
Symbolic Analysis of Cryptographic
Protocols

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Florian Böhl

aus Bielefeld

Tag der mündlichen Prüfung: 03.06.2014

Erster Gutachter: Jun.-Prof. Dr. Dennis Hofheinz

Zweiter Gutachter: Prof. Dr. Hubert Comon-Lundh

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Zusammenfassung

Kryptographische Protokolle sind allgegenwärtig und täglich verlassen wir uns auf
ihre Sicherheitseigenschaften. Oft sichern sie die Integrität und Vertraulichkeit von
Kommunikation zu. Beispielsweise sollen sie Dritte davon abhalten, unsere Tele-
fongespräche zu belauschen (GSM/DECT) oder verhindern, dass jemand Bank-
transaktionen fälscht, die wir bequem von zu Hause aus durchführen (HTTPS).
Wir erwarten von ihnen Authentifikation beim Öffnen von Türen, Bezahlvorgän-
gen und digitalen Unterschriften von Dokumenten (Funk-Autoschlüssel, KITCard,
EC-Karte, neuer Personalausweis). Ihre Bedeutung wird weiter zunehmen, beispiel-
sweise im Rahmen der Automation von Gebäuden oder bei intelligenten Stromnet-
zen.
Gemessen an der Bedeutung kryptographischer Protokolle wird ihre Sicherheit vor

der Einführung oft nur unzureichend untersucht. Beispielsweise sind mittlerweile in
fast allen der oben genannten Anwendungen Fehler auf Protokollebene bekannt,
die die erwarteten Sicherheitseigenschaften in den schlimmsten Fällen vollständig
unterminieren (so z.B. bei DECT). Solche Fehler sind nach der Verbreitung eines
Protokolls oft nur mit hohem Aufwand zu korrigieren.
Warum kommt es dennoch selten zu einer rigorose Sicherheitsanalyse (ggf. mit

Sicherheitsbeweis) vor dem Einsatz eines Protokolls? Eine Ursache hierfür ist sicher-
lich, dass ein Sicherheitsbeweis selbst für relativ kleine kryptographische Protokolle
schon sehr aufwändig und mühsam ist; für jeden Zwischenzustand des Protokolls
muss jede mögliche Angreifer-Aktion berücksichtigt werden. Abhilfe können hier
maschinengestützte Beweistechniken schaffen.
In meine Dissertation beschäftige ich mich mit dem Rahmen für eine solche

maschinengestützte Analyse. Das Fernziel über den Horizont der Arbeit hinaus
ist, dass die Sicherheitseigenschaften eines Protokolls möglichst vollautomatisch vor
seinem Einsatz überprüft werden können.
Abstraktion von kryptographischen Details.
Um die Komplexität der Analyse zu reduzieren, wird zunächst von kryptographis-

chen Details abstrahiert (das entstehende abstrakte Modell heißt auch „symbol-
isches Modell“, woraus sich der Titel der Arbeit ableitet). Während in der tat-
sächlichen Implementierung ein konkretes kryptographisches Verfahren eingesetzt
werden muss, z.B. AES-CBC mit MACs, wird die Analyse anhand der abstrakten
Eigenschaften des kryptographischen Bausteins durchgeführt. Für Verschlüsselung
kann man beispielsweise mit den folgenden zwei Ableitungsregeln arbeiten:

m k

enc(k,m) ,
enc(k,m) k

m

Diese entsprechen der Intuition, dass sich nur mit Kenntnis des Schlüssels Chiffrate
erzeugen und entschlüsseln lassen. Die in der Realität nur mit vernachlässigbarer

iii

iv

Wahrscheinlichkeit auftretende Möglichkeit, dass ein Angreifer den Schlüssel kor-
rekt rät, wird beispielsweise auf dieser Ebene ignoriert, um die Analyse zu verein-
fachen. Später findet sich diese Abstraktion in Anforderungen an die Implemen-
tierung wieder (siehe „Modellgetreue Implementierung“).

Modulare Analyse von Protokollen.
Große Protokolle, wie z.B. TLS, sind selbst auf der gerade erläuterten abstrakten

Ebene schwer „am Stück“zu untersuchen. Daher beschäftige ich mich in meiner
Dissertation auch damit, wie man Beweise für Teile des Protokolls separat führen
und zu einem Sicherheitsbeweis für das gesamte Protokoll zusammenfügen kann. Der
zu diesem Zweck eingeführte Mechanismus erlaubt interessanter- und günstigerweise
auch die Definition von komplexen Sicherheitseigenschaften.

Modellgetreue Implementierung.
Nach dem Nachweis von Sicherheitseigenschaften im symbolischen Modell bleibt

die Frage offen, welche kryptographischen Anforderungen hinreichend für eine Imple-
mentierung sind, damit sie tatsächlich die abstrakt nachgewiesenen Eigenschaften
hat. Eine Aussage hierüber machen sogenannte „Computational Soundness The-
oreme“. Ein solches Theorem ist Teil meiner Arbeit. Es deckt die symbolische
Verwendung der wichtigsten kryptographischen Bausteine ab und ist modular er-
weiterbar.

Acknowledgements

First of all, I would like to thank my adviser Dennis Hofheinz. He already supervised
my Diploma thesis, encouraged me to start a PhD and therewith laid the foundation
for this work. Throughout the years we spent together he always took his time to
supply me with technical or general wisdom and never got tired of enlightening
me when I was stuck. He was the only adviser I ever had and is thus without
competitors; however, that said, I find it very hard to imagine a better one.
I thank my co-adviser Huber Comon-Lundh for his interest in my work and for his

willingness to take his time to read it thoroughly and write a review. Additionally,
I would like to thank him for encouraging me in a time where encouragement was
definitely needed.
I am very grateful to my co-authors Dominique Unruh, Véronique Cortier and

Bogdan Warinschi. The results of the fruitful work with them are now the core of this
thesis. It was always a pleasure, to work, think and discuss the riddles of theoretical
cryptography with them; as it was with Daniel Kraschewski, Jessica Koch, Christoph
Striecks, Tibor Jager, Gareth Davies, Simon Greiner, Sarah Grebing and Bernhard
Beckert who worked with me on other papers. All of them taught me a lot and I
am thankful for the many different ways in which they inspired me.
This does not only hold for my co-authors but for all of my current and former col-

leagues in the KIT crypto group (IKS/ITI crypto) in general. They always provided
me with a wonderful and warm working atmosphere and broadened my horizon in
endless interesting and sometimes far out discussions. I truly find it sad to leave.
I would like to thank the Bristol crypto group for six marvelous months full

of crypto, pubs and music. Here, special thanks also go to Jörn Müller-Quade for
supporting me with finding a scholarship and to the DAAD for making the wonderful
and enriching time in Bristol possible for me.
I thank the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württem-

berg for supporting the project MoSeS which provided most of my funding.
Finally, and therefore prominently, I would to thank my parents who have always

supported me, my patient and loving spouse Nikola Wachter who had to suffer the
most under paper deadlines and the finishing of this thesis and my friends Barbara
Lödermann, Simon Friedberger and Julia Hesse who helped proofreading this thesis.
To everyone who deserved my thanks but was forgotten above: Thank you!

v

Contents

1 Introduction 1

2 Symbolic Universal Composability 13
2.1 Review of the applied pi calculus . 14

2.1.1 Syntactic sugar . 17
2.1.2 Additional concepts used in this work 17

2.2 Useful properties of the pi calculus 21
2.2.1 Relating events and observational equivalence 30
2.2.2 Unpredictability of nonces . 37

2.3 Symbolic UC . 38
2.4 Composition . 42
2.5 Property preservation . 63
2.6 Relation to Delaune-Kremer-Pereira 65
2.7 Example: Secure channels . 68

2.7.1 Key exchange using NSL . 69
2.7.2 Secure channel from key exchange. 71
2.7.3 Generating many keys from one 77

2.8 Virtual primitives . 81
2.8.1 Realizing commitments . 83

2.8.1.1 A note on adaptive corruption 89
2.8.2 Removing the virtual primitives 90
2.8.3 On removing the CRS . 94

2.9 Limits for composition and property preservation 97

3 Composable Computational Soundness 103
3.1 Preliminaries . 105
3.2 The symbolic model . 105

3.2.1 Reconciling the notions for symbolic models 106
3.3 Implementation . 108

3.3.1 Interpretations . 108
3.3.2 Generating function . 108
3.3.3 Parsing function . 109
3.3.4 Good implementation . 110

3.4 Transparent functions . 113
3.5 Composition . 113
3.6 Deduction soundness . 120
3.7 Composition theorems . 123

3.7.1 Public datastructures . 123

vii

viii Contents

3.7.2 Public key encryption . 123
3.7.2.1 Computational preliminaries 124
3.7.2.2 Symbolic model . 124
3.7.2.3 Implementation . 126
3.7.2.4 PKE composability 127

3.7.3 Signatures . 134
3.7.3.1 Computational preliminaries 134
3.7.3.2 Symbolic model . 135
3.7.3.3 Implementation . 135
3.7.3.4 Signature composability 137

3.7.4 Secret key encryption . 143
3.7.4.1 Computational preliminaries 143
3.7.4.2 Symbolic model . 144
3.7.4.3 Implementation . 145
3.7.4.4 SKE composability 146

3.7.5 MACs . 149
3.7.5.1 Computational preliminaries 149
3.7.5.2 Symbolic model . 150
3.7.5.3 Implementation . 150
3.7.5.4 MAC composability 151

3.7.6 Hash functions . 152
3.7.6.1 Symbolic model . 152
3.7.6.2 Implementation . 152
3.7.6.3 Hash composability 153

3.8 Forgetfulness . 154
3.8.1 Preliminaries . 155
3.8.2 Forgetful symbolic models and implementations 156
3.8.3 Sending keys around . 159

4 Outlook 163

Symbol Index 171

Index 175

1. Introduction

Cryptography is Ubiquitous.

Nowadays, more and more aspects of everyday life depend on the security of
cryptographic protocols. We rely on them to assert the confidentiality of calls us-
ing our mobile phones (GSM [77]) or our cordless phones at home (DECT [75]).
They protect our online banking transactions and are necessary to prevent identity
theft (TLS/HTTPS [78]). We expect them to authenticate us at borders whilst
still guaranteeing a good level of privacy against eavesdroppers (e-Passports). The
importance of cryptographic protocols is growing. With Bitcoin we have the first
popular e-currency, people are automating their homes to a larger and larger extent,
and smart grids are going to supply us with energy in the future. Where will we turn
to if not cryptography to solve the underlying security and privacy problems? From
being used mainly for military purposes just about half a century ago, cryptography
has evolved to be one of the most important tools for protecting everything from
individual rights to the society at large in the digital age.

A State of Uncertainty.

Obviously, the widespread use of cryptographic protocols and the level of trust
necessary for their use calls for strong security guarantees. Disconcertingly, many of
the aforementioned protocols were standardized and are now widely used despite a
lack of such guarantees. For most of them, serious flaws in their design are known by
now. The most striking example of this is the TLS protocol which sits at the heart
of most trusted communications on the Internet and still suffers from important
security issues.
From this state of uncertainty, two major problems emerge. For one, security

problems may obviously constitute a direct threat. Additionally, the lack of trust it-
self is a problem. Recently, Bitcoin courses plummeted due to alleged weaknesses in
the protocol. After it became clear that the problem was a local implementation is-
sue, markets recovered again [61]. The incident shows that the trust in cryptographic
protocols does not go very far. As long as the vice president of the United States
goes through surgery to deactivate the WIFI of his heart pacemaker for security
reasons [57], we know that there is still work to do.

1

2 1. Introduction

Security Problems are Hard to Find.
One key reason for the current situation is that security guarantees differ funda-

mentally from functional guarantees. Consider a system for which we would like to
be certain that it has some functional property. There are several ways to tackle the
problem. The most important and common one these days is testing. Furthermore,
users of the system can usually assess whether it provides the promised functional-
ity. This does not hold for security guarantees. E.g., secret information might leak
without affecting the observable behavior of a system.

Errors are Hard to Fix.
Another important property of cryptographic protocols is that errors are often

hard to fix. Here, the hardness rather stems from the distributed nature of proto-
cols than from cryptographic aspects. For a widely-used protocol, we usually have
many implementations running on many different devices under the control of many
different parties. Obviously, deploying a fix for a flawed protocol is a non-trivial task
in this setting. As a consequence, devices are usually not updated simultaneously
but over time. Until the update process is complete, devices often have to use the
oldest version of the protocol supported by communication partners. In some cases
where the protocol involves a continuous process, e.g., Bitcoin, a flaw might even
completely break the current state (e.g., all Bitcoins would be worthless). The only
fix would then be to re-start from scratch.

A Need for Strong Security Guarantees.
To quickly recapitulate the setting most cryptographic protocols live in: Security

problems are hard to find, hard to fix, consequences of errors might be dramatic,
and even a lack of trust can lead to major problems. All of this calls for strong
and rigorous security guarantees. There are multiple reasons why we do not already
have these guarantees which we are going to shed some light on next.

The Dark Ages of Industrial Cryptography.
Before we judge the state of the art, we should remember that the widespread use

of cryptographic protocols is a quite recent development. When the Domain Name
System (DNS) was standardized in 1987, less than 30 years ago, security was not
even considered to be an issue. Only as the Internet grew and spread, it became
obvious that there were also parties with malicious intentions. This time, the mid
90s, was when a lot of the protocols we use today were devised (SSL in ’94, SSH in
’95). At that time decisions were made on the basis of what experts thought “looks
good”. This period is now sometimes referred to as “The Dark Ages of Industrial
Cryptography” [60].
Unfortunately, protocols from that time do not only have a lot of flaws. Due to

the design decisions made, they turn out to be inherently hard to prove correct.
This is one of the reasons why we still do not have a proof of security for SSL/TLS
– not even for the updated versions of it [60].

What can We Do Already?
Despite the current situation for cryptographic protocols there is hope for the

future. One reason for this are developments in the area of cryptographic building
blocks like encryption or hash functions. While the same secure-by-expert-opinion
design has been prevalent for quite a while for those building blocks, the current
standards (AES for symmetric encryption and SHA-3 for hash functions) were se-
lected in an open competition and, among many other things, a proof of security was

3

required. Even for older building blocks, e.g., RSA and ElGamal, we have provably
secure variants these days. And indeed, until today, those provably secure schemes
have withstood the test of time. This provides cause for hope that proofs of security
are also going to be common practice for new cryptographic protocols in the future.
What Do We Need?
Obviously, the need for provably secure protocols can only be satisfied if we can

provide the means to actually conduct appropriate proofs – say within the scope of
a standardization process.
Security proofs for cryptographic protocols, due to the many different states a

protocol can be in, are typically not complex but large. In contrast to the aforemen-
tioned security proofs for building blocks, conducting these proofs by hand would be
too tedious and error-prone. Therefore, machine-assisted proofs are the only remedy.
Machine-assisted proofs in general have the stigma of being very time-consuming.

However, in comparison to automated proofs for software, proofs for cryptographic
protocols only need to be conducted once. The specification of a protocol is much less
volatile than software. In that way, having provably secure protocols is a less lofty
goal than having provably correct software in general, or, e.g., a provably correct
operating system kernel [13].
Still, to make the security proofs for protocols as efficient as possible, we should

not rely on machine assistance alone. To deal with large systems and protocols, we
need modular proofs. That is, we need methods to break down a security proof into
small easy-to-handle parts. Furthermore, we require ways to re-use these parts (and
their proofs) for different systems.
While aiming for modular machine-assisted proofs, we still want security against

the most powerful adversary possible.
Rigorous Proofs of Security for Cryptographic Protocols.
Finally, we are going to answer the question that remained open until now: How

can we actually prove a cryptographic protocol secure? To that end, we will intro-
duce two models that are potentially suitable to conduct such proofs next.
One is the computational model which is closely related to complexity theory.

In this model we derive security guarantees from the fact that certain problems
are believed to be computationally hard to solve (like factoring numbers which are
composites of large primes).
An alternative model, the so called symbolic model, abstracts away from concrete

computations. Here, a term algebra and deduction rules define the capabilities of an
adversary. In this model we can prove a security property by showing, for example,
that the adversary cannot learn a message that is supposed to be secret.
Before we dive into the details of the two models we would like to emphasize that

both models are abstractions of reality and cannot give us security guarantees against
all conceivable attacks. As soon as we are talking about a concrete implementation
of a protocol on actual hardware, new problems can emerge – timing or tempest
attacks would be two prominent examples. Models to capture these kinds of attacks
are not covered here. In general, we feel that security of cryptographic protocols
against a computational adversary as introduced in this work is definitely a necessary
but not a sufficient criterion for a protocol that is ready to be deployed.
The Computational Model.
The foundation of the computational model of cryptography is the – in computer

science widely accepted – conjecture that some problems cannot be solved in poly-

4 1. Introduction

nomial time (like the aforementioned factoring of large numbers). Theorems in this
model basically are statements of the kind “X is secure if the problem Y is hard to
solve”. Proofs are actually complexity theoretic reductions. That is, we show that
an adversary that breaks X could be used to solve Y . As long as Y is really hard,
no successful adversary that runs in polynomial time can exist.

Security Properties in the Computational Model.
What does “X is secure” actually mean? There are two common approaches to

model security properties in the computational model.

• Experiments: The idea of experiments goes back to Goldwasser and Micali
[59]. Here, the adversary plays a game with a so called experiment. The
concrete goal and the form of the game formalize a security property. E.g.,
one standard notion of security for public-key encryption schemes, IND-CPA
security, can be captured by the following game: The experiment generates a
keypair (pk, sk) and hands the public key pk to the adversary. The adversary
replies with two message m0 and m1 (of equal length). Now the experiment
picks a random bit b ∈ {0, 1}, computes the ciphertext c of mb under pk and
returns c to the adversary. Finally, the adversary has to guess the value of
b and wins if it guessed correctly, i.e., it has to guess which of the messages
is contained in c. We say that a public-key encryption scheme is IND-CPA
secure if no efficient adversary exists that is significantly more successful than
one that uniformly guesses a value.

• Simulation-based notions: The idea behind simulation-based notions of se-
curity, brought forward by Goldwasser and Micali [59] as well, is to stipulate
the indistinguishability of two settings, often dubbed the real and the ideal
setting. Intuitively, we have an adversary that interacts with a real implemen-
tation R of a system on the real side. On the ideal side we have an adversary
that interacts with an idealization F of R. The idea behind the idealization
F is that it just describes the functionality of R. E.g., while R might use
an encryption scheme to distribute information among parties, in F the infor-
mation is magically transferred to every party giving the adversary no attack
surface. We now stipulate that for every adversary on the real side there is an
adversary on the ideal side such that both sides are indistinguishable. This
captures the intuition that for every attack on R there is an attack on F . Or,
in other words, the security of the system R is defined by the security of the
ideal system F .

The computational model features a strong adversary. It can capture all attacks
based on the input/output behavior of honest parties1 that can be carried out in
polynomial time. However, it is not very suitable for automation although some
approaches exist [18, 70]. Hence, it will not serve our needs when it comes to proving
cryptographic protocols secure on a large scale.

From Cryptographic Building Blocks to Cryptographic Protocols.
Before we proceed and introduce the symbolic model, we quickly explain the re-

lation between cryptographic building blocks (commonly also called cryptographic
1That is, the adversary only gets the data without any additional information like power con-
sumption, time consumption, or information about any internal states.

5

primitives) and cryptographic protocols. As the name suggests, cryptographic prim-
itives are the foundation of cryptographic protocols. Examples of standard primi-
tives are symmetric encryption, public-key encryption, digital signatures, or cryp-
tographic hash functions. For each of these primitives there are several notions
of security (either experiments or simulation-based notions) in the computational
model. We also have numerous concrete constructions for each cryptographic prim-
itive that meet the respective notions of security.
Even though we have secure building blocks, there are many ways to use them

incorrectly in a protocol. This is where the real work begins if we want to prove a
protocol secure.

The Symbolic Model.
In contrast to the computational model, where both cryptographic protocols and

building blocks can be analyzed, the symbolic model, introduced by Dolev and Yao
[56], focuses on the analysis of protocols. The behavior of parties (participants in a
protocol) is usually modeled using a process calculus, like the applied pi calculus.
Messages exchanged between the parties are terms built from function symbols which
represent the cryptographic primitives used. To define the semantics of function
symbols, we use deduction rules or rewrite rules. E.g., we could have a function
symbol enc of arity two together with the deduction rules

m k

enc(k,m) ,
enc(k,m) k

m

to capture the semantics of symmetric encryption. That is, knowledge of a key k
and a message m is required to derive a ciphertext enc(k,m). Conversely, from a
ciphertext enc(k,m) and key k, the message m can be retrieved. Note that the
only operations possible are those specified by the deduction rules. In particular,
a key cannot be guessed, and no algebraic properties of concrete cryptographic
instantiations can be used. The deduction rules are an idealization of the properties
we expect from a cryptographic primitive.

Security Properties in the Symbolic Model.
How can we capture security properties in the symbolic model? As mentioned

above, the model focuses on the analysis of protocols. One popular way to model
the adversary in the symbolic world is to give it full control over public networks.
I.e., it can receive, interrupt, and send messages. Every message it receives is added
to the adversarial knowledge. When sending messages, the adversary is restricted to
messages that are deducible from the adversarial knowledge. This type of adversary
is commonly referred to as Dolev-Yao adversary – named after the authors of the
seminal paper which laid the foundation of the symbolic model [56]. There are various
ways to formalize security properties in the symbolic model. We quickly cover the
two that are most important for this work.

• Querying the adversarial knowledge: We can usually analyze security
properties of a protocol by querying the adversarial knowledge. That is, we
prove that a certain message is never deducible from the knowledge of a Dolev-
Yao adversary that can interact with (multiple runs of) a protocol. I.e., intu-
itively we proof that the adversary cannot learn a certain piece of information.

6 1. Introduction

• Indistinguishability-based security: Analogously to simulation-based se-
curity in the computational setting we can stipulate that two settings have
to be indistinguishable. However, we do not consider a real and an ideal side
here, but rather two versions of the same protocol with different setups. For
example considering EC-cards and e-passports we might want to require a
property that is called unlinkability [6, 4]: Say that π(A) denotes a session of
a protocol initiated by party A, by proving that π(A) | π(A) (two sessions of
the protocol initiated by A in parallel) is indistinguishable from π(A) | π(B),
we can not only guarantee that a session cannot be linked to a concrete user
but also that a user cannot be tracked (not even anonymously).

Mind the Gap.
One striking advantage of the symbolic model is that proofs are easier to automate

than in the computational model. However, a caveat is that we only get security
guarantees with respect to abstractions of our cryptographic primitives. That is,
the operations of the adversary are restricted to the deduction rules we specified.
How can we be sure that there are no computational attacks that are not captured
by the deduction rules and would thus be overlooked? Or, in other words: Is there
a way to back up a symbolic analysis with guarantees in the computational model?
Fortunately, the answer is yes.

Reconciling the Computational and the Symbolic Model.
In their seminal work, Abadi and Rogaway [2] found a way to reconcile the com-

putational and the symbolic model. A theorem that makes a statement about the
relation of these models is called a computational soundness result. As explained
above, the symbolic model only uses cryptographic primitives in an abstract way.
The idea behind computational soundness results is to find requirements for the
implementation of these primitives such that guarantees obtained with a symbolic
analysis hold in the computational model. Intuitively, a soundness result captures
the idea that an adversary in the computational model cannot compute something,
that an adversary in the symbolic model cannot deduce. Note that such a soundness
theorem has to be proven only once for a given abstraction of cryptographic primi-
tives. It then applies to each protocol analyzed with respect to that abstraction.

Open Problems.
So far, we described the state of the art: We have two different models to cap-

ture and prove security properties. The computational model provides security
guarantees against stronger adversaries while the symbolic model is more suitable
for machine-assisted proofs. Computational soundness results allow us to conduct
proofs in the latter and still get security guarantees in the former. So what remains
to be done?
A first thing that comes to mind with respect to our needs mentioned above

is that we are aiming for modular proofs. Since we additionally have to rely on
tool support, we need modularity in the symbolic model. While first steps in this
direction have been made by [54] and [23], we still lack a fully fledged framework for
modularization. This is what we are going to discuss next in the paragraph about
Universal Composability.
Furthermore, while computational soundness allows us to close the gap between

the symbolic and the computational model, soundness results are very inflexible.
They hold for a fixed set of cryptographic primitives only and are not composable.

7

Although we need to prove soundness only once for a set of primitives and can then
use the result for the analysis of all protocols based on this set, we have to redo
the complete soundness proof if we need additional primitives. Additionally, this
inflexibility makes soundness results for large sets of primitives hard to achieve. We
turn to this problem in detail in the paragraph about Composable Soundness.

Universal Composability.
The problem of unwieldy proofs for complex systems has already been identified

in the computational model more than ten years ago. As a consequence, frameworks
for so called universal composability (UC) were devised by Canetti et. al [36] and
Backes et. al [11]. Intuitively, they combine the idea of simulation-based security
with composability:
Say that a protocol π uses a functionality F and R is a secure realization of F

(this is very much defined as described in simulation-based security above). Then,
the UC framework features a composition theorem giving us that π[R] realizes π[F].
Consequently, we can conduct two security proofs independently to get a security
guarantee (captured by F ′) for π[R]:

• R realizes F .

• π[F] realizes F ′.

This technique gives us two important advantages: Usually, F is less complex than
R. Hence proving that π[F] realizes F ′ is much easier than proving that π[R]
realizes F ′ directly. Furthermore, say that we have another realization R′ for F ,
then we can replaceR byR′ without re-doing the security proof for the full protocol.
Furthermore, we can re-use that fact thatR realizes F for each protocol that uses F .

Our Contribution: Symbolic Universal Composability.
While we have the UC framework in the computational model to tame large

proofs, we need it in the symbolic model to combine the advantages of automation
with modularity.
The frameworks of Delaune et. al [54] and Böhl [23] are first steps in this direction.

However, their results still suffer from major drawbacks. The framework of [54]
cannot be used to capture important security properties like anonymity. We explain
the differences between [54] and our results in detail in Section 2.6. While the work
of Böhl solved this problem, it only features a restricted composition theorem that
lacks the important concurrent composition.
In this work, we present the first fully fledged framework for composition in the

symbolic model. This result makes the model suitable for the efficient analysis of
large cryptographic protocols.

Our Contribution: Composable Computational Soundness Proofs.
Backed up by the new capabilities acquired for the symbolic model, we turn our

focus to the security guarantees we can get. As explained above, a computational
soundness result gives us guarantees against a computational adversary after a sym-
bolic analysis. Although such a result needs to be proven only once for a given
abstraction of cryptographic primitives, changes in the abstraction are a big nui-
sance. To analyze a protocol based on a set of cryptographic primitives that are
not, at least not in this combination, part of a computational soundness result, a
new proof of soundness has to be conducted from scratch. Furthermore, due to

8 1. Introduction

the complexity of computational soundness proofs, they usually cover only one or
two cryptographic primitives. To get the soundness results we need to back up
our symbolic analysis, we need a better flexibility while conducting the proof and
techniques to get soundness for larger sets of cryptographic primitives. It would be
optimal to have modular proofs of computational soundness at the level of crypto-
graphic primitives. That is, we automatically get soundness for a symbolic model
featuring different cryptographic primitives if there is a composable soundness result
for each of the primitives.
A first step in this direction is the work of Cortier and Warinschi [48]. They

establish a notion for composable soundness, dubbed deduction soundness. An
implementation is deduction sound for a symbolic model if soundness holds even
in the presence of certain adversarially picked functions. This gives us leverage
when extending the symbolic model. If we can embed the extension as adversarially
picked functions, soundness still holds. [48] use this technique to show a composable
soundness result for public-key encryption. More concretely, any deduction sound
implementation can be extended with public-key encryption without further proof.
We extend the result of Cortier andWarinschi by presenting composable soundness

results for signatures, hashes, MACs and symmetric encryption. Since [48] expected
that additional requirements would be necessary to achieve composable soundness
for signatures, this part of our results is particularly interesting. Altogether, we
present the largest existing soundness result by capturing the combination of all im-
portant cryptographic primitives. Additionally, this soundness result is composable,
that is, every deduction sound implementation maintains soundness when extended
with the primitives mentioned above. The importance of composition cannot be
overemphasized: obtaining such general results without being able to study each
primitive separately would be unmanageable.

Further Related Work.
Symbolic Universal Composability. Apart from the already mentioned works

of Canetti et. al [36] and Backes et. al [11] on the computational side and Delaune
et. al [54] and Böhl [23] on the symbolic side, there is a large body of further re-
lated work for symbolic universal composability on the computational side. Other
models based on the same ideas are SPPC [51], IITM [64], Task-PIOA [41, 42], and
GNUC [62]. Some of our results are adaptations of existing computational sound-
ness results: the impossibility of commitments [37] in Section 2.8.3 and the joint
state technique [39] in Section 2.7. Finally, the symbolic setting is not the first
example of the fact that the UC framework can easily be adapted to other set-
tings to get different or stronger security guarantees, e.g., GUC (UC with shared
functionalities) [43], quantum-UC [73, 72], UC with local adversaries [40], UC/c
(incoercibility) [74], UC with everlasting security [67]. Additionally, links between
UC and symbolic models occurred where UC-like models were used to establish
computational soundness results [9, 38]. Furthermore, [69, 12] present UC protocol
constructions where impossibilities are circumvented by giving the simulator addi-
tional power (namely superpolynomial-time computation); this shows some parallels
to our “virtual primitives”-approach, see the discussion on page 83.
Computational Soundness. The first computational soundness result by Abadi

and Rogaway [2] started a whole field of research on this matter. Many interest-
ing computational soundness results have been established since then. They cover
basically all standard cryptographic primitives: symmetric encryption [8, 46], asym-

9

metric encryption [9, 49, 52], signatures [9, 63, 49], MACs [10], hashes [63, 50, 58].
For a more comprehensive list we refer the reader to the survey on computational
soundness by Cortier, Kremer, and Warinschi [47].

Outline of this Thesis.
In Chapter 2 we present our results for symbolic universal composability. Sec-

tion 2.1 introduces the applied pi calculus that is the formal foundation of our sym-
bolic model. The composition theorem (Theorem 1) can be found in Section 2.4.
Readers interested in the technical problems connected with concurrent composition
should probably have a look at the part starting with Lemma 18 on page 48. In
Section 2.2 we provide some general lemmas for the applied pi calculus that might
also be useful in other contexts. Finally, we present proof of concept in Section 2.7
where we modularly construct a secure channel from the widely-known NSL protocol
and a PKI. We conduct a significant part of the proofs using Proverif.
In Chapter 3 we present our work on composable computational soundness. Note

that the notion of a symbolic model in this chapter differs from that in Chap-
ter 2. We discuss and motivate these differences in Section 3.2.1. In Section 3.6 we
give the definition of deduction soundness. The soundness results for the different
cryptographic primitives can be found in Section 3.7.2 for public-key encryption,
Section 3.7.3 for signatures, Section 3.7.4 for symmetric encryption, Section 3.7.5
for message authentication codes, and Section 3.7.6 for hash functions.
Finally, in Chapter 4 we give some interesting directions for future work.

Other Results.
While this thesis is concerned with symbolic universal composability and compu-

tational soundness, there are more results I worked on during my time as a PhD
student. These make a short appearance here.
On Definitions of Selective Opening Security. In [28], we investigate dif-

ferent notions of security against selective opening attacks and their relations. In a
selective opening attack, the adversary observes some ciphertexts encrypted under
the same public key (e.g., we could think of sensors that send their data encrypted
to a central node for collection). The adversary can then adaptively corrupt senders
and not only learn the messages sent but also the randomness used for encryption
(we say it can adaptively open ciphertexts). Intuitively, the unopened ciphertexts
should not help the adversary to learn something about their contents. There are
several notions of security trying to capture the setting of selective opening attacks,
each with its merits and drawbacks. In [28], we give concrete counterexamples
showing that two important definitions of selective opening security do not imply
one another. This paper received the best paper award at PKC 2012.
Practical Signatures from Standard Assumptions. In [34], we construct

new digital signature schemes from standard assumptions, namely CDH, RSA, and
SIS. The efficiency of our new schemes compares favorably against existing schemes.
Furthermore, we developed a new proof technique we dub “confined guessing” to
achieve the results. This technique provides a way to efficiently transform a tag-
based signature scheme into a standard scheme. This Eurocrypt paper is a merge
of [71] and [32].

10 1. Introduction

Encryption schemes secure under related-key and key-dependent mes-
sage attacks. In [26], we construct symmetric encryption schemes that are secure
against related-key and key-dependent message attacks (RKA/KDM security). In a
related-key attack, the adversary does not only get ciphertexts under the secret key
k, but also under keys ϕ(k) derived from k for ϕ picked by the adversary from a given
class of functions. Security of messages in the sense of IND-CPA security should
still hold, i.e., the adversary should still not be able to distinguish Enc(ϕ(k),m)
from Enc(ϕ(k), 0|m|). For security against key-dependent message attacks, we sim-
ilarly stipulate that Enc(k, ψ(k)) is indistinguishable from Enc(ϕ(k), 0|ψ(k)|). Both
RKA and KDM security are not implied by the standard IND-CPA security. The
only existing RKA-KDM secure scheme is that of Applebaum [3], which is secure
under the LPN assumption. We provide a construction to get schemes based on
various other computational assumptions, namely DDH, LWE, QR, and DCR.
Verification of Secure Two-Party-Computations Implemented in Java.

In [27], we provide a proof of correctness and security of a two-party-computation
protocol based on garbled circuits and oblivious transfer in the presence of a semi-
honest sender. To achieve this we are the first to combine a machine-assisted proof
of correctness with advanced cryptographic primitives to prove security properties of
Java code. The machine-assisted part of the proof is conducted with KeY, an inter-
active theorem prover. The proof includes a correctness result for the construction
and evaluation of garbled circuits. This is particularly interesting since checking
such an implementation by hand would be very tedious and error-prone. Although
we stick to the secure two-party-computation of an n-bit AND in this paper, our
approach is modular, and we explain how our techniques can be applied to other
functions.
Evaluating the Usability of Interactive Theorem Provers. In recent years

the effectiveness of interactive theorem provers has increased in a way that the bot-
tleneck in the proof process shifted from effectiveness to efficiency. While in principle
large theorems are provable, it takes a lot of effort for the user to interact with the
system. A major obstacle for the user is to understand the proof state in order to
guide the prover in successfully finding a proof. We conducted two focus groups
to evaluate the usability of interactive theorem provers. We wanted to evaluate
the impact of the gap between the user’s model of the proof and the actual proof
performed by the provers’ strategies. In addition, our goals were to explore which
mechanisms already exist and to develop, based on the existing mechanisms, new
mechanisms that help the user in bridging this gap. [15] explains how the method of
focus group could be applied to evaluate the usability of interactive theorem provers
while [14] presents our results.

List of Own Publications

[14] Bernhard Beckert, Sarah Grebing, and Florian Böhl. “A Usability Evalua-
tion of Interactive Theorem Provers Using Focus Groups”. In: Proceedings,
Workshop on Human-Oriented Formal Methods (HOFM), Grenoble, Septem-
ber 2014. LNCS. to appear. Springer, 2014.

[15] Bernhard Beckert, Sarah Grebing, and Florian Böhl. “How to Put Usabil-
ity into Focus: Using Focus Groups to Evaluate the Usability of Interactive
Theorem Provers”. In: Proceedings, Workshop on User Interfaces for Theorem
Provers (UITP), Vienna, July 2014. Ed. by Christoph Benzmüller and Bruno
Woltzenlogel Paleo. EPTCS. to appear. 2014.

[24] Florian Böhl, Véronique Cortier, and Bogdan Warinschi. “Deduction sound-
ness: prove one, get five for free”. In: ACM Conference on Computer and
Communications Security. ACM, 2013, pp. 1261–1272.

[26] Florian Böhl, Gareth T. Davies, and Dennis Hofheinz. “Encryption Schemes
Secure under Related-Key and Key-Dependent Message Attacks”. In: Public
Key Cryptography. LNCS. Springer, 2014, pp. 483–500.

[27] Florian Böhl, Simon Greiner, and Patrik Scheidecker. “Proving Correctness
and Security of Two-Party Computation Implemented in Java in Presence of
a Semi-Honest Sender”. In: CANS. LNCS. to appear. Springer, 2014.

[28] Florian Böhl, Dennis Hofheinz, and Daniel Kraschewski. “On Definitions of
Selective Opening Security”. In: Public Key Cryptography. LNCS. Springer,
2012, pp. 522–539.

[30] Florian Böhl and Dominique Unruh. “Symbolic Universal Composability”. In:
CSF. IEEE, 2013, pp. 257–271.

[33] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph
Striecks. “Confined Guessing: New Signatures From Standard Assumptions”.
In: J. Cryptology to appear (2015).

[34] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, Jae Hong Seo, and
Christoph Striecks. “Practical Signatures from Standard Assumptions”. In:
EUROCRYPT. LNCS. Springer, 2013, pp. 461–485.

11

2. Symbolic Universal
Composability

Contributions of this Chapter.
In this chapter we present the results of [31]. In particular, we transfer the ideas

of the UC framework in the computational setting to the symbolic setting. We
show that the composition theorem and the fact that security properties carry over
still hold in the symbolic UC framework. (Concurrent composition turns out to be
non-trivial because we need to encode a special variant of process replication in the
applied pi calculus that provides session ids to replicated processes.) We present an
example analysis of a key exchange using the Needham-Schroeder-Lowe protocol,
and how to use it in a secure channel protocol via composition.
We show that impossibilities from the computational UC framework unfortunately

still apply in the symbolic setting; in particular, implementing a commitment func-
tionality without any trusted setup is impossible. On the positive side, we show that
this impossibility can be circumvented to a large part by a trick that we call “virtual
primitives”; here we perform the proof of security under the assumption that the
cryptographic primitives have some exotic features, but in the end conclude security
for the original cryptographic primitives without these exotic features. This “virtual
primitives”-approach is unique to the symbolic setting. To the best of our knowledge
no corresponding technique exists in the computational world.
We also show how to use Proverif as a helping tool for performing the observational

equivalence proofs when showing security in our framework. For this we develop a
set of lemmas that help in rewriting processes and allows us to use Proverif as a tool
even for observational equivalence proofs that do not involve so-called biprocesses
and are thus out of the scope of Proverif. (See Section 2.7.) We believe that this set
of lemmas is useful also in other settings than that of our work.

Organization.
In Section 2.1 we review the applied pi calculus as used here (with some addi-

tional concepts introduced in Section 2.1.2). Section 2.3 introduces our security
definition. Section 2.4 shows the composition theorem, Section 2.5 that we have
property preservation. In Section 2.7 we give an example of our framework based
on the Needham-Schroeder-Lowe protocol, we illustrate composition and joint state

13

14 2. Symbolic Universal Composability

techniques (the latter is a technique for dealing with functionalities shared by sev-
eral protocol instances). Finally, in Section 2.8 we present the virtual primitives
technique.

2.1 Review of the applied pi calculus
In this section we review the variant of the applied pi calculus from [22] that we

use in our paper. Below (Section 2.1.2) we list some non-standard definitions that
we will use. Readers familiar with the applied pi calculus can directly skip to that
section.
The process calculus presented in [22] is a combination of the original applied pi

calculus [1] and one of its dialects [19].
We have a set of terms that is built upon three basic sets. The infinite set of

names N , the infinite set of variables V and the set of function symbols (called the
signature Σ). Names describe all kinds of atomic data, i.e. are used as nonces or to
represent messages. We distinguish two categories of function symbols: constructors,
which are used to construct terms of higher order, and destructors. Let T (Σ) be the
set of terms built from names in N , variables in V and constructors in Σ.
A substitution is a function from variables to terms σ : V → T (Σ). For a term

T , Tσ denotes the substitution of every variable x in T by σ(x) (all variables are
replaced at once). We write {M1/x1 , . . . ,Mn/xn} for a substitution σ s. t. σ(xi) = Mi
and σ(x) = x for all x ∈ V \ {x1 , . . . , xn}.
Sometimes it is desirable to consider two terms, that were constructed differently,

equivalent. Therefore we have a finite set E of equations (M ,N) (for M = N)
where M and N are terms that contain only variables and constructors. E is called
equational theory.
The equivalence relation =E on terms is defined as the reflexive, transitive and

symmetric closure of E closed under the application of substitutions1 and contexts
(i.e. for all terms M , N and T we have M =E N ⇒ T{M/x} =E T{N/x}).
To define the semantics of a destructor d, we introduce a finite set R of rewrite

rules d(M1 , . . . ,Mn)→P M where M and Mi , i ∈ {1, . . . , n} are terms that contain
only variables and constructors and the variables in M must be a subset of the
variables used in M1 , . . . ,Mn, and P is a predicate on n-tuples of terms invariant
under =E

2. (We write→ instead of→P when P (. . .) = true always.) Analogous to
[22], we introduce the rewrite rule f(x1 , . . . , xn)→ f(x1 , . . . , xn) for each constructor
f ∈ Σ to avoid case distinctions between constructors in the definitions later on.
(Destructors with conditional rewrite rules have been introduced in Proverif 1.87,
see also [45]. None of our results need this additional generality. However, we explain
in Section 2.8.1.1 why such destructors can be useful in some cases.)
D ⇓ M denotes the evaluation of D to M where D is a destructor term, i.e.,

a term or the application of a function to destructor terms. For all terms M
we define M ⇓ M (i.e. when evaluating a term we obtain the term itself). If we
have D = g(D1 , . . . ,Dn) for a function g where Di are destructor terms we define
g(D1 , . . . ,Dn) ⇓ Mσ for substitution σ iff there is a rewrite rule g(M1 , . . . ,Mn)→P

M and terms N1 , . . . ,Nn s.t. Di ⇓ Ni , Ni =E Miσ, and P (N1, . . . , Nn) = true.

1I.e., for every substitution σ and M =E N we have Mσ =E Nσ.
2I.e., “Invariant under =E” means that if Ni =E N ′i for i = 1, . . . , n, then P (N1, . . . , Nn) =
P (N ′1, . . . , N ′n).

2.1. Review of the applied pi calculus 15

P ::= 0
P |Q
!P
M (x).P
M 〈N 〉.P
let x = D in P else Q
νa.P

Figure 2.1: Syntax of processes in the applied pi calculus

Definition 1 (Symbolic model). By symbolic model, denoted M = (Σ,E,R), we
refer to the entity of a signature Σ, a finite set of equations E and a finite set of
rewrite rules R.
Note that the infinite set of names and infinite set of variables are not explicitly

part of the symbolic model since they are not specific for any concrete model in our
setting. We refer to them globally as N and V respectively.

Except for Section 2.8, it will be clear from the context which symbolic model
we use. In Section 2.8 we focus on the relation between different symbolic models.
Only then we will introduce a notation that explicitly states the symbolic model
underlying a property, e.g., observational equivalence of two processes.
We can describe processes in our process calculus using the inductively defined

grammar from Figure 2.1. For a better understanding of the syntax we anticipate
the following section about its semantics and give a quick overview of the intuition
connected to the syntax. The 0-process simply does nothing and terminates (and
is therefore often omitted). Two processes, P and Q, can be executed in parallel
(denoted P |Q). They may interact with each other or with the environment inde-
pendently of each other. A replication (!P) behaves as an infinite number of copies
(instances) of P running in parallel. The scope of a name n may be restricted to a
process P (νn.P). M (x).P allows P to receive a message (a term) T on a channel
identified by the term M . The variable x is used in P as a reference to the input.
The counterpart of M (x) is M 〈T 〉.P which sends a message (a term) T on M and
then behaves like P .
In let x = D in P else Q the symbol D stands for a term or a destructor term. If

we have D ⇓ M for a term M the process behaves like P{M/x} otherwise it behaves
like Q.
Except for the let-statement and parallel execution, processes do have the struc-

ture statement.P and we say for P (or any part of P) that it is under the statement
(e.g. we say that “P is under a bang” in !P or that P is under an input in c(x).νn.P).
We say that P is under a let if P occurs in one of the two branches of a let.
An occurrence of a name n in a process is bound if it is under a νn. An occurrence

of a variable x is bound if it is under a M (x) or in the P -branch of a let x =
D in P else Q. bn(P) resp. bv(P) denotes the set of names resp. variables with
bound occurrences in P . If an occurrence is not bound, it is called free, and fn(P),
fv(P) denote the corresponding sets for names resp. variables. A process is closed if
it has no free variables.

16 2. Symbolic Universal Composability

PAR-0 P ≡ P | 0
PAR-A P | (Q | R) ≡ (P | Q) | R
PAR-C P | Q ≡ Q | P
NEW-C νu.νv.P ≡ νv.νu.P
NEW-PAR u 6∈ fn(P)⇒

P | νu.Q ≡ νu.(P | Q)

Figure 2.2: Rules for structural equivalence

REPL !P → P |!P
COMM C 〈T 〉.P | C ′(x).Q

→ P | Q{T/x} if C =E C ′
LET-THEN let x = D in P else Q

→ P{M/x} if D ⇓ M
LET-ELSE let x = D in P else Q

→ Q if @M s.t. D ⇓ M

Figure 2.3: Rules for internal reduction

A context C is a process where exactly one occurrence of 0 is replaced with 2.
C[P] denotes the process resulting from the replacement of 2 with P in C. An
evaluation context is a closed context C built from 2, C|P , P |C, and νa.C. We call
an occurrence of a term or process within a process unprotected if it is only below
parallel compositions (|) and restrictions (ν).

Definition 2 (Structural equivalence (≡)). Structural equivalence, denoted ≡, is
the smallest equivalence relation on processes that is closed under α-conversion3

on names and variables, application of evaluation contexts and the rules from Fig-
ure 2.2.4

Definition 3 (Internal reduction (→)). Internal reduction, denoted→, is the small-
est relation on closed processes closed under structural equivalence and application of
evaluation contexts such that the rules from Figure 2.3 hold for any closed processes
P and Q. →∗ denotes the reflexive, transitive closure of →.

A closed process P emits on M (denoted P ↓M) if P ≡ C[M ′〈N 〉.Q] for some
evaluation context C that does not bind fn(M) and M =E M ′.5 Analogously it reads
on M (denoted P ↑M) if P ≡ C[M ′(N).Q]. We say that P communicates on M
(denoted P lM) if P ↓M or P ↑M .

3An α-conversion is a renaming process that does not change the meaning of a term. E.g.
renaming b to c in νa.νb.net〈a〉.net〈b〉 is a valid α-conversion (and thus we have that
νa.νb.net〈a〉.net〈b〉 ≡ νa.νc.net〈a〉.net〈c〉), renaming b to a is not.

4We differ from [22] by defining ≡ also for non-closed processes. But on closed processes, our
definition coincides with that from [22].

5It is indeed intentional that the definition requires C not to bind fn(M) (as opposed to fn(M ′))
even though we consider the process C[M ′〈N 〉.Q]. This way the definition is equivalent to the
following: P ↓M iff P ≡E C[M〈N〉.Q] for some evaluation context C not binding fn(M), and
some process Q [17]. Here ≡E is structural equivalence modulo replacing terms by equivalent
ones, see Definition 6.

2.1. Review of the applied pi calculus 17

Definition 4. A simulation R is a relation on closed processes such that (P,Q) ∈ R
implies
(i) if P ↓M then for some Q′ we have that Q→∗ Q′ and Q′ ↓M

(ii) if P → P ′ then for some Q′ we have that Q→∗ Q′ and (P ′, Q′) ∈ R

(iii) (C[P], C[Q]) ∈ R for all evaluation contexts C.
A relation R is a bisimulation if both R and R−1 are a simulation.
Observational equivalence (≈) is the largest bisimulation.
It is easy to check that the transitive hull of ≈ satisfies the conditions (i), (ii)

and (iii) from above. Hence ≈ contains its own transitive hull and thus is indeed an
equivalence relation.
Substitutions on processes work like substitutions on terms but must additionally

respect the scopes of names and variables (bound or free). Since renaming of bound
names and variables doesn’t change the structural equivalence class of a process we
assume w.l.o.g. from now on that for Pσ we have σ(x) = x for all x ∈ bv(P) and
σ(x) does not contain names n ∈ bn(P) for all x ∈ fv(P).

2.1.1 Syntactic sugar
We introduce if D = D′ then P else Q as syntactic sugar for

let x = equals(D,D′) in P else Q where x must not occur in P or Q and D,D′ are
destructor terms. Note that we assume the existence of an equals destructor with
the rewrite rule equals(x , x)→ x throughout this paper (see Definition 5 (iii)). Fur-
thermore, we write C().P for C(x).P where x is a fresh variable, and C〈〉.P for
C〈empty〉 assuming a nullary constructor empty (see Definition 5 (i)).
Later, when dealing with Proverif processes, e.g., in Definition 31, we use the

Proverif syntax for pattern matching in inputs and lets: E.g.,
(let (=n, x) = D in P else Q) executes P{T/x} if D ⇓ (n,T) (i.e., D has to eval-
uate to a pair with n beeing the first value while x is used as a reference for the
arbitrary second value T) and Q otherwise. Inputs of type C ((x,_)) expect a pair as
input where the first value is referenced by x while the second value is dropped (i.e.,
when receiving an input (T ,T ′) on C , C ((x ,_)).P continues to run as P{T/x}.
For more details see the Proverif manual [21]. We stress that these constructions are
just syntactic sugar and can be replaced by statements accoding to the grammar of
the pi calculus we described above.

2.1.2 Additional concepts used in this work
In this section, we describe several nonstandard concepts related to the applied

pi calculus that we use in this work.
Miscellaneous.
A context always contains a single occurrence of the hole. Sometimes we need a

context which may or may not contain a hole: A 0-1-context is defined like a context,
except that there may be zero or one occurrences of the hole.
We refer to occurrences of terms that identify channels in a process as channel

identifiers. E.g., in M 〈T 〉 M is a channel identifier and T is not – even if M and T
were the same term (because M and T are different occurrences).
We allow destructors with conditional rewrite rules following [45], see page 14.

None of our results actually requires these conditional destructors, though. The
reader may safely assume the usual, unconditional definition of constructors.

18 2. Symbolic Universal Composability

Natural symbolic models.
A number of lemmas in this paper only hold when the symbolic model we use

satisfies certain natural conditions. Instead of stating these explicitly each time, we
collect all these conditions in the following definition:

Definition 5 (Natural symbolic model). We say a symbolic model is natural if it
satisfies the following conditions:
(i) there is a constructor empty/0 ∈ Σ,
(ii) a constructor for pairings, denoted (2,2), is part of the signature Σ,
(iii) there is a destructor equals/2 ∈ Σ with rewrite rule equals(x , x) → x and no

further rewrite rules that contain equals,
(iv) there are destructors fst/1, snd/1 ∈ Σ with rewrite rules fst((x , y)) → x and

snd((x , y))→ y,
(v) for all terms T , T1 with fst(T) ⇓ T1 there exists a term T2 with snd(T) ⇓ T2

and furthermore (T1,T2) =E T for all such T2 and vice versa,
(vi) for arbitrary terms T1,T2,T ′1,T ′2 we require that (T1,T2) =E (T ′1,T ′2) entails

T1 =E T ′1 and T2 =E T ′2,
(vii) for any destructor term D and any name n 6∈ fn(D) we require that D ⇓ T

for a term T entails the existence of a term T ′ with D ⇓ T ′, n 6∈ fn(T ′) and
T =E T ′,

(viii) there are terms T, T ′ with T 6=E T
′.

In the following, we will always assume that the symbolic model is natural in the
sense of Definition 5.
Equivalence of processes modulo rewriting.
Structural equivalence ≡ does not allow us to replace a term M by another term

M ′ =E M . In some places, we will therefore need to apply =E to processes, and we
will also use an extension ≡E of ≡ that allows us to replace terms:

Definition 6. We extend =E to destructor terms and processes as follows:
Given two destructor terms D,D′, we have D =E D′ iff D can be rewritten into

D′ by replacing subterms by =E-equivalent subterms. (But replacing destructors
is not allowed. E.g., if d is a destructor and f, g are constructors, and f(x) =E
g(x) is in the equational theory, we have d(f(a)) =E d(g(a)) but not f(d(a)) =E
g(d(a)). Formally, =E is the smallest equivalence relation on destructor terms such
that D{M/x} =E D{M ′/x} for destructor terms D and terms M =E M

′.
Given two processes P, P ′, we have P =E P ′ iff P can be rewritten into P ′ by

α-conversion and by replacing terms and destructor terms by =E-equivalent ones.
Formally, =E is the smallest equivalence relation closed under α-renaming such that
P{M/x} =E P{M ′/x} for processes P and terms M =E M

′.
Given two processes P, P ′, we have P ≡E P

′ iff P can be rewritten into P ′ by =E
and ≡. Formally, ≡E := (=E ∪ ≡)∗.

Full observational equivalence.
A substitution σ is a closing substitution if Pσ is closed. We call two (not neces-

sarily closed) processes P and Q fully observationally equivalent (denoted P ∼∼∼ Q)
iff Pσ ≈ Qσ for all closing substitutions σ (where we implicitly assume that the
bound names in P,Q are renamed so that they are distinct from the free names of
σ). Since ≈ is closed under ≡ it follows in a straightforward way that ∼∼∼ is closed
under ≡.

2.1. Review of the applied pi calculus 19

The motivation behind the definition of ∼∼∼ is the following lemma which allows us
to replace fully observationally equivalent subprocesses by each other.

Lemma 1. Let P and Q be processes and P ∼∼∼ Q. Then C[P] ∼∼∼ C[Q] for every
context C.

To show this lemma, we first prove the following lemma:

Lemma 2. Let P and Q be closed processes. We have P ≈ Q ⇒ !P ≈ !Q.

Proof. We define a relation R := ≈ ∪ {(νn.(IP|!P), νn.(IQ|!Q)) : IP, IQ closed pro-
cesses with IP ≈ IQ and n a vector of names } closed under structural equivalence.
Intuitively, IP and IQ represent the running instances of P resp. Q. For (A,B) ∈ R
we show the three points of observational equivalence.
If (A,B) ∈ ≈ there is nothing to show. Otherwise (A,B) = (νn.(IP|!P), νn.(IQ|!Q)).

• If νn.(IP|!P) ↓M we have νn.IP ↓M and, since IQ ≈ IQ, νn.IQ ↓M . Therefore
νn.(IQ|!Q) ↓M .

• For internal reductions → in νn.(IP|!P) we distinguish two cases:
– A new instance of P spawns, i.e., νn.(IP|!P)→ νn.(IP|P |!P). We define

IP ′ := IP|P and IQ′ analogously. Then there is a corresponding inter-
nal reduction (following the REPL rule) for the Q-side νn.(IQ|!Q) →
νn.(IQ′|!Q) and therefore (νn.(IP ′|!P), νn.(IQ′|!Q) ∈ R (note that IP ′ ≈
IQ′ since IP ≈ IQ and P ≈ Q).

– The reduction → only affects !P structurally. That is, we basically have
νn.(IP|!P) → νn.(IP ′|!P). Since IP ≈ IQ we find IQ′ s.t. IQ →∗ IQ′
and IP ′ ≈ IQ′. Hence (νn.(IP ′|!P), νn.(IQ′|!Q)) ∈ R.

• For any evaluation context C we have C[νn.(IP|!P)] ≡ νn′.(C ′[IP]|!P) where C ′
is C with all restrictions moved into n′. Analogously we have C[νn.(IQ|!Q)] ≡
νn′.(C ′[IQ]|!Q) with the same C ′, n′. Since C ′ is an evaluation context, C ′[IP] ≈
C ′[IQ]. Altogether we have (νn′.(C ′[IP]|!P), νn′.(C ′[IQ]|!Q)) ∈ R.

This concludes our proof since the definition of R is symmetric.

We can now show Lemma 1:

Proof of Lemma 1. First consider the case that C is an evaluation context which is
allowed to have free variables here. For all closing substitutions σ we have Pσ ≈ Qσ
and hence Cσ[Pσ] ≈ Cσ[Qσ]. Therefore C[P]σ ≈ C[Q]σ which entails C[P] ∼∼∼ C[Q].
To expand the proof from evaluation contexts to general contexts C we show the

following properties for ∼∼∼ from which the Lemma immediately follows by induction:

1. If P ∼∼∼ Q then M〈T 〉.P ∼∼∼M〈T 〉.Q for arbitrary terms M and T :
Let σ be a closing substitution for M〈T 〉.P and M〈T 〉.Q. We define the rela-
tion R := ≈ ∪ {(C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) : C closed evaluation context}
closed under structural equivalence. We show that R satisfies the three points
of observational equivalence. Let (A,B) ∈ R. For (A,B) ∈ ≈ there is nothing
to do. Otherwise (A,B) = (C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) for some closed
evaluation context C.

20 2. Symbolic Universal Composability

• A ↓N : If C[0] ↓N obviously B ↓N as well. Otherwise (M 〈T 〉.P)σ ↓N
where the free names of N are not bound by C which requires N =E M
and hence leads to (M 〈T 〉.Q)σ ↓N⇒ B ↓N .
• For internal reductions in A we distinguish two cases:

– → is the COMM reduction C[(M 〈T 〉.P)σ] → C ′[Pσ] (up to struc-
tural equivalence). In the same way we can reduce C[(M 〈T 〉.Q)σ]→
C ′[Qσ]. Since Pσ ≈ Qσ and C ′ is closed we have (C ′[Pσ], C ′[Qσ]) ∈≈⊆
R .

– The reduction → affects (M 〈T 〉.P)σ only structurally. That is, we
basically have C[0]→ C ′[0]. In this case we apply the same reduction
in effect to B and have (C ′[(M 〈T 〉.P)σ], C ′[(M 〈T 〉.Q)σ]) ∈ R.

• Obviously, R is closed under the application of closed evaluation contexts.
This concludes our proof since the definition of R is symmetric.

2. If P ∼∼∼ Q then M (x).P ∼∼∼ M (x).Q for an arbitrary term M :
We prove this statement analogously to the previous one: It only differs in the
direction of message flow on M . In the corresponding branch of the proof an
input of N on M results in P{N/x} resp. Q{N/x} (note that C is closed and
hence N is closed). Since we have Pσ ≈ Qσ in particular for every closing σ
with σ(x) = N we have that P{N/x} ∼∼∼ Q{N/x} holds.

3. If P ∼∼∼ Q then !P ∼∼∼ !Q:
A closing substitution σ with Pσ ≈ Qσ but !Pσ 6≈ !Qσ contradicts Lemma 2.

4. If P1 ∼∼∼ Q1 and P2 ∼∼∼ Q2 then

(let x = D in P1 else P2) ∼∼∼ (let x = D in Q1 else Q2)

for an arbitrary destructor term D:
Again, the complete proof is analogous to the one in case 2. Hence we only
discuss the reduction of the let-statement here: For all closing substitutions σ
for let x = D in P1 else P2 and let x = D in Q1 else Q2 we have that Dσ is
closed. If we have Dσ ⇓ M for a (closed!) term M the let-statement reduces
to P1{M/x}σ ≈ Q1{M/x}σ (note that σ(x) = x since x is a bound variable)
which holds since P1 ∼∼∼ Q1. Otherwise it reduces to P2σ ≈ Q2σ which holds
since P2 ∼∼∼ Q2.

Product processes.
In order to argue about concurrent composition, as a technical tool, we will need

an extension of the applied pi calculus that supports infinite parallel compositions
of processes which are tagged with distinct terms.
Intuitively, the indexed replication ∏x∈S P stands for P{s1/x}|P{s2/x}| . . . when

S = {s1, s2, . . . }. (Like !P stands for P |P |) We call processes from this extended
calculus product processes. Note that our main definitions and results are still stated
with respect to the original calculus from [22] (and Section 2.1); we only use product
processes in some specific situations.

2.2. Useful properties of the pi calculus 21

Definition 7 (Product processes). Product processes are defined by the grammar
in Figure 2.1 with the additional construct ∏x∈S P where x is a variable, S a (pos-
sibly infinite) set of terms, and P a product process. (We call ∏x∈S P an indexed
replication.)
(Note that we consider ∏x∈S to be a binder. I.e., in ∏

x∈S P , we consider x a
bound variable.)
Structural equivalence (≡) on product processes is defined using the same rules as

on processes (see Figure 2.2).
The reduction relation → on product processes is defined using the same rules as

on processes (see Figure 2.3), with the following additional rule (IREPL): If M ∈ S,
then ∏x∈S P →

(∏
x∈S′ P

)
| P{M/x} with S ′ := S \ {M ′ : M =E M

′}. (Essentially
S is treated as a set of session ids which contains each sid at most once modulo =E.)
Observational equivalence (≈) on product processes is defined like observational

equivalence on processes (Definition 4). In particular, as in Definition 4, in rule
(iii) we quantify over evaluation contexts that do not contain indexed replications.
Notice that processes are also product processes, and that on processes, the new

definitions of ≡, →, and ≈ from Definition 7 coincide with the original definitions.

2.2 Useful properties of the pi calculus
In this section, we introduce a number of useful lemmas for the applied pi calculus.

These lemmas are useful to derive observational equivalences of processes by step by
step rewriting (and for using Proverif as a tool in deriving equivalences that Proverif
cannot handle). We believe that they may be useful in other similar situations, too.
Lemma 3. For natural symbolic models, the following hold:
(i) If n /∈ fn(M), then n 6=E M .
(ii) n 6=E m for names n 6= m.
(iii) (n,M ′) 6=E M for all terms M,M ′ and names n 6∈ fn(M).
Proof. We show (i):
Fix a termM with n /∈ fn(M). Assume for contradiction n =E M . Fix a renaming

α such that α(n) =: n∗ 6= n and α(m) = m for all m ∈ fn(M). (This is possible
since n /∈ fn(M).) Hence n =E M = Mα =E nα = n∗ (since the rules defining =E
are closed under renaming). Thus n =E n∗ 6= n. Intuitively, this means that all
names are equivalent under =E.
By Definition 5 (viii) (natural symbolic model) there are terms T, T with T 6=E T

′.
Since the equations in E contain by definition only variables and constructors, all
rules defining =E are closed under substitutions of names by terms. Hence n =E n

∗

implies T =E T
′.

We have a contradiction, hence (i) follows.
(ii) follows from (i) with M := m.
We show (iii):
Assume (n,M ′) =E M towards contradiction. Since M does not contain n, M =

Mσ for σ := (n 7→ n′, n′ 7→ n) and any n′ /∈ fn(M). Then (n′,M ′σ) = (n,M ′)σ =E
Mσ = M =E (n,M ′). (Here we use that =E is closed under renaming which follows
from the fact that equations and reduction rules in the symbolic model do not
contain names.) By Definition 5 (vi) (natural symbolic model), this implies n′ =E n
which contradicts (ii). Thus, the assumption that (n,M ′) =E M was wrong. (iii)
follows.

22 2. Symbolic Universal Composability

Lemma 4. Let P, P ′ be processes. Let D,D′ be destructor terms. Let M,M ′ be
terms.
(i) If a /∈ fn(P), then P ∼∼∼ νa.P .
(ii) If a /∈ fn(M), then νa.M(x).P ∼∼∼M(x).νa.P .
(iii) Assume P is closed and that P does not contain unprotected inputs or outputs.

Assume P → P ′, and that for all P ′′ with P → P ′′ we have P ′ ≈ P ′′. Then
P ≈ P ′.

(iv) If M,M ′ are terms with M =E M
′, then P{M/x} ∼∼∼ P{M ′/x}.

(v) If for all substitutions σ that close D,M we have Dσ ⇓Mσ, and for allM ′ with
Dσ ⇓M ′σ we have Mσ =E M

′σ, then (let x = D in P else P ′) ∼∼∼ P{M/x}.
(vi) If D is closed and there is no M with D ⇓M , then (let x = D in P else P ′) ∼∼∼

P ′.
(vii) If for all substitution σ that close D,D′ there exist M,M ′ with Dσ ⇓ Mσ,

D′σ ⇓M ′σ and Mσ =E M
′σ then (if D = D′ then P else P ′) ∼∼∼ P

(viii) We have !P ≈ P |!P .
(ix) ∏x∈SID P ≈

∏
x∈SID\{t1,...,tn} P |P{

t1
x
}| . . . |P{ tn

x
} for t1, . . . , tn ∈ SID.

Proof. We show (i): Let R := {(Q, νa.Q) : Q a closed process, a /∈ fn(Q) a name}
up to structural equivalence. It is easy to see that R is a bisimulation. Thus
Q ≈ νa.Q for any closed process. This implies that Pσ ≈ νa.(Pσ) ≡ (νa.P)σ for
any closing σ. Hence P ∼∼∼ νa.P .

We show (ii): Let R := {(E[νa.M(x).Q], E[M(x).νa.Q])} ∪ ≈ up to structural
equivalence where E ranges over all evaluation contexts, Q over closed processes,
a over names, and M over terms with a /∈ fn(M). One can check that R satisfies
the conditions for a bisimulation. To show νa.M(x).P ∼∼∼ M(x).νa.P , fix a closing
substitution σ. Then

(
(νa.M(x).P)σ, (M(x).νa.P)σ

)
∈ R, thus (νa.M(x).P)σ ≈

(M(x).νa.P)σ. Since this holds for any closing σ, we have νa.M(x).P ∼∼∼M(x).νa.P
and (ii) follows.

We show (iii): Let R := {(E[P], E[P ′]) : E evaluation context} ∪ ≈. (Here P, P ′
refer to the processes from the statement of the lemma.) We check that R is a
bisimulation. In all the following cases, if A ≈ B, the statement is immediate. Thus
we assume A ≡ E[P], B ≡ E[P ′] in each case.

• If (A,B) ∈ R and A ↓M then there exists a B′ with B →∗ B′ and B′ ↓M : If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Since P
does not contain unprotected outputs, we have that the output on M is in E.
Hence B ≡ E[P ′] ↓M .

• If (A,B) ∈ R and B ↓M then there exists an A′ with A →∗ A′ and A′ ↓M : If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Since
P → P ′ we have A→ A′ := E[P ′] ≡ B. Since B ↓M , also A′ ↓M .

• If (A,B) ∈ R and A→ A′ then there exists a B′ with B →∗ B′ and (A′, B′) ∈
R: If A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′].
Since P does not contain unprotected inputs or outputs, A′ ≡ E ′[P] for some
evaluation context E or A′ ≡ E[P ′′] for some P ′′ with P → P ′′. In the first
case, B → B′ := E ′[P ′] and hence (A′, B′) ∈ R. In the second case, P ′′ ≈ P ′

and thus A′ ≈ E[P ′] ≡ B =: B′. Thus B →∗ B′ and (A′, B′) ∈ R.

2.2. Useful properties of the pi calculus 23

• If (A,B) ∈ R and B → B′ then there exists a A′ with A→∗ A′ and (A′, B′) ∈
R: If A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′].
Since P → P ′, we have A → A′′ := E[P ′] ≡ B. Since B → B′, we have
A→ A′′ → A′ := B′. Hence A→∗ A′ and (A′, B′) ∈ R.

• R is closed under application of evaluation contexts by construction.

We show (iv): Let (A,B) ∈ R iff A results from B by replacing terms M by
terms M ′ with M =E M ′. It is easy to check that R is a bisimulation. Fix a
process P , terms M,M ′ with M =E M ′, and σ a substitution mapping variables
to ground terms that closes P{M/x} and P{M ′/x}. Then P{M/x}σ results from
P{M ′/x}σ by replacing some occurrences of M ′σ by Mσ. Since M =E M

′, we have
Mσ =E M ′σ. Thus (P{M/x}σ, P{M ′/x}σ) ∈ R, hence P{M/x}σ ≈ P{M ′/x}σ.
Since this holds for any closing σ, P{M/x} ∼∼∼ P{M ′/x}.

We show (v): First, assume that A := (let x = D in P else P ′) is closed. We
have that if A → A′, then A′ ≡ P{M ′/x} for some M ′ with D ⇓ M ′. By (iv)
and using that M =E M ′ for all M ′ with D ⇓ M ′, this implies A′ ≈ P{M/x}.
Furthermore A does not contain unprotected inputs or outputs. Thus by (iii), we
have A ≈ P{M/x}. From this follows that (let x = D in P else P ′) ∼∼∼ P{M/x}
even if (let x = D in P else P ′) is not closed, analogously to (i).

We show (vi): First, assume that A := (let x = D in P else P ′) is closed. We
have that if A → A′, then A′ ≡ P ′. Furthermore A does not contain unprotected
inputs or outputs. Thus by (iii), we have A ≈ P ′. From this follows that (let x =
D in P else P ′) ∼∼∼ P ′ even if (let x = D in P else P ′) is not closed, analogously to
(i).

We show (vii): First, assume that A := (if D = D′ then P else P ′) is closed. We
resolve the syntactic sugar for “if” and haveA = (let x = equals(D,D′) in P else P ′).
If A → A′, then A′ ≡ P (x 6∈ fv(P)). Thus by (iii), we have A ≈ P ′. From this
follows that (let x = D in P else P ′) ∼∼∼ P ′ even if (let x = D in P else P ′) is not
closed, analogously to (i).

We show (viii): If !P → P ′′, then P ′′ ≡ P |!P by definition of →. By (iii) this
implies !P ≈ P |!P .

We show (ix): Given a set A = {t1, . . . , tk} ⊆ SID, we write ∑
x∈A P for

P{t1/x}| . . . |P{tk/x}. Let

R :=

(E[
∏

x∈SID\A\D
P |
∑
x∈A

P], E[
∏

x∈SID\B\D
P |

∑
x∈B

P]
)

up to structural equivalence where E ranges over evaluation contexts and A,B,D
range over subsets of SID with D disjoint of A ∪B. One can check that R satisfies
all conditions for being a bisimulation. Since ∏

x∈SID
P,

∏
x∈SID\{t1,...,tn}

|P{t1/x}| . . . |P{tn/x}

 ∈ R,
(ix) follows.

24 2. Symbolic Universal Composability

Lemma 5. Let C be a 0-1-context whose hole is not under a bang and such that n
does not occur in C, Q, or t. Assume that C does not bind any of fv(Q) \ {x} or
fn(Q) over its hole. Then νn.C[n〈t〉]|n(x).Q ∼∼∼ C[Q{t/x}]

Proof. We show the lemma for ≈ instead of ∼∼∼, and assuming that νn.C[n〈t〉]|n(x).Q
and C[Q{t/x}] are closed and that fn(Q) ⊆ {x}. The general case then follows by
definition of ∼∼∼. We define the relation R: (A,B) ∈ R iff A ≈ B or there is a
name n, a list of names ã, a term t, a variable x, an integer k, a 0-1-context C not
containing n and not having its hole under a bang and not binding fn(Q) over its
hole, such that the following holds:

A ≡ νnã.C[n〈t〉]|n(x).Q, B ≡ νnã.C[Q{t/x}] (2.1)

We check the three conditions for bisimulations (in both directions).

• If (A,B) ∈ R and A ↓M , then B ↓M :
The case A ≈ B is trivial. We thus assume that A,B are as in (Equation 2.1).
If νnã.C[n〈t〉]|n(x).Q ↓M , then the output on M is in C. (n〈t〉 cannot be that
output, because n is bound.) Hence νnã.C[Q{t/x}] ↓M .

• If (A,B) ∈ R and B ↓M , then there exists an A′ with A→∗ A′ and A′ ↓M :
The case A ≈ B is trivial. We thus assume that A,B are as in (Equation 2.1).
If νnã.C[Q{t/x}] ↓M , we distinguish two cases. If the output on M is in
C, then νnã.C[n〈t〉]|n(x).Q ↓M . Consider the case that the output on M
is in Q{t/x}. Without loss of generality, we can assume that no name in t
is bound in C (otherwise we could move the corresponding restrictions from
C into νã since C does not bind fn(Q) over its hole). Since the output on
M is in Q{t/x}, C is an evaluation context and thus νnã.C[n〈t〉]|n(x).Q →
νnã.C[0]|Q{t/x} ↓M .

• If (A,B) ∈ R and A→ A′, then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:
The case A ≈ B is trivial. We thus assume that A,B are as in (Equation 2.1).
We distinguish the following cases:
If the reduction A → A′ involves only C, then A′ ≡ νnã.C̃[n〈t〉σ]|n(x).Q
for some 0-1-context C̃. Here the substitution σ represents possible variable
assignments performed over the hole of C (e.g., if C = a〈T 〉 | a(y).2, then
σ = {T/y}).
Then B → B′ := νnã.C̃[Q{t/x}σ] = νnã.C̃[Q{tσ/x}] where the last equality
uses that fn(Q) ⊆ x. Also, C̃ does not have more that one hole (in which case
C̃ would not be a zero-or-one-hole context) because the hole in C does not
occur under a bang.
Thus we have (A′, B′) ∈ R.
If the reduction involves n〈t〉 or n(x).Q, then the hole of C is only under
restrictions and parallel compositions. We assume without loss of generality
that the hole in C is not under any restriction (otherwise we could move the
corresponding restrictions into νã since C does not bind fn(Q) over its hole).
Then A′ ≡ νnã.C[0]|Q{t/x} ≡ νnã.C[Q{t/x}] =: B′ ≡ B. Thus B →∗ B′
and (A′, B′) ∈ R (since A′ ≈ B′).

2.2. Useful properties of the pi calculus 25

• If (A,B) ∈ R and B → B′, then there is an A′ with A→∗ A′ and (A′, B′) ∈ R:
The case A ≈ B is trivial. We thus assume that A,B are as in (Equation 2.1).

If the reduction B → B′ involves only C, then B′ ≡ νnã.C̃[Q{t/x}σ] (∗)=
νnã.C̃[Qσ{t/x}] for some zero-or-one-hole context C̃. Here the substitution
σ represents possible variable assignments performed over the hole of C (e.g.,
if C = a〈T 〉 | a(y).2, then σ = {T/y}). And the equality (∗) uses that
fn(Q) ⊆ x.
Then A → A′ := νnã.C̃[n〈t〉σ]|n(x).Q. Also, C̃ does not have more that one
hole (in which case C̃ would not be a context) because the hole in C does not
occur under a bang.
Thus we have (A′, B′) ∈ R.
If the reduction B → B′ involves Q{t/x}, then the hole of C is only under
restrictions and parallel compositions. We assume without loss of generality
that the hole in C is not under any restriction (otherwise we could move the
corresponding restrictions into νã since C does not bind fn(Q) over its hole).
Then A → νnã.C[0]|Q{t/x} ≡ νnã.C[Q{t/x}] ≡ B → B′ =: A′. Thus
trivially (A′, B′) ∈ R (since A′ = B′ and thus A′ ≈ B′), and A→∗ A′.

• If E is an evaluation context, and (A,B) ∈ R, then (E[A], E[B]) ∈ R:
The case A ≈ B is trivial. We thus assume that A,B are as in (Equation 2.1).
Then E[A] ≡ E[νnã.C[n〈t〉]|n(x).Q] ≡ νnã.C[n〈t〉]|P |n(x).Q for some pro-
cess P up to renaming of the names n, ã. And E[B] ≡ E[νnã.C[Q{t/x}]] ≡
νnã.C[Q{t/x}]|P . Thus (using the context C|P instead of C), we have
(E[A], E[B]) ∈ R.

ThusR is a bisimulation. Thus νn.C[n〈t〉]|n(x).Q ≈ νn.C[Q{t/x}] (where n,C, t, x
refer to the values from the statement of the lemma). And since n does not occur
in C,Q, t, we have νn.C[Q{t/x}] ≈ C[Q{t/x}] by Lemma 4 (i). Thus

νn.C[n〈t〉]|n(x).Q ≈ C[Q{t/x}].

Lemma 6. Let C,D be contexts, Q a process, n,m names, t, t′ terms, and x a
variable. Assume that C,D have no bang over their holes. Assume that n,m /∈
fn(C,D,Q, t, t′). Assume that C,D do not bind n,m, fn(Q). Assume that fv(Q) ⊆
{x}. Then νn.(C[!n〈t〉] | D[n(x).Q]) ≈ νm.(C[m().Q{t/x}] | D[m〈t′〉]).
Proof. We define the relation R as follows: We have (A,B) ∈ R iff A ≈ B or there
exist 0-1-contexts C,D without a bang over their holes and not binding n, fn(Q),
terms t, t′, a name n /∈ fn(C,D,Q, t, t′), a list of names ã not containing n, and an
integer i ≥ 0 such that

A ≡ νnã.(C[n〈t〉i | !n〈t〉] | D[n(x).Q])
B ≡ νnã.(C[n().Q{t/x}] | D[n〈t′〉]) (2.2)

Here n〈t〉i denotes n〈t〉| . . . |n〈t〉 (i copies). Note: Q is the process from the statement
of the lemma. (It is intentional that we use n in the definition of B, not m as in the
statement of the lemma. We will rename n into m at the end of the proof.)
We show that R is a bisimulation. In all cases below, the case A ≈ B is trivial by

the properties of ≈, so we assume in each case that A,B are as in (Equation 2.2).

26 2. Symbolic Universal Composability

• If (A,B) ∈ R and A ↓M , then B →∗↓M :
Since n is bound, the output on M is not one of the n〈t〉 (here we use that
M 6=E n if n /∈ fn(M) by Lemma 3 (i)). Hence C ↓M or D ↓M . Thus B ↓M .

• If (A,B) ∈ R and B ↓M , then A→∗↓M :
Since n is bound, the output on M is not n〈t′〉. Hence C ↓M or D ↓M . Thus
A ↓M .

• If (A,B) ∈ R and A → A′, then there is a B′ such that B →∗ B′ and
(A′, B′) ∈ R:
We distinguish the following cases:

– A→ A′ is a reduction !n〈t〉 → n〈t〉 | !n〈t〉: ThenA′ ≡ νnã.(C[n〈t〉i+1 |
!n〈t〉] | D[n(x).Q]) and hence (A′, B′) ∈ R for B′ := B.

– A→ A′ is a reduction within C, within D, or a communication between
C and D (in all cases not involving the argument of C,D): Then A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]) for suitable contexts C ′, D′ (satisfying
all the conditions required for C,D in the definition ofR), and B → B′ :=
νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]). (Note: This uses implicitly that Q has
no free variables except x, otherwise Q might change in this reduction.)

– A→ A′ is a communication between n〈t〉 and n(x).Q:
Then C and D are evaluation contexts.
Without loss of generality, we can assume that C,D do not bind any
names over their holes: For this, we first rename the bound names in
C,D such that they become distinct from all free names (possibly also
renaming the names in t in the process, but not in Q since fn(Q) are not
bound), and then move the restrictions up into νã.
Then A′ ≡ νnã.(C[n〈t〉i−1 | !n〈t〉] | D[Q{t/x}]). Furthermore

B′ := B ≡ ν ã.(C[0] | D[νn.(n().Q{t/x} | n〈t′〉)])
(∗)
≈ νã.(C[0] | D[Q{t/x}])

(∗∗)
≈ νã.(C[νn.(n〈t〉i−1 | !n〈t〉)] | D[Q{t/x}]) ≡ A′

Here (∗) follows from Lemma 5. And (∗∗) uses that νn.(n〈t〉i−1 | !n〈t〉) ≈
0, which can be seen by verifying that

R′ := {(E[νn.(n〈t〉i−1 | !n〈t〉)], E[0]) : E evaluation context}

is a bisimulation.
Thus A′ ≈ B′ and hence (A′, B′) ∈ R. And B = B′ implies B →∗ B′.

– A→ A′ is a communication between C or D and n〈t〉 or n(x).Q:
This case does not occur because n /∈ fn(C,D).

• If (A,B) ∈ R and B → B′, then there is a A′ such that A →∗ A′ and
(A′, B′) ∈ R:
We distinguish the following cases:
– B → B′ is a reduction within C, within D, or a communication between
C and D (in all cases not involving the argument of C,D): Then B′ =

2.2. Useful properties of the pi calculus 27

νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]) for suitable contexts C ′, D′ (satisfying all
the conditions required for C,D in the definition of R), and A → A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]).

– B → B′ is a communication between n().Q{t/x} and n〈t′〉:
Then C,D are evaluation contexts. Without loss of generality, we can
assume that C,D do not bind any names over their holes (analogous to
the corresponding subcase of A→ A′ above).
Then B′ ≡ νnã.(C[Q{t/x}] | D[0]). Furthermore,

A→∗ A′ := νã.(C[νn.(n〈t〉i | !n〈t〉)] | D[Q{t/x}])
(∗)
≈ νã.(C[0] | D[Q{t/x}]) ≡ νã.(C[Q{t/x}] | D[0])

(∗∗)
≈ B′

Here (∗) uses that νn.(n〈t〉i | !n〈t〉) ≈ 0 (see the corresponding subcase
of A → A′ above). And (∗∗) uses Lemma 4 (i). So A′ ≈ B′, hence
(A′, B′) ∈ R.
Hence A→∗ A′ and (A′, B′) ∈ R.

– B → B′ is a communication between C or D and n〈t〉 or n(x).Q:
This case does not occur because n /∈ fn(C,D).

• If (A,B) ∈ R and E is an evaluation context, then (E[A], E[B]) ∈ R:
Then E ≡ νb̃.(2|P) for some names b̃ and some process P . Without loss of
generality, n does not occur in b̃ or fn(P) (otherwise we rename n). Thus with
ã′ := ãb̃ and C ′ := C|P , we have

E[A] ≡ νnã′.(C ′[n〈t〉i | !n〈t〉] | D[n(x).Q])
E[B] ≡ νnã′.(C ′[n().Q{t/x}] | D[n〈t′〉])

Hence (E[A], E[B]) ∈ R.

Under the conditions of the lemma, we have

(νn.C[!n〈t〉] | D[n(x).Q], νn.C[n().Q{t/x}] | D[n〈t′〉]) ∈ R

where C,D,Q, n, t, t′, x are as in the statement of the lemma. Since R is a bisimu-
lation, this implies

n.C[!n〈t〉] | D[n(x).Q] ≈ νn.C[n().Q{t/x}] | D[n〈t′〉]
≡ νm.C[m().Q{t/x}] | D[m〈t′〉])

Lemma 7. Let A,B,C be closed processes. If A ≡E B → C, then there is a closed
process B′ such that A→ B′ ≡E C.

Proof. It is easy to see that→ is the smallest relation satisfying the following rules:
STREQ If P ≡ P ′ → Q′ ≡ Q, then P → Q
E-REPL E[!P]→ E[P | !P]
E-COMM E[C 〈T 〉.P | C ′(x).Q] → E[P | Q{T/x}] if C =E C ′
E-LET-THEN E[let x = D in P else Q] → E[P{M/x}] if D ⇓ M
E-LET-ELSE E[let x = D in P else Q] → E[Q] if @M s.t. D ⇓ M

28 2. Symbolic Universal Composability

Here in all rules E ranges over evaluation contexts with the following property: Let
E[R] denote the left hand side of the rule. Then all bound names in E[R] are
different from each other and from the free names in E[R]. (In a derivation of →,
we can always enforce this latter property by first using STREQ to alpha-rename
the left hand side of the reduction.) We say E[R] has no name conflicts.
For stating the next claim, we also need to introduce an asymmetric variant↗≡ of

the structural equivalence ≡. The difference is that in ≡, we are allowed to apply
the rule NEW-PAR in both directions, while in↗≡ we are only allowed to move re-
strictions up (P | νu.Q↗≡ νu.(P | Q)), but not down (not: νu.(P | Q)↗≡ P | νu.Q).
More formally,↗≡ is the smallest transitive, reflexive (but not necessarily symmetric)
relation closed under α-conversion, and closed under application of evaluation con-
texts, and satisfying the rules PAR-0, PAR-A, PAR-C, NEW-C, NEW-PAR from
Figure 2.2 as well as the reversed rule PAR-0-rev (but not NEW-PAR-rev). (By re-
versed rule we mean the rules with left hand side and right hand side exchanged. E.g.,
PAR-0-rev says P |0↗≡ P . Note that PAR-C-rev and NEW-C-rev are not needed
since PAR-C and NEW-C are symmetric. And PAR-A-rev follows from PAR-C and
PAR-A via (P |Q)|R↗≡ R|(P |Q)↗≡ (R|P)|Q↗≡ Q|(R|P)↗≡ (Q|R)|P↗≡ P |(Q|R).)
Also, we define↗≡E analogously to ≡E:↗≡E corresponds to a sequence of rewritings

using↗≡ and =E, i.e.,↗≡E:= (↗≡ ∪ =E)∗.

Claim 1. For closed processes A,B,C, if A =E B↗≡ C, then there exists a closed
process B′ such that A↗≡ B′ =E C.

We show this claim by induction over the derivation of B↗≡ C. We distinguish
the following cases:
• α-conversion: ThenB = C up to α-conversion. HenceA =E B impliesA =E C

since =E allows α-conversions. Thus A↗≡ B∗ =E C with B∗ := A.
• Closure under evaluation contexts: Then B = E[B̃] and C = E[C̃] for pro-

cesses B̃ ↗≡ C̃ and an evaluation context E. And the induction hypothesis
holds for B̃↗≡ C̃. Since A =E B = E[B̃], we have that A = E∗[B̃∗σ] for some
evaluation context E∗ =E E, some process B̃∗ =E B̃, and a renaming σ that
corresponds to the alpha-renaming over the hole of E. Since B̃∗ =E B̃, the
induction hypothesis implies that B̃∗↗≡ B̃′ =E C̃ for some process B̃′. Hence

A = E∗[B̃∗σ]↗≡ E∗[B̃′σ] =E E[B̃′] =E E[C̃] = C.

Thus A↗≡ B′ =E C with B′ := E∗[B̃′σ].
• Reflexivity: Then B = C. Hence A↗≡ B∗ =E C with B∗ := A.
• Transitivity: Then B↗≡ S↗≡ C for some process S. And the induction hypoth-

esis applies to B↗≡ S and S↗≡ C. Since A =E B↗≡ S, by induction hypothesis,
there is a process B′ with A↗≡ B′ =E S. Since B′ =E S↗≡ C, by induction
hypothesis there is a process S∗ with B′↗≡ S∗ =E C. Thus A↗≡ S∗ =E C, and
the claim follows with B∗ := S∗.
• PAR-0 : In this case, C = B|0 and A =E B. Hence A ↗≡ B∗ =E C with
B∗ := A|0.
• PAR-0-rev: In this case, B = C|0 and A =E B. Hence A = B∗|0 for some

process B∗ =E C. Then A↗≡ B∗ =E C.
• PAR-A: In this case, B = B1|(B2|B3) and C = (B1|B2)|B3. Since A =E B,
A = A1|(A2|A3) for some processes Ai with Ai =E Bi, i = 1, 2, 3. Then with
B∗ := (A1|A2)|A3, we have A↗≡ B∗ =E C.

2.2. Useful properties of the pi calculus 29

• PAR-C, PAR-C : Analogous to PAR-A.
• NEW-C : In this case, B = νnm.B̂ and C = νmn.B̂ for some names n,m and

a process B̂. Since A =E B, we have that A = νab.Â for some names a, b
and a process Â. (Not necessarily ab = nm, because =E allows α-conversion.)
Thus νab.Â =E νnm.B̂. This implies νba.Â =E νmn.B̂ (by induction over
the derivation of νab.Â =E νnm.B̂). Hence with B∗ := νba.Â, we have that
A↗≡ B∗ =E C.
• NEW-PAR: Then B = B1|νn.B2 and C = νn.(B1|B2) with n /∈ fn(B1). Since
A =E B, we have A = A1|νa.A2 for some name a and processes A1, A2 with
A1 =E B1 and νa.A2 =E νn.B2. (Not necessarily a = n, because =E al-
lows α-conversion.) Let m be a fresh name, i.e., m /∈ fn(A1, A2, B1, B2). Let
B∗ := νm.(A1|A2{m/a}). Since νn.B2 =E νa.A2 and m /∈ fn(A2, B2), we have
νm.B2{m/n} =E νm.A2{m/a}. Hence νm.(A1|B2{m/n}) =E
νm.(A1|A2{m/a}). And using A1 =E B1, we get νm.(B1|B2{m/n}) =E
νm.(A1|A2{m/a}) = B∗. Furthermore C = νn.(B1|B2) =E νm.(B1|B2{m/n})
since n,m /∈ fn(B1), m /∈ fn(B2). Thus B∗ =E C. And A = A1|νa.A2 ↗≡
A1|νm.A2{m/a} ↗≡ νm.(A1|A2{m/a}) = B∗. Thus B∗ is a process with
A↗≡ B∗ =E C.

This shows Claim 1.

Claim 2. If A↗≡E B, then there exists an S such that A↗≡ S =E B.

This follows directly from Claim 1.

Claim 3. If B,C are closed processes and B → C (derived using the rules listed at
the beginning of this proof), then for any closed A with A ≡E B there exists a closed
B′ with A→ B′ ≡E C.

This claim will then immediately prove the lemma. We show the claim by induc-
tion over the derivation of B → C. We distinguish the following rule applications:

• STREQ: Then B ≡ B̃ → C̃ ≡ C for some B̃, C̃, and the induction hypothesis
holds for B̃ → C̃. Since A ≡E B ≡ B̃, the induction hypothesis implies that
A→ B′ ≡E C̃ for some closed B′. Since C̃ ≡ C, we have A→ B′ ≡E C.

• E-REPL: Then B = E[!B̃] and C = E[B̃ | !B̃] where E is an evaluation
context and E[!B̃] has no name conflicts. We have A ≡E E[!B̃]. From this it
follows that A↗≡E E ′[!B̃] where E ′ results from E by moving all unprotected
restrictions to the top (no names in B̃ need to be renamed because E[!B̃] has
no name conflicts). By Claim 2, this implies that A↗≡ S =E E ′[!B̃] for some
S. Hence S = E ′′[!B̃′σ] where E ′′ =E E ′ and B̃′ =E B̃ and where σ is a
renaming that corresponds to the alpha-conversions between E ′ and E ′′ over
the hole. Thus A↗≡ S → E ′′[(B̃|!B̃)σ] =E E ′[B̃ | !B̃] ≡ E[B̃ | !B̃] = C and
hence A→ B′ ≡E C with B′ := E ′′[(B̃|!B̃)σ].

• E-COMM: Then B = E[M〈T 〉.P | N(x).Q] and C = E[P | Q{T/x}] where
E is an evaluation context, M =E N , and B has no name conflicts. As in the
E-REPL case, we have A↗≡E E ′[M〈T 〉.P | N(x).Q] where E ′ results from E
by moving all unprotected restrictions to the top. By Claim 2, this implies
that A↗≡ S =E E

′[M〈T 〉.P | N(x).Q] for some S. Hence S = E ′′[(M ′〈T ′〉.P ′ |

30 2. Symbolic Universal Composability

N ′(x).Q′)σ] where E ′′ =E E ′, M ′ =E M , T ′ =E T , P ′ =E P , N ′ =E N ,
Q′ =E Q, and σ is as in the case of E-REPL. Then

A↗≡ S → E ′′[P ′ | Q′{T ′/x}σ] =EE
′[P | Q{T ′/x}]

(∗)=EE
′[P | Q{T/x}]

≡E[P | Q{T/x}] = C.

(Note that (∗) also uses the fact that =E may also rewrite terms that are
subterms of destructor terms; this is needed if x occurs in a destructor term
in Q.)
Hence A→ B′ ≡E C for B′ := E ′′[P ′ | Q′{T ′/x}σ].

• E-LET-THEN: Then B = E[let x = D in P else Q] and C = E[P{M/x}]
where E is an evaluation context, D ⇓ M , and B has no name conflicts.
As in the E-REPL case, we have A↗≡E E ′[let x = D in P else Q] where E ′
results from E by moving all unrestricted restrictions to the top. By Claim 2,
this implies that A ↗≡ S =E E ′[let x = D in P else Q] for some S. Hence
S = E ′′[(let x = D′ in P ′ else Q′)σ] where E ′′ =E E ′, D′ =E D, P ′ =E P ,
Q′ =E Q, and σ is as in the case of E-REPL. Then D′ =E D and DM ⇓ imply
D′M ⇓′ for some M ′ =E M . Hence (let x = D′ in P ′ else Q′) → P ′{M ′/x}.
Then

A↗≡ S → E ′′[P ′{M ′/x}σ] =EE
′[P{M ′/x}]

(∗)=EE
′[P{M/x}]

≡E[P{M/x}] = C.

(Here (∗) again uses that =E rewrites destructor terms, see the case E-COMM.)
Hence A→ B′ ≡E C for B′ := E ′′[P ′{M ′/x}σ].

• E-LET-ELSE: Then B = E[let x = D in P else Q] and C = E[Q] where E is
an evaluation context, ∀M. D 6⇓ M , and B has no name conflicts. As in the
E-REPL case, we have A↗≡E E ′[let x = D in P else Q] where E ′ results from
E by moving all unrestricted restrictions to the top. By Claim 2, this implies
that A↗≡ S =E E

′[let x = D in P else Q] for some S. Hence S = E ′′[(let x =
D′ in P ′ else Q′)σ] where E ′′ =E E

′, D′ =E D, P ′ =E P , Q′ =E Q, and σ is as
in the case of E-REPL. Since D′ =E D and ∀M. D 6⇓M , we have ∀M. D′ 6⇓M .
Hence (let x = D′ in P ′ else Q′)→ Q′. Then

A↗≡ S → E ′′[Q′σ] =E E
′[Q] ≡ E[Q] = C.

Hence A→ B′ ≡E C for B′ := E ′′[Q′σ].

This shows Claim 3. And from that claim the lemma follows.

2.2.1 Relating events and observational equivalence
For stating Lemma 9 below, we will need processes containing events. The vari-

ant of the applied pi calculus presented in Section 2.1 (which is used by Proverif
for observational equivalence proofs) does not support events. When using Proverif
for showing trace properties defined in terms of events, a different variant of the

2.2. Useful properties of the pi calculus 31

applied pi calculus is used [20]. We will call processes in that calculus event pro-
cesses. Syntactically, event processes differ from processes as in Figure 2.1 only by
an additional construct event f(t1, . . . , tn).P which means that the event f is raised,
with arguments t1, . . . , tn (these are normal terms), and then the event process P is
executed.
The semantics of event processes are formulated in [20] in a different way from the

semantics used here. Fortunately, we will be able to encapsulate everything that we
need to know about that semantics in Lemma 8 below, so we do not need to repeat
those semantics here.
Instead, we extend the definition of the internal reduction relation → to event

processes. → is defined as in Definition 3, except that we add the following rule:

EVENT: event f(t1, . . . , tn).P → P

The semantics defined by → will be related to those from [20] by Lemma 8 below.
Finally, [20] defines the concept of a trace property. We will only need trace

properties of a specific form, namely

end(x)⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tn

Intuitively, an event process P satisfies a trace property end(x) ⇒ start(x) ∨ x =
t1 ∨ · · · ∨ x = tn if in any execution P |R → P1 → . . . → Pn, we have that if one of
the transitions raises the event end(t), then t ∈ {t1, . . . , tn} and in the same trace,
the event start(t) is also raised (for any adversarial R not containing events).
Formally, satisfying a trace property is defined with respect to the semantics from

[20].6 Instead of giving those semantics here, we present the following lemma which
summarizes seven fact about that definition. We will not use any other facts. The
facts can be verified by inspecting the semantics and definitions from [20].

Lemma 8. Let t1, . . . , tn be terms. Let ℘ stand for the trace property start(x) ⇒
end(x) ∨ x = t1 ∨ · · · ∨ x = tn. Let P be an event process.
(i) If P ≡ P ′ and P satisfies ℘, then P ′ satisfies ℘.
(ii) Assume P → P ′ and P satisfies ℘ and the reduction P → P ′ does not use the

EVENT rule. Then P ′ satisfies ℘.
(iii) Let t be a closed term. Assume P = C[event start(t).Q] where C is an event

context not binding fn(t) over its hole. Assume that P satisfies ℘. Then P ′ :=
C[Q] satisfies ℘ ∨ x = t.

(iv) Assume P = C[event end(t).Q] where C is an event context. Assume that P
satisfies ℘. Then P ′ := C[Q] satisfies ℘.

(v) Assume P satisfies ℘ and E is an evaluation context (not containing events)
and E does not bind fn(t1, . . . , tn) over its hole. Then E[P] satisfies ℘.

(vi) Assume E is an evaluation event context that does not bind any names over
its hole. Assume P = E[event end(t).Q]. Assume that P satisfies ℘. Then
t =E ti for some i.

6Strictly speaking, the semantics described in [20] does not allow expressions of the form x = ti in
trace properties. Such expressions are, however, supported by Proverif. Also, [20, footnote 3 in
the full version] explains how to encode such equality tests in the trace properties supported by
[20]. In their notation, our trace property becomes the somewhat less readable trace property:
end(x)⇒ (end(x) ; start(x)) ∨ (end(t1) ; true) ∨ · · · ∨ (end(tn) ; true).
Also, the semantics described [20] do not support equations (i.e., t =E t′ iff t = t′ in their

semantics). However, Proverif supports these, so we assume the intended semantics of Proverif
is that of [20] with the natural extension of equality tests to equality modulo =E.

32 2. Symbolic Universal Composability

(vii) If νa.P satisfies ℘, then P satisfies ℘.

We explain the intuitive reason for each fact:

(i) Structurally equivalent processes behave identically and thus raise the same
events.

(ii) If P → P ′ without raising an event, then for any event trace that P ′ may
produce, P may produce the same by first reducing to P ′.

(iii) P ′ has the same event traces as P , except that some start(t)-events are re-
moved. If P ′ does not satisfy ℘ ∨ x = t, then there must be an event end(t′)
with t 6= t′ that is not preceded by a start(t′)-event. But then also in a trace of
P , there would be an end(t′)-event not preceded by start(t′) (since the traces
only differ in their start(t)-events and start(t) 6= start(t′)).

(iv) P ′ has the same event traces as P , except that various end(·)-events are re-
moved. (Since t is not necessarily closed, end(t) may be instantiated to dif-
ferent end(·)-events.) If a trace of P ′ does not satisfy ℘, this means there
was an end(t′)-event not preceded by a start(t′) event. Then also in P the
corresponding end(t′)-event is not preceded by a start(t′)-event, as P has the
same start(·)-events, and more end(·)-events.

(v) The semantics of satisfying trace properties are defined with respect to P
running in parallel with an adversary R not containing events. Thus the case of
an evaluation context running with P is already covered. (It is important that
E does not bind fn(t1, . . . , tn) because otherwise the terms t1, . . . , tn occurring
in the process would be considered different from those in ℘.)

(vi) There is a trace of P that consists only of an end(t)-event. That trace does
not satisfy end(t) ⇒ start(t). Thus it satisfies ℘ only if ℘ contains x = t as
one of its clauses.

(vii) νa.P has the same traces as P , except that occurrences of a in the P -traces are
replaced by a fresh restricted name a′. Thus, if P does not satisfy ℘, then there
is a trace containing an end(t)-event without preceding start(t)-event such that
t /∈ {t1, . . . , tn}. In the corresponding νa.P -trace, we have an end(t{a′/a})-
event without preceding start(t{a′/a})-event. Since t /∈ {t1, . . . , tn} and a is
fresh, also t{a′/a} /∈ {t1, . . . , tn}. Hence the νa.P -trace does not satisfy ℘,
either.

Lemma 9. Let s be a name. Let P be a process containing s only in constructs of
the form (!(s, t)〈t′〉)|P ′ and (s, t)().P ′ (for arbitrary and possibly different t, t′, P ′).
Let plains(P) denote the process resulting from P by replacing all occurrences

!(s, t)〈t′〉|P ′ and (s, t)().P ′ by P ′.
Let evs(P) denote the process resulting from P by replacing all occurrences

!(s, t)〈t′〉|P ′ by event start(t).P ′ and (s, t)().P ′ by event end(t).P ′.
Assume that evs(P) satisfies the trace property end(x)⇒ start(x).
Then plains(P) ≈ νs.P .

2.2. Useful properties of the pi calculus 33

Proof. We call a process P s-well-formed if it contains s only in constructs of the
form !(s, t)〈t′〉|P ′ and (s, t)().P ′ (for arbitrary and possibly different t, t′, P ′). Given
a multiset T = {t1 7→ t′1, . . . , tn 7→ t′n} with ti, t′i terms, we call an event-process P
T -good if P satisfies the trace property end(x)⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tn.
For example, the process P from the statement of the lemma is s-well-formed,

and evs(P) is ∅-good.
We define the following relation R (up to structural equivalence): R :={(
νa.plains(P), νas.(P | !(s, t1)〈t′1〉 | · · · | !(s, tn)〈t′n〉 | (s, u1)〈u′1〉 | · · · | (s, um)〈u′m〉

)
P s-well-formed, s, a distinct names, evs(P) is {t1, . . . , tn}-good

}
Here P, n,m, ti, t′i, ui, u′i, s, a refer to arbitrary values, not only to the values P, s from
the statement of the lemma.
We write short syncouts({t1 7→ t′1, . . . , tn 7→ t′n}; {u1 7→ u′1, . . . , un 7→ u′n}) for

!(s, t1)〈t′1〉 | · · · | !(s, tn)〈t′n〉 | (s, u1)〈u′1〉 | · · · | (s, um)〈u′m〉.
We now show that R is a bisimulation:

• If (A,B) ∈ R, and A ↓M , then B ↓M :
Then A = νa.plains(P). Hence plains(P) ↓M and a /∈ fn(M). Also, s /∈
fn(plains(P)), so s /∈ fn(M). By definition of plains(·), plains(P) ↓M implies
P ↓M . Since a, s /∈ fn(M), it follows B = νas.(P | . . .) ↓M .

• If (A,B) ∈ R, and B ↓M , then A ↓M :
ThenB = νas.(P |syncouts(T ;U)). Thus a, s /∈ fn(M) and P |syncouts(T ;U) ↓M .
Since all channels in syncouts(T ;U) are of the form (s, ·), we have
syncouts(T ;U) 6↓M .7 Hence P ↓M . By definition of plains(P) and since M
does not contain s, this implies plains(P) ↓M . Hence A = νa.plains(P) ↓M .

• If (A,B) ∈ R, and A → A′, then there exists a B′ with B →∗ B′ and
(A′, B′) ∈ R:
Then A ≡ νa.plains(P) and B ≡ νas.(P |syncouts(T ;U)). We call an event
process name-reduced, if it does not contain unprotected restrictions.
Without loss of generality, assume that P (and hence also evs(P)) is name-
reduced (otherwise we could move the superfluous restrictions into the νa).
Let a0 := a and P0 := P and T0 := T . We first construct a sequence P1, . . . , Pk
of processes and a sequence of lists of names a1, . . . , ak, and a sequence of
sets T1, . . . , Tk such that Pk does not contain unprotected inputs (s, ·)().Q or
unprotected outputs !(s, ·)〈·〉, and for all i = 0, . . . , k we have:
(a) νs.(P |syncouts(T ;U))→∗ νais.(Pi|syncouts(Ti;U)), and
(b) evs(Pi) is Ti-good, and
(c) plains(P) ≡ νai.plains(Pi).
(d) Pi is s-well-formed.
For i = 0, these conditions are trivially satisfied. When constructing Pi for i >
0, we already have a process Pi−1 satisfying these conditions. We distinguish
three cases:

7Here we implicitly use the fact that (s, ·) 6=E M for any M not containing s (Lemma 3 (iii)).

34 2. Symbolic Universal Composability

– If Pi−1 does not contain unprotected inputs (s, ·)(), we are done (k :=
i− 1).

– If Pi−1 does contain an unprotected input (s, t)() that is not part of
a subterm of the form !(s, ·)〈·〉|Q, then we can write Pi−1 as Pi−1 =
νb.E[(s, t)().P ′] for some names b and some evaluation context E that
has no restrictions over its hole. Since (s, t)() is not part of a sub-
term of the form !(s, ·)〈·〉|Q, evs(E) is an evaluation context (!(s, ·)〈·〉|Q
would have translated to event start(·).Q). Without loss of generality,
b ∩ fn(Ti−1, U) = ∅.
Since evs(Pi−1) ≡ νb.evs(E)[event end(t).evs(P ′)] is Ti−1-good by (b),
Lemma 8 (vii) implies that evs(E)[event end(t).evs(P ′)] is Ti−1-good.
Since E does not bind any names over its hole, Lemma 8 (vi) implies that
t =E t∗ for some t∗ ∈ Ti−1. Thus Pi−1|syncouts(Ti−1;U)
≡ (νb.E[(s, t)().P ′])|syncout(Ti−1;U) →∗ (νb.E[P ′])|syncout(Ti−1;U).
Since without loss of generality, b ∩ fn(Ti−1, U) = ∅,
(νb.E[P ′])|syncout(Ti−1;U) ≡ νb.Pi|syncout(Ti−1;U) with Pi := E[P ′].
Hence νs.P |syncouts(T ;U) (a)→∗νai−1s.(Pi−1|syncouts(Ti−1;U))
→∗ νai−1sb.Pi|syncouts(Ti−1;U) ≡ νais.Pi|syncouts(Ti;U) with Ti :=
Ti−1 and ai := ai−1b. Thus (a) is satisfied by Pi, ai, Ti.
Since evs(Pi−1) ≡ νb.evs(E)[event end(t).evs(P ′)] is Ti−1-good by (b) and
thus Ti-good, we have by Lemma 8 (vii) that evs(E)[event end(t).evs(P ′)]
is Ti-good. Since E does not bind names over its hole, neither does evs(E).
Thus by Lemma 8 (iv), evs(E)[evs(P ′)] = evs(Pi) is Ti-good. Thus (b) is
satisfied by Pi, ai, Ti.
Since Pi−1 = νb.E[(s, t)().P ′] is s-well-formed by (d), so is Pi = E[P ′].
Thus (d) is satisfied by Pi, ai, Ti.
Finally, plains(Pi−1) = νb.plains(E)[plains(P ′)] = νb.plains(Pi). Since by
(c) we have that plains(P) ≡ νai−1.plains(Pi−1), we have plains(P) ≡
νai.plains(Pi). Thus (c) is satisfied by Pi, ai, Ti.

– If Pi−1 contains an unprotected output !(s, t)〈t′〉 that is not part of a sub-
term of the form !(s, ·)〈·〉|Q, then we can write Pi−1 as Pi−1 =
νb.E[(s, t)〈t′〉|P ′] for some names b and some evaluation context E that
has no restrictions over its hole. Since (s, t)〈t′〉 is not part of a sub-
term of the form !(s, ·)〈·〉|Q, evs(E) is an evaluation context (!(s, ·)〈·〉|Q
would have translated to event start(·).Q). Without loss of generality,
b ∩ fn(Ti−1, U) = ∅.

We have Pi−1|syncouts(Ti−1;U) ≡ (νb.E[!(s, t)〈t′〉|P ′])|syncout(Ti−1;U) (∗)≡
νb.(E[!(s, t)〈t′〉|P ′]|syncout(Ti−1;U)) ≡ νb.(E[P ′]|syncout(Ti;U)) with Ti
:= Ti−1 ∪ {t 7→ t′}. Here (∗) uses that b ∩ fn(Ti−1, U) = ∅. Hence νs.P |
syncouts(T ;U) (a)→∗νai−1s.(Pi−1|syncouts(Ti−1;U)) →∗ νai−1sb.(E[P ′]|
syncouts(Ti;U)) ≡ νais.(Pi|syncouts(Ti;U)) with Pi := E[P ′] and ai :=
ai−1b (remember that Ti = Ti−1 ∪ {t 7→ t′}. Thus (a) is satisfied by
Pi, ai, Ti.
Since evs(Pi−1) ≡ νb.evs(E)[event start(t).evs(P ′)] is Ti−1-good by (b),
we have by Lemma 8 (vii) that evs(E)[event start(t).evs(P ′)] is Ti−1-good.
Since E does not bind names over its hole, neither does evs(E). Thus by

2.2. Useful properties of the pi calculus 35

Lemma 8 (iii), evs(E)[evs(P ′)] = evs(Pi) is Ti-good. Thus (b) is satisfied
by Pi, ai, Ti.
Since Pi−1 = νb.E[(s, t)〈t′〉.P ′] is s-well-formed by (d), so is Pi = E[P ′].
Thus (d) is satisfied by Pi, ai, Ti.
That (c) is satisfied by Pi, ai, Ti is shown as in the previous case.

Note that in the last two cases, the size of Pi is smaller than that of Pi−1, so
we eventually reach the first case. Hence the construction terminates and we
get a process Pk that satisfies (a)–(d) and that does not contain unprotected
inputs (s, ·)() or unprotected outputs !(s, ·)〈·〉. We have A ≡ νa.plains(P) (c)≡
νaak.plains(Pk). Thus A→ A′ implies that νaak.plains(Pk)→ A′ and and thus
plains(Pk)→ A′′ where A′′ is A′ with the restrictions νaak removed. (I.e. A′ ≡
νaak.A

′′.) Since Pk is s-well-formed by (d) and does not contain unprotected
inputs (s, ·)() or unprotected outputs !(s, ·)〈·〉, by inspection of the definition
of plains, evs, and→, it follows that Pk → P ′ and evs(Pk)→ evs(P ′) for some
s-well-formed P ′ with plains(P ′) ≡ A′′. The reduction evs(Pk)→ evs(P ′) does
not use the EVENT rule. Since evs(Pk) is Tk-good by (b), from Lemma 8 (ii)
we have that evs(P ′) is Tk-good. Let B′ := νaaks.(P ′|syncouts(Tk;U)). Then
(A′, B′) ≡ (νaak.plains(P ′), B′) ∈ R. Finally, B = νas.(P |syncouts(T ;U))

(a)

→∗
νaaks.(Pk|syncouts(Tk;U))→ νaaks.(P ′|syncouts(Tk;U)) = B′.

• If (A,B) ∈ R, and B → B′, then there exists an A′ with A →∗ A′ and
(A′, B′) ∈ R:
We have A ≡ νa.plains(P) and B ≡ νas.(P |syncouts(T ;U)) for some s-well-
formed P and T -good evs(P).
We distinguish three cases for B → B′:
– B → B′ is a reduction within syncouts(T ;U):

In this case, the reduction of the form E[!(s, t)〈t′〉]→ E[(s, t)〈t′〉|!(s, t)〈t′〉]
for some t, t′. Thus B′ ≡ νas.(P |syncouts(T ;U ∪ {t 7→ t′})). Then
A = A′ := νa.plains(P) and evs(P) is T -good. Hence A →∗ A′ and
(A′, B′) ∈ R.

– B → B′ is a COMM reduction between P and syncouts(T ;U):
Then for some terms t, t′, some process Q, and some evaluation context E,
we have P ≡ E[(s, t)().Q] for some t, t′, andB′ ≡ νas.(P ′|syncouts(T ;U ′))
with P ′ := E[Q] and U ′ with U = U ′∪{t 7→ t′}. Since plains((s, t)().Q) =
plains(Q), we have A ≡ A′ := νa.plains(P ′). Furthermore, evs(P) =
evs(E)[event end(t).evs(Q)] and evs(P ′) = evs(E)[evs(Q)]. Thus by
Lemma 8 (iv), the fact that evs(P) is T -good implies that evs(P ′) is T -
good.
Hence A→∗ A′ and (A′, B′) ∈ R.

– B → B′ is a reduction within P .
Thus P → P ′ for some P ′, and B′ ≡ νas.(P ′|syncouts(T ;U)). Since P
is s-well-formed, we have P ≡ E[Q] → E[Q′] ≡ P ′ for some evaluation
context E and process Q, such that Q is of the form !(s, t)〈t′〉|Q1, or Q is
a redex not of the form !(s, ·)〈·〉, or Q = M〈N〉.Q1|M ′(x).Q2 with M 6=E

36 2. Symbolic Universal Composability

(s, ·). (We cannot have a reduction on a channel (s, ·), since s-well-formed
terms have outputs on such channels only below bangs.) Without loss of
generality, we can assume that all unprotected occurrences of !(s, t)〈t′〉 in
E are not below a restriction (otherwise we could move these restrictions
from E to νa).

Let E∗ be E with all unprotected occurrences of !(s, t)〈t′〉 removed (for ar-
bitrary t, t′). Let T ∗ be the multiset of the pairs (t 7→ t′) from these occur-
rences. Then E[Q] ≡ E∗[Q]|syncouts(T ∗;∅). Since evs(P) = evs(E[Q])
is T -good, and since evs(E∗[Q]) results from evs(P) by removing
event start(t) for all (t 7→ ·) ∈ T ∗, by Lemma 8 (iii) we have that
evs(E∗[Q]) is T ∪ T ∗-good.

We now distinguish on the form of Q:

∗ If Q =!(s, t)〈t′〉|Q1:

Then B′ ≡ νas.(E∗[Q1]|syncouts(T ′;U ′)) for T ′ := T ∪ T ∗ ∪ {t 7→ t′}
and U ′ := U ∪ {t 7→ t′}, and A′ := νas.plain(E∗[Q1])
= νas.plain(E∗[!(s, t)〈t′〉|Q1]) ≡ A. And since evs(E∗[Q])
= evs(E∗)[event start(t).evs(Q1)] is T ∪ T ∗-good, we have that
evs(E∗[Q]) ≡ evs(E∗)[evs(Q1)] is T ′-good by Lemma 8 (iii). Thus
A→∗ A′ and (A′, B′) ∈ R.

∗ If Q is a redex, or Q = M〈N〉.Q1|M ′(x).Q2 with M =E M ′ and
M 6=E (s, ·):

Then B′ ≡ νas.(P ′|syncouts(T ′;U)) with P ′ = E∗[Q′] and Q 7→ Q′

and T ′ := T ∪ T ∗. And A → A′ := νa.plain(P ′). And evs(Q) →
evs(Q′). Since E∗ is an evaluation context and does not contain
unprotected !(s, t)〈t′〉, we have that evs(E∗) is an event evaluation
context. Hence evs(E∗[Q]) = evs(E∗)[evs(Q)] → evs(E∗)[evs(Q′)] =
evs(P ′), not using the EVENT rule. By Lemma 8 (ii) and using that
evs(E∗[Q]) is T ′-good, this implies that evs(P ′) is T ′-good, too. Thus
A→∗ A′ and (A′, B′) ∈ R.

• If (A,B) ∈ R, and E is an evaluation context, then (E[A], E[B]) ∈ R:

We have A ≡ νa.plains(P) for some s-well-formed P . And B ≡ νas.(P |
syncouts(T ;U)) for some sets T, U . And evs(P) is T -good. Without loss of
generality, a, s do not occur in E (neither bound nor free). Let νb.E ′ be E
with all restrictions over the hole moved up into b. Then E[A] ≡ νb.E ′[A] and
E[B] ≡ νb.E ′[B].

Since P is s-well-formed, and E and hence E ′ does not contain s, E ′[P] is
s-well-formed.

Since E does not contain a, s, we have that abs are distinct names.

Since evs(P) is T -good, by Lemma 8 (v) we have evs(E ′[P])) = E ′[evs(P)] is
T -good. (We use the fact that E ′ does not bind the fn(T) as they have been
moved into νb.)

Thus (νab.plains(E ′[P]), νabs.(E ′[P]|syncouts(T ;U))) ∈ R with E ′[P] instead
of P and ab instead of a.

2.2. Useful properties of the pi calculus 37

By definition of plains(·), E[A] ≡ νb.E ′[A] ≡ νb.E ′[νa.plains(P)]
= νab.plains(E ′[P]). And E[B] ≡ νb.E ′[B] ≡ νb.E[νas.(P |syncouts(T ;U))] ≡
νabs.(E ′[P]|syncouts(T ;U)).
SinceR is closed under structural equivalence, this implies that (E[A], E[B]) ∈
R.

Since R is a bisimulation, and (plains(P), νs.P) ∈ R (using P, s as in the state-
ment of the lemma), we have plains(P) ≈ νs.P .

2.2.2 Unpredictability of nonces
Lemma 10 (Unpredictability of nonces). Let C be a context not binding the variable
x and let P,Q be processes. Then νr.C[if x = r then P else Q] ∼∼∼ νr.C[Q].
Proof. In the following, a multi-hole context is a context C with zero, one, or more
holes. C[P] means C with every occurrence of the hole replaced by the same process
P .
We define the following relation R:

R :=
{

(νr.C[if T = r then P else Q], νr.C[Q])
}

up to structural equivalence. Here C ranges over multi-hole contexts, T over terms,
r /∈ fv(T) over names, and P,Q over processes.
We show that R is a bisimulation:
• If (A,B) ∈ R and A ↓M , then B →∗↓M :

Immediate since “if T = r then P else Q” does not have unprotected outputs.

• If (A,B) ∈ R and B ↓M , then A→∗↓M :
If the output on M is in C, A ↓M . Otherwise the output is in an unprotected
instance of Q in νr.C[Q] ≡ B. Since r /∈ fn(T), we have T 6=E r by Lemma 3 (i)
and hence (if T = r then P else Q)→ Q. Then A→ A′ where A′ results from
replacing one instance of “if T = r then P else Q” by Q. Then A′ ↓M .

• If (A,B) ∈ R and A→ A′ then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:
Then A ≡ νr.C[if T = r then P else Q] and B ≡ νr.C[Q]. If the reduction
A→ A′ takes place in C, then there is a corresponding reduction B → B′ and
(A′, B′) ∈ R.
Thus we can assume that one of the “if T = r then P else Q” is being reduced
in A. Since T 6=E r by Lemma 3 (i), that subprocess reduces to Q. Thus
A′ ≡ νr.C ′[if T = r then P else Q] where C ′ is C with one of the holes replaced
by Q. Then B′ := B ≡ νr.C[Q] = νr.C ′[Q]. Hence B →∗ B′ and (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′ then there is an A′ with A→∗ A′ and (A′, B′) ∈ R:
Then A ≡ νr.C[if T = r then P else Q] and B ≡ νr.C[Q]. As before, we have
(if T = r then P else Q)→ Q. The reduction B → B′ may involve C and up
to two instances of Q. We can thus write B as B ≡ C ′′[Q] where C ′′ results
from replacing in C the holes corresponding to these instances of Q. These
instances of Q are not protected, so the holes we have replaced by Q are not
protected, either. Thus A →∗ C ′′[if T = r then P else Q] =: A′′. Then the
reduction B ≡ C ′′[Q] → B′ involves only C ′′. Hence B′ ≡ C ′[Q] for some C ′,
and A′′ → C ′[if T = r then P else Q] =: A′. Thus A→∗ A′ and (A′, B′) ∈ R.

38 2. Symbolic Universal Composability

• If (A,B) ∈ R and E is an evaluation context, then (E[A], E[B]) ∈ R:
Then A ≡ νr.C[if T = r then P else Q] and B ≡ νr.C[Q]. Without loss of
generality, r /∈ fn(E), bn(E). Hence E[A] ≡ νr.E[C[if T = r then P else Q]]
and E[B] ≡ νr.E[C[Q]]. Hence (E[A], E[B]) ∈ R (with E[C] instead of C).

We can now show the lemma. Let C,P,Q, r be as in the lemma. Let σ be a substi-
tution closing νr.C[if x = r then P else Q] and νr.C[Q]. Without loss of generality,
r /∈ fn(σ) (otherwise we rename r and change C,P,Q accordingly). In particular,
σ(x) will be some closed term T with r /∈ fn(T). Then C[if x = r then P else Q]σ =
C ′[if T = r then P ′ else Q′] and C[Q]σ = C ′[Q′] where C ′, P ′, Q′ are the result of
applying σ to C,P,Q. (In the case of P,Q, restricted to those variables not bound by
C.) And (C ′[if T = r then P ′ else Q′], C ′[Q′]) ∈ R. Thus C ′[if T = r then P ′ else Q′]
≈ C ′[Q′]. Since this holds for any closing σ, we have C[if x = r then P else Q] ∼∼∼
C[Q].

2.3 Symbolic UC
Intuition.
We start by presenting the intuition that underlies the original UC framework

[36] and thus also our work. The basic idea is to define security of a protocol π
by comparing it to a so-called ideal functionality F . The ideal functionality is a
machine that by definition does what the protocol should achieve. For example, if
the task of the protocol is to transmit a message m securely from Alice to Bob,
then the functionality is a trusted machine that expects a message m from Alice
over a secure channel, sends to the adversary that such a message was received
(but does not send the message itself), and then after the adversary allows delivery,
forwards the message to Bob. (In the applied pi calculus, this functionality would be
netscstart().ioA(x).(netnotify〈〉 | netdeliver().ioB〈x〉) where the net ...-channels belong to
the adversary; see Definition 26 below.) In a sense, the functionality is an abstract
specification of the protocol behavior, and the protocol is supposed to be a concrete
instantiation of that specification using crypto, in a way that preserves the security
properties of the specification.
So how to model that a protocol π is as secure as a functionality F? The basic

idea is to ensure that any attack on π is also possible on F . Since by assumption
F does not allow any attacks, this implies that π does not allow any attacks either,
so π is secure. To model that any attack on π is possible on F , we require that
for any adversary attacking π, there is a corresponding adversary (the “simulator”)
attacking F that performs an equivalent attack. And what do we mean by equiva-
lent? Any “environment” that can observe the overall protocol outcome (inputs and
outputs), and that can talk to the adversary (i.e., it learns what secret information
the adversary might have obtained), cannot distinguish between the two attacks.
In other words, for any adversary A, there is a simulator S such that for all en-
vironments Z, we have that π + A + Z (the protocol running with A and Z) and
F + S + Z are indistinguishable from Z’s point of view. Notice that we do not
wish to allow Z to observe the internal protocol communication – doing so would
require that π and F work the same way internally, but we only want that the two
have the same “observable effects”, we do not care about their inner workings. Due
to this, in a formal definition, we need to distinguish between the protocol-internal
communication channels (net-channels), and the protocol’s interface (io-channels).
Only the latter is accessible to the environment.

2.3. Symbolic UC 39

Formal definition.
To formalize the above intuition in the applied pi calculus, we first formalize the

distinction between channels that make up the protocol’s input/output interface,
and those that make up the protocol’s internal channels. We partition the set of all
names into two sets IO and NET (both infinite). We will then require adversaries
and simulators to only communicate on NET channels. (We do not forbid the
environment to access NET channels. But we will give the adversary/simulator the
ability to rename and hide NET channels, and thus effectively protect the protocol’s
NET channels from the environment.)
In order to keep the distinction between NET-channels and IO-channels, we also

want to avoid that NET-channels are transmitted to the environment (we use this
in a few places in our proofs):

Definition 8. We call a process P NET-stable if every name n ∈ NET ∩ fn(P) in
P occurs only in channel identifiers (i.e., in particular, P does not send n to the
environment).

Note that there is no restrictions on the bound names. Thus a NET-stable adver-
sary is free to share arbitrary fresh names with the environment and to use them as
channels.
We now define the concept of an adversary. Essentially, an adversary is just a

process A that is intended to interact with the protocol (or functionality). Since
the adversary connects to the protocol over some NET-names, the specification
of the adversary additionally includes a list of NET-names n of the protocol that
will be accessed by A (and are thus private between A and the protocol). Fi-
nally, an adversary/simulator sometimes needs to rename NET-channels of the pro-
tocol/functionality to avoid name clashes. Since NET-channels are protocol internal
and not part of the externally visible interface, it should not matter whether the
same name is used in protocol and functionality or not. This is achieved by letting
the adversary rename NET-names, we model this by specifying a renaming ϕ as
part of the adversary.

Definition 9. An adversary is a triple (A,ϕ, n) where A is a closed NET-stable
process with IO ∩ fn(A) = ∅, ϕ : NET → NET a bijection and n a list of names
n ⊆ NET.

We can now state our security definition. Both protocol and functionality are
modeled by processes P and Q, respectively. An adversary (A,ϕA, nA) connecting
to P is modeled as νnA.(PϕA|A), as we would expect from the meaning of ϕ and n
explained above. To model that P emulates Q, we would require that νnA.(PϕA|A)
and νnS.(QϕS|S) are indistinguishable for any environment for a suitable simulator
(S, ϕS, nS). We do not need to specify the environment explicitly because we have
the notion of observational equivalence: νnA.(PϕA|A) ≈ νnS.(QϕS|S) means that
no context can distinguish the left and right hand side. The following definition
captures this, except that we make one simplification: Instead of quantifying over
all adversaries (A,ϕA, nA), we fix A := 0, ϕA the identity, and nA the empty list,
so that νnA.(PϕA|A) = P . (Such an adversary, that essentially just leaves all
NET-channels accessible to the environment, is usually called a dummy adversary.)
This definition is often technically much simpler to handle, and Lemma 11 below
guarantees that it is equivalent to the more natural definition that quantifies over
all adversaries.

40 2. Symbolic Universal Composability

Definition 10. Let P and Q be processes. We say P emulates Q (written P ≤ Q)
iff there exists an adversary (S, ϕ, n) such that P ∼∼∼ νn.(Qϕ|S). (S, ϕ, n) will often
be called simulator.
We use ∼∼∼ instead of ≈ to get a more general definition, allowing non-closed P,Q.

For the applications presented in this paper, the special case using ≈ (which is
equivalent to our definition restricted to closed processes) is sufficient. (Note however
that we would still use ∼∼∼ to state various technical lemmas more conveniently.)
Note that there is no formal distinction between protocols and functionalities.

Indeed, it can sometimes be convenient to compare two protocols P,Q. Furthermore,
note that ≤ is weaker than ∼∼∼: P ∼∼∼ Q entails P ≤ Q (and Q ≤ P) with the simulator
(0, id, ∅).
As observed in [65] there are several approaches to define simulation based secu-

rity. The following Lemma shows that our definition (resembling strong simulatabil-
ity) is equivalent to the two alternatives: black-box simulatability and universally-
composable simulatability (the latter being the definition that corresponds directly
to the intuition given at the beginning of this section).
Lemma 11. For processes P, Q we have that the following are equivalent:
(i) strong simulatability:

P ≤ Q

(ii) black-box simulatability:

∃(S, ϕS, nS) ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼ νnA.((νnS.(QϕS|S))ϕA|A)

(iii) universally-composable simulatability:

∀(A,ϕA, nA) ∃(S, ϕS, nS) νnA.(PϕA|A) ∼∼∼ νnS.(QϕS|S)

where all triples are adversaries according to Definition 9.
Proof. • (i) ⇒ (ii):

P ≤ Q⇒ ∃(S, ϕS, nS) P ∼∼∼ νnS.(QϕS|S)
(∗)⇒ ∀ bijections ϕA PϕA ∼∼∼ (νnS.(QϕS|S))ϕA

(∗∗)⇒ ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼ νnA.((νnS.(QϕS|S))ϕA|A)

(∗) since ∼∼∼ is closed under renaming and (∗∗) since ∼∼∼ is closed under the
application of evaluation contexts.

• (ii) ⇒ (iii): Let (S, ϕS, nS) be the simulator from (ii), (A,ϕA, nA) be an ad-
versary and ϕ a bijection on names such that nS(ϕ ◦ ϕA) ∩ fn(A) = ∅ and ϕ
is the identity on the free names of Q(ϕA ◦ ϕS) and SϕA (this ϕ can be used
as α-conversion in step three below). We observe

νnA.((νnS.(QϕS|S))ϕA|A)
≡ νnA.(νnSϕA.(Q(ϕA ◦ ϕS)|SϕA)|A)
≡ νnA.(νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA))|A)
≡ νnA.νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA)|A)

and thus (SA, nSA , ϕSA) := (S(ϕ ◦ ϕA)|A, nA ∪ nS(ϕ ◦ ϕA), (ϕ ◦ ϕA ◦ ϕS)) is an
adversary such that

νnA.(PϕA|A) ∼∼∼ νnSA .(QϕSA|SA)

2.3. Symbolic UC 41

• (iii) ⇒ (i) We construct the simulator from the last step for the adversary
(0,∅, id) and have (i).

Lemma 12 (Reflexivity, transitivity). Let P,Q,R be processes. Then P ≤ P . And
if P ≤ Q and Q ≤ R, then P ≤ R.

Proof. P ≤ P follows directly from Definition 10 by setting S := 0, ϕ as the identity,
and n := ∅.
Assume now that P ≤ Q and Q ≤ R. Then there are processes S1, S2 with

IO ∩ fn(S1) = IO ∩ fn(S2) = ∅, bijections ϕ1, ϕ2 : NET→ NET, and lists of names
n1, n2 ⊆ NET such that P ∼∼∼ νn1.(Qϕ1|S1) and Q ∼∼∼ νn2.(Rϕ2|S2). Without loss of
generality we can choose n2 such that n2ϕ1 ∩ fn(S1) = ∅. It follows

P ∼∼∼ νn1.(Qϕ1|S1)
(∗)∼∼∼ νn1.((νn2.(Rϕ2|S2))ϕ1|S1)]

(∗∗)≡ νn1.((νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1))|S1)
(∗∗∗)≡ νn1.νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1|S1)

Here (∗) follows since ∼∼∼ is closed under the application of evaluation contexts and
under renaming of free names.
And (∗∗) follows since for any process R, we have (νn2.R)ϕ1 ≡ νn2ϕ1.(Rϕ1).
And (∗∗∗) follows since n2ϕ1 ∩ fn(S1) = ∅.
Thus, choosing n := n1 ∪ n2ϕ1, ϕ := ϕ1 ◦ ϕ2, and S := S2ϕ1|S1, we get P ∼∼∼

νn.(Rϕ|S). Hence P ≤ R.

Corruption.
So far, we have not yet modeled the ability of the adversary to corrupt parties.

There are two main variants of corruption: static and adaptive corruption. In the
case of static corruption, it is determined in the beginning of the protocol who is
corrupted. For adaptive corruption, corruption may occur during the protocol and
depend on protocol messages. Modeling static corruption is quite easy in our model:
When a party X is corrupted, we simply remove the subprocess PX corresponding
to that party from the protocol P , make all NET-names occurring in PX public,
and – in the case of a functionality – additionally rename all IO-names of PX into
NET-names. For example, if P = νnet1net2.(PA|PB|F) where net1 occurs in PA and
PB and net2 only in PB, and F has IO-names ioFA, ioFB then corrupting A leads
to P ′ = νnet2.(PB|F{netFA/ioFA}). And a functionality G with IO-names ioA, ioB
becomes G{netA/ioA}.
So, if we want to verify that a P emulates G for any corruption, we need to check:

• Uncorrupted: P ≤ G.

• Alice corrupted: νnet2.(PB|F{netFA/ioFA}) ≤ G{netA/ioA}.

• Bob corrupted: PA|F{netFB/ioFB} ≤ G{netB/ioB}.

An example is given in Section 2.8.1 in the case of UC secure commitments.
Modeling adaptive corruptions is more complex. For this one would need to

introduce special parties that react to a special signal from the environment and
then switch into a corrupted mode. We do not follow that approach here.

42 2. Symbolic Universal Composability

2.4 Composition
One of the salient properties of the UC framework is composition. Assume a

protocol π UC-emulates a functionality F and ρ is a protocol using F . Then ρπ/F
(which is ρ with F replaced by π) UC-emulates ρ. And hence, by transitivity, if ρ
emulates some functionality G, ρπ/F UC-emulates G.
In our context, ideally we would like a composition theorem such as P ≤ Q =⇒

C[P] ≤ C[Q] for arbitrary contexts C. Unfortunately, the situation is not as simple.
A simple observation is that if C may contain NET-names, then composition will
not work: For example, assume P ≤ Q, and P is a protocol using some NET-
channel net to implement an ideal functionality Q (which does not use net). And
C = 2|R receives on a NET-channel net and outputs the received messages on an
IO-channel io. Then C[P] will output protocol-internal messages on io (observable
to the environment), while C[Q] will not (since the functionality Q will not use the
channel net). Hence C[P] 6≤ C[Q]. (We give a formal analysis of the various cases
in which the composition theorem does not hold in Section 2.9).
Thus a first condition on C is that it may not use the same NET-names. In fact,

we show below (Theorem 1) that if C is an evaluation context binding only IO-names
and not using any of the NET-names of P,Q, then P ≤ Q =⇒ C[P] ≤ C[Q] holds.
This already allows for a large range of composition operations. (In particular,

we can connect different protocols through their interfaces securely by composing
them in parallel, and restricting the IO-channels through which they are connected.)
But one important operation is missing, namely concurrent composition. Concurrent
composition means that if P ≤ Q, then P ′ ≤ Q′ where P ′ consists of many instances
of P and Q′ analogously. Such a result is important in many cases, e.g., if P is a
single session key-exchange, but an embedding protocol needs a large number of
keys. The most obvious way to model this in our setting would be a theorem stating
P ≤ Q =⇒ !P ≤ !Q.
Unfortunately, such a theorem cannot hold, either. The intuitive reason is as

follows: When trying to construct a simulator for !Q, then this simulator will not
be able to distinguish messages from different instances of Q. The simulator will
then be unable to even decide whether he talks to a single instance or several. For
example:

P := νnm.
(

io1〈n〉 | io2(x).if x = n then net2〈m〉

| io3(x).if x = n then net3〈m〉
)

Q := νn.
(

io1〈n〉 | io2(x).if x = n then net2〈empty〉

| io3(x).if x = n then net3〈empty〉
)

Here we have P ≤ Q because a simulator receiving empty on net2 or net3 just has
to replace it by some fresh name m. However, we do not have !P ≤ !Q. Depending
on the messages the environment sends on io2, !P will output either the same name
m on net2, net3, or different names m,m′. However, a simulator interacting with !Q
in both cases gets empty, empty on net2, net3. The simulator then does not know
whether he should change this intom,m orm,m′ for freshm,m′. Thus the simulator
fails. (The formal argument is in Section 2.9.)
So we cannot have a theorem stating P ≤ Q =⇒ !P ≤ !Q. Does this mean

concurrent composition is not possible? No, just that ! is not the right operator to
model it. In the computational UC framework, composition also does not involve a

2.4. Composition 43

number of indistinguishable instances. Instead, each instance of P and Q is given
a unique session id, and all communication is tagged with that session id so that it
can be routed to the right instance. In our setting, one possibility to achieve this
is to define an operator !! [44] such that !!P behaves like an unlimited number of
instances of P , where each instance is tagged with a unique session id sid. I.e., each
channel C in P is replaced by (sid, C).8
The question is how to define !!P . The applied pi calculus does not have any

construct that conveniently allows to perform infinite branching with different ids.
Thus, we have to work around this restriction by introducing a more elaborate
construction. As a first step, we define the tagged version P ((M)) of the process P :

Definition 11. Let P be a process, and let M be a term. We write P((M)) for P
with every occurrence of C (x) replaced by (M ,C)(x) and every occurrence of C 〈T 〉
replaced by (M ,C)〈T 〉. (If M contains bound variables or bound names from P , we
assume that these bound variables/names are first renamed in P .)

Now we have to somehow define !!P as P ((s1))|P ((s2))| . . . where s1, s2, . . . range
over some infinite set SID of session ids. Using product processes (see Section 2.1.2)
this is easy: !!P := ∏

x∈SID P ((x)) does the job. However, product processes are a
nonstandard extension of the applied pi calculus, but we wish to stay compatible
with existing variants (in particular, to be able to use Proverif for verification). Thus,
instead of using ∏x∈SID P ((x)), we define a suitable context C such that C[P ((x))] be-
haves like ∏x∈SID P ((x)). Then we can define !!P := C[P ((x))]. Of course, depending
on the particular set SID we choose, a different context C will be needed. Instead of
fixing a particular one, we thus give a general definition what contexts are suitable
for a given set SID, and from then on, just assume an arbitrary such context.

Definition 12 (Indexing context). Given a set S of terms, a variable x (will be
used for tagging), and names n, we call a closed context Cx,n with bn(Cx,n) = n and
fn(Cx,n) = ∅ (not containing indexed replications) an S-indexing context iff for all
processes P with x 6∈ bv(P) 9 and n ∩ fn(P) = ∅ we have

Cx,n[P((x))] ∼∼∼
∏
x∈S

P((x))

In the following, we fix a set SID of terms containing no names or variables. The
set SID will represent the set of all session IDs. We assume that id =E id ′ entails
id = id ′ for id, id ′ ∈ SID (different IDs are never equivalent by the equational
theory).
Note that not for every set SID a SID-indexing context exists. For example, if SID

is not semi-decidable (but the equational theory is), then there is no SID-indexing
context. One might be concerned that our definition of SID-indexing contexts cannot
be fulfilled. The following definition shows that this is not the case, at least if we
use suitably encoded bitstrings as SIDs.

8One might instead consider tagging the messages sent over the channel with sid. This, however,
does not work as well: One would need a specific multiplexer process that given a message
(sid, T) discovers the corresponding instance of P and delivers to it. This might be possible,
but is probably considerably more complicated than the approach we take below.

9P may have x ∈ fv(P) but we forbid x ∈ bv(P) to avoid technicalities in the definition of P((x))
due to the shadowed x.

44 2. Symbolic Universal Composability

Definition 13. Assume that a nullary constructor nil and unary constructors zero
and one are part of our symbolic model. Let SIDbits be the set of all terms built from
nil, zero and one. Assume furthermore that for id, id ′ ∈ SIDbits in our symbolic
model id =E id ′ entails id = id ′. Let

CSIDbits
x,a := νa.(a〈nil〉|!a(x).(a〈zero(x)〉|a〈one(x)〉|2))

Intuitively, CSIDbits
x,a is a factory with parameters x and a for tagged instances of P

that realizes the abstract construction of ∏x∈SIDbits P ((x)).
We now show that CSIDbits

x,a actually is an SIDbits-indexing context. Towards this
goal we first define an intermediate representation of CSIDbits

x,a .

Definition 14. Let P be a process. We write Pn for n parallel instances of P
(P| . . . |P). We define the following functions on the set of processes:

Gx,a(P) :=a(x).(a〈zero(x)〉 | a〈one(x)〉 | P)
Gnx,a(P) :=(Gx,a(P))n | !Gx,a(P)

C(sID,gID,n)
x,a (P) :=Σx∈sIDP | νa.(Σx∈gIDa〈x〉 | Gnx,a(P))

where Σx∈T P for a finite set of terms T = {T1 , . . . ,Tl} is syntactic sugar for
P{T1/x}| . . . |P{Tl/x} (this is only well-defined up to structural equivalence), sID ⊆
SID, gID ⊆ SID and n ∈ N.

Intuitively, sID (spawned IDs) contains the ids for all instances of P, that have
already been tagged but are still formally a part of CSIDbits

x,a (i.e., “are still in the
factory”). gID is the foundation for the ids yet to be generated. These ids are
the elements of the span of gID which we will introduce in the following definition.
The last parameter n exists mainly for technical reasons and counts the number of
currently active generator instances Gx,a(P).

Definition 15 (Span). Let S ⊆ SIDbits be a set of IDs. We call 〈S〉 := S ∪
{cn(. . . c2(c1(s)) . . .) : s ∈ S, ci ∈ {zero, one}} the span of S (note that 〈S〉 ⊆
SIDbits).

The following definition bridges the gap between C(sID,gID,n)
x,a (P((x))) and∏x∈S P((x)).

Have in mind that S denotes the set of ids that are yet to be used by the product
process for tagging and we have S = SIDbits at the beginning.

Definition 16 (S-valid). Let sID ⊆ SIDbits, gID ⊆ SIDbits and S ⊆ SIDbits be
sets of ids and sID and gID be finite. We call C(sID,gID,n)

x,a S-valid if sID = ∅ and
gID = {nil} or if

(i) sID ⊆ S

(ii) gID = {f(x) : x ∈ G, f(x) 6∈ G, f ∈ {zero, one}} where G := (SIDbits \S)∪sID
(intuitively, G is the set of ids already generated)

(iii) 〈gID〉 = S \ sID

Lemma 13. Let S ⊆ SIDbits and C(sID,gID,n)
x,a be S-valid where n ≥ 1. Then for

any id ∈ gID we have that C(sID′,gID′,n−1)
x,a is S-valid where sID′ := sID ∪ {id} and

gID′ := gID \ {id} ∪ {zero(id), one(id)}.

2.4. Composition 45

Proof. Due to Definition 16 point iii we have that gID ∩ sID = ∅ and gID ⊆ S. We
check the three points of Definition 16 for sID′ and gID′:

(i) id ∈ gID ⊆ S and sID ⊆ S entail sID′ = (sID ∪ {id}) ⊆ S

(ii) For a set G ⊆ SIDbits we define M(G) := {f(x) : x ∈ G, f(x) 6∈ G, f ∈
{zero, one}}. By assumption we have gID = {nil} or gID = M(G) for
G := (SIDbits \ S) ∪ sID. The first case leads to sID′ = {nil} and gID′ =
{zero(nil), one(nil)} for which this point can easily be verified. For the second
case we define G′ := G ∪ {id}. id 6∈ M(G′) since id ∈ G′. f(id) ∈ M(G′)
for f ∈ {zero, one} iff f(id) 6∈ G′. We assume towards contradiction that
f(id) ∈ G′. Then f(id) ∈ G and by definition of G f(id) ∈ (SIDbits \S)∪ sID.
However
• f(id) ∈ (SIDbits \ S) entails f(id) 6∈ S and thus f(id) 6∈ 〈gID〉. This

contradicts f(id) ∈ 〈gID〉 (which holds since id ∈ gID).
• f(id) ∈ sID entails f(id) 6∈ 〈gID〉 and leads to a contradiction analo-

gously.
All together we have f(id) 6∈ G′ and hence
M(G′) = M(G) \ {id} ∪ {zero(id), one(id)} = gID′.

(iii) 〈gID′〉 = 〈gID \ {id} ∪ {zero(id), one(id)}〉 = 〈gID〉 \ {id} = S \ sID \ {id} =
S \ gID′.

To show that CSIDbits
x,a is a SIDbits-indexing context (see Lemma 16) we first show

C(sID,gID,n)
x,a (P((x))) ∼∼∼ νa.∏x∈S P((x)) for every S-valid C(sID,gID,n)

x,a .

Lemma 14. Let P be a process and M be a term. If C(sID,gID,n)
x,a (P((x))) lM there is

exactly one id ∈ sID such that P((id)) lM .

Proof. It is easy to see that C(sID,gID,n)
x,a (0) never communicates on a channel (note

that a is bound). Hence for C(sID,gID,n)
x,a (P((x))) lM we need one of the tagged instances

of P in C(sID,gID,n)
x,a (P((x))) to communicate on M , i.e., P((id)) lM for some id ∈ sID

requiring M =E (id,2). Analogously, for any id ′ ∈ sID with P((id ′)) lM we have
M =E (id ′,2). Due to Definition 5 (vi) (natural symbolic model) this entails id =E
id ′ which leads to id = id ′ by definition of SIDbits (sID ⊆ SIDbits). Thus, the ID id
with P((id)) lM is unique.

Lemma 15. Let P be a process with at most one free variable, which we call x if
existent, and x 6∈ bv(P). Let a 6∈ fn(P) be a name. Then

C(∅,{nil},0)
x,a (P((x))) ≈

∏
x∈SIDbits

P((x))

Proof. We define the relation

R := ≈ ∪ {(E [C(sID,gID,n)
x,a (P((x)))], E [

∏
x∈S

P((x))]) : for any n ≥ 0, S ⊆ SIDbits,

evaluation context E , process P and C(sID,gID,n)
x,a S-valid}

closed under structural equivalence. Then we show that R ⊆ ≈. Towards this goal
we show that R and R−1 are simulations. We start with R:

46 2. Symbolic Universal Composability

• E [C(sID,gID,n)
x,a (P((x)))] ↓M : If E [0] ↓M we obviously have E [∏x∈S P((x))] ↓M .

Otherwise C(sID,gID,n)
x,a (P((x))) ↓M . In this case, according to Lemma 14, there

is a distinct id ∈ sID such that P((id)) ↓M and, since E [C(sID,gID,n)
x,a (P((x)))] ↓M ,

E [P((id))] ↓M . On the other hand, due to the S-validity of C(sID,gID,n)
x,a , sID ⊆

S. With id ∈ S we have ∏x∈S P((x)) → P((id))|∏x∈S\{id} P((x)) and hence
E [∏x∈S P((x))]→↓M .

• E [C(sID,gID,n)
x,a (P((x)))]→ (E [C(sID,gID,n)

x,a (P((x)))])′: We distinguish three cases
1. → does only affect C(sID,gID,n)

x,a (P((x))) up to structural equivalence. In
this case we have E [0] → E ′[0], E [∏x∈S P((x))] → E ′[∏x∈S P((x))] and
(E ′[C(sID,gID,n)

x,a (P((x)))], E ′[∏x∈S P((x))]) ∈ R.
2. → is a COMM reduction that interferes with E and C(sID,gID,n)

x,a (P((x))).
Due to Lemma 14 we find a distinct id ∈ sID such that

E [C(sID,gID,n)
x,a (P((x)))]→ E ′[P((id))′|C(sID\{id},gID,n)

x,a (P((x)))]

Analogously to the case for E [C(sID,gID,n)
x,a (P((x)))] ↓M we spawn a properly

tagged instance of P from ∏
x∈S P((x)). With Ẽ [2] := E ′[P((id))′|2] we

have
(Ẽ [C(sID\{id},gID,n)

x,a (P((x)))], Ẽ [
∏

x∈S\{id}
P((x))]) ∈ R

since C(sID\{id},gID,n)
x,a is (S \ {id})-valid.

3. → does only affect E up to structural equivalence. In this case we have
C(sID,gID,n)

x,a (P((x)))→ C(sID,gID,n)
x,a (P((x)))′. We distinguish three cases:

– → is a REPL reduction and spawns a new instance of Gx,a (see
Definition 14). In this case C(sID,gID,n)

x,a (P((x)))→ C(sID,gID,n+1)
x,a (P((x)))

and (E [C(sID,gID,n+1)
x,a (P((x)))], E [∏x∈S P((x))]) ∈ R.

– → is a COMM reduction on channel a (a〈id〉) (note that this re-
quires n ≥ 1). In this case id ∈ gID ⊆ S and C(sID,gID,n)

x,a (P((x))) →
C(sID′,gID′,n−1)

x,a (P((x))) where sID′ := sID ∪ {id} and gID′ := gID \
{id} ∪ {zero(id), one(id)}. By Lemma 13 we see that
C(sID′,gID′,n−1)

x,a (P((x))) is still S-valid. Hence
(E [C(sID′,gID′,n−1)

x,a (P((x))))], E [∏x∈S P((x))]) ∈ R.
– → is a reduction of one of the P-instances P((id)) (id ∈ sID) (note

that due to Lemma 14 and a 6∈ fn(P) only one instance can be
affected). In this case we proceed analogously to case 2.

• Obviously R is closed under the application of evaluation contexts.

We continue by showing the three points of observational equivalence for R−1:

• E [∏x∈S P((x))] ↓M iff E [0] ↓M . Therefore E [C(sID,gID,n)
x,a (P((x)))] ↓M .

• E [∏x∈S P((x))] → E [∏x∈S P((x))]′: If we have E [∏x∈S P((x))] → E ′[∏x∈S P((x))]
we have (E ′[∏x∈S P((x))], E ′[C(sID,gID,n)

x,a (P((x)))]) ∈ R−1. Otherwise → is an
IREPL reduction: ∏x∈S P((x))→ P((id))|∏x∈S\{id} P((x)) with id ∈ S. On the
right side of the relation we have E [C(sID,gID,n)

x,a (P((x)))]. Since C(sID,gID,n)
x,a (P((x)))

is S-valid, we have that id ∈ sID or id ∈ 〈gID〉.

2.4. Composition 47

If id 6∈ sID, i.e., id ∈ 〈gID〉, id is of the form id = cl(. . . c1(id0) . . .) for some
id0 ∈ gID, some l ∈ N and ci ∈ {zero, one} for i ∈ {1, . . . , l}. We write idi
for ci(. . . c1(id0) . . .) for i ∈ {1, . . . , l}, ci := zero if ci = one, ci := one other-
wise and idi for ci(ci−1(. . . c1(id0) . . .)). The reduction a〈idi〉−−−→ denotes a REPL
reduction that spawns an instance of Gx,a (see Definition 14) and a follow-
ing COMM reduction on channel a with message idi ∈ gID. The application
of the sequence a〈id0 〉−−−→ . . .

a〈idk〉−−−→ to E [C(sID,gID,n)
x,a (P((x)))] for some 0 ≤ k ≤ l

yields a process that is structurally equivalent to E [C(sIDk,gIDk,n)
x,a (P((x)))] with

sIDk := sID ∪ {id0 , . . . , idk} and gIDk := gID \ {id0} ∪ {id1 , . . . , idk−1} ∪
{zero(idk), one(idk)}. For each step k k+ 1 the S-validity of C(sIDk,gIDk,n)

x,a is
guaranteed by Lemma 13. We define sID′ := sIDl and gID′ := gIDl and have
that id ∈ sID′.
Otherwise, if id ∈ sID, we define sID′ := sID and gID′ := gID.
With id ∈ sID′ and E ′[2] := E [P((id))|2] we have that

(E ′[
∏

x∈S\{id}
P((x))], E ′[C(sID′\{id},gID′,n)

x,a (P((x)))]) ∈ R−1

since C(sID′\{id},gID′,n)
x,a is (S \ {id})-valid.

• Obviously R−1 is closed under the application of evaluation contexts.

Since C(∅,{nil},0)
x,a is SIDbits-valid the Lemma holds.

Lemma 16. CSIDbits
x,a is an SIDbits-indexing context.

Proof. Let, according to Definition 12, P be a process and x be a variable with
x 6∈ bv(P). We pick a name a with a 6∈ fn(P). We claim

CSIDbits
x,a

∼∼∼
∏

x∈SIDbits

P((x))

We have to show CSIDbits
x,a [P((x))]σ ≈ (∏x∈SIDbits P((x)))σ for all closing substitutions

σ. W.l.o.g. a 6∈ σ and σ(x) = x and thus it suffices to show

CSIDbits
x,a [P((x))σ] ≈

∏
x∈SIDbits

(P((x))σ) (2.3)

Note that Pσ is a process with at most one free variable, denoted x . Furthermore
x 6∈ bv(Pσ), a 6∈ fn(Pσ) and CSIDbits

x,a [P((x))σ] = C(∅,{nil},0)
x,a (P((x))σ) by Definition 14.

By Lemma 15 we have (2.3) which concludes our proof.

We stress that CSIDbits
x,a is just one example of an indexing context. From now on

SID is an arbitrary but fixed set of indexes and CSID
x,n an arbitrary but fixed SID-

indexing context according to Definition 12. All our results then hold independently
of the particular choice of SID.
We can now finally define !!P :

Definition 17 (Indexed replication). Let P be a process. We define !!xP := CSID
x,n [P((x))]

for some arbitrary n with n ∩ fn(P) = ∅. We write !!P for !!xP with x 6∈ (fv(P) ∪
bv(P)).

48 2. Symbolic Universal Composability

Notice that our definition is a bit more general, we can even write !!xP , in this
case P will have access to the sid via the variable x. We need this added flexibility
in Section 2.7.3 for the protocol KE∗.
Note that since CSID

x,n [P((x))] ∼∼∼
∏
x∈S P ((x)) by definition, we can actually think of

!!xP as being defined as ∏x∈S P ((x)). Our definition, however, has the advantage that
!!xP is actually a process in the original calculus, the concept of product processes
was only used as a tool for defining !!.

On real-life implementations of !!.
When implementing a process !!P in real life (i.e., in software for actual deployed

protocols), a process such as !!c(x).P ′ is probably best implemented by a process that
listens on c for messages of the form (sid,m). Whenever such a message is received, a
new instance of P ′ with session id sid is spawned, and all further messages with that
sid are routed to that instance of P ′. On the other hand, a process such as !!c〈M〉.P ′
cannot be implemented, because such a process would non-deterministically send
(sid,M) for all possible sid. A process !!(A|B), where A and B correspond to
processes run on different computers, does not immediately make sense, because if,
e.g., A receives a message that spawns a new instance, B would have to spawn a
new instance, too, without communication between A and B. Fortunately, we show
in Lemma 33 below that !!(A|B) ∼∼∼ !!A | !!B; then A and B can spawn instances
independently.

Properties of !!.
The following four lemmas state several important properties of !!. We will need

these to prove the composition theorem below. Lemmas 17, 18, and 33 also hold
for ! instead of !!. But Lemma 32 is specific to !!, and is crucial for enabling the
composition theorem.

Lemma 17. Let P be a process and ϕ : N → N be a permutation on names. Then
(!!xP)ϕ ≡ !!x(Pϕ) for all variables x 6∈ bv(P).

Proof. Pick names n with n∩ fn(P) = ∅ and ϕ(n)∩ fn(P) = ∅. Note that (!!xP)ϕ ≡
CSID

x,n [P((x))]ϕ. Therefore (!!xP)ϕ ≡ CSID
x,n [P((x))]ϕ = CSID

x,ϕ(n)[P((x))ϕ] ≡ !!x(Pϕ) since
ϕ(n) ∩ fn(P) = ∅.

Lemma 18. Let P, Q be processes. Then P ∼∼∼ Q ⇒ !!xP ∼∼∼ !!xQ for all variables
x 6∈ bv(P) ∪ bv(Q).

This lemma was surprisingly hard to prove. Before we proceed to the proof (for
which we have to develop a number of auxiliary concepts and definitions first) We
very roughly sketch the proof idea here: The main thing to show is that P ≈ Q =⇒
P ((M)) ≈ Q((M)) for arbitrary fixed M . To show this, we define an operation untag
that maps P ((M)) to P , i.e., removes the tag M from all channels. Then we wish
to prove that the following relation is a bisimulation: ∼Ssid := {(P,Q) : untag(P) ≈
untag(Q)}. Once we have that, we see that P ((M)) ∼Ssid Q((M)) and hence P ((M)) ≈
Q((M)). Unfortunately, ∼Ssid is not really a bisimulation. A bisimulation must be
closed under evaluation contexts, even under contexts in which not all channels are
tagged with M . To solve this problem, we tweak untag in such a way that non-
tagged channels C are mapped to specially marked channels (using a special name
nsid)which can then be mapped back to C when tagging again. And we need to
tweak the notion of a bisimulation slightly, so that ∼Ssid only needs to be closed

2.4. Composition 49

under evaluation contexts on which our operation untag works properly. These
tweaks lead to an unexpectedly complex proof of Lemma 18.
Before we prove Lemma 18 (on page 60), we will hence need to develop a number

of tools and lemmas.

Definition 18. A set S of closed processes is n-complete for a name n iff for any
closed process P with n 6∈ fn(P) ∪ bn(P), there is a closed process S ∈ S such that
P ≈ S.

Definition 19 (S-n-observational equivalence). Let S be a set of closed processes
and n be a name. An S-n-simulation R is a relation on closed processes P, Q with
n 6∈ (fn(P) ∪ fn(Q) ∪ bn(P) ∪ bn(Q)) such that (P,Q) ∈ R implies

(i) if P ↓M then Q →∗↓M

(ii) if P → P ′ with n 6∈ fn(P ′) ∪ bn(P ′) then Q →∗ Q′ and (P ′,Q′) ∈ R for some
Q′

(iii) (νs.(S|P), νs.(S|Q)) ∈ R for all closed S ∈ S and names s ⊆ N with n 6∈
(fn(S) ∪ bn(S) ∪ s).

A relation R is an S-n-bisimulation if both R and R−1 are S-n-simulations. S-n-
observational equivalence (≈n

S) is the largest S-n-bisimulation.

Intuitively ≈n
S is like observational equivalence on processes that do not contain n

where the environment is restricted to be a process from S. It is easy to check that
the transitive hull of ≈n

S satisfies the conditions (i), (ii) and (iii) from above. Hence
≈n
S contains its own transitive hull and thus is indeed an equivalence relation.

Lemma 19. If a set of processes S is n-complete and n 6∈ (fn(S) ∪ bn(S)) for all
S ∈ S, then P ≈n

S Q ⇔ P ≈ Q for all closed processes P, Q with n 6∈ (fn(P) ∪
fn(Q) ∪ bn(P) ∪ bn(Q)).

Proof. Let P,Q ∈ {(P,Q) : P,Q closed processes with n 6∈ (fn(P)∪fn(Q)∪bn(P)∪
bn(Q)}.

P ≈ Q ⇒ P ≈n
S QP ≈ Q ⇒ P ≈n
S QP ≈ Q ⇒ P ≈n
S Q.

We show that observational equivalence restricted to processes that do not contain
n is an S-n-bisimulation. Points (i) and (iii) of Definition 19 follow directly from
points (i) and (iii) of observational equivalence (see Definition 4). It remains to show
that for P → P ′ with n 6∈ fn(P ′) ∪ bn(P ′) we can find a sequence of corresponding
internal reductions for Q. Since P ≈ Q we find a sequence Q =: Q1 → . . .→ Q` =:
Q′ with P ′ ≈ Q′. However, we do not necessarily have n 6∈ fn(Q′) ∪ bn(Q′) since
this is not a requirement for observational equivalence. Fortunately, we we will see
that we can find a process Q̂′ with Q →∗ Q̂′, P ′ ≈ Q̂′ and n 6∈ fn(Q̂′) ∪ bn(Q̂′). For
this, we transform the sequence Q1 → . . .→ Q` to a sequence Q̂1 → . . .→ Q̂` with
Qi ≡E Q̂i and n 6∈ fn(Q̂i) ∪ bn(Q̂i) for i ∈ {1, . . . , `}: First, we set Q̂1 := Q1 and in
particular have Q1 ≡E Q̂1 and n 6∈ fn(Q̂1) ∪ bn(Q̂1). For i ∈ {2, . . . , `} we define Q̂i

as follows: By Lemma 7, since Q̂i−1 ≡E Qi−1 → Qi, we find Q̃ with Q̂i−1 → Q̃ ≡E Qi.
W.l.o.g. we can assume n 6∈ bn(Q̃) since → and ≡E allow for renaming of bound
names. We distinguish two cases:
• n 6∈ fn(Q̃): Then Q̂i := Q̃ meets our requirements.

50 2. Symbolic Universal Composability

• n ∈ fn(Q̃): Since Q̂i−1 → Q̃ and n 6∈ fn(Q̂i−1), the free occurrences of n can
only be the result of a destructor evaluation (LET-THEN, Figure 2.3). Let D
denote the corresponding destructor term with D ⇓ T . By Definition 5 (vii)
(natural symbolic model) and since n 6∈ fn(D) we find a term T ′ with n 6∈
fn(T ′) such that D ⇓ T ′ and T =E T ′. Then Q̂i := Q̃{T/T ′} meets our
requirements.

Finally, Q̂` does not contain n and Q = Q̂1 →∗ Q̂` ≡E Q` = Q′ ≈ P ′. Hence
(P ′, Q̂`) ∈ ≈ ∩ {(P,Q) : P,Q closed processes with n 6∈ (fn(P) ∪ fn(Q) ∪ bn(P) ∪
bn(Q)} and thus observational equivalence restricted to processes that do not contain
n fulfills Definition 19 (ii).

P ≈n
S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ Q.

We first introduce a bisimulation ≈ϕ and then show P ≈n
S Q ⇒ P ≈ϕ Q ⇒ P ≈

Q: Let ϕ : N → N \ {n} be a bijection on names. We define

≈ϕ:= {(P,Q) : Pϕ ≈n
S Qϕ}

We claim that ≈ϕ is a bisimulation: It is easy to verify that ≈ϕ satisfies points
(i) and (ii) of Definition 4 (both follow straightforwardly by Definition 19). For
point (iii) we have to show C[P] ≈ϕ C[Q], i.e., C[P]ϕ ≈n

S C[Q]ϕ, for all evaluation
contexts C and P ≈ϕ Q, i.e., Pϕ ≈n

S Qϕ. For any evaluation context C we have
C[2] ≡ νn.(C|2) for some process C and names n ⊆ N . Due to the completeness
of S we find an evaluation context C̃[2] := νnϕ.(C̃|2) such that Cϕ ≈ C̃ with
C̃ ∈ S. Since n is not in the range of ϕ and n 6∈ (fn(C̃)∪ bn(C̃)) for C̃ ∈ S we have
C̃[Pϕ] ≈n

S C̃[Qϕ]. Furthermore C̃[Pϕ] ≈ C[P]ϕ and hence (both sides do not contain
n) C̃[Pϕ] ≈n

S C[P]ϕ (analogously for Q). Altogether we have C[P]ϕ ≈n
S C̃[Pϕ] ≈n

S
C̃[Qϕ] ≈n

S C[Q]ϕ. Since ≈ϕ is symmetric by definition this closes the proof of our
claim that ≈ϕ is a bisimulation.
We have that P ≈n

S Q entails P ≈ϕ Q by definition of ≈ϕ. Furthermore P ≈ϕ Q
entails P ≈ Q since ≈ is the largest bisimulation. Hence P ≈n

S Q entails P ≈ Q.
This closes the second part of our proof.

In the following we fix a name nsid and closed term Msid with nsid 6∈ fn(Msid).

Definition 20 (Sid-sensitive processes). Ssid, the set of sid-sensitive processes, is
the set of processes following the grammar from Figure 2.4.

Definition 21 (Ssid-transformation). We define the function Φ : P 7→ Φ(P) = S,
which maps a closed process P with nsid 6∈ P to a sid-sensitive process S ∈ Ssid, as
follows:

1. For each protected occurrence of an input C (x).P ′ in P we replace C (x).P ′ by

if Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P ′) else C (x).P ′

2. For each occurrence of an output in P we proceed analogously.

Lemma 20. Ssid is nsid-complete.

Proof. • Claim 1: For all processes P we have

if Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P) else C (x).P ∼∼∼ C (x).P
(2.4)

2.4. Composition 51

P,Q ::= 0
(Msid ,C)(x).P
(Msid ,C)〈T 〉.P
C ∗(x).P
C ∗〈T 〉.P
if Msid = fst(C) then P else C (x).Q
if Msid = fst(C) then P else C 〈T 〉.Q
P | Q
!P
νa.P
let x = D in P else Q

Figure 2.4: Syntax of sid-sensitive processes. Msid is the fixed term. C , T range
over all terms with nsid 6∈ fn(C) and nsid 6∈ fn(T), C ∗ over all terms with
nsid 6∈ fn(C ∗) such that there is no substitution σ with C ∗σ =E (Msid ,2)
for some term 2. D is a destructor term with nsid 6∈ fn(D) and a 6= nsid
is a name. Note that in the if-constructions both occurrences of C stand
for the same term.

(analogously for outputs). Proof: Let σ be a closing substitution for Equa-
tion 2.4. We remember that

if Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P) else C (x).P

is just syntactic sugar for

let z = equals(Msid , fst(C)) in (let y = snd(C) in (Msid , y)(x).P) else C (x).P

By definition of equals we have equals(Msid , fst(C))σ ⇓ Msid iff fst(C)σ ⇓ Msid .
We distinguish two cases:
– If fst(Cσ) ⇓ Msid , then by Definition 5 (v) (natural symbolic model) we

have that (Msid ,C2) =E Cσ for all C2 with snd(Cσ) ⇓ C2. Hence

if Msid = fst(Cσ) then
(let y = snd(Cσ) in (Msid , y)(x).Pσ) else Cσ(x).Pσ

(∗)
≈ if Msid = fst((Msid ,C2)) then

let y = snd((Msid ,C2)) in (Msid , y)(x).Pσ
else

(Msid ,C2)(x).Pσ
(∗∗)
≈ let y = snd((Msid ,C2)) in (Msid , y)(x).Pσ

(∗∗)
≈ (Msid ,C2)(x).Pσ
(∗)
≈ C (x).P

(∗) by Lemma 4 (iv) and (∗∗) by Lemma 4 (vii).

52 2. Symbolic Universal Composability

– If fst(C)σ 6⇓ Msid , then the claim follows by Lemma 4 (vi).

• Claim 2: P ∼∼∼ Φ(P). We prove this by structural induction on P. Since Φ
does only affect in- and outputs we can focus on those: If P = C (x).P ′ then

P = C (x).P ′
(∗)∼∼∼ C (x).Φ(P ′)

(∗∗)∼∼∼ if Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P ′) else C (x).P ′

= Φ(P)

where (∗) holds by the induction hypothesis and (∗∗) by Claim 1.
For any closed P we have P ∼∼∼ Φ(P) by Claim 2. Φ(P) is closed since P is closed

and hence P ≈ Φ(P). For P with nsid 6∈ (fn(P)∪ bn(P)) we have Φ(P) ∈ Ssid . Thus
Ssid is nsid-complete.

Lemma 21. For closed S ∈ Ssid and S → S ′ with nsid 6∈ fn(S ′) ∪ bn(S ′) we have
S ′ ∈ Ssid.

Proof. First, we observe that all processes not containing nsid and being structurally
equivalent to a sid-sensitive process are sid-sensitive as well. Furthermore C[P],
where C is an evaluation context and P a process, is sid-sensitive iff C[0] and P are
sid-sensitive. In all cases w.l.o.g. nsid 6∈ fn(C)∪ bn(C) because ≡ does not introduce
free names and bound names are w.l.o.g. not nsid . We have the following cases:
• REPL: S ≡ C[!P]→ C[P|!P] ≡ S ′. !P is sid-sensitive, hence P and P|!P are.
• COMM: S ≡ C[C 〈T 〉.P|C̃ (x).Q]→ C[P|Q{T/x}] ≡ S ′. Q is sid-sensitive and

nsid 6∈ fn(T) since nsid 6∈ fn(S) ∪ bn(C). We can easily check the grammar
of sid-sensitive processes from Figure 2.4 to see that a substitution {T/x}
with nsid 6∈ T applied to a sid-sensitive process yields a sid-sensitive process.
Therefore Q{T/x} and P|Q{T/x} are sid-sensitive.
• LET-THEN: S ≡ C[let x = D in P else Q] → C[P{T/x}] ≡ S ′ for some term

T with D ⇓ T and nsid 6∈ fn(T) since nsid 6∈ fn(S ′) ∪ bn(C). Analogously to
the argument in the COMM case, P{T/x} is sid-sensitive.
• LET-ELSE: Here, according to the grammar of sid-sensitive processes from

Figure 2.4, we distinguish three cases:
– S ≡ C[if Msid = fst(C) then P else C (x).Q] → C[C (x).Q] ≡ S ′. C is

closed since S is closed. Msid = fst(C) is false, i.e., there is no term M such
that equals(Msid , fst(C)) ⇓ M . Therefore fst(C) 6⇓=E Msid . This implies
C 6=E (Msid ,X) for all terms X by Definition 5 (v) (natural symbolic
model). Hence C (x).Q is sid-sensitive (matching the C ∗(x).P rule).

– S ≡ C[if Msid = fst(C) then P else C 〈T 〉.Q] → C[C 〈T 〉.Q] ≡ S ′. Analo-
gously to the previous case.

– S ≡ C[let x = D in P else Q] → C[Q] ≡ S ′. Q is sid-sensitive by defini-
tion.

This concludes our proof.

Definition 22 (nsid-good). A process P is nsid-good if it follows the grammar from
Figure 2.5.

2.4. Composition 53

P,Q ::= 0
C (x).P
C 〈T 〉.P
(nsid ,C ∗)(x).P
(nsid ,C ∗)〈T 〉.P
if Msid = fst(C) then P else (nsid ,C)(x).Q
if Msid = fst(C) then P else (nsid ,C)〈T 〉.Q
P | Q
!P
νa.P
let x = D in P else Q

Figure 2.5: Syntax of nsid-good processes. Msid is the fixed term. C , T range over
all terms with nsid 6∈ fn(C), nsid 6∈ fn(T). C ∗ ranges over all terms with
nsid 6∈ fn(C ∗) such that there is no substitution σ with C ∗σ =E (Msid ,T)
for some term T . D is a destructor term with nsid 6∈ fn(D) and a 6= nsid
is a name. Note that in the if-constructions both occurrences of C stand
for the same term.

Definition 23 (tag). We define the function tag on terms:

tag((nsid ,C)) :=C
tag(C) :=(Msid ,C) otherwise

Let P be an nsid-good process. Then we write tag(P) for the process that results from
replacing any channel identifier C by tag(C) in P.
The function tag adds a tag Msid to all channel identifiers in a process. We will see

that tag returns a sid-sensitive process. We will need that tag is a bijective mapping
between nsid-good processes and sid-sensitive processes. The special name nsid is
needed to cover the corner cases when constructing that bijection.
Lemma 22. Let P be an nsid-good process. Then tag(P) ∈ Ssid.
Proof. We do a structural induction over the grammar of nsid-good processes from
Figure 2.5. Assume that tag(P ′) and tag(Q′) are in Ssid .
• For the communication on a channel C with nsid 6∈ fn(C) we have tag(C (x).P ′)

= (Msid ,C)(x).tag(P ′) which is obviously in Ssid . tag(C 〈T 〉.P ′) analogous.
• For the communication on a channel C = (nsid ,C ∗) we have tag((nsid ,C ∗)(x).P ′)

= C ∗(x).tag(P ′). C ∗(x).tag(P ′) is in Ssid since, by definition of nsid-good, there
is no substitution σ with C ∗σ =E (Msid ,T) for some term T . (nsid ,C ∗)〈T 〉.P ′
analogous.
• For the first pair of if statements we have that

tag(if Msid = fst(C) then P ′ else (nsid ,C)(x).Q′)
= (if Msid = fst(C) then tag(P ′) else C (x).tag(Q′))

is in Ssid since nsid 6∈ fn(C). Analogous for (nsid ,C)〈T 〉.Q′ in the ELSE branch.

54 2. Symbolic Universal Composability

Checking the remaining rules from Figure 2.5 is a straightforward task.

Definition 24 (untag). We define the function untag on terms:

untag((Msid ,C)) :=C
untag(C) :=(nsid ,C) otherwise

Let P be a sid-sensitive process. Then we write untag(P) for the process that results
from replacing any channel identifier C by untag(C).

Lemma 23. Let P ∈ Ssid be a sid-sensitive process. Then untag(P) is nsid-good.

Proof. Analogous to the proof of Lemma 22 a straightforward structural induction
shows this Lemma. We quickly sketch the interesting cases:
• untag((Msid ,C)(x).P ′) = C (x).untag(P ′) matches rule C (x).P from Figure 2.5

(note that nsid 6∈ fn(C)). (Msid ,C)〈T 〉.P ′ analogous.
• untag(C ∗(x).P ′) = (nsid ,C ∗)(x).untag(P ′): untag(C ∗) = (nsid ,C ∗) since there

is no substitution σ with C ∗σ =E (Msid ,2) for some term 2. The expression
matches rule (nsid ,C ∗)(x).P from Figure 2.5. C ∗〈T 〉.P analogous.
• For the first if-rule we distinguish two cases:

– C 6= (Msid ,2). Then

untag(if Msid = fst(C) then P ′ else C (x).Q′)
= (if Msid = fst(C) then untag(P ′) else (nsid ,C)(x).untag(Q′))

matches rule (if Msid = fst(C) then P else (nsid ,C)(x).Q) from Figure 2.5.
– C = (Msid ,C ′). Then

untag(if Msid = fst(C) then P ′ else C (x).Q′)
= (if Msid = fst((Msid ,C ′)) then untag(P ′) else C ′(x).untag(Q′))
= (let y = equals(Msid , fst((Msid ,C ′))) in untag(P ′) else C ′(x).untag(Q′))

nsid 6∈ fn(C ′) since nsid 6∈ fn(C). Hence C ′(x).untag(Q′) is nsid-good.
The process

(let y = equals(Msid , fst((Msid ,C ′))) in untag(P ′) else C ′(x).untag(Q′))

matches rule (let x = D in P else Q) from Figure 2.5 with
D = equals(Msid , fst((Msid ,C ′))).

Analogous for C 〈T 〉.Q′ in the ELSE branch.

Lemma 24. Let P be an nsid-good process. Then untag(tag(P)) ∼∼∼ P.

Proof. We prove this lemma by structural induction over P according to the gram-
mar from Figure 2.5.

• P = C (x).P ′ where C is a channel identifier with nsid 6∈ C : Then C 6= (nsid ,C ′)
for some term C ′ and thus tag(C) = (Msid ,C). Hence untag(tag(C)) = C and
untag(tag(P)) = untag(tag(C (x).P ′)) = C (x).untag(tag(P ′)) ∼∼∼ C (x).P ′ = P
by the induction hypothesis and since ∼∼∼ is closed under the application of
contexts (Lemma 1). P = C 〈T 〉.P ′ analogously.

2.4. Composition 55

• P = (nsid ,C ∗)(x).P ′ for some term C ∗ with nsid 6∈ fn(C ∗) and C ∗σ 6=E
(Msid , C̃ ∗) for all substitutions σ and terms C̃ ∗. Certainly tag((nsid ,C ∗)) = C ∗.
By assumption C ∗ 6= (Msid , C̃ ∗) and thus untag(tag((nsid ,C ∗))) = untag(C ∗) =
(nsid ,C ∗). The rest of this case, as well as the case for P = (nsid ,C ∗)〈T 〉.P ′,
is analogous to the previous case.

• P = if Msid = fst(C) then P ′ else (nsid ,C)(x).Q′ where nsid 6∈ fn(C): Clearly
tag((nsid ,C)) = C . We now distinguish two cases for C :
– C = (Msid ,C ′) for some term C ′. Then untag(C) = untag((Msid ,C ′)) =

C ′ 6= C . This is the reason why we cannot have untag(tag(P)) = P in
general. However,

untag(tag(P))
= untag(tag(if Msid = fst(C) then P ′ else (nsid ,C)(x).Q′))
= if Msid = fst((Msid ,C ′)) then

untag(tag(P ′))
else
untag(tag((nsid ,C)(x).Q′))

(∗)∼∼∼ untag(tag(P ′))
(∗∗)∼∼∼ P ′

(∗)∼∼∼ if Msid = fst((Msid ,C ′)) then P ′ else (nsid ,C)(x).Q′

= if Msid = fst(C) then P ′ else (nsid ,C)(x).Q′ = P

In both cases (∗) holds by Lemma 4 (vii) and Definition 5 (iv) (natural
symbolic model). (∗∗) holds by the induction hypothesis.

– Otherwise untag(C) = (nsid ,C) and it is easy to see that untag(tag(P)) =
P.

P = if Msid = fst(C) then P ′ else (nsid ,C)〈T 〉.Q′ analogously.

The missing cases for parallel composition, bang, name restriction and let-statement
all work straightforwardly.

Lemma 25. Let P be a sid-sensitive process. Then tag(untag(P)) = P.

Proof. Since tag and untag do only modify channel identifiers we show tag(untag(C)) =
C for the different kinds of channel identifiers that are allowed in an sid-sensitive
process by Figure 2.4:

• C is a channel identifier with C = (Msid ,C ′) for some term C ′ with nsid 6∈
fn(C ′): Then untag(C) = C ′ and tag(C ′) = (Msid ,C ′) = C since nsid 6∈ fn(C).
Hence untag(tag(C)) = C .

• C is a channel identifier C ∗ with nsid 6∈ fn(C ∗) and C ∗σ 6=E (Msid , C̃ ∗) for all
substitutions σ and terms C̃ ∗. Then tag(untag(C)) = tag((nsid ,C ∗)) = C ∗ =
C .

• C is a channel identifier with nsid 6∈ fn(C) in the ELSE-branch of (if tag =
fst(C)). We distinguish two cases:

56 2. Symbolic Universal Composability

– C = (Msid ,C ′) for some term C ′. Then untag(C) = C ′ and tag(C ′) =
(Msid ,C ′) since nsid 6∈ fn(C ′) ⊆ fn(C).

– Otherwise untag(C) = (nsid ,C) and tag((nsid ,C)) = C .
In both cases we have untag(tag(C)) = C .

Definition 25. We define a relation ∼Ssid := {(P,Q) : P,Q ∈ Ssid , untag(P) ≈
untag(Q)}.

Lemma 26. Assume that ∼Ssid is an Ssid-bisimulation and P ≈ Q for closed nsid-
good processes P and Q. Then tag(P) ≈ tag(Q).

Proof. Note that tag(P) and tag(Q) are sid-sensitive processes by Lemma 22 and
thus do not contain nsid . We have

P ≈ Q ⇒untag(tag(P)) ≈ P ≈ Q ≈ untag(tag(Q)) (by Lemma 24)
⇒tag(P) ∼Ssid tag(Q)
⇒tag(P) ≈nsid

Ssid
tag(Q)

(since ≈nsid
Ssid

is the largest Ssid-bisimulation by Definition 19)
⇒tag(P) ≈ tag(Q) (by Lemmas 19, 20)

Lemma 27. Let P be a closed nsid-good process with P ≡E Q → Q′ for some closed
processes Q, Q′. Then there is a closed nsid-good process P ′ such that P → P ′ ≡E Q′
and tag(P)→ tag(P ′).

Proof. According to Lemma 7 we find a closed process P̃ ′ such that P → P̃ ′ ≡E Q′
(this holds for any P, not just for nsid-good ones). Now we show that if P is
additionally nsid-good, there is a closed nsid-good process P ′ with P → P ′ ≡E P̃ ′
and tag(P)→ tag(P ′) which proves the Lemma.
First, we make some general observations: For P → P̃ ′ we find an evaluation

context C and processes R,R′ such that P ≡ C[R] → C[R′] ≡ P̃ ′ and R → R′
is a direct application of one of the rules for internal reductions from Figure 2.3.
Furthermore, it is easy to verify that any process A with P ≡ A and nsid 6∈ bn(A)
is also nsid-good and tag(P) ≡ tag(A). Additionally, C[R] is nsid-good iff C[0] and
R are nsid-good. Hence, w.l.o.g. (since ≡ allows for renaming of bound names),
we can assume C[0] and R to be nsid-good. Since tag(C[R]) = tag(C)[tag(R)], it
remains to show that R′ is nsid-good and that tag(R) → tag(R′). We will be able
to show this for the REPL, the COMM and the THEN-ELSE rules and have that
P ′ := C[R′] ≡ P̃ ′ ≡ Q′ in these cases. In the LET-THEN case however, the de-
structor evaluation might introduce a term T containing a free occurrence of nsid .
Fortunately, replacing T with an equivalent term T ′ will solve the problem and we
have that P ′ := C[R′{T/T ′}] ≡E P̃ ′ ≡ Q′ for R′{T/T ′} being nsid-good. In detail:
• REPL: !R→ C[R|!R] ≡ P̃ ′ where w.l.o.g. C[!R] and therefore C[R|!R] are nsid-

good. We set P ′ := C[R|!R] and have tag(P) ≡ tag(C[!R]) = tag(C)[!tag(R)] (∗)→
tag(C)[tag(R)|!tag(R)] = tag(C[R|!R]) = tag(P ′). (∗) by the REPL rule.

2.4. Composition 57

• COMM: Analogously to REPL P ≡ C[C 〈T 〉.R|C̃ (x).R̃]→ C[R|R̃{T/x}] ≡ P̃ ′
where C =E C̃ and w.l.o.g. C[C 〈T 〉.R|C̃ (x).R̃] and C[R|R̃{T/x}] are nsid-good.
We observe

tag(C 〈T 〉.R) = tag(C)〈T 〉.tag(R) and tag(C̃ (x).R̃) = tag(C̃)(x).tag(R̃)

by Definition 23. Analogously to REPL we have to show

tag(C)[tag(C)〈T 〉.tag(R)|tag(C̃)(x).tag(R̃)]→ tag(C)[tag(R)|tag(R̃){T/x}]

Note that tag(R̃){T/x} = tag(R̃{T/x}) since nsid 6∈ fn(T). Hence it is neces-
sary and sufficient to show tag(C) =E tag(C̃). Now we distinguish two cases
to show tag(C) =E tag(C̃):
– C = (nsid ,C ′) for some term C ′. By assumption we have C =E C̃

and hence C̃ =E (nsid ,C ′). By the grammar of nsid-good processes (Fig-
ure 2.5) we have nsid 6∈ fn(C̃) or C̃ = (nsid ,C ∗) for some C ∗. Lemma 3 (iii)
above excludes the first case and leaves us with C̃ = (nsid ,C ∗). By Def-
inition 5 (vi) (natural symbolic model) we have C ′ =E C ∗ and hence
tag(C̃) = C ∗ =E C ′ = tag(C).

– C 6= (nsid ,C ′) for any term C ′. By the grammar of nsid-good processes
(Figure 2.5) we then have nsid 6∈ fn(C). C̃ = (nsid ,C ′) for some term C ′
leads to C =E (nsid ,C ′) which contradicts Lemma 3 (iii). Hence (again
by the grammar of nsid-good processes) nsid 6∈ fn(C̃). Thus tag(C) =
(Msid ,C) =E (Msid , C̃) = tag(C̃).

• LET-THEN: P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P̃ ′ with D ⇓ T .
By Definition 5 (vii) (natural symbolic model) we find T ′ with nsid 6∈ T ′,
D ⇓ T ′ and T ′ =E T . Hence we have

P ≡ C[let x = D in R else R̃]→ C[R{T ′/x}] =: P ′

and P ′ ≡E P̃ ′ ≡ Q′. Altogether

tag(P) ≡ tag(C[let x = D in R else R̃])
= tag(C)[let x = D in tag(R) else tag(R̃)]
→ tag(C)[tag(R){T ′/x}]
(∗)= tag(C)[tag(R{T ′/x})]
≡ tag(P ′)

(∗) since nsid 6∈ fn(T ′).
• LET-ELSE is not affected by tag and the proof is analogous to that for the

REPL rule.

Lemma 28. Let P be a closed sid-sensitive process and P ′ be a closed process with
nsid 6∈ fn(P ′). Then there is a process P∗ with untag(P)→ P∗ and P∗ ≈ untag(P ′).
Proof. The rest of this proof is partially analogous to that of Lemma 27. Similarly,
we can focus on the rules from Figure 2.3 directly. The main difference is that,
for some sid-sensitive process R and term T with nsid 6∈ fn(T), untag(R){T/x} 6=
untag(R{T/x}). Instead, we only have untag(R){T/x} ∼∼∼ untag(R{T/x}) (we are
going to prove that first). Therefore the COMM rule and the LET-THEN rule,
where substitutions occur, have to be handled differently. The arguments for the
REPL rule and the LET-ELSE rule are analogous.

58 2. Symbolic Universal Composability

Claim: If R is a sid-sensitive process, untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x}) for
all TTT with nsid 6∈ fn(T)nsid 6∈ fn(T)nsid 6∈ fn(T).
For all channel identifiers C = (Msid ,C ′) and C = C ∗ according Figure 2.4

we obviously have untag(C){T/x} = untag(C{T/x}) for all substitutions {T/x}.
However, in the ELSE-branch of (if Msid = fst(C)), C can be an arbitrary term with
nsid 6∈ fn(C). If C = (Msid ,C ′) for some term C ′, untag(C){T/x} = untag(C{T/x})
holds. Otherwise, for a substitution {T/x}, we distinguish two cases:

• C{T/x} 6= (Msid ,C ′) for all terms C ′. Then untag(C){T/x} = (nsid ,C{T/x})
= untag(C{T/x}).

• Otherwise C{T/x} = (Msid ,C ′) for some term C ′. Then untag(C){T/x} =
(nsid ,C{T/x}) 6= C ′ = untag(C{T/x}). Since fst(C{T/x}) ⇓ Msid the
ELSE-branch of R will never be executed and we, analogously to the proof of
Lemma 24, replace (nsid ,C{T/x}) by C ′ to have untag(R){T/x} ∼∼∼
untag(R{T/x}).

Note that P ′ is sid-sensitive by Lemma 21.
We now handle the COMM rule and the LET-THEN rule:

• COMM: Analogously to Lemma 27 we have to prove untag(C) =E untag(C̃)
where C and C̃ are the channel identifiers used for communication. By the
grammar of sid-sensitive processes from Figure 2.4 all channel identifiers which
occur unrestricted are either of the form (a) (Msid ,C ′) for some term C ′ or (b)
C ∗ such that C ∗σ 6=E (Msid ,C ′) for all substitutions σ and all terms C ′. We
distinguish two cases
– C = (Msid ,C ′). C̃ cannot be of form (b) since C =E C̃ . Hence C̃ =

(Msid , C̃ ′) and C ′ =E C̃ by Definition 5 (vi) (natural symbolic model).
Therefore untag(C) = C ′ =E C̃ ′ = untag(C̃).

– Otherwise, C is of form (b). Then C̃ cannot be of form (a) since C =E C̃ .
We thus have untag(C) = (nsid ,C) =E (nsid , C̃) = untag(C̃).

We find

P ≡ C[C 〈T 〉.R|C̃ (x).R̃]→ C[R|R̃{T/x}] ≡ P ′

⇒untag(P) ≡ untag(C)[untag(C)〈T 〉.untag(R)|untag(C̃)(x).untag(R̃)]
(∗)→ untag(C)[untag(R)|untag(R̃){T/x}] =: P∗

(∗) since untag(C) =E untag(C̃). Due to the claim above P∗ ≈ untag(P ′)
which proves the COMM case.

• LET-THEN: We have P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P ′.
In contrast to Lemma 27 the evaluation of the destructor may not lead to
a term T with nsid ∈ fn(T) here if x ∈ fv(R) since we required P ′ to be
sid-sensitive. (Otherwise, if x 6∈ fv(R), we obviously have untag(R){T/x} =
untag(R{T/x}).) Thus

untag(P) ≡ untag(C)[let x = D in untag(R) else untag(R̃)]
→ untag(C)[untag(R){T/x}] =: P ∗

(∗)
≈ untag(C[R{T/x}]) = untag(P ′)

(*) due to the claim above. This proves the LET-THEN case.

2.4. Composition 59

Since untag dos not affect the REPL and LET-ELSE cases these can be handled
exactly like the REPL case in the proof of Lemma 27.

Lemma 29. ∼Ssid is an Ssid-nsid-bisimulation

Proof. Let (P,Q) ∈ ∼Ssid . We show the three points of an Ssid-nsid-simulation.

• P ↓C : We have P ↓C iff P ↓Ĉ for a channel identifier Ĉ =E C which occurs in
P and thus follows the grammar from Figure 2.4. Since P ∼Ssid Q: untag(P) ≈
untag(Q) holds by definition. Since P ↓Ĉ we have untag(P) ↓untag(Ĉ) and thus
untag(Q) =: Q̂1 → . . . → Q̂n ↓untag(Ĉ) for some n ∈ N and processes Qi,
i ∈ {1, . . . , n}. By Lemma 23 Q̂1 = untag(Q) is nsid-good. By Lemma 27
we get a sequence of nsid-good processes Q̂′1 → . . . → Q̂′n with Q̂′1 = Q̂1,
Q̂′i ≡E Q̂i and tag(Q̂′1) → . . . → tag(Q̂′n). Since Q̂′1 = Q̂1 = untag(Q) we
have tag(Q̂′1) = Q by Lemma 25. Furthermore, Q̂′n ≡E Q̂n ↓untag(Ĉ) implies
Q̂′n ↓untag(Ĉ) (see Footnote 5) and tag(Q̂′n) ↓tag(untag(Ĉ)). Since Ĉ is a term
according to Figure 2.4 we have tag(untag(Ĉ)) = Ĉ (=E C) (see Lemma 25).
Hence Q = tag(Q̂′1)→∗ tag(Q̂′n) ↓C .

• P → P ′ with nsid 6∈ fn(P ′) ∪ bn(P ′): According to Lemma 28 we find P∗ such
that untag(P) → P∗ ≈ untag(P ′). Since P ∼Ssid Q we also have untag(Q) =:
Q̂1 → . . . → Q̂n ≈ P∗. Analogously to the previous part we find some nsid-
good Q̂′n such that Q →∗ tag(Q̂′n) and Q̂′n ≡E Q̂n. By Lemma 24 we have
untag(tag(Q̂′n)) ≈ Q̂′n (Q̂′n is closed). Thus untag(tag(Q̂′n)) ≈ Q̂′n ≡E Q̂n ≈
P∗ ≈ untag(P ′) which implies untag(tag(Q̂′n)) ≈ untag(P ′) since ≡E entails ≈
by Lemma 4 (iv). Hence Q →∗ tag(Q̂′n) and P ′ ∼Ssid tag(Q̂′n).

• Assume P ∼Ssid Q and let R ∈ Ssid be a process and a names. We have
untag(P) ≈ untag(Q) by definition of ∼Ssid and ≈ is closed under the applica-
tion of evaluation contexts. Hence untag(νa.(P |R)) = νa.(untag(P)|untag(R))
≈ νa.(untag(Q)|untag(R)) = untag(νa.(Q|R)). Thus, by definition of ∼Ssid ,
νa.(P|R) ∼Ssid νa.(Q|R).

Since ∼Ssid is symmetric it is an Ssid-nsid-bisimulation.

Lemma 30. Let P and Q be closed processes and M be an arbitrary closed term.
Then P ≈ Q ⇒ P((M)) ≈ Q((M)).

Proof. Fix a name nsid 6∈ (fn(M) ∪ fn(P) ∪ bn(P) ∪ fn(Q) ∪ bn(Q))and Msid :=
M . Remember that all lemmas in this section were proven for an arbitrary fixed
Msid with nsid 6∈ fn(Msid). Now P, Q are nsid-good and P((Msid)) = tag(P) and
Q((Msid)) = tag(Q). By Lemmas 26,29: tag(P) ≈ tag(Q). Hence P((M)) =
P((Msid)) ≈ Q((Msid)) = Q((M)).

Lemma 31. Let P and Q be processes and M be a term with fv(M) ∩ (bv(P) ∪
bv(Q)) = ∅. Then P ∼∼∼ Q ⇒ P((M)) ∼∼∼ Q((M)).

Proof. For all closing substitutions σ we have P ∼∼∼ Q ⇒ Pσ ≈ Qσ. By Lemma 30
we have Pσ((Mσ)) ≈ Qσ((Mσ)) for the closed processes Pσ and Qσ and the closed
term Mσ. This entails P((M))σ ≈ Q((M))σ since fv(M) ∩ (bv(P) ∪ bv(Q)) = ∅.
Therefore P((M)) ∼∼∼ Q((M)).

60 2. Symbolic Universal Composability

Proof of Lemma 18. By Lemma 31 P((x)) ∼∼∼ Q((x)). According to Definition 17
!!xP = C

x,np
SID [P((x))] for some names np ∩ fn(P) = ∅ and !!xQ = C

x,nq
SID [Q((x))] for

some names nq ∩ fn(Q) = ∅. Let n be names such that n ∩ (fn(P) ∪ fn(Q)) = ∅
and |n| ≥ max(|np|, |nq|). We have

C
x,np
SID [P((x))] ≡ C

x,n
SID[P((x))]

(∗)∼∼∼ C
x,n
SID[Q((x))] ≡ C

x,nq
SID [Q((x))]

(*) since P((x)) ∼∼∼ Q((x)) and∼∼∼ is closed under the application of contexts (Lemma 1).
Therefore !!xP ∼∼∼ !!xQ.

Note that Lemma 18 also implies P ∼∼∼ Q ⇒ !!P ∼∼∼ !!Q.

Lemma 32. Let P be a process and n be a name that occurs only in channel iden-
tifiers in P. Then νn.!!xP ∼∼∼ !!xνn.P for all variables x 6∈ bv(P).

Proof. First, we observe that instances of P with distinct tags cannot communicate
with each other. This can be formalized by the following

Claim.
Let id, id ′ ∈ SID be distinct IDs and P, Q arbitrary processes. Then P((id))→∗lC

and Q((id ′))→∗lC ′ for terms C ,C ′ implies C 6=E C ′. Proof: By Definition 11 every
channel identifier in P((id)) is of the form (id,X) for some term X . Analogously,
every channel identifier in Q((id ′)) is of the form (id ′,Y). Towards contradiction we
assume C = (id,X) =E (id ′,Y) = C ′. Then, by Definition 5 (vi) (natural symbolic
model), we have id =E id ′. However, id 6=E id ′ is required for all pairs of distinct
IDs id, id ′ ∈ SID. This proves the claim.
It is now easy to check that

R := {(C[νn.(P1((id1))| . . . |P`((id`))|
∏
x∈S

P((x)))],

C[νn.P1((id1))| . . . |νn.P`((id`))|
∏
x∈S

νn.P ((x))]) :

P1, . . . ,P` processes where n occurs only in channel identifiers,
id1 , . . . , idl ⊆ SID \ S are distinct, S ⊆ SID and C evaluation context}

is a bisimulation and thereby prove the lemma. Although the Pi in R are formally
arbitrary processes that contain n only in channel identifiers, they intuitively allow
to represent the running instances of P. Note that the claim above holds for any pair
Pi((idi)), Pj((idj)) with i 6= j. Intuitively, since n occurs only in channel identifiers
and thus is never transmitted, no context can tell the difference between a private
n that is shared among all instances and an n individual n for each instance.

Lemma 33. Let P and Q be processes. Then !!x(P|Q) ∼∼∼ !!xP|!!xQ for all variables
x 6∈ bv(P) ∪ bv(Q).

Proof. We use the semantics of product processes (see Definition 7) for this proof. By
Definition 12 and Definition 17 we have !!xR ∼∼∼

∏
x∈SID R((x)) for any process R. Let

σ be a closing substitution for !!xP and !!xQ (i.e., fv(P((x))σ), fv(Q((x))σ) ⊆ {x}). We
set ΠP(X) := ∏

x∈X P((x))σ for arbitrary X ⊆ SID and ∑P(X) := ∑
x∈X P((x))σ =

2.4. Composition 61

P((x1))σ| . . . |P((x`))σ for finite X = {x1, . . . , x`} ⊆ SID. Analogously ΠQ(X),∑
Q(X) and ΠPQ(X) := ∏

x∈X (P((x))σ|Q((x))σ). We then define the relation R:

R := {(C[
∑
P

(SP) |
∑
Q

(SQ) | ΠPQ(SPQ)], C[ΠP(SPQ ∪ SP) | ΠQ(SPQ ∪ SQ)]) :

C evaluation context, SP , SQ, SPQ ⊆ SID, SP ∩ SPQ = ∅, SQ ∩ SPQ = ∅}

closed under structural equivalence. Note that ∏
x∈SID

(P((x))σ|Q((x))σ),
∏

x∈SID
P((x))σ |

∏
x∈SID

Q((x))σ
 ∈ R

for SP := ∅, SQ := ∅ and SPQ := SID which proves this lemma if R ⊆≈. Therefore,
we show the three points of a simulation for R and R−1 respectively. First, we show
that R is a simulation. For (A,B) ∈ R:

1. A ↓C : Product processes do not emit on channels. Three cases remain:
a) If C[0] ↓C , then B ↓C .
b) If P((id))σ ↓C for some id ∈ SP , then B can spawn the instance P((id))σ

from ΠP(SPQ ∪ SP) and then emit on C . Hence B →↓C .
c) Analogously for Q((id))σ ↓C for some id ∈ SQ.

Hence A ↓C entails B →∗↓C .
2. A→ A′: We distinguish two cases:

a) → follows the IREPL rule: Then→ spawns a new instance with id id from
ΠPQ(SPQ): We set C ′[2] := C[P((id))σ | Q((id))σ | 2] and S ′PQ := SPQ \
{id}. Hence we have A→ C ′[∑P(SP) | ∑Q(SQ) | ΠPQ(S ′PQ)]. Addition-
ally, we observe B ≡ C[ΠP(SPQ ∪SP) | ΠQ(SPQ ∪SQ)]→→ C ′[ΠP(S ′PQ ∪
SP) | ΠQ(S ′PQ ∪ SQ)] by spawning P((id))σ from ΠP(SPQ ∪ SP) and
Q((id))σ from ΠQ(SPQ∪SQ). We have (C ′[∑P(SP) | ∑Q(SQ) | ΠPQ(S ′PQ)],
C ′[ΠP(S ′PQ ∪ SP) | ΠQ(S ′PQ ∪ SQ)]) ∈ R.

b) → follows a rule from Figure 2.3: Then we distinguish two cases:
i. If we have C[0] → C ′[0], → translates canonically to C in B → B′

such that (A′, B′) ∈ R.
ii. Otherwise, → affects instances from ∑

P(SP) | ∑Q(SQ). We re-
move the ids of the affected instances from SP and SQ yielding
sets S ′P and S ′Q and define a context C ′ (including the affected in-
stances) such that A→ C ′[∑P(S ′P) | ∑Q(S ′Q) | ΠPQ(SPQ)]. We now
spawn the corresponding instances in B first and then mimic → ex-
actly yielding B →∗ C ′[ΠP(SPQ ∪ S ′P) | ΠQ(SPQ ∪ S ′Q)]. We have
(C ′[∑P(S ′P) | ∑Q(S ′Q) | ΠPQ(SPQ)], C ′[ΠP(SPQ ∪ S ′P) | ΠQ(SPQ ∪
S ′Q)]) ∈ R.

3. By definition R is closed under the application of evaluation contexts.
Now we show that R−1 is a simulation. For (A,B) ∈ R−1 :
1. A ↓C : Since product processes do not emit on channels we have C[0] ↓C and

thus B ↓C .
2. A→ A′: We distinguish two cases:

a) → follows the IREPL rule: We distinguish four cases:
i. A new instance P((id))σ is spawned from ΠP(SPQ ∪ SP) with id ∈
SP : We define the context C ′[2] := C[P((id))σ | 2], S ′P := SP \
{id} and have A → C ′[ΠP(SPQ ∪ S ′P) | ΠQ(SPQ ∪ SQ)] and B ≡

62 2. Symbolic Universal Composability

C ′[∑P(S ′P) | ∑Q(SQ) |ΠPQ(SPQ)]. Hence (C ′[ΠP(SPQ∪S ′P) |ΠQ(SPQ∪
SQ)], C ′[∑P(S ′P) | ∑Q(SQ) | ΠPQ(SPQ)] ∈ R−1.

ii. A new instance Q((id))σ is spawned from ΠQ(SPQ∪SQ) with id ∈ SQ:
Analogous to the previous case.

iii. A new instance P((id))σ is spawned from ΠP(SPQ ∪ SP) with id ∈
SPQ: We define the context C ′[2] := C[P((id))σ | 2], S ′PQ := SPQ \
{id}, S ′Q := SQ∪{id} and have A→ C ′[ΠP(S ′PQ∪SP) | ΠQ(S ′PQ∪S ′Q)].
Note that SPQ ∪ SQ = S ′PQ ∪ S ′Q. In B we spawn P((id))σ | Q((id))σ
from ΠPQ(SPQ) and have B → C ′[∑P(SP) | ∑Q(S ′Q) | ΠPQ(S ′PQ)].
Hence (C ′[ΠP(S ′PQ ∪ SP) | ΠQ(S ′PQ ∪ S ′Q)],
C ′[∑P(SP) | ∑Q(S ′Q) | ΠPQ(S ′PQ)]) ∈ R−1.

iv. A new instance Q((id))σ is spawned from ΠQ(SPQ ∪ SQ) with id ∈
SPQ: Analogous to the previous case.

b) → follows a rule from Figure 2.3: Then we basically have C[0] → C ′[0]
which translates canonically to C in B → B′ such that (A′, B′) ∈ R.

3. By definition R is closed under the application of evaluation contexts.
This shows that R is a bisimulation and hence R ⊆≈.

Alternative definitions of !!!!!!.
Of course, our definition of !!P is not the only possible definition of a replication

with session ids. For example, one might try to define !!P in such a way that an
instance of P is spawned for arbitrary terms as sessions id, not only terms in some
fixed set SID. In particular, a fresh name could then be used as session id which
is not possible with our modeling. (Then, of course, the set of processes to which
!! may be applied should be restricted to processes which wait for an input before
doing anything. Otherwise processes could spawn spontaneously that use some other
process’ fresh names as session ids.)
Any definition of !! that satisfies Lemmas 17, 18, 32, and 33 would lead to the

same composition theorem. (If that definition !! is applicable only to a certain set
P of processes, we additionally need that P is closed under parallel composition,
restrictions, renaming, and !!, and that the definition of ≤ (Definition 10) is with
respect to simulators in P.)
The composition theorem.
We can now state and prove the composition theorem. It says that if P ≤ Q,

we can restrict the IO-names, compose in parallel with processes that have disjoint
NET-names, rename names (as long as NET- and IO-names are not interchanged),
and perform concurrent composition.
Theorem 1 (Composition Theorem). Let P, Q be processes with P ≤ Q. Then
(i) For any list of names io ⊆ IO we have νio.P ≤ νio.Q.
(ii) For any process R with (fn(R) ∩ (fn(P) ∪ fn(Q))) ⊆ IO we have P|R ≤ Q|R.
(iii) For any permutation ψ : NET→ NET we have Pψ ≤ Q and P ≤ Qψ.
(iv) For any permutation ψ : IO→ IO we have Pψ ≤ Qψ.
(v) If Q is a NET-stable process, !!xP ≤ !!xQ for all variables x 6∈ bv(P) ∪ bv(Q).

Proof. In the following, let (S, ϕ, n) be as in Definition 10. (They exist because
P ≤ Q.)

(i) P ∼∼∼ νn.(Qϕ|S) (∗)⇒ νio.P ∼∼∼ νio.νn.(Qϕ|S)
(∗∗)∼∼∼ νn.((νio.Q)ϕ|S)

(∗) since ∼∼∼ is closed under the application of evaluation contexts.
(∗∗) since neither S nor ϕ contain names from IO

2.5. Property preservation 63

(ii) W.l.o.g. we can assume fn(R) ∩ n = ∅ and that ϕ is the identity on (fn(R) ∪
bn(R)) ∩ NET. These assumptions guarantee (∗) in the upcoming equations.
P ∼∼∼ νn.(Qϕ|S)⇒ P|R ∼∼∼ νn.(Qϕ|S)|R

(∗)∼∼∼ νn.((Q|R)ϕ|S)

(iii) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νnψ.(Q(ψ ◦ ϕ)|Sψ). Therefore,
with (Sψ, ψ ◦ ϕ, nψ) as simulator, we have Pψ ≤ Q. With (S, ϕ ◦ ψ−1, n) we
have P ≤ Qψ.

(iv) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νn.(Q(ϕ ◦ ψ)|S) since S, ϕ and n
do not contain IO names and thus are not affected by ψ : IO→ IO.

(v) Note that Qϕ is NET-stable since Q is NET-stable. Then P ∼∼∼ νn.(Qϕ|S)
entails

!!xP ∼∼∼ !!xνn.(Qϕ|S) (by Lemma 18)
∼∼∼ νn.!!x(Qϕ|S) (by Lemma 32 since Qϕ|S NET-stable)
∼∼∼ νn.(!!x(Qϕ)|!!xS) (by Lemma 33)
≡ νn.((!!xQ)ϕ|!!xS) (by Lemma 17)

Thus (!!xS, ϕ, n) is a proper simulator for !!xP ≤ !!xQ.

2.5 Property preservation
Besides secure composition, the second salient property of the UC framework is

the fact that security properties of the ideal functionality F automatically carry
over to any protocol emulating F . For example, a secure channel functionality that
takes a message m from Alice and gives it directly to Bob will obviously have the
property thatm stays secret. Then, if π UC-emulates F , any message given to π will
also stay secret. A similar property preservation law holds in our case, the following
theorem formalizes it:

Theorem 2 (Property preservation). Let P,Q be NET-stable processes with P ≤ Q.
Let E1 and E2 be contexts whose holes are protected only by parallel compositions (|),
restrictions (ν), and indexed replications (!!x). Assume that E1, E2 do not contain
NET-names (neither bound nor free). Assume that the number of !!x (possibly with
different x) over the hole is the same in E1 and E2.
If E1[Q] ∼∼∼ E2[Q], then E1[P] ∼∼∼ E2[P].

Proof. Let b denote the number of !!x over the hole of E1, E2. We write !!bS for b ≥ 0
applications of !! to S.
Since P ≤ Q, there are S, ϕ, n with P ∼∼∼ νn.(Qϕ|S) and S closed and NET-stable,

and IO ∩ fn(A) = ∅, ϕ : NET → NET a bijection and n a list of names n ⊆ NET.
Without loss of generality, we can assume that n∩ fn(E1, E2) = n∩ bn(E1, E2) = ∅.
For i = 1, 2, we have

Ei[P]
(i)∼∼∼ Ei[νn.(Qϕ|S)]
(ii)∼∼∼ νn.Ei[(Qϕ|S)]
(iii)∼∼∼ νn.(Ei[Qϕ]|!!bS)
(iv)= νn.(Ei[Q]ϕ|!!bS).

64 2. Symbolic Universal Composability

free netscstart, netnotify, netdeliver, n1, n2.
fun empty/0.

let FSC = in(netstart,y); in(ioA,x);
(out(netnotify,empty) | in(netdeliver,z); out(ioB,x)).

process new ioA; new ioB; out(ioA,choice[n1,n2]) | in(ioB,z) | FSC

Figure 2.6: Proverif code for showing E1[FSC] ≈ E2[FSC] in Lemma 34
(prop-pres.pv, see [29]).

Here (i) uses Lemma 1.
And (ii) uses that the names n do not occur in Ei, the rules NEW-C and NEW-

PAR from Figure 2.2, and Lemma 32 for swapping !!x in Ei and the names n (the
preconditions of Lemma 32 are fulfilled because n are NET-names and thus do not
occur in Ei).
And (iii) uses that the names in Ei (IO-names only) and the names in S (NET-

names only) are disjoint, as well as Lemma 33 for moving S over a !! in Ei. (Lemma 33
guarantees !!x(R|S) ≈ !!xR|!!xS, this is why S accumulates on !!x for each !!x over
the hole of Ei. Since S is closed, we can drop the x from !!x.)
And (iv) uses that Ei does not contain NET-names (bound or free) while ϕ is a

substitution on NET-names.
Furthermore, since ∼∼∼ is closed under renaming of free names, and under applica-

tion of contexts (Lemma 1), from E1[Q] ∼∼∼ E2[Q] it follows that νn.(E1[Q]ϕ|!!bS) ∼∼∼
νn.(E2[Q]ϕ|!!bS) and hence E1[P] ∼∼∼ E2[P].

Thus, any security property that can be expressed by an indistinguishability game
of the form “E1[P] ∼∼∼ E2[P]” with E1, E2 as in the theorem will carry over from the
ideal functionality Q to the protocol P , given P ≤ Q. Note that even many trace
based properties can be expressed in such a way. E.g., if we want to say that E1[P]
does not raise an event bad (modeled by emitting on a special channel), we just
define E2 to be like E1, but without the event. Then E1[P] ∼∼∼ E2[P] implies that
E1[P] does not raise the event.

Example: Strong secrecy.
We illustrate the use of this theorem with an example. Consider the secure channel

functionality:

Definition 26 (Secure channel).

FSC := netscstart().ioA(x).(netnotify〈〉 | netdeliver().ioB〈x〉)

We want to show:

Lemma 34. If P ≤ FSC , then P has strong secrecy in the following sense: We have
P1 ≈ P2 where Pi := νioAioB.ioA〈ni〉|ioB()|P .

Proof. Let Ei := νioAioB.ioA〈ni〉|ioB()|2. We use Proverif to show that E1[FSC] ≈
E2[FSC]. The Proverif code is given in Figure 2.6.
By Theorem 2 (and using that ≈ and ∼∼∼ coincide for closed processes), we have

P1 = E1[FSC] ≈ E2[FSC] = P2.

2.6. Relation to Delaune-Kremer-Pereira 65

Anonymity properties are modeled very similarly, except that instead of different
payloads n1, n2, different user ids are provided to the two processes.

Example: Unlinkability.
The next example is strong unlinkability [5]. This property requires that the ad-

versary cannot distinguish whether every user runs only one session of a protocol,
or whether every user runs many sessions. Formally: !νid.!νsid.P ≈ !νid.νsid.P if
we assume that P contains free names id, sid for the user id and the session id. At
a first glance, such a property seems to be excluded by the restriction of Theorem 2
that E1, E2 may not have a ! over their hole. This is, however, not the case if
protocol P (and the functionality Q) are modeled suitably, namely if P is already
a multi-session protocol. For example, if P expects a pair of user id and session id
on an IO-channel init for each session to be run, then strong unlinkability can be
expressed as follows:

Definition 27. A protocol P has strong unlinkability iff

νinit.(P |!νid.!νsid.init〈(id, sid)〉) ≈ νinit.(P |!νid.νsid.init〈(id, sid)〉).

Then Theorem 2 guarantees that if Q has strong unlinkability and P ≤ Q, then P
has strong unlinkability.
Notice that if we model a different session id mechanism, we also need a different

definition. For example, if P and Q are constructed using the !! operator, session ids
will be part of the channel name (we would have channels such as (sid, (id, init))).
The variant described above seems most realistic for unlinkability, though, because !!
includes session ids in the clear in all network-messages, so constructing unlinkable
protocols by concurrent composition of individual sessions using !! does not seem to
work well.

In Section 2.9 we show that the various restrictions in Theorem 2 are necessary.
In particular, property preservation for contexts E1, E2 having a ! over their hole
(instead of a !!) does not hold. The reasons are similar to those that forbid ! in the
composition theorem (cf. Section 2.4). This is another indication that an operator
like !! is more natural in this context.

2.6 Relation to Delaune-Kremer-Pereira
DKP-security.
As mentioned in the introduction, Delaune, Kremer, and Pereira [54] have already

presented a variant of the UC model in the applied pi calculus. In this section, we
describe the differences between their and our model, and why these differences are
necessary to achieve stronger security results.
In [54], security is defined as follows:

Definition 28 (DKP-security). Let � (observational preorder) be the largest sim-
ulation (not bisimulation).
Let P,Q be processes. Then P ≤SS Q iff there exists a simulator S (a context)

such that P � S[Q].
Here a simulator S is an evaluation context subject to certain conditions, see [54],

notably that it only binds NET-names.

66 2. Symbolic Universal Composability

Notice that in this definition, the main difference to our definition is that P and
S[Q] do not have to be observationally equivalent, but only observationally pre-
ordered. (Also, the notion of the simulator S is somewhat different from ours, but
not in essence.) The effect of this is that the simulator may introduce additional
non-determinism. For example, in our model, if the protocol P can take one out of
two actions, the simulator needs to simulate the appropriate action, he thus needs
to figure out which of the two actions is taken. With respect to DKP-security, the
simulator can just non-deterministically choose which action to take; the observa-
tional preorder takes care that the right action is taken in the right situation. This
makes simulators for DKP-security much easier to construct and DKP-security into
a considerably weaker notion.
DKP-security satisfies similar laws as our notion. In particular, ≤SS is reflexive

and transitive and it satisfies a composition theorem (which differs from ours mainly
in that P ≤SS Q =⇒ !P ≤SS !Q holds, no need to introduce !!). They do not
state a property preservation theorem. We believe, though, that their DPK-security
supports property preservation for certain kinds of trace properties.10

The problem with observational preorder.
We explain why we believe that a definition based on observational preorder in-

stead of equivalence does not give sufficient security guarantees. We illustrate this
by the following example. Consider a simple functionality that is supposed to model
an insecure but anonymous channel:

Fanon := ioA(x).net〈x〉|ioB(x).net〈x〉

Obviously, this functionality preserves anonymity about whether Alice or Bob sends
a message (i.e., whether an input on ioA or ioB occurs). Formally:
νioAioB.(ioA〈T 〉|Fanon) ≈ νioAioB.(ioB〈T 〉|Fanon). (In fact, we even have ≡.) Now
consider a naive protocol in which Alice and Bob send their message over distinct
channels netA, netB. Formally:

P := ioA(x).netA〈x〉|ioB(x).netB〈x〉

Obviously, P does not provide anonymity, it is easy to see that νioAioB.(ioA〈T 〉|P) 6≈
νioAioB.(ioB〈T 〉|P). Consequently (Theorem 2), we have P 6≤ Fanon as we would
expect since P gives less security than Fanon.
On the other hand, with respect to DKP-security, P is considered as secure as
Fanon, i.e., P ≤SS Fanon. We use the following simulator: S := net(x).netA〈x〉 |
net(x).netB〈x〉 | 2. Then P � S[Fanon] because S relays messages sent on net
onto netA or netB, and the definition of � makes sure that the message is non-
deterministically delivered on the right channel netA or netB. Hence P ≤SS Fanon.

Lemma 35 (with non-rigorous proof). P ≤SS Fanon.

Proof. In this proof, we assume that Lemma 5 also holds for the calculus from [54].
Since that calculus is somewhat different from ours, this makes the present proof
non-rigorous. (However, probably the proof of Lemma 5 can be easily adapted to
the calculus of [54].)
10Probably a law of the following kind holds: Assume P ≤SS Q. Let c /∈ fv(P,Q), and E be a

context satisfying certain properties. Then E[Q] 6 ↓c =⇒ E[P] 6 ↓c. Compare with Theorem 2
which can deal with indistinguishability properties.

2.6. Relation to Delaune-Kremer-Pereira 67

Then we have

P
(∗)
≈ νnet.(ioA(x).net〈x〉|net(x).netA〈x〉)
| νnet.(ioB(x).net〈x〉|net(x).netB〈x〉)

(∗∗)
� ioA(x).net〈x〉|net(x).netA〈x〉
| ioB(x).net〈x〉|net(x).netB〈x〉

≡ S[Fanon] with S := net(x).netA〈x〉 | net(x).netB〈x〉 | 2.

Here (∗) uses two applications of Lemma 5 (in the reverse direction), the first with
n := net, t := x, x := x, and Q := netA〈x〉, and the second with n := net, t := x,
x := x, and Q := netB〈x〉. And (∗∗) uses that νc.P � P ([53, Lemma 8]).
Since ≈ implies � and � is transitive, we have P � S[Fanon]. Furthermore, S is

a valid simulator for DKP-security. Thus P ≤SS Fanon.

Thus, the security of a protocol in the sense of [54] does not imply that the protocol
has the same anonymity properties as the ideal functionality. The same probably
holds for other equivalence properties such as strong secrecy etc. We consider this
a strong restriction of the notion and thus believe that a symbolic analogue to UC
security should use observational equivalence or a similar notion of equivalence.

Why observational preorder?
The reader may wonder why [54] use observational preorder instead of observa-

tional equivalence, in particular since observational equivalence is the more direct
analogue to the indistinguishability in the computational UC framework [36]. We
explain the reasons as we understand them (this is based both on explanations in
[54] and on our own insights while working on the current result), and due to what
definitional decisions we managed to get around those reasons:

• It is not possible to model “relays”. That is, if we have a process P that
outputs on a channel c, then as a technical tool we might wish to construct
a process R (a relay) that forwards all message on c to another channel c′,
i.e., we want νc.(P |R) ≈ P{c′/c}. Unfortunately, such a relay does not seem
to exist in the applied pi calculus. R :=!c(x).c′〈x〉 does not work. Consider,
e.g., P := c〈n〉.a〈n〉. Then νc.(P |R) ↓a but P{c′/c} 6 ↓a. With respect to �,
however, we can have relays (P{c′/c} � νc.(P |R)).
Why are relays important? One reason is whether a dummy adversary exists.
Such a dummy adversary is an adversary that forwards all messages on NET-
channels from the protocol to the environment and vice versa. (So, essentially,
a relay.) The existence of the dummy adversary is used implicitly or explicitly
in most structural theorems (reflexivity, transitivity, concurrent composition).
In fact, it seems that when using observational equivalence in [54], one would
not even have reflexivity.
We get around this problem by using a slightly different definition of adver-
saries/simulators (Definition 9). In our setting, a dummy can be trivially
constructed as (0, ϕ,∅) where ϕ just renames the protocol’s NET-channels to
the NET-channels that the environment expects the messages on. This sim-
ple trick obviates the need for using relays in the construction of the dummy
adversary.

68 2. Symbolic Universal Composability

• The second problem is that one does not get a composition theorem that
guarantees P ≤SS Q =⇒ !P ≤SS !Q when using observational equivalence.
However, we believe that this is a natural limitation because we can show
that property preservation does not even hold for equivalence-based security
properties that replicate the protocol. Thus we cannot expect to get such a
composition theorem and simultaneously have property preservation for equiv-
alence properties. We get around this problem by defining a different notion
of concurrent composition, using the !! operator (see Section 2.4).

• Finally, the non-existence of relays is a problem when proving the security of
concrete protocols P ≤ F : A typical thing a simulator has to do is to take
a message m on a NET-channel and somehow rewrite it (e.g., to enc(k,m))
before sending it on to the environment. This, of course, is a generalization
of the concept of a relay. Thus, if relays are impossible, we can hardly expect
to construct sensible simulators. This, however, is not true if we pay some
attention in the definition of the functionality and obey the following guideline:

Guideline: When designing a functionality, use different names
for all NET-channels and, whenever sending something on a NET-
channel C, use C〈T 〉|P ′ instead of C〈T 〉.R.

In these cases, R :=!c(x).c′〈x〉 will usually work as a relay (e.g., νc.(P |R) ≈
P{c′/c} for P := c〈n〉|a〈n〉).

2.7 Example: Secure channels
In this section we apply symbolic UC hands on. We illustrate how our results from

Section 2.4 can be usefully applied in practice to construct a secure channel from
the widely known NSL protocol and a PKI. Furthermore, when extending the secure
channel to multiple sessions, we present an example for a joint state, i.e., multiple
instances of one protocol that jointly use one instance of another functionality. While
the original UC model of Canetti [36] requires an additional theorem to handle joint
states [39], we can directly use !! in our case. We used Proverif11 for our proofs as
much as possible to show how it helps with the verification of various properties in
the context of symbolic UC.
In this section, we only consider an example where we assume all parties to be

honest (as the goal of secure channels is to protect from an outside adversary). For
an example with corruption, see Section 2.8.
We first define the symbolic model used in this section. The constructors are:

penc/3, pk/1, sk/1, senc/3, (·, ·), hash/1, and empty/0, representing public-key en-
cryption, public and secret keys, symmetric encryption, pairs, hashing, and empty
messages, respectively. Encryption has a third argument modeling randomness used
for encrypting. More specifically, penc(pk(k),m, r) models a public key encryption
using key pk(k), plaintext m, and randomness r, and senc(k,m, r) a symmetric en-
cryption using key k, plaintext m, and randomness r. We believe that senc without
the additional randomness argument r would also work in our setting. However, we
introduce this additional nonce to help Proverif, which can then better distinguish
ciphertexts (e.g., the proof of secchan-sc2.pv fails without r due to Proverif’s
overapproximation technique). We have no equations in our theory.
11Version 1.86pl4

2.7. Example: Secure channels 69

fun senc/3. (* senc(key,msg,rand) *)
reduc sdec(k,senc(k,m,r)) = m.
fun empty/0.
fun hash/1.
fun pk/1.
fun sk/1.
fun penc/3. (* penc(pk,msg,rand) *)
reduc pdec(sk(k),penc(pk(k),m,r)) = m.
reduc pkofsk(sk(k)) = pk(k).
reduc pkofenc(penc(p,m,r)) = p.

Figure 2.7: Key-exchange example: Proverif code for the symbolic model
(secchan-model.pv, see [29])

Furthermore we have the destructors pdec/2, sdec/2, pkofsk/1, and pkofenc/1,
modeling public-key decryption, symmetric decryption, extraction of a public key
from a secret key, and extraction of a public key from a ciphertext. (The latter two
are not needed in our protocols, but we provide them to make the adversary more
realistic.) The behavior of the destructors is specified by the following rewrite rules:

pdec(sk(x), penc(pk(x), y, z))→ y

sdec(x, senc(x, y, z))→ y

pkofsk(sk(x))→ pk(x)
pkofenc(penc(x, y, z))→ x

The Proverif code for this symbolic model is given in Figure 2.7.

2.7.1 Key exchange using NSL
With the symbolic model set up we next show how to tailor a UC-secure key

exchange from NSL using a PKI functionality FPKI . Towards this goal we model the
ideal key exchange functionality FKE , the PKI FPKI and the NSL protocol based on
FPKI as follows:

Definition 29 (Key exchange functionality).

FKE := νk.netdelA().ioka〈k〉 | netdelB().iokb〈k〉

Definition 30 (Public key infrastructure functionality).

FPKI := νkakb.iopkeA〈(sk(ka), pk(ka), pk(kb))〉
| iopkeB〈(sk(kb), pk(ka), pk(kb))〉
| netpke〈(pk(ka), pk(kb))〉

70 2. Symbolic Universal Composability

Definition 31 (Needham-Schroeder-Lowe).

NSLA := iopkeA((xsk ,_, xpkB)).νna.νr1.

netnslA〈penc(xpkB , na, r1)〉.netnslA(xc).
let (=na, xnb ,=B) = pdec(xsk , xc) in

νr2.netnslA〈penc(xpkB , xnb , r2)〉.
ioka〈hash((na, xnb))〉

NSLB := iopkeB((xsk , xpkA ,_)).netnslB(xc).
let xna = pdec(xsk , xc) in

νnb.νr.netnslB〈penc(xpkA , (xna , nb, B), r)〉.
netnslB(x′c).if nb = pdec(xsk , x

′
c) then

iokb〈hash((xna , nb))〉
NSL := νiopkeAiopkeB.(NSLA | NSLB | FPKI)

The differences to the original NSL protocol [66] are: The original protocol in-
cludes A’s identity in the first message, and the original protocol does not specify
what to do with the nonces na, nb, while we use them to derive a key hash((na, nb)).
Also, [66] also presents an extended version of the protocol that explicitly commu-
nicates with a server S for getting the keys for Alice and Bob. We could get this
extended protocol by proving that this retrieval protocol implements FPKI , and then
composing our NSL protocol with the retrieval protocol.
We can now state the first result of this section, namely that the NSL is a UC-

secure realization of FKE .

Lemma 36. NSL ≤ FKE .

Proof. Let NSL′A be NSLA without the initial iopkeA((xsk ,_, xpkB)). NSL′B anal-
ogously. And NSL′′A := NSL′A{netdelA/ioka, sk(ka)/xsk , pk(kb)/xpkB} and NSL′′B :=
NSL′B{netdelB/iokb, sk(kb)/xsk , pk(ka)/xpkA}.
We have

NSL ≡ νiopkeAiopkeBkakb.
(
iopkeA((xsk ,_, xpkB)).NSL′A | iopkeA((xsk , xpkA ,_)).NSL′B

| iopkeA〈(sk(ka), pk(ka), pk(kb))〉 | iopkeB〈(sk(kb), pk(ka), pk(kb))〉
| netpke〈(pk(ka), pk(kb))〉

)
(v)
≈ νkakb.

(
let (xsk ,_, xpkB) = (sk(ka), pk(ka), pk(kb)) in NSL′A

| let (xsk , xpkA ,_) = (sk(kb), pk(ka), pk(kb)) in NSL′B | netpke〈(pk(ka), pk(kb))〉
)

(vi)
≈ νkakb.

(
NSL′A{sk(ka)/xsk , pk(kb)/xpkB} | NSL′B{sk(kb)/xsk , pk(ka)/xpkA}

| netpke〈(pk(ka), pk(kb))〉
)

(vii)
≈ νnetdelAnetdelBkakb.

(
NSL′′A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| netdelA(x).ioka〈x〉 | netdelB(x).iokb〈x〉
)

(viii)
≈ νnetdelAnetdelBkakb.

(
NSL′′A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| νk.(netdelA(x).ioka〈x〉 | netdelB(x).iokb〈x〉)
)

=: NSL1

2.7. Example: Secure channels 71

Here (v) uses two consecutive applications of Lemma 5, the first with n := iopkeA
and C := 2 and t := (sk(ka), pk(ka), pk(kb)), and the second with n := iopkeB and
C := 2 and t := (sk(kb), pk(ka), pk(kb)). Remember also that iopkeA((xsk ,_, xpkB))
is syntactic sugar for iopkeA(x).let (xsk ,_, xpkB) = x.
And (vi) uses two consecutive applications of Lemma 4 (v) and the fact that ≈ is

closed under evaluation contexts.
And (vii) uses two applications of Lemma 5 (both in the opposite direction), the

first with n := netdelA, Q := ioka〈x〉, and t := H((na, xnb)), and the second with
n := netdelB, Q := iokb〈x〉, and t := H((xna , nb)).
And (viii) uses Lemma 4 (i) to add νk.
Using Proverif, we can show the following observational equivalence:

NSL1
(∗)
≈ νnetdelAnetdelBkakb.(NSL′′A | NSL′′B | netpke〈(pk(ka), pk(kb))〉 | FKE)
≡ νnetdelAnetdelB.(FKE |S)

for S := νkakb.(NSL′′A|NSL′′B|netpke〈(pk(ka), pk(kb))〉). The Proverif code for checking
(∗) is given in Figure 2.8.
Hence NSL ≤ FKE .

2.7.2 Secure channel from key exchange.
Next, we realize a secure channel. Since we already have a realization of a secure

key exchange at hand, we realize the secure channel SC from the idealized key
exchange FKE . Later we replace FKE by NSL. We model FSC and SC based on FKE
as follows:

Definition 32 (Secure channel). 12

FSC := netscstart().ioA(x).(netnotify〈〉 | netdeliver().ioB〈x〉)

Definition 33 (Secure channel protocol).

SCA := ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉
SCB := iokb(xk).netB(xc).let xm = sdec(xk, xc) in ioB〈xm〉

SC := νiokaiokb.(SCA|SCB|FKE)

Lemma 37. SC ≤ FSC .

Proof. We have:

SC ≡ νiokaiokbk.
(
ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉 | iokb(xk).netB(xc).

let xm = sdec(xk, xc) in ioB〈xm〉 | netdelA().ioka〈k〉 | netdelB().iokb〈k〉
)

(∗)
≈ νk.

(
netdelA().ioA(xm).νr.netA〈senc(k, xm, r)〉 | netdelB().netB(xc).

let xm = sdec(k, xc) in ioB〈xm〉
)
=: SC1

Here (∗) uses two consecutive applications of Lemma 5, the first with n := ioka and
C := netdelA().2 and t := k, and the second with n := iokb and C := netdelB().2
12This definition was already given in Section 2.5 (Definition 26) and is repeated here for conve-

nience.

72 2. Symbolic Universal Composability

free B, netnsla, netnslb, netpke.
free ioka, iokb.

let A =
new na;
new r1;
out(netnsla,penc(pk(kb),na,r1));
in(netnsla,xc);
let (=na,xnb,=B) = pdec(sk(ka),xc) in
new r2;
out(netnsla,penc(pk(kb),xnb,r2));
out(netdela,hash((na,xnb))).

let B =
in(netnslb,xc);
let xna = pdec(sk(kb),xc) in
new nb;
new r;
out(netnslb,penc(pk(ka),(xna,nb,B),r));
in(netnslb,xc2);
if nb = pdec(sk(kb),xc2) then
out(netdelb,hash((xna,nb))).

let KE =
new k;
(in(netdela,x);out(ioka,choice[x,k])) |
(in(netdelb,x);out(iokb,choice[x,k])).

process
new netdela; new netdelb;
new ka; new kb; (A | B | out(netpke,(pk(ka),pk(kb))) | KE)

Figure 2.8: Key-exchange example: Proverif code for analyzing NSL
(secchan-nsl.pv, see [29]). (Has to be prefixed with the code
from Figure 2.7.)

2.7. Example: Secure channels 73

and t := k. (And it uses Lemma 1, so that we can apply Lemma 5 to a subprocess
instead of the whole process.)
We show next:

SC1 ≈ νs k.
(
netdelA().ioA(xm).νr.(!(s, senc(k, xm, r))〈xm〉 | netA〈senc(k, xm, r)〉) |

netdelB().netB(xc).let xm = sdec(k, xc) in (s, xc)(x′m).ioB〈xm〉
)

=: SC2

By Lemma 9, to show the above it is sufficient to show that the trace property
end()⇒ start() holds in the following event process:

νk.
(
netdelA().ioA(xm).νr.event start(senc(k, xm, r)).netA〈senc(k, xm, r)〉 |

netdelB().netB(xc).let xm = sdec(k, xc) in event end(xc).ioB〈xm〉
)
.

We show this trace property using Proverif, the required code is given in Figure 2.9.
Note: We could also have shown an analogous observational equivalence with s

instead of (s, senc(k, xm, r)). Then, however, Proverif fails on the code given in
Figure 2.10 because it does not see there is only one message xm sent over the
channel. Thus, it believes that different xm could be confused. Adding xc to the
channel name helps Proverif to see that xm is unique (since xc already determines
xm).
Since we send the message xm directly to Bob via the channel (s, ·) (who receives

it as x′m), we can let Bob output the message x′m received over that channel instead
of using the decrypted value xm. Since then the plaintext of the ciphertext xc is then
not used any more, we can encrypt empty instead of xm (as the adversary cannot
tell the difference). Formally, we show the following observational equivalence:

SC2 ≈ νs k.(netdelA().ioA(xm).νr.(!(s, senc(k, empty, r))〈xm〉|netA〈senc(k, empty, r)〉)
| netdelB().netB(xc).let xm = sdec(k, xc) in (s, xc)(x′m).ioB〈x′m〉) =: SC3.

We show this observational equivalence using Proverif, the required code is given in
Figure 2.10.
Then we move the restriction νr to the top and replace the channel

(s, senc(k, empty, r)) by s:

SC3
(∗)
≈ νs k r.(netdelA().ioA(xm).(!(s, senc(k, empty, r))〈xm〉 | netA〈senc(k, empty, r)〉)
| netdelB().netB(xc).let xm = sdec(k, xc) in (s, xc)(x′m).ioB〈x′m〉)

(∗∗)
≈ νs k r.(netdelA().ioA(xm).(!s〈xm〉 | netA〈senc(k, empty, r)〉) |

netdelB().netB(xc).let xm = sdec(k, xc) in s(x′m).ioB〈x′m〉) =: SC4

Here (∗) follows from Lemma 4 (ii), and (∗∗) is proven using Proverif. The required
code is given in Figure 2.11.

74 2. Symbolic Universal Composability

free ioa. (* A-input of F_SC *)
free iob. (* B-output of F_SC *)
free neta. (* A-end of insecure channel in P_SC *)
free netb. (* B-end of insecure channel in P_SC *)
free netdela, netdelb.

query ev:end(x) ==> ev:start(x).

let PA =
in(netdela,x);
in(ioa,xm);
new r;
event start(senc(k,xm,r));
out(neta,senc(k,xm,r)).

let PB =
in(netdelb,x);
in(netb,xc);
let xm=sdec(k,xc) in
event end(xc);
out(iob,xm).

process
new k;
PA | PB

Figure 2.9: Key-exchange example: Proverif code for analyzing the trace property of
SC (secchan-sc1.pv, see [29]). (Has to be prefixed with the code from
Figure 2.7.)

2.7. Example: Secure channels 75

free ioa. (* A-input of F_SC *)
free iob. (* B-output of F_SC *)
free neta. (* A-end of insecure channel in P_SC *)
free netb. (* B-end of insecure channel in P_SC *)
free netdela, netdelb.

let PA =
in(netdela,x);
in(ioa,xm);
new r;
(!out((s,senc(k,choice[xm,empty],r)),xm)) |
out(neta,senc(k,choice[xm,empty],r)).

let PB =
in(netdelb,x);
in(netb,xc);
let xm=sdec(k,xc) in
in((s,xc),xm2);
out(iob,choice[xm,xm2]).

process
new s;
new k;
PA | PB

Figure 2.10: Key-exchange example: Proverif code for analyzing the observation
equivalence in SC (secchan-sc2.pv, see [29]). (Has to be prefixed
with the code from Figure 2.7.)

76 2. Symbolic Universal Composability

free ioa. (* A-input of F_SC *)
free iob. (* B-output of F_SC *)
free neta. (* A-end of insecure channel in P_SC *)
free netb. (* B-end of insecure channel in P_SC *)
free netdela, netdelb.

let PA =
in(netdela,x);
in(ioa,xm);
(!out(choice[(s,senc(k,empty,r)),s],xm)) |
out(neta,senc(k,empty,r)).

let PB =
in(netdelb,x);
in(netb,xc);
let xm=sdec(k,xc) in
in(choice[(s,xc),s],xm2);
out(iob,xm2).

process
new s;
new k;
new r;
PA | PB

Figure 2.11: Key-exchange example: Proverif code for analyzing the second observa-
tion equivalence in SC (secchan-sc3.pv, see [29]). (Has to be prefixed
with the code from Figure 2.7.)

2.7. Example: Secure channels 77

We continue:

SC4
(∗)
≈ νnetdeliver k r.(netdelA().ioA(xm).(netdeliver().ioB〈xm〉 | netA〈senc(k, empty, r)〉)
| netdelB().netB(xc).let xm = sdec(k, xc) in netdeliver〈〉)

(∗∗)
≈ νnetdeliver k r netnotify.(netdelA().ioA(xm).(netdeliver().ioB〈xm〉 | netnotify〈〉) |

netdelB().netB(xc).let xm = sdec(k, xc) in netdeliver〈〉 |
netnotify().netA〈senc(k, empty, r)〉)

≡ νnetdeliver netnotify.(FSC{netdelA/netscstart}|S)
with S := νkr.netdelB().netB(xc).let xm = sdec(k, xc) in netdeliver〈〉

| netnotify().netA〈senc(k, empty, r)〉

Here (∗) uses Lemma 6 with Q := ioB〈x′m〉, x := x′m, n := s, and m := netdeliver .
And (∗∗) uses Lemma 5 with Q := netA〈senc(k, empty, r)〉, n := netnotify, t :=

empty.
So SC ≈ νn.(FSCσ|S) for σ := {netdelA/netscstart} and n := netdeliver netnotify.

Hence SC ≤ FSC .

With NSL ≤ FKE (Lemma 36) and SC ≤ FSC (Lemma 37) at hand we can now
use the compositional capabilities of UC: We define an evaluation context C[2] :=
νiokaiokb.(SCA|SCB|2) where SCA and SCB are the processes from Definition 33.
Since C meets the requirements of Theorem 1 NSL ≤ FKE implies C[NSL] ≤ C[FKE].
Since C[FKE] = SC and SC ≤ FSC we have, by transitivity of ≤ (Lemma 12),
C[NSL] ≤ FSC .
We did construct a secure channel from a PKI using the NSL protocol. More

interesting than this result is the way we achieved it: We did not have to analyze
the complete system C[NSL] in one piece but could replace the NSL protocol with an
idealized functionality. This illustrates two striking advantages of the UC approach:
• The fact that NSL realizes an ideal key exchange can be re-used for security

proofs of further systems.
• We cannot only plug NSL into C but any protocol that realizes a secure key

exchange (e.g., if no PKI is available and thus NSL is not an option).
Instead of one monolithic security proof for C[NSL] we end up with smaller proofs
and results which can be used flexibly. Furthermore, to split the security analysis
of a complex system into smaller parts might be the only feasible option to tackle
it at all.

2.7.3 Generating many keys from one
While the example until now illustrates composition and the power of UC, C[NSL]

only realizes a single-use secure channel. To transfer multiple messages, we could
just use concurrent composition to have !!C[NSL] ≤ !!FSC . However, the resulting
protocol uses one instance of NSL per message, and – since NSL contains FPKI ,
another PKI for each message that is sent. This is clearly unrealistic. To get rid
of this overhead we want to have all the instances of SC to jointly use just one key
exchange FKE , i.e., we want to use the previously mentions joined state technique
here. Towards this goal we model a wrapper protocol KE∗ which uses one key
exchange to emulate multiple key exchanges (from a key k it derives session keys
hash((sid, k)) where sid is the session id). Formally, we define KE∗ as follows and
then show KE∗ ≤ !!FKE .

78 2. Symbolic Universal Composability

Definition 34.

KE∗A := io′ka(xk).!!xsid ioka〈hash((xsid , xk))〉
KE∗B := io′kb(xk).!!xsid iokb〈hash((xsid , xk))〉
KE∗ := νio′kaio′kb.(KE∗A | KE∗B | F ′KE)

where F ′KE := FKE{io′ka/ioka, io′kb/iokb}.

Lemma 38. KE∗ ≤ !!FKE .

Proof. Let S := netdelA().!!net ′delA〈〉 | netdelB().!!net ′delB〈〉. Here we use the shorthand
t〈〉 for t〈empty〉. Let n := net ′delAnet ′delB. Let σ := {net ′delA/netdelA, net ′delB/netdelB}.
We have

KE∗
(i)
≈ νk.netdelA().!!xsid ioka〈hash((xsid , k))〉 | netdelB().!!xsid iokb〈hash((xsid , k))〉
(ii)
≈ νk.netdelA().!!xsidνnet ′delA.(net ′delA〈〉 | net ′delA().ioka〈hash((xsid , k))〉)
| netdelB().!!xsidνnet ′delB.(net ′delB〈〉 | net ′delB().iokb〈hash((xsid , k))〉)

(iii)
≈ νk.νnet ′delA.netdelA().(!!xsid net ′delA〈〉 | !!xsid net ′delA().ioka〈hash((xsid , k))〉)
| νnet ′delB.netdelB().(!!xsid net ′delB〈〉 | !!xsid net ′delB().iokb〈hash((xsid , k))〉)

(iv)
≈ νk.νnet ′delA.(netdelA().!!xsid net ′delA〈〉 | !!xsid net ′delA().ioka〈hash((xsid , k))〉)
| νnet ′delB.(netdelB().!!xsid net ′delB〈〉 | !!xsid net ′delB().iokb〈hash((xsid , k))〉)

(v)
≈ νn.

(
νk.!!xsid

(
net ′delA().ioka〈hash((xsid , k))〉 | net ′delB().iokb〈hash((xsid , k))〉

)
| S
)

(vi)
≈ νn.(!!xsidνk.(net ′delA().ioka〈k〉 | net ′delB().iokb〈k〉) | S)
= νn.(!!FKE σ | S)

Here (i) uses two application of Lemma 5, the first with C := netdelA().2, n := io′ka,
and t := k, the second with C := netdelB().2, n := io′kb, and t := k. (And it
uses Lemma 1, so that we can apply Lemma 5 to a subprocess instead of the whole
process.)
And (ii) uses Lemma 5 with C := 2 to show ioka〈hash((xsid , k))〉 ∼∼∼

νnet ′delA.(net ′delA〈〉 | net ′delA().ioka〈hash((xsid , k))〉 and iokb〈hash((xsid , k))〉 ∼∼∼
νnet ′delB.(net ′delB〈〉 | net ′delB().iokb〈hash((xsid , k))〉.
And (iii) uses Lemma 4 (ii) and Lemma 33 and Lemma 32.
And (iv) uses the following claim (proven below) twice. First with n := net ′delA,

m := netdelA, Q := ioka〈hash((xsid , k))〉. Then with n := net ′delB, m := netdelB,
Q := iokb〈hash((xsid , k))〉.

Claim 4. For names n,m, and for any process Q, we have νn.m().(!!xn〈〉 | !!xn().Q) ≈
νn.((m().!!xn〈〉) | !!xn().Q).

(Intuitively, this claim holds because !!xn().Q cannot perform any observable ac-
tions until !!xn〈〉 is executed. So it makes no difference whether both !!xn().Q and
!!xn〈〉 wait for the input on m to occur, or whether only !!xn().Q waits for it.)
And (v) follows from the definition of ≡ and Lemma 33.
Finally, (vi) follows from the following claim (proven below):

Claim 5. For any process P , we have νk.!!xP{hash((x, k))/k} ≈ !!xνk.P .

2.7. Example: Secure channels 79

Thus we have derived KE∗ ≈ νn.(!!FKE σ | S). This shows KE∗ ≤ !!FKE . It
remains to show the two claims.

To show Claim 4, consider the following relation:

R :=
{
E[νn.m().(

∏
x∈SID

n〈〉 |
∏

x∈SID
n().Q((x)))],

E[νn.(m().
∏

x∈SID
n〈〉 |

∏
x∈SID\S

n().Q((x)) |
∑
x∈S

n().Q((x)))]
}
∪ ≈

up to structural equivalence. Here E ranges over evaluation contexts, and S over
finite subsets of SID. n,m,Q are from the statement of the lemma. ∑x∈S P stands
short for P{s1/x}| . . . |P{sk/x} with S =: {s1, . . . , sk}. I.e., ∑x∈S is almost the
same as ∏x∈S, except that

∑
x∈S is syntactic sugar (and only makes sense for finite

S) while ∏x∈S is a proper construct in the syntax of product processes.
We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M , then B ↓M :
In the case A ≈ B, the statement is immediate. We can thus assume A ≡
E[νn.m().(∏x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().∏x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) | ∑x∈S n().Q((x)))].
In the argument to E, there are no unprotected outputs. Thus the output on
M is in E and thus B ↓M trivially follows.

• If (A,B) ∈ R and B ↓M , then A ↓M : Analogous to the previous case.

• If (A,B) ∈ R and A→ A′, then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:
In the case A ≈ B, the statement is immediate. We can thus assume A ≡
E[νn.m().(∏x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().∏x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) | ∑x∈S n().Q((x)))].
If A → A′ is a reduction within E, then let B → B′ be the corresponding
reduction, and then (A′, B′) ∈ R.
Otherwise, A → A′ is a communication on m between E and the input m()
in its argument, hence A′ ≡ E ′[νn.(∏x∈SID n〈〉 |

∏
x∈SID n().Q((x)))]. And

B → B′ := E ′[νn.(∏x∈SID n〈〉 |
∏
x∈SID\S n().Q((x)) | ∑x∈S n().Q((x)))].

From Lemma 4 (ix), we have A′ ≈ B′, hence (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′, then there is a A′ with A→∗ A′ and (A′, B′) ∈ R:
In the case A ≈ B, the statement is immediate. We can thus assume A ≡
E[νn.m().(∏x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().∏x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) | ∑x∈S n().Q((x)))].
If B → B′ is a reduction within E, or if B → B′ is a communication on m
between E and m() in its argument, then the reasoning is as in the previous
case.
Otherwise, we have that B → B′ is a reduction of the second product, i.e.
B′ ≡ E[νn.(m().∏x∈SID n〈〉 |

∏
x∈SID\S′ n().Q((x)) | ∑x∈S′ n().Q((x)))] with

S ′ := S \ {t} for some t ∈ SID \ S. Then (A′, B′) ∈ R with A′ := A.

80 2. Symbolic Universal Composability

• If (A,B) ∈ R, then (E[A], E[B]) ∈ R:
Immediate from the definition of R.

The statement of the claim is equivalent to

P1 := νn.m().
(∏
x∈SID

n〈〉 |
∏

x∈SID
n().Q((x))

)
≈ νn.

(
(m().

∏
x∈SID

n〈〉) |
∏

x∈SID
n().Q((x))

)
=: P2.

And this follows from the fact that R is a bisimulation since (P1, P2) ∈ R. Thus
Claim 4 is shown.

To show Claim 5, consider the following relation:

R :=
{(
νnk.Qσ |

∏
x∈S

P{hash((x, k))/k}, νn kσ.Q |
∏
x∈S

νk.P
)}

up to structural equivalence. Here k /∈ fn(S) is an arbitrary name, S ⊆ SID is a set
of terms, σ is a (finite) substitution mapping names to distinct (with respect to =E)
terms hash((t, k)) with t ∈ SID \ S, kσ = dom σ, kσ ∩ fn(P, S) = ∅, n is a list of
names, and Q is an arbitrary process with k /∈ fn(Q).
We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M then B ↓M :
Since k and kσ are bound names, we have that M does not contain either of
them. But only terms containing k or kS are different in A and B. Thus B ↓M .

• If (A,B) ∈ R and B ↓M then A ↓M :
Analogous.

• If (A,B) ∈ R and A→ A′, then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:
If the reduction is ∏

x∈S P{hash((x, k))/k} → P{hash((t, k))/k, t/x} |∏
x∈S′ P{hash((x, k))/k} with S ′ := S \ {t}, then we have B →∗ B′ and

(A′, B′) ∈ R with B′ := νnkσ′ .Q | P{kt/k, t/x} |
∏
x∈S′ νk.P and σ′ :=

σ ∪ {kt 7→ H((t, k))} for some fresh name kt. Notice that the terms in the
range of σ′ are still distinct because S ⊆ SID contains only distinct terms, and
t ∈ SID \ S.
If the reduction is a reduction of Qσ → Q′, then it is easy to see (by checking,
in particular, for all destructors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that
Q → Q′σ−1. From this it follows that B →∗ B′ and (A,B) ∈ R with B′ :=
νn kσ.Q

′σ−1 | ∏x∈S νk.P .

• If (A,B) ∈ R and B → B′, then there is a A′ with A→∗ A′ and (A′, B′) ∈ R:
If the reduction is ∏x∈S νk.P → νk.P{t/x} | ∏x∈S′ νP with S ′ := S \{t}, then
we have (A′, B′) ∈ R with A′ := νnk.(Q | P{H((t, k))/k})σ |∏
x∈S′ P{H((x, k))/k} and B′ ≡ νnkσ′ .Q | P{kt/k} |

∏
x∈S′ νk.P and σ′ :=

σ ∪ {kt 7→ H((t, k))} and some fresh name kt. Notice that the terms in the
range of σ′ are still distinct because S ⊆ SID contains only distinct terms, and
t ∈ SID \ S.

2.8. Virtual primitives 81

If the reduction is a reduction of Q→ Q′, then it is easy to see (by checking,
in particular, for all destructors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that
Qσ → Q′σ. From this it follows that (A,B) ∈ R with A′ := νnk.Q′σ |∏
x∈S P{hash((x, k))/k}.

• If (A,B) ∈ R and E is an evaluation context, then (E[A], E[B]) ∈ R:
Then A = νnk.Qσ | ∏x∈S P{hash((x, k))/k} and B = νn kσ.Q |

∏
x∈S νk.P .

Without loss of generality, k, kσ /∈ fn(E)∪ fn(E). (Otherwise we could replace
k, kσ by other names in A,B.) There is a process Q′ and a list of names n′
such that E[P] ≡ νn′.(P |Q′) for all P . Then (E[A], E[B]) ≡(
νn′ nk.(Q|Q′)σ |

∏
x∈S

P{hash((x, k))/k}, νn′ n kσ.(Q|Q′) |
∏
x∈S

νk.P
)
∈ R.

Since (νk.∏x∈SID P{hash((x, k))/k},∏x∈SID νk.P) ∈ R, we have
νk.!!xP{hash((x, k))/k} ≈ νk.

∏
x∈SID P ((x)){hash((x, k))/k} ≈ ∏

x∈SID νk.P ((x)) ≈
!!νk.P . This shows Claim 5.

Analogously to the single session case we define a suitable context C∗ by replacing
F ′KE in KE∗ with 2 and have

C∗[NSL] ≤ C∗[F ′KE] = KE∗ ≤ !!FKE

Furthermore, !!SC ≈ νiokaiokb.(!!SCA|!!SCB|!!FKE) (by Lemmas 32,33). Hence

νiokaiokb.(!!SCA|!!SCB|C∗[NSL])
≤ νiokaiokb.(!!SCA|!!SCB|!!FKE)
≤ !!SC ≤ !!FSC .

Finally, we have a protocol which realizes multiple secure channels while invoking
the NSL protocol and using only one PKI.

2.8 Virtual primitives
In this section, we present a technique for deriving security of protocols in the

symbolic UC model that is specific to the symbolic model. No analogue in the com-
putational world seems to exist. The idea is the following: When constructing UC
secure protocols, it is often necessary to include specific “trapdoors” that allow the
simulator to extract or modify certain information. For example, when constructing
a simulator for a commitment scheme, we need to include in the protocol some way
for the simulator to extract the value of the commitment when given a commitment
by the environment (extractability), or to change the content of a commitment when
producing a commitment for the environment (equivocality), see [37]. These addi-
tional trapdoors often make the protocols more complex, and they often also need
more complex cryptographic primitives. A simple commitment protocol in which
the committer just sends hash(m, r) for message m and randomness r is not UC se-
cure because the simulator cannot extract or equivocate. Instead, one would need to
assume a special hash function that takes an additional parameter crs (the common
reference string) hash(crs,m, r) in such a way that given a suitably chosen “fake”
crs, one can find collisions in hash or extract m from hash(crs,m, r). With such
a hash function, one can construct a UC secure commitment relatively easily (see

82 2. Symbolic Universal Composability

Definition 37 below). However, now our protocol uses a considerably more complex
primitive than a simple hash function. And certainly common hash functions such
as SHA-3 do not have these properties.
This leads to a strange situation: We have a protocol that we can only prove

secure using a hash function that has additional weaknesses (namely that given a
“bad” crs, one can cheat). One might be tempted to state that if the protocol
is secure for such weak hash functions, it should in particular be secure for good
hash functions. Unfortunately, such reasoning does not work in the computational
setting: We cannot just remove the existence of trapdoors from the hash function
– if we do so, we have a completely different hash function and our security proof
makes no claims about that function.
In the symbolic world, things are different. Here it turns out that we can indeed

first analyze a protocol using a hash function with trapdoors, and then remove these
trapdoors in a later step, still preserving security. We call this approach the “virtual
primitives” approach, because we use primitives (in this example a hash function
with trapdoors) that do not need to actually exist, and that are removed in the final
protocol.
In a nutshell, the virtual primitives approach when trying to realize a functional-

ity F (e.g., a commitment) works as follows:
• First, identify a symbolic model Mreal containing cryptographic primitives

(e.g. a hash function) that should be used in the final protocol.
• Extend Mreal by additional constructors, destructors, or equality rules, call

the resulting modelMvirt . The extensionMvirt should be “safe” in the sense
that inMvirt an adversary will have at least as much power as inMreal (this
will be made formal in Section 2.8.2).
• Design a protocol P . Show that P emulates F with respect toMvirt .
• Compose P with other protocols, leading to a complex protocol C[P] ≤
C[F] ≤ G (with respect to Mvirt) where G is some desired final goal, e.g.,
some crypto-heavy voting protocol.
• Property preservation guarantees that any property ℘ that holds for G also

holds for C[P] (with respect to Mvirt). Since Mvirt only makes adversaries
stronger, ℘ also holds for C[P] with respect toMreal .
• Summarizing, we have constructed a protocol C[P] in a modular way such

that C[P] uses the symbolic modelMreal (without any trapdoors) and has all
the security properties of the functionality G.

The virtual primitive approach is not limited to commitments. But in the following
sections, we illustrate it in the case of a commitment protocol. Note however, that
the main theorem that allows us to conclude that Mvirt-security implies Mreal-
security is formulated for general safe extensions.
A few words are in order why the virtual primitives approach works in the sym-

bolic setting. What is the specific property of the symbolic model – in contrast to
the computational one – that makes it possible? In our interpretation, this is due
to the fact that a primitive (like hashes) in the symbolic world is a concrete object
(i.e., a particular constructor with certain reduction rules and equalities) while in
the computational world it is a class of objects (hash functions) that are described by
some negative properties (“functions such that the adversary cannot. . . ”). Therefore
in the symbolic world, it is possible to formally compare executions using different
kinds of a primitive (e.g., hashes with and without trapdoors); executions in one
setting can be mapped into executions in the other setting by rewriting the terms

2.8. Virtual primitives 83

sent around. In contrast, in the computational setting, this is not possible: a secu-
rity result for hash functions with trapdoors has no implications for hash functions
without trapdoors – these two are completely different mathematical functions on
bitstrings, and it is not possible to rewrite an execution that uses one hash function
into an execution using another (in particular if the adversary makes his actions
depend on individual bits of the hashes). This difference between the symbolic and
the computational setting seems to be the reason why virtual primitives work in the
symbolic setting.

Related approaches in the computational model.
Although virtual primitives as described above are restricted to the symbolic set-

ting, somewhat related techniques do exist in the computational model. [69, 12]
show how to circumvent UC impossibility results (such as the impossibility of OT,
commitment, or general multi-party computation without trusted setup) by giving
the simulator additional power. Namely the simulator is allowed to run in (slightly)
superpolynomial time. This is in some sense similar to giving the simulator access
to additional constructors/destructors for extraction/equivocation as we do. Yet,
there are three crucial differences to our setting: First, they can only use primitives
that can actually exist computationally. For example, even a superpolynomial-
time simulator cannot invert a fixed-length hash function, as part of the input is
information-theoretically lost. In contrast, we can add arbitrary properties to, e.g.,
hash functions by introducing new equations in the symbolic model. Second, their
final protocols have to use whatever primitives have been introduced for proof pur-
poses; it is not possible to remove additional properties in the end as done in our
approach. Third, their protocols involve advanced cryptographic techniques which
makes the protocols considerably more involved and, consequently, inefficient. On
the other hand, of course, protocols designed with our techniques are only proven
secure in the symbolic model but lack a proof in the computational model – we
believe therefore that our and their approaches are incomparable with respect to
their advantages and disadvantages.

2.8.1 Realizing commitments
For simplicity, we formulate a commitment functionality where the adversary is

not informed that a commitment takes place (when both Alice and Bob are honest).
Of course, such a functionality can only be realized if we assume perfectly secure
channels between Alice and Bob that do not even allow the adversary to notice or
block messages. If our protocols were to use secure channels where the adversary
can notice and block communication, we would instead realize a somewhat weaker
functionality which notifies the adversary13 (the resulting changes in the proof are
orthogonal to the issues of this chapter).

Definition 35 (Commitment). FCOM := iocoma(xm).(iocomb〈〉|ioopena().ioopenb〈xm〉).

Symbolic model.
The symbolic modelMreal has constructors hash/2, empty/0, and (·, ·) (pairs) –

f/n means f has arity n –, has destructors fst, snd, has no equalities, and has the
rewrite rules for fst, snd, equals prescribed by Definition 5. This modelMreal is quite
13Namely, FCOM := iocoma(xm).(netcoma〈〉|netcomb().iocomb〈〉|ioopena().(netopena〈〉|netopenb().

ioopenb〈xm〉))

84 2. Symbolic Universal Composability

fun hash/2.
fun empty/0.
fun fake/3.
fun fakeH/2.
fun crseqv/1.
fun crsext/1.
equation hash(crseqv(n),(m,fake(n,m,r))) = fakeH(n,r).
reduc extract(n,hash(crsext(n),(m,r))) = m.

Figure 2.12: Virtual primitives example: Proverif code for the symbolic model
(virtprim-model.pv, see [29])

standard and does not use any cryptography except hash functions (hash is binary
for convenience only).
As explained above, to construct UC-secure commitments, we need additional

“trapdoors” in our equational theory. LetMvirt be the symbolic modelMreal with
the following additions: Constructors fake/3, fakeH/2, crseqv/1, crsext/1, destruc-
tor extract/2, equation hash(crseqv(xn), (xm, fake(xn, xm, xr))) =E fakeH (xn, xr),
and rewrite rule extract(xn, hash(crsext(xn), (xm, xr)))→ xm.
The Proverif code for this symbolic model is given in Figure 2.12.
Notice that if we have a CRS crseqv(n) and know n, we can open fakeH (n, r) to

arbitrary values. Similarly, if the CRS is crsext(n) and we know n, we can extract
m from hash(crsext(n), (m, r)). These two facts allow us to construct a simulator
that does equivocation and extraction.
Note that we introduced two different CRS-constructors for faking, crsext and

crseqv. It would be tempting to use only one of them, i.e., use the equation
hash(fakecrs(x), (y, fake(x, y, z))) =E fakeH (x, z) and the reduction rule
extract(x, hash(fakecrs(x), (y, z))) → y. But then we would have for any terms
k,m, r that extract(k, fakeH (k, r)) =E extract(k, hash(fakecrs(k), (m, r))) → m, so
by computing extract(k, fake(k, r)) the adversary can derive any term m, thus the
adversary will know all secrets. This is clearly not a sensible symbolic model.

The commitment protocol.

The protocol we construct uses a crs, so we first need to define the crs functionality
FCRS that gives a random non-secret value k to Alice, Bob, and the adversary.

Definition 36 (Common reference string). FCRS := νk.iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉.

Our protocol is then as expected. To commit to a message xm, Alice fetches the
crs xcrs, picks a random r, and sends h := hash(xcrs, (xm, r)) to Bob. To unveil,
Alice sends (xm, r), so that Bob can check whether h indeed contained these values.
We call Alice’s part of the protocol COMA and Bob’s part COMB.

2.8. Virtual primitives 85

Definition 37 (Commitment protocol).

COMA := iocrsa(xcrs).iocoma(xm).
νr.
(
net1〈hash(xcrs, (xm, r))〉

|ioopena().net2〈(xm, r)〉
)

COMB := iocrsb(xcrs).net1(xh).
(
iocomb〈〉|net2((xm, xr)).

if xh = hash(xcrs, (xm, xr)) then ioopenb〈xm〉
)

COM := νiocrsaiocrsbnet1net2.(COMA|COMB|FCRS)

To show that COM is a secure commitment protocol, we need to show the following
lemma (cf. also the discussion on how to model corruptions in Section 2.3):

Lemma 39. With respect toMvirt, we have

(i) Uncorrupted case: COM ≤ FCOM .
(ii) Alice corrupted: νiocrsb.(COMB|FCRS{netcrsa

iocrsa
}) ≤ FCOM{netcoma

iocoma
, netopena

ioopena
}

(iii) Bob corrupted: νiocrsa.(COMA|FCRS{netcrsb
iocrsb
}) ≤ FCOM{netcomb

iocomb
,

netopenb
ioopenb

}.

In the proof, we show the various observational equivalences by a sequence of
rewriting steps on the protocol, interspersed with automated Proverif proofs for the
steps that actually involve the symbolic model (i.e., we do not have to manually deal
with the complex symbolic modelMvirt).

We split this lemma into the following three lemmas:

Lemma 40 (Commitment – uncorrupted case). COM ≤ FCOM .

86 2. Symbolic Universal Composability

Proof.

COM ≡ νiocrsaiocrsbnet1net2 k r. iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉
| iocrsa(xcrs).iocoma(xm).

(
net1〈hash(xcrs, (xm, r))〉 | ioopena().net2〈(xm, r)〉

)
| iocrsb(xcrs).net1(xh).

(
iocomb〈〉|net2((x′m, xr)).

if xh = hash(xcrs, (x′m, xr)) then ioopenb〈x′m〉
)

(i)
≈ ν net1net2 k r. netcrs〈k〉
| iocoma(xm).

(
net1〈hash(k, (xm, r))〉 | ioopena().net2〈(xm, r)〉

)
| net1(xh).

(
iocomb〈〉|net2((x′m, xr)).

if xh = hash(k, (x′m, xr)) then ioopenb〈x′m〉
)

(ii)
≈ ν net2 k r. netcrs〈k〉
| iocoma(xm).

(
iocomb〈〉 | net2((x′m, xr)).

if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x′m〉
| ioopena().net2〈(xm, r)〉

)
(iii)= νnet2 k r. netcrs〈k〉

| iocoma(xm).
(
iocomb〈〉 | net2(xtmp).let (x′m, xr) = z in

if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x′m〉
| ioopena().net2〈(xm, r)〉

)
(iv)
≈ ν k r. netcrs〈k〉
| iocoma(xm).

(
iocomb〈〉 | ioopena(). let (x′m, xr) = (xm, r) in

if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x′m〉
)

(v)
≈ νk r. netcrs〈k〉 | iocoma(xm).

(
iocomb〈〉 | ioopena(). ioopenb〈xm〉

)
≡ FCOM | S with S := νk r.netcrs〈k〉

Here (i) uses two invocations of Lemma 5, one with n := iocrsa, t := k, and x := xcrs,
and one with n := iocrsb, t := k, and x := xcrs.
And (ii) uses one invocation of Lemma 5 with n := net1, x := xh, and t :=

hash(k, (xm, r)).
And (iii) uses the fact that t(p).P is syntactic sugar for t(z).let p = z in P for a

pattern p and a fresh variable z.
And (iv) uses one invocation of Lemma 5 with n := net2, x := xtmp, and t :=

(xm, r). (And it uses Lemma 1, so that we can apply Lemma 5 to a subprocess
instead of the whole process.)
And (v) uses several invocations of Lemma 4 (v) to evaluate the let- and the

if-statement.
So COM ≈ FCOM | S for some S with IO ∩ fn(S) = ∅. Hence COM ≤ FCOM .

Lemma 41 (Commitment – Alice corrupted).
νiocrsb.(COMB|FCRS{netcrsa

iocrsa
}) ≤ FCOM{netcoma

iocoma
, netopena

ioopena
}

2.8. Virtual primitives 87

free netcrs,netcrsa,net1,net2,iocomb,ioopenb.

process
new k;
out(netcrsa,choice[k,crsext(k)]) |
out(netcrs,choice[k,crsext(k)]) |
in(net1,xh);
out(iocomb,empty) |
in(net2,(xm,xr));
if xh = hash(choice[k,crsext(k)],(xm,xr)) then
out(ioopenb,choice[xm,extract(k,xh)])

Figure 2.13: Virtual primitives example: Proverif code for corrupted Alice
(virtprim-acorr.pv, see [29]). (Has to be prefixed with the code from
Figure 2.12.)

Proof. We have

νiocrsb.(COMB|FCRS{netcrsa
iocrsa

})
(i)
≈ νk.netcrsa〈k〉 | netcrs〈k〉 | net1(xh).

(
iocomb〈〉|

net2((xm, xr)).if xh = hash(k, (xm, xr)) then ioopenb〈xm〉
)

(ii)
≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).

(
iocomb〈〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then ioopenb〈extract(k, xh)〉
)

(iii)
≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 |

net1(xh).νnetopena.
(
iocomb〈〉|netopena().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena〈〉
)

(iv)
≈ νnetopena k.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 |

net1(xh).
(
iocomb〈〉|netopena().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena〈〉
)

(v)
≈ νnetcoma netopenak.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 |

net1(xh).
(
netcoma〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena〈〉
)
|

netcoma(x′m).
(
iocomb〈〉|netopena().ioopenb〈x′m〉

)
≡ νnetcoma netopena.(FCOM{netcoma

iocoma
, netopena

ioopena
}|S) for some S with IO ∩ fn(S) = ∅.

Here (i) uses Lemma 5 with n := iocrsb, C := νk.netcrsa〈k〉 | netcrs〈k〉 | 2, x := xcrs,
and t := k.
And (ii) is shown using Proverif, the required code is given in Figure 2.13. Note

that in the rhs of (ii), we have replaced all occurrences of the CRS k by crsext(k),
and instead of outputting xm in the end, we output extract(k, xh).
And (iii) uses Lemma 5 (in the opposite direction) with n := netopena, Q :=

88 2. Symbolic Universal Composability

ioopenb〈extract(k, xh)〉, and C := iocomb〈〉|net2((xm, xr)).if xh = hash(crsext(k),
(xm, xr)) then 2. (And it uses Lemma 1, so that we can apply Lemma 5 to a
subprocess instead of the whole process.)
And (iv) uses Lemma 4 (ii) to swap νnetopena and net1(xh). (And Lemma 1 to

apply Lemma 4 (ii) to a subprocess.)
And (v) uses Lemma 5 (in the opposite direction) with n := netcoma, x := x′m,

t := extract(k, xh), and Q := iocomb〈〉|netopena().ioopenb〈x′m〉.
So we have

νiocrsb.(COMB|FCRS{netcrsa
iocrsa

}) ≈ νnetcomanetopena.(FCOM{
netcoma

iocoma
,
netopena

ioopena
}|S)

for some S with IO ∩ fn(S) = ∅. Hence

νiocrsb.(COMB|FCRS{netcrsa
iocrsa

}) ≤ FCOM{
netcoma

iocoma
,
netopena

ioopena
}

.

Lemma 42 (Commitment – Bob corrupted).
νiocrsa.(COMA|FCRS{netcrsb

iocrsb
}) ≤ FCOM{netcomb

iocomb
,

netopenb
ioopenb

}.

Proof. We have

νiocrsa.(COMA|FCRS{netcrsb
iocrsb
})

(i)
≈ νk.netcrsb〈k〉 | netcrs〈k〉 |

iocoma(xm).νr.
(
net1〈hash(k, (xm, r))〉|ioopena().net2〈(xm, r)〉

)
(ii)
≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma(xm).νr.(

net1〈fakeH (k, r)〉|ioopena().net2〈(xm, fake(k, xm, r))〉
)

(iii)
≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma(xm).νr.

νnetopenb.
(
net1〈fakeH (k, r)〉|ioopena().

netopenb〈xm〉|netopenb(x′m).net2〈(x′m, fake(k, x′m, r))〉
)

(iv)
≈ νnetopenb k r.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma(xm).(

net1〈fakeH (k, r)〉|ioopena().netopenb〈xm〉|netopenb(x′m).net2〈(x′m, fake(k, x′m, r))〉
)

(v)
≈ νnetcomb netopenb k r.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma(xm).(

ioopena().netopenb〈xm〉|netcomb〈〉
)
|

netcomb().
(
net1〈fakeH (k, r)〉|netopenb(x′m).net2〈(x′m, fake(k, x′m, r))〉

)
≡ νnetcombnetopenb.(FCOM{netcomb

iocomb
,

netopenb
ioopenb

}|S) for some S with IO ∩ fn(S) = ∅.

Here (i) uses Lemma 5 with n := iocrsa, C := νk.netcrsb〈k〉 | netcrs〈k〉 | 2, x := xcrs,
and t := k.
And (ii) is shown using Proverif, the required code is given in Figure 2.14. Note

that in the rhs of (ii), we have replaced all occurrences of the CRS k by crseqv(k), and
instead of sending the hash value hash(k, (xm, r)) we send fakeH (k, r) which does

2.8. Virtual primitives 89

free netcrs,netcrsb,net1,net2,iocoma,ioopena.

process
new k;
out(netcrs,choice[k,crseqv(k)]) |
out(netcrsb,choice[k,crseqv(k)]) |
in(iocoma,xm);
new r;
out(net1,choice[hash(k,(xm,r)),fakeH(k,r)]) |
in(ioopena,x);
out(net2,(xm,choice[r,fake(k,xm,r)]))

Figure 2.14: Virtual primitives example: Proverif code for corrupted Bob
(virtprim-bcorr.pv, see [29]). (Has to be prefixed with the code from
Figure 2.12.)

not depend on xm, and in the end, instead of sending the randomness r, we send
fake(k, xm, r). Intuitively, this replacement is indistinguishable because our symbolic
model contains the equation hash(crseqv(k), (m, fake(k,m, r))) =E fakeH (k, r).
And (iii) uses Lemma 5 (in the opposite direction) with n := netopenb, x := x′m,

t := xm, Q := net2〈(x′m, fake(k, x′m, r))〉, and C := net1〈fakeH (k, r)〉 | ioopena().2.
(And it uses Lemma 1, so that we can apply Lemma 5 to a subprocess instead of
the whole process.)
And (iv) uses Lemma 4 (ii) to swap νr and νnetopenb with iocoma(xm). (And

Lemma 1 to apply Lemma 4 (ii) to a subprocess.)
And (v) uses Lemma 5 (in the opposite direction) with n := netcomb, t := empty,

and Q := net1〈fakeH (k, r)〉 | netopenb(x′m).net2〈(x′m, fake(k, x′m, r))〉.

So we have

νiocrsa.(COMA|FCRS{netcrsb
iocrsb
}) ≈ νnetcombnetopenb.(FCOM{netcomb

iocomb
,

netopenb
ioopenb

}|S)

for some S with IO ∩ fn(S) = ∅. Hence νiocrsa.(COMA|FCRS{netcrsb
iocrsb
}) ≤

FCOM{netcomb
iocomb

,
netopenb
ioopenb

}.

2.8.1.1 A note on adaptive corruption
We have only modeled static corruption in our examples, i.e., it is fixed in the

beginning of the execution which parties are corrupted. If we were to model adaptive
corruption where parties may be corrupted during the protocol execution, we would
face an additional challenge (besides the fact that the descriptions of the processes
would be much more complex): Since the simulator may have to provide the CRS
before he knows whether Alice or Bob will be corrupted, he will not know whether
he should use crseqv(k) or crsext(k) as CRS. And on page 84 we explained why we
cannot just replace both crseqv and crsext by a single constructor fakecrs because
then the adversary would be able to deduce any term. However, this problem can
be solved using the conditional destructors supported by Proverif 1.87: we can make
sure that the rewrite rule extract(xn, hash(crsext(xn), (xm, xr)))→ xm only triggers
if hash(crsext(xn), (xm, xr)) 6=E fakeH (M,M ′) for allM,M ′. The resulting symbolic
model is shown in Figure 2.15. We can show Lemmas 40, 41, and 42 also using this

90 2. Symbolic Universal Composability

(* Needs proverif1.87 beta *)

fun hash(bitstring,bitstring):bitstring.
const empty:bitstring.
fun fake(bitstring,bitstring,bitstring):bitstring.
fun fakeH(bitstring,bitstring):bitstring.
fun fakecrs(bitstring):bitstring.

equation forall n:bitstring,m:bitstring,r:bitstring;
hash(fakecrs(n),(m,fake(n,m,r))) = fakeH(n,r).

fun extract(bitstring,bitstring):bitstring
reduc forall n:bitstring,r:bitstring;

extract(n,fakeH(n,r)) = empty
otherwise forall n:bitstring,m:bitstring,r:bitstring;

extract(n,hash(fakecrs(n),(m,r))) = m.

Figure 2.15: Virtual primitives example: Proverif code for the symbolic model when
using fakecrs constructor (virtprim-model-x.pv, see [29]). Note that
we use the typed Proverif syntax here because Proverif 1.87 does not
support conditional destructors in the untyped syntax.

symbolic model by replacing all occurrences of crseqv and crsext in the simulators
by fakecrs. Proverif still shows all the necessary equivalences. Although this does
not show adaptive security, it shows that the simulator does not need to choose the
CRS depending on who is corrupted, giving hope for the adaptive case. We leave
that case for future work.

2.8.2 Removing the virtual primitives
In this section, we will consider different symbolic models. Since the relation sym-

bols →,⇓,≈, ↓,=E etc. do not explicitly specify the symbolic model, we use the fol-
lowing convention: When referring to a symbolic modelMi, we write →i,⇓i,≈i, ↓i,
=Ei etc. We say a term (or destructor term) is anM-term (orM-destructor term)
if it contains only constructors (and destructors) from M. We call a process an
M-process if it contains onlyM-terms andM-destructor terms.
We have now shown that COM is a secure commitment protocol with respect to
Mvirt . However, we would like to deduce security of protocols using COM with
respect toMreal . For this, we first need to formalize what it means thatMvirt is a
safe extension ofMreal :

Definition 38 (Safe extension). We call a symbolic modelM1 = (Σ1,E1,R1) a safe
extension of a symbolic modelM2 = (Σ2,E2,R2) iff the following holds:
(i) Σ1 ⊇ Σ2.
(ii) If D is an M2-destructor term, and M is an M1-term, and D ⇓1 M , then

there exists anM2-term M ′ =E1 M with D ⇓2 M
′.

(iii) For all M2-destructor terms D and M2-terms M , we have D ⇓2 M ⇒ D ⇓1
M .

(iv) For allM2-terms M,M ′ we have M =E1 M
′ ⇔M =E2 M

′.

2.8. Virtual primitives 91

The following lemma is relatively easy to show:

Lemma 43. Mvirt is a safe extension ofMreal.

Proof. Obviously, Σvirt ⊇ Σreal . So Definition 38 (i) is satisfied.
We show that Definition 38 (ii) is satisfied: Let D be an Mreal-destructor term

and M be anMvirt-term. SinceMreal contains no destructors, D is anMreal-term.
Thus D ⇓virt M implies D = M . This implies that M ′ := M is anMreal-term and
D ⇓real M

′.
We show that Definition 38 (iii) is satisfied: Let D be an Mreal-destructor term

and M be anMreal-term. SinceMreal contains no destructors, D is anMreal-term.
Thus D ⇓virt M implies D = M which implies D ⇓real M .
We show that Definition 38 (iv) is satisfied: For Mreal-terms M,M ′, obviously

M =Ereal M
′ implies M =Evirt M ′. We show the opposite direction: The only

equation in Evirt (namely hash(crseqv(k), (m, fake(k,m, r))) =E fakeH (k, r)) only
allows us to rewrite terms containing crseqv or fakeH . SinceM,M ′ areMreal-terms,
they do not contain these constructors. Hence M =Evirt M

′ only if M = M ′. So
M =Evirt M

′ implies M =Ereal M
′.

The following theorem justifies the above definition of safe extensions:

Theorem 3. Assume thatM1 is a safe extension ofM2. Then for allM2-processes
P, P ′ we have P ≈1 P

′ ⇒ P ≈2 P
′.

Proof. We first show some auxiliary claims:
Claim 1. For allM2-processes P, P ′, we have P →2 P

′ ⇒ P →1 P
′.

We show this claim by induction over the derivation of P →2 P
′. We distinguish

the following cases:
• Closure under structural equivalence: In this case P →2 P

′ has been derived
from P ≡ P̂ →2 P̂

′ ≡ P ′ forM2-processes P̂ , P̂ ′, and the induction hypothesis
implies P̂ →1 P̂

′. Thus P ≡ P̂ →1 P̂
′ ≡ P ′ which implies P →1 P

′. The
claim follows.
• Closure under evaluation contexts: In this case P →2 P

′ has been derived from
P = E[P̂], P ′ = E[P̂ ′], and P̂ →2 P̂

′ for someM2-processes P̂ , P̂ ′ and some
M2-evaluation context E. The induction hypothesis implies P̂ →1 P̂

′. Hence
P = E[P̂]→1 E[P̂ ′] = P ′.
• REPL: In this case P = !P̂ and P ′ = P̂ |!P̂ . Hence P →1 P

′.
• COMM: In this case P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′ = P̂ | Q{T/x} and
C =E2 C

′. Since P is anM2-process, C,C ′ areM2-terms. SinceM1 is a safe
extension of M2, C =E2 C

′ implies C =E1 C
′. Thus P →1 P

′. The claim
follows.
• LET-THEN: In this case P = (let x = D in P̂ else Q̂) and P ′ = P̂{M/x} for

someM2-processes P̂ , Q̂, and someM2-destructor term D andM2-term M
with D ⇓2 M . Since P is anM2-process, D is anM2-destructor term. Since
M1 is a safe extension ofM2, D ⇓2 M implies that D ⇓1 M . Thus P →1 P

′.
The claim follows.
• LET-ELSE: In this case P = (let x = D in P̂ else Q̂) and P ′ = Q̂ and for

all M2-terms M we have D 6⇓2 M . Since P is an M2-process, D is an M2-
destructor term. If we had D ⇓1 M for some M1-term M , we would have
D ⇓2 M

′ for some M2-term M ′ since M1 is a safe extension of M2. This

92 2. Symbolic Universal Composability

contradicts D 6⇓2 M for allM2-terms M . Thus D 6⇓1 M for allM1-terms M .
Hence P →1 P

′. The claim follows.

Claim 2. For all M2-processes P , and all M1-processes P ′′ with P →1 P
′′, there

exists anM2-process P ′ such that P →2 P
′ ≡E1 P

′′.

We show this claim by induction over the derivation of P →1 P
′′. We distinguish

the following cases:
• Closure under structural equivalence: In this case P →1 P

′′ has been derived
from P ≡ P̂ →1 P̂

′′ ≡ P ′′ forM1-processes P̂ , P̂ ′′, and the induction hypothe-
sis (Claim 2) holds for P̂ →1 P̂

′′. Since structural equivalence does not rewrite
terms, the fact that P is anM2-process implies that P̂ is anM2-process. Thus
P̂ →1 P̂

′′ implies together with the induction hypothesis that P̂ →2 P
′ ≡E1 P̂

′′

for someM2-process P ′. Thus P ≡ P̂ →2 P
′ which implies P →2 P

′ and we
have P ′ ≡E1 P̂

′′ ≡ P ′′ which implies P ′ ≡E1 P
′′. The claim follows.

• Closure under evaluation contexts: In this case P →1 P
′′ has been derived

from P = E[P̂], P ′′ = E[P̂ ′′], and P̂ →1 P̂
′′ for some M1-processes P̂ , P̂ ′′

and some M1-evaluation context E. And the induction hypothesis holds for
P̂ →1 P̂

′′. Since P is an M2-process and P = E[P̂], we have that P̂ is an
M2-process and E andM2-evaluation context. Thus by induction hypothesis,
there exists an M2-process P̂ ′ such that P̂ →2 P̂

′ ≡E1 P̂
′′. Let P ′ := E[P̂ ′].

Obviously P ′ is an M2-process. And P = E[P̂] →2 E[P̂ ′] = P ′ and P ′′ =
E[P̂ ′′] ≡E1 E[P̂ ′] = P ′. The claim follows.
• REPL: In this case P = !P̂ and P ′′ = P̂ |!P̂ . Since P is anM2-process, so is
P̂ , and hence also P ′ := P ′′ is anM2-process. Then P →2 P

′ and P ′′ ≡E1 P
′

and the claim follows.
• COMM: In this case P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′′ = P̂ | Q̂{T/x} and
C =E1 C

′. Since P is anM2-process, C,C ′ areM2-terms and P̂ , Q̂ areM2-
processes. Since M1 is a safe extension of M2, C =E1 C

′ implies C =E2 C
′.

Thus P →2 P
′′. With P ′ := P ′′, the claim follows.

• LET-THEN: In this case P = (let x = D in P̂ else Q̂) and P ′′ = P̂{M/x} for
someM1-processes P̂ , Q̂, and someM1-destructor term D andM1-term M
with D ⇓1 M . Since P is anM2-process, P̂ , Q̂ areM2-processes and D is an
M2-destructor term. Since M1 is a safe extension of M2, D ⇓1 M implies
that D ⇓2 M ′ for some M2-term M ′ =E1 M . Let P ′ := P̂{M/x}. Then
P ′′ = P̂{M/x} ≡E1 P̂{M ′/x} = P ′ and P →2 P

′. The claim follows.
• LET-ELSE: In this case P = (let x = D in P̂ else Q̂) and P ′′ = Q̂ and for

allM1-terms M we have D 6⇓1 M . Since P is anM2-process, P̂ , Q̂ areM2-
processes and D is an M2-destructor term. Since M1 is a safe extension of
M2, for allM2-terms M , D 6⇓1 M implies that D 6⇓2 M . With P ′ := Q̂ = P ′′,
we thus have P ′′ ≡E1 P

′ and P →2 P
′. The claim follows.

Claim 3. For all M2-processes P , and all M1-processes P ′′ with P →∗1 P ′′, there
exists anM2-process P ′ such that P →∗2 P ′ ≡E1 P

′′.

Proof. To show this claim, we show that for all n ≥ 0, allM2-processes P , and all
M1-processes P ′′ with P →n

1 P ′′, there exists an M2-process P ′ such that P →∗2
P ′ ≡E1 P

′′. Here→n
1 means exactly n applications of→. We show this by induction

over n. For n = 0, the statement is trivial. Assume the statement holds for n, we
show it for n+ 1: We have P →n+1

1 P ′′ hence P →n
1 P̂

′′ →1 P
′′ for someM1-process

2.8. Virtual primitives 93

P̂ ′′. By induction hypothesis there exists anM2-process P̂ ′ with P →∗2 P̂ ′ ≡E1 P̂
′′.

Since P̂ ′ ≡E1 P̂
′′ →1 P

′′, by Lemma 7, we have P̂ ′ →1 P2 ≡E1 P
′′ for some M1-

process P2. Since P̂ ′ is an M2-process and P̂ ′ →1 P2, by Claim 2, there is an
M2-process P ′ such that P̂ ′ →2 P

′ ≡E1 P2. Combining all this, we have

P →∗2 P̂ ′ →2 P
′ ≡E1 P2 ≡E1 P

′′.

Thus P →∗2 P ′ ≡E1 P
′′.

We are now ready to show Theorem 3. LetR := {(P,Q) : P,QM2-processes, P ≈1
Q}. We show that R is an M2-simulation (and due to its symmetry also an M2-
bisimulation):

• If (P,Q) ∈ R and P ↓2
M for some M2-term M , then Q →∗2 Q′ ↓2

M for some
M2-process Q′.
P ↓2

M implies (see Footnote 5) P ≡E2 E[M〈T 〉.P ′] for some evaluation context
E not binding fn(M). This implies P ≡E1 E[M〈T 〉.P ′] (since M1 =E2 M2
implies M1 =E1 M2 for M2-terms M1,M2). Thus P ↓1

M . Since (P,Q) ∈
R, we have that P ≈1 Q and thus Q →∗1 Q′′ ↓1

M for some M1-process Q′′.
By Claim 3, this implies that Q →∗2 Q′ ≡E1 Q′′ for some M2-process Q′.
Since Q′′ ≡E1 Q′′ ↓1

M , we have Q′ ↓1
M (this follows immediately using the

characterization from Footnote 5). Since Q′ ↓1
M , by definition of ↓, we have

Q′ ≡ E[M ′〈T ′〉.Q̃] for someM1-termsM ′, T ′ withM ′ =E1 M andM1-process
Q̃, and some evaluation context not binding fn(M). Since Q′ is anM2-process,
E[M ′〈T ′〉.Q̃] is an M2-process, hence M ′ is an M2-term. Thus M,M ′ are
M2-terms, and M ′ =E1 M . SinceM1 is a safe extension ofM2, this implies
M ′ =E2 M . Thus Q′ ≡ E[M ′〈T ′〉.Q̃] implies Q′ ↓2

M . So we have Q →∗2 Q′ ↓2
M

and Q′ is anM2-process.

• If (P,Q) ∈ R and P →2 P
′ for an M2-process P ′, then there exists an M2-

process Q′ with (P ′, Q′) ∈ R and Q→∗2 Q′:
Since P, P ′ are M2-processes, and P →2 P

′, by Claim 1 we have P →1 P
′.

Since (P,Q) ∈ R, we have P ≈1 Q and thus Q →∗1 Q′′ for some M1-process
Q′′ ≈1 P

′. By Claim 3, there is an M2-process Q′ such that Q′′ ≡E1 Q
′ and

Q →∗2 Q′. Furthermore, by Lemma 4 (iv), we have =E1⊆ ≈1 and trivially
≡⊆≈1, hence ≡E1⊆ ≈1. Thus Q′′ ≡E1 Q

′ implies Q′′ ≈1 Q
′. Together with

Q′′ ≈1 P
′, we have P ′ ≈1 Q

′ and thus (P ′, Q′) ∈ R.

• If (P,Q) ∈ R and E is anM2-evaluation context, then (E[P], E[Q]) ∈ R.
Since (P,Q) ∈ R, we have P ≈1 Q. Furthermore, since E is anM2-evaluation
context, E is also an M1-evaluation context. Hence E[P] ≈1 E[Q] and thus
(E[P], E[Q]) ∈ R.

Since R is a M2-bisimulation, R ⊆ ≈2. Thus for M2-terms P, P ′ we have P ≈1
P ′ ⇒ (P, P ′) ∈ R ⇒ P ≈2 P

′. Theorem 3 follows.

Now we can finally state the following result that derives security of COM with
respect toMreal in any context (we state it generally, though):

94 2. Symbolic Universal Composability

Lemma 44. Let P,F beMreal-processes (representing a protocol and an ideal func-
tionality, e.g., P = COM and F = FCOM). Let Mvirt be a safe extension of Mreal.
Assume that P ≤virt F .
Let C be an Mreal-context whose hole is protected only by νio for IO-names io,

by parallel compositions, and by !, and that does not contain any NET-names in
fn(P,F). Assume that C[F] ≤virt G for someMreal-process G.
Let E1, E2 be Mreal-contexts satisfying the conditions of Theorem 2 (property

preservation).
If E1[G] ≈virt E2[G] then E1[C[P]] ≈real E2[C[P]].

Proof. By the composition theorem (Theorem 1), P ≤virt F implies C[P] ≤virt C[F].
With transitivity and C[F] ≤virt G, this implies C[P] ≤virt G. Then by the prop-
erty preservation theorem (Theorem 2), E1[G] ≈virt E2[G] implies E1[C[P]] ≈virt
E2[C[P]]. Since Mvirt is a safe extension of Mreal , this implies E1[C[P]] ≈real
E2[C[P]] by Theorem 3.

2.8.3 On removing the CRS
Using virtual primitives, we have managed to get rid of the need for trapdoors in

our commitment protocol. However, we still use a common reference string. This
leads to the question whether the CRS can also be removed from the protocol. We
do not answer that question here, but we give some indications as to how it might
be possible to remove the CRS, also.
First, the question is whether we can construct a UC secure commitment pro-

tocol without using a CRS in the first place (i.e., instead of the protocol from
Section 2.8.1). We know that this is impossible in the computational UC setting (no
matter what primitives we use) [37]. Unfortunately, their impossibility result carries
over to the symbolic setting:

Lemma 45. There are no closed processes A,B and NET-names net with the fol-
lowing three properties:
(i) νnet.(A|B) ≤ FCOM . (Uncorrupted case.)
(ii) A ≤ FCOM{netcomb

iocomb
,

netopenb
ioopenb

}. (Bob corrupted.)
(iii) B ≤ FCOM{netcoma

iocoma
, netopena

ioopena
}. (Alice corrupted.)

Thus, a UC secure commitment protocol has to be of the form νnet.(A|B|F) for
some functionality F , e.g., FCRS .

Proof. Assume that there are such processes A,B and NET-names net.
Then there are simulators (S0, ϕ0, n0), (SA, ϕA, nA), and (SB, ϕB, nB) such that

νnet.(A|B) ≈ νn0.(FCOMϕ0|S0) = νn0.(FCOM |S0) (2.5)

A ≈ νnA.(FCOM{netcomb
iocomb

,
netopenb
ioopenb

}ϕA|SA) = νnA.(FCOM{
net′comb
iocomb

,
net′openb
ioopenb

}|SA)
(2.6)

B ≈ νnB.(FCOM{netcoma
iocoma

, netopena
ioopena

}ϕB|SB) = νnB.(FCOM{net′coma
iocoma

,
net′opena
ioopena

}|SB)
(2.7)

for suitable names net ′coma, net ′opena, net ′comb, net ′openb. The equalities use the fact that
FCOM does not contain any NET-names.

2.8. Virtual primitives 95

Let

E := νiocomaiocombioopenaioopenb.((
νr.
(
iocoma〈r〉|iocomb().(ioopena〈〉|ioopenb(x).if x = r then c〈〉)

))
|2
)

where c is a fresh name. Intuitively, this context commits to a fresh nonce r, waits
until the commit succeeds, then opens the commitment and checks whether the
unveiled value is indeed r. For a “good” commitment scheme, this should always
be the case. Indeed: By definition of FCOM (and using that n0 does not con-
tain IO-names), we have that E[νn0.(FCOM |S0)] →∗↓c. By (Equation 2.5) we have
E[νnet.(A|B)] ≈ E[νn0.(FCOM |S0)] and thus E[νnet.(A|B)]→∗↓c.

We now use (Equation 2.6) and (Equation 2.7) to transform E[νnet.(A|B)] into a
process that does not use the commitment protocol A|B any more, but instead uses
two instances of FCOM :

E[νnet.(A|B)] (2.8)
(2.6,2.7)
≈E[νnet.(νnA.(FCOM{

net′comb
iocomb

,
net′openb
ioopenb

}|SA)|νnB.(FCOM{net′coma
iocoma

,
net′opena
ioopena

}|SB))]

By moving all restrictions up (and potentially renaming names to avoid clashes of
bound variables), we get:

E[νnet.(A|B)] ≈ νnet ′.E[FCOM{
net′′comb
iocomb

,
net′′openb
ioopenb

}|FCOM{net′′coma
iocoma

,
net′′opena
ioopena

}|SAB] =: P

Here net ′ is the list of all names that were moved up. net ′′coma etc are potentially
renamed names, and SAB := SA|SB potentially up to renamings. Note that SAB
does not contain IO-names.

We now use several application of Lemma 5 to simplify P . Each of the following

96 2. Symbolic Universal Composability

observational equivalences corresponds to one application of Lemma 5.

P ≡ νnet iocomaiocombioopenaioopenbr.

iocoma〈r〉 | iocomb().(ioopena〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM{net′′coma
iocoma

,
net′′opena
ioopena

} | FCOM{
net′′comb
iocomb

,
net′′openb
ioopenb

} | SAB
= νnet iocomaiocombioopenaioopenbr.

iocoma〈r〉 | iocomb().(ioopena〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM{net′′coma
iocoma

,
net′′opena
ioopena

} | iocoma(xm).(net ′′comb〈〉 | ioopena().net ′′openb〈xm〉) | SAB
(i)
≈ νnet iocombioopenaioopenbr.

net ′′comb〈〉 | ioopena().net ′′openb〈r〉 | iocomb().(ioopena〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM{net′′coma
iocoma

,
net′′opena
ioopena

} | SAB
(ii)
≈ νnet iocomb ioopenbr.

net ′′comb〈〉 | iocomb().(net ′′openb〈r〉 | ioopenb(x).if x = r then c〈〉)

| FCOM{net′′coma
iocoma

,
net′′opena
ioopena

} | SAB
= νnet iocombioopenbr.

net ′′comb〈〉 | iocomb().(net ′′openb〈r〉 | ioopenb(x).if x = r then c〈〉)
| net ′′coma(xm).(iocomb〈〉 | net ′′opena().ioopenb〈xm〉) | SAB

(iii)
≈ νnet ioopenbr. net ′′comb〈〉
| net ′′coma(xm).(net ′′openb〈r〉 | ioopenb(x).if x = r then c〈〉
| net ′′opena().ioopenb〈xm〉) | SAB

(iv)
≈ νnet r. net ′′comb〈〉
| net ′′coma(xm).(net ′′openb〈r〉 | net ′′opena().if xm = r then c〈〉) | SAB

Here (i) uses Lemma 5 with n := iocoma, t := r, and x := xm.
And (ii) uses Lemma 5 with n := ioopena.
And (iii) uses Lemma 5 with n := iocomb.
And (iv) uses Lemma 5 with n := ioopenb, t := xm, and x := x (and Lemma 4 (ii)

to move the νioopenb below the net ′′coma(xm) first, and Lemma 1, so that we can apply
Lemma 5 to a subprocess instead of the whole process.)
Thus we have

E[νnet.(A|B)] ≈ P ≈
νnet r. net ′′comb〈〉 | net ′′coma(xm).(net ′′openb〈r〉 | net ′′opena().if xm = r then c〈〉) | SAB =: P2

Note that in P2, xm is received before the fresh nonce r is revealed. Thus we
expect that the comparison xm = r will always fail. Indeed:

P2
(∗)≡ νnet .net ′′comb〈〉 | net ′′coma(xm).νr.(net ′′openb〈r〉
| net ′′opena().if xm = r then c〈〉) | SAB

(∗∗)
≈ νnet.net ′′comb〈〉 | net ′′coma(xm).νr.(net ′′openb〈r〉 | net ′′opena().0) | SAB =: P3

2.9. Limits for composition and property preservation 97

Here (∗) uses Lemma 4 (ii) with x := xm to move the restriction νr down, and
(∗∗) uses Lemma 10 to replace the if-statement by its else-branch (which is 0).
Thus we have that E[νnet.(A|B)] ≈ P2 ≈ P3.
Furthermore, we showed above that E[νnet.(A|B)] →∗↓c. But since c does not

occur in P3 (we chose it as a fresh name, thus it also does not occur in SAB), we have
that P3 →∗↓c cannot hold. This is a contradiction to the observational equivalence
E[νnet.(A|B)] ≈ P3. Thus our assumption was wrong that processes A,B and
NET-names net as in the statement of the lemma exist.

However, Lemma 45 does not exclude that an approach similar to the virtual
primitives approach might work: We first construct a UC secure commitment pro-
tocol (again, commitments are just one example), build a complex protocol from it
using the composition theorem, and then show that security of the complex protocol
implies (non-UC) security of a modification that does not use the CRS. It is likely
that this works as the CRS returned by the CRS functionality is just a fresh public
name, so instead of the CRS we should be able to just use some fresh (non-restricted)
name a.
There is one subtlety, though: When composing the commitment protocol P , we

end up with a complex protocol C[P] that may use multiple instances of FCRS .
In particular, if C[P] contains !!P , then C[P] will contain an unbounded number of
FCRS -instances. So we cannot replace FCRS just by a single name, we will need a way
to generate an arbitrary number of fresh values. The obvious way for this is to use
something like hash(a, sid) instead of the CRS that we get from the FCRS -instance
with session-id sid (here a is a fresh name).
A lemma roughly like the following conjecture should therefore lead to a method

for removing the CRS from a protocol that was produced by UC composition:

Conjecture 2.8.1. Let hash be a free constructor (i.e., not occurring in any equa-
tions or rewrite rules in the symbolic models). Let P be a process. Let E1, E2 be
contexts. Assume that hash does not occur in E1, E2, P . Let a /∈ fn(E1, E2, P) ∪
bn(E1, E2, P).
(i) Let P ′ result from P by replacing all subterms “netcrsa(x).Q” by “let x =

a in Q”. Then E1[νnetcrsa.(P |FCRS)] ∼∼∼ E2[νnetcrsa.(P |FCRS)] implies
E1[νnetcrsa.(P ′)] ∼∼∼ E2[νnetcrsa.(P ′)].

(ii) Let P ′ result from P by replacing all subterms “(Msid , netcrsa)(x).Q” by “let x =
hash(a,Msid) in Q”. Then E1[νnetcrsa.(P |!!FCRS)] ∼∼∼ E2[νnetcrsa.(P |!!FCRS)]
implies E1[νnetcrsa.(P ′)] ∼∼∼ E2[νnetcrsa.(P ′)].

Proving (i) is probably considerably simpler than proving (ii). An alternative to
proving (ii) could be to make sure that C[P] does not contain FCRS under a !!. This
could be achieved if we design a commitment protocol P that does not implement
FCOM , but !!FCOM (compare with Section 2.7.3). Then a single copy of P would be
sufficient in C[P].
We leave further exploration of approaches to get rid of the CRS to future research.

2.9 Limits for composition and property preserva-
tion

In this section, we show that the restrictions of the composition theorem are
necessary. More precisely, we show that if P ≤ Q, then not necessarily !P ≤ !Q

98 2. Symbolic Universal Composability

fun empty/0.

free net2, net3.

let Q = new n; out(io1,n) |
(in(io2,x); if x=n then out(net2,empty)) |
(in(io3,x); if x=n then out(net3,empty)).

process new io1; new io2; new io3; in(io1,x1); in(io1,x2);
out(io2,x1) | out(io3,choice[x1,x2]) | !Q

Figure 2.16: Proverif code for showing E1[Q] ≈ E2[Q] in Lemma 46
(prop-pres-bang1.pv, see [29]).

or io(x).P ≤ io(x).Q or io〈t〉.P ≤ io〈t〉.Q or νnet.P ≤ νnet.Q or P |R ≤ Q|R (for
R that has NET-names in common with P,Q). We show that this is not just a
limitation of the composition theorem, we show that similar limitations also apply
to property preservation. More precisely, property preservation P ≤ Q,E1[Q] ≈
E2[Q] =⇒ E1[P] ≈ E2[P] does not necessarily hold if E1, E2 contain a bang (!)
over their hole, or an input/output over their hole, or an if/let over their hole, or a
different number of !!’s over their respective holes, or restrict NET-names over their
holes, or use NET-names.

Example 2.9.1.

P := νnm. io1〈n〉 | io2(x).if x = n then net2〈m〉 | io3(x).if x = n then net3〈m〉
Q := νn . io1〈n〉 | io2(x).if x = n then net2〈empty〉 | io3(x).if x = n then

net3〈empty〉
E1 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x1〉) | !2
E2 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x2〉) | !2

Lemma 46. Using the notation from Example 2.9.1, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P] 6≈ E2[P].

Proof. We show P ≤ Q: We have P ≈ νnet ′2net ′3.(Q{
net′2
net2

,
net′3
net3
}|S) for

S := νm.(net ′2(x).net2〈m〉|net ′3(x).net3〈m〉) by two invocations of Lemma 5 (first
with n := net ′2, x := x, and t := empty, second with n := net ′3, x := x, and
t := empty). Hence P ≤ Q.
The claim E1[Q] ≈ E2[Q] is shown using Proverif. The Proverif code is given in

Figure 2.16
We now show E1[P] 6≈ E2[P]. LetD := net2(y1).net3(y2).if y1 = y2 then c〈empty〉.

Then D | E1[P] →∗ D | · · · | νm.(net2〈m〉 | net3〈m〉) →∗
νm.(· · · | if m = m then c〈〉) →∗↓c. Using Proverif, we show that D | E2[P] →∗↓c
does not hold (for any context D not containing c). The Proverif code is given in
Figure 2.17. E1[P] ≈ E2[P] would imply D | E1[P] ≈ D | E2[P] which together with
D | E1[P]→∗↓c would imply the wrong fact D | E2[P]→∗↓c. Thus E1[P] 6≈ E2[P].

Lemma 47. Using the notation from Example 2.9.1, we have P ≤ Q but not !P ≤!Q.

2.9. Limits for composition and property preservation 99

fun empty/0.

free net2, net3.
private free c.

query mess:c,c.

let P = new n; new m; out(io1,n) |
(in(io2,x); if x=n then out(net2,m))
| (in(io3,x); if x=n then out(net3,m)).

let E2P = new io1; new io2; new io3; in(io1,x1); in(io1,x2);
out(io2,x1) | out(io3,x2) | !P.

let D = in(net2,y1); in(net3,y2); if y1=y2 then out(c,empty).

process D | E2P

Figure 2.17: Proverif code for showing that D|E2[P]→∗↓c does not hold in the proof
of Lemma 46 (prop-pres-bang2.pv, see [29]).

Proof. From Lemma 46 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume !P ≤ !Q.
We can write E1 = E ′1[!2] and E2 = E ′2[!2] for NET-free evaluation contexts
E1, E2. Then E ′1[!Q] = E1[Q] ≈ E2[Q] = E ′2[!Q] and thus by Theorem 2, we have
E1[P] = E ′1[!P] ≈ E ′2[!P] = E2[P]. This is a contradiction to Lemma 46. Thus the
assumption !P ≤ !Q was wrong.

Example 2.9.2.

P := net〈empty〉
Q := 0
E1 := νio. (io().2 | io〈empty〉)
E2 := νio. (io().2)

Lemma 48. Using the notation from Example 2.9.2, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P] 6≈ E2[P].

Proof. Obviously, P ≈ Q|S with S := net〈empty〉. Hence P ≤ S.
We show E1[Q] ≈ E2[Q]: We have E1[Q] = νio. (io().0 | io〈empty〉) ≈ 0 by

Lemma 5 with n := io and C := 2. And E2[Q] = νio.io().0 ≈ 0 by Lemma 5 with
n := io and C := 0. Hence E1[Q] ≈ E2[Q].
We show E1[P] 6≈ E2[P]: We have E1[P]→∗ νio.net〈empty〉 ↓net . But E2[P] 6↓net ,

and E2[P] does not reduce. Thus there is no successor of E2[P] that emits on net.
This contradicts E1[P] ≈ E2[P] by definition of observational equivalence.

Lemma 49. Using the notation from Example 2.9.2, we have P ≤ Q but not
io().P ≤ io().Q.

Proof. From Lemma 48 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume io().P ≤
io().Q. We can write E1 = E ′1[io().2] and E2 = E ′2[io().2] for NET-free evaluation

100 2. Symbolic Universal Composability

contexts E1, E2. Then E ′1[io().Q] = E1[Q] ≈ E2[Q] = E ′2[io().Q] and thus by Theo-
rem 2, we have E1[P] = E ′1[io().P] ≈ E ′2[io().P] = E2[P]. This is a contradiction to
Lemma 48. Thus the assumption io().P ≤ io().Q was wrong.

Example 2.9.3. Let P,Q be as in Example 2.9.2.

E1 := νio. (io〈empty〉.2 | io())
E2 := νio. (io〈empty〉.2)

Lemma 50. Using the notation from Example 2.9.3, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P] 6≈ E2[P].

Lemma 51. Using the notation from Example 2.9.3, we have P ≤ Q but not
io〈empty〉.P ≤ io〈empty〉.Q.

The proofs of Lemmas 50 and 51 are identical to those of Lemmas 50 and 51,
except that io() and io〈empty〉 are exchanged.

Example 2.9.4. Let P,Q be as in Example 2.9.2.

E1 := if true then 2

E2 := if false then 2

Here true is an equality t = t for an arbitrary closed t (e.g., empty = empty),
and false is an equality t = t′ for arbitrary closed t, t′ with t 6=E t′ (e.g., empty =
(empty, empty)).

Remember that if x = y is syntactic sugar for let z = equals(x, y). So this example
is a counterexample for let-statements.

Lemma 52. Using the notation from Example 2.9.4, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P] 6≈ E2[P].

Proof. P ≤ Q was already shown in Lemma 48. By Lemma 4 (v) we have that
E1[P] ≈ P and E1[Q] ≈ Q = 0 and by Lemma 4 (v) we have that E1[P] ≈ 0 and
E2[Q] ≈ 0. Obviously, P 6≈ 0. E1[P] 6≈ E2[P], but E1[Q] ≈ E2[Q].

Example 2.9.5. Let P,Q be as in Example 2.9.2.

E1 := !!2
E2 := 2

Lemma 53. Using the notation from Example 2.9.5, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P] 6≈ E2[P].

Proof. P ≤ Q was already shown in Lemma 48. Let t ∈ SID be arbitrary. We have
E1[P] ≈ ∏x∈SID (x, net)〈empty〉 →∗↓(t,net). But no successor of E2[P] = net〈empty〉
emits on (t, net) 6=E net. Thus E1[P] 6≈ E2[P].
It is easy to see that 0 ≈ ∏x∈SID 0 (by showing that R := {(R,R|∏x∈SID\S 0)} up

to structural equivalence is a bisimulation). Thus

E1[Q] = !!0 ≈
∏

x∈SID
0 ≈ 0 = E2[Q].

2.9. Limits for composition and property preservation 101

Example 2.9.6.

P := net().io().io′〈〉
Q := net ′().io().io′〈〉
E1 := νio.(io〈〉 | νnet ′.2)
E2 := νio.(νnet ′.2)

Lemma 54. Using the notation from Example 2.9.6, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P] 6≈ E2[P].

Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.
It is easy to see that νnet ′.Q ≈ 0. Hence E1[Q] ≈ νio.io〈〉 and E2[Q] ≈ νio.0.

Thus E1[Q] ≈ E2[Q].
But E1[P]→∗↓io′ and E2[P] 6→∗↓io′ . Hence E1[P] 6≈ E2[P].

Lemma 55. Using the notation from Example 2.9.1, we have P ≤ Q but not
νnet ′.P ≤ νnet ′.Q.

Proof. From Lemma 54 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume νnet ′.P ≤
νnet ′.Q. We can write E1 = E ′1[νnet ′.2] and E2 = E ′2[νnet ′.2] for NET-free eval-
uation contexts E1, E2. Then E ′1[νnet ′.Q] = E1[Q] ≈ E2[Q] = E ′2[νnet ′.Q] and
thus by Theorem 2, we have E1[P] = E ′1[νnet ′.P] ≈ E ′2[νnet ′.P] = E2[P]. This is a
contradiction to Lemma 54. Thus the assumption νnet ′.P ≤ νnet ′.Q was wrong.

Example 2.9.7.

P := io().net〈〉
Q := io().net ′〈〉
E1 := νio.(io〈〉 | 2 |!net ′〈〉)
E2 := (νio.2 |!net ′〈〉)

Lemma 56. Using the notation from Example 2.9.6, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P] 6≈ E2[P].

Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.
By Lemma 5, we have E1[Q] ≈ net ′〈〉 |!net ′〈〉. And by Lemma 4 (viii), net ′〈〉 |

!net ′〈〉 ≈!net ′〈〉. Finally E2[Q] ≈ 0 |!net ′〈〉. Hence E1[Q] ≈ E2[Q].
But E1[P]→∗↓net and E2[P] 6→∗↓net . Hence E1[P] 6≈ E2[P].

Lemma 57. Using the notation from Example 2.9.1, we have P ≤ Q but not P |
!net ′〈〉 ≤ Q | !net ′〈〉.

Proof. From Lemma 56 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume P | !net ′〈〉 ≤
Q | !net ′〈〉. We can write E1 = E ′1[2 | !net ′〈〉] and E2 = E ′2[2 | !net ′〈〉] for NET-free
evaluation contexts E1, E2. Then E ′1[Q | !net ′〈〉] = E1[Q] ≈ E2[Q] = E ′2[Q | !net ′〈〉]
and thus by Theorem 2, we have E1[P] = E ′1[P | !net ′〈〉] ≈ E ′2[P | !net ′〈〉] = E2[P].
This is a contradiction to Lemma 56. Thus the assumption P | !net ′〈〉 ≤ Q | !net ′〈〉
was wrong.

3. Composable Computational
Soundness

In this chapter we present the results of [25] with minor changes. Section 3.2.1 is not
contained in [25] and discusses differences between the symbolic models in Chapter 2
and this chapter.

The Boundaries of Deduction Soundness. . .
Compositionality for deduction soundness as introduced in [48] is limited, and

the authors present rather compelling evidence that the notion may not compose
primitives other than encryption. The problem is that deduction soundness does not
seem to preclude implementations that leak partial information about their inputs.
In turn, this leak of information may impact the security of other primitives that
one may want to include later.
More concretely, assume that one has established soundness of a deduction system

that covers hash, but for an implementation of the hash function that reveals half
of its input: h(m1‖m2) = m1‖g(m2) where g is a standard hash function. If g is
a “good" hash function then so is h. Now consider a signature scheme which du-
plicates signatures: sig(sk,m) = sig′(sk,m)‖sig′(sk,m) where sig′ is some standard
signature scheme. It is easy to see that if sig′(sk,m) is a secure signature scheme,
then so is sig(sk,m). Yet, given h(sig(sk,m)) an adversary can easily compute
sig(sk,m) without breaking the signature scheme nor the hash: the hash function
leaks sufficient information to be able to recover the underlying signature.

. . . Revisited.
In this chapter, we prove that to any deduction sound implementation of a set of

primitives, one can add signatures, as long as the implementation for the signature
satisfies a standard notion of security. This theorem refutes the counterexample
above and provides evidence that deduction soundness is a more powerful (and
demanding) security notion than previously understood. In particular, a corollary
of the theorem is that there are no deduction sound abstractions for implementations
that are “too leaky” (as the hash function from the counterexample).
The new level of understanding facilitates further compositionality proofs for de-

duction soundness: to any deduction sound system one can add any of the (remain-
ing) standard cryptographic primitives: symmetric encryption, message authentica-

103

104 3. Composable Computational Soundness

tion codes, and hash functions while preserving deduction soundness. The theorems
hold under standard security assumptions for the implementation of encryption and
MACs and require random oracles for adding hash functions.
As a consequence, we obtain the first soundness result that encompasses all stan-

dard primitives: symmetric and asymmetric encryption, signatures, MACs, and
hashes. In addition, our composition results allow for a settings where multiple
schemes (that implement the same primitive) are used simultaneously, provided
that each implementation fulfills our assumptions. Moreover, composition provides
a stronger result: whenever deduction soundness is shown for some particular prim-
itive, our result ensures that all standard primitives can be added for free, without
any further proof.

Limits of Our Result.

Our compositionality results hold under several restrictions most of which are
quite common in soundness proofs, e.g. adversaries can corrupt keys only statically.
Less standard is that we demand for secret keys to be used only for the cryptographic
task for which they are intended. Quite reasonable most of the time, the restriction
does not allow, for example, for the adversary to see encryptions of symmetric keys
under public keys. The restriction is related to the signature-hash counterexample.
If f is a primitive with a deduction sound system that leaks some information about
its input and enc is a secure encryption function it is not clear that (f(k), enc(k,m))
hides m. Unfortunately, the technique that we used to bypass the signature-hash
counterexample does not seem to apply here. At a high level, the difficulty is that
in a potential reduction to the security of the encryption scheme, we are not be able
to simulate f(k) consistently.
One way to relax the restriction is to employ encryption schemes that are secure

even when some (or even most) of the encryption key leaks [55, 68]. Current instanti-
ations for such schemes are highly inefficient and we prefer the following alternative
solution which, essentially, allows for other uses of symmetric keys, as long as these
uses do not reveal information about the keys. In a bit more detail, we say that a
function is forgetful for some argument if the function hides (computationally) all
of the information about that input. The notion is a generalization for the secu-
rity of encryption schemes: these can be regarded as forgetful with respect to their
plaintext.

More Freedom for Keys.

We then show that a forgetful deduction sound implementation can be extended
with symmetric encryption under more relaxed restrictions: soundness is preserved
if encryption keys are used for encryption, or appear only in forgetful positions of
other functions from the implementation we are extending.
Finally, we show that, in addition to soundness, forgetfulness is preserved as

well. Hence we can flexibly and add several layers of asymmetric/symmetric key
encryption such that the keys of each layer may appear in any forgetful position of
underlying layers. We feel that this allows us to capture almost every hierarchical
encryption mechanism in practical protocols.

3.1. Preliminaries 105

3.1 Preliminaries
Throughout this chapter, η denotes the security parameter . A function f : N→ R

is negligible if it vanishes faster than the inverse of any polynomial (i.e., if ∀c ∈
R ∃n0 ∈ N s.t. ∀n ∈ N |f(n)| < 1/nc). For a finite set R, we denote by r ← R the
process of sampling r uniformly from R. For a probabilistic algorithm A, we denote
with y := A(x; r) the process of running A on input x and with randomness r, and
assigning y the result. If R denotes the randomness space of A, we write y ← A(x)
for y := A(x; r) with r ← R. If A’s running time is polynomial in η, then A is called
probabilistic polynomial-time (PPT).

3.2 The symbolic model
This section introduces the notion for symbolic models used throughout this chap-

ter. It diverges in some points from the definition of symbolic models for the applied
pi calculus used in Chapter 2. Naturally, the general idea of a symbolic model to use
cryptography in an abstract way and based on formal deduction rules remains un-
changed. At the end of this section we motivate and explain the differences between
the two notions in detail and show how they can be reconciled (Section 3.2.1).
Analogously to Section 2.1 our abstract models for the symbolic world consist of

term algebras defined on a typed first-order signature.
Specifically we have a set of data types T with a subtype relation (4) which we

require to be a preorder. We assume that T always contains a base type > such
that every other type τ ∈ T is a subtype of > (τ 4 >).
The signature Σ is a set of function symbols together with arities of the form

ar(f) = τ1 × . . . × τn → τ , n ≥ 0 for τi, τ ∈ T . We refer to τ as the type of f
and require τ 6= > for all f except for garbage of basetype g>. Function symbols
with n = 0 arguments are called constants. We distinguish deterministic function
symbols, e.g., for pairs, and randomized function symbols, e.g., for encryption.
For all symbolic models we fix an infinite set of typed variables {x, y . . .} ∈ V

and an infinite set of labels labels = labelsH ∪ labelsA for infinite, disjoint sets of
honest labels (labelsH) and adversarial labels (labelsA). Since labels are used to
specify randomness, distinguishing honest and adversarial labels (randomness) is
important.
The set of terms of type τ is defined inductively by

t ::= term of type τ
| x variable x of type τ
| f(t1, . . . , tn) application of deterministic f ∈ Σ
| f l(t1, . . . , tn) application of randomized f ∈ Σ

where for the last two cases, we further require that each ti is a term of some type
τ ′i with τ ′i 4 τi for ar(f) = τ1 × . . . × τn → τ and for the last case that l ∈ labels.
The set of terms is denoted by Terms(Σ, T ,4) and is the union over all sets of terms
of type τ for all τ ∈ T . For ease of notation we often write Terms(Σ) for the same
set of terms, and refer to general terms as t = f l(t1, . . . , tn) even if f could be a
deterministic function symbol which doesn’t carry a label.
Intuitively, for nonces, we use randomized constants. For example, assume that

n ∈ Σ is a constant. Then usual nonces can be represented by nr1 , nr2 , . . . where
r1, r2 ∈ labels are labels. Labels in labelsH will be used when the function has
been applied by an honest agent (thus the randomness has been honestly generated)

106 3. Composable Computational Soundness

whereas labels in labelsA will be used when the randomness has been generated by
the adversary. Often when the label for a function symbol is clear from the context
(e.g. when there is only one label that suits a particular function symbol) we may
omit this label.
We require Σ to contain randomized constants gτ of type τ for any τ ∈ T that

will be used for representing garbage of type τ . Garbage will typically be the terms
associated to bitstrings produced by the adversary which cannot be parsed as a
meaningful term (yet). If garbage can at some point be parsed as the application of
a deterministic function symbol, the label is dropped.
Substitutions are written σ = {x1 = t1, . . . , xn = tn} with domain dom(σ) =
{x1, . . . , xn}. We only consider well-typed substitutions, that is substitutions σ =
{x1 = t1, . . . , xn = tn} for which ti is of a subtype of xi. The application of a
substitution σ to a term t is written σ(t) = tσ.
Function symbols in Σ are intended to model cryptographic primitives, including

generation of random data like e.g. nonces or keys. Identities will typically be
represented by constants (deterministic function symbols without arguments). The
symbolic model is equipped with a deduction relation `⊆ 2Terms×Terms that models
the information available to a symbolic adversary. T ` t means that a formal
adversary can build t out of T , where t is a term and T a set of terms. We say that
t is deducible from T . Deduction relations are typically defined through deduction
systems.

Definition 39. A deduction system D is a set of rules t1 ··· tn
t

such that t1, . . . , tn,
t ∈ Terms(Σ, T ,4). The deduction relation `D⊆ 2Terms × Terms associated to D is
the smallest relation satisfying:

• T `D t for any t ∈ T ⊆ Terms(Σ, T ,4)

• If T `D t1σ, . . .T `D tnσ for some substitution σ and t1 ··· tn
t

∈ D then
T `D tσ.

We may omit the subscript D in `D when it is clear from the context. For all
deduction systems D in this paper we require

glτ
for all garbage symbols gτ ∈ Σ and

l ∈ labelsA.
Let σ be a substitution. We say that t1σ ··· tnσ

tσ
is an instantiation of a rule

t1 ··· tn
t

∈ D. Since we require the deduction relations in this paper to be efficiently
decidable, we can, if we have T ` t, w.l.o.g. always find a sequence π = T

α1→ T1
α2→

· · · αn→ Tn such that for all i ∈ {1, . . . , n}: (i) αi = t1 ··· tn
t′

is an instantiation of
rules from D, (ii) t1, . . . , tn ∈ Ti−1, (iii) t′ 6∈ Ti−1, (iv) t′ ∈ Ti and (v) t ∈ Tn. We
call π a deduction proof for T ` t.
From now on we denote a symbolic model M as a tuple (T ,4,Σ,D) where T

is the set of data types, 4 the subtype relation, Σ signature and D the deduction
system. For all symbolic models defined in this paper we omit the garbage symbols
and the corresponding reduction rules for the sake of brevity.

3.2.1 Reconciling the notions for symbolic models
In this section we motivate and explain the differences between the notion of a

symbolic model just introduced and the one for the applied pi calculus from Sec-
tion 2.1.

3.2. The symbolic model 107

Data Types.
In contrast to symbolic models from Section 2.1, the notion used here features

data types and a subtype relation. The reasons for this are many-fold. While an
untyped symbolic model sets no limits as to how function symbols can be composed,
there are a lot of combinations that do not make sense from a practical point of
view. E.g., we do not want to use a ciphertext as verification key. Furthermore,
the goal of this chapter is to compose implementations of different symbolic models
and maintain soundness. The implementation of some function symbol may be
sound if used appropriately together with other function symbols from the same
model but unsound if applied to other data. Hence we need restrictions for the sake
of composability. Data types are a natural way to restrict the usage of functions
symbols this way. Note that from a conceptional point of view, we do only restrict
the behavior of honest parties, not the behavior of the adversary. An alternative to
the introduction of data types is stating the necessary restrictions explicitly, as done
in CoSP [7] for example (see “Protocol conditions”, [7], page 17).
To extend the symbolic model for the applied calculus with data types is possible

and even the way Proverif actually works [21]. Furthermore, results from Chapter 2
canonically carry over to a typed calculus like that of Proverif.

Labels vs. Names.
Another difference between symbolic models in this chapter and symbolic models

in Chapter 2 is that labels and constant function symbols take the role of names.
Names in the original pi calculus are very versatile and thus are used for various

purposes which differ in nature. They are used as identifiers for parties or channel;
or they are used as sources of entropy (nonces) without distinguishing whether the
source of the randomness is adversarial or honest. To get computational soundness,
the different use cases of names have to be distinguished. The notion for symbolic
models in this section achieves this by using (honest and dishonest) labels as the
only sources of randomness. Constant function symbols take the role of identifiers.
Again, instead of using labels we could also use names together with appropriate

protocol conditions as in CoSP [7] for example. The two approaches are convertible.
We picked labels to have less additional conditions and to be compatible with prior
work [48].

Deduction Relation vs. Equational Theory and Rewrite Rules.
Finally, the two notions of symbolic models use different approaches to define

a semantic for terms. While symbolic models in Chapter 2 feature constructors,
destructors an equational theory and rewrite rules, the symbolic models in this
chapter come equipped with a deduction system only.
This, in contrast to the aforementioned dissimilarities, constitutes a real restric-

tion of symbolic models in this chapter in comparison with symbolic models from
Chapter 2. Deduction soundness is only concerned with the knowledge of the adver-
sary. That is, we do not explicitly specify protocols that the adversary can attack
but instead let the adversary decide which terms it can observe.
To get a soundness result for protocols, we would have to augment the symbolic

model of this section with rewrite rules or an equational theory. This is briefly
discussed in [48]. In addition to being deduction sound, the implementation would
then have to respect the equational theory, i.e., T =E T

′ implies that the computa-
tional interpretations are indistinguishable as well. To extend deduction soundness
accordingly would be an interesting direction for future work (see Chapter 4).

108 3. Composable Computational Soundness

3.3 Implementation
An implementation I of a symbolic model is a family of tuples (Mη, [[·]]η, lenη,

openη, validη)η for η ∈ N. We usually omit the security parameter and just write
(M, [[·]], len, open, valid) for an implementation.
M is a Turing machine which provides concrete algorithms working on bitstrings

for the function symbols in the signature. [[·]] : T → 2{0,1}∗ is a function that maps
each type to a set of bitstrings. len : Terms → N computes the length of a term if
interpreted as a bitstring. With open the implementation provides an algorithm to
interpret bitstrings as terms. valid is a predicate which states whether a concrete
use of the implementation is valid. For example, a correct use of an implementation
might exclude the creation of key cycles or dynamic corruption of keys from the
valid use cases. More precisely we require the following from an implementation:
We assume a non-empty set of bitstrings [[τ]] ⊆ {0, 1}η for each type τ ∈ T . For

the base type >, we assume [[>]] = {0, 1}∗ and for any pair of types τ, τ ′ ∈ T with
τ 4 τ ′ we require [[τ]] ([[τ ′]] and [[τ]] ∩ [[τ ′]] = ∅ otherwise (i.e., if τ 64 τ ′). We write
[[T]] for ∪τ∈T \{>}[[τ]]. Later, we often make use of a function 〈c1, . . . , cn, τ〉 that
takes a list of bitstrings c1, . . . , cn and a type τ and encodes c1, . . . , cn as a bitstring
c′ ∈ [[τ]]. We assume that this encoding is bijective, i.e., we can uniquely parse c′ as
〈c1, . . . , cn, τ〉 again.
We require the Turing machine M itself to be deterministic. However, each time

it is run, it is provided with a random tape R. More specifically, we require for each
f ∈ Σ with ar(f) = τ1 × . . . × τn → τ that is not a garbage symbol that for input
f M calculates a function (M f) with domain [[τ1]] × · · · × [[τn]] × {0, 1}∗ and range
[[τ]]. The runtime of M and (M f) has to be polynomial in the length of its input.
Intuitively, to generate a bitstring for a term t = f l(t1, . . . , tn) we apply (M f) to
the bitstrings generated for the arguments ti and some randomness (which might not
be used for deterministic function symbols). We call the resulting bitstring concrete
interpretation of t. The randomness is provided by the generate function introduced
in Section 3.3.2.

3.3.1 Interpretations
In cryptographic applications functions are often randomized and the same ran-

dom coins may occur in different places within the same term. This is the case for
instance when the same nonce occurs twice in the same term. We use a (partially
defined) mapping L : {0, 1}∗ → HTerm from bitstrings to hybrid terms to record this
information. A hybrid term is either a garbage term or f l(c1, . . . , cn) where f ∈ Σ is a
function symbol of arity n applied to bitstrings ci ∈ {0, 1}∗. By dom(L) ⊆ 2{0,1}∗ we
denote the domain of L, i.e. the set of bitstrings for which L is defined. The mapping
L induces an interpretation of bitstrings as terms. We define the interpretation of
bitstring c ∈ dom(L) with respect to a mapping L as L[[c]] := f l(L[[c1]], . . . , L[[cn]])
if L(c) = f l(c1, . . . , cn) and L[[c]] := L(c) if L(c) is a garbage term. We say that a
mapping L is complete, if for all (c, f l(c1, . . . , cn)) ∈ L c1, . . . , cn ∈ dom(L). Note
that L[[c]] is only defined if L is complete.

3.3.2 Generating function
Given a mapping L we define a generate function that associates a concrete se-

mantics for terms (given the terms already interpreted in L).
This function uses a random tape R as a source of randomness for M when gen-

erating the concrete interpretation of terms. We assume that there is an algorithm

3.3. Implementation 109

generateM,R(t, L):
if for some c ∈ dom(L) we have L[[c]] = t then

return c
else

for i ∈ {1, . . . , n} let (ci, L) := generateM,R(ti, L)
let r := R(t)
let c := (M f)(c1, . . . , cn; r)
let L(c) := f l(c1, . . . , cn)) (l ∈ labelsH)
return (c, L)

Figure 3.1: The generate function (t is of the form f l(t1, . . . , tn) (with possibly n = 0
and no label l for deterministic function symbols f)).

R(t) which maps a term t to a bitstring r ∈ {0, 1}η that should be used as the ran-
domness when t is generated. Even changing only one label in t leads to a changed
term t′ for which different randomness will be used. Figure 3.1 defines the generate
function given a closed term t = f l(t1, . . . , tn) and a mapping L.
Note that generateM,R(t, L) not only returns a bitstring c associated to t but also

updates L (to remember, for example, the value associated to t). Note also that
generateM,R depends on M and the random tape R. When needed, we explicitly
show this dependency, but in general we avoid it for readability. If a mapping L
is complete, then for (c, L′) := generate(t, L), L′ is complete. Furthermore, the
generate function requires that, for given inputs t, L, the following holds: For all
t′ := f l(t1, . . . , tn) ∈ st(t) where l ∈ labelsA we find a c ∈ dom(L) s.t. L[[c]] = t′

and t doesn’t contain garbage symbols carrying honest labels. This guarantees that
all bitstrings introduced by the generate function correspond to the application of
non-garbage function symbols carrying honest labels.

3.3.3 Parsing function
Conversely, we require the implementation to define a function parse to convert

bitstrings into terms. The function takes a bitstring c and a mapping L as input
and returns a term t and an extended mapping L.
For parsing functions we require the concrete structure in Figure 3.2 (where open :
{0, 1}∗× libs→ {0, 1}∗×HTerm a function that on call open(c, L) parses the bitstring
c in presence of the library L and returns its hybrid interpretation).
The exact definition of parse is left unspecified, as it depends on the particular

behavior of open which is provided by a concrete implementation. We require this
structure for the parsing function to provide a concrete context in which the open
function of different implementations can be composed. Note that the open function
is only allowed to use honestly generated bitstrings when dealing with a term. We
will furthermore only use open functions later that ignore “foreign” bitstrings in
the given library, i.e., bitstrings that are of a data type that is not part of the
implementation open belongs to. Due to these properties the composition of open
functions is commutative. This is important for our composition theorems later.
Furthermore, we think that it meets the intuition that the composition of different
implementations should be commutative.

110 3. Composable Computational Soundness

parse(c, L):
if c ∈ dom(L) then

return (L[[c]], L)
else
let Lh := {(c, f l(. . .)) ∈ L : l ∈ labelsH}
let L :=

(⋃
(c,·)∈L open(c, Lh)

)
let G :=

{
(c, gl(c)>)

}
(l(c) ∈ labelsA)

do
let L := (L \G) ∪

(⋃
(c,·)∈G open(c, Lh)

)
let G :=

{
(c, gl(c)>) : (c′, f(. . . , c, . . .)) ∈ L and c 6∈ dom(L)

}
while G 6= ∅
return (L[[c]], L)

Figure 3.2: The parsing function.

generate′M,R(t, L):
if for some c ∈ dom(L) we have L[[c]] = t then

return c
else

for i ∈ {1, n} let (ci, L) := generate′M,R(ti, L)
let r := R(t)
let c := (M f)(c1, . . . , cn; r)
if c ∈ dom(L) then

exit game with return value 1 (collision)
let L(c) := f l(c1, . . . , cn)) (l ∈ labelsH)
return (c, L)

Figure 3.3: A collision-aware generate function.

3.3.4 Good implementation
Until now we have not restricted the behavior of implementations in any way.

However, there are some properties we will need to hold for every implementation.
We describe these properties in this section and say that a good implementation is
one that satisfies all of them.
We stipulate that a good implementation is length regular , i.e., len(f l(t1, . . . , tn)) :=
|(M f)(c1, . . . , cn; r)| depends only on the length of the arguments ci (which are the
computational interpretations of the symbolic arguments ti). Having such a length
function is equivalent to having a set of length functions lenf : Nn → N for each
function symbol f ∈ Σ with n arguments. We need this to generically compose
length functions of different implementations in Section 3.5.
We now explain what it means for an implementation to be collision free. A

collision occurs if during a call of generateM,R(t, L) an execution of M yields a
bitstring c that is already in the domain of L. Since the library L has to be well-
defined, we can either overwrite the old value L(c) with the new one or discard the
new value. Both variants are problematic:
Overwriting changes the behavior of parse (i.e., bitstrings may now be parsed

3.3. Implementation 111

differently). This might have severe consequences. Imagine that the overwritten
bitstring was an honestly signed message. Now this signature looks like the signature
of a different message symbolically; possibly like a forgery. Note that this would not
be a weakness of signatures but of the fact that collisions can be found for bitstrings
corresponding to the signed terms. Discarding means that a bitstring c generated
for a term t might not be parsed as t later which might wrongfully prevent the
adversary from winning the soundness game.
Since we also need transparent implementations to be collision free we and still

want the notion of collision freeness to be composable later, we need to fix a set of
functions that reflect the capability of the adversary to pick arbitrary bitstrings for
arguments of >.
Definition 40 (Supplementary transparent functions). For a set of bitstrings B ⊆
{0, 1}∗ we define the transparent modelMtran

supp(B) as follows:
• T tran

supp := {>, τ tran
supp}. τ tran

supp is a subtype of >.

• Σtran
supp := {fc : c ∈ B} (all function symbols are deterministic)

• Dtran
supp := {

fc() : c ∈ B}

and an implementation Itran
supp(B) as follows:

• [[τ tran
supp]] := B

• (M tran
supp fc)() returns c

• (M tran
supp func)(c) returns fc if c ∈ B, ⊥ otherwise

Now we are ready to formally define what collision freeness means.
Definition 41 (Collision-free implementation). Let DS′M,I,A(η) be the deduction
soundness game from Figure 3.7 where we replace the generate function by the func-
tion generate′ from Figure 3.3. We say that an implementation I is collision-free if
for all PPT adversaries A

P
[
DSM∪Mtran

supp([[T]]),I∪Itran
supp([[T]]),A(η) = 1

]
−P

[
DS′M∪Mtran

supp([[T]]),I∪Itran
supp([[T]]),A(η) = 1

]
is negligible.
When we compose implementations later we will need that their open functions do

not interfere. Intuitively, each open function should stick to opening the bitstrings
it is responsible for (i.e., that are of types belonging to the same implementation the
open function belongs to). This is reflected in the following definition.
Definition 42 (type-safe implementation). We say that an implementation I of a
symbolic modelM is type safe if
(i) open(c, L) = (c, gl>) for l ∈ labelsA if c 6∈ [[T]]. (“open must not deal with

foreign bitstrings.”)

(ii) open(c, L) = open(c, L|[[T]]) where L|[[T]] := {(c, h) ∈ L : ∃τ ∈ T \ {>} : c ∈
[[τ]]}. (“The behavior of open must not be affected by foreign bitstrings in the
library.”)

Since we need to simulate parsing later, we require parse(c, L) (based on open) to
run in polynomial time in the size of the library.

112 3. Composable Computational Soundness

Restrictions for valid.
Usually, to have computational soundness, we have to restrict the use of the

implementation. For example we may only allow static corruption of keys. The
purpose of the valid function is exactly this. It gets a trace of queries and outputs a
boolean value which states whether the trace is valid or not. To be able to compose
the valid functions of different implementations in a meaningful way we require valid
to meet the following requirements.
A trace T is a list of queries q. A query is either “init T,H” where T,H are lists

of terms, “sgenerate t”1, or “generate t” where t is a term.

(i) If valid(T + q) = true, then valid(T + q̂) = true where q̂ is a variation of q: If
q =“generate t”, then q̂ =“generate t̂” (analogously for “sgenerate t”). Here, t̂
is a variation of t according to the following rule: Any subterm f l(t1, . . . , tn)
of t where f is a foreign function symbol (i.e., f 6∈ Σ) may be replaced by
f̂ l̂(t̂1, . . . , t̂m) where f̂ 6∈ Σ is a foreign function symbol and t̂i = tj for some
j ∈ {1, . . . , n} (where each tj may only be used once) or t̂i does not contain
function symbols from Σ. As a special case we may also replace f l(t1, . . . , tn)
with a term t̂1 (i.e., f̂ is “empty”). If q = ‘“init T,H” then q̂ =“init T̂ , Ĥ” where
T = (t1, . . . , tn) and T̂ = (t̂1, . . . , t̂n) and t̂i is a variation of ti (Ĥ analogously).

(ii) If valid(T + q) = true and t is a term occurring in q, then valid(T+“sgenerate
t′“) = true for any subterm t′ of t.

(iii) valid(T) can be evaluated in polynomial time (in the length of the trace T).

Why are these restrictions necessary?

(i) This allows us to replace function symbols with transparent functions and even
add or drop arguments during the simulation of a primitive using transparent
functions. Intuitively, this requirement is justified since we don’t know the
semantics of foreign function symbols valid should not: (a) look at the concrete
symbols (i.e., function symbols may be replaced), (b) look at the order of
arguments (since it doesn’t know what the foreign function does, valid shouldn’t
make decisions based on the order of arguments; also, if the reader accepts (a) a
function symbol could be replaced by a semantically equivalent function symbol
which just accepts arguments in a different order), (c) depend on the existence
of own terms: since the foreign function might just ignore an argument it
wouldn’t be meaningful to require its existence, (d) the existence of additional
arguments for a foreign function (those could also be hardcoded).

(ii) If a term is valid in general, then any subterm should be valid at least if
the adversary doesn’t learn it. We need this when we add something to an
implementation that features arguments that are hidden from the adversary
(i.e., encryptions under honest keys). We cannot simulate those arguments
with transparent functions and therefore need to generate them at some point.

(iii) This is needed to efficiently compute valid(T) during simulations.

1The s in sgenerate stands for “silent”; the adversary does not see any output for this kind of
request. See Section 3.6 for details.

3.4. Transparent functions 113

3.4 Transparent functions
Typical primitives that are usually considered in soundness results include en-

cryption, signatures, hash functions, etc.. Intuitively, such functions are efficiently
invertible, and the type of their output can be efficiently determined. An example
for such functions are data structures (i.e., pairs, lists, XML documents, etc.). We
define and study soundness of such primitives when they are used together with a
class of functions which we call transparent functions.
Towards this goal we define transparent symbolic models and the corresponding

transparent implementation and show how to extend symbolic models and their
implementations with transparent functions in a generic way.
A transparent symbolic model Mtran = (Ttran, 4tran, Σtran, Dtran) is a symbolic

model where the deduction system is defined as follows (the label is omitted for
deterministic function symbols):

Dtran =

t1 ··· tn

f l(tn,...,tn) l ∈ labelsA, f ∈ Σtran

f l(t1,...,tn)
ti

1 ≤ i ≤ n, l ∈ labels, f ∈ Σtran

Formally, a transparent implementation of a transparent symbolic model M =

(T ,4,Σ,D) is an implementation (and thus adhering to the requirements from Sec-
tion 3.3.4) Itran = (Mtran, [[·]], len, opentran, validtran) where opentran and validtran are de-
fined explicitly below. We require two additional modes of operation, func and proj,
for the Turing machine Mtran such that for all f ∈ Σ with ar(f) = τ1× . . .× τn → τ

(Mtran func) : {0, 1}∗ → Σ ∪ {⊥}
(Mtran proj f i) : {0, 1}∗ → {0, 1}∗ ∪ {⊥}

and we have for any ci ∈ [[τi]], 1 ≤ i ≤ n, r ∈ {0, 1}η

(Mtran func)((Mtran f)(c1, . . . , cn; r)) = f
(Mtran proj f i)((Mtran f)(c1, . . . , cn; r)) = ci

Furthermore, we require (Mtran func)(c) = ⊥ for all c 6∈ [[T]]. As expected, Mtran is
required to run in polynomial time in η for this modes of operation as well.
For transparent implementations we explicitly define the open function opentran

as in Figure 3.4. Note that a transparent implementation is automatically type safe
according to Definition 42: Property (i) is required above and property (ii) holds
since L is not used by opentran.
We define validtran(T) = true for all traces T, i.e., the use of transparent functions

is not restricted in any way.

3.5 Composition
We next explain how to generically compose two symbolic models and their cor-

responding implementations.
Let M1 = (T1,41,Σ1,D1) and M2 = (T2,42,Σ2,D2) be symbolic models and
I1 = (M1, [[·]]1, len1, open1, valid1) and I2 = (M2, [[·]]2, len2, open2, valid2) implementa-
tions ofM1 andM2 respectively.
We say that that (M1, I1) and (M2, I2) are compatible ifM1 andM2 as well as
I1 and I2 meet the requirements for compositions of symbolic models and imple-
mentations stated below respectively.

114 3. Composable Computational Soundness

opentran(c, L):
if c ∈ [[T]] ∩ dom(L) then
return (c, L(c))

else if (Mtran func)(c) = ⊥ then
find unique τ ∈ T s.t. c ∈ [[τ]] and
c 6∈ [[τ ′]] for all τ ′ ∈ T with [[τ ′]] ([[τ]]

return (c, gl(c)τ) (l(c) ∈ labelsA)
else

let f := (Mtran func)(c) (ar(f) = τ1 × · · · × τn → τ)
if (Mtran proj f i)(c) = ⊥ for some i ∈ {1, . . . , n} then
return (c, gl(c)τ) (l(c) ∈ labelsA)

else
for i ∈ {1, . . . , n} do
let c̃i := (Mtran proj f i)(c̃)

return (c, f l(c)(c1, . . . , cn)) (l(c) ∈ labelsA)

Figure 3.4: Parsing algorithm for a transparent implementation.

Requirements for Symbolic Model Composability.
For symbolic modelsM1 andM2 to be composable, we require

(i) Σ1 ∩ Σ2 = {g>}

(ii) T1 ∩ T2 = {>}

We then define the compositionM′ := M1 ∪M2 and have T ′ := T1 ∪ T2, 4′:=41
∪ 42, Σ′ := Σ1 ∪ Σ2 and D′ := D1 ∪ D2.

Requirements for Implementation Composability.
The corresponding implementations I1 = (M1, [[·]]1, len1, open1, valid1) and I2 =

(M2, [[·]]2, len2, open2, valid2) can be composed if the following requirements are met:

(i) For all types τ1 ∈ T1 \ {>}, τ2 ∈ T2 \ {>} we have [[τ1]] ∩ [[τ2]] = ∅.

(ii) The composition of I1 and I2 (as defined below) is a collision-free implemen-
tation ofM′ (Definition 41).

We then define the composition I ′ = I1 ∪ I2 as follows:
The Turing machine (M ′ f) returns (M1 f) for f ∈ Σ1 and (M2 f) if f ∈ Σ2.

This is non-ambiguous due to requirement for symbolic model composability (i).2
Similarly, for all τ ∈ T1 we set [[τ]]′ := [[τ]]1 and analogously for τ ∈ T2. Note that
[[>]] = [[>]]1 = [[>]]2 = {0, 1}∗. Since implementations are required to be length
regular we can also compose the length functions len1 and len2 in a straightforward
way to get len′.
To compose the open functions we define

2Here we assume that the membership problem is efficiently decidable (since M ′ has to run in
polynomial time). This can be achieved w.l.o.g. with a suitable encoding for the function
symbols.

3.5. Composition 115

(open1 ◦ open2)(c, L):
let (c, t) := open1(c, L)
if t = gl> for some l ∈ labelsA then

return open2(c, L)
else

return (c, t)

and consequently open′ := open1 ◦open2. Furthermore we set valid′(T) := valid1(T)∧
valid2(T) where ∧ is the conjunction.
Finally, we have to show that the composed implementation I ′ is a good im-

plementation of the composed symbolic model M′ by checking the requirements
from Section 3.3: Requirements for types hold since they hold on T1 and T2 and
by requirement (ii) for the composition of symbolic models. The latter further-
more implies [[T1]] ∩ [[T2]] = ∅. Due to this and since I1 and I2 are type safe,
open′ = open1 ◦ open2 = open2 ◦ open1. Furthermore, I ′ is type safe since I1 and I2
are. The requirements for valid carry over obviously as well as the length regularity.
Unfortunately, it is not always straightforward to check requirement (ii) for the

composition of implementations. However, we are going to show that (ii) is satisfied
if, additionally to the other requirements some additional requirement for the valid
functions of I1 and I2 hold. This is reflected in the following Lemma 58. We note
that the valid predicates of the primitives we introduce later (public key encryption,
signatures, secret key encryption, MACs and hashes) all meet the additional require-
ments of Lemma 58. Hence we do not need to proof collision freeness separately when
composing those.

Lemma 58. Let M1, M2 be symbolic models with implementations I1 and I2 re-
spectively. If in addition to requirements (i), (ii) for symbolic model composability
and (i) for implementation composability the following requirements for valid′(T) :=
valid1(T) ∧ valid2(T) hold:

1. Let T̂ be T with all silent generate queries “sgenerate t” replaced with normal
generate queries “generate t”. Then valid′(T)⇒ valid(T̂).

2. Let x ∈ {1, 2}. If validx(“init T,H”), then for each t ∈ T ∪ H all function
symbols in t are from Σx or no function symbol in t is from Σx.

3. Let x ∈ {1, 2}. Let T̂ be an expansion of T = q1 + · · · + qn in the following
sense: A qi =“generate t” for i ∈ {1, . . . , n} is be replaced with q1

i + · · · + qmi
where qji =“generate tj”, tj ∈ st(t) and tj does not contain function symbols
from Σx for j ∈ {1, . . . ,m}. Then validx(T)⇒ validx(T̂).

Then (M1, I1) and (M2, I2) are compatible.

Proof. Note that I1 and I2 are collision free since we are only dealing with good
implementations. We prove the lemma with a sequence of games:

Game 0
In Game 0 A plays DS′M′∪Mtran

supp([[T ′]]),I′∪Itran
supp([[T ′]]),A(η) from Definition 41.

116 3. Composable Computational Soundness

Game 1
In Game 1 A plays Game 0 where the generate functions aborts only for collisions

of bitstrings from [[T1]], i.e., we use a function generate′ similar to that from Figure 3.3
with:

if c ∈ dom(L) ∩ [[T1]] then
exit game with return value 1 (collision)

Claim: Game 1 and Game 0 are indistinguishable
Since the only difference between the games is the changed exit condition, it

suffices to look at the probability of a 1-output: We show for any adversary A that
wins Game 0 but not Game 1 with non-negligible probability that it can be used to
break the collision-freeness of I2. Concretely, we provide a simulator B that plays

DS′M2∪Mtran
supp([[T2]]),I2∪Itran

supp([[T2]]),A(η)

and simulates Game 0 for A.
Setup. B maintains a couple of global states: S := ∅ to keep track of the terms

generated for A, L := ∅ to simulate the library for I1, Λ := ∅ is a partially defined
mapping from transparent functions fc (c ∈ [[T1]]) to terms, R ← {0, 1}∗ is the
random tape of and T the trace of queries received from A.
Queries. Using the two helper functions generateB and parseB, which will be

defined below, B deals with the queries of A as follows (note that A doesn’t send
parameters in the collision game according to def Definition 41):

• “init T,H”: B adds “init T,H” to T and returns 0 if valid′(T) = false. Other-
wise, it computes C := {generateB(t) : t ∈ T} and generateB(t) for all t ∈ H
and sends C to A.

• “generate t”: B adds “generate t” to T and returns 0 if valid′(T) = false.
Otherwise, it adds t to S and sends generateB(t) to A.

• “sgenerate t”: B returns 0 if valid′(T+“sgenerate t”) = false. Otherwise, it
computes generateB(t) (but does not send the result to A).

• “parse c”: B computes t := parseB(c). If S `′ t, it sends t to A. Otherwise it
returns 1.

The generateB function. While B can compute I1 itself, it has only access to I2
via the game it is playing. Concretely, it can generate bitstrings for function symbols
from Σ1 directly (using the given machine M1), while it has to query bitstrings for
function symbols from the complement

Σ1 := Σ′ \ Σ1 = Σ2 ∪ {fc : c ∈ [[T ′]]}

This procedure is reflected in the function generateB from Figure 3.5. generateB
updates the states L and Λ of B and makes use of the random tape R. We write
t ∈ Σ if the term t contains only function symbols f ∈ Σ.
The parseB function. Analogously, B needs to distinguish bitstrings from the

domain of I1 from bitstrings that have to be parsed by the game played by B. It
uses the function parseB from Figure 3.6 to handle parsing requests.
Indistinguishability. Finally, we argue that the simulation perfectly simulates

Game 1 and that it can only be distinguished from Game 0 by an adversary that
breaks the collision-freeness of I2. More concretely, we show

3.5. Composition 117

generateB(t):
if t ∈ Σ1 then

let (c, L) := generate′M1,R(t, L)
return c

else if t ∈ Σ1 then
return “generate t”

else
if f ∈ Σ1 then

for i ∈ {1, . . . , n} do
let ci := generateB(ti)

if L(c) = f l(c1, . . . , cn) for some c then
return c

else
let r := R(f l(t1, . . . , tn))
let c := (M1 f)(c1, . . . , cn; r)
if c ∈ dom(L) then

exit game with return value 1 (collision)
else

let L(c) := f l(c1, . . . , cn)
return c

else (i.e., f ∈ Σ1)
for i ∈ {1, . . . , n} do

if ti ∈ Σ1 then
t̃i := ti

else
let ci := generateB(ti)
let Λ(fci) := ti
t̃i := fci

return“generate f l(t̃1, . . . , t̃n)”

Figure 3.5: generate function used by the simulator B. t = f l(t1, . . . , tn) for a la-
bel l ∈ labelsH. generate′ is the collision-aware generate function from
Figure 3.3.

118 3. Composable Computational Soundness

parseB(c):
if c ∈ [[T1]] then

if c ∈ dom(L) then
let f l(c1, . . . , cn) := L(c)

else
let Lh := {(c, f l(. . .)) ∈ L : l ∈ labelsH
let (c, f l(c1, . . . , cn)) := open1(c, Lh)
let L(c) := f l(c1, . . . , cn)

for i ∈ {1, . . . , n} do
let ti := parseB(ci)

return f l(t1, . . . , tn)
else

let t :=“parse c”
let T := {fĉ : fĉ ∈ st(t)}
let σ := ∅
for each fĉ ∈ T ∩ dom(Λ) do

let σ(fĉ) := Λ(fĉ)
for each bitstring ĉ s.t. fĉ ∈ T \ dom(Λ) do

let t̂ := parseB(ĉ)
let σ(fĉ) := t̂

return tσ (replace each fĉ with σ(fĉ))

Figure 3.6: parse function used by the simulator B.

(i) B provides a perfect simulation for the output send to A.

(ii) If the trace TA of A’s queries is valid (i.e., valid′(TA) = true), then the trace
TB of B’s queries is valid (i.e., valid2(TB) = true).

(iii) If a query “parse c” of A results in a non-DY term, A wins in the real game
and in the simulation.

(iv) If a collision occurs, the simulation and Game 0 behave equivalently or the
simulator B wins its game.

• Proof of (i): We observe that the calls to TMs M1 and M2 in Game 0 and
in Game 1 coincide. Hence we find a bijection between the used random
coins. For parsing we basically decompose the library from Game 0 into the
part belonging to I1 and the part belonging to I2. Since the open functions
are type safe applying them to the corresponding parts will yield the same
behavior in both games.

• Proof of (ii): For the “init T,H” query, the simulator B cannot use generateB
yet. However, due to requirement (2) for valid in this lemma, B can split the
query into two disjoint parts for I1 and I2. Furthermore, we check that the
additional requirements for valid capture the additional queries introduced by
generateB: Since generateB has to learn the bitstrings for terms from M2, it
cannot use silent generate queries. The trace remains valid due to requirement
(1). Additionally requirement (3) allows generateB to query the bitstrings for
subterms that do not contain function symbols from Σ1.

3.5. Composition 119

• Proof of (iii): This holds since (i) holds and the DY-ness check in the simula-
tion (Game 1) is identical to the one in the real game (Game 0).

• Proof of (iv): First, note that all function symbols that (M1 f)(c1, . . . , cn; r) 6=
(M2 f

′)(c′1, . . . , c′m; r′) for all function symbols f ∈ Σ1, g ∈ Σ2 and all bitstrings
c1, . . . , cn, r, c

′
1, . . . , c

′
m, r

′ of proper types. This holds since f and g cannot be
of basetype (due to our requirements for symbolic models) and requirement (i)
for composable implementation guarantees that the domains of non-basetype
types are disjoint. Analogously, collisions with the supplementary functions
cannot occur. Hence every collision is either a collision in the domain [[T1]] of
I1 or in the domain [[T2]] of I2. In the first case, the simulation behaves like the
real game. In the second case the simulation wins the collision freeness game
for I2 (which may only happen with negligible probability since I2 is collision
free).

This concludes the proof of our claim that Game 0 and Game 1 are indistinguish-
able.

Game 2
Analogously to the previous step, we additionally abort only for collisions of bit-

strings from [[T2]], i.e., we replace
if c ∈ dom(L) ∩ [[T1]] then

exit game with return value 1 (collision)
with

if c ∈ dom(L) ∩ [[T1]] ∩ [[T2]] then
exit game with return value 1 (collision)

in the generate function. Note that [[T1]] ∩ [[T2]] = ∅ by requirement (ii) for the
composition of symbolic models and requirement (i) for the composition of imple-
mentations. Hence this game will never abort due to collisions and is equivalent to
DSM′∪Mtran

supp([[T ′]]),I′∪Itran
supp([[T ′]]),A(η).

The proof that Game 2 and Game 1 are indistinguishable works exactly like the
proof of the indistinguishability of Game 1 and Game 0.
Since Game 2 and Game 0 are indistinguishable, I ′ is collision-free.

120 3. Composable Computational Soundness

3.6 Deduction soundness

In this section we recall the notion of deduction soundness of an implementation
with respect to a symbolic model [48]. Informally, the definition considers an adver-
sary that plays the following game against a challenger. The challenger maintains
a mapping L between bitstrings and hybrid terms, as defined in Section 3.3. Re-
call that the such mappings are used to both generate bitstring interpretations for
terms, and also to parse bitstrings as terms (Figures 3.1,3.2). Roughly, the adver-
sary is allowed to request to see the interpretation of arbitrary terms, and also to
see the result of the parsing function applied to arbitrary bitstrings. Throughout
the execution the queries that the adversary makes need to satisfy a predicate valid
(which is a parameter of the implementation). The goal of the adversary is to issue
a parse request such that the result is a term, that is not deducible from the terms
that he had queried in his generate requests: this illustrates the idea that the adver-
sary, although operating with bitstrings, is restricting to only performing Dolev-Yao
operations on the bitstrings that it receives.

The details of the game are in Figure 3.7. Our definition departs from the one
of [48] in a few technical aspects. First, we introduce a query init which is used to
“initialize" the execution by, for example, generating (and corrupting) keys. The
introduction of this query allows for a clearer separation between the phases where
keys are created and where they are used, and allows to simplify and clarify what
are valid interactions between the adversary and the game.

Secondly, we also allow the adversary to issue sgenerate requests: these are generate
requests except that the resulting bitstring is not returned to the adversary. These
requests are a technical necessity that help in later simulations, and only strengthen
the adversary.

Deduction soundness of an implementation I with respect to a symbolic model
M for an implementation is defined by considering an adversary who plays the game
sketched above against an implementation that mixes I with transparent functions
provided by the adversary. To ensure uniform behavior on behalf of the adver-
sary (e.g. ensure that the adversary does not provide a different set of transparent
functions for each different security parameter), and also to satisfy other technical
requirements like defining polynomial running time for mixed implementations, we
introduce a notion of parametrized transparent functions/models.

Parametrization

A parametrized transparent symbolic model Mtran(ν) maps a bitstring ν (the pa-
rameter) to a transparent symbolic model. Analogously, a parametrized transparent
implementation Itran(ν) ofMtran maps a bitstring ν (the parameters) to a transpar-
ent implementation ν where the length of ν is polynomial in the security param-
eter. We say that a parameter ν is good if I(ν) is a transparent implementation
of Mtran(ν) and meets the requirements of a good implementation (i.e., type-safe,
randomness-safe, . . .) from Section 3.3.

3.6. Deduction soundness 121

Definition 43 (Deduction soundness). Let M be a symbolic model and I be an
implementation ofM. We say that I is a deduction sound implementation ofM if
for all parametrized transparent symbolic models Mtran(ν) and for all parametrized
transparent implementations Itran(ν) of Mtran that are composable with M and I
(see requirements from Section 3.5) we have that

P
[
DSM∪Mtran(ν),I∪Itran(ν),A(η) = 1

]
is negligible for all PPT adversaries A sending only good parameters ν where DS is
the deduction soundness game defined in Figure 3.7. Note that M∪Mtran(ν) can
be generically composed to a parametrized symbolic model M′(ν) and parametrized
implementation I(ν) respectively.

Collisions
The deduction soundness game from Figure 3.7 doesn’t prevent collisions. I.e.,

a query leading to calls of the generate function could produce bitstrings that are
already in the library and therefore overwrite a value L(c) with a new one. Note
that “parse c” requests can never lead to collisions due to the structure of the parse
function (see Figure 3.2). Fortunately, we can use a collision-free variant of the
deduction soundness game.

Lemma 59. Let DS′M(ν),I(ν),A(η) be the deduction soundness game where we replace
the generate function by the collision aware generate function from Figure 3.3. Then
no PPT adversary A can distinguish DSM(ν),I(ν),A(η) from DS′M(ν),I(ν),A(η) with non-
negligible probability. (Note that the transparent functions are already included in
M(ν) and I(ν) here.)

Proof. The only difference between DS and DS′, and hence the only way to distin-
guish them, is to produce a collision. However, if collisions could be found with
non-negligible probability, this would break the collision freeness of I(ν) (we require
that I(ν) is a good implementation for all parameters ν in the definition of deduc-
tion soundness Definition 43). More specifically, we can use any adversary A that
sends a parameter ν and can later distinguish DS′M(ν),I(ν),A(η) from DSM(ν),I(ν),A(η)
to construct an adversary B that wins the collision freeness game for I(ν) (according
to Definition 41) whenever A can distinguish: All queries by A are forwarded by B
to its own game. If A finds a collision, B wins. Otherwise A cannot distinguish.

122 3. Composable Computational Soundness

DSM(ν),I(ν),A(η):
let S := ∅ (set of requested terms)
let L := ∅ (library)
let T := ∅ (trace of queries)
R ← {0, 1}∗ (random tape)

Receive parameter ν from A

on request “init T,H” do
add “init T” to T
if valid(T) then

let S := S ∪ T
let C := ∅ (list of replies)
for each t ∈ T do

let (c, L) := generateM,R(t, L)
let C := C ∪ {c}

for each t ∈ H do
let (c, L) := generateM,R(t, L)

send C to A
else

return 0 (A is invalid)

on request “sgenerate t” do
if valid(T+“sgenerate t”) then

let (c, L) := generateM,R(t, L)

on request “generate t” do
add “generate t” to T
if valid(T) then

let S := S ∪ {t}
let (c, L) := generateM,R(t, L)
send c to A

else
return 0 (A is invalid)

on request “parse c” do
let (t, L) := parse(c, L)
if S `D t then

send t to A
else

return 1 (A produced non-Dolev-Yao term)

Figure 3.7: Game defining deduction soundness. Whenever generateM,R(t, L) is
called, the requirements for t are checked (i.e., all subterms of t with
adversarial labels must already be in L and t does not contain garbage
symbols with honest labels) and 0 is returned if the check fails (i.e., the
A is considered to be invalid).

3.7. Composition theorems 123

3.7 Composition theorems
Our notion of deduction soundness enjoys the nice property of being easily ex-

tensible: if an implementation is deduction sound for a given symbolic model, it
is possible to add other primitives, one by one, without having to prove deduction
soundness, from scratch for the resulting set of primitives.

3.7.1 Public datastructures
An immediate observation with interesting implications is the following. Consider

some symbolic modelM with a deduction sound implementation I. Now, extendM
by a transparent symbolic modelMtran and I by a transparent implementation Itran
ofMtran. Then, the resulting implementation is a deduction sound implementation
ofM∪Mtran.
The intuition behind this result is simple: if I is sound in presence of arbitrary

transparent functions with an implementation selected by the adversary, adding
transparent functions with some fixed transparent implementation preserves sound-
ness. This idea is formalized by the following theorem.

Theorem 4. LetM be a symbolic model and I a deduction sound implementation of
M. Furthermore, letMtran be a transparent symbolic model and Itran a transparent
implementation of Mtran. If M and I are composable with Mtran and Itran (see
Section 3.5), then I ∪ Itran is a deduction sound implementation ofM∪Mtran.

Proof. Let A be a ppt adversary that breaks the deduction soundness of I ∪ Itran,
i.e., by Definition 43 there is a transparent symbolic modelMA

tran with a transparent
implementation IAtran such that

P
[
DS(M∪Mtran)∪MAtran,(I∪Itran)∪IAtran,A(η) = 1

]
is non-negligible. Then clearly for the transparent symbolic modelMtran∪MA

tran and
the transparent implementation Itran∪IAtran this adversary also breaks the deduction
soundness of I, i.e.,

P
[
DSM∪(Mtran∪MAtran),I∪(Itran∪IAtran),A(η) = 1

]
is non-negligible. Since I is a deduction sound implementation by requirement this
concludes our proof.

3.7.2 Public key encryption
In this section we define a symbolic model MPKE for public key encryption and

a corresponding implementation IPKE based on a public key encryption scheme
(PKE.KeyGen, PKE.Enc, PKE.Dec). We show that composition of MPKE and IPKE
with any symbolic modelM comprising a deduction sound implementation I pre-
serves this property for the resulting implementation, i.e., I ∪ IPKE is a deduction
sound implementation ofM∪MPKE. This result was already stated in [48]. However,
since the definition of deduction soundness as well as other parts of the framework
(e.g., parse function) were updated, we present an updated proof here.

124 3. Composable Computational Soundness

3.7.2.1 Computational preliminaries
Definition 44 (Public-key encryption scheme). A public-key encryption scheme
(PKE scheme) is a triple of algorithms (PKE.KeyGen, PKE.Enc, PKE.Dec).
The probabilistic key generation algorithm PKE.KeyGen takes an encoding of the

security parameter and some randomness as inputs and generates a pair (ek, dk)
containing the encryption key ek and the decryption key dk.
The probabilistic encryption algorithm PKE.Enc takes three arguments: an en-

cryption key ek, the message m ∈ {0, 1}∗, and some randomness r ∈ {0, 1}η. It
computes a ciphertext c := PKE.Enc(ek,m; r).3
The decryption algorithm PKE.Dec takes a decryption key and a ciphertext as

inputs and returns a value from {0, 1}∗ ∪ {⊥}. We require perfect correctness, i.e.,

PKE.Dec(dk,PKE.Enc(ek,m; r)) = m

for all r ← {0, 1},m ∈ {0, 1}∗ and (ek, dk)← PKE.KeyGen(1η).

Definition 45 (IND-CCA security of PKE schemes). A PKE scheme (PKE.KeyGen,
PKE.Enc, PKE.Dec) is IND-CCA secure if for all PPT adversaries A the probability

P
[
IND-CCA-PKE(PKE.KeyGen,PKE.Enc,PKE.Dec)

A (η) = 1
]
− 1

2
is negligible for the IND-CCA game from Figure 3.8 (this game resembles a multi-
user version of standard IND-CCA security).

3.7.2.2 Symbolic model
We first define the symbolic model (TPKE,4PKE,ΣPKE,DPKE) for public key en-

cryption. The signature ΣPKE features the following function symbols

dkx : τ dkx
PKE

ekx : τ dkx
PKE → τ ekx

PKE

encx : τ ekx
PKE ×> → τ ciphertext

PKE

for x ∈ {h, c}. The randomized function dkh of arity τ dkh
PKE returns an honest de-

cryption key. The deterministic function ekh of arity τ dkh
PKE → τ ekh

PKE derives an honest
encryption key from an honest decryption key. Analogously for corrupted decryp-
tion keys (dkh) and corrupted encryption keys (ekc). The randomized function ench
for honest encryptions has arity τ ekh

PKE ×> → τ ciphertext
PKE (encc analogously). As above

we sometimes write ekx, dkx, encx for x ∈ {h, c} to reference the honest and the
corrupted variants of the functions comprehensively. By abuse of notation, we will
often write ek lx() instead of ekx(dk lx()) where l ∈ labelsH. To complete the formal
definition we set

TPKE := {>, τ dkx
PKE, τ

ekx
PKE, τ

ciphertext
PKE }

All introduced types are direct subtypes of the base type > (this defines 4PKE). The
deduction system captures the security of public key encryption

DPKE :=

eklx() m

enclax (eklx(),m)
,

encla
h

(eklh(),m)
m

, encl̂c(eklc(),m)
m

3Since the message m is of basetype in symbolic model given below, we require a scheme with
message space {0, 1}∗.

3.7. Composition theorems 125

IND-CCA-PKE(PKE.KeyGen,PKE.Enc,PKE.Dec)
A (η):

b← {0, 1}
oracles := ∅

on request “new oracle” do
let r ← {0, 1}η
let (ek, dk) := PKE.KeyGen(1η, r)
add ek to oracles
let ciphersek := ∅
send ek to A

on request “Oenc
ek (m)” do

if ek 6∈ oracles then
send ⊥ to A

else
let r ← {0, 1}η
if b = 0 then

let c := PKE.Enc(ek, 0|m|, r)
add (c,m) to ciphersek

else
send PKE.Enc(ek,m, r) to A

on request “Odec
ek (c)” do

if ek 6∈ oracles then
send ⊥ to A

else
if b = 0 and (c,m) ∈ ciphersek for some m then

send m to A
else

let dk be the decryption key for ek
send PKE.Dec(dk, c) to A

on request “guess b′” do
if b = b′ then return 1 else return 0

Figure 3.8: The multi-user IND-CCA game for a public key encryption scheme
(PKE.KeyGen, PKE.Enc, PKE.Dec).

126 3. Composable Computational Soundness

These rules are valid for arbitrary labels l, l̂ ∈ labels and adversarial labels la ∈
labelsA. Read from top left to bottom right the following intuitions back up the
rules:

• The adversary can use any honestly generated key to encrypt some term m.

• The adversary knows the message contained in any adversarial encryption.

• The adversary knows the message contained in any encryption under a cor-
rupted key.

Since we only allow for static corruption we do not need a rule encl̂h(eklh(),m)
eklh() although

we are going to attach the encryption key to the ciphertext in the implementation
(all encryption keys are going to be part of the response to the “init T,H” query by
the adversary).

3.7.2.3 Implementation
We now give a concrete implementation IPKE for public key encryption. The imple-

mentation uses some IND-CCA secure public key encryption scheme (PKE.KeyGen,
PKE.Enc, PKE.Dec). To prevent collisions of ciphertexts, we require that we have
PKE.Enc(ek,m, r) = PKE.Enc(ek,m′, r′) only with negligible probability for bit-
strings m,m′, r given by the adversary and r′ uniformly chosen honest randomness.
Many PKE schemes meet this requirement directly, e.g., all committing schemes.
Furthermore, it is always possible to extend the output of PKE.Enc with a nonce
to prevent these collisions. The computable interpretations of, dkx, ekx, encx (for
x ∈ {h, c}) are as follows:

• (MPKE dkx)(r): Let (ek, dk) := PKE.KeyGen(1η; r). Return 〈ek, dk, τ dkx
PKE〉.

• (MPKE ekx)(d̂k): Parse d̂k as 〈ek, dk, τ dkx
PKE〉. Return 〈ek, τ ekx

PKE〉.

• (MPKE encx)(êk,m; r): Parse êk as 〈ek, τ ekx
PKE〉. Let c := PKE.Enc(ek,m; r) and

return 〈c, ek, τ ciphertext
PKE 〉.

The validPKE predicate
The predicate validPKE guarantees, that all keys that may be used by the adversary

later are generated during initialization (i.e., with the init query). We only allow
static corruption of keys, i.e., the adversary has to decide which keys are honest
and which are corrupted at this stage. Keys may only be used for encryption and
decryption. This implicitly prevents key cycles. More formally, based on the current
trace T of all parse and generate requests of the adversary, the predicate validPKE
returns true only if the following conditions hold:

1. The trace starts with a query “init T,H” (T resp. H may be the empty list).
There are no further init queries.

2. The adversary may only generate keys in the init query. Concretely, this is
guaranteed by the following rules:
a) For the query “init T,H”, the function symbols ekx and dkx may only

occur in a term t ∈ T (i.e., not as subterms of other terms) of one of the
two following types (for l ∈ labelsH):

3.7. Composition theorems 127

openPKE(c, L)
if c ∈ [[TPKE]] ∩ dom(L) then

return (c, L(c))
else if c = 〈dk, τ dkx

PKE〉 then
return (c, gl(c)

τdkx
PKE

)
else if c = 〈ek, τ ekx

PKE〉 then
if d̂k ∈ dom(L) s.t. d̂k = 〈ek, dk, τ dkx

PKE〉 then
return (c, ekx(d̂k))

else
return (c, gl(c)

τ ekx
PKE

)
else if c = 〈c′, ek, τ ciphertext

PKE 〉 and (〈ek, τ ekx
PKE〉, ek lx(d̂k) ∈ L then

parse d̂k as 〈ek, dk, τ dkx
PKE〉

let m := PKE.Dec(dk, c′)
if m = ⊥ then

return (c, gl(c)
τ ciphertext

PKE
)

else
return (c, encl(c)x (ek,m))

else
return (c, gl(c)>)

Figure 3.9: Open function for public key encryption.

• t = ekh(dk lh()) (to generate an honest encryption key)
• t = dk lc() (to generate a corrupted encryption key)

Any label l for dk lx() must be unique in T .
b) Any occurrence of ek lx() or dk lx() in a generate query must have occurred

in the init query. dk lx() may only occur as argument for ekx. ek lx() may
only occur as first argument for encx.

3. The adversary must not use the function symbols for encryption (ench, encc)
in the init query.

Checking the implementation
We first observe that IPKE is collision-free (Definition 41): Basically, collisions

for keys can only occur with negligible probability since they break the security of
the scheme (which is IND-CCA secure). We prevent collisions of ciphertexts by
the requirements stated above. Furthermore, it is easy to see that openPKE meets
the requirements of Definition 42 and that validPKE meets the requirements for valid
functions.

3.7.2.4 PKE composability
Theorem 5. LetM be a symbolic model and I a deduction sound implementation of
M. If (MPKE, IPKE) and (M,I) are compatible (see requirements in Section 3.5) and
the PKE scheme (PKE.KeyGen,PKE.Enc,PKE.Dec) is IND-CCA and INT-CTXT
secure, then I ∪ IPKE is a deduction sound implementation ofM∪MPKE.

128 3. Composable Computational Soundness

Proof. Let A be a PPT adversary and Mtran(ν) a parametrized transparent sym-
bolic model with a corresponding parametrized implementation Itran(ν) such that
Mtran(ν) and Itran(ν) are composable withM∪MPKE and I∪IPKE (see requirements
in Section 3.5) for ν sent by A. We have to show that A can win the deduction
soundness game DS(M∪MPKE)∪Mtran(ν),(I∪IPKE)∪Itran(ν)(η) only with negligible probabil-
ity.
We first explain the basic idea behind this proof. To win the deduction soundness

game, A has to provide a bitstring corresponding to a term t that it does not
“know” symbolically, i.e., A cannot deduce t from the terms it generated previously.
Intuitively, by adding public key encryption, exactly one additional opportunity to
learn something about such a term is created: A can retrieve honestly generated
encryptions of t under honest encryption keys. In all other encryption scenarios,
A knows the message by the rules of DPKE. The strategy of this proof consists of
two steps: First, we replace honestly generated encryptions of terms by encryptions
of 0-bitstrings (using the IND-CCA security of the encryption scheme). Hence the
adversary cannot learn anything about the corresponding clear texts (except their
length) which eliminates the additionally opportunity for A. Second, we show that
encryption can be simulated by transparent functions. Thus, any other way for A to
come up with non-DY terms leads to a non-DY request in the deduction soundness
game forM and I. Since I is deduction sound by assumption, this concludes our
proof.
Concretely, we proof this with a sequence of games.

Game 0
In Game 0 A plays the original deduction soundness game

DS(M∪MPKE)∪Mtran(ν),(I∪IPKE)∪Itran(ν)(η).

Game 1
In Game 1 we replace the generate function by the collision-aware generate function

from Figure 3.3.

Claim: Game 0 and Game 1 are indistinguishable
Since (I ∪ IPKE)∪ Itran(ν) is a collision-free implementation Game 0 and Game 1

are indistinguishable by Lemma 59.

Game 2
In Game 2 we deprive the adversary of any option to learn something from ci-

phertexts or about honest decryption keys. We replace the honest decryption keys
in the library by random bitstrings and add the rule ekx(dklx())

dklx() to the deduction sys-
tem. Intuitively, A doesn’t notice the difference since the PKE scheme is IND-CCA
secure. More concretely, instead of calling (MPKE ekh)(r), we pick r ← {0, 1}η,
compute (ek, dk) := PKE.KeyGen(1η, r), pick r′ ← {0, 1}|dk|, remember dk as the de-
cryption key corresponding to ek and use d̂k := 〈ek, r′, τ dkx

PKE〉 as bitstring for dk lh().
Additionally, we change the parsing function such that it now uses the remembered
corresponding keys for decryption instead of those in the library. Furthermore, to
replace the ciphertexts created under honest keys by encryptions of 0, we replace
the line

let c := (M f)(c1, . . . , cn; r)

in the generate function with

3.7. Composition theorems 129

if t = enc l̂h(ek lh(),m) then
let c := (M ench)(c1, 0|c2|; r)

else
let c := (M f)(c1, . . . , cn; r)

Note that c1 and c2 resemble the bitstrings corresponding to the encryption key
and the message respectively. Thus, the generation of bitstrings works exactly as
in Game 1 if t is not an encryption under an honest key. Otherwise we generate
all subterms as usual but replace the message by a bitstring of zeros of appropriate
length.
Claim: Game 1 and Game 2 are indistinguishable
Let A be an adversary that can distinguish between playing Game 1 and Game 2.

Then we can construct an adversary B that will win the oracle-based IND-CCA
game for PKE scheme (PKE.KeyGen,PKE.Enc,PKE.Dec) from Figure 3.8.
Generating bitstrings. For each query “generate ekh(dk lh())”, instead of calling

the generate function, B does the following: It requests a new oracle from the IND-
CCA game and receives an encryption key ek as well as access to a corresponding
encryption oracle, denoted Oenc

ek , (which either encrypts the given messages or 0-
bitstrings of the same lengths) and to a corresponding decryption oracle, denoted
Odec

ek . B now picks a random bitstring dk such that d̂k := 〈ek, dk, τ dkh
PKE〉 ∈ [[τ dkh

PKE]]
and adds (d̂k, dk lh()) and (〈ek, τ ekh

PKE〉, ekh(d̂k)) to L. Note that by requirement (2)
for validPKE A will never learn the value of dk. All other types of generate requests
are handled by calling the generate function.
To use the provided oracles to generate honest encryptions, B furthermore uses a

modified generate function. Concretely, it replaces the line
let c := (M f)(c1, . . . , cn; r)

with
if t = enc l̂h(ek lh(),m) then

let c := 〈Oenc
c1 (c2), c1, τ

ciphertext
PKE 〉

else
let c := (M f)(c1, . . . , cn; r)

Again, c1 and c2 resemble the bitstrings corresponding to the encryption key and the
message respectively. Note that this function produces encryptions like the generate
function in Game 1 if the oracle encrypts the given message and like the generate
function in Game 2 otherwise, i.e., if the oracle encrypts a 0-bitstring.
Parsing bitstrings. B also has to modify the parsing function to deal with

adversarial ciphertexts created with honest keys. More specifically, it removes the
lines

parse d̂k as 〈ek, dk, τ dkx
PKE〉

let m := PKE.Dec(dk, c′)
in the openPKE function from Figure 3.9 and adds

if (〈ek, τ ekh
PKE〉, ek lh()) ∈ L (honest key) then

let m := Odec
ek (c′)

else
parse d̂k as 〈ek, dk, τ dkc

PKE〉
let m := PKE.Dec(dk, c′)

130 3. Composable Computational Soundness

For an IND-CCA secure public key encryption scheme this function decrypts like
the original openPKE function. B just uses the decryption oracle instead of the
decryption key during the simulation. Additionally, if openPKE is called for a bitstring
c ∈ [[τ dkh

PKE]], B parses c as 〈ek, dk, τ dkh
PKE〉. B then picks a random message m← {0, 1}η

and computes PKE.Dec(dk,Oenc
ek (m)) = x. If x 6= ⊥ and x = m, B sends “guess 1”

to the IND-CCA game and wins with overwhelming probability.
Analysis. If the oracle produces real encryptions, B simulates Game 1 for A.

The only difference are the random values for honest decryption keys in the library.
Those values are only used when parsing bitstrings. The difference can be detected
byA if it guesses one of the random bitstrings (which can only happen with negligible
probability) or if it parses a bitstring belonging to a honest decryption key in Game 1.
However, in the latter case, B wins the IND-CCA game as described above. Hence
the simulation is indistinguishable for A if the oracles produce real encryptions.
If the oracles produces encryptions of zero, B perfectly simulates Game 2 for A.

Hence, every correct guess of A on which game he is playing leads to a correct guess
of B in the IND-CCA game. Therefore, A cannot distinguish Game 1 and Game 2.

Game 3
In Game 3 A interacts with an adversary B that plays the deduction soundness

game for M and I and intuitively simulates Game 2 for A. Basically, B uses
transparent functions to add public key encryption toM. We construct B as follows:
Transparent symbolic model for public key encryption. We first de-

scribe the parametrized transparent symbolic modelMtran
PKE(ν) and the corresponding

parametrized implementation Itran
PKE(ν) B will use to simulate IPKE. We use the data

types and subtype relation from MPKE. ν is expected to be an encoding of a list
of label-triple pairs (l, (ek, dk, dk ′)) (l ∈ labels) where the triple consist of a keypair
ek, dk and an additional value dk ′ (used to represent honest decryption keys in the
library). The signature Σtran

PKE is the following:

• deterministic fdklx() with ar(fdklx()) = τ dkx
PKE for all labels l ∈ ν

• deterministic feklx() with ar(feklx()) = τ ekx
PKE for all labels l ∈ ν

• randomized fench(eklh(),0`) with ar(fench(eklh(),0`)) = τ ciphertext
PKE for all ` ∈ N, l ∈ ν

• randomized fench(eklh(),·) with ar(fench(eklh(),·)) = > → τ ciphertext
PKE for all l ∈ ν

• randomized fencc((eklc(),· with ar(fencc((eklc(),·) = > → τ ciphertext
PKE for all l ∈ ν

We specify a parametrized implementation Itran
PKE(ν) for Mtran

PKE and for each
(l, (ek, dk, dk ′)) ∈ ν as follows:

• (M tran
PKE fdklx())() returns 〈ek, dk ′, τ dkx

PKE〉.

• (M tran
PKE feklx())() returns 〈ek, τ ekx

PKE〉.

• (M tran
PKE fench(eklh(),0`))(r) returns (MPKE ench)(〈ek, τ ekx

PKE〉, 0`; r).

• (M tran
PKE fench(eklh(),·))(m; r) returns (MPKE ench)(〈ek, τ ekx

PKE〉,m; r).

• (M tran
PKE fencc((eklc(),·)(m; r) returns (MPKE encc)(〈ek, τ ekx

PKE〉,m; r).

3.7. Composition theorems 131

(M tran
PKE func)(b):
if b = 〈ek, dk ′, τ dkx

PKE〉 for some (l, (ek, dk, dk ′)) ∈ ν then
return fdklx()

else if b = 〈ek, τ ekx
PKE〉 for some (l, (ek, dk, dk ′)) ∈ ν then

return feklx()
else if b ∈ [[τ ciphertext

PKE]] then
parse b as 〈c, ek, τ ciphertext

PKE 〉
if there is (l, (ek, dk, r′)) ∈ ν for some l, dk then

let m := PKE.Dec(dk, c)
if m 6= ⊥ then

if l belongs to an honest key then
return fench(eklh(),·)

else
return fencc((eklc(),·

return ⊥

For b with (M tran
PKE func)(b) = fench(eklh(),·) we have (l, (ek, dk, dk ′)) ∈ ν with

PKE.Dec(dk, c) =: m 6= ⊥ where b = 〈c, ek, τ ciphertext
PKE 〉 and define

(M tran
PKE fench(eklh(),·)1)(b) := m. Analogously for (M tran

PKE func)(b) = fencc((eklc(),·.
Convert terms. Adversary A uses the function symbols of the original symbolic

modelMPKE. Hence B needs to map these symbols to the corresponding transparent
functions. Towards this goal we introduce the function convert as follows (the first
matching rule is applied):

• convert(f l(t1, . . . , tn)) = f l(convert(t1), . . . , convert(tn)) for all f 6∈ ΣPKE.

• convert(ekx(dk lx())) = feklx()

• convert(dk lx()) = fdklx()

• convert(enc l̂h(ek lh(),m)) = f
l̂(m)
ench(eklh(),0`)() if l̂ ∈ labelsH

• convert(enc l̂h(ek lh(),m)) = f l̂ench(eklh(),·)(convert(m)) if l̂ ∈ labelsA

• convert(enc l̂c(ek lc(),m)) = f l̂encc((eklc(),·
(convert(m))

For a list of terms T we define convert(T) := {convert(t) : t ∈ T}.
B simulates Game 2 for A while playing

DSM∪(Mtran
PKE(ν)∪Mtran(ν′)),I(∪Itran

PKE(ν)∪Itran(ν′))(η)

Note that we can generically compose Mtran
PKE(ν) ∪ Mtran(ν ′) to one parametrized

transparent modelM′
tran(ν||ν ′) since ν and ν ′ must be good (analogously for the im-

plementation). However, for the sake of clarity, we keep them apart to distinguish
the transparent functions (and parameter) provided by A from the additional trans-
parent functions introduced by B. Next we describe how B deals with the queries
received from A.

init query. B receives a lists of terms T,H from A. Initially, B sets ν := ∅. For
each occurrence of dk lx() ∈ T B then picks a nonce r ← {0, 1}η and generates a key-
pair (ek, dk) := PKE.KeyGen(1η, r). If x = h, B picks dk ′ ← {0, 1}|dk|. Otherwise B

132 3. Composable Computational Soundness

sets dk ′ = dk. (dk ′ represents the decryption key in the library and should be a fresh
random value for honest decryption keys.) B then adds (l, (ek, dk, dk ′)) to ν. Finally,
B sends ν ′||ν to its game and subsequently queries “init convert(T), convert(H)”. Af-
terwards, B queries “sgenerate dk lh()” for each dk lh() ∈ T .

generate queries. For each request “generate t” B adds “generate t” to T. Then
B sends “generate convert(t)” to its game and relays the response to A. For each sub-
term t′ ∈ st(t) that is an honest encryption, i.e., t′ = enc l̂h(ek lh(),m) B additionally
sends “sgenerate convert(m)” to its game. Analogously for “sgenerate t”.

parse queries. For each request “parse c” B sends “parse c” to its game and
receives a term t. B sends convert−1(t) to A.

Claim: Game 2 and Game 3 are indistinguishable
We show that B, while playing the game

DSM∪(Mtran
PKE(ν)∪Mtran(ν′)),I(∪Itran

PKE(ν)∪Itran(ν′))(η),

perfectly simulates Game 2 for A. First, we show that any valid trace produced by
A in Game 2 leads to a valid trace by B (we say that these traces correspond). Then
we show that every pair of valid corresponding traces leads to the same output for
A by proving that a suitable invariant holds for the relation between the libraries in
both settings.
Valid A leads to valid B. First, we observe that any trace TA produced by A

in Game 2 that is valid leads to a valid trace TB produced by B: The application of
convert to terms leads to variations the sense of requirement (i) for valid predicates.
The additional sgenerate queries by B are valid by requirement (ii) for valid predi-
cates. Furthermore, if a term t meets the requirement for the generate function in
Game 2, convert(t) meets the requirements in the game B is playing.
Invariant. We still have to show that the output of the simulation matches the

output of Game 2. First we observe that there is a bijection between the random
coins used in Game 2 and the simulation. B uses the same amount of randomness
to generate the keypairs as Game 2 does. All further uses of random coins coincide.
Therefore, we can w.l.o.g. assume that the same random coins are used in Game 2
and the simulation. We show that the following invariants holds for all valid traces
produced by A and the corresponding trace produced by B:

1. dom(Lext) = dom(Lsmall)

2. ∀c ∈ dom(Lsmall) : convert−1(Lsmall [[c]]) = Lext [[c]]

where Lext is the library in Game 2 and Lsmall the library in the game B is playing
(which we call the small game from now on).
Initially, we have Lext = Lsmall = ∅ and the invariant holds obviously.
init T,H. According to requirements (2) and (3) for public key encryption (i.e.,

validPKE) we can distinguish the following three types of terms t ∈ T ∪H.

• t = ekh(dk lh()), i.e., convert(t) = feklh().

• t = dk lc(), i.e., convert(t) = fdklc().

• t doesn’t contain function symbols from ΣPKE and convert(t) = t:

3.7. Composition theorems 133

We observe that each initial term t that is a key generation in the extended game,
B adds the corresponding converted term convert(t) to its init request. This cor-
responds to the key generation done in the extended game while the keys in the
small game are hard coded in the transparent functions. After this step we have
dom(Lext \ {(c, dk lh()) : c ∈ [[τ dkh

PKE]], l ∈ labelsH}) = dom(Lsmall) since the generated
keys coincide but we do not add the honest decryption keys to the library in the
simulation. This is gap is closed by the additional silent generate queries by B. Then
the invariants hold.

generate t. Assume that our invariants (1) and (2) hold for libraries Lext
and Lsmall . Then, they still hold after a valid query “generate t” by A has been
processed. In the extended game we have (cext , L

′
ext) := generateMext ,R(t, Lext).

In the simulation, B sends “generate convert(t)” to the small game and we have
(csmall , L

′
small) := generateMsmall ,R(convert(t), Lsmall) (and maybe additional calls to

generateMsmall ,R if t contains honestly generated encryptions using honest keys). We
observe the following (where Mext and Msmall are the Turing machines in the ex-
tended and in the small game respectively):

• By requirement (2) for validPKE, Mext is never called for ekx, dkx. Analogously
for Msmall and the transparent translations of keys.

• For an honest encryption subterm t = enc l̂h(ek lh(),m), we have a call
(cext , L

′
ext) := generateMext ,R(t, Lext) in the extended game and calls

(csmall , L
′
small) := generateMsmall ,R(f l̂ench(eklh(),0`)(m)(ek lh()), Lsmall) and

(c′small , L
′′
small) := generateMsmall ,R(m,L′small) in the small game (since B sends

an additional query “sgenerate m” to the small game). It is easy to see that
the newly generated bitstrings coincide.

• For all other terms convert(t) only removes keys from t which are already
part of the library. The rest of the term remains intact and hence the newly
generated bitstrings coincide.

Our invariant hold for L′ext and L′small . Note that this implies cext = csmall which is
the response sent to A in both settings. Analogously for queries “sgenerate t”.

parse c. Assume that our invariants (1) and (2) hold for libraries Lext and Lsmall .
Then, they still hold after a valid query “parse c” by A has been processed. If
c ∈ dom(Lext), nothing changes and due to invariant (2) the response toA is the same
in Game 2 and Game 3. Otherwise, since the implementations in both games are
type-safe (Definition 42) we can focus our analysis on opening bitstrings from [[TPKE]].
For those it is easy to check that the open function for opens them structurally the
same way (modulo conversion) the function openPKE does.

Claim: If A wins, then B wins Game 3
Due to the invariants (1) and (2) from above, we know that whenever a bitstring

c sent by A is parsed as a term t in Game 3, it is parsed as convert(t) in the small
game. By checking the deduction systems of both games we see that if t is non-DY
in Game 3, then convert(t) is non-DY in the small game. Since I is a deduction
sound implementation of M A can win Game 3 only with negligible probability
which concludes our proof.

134 3. Composable Computational Soundness

3.7.3 Signatures
In this section we show that any deduction sound implementation can be extended

by a signature scheme. More precisely, composition works if we require a strongly
EUF-CMA-secure signature scheme and enforce static corruption. The result is
again a deduction sound implementation.

3.7.3.1 Computational preliminaries
Definition 46 (signature scheme). A signature scheme is a triple of algorithms
(SIG.KeyGen, SIG.Sig, SIG.Vfy).
The probabilistic key generation algorithm SIG.KeyGen takes an encoding of the

security parameter and some randomness as inputs and generates a pair (vk, sk)
containing the verification key vk and the signing key sk.
The probabilistic signing algorithm SIG.Sig takes three arguments: a signing key

sk, the message m ∈ {0, 1}∗, and some randomness r ∈ {0, 1}η. It computes a
signature σ := SIG.Sig(sk,m; r).
The verification algorithm SIG.Vfy takes a verification key vk, a signature σ, and a

message m as inputs and returns a value from {0, 1}. We require perfect correctness:

SIG.Vfy(vk, SIG.Sig(sk,m; r),m) = 1

for all r ← {0, 1},m ∈ {0, 1}∗ and (vk, sk)← SIG.KeyGen(1η).

Definition 47 (strong EUF-CMA security of signature schemes). A signature scheme
(SIG.KeyGen, SIG.Sig, SIG.Vfy) is strongly EUF-CMA secure if for all PPT adver-
saries A the probability

P
[
EUF-CMA-SIG(SIG.KeyGen,SIG.Sig,SIG.Vfy)

A (η) = 1
]

is negligible for the EUF-CMA game from Figure 3.10. Note that, analogously to
Figure 3.8, we can also define an equivalent multi-user version of strong EUF-CMA
security.

EUF-CMA-SIG(SIG.KeyGen,SIG.Sig,SIG.Vfy)
A (η):

let (vk, sk)← SIG.KeyGen(1η)
let sigs = ∅
send vk to A

on request “sign m” do
let σ ← SIG.Sig(sk,m)
add (σ,m) to sigs
send σ to A

on request “forge σ∗,m∗” do
if SIG.Vfy(vk, σ∗,m∗) = 1 and (σ∗,m∗) 6∈ sigs then return 1 else return 0

Figure 3.10: The strong EUF-CMA game for a signature scheme
(SIG.KeyGen, SIG.Sig, SIG.Vfy).

3.7. Composition theorems 135

3.7.3.2 Symbolic model
We first define the symbolic model (TSIG,4SIG,ΣSIG,DSIG) for signatures. The

signature ΣSIG features the following function symbols:

sk : τ sk
SIG

vk : τ sk
SIG → τ vk

SIG

sig : τ sk
SIG ×> → τ sig

SIG

The randomized function sk of arity τ sk
SIG returns a signing key. The deterministic

function vk of arity τ sk
SIG → τ vk

SIG derives a verification key from a signing key. The
randomized signing function sig has arity τ sk

SIG × > → τ sig
SIG and, given a signing key

and a message of type >, represents a signature of that message. To complete the
formal definition we set the types

TSIG := {>, τ sk
SIG, τ

vk
SIG, τ

sig
SIG}

All introduced types are direct subtypes of the base type > (this defines 4SIG). The
deduction system captures the security of signatures

DSIG :=

skl()

vk(skl()) ,

sig l̂(skl(),m)
m

, skl() m

sigla (skl(),m)

These rules are valid for arbitrary labels l, l̂ ∈ labels and adversarial labels la ∈
labelsA. Read from top left to bottom right the following intuitions back up the
rules:

• The adversary can derive verification keys from signing keys.

• Signatures reveal the message that was signed.

• The adversary can use known signing keys to deduce signatures under those
keys.

Although the verification key is going to be part of the computational implementa-
tion of a signatures, we don’t need a rule sig l̂(skl(),m)

vk(skl) since we enforce static corruption
where adversary knows all verification keys.

3.7.3.3 Implementation
We now give a concrete implementation ISIG for signatures given a signature

scheme (SIG.KeyGen, SIG.Sig, SIG.Vfy). The computable interpretations of sk, vk,
sig are as follows:

• (MSIG sk)(r): Let (vk, sk) := SIG.KeyGen(1η; r). Return 〈vk, sk, τ sk
SIG〉.

• (MSIG vk)(ŝk: Parse ŝk as 〈vk, sk, τ sk
SIG〉. Return 〈vk, τ vk

SIG〉.

• (MSIG sig)(ŝk,m; r): Parse ŝk as 〈vk, sk, τ sk
SIG〉. Let σ := SIG.Sig(sk,m; r) and

return 〈σ,m, vk, τ sig
SIG〉.

136 3. Composable Computational Soundness

openSIG(c, L)
if c ∈ [[TSIG]] ∩ dom(L) then

return (c, L(c))
else if c = 〈sk, τ sk

SIG〉 then
return (c, gl(c)

τ sk
SIG

)
else if c = 〈vk, τ vk

SIG〉 then
if ŝk ∈ dom(L) s.t. ŝk = 〈vk, sk, τ sk

SIG〉 then
return (c, vk(ŝk))

else
return (c, gl(c)

τ vk
SIG

)
else if c = 〈σ,m, vk, τ sig

SIG〉 then
if (〈vk, τ vk

SIG〉, vk(ŝk)) ∈ L
and SIG.Vfy(vk, σ,m) = true then
return (c, sigl(c)(ŝk,m))

else
return (c, gl(c)

τ sig
SIG

)
else

return (c, gl(c)>)

Figure 3.11: Open function for signatures.

The validSIG predicate
Intuitively, we require static corruption of signing keys and that verification and

signing keys are only used for signing and verification. Formally, based on the
current trace T of all parse and generate requests of the adversary, the predicate
validSIG returns true only if the following conditions hold:

1. The trace starts with a query “init T,H” (T,H may be the empty list respec-
tively). There are no further init queries.

2. The adversary may only generate keys in the init query. Concretely, this is
guaranteed by the following rules:

a) For the query “init T,H”, the function symbols sk and vk may only occur
in a term t ∈ T (i.e., not as subterms of other terms) of one of the two
following types (for l ∈ labelsH):

• t = vk(sk l()) (to generate an honest signing key)

• t = sk l() (to generate a corrupted signing key)

Any label l for sk l() must be unique in T .

b) Any occurrence of vk(sk l()) or sk l() in a generate query must have oc-
curred in the init query.

3. The adversary must not use the function symbol sig in the init query.

4. The term sk l() may only occur as the first argument of sig.

3.7. Composition theorems 137

Checking the implementation
We first observe that ISKE is collision-free (Definition 41): Basically, collisions for

keys can only occur with negligible probability since they break the security of the
scheme (which is strong EUF-CMA secure). Collisions of signatures can only occur
with negligible probability as well due to the EUF-CMA security. Furthermore, it
is easy to see that openSIG meets the requirements of Definition 42 and that validSIG
meets the requirements for valid functions.

3.7.3.4 Signature composability
Theorem 6. LetM be a symbolic model and I be deduction sound implementation
ofM. If (MSIG,ISIG) and (M,I) are compatible (see requirements in Section 3.5),
then I ∪ ISIG is a deduction sound implementation of M∪MSIG for any ISIG con-
structed from a strongly EUF-CMA-secure signature scheme.

Proof. First, we briefly describe the intuition behind the proof: Let A be an ad-
versary playing the deduction soundness game. Assume that A queries “parse c”
and c is parsed as a non-DY term t that contains a signature sig := sig l̂(sk l(),m)
and S 6` sig (where S is the list of terms generated for A in the deduction sound-
ness game). We distinguish two possible ways the adversary could potentially have
learned sig:
If sig was previously generated for A (i.e., sig ∈ st(S) and l̂ ∈ labelsH), we say that
A reconstructed sig. Since signatures and transparent functions do not introduce
function symbols that allow for signatures as input such that the signature is not
derivable from the constructed term, A must have broken the deduction soundness
of I in this case. Hence, using A, we can construct an successful adversary B on the
deduction soundness of I. B simulates signatures using transparent functions.
If sig was not previously generated for A (i.e., l̂ ∈ labelsA), we say that A forged

sig. In this case A can be used to break the strong EUF-CMA security of the
signature scheme.
Since reconstructions and forgeries can only occur with negligible probability the

composed implementation I∪ISIG is a deduction sound implementation ofM∪MSIG.

Game 0
In Game 0 A plays the original deduction soundness game

DS(M∪MSIG)∪Mtran(ν),(I∪ISIG)∪Itran(ν)(η).

Game 1
In Game 1 we replace the generate function by the collision-aware generate function

from Figure 3.3. Since (I ∪ISIG)∪Itran(ν) is a collision-free implementation Game 0
and Game 1 are indistinguishable by Lemma 59.

Game 2
Game 2 is Game 1 with a changed winning condition for the adversary. First we

introduce the set of reconstruction rules as follows: Dr := { t

sigĥ(skh(),m)
: t is a term

from (M∪MSIG) ∪Mtran(ν), ĥ, h ∈ labelsH and sigĥ(skh(),m) is a subterm of t}.
Let `1 denote the deduction relation of the previous game based on the rules from
D ∪ DSIG ∪ Dtran. In this game we use the deduction relation `2 based on the rules
from D ∪DSIG ∪Dtran ∪Dr, i.e., the adversary may now use any honestly generated
signature to deduce new terms. In other words, the adversary cannot win (produce
a non-DY term) any longer by using a signature that has been generated for it.

138 3. Composable Computational Soundness

Claim: Game 1 and Game 2 are indistinguishable
The only difference between Game 1 and Game 2 is the handling of parse requests.

Since `2 potentially allows to deduce more terms from a given set of terms S than
`1, the adversary might produce a non-DY term in Game 1 that is DY in Game 2.
We now show that the adversary breaks the deduction soundness of I in that case.
This part of the proof is very similar to the proof of indistinguishability between
Games 2 and 3 in Theorem 5.
The simulator. We use A to construct an adversary B on the deduction sound-

ness of I. Towards this goal B, in addition to the transparent symbolic model
Mtran(ν ′) used by A, uses a transparent symbolic model to simulate signatures in
the deduction soundness game for I.
Transparent symbolic model for signatures. We first describe the

parametrized transparent symbolic model Mtran
SIG (ν) and the corresponding

parametrized implementation Itran
SIG (ν) B will use to simulate ISIG. We use the data

types and subtype relation fromMSIG. ν is expected to be an encoding of a list of
label-triple pairs (l, (ek, dk, sk ′)) (l ∈ labels) where the triple consist of a keypair vk,
sk and an additional value sk ′ (used to represent honest signing keys in the library).
The signature Σtran

SIG is the following:

• deterministic fhsk with ar(fhsk) = τ sk
SIG for all labels l ∈ ν

• deterministic fhvk with ar(fhvk) = τ vk
SIG for all labels l ∈ ν

• randomized fsig(skh(),·) with ar(fsig(skh(),·)) = > → τ sig
SIG for all labels l ∈ ν

We specify a parametrized implementation Itran
SIG (ν) for Mtran

SIG as follows for each
(l, (vk, sk, sk ′)) ∈ ν:

• (M tran
SIG fhsk)() returns 〈vk, sk ′, τ sk

SIG〉

• (M tran
SIG fhvk)() returns 〈vk, τ vk

SIG〉

• (M tran
SIG fsig(skh(),·))(m; r) returns (MSIG sig)(〈sk, τ sk

SIG〉,m; r)

Furthermore, we have to define the transparent modes of operation for M tran
SIG .

(M tran
SIG proj fsig(skh(),·) 1)(sig) parses sig as 〈σ,m, vk, τ sig

SIG〉 and returns m if parsing
succeeds and ⊥ otherwise. (M tran

SIG func)(b) returns fhsk if for some (l, (vk, sk, sk ′)) ∈
ν b can be parsed as 〈vk, sk ′, τ sk

SIG〉 and fhvk if b can be parsed as 〈vk, τ vk
SIG〉. If

b ∈ [[τ sig
SIG]], (M tran

SIG func) tries to parse b as 〈σ,m, vk, τ sig
SIG〉. If parsing succeeds,

SIG.Vfy(vk, σ,m) = true and there is a (l, (vk, sk, sk ′)) ∈ ν, then (M tran
SIG func) re-

turns fsig(skh(),·), ⊥ otherwise.
Convert terms. Adversary A uses the function symbols of the original symbolic

modelMSIG. Hence B needs to map these symbols to the corresponding transparent
functions. Towards this goal we introduce the function convert as follows (the first
matching rule is applied):

• convert(f l(t1, . . . , tn)) = f l(convert(t1), . . . , convert(tn)) for all f 6∈ ΣSIG

• convert(skh()) = fhsk()

• convert(vk(skh())) = fhvk()

• convert(sigĥ(skh(),m) = f ĥsig(skh(),·)(convert(m))

3.7. Composition theorems 139

For a list of terms T we define convert(T) := {convert(t) : t ∈ T}.
B simulates Game 1 for A while playing

DSM∪(Mtran
SIG (ν)∪Mtran(ν′)),I(∪Itran

SIG (ν)∪Itran(ν′))(η)

Note that we can generically compose Mtran
SIG (ν) ∪ Mtran(ν ′) to one parametrized

transparent modelM′
tran(ν||ν ′) since ν and ν ′ must be good (analogously for the im-

plementation). However, for the sake of clarity, we keep them apart to distinguish
the transparent functions (and parameter) provided by A from the additional trans-
parent functions introduced by B. Next we describe how B deals with the queries
received from A.

init query. B receives a lists of terms T,H from A. Initially, B sets ν := ∅.
For each occurrence of sk l() ∈ T B then picks a nonce r ← {0, 1}η and generates a
keypair (vk, sk) := SIG.KeyGen(1η, r). B sets sk ′ = sk. (dk ′ represents the signing
key in the library and will be a fresh random value for honest signing keys in a later
simulation.) B then adds (l, (vk, sk, sk ′)) to ν. Finally, B sends ν ′||ν to its game and
subsequently queries “init convert(T), convert(H)”. Afterwards, B queries “sgenerate
sk l()” for each sk l() ∈ T .
The other queries are handled exactly as in the simulation using transparent

functions in Theorem 5. Likewise, the proof that the simulation - apart from the
winning condition - perfectly simulates Game 1 (and thus Game 2) is analogous to
the corresponding proof in Theorem 5.
The changed winning condition. Let us now assume that A sends a “parse

c” such that c is parsed as a non-DY term t in Game 1 while t is DY in Game 2.
Concretely, we have S 6`1 t and S `2 t where S is the set of the terms previ-
ously generated for A. We have to show that convert(S) 6`sim convert(t) where
convert(S) := {convert(t) : t ∈ S}, i.e., that A breaks the small library in this case.
Since the simulation is perfect, c is actually parsed as convert(t) in the simulation.
From `2 to `1. By Lemma 61 there is an S ′ with S `2 S

′ such that S ′ 6`1 t and
S ′ ∪ {sigĥ(skh,m)} `1 t where sigĥ(skh,m) ∈ st(S ′) (i.e., derivable by a rule from
Dr).
From `sim to `1. In this paragraph we show that if convert(t) was deducible in

the simulation, t would be deducible in Game 1. Therefor we assume convert(S ′) `sim
convert(t) towards contradiction. Concretely, we show that it implies S ′ `1 t con-
tradicting S ′ 6`1 t which we have due to the previous paragraph.
Let π be a proof for convert(S ′) `sim convert(t). Then there is a proof π′ for

convert(S ′) `sim convert(t) such that for every αi = m
f l

sig(skh(),·)
(m) we have

f lsig(skh(),·)(m) ∈ st(convert(t)).
Assume we had an αi = m

f l
sig(skh(),·)

(m) in π such that f lsig(skh(),·)(m) 6∈ st(convert(t)).

Furthermore, and w.l.o.g., we assume that f lsig(skh(),·)(m) 6∈ st(convert(S ′)) (a justifi-
cation for this follows in the next paragraph). We define the substitution θ on terms
as θ(f l(t1, . . . , tn)) = f l(θ(t1), . . . , θ(tn)) for all function symbols f ! = fsig(skh(),·) and
θ(f lsig(skh(),·)(m)) = m (we could pick any term from Si−1 here). convert(S ′) =: S0

α1→

· · · αi−1→ Si−1
θαi+1→ θ(Si+1) · · · θαn→ θ(Sn) is a new proof π̃ for convert(S ′) `sim convert(t)

since

• Sn 3 convert(t) → θ(Sn) 3 θ(convert(t)) = convert(t) since f lsig(skh(),·)(m) 6∈
st(convert(t))

140 3. Composable Computational Soundness

• θ(Sj) = Sj and θ(αj) = αj for j ∈ {1, . . . , i − 1} since f lsig(skh(),·)(m) 6∈
st(convert(S ′))

• θ(αj) is still an instantiation of the same rule as αj for j ∈ {i+ 1, . . . , n} since

the only available rule that uses the structure of f lsig(skh(),·)(m) is
f l

sig(skh(),·)
(x)

x
.

However, none of the αj can be an instantiation of this rule since m ∈ Sj−1 for
j ∈ {i + 1, . . . , n} (and we are only considering proofs where already known
terms must not be derived again).

Why can we assume f lsig(skh(),·)(m) 6∈ st(convert(S ′)) w.l.o.g.? f lsig(skh(),·)(m) ∈
st(convert(S ′)) implies sigl(skh(),m) ∈ st(S ′). Furthermore, the setting in Game 1
satisfies the requirements for Lemma 60 and t′ = sigl(skh(),m): Instantiations
of rules from D ∪ Dtran use signature terms in a black-box way and hence satisfy
property (i). Instantiations of rules from DSIG satisfy either (i) or (ii). Thus, by
Lemma 60 we have S ′ `1 sigl(skh(),m). Converting this proof leads to a proof
convert(S ′) `sim f lsig(skh(),·)(m) that does not use a rule of the type x

f l
sig(skh(),·)

(x) .
Hence we can always find a proof where instantiations m

f l
sig(skh(),·)

(m) are only used

for f lsig(skh(),·)(m) 6∈ st(convert(S ′)).
In conclusion, if we find a proof π for convert(S ′) `sim convert(t), then we find a

proof π′ that does not contain any αi of type m
f l

sig(skh(),·)
(m) . We then apply convert−1

to this proof and get a proof for S ′ `1 t which is a contradiction to our requirements
for S ′. Hence we cannot have convert(S ′) `sim convert(t) and thus “parse c” lets the
simulator win the deduction soundness game for I where signatures are replaced
by transparent functions. This proves our claim that Game 1 and Game 2 are
indistinguishable.

Game 3
We define the set Df := { vk(x)

x
}. Let `2 denote the deduction relation of the

previous game based on the rules from D ∪ DSIG ∪ Dtran ∪ Dr. In this game we
use the deduction relation `3 based on the rules from D ∪ DSIG ∪ Dtran ∪ Dr ∪ Df ,
i.e., the adversary is allowed to derive the signing key for any verification key in
use. This also means that the adversary can no longer win by producing a forgery.
Furthermore we replace the honest signing keys in the library by random bistrings
analogously to Game 2 in Theorem 5.

Claim: Game 2 and Game 3 are indistinguishable.
Let A be an adversary for Game 2. To prove our claim we show how an adversary
B for the strong EUF-CMA security game can be constructed using A. Whenever
A wins Game 2 by having a bitstring c parsed as a term t that is non-DY in Game 2
but is DY in Game 3, B will win its game. Since our signature scheme is strongly
EUF-CMA secure, such a “distinguishing” c can only be produced by an adversary
with negligible probability. We first describe the adversary B in detail.

init request. By requirement (1)A starts with a request “init T,H”. Furthermore,
by requirement (2), we can distinguish three types of terms t in T . They are handled
by the simulator as follows:

• t = vk(sk l()) (A requests an honest signing key): B request a verification
key vk with a corresponding signing oracle from the strong EUF-CMA game.

3.7. Composition theorems 141

Then, it picks a random value sk ′ and sets ŝk := 〈vk, sk ′, τ sk
SIG〉. We refer to the

signing oracle corresponding to vk with Osig
ŝk (·). B sets L := L ∪ {(ŝk, sk l()),

(〈vk, τ vk
SIG〉, vk(ŝk))} and adds v̂k to the list of bistrings that will be returned to

A.

• otherwise we have t = skh() (A requests a corrupted signing key) or t does not
contain function symbols from ΣSIG (note that t must not contain signatures
by 3). In this case B uses the normal generate function and computes (c, L) :=
generate(t, L). It then adds c to the list of bitstrings that will be returned to
A.

After the init request, B changes the generate function to use the oracles for sig-
natures under honest signing keys. Concretely, it replaces the line

let c := (M f)(c1, . . . , cn; r)

with

if t = sigĥ(skh(),m) then
let c := 〈Osig

c1 (c2), c2, vk, τ sig
SIG〉

else
let c := (M f)(c1, . . . , cn; r)

Note that the bitstrings c1 and c2 correspond to the signing key and the message to
be signed respectively. Using the updated generate function, B simulates the rest of
Game 2 according to the normal deduction soundness game from Figure 3.7. The
simulation is indistinguishable:

• There is a bijection between the randomness used in an execution of Game 2
and the randomness used in the simulation: The randomness used for key gen-
eration and for generating signatures under honest keys is used by the strong
EUF-CMA game in the simulation (and this is the only difference between
Game 2 and the simulation as far as the use of randomness is concerned).

• The fact that the library contains randomized honest signing keys cannot be
detected by the adversary for the same reason the randomized honest en-
cryption keys cannot be detected by the adversary in Game 2 in Theorem 5:
According to validSIG (requirement (4)) signing keys may only occur as the
first argument to sig. If the adversary parses a bitstring that can be used as a
signing key, B wins the EUF-CMA game.

Extracting a forgery. Let “parse c” be a request sent by A such that t := L[[c]]
and S 6`2 t but S `3 t.
We claim that t contains either an honest signing key skh() or a forgery under an

honest signing key sigl(skh(),m) 6∈ st(S). To prove our claim we assume towards
contradiction that t contains neither and let π be a proof for S `3 t. Then, analo-
gously to above, we can first remove all instantiations of the rule skh() x

sigl(skh(),x) for honest
signing keys skh() from π yielding a proof π′. Next we remove all instantiations of
the rule vk(skh())

skh() from π′ following the same principle and get a proof π′′. However,
π′′ is a proof for S `2 t which contradicts our initial assumption. Hence t contains
either an honest signing key or a forgery.

142 3. Composable Computational Soundness

Since B could parse the bitstring c, the library L contains a bitstring corresponding
to every subterm of t. If t contains the term for an honest signing key, A must have
guessed the randomized bitstring sk ′ for this key in the library which was never
used to compute any bitstring sent to A. This can only happen with negligible
probability. Hence, c contains a forgery with overwhelming probability and B can
use this forgery to win the strong EUF-CMA game it is playing (note that we need
strong EUF-CMA security here since the forgery could be a re-randomization of a
signature that was generated for the adversary and we wouldn’t break EUF-CMA
security in this case).

A cannot win Game 3 with non-negligible probability
To conclude the proof we observe that an adversary A that wins Game 3 with

non-negligible probability also wins the deduction soundness game for I with non-
negligible probability: Analogously to the proof for the indistinguishability of Game 0
and Game 2 we can construct an adversary B that attacks the deduction soundness
of I and simulates signatures using transparent functions. The simulation is perfect
and if A wins, B wins since the deduction rules in Game 3 are effectively a superset
of the deduction rules in the simulation.
Hence A cannot win Game 3 with non-negligible probability and I ∪ ISIG is a

deduction sound implementation ofM∪MSIG.

Lemma 60. Let M = (T ,4,Σ,D) be a symbolic model and I an implementation
of M. For the set of terms generated for the adversary S during the deduction
soundness game DSM,I,A(η) holds, that for any term t′ ∈ st(S) with adversarial
label we have S ` t′ if for all instantiations α = t1 ... tn

t
of rules from D with

t′ ∈ st(t) meet at least one of the following properties:

(i) t′ ∈ st(ti) for some i ∈ {1, . . . , n}

(ii) for any S̃ α→ S̃ ′ we have S̃ ′ ` t′

Proof. Since generate does not introduce adversarial labels, every subterm with ad-
versarial label of any term in S must have been introduced by a previous parse
request. Let “parse c” be the first parse request that returns a term t such that
t′ is a subterm of t. Since the adversary didn’t win with that request, t must be
a DY term with respect to S ′ ⊆ S where S ′ denote the terms generated for the
adversary until that parse request. Concretely, we have S ′ ` t and thus a proof
S ′ =: S0

α1→ S1
α2→ · · · αn→ Sn such that t ∈ Sn. Let i ∈ {1, . . . , n} be the smallest

index such that t′ ∈ st(Si) (i 6= 0 since t′ ∈ st(S ′)). αi cannot meet property (i)
since t′ 6∈ st(Si−1) (i is minimal). Hence we have Si ` t′ by (ii) and S ′ ` t′ since
S ′ deducSi and S ` t′ since S ′ ⊆ S.

Lemma 61. Let M = (T ,4,Σ,D) be a symbolic model and let D′ ⊇ D′ be a set
of deduction rules forM. ` and `′ denote the deduction relations corresponding to
D and D′ respectively. Let S be a set of terms and t be a term such that S 6` t and
S `′ t. Then there is a set of terms S ′ and a term t′ such that

• S `′ S ′

• S ′ 6` t

• S ′ ∪ {t′} ` t

3.7. Composition theorems 143

• S ′ `′ t′

Proof. S `′ t implies that there is a deduction proof S =: S0
α1→ S1

α2→ · · · αn→ Sn. For
αi = u1 ... um

u
and Si−1

αi→ Si we require ui ∈ Si−1 and w.l.o.g. u 6∈ Si−1.
Let j ∈ {1, . . . , n} be the biggest index such that αj is an instantiation of a rule

from D′ \ D and Sj 6` t. (There must be such a rule since we would have S ` t
otherwise.) Then we set S ′ := Sj−1 and t′ to be the one element in Sj \ Sj−1. We
have

• S `′ S ′ since S α1→ S1
α2→ · · · αj−1→ Sj−1 = S ′

• S ′ 6` t by requirements for j

• S ′ ∪ {t′} ` t: If there is an instantiation αj′ of a rule from D′ \ D with j′ > j,
we have Sj′−1 ` t by requirements for j. For the smallest such index j′ we
observe Sj ` Sj′−1 and hence Sj = S ′ ∪ {t′} ` t.

• S ′ `′ t′ obviously by application of αj

This concludes our proof.

3.7.4 Secret key encryption
In this section we define a symbolic model MSKE for secret key encryption and

a corresponding implementation ISKE based on a secret key encryption scheme
(SKE.KeyGen, SKE.Enc, SKE.Dec). We show that composition of MSKE and ISKE
with any symbolic modelM comprising a deduction sound implementation I pre-
serves this property for the resulting implementation, i.e., I ∪ ISKE is a deduction
sound implementation ofM∪MSKE if we use a secret key encryption scheme that
is IND-CCA and INT-CTXT secure.

3.7.4.1 Computational preliminaries
Definition 48 (secret key encryption scheme). A secret key encryption scheme
(SKE scheme) is a triple of algorithms (SKE.KeyGen, SKE.Enc, SKE.Dec).
The probabilistic key generation algorithm SKE.KeyGen takes an encoding of the

security parameter and some randomness as inputs and generates a secret key k.
The probabilistic encryption algorithm SKE.Enc takes three arguments: a secret

key k, the message m ∈ {0, 1}∗, and some randomness r ∈ {0, 1}η. It computes a
ciphertext c := SKE.Enc(k,m; r).4
The decryption algorithm SKE.Dec takes a secret key and a ciphertext as inputs

and returns a value from {0, 1}∗ ∪ {⊥}. We require perfect correctness, i.e.,

SKE.Dec(k, SKE.Enc(k,m; r)) = m

for all r ← {0, 1},m ∈ {0, 1}∗ and k ← SKE.KeyGen(1η).

Definition 49 (IND-CCA security of SKE schemes). An SKE scheme (SKE.KeyGen,
SKE.Enc, SKE.Dec) is IND-CCA secure if for all PPT adversaries A the probability

P
[
IND-CCA-SKE(SKE.KeyGen,SKE.Enc,SKE.Dec)

A (η) = 1
]
− 1

2
is negligible for the IND-CCA game from Figure 3.12. Note that, analogously to
Figure 3.8, we can also define an equivalent multi-user version of IND-CCA security
for SKE schemes.

144 3. Composable Computational Soundness

IND-CCA-SKE(SKE.KeyGen,SKE.Enc,SKE.Dec)
A (η):

let b← {0, 1}
let k ← SKE.KeyGen(1η)
let ciphers = ∅

on request “encrypt m” do
if b = 0 then

let c← SKE.Enc(k, 0|m|)
add (c,m) to ciphers

else
let c← SKE.Enc(k,m)

send c to A

on request “decrypt c” do
if b = 0 and (c,m) ∈ ciphers for some m then

send m to A
else

send SKE.Dec(k, c) to A

on request “guess b′” do
if b = b′ then return 1 else return 0

Figure 3.12: The IND-CCA game for an SKE scheme (SKE.KeyGen, SKE.Enc,
SKE.Dec).

Definition 50 (INT-CTXT security of SKE schemes). An SKE scheme (SKE.KeyGen,
SKE.Enc, SKE.Dec) is INT-CTXT secure if for all PPT adversaries A the probability

P
[
IND-CCA-SKE(SKE.KeyGen,SKE.Enc,SKE.Dec)

A (η) = 1
]
− 1

2

is negligible for the INT-CTXT game from Figure 3.13.

3.7.4.2 Symbolic model
We first define the symbolic model (TSKE,4SKE,ΣSKE,DSKE) for secret key encryp-

tion. The signature ΣSKE features the following function symbols

kx : τ kx
SKE

Ex : τ kx
SKE ×> → τ ciphertext

SKE

for x ∈ {h, c}. The randomized functions kh and kc return honest or corrupted
keys respectively. The randomized function Ex has arity τ kx

SKE × > → τ ciphertext
SKE and

represents a ciphertext under the given key. To complete the formal definition we
set

TSKE := {>, τ kx
SKE, τ

ciphertext
SKE }

4Since the message m is of basetype in symbolic model given below, we require a scheme with
message space {0, 1}∗.

3.7. Composition theorems 145

INT-CTXT-SKE(SKE.KeyGen,SKE.Enc,SKE.Dec)
A (η):

let k ← SKE.KeyGen(1η)
let ciphers := ∅

on request “encrypt m” do
let c← SKE.Enc(k,m)
add c to ciphers
send c to A

on request “forge c” do
let m := SKE.Dec(k, c)
if m 6= ⊥ and c 6∈ ciphers then return 1 else return 0

Figure 3.13: The INT-CTXT game for an SKE scheme (SKE.KeyGen, SKE.Enc,
SKE.Dec).

All introduced types are direct subtypes of the base type > (this defines 4SKE). The
deduction system captures the security of secret key encryption

DSKE :=

klx() m

Elax (klx(),m)
,

Ela
h

(klh(),m)
m

, E l̂c(klc(),m)
m

These rules are valid for arbitrary labels l, l̂ ∈ labels and adversarial labels la ∈
labelsA. Read from top left to bottom right the following intuitions back up the
rules:

• The adversary can use any honestly generated key to encrypt some term u.

• The adversary knows the message contained in any adversarial encryption.

• The adversary knows the message contained in any encryption under a cor-
rupted key.

3.7.4.3 Implementation
We now give a concrete implementation ISKE for secret key encryption. Let

(SKE.KeyGen, SKE.Enc, SKE.Dec) be a secret key encryption scheme. The com-
putable interpretations of, kx and Ex (for x ∈ {h, c}) are as follows:

• (MSKE kx)(r): Let k := SKE.KeyGen(1η; r). Return 〈k, τ kx
SKE〉

• (MSKE Ex)(k̂,m)(r): Parse k̂ as 〈k, τ kx
SKE〉. Let c := SKE.Enc(k,m; r) and return

〈c, τ ciphertext
SKE 〉

The validSKE predicate
The predicate validSKE guarantees, that all keys that may be used by the adversary

later are generated during initialization (i.e., with the init query). We only allow
static corruption of keys, i.e., the adversary has to decide which keys are honest
and which are corrupted at this stage. Keys may only be used for encryption and

146 3. Composable Computational Soundness

openSKE(c, L)
if c ∈ [[TSKE]] ∩ dom(L) then

return (c, L(c))
else if c = 〈k, τ kx

SKE〉 then
return (c, gl(c)

τkx
SKE

)
else if c = 〈c′, τ ciphertext

SKE 〉 then
for each (k̂, khx ()) ∈ L do

parse k̂ as 〈k, τ kx
SKE〉

let m := SKE.Dec(k, c′)
if m 6= ⊥ then

return (c,E l(c)
x (k̂,m))

return (c, gl(c)
τ ciphertext

SKE
)

else
return (c, gl(c)>)

Figure 3.14: Open function for secret key encryption.

decryption. This implicitly prevents key cycles. More formally, based on the current
trace T of all parse and generate requests of the adversary, the predicate validSKE
returns true only if the following conditions hold:

1. The trace starts with a query “init T,H” (T resp. H may be the empty list).
There are no further init queries.

2. The adversary may only generate keys in the init query. Concretely, this is
guaranteed by the following rules:
a) For the query “init T,H”, the function symbol kc may only occur in a

term k lc() ∈ T . Analogously, kh may only occur in H. Any label l for k lx()
must be unique in T ∪H.

b) Any occurrence of k lx() in a generate query must have occurred in the init
query. k lx() may only occur as the first argument to Ex.

3. The adversary must not use the function symbols for encryption Ex in the init
query.

Checking the implementation
We first observe that ISKE is collision-free (Definition 41): Basically, collisions

for keys can only occur with negligible probability for an IND-CCA secure scheme
since they break the security of the scheme. Collision of ciphertexts for the same
secret key cannot occur due to the scheme’s correctness, collisions of ciphertexts
under different keys can only occur with negligible probability for an INT-CTXT
secure scheme. Furthermore, it is easy to see that openSKE meets the requirements
of Definition 42 and that validSKE meets the requirements for valid functions.

3.7.4.4 SKE composability
Theorem 7. LetM be a symbolic model and I a deduction sound implementation
ofM. If (MSKE,ISKE) and (M,I) are compatible (see requirements in Section 3.5)

3.7. Composition theorems 147

and the SKE scheme (SKE.KeyGen, SKE.Enc, SKE.Dec) is IND-CCA and INT-CTXT
secure, then I ∪ ISKE is a deduction sound implementation ofM∪MSKE.

Proof. This proof is very similar to that for public key encryption (Theorem 5). The
main difference is that the adversary cannot create ciphertexts under honest keys
(by DSKE). Therefore we include an additional game hop to where we add rules of
the type m

Eh(kl
h

(),m) to the deduction system. If an adversary notices the difference
(i.e., it was able to produce non-DY terms without these rules), we can use it to
break the authentication of ciphertexts. Hence this can only happen with negligible
probability.

Game 0
In Game 0 A plays the original deduction soundness game

DS(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν)(η).

Game 1
In Game 1 we replace the generate function by the collision-aware generate function

from Figure 3.3. Since (I ∪ISKE)∪Itran(ν) is a collision-free implementation Game 0
and Game 1 are indistinguishable by Lemma 59.

Game 2
As in Game 2 from Theorem 5 we replace the ciphertexts created under honest

keys by encryptions of 0 and the honest keys in the library by random bitstrings.
The simulation that Game 1 and Game 2 are indistinguishable works analogously
to Theorem 5.

Game 3
In Game 3 we add rules m

Ela
h

(kl
h

(),m)
for all honest keys k lh() and labels la ∈ labelsA to

the deduction system. This establishes a deduction system similar to that of public
key encryption. We show that an adversary that can distinguish Game 2 from
Game 3 can be used to break the INT-CTXT security of the encryption scheme.
Towards this goal we use the same technique as for the proof of indistinguishability
of Games 2 and 3 in Theorem 65. From A we construct an adversary B on playing
the INT-CTXT game from Figure 3.13 and simulating Game 2 for A. If a bitstring
c sent by A is parsed as a term t such that S 6`2 t but S `3 t, we can (using the
same arguments as in Theorem 6) extract a forgery from c.

Game 4
In Game 4 A interacts with an adversary B that plays the deduction soundness

game for M and I and intuitively simulates Game 3 for A. Basically, B uses
transparent functions to add symmetric key encryption toM.
Transparent symbolic model for symmetric key encryption. We first de-

scribe the parametrized transparent symbolic modelMtran
SKE(ν) and the corresponding

parametrized implementation Itran
SKE(ν) B will use to simulate ISKE. Analogously to

Theorem 5, we use the data types and subtype relation fromMSKE. ν is expected
to be an encoding of a list of triples (l, k, k′) (l ∈ labels, k ∈ {0, 1}∗). The signature
Σtran

SKE is the following:

• deterministic fklx() with ar(fklx()) = τ kx
SKE for all labels l ∈ ν

5There we excluded forged signatures as a way to produce non-DY terms for the adversary.

148 3. Composable Computational Soundness

• randomized fEh(kl
h

(),0`) with ar(fEh(kl
h

(),0`)) = τ ciphertext
SKE for all ` ∈ N, l ∈ ν

• randomized fEh(kl
h

(),·) with ar(fEh(kl
h

(),·)) = > → τ ciphertext
SKE for all l ∈ ν

• randomized fEc(klc(),·) with ar(fEc(klc(),·)) = > → τ ciphertext
SKE for all l ∈ ν

We specify a parametrized implementation Itran
SKE(ν) for Mtran

SKE as follows for
(l, k, k′) ∈ ν:

• (M tran
SKE fklx())(r) returns 〈k′, τ kx

SKE〉

• (M tran
SKE fEh(kl

h
(),0`))(r) returns (MSKE Eh)(〈k, τ kx

SKE〉, 0`; r)

• (M tran
SKE fEh(kl

h
(),·))(m; r) returns (MSKE Eh)(〈k, τ kx

SKE〉,m; r)

• (M tran
SKE fEc(klc(),·))(m; r) returns (MSKE Ec)(〈k, τ kx

SKE〉,m; r)

(M tran
SKE func)(b):
if b = 〈k′, τ kx

SKE〉 for some (l, k, k′) ∈ ν then
return fklx()

if b ∈ τ ciphertext
SKE then

parse b as 〈c, τ ciphertext
SKE 〉

for each (l, k, k′) ∈ ν do
let m := SKE.Dec(k, c)

if m 6= ⊥ then
if l belongs to an honest key then

return fEh(kl
h

(),·)
else

return fEc(klc(),·)
return ⊥

For b with (M tran
SKE func)(b) = fEh(kl

h
(),·) we have (l, k) ∈ ν with SKE.Dec(k, c) =:

m 6= ⊥ for b = 〈c, τ ciphertext
SKE 〉 and define (M tran

SKE proj fEh(kl
h

(),·) 1)(b) := m. Analogously
for (M tran

SKE func)(b) = fEc(klc(),·).
Convert terms. Adversary A uses the function symbols of the original symbolic

model for encryption MSKE. Hence B needs to map these symbols to the corre-
sponding transparent functions introduced by B. Towards this goal we introduce
the function convert as follows:

• convert(f l(t1, . . . , tn)) = f l(convert(t1), . . . , convert(tn)) for all f 6∈ ΣSKE.

• convert(k lx()) = fklx()

• convert(E l̂
h(k lh(),m)) = f

l̂(m)
Eh(kl

h
(),0`)() if l̂ ∈ labelsH

• convert(E l̂
h(k lh(),m)) = f l̂Eh(kl

h
(),·)(convert(m)) if l̂ ∈ labelsA

• convert(E l̂
c(k lc(),m)) = f l̂Ec(klc(),·)(convert(m))

3.7. Composition theorems 149

B simulates the game DS(M∪MSKE)∪Mtran(ν′),(I∪ISKE)∪Itran(ν′)(η) for A while playing
DSM∪(Mtran

SKE(ν)∪Mtran(ν′)),I(∪Itran
SKE(ν)∪Itran(ν′))(η). Note that we can generically compose

Mtran
SKE(ν) ∪ Mtran(ν ′) to one parametrized transparent model M′

tran(ν||ν ′) since ν
and ν ′ must be good (analogously for the implementation). However, for the sake of
clarity, we keep them apart to distinguish the transparent functions (and parameter)
provided by A from the additional transparent functions introduced by B.
The simulation. B receives a parameter ν ′ from A. B initializes the T := ∅ of
A’s queries it maintains. Analogously to Theorem 5 B extracts the keys for SKE
from T,H and sets up the parameter ν for Itran

SKE(ν) accordingly. It deals with request
exactly as the simulator in Theorem 5.

Claim: Game 3 and Game 4 are indistinguishable
This part is also completely analogous to the corresponding part in Theorem 5.

Claim: If A wins, then B wins Game 4
As well analogous to Theorem 5.

3.7.5 MACs
In this section we show that any deduction sound implementation can be extended

by a mac scheme. More precisely, we require a strongly EUF-CMA-secure MAC
scheme.

3.7.5.1 Computational preliminaries
Definition 51 (MAC scheme). A MAC scheme is a triple of algorithms (MAC.KeyGen,
MAC.Mac, MAC.Vfy).
The probabilistic key generation algorithm MAC.KeyGen takes an encoding of the

security parameter and some randomness as inputs and generates a MAC key k.
The probabilistic algorithm MAC.Mac takes three arguments: a MAC key k, the

message m ∈ {0, 1}∗, and some randomness r ∈ {0, 1}η. It computes a MAC σ :=
MAC.Mac(k,m; r).
The verification algorithm MAC.Vfy takes a MAC key k, a MAC σ, and a message

m as inputs and returns a value from {0, 1}. We require perfect correctness:

MAC.Vfy(k,MAC.Mac(k,m; r),m) = 1

for all r ← {0, 1},m ∈ {0, 1}∗ and k ← SIG.KeyGen(1η).

Definition 52 (strong EUF-CMA security for MAC schemes). A MAC scheme
(MAC.KeyGen, MAC.Mac, MAC.Vfy) is strongly EUF-CMA secure if for all PPT
adversaries A the probability

P
[
EUF-CMA-MAC(MAC.KeyGen,MAC.Mac,MAC.Vfy)

A (η) = 1
]

is negligible. Here, the game EUF-CMA-MAC is defined analogously to the game
EUF-CMA-SIG from Figure 3.10 except that no verification key is sent to the adver-
sary and the MAC key is used as signing key.

150 3. Composable Computational Soundness

3.7.5.2 Symbolic model
We first define the symbolic model (TMAC,4MAC,ΣMAC,DMAC) for macs. The sig-

nature ΣMAC features the following function symbols:

k : τ k
MAC

mac : τ k
MAC ×> → τmac

MAC

for x ∈ {c, h}. The randomized function symbol k of arity τ k
MAC represents keys.

The randomized function symbol mac of arity τ k
MAC×> → τmac

MAC represents the mac
of a message. To complete the formal definition we set the types

TMAC := {>, τ k
MAC, τ

mac
MAC}

All introduced types are direct subtypes of the base type > (this defines 4MAC). The
deduction system captures the security of macs

DMAC :=
{

macl̂(kl(),m)
m

, kl() m
macla (kl(),m)

}
These rules are valid for arbitrary labels l, l̂ ∈ labels and adversarial labels la ∈

labelsA. The following intuitions back up the rules:

• Macs reveal the message that was signed.

• The adversary can use known keys to deduce macs under those keys.

3.7.5.3 Implementation
We now give a concrete implementation IMAC for macs. Let (MAC.KeyGen,

MAC.Mac, MAC.Vfy) be a MAC scheme. The computable interpretations of k and
mac are as follows:

• (MMAC k)(r): Let k := MAC.Mac(1η; r). Return 〈k, τ k
MAC〉.

• (MMAC sig)(k̂,m; r): Parse k̂ as 〈k, τ k
MAC〉. Let σ := MAC.Mac(k,m; r) and

return 〈σ,m, τmac
MAC〉.

The validMAC predicate
Based on the current trace T of all parse and generate requests of the adversary,

the predicate validMAC returns true only if the following conditions hold:

1. The trace starts with a query “init T,H” (where T and H may be the empty
list respectively). There are no further init queries.

2. The adversary may only generate keys in the init query. Concretely, this is
guaranteed by the following rules:
a) For the query “init T,H”, the function symbol k may only occur in a term

kh() ∈ T ∪ H (i.e., not as subterm of other terms) for l ∈ labelsH. Any
label h for kh() must be unique in T ∪H.

b) Any occurrence of kh() in a generate query must have occurred in the init
query.

3. The adversary must not use the function symbol mac in the init query.

4. kh() may only occur as the first argument for mac.

3.7. Composition theorems 151

openMAC(c, L)
if c ∈ [[TMAC]] ∩ dom(L) then

return (c, L(c))
else if c = 〈k, τ k

MAC〉 then
return (c, gl(c)

τk
MAC

)
else if c = 〈σ,m, τmac

MAC〉 then
for each (k̂, k l) ∈ L do

parse k̂ as 〈k, τ k
MAC〉

if MAC.Vfy(k, σ,m) = true then
return (c,macl(c)(k̂,m))

return (c, gl(c)
τ sig

SIG
)

else
return (c, gl(c)>)

Figure 3.15: Open function for macs.

3.7.5.4 MAC composability
Theorem 8. LetM be a symbolic model and I be deduction sound implementation
ofM. If (MMAC,IMAC) and(M,I) are compatible (see the conditions in Section 3.5),
then I ∪ IMAC is a deduction sound implementation of M∪MMAC for any IMAC
constructed from a strong EUF-CMA secure mac scheme.

Proof. This proof is very similar to Theorem 6.

Game 0
Game 0 is the original deduction soundness game for I ∪ IMAC.

Game 1
In Game 1 we abort in case of collisions. Game 0 and Game 1 are indistinguishable

by Lemma 59 and using the fact that our implementation is collision free.

Game 2
Analogously to Game 2 from Theorem 6 we change the deduction system to pre-

vent the adversary from winning using reconstructed macs in Game 2. Concretely,
we add rules that allow to deduce every honestly generated mac that is a subterm of
a term t from t. Game 1 and Game 2 are indistinguishable since any A that notices
a difference with non-negligible probability could be used to construct a successful
adversary against the deduction soundness of I.

Game 3
In Game 3, analogously to Game 2 from Theorem 6, we change the deduction

system to make arbitrary macs deducible. Furthermore we use random bitstrings
to represent honestly generated mac-keys in the library. An adversary that can
distinguish Game 2 and Game 3 can be used to break the strong EUF-CMA security
of the mac scheme. It will either produce a forgery or one of the honest keys.

Game 4
Finally, in Game 4, we simulate Game 3 using transparent functions for macs while

playing the deduction soundness game for I. Any adversary winning this game lets

152 3. Composable Computational Soundness

openHASH(c, L)
if c ∈ [[THASH]] ∩ dom(L) then

return (c, L(c))
else if c = 〈h, τHASH〉 then

return (c, gl(c)τHASH
)

else
return (c, gl(c)>)

Figure 3.16: Open function for hash functions.

the simulator break the deduction soundness game of I. By requirement this can
only happen with negligible probability which concludes our proof.

3.7.6 Hash functions
In this section we deal with the composition of deduction sound implementations

of arbitrary primitives with hash functions. We consider hash functions implemented
as random oracles [16]: in this setting calls to the hash function are implemented
by calls to a random function which can only be accessed in a black-box way. We
model this idea directly in our framework. In the symbolic model model we consider
a symbolic function that is randomized and which is implemented by a randomized
function. We recover the intuition that hash functions are deterministic by restrict-
ing the calls that an adversary can make: for each term t, the adversary can only
call the hash function with the honest label l(t).

3.7.6.1 Symbolic model
The symbolic model for hash functions is rather standard. It is given by the tuple

(THASH,4HASH,ΣHASH,DHASH) where

THASH := {>, τHASH}

and τHASH 4HASH >. The signature ΣHASH contains only a randomized function
H : > → τHASH characterized by the deduction rule:

DHASH :=
{

m
H l(m)

}
where l ∈ labelsH.

3.7.6.2 Implementation
The implementation IHASH for hash functions is via a randomized function: when

called, the function simply returns a random value, and we will require that it does
so consistently; Concretely (MHASH H)(m; r) returns 〈r, τHASH〉.
The open function for hash functions is described in Figure 3.16. If the bitstring

to be opened was not the result of a generate call, then it returns garbage of types
either τHASH or >, depending on what c encodes. Otherwise, it will return the entry
in L that corresponds to c: by the requirements posed by validHASH below this will
be H l(t)(m) for some bitstring m with L[[m]] = t.
A useful observation is that by the description above, the library L will never con-

tain an entry of the form (c,H l(m)) for some adversarial label l ∈ labelsA; moreover,
if (c,H l(m)) is in L, then l = l(t) for some t, and L[[m]] = t.

3.7. Composition theorems 153

The validHASH predicate
For simplicity we require that no hash is present in init requests (our results easily

extend to the case where this restriction is not present). In addition we use the
predicate validHASH to enforce deterministic behavior of our hash implementation.
We require that for any term t, all occurrences of H(t) in generate and sgenerate
requests use the same label. Concretely, we demand that for any term t, all generate
requests for H l̂(t) are labeled with the honest label l̂ = l(t). The choice of label is
not important: we could alternatively request that if H l1(t) and H l2(t) occur in a
generate requests, then l1 = l2.

3.7.6.3 Hash composability
Theorem 9. Let I be a deduction sound implementation ofM. If (MHASH, IHASH)
and (M, I) are compatible, then I ∪ IHASH is a deduction sound implementation of
M∪MHASH in the random oracle model.

The intuition behind this proof is simple: collisions due to tagging occur only with
probability given by the birthday bound (so with negligible probability). Given an
adversary that wins the deduction soundness game for the composed libraries, we
construct an adversary that breaks deduction soundness of (M, I, validI). This
latter adversary simulates the hash function via a randomized transparent function
with no arguments: a generate H l(t)(t) call will be implemented by a generate call to
f l(t)(). Due to validHASH the knowledge set S does not contain any occurrence of H
with a dishonest label, hence the only "useful" deduction soundness rule which allows
the adversary to learn/manipulate terms with dishonest labels are not applicable (we
can cut them out of any deduction).

Proof. Consider an adversary A that breaks deduction soundness of implementation
I ∪ IHASH forM∪MHASH, i.e.

P
[
DS(M∪MHASH)∪Mtran(ν),(I∪IHASH)∪Itran(ν),A(η) = 1

]
is non-negligible for some some choice of Mtran, Itran. We consider the transparent
model/implementation M′

tran, I ′tran obtained by adding to the functions in Mtran a
new (randomized) function fH of arity 0; the implementation of the function is given
by MfH defined by: (MfH fH)(r) = 〈r,HASH〉, i.e. the machine that simply outputs
a proper encoding of its random coins.
We next show that adversary A yields an adversary B that contradicts the deduc-

tion soundness of I with respect toM when the transparent model/implementation
is (M′

tran, I ′tran) defined above. Adversary B that we construct translates the queries
of A into queries for (M ∪M′

tran, I ∪ I ′tran) by using fH to implement the hash
function. This is accomplished using a conversion function convert from terms in
M∪MHASH ∪Mtran to terms inM∪M′

tran.

• convert(f l(t1, . . . , tn)) = f l(convert(t1), . . . , convert(tn)) for all f 6= H .

• convert(H l(t)(t)) = f
l(t)
H

The inverse of the convert function is defined in the obvious way. These conversion
of terms will still preserve the validity of B’s trace for every valid trace of A due to
requirement (i) for valid predicates.
Adversary B processes the queries of A as follows.

154 3. Composable Computational Soundness

init query. B forwards the init request to his game and forwards the answer to
A.

generate queries. For each request “generate t”: for any t′ such that H l(t′) ∈
st(t) adversary B issues “sgenerate convert(t′)” (for convenience, we assume the order
of these requests is in bottom up manner). These queries are valid by requirement
(ii) for valid predicates. It then issues “generate convert(t)” and returns the answer
to this last query to A. The additional sgenerate queries are necessary to preserve
an invariant on the libraries needed to show the indistinguishability of the real game
and the simulation (see indistinguishability of Game 2 and Game 3 in Theorem 5).
B proceeds analogously for sgenerate requests (but no answer is returned to A).
parse queries. For each request “parse c” B sends “parse c” to its game and

receives a term t. B sends convert−1(t) to A.
We conclude by arguing that if A is successful, then so is B. Let Terms1 =

Terms(Σ ∪ ΣHASH ∪ Σtran) and Terms2 = Terms(Σ ∪ Σ′tran). Let `1 be the deduction
system defined by D ∪ DHASH ∪ Dtran, and let `2 the one defined by D ∪ Dtran. Let
R : Terms2 → {0, 1}η be an arbitrary randomness assignment and rA be arbitrary
random coins for A. Then adversary B simulates for A the game

DS(M∪MHASH)∪Mtran(ν),(I∪IHASH)∪Itran(ν),A

here the coins of adversary A are rA, and the randomness assignment R1 : Terms1 →
{0, 1}η is defined by R1(t) = R2(convert(t)).
In addition, if L2(R2, rA) is the mapping maintained in DSM∪M′tran,I∪I′tran,B(η) then

(c, t) ∈ L1 if and only if (c, convert(t)) ∈ L2.
Next we show that if parse(convert(t)) is a Dolev-Yao request by B, then convert(t)

is a Dolev-Yao request by A. This implies that if A is non Dolev-Yao, then so is B.
Consider an arbitrary parse(c) request byA, and let S be the set of terms present in

all of the generate requests of A. Per our construction, convert(S) is the set of terms
in the generate requests of B (where convert is extended from terms to sets of terms in
the obvious way). Assume there exists a proof convert(S) = S ′0

α1→ S ′1
α2→ S ′2 . . .

αn→ S ′n
with convert(t) ∈ S ′n for convert(S) `2 convert(t). We show we can construct a proof
for S `1 t.
By a previous remark, S and t do not contain any occurence of H l with an

adversarial label l. The only way to introduce instances of fH labeled with an
adversarial label is to use the rule instantiation

f lH
. Assume that for some i ∈

{1, 2, . . . , n} we have S ′i−1
αi→ S ′i and αi is the rule

f lH
for some adversarial label l.

To eliminate the use of the rule let t be an arbitrary term in S, and consider the
subsitution θ that replaces f lH with convert(t). Then convert(S) = S ′0

α1→ θ(S ′1) α2→
θ(S ′2) . . . αi−1→ θ(Si−1) αi+1→ θ(Si+1) . . . αn→ θ(S ′n) is a valid derivation for convert(t)
which does not use the rule. Iteratively, we obtain a derivation convert(S) = S ′0

α1→
S ′′1 . . . αm→S ′′m for convert(t) and if f lH occurs in any set, then l = l(t) and is an
honest label. We can therefore apply convert−1 to the above proof to obtain a proof
for S `1 t. Hence B wins if A wins.

3.8 Forgetfulness
All the theorems from Section 3.7 have one important drawback: Key material

cannot be sent around as the valid predicates forbid keys from being used in non-
key positions. This takes the analysis of a large class of practical protocols (e.g,

3.8. Forgetfulness 155

many key exchange protocols) outside the scope of our results. The problem is
that deduction soundness does not guarantee that no information about non-DY
terms is leaked by the computational implementation. E.g., we could think of a
deterministic function symbol f that takes arguments of type nonce with only the
rule nl()

f(nl()) . An implementation of f could leak half of the bits of its input and still
be sound. However, to send key material around, we need to rely on the fact that
information theoretically nothing is leaked about the suitable positions for keys.
To solve this problem, we introduce forgetful symbolic models and implementa-

tions. A forgetful symbolic models features function symbols with positions that
are marked as being forgetful. The corresponding implementation has to guarantee,
that no information about the arguments at these positions will be leaked (except
their length). We will formalize this intuition later in Definition 54. We start off
by introducing some necessary extensions of our previous setting to allow for the
concept of forgetfulness.

3.8.1 Preliminaries
We need to extend some definitions to capture the concept of forgetfulness.

Changed hybrid terms for function symbols with forgetful arguments
To allow the handling of forgetful positions, extend the definition for hybrid terms

with function symbols carrying an honest label in the library. Let f be a function
symbol of arity ar(f) = τ1 × . . . × τn → τ . Then a hybrid term of f may be
f l(a1, . . . , an) where each ai is either a bitstring from [[τi]] or a term of type τi for
forgetful positions i. For normal positions ai must be a bitstring from [[τi]] as usual.
The definitions for the completeness of a library L and L[[c]] are changed accordingly.

New valid requirements
To allow forgetful arguments to be useful, we have to change the definition of valid

requirements. Concretely, we allow the behavior of valid to additionally depend on
a signature Σvalid that features forgetful positions, i.e., positions of function symbols
in f ∈ Σvalid may be marked as forgetful. We then restate the requirements for valid
as follows:

(i) If valid(T + q) = true, then valid(T + q̂) = true where q̂ is a variation of q: If
q =“generate t”, then q̂ =“generate t̂” (analogously for “sgenerate t”). Here, t̂
is a variation of t according to the following rule: Any subterm f l(t1, . . . , tn)
of t where f 6∈ Σ ∪ Σvalid is a foreign function symbol may be replaced by
f̂ l̂(t̂1, . . . , t̂m) where f̂ 6∈ Σ ∪ Σvalid is a foreign function symbol and t̂i = tj
for some j ∈ {1, . . . , n} (where each tj may only be used once) or t̂i does
not contain function symbols from Σ ∪ Σvalid. As a special case we may also
replace f l(t1, . . . , tn) with a term t̂1 (i.e., f̂ is “empty”). If q = ‘“init T,H” then
q̂ =“init T̂ , Ĥ” where T = (t1, . . . , tn) and T̂ = (t̂1, . . . , t̂n) and t̂i is a variation
of ti (Ĥ analogously).

(ii) If valid(T + q) = true and t is a term occurring in q, then valid(T+“sgenerate
t′“) = true for any subterm t′ of t that is not a subterm at a forgetful position.

(iii) valid(T) can be evaluated in polynomial time (in the length of the trace T).

Basically, valid is now allowed to make statements about how the own fuction sym-
bols (from Σ) are allowed to be used in the context of some foreign function symbols

156 3. Composable Computational Soundness

(Σvalid) with forgetful positions. Consequently, we do require that a trace remains
valid if those function symbols are replaced (see new requirement (i)). Furthermore,
we do not require valid to allow for silent generation of subterms at forgetful posi-
tions because it might be essential that those subterms are never generated (see new
requirement (ii)).

3.8.2 Forgetful symbolic models and implementations
We say that a symbolic model M is a forgetful symbolic model if arguments

of a function symbol may be marked as forgetful. In order to formalize forgetful
implementations, the computational counterpart of forgetful positions, we introduce
the notion of an oblivious implementation. These are implementations for symbolic
functions which can take as input natural numbers instead of actual bitstrings of
the appropriate sort.

Definition 53 (oblivious implementation). Let M be a forgetful symbolic model.
I = (M, [[·]], len, open, valid) is an oblivious implementation ofM if I is an imple-
mentation ofM with a slightly changed signature: For each function symbol f ∈ Σ
with arity ar(f) = τ1 × . . .× τn → τ the signature of (M f) is θ(τ1)× · · · × θ(τn)×
{0, 1}η → [[τ]] where θ(τi) = N if the ith argument of f is forgetful and [[τi]] otherwise.

Intuitively, oblivious implementations for all forgetful positions, take as input nat-
ural numbers; these will be the length of the actual inputs on the forgetful positions.
As indicated above, a forgetful implementation is one which is indistinguishable

from an oblivious implementation. To formally define the notion we introduce a
distinguishing game FINb

M(ν),I(ν),I(ν),A(η) where an adversary A tries to distinguish
between the case when he interacts with the real implementation, or with an alterna-
tive implementation that is oblivious with respect to all of the forgetful arguments.
We say that an implementation is forgetful, if there exists an oblivious implementa-
tion such that no adversary succeeds in this task.

Definition 54 (forgetful implementation). We say that an implementation I =
(M, [[·]], len, open, valid) is a forgetful implementation of a forgetful symbolic model
M if there is an oblivious implementation I = (M, [[·]], len, open, valid) such
that for all for all parametrized transparent symbolic models Mtran(ν) and for all
parametrized transparent implementations Itran(ν) ofMtran(ν) compatible with (M,I)
we have that

Prob[FIN0
M∪Mtran(ν),I∪Itran(ν),I∪Itran(ν),A(η) = 1]

−Prob[FIN1
M∪Mtran(ν),I∪Itran(ν),I∪Itran(ν),A(η) = 1]

is negligible for every PPT adversary A.

Lemma 62. LetM be an forgetful symbolic model, I be an forgetful implementation
ofM and I a corresponding oblivious implementation. If I is deduction sound, then
I is deduction sound with respect to the deduction soundness game DS′ that uses
generateFIN (Figure 3.17) instead of generate.

Proof. Let A be a PPT adversary that wins the deduction soundness game for I
with non-negligible probability. We construct an adversary B that plays the game

FINb
M∪Mtran(ν),I∪Itran(ν),I∪Itran(ν),A(η)

3.8. Forgetfulness 157

generateFIN
M,R(t, L):

if for some c ∈ dom(L) we have L[[c]] = t then
return c

else
for i ∈ {1, n} do

if i is a forgetful argument then
let ci := len(ti)
let ai := ti

else
let (ci, L) := generateM,R(ti, L)
let ai := ci

let r := R(t)
let c := (M f)(c1, . . . , cn; r)
let L(c) := f l(a1, . . . , an)) (l ∈ labelsH)
return (c, L)

Figure 3.17: The generate function for an oblivious implementation (t is of the form
f l(t1, . . . , tn) (with possibly n = 0 and no label l for deterministic func-
tion symbols f)). The requirements for the input t are those of the
normal generate function.

and simulates the deduction soundness game for A (by just relaying the queries of
A). Depending on b, this is a perfect simulation of

P
[
DSM∪Mtran(ν),I∪Itran(ν),A(η) = 1

]
or of the variant of the game for I

P
[
DS′M∪Mtran(ν),I∪Itran(ν),A(η) = 1

]
If A wins the deduction soundness game, B wins its game as well. Otherwise, i.e.,
if A is invalid B picks a random bit b and sends “guess b” to its game. Since
I is deduction sound, A will only win the first game with negligible probability.
If A wins the game for I with non-negligible probability, B has a non-negligible
advantage. This contradicts the assumption that I is an oblivious implementation
corresponding to I.

Let MPKE be the forgetful symbolic model derived from the symbolic symbolic
modelMPKE from Section 3.7.2 by marking the message m for honest encryptions
ench(ek,m) as forgetful. Then Lemma 63 capture the intuition that public key
encryption schemes are forgetful with respect to their messages.

Lemma 63. IPKE from Section 3.7.2 is a forgetful implementation ofMPKE.

Proof. We define an oblivious implementation IPKE with the Turing machine MPKE
that differs only for the function symbol ench fromMPKE. We set (MPKE ench)(ek, `; r)
:= (MPKE ench)(ek, 0`; r). IPKE witnesses that IPKE is a forgetful implementation of
MPKE.

158 3. Composable Computational Soundness

FINb
M(ν),I(ν),I(ν),A(η):
let S := ∅ (set of requested terms)
let L := ∅ (library)
let T := ∅ (trace of queries)
R ← {0, 1}∗ (random tape)

if b = 0 then let generate := generateFIN
M,R else let generate := generateM,R

Receive parameter ν from A

on request “init T,H” do
add “init T” to T
if valid(T) then

let S := S ∪ T
let C := ∅ (list of replies)
for each t ∈ T do

let (c, L) := generate(t, L)
let C := C ∪ {c}

for each t ∈ H do
let (c, L) := generate(t, L)

send C to A
else

return 0 (A is invalid)

on request “sgenerate t” do
if valid(T+“sgenerate t”) then

let (c, L) := generate(t, L)

on request “generate t” do
add “generate t” to T
if valid(T) then

let S := S ∪ {t}
let (c, L) := generate(t, L)
send c to A

else
return 0 (A is invalid)

on request “parse c” do
let (t, L) := parse(c, L)
if S `D t then

send t to A
else

return 1 (A produced non-Dolev-Yao term)

on request “guess b′” do
if b = b′ then

return 1 (A wins)
else

return 0 (A looses)

Figure 3.18: Indistinguishability game for forgetful implementations.

3.8. Forgetfulness 159

Let A be a PPT adversary such that the probability from Definition 54 is non-
negligible. We can then use A to construct an efficient adversary B that wins the
IND-CCA game from Figure 3.8 with non-negligible probability. B simulates

FINb
MPKE∪Mtran(ν),IPKE∪Itran(ν),IPKE∪Itran(ν),A(η)

for A where the bit b corresponds the the bit picked by the IND-CCA game from
Figure 3.8 (b = 0: produce encryptions of 0, b = 1 produce encryptions of the real
messages). The simulation works analogously to Game 2 in Theorem 5. Since B
does not know the encryption keys while playing the IND-CCA game, we need to
randomize them in the library. The arguments from the proof of indistinguishability
of Game 1 and Game 2 in Theorem 5 can be easily translate to the setting at hand
and show that the simulation, although not perfect, is indistinguishable from FIN0

and FIN1 respectively. Hence, B would break the IND-CCA security of the public
key encryption scheme if such an adversary A would existed.

3.8.3 Sending keys around
To be able to consider the case when symmetric keys are sent encrypted we intro-

duce an extension of the model for symmetric key encryption of Section 3.7.4. The
extension is that the validSKE predicate can now depend on a signature Σvalid that
contains functions with forgetful positions. The new predicate allows for standard
generation of keys for symmetric encryption (with the same restrictions as those
in Section 3.7.4), but in addition it also allows for generate requests that contain
occurrences of symmetric keys under functions from signature Σvalid, as long as the
occurrences are on forgetful positions.
Concretely, based on ISKE from Section 3.7.4 we introduce the implementation
ISKE[Σvalid] for a signature Σvalid featuring forgetful positions. We define the validSKE
predicate based on Σvalid and, instead of requirement (2) for validSKE, now require:

1. For the query “init T,H”, the function symbol kc may only occur in a term
k lc() ∈ T . Analogously, kh may only occur in H. Any label l for k lx() must be
unique in T ∪H.

2. Any occurrence of k lx() in a generate query must have occurred in the init query.
k lx() may only occur as the first argument to Ex or as a subterm of a forgetful
position for a function symbol f ∈ Σvalid.

We show in Theorem 10, that we can compose our extended implementation
ISKE[Σvalid] (extended in the sense that its valid predicate allows for more scenarios)
with any deduction sound forgetful implementation and preserve deduction sound-
ness. Since the implementation for public key encryption IPKE from Section 3.7.2
is a forgetful implementation for the forgetful symbolic modelMPKE by Lemma 63,
queries like “generate enc l̂h(ek lh(), k l̃h())” are now possible. Intuitively, this corre-
sponds to sending around symmetric keys encrypted under asymmetric keys in a
protocol.
Furthermore, we show that, in the case of secret key encryption, forgetfulness is

preserved as well (Theorem 11). This even holds for the obvious forgetful symbolic
model of secret key encryption where the message position for honest encryptions
under honest keys is a forgetful one. I.e., we could add several layers of secret key
encryption to allow for the encryption of symmetric keys under other symmetric
keys.

160 3. Composable Computational Soundness

The last aspect shows why we need to fix the set of function symbols Σvalid at
the time of composition: We cannot allow to encrypt keys under forgetful positions
in general since it would be impossible for validSKE to detect key cycles. E.g., as-
sume that Σvalid contains a function symbol f with a forgetful second position. Do
the terms f l̂(t′, k lh()) and E l̃

h(k lh(), t′) contain a key cycle? We cannot tell without
knowing the implementation of f and t′. Therefore we have to require that the
valid predicate of the implementation we are composing ISKE with does rely on the
forgetfulness of function symbols from ΣSKE in Theorem 10.

Theorem 10. Let M be a forgetful symbolic model and I be a forgetful deduction
sound implementation of M. ISKE denotes ISKE[Σ] where Σ is the signature from
M. If (MSKE, ISKE) and (M, I) are compatible (see requirements in Section 3.5)
and the valid predicate of I does not depend on function symbols from ΣSKE, then
I ∪ ISKE is a deduction sound implementation ofM∪MSKE.

Proof. This proof is very similar to that for Theorem 7. Basically, we just introduce
an additional game hop where we replace I by an oblivious implementation I. This
guarantees that, even if the adversary requests to generate a term t with honest
keys at forgetful positions, the bitstring interpretation of those keys are not used to
compute the bitstring corresponding to t. We can then follow the strategy from the
proof for Theorem 7 and replace honest keys in the library with random bitstrings.

Game 0
In Game 0 A plays the original deduction soundness game

DS(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν)(η).

Game 1
In Game 1 we replace the implementation I with a corresponding oblivious im-

plementation I (which exists since I is a forgetful implementation according to Def-
inition 54). Note that I must be composable with ISKE since I is composable with
ISKE. For this to work we also have to replace the generate function by generateFIN

from Figure 3.17.

Claim: Game 0 and Game 1 are indistinguishable
Basically, this indistinguishability holds due to the fact that I is a forgetful im-

plementation. Let A be a distinguisher between Game 0 and Game 1. Then we
construct an adversary B that plays the game

FINb
M∪M′tran(ν′),I∪I′tran(ν′),I∪I′tran(ν′),B(η)

and simulates Game 0 or Game 1 for A (depending on the value of b). B simulates
ISKE using transparent functions (as a part ofM′

tran(ν ′) together withMtran(ν ′). B
checks the DY-ness of A’s requests with respect to Game 1. Note that the simula-
tion is perfect since B can know all generate all the keys and does not need to hide
any arguments when simulating ISKE with transparent functions. If A can distin-
guish Game 0 from Game 1, B can break the indistinguishability of the oblivious
implementation according to Definition 54. This can only happen with negligible
probability.

Game 2
In Game 2 we replace the generateFIN function with a collision-aware variant (sim-

ilar to Figure 3.3. The indistinguishability is guaranteed analogously to Theorem 7.

3.8. Forgetfulness 161

Game 3
Game 3 is analogous to Game 2 from Theorem 7: We replace honest encryptions

under honest keys by encryptions of 0 and replace honest encryption keys in the
library by random bitstrings. Note that we need that fact that we replaced I by
I here: The oblivious implementation guarantees that the bitstrings representing
honest keys are not used for the generation of other terms (in particular this is
interesting when honest keys appear at forgetful positions). Hence we can replace
them with random bitstrings and still have an indistinguishable game. The rest
of the indistinguishability argument is based on the IND-CCA security of the SKE
scheme and analogous to Theorem 7.
Game 4
In Game 4, analogously to Game 3 from Theorem 7, we show that the adversary

cannot win by producing encryptions under honest keys. To show the indistinguisha-
bility of Game 4 and Game 3 we use the same arguments for “reconstructions” and
“forgeries” as in Theorem 6. Note that we simulate ISKE using transparent functions
within this process. Here, we need the requirement that valid predicate of I does
not depend on function symbols from ΣSKE. Without this, we couldn’t replace the
function symbols from ΣSKE with their transparent counterparts and still expect to
have a valid trace when we are playing the deduction soundness game for I in the
simulation.
Game 5
Finally, analogously to Game 4 from Theorem 7, the simulator B plays the varia-

tion of the deduction soundness game for I which it cannot win with non-negligible
probability by Lemma 62.

Let MSKE be the forgetful symbolic model based on MSKE when we mark the
message m for honestly generated encryptions under honest keys E l̂

h(k lh(),m as a
forgetful position and pick ISKE[Σ] as an implementation ofMSKE. Then the follow-
ing holds:
Theorem 11. Let M be a forgetful symbolic model and I be a forgetful deduction
sound implementation of M. ISKE denotes ISKE[Σ] where Σ is the signature from
M. If (MSKE, ISKE) and (M, I) are compatible (see requirements in Section 3.5),
then I ∪ ISKE is a forgetful implementation ofM∪MSKE

Proof. We pick the obvious oblivious implementation ISKE for ISKE and set
(MSKE Eh)(k, ell; r) := (MSKE Eh)(k, 0`; r) and proof the theorem with a sequence of
games:
Game 0
Game 0 is the game

FIN1
(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν),(I∪ISKE)∪Itran(ν),A(η)

Game 1
In Game 1 we replace the implementation I with a corresponding oblivious im-

plementation I (which exists since I is a forgetful implementation according to
Definition 54). We can do this analogously to Game 1 from Theorem 10 and the
indistinguishability of Game 0 and Game 1 holds for the same reasons. Game 1 is

FIN0
(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν),(I∪ISKE)∪Itran(ν),A(η)

162 3. Composable Computational Soundness

Game 2
In Game 2 we replace ISKE by ISKE and the honest keys in the library by random

values. We have indistinguishability of Game 1 and Game 2 by the IND-CCA
security of the SKE scheme. Game 2 is indistinguishable6 from

FIN0
(M∪MSKE)∪Mtran(ν),(I∪ISKE)∪Itran(ν),(I∪ISKE)∪Itran(ν),A(η)

In conclusion, Game 0 and Game 2 are indistinguishable. Hence I ∪ ISKE is a
forgetful implementation ofM∪MSKE.

6Note that we only have indistinguishability here due to the random values for honest keys in the
library.

4. Outlook

Finally, we would like to give a short outlook on interesting directions for further
research.

Analyze Existing Protocols.
With the formal foundations and symbolic UC framework in place, the modular

analysis of an existing protocol would be one interesting next step. Certainly TLS
would be an appealing target. However, due to its known flaws and the design,
we could expect a result for a modified version of the protocol at best. Fortunately,
there are modern protocols that were designed with UC security in mind. One inter-
esting candidate is the Direct Anonymous Attestation (DAA) protocol [35] that has
been adopted by the Trusted Computing Group in the latest version of its Trusted
Platform Module specification. The protocol enables the remote authentication of
a trusted platform whilst preserving the user’s privacy [76].

Improve Tools for Automated Proofs.
Although we partially used Proverif for some of the proof steps in Section 2.7, the

analysis of our example protocols still required a lot of manual work. This situation
could be improved by augmenting the capabilities of tools like Proverif to show
observational equivalence. First steps in this direction have been made by [45]. In
the long run, our goal is to establish proofs for cryptographic protocols as a part of
their standardization process. To this end, having powerful and user-friendly tools
is crucial.

Extend Composable Computational Soundness to Protocols.
One interesting direction for future work in the field of computational soundness

would be to extend our results for composable soundness from Chapter 3 to proto-
cols. Partially, this has already been discussed in [48]. An interesting way to achieve
composable computational soundness for protocols would be to transfer deduction
soundness to a suitable framework like CoSP [7]. The idea behind CoSP is to de-
couple computational soundness results from the a concrete process calculus like the
applied pi calculus.

163

164 4. Outlook

Extend Symbolic Universal Composability.
Although the UC framework provides a good foundation for the modular anal-

ysis of cryptographic protocols, certain scenarios require extensions. For example,
incoercibility is an important security property for voting protocols and cannot be
captured by the standard UC framework in the computational model. [74] provides
an extension that could hopefully be carried over to the symbolic setting to analyze
incoercibility with the help of automated tools.

Bibliography

[1] Martin Abadi and Cedric Fournet. “Mobile values, new names, and secure
communication”. In: Proceedings of the 28th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. ACM New York, NY, USA.
2001, pp. 104–115.

[2] Martín Abadi and Phillip Rogaway. “Reconciling two views of cryptography
(The computational soundness of formal encryption)”. In: Proc. 1st IFIP
International Conference on Theoretical Computer Science (IFIP–TCS’00).
Vol. 1872. LNCS. 2000, pp. 3–22.

[3] Benny Applebaum. “Garbling XOR Gates "For Free" in the Standard Model”.
In: TCC. 2013, pp. 162–181.

[4] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. “Analysing Un-
linkability and Anonymity Using the Applied Pi Calculus”. In: CSF. 2010,
pp. 107–121.

[5] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. “Analysing Un-
linkability and Anonymity Using the Applied Pi Calculus”. In: CSF 2010, 23rd
IEEE Computer Security Foundations Symposium. IEEE, 2010, pp. 107–121.

[6] Gildas Avoine. “Cryptography in radio frequency identification and fair ex-
change protocols”. PhD thesis. EPFL, Lausanne, Switzerland, 2005.

[7] Michael Backes, Dennis Hofheinz, and Dominique Unruh. “CoSP: a general
framework for computational soundness proofs”. In: ACM Conference on Com-
puter and Communications Security. ACM, 2009, pp. 66–78.

[8] Michael Backes and Birgit Pfitzmann. “Symmetric Encryption in a simulatable
Dolev-Yao style cryptographic library”. In: Proc. 17th IEEE Computer Science
Foundations Workshop (CSFW’04). 2004, pp. 204–218.

[9] Michael Backes, Birgit Pfitzmann, and Michael Waidner. “A Composable Cryp-
tographic Library with Nested Operations”. In: Proc. 10th ACM CCS. 2003,
pp. 220–230.

[10] Michael Backes, Birgit Pfitzmann, and Michael Waidner. “Symmetric authen-
tication within simulatable cryptographic library”. In: Proc. 8th European
Symposium on Research in Computer Security (ESORICS’03). Lecture Notes
in Computer Science. 2003, pp. 271–290.

[11] Michael Backes, Birgit Pfitzmann, and Michael Waidner. “The Reactive Sim-
ulatability (RSIM) Framework for Asynchronous Systems”. In: Information
and Computation 205.12 (2007), pp. 1685–1720.

165

166 Bibliography

[12] Boaz Barak and Amit Sahai. “How To Play Almost Any Mental Game Over
The Net — Concurrent Composition via Super-Polynomial Simulation”. In:
Proc. 46th IEEE Symposium on Foundations of Computer Science (FOCS).
2005, pp. 543–552.

[13] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten Bormer.
“Lessons Learned From Microkernel Verification – Specification is the New
Bottleneck”. In: SSV. 2012, pp. 18–32.

[14] Bernhard Beckert, Sarah Grebing, and Florian Böhl. “A Usability Evalua-
tion of Interactive Theorem Provers Using Focus Groups”. In: Proceedings,
Workshop on Human-Oriented Formal Methods (HOFM), Grenoble, Septem-
ber 2014. LNCS. to appear. Springer, 2014.

[15] Bernhard Beckert, Sarah Grebing, and Florian Böhl. “How to Put Usabil-
ity into Focus: Using Focus Groups to Evaluate the Usability of Interactive
Theorem Provers”. In: Proceedings, Workshop on User Interfaces for Theorem
Provers (UITP), Vienna, July 2014. Ed. by Christoph Benzmüller and Bruno
Woltzenlogel Paleo. EPTCS. to appear. 2014.

[16] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols”. In: ACM Conference on Computer and
Communications Security. Ed. by Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby. ACM, 1993, pp. 62–73. isbn:
0-89791-629-8.

[17] Bruno Blanchet. Personal communication. Aug. 2012.
[18] Bruno Blanchet. “A Computationally Sound Mechanized Prover for Security

Protocols”. In: IEEE Symposium on Security and Privacy. Oakland, Califor-
nia, 2006, pp. 140–154.

[19] Bruno Blanchet. Automatic Proof of Strong Secrecy for Security Protocols.
Tech. rep. MPI-I-2004-NWG1-001. Saarbrücken, Germany: Max-Planck-Institut
für Informatik, July 2004.

[20] Bruno Blanchet. “Automatic verification of correspondences for security pro-
tocols”. In: Journal of Computer Security 17.4 (2009). Preprint available as
arXiv:0802.3444v1 [cs.CR], pp. 363–434.

[21] Bruno Blanchet. ProVerif 1.86pl4: Automatic Cryptographic Protocol Verifier -
User Manual and Tutorial. http://prosecco.gforge.inria.fr/personal/
bblanche/proverif/manual.pdf. 2012.

[22] Bruno Blanchet, Martín Abadi, and Cédric Fournet. “Automated Verification
of Selected Equivalences for Security Protocols”. In: Journal of Logic and Al-
gebraic Programming 75 (2008). Online available at http://www.di.ens.fr/
~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf, pp. 3–51.

[23] Florian Böhl. “On Symbolic Simulatability”. Diploma thesis. Karlsruhe Insti-
tute of Technology, Germany, 2010.

[24] Florian Böhl, Véronique Cortier, and Bogdan Warinschi. “Deduction sound-
ness: prove one, get five for free”. In: ACM Conference on Computer and
Communications Security. ACM, 2013, pp. 1261–1272.

http://arxiv.org/abs/0802.3444v1
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://www.di.ens.fr/~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf
http://www.di.ens.fr/~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf

Bibliography 167

[25] Florian Böhl, Véronique Cortier, and Bogdan Warinschi. “Deduction Sound-
ness: Prove One, Get Five for Free”. In: IACR Cryptology ePrint Archive 2013
(2013), p. 457.

[26] Florian Böhl, Gareth T. Davies, and Dennis Hofheinz. “Encryption Schemes
Secure under Related-Key and Key-Dependent Message Attacks”. In: Public
Key Cryptography. LNCS. Springer, 2014, pp. 483–500.

[27] Florian Böhl, Simon Greiner, and Patrik Scheidecker. “Proving Correctness
and Security of Two-Party Computation Implemented in Java in Presence of
a Semi-Honest Sender”. In: CANS. LNCS. to appear. Springer, 2014.

[28] Florian Böhl, Dennis Hofheinz, and Daniel Kraschewski. “On Definitions of
Selective Opening Security”. In: Public Key Cryptography. LNCS. Springer,
2012, pp. 522–539.

[29] Florian Böhl and Dominique Unruh. Proverif examples from the present thesis:
http://boehl.name/publications/symbolic-uc/proverif-files.zip.
2013.

[30] Florian Böhl and Dominique Unruh. “Symbolic Universal Composability”. In:
CSF. IEEE, 2013, pp. 257–271.

[31] Florian Böhl and Dominique Unruh. “Symbolic Universal Composability”. In:
IACR Cryptology ePrint Archive 2013 (2013), p. 62.

[32] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph
Striecks. “Confined Guessing: New Signatures From Standard Assumptions”.
In: IACR Cryptology ePrint Archive 2013 (2013), p. 171.

[33] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph
Striecks. “Confined Guessing: New Signatures From Standard Assumptions”.
In: J. Cryptology to appear (2015).

[34] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, Jae Hong Seo, and
Christoph Striecks. “Practical Signatures from Standard Assumptions”. In:
EUROCRYPT. LNCS. Springer, 2013, pp. 461–485.

[35] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. “Direct anonymous attes-
tation”. In: Proc. 11th ACM Conference on Computer and Communications
Security. ACM Press, 2004, pp. 132–145.

[36] Ran Canetti. “Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols”. In: Proc. 42nd IEEE Symposium on Foundations of Com-
puter Science (FOCS). Extended version in Cryptology ePrint Archive, Report
2000/67, http://eprint.iacr.org/. 2001, pp. 136–145.

[37] Ran Canetti and Marc Fischlin. “Universally Composable Commitments”. In:
Advances in Cryptology, Proceedings of CRYPTO 2001. Ed. by Joe Kilian.
Lecture Notes in Computer Science 2139. Full version online available at http:
//eprint.iacr.org/2001/055.ps. Springer-Verlag, 2001, pp. 19–40.

[38] Ran Canetti and Jonathan Herzog. “Universally Composable Symbolic Secu-
rity Analysis”. In: J Cryptology 24.1 (Jan. 2011), pp. 83–147.

[39] Ran Canetti and Tal Rabin. “Universal Composition with Joint State”. In:
Proc. CRYPTO 2003. Vol. 2729. LNCS. Springer, 2003, pp. 265–281.

http://boehl.name/publications/symbolic-uc/proverif-files.zip
http://eprint.iacr.org/
http://eprint.iacr.org/2001/055.ps
http://eprint.iacr.org/2001/055.ps

168 Bibliography

[40] Ran Canetti and Margarita Vald. “Universally Composable Security with Lo-
cal Adversaries”. In: SCN 2012. Ed. by Ivan Visconti and Roberto De Prisco.
Vol. 7485. Lecture Notes in Computer Science. Springer, 2012, pp. 281–301.
isbn: 978-3-642-32927-2.

[41] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier
Pereira, and Roberto Segala. Task-Structured Probabilistic I/O Automata. Tech.
rep. MIT-CSAIL-TR-2006-060. Online available at http://dspace.mit.edu/
handle/1721.1/33964. MIT CSAIL, Sept. 2006.

[42] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A.
Lynch, Olivier Pereira, and Roberto Segala. “Time-Bounded Task-PIOAs: A
Framework for Analyzing Security Protocols”. In: DISC. 2006, pp. 238–253.

[43] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. “Universally
Composable Security with Global Setup”. In: Proc. 4th Theory of Cryptography
Conference (TCC). 2007, pp. 61–85.

[44] Cher. Bang Bang (My Baby Shot Me Down). 7" single. Written by Sonny Bono,
sound sample: http://en.wikipedia.org/wiki/File:Cher-_Bang_Bang_
My_Baby_Shot_Me_Down.ogg. 1966.

[45] Vincent Cheval and Bruno Blanchet. “Proving More Observational Equiva-
lences with ProVerif”. In: POST 2013. Ed. by David Basin and John Mitchell.
Vol. 7796. LNCS. Springer, 2013, pp. 226–246.

[46] Hubert Comon-Lundh and Véronique Cortier. “Computational soundness of
observational equivalence”. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS’08). Alexandria, Virginia, USA:
ACM Press, Oct. 2008.

[47] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. “A Survey of Sym-
bolic Methods in Computational Analysis of Cryptographic Systems”. In: J.
Autom. Reasoning 46.3-4 (2011), pp. 225–259.

[48] Véronique Cortier and Bogdan Warinschi. “A Composable Computational
Soundness Notion”. In: 18th ACM Conference on Computer and Communica-
tions Security (CCS’11). Chicago, USA: ACM, 2011, pp. 63–74.

[49] Véronique Cortier and Bogdan Warinschi. “Computationally Sound, Auto-
mated Proofs for Security Protocols”. In: European Symposium on Program-
ming (ESOP’05). Vol. 3444. LNCS. Edinburgh, UK: Springer, 2005, pp. 157–
171.

[50] Véronique Cortier, Steve Kremer, Ralf Küsters, and Bogdan Warinschi. “Com-
putationally Sound Symbolic Secrecy in the Presence of Hash Functions”. In:
Proceedings of the 26th Conference on Fundations of Software Technology and
Theoretical Computer Science (FSTTCS’06). Vol. 4337. LNCS. Kolkata, India:
Springer, 2006, pp. 176–187.

[51] Anupam Datta, Ralf Küsters, John C. Mitchell, and Ajith Ramanathan. “On
the Relationships Between Notions of Simulation-Based Security”. In: Theory
of Cryptography, Proceedings of TCC 2005. Ed. by Joe Kilian. Lecture Notes
in Computer Science. Springer-Verlag, 2005, pp. 476–494.

http://dspace.mit.edu/handle/1721.1/33964
http://dspace.mit.edu/handle/1721.1/33964
http://en.wikipedia.org/wiki/File:Cher-_Bang_Bang_My_Baby_Shot_Me_Down.ogg
http://en.wikipedia.org/wiki/File:Cher-_Bang_Bang_My_Baby_Shot_Me_Down.ogg

Bibliography 169

[52] Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov, and Math-
ieu Turuani. “Probabilistic Polynomial-time Semantics for a Protocol Security
Logic”. In: Proc. of 32nd International Colloquium on Automata, Languages
and Programming, ICALP. Vol. 3580. LNCS. Lisboa, Portugal. Springer, 2005,
pp. 16–29.

[53] Stephanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based se-
curity in the applied pi calculus. IACR ePrint 2009/267, version 5 June 2009.
Full version of [54].

[54] Stephanie Delaune, Steve Kremer, and Olivier Pereira. “Simulation based se-
curity in the applied pi calculus”. In: FSTTCS. Ed. by Ravi Kannan and
K. Narayan Kumar. Vol. 4. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2009, pp. 169–180.

[55] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and
Vinod Vaikuntanathan. “Public-Key Encryption Schemes with Auxiliary In-
puts”. In: TCC. Ed. by Daniele Micciancio. Vol. 5978. Lecture Notes in Com-
puter Science. Springer, 2010, pp. 361–381. isbn: 978-3-642-11798-5.

[56] Danny Dolev and Andrew Chi-Chih Yao. “On the Security of Public Key
Protocols (Extended Abstract)”. In: FOCS. IEEE, 1981, pp. 350–357.

[57] Dana Ford. Cheney’s defibrillator was modified to prevent hacking. 2013. url:
http : / / edition . cnn . com / 2013 / 10 / 20 / us / dick - cheney - gupta -
interview/ (visited on 03/15/2014).

[58] Flavio D. Garcia and Peter van Rossum. “Sound and Complete Computational
Interpretation of Symbolic Hashes in the Standard Model”. In: Theoretical
Computer Science 394 (2008), pp. 112–133.

[59] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption and How to Play
Mental Poker Keeping Secret All Partial Information”. In: STOC. ACM, 1982,
pp. 365–377.

[60] Matthew Green. On the (provable) security of TLS: Part 1. 2012. url: http:
//blog.cryptographyengineering.com/2012/09/on-provable-security-
of-tls-part-1.html (visited on 03/15/2014).

[61] Gordon Hall. Mt. Gox Blames Bitcoin – Core Developer Greg Maxwell Re-
sponds. 2014. url: http://www.cryptocoinsnews.com/2014/02/10/mt-
gox-blames-bitcoin-core-developer-greg-maxwell-responds/ (visited
on 03/15/2014).

[62] Dennis Hofheinz and Victor Shoup. GNUC: A New Universal Composability
Framework. IACR ePrint 2011/303. 2011.

[63] Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. “Completing the Pic-
ture: Soundness of Formal Encryption in the Presence of Active Adversaries”.
In: European Symposium on Programming (ESOP’05). Vol. 3444. LNCS. 2005,
pp. 172–185.

[64] Ralf Küsters. “Simulation-Based Security with Inexhaustible Interactive Tur-
ing Machines”. In: CSFW 2006, Computer Security Foundations Workshop.
Long version available as IACR eprint 2006/151. IEEE Computer Society,
2006, pp. 309–320.

http://edition.cnn.com/2013/10/20/us/dick-cheney-gupta-interview/
http://edition.cnn.com/2013/10/20/us/dick-cheney-gupta-interview/
http://blog.cryptographyengineering.com/2012/09/on-provable-security-of-tls-part-1.html
http://blog.cryptographyengineering.com/2012/09/on-provable-security-of-tls-part-1.html
http://blog.cryptographyengineering.com/2012/09/on-provable-security-of-tls-part-1.html
http://www.cryptocoinsnews.com/2014/02/10/mt-gox-blames-bitcoin-core-developer-greg-maxwell-responds/
http://www.cryptocoinsnews.com/2014/02/10/mt-gox-blames-bitcoin-core-developer-greg-maxwell-responds/

170 Bibliography

[65] Ralf Küsters, Anupam Datta, John C. Mitchell, and Ajith Ramanathan. “On
the Relationships between Notions of Simulation-Based Security”. In: J. Cryp-
tology 21.4 (2008), pp. 492–546.

[66] Gavin Lowe. “An attack on the Needham-Schroeder public-key authentication
protocol”. In: Information Processing Letters 56 (3 1995), pp. 131–133. issn:
0020-0190. doi: 10.1016/0020-0190(95)00144-2.

[67] Jörn Müller-Quade and Dominique Unruh. “Long-term Security and Univer-
sal Composability”. In: Theory of Cryptography, Proceedings of TCC 2007.
Vol. 4392. Lecture Notes in Computer Science. Preprint on IACR ePrint
2006/422, superseeded by [67]. Springer-Verlag, 2007, pp. 41–60.

[68] Moni Naor and Gil Segev. “Public-Key Cryptosystems Resilient to Key Leak-
age”. In: SIAM J. Comput. 41.4 (2012), pp. 772–814.

[69] Manoj Prabhakaran and Amit Sahai. “New Notions of Security: Achieving
Universal Composability without Trusted Setup”. In: Proc. 36th Annual ACM
Symposium on Theory of Computing (STOC). 2004, pp. 242–251.

[70] The EasyCrypt Project. EasyCrypt: Computer-Aided Cryptographic Proofs.
2014. url: https://www.easycrypt.info (visited on 03/15/2014).

[71] Jae Hong Seo. “Short Signatures From Diffie-Hellman: Realizing Short Public
Key”. In: IACR Cryptology ePrint Archive 2012 (2012), p. 480.

[72] Dominique Unruh. “Concurrent composition in the bounded quantum stor-
age model”. In: Eurocrypt 2011. Vol. 6632. LNCS. Preprint on IACR ePrint
2010/229. Springer, 2011, pp. 467–486.

[73] Dominique Unruh. “Universally Composable Quantum Multi-Party Compu-
tation”. In: Eurocrypt 2010. LNCS. Preprint on arXiv:0910.2912 [quant-ph].
Springer, 2010, pp. 486–505.

[74] Dominique Unruh and Jörn Müller-Quade. “Universally Composable Inco-
ercibility”. In: Crypto 2010. Vol. 6223. LNCS. Preprint on IACR ePrint 2009/520.
Springer, 2010, pp. 411–428.

[75] Wikipedia. Digital Enhanced Cordless Telecommunications. 2014. url: https:
//en.wikipedia.org/wiki/DECT (visited on 03/15/2014).

[76] Wikipedia.Direct Anonymous Attestation. 2014. url: https://en.wikipedia.
org/wiki/Direct_Anonymous_Attestation (visited on 03/17/2014).

[77] Wikipedia. Global System for Mobile Communications. 2014. url: https :
//en.wikipedia.org/wiki/GSM (visited on 03/15/2014).

[78] Wikipedia. Transport Layer Security. 2014. url: https://en.wikipedia.
org/wiki/Transport_Layer_Security (visited on 03/15/2014).

http://dx.doi.org/10.1016/0020-0190(95)00144-2
https://www.easycrypt.info
https://en.wikipedia.org/wiki/DECT
https://en.wikipedia.org/wiki/DECT
https://en.wikipedia.org/wiki/Direct_Anonymous_Attestation
https://en.wikipedia.org/wiki/Direct_Anonymous_Attestation
https://en.wikipedia.org/wiki/GSM
https://en.wikipedia.org/wiki/GSM
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security

Symbol Index

CSIDbits
x,a A concrete fixed SIDbits-indexing context 42
Gnx,a Auxiliary definition in analysis of CSIDbits

x,a 42
C(sID,gID,n)

x,a Auxiliary definition in analysis of CSIDbits
x,a 42

sID Auxiliary definition in analysis of CSIDbits
x,a – set

of spawned IDs
42

nil Constructor denoting the empty bitstring 42
zero Constructor prefixing a bitstring with 0 42
one Constructor prefixing a bitstring with 1 42
SIDbits Concrete set of session IDs built from bit-

strings
42

gID Auxiliary definition in analysis of CSIDbits
x,a – set

of generator IDs
42

Σx∈SP Short for P{s1/x}|P{s2/x}| . . . for S =
{s1, s2, . . . }

42

≡E Structural equivalence modulo equational
theory E

16

↗≡ Asymmetric variant of structural equivalence 26
crseqv Constructor: CRS for equivocation 82
crsext Constructor: CRS for extraction 82
FCOM Commitment functionality 81
KE∗ Protocol for generating many keys 76
Mreal Symbolic model without virtual primitives 82
Mvirt Symbolic model with virtual primitives 82
sdec Destructor: symmetric decryption 67
pdec Destructor: public key decryption 67
pkofenc Destructor extracting public key from cipher-

text
67

pkofsk Destructor extracting secret from public key 67
bv(P) Bound variables in P 13
P ≡ Q Structural equivalence of P and Q 14
M(x) Receiving x on channel N 13
M〈N〉 Sending N on channel N 13

171

172 4. Symbol Index

!P Concurrent executions of instances of P (ap-
plied pi calculus

13

νa Restriction of the name a (applied pi calculus) 13
fv(P) Free variables in P 13
bn(P) Bound names in P 13
let x = D in P else Q Let it be 13
fn(P) Free names in P 13
snd Destructor: Extracts the second component

of a tag
16

{a/b} Substitution replacing b with a 19
D The deduction system 104
≤ Subtype relation 103
labels The set of labels 103
T The set of data types 103
> The data type base type 103
dom(f) The domain of a function f 104
` The deduction relation 104
labelsA The set of adversarial labels 103
labelsH The set of honest labels 103
∼Ssid An Ssid-observational equivalence relation 54
untag Untag channel identifiers 52
nsid Fixed name for sid-sensitive processes 48
≈n
S Observational equivalence restricted to pro-

cesses that do not contain n and contexts
build from S

47

!!P Concurrent composition of P with session ids 45
〈·〉 Span of a set of IDs 42
tag Tag channel identifiers 50
Φ Transformation of a generic plain process into

a sid-sensitive process
48

Ssid The set of sid-sensitive processes 48
Msid Fixed term for sid-sensitive processes 48
fakeH Constructor: Fake (equivocal) hash 82
fake Constructor: Randomness for fake hash 82
extract Destructor: Extracting from a hash 82
FCRS Common reference string functionality 82
COM Commitment protocol 82
FKE Key exchange functionality 67
FPKI Public key infrastructure functionality 67
NSL Needham-Schroeder-Lowe protocol 67
SC Secure channel protocol 69
N The set of names 12
fst Destructor: Extracts the first component of a

tag
16

∏
x∈S P Indexed replication of the process P 19

r ← R r is sampled uniformly from R 103
η The security parameter 103
P ↓M The process P emits on a channel M 14
P → Q Process P reduces to Q 14

173

P lM The process P communicates on a channel M 14
P ↑M The process P reads on a channel M 14
if M = N then P else Q Syntactic sugar for let x =

equals(M ,N) in P else Q
15

P ≈ Q Observational equivalence of the closed pro-
cesses P and Q

15

C〈〉.P Syntactic sugar for C(empty).P 15
C().P Syntactic sugar for C(x).P with fresh variable

x
15

plains(P) P with synchronization channel s removed 30
event f(t) Raise event f(t) 29
syncouts(t1 7→ t′1, . . . ;u1 7→ u′1, . . .) Outputs on synchronization channel s 31
evs(P) P with synchronization channel s replaced by

events
30

NET Set of all network names 37
IO Set of all I/O names 37
P ((M)) Process P with session-id M 41
P ≤ Q P emulates Q 38
CSID

x,n An arbitrary but fixed SID-indexing context 41
SID Set of all session IDs 41
hash Constructor: hash function 66
empty Constructor: empty message 66
sk Constructor: secret key 66
senc Constructor: symmetric encryption 66
penc Constructor: public key encryption 66
pk Constructor: public key 66
P ≤SS Q P emulates Q in the sense of Delaune et al.

[54].
63

Fanon Insecure but anonymous channel functional-
ity

64

FSC Secure channel functionality 62
� Observational preorder 63
equals Destructor equals 16
P ∼∼∼ Q Full observational equivalence of the non-

closed processes P and Q
16

↗≡E ↗≡ modulo equational theory 26
DM ⇓ Term D evaluates to M 12
R Finite set of rewrite rules for destructors 12
D(M1 , . . . ,Mn)→ M Reduction rule for destructor D 12
M =E N TermsM and N are equal with respect to the

equational theory E
12

E The finite set of equations that are to hold in
the equational theory (applied pi calculus)

12

T The set of terms 12
Σ The Signature – a set of function symbols 12, 103
V The set of variables 12, 103
0 Empty process (applied pi calculus) 13
M Symbolic modelM 12

Index

S-n-bisimulation, 49
S-n-observational equivalence, 49
S-n-simulation, 49
0-1-context, 17

adversary, 39
dummy, 39

α-conversion, 16

base type, 105
bisimulation, 17
bitstring

interpretation, 108
black-box simulatability, 40

channel identifiers, 17
communicate, 16
compatible, 113
complete (set of processes), 49
composition

concurrent, 42
concurrent composition, 42
constructor, 14
context, 16

0-1-, 17
evaluation, 16
indexing, 43
multi-hole, 37

data types, 105
deduction

system, 106
proof, 106
relation, 106

deduction soundness, 121
destructor, 14
destructor term, 14
M-, 90

DKP-security, 65
dummy adversary, 39

emit, 16
empty, 18
emulate, 40
equals, 18
equivalence

full observational, 18
observational, 17
structural, 16

event process, 31
EVENT rule, 31
extension

safe, 90

full observational equivalence, 18
function

negligible, 105
transparent, 113

function symbol, 14, 105
constant, 105
constructor, 14
destructor, 14
deterministic, 105
foreign, 112
garbage, 106
randomized, 105

generate function, 108

175

176 4. Index

hash function, 152

if-statement, 17
implementation, 108

collision free, 110
composable, 114
deduction sound, 121
forgetful, 156
good, 110
oblivious, 156
parametrized, 120
transparent, 113
type safe, 111

IND-CCA security, 124, 143
indexed replication, 21
indexing context, 43
INT-CTXT security, 144
internal reduction, 16
IREPL, 21

label, 105
adversarial, 105
honest, 105

length regularity, 110
library, 155

M-destructor term, 90
M-process, 90
M-term, 90
MAC scheme, 149
model

symbolic, 15, 105
multi-hole context, 37

name, 14
bound, 15

name-reduced, 33
natural symbolic model, 18
negligible, 105
NET-stable, 39
nonce, 105

observational equivalence, 17
full, 18

observational preorder, 65
open function, 109

parsing function, 109
preorder

observational, 65
process

M-, 90
closed, 15
event, 31
product, 21

product process, 21
protected, see unprotected
public-key encryption, 124

query, 112
variation, 112

random oracle, 152
read, 16
relay, 67
replication

indexed, 21

safe extension, 90
satisfy

trace property, 31
secret key encryption, 143
security

IND-CCA, 124, 143
INT-CTXT, 144
strong EUF-CMA, 134, 149

security parameter, 105
signature, 14, 105
signature scheme, 134
simulatability

black-box, 40
strong, 40
universally-composable, 40

simulation, 17
simulator, 40
strong EUF-CMA security, 134, 149
strong simulatability, 40
strong unlinkability, 65
structural equivalence, 16
substitution, 14, 106

closing, 18
subtype relation, 105
symbolic model, 15, 105

composable, 114
forgetful, 156
natural, 18
parametrized, 120
transparent, 113

term
M-, 90

177

garbage, 106
hybrid, 108, 155
of type τ , 105

trace, 112
trace property, 31

satisfy, 31
transparent function, 113
type

base, 105

universally-composable simulatability,
40

unlinkability
strong, 65

unprotected, 16

variable, 14, 105
bound, 15
free, 15

virtual primitives, 81

	Contents
	1 Introduction
	2 Symbolic Universal Composability
	2.1 Review of the applied pi calculus
	2.1.1 Syntactic sugar
	2.1.2 Additional concepts used in this work

	2.2 Useful properties of the pi calculus
	2.2.1 Relating events and observational equivalence
	2.2.2 Unpredictability of nonces

	2.3 Symbolic UC
	2.4 Composition
	2.5 Property preservation
	2.6 Relation to Delaune-Kremer-Pereira
	2.7 Example: Secure channels
	2.7.1 Key exchange using NSL
	2.7.2 Secure channel from key exchange.
	2.7.3 Generating many keys from one

	2.8 Virtual primitives
	2.8.1 Realizing commitments
	2.8.1.1 A note on adaptive corruption

	2.8.2 Removing the virtual primitives
	2.8.3 On removing the CRS

	2.9 Limits for composition and property preservation

	3 Composable Computational Soundness
	3.1 Preliminaries
	3.2 The symbolic model
	3.2.1 Reconciling the notions for symbolic models

	3.3 Implementation
	3.3.1 Interpretations
	3.3.2 Generating function
	3.3.3 Parsing function
	3.3.4 Good implementation

	3.4 Transparent functions
	3.5 Composition
	3.6 Deduction soundness
	3.7 Composition theorems
	3.7.1 Public datastructures
	3.7.2 Public key encryption
	3.7.2.1 Computational preliminaries
	3.7.2.2 Symbolic model
	3.7.2.3 Implementation
	3.7.2.4 PKE composability

	3.7.3 Signatures
	3.7.3.1 Computational preliminaries
	3.7.3.2 Symbolic model
	3.7.3.3 Implementation
	3.7.3.4 Signature composability

	3.7.4 Secret key encryption
	3.7.4.1 Computational preliminaries
	3.7.4.2 Symbolic model
	3.7.4.3 Implementation
	3.7.4.4 SKE composability

	3.7.5 MACs
	3.7.5.1 Computational preliminaries
	3.7.5.2 Symbolic model
	3.7.5.3 Implementation
	3.7.5.4 MAC composability

	3.7.6 Hash functions
	3.7.6.1 Symbolic model
	3.7.6.2 Implementation
	3.7.6.3 Hash composability

	3.8 Forgetfulness
	3.8.1 Preliminaries
	3.8.2 Forgetful symbolic models and implementations
	3.8.3 Sending keys around

	4 Outlook
	Symbol Index
	Index

