
A NUMERICAL COMPARISON OF LOOK-AHEAD LEVINSON ANDSCHUR ALGORITHMS FOR NON-HERMITIAN TOEPLITZSYSTEMSMARLIS HOCHBRUCK�Abstract. In two recent papers we proposed di�erent types of look-ahead algorithms for recur-sively computing Pad�e forms located on two adjacent rows of the Pad�e table of a formal Laurentseries. These methods can be interpreted as look-ahead Levinson and Schur algorithms for solvinggeneral non-Hermitian Toeplitz linear systems of equations.In this paper, we discuss look-ahead strategies and options for solving Toeplitz systems. The mainaim of this paper is a numerical comparison of di�erent types of look-ahead methods and of variousoptions for solving a Toeplitz system. We compare our implementation of look-ahead Levinson andSchur algorithms with the classical algorithms and with the look-ahead Levinson solver provided byHansen and Chan.1. Introduction. The solution of a general square linear system of dimensionN requires O(N3) arithmetic operations. However, if the coe�cient matrix is struc-tured, e.g., Hankel, Cauchy, Vandermonde, or Toeplitz, then there exist fast algo-rithms which require only O(N2) operations. In this paper, we consider the specialcase of linear systems with Toeplitz coe�cient matrices T = TN . Toeplitz matricesare characterized by having identical entries on each diagonal. The fast algorithms forthis particular application can be classi�ed into two categories: Levinson and Schuralgorithms. Levinson algorithms [26, 28] compute an inverse LDU decomposition ofT. This inverse LDU decomposition allows one to solve not only the Toeplitz systemof dimension N but as a byproduct also all leading principal subsystems, which isimportant in many practical applications. The dominating arithmetic operations ofLevinson algorithms are inner products and saxpys. In contrast, Schur algorithms[4, 27] compute directly an LDU decomposition of T. From a computational point ofview, the main di�erence between the two types of algorithms is that Schur algorithmsrequire only saxpys but no inner products. On a parallel computer with O(N) proces-sors, one can therefore solve a Toeplitz linear system with a Schur algorithm in O(N)execution time. Another way of further reducing the operations of fast O(N2) Schuralgorithms is due to the possibility of applying recursive doubling and fast O(N logN)polynomial multiplications. Such algorithms are called superfast; see e.g., [1, 7].However, all the algorithms we just mentioned and which we refer to as classicalcan break down due to a division by zero when they are applied to general non-Hermitian or to Hermitian inde�nite Toeplitz matrices. While a division by zero maybe a very rare event in practice, much more serious problems for implementations in�nite precision arithmetic are instabilities arising from divisions by numbers of smallabsolute value. Such instabilities are called near breakdowns.Recently, a number of extensions of the classical algorithms, so called look-aheadmethods which can avoid breakdowns as well as near-breakdowns have been proposed,e.g., [6, 9, 10, 14, 16, 17, 22, 29]. The problem of curing near breakdowns in classicalalgorithms can be tackled from di�erent sides, namely from a purely linear algebrasetting [6, 16], from displacement rank approaches [23, 25], from an interpretation interms of formally biorthogonal polynomials [9, 10], and from its relation to Pad�e forms� Mathematisches Institut, Universit�at T�ubingen, Auf der Morgenstelle 10, D{72076 T�ubingen,Germany. E-mail: marlis@na.uni-tuebingen.de 1

2in two adjacent rows of the Pad�e table of a formal Laurent series [14, 17, 22, 29]. Someof the fast look-ahead Schur algorithms can also be extended to superfast look-aheadmethods [14, 15, 16]. From a Pad�e theory point of view, Levinson algorithms computedenominators of Pad�e forms and Schur algorithms work with numerators and residualsof Pad�e forms.Here we present numerical experiments with two look-ahead algorithms for com-puting Pad�e forms in adjacent rows of the Pad�e table which we proposed recently in[17, 22]. We combined these algorithms with procedures for solving linear systemswith non-Hermitian Toeplitz coe�cient matrices. We have written a C package withdi�erent variants of look-ahead Levinson and Schur algorithms combined with variousoptions for solving the Toeplitz systems. The aim of this paper is to report timingsand achieved accuracies for the algorithms of [17, 22] and to compare these to otherexisting methods. However, to the best of our knowledge, the only implementation ofa look-ahead method available on the network is the look-ahead Levinson algorithmby Chan and Hansen [6], so that we could compare our results only to the package [18]containing the algorithms from [6]. In order to illustrate the additional work one hasto perform when instabilities in the classical algorithms arise, we also present resultsobtained with the classical algorithms. It turns out that already for moderate dimen-sions the overhead of our look-ahead algorithms is negligible but the gain of accuracyis signi�cant.For a detailed description of look-ahead algorithms and for further references werefer to [14, 16, 17, 22].The paper starts with providing notation and basic de�nitions used in this paper.It then brie
y recalls the classical Levinson and Schur algorithm written in polyno-mial form in Section 3. After a sketch of di�erent look-ahead algorithms in Section 4,we discuss look-ahead strategies in Section 5. We continue with a survey on variousoptions for solving Toeplitz systems from the output we obtain from look-ahead Levin-son and Schur algorithms. In Section 7 we analyze the complexity of these di�erentoptions. Finally we present numerical examples with our C implementation of all thedi�erent algorithms in Section 8. A C package containing the look-ahead Toeplitzsolvers developed in [17, 22] is available from the author.2. Basic de�nitions. In the following,Ll := fh 2 L ; �k = 0 if k < lg;L�m := fh 2 L ; �k = 0 if k > mg;Pm := fp 2 L ; p polynomial of degree at most mgdenote subsets of L, the set of formal Laurent series with complex coe�cients,h(�) := 1Xk=�1 �k�k ;(2.1)and P , the set of all polynomials. The formal projection of h 2 L into Ll \ L�m isdenoted by �l:mh(�) := mXj=l �j�j

3and the mth coe�cient of h is written as �mh(�) := �m. We write h(�) = O+(�l) ifh(�) 2 Ll.Unless indicated otherwise, k � k = k � k2 always denote the Euclidean or spectralnorm.For m 2 Zand n 2 N, where Z is the set of all integers and N is the subset ofall nonnegative integers, an (m;n) Pad�e form of h is any pair (p; q) 2 L�m � (Pnnf0g)satisfying h(�)q(�)� p(�) = O+(�m+n+1) 2 Lm+n+1:(2.2)The series e 2 L0 de�ned implicitly byh(�)q(�)� p(�) = �m+n+1e(�)(2.3)is called the residual of (p; q).Pad�e approximations can be listed in a Pad�e table, where we let the m-axis pointto the bottom and the n-axis point to the right. In this paper, we deal with Pad�eforms in the (�1)st and the 0th row of the Pad�e table. A key point to our look-aheadalgorithms is the use of regular (0; n) Pad�e forms. A (0; n) Pad�e form (pn; qn) is regularif and only if the Toeplitz matrixTn := 264 �0 : : : ��n+1...�n�1 : : : �0 375 2 C n;n(2.4)is nonsingular. We call a (0; n) Pad�e form well-conditioned i� Tn is well conditioned.The classical algorithms work with column-regular (column well-conditioned) pairs,which are characterized by Tn and Tn+1 being nonsingular (well conditioned), see[14, 16, 17] for details and other equivalent de�nitions of (column) regular pairs.According to their location with respect to (pn; qn), the neighbors of a (0; n) Pad�eform (pn; qn) are denoted by arrows i.e., we denote by (p-n ; q-n) a (�1; n�1) Pad�e form,and by (p"n; q"n) a (�1; n) Pad�e form of h. The corresponding residuals are denotedin the same way. The following picture shows the location of these Pad�e forms andillustrates the notation. �10 n� 1 nq-n q"nqn(2.5)If (pn; qn) is a regular Pad�e form, then we call n a regular index. In this case, the Pad�eforms shown in the picture can be computed by solving linear systems with coe�cientmatrix Tn. They are uniquely determined up to scaling. Once we have qn, we obtainpn = ��1:0(hqn) and en = �n+1:1(hqn) from formal projections, and similar for theother Pad�e forms. Setting qn(�) = nXj=0 �j;n�j

4and using the analogous notation for q"n and q-n , we have the Yule-Walker equationsTn 264 �1;n...�n;n 375 = ��0;n 264 �1...�n 375 ; Tn 2664 �"0;n...�"n�1;n 3775 = ��"n;n 264 ��n...��1 375and Tn 2664 �-0;n...�-n�1;n 3775 = e-n (0)266664 0...01 377775 :If Tn is regular, i.e., if the (0; n) Pad�e form is regular, then the coe�cients of theright-hand side vectors cannot vanish. Hence we can use the normalizations�0;n = 1; �"n;n = 1; e-n (0) = 1:(2.6)For abbreviation we de�ne"n;n = en(0) and �0;n = pn(1) = �0(pn);and we use the analogous notation for the neighbors of the (0; n) Pad�e form.In this paper, we consider only well-conditioned linear systems and we assumethat the length of the look-ahead steps as well as the total number of such steps arebounded independently of the dimension N . This justi�es to consider all computationsof order at most O(k3max) as negligible, where kmax is the maximal length of look-aheadsteps if N is large; see Figure 8.1 below.3. Classical Levinson and Schur algorithms. Let us �rst give an interpreta-tion of the classical Levinson and Schur algorithms in terms of Pad�e approximation;see e.g., [5, 14]. Basically, these algorithms proceed from a column-regular (0; n) Pad�eform (pn; qn) and its upper neighbor (p"n; q"n), a (�1; n) Pad�e form, to the next column-regular pair. This works exactly as long as the Pad�e form (pn; qn) is column-regular,but the recurrence breaks down when this is not the case.In Table 3.1, we give the well-known classical algorithms written in our notation.Let us start with commenting on these algorithms. Step 1 is the initialization phase.For the Levinson algorithm, initialization is done with scalars. Here, the degree ofthe polynomials q"n and qn (denominators of Pad�e forms) is equal to the index n.The Schur algorithm starts with polynomials in � (residuals) or ��1 (numerators) ofdegree at most N , if h 2 L�N \L�N . For this algorithm, the degree of the polynomialsdecreases with the iteration index n. Note that we use only two polynomials forthe Levinson algorithm but four for the Schur algorithm. In Step 2, the Levinsonalgorithm computes the leading coe�cients of p"n and en, since these are not knownhere. This requires two inner products of length n + 1. There is nothing to computefor the Schur algorithm, where these coe�cients are available anyway. The Schurparameters are computed in Step 3. They are identical for both methods. Steps 4and 5 contain the recursions for the denominators of the (�1; n+1) and the (0; n+1)Pad�e form in the Levinson algorithm and for the numerators and residuals of thesePad�e forms in the Schur algorithm. Note that all the recurrences are of the same

5Levinson algorithm Schur algorithm1. q"0 = q0 = 1""0;0 = �0 p"0 = ��1:�1 h, p0 = ��1:0he"0 = �0:1 h, e0 = �1:1 hfor n = 0; 1; : : :2. �"0;n = ��1(hq"n), "n;n = �n+1(hqn)3.
"(n)0 = ��"0;n="n;n,
(n)0 = �"n;n=""n;n4. q"n+1 = �q"n + qn
"(n)0 p"n+1 = �p"n + pn
"(n)0e"n+1 = e"n + en
"(n)05. qn+1 = �q"n
(n)0 + qn pn+1 = �p"n
(n)0 + pnen+1 = ��1(e"n
(n)0 + en)6. ""n+1;n+1 = "n;n(1�
"(n)0 =
(n)0)Table 3.1Classical Levinson and Schur algorithmtype. This follows from the fact, that denominators, numerators, and residuals satisfythe same recurrence relations, a result which is well-known in Pad�e theory. Finally, ascalar recursion is needed for updating the leading coe�cient of e"n+1 in the Levinsonalgorithm in Step 6.For each n, the Levinson algorithm requires two inner products of length n + 1in Step 2 and two saxpys of length n + 1 in Steps 4 and 5. In contrast, for h 2L�N+1 \ L�N�1, which corresponds to solving a Toeplitz system of dimension N , theSchur algorithm requires two saxpys of length N � n for pn+1 and e"n+1 and twosaxpys of length N � n � 1 for p"n+1 and en+1. This yields an operation count of2N2+O(N)
ops for both algorithms. Here and in the following, we call an operationof type a+ bc with scalars a; b, and c a
op.Clearly, the formulas for the Schur parameters in Step 3 show that both algo-rithms break down if "n;n = 0 or ""n;n = 0. For an implementation in �nite precisionarithmetic, it is more likely that they become unstable if one of these quantities havesmall absolute value. Then we have to look-ahead, for example by one of the methodsdescribed in [17, 22], which we sketch in the next section or by the algorithms givenin [6, 9, 10, 14, 16].4. Look-ahead Levinson and Schur algorithms. To include look-ahead intothe classical algorithms from Table 3.1, we proposed in [17] and [22] to use the re-currences from the classical algorithm whenever possible and to switch to recurrencesbased on regular pairs (pn; qn) and (p-n ; q-n) otherwise. Mixing recurrences based oncolumn-regular and on regular pairs has the desirable consequence that when the al-gorithm is applied to a Toeplitz matrix for which no look-ahead is necessary, then itreduces to the classical algorithm and does not waste any operations. In addition,using regular pairs instead of column-regular ones (as in the classical algorithms) en-sures that the algorithms perform look-ahead steps of minimal size. This is not thecase for the algorithms we proposed in [16]. When we switch from a classical step to a

6 Overhead for a Levinson-type Schur-typeblock of size k > 1 saxpys inner products saxpysHochbruck [22] 2k � 1 { 4k � 2Gutknecht/Hochbruck [17] 4k � 3 { 6k � 5Freund/Zha [10], Freund [9] 4k { 6kChan/Hansen [6] 4k � 4 (k2 + k)=2 not proposedTable 4.1Overhead of di�erent look-ahead algorithms for solving Toeplitz systems.look-ahead step, then we clearly have (p-n ; q-n) = (p"n�1; q"n�1); see Picture (2.5). Aftera look-ahead step, the auxiliary Pad�e form (p-n ; q-n) has to be computed separately.The basic idea of performing look-ahead steps in the algorithms developed in [17]is to \jump" from one regular pair to the next one by multiplying the regular pair bya suitable two-point Pad�e form. The computational operations we have to performare multiplications by polynomials of low degree, namely the length of the look-aheadstep. Therefore, we refer to this type of algorithm as the product form of a look-aheadalgorithm. In practical situations, these steps are mostly small, say two to four or�ve. In order to �ll the gaps between two regular pairs, so called underdeterminedPad�e forms have been introduced, which can also be computed from a regular pair.The denominators of regular Pad�e forms and their upper neighbors can be interpretedas regular formally biorthogonal polynomials (FBOPs) with respect to a bilinear formde�ned by its moments �j . Denominators of underdetermined Pad�e forms correspondto inner formally biorthogonal polynomials; see [14, 17, 22] for details.In contrast to these algorithms, the look-ahead recurrences proposed in [22] com-pute the next regular pair by forming a linear combination of the previous regularpair and underdetermined Pad�e forms in between. It turns out that these variants arecheaper than the product forms of the look-ahead Levinson and Schur algorithms.The overhead of the di�erent look-ahead algorithms for computing a complete(inverse) block LDU decomposition is summarized in Table 4.1. With overhead wemean the di�erence of the number of operations for a look-ahead step of size k and ksteps of the respective classical algorithm. The algorithm of Chan and Hansen is theonly one which has overhead also in steps of length k = 1.For illustrations of the di�erent look-ahead methods and for details we refer to[17, 22]. Here we only want to give the relation between certain coe�cients of Pad�eforms in two adjacent rows of the Pad�e table of the Laurent series h and the (inverse)block LDU factorization of the Toeplitz matrix T = TN , because these factorizationsplay an important role for the solution of Toeplitz systems. If we de�ne R = RN andR" = R"N , whereR"N := 2666664 �"0;0 �"0;1 � � � �"0;N�1�"1;1 � � � �"1;N�1.�"N�1;N�1 3777775 ; RN := 266664 �0;0 �1;1 � � � �N�1;N�1�0;1 � � � �N�2;N�1.�0;N�1 377775 ;(4.1)and D = DN via D := RTTR";(4.2)

7then the following theorem holdsTheorem 4.1. [17, Theorem 8.1] If the upper triangular matrices R and R"de�ned in (4.1) contain in their (n + 1)st column (0 � n < N) the coe�cients of nthregular or inner formally biorthogonal polynomials, where the latter are constructedas described in [17, Section 7] or [22, Theorem 3], then the matrix D in (4.2) is blockdiagonal. The blocks of D always start with a regular index and each block is a Toeplitzmatrix. Moreover, the n � n principal submatrix Dn of D is nonsingular if and onlyif Tn is nonsingular.The size of a block of D, which corresponds to the length of a look-ahead step,is equal to one plus the number of consecutive singular or ill-conditioned principalsubmatrices of T. If T has only a few singular or ill-conditioned principal submatrices,then D has mostly blocks of size one and a few small blocks.Note, that (4.2) is equivalent toT�1 = R"D�1RT ;(4.3)and therefore, the upper triangular matrices R and R" containing the coe�cients ofdenominators of Pad�e forms in the 0th and (�1)st row of the Pad�e table of h de�ne aninverse block LDU decomposition of T. A block LDU decomposition of T is obtainedfrom coe�cients of residuals and numerators of Pad�e forms in these rows of the Pad�etable. To be more precise, we haveTheorem 4.2. [14, Theorem 7.1] Let the assumptions of Theorem 4:1 be validand de�ne L = TTR and L" = TR":(4.4)Then, L and L" are block lower triangular matrices where L contains in its (n+ 1)stcolumn the coe�cients of the numerator pn of a (0; n) (underdetermined) Pad�e formand L" contains in its (n+ 1)st column the coe�cients of the residual e"n of a (�1; n)(underdetermined) Pad�e form (0 � n < N). Moreover,T = L"D�1LT(4.5)is a block LDU decomposition of T.An equivalent expression for the block diagonal matrix D de�ned in (4.2) is ob-tained from (4.4): D = RTL" = LTR":(4.6)Writing the nth step of the classical algorithm compactly as" pn+1 p"n+1qn+1 q"n+1 # = " pn p"nqn q"n # " 1
"(n)0�
(n)0 � # ;(4.7)and de�ning L"(J) := JL"J and R"(J) := JR"J;where J denotes the antidiagonal unit matrix or re
ection matrix of order N , we cansummarize the classical Schur algorithm in matrix form as[T T] N�2Yn=0 Cn = [L L"(J)];(4.8)

8where Cn := 26664 In+1 0 0 00 IN�n�1
"(n)0 IN�n�1 00
(n)0 IN�n�1 IN�n�1 00 0 0 In+1 37775 ;(4.9)with the Schur parameters
(n)0 and
"(n)0 from Table 3.1. Likewise, the Levinsonalgorithm becomes [I I] N�2Yn=0 Cn = [R R"(J)]:(4.10)These representations were derived in [16] as a reformulation of the Bareiss algorithm[4] and of look-ahead algorithms based on column-regular pairs. In [21], we havegeneralized it to cover the look-ahead methods from [17, 22] also, which is a littlemore complicated because the algorithms use column-regular as well as regular pairs.The reason for the di�culties is that the coe�cients of the upper left neighbor of aregular pair is in general not contained in the block factorization of T. However, sincewe do not want to describe these algorithms in detail here again, we do not present thematrix formulation for the look-ahead case in this paper. We only want to mentionthis formulation, because it leads to an e�cient way of solving Toeplitz systems withthe Schur algorithm, as we will see in Section 6.4. For detail we refer to [21].5. Look-ahead strategies. A crucial point in designing look-ahead algorithmsis a criterion for determining the length of a look-ahead step. The main purpose of thiscriterion is to determine the well-conditioned submatrices of T in order to computethe column-regular or regular pairs used in our algorithms. From Table 4.1 it becomesclear that look-ahead steps are more expensive than classical steps, so the aim of thecriterion is also to avoid look-ahead steps whenever possible.Since all our algorithms involve the solution of one or two small linear systems,mostly of dimension one, the weakest criterion one has to ensure is to guaranteethat the coe�cient matrices of all the linear systems which arise are nonsingular. Inexact arithmetic, this would ensure that the look-ahead strategy exactly determinesthe nonsingular principal submatrices of T and that the length of a look-ahead stepcorresponds to one plus the number of consecutive singular principal submatrices,see Theorem 4.1. In practice, when the computations are done in �nite precisionarithmetic, we will require that these matrices are well-conditioned. To achieve thistask, we propose to keep the smallest singular value of these coe�cient matrices abovesome tolerance. For the algorithms in product form of [17] we check�min(Mk;n) > tol(n);(5.1)whereMk;n is the matrix de�ned in formula (6.5) of [17]. For the algorithms involvingunderdetermined Pad�e forms described in [22] we test onminf�min(L"(l)); �min(L(l))g > tol(n);(5.2)where n = nl is the index of the last well-conditioned pair. By Theorem 4.2, L"(l) isthe coe�cient matrix in (4.1) of [22], and L(l) is the coe�cient matrix in (4.4) of [22].

9Note that at this point we allow the tolerances to depend on the index n. If we checkif n+k is a regular index, then Mk;n is a (2k� 1)� (2k� 1) matrix and L"(l) and L(l)are k � k matrices.For the solution of Toeplitz systems, we implemented the checks (5.1) and (5.2) fordi�erent tolerances tol(n) and found out that a value of the order 0:1 gives satisfactoryresults for this application. Additionally, we restricted the length of a look-ahead stepto kmax. If the checks failed for each 1 � k � kmax, we set k to the value for which theleft-hand side of (5.1) or (5.2) attained its maximum. Only if this maximum is belowa tolerance which is of the order of machine precision, the algorithm fails and shouldbe restarted with a larger value of kmax. However, this did not happen in any of theexamples presented in Section 8.To provide a heuristic explanation, we �rst recall two well-known inversion formu-las. The �rst is due to Heinig.Theorem 5.1. [20, Remark 1.1] Let (p; q) be a regular (m;n) Pad�e form of h 2 L,(p-; q-) be an (m� 1; n� 1), normalized by (2.6). Then Tm;n is nonsingular andT�1m;n = 2666664 �-n�1 �-n�2 � � � �-0�-n�1 �-n�20 �-n�1 3777775266664 �0 0�1 �0...�n�1 � � � �1 �0 377775�2666664 �n �n�1 � � � �1�n �n�10 �n 3777775266664 0 0�-0 0...�-n�2 � � � �-0 0 377775 :(5.3)The next inversion formula based on column-regular pairs is due to Gohberg andSemencul [12].Theorem 5.2. [20, Theorem 1.2] Let (p; q) be a column-regular (m;n) Pad�e formof h 2 L, and (p"; q") be an (m � 1; n) Pad�e form of h, normalized by (2.6). Then�0 = e"(0) 6= 0, Tm;n+1 is nonsingular,T�1m;n+1 = 1�0 266664 �0 0�1 �0...�n � � � �1 �0 3777752666664 �"n �"n�1 � � � �"0�"n �"n�10 �"n 3777775� 1�0 266664 0 0�"0 0...�"n�1 � � � �"0 0 3777752666664 0 �n � � � �10 �n0 0 3777775 ;(5.4)

10and T�1m;n = 1�0 266664 �0 0�1 �0...�n�1 � � � �1 �0 3777752666664 �"n �"n�1 � � � �"1�"n �"n�10 �"n 3777775� 1�0 266664 �"0 0�"1 �"0...�"n�1 � � � �"1 �"0 3777752666664 �n �n�1 � � � �1�n �n�10 �n 3777775 :(5.5)From the inversion formulas of Theorems 5.1 and 5.2 we have the upper boundskT�1n k � kT�1n kF � 2n kq-n k kqnk(5.6)and maxfkT�1n k; kT�1n+1kg � maxfkT�1n kF ; kT�1n+1kF g � 2nj�0;njkqnk kq"nk;(5.7)whereqn = [�0;n � � � �n;n]T ; q"n = [�"0;n � � � �"n;n]T ; q-n = [�-0;n � � � �-n�1;n]T :Therefore, j�0;nj and the norms of qn, q"n in a generic step and the norms of q-n and qnin a look-ahead step yield explicit upper bounds on the inverse of the principal subma-trix Tn. Since the linear systems with coe�cient matrices Mk;n, L"(l), and L(l) thatwe have to solve in the various algorithms contain in their right-hand sides coe�cientsof residuals and numerators of Pad�e forms, we can conclude that these right-handsides are small if the norms of the coe�cient vectors q-n and qn are su�ciently small,because we assumed that TN itself is well conditioned. Then the checks (5.1) and(5.2) guarantee that the solutions of these linear systems cannot be large. From thetriangle inequality we then conclude that the norms of q-n+k and qn+k cannot growtoo much. Recall that for n = nl and k = 1 we have �0 = L(l) = L"(l).Hence, a possible strategy to decide whether a pair of (0; n) and (�1; n) Pad�eforms is column well-conditioned could be based on the two inequalitiesj�0j > tol(n) and maxfkqnk; kq"nkg � Tol(n):This would guarantee thatmaxfkT�1n k; kT�1n+1kg � 2n [Tol(n)]2tol(n) :(5.8)For a well-conditioned pair one would requiremaxfkq-n k; kqnkg � Tol(n);which yields the upper bound kT�1n k � 2n [Tol(n)]2:(5.9)

11
0 50 100 150

10
0

10
5

10
10

10
15

10
20

10
25

10
30

true norm of inverse of T
n

upper bound
look−ahead steps

Fig. 5.1. kT�1n k versus n, upper bounds (5.6) and (5.7).However, computing the norms is quite expensive and the bounds (5.8) and (5.9)turned out to be fairly pessimistic in practice. Extensive numerical tests have shownthat the heuristic argument we explained above is justi�ed in practice and that thecheap tests are su�cient to achieve good accuracy.In order to manifest this statement, we created a random Toeplitz matrix of di-mension 150 with a very ill-conditioned leading principal submatrix of dimension 50.Examples with an ill-conditioned principal submatrix of dimension n can be con-structed from a random Toeplitz matrix by �rst computing the eigenvalues of the nthprincipal submatrix and then subtracting a suitable scalar multiple of the identityfrom the original Toeplitz matrix. For the test example of dimension 150, we monitorfor each column well-conditioned index the upper bound (5.6) versus n. For every nthat is not column well-conditioned, we computed the pair q-n , qn, no matter whetherit was well-conditioned or not. Of course, we used only the well-conditioned pairs toproceed in the algorithm. Figure 5.1 shows the true spectral norms of T�1n versus n ina logarithmic plot (dotted line), the upper bound (5.6) if n is column well-conditionedand the upper bound (5.7) otherwise (solid line). The + marks indicate that a look-ahead step was performed at this index. The picture clearly shows that the simplebounds correctly detect ill-conditioned submatrices.A di�erent look-ahead strategy was proposed by Freund and Zha [10]. It is basedon the Schur complement of Tn+k . In a number of numerical tests we found nosigni�cant di�erence in the numerical behavior of our algorithms when implementingthe tests from [10]. We therefore omit the details here and refer the reader to theoriginal paper [10].In contrast to these strategies, which involve only local information, Chan andHansen [6] suggest to estimate the condition numbers of all principal submatrices ofTN . This makes the algorithm more expensive because it requires computationaloverhead compared to the classical algorithm even if no look-ahead steps are taken.

12 If one does not want to set the tolerances before starting the algorithm, then onecan determine the singular values of all matrices which arise in the linear systems forthe recurrence coe�cients for steps of length 1 � k � kmax and then set the toleranceto the optimal value within these initial steps. A similar choice was proposed by VanBarel and Bultheel [29].6. Options for solving Toeplitz systems. We have seen that look-aheadLevinson and Schur algorithms yield block LDU decompositions of T�1 and T, re-spectively, at least if we compute additionally inner formally biorthogonal polynomials(FBOPs) or numerators and denominators of underdetermined Pad�e forms and theblock diagonal matrix D. Clearly, when one of these LDU decompositions is known,it is easy to solve a Toeplitz system Tx = b(6.1)in roughly N2
ops. However, this is just one way of applying the outcome of ouralgorithms to this task. There are several other options, which we want to comparehere with these two, see also [16].6.1. Inverse block LDU decomposition. All our look-ahead Levinson algo-rithms and also the algorithms in [6, 10] generate directly an inverse block LDU de-composition (4.3) if we compute not only regular formally biorthogonal polynomialsbut also �ll the gaps with inner formally biorthogonal polynomials. This was shownin Theorem 4.1. These decompositions can be used to update the solutions of a nestedsequence of Toeplitz systems of order n, n = 1; 2; : : : ; N :Tnxn = bn:(6.2)Clearly, a solution of the subsystem of order n is only computed if Tn is well condi-tioned, which is equivalent to n being a well-conditioned index which corresponds toa well-conditioned Pad�e form. Let us assume that n = nl and n + k = nl+1 are wellconditioned indices and denote the (n+ k)� (n+ k) principal submatrices Rn+k andR"n+k of R and R", respectively, byRn+k = " Rn B0 R(l) # R"n+k = " R"n B"0 R"(l) # ;where l denotes the index of the block starting with the regular index n = nl. The(n+ k)th principal submatrix of the block diagonal matrix D is written asDn+k = " Dn 00 D(l) # ;so that T�1n = R"nD�1n RTn . If xn is the solution of (6.2), and if we writebn+k = " bnc # ;then a solution of Tn+kxn+k = bn+k

13is given byxn+k = " R"n B"0 R"(l) # " D�1n 00 (D(l))�1 # " RTn 0BT (R(l))T # " bnc #= " xn0 # + " B"R"(l) #y;(6.3)where y = (D(l))�1(BTbn + (R(l))Tc):Therefore, xn+k can be updated from xn by using only those columns of R and R"that belong to the current block. This update procedure costs k inner products forcomputingBTbn plus k saxpys for the update, if we consider all computations of orderat most O(k3) as negligible. The most important advantage of applying a procedurewhich uses only quantities available from the current block is that we do not have tostore the complete factorization. Hence, the storage requirement is only O(N).Another equation for y can be obtained from the equality D(l) = (R(l))TL"(l), cf.(4.6). From the Toeplitz structure we haveTn+k = " Tn UV Tk # ;which yieldsy = (L"(l))�1 �(R(l))�TBTbn + c�= (L"(l))�1 (R(l))�T [BT (R(l))T]Tn+k " xn0 #�Vxn + c!= (L"(l))�1(c�Vxn);(6.4)because the �rst n columns of the product [BT (R(l))T]Tn+k are zero since RTT =LT is block upper triangular by Theorem 4.2. For the symmetric positive de�nite case,(6.4) is well-known; see [13, Section 4.7.3]. In the look-ahead case, the formula wasderived di�erently in [6] and [10, Section 6.1].The inverse block LDU decomposition can also be generated as a byproduct of thelook-ahead Schur algorithm, but, unless these columns are used anyway to control thelook-ahead step size via (5.8) or (5.9), this increases the costs by about 50%, namelyfor applying the Levinson recursion (without computation of the inner products).Here, the key point is that the recurrence coe�cients are identical for Levinson andfor Schur-type algorithms.6.2. Block LDU decomposition. The primary output of our look-ahead Schuralgorithms are the matrices L and L" of the LDU decomposition (4.5) of T. Again,the full decomposition requires to compute underdetermined Pad�e forms. Due to theToeplitz structure of the blocks of D, this matrix also contains only quantities from Land L". We refer to Section 4 for details. The inverse of D is not needed for solving(6.1).

14 When using the LDU decomposition (4.5) for computing the solution of the linearsystem (6.1) one can perform the forward elimination for the �rst linear system inL"y = b; where LTx = Dy;(6.5)with O(N) storage. This involves solving linear systems with the diagonal blocks L"(l),which are just scalars in generic steps. If we use the Schur-type algorithm of [22], wherewe have computed a regular pair from a previous regular pair and underdeterminedPad�e forms, then the QR or LU decomposition of L"(l) is available anyway, becauseL"(l) is just the coe�cient matrix of one of the linear systems we have to solve forthe recurrence coe�cients of the new regular pair [22, Corollary 6]. But one still hasto store the complete triangular part of L for solving the second system in (6.5) bybacksubstitution. However, it is also possible to solve (6.1) with the Schur algorithmwith O(N) storage and without additionally running the Levinson recurrences, as wewill see below.6.3. Inversion formulas. Theorems 5.1 and 5.2 gave explicit expressions for theinverse of a Toeplitz matrix in terms of a pair of denominators of Pad�e forms. Thelook-ahead Levinson algorithm produces this last pair directly. If N � 1 is a column-regular index, i.e., if TN�1 and TN are regular (or well conditioned), we can applythe Gohberg-Semencul formula (5.4) for m = 0 and n = N � 1. If this is not the case,then by assumption, N is a regular index. We then have to compute the denominatorsof the regular pair of (�1; N � 1) and (0; N) Pad�e forms in order to apply Heinig'sinversion formula (5.3) for m = 0 and n = N .In a Schur-type algorithm, the denominators are usually not computed, but asmentioned above, we could compute them additionally at the cost of some extra work.Applying the inversion formula is an O(N logN) process, if we use fast Fouriertransformation techniques.6.4. Another approach complementing the Schur algorithm. Since T =L"(R")�1, we can write (6.1) asL"y = b; where x = R"y:(6.6)As we have explained above, the �rst, block lower triangular system for y can besolved by forward substitution without storing L". Moreover, in the look-ahead Schur-type algorithm of [17], which computes regular pairs from regular pairs without usingunderdetermined Pad�e forms, it is su�cient to compute the numerators of right un-derdetermined Pad�e forms, i.e., columns of L". There is no need for computing leftunderdetermined Pad�e forms and residuals of right underdetermined Pad�e forms.If we have additionally run the recurrences for the Levinson algorithm, then thesolution x is obtained by just multiplying the temporary vector y by the upper tri-angular matrix R". Since this involves only quantities from the current block, thestorage requirement is only O(N) again.If R" has not been computed, then this simple technique is not applicable. Usingthe matrix formulation (4.10) of the Levinson algorithm, we �nd x according toR"y =JR"(J)(Jy) viax = J [R R"(J)] " 0Jy # = [J J] N�2Yn=0 Cn " 0Jy # :(6.7)

15Again, the storage requirement is only O(N). We have to store all the coe�cients ofthe small two-point Pad�e forms we used for updating one column-regular or regularpair from the previous one. Moreover, we need the recurrence coe�cients for left andright underdetermined Pad�e forms.For the Bareiss algorithm applied to a symmetric positive de�nite T, Delosme andIpsen [8, 24] derived a formula that is similar to (6.7). They made use of the factthat in this case the matrices Cn are hyperbolic rotations, and thus the inverse oftheir product is equal to a diagonally scaled transpose of the product. Thus, both theforward elimination and the backsubstitution can be performed by applying a productof hyperbolic rotations.7. Operation counts: Schur versus Levinson algorithms. The main di�er-ence between a Levinson and a Schur algorithm is that the Levinson algorithm spendsabout half of the operations on computing inner products but the Schur algorithmrequires only saxpys. This makes the Schur algorithm highly attractive on parallelcomputers, in particular on those, where inner products represent a bottleneck of thecomputation due to the global communication involved.To summarize the various options for solving the linear systems, the Levinsonand the Schur algorithm both require 2N2 + O(N)
ops to compute the LDU orinverse LDU factorization of a Toeplitz matrix, because the overhead of our look-ahead algorithms is only of order N by the assumptions made at the end of Section 2.They are satis�ed when T has only a few ill-conditioned principal submatrices, asituation which normally happens in practice.For the Schur algorithm, one still has the option of computing the LDU decomposi-tion, i.e., additionally running the Levinson recurrences. This costs anotherN2+O(N)
ops, so that computing the LDU and the inverse LDU decomposition simultaneouslydoes not double the cost, but can be done in 3N2 +O(N)
ops.The cheapest way of solving the linear system with the Levinson algorithm is toapply a suitable inversion formula by exploiting fast Fourier transformation techniques.This is an O(N logN) process, so that in total, we need 2N2 + O(N logN)
ops toget the solution. Updating the solution from the inverse LDU decomposition via (6.3)costsN2+O(N)
ops, hence we can get the solution with this technique in 3N2+O(N)
ops.For the Schur algorithm, the cheapest solution method is using the LDU decom-position (6.5). The solution process costs again N2 + O(N)
ops, hence the overallprocess can be done in 3N2 + O(N)
ops. However, using the LDU decompositionis only possible if we can store one complete block lower triangular factor of this de-composition. If N is large, this becomes prohibitive. One then has the option to runthe Levinson algorithm additionally and use (6.6). The price for this procedure is4N2+O(N)
ops, since the solution costs again N2 +O(N)
ops. Another option isagain to apply an inversion formula, which costs 3N2 + O(N logN)
ops. A cheapervariant stems from the matrix formulation (6.7), where one uses the second equation in(6.6) only implicitly by essentially running the Levinson algorithm backwards. Sincethe matrices Cn are of size 2N � 2N , computing x from (6.7) costs N2+O(N)
ops.Here, y is taken from the �rst equation in (6.6) at the cost of 0:5N2+ O(N)
ops sothat this variant costs 3:5N2+ O(N)
ops.8. Numerical examples. We have implemented all our algorithms in Matlaband in C, but present only the results from the C implementation. The C code is

16
10

2
10

3
10

4
10

−3

10
−2

10
−1

10
0

10
1

10
2

classical Levinson Fortran code
look−ahead Levinson Hansen−Chan
classical Levinson C code
look−ahead Levinson

Fig. 8.1. Execution times in seconds versus the dimension N of the Toeplitz system. Comparedare the C implementation of the classical and the look-ahead Levinson algorithm with the Fortranimplementation of the classical and the look-ahead Levinson algorithm from Hansen and Chan.available from the author. It uses the Basic Linear Algebra Subroutines (BLAS) andLAPACK routines [2] for computing the smallest singular value and for solving thelinear systems which arise in look-ahead steps. For the examples we present here, thelinear systems have been solved by Gaussian elimination with partial pivoting. Op-tionally, the code can solve the linear systems by QR factorization. All our numericalexamples were done on an SGI Power Indigo 2 with machine precision 1:11 � 10�16.We compare our algorithms with the Fortran implementation of the look-aheadLevinson algorithm [6], written by Hansen and Chan [18], which is { to the best ofthe author's knowledge { the only available implementation of a look-ahead algorithmon the network; see also [11]. Unfortunately, the implementation of Freund and Zha'slook-ahead Levinson algorithm announced in [10, Section 9] was not available at thetime of this writing. Hence we were not able to add comparisons with this code.In [11], yet another high performance library is announced, which will be developedfor distributed memory machines. This library will mainly contain algorithms basedon transforming the original Toeplitz matrix to some other structured matrix wherepivoting can be applied. It was also not �nished yet.Let us �rst compare the execution times of the di�erent algorithms. Figure 8.1shows the execution times for a Fortran implementation of the classical Levin-son algorithm [3] available from Netlib, the Fortran implementation of the look-ahead Levinson algorithm from Hansen and Chan [18], our C implementation of theclassical Levinson algorithm and of our look-ahead Levinson algorithm [22], whichuses inner formally biorthogonal polynomials for computing regular pairs. Theexecution times have been computed for random Toeplitz matrices of dimensionsN = 100; 200; 300; 400; 500; 1000; 2500; 5000; 10000; 20000 with an ill-conditioned prin-cipal submatrix of dimension 50. The maximal size of a look-ahead step was set to 6.

17
10

2
10

3
10

4
10

−3

10
−2

10
−1

10
0

10
1

10
2

look−ahead Schur
look−ahead Schur and Levinson
look−ahead Levinson

Fig. 8.2. Execution times in seconds versus the dimension N of the Toeplitz system. Comparedare the C implementation of the look-ahead Schur algorithms, the look-ahead Levinson algorithm, andthe combined look-ahead Schur and Levinson algorithm.The plot is in a double logarithmic scale, where the x-axis shows the dimensions andthe y-axis shows the execution times in seconds.The �gure shows that the C implementation is slower than the Fortran code fromthe Argonne package [3]. The main reason is that our C implementation uses the BasicLinear Algebra Subroutines (BLAS) and the Fortran code does not. For the Toeplitzsolvers, this turns out to be more expensive on our machine because most of the copyoperations for long vectors could be done simultaneously with computations if weimplemented them by hand. We nevertheless decided to use the BLAS and hope thatthey are available in an optimized form on most of the machines. Moreover we wouldlike to stress that we have not optimized our code with respect to copy operations butonly with respect to saxpy's and inner products. The interesting observation fromthis �gure is that the execution times of the Fortran implementation by Hansen andChan are considerably larger than those of the classical Levinson algorithm althoughHansen and Chan also do not use the BLAS' copy function. For large N , the ratio ofexecution times is about 3:4 : 1. However, for the C implementation and dimensionslarger than about 1000 one cannot even distinguish the two lines for the classical andthe look-ahead Levinson algorithm. This shows that the overhead due to look-aheadsteps is negligible then. Both classical algorithms gave wrong results because of theill-conditioned principal submatrix.In Figure 8.2 we compare execution times of our C implementation of look-aheadLevinson and Schur algorithms from [22] for the same examples as before. Since thedimensions become as large as 20000, the only option of solving the linear systemsfrom the output of a Schur algorithm is via (6.6). As we discussed in Section 7,there are two ways of computing x = R"y, namely running the Levinson recurrencesadditionally or computing x from (6.7) by essentially running the Levinson algorithm

18
−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

classical Levinson

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

classical SchurFig. 8.3. Histograms of relative errors of the C implementation of the classical Levinson andSchur algorithm.backwards. The �rst variant costs 4N2 + O(N)
ops, the second 3:5N2 + O(N),and in fact, 4=3:5 is about the factor between the two curves corresponding to theSchur algorithms in Figure 8.2. The reason that the look-ahead Levinson algorithmis considerably faster than the Schur algorithms is not only that it takes 3N2+O(N)
ops but also that { as we mentioned before { we have not attempted to optimize thenumber of copy operations in both algorithms. It turns out that our implementationof the Schur algorithm requires about twice as many copy statements, which explainsthe di�erence in execution times. We have not plotted the times for the classical Schuralgorithm, since the curves are again not distinguishable from those of its look-aheadcounterparts for large dimensions N .For comparing the accuracy of the algorithms we created a set of 100 random testexamples of dimension 500 with a very ill-conditioned principal submatrix of dimension50. We used this test set for all examples. The right-hand sides of the linear systemswere computed such that a given random vector was the exact solution. This allowedus to compare the di�erent algorithms by computing the relative errorskxexact � xcomput:kkxexactk :For our algorithms, we used a tolerance of 0:1 for checking if a regular Pad�e form is alsocolumn-regular, i.e., we enforced j�0;nj > 0:1. The tolerance for the smallest singularvalues in (5.1) or (5.2) was 0:3. We present the results in form of histograms, where thex-axis shows the logarithm of the achieved relative error and where the y-axis displaysthe number of examples which achieved an accuracy in a given interval of length 0:25in a logarithmic scale. Some of the Toeplitz matrices were themselves ill-conditioned,so that we could not expect to get full accuracy for all of the 100 test examples. Infact, our algorithm produced warnings that the results may be inaccurate for two ofthe 100 examples.Figure 8.3 shows the performance of di�erent algorithms when the solution is com-puted by one of the LDU decompositions from our C implementation of the classicalLevinson and Schur algorithm. Clearly, the accuracy is poor because of the veryill-conditioned principal submatrix of dimension 50.Figure 8.4 shows the achieved accuracy for the Fortran implementations of theclassical Levinson algorithm [3] and the look-ahead Levinson algorithm [18], where wehave set the maximal block size to 6.In Figure 8.5 we compare our look-ahead Levinson algorithms. For solving thelinear systems we used the update formula (6.3). Recall that we denote the algorithm

19
−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

classical Levinson

Fortran code

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Levinson

Hansen and ChanFig. 8.4. Histograms of relative errors of Fortran implementation of the classical Levinson andthe look-ahead Levinson algorithm of Hansen and Chan.
−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Levinson

product form

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Levinson

using inner FBOPSFig. 8.5. Histograms of relative errors of our C implementation of the look-ahead Levinsonalgorithms.described in [17] as the product form of our look-ahead Levinson algorithm, becauseit is based on products of Pad�e forms with low-order two-point Pad�e forms. It wasshown in Table 4.1 that the algorithm [22] which uses inner formally biorthogonalpolynomials has less overhead when we compute the complete LDU decomposition,as we did in all our experiments here. This most e�cient look-ahead algorithm gaveslightly better results than the Hansen and Chan algorithm. However, as we have seenbefore, it has much less overhead and shorter execution times.Figure 8.6 shows the analogous results for our Schur algorithms in product formand those using underdetermined Pad�e forms. For solving the linear systems we usedthe LDU decomposition (6.5). Since the denominators of the Pad�e forms have notbeen computed the algorithms required O(N2) storage. The results are very similarto those of our look-ahead Levinson algorithms.Figure 8.7 shows the relative errors for our two look-ahead Schur algorithms whenthe solutions of the linear systems are computed via (6.6) without computing R" ex-plicitly from the Levinson recurrences but by computing x via (6.7). These algorithmsrequire only O(N) storage. Finally, Figure 8.8 shows the accuracy for the Schur algo-rithms when additionally the inverse LDU decomposition is computed, i.e., when wehave run the Levinson recurrences but with the recurrence coe�cients taken from theSchur algorithm and not by evaluating inner products. The solutions were obtainedfrom (6.6).The last three Figures 8.6{8.8 containing results from the two variants of look-ahead Schur algorithms combined with di�erent methods for solving the Toeplitz sys-tems look very similar. This leads to the observation that the accuracy is determinedmainly by the Schur algorithms itself, the in
uence of how to compute x from y in(6.5) or (6.6) appears to be minor.So far we used block (inverse) LDU decompositions for solving the Toeplitz sys-

20
−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur

product form

O(N2) storage

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur

using inner FBOPs

O(N2) storageFig. 8.6. Histograms of relative errors of our C implementation of the look-aheadSchur algorithmswhen the solutions are obtained from (6.5).
−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur

product form

O(N) storage

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur

using inner FBOPs

O(N) storageFig. 8.7. Histograms of relative errors of our C implementation of the look-aheadSchur algorithmswhen the solutions are obtained from (6.6) with x from (6.7).tems. Next we apply one of the inversion formulas from Theorems 5.1 and 5.2. Theresults are presented in Figure 8.9. As we mentioned before, this solution technique isonly applicable when we have run the Levinson algorithm, either alone or combinedwith the Schur algorithm. Now we can see that applying an inversion formula orusing block LDU decompositions makes a di�erence, although this di�erence is notsigni�cant.For these algorithms, one can also compute the solution from an LDU decompo-sition and then apply an inversion formula in order to improve the accuracy by onestep of iterative re�nement. The achieved accuracy is shown in Figure 8.10, where theintervals for the histograms have now length 0:1 so that the scale of the y-axis remainsthe same as in the other examples. The accuracy is pretty close to machine precision.Clearly, one could do more than one re�nement step to further improve the accuracy.To summarize, we recommend to use the look-ahead Levinson algorithm [22] whichuses inner formally biorthogonal polynomials, optionally combined with one step ofiterative re�nement, on serial computers. The solution should be computed by usingthe inverse block LDU decomposition via the update formula (6.3). On parallel ma-chines, Schur algorithms are advantageous. Here the recommendation is again to usethe variant of the look-ahead Schur algorithm proposed in [22] since it has less over-head in look-ahead steps than any other variant. If memory facilities allow to storeone complete triangular matrix of dimension N , then it is most e�cient to computethe solution by using the block LDU decomposition (6.5). Otherwise, using (6.6) and(6.7) is the method of choice for solving the Toeplitz system if only one system hasto be solved and no iterative re�nement is desired. If one has a Toeplitz system withmultiple right-hand sides or wants to apply iterative re�nement, then one should ad-ditionally run the Levinson recurrences and solve the linear systems via an inversionformula.

21
−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur and Levinson

product form

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur and Levinson

using inner FBOPsFig. 8.8. Histograms of relative errors of our C implementation of the look-ahead Schur algorithmsboth combined with the corresponding recurrences of the Levinson algorithms.
−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Levinson

product form

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Levinson

using inner FBOPS

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur and Levinson

product form

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur and Levinson

using inner FBOPSFig. 8.9. Histograms of relative errors of our look-ahead algorithms when the solutions are ob-tained by applying an inversion formula.
−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Levinson

product form

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Levinson

using inner FBOPS

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur and Levinson

product form

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

5

10

15

20

25

look−ahead Schur and Levinson

using inner FBOPSFig. 8.10. Histograms of relative errors when the solutions are obtained from an (inverse) LDUdecomposition and are improved by one step of iterative re�nement.

22 Acknowledgement. The author would like to thank Mathias Fr�ohlich for histremendous help with implementing the look-ahead Toeplitz solvers in C.REFERENCES[1] G. S. Ammar and W. B. Gragg, The implementation and use of the generalized Schur al-gorithm, in Computational and Combinatorial Methods in System Theory, C. Byrnes andA. Lindquist, eds., Elsevier Science Publishers B.V., 1986, pp. 265{279.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, S. Ostrouchov, and D. Sorensen, LAPACK User's Guide, SIAM, 1995.[3] O. B. Arushanian, M. K. Samarin, V. V. Voevoedin, E. E. Tyrtyshnikov, B. S. Garbow,J. M. Boyle, W. R. Coweli, and K. W. Dritz, The Toeplitz Package Users' Guide,Technical Report, Argonne National Laboratory, 1983, 1983.[4] E. H. Bareiss, Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices,Numer. Math., 13 (1969), pp. 404{424.[5] A. Bultheel, Laurent Series and their Pad�e Approximations, Birkh�auser, Basel/Boston, 1987.[6] T. F. Chan and P. C. Hansen, A look-ahead Levinson algorithm for general Toeplitz systems,IEEE Trans. Signal Processing, 40 (1992), pp. 1079{1090. .[7] F. de Hoog, A new algorithm for solving Toeplitz systems of equations, Linear Algebra Appl.,88/89 (1987), pp. 123{138.[8] J. Delosme and I. C. F. Ipsen, Parallel solution of symmetric positive de�nite systems withhyperbolic rotations, Linear Algebra Appl., 77 (1986), pp. 75{111.[9] R. W. Freund, A look-ahead Bareiss algorithm for general Toeplitz matrices, Numer. Math.,68 (1994), pp. 35{69.[10] R. W. Freund and H. Zha, Formally biorthogonal polynomials and a look-ahead Levinsonalgorithm for general Toeplitz systems, Linear Algebra Appl., 188/189 (1993), pp. 255{304.[11] K. A. Gallivan, S. Thirumalai, P. Van Dooren, and V. Vermaut, High performancealgorithms for Toeplitz and block Toeplitz matrices, Linear Algebra Appl., 241{243 (1996),pp. 343{388.[12] I. Gohberg and A. Semencul, On the inversion of �nite Toeplitz matrices and their continuousanalogs (in Russian), Mat. Issled., 2 (1972), pp. 201{233.[13] G. H. Golub and C. F. van Loan, Matrix Computations, Johns Hopkins University Press,Baltimore, MD, second ed., 1989.[14] M. H. Gutknecht, Stable row recurrences in the Pad�e table and generically superfast lookaheadsolvers for non-Hermitian Toeplitz systems, Linear Algebra Appl., 188/189 (1993), pp. 351{421.[15] M. H. Gutknecht and M. Hochbruck, Look-ahead Levinson- and Schur-type recurrences inthe Pad�e table, Electronic Trans. Numer. Anal., 2 (1994), pp. 104{129.[16] , Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems, Numer.Math., 70 (1995), pp. 181{227.[17] , Optimized look-ahead recurrences for adjacent rows in the Pad�e table, BIT, 36 (1996),pp. 264{286.[18] P. C. Hansen and T. F. Chan, FORTRAN subroutines for general Toeplitz systems, ACMTrans. Math. Softw., 18 (1992), pp. 256{273. Corrigendum, see [19].[19] , Corrigendum: Algorithm 729. FORTRAN subroutines for general Toeplitz systems, ACMTrans. Math. Softw., 20 (1994), p. 160.[20] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Akademie-Verlag, Berlin, and Birkh�auser, Basel/Stuttgart, 1984.[21] M. Hochbruck, The Pad�e table and its relation to certain numerical algorithms. Habilitations-schrift, Mathematische Fakult�at, Universit�at T�ubingen, Germany, 1996.[22] , Further optimized look-ahead recurrences for adjacent rows in the Pad�e table and Toeplitzmatrix factorizations, J. Comput. Appl. Math., 86 (1997), pp. 219{236.[23] T. Huckle, Computation of Gohberg-Semencul formulas for a Toeplitz matrix, Tech. Rep.SCCM-93-14, Computer Science Department, Stanford University, November 1993. Sub-mitted to Linear Algebra Appl.[24] I. Ipsen, Some remarks on the generalised Bareiss and Levinson algorithms, in Numerical LinearAlgebra, Digital Signal Processing and Parallel Algorithms, G. H. Golub and P. van Dooren,eds., Springer-Verlag, Berlin, 1990, pp. 189{214.

23[25] T. Kailath and A. H. Sayed, Displacement structure: theory and applications, SIAM Rev.,37 (1995), pp. 297{386. .[26] N. Levinson, The Wiener rms (root-mean-square) error criterion in �lter design and prediction,J. Math. Phys., 25 (1947), pp. 261{278.[27] I. Schur, Ueber Potenzreihen, die im Innern des Einheitskreises beschr�ankt sind, I, Crelle's J.(J. Reine Angew. Math.), 147 (1917), pp. 205{232.[28] W. F. Trench, An algorithm for the inversion of �nite Toeplitz matrices, J. Soc. Indust. Appl.Math., 12 (1964), pp. 515{522.[29] M. Van Barel and A. Bultheel, A look-ahead algorithm for the solution of block Toeplitzsystems, Linear Algebra Appl., (1996). Submitted.

