

Efficient Context-aware Real-time
Processing of Personal Data Streams

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

von der Fakultät für Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Inform. Yongchun Xu

__

Tag der mündlichen Prüfung:24.07.2014…..............

Referent:Prof. Dr. Rudi Studer…...

Korreferent:Prof. Dr. Thomas Sezter..

Karlsruhe 2014

To	

Yibing	&	Caecilia	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Abstract	

	

	

I	
	

Abstract	
During	the	past	decade,	we	have	witnessed	a	rapid	expansion	of	mobile	devices	 into	people’s	life.	

This	development	has	tremendously	impacted	and	changed	the	way	we	live	our	life.	Mobile	devices	

are	increasingly	penetrating	into	people’s	lives	not	only	as	efficient	and	convenient	tools	for	com‐

munication	and	entertainment,	but	also	as	indispensable	companions	to	many	people.	Meanwhile,	

thanks	to	the	exponential	advancement	in	technology	in	general	and	in	sensor	technology	in	partic‐

ular	through	cheaper	embedded	sensor	devices,	electronic	sensors,	especially	the	wearable	physio‐

logical	sensors,	are	becoming	more	affordable	and	readily	available	to	be	used	in	our	daily	life.	On	

the	other	hand,	people	have	become	more	conscious	of	improving	life	quality	by	living	a	healthy	life	

style.	 As	 such,	 any	 technologies,	 which	 relate	 to	 helping	 people	 achieve	 a	 better	 life	 style,	 have	

gained	great	attention	and	popularity.		

Taking	 advantage	 of	 the	 advancement	 in	 both	mobile	 technology	 and	 sensor	 technology,	mobile	

devices	offer	a	unique	niche	in	applying	these	technologies	to	people’s	daily	life	and	provide	a	new	

possibility	 of	 helping	 ordinary	people	 be	more	proactive	 in	monitoring	 and	maintaining	 good	or	

excellent	health	 status.	Unfortunately,	 the	 shortcomings	of	processing	of	 	 such	a	 large	amount	of	

real‐time	personal	data	 in	many	mainstream	applications	remain	the	same:	real‐time	data	 is	pro‐

cessed	in	isolation	and	statically,	which	also	means	that	real‐time	data	are	not	integrated	with	other	

data,	especially	individual	user’s	data,	and	the	processing	method	is	not	dynamically	adapted	to	the	

changes	of	users’	situations.	This	has	resulted	not	only	in	poor	performance	but	also	in	inaccurate	

or	outdated	misleading	information	generated	from	these	applications.	

In	order	to	overcome	the	shortcomings	of	existing	solutions	and	to	achieve	an	efficient	processing	

of	real‐time	sensor	data	on	mobile	devices	for	various	use	cases,	we	propose	a	framework	for	the	

development	of	 innovative	mobile	 applications	 that	 are	 context‐aware	 in	 processing	 of	 real‐time	

personal	 data	 streams	 by	 taking	 into	 account	 the	 resource	 limitation	 on	mobile	 devices.	 In	 this	

thesis	we	first	review	the	related	literature	and	existing	approaches,	and	set	up	the	requirements	

for	mobile‐based	event	processing	system	based	on	the	analyses	of	mobile	device	 limitations	and	

real‐time	personal	data	processing.	Then	we	present	an	 innovative	event‐driven	hybrid	 software	

architecture	 for	 data‐intensive	 mobile	 applications,	 in	 order	 to	 extend	 processing	 capability	 by	

using	 an	 additional	 backend	 server.	We	develop	 context‐aware	monitoring	models	with	 the	pur‐

pose	 of	 relating	 real‐time	 personal	 data	 with	 personal	 context	 and	 domain	 knowledge.	 The	 ap‐

proach	of	data	collaboration	enables	collaborative	personal	data	processing.	We	develop	methods	

for	 resource‐aware	 dynamic	 pattern	 distribution	 to	 achieve	 a	more	 efficient	 pattern	 distribution	

regarding	available	resources	of	mobile	devices.	The	semantic‐based	dynamic	pattern	management	

uses	semantic	technologies	to	manage	patterns	and	event	resources	and	to	achieve	real‐time	adap‐

tation	to	event	resource	changes.	We	also	present	evaluation	results	regarding	the	system	perfor‐

mance,	 limitations,	and	several	use	cases.	Finally,	we	conclude	by	summarizing	 the	results	of	 the	

thesis	and	outlining	our	view	of	the	future	work.	

Contents	

	

	

III	
	

Contents	

	

Abstract	...	I

Contents	..	III

List	of	Figures	..	VII

List	of	Tables	..	IX

List	of	Algorithms...	XI

1 Overview	and	Motivation	..	3

1.1 Motivation	..	3

1.2 Research	questions	..	7

1.3 Research	contributions	..	8

1.4 Thesis	organization	..	10

1.5 Related	publications	..	12

2 Introduction	to	Mobile	Devices	and	Wearable	Sensor	Technologies	..	13

2.1 Mobile	Devices	...	13

2.1.1 The	history	of	mobile	device	innovation	..	14

2.1.2 Market	analysis	..	16

2.2 Sensors	...	18

2.2.1 Sensor	...	19

2.2.2 Mobile	sensing	..	19

2.2.3 Market	analysis	..	20

2.2.4 Sensor	examples	..	20

3 Introduction	to	Complex	Event	Processing	...	23

3.1 Event	...	23

3.2 Pattern	...	25

3.3 Event	processing	architecture	...	27

3.3.1 Event	Producer...	29

3.3.2 Event	processing	agent	...	30

3.3.3 Event	Consumer...	32

3.3.4 Event	Interaction	...	32

Contents	

IV	
	

3.4 Conclusion	..	33

4 State	Of	the	Art	...	35

4.1 Mobile	and	distributed	complex	event	processing	system	..	35

4.2 Offloading	in	mobile	computing	...	37

4.3 Semantic	pattern	and	sensor	model	...	39

4.4 Mobile	sensing	system	and	applications	..	41

5 The	Need	for	Context‐aware	Real‐time	Personal	Data	Processing...	45

5.1 Limitations	of	mobile	devices	and	wireless	sensors	...	45

5.2 Real‐time	personal	data	processing	...	47

5.3 Requirements	...	49

6 Event‐driven	Hybrid	System	Architecture	..	51

6.1 Architecture	overview	..	51

6.2 Communication	middleware	...	57

6.3 Event	and	stream	model	..	59

6.3.1 MCEP	Event	...	59

6.3.2 MCEP	Stream	...	61

6.4 System	variants	..	62

6.5 Conclusion	..	63

7 Context‐aware	Data	Processing	and	Data	Collaboration	..	65

7.1 Context‐aware	data	processing	..	65

7.1.1 Monitoring	Goal	Network	..	65

7.1.2 MGN	Execution	process	..	68

7.1.3 MGN	Implementation	..	69

7.1.4 Example	...	72

7.2 Data	collaboration	..	73

7.2.1 Data	collaboration	process	...	74

7.2.2 Monitoring	goal	based	relevant	user	search	...	75

7.3 Conclusion	..	77

8 Dynamic	Pattern	Distribution	...	79

8.1 Pattern	distribution	model	...	79

8.2 Dynamic	pattern	distribution	algorithm	..	82

8.3 Example	...	88

8.4 Conclusion	..	92

Content		

V	
	

9 Semantic‐based	Dynamic	Pattern	Management	...	93

9.1 Problem	statement	and	overview..	93

9.2 Pattern	and	event	resource	model	..	94

9.3 Adaptation	methods	..	97

9.3.1 Generating	missing	event	by	additional	pattern	...	98

9.3.2 Using	available	replacement	patterns	...	99

9.3.3 Using	alternative	event	resources	...	99

9.4 Algorithms	of	real‐time	pattern	adaptation	...	100

9.4.1 Adaptation	algorithm	by	pattern	deployment	..	100

9.4.2 Algorithm	of	adaptation	to	change	of	event	resource	...	102

9.5 Conclusion	...	104

10 Evaluation	...	107

10.1 Performance	Evaluation	...	107

10.1.1 Mobile	CEP	evaluation	...	107

10.1.2 Dynamic	adaptation	evaluation	...	110

10.1.3 Pattern	distribution	algorithm	evaluation	..	114

10.2 Use	Case	Evaluation	..	118

10.2.1 Use	cases	..	118

10.2.2 Evaluation	design	...	121

10.2.3 Evaluation	results	..	122

10.3 Conclusion	...	125

11 Conclusion	...	127

11.1 Summary	..	127

11.2 Future	research	...	129

Appendix	I	...	133

Appendix	II..	147

Appendix	III	..	169

Bibliography	...	171

	

List	of	Figures	

	

	

VII	
	

List	of	Figures	

Figure	1‐1	Overview	of	real‐time	personal	data	processing	...	8

Figure	1‐2	Thesis	organization	...	11

Figure	2‐1	Worldwide	 smart	 connected	device	 forecast	market	 share	by	product	 category,	2012‐

2017	[IDC13b]	..	16

Figure	2‐2	Worldwide	mobile	app	store	downloads	[Gart13]	...	18

Figure	2‐3	Global	mobile	sensing	health	and	fitness	sensor	shipments	(2012‐2017)	20

Figure	2‐4	Zypher	BT	HxM	sensor	(image	source:	http://www.zephyranywhere.com/)	21

Figure	2‐5	Zypher	BioHarness	3	Sensor	(image	source:	http://www.zephyranywhere.com/)	21

Figure	3‐1Event	Processing	architecture	based	on	[EtNi10]	..	28

Figure	3‐2	An	Event	Processing	Network	([EtNi10])	...	29

Figure	3‐3	Type	hierarchy	of	event	processing	agents	according	to	[EtNi10]	..	30

Figure	6‐1	Conceptual	architecture	for	event‐based	hybrid	system	...	52

Figure	6‐2	Publish/subscribe	middleware	..	57

Figure	6‐3	Event	Type	structure	..	59

Figure	6‐4	Structure	of	event	message	...	60

Figure	6‐5	MCEP	Event	dispatch	process	..	61

Figure	7‐1	Monitoring	Goal	..	66

Figure	7‐2	Flow	diagram	of	monitoring	goal	execution	..	68

Figure	7‐3	Monitoring	goal	network	Ontology	(simplified)	..	70

Figure	7‐4	An	example	of	monitoring	goal	network	...	72

Figure	7‐5	Data	collaboration	process	..	74

Figure	7‐6	Monitoring	goal‐based	search	mechanism	...	76

Figure	8‐1	The	process	of	dynamic	pattern	distribution	..	81

Figure	9‐1	Pattern	and	event	resource	model	...	95

Figure	9‐2	Pattern	translation	..	97

Figure	9‐3	Example	of	generating	missing	event	by	additional	pattern	..	98

Figure	9‐4	Example	of	using	replacement	pattern	..	99

Figure	9‐5	example	of	using	alternative	event	resource	..	100

Figure	10‐1	Experiment	result	for	mobile	CEP	performance	‐	pattern	based	throughput...............	109

Figure	10‐2	Experiment	result	for	mobile	CEP	performance	‐	stream	based	throughput	109

Figure	10‐3	Experiment	results	for	basic	adaptation	methods:	(a)	searching	additional	pattern	for	

missing	event	(b)	searching	alternative	event	resource	(c)	searching	replacement	pattern	112

Figure	 10‐4	 Experiment	 results	 for	 adaptation	 algorithms:	 (a)	 Adaptation	 algorithm	 by	 pattern	

deployment	(b)	Algorithm	of	adaptation	to	change	of	event	resource	...	113

List	of	Figures	

VIII	
	

Figure	10‐5	Experiment	results	for	pattern	distribution	algorithm:	low	workload	setting	115

Figure	10‐6	Experiment	results	for	pattern	distribution	algorithm:	high	workload	setting	116

Figure	10‐7	experiment	results	for	execution	time	of	dynamic	pattern	distribution	algorithm	...	117

Figure	10‐8	MCA	mobile	application:	(a)	setting	view,	(b)	start	view	and	(c)	monitoring	view	...	119

Figure	10‐9	AlarMe	mobile	application:	(a)	start	view,	(b)	alarm	creation	view	and	(c)	setting	view

	..	120

Figure	10‐10	Use	case	evaluation	results	...	122

Figure	10‐11	Use	case	evaluation	results	(Usability)	..	123

Figure	10‐12	Use	case	evaluation	results	(Reliability)	...	124

Figure	10‐13	Use	case	evaluation	results	(Robustness)	..	124

Figure	10‐14	Use	case	evaluation	results	(Efficiency)	..	125

List	of	Tables	

	

	

IX	
	

List	of	Tables	

Table	2‐1	Smart	Connected	Device	Market	by	Product	Category,	Unit	Shipments	and	Market	Share,	

2013	and	2017	shipments	in	millions)		[IDC13b]	..	17

Table	2‐2	Top	Four	Operating	Systems,	Shipments,	and	Market	Share,	Q3	2013	(Units	in	Millions)	

[IDC13a]	..	17

Table	6‐1	Variants	comparison	..	63

Table	8‐1	Table	of	all	available	event	resources	for	patterns	...	89

Table	8‐2	Pattern	bindings	for	P1	...	90

Table	8‐3	Distribution	fitness	results	of	Pattern	P1	..	91

Table	8‐4	Distribution	fitness	results	of	Pattern	P2	..	92

Table	10‐1	Data	sets	for	dynamic	adaptation	evaluation	..	111

List	of	Algorithms	

	

	

XI	
	

List	of	Algorithms	

Algorithm	8‐1	Dynamic	Pattern	Distribution	Algorithm	..	83

Algorithm	9‐1	Adaptation	algorithm	by	pattern	deployment	...	101

Algorithm	9‐2	Algorithm	of	adaptation	to	change	of	event	resource	...	103

	

	 	

1	
	

	

PART	I	

Foundation	

	 	

3	
	

1 Overview	and	Motivation	
In	this	chapter	we	provide	an	overview	and	motivation	of	this	thesis.	Firstly	we	describe	the	main	

motivation	of	this	thesis	including	the	analysis	of	the	issues	in	mainstream	mobile	applications	for	

real‐time	personal	data	processing.	Based	on	this	analysis	we	define	the	research	questions,	which	

aim	to	find	out	an	innovative	solution	to	real‐time	personal	data	processing.	We	then	introduce	our	

approach	with	listing	the	main	contributions	of	this	thesis.	 In	the	fourth	section	we	describe	how	

the	thesis	is	organized.	The	last	section	lists	all	publications	that	are	basis	for	this	thesis.				

1.1 Motivation	

Since	Mark	Weiser’s	vision	[Weis91]	over	two	decades	ago	of	how	the	world	would	change	with	the	

introduction	 of	 ubiquitous	 computing,	 there	 has	 been	 significant	 progress	 towards	 his	 vision.	

During	the	past	decade,	the	growing	success	of	the	new	generation	mobile	technologies	leads	to	an	

expansion	of	mobile	devices,	 including	smartphones	and	tablets.	We	have	witnessed	skyrocketing	

increases	 in	 the	 sales	 and	 uses	 of	 smartphones	 and	 tablets.	 For	 example,	 in	 the	 third	 quarter	 of	

2013,	211.6	million	android	devices	were	sold,	 representing	a	growth	of	51.3%	compared	 to	 the	

same	quarter	over	a	year	ago	 [IDC13a].	These	numbers	reflect	a	 trend	of	ever	 increases	 in	sales,	

since	the	introduction	of	new	generation	mobile	devices.	Mobile	devices	are	increasingly	penetrat‐

ing	into	people’s	lives	as	efficient	and	convenient	tools	for	communication	and	entertainment,	and	

have	become	a	ubiquitous	and	indispensable	companion	for	many	people.	Furthermore	the	rapid	

development	in	the	mobile	technologies,	ease	of	use	and	falling	cost	accelerate	the	permeation	of	

mobile	 devices.	 	 In	 the	 end,	 this	 development	 has	 ensured	 that	mobile	 devices	 have	 become	 an	

integral	part	of	our	daily	life.	

Meanwhile,	due	to	the	popularization	and	wider	availability	of	sensor	technology	through	cheaper	

embedded	 sensor	 devices,	 electronic	 sensors	 especially	 the	 wearable	 physiological	 sensors	 are	

used	more	and	more	in	our	daily	life	rather	than	only	in	lab	environment	[Fran13,	Agga13].	Accord‐

ing	to	[Bbcr13]	the	global	market	for	sensors	reached	$68.2	billion	in	2012	and	is	expected	to	reach	

almost	 $120	 billion	 by	 2019.	 For	 the	 wearable	 physiological	 sensors,	 several	 market	 prediction	

analyses	indicate	that	there	should	be	about	250	Million	Wearable	Health	&	Fitness	Sensing	Devices	

by	2017.1	

Sensors	are	also	widely	used	in	mobile	devices.	Nowadays	almost	every	mobile	device	has	integrat‐

ed	 several	 sensors	 such	 as	 accelerometer,	 gyroscope	 and	 GPS	 and	 additional	 wearable	 sensors	

including	physiological	sensors	such	as	heartbeat	rate	sensor	or	skin	conductance	sensor	that	can	
																																																																		
1	http://www.prweb.com/releases/2013/10/prweb11283978.htm	

Overview	and	Motivation	

4	
	

be	easily	connected	to	the	mobile	device	through	standard	communication	interface	like	Bluetooth.		

In	doing	so,	mobile	devices	are	capable	of	processing	various	personal	 information	of	people	(i.e.	

physiological	 information	 like	 heart	 rate,	 body	 temperature	 and	 etc.)	 and	 environmental	 infor‐

mation	around	people	(i.e.	location,	air	temperature,	humidity	and	etc.).	

On	the	other	hand,	improving	daily	life	quality	has	gained	lots	of	attention	in	the	last	several	years.	

Health,	one	of	the	most	important	life	qualities,	is	deeply	impacted	by	individuals’	lifestyles.	 	Life‐

style	such	as		sleep,	socialization	and	exercise	patterns	can	be	directly	connected	to	the	presence	of	

health	 related	 problems	 such	 as,	 high‐blood	 pressure,	 stress	 [Nocc92],	 anxiety,	 diabetes	 and	 de‐

pression	[Fox99,	GBHF89].		Positive	health	effects	can	be	observed	when	these	wellbeing	indicators	

(e.g.,	sleep,	physical	activity)	are	kept	in	healthy	ranges.	Hence,	there	has	been	a	need	for	monitor‐

ing	 the	health	 status	of	peoples’	daily	 life.	 Indeed	 the	 interest	of	health	monitoring	on	aspects	of	

daily	 life	 is	 currently	 being	 reinforced	 by	 the	Quantified	 Self	 (QS)	movement,	which	 aims	 to	 im‐

prove	general	well‐being	through	self‐tracking.	The	initiatives	like	quantified	Self	website2	demon‐

strate	the	value	of	psychophysiological	measurements	(e.g.	heart	rate,	ECG,	EEG)	for	creating	self‐

awareness	about	threats	and	opportunities	for	healthier	life	styles.	

Taking	advantage	of	the	combination	of	mobile	technology	and	sensor	technology,	mobile	devices	

provide	a	new	possibility	of	monitoring	peoples’	health	status.	In	the	meantime,	the	development	of	

mobile	devices	is	also	showing	the	huge	potential	of	enabling	more	potent	real‐time	data‐intensive	

applications,	which	are	dealing	with	huge	amount	of	mobile	data,	like	in	the	case	of	m‐Health	and	

m‐Commerce.	Currently	there	are	already	existing	mobile	applications	for	personal	monitoring,	like	

the	Nike+	ecosystem.	However,	the	shortcoming	of	processing	of	this	data	in	mainstream	applica‐

tions	 remains	 the	 same:	 real‐time	data	 is	processed	 in	 isolation	 and	 statically,	which	 also	means	

that	real‐time	data	are	not	integrated	with	other	data,	especially	the	user’s	data,	and	the	processing	

method	is	not	dynamically	adapted	to	the	changes	of	the	user’s	situation.	Hence,	there	is	a	big	gap	

between	the	promises	of	the	existing	approaches	and	the	real	impacts	on	the	ordinary	peoples’	life.		

Assume	following	scenario:	

	

Peter	is	a	middle‐age	(45	years	old)	employee	in	an	IT	company.	Because	his	work	is	very	exciting	and	

challenging	and		involving	meeting	with	leading‐edge	research	and	the	necessity	of	frequent	business	

travels	on	a	regular	basis,	he	is	struggling	with		reducing	the	time	spent	abroad	to	have	more	time	for	

his	wife	and	his	two	kids.	Consequently,	he	has	poor	nutrition	habits	and	lives	a	sedentary	lifestyle	due	

to	the	constant	need	of	optimizing	the	available	time	at	the	meeting	places.	After	a	medical	examina‐

tion	he	was	told	that	he	has	high	blood	pressure	and	too	high	levels	for	the	HDL	(High‐density	lipopro‐

																																																																		
2	http://quantifiedself.com/	

Overview	and	Motivation		

5	
	

tein)	cholesterol,	which	is	one	of	the	risk	factors	for	developing	further	cardiovascular	diseases.	Peter	

is	fully	convinced	that	he	should	improve	his	lifestyle	behavior,	so	he	decides	to	do	some	fitness	train‐

ing	such	as	jogging	twice	every	week.	

In	order	to	improve	the	effectiveness	of	the	training,	Peter	bought	some	sensors	to	monitor	his	person‐

al	vital	data	while	 jogging,	following	friends’	advices.	The	sensors	 include	a	pedometer	on	a	running	

shoe,	which	counts	the	precise	number	of	jogging	steps,	and	a	wearable	sensor	with	a	chest	belt,	which	

measures	 his	 heart‐beating	 and	 breathing	 rate	 in	 real‐time.	 Peter	 also	 installed	 a	 popular	 fitness	

mobile	application	on	his	smartphone	to	monitor	his	training	status	using	the	data	provided	by	sen‐

sors.	

However,	Peter	is	not	satisfied	with	the	application	he	is	using,	since	it	only	processes	the	data	statical‐

ly	and	provides	 little	personalized	monitoring.	For	example,	once	the	air	 temperature	was	high	and	

Peter	didn’t	feel	well	due	to	heavy	breathing	during	the	jogging.	Considering	his	medicine	record	(risks	

for	 cardiovascular	 diseases),	 Peter	 couldn’t	 know	 whether	 this	 is	 an	 indication	 of	 cardiovascular	

danger.	While	Peter	should	have	slowed	his	pace	down,	the	fitness	application	may	actually	encourage	

him	to	speed	up	on	the	contrary.	Or,	in	a	muggy	summer	morning,	Peter	ran	on	usual	speed,	while	his	

fitness	application	had	alarmed	for	several	times	and	warn	him	to	slow	down,	due	to	his	unusual	high	

heart	rate.	But	Peter	may	feel	perfectly	fine	as	he	observed	other	joggers	running	nearby	at	the	same	

time	without	realizing	his	higher‐than‐usual	heart	beatings	may	be	completely	different	 from	 those	

healthy	joggers.	But	the	application	that	he	is	using	doesn’t	provide	such	functionality	to	inform	him	

about	the	comparison	of	the	heart	beatings.	

Peter	wants	to	find	a	new	fitness	App	that	can	provide	real‐time	monitoring	that	suits	to	his	personal	

context	(i.e.	medical	history)	and	actual	situation,	and	links	to	other	joggers	in	collaboration	as	well.	

	

Indeed,	the	current	more	advanced	solutions	to		processing	mobile	personal	data	are	fairly	limited	

on	 a)	 finding	 some	 simple	 predefined	 patterns	 in	 isolated	 mobile	 data,	 like	 detecting	 some	 ar‐

rhythmias	in	m‐Health	scenarios	based	on	processing	cardio	data	(ECG)	(e.g.	CardioDefender3)	or	

b)	“simple”	transferring	the	personal	data	to	servers	in	order	to	visualize	it	and	share	with	others,	

especially	in	the	case	of	fitness	data,	like	in	communities	of	runners	(e.g.	Run	Keeper	Portal4,	ca.	10	

million	users).	The	main	limitation	in	all	these	approaches	is	to	treat	mobile	devices	as	stand‐alone	

processing	units	that	have	a	well‐defined	set	of	processing	tasks	and	well	defined	interaction	with	

the	 environment.	 However	 in	 the	 todays	 Big/Fast	 Data	 hype,	 data‐driven	 orientation	 influences	

mobile	processing	as	well:	the	mobile	data,	put	in	the	context	of	mobile	environment,	should	drive	

																																																																		
3	http://www.everisthealth.com/content/cardiodefender/summary.htm	
4	http://runkeeper.com/partner	

Overview	and	Motivation	

6	
	

the	processing	“mode”	of	a	device.	Indeed,	without	context	information	of	users’	current	situations,	

many	real‐time	personal	data	are	difficult	to	interpret	in	a	correct	way.	For	example,	if	an	arrhyth‐

mia5	is	happening	under	the	highly	humid	condition,	the	heart	rate	data	should	be	processed	in	a	

different	way	than	in	the	low	humidity	condition,	depending	on	the	intensity	of	the	current	physical	

activity	of	the	patient	(walking,	stairs	climbing,	…),	where	the	level	of	intensity	should	be	calculated	

based	on	analyses	of	historical	data	(average	values)	etc.		

It	 is	 obvious	 that	 the	 nature	 of	 such	 conditions	 is	 dynamic,	 since	 the	 current	 health	 status	 of	 a	

patient	is	a	very	important	factor	and	it	can	be	obtained	through	some	other	real‐time	sensing	data,	

like	the	breathing‐level	data.	The	main	issue	is	to	enable	the	adaptive	processing	on	a	mobile	de‐

vice,	 whereas	 the	 adaptation	 is	 dynamic	 and	 data‐driven.	 Indeed,	 the	 list	 of	 the	 causal	 chains	

(knowledge)	can	be	quite	long	and	extremely	complex.	Trying	to	capture	all	possible	scenarios	and	

hard‐coding	them	in	a	mobile	application	is	not	a	practical	solution	due	to	a	limited	processing	and	

storage	capacity	of	a	mobile	device.	Closing	the	world	of	possible	interesting	situations	that	could	

be	 processed	 leads	 to	 constraining	 the	 usefulness	 of	 application	 potential	 of	 mobile	 computing.	

Furthermore,	 so	 far	 the	monitoring	 applications	 have	 focused	 only	 on	 one	 individual	 person.	 In	

other	words,	 the	monitoring	 is	done	 in	 the	 isolation.	Each	user	 is	monitored	separately.	 In	many	

situations,	the	data	collaboration	between	users	can	be	very	important	during	the	monitoring	of	a	

specific	person.	For	example,	a	cardio	problem	that	has	been	sensed	from	one	patient	can	be	better	

and	more	comprehensively	analyzed	by	having	some	values	measured	by	another	patient	who	is	in	

a	similar	context.	It	is	clear	that	an	extended,	adaptive,	context‐aware	processing	and	collaborative	

monitoring	is	critically	needed	in	order	to	exploit	the	full	potential	of	mobile	devices.			

In	 addition,	 while	 the	 innovations	 in	 such	 key	 components	 as	 processor,	 memory	 and	 wireless	

technologies	 are	 ever	 fast	paced,	 it	 remains	widely	 agreed	 that	mobile	 applications	 are	 still	 con‐

fined	by	 the	 limited	computation	resources	of	mobile	devices.	To	make	 it	even	worse,	 the	power	

source	of	most	mobile	devices,	the	battery,	has	seen	relatively	slow	improvement	in	the	past	dec‐

ade.	 Battery	 capacity	 is	 growing	 only	 5	 percent	 annually	 [Robi09],	 which	 has	 become	 a	 major	

impediment	to	providing	reliable	and	sophisticated	mobile	applications	to	meet	the	real‐time	data	

processing	requirements	from	mobile	applications.	

In	 this	 thesis,	we	 propose	 a	 foundation	 for	 the	development	 of	 an	 innovative	mobile	 application	

enabling	efficient	context‐aware	processing	of	real‐time	personal	data	streams	taking	into	account	

the	 resource	 limitation	 on	mobile	 devices.	 The	 research	 combines	mobile	 computing,	 intelligent	

complex	 event	 processing,	 semantic	 technologies	 and	 real‐time	 big	 data,	 in	 order	 to	 achieve	 an	

efficient	processing	of	 real‐time	 sensor	data	on	mobile	devices	 for	various	use	 cases.	 In	 the	next	

section	we	define	the	concrete	research	questions	that	constitute	the	core	of	this	thesis.		

																																																																		
5	Arrhythmia	is	a	kind	of	anomaly	in	the	heart’s	functioning	

Overview	and	Motivation		

7	
	

1.2 Research	questions	

The	various	embedded	sensors	of	mobile	devices	and	different	kinds	of	wearable	 sensors	enable	

the	modern	mobile	devices	to	collect	a	large	amount	of	real‐time	user’s	personal	and	environment	

data.	However,	 the	 limited	 resources	 on	mobile	 devices	 and	 the	 lack	 of	 the	 processing	methods,	

which	enable	to	relate	the	context	regarding	the	user’s	current	situation	to	the	real‐time	personal	

sensing	data,	impede	mobile	applications	to	exploit	the	full	potential	of	real‐time	personal	sensing	

data.	Therefore,	the	main	research	question	of	this	thesis	is:	

Specifically,	the	main	research	question	can	be	divided	into	following	5	sub‐questions:	

Q1:	Is	it	possible	to	process	real‐time	personal	data	on	mobile	devices?	

Firstly	it	should	be	found	out,	whether	it	is	possible	to	process	real‐time	personal	data	on	modern	

mobile	devices.	Furthermore,	if	it	is	possible,	which	technology	is	most	appropriate	to	process	real‐

time	personal	data	on	mobile	devices?	

Q2:	How	to	achieve	efficient	real‐time	data	processing	regarding	the	resource	limitation	on	

mobile	devices?	

Considering	the	resource	limitation	on	mobile	devices,	an	efficient	method	to	process	personal	real‐

time	data	on	mobile	devices	should	be	developed.		At	the	same	time,	it	should	not	affect	the	perfor‐

mance	of	other	mobile	applications.	

Q3:	How	to	achieve	context‐aware	processing	regarding	the	user’s	current	situation?			

As	mentioned,	real‐time	personal	data	 is	difficult	 to	 interpret	without	additional	 information	and	

the	 context	 of	 user’s	 current	 situation.	Hence	 context	 awareness	 should	 be	 achieved	 in	 the	 pro‐

posed	solution	in	order	to	realize	dynamic	adaptation	for	real‐time	personal	monitoring.					

Q4:	How	to	enable	data	collaboration	among	different	users?	

One	of	the	advantages	of	today’s	mobile	applications	is	that	each	mobile	application	is	 linked	to	a	

large	 amount	 of	 users	 over	 different	 parts	 of	 the	 world.	 However,	 the	 mainstream	 monitoring	

applications	 process	 the	 real‐time	 personal	 data	 separately	 without	 collaborating	 with	 the	 data	

from	other	users.	In	order	to	exploit	the	potential	of	mobile	applications,	data	collaboration	among	

different	users	for	personal	data	processing	should	be	realized	in	the	proposed	solution.	

How	to	efficiently	process	the	personal	data,	especially	from	mobile	devices	and	

wearable	sensors	in	real‐time	on	mobile	devices	by	taking	the	resource	limita‐

tion	of	mobile	device	 into	account	and	provide	dynamic	adaptivity	regarding	

user’s	current	situation?			

Overview	and	Motivation	

8	
	

Q5:	How	to	adapt	to	the	real‐time	changes	in	sensor/stream	availability?	

Wearable	sensors	connect	to	mobile	devices	normally	using	wireless	connections	such	as	Bluetooth	

protocol.	However,	 the	 quality	 of	wireless	 connection	 is	 not	 stable	 and	 can	 be	 affected	 by	many	

factors	 such	 as	 radio	 frequency	 interference,	 out	 of	 communication	 range	 and	 etc.	 [Gibs12].	 In	

addition	the	 limited	battery	capacity	of	wearable	constraints	the	usage	time	of	wearable	sensors.	

Consequently,	 the	 availabilities	 of	 personal	 data	 streams	 can	 be	 interrupted	during	 the	 run‐time	

due	 to	 the	disconnection	or	 shutdown	of	wearable	 sensors.	 In	 order	 to	 ensure	 reliable	 real‐time	

personal	data	processing,	the	proposed	solution	should	be	able	to	adapt	to	changes	and	interrup‐

tions	in	sensors/stream	availability.		

1.3 Research	contributions	

In	order	to	solve	the	research	questions	stated	in	the	previous	section,	we	argue	that	mobile	appli‐

cations	require	novel	software	architecture	for	real‐time	personal	data	processing,	which	provides	

dynamic	adaptivity,	context	awareness,	data	collaboration	and	resource‐aware	data	processing.		

	

Figure	1‐1	Overview	of	real‐time	personal	data	processing	

In	 this	 research,	 we	 firstly	 develop	 a	 hybrid	 software	 architecture	 (as	 shown	 in	 Figure	 1‐1)	 for	

realizing	 a	 mobile	 distributed	 Complex	 Event	 Processing	 (CEP)	 system	 with	 additional	 backend	

Overview	and	Motivation		

9	
	

server6,	in	order	to	extend	the	computation	capacity	of	mobile	devices,	with	the	purpose	of	solving	

the	resource	limitation	problem	of	mobile	devices.	Then	we	develop	the	model	of	Monitoring	Goal	

Network	 (MGN)	 to	 realize	 context	 awareness	 in	 our	 solution,	 which	 enables	 the	 correlation	 be‐

tween	 real‐time	data	 and	various	users’	 context	 and	domain	 knowledge.	 The	MGN	also	provides	

dynamic	adaptivity	of	processing	tasks	(patterns)	according	to	the	changes	of	the	user’s	situation.	

Afterwards	we	use	dynamic	pattern	distribution	to	achieve	resource‐aware	pattern	distribution	for	

efficient	 data	 processing	 on	 resource	 limited	 mobile	 devices.	 In	 order	 to	 efficiently	 manage	 the	

patterns	 and	 event	 resources,	 we	 model	 them	 in	 semantic	 and	 use	 querying	 and	 reasoning	 to	

achieve	dynamic	adaptation	to	pattern	problems	in	run‐time.						

The	main	research	contributions	are	listed	as	follows:	

 C1:	Event‐driven	hybrid	software	architecture	for	mobile	applications:	firstly	an	event‐

driven	hybrid	software	architecture	has	been	developed	for	data‐intensive	mobile	applica‐

tions	 to	extend	 the	computation	capacity	with	purpose	of	solving	 the	resource	 limitation	

problem.	 The	 software	 architecture	 is	 based	 on	 hybrid	 architecture	 combining	 both	 the	

mobile	 component	 and	 its	 backend	 server	 part.	 It	 uses	 Complex	 Event	 processing	 (CEP)	

technology	 [Luck01]	on	both	mobile	devices	and	backend	server	 to	achieve	 scalable	and	

reliable	 real‐time	 personal	 data	 processing.	 Publish/subscribe	 middleware	 and	 Google	

GCM7	 push	 service	 is	 used	 to	 transmit	 the	 events	 between	mobile	 devices	 and	 backend	

server,	which	enables	efficient	real‐time	data	exchange	across	many	different	devices.	

	

 C2:	Context‐aware	situation	modeling	and	data	collaboration:	Monitoring	Goal	Network	

(MGN)	is	developed	to	model	user’s	situations	and	the	adaptation	to	such	situations	corre‐

sponding	 to	 ECA	 (Event‐Condition‐Action)	 rules	 [KnEP00],	 in	 order	 to	 realize	 context‐

aware	data	processing.	MGN	models	user’s	situations	based	on	different	monitoring	goals,	

whereby	different	patterns	(processing	tasks)	are	used	to	discern	the	user’s	current	situa‐

tion.	MGN	also	relates	the	real‐time	detected	personal	data	to	additional	information	(spe‐

cial	domain	knowledge	like	health	knowledge	base	or	fitness	knowledge	base)	and	to	us‐

er’s	context	(e.g.,	the	user’s	medical	records).	In	addition,	the	assigned	monitoring	goals	of	

users	enable	the	data	collaboration	among	users,	by	searching	for	the	relevant	users,	who	

have	the	same	monitoring	goals.	The	proposed	system	also	provides	the	possibility	of	de‐

fining	custom	criteria	for	searching	for	relevant	users	for	data	collaboration.		

	

																																																																		
6	The	server	part	of	our	software	architecture	can	be	deployed	either	on	a	single	server	or	cloud	
infrastructure.	 In	 the	prototype	we	use	 a	 backend	 server	 to	 deploy	 the	 server	part,	 so	we	 call	 it	
backend	server	in	the	rest	of	this	thesis.			
7	http://developer.android.com/google/gcm/index.html	

Overview	and	Motivation	

10	
	

 C3:	Resource‐aware	dynamic	pattern	distribution:	In	order	to	achieve	efficient	and	relia‐

ble	data	processing	on	mobile	devices,	a	resource‐aware	pattern	distribution	algorithm	has	

been	developed	to	distribute	patterns	to	both	mobile	device	part	and	backend	server	part	

taking	the	available	resources	into	account.	The	distribution	algorithm	calculates	the	pat‐

tern	distribution	not	only	according	to	the	current	workload	of	devices,	but	also	according	

to	the	commutation	workload	caused	by	different	distributions.	It	also	calculates	the	opti‐

mal	allocation	of	event	resources	 for	the	patterns,	with	 the	aim	of	optimizing	the	perfor‐

mance	for	the	whole	system.		

 C4:	Semantic‐based	dynamic	pattern	management:	A	semantic‐based	pattern	model	has	

been	 developed	 for	 managing	 the	 patterns	 and	 event	 resources	 of	 users.	 The	 available	

event	resources	of	users	are	updated	dynamically	during	run‐time.	By	pattern	deployment	

that	 is	 based	 on	 the	 information	 in	 the	 pattern	model,	 the	 proposed	 system	 checks	 the	

availability	of	all	events	requested	by	the	pattern.		In	case	that	the	requested	events	are	not	

available,	alternative	solutions	will	be	provided,	via	deploying	additional	patterns	to	create	

missing	events	and	the	deployment	of	replacement	patterns,	which	provide	the	same	func‐

tion	 as	 the	 original	 patterns.	 During	 run‐time,	 if	 the	 availability	 of	 event	 resource	 is	

changed,	the	system	searches	for	the	replacement	in	the	pattern	model,	in	order	to	ensure	

the	integrity	of	the	system.	

1.4 Thesis	organization	

The	whole	thesis	is	organized	in	three	parts,	each	containing	several	chapters.	

The	first	part	describes	the	foundation	of	the	research,	including	this	chapter.	It	gives	an	overview	

and	motivation	of	the	thesis,	and	provides	background	information.	We	introduce	mobile	technolo‐

gy	and	sensor	technology	in	Chapter	2	and	the	complex	event	processing	technologies	in	Chapter	3,	

which	 are	 the	 most	 important	 hardware	 and	 software	 foundation	 of	 this	 thesis.	 The	 Chapter	 4	

provides	a	 literature	survey	of	 the	related	work	 in	different	domains	and	comparing	them	to	our	

work	 ,	 including	mobile	 and	distributed	CEP	 system,	 efficient	mobile	 computing,	 semantic‐based	

pattern	and	sensor	models,	and		mobile	sensing	applications	and	systems.	

The	second	part	is	devoted	to	the	discussions	of	the	efficient	context‐aware	real‐time	personal	data	

processing,	which	describes	the	main	work	about	an	innovative	software	architecture	for	personal	

data	processing	mobile	applications.	We	start	 this	part	by	providing	analysis	of	 the	requirements	

for	personal	data	processing	mobile	applications	in	Chapter	5.	The	whole	software	architecture	is	

introduced	 in	 Chapter	 6,	 with	 detailed	 description	 of	 stream	 management	 and	 communication	

between	mobile	part	and	server	part.	Chapter	7	describes	the	monitoring	goal	network	(MGN)	 in	

detail,	which	models	the	user’s	situation	and	defines	the	conditions	and	adaptivity	to	deal	with	such	

Overview	and	Motivation		

11	
	

situations.	The	chapter	also	describes	the	data	collaboration	approach	based	on	monitoring	goals	

defined	in	MGN.	In	this	chapter	we	also	provide	examples	that	give	readers	a	better	understanding	

about	 the	 MGN.	 Chapter	 8	 introduces	 the	 intelligent	 resource‐aware	 processing	 distribution.	 It	

shows	the	pattern	distribution	model	of	our	solution.	The	algorithm	for	pattern	distribution	based	

on	 the	 current	 resource	 of	 mobile	 device	 is	 described	 in	 detail.	 We	 again	 provide	 examples	 to	

explain	 the	 inner‐work	of	 the	algorithm.	Chapter	9	 introduces	 the	 semantic‐based	pattern	model	

applied	in	our	solution,	which	is	used	to	manage	patterns	dynamically	in	real‐time.	We	describe	the	

mechanism	for	adaptation	of	changes	in	availabilities	of	data	streams.	

The	third	part	consists	of	two	chapters:	one	for	evaluation	and	the	other	for	conclusions.	Chapter	

10	provides	the	evaluation	of	our	solution,	including	performance	evaluation	and	use	case	evalua‐

tion.	We	evaluate	performance	of	our	solution	in	terms	of	mobile	CEP	performance,	performance	of	

pattern	 distribution	 algorithm	 and	 performance	 of	 pattern	 adaptation.	 In	 addition,	 two	 use	 case	

evaluations	 are	 provided,	 one	 in	m‐Health	 domain	 and	 another	 in	m‐Fitness	 domain.	 In	 the	 last	

Chapter	11	we	summarize	our	work	of	this	thesis	and	provide	an	outlook	for	possible	future	work	

in	this	research	field.			

	

	

Figure	1‐2	Thesis	organization	

Figure	1‐2	 illustrates	 the	organization	 in	 this	 thesis.	On	 the	 top	are	overview	and	research	ques‐

tions,	which	have	been	introduced	in	the	current	chapter.	On	the	right	of	the	figure	is	related	foun‐

Overview	and	Motivation	

12	
	

dation,	 including	 mobile	 technology,	 sensor	 technology,	 CEP	 technology,	 and	 related	 work	 and	

existing	solutions,	which	are	described	in	Chapter	2	to	Chapter4.		

Based	 on	 research	 questions	 and	 foundation	 we	 analyze	 the	 requirements	 to	 our	 approach	 in	

Chapter	5.	In	the	middle	are	the	contributions,	which	are	described	in	Chapter	6	to	Chapter	9.	The	

arrows	between	contributions	and	research	questions	indicate	the	relationship	between	them.	On	

the	bottom	is	the	finale	part,	containing	evaluation	and	conclusion	chapters.				

1.5 Related	publications	

In	this	section	a	list	of	publications	I	have	published	is	provided	that	are	related	to	the	core	of	this	

thesis.	Many	topics	and	discussions	regarding	methodology,	methods,	algorithms	and	framework	of	

this	thesis	have	been	published	during	the	time	period	from	November	2010	to	May	2014.	Below	I	

describe	the	publications	briefly	to	provide	a	guide	of	the	development	of	the	approach	described	

in	this	thesis.		

The	 first	 raw	 idea	 of	 this	 thesis	 was	 described	 in	 [XWSH10].	 I	 discuss	 the	 approach	 about	 pro‐

cessing	sensor	data	using	complex	event	processing	in	the	AAL	(Ambient	Assisted	Living)	domain.	

Afterwards	I	introduce	semantic	technology	into	CEP‐based	sensor	data	processing.	An	approach	of	

using	 CEP	 technology,	 semantic	 technology	 and	 sensors	 to	monitor	 the	 office	 status	 for	 efficient	

energy	consumption	was	described	in	[XSSA+11,	SMXS+11].	 In	developing	that	approach	I	use	an	

ontology	to	model	the	monitoring	procedure,	patterns	and	sensors	to	achieve	dynamic	adaptation.	

A	demo	about	this	approach	was	described	in	[XSMA11].		

In	the	scope	of	an	EU	project	ARtSENSE8	I	extended	my	approach	by	integrating	mobile	devices	and	

wearable	 sensors.	 I	 combined	 CEP,	 semantic	 technologies	 and	mobile	 computing	 to	 process	 the	

sensor	data	from	wearable	sensors	to	conduct	the	attention	of	visitors	in	museum	environment	in	

real‐time	 [XSSC+12].	 Some	 demos	 have	 been	 designed	 and	 shown	 in	 the	 conferences	 [XSSS12a,	

XSSS12b,	and	XSSS12c].	

Finally	 I	 integrated	my	past	 ideas	and	develop	the	current	approach	 for	using	mobile	computing,	

intelligent	 complex	 event	processing,	 semantic	 technologies	 and	 real‐time	big	 data	 to	 achieve	 an	

efficient	processing	of	real‐time	personal	data	from	sensors	on	mobile	devices.	An	overview	of	this	

approach	 and	 some	 features	were	 initially	 proposed	 in	 [XSSK13].	 [SXSS14a]	 has	 described	 some	

technical	 features	 in	 the	 scope	of	 a	 collaborative	 remote	monitoring	use	 case.	 In	 addition	demos	

based	on	 this	 approach	were	published	and	 shown	 in	 [StRX13,	 SXSS14b]	and	a	 tutorial	of	 this	ap‐

proach	 was	 given	 oat	 DEBS	 conference	 (International	 Conference	 on	 Distributed	 Event‐Based	

Systems	2014)	[StSX14].	 	
																																																																		
8	http://www.artsense.eu/	

	

13	
	

2 Introduction	to	Mobile	Devices	and	
Wearable	Sensor	Technologies	

Since	last	decade	mobile	technologies	have	brought	significant	changes	in	our	life.	Modern	mobile	

devices,9	 including	 smartphones	 and	 tablets,	 are	 becoming	 increasingly	 ubiquitous	 and	 provide	

ever	 richer	 functionalities	 through	 numerous	 mobile	 applications.	 The	 increasing	 popularity	 of	

mobile	devices	with	their	embedded	sensors	and	various	wearable	sensors	leads	to	an	expansion	of	

mobile	 sensing	 applications,	 especial	 in	 the	m‐Health	 and	m‐Fitness	domains.	 In	 this	 chapter	we	

give	an	overview	of	mobile	technologies	and	wearable	sensor	technologies.	

2.1 Mobile	Devices	

Since	iPhone	as	a	new	generation	smartphone	was	introduced	by	Apple	in	2007,	the	mobile	device	

market	has	been	growing	at	a	tremendous	rate.	The	technology	has	been	advancing	rapidly	and	the	

market	research	company	IDC	shows	that	mobile	device	sales,	including	smartphones	and	tablets,	

have	reached	1.25	billion	in	2013	[IDC13a].	

Mobile	 device	 is	 a	 small	 handheld	 computing	 device,	 which	 is	 also	 called	 handheld	 device	 or	

handheld	 computer.	 According	 to	 [Wies03]	 a	mobile	 device	 is	 defined	 as	 an	 extremely	 portable,	

self‐contained	information	management	and	communication	device,	characterized	by	the	following	

three	aspects:	

 It	must	operate	without	cables,	except	temporarily	(recharging,	synchronizing	with	a	desk‐

top,	etc.).	

 It	must	be	easily	used	while	in	one’s	hands,	not	resting	on	a	table.	

 It	must	allow	the	addition	of	applications	or	support	Internet	connectivity	[mobile	networks	

3G/4G,	WIFI	and	etc.].	

Most	mobile	devices	also	have	high‐resolution	touchscreen	as	input	device	and	integrated	cameras	

and	sensors	such	as	GPS,	Accelerometer	and	Gyroscope.		Thanks	to	the	rapid	innovation	in	mobile	

technologies,	mobile	devices	have	embedded	more	and	more	new	features.	And	the	lines	of	delinea‐

tion	between	different	types	of	computing	devices	are	becoming	increasingly	ambiguous,	as	mobile	

devices	now	offer	crossover	in	form	and	functionality	[Kros08].	

																																																																		
9	In	this	thesis	mobile	devices	indicate	handheld	computing	devices,	like	smartphones	and	tablets.	
Laptops	are	not	included	due	to	the	size	and	different	mobility.			

Introduction	to	Mobile	Devices	and	Wearable	Sensor	Technologies	

14	
	

In	the	next	subsection	we	start	the	introduction	to	modern	mobile	devices	by	reviewing	the	history	

of	mobile	device	innovation.	

2.1.1 The	history	of	mobile	device	innovation	

In	 this	 section	we	 give	 a	 short	 review	 of	 the	mobile	 device	 innovation	 history.	 Surprisingly	 the	

occurrence	of	mobile	devices	happened	in	the	mid‐1970s,	long	before	many	would	have	assumed.	

The	definition	of	mobile	phone	was	created	and	used	since	1940s	[Farl05].	However	prior	to	1973,	

mobile	telephony	was	limited	to	phones	installed	in	cars	and	other	vehicles.	The	first	real	handheld	

mobile	 phone	 appeared	 in	 1973	Motorola	 [CDML+75].	 The	 first	 call	was	made	 on	 April	 3,	 1973,	

when	 Dr.	 Martin	 Cooper,	 a	 senior	 engineer	 at	 Motorola,	 called	 Dr.	Joel	 S.	 Engel	of	Bell	 Labs	 and	

informed	him	he	was	speaking	via	a	mobile	phone.	This	 first	handheld	mobile	phone	weighed	1.1	

kg	and	measured	23	 cm	long,	13	 cm	deep	and	4.45	 cm	wide	and	could	offer	 a	 talk	 time	of	 just	30	

minutes	 and	 took	 10	 hours	 to	 recharge.	 The	 first	 commercial	 mobile	 phone	 was	 released	 by	

Motorola	 in	1983	known	as	the	Motorola	DynaTAC	8000X,	providing	30	minutes	of	talk‐time	and	

six	hours	standby	[GiSt87].		

In	1992	Nokia	releases	Nokia	1011,	which	was	the	world's	first	commercially	available	GSM	digital	

mobile	phone	[Kobl11].	It	measured	195	x	60	x	45mm,	weighed	475g	and	featured	a	monochrome	

LCD	display	and	an	extendable	antenna.	It	provided	90	minutes	talk	time,	12	hours	stand‐by	time	

and	was	able	to	receive	SMS	message.	

In	1993,	Bellsouth	and	IBM	announced	their	creation	of	the	Simon	personal	communicator	phone,	

touted	as	the	world's	first	smartphone	[Kobl11].	Simon	was	designed	to	be	a	cellphone	first	and	a	

computer	 second,	 according	 to	 the	 product's	 media	 release.	 	It	 was	 a	 mobile	 phone,	 pager,	 fax	

machine,	and	PDA	all	rolled	into	one.	It	 included	a	calendar,	address	book,	clock,	calculator,	note‐

pad,	email,	and	a	touchscreen	with	a	complete	keyboard.	

In	2000,	the	first	phones	with	built‐in	cameras	became	publicly	available.	It	was	the	Sharp	J‐SH04,	

introduced	 by	 J‐Phone	 and	 the	 Sharp	 Corporation	 in	 Japan	 [Kjel13].	 The	 J‐SH04	 had	 an	 110,000	

pixel	 resolution	 (0.1	 megapixels),	 a	 color	 LCD	 screen,	 one‐touch	 Internet	 access	 and	 a	 speaker	

phone.		

In	2001	Ericsson	T68,	as	the	 first	mobile	phone	with	a	color	display,	was	 launched.	 It	provided	a	

passive	LCD‐STN	with	a	resolution	of	101×80	and	256	colors	[RDGN04].	

In	2003	BlackBerry	6210	was	unveiled	by	Research	in	Motion	(RIM)	as	part	of	BlackBerry’s	Quark	

series.	The	BlackBerry	6210	was	the	company's	first	device	to	offer:	E‐Mail,	testing,	a	web	browser	

and	 BlackBerry	Messenger	 service,	 allowing	 for	web‐based	 communication	 between	 BlackBerry	

Introduction	to	Mobile	Devices	and	Wearable	Sensor	Technologies		

15	
	

users.	In	the	same	year	the	first	mobile	phone	using	Palm	OS	called	Treo	180	was	available	in	the	

market.		

In	January	2007,	Apple	launched	its	first	iPhone.	The	company	described	the	phone	as	combining	

three	products	 into	one	handheld	device:	a	mobile	phone,	an	 iPod	and	a	wireless	communication	

device.	One	of	the	original	iPhone's	more	revolutionary	features	was	that	it	allowed	users	to	com‐

mand	the	device	using	only	their	fingers	on	a	touch	screen.	Other	new	functions	included	a	visual	

voicemail	box,	touchpad	keyboard,	a	photo	library	that	could	be	linked	to	a	remote	computer	and	

an	almost	nine‐centimeter	display	for	watching	movies	and	television.	

On	 October	 22,	 2008	 the	 first	 publicly	 available	 smartphone	 running	 Android	 system,	 the	HTC	

Dream	 (also	known	as	 the	T‐Mobile	G1),	was	 released.	 It	 provided	a	 customizable	graphical	 user	

interface,	integration	with	Google	services	such	as	Gmail,	a	notification	system	that	shows	a	list	of	

recent	messages	pushed	from	apps,	and	Android	Market	for	downloading	additional	apps.	

In	October	2010	the	windows	phones	from	Microsoft	entered	smartphone	market.	Windows	Phone	

features	a	user	interface	based	on	Microsoft's	Windows	Phone	design	system,	codenamed	Metro.		

The	history	of	tablets	is	shorter	than	the	history	of	mobile	phones.	The	first	tablet	was	created	in	

1989	by	Jeff	Hawkins,	called	GRidPad10.	It	ran	MS‐DOS	and	the	military	bought	a	few	but	consumers	

mostly	ignored	it,	since	it	was	expensive	and	heavy.		

In	1993	Apple	unveiled	its	first	tablet	Newton	MessagePad,	which	was	also	called	"personal	digital	

assistant"	or	PDA,	 for	 taking	your	calendar/todo	 list	and	a	 few	apps	with	you.	With	a	stylus,	you	

could	write	on	it	and	it	would	recognize	your	handwriting	[Culb94].		

By	1997	Jeff	Hawkins	was	back	with	PalmPilot	[Pogu98],	the	first	affordable	PDA.	Eventually,	 the	

PalmPilot	would	use	touchscreens	and	become	very	popular.	This	device	proved	that	people	want‐

ed	a	third	type	of	mobile	device	between	a	mobile	phone	and	a	laptop,	if	it	was	affordable	and	was	

easy	to	use.		

Microsoft	 introduced	 its	 first	 tablet	 in	 2000	 and	 released	 in	 2002,	which	had	a	 version	of	 its	 XP	

operating	system	designed	for	it.	Afterwards	there	are	lots	of	tablets	with	Windows	system	on	the	

market,	such	as	LS800	from	Motion	Computing,	which	was	the	smallest	tablet	at	that	time.	However	

they	 were	 costly	 and	 not	 popular	 with	 consumers.	 They	 were	 mostly	 used	 in	 factories,	 by	 the	

military	and	by	other	field	workers.	

In	2010	Apple	CEO	Steve	Jobs	introduced	the	Apple	iPad	[Appl10],	which	was	the	most	successful	

tablet	in	the	history.	It	runs	Apple’s	iOS	and	carries	a	9.7‐inch	multi‐touch‐screen	and	built‐in	WiFi.	

																																																																		
10	http://www.computinghistory.org.uk/det/6565/GRidPad‐1910/	

Introduction	to	Mobile	Devices	and	Wearable	Sensor	Technologies	

16	
	

The	 iPad	provides	a	user‐friendly	 interface	 for	multimedia	playing	and	performing	 Internet	 func‐

tions	 such	 as	web‐browsing	 and	 emailing.	More	 functions	 can	 be	 extended	 by	 downloading	 and	

installing	relevant	apps.		

Following	upon	Apple,	also	in	2010	many	Android	tablets	from	various	producers	were	brought	to	

the	market	too.		

In	 June	2012	Microsoft	announced	 its	new	 tablet	 Surface	with	Windows	8	 system	and	 it	was	 re‐

leased	in	October.	

2.1.2 Market	analysis	

The	rapid	innovation	in	mobile	technologies	leads	to	a	significant	changes	in	the	way	we	work	and	

live.	The	 smartphones	have	become	a	ubiquitous	 companion	 for	many	people	and	 the	numerous	

mobile	Applications	(Apps)	extend	the	functionality	of	mobile	devices	in	various	domains.		

In	 the	 fourth	quarter	 of	 2010	 the	 shipment	 of	mobile	 devices	 has	 surpassed	 the	 shipment	 of	 PC	

[IDC10]	for	the	first	time	and	right	after	that	the	significant	growth	of	mobile	device	market	contin‐

ues.	Instead	of	traditional	PCs,	mobile	devices	have	become	the	primary	tools	through	which	people	

access	information.		

	

Figure	2‐1	Worldwide	smart	connected	device	forecast	market	share	by	product	category,	2012‐2017	
[IDC13b]	

According	to	the	recent	market	report	by	IDC	[IDC13b]	in	2013,	the	mobile	devices	including	tablet	

and	smartphone	have	captured	the	most	market	shares	in	value	by	almost	80%,	as	shown	in	Figure	

Introduction	to	Mobile	Devices	and	Wearable	Sensor	Technologies		

17	
	

2‐1.	Contrarily	the	traditional	PCs	including	desktop	PC	and	Portable	PC	have	lost	the	most	market	

share	 and	 have	 only	 now	 20%	market	 share.	 The	 report	 has	 also	 predicted	 that	 the	 growth	 of	

mobile	devices	from	2013	to	2017	will	be	about	75%.	Table	2‐1	summarized	the	smart	connected	

device	market	by	produce	category,	unit	shipments	and	market	share	for	2013,	and	prediction	for	

2017.	

Table	2‐1	Smart	Connected	Device	Market	by	Product	Category,	Unit	Shipments	and	Market	Share,	
2013	and	2017	shipments	in	millions)		[IDC13b]	

Product
Category

2013 Unit
Shipments

2013 Mar-
ket Share

2017 Unit
Shipments

2017 Mar-
ket Share

2013—2017
Growth

Desktop PC 134.4 8.6% 123.11 5% -8.4%

Portable PC 180.9 11.6% 196.6 8% 8.7%

Tablet 227.3 14.6% 406.8 16.5% 78.9%

Smartphone 1,013.2 65.1% 1,733.9 70.5% 71.1%

Total 1,556 100% 2,460.5 100% 58.1%
		

As	introduced	in	the	previous	section	there	are	several	different	operating	systems	used	by	mobile	

devices.	However	the	mobile	devices	using	different	operating	systems	show	also	different	trends	

in	 the	market.	Table	2‐2	shows	the	shipment	and	market	share	regarding	the	different	operating	

systems	for	third	quarter	in	2013.			

Table	2‐2	Top	Four	Operating	Systems,	Shipments,	and	Market	Share,	Q3	2013	(Units	in	Millions)	
[IDC13a]	

Operating
System

3Q13 Ship-
ment Vol-

umes

3Q13 Mar-
ket Share

3Q12 Ship-
ment Vol-

umes

3Q12 Mar-
ket Share

Year-Over-
Year

Change

Android 211.6 81.0% 139.9 74.9% 51.3%

iOS 33.8 12.9% 26.9 14.4% 25.6%

Windows
Phone

9.5 3.6% 3.7 2.0% 156.0%

BlackBerry 4.5 1.7% 7.7 4.1% -41.6%

Others 1.7 0.6% 8.4 4.5% -80.1%

Total 261.1 100.0% 186.7 100.0% 39.9%
	

Obviously	the	Android	system	has	the	most	users	and	Apple’s	iOS	follows	next.	Both	systems	have	

captured	more	than	90%	market	share.	The	year‐over‐year	change	for	Android	devices	increased	

significantly,	 iOS	on	the	other	hand	had	lost	some	market.	Windows	Phone	is	winner	in	the	year‐

over‐year	change	percentage	wise	despite	 its	 low	market	share.	The	other	operating	systems	like	

BlackBerry	experienced	difficulty	in	the	last	year	and	their	market	share	shrank	obviously.	

Introduction	to	Mobile	Devices	and	Wearable	Sensor	Technologies	

18	
	

Based	on	the	market	trend	we	selected	Android	system	as	the	research	platform	for	our	work	 in	

this	thesis.	

	

Figure	2‐2	Worldwide	mobile	app	store	downloads	[Gart13]	

The	growth	of	mobile	device	market	 leads	 to	a	corresponding	 increase	 in	mobile	app	market.	As	

shown	in	the	chart	above	according	to	[Gart13]	in	2013	mobile	app	downloads	have	increased	by	

28	billion.	Furthermore,	 in	2014	an	 increase	of	47	billion	 is	 expected.	The	growth	 rate	will	 keep	

increasing	till	2017.	We	can	also	observe	that	the	number	of	free	downloads	will	increase	rapidly,	

indicating	a	higher	penetration	by	mobile	devices	in	the	emerging	markets.	The	number	of	paid	app	

downloads	will	also	show	an	increase,	although	the	rate	of	increase	will	relatively	be	slower,	indi‐

cates	that	more	users	will	become	aware	of	apps	they	want	to	use	and	demand	for	quality	apps	will	

increase.	

2.2 Sensors	

Nowadays	the	electronic	sensors	special	the	physiological	and	wearable	sensors	are	used	more	and	

more	in	our	daily	life	rather	than	only	in	the	lab	environment.	Almost	every	mobile	device	has	been	

integrated	with	several	sensors	such	as	accelerometer,	gyroscope	and	GPS	[HBPW08].	Meanwhile	a	

lot	of	wearable	physiological	sensors	have	existed	on	the	market	as	they	can	be	easily	connected	to	

mobile	 devices	 through	 wireless	 communication	 protocol	 like	 Bluetooth.	 These	 sensors	 enable	

mobile	devices	to	collect	various	personal	data,	such	as	heartbeat	rate,	body	temperature	and	skin	

conductance.	In	this	section	we	give	a	brief	introduction	to	today’s	sensor	technologies.	

Introduction	to	Mobile	Devices	and	Wearable	Sensor	Technologies		

19	
	

2.2.1 Sensor	

According	to	[Wils04],	sensor	is	defined	as	a	device	that	converts	a	physical	phenomenon	into	an	

electrical	signal.	It	represents	the	part	of	the	interface	between	the	physical	world	and	the	world	of	

electrical	 devices.	 Sensors	 are	 widely	used	 in	 everyday	 objects	 such	 as	 touch‐sensitive	 elevator	

buttons	(tactile	sensor)	and	lamps	which	dim	or	brighten	by	touching	the	base.	

Sensors	 can	be	divided	 into	different	 types	based	on	 their	usage.	The	 type	of	 the	 sensors,	which	

measure	raw	physiological	signal	data	from	human	body,	is	called	physiological	sensor	[BaLG04]	

or	biosensor	[TKWW87,	Lowe89,	and	ChMa02].	Physiological	sensors	provide	real‐time,	on‐board	

derivations	of	basic	parameters	such	as	heart	rate	and	respiration	rate,	which	enables	health	moni‐

toring	for	people,	especially	for	patients.	

Taking	 advantage	 of	 rapid	 innovation	 in	 wireless	 technology	 and	 miniaturization	 technology,	

sensors	 are	 becoming	 smaller	 and	 lighter.	 Also	 the	 advent	 of	smart	 fabrics	 [ElYM00,	 Matt06]	in	

recent	years	has	allowed	people	to	stay	attached	to	sensors	without	the	issues	of	discomfort,	large	

bulky	technology	or	skin	break	down	associated	with	sticky	patches.	Therefore	in	recent	years	the	

wave	of	wearable	sensors	[LeMa02]	hit	the	market.	Currently	the	most	wearable	sensors	on	the	

market	are	physiological	sensors,	such	as	heart	rate	sensor,	respiration	sensor	and	EEG	sensor.	

2.2.2 Mobile	sensing	

Sensors	are	also	widely	used	in	mobile	devices	and	have	been	regarded	as	a	critical	component	that	

opens	up	mobile	devices	to	new	advances	across	a	wide	spectrum	of	applications	domains.	Sensor	

enabled	 mobile	 devices	 are	 set	 to	 become	 even	 more	 central	 to	 people’s	 lives	 as	 they	 become	

intertwined	with	existing	applications	such	as	social	networks	and	new	emerging	domains	such	as	

green	applications,	recreational	sports,	global	environmental	monitoring,	personal	and	community	

healthcare,	sensor	augmented	gaming,	virtual	reality,	and	smart	transportation	systems.	

Recent	technology	advances	and	miniaturization	have	accelerated	the	convergence	between	mobile	

devices	and	powerful	computers.		The	computation	performance	and	storage	capabilities	of	mobile	

devices	are	ever	growing	while	integrating	a	suite	of	sensors	including	accelerometer,	microphone,	

GPS,	digital	compass,	gyroscope,	and,	in	the	future,	air	quality	and	chemical	sensors	[HBPW08].	By	

taking	advantage	of	mobile	devices’	computational	power	and	sensing	capabilities,	and	their	tight	

coupling	with	users’	daily	lives,	mobile	devices	can	become	very	compelling	platforms	to	recognize	

users’	activities	and	personal	information	[EOLL+08].	

Introduction	to	Mobile	Devices	and	Wearable	Sensor	Technologies	

20	
	

2.2.3 Market	analysis	

During	the	last	several	years	improving	daily	life	quality	has	gained	lots	of	attention.	Sensors	have	

been	widely	used	to	monitor	the	life	quality	such	as	health	status,	which	leads	to	an	expansion	of	

sensors,	especially	mobile	wearable	physiological	sensors.	

	

Figure	2‐3	Global	mobile	sensing	health	and	fitness	sensor	shipments	(2012‐2017)	

As	shown	in	Figure	2‐3,	according	to	the	market	reports	[HaGu13a,	HaGu13b],	515	million	sensors	

for	wearable,	implantable	or	mobile	health	and	fitness	devices	are	predicted	to	be	shipped	globally	

in	2017,	up	from	107	million	in	2012.		

2.2.4 Sensor	examples	

In	this	subsection	we	introduce	some	sensors	that	are	used	in	this	thesis	for	experiments.	Since	the	

target	user	group	of	apps	using	the	proposed	software	architecture	in	this	thesis	is	ordinary	people,	

we	select	the	sensors,	which	are	the	mainstream	sensors	on	the	market	and	are	affordable	by	most	

users.	

The	Zephyr	BT	HxM	sensor	[Zeph10]	is	a	heart	rate	sensor,	which	also	contains	an	internal	accel‐

erometer	 and	 provides	 algorithm‐derived	 speed,	 distance	 and	 stride	 count.	 The	 sensor	 carries	 a	

bluetooth	 module,	 which	 enables	 the	 sensor	 to	 connect	 with	 mobile	 devices	 through	 Bluetooth	

connection.	

	

	

Introduction	to	Mobile	Devices	and	Wearable	Sensor	Technologies		

21	
	

Zephyr	BT	HxM	sensor	

	

Figure	2‐4	Zypher	BT	HxM	sensor	(image	source:	http://www.zephyranywhere.com/)	

The	Zephyr	BioHarness	3	sensor	[Zeph12]	is	an	ECG	and	breathing	sensor.	It	is	attached	to	a	light‐

weight	smart	fabric	strap	or	garment.	It	detects	various	physiological	information,	including	heart	

rate,	ECG,	breathing	rate,	breathing	wave	amplitude,	skin	temperature	and	posture.	It	provides	both	

Bluetooth	 connectivity	 and	 IEEE	 802.15.4	 connectivity,	 which	 enables	 the	 data	 transmission	 to	

mobile	devices.		

Zephyr	BioHarness	3	sensor	

	

Figure	2‐5	Zypher	BioHarness	3	Sensor	(image	source:	http://www.zephyranywhere.com/)	

	

23	
	

3 Introduction	to	Complex	Event	Processing	
Complex	Event	Processing	(CEP)	is	a	computer	science	discipline	that	has	developed	a	set	of	tech‐

niques	and	tools	to	enable	real‐time	computing.	In	this	chapter	we	describe	the	foundation	of	the	

CEP	technologies	including	fundamental	definitions	and	terminologies.	We	also	introduce	the	CEP	

architecture	and	explain	the	main	building	blocks	of	the	CEP	architecture.	

3.1 Event	

In	order	to	better	understand	the	complex	event	processing	technologies,	we	start	this	section	by	

explaining	what	an	event	is	and	what	is	meant	by	an	event.			

Luckham	 [Luck01]	 defines	 an	 Event	 as	 an	 object	 that	 is	 a	 record	of	 an	 activity	 in	 a	 system	with	

three	aspects:	

 Form:	The	 form	of	an	event	 is	 an	object.	 It	may	have	particular	attributes	or	data	 compo‐

nents.	A	form	can	be	something	as	simple	as	a	string	or	more	often	a	tuple	of	data	compo‐

nents.	The	data	components	can	also	include	a	description	of	its	significance	and	relativities.	

 Significance:	An	event	signifies	an	activity.	This	activity	 is	the	significance	of	the	event.	An	

event’s	form	usually	contains	data	describing	the	activity	it	signifies.	

 Relativity:	An	activity	is	related	to	other	activities	by	time,	causality,	and	aggregation.	Events	

have	 the	same	relations	 to	one	another	as	 the	activities	 they	signify.	The	relationships	be‐

tween	an	event	and	other	events	are	its	relativity.	

In	[EtNi10],	the	authors	define	an	event	as	an	occurrence	within	a	particular	system	or	domain;	it	is	

something	that	has	happened,	or	is	contemplated	as	having	happened	in	that	domain.	An	event	can	

also	be	used	to	describe	a	programming	entity	that	represents	such	an	occurrence	in	a	computing	

system.	Chandy	et.	al.	[ChCC07]	define	an	event	as	a	significant	change	in	the	state	of	universe.	In	

this	sense	every	piece	of	new	data	can	be	considered	as	an	event	since	it	changes	the	state	of	uni‐

verse.	Events	that	require	a	reaction	are	forming	a	situation	[AdEt02].	Not	only	the	occurrence	of	

something	denotes	an	event	but	also	the	absence	of	expected	events	conveys	information	[ChSc09].	

In	sum,	an	event	is	an	object	that	presents	an	occurrence	or	non‐occurrence	of	an	activity	that	has	

happened	in	a	particular	system	or	domain.		It	can	happen	not	only	in	the	real	world,	but	also	be	in	

artificial	domains	such	as	training	simulators,	virtual	worlds,	and	similar	virtual	environments.	

	

	

Introduction	to	Complex	Event	Processing	

24	
	

	

Example:	Heart	rate	events	from	heart	rate	sensor	

An	event	signifies	the	activity	of	the	heart	rate	measurement	of	a	user,	which	is	sensed	by	a	heart	

rate	 sensor.	 The	measurement	 contains	 the	 following	 data	 fields:	 sensor	 id,	measurement	 value,	

measurement	 time	and	so	on.	The	event	 contains	all	 the	data	carried	by	measurement	and	extra	

data	fields	such	as	event	id,	user	id	and	relation	to	other	measurements.	So	the	heart	rate	event	can	

be	modelled	in	the	following	forms.	

	

JAVA	class	

Class	HeartRateEvent	{	String																															event_id;	

	 	 	 																				String																															user_id;	

	 	 	 																				String																															sensor_id;	

	 	 	 																			Measurement																	value;	

	 	 	 																			Time																																		measurement_time	

	 	 	 																				Relation																									(id1,	id2,…)	

	 	 																										}	

XML/XSD	

<?xml	version	=	"1.0"	encoding	=	"utf‐8"?>	

<xs:schema	xmlns="www.mcep.fzi.de"	targetNamespace=www.mcep.fzi.de	

xmlns:xs=http://www.w3.org/2001/XMLSchema	elementFormDefault="qualified"		

attributeFormDefault="unqualified">	

	 <xs:complexType	name="Event">	

	 	 <xs:sequence>	

							 	 	 <xs:element	name="event_id"	type="xs:string"/>	

							 	 	 <xs:element	name="user_id"	type="xs:string"/>	

							 	 	 <xs:element	name="sensor_id"	type="xs:string"/>	

							 	 	 <xs:element	name="measurementValue"	type="xs:integer"/>	

							 	 	 <xs:element	name="measurementTime"	type="xs:date"/>	

							 	 	 <xs:element	name="relation"	type="xs:String"	maxOccurs="unbounded"/>	

							 	 </xs:sequence>	

			 </xs:complexType>	

</xs:schema>		

	

The	event	described	above	is	modelled	both	in	Java	and	XML	(defined	in	xml	schema)	forms.	One	

heart	rate	event	can	be	presented	either	as	 Java	class	 instance	or	XML	document.	Each	event	be‐

longs	to	an	event	type,	which	is	a	specification	for	a	set	of	event	objects	that	have	the	same	semantic	

Introduction	to	Complex	Event	Processing		

25	
	

intent	 and	 same	 structure;	 every	 event	 object	 is	 considered	 to	 be	 an	 instance	 of	 an	 event	 type	

[EtNi10].			

Furthermore,	 an	 event	 can	 be	 either	 simple	 or	 complex	 [ChEA11].	 A	 simple	 event	 is	 atomic	 and	

does	not	contain	further	events.	In	comparison	to	a	simple	event,	a	complex	event	is	composed	of	

other	simple	or	complex	events.	In	[ChEA11]	complex	events	are	also	described	as	summary‐level	

facts.	 In	 [Luck01]	Luckham	defines	 that	a	complex	event	signifies	an	activity	that	happens	over	a	

time	 interval	 where	 a	 set	 of	 other	 events	 happened	 before.	 	 Moreover,	 there	 are	 relationships	

between	 these	 events.	 For	 instance,	 time,	 causality	 and	 aggregation	 are	 described	 as	 three	most	

common	 and	 important	 relationships	 between	 events.	 Time	 is	 a	 relationship	 that	 orders	 events.	

This	relationship	depends	on	a	clock.	Causality	is	a	dependence	relationship	between	activities	in	a	

system.	An	event	depends	on	other	events	if	it	happened	only	because	the	other	events	happened.	

Aggregation	is	an	abstraction	relationship.	If	event	A	signifies	an	activity	that	consists	of	the	activi‐

ties	of	a	set	of	events	Bi,	then	event	A	is	an	aggregation	of	events	Bi.		

3.2 Pattern	

Pattern	 or	 called	Event	Pattern	 is	 another	 important	 definition	 in	 event	 processing,	 which	 de‐

scribes	 the	event	processing	 logic.	The	detection	of	patterns	over	events	 is	 the	 core	 in	 the	event	

processing	[EtNi10],	[Luck01],	and	[ChEA11].	An	event	pattern	is	a	template	that	matches	certain	

sets	of	events,	which	you	want	to	find.	Furthermore	it	describes	precisely	not	only	the	events	but	

also	 their	 causal	 dependencies,	 timing,	 data	 parameters	 and	 context	 [Luck01].	 In	 [EtNi10]	 the	

authors	define	an	event	pattern	as	a	template	specifying	one	or	more	combinations	of	events.	Given	

any	collection	of	events,	one	or	more	subsets	of	those	events	may	be	able	to	be	found	that	match	a	

particular	pattern.	We	say	that	such	a	subset	satisfies	this	pattern.	

Event	patterns	are	used	to	create	complex	events	that	signify	a	set	of	events.	The	same	event	pat‐

tern	 can	 continuously	 trigger	 complex	 events	of	 the	 same	 type.	A	pattern	describes	 the	 concrete	

occurrence	context	of	such	event	set.	This	context	contains	the	event	parameter	of	each	event	and	

the	relationship	between	the	events	in	the	set	using	event	operators.	Event	patterns	are	described	

in	 languages	called	event	pattern	 language	(EPL).	Different	event	processing	agents	(explained	 in	

section	3.3.2)	can	have	different	EPLs.	

	

	

	

	

Introduction	to	Complex	Event	Processing	

26	
	

	

Example:	Pattern	in	Esper	EPL	

every	HeartRateEvent(user_id="Peter",	value>80)	where	timer:within(60	seconds)	

Esper11	is	an	event	processing	agent	(engine)	that	has	its	own	EPL.	The	pattern	in	the	above	exam‐
ple	processes	the	heart	rate	events	to	alert	on	each	heart	rate	of	Peter	with	a	heartbeat	value	great‐
er	than	80	bpm	within	the	next	60	seconds.	

	

Based	on	the	pattern	matching	operations,	according	to	[EtNi10],	the	event	patterns	can	be	divided	

into	two	types:	Basic	patterns	and	Dimensional	patterns.	

 Basic	 patterns:	 These	 are	 simple	 patterns	 that	 relate	 to	 basic	 operations,	 including	 logical	

operations,	threshold	operations,	subset	selection	operations,	on	event	types	or	on	collec‐

tions	of	 event	 types	and	don’t	depend	on	 the	 timing	or	ordering	of	 the	 incoming	events.	

Basic	patterns	are	frequently	found	in	event	processing	applications.		

 Dimensional	patterns:	These	are	patterns	that	relate	to	time,	space,	or	a	combination	of	time	

and	space.	

Next	we	introduce	some	matching	operations	of	event	patterns,	which	are	often	used	in	CEP	appli‐

cations.	

Logical	 operations	 are	 the	 most	 frequently	 used	 pattern	 operations	 in	 CEP.	 Traditional	 logical	

operations	 have	 three	 operators:	 conjunction	 operator	 (AND),	 disjunction	 operator	 (OR)	 and	

negation	operator	(NOT).	

	

Example:	logical	operation	patterns	

Pattern1:	EventA	AND	EventB	

Pattern2:	EventA	OR	EventB	

Pattern3:	NOT	EventA	

Pattern	1	uses	a	 conjunction	operator.	 It	 is	 fulfilled	when	both	EventA	and	EventB	happens.	Pat‐

tern2	uses	a	disjunction	operator	and	is	fulfilled	when	either	EventA	or	eventB	happens.	Pattern	3	

uses	a	negation	cooperator	and	is	fulfilled	when	EventA	doesn’t	happen.		

	

																																																																		
11	http://esper.codehaus.org/	

Introduction	to	Complex	Event	Processing		

27	
	

Threshold	operations	are	based	on	aggregation	operations,	which	are	performed	against	the	set	of	

participant	events.	The	result	of	 the	aggregation	 is	 then	compared	against	a	 threshold	value.	The	

assertion	of	 the	 comparison	 can	be	one	of	 the	 relations	=,	 ≤,	 ≥,	 <,	 >,	 ≠.	The	 threshold	operations	

include	following	types:		

 Count:	a	count	operation	counts	the	number	of	participant	event	instances	and	compares	the	

value	against	threshold	value.		

 Average:	an	average	operation	calculates	the	average	value	of	a	special	attribute	over	all	par‐

ticipant	events,	and	compares	the	value	against	threshold	value.	

 Maximum	and	minimum:	a	maximum/minimum	operation	calculates	the	maximal	or	minimal	

value	 of	 a	 special	 attribute	 over	 all	 participant	 events,	 and	 compares	 the	 value	 against	

threshold	value.	

Temporal	order	operations	are	operations	 in	which	 time	plays	a	major	 role.	The	most	 common	

temporal	order	operation	is	sequence	operation.	

Sequence	operation	 is	 satisfied	 if	 the	participant	 event	 set	 contains	 at	 least	 one	 instance	of	 each	

event	 type	mentioned	 in	 the	 relevant	 event	 types	 list,	 and	 if	 the	 order	 of	 these	 event	 instances	

matches	the	order	of	their	types	in	the	list.		

	

Example:	sequence	pattern	

EventA	SEQ	EventB	

In	the	example	above	the	pattern	uses	a	sequence	operator	and	is	fulfilled	whenever	EventB	hap‐

pens	after	EventA	has	happened.	

	

3.3 Event	processing	architecture	

In	the	previous	sections	we	have	described	the	basic	definition	of	events	and	patterns	in	order	to	

bring	readers	into	the	world	of	event	processing.	In	this	section	we	finally	come	to	the	definition	of	

event	processing,	and	further	present	the	architecture	of	event	processing.	

According	to	[EtNi10],	Event	Processing	is	computing	that	performs	operations	on	events.	Common	

event	 processing	 operations	 include	 reading,	 creating,	 transforming,	 and	 deleting	 events.	 Event	

processing	aims	to	detect	or	to	report	the	situations	of	interest	based	on	the	analysis	of	events	from	

different	event	sources	in	real‐time	in	order	to	achieve	immediate	reactions	to	the	detected	situa‐

Introduction	to	Complex	Event	Processing	

28	
	

tions.	 Complex	 Event	 Processing	 (CEP)	 indicates	 the	 same	 operations	 as	 event	 processing,	 but	

performs	on	complex	events	[LSAB+11].	In	this thesis event processing and CEP are used synonymous-

ly. Since	1990s	CEP	has	already	become	the	foundation	of	modern	real‐time	information	systems	in	

the	 research	 field.	 The	 CEP	 area	 has	 roots	 in	discrete	 event	 simulation	 and	active	 database	area.	

CEP	 provides	 a	 set	 of	 techniques	 and	methods	 to	 analyze	 and	 understand	 event‐driven	 systems	

[Luck01].	

	

Figure	3‐1Event	Processing	architecture	based	on	[EtNi10]	

Event	processing	architecture	 is	a	software	architecture,	which	enables	event	processing	applica‐

tions	using	patterns	to	promote	the	reading,	creating,	transforming,	and	deleting	events.	As	event	

processing	applications	are	applied	to	different	domains	they	have	different	requirements.	Hence	

not	all	event	processing	applications	are	the	same,	of	course,	but	by	and	large	most	of	them	have	a	

structure	that	consists	of	a	set	of	common	components	[EtNi10].	

Figure	 3‐1	 shows	 a	 basic	 event	 processing	 architecture	with	 the	 common	 components	 including	

event	 producers,	 event	 processing	 agent	 (normally	 called	 event	 processing	 engine)	 and	 event	

consumers.	 The	 event	 processing	 logic	 is	 described	 as	 event	 patterns	 and	 is	 deployed	 in	 event	

processing	agent.		

However,	some	event	processing	applications	have	more	complex	structure	and	require	more	event	

processing	agents.	In	such	cases	we	need	an	Event	Processing	Network	(EPN),	which	is	a	collec‐

tion	of	event	processing	agents,	producers,	 consumers,	 and	global	 state	elements	connected	by	a	

collection	of	channels.	

Figure	 3‐2	 displays	 an	 example	 of	 EPN	with	 all	 of	 its	 components.	 The	main	 components:	 event	

producers,	event	processing	agent	 and	event	consumers	 are	 the	same	as	 those	 in	event	processing	

Introduction	to	Complex	Event	Processing		

29	
	

architecture.	A	 state	 component	 refers	 to	 data	 that	 is	 available	 for	 use	 both	by	 event	 processing	

agents	 and	 by	 contexts	 [EtNi10].	 This	 data	may	 be	 system‐wide	 global	 variables,	 reference	 data	

used	to	enrich	events	and	event	stores	that	hold	past	events.	An	event	channel	receives	events	from	

one	 or	 more	 source	 processing	 elements,	 makes	 routing	 decisions,	 and	 sends	 the	 input	 events	

unchanged	to	one	or	more	target	processing	elements	 in	accordance	with	these	routing	decisions	

[EtNi10].	

	

Figure	3‐2	An	Event	Processing	Network	([EtNi10])	

In	the	following	sections	we	describe	these	three	main	components	of	the	event	processing	archi‐

tecture	including	event	producers,	event	processing	agent	and	event	consumers.	

3.3.1 Event	Producer	

An	event	producer	is	an	entity	at	the	edge	of	an	event	processing	system	that	introduces	events	into	

the	 system	 [EtNi10].	 An	 event	 producer	 is	 also	 known	 as	 an	 event	 source,	which	 creates	 events	

according	to	certain	event	reporting	logic	which	is	embedded	in	the	event	producer.	According	to	

[Luck01]	event	producers	should	have	two	functions:	Observation	and	Adaptation.	

 Observation:	Event	producers	should	be	able	to	access	and	observe	the	activities	at	any	lev‐

el	of	a	hierarchical	system	without	changing	the	system’s	behavior.	

 Adaptation:	 Event	 producers	must	 transform	 observations	 into	 event	 objects	 that	 can	 be	

processed	by	CEP.						

Introduction	to	Complex	Event	Processing	

30	
	

Regarding	the	various	types	of	events,	event	producers	also	have	many	types	that	can	be	summa‐

rized	into	the	following	three	categories	[EtNi10]:	

 Hardware	event	producer:	 Event	producers	 in	 this	 category	detect	 physical	 signals	 (e.g.,	

temperature,	light	and	etc.)	and	generate	events	that	indicate	activities	in	the	physical	en‐

vironment,	where	 it	 is	 integrated.	 Sensors	 like	 temperature	 sensors	or	humidity	 sensors	

are	typical	hardware	event	producers.	Hardware	event	producers	are	widely	used	in	medi‐

cal	applications,	device	management,	security	applications	and	etc.	

 Software	event	producer:	An	 event	 producer	 can	 also	 be	 part	 of	 a	 software	 application,	

which	means	it	is	a	piece	of	application	logic	and	generates	event	objects.	Software	events	

can	also	be	produced	by	instrumentation	technique.	Here	the	events	are	not	generated	by	

application	code	itself;	instead	they	are	produced	by	software	that	is	monitoring	the	appli‐

cation,	looking	for	noteworthy	activity.		

 Human	interaction	event	producer:	Some	events	are	generated	directly	by	human	interac‐

tion,	albeit	with	a	bit	of	software	and	hardware	assistance.	For	example,	the	delivery	con‐

firmation	produced	by	the	driver’s	handheld	device.	

3.3.2 Event	processing	agent	

The	concrete	processing	of	events	tasks	place	in	Event	Processing	Agent	component.	As	defined	in	

[LSAB+11,	EtNi10],	an	event	processing	agent	is	a	software	module	that	processes	events	and	plays	

a	major	part	in	event	processing	architecture.	

	

Figure	3‐3	Type	hierarchy	of	event	processing	agents	according	to	[EtNi10]	

An	event	processing	agent	has	three	logic	functions:	Filtering,	Matching	and	Derivation	[EtNi10].	

Introduction	to	Complex	Event	Processing		

31	
	

 Filtering:	 It	 selects	 the	 input	 events	 that	 participate	 in	 the	 processing.	 The	 filtering	 step	

takes	each	incoming	event	as	an	input,	and	applies	the	filter	conditions.	In	general	it	elimi‐

nates	any	event	instance	that	does	not	meet	these	conditions.	

 Matching:	 It	 finds	patterns	 among	 events	 and	creates	 sets	 of	 events	 that	 satisfy	 the	 same	

pattern.	 The	matching	 step	 takes	 all	 events	 that	 have	been	 left	 by	 the	 filtering	 step,	 and	

looks	for	matches	between	them,	using	an	event	processing	pattern	or	some	other	kind	of	

matching	criterion.	

 Derivation:	 It	 uses	 the	 output	 from	 the	matching	 step	 to	derive	new	events	 and	 set	 their	

content.	The	derivation	 step	 takes	 the	matching	 set	 as	 an	 input	and	derives	new	events,	

applying	derivation	formulae	to	the	events	in	the	matching	sets.	

Event	processing	agents	can	also	be	classified	into	several	types	according	to	functionalities.	Figure	

3‐3	shows	the	type	hierarchy	of	different	event	processing	agents.		

 Filter	agent:	A	filter	agent	has	only	the	filter	function	and	filters	out	irrelevant	events	with	

respect	to	a	set	of	special	filtering	conditions.	

 Transformation	agent:	A	transformation	event	processing	agent	includes	a	derivation	step	

and	also	optionally	a	filtering	step.	It	transforms	input	events	according	to	derivation	for‐

mulae.		

 Pattern	detect	agent:	A	pattern	detect	agent	performs	a	pattern	matching	function	on	one	

or	more	input	streams.	It	emits	one	or	more	derived	events	 if	 it	detects	an	occurrence	of	

the	 specified	pattern	 in	 the	 input	 events.	 For	 example	 it	may	detect	 the	 temperature	 in‐

crease	when	two	certain	temperature	events	are	input,	while	the	latter	has	a	higher	tem‐

perature	value	than	the	value	in	the	previous	event.	

Transformation	 agents	 can	 further	 be	 divided	 into	 four	 sub‐types	 according	 to	 transformation	

operators:	

 Translate	agent:	A	 translate	agent	 takes	a	single	event	as	 its	 input	and	generates	a	single	

derived	event,	which	is	a	function	of	input	event,	using	a	derivation	formula.	

 Aggregate	agent:	An	aggregate	agent	takes	a	set	of	events	as	input	and	creates	a	single	out‐

put	event	applying	aggregation	function.	

 Spilt	agent:	A	split	agent	uses	single	event	as	input	and	creates	a	set	of	events,	which	can	be	

a	clone	of	the	original	event	or	a	projection	of	the	input	event	containing	a	subset	of	its	at‐

tributes.	

 Compose	 agent:	 A	 compose	 agent	 tasks	 groups	 of	 input	 events	 from	 two	 input	 streams,	

looks	for	matches	using	a	matching	criterion	and	creates	output	events.	Each	output	event	

is	a	function	of	a	collection	of	events	taken	from	both	input	streams.			

Introduction	to	Complex	Event	Processing	

32	
	

Translate	agents	contain	further	two	sub‐types:	

 Enrich	agent:	An	enrich	agent	takes	a	single	event	as	input	and	extends	the	event	with	addi‐

tional	information.	

 Project	agent:	A	project	agent	takes	a	single	event	as	input	and	removes	information	from	

this	input	event.	

3.3.3 Event	Consumer	

An	event	consumer	is	an	entity	at	the	edge	of	an	event	processing	system	that	receives	events	from	

the	system	[EtNi10].	An	event	consumer	is	also	known	as	events	sink	and	triggers	certain	type	of	

actions,	 which	 indicates	 the	 reactive	 behaviors	 of	 the	 event	 processing	 system.	 Similar	 to	 event	

producers,	event	consumers	can	also	be	classified	into	three	categories:	hardware	event	consumer,	

software	event	consumer	and	human	interaction	event	consumer	[EtNi10].	

 Hardware	event	consumer:	Hardware	event	consumers	are	normally	called	actuators.	An	

actuator	takes	an	incoming	event	and	reacts	to	it	by	performing	a	physical	action,	often	in	

order	to	control	something	in	the	physical	world,	such	as	changing	a	magnetic	field	or	pro‐

ducing	an	electrical	signal.		

 Software	event	consumer:	The	most	common	software	event	consumer	is	an	event	logger,	

which	keeps	a	record	of	the	received	event,	either	in	a	flat	file	or	a	database.	Further	soft‐

ware	event	consumers	can	trigger	certain	workflows	or	create	a	new	business	process.	

 Human	interaction	event	consumer:	People	are	also	a	kind	of	event	consumer.	Human	in‐

teraction	event	consumers	provide	interfaces	to	humans,	such	as	a	visual	display	or	alarm	

ring	tons.			

3.3.4 Event	Interaction	

One	 of	 the	 most	 important	 characters,	 which	 distinguish	 event‐driven	 systems	 from	 traditional	

information	systems,	is	the	way	of	the	information	interaction	between	information	producers	and	

information	consumers.	In	event‐driven	system	the	interaction	of	information	(events)	is	based	on	

Publish/Subscribe	 mechanism,	 which	 means	 information	 is	 pushed.	 While	 in	 traditional	 infor‐

mation	systems	using	request‐response	mechanism,	information	is	pulled.	

According	 to	 [EtNi10],	 the	 differences	 between	 these	 two	 interaction	 models	 for	 event‐driven	

system	are:				

 An	event	producer	does	not,	in	general,	expect	consumers	to	take	any	specific	actions	when	

they	receive	events	that	it	has	sent	them.		

Introduction	to	Complex	Event	Processing		

33	
	

 Events	 are	 often	 sent	 as	 one‐way	messages.	 In	 other	words,	 after	 a	 producer	 has	 sent	 an	

event	message,	it	can	get	on	with	other	things	without	having	to	wait	for	responses.	

Using	 Publish/Subscribe	 event	 interaction	 can	 result	 in	 reduced	 processing	 latency	 because	 the	

producer	can	send	an	event	as	soon	as	it	has	one	to	distribute.	Many	Internet	applications	are	now	

based	on	the	Publish/Subscribe	model	too.	In	general	there	is	a	trend	of	shifting	web	applications	

towards	real‐time	web	applications,	which	enable	users	to	receive	information	instantly	as	soon	as	

it	is	published	by	its	producers,	rather	than	requiring	periodic	updates.	

3.4 Conclusion	

Complex	Event	Processing	(CEP)	is	a	relative	new	technology,	which	allows	users	to	perform	tradi‐

tional	 database	 and	 data‐mining	 tasks	 like	 data	 validation,	 cleaning,	 enrichment,	 and	 analysis	 in	

real‐time	without	persisting	the	data	[Ober11].	With	sensor	and	mobile	devices	proliferating	in	the	

modern	world,	we	now	have	the	ability	to	consolidate	large	volumes	of	sensor	data	about	ourselves	

and	the	environment	around	us.	 In	order	 to	better	comprehend	and	analyze	these	sensor	data	 in	

real‐time,	CEP	is	the	most	appropriate	technology	to	process	the	sensor	data.	By	using	CEP,	query,	

filter,	and	transform	data	from	multiple	sensors	for	event	detection	can	be	done	in	real‐time.	There‐

fore,	in	this	thesis	we	propose	to	use	CEP	to	process	real‐time	personal	data	on	mobile	devices	in	

order	to	achieve	an	efficient	solution.			

	

35	
	

4 State	Of	the	Art	
The	research	topic	of	this	thesis	covers	several	technologies,	including	Complex	Event	Processing,	

Mobile	Computing	 and	Semantic	Web.	 In	 this	 chapter	we	will	 conduct	 a	 literature	 survey	on	 the	

state‐of‐the‐art	technologies	and	theories	that	are	the	main	focus	of	our	work.	The	research	work	

that	is	related	to	our	approach	mainly	fit	into	the	following	research	fields:	mobile	and	distributed	

CEP	 system,	 efficient	 mobile	 processing,	 semantic‐based	 pattern	 and	 sensor	 model,	 and	 mobile	

sensing	system	and	e‐fitness/e‐Health	mobile	apps.	

4.1 Mobile	and	distributed	complex	event	processing	
system	

In	order	 to	achieve	efficient	processing	of	 real‐time	personal	data	detected	by	sensors	on	mobile	

devices,	we	propose	to	use	Complex	Event	Processing	(CEP)	technology	to	process	real‐time	sensor	

data.	 Considering	 that	 most	 real‐time	 data	 are	 sensed	 by	 wearable	 sensors	 on	 mobile	 devices,	

processing	the	sensor	data	directly	on	mobile	devices	can	be	an	efficient	solution,	which	can	reduce	

the	superfluous	data	transmission	to	server.	In	this	section	we	give	a	survey	of	existing	work	about	

event	processing	systems,	and	mobile/distributed	CEP	systems.	

We	start	 the	survey	 from	existing	event	processing	systems.	Within	 the	 last	 few	years	event	pro‐

cessing	has	been	developed	rapidly	with	a	number	of	academic	and	commercial	projects.	The	most	

notable	work	is	Esper	and	Etalis.	

Esper	 [BeVa07]	 is	 an	 open	 source	 CEP	 engine.	 Esper	 uses	 Event	 Processing	 Language	 (EPL)	 to	

define	patterns,	which	provides	rich	event	conditions,	correlation,	possibly	spanning	time	windows.	

The	 performance	 reports	 on	 Esper	 [Espe07]	 show	 very	 good	 performance.	 It	 is	 implemented	 in	

both	Java	and	.NET,	and	can	be	integrated	into	other	applications	using	Java	or	.NET.	

ETALIS	[AFRS+10]	is	a	framework	for	complex	event	processing	and	stream	reasoning	including	a	

CEP	engine.	ETALIS	uses	ETALIS	Language	 for	pattern	modelling	 supporting	 rule‐based	syntaxes	

and	a	formal	declarative	semantics.	Besides	event	processing,	ETALIS	also	provides	functionality	of	

stream	reasoning.	ETALIS	 is	open	source	and	 is	 implemented	 in	Prolog,	where	 it	provides	a	 Java	

interface	and	can	be	integrated	in	Java	programs.	

Other	academic	research	projects	like	Aurora	[ACCC+03],	Borealis	[AABC+05],	STREAM	[ABBC+05],	

Cayuga	[DGHR+05,	DGPR+07],	TelegraphCQ	[KCCD+03,	CCDF+03]	use	different	methods	to	achieve	

complex	event	processing.		The	Aurora	and	Borealis	systems	are	closely	related	systems.	The	goal	

of	the	both	systems	is	to	support	various	real‐time	monitoring	applications.	The	both	systems	are	

State	Of	the	Art	

36	
	

based	on	“boxes‐and‐arrows”	process	and	work‐flow	systems.	STREAM	processes	both	structured	

data	streams	and	stored	data	together	through	queries,	which	are	translated	into	flexible	physical	

query	plans.	Cayuga	is	a	general‐purpose	CEP	system	with	a	new	implemented	processing	engine,	

which	utilizes	a	variation	of	nondeterministic	finite	automata	[DGPR+07].	TelegraphCQ	is	designed	

to	provide	event	processing	capabilities	alongside	relational	database	management	capabilities	by	

utilizing	the	PostgreSQL	open‐source	database.	

There	 are	 also	 many	 commercial	 CEP	 products	 on	 market	 including	 SAP	 SyBase	 Event	 Stream	

Processor	(ESP)12,	Oracle	Event	processing13	and	IBM	WebSphere	Business	Events14.	However	most	

of	these	engines	are	only	capable	of	being	deployed	on	powerful	server	systems	and	process	events	

from	business	processes.			

CEP	technologies	have	been	also	used	in	distributed	systems	and	mobile	systems.	In	[BiER08],	the	

authors	 have	 created	 a	 distributed	 correlation	 event	 processing	 network	 by	 integrating	 several	

centralized	CEP	systems.	The	main	issue	of	this	work	is	the	configuration	of	connecting	the	correla‐

tion	 nodes,	 especially	 input	 and	 output	 nodes,	 and	 deciding	 which	 correlation	 tasks	 should	 be	

deployed	at	which	node.	

In	[SKPR12]	DHEP	project	(Distributed	Heterogeneous	Event	Processing)	is	described.		The	project	

has	 been	used	 to	 develop	a	 distributed	CEP	 system	 for	 industry.	 It	 developed	a	 framework	with	

DHEP	Meta	language	and	configuration	tool	to	realize	interoperability	between	heterogeneous	CEP	

engines	that	are	deployed	in	different	system	nodes.	

DiCEPE	 (Distributed	 Complex	 Event	 Processing)	 [PHRM+12]	 is	 a	 platform	 for	 distributed	 CEP	

system.	It	provides	the	functionality	to	integrate	different	CEP	engines.	Meanwhile,	it	also	provides	

a	native	support	for	various	communication	protocols	in	order	to	federate	CEP	engines	and	ease	the	

deployment	of	complex	systems‐of‐systems.	

Afore	mentioned	three	approaches	[BiER08,	SKPR12,	PHRM+12]	are	capable	of	being	used	in	large	

scale	distributed	systems.	But	they	don’t	consider	the	characters	of	mobile	systems	and	are	difficult	

to	be	used	in	mobile	environments.		

The	most	 relevant	 work	 to	 our	 research	 is	 [DuBS13,	 StBD13],	 which	 describes	 an	 approach	 for	

using	CEP	to	process	sensor	data	on	smartphone	for	AAL	(Ambient	Assisted	Living)	monitoring.	It	

uses	 Esper	 on	 smartphones	 and	 processes	 the	 data	 from	 smartphone	 sensors	 correlatively	 to	

achieve	 situation	 awareness	 and	 context	 awareness.	 In	 comparison	 to	 our	 approach,	 however,	 it	

uses	only	 the	sensor	data	 from	smartphone	without	using	events	 from	external	event	 sources	or	

																																																																		
12	www.sybase.com/products/financialservicessolutions/complex‐event‐processing	
13	www.oracle.com/technetwork/middleware/complex‐event‐processing/overview/index.	html	
14	www.ibm.com/software/integration/wbe/	

State	Of	the	Art		

37	
	

additional	context,	such	as	domain	knowledge	base.	It	provides	no	adaptivity	for	availability	chang‐

es	of	sensors	and	workload	changes	on	smartphones.	

Another	interesting	work	is	[MiLI11].	It	developed	an	energy	efficient	continuous	event	processing	

system	on	smartphone.	 Instead	of	receiving	all	sensor	data,	 the	system	uses	a	pull	mechanism	to	

only	receive	the	data	required	by	event	processing,	regarding	the	communication	cost	and	proper‐

ties	of	 sensor	 streams.	This	work	 focuses	only	on	energy	efficiency	without	using	external	 infor‐

mation	or	providing	context	aware	monitoring.					

Another	related	work	 is	described	 in	 [KLCC+09].	The	authors	have	 introduced	an	embedded	CEP	

system	in	mobile	device,	combining	DDS	(data	distribution	service)	to	provide	the	mobile	patient	

healthcare	 service	 to	 users.	 The	work	 uses	 one	 CEP	 engine	 on	mobile	 device	 and	 provides	 data	

processing	 for	multiple	 applications.	 It	 provides	 a	 function	 to	 dynamically	 switch	 the	 processing	

rules	for	different	applications.	However	comparing	to	our	approach,	it	doesn’t	consider	the	work‐

load	of	mobile	devices	and	the	additional	context	of	users	or	environment	is	not	used	in	processing.	

There	are	also	other	prototypes	of	using	CEP	in	mobile	environment,	such	as	HARMONI	[MEJM06],	

which	describes	a	middleware	 for	 remote	monitoring	on	mobile	phones	using	CEP,	and	personal	

health	monitoring	system	as	described	in	[MPES09],	which	uses	smartphones	to	monitor	patients,	

while	it	uses	CEP	to	process	the	sensor	data	in	backend	server.		

To	sum	up,	although	there	are	some	existing	approaches	 for	mobile	CEP	systems	and	distributed	

CEP	system,	however,	most	of	them	provide	no	context‐aware	data	processing	and	the	processing	

capacity	limitation	of	mobile	devices	is	also	not	considered,	while	the	both	are	key	features	of	our	

approach.		

4.2 Offloading	in	mobile	computing	

In	spite	of	the	fast	innovation	in	such	key	components	as	processor,	memory	and	wireless	technol‐

ogies,	it	remains	widely	agreed	that	mobile	applications	are	still	confined	by	the	limited	computa‐

tion	capability	of	mobile	devices.	These	 limitations	[FoZa94]	are	major	 impediments	to	providing	

reliable	and	sophisticated	mobile	applications	to	meet	the	real‐time	data	processing	requirements.	

Therefore	 efficient	 mobile	 processing	 should	 be	 achieved	 regarding	 the	 existing	 resource	 re‐

strictions	on	mobile	devices.	In	this	section	we	provide	a	survey	of	existing	approaches	for	achiev‐

ing	efficient	mobile	processing.	

The	 original	 idea	 was	 to	 use	 an	 additional	 remote	 server	 to	 solve	 the	 problem	 of	 resource	 re‐

strictions.	[MGBM+02]	describes	an	approach	of	using	distributed	platform	to	transparently	offload	

portions	of	a	service	from	a	resource‐constrained	device	to	a	nearby	server.	The	authors	developed	

State	Of	the	Art	

38	
	

a	prototype	and	an	emulator	to	evaluate	this	approach.	The	results	revealed	that	using	additional	

server	 can	 solve	 the	 problem	 of	memory	 and	 processing	 constraints	 of	mobile	 devices.	 Another	

similar	approach	is	[WoPM99].	The	authors	use	remote	server	to	offload	the	computation	for	Java‐

based	mobile	applications.	

After	the	rise	of	Cloud	Computing,	the	idea	of	using	clouds	instead	of	traditional	servers	to	support	

mobile	applications	has	become	more	attractive.		Mobile	Cloud	Computing	(MCC)	[QuAR11,	Cox11]	

has	 been	 regarded	as	 the	best	 solution	 to	 solving	 the	problem	of	 resource	 limitations	 on	mobile	

devices.	Basically	MCC	combines	 the	strength	of	clouds	and	the	convenience	of	mobile	 terminals,	

while	clouds	provide	high	performance	computation	ability	and	 large	storage	and	mobile	devices	

provide	 their	mobility	 and	usability.	 Therefore	 the	processing	 tasks	 of	mobile	 devices	 can	be	 of‐

floaded	to	cloud	infrastructure.		

In	 [MZZW+13]	 the	authors	 introduced	two	methods	of	using	cloud	service	 to	support	 the	mobile	

applications	to	achieve	the	distributed	mobile	processing.	The	first	method	uses	cloud	as	computa‐

tion	proxies	 for	offloading,	which	means	mobile	applications	move	all	 their	computation	 in	cloud	

and	use	mobile	devices	only	as	display.	Another	is	service	partitioning	for	computation	offloading,	

which	divides	computation	into	two	parts	and	offloads	only	one	part	to	clouds.	

In	[KuLu10]	the	possibility	and	methods	of	using	mobile	cloud	computing	to	realize	energy	saving	

for	mobile	devices	are	discussed.	The	analysis	of	authors	shows	that	using	mobile	cloud	computing	

can	potentially	save	energy	for	mobile	applications,	but	not	for	all	of	them.	

There	is	already	some	existing	work	using	mobile	cloud	architecture	to	 improve	the	computation	

performance	or	saving	energy.	MAUI	enables	fine‐grained	energy‐	aware	offloading	of	mobile	codes	

to	 a	 cloud	 based	 on	 a	 history	 of	 energy	 consumption	 [CBCW+10].	 CloneCloud	 [CIMN+11]	 uses	

function	inputs	and	an	offline	model	of	runtime	costs	to	dynamically	partition	applications	between	

a	weak	device	and	the	cloud.	In	[FaMH13]	the	authors	provided	API	for	mobile	device	clouds	and	

evaluated	the	computation	offloading	of	mobile	application	focusing	on	energy	and	time.	[SLAZ12]	

has	 introduced	 another	 extreme	 of	 mobile	 cloud	 computing,	 which	 the	 remote	 computation	 re‐

sources	are	also	mobile	devices	instead	of	traditional	high	performance	server.			

Cloudlets	 are	 a	 new	 technology,	 which	 provides	 another	 possibility	 to	 achieve	 the	 computation	

offloading	for	mobile	computing.	The	traditional	cloud	computing	mobile	apps	require	WAN	laten‐

cy,	which	makes	 apps	 insufficient	 for	 real‐time	 applications.	 The	 cloudlets	 technologies	 [Saty10,	

FGNW12]	 enable	 the	 cloud	 computing	 technologies	 helping	mobile	 devices	 to	 overcome	 the	 re‐

source	 limitation	 [VSDD12].	 To	 cope	 with	 high	 computation	 requirements	 of	 mobile	 computing	

cloudlets	use	trusted,	resource	rich	computers	in	the	nearby	vicinity	of	the	mobile	user	(e.g.	near	or	

co‐located	with	the	wireless	access	point	in	LAN).	Mobile	users	can	then	rapidly	instantiate	custom	

State	Of	the	Art		

39	
	

virtual	 machines	 (VMs)	 on	 the	 cloudlet	 running	 the	 required	 software	 in	 a	 thin	 client	 fashion	

[SBCD09].	However	 the	 cloudlets	 technology	depends	heavily	on	additional	hardware	 infrastruc‐

ture	in	each	LAN,	which	needs	time	and	investment	to	upgrade	the	current	mobile	infrastructure.						

In	 summary,	 similar	 to	 our	 approach,	 in	 order	 to	 solve	 the	 problem	 of	 resource	 limitations	 on	

mobile	devices,	additional	infrastructure	is	required,	which	can	be	remote	server,	cloud	infrastruc‐

ture	or	cloudlets	servers	in	local	networks.		However,	the	existing	approaches	are	not	applicable	to	

event‐driven	 systems	and	most	of	 them	are	not	dynamically	 adapted	 to	 current	workload	of	 the	

mobile	device.			

4.3 Semantic	pattern	and	sensor	model	

As	introduced	in	the	chapter	1,	we	propose	to	use	semantic	technologies	to	manage	patterns	and	

event	 sources	 (i.e.	 sensors),	 in	order	 to	achieve	dynamic	pattern	management.	 In	 this	 section	we	

give	an	overview	of	existing	ontologies	for	event	patterns	and	for	sensors.	

There	are	almost	no	existing	ontologies	regarding	both	event/pattern	aspect	and	sensor	aspect.		

In	terms	of	event	pattern	ontology,	the	most	related	work	is	[KhSt09]	and	[SeSt10].	In	[KhSt09]	the	

authors	present	an	ontology	 for	modelling	events	 for	policies	and	 rules	 for	 the	 compliance	man‐

agement.	An	event	can	be	either	used	for	input	or	output.	Each	Event	can	be	implemented	either	as	

complex	event	or	event	stream.	An	event	can	be	an	event	expression	which	combines	events	using	

event	 operators.	 Complex	 events	 can	 be	 a	 combination	 of	 event	 occurrences	 or	 event	 patterns.	

[SeSt10]	presents	a	meta	model	for	events	and	patterns	regarding	event	types	and	event	sources.	

Each	complex	event	presents	a	pattern,	which	can	be	a	combination	of	events,	complex	events	and	

event	operators.	Both	models	share	the	concepts	event,	event	operator,	complex	event	and	event	

pattern.	 However	 both	 models	 define	 event	 sources	 on	 an	 abstract	 level	 and	 provide	 no	 event	

source	management.	In	contrast	to	these	ontologies,	one	of	our	goals	with	our	pattern	ontology	is	to	

manage	event	sources	for	events	used	in	the	patterns.		

The	SARI	event	model	presented	in	[Rozs08]	focuses	on	event	types.	Event	types	are	hierarchical	

structures	containing	an	arbitrary	number	of	event	attributes.	Each	event	attribute	has	an	attribute	

type.	Possible	attribute	types	are	collection	types,	dictionary	types	and	single‐value	types.	Single‐

value	types	are	the	basic	types	such	as	string	or	 integer.	The	event	types	in	SARI	are	managed	as	

libraries	which	should	be	valid	in	the	given	event	processing	system.	SARI	aims	to	share	events	and	

not	 event	 patterns	 among	 a	 set	 of	 CEP	 related	 applications.	However	 SARI	 provides	 no	 patterns	

definition	in	model	and	doesn’t	describe	the	relationship	between	event	sources	and	events.	

State	Of	the	Art	

40	
	

In	 terms	of	 sensor	ontology,	 the	most	 famous	model	 is	 SSN	(Semantic	Sensor	network)	ontology	

[CBBG+12],	 which	 is	 the	 most	 widely	 used	 ontology	 in	 semantic	 sensing	 domain.	 It	 defines	 an	

ontology	using	OWL2	[MPPB+09]	to	describe	the	capabilities	and	properties	of	sensors,	the	act	of	

sensing	and	the	resulting	observations.	The	SSN	ontology	supports	the	description	of	the	physical	

and	 processing	 structure	 of	 sensors.	 The	 sensors	modeled	 in	 SSN	 are	 not	 only	 physical	 sensing	

devices,	 but	 also	 anything	 that	 can	 estimate	 or	 calculate	 the	 value	 of	 a	 phenomenon,	 such	 as	 a	

device,	a	computational	process	or	a	combination	of	devices	and	processes	could	play	the	role	of	a	

sensor.	Taking	advantage	of	this	existing	sensor	ontology,	we	use	SSN	ontology	also	in	this	thesis,	

combing	with	our	own	development	for	event	source	description.	

Beside	SSN	ontology	there	are	also	many	other	sensor	ontologies,	which	are	developed	for	different	

purposes.	We	introduce	some	of	them	afterwards.	

SensorML	[RoBo06]	is	Sensor	Model	Language.	It	specifies	models	and	XML	encoding	that	provide	a	

framework	within	which	the	geometric,	dynamic,	and	observational	characteristics	of	sensors	and	

sensor	systems	can	be	defined.	The	SWAMO	Ontology	[WSSM+08]	is	designed	to	enable	dynamic,	

composable	interoperability	of	sensor	web	products	and	services.	It	describes	autonomous	agents	

for	system‐wide	resource	sharing,	distributed	decision	making,	autonomic	operations.	The	ontolo‐

gy	 is	 compatible	with	 SensorML.	 ISTAR	 [GPJD+08,	 PGDV+08]	 is	 a	 set	 of	 ontologies,	which	model	

sensors,	mission	 tasks	and	deployment	platforms.	The	collections	of	 types	of	 sensors	can	be	 rec‐

ommended	for	a	particular	task	by	using	semantic	reasoning.	Ontonym	[SKDN09]	has	defined	a	set	

of	 ontologies	 including	 time,	 location,	 people,	 sensor,	 provenance,	 events	 and	 minor	 ontology.	

Ontonym's	sensor	ontology	is	concerned	with	the	description	of	sensors	and	the	data	they	generate.	

It	provides	a	high	level	description	of	a	sensor	and	its	capabilities	(Frequency,	Coverage,	Accuracy	

and	precision	pairs).	SENSEI	[BaMP09]	is	based	on	OGC	SWE	Observations	&	Measurements	(O&M)	

model	 and	 NASA’s	 Sweet	 ontology15.	 It	 combines	 the	 information	 model	 for	 Observations	 and	

Sensing	from	OGC	O&M	and	the	units	of	measurement	model	from	Sweet	ontology.	In	additional	it	

also	contains	domain	knowledge	and	model	of	resource	and	entity.	

In	conclusion,	there	are	already	many	existing	approaches	for	sensors	and	patterns,	however,	in	the	

existing	approaches	the	pattern	models	and	sensor	models	are	separated	and	there	are	no	existing	

approach	connecting	both	sensor	and	concepts.	While	our	approach	combines	both	models	through	

event	resource	concept	to	achieve	dynamic	pattern	management	considering	the	sensors,	which	are	

the	event	sources	of	most	events	used	in	patterns.		

																																																																		
15	http://sweet.jpl.nasa.gov/	

State	Of	the	Art		

41	
	

4.4 Mobile	sensing	system	and	applications	

There	is	much	work	in	the	domain	of	remote	personal	monitoring	that	can	be	related	to	different	

types	of	the	psychophysiological	monitoring	(e.g.	heart	rate,	hear	rate	variability,	skin	conductance)	

in	order	to	determine	some	parameters	of	the	user’s	healthy	status	(e.g.	 fitness	 level,	stress	 level,	

cardio	arrhythmias,	…).	In	this	section	we	present	only	the	most	important	systems	related	to	using	

smartphones	and	wearable	(nonintrusive)	sensors.	

Recently,	 much	 research	 effort	 is	 put	 into	 more	 sophisticated	 approaches	 of	 using	 smartphone	

sensor	 data	 for	 personal	 health	 or	 physical	 activity	monitoring.	 Furthermore,	 a	 large	 number	 of	

mobile	applications	are	available	in	popular	app	stores.		

From	a	scientific	perspective,	as	mentioned	in	the	previous	section,	[DuBS13]	introduces	a	proto‐

type	of	combining	smartphones	and	sensors	in	AAL	domain.	The	authors	use	CEP	on	smartphone	to	

achieve	 real‐time	 sensor	data	processing.	The	UbiFit	Garden	 [CMTC+08],	 a	 joint	project	between	

Intel	and	 the	University	of	Washington,	 captures	 levels	of	physical	activity	and	relates	 this	 infor‐

mation	to	personal	health	goals	when	presenting	feedback	to	the	user.	Another	smartphone	appli‐

cation	 is	 presented	 by	 [LMLY+12],	which	 is	 used	 to	monitor	wellbeing.	 The	 authors	 propose	 an	

application	which	consumes	real‐time	data	from	different	smartphone	sensors	in	order	to	compute	

an	overall	score	of	wellbeing	in	several	dimensions	such	as	social	activity	and	sleep.	Compared	to	

our	work,	the	main	difference	is	that	these	approaches	[DuBS13,	CMTC+08,	LaMo12]	do	not	make	

use	of	external	sensors	and	do	not	allow	the	manual	definition	of	 interesting	situations	by	taking	

into	 account	 temporal	 and	 spatial	 operators	 provided	by	 complex	 event	 processing.	 Another	 ap‐

proach,	 the	BALANCE	system	proposed	by	[DACH+12],	aims	at	encouraging	healthier	 lifestyles	to	

its	users.	This	approach	is	especially	interesting	as	it	combines	data	entered	manually	(about	food	

eaten)	and	sensor	data	in	order	to	compute	the	caloric	expenditure	of	a	user.	However,	the	authors	

only	 investigate	 one	 aspect	 of	 personal	 health	 monitoring,	 while	 today’s	 smartphones	 offer	 the	

opportunity	to	monitor	a	much	wider	range	of	habits	and	we	argue	that	especially	the	combination	

and	aggregation	of	heterogeneous	data	is	promising.	

From	a	practical	perspective,	applications	like	the	Nike+	ecosystem16	are	becoming	more	popular.	

Nike+	combines	several	available	hardware	sensors	with	a	smartphone	application	and	a	communi‐

ty,	 allowing	 users	 to	 track	 sports	 activities	 in	 real‐time	 and	 to	 compare	 themselves	 with	 other	

people	 through	 an	 online	 community.	 Even	 if	 this	 is	 already	 a	 very	 interesting	 application,	 the	

potential	of	such	combined	applications	is	much	bigger,	as	Nike+	currently	relies	on	simple	metrics	

(such	as	NikeFuel,	an	overall	fitness	score	or	burned	calories	during	running).	

																																																																		
16	http://www.nike.com/de/de_de/c/nikeplus‐fuelband	

State	Of	the	Art	

42	
	

Other	very	interesting	apps	are:	SuperBetter17	helps	to	achieve	predefined	health	goals	(or	recover	

from	an	illness	or	injury)	by	increasing	the	personal	resilience	of	the	user.	It	is	a	gamification‐based	

app	that	helps	people	to	be	more	motivated	to	do	physical	exercises.	

ShapeUp18	 is	an	app	 that	helps	co‐workers	 to	compete,	 support,	 and	challenge	each	other	with	a	

shared	goal	of	better	health.	 It	 supports	 three	steps:	1)	 tracking	progress:	 it	enables	 to	set	goals,	

track	 progress,	 compare	 results	 with	 peers,	 and	 share	 success	 stories;	 2)	 finding	 supporters:	 it	

searches	the	network	and	browses	profiles	to	find	colleagues	to	support	the	user	and	3)	joining	fun	

challenges:	it	finds	the	challenges	the	user	will	like,	invite	the	colleagues,	and	spread	good	health.	

Daily	challenge19	is	another	gamification‐based	app	that	helps	in	improving	physical	activity.	As	an	

example	 of	 the	 traditional	 systems	we	mention	 CardioNet20,	 the	 leading	 provider	 of	 ambulatory,	

continuous,	real‐time	outpatient	management	solutions	to	monitoring	relevant	and	timely	clinical	

information	regarding	an	individual’s	health.	CardioNet’s	initial	efforts	are	focused	on	the	diagnosis	

and	monitoring	of	cardiac	arrhythmias,	or	heart	rhythm	disorders,	with	a	solution	that	it	markets	

as	Mobile	 Cardiac	 Outpatient	 Telemetry™	 (MCOT™).	 Through	 its	 Cardio	 core	 division,	 CardioNet	

offers	 core	 lab	 services	 to	 pharmaceutical	 and	 devise	 sponsors	 as	 they	 provide	 new	 products	

through	the	development	process.	However,	while	wearable	are	better	than	24h	medical	holters21,	

these	sensors	are	quite	 intrusive	comparing	 to	 sensors	 that	have	been	recently	promoted	on	 the	

market.	

From	the	sensing	point	of	view,	the	most	advance	model	is	Zypher	BioHarness™	3	sensor22	and	its	

applications	that	enables	the	capture	and	transmission	of	comprehensive	physiological	data	on	the	

wearer	via	mobile	and	fixed	data	networks	–	enabling	remote	monitoring	of	human	performance	

and	condition	in	the	real	world.	BioHarness™	3	has	applications	in	any	fields	that	require	high‐level	

wireless	 and	 remote	 physiological	monitoring,	 including	 research,	 training	 and	 tele‐health	 situa‐

tions.	 The	 most	 important	 features	 are	 very	 complex	 measurements,	 including	 Heart	 Rate,	 R‐R	

Interval,	Breathing	Rate,	ECG,	Posture,	Activity	Level	and	Peak	Acceleration.	

In	 summary,	 the	most	 existing	mobile	 sensing	 applications	provide	 only	 simple	processing	 func‐

tions	 using	 static	 rules	 and	 have	 no	 context‐awareness.	 Some	 research	 approaches	 also	 use	 CEP	

technologies	 to	process	 real‐time	 sensor	data.	However	 they	don’t	provide	adaptation	 to	 current	

situation	of	users	and	don’t	consider	the	resource	limitation	of	mobile	devices	as	well.	

	

																																																																		
17	https://www.superbetter.com/	
18	https://mywellvolution.shapeup.com/	
19	http://meyouhealth.com/daily‐challenge/	
20	http://www.cardionet.com	
21	http://en.wikipedia.org/wiki/Holter_monitor	
22	http://www.zephyr-technology.com/products/bioharness-3/	

	

43	
	

	

PART	II	

Efficient	Context‐aware	Real‐

time	personal	data	Processin

	

44	
	

	

45	
	

5 The	Need	for	Context‐aware	Real‐time	
Personal	Data	Processing	

In	 this	 chapter	 we	 describe	 why	 having	 innovative	 software	 architecture	 for	 real‐time	 personal	

data	 processing	 is	 necessary	 for	 mobile	 applications.	 We	 deduce	 the	 necessity	 of	 the	 context	

awareness,	resource	awareness	and	data	collaboration	by	analyzing	the	issues	in	the	current	mo‐

bile	technologies	and	existing	approaches.	We	conclude	by	defining	the	requirements	for	develop‐

ing	the	proposed	approach.	

5.1 Limitations	of	mobile	devices	and	wireless	sensors	

As	introduced	in	Chapter	2,	the	technology	of	mobile	devices	has	been	advancing	rapidly	since	last	

decade.	The	modern	mobile	devices	have	been	increasingly	penetrating	into	people’s	lives,	as	they	

bring	many	advantages	that	raise	people	living	standards,	such	as		

(1) high	mobility,	where	users	are	able	to	carry	and	use	mobile	device	wherever	they	go	and	

whenever	they	want;		

(2) high	usability,	where	the	small	size	of	the	modern	mobile	devices	enables	most	devices	to	

be	held	in	one	hand	and	the	touch‐screen	provides	simpler	and	easier	operations	instead	of	

using	keyboard	and	mouse,		

(3) more	 entertainment,	 where	 the	 integrated	 camera,	 high	 resolution	 display	 and	 touch‐

screen	bring	more	entertainment	and	social	usage	than	the	traditional	PC	system,	and		

(4) the	numberless	mobile	applications:	this	brings	unlimited	possibility	to	mobile	devices.		

While	it	seems	that	mobile	devices	can	do	anything	what	human	beings	need,	there	are	still	issues	

with	mobile	devices,	which	restrict	the	possible	exploitation	of	the	potential	of	mobile	devices.	

The	first	 issue	 is	 the	 limited	computation	resources	on	mobile	devices.	Although	the	hardware	of	

mobile	 devices	 has	 been	 rapidly	 innovated	 and	 their	 performance	 been	 exponentially	 improved.	

The	first	generation	iPhone	used	only	a	412MHz	single	core	ARM	processor	and	128MB	memory,	

while	the	latest	Samsung	Galaxy	S5	has	a	2.5GHz	Quad‐Core	processor	and	2GB	memory,	a	10‐fold	

improvement.	However,	the	processors	found	in	mobile	devices	are	still	a	lot	slower	and	far	behind	

the	processors	used	 in	 the	desktop	or	 server	 systems.	According	 to	 the	benchmark	study	 in	 [Ra‐

hu13]	a	standard‐voltage	Intel	Core	i5	laptop	processor	is	about	8	times	faster	than	the	best	mobile	

device	 processors.	 Hence,	 in	 comparison	 to	 the	 desktop	 and	 server	 systems,	mobile	 devices	 can	

only	provide	limited	computation	capability.		

The	Need	for	Context‐aware	Real‐time	Personal	Data	Processing	

46	
	

Of	 course,	 the	 computation	 capability	 (mainly	 the	 processor	 performance)	 of	 mobile	 device	 has	

historically	 increased	 at	 a	 rapid	pace	 and	 it	 is	 promising	 to	 have	 huge	 improvement	 in	 the	 near	

future.	 	But	 another	key	 issue	of	mobile	devices	 restricts	 the	 computation	 capability	potential	 of	

mobile	devices:		battery	capacity.		In	comparison	with	the	development	of	other	hardware,	such	as	

processor,	 memory	 and	 communication	 bandwidth,	 as	 the	 main	 power	 source	 of	 most	 mobile	

devices,	battery	has	seen	relatively	slow	improvement	in	the	past	decade.	Battery	capacity	is	grow‐

ing	 only	 5	 percent	 annually	 [Robi09].	 Because	 the	 high	 usage	 of	 processor	 and	memory	 lead	 to	

quick	battery	drain,	battery	capacity	has	become	a	major	impediment	for	mobile	devices	to	provide	

high	computation	capability	for	reliable	and	sophisticated	real‐time	data	processing.	

Hence,	 there	 is	 a	 gap	 between	 the	 limited	 (although	 ever	 increasing)	 computation	 capability	 of	

mobile	devices	and	unlimited	application	potential	of	mobile	devices.	On	one	hand	the	huge	amount	

of	 real‐time	mobile	data	processed	by	data‐intensive	mobile	 applications	 require	more	 computa‐

tion	 capabilities.	 Additionally,	 the	 development	 of	 mobile	 devices	 is	 going	 very	 strongly	 in	 the	

direction	 of	 having	 more	 and	 more	 “features”,	 like	 new	 sensors,	 new	 specialized	 cameras,	 new	

software	for	gaze‐driven	control,	etc.,	which	require	more	computation	capability	and	meanwhile	

generate	more	data,	which	increases	the	need	for	an	extended	processing.	On	the	other	hand	alt‐

hough	 the	 fast	 innovation	 in	 key	 components	 of	mobile	 devices	 such	 as	 processor,	memory	 and	

wireless	 technologies,	 it	 remains	widely	agreed	 that	mobile	 applications	are	 still	 confined	by	 the	

limited	computation	capability	of	mobile	devices.		

Since	 the	purpose	of	 this	 thesis	 is	 to	process	 the	personal	data	and	environment	data	of	users	 in	

real‐time,	considering	the	flow	of	huge	real‐time	data	going	through	the	system	at	any	given	points	

in	 time,	 the	 proposed	 system	 is	 also	 required	 to	 have	 high	 computation	 capability	 available	 to	

undertake	the	processing	tasks	for	huge	amount	of	real‐time	data.		This	may	not	always	be	feasible	

in	most	mobile	devices.	Therefore,	it	is	necessary	for	the	proposed	system	to	extend	the	computa‐

tion	 capability	 of	mobile	 devices	 to	meet	 the	 requirements	 of	 processing	 huge	 amount	 real‐time	

data	 by	 off‐loading	 the	 processing	 tasks	 from	 mobile	 devices	 to	 remote	 infrastructure	 such	 as	

backend	server	or	cloud	infrastructure.	

In	 addition,	 the	modern	mobile	 device	 operating	 systems	 such	 as	Android	 are	 typical	multi‐task	

operating	 systems,	 which	 execute	 multiple	 applications	 simultaneously.	 Besides	 the	 foreground	

applications,	it	also	executes	many	other	applications	in	background	such	as	telephone,	messaging	

and	etc.	The	high	usage	of	computation	resources	may	affect	the	execution	of	other	mobile	applica‐

tions,	which	should	be	usually	avoided.	Hence,	the	computation	capability	of	mobile	devices	should	

be	extended	for	personal	monitoring	application,	for	example	by	using	remote	infrastructure.	The	

number	 of	 the	processing	 tasks	 assigned	 to	 user’s	mobile	 device	 should	be	 limited	based	on	 the	

current	available	resources	on	user’s	mobile	device.	

The	Need	for	Context‐aware	Real‐time	Personal	Data	Processing		

47	
	

The	 battery	 capacity	 is	 also	 a	 key	 issue	 for	 wireless	 sensors,	 since	 the	 battery	 is	 also	 the	main	

power	source	of	most	wireless	sensors.	The	limited	battery	capacity	restricts	the	life	time	of	wire‐

less	sensors.	Furthermore,	 the	remaining	battery	volume	of	 the	most	wireless	sensors,	which	are	

not	equipped	with	a	display	panel,	is	normally	not	visible.	Hence,	in	practice	situations	often	arise	

where	the	battery	of	a	wireless	sensor	is	exhausted	during	the	application	execution	and	the	wire‐

less	sensor	will	be	disconnected.		

Another	 important	 issue	 for	 the	 wireless	 sensors	 is	 the	 quality	 of	 the	 wireless	 communication.	

Currently	 the	 most	 wireless	 sensors	 are	 connected	 with	 mobile	 devices	 through	 personal	 area	

network	(PAN)	[Zimm96],	commonly	Bluetooth	[BSIG07],	IrDA	[IrDA08]	and	ZigBee	[ZiAl06].	The	

communication	using	these	techniques	can	be	affected	and	has	limited	distance	range.	If	the	wire‐

less	communication	is	interfered	or	the	distance	between	the	mobile	device	and	the	sensor	is	out	of	

the	communication	range,	the	wireless	sensor	will	disconnect	from	the	mobile	device.	

In	 the	 case	 that	 the	 sensor	 events	 provided	by	 such	wireless	 sensors	 are	 used	 in	 the	processing	

tasks,	 the	 disconnection	 of	 the	wireless	 sensor	 leads	 to	 failure	 of	 the	 processing	 tasks.	 The	 pro‐

posed	system	should	adapt	to	such	situations	in	order	to	avoid	the	failure	of	the	processing	tasks.	

5.2 Real‐time	personal	data	processing	

The	innovation	of	sensor	technology	enables	ordinary	people	to	obtain	their	own	personal	data	and	

environment	 much	 more	 easily.	 The	 new	 generation	 mobile	 devices	 combining	 the	 integrated	

sensors	 and	 new	wearable	 sensors	 provide	 a	 new	 possibility	 of	 using	 personal	 data	 to	monitor	

people’s	health	status.	Due	to	the	rise	of	the	attention	on	the	life	quality	especially	the	health	status,	

more	and	more	mobile	applications,	which	provide	health	monitoring	by	processing	personal	data,	

appear	on	the	market.		

Most	 of	 the	 mobile	 applications	 in	 the	 m‐Health	 domain	 or	 m‐Fitness	 are	 oriented	 toward	 the	

detection	 of	 the	 particular	 real‐time	 situations,	which	 are	 relevant	 for	 users.	 	 As	 for	 the	 current	

technologies	 for	 processing	 real‐time	 stream	 data,	 Complex	 Event	 Processing	 (CEP)	 is	 the	most	

suitable	technology.	The	advantages	of	using	CEP	to	process	real‐time	personal	data	can	be	summa‐

rized	as	following:	

 Real‐time	data	processing	with	low	latency:	Sensors	of	mobile	devices	produce	enormous	

amount	of	mobile	personal	data	and	environment	data	continuously.	CEP	analyzes	event	

data	in	real‐time	to	generate	immediate	insight	and	enable	instant	response.	It	is	designed	

to	efficiently	handle	streaming	input	data	directly	in	memory,	which	enables	real‐time	op‐

erations	with	low	latency.	

The	Need	for	Context‐aware	Real‐time	Personal	Data	Processing	

48	
	

 Correlating	 heterogeneous	 data:	 Most	 personal	 data	 are	 detected	 by	 different	 sensors.	

Normally	each	piece	of	information	is	fine‐grained	containing	only	little	information	and	is	

difficult	 to	 interpret.	Thus,	single	personal	data	streams	have	to	be	correlated	with	other	

data	streams	to	gain	meaningful	insight.	CEP	enables	the	continuous	correlation	of	stream‐

ing	data	from	heterogeneous	sources	[BrDu10].	

Although	 there	 are	 already	 some	 existing	 mobile	 applications	 for	 personal	 monitoring	 on	 the	

market,	 the	mainstream	mobile	applications	have	the	same	issue:	 the	real‐time	personal	data	are	

not	integrated	with	other	data,	especially	the	user’s	data,	and	the	processing	method	is	almost	fixed	

and	provides	no	changes	for	the	different	user’s	situations.	

In	fact	the	personal	data	is	difficult	to	interpret	without	additional	information	or	in	the	context	of	

specific	situations.	People	are	different	and	even	there	were	two	completely	identical	people	in	the	

world,	 the	 same	personal	data	may	have	different	meanings	 to	each	 individual.	 For	example,	 the	

heart	rate	data,	which	is	over	120	BPM	for	more	than	ten	minutes,	may	be	normal	for	a	professional	

sportsman,	but	it	may	indicate	a	hazardous	situation	for	a	regular	individual	as	it	may	be	a	symp‐

tom	of	heart	diseases.	In	order	to	interpret	the	real‐time	personal	data	correctly,	additional	context,	

especially	the	user’s	data	should	be	integrated	with	the	real‐time	data.		

Furthermore,	even	for	the	same	person,	the	same	personal	data	should	also	be	interpreted	differ‐

ently	under	different	circumstances.	For	example,	the	heart	rate	data	of	120	BPM	can	be	normal	for	

a	person	running,	but	for	this	person	being	sleeping	in	the	bed;	such	a	high	heart	rate	may	indicate	

some	symptoms	of	some	diseases.	Obviously	the	current	situation	of	a	user	plays	a	critical	role	in	

the	real‐time	personal	data	processing.	Different	processing	methods	should	be	used	to	dynamical‐

ly	adapt	to	the	different	situations.		

Therefore,	 the	 context	 awareness	 should	 be	 achieved	 for	 the	 real‐time	 personal	 data	 processing	

with	 integration	 of	 user’s	 context	 and	 additional	 domain	 knowledge,	 such	 as	 medical	 domain	

knowledge	or	sport	domain	knowledge,	and	the	processing	method	should	be	dynamically	adapted	

to	the	current	situations	of	user.	

The	 integration	 of	 user’s	 context	 and	 using	 additional	 domain	 knowledge	 ensure	 the	 real‐time	

personal	data	 to	be	processed	correctly	and	results	are	 insightful	and	meaningful.	So	 far	the	per‐

sonal	 data	 processing	 has	 focused	 on	 one	 individual	 only,	 i.e.,	 the	 personal	 data	 of	 each	 user	 is	

processed	separately.	However,	 for	some	special	cases,	the	result	cannot	be	readily	 inferred	from	

the	 personal	 data;	 rather	 the	 collaborative	 data	 processing	 is	 required.	 Fortunately,	 the	 ever	 in‐

creasing	number	of	users	of	mobile	applications	provides	just	such	opportunities	for	collecting	data	

among	most	alike	users.	

The	Need	for	Context‐aware	Real‐time	Personal	Data	Processing		

49	
	

5.3 Requirements	

Based	 on	 the	 analyses	 described	 in	 the	 previous	 sections	 and	 the	 research	 questions	 defined	 in	

Chapter	1,	we	 conclude	 that	 the	 following	 requirements	 are	necessary	 for	developing	 innovative	

mobile	 applications	 for	 real‐time	 personal	 data	 processing	 in	 various	 domains,	 especially	 for	m‐

Health	and	m‐Fitness	domains.	

 R1:	An	event‐driven	software	architecture,	which	enables	to	use	Complex	Event	Processing	

(CEP)	on	mobile	devices	to	process	real‐time	personal	data.	(Q1)	

 R2:	An	innovative	software	architecture	for	mobile	applications,	which	enables	extension	of	

the	computation	capability	of	mobile	devices	for	real‐time	personal	processing.	(Q2)	

 R3:	Resource‐aware	processing	tasks	distribution,	which	ensures	stable	and	good	user	expe‐

riences	of	mobile	devices	without	affecting	the	performance	of	other	applications	and	mo‐

bile	device	system.	(Q2)	

 R4:	Context‐aware	personal	data	processing,	which	enables	the	integration	of	user’s	context	

and	additional	 domain	 knowledge	 in	 personal	 data	processing	 and	achieves	dynamically	

adaptation	to	current	situation	of	user.	(Q3)	

 R5:	 Real‐Time	 data	 collaboration,	 which	 enables	 the	 data	 collaboration	 between	 different	

users	and	provides	methods	to	find	the	most	suitable	users	for	the	collaborative	data	pro‐

cessing.	(Q4)	

 R6:	Dynamic	adaptation	to	the	real‐time	changes	in	the	event	streams	availability.	(Q5)	

In	 the	subsequent	chapters	of	 this	part	we	describe	 the	details	of	our	approach	based	on	the	de‐

fined	requirements.		

	

51	
	

6 Event‐driven	Hybrid	System	Architecture	
In	 this	 chapter	 we	 introduce	 the	 software	 architecture	 for	 realizing	 the	 mobile	 application	 de‐

scribed	 in	our	approach.	Considering	 the	 limitation	of	mobile	devices,	 the	proposed	event‐driven	

hybrid	 architecture	 combines	 mobile	 devices	 and	 backend	 server	 infrastructure	 to	 extend	 the	

performance	of	real‐time	data	processing.	The	publish/subscribe	middleware	is	used	for	real‐time	

event	exchange	between	mobile	devices	and	backend	server.	We	also	develop	an	event	and	stream	

model	for	the	proposed	system	to	implement	event‐driven	software	architecture.			

6.1 Architecture	overview	

Taking	 advantage	 of	 popularity	 and	 quickly	 developed	 mobile	 and	 sensor	 technology,	 mobile	

devices	are	enabled	to	collect	much	personal	information	and	environment	information	of	user	in	

real‐time.	 Hence	 there	 is	 a	 significant	 increase	 in	 the	mobile	 applications,	which	 deal	with	 huge	

amount	of	real‐time	mobile	data,	like	in	the	case	of	m‐Health	and	m‐Fitness.	Many	of	these	applica‐

tions	are	oriented	toward	the	detection	of	the	particular	real‐time	situations	of	users	which	brings	

them	to	the	domain	of	Complex	Event	Processing	(CEP).	

However,	there	are	several	issues	for	the	development	of	mobile	application	for	real‐time	personal	

data	 processing.	 Firstly,	 the	 limitation	 of	 resources	 on	 mobile	 devices	 [FoZa94],	 especially	 the	

computation	resources	and	disappointing	battery	capacity	[Robi09]	of	mobile	devices	are	a	major	

impediment	to	providing	reliable	and	sophisticated	mobile	applications	to	meet	the	real‐time	data	

processing	requirements.	Secondly	the	existing	processing	methods	of	mainstream	mobile	applica‐

tions	 pay	less	attention	 to	 the	 integration	 of	 real‐time	 data	 and	 other	 data,	 especially	 the	 user’s	

context,	which	lead	to	isolate	and	static	processing	of	real‐time	personal	data.	

According	to	the	requirements	R1	and	R2	defined	in	5.3,	in	order	to	process	the	real‐time	personal	

data	in	an	efficient	and	effective	way,	we	propose	an	event‐based	hybrid	software	architecture	for	

developing	a	new	generation	of	 real‐time	personal	data	processing	mobile	applications.	The	pro‐

posed	 software	 architecture	 uses	 CEP	 to	 process	 real‐time	 personal	 data	 for	 efficient	 data	 pro‐

cessing.	It	combines	mobile	devices	and	backend	server	infrastructure,	using	the	idea	from	mobile	

cloud	computing	[QuAR11,	Cox11],	to	extend	the	processing	capability	of	mobile	devices.	By	using	

semantic	technologies	it	integrates	user’s	context	with	personal	data	in	real‐time.	

Event‐driven	Hybrid	System	Architecture	

52	
	

	

Figure	6‐1	Conceptual	architecture	for	event‐based	hybrid	system	

Event‐driven	Hybrid	System	Architecture		

53	
	

Because	the	key	feature	of	the	proposed	system	is	Mobile‐based	Complex	Event	Processing	(CEP),	

we	name	the	proposed	system	MCEP	system.	Figure	6‐1	shows	the	conceptual	architecture	of	the	

proposed	MCEP	system.	The	whole	system	is	event‐driven	and	all	components	are	loosely	coupled	

through	events.	

The	whole	 conceptual	 architecture	 consists	of	 two	parts:	mobile	device	part	 and	backend	 server	

part,	 corresponding	 to	 the	mobile	 device	 and	 backend	 server	 infrastructure	 as	mentioned	 early.	

Each	part	has	two	units:	processing	unit	and	storage	unit,	containing	several	components.		

The	 processing	 units	 are	 in	 charge	 of	 processing	 the	 real‐time	 data.	 They	 process	 the	 real‐time	

personal	data	dynamically	 to	detect	 the	 situations	of	 interest	 for	 a	user	according	 to	 the	 current	

situation	of	user	and	user’s	context.	

The	 storage	 units	 store	 the	 events	 including	 real‐time	 events	 and	 complex	 events.	 The	 stored	

events	can	be	used	for	off‐line	analysis	or	as	historical	information	of	users,	which	is	used	as	user’s	

context	in	the	future	data	processing.		In	order	to	avoid	the	high	communication	workload	caused	

by	 events	 transmission	 from	 local	 storage	 unit	 to	 server	 storage	 unit,	 the	 storage	 units	 upload	

events	via	http	in	high	speed	network	environment,	e.g.,	WIFI.	

In	the	following,	we	introduce	the	functionality	of	each	component	in	brief.	

Mobile	Device	Part	

On	the	left	side	of	the	figure	is	the	mobile	device	part.	The	software	of	this	part	is	realized	as	mobile	

application	and	will	be	installed	and	executed	on	user’s	mobile	device.	As	shown	in	the	figure,	the	

processing	unit	of	the	mobile	device	part	consists	of	seven	components.	

 CEP	Engine:	This	is	the	core	component	of	the	processing	unit	on	the	mobile	device	part.	It	

provides	the	key	function	of	the	processing	unit:	processing	the	personal	events	on	mobile	

devices	 in	 real‐time.	 Considering	 the	 characteristics	 of	mobile	 devices	 and	 the	operation	

system	of	mobile	devices,	it	should	be	a	light	weight	CEP	engine,	which	doesn’t	cause	high	

workload	on	mobile	devices.	Hence	in	our	prototype,	we	use	Android‐based	Esper	engine	

[Bade10,	Espe07]	to	realize	the	real‐time	personal	data	processing	in	this	component.	

 Sensor	event	adapters:	The	modern	mobile	devices	can	obtain	information	from	many	sen‐

sors,	 including	the	mobile	devices	 integrated	sensors	and	the	external	sensors,	which	are	

connected	 to	mobile	 devices	 through	 different	 communication	 protocols,	 such	 as	 	 Blue‐

tooth	[BSIG07]	or	infrared	[InDA99].	However,	the	information	sensed	by	these	sensors	is	

represented	 in	different	data	 formats	and	cannot	be	directly	used	 in	 the	proposed	MCEP	

system.	Hence,	 sensor	event	adapters	are	 required,	 in	order	 to	 translate	 the	 information	

sensed	by	sensors	into	the	event	format,	which	is	used	by	the	proposed	MCEP	system.	In	

Event‐driven	Hybrid	System	Architecture	

54	
	

addition,	sensor	event	adapters	also	provide	the	function	of	controlling	sensors,	in	the	case	

that	sensors	are	controllable.	

 Mobile	 stream	manager:	 	Considering	 the	 event‐driven	 architecture	 used	 in	 the	 system,	

events	are	not	only	used	to	transmit	personal	information	to	CEP	engine,	but	also	used	to	

couple	different	components	and	to	exchange	information	among	the	components.	Hence,	

besides	sensor	events,	 there	are	also	many	other	events	used	 in	the	proposed	MCEP	sys‐

tem,	such	as	control	events	like	pattern	deployment	events	or	user	information	events.	Dif‐

ferent	events	are	required	by	different	components	and	should	be	sent	to	different	targets.		

In	order	to	achieve	this	functionality,	event	stream	manager	connects	all	components	in	the	

processing	unit,	receives	all	events	from	different	components	and	dispatches	the	events	to	

their	targets.	Event	stream	manager	sends	the	events	according	to	the	stream	of	the	events	

for	a	flexible	dispatching	(events	and	streams	in	MCEP	system	is	described	in	section	6.3).	

Event	 stream	manager	 provides	 also	 the	 Publish/Subscribe	 function,	 which	 enables	 the	

mobile	device	part	(mobile	application)	to	exchange	real‐time	events	with	backend	server	

through	publish/subscribe	middleware.		

 Mobile	system	monitoring:	Considering	 the	 limited	 resource	 on	mobile	 devices,	we	 pro‐

pose	 to	 use	hybrid	 architecture	 to	 extend	 the	 computation	 capacity	 of	 the	MCEP	 system	

and	use	resource‐aware	pattern	distribution	(described	 in	Chapter	8)	to	achieve	efficient	

processing	 tasks	assignment.	Therefore,	 the	 information	about	 the	real‐time	workload	of	

mobile	device	 is	 required.	The	mobile	system	monitoring	component	monitors	 the	 infor‐

mation	of	the	resources	on	mobile	devices,	including	CPU	usage,	memory	usage	and	availa‐

ble	battery	volume,	for	the	workload	calculation.	

 Pattern	deployer:	This	component	is	tightly	connected	to	CEP	engine	and	provides	the	func‐

tion	of	updating	 the	current	active	patterns.	Pattern	deployer	deploys	and	undeploys	the	

patterns	in	CEP	engine	in	real‐time.	It	also	integrates	the	pattern	translator,	which	trans‐

lates	the	pattern	from	standard	format	into	the	special	pattern	language	used	by	CEP	en‐

gine	(e.g.,	in	the	prototype,	Esper	CEP	engine	is	used	and	all	received	patterns	are	translat‐

ed	into	the	Esper	EPL	language).	In	addition,	there	is	also	a	simple	repository	for	the	trans‐

lated	patterns	to	store	all	the	received	patterns.	In	case	that	the	required	pattern	was	used	

in	the	past,	the	repository	can	provide	the	translated	pattern	directly	to	CEP	engine	with‐

out	downloading	and	translating	the	pattern.	

 Action	handler:	This	component	performs	the	actions	such	as	playing	alarm	sound	and	dis‐

playing	recommendations	on	mobile	device	in	order	to	interact	with	users.	The	actions	are	

triggered	by	assigned	events,	which	are	normally	complex	events	and	present	some	situa‐

tion	of	interest.	

 Use	case	handler:	A	mobile	use	case	contains	a	set	of	settings	for	the	user,	including	event	

definition,	stream	definition,	stream	assignments,	action	assignments	and	local	pattern	def‐

Event‐driven	Hybrid	System	Architecture		

55	
	

inition.	Use	case	handler	manages	all	pre‐defined	mobile	use	cases	and	provides	the	func‐

tion	to	start	and	stop	use	cases	according	to	the	different	situations	of	users.	

Backend	Server	Part			

On	the	right	side	of	the	figure	is	the	backend	server	part.	The	software	for	this	part	can	be	imple‐

mented	as	a	standalone	application	or	web	service	and	can	be	deployed	either	on	a	server	or	on	

cloud	based	 infrastructure.	The	processing	unit	 of	 backend	 server	part	 consists	 of	 seven	 compo‐

nents	and	several	knowledge	bases.	

 Real‐time	processing:	This	is	the	core	component	of	the	backend	server.	It	consists	of	two	

subcomponents	and	several	knowledge	bases.		

o CEP	engine:	This	 is	 the	CEP	engine	on	 the	backend	server.	 It	provides	 the	addi‐

tional	processing	capacity	to	support	the	CEP	engine	on	mobile	devices.		

o Situation	analyzer:	This	component	provides	the	dynamic	adaptation	to	real‐time	

personal	 data	 considering	 the	 user’s	 current	 situation	 and	 taking	 user’s	 context	

and	additional	domain	knowledge	into	account.	According	to	the	monitoring	pro‐

cedure	defined	in	Monitoring	Goal	Network	(MGN,	described	in	Chapter	7),	situa‐

tion	analyzer	performs	different	actions,	including	deploying	patterns	to	adapt	the	

current	situation	of	user	based	on	user’s	context	and	related	domain	knowledge.	

o Context	knowledge	bases:	 They	provide	 information,	 such	as	user’s	 static	 con‐

text,	 user’s	 historical	 records	 and	 special	 domain	 knowledge	 like	 health	 and	 fit‐

ness,	for	the	situation	analyzer	to	achieve	dynamic	adaptation.			

 Server	Stream	manager:	This	component	 is	 in	charge	of	 the	communication	of	 the	whole	

backend	server.	Externally,	it	communicates	with	the	mobile	applications	of	users	through	

publish/subscribe	 middleware	 and	 receives	 the	 events	 from	 the	 external	 event	 sources	

through	external	event	adapters.	Internally,	it	receives	the	events	from	all	components	and	

dispatches	the	events	to	different	targets.	It	also	performs	the	function	of	event	transfer,	

which	enables	to	transfer	the	copy	of	an	event	to	a	user	for	data	collaboration.		

 External	event	adapters:	This	component	is	used	to	receive	the	information	from	external	

event	sources,	such	as	social	networks	like	Twitter	and	Facebook,	public	information	pro‐

viders	 like	weather	station,	and	commercial	 information	providers.	External	event	adapt‐

ers	also	translate	the	information	to	the	MCEP	event	format	and	send	the	events	to	server	

stream	manager.	Different	external	event	adapters	can	use	different	techniques	depending	

on	the	external	event	sources,	which	provide	information.	

 User	manager:	The	backend	server	is	designed	to	provide	service	for	multiple	users	simul‐

taneously.	User	manager	is	in	charge	of	managing	the	information	of	different	users,	who	

are	connected	to	the	backend	server.	It	manages	the	event	resources	of	each	user	and	up‐

Event‐driven	Hybrid	System	Architecture	

56	
	

dates	 the	 information	 of	 event	 resources	 in	 pattern	 and	 event	 resource	 ontology	 during	

run‐time.	It	also	stores	the	dynamic	context	of	users	for	situation	analysis.	Each	user	will	

be	registered	in	the	user	manager,	as	soon	as	the	mobile	device	part	(mobile	application)	is	

connected	to	the	backend	server	(i.e.,	sending	registration	event	to	the	backend	server).		It	

also	provides	the	function	of	relevant	user	search,	in	order	to	find	the	most	suitable	users	

for	data	collaboration.	

 Server	pattern	manager:	This	component	 is	 in	charge	of	 the	management	of	patterns,	 in‐

cluding	query,	adaptation,	distribution	calculation	and	dispatching.	 It	 receives	 the	 id	of	a	

pattern,	which	is	required	to	be	deployed	according	to	the	processing	result	by	situation	

analyzer	and	retrieves	the	pattern	from	the	pattern	and	event	resource	ontology	by	query‐

ing	the	received	pattern	id.	It	provides	pattern	adaptation	according	to	the	currently	avail‐

able	event	resources	of	the	user	(the	pattern	and	event	resource	ontology	and	pattern	ad‐

aptation	are	described	in	Chapter	9).		In	order	to	achieve	efficient	pattern	distribution,	the	

server	pattern	manager	uses	resource‐aware	dynamic	pattern	distribution	algorithm	(de‐

scribed	in	Chapter	8)	to	calculate	the	optimal	event	resource	assignment	and	deployment	

position	selection.	It	is	also	responsible	to	deploy	patterns	to	MCEP	engine	on	the	backend	

server.	

 Server	use	case	handler:	This	component	manages	the	server	use	cases	for	different	users.	

A	server	user	case	indicates	the	monitoring	goal	network	(MGN)	used	by	the	user	and	de‐

fines	also	required	events	and	streams.		A	server	use	case	also	provides	a	possibility	of	us‐

ing	some	native	codes	to	process	the	personal	data	for	some	special	situations,	which	are	

difficult	to	be	modelled	as	patterns	and	detected	by	CEP.	Server	use	case	handler	manages	

all	pre‐defined	server	use	cases	and	starts	the	use	cases	as	soon	as	the	user	is	registered	by	

the	user	manager.	

 Server	action	handler:	Similar	to	the	action	handler	on	the	mobile	device	part,	 the	server	

action	 handler	 performs	 pre‐defined	 actions	 on	 the	 backend	 server,	 when	 the	 assigned	

trigger	event	is	received.	

 Pattern	and	event	resource	ontology:	This	ontology	stores	all	patterns	that	are	required	

by	monitoring	procedure	defined	 in	MGN.	 It	also	stores	 the	event	resources	of	each	user	

and	updates	the	information	of	event	resources	in	real‐time.	This	ontology	is	used	by	the	

server	pattern	manager	for	pattern	distribution.	The	details	of	this	ontology	are	described	

in	Chapter	9.	

In	the	middle	of	the	figure	is	the	publish/subscribe	middleware,	which	exchanges	real‐time	events	

between	mobile	devices	and	backend	server	through	publish/subscribe	mechanism.	The	details	of	

the	publish/subscribe	middleware	are	described	in	the	section	6.2.		

Event‐driven	Hybrid	System	Architecture		

57	
	

In	order	to	validate	the	design	of	above	described	conceptual	architecture,	we	have	implemented	a	

prototype	of	MCEP	system	including	all	components	of	the	processing	unit.	The	prototype	was	used	

to	show	demos	at	different	conferences	and	used	to	evaluate	our	approach	of	MCEP	system.		

6.2 Communication	middleware	

As	mentioned	in	section	3.3.4,	one	of	the	most	important	characteristics,	which	distinguish	event‐

driven	 systems	 from	 traditional	 information	 systems,	 is	 the	 publish/subscribe	 mechanism.	 The	

publish/subscribe	mechanism	ensures	the	event	communication	between	different	components	in	

real‐time.	 In	 the	 proposed	 MCEP	 system,	 the	 communication	 middleware	 provides	 the	 pub‐

lish/subscribe	 function	 to	 enable	 the	 real‐time	 event	 exchange	 between	mobile	 device	 part	 and	

backend	server	part.	

As	stated	 in	the	Chapter	1,	 the	proposed	MCEP	can	be	used	 in	various	use	cases.	Considering	the	

requirements	 of	 possible	 use	 cases,	 the	 communication	 middleware	 is	 required	 to	 realize	 the	

following	functions:	

 Basic	topic‐based	publish	and	subscribe	function.	

 Single	 user	 communication:	 the	 communication	 middleware	 should	 be	 able	 to	 transmit	

events	from	the	backend	server	to	a	certain	user.	

 Broadcast	communication:	the	communication	middleware	should	be	able	to	transmit	events	

to	all	users.	

 Group	 communication:	 the	 communication	middleware	 should	 be	 able	 to	 transmit	 events	

from	the	backend	server	to	all	users	in	a	certain	group.	

	

Figure	6‐2	Publish/subscribe	middleware	

In	 order	 to	 achieve	 requirements	 of	 the	 communication	 defined	 above,	 we	 design	 the	 pub‐

lish/subscribe	middleware	and	communication	process	for	the	MCEP	system.	Figure	6‐2	illustrates	

the	concrete	publish/subscribe	data	flow	and	components	of	the	communication	middleware.	The	

Event‐driven	Hybrid	System	Architecture	

58	
	

whole	communication	middleware	consists	of	three	parts:	message	broker,	communication	service	

and	Google	Cloud	Messaging	service	(GCM23).		

Message	broker:	 	 it	 is	 the	 core	 of	 the	 communication	middleware	 providing	 publish/subscribe	

function.	It	receives	the	events	from	different	connected	clients	and	sends	the	events	to	clients,	who	

subscribes	to	the	events.	There	exist	many	different	implementations	of	message	brokers,	including	

Apache	 ActiveMQ24,	 Apache	 Apollo25,	 Open	 AMQ26,	 JBoss	 Messaging27,	 IBM	WebSphere	 Message	

Broker28,	SAP	PI29,	Play	DSB30,	etc.	

In	implementing	the	prototype,	the	ActiveMQ	JMS	server	is	selected	to	be	used	as	message	broker.	

ActiveMQ	is	an	open	source	message	broker	written	in	Java	together	with	a	full	Java	Message	Ser‐

vice	(JMS)	client.	Comparing	to	other	implementations	mentioned	above,	ActiveMQ	receives	events	

from	 mobile	 devices	 using	 MQ	 Telemetry	 Transport	(MQTT)	 protocol	 [Lock10],	 which	 is	

a	publish/subscribe	based	 light	weight	messaging	protocol	 for	use	on	 top	of	 the	TCP/IP	protocol.	

Because	MQTT	 is	 designed	 for	 connections	with	 network	 bandwidth	 limitation,	 it	 is	 used	 in	 the	

communication	 between	mobile	 device	 part	 and	 publish/subscribe	middleware	 of	 the	 proposed	

MCEP	system.		

Google	Cloud	Messaging	service	(GCM):	Google	Cloud	Messaging	for	Android	(GCM)	is	a	service	

that	allows	the	system	to	send	data	from	server	to	users'	Android‐powered	device.	The	GCM	service	

handles	all	aspects	of	queuing	of	messages	and	delivery	to	the	target	Android	application	running	

on	the	target	device.	Since	the	GCM	service	is	integrated	in	Google	Service	and	can	be	easily	used	by	

Android	mobile	applications,	it	is	used	to	push	events	to	mobile	device	part	of	MCEP	system.	

Communication	 service:	 it	 connects	 the	message	 broker	 and	 GCM	 service	 and	 realizes	 the	 re‐

quired	communication	for	MCEP	system,	including	single	user	communication,	broadcast	commu‐

nication	and	group	communication.	It	subscribes	the	events	published	by	the	backend	server	and	

pushes	the	events	to	users,	who	subscribe	to	the	events	or	are	required	to	receive	the	events,	using	

google	GCM	service.	

																																																																		
23	http://developer.android.com/google/gcm/index.html		
24	http://activemq.apache.org/	
25	http://activemq.apache.org/apollo/	
26	http://www.openamq.org/	
27	http://www.jboss.org/jbossmessaging	
28	http://www‐03.ibm.com/software/products/en/ibm‐integration‐bus	
29	http://scn.sap.com/community/pi‐and‐soa‐middleware	
30	http://www.play‐project.eu/	

Event‐driven	Hybrid	System	Architecture		

59	
	

6.3 Event	and	stream	model	

Since	 the	 MCEP	 is	 an	 event‐driven	 system,	 events	 play	 an	 important	 role	 in	 the	 whole	 system.	

Events	are	not	only	used	to	transmit	the	information,	but	also	used	to	control	the	system.	An	event	

stream	denotes	a	 sequence	of	events,	which	have	 the	same	characteristics.	 In	 this	 section	we	ex‐

plain	the	event	and	stream	model	used	in	the	proposed	MCEP	system.	

6.3.1 MCEP	Event	

As	defined	in	section	3.1,	an	event	is	an	object	that	contains	information	of	an	activity	or	an	occur‐

rence	 [Luck01,	 EtNi10].	 Events	 from	 different	 event	 sources	 can	 be	 described	 in	 different	 event	

formats,	which	 is	 an	 obstacle	 for	 achieving	 efficient	 event	 processing.	 In	 order	 to	 overcome	 this	

obstacle,	we	define	a	standard	MCEP	event	model	for	all	events	used	in	the	MCEP	system.	

The	 MCEP	 event	 model	 consists	 of	 two	 objects:	 Event	 Type	 and	 Event	Message.	 Event	 Type	

defines	 the	metadata	 and	 the	 list	 of	 the	 information	 that	 can	 be	 carried	 by	 an	 event.	 An	Event	

Message	is	a	concrete	event	object	containing	real‐time	information.		

	

Figure	6‐3	Event	Type	structure	

Figure	6‐3	shows	the	structure	of	Event	Type.	An	Event	Type	consists	of	two	parts:	event	metada‐

ta	and	attribute	definition.	Event	metadata	describes	some	metadata	of	such	event	type,	including	

event	name,	event	URL	and	the	default	stream.	Attribute	definition	describes	the	structure	of	 the	

information	 that	 is	 carried	 by	 the	 events	 of	 this	 type.	 Attribute	 definition	 defines	 the	 name	 and	

value	 type	 of	 each	 attribute.	 In	 the	 implemented	 prototype,	 the	MCEP	 event	model	 supports	 all	

JAVA	primitive	data	types	and	more	attribute	types	can	be	easily	added	in	the	future.	

Considering	 that	 the	 event	 types	 are	 tightly	 associated	 with	 patterns,	 the	 event	 types	 are	 also	

stored	 in	 semantic	 form	 in	 pattern	 and	 event	 resource	 ontology	 (described	 in	 chapter	 9).	 The	

metadata	Event	URL	is	the	identity	for	the	semantic	object.	

Event‐driven	Hybrid	System	Architecture	

60	
	

	

Figure	6‐4	Structure	of	event	message	

Figure	6‐4	illustrates	the	structure	of	Event	Message.	An	Event	Message	can	be	divided	into	three	

parts:	event	head,	mobile	system	information	and	payload.	In	the	event	head	some	metadata	of	the	

current	event	message	are	described:	

 Event	Type:	This	indicates	the	Event	Type	of	the	current	event	message.	

 Event	ID:	This	is	the	ID	of	the	current	event	message.	Each	event	message	has	a	unique	ID.	

 User	ID:	It	indicates	the	ID	of	the	user,	who	sends	this	event	message	or	should	receive	this	

event	message.	

 Stream:	This	is	the	stream	of	the	current	event	message.	By	default	it	is	same	as	the	default	

stream	defined	in	the	event	type	of	the	current	event	message.	A	different	stream	can	also	

be	used	to	distinguish	the	events	from	different	event	sources.	

 Time	stamp:	It	indicates	the	time	of	the	occurrence	of	the	current	event	message.	

Mobile	system	information	stores	the	information	of	current	workload	of	the	mobile	device,	includ‐

ing	 current	 CPU	 usage,	 current	 memory	 usage	 and	 current	 battery	 volume.	 The	 information	 of	

workload	is	used	in	the	dynamic	pattern	distribution	algorithm	(introduced	in	chapter	8)	to	achieve	

resource‐aware	 pattern	 distribution.	 Only	 the	 event	messages	 sent	 by	mobile	 devices	 carry	 this	

information.	The	values	of	 the	mobile	system	information	 in	the	event	messages	sent	by	backend	

server	stay	zero.		

The	payload	stores	the	information	of	activity	or	occurrence	in	the	form	of	a	list	of	attributes,	which	

are	defined	by	the	Event	Type	of	current	event	message.	

Event‐driven	Hybrid	System	Architecture		

61	
	

According	to	the	usage	of	events,	the	MCEP	events	can	be	divided	into	two	categories:	information	

events	and	system	events.	The	information	events	carry	the	real‐time	information	of	personal	data,	

environment	data	or	the	situation	detected	by	CEP.	The	 information	events	are	normally	used	by	

CEP	engine.	The	system	events	carry	the	system	information	or	commands	and	are	used	to	control	

the	components	during	the	run	time.	

6.3.2 MCEP	Stream	

An	event	stream	is	a set of associated events, which are temporally ordered [EtNi10]. An event stream

can contain events, which have different event types. The events of the same event type can belong to

different event streams as well. In the proposed MCEP system, event streams are not only used to indicate

the associations of events, but also used to manage the dispatch of MCEP events.

As shown in the Figure	6‐4, each MCEP event message belongs to an MCEP stream, which is defined in

the event head. The stream manager (including mobile stream manager in mobile device part and server

stream manager in server part) dispatches MCEP events based on their streams.

	

Figure	6‐5	MCEP	Event	dispatch	process	

Figure	6‐5	shows	the	process	of	MCEP	event	dispatch.	Firstly	all	MCEP	events	will	be	sent	to	stream	

manager.	Then	stream	manager	sends	 the	events	 to	assigned	 targets	according	 to	 the	stream	as‐

signments,	which	are	assigned	by	the	system	or	use	cases.		

In	addition,	the	MCEP	streams	are	used	to	keep	the	privacy	of	the	user.	Each	MCEP	stream	contains	

several	metadata,	and	one	of	these	metadata	is	the	privacy	level,	which	indicates	the	privacy	of	the	

stream	data.	Users	 can	 customize	 the	 privacy	 boundary	 for	 the	MCEP	mobile	 app.	 If	 the	 privacy	

level	of	a	MCEP	stream	is	higher	than	the	customized	privacy	boundary,	the	events	of	this	stream	

are	not	allowed	to	be	sent	to	the	backend	server	and	can	only	be	processed	on	the	user’s	mobile	

device.	

Event‐driven	Hybrid	System	Architecture	

62	
	

6.4 System	variants	

In	the	previous	section	we	described	the	complete	software	architecture	of	proposed	MCEP	system,	

including	mobile	device	part	and	backend	server	part	with	all	 features.	Considering	 the	different	

requirements	 of	 various	 mobile	 applications,	 some	 features	 are	 not	 required	 by	 some	 mobile	

applications.	Therefore	we	also	provide	several	variants	of	the	proposed	MCEP	system	focusing	on	

different	features.	

Currently	following	two	variants	are	provided:		

 Full‐version	MCEP	system		

 Mobile‐only	MCEP	system		

The	 full‐version	variant	 consists	of	 both	mobile	device	part	 and	backend	 server	part.	Taking	 ad‐

vantage	 of	 the	 extended	 computation	 capacity	 by	 using	 backend	 server,	 the	 full‐version	 MCEP	

system	variant	is	able	to	undertake	the	complex	monitoring	tasks,	which	require	high	computation	

capacity.	 In	 addition,	 the	 backend	 server	 enables	 the	 context‐aware	 personal	 data	 processing,	

which	 provides	 dynamic	 adaptation	 to	 the	 current	 situation	 of	 user	 based	on	 user’s	 context	 and	

additional	domain	knowledge.	The	feature	of	data	collaboration	is	available	in	this	variant.	The	full‐

version	MCEP	 system	 variant	 is	 able	 to	 use	 external	 event	 resources	 using	 backend	 server.	 The	

feature	 of	 resource‐aware	 dynamic	 pattern	 distribution	 ensures	 the	 optimal	 pattern	 distribution	

considering	the	available	resource	on	mobile	device.		

The	mobile‐only	 variant	 is	 a	 light	weight	 system	using	 only	 the	mobile	 device	 part	 of	 the	MCEP	

system	and	 focusing	on	 the	 real‐time	event	processing.	Due	 to	 the	 resource	 limitation	on	mobile	

devices,	 this	variant	 can	only	 run	 limited	number	of	processing	 tasks	 simultaneously.	 It	 can	only	

provide	limited	context‐aware	adaptation	based	on	the	dynamic	user	context	produced	in	run‐time,	

without	using	the	static	user	context	and	additional	domain	knowledge	on	the	backend	server.	The	

mobile‐only	 variant	 has	 no	 communication	with	 backend	 server	 and	 can	work	without	 internet	

connection.	

	

	

	

	

	

Event‐driven	Hybrid	System	Architecture		

63	
	

Table	6‐1	Variants	comparison	

Features		 Full‐version	variant Mobile‐only	variant

Context	awareness		 Supported Limited	(no	additional	

knowledge	base)	

Data	collaboration	 Supported Not	supported	

Resource‐aware	dynamic	

pattern	distribution	

Supported Not	supported	

Real‐time	pattern	adaptation	 Supported Not	supported	

Sensor	connection	 Supported Supported	

External	event	sources	 Supported Not	supported	

Backend	server		 Required Not	required	

Internet		 Required Not	required	

Number	of	simultaneous	

active	patterns	

No	limitation (offloading	to	

backend	server)	

Limited	

	

Table	6‐1	compares	two	variants	regarding	features.	Based	on	the	different	usage,	mobile	applica‐

tions	can	use	different	variants	depending	on	their	requirements.	

6.5 Conclusion	

In	 this	 chapter	 we	 have	 introduced	 event‐driven	 hybrid	 system	 architecture	 for	 data	 intensive	

mobile	applications,	which	provides	a	basis	for	efficient	personal	data	processing	on	mobile	devic‐

es.	 The	 proposed	 hybrid	 system	 architecture	 uses	 external	 backend	 server	 to	 extend	 processing	

capacity	with	 the	 purpose	 of	 solving	 the	 issue	 of	 the	 resource	 limitation	 on	mobile	 devices.	 The	

backend	server	part	of	the	proposed	architecture	also	provides	functionality	of	context	awareness	

using	additional	knowledge	bases.	The	event	and	stream	model	enables	personal	data	processing	

through	 CEP	 technologies	 on	 mobile	 devices.	 The	 communication	 middleware	 provides	 various	

communication	types	through	publish/subscribe	mechanism	to	enable	efficient	event	transmission	

between	mobile	 devices	 and	 the	 backend	 server.	 Two	 system	 variants	 are	 provided	 to	meet	 the	

different	requirements	of	various	use	cases.		

			

	

	

	

65	
	

7 Context‐aware	Data	Processing	and	Data	
Collaboration	

In	this	chapter	we	describe	the	data	processing	and	data	collaboration	that	are	based	on	the	con‐

text‐aware	monitoring	goal.	Context‐aware	data	processing	enables	the	dynamic	adaptation	to	real‐

time	personal	data	considering	the	user’s	current	situation	that	takes	user’s	context	and	additional	

domain	 knowledge	 into	 account.	 We	 introduce	 the	 so‐called	 Monitoring	 Goal	 Network	 (MGN),	

which	is	used	to	model	user’s	situation,	to	correlate	the	real‐time	personal	data	with	user’s	context	

and	domain	knowledge,	and	to	define	the	possible	reactions	to	the	detected	user’s	situations.	In	the	

second	section	we	introduce	the	data	collaboration	in	the	proposed	system,	focusing	on	the	search	

for	relevant	users	using	the	monitoring	goal	defined	in	MGN.	

7.1 Context‐aware	data	processing	

By	taking	advantage	of	embedded	sensors	in	mobile	devices	and	various	wearable	sensors,	mobile	

applications	 are	 able	 to	 capture	 a	 large	 amount	 of	 various	 personal	 data	 of	 a	 user	 in	 real‐time.	

However,	most	real‐time	personal	data	is	difficult	to	interpret	without	additional	information	about	

user’s	context	and	domain	knowledge.	For	example,	 if	the	user	has	cardiac	disease,	the	heart	rate	

data	of	this	user	should	be	processed	and	interpreted	in	different	ways	than	that	of	a	healthy	per‐

son.		

In	addition,	there	are	many	possible	processing	tasks	that	may	be	performed	based	on	various	real‐

time	personal	sensing	data.	For	instance,	the	process	of	detecting	whether	a	user’s	running	speed	is	

in	the	normal	training	range	may	not	yield	meaningful	interpretation	if	the	user	doesn’t	do	fitness	

training	but	 is	 sitting	 in	a	 chair.	These	 redundant	processing	 tasks	can	 increase	 the	 computation	

capability	 requirements	 of	 the	 system	 and	 hinder	 performance.	 This	 should	 be	 avoided	 in	 the	

resource	limited	mobile	application	development.	

Thus,	according	to	the	requirement	R4	defined	in	5.3,	the	real‐time	personal	data	must	be	correlat‐

ed	with	the	user’s	context	regarding	the	user’s	current	situation	to	achieve	more	precise	and	effi‐

cient	 personal	 data	 processing.	 For	 different	 situations	mobile	 applications	 should	 use	 different	

patterns	that	are	narrowed	and	relevant	to	the	situation	in	which	the	user	is	involved.		

7.1.1 Monitoring	Goal	Network	

One	of	the	most	 important	 issues	in	realizing	context‐aware	dynamic	adaptive	personal	data	pro‐

cessing	 is	 the	 modelling	 of	 the	 situations	 that	 user	 may	 encounter.	 In	 the	 proposed	 system	 we	

Context‐aware	Data	Processing	and	Data	Collaboration	

66	
	

propose	to	use	monitoring	goal	based	data	processing	to	realize	dynamic	adaptive	context‐aware	

personal	data	processing	in	real‐time.	We	model	data	processing	procedure	in	a	Monitoring	Goal	

Network	 (MGN)	 for	 defining	 the	 processing	 tasks	 in	 each	 monitoring	 procedure	 and	 systems’	

reactions	to	situations.	The	idea	of	MGN	is	taken	from	Hierarchical	Task	Networks	(HTNs)	[Mitc97,	

HoLM05],	 Behavior	 Trees	 (BTs)	 [Drom06,	 BeTG07]	 and	 Situation	 Action	 Network	 (SAN)	

[PPVA+13].		

MGN	 is	 used	 to	 define	 the	 processing	 tasks	 (i.e.	 patterns)	 of	 the	monitoring	 procedure,	 possible	

situations	that	can	happen	during	the	monitoring	procedure	and	reactions	to	them	at	design	time,	

where	it	correlates	the	real‐time	personal	data	with	user’s	context	and	domain	knowledge	that	will	

be	able	 to	 recommend	at	 run‐time	solutions	 to	 the	detected	situations.	Reactions	 to	 the	detected	

situations	include	sending	recommendation	to	the	user,	deploying	additional	new	patterns,	saving	

information	of	the	situation	as	user’s	context,	etc.	

In	reality,	however,	it	is	difficult	to	predefine	every	possible	situation	that	might	happen	along	with	

corresponding	reactions	at	design	time.	Nevertheless	we	are	able	to	define	some	general	monitor‐

ing	goals	in	advance	for	describing	the	guidelines	for	the	system	behaviors.	

	

Figure	7‐1	Monitoring	Goal	

Definition	 7.1:	 A	Monitoring	Goal	 is	 a	 set	 of	 rules	 that	 define	 the	 situations,	 the	 condition	 of	

situations	and	the	reactions	to	adapt	to	such	situations.	The	situations	in	the	same	monitoring	goal	

are	 possibly	 happening	 in	 the	 same	 monitoring	 procedure	 and	 related	 to	 the	 same	 monitoring	

purpose.		

Context‐aware	Data	Processing	and	Data	Collaboration		

67	
	

For	example,	a	monitoring	goal	can	be	defined	for	jogging	monitoring.	The	situations	of	interest	of	

jogging	monitoring	could	be	“running	too	fast”,	“running	too	slow”	and	etc.			

Figure	7‐1	shows	the	detailed	structure	of	a	monitoring	goal,	including	Pattern,	Situation,	Condi‐

tion	and	Action.	A	monitoring	goal	is	a	tree	structure	and	each	node	carries	specialized	functionali‐

ty.	We	explain	each	of	these	nodes	as	follows:		

 Monitoring	Goal	Node:	 this	 is	 the	 root	 node	 of	 the	 tree	 and	 specifies	 the	 purpose	 of	 the	

monitoring.	A	monitoring	goal	node	contains	the	processing	tasks,	which	enable	to	achieve	

the	monitoring	purpose	defined	in	this	goal	and	the	possible	situations	that	might	happen.	

The	monitoring	goal	has	two	types	of	child	nodes:	patterns	and	situations,	corresponding	

to	the	processing	tasks	and	predefined	possible	situations.	One	monitoring	goal	node	can	

have	several	instances	for	each	type	of	child	nodes.	

 Pattern:	the	patterns	indicate	the	processing	tasks,	which	correlate	to	the	current	monitor‐

ing	goal.	The	patterns	are	used	by	the	CEP	engine	to	process	the	real‐time	personal	data	in	

order	to	detect	the	situations	of	interest	belonging	to	the	monitoring	goal.	The	patterns	of	a	

monitoring	goal	will	be	deployed,	once	the	monitoring	goal	is	activated.	

 Situation:	The	situations	denote	the	situations	of	interest.	Each	situation	is	triggered	by	an	

event	called	trigger	event.	Most	trigger	events	are	detected	by	patterns	of	the	current	mon‐

itoring	goal.	However	some	situations	also	use	real‐time	personal	sensing	data	as	 trigger	

event.	Situations	have	two	types	of	child	nodes:	condition	and	action.	Each	situation	can	

have	more	than	one	condition	and	action.	

 Condition:	The	condition	node	specifies	the	requirements	that	the	detected	situation	should	

fulfill.	The	requirements	defined	in	the	conditions	are	not	static.	They	can	also	be	the	val‐

ues	 from	the	domain	knowledge	or	run‐time	user	context.	Hence	the	conditions	combine	

the	real‐time	personal	data	with	additional	information	including	user’s	context	or	domain	

knowledge.		

 Action:	The	action	node	indicates	the	adaptation	to	the	detected	situation,	such	as	to	deploy	

new	 patterns	 or	 to	 send	 a	 recommendation	 to	 the	 user.	 One	 important	 action	 is	 “Goal	

change	action”,	which	changes	the	active	monitoring	goal	of	the	MGN.	The	actions	of	a	situ‐

ation	will	be	run,	only	when	the	situation	is	triggered	and	all	belonging	conditions	are	ful‐

filled.	

A	monitoring	goal	models	the	monitoring	procedure	for	a	special	purpose	that	correlates	the	real‐

time	personal	data	with	user’s	context	and	defines	the	adaptation	to	detected	situation.		The	execu‐

tion	 process	 of	 a	 situation	 (triggered	 by	 event),	 conditions	 and	 actions	 can	 be	 treated	 as	 E‐C‐A	

(Event	Condition	Action)	rules	[HKMS94,	DiGG95,	KaRR98].		

Context‐aware	Data	Processing	and	Data	Collaboration	

68	
	

Definition	7.2:	A	Monitoring	Goal	Network	is	a	network	consisting	of	several	connected	monitor‐

ing	goals.		

Each	 monitoring	 goal	 might	 have	 several	 predecessors	 and	 successors,	 which	 make	 the	 MGN	 a	

directed	graph.	Each	MGN	has	one	and	only	one	staring	monitoring	goal,	which	indicates	the	start‐

ing	 point	 of	 this	 network.	 After	 the	MGN	 has	 been	 started,	 the	 starting	monitoring	 goal	 will	 be	

activated	immediately,	afterwards	the	active	goal	shifts	among	all	goals	depending	on	the	real‐time	

situation	that	the	user	is	involved	in.	

7.1.2 MGN	Execution	process	

In	this	subsection	we	explain	how	the	MGN	works.	The	MGN	consists	of	multiple	monitoring	goals,	

where	 there	 is	 only	 one	 active	monitoring	 goal	 in	 the	whole	MGN	 at	 any	 given	 time.	 The	 active	

monitoring	goal	processes	the	situation	events	that	are	detected	by	CEP.	The	first	active	monitoring	

goal	is	the	starting	monitoring	goal.		

	

Figure	7‐2	Flow	diagram	of	monitoring	goal	execution	

Context‐aware	Data	Processing	and	Data	Collaboration		

69	
	

Figure	7‐2	 illustrates	 the	execution	procedure	of	 an	active	monitoring	goal.	The	whole	execution	

process	consists	of	five	phases:	start	phase,	event	validation,	condition	check,	action	execution	and	

end	phase.	

 Start	 phase:	Once	 a	monitoring	 goal	 is	 activated,	 all	 patterns	 belonging	 to	 this	monitoring	

goal	will	be	deployed	immediately,	which	process	the	real‐time	personal	data	for	the	detec‐

tion	of	possible	situations.	

 Event	validation:	In	case	an	event	is	sent	to	the	monitoring	goal,	each	situation	should	check	

whether	the	incoming	event	is	a	predefined	trigger	event.	If	the	incoming	event	is	a	prede‐

fined	trigger	event,	then	the	execution	continues	to	the	next	condition	check	phase,	other‐

wise	all	situations	wait	for	next	input	event.	

 Condition	check:	 In	this	phase	all	conditions	belonging	to	the	triggered	situation	should	be	

checked.	Only	when	all	conditions	of	such	situation	are	met,	the	execution	of	this	situation	

can	continue.	If	one	condition	fails,	the	execution	of	this	situation	will	be	stopped	and	the	

situation	goes	on	for	waiting	for	future	trigger	event.	

 Action	execution:	When	all	conditions	are	met,	all	the	actions	that	are	assigned	to	this	situa‐

tion	should	be	executed.	

 End	phase:	 	If	a	monitoring	goal	change	action	has	been	successfully	executed	in	the	action	

execution	phase,	the	current	monitoring	goal	should	be	deactivated.	Right	before	the	deac‐

tivation,	all	the	patterns	that	belong	to	this	goal	and	were	deployed	in	the	start	phase	will	

be	un‐deployed.			

7.1.3 MGN	Implementation	

We	developed	an	RDF‐based	ontology	for	formally	expressing	all	the	characteristics	of	MGN	and	a	

MGN	API	 for	 implementing	MGN	 in	 Java.	The	semantic‐based	RDF	 language	 [KlCa06]	enables	 the	

formal	description	of	the	MGN	model	(see	Appendix	I),	which	can	be	used	in	different	systems.	In	

addition,	the	RDF‐based	model	description	can	be	easily	extended	in	the	future	based	on	the	new	

requirements.		In	this	subsection	we	introduce	the	implementation	details	of	MGN.	

Figure	7‐3	illustrates	the	ontology	of	MGN	model.	In	order	to	elaborate	the	ontology	structure	in	a	

more	clear	way,	Figure	7‐3	shows	a	simplified	version	of	ontology	with	only	the	important	classes	

and	properties.	The	complete	ontology	is	attached	as	appendix	at	the	end	of	this	thesis.		

Context‐aware	Data	Processing	and	Data	Collaboration	

70	
	

	

Figure	7‐3	Monitoring	goal	network	Ontology	(simplified)	

Context‐aware	Data	Processing	and	Data	Collaboration		

71	
	

In	the	following	we	introduce	the	classes	and	their	functionality	briefly.	

 Monitoring	goal:	this	class	models	the	monitoring	goal	concept	introduced	in	the	previous	

section.	It	has	a	data	property	hasPattern,	which	links	a	String	data	indicating	the	ID	of	the	

pattern	that	is	used	in	this	monitoring	goal.	It	connects	to	Situation	through	object	proper‐

ty	hasSituation.	

 Situation:	this	class	encompasses	all	the	possible	predefined	situations	of	a	monitoring	goal.	

It	has	three	important	object	properties.	hasTriggerEvent	indicates	the	event	that	triggers	

this	 situation.	 hasCondition	 indicates	 the	 condition	 that	 should	 be	 fulfilled.	 hasAction	

shows	the	connection	between	situations	of	actions.	

 Condition:	this	class	models	the	condition	of	situations.	Each	condition	presents	an	expres‐

sion,	consisting	of	one	subject,	one	object	and	one	condition	operator.	The	condition	con‐

nects	 to	 these	 three	 parts	 through	 three	 object	 properties:	 hasSubject,	 hasObject	 and	

hasOperator.	When	the	expression	is	asserted	as	true,	the	condition	is	 fulfilled.	The	sub‐

ject	and	object	are	instances	of	Value	class.	

 Action:	 this	 class	 indicates	 the	 action	 of	 situations.	 We	 predefine	 three	 concrete	 actions,	

which	are	most	important	for	the	proposed	system.	

o Goal	Change	Action:	as	already	 introduced,	 this	action	changes	the	active	moni‐

toring	goal	of	the	MGN.		

o Save	User	 Context	Action:	 this	 action	 saves	 the	 information	 from	 the	 current	

trigger	event	of	the	detected	situation	as	user	context,	which	can	be	used	later	in	

the	situation	analysis.	

o Create	 Event	 Action:	 this	 action	 creates	 a	 new	 real‐time	 event	 and	 sends	 the	

event	 to	 the	 system.	The	 created	 event	 can	be	 either	 a	 real‐time	personal	 infor‐

mation	event,	which	is	conducted	according	to	user’s	run‐time	context	or	domain	

knowledge,	or	a	predefined	system	event,	such	as	pattern	deployment	(i.e.,	to	de‐

ploy	or	un‐deploy	patterns)	or	recommendation	event	(i.e.,	to	show	a	recommen‐

dation	on	user’s	mobile	device).	This	action	provides	a	general	interface	to	interact	

with	the	system.	 It	 indicates	the	concrete	Action	Event	 through	hasActionEvent	

property.			

 Value:	this	class	 indicates	the	values,	which	can	be	used	as	subject/object	of	conditions	or	

concrete	value	assignment	of	the	event	values.	According	to	the	sources	of	values,	we	de‐

fine	four	sub‐types	of	values.	

o Fixed	Value:	 the	 value	 is	predefined	and	 fixed.	 It	 cannot	be	 changed	during	 the	

run‐time.	

o Value	from	Context:	this	value	is	from	the	user’s	context,	which	was	saved	in	run‐

time.	

Context‐aware	Data	Processing	and	Data	Collaboration	

72	
	

o Value	 from	knowledge	base:	values	 in	 this	 type	are	 retrieved	 from	 the	 related	

domain	knowledge.	

o Value	from	event:	this	type	indicates	that	the	value	is	from	the	event	that	triggers	

the	current	situation.	

 MCEP	Event:	 this	 class	abstracts	 the	 event	definition	of	 event	 types	used	 in	 the	proposed	

system.	Concretely	it	is	used	as	trigger	event	and	action	event.	Each	MCEP	event	can	have	

Event	Value,	which	specifies	the	concrete	value	of	the	event.	

o Trigger	event:	this	class	denotes	the	event	that	triggers	the	predefined	situations.		

o Action	event:	this	class	denotes	the	event	that	is	created	by	the	creating	Event	Ac‐

tion.	

7.1.4 Example	

We	give	 a	 concrete	 example	of	MGN	 in	 this	 sub‐section	 that	 shows	how	 the	MGN	 is	defined	and	

executed.	

	

Figure	7‐4	An	example	of	monitoring	goal	network	

As	shown	in	Figure	7‐4	a	simple	MGN	is	defined	for	jogging	monitoring.	The	whole	MGN	contains	

only	two	monitoring	goals:	“Idle”	and	“Jogging”.	On	the	left	side	of	the	figure	is	the	“Idle”	monitoring	

goal.	It	monitors	user’s	activity	to	recognize	the	start	of	the	jogging.	It	is	the	start	monitoring	goal	of	

the	MGN.	On	the	right	side	is	the	“Jogging”	monitoring	goal,	which	monitors	the	speed	of	a	user	to	

ensure	that	the	user	runs	at	a	right	speed.	

Context‐aware	Data	Processing	and	Data	Collaboration		

73	
	

The	“Idle”	monitoring	goal	has	only	one	assigned	pattern:	activity	pattern,	which	generates	activity	

events	indicating	the	current	activity	of	users.	In	the	“Idle”	monitoring	goal	one	situation	is	defined,	

called	“Start	Jogging”.	This	situation	is	triggered	by	the	activity	event.	In	the	case	the	activity	type	

indicated	by	the	incoming	activity	event	is	running,	a	“Change	Goal”	action	will	be	executed,	which	

changes	the	current	monitoring	goal	to	“Jogging”	monitoring	goal.			

The	“Jogging”	monitoring	goal	has	also	only	one	assigned	pattern:	speed	pattern,	which	detects	the	

current	 running	 speed	 of	 the	 user	 in	 real‐time	 and	 generates	 the	 speed	 events.	 Three	 situations	

have	been	defined	in	the	“Jogging”	monitoring	goal:	“Finish	jogging”,	“Too	fast”	and	“Too	slow”.	All	

the	three	situations	are	triggered	by	speed	events.		

In	the	“Finish	jogging”	situation,	the	speed	of	the	user	will	be	compared	to	“lowest	jogging	speed”	

that	has	been	defined	in	a	domain	knowledge	base	about	jogging.	This	value	describes	the	bounda‐

ry	speed	between	walking	and	running	for	most	people	based	on	scientific	studies.	If	the	speed	of	

user	is	lower	than	this	value,	indicating	that	the	user	is	walking	instead	of	running,	two	actions	will	

be	executed.	Firstly	a	piece	of	information	will	be	shown	on	user’s	mobile	device	to	inform	the	user	

that	the	jogging	is	finished	due	to	the	low	speed.	Secondly	a	“Change	Goal”	action	will	be	executed,	

which	changes	the	current	monitoring	goal	to	“Idle”.	

In	the	“Too	fast”	situation,	the	speed	value	in	the	trigger	event	will	be	compared	to	the	“max	normal	

jogging	speed”,	which	is	stored	in	the	user’s	context	reflecting	the	user’s	historical	training	records.	

In	the	case	where	the	current	speed	of	the	user	is	higher	than	this	value,	a	“show	recommendation”	

action	will	be	executed	to	warn	the	user	about	the	high	speed	and	to	recommend	the	user	to	slow	

down.		

The	“Too	slow”	situation	is	similar	to	the	“Too	fast”	situation.	It	checks	the	current	speed	of	the	user	

and	recommends	the	user	to	speed	up	in	the	case	the	user	runs	too	slowly.	

7.2 Data	collaboration	

The	most	mainstream	mobile	applications,	which	process	the	real‐time	data	for	monitoring,	moni‐

tor	users	individually	and	provide	no	data	collaboration	between	different	users.	However,	the	data	

collaboration	is	very	important	during	the	monitoring	in	some	special	cases.	For	example,	a	cardio	

problem	 that	 has	 been	 sensed	 from	 one	 patient	 can	 be	 better	 analyzed	 by	 having	 some	 values	

measured	 by	 another	 patient	who	 is	 in	 a	 similar	 context.	 The	 data	 from	 the	 users	who	 are	 in	 a	

similar	context	may	improve	the	monitoring	quality	in	some	special	cases.	

One	of	the	most	important	advantages	of	today’s	mobile	applications	is	the	large	number	of	users,	

which	make	 it	possible	 to	achieve	data	collaboration	among	the	users	having	the	similar	context.	

Context‐aware	Data	Processing	and	Data	Collaboration	

74	
	

According	to	the	requirement	R5	defined	in	5.3	and	to	exploit	the	potential	of	mobile	applications,	

we	provide	data	collaboration	in	the	proposed	mobile	software	system.		

7.2.1 Data	collaboration	process	

In	this	subsection	we	introduce	the	data	collaboration	procedure	in	the	proposed	system	in	order	

to	explain	how	data	collaboration	works.	

	

Figure	7‐5	Data	collaboration	process	

Figure	7‐5	illustrates	the	data	collaboration	procedure	implemented	in	the	proposed	system.	User‐

X	 is	 a	user	of	 the	proposed	 system.	The	predefined	monitoring	procedure	 in	MGN	 for	User‐X	 re‐

quests	data	from	other	users,	who	are	similar	to	User‐X,	in	some	special	situations	(i.e.,	data	collab‐

oration).	The	whole	data	collaboration	procedure	contains	8	phases:	

1. Monitoring:	 in	 this	 phase	 the	 mobile	 application	monitors	 user‐X	 in	 a	 normal	 mode	 pro‐

cessing	real‐time	data	only	from	user‐X.		

2. Situation	 analysis:	 the	 system	 analyzes	 the	 detected	 situations	 of	 user‐X	 using	 predefined	

MGN	and	reacts	to	the	detected	situations.	

3. Request	data	collaboration:	 In	the	case	the	monitoring	requests	additional	data	from	other	

user	 in	 some	special	 situations	 (defined	 in	MGN),	MGN	sends	an	action	event	 to	 indicate	

such	data	collaboration	request.	The	action	handler	on	the	backend	server	processes	this	

request	and	initiates	data	collaboration.	

4. 	Relevant	user	search:	 this	 is	 the	most	 important	phase	 in	 the	data	collaboration.	The	pro‐

posed	system	searches	the	relevant	users	among	all	registered	users,	 in	order	to	find	the	

most	suitable	users	to	provide	collaborative	data.	Combining	the	monitoring	goal	based	da‐

Context‐aware	Data	Processing	and	Data	Collaboration		

75	
	

ta	proceeding	introduced	in	the	previous	section,	we	develop	monitoring	goal	based	search	

mechanism	to	achieve	this	goal.	The	details	about	the	monitoring	goal	based	search	mech‐

anism	are	introduced	in	the	next	subsection.	

5. Event	 transfer	 setting:	After	 finding	 the	most	 suitable	 relevant	users,	who	can	provide	 the	

data	for	the	data	collaboration,	the	system	sets	the	event	transfer	to	collect	data	from	dif‐

ferent	users.	Event	transfer	creates	a	copy	of	the	original	event	and	sends	the	copy	to	the	

target	user	(i.e.,	user‐X),	who	requested	data	collaboration.	In	the	case	the	requested	event	

is	not	directly	available	and	must	be	generated	by	a	pattern,	the	pattern	will	be	deployed	in	

order	to	enable	the	data	collaboration.	

6. Monitoring:	the	requested	data	for	collaboration	is	obtained	by	monitoring	of	relevant	users.	

7. Event	transfer:	once	the	requested	data	is	available,	it	will	be	sent	to	the	backend	server	for	

data	collaboration.	

8. Collaborative	processing:	the	backend	server	processes	the	data	from	different	users	collab‐

oratively	for	data	processing	of	user‐X.	

The	advantages	of	the	proposed	data	collaboration	procedure	can	be	summarized	as	following:	

 It	 enables	 collective	 data	processing	 by	 combining	 the	 data	 from	different	 users	 in	 real‐
time.	

 It	supports	user	search	to	find	the	most	suitable	relevant	users	for	data	collaboration.	
 It	deploys	patterns	for	detecting	requested	real‐time	data	on	the	fly.	

7.2.2 Monitoring	goal	based	relevant	user	search	

In	this	subsection	we	introduce	the	monitoring	goal	based	relevant	user	search	aiming	to	find	the	

most	 suitable	users	 for	data	 collaboration.	As	mentioned	earlier,	 the	 large	number	of	users	 is	an	

important	advantage	of	mobile	applications.	However,	the	large	number	of	users	also	leads	to	the	

problem	of	finding	relevant	users	for	data	collaboration.	The	suitability	of	the	relevant	users	affects	

the	quality	of	the	collaborative	data	processing.	The	data	collaboration	can	be	worthless	by	using	

the	data	from	the	unsuitable	or	irrelevant	users.	For	example,	it	doesn’t	make	sense	to	compare	the	

heart	rate	of	a	person,	who	is	sprinting,	with	the	heart	rate	of	a	person,	who	is	sitting	in	Starbucks	

and	drinking	latte,	although	both	people	may	have	the	similar	health	status.	Therefore,	the	search	

of	suitable	relevant	users	is	a	key	issue	in	data	collaboration.		

As	introduced	in	7.1.1	we	model	the	monitoring	procedure	in	Monitoring	Goal	network	(MGN)	and	

split	the	whole	procedure	into	several	connected	monitoring	goals.	Normally,	all	predefined	situa‐

tions	in	a	monitoring	goal	relate	to	the	same	activity	and	same	purpose.	Hence,	the	users,	who	are	

monitored	using	 the	same	monitoring	goal,	have	a	high	probability	of	being	 the	suitable	relevant	

users	for	data	collaboration	of	each	other.	Using	the	model	of	monitoring	goal,	we	develop	monitor‐

ing	goal	based	search	mechanism	to	find	the	most	suitable	relevant	users	for	data	collaboration.		

Context‐aware	Data	Processing	and	Data	Collaboration	

76	
	

The	monitoring	goal	based	search	mechanism	has	two	search	phases:	

1. Monitoring	goal	search:	in	the	first	phase	the	proposed	system	searches	across	all	the	regis‐

tered	users	to	find	out	those	who	are	using	the	same	monitoring	goal	with	the	current	user,	

who	requests	the	data	collaboration.	

2. User‐defined	 context‐based	 search:	 considering	 the	different	 requirements	of	 concrete	use	

cases,	it	is	also	possible	to	search	for	the	users	using	custom	search	criteria	based	on	dif‐

ferent	context	of	user,	such	as	location,	age	group,	health	status	and	etc.	or	the	combination	

of	these	criteria.		

In	order	to	make	the	search	more	flexible,	both	phases	are	optional,	meaning	that	the	user	can	use	

only	monitoring	goal	search	or	user‐defined	context‐based	search	alone.		

	

Figure	7‐6	Monitoring	goal‐based	search	mechanism	

The	searches	are	based	on	various	filters.	Figure	7‐6	 illustrates	the	monitoring	goal‐based	search	

mechanism.	The	monitoring	goal	based	search	is	realized	through	monitoring	goal	 filter,	which	is	

implemented	and	provided	by	 the	proposed	 system.	The	user‐defined	 context‐based	 search	uses	

the	 filters,	which	should	be	 implemented	by	the	developer	 later	according	to	 individual	cases.	All	

registered	users	are	filtered	by	monitoring	goal	filter	and	user	defined	context‐based	filter	sequen‐

tially.	The	results	of	the	search	are	the	most	suitable	relevant	users	for	the	data	collaboration.	

Context‐aware	Data	Processing	and	Data	Collaboration		

77	
	

7.3 Conclusion	

In	 this	 chapter	 we	 have	 introduced	 context‐aware	 data	 processing	 and	 data	 collaboration.	 The	

Monitoring	Goal	Network	 (MGN)	 is	described,	which	 enables	 the	modelling	of	monitoring	proce‐

dure	and	the	integration	of	the	real‐time	data	and	context	data	including	user’s	historical	data	and	

domain	knowledge	bases.	Using	MGN	the	proposed	MCEP	system	is	capable	of	achieving	dynamic	

adaptive	monitoring	based	on	the	user’s	current	situation.		

The	feature	of	data	collaboration	enables	the	MCEP	system	to	process	the	personal	data	collabora‐

tively.	Combining	 the	monitoring	goal	based	data	processing	 the	MCEP	system	 is	able	 to	 find	 the	

most	suitable	relevant	users	for	data	collaboration.	

	

79	
	

8 Dynamic	Pattern	Distribution	
In	the	last	chapter	we	solved	the	problem	of	modeling	the	monitoring	procedure.	By	applying	the	

monitoring	 goal	 network,	 the	 proposed	 system	 uses	 different	 patterns	 for	 different	 monitoring	

purposes.	In	this	chapter	we	describe	the	dynamic	pattern	distribution	for	efficient	pattern	distri‐

bution.	We	develop	a	pattern	distribution	model	regarding	the	proposed	hybrid	software	architec‐

ture	and	an	 intelligent	pattern	distribution	algorithm	for	 the	 resource‐aware	pattern	distribution	

considering	the	resource	limitation	of	mobile	devices.	An	example	of	distribution	calculation	is	also	

provided.	

8.1 Pattern	distribution	model	

As	stated	in	the	previous	chapters,	one	of	the	most	important	challenges	for	mobile	applications	is	

the	resource	limitation	on	mobile	devices.	Limited	computing	resources	on	mobile	devices	restrict	

the	performance	of	real‐time	data	processing	and	lead	mobile	devices	to	be	incapable	of	executing	

some	 complex	 processing	 tasks,	 which	 are	 essential	 for	 real‐time	 personal	 data	 processing.	 To	

make	it	even	worse,	battery,	as	the	only	power	source	of	most	mobile	devices,	has	seen	relatively	

slow	improvement	in	the	past	decade	and	becomes	a	major	impediment	to	providing	reliable	and	

sophisticated	mobile	applications	to	meet	the	real‐time	data	processing	requirements.		

In	the	proposed	system	we	use	two	methods	to	overcome	these	limitations:	the	extension	of	com‐

putation	capacity	and	the	reduction	of	simultaneous	processing	tasks	on	mobile	devices.	Firstly	we	

combine	the	remote	computing	framework	and	local	mobile	CEP	infrastructure	to	build	our	hybrid	

software	architecture,	which	has	been	 introduced	 in	Chapter	6.	The	hybrid	software	architecture	

enables	 the	proposed	 system	 to	 efficiently	 process	 personal	 data	on	mobile	 devices	 in	 real‐time,	

and	at	the	same	time	to	extend	the	processing	capacity	by	offloading	processing	tasks	(patterns)	to	

backend	server.		

Secondly	we	use	Monitoring	Goal	network	 (MGN)	 to	model	 the	monitoring	procedure	 to	achieve	

adaptive	 data	 processing,	which	 is	 introduced	 in	 Chapter	 7.	 The	whole	monitoring	 procedure	 is	

split	into	several	connected	monitoring	goals,	and	in	each	monitoring	goal	all	required	patterns	for	

the	monitoring	are	assigned.	Only	the	assigned	patterns	are	used	in	the	execution	of	each	monitor‐

ing	goal.	Hence	the	number	of	simultaneously	running	patterns	can	be	substantially	reduced.		

Although	 the	 adaptivity	 of	 data	 processing	 reduces	 the	 redundant	 patterns,	 due	 to	 the	 resource	

limitation	 on	mobile	 device,	 it	 is	 still	 unable	 to	 execute	 all	 patterns	 on	mobile	 device	 for	 some	

complex	monitoring	tasks,	which	must	use	numerous	patterns	and	may	cause	heavy	computation	

Dynamic	Pattern	Distribution	

80	
	

load	(see	10.1.1).	In	such	cases	some	of	these	patterns	have	to	be	offloaded	to	the	backend	server,	

in	order	to	reduce	the	workload	on	mobile	devices.		

To	 realize	 such	 pattern	 offloading	 in	 the	 proposed	 system,	 the	 patterns	might	 be	 distributed	 to	

either	mobile	device	or	backend	server.	However,	there	are	other	challenging	issues	in	distributing	

patterns:	Which	pattern	can	be	executed	on	mobile	device	and	which	pattern	must	be	deployed	on	

backend	server?	When	should	patterns	be	distributed	to	mobile	devices	and	when	should	they	be	

distributed	to	backend	server?	

In	 addition,	 a	 pattern	 uses	 several	 events	 as	 input	 for	 detection	 of	 a	 situation	 of	 interest.	 In	 the	

proposed	system	one	event	can	have	multiple	different	Event	Resources.		

Definition	8.1:	 An	Event	Resource	 can	 be	 defined	 as	 a	 stream	 of	 events,	 which	 have	 identical	

event	type	and	are	from	identical	source.		

For	example,	a	temperature	event	can	be	gathered	either	from	the	sensor	that	is	equipped	by	the	

user	or	 from	other	open	 information	sources,	 such	as	a	weather	station.	Another	example	 is,	 if	a	

user	wears	two	different	sensors	and	both	of	the	sensors	can	detect	the	heart	rate,	then	the	heart	

rate	event	have	two	sources.	Both	the	temperature	event	and	the	heart	rate	event	in	the	examples	

have	two	event	resources.	Different	event	resources	can	have	different	attributes,	such	as	frequen‐

cy	or	cost,	although	they	present	the	same	event	type.	

Due	to	the	multiple	event	resources	of	an	event	used	in	a	pattern,	a	pattern	can	have	several	pat‐

tern	bindings	with	different	event	resource	allocation.	

Definition	8.2:	A	Pattern	Binding	 is	an	 instance	of	pattern	with	concrete	event	resource	alloca‐

tion.		

In	the	case	an	event,	which	is	required	by	a	pattern,	has	more	than	one	event	resources,	it	means	

that	 the	 pattern	 also	 has	more	 than	 one	 pattern	 bindings.	 By	 pattern	 distribution	 the	 proposed	

system	should	also	decide	which	pattern	binding	will	be	used.	Since	different	event	resources	have	

different	 attributes,	 different	 pattern	 bindings	 also	 lead	 to	 different	 execution	 requirements.	 For	

example,	a	pattern	binding	may	require	more	communication	capacity	than	all	other	pattern	bind‐

ings	 if	 it	 uses	 an	 event	 resources	 having	 high	 event	 frequency;	 or	 another	 pattern	 binding	may	

require	additional	cost,	if	the	event	resource	it	used	is	obtained	from	a	paid	(not	free)	web	service.		

In	addition,	different	deployment	positions	can	lead	to	different	execution	requirements	as	well.	In	

the	case	a	pattern	binding	uses	the	most	event	resources	from	mobile	device,	if	such	pattern	bind‐

ing	is	deployed	on	backend	server,	all	required	events	should	be	transmitted	to	the	backend	server,	

which	can	cause	a	heavy	communication	workload.		

Dynamic	Pattern	Distribution		

81	
	

In	order	to	solve	the	problems	mentioned	above:	we	need	(1)	to	find	the	best	event	resource	alloca‐

tion	among	multiple	event	resources	and	(2)	to	perform	optimal	distribution	of	patterns,	a	pattern	

distribution	mechanism	 that	 is	 required	 to	 allocate	 the	 event	 resources	 and	 distributes	 patterns	

based	on	the	current	available	resources	of	mobile	devices.	

According	to	the	requirement	R3	defined	in	5.3	we	develop	a	dynamic	pattern	distribution	mecha‐

nism	regarding	the	resource	limitation	on	mobile	devices.	For	the	purpose	of	comparing	between	

different	pattern	bindings	and	deployment	positions,	we	use	Distribution	Fitness31	to	measure	the	

suitability	 of	 each	 pattern	 binding	 and	 deployment	 position.	 The	 dynamic	 pattern	 distribution	

calculates	the	distribution	fitness	of	all	possible	pattern	bindings	and	deployment	positions	(mobile	

device	or	backend	server)	according	to	the	current	workload	of	mobile	device	and	backend	server	

and	deploys	the	result,	which	has	the	highest	fitness	value.	

	

Figure	8‐1	The	process	of	dynamic	pattern	distribution	

	

																																																																		
31	Distribution	Fitness	is	a	value	that	indicates	the	propensity	of	the	distribution.	The	word	“fitness”	
here	doesn’t	refer	to	sport	fitness.	

Dynamic	Pattern	Distribution	

82	
	

Figure	 8‐1	 shows	 the	model	 of	 dynamic	 pattern	 distribution.	 The	 whole	 model	 consists	 of	 four	

steps:	 Pattern	 query,	 user‐based	 event	 resources	 allocation,	 calculation	 and	 distribution.	We	 ex‐

plain	the	functionality	of	each	step	as	follows.	

1. Pattern	query:	in	the	proposed	system	all	patterns	are	predefined	at	design	time	and	stored	

in	pattern	and	event	resource	Ontology	(this	ontology	is	introduced	in	Chapter	9).	As	soon	

as	a	pattern	is	required	for	the	data	processing	in	run	time,	the	system	queries	the	pattern	

and	event	resource	ontology	to	find	the	required	pattern	according	to	the	pattern	id,	which	

is	defined	in	MGN.	

2. User‐based	event	resources	allocation:	due	 to	different	equipment	of	users,	different	users	

also	have	different	event	resources.	In	this	step	the	system	searches	all	the	available	event	

resources	of	the	user	for	the	events	required	by	the	pattern	and	creates	all	possible	pattern	

bindings,	which	make	the	pattern	executable.	

3. Fitness	calculation:	In	this	step,	for	each	pattern	binding	we	calculate	the	distribution	fitness	

values	for	both	possible	deployment	positions	(i.e.,	mobile	device	and	backend	server).	

4. Distribution:	in	the	last	step	the	proposed	system	finds	the	optimal	result,	which	is	the	com‐

bination	 of	 pattern	 binding	 and	 deployment	 with	 the	 highest	 distribution	 fitness	 value.	

Then	the	pattern	is	deployed	to	the	deployment	position	of	the	optimal	result	and	sets	the	

stream	assignment	for	the	event	resources	used	by	the	optimal	result.	

8.2 Dynamic	pattern	distribution	algorithm	

In	 the	 previous	 section	we	 introduced	 the	 general	 idea	 of	 dynamic	 pattern	 distribution	 and	 de‐

scribed	 the	 dynamic	 pattern	 distribution	 model.	 In	 this	 section	 we	 explain	 the	 implementation	

details	of	the	proposed	dynamic	pattern	distribution	focusing	on	the	fitness	calculation.	

We	implement	a	dynamic	pattern	distribution	algorithm	to	realize	the	dynamic	pattern	distribution	

in	 the	 proposed	 system.	 For	 a	 better	 understanding	 we	 present	 the	 algorithm	 in	 the	 following	

pseudo‐code.	

	

	

	

	

	

	

Dynamic	Pattern	Distribution		

83	
	

Algorithm	8‐1	Dynamic	Pattern	Distribution	Algorithm	

	
Dynamic	Pattern	Distribution	Algorithm	

	
Step	1	

1:	Pattern	Patt	=	query	(pattern_id);	 //	search	for	a	pattern	with	given	id	

Step	2		 	

2:	Event	=	Patt.getEvents	();	 //	Event	is	a	set	of	all	events	used	in	the	pattern	Patt	

//	Event_resource	is	a	set	of	the	event	resources	of	each	event	in	Event	

3:	Event_resource	←	searchEventResource	(Event,	user_id);	

4:	PattB	=	allocate	(event_resource);	 //	PattB	is	a	set	of	pattern	bindings	with	a	different	event	resource	allocation	

Step	3	

5:	Deployment	=	{server,	mobile};	 //	Set	of	possible	deployment	positions	

6:	for	each	PattBi	∈	PattB	

7:		 for	each	deploy	∈	Deployment	

8:	 	 fitness	=	calculate	(PattBi,	deploy);	

9:	 	 Result.put	((pattBi,	deploy,	fitness));																					//	all	fitness	results	are	saved	in	the	Set	Result	

10:	 end	for	

11:	end	for	

Step	4	

12:	optimal	=	getHighestFitness	(Result);	 //	search	for	the	highest	fitness	value	 	

13:	patternBinding	=	optimal.getPatternBinding	();	

14:	location	=	optimal.getDeployment	();	

15:	deploy	(patternBinding,	location);	

	

The	 line	1	realizes	 the	 first	 step	of	pattern	distribution.	The	query	 function	searches	 the	pattern	

and	event	resource	ontology	and	returns	the	pattern	with	given	pattern	id.	The	codes	from	line	2	to	

line	4	 implement	the	second	step.	The	getEvent	method	of	pattern	returns	all	required	events	of	

such	pattern.	The	searchEventReource	function	searches	all	available	events	resources	for	given	

user	and	events.	The	allocate	function	creates	all	possible	pattern	bindings.	In	line	5	Deployment	

lists	 both	 deployment	 positions.	 The	 codes	 from	 line	 6	 to	 line	 11	 use	 two	 loops	 to	 calculate	 the	

Dynamic	Pattern	Distribution	

84	
	

fitness	 values	 for	 all	 combinations	 of	 pattern	 bindings	 and	 deployment	 positions.	 The	 calculate	

function	 realizes	 the	 concrete	distribution	 fitness	 calculation.	 The	 last	 step	distribution	 is	 imple‐

mented	in	line	12	to	line	15.	The	getHighestFitness	function	returns	the	best	result	according	to	

the	calculated	fitness	values.	The	codes	in	line	13	and	14	get	the	pattern	binding	and	deployment	

position	from	the	optimal	result.	In	line	15	the	deploy	function	deploys	the	best	result.	

Obviously	the	core	of	the	dynamic	pattern	distribution	is	the	distribution	fitness	calculation	of	each	

combination	of	pattern	binding	and	deployment	position.	Afterwards	we	explain	the	details	of	how	

to	calculate	the	distribution	fitness.	

The	calculation	is	based	on	a	set	of	formulas,	which	rate	the	suitability	of	pattern	distribution	from	

different	aspects,	including	computation	workload,	communication	and	cost	of	deploying	a	pattern	

with	a	set	of	event	resources	on	a	deployment	position.	

Before	 explaining	 the	 formulas	 we	 introduce	 some	 definitions	 in	 order	 to	 describe	 pattern	 in	 a	

formal	way.		According	to	[SeSt10]	a	pattern	can	be	presented	as	a	tuple	object	P	(E,	EO),	where	E	is	

the	collection	of	the	events	used	in	pattern	and	EO	is	the	collection	of	the	pattern	operators	used	in	

pattern.	 Each	 event	 	 ∈	 E	 can	 have	 several	 different	 event	 resources:	 	 , , …	 .	 For	

example,	a	temperature	event	can	be	obtained	from	either	a	wearable	sensor	equipped	by	the	user	

or	a	web	service	of	weather	station.	Due	to	the	different	allocations	of	event	resources,	each	pattern	

	 ∈	P	can	have	several	pattern	bindings:	 	 , , …	 .	A	certain	pattern	binding	pb	

has	a	fixed	allocation	of	event	resources,	which	are	different	from	all	other	pattern	bindings.	

Each	event	resource	has	a	set	of	attributes,	in	which	two	attributes	are	important	for	the	distribu‐

tion	calculation:	frequency	and	cost.	

Definition	8.3:	The	frequency	of	event	resource	indicates	the	number	of	events	that	are	provided	

by	such	event	resource	within	a	time	unit.	

Different	 event	 resources	 of	 an	 identical	 event	 can	 have	 different	 frequencies.	 For	 example	 an	

integrated	temperature	of	a	smartphone	generates	temperature	once	per	second,	while	web	service	

of	weather	station	updates	the	temperature	information	every	minute.	Different	frequency	leads	to	

different	communication	workload,	which	should	be	considered	in	the	distribution	calculation.	The	

frequency	of	event	resources	is	described	through	frequency	factor.	The	frequency	factor	of	event	e	

regarding	the	different	event	resources	Se	can	be	presented	as	 	 , , … .	

Definition	8.4:	The	cost	of	event	resource	indicates	the	money,	which	is	required	to	be	paid	for	the	

information.		

Dynamic	Pattern	Distribution		

85	
	

Taking	the	commercial	information	providers	into	account,	we	also	consider	the	costs	of	the	event	

resources	 in	 the	 distribution	 calculation.	 The	 cost	 of	 the	 event	 e	 regarding	 the	 different	 event	

resources	Se	can	be	presented	as	 	 , , … .	

The	distribution	fitness	of	a	pattern	binding	and	a	deployment	position	can	be	calculated	by	follow‐

ing	formula:	

, 	 	 	 , 		 (1)	

where	

 pb	is	the	pattern	binding,	

 d	is	the	deployment	position	(i.e.,	mobile	device	or	backend	server),	

 Costpb	denotes	the	cost	factor	of	such	pattern	binding,	

 DF	denotes	the	deployment	fitness	of	such	pattern	binding,	

 w1	and	w2	are	the	weight	coefficients	of	the	cost	factor	and	deployment	fitness,		

 w1	>	0,	w2	>	0,	w1	+	w2	=	1.	

The	value	of	distribution	fitness	is	in	the	range	 0, 1 .	The	whole	formula	consists	of	two	parts:	cost	

factor	and	deployment	fitness.	The	cost	factor	rates	the	pattern	binding	on	the	financial	aspect	and	

deployment	fitness	rates	the	pattern	binding	and	deployment	position	on	the	workload	aspect.	For	

the	system	using	no	commercial	information	providers,	the	cost	factor	can	be	ignored	(set	the	w1	

as	 0).	 For	 different	 users/systems	 the	 importance	 of	 both	 parts	 can	 vary	 using	 different	weight	

coefficients	w1	and	w2.		

The	 cost	 factor	 indicates	 the	expense	of	 a	 certain	pattern	binding	 comparing	 to	all	 other	pattern	

bindings.	The	concrete	value	of	cost	factor	can	be	calculated	as	following:	

	
,																		 	 ∑ 		 	 	

∑ 	 	 		 	∑ 	 ,				 	⁄ 																																																								(2)	

 E’	is	the	set	of	all	events	used	in	the	current	pattern,		

 S’	is	the	set	of		event	resources	used	in	the	current	pattern	binding,	

 ∑ 	 	 		is	sum	of	costs	of	the	event	resource	used	in	pattern	binding	pb,	

 ∑ 	 	 	 		is	the	sum	of	the	max	cost	of	the	events	used	in	pattern	p.	

The	value	of	cost	factor	is	between	0	and	1.	The	higher	value	of	cost	factor	means	that	the	pattern	

binding	 performs	 better	 on	 the	 financial	 aspect.	 If	 the	 cost	 factor	 of	 a	 pattern	 binding	 is	 1,	 the	

pattern	binding	is	totally	free	and	uses	no	paid	information	provider.	In	contrast,	if	the	cost	factor	

of	 a	 pattern	 binding	 is	 0,	 such	 pattern	 binding	 is	 the	most	 expensive	 pattern	 binding	 among	 all	

Dynamic	Pattern	Distribution	

86	
	

pattern	bindings.	In	the	case	the	pattern	uses	no	paid	information	provider	in	any	pattern	bindings,	

the	values	of	all	pattern	bindings	are	constantly	1.	

The	deployment	fitness	indicates	the	workload	caused	by	a	certain	pattern	binding	deployed	on	a	

certain	position	 considering	both	 computation	workload	and	communication	workload.	The	 con‐

crete	value	of	deployment	fitness	is	calculated	using	following	formula:	

, 	 , 	 	 															 (3)	

where	

 pb	is	the	pattern	binding,	

 d	is	the	deployment	position	(i.e.,	mobile	device	or	backend	server),	

 CF	denotes	the	communication	fitness	of	the	deployment,	

 LF	denotes	the	workload	fitness	of	the	deployment,	

 w3	and	w4	are	the	weight	coefficients	of	the	communication	workload	fitness	and	computa‐

tion	workload	fitness,	

 w3	>	0,	w4	>	0,	w3	+	w4	=	1.	

The	 deployment	 fitness	 contains	 two	 parts:	 communication	 workload	 fitness	 and	 computation	

workload	fitness.	The	influences	of	both	parts	can	be	varied	by	different	weight	coefficients	w3	and	

w4	depending	on	different	 systems.	 Since	 a	pattern	 can	be	deployed	either	on	 the	user’s	mobile	

device	or	on	the	backend	server,	each	pattern	binding	has	two	deployment	fitness	values:	 		

and	 .	

The	communication	workload	is	mainly	caused	by	the	events	transmission	between	mobile	device	

and	backend	server.	The	source	of	each	event	resource	can	be	located	either	in	the	mobile	device	or	

in	 the	backend	server.	Since	a	pattern	normally	uses	more	than	one	event,	 in	most	situations	 the	

events	are	sourced	from	different	parts	of	the	system.	In	order	to	execute	the	pattern,	all	the	events	

that	are	required	by	the	pattern	should	be	transmitted	to	the	part	of	the	system,	where	the	pattern	

is	deployed.	Such	event	transmission	is	called	Event	Forwarding.		

Event	Forwarding	leads	to	additional	workload	of	the	whole	system,	especially	the	mobile	device.	

We	use	communication	workload	fitness	CF	to	indicate	such	additional	workload.	The	communica‐

tion	workload	fitness	CF	in	(3)	depends	mainly	on	the	amount	of	the	events	resources	in	a	pattern	

binding	that	should	use	Event	Forwarding.	Obviously	if	most	event	resources	of	a	pattern	binding	

are	sourced	from	the	backend	server,	 from	the	communication	point	of	view	deploying	such	pat‐

tern	binding	on	 the	 server	 is	better	 than	deploying	 it	 on	a	mobile	device,	 since	 fewer	events	are	

required	 to	be	 forwarded	 to	 the	mobile	device.	The	 frequency	of	 event	 resources	 that	 should	be	

forwarded	 influences	 the	 communication	workload	 as	well.	 Using	 event	 forwarding	 on	 an	 event	

Dynamic	Pattern	Distribution		

87	
	

resource	with	high	frequency	can	cause	more	communication	workload	than	forwarding	two	event	

resources	with	low	frequency.	Hence	the	communication	workload	fitness	CF	can	be	calculated	as:	

,
∑ 	 	 	 	∑ 	

∑ 	 	
																																																																											(4)	

Where	

 pb	is	the	pattern	binding,	

 d	is	the	deployment	position	(i.e.,	mobile	device	or	backend	server),	

 f	denotes	the	frequency	factor	of	event	resources,	

 S’	is	the	set	of	all	event	resources	used	in	the	current	pattern	binding	pb,	

 S”	is	the	set	of	the	event	resources	that	need	event	forwarding,	

The	value	of	CF	is	located	in 0, 1 .	

Based	on	some	experiments	of	event	forwarding	and	studies	of	sensor	event	frequency,	frequency	

factors	are	categorized	into	several	groups	and	defined	as	following32:	

	 	

1,																													 1	 	 	 																																	
2,															1	 	 	 1	 	 	 			
3, 1	 	 	 10	 	 	 	
4,										10	 	 	 1	 	 	 	
5,																										 1	 	 	 																															

	

The	result	of	the	communication	workload	fitness	estimates	the	possible	workload	of	communica‐

tion	caused	by	the	current	pattern	binding	comparing	to	the	all	other	pattern	bindings	and	deploy‐

ment	 positions.	 In	 the	 case	 all	 event	 resources	 should	 be	 transmitted,	 the	 value	 of	CF	 is	 0.	 If	 no	

event	resource	requires	event	forwarding,	the	value	of	CF	is	1.		

The	computation	workload	fitness	LF	considers	the	current	computation	workload	of	the	deploy‐

ment	positions	(i.e.,	mobile	device	or	backend	server).	The	value	of	computation	workload	depends	

only	on	the	deployment	position	and	 is	same	for	all	pattern	bindings.	The	computation	workload	

fitness	can	be	calculated	as:		

																																																									 	 	 																																																																																									 		(5)	

where	

 d	is	the	deployment	position	(i.e.,	mobile	device	or	backend	server),	

 L	denotes	the	current	computation	workload	of	mobile	device	(or	backend	server),	

 The	value	of	L	is	between	0	and	1	presented	as	percentage.	
																																																																		
32	 The	 values	 of	 frequency	 factors	 are	 only	 for	 our	 prototype.	 For	 different	 hardware	models	 of	
mobile	devices,	the	frequency	factors	may	also	have	different	values.	

Dynamic	Pattern	Distribution	

88	
	

The	 computation	 workload	 is	 calculated	 depending	 on	 CPU	 usage,	 memory	 usage	 and	 current	

battery	volume	(for	the	backend	server	the	battery	volume	is	always	100%)	and	can	be	presented	

by	the	following	formula:	

	 	 	 	 	 	 			(6)	

For	 different	 configuration	 of	 system	 hardware,	 different	 weight	 coefficients	wcpu,	wmemory	 and	

wbattery	can	be	used	to	correspond	with	current	hardware.	

Therefore	 according	 to	 formulas	 presented	 in	 (1),	 (2),	 (3),	 (4),	 (5)	 and	 (6)	 for	 a	 pattern	with	N	

pattern	bindings,	 there	 are	maximal	 	possible	 combination	of	pattern	bindings	 and	deploy‐

ments.	We	calculate	the	fitness	values	of	all	 	combinations	and	find	the	pattern	binding	and	

deployment	with	the	highest	fitness	value.	This	combination	should	be	the	optimal	solution	of	the	

pattern	distribution.		

8.3 Example	

In	the	previous	section	we	introduced	pattern	distribution	model	and	the	details	about	distribution	

fitness	calculation.	In	this	section	we	provide	a	concrete	example	to	explain	the	whole	distribution	

process	for	a	better	understanding.	

Let’s	 continue	 the	 Peter’s	 scenario	 described	 in	 Chapter	 1:	 Peter	 uses	 the	 proposed	 system	 to	

monitoring	his	health	status	during	his	fitness	training.	Considering	the	historical	data	and	Peter’s	

health	 records,	 a	 special	 Monitoring	 Goal	 Network	 (MGN)	 has	 been	 defined	 to	 monitor	 Peter’s	

health	status,	especially	 for	arrhythmia	 risk.	 	As	predefined	 in	MGN,	 two	patterns	P1	 and	P2	 are	

required	for	jogging	monitoring:					

 P1	uses	speed,	 temperature	and	humidity	events	to	detect	 the	situation,	which	 is	a	danger	

for	a	person,	who	has	arrhythmia,	

 P2	detects	the	symptoms	that	can	be	an	indicator	of	an	arrhythmia	using	heart	rate	event.	

In	 the	 first	step	of	pattern	distribution,	P1	and	P2	will	be	retrieved	 from	the	pattern	&	event	re‐

source	 ontology	 by	 a	 pattern	 query.	 In	 the	 second	 step	 the	 system	 finds	 all	 the	 available	 event	

resources	 for	Peter	 to	build	 the	pattern	bindings.	A	 total	of	 four	different	events	are	 required	by	

these	 two	 patterns,	 the	 following	 table	 shows	 the	 concrete	 event	 resources	 of	 each	 event	 with	

detailed	attributes.	

	

	

Dynamic	Pattern	Distribution		

89	
	

Table	8‐1	Table	of	all	available	event	resources	for	patterns	

Event	Resource Event	Type Frequency	

factor	

Cost Source	

ER‐1	 Speed	event 4 free Sensor	on	smartphone

ER‐2	 Heart	Rate	event 4 free Sensor	on	smartphone

ER‐3	 Temperature	

event	

3 free Sensor	on	smartphone

ER‐4	 Humidity	event 3 free Sensor	on	smartphone

ER‐5	 Temperature	

event	

2 3€ Web	service	from	

weather	station	

(backend	server)	

ER‐6	 Humidity	event 2 3€ Web	service	from	

weather	station	

(backend	server)	

The	sensors	that	are	connecting	to	Peter’s	smartphone	can	provide	all	four	events	required	by	the	

patterns.	 In	addition,	 the	 temperature	event	and	humidity	event	can	be	provided	by	 the	backend	

server	 through	 a	web	 service	 of	 the	weather	 station.	However,	 Peter	 should	pay	3	 euros	 for	 the	

service.	The	frequency	of	 temperature	event	and	humidity	events	 from	sensors	on	smartphone	 is	

higher	than	the	frequency	of	the	events	from	web	service.	

According	to	the	available	event	resources	the	system	allocates	the	event	resources	in	the	patterns	

to	create	all	the	possible	pattern	bindings.	As	results,	P1	has	four	pattern	bindings.	Table	8‐2	lists	

all	 four	pattern	bindings	 for	pattern	P1	with	detailed	event	 resource	allocation.	P2	 has	only	one	

pattern	binding	Pb‐2,	which	uses	ER‐2	as	its	input.		

	

	

	

	

	

	

Dynamic	Pattern	Distribution	

90	
	

Table	8‐2	Pattern	bindings	for	P1	

Pattern	binding	 Speed	event	 Temperature	event	 Humidity	event	

Pb‐11	 ER‐1	 ER‐3	 ER‐4	

Pb‐12	 ER‐1	 ER‐3	 ER‐6	

Pb‐13	 ER‐1	 ER‐5	 ER‐4	

Pb‐14	 ER‐1	 ER‐5	 ER‐6	

In	 the	 third	 step	 the	 system	calculates	 the	Distribution	Fitness	 for	 all	 pattern	bindings	 and	de‐

ployment	positions.	The	current	system	information	of	Peter’s	smartphone	and	the	backend	server	

is	measured	as	following:	

 CPUMobile	=	23%	

 MemoryMobile	=	60%	

 BatteryMobile	=93%	

 CPUServer	=	10%	

 MemoryServer	=	20%		

The	weight	coefficients	used	in	the	calculation	are	defined	as	following:	

 w1	=	0.5,	w2	=	0.5	

 w3	=	0.2,	w4	=	0.8	

 wCPU	=	0.33,	wMemory	=	0.33,	wBattery	=	0.33	

In	total,	eight	distribution	fitness	values	should	be	calculated.	Firstly	we	calculate	the	Pb‐11‐server,	

which	uses	Pb‐11	and	is	deployed	on	the	backend	server.	

The	cost	factor	of	Pb‐11‐server	is	1,	since	no	paid	event	resources	are	used	by	Pb‐11‐server.	

The	communication	workload	fitness	CF	of	Pb‐11‐server	is	0,	because	all	used	event	resources	are	

obtained	from	Peter’s	smartphone	and	all	of	them	should	be	forwarded	to	the	backend	server.	

The	current	computation	workload	L	of	the	backend	server	is	calculated	as	following:		

0.33	 10% 0.33	 20% 0.33	 0% 10%	

Dynamic	Pattern	Distribution		

91	
	

Hence	the	computation	workload	fitness	LF	is:	

100% 10% 90%	

Based	on	CF	and	LF,	the	deployment	fitness	can	be	calculated:	

0.2	 0% 0.8	 90% 72%	

Finally,	the	distribution	fitness	of	Pb‐11‐server	is:	

0.5	 1 0.5	 0.72 0.86	

Similarly	the	distribution	fitness	for	all	pattern	bindings	and	deployment	positions	can	be	calculat‐

ed.	Table	8‐3	shows	the	calculation	results	of	all	pattern	bindings	and	deployment	positions	with	all	

detailed	elements.		Pb‐11‐mobile	has	the	highest	distribution	fitness	values	among	all	the	pattern	

bindings	 and	 deployment	 positions.	 Hence	 in	 the	 last	 step,	 pattern	P1	 should	 use	 all	 the	 event	

resources	from	sensors	connecting	to	Peter’s	smartphone	and	be	deployed	on	Peter’s	smartphone.		

Table	8‐3	Distribution	fitness	results	of	Pattern	P1	

Pattern	binding	&	

deployment	

Cost	

factor	

CF	 L	 LF	 DF	 Distribu‐

tion	

Fitness	

Pb‐11‐server
1	 0	 0.1	 0.9	 0.72	 0.86	

Pb‐11‐mobile
1	 1	 0.3	 0.7	 0.76	 0.88	

Pb‐12‐server
0.5	 0.22	 0.1	 0.9	 0.764	 0.632	

Pb‐12‐mobile
0.5	 0.78	 0.3	 0.7	 0.716	 0.608	

Pb‐13‐server
0.5	 0.22	 0.1	 0.9	 0.764	 0.632	

Pb‐13‐	mobile
0.5	 0.78	 0.3	 0.7	 0.716	 0.608	

Pb‐14‐server
0	 0.5	 0.1	 0.9	 0.82	 0.41	

Pb‐14‐	mobile
0	 0.5	 0.3	 0.7	 0.66	 0.33	

Dynamic	Pattern	Distribution	

92	
	

After	 the	 deployment	 of	 pattern	 P1,	 the	workload	 of	 Peter’s	 smartphone	 has	 been	 changed.	 The	

new	information	is	measured	as	following:	

 CPUMobile	=	28%	

 MemoryMobile	=	72%	

 BatteryMobile	=92%	

Table	8‐4	Distribution	fitness	results	of	Pattern	P2	

Pattern	binding	&	

deployment	

Cost	

factor	

CF	 L	 LF	 DF	 Distribu‐

tion	

Fitness	

Pb‐2‐server	
1	 0	 0.1	 0.9	 0.72	 0.86	

Pb‐2‐mobile	
1	 1	 0.36	 0.64	 0.712	 0.856	

The	results	of	the	distribution	fitness	calculation	are	shown	in	Table	8‐4.	The	value	of	distribution	

fitness	 for	 Pb‐2‐server	 is	 higher	 than	 the	 value	 for	 Pb‐2‐mobile.	 Therefore	 pattern	 P2	 will	 be	

deployed	on	the	backend	server.	

8.4 Conclusion	

In	 this	 chapter	 we	 described	 the	 dynamic	 pattern	 distribution,	 which	 enables	 resource‐aware	

pattern	 distribution	 between	 user’s	 mobile	 device	 and	 the	 backend	 server.	 Using	 a	 four	 steps	

distribution	model	 the	proposed	MCEP	 finds	 the	best	event	 resources	allocation	and	deployment	

position	for	the	required	pattern.	The	distribution	model	has	been	implemented	and	the	examples	

have	 shown	 how	 the	 calculation	works.	 The	 performance	 of	 the	 dynamic	 pattern	 distribution	 is	

evaluated	and	will	be	described	in	Chapter	10	(see	10.1.3.).	

	

	

93	
	

9 Semantic‐based	Dynamic	Pattern	
Management	

In	this	chapter	we	introduce	the	semantic‐based	dynamic	pattern	management,	which	uses	seman‐

tic	technologies	to	manage	patterns	and	event	resources,	in	order	to	achieve	dynamic	adaptation	to	

different	event	resources	in	run	time.	We	develop	a	pattern	and	event	resource	model	to	manage	

patterns	and	event	resources	of	users.	Three	methods	are	used	for	the	dynamic	pattern	adaptation.	

We	also	develop	algorithms	for	pattern	deployment	and	adaptation	to	changes	of	the	availability	of	

event	resources	in	run	time.	

9.1 Problem	statement	and	overview	

Since	Complex	Event	Processing	(CEP)	technology	[Luck01]	is	used	in	the	proposed	MCEP	system,	

patterns	play	an	 important	 role	 in	 the	 real‐time	personal	data	processing.	As	 the	 core	 feature	of	

CEP	 technology,	 patterns	 define	 the	 concrete	 processing	 procedure	 of	 real‐time	 data	 through	

specifying	one	or	more	combinations	of	events	[EtNi10].		

One	of	the	most	important	issues	in	CEP	technology	is	how	to	model	patterns.	The	patterns	used	by	

different	CEP	engines	are	defined	in	different	pattern	languages.	Considering	the	proposed	hybrid	

architecture	 of	MCEP	 system,	 at	 least	 two	 CEP	 engines	 are	 used	 in	 the	 proposed	 system.	 In	 our	

prototype,	Esper	[Espe07]	is	used	as	CEP	engine	on	mobile	devices,	whereas	another	different	CEP	

engine	such	as	ETALIS	[AFRS+10]	can	be	used	on	the	backend	server.	Furthermore,	by	combining	

cloud	technology,	multiple	different	CEP	engines	can	also	be	used	on	backend	server	infrastructure.	

Since	the	patterns	used	for	personal	data	processing	can	be	distributed	to	different	CEP	engines,	a	

general	pattern	model	is	required,	which	is	not	limited	to	special	pattern	language.	

On	the	other	hand,	a	pattern	requires	several	events	as	 inputs.	 In	the	proposed	MCEP	system	the	

events	 used	 in	 patterns	 are	mostly	 sourced	 from	 sensors	 connecting	 to	 users’	mobile	 devices	 or	

from	external	event	sources	(such	as	web	service)	on	the	backend	server.	Different	event	sources	

can	provide	the	same	events	in	different	streams,	and	each	of	them	is	defined	as	a	separate	event	

resource	 (defined	 in	 definition	 8.1).	 As	 introduced	 in	 Chapter	 8,	 to	 achieve	 the	 resource‐aware	

pattern	distribution,	the	concrete	event	resources	for	events	required	by	the	pattern	are	allocated	

through	pattern	deployment.		

However,	one	important	challenge	in	the	pattern	management	is	that	sometimes	there	is	no	availa‐

ble	event	resource	for	an	event	that	is	required	by	a	pattern.	To	make	it	even	worse,	the	availability	

of	an	event	resource	can	change	in	run	time	after	it	has	been	allocated,	for	various	reasons,	ranging	

Semantic‐based	Dynamic	Pattern	Management	

94	
	

from		the	sensor	running	out	of	battery	or	a	disconnection	between	sensor	and	mobile	device.	The	

former	 situation	makes	 the	 pattern	 unable	 to	 be	 deployed,	whereas	 the	 latter	 situation	 leads	 to	

failure	of	pattern	execution.		

Hence,	 in	 order	 to	 ensure	 the	 deployment	 and	 execution	 of	 patterns,	 the	 information	 of	 event	

resources	of	each	user	should	be	stored	and	dynamically	updated	in	run	time.	

According	to	the	requirement	R6	defined	in	5.3,	we	propose	to	use	semantic	technologies	to	achieve	

dynamic	 pattern	 management	 with	 the	 purpose	 of	 solving	 the	 problems	 mentioned	 above:	 no	

available	event	resources	of	required	event	and	the	availability	of	event	resource	changes	in	run‐

time.	The	semantic‐based	dynamic	pattern	management	provides	the	following	functionalities:	

 Providing	general	pattern	model	for	pattern	definition,	which	enables	the	defined	patterns	to	

be	used	by	different	CEP	engines.	

 Managing	and	dynamically	updating	information	of	event	resources	for	each	user.	

 Annotating	 event	 resources’	metadata,	which	 enables	 optimal	 event	 resource	 allocation	 in	

the	pattern	distribution	process.	

 Providing	semantic‐based	pattern	adaptation	methods.	

 Adapting	to	the	situation	of	not‐available	event	resource	by	pattern	deployment.	

 Adapting	to	changes	of	availability	of	event	resource	during	pattern	execution.	

In	the	rest	part	of	this	chapter	we	introduce	these	functionalities	in	details.	

9.2 Pattern	and	event	resource	model	

As	stated	in	the	previous	section	a	general	pattern	model	is	required	in	the	proposed	MCEP	system	

for	 defining	 patterns	 in	 a	 common	 format,	 in	 order	 to	 reduce	 the	 costs	 of	 defining	 patterns	 for	

different	CEP	engines	 in	different	pattern	 languages.	We	develop	a	tree	structured	model	for	pat‐

terns	based	on	the	pattern	model	described	in	[SeSt10].	It	supports	the	common	functions	for	most	

CEP	 engines,	 such	 as	 logic	 operators	 (i.e.,	 AND,	OR,	NOT	 and	 etc.),	 temporal	 operators	 (i.e.,	 SEQ,	

time	window	and	etc.)	and	condition	customization.	

In	addition,	 the	 information	of	event	resources	of	users	 is	required	to	be	modeled	and	stored	for	

pattern	 execution.	Considering	 that	 event	 resources	 are	 tightly	 connected	 to	 the	patterns	 for	 the	

personal	data	processing,	we	model	both	patterns	and	event	resources	together	in	one	semantic‐

based	model.		

Semantic‐based	Dynamic	Pattern	Management		

95	
	

	

Figure	9‐1	Pattern	and	event	resource	model	

Figure	9‐1	 illustrates	a	 simplified	pattern	and	event	 resource	model33.	 In	 the	 following	we	 intro‐

duce	the	classes	and	their	functionalities	briefly.	

On	the	right	side	is	the	pattern	model	including	two	classes:	Pattern	and	Goal.		

 Pattern:	This	class	models	the	pattern	defined	for	personal	data	processing.	 	The	complete	

pattern	model	includes	the	description	of	various	pattern	operators,	operands	and	their	re‐

lations	and	can	be	very	complex.	Since	the	pattern	modeling	is	not	the	key	feature	of	this	

thesis,	it	is	not	introduced	here	in	details.	Three	important	object	properties	are	shown	in	

the	 figure:	 “goal”	 indicates	 the	 purpose	 of	 the	 pattern.	 “useEvent”	 is	 an	 abstract	 object	

property34	 and	 indicates	 the	 input	 events	 of	 the	 current	 pattern.	 “output”	 is	 also	 an	 ab‐

stract	object	property,	which	 is	used	 to	 indicate	 the	output	event	of	 the	 current	pattern.	

Each	pattern	has	a	unique	id	of	a	string	value	and	is	indicated	by	data	property	“id”.	

 Goal:	This	class	specifies	the	purpose	of	patterns.	Different	patterns	can	perform	the	same	

detection	using	different	 input	events	or	expressions.	For	example,	 to	detect	 the	average	

heart	 rate	 of	 a	 user,	 the	 pattern	 can	 use	 either	 simple	 heart	 rate	 event	 or	 complex	 ECG	

(Electrocardiography)	event	as	 input.	The	patterns	with	 the	same	goal	perform	the	same	

detection	and	can	be	replaced	by	each	other.	

On	the	left	side	is	the	model	for	event	resources.	

																																																																		
33	This	is	only	the	simplified	patterns	&	event	resource	model.	The	complete	model	described	in	the	
RDF/XML	format	is	attached	in	appendix.	
34	An	abstract	object	property	 is	a	property	 that	doesn’t	exist	 in	 the	real	ontology.	 It	 expresses	a	
chain	of	classes	and	object	properties	between	the	domain	and	the	range	of	the	abstract	property	to	
simplify	the	description	in	the	figure.	

Semantic‐based	Dynamic	Pattern	Management	

96	
	

 Event	resource:	This	class	defines	the	concept	of	event	resource.	As	shown	in	Figure	9‐1	it	

has	two	object	properties	and	several	data	properties.	The	object	property	“provideEvent”	

indicates	the	event	type	of	such	event	resource.	The	object	property	“connectTo”	indicates	

the	 source	 of	 current	 event	 resource.	 A	 set	 of	 data	 properties	 indicate	 the	metadata	 of	

event	 resources.	 For	 example,	 the	 data	 property	 “available”	 indicates	 the	 availability	 of	

current	event	resource	using	a	Boolean	value.	The	other	metadata	of	event	resources	men‐

tioned	in	the	chapter	8,	such	as	cost	and	frequency	are	indicated	by	other	data	properties.	

We	don’t	 list	 all	 these	properties	here,	 since	 the	metadata	of	 event	 resources	 can	be	 ex‐

tended	later.	

 Event:	This	 class	denotes	 the	 type	 of	 events	 used	 in	 the	proposed	MCEP	 system.	Each	 in‐

stance	of	this	class	indicates	an	MCEP	event	type,	which	has	been	defined	in	the	system.	

 User:	This	class	indicates	the	registered	users	of	the	system.	Each	instance	of	this	class	is	a	

registered	user.	The	object	property	“eventResource”	indicates	the	event	resources	of	this	

user.	

 Event	Source:	This	class	indicates	the	source	of	event	resources.	It	has	two	sub	classes:	Sen‐

sor	and	External	Event	Source.	

o Sensing	Device:	 This	 class	 denotes	 the	 sensors,	 which	 are	 connected	 to	 users’	

mobile	device	and	sense	the	personal	data	of	users.	Based	on	the	existing	approach	

for	 the	 sensor	 model,	 we	 model	 the	 sensors	 in	W3C	 Semantic	 Sensor	 Network	

(SSN)	ontology	[CBBG+12].	This	class	is	equivalent	to	“Sensing	Device”	in	SSN	on‐

tology.	

o External	Event	Source:	This	 class	 indicates	 the	 information	sources	 from	 inter‐

net,	such	as	Web	service	from	weather	stations	or	social	networks	(e.g.,	Facebook,	

Twitter).	Normally	the	external	event	sources	are	connected	to	the	backend	serv‐

er.	

The	pattern	used	for	a	special	use	case	should	be	defined	in	the	design	time	of	such	use	case	and	be	

stored	in	the	pattern	and	event	resource	ontology	with	a	unique	id.	In	the	run	time	of	such	use	case,	

the	pattern	 can	 then	be	 found	 in	 the	ontology	by	query	with	 the	 id	of	 the	pattern.	However,	 the	

patterns,	which	are	 the	 results	of	 the	queries	 in	 the	ontology,	 cannot	be	directly	deployed	 to	 the	

CEP	engines,	since	the	patterns	are	defined	in	the	MCEP	common	form	and	should	be	translated	to	

the	special	pattern	language	required	by	the	CEP	engine,	to	which	the	pattern	will	be	deployed.	

Semantic‐based	Dynamic	Pattern	Management		

97	
	

	

Figure	9‐2	Pattern	translation	

Figure	9‐2	shows	the	pattern	translation	procedure.	The	semantic	modeled	pattern	is	retrieved	by	a	

query	with	pattern	id	from	the	pattern	and	event	resource	ontology.		According	to	the	deployment	

of	such	pattern,	it	is	translated	into	different	pattern	languages	depending	on	the	CEP	engine.	For	

example,	in	the	prototype	Esper	CEP	engine	is	used	on	mobile	devices,	in	the	case	of	being	deployed	

on	mobile	device	of	user,	the	pattern	is	translated	into	Esper	pattern	language	by	an	Esper	transla‐

tor.	 For	 each	 CEP	 engine	 that	 uses	 special	 pattern	 language,	 a	 pattern	 translator	 is	 required	 to	

translate	the	pattern	from	MCEP	format	into	engine	specified	pattern	language.	In	the	prototype	of	

MCEP	 system	 we	 provide	 two	 translators:	 one	 is	 Esper	 translator,	 another	 is	 BDPL	 translator,	

which	translates	patterns	into	BDPL	language	used	by	DCEP	engine	[SSOG12].			

9.3 Adaptation	methods	

Considering	the	variety	of	sensors,	mobile	devices	and	other	equipment,	each	user	may	have	differ‐

ent	events	and	different	event	resources.	For	example,	one	user	may	use	a	sensor,	which	measures	

only	heart	rate	(i.e.,	it	can	only	provide	heart	rate	event),	while	another	user	uses	a	sensor	measur‐

ing	ECG	(i.e.	it	generates	an	ECG	event).	The	proposed	MCEP	system	can	perform	the	same	monitor‐

ing	for	these	two	users	but	uses	different	patterns	regarding	the	different	events	provided	by	the	

users.		Hence	the	available	event	resources	of	each	user	play	an	important	role	for	pattern	deploy‐

ment.	 Furthermore	 the	 availability	 of	 event	 resources	 can	 change	 during	 run	 time	 for	 various	

reasons.	Since	the	change	of	the	availability	of	event	resources	can	affect	the	execution	of	patterns,	

the	 proposed	MCEP	 system	 should	 be	 able	 to	 adapt	 to	 such	 changes	 to	 ensure	 the	 execution	 of	

patterns.	Using	proposed	pattern	and	event	resource	ontology,	the	information	of	event	resources	

of	each	user	is	stored	and	updated	in	run	time.	

	

Semantic‐based	Dynamic	Pattern	Management	

98	
	

Three	methods	are	developed	to	achieve	dynamic	adaptation	to	such	predicaments	using	querying	

and	reasoning:	

 Generating	missing	event	by	additional	pattern,	

 Using	available	replacement	patterns,	and	

 Using	alternative	event	resources.	

In	the	following	subsections	we	introduce	all	three	methods	in	details.	

9.3.1 Generating	missing	event	by	additional	pattern	

The	events	used	for	personal	data	processing	are	mostly	sensed	by	sensors	and	contain	the	infor‐

mation	about	the	user	and	the	environment	that	is	around	the	user.	The	nature	of	the	information	is	

that	most	of	 time	 information	 is	related	to	each	other,	which	enables	some	events	 to	be	deduced	

from	other	events	using	CEP	technology.	For	example,	the	current	running	speed	of	a	user	can	be	

deduced	from	the	real‐time	GPS	events.	The	relations	between	the	events	provide	the	possibility	of	

using	 additional	 pattern	 to	 achieve	 adaptation	 to	 the	 situation	 of	 missing	 required	 events	 of	 a	

certain	pattern.				

In	case	where	a	required	event	of	a	certain	pattern	is	missing,	other	patterns,	which	can	produce	

this	missing	event	through	processing	of	other	available	events,	can	be	used	to	generate	this	miss‐

ing	pattern	in	real‐time.	

	

Figure	9‐3	Example	of	generating	missing	event	by	additional	pattern	

Since	 patterns	 and	 event	 resource	 are	modeled	 in	 semantic	model,	 the	 search	 for	 an	 additional	

pattern	 can	 be	 easily	 done	 with	 queries	 and	 reasoning.	 Figure	 9‐3	 shows	 an	 example	 of	 using	

additional	 patterns	 to	 solve	 the	 problem	 of	 missing	 event.	 According	 to	 pre‐defined	monitoring	

procedure,	Pattern‐1,	which	uses	Event‐1	as	the	input	event,	should	be	deployed	to	perform	some	

monitoring	tasks	for	User	X.	However,	Event	Resource‐1of	User	X,	which	provides	Event‐1,	is	not	

available	 at	pattern	deployment	 time.	 Fortunately	Pattern‐2	 can	produce	Event‐1	 and	 the	 input	

Semantic‐based	Dynamic	Pattern	Management		

99	
	

event	 of	Pattern‐2	 is	Event‐2,	which	 can	be	provided	by	User	X	 through	Event	Resource‐2.	 In	

such	case	Pattern‐2	can	be	used	as	additional	pattern	to	generate	Event‐1.	

9.3.2 Using	available	replacement	patterns	

The	second	adaptation	method	is	to	use	available	replacement	pattern.	Some	monitoring	tasks	can	

be	performed	 through	different	methods,	which	use	different	patterns	 and	 require	 also	different	

input	events.	Hence,	 for	such	monitoring	 tasks	 the	replacement	patterns	can	be	used,	 in	 the	case	

that	the	pre‐defined	pattern	cannot	be	deployed	duo	to	missing	events.	

As	 introduced	 in	 the	 section	9.2,	 the	 “Goal”	 class	 indicates	 the	purpose	of	patterns.	The	patterns	

perform	the	same	monitoring	task	have	the	same	“Goal”	and	can	be	used	as	replacement	patterns	

for	each	other.	

	

Figure	9‐4	Example	of	using	replacement	pattern	

Figure	9‐4	shows	an	example	of	how	the	method	works.	Pattern‐1	and	pattern‐2	have	the	same	

goal,	which	means	they	perform	the	same	monitoring	task.	Pattern‐1	uses	Event‐1	as	input	event	

while	Pattern‐2	uses	Event‐2	as	input	event.	Pattern‐1	is	the	pre‐defined	pattern	for	achieving	the	

monitoring	 task	 in	Monitoring	 Goal	 Network	 (MGN).	 But	 due	 to	 the	 unavailability	 of	Event	Re‐

source‐1	of	User	X,	Pattern‐1	becomes	unavailable	for	User	X,	while	Pattern‐2	is	available.	In	the	

case	of	such	situation	Pattern‐2	can	be	used	as	replacement	pattern	of	Pattern‐1.		

9.3.3 Using	alternative	event	resources	

The	third	method	is	to	use	alternative	event	resource.	As	mentioned	in	the	previous	sections,	a	user	

can	 have	multiple	 event	 resources	 for	 one	 event,	 which	 are	 sourced	 from	 different	 sources.	 For	

example,	 if	a	user	is	equipped	with	an	additional	sensor	with	GPS	function,	considering	that	most	

Semantic‐based	Dynamic	Pattern	Management	

100	
	

smartphones	integrate	GPS	as	a	standard	sensor,	this	user	has	two	event	resources	of	GPS	events,	

which	are	provided	by	his	 smartphone	and	sensor.	The	multiple	event	 resources	enable	 the	pro‐

posed	 system	 to	 ensure	 the	 execution	 of	 the	 deployed	 pattern,	 in	 case	 that	 the	 assigned	 event	

resource	becomes	unavailable	during	the	run	time.	

	

Figure	9‐5	example	of	using	alternative	event	resource	

Figure	9‐5	 illustrates	 the	example	of	using	alternative	event	 resource.	 	User	X	 has	 two	event	 re‐

sources,	which	can	produce	Event‐1.	Event‐1		is	used	as	input	event	by	Pattern‐1.	According	to	the	

monitoring	procedure,	Pattern‐1	 is	 required	 to	be	deployed.	By	deploying	Pattern‐1,	Event	Re‐

source‐1	 is	selected	to	be	used	by	pattern‐1.	During	the	monitoring	Event	resource‐1	becomes	

unavailable,	 due	 to	 the	 disconnection	 of	 sensor.	 In	 order	 to	 ensure	 the	 execution	 of	pattern‐1,	

Event	Resource‐2	 is	used	as	an	alternative	event	resource	to	provide	Event‐1	 in	place	of	Event‐

Resource‐1.	

9.4 Algorithms	of	real‐time	pattern	adaptation	

As	stated	in	9.1,	two	issues	can	arise	in	practice:	no	available	event	resource	for	required	event	by	

pattern	deployment	and	the	change	of	the	availability	of	assigned	event	resource	in	run	time.	In	this	

section	we	 introduce	the	algorithm	that	combines	 the	proposed	adaptation	methods	to	deal	with	

such	predicaments.	

9.4.1 Adaptation	algorithm	by	pattern	deployment	

Combining	the	adaptation	methods	of	using	additional	pattern	and	replacement	pattern,	the	algo‐

rithm	 tries	 to	 achieve	 the	 dynamic	 adaptation	 of	 patterns	 by	 pattern	 deployment	 to	 solve	 the	

problem	of	no	available	event	resource	for	required	event.	

Semantic‐based	Dynamic	Pattern	Management		

101	
	

Algorithm	9‐1	Adaptation	algorithm	by	pattern	deployment	

	
Adaptation	algorithm	by	pattern	deployment	

	
Input:		 pattern_ID:	the	id	of	the	pattern	that	is	required	to	be	deployed	

	 	 user_ID:	the	id	of	the	user	

01:		 boolean	available	=	checkPattern	(pattern_ID,	user_ID);			//	check	the	availability	of	pattern	

02:	 if	(available)		 //	if	pattern	is	available,	deploy	pattern	and	finish	algorithm	

03:						 	 deployPattern	(pattern_ID);	

04:	 	 return;	

05:	 end	if	

	 //	method	of	using	additional	patterns	for	missing	events		

06:	 missing_events	=	getMissingEvents	(pattern_ID,	user_ID);		 //	get	missing	events	from	pattern	

07:	 boolean	hasAditionalPattern	=	true;	

	 //	for	each	missing	event,	search	additional	patterns	that	can	produce	this	event	

08:	 for	each	Event	∈	missing_events	

09:	 	 event_additional_patterns	=	searchAdditionalPattern	(event,	user_ID);	

10:	 	 Pattern	p	=	getAvailablePattern	(event_additional_patterns,	user_ID);	 	 	

11:	 	 if	(p	==	null)	 //	if	no	available	additional	pattern	for	one	of	the	missing	events																											

12:	 	 	 hasAditionalPattern	=	false;	

13:																				break;		 //	stop	loop	and	jump	to	line	17	 	

14:		 	 end	if	

15:	 	 additional_patterns.add	(p);	

16:	 end	for	

17:	 if	(hasAditionalPattern)		 //	if	additional	patterns	for	all	missing	events	are	found	 	

18:	 	 deployPattern	(additional_patterns);		 //	deploy	additional	pattern	

19:	 							deployPattern	(pattern_ID);		 //	deploy	original	pattern	 	

20:	 	 return;		 //	end	adaptation	algorithm	

21:	 end	if	

	 //	method	of	using	replacement	pattern	

Semantic‐based	Dynamic	Pattern	Management	

102	
	

22:	 replacement_patterns	=	searchReplacementPattern	(pattern_ID,	user_ID);	

23:		 Pattern	p	=	getAvailablePattern	(replacement_patterns,	user_ID);	

24:	 if	(p	==	null)		 //	if	no	replacement	pattern	is	found,	throw	exception	and	finish	adaptation	algorithm	 																											

25:	 	 	throw	PatternUnavailableException;	 	

26:	 	end	if	

27:	 	deployPattern	(p);	 //	deploy	replacement	pattern	

	

Above	is	the	adaptation	algorithm	for	pattern	deployment.	 	The	input	to	the	algorithm	is	the	id	of	

the	pattern	 that	 is	 required	 to	be	deployed	and	 the	 id	of	 the	user.	The	 code	 in	 line	1	 checks	 the	

availability	of	the	pattern.	If	the	user	can	provide	all	the	required	events	for	the	pattern,	the	pattern	

is	directly	deployed	using	the	code	in	 line	2	through	line	5.	The	function	deployPattern	uses	the	

algorithm	8‐1	to	find	the	best	distribution	of	the	pattern.			

In	case	that	the	pattern	is	not	available,	the	method	of	using	additional	patterns	is	used	firstly.	The	

code	 in	 line	6	gets	all	 the	missing	events	of	 the	pattern.	The	 loop	 from	 line	8	 to	 line	16	searches	

additional	patterns	for	each	missing	event.	The	function	searchAdditionalPattern	searches	addi‐

tional	patterns	for	a	special	output	event.	If	additional	patterns	for	all	missing	events	are	found,	the	

code	in	line	17	to	21	deploys	the	additional	patterns	and	the	required	pattern.	The	code	in	line	10	

through	14	checks	the	availability	of	additional	pattern.	If	one	missing	event	has	no	available	addi‐

tional	 pattern,	 the	 code	 in	 line	 13	 stops	 the	 loop	 of	 searching	 for	 additional	 patterns,	 since	 the	

method	doesn’t	work.		

The	method	of	using	replacement	pattern	is	used	in	 lines	22	through	27.	The	function	searchRe‐

placementPattern	 searches	 for	 the	 replacement	 patterns	 of	 the	 required	 pattern.	 The	 found	

replacement	pattern	 is	deployed	 in	 line	27.	 In	 the	 case	 that	 no	 replacement	pattern	 is	 found,	 an	

exception	will	be	thrown	to	indicate	that	the	required	pattern	cannot	be	deployed	and	there	is	also	

no	alternative	solution.			

9.4.2 Algorithm	of	adaptation	to	change	of	event	resource	

To	deal	with	the	situation	that	the	availability	of	an	event	resource	changes	in	run	time,	we	combine	

all	 three	 adaptation	methods	 and	 developed	 an	 adaptation	 algorithm	 to	 ensure	 the	 execution	 of	

patterns.		

	

	

Semantic‐based	Dynamic	Pattern	Management		

103	
	

Algorithm	9‐2	Algorithm	of	adaptation	to	change	of	event	resource	

	
Algorithm	of	adaptation	to	change	of	event	resource	

	
Input:		 event_resource:	the	event	resource	that	becomes	unavailable	in	run	time	

	 	 pattern_ID:	the	id	of	the	pattern	that	uses	the	event	resource	

	 	 user_ID:	the	id	of	the	user	

01:		 Event	event	=	event_resource.getEvet	();				 //	get	the	event	type	of	event	resource	

	 //	search	the	alternative	event	resource	

02:	 Event_Resource	resource	=	searchAvailableEventResource	(event,	user_ID);	

03:						 if	(resource	!=	null)	 //alternative	event	resource	is	found																											

04:	 	 assignResource	(resource,	user_ID);		 //assign	alternative	event	resource																											

05:	 	 return;		 //quit	the	algorithm																											

06:	 end	if	

	 //	method	of	using	additional	patterns	for	missing	events		

07:	 event_additional_patterns	=	searchAdditionalPattern	(event,	user_ID);	

08:	 Pattern	p	=	getAvailablePattern	(event_additional_patterns,	user_ID);	 	 	

09:	 if	(p	!=	null)	 //	additional	pattern	is	found																											

10:	 	 deployPattern	(p);		 //	deploy	additional	pattern																											

11:	 	 return;		 //quit	the	algorithm																											

12:		 end	if	

	 //	method	of	using	replacement	pattern	

13:	 replacement_patterns	=	searchReplacementPattern	(pattern_ID,	user_ID);	

14:		 Pattern	p	=	getAvailablePattern	(replacement_patterns,	user_ID);	

15:	 if	(p	==	null)		 //	if	no	replacement	pattern	is	found,	throw	exception	and	finish	adaptation	algorithm	 																

16:	 	 	throw	PatternExecutionException;	 	

17:	 	end	if	

18:	 undeployPattern	(pattern_ID);		 //	undeploy	current	pattern	

19:	 	deployPattern	(p);	 //	deploy	replacement	pattern	

	

Semantic‐based	Dynamic	Pattern	Management	

104	
	

Algorithm	9‐2	 shows	 the	 concrete	 code	of	 algorithm	 to	 adapt	 to	 the	 change	of	 availability	 of	 as‐

signed	event	resource	in	run	time.	The	inputs	include	the	event	resource	that	becomes	unavailable,	

the	 id	of	 the	pattern	using	such	event	resource	and	the	 id	of	the	user.	The	code	 in	 line	1	gets	the	

event	type	that	is	provided	by	the	event	resource.	The	method	of	alternative	event	resource	is	used	

firstly	in	line	2	to	6.		The	function	searchAvailableEventResource	searches	for	the	current	availa‐

ble	 event	 resources	 for	 a	 certain	 event	 type.	 If	 there	 is	 available	 alternative	 event	 resource,	 it	 is	

assigned	to	 the	CEP	engine	to	ensure	the	execution	of	 the	pattern.	 In	 the	case	that	no	alternative	

event	resource	is	found,	the	algorithm	searches	for	additional	patterns	to	produce	required	event,	

which	is	described	in	lines	7	through	12.	If	there	is	still	no	available	additional	patterns	for	such	an	

event,	the	algorithm	then	searches	for	the	replacement	pattern	for	the	required	pattern	in	lines	13	

through	 19.	 If	 the	 replacement	 pattern	 is	 found,	 the	 original	 pattern	 will	 be	 taken	 out	 and	 the	

replacement	 will	 be	 deployed.	 Otherwise,	 an	 exception	 of	 pattern	 execution	 will	 be	 thrown	 to	

inform	the	system	that	the	deployed	pattern	doesn’t	work	any	longer.	

9.5 Conclusion	

In	this	chapter	we	described	the	dynamic	pattern	management	based	on	semantic	technologies.	We	

developed	a	pattern	and	event	resource	model	to	manage	the	patterns	and	real‐time	information	of	

event	 resources	 of	 users.	 Using	 query	 and	 reasoning	 function	 of	 semantic	model,	 we	 developed	

three	adaptation	methods	to	achieve	dynamic	adaptation	of	patterns.	We	have	also	developed	two	

algorithms	to	solve	the	issues	of	no	available	event	resource	for	required	event	by	pattern	deploy‐

ment	and	the	change	of	the	availability	of	assigned	event	resource	in	run	time.	The	performance	of	

the	dynamic	adaptation	methods	and	algorithm	are	evaluated	and	will	be	described	in	Chapter	10	

(see	10.1.2).	

	

105	
	

	

PART	III	

Finale	

	

	

107	
	

10 Evaluation	
In	 this	 chapter	we	present	 some	experimental	 results	obtained	with	 the	proposed	MCEP	system.	

We	 have	 performed	 various	 evaluation	 tests	 including	 performance	 evaluations	 and	 use	 case	

evaluations	in	order	to	assess	our	approach	from	different	points	of	view.	In	performance	evalua‐

tions	we	performed	several	experiments	from	various	aspects	regarding	the	key	features	of	MCEP	

system	described	in	this	thesis.	In	the	use	case	evaluations,	we	evaluated	two	mobile	applications,	

which	use	the	proposed	MCEP	system,	using	questionnaire	to	analyze	the	real	user	experience.	

10.1 Performance	Evaluation	

The	approach	described	in	this	thesis	provide	a	foundation	for	developing	innovative	mobile	appli‐

cations	 for	efficient	context‐aware	processing	of	 real‐time	personal	data	streams	with	novel	soft‐

ware	 architecture	 and	 several	 useful	 features.	 It	 is,	 however,	 quite	 a	 challenge	 to	 evaluate	 the	

performance	of	the	proposed	approach,	as	the	performance	of	the	whole	personal	data	processing	

system	 relies	 not	 only	 upon	 the	 approach	 itself,	 but	 also	 on	 the	 patterns	 for	 the	 personal	 data	

processing	and	the	monitoring	procedure	modeling	(i.e.,	MGN).	The	quality	of	pattern	modeling	and	

MGN	modeling	 can	heavily	 affect	 the	performance	of	 the	whole	personal	data	processing	 system	

and	at	the	same	time	the	quality	of	pattern	modeling	and	MGN	modeling	is	difficult	to	measure	and	

control	as	well.		

In	 order	 to	 evaluate	 the	 performance	 of	 our	 approach,	we	 propose	 to	 evaluate	 the	 key	 features	

separately.	We	have	designed	several	experiments	for	the	key	features,	including	the	performance	

of	Complex	Event	Processing	on	mobile	devices,	the	performance	of	adaptation	methods	and	algo‐

rithms,	and	the	performance	of	pattern	distribution	algorithm.	

All	 the	experiments	presented	 in	 this	 section	were	 carried	out	on	an	ASUS	Eee	Pad	Transformer	

TF101	as	the	mobile	device	and	a	Lenovo	ThinkPad	T420	laptop	as	the	backend	server.	ASUS	Eee	

Pad	Transformer	TF101	has	a	1	GHz	dual‐core	Nvidia	Tegra	2	processor	and	1GB	RAM	running	on		

Android	4.0.3	system.	The	Lenovo	ThinkPad	T420	has	one	Intel	Core	i5‐2520M	processor	2.5GHz,	

8GB	of	RAM	running	on	Windows	7	professional	64‐Bit.	In	the	following	subsections	we	present	the	

detailed	experiment	settings	and	the	evaluation	results.	

10.1.1 Mobile	CEP	evaluation	

The	most	important	feature	of	our	approach	is	to	use	Complex	Event	Processing	on	mobile	devices	

to	 process	 real‐time	personal	 data.	We	 carry	 out	 the	 experiment	 to	 evaluate	 the	 performance	 of	

Evaluation	

108	
	

mobile	CEP	engine	used	in	the	proposed	MCEP	system.	As	introduced	in	Chapter	6,	the	mobile	CEP	

engine	 is	an	android‐based	Esper	engine	[Bade10,	Espe07].	The	experiment	shows	the	processing	

capability	of	the	mobile	CEP	engine	and	investigates	the	effect	from	a	number	of	event	streams	and	

a	number	of	patterns.	The	results	of	the	experiment	are	shown	in	the	form	of	throughput.	As	pre‐

sented	in	[EtRS11],	there	exist	many	different	definitions	for	throughput.	Detailed	throughput	can	

be	measured	in	following	ways:	

 Input	throughput:	it	measures	the	number	of	input	events	that	the	system	can	process	within	

a	given	time	interval.	

 Processing	 throughput:	 it	 measures	 the	 total	 processing	 time	 divided	 by	 the	 number	 of	

events	processed	within	a	given	time	interval.	

 Output	throughput:	 it	measures	the	number	of	events	that	are	emitted	to	event	consumers	

within	a	given	time	interval.	

In	 the	 experiment	 we	 adopt	 the	 input	 throughput.	 The	 whole	 outputs	 from	 all	 tests	 have	 been	

validated	and	it	ensures	that	the	system	produces	the	consistent	and	correct	results.	

In	the	experiment	we	have	implemented	an	experimental	mobile	application	by	using	the	proposed	

MCEP	 system	 along	with	 an	 event	 stream	 generator	 and	 a	 pattern	 generator.	 The	 event	 stream	

generator	produces	random	events	belonging	to	several	streams,	where	the	generated	numbers	can	

be	 configured	 in	 the	 experiment	 application.	 The	 pattern	 generator	 generates	 random	 patterns	

using	the	events	produced	by	the	event	stream	generator.		

We	evaluate	the	performance	of	mobile	CEP	by	measuring	the	input	throughput	with	the	variation	

of	stream	numbers	and	pattern	numbers.		The	concrete	experiment	settings	are	as	follow:	

 1000	events	are	produced	and	pushed	to	the	mobile	CEP	engine	continuously;	

 Ten	event	groups	are	used,	where	events	are	from	1	to	10	different	streams;	

 The	number	of	deployed	patterns	varies	from	1	to	20.	

The	results	of	the	performance	evaluation	are	shown	in	Figure	10‐1	and	Figure	10‐2.	Figure	10‐1	

shows	the	event	throughputs	being	plotted	against	different	numbers	of	deployed	patterns.	Figure	

10‐2	 shows	 the	 event	 throughputs	 grouped	 by	 stream	 numbers.	 The	 Y‐axis	measures	 the	 event	

throughput	 achieved	 by	 the	mobile	 CEP.	 The	 X‐axis	 in	 Figure	 10‐1	 indicates	 the	 number	 of	 the	

deployed	 patterns.	 The	 X‐axis	 in	 Figure	 10‐2	 shows	 the	 number	 of	 the	 event	 streams.	 For	 each	

configuration	 in	 the	 experiment	 we	 have	 done	 the	 evaluation	 tests	 three	 times	 and	 the	 event	

throughput	shown	in	the	results	are	the	average	values	of	all	the	tests.		

	

Evaluation		

109	
	

	

Figure	10‐1	Experiment	result	for	mobile	CEP	performance	‐	pattern	based	throughput	

As	shown	in	Figure	10‐1	the	event	throughputs	of	mobile	CEP	are	around	50	events	per	second.	The	

highest	event	throughput	is	near	52	events	per	second,	which	appears	at	1	deployed	pattern.	The	

lowest	event	throughput	is	about	48.5	events	per	second	by	20	deployed	patterns.	It	is	obvious	that	

as	 the	 number	 of	 deployed	 patterns	 increases,	 the	 event	 throughputs	 reduce	 correspondingly.	

However,	the	reduction	is	not	proportional	to	the	number	of	deployed	patterns.	The	average	reduc‐

tion	rate	of	event	throughputs	in	the	experiment	is	about	5%,	which	is	reasonable.	

	 	

Figure	10‐2	Experiment	result	for	mobile	CEP	performance	‐	stream	based	throughput	

Figure	10‐2	investigates	the	relation	between	the	number	of	event	streams	and	the	event	through‐

puts.	As	shown	in	the	figure	the	average	throughput	by	the	different	numbers	of	event	streams	is	

around	50	events	per	second.	The	lowest	throughput	is	located	in	1	event	stream	and	the	highest	

throughput	 is	 at	 8	 event	 streams.	 The	 throughputs	 by	 most	 settings	 with	 different	 number	 of	

streams	show	no	obvious	difference.	When	there	is	only	one	event	stream,	the	events	in	this	stream	

are	used	by	all	patterns,	hence	each	input	event	will	be	calculated	for	all	patterns,	which	can	cause	

the	lowest	event	throughput	in	the	experiments.	As	the	number	of	streams	increases	above	4,	the	

Evaluation	

110	
	

measured	 event	 throughputs	 don’t	 show	 further	 noticeable	 variation	 of	 the	 stream	 numbers.	 In	

general,	the	number	of	event	streams	doesn’t	seem	to	affect	the	performance	of	mobile	CEP	engine.				

However,	 due	 to	 the	 resource	 limitation	 of	 mobile	 devices	 the	 event	 throughput	 of	 mobile	 CEP	

engine	 is	 relatively	 low	comparing	 to	 the	CEP	engines	 that	are	running	on	desktop	computers	or	

servers.	As	shown	in	the	figure	the	average	event	throughput	of	mobile	CEP	engine	is	only	about	50	

events	 per	 second.	 The	 mobile	 CEP	 engine	 with	 such	 throughput	 can’t	 afford	 the	 complex	 pro‐

cessing	 tasks	requiring	a	 large	number	of	various	events	with	high	 frequency.	 In	addition	the	 in‐

creasing	number	of	deployed	patterns	can	also	reduce	the	throughput	of	mobile	CEP	engine.	There‐

fore,	the	number	of	patterns	that	are	deployed	on	the	mobile	CEP	engine	should	be	limited	in	order	

to	ensure	the	reliable	event	processing	on	mobile	devices.	This	result	provides	further	evidence	in	

arguing	 for	 using	 hybrid	 software	 architecture	 and	 dynamic	 deployment	 for	 achieving	 scalable	

Complex	Event	Processing	on	mobile	devices,	as	the	approach	in	this	thesis	has	proposed.	

10.1.2 Dynamic	adaptation	evaluation	

In	this	subsection	we	describe	the	performance	evaluation	of	dynamic	adaptation	to	real‐time	event	

resource	changes	described	in	Chapter	9,	which	is	an	important	feature	of	this	thesis.	We	evaluate	

three	basic	adaptation	methods	and	two	adaptation	algorithms	by	measuring	performance	in	terms	

of	execution	time.		

To	run	the	tests,	we	have	generated	several	test	data	sets	(i.e.,	pattern	and	event	resource	ontolo‐

gies)	with	different	numbers	of	event	resources,	users,	event	types	and	patterns,	in	order	to	evalu‐

ate	 the	performance	of	 adaptation	methods	and	algorithms	 for	different	 conditions.	The	detailed	

information	of	data	sets	is	shown	in	the	following	table:	

	

	

	

	

	

	

	

	

Evaluation		

111	
	

Table	10‐1	Data	sets	for	dynamic	adaptation	evaluation	

Index	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	
Number	of	
users	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

	

10
	

20
	

Number	of	
event	

resources	

10
	

20
	

30
	

40
	

50
	

60
	

70
	

80
	

90
	

10
0	

15
0	

20
0	

Number	of	
individuals	 63

2	

64
3	

65
4	

66
5	

67
6	

68
7	

69
8	

70
9	

72
0	

73
1	

78
6	

84
6	

Index	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	
Number	of	
users	 20

	

30
	

30
	

40
	

40
	

50
	

50
	

50
	

60
	

60
	

60
	

70
	

Number	of	
event	

resources	 25
0	

30
0	

35
0	

40
0	

45
0	

50
0	

60
0	

70
0	

80
0	

90
0	

10
00
	

15
00
	

Number	of	
individuals	

89
6	

95
6	

10
06
	

10
66
	

11
16
	

11
76
	

12
81
	

13
81
	

14
81
	

15
81
	

17
95
	

23
05
	

Index	 25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	
Number	of	
users	 80

	

10
0	

13
0	

16
0	

19
0	

22
0	

25
0	

30
0	

40
0	

50
0	

60
0	

70
0	

Number	of	
event	

resources	 20
00
	

25
00
	

30
00
	

35
00
	

40
00
	

45
00
	

50
00
	

60
00
	

70
00
	

80
00
	

90
00
	

10
00
0	

Number	of	
individuals	

29
04
	

34
24
	

40
60
	

45
90
	

52
11
	

57
41
	

64
62
	

75
06
	

87
18
	

99
19
	

11
13
0	

12
33
9	

We	start	the	evaluation	of	dynamic	adaptation	by	presenting	the	experiments	of	three	basic	adapta‐

tion	methods	described	in	Chapter	9.	We	have	executed	each	method	for	10	times	using	all	the	data	

sets	 listed	 in	 the	 above	 table	 and	measure	 the	 average	of	 execution	 time.	 Figure	10‐3	 shows	 the	

experiments	results	of	all	 three	basic	adaptation	methods.	The	X‐axis	shows	the	number	of	event	

resources	in	the	active	data	set,	as	listed	in	the	Table	10‐1.	The	Y‐axis	presents	the	execution	time	

used	by	the	adaptation	method	in	millisecond.		

Evaluation	

112	
	

	

Figure	10‐3	Experiment	results	for	basic	adaptation	methods:	(a)	searching	additional	pattern	for	
missing	event	(b)	searching	alternative	event	resource	(c)	searching	replacement	pattern	

Specifically,	Figure	10‐3	(a)	shows	 the	execution	time	measurement	 for	searching	additional	pat‐

tern	for	missing	event.	As	shown	in	the	figure,	the	adaptation	method	of	searching	additional	pat‐

tern	 for	missing	 event	 executes	 very	 efficiently	by	 small	 data	 sets.	 It	 uses	only	approximately	30	

milliseconds	 for	 less	 than	 1000	 event	 resources.	 For	 the	 data	 sets	 that	 contain	 more	 event	 re‐

sources	(1000	up	to	3000	event	resources),	the	adaptation	method	uses	more	time	in	around	40	to	

60	milliseconds.	For	 the	 large	data	 sets	 that	 contain	even	more	numbers	of	 event	 resources	 (i.e.,	

more	than	6000)	the	execution	time	prolongs	and	varies	at	approximately	190	milliseconds.		

Figure	10‐3	(b)	illustrates	the	results	of	experiments	for	searching	alternative	event	resources.	For	

the	data	sets	with	small	number	of	event	resources	the	execution	time	is	approximate	20	millisec‐

onds.	 In	 the	case	 that	 the	data	sets	contain	 large	numbers	of	event	resources,	 the	execution	 time	

varies	in	the	range	between	100	milliseconds	and	180	milliseconds.		

Figure	10‐3	(c)	shows	the	results	of	experiments	for	searching	replacement	pattern.	The	minimal	

execution	time	of	this	method	is	approximate	100	milliseconds	and	the	maximal	execution	is	about	

500	milliseconds.	For	small	data	sets	the	average	execution	time	is	about	150	milliseconds	and	for	

large	data	sets	the	average	execution	time	is	around	400	milliseconds.		

Evaluation		

113	
	

While	the	execution	time	of	all	three	adaptation	method	increases	as	the	number	of	event	resources	

increases,	all	adaptation	methods	can	be	executed	within	500	milliseconds	for	the	largest	data	set.	

The	results	of	the	experiments	show	that	the	performance	of	three	basic	event	adaptation	methods	

can	meet	the	real‐time	requirement	for	real‐time	personal	data	processing.	The	variation	of	execu‐

tion	time	may	be	caused	by	the	different	structures	of	data	sets.			

	

Figure	10‐4	Experiment	results	for	adaptation	algorithms:	(a)	Adaptation	algorithm	by	pattern	de‐
ployment	(b)	Algorithm	of	adaptation	to	change	of	event	resource	

We	also	have	performed	the	experiments	 for	evaluating	 the	performance	of	 two	adaptation	algo‐

rithms.	 	Each	algorithm	has	been	executed	10	times	using	all	data	sets	and	measured	the	average	

execution	time.	Figure	10‐4	illustrates	the	experiment	results	of	both	adaptation	algorithms.	The	X‐

axis	shows	the	number	of	event	resources	in	the	active	data	set	and	the	Y‐axis	presents	the	execu‐

tion	time	required	by	the	adaptation	algorithms	in	millisecond.	

Figure	10‐4	(a)	shows	the	results	of	experiments	for	adaptation	algorithm	by	pattern	deployment.	

The	execution	 time	varies	between	50	milliseconds	and	370	milliseconds.	The	average	execution	

time	for	small	data	sets	 is	approximately	100	milliseconds.	As	 the	number	of	 the	event	resources	

increases,	 the	execution	time	of	 the	algorithm	 increases	correspondingly	but	slowly.	The	average	

execution	time	for	the	large	data	sets	is	about	300	milliseconds.		

Figure	10‐4	(b)	shows	the	results	of	experiments	for	the	algorithm	of	adaptation	to	change	of	event	

resource.	For	the	data	sets	containing	 less	 than	3000	event	resources,	 the	algorithm	shows	 fairly	

good	performance:	it	reacts	to	the	changes	of	event	resources	within	150	milliseconds.	In	the	case	

that	the	data	sets	contain	more	event	resources,	the	algorithm	needs	more	time	to	find	the	solution.	

The	average	execution	time	for	the	large	data	sets	is	then	approaching	approximately	240	millisec‐

onds.	

Overall,	the	performances	of	both	algorithms	are	reasonably	good	and	meet	the	real‐time	require‐

ments	for	personal	data	processing.	Large	data	sets	require	more	execution	time	but	at	very	slowly	

Evaluation	

114	
	

rates	 as	 the	 number	 of	 event	 resources	 increases.	 The	 variations	 of	 execution	 time	may	 also	 be	

affected	by	the	different	structures	of	data	sets.			

10.1.3 Pattern	distribution	algorithm	evaluation	

In	this	subsection	we	describe	the	experiments	of	dynamic	pattern	distribution	algorithm.	We	have	

performed	 two	 experiments	 in	 order	 to	 evaluate	 the	 algorithm	 from	 different	 aspects:	 the	 first	

experiment	 is	 to	evaluate	 the	performance	of	 resource	awareness	achieved	by	 the	algorithm	and	

the	second	experiment	is	to	evaluate	the	execution	performance	regarding	the	execution	time	used	

by	the	algorithm.	

In	the	first	experiment,	we	compare	the	proposed	dynamic	pattern	distribution	algorithm	with	two	

other	distribution	algorithms	 in	order	 to	assess	 the	advantages	of	 the	proposed	resource	aware‐

ness.		

The	comparisons	of	the	distribution	algorithms	are	as	follows:		

 Event	source‐based	distribution	algorithm:	this	algorithm	selects	the	pattern‐binding,	which	

has	the	lowest	number	of	forwarded	events,	and	distributes	the	pattern	to	the	part	of	the	

system	that	is	the	source	of	the	most	events.	

 Random	distribution	algorithm:	this	algorithm	randomly	selects	a	pattern	binding	of	the	pat‐

tern,	which	is	to	be	deployed,	and	distributes	it	to	either	mobile	device	of	user	or	backend	

server	without	considering	any	other	factors.	

In	the	experiment	we	have	created	a	use	case	with	40	events	and	50	patterns.	Each	pattern	uses	at	

least	two	and	at	most	eight	different	events.	Events	have	different	sources,	50%	events	can	only	be	

obtained	from	user’s	mobile	device,	30%	events	can	only	be	obtained	from	the	backend	server	and	

20%	events	can	be	obtained	either	from	user’s	mobile	device	or	from	the	backend	server.	Overall	

more	than	50%	events	have	more	than	one	event	resources.	In	addition,	no	cost	is	required	for	all	

events.	

In	 order	 to	 test	 the	 performance	of	 the	 algorithm	 regarding	 the	 different	workload	 situations	 of	

mobile	devices,	two	settings	of	mobile	devices	are	selected	in	the	experiments:	

 Low	workload	settings:	user’s	mobile	device	runs	only	the	necessary	apps	and	with	almost	

full	battery	(CPU	usage	<	20%,	Memory	usage	<	50%,	100%	battery).		

 High	workload	settings:	user’s	mobile	device	has	already	run	some	apps	and	the	battery	has	

only	¼	 remaining	 capacity	 (CPU	usage	 is	 about	50%,	Memory	usage	 is	 about	60%,	25%	

battery).	

In	both	 settings	 the	backend	 server	 always	 runs	under	 the	 same	conditions	 (CPU	usage	 is	 about	

20%	and	memory	usage	is	about	30%).	

Evaluation		

115	
	

For	 each	 setting,	 two	 experiments	 regarding	 two	different	 pattern	 groups	 have	 been	 performed.	

One	pattern	group	contains	only	five	patterns	and	the	other	pattern	group	contains	thirty	patterns,	

which	simulates	both	the	simple	(only	a	small	amount	patterns	are	required)	and	the	complex	(a	

large	amount	of	patterns	are	required)	use	cases.	

As	described	in	Chapter	8,	the	dynamic	pattern	distribution	algorithm	can	calculate	pattern	distri‐

butions	according	to	different	emphasis	by	varying	the	weight	coefficients	of	the	algorithm.	In	the	

two	experiments,	we	focus	on	computation	workload	and	use	the	following	weight	coefficients	 in	

dynamic	pattern	distribution.	

 w1	=	0,	w2	=	1.	0,	since	no	cost	is	required	for	all	events,	the	weight	coefficient	for	cost	factor	

is	hence	set	to	0.	

 w3	=	0.2,	w4	=	0.8,	the	computation	workload	plays	more	important	role	

 wcpu	=	wmemory	=	wbattery	=	1/3,	where	CPU	usage,	memory	usage	and	battery	volume	all	have	

the	same	importance.	 	(Hence	the	initial	workload	for	low	workload	setting	is	about	20%	

and	for	high	workload	setting	is	about	60%)	

All	experiments	have	been	performed	for	5	iterations	and	generated	new	pattern	groups	randomly	

for	each	iteration.	As	results	we	calculate	the	average	values	of	the	workload	of	user’s	mobile	device	

by	the	three	distribution	algorithms.			

	

Figure	10‐5	Experiment	results	for	pattern	distribution	algorithm:	low	workload	setting	

Figure	10‐5	 shows	 the	experiment	 results	using	 the	 low	workload	setting.	The	X‐axis	 shows	 two	

patterns	 groups.	 The	 Y‐axis	 presents	 the	 computation	workload	 of	mobile	 device	 in	 percentage,	

which	is	calculated	according	to	formula	(6)	in	Chapter	8.	In	the	experiment	of	5‐patterns	group	the	

Evaluation	

116	
	

random	 distribution	 algorithm	 shows	 the	 best	 performance	 among	 all	 three	 algorithms,	 which	

causes	the	 lowest	workload	on	the	user’s	mobile	device.	The	reason	behind	this	result	 is	 that	the	

random	distribution	algorithm	distributes	patterns	to	the	mobile	device	and	to	the	backend	server	

almost	equally,	whereas	the	dynamic	pattern	distribution	algorithm	and	event	source	based	distri‐

bution	algorithm	distributed	most	patterns	on	the	mobile	device	in	order	to	reduce	the	communica‐

tion	workload,	since	the	most	events	used	in	the	patterns	are	sourced	from	the	mobile	device.		

In	 the	 experiment	 of	 30‐patterns	 group,	 the	 source‐based	 distribution	 algorithm	 has	 performed	

best	among	three	algorithms.	The	proposed	dynamic	pattern	distribution	algorithm	follows	up	with	

only	 very	 little	 difference	 and	 the	 random	 distribution	 algorithm	 has	 the	 highest	workload.	 The	

source‐based	 distribution	 algorithm	 distributes	 fewer	 patterns	 on	 the	 mobile	 device	 than	 our	

algorithm	and	has	 the	 least	communication	workload.	Due	 to	 the	 low	computation	workload,	 the	

proposed	 dynamic	 pattern	 distribution	 algorithm	 distributes	 the	 most	 patterns	 to	 the	 mobile	

device	and	the	correlated	event	communication	causes	additional	workload.	Although	the	random	

distribution	 algorithm	 distributes	 the	 fewest	 patterns	 on	 the	mobile	 device,	 the	 random	 pattern	

binding	and	deployment	position	selection	require	much	extra	event	communication,	which	causes	

high	computation	workload.	

	

Figure	10‐6	Experiment	results	for	pattern	distribution	algorithm:	high	workload	setting	

Figure	 10‐6	 shows	 the	 results	 from	 the	 experiment	 using	 the	 high	 workload	 setting.	 It	 is	 very	

obvious	that	the	proposed	dynamic	pattern	distribution	algorithm	has	performed	the	best	in	both	

5‐patterns	 group	 and	 30‐patterns	 group.	 The	 random	 distribution	 algorithm	 follows	 up	 in	 the	

second	position	in	the	5‐patterns	group	and	the	source‐based	distribution	algorithm	comes	in	the	

Evaluation		

117	
	

third.	Because	the	dynamic	pattern	distribution	distributes	the	most	patterns	to	the	backend	server	

considering	 the	high	computation	workload	of	 the	mobile	device,	while	 the	other	 two	algorithms	

don’t	change	their	distributions.	In	the	30‐patterns	group	the	source‐based	distribution	algorithm	

has	 performed	 better	 than	 the	 random	 distribution	 algorithm,	 since	 it	 requires	 the	 least	 event	

communication.	

In	 summary,	 the	proposed	dynamic	pattern	distribution	 shows	advantage	of	pattern	distribution	

for	mobile	devices,	especially	in	high	workload	situations.	Through	resource	awareness	it	distrib‐

utes	most	patterns	to	the	backend	server,	which	enables	user’s	mobile	device	to	avoid	high	work‐

load.	Hence	it	prevents	the	current	application	from	blocking	other	applications	due	to	use	of	too	

much	computing	resources	and	extends	the	battery	lifetime.							

In	the	second	experiment	we	evaluate	the	performance	of	dynamic	pattern	distribution	algorithm	

execution.	Considering	 that	 the	pattern	distribution	should	be	calculated	 in	real‐time,	 the	perfor‐

mance	of	algorithm	execution	also	plays	an	 important	role.	 	 In	order	to	assess	the	execution	per‐

formance	of	 the	algorithm	we	perform	the	experiment	measuring	the	execution	time	of	 the	algo‐

rithm	regarding	different	complexities	of	patterns.	

In	 the	 experiment	we	 have	 implemented	 a	 pattern	 generator,	 which	 generates	 random	 patterns	

with	different	 complexities	 indicated	by	 the	number	 of	 different	 events	 used	 in	 a	pattern.	 In	 the	

experiment,	following	settings	are	used:	

 9	pattern	groups	are	used,	whose	patterns	use	2,	3,	4,	5,	7,	10,	12,	15	and	20	different	events.	

 Each	pattern	group	contains	50	random	patterns.	

 Each	event	has	at	least	one	event	resource	and	three	event	resources	at	most.	

	

Figure	10‐7	experiment	results	for	execution	time	of	dynamic	pattern	distribution	algorithm	

Evaluation	

118	
	

We	record	the	execution	time	of	all	patterns	for	all	pattern	groups	and	calculate	the	average	execu‐

tion	 time	 for	each	pattern	group.	The	results	are	presented	 in	Figure	10‐7.	The	X‐axis	 shows	 the	

number	of	different	events	that	are	used	in	a	pattern,	which	 indicates	the	complexity	of	patterns.	

The	Y‐axis	presents	the	execution	time	in	millisecond.	

As	shown	in	the	figure,	the	execution	of	the	dynamic	pattern	distribution	algorithm	performs	quite	

stably	and	efficiently.	The	execution	time	varies	between	35	milliseconds	and	40	milliseconds	and	

shows	almost	no	increase	with	the	rise	of	the	complexity	of	pattern.	

The	overall	performance	of	algorithm	execution	is	quite	efficient	and	is	sufficient	to	meet	the	real‐

time	requirements	of	our	approach.	

10.2 Use	Case	Evaluation	

In	the	last	section	we	show	the	evaluation	of	some	key	features	of	our	approach.	In	this	section	we	

evaluate	our	approach	 in	real	use	cases,	which	mean	that	the	approach	 is	being	evaluated	 in	real	

mobile	 applications.	 We	 evaluate	 the	 mobile	 applications	 in	 order	 to	 assess	 the	 advantage	 and	

performance	 of	 our	 approach	 for	 developing	 real‐time	 personal	 data	 processing	mobile	 applica‐

tions.	Firstly	we	introduce	the	concrete	use	cases,	in	which	our	approach	is	used.	Then	we	describe	

the	design	of	use	 case	 evaluation.	At	 last	we	 show	 the	 results	 of	 the	use	 case	 evaluation.	Due	 to	

some	technique	reasons,	the	use	case	evaluation	is	a	very	preliminary	evaluation.		

10.2.1 Use	cases	

The	approach	described	in	this	thesis	has	been	used	as	a	part	of	the	two	real	mobile	applications,	

namely	My	Cardio	Advisor	(MCA)	and	AlarMe,	in	m‐Health	and	m‐Fitness	domain	respectively.	The	

two	 mobile	 applications	 have	 been	 developed	 by	 Nissatech	 innovation	 center35.	 There	 are	 also	

several	deployments	of	these	mobile	applications	in	real‐world	settings.	

10.2.1.1 My	Cardio	Advisor	(MCA)	

My	Cardio	Advisor	 (MCA)36	 is	 an	 intelligent	 interconnected	mobile	 solution	 to	 the	dynamic,	 real‐

time	monitoring	of	complex	health	situations.	It	combines	wearable	and	mobile	sensing,	linked	both	

open	data	 and	 social	 network	data	 to	 enable	 the	 real‐time	monitoring	 for	 cardio	patients.	 In	 the	

MCA	system,	 the	 full	version	 (complete)	MCEP	system	has	been	used	 for	 real‐time	personal	data	

processing.	

																																																																		
35	http://nissatech.com/	
36	http://nissatech.com/technologies/mycardioadvisor/	

Evaluation		

119	
	

	

Figure	10‐8	MCA	mobile	application:	(a)	setting	view,	(b)	start	view	and	(c)	monitoring	view	

Figure	10‐8	shows	the	screenshots	of	 the	MCA	mobile	application,	 including	the	setting	view,	 the	

start	view	and	the	monitoring	view.	As	shown	in	the	monitoring	view,	the	MCA	app	monitors	the	

activity,	heart	rate,	respiratory	rate	in	order	to	prevent	patients	from	suffering	cardio	attacks.	The	

MCA	system	has	been	deployed	as	a	remote	patient	monitoring	system	in	a	hospital	in	Hungary.		

The	MCA	application	can	be	used	not	only	for	patient	monitoring,	but	also	for	fitness	monitoring.	

One	of	the	use	cases	in	fitness	monitoring	domain	is	jogging	monitoring.	The	MCA	app	monitors	the	

health	 status	 (heart	 rate,	 respiratory	 rate,	 etc.)	 of	 joggers	 to	 avoid	 dangerous	 situations	 during	

training.	

The	most	important	features	of	MCA	include:	

 Real	time	processing	and	management	of	personal	Big	Data;	

 Real	time	processing	of	patient’s	ECG	and	HR;	

 Real	time	Doctor	–	Patient	communication;	

 Real	time	alarms	and	recommendations;	

 Real	time	physical	activity	tracking;	

 Anticipation	of	health	problem;	

 Self‐reporting	(medications	and	therapy,	food,	alcohol	and	cigarettes,	physical	activity);	

 Full	contextualization	and	situational	awareness;	

 Full	data	history,	visualization	and	statistics;	

 Full	customization,	

Evaluation	

120	
	

10.2.1.2 AlarMe	

AlarMe37	is	a	holistic	mobile	application	that	helps	users	improve	and	manage	their	fitness	activity	

performance,	well‐being,	safety	or	business	efficiency.	It	monitors	the	fitness	activities	of	users	and	

fires	alarms	according	to	different	patterns,	which	are	defined	by	users	based	on	their	 individual	

requirements.	The	mobile‐only	MCEP	variant	has	been	used	in	AlarMe	application	providing	real‐

time	alarm	detection.			

Figure	10‐9	shows	the	screenshots	of	the	AlarMe	mobile	application,	 including	the	start	view,	the	

alarm	creation	view	and	 the	 setting	view.	As	 shown	 in	 the	alarm	creation	view,	users	 can	create	

their	own	 individual	alarms	using	a	combination	of	different	conditions	 including	 fitness	activity,	

environment	 information	 (e.g.,	 temperature,	 humidity	 and	 location).	 The	 defined	 alarms	 will	 be	

translated	into	patterns	and	deployed	in	the	proposed	MCEP	system.		

	

Figure	10‐9	AlarMe	mobile	application:	(a)	start	view,	(b)	alarm	creation	view	and	(c)	setting	view	

The	main	features	of	AlarMe	mobile	application	include:	

 Fully	personalized	activity	model;	

 24/7	Activity	tracking;	

 G‐map	position	tracking;	

 Detecting	the	quality	and	quantity	of	activity;	

 Personalized	calories	burned;	

 Number	of	steps;	

																																																																		
37	http://nissatech.com/technologies/wellnessnova/	

Evaluation		

121	
	

 Speed	&	Distance;	

 Idle	alert	and	other	customized	alarms;	

 Visualization	and	statistics,	full	data	history;	

 Smart	alarms,	Recommendations	(notifications);	

 Full	customization.	

10.2.2 Evaluation	design	

Since	the	proposed	MCEP	system	has	been	successfully	integrated	in	two	mobile	applications	and	

the	 performance	 of	 the	 mobile	 applications	 depends	 on	 the	 integrated	 components	 including	

proposed	MCEP	system,	we	evaluate	the	whole	mobile	applications	in	order	to	assess	the	quality	of	

our	approach.		

Since	 the	 both	 MCA	 and	 AlarMe	 applications	 are	 developed	 and	 tested	 by	 the	 partner	 outside	

Germany,	 it	 is	difficult	 for	us	 to	 set	up	complex	use	case	evaluations.	So	we	have	 to	evaluate	 the	

applications	very	preliminary	using	questionnaire.	We	have	designed	a	questionnaire	(see	Appen‐

dix	 III)	 for	the	users	of	 the	 two	mobile	applications,	 in	order	 to	evaluate	 the	mobile	applications.	

The	questionnaire	 contains	13	questions	and	each	question	has	 five	optional	 answers,	 indicating	

excellent	(5	points),	good	(4	points),	average	(3	points),	below	average	(2	point)	and	poor	(1	point).	

The	questionnaire	evaluates	the	mobile	application	in	four	aspects:	

 Usability	

 Reliability			

 Robustness	

 Efficiency	

According	 to	 [Niel03]	usability	 is	a	quality	attribute	that	assesses	how	easy	and	pleasant	 the	hu‐

man‐made	objects	are	to	use.	The	evaluation	about	the	usability	in	the	use	cases	aims	to	find	out,	

whether	the	mobile	applications	are	easy	to	install	and	configure,	especially	the	setting	of	connec‐

tion	to	sensors,	which	are	important	for	our	approach.	

Software	 Reliability	 is	 an	 important	 attribute	 of	 software	 quality.	 According	 to	 [ANSI91]	 and	

[Lyu96]	software	reliability	 is	defined	as:	 the	probability	of	 failure‐free	software	operation	 for	a	

specified	period	of	time	in	a	specified	environment.	However,	software	reliability	is	hard	to	achieve,	

because	the	complexity	of	software	tends	to	be	high	and	the	high	complexity	may	lead	to	conflicts	

between	different	components,	which	can	reduce	the	reliability	of	software.	 In	our	evaluation	we	

have	 used	 questionnaires	 to	 collect	 feedback	 for	 the	 correctness	 of	 alarm	 or	 recommendation	

regarding	the	timeliness	and	usefulness,	with	the	purpose	of	measuring	the	reliability	of	the	whole	

mobile	application.	

Evaluation	

122	
	

ANSI	[ANSI91]	and	IEEE	has	defined	robustness	for	software	as	the	degree	to	which	software	can	

function	 correctly	 in	 the	 presence	 of	 invalid	 inputs	 or	 stressful	 environmental	 conditions.	 The	

robustness	shows	the	ability	of	software	to	cope	with	errors	during	the	execution.	In	our	evaluation	

we	focus	on	the	stability	of	sensor	connections	and	the	fault‐tolerance	of	mobile	applications.	

Software	efficiency	is	defined	as	the	degree	to	which	a	system	or	component	performs	its	designat‐

ed	functions	with	minimum	consumption	of	resources	[ANSI91].	The	evaluation	of	the	efficiency	for	

our	use	cases	focuses	mainly	on	the	required	resources	of	mobile	devices,	especially	the	battery	and	

internet,	and	the	effect	on	the	performance	of	the	other	applications.	

Although	the	proposed	MCEP	system	has	been	successfully	integrated	into	two	mobile	applications,	

the	quality	of	 the	mobile	applications	depends	not	only	on	our	approach,	but	also	on	many	other	

factors,	such	as	the	mobile	application	implementation,	the	quality	of	pattern	design,	the	quality	of	

monitoring	model	 definition	 and	 etc.	 The	questionnaires	 described	 above	 evaluate	 the	quality	 of	

the	mobile	applications,	which	may	reflect	the	quality	of	our	approach,	but	may	also	be	affected	by	

other	factors	that	should	be	taken	into	account.	

10.2.3 Evaluation	results	

In	 this	 subsection	we	 show	 the	 results	of	 the	use	 case	 evaluation	 regarding	 the	 feedbacks	of	 the	

questionnaire	described	in	the	last	subsection.			

For	 the	evaluation	of	mobile	application	we	recruited	20	participants,	 including	13	users	of	MCA	

mobile	application	and	7	user	of	AlarMe	application.		All	participants	had	used	mobile	applications	

for	more	than	one	week.	

	

Figure	10‐10	Use	case	evaluation	results	

As	the	optional	answers	of	each	question	in	the	questionnaire	ranges	from	5	(excellent)	to	1	(poor),	

the	maximum	score	of	the	evaluation	results	is	5	and	the	minimum	score	is	1.	Figure	10‐10	shows	

Evaluation		

123	
	

the	evaluation	results	of	both	use	cases	regarding	four	aspects.	In	general	the	MCA	and	AlarMe	have	

got	good	evaluation	results,	the	overall	score	is	near	4	points,	which	is	considered	as	good.	In	detail,	

on	 the	whole	 the	MCA	application	has	 the	score	of	3.8	and	AlarMe	application	gets	even	a	better	

score	of	4.0.	Both	applications	have	been	evaluated	as	above	the	average	and	almost	reach	the	level	

of	good.	

Regarding	the	four	detailed	evaluation	aspects,	both	applications	get	the	lowest	score	in	efficiency,	

while	the	scores	in	usability,	reliability	and	robustness	almost	reach	the	level	of	Good.	The	reason	of	

weakness	on	the	efficiency	aspect	may	be	caused	by	high	computation	requirements	of	the	mobile	

applications.	Regarding	the	comparison	of	the	two	applications,	AlarMe	shows	better	performance	

in	 reliability	 and	 efficiency.	 Considering	 that	 the	monitoring	 task	 of	 cardio	 risks	of	MCA	 is	much	

more	complex	than	AlarMe,	and	AlarMe	uses	mobile‐only	variant	of	the	MCEP	system	and	provides	

relative	simple	functions,	the	evaluation	results	are	reasonable.	

We	analyze	each	aspect	in	detail	as	follows.	

	

Figure	10‐11	Use	case	evaluation	results	(Usability)	

Figure	10‐11	shows	the	detailed	evaluation	results	about	the	usability	of	the	mobile	applications.	As	

shown	in	the	figure	both	applications	get	high	score	from	question	1.	AlarMe	gets	higher	score	than	

MCA	from	question	2	and	question	3,	which	are	about	application	configuration	and	sensor	connec‐

tion	 setting.	 The	 issue	may	 be	 caused	 by	 additional	 sensor	 connection,	which	 is	 required	 by	 the	

MCA	application	(heart	rate	sensor	 is	required	for	cardio	monitoring).	The	MCA	scores	better	 for	

question	4,	 indicating	that	MCA	provides	better	feedback	interface.	As	the	AlarMe	application	has	

simple	 functionality	 and	 uses	 additional	 sensor	 only	 optionally,	 it	 gets	 better	 results	 in	 usability	

evaluation.	

Evaluation	

124	
	

	

Figure	10‐12	Use	case	evaluation	results	(Reliability)	

Figure	10‐12	displays	the	evaluation	results	of	the	reliability.	Obviously	AlarMe	gets	better	results	

than	MCA.	The	reason	may	be	due	to	the	fact	that	the	patterns	used	in	MCA	to	monitor	the	cardio	

risk	are	much	more	complex	than	the	alarm	patterns	defined	by	users	in	the	AlarMe	application.	In	

the	evaluation	results	the	timeliness	of	the	data	processing	(question	5)	shows	good	performance,	

which	 means	 that	 the	 personal	 data	 streams	 have	 been	 successfully	 processed	 in	 real‐time.	 In	

comparison	 to	 the	 timeliness,	 the	 correctness	 and	 usefulness	 of	 the	 alarms/recommendations	

(question	6	and	question	7)	have	been	doubted	by	the	participants.	However	the	correctness	and	

usefulness	depend	mainly	on	the	quality	of	patterns,	which	are	used	to	process	the	personal	data	

and	 the	 monitoring	 procedure	 definition	 (in	 MGN),	 rather	 than	 depend	 on	 the	 proposed	 MCEP	

system.	 Hence	 the	 issue	 can	 be	 solved	 by	 improving	 pattern	 quality	 and	 monitoring	 procedure	

definition.	

	

Figure	10‐13	Use	case	evaluation	results	(Robustness)	

Figure	10‐13	shows	the	evaluation	results	of	the	robustness	for	both	applications.	Overall,	AlarMe	

shows	better	robustness	than	MCA.	The	main	different	is	located	in	question	8,	which	is	related	to	

the	 connection	 stability	 of	 sensors.	 Since	 MCA	 uses	more	 sensors	 than	 AlarMe	 and	 requires	 an	

Evaluation		

125	
	

additional	heart	rate	sensor,	the	users	of	the	MCA	application	have	encountered	more	problems	in	

relate	to	sensors	than	the	users	of	the	AlarMe	application.		

Both	 applications	 get	 high	 scores	 from	question	 9,	which	 indicate	 that	 the	 quality	 of	 application	

implementation	 is	good.	Question	10	concerns	 the	 run‐time	 issue,	which	 is	not	caused	by	errors.	

Such	 issue	 is	probably	caused	by	 the	 incorrect	definition	of	patterns.	As	 the	patterns	 (alarms)	 in	

AlarMe	are	defined	by	users	themselves,	it	leads	to	more	problems	in	the	pattern	definition.	

	

Figure	10‐14	Use	case	evaluation	results	(Efficiency)	

Figure	10‐14	shows	the	evaluation	results	of	the	use	cases	on	efficiency.	The	main	issue	is	the	quick	

battery	consumption	(question	11).	Since	the	real‐time	data	processing	requires	continuous	execu‐

tion	of	applications	and	leads	to	high	energy	requirement,	the	evaluation	result	seems	to	be	reason‐

able.	For	question	13,	since	AlarMe	uses	mobile‐only	MCEP	variant	and	requires	no	internet,	it	gets	

better	results	than	MCA.		

10.3 Conclusion	

In	this	chapter	we	describe	the	evaluation	of	the	proposed	MCEP	system	in	different	aspects	includ‐

ing	 performance	 and	 use	 case.	 The	 processing	 capability	 of	 mobile	 CEP	 has	 been	 evaluated	 for	

performance.	The	results	show	that	the	CEP	engine	on	mobile	devices	is	capable	of	processing	real‐

time	data,	but	not	sufficient	for	some	complex	processing	tasks,	which	requires	a	large	number	of	

patterns.	The	evaluation	results	of	dynamic	adaptation	indicate	that	the	performance	of	adaptation	

meets	the	real‐time	requirement	of	the	MCEP	system.	The	evaluation	of	dynamic	pattern	distribu‐

tion	algorithm	has	also	been	presented,	and	the	results	show	that	the	dynamic	pattern	distribution	

prevents	the	MCEP	system	from	using	too	much	resource	on	user’s	mobile	devices,	especially	in	the	

high	workload	 situation.	 In	 addition,	 the	 evaluation	 results	 of	 execution	 time	 of	 the	 distribution	

algorithm	show	the	efficiency	of	the	algorithm.	

Evaluation	

126	
	

In	the	use	case	evaluation,	the	propose	MCEP	system	has	been	used	in	two	mobile	applications.	The	

results	 of	 the	 questionnaire	 evaluation	 validate	 the	 quality	 and	 usefulness	 of	 the	 approach	 as	

proposed	in	this	thesis	in	real	use	cases.		

	

	

	

127	
	

11 Conclusion	
The	 objective	 of	 this	 thesis	 is	 to	 develop	 a	 foundation	 for	 the	development	 of	 innovative	mobile	

applications	 for	 efficient	 context‐aware	 processing	 of	 real‐time	 personal	 data	 streams	 by	 taking	

into	account	the	resource	limitation	on	mobile	devices.	We	conclude	by	summing	up	the	results	that	

have	been	accomplished	towards	that	goal.	Finally,	we	give	an	overview	of	 future	research	topics	

that,	in	our	view,	represent	the	prospective	direction	of	our	work.	

11.1 Summary	

The	main	motivation	 behind	 this	 thesis	 came	 from	 two	 sources:	 firstly	 the	 expansion	 of	mobile	

devices	and	 the	 rise	of	 sensors,	 especially	 the	wearable	 sensors	 like	Zephyr	BioHarness	3	 sensor	

[Zeph12],	Nike+	Fuelband38,	Apple	 iWatch39,	and	many	similar	products.40	 	This	development	has	

profoundly	impacted	life	as	 it	enables	ordinary	people	to	collect	their	personal	 information	much	

more	 easily	 than	before.	 Secondly	people	 have	 increasingly	 paid	 attention	 to	 life	 quality	 and	 life	

improvement,	especially	as	it	relates	to	health.	This	trend	of	demand	has	led	to	the	rise	of	Quanti‐

fied	Self	(QS)	movement.		

As	a	result,	many	mobile	applications	for	personal	data	processing	have	come	to	the	market,	espe‐

cially	in	the	m‐Health	and	m‐Fitness	domains.	However	many	mainstream	mobile	applications	have	

faced	the	same	issue:	the	real‐time	personal	data	are	not	integrated	with	other	data,	especially	the	

user’s	 data,	 and	 the	 processing	method	 is	 not	 dynamically	 adapted	 to	 the	 changes	 of	 the	 user’s	

concurrent	 situation.	 Such	 mobile	 applications	 cannot	 be	 satisfactory	 as	 they	 don’t	 incorporate	

users’	 most	 current	 data	 into	 their	 calculations.	 In	 order	 to	 overcome	 the	 shortcomings	 of	 the	

existing	approaches,	we	combine	the	mobile	computing,	 intelligent	complex	event	processing	and	

semantic	 technologies	 to	 develop	 a	 foundation	 of	 innovative	mobile	 applications	 for	much	more	

efficient	 context‐aware	 processing	 of	 real‐time	personal	 data	 streams	 by	 taking	 into	 account	 the	

resource	limitation	on	mobile	devices.	

In	order	to	achieve	the	research	objective,	we	first	determine	the	limitations	of	mobile	devices	and	

wireless	sensors,	analyze	the	issues	of	the	existing	solutions	for	real‐time	personal	data	processing,	

we	then	conduct	a	literature	survey	in	the	different	research	fields,	including	mobile	and	distribu‐

tion	CEP	system,	efficient	mobile	processing,	semantic‐based	pattern	and	sensor	model,	and	mobile	

sensing	system	and	m‐fitness/m‐Health	mobile	apps	(see	Chapter	4)	to	analyze	the	existing	tech‐

																																																																		
38	http://www.nike.com/us/en_us/c/nikeplus‐fuelband	
39	http://www.smartwatchnews.org/apple‐iwatch/	
40	http://www.smartwatchnews.org/activity‐trackers‐fitness‐bands/	

Conclusion	

128	
	

nologies	and	approaches.	Based	on	these	analyses	and	surveys	we	came	up	with	a	set	of	require‐

ments	for	developing	our	approach	(see	Chapter	5).	

According	 to	 the	defined	requirements	we	design	an	event‐driven	hybrid	architecture	 for	mobile	

applications,	which	is	described	in	Chapter	6.	The	proposed	software	architecture	combines	mobile	

applications	and	remote	server	systems	with	the	purpose	of	extending	the	computation	capability	

of	mobile	devices.	Real‐time	personal	data	are	processed	by	the	Complex	Event	processing	(CEP)	

engines,	 which	 are	 executed	 on	 both	 mobile	 devices	 and	 backend	 servers.	 The	 communication	

between	mobile	 applications	 and	 backend	 servers	 is	 achieved	 by	 the	 publish/subscribe	middle‐

ware,	which	is	able	to	provide	various	communication	types.	We	also	define	a	data	model	for	the	

proposed	system.	Considering	different	use	cases	we	also	provide	two	different	variant	systems	of	

our	approach.		

In	 order	 to	 achieve	 context	 awareness	 for	 real‐time	 personal	 data	 processing,	 we	 develop	 the	

Monitoring	Goal	Network	(MGN),	which	 is	described	 in	Chapter	7,	 to	model	user’s	situations	and	

the	required	patterns	for	processing	the	personal	data	in	such	situations.	The	MGN	correlates	the	

real‐time	personal	data	with	user’s	context	and	domain	knowledge,	and	defines	the	possible	reac‐

tions	of	detected	user’s	situations.	Each	monitoring	goal	models	monitoring	procedures	for	a	specif‐

ic	purpose,	assigns	 the	patterns	regarding	 the	monitoring	purpose,	and	defines	 the	adaptation	 to	

the	detected	situations.	The	MGN	was	 implemented	 in	RDF/XML	 format	and	an	executor	of	MGN	

has	been	implemented	in	our	MCEP	prototype.	

In	Chapter	7	we	introduce	the	data	collaboration	mechanism	that	enables	our	approach	to	process	

user’s	 personal	 data	 referencing	 the	 collaborative	 data	 from	 other	 users	 who	 have	 the	 similar	

context	and	are	facing	the	same	situation.	Taking	advantage	of	monitoring	goal	based	monitoring	

realized	through	MGN,	the	approach	provides	a	mechanism	to	find	the	most	suitable	and	relevant	

users	for	data	collaboration.	

Considering	the	resource	limitation	of	mobile	devices,	we	design	a	resource‐aware	dynamic	pattern	

distribution	 (see	 Chapter	 8)	 to	 find	 the	 optimal	 pattern	 distribution	 between	mobile	 device	 and	

backend	 server.	 The	pattern	distribution	model	we	develop	 consists	 of	 four	 steps	 to	 achieve	 the	

dynamic	 pattern	 distribution.	 Employing	 a	 distribution	 fitness	 algorithm,	 for	 each	 pattern	 we	

calculate	the	fitness	of	all	pattern	bindings	and	deployment	positions	regarding	the	current	work‐

load	of	mobile	 device	 and	 backend	 server	 and	 find	 the	 optimal	 pattern	 binding	 and	 deployment	

position.		

In	order	to	manage	patterns	more	efficiently	and	achieve	dynamic	adaptation	to	changes	of	availa‐

bility	of	event	resources,	we	develop	a	dynamic	pattern	management	system	(see	Chapter	9)	in	our	

approach.	Using	 semantic	 technologies	we	develop	pattern	 and	 event	 resource	ontology	 to	 store	

Conclusion		

129	
	

the	 patterns	 and	 event	 resources	 of	 users.	 The	 availabilities	 of	 event	 resources	 are	 dynamically	

updated	during	run‐time.	We	define	 three	basic	adaptation	methods	using	queries	and	reasoning	

functions	of	semantic	technologies.	Two	algorithms	are	developed	for	real‐time	pattern	adaptation.	

The	 first	algorithm	tries	 to	achieve	the	dynamic	adaptation	of	patterns	by	pattern	deployment	 to	

solve	the	problem	when	an	event	resource	for	required	event	is	not	available.	The	second	algorithm	

is	used	to	deal	with	the	situation	that	the	availability	of	an	event	resource,	which	is	used	by	a	run‐

ning	pattern,	changes	in	run‐time.		

In	summary,	the	main	achievements	of	this	thesis	are:	

 We	develop	an	event	driven	software	architecture	for	CEP	on	mobile	devices	that	provides	a	

foundation	for	many	similar	applications	to	be	developed.	

 We	devise	a	hybrid	architecture	by	combining	both	mobile	devices	and	backend	servers	such	

that	the	system	based	on	this	architecture	can	achieve	maximum	performance	in	detecting	

and	 processing	 real‐time	 information	 and	 other	 relevant	 time‐series	 and	 cross‐sectional	

data.	

 We	employ	the	MGN	for	context‐aware	monitoring	procedure	modeling.	

 The	proposed	system	achieves	 to	 find	the	most	suitable	relevant	user	 information	 for	data	

collaboration.	

 We	employ	the	resource‐aware	dynamic	pattern	distribution	for	improving	mobile	applica‐

tion	performance.	

 We	model	patterns,	event	resources	and	sensors	in	an	ontology.	

 We	develop	pattern	adaptation	methods	and	algorithms.	

11.2 Future	research	

This	 thesis	 describes	 a	 first	 step	 towards	 using	 CEP	 for	 real‐time	 personal	 data	 processing	 on	

mobile	devices.	We	developed	a	software	prototype	based	on	the	described	software	architecture,	

methods	and	algorithms.	However	the	system	can	be	further	improved	in	many	areas:	

Advanced	hybrid	 architecture:	 In	 the	 current	 proposed	 hybrid	 architecture	 personal	 data	 are	

processed	on	both	mobile	device	and	backend	server,	while	the	situation	analyzer,	which	executes	

MGN	and	realizes	adaptation	to	real‐time	situations,	is	only	run	on	the	backend	server.	Therefore,	

the	whole	system	depends	heavily	on	backend	servers.	In	the	case	of	lost	connection	from	backend	

server,	mobile	 applications	 can	 only	 provide	 very	 limited	 functions.	 Although	we	 also	 provide	 a	

mobile‐only	 variant,	 the	 important	 features	 such	 as	 context	 awareness,	 data	 collaboration	 and	

dynamic	pattern	distribution	 are	not	 supported	 in	 the	mobile‐only	 variant.	 In	 order	 to	 solve	 the	

issues	 mentioned	 above,	 the	 current	 hybrid	 architecture	 can	 be	 improved	 to	 advanced	 hybrid	

Conclusion	

130	
	

architecture,	which	implements	all	features	on	mobile	devices.	In	such	a	system,	the	mobile	device	

part	 would	 be	 able	 to	 download	 parts	 of	 MGN,	 patterns,	 context	 and	 domain	 knowledge	 from	

backend	server	and	provide	parts	of	functions	of	the	backend	server.	In	the	case	of	disconnection	

from	backend	 server,	mobile	 applications	 can	 still	 provide	 full	 functions.	However,	 the	 extended	

functions	on	the	mobile	device	part	in	such	a	case	can	significantly	increase	the	workload	of	mobile	

device,	which	causes	the	architecture	to	face	the	resource	limitation	issues	of	mobile	devices	as	we	

very	much	address	in	the	first	place.		Nevertheless,	this	situation	should	and	needs	to	be	considered	

for	real‐world	applications.	

Proactive	data	collaboration:	The	data	collaboration	is	enabled	and	used	in	the	proposed	MCEP	

system	 for	 personal	 data	 processing.	 We	 provide	 only	 the	 basic	 data	 collaboration	 mechanism,	

while	there	are	more	potentials	of	data	collaboration,	such	as	proactive	data	collaboration.	In	the	

current	approach	the	data	collaboration	is	passive,	which	means	the	data	collaboration	is	achieved	

only	when	the	collaborative	data	are	called	or	required.	Such	a	mechanism	can	 lead	to	a	delay	of	

personal	 data	 processing,	 due	 to	 the	waiting	 time	 for	 the	 data	 collaboration.	 The	 proactive	 data	

collaboration	processes	the	data	from	other	users,	who	have	the	similar	context	and	who	are	active	

during	 the	 run‐time	 and	 produces	 collaborative	 data	 according	 to	 some	 special	 criteria.	 The	 re‐

quired	collaborative	data	can	be	immediately	used	without	delay,	since	the	data	have	already	been	

produced	in	advance	and	stored	in	a	backend	server.	The	challenge	of	the	proactive	data	collabora‐

tive	is	to	decide	what	data	should	be	used	for	collaboration	and	the	data	from	which	relevant	users	

should	be	collaborated.		

Pattern	decomposition	for	pattern	distribution:	This	 is	another	 important	direction	of	 further	

development	of	our	approach.	In	our	current	pattern	distribution	model	we	focus	only	on	the	event	

resources	allocation	and	deployment	position	selection,	and	regard	each	pattern	as	a	unit.	Pattern	

decomposition	provides	a	new	method	for	pattern	distribution.	It	decomposes	a	pattern	into	sever‐

al	sub‐patterns	and	deploys	resources	on	different	parts	of	the	system.	The	advantages	of	pattern	

decomposition	are:	firstly	the	complex	pattern,	which	needs	intense	computation	capability,	can	be	

decomposed	into	simple	patterns	and	be	deployed	flexibly;	secondly	the	decomposition	can	reduce	

event	transmission.		As	a	pattern	can	use	different	events,	which	are	from	different	sources,	either	

from	mobile	 device	 or	 backend	 server,	 in	 the	 current	 pattern	 execution	model	 some	 events	 are	

required	to	be	transferred	to	the	position	(mobile	device	or	backend	server),	where	the	pattern	is	

deployed.	 Pattern	 decomposition	 can	 decompose	 a	 pattern	 according	 to	 the	 event	 sources.	 Each	

sub‐pattern	 uses	 all	 event	 resources	 that	 are	 from	 the	 same	 source	 (mobile	 device	 or	 backend	

server)	and	should	be	deployed	in	the	corresponding	position.	The	challenge	of	pattern	decomposi‐

tion	is	how	to	decompose	patterns	and	how	to	merge	the	results	of	sub‐patterns	together	without	

changing	the	function	of	the	original	pattern.	

Conclusion		

131	
	

Graphical	user	interface	for	MGN	and	pattern	model:	In	our	approach	we	use	semantic	technol‐

ogies	 to	 model	 monitoring	 goal	 network	 and	 pattern	 model	 for	 formal	 modeling	 and	 efficient	

querying.	 For	 different	 use	 cases,	 system	 administrators	 should	model	 corresponding	 MGN	 and	

patterns.	However,	it	is	difficult	to	model	MGN	and	patterns	directly	in	the	ontology.	Hence	graph‐

ical	user	interface	(GUI)	is	required	to	simplify	the	modeling	procedure.	Duo	to	the	limited	research	

period,	we	are	not	able	to	provide	such	GUIs,	but	it	should	be	done	in	the	future	development.	

	

	

	

133	
	

Appendix	I	
Monitoring	Goal	Network	(MGN)	ontology	

<?xml	version="1.0"?>	

<!DOCTYPE	rdf:RDF	[

				<!ENTITY	owl	"http://www.w3.org/2002/07/owl#"	>	

				<!ENTITY	xsd	"http://www.w3.org/2001/XMLSchema#"	>	

				<!ENTITY	rdfs	"http://www.w3.org/2000/01/rdf‐schema#"	>	

				<!ENTITY	rdf	"http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#"	>	

]>	

<rdf:RDF	xmlns="http://www.mcep.fzi.de/situations#"	

					xml:base="http://www.mcep.fzi.de/situations"	

					xmlns:rdfs="http://www.w3.org/2000/01/rdf‐schema#"	

					xmlns:owl="http://www.w3.org/2002/07/owl#"	

					xmlns:xsd="http://www.w3.org/2001/XMLSchema#"	

					xmlns:rdf="http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#">	

				<owl:Ontology	rdf:about="http://www.mcep.fzi.de/situations"/>	

				<!‐‐					

//	

//	Object	Properties	

//	

					‐‐>		

				<!‐‐	http://www.mcep.fzi.de/situations#assignedValue	‐‐>	

				<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#assignedValue">	

Appendix	I			

134	
	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#EventValue"/>	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#Value"/>	

</owl:ObjectProperty>	

	

					<!‐‐	http://www.mcep.fzi.de/situations#hasAction	‐‐>	

				<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasAction">	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#Action"/>	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#Situation"/>	

</owl:ObjectProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasActionEvent	‐‐>	

				<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasActionEvent">	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#ActionEvent"/>	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#CreateEventAction"/>	

</owl:ObjectProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasCondition	‐‐>	

				<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasCondition">	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#Condition"/>	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#Situation"/>	

				</owl:ObjectProperty>	

					

	<!‐‐	http://www.mcep.fzi.de/situations#hasEventValue	‐‐>	

	<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasEventValue">	

Appendix	I		

135	
	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#EventValue"/>	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#MCEPEvent"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasObject	‐‐>	

<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasObject">	

								<rdf:type	rdf:resource="&owl;FunctionalProperty"/>	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#Condition"/>	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#Value"/>	

</owl:ObjectProperty>	

					

				<!‐‐	http://www.mcep.fzi.de/situations#hasOperator	‐‐>	

<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasOperator">	

								<rdf:type	rdf:resource="&owl;FunctionalProperty"/>	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#Condition"/>	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#ConditionOperator"/>	

</owl:ObjectProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasSituation	‐‐>	

				<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasSituation">	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#MonitoringGoal"/>	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#Situation"/>	

				</owl:ObjectProperty>	

	

Appendix	I			

136	
	

				<!‐‐	http://www.mcep.fzi.de/situations#hasSubject	‐‐>	

<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasSubject">	

								<rdf:type	rdf:resource="&owl;FunctionalProperty"/>	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#Condition"/>	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#Value"/>	

</owl:ObjectProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasTarget	‐‐>	

				<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasTarget">	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#GoalChangeAction"/>	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#MonitoringGoal"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasTriggerEvent	‐‐>	

				<owl:ObjectProperty	rdf:about="http://www.mcep.fzi.de/situations#hasTriggerEvent">	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#Situation"/>	

								<rdfs:range	rdf:resource="http://www.mcep.fzi.de/situations#TriggerEvent"/>	

								<rdfs:subPropertyOf	rdf:resource="&owl;topObjectProperty"/>	

				</owl:ObjectProperty>				

				<!‐‐			

//	

	//	Data	properties	

//					

‐‐>	

				<!‐‐	http://www.mcep.fzi.de/situations#fromEvent	‐‐>	

Appendix	I		

137	
	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#fromEvent">	

								<rdfs:range	rdf:resource="&xsd;string"/>	

								<rdfs:domain>	

												<owl:Class>	

																<owl:unionOf	rdf:parseType="Collection">	

																				<rdf:Description	

rdf:about="http://www.mcep.fzi.de/situations#SaveUserContextAction"/>	

																				<rdf:Description	rdf:about="http://www.mcep.fzi.de/situations#ValueFromEvent"/>	

																</owl:unionOf>	

												</owl:Class>	

								</rdfs:domain>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#fromKnowledgeBase	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#fromKnowledgeBase">	

								<rdfs:domain	

rdf:resource="http://www.mcep.fzi.de/situations#ValueFromKnowledgeBase"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasAttributeName	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#hasAttributeName">	

								<rdfs:range	rdf:resource="&xsd;string"/>	

								<rdfs:domain>	

												<owl:Class>	

Appendix	I			

138	
	

																<owl:unionOf	rdf:parseType="Collection">	

																				<rdf:Description	rdf:about="http://www.mcep.fzi.de/situations#EventValue"/>	

																				<rdf:Description	

rdf:about="http://www.mcep.fzi.de/situations#SaveUserContextAction"/>	

																				<rdf:Description	rdf:about="http://www.mcep.fzi.de/situations#ValueFromEvent"/>	

																</owl:unionOf>	

												</owl:Class>	

								</rdfs:domain>	

				</owl:DatatypeProperty>	

					

				<!‐‐	http://www.mcep.fzi.de/situations#hasContextName	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#hasContextName">	

								<rdfs:range	rdf:resource="&xsd;string"/>	

								<rdfs:domain>	

												<owl:Class>	

																<owl:unionOf	rdf:parseType="Collection">	

																				<rdf:Description	

rdf:about="http://www.mcep.fzi.de/situations#SaveUserContextAction"/>	

																				<rdf:Description	

rdf:about="http://www.mcep.fzi.de/situations#ValueFromUserContext"/>	

																</owl:unionOf>	

												</owl:Class>	

								</rdfs:domain>	

				</owl:DatatypeProperty>	

	

Appendix	I		

139	
	

				<!‐‐	http://www.mcep.fzi.de/situations#hasName	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#hasName">	

								<rdfs:range	rdf:resource="&xsd;string"/>	

								<rdfs:domain>	

												<owl:Class>	

																<owl:unionOf	rdf:parseType="Collection">	

																				<rdf:Description	rdf:about="http://www.mcep.fzi.de/situations#Action"/>	

																				<rdf:Description	rdf:about="http://www.mcep.fzi.de/situations#MCEPEvent"/>	

																				<rdf:Description	rdf:about="http://www.mcep.fzi.de/situations#MonitoringGoal"/>	

																				<rdf:Description	rdf:about="http://www.mcep.fzi.de/situations#Situation"/>	

																</owl:unionOf>	

												</owl:Class>	

								</rdfs:domain>	

</owl:DatatypeProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasPattern	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#hasPattern">	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#MonitoringGoal"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasQuery	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#hasQuery">	

Appendix	I			

140	
	

								<rdfs:domain	

rdf:resource="http://www.mcep.fzi.de/situations#ValueFromKnowledgeBase"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasType	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#hasType">	

								<rdfs:range	rdf:resource="&xsd;string"/>	

								<rdfs:domain>	

												<owl:Class>	

																<owl:unionOf	rdf:parseType="Collection">	

																				<rdf:Description	rdf:about="http://www.mcep.fzi.de/situations#FixedValue"/>	

																				<rdf:Description	

rdf:about="http://www.mcep.fzi.de/situations#ValueFromKnowledgeBase"/>	

																</owl:unionOf>	

												</owl:Class>	

								</rdfs:domain>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#hasValue	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#hasValue">	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#FixedValue"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

Appendix	I		

141	
	

				<!‐‐	http://www.mcep.fzi.de/situations#isStartGoal	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://www.mcep.fzi.de/situations#isStartGoal">	

								<rdfs:domain	rdf:resource="http://www.mcep.fzi.de/situations#MonitoringGoal"/>	

								<rdfs:range	rdf:resource="&xsd;boolean"/>	

				</owl:DatatypeProperty>	

				<!‐‐					

//

//	Classes	

//	

					‐‐>	

				<!‐‐	http://www.mcep.fzi.de/situations#Action	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#Action"/>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#ActionEvent	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#ActionEvent">	

								<rdfs:subClassOf	rdf:resource="http://www.mcep.fzi.de/situations#MCEPEvent"/>	

				</owl:Class>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#Condition	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#Condition"/>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#ConditionOperator	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#ConditionOperator"/>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#CreateEventAction	‐‐>	

Appendix	I			

142	
	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#CreateEventAction">	

								<rdfs:subClassOf	rdf:resource="http://www.mcep.fzi.de/situations#Action"/>	

				</owl:Class>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#EventValue	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#EventValue"/>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#FixedValue	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#FixedValue">	

								<rdfs:subClassOf	rdf:resource="http://www.mcep.fzi.de/situations#Value"/>	

				</owl:Class>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#GoalChangeAction	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#GoalChangeAction">	

								<rdfs:subClassOf	rdf:resource="http://www.mcep.fzi.de/situations#Action"/>	

				</owl:Class>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#MCEPEvent	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#MCEPEvent"/>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#MonitoringGoal	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#MonitoringGoal"/>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#SaveUserContextAction	‐‐>	

Appendix	I		

143	
	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#SaveUserContextAction">	

								<rdfs:subClassOf	rdf:resource="http://www.mcep.fzi.de/situations#Action"/>	

				</owl:Class>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#Situation	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#Situation"/>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#TriggerEvent	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#TriggerEvent">	

								<rdfs:subClassOf	rdf:resource="http://www.mcep.fzi.de/situations#MCEPEvent"/>	

				</owl:Class>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#Value	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#Value"/>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#ValueFromEvent	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#ValueFromEvent">	

								<rdfs:subClassOf	rdf:resource="http://www.mcep.fzi.de/situations#Value"/>	

				</owl:Class>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#ValueFromKnowledgeBase	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#ValueFromKnowledgeBase">	

								<rdfs:subClassOf	rdf:resource="http://www.mcep.fzi.de/situations#Value"/>	

				</owl:Class>	

Appendix	I			

144	
	

	

				<!‐‐	http://www.mcep.fzi.de/situations#ValueFromUserContext	‐‐>	

				<owl:Class	rdf:about="http://www.mcep.fzi.de/situations#ValueFromUserContext">	

								<rdfs:subClassOf	rdf:resource="http://www.mcep.fzi.de/situations#Value"/>	

				</owl:Class>	

				<!‐‐					

//	

				//	Individuals	

//	

					‐‐>	

				<!‐‐	http://www.mcep.fzi.de/situations#exists	‐‐>	

				<owl:NamedIndividual	rdf:about="http://www.mcep.fzi.de/situations#exists">	

								<rdf:type	rdf:resource="http://www.mcep.fzi.de/situations#ConditionOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#greaterThan	‐‐>	

				<owl:NamedIndividual	rdf:about="http://www.mcep.fzi.de/situations#greaterThan">	

								<rdf:type	rdf:resource="http://www.mcep.fzi.de/situations#ConditionOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#notExists	‐‐>	

				<owl:NamedIndividual	rdf:about="http://www.mcep.fzi.de/situations#notExists">	

								<rdf:type	rdf:resource="http://www.mcep.fzi.de/situations#ConditionOperator"/>	

				</owl:NamedIndividual>	

Appendix	I		

145	
	

	

				<!‐‐	http://www.mcep.fzi.de/situations#notSameAs	‐‐>	

				<owl:NamedIndividual	rdf:about="http://www.mcep.fzi.de/situations#notSameAs">	

								<rdf:type	rdf:resource="http://www.mcep.fzi.de/situations#ConditionOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#sameAs	‐‐>	

				<owl:NamedIndividual	rdf:about="http://www.mcep.fzi.de/situations#sameAs">	

								<rdf:type	rdf:resource="http://www.mcep.fzi.de/situations#ConditionOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://www.mcep.fzi.de/situations#smallerThan	‐‐>	

				<owl:NamedIndividual	rdf:about="http://www.mcep.fzi.de/situations#smallerThan">	

								<rdf:type	rdf:resource="http://www.mcep.fzi.de/situations#ConditionOperator"/>	

				</owl:NamedIndividual>	

</rdf:RDF>	

	

	

	

147	
	

Appendix	II	
Pattern	and	event	resources	ontology	

<?xml	version="1.0"?>	

<!DOCTYPE	rdf:RDF	[

				<!ENTITY	event	"http://mcep.fzi.de/event/"	>	

				<!ENTITY	stream	"http://mcep.fzi.de/stream/"	>	

				<!ENTITY	pattern	"http://mcep.fzi.de/pattern/"	>	

				<!ENTITY	owl	"http://www.w3.org/2002/07/owl#"	>	

				<!ENTITY	xsd	"http://www.w3.org/2001/XMLSchema#"	>	

				<!ENTITY	rdfs	"http://www.w3.org/2000/01/rdf‐schema#"	>	

				<!ENTITY	types	"http://events.event‐processing.org/types/"	>	

				<!ENTITY	rdf	"http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#"	>	

]>	

<rdf:RDF	xmlns="http://mcep.fzi.de/"	

					xml:base="http://mcep.fzi.de/"	

					xmlns:rdfs="http://www.w3.org/2000/01/rdf‐schema#"	

					xmlns:stream="http://mcep.fzi.de/stream/"	

					xmlns:pattern="http://mcep.fzi.de/pattern/"	

					xmlns:event="http://mcep.fzi.de/event/"	

					xmlns:owl="http://www.w3.org/2002/07/owl#"	

					xmlns:xsd="http://www.w3.org/2001/XMLSchema#"	

					xmlns:rdf="http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#"	

					xmlns:types="http://events.event‐processing.org/types/">	

Appendix	II			

148	
	

				<owl:Ontology	rdf:about="http://mcep.fzi.de/">	

				<owl:imports	rdf:resource="http://purl.oclc.org/NET/ssnx/ssn"/>	

				</owl:Ontology>				

<!‐‐					

///				

//	Object	Properties	

//	

					‐‐>	

				<!‐‐	http://mcep.fzi.de/connectTo	‐‐>	

				<owl:ObjectProperty	rdf:about="http://mcep.fzi.de/connectTo">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/EventResource"/>	

								<rdfs:range	rdf:resource="http://mcep.fzi.de/EventSource"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/eventResource	‐‐>	

				<owl:ObjectProperty	rdf:about="http://mcep.fzi.de/eventResource">	

								<rdfs:range	rdf:resource="http://mcep.fzi.de/EventResource"/>	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/User"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/goal	‐‐>	

				<owl:ObjectProperty	rdf:about="http://mcep.fzi.de/goal">	

								<rdfs:range	rdf:resource="http://mcep.fzi.de/Goal"/>	

								<rdfs:domain	rdf:resource="&pattern;Pattern"/>	

				</owl:ObjectProperty>	

Appendix	II		

149	
	

	

				<!‐‐	http://mcep.fzi.de/provideEvent	‐‐>	

				<owl:ObjectProperty	rdf:about="http://mcep.fzi.de/provideEvent">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/EventResource"/>	

								<rdfs:range	rdf:resource="&event;Event"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/event/attribute	‐‐>	

				<owl:ObjectProperty	rdf:about="&event;attribute">	

								<rdfs:range	rdf:resource="&event;Attribute"/>	

								<rdfs:domain	rdf:resource="&event;Event"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/aggregationOperator	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;aggregationOperator">	

								<rdfs:range	rdf:resource="&pattern;AggregationOperator"/>	

								<rdfs:domain	rdf:resource="&pattern;AggregationValue"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/assignedAttribute	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;assignedAttribute">	

								<rdfs:range	rdf:resource="&event;Attribute"/>	

								<rdfs:domain>	

												<owl:Class>	

Appendix	II			

150	
	

																<owl:unionOf	rdf:parseType="Collection">	

																				<rdf:Description	rdf:about="&pattern;Condition"/>	

																				<rdf:Description	rdf:about="&pattern;Value"/>	

																				<rdf:Description	rdf:about="&pattern;Variable"/>	

																</owl:unionOf>	

												</owl:Class>	

								</rdfs:domain>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/attributeSource	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;attributeSource">	

								<rdfs:range	rdf:resource="&event;Attribute"/>	

								<rdfs:domain	rdf:resource="&pattern;AggregationValue"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/condition	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;condition">	

								<rdfs:range	rdf:resource="&pattern;Condition"/>	

								<rdfs:domain	rdf:resource="&pattern;EventOperand"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/conditionOperator	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;conditionOperator">	

								<rdfs:domain	rdf:resource="&pattern;Condition"/>	

Appendix	II		

151	
	

								<rdfs:range	rdf:resource="&pattern;ConditionOperator"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/eventSource	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;eventSource">	

								<rdfs:domain	rdf:resource="&pattern;AggregationValue"/>	

								<rdfs:range	rdf:resource="&pattern;EventOperand"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/eventType	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;eventType">	

								<rdfs:range	rdf:resource="&event;Event"/>	

								<rdfs:domain	rdf:resource="&pattern;EventOperand"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/firstOperand	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;firstOperand">	

								<rdfs:domain	rdf:resource="&pattern;BinaryOperator"/>	

								<rdfs:range	rdf:resource="&pattern;Operand"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/operand	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;operand">	

								<rdfs:range	rdf:resource="&pattern;Operand"/>	

Appendix	II			

152	
	

								<rdfs:domain	rdf:resource="&pattern;UnaryOperator"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/operator	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;operator">	

								<rdfs:range	rdf:resource="&pattern;Operator"/>	

								<rdfs:domain	rdf:resource="&pattern;Pattern"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/output	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;output">	

								<rdfs:range	rdf:resource="&pattern;EventOperand"/>	

								<rdfs:domain	rdf:resource="&pattern;Pattern"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/secondOperand	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;secondOperand">	

								<rdfs:domain	rdf:resource="&pattern;BinaryOperator"/>	

								<rdfs:range	rdf:resource="&pattern;Operand"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/value	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;value">	

								<rdfs:domain	rdf:resource="&pattern;Operand"/>	

Appendix	II		

153	
	

								<rdfs:range>	

												<owl:Class>	

																<owl:unionOf	rdf:parseType="Collection">	

																				<rdf:Description	rdf:about="&pattern;AggregationValue"/>	

																				<rdf:Description	rdf:about="&pattern;Value"/>	

																</owl:unionOf>	

												</owl:Class>	

								</rdfs:range>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/variable	‐‐>	

				<owl:ObjectProperty	rdf:about="&pattern;variable">	

								<rdfs:domain	rdf:resource="&pattern;EventOperand"/>	

								<rdfs:range	rdf:resource="&pattern;Variable"/>	

				</owl:ObjectProperty>	

	

				<!‐‐	http://mcep.fzi.de/stream/stream	‐‐>	

				<owl:ObjectProperty	rdf:about="&stream;stream">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/EventResource"/>	

								<rdfs:range	rdf:resource="&stream;Stream"/>	

				</owl:ObjectProperty>	

				<!‐‐					

//	

	//	Data	properties	

Appendix	II			

154	
	

			

//	

	‐‐>	

				<!‐‐	http://mcep.fzi.de/available	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://mcep.fzi.de/available">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/EventResource"/>	

								<rdfs:range	rdf:resource="&xsd;boolean"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/cost	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://mcep.fzi.de/cost">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/EventResource"/>	

								<rdfs:range	rdf:resource="&xsd;integer"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/eventFrequency	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://mcep.fzi.de/eventFrequency">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/EventResource"/>	

								<rdfs:range	rdf:resource="&xsd;int"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/name	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://mcep.fzi.de/name">	

								<rdfs:range	rdf:resource="&xsd;string"/>	

Appendix	II		

155	
	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/onMobileDevice	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://mcep.fzi.de/onMobileDevice">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/EventResource"/>	

								<rdfs:range	rdf:resource="&xsd;boolean"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/privacyLevelsetting	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://mcep.fzi.de/privacyLevelsetting">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/User"/>	

								<rdfs:range	rdf:resource="&xsd;integer"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/register	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://mcep.fzi.de/register">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/User"/>	

								<rdfs:range	rdf:resource="&xsd;boolean"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/sensorName	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://mcep.fzi.de/sensorName">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/SensingDevice"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

Appendix	II			

156	
	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/userID	‐‐>	

				<owl:DatatypeProperty	rdf:about="http://mcep.fzi.de/userID">	

								<rdfs:domain	rdf:resource="http://mcep.fzi.de/User"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/event/attributeType	‐‐>	

				<owl:DatatypeProperty	rdf:about="&event;attributeType">	

								<rdfs:domain	rdf:resource="&event;Attribute"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/assignedValue	‐‐>	

				<owl:DatatypeProperty	rdf:about="&pattern;assignedValue">	

								<rdfs:domain	rdf:resource="&pattern;Value"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/complexCondition	‐‐>	

				<owl:DatatypeProperty	rdf:about="&pattern;complexCondition">	

								<rdfs:domain	rdf:resource="&pattern;Pattern"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

Appendix	II		

157	
	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/conditionValue	‐‐>	

				<owl:DatatypeProperty	rdf:about="&pattern;conditionValue">	

								<rdfs:domain	rdf:resource="&pattern;Condition"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/id	‐‐>	

				<owl:DatatypeProperty	rdf:about="&pattern;id">	

								<rdfs:domain	rdf:resource="&pattern;Pattern"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/pattern/parameter	‐‐>	

				<owl:DatatypeProperty	rdf:about="&pattern;parameter">	

								<rdfs:domain	rdf:resource="&pattern;ParOperator"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/stream/privacyLevel	‐‐>	

				<owl:DatatypeProperty	rdf:about="&stream;privacyLevel">	

								<rdfs:domain	rdf:resource="&stream;Stream"/>	

								<rdfs:range	rdf:resource="&xsd;integer"/>	

Appendix	II			

158	
	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/stream/sender	‐‐>	

				<owl:DatatypeProperty	rdf:about="&stream;sender">	

								<rdfs:domain	rdf:resource="&stream;Stream"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

	

				<!‐‐	http://mcep.fzi.de/stream/source	‐‐>	

				<owl:DatatypeProperty	rdf:about="&stream;source">	

								<rdfs:domain	rdf:resource="&stream;Stream"/>	

								<rdfs:range	rdf:resource="&xsd;string"/>	

				</owl:DatatypeProperty>	

				<!‐‐					

//	

				//	Classes	

//					

‐‐>	

				<!‐‐	http://mcep.fzi.de/EventResource	‐‐>	

				<owl:Class	rdf:about="http://mcep.fzi.de/EventResource"/>	

	

				<!‐‐	http://mcep.fzi.de/EventSource	‐‐>	

				<owl:Class	rdf:about="http://mcep.fzi.de/EventSource"/>	

	

				<!‐‐	http://mcep.fzi.de/ExternalEventSource	‐‐>	

Appendix	II		

159	
	

				<owl:Class	rdf:about="http://mcep.fzi.de/ExternalEventSource">	

								<rdfs:subClassOf	rdf:resource="http://mcep.fzi.de/EventSource"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/Goal	‐‐>	

				<owl:Class	rdf:about="http://mcep.fzi.de/Goal"/>	

	

				<!‐‐	http://mcep.fzi.de/SensingDevice	‐‐>	

				<owl:Class	rdf:about="http://mcep.fzi.de/SensingDevice">	

								<owl:equivalentClass	rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#SensingDevice"/>	

								<rdfs:subClassOf	rdf:resource="http://mcep.fzi.de/EventSource"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/User	‐‐>	

				<owl:Class	rdf:about="http://mcep.fzi.de/User"/>	

	

				<!‐‐	http://mcep.fzi.de/event/Attribute	‐‐>	

				<owl:Class	rdf:about="&event;Attribute">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/event/Event	‐‐>	

				<owl:Class	rdf:about="&event;Event">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

Appendix	II			

160	
	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/AND	‐‐>	

				<owl:Class	rdf:about="&pattern;AND">	

								<rdfs:subClassOf	rdf:resource="&pattern;BinaryOperator"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/AggregationOperator	‐‐>	

				<owl:Class	rdf:about="&pattern;AggregationOperator">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/AggregationValue	‐‐>	

				<owl:Class	rdf:about="&pattern;AggregationValue">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/BinaryOperator	‐‐>	

				<owl:Class	rdf:about="&pattern;BinaryOperator">	

								<rdfs:subClassOf	rdf:resource="&pattern;Operator"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/Condition	‐‐>	

				<owl:Class	rdf:about="&pattern;Condition">	

Appendix	II		

161	
	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/ConditionOperator	‐‐>	

				<owl:Class	rdf:about="&pattern;ConditionOperator">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/EventOperand	‐‐>	

				<owl:Class	rdf:about="&pattern;EventOperand">	

								<rdfs:subClassOf	rdf:resource="&pattern;Operand"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/LengthWindow	‐‐>	

				<owl:Class	rdf:about="&pattern;LengthWindow">	

								<rdfs:subClassOf	rdf:resource="&pattern;ParOperator"/>	

								<rdfs:subClassOf	rdf:resource="&pattern;UnaryOperator"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/NOOP	‐‐>	

				<owl:Class	rdf:about="&pattern;NOOP">	

								<rdfs:subClassOf	rdf:resource="&pattern;UnaryOperator"/>	

				</owl:Class>	

	

Appendix	II			

162	
	

				<!‐‐	http://mcep.fzi.de/pattern/NOT	‐‐>	

				<owl:Class	rdf:about="&pattern;NOT">	

								<rdfs:subClassOf	rdf:resource="&pattern;UnaryOperator"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/OR	‐‐>	

				<owl:Class	rdf:about="&pattern;OR">	

								<rdfs:subClassOf	rdf:resource="&pattern;BinaryOperator"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/Operand	‐‐>	

				<owl:Class	rdf:about="&pattern;Operand">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/Operator	‐‐>	

				<owl:Class	rdf:about="&pattern;Operator">	

								<rdfs:subClassOf	rdf:resource="&pattern;Operand"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/ParOperator	‐‐>	

				<owl:Class	rdf:about="&pattern;ParOperator">	

								<rdfs:subClassOf	rdf:resource="&pattern;Operator"/>	

				</owl:Class>	

Appendix	II		

163	
	

	

				<!‐‐	http://mcep.fzi.de/pattern/Pattern	‐‐>	

				<owl:Class	rdf:about="&pattern;Pattern">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/SEQ	‐‐>	

				<owl:Class	rdf:about="&pattern;SEQ">	

								<rdfs:subClassOf	rdf:resource="&pattern;BinaryOperator"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/TimeAt	‐‐>	

				<owl:Class	rdf:about="&pattern;TimeAt">	

								<rdfs:subClassOf	rdf:resource="&pattern;ParOperator"/>	

								<rdfs:subClassOf	rdf:resource="&pattern;UnaryOperator"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/TimeWindow	‐‐>	

				<owl:Class	rdf:about="&pattern;TimeWindow">	

								<rdfs:subClassOf	rdf:resource="&pattern;ParOperator"/>	

								<rdfs:subClassOf	rdf:resource="&pattern;UnaryOperator"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/UnaryOperator	‐‐>	

Appendix	II			

164	
	

				<owl:Class	rdf:about="&pattern;UnaryOperator">	

								<rdfs:subClassOf	rdf:resource="&pattern;Operator"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/Value	‐‐>	

				<owl:Class	rdf:about="&pattern;Value">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/pattern/Variable	‐‐>	

				<owl:Class	rdf:about="&pattern;Variable">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://mcep.fzi.de/stream/Stream	‐‐>	

				<owl:Class	rdf:about="&stream;Stream">	

								<rdfs:subClassOf	rdf:resource="&owl;Thing"/>	

				</owl:Class>	

	

				<!‐‐	http://purl.oclc.org/NET/ssnx/ssn#SensingDevice	‐‐>	

				<rdf:Description	rdf:about="http://purl.oclc.org/NET/ssnx/ssn#SensingDevice"/>	

				<!‐‐					

//	

				//	Individuals	

Appendix	II		

165	
	

//	

					‐‐>	

				<!‐‐	http://mcep.fzi.de/BiggerEqual	‐‐>	

				<owl:NamedIndividual	rdf:about="http://mcep.fzi.de/BiggerEqual">	

								<rdf:type	rdf:resource="&pattern;ConditionOperator"/>	

</owl:NamedIndividual>	

	

				<!‐‐	http://mcep.fzi.de/SmallerEqual	‐‐>	

				<owl:NamedIndividual	rdf:about="http://mcep.fzi.de/SmallerEqual">	

								<rdf:type	rdf:resource="&pattern;ConditionOperator"/>	

</owl:NamedIndividual>	

	

				<!‐‐	http://mcep.fzi.de/pattern/AVG	‐‐>	

				<owl:NamedIndividual	rdf:about="&pattern;AVG">	

								<rdf:type	rdf:resource="&pattern;AggregationOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://mcep.fzi.de/pattern/BiggerThan	‐‐>	

				<owl:NamedIndividual	rdf:about="&pattern;BiggerThan">	

								<rdf:type	rdf:resource="&pattern;ConditionOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://mcep.fzi.de/pattern/COUNT	‐‐>	

				<owl:NamedIndividual	rdf:about="&pattern;COUNT">	

Appendix	II			

166	
	

								<rdf:type	rdf:resource="&pattern;AggregationOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://mcep.fzi.de/pattern/MAX	‐‐>	

				<owl:NamedIndividual	rdf:about="&pattern;MAX">	

								<rdf:type	rdf:resource="&pattern;AggregationOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://mcep.fzi.de/pattern/MIN	‐‐>	

				<owl:NamedIndividual	rdf:about="&pattern;MIN">	

								<rdf:type	rdf:resource="&pattern;AggregationOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://mcep.fzi.de/pattern/SUM	‐‐>	

				<owl:NamedIndividual	rdf:about="&pattern;SUM">	

								<rdf:type	rdf:resource="&pattern;AggregationOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://mcep.fzi.de/pattern/SameAs	‐‐>	

				<owl:NamedIndividual	rdf:about="&pattern;SameAs">	

								<rdf:type	rdf:resource="&pattern;ConditionOperator"/>	

				</owl:NamedIndividual>	

	

				<!‐‐	http://mcep.fzi.de/pattern/SmallerThan	‐‐>	

Appendix	II		

167	
	

				<owl:NamedIndividual	rdf:about="&pattern;SmallerThan">	

								<rdf:type	rdf:resource="&pattern;ConditionOperator"/>	

				</owl:NamedIndividual>	

</rdf:RDF>	

	

	

169	
	

Appendix	III	
Evaluation	Questionnaire	

Usability	

1. Is	the	mobile	application	easy	to	install?	

☐Very	easy		☐Easy	☐Moderate	☐Difficult ☐Very	difficult	 	

2. Is	the	mobile	application	easy	to	configure?	

☐Very	easy		☐Easy	☐Moderate	☐difficult	☐Very	difficult	 	

3. Is	the	mobile	application	easy	to	connect	the	sensors?	

☐Very	easy		☐Easy	☐Moderate	☐Difficult	☐Very	difficult	 	

4. Is	 it	 easy	 to	obtain	 the	 feedback	 (alarm	or	 recommendation)	of	monitoring	 from	the	mobile	

application?	

☐Very	easy		☐Easy	☐Moderate	☐Difficult	☐Very	difficult	 	

Reliability		

5. Does	the	mobile	application	show	alarm	or	recommendation	at	the	right	in	time?		

☐ Right	☐	Almost	Right	☐Moderate	☐ Almost	wrong	☐Wrong	 	

6. Are	the	right	alarms	or	recommendation	shown	by	the	mobile	application?		

☐ Right	☐	Almost	Right	☐Moderate	☐ Almost	wrong	☐Wrong		

7. Are	the	alarms	or	recommendation	shown	by	the	mobile	application	useful	to	your	situation?		

☐Very	useful	☐	Useful	☐Moderate	☐Not	useful	☐Totally	not	useful	

Robustness	

8. Are	the	sensor	connections	stable	(No	disconnection	during	run	time)?	

	☐Very	stable	☐stable	☐don’t	know	☐sometime	unstable	☐Very	unstable	

9. Did	the	mobile	application	close	due	to	errors?	

Appendix	III		

170	
	

	☐Never		☐	occasionally	☐	don’t	know	☐sometime	☐Very	often	

10. Did	the	mobile	application	stop	working	(not	closed)?	

☐Never		☐	occasionally	☐	don’t	know	☐sometime	☐Very	often	

Efficiency	

11. Do	you	agree	that	the	mobile	application	doesn’t	cause	the	quick	battery	consumption?	

☐Totally	agree	☐	Agree	☐	don’t	know	☐Not	agree	☐	Totally	Not	agree	

12. Do	you	agree	that	the	mobile	application	doesn’t	affect	the	performance	of	other	mobile	apps?	

☐Totally	agree	☐	Agree	☐	don’t	know	☐Not	agree	☐	Totally	Not	agree	

13. Do	you	agree	that	the	mobile	application	uses	only	a	little	internet	traffic?	

☐Totally	agree	☐	Agree	☐	don’t	know	☐Not	agree	☐	Totally	Not	agree	

	

171	
	

Bibliography	
[AABC+05]	 Abadi,	 D,,	 Ahmad,	 Y.,	 Balazinska,	 M.,	 Cetintemel,	 U.,	 Cherniack,	 M.,	 Hwang,	 J.,	 Linder,	 W.,		

Maskey,	A.,	Rasin,	A.,	Ryvkina,	E.,	Tatbul,	N.,	Xing,	Y.	&	Zdonik	S.	(2005)	“The	Design	of	the		
Borealis	Stream	Processing	Engine,”	in	Proceeding	of	the	Second	CIDR	Conference,	January		
2005.	

[ABBC+05]	 Arasu,	A.,	Babcock,	B.,	Babu,	S.,	Cieslewicz,	J.,	Datar,	M.,	Ito,	K.,	Motwani,	R.,		Srivastava,	U.,	&	
Widom,	 J.	 (2004)	 “STREAM:	 The	 Stanford	 Data	 Stream	 Management	 System,”	
SpringerVerlag,	New	York.	

[ACCC+03]	 Abadi,	D.,	Carney,	D.,	Cetintemel,	U.,	Cherniack,	M.,	Convey,	C.,	Erwin,	C.,	&	Zdonik,	S.	(2003,	
June).	Aurora:	a	data	stream	management	system.	In	Proceedings	of	the	2003	ACM	SIGMOD	
International	Conference	on	Management	of	data	(pp.	666‐666).	ACM.	

[Addo13]	 Addo,	 A.,	 &	 Seyram,	 Z.	 A.	 (2013).	 The	 adoption	 of	mobile	 phone:	 How	 has	 it	 changed	 us	
socially?.	Issues	in	Business	Managementand	Economics,	3,	47‐60.	

[AdEt02]		 Adi,	A.,	&	Etzion,	O.	(2002).	The	situation	manager	rule	language.	In	RuleML	(Vol.	60,	pp.	36‐
57).	

[AFRS+10]	 Anicic,	D.,	Fodor,	P.,	Rudolph,	S.,	Stühmer,	R.,	Stojanovic,	N.,	&	Studer,	R.	(2010).	A	rule‐based	
language	 for	 complex	 event	 processing	 and	 reasoning.	 In	Web	 Reasoning	 and	 Rule	
Systems	(pp.	42‐57).	Springer	Berlin	Heidelberg.	

[Agge11]	 Agger,	B.	(2011).	iTime:	Labor	and	life	in	a	smartphone	era.	Time	&	Society,20(1),	pp.	119‐
136.	

[Agga13]	 Aggarwal,	C.	C.	(2013).	Managing	and	Mining	Sensor	Data.	Springer.	
[ANSI91]	 Standard	Glossary	of	Software	Engineering	Terminology	(ANSI).	The	 Institute	of	Electrical	

and	Electronics	Engineers	Inc.	1991.	
[Appl10]	 iPad	–	 Technical	 specifications	 and	 accessories	 for	 iPad,	 Apple	 Inc.	January	 27,	 2010.	

Retrieved	January	27,	2010.	
[Bade10]	 Bade,	D.,	 (2010)	Esper‐Android:	 Event	 Stream	Processing	 on	Android.	 [Online].	 Available:	

http://vsis‐www.informatik.unihamburg.de/projects/esper‐android/	
[BaLG04]		 Badugu,	 R.,	 Lakowicz,	 J.	 R.,	 &	 Geddes,	 C.	 D.	 (2004).	 Excitation	 and	 emission	 wavelength	

ratiometric	 cyanide‐sensitive	 probes	 for	 physiological	 sensing.		 Analytical	
biochemistry,	327(1),	82‐90.	

[BaMP09]	 Barnaghi,	 P.,	 Meissner,	 S.	 &	 Presser,	 M.	 (2009)	 Sense	 and	 sensability:	 Semantic	 data	
modelling	for	sensor	networks..	Proceedings	of	the	ICT	Mobile	Summit	2009.	pp.	1‐9.	

[Bbcr13]	 BBC	Research.	Global	Markets	and	Technologies	for	Sensors	2013.	BBC	Research	
[BeTG07]	 Behavior	Tree	Group,	2007,	Behavior	Tree	Notation	v1.0.	ARC	Centre	for	Complex	Systems,	

www.behaviorengineering.org/docs/Behavior‐Tree‐Notation‐1.0.pdf	
[BeVa07]	 Bernhardt,	 T.,	 &	 AlexandreV.,	 (2007).	 Esper:	 Event	 stream	 processing	 and	

correlation,		ONJava,	in	http://www.	onjava.	com/lpt/a/6955,	O’Reilly.	
[BiER08]	 Biger,	A.,	Etzion,	O.,	&	Rabinovich,	Y.	(2008).	Stratified	Implementation	of	Event	Processing	

Network.	Fast	abstract	on	DEBS.	
[BrDu10]	 Bruns,	R.,	and	Dunkel,	J.	(2010).	Event‐Driven	Architecture.	Springer	Berlin	Heidelberg.	
[BSIG07]	 Bluetooth,	S.	I.	G.	(2007).	Bluetooth	specification	
[CBBG+12]	 Compton,	M.,	Barnaghi,	P.,	Bermudez,	 L.,	García‐Castro,	R.,	 Corcho,	O.,	 Cox,	 S.,	&	Taylor,	K.	

(2012).	 The	 SSN	 ontology	 of	 the	 W3C	 semantic	 sensor	 network	 incubator	 group.	Web	
Semantics:	Science,	Services	and	Agents	on	the	World	Wide	Web,	17,	25‐32.	

[CBCW+10]	 Cuervo,	 E.,	 Balasubramanian,	 A.,	 Cho,	 D.	 K.,	Wolman,	 A.,	 Saroiu,	 S.,	 Chandra,	 R.,	 &	 Bahl,	 P.	
(2010,	 June).	MAUI:	making	 smartphones	 last	 longer	with	 code	 offload.	 In	Proceedings	 of	
the	8th	International	Conference	on	Mobile	systems,	applications,	and	services	(pp.	49‐62).	
ACM.	

[CCDF+03]	 Chandrasekaran,	S.,	Cooper,	O.,	Deshpande,	A.,	Franklin,	M.	J.,	Hellerstein,	J.	M.,	Hong,	W.,	…&	
Shah,	M.	 A.	 (2003,	 June).	 TelegraphCQ:	 continuous	 dataflow	processing.	 In	Proceedings	 of	
the	 2003	 ACM	 SIGMOD	 International	 Conference	 on	 Management	 of	 Data	(pp.	 668‐668).	
ACM.	

[CDML+75]	 Cooper,	M.,	 Dronsuth,	 R.	W.,	Mikulski,	 A.	 J.,	 Lynk	 Jr,	 C.	N.,	Mikulski,	 J.	 J.,	Mitchell,	 J.	 F.,	…&	
Sangster,	J.	H.	(1975).	U.S.	Patent	No.	3,906,166.	Washington,	DC:	U.S.	Patent	and	Trademark	
Office.	

[ChCC07]		 Chandy,	 K.	 M.,	 Charpentier,	 M.,	 &	 Capponi,	 A.	 (2007,	 June).	 Towards	 a	 theory	 of	 events.	
In	Proceedings	of	the	2007	inaugural	International	Conference	on	Distributed	Event‐based	
Systems	(pp.	180‐187).	ACM.	

Bibliography		

172	
	

[ChEA11]		 Chandy,	 M.	 K.,	 Etzion,	 O.,	 &	 von	 Ammon,	 R.	 (2011).	 10201	 executive	 summary	 and	
manifesto–event	processing.	Event	Processing,	(10201).	

[ChMa02]	 Chaubey,	 A.,	 &	 Malhotra,	 B.	 D.	 (2002).	 Mediated	 biosensors.	Biosensors	 and	
Bioelectronics,	17(6),	441‐456.	

[ChSc09]		 Chandy,	 K.,	 &	 Schulte,	 W.	 (2009).	Event	 Processing:	 Designing	 IT	 Systems	 for	 Agile	
Companies.	McGraw‐Hill,	Inc..	

[CIMN+11]	 Chun,	 B.	 G.,	 Ihm,	 S.,	 Maniatis,	 P.,	 Naik,	 M.,	 &	 Patti,	 A.	 (2011,	 April).	 Clonecloud:	 Elastic	
execution	 between	 mobile	 device	 and	 cloud.	 In	Proceedings	 of	 the	 sixth	 Conference	 on	
Computer	systems	(pp.	301‐314).	ACM.	

[CMTC+08]	 Consolvo,	S.,	McDonald,	D.	W.,	Toscos,	T.,	Chen,	M.	Y.,	Froehlich,	J.,	Harrison,	B.,	&	Landay,	J.	
A.	(2008,	April).	Activity	sensing	in	the	wild:	a	field	trial	of	ubifit	garden.	In	Proceedings	of	
the	SIGCHI	Conference	on	Human	Factors	in	Computing	Systems	(pp.	1797‐1806).	ACM.	

[Cox11]	 Cox,	P.	A.	(2011).	Mobile	cloud	computing.	IBM	developer	Works,	1‐10.	
[Culb94]	 Culbert,	 M.	 (1994,	 March).	 Low	 power	 hardware	 for	 a	 high	 performance	 PDA.	

In	COMPCON	(Vol.	94,	pp.	144‐147).	
[DACH+12]	 Denning,	T.,	Andrew,	A.,	Chaudhri,	R.,	Hartung,	C.,	Lester,	J.,	Borriello,	G.,	&	Duncan,	G.	(2009,	

February).	Balance:	towards	a	usable	pervasive	wellness	application	with	accurate	activity	
inference.	 In	Proceedings	 of	 the	 10th	 workshop	 on	 Mobile	 Computing	 Systems	 and	
Applications	(p.	5).	ACM.	

[DGHR+05]	 Demers,	A.,	Gehrke,	 J.,	Hong,	M.,	Riedewald,	M.,	&	White,	W.	 (2005).	A	general	algebra	and	
implementation	for	monitoring	event	streams.	Cornell	University.	

[DGPR+07]	 Demers,	A.	J.,	Gehrke,	J.,	Panda,	B.,	Riedewald,	M.,	Sharma,	V.,	&	White,	W.	M.	(2007,	January).	
Cayuga:	 A	 General	 Purpose	 Event	 Monitoring	 System.	 In	CIDR	(Vol.	 7,	 pp.	 412‐422).	
[DiGG95]	 Dittrich,	 K.	 R.,	 Gatziu,	 S.,	 &	 Geppert,	 A.	 (1995).	 The	 active	 database	
management	 system	 manifesto:	 A	 rulebase	 of	 ADBMS	 features.	 In	Rules	 in	 Database	
Systems	(pp.	1‐17).	Springer	Berlin	Heidelberg.	

[Drom06]	 Dromey,	R.	G.	(2006).	Formalizing	the	transition	from	requirements	to	design.Mathematical	
Frameworks	for	Component	Software‐Models	for	Analysis	and	Synthesis,	156‐187.	

[DuBS13]	 Dunkel,	 J.,	 Bruns,	 R.,	 &	 Stipkovic,	 S.	 (2013,	 March).	 Event‐based	 smartphone	 sensor	
processing	for	ambient	assisted	living.	In	Autonomous	Decentralized	Systems	(ISADS).	IEEE.	

[ElYM00]	 El‐Sherif,	 M.	 A.,	 Yuan,	 J.,	 &	 Macdiarmid,	 A.	 (2000).	 Fiber	 optic	 sensors	 and	 smart	
fabrics.	Journal	of	Intelligent	Material	Systems	and	Structures,	11(5),	407‐414.		

[EOLL+08]	 Miluzzo,	 E.,	 Oakley,	 J.	 M.,	 Lu,	 H.,	 Lane,	 N.	 D.,	 Peterson,	 R.	 A.,	 &	 Campbell,	 A.	 T.	 (2008).	
Evaluating	 the	 iPhone	 as	 a	 mobile	 platform	 for	 people‐centric	 sensing	 applications.	In	
Proceedings	of	UrbanSense’08.	

[Espe07]	 Esper	 Tech,	 Esper	 Performance,	 http://docs.codehaus.org/display/ESPER/Esper	
+performance,	EsperTech	2007	

[EtNi10]		 Etzion,	O.,	&	Niblett,	P.	(2010).	Event	processing	in	action.	Manning	Publications	Co..	
[FaMH13]	 Fahim,	A.,	Mtibaa,	A.,	&	Harras,	K.	A.	(2013,	September).	Making	the	case	for	computational	

offloading	 in	 mobile	 device	 clouds.	 In	Proceedings	 of	 the	 19th	 annual	 International	
Conference	on	Mobile	computing	&	networking	(pp.	203‐205).	ACM.	

[Farl05]	 Farley,	T.	(2005).	Mobile	telephone	history.	Telektronikk,	101(3/4),	22.	
[FGNW12]	 Fesehaye,	D.,	Gao,	Y.,	Nahrstedt,	K.,	&	Wang,	G.	 (2012,	 September).	 Impact	of	 cloudlets	on	

interactive	 mobile	 cloud	 applications.	 In	Enterprise	 Distributed	 Object	 Computing	
Conference	(EDOC),	2012	IEEE	16th	International	(pp.	123‐132).	IEEE.	

[Fox99]	 Fox,	 K.	 R.	 (1999).	 The	 influence	 of	 physical	 activity	 on	 mental	 well‐being.	 Public	 health	
nutrition,	2(3a),	411‐418.	

[FoZa94]	 Forman,	G.	H.,	&	Zahorjan,	J.	(1994).	The	challenges	of	mobile	computing.	Computer,	27(4),	
38‐47.	

[Fran13]	 Frank,	R.	(2013).	Understanding	smart	sensors.	Artech	House.	
[Gart13]	 Gartner	(2013).	Forecast:	Mobile	App	Stores,	Worldwide,	2013	Update,	Gartner	2013		
[GBHF89]	 George,	 L.	 K.,	 Blazer,	 D.	 G.,	 Hughes,	 D.	 C.,	 &	 Fowler,	 N.	 (1989).	 Social	 support	 and	 the	

outcome	of	major	depression.	The	British	Journal	of	Psychiatry,	154(4),	478‐485.	
[Gibs12]	 Gibson,	J.	D.	(Ed.).	(2012).	Mobile	communications	handbook.	CRC	press.		
[GiSt87]	 Gibson,	 Stephen	 W.	 (1987).	 Cellular	 Mobile	 Radiotelephones.	 Englewood	 Cliffs,	 Prentice	

Hall,	19–22.	
[Goza08]		 Gozalvez,	 J.	 (2008).	 First	 Google's	 android	 phone	 launched	 [Mobile	 Radio].Vehicular	

Technology	Magazine,	IEEE,	3(4),	3‐69.	
[GPJD+08]	 Gomez,	 D.,	 	 Preece,	 A.,	 	 Johnson,	 M.,	 De	 Mel,	 G.,	 Vasconcelos,	 W.,	 Gibson,	 C.,	 Barnoy,	 A.,	

Borowiecki,	 K.,	 Porta,	 T.	&	 Pizzocaro,	D.	 (2008)	 	 An	 ontology‐centric	 approach	 to	 sensor‐
mission	 assignment.	 16th	 International	 Conference	 on	 Knowledge	 Engineering	 and	
Knowledge	Management.	

Bibliography		

173	
	

[Gros	04]	 Grossman,	L.	(2007).	Invention	of	the	year:	The	iPhone.	Time	Magazine	Online,	1.		
[HaGu13a]	 Hatler,	 M.,	 Gurganious,	 D.,	 &	 Chi,	 C.,	 (2013).	Mobile	 Sensing	 Sports	 &	 Fitness:	 A	 Market	

Dynamics	Report.	ON	World's	Research.		
[HaGu13b]	 Hatler,	M.,	Gurganious,	D.,	&	Chi,	 C.,	 (2013).		Mobile	 Sensing	Health	&	Wellness:	A	Market	

Dynamics	Report.	ON	World's	Research.		
[HBPW08]		 Honicky,	R.,	Brewer,	E.	A.,	Paulos,	E.,	&	White,	R.	(2008,	August).	N‐smarts:	networked	suite	

of	 mobile	 atmospheric	 real‐time	 sensors.	 InProceedings	 of	 the	 second	 ACM	 SIGCOMM	
workshop	on	Networked	systems	for	developing	regions	(pp.	25‐30).	ACM.	

[HKMS94]	 Herbst,	 H.,	 Knolmayer,	 G.,	 Myrach,	 T.,	 &	 Schlesinger,	M.	 (1994,	May).	 The	 specification	 of	
business	rules:	A	comparison	of	selected	methodologies.	InMethods	and	associated	tools	for	
the	information	systems	life	cycle	(pp.	29‐46).	

[HoLM05]	 Hoang,	H.,	 Lee‐Urban,	 S.,	 &	Muñoz‐Avila,	H.	 (2005).	Hierarchical	 Plan	Representations	 for	
Encoding	Strategic	Game	AI.	In	AIIDE	(pp.	63‐68).	

[IDC10]	 IDC	Worldwide	Quarterly	PC	Tracker,	2010	
[IDC	13a]	 IDC	Worldwide	Quarterly	Mobile	Phone	Tracker,	2013	
[IDC	13b]	 IDC	Worldwide	Quarterly	Smart	Connected	Device	Tracker,	2013	
[InDA99]	 Infrared	Data	Association.	(1999).	IrDA	Object	Exchange	Protocol	(IrOBEX)	with	Published	

Errata.	
[IrDA08]	 Infrared	 Data	 Association.	 (2008).	 IrDA	 Specifications	 and	 Technical	 Notes.	 http://www.	

irda.	org/displaycommon.	cfm	
[KaRR98]	 Kappel,	 G.,	 Rausch‐Schott,	 S.,	 &	 Retschitzegger,	 W.	 (1998).	 Coordination	 in	 workflow	

management	 systems—a	 rule‐based	 approach.	 In	Coordination	 Technology	 for	
Collaborative	Applications	(pp.	99‐119).	Springer	Berlin	Heidelberg.	

[KCCD+03]	 Krishnamurthy,	S.,	Chandrasekaran,	S.,	Cooper,	O.,	Deshpande,	A.,	Franklin,	M.	J.,	Hellerstein,	
J.	 M.,	 &	 Shah,	 M.	 A.	 (2003).	 TelegraphCQ:	 An	 architectural	 status	 report.	IEEE	 Data	 Eng.	
Bull.,	26(1),	11‐18.	

[KhSt09]		 El	 Kharbili,	 M.,	 &	 Stojanovic,	 N.	 (2009).	 Semantic	 Event‐Based	 Decision	 Management	 in	
Compliance	 Management	 for	 Business	 Processes.	 In	AAAI	 Spring	 Symposium:	 Intelligent	
Event	Processing	(pp.	35‐40).	

[Kjel13]	 Kjeldskov,	 J.	 (2013).	Mobile	computing.	The	Encyclopedia	of	Human‐Computer	Interaction,	
2nd	Ed.	

[KlCa06]	 Klyne,	 G.,	 &	 Carroll,	 J.	 J.	 (2006).	 Resource	 description	 framework	 (RDF):	 Concepts	 and	
abstract	syntax.	

[KLCC+09]	 Lee,	 J.	H.,	Cheol,	R.,	 Jo,	 J.	C.,	&	You,	Y.	D.	 (2009).	Embedded	CEP	engine	used	 in	DDS‐based	
mobile	 devices	 for	 differentiated	 services	 for	 customers.	 In	 Consumer	 Electronics,	 2009.	
ISCE'09.		

[KnEP00]	 Knolmayer,	 G.,	 Endl,	 R.,	 &	 Pfahrer,	 M.	 (2000).	 Modeling	 processes	 and	 workflows	 by	
business	rules.	In	Business	Process	Management	(pp.	16‐29).	Springer	Berlin	Heidelberg.	

[Kobl11]	 Koblentz,	Evan.	"How	it	Started:	Mobile	 Internet	Devices	of."	Human‐computer	 Interaction	
and	Innovation	in	Handheld,	Mobile,	and	Wearable	Technologies	(2011):	172.	

[Kros08]	 Kroski,	 E.	 (2008).	 On	 the	 move	 with	 the	 mobile	 web:	 libraries	 and	 mobile	
technologies.	Library	technology	reports,	44(5),	1‐48.	

[KuLu10]	 Kumar,	K.,	&	Lu,	Y.	H.	(2010).	Cloud	computing	for	mobile	users:	Can	offloading	computation	
save	energy?.	Computer,	43(4),	51‐56.	

[LeMa02]	 Lee,	S.	W.,	&	Mase,	K.	(2002).	Activity	and	location	recognition	using	wearable	sensors.	IEEE	
pervasive	computing,	1(3),	24‐32.	

[LMLY+12]	 Lane,	 N.	 D.,	 Mohammod,	 M.,	 Lin,	 M.,	 Yang,	 X.,	 Lu,	 H.,	 Ali,	 S.,	 &	 Campbell,	 A.	 (2011,	 May).	
Bewell:	 A	 smartphone	 application	 to	 monitor,	 model	 and	 promote	 wellbeing.	 In	5th	
International	ICST	Conference	on	Pervasive	Computing	Technologies	for	Healthcare	(pp.	23‐
26).	

	[Lock10]	 Locke,	 D.	 (2010).	 MQ	 Telemetry	 Transport	 (MQTT)	 V3.	 1	 Protocol	 Specification.	IBM	
developerWorks	 Technical	 Library],	 available	 at	 http://www.	 ibm.	
com/developerworks/webservices/library/ws‐mqtt/index.	html.	

[Lowe89]	 Lowe,	C.	R.	(1989).	Biosensors.	Philosophical	Transactions	of	the	Royal	Society	of	London.	B,	
Biological	Sciences,	324(1224),	487‐496.	

[Luck01]		 Luckham,	D.	(2002).	The	power	of	events.	Reading:	Addison‐Wesley.	
[LSAB+11]		 Luckham,	D.,	 Schulte,	 R.,	 Adkins,	 J.,	 Bizarro,	 P.,	 Jacobsen,	H.	 A.,	Mavashev,	 A.,	 &	Niblett,	 P.	

(2011).	Event	processing	glossary‐version	2.0.Event	Processing	Technical	Society.	
[Lyu96]	 Lyu,	 M.	 R.	 (1996).	Handbook	 of	 software	 reliability	 engineering	(Vol.	 222).	 CA:	 IEEE	

computer	society	press.	
[Matt06]	 Mattila,	H.	(Ed.).	(2006).	Intelligent	textiles	and	clothing.	Woodhead	Publishing.	

Bibliography		

174	
	

[MEJM06]	 Mohomed,	I.,	Ebling,	M.	R.,	Jerome,	W.,	&	Misra,	A.	(2006,	September).	HARMONI:	Motivation	
for	 a	 health‐oriented	 adaptive	 remote	 monitoring	 middleware.	 In	fourth	 international	
workshop	on	ubiquitous	computing	for	pervasive	healthcare	applications	(UbiHealth	2006),	
Irvine,	California,	USA,	September.	

[MGBM+02]	 Messer,	 A.,	 Greenberg,	 I.,	 Bernadat,	 P.,	 Milojicic,	 D.,	 Chen,	 D.,	 Giuli,	 T.	 J.,	 &	 Gu,	 X.	 (2002).	
Towards	a	distributed	platform	for	resource‐constrained	devices.	In	Distributed	Computing	
Systems,	2002.	Proceedings.	22nd	International	Conference	on	(pp.	43‐51).	IEEE	

[MiLi11]	 Misra,	 A.,	 &	 Lim,	 L.	 (2011,	 June).	 Optimizing	 sensor	 data	 acquisition	 for	 energy‐efficient	
smartphone‐based	continuous	event	processing.	In	Mobile	Data	Management	(MDM),	2011	
12th	IEEE	International	Conference	on	(Vol.	1,	pp.	88‐97).	IEEE.	

[Mitc97]	 Mitchell,	S.	W.	(1997,	July).	A	hybrid	architecture	for	real‐time	mixed‐initiative	planning	and	
control.	In	AAAI/IAAI	(pp.	1032‐1037).	

[MPES09]	 Mouttham,	A.,	Peyton,	L.,	Eze,	B.,	&	Saddik,	A.	E.	 (2009).	Event‐driven	data	 integration	 for	
personal	 health	 monitoring.	Journal	 of	 Emerging	 Technologies	 in	 Web	 Intelligence,	1(2),	
110‐118.	

[MPPB+09]	 Motik,	B.,	Patel‐Schneider,	P.	F.,	Parsia,	B.,	Bock,	C.,	Fokoue,	A.,	Haase,	P.,	&	Smith,	M.	(2009).	
OWL	 2	 web	 ontology	 language:	 Structural	 specification	 and	 functional‐style	 syntax.	W3C	
recommendation,	27,	17.	

[MZZW+13]	 Ma,	 X.,	 Zhao,	 Y.,	 Zhang,	 L.,	Wang,	H.,	&	 Peng,	 L.	 (2013).	When	Mobile	 Terminals	Meet	 the	
Cloud:	Computation	Offloading	as	the	Bridge.	IEEE	NETWORK,	27(5),	28‐33.	

[Niel03]	 Nielsen,	J.	(2003).	Usability	101:	Introduction	to	usability.	
[NoCC92]		 Norris,	 R.,	 Carroll,	 D.,	 &	 Cochrane,	 R.	 (1992).	 The	 effects	 of	 physical	 activity	 and	 exercise	

training	 on	 psychological	 stress	 and	 well‐being	 in	 an	 adolescent	 population.	Journal	 of	
psychosomatic	research,	36(1),	55‐65.	

[Ober11]	 Oberoi,	S.,	(2011).	Sensor	fusion	brings	situational	awareness	to	health	device.	Book	chapter	
of	Embedded	system	design,	volume	24,	number	5,	June	2011		

[PGDV+08]	 Preece,	A.,	Gomez,	M.,	De	Mel,	G.,	Vasconcelos,	W.,	Sleeman,	D.,	Colley,	S.,	Pearson,	G.,	Pham,	
T.	&	Porta,	T.	(2008)		Matching	sensors	to	missions	using	a	knowledge‐based	approach.	SPIE	
Defense	Transformation	and	Net‐Centric	Systems.	

[PHRM+12]	 Paraiso,	 F.,	 Hermosillo,	 G.,	 Rouvoy,	 R.,	 Merle,	 P.,	 &	 Seinturier,	 L.	 (2012,	 September).	 A	
middleware	platform	to	federate	complex	event	processing.	In	Enterprise	Distributed	Object	
Computing	Conference	(EDOC),	2012	IEEE	16th	International	(pp.	113‐122).	IEEE.	

[Pogu98]	 Pogue,	D.,	(1998).	PalmPilot:	the	ultimate	guide.	O'Reilly	&	Associates,	Inc.	
[PPVA+13]	 Patiniotakis,	 I.,	 Papageorgiou,	 N.,	 Verginadis,	 Y.,	 Apostolou,	 D.,	 &	 Mentzas,	 G.	 (2013).	

Dynamic	event	subscriptions	in	distributed	event	based	architectures.Expert	Systems	with	
Applications,	40(6),	1935‐1946.	

[QuAR11]	 Qureshi,	S.	S.,	Ahmad,	T.,	&	Rafique,	K.	(2011,	September).	Mobile	cloud	computing	as	future	
for	 mobile	 applications‐Implementation	 methods	 and	 challenging	 issues.	 In	Cloud	
Computing	 and	 Intelligence	 Systems	 (CCIS),	 2011	 IEEE	 International	 Conference	 on	(pp.	
467‐471).	IEEE.	

[Rahu13]	 Rahul,	 G.,	 	 (2013).	 Exploring	 the	 Floating	 Point	 Performance	 of	Modern	 ARM	Processors,	
http://www.anandtech.com/show/6971/exploring‐the‐floating‐point‐performance‐of‐
modern‐arm‐processors	

[RDGN04]	 Rasmusson,	 J.,	 Dahlgren,	 F.,	 Gustafsson,	 H.,	 &	 Nilsson,	 T.	 (2004).	 Multimedia	 in	 mobile	
phones—The	ongoing	revolution.	Ericsson	review,	2,	98‐107.	

[Robi09]	 Robinson,	S.	(2009).	Cellphone	energy	gap:	Desperately	seeking	solutions.Strategy	Analytics.	
[RoBo06]	 Robin,	A.,	&	Botts,	M.	E.	(2006).	Creation	of	Specific	SensorML	Process	Models.	Earth	System	

Science	Center‐NSSTC,	University	of	Alabama	in	Huntsville	(UAH),	HUNTSVILLE,	AL,	35899.	
[Rozs08]		 Rozsnyai,	 S.	 (2008)	 Managing	 Event	 Streams	 for	 Querying	 Complex	 Events.	 Vienna	

University	of	Technology,	Vienna,	Austria.	
[Saty10]	 Satyanarayanan,	 M.	 (2011).	 Mobile	 computing:	 the	 next	 decade.	ACM	 SIGMOBILE	 Mobile	

Computing	and	Communications	Review,	15(2),	2‐10.	
[SBCD09]	 Satyanarayanan,	 M.,	 Bahl,	 P.,	 Caceres,	 R.,	 &	 Davies,	 N.	 (2009).	 The	 case	 for	 vm‐based	

cloudlets	in	mobile	computing.	Pervasive	Computing,	IEEE,	8(4),	14‐23.	
[SeSt10]	 Sen,	S.,	&	Stojanovic,	N.	(2010,	 January).	GRUVe:	a	methodology	for	complex	event	pattern	

life	 cycle	 management.	 In	Advanced	 Information	 Systems	 Engineering	(pp.	 209‐223).	
Springer	Berlin	Heidelberg.	

[SKDB+09]	 Stevenson,	 G.,	 Knox,	 S.,	 Dobson,	 S.	 &	 Nixon,	 P.	 (2009)	 Ontonym:	 a	 collection	 of	 upper	
ontologies	for	developing	pervasive	systems.	CIAO	'09:	Proceedings	of	the	1st	Workshop	on	
Context,	Information	and	Ontologies.	pp.	1‐8.	

Bibliography		

175	
	

[SKPR12]	 Schilling,	 B.,	 Koldehofe,	 B.,	 Pletat,	 U.,	 &	 Rothermel,	 K.	 (2012).	 Distributed	 Heterogeneous	
Event	Processing.	In	Proceedings	of	the	ACM	International	Conference	on	Distributed	Event‐
Based	System	2012.	

[SLAZ12]	 Shi,	 C.,	 Lakafosis,	 V.,	 Ammar,	 M.	 H.,	 &	 Zegura,	 E.	 W.	 (2012,	 June).	 Serendipity:	 enabling	
remote	 computing	 among	 intermittently	 connected	mobile	 devices.	 In	Proceedings	 of	 the	
thirteenth	ACM	international	symposium	on	Mobile	Ad	Hoc	Networking	and	Computing	(pp.	
145‐154).	ACM.	

[SMXS+11]	 Stojanovic,	 N.,	Milenovic,	 D.,	 Xu,	 Y.,	 Stojanovic,	 L.,	 Anicic,	 D.,	 &	 Studer,	 R.	 (2011,	 July).	 An	
intelligent	event‐driven	approach	for	efficient	energy	consumption	in	commercial	buildings:	
smart	 office	 use	 case.	 In	Proceedings	 of	 the	 5th	 ACM	 International	 Conference	 on	
Distributed	Event‐Based	System(pp.	303‐312).	ACM.	

[SSOG12]	 Stühmer,	 R.,	 Stojanovic,	 N.,	 Obermeier,	 S.,	 &	 Gibert,	 P.	 (2012,	 July).	 Where	 events	 meet	
events:	PLAY	event	marketplace.	In	Proceedings	of	the	6th	ACM	International	Conference	on	
Distributed	Event‐Based	Systems	(pp.	383‐384).	ACM.	

[StBD13]	 Stipkovic,	 S.,	 Bruns,	 R.,	 &	 Dunkel,	 J.	 (2013,	 September).	 Pervasive	 Computing	 by	 Mobile	
Complex	Event	Processing.	In	e‐Business	Engineering	(ICEBE).		

[StRX13]	 Stojanovic,	 N.,	 Riemer,	 D.,	Xu,	 Y.,	 (2013):	Demo:	 a	 system	 for	 dynamic	 real‐time	 personal	
fitness	 monitoring.	In	Proceedings	 of	 the	 ACM	 International	 Conference	 on	 Distributed	
Event‐Based	System	2013:	(pp.	341‐342).	ACM.	

[StSX14]	 Stojanovic,	 N.,	 Stojanovic,	 L	 &	 Xu,	 Y.	 (2014)	 Tutorial:	 Mobile	 CEP	 in	 Real‐time	 Big	 Data	
Processing:	 Challenges	 and	 Opportunities.	 In	the	 8th	 ACM	 International	 Conference	 on	
Distributed	event‐based	system.	ACM.	

[SXSS14a]	 Stojanovic,	N.,	Xu,	Y.,	 Stojadinovic,	A.,	&	Stojanovic,	L	 (2014)	Using	Mobile‐based	Complex	
Event	Processing	to	realize	Collaborative	Remote	Person	Monitoring	.	In	Proceedings	of	the	
8th	ACM	International	Conference	on	Distributed	Event‐Based	System.	ACM.	

[SXSS14b]	 Stojanovic,	N.,	Xu,	Y.,	Stajic,	B.,	&	Stojanovic,	L	(2014)	Demo:	Mobile	CEP	Architecture:	from	
Intelligent	Sensing	to	Collaborative	Monitoring.	In	Proceedings	of	the	8th	ACM	International	
Conference	on	Distributed	Event‐Based	System.	ACM.	

[TaSt02]	 Tanenbaum,	A.	S.,	&	Van	Steen,	M.	(2002).	Distributed	systems.		
[TKWW87]	 Turner,	A.	P.	F.,	Karube,	I.,	Wilson,	G.	S.,	&	Worsfold,	P.	J.	(1987).	Biosensors:	fundamentals	

and	applications.	
[Vikr07]	 Vikram,	K.	(2007).	FingerLakes:	A	Distributed	Event	Stream	Monitoring	System.		
[VSDD12]	 Verbelen,	 T.,	 Simoens,	 P.,	 De	 Turck,	 F.,	 &	 Dhoedt,	 B.	 (2012,	 June).	 Cloudlets:	 bringing	 the	

cloud	 to	 the	 mobile	 user.	 In	Proceedings	 of	 the	 third	 ACM	 workshop	 on	 Mobile	 cloud	
computing	and	services	(pp.	29‐36).	ACM.	

[Weis91]	 Weiser,	M.	 (1991).	 The	 computer	 for	 the	21st	 century.	Scientific	 american,265(3),	 pp.	 94‐
104.	

[Weis03]	 Weiss,	S.,	(2003).	Handheld	usability,	John	Wiley	&	Sons.	
[Welc13]		 Welch,	C.	(2013).	Google:	Android	app	downloads	have	crossed	50	billion,	over	1M	apps	in	

Play.	The	Verge,	July	24,	2013.	
[WiGr10]	 Wilhelm,	 F.	 H.,	 &	 Grossman,	 P.	 (2010).	 Emotions	 beyond	 the	 laboratory:	 Theoretical	

fundaments,	 study	 design,	 and	 analytic	 strategies	 for	 advanced	 ambulatory	
assessment.	Biological	psychology,	84(3),	552‐569.	

[Wils04]	 Wilson,	J.	S.	(2004).	Sensor	technology	handbook.	Elsevier.		
[WoPM99]	 Wong,	D.,	Paciorek,	N.,	&	Moore,	D.	(1999).	Java‐based	mobile	agents.Communications	of	the	

ACM,	42(3),	92‐ff.	
[WSSM+08]	 Witt,	K.	J.,	Stanley,	J.,	Smithbauer,	D.,	Mandl,	D.,	Ly,	V.,	Underbrink,	A.,	&	Metheny,	M.	(2008).	

Enabling	 sensor	 webs	 by	 utilizing	 SWAMO	 for	 autonomous	 operations.	 In	NASA	 Earth	
Science	Technology	Conference	(ESTC2008).	

[XSMA11]	 Xu,	Y.,	Stojanovic,	L.,	Ma,	 J.,	Anicic,	D.	(2011,	 July).	Demo:	Efficient	energy	consumption	in	a	
smart	 office	 based	 on	 intelligent	 complex	 event	 processing.	In	Proceedings	 of	 the	 ACM	
International	Conference	on	Distributed	Event‐Based	System.	(pp.	379‐380).	ACM.	

[XSSA+11]	 Xu,	 Y.,	 Stojanovic,	N.,	 Stojanovic,	 L.,	 Anicic,	 D.,	&	 Studer,	 R.	 (2011).	 An	 approach	 for	more	
efficient	 energy	 consumption	based	on	 real‐time	 situational	 awareness.	 In	Proceedings	 of	
ESWC	 2011.	 In	The	 Semantic	 Web:	 Research	 and	 Applications	(pp.	 270‐284).	 Springer	
Berlin	Heidelberg.	

[XSSC+12]	 Xu,	 Y.,	 Stojanovic,	 N.,	 Stojanovic,	 L.,	 Cabrera,	 A.,	 &	 Schuchert,	 T.	 (2012):	An	 approach	 for	
using	complex	event	processing	for	adaptive	augmented	reality	in	cultural	heritage	domain:	
experience	 report.		 In	Proceedings	 of	 the	 ACM	 International	 Conference	 on	 Distributed	
Event‐Based	System	2012:	(pp.	139‐148)	

Bibliography		

176	
	

[XSSK13]	 Xu,	Y.,	Stojanovic,	N.,	Stojanovic,	L.,	&	Kostic,	D.	(2013,	December).	An	Approach	for	Dynamic	
Personal	 Monitoring	 based	 on	 Mobile	 Complex	 Event	 Processing.	 In	Proceedings	 of	
International	Conference	on	Advances	in	Mobile	Computing	&	Multimedia	(p.	464).	ACM.	

[XSSS12a]	 Xu,	Y.,	Stojanovic,	N.,	Stojanovic,	L.,	&	Schuchert,	T.	(2012).	Demo:	Efficient	Human	Attention	
Detection	in	Museums	based	on	Semantics	and	Complex	Event	Processing.	In	International	
Semantic	Web	Conference	(ISWC)	2012.	

[XSSS12b]	 Xu,	 Y.,	 Stojanovic,	 N.,	 Stojanovic,	 L.,	 &	 Schuchert,	 T.	 (2012).	A	 Demo	 for	 efficient	 human	
Attention	 Detection	 based	 on	 Semantics	 and	 Complex	 Event	 Processing,	 In	 Extended	
Semantic	Web	Conference	(ESWC)	2012	(Posters	&	Demos).	

[XSSS12c]	 Xu,	 Y.,	 Stojanovic,	 N.,	 Stojanovic,	 L.,	 &	 Schuchert,	 T.	 (2012).	:	Efficient	 human	 attention	
detection	 based	 on	 intelligent	 complex	 event	 processing.		 In	Proceedings	 of	 the	 ACM	
International	Conference	on	Distributed	Event‐Based	System	2012:	(pp.	379‐380)	

[XWSH10]	 Xu,	 Y.,	 Wolf,	 P.,	 Stojanovic,	 N.,	 &	 Happel,	 H.	 J.	 (2010).	 Semantic‐based	 Complex	 Event	
Processing	in	the	AAL	Domain.	In	ISWC	Posters&Demos.	

[Zeph10]	 Zephyr	technology,	(2010).	HxM	BT	Datasheet,	Zephyr	technology.	
[Zeph12]	 Zephyr	technology,	(2012).	BioHarness	3.0	User	Manual,	Zephyr	technology.	
[ZiAl06]	 ZigBee	Alliance	(2006).	ZigBee	specification.	
[Zimm96]	 Zimmerman,	 T.	 G.	 (1996).	 Personal	 area	 networks:	 near‐field	 intrabody	

communication.	IBM	systems	Journal,	35(3.4),	609‐617	
	
	

