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1 Introduction 
 

In the development of a multicellular organism, an essential element in regulating tissue 

morphogenesis is the initial formation, dynamic rearrangement and constant maintenance of cell-

cell contacts, as mediated mainly by cell adhesion molecules (CAMs). As several classes of 

molecules can mediate cell adhesion, cadherins appear to be the major adhesion molecules. 

Cadherin mediated cell adhesion not only allows cells in tissue to recognize each other forming 

coherent functional structures, but also drive many cellular behaviours such as cell sorting and 

directional cell migration, which makes them a very interesting subjects in the context of 

developmental biology.  

 

1.1 Cadherins 
 

The research of cadherins starts in early 1980s, when Jacob and co-workers first described E-

cadherin (uvomorulin), and its role in blastomeres compaction of an early developing mouse 

embryo (Hyafil et al., 1981; Peyrieras et al., 1983). Until now, over a hundred different cadherin 

family members have been identified in mammals (Hulpiau and van Roy, 2009). In invertebrates, 

cadherins in Drosophila and Caenorhabditis elegans have also been studied (Oda et al., 1994; 

Sano et al., 1993). Cadherins are best known for their function in establishing cell-cell contacts, 

the zonola adherens, that leads to apical-basolateral cell polarity in epithelia (Takeichi, 1995). 

However, cadherins are also necessary for cell proliferation and for signalling in cell 

differentiation (Geiger and Ayalon, 1992; Wollner and Nelson, 1992). Moreover, cadherins are 

required in many processes during tissue morphogenesis, tissue organization and collective cell 

migration (Becker et al., 2012; Takeichi, 1995). Disturbed cadherin functions are often 

associated with congenital defects in organogenesis, metastasis and tumour invasion in cancer 

(Berx and van Roy, 2009; El-Amraoui and Petit, 2010; Thompson and Price, 2002). 

Cadherins are a group of transmembrane glykoproteins mediating calcium dependent homophilic 

cell-cell adhesion. Based on their structure and function, the cadherin superfamily can be divided 

into four major groups: classical cadherins (type I and type II), protocadherins, desmosomal and 

atypical cadherins. Cadherins are comprised of three domains, an extracellular domain, a 

hydrophobic transmembrane (TM) domain and a highly conserved cytoplasmic domain Fig (1.1) 
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(Takeichi, 1990). The extracellular domain of cadherins consists of consecutive extracellular 

cadherin (EC) repeats. Each EC repeat contains about 110 amino acids and forms an 

immunoglobulin-like fold consisting of seven β-strands that are arranged as two opposed β-

sheets. The connections between successive EC domains are rigidified by coordination of Ca2+ 

ions, which is mediated by conserved amino acids in all cadherins (Boggon et al., 2002; Nagar et 

al., 1996; Pokutta et al., 1994). The binding of calcium is essential for the proper function of 

cadherins. Removal of calcium abolishes the adhesive function of cadherins and renders them 

vulnerable against proteases. The cytoplasmic regions of cadherins are less conserved, except 

for some binding motifs shared within specific cadherin families. For instance, there are two 

catenin-binding motifs in classical cadherins, which bind the armadillo proteins β-catenin and 

p120 (Fig1.1) (Takeichi, 1990). 

 

Fig1.1 Schematic structure of a classical cadherin. The extracellular domain consists of five cadherin 

repeats (EC1-5) bridged by calcium ions (grey), whereas the transmembran domain (TM) anchors the protein 

within membrane. The cytoplasmic domain contains a juxtamembrane domain (JMD) that binds p120, and a 

catenin binding domain (CBD) for β-catenin binding. The cytoplasmic domain is further anchored to the 

cytoskeleton via β-catenin and α-catenin.  

 

Cadherins form cluster via dimerization with other cadherins, which can occur in cis-orientation 

(between molecules from the same cell) or in trans-orientation (between molecules from different 

cells). In trans-orientation, cadherins are oriented in an opposing direction, interacting their EC1 

repeats by strand swapping. Strand swapping describes the replacement of one β-strand with 

the strand of the other in opposite EC1 domains. Critical for the interaction are the side chains of 

conserved tryptophan residues, which fit into a hydrophobic pocket on the EC1 domain of the 

binding partner (Boggon et al., 2002; Harrison et al., 2011; Häussinger et al., 2004; Patel et al., 

2006). Type I cadherins and desmosomal cadherins have one tryptophan residue, tryptophan-2 
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(Trp2), in the N-terminal of the first EC repeat (EC1), whereas type II cadherins have two 

conserved tryptophans (Trp2 and Trp4) (Patel et al., 2006). The hydrophobic pocket is formed by 

a HAV motif (type I cadherins) or QAV motif (type II cadherins) containing a highly conserved 

alanine residue (Ala80) (Blaschuk et al., 1990; Nose et al., 1990). Mutations in the tryptophan 

residue or in the HAV (QAV) motif leads to loss of cadherins adhesion function (Niessen et al., 

2011; Patel et al., 2006). Adhesions between cadherins are further strengthened by cis-interation 

of cadherin molecules. In a cis-interaction, the EC1 domain of one cadherin is non-symmetrically 

interacting with the EC2 domain of a partner cadherin, with additional contributions from the 

EC2-3 linker and the apex of the EC3. On contrary to the trans-interaction, the cis- interaction 

orients partner cadherins in parallel. Since each cadherin ectodomain can simultaneously 

engage in two cis-interactions with their EC1 and EC2/3 region, the cis- interface arranges 

cadherins into linear arrays (Harrison et al., 2011). When the cis- interaction is ablated, cell 

adhesion can still occurs but the extent of cadherin accumulation at cell-cell contact regions is 

diminished, and the resulting junctions are unstable (Harrison et al., 2011). 

The mechanisms of cadherin clustering are controversial. Many experiments suggest that 

catenins and their interaction with the cytoskeleton are required for cadherins to be clustered into 

adherens junctions (Chu et al., 2004; Fujimori and Takeichi, 1993; Shewan et al., 2005; Yap et 

al., 1998). However, recent studies report that junction-like structure can be formed by 

extracellular domain of classical cadherins alone, which involves both strong homophilic trans- 

interactions and weaker lateral cis-interactions (Hong et al., 2010; Ozaki et al., 2010). 

Nonetheless, in vivo cadherin clustering requires interactions with the actin cytoskeleton. The 

binding of cadherins to the actin cytoskeleton is mediated by α- and β-catenin. β-catenin binds 

directly the conserved intracellular tail of cadherins and recruits α-catenin, which in turn, interacts 

with actin filaments (Drees et al., 2005; Yonemura, 2011). Coupling cadherins to the 

cytoskeleton provides an anchorage to contractile actomyosin networks, which exert physical 

forces that are responsible for cell-cell contact remodelling during development. Furthermore, the 

intracellular adhesion complex regulates the membrane organization of cadherins and influences 

the stability and mobility of cadherin clusters through the mechanosensing activity of cadherins 

(Cavey et al., 2008; Kametani and Takeichi, 2007; Liu et al., 2010; Martin et al., 2010; Martin et 

al., 2009; Mège et al., 2006; Smutny et al., 2010). Cadherins at cell-cell contacts respond to 

increased stiffness of the substrate by enhanced clustering (Ladoux et al., 2009). Shear forces 

applied on the E-cadherin-coated bead and E-cadherin expressed cell can increase stiffness at 

cadherin junctions, confirming the E-cadherin complex functions as a mechanosensor (le Duc et 

al., 2010). Furthermore, cadherin mediated mechanical sensing is coordinated to drive coherent 
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changes. In Drosophila, the lateral ectoderm migrates toward the dorsal midline and encloses 

the more dorsal amnioserosa. Studies have shown that the contractions of amnioserosa cells are 

required for this process and are coordinated with contractions of an actin cable spanning the 

entire leading edge of the lateral ectoderm (Solon et al., 2009). Mechanism of this coordination is 

thought to involve E-cadherin and integrins, which transmit tension between the lateral ectoderm 

and the amnioserosa (Gorfinkiel and Arias, 2007; Gorfinkiel et al., 2009). 

Apart from the interaction with cytoskeleton, p120 is another regulator of cadherin stability. 

Binding of p120 to the juxtamembrane domain (JMD) of the cadherin cytoplasmic tail stabilizes 

cadherin localization at the cell surface, and induces cadherin clustering resulting in the 

formation of AJs (Anastasiadis and Reynolds, 2000; Xiao et al., 2007). Dissociation of p120 from 

the cadherin complex leads to endocytic internalization of cadherins (Davis et al., 2003; Hoshino 

et al., 2005). Moreover, p120 binds to Rho GTPases (Magie et al., 2002) and its key effector Rho 

kinase (ROCK) (Smith et al., 2012), suggesting that components of the cadherin-catenin 

molecular complex may spatially coordinate Rho activity. GTPases are guanine nucleotide-

binding proteins that regulate the cytoskeleton and influence many cellular processes including 

cell protrusion formation (Jaffe and Hall, 2005). Members of Rho GTPases family have been 

identified at cadherin mediated adhesion sites, and cadherin adhesion is able to active Rac 

signaling at contact sites (Kitt and Nelson, 2011; Kovacs et al., 2002; Nakagawa et al., 2001; 

Noren et al., 2001; Yamada and Nelson, 2007). Guanine nucleotide exchange factor (GEF) 

catalyses GTP loading and activates Rho. Trio, a Rac GEF, is identified in a complex with M-

cadherin and Rac and necessary for activation of Rac upon adhesive ligation of M-cadherin 

Cadherin at junctions (Charrasse et al., 2007). Trio also interacts with Cadherin-11 in Xenopus 

(Kashef et al., 2009). 

 

1.2 Cadherins in collective cell migration 
 

Collective cell migration is described as a coordinated migration of a cell population through cell-

cell cooperation (Theveneau and Mayor, 2012a), which is observed during cell movement in 

morphogenesis, wound healing and cancer metastasis (Friedl and Gilmour, 2009; Rørth, 2009; 

Theveneau and Mayor, 2012b). In the context of morphogenesis alone, a number of collective 

migratory events are known to occur. In Drosophila, collective migration is employed during 

border cell migration (Montell, 2003). In vertebrates, collective migration is extensively studied in 
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gastrulation movement and neural crest migration (Alfandari et al., 2010; Bouwmeester et al., 

1996; Friedl and Gilmour, 2009). Also, the key role for collective migration has been revealed in 

the development of sensory lateral line in zebrafish (Haas and Gilmour, 2006). During these 

processes, cadherin mediated cell-cell interactions play an essential role in the collectiveness of 

migratory cells.  

The border cells in Drosophila embryos are a group of cells that undergoes collective migration. 

The border cells arise at the anterior pole of the egg chamber and migrate toward the posterior 

and then dorsal side of the oocyte, contributing to micropyle formation (Montell, 1994).The 

border cell cluster consists of border and polar cells (Montell, 2003), where the non-motile polar 

cells are surrounded by border cells. The cluster stays cohesive as they detach from the 

surrounding follicle cells and migrate posteriorly in between and along nurse cells. E-cadherin is 

required for border cell migration by engaging in two different ways. First, the expression of E-

cadherin in border cells is essential for them to polarize. Second, E-cadherin expressed in both 

border cells and nurse cells establishes the contact, allowing the border cell cluster to migrate 

(Geisbrecht and Montell, 2002; Niewiadomska et al., 1999; Pacquelet and Rørth, 2005). It is 

suggested that the traction force generated by E-cadherin mediated adhesion may be 

responsible for cell movement (Niewiadomska et al., 1999).  

Mechanoresponsive cadherin-catenin complex is also involved in collective cell migration of the 

head mesendoderm cells in Xenopus during convergent extention (CE). The leading edge cells 

of the head mesendoderm arise from deep endoderm cells at early gastrula stage, whereas the 

following cells behind the leading edge are involuted prechordal mesoderm cells. At mid-blastula, 

head mesendoderm cells polarize along the animal-vegetal axis and migrate directly as a 

cohesive sheet towards the blastocoel roof (Bouwmeester et al., 1996). It is shown that force 

induced polarized cell protrusion is C-cadherin dependent. Local tension on cadherin adhesions 

localizes plakoglobin and intermediate filament to the adhesion sites, which both are required for 

polarized protrusive behaviours. It is therefore proposed that tension on C-cadherin-mediated 

adhesion between migrating head mesendoderm cells induces polarized cell protrusions and 

directed migration (Weber et al., 2012). In contrast, the migration of mesoderm in zebrafish 

requires E-cadherin (Ulrich et al., 2005), where the germ layer progenitor cells rely on E-cadherin 

to undergo directional migration as cell groups (Arboleda-Estudillo et al., 2010). 

E-cadherin-dependent cell polarization is also found in the wound healing. It is observed that the 

sensing of substrate stiffness and force transmission is coordinated by E-cadherin-based cell-cell 

contacts across tissues, inducing polarization of cytoskeleton and migration in the direction of the 
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wound in in the cells that are far from the wound edge (Ng et al., 2012). It is shown that E-

cadherin adhesion induced cell polarization of cell migration to be actin-dependent (Desai et al., 

2009), but the mechanism by which E-cadherin directs actomyosin-dependent cell polarization 

remains unclear. In epidermal wound closure, sprouting vessels and epithelial cancer, 

desmosomal cadherins, including desmoglein1, desmoglein 3 and desmosomes, are also 

involved in the cell-cell junction formations, yet their specific contribution to collective migration is 

unclear (Chidgey and Dawson, 2007; Khan et al., 2006; Moll et al., 1999). 

Collective cell invasion in cancer and morphogenic movements exhibits striking resemblance, 

including not completely de-differentiated forms of rhabdomyosarcoma as well as well-

differentiated carcinomas, melanoma and breast cancer (Friedl and Gilmour, 2009; Friedl et al., 

1995; Hegerfeldt et al., 2002; Nabeshima et al., 1999). It is shown that the collective invasion of 

vulvar squamous cell carcinoma A431 cells is dependent on intact P- and E-cadherin mediated 

cell-cell contacts and p120 catenin (Macpherson et al., 2007). Nevertheless, the mechanism of 

how cohesiveness facilitates collective cell invasion in vivo, and the role of cadherins is still 

poorly understood. 

 

1.3 Neural crest as model system for studying cadherin 
function in collective cell migration 

 

Neural crest (NC) cells are embryonic mesenchymal cells exhibiting extensive collective 

migration during their development (Theveneau et al., 2010). Thus, they provide an excellent 

model for studying the molecular mechanisms of cadherins in collective cell migration in vivo and 

in vitro.  

NC cells are a highly motile and pluripotent stem cell population that is characteristic for 

vertebrates. They arise at the neural plate border and give rise to a variety of derivatives such as 

craniofacial cartilage and bone structures, smooth muscle, peripheral and enteric neurons, glia 

and melanocytes (Kalcheim and Le Douarin, 1986; Wagner, 1990). Despite their ectodermal 

origin at the neural plate border, NC has the potential to give rise to cell types characteristic of 

more than one of the classical germ layers. Therefore, they are defined as the “the fourth germ 

layer” (Hall, 2000). Defects in migration, proliferation and differentiation of NC are usually 

associated with a variety of diseases such as Piebaldismus, DiGeorge-, and Waardenburg 

syndrome (Aubry and Morand, 1964; DiGeorge, 1968; Hall, 1979; Spritz, 1997; Waardenburg, 
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1951). Moreover, migrating NC cells display many similarities with metastasizing tumour cells in 

respect of their migration behaviours and involved molecules, and serve therefore as an optimal 

model system for investigating cell-cell interaction, communication, morphology and migration 

mechanisms (Gammill and Bronner-Fraser, 2003; Kulesa and Gammill, 2010).  

The induction of the NC occurs in the ectodermal germ layer as a consequence of multiple 

instructive cues generated at the border between the presumptive neural plate and the epidermis 

(LaBonne and Bronner-Fraser, 1998). A dynamic interplay of BMP, Wnt, FGF and Notch 

signalling is responsible for the induction of the neural plate border (Milet and Monsoro-Burq, 

2012) and subsequently contribute to the induction of early NC specifiers. In Xenopus, the onset 

of the expression of NC specifier genes occurs during mid- to late-gastrulation and the earliest 

expressed NC specifier genes include Snail2 (Slug), Snail, Sox8, Sox9, FoxD3, twist, Ets1, AP2, 

c-myc and Id genes (LaBonne and Bronner-Fraser, 1999). Snail1, Id3, Sox9, and Sox10 

maintain the NC identity and control cell survival (Kee and Bronner-Fraser, 2005; Sonnenberg-

Riethmacher et al., 2001). Furthermore, all these transcription factors act together to further 

refine the specification, and promote emigration of NC cells (LaBonne and Bronner-Fraser, 

1999).  

After their specification at the border of the neural plate, the NC population separates from the 

neighbouring neuroepithelium by delamination, which is believed to involve at least a partial 

epithelium-to-mesenchaymal transition (EMT) (Ahlstrom and Erickson, 2009; Alfandari et al., 

2010). This is followed by extensive migration of NC cells throughout the embryo. In Xenopus, 

the cranial neural crest (CNC) cells migrate collectively as a cohesive cell sheet (Alfandari et al., 

2003; Theveneau and Mayor, 2011), where the three segments (mandibular, hyoidal and 

branchial segments) of CNC migrate directly beneath the ectoderm in ventral direction toward 

the pharyngeal pouches (Sadaghiani and Thiébaud, 1987) (Fig1.2). The mandibular segment, 

which originates from the mesencephalon, moves ventrally to the optic vesicle, migrate around 

the eye vesicle, eventually invade the mandibular arch and contribute to the formation of the 

quadrate and Meckel’s cartilage, as well as the ethmoidal-trabecular plate (Sadaghiani and 

Thiébaud, 1987). The hyoid segment originates from the anterior part of the rhombencephalon. 

They migrate downward over the mesoderm of the hyoid arch from the rostral part of the otic 

vesicle, finally into the hyoid arch and take part in the formation of the ceratohyal cartilage. The 

branchial segment of CNC originates from the posterior part of the rhombencephalon and 

migrates over the branchial region posterior to the otic vesicle. During migration, the branchial 

segment gradually subdivides into two - the anterior and posterior – subpopulations. These cells 
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form the branchial arches and differentiate into cartilages of the grills and connective tissues 

(Sadaghiani and Thiébaud, 1987; Theveneau and Mayor, 2011). 

 

 

Fig1.2 Schematic representation of cranial neural crest (CNC) migration at different stages of Xenopus 

development. (A) At stage 20, the three segments of the CNC (MCS, HCS, BCS) are discernible after neural 

tube closure and start to emigrate. (B) At stage 22, MCS migrate ventrally around the eye; HCS descends 

downward towards the hyoid arch from the rostral part of the otic placode, whereas the BCS migrates over the 

branchial region posterior to the otic vesicle. The groove between HCS and BCS (orange dashed circle) is the 

otic placode. (C) At stage 26, the MCS surrounds the eye. The HCS has penetrated into the hyoid arch, and the 

BCS are located on the branchia region. MCS, mandibular crest segment (lily); HCS, hyoid crest segment; 

aBCS (brown), anterio branchial crest segment (dark blue); pBCS (light blue), posterior branchial crest 

segment. Modified from (Sadaghiani and Thiébaud, 1987). Scale bar = 50 µm.  

 

During migration, NC cells interact with the neighbouring tissue and react to a variety of signals 

controlling their polarity and directionality, allowing them to colonize their differentiation regions. 

In fact, the directed migration of CNC cells is mediated by the cooperation of many different 

mechanisms. Recent studies reveal that the coordinated regulation of collective chemotaxis, co-

attraction and contact inhibition of locomotion (CIL) is required for correct CNC migration 

(Carmona-Fontaine et al., 2008; Carmona-Fontaine et al., 2011; Theveneau et al., 2010; 

Theveneau et al., 2013). CIL is defined as “the stopping of the continual locomotion of a cell in 

the same direction after collision with another cell” (Abercrombie, 1979). CNC cells display CIL in 

vivo and in vitro, which is required for their directional migration (Carmona-Fontaine et al., 2008). 

However, to maintain the cohesive cluster of migrating CNC cells, the complement fragment C3a 

and its receptor C3aR mediated coattraction is required, which counterbalance the dispersion of 

cells caused by CIL (Carmona-Fontaine et al., 2011). Moreover, the chemokine Sdf1 serves as a 

chemoattractant for collective CNC cell migration in vitro and in vivo, promoting directional 
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migration by stabilizing contact-dependent cell polarity (Theveneau et al., 2010; Theveneau et 

al., 2013). Furthermore, a “chase-and-run” behaviour between CNC cells and placodal cells is 

recently proposed (Theveneau et al., 2013). In this model, Sdf-1 dependent chemotaxis attracts 

CNC cells towards placodal cells, which lie adjacent to the CNC tissue during migration. Once in 

contact, CIL between CNC cells and plalcodal cells inhibits the protrusion in placodal cells, 

where the symmetry of placodal tissue is broken inducing directional movement. The coattraction 

and repulsion movement is self-sustained due to chemotaxis and CIL, which promote persistent 

coordinated migration of both cell populations (Theveneau et al., 2013). Of all these mechanisms 

of CNC migration, cadherin mediated cell-cell adhesions are involved. However, the 

mechanisms of their involvement are not fully understood and require further elucidation.  

 

1.4 Cadherins in Xenopus CNC migration  
 

In the migration of CNC cells, a switch of cadherin expression is observed in mice and chicken 

during their EMT, which allow cells to lose their epithelial morphology, dissemble cell-cell 

junctions and obtain mesenchymal characters. During this process, classical type I cadherins, for 

instance E-cadherin and N-cadherin, are down-regulated, whereas the expression of 

mesenchymal type II cadherins like Cadherin-6B (G. gallus) and Cadherin-7 (G. gallus) 

increases (Nakagawa and Takeichi, 1995, 1998; Wheelock et al., 2008). In Xenopus, both the 

type I classical cadherin N-cadherin and the type II classical cadherin Cadherin-11, as well as 

the protocadherin PCNS are expressed in NC cells (Hadeball et al., 1998; Rangarajan et al., 

2006; Theveneau et al., 2010). 

N-cadherin expression is found in CNC cells during their migration, and both gain-and loss-of-

function of N-cadherin inhibit CNC migration in vivo (Theveneau et al., 2010). In vitro studies 

demonstrate that functional blocking antibodies against N-cadherin prevent CIL and collective 

polarization of CNC cells toward a Sdf1 gradient (Theveneau et al., 2010). N-cadherin mediated 

CIL is responsible for the repulsion behaviour between CNC cells and placodal cells in the 

“chase-and-run” model of CNC migration. In this process, N-cadherin localizes at cell-cell 

contacts and inhibits protrusion formation of the placodal cells (Theveneau et al., 2013). 

Furthermore, N-cadherin is necessary for generating an asymmetric focal adhesion distribution 

relative to the contact site and therefore promotes directional migration (Theveneau et al., 2013). 
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Cadherin-11 is a type II cadherin expressed in migrating CNC cells in Xenopus (Hadeball et al., 

1998). Overexpression and knockdown of Cadherin-11 inhibit CNC migration in vivo (Borchers et 

al., 2001; Kashef et al., 2009), indicating a defined level of Cadherin-11 mediated adhesion is 

required for cells to migrate. One of the regulators of Cadherin-11 mediated cell-cell adhesion is 

the metalloproteases ADAM13, which cleaves between the EC3 and EC4 in the extracellular 

domain of Cadherin-11 and modulates its adhesive function (McCusker et al., 2009). The 

cleavage product can bind the uncleaved Cadherin-11 via homophilic interaction, therefore 

promote or inhibit adhesion (McCusker and Alfandari, 2009). It is reported that Cadherin-11 

mediated CIL between CNC cells is required for their migration (Becker et al., 2013). 

Additionally, Cadherin-11 binds to GEF Trio. The fact that constitutively active forms of RhoA, 

Rac and cdc42 functionally substitute for Cadherin-11 reveals a novel cadherin function of 

regulating protrusive activity in CNC cells (Kashef et al., 2009). Furthermore, it has been recently 

shown that Cadherin-11 is also involved in cell-substrate adhesion (Langhe et al., in revision).  

Besides classical cadherins, the protocadherin PCNS is also expressed in Xenopus CNC 

(Rangarajan et al., 2006; Schneider et al., 2014). Knockdown of PCNC inhibits CNC migration in 

vivo, but the molecular mechanism still needs to be elucidated (Rangarajan et al., 2006). 

Reconstitution experiments show that another protocadherin PAPC, which shares 65% identical 

amino acids with PCNS, is able to compensate for the loss of PCNS (Schneider et al., 2014). In 

fact, overexpression of PAPC also leads to migration defects similar to knockdown of PCNS, 

indicating a possible role of PAPC in regulating CNC migration (Schneider et al., 2014). 
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2 Aim of the work 
 

The goal of this work is to characterize the expression of different Xenopus cadherins and to 

investigate their function during CNC migration.  

Up to the begin of this work, several cadherins have been described to be involved in CNC 

migration including the mesenchymal type II cadherin Cadherin-11, N-cadherin as classical type 

I cadherin, and the protocadherin PCNS (Hadeball et al., 1998; Rangarajan et al., 2006; 

Theveneau et al., 2010). However, a comparative expression analysis of these cadherins in CNC 

cells has not been performed so far. 

To quantify the expression of the known cadherins and to identify possible novel cadherin 

subtypes expressed in CNC, quantitative real-time PCR with specific primers for Cadherin-11, N-

cadherin, E-cadherin, XB-cadherin, C-cadherin, PCNS and PAPC should be performed. Since 

CNC migration involves a serial of dynamic changes in cell shape as well as adhesive 

properties, the CNC cells from different stages of CNC migration should be compared. 

Quantification of the relative expression level from premigratory (stage 17), emigrating (stage 20) 

and migratory (stage 23) CNC cells should demonstrate how the expression level of each 

cadherin subtype changes during migration. By comparing the obtained CT values from CNC 

samples to a standard curve, the absolute copy number of each cadherin could be calculated, 

allowing a direct comparison of all expressed cadherins in the CNC tissue. Furthermore, the 

subcellular localization of these cadherin should be investigated through (1) ectopic expression 

of GFP tagged constructs and (2) immunofluorescence staining with specific antibodies on CNC 

explants. 

Surprisingly, during this work, E-cadherin expression is found in CNC cells. Its localization and 

protein expression should be further illustrated via immunofluorescence staining on whole 

embryo sections and immunoblotting of embryo lysates. In order to understand the role of E-

cadherin in CNC cells, loss-of-function experiments should be performed by morpholino 

injections. In situ hybridization with CNC specific markers and transplantation experiments 

should demonstrate the loss of E-cadherin function on CNC migration in vivo. Furthermore, with 

CNC explants, the role of E-cadherin knockdown on cell morphology should be investigated. 

Moreover, reconstitution experiments with different E-cadherin deletion constructs as well as 

other cadherins should elucidate the specific function of E-cadherin in regulating CNC migration. 
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Finally, a possible redundant function between other cadherin subtypes in regard to CNC 

migration should also be examined by reconstitution experiments.   
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3 Materials 
 

3.1 Antibodies  
 

3.1.1 Primary antibodies 

Name Host Dilution Source 

α-Digoxygenin-AP  1:3000 Roche Applied Science, Mannheim 

α-HA (12CA5) Mouse 1:400 Roche Applied Science, Mannheim 

α-C-Cadherin (6B6) Mouse undiluted DSHB Hybridoma Bank, USA 

α-E-Cadherin (10H3) Mouse undiluted DSHB Hybridoma Bank, USA 

α-E-Cadherin (5D3) Mouse undiluted DSHB Hybridoma Bank, USA 

α-N-Cadherin 

(MNCD2) 

Mouse undiluted DSHB Hybridoma Bank, USA 

α-XB-Cadherin (6D5) Mouse undiluted DSHB Hybridoma Bank, USA 

α-Tubulin Mouse 1:2000 Abcam, Cambridge, UK 

Tab 3.1: Primary antibodies used in this work. 

 

3.1.2 Secondary antibodies 
Name Description Dilutio

n 

Source 

GαM-Cy3 CyIM3-conjugated goat-

anti-mouse IgG 

1:400 Dianova GmbH, Hamburg 

GαM-AP Alkaline Phosphatase 

conjugated goat-anti-

mouse IgG       

1:2000 Dianova GmbH, Hamburg 

GαR-AP Alkaline Phosphatase 

conjugated goat-anti-

rabbit IgG 

1:2000 Dianova GmbH, Hamburg 

GαM-POD Peroxidase conjugated 

goat-anti-mouse IgG 

1:5000 Dianova GmbH, Hamburg 
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NeutrAvidin-HRP Pierce High Sensitivity 

NeutrAvidin-Horse radish 

peroxidase 

1:1000 Thermo scientific, Germany 

Tab 3.2: Secondary antibodies used in this work. 

 

3.2 Bacteria strains 
 E.coli - JM-109 (Chemo- and Electrocompetant) (Promega, Mannheim)  

 Genotyp: endA1 recA1 gyrA96 thi hsdR17 (rk- mk+) relA1 supE44 D(lacproAB)  

[F' traD36 proAB laclqZDM15]  

 

3.3 Chemicals and reagents 
All other chemicals are purchased from the following companies: Applichem GmbH (Darmstadt),  

Fluka GmbH (Taufkirchen), Merck (Darmstadt), Carl Roth GmbH & Co. (Karlsruhe), Serva 

(Heidelberg) or Sigma-Aldrich (Taufkirchen).   

 

• 2-log DNA Marker (New England Biolabs, Frankfurt) 

• Con A Sepharose (Amersham Biosciences, Sweden)  

• Complete, EDTA-free Protease 

Inhibitor Cocktail tablets 

(Roche Diagnostics GmbH,  

Mannheim) 

• Phosphatase Inhibitor (Roche Diagnostics GmbH,  

Mannheim) 

• DAPI (4,6 Diamidino-2-

phenylindoldihydrochloride) 

(Merck KGaA, Darmstadt) 

• Dextran-FITC (10,000 MW) (Invitrogen GmbH, Karlsruhe) 

• Deoxyribonucleotide (Promega GmbH, Mannheim) 

• DIG RNA Labeling Mix (Roche Diagnostics GmbH,   

Mannheim)  

• DMSO (AppliChem, Darmstadt) 

• Fetal calf serum (FCS) (GIBCO BRL Life Technology, UK)  

• Horse serum (Invitrogen GmbH, Karlsruhe) 



  
3 Materials 

 

 
 15 
 

• iQ SYBR Green Supermix (BioRad, Hercules, USA) 

• Milk powder (Heirler Cenovis GmbH, Radolfzell) 

• Midori green advance (Biozym Scientific GmbH, Oldendorf) 

• NBT/BCIP Stock solution (Roche Diagnostics GmbH,  Mannheim)   

• PageRulerTM Prestained Protein 

Ladder 

(Fermentas, St.Leon-Rot) 

• Penicillin/Streptomycin (PAA Laboratories GmbH, Cölbe) 

• RNAlater (Ambion, Austin, USA) 

• Sodium dodecyl sulfate (SDS) (Serva, Heidelberg) 

 

3.4 Enzymes 
• GoTaq DNA-Polymerase (Promega GmbH, Mannheim) 

• Pfu Turbo DNA Polymerase (Agilent Technologies, USA)  

• Restriction Endonucleases (Promega GmbH, Mannheim)   

(New England Biolabs, 

Frankfurt) 

• SP6, T3, T7 RNA-Polymerase (Roche Diagnostics GmbH,  

Mannheim)  

• T4 DNA Ligase (Promega GmbH, Mannheim) 

• DNase I, RNase free (Roche Diagnostics GmbH,  

Mannheim)  

• MMLV Reverse Transcriptase  (Promega GmbH, Mannheim) 

 

3.5 Kits 
• Digoxygenin/Fluorescein RNA 

labeling Kit 

(Roche Diagnostics GmbH,  

Mannheim) 

• ECL Plus Westen Blotting (Amersham GmbH, Freiburg) 

• High Pure PCR Purification Kit (Roche Diagnostics GmbH,  

Mannheim)  

• High Pure Plasmid Isolation Kit (Roche Diagnostics GmbH,  
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Mannheim) 

• High Pure RNA Isolation Kit (Roche Diagnostics GmbH,  

Mannheim) 

• Homogenizer (Invitrogen, USA) 

• Nucleobond XtraMidi (Macherey Nagel, Düren) 

• mMESSAGE mMACHINETM (Ambion, Austin, USA) 

• PureLinkTM RNA Mini Kit (Ambion, Austin, USA) 

• BCA Protein Assay Kit (Novagen/Merck, Darmstadt) 

 

3.6 Morpholino-Oligonucleotide 
All Morpholino oligonucleotides (MO) are synthesized by Gene Tools, LLC, USA. C-cadherin 

antisense oligodeoxynucleotide is synthesized by Sigma-Aldrich, Germany (Tab 3.3). 

Name Sequence 

C-cadherin antisense 

oligodeoxynucleotide 

5’-C*C*T* CTC CAG CTC CCT* A*C*G -3’ 

(asterisks indicate phosphorothioate-modified residues)  

(Heasman et al.,1994b) 

E-cadherin-MO 5’-AAC CAG GGC CTC TTC AAC CCC ATT G-3’ 

(Nandadasa et al.,2009) 

N-cadherin-MO 5’-GAA GGG CTC TTT CCG GCA CAT GGT G-3’ 

(Nandadasa et al.,2009) 

Xcadherin-11-MO 5’-CTT TCT TCA TTT TTG GTA GTG TTG T-3’ 

Control-MO 5’-CCT CTT ACC TCA GTT ACA ATT TAT A-3’ 

Tab 3.3: Morpholino oligonucleotides and antisense oligodeoxynucleotide used in this work. 

 

3.7 Primers for PCR 
All listed primers are synthesized by biomers.net GmbH, Ulm. 

Name Sequence 

Emut_fwd 5’-CGA ATT CAA GGC CTA TGG GCC TCA AAC GAC CTT GGT TAC 

TTG GTG CTG TCG TGT TG-3’ 

Emut_rev 5’-CAG CAC CAA GTA ACC AAG GTC GTT TGA GGC CCA TAG GCC 

TTG AAT TCG AAT CGA-3’ 
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Emu_MutHAV _fwd 5’-GAC AAT TAC GTT CTT TTT TCC CAT ATG GTG TCA TCA AAT 

GGG GCA AAT GTG G-3’ 

Emu_MutHAV_ rev 5’-CCA CAT TTG CCC CAT TTG ATG ACA CCA TAT GGG AAA AAA 

GAA CGT AAT TGT C-3’ 

Emu_MutTrp2_fwd 5’-GAA AAG ACA AAA AAG AGA CGC GGT GAT TCC ACC AAT CAT 

AG-3’ 

Emu_MutTrp2_rev 5’-CTA TGA TTG GTG GAA TCA CCG CGT CTC TTT TTT GTC TTT 

TC-3’ 

EmuTM_XhoI_fwd 5’-GAG CCT TTA CTA CCT CGA GAA GAT GAG ACT CGG G-3’ 

EmuTM_XhoI_rev 5’-CCC GAG TCT CAT CTT CTC GAG GTA GTA AAG GCT C-3’ 

Tab 3.4 Primers used in mutagenesis PCR for generating E-cadherin mutants. 

 

Name Sequence 

Ecad_RT_fwd 5’-CGA CCT TTG GAC AGA GAA GC-3’ 

E-cadherin rev 5’-GCA CAG AGC CTT CAA AGA CC-3’ 

XB-cadherin_fwd 5’-TAT CCT TGC TGC TGC TCC TG-3’ 

XB-cadherin rev 5’-TCA CCT CCA CCT TCC TCT CC-3’ 

N-cadherin for 5’-CAG CAA CGA TGG CTT AGT GA-3’ 

N-cadherin rev 5’-ATT GTA ACG GAG ACG GTT GC-3’ 

Xcadherin-11 fwd 5’-TCG GAT ACT GTG GTC GGA AG-3’ 

Xcadherin-11 rev 5’-CAT CCT CTG GGT TGA TGC TG-3’ 

XPAPC_RT_fwd 5’-CCC AGT CGG TCT CTT CTT CTT TG-3’ 

XPAPC_RT_rev 5’-TTG CTG ATG CTG CTC TTG GTT AG-3’ 

PCNS_RT_fwd 5’-TGG AGA CCA GCA AAC AGA CA-3’ 

PCNS_RT_rev 5’-CAC TTA CAC TTC CGG CAC AA-3’ 

xTwist_fwd 5’-CTC AGT GAA GCG CAA CAA GA-3’ 

xTwist_rev 5’-CTC TGA CGC TCC CTG ACA TT-3’ 

xslug_fwd 5’-ACC TGC AGA CCC ATT CTG AT-3’ 

xslug__rev 5’-CAC AGC AAC CAG ATT CCT CAT-3’ 

xsnail_fwd 5’-GGC ACC AGT TAT TGC CTT TC-3’ 

xsnail_rev 5’-TGT TGT TCC ATC CAC CTG TC-3’ 
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xbra_fwd 5’-TTC AGC CTG TCT GTC AAT GC-3’ 

xbra_rev 5’-TGA GAC ACT GGT GTG ATG GC-3’ 

ODC (57)_ fwd 5’-CAT TGC AGA GCC TGG GAG ATA-3’ 

ODC (57)_ rev 5’-TCC ACT TTG CTC ATT CAC CAT AAC-3’ 

ODC (62)_ fwd 5’-GCC ATT GTG AAG ACT CTC TCC ATT C-3’ 

ODC (62)_ rev 5’-TTC GGG TGA TTC CTT GCC AC-3’ 

Tab 3.5 Primers used in quantitative real-time PCR. 

 

3.8 Constructs for RNA injection 
Construct Vector Reference 

E-cadherin full length HA-pCS2+ Sang-Wook Cha, UK 

E-cadherin full length Mu HA-pCS2+ this work 

E-cadherin DN HA-pCS2+ this work 

E-cadherin ΔC HA-pCS2+ this work 

GAP43-GFP pCS2+ T. Bouwmeester, Heidelberg 

GAP43-mCherry pCS2+ B. Kraft, Karlsruhe 

Histon2B-mCherry pCS2+ R. Mayor, UK 

Histon2B-GFP pCS2+ R. Mayor, UK 

N-cadherin full pcDNA3.1 Nazan Kücükieylan, Ulm 

XB-cadherin full length pSP64T Nazan Kücükieylan, Ulm 

Xcad11 mutated pcDNA3.1 A. Köhler, Karlsruhe 

Tab 3.6 Constructs for generating mRNA used in embryonic injections.  

 

3.9 Constructs for preparation of antisense RNA in situ probes 
 Linearized Transcribed Reference 

c-Myc ApaI SP6 R. David, Ulm 

XAP-2 HindIII T7 A. Borchers, Göttingen 

Xeya-1 BamHI T7 R. David, Ulm 
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XTwist XbaI T7 M. Sargen, UK 

Tab 3.7 Constructs for synthesizing in situ hybridization probes 

 

3.10 Solutions 
All solutions are either autoclaved or used from sterile stock solutions and double-distilled 

water or DEPC-H2O. Sterile filtration (Ø 0,2 μm) is used for chemicals that cannot be 

autoclaved (e.g. Methanol, Triton X-100 or Tween 20). 

 

• Alcian Blue Solution: 20 mg Alcian Blue in 15 ml Acetic Acid and 35 ml 100% (v/v) 

Ethanol 

• Ampicillin Stock solution (1000x): Ampicillin 100 mg per ml of double-distilled water. 

Store at -20°C. Working concentration 1:1000 in LB Medium 

• APBS: 2.7 mM KCl, 0.15 mM KH2PO4, 103 mM NaCl, 0.7 mM Na2PO4, pH 7.5 

• APS: 10% (w/v) Ammonium persulfate in H2O 

• Blocking Buffer for Immunostaining: 1% (w/v) BSA in 1x PBS 

• Blocking Buffer for Western blot: 5% Milk powder in TBST 

• Cysteine Solution: 2% (w/v) L-Cysteine hydrochloride in 0.1x MBSH, adjust pH 8.2 

with 10 M NaOH 

• Danilchik’s Buffer: 53 mM NaCl, 15 mM NaHCO3, 13.5 mM Na2CO3, 4.5 mM K-

Gluconsaure, 5 mM Bicin, 1 mM CaCl2, 1 mM MgSO4, adjust pH 8.3 with 1 M HEPES 

buffer and sterile filtration (Note: Add CaCl2 and MgSO4 after adjusting pH and no 

autoclaving) 

• 3% (w/v) BSA in Danilchik’s Buffer 

• DAPI Solution: Stock solution 1 mg/ml in DMF, working concentration 1:1000 in 

blocking solution 

• DEPC-H2O: Add 1 ml of Diethylpyrocarbonate in water, keep it shaking overnight and 

autoclave 

• Electrophoresis running buffer: 25 mM Tris, 192 mM Glycin, 0,1% (w/v) SDS 

• Freezing medium (cell culture): 40% medium + 40% heat inactivated FCS + 20% 

DMSO 

• G418 (cell culture): 1 g in 10 ml DMEM High Glucose, sterile filtered and aliquot 

• HBS: 10 mM HEPES, 150 mM NaCl, pH 7.5 

• Heat inactivated FCS: heat FCS 30 minutes at 56°C 
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• In situ Alkaline Phosphatase (AP Buffer): 0.1 mM Tris-HCl pH 9.5, 0.05 mM MgCl2, 

0.1 mM NaCl, 0.1% (v/v) Tween 20 in DEPC-H2O 

• In situ blocking solution: 2% BMB in 1× MAB 

• In situ bleaching solution: 0.5 x SSC, 5% (v/v) Formamide and 20% (v/v) Hydrogen 

Peroxide in 100% ethanol 

• In situ stain solution: 1.5 µl NBT, 1.5 µl BCIP per ml AP Buffer 

• In situ hybridization buffer: 50% (v/v) Formamide, 5x SSC, 2% Torula RNA (v/v), 

0.1% (v/v) Heparin solution, 1x Denhardt’s solution, 1 mg/ml Ribonucleic acid, 0.1% 

(v/v) Tween 20, 0.1% (w/v) CHAPS, 10 mM EDTA 

• in situ SSC (20%): 300 mM Na-Citrat pH 7.0, 300 mM NaCl  

• in situ wash solution1: 50% Formamid, 2x SSC, 0.1% Tween 20  

• in situ wash solution 2: 25% Formamid, 2x SSC, 0.1% Tween 20  

• in situ wash solution 3: 12.5% Formamid, 2x SSC, 0.1% Tween 20  

• in situ wash solution 4: 2x SSC, 0.1% Tween 20  

• in situ wash solution 5: 0.2x SSC, 0.1% Tween 20 

• in situ MAB (5×): 0.5 M Maleic acid, 0.75 M NaCl, pH 7.5 

• LB-AMP-Agar Plates: 1.5% (w/v) Select agar in LB medium and autoclave; after 

cooling to 55°C add 1 ml ampicillin stock solution per liter and pour into petri dish (Ø 9.4 

cm), store cooled plates at 4°C 

• LB-AMP-Medium: 1 ml Ampicillin solution per liter LB-Medium (1:1000) 

• LB (Lysogeny broth) Medium: 10 g Tryptone, 5 g Yeast extract, 5 g NaCl, 1 liter 

water, adjust pH 7.5 with NaOH 

• Lysis Buffer: 0.2 M NaOH, 1% SDS 

• MBSH (10x): 880 mM NaCl, 24 mM NaHCO3, 100 mM KCl, 4 mM CaCl2, 3.3 mM 

Ca(NO3)2,100 mM HEPES, 8 mM MgSO4, pH 7.4 

• MEM (1x): 100 mM MOPS pH 7.4, 2 mM EGTA, 1 mM MgSO4 diluted in DEPC-H2O 

• MEMFA: 3.7% (v/v) formaldehyde in 1×MEM (Modified Eagle’s Medium) 

• Mowiol: 6.0 g Glycerin, 2.4 g Mowiol 4-88, 6.0 ml ddH2O, 12.0 ml 0.2 M Tris-HCl (pH 

8.5), 25 mg DABCO per ml solution  

• Neutralization Buffer: 2.8 M Potassium acetate, adjust pH 5.1 

• Nile-Blue-Solution: 0.5 M Na2HPO4, 0.5 M NaH2PO4, 0.1 g Nile Blue (Chloride) in 1 l 

H2O 

• Orange G-Ladepuffer (5x): 4 g Saccharose, 0.025 g Orange G in 10 ml H2O  
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• 4% Paraformaldehyde in 1x PBS (100 ml): Mix 4 g Paraformaldehyde with 80 ml pre-

warmed (56°C) water. Add 1 M NaOH with constant stirring until solution becomes 

clear. Add 10 ml 10 x PBS and adjust pH 7.4 with conc. HCl at room temperature 

• PBS (10x): 1.37 M NaCl, 27 mM KCl, 15 mM KH2PO4, 65 mM Na2PO4, pH 7.5  

• PBST: 1x PBS, 0.1% (v/v) Tween 20 

• 10x Phosphatase Inhibitor Solution: Dissolve one PhosSTOP tablet in 1 ml millipore 

water 

• 10x Protease Inhibitor Solution: Dissolve one complete mini EDTA-free tablet in 1 ml 

of millipore water 

• PTW: 20x PBS, 0.1% (v/v) Tween 20 

• Resuspension Buffer: 50 mM Tris-HCL (pH 8.0), 10 mM EDTA (pH 8.0), 100 µg/ml 

RNase A 

• SDS load buffer (5x): 0.5 M Tris-HCl (pH 6.8), 10 % (w/v) SDS, 20 % (v/v) Glycerin, 5 

% (v/v) β-Mercaptopropandiol, 0.1 % (w/v) Bromophenol blue 

• SDS load buffer (10x): 1% (w/v) SDS, 250 mM Tris, 1.92 M Glycin  

• SOB-Medium: 20% (w/v) Bacto tryptone, 0.5% (w/v) yeast extract, 0.05% (w/v) NaCl, 

0.25% (w/v) MgCl2, pH7.0, sterilize by autoclaving 

• SOC-Medium: 20 mM MgCl2, 20 mM MgSO4, 20 mM Glucose in SOB-Medium  

• Start Buffer (FPLC): 10 mM HEPES, 150 mM NaCl, 10 mM Imidazol, pH 7.5 

• 20x SSC: 3 M NaCl, 300 mM Na-Citrate pH 7.0 

• TAE (50x): 2 M Tris-Base, 1 M Acetic acid, 0.1 M EDTA, pH 8.3  

• TBS (10x): 25 mM Tris-HCl pH 7.4, 137 mM NaCl, 5 mM KCl, 0.7 mM CaCl2, 0.5 mM 

MgCl2  

• TBST: 1x TBS, 0.1% Tween 20 

• Transfer Buffer: 25 mM Tris, 192 mM Glycin, 10% (v/v) Methanol 

 

3.11 Devices 
• Binocular microscope  

o Leica L2 (Leica Microsystem, Bensheim) 

o Leica KL 200 LED (Leica Microsystem, Bensheim) 

o Leica S6E (Leica Microsystem, Bensheim) 

• Centrifuges  
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o Biofuge fresco (Kendro, Langenselbold) 

o Eppendorf Table centrifuge (Eppendorf AG, Hamburg) 

o Heraeus® Fresco (Thermo Fisher Scientific Inc., 

USA) 

o Hettich Universal 32 R with swing rotor (Andreas Hettich GmbH & Co. 

KG, Tuttlingen) 

o Multifuge® 3 S-R (Kendro, Langenselbold) 

• Electroporator, Micropulser (Bio-Rad, Munich) 

• Flatbed-Gel electrophoresis chambers (Amersham, Freiburg) 

• Fluorescence binocular microscope  

o Leica MZ10 (Leica Microsystem, Bensheim) 

o Leica HZ FLIII (Leica Microsystem, Bensheim) 

o Software Openlab 5.5.0 (Openlab, Heidelberg) 

o Digital camera Retiga Exi (QImaging, Burnaby, Canada) 

o Cold light source KL 1500 LCD (Leica Microsystem, Bensheim) 

• Fluorescence microscope  

o Spinning disc (Axio Observer.Z1) (C. Zeiss AG, Germany) 

o Laser (405 nm, 488 nm and 568 nm) (C. Zeiss AG, Germany) 

o Objectives (5x, 10x, 25x, 40x, 63x) (C. Zeiss AG, Germany) 

o Camera AxioCam MRm (C. Zeiss AG, Germany) 

o Software AxioVision 4.8.2.0 (C. Zeiss AG, Germany) 

• Fluorescence microscope DMIRE2 (Leica microsystem, Bensheim) 

• Gel Documentation Systems  

o Gel Max (Intas, Göttingen) 

o Diana II (Raytest, Straubenhardt) 

• iCycler (PCR) (Bio-Rad Laboratories Inc.,USA) 

• Incubator APT LineSerieBD/ED/FD (Binder, Tuttlingen) 

• Magnetic Stirrer MR 2000 (Heidolph, Schwabach) 

• Microflow 2- Sterile cabinet (NUNC, Thermo Fisher 

Scientific, USA) 

• Micropipette Puller Model P-97 (Sautter Instruments, USA) 



  
3 Materials 

 

 
 23 
 

• Microinjection System (H. Saur Laborbedarf, Reutlingen) 

o Cold light source, Fiber Optic Light 

Source EK-1 

(Euromex) 

 

o Diaphragm pump MZ2 (Vacuubrand) 

o Pneumatic Picopump PV 820  

o Sterio microscope MIC 1630 ZS (Euromex) 

• Microvolume Spectrometer COLIBRI (Titertek Berthold, Pforzheim) 

• Orbital Shaker (Thermo Fisher Scientific, USA) 

• PAGE apparatus, Mini Protean II and Blot 

apparatus, Mini Trans Blot 

(Bio-Rad, Munich) 

 

• pH-Meter (WTW, Weilheim) 

• Photometer (Eppendorf, Hamburg) 

• Thermomixer compact (Eppendorf, Hamburg) 

• UV-Lamp (Bioblock Scientific, Illkirch, FR) 

• Vortex machine (Heidolph, Schwabach) 

• Water bath WB12 (Memmert, Schwabach) 
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4 Methods 
 

4.1 Developmental biology methods  
 

4.1.1 Keeping of Xenopus laevis 
 

Separated by gender, 10-13 adult Xenopus laevis are kept in 50 liter aquarium tanks with water 

temperature between 18-20 degrees. The water in the aquarium system is sterilized by a 

bacterial filter and UV-radiation. A day-night rhythm is achieved by automated illumination, giving 

14 hours daylight each day. The diet consists of compound feeds and additionally chopped beef 

heart once a week. After laying eggs, female frogs are kept in 3% (w/v) NaCl overnight to 

prevent infection and allow their skin to regenerate. On the next day they will be transferred back 

to the aquarium tanks. 

 

4.1.2 Induction of egg deposition 
 

Female frogs need to be pre-injected with Human Chronic Gonadotropin (HCG) hormone to 

induce egg deposition. HCG induces oocyte maturation, which is obtained from urine of pregnant 

women and provided as lyophilized powder. For 300 kilo units, 100 ml of 0.5% NaCl is added for 

reconstitution and stored at -20°C. An injection with 600 units of HCG subcutaneously induces 

egg deposition after 14-16 hours. If eggs are required after 20-22 hours, 100 units of the HCG is 

injected first, and another 600 units of HCG is injected 6-8 hours before desired egg deposition. 

Xenopus females are squeezed subsequently every hour and for maximum four batches. The 

skin of the frogs should remain moist permanently to prevent skin irritation. Eggs are collected in 

a petri dish for fertilization. After giving eggs, the females are kept in salted water (30 g sea salt 

in 10 l water) overnight, allowing better regeneration of their skins and preventing possible 

infections. Frogs injected with hormone will rest at least three months until next hormone 

injection.  
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4.1.3 Testis extraction and in vitro fertilization 
 

To obtain testis, the male frog is first anesthetized by 0.25% (w/v) amino benzoic acid ethyl ester 

solution for at least 30 minutes. The cervical spine will be cut followed by the separation of the 

connecting nerves. First, a small cut is made at the bottom left of abdominal region, which cut 

through the skin and abdominal wall. Along the small cut, a midline incision through the 

abdominal wall is performed to open the abdominal cavity and expose the organs. The testis are 

pale yellow and located beneath the kidney. The dissected testis are stored in 1x MBSH buffer at 

4°C for approximately five days.  

To fertilize the eggs, a small piece of testis is macerated in one ml of 1x MBSH buffer. 100 µl of 

the testis solution and 900 µl of sterile water (1:10 dilution) are added on to eggs collected in a 

petri dish for about one hour. The success of fertilization can be determined by the upward 

turning of the pigmented animal pole. 

 

4.1.4 Jelly removal and Nile-Blue staining of albino embryos 
 

Fertilized embryos are incubated in 2% (w/v) Cysteine solution (pH 8.2) to remove the jelly and 

then washed three times with 0.1x MBSH buffer once they are separable from each other. 

The albino embryos can be stained for one hour with Nile-Blue solution after the treatment with 

cysteine, so that the blastomeres are more distinguishable. Stained embryos are washed one 

time again and kept in 0.1x MBSH. 

 

4.1.5 Microinjection 
 

DNA, RNA and antisense morpholino oligonucleotides are transferred within the embryos 

through microinjection using a very fine glass capillary. The glass capillary is prepared by a 

micropipette puller. The very thin tip of the capillary is then used as a needle for injection. 

Pumped by nitrogen gas or air, a defined volume of injection can be applied. Before each 

injection, the needle is calibrated on a standard calibration grid. Size of the droplet is adjusted 

until it fits right inside a square on the calibration grid, which corresponds to a droplet with a 
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diameter of 205 µm, equivalent to an injection volume of 4 nl. Fertilized embryos are then 

transferred on an agarose dish having wells with similar size of the embryos.  

Depending on the experiments, embryos are injected at two- or sixteen-cell stage. Along with the 

desired constructs, a fluorescence tracer is normally added to the injection solution enabling a 

verification of the injected area. Commonly used fluorescence tracers are mRNA of membrane 

bound GFP (mbGFP) or membrane bound cherry (mbcherry) and Histone2B GFP (H2B GFP) or 

Histone2B cherry (H2B cherry), which marks either the cell membrane or nucleus. 500 pg of 

RNA is generally applied to generate strong fluorescence signal. Dextrans coupled with 

fluorescein-isothiocyanate (FITC) are also used as tracers for injected cells. Dextrans, 

hydrophilic polysaccharides synthesized by Leuconostoc bacteria, have the advantages of good 

water solubility, low toxicity and high stability. Dextran Fluorescein (Fluoro-emerald) used in this 

work is injected at a concentration of 2 mg/ml. 

The left-right body axis of X. laevis is determined by the first cell division, an injection in one 

blastomere at stage 2 (two-cell stage) leads to manipulation of one side of the embryo, where 

the other side of the embryo serves as a control side of wild type. For experiments that require 

merely cell-labelling with fluorescence tracer, embryos are injected at stages 2, for instance 

labelling of neural crest cells to perform immunostaining. However, most experiments in this 

work, where Morpholino oligonucleotids or mRNAs are introduced into the embryo, the animal 

dorsal blastomere D1.2 at stage 5 (sixteen-cell) stage is injected to target specifically the cranial 

neural crest cells ((Nieuwkoop and Faber, 1967) (Fig 4.1).  

 

  
Fig 4.1 Microinjection of X. laevis embryos. (A) Scheme of a stage 5 (16-cell stage) X. laevis embryo 

according to Nieuwkoop and Faber, 1967. The animal dorsal blastomere D1.2 is injected. (B) Dorsal view of a 

mbGFP injected embryo at stage 17. Embryos that show strong fluorescence signal on one side of the embryo 

and particularly in cranial neural crest region are sorted at stage 17 for explantation. (C) Lateral view of a 

mbGFP injected embryo at stage 26. Embryo is left side injected. Embryos for in situ hybridization are sorted 

and fixed at this stage. * Indicates injected site. Scale bar: 100 µm 
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4.1.6 Embryo caring and fixation 
 

Injected embryos are kept at a temperature between 14°C - 21°C in 0.1% (v/v) MBSH as culture 

medium. Higher temperature speed up the development of embryos with higher risk of low 

survival rate. Fresh medium is changed twice everyday and dead embryos are removed. The 

developmental stages are determined according to Nieuwkoop and Faber (1967). 

Once the embryos have reached the desired stage, they are fixed applying different methods. 

For embryos that will proceed to in situ hybridization or cartilage staining, the culture medium is 

removed and embryos are incubated in MEMFA solution for one hour at room temperature. 

Embryos will then be washed and stored in 100% (v/v) Ethanol at -20°C. For protein and RNA 

extraction, embryos are collected and lysed directly, or they can be shock frozen in fluid nitrogen 

after removing medium and stored at -80°C. Another possibility to store embryo tissue is by 

directly submerging them into RNAlater. 

 

4.1.7 Gene suppression by antisense morpholino knockdown 
 

To study the function of a specific gene, the method of gene knockout is widely used. Due to the 

fact that Xenopus laevis has a tetraploid genome therefore the complete knockout of a specific 

gene is not possible. However, a downregulation of a specific target gene can be achieved by 

appling the antisense technology . 

In this work, antisense morpholino oligonucleotides (MO) are used to downregulate specific 

target genes. In DNA molecules, the bases are bound to a desoxyribose ring. MOs are 

chemically modified nucleic acid analogs, where the bases are bound to a heterocyclic 

morpholino ring instead of a desoxyribose or ribose ring. In addition they are linked via 

phosphorodiamidate groups, which unlike phosphodiester in DNA, are not charged (Fig 4.2). For 

characterizing of a particular target gene in X. laevis, the embryos are injected with a specific 

MO that binds complementary to the endogenous mRNA. The MOs are normally designed to 

bind the 5'UTR or to the start code of the target mRNA. The binding of the MO forms a double 

strand with the mRNA, which does not allow ribosome to bind anymore. Therefore the translation 

of this mRNA is blocked. The concentration of the MO is diluted with each cell division, but the 

MO molecules do not degrade since they are not recognizable by endogenous nuclease. But 



  
4 Methods 

 

 
 28 
 

even with the constant existence of the MO, not every endogenous mRNA can be bound; it is 

therefore called a knockdown instead of a knockout. 

 

 
Fig 4.2 Difference in chemical structure of DNA and morpholino. (A) DNA nucleotide is consisted of a 

heterocytic base and a deoxyribose ring, linked through negatively charged phosphates. (B) The base of a 

morpholino nucleotide is connected to a morpholine ring through a phosphorodiamidate group (red circle). 

Modified from (Corey and Abrams, 2001). 

 

The chemically modified structure of MOs has many advantages: the binding of MO to target 

RNA is very efficient and shows little tendency in additional non-specific base pairing. Rescue 

experiments with mRNA can often (partially) restore the wild type phenotype to the embryo and 

verify the specificity of a MO. Since MOs are linked through uncharged phosphorodiamidate 

backbone, they are not recognized by cellular proteins like nucleases, therefore display a high 

degree of stability in the embryo.  

 

4.1.8  Whole mount in situ hybridization (ISH)   
 

Whole mount in situ hybridization is a technique used to localize the expression of particular 

mRNAs in a whole embryo, which is based on the hybridization of a labelled antisense RNA 

probe with an endogenous target sequence of the mRNA. This method allows analysis of the 

temporal and spatial pattern of transcripts from a certain gene in vivo. The probe consists of a 

complementary sequence to the target gene, which is generated via in vitro transcription of a 

linearized plasmid DNA. Probes can be labelled with digoxigenin (DIG) or fluorescein that is 

covalently attached with the C5 of the uridinbase. Labelled probes are detected by an 

antibody/enzyme-conjugate, for example anti-DIG-AP. Alkaline phosphatase (AP) is able to 
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convert the substrate nitro blue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl-phosphate 

(BICP) to a purple precipitate. BICP alone as substrate instead create a blue precipitate which 

can be combined in double in situ hybridization when expression of two genes need to be 

showed in parallel. The ISH protocol used in this work is slightly modified from (Harland, 1991).  

Embryos are fixed in desired stages and transferred in 5 ml glass tubes. To obtain proper 

staining, pigmented embryos are bleached in the bleaching solution (containing hydrogen 

peroxide) for 30-60 minutes to remove the pigment in the epidermis. After a 30 minutes fixation 

in MEMFA the embryos are washed one time with 100% ethanol and rehydrated with 75%, 50% 

and 25% (v/v) ethanol incubation for 5 minutes each. Then, embryos are washed two times with 

PTW, which also permeabilize the embryos. Four hours pre-hybridization at 65°C with 

hybridization buffer, which contains ribonuclease acid, avoids unspecific binding of the probe. 

The probe is incubated for five minutes at 85°C to remove possible secondary structures. 

Hybridization with the probe at 65°C takes place overnight. The probe is recycled on the next 

day and stored until next use at -20°C. The remaining probe is washed off during successive 

incubation with washing solution 1, 2, 3, 4 for 10 minutes each, and in the end with washing 

solution 5 for 30 minutes at 65°C. The washing solutions contain a gradient of formamide, 20x 

SSC and 0.1% Tween. The embryos are washed twice with PTW and then with 1x MAB, with 

five minutes interval between each wash. In order to block unspecific binding sites, embryos are 

incubated in 1x MAB-2%BMB solution for two hours at RT. The embryos are incubated with anti-

Digoxgenin-AP (1:2000) in 1x MAB-2% BMB blocking solution for four hours at RT. For washing, 

embryos are then transferred into 50 ml falcons containing 1x MAB solution and put overnight on 

a shaker at 4°C. On the next day the embryos are rinsed once with 1x MAB solution before two 

times five-minutes incubation with alkaline phosphatase buffer.  

The staining solution is prepared by adding 1.5 µl NBT and 1.5 µl BCIP to every 1 ml of AP 

buffer. The AP that has been coupled to the antibody converts the substrate NBT/BCIP to a blue, 

hardly soluble precipitate (formazan). Staining can be carried out at RT or at 4°C, the latter takes 

longer time but gives less background. The staining is regularly checked and fresh staining 

solution should be changed if solution gets darker. Once the staining is reached to the desired 

level, the reaction is stopped by brief washing with water. Distaining with 100% methanol 

removes unspecific colour binding resulting in a better contrast of the specific staining. After a 

decreasing methanol series the embryos are fixed in MEMFA and stored for long time period in 

1x MEM at 4°C. 
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4.1.9 Explantation of cranial neural crest (CNC) cells 
 

For culturing and observing cranial neural crest cells in vitro under the microscope, glass 

chamber slides are used. The slides are coated with fibronectin (50 µg/ml) for one hour at RT. 

Afterwards the surface is washed three times with Danilchick’s buffer and the same solution is 

used to fill the chamber. 

Embryos at stage 17 are sorted under the fluorescence binocular according to the injected tracer 

at desired stage. The vitellin-membrane of the embryo is carefully removed with tweezers. For 

cell morphology study and immunostaining on CNC cells, the neural crest is explanted at stage 

17. Embryos are transferred to a 2% agarose-coated petri dish filled with Danilchick's buffer. A 

grave similar to the size of the embryos is made so that the embryos are placed stably during 

explanting. An eyebrow knife and an eyelash knife are used to dissect embryos. Eyebrows or 

eyelashes are inserted into the needle of a syringe and fixed with nail polish.  

During explantation, one hand with the eyebrow knife is used to hold the embryo in position, 

while the other hand with the eyelash knife can make cuts. To remove the epidermis on the 

injected site, one cut is first made parallel to the neural fold along neural plate border. The 

second cut is made with an angle of 45° to the first cut and the epidermis is carefully lifted. The 

cranial neural crest cells are gray shimmering cells that can be found directly beneath the 

epidermis tissue. These cells are carefully scraped without the underlying mesoderm and cut into 

smaller pieces if needed. Later, cells are transferred using a 10 µl pipette tip which has been 

blocked with 3% (w/v) BSA to prevent cells from sticking to it. After placing the neural crest cells 

onto fibronectin-coated chamber slides, the cells are allowed to adhere for one to two hours 

before microscopy is performed.  

Neural crest explants for protein and RNA extraction are collected additionally at stage 20 and 

stage 23. At stage 20 the neural crest is becoming conspicuous as three segments (mandibular, 

hyoid and branchial crest segment) and starting to migrate rostrally under the optic versicle. 

These three segments are carefully dissected. At stage 23 the neural crest segments have 

migrated laterally and have become more distinguishable from the underlying tissue. The 

branchial crest segment is dividing into two portions (the anterior and posterior portion) and the 

epithelial placodes are located between the hyoid and branchial crest segments. To dissect 

neural crest at this stage, the whole segments together with epithelial placoderms are first 

separated from the rest of the embryo, and then the segments are carefully scratched from the 

attached epithelia placodes.  
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4.1.10 Immunostaining of neural crest cells   
 

Two to three hours after plating the dissected neural crest cells on a fibronectin coated dish the 

cell cluster is well spread and the cells at edge of the explant are mostly monolayer. The cells 

can be then fixed with 4% paraformaldehyde in 1x PBS for 10-15 minutes. By one briefly 

incubation with non-ionic surfactant 0.5% Triton-X 100 in 1x PBS (0.5% PBST) the cells are 

permeabilized. After washing twice with 0.1% Triton-X 100 in 1x PBS (0.1% PBST), cells are 

blocked with 1% BSA in 1x PBS solution for 30 minutes. After washing once with 1x PBS the 

neural crest cells are incubated with the primary antibody overnight at 4°C (dilutions of used 

antibodies in this work are listed in Table 4.1).  

Name Host Dilution 

5D3 (E-cadherin) Mouse Undiluted cell culture supernatant 

10H3 (E-cadherin) Mouse Undiluted cell culture supernatant 

MNCD2 (N-cadherin) Mouse Undiluted cell culture supernatant 

6D5 (XB-cadherin) Mouse Undiluted cell culture supernatant 

Cy3 (anti-Mouse) Goat 1:400 

Table 4.1 Primary and secondary antibodies used for immunostaining for CNC explants along with 

their dilutions.  

 

On the next day the primary antibody is removed and cells are washed with 0.1% PBST for three 

times. The neural crest cells are again blocked with 1% BSA in 1x PBS for 30 minutes. The 

secondary antibody is normally coupled with fluorescent dyes, which needs to be kept in dark to 

prevent bleaching of the fluorophore. Incubation with the secondary antibody is carried out for 

one hour at RT. The unbound antibody is removed by three times washing with PBST. Nuclei of 

the cells can be stained with DAPI (4',6-diamidino-2-phenylindole) for three minutes at RT. DAPI 

aggregates in the minor groove of DNA to form a fluorescent complex with dsDNA. Finally, the 

neural crest cells are washed thrice with 1x PBS and covered with 1x PBS. By storage at 4°C, 

the cells can be preserved for a period of time as long as they are constantly covered with PBS. 
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4.1.11 Transplantation of cranial neural crest cells 
 

Transplantation is a method to analyze the migration behaviour of neural crest cells in vivo. 

Donor (or acceptor) embryos are injected with constructs along with fluorescence tracer and 

cultured until stage 17. Transplantation is carried out in 1% MBSH solution or Danichick's buffer. 

Neural crest cells from donor embryo is dissected (same like explantation, see 4.1.9) and laid to 

side, where at the same region in an acceptor embryo (normally non-injected wild type embryo) 

the neural crest is removed and discarded. However, the epidermis on the acceptor embryo 

needs to be cut in a way, so it can be flipped open to expose the underlying neural crest but still 

attached to the rest of the epidermis. This is essential, so the incision can be closed properly 

after transplantation and embryos can heal better. After removing the neural crest tissue from the 

acceptor embryo, the donor neural crest is immediately placed in the acceptor embryo and the 

epidermis is being covered on the newly placed neural crest (Fig 4.3 A).  

 

 
Fig 4.3 Transplantation of the embryo. (A) Scheme of a Donor- and Acceptor- embryo at stage 17. The 

neural crest of an H2B-GFP-injected embryo is transplanted into a wild type embryo. (B) Lateral view of a 

transplanted embryo at stage 27. 

 

Transplanted embryos are left in 1% MBSH to heal for one hour until the incision in the 

epidermis is visibly closed. Embryos are then carefully transferred to 0.1% MBSH and cultured at 

14°C or 16°C. On the next day when the transplanted embryos reach stage 28 the migration of 

the neural crest cells can be analyzed under the fluorescence binocular (Fig 4.3 B). 
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4.1.12 Frozen cryosection  
 

The embryos are fixed in MEMFA for one hour at RT and stored in 100% ethanol. To prepare the 

embryos for embedding, they are rehydrated with successive incubation in 75%, 50% and 25% 

ethanol and washed with a solution of 0.1 M Tris-HCl (pH 7.4) and 0.1 M NaCl for 5 minutes 

each. Incubation with a medium of 15% (w/v) cold-water-fish gelatine and 15% (w/v) saccharose 

(solved in ddH2O) at RT takes overnight. An the next day, the embryos are transferred to another 

medium with 25% (w/v) cold-water-fish gelatine and 15% (w/v) saccharose (solved in ddH2O) 

and incubated at RT again overnight. After these equilibration steps the embryos are ready to be 

embedded and can be stored at 4°C. 

Embryos are embedded in a medium with 20% (w/v) cold-water-fish gelatine and 15% (w/v) 

saccharose (solved in ddH2O). The medium is poured in an aluminium form, which is pre-freezed 

by placing it on dry ice. After about five to ten minutes, embryos can be putted upon the frozen 

medium and more medium is added to cover embryos. Two to three embryos can be embedded 

in the same medium block inside the form. In order to place the embryos extended in parallel 

orientation, a toothpick can be used to adjust the position of the embryos, before the medium 

start to become hard. The block is left on dry ice about one hour for hardening. The block can be 

removed from the aluminium form and glued on to a holder. The embryos are normally sectioned 

with a thickness of 8-12 µm with a microtome. The sections are collected using a toothpick. The 

slides that used for collecting cyrosections are specially coated and positively charged on one 

side of the slide, which allows the sections to smoothly attach and adhere. The slides are slightly 

warmed and placed directly next to the sections. Sections are attached onto the pre-warmed 

glass automatically. Cryosections can be kept at -80°C. 

 

4.1.13 Immunostaining on Cryosections 
 

To perform immunostaining on cryosections, the section-slides are first dried at room 

temperature for one hour. After washing once with aceton, the sections are dried for 10 minutes 

and then rehydrated in APBS solution. To prevent unspecific binding, the sections are blocked 

for one hour at 4°C in 10% (w/v) FCS in APBS. The primary antibody (Tab 4.2) is incubated on 

the sections overnight at 4°C. On the next day, sections are washed five times with APBS and 

incubated with the secondary antibody for two hours at RT. After washing three times with 
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APBS, the sections can be incubated two minutes with DAPI solution for nuclei staining. Finally, 

the slides are covered with Mowiol and stored in the dark at RT. 

 

Name Host Dilution 
5D3 (E-cadherin) Mouse Undiluted cell culture supernatant 
Cy3 (anti-Mouse) Goat 1:400 
Table 4.2 Primary and secondary antibody used for immunostaining of cryosections along with their 

dilutions. 

 

4.1.14 Cartilage staining 
 

To analyze neural crest derivatives in later development stage, one can stain the cranial 

cartilage of fixed embryos, permitting the examination of cartilage formation. Injected embryos 

are cultured in 0.1% MBSH till stage 45 and sedated with MS2222 before fixed in MEMFA for 

two hours. Fixed embryos are then dehydrated and stored in 100% (v/v) Ethanol. 

Cartilage is a connective tissue that is rich in proteoglycans. Alcian blue is a group of polyvalent 

basic dyes that stains acid mucosubstances and acetic mucins located on the cartilage. By 

forming salt linkages with the acid groups of acid mucopolysaccharides, a dark blue staining can 

be achieved when the embryos are incubated in alcian blue solution for three nights. Embryos 

are then washed three times for 15 minutes in 95% (v/v) ethanol and rehydrated stepwise in 

decendant ethanol (100%, 75%, 50%, 25% (v/v) ethanal in 2% potassium hydroxide (KOH)). In 

order to increase the stability of the cartilage structure, embryos are incubated in ascendant 

glycerin solution (one-hour incubation in 20% (v/v), 40% (v/v), 60% (v/v) glycerin in 2% (v/v) 

KOH) and transferred overnight in 80% (v/v) glycerin in 2% (v/v) KOH. In the same solution are 

the embryos stored for long period.  

To better identify the structure of the cartilage, epidermis, eyes and the rest of the body are 

carefully removed using tweezers. The cartilage can be photographed under a binocular and 

stored in 80% (v/v) glycerin in 2% (v/v) KOH. 

 

4.2 Molecular biological methods 
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4.2.1 Preparation of chemo-competent E. coli bacteria 
 

The ability for bacteria cells to take up extracellular DNA (competence for transformation) is 

induced by chemical methods using divalent cations (for example magnesium), which neutralize 

the unfavourable interaction between both negatives charged DNA molecules and components 

of the bacterial cell membrane. The permeability of membrane is thereby altered. Bacteria from 

the E.coli strain JM109 are spread on an antibiotic-free LB agar plate and incubated overnight at 

37°C. On next day, a single colony is picked and seeded into 5 ml LB medium for overnight 

culture at 37°C with 225 rpm. 0.5 ml of the overnight culture is diluted in 50 ml of LB medium 

containing 20 mM MgSO4. The bacteria cells are incubated in a 500 ml Erlenmeyer flask until the 

culture reaches an OD600 of 0.4-0.6. Afterwards the bacterial culture is cooled on ice for five 

minutes and centrifuged at 4°C with 4500 × g. Cell pellets are resuspended in 5 ml of ice-cold 

TFB2 buffer and incubated on ice for 30 minutes. Each 100 µl of the bacterial suspension are 

aliquoted and stored at -80°C. 

 

4.2.2 Transformation of chemo-competent E. coli bacteria   
 

Chemically induced competence followed by transformation is a commonly used technique to 

introduce plasmids or other foreign DNA materials into Escherichia coli. For transformation 1 µg 

plasmid of interest is gently mixed with 100 µl of chemo-competent JM109 bacteria cells and 

incubated on ice for 30 minutes. The reaction mixture is then exposed to a 45 seconds heat-

shock at 42°C. After another 5-minutes incubation on ice, 900 µl of SOC medium is added into 

the solution. The mixture is then shaken at 37°C with 225 rpm for one hour. To reduce the 

volume for plating, the mixture of cells and plasmid is centrifuged for five minutes at 2000 rpm 

and 800 µl of supernatant is discarded. The cell pellet is resuspended in the remaining SOC 

medium and plated on a LB/ampicillin plate. Finally, the plates are incubated overnight at 37°C.  

 

4.2.3 Isolation of bacterial plasmid DNA in the small and medium scale   
 

For isolation small scale DNA the "High Pure Plasmid Isolation Kit" from Roche and for medium 

scale the "NucleoBond Xtra Midi Plasmid DNA purification" from Machery-Nagel is used. The 

procedure is carried out according to the kit instructions.   
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On a small scale, a transformed colony of E. coli bacteria is picked and cultured in a 3 ml- 

LB/ampicilin medium overnight at 37°C with 225 rpm. On next day the bacteria culture is pelleted 

for 5 min at 13000 rpm. Pellets are resuspended in 250 µl suspension buffer containing RNase. 

The resuspended pellets are lysed by adding 250 µl lysis buffer containing sodium 

dodecylsulfate, which causes the rupture of bacterial cells. After gently inventing the tubes three 

to five times, 350 µl chilled binding buffer is added to the lysed solution. The solution is gently 

mixed and incubated on ice for 5 minutes. The high salt content in binding buffer leads to 

precipitation of bacterial proteins, chromosomal DNA and cell debris. However, smaller and 

circular plasmid DNA molecules stay in solution. A 10-minutes centrifugation at 13000 rpm 

separates the precipitate from the supernatant containing plasmid DNA. The supernatant is then 

transferred on to a filter column, by which the plasmid DNA is adsorbed on the membrane. The 

membrane is subsequently washed with 500 µl and 700 µl washing buffer containing 95% (v/v) 

ethanol. This washing step eliminates nuclease activity and removes salts, which would 

otherwise suppress the elution. Finally, the plasmid DNA is eluted with 50 µl elution buffer. 

On medium scale, a transformed colony of E. coli bacteria is added in 100 ml of LB-ampicillin 

medium and shaken at 37°C with 225 rpm overnight. Resuspension, lysis and neutralization are 

done in the same manner like small-scale isolation, but with larger volumes. To separate the 

supernatant, the precipitated cell-mix is filtered firstly through a clearing column and 

subsequently binding column, on which DNA is absorbed. The column is washed with endotoxin 

removal buffer and washing buffer containing 95% (v/v) ethanol. Finally the plasmid DNA is 

eluted with 500 µl of nuclease-free water. 

 

4.2.4 Precipitation and purification of nucleic acids   
 

To precipitate nucleic acids, 10 µl 3 M sodium acetate, 5 µl EDTA (0.5 M, pH 8.0) and 250 µl 

100% (v/v) ethanol is added to each 100 µl nucleic acid sample. The mixture is incubated at -

20°C for a minimum of 20 minutes. Precipitated nucleic acids is then pelleted by centrifuging at 

13000 rpm for 15 minutes at 4°C. To remove salt and alcohol residues the pellet is washed with 

70% (v/v) ethanol once and dried at RT. The pelleted nucleic acids are then dissolved in double 

distilled water and stored at -20°C (DNA) or -80°C (RNA).  

Optionally, nucleic acids can be cleaned via gel filtration columns with an affinity matrix, which 

gives relatively lower nucleic acid yield but purer products. In this work, in vitro synthesized 
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mRNA and RNA probe for in situ hybridization is purified through the "ProbeQuant G50 Micro 

Columns". G50 Micro column is a gel filtration column, which contains sephadex. This is a cross-

linked dextran gel that is manufactured in a bead form and used to separate low and high 

molecular weight molecules. The degree of cross-linking can be varied to adjust the fractionation 

properties of the gel. Here the sephadex column is used to remove the small molecules like 

digested or unincorporated nucleotides from the transcription and labelling reactions. Procedure 

is carried out according to manufacturer's instructions.   

 

4.2.5 Determining the concentration of DNA and RNA    
 

The concentration of nucleic acid can be determined by measuring the optical density at 260 nm 

after the following formula:                        

C [µg/ml] = A260 x V x F     

In formula, A260 stands for absorbance at λ = 260, V = dilution factor and F = multiplication factor.  

The concentration is calculated by multiplying the optical density 260 with the dilution and the 

specific multiplication factor. The multiplication factor for single-stranded DNA, double-stranded 

DNA and RNA is 33, 50 and 40 respectively. Nucleic acids and proteins have absorbance 

maxima at 260 and 280 nm respectively. The ratio of absorbance at 260 and 280nm (A260/280) is 

commonly used as a measure of purity in both nucleic acid and protein extractions. A ratio of 1.8 

is accepted as pure for DNA and a ratio of 2.0 is pure for RNA. 

 

4.2.6 Restriction of DNA  
   

Restriction endonucleases are found in many different species of bacteria. Their original 

biological function is to recognize and digest foreign DNA (e.g. DNA of an infecting virus) but 

they are now commonly used as tools in engineering DNA. The DNA sequence those nucleases 

recognize is usually palindromic, either with overhanging sticky or blunt ends. A reaction mixture 

is typically consists of 20 µl with 1 µg DNA, one unit of restriction endonuclease and 1/10 volume 

of 10x reaction buffer. The digestion of DNA takes at least 1-2 hours, incubating at the optimum 

reaction temperature indicated by the enzyme manufacturer. 
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4.2.7 Analysis by flatbed gel electrophoresis  
 

Nucleic acids are negative charged because of their phosphate backbone. This enables their 

separation in an agarose gel by applying an electric field. The speed, at which the nucleic acids 

migrate through the gel, is inversely proportional to the logarithm of their size. Smaller molecules 

migrate faster and reach longer distance than larger ones through the agarose gel. 

For an analysis gel, 1% (w/v) agarose is dissolved in 1x TAE buffer and midori green is added 

and mixed properly. It is then poured in gel-stack and a comb is fitted carefully. Nucleotide acid 

samples are analysed by running them through the gel applied with voltage of 90 to 120 volts. 

The 2-log DNA marker is used to show the size of standard nucleic acid fragments, by which the 

size of the samples can be compared. 2 µl loading buffer (Orange G) is added to the sample and 

loaded into wells on gel. Midori green intercalates with DNA base pairs and results in an 

excitation at λ=254 nm or λ=312 nm when beamed UV light. 

 

4.2.8 DNA extraction from Gel   
 

DNA fragments are separated by gel electrophoresis. The desired DNA fragments can be carved 

with a scalpel. The extraction of DNA is carried out using the "High Pure PCR Product 

Purification Kit" from Roche. Guanidine thiocyanate in the binding buffer denatures the DNA. 

Filtering the sample through filter tubes allows the DNA to bind on glass fiber fleece layers in the 

tube. The binding membrane is washed with 500 µl and 200 µl washing buffer containing 95% 

(v/v) ethanol. Finally, the DNA is eluted with nuclease free water.   

 

4.2.9 In vitro transcription 
 

For synthesizing RNA from linearized DNA, the "mMessage mMachine Transcription Kit" 

(Ambion, USA) is used. Different RNA polymerases (SP6, T7 or T3 polymerase) can be used 

according to the polymerase binding sites on plasmid DNA. Linearized DNA is mixed with 2x 

NTP/CAP (ribonucleotides), which add a 7-methyl guanosine cap structure at the 5’ end of newly 

synthesized RNA. Capped RNA mimics most eukaryotic mRNAs found in vivo and is therefore 

protected from degrading by RNases. The reaction mix contains 6 µl linearized DNA, 10 µl 

NTP/CAP, 2 µl of 10x reaction buffer and 2 µl of RNA polymerase. The mix is incubated at 37°C 
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for at least two hours. To digest the DNA template after transcription, 1 µl of DNase is added to 

the mixture and incubated again at 37°C for 15 minutes. The nucleotide residues are removed by 

using "ProbeQuant G50 Micro Columns" or precipitation method. Nucleotide probes for in situ 

hybridization are synthesized with the “Digoxygenin/fluorescein RNA-labelling kit” from Roche. 

20 µl reaction mixture contains 1 µg linearized-DNA, 2 µl RNA polymerase, 2 µl 10x digoxigenin 

or fluorescein-labelling mix and transcription buffer, same steps are followed as in vitro 

transcription. The quality of the mRNA or the RNA probe can be examined by gel 

electrophoresis. mRNA should be stored at -80°C while the RNA probe can be kept in -20°C. 

 

4.2.10 Amplification of specific DNA fragments by PCR  
 

The polymerase chain reaction (PCR) is an in vitro method to amplify DNA fragments. This 

technique is based on using the ability of DNA polymerase to repeatedly synthesize new strand 

of DNA complementary to the offered template strand. The method relies on thermal cycling, 

which enables the repeated heating and cooling of reaction for DNA replication. Besides the 

DNA template, other main components in PCR reaction are primers, short pieces of single–

stranded oligonucleotides that are complementary to the target sequence, and DNA polymerase 

that synthesize new strands of DNA complementary to the target sequence. The first step in the 

PCR process is denaturation, where the dsDNA is heated at 95°C and splitten into ssDNA. At 

the second step of annealing, primers bind to the ssDNA providing 3’-OH group for DNA 

polymerase. The temperature of annealing is dependent on the length and GC/AT ratio of 

primers, which is normally around 50°C to 60°C. In the elongation step at 72°C, new dNTPs are 

added to the 3'-OH end of the primers by DNA polymerase. In this way a new complementary 

DNA strand is synthesized, which will be denaturated in the next cycle and use as template. This 

process is repeated and the amount of DNA is increased exponentially. The thermostabile Taq 

polymerase from Thermus aquaticus is wildly used in PCR reactions, whereas for longer 

sequence Phusion polymerase (from Pyrococcus furiosus) with 3'-5' exonuclease proof-reading 

activity provides higher fidelity. 

A PCR sample mixture consists of following components: 

5 µl 5× GoTaq Buffer 

5 - 50 ng DNA Template 
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1 µl dNTPs (10 mM) 

125 ng Primer forward  

125 ng Primer reverse  

0.5 – 1 µl Taq-Polymerase 

X µl H2O 

Add to 50 µl  

 

A standard PCR program consists of following steps using a thermo cycler: 

Cycles Time Temperature Description 

1x 5 min 95°C Denaturation 

30-33x 30 sec  

30 sec  

30 sec  

95°C  

50-60°C  

72°C  

Denaturation  

Annealing  

Elongation  

1x 10 min 72°C Elongation  

1x ∞ 4°C  

Table 4.3 Program for standard PCR.  

 

4.2.11 Mutagenesis PCR 
 

Mutagenesis is used to purposely change the genetic sequence. Analysis of the subsequent 

changes in the gene product elucidates the impact of mutation and therefore the functional effect 

of certain part of the gene. Mutagenesis applied in this work is site-directed mutagenesis that 

introduces mutations at a defined site. Changes to sequence can be made using PCR by simply 

including the desired change in one of the PCR primers. The changes can be base substitutions, 

additions, or deletions. The primers are designed to include the desired change. As the primers 

are extended in the PCR, the resulting amplification product incorporates the mutation, replacing 

the original sequence. 

To ensure the efficiency of primer annealing, the mutagenesis primer should be in between 25-

45 base pairs with a melting temperature over 78°C and GC content over 40%. PCR sample 
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mixture consists of 50 µl of total volume. It includes 5 µl reaction buffer (10x), 5-50 ng dsDNA, 

125 ng of forward and reverse primer, 1 µl dNTPs, 1 µl DNA polymerase enzyme and distilled 

water to make up volume. A typical mutagenesis PCR program is showed in Table 4.4.  

After reaction, 1 µl of DpnI restriction endonuclease is added in the mixture that cleaves 

methylated DNA. This does not affect the PCR product (newly synthesized mutated DNA) but 

remove template DNA. The incubation with DpnI is carried out at 37°C for one hour. Afterwards 

transformation in E. coli is performed and samples are analysed by sequencing. 

Cycles Time Temperature Description 

1x 30 sec  95°C Denaturation 

16 x 30 sec  

1 min  

2 min/kb  

95°C  

55°C  

68°C  

Denaturation  

Annealing  

Elongation  

1x 10 min 68°C Elongation  

1x ∞ 4°C  

Tabel 4.4 Program for mutagenesis PCR. 

 

4.2.12 Quantitative real-time PCR 
 

4.2.12.1 Introduction 
 

The real-time reverse transcription polymerase chain reaction (RT-qPCR) is an in vitro method 

for amplifying defined sequences of RNA in biological samples (Rappolee et al., 1988) and it is 

one of the most sensitive and the most flexible quantification methods for detection of mRNA 

(Bustin, 2000). RT-qPCR applies essentially the same principle of a PCR reaction, by which the 

nucleic acid present in a complex sample can be specifically amplified in a cyclic process. 

Benefits of this procedure over conventional methods for measuring RNA include its sensitivity, 

large dynamic range as well as accurate quantification. Especially for detection of low-

abundance mRNA, which often obtained from limited tissue samples, RT-qPCR is the method of 

choice for its high sensitivity and comparatively easy setup. The results of real-time PCR can 

either be qualitative (presence or absence of a gene) or quantitative (number of copies of DNA). 

Conventional PCR, however, can be only semi-quantitative. Therefore, quantitative real-time 
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PCR (RT-qPCR) is generally the method of choice for quantitating differences in gene 

expression levels. 

 

4.2.12.2 Real-time monitoring of PCR reaction 
 

In a conventional PCR, the amplified product, or amplicon, is detected by an end-point analysis 

of running the product on an agarose gel after the reaction has finished. RT-PCR in contrast, 

allows the accumulation of the amplified product to be detected and measured during the 

reaction progresses. The detection is therefore in “real time”. Real-time detection of PCR 

products is made possible by including in the reaction a fluorescent dye that reports the increase 

in the amount of DNA with a proportional increase in a fluorescent signal. The fluorescent dyes 

employed for this purpose include DNA-binding dyes and fluorescently labelled sequence-

specific primers or probes. The fluorescent dye SYBR Green I used in this work is a DNA-

binding dye that non-specifically and preferentially binds to double-stranded DNA (dsDNA). 

SYBR Green I exhibits little fluorescence when it is free in solution, but its fluorescence 

increases up to 1,000-fold when it binds dsDNA (Bio-Rad applications guide, 2006). Therefore, 

the overall fluorescent signal is proportional to the amount of present dsDNA, and increases 

when the amplified products accumulate. Specialized thermal cycler equipped with a 

fluorescence detection laser is used to monitor the change of fluorescence during amplification. 

The measured fluorescence reflects the amount of amplified product in each cycle. 

 

4.2.12.3 PCR amplification 
 

In an amplification plot of PCR reaction (Fig 4.4), the cycle number of PCR reaction is shown on 

the x-axis, and the fluorescence from the amplification reaction, which is proportional to the 

amount of amplified product in the tube, is shown on the y-axis. PCR amplification goes through 

two phases, an exponential phase followed by a non-exponential plateau phase. During the 

exponential phase, the amount of product molecules doubles in each cycle. However, as the 

reaction proceeds and the PCR products increase, efficiency of amplification reaction is 

gradually compromised due to the availability of nucleotides and activity of the enzyme. At this 

point, the reaction slows and enters the plateau phase (cycles 28-40 in Fig 4.4). Hence, end-

point PCR measurements tell us very few about the initial amounts of target molecules that were 
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present in the samples. The real-time quantitative assay measures the increase in fluorescence 

during the exponential phase. Initially, fluorescence signal remains at background levels and 

increases in fluorescence are not detectable. As the product accumulates exponentially, enough 

products are eventually amplified to yield a detectable fluorescent signal. The cycle number at 

which fluorescence first rises above background fluorescence is called the threshold cycle, or CT. 

The CT value is measured in the exponential phase when reagents are not limited, this 

parameter can be used to accurately calculate the initial amount of template present in the 

reaction. 

 
Fig 4.4 Amplification plot of a PCR reaction (modified from Bio-Rad applications guide, 2006): The PCR 

cycle number is plotted on the x-axis, and the measured fluorescence is shown on the y-axis. The amplification 

plot shows two phases, an exponential phase followed by a nonexponential plateau phase. The real-time PCR 

monitor the amount of PCR product and measure the CT value during the exponential phase.  

 

Because the CT value of a reaction is determined by the amount of template present at the 

beginning of the amplification reaction, the larger amount of template there is present at the start 

of the reaction, the fewer amplification cycles it will be required to reach the threshold cycle. 

Thus, the reaction will have a lower CT. In contrast, if a small amount of template is present at 

the beginning of the reaction, more amplification cycles will be need for accumulating enough 

products to give a fluorescent signal above background. The reaction will therefore have a high 

CT. CT value and its relationship to the template molecules form the basis for quantitative real-

time PCR assay. 
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4.2.12.4 Overview of real-time PCR workflow 
 

In this work, the real-time PCR is performed to detect genes of interest in X. laevis CNC explants 

as well as in whole embryos. Specific primers are designed to amplify a certain region of the 

target gene. Primers are firstly validated in test PCR reactions containing template and SYBR 

Green I reaction mix. Template used in the validation PCR reactions contains genes of interest 

and the specificity of the primers is verified through different assays. At the same time, the 

optimal annealing temperature and working concentration of the primers is chosen. Additionally, 

primers are checked for possible cross-reactions to gens with similar sequences. In the next 

step, RNAs from target tissue (CNC explants and whole embryos) are extracted and reverse 

transcripted to cDNA. Real-time PCR reactions are run on cDNA samples to quantify the initial 

amount of template in the test samples. Obtained data is used for relative quantification as well 

as for absolute quantification. For absolute quantification, standard curves based on plasmid 

DNA (containing exclusive gene of interest in full length) are constructed. In order to determine 

the number of cells in a CNC explant, nucleus staining is performed on the monolayer CNC 

explants and the average number of cells in CNC explants is used to calculate the absolute copy 

number of genes in one cell. Fig 4.5 summarizes the workflow of real-time quantification 

experiments performed on CNC cells, whereas details for every step are described in the 

paragraphs below. 
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Fig 4.5 Workflow of real-time quantification of CNC cells. (A, B) To detect and quantify expression of 

target genes in X. laevis CNC cells, real-time quantification is performed using RNAs extracted from Xenopus 

CNC cells in different stages. cDNAs are synthesized from the RNAs are amplified in the real-time assays. (C) 

The primers for real-time amplification are designed and verified through different assays including melting-

curve analysis, where the optimal working condition of each primer pair is determined. (D) Real-time PCR is 

performed using verified primers and the obtained CT values from test samples are analysed for relative (E) 
and absolute quantification (F, 1-4). Standard curve for specific target gene is constructed using serial dilutions 

of plasmid DNA to determine the quantity of starting template DNA. The number of cells in test samples is 

calculated by counting cell number of a CNC explant. CT, threshold cycle.  
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4.2.12.5 Design and optimization of reactions 
 

When using SYBR Green I as DNA-binding dye for real-time PCR, a pair of PCR primers that 

amplifies the specific region within the target gene of interest is required. For choosing a target 

sequence and designing specific primers, the web-based program Primer3 

(http://bioinfo.ut.ee/primer3-0.4.0/) is used for primer design. Since shorter amplicons are 

typically amplified with higher efficiency, the amplicon is designed to be 100-200 bp. An amplicon 

of at least 75 bp can be easier to distinguish it from primer-dimers that might form. The amplicon 

as well as the primers should have a GC content of 50-60%. The primers are normally 15-20 bp 

in length, with a melting temperature (Tm) between 55-65°C. Gs and Cs are placed on ends of 

primers. The specificity of primers is verified using the Basic Local Alignment Search Tool 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi/). Synthesized primers are purified by HPLC. Newly 

designed primers need to be validated for their specificity and reaction efficiency. Optimized 

reactions should be specific and exhibit good amplification efficiency over a broad dynamic 

range. To determine the performance of the assay, the optimal annealing temperature has to be 

identified. An efficient way to assess the optimal annealing temperature is to use a thermal cycler 

capable of a temperature gradient, which allows a range of annealing temperatures being tested 

simultaneously. A range of temperature above and below the calculated Tm of the primers should 

be tested. An optimal annealing temperature is chosen from the gradient where the reaction 

gives the lowest CT value and dilutions of template have evenly spaced difference of CT values. 

The standard working concentration of primers is 0.25 µM, however, the optimal working 

concentration has to be experimentally determined individually for each primer pair. 

The main drawback of the DNA-binding dyes is their lack of specificity, since they bind to any 

dsDNA (Deprez et al., 2002). As a consequence, the presence of nonspecific products (e.g. 

primer dimers) in the real-time PCR reaction may contribute to the overall fluorescence and 

affect the accuracy of the quantification (Wilhelm and Pingoud, 2003). Therefore, it is necessary 

to check the specificity of the assay by analysing the reaction product. A melting-curve analysis 

can be use to identify different reaction products including nonspecific products such as primer 

dimers (Ririe et al., 1997). After completing amplification reaction, a melt curve is generated by 

increasing the temperature in small increments and monitoring the fluorescent signal in the 

process. As dsDNA denatures when it reached its melting temperature, the fluorescent signal 

decreases (Fig 4.6). The negative first derivative of the change in fluorescent signal is plotted 

against the temperature, which gives a characteristic peak at the amplicon's melting temperature 

(Tm, at which 50% of the base pairs of a DNA duplex are separated). Different fragments with 
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different melting temperature therefore appear as separate peaks (Ririe et al., 1997). An 

optimized reaction should have a single peak in the melting-curve analysis, corresponding to a 

single band of the expected size on agarose gel. Sequencing of the amplification product can 

also be an additional way to verify the specificity of the primers.  

 
Fig 4.6 Example of melting-curve analysis to confirm the specificity of PCR amplification. The melting 

process of dsDNA causes a sharp reduction in the fluorescence signal around the melting temperature (Tm) of 

the PCR product, resulting in a clear peak in the melting curve. The negative derivative of the change in 

fluorescence is plotted as a function of temperature (-d(RFU)/dT). Assayed samples are a serial dilution series 

from a plasmid containing the sequence of Cadherin-11.  

  

The efficiency, reproducibility, and the detectable range of the assay can be determined by 

constructing a standard curve using serial dilutions of a template. In this work, both plasmid DNA 

containing target sequence and cDNA from X. laevis embryo are used to construct the standard 

curve and verify the efficiency of the assay. Both templates give similar results. The cDNA is 

synthesized from a RNA mix of wild type embryos in different development stages, where the 

target gene is expressed. Serial dilution series are made from the cDNA template to cover all 

potential template concentrations that may be encountered during the study. Standard curves 

generated by plasmid DNA are described in detail in 4.2.13.10. For each dilution a standard 

qPCR protocol is performed in triplicate for all primer pairs to be used in the experiment. 

The standard curve is constructed by plotting the logarithm (log) of the starting quantity of the 

template (or dilution factor in case of unknown quantity) against the CT values obtained during 

amplification of each dilution. The equation of the linear regression line, along with the 

correlation coefficient (R2), can then be used to evaluate whether the qPCR assay is optimized. 
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Ideally, if the amount of DNA molecules doubles with each amplification cycle, the dilution series 

will produce amplification curves that are evenly spaced. The spacing of the fluorescence curves 

is determined by the equation 2n = dilution factor, where n is the number of cycles between 

curves at the fluorescence threshold. For example, with a 10-fold serial dilution of DNA, 2n = 10. 

Therefore, n = 3.32, which means, the CT values of the curves should be separated by 3.32 

cycles. Evenly spaced amplification curves produce a linear standard curve. 

The R2 value of a standard curve represents how well the experimental data fit the regression 

line, which implies, how linear the data are. Linearity gives a measure of the viability in assay 

replicates and whether the amplification efficiency is the same for different starting template copy 

numbers. If the observed CT values between replicates have significant difference, this will lower 

the R2 value. R2 value is greater than 0.980 for all quantitative PCR reactions in this work (Fig 

4.7). 

 
Fig 4.7 A standard curve is generated to assess reaction optimization. A standard curve is generated 

using a 10-fold dilution of a standard amplified in the real-time PCR system. Each dilution is assayed in 

triplicate (blue cycles). The CT value is plotted against the log of the starting quantity of the template for each 

dilution. The equation for the regression line and the correlation coefficient (R2) are shown above the graph. 

The calculated amplification efficiency is 101.8%. Blue cycles: Triplicates of 10-fold dilutions from the standard. 

Red line: The regression line that can be used to determine the starting quantity of test sample from the 

experimental CT values. 

 

Efficiency of the amplification (E) is calculated from the slope of the standard curve using the 

following equation (Rasmussen et al., 2001): 

𝐸 = 10!! !"#$%  

If the PCR product doubles perfectly during each cycle of amplification, there is a 2-fold increase 

in the number of copies, in which case the reaction efficiency is 2. One can calculate from the 

equation above that the optimal slope of the standard curve will be -3.32, which shares the same 
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absolute value as the ideal spacing of the fluorescent curves. The amplification efficiency can 

also presented as a percentage, which is the percentage of template that is amplified in each 

cycle. 

%Efficiency   = (E-‐1)×100% 

For an ideal reaction,  

%Efficiency   = (2-‐1)  ×  100%  =  100% 

An efficiency close to 100% is an indicator of sensible and reproducible assay. In practice, an 

efficiency of 90%-110% is considered acceptable, which represents the slope between -3.1 and -

3.6 of the standard curve. All PCR reactions in this assay are optimized to fit to this criteria. 

 

4.2.12.6 RNA extraction from whole embryo and from CNC explants 
 

RNA extraction is carried out using two sets of RNA isolation kits depending on the abundance 

of the source material. The total RNA from whole embryos can be achieved using the “High Pure 

RNA Isolation Kit” from Roche. Embryos collected at desired stages are immediately proceed to 

lysis or shock frozen by liquid nitrogen and stored at -80°C. Embryos are first homogenized in 1x 

PBS with a cannula (diameter 0.40 mm). By adding the lysis/binding buffer containing a 

chaotropic salt (guandine HCl) and a detergent, the embryos are lysed while simultaneously 

RNases are inactivated. The lysate is applied to the filter tube, where nucleic acids bind to the 

glass fiber fleece. After centrifuging, the DNA is digested with DNase I directly on the filter for 30 

Minutes at RT. Brief wash-and-spin steps remove the digested DNA fragments and other 

contaminating substances. The purified RNA is then eluted in 30 µl low-salt elution buffer. 

CNC explants for RNA extraction are dissected and submerged directly in RNAlater for storage. 

RNAlater solution is an aqueous tissue storage reagent that rapidly permeates tissues to 

stabilize and protect cellular RNA. For quantification in the real-time PCR, approximately 90 CNC 

explants are collected for each test sample. To isolate RNA from CNC explants in the RNAlater 

solution, “TRIzol®Plus RNA Purification Kit” from Invitrogen and “PureLink TM RNA Mini Kit” 

from Ambion is used. To every 20 CNC explants 500 µl TRIzol®Reagent is added and the tissue 

is homogenized with a cannula. TRIzol®Reagent is a monophasic solution of phenol, guanidine 

isothiocyanate with strong lysis capability, while maintaining the integrity of the RNA and 

inhibiting the RNase activity during sample homogenization and lysis. Next, the lysate is 
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transferred to the homogenizer and incubated at RT for five minutes before centrifuged at 12,000 

x g for two minutes at 25°C. Incubation with TRIzol®Reagent and centrifugation ensures a 

complete dissociation of nucleoprotein complexes. After the homogenizer is removed, 60 µl 

chloroform is added to each 500 µl Trizol lysat and the mixture is shaken vigorously by hand for 

15 seconds. This is then incubated at RT for two to three minutes and centrifuged at 12,000 x g 

for 15 minutes at 4°C. The addition of chloroform, followed by centrifugation, separates the 

solution into an upper aqueous phase containing RNA and a lower phenol-containing organic 

phase. The colourless upper phase is transferred to fresh RNA-free tube, followed by ethanol 

addition and centrifugation. The sample is then transferred to the PureLinkTM RNA Mini Kit Spin 

Cartridge containing a clear silica-based membrane to which the RNA binds during purification. 

After centrifugation at 12,000 x g for 15 seconds the flow-through is discarded. This step is 

repeated until the entire sample has been processed. Up to 700 µl of the sample can be pooled 

on to the same spin cartridge. The spin cartridge (containing the RNA bound) is washed with 350 

µl wash buffer I containing guanidine isothiocyanate and centrifuged at 12,000 x g for 15 

seconds at RT. The flow-through is discarded and the spin cartridge is inserted in to new 

collection tube. Digestion with DNase is carried out according to “On-column PureLink DNase 

Treatment protocol” and the PureLink DNase mixture is set up as following: 

Components Volume per Reaction 

10 x DNase I Reaction Buffer 8 µl 

Resuspended DNase (3U/µl) 10 µl 

RNase free water 62 µl 

Total volume 80 µl  

 

80 µl of PureLink DNase mixture is added onto the surface and incubated for 15 minutes at RT. 

Afterwards the spin cartridge is washed again with wash buffer I and centrifuged at 12,000 x g 

for 15 seconds at RT. After inserting the spin cadrige into new collection tube, 500 µl wash buffer 

containing ethanol is added and centrifuged down, which ends the DNase treatment. The same 

washing step is repeated one more time and centrifuged again to dry the membrane. To elute 

the RNA, 30 µl RNase-free water is added to the center of spin cartridge and incubated at RT for 

one minute. The Spin Cartridge with the Recovery Tube is centrifuged for two minutes at 13,000 

x g at RT and the purified RNA is collected in the Recovery Tube. The concentration of the total 

RNA is determined by a photometer and the RNA is stored at -80°C. 
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4.2.12.7 cDNA template synthesis (reverse transcription) 
 

For quantification of gene expression by RT-qPCR, the RNA is first transcribed into cDNA in a 

reaction using the enzyme reverse transcriptase. An aliquot of the resulting cDNA can then be 

used as a template for multiple qPCR reactions. 

In a 10 µl reaction tube 150 ng RNA mixed with 2 µl oligo (dT) primers is first heated five minutes 

at 70°C to melt potential secondary structure within the template. After cooling to 4°C, 10 µl 

Transcriptions Mix from 4 µl 5x Puffer, 1 µl dNTPs, 0.5 µl Reverse Transcriptase from Moloney 

murine leukemia virus (MMLV) und 4.5 µl water is added. The mixture is incubated at 25°C for 

five minutes and then at 42°C for one hour. As control for DNA contamination, a similar reaction 

mixture only lacking of the reverse transcriptase is carried out in parallel.  

For cDNA synthesis from RNAs with low concentration, the “iScriptTMcDNA Synthesis Kit” is 

applied. iScript is a modified MMLV-derived reverse transcriptase preblended with a RNase 

inhibitor. A blend of oligo (dT) and random hexamer primers is also present in the reaction mix, 

which minimizes the total volume for other components in the reaction besides the template. The 

RNA template can therefore be filled up to 16 µl in a 20 µl reaction mix. The reaction setup is 

described below: 

Components Volume per Reaction 

5 x iScript reaction mix 4 µl 

Nuclease-free water x µl 

Total RNA 150 ng x µl 

Total volume 20 µl  

 

The complete reaction mix is incubated successively for five minutes at 25°C, 30 minutes at 

42°C and five minutes at 85°C. After cooling to 4°C, the cDNA can be used for qPCR reactions. 

To evaluate possible contamination from genomic DNA, a minus-reverse transcriptase (“-RT”) 

control is included for each RNA preparation. The “-RT” control is a mock reverse transcription 

containing all the RT-PCR reagents except the reverse transcriptase. “-RT” control sample is 

assessed together with other test samples in the real-time amplification next. 
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4.2.12.8 Real-time PCR measurements 
 

The expression of the target genes and the reference gene Ornithine decarboxylase (ODC) (see 

relative quantification in 4.2.12.10) are assessed in RT-qPCR assay. The preformulated real-

time PCR master mixes “iQTMSYBR Green Supermix” consist of reaction buffer, DNA 

polymerase, dNTPs and SYBR Green I dye. A standard SYBR Green I qPCR reaction contains 

the following components:  

Components Volume per Reaction 

iQTMSYBR Green Supermix 10 µl 

Primer mix 1 µl 

cDNA 2 µl 

Nuclease-free water 7 µl 

Total volume 20 µl  

 

For test sample containing target genes, triplets are run for each assay. Duplets of no template 

control (NTC) is included in every assay to exclude unspecific amplification reactions through 

primers or solution contamination. “-RT” control sample is amplified under the same condition as 

test samples. If a “-RT” control sample has a CT value 10-15 cycles higher than an RT test 

sample, then the “-RT” control sample contained approximately more than 1000-fold less target 

sequence (assuming 100% efficiency, 1 CT ≈ 2-fold difference in initial template amount). This 

means, less than 0.1% of the amplification product in the RT sample is attributable to the 

genomic DNA template. In this case it is determined that the genomic DNA is sufficiently 

negligible compared to the amplification of the cDNA sequence.  

The cycling program used is shown below: 

Cycles Time Temperature 
3x 30 sec  95°C 

1x 5 min 95°C 

36 x 30 sec  
30 sec  
30 sec  

95°C  
56 - 62°C (optimal 

temperature for 
each primer pair) 

72°C  
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80x 10 sec 60°C 

1x ∞ 4°C 
Table 4.5 Cycling protocol for RT-qPCR. 

 

4.2.12.9 Data analysis 
 

As mentioned in introduction (4.2.12.1), real-time PCR is a method for determining the amount of 

nucleic acid in a sample. The acquired data through RT-qPCR need to be transformed to a form 

that is biologically meaningful. For example, one is interested in finding out: 1) the number of 

certain molecules in a cell, or 2) the fold change of a certain mRNA in an equivalent amount of 

CNC cells in stage 17 vs. in stage 23. The analysis methods that address these two questions 

are known as absolute quantification and relative quantification. The result of absolute 

quantification is the quantity of nucleic acid (copy number) in a given amount of sample (in a cell 

or in 1 µg of RNA) (see 4.2.12.11). The analysis of relative quantification however, results a ratio: 

the relative amount (fold change) of a transcript for equivalent amounts of test and control 

sample. 

 

4.2.12.10 Relative quantification of gene expression 
 

For a relative quantification, the quantities obtained from the qPCR experiment are normalized to 

the expression level of a reference gene. A reference gene is one whose expression level is 

constant across all test samples, which in our case is the Ornithine decarboxylase (ODC). The 

advantage of normalizing the expression of the target gene to that of a reference gene is that it 

compensates for any difference in the amount of sample tissue. If the levels of ODC mRNA 

expression is identical in all test samples, one can extract RNA from an approximately equivalent 

number of cells from all samples without determining the exact number of cells. The level of the 

target gene mRNA and the ODC mRNA in the test samples are then determined by a RT-qPCR 

assay. The relative expression of the target gene in different development stages is calculated 

by taking the ratio of the ODC-normalized target gene expression.  

When comparing multiple samples using relative quantification, one sample is usually chosen as 

the calibrator (also known as the control sample), and the expression of target gene in all other 

samples is referred as an increase or decrease relative to the calibrator. In this work, the 

expression level of cadherin in stage 17, 20 and 23 are analyzed. Therefore, the CNC sample at 
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stage 17 (stage of pre-migratory CNC) is chosen as the calibrator and the CNC sample from 

later stages as test samples. The expression level of cadherin in stage 20 and stage 23 is 

always compared to the cadherin expression at stage 17.  

To determine the relative expression of a target gene in the test samples and calibrator sample 

using reference gene as the normalizer, the expression levels of both target and reference gene 

need to be determined using RT-qPCR. After the CT values are measured, the 2!∆∆!! method 

(Livak and Schmittgen, 2001) is used to determine the expression level of the target gene in the 

test sample relative to the calibrator sample. The 2!∆∆!! method assumes that both target and 

reference gene have similar and near 100% amplification efficiencies, which is verified in the 

primer validation and experiment optimization steps. The relative difference in the expression 

level of the target gene in different samples is determined through following steps: 

First, the CT value of the target gene is normalized to that of the reference gene (ref), for both 

test samples and calibrator sample: 

∆𝐶!(!"#!) = 𝐶!(!"#$%!,!"#!) − 𝐶!(!"#,!"#!) 

∆𝐶!(!"#$%&"'(&) = 𝐶!(!"#$%!,!"#$%&"'(&) − 𝐶!(!"#,!"#$%&"'(&) 

Second, the ΔCT of the test sample is normalized to the ΔCT of the calibrator: 

∆∆𝐶! = ∆𝐶!(!"#!) − ∆𝐶!(!"#$%&"'(&) 

Finally, the expression ratio is calculated: 

2!∆∆!! = Normalized  expression  ratio 

The obtained result is the fold change (increase or decrease) of the target gene in the test 

sample relative to the calibrator sample and is normalized to the expression of a reference gene, 

in this work the expression of the ODC gene.  

 

4.2.12.11 Absolute quantification of gene expression 
 

The absolute quantification is achieved by comparing the CT values of the test samples to a 

standard curve (Yu et al., 2005). The end result is a quantitative description of a single sample, 

which does not depend on the property of other samples. The absolute quantification is used, 

when one is interested in finding out the intrinsic property of a given sample. This method is also 
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useful, when the copy numbers of several target genes are compared. In other words, the 

amplification efficiencies of different target genes are independent and the quantification does 

not require similar amplification efficiencies or similar sizes of the amplification products. In this 

work, the absolute quantification is therefore chosen to determine the copy numbers of different 

cadherins in CNC explants. 

In the absolute quantification, the quantity (in this work the copy number) of the unknown sample 

is interpolated from a range of standards of known quantity. To construct a standard curve, a 

template with known concentration is required. For this purpose, plasmid DNA containing target 

gene sequence (cDNA sequence of the target gene cloned in an expression vector) is used as 

template (Tab 4.6). Dilution of the plasmid is then performed and these dilutions serve as 

standards for constructing the standard curve. The range of template concentrations used for the 

standard curve encompasses the entire range of template concentration of the test samples to 

ensure that results from the test samples are within the linear dynamic range of the quantification 

assay. 

Plasmid Concentration  Plasmid size 

Cadherin-11 in pcDNA3.1 1000 ng/ul 7842 bp 

N-cadherin in pcDNA3.1 700 ng/ul 7000 bp 

E-cadherin full length in HA-pCS2+ 694 ng/ul 6820 bp 

XB-cadherin full length in pSP64T 756 ng/ul 6215 bp 

PCNS in pCMV SPORT16 756 ng/ul 8007 bp 

xPAPC FL in pCS2 600 ng/ul 7746 bp 

Tab 4.6 DNA plasmids used in this work to generate standard curves for absolute quantification along 

with their sizes and concentrations. 

 

If a sample contains exclusively known plasmid DNA, one can calculate the copy number of this 

plasmid in a given sample. The concentration of the plasmid is measured using a photometer 

and the corresponding copy number is calculated using the following equation (Whelan et al., 

2003): 

DNA  (copy) =
6.022×10

23
copy/mol   ×DNA  amount  (g)

DNA  length  (bp)  ×  660  (g/mol/bp)
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For example, to determine the quantity of cadherin-11 expression in CNC explants, plasmid 

containing cadherin-11 sequence (Cadherin-11 in pcDNA3.1) is used to prepare dilutions for a 

standard curve. The copy number in the plasmid stock solution is 1.2 × 1011 copies per µl and a 

10-fold serial dilution series of the stock solution is set up. Diluted plasmid solutions that ranging 

from 1 × 105  to 1 × 1010 copies/µl are used as template standards to construct the standard 

curves for cadherin-11, because this covers the entire range of cadherin-11 concentration in the 

CNC tissue sample. 

CT values in each dilution are measured in triplicate and the mean CT value is used to determine 

the copy number of a sample in the equation above. The logarithms of the initial template copy 

numbers from the standards are plotted along the x-axis and their respective CT values are 

plotted along the y-axis. Each standard curve is generated by a linear regression of the plotted 

points. The equation for the linear regression line [y = ax+b] is created automatically by the 

analysis software and showed alongside the curve. Based on the equation for the linear 

regression: 

𝐶!   = a(log  quantity)  +  b 

Quantity  =  10(
!!  !  !
! ) 

The copy numbers of individual assays (in our case CNC samples form different frogs) for test 

samples are determined using their mean CT values obtained from individual triplicate samples. 

At least three independent standard curves are generated and a mean and a standard deviation 

of the individual assays is reported. 

In order to define the amount of sample assayed in the RT-qPCR, the cell number of a CNC 

explant is determined. Wild type CNC cells are explanted at stage 17 (see 4.1.9) and DAPI 

staining (see 4.1.10) is performed on spread, monolayer CNC cells. With the help of the dark 

purple stained nuclei, the cell number of CNC explant is counted and the mean cell number of a 

CNC explant is used to calculate the number of cells in the test sample. 

 

4.2.13 Sequence analysis 
 

Sequencing is carried out by GATC Biotech AG and the sequence analysis is performed using 

the software ApE (version2.0.47 by M. Wayne Davis). 
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4.3 Protein biochemical methods 
 

4.3.1 Protein extraction from embryos 
 

Embryos or explants at desired stage are homogenized in a protein extraction mix (1x MBSH, 

1% Triton X100, 10 x Protease inhibitor and 5 mM EDTA). The mixture is incubated on ice for 10 

- 15 minutes and then centrifuged at 13000 rpm for 30 minutes at 4°C. Supernatant is transferred 

into a new tube. 

 

4.3.2 Separation and purification of glycoproteins via ConA Sepharose 4B 
 

ConcanavalinA (ConA) is a tetrameric metalloprotein obtained from Jack bean (Canavalia 

ensiformis). ConA binds molecules containing α-D-mannopyranosyl, α-D glucopyranosyl, and 

sterically related residues. Therefore, it is chosen to enrich cadherins in lysates. 60 µl of the 

ConA beads suspension are used for 300 µl protein lysate. ConA sepharose beads are stored in 

20% Ethanol and need to be equilibrated with buffer before being added to the lysate. Thus 1 ml 

1x MBSH + 1% Triton is added to the beads and this is centrifuged for three minutes at 3000 

rpm. Supernatant is then discarded and beads are resuspended in 1x MBSH + 1% Triton. 

Equilibrated ConA beads are subsequently added to protein sample and the mixture is kept 

rotating overnight at 4°C. The next day, the sample is centrifuged at 3000 rpm for three minutes 

and supernatant is discarded. Beads are washed twice with 0.5 - 1ml 1x MBSH + 1% Triton and 

the supernatant is again discarded. Proteins are eluted from beads by adding SDS-PAGE 

sample buffer and boiled for five minutes at 95°C. Samples are then centrifuged for two minutes 

at maximum speed and loaded on a gel. 

 

4.3.3 Separation of proteins via SDS-polyacrylamide gel 
 

SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is a method by which 

proteins can be separated depending on their sizes. SDS is an anionic detergent that gives 

negative charges to proteins and the amount of bound SDS is proportional to the size of the 
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protein. Therefore, the charge density is same for all proteins and the separation of proteins in 

the polyacrylamide gel depends solely on the sizes of the proteins. The matrix that is used to 

separate the proteins is made of polyacrylamide. It is a polymer formed from cross-linked 

acrylamide subunits. The polymerization of acrylamide requires additionally ammonium 

persulfate (APS) and TEMD (N, N, N’, N’-tetramethyl-ethylenediamine), as source of free 

radicals and a stabilizer respectively. By adding bisacrylamide, the polymerization reaction 

creates a gel that allows smaller molecules travel faster than larger ones. The negatively 

charged proteins are loaded in the polyacrylamide gel and an electric field is applied. Negatively 

charged proteins are attracted towards the anode. Since the protein samples are denatured 

when being boiled at 95°C with SDS loading buffer containing β-mercaptoethanol, the proteins 

are present in a primary form. This means, the mobility of the SDS loaded proteins are only 

affected by their molecular weight.  

The acrylamide concentration of the gel can be varied from 5% to 25%. Lower percentage gels 

that have larger pores are used for resolving larger proteins. For detection of cadherins, 8% 

separation gels are applied. A stacking gel with 5% acrylamide on top of the 8% separation gel 

allows all proteins assemble at the front of separating gel (Tab 4.7).  

Components 8% separation gel 

(5ml) 

5% stacking gel 

(1ml) 

H2O 2.3 ml 1.4 ml 

30% Acryl-Bisacrylamide Mix 1.3 ml 0.33 ml 

1.5 mM Tris/HCl, pH 8.8 1.3 ml -- 

0.5 mM Tris/HCl, pH 6.8 -- 0.25 ml 

10% SDS 0.05 ml 0.02 ml 

10% APS 0.05 ml 0.02 ml 

TEMED 0.003 ml 0.002 ml 

Table 4.7 Formula for preparation separation and stacking gel. 

 

To prepare the gel, the mixture for separation gel is first poured between two glass plates in a 

gel caster with some space left for stacking gel. During polymerization of separation gel, water is 

filled upon the gel mixture to achieve a straight line of the separation gel. After approximately 30 

minutes for polymerization, the water above the separation gel is removed and the mixture of 

stacking gel is added. A comb is fitted carefully between the glass plates to create sample wells. 
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After another 20-30 minutes the comb is removed and the polymerized gel can be subjected to 

gel electrophoresis. 

After loading the sample wells, the polyacrylamide gel is placed in a chamber filled with SDS-

PAGE running buffer and an electric field is applied across the gel. A voltage of 70 V is firstly 

applied. After about 10 minutes when all samples have run through the stacking gel and appear 

as a line in front of separation gel, the voltage is raised to 110 V for separation. After certain 

amount of time, protein samples migrate different distances based on their sizes. Smaller 

proteins travel further down the gel, while larger ones remain closer to the point of start. Gel that 

contains separated proteins can then be used for further processing, for example Western blot or 

Coomasie staining.  

 

4.3.4 Western blot analysis 
 

Western blot is an analytic technique used to detect specific proteins. In order to make protein 

samples accessible for antibody detection, they are transferred onto a polyvinyl difluoride 

(PVDF) or nitrocellulose membrane. These membranes bind proteins with high affinity. PVDF 

membrane requires activation with methanol. Equilibrated membrane and the gel containing 

separated protein samples are sandwiched between thick filter papers (three papers each at 

bottom and top), which are soaked in transfer buffer. An electric field is applied with an electric 

current of 0.05 amperes per gel. Blotting takes 60-90 minutes. After blotting, the membrane is 

incubated for 30 minutes with 5% skimmed milk powder in 1x TBST to block nonspecific 

antibody binding sites. The membrane is then incubated with primary antibody against the 

protein of interest overnight at 4°C. On next day the membrane is washed three times for ten 

minutes, each with 1x TBST, and incubated with secondary antibody at room temperature for 

two hours. Secondary antibody is coupled with either alkaline phosphatase (AP) or peroxidase 

(POD). After incubation with secondary antibody, the membrane is washed again with TBST 

three times. For detection of AP, the membrane is washed two more times for ten minutes with 

the AP buffer. The substrate NBT/BCIP (1.5 µl pro 1 ml AP buffer) is mixed in the AP buffer and 

5 ml solution is used to detect one blot. Secondary antibody coupled with POD is detected via a 

chemiluminescence reaction, in which the enzyme catalyzes the oxidation of luminol present in 

the substrate solution. The substrate solution is prepared using “The enhanced 

chemiluminescence (ECL)” solution mixture of A and B from the kit “ECL Plus westen blotting” 

and added onto the membrane. A CCD camera documents the chemiluminescence. 
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5 Results 
 

5.1 Characterization of Xenopus cadherin expression in 
cranial neural crest (CNC) cells 

 

5.1.1 Quantification of cadherin transcripts in CNC cells and in whole embryos 
during CNC migration via real-time PCR 

 
To understand the roles of different cadherins in collective CNC migration of X. laevis, the 

expression levels of E-cadherin, XB/C-cadherin, Cadherin-11, PAPC and PCNS in CNC cells 

from late neurula (stage 17, premigratory) to early tailbud stage (stage 23, migratory) are 

investigated. The quantification of cadherin mRNAs is carried out by quantitative real-time PCR 

(RT-qPCR). Two methods for quantifying expression level of multiple cadherins are deployed: (1) 

relative quantification: comparative CT method, which transforms a difference in CT values 

(between the test sample and the calibrator sample) to a fold change in expression level; and (2) 

absolute quantification: the absolute copy number (of the test samples) can be achieved by 

interpolation of obtained CT value (of the test samples) to a standard curve. 

 

5.1.1.1 XB-cadherin and C-cadherin are not distinguished in this assay 
 
XB-cadherin (or U-cadherin) and C-cadherin (or EP-cadherin) are maternally expressed 

cadherins in Xenopus embryo (Choi et al., 1990; Levine et al., 1994; Muller et al., 1994). As 

these two cadherins have a sequence identity of almost 92% at the amino acid level, they are 

characterized as pseudoalleles based on the tetraploidy of the Xenopus genome (Kühl and 

Wedlich, 1996).  

RT-qPCR amplification performed on CNC sample with XB-cadherin primer yields an amplicon, 

which shows a single peak with melting temperature at 82°C in melting-curve analysis (Fig 5.1 

B). Meanwhile, the amplicon of C-cadherin primer has a melting temperature at 86°C (Fig 5.1 C). 

The estimated size of the amplification product from XB-cadherin primers and C-cadherin 

primers is 100 bp and 200 bp, respectively, which is confirmed in the gel electrophoresis analysis 

(Fig 5.1 A). Sequences of the amplification products correspond to the estimated binding 
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regions, which are verified through sequencing analysis. However, binding regions of XB-

cadherin and C-cadherin primer show high homology in sequences, suggesting both primers are 

able to cross-react with the other gene with no or very less mismatches.  

 
Fig5.1 Amplicons of XB-cadherin and C-cadherin primers via RT-qPCR. (A) cDNA from CNC cells 

amplified with XB-cadherin primer shows a 100 kb product in gel electrophoresis, whereas amplification with C-

cadherin primer generates a 200 kb product. (B) Melting-curve analysis of the amplicon (triplets) amplified by 

XB-cadherin primer shows a single peak with melting temperature at 82°C. (C) Melting-curve (triplets) analysis 

of the amplicon amplified by C-cadherin primer shows a single peak with melting temperature at 86°C. 

 

Although these two primers appear to generate distinct amplification products, it cannot rule out 

the possibility of cross-reaction. It is therefore concluded that the distinguishing of XB-cadherin 

from C-cadherin based on RT-qPCR amplification is not reliable. Based on the quantification 

level, it is speculated that the XB-cadherin primer possibly detects both XB-cadherin and C-

cadherin transcripts. Thus, the quantitative results obtained with XB-cadherin primer are referred 

to as XB-and/or C-cadherin (XB/C-cadherin) in this work. 
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5.1.1.2 Confirmation of primer specificity  
 
In RT-qPCR, six primer pairs are used to quantify the expression of N-cadherin, E-cadherin, 

XB/C-cadherin, Cadherin-11, PAPC and PCNS in CNC cells as well as in whole embryos. To 

ensure the specificity of the amplification product in the RT-qPCR assay, in addition to the primer 

validation mentioned previously in methods (4.2.12.5), cross reactivity of primers on non-

templates DNA is also tested. Each RT-qPCR reaction is set up with a primer pair and a plasmid 

DNA as template, which does not contain the target sequence, in order to analyse the possibility 

of unspecific binding (Tab 5.1).  

 N-cadherin 

primer 

E-cadherin 

primer 

Cadherin-11 

primer 

PAPC 

primer 

PCNS 

primer  

XB-cadherin 

primer 

N-cadherin  32 32 30 34 -- 

E-cadherin  --  31 -- -- -- 

Cadherin-11 -- --  -- -- -- 

PAPC 32 -- 30  -- -- 

PCNS -- -- 31 --  -- 

XB-cadherin -- 33 -- -- --  

C-cadherin  -- -- -- -- -- 28 

 

Tab 5.1 Cross-reaction analyses of different cadherin primers with non-template DNAs. The first row lists 

primers for detection of different cadherins and they are used for RT-qPCR reactions with each plasmid (first 

column) that contains the copy of another cadherin molecule. If an amplification product is detected, the CT 

value is recorded. Slash indicates no amplification product. 

 

For example, N-cadherin primer is used in RT-qPCR to amplify plasmid that containing 

sequence of E-cadherin, Cadherin-11, PAPC, PCNS and XB-cadherin, respectively. Due to the 

fact that SYBR Green I binds dsDNA unspecifically, any contamination in solutions or plasmid 

preparation can lead to a false positive product resulting in CT value reading. This could explain 

some of the CT reading in Tab 5.1. Additionally, samples of amplification products are sent for 

sequencing in case of relatively low CT value (CT < 31). Among sequenced samples, no specific 

amplification products are found by sequence analysis. Apart from primers for XB-cadherin, rest 

of the primers show no cross reactivity, in that no specific amplification products are detected in 

the RT-PCR with non-template DNA (indicated as slash in Tab 5.1). 

 

 



  
5 Results 

 

 
 63 
 

5.1.1.3 Verification of CNC samples 
 

CNC tissues from stage 17, 20 and 23, corresponding to premigratory, emigrating and migratory 

CNC cells respectively, are dissected for RT-qPCR. For comparison, whole embryos from the 

same developmental stages are also collected. Total RNAs are isolated from CNC tissue 

samples as well as from whole embryos, and cDNAs are synthesized from the extracted total 

RNAs respectively. cDNAs are diluted 1:4 and used as template for RT-qPCR. Quantitative real-

time amplifications with several tissue specific markers are used to verify the identity of dissected 

CNC tissue in the samples. Relative quantification is performed by the 2!∆∆!!  method (see 

4.2.13.9a). The CT values obtained from PCR are normalized to the expression of the reference 

gene, Ornithine decarboxylase (ODC). Since multiple marker genes are compared using relative 

quantification, the expression of ODC gene is also chosen as the calibrator. This means, the 

expression of ODC gene is set as 1 and the expression of all marker genes is referred as an 

expression ratio relative to the calibrator.  

Neural crest specific transcription factors twist, slug (also known as snail2) and snail, which 

extensively expressed in neural crest cells (Hopwood et al., 1989; Locascio et al., 2002), are 

used here as marker for neural crest tissue. twist (Fig 5.2 A), snail (Fig 5.2 B) and slug (Fig 5.2 

C) are present in high abundance in CNC samples through all three stages. In the same amount 

of RNA assessed in RT-qPCR, the expression of twist as well as that of slug is strongly enriched 

in CNC sample than in whole embryo samples (Fig 5.2 A, C), whereas the expression of snail 

does not show this kind of enrichment (Fig 5.2 B).  

To ensure that CNC samples are obtained without contaminations from other tissue, samples 

are controlled with several other tissue markers. Xbra is used as a marker for general mesoderm 

tissue (Smith et al., 1991). As shown in Fig 5.2 D, the expressions of xbra are barely detectable 

in CNC samples throughout all stages. At stage 17, xbra expression equals roughly 0.1% of snail 

expression in the CNC sample. When compared to whole embryo samples, xbra expression in 

the CNC is about 10% of xbra expression in the whole embryo at 17 and 1% at stage 23 (Fig 5.2 

D). This indicates that there is liminal mesoderm tissue present in the CNC sample. Since 

placodes are in close proximity to the CNC tissue, the presence of placodal tissue in CNC 

sample is being examined. The Xenopus eya1 gene is expressed in placodes, somites as well 

as hypaxial muscle precursors and is therefore used here as a marker for placodes (David et al., 

2001). As showed in Fig 5.2 E, the detected levels of xeya1 in CNC samples are very low in 

comparison to CNC markers, with its expression matches about 1% of snail expression at stage 

17. Additionally, in order to show that the placodal tissue stays intact after dissecting CNC, CNC 
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from one side of a wild type embryo is explanted and the embryo is left to heal. At stage 25, the 

embryo is fixed and in situ hybridization is carried out using xeya1 as probe. The expression of 

xeya1 on the side of CNC explantation is not impaired (Fig 5.2 F) indicating that only CNC are 

explanted. The Xenopus cytokeratin gene xK81 (Type I cytoskeletal) is used here as a marker 

for epithelial ectoderm tissue (Jamrich et al., 1987). Similar to xeya1, the expressions of xK81 in 

CNC samples reaches hardly 1% of snail expression at stage 17. These results indicate that the 

CNC samples consist mainly of CNC tissue.  

 

 
 
Fig 5.2 Verification of CNC tissue in RT-qPCR samples. RT-qPCR with different tissue marker genes are 

used to verify the identity of CNC tissue and control for other tissue contamination in PCR samples. CNC 

explants are dissected at the indicated stages. All values are normalized and calibrated to ODC expression 

(expression of ODC gene = 1). The bars indicate average and standard deviation of at least three independent 

experiments. The expression of CNC specific marker gene (A) twist, (B) snail and (C) slug are strong in CNC 

samples in comparison to whole embryo samples, whereas the expression levels of the mesoderm marker (D) 

xbra in the CNC samples are liminal. (E) The relative expression of the mesoderm marker xbra, placodal 

marker xeya1 and epidermis marker xk81 in comparison to CNC specific markers. (F) In situ hybridization for 

xeya1 after CNC is removed. Scale bar = 200 µm 
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5.1.1.4 Relative quantification of cadherin expression in CNC cells during migration 
 

To characterize the expression of different cadherins in CNC cells during their migration, RT-

qPCR amplification is performed on CNC explants of stage 17, 20 and 23. After the CT values 

are acquired, relative quantification is performed using 2!∆∆!! method. All CT values are first 

normalized to the expression of ODC gene. To exhibit the change of expression levels, the 

expression level of each cadherin subtype at stage 17 is chosen as a calibrator (=1). The 

calculated ratio from a later stage sample is the fold change of expression level of this cadherin 

relative to stage 17 (Fig 5.3 A-F).  

 
Fig 5.3 Relative expression of different cadherins in CNC cells during their migration. The expression 

level of (A) E-cadherin, (B) N-cadherin, (C) XB/C-cadherin, (D) Cadherin-11, (E) PCNS and (F) PAPC is shown 

as fold changes relative to stage 17. The expression of each cadherin at stage 17 is set as 1, and the 

expression ratio at stage 20 and stage 23 is the fold change relative to stage 17. At least three independent 

quantifications are performed and the bars indicate average values with standard deviations. 

 

In CNC explants, transcripts of several classical cadherins as well as protocadherins are 

identified by RT-qPCR. Besides N-cadherin, Cadherin-11 and PCNS, which are known to be 

expressed in CNC (Hadeball et al., 1998; Rangarajan et al., 2006; Theveneau et al., 2010), the 
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expressions of E-cadherin, XB/C-cadherin and PAPC are for the first time described in the CNC 

cells. The expression of AXPC, however, is below the detection level (not shown). All detected 

cadherins show an increase of expression from stage 17 to stage 20, where CNC cells are 

beginning to emigrate. Among these cadherins, Cadherin-11 has a remarkably huge increase in 

its expression with 16 fold. As the CNC cell are migrating ventrally towards the pharyngeal 

pouches from stage 20 to stage 23, the expression levels of E-cadherin, XB/C-cadherin and 

PAPC increase slightly in a similar manner, whereas the expression of Cadherin-11 continue to 

rise immensely to a level that is about a 70-fold increase compared to stage 17. In contrast, the 

expression level of N-cadherin and PCNS decreases from stage 20 to stage 23. 

 

5.1.1.5 Absolute quantification of cadherin expression during CNC migration 
 

Since transcripts of multiple cadherins have been identified in the CNC cells, relative 

quantification (with each expression level of stage 17 as reference) fails to compare the 

expression level of one cadherin subtype against other. To further quantify the molecule number 

of each cadherin subtype in the CNC cells, an absolute quantification of RT-qPCR is applied. A 

plasmid DNA containing a specific cadherin cDNA sequence is used to construct the standard 

curve. As standards for RT-qPCR, a serial of 10-fold dilutions of this plasmid is made. And the 

obtained CT values from these standards are used to generate the linear regression (see 

method). For each cadherin subtype, independent serial dilutions of the standards are assayed 

for at least three times, and the mean CT values from each dilution are use for generating the 

standard curve. The RT-qPCR determined CT values are plotted against the logarithm of the 

calculated initial copy numbers (Fig 5.4). 

The absolute copy numbers of different cadherins in the CNC samples are then determined from 

the corresponding standard curves (Fig 5.4). To eliminate the loading difference in the initial 

template materials, the calculated copy numbers of each cadherin are normalized against the CT 

values of the ODC gene.  
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Fig 5.4 Standard curve for (A) E-cadherin, (B) N-cadherin, (C) Cadherin-11, (D) XB/C-cadherin, (E) PCNS 

and (F) PAPC. The standard curves are calculated with serial 10-fold dilutions of the plasmid DNA, ranging 

from 10 to 1 × 108 copies/µl. Each standard dilution is amplified by RT-qPCR using validated primers in 

triplicates. For each gene, the determined CT values are plotted against the logarithm of their calculated initial 

copy numbers. Independent serial dilutions of the standards are repeated at least three times for each dilution 

and the mean value with standard deviation is shown. A standard curve is generated by linear regression 

through the points representing the mean values. The equation for the regression line and the correlation 

coefficient (R2) are shown above the graph. The equation is used to determine the starting quantity of the test 

sample from the experimental CT values. 
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Since the expression of the ODC gene has no significant change from stage 17 to stage 20 (data 

not shown), the mean CT value of ODC gene is calculated based on all test samples, which 

represents the average amount of material that has been amplified through RT-qPCR. The 

difference between the CT value of the ODC gene from individual test samples and the mean CT 

value of ODC is determined and divided by each copy numbers of cadherins.  

150 ng total RNA is originally used for cDNA synthesis. In order to calculate the exact amount of 

material used in RT-qPCR, it is assumed here that 150 ng of cDNA is obtained through reverse 

transcription. Total cDNA is then diluted 1:4, and 2 µl diluted cDNA is used as template for RT-

qPCR. The dilution factor is calculated and the copy number per ng RNA of each cadherin is 

shown in Table 5.2 and Fig 5.5. 

Name Copy number per ng RNA 

St.17 St.20 St.23 

Whole CNC Whole CNC Whole CNC 

E-cadherin 1403  

± 579 

181  

± 8 

2721 

 ± 1161 

607 

 ± 130 

1476 

 ± 698 

711 

 ± 80 

N-cadherin 139  

± 31 

275  

± 44 

662  

± 217 

513  

± 59 

545  

± 83 

526 

 ± 107 

XB/C-cadherin 694  

± 61 

233 

 ± 68 

1291 

 ± 340 

719 

 ± 153 

468  

± 248 

785 

 ± 156 

Cadherin-11 2.8  

± 1.8 

1  

± 0.4 

27 

 ± 3 

27 

 ± 25 

84 

 ± 19 

123 

 ± 36 

PCNS 173 

 ± 3 

1375 

 ± 625 

464  

± 135 

1708 

 ± 365 

320 

 ± 153 

1027  

± 368 

PAPC 54 

 ± 15 

20 

 ± 4 

198 

 ± 109 

60  

± 13 

172 

 ± 37 

61  

± 20 

Tab 5.2 Copy numbers of cadherins in whole embryo and in CNC cells (/ng RNA).  

 

The absolute quantification enables a quantitative comparison between each cadherin subtype in 

the CNC cells. The dominant cadherin expressed in the CNC cells during migration is the 

protocadherin PCNS. It is present with 1375 copies/ng RNA in premigratory CNC, later its 

expression increases to 1708 copies/ng RNA at emigration stage and finally decreases to 1027 

copies/ng RNA in migratory CNC cells (Fig 5.5 E, Tab 5.2).  
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Fig 5.5 Copy numbers of (A) E-cadherin, (B) N-cadherin, (C) XB/C-cadherin, (D) Cadherin-11, (E) PCNS, 

(F) PAPC in CNC cells (per ng RNA). CNC explants are dissected at the indicated stages. Copy numbers of 

each cadherin in different stages during CNC migration are determined via absolute quantification and copy 

numbers per ng of RNA are plotted. At least three independent quantifications are performed and the bars 

indicate average values with standard deviations. 

 

XB/C-cadherin is the second abundant cadherin expressed in CNC cells, with its copy number 

increases from 233 copies/ng to 719 copies/ng RNA at stage 20, and then continues its 

expression with 785 copies/ng RNA at stage 23 (Fig 5.5 C, Tab 5.2). Expression of E-cadherin 

begins from 181 copies/ng RNA at stage 17 to 607 copies/ng RNA at stage 20, and then 

increases again to 1476 copies/ng RNA at stage 23 (Fig 5.5 A, Tab 5.2). N-cadherin is also 

expressed stably in CNC cells, with 275 copies/ng RNA copies detected at stage 17, then 513 

copies/ng RNA at stage 20 and finally 526 copies/ng RNA at stage 23 (Fig 5.5 B, Tab 5.2). 

Transcripts of Cadherin-11 and PAPC are present in relatively low abundance compared to other 

cadherins mentioned above. Nevertheless, consistent with the relative quantification data, the 

expression of Cadherin-11 rises most extravagantly among all cadherin subtypes during CNC 

migration from 1 copy/ng RNA at stage 17, 27 copies/ng RNA at stage20 to 123 copies/ng RNA 

at stage 23 (Fig 5.5 D, Tab 5.2). The expression of PAPC in CNC cells increases from stage 17 
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with 20 copies/ng RNA to 60 copies/ng RNA at stage 20, then constant with 61copies/ng RNA 

until stage 23 (Fig 5.5 F, Tab 5.2).  

In order to further explicate the copy number of different cadherin subtypes on a single cell level, 

the number of cells within a CNC explant is determined by staining the nuclei of CNC explants 

with DAPI. The average cell number of a CNC explant is 573 ± 23 cells/explant. Assumed 

average 90 CNC explants are collected in the sample, same calculation of dilution factor is 

applied. It is determined then approximately 0.3 CNC explant is deployed as initial template in 

every PCR reaction mixture, which represents about 160 CNC cells. The copy number per CNC 

cell is then calculated by dividing the copy number of sample by 160. Here it is assumed that 

CNC explants from stage 20 and stage 23 have the same cell number as that from stage 17. The 

calculated copy numbers of each cadherin per cell are shown in Table 5.3 and Fig 5.6.  

Name Copy number per CNC cell 

St.17 St.20 St.23 

E-cadherin 4.2 ± 0.2 14.2 ± 3.0 16.7 ± 1.9 

N-cadherin 6.4 ± 1.0 12.0 ± 1.4 12.3 ± 2.5 

XB-cadherin 5.5 ± 1.6 16.9 ± 3.6 18.4 ± 3.7 

Cadherin-11 0.03 ± 0.009 0.6 ± 0.08 2.9 ± 0.8 

PCNS 32.2 ± 14.7 40.0 ± 8.6 24.1 ± 8.6 

PAPC 0.5 ± 0.1 1.4 ± 0.3 1.4 ± 0.5 

Tab 5.3 Copy numbers of cadherin transcripts per CNC cell. 

 

With less than 15 copies/cell, E-cadherin, N-cadherin, PCNS and PAPC belong to the class of 

mRNAs, which comprises most mRNAs species in each cell, but expressed at a low level (5 to 

15 molecules/cell for a typical mammalian cell) (Alberts B, 2002). PCNS with 24 copies/cell to 40 

copies/cell (Fig 5.6, Tab 5.3) throughout migration phases can be categorized to the class of 

mRNAs, which present at an intermediate level (15 to 300 molecules per cell for a typical 

mammalian cell). To a lesser extent, XB/C-cadherin with respectively 17 copies/cell at stage 20 

and 18 copies/cell at stage 23 can also be categorized to the mRNA class with intermediate 

abundance (Fig 5.6, Tab 5.3). 
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Fig 5.6 Copy number comparison of cadherin subtypes per CNC cell during their migration. CNC 

explants are dissected at the indicated stages. Copy numbers of each cadherin at different stages during CNC 

migration are determined via absolute quantification and copy numbers per CNC cell are plotted. At least three 

independent quantifications are performed and the bars indicate average values with standard deviations. 

 

To better understand the abundance of the different cadherin subtypes in Xenopus cells in 

general, RT-qPCR assay is applied also for the quantification of cadherin molecules in whole 

embryo samples of same stages. Same amount of total RNA (150 pg) is used as initial template 

in PCR amplification and the gained CT values are evaluated for absolute quantification in the 

same manner as for CNC cell samples. The calculated copy number of each cadherin subtype is 

shown in Table 5.2 and Figure 5.7. 
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Fig 5.7 Comparison of cadherin expression in a whole embryo and in CNC cells. Whole embryo samples 

and CNC explants are collected at the indicated stages. The correlation between the two kinds of source 

materials is about one single embryo compared to roughly 22 CNC explants. Same amount of total RNA from a 

whole embryo and CNC explants is deployed for PCR amplification. Copy numbers of cadherins are 

determined via absolute quantification of RT-qPCR and copy numbers per ng of RNA are plotted. At least three 

independent quantifications are performed and the bars indicate average values with standard deviations. 

 

It is noteworthy, that by applying the same amount of initial RNA in the RT-qPCR assay, the 

correlation between the two kinds of source materials is about one single embryo compared to 

roughly 22 CNC explants (calculated from the achieved average concentration of both 

materials). Taken that into consideration, the comparison of the whole embryo sample and the 

CNC sample elucidate further the enrichment of PCNS in CNC cells, where in case of E-

cadherin and PAPC, the expression in the CNC cells represent a relative small portion compared 

to their expressions in other tissues. N-cadherin and XB/C-cadherin have relative abundant 

transcripts also in the whole embryo sample.The accumulation of Cadherin-11 in the whole 

embryo from stage 17 to stage 23 matches its pattern of increase in CNC cells.  
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5.1.2 Localization of endogenous cadherin in CNC cells 
 

The quantification of cadherin transcripts in CNC cells via RT-qPCR establishes the mRNA 

expression levels of multiple cadherins. To further investigate the subcellular localizations of 

different cadherin subtypes, immunofluorescence staining are performed on CNC explants. The 

localizations of N-cadherin and Cadherin-11 are shown before using GFP tagged constructs, N-

cadherin is localized at cell-cell contacts (Becker et al., 2012), whereas Cadherin-11 is 

additionally found in cell protrusions and in focal adhesions (Kashef et al., 2009; Langhe et al., in 

revision).  

Localization showed with tagged cadherin constructs results in an overexpression situation and 

therefore do not necessarily represents the endogenous expression pattern of the cadherin. In 

this work, the subcellular localization of endogenous cadherins are demonstrated in the CNC 

explants using specific antibodies. To analyse the subcellular localization of cadherins, 500 pg 

mRNA of membrane bound GFP (mbGFP) are injected as lineage tracer in one blastomere at 

two-cell stage embryos. At stage 17, labelled CNC cells are explanted on fibronectin coated 

glass dishes, fixed and immunostained. The localization of endogenous cadherin is analysed by 

the spinning disk microscope.  

Despite the high sequence homology of XB-cadherin and C-cadherin, the 6D5 monoclonal 

antibody detects specifically XB-cadherin (Muller et al., 1994), while the 6B6 antibody (Brieher 

and Gumbiner, 1994) is able to react with both C-cadherin and XB-cadherin. Using these two 

antibodies, XB-cadherin and C-cadherin are both detected in the CNC explants and their 

expressions are localized strongly at cell-cell contacts (Fig 5.8 A, B). N-cadherin is localized at 

cell-cell contacts in CNC explant (Fig 5.8 C), which consists with the localization shown by the N-

cadherin-GFP construct (Becker et al., 2012). Likewise, E-cadherin is expressed at cell-cell 

contacts in CNC cells as well (Fig 5.8 D). The detection of endogenous cadherin proteins by 

immunofluorescence staining confirms the results of RT-qPCR that XB-cadherin, C-cadherin, N-

cadherin and E-cadherin are expressed in CNC cells.  

 



  
5 Results 

 

 
 74 
 

 
 
Fig 5.8 Immunostaining of cadherins in CNC cells. Immunostaining is performed on the CNC explants with 

primary antibody against (A) C-cadherin (6B6) (Brieher and Gumbiner, 1994) , (B) XB-cadherin (6D5) (Muller et 

al., 1994), (C) N-cadherin (MNCD2) (Theveneau et al., 2010), (D) E-cadherin (10H3) (Angres et al., 1991) and 

secondary antibody cy3. The second column shows the GFP marked membrane. The third column shows DAPI 

staining of nuclei. The fourth column shows merge pictures from the three channels. Scale bar = 10 µm 

 

The endogenous localizations of PAPC and PCNC cannot be shown here due to lack of specific 

antibodies. Therefore, GFP tagged constructs are injected in the animal dorsal blasotomere at 

eight-cell stage. mRNA of membrane bound Cherry (mbCherry) is co-injected as lineage tracer. 

At stage 17, labelled CNC cells are explanted on fibronectin coated glass dishes. The 

localization of PAPC and PCNS is analysed by the spinning disk microscope. 
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Fig 5.9 Localization of PCNS and PAPC in CNC cells. (A) PCNS is localized at cell-cell contacts, in vesicles 

and within cell protrusions (arrowhead), from (Becker et al., 2012) (B) PAPC is localized at cell-cell contacts 

and in vesicles. Embryo is injected respectively with PCNS-GFP and PAPC-eGFP and explanted at stage 17. 

Membrane bound cherry (mbCherry) is co-injected to label the membrane. Scale bar = 10 µm 

 

PCNS is localized at cell-cell contacts, in cell protrusions and in intracellular vesicles (Fig 5.9 A). 

PAPC is observed also at cell-cell contacts and in vesicles (Fig 5.9 B). 

 

 

5.2 Functional analysis of E-cadherin in Xenopus cranial 
neural crest cell migration 

 
During the characterization of multiple cadherin subtypes in CNC cells, E-cadherin and the 

protocadherin PAPC are identified as two novel candidates that could be involved in the 

collective migration of CNC cells. The role of PAPC in regulating CNC migration is described in 

Schneider et al., 2014, while the function of E-cadherin in CNC cells is investigated in this work. 

 

5.2.1 Heterogeneous E-cadherin expression in CNC subpopulations 
 

Transcripts of E-cadherin are previously identified in CNC cells by RT-qPCR (Fig 5.3 A, Tab 5.2) 

and the subcellular localization of E-cadherin is demonstrated by immunofluorescence staining 

of CNC explants in vitro (Fig 5.8 D). To further verify the subcellular localization of E-cadherin in 

CNC cells in vivo, immunofluorescence staining for endogenous E-cadherin is performed on 

whole embryo cryosections (frozen section). To visualize CNC tissue in whole embryo sections 
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transplantation experiments are performed. Thereby, CNC cells are fluorescence labelled by 

injecting the donor embryo with 500 pg histone 2B GFP (H2B GFP) mRNA in one blastomere at 

two-cell stage. At stage 17, H2B GFP positive CNC cells are transplanted one-sided into another 

unlabelled, stage-matched, wild type host embryo (Fig 5.10 A). Transplanted embryos are left to 

heal properly and fixed at stage 27. Embedded whole embryos are subsequently tranverse 

sectioned (Fig 5.10 A) and immunofluorescence stained for E-cadherin using the monoclonal E-

cadherin antibody 5D3 (Choi and Gumbiner, 1989). Images are taken by a spinning disk 

microscope. 

 

 
Fig5.10 E-cadherin is differently expressed in distinct CNC subpopulations. Immunofluorescence staining 

against E-cadherin 5D3 (Choi and Gumbiner, 1989) is performed on cryosections of whole embryos. Two 

transplanted embryos (B, F) with crop images are displayed (A) Schematics of the experimental approach for 

visualizing CNC cells in whole embryo sections: Xenopus embryo is injected with H2B GFP mRNA and the 

labelled CNC cells are transplanted into another unlabelled wild type host embryo. Transplanted embryos are 

fixed at stage 27 and transverse sectioned. (B, F) H2B GFP labelled CNC cells mark the mandibular (ma), 
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hyoid (hy) and branchial (br) CNC subpopulations in whole embryo section. Cropped image of mandibular (C, 

C’), hyoidal (D, D’; G, G’) and branchial (E, E’; H, H’) segment. Dashed orange lines indicate the boundary 

between epithelia (Epi) and CNC. Arrow shows E-cadherin staining in epithelia. Arrowhead indicates staining of 

E-cadherin in CNC. α-E-cad: anti-E-cadherin antibody (5D3); H2B GFP: CNC injected with H2B GFP mRNA; 

BF: bright field. Scale bar = 20 µm. 

 

In Figure 5.10, two transplanted embryos (B and F) with crop images are displayed. Utilizing 

H2B GFP as lineage tracer, the CNC cells from donor embryos can be well distinguished from 

host tissue in the whole embryo sections (Fig 5.10 B, F). H2B GFP positive donor CNC cells are 

distributed in three subpopulations: mandibular, hyoid and branchial (anterior and posterior part), 

which are located directly adjacent to the epithelia (Fig 5.10 B, F). E-cadherin is localized in all 

CNC subpopulations (Fig 5.10 C, D, E, H arrowheads). Interestingly, the mandibular and hyoid 

subpopulations showed a relatively weak staining of E-cadherin (Fig 5.10 C, D, G arrowheads) 

compared to the posterior part of the branchial subpopulation, which exhibited a strong E-

cadherin staining (Fig 5.10 E, E’, H, H’ arrowheads). 

E-cadherin is localized predominantly at the cell-cell boundary, similar to the observation from 

immunofluorescence staining on CNC explants (Fig 5.8 D). The differential E-cadherin 

distribution in mandibular, hyoid and branchial arches suggests that different CNC 

subpopulations express E-cadherin in a heterogeneous manner.  

 

5.2.2 E-cadherin expressing CNC cells could contribute to otic vesicle formation 
 

It is generally accepted that the middle ear ossicles are CNC derivatives, and the branchial 

stream of CNC also contributes to the otic capsule formation, which surrounds and protects the 

inner ear (Gross and Hanken, 2008). Interestingly, it has also been shown in mice that the CNC 

contribute directly to the otic vesicle, which eventually forms the inner ear (Freyer et al., 2011). 

Among the cryosections that are immunofluorescence stained for E-cadherin, it is observed that 

some populations of H2B GFP positive CNC cells arrange in a radial fashion, which probably 

corresponds to the invaginated otic vesicle at stage 27 (Fig 5.11 A-D).  
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Fig5.11 E-cadherin expressing CNC cells contribute to the otic vesicle. Immunofluorescence staining 

against E-cadherin is performed on cryosections of whole embryos. (A, C) Transplanted whole embryo section 

shows H2B GFP labelled otic vesicle. (B, B’) Cropped image of (A) shows E-cadherin staining of CNC cells 

located within the otic vesicle. (D, D’) Cropped image of (C) shows E-cadherin positive CNC located adjacent to 

the otic vesicle. Dashed orange lines indicate the boundaries of the epithelia (Epi). Arrow shows E-cadherin 

positive CNC cells outside the otic vesicle. Arrowhead shows staining of E-cadherin in the otic vesicle. OV: otic 

vesicle. α-E-cad: anti-E-cadherin antibody (5D3), H2B GFP: CNC injected with H2B GFP mRNA. Scale bar = 

20 µm. 

 

The otic vesicle is identifiable at this stage in sections as closed structure and has become 

detached from the epidermis (Fig 5.11 A, C). E-cadherin positive CNC population is observed to 

localize within the otic vesicle, indicating E-cadherin expressed CNC subpopulation could directly 

contribute to otic vesicle formation. Moreover, E-cadherin positive CNC cells are also found in 

close proximity but outside the otic vesicle structure (Fig 5.11 C, D arrows). This cell population 

could correspond to the sensory ganglion, which are located adjacent to the otic vesicle at this 

stage embryo (Quick and Serano, 2005).  
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5.2.3 E-cadherin protein is present in CNC throughout migration  
 
To further verify the expression of E-cadherin during CNC migration on the protein level, 

immunoblotting for E-cadherin is performed with CNC explants. CNC explants are dissected 

from wild type embryos at stage 17, 20 and 23 respectively and the extracted proteins are 

enriched by ConA precipitation. Immunodetection is carried out with the E-cadherin specific 

antibody (5D3) (Choi and Gumbiner, 1989), whereas α-Tubulin is served as loading control. 

Protein samples applied for immunoblotting correspond to about 250 CNC explants for each 

stage. Endogenous E-cadherin is detected at estimated size (130 kDa) in CNC explants at stage 

17, 20 and 23 (Fig 5.12).  

 
Fig5.12 Immunoblotting of endogenous E-cadherin expression in CNC explants. 250 CNC explants are 

dissected from wild type Xenopus embryos at indicated stages and cell lysates are prepared. Concanavalin A 

beads are used for enrichment of the protein samples and immunodetection is performed using E-cadherin 

antibody (5D3). Endogenous E-cadherin is detected in CNC explants in stage 17, 20 and 23. Immunodetection 

against α-Tubulin is served as loading control. PageRuler prestained protein ladder is used as marker.  

 

5.2.4 Knockdown of E-cadherin blocks CNC migration in vivo 
 

As E-cadherin is expressed throughout CNC migration, it is intriguing to investigate whether E-

cadherin plays a role in mediating CNC migration. To examine this, loss-of-function analyses are 

conducted using an antisense morpholino oligonucleotide against E-cadherin (E-cad MO). 

Injections are performed in the dorsal animal blastomere D1.2 of 16-cell stage embryos (arrow in 

Fig 5.13 A) to target specifically the CNC tissue.  
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Fig5.13 E-cadherin knockdown blocks CNC migration in vivo. (A) Knockdown experiment is performed by 

injecting morpholino oligonucleotide against E-cadherin (E-cad MO) in the animal dorsal blastomere D1.2 in 16-

cell stage embryos. (B, C) In situ hybridization for the CNC marker twist and AP2 demonstrates migration 

defect caused by E-cadherin knockdown. Statistic of the in situ hybridization is shown in (C). Bars indicate 

average percentage of embryos with CNC migration defect with standard deviations. * indicates the injected 

site. (D) Transplantation experiments of E-cadherin knockdown CNC cells into wild type host embryo. E-cad 

depleted CNC cells are unable to migrate ventrally into the pharyngeal pouches. (E) Efficiency test of E-cad 

MO by immunoblotting. Endogenous E-cadherin expression is significantly reduced in E-cad MO injected 

embryos, but not in wild type embryos or embryos injected with control morpholino (CoMO). PageRuler 

prestained protein ladder is used as marker. Significance in C and D is calculated by one-tailed test 

(Wissenschaftliche Arbeit, V. Knotz, 2013). Scale bar in B and D = 200 µm 
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8 ng E-cad MO is injected together with Dextran-FITC as lineage tracer. As control, a standard 

control morpholino oligonucleotide (CoMO) is used (Gene Tools and Phalanx Biotech Group). 

The MO injected embryos are cultured until stage 25 and sorted according to the injected site. In 

situ hybridization with the CNC marker twist and AP2 as probe are carried out on fixed embryos. 

As shown in Fig 5.12 B, the injection of E-cad MO blocks significantly CNC migration in vivo. 

46% (N=4, n=85) of the E-cad MO injected embryos exhibit migration defect shown by twist (Fig 

5.13 C), where the mandibular stream of CNC is able to migrate ventrally, but not the hyoid and 

branchial streams (Fig 5.13 B). Staining with AP2 displays 66% (N=7, n=104) of the embryos 

with migration defect (Fig 5.13 C), where the mandibular, hyoid, and branchial streams are 

partially fused and can only be observed in dorsal region of the embryo (Fig 5.13 B). Similarly, 

grafted E-cadherin knockdown CNC cells are unable to migrate into the pharyngeal pouches (Fig 

5.13 D) in wild type host embryo.  

The specificity of the E-cad MO is confirmed by immunoblotting. The E-cad MO and CoMO are 

injected in both blastomeres of a two-cell stage embryo. Embryos are lysed at stage 11 and 

proteins are extracted. Immunodetection is carried out against endogenous E-cadherin, using 

the E-cadherin antibody 5D3. Both, untreated wild type embryos and CoMO injected embryos 

display endogenous E-cadherin expression, whereas the E-cad MO injected embryos show 

significantly reduced E-cadherin expression (Fig 5.13 E). 

CNC cells migrate ventrally to colonize the arches and contribute to the formation of facial 

skeletal structures and cartilages (Sadaghiani and Thiébaud, 1987). To evaluate the involvement 

of E-cadherin in regard to cartilage formation, E-cad MO is injected as described above in 16-cell 

stage embryos. Injected embryos are cultivated up to stage 47 and stained with Alcian Blue 

solution, which stains the cartilages. As control, CoMO is injected and the embryos are treated in 

the same manner as E-cad MO morphants.  

The CNC cells of the mandibular arch give rise to the Merkel’s cartilage (M) and the 

palatoquadrate cartilages (Q) that constitute the lower and upper jaw elements, respectively 

(Cerny et al., 2004; Lee et al., 2004). The CNC cells of the hyoid arch generate skeletal 

structures such as the stapes in the middle ear or structures involved in respiration and providing 

support for the tongue, for example the ceratohyal cartilage (C), and the branchial arches give 

rise to skeletal support for grills or throat structures (Fig 5.14 A) (Baltzinger et al., 2005). Injection 

of the E-cad MO results in a branchial arch phenotype, in that the E-cad MO injected side of the 

embryo displays size reduction of the grill cartilage (G). The formation of Merkel’s and 
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palatoquadrate cartilage as well as the ceratohyal cartilage appears to be normal (Fig 5.14 B). 

No difference is observed on the CoMO injected side of the embryo.  

 

 
Fig5.14 E-cadherin knockdown leads to branchial specific cartilage defect. (A) Scheme of the Xenopus 

cartilage structure at stage 47 (ventral view), adopted from Baltzinger et al., 2005. M: Merkel’s cartilage; Q: 

Palatoquadrate cartilage; C: Ceratohyal cartilage; G: Grill cartilage (B) Cartilage staining of CoMO and E-cad 

MO injected embryo at stage 47. Ventral view of the embryos are shown with * indicating the injected site. E-

cad MO injected side of the embryo shows reduced branchial arch specific cartilage. White dashed line shows 

the middle line of the cartilage. Black dashed line indicates the reduced grill cartilage on E-cad Mo injected 

side. Scale bar = 350 µm. 

 

5.2.5 E-cad MO caused CNC migration defects can be rescued by co-injection of 
an E-cadherin full-length rescue construct 

 

To further demonstrate the specificity of E-cad MO causing the CNC migration defect, rescue 

experiments are carried out with an E-cadherin rescue construct where the MO binding site is 

mutated. The sequences of the MO binding sites from unmutated full length E-cadherin with a 

HA-tag (E-cadfl-HA), the mutated rescue construct E-cadherin-HA (E-cadMu-HA) and the E-cad 

MO are shown in Fig 5.15 A. The expression of E-cadMu-HA construct is examined by 

immunoblotting against the HA-tag. 500 pg mRNA of E-cadfl-HA is injected alone or together 

with 8 ng E-cad MO in both blastomeres of a two-cell stage embryo. mRNA of E-cadMu-HA is 

co-injected with E-cad MO in the same manner. Embryos are lysed at stage 11 and 

immunodetected for the HA-tag (Fig 5.15 B). The E-cadfl-HA is expressed at the estimated size 

(130kDa) and co-injection with E-cad MO diminishes the expression of E-cadfl-HA, since the 

translation of E-cadfl-HA is inhibited upon MO binding. However, the expression of the mutated 

rescue construct E-cadMu-HA is not affected by the co-injected E-cad MO. The E-cadMu-HA 
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construct (later as E-cadMu) is therefore used as full-length rescue construct for the following 

reconstitution experiments. 

 
 
Fig5.15 Rescue construct of E-cadherin is expressed in the embryo and does not bind the E-cadherin 

morpholino. (A) The MO binding site sequence of the unmutated full length E-cadherin with a HA-tag (E-cadfl-

HA), the MO binding site mutated E-cadherin rescue construct (E-cadMu-HA) and the E-cadherin morpholino 

(E-cad MO) is shown. Mutated nucleotides are indicated in red. (B) Expression of the E-cadherin rescue 

construct (E-cadMu) in embryos. Embryos are injected with mRNA of E-cadfl-HA, E-cadfl-HA along with E-cad 

MO and E-cadMu-HA along with E-cad MO, respectively. Immunodetection is performed on cell lysates against 

the HA-tag and α-Tubulin. WT: uninjected wild type embryos. Anti-α-Tubulin is served as loading control. 

PageRuler prestained protein ladder is used as marker. 

 

First, different concentrations of the E-cadMu mRNA are co-injected with 8 ng E-cad MO in the 

dorsal animal blastomere in 16-cell stage embryos to titrate the rescue ability of this construct. 

Migration of CNC cells is analysed by in situ hybridization with twist on injected embryos at stage 

25 (Fig 5.16 A).  
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Fig5.16 Rescue experiments with the full-length E-cadherin rescue construct (E-cadMu). (A) Titration 

experiments for the effective dose of co-injected E-cadMu mRNA. Injection of E-cadMO as well as co-injection 

of E-cadMO and different concentrations of E-cadMu is carried out at 16-cell stage. Injected embryos are raised 

up until stage 25 and fixed for in situ hybridisation. twist is used as in situ probe and the bars indicate average 

percentage of embryos with CNC migration defect. * indicates the injected site. (B, C) Rescue experiments with 

25 pg of E-cadMu mRNA are repeated and analysed by in situ hybridisation using both twist and AP2 as probe. 

At least three independent experiments are performed and the average percentage is shown with standard 

deviations. Significance is calculated by one-tailed test (Wissenschaftliche Arbeit, V. Knotz, 2013). Scale bar = 

200 µm. 
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As shown in Fig 5.16 A, of all mRNA concentration tested in the assay (concentration range from 

10 pg to 1 ng), the best rescue effect is obtained with 25 pg of E-cadMu mRNA co-injected with 8 

ng E-cad MO, which reduces the E-cad MO phenotype from 41% (N=4 n=85) CNC migration 

defect to 21% (N=3, n=159) (Fig 5.16 A, B).  

Rescue experiments with 25 pg mRNA of E-cadMu are repeated following in situ hybridization 

using additionally the CNC marker AP2 as probe. Co-injection of 25 pg E-cadMu mRNA along 

with E-cad MO restores the signal of AP2 in mandibular, hyoid and branchial crest streams 

further in ventral region of the embryo (Fig 5.16 B), showing correct migration of CNC cells. And 

the frequency of phenotype is significantly reduced from 66% to 38% (N=4, n=62) (Fig 5.16 C). 

These results suggest that a rescue of the E-cadherin knockdown phenotype can be achieved by 

co-injecting of full-length E-cadherin rescue construct mRNA in a dose dependent manner. 

Notably, the observed rescue is a partial rescue of about 50% of the phenotype, which is 

statistically significant.  

 

5.2.6 E-cadherin knockdown CNC cells fail to form cell protrusions in vitro 
 

When CNC explants are dissected and plated on a fibronectin coated surface, wild type CNC 

cells adhere to the substrate surface and form cell protrusions in forms of filopodia and 

lamellipodia. Since the E-cadherin knockdown inhibit the migration of CNC cells in vivo, it is 

interesting to examine whether the cell morphology is influenced by the depletion of E-cadherin. 

Therefore, Xenopus embryos are injected with 8 ng of E-cad MO in the dorsal animal D1.2 

blastomere at 16-cell stage. 500 pg of each membrane bound cherry (mbcherry) and H2B GFP 

mRNAs are co-injected to visualize the cell membrane and nucleus, respectively. CNC cells are 

explanted at stage 17 and cultured on fibronectin for one hour. Cell morphology is then analysed 

by the spinning disk microscope. 

Compared to wild type CNC or CoMO treated CNC cells, E-cadherin depleted cells generally do 

not survive well in vitro, as the cells at the edge of the explant dissociate and die within a few 

hours after dissection (Fig 5.17 B arrows), whereas wild type CNC or CoMO injected CNC cells 

have stable contacts towards other cells and stay as cell cluster for several hours. Moreover, E-

cad depleted CNC cells display a more rounded morphology with significantly less protrusion 

formation (Fig 5.17 B arrowheads) compared to CoMO treated cells (Fig 5.17 A). Cell blebbings 

are additionally observed among E-cadherin knockdown cells (Movie1). 
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Fig5.17 E-cadherin knockdown alter protrusion formation in CNC cells in vitro. Embryos are injected with 

indicated constructs and the corresponding CNC explants are shown. (A) Injection of CoMO has no influence 

on CNC cell morphology. (B) E-cad knockdown CNC cells fail to form stable protrusions and show cell blebbing 

(arrow). Dead cells are often observed (arrows). (C) Protrusion formation (arrowhead) is restored by co-

injecting 25 pg E-cadherin rescue construct (E-cadMu). (D) CNC cells injected with E-cadherin rescue construct 

(E-cadMu) alone display normal cell morphology. All constructs are injected at 16-cell stage along with 

membrane cherry (mbcherry) and H2B GFP mRNA as lineage tracer. Scale bar = 20 µm. 

 

To test whether the change in cell morphology is specifically caused by the E-cadherin 

knockdown, the rescue experiment is conducted by co-injection of the full-length E-cadherin 

rescue construct (E-cadMu). Embryos are injected with 8 ng E-cad MO along with 25 pg E-

cadMu mRNA, which is the same dose used in CNC migration rescue experiment in vivo. 

Compared to E-cadherin depleted cells (Fig 5.17 B), co-injection of E-cadMu rescued cell 

protrusion formation (Fig 5.17 C arrowheads, Movie 2). Expression of E-cadMu alone does not 

change the cell morphology (Fig 5.17 D). 

 

5.2.7 The extracellular domain of E-cadherin is important for CNC migration in vivo  
 
To identify which domain in the E-cadherin is necessary to mediate CNC migration, the rescue 

ability of different E-cadherin deletion mutants are tested. The extracellular domains (EC) of 

cadherins are important for the adhesive function of E-cadherin. A conserved tryptophan residue, 

Tryptophan (Trp2), forms a side chain that docks into a hydrophobic pocket in the partner EC1 

domain (Harrison et al., 2011). The hydrophobic pocket is formed by a conserved His-Ala-Val 

(HAV) motif (Harrison et al., 2011). Compared to the full-length E-cadherin rescue construct (E-

cadMu), a dominant negative form of E-cadherin rescue construct (DN E-cadMu) inhibits the 

homophilic binding of cadherins, by mutating both Trp2 and HAV motif in the EC1 domain. 

Therefore in DN E-cadMu, the Trp2 is replaced with alanine and the alanine residue in the HAV 

motif is replaced with methionine (Fig 5.18 B). To block the intracellular function of E-cadherin, a 
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cytoplasmic domain depleted form of E-cadherin (Ecad ΔC) is generated, by removing the 

juxtamembrane domain and the catenin-binding domain in E-cadherin (Fig 5.18 B).  

 

 
 

Fig5.18 The extracellular domain of E-cadherin can best reconstitute CNC migration in vivo.  
(A) In situ hybridization with AP2 as probe. Embryos are injected with indicated constructs and fixed at stage 

25. Statistic of the in situ hybridisation is shown in (C), bars indicate the percentage of embryos with migration 

defect. At least three independent experiments are performed and the average percentage is shown with 

standard deviations. * indicates the injected site. (B) Structures of E-cadMu (fl), DN E-cadMu and E-cadMuΔC. 

The Trp2 in EC1 domain is mutated to alanine, and the alanine in the HAV motif is replaced with methionine. 

The juxtamembrane domain and catenin-binding domain of E-cadMu is deleted in E-cadMuΔC. Significance is 

calculated by one-tailed test (Wissenschaftliche Arbeit, V. Knotz, 2013). Scale bar = 200 µm. 
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E-cad MO and E-cadherin mutants are injected in the animal dorsal blasotomere in 16-cell stage 

embryos. CNC migration is then investigated on injected embryos at stage 25 by in situ 

hybridisations using AP2 as probe. Co-injection of 25 pg DN E-cadMu mRNA with 8 ng E-cad 

MO is able to restore the migration of three CNC streams (Fig 5.18 A) and decrease the ratio of 

embryos with CNC migration defect from 57% to 39% (N=4,n=250), similar to the rescue effect 

obtained by E-cadMu (fl) (Fig 5.18 A, C). 

Surprisingly, co-injection of 25 pg E-cadMuΔC mRNA restores CNC migration even better as the 

percentage of embryos with migration defect decreases to only 20% (Fig 5.18 A, C). Additionally, 

when injected alone, neither DN E-cadMu nor E-cadMuΔC has influence on CNC migration (Fig 

5.18 A, C). Taken together, these results suggest that both E-cadherin mutants are able to 

rescue the E-cad MO phenotype and an E-cadherin with functional EC1 domain, but lacks the 

cytoplasmic domain achieves the best rescue effect for reconstitution CNC migration in E-

cadherin morphants.  

 

5.2.8 Extracellular domain of E-cadherin is sufficient to rescue cell protrusion 
formation in vitro 

 
Since the cytoplasmic domain deleted E-cadherin construct (E-cadMuΔC) rescues CNC 

migration in vivo, the question raises whether cell protrusion formation can also be rescued in 

vitro. Therefore, embryos are injected with 8 ng E-cad MO along with either 25 pg DN E-cadMu 

or E-cadMuΔC mRNA at 16-cell stage. Injection of E-cad MO alone serves as control (Fig 5.19 

A).  

 
Fig5.19 E-cadMuΔC restores protrusion formation in CNC cells in vitro. Embryos are injected with 

indicated constructs and the corresponding CNC explants are shown. (B) Cells injected with DN E-cadMu and 

E-cad MO fail to form proper protrusion and show cell blebbing (arrowhead). Also, cells do not survival well and 

dead cells are often observed (arrow). (C) Co-injection of E-cadMuΔC rescues protrusion formation. DN E-
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cadMu and E-cadMuΔC are injected as 25 pg mRNA. All constructs are injected at 16-cell stage along with 

membrane cherry (mbcherry) and H2B GFP mRNA as lineage tracer. Scale bar = 20 µm 

CNC cells from DN E-cadMu co-injected embryos display cell blebbing and less protrusion 

formation (Fig 5.19 B, Movie 3). On the contrary, co-expressing E-cadMuΔC restores largely the 

protrusion formation of CNC cells (Fig 5.19 C Movie 4). This result indicates that the cytoplasmic 

domain of E-cadherin is expendable for cell protrusion formation, and a functional extracellular 

domain is required for CNC cells to maintain normal cell morphology in vitro.  

 

5.2.9 E-cadherin knockdown do not disturb early CNC specification 
 
Until now, it is shown that E-cadherin is involved in CNC migration. To confirm that the CNC cells 

are indeed properly formed at premigratory stage, and that the migration defects are not due to 

disturbed CNC specification, the expression of several neural crest specifier genes are analyzed 

in E-cadherin knockdown embryos. C-myc is one of the earliest neural crest specifier in 

Xenopus, which is expressed first in a broad domain at the neural plate border and later 

becomes restricted to newly formed neural crest cells (Bellmeyer et al., 2003). Another neural 

crest specifier is AP2, which is strongly expressed during neural crest formation (de Crozé et al., 

2011). Additionally, twist serves as a neural crest specifier active at premigratory stage of CNC 

(Prasad et al., 2012).  
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Fig5.20 The early specification of E-cadherin knockdown CNC cells at premigratory stage is not 

impaired. (A) Embryos are injected with 8 ng E-cad MO at 16-cell stage. Injected embryos are fixed at stage 

17 and in situ hybridisation is performed using c-myc, AP2 and twist as probe. * indicates the injected site. (B) 

Bars indicate the percentage of embryos with reduced expression of marker gene. At least three independent 

experiments are performed and the average percentage is shown with standard deviations. Scale bar = 100 

µm. Significance is calculated by one-tailed test (Wissenschaftliche Arbeit, V. Knotz, 2013). 

 

To assess the expression of these genes, 8 ng E-cad MO is injected in the same manner as 

described above at 16-cell stage and the embryos are raised up until stage 17. In situ 

hybridization is performed using c-myc, AP2 and twist as probe, respectively. Embryos injected 

with CoMO are served as control. As shown in Fig 5.20, the expression of c-myc and AP2 is not 

influenced by the injection of E-cad MO. Interestingly, twist expression is significantly reduced in 

45% (N=3, n=103) of E-cad MO injected embryos. These results suggest that upon E-cadherin 

knockdown, the CNC cells are formed at premigratory stage, since the expression of c-myc and 

AP2 are not impaired. However, the twist expressing CNC population is disturbed.  

 

5.2.10 N-cadherin and E-cadherin have distinct functions in CNC migration  
 
The role for N-cadherin during CNC migration has been shown by in vivo and in vitro studies and 

both overexpression and MO knockdown of N-cadherin block CNC migration (Theveneau et al., 

2010). Considering the overlap of their expressions during CNC migration and the inhibitive 

effect on CNC migration, there is likely to be a functional redundancy between N-cadherin and E-

cadherin in mediating CNC cell migration, which would have also explained the relative weak 

phenotype in loss of function experiment when a single gene is targeted. To test whether an 

additive effect by simultaneously knockdown of both E-cadherin and N-cadherin can be 

observed, different combinations of N-cadherin MO (N-cad MO) and E-cad MO is co-injected in 

embryo (Fig 5.21 B).  
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Fig5.21 Double knockdown of E-cadherin and N-cadherin does not achieve an additive effect in regard 

to loss of CNC migration. (A) MOs are injected in the dorsal animal blasotomere in 16-cell stage embryos. 

Embryos are fixed at stage 25 and in situ hybridisation is performed using twist as probe. * indicates the 

injected site. (B) “+” symbolizes for 8 ng morpholino injection and “++” symbolizes for 16 ng morpholino 

injection. Bars indicate the percentages of embryos with CNC migration defect. At least three independent 

experiments are performed and the average percentage is shown with standard deviations. Significance is 

calculated by one-tailed test (Wissenschaftliche Arbeit, V. Knotz, 2013). Scale bar = 200 µm. 

 

As expected, embryos injected with double amount of MO exhibit more severe migration defect 

compared to 8 ng (E-cad MO shown in Fig 5.13, N-cad MO not shown). By increasing E-cad MO 

dose from 8 ng to 16 ng, the ratio of embryos with CNC migration defect rises from 43% (N=4, 

n=78) to 55% (N=7, n=120) (Fig 5.21 B). A similar result is observed by doubling the doses for 

N-cad MO, which increases the number of embryos with migration defect from 24% (N=4, 

n=125) to 57% (N=6, n=194) (Fig 5.21 B). This indicates that the severity and frequency of the 

phenotypes is dose dependent. However, when either of E-cad MO or N-cad MO is given 

additionally to the full dose (16 ng) of the other morpholino, the frequency of the phenotype 

changes lightly. For example, embryos injected with 8 ng E-cad MO and 16 ng N-cad MO display 

61% (N=3, n=62) migration defect, comparable to 57% (N=6, n=194) from 16 ng N-cad MO 

alone (Fig 5.21 B). Similarly, injection of 8 ng N-cad MO additional to the 16 ng E-cad MO results 
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in 51% (N=3, n=103) migration defect compared to 55% (N=7, n=120) by 16 ng E-cad MO alone 

(Fig 5.21 B). Injecting 16 ng of both morpholinos increases the migration defect phenotype to 

69% (N=3, n=54), which is only slightly higher than other MO combinations. Co-injection of both 

morpholinos do not lead to additive effects in the phenotype of disturbed CNC migration pointing 

to independent function of both cadherins. 

On the cellular level, it is described in (Theveneau et al., 2010) that the CNC cells injected with 

N-cad MO are more motile and disperse more rapidly than control cells in vitro. In this work, it is 

observed that the N-cadherin knockdown CNC cells display mostly normal cell protrusion 

formation (Fig 5.22 C).  

 
Fig5.22 CNC cells treated with both E-cadherin and N-cadherin morpholino display E-cadherin 

knockdown phenotype in vitro. (A) Control morpholino and (B) E-cadherin morpholino alone are injected for 

comparison. (C) N-cadherin MO injected cells exhibit normal cell protrusion formation. (D) Double knockdown 

for both E-cadherin and N-cadherin display an E-cadherin knockdown phenotype with less protrusions and cell 

blebbing (arrowheads). All morpholinos are injected in 16-cell stage embryos and explanted at stage 17. 

Membrane cherry (mbcherry) and H2B GFP mRNA are co-injected as lineage tracer. Scale bar = 20 µm 

 

However, when E-cad MO is co-injected, the cells appear more like E-cadherin knockdown 

phenotype with cell blebbing and lack of cell protrusion formation (Fig 5.22 D). Taken these 

results together, E-cadherin and N-cadherin seems to have distinct function in mediating CNC 

cell migration. 

 

5.2.11 CNC migration defect caused by E-cadherin knockdown cannot be rescued 
by other cadherins 

 

To test whether E-cadherin has a unique function in CNC migration, substitution experiments are 

performed with XB-cadherin, Cadherin-11 and N-cadherin. Accordingly, 25 pg of XB-cadherin, 
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Cadherin-11 and N-cadherin mRNA is co-injected with 8 ng of E-cad MO in 16-cell stage 

embryos, respectively.  

 
 

Fig5.23 E-cadherin knockdown resulted CNC migration defects cannot be rescued by overexpression 

of other classical cadherins. (A) 8 ng E-cad MO are injected with 25 pg of XB-cadherin, Cadherin-11 and N-

cadherin mRNA respectively at 16-cell stage. Injected embryos are fixed at stage 25 and in situ hybridisation is 

performed using AP2 as probe. * indicates the injected site. (B) Bars indicate the percentage of embryos with 

CNC migration defect. At least three independent experiments are performed and the average percentage is 

shown with standard deviations. Significance is calculated by one-tailed test (Wissenschaftliche Arbeit, V. 

Knotz, 2013). Scale bar = 200 µm. 

 

As shown in Fig 5.23, the impaired invasion of the pharyngeal pouches caused by injection of E-

cad MO (45%, N=6, n=185) can neither be rescued by co-injection of the the classical type I XB-

cadherin (46%, N=3,n=146) and N-cadherin (67%, N=4, n=182) nor by the classical type II 

Cadherin-11 (50%, N=3, n=290), as demonstrated by whole mount in situ hybridizations with the 
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CNC marker AP2. Importantly, co-injection of N-cadherin results in a more severe effect 

underlying the distinct role of E-cadherin and N-cadherin. 

 

5.2.12 N-cadherin and Cadherin-11 show partially redundacy in mediating CNC 
migration in vivo 

 

Since E-cadherin depletion is not rescued by other cadherins, the question arises whether this is 

a common phenomenon in CNC migration. Therefore the ability of N-cadherin and Cadherin-11 

to replace each other is investigated. In vivo, CNC migration is inhibited by blocking either N-

cadherin or Cadherin-11. 16 ng of Cadherin-11 morpholino (Cad11 MO) is injected in the dorsal 

animal blastomere D1.2 in 16-cell stage embryo, resulting in 95% (N=4, n=81) embryos with 

migration defect (Fig 5.24 A).  
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Fig5.24 N-cadherin and Cadherin-11 act redundant in mediating CNC migration in vivo. (A) In situ 

hybridisation of embryos injected with 200pg N-cadherin mRNA and Cadherin-11 morpholino (Cad-11 MO). 

Embryos that injected only with Cad-11 MO alone serve as control. (B) In situ hybridisation of embryos injected 

with 200 pg Cadherin-11 mRNA and N-cadherin morpholino (N-cad MO). Embryos with N-cad MO alone serve 

as control. Morpholinos and mRNAs are injected as indicated in 16-cell stage embryos. Embryos are fixed at 

stage 25 and in situ hybridisation is performed using twist as probe. * indicates the injected site. Bars indicate 

the percentages of embryos with CNC migration defect. At least three independent experiments are performed 

and the average percentage is shown with standard deviations. Significance is calculated by one-tailed test 

(Wissenschaftliche Arbeit, V. Knotz, 2013). Scale bar = 200 µm. 

 

Surprisingly, co-injection of 200 pg N-cadherin mRNA with Cad 11 MO is able to decreases the 

ratio of embryos with migration defect to 49% (N=6, n=126) (Fig 5.24 A). Vice versa, when 200 

pg of Cadherin-11 mRNA is co-injected with 16 ng of N-cad MO, the percentage of phenotype 

declines from 42% (N=4, n=102) to 20% (N=4,n=88) (Fig 5.24 B). This mutual rescue effect 

points to a partial redundant function of N-cadherin and Cadherin-11 in mediating CNC cell 

migration and underlines the uniqueness of E-cadherin function in CNC cells. 
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6 Discussion 
 

6.1 E-cadherin, XB/C-cadherin and PAPC identified as new 
cadherin family members expressed in CNC cells 

 

The expression of several cadherin subtypes are described in Xenopus CNC cells including N-

cadherin, Cadherin-11 and PCNS (Hadeball et al., 1998; Rangarajan et al., 2006; Theveneau et 

al., 2010). N-cadherin is involved in CIL, implying its requirement during CNC cell migration 

(Theveneau et al., 2010). Cadherin-11 is known to be expressed strongly in CNC in later stages 

during CNC migration and depletion of Cadherin-11 inhibits the migration of CNC cells (Hadeball 

et al., 1998). PCNS shows a very prominent expression in CNC cells from premigratory until 

tailbud stages, revealed by in situ hybridization, and the inhibition of this molecule severely 

disrupts the migration of CNC cells (Rangarajan et al., 2006). However, which particular 

cadherin(s) promotes CNC migration during distinct phases of migration remains unclear. Also, a 

quantitative comparison of different cadherin subtypes, in regard to their changes in the 

expression level during CNC migration, as well as their transcripts abundance on the cellular 

level within CNC cells, has not been reported yet. In this work, CNC cells from three distinctive 

stages are analysed to demonstrate respectively their expression profile through the 

premigratory, emigrating and migrating state during CNC migration. Interestingly, RT-qPCR 

analyses not only confirmed the expression of the three cadherins mentioned above (N-cadherin, 

Cadherin-11 and PCNS) during CNC migration, also three other cadherin family members, 

namely E-cadherin, XB/C-cadherin and PAPC, are for the first time identified in Xenopus CNC 

cells. 

Xenopus Cadherin-11 is a classical type II cadherin and so far the most investigated cadherin in 

regard to its function in CNC cell migration. The expression of Cadherin-11 in CNC cells has 

been described (Hadeball et al., 1998) and it is necessary for the protrusion activity of CNC cells 

(Kashef et al., 2009). Also, Cadherin-11 mediated cell-cell adhesion is required for CIL during 

CNC migration (Becker et al., 2013). In whole embryos, a basal maternal expression of 

Cadherin-11 is found before mid-blastula-transition (MBT), but zygotic transcription begins at 

mid-gastrulation. Its expression decreases afterwards but rises up again at stage 18, and 

reaches its maximum at the tailbud stage (Hadeball et al., 1998). Subsequently, in situ 

hybridization shows that CNC transcripts are localised in migrating CNC cells and in the entire 

lateral mesoderm in the truck region (Hadeball et al., 1998). In this work, RT-qPCR analyses 
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demonstrate the up-regulation of Cadherin-11 expression from stage 17 to stage 23 in whole 

embryos and in CNC cells. The expression of Cadhein-11 in whole embryos may correspond to 

its expression in the lateral mesoderm as revealed by in situ detection (Hadeball et al., 1998). 

RT-qPCR data in this work show that Cadherin-11 is present with very few transcripts at stage 

17, suggesting that this mesenchymal cadherin plays a minor role in CNC delamination. This is 

further supported by loss-of-function experiments, where depletion of Cadherin-11 does not 

effect the delamination of CNC cells (Kashef et al., 2009). Compared with other cadherins, 

Cadherin-11 clearly shows the most dramatic change on its expression level during CNC 

migration, which is consist with its multiple roles in regulating CNC migration. Besides its 

requirement in protrusion formation, Cadherin-11 is also essential in cell-substrate adhesion, 

which is as well necessary for CNC to populate the pharyngeal pouches (Kashef et al., 2009); 

Langhe et al., in revision). Consistent with its localization in cell protrusions (Becker et al., 2012; 

Kashef et al., 2009), Cadherin-11 mediated CIL is not only a crucial mechanism involved in 

collective migration, but also important for single cell migration as well (Becker et al., 2013). 

Interestingly, a gene with such functional significance is expressed with very few transcripts in 

CNC cell, as showed by the RT-qPCR data in this work. This could suggest a unique role of 

Cadherin-11 in the migration process. Additionally, up-regulation of Cadherin-11 is also observed 

in tumour progression (Chu et al., 2008; Pishvaian et al., 1999) and cartilage invasion in 

inflammatory arthritis (Lee et al., 2007), indicating that besides its function of promoting cell 

migration during development, aberrant expression of Cadherin-11 also leads to increased 

invasiveness in tumour cells. 

Xenopus N-cadherin is a classical type I cadherin and as a zygotic cadherin, its expression 

begins at neurula stage, associated with neural plate and neural tube formation (Detrick et al., 

1990; Nandadasa et al., 2009). After neurula, N-cadherin is primary found in neural tissue but 

also in CNC cells (Theveneau et al., 2010). In this work, transcripts of N-cadherin are detected in 

premigratory and migratory CNC cells. Both knockdown and overexpression of N-cadherin inhibit 

CNC migration (Theveneau et al., 2010), indicating that balanced N-cadherin level is necessary 

for migration. The continuous expression of N-cadherin supports its role in mediating CIL 

between placodes and CNC together with the Wnt/PCP signalling pathway (Theveneau et al., 

2013). On cellular level, endogenous N-cadherin is localized at cell-cell contact indicated by 

immunofluorescence staining on CNC explant in this work. This is consistent with the 

observation that N-cadherin mediated cell-cell adhesion is required for CIL between CNC cells 

(Theveneau et al., 2010), as well as between placodes and CNC cells during the chase-and-run 

behaviour (Theveneau et al., 2013). 
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Quantification via RT-qPCR in this work is able to confirm the expression of PCNS in CNC cells 

through all stages. When compared to the expression level in whole embryos, PCNS shows a 

clear enrichment in CNC cells, which is also exhibited by its very high copy number on the 

cellular level. When average copy numbers in CNC cells are compared, PCNS expression is 

approximately three fold higher than N-cadherin and 30 folds higher than Cadherin-11. The 

enrichment of PCNS in CNC cells consist also with the known expression pattern of PCNS as 

revealed by in situ hybridisation, which detects strong signal of PCNS transcripts and its 

prominently expression in CNC region (Rangarajan et al., 2006). Inhibition of PCNS function 

results in failure of CNC migration in vivo, causing severe defects in the craniofacial skeleton 

(Rangarajan et al., 2006). Furthermore, PCNS morphant CNC cells explanted on fibronectin 

show a round cell shape and no formation of cell protrusions (Rangarajan et al., 2006). This can 

be caused by cell death or disturbed cell-substrate adhesion. Considering its localization within 

cell protrusions (in this work), PCNS could be involved in protrusion formation in CNC cells. Also, 

protocadherins generally display weak homophilic adhesion properties (Halbleib and Nelson, 

2006). Considering the rounded and apoptotic PCNS deficient cells observed in vitro, it is likely 

that the expression of PCNS is closely related to cell survival, which would explain the high 

abundance of PCNS transcripts detected in CNC cells. Thus, future rescue experiments with 

different deletion constructs will help elucidate the role of PCNS in CNC cell migration. 

Interestingly, in this work, the protocadherin PAPC is additionally identified in CNC cells via RT-

qPCR. PAPC shows an overall 65% amino acid identity with PCNS, but its expression in CNC 

cells has not been described until now. PAPC is expressed prominently in mesoderm tissues 

and it is best known for its interaction with the Wnt/PCP pathway regulating cell polarity and 

convergent extension movements during Xenopus gastrulation (Kim et al., 1998; Unterseher et 

al., 2004). In this work, PAPC transcripts are detected in premigratory and migratory CNC cells. 

This adds a new expression domain to the so far known expression pattern of PAPC. 

Quantification data also show its low copy number in CNC cells compared to other cadherins, 

which might be the reason for lack of detection by in situ hybridization due to its limited 

sensitivity. Though present in very low abundance, particularly when compared to the 

abundance of PCNS, overexpression of PAPC is able to compensate the loss of PCNS in CNC 

migration. Knockdown of PAPC has no effect on cell migration, indicating that for normal CNC 

migration PAPC is dispensable (Schneider et al., 2014). Recent studies have shown that PAPC 

regulates cell adhesion indirectly by controlling the membrane localization and turnover of C-

cadherin (Kraft et al., 2012), implying a role for PAPC in CNC cells in context with modulating the 

adhesive function of classical cadherins. 
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XB-cadherin and C-cadherin are classical type I cadherins maternally expressed in early 

Xenopus embryos (Ginsberg et al., 1991; Muller et al., 1994). A sequence divergence of about 8-

10% between XB- and C-cadherin characterizes them as pseudoallele (Kühl and Wedlich, 1996). 

They both are expressed in all cells until neurula stage and are thought to diminish afterwards in 

most of the tissue except in the epidermis (Kühl and Wedlich, 1996). This is the first time these 

two cadherins has been identified in CNC cells. Interestingly, immunofluorescence staining in 

this work shows that they are both localized at the cell-cell contacts of CNC cells. C-cadherin 

contributes to the major part of the cadherin protein pool (Muller et al., 1994). This is consistent 

with the absolute quantification showing that XB/C-cadherin has relative high copy numbers in 

CNC cells as well as in whole embryos. Despite of targeted injection for future neural crest 

region in 16-cell stage, knockdown of C-cadherin leads to severe tissue dissociation and high 

lethality in early developmental stages of Xenopus (data not shown), indicating that C-cadherin 

could have a general adhesive functions in maintaining tissue integrity by presenting in close 

association with the cell membrane (Levi et al., 1991). C-cadherin shares comparable homology 

with mouse E- and P-cadherin (Ginsberg et al., 1991), whereas XB-cadherin represents the 

Xenopus homolog of the mammalian P-cadherin (Redies and Muller, 1994). P-cadherin is 

reported to be an enhancer of migration and invasion of breast cancer cell, with correlation to 

tumour aggressiveness (Paredes et al., 2007). The function of XB-cadherin or C-cadherin in 

CNC cell migration has not been described, probably due to the low survival rate of embryos 

when XB-cadherin or C-cadherin is deprived. 

Xenopus E-cadherin is known as an epithelial cadherin and is required for maintaining the 

integrity of the ectoderm during epiboly (Levine et al., 1994) and the assembly of F-actin in non-

neural ectorderm (Nandadasa et al., 2009). Recent studies demonstrate the expression of E-

cadherin in placodes (Theveneau et al., 2013). It is shown that E-cadherin expression results in 

cohesion between placodal cells and in CNC cells, when E-cadherin is ectopically expressed 

(Theveneau et al., 2013). But blocking E-cadherin with an specific antibody in placodes does not 

effect the interaction between CNC cells and placodes (Theveneau et al., 2013), implying the 

absence of E-cadherin in CNC cells is necessary for CIL between CNC cells as well as for CIL 

between CNC and placodes.  

In this work, the expression of E-cadherin in CNC cells is demonstrated not only on the 

transcriptional level using RT-qPCR, but also on the protein level, as shown by 

immunofluorescence staining of CNC explants and in whole embryo sections. Additionally, 

western blot analysis performed on CNC explants lysates confirmed the expression of E-

cadherin in CNC. By applying multiple CNC markers as positive controls, the specificity of the 
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CNC tissue used for RT-qPCR is validated to further support the striking expression of E-

cadherin in CNC. As negative controls served the mesoderm marker xbra, the epithelial marker 

xK81 and the placodal marker xeya1. All of them are detected in very few amounts confirming 

the specificity of CNC in the isolated tissue. The placodal tissue remains intact after dissection of 

CNC, indicating that the detected transcripts of E-cadherin are not from placodes. RT-qPCR 

analyses reveal that E-cadherin transcripts are present in relatively high abundance in CNC cells 

during all stages, with average copy number similar to N-cadherin but half as many as that of 

PCNS. However, in comparison to its expression in whole embryos, E-cadherin expression in 

CNC comprises a fairly small proportion compared to the whole E-cadherin pool in Xenopus 

embryos, which is expected, when considering the abundance of E-cadherin in the epidermis. 

Nevertheless, the presence of abundant transcripts of E-cadherin probably explains the relatively 

low knockdown efficiency in the CNC tissue. As shown by the specificity test of the E-cadherin 

morpholino, with injection of 16 ng morpholino, a low E-cadherin expression can still be detected. 

16 ng morpholino causes relatively high death rate after neurula stage, and the head region of 

the embryos are often deformed. Moreover, most CNC cells treated with 16 ng E-cadherin 

morpholino could not survive more than two hours in culture. All these imply that E-cadherin is 

involved in fundamental functions such as cell cohesion in CNC cells as well as in the whole 

embryo (Levine et al., 1994). Additionally, the up-regulation of E-cadherin from premigration to 

migration phase suggests that the E-cadherin expression might be necessary for migrating CNC 

cells. This is contradictory to the previous EMT model, which claims the annihilation of E-

cadherin in mesenchymal tissue once the migration begins (Shook and Keller, 2003; Theveneau 

and Mayor, 2012b). In this work, it is shown that E-cadherin protein is localized at cell-cell 

contacts in premigratory CNC explant as well as in migrating CNC segments. Interestingly, 

heterogeneously expressed E-cadherin is detected in mandibular, hyoid and branchial streams 

of CNC, indicating that different CNC subpopulations exhibit distinctive E-cadherin expression. 

This suggests the expression level of E-cadherin could correlate to specific function in the 

derivatives of these different CNC subpopulations.  

The quantification of different cadherin molecules in CNC cells performed by RT-qPCR 

demonstrates the expression level of distinctive cadherin subtypes during CNC migration, which 

could be linked to their specific function in mediating cell migration. But more important, the 

quantitative analyses and the subsequent comparison of the molecule numbers are able to 

provide a unique view about the distribution and abundance of distinctive cadherins subtypes. 

Although the quantification is carried out in an amphibian cell system, a comparison to the 

mammalian cells provides nevertheless some hint about the abundances of mRNA populations. 
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A total of 10,000 to 20,000 different mRNA species are normally observed in each mammalian 

cell and mRNA populations in the cells can be usually sorted into three classes: Scarce, 

intermediate and abundant mRNAs (Tab 6.1) (Alberts, 2002). 

 

Tab6.1 Populations of mRNA molecules in a typical mammalian cell. (Adopted from Alberts, 2002) 

The majority of mRNA species” presents with 5 to 15 molecules per cell and is classified as 

“scarce abundance mRNAs (scarce as less copy number per cell). In this work, most of the 

identified cadherin subtypes belong to this class of mRNA population except for PCNS. With 

average more than 30 copies per cell, the abundance of PCNS transcripts is much higher than 

other cadherins and reaches the copy number of mRNA with “intermediate abundance” mRNAs. 

As indicated in the Tab 6.1, the majority of the genes that are transcribed give rise to very few 

mRNA molecules. The fact that PCNS is transcribed at much higher rates than others could 

imply that it is needed in multiple cellular processes or have essential functions related to cell 

proliferation and survival.  

 

6.2 E-cadherin promotes CNC cell migration  
 

In this work, loss-of-function experiments show that the inhibition of E-cadherin blocks CNC 

migration in vivo. Due to the prominent expression of E-cadherin in Xenopus, the morpholino 

concentration for loss-of-function experiments is reduced. Though the E-cadherin morpholino 

induced knockdown effect seems to vary in different batches of embryos, a 40% to 70% 

phenotype frequency can still be observed. The variation could be caused by insufficient 

knockdown using low dose of morpholino. The CNC cell migration defect can be partially 

rescued by reintroducing full length E-cadherin, indicating a specific function of E-cadherin in 

mediating CNC cell migration. It is likely that the partial rescue is due to the heterogeneous 

expression pattern of E-cadherin in CNC. Therefore, the titration of the optimal does is critical to 

achieve a better rescue effect.  
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Since the migration defect of CNC cells can be caused by defect in early specification of neural 

crest prior to migration, in situ hybridization is performed on E-cadherin knockdown embryos with 

CNC specification markers. The expressions of two early CNC specifiers c-myc and AP2 are not 

impaired by E-cadherin knockdown, indicating that CNC cells are correctly formed at 

premigratory stage. Though twist signal at stage 17 is reduced upon E-cadherin knockdown, it 

could be an effect caused by delayed twist expression, because a reduction of twist expression 

is not observed in later migration stages. However, the unimpaired expressions of c-myc and 

AP2 upon E-cadherin knockdown suggest that E-cadherin is specifically needed for migratory 

CNC cells. 

The requirement of E-cadherin in migratory CNC cells contradicts to the commonly accepted 

premise that E-cadherin is down-regulated in the process of epithelial-mesenchymal transition 

(EMT) in CNC emigration (Pla et al., 2001; Shook and Keller, 2003). Likewise, in the context of 

cancer, E-cadherin is traditionally categorized as a tumor suppressor, as decreased E-cadherin 

level is often associated with cell motility, invasion and metastasis (Hazan et al., 2004; Jeanes et 

al., 2008). However, recent investigations about the role of E-cadherin in cancer indicate that the 

presence of E-cadherin does not preclude cell migration or invasion during tumour progression. 

Carcinoma of the breast is for example a tumor type in which the EMT is usually associated with 

down-regulation of E-cadherin (Berx et al., 1995), However, recent studies show that a 

predominant subtype of breast cancer, the invasive ductal carcinoma, not only consistently 

expresses E-cadherin, but in their distant metastases even higher amounts of E-cadherin are 

found than in the primary tumor (Kowalski et al., 2003). Moreover, E-cadherin is overexpressed 

in the inflammatory carcinoma (Hoffmeyer et al., 2005; Kleer et al., 2001) and introduction of 

dominant negative mutant E-cadherin is able to decrease the invasion (Dong et al., 2007). As 

epithelial properties are not always lost in progressive tumours, invasion in the form of 

aggregates with cells remaining closely together may enable the spread of specific tumour types, 

including the well-differentiated carcinomas, melanomas and rhadomyosarcomas (Friedl and 

Gilmour, 2009). CNC cells are pre-segmented in different populations prior to their emigration 

from the neural tube and each segment migrates collectively as aggregate but individually from 

other segments along different routes (Sadaghiani and Thiébaud, 1987). These characters 

suggest that preservation of cell-cell cohesion could be facilitating the collective cell migration, in 

that E-cadherin stabilizes interactions between cells such that the traction forces generated by 

the leading edge cells are able to pull the adherent following cells along. Such mechanism is 

experimentally demonstrated in carcinoma cells, whereby intact E-cadherin mediated cell 

junctions and p120 catenin are required for collective invasion (Macpherson et al., 2007). In this 
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work, it is observed that reduced E-cadherin expression does not cause dissociation of cells. 

However, other cadherins expressed in the CNC cells for instance XB/C-cadherin or N-cadherin, 

also mediate cell-cell adhesion and thereby maintain cell clustering. To determine whether the E-

cadherin mediated adhesion between CNC cells is important for the migration, adhesion force 

measurements (Mège et al., 2006) in E-cadherin knockdown cells are required. 

The migration of border cells on the surface of germline cells during Drosophila oogenesis 

provides an example, where E-cadherin itself could provide cell-cell adhesion and traction during 

cell migration. It has been shown that the Drosophila E-cadherin homologue, DE-cadherin, is 

required in border cells as well in germline cells for migration (Niewiadomska et al., 1999). In 

fact, DE-cadherin is not essential for adhesion between border cells, but for the DE-cadherin 

mediate interactions between cell surfaces of border cells and germline cells, as DE-cadherin 

deficient border cells cannot use the germline cells as a substratum for migration (Niewiadomska 

et al., 1999). This is reminiscent of the “chase and run” behaviour between CNC cells and 

placodes. Since placode cells express E-cadherin (Theveneau et al., 2013), the E-cadherin 

mediated interaction between CNC cells and placodes could be important to drive the migration 

of CNC cells. It would be for example interesting to show, whether CNC cells in the absence of 

E-cadherin can still engage the “chase and run” behaviour with placodal cells. In this case, the 

migration of CNC cells could rely on E-cadherin in different ways. E-cadherin itself may also 

mediate CIL between CNC cells and placodal cells. Alternatively, E-cadherin mediated contact 

and mechanical coupling between cells may be required for generating traction force that move 

cells forward. This is observed for example in single germ cell migration in zebrafish embryos, 

where E-cadherin-mediated adhesion is required, both for the interaction between migrating cells 

and their neighbouring cells, but also for generating traction force upon actin-rich structure 

(Kardash et al., 2010). Here, it is noteworthy that the adhesive function of E-cadherin seems to 

be required for mediating traction forces, since blocking of the homophilic interaction of E-

cadherin by overexpression of a dominant-negative mutant lacking the extracellular domains, 

“uncouples” the actin-rich structure and inhibit cell motility (Kardash et al., 2010). This finding is 

consistent with the observation in this work, that a better rescue of CNC migration is achieved 

with the cytoplasmic domain deleted form of E-cadherin (E-cadMuΔC), rather than the 

extracellular domain mutated dominant-negative form of E-cadherin (DN E-cadMu), indicating 

that an unimpaired extracellular domain of E-cadherin is essential for the migration of cells. 

Surprisingly, E-cadMuΔC achieves a better rescue effect than full length E-cadherin (EcadMu). 

One speculation is that p120 catenin regulated cell motility might be involved. It has been shown 

that elevated level of unbound p120 promotes cell migration by activating cdc42 and Rac activity 
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(Grosheva et al., 2001). However, formation of cadherin-mediated cell-cell contacts sequester 

p120 to the junction region, abolishing the effects of p120 on cell morphology (Grosheva et al., 

2001). Moreover, in E-cadherin expressed breast cancer cells, p120 disperse also in the 

cytoplasm and nucleus apart from cell-cell contacts and p120-mediated Rac1 activation is 

required for HER2/ErB2 signalling-induced cell migration (Johnson et al., 2010). It is also 

reported that the extracellular fragment of E-cadherin promotes cell migration by activating ErbB 

signalling (Najy et al., 2008). The proposed hypothesis is that the cytoplasmic domain depleted 

E-cadherin in this work might promote CNC cell migration by “free” the p120 from the 

sequestering effect, which normally caused by E-cadherin-mediated cell adhesion. Earlier study 

has also reported the requirement of p120 in Xenopus CNC migration (Ciesiolka et al., 2004). 

However, how p120 function is correlated with cadherins to promote CNC migration remains 

unclear and needs to be investigated. Additionally, it is still not clear how the E-cadherin 

mediated cell-cell adhesion act together with actin to generate traction force that drives migration 

of CNC cells. Furthermore, the signalling function of E-cadherin is demonstrated by its regulation 

role at inhibitory GABAergic synapse in cortical neurons, whereby E-cadherin signalling might 

directly affect synapse vesicle clustering and regulate synapse vesicle cycle (Fiederling et al., 

2011). 

Additionally, it is also shown in this work that E-cadherin knockdown CNC cells in vitro fail to 

form stable cell protrusions and show cell blebbing, which could be due to two reasons. Cadherin 

clusters anchor contractile actomyosin network in cells, removal this anchorage by depletion of 

E-cadherin from cell membrane may disturb the actomyosin structure. This could result in 

increased cortical tension, which might be responsible for blebbing formation (Paluch et al., 

2005). Additionally, it is shown that in the cell-cell contact formation, E-cadherin mechanically 

couple the adhering cells, allowing cortex tension to control contact expansion (Maitre et al., 

2012). In this work, since introducing the DN E-cadMu with disruptive adhesive function fails to 

restore protrusions in CNC cells, suggesting that E-cadherin mediated adhesion is in some way 

necessary for protrusion formation. This is verified by the fact that with intact adhesive function is 

able to largely restore the protrusion formation of CNC cells. The cytoplasmic domain of E-

cadherin seems in this case dispensable.  

The blebbing phenotype of E-cadherin knockdown can also be caused by reduced cell-substrate 

adhesion. It is recently reported that Cadherin-11 mediates cell-substrate adhesion, and when 

the focal adhesion formation is compromised in Cadherin-11 depleted CNC cells in vitro, 

protrusions could not be formed and cells show blebbing (Langhe et al., in revision). It would be 

interesting to test whether E-cadherin knockdown reduces focal adhesion formation as well. 
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Recent study shows E-cadherin-mediated contact and mechanical coupling between cells are 

required for the traction force between cell and fibronectin, which involved Src and PI3K activities 

(Jasaitis et al., 2012). Similar observation is also made in collective directional migration of 

epithelial sheets, where cells in the leading rows exert traction force on the substratum to 

coordinate in directional re-orientation (Li et al., 2012). Thus, traction force measurements of E-

cadherin expressed/deficient CNC cells on fibronectin surface should be able to clarify whether 

E-cadherin stimulate traction force at focal adhesion in CNC cells as well. Taken together, these 

results suggest a unique function of E-cadherin in mediating collective CNC cell migration. E-

cadherin mediated contact seems to be necessary for cells to migrate in vivo as well as to form 

protrusions in vitro. 

Classical cadherins have in general very similar structures, which raises the question, whether 

some of them could have redundant function in promoting CNC migration. However, 

reconstitution experiments in this work demonstrate that the loss of E-cadherin cannot be 

rescued by other cadherins. Furthermore, double knockdown of E-cadherin and N-cadherin 

reveals that E-cadherin and N-cadherin have distinct function in mediating CNC migration as well 

as cell protrusion formation. However, another reconstitution experiments in this work could 

demonstrate that Cadherin-11 and N-cadherin are indeed mutually interchangeable in their 

function in mediating CNC migration. Interestingly, both Cadherin-11 and N-cadherin promote 

CIL in CNC cells (Becker et al., 2013; Theveneau et al., 2010). Also, it is recently demonstrated 

that PAPC can compensate for the loss of PCNS in regulating CNC migration (Schneider et al., 

2014). And PCNS is also able to replace the function of PAPC in inner ear development (Jung et 

al., 2011). These results imply that cadherins from the same subfamily with analogous structure 

could employ more resembling mechanism for their conserved function. Chimera constructs 

combining different domains of N-cadherin and Cadherin-11 could further elucidate the functional 

discrepancies and similarities in those two cadherins. 

 

6.3 E-cadherin positive CNC cells may contribute to the 
development of the Xenopus ear 

 

As reported by the amphibian fate map, the three CNC streams contribute to cartilage formation 

in the middle and external ear (Cerny et al., 2004). The mandibular CNC subpopulation forms 

the tympanic annulus (external ear), supporting the surrounding cartilage and a cartilaginous 
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tympanic disk. The hyoidal CNC subpopulation gives rise to the pars externa plectri 

(extrastapes) and pars media plectri (stapes). The branchial subpopulation forms the pars 

interna plectri (stapedial footplate) that inserts in to the oval window (Gross et al., 2006). Stapes 

is the only ear ossicle in Xenopus (Mason et al., 2009), although the extrastapes of frogs 

function as a second ossicle (Mason and Narins, 2002). In addition, the anterior and posterior 

domains of the otic capsule, which surrounds and protects the inner ear, arise also from the 

branchial subpopulation (Gross and Hanken, 2008; Gross et al., 2006). The malformation of 

outer or middle ear structure is related with conductive hearing loss in human (Ruckenstein, 

1995). In this work, the immunofluorescence staining in whole embryo section shows a 

heterogeneous expression of E-cadherin in different subpopulation of CNC cells, with strong 

expression particularly in the branchial subpopulation. This implies a possible role of E-cadherin 

in the middle ear development. Therefore, histological sections of E-cadherin deficient embryo 

should able to display whether E-cadherin is involved in the middle ear formation.  

In this work, E-cadherin positive branchial CNC cells are observed in the otic vesicle, indicating 

CNC cells contribute directly in the otic vesicle formation. It is generally accepted that the otic 

placode ectoderm is the only source for the inner ear, except melanocytes and glia cells derived 

from NC cells. However, it is recently reported in mice that the neuroepithelial cells, including NC 

cells, contribute directly to the otic vesicle from the neural tube. Using transgenic mice to fate 

map the neuroepithelial cells, it is demonstrated that these cells incorporate into the otic 

epithelium after otic placode induction and their derivatives give rise to hair cells and supporting 

cells within sensory epithelia, neuralblasts in the otic vesicle and cochleovestibular ganglion 

(Freyer et al., 2011). The E-cadherin positive CNC population observed in the otic vesicle could 

represent such incorporation of CNC cells into the otic vesicle after the induction occurred. This 

implies that besides the well established contribution of CNC to middle ear, CNC cells may also 

contribute to the inner ear formation in Xenopus. Furthermore, E-cadherin expressed in CNC 

cells could have specific function for the incorporation of CNC into otic vesicle, since otic vesicle 

itself expresses E-cadherin as well during its formation (own unpublished observations). 

Additionally, PAPC and C-cadherin are also present during otic vesicle formation in Xenopus 

(Jung et al., 2011); and own unpublished observations) and PAPC is required for the 

invagination of otic vesicle (Jung et al., 2011). In zebrafish, N-cadherin and Cadherin-11 

(Novince et al., 2003) are expressed in the otic placode and N-cadherin is required for the 

elongation of placodal cells and its subsequent invagination in chicken (Christophorou et al., 

2010). Recent studies reveal that mutation of Cadherin-23 is associated with deafness due to its 

structural role in the tip-links of inner ear hair cells (Giacomello et al., 2012). Cadherin-23 and the 
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protocadherin-15, both involved in forming the tip-link, are suggested for their function in 

mechanotransduction (Müller, 2008).  

To determine whether an incorporation of CNC cells to the otic vesicle occurs in vivo, live 

tracking analysis of both labeled CNC cells and ectoderm originated otic vesicle should be 

performed. In addition, the function of E-cadherin in the otic vesicle formation has to be 

investigated. It has been shown that E-cadherin interacts with Myosin VI, which is required for 

normal hair cell formation and mutations cause deafness in mice (Geisbrecht and Montell, 2002). 

Therefore, investigation of E-cadherin function in ear development could provide new insights 

into the understanding of deafness. 
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7 Summary 
 

In this present work, quantitative analysis of six different cadherin superfamily members provides 

a novel cadherin expression profile in Xenopus CNC cells. Interestingly, XB/C-cadherins, E-

cadherin and PAPC are identified for the first time in CNC cells. Furthermore, knockdown 

analysis of E-cadherin allocates a novel function of this cadherin in mediating CNC migration. 

The expression of Cadherin-11, N-cadherin and PCNS in CNC cells is confirmed via quantitative 

real-time PCR (RT-qPCR). Additionally, transcripts of XB/C-cadherin, E-cadherin and PAPC are 

newly identified in CNC cells. Relative quantification reveals the change of expression level in 

each cadherin subtype in premigratory (stage 17), emigrating (stage 20) and migratory (stage 

23) CNC cells. The copy number of each cadherin is determined via absolute quantification, 

allowing a direct comparison of cadherin abundance in CNC cells as well as in whole embryo. 

Immunofluorescence staining on CNC explants verifies the expression of XB/C-cadherin, N-

cadherin and E-cadherin in CNC cells, and demonstrates their prominent sub-cellular localization 

at cell-cell contacts.  

E-cadherin is expressed at cell-cell contacts in premigratory CNC cells as well as in migratory 

CNC, which is shown by the immunofluorescence staining performed on CNC transplanted 

whole embryo sections. Distinct CNC subpopulations express E-cadherin heterogeneously, with 

the strongest expression found in branchial streams of CNC cells. Knockdown of E-cadherin 

inhibits CNC migration in vivo and protrusion formation in vitro. In the reconstitution experiment, 

it is shown that both CNC migration and cell protrusion formation relies on the intact extracellular 

domain of E-cadherin, instead of the cytoplasmic domain. Reconstitution experiments with other 

classical cadherins are not able to restore the E-cadherin knockdown induced CNC migration 

defect, indicating a unique function of E-cadherin during CNC migration. 
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8  Zusammenfassung 
 

Die in der vorliegenden Arbeit durchgeführten quantitativen Analysen von sechs verschiedenen 

Cadherinen ergeben ein bis dato noch nicht vorhandenes Cadherin-Expressionsprofil in den 

cranialen Neuralleistenzellen (cNLZ) von Xenopus. Vor allem konnten dabei XB/C-cadherin, E-

cadherin und PAPC zum ersten mal in den cNLZ beschrieben werden. Des Weiteren konnte 

eine neue Rolle von E-cadherin in der Migration der cNLZ zugeordnet werden. 

Durch die quantitative RT-PCR konnte die bereits bekannte Expression von Cadherin-11, N-

cadherin und PCNS in cNLZ bestätigt werden, während Transkripte von XB/C-cadherin, E-

cadherin und PAPC zum ersten Mal in cNLZ identifiziert wurden. Mittels der relativen 

Quantifizierung konnte die dynamische Veränderung der Expressionslevel der einzelnen 

Cadherine vor der Migration (Stadium 17), während der Emigration (Stadium 20) und der 

Migration (Stadium 23) der cNLZ veranschaulicht werden. Durch die absolute Quantifizierung 

konnte zusätzlich die genaue Kopienanzahl der einzelnen Cadherine ermittelt werden, sodass 

ein direkter Vergleich der Expression verschiedenen Cadherine durchgeführt werden konnte. 

Durch Immunfluoreszenzfärbung auf cNLZ Explantaten wurde des Weiteren die Lokalisation von 

XB/C-cadherin, N-cadherin und E-cadherin an Zell-Zell Kontakte gezeigt. Mit Hilfe von 

Immunfluoreszenzfärbungen auf Gefrierschnitten konnte eine verstärkte Expression von E-

cadherin in den branchialen Kiemenbögen in vivo beobachtet werden. Transplantationsanalysen 

und Ganzkeim-ISH mit cNLZ Markern zeigten, dass die Injektion eines antisense Morpholino-

Oligonukleotids gegen E-cadherin die Migration der cNLZ blockiert. Zeitrafferaufnahmen von 

explantierten cNLZ konnten weiterhin eine Funktion von E-cadherin im Ausbilden von 

Zellausläufern aufdecken. Rekonstitutionsversuche mit E-cadherin Deletionskon-strukten 

veranschaulichten, dass die Migration der cNLZ in die Kiemenbögen und das Ausbilden von 

Zellausläufern vor allem von der Anwesenheit der extrazellulären Domäne und nicht der 

zytoplasmatischen Domäne abhängig ist. Rekonstitutionsversuche mit anderen klassichen 

Cadherine konnten die durch den Verlust von E-cadherin bedingten Migrationsdefekte der cNLZ 

nicht wiederherstellen, das auf eine spezifische Funktion von E-cadherin in der Migration der 

cNLZ hindeutet. 
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Supplementary CD 

 

Contents of the enclosed DVD:  

 

Movie1: E-cadMO explant 

Movie2: E-cadMO + E-cadMu explant 

Movie3: E-cadMO + DN E-cadMu explant 

Movie4: E-cadMO + E-cadMu ΔC explant 

 

The time laps movies show the cell morphology of the CNC cells injected with the indicated 

constructs. Cell membranes are labelled with either mbGFP or mbCherry, and nuclei are 

labelled with either H2B GFP or H2B cherry. The movies are 15 minutes to 30 minutes long 

and the images are taken in three minutes time interval using Axio Observer Z1 Spinning 

Disc Confocal microscope (40× fluid object).  
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