-
based service selection algorithm based on agent technologies. In their approach,
a broker agent determines whether the requirements in the service request can be
matched for each of the registered service offers. In case several offers fit the require-
ments, the selected candidates are sorted by the specified priority in the user request.
For example, if cost has a high priority, the provider with the lowest price is proposed
to the user as the best candidate for the service deployment. Their current algorithm
implementation supports three functional SLA attributes (OS type, CPU and storage
size) and two non-functional SLA attributes (price and availability). This proposed
priority-based approach is suitable for matching single services and its use for match-
ing composite services requires major modifications.

Modica and Tomarchio [114] used the Semantic Web Rule Language (SWRL) to map
between requests and service offers. The mapping process takes as input a request
and a provider ontology that describe the service requirements and the offered service
features, respectively. The best offer is then selected from the semantically-mapped
offers by ranking them against a semantic affinity metric. One of the shortcomings
of this approach is the large overhead in designing and maintaining the ontologies
and the difficulty of writing semantic rules for requests with complex SLA require-
ments. A similar semantic-based selection method based on SPARQL was proposed
by Nizami et al. [117] to rank service offers based on cost, reputation, reliably and
security with the goal of finding the cheapest provider. Both of these approaches are
restricted to the selection of single services. Redl et al. [136] apply feedback-oriented
machine learning methods to automatically match the Cloud provider SLA specifica-
tions and select the best-fitting service for the user. However, their approach supports
only functional SLA and is not suitable for composite services.

In [82], the authors investigated the use of auction and incentive-based schemes in
a multi-Cloud service broker. The latter leverages the dynamic pricing policies of
the Cloud service providers to select the offers maximizing the user utility, which is
calculated based on the additive weighting of cost, trust, and reputation indexes. In
their evaluation, conducted with single services, they showed the revenue benefit for
Cloud providers from their matching schemes but not yet the user profit.

In the context of the SMICloud project, Garg et al. [63] use AHP decision-making
methods to rank candidate Cloud service offerings. Although they showed the cost
and QoS matching effectiveness of the AHP-based ranking, as the project is still in the
initial phase, the evaluation is done only with simple Cloud services. Juan-Verdejo
and Baars [92] proposed a framework based also on AHP to support the partial mi-
gration of business intelligence applications to Cloud infrastructures by taking into
account business and economic considerations. However, their ongoing work still
lacks evaluation.

Menzel and Ranjan [112] presented a framework called CloudGenius to select the
best combination of a VM image and a Cloud infrastructure service to support Web
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server migrations to the Cloud. Their presented evaluation results with Amazon-
based services showed the time complexity of the algorithm, but not yet the impact
of the matching on the QoS. Although AHP-based selection methods are effective on
the ranking of Cloud services characterized by conflicting QoS parameters, they re-
quire the user to provide an accurate, subjective weighting scheme for each requested
QoS parameter, which heavily influences the matching results. Hence, these methods
can only perform well when the number of alternatives is small and the number of
objectives is limited [32].

Zhang et al. [172] proposed a declarative decision support system called CloudRec-
ommender for the automatic selection of infrastructure Cloud service configurations
using transactional SQL semantics. For this purpose, they introduced an extensible
ontology to describe the functionalities and QoS parameters of IaaS offers [171]. Their
current prototype implementation allows a selection based on previous stored service
information and does not support a dynamic selection based on QoS information, like
latency and resource utilization.

In [164] the authors showed the effectiveness of genetic algorithms compared to linear
programming methods in optimizing the composition of Cloud services. Contrary to
this work, they used the Simple Additive Weighting (SAW) of four QoS parameters,
which are response time, price, availability, and reputation, as fitness function for the
genetic algorithm. Besides, they focused on applications, where the order of execu-
tion of each component service is important. Such kind of applications, like business
workflows, are out of the focus of this work.

Dastjerdi et al. [32] proposed an approach that selects the Cloud VM images and
Cloud infrastructure services for a network of virtual appliances across multiple Clouds.
In their work, the selection is performed after an ontology-based discovery, using a
genetic-based matching algorithm with the goal to optimize latency, reliability, and
deployment cost. Their evaluation showed the cost-effectiveness of the genetic algo-
rithm compared to their introduced Forward-Checking Based Backtracking (FCBB)
algorithm, but not yet the QoS benefits from the matching.

Table 3.1 compares the previously discussed research works with the matchmaking
approach proposed in this thesis in terms of their matching methods, their use of
ontologies, and their applications scope. As can be seen from the table, a unique
feature of the matchmaking approach proposed in this thesis is the use of a hybrid
utility-based genetic algorithm (HU-GA), where a quasi-linear utility function is used
as an objective function to optimize the composite services selection. The used util-
ity function is adopted from the economic theory and has been already used in [73]
for the benchmarking of single Cloud services. In contrast to the other approaches,
our matching scheme supports dynamic parameters in matching, such as the Cloud-
to-Cloud latency and the resource load on the Clouds. We evaluate our proposed
HU-GA matching algorithm using a broker-based simulation framework with a real
scientific workflow to demonstrate its cost and QoS effectiveness in addition to its
time complexity.
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3.3. Multi-Cloud Workflow Frameworks

While WfMS for Grids are well established in the market [165], the automation of
workflows in Cloud environments is currently in the research phase. A common
approach for deploying workflows on the Cloud is to extend existing Grid WfMSs
[40, 30] such as the Generic Workflow Execution Service (GWES) 1 and Pegasus to
work on Cloud environments. An example is the work in [76], which extended the
Kepler WfMS to use Amazon EC2-based Cloud services. Juve et al. [95] evaluated
the cost performance trade-off of executing real workflow applications on EC2 with
data pre-staged from the Amazon S3 [6] Cloud storage. For this, they used the Wran-
gler cluster configuration tool [93] together with the Pegasus WfMS to provision and
configure virtual clusters on top of the EC2 instances the same way as on High Per-
formance Computing (HPC) and Grid clusters. They found that the choice of a stor-
age system has a significant impact on the workflow runtime and execution costs.
Buyya et al. [127] developed a workflow engine to schedule workflow tasks to Cloud
resources with respect to the QoS requirements in context of the CloudBus project.
The prototypical implementation of the workflow engine based on the Aneka Cloud
platform [21] using EC2 resources proved its performance benefits in executing work-
flows on the Cloud.

In [34] Oliveira et al. introduced the SciCumulus middleware, which follows the
Many Task Computing (MTC) paradigm [134] to automate the execution of work-
flows on the Cloud. Their simulation-based evaluation of the SciCumulus archi-
tecture showed the performance gains from using parameter sweep and data frag-
mentation as parallelism techniques, but not yet the monetary impact in executing
workflows on commercial Clouds. Garcia et al. [72] proposed a multi-agent ar-
chitecture for the concurrent and parallel execution of workflows on multi-Clouds,
where consumers, brokers, Cloud providers, and Cloud resources are represented by
agents. Based on a simulation testbed, they evaluated the performance benefits from
the agent-based workflow execution. However, their service selection mechanism
based on the Contract-Net Protocol (CNP) does not yet support the negotiation of
non-functional SLA constraints. Further, Tao et al. [150] presented a framework for
Intercloud service combination consisting of a workflow system, capable of manag-
ing workflow tasks running on different Clouds, and a cost-performance prediction
model. The prototype implementation of the framework is restricted to the EC2-
based Cloud services and does not yet support the automatic service selection.

In summary, from the above-mentioned approaches only [72, 127] addressed the de-
ployment of workflows in multi-Cloud environments. Although many of the ap-
proaches promise the support of heterogeneous Clouds, their concrete implementa-
tions mostly support only homogeneous Cloud environments. Moreover, most of
these approaches, except [95], fail to investigate the data transfer and inter-network

1http://www.gridworkflow.org/gwes/
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communication between the workflow tasks, which are crucial for Intercloud com-
puting. Furthermore, the selection of the required Cloud resources for the workflow
deployment is mostly based on functional SLA requirements and costs, while the
non-functional SLA requirements are usually not considered. In contrast, the multi-
Cloud broker framework proposed in this thesis allows a workflow deployment over
heterogeneous public Clouds with respect to the user requested functional and non-
functional SLAs.

3.4. Scheduling of data-intensive Workflows on Cloud

Within the past decade, the scheduling of data-intensive workflows has emerged as
an important research topic in distributed computing. Although the support of data
locality has been heavily investigated in Grid [135] and HPC, only a few approaches
apply data locality for Cloud workflows. A survey of these approaches is provided in
[113]. In this section we focus on works dealing with data locality-driven workflow
scheduling in multi-Cloud environments.

The authors in [51] adopted a dynamic auction-based scheduling strategy called BOSS
to schedule workflows in multi-Cloud environments from the game theory. Although
their conducted experiments show the effectiveness of their approach in reducing the
cost and makespan compared to traditional multi-objective evolutionary algorithms,
the support for data locality is completely missing in their work. Szabo et al. [148]
implemented a multi-objective evolutionary workflow scheduling algorithm to op-
timize task allocation and ordering using data transfer size and execution time as
fitness functions. Their experimental results prove the performance benefits of their
approach but not yet the cost effectiveness. Although the authors claim the sup-
port for multi-Cloud, in their evaluation they used only Amazon EC2-based Clouds.
Yuan et al. [167] proposed a k-means clustering strategy for data placement of scien-
tific Cloud workflows. Their strategy clusters datasets based on their dependencies
and supports reallocation at runtime. Although their simulation results showed the
benefits of the k-means algorithm in reducing the number of data movements, their
work lacks the evaluation of the execution time and cost effectiveness. Zaho et al. [47]
presented another workflow data placement strategy based on a genetic algorithm.
It is able to reduce data movements among the datacenters while balancing their
loads. Their algorithm outperforms the k-means algorithm in the number of data
movements and load balancing. In [125] the authors use Particle Swarm Optimiza-
tion (PSO) techniques to minimize the computation and traffic cost when executing
workflows on the Cloud. Their approach is able to reduce the execution costs while
balancing the load among the datacenters. The authors in [85] introduced an efficient
data locality-driven task scheduling algorithm called BAR (balance and reduce). The
algorithm adjusts data locality dynamically according to the network state and load
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on datacenters. It is able to reduce the completion time. However, it has been tested
only with MapReduce [35]-based workflow applications.

Hadoop [74] is a popular open-source implementation of the MapReduce framework
that allows the processing of large-scale data-analysis workflows. It comes with an
integrated dynamic job scheduler, which exploits a parallel file system (HDFS) to sup-
port data locality. The scheduler ensures that each job is assigned to the closest data
node that contains its required data, thereby reducing the network traffic and the
makespan. In addition, the scheduler assures a load balancing between the nodes.
One of the shortcomings of Hadoop is the lack of a user interface and its use of a spe-
cific programming environment. Therefore, there were some attempts to integrate
it with traditional WfMS to support scientific workflows such in [157]. Moreover,
the native Hadoop framework cannot execute tasks across multiple Clouds. In [163]
the authors proposed a market-oriented, hierarchical scheduling strategy to execute
multi-Cloud workflows. In the first step, service-level scheduling is performed by a
global scheduler to allocate suitable services to each workflow task with respect to
QoS constraints. In the second step, a meta-heuristic-based local scheduler performs
a task-level scheduling to optimize the task-to-VM assignments inside the selected
Cloud. Although this approach has some similarity to our proposed two-level multi-
dimensional resource allocation scheme, it supports only cost and makespan as QoS
constraints. Furthermore, it is only suitable for compute-intensive workflow applica-
tions, since the authors do not consider data locality.

The examination of the previous mentioned works shows that the support of data
locality in scheduling improves the performance and minimizes the cost of workflow
execution on Cloud. However, their used scheduling policies, except in [163], do not
exploit the QoS of the Clouds on which the workflow is deployed. For solving this
issue, a possible solution is to implement the scheduling as part of a middleware on
top of the Cloud infrastructures. In this way, it would be possible to support more
user-defined QoS requirements, like latency and availability in the task scheduling
policies. Since a proper SLA-based resource selection can also have a significant im-
pact on the performance and cost, it would be interesting to study the impact of the
used matching policy on the scheduling performance of data-intensive workflows.
To support an SLA-based workflow deployment on multi-Cloud, our proposed bro-
ker framework includes a data locality-driven task scheduler and data manager. In
our evaluation with real scientific workflows, we study the impact of the matching
and scheduling policies on the data movements, costs, and makespan.

3.5. Cloud Simulation Frameworks

Since it is difficult to evaluate complex Cloud usage scenarios and resource allocation
policies on real Cloud testbeds, a common solution for Cloud researchers and devel-
opers is to use Cloud simulation environments. On one hand, the use of simulation
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permits them to reproduce the modeled scenarios and, on the other hand, the refine-
ments of the studied policies without any charged costs. In the recent years, different
Cloud simulation tools have been developed. A full review of these tools is provided
in [173]. A detailed comparison of their features that are relevant for this thesis is
provided in Table 3.2.

CloudSim [20] is a popular event-based simulation environment, developed by the
Cloud Computing and Distributed Systems (CLOUDS) laboratory at the University
of Melbourne. It offers capabilities to simulate large-scale heterogeneous IaaS com-
puting Clouds including VMs and Hosts. The main focus of CloudSim is on the mod-
eling of VM provisioning and scheduling policies and of different Cloud applications
called Cloudlets. This easy extensible simulation toolkit, written in Java, served as the
basis evaluation environment for many research works on Cloud. CloudAnalyst [159]
is a graphical simulation tool built on top of the CloudSim to analyze the load behav-
ior of large social network applications, such Facebook 2. The Internet traffic routing
between the user bases located in different geographic locations and the Cloud dat-
acenters is controlled in CloudAnalyst by a service broker that decides which data-
center should serve the requests from each user base based on different routing poli-
cies. CloudAnalyst extended CloudSim with three different brokering policies, which
are network-latency-based routing, response-time-based routing, and dynamic-load-
based routing. NetworkcloudSim [64] is another extension of CloudSim that sup-
ports real HPC applications such as parallel message passing (MPI) applications and
the modeling of networked datacenters. These newly added features have been in-
cluded in the current CloudSim version. Since CloudSim itself lacks the support of
workflows, an extension called WorkflowSim [24] has been implemented to model
the deployment of workflows managed by the Pegasus WfMS on top of CloudSim
modeled datacenters.

GreenCloud [102] is a packet-level Cloud Simulator, which is built on top of the net-
work simulator NS-2 3 to enable the simulation of energy-aware Cloud datacenters
and model their detailed energy consumptions. This unique feature is missing in
the other tools; however, it is not within the scope of this thesis. Another event-
based simulator is GroundSim [124], which allows the simulation of real scientific
applications on Cloud and Grid environments. A unique feature of GroudSim is
the native support for scientific workflow applications through the integration of the
ASKALON WfMS [48]. Therewith, it is possible to study different workflow schedul-
ing policies and to model job failures on Cloud environments. In order to predict
the cost and performance trade-offs when migrating applications to Clouds, the au-
thors in [116] implemented the graphical simulation tool iCanCloud. This scalable
tool allows for the modeling of computing datacenters with different hypervisors,
networks, and storage systems. One of its features is the direct inclusion of modeled
real Amazon EC2 instances and their pricing policies in the simulation.

2http://www.facebook.com
3http://www.isi.edu/nsnam/ns/
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3.6. Summary

A common issue of the Cloud simulation tools described above is the lack of support
for pure storage Clouds, and also the limited support for workflow deployments on
multi-Cloud. To fill these gaps and to evaluate the proposed contributions, we im-
plement in this thesis a multi-Cloud broker simulation framework by extending the
CloudSim and WorkflowSim tools. Our choice of CloudSim and WorkflowSim as
simulation tools is due to their easily-extendable source code and their proven capa-
bility to model brokering and workflow scheduling policies on Cloud.

3.6. Summary

This chapter presented the relevant related work in the main research fields addressed
in this thesis. First, existing multi-Cloud orchestration frameworks were presented.
Then, the related works on the SLA-based resource matchmaking in context of com-
posite Cloud services have been discussed. After that, the chapter presented existing
multi-Cloud workflow frameworks and the conducted research work on the schedul-
ing of data-intensive workflows on Cloud. Finally, a detailed comparison of the fea-
tures included in existing Cloud simulation frameworks and their needed extensions
for a simulation-based evaluation of the contributions in this thesis were provided.
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4. Design and Implementation of a
Multi-Cloud Service Broker
Framework

The lack of interoperability across Clouds and the difficulty of comparing the costs
and SLAs of the Clouds hindered users’ ability to deploy their services on multiple
Clouds. In this chapter, we address Research questions 1, 2, and 5, as specified in
Chapter 1. First, we present a broker-based framework to assist users in the task
of selecting and deploying their services on multi-Cloud environments with respect
to their needs in terms of SLA and costs. Then, we detail the proposed ontologies
for describing service requests and offers. Finally, we present a simulation-based
implementation of the broker framework based on the CloudSim toolkit. Many parts
of this chapter are based on [90] and [89].

This chapter is organized as follows. In Section 4.1, we present the multi-Cloud
service broker framework’s fundamental architecture and components. Section 4.2
describes how the SLA-based multi-Cloud service brokering is realized through our
framework. In the following section, the ontologies used to describe the IaaS provider
offerings and service requests are presented. Finally, in Section 4.4, we discuss chal-
lenges of implementation in the simulation framework and describe implementation
details.

4.1. Multi-Cloud Service Broker Architectural Design

As previously mentioned in Chapter 3, current frameworks for deploying multi-
Cloud services are still either in the implementation phase or do not provide all the
desired functionalities needed by users. Motivated by this consideration, we pro-
pose in this section a generic architecture of a multi-Cloud service broker framework
developed to facilitate the IaaS services deployment on multi-Cloud environments.
The three-tier architecture of the proposed framework, depicted in Figure 4.1, is com-
posed of the client, the Cloud service broker and the Cloud providers. The Cloud
service broker, as shown in the middle of the architecture, serves as a mediator be-
tween the users and the Cloud providers. The internal components of every architec-
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ture part are discussed in detail in the following subsections. Their roles are briefly
described in Table 4.1.

Client

Replica 
catalog

Intercloud Gateway

Vendor Cloud Platform

Monitoring and Discovery Manager

Match Maker

Data Manager
Deployment 

Manager

Scheduler

Abstract Cloud API

Cloud Service Broker

IaaS Cloud Provider

Service and 
Provider 

Repositories
(Persistence)

SLA Manager

Identity Manager

Workflow Management System

User Interface

Figure 4.1.: Multi-Cloud service broker architecture.

4.1.1. Cloud Service Broker

The Cloud service broker forms the core of our implemented framework by offering
new, added-value services to users. Its main task is to find a suitable target infras-
tructure platform for running the requested user applications on multi-Cloud. Addi-
tionally, its high-level architecture design allows the deployment and monitoring of
services on top of heterogeneous Cloud providers.

As can be seen from Figure 4.1, the main component of the broker is a match maker
that performs a matching process where the functional and non-functional SLA re-
quirements of users are compared to the monitored SLA metrics as well as the capac-
ity load of the Clouds. The match maker uses different matching algorithms to make
a trade-off between the cost and SLA characteristics of the selected Clouds. These are
discussed in detail in Chapter 5. Another key component of the broker is the SLA
manager. It controls, on behalf of the user, the entire SLA life cycle steps, including
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Table 4.1.: Role of the multi-Cloud broker framework components.
Component Role

C
lo

ud
Se

rv
ic

e
Br

ok
er

Identity Manager User authentication and Cloud single-sign-on
SLA Manager Management of SLA negotiation and provisioning

Monitoring and Collecting monitoring
Discovery Manager and resource information from Clouds

Deployment Manager Deploying services on the selected Clouds
Abstract Cloud API API to interact with heterogeneous Clouds

Data Manager Intercloud data transfer management
Match Maker Selecting suitable Clouds with respect to SLA

Scheduler Scheduling workflow tasks
Persistence Storing service status and resources information

C
lie

nt WfMS Management of workflow tasks
User Interface Define service requirements and check status

Replica Catalog map data replica to datacenter location

C
lo

ud
s Intercloud Gateway standard service frontend for the Cloud provider

vendor The native Cloud platform hosted
Cloud platform by the Cloud provider

negotiation and provisioning. The deployment of the matched resources as well as
their high-level management (e.g. start, stop, suspend) is performed using the de-
ployment manager component. The monitoring manager keeps the current state of
the running services and continually updates the Cloud resource’s information for
the purpose of service discovery. All the collected monitoring data as well the service
SLA requirements are stored in dedicated data repositories in the persistence layer
of the broker, serving as input for the matchmaking process. Furthermore, the bro-
ker architecture contains a scheduler used to distribute the application workloads,
i.e., workflow tasks, at the runtime to the selected resources according to different
scheduling policies. The data manager is additionally included in the broker architec-
ture to manage Intercloud data transfers between the deployed resources at the run-
time. The entire communication of the broker with the underlying Cloud providers is
realized through standard interfaces offered by provider hosted Intercloud gateways.
The identity manager component, used to handle the user authentication and access
control on the Cloud, is out of the focus of this thesis.

The decoupling of the broker component from the provider layer, through the use
of standardized management interfaces, also allows the user to directly access his
deployed service in case of a broker failure. This reduces the risk of a bottleneck
within the centralized broker architecture. In order to reduce the load on one broker,
and to ensure a higher availability from the user’s perspective, a common solution
applied to Grid brokers, is to deploy multiple redundant broker instances.
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4.1.2. Provider Intercloud Gateway

The Intercloud gateway is the key component of our framework hosted on the provider
side to interface the vendor Cloud platform. It acts as a standardized service frontend
for the Cloud provider and adds the needed abstraction layer to interact with the bro-
ker and, consequently, enables the interoperability on top of the heterogeneous Cloud
platforms. Its main role is to provide the broker with common management and mon-
itoring interfaces while hiding the internal provider policies. The interaction of the
Intercloud gateways with the broker is realized through an abstract Cloud API.

4.1.3. Client

The client provides Cloud users with an interactive user interface to submit their ser-
vice requests to the broker by describing the functional and non-functional service
requirements. Moreover, the user is able to manage and monitor the service after its
deployment through a single management console. The client includes also a WfMS
to support the deployment of workflow applications on multi-Cloud. It delivers the
workflow tasks to the underlying Cloud service broker and takes care of their depen-
dencies. Additionally, a replica catalog is used to manage data replicas.

4.2. SLA-based Service Brokering on Multi-Cloud

The goal of the SLA management is the management of service delivery systems to
meet the QoS objectives specified in SLAs [75]. As previously mentioned in Chapter
2, the SLA management life cycle in Cloud computing has six steps, which are: dis-
cover service providers, define SLA, establish agreement, monitor SLA violation, en-
force penalties for violation, and terminate SLA. In the proposed multi-Cloud frame-
work, the broker acts on behalf of the user to handle all the SLA management tasks.
In the following subsections we discuss the interaction needed between the different
broker components throughout the SLA management steps. Note that the monitor-
ing of SLA violation and the enforcement of penalties at runtime are not covered in
this section, as they are out of the focus of the thesis. Nevertheless, the proposed
framework architecture can support such mechanisms by integrating methods of au-
tonomic computing like MAPE-K loops [78].

4.2.1. SLA Discovery and Definition

In order to discover the SLA features supported by the underlying Cloud providers,
the user asks, with the assistance of the user interface, the SLA manager to retrieve
the provider SLA templates published through their Intercloud gateways. An SLA
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template represents, among other things, general information about the offered ser-
vices and the margin values of the supported SLA parameters (e.g. supported OS,
maximal number of CPU cores, and minimal guaranteed availability). The informa-
tion retrieved from the SLA templates is stored in a structured data repository in the
broker persistence layer.

The next step is the SLA definition. For this purpose, the user can populate a suitable
SLA template with required values or even define a new SLA from scratch to describe
the functional and non-functional service requirements. Since the latter greatly im-
pact the matching process used in the next SLA management step, the user needs to
provide reasonable values.

4.2.2. SLA Negotiation

In this step, a negotiation process, managed by the broker SLA manager, is started
in order to reach an SLA agreement between the user and the appropriate Cloud
providers. The ideal SLA negotiation flow of an incoming SLA user request to the
service broker is illustrated by the sequence diagram in Figure 4.2. For simplicity,
only one provider is shown on the right side of the figure but, in reality, multiple
providers are involved in the negotiation process. The SLA negotiation is done as
follows: The user submits a service request (1) with the previously defined SLA to
the SLA manager. Then, the SLA Manager, after parsing the SLA definition (2), asks
the match maker if it can deploy the service with the specified requirements (3). In or-
der to respond to this request, the match maker starts a matchmaking process to find
the best suitable providers (5) by matching the gathered resource properties (e.g., of-
fered services configuration and current SLA metrics) from the monitoring manager
(4) with the service requirements by applying predefined matching algorithms. At
the end, the user gets a response to his request from the SLA manager with the re-
spective matching results. Upon user acceptance, an agreement can be established (6)
with the matched providers and the selected resources could be reserved for a prede-
fined lease period. If none of the providers can be matched, the aforementioned steps
may be repeated for renegotiation until an agreement is reached (7). Note that in our
negotiation strategy, based on SLA-aware matchmaking, the pricing policies of the
Clouds are fixed and non-discriminatory [151], thus, they are independent from the
customer type or his geographic location. Additionally, we are not using bargaining-
based [162] or auction-based negotiation protocols such as English-auction [22] and
double continuous auction [60], which require a dynamic pricing policy. Further-
more, our negotiation objective is to benefit the equally treated users by maximizing
their profit without considering the provider profit (i.e., non-cooperative negotiation).
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SLA Manager Match Maker Monitoring Manager Intercloud Gateway

(1) SLA request

(2) parse SLA

(4) get monitoring data

query response

match response

{ELSE}

(5) find best match
(7) can't match

best match

(6) agree

agreement responseSLA agreed

create agreement

query SLA templates

query response

Cloud Platform

reserve resources

query resource data

get SLA templatesSLA templates

(3) match resources

Figure 4.2.: The SLA negotiation flow.

4.2.3. SLA Provisioning and Monitoring

The interactions needed by the broker components to provision an agreed-upon SLA
are shown by the sequence diagram in Figure 4.3. After establishing an agreement,
a provision request (1) is submitted by the user to the SLA manager. After receiving
the provision request, the SLA manager translates (2) the associated SLA to a service
deployment request and asks the deployment manager to deploy the service (3). The
deployment manager forwards the request to the appropriate Intercloud gateways to
create and start the requested resources. In response, a unique service ID, used to
address the deployed service, is returned. The user is then able to monitor the service
(4) by requesting the metric values of the agreed QoS parameters from the monitoring
manager. The user is also able to perform actions on the deployed resources (e.g., start
and stop) (5). Once an agreement is terminated (6), all the created resources should
be released by the Cloud platforms.

4.3. Ontological Model

In order to facilitate the semantic storage of SLA and monitoring data collected in the
above-described SLA discovery and definition step, in particular, for complex ser-
vices such as composite services, we make use of two ontologies. These provide the
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Figure 4.3.: The SLA provisioning and monitoring flow.

domain specific model and vocabulary to semantically describe IaaS service offerings
as well as composite service requirements. Some of the terminologies used in these
ontologies are taken from the OCCI [119] specification, which defines a standard API
to access and manage heterogeneous IaaS Clouds. In the following we present in
detail the two designed ontologies.

4.3.1. IaaS Composite Service Requester Ontology

The IaaS composite service requester ontology, as depicted in Figure 4.4, captures the
user requirements, which are defined as functional properties (e.g., VM type, number
of VM instances, storage size) and non-functional properties (e.g. budget, latency,
and availability), which represent the QoS requirements. As can be seen from the
figure, the functional requirements are specific to each single service, whereas the
QoS requirements are global for the composition. This ontology also holds the current
status of the composite service throughout all the SLA management steps, which can
be one of: requested, matched, unmatched, deployed, failed, started, stopped, or
terminated. In addition, each requested service has a unique Identifier (ID) and is
associated to a specific customer type.
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Figure 4.4.: Composite IaaS service requester ontology.

4.3.2. IaaS Cloud Provider Ontology

The IaaS provider ontology, as depicted in Figure 4.5, provides an abstract model for
describing the provider service offerings, their QoS metrics, and pricing policies. In
the current model, we concentrate on the modeling of IaaS offers, including storage
and computation. However, the model can be easily extended to support more Cloud
delivery models or QoS metrics. Each provider is presented through the ontology
with a unique name, ID, and a geographical location. In addition to the pricing poli-
cies for the provided computing and storage resources, the provider ontology also
captures the network traffic cost charged by each Cloud provider.

4.4. Simulation-based Multi-Cloud Service Broker
Framework Implementation

Using the Java language, we implemented a simulation environment for the multi-
Cloud service broker framework presented above. This allows us to validate the func-
tionality of its components without the setup of a testbed with real Cloud providers,
which is extremely time and cost consuming. In addition, the use of simulation allows
us to fully validate the proposed broker concept with various scenarios and, hence,
to study the developed resource matching and scheduling schemes (see Chapter 7).
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Figure 4.5.: IaaS Cloud provider ontology.

The simulation environment built on top of the CloudSim 3.0 simulation toolkit is de-
picted in Figure 4.6. In the following subsections we go through all the implemented
components by describing the used technologies and tools.

4.4.1. Implementation Details

For implementing a full-functional simulation environment for the multi-Cloud bro-
ker, multiple tools have been used and integrated with one another. Figure 4.7 shows
a simplified class diagram of the simulation framework based on CloudSim. The
classes shown in green are the native CloudSim classes. In the following, we detail
the main implemented components and the needed extensions.

CloudSim Extensions

CloudSim is a scalable, open-source simulation tool offering features like support for
modeling and simulation of large-scale Cloud computing infrastructures, including
datacenters, brokers, hosts, and virtual machines (VMs) on a single host. In addition,
the support for custom developed scheduling and allocation policies in the simula-
tion made CloudSim an attractive tool for Cloud researchers. In our simulation envi-
ronment, CloudSim is used to model large-scale and heterogeneous Cloud providers.
This allows us, for the purpose of evaluation, to easily configure the amount of Cloud
provider resources accessible by the broker. Nevertheless, some CloudSim extensions
were needed to allow the dynamic creation, destroying and monitoring of the VMs
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Figure 4.6.: Simulation environment.

during simulation runtime and, therefore, to enable the automatic service deploy-
ment in the broker. Furthermore, as CloudSim does not support the simulation of
pure storage services, an extension has been developed in the context of a bachelor
thesis, supervised within the thesis period, to model the brokering of object storage
Clouds [146].

Cloud Service Broker Implementation

We implemented the core broker services including the SLA manager, deployment
manager, the match maker, and the monitoring manager as Java classes included in
the Cloud service broker package. The implemented match maker functionality of the
broker is extensible enough to permit the easy integration and evaluation of different
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resource matching policies. Furthermore, two persistence classes, named ServiceReg-
istry and ProviderRegistry, are used to store and query all the service and provider
data stored using the previously presented ontologies during the simulation. The
ontologies are implemented in the classes ServiceRequest and Provider, which are the
abstractions of a composite service request and a Cloud provider respectively.

While looking for an abstract Cloud API to access different Cloud platforms, we
found that OCCI is the most suitable for our framework. OCCI is an extensible spec-
ification for remote management of Cloud infrastructures, allowing the development
of interoperable tasks over heterogeneous Clouds. The current OCCI specification,
focusing on IaaS Cloud provisioning, defines three abstract resource types, which are
compute, storage, and network. All the operations on resources can be requested
on a REST manner over Hyper Text Transfer Protocol (HTTP) methods (GET, POST,
PUT and DELETE). The use of OCCI as abstract Cloud API allows the broker to act
as OCCI client against the Intercloud gateway, which runs as OCCI-server on the
provider side.

Intercloud Gateway Implementation

In order to simulate the Intercloud gateway component serving as standard service
frontend for Cloud providers, we implemented, based on the open source Java imple-
mentation for OCCI called OCCI4JAVA [120], an OCCI frontend for CloudSim. In this
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way, the entire communication between broker and providers is forwarded to the na-
tive CloudSim DatacenterBroker class through standard OCCI-interfaces. The use of
an OCCI-based Intercloud gateway allows us to model a multi-Cloud infrastructure
consisting of interoperable Clouds mediated by a Cloud service broker.

In contrast to the OCCI specification, as CloudSim simulations usually run on one
host, the broker communicates with the Intercloud Gateway through simple Java
object calls instead of using the defined Representational State Transfer (REST)-like
methods. Furthermore, we extended OCCI4JAVA with an OCCI monitoring mixin
(see Appendix C) to allow the broker to query resource properties like datacenter
static information (e.g., location, supported OS, CPU architecture) and the specific
datacenter monitoring metrics values from CloudSim.

Request Generator

The simulation-based evaluation of the broker requires the modeling of realistic ser-
vice requests to achieve valuable evaluation results. Thus, we implemented a service
RequestGenerator helper class that continuously generates synthetic computing ser-
vice requests with different VM types at a configurable rate. The configuration of
the VMs is similar to the configuration of the compute instances provided by current
commercial Clouds.

Workload Reader

In order to have more realistic simulation results, we included a WorkloadReader class
to import the service requests and resource workloads from real workload traces like
the Grid workload archive [81] or the PlanetLab trace data [132]. The imported trace
data is used then to dynamically generate the CloudSim Cloudlets, which model the
workload on the requested VMs. The use of Grid traces is justified by the lack of
public accessible real Cloud traces [152].

Simulation Setup/Output

The broker simulation based on CloudSim requires the modeling of multiple IaaS
Clouds with different host and VM configurations, pricing policies, and QoS char-
acteristics. Hence, we implemented helper classes to read the configuration of the
datacenters and their pricing information from text files (in the CSV format). This al-
lows us to conduct different experiments by easily changing the Cloud infrastructure
each time.
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In order to display the simulation results in the client during and at the end of the
simulation, we implemented a helper class to collect and process the different eval-
uation metrics and to format the output of the results. An example of a simulation
output is provided in Appendix D.

Workflow Management System

For managing large-scale workflows in the simulation environment, we integrated
WorkflowSim [24], a modeled version of the Pegasus WfMS [39] developed on top
of CloudSim. WorkflowSim contains a workflow mapper to map abstract workflows
to concrete workflows, which are dependent on execution sites, a workflow engine
to handle the tasks and data flow dependencies, and a clustering engine to reduce
the number of tasks by applying different merging techniques. In addition, Work-
flowSim includes a workflow parser to import real workflow traces formatted in the
Pegasus DAX Extensible Markup Language (XML) format into the simulation. To
model the scheduling of workflows using our multi-Cloud broker framework, we ex-
tended WorkflowSim to use the scheduler included in the Cloud service broker. The
scheduler interface allows the easy implementation of different workflow scheduling
policies.

4.4.2. Simple Simulation Use-Case

To show how simple simulation experiments can be conducted with the help of our
implemented simulation framework, we address the deployment of synthetic, single
computing service requests on Clouds selected using the broker. The simulation flow
needed to process the incoming client service requests to the service broker is illus-
trated by the flow diagram in Figure 4.8. The simulation is done as follows: In the
first step, CloudSim is initialized according to the desired simulation scenario. Then,
the RequestGenerator starts to continuously generate VM provisioning service requests
with a variable request arrival rate. All the request and provider data are maintained
in the corresponding ServiceRegistry and ProviderRegistry classes during the simula-
tion. The broker, after receiving the request, asks the match maker if the service can be
deployed with the specified requirements. For this, the match maker starts a match-
making process to find the best suitable provider by matching the gathered resource
information from the monitoring manager with the service requirements and by ap-
plying the pre-configured matching algorithms. Upon the existence of a match, the
service is automatically deployed and the requested VM is created and started on the
selected CloudSim datacenter with the modeled workload traffic (Cloudlet). During
the execution time, the VM status is queried periodically by the monitoring manager
until the VM is destroyed. If none of the providers can be matched, the request is
discarded by the broker. All the aforementioned simulation steps are repeated until
reaching the preset maximum number of requests or simulation time limit. In this
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case, the simulation is terminated and the output results are displayed in the client.

Figure 4.8.: Simulation flow.
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4.5. Summary

In this chapter we described the architectural design of a Cloud service broker and
proposed a simulation environment to test and evaluate the broker. Specifically, we
focused on the SLA management and interoperability features included in the bro-
ker, allowing the customized deployment of services on multi-Cloud. In addition,
this chapter presented an ontological model consisting of two ontologies, which are
used to semantically describe the composite service requests and IaaS provider of-
ferings. Finally, the chapter discussed the implementation details of the simulation
environment by listing the used tools and technologies.
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5. SLA-based Matchmaking of
Composite Cloud Services

After presenting the architecture of the multi-Cloud service broker framework in the
previous chapter, we focus in this chapter on solving the matchmaking problem for
multi-Cloud composite services, specified as Research question 3 in Chapter 1. For
this purpose, we propose two matching algorithms capable of matching user require-
ments in terms of functional and non-functional SLA parameters, which have been
published in [88] and [87]. The main algorithm is a novel, utility-based matching
algorithm adopted from the multi-attribute auction theory with the goal of maximiz-
ing the user utility. The second algorithm is a simple matching scheme called sieving,
which we used as the base for evaluating the utility-based algorithm. These two poli-
cies are consumed by the broker’s match maker component to automate the selection
of the Clouds, which is the main broker function.

The reminder of this chapter is organized as follows. In Section 5.1, a graph-based
mathematical formulation of the problem as well as our assumptions are provided.
The sieving algorithm functionality is described in Section 5.2. Section 5.3 introduces
the utility-based matching algorithm and analyzes its time complexity. Finally, in
Section 5.4, a hybrid utility-based genetic algorithm, called HU-GA, is proposed to
facilitate the selection of large-scale service compositions.

5.1. Matchmaking Problem Formulation

A well-known and efficient method for solving complex problems in many science
fields is the use of the graph theory [41]. Motivated by this consideration, we use
graphs to model the matching of multi-Cloud composite services. Each requested
multi-Cloud composite service can be modeled as a fully connected, undirected graph
G(S,E) called Intercloud graph, where each node represents a single compute or storage
Cloud service and the edges represent the network connectivity between the nodes.
An example of an Intercloud graph with three requested services (two VMs and one
storage) with a possible concrete deployment is presented in Figure 5.1.

The matchmaking problem with multi-Cloud consists of finding the service composi-
tion that minimizes the deployment cost and best satisfies all user QoS requirements.
This problem can be modeled as Multi-Choice Multidimensional Knapsack problem
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Figure 5.1.: Example of an Intercloud graph for a composite multi-Cloud service.

(MMKP), which is known to be np-hard [131, 4]. In order to formulate this multi-
objective optimization problem, we introduced, based on the Intercloud graph repre-
sentation of the composite service, a mathematical model. The latter is used to model
composite service requests, Cloud providers, and candidate service compositions,
which constitute the input parameters for the matching algorithms. The description
of the model parameters is provided in Table 5.1.

Table 5.1.: Multi-Cloud matchmaking model.
Parameter Description

R
eq

ue
st

VM = {vm1, ..., vma} set of requested a compute services
ST = {st1, ..., stb} set of requested b storage services

S = {s1, ..., sn}, S = VM ∪ ST set of n services forming the composition
E = {esisj |si, sj ∈ S, i 6= j} set of all f edges connecting the n services
L = {lat(esisj)|si, sj ∈ S} set of edge latencies
Qr = {q1(r), ..., qm(r)} set of m required QoS values

Cr = {cvm(r), cst(r), ctr(r)} max payment for VM, storage and traffic
D = {dst, dtr} required storage and data traffic size

T provisioning (lease) time

Pr
ov

id
er P = {p1, ..., pl} set of l candidate IaaS providers

Qpj = {q1(pj), ..., qm(pj)} measured QoS metrics for provider pj
Cpj = {cvm(pj), cst(pj), ctr(pj)} pricing policies for provider pj

Opj = {o1(pj), ..., ok(pj)} set of service types k offered by provider pj

C
an

di
da

te X = {x =
⊕

si → pj|si ∈ S, pj ∈ P} set of possible service compositions x

Qx = {q1(x), ..., qm(x)} set of QoS values for service composition x

Cx = {cvm(x), cst(x), ctr(x)} total usage cost for composition x
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As can be seen from Table 5.1, in our problem formulation we do not consider the
functional SLA parameters, since it is assumed that, for each requested service type,
the functional parameters are fulfilled by the candidate Clouds if they offer a service
with the requested configuration and their current load capacity allows the deploy-
ment of that service. For the QoS parameters, we consider in this thesis only four
QoS parameters, which are availability, response time, throughput, and latency. The
detailed description of these parameters and how they are measured are given in Ta-
ble 5.2. Of course, it is possible to support more QoS parameters (e.g. reputation,
security, etc.), but we argue that these four parameters impact more the performance
of multi-Cloud applications and thus the user satisfaction [147].

Table 5.2.: Description of the used QoS parameters in the matching.
QoS Parameter Measured from/to Description

Availability Cloud percentage of the guarantied service uptime
Response time client-To-Cloud amount of time to respond to a client request

e.g. download and display of a website
Throughput client-To-Cloud number of processed requests per time unit

e.g. size of transferred data per second
Latency Cloud-To-Cloud amount of time to transfer data packets

between two Clouds

Since we do not know the exact amount of data to be transferred between the re-
quested services at the runtime, we made the following assumptions on data traffic
for our application needs:

1. Users are charged only for data traffic from Cloud to the Internet.

2. The data transfer inside the same provider is free of charge.

3. All the requested storage services will store the same amount of data (data is
replicated).

4. The data transfer between two connected nodes is bidirectional.

5. The requested amount of data traffic is equally distributed between the con-
nected Clouds.

Based on the mathematical model proposed above and our assumptions, the match-
making problem can be formulated as follows:

max th(x), av(x) with th(x) >= th(r) ∧ av(x) >= av(r)

min rt(x), lat(x) with rt(x) <= rt(r) ∧ lat(x) <= lat(r)

minCx(T ) with Cx(T ) <= Cr(T )
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Where, Qx = {rt(x), th(x), av(x), lat(x)} denote respectively the set of aggregated
SLA values of response time, throughput, availability, and latency for the candidate
composite service x, and Qr = {rt(r), th(r), av(r), lat(r)} is the set of their minimum
or maximum acceptable values. The former are calculated from their corresponding
values in the component services by applying the aggregation functions used in [170],
as presented in Table 5.3. Cx(T ) denotes the total predicted costs (compute, storage,
and data transfer cost) for using the candidate composite service x during the time
period T. Based on the above assumptions, Cx(T ) can be computed as follows:

Cx(T ) = T ∗

(
a∑
i=1

cvm(vmi) + dst

b∑
i=1

cst(sti)

+

si,sj∈S,i6=j∑
e∈E

dtr ∗ ctr(esisj)
2 ∗ f

) (5.1)

with:

ctr(esisj)si,sj→pg ,ph =

{
ctr(pg) + ctr(ph) if g 6= h

0 else
(5.2)

Where pg, ph ∈ P denote the Cloud providers allocated respectively to the requested
services si, sj ∈ S. Cr(T ) denotes the total user budget for the period of usage T. It is
calculated as follows:

Cr(T ) = T ∗

(
a ∗ cvm(r) + b ∗ dst ∗ cst(r) + dtr ∗ ctr(r)

)
(5.3)

Table 5.3.: Aggregated SLA attributes for a composite service x.
SLA Attribute Aggregation function

Throughput th(x) = min th(si)∀si ∈ S
Response time rt(x) = max rt(si)∀si ∈ S

Latency lat(x) =
∑

e∈E lat(esisj )

f
∀si, sj ∈ S, i 6= j, f is number of edges in E

Availability av(x) =
∏
av(si)∀si ∈ S

5.2. Sieving Matching Algorithm

A general scenario to use our previously proposed multi-Cloud service broker frame-
work is as following: the customer specifies several requirement parameters and the
broker compares the parameters one by one with the performance metrics and pric-
ing policies of the providers, thereby finding the best matched Clouds. This is a tra-
ditional way of solving selection problems simply in various scientific domains. In
the following we present this simple matching scheme called sieving.
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5.2.1. Sieving Selection Strategy

The sieving matching algorithm deals with two kinds of input sets, one of which
are the user requirement parameters, and the other, the Cloud provider’s specific
performance and cost metrics. The output of the algorithm is a set of selected Clouds
that match all of the requirement attributes. These inputs/outputs can be depicted
using the following mathematical forms:

Set of SLA requirement attributes: R = {R1, R2, R3, . . . , Rm}

Set of SLA metrics for Cloud provider i: Pi = {M1,M2,M3, . . . ,Mn}
Selected providers: C = {C1, C2, C3, . . . , Ck}

Where Ri is a single requirement attribute in the form of A > (or <,≥,≤)value (e.g.,
price ≤ 0.02$/h), Mi is a performance attribute of a Cloud provider in the form of
M = value (e.g., availability = 100%) and Ci is the name of a Cloud platform. The task
of the algorithm is to filter all unqualified providers out of the candidates. A Cloud is
regarded as unqualified when at least one of its performance or cost attributes does
not match the customer requirements.

To make this algorithm more understandable, we use an easy example with three pa-
rameters: response time, availability, and throughput, and illustrate the functionality
of the algorithm in Figure 5.2 (The algorithm can handle more parameters; but we
can demonstrate maximally three parameters in the graphic).

In the concrete example, the customer specified the following requirements:
5s < R1(ResponseT ime) < 20s∧R2(Availability) > 0.9∧R3(Throughput) ≥ 5Mbit/s.
In Figure 5.2, the requirements are presented with the axes, while the Cloud providers,
marked with “x”, are located in the 3D space based on the values they provide for
the three attributes. The ovals marked “x” are Clouds that must be sieved out be-
cause they do not fulfill at least one of the user requirements. For example, the
two ovals standing vertically to the x-axis are the Clouds that have a value of either
smaller than 5 or greater than 20 in response time. According to the user specification
5s < ResponseT ime < 20s, these Clouds are regarded as unqualified. The algorithm
works similarly with other parameters. Note that the axes are not equally scaled due
to the large difference in user-specified parameter values.

In case more than one Cloud meets the user requirements (the four “x”s outside the
ovals), we simply choose one of them randomly. Since sieving is used only for com-
parative study, it is not necessary to implement a complicated scheme.

The advantage of this algorithm is accuracy, i.e., the selected Clouds absolutely meet
the user’s requirements. However, it may be possible that the result set is empty
in the case that none of the Cloud providers fulfill the criteria. The problem with
the algorithm lies in flexibility, where no negotiation is allowed. Hence, it cannot
handle use cases like “R1 is important and R3 can be lower if no qualified provider is
found”.
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Figure 5.2.: Functionality of the sieving algorithm with three SLA parameters.

5.2.2. Sieving Implementation

The implementation of the sieving algorithm using the mathematical model from
Table 5.1 is described using the pseudo-code in Algorithm 5.1.

1 Input : S , P , cvm(r) , cst(r) , av(r) , th(r) , rt(r)
2 For each s in S Do
3 For each p in P Do
4 I f s i s Deployable in p . g e t O f f e r L i s t ( ) Then
5 I f cvm(p) <= cvm(r) & cst(p) <= cst(r) &
6 av(p) >= av(r) & rt(p) <= rt(r) & th(p) >= th(r)
7 Then
8 add p to CandidatesLis t
9 Endif

10 Endif
11 Endfor
12 I f s i z e o f ( CandidatesLis t ) > 0 Then
13 Choose random p from CandidatesLis t
14 CloudCompositionMap . add ( s , p )
15 Else re turn n u l l
16 Endif
17 Endfor
18 Output : CloudCompositionMap

Algorithm 5.1: Sieving Matching Algorithm
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5.3. Utility-based Matching Algorithm

As shown in Algorithm 5.1, the sieving algorithm receives as input (line 1) a ser-
vice list S forming the requested multi-Cloud service composition, a list P of candi-
date IaaS providers, the maximal payment, and the minimum desired service quality,
which is expressed with the minimally allowed throughput and availability, and the
maximum allowed response time required by the customer. In the first step, for each
requested service (VM or storage), the algorithm iterates through all providers (lines
2-4) to match the offers that fulfill the functional requirements. Concretely, it checks
if the requested component service is offered by the provider. In addition, it checks
if the current datacenter capacity load allows the deployment of the requested ser-
vice type. After that, the algorithm checks (lines 5-6) if the provider’s QoS metrics
are within the ranges specified by the user while satisfying his maximum willingness
to pay. All the matched providers, which satisfy all functional and non-functional
SLA requirements, are stored in a candidates list (lines 7-11). In the second step (lines
12-17), the algorithm selects for each component service a random provider from the
candidates list to serve the request and adds it to the target Cloud composition map
forming the output of the algorithm. In case a requested component service cannot
be matched to a Cloud, a null object is returned.

5.2.3. Sieving Algorithm Time Complexity

In the following we analyze the time complexity of the sieving algorithm described
above. As shown in the above pseudo-code, in the worst-case scenario of the first
phase (lines 2-11), for each of the n requested component services, the algorithm has
to go through the supported offer list of size k for each of the l candidate providers
to match the SLA requirements. This gives a worst-case complexity of O(n.l.k). The
second part of the algorithm (lines 12-17), used for selecting a random provider, has
a constant time complexity of O(1). Therefore, the total sieving algorithm worst-case
complexity is:

O(n.l.k) (5.4)

When assuming that all the candidate providers offer a constant number of service
types (l and k are constants), the reduced algorithm complexity becomes:

sieving complexity = O(n) (5.5)

This result confirms that the time complexity of the sieving algorithm is proportional
to the number of requested services.

5.3. Utility-based Matching Algorithm

A major issue of the sieving matching algorithm described above is the lack of flex-
ibility in the matching of non-functional SLA attributes, meaning it cannot handle
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use cases, such as availability being more important than throughput or selecting
well-qualified providers while keeping the total costs low. In addition, the network
connectivity between the Clouds and traffic costs are ignored in the matching. There-
fore, we propose a new, economic, utility-based matching algorithm, which takes the
payment of customers and their QoS preferences as the focus. In contrast to sieving
matching, where both functional and non-functional SLA requirements must be ful-
filled (hard constraints), in utility-based matching, only the former must be fulfilled,
while the latter are satisfied with respect to the user preferences on a best-effort basis
(soft constraints).

In this section we describe the utility-based algorithm in detail.

5.3.1. Utility-based Selection Strategy

In economic theory, consumer behavior is explained through preference relations fa-
cilitating pairwise comparison of goods [109]. The corresponding quality ordering
is succinctly captured through ordinal utility values determined for each good [3].
These utility values can be interpreted in terms of the relative fulfillment of con-
sumer preferences. In other words, to say that a good (service) A is preferred over
a good (service) B means that A yields a higher utility than B. Thus, utility values
describe consumer preference relations over goods and services. Selecting the “best”
service from all functionally fitting services available from the broker side turns into
the problem of finding the service with the highest utility value. That is, the assumed
customer preferences have to be modeled in an appropriate utility function.

In order to model the user profit from a composite service x, which assures a ser-
vice quality Qx, we use a quasi-linear utility function [106] adopted from the multi-
attribute auction theory [9]. The utility of a customer i from using the candidate ser-
vice composition x during the period T is the product of his willingness to pay and
the relative fulfillment of his service requirements minus the charged leasing price. It
is computed as follows:

Uix(Qx, T ) = Cri(T ) ∗ Fi(Qx)− Cx(T ), (5.6)

Where Cri(T ) represents the maximum willingness to pay of consumer i for an “ideal”
service quality in the period T (see Equation 5.3), Cx(T ) is the total service usage
cost (see Equation 5.1), and Fi(Qx) is the customer’s scoring function translating the
aggregated service quality attribute levels into a relative fulfillment level of consumer
requirements. The scoring function is calculated as follows:

Fi(Qx) =
m∑
j=1

λi(qj) ∗ fi(qj)→ [0, 1], (5.7)
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Where λi(qj) and fi(qj) denote respectively the relative assessed weight and the fitting
function for consumer i regarding the SLA attribute qj , where

∑m
j=1 λi(qj) = 1. The

fitting function maps properly to the user behavior each measured SLA attribute to
a normalized real value in the interval [0,1] with 1 representing an ideal expected
SLA value. Clearly, the careful choice of fitting function specification is crucial for
properly describing user behavior. For the reader’s convenience we refer to [103, 105]
for an in-depth treatise of preference elicitation, i.e., deriving and parameterization of
the fitting functions for each consumer. An example for non-linear fitting functions is
provided in Chapter 7.

A broker pursuing a utility-based service selection, i.e., matching the customers with
the corresponding utility-maximizing service offering, would then select the optimal
service composition x if it is feasible and if it leads to the maximum utility value
with:

Uixoptimal
(Qx, T ) = max

x∈X
Uix(Qx, T ) (5.8)

where X is the set of possible Cloud service compositions (solution space). Hence,
the matchmaking problem can be formulated with a search for the Cloud composition
with the highest utility value for the user. Note that choosing a service with negative
utility is irrational as the price exceeds the willingness to pay. These service offers
can therefore be discarded by the decision maker. Note that this social benchmark
allocation can only be achieved under the assumption of non-strategic customers.
In the presence of strategic (i.e., non truth-telling) customers, it is needed to apply
screening approaches as outlined by [103]. A corresponding portfolio design problem
is addressed by [104].

The functionality of the utility-based algorithm for matching a single Cloud service
using the broker framework is described in the sequence diagram from Figure 5.3.

In the first step (1), the user forwards his functional requirements to the broker. In re-
sponse (2), the broker checks the possible provider candidates that are able to deploy
the service in order to fulfill the functional SLA requirements. In the next step, (3) the
user gives his QoS requirements expressed in the weighted fitting functions and his
maximal payment. After that, the broker calculates the service utility based on the
current Cloud characteristics and returns the provider offer giving the maximal util-
ity to the user (4). Upon user acceptance (5), the offer can be deployed on the selected
provider (6).

5.3.2. Utility-based Algorithm Implementation

The working strategy of the utility-based algorithm using the mathematical model
described above is presented in Algorithm 5.2.
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Service Broker Provider
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Figure 5.3.: Functionality of the utility-based matching algorithm.

1 Input : customer i , X , S , P , cvm(r) ,cst(r) ,f(av) ,f(th) ,f(rt) ,f(lat) ,λ(av) ,λ(th) ,λ(rt) ,λ(lat) ,T
2 For each x in X Do
3 i s F e a s i b l e =true
4 For each s e r v i c e s in S Do
5 p = x . getAl locatedProvider ( s ) / / p i s a l l o c a t e d t o s in c o m p o s i t i o n x
6 I f s isnotDeployable in p . g e t O f f e r L i s t ( ) Then
7 i s F e a s i b l e = f a l s e
8 break
9 Endif

10 Endfor
11 I f f e a s i b l e =true Then
12 c a l c u l a t e th(x), av(x), rt(x), lat(x), Cri (T ), Cx(T )
13 Fix = λ(av) ∗ f(av(x)) + λ(th) ∗ f(th(x)) + λ(rt) ∗ f(rt(x)) + λ(lat) ∗ f(lat(x))
14 Uix(T ) = Cri (T ) ∗ Fix − Cx(T )
15 I f Uix(T )>0 Then
16 Util i tyMap . add ( x ,Uix(T ) )
17 Endif
18 Endif
19 Endfor
20 I f s i z e o f ( Util i tyMap)> 0 Then
21 Sor t Util i tyMap by u t i l i t y values in descending order
22 xoptimal= Util i tyMap . f i r s t e n t r y ( ) . getKey ( )
23 Else re turn n u l l
24 Endif
25 Output : optimal s e r v i c e composition xoptimal

Algorithm 5.2: Utility-based Matching Algorithm
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Unlike the sieving algorithm, the utility-based algorithm operates on the set X of
possible composite services to find the optimal service composition to deploy the re-
quested composite service S modeled as Intercloud graph. Herewith, it is also able to
support the Cloud-to-Cloud traffic and latencies in the matching process. In addition,
the algorithm takes as input the customer-specific fitting functions and their weight
factors expressing the requested service quality (line 1). As shown in the pseudo-code
presented in Algorithm 5.2, the first step (lines 2-10) followed by the utility-based al-
gorithm, which is used to check the functional requirements, is similar to the sieving
algorithm. A candidate Cloud composition is feasible if each service is allocated to a
provider allowing its deployment. In the next step (lines 11-19), the non-functional
requirements are checked for each feasible candidate composition by calculating its
utility profit from the customer perspective using Equation 5.6. A UtilityMap set
keeps the mapping between the gathered utility values and the corresponding ser-
vice composition x. After that (lines 20-24), the algorithm sorts the positive utility
values in the UtilityMap by a descending order. As noted before, negative values can
be discarded beforehand. As a result, it returns the key of the maximum obtained
utility value representing the optimal service composition for the deployment.

5.3.3. Utility-based Algorithm Time Complexity

In the following, we analyze the theoretical time complexity of the utility-based al-
gorithm described above. For a service composition request formed of n component
services and with l candidate providers, there are x = ln possible combinations to
be evaluated. The time complexity of the first step (lines 2-10) is similar to the siev-
ing algorithm with the difference that the utility-based algorithm operates on the x
combinations; consequently, it has a complexity ofO(x.n.k). As shown in the pseudo-
code, the second step of the algorithm (lines 11-19) is composed of two sub-processes.
The first sub-process is used to calculate the aggregated SLA parameters. Accord-
ing to Table 5.3 the aggregated availability, response time and throughput values are
calculated from the n requested services with a complexity of O(n). Regarding the
aggregated latency, its value is calculated based on the number of edges connect-
ing the n services. Since the number of edges in a full connected graph is f = n.(n−1)

2
,

this gives us a complexity ofO(n2) for the aggregated latency calculation. The second
sub-process is used to calculate the utility for the feasible combinations. The therefore
used operations have a constant complexity, that is O(1). In the worst-case scenario,
if all combinations are feasible, the resulted total time complexity of the second step
is then O(x.n2). As described in the above pseudo-code, in the third step the algo-
rithm performs a merge-sort on the UtilityMap values (lines 20-24). The worst-case
complexity of this step is O(x. log x).

The total worst-case complexity of the proposed utility-based algorithm is a result of
the sum of its three steps complexity, which can be expressed as follows:

O(x.(n.k + n2 + log x)) = O(ln.(n.k + n2 + n. log l)) (5.9)

65



5. SLA-based Matchmaking of Composite Cloud Services

If we maintain the number of candidate providers l and their supported service offers
k constant, the resulted total worst-case complexity becomes:

utility complexity = O(n2.ln) (5.10)

This result proves the exponential time complexity of the algorithm and the np-
hardness of the matching problem.

5.4. HU-GA Matching Algorithm

The previously presented implementation of the utility-based algorithm based on ex-
haustive search performs the matching by calculating the utility for all possible ser-
vice compositions and then selecting the composition with the maximal utility that
satisfies the budget and QoS requirements. Clearly, this approach can find an exact
solution of the matching problem; however, its computation cost is expensive, espe-
cially for large service compositions due to the np-hardness of the problem. Since
evolutionary-based approaches are a commonly used method to solve complex op-
timization problems, we adopted a single objective genetic algorithm called hybrid
utility-based genetic algorithm (HU-GA) to solve the matchmaking problem using
the utility-based algorithm from Section 5.3. Our adoption of the genetic algorithm
involves six steps which are depicted in Figure 5.4.
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Figure 5.4.: Functionality of the hybrid utility-based genetic algorithm.

In the first step, the algorithm takes as input a composite service request presented as
Intercloud graph. In the next step, called pre-sieving, we filter out candidate providers
that do not satisfy the QoS requirements for throughput, availability, and response
time similar to the sieving algorithm. Therewith, unfeasible solutions can be removed
from the solution space and the convergence of the algorithm can be accelerated.

66



5.4. HU-GA Matching Algorithm

The third step is to create the population by generating random composite service
candidates called individuals. As can be seen in Figure 5.5, each individual is pre-
sented with a chromosome consisting of multiple genes, which are encoded using
a selection map data structure. Each entry in the map represents a gene that has a
graph node presenting the requested single service as key and the list of candidate
providers capable of deploying the service as value.

px

p1

s1 s3

………...

pz

p3 p4 p3

s1 s2

Evaluation
Selection        
Crossover
Mutuation

s3

vm1,  vm2 ,  st1  

Chromosome (solution)

Individuals  (candidates)

s2

p1

………...

py

………...

n iterations

p1

Figure 5.5.: Genetic encoding of the composite service candidates.

In the fourth step, the composite service candidates x (individuals) from each gener-
ation are evaluated against a fitness function. In our adopted HU-GA algorithm, the
fitness function that needs to be maximized as shown in Equation 5.11 is equal to the
utility function from Equation 5.6. Additionally, we use a ”death penalty” function
to penalize candidates that do not satisfy the service constraints and to discard Cloud
compositions with a negative utility.

max
x∈X

fitnessfunction =

{
0 if constraints are violated
Uix(Qx, T ) otherwise

(5.11)

The next step is the evolution of the population based on the crossover and mutation
genetic operators. Herewith the elite candidates with the best fitness values will sur-
vive in the next generation and are used to create a new population, while the bad
candidates will be discarded. This step is repeated many times until the algorithm
reaches the convergence. Finally, when the genetic algorithm reaches convergence,
the optimal Cloud composition is outputted as final solution.
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5.5. Summary

This chapter addressed the problem of composite services selection on multi-Cloud
with the goal to benefit users in terms of service quality and costs. At the beginning
of the chapter, a mathematical formalization of the problem has been presented. In
this formal model, the requested composite service is modeled with a fully connected
Intercloud graph. Also, the methods for calculating the total cost and aggregated SLA
parameters, both used as evaluation parameters in the matching, are described.

The chapter also presented two matching policies to tackle the matching problem
and analyzed their time complexity. The first scheme is a simple scheme called
sieving, which randomly selects the Cloud providers satisfying both functional and
non-functional SLA without considering their connectivity and latencies. The sec-
ond scheme is a utility-based matching scheme that leverages a quasi-linear utility
function and the introduced graph-based mathematical model to find the optimal
Cloud composition maximizing the user utility. In contrast to sieving, utility relies on
user-specific scoring functions instead of fixed range intervals to express the user sat-
isfaction level against the SLA. Finally, the chapter presented a hybrid utility-based
genetic algorithm, called HU-GA, to facilitate the matching of large-scale service com-
positions. The evaluation of all the proposed algorithms will be elaborated in Chapter
7.
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Deployment

A challenging task for the multi-Cloud resource allocation is how to optimize sev-
eral user objectives like minimizing costs and makespan while fulfilling the user re-
quired functional and non-functional SLAs. Since data transfers in multi-Cloud are
performed through Internet between datacenters distributed in different geographi-
cal locations, another challenge is how to distribute the workloads on these Clouds in
order to reduce the amount and cost of Cloud-to-Cloud (Intercloud) data transfers.

In this chapter we present a multi-dimensional resource allocation scheme to opti-
mize the deployment of data-intensive large-scale applications using our proposed
multi-Cloud service framework, taking scientific workflows as our example. The
scheme applies a two-level approach in which the target Clouds are selected using
first the HU-GA matching algorithm presented in the previous chapter and then the
application workloads are distributed to the selected Clouds using a data locality-
driven scheduling policy. Furthermore, the chapter presents a replica-supported data
management policy to manage the Intercloud data transfer at the runtime. This chap-
ter addresses Research question 4 from Chapter 1. Its major parts are largely based
on [91] and [86].

The chapter is organized as follows. Section 6.1 describes how the workflow de-
ployment on multi-Cloud is performed using the proposed framework. In Section
6.2 the multi-dimensional resource allocation approach is presented. The data-aware
scheduling policies are described in Section 6.3. Finally, Section 6.4 presents the im-
plemented data management policy.

6.1. Broker-based Multi-Cloud Workflow Deployment

As previously mentioned in Chapter 4, our proposed Cloud service broker frame-
work features the automatic deployment of workflows on multi-Cloud. The needed
steps are shown in Figure 6.1. In the first step, the user submits a workflow descrip-
tion to the workflow engine together with his functional and non-functional SLA
requirements. After parsing the description, the workflow engine starts a clustering
process with the purpose of reducing the number of workflow tasks by applying dif-
ferent workflow clustering techniques (e.g., horizontal and vertical clustering). In the
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Figure 6.1.: Workflow deployment steps
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following, the match maker starts a matching process to select the Clouds that can
fit the user-given SLA requirements by applying the matching policy configured in
the match maker. After all the requested compute (VMs) and storage resources are
deployed on the selected Clouds, the data manager executes a stage-in task to trans-
fer the input data from the client to the Cloud storage. In the next step, the work-
flow engine starts to continually release the reduced workflow tasks to the broker
with a predefined scheduling interval with respect to their execution order. The bro-
ker scheduler assigns each received task to a target VM according to the configured
scheduling policies. During the workflow execution, the data manager performs the
data transfer of the tasks required input and generated output files according to a pre-
defined data management policy. A replica catalog stores the list of data replicas by
mapping workflow files to their current datacenter locations. Finally, the execution
results are transferred to the Cloud storage in a stage-out task and can be retrieved
via the user interface.

Note that the requested VMs and Cloud Storage are provisioned to the user until the
workflow execution is finished. However, if the same workflow should be executed
many times (e.g. with different input data), a long-term lease period can be specified
by the user. In the next sections, the scheduling and data management policies used
in the scheduler and data manager are described in detail.

6.2. Multi-dimensional Resource Allocation Approach

In order to optimize the deployment of large-scale multi-Cloud applications, such
as data-intensive scientific workflows, using the proposed broker framework, we
propose a multi-dimensional resource allocation scheme consisting of two stages.
In the first phase, the target Cloud services forming the requested composite ser-
vice are selected using the HU-GA matching algorithm introduced in the previous
chapter. In the second phase, the workflow tasks are distributed to the allocated
compute resources using a data locality-driven scheduling policy. Unlike previous
works [38, 148], using our scheme we are able to optimize four deployment objec-
tives, which are makespan, cost, data locality, and the satisfaction level against the
user requested non-functional SLA including response time, availability, latency, and
throughput. Furthermore, in our scheme, matching and scheduling are two inde-
pendent processes, whereas in most previous works the resources selection and task
scheduling are performed in a single process. The reasons for decoupling them are
fourfold:

• The decoupling allows the implementation of dynamic scheduling heuristics
which use dynamic SLA monitoring metrics like latency and bandwidth as de-
cision parameters, while the static high level SLA parameters, such as cost, are
considered only in the matching.
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• The non-decoupling increases the allocation problem complexity and causes
more time overhead, since more objectives and constraints need to be opti-
mized.

• The decoupling permits a generic matching without need of a detailed descrip-
tion of the application workloads and the internal data movements.

• With the decoupling, it is possible to change the combination of scheduling and
matching policies for different application needs.

The functionality of the proposed multi-dimensional resource allocation scheme
with four non-functional SLA parameters (cost, latency, throughput, and avail-
ability) and three geographical distributed Clouds is presented in Figure 6.2.
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Figure 6.2.: Multi-dimensional resource allocation scheme.

As illustrated in the figure, our multi-dimensional resource allocation is performed
in five steps. After that the user enters his SLA requirements and budget (step 1),
a matching process is started (step 2), where the functional and non-functional SLA
requirements are compared to the measured Cloud SLA metrics as well as their ser-
vice usage costs for compute, storage, and data traffic. The selection of the optimal
Clouds (step 3) is then performed using the HU-GA matching algorithm with the goal
to maximize the user utility for the aggregated QoS and total charged cost. In the fol-
lowing step (step 4), the application workloads are distributed at the runtime to the
selected compute resources by the broker scheduler. To perform this task, different
data locality-driven scheduling policies are used to achieve a minimal data move-
ment and improve the overall application performance (step 5). These are described
in detail in the following section.
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6.3. Data Locality-Driven Scheduling

In this section, we assume that the user requested VMs are already allocated and
deployed using the HU-GA matching algorithm according to the first phase of our
multi-dimensional scheme and concentrate on the second phase, scheduling. For this
purpose, we propose two dynamic, greedy-based scheduling heuristics, which dis-
tribute the workflow tasks at the runtime to all the provisioned VMs. These heuris-
tics are used to optimize the allocation of tasks to the deployed VMs at the runtime
to reduce the data transfer time and size, which both affect the performance and cost.
In the following subsections we describe the functionality of the two implemented
scheduling policies.

6.3.1. DAS Scheduler

To support data locality for scheduling multi-Cloud workflows, we implemented a
Data-Aware Size-based scheduler (DAS) capable of scheduling tasks to the provi-
sioned VMs running in different Cloud datacenters with respect to the location of
the required input data. The implemented data-aware scheduling policy is described
using the pseudo-code in Algorithm 6.1 and Algorithm 6.2.

1 Input : requestedVMList , TaskList , schedul ingPol icy
2 For each task T in TaskLis t Do
3 pro cessT askAf f in i ty ( T )
4 I f schedul ingPol icy=DAS Then
5 Taf f=sizeAffnityMap
6 s o r t Taf f by s i z e in descending order
7 E l s e i f schedul ingPol icy=DAT Then
8 Taf f=timeAffnityMap
9 s o r t Taf f by time in ascending order

10 Endelse
11 For each entry in Taf f Do
12 s i t e =entry . getkey ( )
13 For each vm in requestedVMList Do
14 I f vm. g e t S t a t u s ( ) = i d l e
15 & vm. getDatacenter ( ) = s i t e Then
16 schedule T to vm
17 scheduledTaskList . add ( T )
18 Break
19 Endif
20 Endfor
21 Endfor
22 Endfor
23 Output : scheduledTaskList

Algorithm 6.1: DAS/DAT Scheduler
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1 Input : matchedDatacenterList , Repl ica c a t a l o g R
2 For each datacenter D in matchedDatacenterList Do
3 time =0; s i z e =0;
4 i n p u t F i l e L i s t = T . g e t I n p u t F i l e L i s t ( )
5 For each f i l e F in i n p u t F i l e L i s t Do
6 maxBwth=0
7 s i t e L i s t = R . get ( F )
8 I f s i t e L i s t . conta ins (D) Then
9 s i z e = s i z e +F . g e t S i z e ( )

10 Else
11 For each s i t e in s i t e L i s t Do
12 bwth=Cloud−to−Cloud−bandwidth ( s i t e ,D)
13 I f bwth>maxBwth Then
14 maxBwth=bwth
15 Endif
16 Endfor
17 Endelse
18 time=time+F . g e t S i z e ( ) /maxBwth
19 Endfor
20 sizeAffnityMap . add (D, s i z e )
21 timeAffnityMap . add (D, time )
22 Endfor
23 Output sizeAffnityMap , timeAffnityMap

Algorithm 6.2: Function processTaskAffinity

As presented in Algorithm 6.1, the algorithm first iterates through the workflow tasks
(line 2) and calculates for each task the total size of the required input files found in
each matched datacenter (function processTaskAffinity() in Algorithm 6.2) and stores
the result in a map data structure called task data size affinity Tsizeaff (line 5). If we
assume that task T has m required input files freqi, i ∈ {1, ...,m} and there are k
matched datacenters, the task affinity of the datacenter dcj , j ∈ {1, ..., k} is calculated
using the following equation:

Tsizeaff (dcj) =
∑

freqi∈dcj

size(freqi) (6.1)

After sorting the task affinity map by the data size values in descending order (line 6),
the policy assigns the task to the first free provisioned VM running on the datacenter
dccand containing the maximum size of located input files (lines 11-22), where:

Tsizeaff (dccand) =
k

max
j=1

Tsizeaff (dcj) (6.2)

According to the pseudo-code, we assume that a VM can execute only one task at the
same time. In case all the provisioned VMs in the selected datacenter are busy, the
algorithm tries the next candidate datacenters in the sorted map to find a free VM so
that a load balancing between the datacenters is assured and an unnecessary waiting
time for free VMs can be avoided.
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6.3.2. DAT Scheduler

The second proposed scheduling policy, called Data-Aware Time-based (DAT) sched-
uler, has a strong similarity with the previously described DAS policy except in the
method of calculating the task affinity. Instead of calculating the maximum size of
existing input files per datacenter, the algorithm computes the time needed to trans-
fer the missing input files to each datacenter and stores the transfer time values in a
map data structure called Ttimeaff (line 8 in Algorithm 6.1), which is calculated using
the following equation:

Ttimeaff (dcj) =
∑

freqi /∈dcj

transfertime(freqi) (6.3)

As target datacenter, the algorithm chooses the datacenter, which assures the mini-
mum transfer time by sorting the affinity map in the ascending order (line 9).

Ttimeaff (dccand) =
k

min
j=1

Ttimeaff (dcj) (6.4)

As presented in Algorithm 6.2 describing the function processaffinity() pseudo-code,
the algorithm iterates through the matched datacenters and checks the existence of
local input files for each workflow task (lines 2-9). For each missing input file, it
calculates the time needed to transfer the file from a remote location to that datacenter.
In order to achieve this, it fetches the replica catalog and selects a source location,
which assures the maximum bandwidth and consequently the minimal transfer time
to that datacenter (lines 10-19). The calculation method of the transfer time is the
same used by our proposed data management policy, which is detailed in the next
section.

6.4. Replica-based Data Management

As previously mentioned in Section 6.1, the data manager is responsible for the data
stage-in/out as well as for the Intercloud data transfer before and after each task exe-
cution. In this thesis we propose a replica-based data management policy to perform
the data manager tasks at the runtime. For the sake of simplicity , we assume that all
the VMs deployed on the same datacenter share a local Storage Area Network (SAN)
storage to store the local generated tasks output data. In addition, we assume that, at
the beginning of the workflow execution, all the input files are located in the client lo-
cal storage. All the data transfers between client and Clouds and between the Clouds
are performed through the Internet with different throughput and bandwidth values.
Algorithm 6.3 presents the pseudo-code for the implemented data transfer policy.
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1 Input : scheduledTaskList , r e p l i c a c a t a l o g R
2 For each task T in scheduledTaskList Do
3 D=T . getVmDatacenter ( )
4 F i l e L i s t =T . g e t F i l e L i s t ( )
5 For each f i l e F in F i l e L i s t Do
6 I f T . getType ( ) = stage−in & F . getType ( ) = input Then
7 t r a n s f e r F from C l i e n t to Cloud storage
8 s i t e L i s t =n u l l
9 s i t e L i s t . add ( Cloud storage )

10 R . put ( F , s i t e l i s t ) / / r e g i s t e r f i l e in r e p l i c a c a t a l o g
11 E l s e i f T . getType ( ) = stage−out & F . getType ( ) = output Then
12 t r a n s f e r F from D to Cloud storage
13 E l s e i f F . getType ( ) = input Then
14 I f R . get ( F)= n u l l Then
15 e x i t / / i n p u t f i l e m i s s i n g
16 Else
17 s i t e L i s t =R . get ( F )
18 maxBwth=0
19 I f s i t e L i s t . conta ins (D) Then
20 t r a n s f e r F from l o c a l SAN of D
21 Else
22 For each s i t e in s i t e L i s t Do
23 bwth=Cloud−to−Cloud−bandwidth ( s i t e ,D)
24 I f bwth>maxBwth Then
25 maxBwth=bwth
26 s o u r c e S i t e = s i t e
27 Endif
28 Endfor
29 Endelse
30 t r a n s f e r F from s o u r c e S i t e to D / / i n t e r c l o u d t r a n s f e r wi th maxBwth
31 s i t e L i s t . add (D)
32 R . put ( F , s i t e L i s t ) / / r e g i s t e r i n p u t f i l e in r e p l i c a c a t a l o g
33 Endelse
34 E l s e i f F . getType ( ) = output Then
35 t r a n s f e r F to l o c a l SAN of D
36 s i t e L i s t =R . get ( F )
37 s i t e L i s t . add (D)
38 R . put ( F , s i t e l i s t ) / / r e g i s t e r ou tp ut f i l e in r e p l i c a c a t a l o g
39 Endelse
40 Endfor
41 Endfor

Algorithm 6.3: Data Management Policy

As can be seen from Algorithm 6.3, the algorithm iterates first through all the sched-
uled tasks (lines 2-5) and checks their type (stage-in/out or regular compute tasks).
For stage-in tasks (lines 6-10), the data manager transfers the input data from the
client to the requested Cloud storage and registers them in the replica catalog, whereas
for stage-out tasks the execution results are transferred from the datacenter on which
the last task ran to the Cloud storage (lines 11-12), so that the client will be able to
retrieve them. Clearly, it is also possible to not use Cloud storage and therefore to
transfer the input data directly from the client as needed. However, this scenario pro-
vides no advantage for data movement and, consequently, workflow performance.
Moreover, for the data transfer, the client should remain connected during the work-
flow execution.
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For the transfer of input files required to execute each compute task, the data manager
iterates through the scheduled tasks and checks the existence of any local input files
in the local SAN of the datacenters where their respective assigned VMs are running
(line 13). In case the files are also not found in the replica catalog, the execution of the
workflow will be aborted and the client will then be notified (lines 14-15). If the files
are found in the local SAN, the data manager transfers them to the corresponding
VM, otherwise it fetches the replica catalog and transfers the files remotely from the
datacenters, which assure the maximum transfer bandwidth and consequently the
minimal transfer time to the datacenters where the tasks should run (lines 16-33). At
the end of each transfer, the datacenter location of the transferred files is updated in
the replica catalog.

After the execution of each task, the data manager automatically initiates the transfer
of its generated output files and registers them to the replica catalog. The basic strat-
egy is to store the generated output files in the local SAN of the datacenter where the
task is executed, so that all the VMs deployed on that datacenter can locally access
the stored files and benefit from a free transfer (lines 34-39).

6.5. Summary

This chapter addressed the optimal deployment of workflows using our multi-Cloud
service broker framework proposed in Chapter 4. After describing the different needed
steps for the deployment process, a two-stage multi-dimensional resource allocation
approach for running data-intensive workflow applications has been presented. In
the first phase, the scheme applies our previously introduced HU-GA algorithms to
select the suitable Clouds for users with respect to their SLA requirements and pay-
ment willingness. In the second phase, a data locality-driven scheduler brings the
computation to its data during the workflow execution to reduce the Intercloud data
transfers. For this purpose, two data driven greedy-based scheduler called DAT and
DAS are proposed. Finally, the chapter presented the data management policy im-
plemented in the broker’s data manager to manage data replicas and the tasks in-
put/output data transfer at runtime.
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In this chapter, we present simulation-based evaluations of the contributions, that ad-
dress the problems discussed in Chapter 1. In Section 7.1, we present the simulation
testbed we used to conduct our simulations experiments using the simulation envi-
ronment introduced in Chapter 4. In Section 7.2 we evaluate and validate the multi-
Cloud service broker framework presented in Chapter 4. In particular, we evaluate
the scalability of the match maker and workflow engine components, give comments
on simulation results, and present the lessons learned that were the main motivations
for the next experiments. In Section 7.3, we evaluate the utility-based matchmaking
algorithm introduced in Chapter 5. In particular, we present several simulation sce-
narios with simple and composite services and discuss the benefits of our approach
compared to the sieving matching. Then, we compare its efficiency with a prospect-
based selection algorithm through a real SaaS case study. In Section 7.4, we evalu-
ate our multi-dimensional resource allocation scheme introduced in Chapter 6 with
real workflow applications and discuss the cost and performance benefits that this
approach brings. Finally, in Section 7.5, we summarize the evaluations of all contri-
butions and make final conclusions about their benefits with respect to the research
questions addressed in this thesis. The results of this chapter are largely based on
[88, 91, 86, 87].

7.1. Experimental Setup

In this section we present the configuration of the modeled IaaS Clouds and their
provided services that we used to build a realistic simulation testbed as basis for our
evaluation.

7.1.1. Modeled Public IaaS Clouds

In order to validate our brokering concept on top of heterogeneous Cloud platforms
with different hardware configuration and service properties, we modeled 20 Cloud
datacenters located in four world regions (Europe, USA, Asia and Australia). Each
compute Cloud is made up of 50 physical hosts, which are equally divided between
two different host types with 8 and 16 CPU cores, respectively. This gives a total
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computing capacity of 600 cores and 600 GB RAM. The detailed datacenter and hosts
configuration is provided in Table 7.1.

Table 7.1.: Modeled hosts and datacenter setup.
Parameter Value or Range

H
os

t
CPU cores per host 8..16
host CPU speed 1860..2660 MHZ
host RAM size 8..16 GB
host local storage 1 TB

N
et

w
or

k

local datacenter:
Cloud local bandwidth 100 Mbit/s
Cloud local latency 10 ms
Intra-continental:
Cloud-to-Cloud bandwidth 30 Mbit/s
Cloud-to-Cloud latency 25 ms
Inter-continental:
Cloud-to-Cloud bandwidth 10 Mbit/s
Cloud-to-Cloud latency 150 ms

D
at

ac
en

te
r number of datacenters 20

hosts per datacenter 50
regions Europe, USA,

Asia and Australia

In order to make our simulation more realistic, we collected the current pay-as-you-
go prices for computation, storage, and network traffic of 10 popular public IaaS
providers, namely: Amazon AWS, ElasticHosts [44], GoGrid [67], Rackspace [133],
CloudSigma [28], OpSource [123], CityCloud [25], VoxCloud [155], HP Cloud [77],
and Flexiscale [55]. We then mapped the collected pricing policies to the modeled
datacenters based on each datacenter’s regional location, operating system, and VM
configurations. Please note that a Cloud provider may have more than one datacenter
in different regions, but with different pricing policies. In our evaluation, we name
the datacenters belonging to the same Cloud by adding the region suffix; however,
we treat them as separated Clouds. Additionally, we acquired for the same datacen-
ters the average Cloud SLA metrics values of the last three months for availability,
client-to-Cloud throughput, and response time (for downloading large files from the
Cloud) through CloudHarmony network tests [27] from the same client host. The
collected data for each datacenter can be seen in Appendix A.1. Since this data is col-
lected from a host located in Germany, in all our conducted experiments we assume
that the Cloud users are located in Germany.

To model the network between the datacenters, we defined, based on their regional
location, three constant bandwidth and latency values (local datacenter, intra-continental
and inter-continental, see Table 7.1). The use of these synthetic values is justified
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by the lack of free accessible Cloud-to-Cloud network metrics from CloudHarmony.
Since these two metrics are of high importance for the accuracy of the matching and
scheduling policies, we plan to extend the simulation framework to gather the latest
SLA metrics values from third-party network monitoring services. However, the use
of constant network metrics values in the simulation, similar to [159], allows us to
compare different policies under the same SLA constraints.

7.1.2. Modeled IaaS Cloud Services

We studied the current compute services offered by the modeled 10 public Clouds
and then categorized their typical offers into nine modeled VM types. Table 7.2 lists
the number of equipped processing cores, the memory and local disk size of each VM
type. Additionally, each VM type is assigned with a Compute Unit (CU), the unit for
payment, whose value is given based on the VM’s configuration, i.e., the number of
cores and the size of storage. One compute unit corresponds to the price of a micro
VM instance (XS). In the evaluation, we use the payment units to calculate the user
budget for different VM types. For example, when the maximum acceptable price for
a micro instance is given, the budget for a small VM instance is double the accepted
price for a micro instance.

Since some Clouds do not support all the nine VM types (e.g. Amazon EC2 offers
only the VM types XS, S.2, M.2, L.2 and XL.2), we configured the modeled datacen-
ters to provision only the VM types supported by the respective real public Cloud.
Moreover, we checked if the Clouds offer pure storage services in addition to compute
services. We found that of the 20 datacenters, only 12 also provide storage services.
This result is used to decide if a compute or a storage service can be deployed on a
datacenter when matching the functional service requirements.

The collected pricing policies and SLA metrics data of the modeled Clouds, as well
as their offered service types, are imported from separate text files at the beginning of
the simulation and then stored in the broker service and provider registries, according
to the provider ontology presented in Chapter 4. The information about the Clouds
characteristics can be accessed during the simulation to support the broker’s decision-
making.

7.1.3. CloudSim Setup

All of our simulation experiments conducted using the implemented simulation frame-
work are done with CloudSim version 3.0 on a notebook with CPU Intel Core i5 560M
2.67 GHZ, RAM 4 GB and using Windows 7 operating system. The default CloudSim
simple VM provisioning policy is used as an internal datacenter scheduling policy.
This policy allocates VMs to the host with most free cores. In order to permit the
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Table 7.2.: Types of the modeled virtual machines (XS: micro, S: small, M: medium, L:
large, XL: Xlarge); 1 CPU Core: 1 GHZ Xeon 2007 Processor of 1000 MIPS;
ARCH: 64/32bits (L/XL only 64bits); OS: Linux/Windows; Bandwidth:
100 Mbit/s.

VM Type XS S S.2 M M.2 L L.2 XL XL.2
CPU Cores 1 1 1 2 2 4 4 8 8
RAM (GB) 0.5 1 1.7 2 3.75 4 7.5 8 15
DISK (GB) 25 50 75 100 150 200 250 300 350

Compute Units 1 2 3 4 6 8 12 16 20

dynamic sharing of CPU cores among VMs, we configured CloudSim to use a time-
shared VM scheduler policy. To collect the simulation results, we repeated each of the
experiments ten times from the same host and then computed the average value.

7.1.4. Workflow Traces

For all of our experiments conducted with multi-Cloud workflows we use two real
XML formatted traces of the Montage and Epigenomics workflow-based applica-
tions. The traces are generated from real executions of the corresponding workflows
using the Pegasus WfMS. The task descriptions, including runtime and input/output
files information of each workflow, have been imported with the help of the Work-
flowSim workflow parser from separate text files. We configured the workflow en-
gine to release a maximum of five tasks to the broker in each scheduling interval
(default value used in Pegasus). For an accurate calculation of the makespan, we
extracted from each workflow trace the real delay overhead that results from cluster-
ing, post-scripting, and queuing to make the simulation as realistic as possible. In the
following, we describe the workflow applications and trace characteristics.

Montage Workflow Application

Montage [14] is an astronomical workflow application used to construct large image
mosaics of the sky obtained from the 2MASS observatory at IPAC [1]. A Montage
workflow can be modeled as directed acyclic graph (DAG), where the vertices repre-
sent computing tasks, and the edges represent either data-flow or control-flow depen-
dencies. A sample DAG graph of a 9-level Montage workflow is illustrated in Figure
7.1. All the tasks at the same horizontal level are invocations of the same binary code
(see right side of the figure) operating on different input data. The imported sam-
ple trace contains 7463 tasks within 11 horizontal levels, has 3 GB of input data and
generates respectively about 31 GB and 84 GB of intermediate output data and data
traffic. Each task requires one CPU core to run. As Montage spends more than 80%
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of the execution time in data transfer operations, it is considered as a data-intensive
workflow.

Figure 7.1.: A sample horizontally clustered Montage workflow.

As mentioned before, we use clustering to reduce the scheduling overhead of large-
scale workflows on multi-Cloud. A well-suited clustering technique for the Montage
workflow structure is horizontal clustering. Herewith tasks at the same horizontal
level are merged into a predefined number k of clustered jobs. Table 7.3 shows the
resulted total number of clustered jobs for each used k.

Table 7.3.: Total number of clustered jobs with different cluster numbers k.
Cluster number k per level 20 40 60 80 100

Jobs number 92 152 212 272 332
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Epigenomics Workflow Application

Epigenomics 1 is a compute-intensive, workflow-based DNA sequencing application,
developed by the USC Epigenome Center [46], to map the epigenetic state of human
cells on a genome-wide scale. A sample directed acyclic graph (DAG) presentation of
a four vertical levels Epigenomics workflow is illustrated in Figure 7.2.

Figure 7.2.: A sample vertically clustered Epigenomics workflow [96].

As can be seen from the figure, the workflow takes the DNA sequence data gener-
ated by a genetic analyzer system as input and splits it into several chunks that can
be processed parallel to one another. The sequences of each data chunk are filtered
to remove noisy and contaminating sequences, and then mapped onto the correct
location in a reference genome. Finally, a global map of the aligned sequences is gen-
erated and the sequence density of each position in the genome is calculated [96].
Table 7.4 shows the characteristics of the imported workflow trace consisting of 997
tasks. In order to reduce the scheduling overhead, we applied vertical clustering as
merging techniques. Herewith, the sequential tasks of each vertical level are merged
into a clustered job, so that the total number of tasks is reduced to 260 tasks.

1http://pegasus.isi.edu/applications/dna_sequencing
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Table 7.4.: Epigenomics workflow trace characteristics.
Tasks Clustered Input Output Data

number jobs data data traffic
997 260 7 GB 300 MB 505 GB

7.2. Evaluation of the Multi-Cloud Service Broker
Framework

7.2.1. Match Maker and Deployment Manager Evaluation

The aim of this first simulation experiment is to test the functionality of the match
maker and deployment manager components of the multi-Cloud service broker frame-
work, with simple generated compute service requests. For this purpose, we set up a
simple simulation scenario with fewer datacenters and less offered services than the
ones presented in Section 7.1. In the following we describe the simulation scenario
and then we present and discuss the simulation results.

Simulation Scenario

To conduct this experiment, we configured six heterogeneous CloudSim datacenters.
Each datacenter has a unique ID and is located in a different geographical region (on
four world continents). The detailed configuration for each datacenter is gathered
in Table 7.5. The six datacenters have different pricing policies and can support one
of two defined operating systems (Linux or Windows) and CPU architectures (x86
or x64). For this experiment, we assume that the pricing policies of each datacenter
are fixed and, therefore, all the offered VM instance types are charged with the same
price. Furthermore, we do not consider the cost for data traffic. Each of the modeled
datacenters is made up of 50 hosts, which are equally divided between two different
host types. The configuration of each host type can be seen in Table 7.6. The chosen
hosts setup allows the deployment of one or more VM instances per host.

As a simple simulation scenario, we model in this experiment the broker-assisted de-
ployment of a single VM on one Cloud. Hence, we configured the Request Generator
to continuously generate (at a random rate varying from 0 to 60 seconds) an equal
number from four synthetic user request types. Each request requires one of the four
modeled VM types, which are the micro, small, large, and high CPU Amazon EC2 in-
stance types. Based on the requested VM type, the requests have different cost limits,
which are equal to the prices charged by Amazon for the corresponding type. In ad-
dition, each request prefers a different compute zone for the deployment. Table 7.7
gives the hardware configuration, requested region, and maximal acceptable cost of
each request type. As can be seen from the table, the VM configurations are similar
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Table 7.5.: Modeled datacenters configuration.
Datacenter Configuration

Name ID OS Arch Region Cost $/hour
DC A 0 Linux x64 USA 0.3
DC B 1000 Linux x64 USA 0.45
DC C 2000 Windows x64 Europe 0.75
DC D 3000 Linux x64 Europe 0.55
DC E 4000 Linux x64 Asia 0.15
DC F 5000 Windows x86 Australia 0.04

Table 7.6.: Hosts setup.
Host Type CPU Cores RAM Bandwidth Storage

(MHZ) (GB) (GBit/s) (TB)
Xeon 3040 1860 2 4 1 2
Xeon 3075 2660 2 8 1 1

to the modeled VM types XS, S.2, L.2 and XL.2, presented in Table 7.2. All the config-
ured datacenters support the provision of the four VM types when their load capacity
allows.

Table 7.7.: Modeled synthetic VM request types; OS=Linux and Arch=x64.
VM Requirements

Request ID VM type CPU Cores RAM Region Cost
(GHZ) (GB) ($/hour)

1 CPU high 2.5 2 1.7 USA 0.17
2 large 2 2 7.5 Europe 0.34
3 small 1 1 1.7 Asia 0.085
4 micro 0.5 1 0.63 Africa 0.02

Deployment Rate

To test the functionality of the deployment manager, we conducted an initial experi-
ment in which the broker randomly selects for each generated request a provider from
the six datacenters, regardless of user requirement. The broker then tries to deploy the
VM on the selected datacenter with respect to its current load capacity. While keep-
ing the number of datacenters constant, we measured the deployment rate, which is
defined as the percentage of successfully deployed VMs, by varying the request num-
ber from 50 to 2000. We repeated the same experiment by decreasing the number of
datacenters from six to three and then to only one. The results presented in Figure
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7.3, after one day of simulation time, show that the broker deployment rate scales
well with the increasing number of service requests and Cloud providers.
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Figure 7.3.: One day broker deployment rate with different datacenter numbers and
the random matching policy.

Matching Rate

We conducted another experiment to evaluate the matching performance with differ-
ent datacenter selection strategies in the broker. For this purpose, we implemented
the following simple matchmaking policies in the match maker:

• Functinal SLA Cloud Matcher: selects randomly a provider that fits all the func-
tional SLA service requirements.

• Location-Aware Cloud Matcher: selects a provider located at the same region
given in the service request.

• Cost-Aware Cloud Matcher: selects the cheapest provider below a given cost
limit.

• Hybrid Cloud Matcher: combines both functional SLA and location-aware match-
ing.

We repeated the previous experiment using all six datacenters and changed the match-
ing policy used in the match maker each time. We then measured the matching rate,
defined as the percentage of successfully matched requests. As depicted in Figure 7.4,
when using cost or location as the matching policy, the matching rate remains con-
stant at 75%, because the requested cost limit and location for the micro VM instance
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type usually has no match. However, with the functional SLA and hybrid matching
policies, the matching rate decreases continuously with the rising service demand
due to the limited capacity of the provided datacenter resources. In addition, the re-
sults show that a simultaneous fulfillment of all SLA requirements always happens at
the expense of a low matching rate. For example, for hybrid matching, the maximum
measured matching rate was the half of the matching rate obtained with a functional
SLA matching, because in this case the datacenter location also needs to be taken into
account.
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Figure 7.4.: One day matching rate for different matching policies with 6 datacenters.

7.2.2. Workflow Engine Evaluation

The goal of this experiment is to show the benefits of using the multi-Cloud service
broker framework in executing scientific workflows compared to the use of a single
Cloud. In particular, we focus on the performance and cost benefits and we identify
the necessity of using clustering. We conducted this experiment using the Montage
workflow trace described above in Section 7.1.4 and the modeled public Clouds in
Section 7.1.1. In the following, we describe first the simulation scenario and then
show and discuss the gathered results.

Simulation Scenario

To conduct this experiment, the following simulation scenario has been used: A user
located in Germany requests 10 VMs of the type small S.2 and 10 VMs of the type
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medium M.2 to run the Montage workflow using our framework. The user’s non-
functional SLA requirements, given in Table 7.8, express the maximum payment will-
ingness of the user, as well as his required values of the SLA attributes (availability,
response time, and throughput), to deploy the workflow with an acceptable QoS. We
configured the match maker component to use the sieving matching policy intro-
duced in Chapter 5 so that only the datacenters that satisfy the entire user predefined
functional and non-functional requirements are selected. The latency between the
Clouds is not considered in the SLA requirements because it has no effect when us-
ing the sieving matching policy. The broker scheduler is configured to use the simple
round robin scheduling policy. This policy allocates tasks to the first free VMs regard-
less of their type or datacenter location. We assume that all the VMs running in the
same datacenter share a local SAN storage. The Intercloud data transfer is performed
according to the data management policy presented in Chapter 6. In this experiment
we do not use a dedicated Cloud storage to store the workflow input/output data.
Instead, this data is transferred directly from the client when needed at runtime. In
addition, we consider only the cost for provisioning the 20 VMs and do not consider
the cost for data traffic.

Table 7.8.: User non-functional SLA Requirements for the Montage workflow
deployment.

max Willingness min Availability max Response time min Throughput
($/hour) (%) (s) (Mbit/s)

2.7 96 10 10

For the purpose of evaluation, we modeled two simulation scenarios. In the first
scenario, named “single Cloud”, we deploy all the workflow tasks on the EC2 EU
Cloud. In the second scenario, named “multi-Cloud”, we use all the modeled 20
datacenters from Section 7.1.1 and let the multi-Cloud service broker automatically
select the suitable datacenters to provision the requested VMs according to the used
matching policy. These VMs are then provisioned to the user until the end of the
workflow execution.

Impact of Clustering on Workflow Makespan

In order to assess the scalability of the proposed brokering framework with respect
to increasing cluster number k, we measured in the first experiment the total time
needed to execute a single run of the sample Montage workflow in minutes for both
the “single Cloud” and the “multi-Cloud” scenario. In addition, for the single Cloud
scenario, we simulated the case of adding a stage-in job to transfer all required input
files before executing the workflow tasks. Figure 7.5 illustrates the results achieved.
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Figure 7.5.: Workflow execution time with different cluster numbers k.

As depicted in the figure, a 20 stepwise increase of k results for all the simulated
scenarios in an increase of about 10 minutes in the workflow makespan. This demon-
strates that our framework scales well with the increasing number of workflow jobs.
Clearly, the single Cloud case benefits from a shorter execution time because, for the
“multi-Cloud” case, the Intercloud data transfer is more time-consuming than a trans-
fer from the local SAN storage. However, when adding a stage-in job to the single
Cloud case, the execution of the workflow needs more time, as all the other tasks
should wait for the stage-in job to finish before their execution starts.

Impact of Clustering on Data Transfer

To evaluate the resulting data transfer overhead in the multi-Cloud scenario, we re-
peated the previous experiment to measure the proportion of time needed to transfer
all the required files compared to the total pure computing time (includes clustering
delay) for all workflow tasks. The results with different cluster numbers are shown
in Figure 7.6. Note that for the Intercloud transfer time calculation, we used the pre-
defined local and Cloud-to-Cloud bandwidth constants, as we do not know the real
bandwidth values. All the data transfers are performed by the data manager accord-
ing to the transfer policy introduced in Chapter 6. It can be seen from the figure that
the total pure computing time decreases with larger k. This decrease is caused by
the logical decrease of the clustering delay, since, with a bigger cluster number, the
number of merged tasks in a clustered job is reduced. However, the data transfer
time remains between 180 and 190 minutes for a k between 20 and 100. To show the
benefit of using clustering, we repeated the same experiment by disabling the clus-
tering. We found that about double the time is spent for the data transfer compared
to a deployment with clustering enabled.
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Figure 7.6.: File transfer overhead for the multi-Cloud case with different cluster
numbers k.

In order to classify the types and origins of the transferred files, we counted the
amount of VM-to-SAN-Storage (local), Cloud-to-Cloud (Intercloud) and client-to-
Cloud transfers during the workflow execution. The total number and size of the
transferred files during a deployment with k=20 are depicted in Figure 7.7. The results
prove that the transfer time overhead is heavily affected by the Intercloud transfers.
Therefore, a reduction of the number of transfers between the Clouds will probably
improve the workflow execution performance. This can be achieved by using more
efficient brokering and scheduling policies in the broker than the ones used in this
experiment (sieving as matching policy and round robin as scheduler).
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Figure 7.7.: Total size (left) and number (right) of transferred files for the multi-Cloud
case with k=20.
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QoS and Cost Evaluation

We compared the average non-functional SLA values (cost, availability, response
time, and throughput) of the matched datacenters for the multi-Cloud case with the
corresponding values in the case of deploying the workflow on the single Amazon
EC2 EU Cloud. The results are depicted in Table 7.9.

Table 7.9.: Average non-functional SLA values for the matched datacenters.
Scenario Datacenters Cost Availability Response time Throughput

($/h) (%) (s) (Mbit/s)
single EC2 EU 2.55 99.97 3.63 19.11
Multi EC2 EU

FlexiScale EU 2.27 99.86 3.91 21.66
CityCloud EU

It can be seen that, besides Amazon EC2 EU, FlexiScale EU and CityCloud EU also
fulfill all the SLA user requirements listed in Table 7.8. The other Clouds fail ei-
ther because their expected execution costs are above the maximum user’s payment
willingness or because they cannot deliver the minimum required client-to-Cloud
throughput due to their non-closeness to the client (meaning they are not located in
the same geographical region as the client). The table also shows that the multi-Cloud
case works better than the single Cloud case in terms of cost saving. This lies in the
fact that FlexiScale and CityCloud deliver the requested VM types with lower costs
and with almost the same or better service quality than Amazon EC2.

7.2.3. Results Discussion

The first experiment conducted in Section 7.2.1 showed that an increase of the num-
ber of concurrent providers results in more resource heterogeneity and therefore im-
proves the broker’s matching rate. The results also prove the good scalability of the
broker and, in particular, of the match maker. Furthermore, the results prove that
the accuracy of the queried monitoring information by the monitoring manager (e.g.
datacenter load capacity) heavily impacts the performance of the matching policy, es-
pecially for the functional SLA matching. In fact, the support of more than one SLA
parameter in the matching increases the customer satisfaction, but at the cost of a low
match rate. Thus, the matching algorithm should optimize this trade-off by modeling
the dependency between the customer utility function and his requested functional
and non-functional SLA parameters, while considering the current provider’s moni-
toring information. The final experiment results justify the need for efficient matching
policies, like our proposed utility-based matching algorithm in Chapter 5, to increase
the match rate while satisfying the user SLA requirements.
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The second experiment presented in Section 7.2.2 showed that one Cloud may execute
a workflow application faster than using multiple Clouds because the inter-task data
transfer is performed within a single platform. However, when the input data of the
workflow task must be transferred from other locations, e.g. other Clouds, to the
target platform, the multi-Cloud workflow framework may work better in terms of
execution time. Hence, the use of Cloud storage for storing input and output data
has more advantages in the multi-Cloud case. We also found that clustering is a
necessary technique for running workflows on multiple Clouds because it reduces
the number of tasks and hence reduces the amount of data to be transferred between
the tasks. Finally, the results prove the benefit from using the broker framework to
deploy workflows on multi-Cloud in reducing the user payment by selecting Clouds
with lower cost and better service quality. In the next sections we will evaluate the
use of more efficient matching and scheduling policies for the workflow execution to
improve the performance and costs and consequently increase the user satisfaction.

7.3. Evaluation of the Matching Algorithms

In this section we evaluate the efficiency of the SLA-based matching algorithms intro-
duced in Chapter 5 with simple and complex composite service requests. Therefore,
we implemented the sieving and utility-based matching algorithms as a new match-
making policy in the broker and conducted experiments with different scenarios. In
the first subsection we apply the simple version of the utility-based algorithm, im-
plemented based on an exhaustive search to match single Cloud services. In the next
subsection we use its genetic-algorithm based version (HU-GA) to match a composite
workflow service. Finally, we compare the HU-GA algorithm with a prospect-based
selection algorithm in a real SaaS case study.

7.3.1. Matching of Single Cloud Services

Simulation Scenario

In this experiment, we investigate the efficiency of the proposed sieving and utility-
based algorithms in matching single Cloud services using a Desktop Cloud Service
(DCS) use case. This is an application of the virtualization technology (e.g., IBM
PowerVM [80], VMware2, Xen3) to desktop computing. In the DCS computing model,
users connect to single virtual machines running desktop operating systems on servers

2http://www.vmware.com
3http://www.xensource.com
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provisioned in a remote datacenter. Users interact with their desktops through re-
mote access protocols (e.g., RDP4, ICA5) using thin-client devices that provide Graphic
User Interface (GUI) interaction, but do not necessarily perform any end-user com-
puting. These desktop services can be provided with varying levels of responsive-
ness, availability, throughput, and cost. Depending on the customer type require-
ments, different flavors of desktop service may be relevant. To better illustrate cus-
tomer heterogeneity, we consider the following use cases with three different types
of DCS customers: “enterprise user”, “Internet cafe” and “online game provider”.
These use cases exemplify varying levels of expectations with respect to availability
level, response time and throughput:

• Enterprise users (i = 1) have high requirements regarding availability, response
time and throughput when running DCS solutions. As expenses for IT services
account for only a small fraction of the total costs, these users are typically will-
ing to accept higher prices for such high quality IT services.

• Internet cafe (i = 2) relies primarily on revenue from users accessing Internet.
Therefore, its concern is having the desktops highly available and responsive.
Unresponsive or faulty desktops will discourage customers from using the In-
ternet cafe and hence reduce its revenues. At the same time Internet cafes are
concerned with the cost of the service as desktop provisioning constitutes a sub-
stantial fraction of the overall cost base.

• Online game provider (i = 3) has high requirements regarding response time
to ensure real-time interaction between distributed game participants.

Table 7.10 depicts the customer types described above, including the mathematical
representation of their preferences using scoring functions, serving as input for the
utility-based matching. The numerical values of the λweights and the fitting function
shapes are chosen to represent the properties of the customer types described above.
The fitting functions range between 0 and 1 with 0 denoting the lowest and 1 the
highest correspondence of preferences. Such customer-specific functions are usually
gained from user experience or from usage profiles collected on the provider side.

Based on the real use cases described above, we configured the request generator
to continuously produce up to 20000 DCS requests (at a random rate varying from
0 to 30 seconds) for single VM deployments on Cloud. The requests generated are
equally distributed between all the VM types presented in Table 7.2 and the three
defined customer types. Among other things, each request specifies the VM type, the
customer’s willingness to pay for one CU, the customer type, and the desired non-
functional parameters, including availability, response time, and throughput. For the
utility-based algorithm, the non-functional parameters are implicitly specified in the
fitting function of the corresponding customer type. For the sieving algorithm, we use
sample values depicted in Table 7.11, which correspond to the scoring value of 0.8 in

4http://www.microsoft.com
5http://www.citrix.com
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Table 7.10.: Preferences of DCS customers i expressed using fitting functions f and
relative weights λ; γ = 0.0005; β = 1− γ.
Availability Response Time Throughput

i λav f(av) λrt f(rt) λth f(th)
1 1

3
γ

γ+βe(−av+87)
1
3

γ
γ+βe(rt−12.5)

1
3

1− βe−0.1th

2 2
5

γ
γ+βe(−0.9(av−84))

1
5

γ
γ+βe(0.3(rt−55))

2
5

1− βe−0.2th

3 1
5

γ
γ+βe(−0.6(av−76))

3
5

γ
γ+βe(0.9(rt−20))

1
5

1− βe−0.9th

the fitting functions of the utility-based algorithm, which is a high value forming a
big challenge for this algorithm to compete with the sieving algorithm.

Table 7.11.: Non-functional service requirements of customers i for the sieving
algorithm.

i max Willingness min Availability max Response time min Throughput
($/hour per CU) (%) (s) (Mbit/s)

1 0.06 96 3.5 16.3
2 0.03 94 25 8.2
3 0.025 91 10 1.8

Matching Rate and Provider Coverage

The customers’ DCS requests are delivered to the broker as input, where suitable
providers are selected to deploy and then start their VMs, based on one of the two
matching policies. Using the matching results, we calculated the matching rate and
the provider coverage. To study the impact of the payment willingness on the match-
ing, for each algorithm we first applied the numbers in Table 7.11 for customers
willingness to pay (named “single-case”) and then doubled these numbers (named
“double-case”) to observe the reaction of both algorithms. Figure 7.8 shows the
matching rate of the sieving and utility-based algorithms. As depicted in the figure,
the matching rate, which defines the percentage of matched requests, goes down with
the increasing number of requests for all four cases. This is clearly due to the restric-
tion of the computing capacity on the Cloud, i.e., when a Cloud is fully loaded with
VM instances, there is no free host for more VM requests. For the “single” case of both
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Figure 7.8.: Matching rate of the sieving and utility-based algorithms.

algorithms (the lower two curves) it can be seen that the sieving algorithm has a bet-
ter matching rate. However, the curve for the utility-based algorithm is much closer
to the one for sieving and the matching rate of the utility-based algorithm improves
after 5000 requests. These results prove that the matching rate of utility matching
works better than sieving matching when the number of service requests increases.
In contrast, sieving works better with a small request number (under 5000). This is be-
cause with fewer than 5000 requests with sieving, more datacenters are matched and
therefore more resource capacity is available. Additionally, it can be observed that
the doubling of the payment willingness causes a rapid improvement in the match-
ing rate for utility matching, which then outperforms the sieving matching rate even
starting from 2000 requests. Overall, for both single and double cases the matching
rate with the sieving scheme decreases drastically after 5000 requests, while the re-
duction with the utility scheme is more stable. The slow decrease of the matching rate
for utility matching with increasing number of requests is due to the steady increase
of the matched datacenters and resource capacity. This experiment indicates that the
utility-based algorithm scales well with the customer requests and also performs bet-
ter with high-paying customers.

Figure 7.9 shows the number of different providers selected by each matching algo-
rithm in a single matching process with a certain number of service requests. It can be
seen that the sieving algorithm (the two flat lines in the figure) selects for both scenar-
ios between a constant value of Clouds for serving the customer request. Thus, the al-
gorithm always matches the same seven Clouds in the “single” case, and then selects
the more expensive providers as well, in case their price remains within the limitation
of the customer’s budget, and their obtained utility remains positive. Therefore, the
utility-based algorithm provides more benefits to the providers because every Cloud
may have the opportunity to serve the customer requests. It can also be seen from
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Figure 7.9.: Number of covered providers by the matching algorithms.

the figure that the doubling of the payment willingness causes utility to match more
providers by selecting more expensive providers.

Figure 7.10 depicts the top selected providers after the first 5000 requests for the
utility-based and sieving algorithms in their “single” and “double” cases. We can
observe that the datacenters located in Europe are mostly matched by both algo-
rithms, as they better fulfill the throughput and response time QoS requirements
due to their proximity to the customer. However, the utility-based algorithm allows,
through its economic-based matching more competitiveness and fairness between the
selected providers than the sieving algorithm, which is based on random selection of
providers.

Cost Evaluation

We repeated the above simulation experiment to evaluate the cost-effectiveness of
the used matching policies in the broker. We generated 5000 requests of the VM type
small S with Linux OS for each of the three customer types by changing the matching
policy each time. Based on the corresponding matching results and the current “pay-
as-you-go” pricing policy of the selected providers, we then calculated the average
expected VM cost per hour for each customer. Please note that for this experiment,
the data traffic costs are not considered in the calculation of the cost. The results for
each matching algorithm are illustrated in Figure 7.11.

It can be seen that the utility-based algorithm in both “single” and “double” cases is,
from a user perspective, more cost-saving than the sieving algorithm, as it usually
prioritizes the cheapest providers while considering the service quality expectations
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Figure 7.10.: Match percentage per provider after 5000 requests.
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Figure 7.11.: Average cost for 5000 requests of VM type small with linux OS.

of the customers at the same time. Since the matching strategy for both algorithms
is dependent upon payment willingness, the impact of doubling the payment will-
ingness on cost is stronger. Note that for the enterprise users, with sieving matching
the same three providers could always be matched, therefore the payment has no ef-
fect on the costs. For the same reason, the average VM costs with the utility-based
matching for game provider and Internet cafe users in the “double-case” are equal.
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7.3.2. Matching of Composite Cloud Services

For the experimental evaluation of our proposed HU-GA matchmaking scheme with
a real case study, we investigate in this subsection the deployment of the Epigenomics
bioinformatic application presented in Section 7.1.4 using our multi-Cloud service
broker framework. One major reason for running the DNA sequencing workflows
on the Cloud is to use the Cloud feasibility in scaling-in and scaling-out [141]. De-
pending on the number of sequences, the analysis work can take several days. For
a fast diagnosis, it is necessary to involve more computing capacities for larger data
or to reduce the resource number when the data set is small. In this case, Cloud is
an ideal choice for this kind of applications. In addition to the computing facilities
offered by Clouds, the scalable storage systems and analysis tools offered by Cloud
also permit us to realize the vision of “data-driven medicine” [31]. An example of
commercial companies providing genomic analysis in the Cloud to hospitals and re-
searchers is DNAnexus 6, which offers its services based on the Amazon AWS Cloud
services.

It may be possible to run the DNA sequencing workflows on a single Cloud [95],
however, it is better or even necessary to use multiple Clouds because the resources
on one Cloud can be insufficient, or there could be a resource limit to the customers.
In the following subsections, after presenting the simulation scenario, we explore
the performance and cost benefits of running DNA sequencing workflows using our
broker framework together with the HU-GA matching scheme.

Simulation Scenario

For the purpose of evaluation, we implemented the HU-GA algorithm as a new bro-
ker matchmaking policy using the Java-based Opt4J [108] genetic framework. For
all experiments, we configured Opt4J to use a population size of 100 with a maximal
generation number of 1000 and a crossover rate of 0.95. For a comparative study with
HU-GA, we use the simple sieving matching algorithm. Additionally, as a scheduling
policy, we use the simple round robin scheduler, which schedules workflow tasks to
the first free available VMs in the composite service regardless of the datacenter loca-
tion. Since Epigenomics workflows are not data-intensive, it is not necessary to use a
more complex data locality-driven scheduling policy.

The modeled use case scenario of a Epigenomics workflow deployment using our
broker framework is depicted in Figure 7.12. As the figure shows, the deployment
consists of the following steps: First, the user gives his functional requirements for
the workflow deployment by requesting from 10 to 50 VMs and one storage Cloud to
store the workflow data. The half number of VMs is of the type small S.2 and the other
half is of type medium S.2. After acquiring the user QoS and budget requirements, the

6https://www.dnanexus.com
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Figure 7.12.: Multi-Cloud DNA sequencing workflow deployment use case.

workflow engine forwards the user composite service request to the Cloud service
broker (1) to select the suitable Clouds for the deployment based on the configured
matching policy. After that, the requested resources are deployed (2), the workflow
engine transfers the input data from the client to the Cloud storage, and then starts
the execution of the workflow (3). Finally, the output data is stored in the Cloud
storage when the execution is finished and can be fetched from the user client (4).

For the purpose of evaluation, we modeled two simulation scenarios. In the first sce-
nario, named “unconstrained”, the number of VMs that can be deployed per datacen-
ter is unlimited. In the second scenario, named “constrained”, we added a constraint
in the user request to increase the chance of a multiple Cloud deployment by limiting
the maximal number of VMs per datacenter to half of the total requested VMs.

The user requested minimal and maximal values for the QoS parameters (response
time, availability, Cloud-To-Cloud latency, and throughput) to deploy the Epigenomics
workflow on the Cloud are given in Table 7.12. These values are consumed by the
sieving matching algorithm to select the random candidate Clouds for the deploy-
ment. The fitting functions and the relative weight for each QoS parameter, which are

Table 7.12.: User QoS requirements for the multi-Cloud DNA sequencing workflow
deployment.

max Response time min Availability max Latency min Throughput
(s) (%) (ms) (Mbit/s)
25 95 50 12

both part of the input for our proposed HU-GA matching algorithm, are given in Ta-
ble 7.13. The fitting functions are set so that a score value higher than 0.8 corresponds
to the minimal QoS requirements given in Table 7.12. It can be seen from the table that
in the modeled user request, the Cloud-to-Cloud latency has more importance for the
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user because of the high amount of inter-task data that needs to be transferred at run-
time between Clouds. Hence, low latency values between the Clouds are required.
The second place of user concern is the availability of the Clouds. Whereas both the
client-to-Cloud throughput and response time have no significance because of the
relatively small amount of input/output data that need to be transferred from/to the
client. For all our conducted experiments, we fixed the lease time period T in which
the requested Cloud resources are provisioned for the user to two days.

Table 7.13.: User preferences for the multi-Cloud DNA sequencing workflow deploy-
ment expressed using fitting functions f and relative weights λ; γ =
0.0005; β = 1− γ.

Response time Availability Latency Throughput
λrt f(rt) λav f(av) λlat f(lat) λth f(th)
1
10

γ
γ+βe(0.3(rt−55))

3
10

γ
γ+βe(−0.9(av−84))

5
10

γ
γ+βe(0.2(lat−100))

1
10

1− βe−0.2th
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The maximum acceptable hourly price for each requested small S.2 and medium M.2
VM type as well as the maximum gigabyte price for data storage and network traffic
are given in Table 7.14. Clearly, these budget limits express the medium payment
willingness of the users of such types of scientific applications.

Table 7.14.: Maximal payment for VMs, storage, and traffic for the DNA sequencing
workflow deployment.

VM small S.2 VM medium M.2 Cost storage Cost traffic
($/hour) ($/hour) ($/GB) ($/GB)

0.09 0.18 0.1 0.1

Time complexity and Convergence

In order to evaluate the time complexity of the HU-GA algorithm with the increas-
ing number of requested VMs in the “unconstrained” scenario, we measured in an
initial experiment the time consumed by the genetic algorithm to find the optimal
composite service and then compared the results with the sieving algorithm. Figure
7.13 illustrates the results. As can be seen from the figure, the time complexity of HU-
GA increases exponentially as the number of VMs increases from 10 to 50, reaching
40 seconds with 50 VMs. Although the complexity values brought by our approach
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are up to three orders of magnitude compared to the sieving algorithm, it is negligible
compared to the workflow makespan, which can take many hours.

3,8 
6,5 

12 

22 

38 

0,01 0,014 0,02 0,02 0,03 

0

5

10

15

20

25

30

35

40

10 20 30 40 50

ti
m

e
 (

se
c)

 

Vm Number 

Unconstrained HU-GA Unconstrained Sieving

Figure 7.13.: HU-GA and sieving time complexity for different VM numbers.

We repeated the above experiment by measuring the number of iterations needed
for the convergence of the genetic algorithm for both the “constrained” and “uncon-
strained” use cases. Additionally, in order to assess the impact of the pre-sieving
process used in the HU-GA algorithm on the algorithm convergence, we conducted
the experiments first with enabling and then with disabling pre-sieving. The results
for all scenarios are presented in Figure 7.14.
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Figure 7.14.: Unconstrained (U)/constrained (C) HU-GA convergence for different
VM numbers.

As depicted in the figure, the continual increase of the VM number results in a steady
increase of the iteration number for all scenarios. Thus, we conclude that more time
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is needed to perform the matching. It can be seen that the fastest convergence is
reached with the “pre-sieved” HU-GA in the “unconstrained” scenario, followed by
the “pre-sieved” HU-GA in the “constrained” scenario. This result proves the benefit
of pre-sieving in improving the genetic algorithm performance. We also observed
that, starting from 40 VMs, the“unsieved” HU-GA algorithm is terminated (after 1000
iterations) without reaching the convergence. Because of this result, all of the next
conducted experiments are performed with a “pre-sieved” HU-GA algorithm. The
maximal achieved utility in the convergence values with increasing number of VMs
as well as sample convergence graphs can be seen in Appendix B.1.

Workflow Makespan

We repeated the previous experiment to measure the workflow makespan in minutes
after a single run of the Epigenomics workflow on the Cloud resources allocated ei-
ther using the sieving or HU-GA matching algorithm. In addition, we compared the
result with the predicted theoretical makespan value (baseline) calculated based on
the number of requested VMs in the composite service. The results for the “uncon-
strained” scenario with different numbers of requested VMs are shown in Figure 7.15.
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Figure 7.15.: Workflow makespan in minutes with HU-GA-and sieving.

It can be seen from the figure that for both algorithms the makespans are very close.
This is explained by our assumption that the VMs on all the matched Clouds have the
same hardware configuration and performance, and by the fact that both algorithms
have the tendency to select Clouds in the same user region to take advantage of low
data transfer time and latency. We observed also that the execution of the workflow
within the requested two days lease time is only possible with more than 30 VMs,
otherwise the deadline will be violated and the user will be charged for the additional
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needed time. The difference from the theoretical makespan is due to the overhead
resulting from the file transfer, particularly with a large number of requested VMs in
the composite service.

QoS Evaluation

One of the important criteria to prove the effectiveness of the matching algorithms
is the QoS resulted from the deployment of the requested composite services on the
matched Clouds. For this purpose, we calculated for the “unconstrained” and “con-
strained” simulation scenarios with 50 requested VMs the aggregated values for the
availability, response time, throughput, and latency according to Table 5.3. The re-
sults for each SLA attribute with the sieving and HU-GA algorithms are depicted in
Figure 7.16.

SLA metrics

SLA metrics Agg AvailabilityAgg ThroughputAgg Latency Agg Response timemin Availaibiltymin Throughputmax Latency

U-Sieving 93,25 23,13 21 4,76 95 12 50

C-Sieving 93,25 23,13 21 4,76 95 12 50

U-HU-GA 96,49 23,13 10,58 4,76 95 12 50

C-HU-GA 97,48 19,11 17,94 4,18 95 12 50
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Figure 7.16.: Average aggregated SLA values for unconstrained (U)/constrained (C)
HU-GA and sieving for a VM number of 50.

It can be seen from the figure that, except for the availability attribute, both algo-
rithms are able to keep the QoS values inside the requested user range (lightly col-
ored). The low aggregated availability value obtained with sieving matching is due
to its random strategy in choosing Clouds, which leads to a multiplicative decrease
of the availability, in particular, with a high number of component services in the
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composition. Moreover, we observed that the use of HU-GA matching assures better
aggregated values for latency and availability, as they are both of high importance for
the user, which is expressed with high weights in their respective scoring functions.
The good values of the client-to-Cloud throughput and response time are explained
by the tendency of both algorithms to choose the Clouds located in Europe to reduce
the time for transferring input and output data from/to the user client. Furthermore,
the unconstrained use case gives the best results in terms of latency as, in this case,
the chance to deploy all the VMs in one Cloud is higher. Please refer to Appendix B.2
to see the full list of the matched datacenters for each scenario.

Cost Evaluation

In this subsection, we evaluate the impact of the used matching policies on the execu-
tion costs, including costs for compute, storage, and traffic. Thus, we calculated the
total charged cost after a single run of the Epigenomics workflow for a different num-
ber of VMs. As the VMs are charged on an hourly basis, we rounded the makespan
up to the nearest hour and then calculated the cost based on the rounded values.
Our cost calculation does not consider additional costs like license and VM images
costs, which are charged by some Cloud providers. For the traffic cost calculation,
we measured the amount of data traffic transferred between two Clouds during the
execution and then applied the current pricing policies. The resulted total costs for
the different use cases are depicted in Figure 7.17.

We can observe from the figure that the HU-GA algorithm allows up to 25% cost-
saving compared to sieving for both “unconstrained” and “constrained” scenarios.
The best cost-saving is achieved with “unconstrained” HU-GA algorithm due to its
tendency to deploy all the requested VMs in the cheapest provider if the required
QoS is fulfilled. The small increase of the costs with a higher number of used VMs
results from the low makespan, which compensates the additional costs of the leased
VMs.

In order to evaluate the amount of cost-saving in the requested lease period T of two
days, we use a metric called Cost-Budget-Ratio (CBR) defined as follows:

CBR =
Cx(T )

Cr(T )
∗ 100 (7.1)

where Cx(T ) and Cr(T ) respectively denote the total lease cost and the total user bud-
get for the period T. These are calculated according to Equations 5.1 and 5.3. Based on
the above metric definition a low CBR value is expressed with a rise in cost-saving.
We repeated the previous experiment to compare the obtained CBR values with dif-
ferent matching policies in the two deployment scenarios. The results are provided
in Table 7.15.
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Figure 7.17.: Total workflow execution cost with unconstrained (U)/constrained (C)
HU-GA and sieving for different VM numbers.

Table 7.15.: CBR values with unconstrained (U) and constrained (C) HU-GA and siev-
ing for different VM numbers.

VMs 10 30 30 40 50
U-Sieving 49.22 61.03 66.12 69.85 72.92
C-Sieving 50.27 59.84 66.57 70.95 73.4
U-HU-GA 36.53 46.13 50.67 53.31 55.04
C-HU-GA 42.15 49.48 54.07 56.88 58.77

It can be seen from the table that, for all scenarios, the budget constraints could be
fulfilled. Here we also confirm that HU-GA allows more cost-saving than sieving by
keeping the costs under 60% of the user requested budget. In contrast, a workflow
deployment with sieving is more economic only with a small number of VMs. In
addition, we can also prove that the “unconstrained” HU-GA deployment gives the
minimal CBR values and consequently ensures the best cost-saving.

7.3.3. Case Study: CAD-aaS

The aim of this case study is to evaluate the HU-GA utility-based algorithm with a
prospect-based composite service selection approach [52] developed in parallel with
this work. The evaluation is done with a real world SaaS scenario with the same
simulation setup from Section 7.1. In the following, we compare both approaches
and present the simulation scenario and the achieved results.
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Comparison of Utility and Prospect-based Selection

The prospect theory [97] is an alternative model to the classic expected-utility the-
ory [153] for describing decision-making under uncertainty. Its basic principle is to
model human behavior in assessing potential gains and losses rather than focusing
on a final outcome, such as in the case of MCDM methods. The evaluation of gains
and losses is expressed relative to a reference point through an “S-shaped” satisfac-
tion function, which is analogical to the scoring function used in the utility-based
selection. An example of a satisfaction function for the availability of QoS parameter
based on different importance weights is shown in Figure 7.18. The function shape
is influenced by the importance weight assigned to availability by the user. In this
concrete example, the user accepted boundaries are 99.5 and 100 and the reference
point has a score of 0.5 (meaning that a score over 0.5 expresses a gain). The score
achieved for a normalized value of 0.4 (availability 99.7%) is usually under 0.5, that
is, an unsatisfactory value.

Satisfaction Function 

10 

Availability = {Min, Max, Weight} = {99.5, 100, w1 / w2 / w3} 

 

Service1 =  {QoS, Value} = {Availability, 99.7} 

-------------------------------------------------------------------------------- 

Normalize value 
 

99.7%  = 0.4 as normalized value 

 

-------------------------------------------------------------------------------- 

Calculate satisfaction score 
 

 

HS4MC: Hierarchical SLA-based Service Selection  for Multi-Cloud Environments (CLOSER 2014) 

Figure 7.18.: Sample satisfaction function for the availability [52].

The multi-Cloud selection approach based on the prospect-theory, which is used for
the purpose of comparison, is composed of three phases. In the first phase, the can-
didate providers are ranked with respect to the specific SLA requirements of each
single service, called sub-SLA. In the second phase, the set of provider candidates
are ranked with respect to the SLA requirements of the whole service composition,
called meta-SLA. A final score is then calculated based on an additive weighting of
the sub-SLA and meta-SLA scores. The candidate composition with the highest final
score is then chosen by the algorithm for the deployment. Since the ranking is per-
formed using SLA attribute-specific satisfaction functions, the user has to determine
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when an attribute yields a gain or a loss by assigning value boundaries and impor-
tance weights to each of them. The key differences between this approach and the
proposed utility-based algorithm are summarized in Table 7.16:

Table 7.16.: Comparison between utility and prospect-based selection.
Factor Utility-based Selection Prospect-based Selection

cost significance multiplicative, not scored scored like QoS
fitting function preferred values gains and losses

weights meaning relative importance user sensitivity
selection strategy maximize user utility increase user satisfaction

SLA consideration meta-SLA meta-SLA and sub-SLA
decision input scoring functions, weights QoS and budget boundaries

budget weights, satisfaction functions

Simulation Scenario

The following simulation scenario has been modeled: a Computer Aided Design
(CAD) software provider located in Europe aims to deploy its CAD software on mul-
tiple public IaaS Clouds to save on cost and to increase the service quality. The soft-
ware is offered to end-users as SaaS application, called CAD-as-a-Service (CAD-aaS),
in three software editions: enterprise, professional, and standard, which have differ-
ent infrastructure requirements. The users can use the corresponding edition of the
CAD software on-demand through the internet by remotely accessing the user in-
terface from their thin client desktop or mobile device. Since the simulation results
for different software editions are similar, we address only the experiment with the
standard edition.

The various components of the CAD-aaS application in its standard edition, form-
ing a composite service, are depicted in Figure 7.19. As can be seen from the figure,
this deployment requires one small S.2 VM for the application user interface (UI), one
large L.2 VM with GPU features for the computation component, and 100GB of Cloud
storage to store the CAD models. Due to privacy and performance concerns, the SaaS
provider requires that the storage Cloud be located in Europe. Each requested ser-
vice has its specific SLA requirement, termed as sub-SLA, while the global composite
service SLA requirements are termed meta-SLA. The numbered edges in the figure
represent the interaction steps needed between the components to process a CAD-
aaS customer request. In addition, a score is assigned to each edge expressing how
strong is the data traffic.

The minimal and maximal non-functional meta-SLA values requested by the SaaS
provided for availability, throughput, and latency as well as his maximum budget for
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Figure 7.19.: Composite infrastructure service for a CAD-aaS standard edition [52].

VMs, storage, and traffic, are presented in Table 7.17. The leasing time has been set to
one month.

Table 7.17.: Non-functional meta-SLA requirements of the CAD-aaS standard edition.
Cost VM CU Cost storage Cost traffic Availability Throughput Latency

($/hour) ($/GB) ($/GB) (%) (Mbit/s) (ms)
0.07 0.1 0.1 96 5 100

Simulation results

In order to compare the matching efficiency of both selection algorithms, we con-
ducted a simulation experiment using the scenario described above for the standard
CAD-aaS edition. For this experiment, we used the same scoring functions from Sec-
tion 7.3.2 for the utility-based algorithm, but with equally weighted QoS attributes.
Since the cost factor is of high importance for the low paying, standard-edition cus-
tomers compared to other QoS parameters, we assigned an importance weight value
of 0.8 for cost and an importance weight value of 0.25 for all other QoS parameters
for the prospect-based algorithm. Then we applied these weights and their respective
boundaries to build the specific satisfaction functions, which have the same shape as
in Figure 7.18. Furthermore, to dominate the influence of meta-SLA on sub-SLAs in
service selection, the meta-SLA and sub-SLA have been assigned as weights 0.9 and
0.1, respectively.

Figure 7.20 depicts the results for the aggregated QoS values of the matched service
composition (left side) and the total charged cost (right side) for both algorithms. As
can be seen from the figure, both algorithms are able to satisfy the SaaS provider re-
quested meta-SLA requirements. Moreover, the SLA metrics measured for both algo-
rithms look similar, with a slight advantage for the utility-based algorithm regarding
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the total cost. This is due to the fact that cost is a multiplicative factor in the utility
function; thus, it has more influence on the selection. The results also demonstrate
the tendency of both algorithms to select services from the same Cloud datacenter to
minimize the latency and traffic cost. This explains the aggregated latency value of 10
ms obtained for both approaches and, therefore, no traffic costs are charged. Further-
more, both algorithms prioritize datacenters located in Europe to assure the minimal
required throughput between customer and the user interface. As datacenter, Ama-
zon EC2 EU and VoxCloud EU, respectively, have been selected by the prospect-based
and utility-based algorithms.

Algorithm Availability(%)Throughput(Mb/s)Latency(ms) Reputation Algorithm Total cost($) VM cost($) Storage cost($) Traffic cost($)

Requested Meta-SLA 96 5 100 3 Requested Meta-SLA 364,4 252 10 102,4

Utility-based 99,91 19,11 10 _ Utility-based 243,5 234 9,5 0

Prospect-based 99,79 36,5 10 5 Prospect-based 319 309 10 0

Prospect-based (2nd) 99,91 19,11 10 9 Prospect-based (2nd) 243 234 9,5 0
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Figure 7.20.: Aggregated QoS values and cost with prospect-based and utility-based
selection.

7.3.4. Results Discussion

The DCS experiment in Section 7.3.1 showed that the utility-based matching algo-
rithm outperforms sieving in terms of matching rate and provider coverage in partic-
ular when the Clouds are heavily loaded with requests. Moreover, its cost-efficiency
compared to Sieving has been proved for different customer types.

The simulation experiments with the DNA-sequencing workflow in Section 7.3.2 showed
the benefit of using HU-GA compared to sieving matching in reducing the total exe-
cution costs, as well improving the QoS of the workflow deployment. This profit is
of more importance, particularly when running the workflow on a large service com-
position. Although the HU-GA algorithm needs more time to perform the matching,
this time can be neglected compared to the real workflow makespan and therefore it
pays off.

The case study with the CAD-aaS simulation scenario on multi-Cloud presented in
Section 7.3.3 showed that HU-GA competes perfectly with an efficient prospect-based
selection algorithm, in particular by reducing the total cost of the deployment.
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7.4. Evaluation of the Multi-dimensional Resource
Allocation

In order to validate our multi-dimensional resource allocation scheme proposed in
Chapter 6, we investigate in this simulation experiment the deployment of data-
intensive multi-Cloud workflow applications, using the example of the Montage ap-
plication (see Section 7.1.4). Our idea of deploying data-intensive workflow applica-
tions on multi-Cloud comes from the observation of the following scenario: A cus-
tomer works on several Clouds and stores data on them. There is a demand for jointly
processing all of the data to form a final result. This scenario is similar to the collabo-
rative work on the Grid. For example, the Worldwide LHC Computing Grid (WLCG)
[160] involves more than 170 computing centers, where the community members of-
ten work on a combined project and store their data locally on their own sites. A
workflow application within such a project must cover several Grid resource cen-
ters to process the locally stored or replicated data. In the following subsections, we
present the simulation scenario of deploying Montage using the multi-Cloud service
broker framework and show the benefits of using our proposed resource allocation
scheme in terms of cost and performance. In particular, we demonstrate the effects of
the HU-GA based Clouds selection and data-aware scheduling policies on makespan,
Intercloud data transfer, and costs.

7.4.1. Simulation Scenario

We conducted the same Montage experiment from Section 7.2.2 by adding one stor-
age Cloud to store the workflow input/output data. The input data are transferred
from the client to Cloud storage by the workflow engine before the start of work-
flow execution, whereas the output data are stored in the Cloud storage when the
execution is finished. If the user executes the same workflow multiple times on the
same provisioned Cloud resources, our implemented data locality scheduling scheme
reuses the existing replicated input data in order to save on data transfers and costs.
For simplicity, we consider in our evaluation only the first run of the workflow.

To evaluate our resource allocation scheme with a large-scale application such as
Montage, we modeled the following two simulation scenarios. In the first scenario,
named “EU-deployment”, all the requested VMs and storage Cloud are deployed in
the same user region (Europe). In the second scenario, named “EU-US deployment”,
all the 10 VMs of type small S.2 are deployed on Clouds located in the US region,
while the 10 VMs of type medium M.2 and the storage Cloud are located in Europe.
The non-functional SLA requirements for both scenarios, given in Table 7.18, express
the user’s desired ranges for the aggregated availability, Cloud-to-Cloud latency and
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client-to-Cloud throughput in order to deploy the workflow with an acceptable qual-
ity. These values are consumed by the sieving matching algorithm described in Chap-
ter 5 to select the target Clouds for the workflow deployment. Please note that for this
experiment, the response time is not considered in the SLA requirements.

Table 7.18.: User non-functional SLA requirements for EU and EU-US scenarios.
Deployment scenario min Availability max Latency min Throughput

(%) (ms) (Mbit/s)
EU 95 50 12

EU-US 95 100 2

The fitting functions and the relative weight for each SLA parameter, both required
for the HU-GA matching algorithm, are given in Table 7.19. As we can see from the
table, for the first scenario, the user prefers Clouds with low Cloud-to-Cloud latency
values to favor the data transfer time, while for the second scenario, availability is
equally weighted with the latency and the client-to-Cloud throughput has more sig-
nificance.

Table 7.19.: User preferences for EU and EU-US scenarios expressed using fitting
functions f and relative weights λ; γ = 0.0005; β = 1− γ.

Availability Latency Throughput
Scenario λav f(av) λlat f(lat) λth f(th)

EU 3
10

γ
γ+βe(−0.9(av−84))

6
10

γ
γ+βe(0.2(lat−100))

1
10

1− βe−0.2th

EU-US 2
5

γ
γ+βe(−0.9(av−84))

2
5

γ
γ+βe(0.2(lat−150))

1
5

1− βe−0.6th
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The maximum user payment willingness for each VM type as well as for storage and
network traffic are given in Table 7.20.

Table 7.20.: Maximal payment for VMs, storage, and data traffic for EU and EU-US
scenarios.

VM small S.2 VM medium M.2 Cost storage Cost traffic
($/hour) ($/hour) ($/GB) ($/GB)

0.09 0.18 0.1 0.12
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7.4.2. Impact of Clustering

To evaluate the impact of clustering with respect to increasing cluster number k, we
measured in an initial experiment the total time needed to execute a single run of the
sample Montage workflow and the total consumed time for data transfer in minutes
for the “EU-deployment” scenario. For this experiment, we configured the broker
to use HU-GA matching policy together with DAS as a scheduling policy. For an
accurate calculation of the execution time, we extracted from the workflow trace the
real delay overhead resulting from clustering, post-scripting, and queuing. Figure
7.21 illustrates the results achieved.
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Figure 7.21.: Workflow makespan and total data transfer time with HU-GA+DAS EU
for different cluster numbers k.

As depicted in the figure, the continual increase of k results in a steady increase of
workflow execution time, since more jobs are queued. This demonstrates that our
allocation scheme scales well with the increasing number of clustered workflow jobs.
Although the transfer time is nearly constant, as file transfers are performed with a
high throughput and low latency values because the matched Clouds are close to the
user, we observed a slow decrease of the transfer time for small numbers of k. In the
latter case, more files are merged in a clustered job, so that the amount of Intercloud
transfers is heavily reduced. For all of the next experiments, we fixed the cluster
number to k=20, as it gives us the best results in terms of makespan and consequently
execution cost.

7.4.3. Impact of Resource Allocation on Workflow Makespan

We repeated the previous experiment with the “EU” and “EU-US” scenarios with
the different matching and scheduling policies presented in Chapters 5 and 6. For a
comparative study, we executed the workflow using a simple round robin scheduler
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and the scheduler from the literature known as Min-Min [59], which prioritizes tasks
with minimum runtime and schedule them on the medium M.2 VM types. The results
with k=20 for all the possible combinations are shown in Figure 7.22.
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Figure 7.22.: Workflow makespan with different scheduling and matching policies for
k=20.

It can be seen from the figure that for both scenarios, the use of utility-based HU-
GA matching algorithms combined with the DAS or DAT scheduler gives the lowest
execution time compared to sieving. This result proves how the efficiency of the HU-
GA matching affects the scheduling performance. For the EU scenario, the HU-GA
algorithm has a tendency to deploy all the requested VMs on the cheapest datacenter
to save cost and minimize latency so that the user is charged only for the costs to
transfer input/output data from/to storage Cloud. This explains the same makespan
and Intercloud transfer obtained with different scheduling policies. We observed also
that our implemented DAS and DAT scheduler outperform round robin and Min-
Min, especially for the EU-US scenario (up to 25% faster).

7.4.4. Impact of Resource Allocation on Intercloud Data Transfer

In order to assess the impact of our multi-dimensional scheme on reducing the In-
tercloud data transfers, we measured the size of Intercloud transfers and the ratio of
transfer time over the total consumed processing time for the previous simulation ex-
periment. The results for different combinations of matching and scheduling policies
with k=20 are depicted respectively in Figure 7.23 and Figure 7.24.

It can be seen from Figure 7.23 that the DAS scheduler keeps the Intercloud trans-
fer size under 10 GB for both scenarios with HU-GA and sieving matching policies.
Next to DAS on saving Cloud-to-Cloud data movements is DAT, whereas MinMin
and Round robin occupy the last places. The evaluation results for the transfer time
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Figure 7.23.: Total amount of Intercloud transfers with different scheduling and
matching policies for k=20.
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Figure 7.24.: Percentage of data transfers with different scheduling and matching
policies for k=20.

ratio also prove that DAS and DAT are able to reduce the transfer time ratio up to
37% and 50% respectively for the EU and EU-US scenario. In contrast, the use of
round robin and Min-Min scheduling, regardless of the matching policy, results in
very high transfer ratios in particular for the EU-US scenario, which consequently
creates a disadvantage for the workflow makespan. Therefore, data locality has more
impact when Clouds are not close to the user, as, in this case, latency and throughput
have a greater effect on the transfer time.
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7.4.5. Cost Evaluation

In this subsection, we evaluate the impact of matching and scheduling policies on
the traffic costs for both simulation scenarios. The previous experimental results
show that the use of HU-GA matching and data-aware scheduling heavily reduces
the amount of Intercloud transfers and consequently the data traffic costs. This result
is demonstrated in Figure 7.25, in which the amount of compute, storage, and traffic
costs for different combinations after a single workflow run is illustrated. From the
figure, we found that the utility-based matching combined with the DAS scheduler
have more of a benefit for the compute and traffic cost compared to the other use
cases. For example, comparing utility and sieving with DAS, respectively, up to 25%
and 15% cost saving can be achieved with the EU and EU-US deployment. Since the
storage is used only to store the input and output data, its charged costs are constant
for all scenarios.
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Figure 7.25.: Total execution cost with sieving (left) and HU-GA (right) matching for
k=20.

We conducted another experiment by adding another storage Cloud located in the
US region for the EU-US scenario. The gathered cost results are depicted in Figure
7.26. For the purpose of comparison, we do not consider the time needed to transfer
the input files from the Client to the US located storage Cloud. It can be seen from the
figure that the total costs for the two storage Clouds use-case are very close to the one
storage use-case, even with the doubled storage cost. This is due to the tendency of
the utility algorithm to deploy VMs located in the US and the added storage Cloud to
the same provider to save on traffic costs. This cost saving is more meaningful when
running the same workflow multiple times.
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Figure 7.26.: Total execution cost with one and two storage Clouds (ST) for k=20.

7.4.6. Results Discussion

The experimental results gathered above showed the benefits of combining efficient
matching policies and data locality-driven scheduling in reducing the amount of
Intercloud transfers and the total execution costs as well improving the workflow
makespan. In particular, the best results for our multi-dimensional resource allo-
cation scheme are achieved by combining the HU-GA matching algorithm and the
DAS scheduling policy. Moreover, we demonstrated that the impact of the optimal
selection of the Cloud services in the matching phase is of great importance for the
scheduling phase at runtime. Thus, we found that the best fulfillment of the aggre-
gated latency and throughput SLA metrics for the requested composite service, when
using HU-GA-based matching, reduces the makespan and the amount of Intercloud
data transfer and consequently the costs. Finally, the experiments showed that the
replication of the Cloud storage benefits the data traffic for large-scale, data-intensive
applications without affecting the total costs.

Based on these observations, we conclude that by including the multi-dimensional re-
source allocation scheme in our multi-Cloud service broker framework, we can best
satisfy the SLA requirements of users as well their budget expectations when running
workflow applications on multi-Cloud. The scientific Montage workflow application
used in this case study simply serves as an example for the evaluation. However, the
proposed framework is capable of supporting the deployment of different applica-
tions after minor adjustments.
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7.5. Summary

In this chapter, we have presented the simulation-based evaluations of the contribu-
tions achieved throughout this thesis. We have detailed the experimental setup in
Section 7.1 and the different simulation scenarios within which multiple experiments
were conducted and demonstrated the performance and cost benefits from our pro-
posed approaches. These benefits can be summarized as follows:

• As demonstrated in Section 7.2, our multi-Cloud service broker framework scales
well with a rising number of single and composite service requests. We have
also justified the need of efficient matching and scheduling policies for the opti-
mal deployment of services on multi-Cloud. Also, we demonstrated the benefits
of clustering techniques for running workflows.

• As demonstrated in Section 7.3, our proposed utility-based matching algorithm
is able to match cost-efficient Clouds within the expected service quality even
with large service compositions, when compared to the sieving algorithm. Also,
its matching efficiency competes perfectly with a prospect-based selection algo-
rithm.

• In Section 7.4, we demonstrated that the use of our multi-dimensional resource
allocation approach with data-intensive scientific workflows significantly re-
duces the amount of Intercloud transfers (up to 50%) and the total execution
costs (up to 25%) as well as improves the workflow makespan (up to 20%).

The benefits listed above confirm the expected added values from using a multi-
Cloud service broker, such as the cost, interoperability and performance gains, which
were the motivation of the work conducted in this thesis. An extensive list of possi-
ble extensions and future improvements to the proposed contributions is provided in
Chapter 8.
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In this chapter, we conclude the thesis by summarizing its contributions and their im-
plications for the advancement of multi-Cloud service brokering research. We present
in Section 8.1 a summary of the thesis contributions, and in Section 8.2 we discuss
the constraints of the achieved contributions, and the possible extensions to mitigate
them. Finally, Section 8.3 presents the potential future research directions that go
beyond this research work.

8.1. Summary

The main objective of this research work is to find an answer to the following funda-
mental question:

How can an adequate broker framework for automating and optimizing the deployment of
multi-Cloud applications be realized?

In the following, we summarize the contributions achieved throughout this thesis,
which answer the above question by addressing the five research questions presented
in Section 1.2.

The intention of Research question 1 is to design an adequate broker framework to
assist users in selecting and managing their single and composite services on top of
heterogeneous IaaS Clouds. To address this question, we implemented a generic ar-
chitecture of a multi-Cloud service broker framework. The framework architecture,
presented in Chapter 4, includes components for SLA management, matchmaking
and monitoring and discovery, as well as components to schedule workloads and
manage data transfers between Clouds. Thus, it supports different multi-Cloud ap-
plications, including workflows. In addition, the framework includes service and
provider data repositories to store the service and provider SLA information. For the
data representation in the repositories, we implemented an ontological model consist-
ing of two ontologies, which are used to semantically describe the composite service
requests and IaaS Cloud provider offerings. This ontological model addresses mainly
Research question 2.

For addressing Research question 5, we implemented a simulation environment based
on CloudSim and WorkflowSim to evaluate the broker framework and validate its

119



8. Conclusion and Outlook

functionality. Herewith, we modeled the multi-Cloud infrastructure as well as dif-
ferent usage scenarios extracted from real workload traces. Furthermore, to make
our simulations more realistic, we used the real pricing policies and QoS metrics of
current public Clouds to model the characteristics of the Clouds. Using the simu-
lation testbed, we demonstrated the good scalability of the framework with single
and multi-Cloud workflow services. From our experiments with simple matching
policies, we identified the need for efficient matching policies in the broker in order
to make the trade-off between cost, performance, and quality. The evaluation of sci-
entific workflows proved the benefit from deploying workflows on a multi-Cloud
compared to a single Cloud in reducing the user payment and improving the service
quality, and identified the need for clustering and enhanced data management and
scheduling policies.

Research question 3 focuses on the problem of composite services selection on multi-
Cloud with the goal of maximizing the benefit for the user. This question is initially
addressed in Chapter 5 by formalizing the selection problem using a graph-based,
mathematical model. Then, the problem is tackled using a utility-based matching al-
gorithm adopted from the multi-attribute auction theory. This matching policy selects
the Clouds that maximize a quasi-linear utility-function calculated based on the user
SLA preferences and his payment willingness. The latter is calculated based on the
connectivity, size, and cost of data traffic between the single services forming the com-
position. The algorithm is able to find the optimal computing and storage services
with respect to the user functional and non-functional SLAs, including availability,
response time, throughput, latency and budget. To improve the time performance of
the algorithm, particularly, with large service compositions, we introduced a hybrid
utility-based genetic algorithm, called HU-GA, which uses the utility as fitness func-
tion. For a comparative study with the utility-based algorithm, we implemented a
simple matching policy called sieving, which randomly selects the Cloud providers
satisfying all SLA requirements of the single services without considering the latency
and data traffic. The evaluation of the utility-based algorithm for matching single
services with a DCS use-case with different customer types demonstrated its cost ef-
ficiency and good matching performance when compared to sieving. We evaluated
the matching of composite services using the HU-GA matching policy with a real
DNA sequencing workflow application. The experimental results showed the bene-
fits of HU-GA matching compared to sieving in reducing the total execution costs as
well improving the QoS, in particular when running the workflow on top of a large
service composition. Also, the comparison with a prospect-based selection algorithm
with a CAD-aaS case study approved the matching efficiency of our proposed HU-
GA matching algorithm.

Focusing on the optimal deployment of data-intensive, large-scale applications on
multi-Cloud with the example of scientific workflows, Research question 4 is ad-
dressed in Chapter 6 by proposing a two-stage multi-dimensional resource alloca-
tion scheme. In the first phase, the scheme applies our proposed HU-GA matching
algorithm to select the target Clouds based on the user SLA requirements and bud-
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get. In the second phase, a data locality-driven scheduler distributes the application
workloads to the previously selected Clouds at runtime. For this purpose, two data
locality-driven, greedy-based schedulers called DAT and DAS have been proposed.
Furthermore, we proposed a replica-based data management policy to reduce the
Cloud-to-Cloud data transfers during the execution. Using the simulation testbed,
we evaluated the proposed scheme with a real data-intensive astronomical workflow
application in different deployment scenarios. From our experiments, we demon-
strated the benefits from combining utility-based matching and data locality-driven
scheduling in reducing the amount of Intercloud data traffic (up to 50% ) and the
total execution costs (up to 25% ) as well improving the workflow makespan (up to
20%).

Overall, this work distinguishes itself from existing research achievements with the
following unique contributions:

1. A scalable generic multi-Cloud service broker framework

2. An efficient and cost-saving utility-based matching algorithm for selecting com-
posite Cloud services

3. Effective data locality-driven scheduling and data management policies for de-
ploying multi-Cloud workflows

4. Realistic scenarios and modeled Cloud environment for the simulation-based
evaluation

8.2. Constraints and Future Work

In this section, we discuss the constraints of the research contributions achieved through-
out this thesis, as stated in Section 1.3. In addition, future work directly linked to the
recognized open issues is presented.

As previously mentioned in Section 5.1, in our matching problem formulation we
assumed that the data traffic is equally distributed between the single components
forming a service composition. Although this assumption relieves users of the bur-
den of detailing traffic behavior, it is not applicable for different kinds of applications.
Since the data traffic size affects the accuracy of the cost calculation and consequently
the matching results, it is necessary to look for alternative methods to more accurately
predict the distribution of data traffic within a composite service. Therefore, the anal-
ysis of data traffic distribution for different multi-Cloud applications is subject for
future research.

The evaluation of our proposed HU-GA matching algorithm presented in Chapter 7
has been done on a commodity computer hardware with a composite service con-
sisting of maximally 50 VMs. Although we were able to evaluate the performance
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of the algorithm compared to sieving with this simulation setup, it would also be
worthwhile to evaluate its performance with larger service compositions. A possi-
ble extension is to implement a parallel version of the algorithm running on faster
hardware. Moreover, the genetic algorithm in HU-GA is implemented with a single
objective, that is, maximizing the user utility. To study the effect of using more than
one objective on the matching results, multi-objective evolutionary algorithms such
NSGA-II [36] and SPEA-2 [175] would be exploited.

In Chapter 7, the multi-dimensional resource allocation scheme has been evaluated
using a real data-intensive scientific workflow application. Herewith, we were able to
prove the performance benefits from using the proposed scheduling and data man-
agement policies. Since the workflow structure impacts the distribution of tasks in
the scheduler and the number of data transfers, it would be interesting to observe
its effect on the performance and deployment cost. Therefore, it would be of great
importance to evaluate this scheme with popular data-processing workflow applica-
tions like MapReduce.

The proposed ontologies describing the service requests and provider offerings pre-
sented in Chapter 4 served in this thesis to represent the data stored in the broker
service and provider repositories, which are consumed for performing the matching.
A potential future work would be to exploit the ontologies for selecting the candidate
Clouds that fulfill the functional requirements in the SLA discovery phase. In a sec-
ond phase, the utility-based matching can be performed to match the non-functional
requirements. To perform the ontology-based discovery through semantic match-
making, such as the work in [32], we could use existing ontology languages, like
WSMO, and semantic rule languages, like SWRL. An interesting feature of these tools
is the possibility to dynamically update and extend the ontologies at the runtime.

As previously mentioned in Chapter 4, the SLA-based matching algorithms presented
in this thesis assume that the QoS parameters and pricing policies are under control
of the Clouds and are fixed during the selection phase. In order to allow the mutual
negotiation of the SLA parameters between the broker and the Clouds, we plan to
explore agent-based automated negotiation strategies such as the time- and trade-
off-based negotiation [49]. Herewith, it would be possible for the broker to adjust the
negotiated SLA parameters based on the customer type or the requested service.

Our prototype implementation of the broker based on the CloudSim toolkit presented
in Chapter 4 allows comprehensive evaluations, which are not possible on current
real Clouds. Although the conducted simulation experiments are made as realistic
as possible, several reasonable extensions and shortcomings are recognized. Firstly,
in our simulation setup, we consider the Cloud-to-Cloud bandwidth and latency as
constant metrics. Since these two QoS parameters are considered in the matching as
well as in the data transfer policy, more accurate network models need to be inte-
grated in the simulation to achieve more realistic results. Secondly, our assumption
that the QoS metrics (i.e., availability, throughput, and response time) of the modeled
Clouds remain constant during the simulation differs from real Cloud deployment.
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Since the QoS metrics of real Clouds change frequently, the collection of the QoS
metrics from third-party monitoring tools needs to be automated in order to support
dynamic QoS parameters in the simulation. Furthermore, in our simulation setup we
modeled datacenters made up of 50 physical hosts characterized by a constant com-
puting capacity. However, the computing capacity of the real Clouds is dynamic and
is managed by provider-specific host allocation policies. Thus, it is unlimited from a
user perspective and the Clouds rarely become overloaded. A possible future work
could be to investigate the resource allocation also from a provider perspective and
its effect on the datacenter load.

Due to the integration of OCCI as standard interface for the interaction between the
broker and the Clouds, a future deployment of the broker framework on real produc-
tion Clouds requires only minimal changes. Nevertheless, it is worth mentioning that
the simulation environment differs from the deployment on real Cloud infrastructure
in the following ways:

• Real Cloud SLAs are mostly limited to guarantee and monitor only the avail-
ability as QoS metric. Consequently, the support for other SLA metrics, like re-
sponse time, is still missing. Therefore, a real deployment of the broker should
rely on third-party monitoring services to gather the missing QoS metrics.

• We use a common Intercloud gateway implemented based on OCCI to access
and manage the modeled Clouds. Unfortunately, most current public Clouds do
not provide OCCI-based standardized interfaces to their customers. Therefore,
the use of OCCI-based adapters to access commercial Clouds is a subject of
further developments.

• Unlike our assumption in the simulation setup that each modeled VM type has
the same hardware configuration, real Clouds provide VMs based on different
hardware and virtualization technologies. Thus, the impact of these factors on
the VM performance needs to be taken into account.

• We use ”pay-as-you-go” pricing policies in the costs calculation. Since some
commercial Clouds offer discounted prices for long-term or short-term use pe-
riods, like the Amazon spot-instance pricing model, the broker framework will
be adapted to support different pricing policies.

8.3. Complementary Research

This section presents research challenges in the area of multi-Cloud service brokering
that are beyond the scope of this thesis. In the following, we discuss these challenges
and identify several possible research directions:
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• Fault-tolerant brokering: Due to the dynamic change of Cloud offerings, pric-
ing policies, and SLA requirements at the runtime, the broker should detect
any SLA violations within a reasonable amount of time. Also, hardware or net-
work failures on the Cloud directly impact the availability and performance of
the deployed user service and consequently cause SLA violations. The support
for fault tolerance allows a broker to react to these violations by adapting the
matching partially or completely (e.g., trigger a redeployment, scale up/down
resources) [121] and enforcing the SLA. A resulting challenge for the broker
is how to make the right decision at the right time. For solving this issue, one
could use methods of autonomic computing like MAPE-K loops [78]. Therefore,
suitable adaptation rules should be defined (e.g., price change, performance
degradation) and maintained in a knowledge database. A strategic decision for
the brokerage is to coordinate the matching adaptation with or without user
involvement.

• Federated brokering: A real deployment of a multi-Cloud broker may span
only the Clouds located at a specific geographic area or domain due to techni-
cal or regulatory restrictions. Moreover, centralized, single-broker architectures
raise availability concerns caused by a single point of failures. In order to per-
mit the brokering of multiple Clouds across different geographical locations or
domains, peer-to-peer or federated broker approaches become feasible in the
future. With this federation concept, brokers are able to share knowledge about
their own domains and coordinate the monitoring and management tasks. For
enabling the communication between the brokers themselves, one could use re-
liable and scalable messaging protocols, such as XMPP, which is currently used
to manage and monitor large Grid infrastructures like the European Grid Initia-
tive [43].

• Enhanced matchmaking: In addition to price and QoS considerations, the match-
making policy could be enhanced to consider the details about the network
topology connecting the participating Clouds, since it heavily influences the
data transfer performance. In addition, to use the Clouds reputation as a de-
cision criteria, the broker should maintain a history database for rating the
Clouds. Moreover, the Cloud provider specific constraints (e.g. admission con-
trol, resource limitations, or energy-management policies) could play a role in
decision-making. Finally, one could implement methods for predicting the ap-
plication needs in terms of computing resources (e.g., type and number of VM
instances) to meet a predefined deadline. This method would be consumed by
the matching policy for performing the selection.

• Social, economic, and legal aspects: In order to achieve a better market success,
the legal entity offering multi-Cloud brokering solutions should take into con-
sideration the social, economic, and legal aspects. For this purpose, concepts for
ensuring the traceability of brokerage decisions, competition among providers,
and social trust need to be investigated. Furthermore, the social acceptance of
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the broker and its non-discriminative decision-making would be subjects of fu-
ture studies.

• Identity management: Security aspects are still a big concern hindering the
adoption of Cloud computing. An open challenge in the context of broker-
based multi-Cloud access is how to implement the single-sign-on and identity
management across heterogeneous Clouds to unburden users from maintaining
different identities while accessing Clouds. We believe that the federated iden-
tity concepts would allow the decoupling of authorization and authentication
and their centralization through a broker. For supporting federated identity in
the broker, one could use the current open standards like OpenID, SAML, and
OAuth, which are often successfully applied in the context of social media ap-
plications today.
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A.1. SLA Metrics of the Modeled Public Clouds

Table A.1 shows the SLA metrics of the public Clouds collected from CloudHarmony,
which we used in most of our simulation experiments. These data are dependent on
the location of the measurement as well as the network connection and time. The
metrics shown are the average availability and response time of an entire month and
the average throughput (for 5 Megabyte file download) of a single week. They were
acquired in Germany from the same client host. In all our conducted experiments we
suppose that all the customers are located in Germany.

Table A.1.: Modeled datacenters SLA metrics measured from Germany.
Datacenter Location Availability Response Time Throughput

(%) (s) (Mbit/s)
EC2 EU Ireland 99.97 3.63 19.11
EC2 US Virginia 99.98 8.59 2.39
EC2 JP Tokio 99.91 21.19 2.73
ElasticHosts US Texas 99.96 12.12 1.41
ElasticHosts EU England 99.99 2.87 15.42
GoGrid US Virginia 100 8.35 3.13
GoGrid EU Netherland 99.96 1.45 48.52
Rackspace EU England 99.96 2.73 11.28
RackSpace US Texas 99.96 11.32 1.76
CloudSigma EU Switzerland 99.95 2.69 29.2
CloudSigma US Nevada 99.93 12.58 1.58
VoxCLOUD US New York 99.93 8.27 1.96
VoxCLOUD SG Singapore 99.93 24.65 0.63
VoxCLOUD EU Netherland 99.93 4.76 36.05
OpSource EU Netherland 99.98 2.91 27.5
OpSource AU Australia 99.95 28.89 0.85
OpSource US Virginia 99.96 8.64 2.47
CityCloud EU Sweden 99.93 4.18 23.13
HP Cloud US Nevada 100 9.08 1.34
Flexiscale EU England 99.5 4.04 24.51
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B.1. HU-GA Matching Algorithm Convergence

In the Epigenomics workflow deployment simulation experiment described in Sec-
tion 7.3.2, we observed a steady linear increase of the maximal achieved utility by
increasing the number of requested VMs in the composite service at the convergence.
This can be seen in Figure B.1 for the “constrained” and “unconstrained” deployment
scenarios.
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Figure B.1.: Maximal utility values at the HU-GA convergence for different VM
numbers.

Figure B.2 shows a screen shot from the Opt4J convergence plot for the “constrained”
deployment scenario with 30 VMs with (left) and without sieving (right). In the later
case the candidate composite services with negative utilities (blue line) are also eval-
uated; consequently more, iterations are needed for the convergence.
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Figure B.2.: Opt4J convergence plot with 30 VMs for constrained HU-GA sieved (left)
and unsieved (right).

B.2. Matched Datacenters

Table B.1 shows the matched datacenters with HU-GA algorithm for the “constrained”
and “unconstrained” scenarios to deploy the requested VMs and Cloud storage ac-
cording to the simulation scenario detailed in Section 7.3.2. The table shows that all
the selected datacenters are located in Europe due to their closeness to the user. The
most matched datacenter is CityCloud EU, as it offers the cheapest prices combined
with good SLA metric values. As storage Cloud, VoxCloud EU is the most matched
followed by CloudSigma EU. It can be also seen that for the “constrained” deploy-
ment, the VMs are equally matched between Amazon EC2 EU and CityCloud EU. The
candidate datacenters matched by the Sieving algorithm are CityCloud EU, Amazon
EC2 EU, Flexiscale EU, CloudSigma EU, and VoXCloud EU.

Table B.1.: Matched datacenters with unconstrained (U) and constrained (C) HU-GA
for different VM numbers; ST=storage.

VMs nummber 10 20 30 40 50
Scenario U C U C U C U C U C

CityCloud EU 10 5 20 10 30 15 40 20 50 25
Amazon EC2 EU 0 0 0 10 0 15 0 20 0 25
CloudSigma EU 0 5 0 1ST 0 0 0 0 0 0

VoxCloud EU 1ST 1ST 1ST 0 1ST 1ST 1ST 1ST 1ST 1ST
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C.1. OCCI Monitoring Extensions

A status action is not yet included in the OCCI core specification, but it is required
for querying and updating the status of each compute instance running on the Cloud
platform. Therefore, we extended the OCCI compute resource by adding a status ac-
tion (/infrastructure/compute/action#status). The compute instance state,
as specified in OCCI, can be active, inactive, suspended, or failed. Furthermore, since
the current OCCI specification does not support the monitoring of the Cloud SLA
metrics, we implemented two new Mixin classes called offertemplate and resourceinfor-
mation by extending the OCCI Mixin interface. The resourceinformation Mixin is used
to query the current providers resource information and QoS metrics, while the of-
fertemplate Mixin is used to query the providers supported service Offers. For each
provider exactly one resourceinformation Mixin and one or more offertemplate Mixin
needs to be initialized at the simulation start. The attribute values of the Mixins are
updated during the simulation by the monitoring manager and can be queried from
OCCI Client. The list of queryable attributes of each Mixin can be seen below:

1 Scheme : "http://schemas.ogf.org/occi/monitoring#"
2 Term : resource informat ion
3 A t t r i b u t e s :
4 o c c i . monitoring . providername , //CloudSim datacenter name
5 o c c i . monitoring . cost , // c o s t per CPU core
6 o c c i . monitoring . os , // Linux or windows
7 o c c i . monitoring . arch , // 32 or 64 b i t
8 o c c i . monitoring . region , // provider l o c a t i o n
9 o c c i . monitoring . f r e e c o r e s , // o v e r a l l f r e e CPU c a p a c i t y

10 o c c i . monitoring . usedcores , // o v e r a l l f r e e CPU c a p a c i t y
11 o c c i . monitoring . maxcpuspeed , // in MHZ
12 o c c i . monitoring . a v a i l a b i l i t y , // in %
13 o c c i . monitoring . responsetime , // in s
14 o c c i . monitoring . throughput // in Mbit/s

Source code C.1: Resourceinformation OCCI Mixin
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1 Scheme : "http://schemas.ogf.org/occi/sla#"
2 Term : o f f e r t e m p l a t e
3 A t t r i b u t e s :
4 o c c i . s l a . providername , // CloudSim datacenter name
5 o c c i . s l a . o f fe r type , // VM small , medium , large , e t c . or

s torage
6 o c c i . s l a . cost , // usage c o s t \$/hour
7 o c c i . s l a . s t a t u s // a v a i l a b l e or not a v a i l a b l e

Source code C.2: Offertemplate OCCI Mixin
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D.1. Sample Simulation Output

This screen shot shows the output of the simulation in which the user requests a micro
VM deployment. This request has been assigned the ID 49 and the datacenter DC B
have been selected by the broker for provisioning the VM. When the VM is deployed,
a unique service Uniform Resource Identifier (URI) is outputted to the user by the
corresponding Intercloud gateway to manage the service at runtime. This URI is
mapped internally inside the datacenter to a local VM ID.

1 1681 .0 ServiceRequestGenerator : New Request #49
2 Os : Linux , Arch : x64 , Cores : 1 , CPU: 0 . 5 GHZ, Memory :

0 .633 GB,
3 Hostname : Host 49 , Storage : 2 . 5GB, Region : 4 , Cost : 0 . 0 2
4 1681 .0 MatchMaker : Matching bes t Provider f o r S e r v i c e Request

#49
5 1681 .0 MatchMaker : matched Provider f o r S e r v i c e Request #49 i s

DC B
6 1690 .0 MonitoringManager : Updating s t a t e of Request #45
7 1690 .0 IBM−Gateway : Request S t a t e of VM #2006
8 1691 .0 DeploymentManager : Deploying S e r v i c e Request #49 in DC B
9 1691 .0 DC B−Gateway : VM c r e a t i o n Request with ID #1011

10 1691 .0 DC B−Gateway : Trying to Create new VM #1011 in DC B
11 1691 .0 DeploymentManager : S e r v i c e Request #49 rece ived
12 S e r v i c e URI : 51d7e4ad−29ab−4926−8d8a−8c6ba6df11f1
13 1691 .0 DC B−Gateway : VM #1011 has been crea ted in DC B , Host

#11
14 1701 .0 MonitoringManager : Updating s t a t e of Request #49
15 1701 .0 DC B−Gateway : Request S t a t e of VM #1011
16 1737 .0 DeploymentManager : S t a r t i n g S e r v i c e #49
17 Simulat ion completed .

Source code D.1: Sample Simulation Output
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Acronyms

AHP Analytic Hierarchy Process

API Application Programming Interface

AWS Amazon Webs Services

CAD Computer Aided Design

CBR Cost-Budget-Ratio

CU Compute Unit

DAG Directed Acyclic Graph

DAS Data Aware Size-based Scheduler

DAT Data Aware Time-based Scheduler

DC Datacenter

DCS Desktop Cloud Service

EC2 Elastic Compute Services

EU Europa

GA Genetic Algorithm

GUI Graphic User Interface

HPC High Performance Computing

HTTP Hyper Text Transfer Protocol

HU-GA Hybrid Utility-based Genetic Algorithm

IaaS Infrastructure as a Service

ID Identifier

I/O Input/Outpout

MAUT Multi-Attribute Utility Theory

MCDM Multi-Criteria Decision-Making

OCCI Open Cloud Computing Interface
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Acronyms

OS Operating System

PaaS Platform as a Service

QoS Quality of Service

REST Representational State Transfer

S3 Simple Storage System

SaaS Software as a Service

SAN Storage Area Network

SLA Service Level Agreement

SME Small and Medium Enterprises

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UI User Interface

URI Uniform Resource Identifier

US United States

VM Virtual Machine

WfMS Workflow Management System

WWW World Wide Web

XML Extensible Markup Language
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