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Abstract. In two recent papers we proposed different types of look-ahead algorithms for recur-
sively computing Padé forms located on two adjacent rows of the Padé table of a formal Laurent
series. These methods can be interpreted as look-ahead Levinson and Schur algorithms for solving
general non-Hermitian Toeplitz linear systems of equations.

In this paper, we discuss look-ahead strategies and options for solving Toeplitz systems. The main
aim of this paper is a numerical comparison of different types of look-ahead methods and of various
options for solving a Toeplitz system. We compare our implementation of look-ahead Levinson and
Schur algorithms with the classical algorithms and with the look-ahead Levinson solver provided by
Hansen and Chan.

1. Introduction. The solution of a general square linear system of dimension
N requires O(N?) arithmetic operations. However, if the coefficient matrix is struc-
tured, e.g., Hankel, Cauchy, Vandermonde, or Toeplitz, then there exist fast algo-
rithms which require only O(N?) operations. In this paper, we consider the special
case of linear systems with Toeplitz coefficient matrices T = Tp. Toeplitz matrices
are characterized by having identical entries on each diagonal. The fast algorithms for
this particular application can be classified into two categories: Levinson and Schur
algorithms. Levinson algorithms [26, 28] compute an inverse LDU decomposition of
T. This inverse LDU decomposition allows one to solve not only the Toeplitz system
of dimension N but as a byproduct also all leading principal subsystems, which is
important in many practical applications. The dominating arithmetic operations of
Levinson algorithms are inner products and SAXPys. In contrast, Schur algorithms
[4, 27] compute directly an LDU decomposition of T. From a computational point of
view, the main difference between the two types of algorithms is that Schur algorithms
require only SAXPYs but no inner products. On a parallel computer with O(N) proces-
sors, one can therefore solve a Toeplitz linear system with a Schur algorithm in O(N)
execution time. Another way of further reducing the operations of fast O(N?) Schur
algorithms is due to the possibility of applying recursive doubling and fast O(N log N)
polynomial multiplications. Such algorithms are called superfast; see e.g., [1, 7].

However, all the algorithms we just mentioned and which we refer to as classical
can break down due to a division by zero when they are applied to general non-
Hermitian or to Hermitian indefinite Toeplitz matrices. While a division by zero may
be a very rare event in practice, much more serious problems for implementations in
finite precision arithmetic are instabilities arising from divisions by numbers of small
absolute value. Such instabilities are called near breakdowns.

Recently, a number of extensions of the classical algorithms, so called look-ahead
methods which can avoid breakdowns as well as near-breakdowns have been proposed,
e.g., [6, 9, 10, 14, 16, 17, 22, 29]. The problem of curing near breakdowns in classical
algorithms can be tackled from different sides, namely from a purely linear algebra
setting [6, 16], from displacement rank approaches [23, 25], from an interpretation in
terms of formally biorthogonal polynomials [9, 10], and from its relation to Padé forms
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in two adjacent rows of the Padé table of a formal Laurent series [14, 17, 22, 29]. Some
of the fast look-ahead Schur algorithms can also be extended to superfast look-ahead
methods [14, 15, 16]. From a Padé theory point of view, Levinson algorithms compute
denominators of Padé forms and Schur algorithms work with numerators and residuals
of Padé forms.

Here we present numerical experiments with two look-ahead algorithms for com-
puting Padé forms in adjacent rows of the Padé table which we proposed recently in
[17, 22]. We combined these algorithms with procedures for solving linear systems
with non-Hermitian Toeplitz coefficient matrices. We have written a C package with
different variants of look-ahead Levinson and Schur algorithms combined with various
options for solving the Toeplitz systems. The aim of this paper is to report timings
and achieved accuracies for the algorithms of [17, 22] and to compare these to other
existing methods. However, to the best of our knowledge, the only implementation of
a look-ahead method available on the network is the look-ahead Levinson algorithm
by Chan and Hansen [6], so that we could compare our results only to the package [18]
containing the algorithms from [6]. In order to illustrate the additional work one has
to perform when instabilities in the classical algorithms arise, we also present results
obtained with the classical algorithms. It turns out that already for moderate dimen-
sions the overhead of our look-ahead algorithms is negligible but the gain of accuracy
is significant.

For a detailed description of look-ahead algorithms and for further references we
refer to [14, 16, 17, 22].

The paper starts with providing notation and basic definitions used in this paper.
It then briefly recalls the classical Levinson and Schur algorithm written in polyno-
mial form in Section 3. After a sketch of different look-ahead algorithms in Section 4,
we discuss look-ahead strategies in Section 5. We continue with a survey on various
options for solving Toeplitz systems from the output we obtain from look-ahead Levin-
son and Schur algorithms. In Section 7 we analyze the complexity of these different
options. Finally we present numerical examples with our C implementation of all the
different algorithms in Section 8. A C package containing the look-ahead Toeplitz
solvers developed in [17, 22] is available from the author.

2. Basic definitions. In the following,
Lr:={heLl;pu=0ifk <},

Lro={heLl;u=0ifk>m},
P :=A{p € L; p polynomial of degree at most m}

denote subsets of L, the set of formal Laurent series with complex coeflicients,

o0

(2.1) h(¢) =Y mch,

k=—c0

and P, the set of all polynomials. The formal projection of A € £ into £; N L7, is
denoted by

7=l
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and the mth coefficient of & is written as I1,,A(C) := fi,n. We write h(¢) = O4(¢Y) if
h(C) € L.

Unless indicated otherwise, || - || = || - ||z always denote the Euclidean or spectral
norm.

For m € Z and n € N, where Z is the set of all integers and N is the subset of
all nonnegative integers, an (m,n) Padé form of h is any pair (p,q) € L%, X (P,\{0})
satisfying

(2.2) h(¢)a(C) = p(Q) = O+ (C" ™) € Lonyna-

The series e € Ly defined implicitly by

(2.3) h(¢)a(¢) = p(¢) = ¢ e(()

is called the residual of (p,q).

Padé approximations can be listed in a Padé table, where we let the m-axis point
to the bottom and the n-axis point to the right. In this paper, we deal with Padé
forms in the (—1)st and the 0th row of the Padé table. A key point to our look-ahead
algorithms is the use of regular (0, n) Padé forms. A (0,n) Padé form (p,,, ¢,) is regular
if and only if the Toeplitz matrix

o - feptl

Hn—1 ... Ho

is nonsingular. We call a (0,7) Padé form well-conditioned iff T,, is well conditioned.
The classical algorithms work with column-regular (column well-conditioned) pairs,
which are characterized by T, and T,41 being nonsingular (well conditioned), see
[14, 16, 17] for details and other equivalent definitions of (column) regular pairs.
According to their location with respect to (p,, ¢, ), the neighbors of a (0, n) Padé
form (py, ¢,) are denoted by arrows i.e., we denote by (p>, ¢>) a (—1,n—1) Padé form,
and by (pl, ¢!} a (=1,n) Padé form of h. The corresponding residuals are denoted

in the same way. The following picture shows the location of these Padé forms and
illustrates the notation.

~1 4 q)
0 In
_1
(2.5) " "

If (pn, ¢n) is a regular Padé form, then we call n a regular index. In this case, the Padé
forms shown in the picture can be computed by solving linear systems with coeflicient
matrix T,. They are uniquely determined up to scaling. Once we have ¢,, we obtain
P = H_wo0(hg,) and e, = Il,,41.00(hq,) from formal projections, and similar for the
other Padé forms. Setting

an (C) = ij,ncj
7=0
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and using the analogous notation for ¢! and ¢, we have the Yule-Walker equations

pl,n H1 Pgm H—n
Tn = —Po,n y Tn = _pl,n
pn,n Hn pz—l,n H—1
and

0
PO _
T, =ex(0) | -
,\ 0
pn—l,n 1

If T, is regular, i.e., if the (0,n) Padé form is regular, then the coefficients of the
right-hand side vectors cannot vanish. Hence we can use the normalizations

(26) pon = 1, pl,n =1, 67,1\ (0) =L
For abbreviation we define

Enn = €n (0) and To,n = Pn (OO) = HO(pn)7

and we use the analogous notation for the neighbors of the (0, n) Padé form.

In this paper, we consider only well-conditioned linear systems and we assume
that the length of the look-ahead steps as well as the total number of such steps are
bounded independently of the dimension N. This justifies to consider all computations
of order at most O(k3,..) as negligible, where kyay is the maximal length of look-ahead

steps if NV is large; see Figure 8.1 below.

3. Classical Levinson and Schur algorithms. Let us first give an interpreta-
tion of the classical Levinson and Schur algorithms in terms of Padé approximation;
see e.g., [5, 14]. Basically, these algorithms proceed from a column-regular (0,n) Padé
form (py,, ¢,) and its upper neighbor (p!, ¢!), a (=1, n) Padé form, to the next column-
regular pair. This works exactly as long as the Padé form (p,,, ¢,) is column-regular,
but the recurrence breaks down when this is not the case.

In Table 3.1, we give the well-known classical algorithms written in our notation.
Let us start with commenting on these algorithms. Step 1 is the initialization phase.
For the Levinson algorithm, initialization is done with scalars. Here, the degree of
the polynomials ¢/ and ¢, (denominators of Padé forms) is equal to the index n.
The Schur algorithm starts with polynomials in ¢ (residuals) or (~! (numerators) of
degree at most N, if h € L_n N L% . For this algorithm, the degree of the polynomials
decreases with the iteration index n. Note that we use only two polynomials for
the Levinson algorithm but four for the Schur algorithm. In Step 2, the Levinson
algorithm computes the leading coefficients of p! and e,, since these are not known
here. This requires two inner products of length n 4+ 1. There is nothing to compute
for the Schur algorithm, where these coeflicients are available anyway. The Schur
parameters are computed in Step 3. They are identical for both methods. Steps 4
and 5 contain the recursions for the denominators of the (—1,n41) and the (0,2 +1)
Padé form in the Levinson algorithm and for the numerators and residuals of these
Padé forms in the Schur algorithm. Note that all the recurrences are of the same



Levinson algorithm Schur algorithm
1. ‘]g =G0 = 1 Pg — 1_[—oo:—l h7 Po = 1_[—oo:Oh
53,0 = Ho 63 = 1_[0:00 h7 €0 = 1_[1:00 h
forn=0,1,...
2. Tgm = H—l(h%t)v Enn = llnt1 (hQn)
3. ’Yg(n) = —ﬂ'g’n/é‘n’n’ Pyén) = —€n7n/€l7n
4| @by = Cab 4 gur™ oy = ol + par™
€2+4 = +'€n730”
5. | dnsr = Calrd” + 4 ot = oIS + pa
€ntl = C_l(el%()n) +en)
T(n n
6. 52+1,n+1 = enn(l - ’Yo( )/’Y(() ))

TABLE 3.1
Classical Levinson and Schur algorithm

type. This follows from the fact, that denominators, numerators, and residuals satisfy
the same recurrence relations, a result which is well-known in Padé theory. Finally, a
scalar recursion is needed for updating the leading coefficient of 624-1 in the Levinson
algorithm in Step 6.

For each n, the Levinson algorithm requires two inner products of length n + 1
in Step 2 and two saxXpys of length n 4+ 1 in Steps 4 and 5. In contrast, for h €
L_N4+1 M Ly_q, which corresponds to solving a Toeplitz system of dimension N, the

Schur algorithm requires two sAXpPys of length N — n for p,4; and 624-1 and two

saxpys of length N —n — 1 for p2+1 and e,y1. This yields an operation count of
2N2+O(N) flops for both algorithms. Here and in the following, we call an operation
of type a + bc with scalars a, b, and ¢ a flop.

Clearly, the formulas for the Schur parameters in Step 3 show that both algo-
rithms break down if ¢, ,, = 0 or elm = 0. For an implementation in finite precision
arithmetic, it is more likely that they become unstable if one of these quantities have
small absolute value. Then we have to look-ahead, for example by one of the methods
described in [17, 22], which we sketch in the next section or by the algorithms given
in [6, 9, 10, 14, 16].

4. Look-ahead Levinson and Schur algorithms. To include look-ahead into
the classical algorithms from Table 3.1, we proposed in [17] and [22] to use the re-
currences from the classical algorithm whenever possible and to switch to recurrences
based on regular pairs (p,, ¢.) and (p, ¢, ) otherwise. Mixing recurrences based on
column-regular and on regular pairs has the desirable consequence that when the al-
gorithm is applied to a Toeplitz matrix for which no look-ahead is necessary, then it
reduces to the classical algorithm and does not waste any operations. In addition,
using regular pairs instead of column-regular ones (as in the classical algorithms) en-
sures that the algorithms perform look-ahead steps of minimal size. This is not the
case for the algorithms we proposed in [16]. When we switch from a classical step to a



Overhead for a Levinson-type Schur-type
block of size k£ > 1 SAXPYS | inner products SAXPYS
Hochbruck [22] 2k —1 - 4k — 2
Gutknecht/Hochbruck [17] | 4k —3 - 6k —5
Freund/Zha [10], Freund [9] 4k - 6k
Chan/Hansen [6] 4k — 4 (k% + k) /2 not proposed
TaBLE 4.1

Overhead of different look-ahead algorithms for solving Toeplitz systems.

look-ahead step, then we clearly have (p>,¢>) = (p!_,, ¢ _,); see Picture (2.5). After

a look-ahead step, the auxiliary Padé form (py>, ¢>) has to be computed separately.

The basic idea of performing look-ahead steps in the algorithms developed in [17]
is to “jump” from one regular pair to the next one by multiplying the regular pair by
a suitable two-point Padé form. The computational operations we have to perform
are multiplications by polynomials of low degree, namely the length of the look-ahead
step. Therefore, we refer to this type of algorithm as the product form of a look-ahead
algorithm. In practical situations, these steps are mostly small, say two to four or
five. In order to fill the gaps between two regular pairs, so called underdetermined
Padé forms have been introduced, which can also be computed from a regular pair.
The denominators of regular Padé forms and their upper neighbors can be interpreted
as regular formally biorthogonal polynomials (FBOPs) with respect to a bilinear form
defined by its moments ;. Denominators of underdetermined Padé forms correspond
to inner formally biorthogonal polynomials; see [14, 17, 22] for details.

In contrast to these algorithms, the look-ahead recurrences proposed in [22] com-
pute the next regular pair by forming a linear combination of the previous regular
pair and underdetermined Padé forms in between. It turns out that these variants are
cheaper than the product forms of the look-ahead Levinson and Schur algorithms.

The overhead of the different look-ahead algorithms for computing a complete
(inverse) block LDU decomposition is summarized in Table 4.1. With overhead we
mean the difference of the number of operations for a look-ahead step of size k and &
steps of the respective classical algorithm. The algorithm of Chan and Hansen is the
only one which has overhead also in steps of length £ = 1.

For illustrations of the different look-ahead methods and for details we refer to
[17, 22]. Here we only want to give the relation between certain coefficients of Padé
forms in two adjacent rows of the Padé table of the Laurent series h and the (inverse)
block LDU factorization of the Toeplitz matrix T = Ty, because these factorizations
play an important role for the solution of Toeplitz systems. If we define R = Ry and
R = R]T\,7 where

T T T
Poo Po1 Po,N-1 Poo P11 - PN-1,N-1

P P _ Po1 "t PN—-2,N-1
(4.1)RY = b LA - .

9

p]TV—l,N—l PO.N-1
and D = Dy via

(4.2) D :=RITRT,



then the following theorem holds

TurEOREM 4.1. [17, Theorem 8.1] If the upper triangular matrices R and RT
defined in (4.1) contain in their (n + 1)st column (0 < n < N) the coefficients of nth
reqgular or inner formally biorthogonal polynomials, where the latter are constructed
as described in [17, Section 7] or [22, Theorem 3], then the matriz D in (4.2) is block
diagonal. The blocks of D always start with a reqular index and each block is a Toeplitz
matriz. Moreover, the n X n principal submatriz D,, of D is nonsingular if and only
if T, is nonsingular.

The size of a block of D, which corresponds to the length of a look-ahead step,
is equal to one plus the number of consecutive singular or ill-conditioned principal
submatrices of T. If T has only a few singular or ill-conditioned principal submatrices,
then D has mostly blocks of size one and a few small blocks.

Note, that (4.2) is equivalent to

(4.3) T-! =R'D!RT,

and therefore, the upper triangular matrices R and R containing the coefficients of
denominators of Padé forms in the 0th and (—1)st row of the Padé table of h define an
inverse block LDU decomposition of T. A block LDU decomposition of T is obtained
from coeflicients of residuals and numerators of Padé forms in these rows of the Padé
table. To be more precise, we have

THEOREM 4.2. [14, Theorem 7.1] Let the assumptions of Theorem 4.1 be valid
and define

(4.4) L=T'R and L'=TR"

Then, L and LY are block lower triangular matrices where L contains in its (n 4 1)st
column the coefficients of the numerator p, of a (0,n) (underdetermined) Padé form
and LY contains in its (n + 1)st column the coefficients of the residual €] of a (—1,n)
(underdetermined) Padé form (0 < n < N). Moreover,

(4.5) T=L"D'LT

1s a block LDU decomposition of T.
An equivalent expression for the block diagonal matrix D defined in (4.2) is ob-
tained from (4.4):

(4.6) D =R'L'=LTR".
Writing the nth step of the classical algorithm compactly as
(4.7) lpn-l-l p%ﬂ ] _ lpn p% ] [ 1(n) gt ] 7
It Gy I n Yo ¢
and defining
LT .= JL'3  and R' .= JR'J,

where J denotes the antidiagonal unit matrix or reflection matrix of order NV, we can
summarize the classical Schur algorithm in matrix form as

(4.8) [T\T]]ﬁzcn:[L\LﬂJ) 1,

n=0



where
In—l—l 0 0 0
T(n)
(4.9) C,=| ° (BV—”* Yo ANzt 0
0 Yo IN—n—l IN—n—l 0
0 0 0 |

with the Schur parameters 'yén) and 'yg(n) from Table 3.1. Likewise, the Levinson

algorithm becomes

(4.10) [I\I]]ﬁzcn:[R‘RT(J) ].

n=0

These representations were derived in [16] as a reformulation of the Bareiss algorithm
[4] and of look-ahead algorithms based on column-regular pairs. In [21], we have
generalized it to cover the look-ahead methods from [17, 22] also, which is a little
more complicated because the algorithms use column-regular as well as regular pairs.
The reason for the difficulties is that the coefficients of the upper left neighbor of a
regular pair is in general not contained in the block factorization of T. However, since
we do not want to describe these algorithms in detail here again, we do not present the
matrix formulation for the look-ahead case in this paper. We only want to mention
this formulation, because it leads to an eflicient way of solving Toeplitz systems with
the Schur algorithm, as we will see in Section 6.4. For detail we refer to [21].

5. Look-ahead strategies. A crucial point in designing look-ahead algorithms
is a criterion for determining the length of a look-ahead step. The main purpose of this
criterion is to determine the well-conditioned submatrices of T in order to compute
the column-regular or regular pairs used in our algorithms. From Table 4.1 it becomes
clear that look-ahead steps are more expensive than classical steps, so the aim of the
criterion is also to avoid look-ahead steps whenever possible.

Since all our algorithms involve the solution of one or two small linear systems,
mostly of dimension one, the weakest criterion one has to ensure is to guarantee
that the coeflicient matrices of all the linear systems which arise are nonsingular. In
exact arithmetic, this would ensure that the look-ahead strategy exactly determines
the nonsingular principal submatrices of T and that the length of a look-ahead step
corresponds to one plus the number of consecutive singular principal submatrices,
see Theorem 4.1. In practice, when the computations are done in finite precision
arithmetic, we will require that these matrices are well-conditioned. To achieve this
task, we propose to keep the smallest singular value of these coefficient matrices above
some tolerance. For the algorithms in product form of [17] we check

(5.1) Tmin(Mp,,) > tol(n),

where My, ,, is the matrix defined in formula (6.5) of [17]. For the algorithms involving
underdetermined Padé forms described in [22] we test on

(5.2) min{omin (L), omin (L)} > tol(n),

where n = n; is the index of the last well-conditioned pair. By Theorem 4.2, LT(!) ig
the coefficient matrix in (4.1) of [22], and L is the coefficient matrix in (4.4) of [22].
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Note that at this point we allow the tolerances to depend on the index n. If we check
if n4k is a regular index, then My, is a (2k — 1) x (2k — 1) matrix and L™ and L
are k x k matrices.

For the solution of Toeplitz systems, we implemented the checks (5.1) and (5.2) for
different tolerances tol(n) and found out that a value of the order 0.1 gives satisfactory
results for this application. Additionally, we restricted the length of a look-ahead step
t0 kmax. If the checks failed for each 1 < k < kjax, we set k to the value for which the
left-hand side of (5.1) or (5.2) attained its maximum. Only if this maximum is below
a tolerance which is of the order of machine precision, the algorithm fails and should
be restarted with a larger value of k.. However, this did not happen in any of the
examples presented in Section 8.

To provide a heuristic explanation, we first recall two well-known inversion formu-
las. The first is due to Heinig.

THEOREM 5.1. [20, Remark 1.1] Let (p, q) be a regular (m,n) Padé form of h € L,
(P>, ¢™) be an (m — 1,n — 1), normalized by (2.6). Then T, ,, is nonsingular and

Pn—1 Pn-—2 Po Lo 0
T-1 — p;l\_l : P1 Po
C Ppia ' ' '
(5.3) 0 Py | LPn-t =0 p1po
) Pn  Pn—1 1 i 0 0
P P 0
Pn—1 : -
0 pn | L Poa po 0

The next inversion formula based on column-regular pairs is due to Gohberg and
Semencul [12].

THEOREM 5.2. [20, Theorem 1.2] Let (p, q) be a column-regular (m,n) Padé form
of h € L, and (p,q") be an (m — 1,n) Padé form of h, normalized by (2.6). Then
mo = eT(0) #£ 0, Ty nt1 s nonsingular,

P20 0 pl Pz_l ,Og
o _ Ly propo pr
myntl o | . . ,02?
(5.4) Pn . P1 PO . 0 - p'lon
S| oeh 0 0
o . O '
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and
Po o] Pl Pi—l P1
T_l _ i P1 Po pl
m,n T )
0 ’ ,0%1
Pn—1 "+ P1 PO
(5.5) A Lo Pr
Po 0 Prn Pn-1 P1
_i P1 Pg Pn
o .
: Pn—1
pho el phl] 0 P

From the inversion formulas of Theorems 5.1 and 5.2 we have the upper bounds
(5.6) ITH < IT e < 20 flan ]| el

and
_ _ _ _ 2n
(5.7)  max{||T;"|l, 1T, 1111} < max{||T; ||F, IT,}llr} < qunH b,

where

T

T
] = [ Porn " pl,n

T
l ’ q;z\:[pO\n p;z\—l,n] .

G =1[pon " Punl, d

Therefore, |7g | and the norms of q,, q! in a generic step and the norms of ¢ and q,,
in a look-ahead step yield explicit upper bounds on the inverse of the principal subma-
trix T,,. Since the linear systems with coefficient matrices My, ,, L™ and LY that
we have to solve in the various algorithms contain in their right-hand sides coefficients
of residuals and numerators of Padé forms, we can conclude that these right-hand
sides are small if the norms of the coefficient vectors q,> and q,, are sufficiently small,
because we assumed that Ty itself is well conditioned. Then the checks (5.1) and
(5.2) guarantee that the solutions of these linear systems cannot be large. From the
triangle inequality we then conclude that the norms of q;z\—l—k and q,4x cannot grow
too much. Recall that for n = n; and k = 1 we have m7g = L0 = 1,10,

Hence, a possible strategy to decide whether a pair of (0,n) and (—1,n) Padé
forms is column well-conditioned could be based on the two inequalities

ol > tol(n)  and  max{]lau, b} < Tol(n).

This would guarantee that

[Tol(n)]?

-1 -1
5.9 max{[| T, T 1} < 202008

For a well-conditioned pair one would require

max{[lq; |, [[an|l} < Tol(n),

which yields the upper bound

(5.9) | < 2n [Tol(n)]?.
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1030

true norm of inverse of Tn
upper bound
10°1 + +  look-ahead steps B

1020 L B

1015 L 7

1010 L 7

) W 7
10° | I
0 50 100 150

Fia. 5.1. || T, Y| versus n, upper bounds (5.6) and (5.7).

However, computing the norms is quite expensive and the bounds (5.8) and (5.9)
turned out to be fairly pessimistic in practice. Extensive numerical tests have shown
that the heuristic argument we explained above is justified in practice and that the
cheap tests are sufficient to achieve good accuracy.

In order to manifest this statement, we created a random Toeplitz matrix of di-
mension 150 with a very ill-conditioned leading principal submatrix of dimension 50.
Examples with an ill-conditioned principal submatrix of dimension n can be con-
structed from a random Toeplitz matrix by first computing the eigenvalues of the nth
principal submatrix and then subtracting a suitable scalar multiple of the identity
from the original Toeplitz matrix. For the test example of dimension 150, we monitor
for each column well-conditioned index the upper bound (5.6) versus n. For every n
that is not column well-conditioned, we computed the pair q.>, q,,, no matter whether
it was well-conditioned or not. Of course, we used only the well-conditioned pairs to
proceed in the algorithm. Figure 5.1 shows the true spectral norms of T ! versus n in
a logarithmic plot (dotted line), the upper bound (5.6) if n is column well-conditioned
and the upper bound (5.7) otherwise (solid line). The + marks indicate that a look-
ahead step was performed at this index. The picture clearly shows that the simple
bounds correctly detect ill-conditioned submatrices.

A different look-ahead strategy was proposed by Freund and Zha [10]. It is based
on the Schur complement of T, z. In a number of numerical tests we found no
significant difference in the numerical behavior of our algorithms when implementing
the tests from [10]. We therefore omit the details here and refer the reader to the
original paper [10].

In contrast to these strategies, which involve only local information, Chan and
Hansen [6] suggest to estimate the condition numbers of all principal submatrices of
Tpx. This makes the algorithm more expensive because it requires computational
overhead compared to the classical algorithm even if no look-ahead steps are taken.
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If one does not want to set the tolerances before starting the algorithm, then one
can determine the singular values of all matrices which arise in the linear systems for
the recurrence coeflicients for steps of length 1 < k < k. and then set the tolerance

to the optimal value within these initial steps. A similar choice was proposed by Van
Barel and Bultheel [29].

6. Options for solving Toeplitz systems. We have seen that look-ahead
Levinson and Schur algorithms yield block LDU decompositions of T~! and T, re-
spectively, at least if we compute additionally inner formally biorthogonal polynomials
(FBOPs) or numerators and denominators of underdetermined Padé forms and the
block diagonal matrix D. Clearly, when one of these LDU decompositions is known,
it is easy to solve a Toeplitz system

(6.1) Tx=b

in roughly N? flops. However, this is just one way of applying the outcome of our
algorithms to this task. There are several other options, which we want to compare
here with these two, see also [16].

6.1. Inverse block LDU decomposition. All our look-ahead Levinson algo-
rithms and also the algorithms in [6, 10] generate directly an inverse block LDU de-
composition (4.3) if we compute not only regular formally biorthogonal polynomials
but also fill the gaps with inner formally biorthogonal polynomials. This was shown
in Theorem 4.1. These decompositions can be used to update the solutions of a nested
sequence of Toeplitz systems of order n, n =1,2,..., N:

(6.2) T,x, =b,.

Clearly, a solution of the subsystem of order n is only computed if T, is well condi-
tioned, which is equivalent to n being a well-conditioned index which corresponds to
a well-conditioned Padé form. Let us assume that n = n; and n 4+ k = n;yq are well
conditioned indices and denote the (n+ k) X (n + k) principal submatrices R, 4% and
RL—k of R and RT, respectively, by

R, B " R! B
Ropr = l 0o RO ] Rpp = l 0o RO ] ’

where [ denotes the index of the block starting with the regular index n = n;. The
(n 4 k)th principal submatrix of the block diagonal matrix D is written as

D, o0

so that T;' = RID'RI. If x,, is the solution of (6.2), and if we write

b,

c

then a solution of

Tn—l—kxn—l—k = bn—l—k
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is given by
R! B' ][D:' o R, 0 Pn
xn+k:l 0 RT(’)] [ 0 (D(l))_ll [B% (R(l))T] [ c ]
(6.3) - l o ] + l ;#(Tz) Y
where

y =D B, + (RY)Te).

Therefore, X, 41 can be updated from x, by using only those columns of R and RT
that belong to the current block. This update procedure costs k inner products for
computing BTb,, plus k saxpys for the update, if we consider all computations of order
at most O(k?) as negligible. The most important advantage of applying a procedure
which uses only quantities available from the current block is that we do not have to
store the complete factorization. Hence, the storage requirement is only O(N).

Another equation for y can be obtained from the equality D() = (R(l))TLT(l)7 cf.
(4.6). From the Toeplitz structure we have

T, U
T”J’k:[V Tk]’

which yields
y = L) (RO)TB b, +c)

— (LT(I))—I ((R(l))—T[ BT (RT | T,y [ T)n ] —Vx, + c)

(6.4) = (L")~ (c = Vx,,),

because the first n columns of the product [ BT (R(l))T T, 41 are zero since RTT =
L7 is block upper triangular by Theorem 4.2. For the symmetric positive definite case,
(6.4) is well-known; see [13, Section 4.7.3]. In the look-ahead case, the formula was
derived differently in [6] and [10, Section 6.1].

The inverse block LDU decomposition can also be generated as a byproduct of the
look-ahead Schur algorithm, but, unless these columns are used anyway to control the
look-ahead step size via (5.8) or (5.9), this increases the costs by about 50%, namely
for applying the Levinson recursion (without computation of the inner products).
Here, the key point is that the recurrence coefficients are identical for Levinson and
for Schur-type algorithms.

6.2. Block LDU decomposition. The primary output of our look-ahead Schur
algorithms are the matrices L and LT of the LDU decomposition (4.5) of T. Again,
the full decomposition requires to compute underdetermined Padé forms. Due to the
Toeplitz structure of the blocks of D, this matrix also contains only quantities from L
and LT, We refer to Section 4 for details. The inverse of D is not needed for solving

(6.1).
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When using the LDU decomposition (4.5) for computing the solution of the linear
system (6.1) one can perform the forward elimination for the first linear system in

(6.5) L'y =b, where LTx = Dy,

with O(N) storage. This involves solving linear systems with the diagonal blocks LT,
which are just scalars in generic steps. If we use the Schur-type algorithm of [22], where
we have computed a regular pair from a previous regular pair and underdetermined
Padé forms, then the QR or LU decomposition of LT is available anyway, because
L™ is just the coefficient matrix of one of the linear systems we have to solve for
the recurrence coefficients of the new regular pair [22, Corollary 6]. But one still has
to store the complete triangular part of L for solving the second system in (6.5) by
backsubstitution. However, it is also possible to solve (6.1) with the Schur algorithm
with O(N) storage and without additionally running the Levinson recurrences, as we
will see below.

6.3. Inversion formulas. Theorems 5.1 and 5.2 gave explicit expressions for the
inverse of a Toeplitz matrix in terms of a pair of denominators of Padé forms. The
look-ahead Levinson algorithm produces this last pair directly. If N — 1 is a column-
regular index, i.e., if Ty_; and Ty are regular (or well conditioned), we can apply
the Gohberg-Semencul formula (5.4) for m = 0 and n = N — 1. If this is not the case,
then by assumption, N is a regular index. We then have to compute the denominators
of the regular pair of (=1, N — 1) and (0, N) Padé forms in order to apply Heinig’s
inversion formula (5.3) for m =0 and n = N.

In a Schur-type algorithm, the denominators are usually not computed, but as
mentioned above, we could compute them additionally at the cost of some extra work.

Applying the inversion formula is an O(N log N) process, if we use fast Fourier
transformation techniques.

6.4. Another approach complementing the Schur algorithm. Since T =
LT(R")~!, we can write (6.1) as

(6.6) L'y =b, where x =Rly.

As we have explained above, the first, block lower triangular system for y can be
solved by forward substitution without storing L. Moreover, in the look-ahead Schur-
type algorithm of [17], which computes regular pairs from regular pairs without using
underdetermined Padé forms, it is sufficient to compute the numerators of right un-
derdetermined Padé forms, i.e., columns of LT. There is no need for computing left
underdetermined Padé forms and residuals of right underdetermined Padé forms.

If we have additionally run the recurrences for the Levinson algorithm, then the
solution x is obtained by just multiplying the temporary vector y by the upper tri-
angular matrix RT. Since this involves only quantities from the current block, the
storage requirement is only O(N) again.

If R has not been computed, then this simple technique is not applicable. Using
the matrix formulation (4.10) of the Levinson algorithm, we find x according to Ry =
JR'U)(Jy) via

N-2

=[J[J] ] Cn

n=0

0

y

0

(6.7) x=J[R|R ] Ty
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Again, the storage requirement is only O(N). We have to store all the coefficients of
the small two-point Padé forms we used for updating one column-regular or regular
pair from the previous one. Moreover, we need the recurrence coefficients for left and
right underdetermined Padé forms.

For the Bareiss algorithm applied to a symmetric positive definite T, Delosme and
Ipsen [8, 24] derived a formula that is similar to (6.7). They made use of the fact
that in this case the matrices C,, are hyperbolic rotations, and thus the inverse of
their product is equal to a diagonally scaled transpose of the product. Thus, both the
forward elimination and the backsubstitution can be performed by applying a product
of hyperbolic rotations.

7. Operation counts: Schur versus Levinson algorithms. The main differ-
ence between a Levinson and a Schur algorithm is that the Levinson algorithm spends
about half of the operations on computing inner products but the Schur algorithm
requires only sSAXPYs. This makes the Schur algorithm highly attractive on parallel
computers, in particular on those, where inner products represent a bottleneck of the
computation due to the global communication involved.

To summarize the various options for solving the linear systems, the Levinson
and the Schur algorithm both require 2N% + O(N) flops to compute the LDU or
inverse LDU factorization of a Toeplitz matrix, because the overhead of our look-
ahead algorithms is only of order NV by the assumptions made at the end of Section 2.
They are satisfied when T has only a few ill-conditioned principal submatrices, a
situation which normally happens in practice.

For the Schur algorithm, one still has the option of computing the LDU decomposi-
tion, i.e., additionally running the Levinson recurrences. This costs another N2+O(N)
flops, so that computing the LDU and the inverse LDU decomposition simultaneously
does not double the cost, but can be done in 3N? + O(N) flops.

The cheapest way of solving the linear system with the Levinson algorithm is to
apply a suitable inversion formula by exploiting fast Fourier transformation techniques.
This is an O(N log N) process, so that in total, we need 2N% 4+ O(N log N) flops to
get the solution. Updating the solution from the inverse LDU decomposition via (6.3)
costs N?4+O(N) flops, hence we can get the solution with this technique in 3N?4+O(N)
flops.

For the Schur algorithm, the cheapest solution method is using the LDU decom-
position (6.5). The solution process costs again N2 + O(N) flops, hence the overall
process can be done in 3N? + O(N) flops. However, using the LDU decomposition
is only possible if we can store one complete block lower triangular factor of this de-
composition. If N is large, this becomes prohibitive. One then has the option to run
the Levinson algorithm additionally and use (6.6). The price for this procedure is
4N?+ O(N) flops, since the solution costs again N + O(N) flops. Another option is
again to apply an inversion formula, which costs 3N? 4+ O(Nlog N) flops. A cheaper
variant stems from the matrix formulation (6.7), where one uses the second equation in
(6.6) only implicitly by essentially running the Levinson algorithm backwards. Since
the matrices C,, are of size 2N x 2N, computing x from (6.7) costs N2 + O(N) flops.
Here, y is taken from the first equation in (6.6) at the cost of 0.5N% + O(N) flops so
that this variant costs 3.5N2% 4+ O(N) flops.

8. Numerical examples. We have implemented all our algorithms in MATLAB
and in C, but present only the results from the C implementation. The C code is
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Fia. 8.1. Fzecution times in seconds versus the dimension N of the Toeplitz system. Compared
are the C implementation of the classical and the look-ahead Levinson algorithm with the FORTRAN
implementation of the classical and the look-ahead Levinson algorithm from Hansen and Chan.

available from the author. It uses the Basic Linear Algebra Subroutines (BLAS) and
LAPACK routines [2] for computing the smallest singular value and for solving the
linear systems which arise in look-ahead steps. For the examples we present here, the
linear systems have been solved by Gaussian elimination with partial pivoting. Op-
tionally, the code can solve the linear systems by QR factorization. All our numerical
examples were done on an SGI Power Indigo 2 with machine precision 1.11- 1076,

We compare our algorithms with the FORTRAN implementation of the look-ahead
Levinson algorithm [6], written by Hansen and Chan [18], which is — to the best of
the author’s knowledge — the only available implementation of a look-ahead algorithm
on the network; see also [11]. Unfortunately, the implementation of Freund and Zha’s
look-ahead Levinson algorithm announced in [10, Section 9] was not available at the
time of this writing. Hence we were not able to add comparisons with this code.
In [11], yet another high performance library is announced, which will be developed
for distributed memory machines. This library will mainly contain algorithms based
on transforming the original Toeplitz matrix to some other structured matrix where
pivoting can be applied. It was also not finished yet.

Let us first compare the execution times of the different algorithms. Figure 8.1
shows the execution times for a FORTRAN implementation of the classical Levin-
son algorithm [3] available from NETLIB, the FORTRAN implementation of the look-
ahead Levinson algorithm from Hansen and Chan [18], our C implementation of the
classical Levinson algorithm and of our look-ahead Levinson algorithm [22], which
uses inner formally biorthogonal polynomials for computing regular pairs. The
execution times have been computed for random Toeplitz matrices of dimensions
N =100, 200, 300, 400, 500, 1000, 2500, 5000, 10000, 20000 with an ill-conditioned prin-
cipal submatrix of dimension 50. The maximal size of a look-ahead step was set to 6.
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FiG. 8.2. Fzecution times in seconds versus the dimension N of the Toeplitz system. Compared
are the C implementation of the look-ahead Schur algorithms, the look-ahead Levinson algorithm, and
the combined look-ahead Schur and Levinson algorithm.

The plot is in a double logarithmic scale, where the z-axis shows the dimensions and
the y-axis shows the execution times in seconds.

The figure shows that the Cimplementation is slower than the FORTRAN code from
the Argonne package [3]. The main reason is that our C implementation uses the Basic
Linear Algebra Subroutines (BLAS) and the FORTRAN code does not. For the Toeplitz
solvers, this turns out to be more expensive on our machine because most of the copy
operations for long vectors could be done simultaneously with computations if we
implemented them by hand. We nevertheless decided to use the BLAS and hope that
they are available in an optimized form on most of the machines. Moreover we would
like to stress that we have not optimized our code with respect to copy operations but
only with respect to saXpY’s and inner products. The interesting observation from
this figure is that the execution times of the FORTRAN implementation by Hansen and
Chan are considerably larger than those of the classical Levinson algorithm although
Hansen and Chan also do not use the BLAS’ copy function. For large N, the ratio of
execution times is about 3.4 : 1. However, for the C implementation and dimensions
larger than about 1000 one cannot even distinguish the two lines for the classical and
the look-ahead Levinson algorithm. This shows that the overhead due to look-ahead
steps is negligible then. Both classical algorithms gave wrong results because of the
ill-conditioned principal submatrix.

In Figure 8.2 we compare execution times of our C implementation of look-ahead
Levinson and Schur algorithms from [22] for the same examples as before. Since the
dimensions become as large as 20000, the only option of solving the linear systems
from the output of a Schur algorithm is via (6.6). As we discussed in Section 7,
there are two ways of computing x = Ry, namely running the Levinson recurrences
additionally or computing x from (6.7) by essentially running the Levinson algorithm
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Fia. 8.3. Histograms of relative errors of the C implementation of the classical Levinson and
Schur algorithm.

backwards. The first variant costs 4N? 4+ O(N) flops, the second 3.5N? + O(N),
and in fact, 4/3.5 is about the factor between the two curves corresponding to the
Schur algorithms in Figure 8.2. The reason that the look-ahead Levinson algorithm
is considerably faster than the Schur algorithms is not only that it takes 3N% 4+ O(N)
flops but also that — as we mentioned before — we have not attempted to optimize the
number of copy operations in both algorithms. It turns out that our implementation
of the Schur algorithm requires about twice as many copy statements, which explains
the difference in execution times. We have not plotted the times for the classical Schur
algorithm, since the curves are again not distinguishable from those of its look-ahead
counterparts for large dimensions N.

For comparing the accuracy of the algorithms we created a set of 100 random test
examples of dimension 500 with a very ill-conditioned principal submatrix of dimension
50. We used this test set for all examples. The right-hand sides of the linear systems
were computed such that a given random vector was the exact solution. This allowed
us to compare the different algorithms by computing the relative errors

’ ‘Xexact — Xcomput. ’ ‘

erl’actH

For our algorithms, we used a tolerance of 0.1 for checking if a regular Padé form is also
column-regular, i.e., we enforced |mg,| > 0.1. The tolerance for the smallest singular
values in (5.1) or (5.2) was 0.3. We present the results in form of histograms, where the
x-axis shows the logarithm of the achieved relative error and where the y-axis displays
the number of examples which achieved an accuracy in a given interval of length 0.25
in a logarithmic scale. Some of the Toeplitz matrices were themselves ill-conditioned,
so that we could not expect to get full accuracy for all of the 100 test examples. In
fact, our algorithm produced warnings that the results may be inaccurate for two of
the 100 examples.

Figure 8.3 shows the performance of different algorithms when the solution is com-
puted by one of the LDU decompositions from our C implementation of the classical
Levinson and Schur algorithm. Clearly, the accuracy is poor because of the very
ill-conditioned principal submatrix of dimension 50.

Figure 8.4 shows the achieved accuracy for the FORTRAN implementations of the
classical Levinson algorithm [3] and the look-ahead Levinson algorithm [18], where we
have set the maximal block size to 6.

In Figure 8.5 we compare our look-ahead Levinson algorithms. For solving the
linear systems we used the update formula (6.3). Recall that we denote the algorithm
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Fia. 8.4. Histograms of relative errors of FORTRAN implementation of the classical Levinson and
the look-ahead Levinson algorithm of Hansen and Chan.
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Fia. 8.5. Histograms of relative errors of our C implementation of the look-ahead Levinson
algorithms.

described in [17] as the product form of our look-ahead Levinson algorithm, because
it is based on products of Padé forms with low-order two-point Padé forms. It was
shown in Table 4.1 that the algorithm [22] which uses inner formally biorthogonal
polynomials has less overhead when we compute the complete LDU decomposition,
as we did in all our experiments here. This most efficient look-ahead algorithm gave
slightly better results than the Hansen and Chan algorithm. However, as we have seen
before, it has much less overhead and shorter execution times.

Figure 8.6 shows the analogous results for our Schur algorithms in product form
and those using underdetermined Padé forms. For solving the linear systems we used
the LDU decomposition (6.5). Since the denominators of the Padé forms have not
been computed the algorithms required O(N?) storage. The results are very similar
to those of our look-ahead Levinson algorithms.

Figure 8.7 shows the relative errors for our two look-ahead Schur algorithms when
the solutions of the linear systems are computed via (6.6) without computing R" ex-
plicitly from the Levinson recurrences but by computing x via (6.7). These algorithms
require only O(N) storage. Finally, Figure 8.8 shows the accuracy for the Schur algo-
rithms when additionally the inverse LDU decomposition is computed, i.e., when we
have run the Levinson recurrences but with the recurrence coeflicients taken from the
Schur algorithm and not by evaluating inner products. The solutions were obtained
from (6.6).

The last three Figures 8.6-8.8 containing results from the two variants of look-
ahead Schur algorithms combined with different methods for solving the Toeplitz sys-
tems look very similar. This leads to the observation that the accuracy is determined
mainly by the Schur algorithms itself, the influence of how to compute x from y in
(6.5) or (6.6) appears to be minor.

So far we used block (inverse) LDU decompositions for solving the Toeplitz sys-
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Fia. 8.6. Histograms of relative errors of our C tmplementation of the look-ahead Schur algorithms
when the solutions are obtained from (6.5).
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Fia. 8.7. Histograms of relative errors of our C tmplementation of the look-ahead Schur algorithms
when the solutions are obtained from (6.6) with x from (6.7).

tems. Next we apply one of the inversion formulas from Theorems 5.1 and 5.2. The
results are presented in Figure 8.9. As we mentioned before, this solution technique is
only applicable when we have run the Levinson algorithm, either alone or combined
with the Schur algorithm. Now we can see that applying an inversion formula or
using block LDU decompositions makes a difference, although this difference is not
significant.

For these algorithms, one can also compute the solution from an LDU decompo-
sition and then apply an inversion formula in order to improve the accuracy by one
step of iterative refinement. The achieved accuracy is shown in Figure 8.10, where the
intervals for the histograms have now length 0.1 so that the scale of the y-axis remains
the same as in the other examples. The accuracy is pretty close to machine precision.
Clearly, one could do more than one refinement step to further improve the accuracy.

To summarize, we recommend to use the look-ahead Levinson algorithm [22] which
uses inner formally biorthogonal polynomials, optionally combined with one step of
iterative refinement, on serial computers. The solution should be computed by using
the inverse block LDU decomposition via the update formula (6.3). On parallel ma-
chines, Schur algorithms are advantageous. Here the recommendation is again to use
the variant of the look-ahead Schur algorithm proposed in [22] since it has less over-
head in look-ahead steps than any other variant. If memory facilities allow to store
one complete triangular matrix of dimension N, then it is most efficient to compute
the solution by using the block LDU decomposition (6.5). Otherwise, using (6.6) and
(6.7) is the method of choice for solving the Toeplitz system if only one system has
to be solved and no iterative refinement is desired. If one has a Toeplitz system with
multiple right-hand sides or wants to apply iterative refinement, then one should ad-
ditionally run the Levinson recurrences and solve the linear systems via an inversion
formula.
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