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ABSTRACT  

Metal-organic frameworks (MOFs), composed of metal ions and multitopic organic ligands, 

have been studied recently owing to their fascinating structures and potential applications. In 

particular, chiral MOFs are very promising materials for an efficient enantiomer separation. 

However, the impact of the pore size of the MOF on the enantioselectivity has not yet been 

investigated. By studying the adsorption of chiral molecules in isoreticular chiral surface 

mounted MOFs (SURMOFs) [Cu2(Dcam)2(L)] (Dcam = (1R,3S)-(+)-camphoric acid; L = 

dabco (diazabicyclo[2.2.2]octane), bipy (4,4-bipyridyl) and bipyb (1,4-bis(4-

pyridyl)benzene)) with identical chiral centers and different pore sizes, it was found that the 

adsorption capacity and enantioselectivity is significantly influenced by the pore size and 

structure of chiral MOFs.  

Oriented circular dichroism (OCD) was used to investigate chiral SURMOFs 

[Cu2(Dcam)2x(Lcam)2-2x(dabco)] (0 ≤ x ≤1) in this thesis. The growth orientation could be 

switched between the [001] and [110] direction by using either hydroxyl or carboxyl 

functionalized substrates. These SURMOFs were characterized by using OCD, which 

confirmed the desired ratio as well as the orientation of the enantiomeric molecules. 

Theoretical computations demonstrate that the OCD band intensities of the enantiopure 

[Cu2(Dcam)2(dabco)] grown in different orientations are a direct result of the anisotropic 

nature of the chiral SURMOFs. Finally, the enantiopure [Cu2(Dcam)2(dabco)] (or 

[Cu2(Lcam)2(dabco)])  SURMOFs were loaded with a pair of chiral enantiomers. An 

enantioselective enrichment was observed by OCD when the chiral host framework was 

loaded from the racemic mixture.  

The quality of SURMOF is very important for many applications and the improvement of 

SURMOF quality becomes an interesting task currently. In this work, a new setup dipping 

robot is introduced to improve the quality of SURMOFs. Due to the introduction of ultrasonic 

bath in the dipping robot, the rising steps are efficiently enhanced for cleaning the sample and 

improved the quality. The SURMOF HKUST-1 and SURMOF-2 were prepared by the 

dipping robot with different concentrations of reagent solutions, which show the quality of 

SURMOFs is good from the optical microscopy, scanning electron microscopy (SEM) and 

atomic force microscopy (AFM) images, as well as the thicknesses and roughnesses of the 

SURMOF increase with increasing reagent concentrations. 
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ZUSAMMENFASSUNG  

Metall-organische Gerüstsystemee (MOFs), zusammengesetzt aus Metallionen und 

organischen Liganden, werden auf Grund ihrer faszinierenden Strukturen und 

Anwendungsmöglichkeiten vielfach untersucht. Insbesondere sind chirale MOFs sehr 

vielversprechende Materialien, die eine effiziente Enantiomerentrennung erlauben. Jedoch ist 

der Einfluss der Porengröße des MOFs auf die Enantioselektivität noch nicht untersucht 

worden. Durch die Untersuchung der Adsorption chiraler Moleküle in chiralen 

oberflächenverankerten MOF Filmen (engl.: surface mounted MOFs: SURMOFs) vom Typ 

[Cu2(DCam)2(L)] (Dcam = (1R,3S)-(+)-camphersäure, L=dabco (Diazabicyclo[2.2.2]octan), 

bipy (4,4-Bipyridyl) und bipyb (1,4-Bis-(4-pyridyl)benzol)) mit identischen chiralen Zentren 

und verschiedenen Porengrößen wurde herausgefunden, dass die Adsorptionskapazität und 

die Enantioselektivität beträchtlich durch die Porengröße und Struktur beeinflusst sind. 

Orientierter Circulardichroismus (OCD) wurde verwendet, um chirale SURMOFs 

[Cu2(DCam)2x(LCam)2-2x(dabco)] (0 ≤ x ≤ 1) zu untersuchen. Auf Hydroxyl- bzw. Carboxyl-

terminierten Substraten konnten SURMOFs mit einer [001]- bzw. [110]-Orientierung 

aufgewachsen werden. Diese SURMOFs wurden erstmals mit OCD charakterisiert, die das 

eingestellte DCam-LCam-Verhältnis sowie die Ausrichtung der enantiomeren Moleküle 

bestätigt. Theoretische Berechnungen zeigen, dass die OCD-Bandenintensitäten der in 

verschiedenen Orientierungen gewachsene, enantiomerreine [Cu2(DCam)2(dabco)] ein 

direktes Ergebnis der anisotropen Natur der chiralen SURMOFs sind. Schließlich wurden die 

enantiomerreinen [Cu2(DCam)2(dabco)] (oder [Cu2(LCam)2(dabco)]) SURMOFs mit einem 

Enantiomerenpaar beladen. Beim Beladen des homochiralen Wirtsgerüsts aus einem 

racemischen Gemisch wurde mittels OCD eine enantio-selektive Anreicherung 

nachgewiesen. 

Die Qualität der SURMOFs ist für viele Anwendungen entscheidend und die Verbesserung 

der SURMOF-Qualität ist eine wichtige Aufgabe. Im Rahmen dieser Arbeit wurde ein neuer 

Tauchroboter mit Ultraschallbad eingeführt, um die SURMOF-Qualität zu verbessern. 

Mittels Anwendung des Ultraschalls während des Spül-Schrittes wurde die Probenqualität 

deutlich verbessert. SURMOFs vom Typ HKUST-1 und SURMOF-2 wurden mit 

Reagenzlösungen verschiedener Konzentrationen hergestellt. Mittels optischer Mikroskopie, 

Rasterelektronen- und Rasterkraftmikroskopie wurde eine gute Probenqualität bestätigt, 

sowie eine Zunahme der Filmdicke mit zunehmender Reagenzkonzentration festgestellt. 
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1 INTRODUCTION – STATE OF THE ART 

1.1 Metal-Organic Frameworks (MOFs)  

1.1.1 General synthesis, properties, classification and applications 

Metal-organic frameworks (MOFs), also known as porous coordination polymers (PCPs), are 

crystalline materials in which metal ions are connecte by organic ligands to form one, two or 

three dimensional frameworks (Figure 1).
[1-4]

 The design and synthesis of MOFs have 

attracted great attention currently because of the possibility to obtain a large variety of 

 

Figure 1. Connection of metal nodes and organic linkers leads to a metal organic framework (MOF). 

A simple cubic topology was employed as an example. 

interesting topological networks. This is of great interest for the applications in a number of 

fields such as storage, separation and catalysis.
[5-8]

 These are based on pore size and shape of 

MOFs and the interactions between host framework and guest molecules.
[9-10]

 The 

fluorescence and magnetism applications depend on the choice of appropriate metal ions and 

ligands as well. In addition, biomedical applications and the sensor materials are also 

intensively investigated.
[11-13]

 

MOFs are typically synthesized by combining metal salts and organic ligands in hydro/solvo-

thermal reactions. The reactants are mixed into solvents such as water, ethanol, benzene, 

dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The most fundamental 

determinants of MOF synthesis are the temperature, the concentrations of metal salts and 

ligands, the solubility of the reactants in the solvent and the pH of the solution. The 

characteristics of the ligand (bond angles, rigidity, ligand length and chirality.) also play a 

crucial role in the construction of the frameworks. Furthermore, the tendency of metal ions 
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can make different coordination numbers of metal, which can influence the geometric 

configuration of MOF structures.
[14]

  

In addition to the conventional synthesis method, several other synthesis methodologies are 

described in the literatures including the electrochemical route,
[15]

 microwave irradiation 

method
[16]

 and chemical vapor deposition method.
[17]

 

In terms of the description of the MOF structures, it is convenient to start with the secondary 

building units (SBUs). SBUs are essential for the design and construction of MOFs and 

dictate the final topology of the frameworks. So far, there are numerous well-known SBUs 

for MOFs, including the inorganic and organic SBUs.
[1]

 In particular the inorganic SBUs are 

very important for the MOFs. For instance, metal ions are bridged by the coordinating 

oxygen atoms of the ligand resulting in a trigonal and a square planar (Figure 2a and 2b) or a 

tetrahedral and a tetragonal paddlewheel SBUs (Figure 2c and 2d).  

 

Figure 2. Structural representations of several SBUs, including (a) trigonal and (b) square planar, (c) 

tetrahedral and (d) tetragonal paddle wheel. 

Kitagawa et al first classified MOFs into three categories: 1st, 2nd and 3rd generations 

(Figure 3).
[18]

 The frameworks in these three classifications contain guest molecules inside 

their cavities or channels. The 1st generation compounds have a pore system which is stable 

only if the guest molecules are present. These frameworks collapse irreversibly when 

removing the guest molecules. The 2nd generation compounds have robust porous 

frameworks, which show permanent porosity also without guest molecules in the cavities, 
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pores or channels. The 3rd generation compounds have flexible and dynamic frameworks, 

responding to external stimulation, such as guest molecules, light, temperature, magnetic or 

electric field.  

 

Figure 3. Classification of MOFs as 1st, 2nd and 3rd generation. (Figure taken from ref. 
[18]

) 

MOFs have been investigated widely and are found to be applied in many fields. Applications 

in gas storage, size-, shape- and enantio-selective catalysis, luminescent and fluorescent 

materials and drug storage and delivery have been explored.
[19-22]

 

 

Figure 4. Metal-organic framework structures (1D, 2D and 3D) reported in the Cambridge Structural 

Database (CSD) each year from 1971 to 2011. (Figure taken from ref.
[23]

) 

 

 
guest molecule 

1st generation 

2nd generation 

3rd generation 
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In the past decade, there are more than 20,000 different MOFs being reported and studied 

(Figure 4).
[23]

 

In the following, a few examples of typical MOFs will be introduced ( Figure 5).  

Yaghi et al reported a cubic zinc carboxylate MOF structure with a formula of [Zn4O(bdc)3] 

(referred to as MOF-5 or IRMOF-1, where IRMOF-n stands for isoreticular MOFs with n as 

a series number, bdc = 1,4-benzenedicarboxylate).
[24]

 MOF-5 exhibited an exceptionally rigid 

structure (stable up to 450 °C), high porosity (55%~61%), and high Langmuir surface area 

(2900 m
2
g

-1
), which attracts attention and triggers the extensive investigations of MOF 

materials.
[24]

  

HKUST-1 (also named Cu3(btc)2 or MOF-199, btc = 1,3,5-benzenetricarboxylate), a copper-

based MOFs with big pore channel about 10 Å in diameter, a Langmuir surface area of 

roughly 920 m
2
g

-1
 and porosity of 40% was published.

[25]
 HKUST-1 has attracted 

considerable interest and has been widely studied for gas adsorption, metal loading and 

catalyst.
[26-28]

  

Yaghi et al introduced a new framework [Zn4O(btb)2] (named MOF-177, btb = 1,3,5-

benzenetribenzoate) which has a similar structure as HKUST-1, with a significantly increased 

Langmuir surface area of around 5300 m
2
g

-1
 and a porosity of 83%.

[29]
 The large pore of 

MOF-177 makes it possible to load large organic molecules such as polycyclic dye molecules 

or C60.
[29-30]

  

Ferey et al published a chromium terephthalate framework, MIL-101 ([Cr3OX(H2O)2(bdc)3], 

X=OH
-
/F

-
) with high Langmuir surface area of 5900 m

2
g

-1
. MIL-101 has pores with diameter 

of 29 and 34 Å, which provide big space for loading large molecules and lead to a well 

potential application of drug delivery and storage.
[8]

 

The UMCM-2 structure, namely, Zn4O(T
2
dc)(btb)4/3 (T

2
dc = thieno[3,2-b]thiophene-2,5-

dicarboxylate), exhibits a Langmuir surface area of around 6100 m
2
g

-1
 and two different 

micropores from the structure.
[31]

  

 

Figure 5. The structure of MOF-5 (Figure taken from ref.
[24]

), HKUST-1 (Figure taken from ref.
[33]

), 

MIL-101 (Figure taken from ref.
[8]

), UMCM-2 (Figure taken from ref.
[31]

) and [Zn2(bdc)2(dabco)]. 
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The pillared-layer MOF [Zn2(bdc)2(dabco)] (dabco = 1,4-diazabicyclo[2.2.2]octane) was 

firstly reported by Kim et al in 2004.
[32]

 The framework is composed of dinuclear Zn2 paddle 

wheel unit. These units connect with bdc ligands to form an infinite 2D square-grid 

[Zn2(bdc)2] layer. The dabco are perpendicularly connected to paddle wheels dinuclear Zn2 in 

the layers and as pillars to extend the 2D layers into a 3D structure. This highly porous 

pillared-layer MOF [Zn2(bdc)2(dabco)] has both properties: rigidity and flexibility. This 

means a stable framework with permanent porosity has a flexible dynamic behavior adjusted 

by switching guest molecule dimethylformamid (DMF) to benzene. The guest-free 

framework has a type I isotherm with a Brunauer-Emmett-Teller (BET) surface area of 1450 

m
2
g

-1
. In contrast, the H2 sorption of framework shows an unsaturated with a capacity of 225 

cm
3
g

-1
 at standard temperature and pressure.  

1.1.2 Chiral Metal-Organic Frameworks (Chiral MOFs) 

The interest in the synthesis of crystalline materials with characteristic structural chirality is 

rapidly expanding because of their potential applications in enantioselective processes, 

heterogeneous asymmetric catalysis and sensor technology in optoelectronics chemistry.
[22, 34-

37]
 Crystalline chiral metal-organic frameworks (chiral MOFs) have been prepared through 

four distinct strategies: (i) prepared from achiral linkers by self-assembly during crystal 

growth; (ii) synthesized from achiral metal complexes and bridging ligands under chiral 

influence; (iii) constructed by using chiral linkers as the building blocks; (iv) obtained by 

postsynthetic modification (PSM) method from pristine achiral MOFs.
[38]

 

Kim et al reported the first example of asymmetric catalysis with a homochiral MOF 

L-POST-1 based on an enantiopure derived bridging ligand of tartaric acid and the 

Zn3(µ3-O)-(carboxylate)6 SBU.
[39]

 In this structure, three zinc ions are connected by six 

carboxylate groups and a µ3-oxygen to form the enantiopure trinuclears SBU (Figure 6). 

These SBUs are linked by the chiral ligands to generate 2D layers with a hexagonal topology. 

The resulting MOF has large chiral 1D channel with an estimated void space of around 47%. 

The remaining pyridine is exposed in the channels to endow the chiral MOF with catalytic 

properties.
[39]
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Figure 6. 1D equilateral triangular shape channel (left); coordination environment of zinc centers, 

showing the catalytic center and the chiral pocket (right) (Figure taken from ref.
[22]

). 

The isoreticular homochiral pillared-layer MOFs were constructed by chiral ligand camphoric 

acid. These pillared-layer frameworks have the chiral, rigid layer [Zn2(cam)2] and the pillar 

rigid N-donor linker dabco, bipy and bpe bridge to the layers (bipy = 4,4-bipyridy, bpe = 

bis(4-pyridyl)-ethylene) (Figure 7). The structures of these frameworks are adjusted by the 

lengths of the pillar linkers, the length of the linker increase from dabco (4.5 Å) to bipy (8.0 

Å) and bpe (10.5 Å). In this case, the pore sizes of the channels vary from 3 × 3.5 Å
2
 for 

[Zn2(cam)2(dabco)] to 5 ×7 Å
2
 for [Zn2(cam)2(bipy)] and 5 × 10 Å

2
 for [Zn2(cam)2(bpe)].

[40]
 

So the isoreticular homochiral MOFs are constructed by the different length of N-donor 

ligands. 

 

Figure 7. Side view of the MOFs [Zn2(cam)2(dabco)] (a), [Zn2(cam)2(bipy)] (b) and [Zn2(cam)2(bpe)] 

(c). (Figure taken from ref.
[40]

) 
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1.2 Surface Mounted Metal-Organic Frameworks (SURMOFs) 

Metal-organic frameworks (MOFs) can be grown on functionalized substrates by liquid phase 

epitaxy (LPE), named SURMOFs. SURMOFs are highly porous and crystalline thin film 

materials.
[41]

 The LPE approach of SURMOFs is a step by step fashion, which can control the 

thickness and homogeneity of the MOF thin film. So this method is suited for the fabrication 

of controllable layers with homo- or hetero-layers thin films. On other side, the orientation of 

MOF crystallinity can be depended by the functional groups on the modified substrate. The 

SURMOFs thin film prepared by the LPE method exhibit a homogenous, oriented, large flat 

surface material. These materials can be used for various storage, separation and sensor 

applications as well as for biologic applications.
[42-43]

 

1.2.1 General description 

The conventional hydro/solvothermal synthesis method of MOFs uses a one-pot reaction of 

mixed the metal salts and organic ligands. The functional groups of the ligands bind to the 

metal or metal-oxo clusters to form an ordered network.
[44]

 In contrast, the SURMOFs are 

prepared by using a step by step LPE procedure, in which the metal salts and organic ligands 

solutions are separated. SURMOF is prepared by growing MOFs on the substrates with 

different functionalization, like -COOH, -OH and pyridyl functionalized surfaces. The LPE 

approach is based on the sequential immersion of SAMs modified substrate into the solutions 

of the metal salts and the organic ligands. Between each step the substrates were rinsed with 

solvent to remove the uncoordinated metal nodes or organic linkers. For starting the 

SURMOFs growth, the substrate should provide an organic template for stable MOF 

deposition, and also possibly enable epitaxial growth in a step by step fashion as shown in 

Figure 11. This results in this substrate supported, highly oriented and homogeneous 

SURMOF. 

1.2.2 Self-assembled monolayers (SAMs) 

The surfactant molecules spontaneously adsorb on surfaces to form a monomolecular layer, 

which is called self-assembled monolayers (SAMs). SAMs are widely used as nucleation-

directing templates and adhesive surfaces for numerous applications.
[45]

 The surfactant 

molecules possess a functionalized group which displays an affinity with the substrate and 
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can be anchored on the surface of substrate. As shown in Figure 8, SAMs could be depicted 

into a head group, tail and functional end groups. Usually, head groups can be thiols, silanes 

and phosphonates, tail or backbone groups are alkyl chains (CH2-CH2)n, the functional end 

groups can be -OH, -COOH, -NH2, -CH3 and pyridyl to vary interfacial properties. 

 

Figure 8. Representation of a SAMs substrate structure. 

SAMs have been used in electroanalytical chemistry, molecular electronics and 

biochemistry.
[45]

  In addition, SAMs can be also used for MOFs growth.
[46]

 During the 

SURMOF growth, the Au substrate is used for SAMs preparations. The Au metals are 

oxidized by thiol or disulfide, which are then transferred into metal thiolates.
[47]

 The chemical 

reaction between Au and thiol function group follows: 

RSH + Au → RSAu + ½ H2 ↑ 

For the SURMOFs growth, SAM molecules with -OH, -COOH or pyridyl functional groups 

are used.  

1.2.3 Substrates 

Different materials such as metal (i.e. Au, Ag, Cu, Pt or Pd) or semiconductor (i.e. SiO2, 

Ai2O3, TiO2 or ZnO),
[48-50]

 can be used as substrate for the growth of MOFs.
[42]

 

SAMs functionalized Au and quartz glass (SiO2) are referred to as the substrates for 

SURMOF preparation in this work.  

SAMs are fabricated by immersing 150 nm Au/2 nm Ti evaporated on Si wafers or 

commercially available Au coated quartz crystal microbalance (QCM) substrates for 
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SURMOF preparation in ethanolic solutions of MUD or MHDA (MUD=11-mercapto-1-

undecanol, MHDA = 16-Mercaptohexadecanoic acid).
[51]

 Because the method of the SAMs 

preparation is identical, only the process of MUD SAMs was described in detail as an 

example (Figure 9).The SAMs made from MUD molecules were prepared by immersing Au 

substrates into 1 mM ethanolic solutions of 11-mercapto-1-undecanol for 24 h and then rinsed 

with the ethanol and dried under nitrogen flux for the preparation. 

 

Figure 9. The process of MUD SAMs substrate preparation. 

Commercially available round quartz glass plate (SQ1 (SUPRASIL), Hellma Jena) with a 

diameter of 20 mm and a thickness of 1.60.1 mm is used as a substrate for SURMOF 

preparation. After rinsing with water, the plates are subsequently immersed in a piranha 

solution consisting of 98% H2SO4/30% H2O2 (3:1) at 80 °C for 30 min, rinsed with water, 

dried, rinsed with ethanol and dried with nitrogen and then the -OH functionalized substrate 

was obtained (Figure 10).
[52]

 

 

Figure 10. The preparation of -OH and -COOH functionalized groups on quartz glass. 

The quartz glass functionalized by -OH groups was used 11-(triethoxysilyl)undecanal to 

modify aldehyde group on the substrate at room temperature for 3 h. Finally, the substrate 
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with aldehyde group was oxidized by potassium hypermanganate (0.1 mol/L) for 1 h to get 

the -COOH functionalized substrate (Figure 10).
[53-54]

 

1.2.4 Liquid phase epitaxy (LPE)  

Liquid phase epitaxy (LPE) is a widely used method to grow semiconductor crystal layers 

from the melt on a solid substrate. It has been applied to many compounds, but the main 

applications are compound semiconductors and magnetic rare-earth iron garnets.
[55]

 Nelson at 

first used LPE grow thin layers for material studies and applications in the year 1963.
[56]

  

 

Figure 11. Illustration of the LPE growth of SURMOF on a SAMs functionalized gold coated 

substrate, the thickness of the SURMOF thin film depends on the number of coating cycles. 

Currently, the LPE method is applied to grow MOF thin films (SURMOFs) on organic 

functionalized substrates (SURMOFs). The first SURMOF was reported by Wöll et al in 

2007.
[46]

 For preparation of SURMOF, at first, the organic SAMs with functional groups 

(-OH or -COOH) should be immobilized on the substrate, which provides an organic 

template for MOF deposition, as shown in Figure 11. After the SAMs are completely ordered 

on the substrate surfaces, the substrate is immersed into the metal salts solution for 

coordinating with the metal nodes. Then the substrate is rinsed with solvent and immersed in 

the organic ligands solution for the coordination of linker. After rinsing the sample with 

solvent again, the sequential immersion of metal salts and organic ligands solutions is done 

for a numerous cycles for the growth of the MOF thin film. So far, several techniques have 

been established for the SURMOFs preparation using LPE method, namely the pump, spray 
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and dipping methods. 

1.2.4.1 Pump method 

The pump method
[57]

 is one of the standard techniques for SURMOF preparation.  The setup 

of pump system (Figure 12) is controlled by a LabView program. There are four pumps for 

controlling the immersion time and volume of each step of solution. Three of them are 

responsible for the injection of metal salts, organic linkers and rinsing solvent solutions 

respectively into the reaction cell, in which the substrate is placed. The fourth one is 

responsible for pumping out the solution from the cell. The reaction temperature is controlled 

by a heating or cooling the pump system. Therefore, by using the pump method SURMOFs 

can be prepared in a temperature range of -20~150 °C (i.e. 20~70 °C for ethanol as solvent).  

The procedure for the SURMOFs preparation (e.g. HKUST-1) was done by using the 

following steps: 

Firstly, the preparation of the pump system was set at 50 °C and then the SAMs modified 

substrate was placed into the clean reaction cell (Figure 12). The procedures are as follows: 

 The substrates were firstly immersed in a 1 mM of copper acetate (Cu(OAc)2) 

ethanolic solution for 15 min. 

 The sample was subsequently rinsed with ethanol for 2 min. 

 The sample was then immersed in a 0.2 mM of 1,3,5-benzyltricarboxylic acid (H3btc) 

ethanolic solution for 30 min. 

 The sample was then rinsed with ethanol for 2 min. 

 These four steps are repeated for 40 cycles in order to grow a SURMOF (here: 

HKUST-1). 

Usually, the pump method is used for thin SURMOFs preparation (less than 100 nm) because 

this method requires long immersion time. To obtain thick SURMOFs, it require therefore 

several days. 
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Figure 12. The diagram of the pump system for the automated layer by layer growth of SURMOFs. 

(Figure taken from ref.
[57]

) 

1.2.4.2 Spray method 

The spray method is based on a nozzle spray system.
[53]

 It has been successfully used in 

connection with other layer by layer techniques for coating substrates with two or more 

component thin layers. The spray method is based on a system in which an aerosol is 

produced by expanding solutions of the reactants through a small nozzle. The spray method 

includes hand spray and automatic spray methods. For the hand spray method, there are two 

nozzles for spraying the solutions (metal salts and organic ligands) and rinsing is performed 

by hand (squeeze bottle). For automatic spray method, there are three nozzles for spraying the 

solutions (metal source, organic ligands and rinsing solvent) and all the steps are executed by 

the program. When the droplets of the aerosol hit the substrate on the target, material is 

deposited at the solid-liquid interfaces (LPE process). The parameters of the spray procedure 

at room temperature are carrier gas pressure, flow rate, and distance between the nozzle and 

the target. Interestingly, spray method is less time-consuming, requires less solution and get 

thicker SURMOF than pump system. In addition, it has to be noted that the humility of the air 

is a parameter which can not be controlled. 
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Figure 13. The diagram of the automatic spray method for LPE growth of SURMOF: (1) Gas supply, 

(2) gas flow controller (3) three-way valve gas distributor (4) (A, B and C) solutions storage 

containers (5) sample holder (6) dosing valves, (7) spray chamber, (8) PC. (Figure taken from ref.
[53]

) 

The procedure for the SURMOFs preparation (e.g. HKUST-1) investigated here was done 

using an automatic spray system using the following steps: 

 Firstly, set up the automatic system (i.e. spray pressure or time), and then fix the 

substrate with functionalized SAMs on the target (Figure 13). 

 The sample was subsequently sprayed with the 1 mM Cu(OAc)2 ethanolic solution to 

the substrate for 10 s.  

 After waiting 30 s, the sample was then sprayed with ethanol for 5 s. 

 The sample was subsequently sprayed with the 0.2 mM H3btc ethanolic solution for 

15 s. 

 After waiting 30 s, the sample was then subsequently sprayed with ethanol for 5 s. 

 After waiting 30 s, one cycle of the SURMOF preparation is done.   

In order to get a SURMOF HKUST-1 with ~100 nm thickness by this method, only 10 cycles 

need to be repeated.
[53]

 

1.2.4.3 Synthesis in quartz crystal microbalance (QCM) cell 

QCM is used to monitor the mass change in the materials coating on the QCM sensor. The 

growth of SURMOF also can be followed with in-situ synthesis in QCM cell. The changes of 
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the  resonance frequency of the quartz sensor as a function of the deposition and removal of 

material have been monitored. The QCM with dissipation monitoring (QCM-D) with an 

autosampler is used in this thesis is shown Figure 14.  

 

Figure 14. The setup of quartz crystal microbalance (QCM) method for SURMOFs preparation. 

Taking the preparation of SURMOF HKUST-1 for example, at first the gold coated sensor 

with was functionalized by MHDA SAMs and then put in the sensor holder for experiment. 

Ethanol is flowed through QCM-D cell, resulting in a stable baseline at the beginning of the 

experiment. Then the autosampler is started by the program and then the pump can flow the 

liquid solution step by step with the setting time. The 1 mM Cu(OAc)2 solution was flowed 

through the QCM sensor with MHDA SAMs, which causes binding of Cu(OAc)2 on SAMs 

which can be detected by a frequency change directly until to the stable  plateau for ~2 

min.
[58]

 The Cu(OAc)2 connect with the -COOH group of the SAMs to cause the increasing 

the mass on the QCM sensor (Figure 15). Then the ethanol is flowed into the QCM sensor for 

cleaning after the frequency is stable. During this flowing step, the rest Cu(OAc)2 is removed, 

which cause a slightly increasing frequency. When the frequency is stable again, the H3btc 

solution is flowed into the QCM sensor, the 0.2 mM H3btc coordinates Cu(OAc)2 with 

covalent bonds, which make the frequency of QCM sensor is decreased. The related mass 

change takes ~5 min until the frequency is consistent. After the frequency is not changed, the 
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ethanol passes through the QCM sensor for rinsing again. This process is repeated for 40 

times and a SURMOF HKUST-1 is otbatined in the end. Using the QCM-D to grow the 

SURMOF, it can monitor the mass change in each step and the growth environment can be 

protected against air in an effective way. 

 

Figure 15. QCM-D results showing changes for various harmonics of the frequency, dissipation (a) 

Sauerbrey mass (b) change after Cu(OAc)2 and H3btc deposition cycles on SiO2 coated electrodes. 

(Figures taken from ref.
[58]

) 

1.2.4.4 Dipping method 

In the dipping system, there are three containers for different solution (metal salts, organic 

ligands and rinsing solutions) as shown in Figure 16. The functionalized substrate is 

immersed in each container sequentially. There are two kinds of dipping methods, one is 

dipping by hand method
[46]

 and the other is dipping by an automatic robot method. For 

example, the process of dipping by hand method for HKUST-1 preparation was done using 

following steps,  

 The gold substrate with functionalized MHDA SAMs is dipped in 1 mM Cu(OAc)2 

solution for 30 min, which causes the Cu-dimer ions to bind with the carboxylate 

groups at the substrate surface.  

 The sample is rinsed with the ethanol for cleaning. 

 Then the sample is put into the 0.2 mM ligand H3btc ethanolic solution for 60 min. 

 The sample is rinsed with ethanol.  

By subsequently repeating and alternating the immersion of the substrate in 1 mM Cu(OAc)2 

and H3btc solution, the SURMOF HKUST-1 is grown successfully by hand dipping method. 
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Figure 16. The diagram of dipping by hand method for SURMOFs preparation. 

Dipping by robot method is an automated, computer controlled robot which is used for 

synthesizing SURMOFs by dipping the sample sequentially into the synthesis solutions. The 

setup is schematically shown in Figure 17 and Figure 18. The main components are 

containers for immersion solutions (metal salts, organic ligands and rinsing solutions), 

position controller, holders (controller holder and sample holder), an ultrasonic bath and a 

pump system. In this setup, the position controller moves the sample holder to the immersion 

container in an accurate three-dimension position (x, y and z axis). The head of sample holder 

and container lids are made of iron and the controller holder is magnetic which can hold and 

lay down the sample holder or lids controlled by the software. There are seven positions for 

the containers (P1~P7). The central position of the working table is used for showering and 

other four positions for parking of the container lids. P0 is for sample placement at the 

beginning or end of the experiment. Usually P1, P2, P6, and P7 are used for metal salts or 

organic ligands solutions. The containers P3, P4 and P5 are used for the rinsing solutions, 

which are located in the ultrasonic bath. The ultrasonic treatment can be switched on by the 

program when the sample is immersed into the containers P3, P4 and P5 positions for rinsing. 

The ultrasonic bath will enhance the cleaning of sample and improve the sample quality. In 

addition, there is one showering step after each immersion step, where the rinsing solution 

from a container is spurted on the sample by a pump during this step to rinse the sample 

throughly. All the procedures are controlled by using software LabView. 

Here, an example for synthesis for SURMOF HKUST-1 grown on MHDA SAMs is shown:  

(1) P1 and P2 containers are filled with Cu(OAc)2 solution (1 mM) and organic ligand H3btc 

solution (0.2 mM), respectively. P3 and P4 containers are filled with ethanol. Ethanol is filled 

into the showering bottle, too. 
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Figure 17. The setup of dipping robot system: (1) containers for immersion solutions or placement for 

sample (P1~P7); (2) container lid; (3) controller holder; (4) sample holder; (5) sample; (6) position 

controller; (7) ultrasonic bath; (8) shower; (9) parking position of container lid; (10) Teflon working 

table; (11) solution bottle for showering; (12) pump; (13) PC.  

 (2) The running order for SURMOF HKUST-1 preparation is set according to the step by 

step fashion.
[46]

 The following order was set for the preparation: P1(Cu(OAc)2) → 

P3(ethanol) → P2(H3btc) → P4(ethanol). The immersion time and showering time are set to 

600 s for Cu(OAc)2 solution, 900 s for H3btc solution, 100 s for rinsing ethanol solution and 3 

s for showering. The ultrasonic treatment is switched on during immersion of the sample in 

P3(ethanol) and P4(ethanol).  

(3) The Au substrate functionalized by MHDA SAMs is fixed on the sample holder in 

position P0.  

(4) The running order and parameters are set in the program, which is done by the software 

LabView automatically. The process is started when the program in the software is turned on. 

After starting the preparation procedure, following steps are done: 

(i) The controller holder moves to P1 and moves the container lid to the parking position of 

lid. Then the controller holder picks up the sample holder from P0 and puts it in Cu(OAc)2 

solution. The lid is taken back to P1 to avoid the evaporation of solutions.  

(ii) After 600 s immersion of the sample in Cu(OAc)2 solution, the lid in P3 is removed by 

controller holder. The sample is moved into the center position of the working table for 
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showering 3 s. The ethanol solution will remove the residual Cu(OAc)2 and then the sample 

is moved into the P3 for immersion in ethanol solution. The lid is put back on the P3. During 

this time, the ultrasonic bath is also turned on.  

(iii) After immersion of the sample in rinsing ethanol solution for 100 s, the controller holder 

removes the lid on P3 and P2, and then move the sample for showering 3 s and puts the 

sample to H3btc solution (P2) for 900 s. Then the lid is put back in the P2. 

(iv) After immersion of the sample in H3btc solution for 900 s, the lid in P4 is removed by 

controller holder. The sample is moved to the center position for showering 3 s, then the 

sample is moved to the rinsing ethanol (P4) for cleaning. The lid is put back in the P3. 

(v) After immersion of the sample in rinsing ethanol for 100 s using ultrasonic cleaning and 

then the sample is showered in the center position of the working table for 3 s. The first cycle 

of SURMOF HKUST-1 preparation is finished. The immersion process P1 (Cu(OAc)2) → 

P3(ethanol) → P2(H3btc) → P4(ethanol) is repeated for 40 cycles to obtain a SURMOF 

HKUST-1 thin film.  

 

Figure 18. The setup of the dipping robot for SURMOF preparation. 

1.2.5 Properties of SURMOFs 

SURMOF is prepared by using LPE method, which can be resulted in oriented and 

homogenous thin film. The thickness of SURMOF is also can be well-controlled by the step 

by step fashion. 

SURMOFs use SAMs as tailoring templates to control of the growth orientation. The growth 
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orientations of MOFs structure can be depended on location of -COOH, -OH and pyridyl 

groups or the density of functional groups at the surface.
[51, 59]

 For example, the -OH groups 

of MUD SAMs at surface coordinate with the empty axial sites of paddlewheel copper dimer, 

therefore the MUD SAMs mimic the N-donor pillars and promote the [001] orientation. 

The -COOH groups at MHDA SAMs surface will fix the paddlewheel copper dimer and 

promote the [110] orientation.
[60]

 

LPE method for SURMOF preparation is applied to control of the thickness of SURMOF thin 

film via adjusting the number of deposition cycles. The thickness of SURMOF is increased 

when the deposition cycle is increased.
[53]

 

SURMOF can be prepared hetero-structures by changing the metal nodes and/or linker 

molecules in successive deposition cycles. For example, the case of MOF-on-MOF was 

prepared by employing step-by-step LPE process.
[61]

 The [Zn2(ndc)2(dabco)] was grown on 

[Cu2(ndc)2(dabco)] to get the heteroepitaxial oriented hybrid MOF thin films 

(hetero-SURMOFs).  

Based on the advantages of SURMOFs, SURMOFs can be applied to molecules storage and 

diffusion,
[62-63]

 luminescence property
[64]

 and biological application.
[43]

 

1.3 Chirality 

“The concept of ‘chirality’ has been known in chemistry since the 1870's although it would 

be nearly a hundred years before chemists began using this term.”
[65]

 

In simple terms, chirality is handedness, it means that the existence of left or right hand 

molecules, which are called “enantiomer”, and the left and right hand are mirror images and 

can’t be superimposed (Figure 19). 

 

Figure 19. The model of chirality is “handedness”. 

In the modern pharmaceutical industry, chirality is an important concern for applications. 
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This interest can be attributed largely to an awareness that enantiomers of a racemic drug may 

have different pharmacological activities, different pharmacokinetic or pharmaceutical 

effects.
[66-68]

 There are different chiral materials in the living organisms, such as amino acid, 

protein, DNA and RNA. Due to chirality, the living organisms can display different biological 

responses to different enantiomers in drugs, pesticides or waste compounds. This interacts 

with each chiral drug differently to give different pharmacological activity. Thus, one 

enantiomer may produce the desired therapeutic activities, while the other may be produced 

unwanted activity or inactivity. Therefore, the chiral separation is very important in the 

modern life. In nature, many biomolecules exist in only one of the two possible enantiomeric 

forms, e.g., amino acids in the L-form and sugars in the D-form.  

1.3.1 Chiral SURMOFs 

Surface mounted chiral metal-organic frameworks (chiral SURMOFs) are thin films of chiral 

MOFs grown on a substrate using LPE. The first chiral SURMOF has been prepared by Liu 

et al in 2011.
[60]

 In this work, [Zn2(Dcam)2(dabco)] (Dcam = (1R,3S)-(+)-camphoric acid, 

dabco = 1,4-diazabicyclo(2.2.2)octane) was prepared successfully and then the uptake of a 

pair of enantiomeric guest molecules, namely (2R,5R)-2,5-hexanediol (R-HDO) and (2S,5S)-

2,5-hexanediol (S-HDO) was monitored by QCM. The difference of the absolute uptake for 

each of the chosen enantiomer was observed and it show that chiral SURMOF has significant 

enantioselectivity (Figure 20). 

 

Figure 20. Enantioselectivity of chiral SURMOF. (Figure taken from ref.
[60]

) 
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2 OBJECTIVES OF THESIS: CHIRAL SURMOFS AND 

OPTIMIZATION OF SURMOF PREPARATION  

In this thesis, the major aims are preparation of surface mounted chiral metal-organic 

frameworks (SURMOFs) and the investigation of their enantioselectivities. These chiral 

SURMOFs are promising materials in the applications of enantioselective adsorption and 

separation. Another aim focuses on improving the SURMOF quality and optimizing the 

SURMOF preparation conditions by using a dipping robot. 

SURMOF has been developed rapidly for several years since the first one was report in year 

2007. However, synthesis and investigation of chiral SURMOF are limited currently. To date, 

there has only been one report about the chiral SURMOF reported in 2011. However the 

study of isoreticular chiral SURMOFs has not yet been reported. Therefore it’s interesting to 

study the relationship between the enantioselectivity and the pore size in the isoreticular 

homochiral SURMOFs. 

Oriented circular dichroism (OCD) has been observed for oriented chiral molecules and the 

orientated alignment of α-helical peptides reconstituted in such oriented biomembranes. 

However, so far there is no report about the chirality of SURMOFs. In addition, the circular 

dichroism (CD) is also used to characterize the chirality of MOFs, but by using CD to study 

the chirality of MOFs with different orientations and determine a racemic mixture of the 

enantiomers in MOFs has not been report. Therefore, it is important to explore the chirality of 

chiral SURMOF grown on different orientations since chiral SURMOFs can epitaxially grow 

on substrates with different orientations, as well as the CD technique is used to determine the 

racemic mixture of the enantiomers in chiral SURMOFs. 

So far, several methods have been established to prepare the SURMOFs: pump method, spray 

method, in-situ QCM method and dipping by hand method. However the quality of the 

SURMOF with these methods is not enough and need to be improved. Therefore, the 

optimization of SURMOF preparation is important in the applications of SURMOF. In this 

thesis a new preparation technique: dipping robot method was introduced to get high quality 

SURMOF.  
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3 METHODS AND TECHNIQUES 

3.1  X-ray diffraction (XRD) 

X-ray diffraction (XRD) is an important tool for the study of crystal structures and atomic 

spacing. It is also used for phase identification of the crystalline materials (e.g. minerals, 

inorganic or organic compounds).
[69]

  

X-ray diffractometer mainly consists of four parts: an X-ray tube, a sample holder, an X-ray 

detector and focusing elements (e.g. slits, etc). X-rays are generated in an X-ray tube by 

heating a filament to produce electrons, which are accelerated towards a metal target, i.e., Cu 

or Mo. When the electrons get enough energy to drive the shell electrons of the target 

material, part of the incident X-ray are transmitted from the crystalline material and the rest 

X-ray are recorded by the detector. Therefore, the characteristic X-ray spectra are produced 

(see Figure 21).  

 

Figure 21. The schematic of modern Bragg-Brentano laboratory difrractometer in reflection geometry 

with bent (focusing) primary beam monochromator M, primary soller slit P.S.S., divergence slit D.S., 

scattering slit A.S.S., secondary soller slit S.S.S. and receiving slit R.S. (Figure adopted from ref.
[70]

) 

The X-ray spectra shows the intensity of X-ray, which is obtained by dispersion with a crystal 

or ruled grating. It is composed of a continuous “bremsstrahlung” spectrum on which the 

http://serc.carleton.edu/research_education/geochemsheets/xrays.html
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characteristic X-ray spectrum is superimposed. The intensity of the “bremsstrahlung” spectra 

increases rapidly with the decreasing of bombarding particles mass. It can reach a significant 

value in the case of excitation by electrons. On the other hands, the resolution of diffraction 

pattern is defined by full-width at half-maximum (FWHM) of single peaks.
[70]

 

The XRD peaks are directly related to the atomic distances. An inter-plane distance of lattice 

plane is given as d. The fundamental law for a peak to occur can be written as 2dsinθ = nλ, 

which is known as the Bragg's law (Figure 22). In this equation, λ is the wavelength of the X-

ray, 2θ is the scattering angle, and n is an integer of the order of the diffraction peak. For 

powder crystalline materials, all the possible diffraction orientations in the lattice are 

measured by scanning a range of 2θ angles of the sample. This law is one basic law for 

interpreting XRD peaks positions in crystalline materials.
[71]

 

 

Figure 22. Description of Bragg’s law: Two parallel beams with identical wavelength pass through a 

crystalline solid and then are scattered by two different atoms. The path of one beam is 2dsinθ longer 

than that of the other beam. Constructive interference occurs when the path length difference between 

these two waves is an integer multiple of the wavelength. 

The XRD is also sensitive to crystalline thin films materials. With standard diffraction out of 

plane, such as the Bragg-Brentano geometry, lattice planes parallel to the sample surface are 

measured. For lattice planes perpendicular to the sample surface, the in-plane diffraction is 

used (see Figure 23).
[72]

 Especially, in the crystalline and oriented SURMOFs materials, 

many XRD peaks are not appearing when only the out of plane XRD is carried out. Therefore 

the in plane XRD has to be measured for obtaining more XRD information. 
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Figure 23. Two XRD diffraction modes of thin film, in-of-plane and out-plane. 

In this work, out of plane was carried out with a Bruker D8 advance in θ-θ geometry 

equipped with a Si-strip detector (PSD Lynxeye) using Cu K1,2 (λ = 0.15405 nm) radiation. 

On the tube side, a variable divergence slit was set to V12 (slit with 12 mm), and on the 

receiving side a 2.3° Soller slit was used. 

Scans run typically from 5° to 20° (2θ with a step width of 0.025° and 6 s per step, which, 

due to the specific position sensitive detector (PDS) settings). Evaluation of data was done 

with Bruker evaluation software EVA 15.0. After background correction the peak position 

was calibrated by the gold (111) peak of the substrate at 38.2°. In addition, intensities of 

peaks are normalized by counts per second (cps). 

3.2  Infrared spectroscopy (IR) 

Absorption of electromagnetic energy in the infrared region causes changes in the vibration 

of molecules. The absorption of Infrared (IR) radiation can cause vibration of molecules. IR 

spectroscopy is widely used, primarily for the identification and structural analysis of 

inorganic and organic materials.
[73-74]

 

A molecule can vibrate in many modes and each mode is called a vibration. Linear molecules 

have 3N-5 vibrational modes, while nonlinear molecules have 3N-6 vibrational modes (where 

N is number of atoms). For example nonlinear H2O, has 3×3-6 = 3 vibrations. The number of 

fundamental modes includes bending and stretching vibrations (Figure 24).
[75]
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Figure 24. The important vibration types in nonlinear molecule H2O. 

Another illustration of normal vibration for methylene group (CH2) introduces several terms. 

For a CH2X2 group (where X can represent any other atom), there are six vibrations in the 

CH2 portion, including symmetric and antisymmetric stretching, scissoring, rocking, wagging 

and twisting as shown in Figure 25. 

 

Figure 25. Six of the important vibration types in CH2 portion in CH2X2 group. 

For surface chemical compositional analysis, infrared reflection-absorption spectroscopy 

(IRRAS) can be applied. The gold substrate for the SAMs permits the use of reflectance 

methods, because of there is high reflectivity of IR light from the gold surface.
[76]

 When the 

IR light induces vibrational transitions in the molecular bonds, the information such as 

identification of chemical environment, structure and functional group can be elucidated by 

measuring the frequency and intensity of the absorbed IR light. The photons interact with the 

surface molecules and then reflect from the gold substrate, where they are focused on the 

detector through another series of mirrors.
[76]

 

 

Figure 26. Principle of infrared reflection-absorption spectroscopy (IRRAS). 
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The polarized light is used for interpreting the vibrations of molecule on the surface. Linear 

polarized light can be separated into two different components: s- and p-polarized light 

(Figure 26). The s- polarized light is parallel to the surface and perpendicular to the plane of 

incidence, while the p-polarized is parallel to the plane of incidence. When the s-polarized 

light is reflected at the surface, it undergoes a 180° phase shift that results in a nearly total 

cancellation of the amplitude at the surface. The p-polarized light undergoes a 90° phase shift 

that results in amplitude addition. Installing a polarizer into the infrared beam path allows one 

to select only the p-polarized light. This results in a significant increase of the signal-to-noise 

ratio. Therefore, p-polarized light is used to take advantage of the surface selection rule.
[77-78]

 

This rule states that only absorption modes that have a component of vibration perpendicular 

to the surface will be excited. Modes that are completely parallel to the surface normally do 

not interact with p-polarized light. Therefore IRRAS can provide information on orientation 

of adsorbates in this case. 

The SURMOFs were characterized with IRRAS. IRRAS data were recorded using a FTIR 

spectrometer (Bruker VERTEX 80) in this thesis. With a resolution of 2 cm
-1

 at an incidence 

angle of 80° relative to the surface normal is used. Liquid nitrogen is used for cooling the 

mercury cadmium telluride (MCT) narrow band (4000-400cm
-1

) detector. Perdeuterated 

hexadecanethiol SAMs on Au substrate was used as reference for SURMOF grown on SAMs 

Au substrate. The quartz glass was used for the background of SURMOF grown on 

functionalized quartz glass. In both case 1024 scans were accumulated for the reference 

measurement. Dry air was purged continuously through the spectrometer and the sample 

compartment, which reduces the possibility of atmospheric water or CO2 contamination of 

the spectra and samples. Samples were measured as long as the water absorption bands from 

ambient air disappeared (900-1300 scans). The data were processed using Bruker OPUS® 

software version 7.2. 

3.3 Quartz crystal microbalance (QCM) 

A quartz crystal microbalance (QCM) is an instrument that can monitor slight mass changes 

by measuring the resonance frequency change of the QCM sensor. The QCM with dissipation 

monitoring (QCM-D) is a special QCM, which is used in interfacial acoustic sensing. A 

common application is the determination of a film thickness in a liquid environment, such as 

the thickness measurement of a deposited protein film. 

The application of an alternating potential to the crystal surface causes the crystal to oscillate. 
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When the thickness of the crystal (dq) is double of the acoustical wavelength, a standing wave 

can be established where the inverse frequency of the applied potential during the period of 

the standing wave. This frequency is called a resonant frequency (ƒ0), and can be calculated 

the equation (1) and (2): 

   √
  

  
             (1), 

∆ 𝑛  − 𝑛 𝐹
2 𝑀𝑓

𝑣  
     (2), 

where dq is the thickness of crystal, ρq is the density of crystal, μq is the ratio of sheer stress to 

shear strain and. n denotes the overtone order fF is the frequency of the fundamental, v is the 

speed of sound. Given that fF, ρq, and v are constants, one may write: 

∆ 𝑛  −𝑛𝐶∆𝑀𝑓        (3). 

Mf is the mass of crystal, C the mass sensitivity constant is referred to the equation
[62, 79]

: 

where the resonance frequency and dissipation are fn and Dn and the bandwidth is Γn, ωF = 

2πfF is the angular fundamental resonance frequency as shown in Figure 27. 

 

Figure 27. Schematics of QCM-D operation; (a) A photograph of a 4.95 MHz AT-cut quartz crystal 

(Q-Sense); (b) Side view of the crystal; (c) Resonances observed when a crystal is in air (blue) or 

liquid (red). Typical spectra obtained with impedance analysis. The excitation frequency is plotted on 

the x-axis. The y-axis represents the amplitude of the current passing through the crystal. Two 

parameters are used to characterize the resonance: frequency f and band width Γ. (Figures taken from 

ref.
[79]

) 

The experiments were carried out by using the automated QCM-D instrument Q-Sense E4 in 

this work. The QCM-D can be used in gas phase or liquid environments for monitoring the 

resonance frequency changes on the electrode thin film. A decrease of the resonance 

frequency is due to the increase of the mass on QCM sensor according to equ. (3). Typical 

QCM sensor has a gold electrode on the upper side where materials can be deposited on the 

surface (Figure 27a). The setup of gas phase QCM is schematically depicted in Figure 28, 

which includes mass flow controllers for controlling the flow rate of the carrier gas (e.g. Ar or 

N2) and analyte storage container. The carrier gas is dosed by the gas flow controller into a 
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glass evaporator. The analyte vapour in the storage container is mixed with the carrier gas and 

then the mixture enters the sample in the QCM. In this case, the analyte will be loaded and 

then the mass of the QCM sensor will be increased. This increased mass lead to the frequency 

changes (∆f). When start the gas phase QCM experiment, the system is activated by the 

carrier gas at 65 °C for 20 h. The system is flushed with carrier gas at the setting temperature 

for about 10 min, which establish the baseline for the loading experiment. When the 

frequency is stable, the loading experiment is started by admitting analyte molecules to the 

storage container. From the recorded different frequencies, the mass of molecular loading is 

calculated. Furthermore, there is a pump for the flow rate of the solutions in the liquid QCM. 

When the liquid QCM experiment is started, the system is flushed the solvent for the baseline 

at the setting temperature. When the frequency is stable, which is used for the baseline, the 

experiment can be started for MOF growth or liquid loading. Then the mass changes can be 

observed from the frequency changes. 

 

Figure 28. Setup employed for the sorption measurements: (1) gas (Ar or N2) supply, (2) gas flow 

controller (FMD PR4000), (3) main valve, (4) three-way valve, (5) storage container with the loading 

substance, (6.7) outlet valves, (8) QCM sensor, (9) sample holder with electric feed through, (10) 

liquid pump. 

3.4 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) is a powerful technique in the examination of materials 

and it is used widely in detecting the information about the surface morphology and to some 

extent, the composition of the sample. High magnification images with a good depth of field 

http://en.wikipedia.org/wiki/Topography
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can be obtained and other features, such as individual crystals can also be analyzed. In a 

typical SEM, the main components are: electron column, scanning system, detector, vacuum 

system and electronics control as shown in Figure 29.  

 

Figure 29. Schematic of an scanning electron microscopy (SEM). (Figure taken from ref.
[80]

) 

The electron column of the SEM consists of an electron gun and two or more electromagnetic 

lenses operating in vacuum. The electron beam is focused by one or two condenser lenses to 

a spot about 0.4 nm to 5 nm in diameter, which typically has an energy ranging from 0.2 keV 

up to 40 keV. The electron beam passes through pairs of deflector plates or scanning coils in 

the electron column, and then the final lens turn the beam to scan a rectangular area of the 

sample surface in a raster fashion.
[81]

 

In this work, the morphology measurements are carried out in a FEI Philips XL 30 Field 

Emission Gun Environmental Scanning Electron Microscope (FEG-ESEM). To avoid 

charging, insulating materials have to be coated with a thin Gold/Palladium film. Then the 

specimen can be imaged under high vacuum conditions (10
-5

 Pa) using acceleration voltages 

between 5 and 20 kV.  
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3.5 Atomic force microscopy (AFM) 

The atomic force microscopy (AFM) is a surface sensitive technique and has become a 

fundamental tool for nanotechnology in the field of nanomaterials and biochemistry, mainly 

in the surface morphology characterization with nanometric resolution. This means surface 

characteristics can be analyzed with very accurate resolution ranging from 100 μm to less 

than 1 nm. The AFM consists of a laser, a probe, a piezoelectric scanner and a detector. The 

MFP-3D-BIO-AFM was used for morphology (roughness and height) studies because this 

AFM provides high resolution images and accurate force measurement in air. There are two 

operating modes: contact mode and alternate current mode (AC mode, also named tapping 

mode) in MFP-3D-BIO-AFM.  

The cantilever represents the probe with a sharp tip attached at one end, which is used to scan 

the samples surface. The cantilever (NSC-18) with resonant frequency of 75 kHz and spring 

constant of 3.5 N/m, is used in this thesis, which is typically made of silicon with a tip radius 

of nanometers (<10 nm). The cantilever displacement is important for reaching the good 

resolution of AFM images for an accurate measurement. Usually AFM are performed in AC 

mode, in which the cantilever vibrates near the natural resonant frequency of the cantilever, at 

relatively high amplitudes, and it is controlled with feedback loop on the amplitude channel. 

The advantage of AC mode is that, no lateral friction force is applied to the sample surface, 

which in turn, causes no damage on sample during the measurement. 

The piezoelectric scanner is polycrystalline solid, and in this case, a X-Y piezo is used to 

move the sample in x- and y-axis, and a Z-piezo move the cantilever in z-axis (vertically) in 

AC mode. 

The detector in AFM consists of a quadrilateral photodiode, which is used to receive the 

reflected laser beam. This laser beam tracks the sample surface as it is reflected up and down 

(from the back of the cantilever) due to a change in the normal force between the surface and 

the cantilever. 

The principle of operation of the AFM is explained in Figure 30. The sample is placed on top 

of a scanner which is responsible to move the sample in X-Y directions. When the laser 

reaches to the back of the cantilever and then is reflected to a four-segment photodiode, the 

cantilever is shaken at its resonant frequency by a small Z-piezo in the cantilever holder. If 

the oscillation of the cantilever throughout the changes of topography causes a deflection 

signal, the laser hits the photodiode in the upper or lower field registering a difference in 

voltage. The signal can be simultaneously plotted by the PC program and a 3D representation 

http://en.wikipedia.org/wiki/Cantilever
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Radius_of_curvature_%28applications%29
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of the surface can be formed. 

 

Figure 30.The instrument of atomic force microscopy (AFM). 

3.6 Circular dichroism (CD) spectroscopy 

Based on the differential absorption of right and left circularly polarized light in an optically 

active chiral medium, the circular dichroism (CD) spectroscopy is a widely useful technique 

to determine a chiral substance. CD spectra with 180-800 nm wavelengths can be analyzed 

for the different chiral compounds: organic molecules, metal complexes, protein and DNA, 

which is the optical signal and chirality information.
[82]

 A number of excellent review articles 

report the technique and its application.
[83-84]

 The principle behind CD spectroscopy is shown 

in Figure 31. The light (UV) passes through a photo elastic modulator (PEM) which can 

convert the linear polarized light into alternating left- and right-handed polarized light and 

they are perpendicular to each other. The two polarizations are differently absorbed when the 

beam passes the optically active sample. The difference in absorption is detected with a photo 

multiplier tube (PMT). 

As a species of absorption spectroscopy, CD spectra are particularly powerful in monitoring 

conformational change of chiral substance and provide structural, kinetic and thermodynamic 

information about chiral medium. Currently, CD spectroscopy is mainly good for the 

determination and study of protein or peptides, such as: (a) determining whether a protein is 

folded, and if so, characterizing its secondary, tertiary structure or the structural family to 

which it belongs;
[85-86]

 (b) comparing the structures of a protein obtained from different 
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sources (e.g. species or expression systems);
[87-88]

 (c) studying the conformational stability of 

a protein under stress, thermal stability, pH stability or stability to denaturants.
[89-91]

 

 

 

Figure 31. The principle of circular dichroism (CD) spectroscopy. 

When circularly polarized light passes through an optically active medium, the speeds c of 

right circularly polarized light (R-CPL) and of left circularly polarized light (L-CPL) differ 

(cR-CPL ≠ cL-CPL) as well as the extent to which they are absorbed (εR-CPL ≠ εL-CPL). This effect, 

εR-CPL ≠ εL-CPL, is called CD and the differential absorbance (∆ε) of right and left circularly 

polarized light is plotted against the wavelength λ to yield the CD spectrum. Usually the 

absorbance difference (ΔA), it is the difference between absorbance of R-CPL and L-CPL, is 

recorded by CD spectrometer. The ΔA is described by equ (4), 

ΔA(λ) = A(λ)L-CPL - A(λ)R-CPL      (4),
[92]

 

where λ is the wavelength, A(λ)R-CPL is the absorbance of right circularly polarized light and 

A(λ)L-CPL is the absorbance of left circularly polarized light. Taking cell path length and 

compound concentration into account, a molar circular dichroism (Δε) can be derived. Based 

on Beer’s law, the equation can be expressed as equ. (5): 

Δε  = εL-CPL – εR-CPL = ΔA/(C × l)      (5),
[93]

 

where εL-CPL and εR-CPL are the molar extinction coefficients for L-CPL and R-CPL 

respectively, C is the molar concentration of the chiral substance, and l is the path length in 

centimeters. 

In this work the CD and OCD experiments were recorded with a Jasco J-810 

spectropolarimeter at room temperature. The spectra recorded for the pure quartz glass plate 
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(which was also used as the substrate for SURMOF thin film preparation) were used as a 

reference. Spectra were recorded from 350 to 180 nm in 0.1 nm steps using a 20 nm min
-1

 

scan speed, an 8 s response time and a spectral bandwidth of 1 nm. The quartz glass plates 

were fixed perpendicular to the incident light beam on a rotation stage with a computer-

controlled stepping motor. To reduce artefacts due to linear dichroism or birefringence arising 

from imperfections in the sample (slight vertical misalignment of the substrates, strain in the 

quartz glass windows) spectra were recorded every 45.0° of rotation of the sample at eight 

angles (0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°) and averaged. Afterwards, the 

reference spectra recorded for the quartz glass plates were subtracted for background 

correction.  
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4 EXPERIMENTAL RESULTS AND DISCUSSIONS: CHIRAL 

SURMOFS 

4.1 Used chemicals 

The names, abbreviations and structures of chemicals which are used in this work are listed in 

Table 1.  

Table 1. Names, abbreviations and structures of the chemicals. 

names and abbreviations structural formulas 

self-assembled monolayers (SAMs) 

perdeuterated 

hexadecanethiol 

 

11-mercapto-1-undecanol 

(MUD) 

 

16-mercaptohexadecanoic 

acid (MHDA)  

11-(triethoxysilyl)undecanal 

(TESU) 

 

1-decanethiol  

organic ligands 

(1R,3S)-(+)-camphoric acid 

(Dcam) 
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(1S,3R)-(-)-camphoric acid 

(Lcam) 

 

1,3,5-benzenetricarboxylic 

acid 

(H3btc) 
 

terephthalic acid (H2bdc) 

 

pillar linkers 

diazabicyclo[2.2.2]-octane 

(dabco) 
 

4,4'-bipyridyl (bipy) 

 

1,4-bis(4-pyridyl)benzene 

(bipyb)  

guest molecules 

(+)-Ethyl-D-lactate 

 

(-)-Ethyl-L-lactate 

 

R-(+)-Limonene 

 

S-(-)-Limonene 
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inorganic substance 

copper acetate (Cu(OAc)2) Cu(CH3COO)2·2H2O 

potassium permanganate 

(KMnO4) 

KMnO4 

sulfuric acid (98%) H2SO4 

hydrogen peroxide (30%) H2O2 

solvents 

ethanol (99.99%) (EtOH) CH3CH2OH 

deionized water (H2O) H2O 

toluene 

(C7H8) 

supplied gas 

nitrogen (99.9999%) N2 

argon (99.9999%) Ar 

 

 

 

 

 

 

 



41 

 

4.2 Isoreticular Homochiral SURMOFs with Tunable Pore Sizes  

Since the first synthesis of homochiral MOFs in 1999,
[94]

 the research field has rapidly 

developed.
[38, 95]

 So far, many different chiral MOFs have been synthesized and the 

enantioselectivity has been studied.
[96-98]

 So far, there has only been one report about the 

chiral SURMOF reported in 2011. However, a systematic study of isostructural homochiral 

SURMOFs have not been done and this is very important for understanding the 

enantioselectivity of chiral MOFs. 

Here, we systematically investigate the influence of the pore size of isoreticular homochiral 

MOFs, i.e. of MOFs with the same topology and identical chiral centers but with tunable pore 

sizes, on the enantiomer separation. For this purpose, the enantioselectivity of the adsorption 

capacity of chiral probe molecules, R- and S-Limonene, by the isoreticular MOFs is studied. 

This means a series of homochiral, pillared-layer MOFs [Cu2(Dcam)2(L)] (Dcam = (1R,3S)-

(+)-camphoric acid)were prepared with identical chiral layer [Cu(Dcam)] and different pillar-

linker L: diazabicyclo[2.2.2]-octane (dabco), 4,4-bipyridine (bipy) and 1,4-bis(4-

pyridyl)benzene (bipyb). The N-donor ligands (dabco, bipy and bipyb) are coordinated to the 

axial centers of the copper complexes forming pillars, which are perpendicular to the chiral 

[Cu2(Dcam)2] layers. This results in isoreticular homochiral MOF with identical chiral 

centers and different pore sizes. The lattice distances are 0.95 nm in [100] and [110] direction 

and 0.95 nm, 1.4 nm and 1.8 nm in [001] direction for the [Cu2(Dcam)2(dabco)], 

[Cu2(Dcam)2(bipy)] and [Cu2(Dcam)2(bipyb)], respectively (Figure 32). 
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Figure 32. Isoreticular homochiral SURMOF [Cu2(Dcam)2(L)] with tunable pore sizes (L= dabco, 

bipy and bipyb). 

4.2.1 Sample synthesis 

Preparation of MUD SAMs 

The preparation of self-assembled MUD substrate has been described in detail chapter 1.2.3. 
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Briefly, a polycrystalline Au film on Si wafer or QCM sensor were used. The substrate was 

immersed into a 1 mM MUD ethanolic solution for about 24 h. All the samples are rinsed 

with pure ethanol and dried under nitrogen flux before the preparation of SURMOF.  

Preparation of SURMOFs 

The [Cu2(Dcam)2(L)] SURMOF grown on MUD SAMs or functionalized quartz glass 

substrate are prepared using LPE approach with automatic pump system (L = dabco, bipy or 

bipyb). The substrates were immersed into 1 mM Cu(OAc)2 ethanolic solution for 15 min. 

This first immersion is an important step and the growth orientation is dependent by the 

function group of the substrate (Figure 33). When the -OH functionalized group MUD SAMs 

substrate is used for SURMOF preparation, -OH groups at MUD SAMs has surface 

coordinate with the empty axial sites of paddlewheel Cu(OAc)2, therefore the MUD SAMs 

mimic the pillar linkers (dabco, bipy and bipyb) and promote the [001] orientation. After 2 

min rinsing with ethanol, the sample then was immersed subsequently into a 0.2 mM 

equimolar ethanolic solution of H2Dcam/L mixture for 30 min at 50 
º
C. The chiral ligands 

Dcam coordinate to Cu ions and to form the [Cu2(Dcam)2] chiral layers and the N-donor 

pillar linkers are perpendicular to chiral layers. The samples were rinsed with ethanol for 2 

min. The procedure was repeated 50 cycles to obtain a 50 cycles [Cu2(Dcam)2(L)] SURMOF. 

 

Figure 33. Growth mechanism of Cu(OAc)2 in the first step of [Cu2(Dcam)2(L)] on MUD SAM (L = 

dabco, bipy or bipyb). 

In order to monitor the SURMOF growth, typical experiments were also carried out by using 

in-situ QCM method to prepare the SURMOF on the QCM sensor. 
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4.2.2 Characterization  

The out of plane and in plane XRD experiments were carried out using Cu K1,2 (λ = 1.5405 

Å) radiation in this work. This out of plane diffraction scan clearly demonstrates the presence 

of a highly ordered crystalline material. 

Figure 34a shows that there are two reflexes at 9.3º and 18.4º correspond the (001) and (002) 

peaks in out-plane XRD of [Cu2(Dcam)2(dabco)], respectively, which is accord with the 

calculated powder XRD well and display there are high oriented MOF thin film. The XRD 

peaks from in-plane shows (001), (200), (210), (002) and (310) that correspond with 

calculated data of [Cu2(Dcam)2(dabco)]. 

 

Figure 34. The XRD data of (a) [Cu2(Dcam)2(dabco)]; (b) [Cu2(Dcam)2(bipy)] and (c) 

[Cu2(Dcam)2(bipyb)] on MUD SAMs. 

[Cu2(Dcam)2(bipy)] thin film was nicely grown along [001] orientation as shown in Figure 

34b. Two strong diffraction peaks at 6.3º and at 12.7º correspond the (001) and (002) planes, 
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respectively, which are in accordance with the diffraction peaks at (001) and (002) in 

simulated powder [Cu2(Dcam)2(bipy)] diffraction patterns. The out of plane XRD clearly 

demonstrates the SURMOF [Cu2(Dcam)2(bipy)]  grown along [001] direction, the bipy pillars 

are perpendicular to the substrate. The in-plane data of [Cu2(Dcam)2(bipy)] on MUD SAMs 

show (110), (100), (110) and (310) diffraction peaks, which fit well to the bulk 

[Cu2(Dcam)2(bipy)] diffraction patterns. 

The out of plane XRD shows that three diffraction peaks at 4.8º, 9.7º and at 14.5º correspond 

the (001), (002) and (003) peaks in simulated powder [Cu2(Dcam)2(bipyb)] diffraction 

patterns, respectively. It shows that the SURMOF [Cu2(Dcam)2(bipyb)] thin film was grown 

along [001] orientation, as shown in Figure 34c. Due to the linker length of bipyb, the growth 

of SURMOF [Cu2(Dcam)2(bipyb)] is significantly more difficult, which hinder the in plane 

XRD measurement.  

 

Figure 35. The step by step syntheses of the isoreticular homochiral SURMOFs; (a) 

[Cu2(Dcam)2(dabco)]; (b) [Cu2(Dcam)2(bipy)] and (c) [Cu2(Dcam)2(bipyb)] monitored in-situ by 

QCM. (A: Cu(OA)2); B: ethanol; C: Dcam/L linkers). 
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The isoreticular homochiral SURMOFs were grown on gold-coated quartz crystal 

microbalance (QCM) sensors functionalized with MUD SAMs, resulting in a [001] crystal 

orientation of the SURMOF. The samples were synthesized in-situ in the QCM flow cell by 

pumping subsequently the ethanolic solution of 1 mM Cu(OAC)2 and 0.2 mM equimolar 

H2Dcam and L (L = dabco, bipy or bipyb) through the QCM cell. In between, the sample was 

purged with ethanol to remove unreacted, weakly absorbed reactants. In this way, the 

SURMOFs were synthesized in a step by step fashion in the QCM flow cell and the mass 

increases during the syntheses were monitored in situ, see Figure 35. The SURMOF masses 

were determined to 10.84 µgcm
-2

, 13.04 µgcm
-2

 and 10.97 µgcm
-2

, respectively.  

 

Figure 36. The IRRAS data of (a) [Cu2(Dcam)2(dabco)]; (b) [Cu2(Dcam)2(bipy)] and (c) 

[Cu2(Dcam)2(bipyb)] on MUD SAMs. 

The IRRAS spectrum of SURMOF [Cu2(Dcam)2(dabco)] show than there are 3000~2973 

cm
-1

 and 2931~2885 cm
-1

 absorption bands, which are assigned to the methyl and methylene, 

respectively (Figure 36a). The absorption bands 1624 cm
-1

 and 1467~1401 cm
-1

 is ascribed to 
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the νas and νs stretching bands of COO
-
 groups. The same situation of IR absorption band in 

SURMOF [Cu2(Dcam)2(bipy)], and [Cu2(Dcam)2(bipyb)], the absorption bands 3080~2986 

cm
-1

 in Figure 36b, and 2965 cm
-1

 in Figure 36c are ascribed to the methyl group. The 

assignment of bands 2928~2880 cm
-1

 in [Cu2(Dcam)2(bipy)] and 2923~2850 cm
-1

 in 

[Cu2(Dcam)2(bipyb)] are methylene group. The νas and νs stretching bands of COO
-
 groups 

are 1614 and 14811~1401 cm
-1

 in Figure 36b, respectively. The νas and νs stretching bands of 

COO
-
 groups are 1550 and 1415 cm

-1
 in Figure 36c, respectively. 

4.2.3 Experimental results and discussion 

A pair of chiral probe molecules, S- and R-Limonene, was chosen to systematically 

investigate the relationship between the degree of enantioselectivity and the pore size of the 

isoreticular homochiral SURMOFs. For this purpose, the uptake of the probe molecules by 

the different SURMOF samples was studied quantitatively by employing a QCM.
[79]

 After 

activating the sample at 65 °C in a flow of argon (99.9999% purity, 100 ml min
-1

) over night, 

the uptake of the enantiopure guest molecules into the SURMOFs was studied at a 

temperature of 303 K. Uptake was initiated by switching for a stream of pure argon to an 

argon flow which was enriched with R- or S-Limonene at room temperature (298 K) by 

passing over small amounts of the respective enantioamer. The uptakes by the three different 

SURMOFs are studied in parallel at the same time to ensure identical conditions during the 

experiments. The uptake of R- and S-Limonene was investigated subsequently five times to 

guarantee the reproducibility of the results. The experiments are performed at a temperature 

of 30 °C. Typical the uptake curves of the isoreticular chiral SURMOFs are shown in Figure 

37. 

The QCM uptake curves enable the determination of the adsorption concentration as shown 

Figure 38a. It is clearly visible that the adsorption capacity is different for the two different 

enantiomers. In addition, as expected, the total storage capacity increases with increasing 

pore size. For S-Limonene, compared to [Cu2(Dcam)2(dabco)], the MOF with the smallest 

pore size, the adsorption capacity is twice as large in [Cu2(Dcam)2(bipy)] and thrice as large 

in the [Cu2(Dcam)2(bipyb)]. The adsorption capacities of R-Limonene are smaller than that of 

S-Limonene, in particular in [Cu2(Dcam)2(bipy)], but also for this enantiomer adsorption 

capacity increases with increasing pore size. 
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Figure 37. QCM curves of S-Limonene (black) and R-Limonene (red) uptake by the isoreticular 

SURMOFs; (a) [Cu2(Dcam)2(dabco)]; (b) [Cu2(Dcam)2(bipy)] and (c) [Cu2(Dcam)2(bipyb)]. 

The determined adsorption capacities allow the calculation of enantioselectivity of the 

adsorption as shown in Figure 38b. The enantiomeric excess (ee) of S-Limonene versus R-

Limonene changes for the different MOF structures, with approximately 17% in 

[Cu2(Dcam)2(bipyb)], 40% in [Cu2(Dcam)2(dabco)] and about 106% in [Cu2(Dcam)2(bipy)]. 

This shows that the enantioselectivity does not only depend on the chiral center (the chiral 

ligand inside the MOF), also the pore size has a dramatic influence on enantioselectivity 

dramatically. Furthermore, the ee value does not follow such a simply trend as the adsorption 

capacity which increases with increasing pore size. The highest ee value was found for the 

medium pore size. It can be assumed that the differences of the adsorption capacities are 

caused by different alignment of the chiral guest molecules in the pores, where the chiral 

centers have different impact on the enantioselectivity.  
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Figure 38. The S- and R-Limonene uptake (a) and enantiomeric excess (b) by the series of isoreticular 

homochiral SURMOFs [Cu2(Dcam)2(L)] with L = dabco, bipy or bipyb.  

4.2.4 Conclusion 

In conclusion, three isoreticular homochiral SURMOFs, [Cu2(Dcam)2(dabco)], 

[Cu2(Dcam)2(bipy)] and [Cu2(Dcam)2(bipyb)] can be grown on MUD SAMs substrate, which 

have the identical chiral centers and different pore sizes (0.95 × 0.95 × 0.95 nm
3
, 0.95 × 0.95 

×1.4 nm
3
 and 0.95 × 0.95 × 1.8 nm

3
). A pair of chiral probe molecules, R- and S-Limonene 

were used to investigated the enantioselectivty of these three isoreticular homochiral 

SURMOFs. It was found that the adsorption capacity increases with increasing pore size of 

MOFs. For the enantiomer separation a more complex situation was found, where the highest 

ee value was found for SURMOF with the medium pore size while the enantiomeric excess 

for very small and large pores is significantly smaller. This study shows that an interplay of 

the chiral center and the pore size determine the enantioselectivity.  
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4.3 Oriented Circular Dichroism Investigation of Chiral SURMOF  

The chirality of bulk MOFs has been reported and described in chapter 1.1.2. However, the 

chirality of MOFs on different orientations is still a challenge to investigate. Therefore, the 

chiral SURMOFs are good candidates for chirality investigation of MOFs with different 

orientations. Although CD measurements were carried out e.g. on surface-confined 

homochiral helices,
[99]

 so far studies of highly oriented SURMOFs have not yet been 

reported. Such studies are interesting, since in addition to a conventional CD analysis of the 

guest compounds also the effect of highly oriented chiral ligands within the SURMOF lattice 

can be investigated. Oriented circular dichroism, or OCD, has been observed for oriented 

chiral molecules (e.g. embedded in liquid crystals), and is conveniently used in structural 

biology to characterize the conformation-in particular-the orientated alignment of α-helical 

peptides reconstituted in such oriented biomembranes.
[100-102]

 

In this work, we focus on chiral pillared-layer SURMOFs of the type 

[Cu2(Dcam)2x(Lcam)2-2x(dabco)] (0 ≤ x ≤1), consisting of Cu
2+

 dimers, the enantiomeric 

linkers Dcam (Dcam = (1R,3S)-(+)-camphoric acid) and/or Lcam (Lcam = (1S,3R)-(-)-

camphoric acid) and the pillar linker molecule dabco (Figure 39).
[103-104]
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Figure 39. (a) Chiral [Cu2(Dcam)2x(Lcam)2-2x(dabco)] for different x (0≤x≤1, x is the component of 

Dcam); (b) hetero-layered SURMOF [Cu2(Lcam)2(dabco)] (L-MOF) on [Cu2(Dcam)2(dabco)] (D-

MOF); (c) [Cu2(Dcam)2(dabco)] structure. 
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4.3.1 Sample synthesis  

Preparation of SURMOFs 

The -OH functionalized quartz glass substrate was obtained by immersing the clear quartz 

glass into a piranha solution consisting of 98% H2SO4/30% H2O2 (3:1) at 80 °C for 30 min. 

The resulting substrates were used for SURMOF growth in [001] direction (Figure 40a). In 

order to obtain SURMOFs with a [110] growth direction, the -COOH functionalized quartz 

substrates were prepared by treating the OH-functionalized quartz glass with 11-

(triethoxysilyl)undecanal (0.05 M toluene solution) for 3 h and potassium permanganate (1 

mM aqueous solution) for 1 h, respectively. 

After this cleaning procedure, the [Cu2(Dcam)2x(Lcam)2-2x(dabco)] (x = 0, 0.25, 0.5, 0.75 and 

1) SURMOF films were grown on the quartz substrate by an LPE approach at 50 °C.
 
The 

substrate was subsequently immersed in an ethanolic solution of copper acetate dihydrate (1 

mM) for 15 min, in pure ethanol for 5 min, and in the ethanolic linker solution containing 

H2Dcam/H2Lcam with different ratios and dabco for 30 min. The ratios were 1/0, 3/1, 1/1, 

1/3, and 0/1 with a total concentration of the Dcam and Lcam linkers of 0.2 mM and a 

concentration of dabco of 0.2 mM. As a final step, the sample was immersed again in pure 

ethanol for 5 min. The cycles were repeated 40 times to obtain a 40 cycles 

[Cu2(Dcam)2(Lcam)2-2x(dabco)] (x = 0, 0.25, 0.5, 0.75 and 1) SURMOF grown in the [001] 

direction.  

Furthermore, films consisting of 20 cycles [Cu2(Lcam)2(dabco)] (or [Cu2(Dcam)2(dabco)]) 

SURMOF were grown on top of 20 cycles [Cu2(Dcam)2(dabco)] (or [Cu2(Lcam)2(dabco)]) 

SURMOF (and vice versa). They were prepared on cleaned quartz substrates using the LPE 

approach as described previously, with the difference that the linker solutions contain either 

Dcam or Lcam linker molecules. After growing 20 cycles of one SURMOF, the growth of 20 

cycles of the other SURMOF was started.  

Preparation of bulk MOF material 

[Cu2(Dcam)2(dabco)] bulk MOF was synthesized by a solvothermal method, one-pot reaction 

of 0.2 g (1 mol) copper acetate (CH3COO)2Cu·H2O, 0.2 g (1 mol) (1R,3S)-(+)-camphoric 

acid (Dcam) and 0.056 g (0.5 mol) linear rigid N-donor dabco in a 2:2:1 ratio in ethanolic 

solution. The precipitated powder was washed with ethanol. XRD-patterns for 

[Cu2(Dcam)2(dabco)] prepared at 350 K for 12 h are shown in Figure 40b. Calculation of the 

XRD pattern was done with Mercury CSD 2.4 version program applying the structural 
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information from the literature
[15]

 with the space group #90 P4212. 

 

Figure 40. (a) Structures of the [Cu2(Dcam)2(dabco)]
 
SURMOF grown in the [001] and [110] 

directions; (b) Experimentally obtained XRD of D-MOF grown in different directions, of L-MOF 

grown in the [001]-direction and of the powder MOF and the calculated bulk XRD.  
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4.3.2 Comparison of CD in SURMOF and bulk MOF 

From the theory of OCD for proteins,
[105]

 it is known that the intensity of the bands in the 

OCD spectrum of a chiral compound depends on the orientation of the transition dipole 

moment (TDM) of the chromophore (have COO
- 

group) with respect to the plane of the 

rotating electric field vector (RE) of the incoming circular polarized light. According to 

Figure 39a, each of the chiral linker molecules in the [001]-oriented SURMOFs is oriented 

with its molecular axis perpendicular to the incoming light and hence parallel to the RE-

plane. This results in a “net contribution” of each chiral linker to the OCD spectrum since the 

TMDs are all oriented perpendicular to the Dcam (or Lcam) molecular axis. This situation 

changes for SURMOFs with a different growth direction. To illustrate this relationship, the 

enantiopure SURMOF [Cu2(Dcam)2(dabco)]
 
was grown along the [110] direction by using a -

COOH functionalized SAM. When comparing the OCD spectra of a [001]-SURMOF with 

that obtained for a [110]-SURMOF (see Figure 41), significant changes are observed. This 

pronounced deviation can be rationalized by considering the different orientations of the 

chiral linkers within the two SURMOF structures. For the [001] orientation, the longitudinal 

axis of all chiral linkers is oriented parallel to the substrate (and thus parallel to the RE 

plane). On the other hand, in the case of the [110] oriented Cu2(Dcam)2(dabco)] SURMOF, 

for one half of the chiral linkers the molecular axis is oriented perpendicular to the surface 

(and thus perpendicular to the RE plane). 
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Figure 41. OCD spectra of [Cu2(Dcam)2(dabco)] grown in the two perpendicular orientations [001], 

[110] (left y-axis) and conventional CD spectrum of a suspension of the corresponding MOF powder 

(right y-axis).  

The experimentally observed decrease in intensity of the OCD band at 267 nm when going 

from the [001] to the [110] orientation is fully consistent with quantum chemical TD-DFT 

computations of the D-MOF model system (Figure 43a). 

A 0.2 mM ethanolic solution of the pure enantiomers and the racemate of EtLt were measured 

in the same way. The CD measurements of MOF powders were performed for a suspension 

of the powder particles in ethanol. The thickness of SURMOF films grown in the [001] and 

[110] directions was determined from the scanning electron microscope (SEM) images shown 

in Figure 42. Three places of the sample are chosen to measure the thickness of the 

SURMOF, displaying there are 143, 154 and 139 nm for SURMOF in the [001] direction 

while there are 139, 123 and 127 nm for SURMOF in the [110] direction. The thickness 

results show the SURMOF on different orientations have the identical thickness. The 

calculation of the error bars for CD spectra of SURMOF in the [001] and [110] directions is 

shown in Table 2 and Table 3. It was taken into account that both sides of the quartz glass 

were coated with SURMOF. 

All calculations of OCD spectra were carried out by Dr. Angela Bihlmeier in Prof. Dr. Wim 

Klopper group at Karlsruhe Institute of Technology (KIT). Several computations on a smaller 
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model system with various exchange-correlation functions showed qualitatively the same 

spectra, with larger absolute ellipticity for [001] than for [110], at least two times as large. 

This smaller model system was the Dcam
2−

 anions, neutralized by two Na
+
 ions, and the 

anion NH3(HCO2)3Cu2Dcam
−
. 

 

Figure 42. Scanning electron microscopy (SEM) was used to estimate the thickness of 

[Cu2(Dcam)2(dabco)] SURMOFs grown (a) in the [001] and (b) [110] direction on a quartz glass. 

All quantum chemical computations were performed with the TURBOMOLE program 

package
[106]

 in the def2-SVPD basis set for all atoms except H, for which the smaller def2-

SV(P) basis set was used.
[107-108]

 We shall refer to this basis set as “def2-SV(PD)”. 

Computations were first performed for the anionic model system NH3(HCO2)3Cu2Dcam
−
, 

whose equilibrium geometry was optimized in the framework of density-functional theory 

(DFT) with the functional B3LYP
[109]

 and the conductor-like screening model COSMO
[110]

 (ε 

= ∞). Then, a second NH3(HCO2)3Cu2
+
 unit was added as a mirror image of the first unit to 

yield the final, neutral model system Dcam(NH3(HCO2)3Cu2)2 (Figure 43a).  

The large positive ellipticity at about 200 nm in the experimental spectra is not reproduced by 

the computations, however. Nonetheless, the theoretical results corroborate the explanation 

that the differences between the experimental spectra of the chiral SURMOF 

[Cu2(Dcam)2(dabco)] grown along [001] and [110] are due to the different orientation. The 
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conventional CD spectrum (not normalized) of a suspension of a powder 

Cu2(Dcam)2(dabco)] MOF is also shown in Figure 41 for comparison. The difference 

between this spectrum and the superposition of the OCD spectra of the D-MOFs grown in 

[001] and [110] direction is explained by scattering contributions from the MOF powder 

particles.  

Table 2. Calculation of error bars for [001] orientation at 267 nm in Figure 41: 

Average thickness of SURMOF  

(according to Figure 42a) 

(d1 + d2 + d3)/3 

 

(143 nm + 154 nm + 139 nm)/3 = 145 nm 

As both sides of the quartz glass are coated 

we assume an average overall thickness d’ 
d’ = 2x145 nm = 290 nm 

 ’= average contribution of 1 nm of a 

SURMOF layer to the CD spectrum  
’ = -9.6mdeg/290 nm = -0.03 mdeg/nm 

Calculated n of a SURMOF with a 

thickness of d1, d2 or d3 

1 = ’×2×143 nm = -9.5 mdeg 

2 = ’ ×2×154 nm = -10. 2 mdeg 

3 = ’ ×2×139 nm = -9.2 mdeg 

Error bar max. ∆3= -9.2 mdeg 

Error bar min. ∆2= -10.2 mdeg 

 

Table 3. Calculation of error bars for [110] orientation at 267 nm in Figure 41: 

Average thickness of SURMOF  

(according to Figure 42b) 

(d1 + d2 + d3)/3 

 

(139 nm + 123 nm + 127 nm)/3 = 130 nm 

As both sides of the quartz glass are coated 

we assume an average overall thickness d’ 
d’ = 2 × 130 nm = 260 nm 

 ’= average contribution of 1 nm of a 

SURMOF layer to the CD spectrum  
’ = -4.5 mdeg/260 nm = -0.02mdeg/nm 

Calculated n of a SURMOF with a 

thickness of d1, d2 or d3 

1 = ’ × 2 × 139 nm = -4.8 mdeg 

2 = ’ × 2 × 123 nm = -4.2 mdeg 

3 = ’ × 2 × 127 nm =  -4.4 mdeg 

Error bar max. ∆2 = -4.2 mdeg 

Error bar min. ∆1 = -4.8 mdeg 
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Figure 43. (a) D-MOF model system used for the computation of oriented circular dichroism. Also 

shown is an isosurface of the spin density at 0.01 𝑎 
−3, as obtained at the B3LYP(35%)/def2-SV(PD) 

level; (b) OCD spectrum of the D-MOF model system as computed at the B3LYP(0.35%)/def2-SV(PD) 

level. A scaling factor was applied such that the minimum of the OCD spectrum along [001] equals 

the corresponding experimental value (black open circle). Shifted by 0.31 eV and simulated with 

Gaussian broadening with a root-mean-square line width of 0.2 eV. 

4.3.3 Experimental results and discussion 

The preparation of the chiral SURMOF [Cu2(Dcam)2x(Lcam)2-2x(dabco)] (x = 0.75, 0.5, 0.25 
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and 0) on CD compatible quartz glass plates was carried out using the LPE process as 

reported previously.
[111]

  

In case of the [Cu2(Dcam)2(dabco)] and [Cu2(Lcam)2(dabco)] SURMOF grown on -OH 

functionalized quartz glass the observation of sharp [001] diffraction peaks at 9.2° and 18.5° 

together with the absence of any diffraction peaks belonging to other crystallographic 

directions (See Figure 44a) reveals the presence of highly oriented SURMOFs with a [001] 

growth direction. The IRRAS data, which exhibited two characteristic bands centred at 1467 

cm
-1 

and 1624 cm
-1

, can be assigned to the symmetric and asymmetric -COO vibrations of the 

carboxylate groups of the camphorate linker, respectively, thus providing additional evidence 

for the successful growth of [Cu2(Dcam)2x(Lcam)2-2x(dabco)]n SURMOFs (Figure 44b). 

 

Figure 44. (a) XRD of [Cu2(Dcam)2x(Lcam)2-2x(dabco)] (x = 0.75, 0.5, 0.25 and 0) 40 cycles on a 

functionalized quartz glass substrate; (b) IRRAS of [Cu2(Dcam)2x(Lcam)2-2x(dabco)] (x = 1, 0.75, 0.5, 

0.25 and 0) 40 cycles on a functionalized quartz glass substrate. 

The OCD data recorded for a series of chiral SURMOFs [Cu2(Dcam)2x(Lcam)2-2x(dabco)] are 

depicted in Figure 45. For the SURMOF fabricated exclusively with Dcam (x = 1) or with 

Lcam (x = 0) the OCD spectra show two positive (negative) bands at 182 nm and 243 nm and 

a negative (positive) band at 267 nm, respectively. The intensities of all the corresponding 
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OCD bands are comparable in its values but exhibit opposite sign, as expected. The same 

mirror-inverted property can be observed for the two OCD spectra corresponding to the 

SURMOFs grown from mixtures of the chiral ligands (x = 0.75 and x = 0.25). For x = 0.5, 

the OCD spectrum only shows a flat line, because the contributions of the Dcam and Lcam 

linkers to the OCD spectrum cancel each other.  

 

Figure 45. OCD spectra of [Cu2(Dcam)2x(Lcam)2-2x(dabco)] grown on a functionalized quartz glass 

slide with x = 1, 0.75, 0.5, 0.25 and 0. 

For comparison, the conventional (isotropic) CD data for liquid and solid camphoric acid 

(H2cam) are shown in Figure 46a and Figure 46b, respectively. A positive band for H2Dcam 

and a negative band for H2Lcam at 211 nm are observed. For liquid-state CD measurements 

of the H2DCam and H2LCam enantiomers of camphoric acid a 5 mM solution in 2,2,2-

trifluoroethanol was prepared and measured in a 1 mm quartz glass cuvette using the data 

acquisition parameters described above. Comparing with the CD between chiral MOFs and 

chiral linkers, two chromophores with strong electric-dipole are formed after metal and chiral 

organic linkers construct chiral MOF on substrate. 
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Figure 46. Conventional CD spectra of H2Dcam and H2Lcam (a) dissolved in a liquid (2,2,2-

trifluoroethanol) and (b) as a solid powder sample. 

The same result was obtained for a bilayer Dcam/Lcam hetero-SURMOF fabricated by first 

growing 20 cycles [Cu2(Dcam)2(dabco)] (or [Cu2(Lcam)2(dabco)])  SURMOF on the quartz 

glass substrate, followed by the deposition of [Cu2(Lcam)2(dabco)] (or [Cu2(Dcam)2(dabco)]) 

with the same number of cycles (Figure 47 and Figure 48). 

From the XRD result, there are strong (001) peak at 9.23˚ and (002) peak at 18.5˚ which 

display that the MOF grown on substrate and seeding layers along [001] orientation (Figure 

47b and Figure 48b). We can see the MOF on MOF is available in the enantiomer linkers 

instead of different metal (change the metal source in the literature). There are two positive 

CD signal at 182 and 243 nm and a negative CD signal at 267 nm after 20 cycles 

[Cu2(Dcam)2(dabco)] on quartz glass substrate (seeding MOF layers) in Figure 47a (solid 

line). It is worth notice that there is no obvious CD signal after another 20 cycles 

[Cu2(Lcam)2(dabco)] on the seeding MOF layers and (dashed line in Figure 47a). With the 

same situation, with [Cu2(Lcam)2(dabco)] as seeding MOF layers, and then 

[Cu2(Dcam)2(dabco)] on the seeding MOF layers, there is also no CD signal in this case and 

both cases show that the counter chiral MOF will offset chirality of chiral MOF that locate 

the seeding layers (see Figure 48a). In this way, we can use the MOF-on-MOF method to 

achieve chirality conversion in MOF thin film. 
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Figure 47. (a) OCD spectra of 20 cycles [Cu2(Dcam)2(dabco)] and of 20 additional cycles of  

[Cu2(Lcam)2(dabco)] on top of the initial 20 layers of [Cu2(Dcam)2 (dabco)]; (b) Corresponding out-

of-plane XRD, compared with the calculated diffractogram of a SURMOF in the [001] direction. All 

SURMOFs are grown in the [001] direction on quartz glass.  

 

Figure 48. (a) OCD data and (b) out-of-plane XRD of 20 cycles enantiopure [Cu2(Lcam)2(dabco)], 

and of 20 cycles [Cu2(Dcam)2(dabco)] grown on top of 20 cycles [Cu2(Lcam)2(dabco)]. For 

comparison the calculated diffractogram is shown in (b). 
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The application of OCD for investigation the loading of SURMOFs with chiral guest 

molecules is demonstrated for (+)-ethyl-D-lactate [(+)EtLt] and (-)-ethyl-L-lactate [(-)EtLt]. 

The pure (-)EtLt and (+)EtLt compounds display a strong and characteristic CD band at 211 

nm (Figure 49a and Figure 50a) shows the resulting OCD spectra for the case of 

[Cu2(Dcam)2(dabco)], before (red curve) and after loading with (-)EtLt and with (+)EtLt from 

the gas phase (solid black and blue curves, respectively). By subtracting the spectrum of the 

pristine SURMOF from the corresponding spectrum after loading, the OCD spectra of the 

loaded guest compounds (-)EtLt and (+)EtLt were obtained (Figure 49b, dotted black and 

blue curves, respectively). The resulting broad bands at 211 nm have opposite signs and can 

be assigned to the contribution of (-)EtLt and (+)EtLt to the CD spectrum. The relative 

amount of the loaded species was quantified by integrating the areas below the curves [A+ for 

(+)EtLt and A- for (-)EtLt] (shaded areas in Figure 49b), yielding A+ =│-159│ mdeg•nm for 

(+)EtLt and A- =│+158│mdeg•nm for (-)EtLt. 

In the next step, a racemic mixture of (-)EtLt and (+)EtLt was used for loading 

[Cu2(Dcam)2(dabco)] (Figure 49c, green curve). After subtracting the corresponding OCD 

data for the empty host lattice, the difference spectrum yields an integrated area Arac of │-

45│ mdeg•nm (green shaded area in Figure Figure 49c), demonstrating a pronounced 

enrichement of (+)EtLt. Considering the value of 158.5 mdeg•nm [(A++A-)/2] obtained for a 

100% loading with ethyl lactate (see above), the corresponding enantiomeric excess of ee = 

Arac / [(A++A-)/2] = 28% implies that the [Cu2(Dcam)2(dabco)] exposed to the racemate 

contains 64% (+)EtLt and 36% (-)EtLt. 

The OCD spectra of [Cu2(Lcam)2(dabco)] SURMOF before (Figure 50b, red curve) and after 

the adsorption of (+)EtLt and (-)EtLt (Figure 50b, solid blue and black curves, respectively), 

exhibit similar amounts of loaded enantiomers when compared to the 40 cycles 

[Cu2(Dcam)2(dabco)] SURMOF with A-=│+167│ mdeg•nm for (-)EtLt and A+ =│-170│ 

mdeg•nm for (+)EtLt (black and blue shaded areas in Figure 50, respectively). The 

appearance of a positive broad band at 211 nm after loading the racemate (│+43│ mdeg•nm) 

reveals a preferential loading of the (-)EtLt enantiomer (Figure 50c). Determining a peak area 

of 168.5 mdeg•nm [(A++A-)/2] for 100% loading with ethyl lactate, one gets an enatiomeric 

excess ee = Arac / [(A++A-)/2] ×100% = 26%, which means 63% (-)EtLt and 37% (+)EtLt 

were taken up by the 40 cycles [Cu2(Lcam)2(dabco)] SURMOF.  
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Figure 49. (a) CD spectra of the pure enantiomers (-)EtLt (black curve) and (+)EtLt (blue curve);(b) 

OCD spectra of [Cu2(Lcam)2(dabco)] SURMOF before (red curve) and after (black and blue solid 

curves) loading with the enantiomers and with a racemic mixture (green curve) of EtLt. The dotted 

curves represent the difference between the OCD spectrum of the pristine SURMOF and the 

SURMOF after loading with (+)EtLt (blue) and (-)EtLt (black). The shaded areas represent the 

relative net amount of the loaded enantiomer; (c) OCD spectra of [Cu2(Dcam)2(dabco)] SURMOF 

before (red curve) and after (green curve) loading with a racemic mixture of EtLt. The shaded green 

area represents the relative net amount of the adsorbed (-)EtLt enantiomer; (d) Schematic illustration 

of an enantioselective separation of a racemic EtLt mixture by enantiopure chiral 

[Cu2(Dcam)2(dabco)] SURMOF.  
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Figure 50 (a) Conventional CD spectra of both enantiomers and of the racemic mixture of EtLt in 0.2 

mM ethanolic solution; (b) OCD spectra of [Cu2(Dcam)2(dabco)] SURMOF before (red curve) and 

after (black and blue solid curves) loading with the enantiomers and with a racemic mixture (green 

curve) of EtLt. The dotted curves represent the difference between the OCD spectrum of the pristine 

SURMOF and the the SURMOF after loading with (+)EtLt (blue) and (-)EtLt (black). The shaded 

areas represent the relative net amount of the loaded enantiomer; (c) OCD spectra of 

[Cu2(Dcam)2(dabco)] SURMOF before (red curve) and after (green curve) loading with a racemic 

mixture of EtLt. The shaded green area represents the relative net amount of the adsorbed (+)EtLt 

enantiomer; (d) Schematic illustration of an enantioselective separation of a racemic EtLt mixture by 

enantiopure chiral SURMOFs.  
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For comparison of the CD spectra for pure (-)EtLt and (+)EtLt are shown in Figure 49a and 

Figure 50a, which show that the CD bands (211 nm) of the enantiomers locate the different 

CD bands of the chiral SURMOFs (182, 243 and 267 nm). This means that the (-)EtLt and 

(+)EtLt molecules are good candidates for the determine experiments of SURMOFs 

[Cu2(Dcam)2(dabco)] or [Cu2(Lcam)2(dabco)]  using by CD technique. 

4.3.4 Conclusion 

In conclusion, the OCD can be applied to characterize chiral SURMOFs in a straightforward 

fashion. The observed decrease in the intensity of OCD band going from a [001] to a [110] 

growth orientation of the D-MOF demonstrates that the OCD method can be used to 

determine indirectly the orientation of the chiral linkers molecules of a hierarchically grown 

structure with respect to the substrate surface. In addition to this demonstration of the huge 

potential of empty SURMOF lattices for OCD investigations, OCD was also used to study 

the enantioselective loading of the enantiopure SURMOFs [Cu2(Dcam)2(dabco)] and 

[Cu2(Lcam)2(dabco)] with (+)-ethyl-D-lactate and with (-)-ethyl-L-lactate. When exposing 

the homochiral SURMOFs to a racemic mixture of the ethyl lactate enantiomers, the OCD 

data directly demonstrated the selective enrichment of one of the enantiomers. A quantitative 

analysis of these data is allowed to determine the relative amounts of adsorbed guest 

molecules with different chirality. We conclude that the combination of SURMOFs with 

circular dichrosim spectroscopy carries a huge potential for investigations of the interactions 

of chiral host with enantiopure MOF materials with regard to applications as filter and 

membrane materials, which might contribute to the highly topical filed of enantiomer 

separation. 
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5 EXPERIMENTAL RESULTS AND DISCUSSIONS: OPTIMIZATION 

OF SURMOF GROWTH USING A DIPPING ROBOT 

5.1 Improvement of  the SURMOF prepared by immersing into ultrasonic 

bath 

Ultrasonic in the dipping robot is applied during the SURMOFs preparation with the aim of 

understanding their influence and improving the SURMOFs quality. For this purpose, 

SURMOFs HKUST-1 are prepared at different ultrasonic treatment conditions under the 

same conditions (i.e. the same concentrations of metal salts and ligands and immersion time). 

Metal salts and organic ligand solutions, rinsing ethanol solution and all the solutions (metal 

salts, organic ligand and rinsing ethanol solutions) are put in the ultrasonic bath, respectively. 

The immersion time are 600, 900 and 100 s for Cu(OAc)2 (1 mM), H3btc (0.2 mM) and 

ethanol solution, respectively. In addition, there has 3 s showering time with ethanol between 

each immersion step. Thus process are repeated for 40 cycles, the SURMOFs samples are 

prepared at different ultrasonic treatment conditions under the same conditions, The XRD 

data shows all samples have similar crystallinity. Two strong peaks at 6.7° and 13.4° 

correspond to (200) and (400) peaks, which fit well with its corresponding calculated bulk 

XRD pattern (Figure 51a), indicating that the highly oriented HKUST-1 thin film can be 

obtained under ultrasonic treatment condition during the synthesis (Figure 51b). 
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Figure 51. (a) The structure model of SURMOF HKUST-1 grown on MHDA SAM along [100] 

direction using LPE fashion; (b) The out of plane XRD of SURMOF HKUST-1 synthesized by using 

ultrasonic bath in the dipping robot system and calculated bulk XRD. 
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Figure 52. Optical microscopy images of HKUST-1 prepared without ultrasonic (a) and with 

ultrasonic treatment during immersion in rinsing ethanol (b), in metal salts and ligands solution (c) or 

in all solutions (metal ions, ligands and rinsing solutions) (d). 

 

Figure 53. SEM images of SURMOF HKUST-1 prepared without ultrasonic (a) and with ultrasonic 

treatment during immersion in rinsing ethanol (b). 

In this work, the morphologies of these HKUST-1 samples are investigated by optical 

microscopy, SEM and AFM. The optical microscopy, SEM and AFM images of SURMOF 



70 

 

HKUST-1 sample prepared without ultrasonic and with ultrasonic treatment during 

immersion in metal salts and ligand solution, in rinsing ethanol or in all solutions (metal salts, 

ligands and rinsing solutions) are shown in Figure 52, Figure 53 and Figure 54, respectively. 

The Leica DM2500 M optical microscope was used to study the samples in transmission light 

bright filed and reflected light mode in this work. In the images of Figure 52a, many particles 

remain on the sample surface prepared without ultrasonic treatment during the synthesis. In 

contrast, the sample prepared with ultrasonic treatment is much smoother and more 

homogenous (Figure 52b, c, d and Figure 54b, c, d). The same phenomena are also observed 

in SEM images by comparison of the SURMOF HKUST-1 samples prepared without and 

with ultrasonic treatment during in the rinsing step (Figure 53). The SEM images show that 

the SURMOF prepared with ultrasonic treatment is much more homogeneous than the sample 

prepared without ultrasonic treatment. In addition, the height histogram in the four AFM 

images of SURMOF HKUST-1 prepared under different conditions shows that the SURMOF 

HKUST-1 prepared with ultrasonic treatment rinsing ethanol solution has the smallest surface 

roughness. This shows clearly that the introduction of ultrasonic instrument plays an 

important role in improving the quality of SURMOFs, in particular, ultrasonic treatment 

during the step of immersion of sample in rinsing ethanol. 
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Figure 54. AFM images of HKUST-1 prepared without ultrasonic (a) and with ultrasonic treatment 

during immersion in rinsing ethanol (b), metal salts and ligands solutions (c) or all the solutions 

(metal salts, ligands and rinsing solutions) (d). 

5.2 Patterned SURMOF 

Micro contact printing (µCp) is an important technique for fabrication of patterns on 
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substrates.
[112-113]

 An elastomeric polydimethylsiloxane (PDMS) stamp with different 

patterns, such as line, square, and circular pattern, etc can be used during the µCp process. 

 

Figure 55. The patterned SURMOF grown on a patterned substrate prepared with Micro contact 

printing (µCp) stamp. 

In this work, in order to get patterned SURMOFs, patterned MHDA substrate prepared by 

µCp technique are used to grow SURMOF. 1mM of MHDA solution is deposited on a clean 

polydimethylsiloxan (PDMS) stamp for 2 min. After drying with nitrogen, the stamp is gently 

pressed on the clean Au substrate for 1 min to get a patterned MHDA SAMs substrate. In 

order to enhance the quality of the patterned substrate, the patterned substrate is immersed 

into 1mM 1-Decanethiol solution for 1 min to block the non-patterned area with 1-

decanethiol (Figure 55). This patterned substrate is used to prepare the patterned SURMOF 

by the LPE process, which has been descripted in detail by Ladnorg et al.
[114]

 



73 

 

For the purpose of comparison, two patterned SURMOF HKUST-1 samples (40 cycles) were 

prepared by µCp technique without and with ultrasonic treatment during the preparation. The 

out of plane XRD data of these two samples show two strong peaks at 6.7° and 13.4°, which 

correspond to (200) and (400) peaks in the calculated bulk XRD (Figure 56). This reveals the 

presence of highly oriented HKUST-1 thin film with a [100] growth direction in both cases. 

 

Figure 56. The out of plane XRD of patterned HKUST-1 prepared by dipping robot without and with 

ultrasonic treatment. 

The morphologies of these two patterned samples (without and with ultrasonic treatment) 

were characterized with the optical microscopy. It clearly shows that the morphology of 

patterned SURMOF HKUST-1 prepared by using ultrasonic treatment (Figure 57b) is better 

than that of the SURMOF HKUST-1 prepared without ultrasonic treatment (Figure 57a). The 

sample prepared by ultrasonic bath shows the line patterns clearly and the SURMOF was 

grown only on the MHDA SAMs patterned area. 



74 

 

 

Figure 57. The optical microscopy images of patterned HKUST-1 prepared by dipping robot without 

(a) and with ultrasonic (b) treatment.  

 

Figure 58. The SEM images of patterned HKUST-1 prepared by dipping robot without ultrasonic (a) 

and with ultrasonic (b) treatment.  

The obvious difference between the patterned SURMOF HKUST-1 samples prepared without 

ultrasonic and with ultrasonic treatment during the preparations is also observed from the 

SEM images in Figure 58.  
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Figure 59. The AFM images and thickness measurement of patterned HKUST-1 prepared by dipping 

robot without (a, c) and with ultrasonic (b, d) treatment.  

The AFM images of the patterned SURMOF HKUST-1 samples prepared without ultrasonic 

treatment are shown in the Figure 59a and c. Because of the remaining particles on the 

patterned and non-patterned areas, it is difficult to determine the film thickness on this 

patterned sample. 

In contrast, the patterns of the sample prepared with ultrasonic treatment, are clearly visible. 

The HKUST-1 is grown only on the area with line patterns. The height histogram performed 

on a line is used to calculate the height of the SURMOF thin film. This shows that the height 

of patterned SURMOF HKUST-1 prepared with ultrasonic treatment is more accurate than 

that prepared without ultrasonic treatment (Figure 59). 
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5.3 Concentration dependence of  the thickness and roughness of 

SURMOF HKUST-1  

In order to improve the SURMOFs quality, the influence of the concentrations of the reagent 

(metal salts and organic ligands) solutions on the thickness and roughness of SURMOF was 

investigated. The SURMOF HKUST-1 was prepared with ultrasonic treatment during the 

rinsing ethanol step. The patterned Au substrate was prepared by µCp technique and was 

sequentially immersed into Cu(OAc)2 and H3btc ligands solutions by step by step fashion,
[46]

 

a patterned SURMOF HKUST-1 after 40 immersion cycles was obtained. Five SURMOF 

HKUST-1 samples were prepared by different concentrations: (a) 1 mM Cu(OAc)2 and 0.2 

mM H3btc; (b) 0.1 mM Cu(OAc)2 and 0.02 mM H3btc; (c) 0.02 mM Cu(OAc)2 and 0.004 

mM H3btc; (d) 0.01 mM Cu(OAc)2 and 0.002 mM H3btc; (e) 0.005 mM Cu(OAc)2 and 0.001 

mM H3btc. The samples with smooth patterns are used to determine the thickness from the 

height histogram in AFM images (Figure 60). The thicknesses of the HKUST-1 prepared by 

using different concentrations are ~116 nm, ~88 nm, ~44 nm, ~24 nm and ~6 nm for the 

concentrations of a, b, c, d and e, respectively. The thickness of HKUST-1 increases with 

increasing concentration of metal and ligand solutions (Figure 61a). 

This shows that with the here used parameters and a concentration of 0.01 mM Cu(OAc)2 and 

0.002 mM H3btc, a SURMOF HKUST-1 growth is realized where (in average) one unit cell 

is synthesized every four synthesis steps-exactly the value which follows from a naive layer-

by-layer method. 

In order to study the roughnesses of SURMOF HKUST-1 prepared by using different reagent 

concentrations, a square area of 2 μm × 2 μm was chosen as shown in Figure 60. The 

roughness was calculated by root-mean-square (RMS) approach and the roughnesses of 

SURMOF HKUST-1 samples prepared with the different concentrations (a, b, c, d and e) are 

~51 nm, ~35 nm, ~16nm, ~11 nm and ~3 nm, respectively (Figure 61b). The relative 

roughnesses (roughness/thickness) of SURMOFs HKUST-1 prepared by using different 

reagent concentrations are shown in Figure 62. This shows that the relative roughness of 

SURMOF is hardly influenced by concentrations of the reagent solutions. 
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Figure 61. The thicknesses and root-mean-square (RMS) roughnesses of SURMOF HKUST-1 

prepared by different concentrations: (a) 1 mM Cu(OAc)2 and 0.2 mM H3btc; (b) 0.1 mM Cu(OAc)2 

and 0.02 mM H3btc; (c) 0.02 mM Cu(OAc)2 and 0.004 mM H3btc; (d) 0.01 mM Cu(OAc)2 and 0.002 

mM H3btc; (e) 0.005 mM Cu(OAc)2 and 0.001 mM H3btc. 

 

Figure 62. Relative roughness of SURMOF HKUST-1 prepared by different concentrations. 

5.4 Concentration dependence of the thickness and roughness of 

SURMOF-2 

The same optimization process for SURMOF HKUST-1 is also carried out for the SURMOF-

2 Cu(bdc) synthesis. The sample was prepared with dipping time 600, 900 and 100 s for 

Cu(OAc)2 (1 mM), H2bdc (0.2 mM)  and ethanol solutions, respectively. In each step, there is 

3 s for showering. The XRD result of the Cu(bdc) sample shows there are two strong peaks at 

8.3º and 16.6º, which correspond to (100) and (200) peaks in the calculated bulk XRD 

(Figure 63b), indicating a highly oriented SURMOF-2 film with a [100] growth direction 
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(Figure 63a). The patterned SURMOF-2 Cu(bdc) (40 cycles) grown on MHDA SAMs were 

prepared by dipping robot method using different concentrations of the reagent solutions 

(Cu(OAc)2 and H2bdc): (a) 0.05 mM Cu(OAc)2 and 0.01 mM H2bdc; (b) 0.02 mM Cu(OAc)2 

and 0.004 mM H2bdc; (c) 0.01 mM Cu(OAc)2 and 0.002 mM H2bdc; (d) 0.005 mM 

Cu(OAc)2 and 0.001 mM H2bdc.  

 

Figure 63. (a) The structure model of SURMOF-2 Cu(bdc); (b) The out of plane XRD of flat 

SURMOF Cu(bdc) prepared by dipping robot with ultrasonic treatment. 

The AFM images of SURMOF-2 Cu(bdc) prepared using different concentrations are shown 

in Figure 64. The thicknesses of SURMOF-2 Cu(bdc) increase with increasing concentration 

of metal and ligand solutions: ~73 nm, ~42 nm, ~18 nm and ~7 nm for concentrations of a, b, 

c and d, respectively (Figure 65a). A square area of 4 μm
2
 in SURMOF-2 Cu(bdc) samples 

prepared with the different concentrations a, b, c and d was chosen to calculate the roughness 

(Figure 64). The roughnesses are ~31 nm, ~16nm and ~9 nm and ~3 nm, respectively (Figure 

65b).  

This shows that by using a concentration of 0.02 mM Cu(OAc)2 and 0.004 mM H2bdc the 

thickness of the SURMOF-2 Cu(bdc) prepared in one growth step fits exactly the value of 

one unit cell in (1.1 nm). This means it follows the layer-by-layer growth model.  
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Figure 65. Thicknesses and root-mean-square (RMS) roughnesses of SURMOF-2 Cu(bdc) prepared 

by different concentrations: (a) 0.05 mM Cu(OAc)2 and 0.01 mM H2bdc; (b) 0.02 mM Cu(OAc)2 and 

0.004 mM H2bdc; (c) 0.01 mM Cu(OAc)2 and 0.002 mM H2bdc; (d) 0.005 mM Cu(OAc)2 and 0.001 

mM H2bdc. 

5.5 Conclusion 

Based on the results of HKUST-1 and SURMOF-2 Cu(bdc), the SURMOF quality can be 

dramatically improved by using a dipping robot. In this work, homogenous, compact and 

smooth SURMOFs were successfully prepared by using a dipping robot. This is not only 

because of the separated metal salts, organic ligands and rinsing solvent solutions into 

individual immersion containers, but also due to is the introduction of ultrasonic bath during 

the preparation process. The individual immersion fashion of reagent solutions can avoids the 

metal salts and organic ligands contaminating with each other during the preparation. 

Ultrasonic bath is a efficient instrument for cleaning the sample during the rinsing steps. In 

this work, the morphologies of the SURMOF were measured by optical microscopy, SEM 

and AFM. It shows that the samples prepared with ultrasonic treatment have very good 

quality. On the other hand, the thicknesses of SURMOF can be controlled by the numbers of 

deposition cycles exactly.
[53]

 Furthermore, the thickness and roughness of the SURMOF are 

also controlled by adjusting the concentration of the reagent solutions during the SURMOF 

preparation with the dipping robot method. The thicknesses and roughnesses of the SURMOF 

increase with increasing reagent concentration. Therefore, a layer-by-layer SURMOF growth 

with one unit cell per cycle can be exactly controlled by using dipping robot method. 
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6 CONCLUSIONS  

Metal organic frameworks (MOFs) consist of metal ions coordinated to organic ligands to 

build 1D, 2D or 3D crystalline frameworks. Numerous fields of science have shown that 

MOF materials can be used for various applications, such as gas storage, separation and 

catalysis. Chiral MOFs have shown potential applications in enantioselective adsorption and 

separation, as well as in asymmetric catalysis.  

In this thesis, the objective focuses on preparation of new class surface mounted metal-

organic frameworks (SURMOFs). SURMOFs grown on functionalized substrates by using 

liquid phase epitaxy (LPE) are highly oriented, homogeneous porous MOFs thin films. 

The LPE approach of SURMOFs is based on sequentially immersion of functionalized 

substrate in the metal salts, organic ligands and rinsing solvent solutions, which can control 

the thickness and homogeneity of the MOF thin film. Therefore this method is suited for the 

fabrication of controllable layers with hetero-layers structure. In addition, the orientation of 

MOF crystallinity can be controlled by using different functional group on the substrate.  

The primary focus of this work is to grow a series of homochiral SURMOFs with different 

pillaring ligands on substrates using LPE method. The isoreticular homochiral SURMOFs are 

not only chiral, they also possess different pore sizes with the same secondary building chiral 

layer unit. In this thesis, the enantioselectivty of a pair of chiral probe molecules, R- and S-

Limonene, by three isoreticular chiral SURMOFs, [Cu2(Dcam)2(dabco)], [Cu2(Dcam)2(bipy)] 

and [Cu2(Dcam)2(bipyb)] with identical chiral centers and different pore sizes was studied. It 

was found that the adsorption capacity increases with increasing pore size. For the 

enantiomer separation a more complex situation was found, where the highest enantiomer 

excess was found for SURMOF with the medium pore size while the enantiomer excess for 

very small and large pores is significantly smaller. This study shows that not only the chiral 

center also the pore size determine the enantioselectivity. 

The quartz glass is chosen as substrate for the chirality investigation of SURMOFs. These 

chiral SURMOFs grown on quartz glass are sensitive to the signal of circular dichroism 

(CD), which is used to characterize the chirality of SURMOFs. There are some reports about 

the chirality of chiral bulk MOFs, displaying the mixed orientations in the chiral MOFs. 

However, the investigation of chirality in chiral MOF grown on different orientations has not 

been reported. In this work, the observed decrease in the oriented circular dichroism (OCD) 

band intensity going from a [001] to a [110] growth orientation of chiral SURMOF 

[Cu2(Dcam)2(dabco)] demonstrates that SURMOFs are ideal materials for investigating the 
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dependence of CD on the orientation of the electric field vector to the corresponding 

transition dipole moment of the corresponding electronic excitation. In addition to 

demonstrate the huge potential of empty SURMOF lattices for OCD investigations, the 

enantioselective loading of the enantiopure SURMOFs [Cu2(Dcam)2(dabco)] and 

[Cu2(Lcam)2(dabco)] with (+)-ethyl-D-lactate and (-)-ethyl-L-lactate were also studied by 

using OCD. When exposing the homochiral SURMOFs to a racemic mixture of the ethyl 

lactate enantiomers, the OCD data directly demonstrated the selective enrichment of one of 

the enantiomers. A quantitative analysis of these data allowed for a determination of both, 

relative and absolute amounts of adsorbed guest molecules with different chirality. Therefore 

the combination of SURMOFs with CD spectroscopy carries a huge potential for 

investigations of the interactions of chiral host with enantiopure MOF materials with regard 

to applications as filter and membrane materials, which might contribute to the highly 

interesting filed of enantiomer separation. 

The SURMOFs quality is optimized with the introduction of ultrasonic treatment in this 

thesis. The new setup dipping robot is an automated, computer controlled robot, which is 

used to improve the quality of SURMOFs by dipping the sample sequentially into the 

synthesis solutions. Due to the introduction of ultrasonic bath, the rising steps are efficiently 

enhanced for cleaning the sample. In this work, SURMOF HKUST-1 and SURMOF-2 

Cu(bdc) were prepared by dipping robot method with different concentrations of reagent 

solutions. The morphologies of the SURMOFs were measured by optical microscopy, SEM 

and AFM. The thickness and roughness of the SURMOF is depended on the concentrations 

of metal salts and organic ligands solutions during the SURMOF preparation. The 

thicknesses and roughnesses of the SURMOF increase with increasing reagent concentrations, 

which show a naive layer-by-layer growth exactly according to the unit cell of MOF 

structure. 
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8 ABBREVIATIONS 

1D one-dimensional 

2D two-dimensional 

3D three-dimensional 

AFM atomic force microscopy 

bdc 1,4-benzenedicarboxylate 

BET Brunauer-Emmett-Teller 

bipy 4,4 ʼ -bipyridine 

bpe bis(4-pyridyl)-ethylene) 

bipyb 1,4-bis(4-pyridyl)benzene 

btb 1,3,5-benzenetribenzoate 

btc 1,3,5-benzenetricarboxylate 

cam camphoric acid 

CD circular dichroism 

COOH carboxyl 

Cu(OAc)2 copper acetate 

dabco 1,4-diazabicyclo[2.2.2]octane 

Dcam (1R,3S)-(+)-camphoric acid 

DMF dimethylformamide 

DMSO dimethylsulfoxide 

ee enantiomeric excess 

FEG-ESEM field emission gun environmental scanning electron microscope 

FTIR Fourier transform infrared spectroscopy 

FWHM full-width half-maximum 

h hour(s) 

IRMOF Isoreticular MOFs 

IR infrared 

IRRAS infrared reflection-adsorption spectroscopy 

Lcam (1S,3R)-(-)-camphoric acid 

L-CPL Left circularly polarized light 

LPE liquid phase epitaxy 

MCT mercury cadmium telluride 

MHDA 16-Mercaptohexadecanoic acid 
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min minute(s) 

MOFs metal-organic frameworks 

MUD 11-mercapto-1-undecanol 

OCD Oriented circular dichroism 

OH hydroxyl 

PCPs porous coordination polymers 

PDMS polydimethylsiloxane 

PDS position sensitive detector 

PEM photo elastic modulator 

PMT Photo multiplier tube 

PPMT 4,(4-pyridyl)phenyl)methanethiol 

PSM postsynthetic modification 

QCM quartz crystal microbalance 

QCM-D quartz crystal microbalance with dissipation monitoring 

R-CPL right circularly polarized light 

R-HDO (2R,5R)-2,5-hexanediol 

SAMs self-assembled monolayers 

SBUs secondary building units 

SEM scanning electron microscopy 

S-HDO (2S,5S)-2,5-hexanediol 

SURMOFs surface mounted metal-organic frameworks 

T
2
dc thieno[3,2-b]thiophene-2,5-dicarboxylate 

TDM transition dipole moment 

UV ultraviolet 

XRD x-ray diffraction 

(-)EtLt (-)-ethyl-L-lactate 

(+)EtLt (+)-ethyl-D-lactate 

µCp micro contact printing 
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