
Algorithm Engineering

for Realistic Journey Planning

in Transportation Networks

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Thomas Pajor

aus Potsdam

Tag der mündlichen Prüfung: 15. November 2013

Erste Gutachterin: Prof. Dr. Dorothea Wagner

Zweiter Gutachter: Prof. Dr. Matthias Müller-Hannemann

Acknowledgements

F irst of all, I want to thank my advisor Dorothea Wagner for encouraging me
to join her group. During the whole time she supported me in every possible
way, and her advise was always inspiring and helpful. The warm, respectful

and friendly atmosphere she created made it a very pleasant environment to work in.
Above all, however, I am truly grateful that, without hesitation, she encouraged and
supported me to spend two summers as a research intern at Microsoft Research in
Mountain View, California and two months with Microsoft Consulting Services in
Reading, England.

For that, I want to thank Daniel Delling, Andrew Goldberg, Roy Levin, and Renato
Werneck, who invited me to Microsoft Research, and Hatay Tuna, Kutay Tuna, and
Simon Williams, who asked me to join Microsoft Consulting Services; I am humbled
to have been given these opportunities. I had two very productive summers in a
great research lab and a fantastic time in England—both of which greatly contributed
to this thesis.

Also, I want to thank Matthias Müller-Hannemann for willingly accepting the task
of reviewing this thesis and the German Research Foundation (DFG) for financing
my work at KIT.

Next, I want to give special thanks to my office mates in Karlsruhe and Mountain
View: Andreas Gemsa with whom I always had a lot of fun, keeping us distracted
when we needed it, and Ahswin Prasad and Ilya Razenshteyn for having two awesome
summer internships. I would like to highlight my coauthors Moritz Baum, Julian
Dibbelt, Bastian Katz, Dominik Kirchler, Leo Liberti, Martin Nöllenburg, Ignaz Rutter,
Ben Strasser, Roberto Wolfler Calvo, Christos Zaroliagis, and Tobias Zündorf with
whom I had many fruitful collaborations. I could always learn a lot from them. I
also want to thank all my coworkers for a great time, especially Tanja Hartmann and
Markus Völker for sharing countless coffee breaks chatting, and of course everybody
who regularly dropped by our office after we moved downstairs to the second floor.

Furthermore, I would like to thank Lilian Beckert, Elke Sauer, Bernd Giesinger (from
Karlsruhe), and Lori Blonn and Hugo Hernandez (from Mountain View), who were

iii

magnificent at taking care of all the administrative things. I also want to thank
everybody, who is not mentioned explicitly by name, but who directly or indirectly
supported or contributed to this thesis.

Outside work, I would like to give heartfelt thanks to my friends for sharing great
times together, my parents, who always supported me in my endeavors and without
whom this thesis would not be possible, and especially my dear Benni for all the love
and support over the years.

iv

Abstract

Route planning in transportation networks is a fundamental problem with
numerous interesting applications. Probably one of the best known applications
are navigation devices for cars. More examples include map services on the

Internet and timetable information systems, such as the one by Deutsche Bahn. In all
cases, underlying algorithms must quickly compute optimal solutions for any query
from the customer.

In this thesis, we introduce algorithmic solutions for the following topics: Journey
planning in public transit and multimodal networks, customizable route planning
in road networks, and the computation of jogging routes in pedestrian networks.
The presented algorithms thereby exploit the structural properties of the underlying
transportation networks explicitly. To obtain efficient and practical algorithms, we
base our methodology of research on the paradigm of Algorithm Engineering [San09,
MS10,SW13]. It is characterized by a cycle consisting of four steps: Algorithm design,
theoretical analysis, implementation, and experimentation.

Public Transit Journey Planning. For the case of journey planning in public transit
networks, the input is given as a timetable. It defines stops and trips (buses, trains,
etc.), which operate along sequences of stops at certain times of the day. This thesis
introduces a new multicore algorithm that computes one-to-all range queries. They ask
for a set of optimal (regarding travel time) journeys all departing within a certain
time range from one stop to all other stops of the network. The algorithm is based on
a newly introduced graph model and carefully exploits the fact that journeys may
dominate each other, which significantly reduces the search space size. The obtained
query times are practical, even on dense metropolitan networks for a time range
of a full day. This enables precomputation of a full distance table over a subset of
important stops of the network. By these means, the very same algorithm can be
further accelerated, if one is only interested in queries between pairs of stops.

Besides travel time, another—just as important—criterion is the number of transfers.
To give the user a sensible set of alternative journeys, this thesis considers computing
Pareto sets of nondominating journeys regarding travel time and the number of
transfers. Here, state-of-the-art approaches use variants of Dijkstra’s algorithm,
which is slow in practice. In this work, a novel algorithm, which operates directly

v

Abstract

on the underlying timetable, is presented. It, therefore, neither requires a graph,
nor a priority queue. Instead, it exploits the fact that vehicles operate on well-
defined routes, which allows for a dynamic program that successively constructs the
Pareto set. The algorithm is very cache-efficient and faster by an order of magnitude
than previous (graph-based) approaches. It answers queries in dense metropolitan
networks within a few milliseconds. Moreover, we parallelize it and extended it to
handle further criteria. Since it does not require preprocessing, it can be directly used
in dynamic scenarios, easily handling delays and trip cancellations.

Multimodal Journey Planning. Another scenario considered in this thesis is multi-
modal journey planning. Here, one is interested in integrated algorithms, that combine
different modes of transport in a reasonable way. A common approach to obtain
feasible mode sequences is the label constrained shortest path problem, which models
mode sequences by regular languages. A variant of Dijkstra’s algorithm that runs on
the union of each modal subnetwork computes provably optimal solutions, but is too
slow in practice. This work presents a faster approach, which is based on the concept
of vertex contraction. It preprocesses the input such that arbitrary mode sequences
are retained. This enables the user to specify mode sequence contraints at query time,
a problem considered challenging before.

Sometimes, the user is unwilling to (or simply cannot) state feasible mode se-
quences. Instead, it might be preferable to provide the user with a choice from a set
of concice and diverse alternative journeys. Therefore, in this thesis, an approach is
considered that combines multimodal and multicriteria route planning. Instead of
obeying specific modal sequences, it identifies, for each mode of transportation, a
convenience criterion. These criteria are then used to compute Pareto sets of alternative
journeys. Here, one particular challenge is that the resulting sets may contain hun-
dreds of insignificant solutions. They (unnecessarily) increase computation time and
are of little value to the user. Therefore, based on fuzzy set theory, a fuzzy dominance
criterion is used that is successful in extracting the k most relevant journeys.

Customizable Route Planning in Road Networks. In this part we revisit the classical
problem of computing optimal routes in road networks. For most existing efficient
algorithms, an update of the metric (e. g., because of a new traffic situation) requires
rerunning a costly preprocessing phase. Our approach addresses this issue and is
based on the (known) concept of multilevel overlay graphs. The key idea is to split
the preprocessing phase: In a first (potentially slow) metric-independent stage, the
graph is partitioned into loosely connected regions of roughly equal size. This defines
the topology of the overlay graphs. The second metric-dependent stage then quickly
computes weights on the arcs of the overlay graphs. Integrating a new metric only
requires rerunning the second stage. This takes mere seconds in practice and enables
new applications, such as real-time traffic or personalized cost functions.

vi

Computation of Jogging Routes. The last part of this thesis considers computing
“good” jogging routes: Given a source vertex in a pedestrian network and a length (of
the desired route), it asks to compute a cycle containing the source vertex that ap-
proximates the given length. Moreover, an ideal route might have a rather circular
shape and travel through nice areas (such as parks and forests) of the map. In this
thesis, two approaches to solve this problem are presented. The first successively
extends a (given) route by joining adjacent faces of the network. The second trans-
fers the intuition of constructing equilateral polygons to graphs in order to obtain
jogging routes. The algorithm can be easily parallelized and even computes sensible
alternative routes.

vii

Contents

Abstract v

1. Introduction 1
1.1. Main Contributions . 2

1.1.1. Public Transit Journey Planning 3
1.1.2. Multimodal Journey Planning 4
1.1.3. Customizable Route Planning in Road Networks 5
1.1.4. Computation of Jogging Routes 6

1.2. Outline . 6

2. Literature Overview 9
2.1. Route Planning in Road Networks . 9

2.1.1. Basic Algorithms . 10
2.1.2. Goal-Directed Techniques . 11
2.1.3. Hierarchical Techniques . 14
2.1.4. Separator-Based Techniques . 15
2.1.5. Table-Based Techniques . 18
2.1.6. Combinations . 20
2.1.7. Theoretical Results . 24

2.2. Journey Planning in Public Transit Networks 25
2.2.1. Modeling . 26
2.2.2. Search Algorithms without Preprocessing 28
2.2.3. Speedup Techniques . 30
2.2.4. Extended Scenarios . 32

2.3. Journey Planning in Multimodal Networks 34
2.3.1. Modeling . 34
2.3.2. Search Algorithms . 36

ix

Contents

3. Fundamentals 39
3.1. Graph Theory . 39
3.2. Partitions . 43
3.3. Regular Languages and Finite Automata 43

4. Public Transit Journey Planning 47
4.1. Inputs . 50
4.2. Problems . 52

4.2.1. Earliest Arrival Problem . 52
4.2.2. Multicriteria Problem . 53
4.2.3. Range Problem . 54
4.2.4. Reverse Problems . 54

4.3. Graph Models . 55
4.3.1. Stop Model . 55
4.3.2. Time-Expanded Model . 56
4.3.3. Time-Dependent Model . 59
4.3.4. Coloring Model . 63
4.3.5. Artificial Footpaths . 64

4.4. Basic Algorithms . 65
4.4.1. Earliest Arrival Problem . 66
4.4.2. Multicriteria and Range Problems 68

4.5. Parallel Self-Pruning Connection Setting Algorithm 72
4.5.1. The Main (Sequential) Algorithm 73
4.5.2. Parallelization . 76
4.5.3. Point-to-Point Queries . 80
4.5.4. Experiments . 86
4.5.5. Conclusion . 94

4.6. Round-Based Public Transit Optimized Router 95
4.6.1. Basic RAPTOR Algorithm . 95
4.6.2. Improvements . 97
4.6.3. Transfer Preferences and Strict Domination 98
4.6.4. Parallelization . 101
4.6.5. Timetable Compression . 102
4.6.6. More Criteria: McRAPTOR . 103
4.6.7. Range Queries: rRAPTOR . 106
4.6.8. Experiments . 107
4.6.9. Implementation Details . 115
4.6.10. Conclusion . 117

5. Multimodal Journey Planning 119
5.1. Inputs . 122

5.1.1. Street Networks . 122

x

Contents

5.1.2. Public Transit Networks . 123
5.1.3. Flight Networks . 123
5.1.4. Rental Bicycle Schemes . 124
5.1.5. Combining the Networks . 125

5.2. Problems and Basic Algorithms . 125
5.2.1. Earliest Arrival Problem . 125
5.2.2. Multicriteria Problem . 126
5.2.3. Label-Constrained Shortest Path Problem 127

5.3. User-Constrained Contraction Hierarchies 132
5.3.1. Contraction Hierarchies on Unimodal Networks 133
5.3.2. Contraction Hierarchies for Multimodal Networks 134
5.3.3. UCCH: Contraction for User-Constrained Route Planning . . . 136
5.3.4. Improvements . 138
5.3.5. Experiments . 140
5.3.6. Conclusion . 148

5.4. Multicriteria Multimodal Route Planning 149
5.4.1. Problem Statement . 151
5.4.2. Dominance and Fuzzy Set Theory 152
5.4.3. Exact Algorithms . 157
5.4.4. Contracting the Unrestricted Networks 159
5.4.5. Beyond Walking . 160
5.4.6. Heuristics . 161
5.4.7. Evaluating Quality . 162
5.4.8. Experiments . 163
5.4.9. Conclusion . 170

6. Customizable Route Planning in Road Networks 173
6.1. Analysis of Previous Algorithms . 175
6.2. Our Approach to Customizable Route Planning 176

6.2.1. Basic Algorithm . 177
6.2.2. Overlay Sparsification . 178
6.2.3. Goal-Direction . 180
6.2.4. Multiple Levels . 181

6.3. Streamlined Implementation . 182
6.4. Incorporating Turn Cost . 184
6.5. Further Experiments . 187
6.6. Path Unpacking . 189
6.7. Implementation Details . 190
6.8. Conclusion . 191

7. Computation of Jogging Routes 193
7.1. Problem Statement . 194

xi

Contents

7.2. Algorithms . 196
7.2.1. Greedy Faces . 196
7.2.2. Partial Shortest Paths . 200

7.3. Experiments . 205
7.4. Conclusion . 211

8. Conclusion 217
8.1. Future Work . 219

Bibliography 223

List of Figures 251

List of Tables 255

A. Curriculum Vitæ 257

B. List of Publications 259

C. Deutsche Zusammenfassung 263

xii

Chapter 1
Introduction

Anybody who travels frequently knows the numerous journey planning ser-
vices that are available today. In fact, such services have become quite ubiqui-

tous and are more or less taken for granted. Examples include online services
like Bing Maps, GPS navigation devices for private vehicles, or the journey planning
systems offered by many public transit agencies, such as Deutsche Bahn [HaC].
Thereby, these services are usually either offered online on the Internet or offline by
mobile devices and smartphone applications.

A key component of any journey planning service is an algorithm that computes the
actual journeys for given pairs of source and destination locations. These algorithms
must be fast, and they should provide exact and optimal solutions for any query
requested by the customer. A common approach to this problem models the trans-
portation network as a directed graph whose arc weights represent the metric (travel
time, distance, etc.) one aims to optimize. Dijkstra’s algorithm, which has been
already introduced in the year 1959, can then be used to compute provably optimal
journeys between vertices of this graph. Unfortunately, Dijkstra’s algorithm is too
slow on realistic inputs of country or continental scale to be practical: Answering
a single query takes several seconds, even on current server hardware. Therefore
over the last years, a plethora of research focused on accelerating Dijkstra’s algo-
rithm by utilizing an offline preprocessing phase. The fastest available techniques
achieve—after a few minutes or hours of preprocessing—query times in the order of
microseconds or less on networks of continental scale. This is up to seven orders of
magnitudes faster than Dijkstra’s algorithm.

However, most of these methods were developed with road networks and travel
time metric in mind. While they can, in principle, be augmented to other types of
networks (such as public transit), most methods lose their excellent performance on
them. Moreover, besides computing only one (quickest) route, on these networks
one is often interested in more complicated query scenarios. For example, in public
transit networks it is often desirable to compute a set of optimal journeys that depart

1

Chapter 1. Introduction

within a specified time range. Also, only optimizing a single criterion, like travel time,
may not be sufficient. In practice, considering further criteria, such as the number of
transfers, is just as important.

The ultimate journey planner should go even further and consider different modes
of transportation like car travel, walking, bicycles, public transit, and flights in
a holistic approach. We call this scenario multimodal journey planning. Clearly,
developing algorithms that compute optimal journeys in this scenario includes at
least the challenges from each individual mode of transport. On top of that, different
modes of transport must be combined in a reasonable way. For example, requiring the
customer to use their private car between train rides may be infeasible. Also, some
customers may prefer to use their bicycle for parts of their journey, while others may
not. Any multimodal journey planning algorithm should explicitly consider such
constraints and, ideally, provide concise and diverse sets of alternative journeys to
the customer.

Falsifiable
Hypotheses

Design

Experim
ent

A
n

alyze

Implement

Realistic
machine models

Real-world data

Performance guarantees & practical algorithms

Figure 1.1. The Algorithm Engineering paradigm.

One of the main goals of our work is to
develop algorithms that are both efficient and
practical. Therefore, it is crucial to implement
the algorithms carefully and conduct exten-
sive experimental studies using real world
data. The outcome of these experiments then
gives new insights into the behavior of an al-
gorithm, which in return, leads to a possibly
refined design of the algorithm. This circular
process is captured by the paradigm of Algo-
rithm Engineering [San09, MS10, SW13]. At its
core, it constitutes a cycle of algorithm design,

theoretical analysis (in our case ensuring correctness), careful implementation, and
extensive experiments, ideally, on real world data. The algorithm is thereby already
designed with the underlying hardware and the characteristics of the inputs in mind.
We then claim falsifiable hypotheses about its performance which are validated (or
falsified) by the experiments. In that, Algorithm Engineering resembles Popper’s
scientific method [Pop34]. Also see Figure 1.1 for an illustration of the principle.

1.1. Main Contributions

This thesis contains contributions on the following topics: Public transit journey
planning, multimodal journey planning, customizable route planning in road networks, and
the computation of jogging routes. In this section we highlight the key contributions for
each of these topics in turn.

2

1.1. Main Contributions

1.1.1. Public Transit Journey Planning

For the problem of computing journeys in public transit networks, we consider
timetables as input. Roughly speaking, a timetable is comprised of a set of stops (e. g.,
platforms, bus stops, etc.), a set of routes (e. g., bus lines), and a set of trips. A trip
is thereby a vehicle that serves a route at a specific time of the day. Typically, the
timetable is translated into a graph on which shortest paths correspond to optimal
journeys. Several such graph models exist, incorporating different levels of realism.

Coloring Model and Footpaths. We present a new realistic time-dependent graph
model, called the Coloring Model, which is useful to compute journeys that min-
imize arrival time. The model is based on the realistic time-dependent model
from [PSWZ08]. By computing conflicting trips at stops in a principled way, we
obtain significantly smaller graphs (up to a factor of 12). This immediately accel-
erates any query algorithm that runs on this model. Moreover, we present a new
heuristic to generate artificial footpaths that connect stops which are close to the same
intersection (of the underlying road network). Such footpaths are crucial to obtain
realistic journeys, but are often missing from real world timetable data.

The Coloring Model is presented in Section 4.3.4 and our footpath heuristic is
introduced in Section 4.3.5.

Parallel Range Query Algorithm. Based on our Coloring Model, we introduce a
novel algorithm, called Self-Pruning Connection-Setting Algorithm (SPCS) that com-
putes one-to-all range queries: For a given source stop ps, such a query asks for
optimal (regarding travel time) journeys departing within a given time range to all
stops of the network. Unlike previous algorithms, it systematically exploits the com-
binatorial structure of public transit networks: The number of relevant connections
to travel from ps is limited and can be bounded in advance. In addition, certain
connections are dominated by others along the way. Exploiting these principles in
a sound manner, we augment the label-setting property of Dijkstra’s algorithm to
obtain a connection-setting algorithm for range queries in public transit networks.
Unlike previous algorithms, which are notoriously hard to parallelize, SPCS admits a
natural and efficient parallelization. As a result, SPCS is a more efficient substitute for
Dijkstra’s algorithm for the scenario of one-to-all range queries. Such queries are of
particular importance as an ingredient to the preprocessing phase of many speedup
techniques. Finally, for the case one is only interested in journeys to a designated
target stop, we show how SPCS itself can be utilized for valuable preprocessing to
further accelerate point-to-point queries.

Our new Self-Pruning Connection-Setting algorithm is presented in Section 4.5.

RAPTOR. Besides optimizing arrival time, another important criterion in public
transit networks is the number of transfers. We, therefore, consider the problem

3

Chapter 1. Introduction

of computing Pareto sets of nondominating journeys regarding arrival time and
number of transfers. To this extent, we present a novel algorithmic approach called
Round-bAsed Public Transit Optimized Router (RAPTOR). Unlike previous algorithms,
it is neither graph-based, nor does it require a priority queue. Instead, it organizes
the timetable data efficiently into a small number of arrays. The algorithm then
operates on these arrays in rounds (one per transfer) and scans each route of the
timetable at most once per round. Essentially, the algorithm boils down to a dy-
namic program with simple data structures and excellent memory locality. By these
means, query performance on the full metropolitan network of London is faster
by an order of magnitude compared to previous algorithms. Moreover, we extend
RAPTOR to handle strict dominance, multicriteria range queries, and additional
criteria. In particular, we consider fare zones and reliability of transfers as additional
criteria (besides arrival time and number of transfers) and present optimized variants
of McRAPTOR (the more-criteria variant of RAPTOR) for them. Since RAPTOR does
not rely on preprocessing, it can be directly used in dynamic scenarios, including
delays, route changes, and trip cancellations.

Our new RAPTOR algorithm is presented in Section 4.6.

1.1.2. Multimodal Journey Planning

The second part of this thesis deals with multimodal journey planning. Here, we ask
for a holistic algorithmic approach that computes journeys that reasonably combine
different modes of transportations. In this work, we consider car travel, walking,
rental bicycles, public transit, and flights as transportation modes.

User-Constrained Contraction Hierarchies. A quite elegant approach to the multi-
modal journey planning problem computes label-constrained shortest paths [BJM00].
Essentially, it imposes restrictions on the sequences of transportation modes in form
of a regular language, to which any computed journey must obey. Although Dijkstra’s
algorithm can be augmented to handle such constraints, its performance is too slow
to be practical. To this extent, we present a preprocessing-based speedup technique,
called User-Constrainted Contraction Hierarchies (UCCH). It augments the Contraction
Hierarchies algorithm [GSSV12] to handle label-constrained shortest paths in a sound
manner. By ensuring that shortest paths for any mode sequences are retained during
the preprocessing phase, we obtain the first preprocessing-based algorithm that can
handle arbitrary mode sequence constraints as an input to the query—a problem
considered challenging before. Moreover, when compared to previous algorithms
with similar query performance (such as Access Node Routing [DPW09a]), UCCH
has some key advantages: It does not require a dedicated algorithm to compute local
queries, has faster preprocessing time, and can handle multimodal networks with a
much denser public transit subnetwork.

The User-Constrained Contraction Hierarchies algorithm is presented in Section 5.3.

4

1.1. Main Contributions

Multimodal Multicriteria Journey Planning. Even though label-constrained shortest
paths can be used to forbid infeasible sequences of transportation modes (such as us-
ing a private car between two train rides), the customer still has to specify—and thus
know—these constraints in advance. Preferably, a multimodal journey planner should
provide the customer with a concise and diverse set of alternative journeys, from
which they can choose their favorite option. To this extent, we drop label-constraints
and consider to combine multimodal with multicriteria journey planning. We argue that
users optimize—besides arrival time—specific mode-dependent convenience criteria.
Examples include the number of transfers for public transit, walking duration for
walking, and monetary cost for taxis. We present a new algorithm, called multimodal
multicriteria RAPTOR (MCR), that builds on the round-based framework of RAPTOR
and computes exact Pareto sets of journeys that optimize these convenience criteria.
However, it turns out that these Pareto sets contain too many insignificant journeys
with little value to the user. Therefore, we propose to use fuzzy logic to extract a
subset of the most significant journeys in a quick postprocessing step. Going further,
we present several heuristics (still multicriteria) that relax domination during the
algorithm. They avoid computing insignificant journeys, but still closely match the
best journeys of the exact Pareto set. Our experiments on the full multimodal network
of London confirm that we are able to compute multimodal multicriteria journeys of
high quality for large metropolitan areas.

Multimodal multicriteria journey planning and MCR are presented in Section 5.4.

1.1.3. Customizable Route Planning in Road Networks

The third part of this thesis considers the computation of shortest paths in road
networks. While most research focused on fast methods that optimize travel time,
we address the customizable route planning problem. Its goal is a method that is
metric-independent: It must incorporate new metrics quickly, have only little space
overhead (per metric), and admit a query algorithm that is robust with respect to any
metric. To this extent, we analyze previous algorithms with regard to our scenario
and propose an approach that is based on overlay graphs [SWW00, JP02]. To achieve
our goals, we split the preprocessing phase into a metric-independent preprocessing stage
and a customization stage. The first stage considers only topology, may take several
minutes, and must be run only once. The customization stage then incorporates a
new metric, which takes mere seconds, even for the continental network of Europe.
Queries, which utilize the overlay graph, take a few milliseconds. This is fast enough
for interactive scenarios. By these means, our approach is highly practical and enables
new applications with obvious attraction: Traffic updates can be incorporated in real
time, and customers may state personalized cost functions, such as “avoid highways”,
“avoid toll roads”, “height restrictions for trucks”, and others. In fact, the proposed
method is currently the core of the routing engine in use by Bing Maps [Mic12].

Our approach to customizable route planning is presented in Section 6.

5

Chapter 1. Introduction

1.1.4. Computation of Jogging Routes

The final part of this thesis considers the computation of jogging routes in pedestrian
networks. To the best of our knowledge, we are the first to consider practical
algorithms for this problem: Given a source vertex s and a desired length L, it asks
for a simple cycle that contains s, whose length approximates L. Besides length,
we identify further soft criteria one is usually interested to optimize: The route
should have a rather circular shape, pass through “nice” areas of the map (such
as parks and forests), and it should not contain too many turns that have to be
remembered by the user. We show that the problem is NP-hard, even for the
simple version that only considers length. Nevertheless, we present two novel
and practical algorithms to compute sensible jogging routes heuristically. The first,
called Greedy Faces (GF) iteratively extends the route by attaching adjacent faces
of the graph. The second, called Partial Shortest Paths (PSP), concatenates several
shortest paths with respect to an appropriate metric, and is based on the intuition of
constructing equilateral polygons. The latter approach can be parallelized quite easily
and inherently computes admissible alternative routes. We validate our algorithms
in a systematic experimental study and present a case study on the map of Karlsruhe.
The outcome of the experiments indicates that our algorithms are indeed able to
compute sensible jogging routes fast enough for interactive applications.

The computation of jogging routes is considered in Chapter 7.

1.2. Outline

The rest of this thesis is organized as follows:

Chapter 2 gives an extensive overview on the current state-of-the-art that is related
to this work. It recaps methods for route planning in road networks, journey planning
in public transit networks, and journey planning in multimodal networks.

Chapter 3 settles (mathematical) notation that is fundamental to this work. In
particular, it gives a formal introduction to graphs, shortest paths, partitions, and
regular languages.

Chapter 4 contains the first main contribution of this thesis. It considers journey
planning in public transit networks. In order to present our new algorithms, the
chapter first gives a detailed introduction on the inputs, i. e., timetables (Section 4.1),
the considered problems (Section 4.2), related graph models (Section 4.3), and basic
algorithmic approaches (Section 4.4), which we use as baseline in our experiments.
Going from there, the chapter introduces our new Self-Pruning Connection-Setting
algorithm (Section 4.5) and RAPTOR (Section 4.6).

Chapter 5 contains the second main contribution of this thesis and considers
journey planning in multimodal networks. We first analyze models for the individual
modes of transport that make up our multimodal networks (Section 5.1) and present

6

1.2. Outline

journey planning problems that arise in the context of them (Section 5.2). In Section 5.3
we present User-Constrained Contraction Hierarchies, our new speedup technique
that computes label-constrained journeys. Finally, our new MCR algorithm for
multicriteria multimodal journey planning that uses fuzzy set theory to identify
significant journeys, is presented in Section 5.4.

Chapter 6 contains the third main contribution of this thesis. It considers cus-
tomizable route planning in road networks. We start by analyzing the shortcomings
of existing algorithms with respect to our scenario (Section 6.1). We then present
our approach to customizable route planning (Section 6.2) and show how it can be
implemented efficiently (Section 6.3) on realistic road networks with turn costs (Sec-
tion 6.4). Furthermore, we present detailed experiments (Section 6.5), describe how
we retrieve the full path description (Section 6.6), and give some implementation
details (Section 6.7). We conclude the chapter in Section 6.8.

Chapter 7 contains the last main contribution of this thesis. Section 7.1 formally
defines the Jogging Problem and proves its NP-hardness. Section 7.2 presents our
two novel algorithmic approaches: Greedy Faces and Partial Shortest Paths. Finally,
Section 7.3 contains our experimental study while Section 7.4 summarizes the results
and contains some interesting open questions.

Chapter 8 concludes our work with a summary of the most important results and
discusses interesting open problems for future research.

7

Chapter 2
Literature Overview

T his chapter gives an overview on state-of-the-art in algorithmic approaches
for route planning that are related to this work. We start in Section 2.1 with route
planning in road networks. Section 2.2 addresses work on journey planning in

public transit networks, which have different properties from road networks. Finally,
in Section 2.3 we present related work on multimodal journey planning that integrates
road and public transit networks—among others—in a holistic approach.

To recap some of the techniques, we may use mathematical notation for graphs,
partitions, and other things. A precise definition of these notions is given in Chapter 3.

2.1. Route Planning in Road Networks

Route planning in road networks has received tremendous amount of attention. A
well-known approach to compute (optimal) routes models the road network as a
directed graph G = (V, A) with associated (usually nonnegative) arc costs ` : A !
Z≥0. Thereby, vertices correspond to intersections (of the road network) and arcs
represent street segments. The cost function ` can be any metric, however, most
research focused on travel time. In the so-constructed graph, a shortest path between
vertices s and t then corresponds to the optimal route with respect to the cost function `.

While algorithms that compute shortest paths in graphs—such as Dijkstra’s seminal
algorithm [Dij59]—have been around for over sixty years, it has only been recently
that computers became powerful enough to handle realistic and large-scale road net-
works, such as that of a whole continent. Paired with the observation that Dijkstra’s
algorithm is too slow for interactive applications (queries take seconds, even today),
this motivated research on speedup techniques (for Dijkstra’s algorithm) [SWW99]:
Under the assumption that shortest path queries occur significantly more often than
changes to the graph, one can use a (somewhat costly) preprocessing phase that com-
putes auxiliary data which then helps to accelerate the query algorithm. When in

9

Chapter 2. Literature Overview

2005 large road networks were publicly released for the 9th DIMACS Implementa-
tion Challenge [DGJ09], research on speedup techniques culminated in a downright
“horse race” about the fastest query algorithm for road networks.

In the following, we give an overview on the most important techniques for
route planning in road networks. Besides individual publications there are also
survey articles on the topic: In [WW07] and [DSSW09a] overviews on speedup
techniques for shortest path queries are given. Extensions to time-dependent shortest
paths are discussed in [DW09b]. A recent survey [Som12] also covers (besides
practical algorithms) theoretical results, such as distance oracles. Another survey over
some heuristic methods (which are not the focus of this thesis) is given in [FSR06].
Finally, Figure 2.12 (on Page 23) summarizes performance of those surveyed methods,
for whom experimental data on the European road network is available.

2.1.1. Basic Algorithms

Here, we give an overview on basic algorithms for the shortest path problem including
Dijkstra’s algorithm [Dij59]. These algorithms do not employ a preprocessing phase.

Classical Algorithms. Probably the most well-known approach to compute short-
est paths on a weighted graph with nonnegative arc cost is Dijkstra’s algorithm
introduced in the year 1959 [Dij59]. Given a source vertex s 2 V, it computes
distances dist(s, u) to every vertex u 2 V of the graph.

t
s

Figure 2.1. Schematic search
space of Dijkstra’s algorithm with
stopping criterion.

Therefore, it maintains a priority queue Q of vertices or-
dered by their (tentative) distances from s. The algorithm
initializes dist(s, s) = 0 and adds s to Q. In each iteration, it
extracts (scans) the vertex u with minimum distance from Q
and looks at all (to u incident) arcs a = (u, v) 2 A. For each
such arc, it determines the distance to v via arc a by com-
puting dist(s, u) + `(a). If this value improves dist(s, v), the
algorithm updates it and adds vertex v with key dist(s, v) to the
priority queue Q. Dijkstra’s algorithm has the label-setting prop-
erty, that is, once a vertex u 2 V has been extracted (scanned)
from the priority queue, its distance value dist(s, u) is correct
and will not be improved anymore. Therefore, if one is inter-
ested in computing the distance to a dedicated target vertex t,
the algorithm may stop as soon as it scanned t. The set of
vertices S ✓ V scanned by the algorithm is called search space

and consists of exactly those vertices u 2 V that have distance smaller than dist(s, t).
Note that S is actually a graph-theoretic disc centered at s with radius dist(s, t). See
Figure 2.1 for an illustration.

The running time of Dijkstra’s algorithm is determined by the data structure
that is chosen as priority queue Q. Using a binary heap, the running time is

10

2.1. Route Planning in Road Networks

in O((|V|+ |A|) log|V|) [CLRS01], which can be improved by, e. g., Fibonacci Heaps
to O(|A|+ |V| log|V|) [FT87]. If all arc costs are integers in the range [0, C], Multi-
Level Bucket Queues yield a running time of O(|A| + |V|plog C) [DF79]. For
sparse graphs (i. e., |A| 2 O(|V|)) the running time of Dijkstra’s algorithm with
binary heaps drops to O(|V| log|V|). Note that better bounds exist for the average
case [Mey01, Gol01].

If the cost function may assume negative values, but the graph does not con-
tain negative cycles, simple shortest paths (i. e., paths that contain no vertex twice)
can be computed by the Bellman-Ford algorithm [For56, Bel58] in time O(|V||A|).
Another approach, based on Dijkstra’s algorithm, may rescan vertices whenever a
path with negative arcs improves its distance [DP84]. Moreover, the Floyd-Warshall
algorithm [Flo62] computes distances between all pairs of vertices in time O(|V|3) (re-
quiring O(|V|2) space). Note that, on sparse graphs with nonnegative arc weights,
running |V| times Dijkstra’s algorithm yields a better running time of O(|V|2 log|V|).

ts

m

Figure 2.2. Schematic search
space of bidirectional search.

Bidirectional Search. A first attempt to reduce the search
space is bidirectional search [Dan62, GH05]. It simultane-
ously (and possibly in parallel) runs a backward search from
the target vertex t. The algorithm may stop as soon as the
intersection of the search spaces of the forward and backward
search provably contains a vertex m on the shortest path from s
to t. This is (roughly) the case when the searches meet. Also
see Figure 2.2. While the theoretic running time does not im-
prove that of Dijkstra’s algorithm, in road networks the search
space can be approximated by geometric discs: Bidirectional
search grows two disks (centered at s and t) with radii 1⁄2 dist(s, t). Thus, if one
considers the disc’s area, the speedup over Dijkstra’s algorithm is roughly

speedup ⇡ Dijkstra’s algorithm
bidirectional search

=
p dist(s, t)2

2p
� 1

2 dist(s, t)
�2 = 2, (2.1)

which is also observed in practice. While this seems limited, bidirectional search is
nevertheless an important ingredient to many—especially hierarchical—methods.

2.1.2. Goal-Directed Techniques

Dijkstra’s algorithm scans all vertices with distance smaller than dist(s, t). Goal-
directed techniques, in contrast, aim to “guide” the search toward the target by
avoiding to scan vertices that are not in direction of t. They either exploit the (ge-
ographical) embedding of the network or graph-theoretic properties, such as the
structure of shortest path trees toward (connected) regions of the graph.

11

Chapter 2. Literature Overview

s
t

Figure 2.3. Schematic search
space of the A* algorithm.

A* Search. A classic goal-directed shortest path algorithm is
A* search [HNR68]. It uses a potential function p : V ! R on
the vertices, which estimates the distance dist(u, t) from u to t
by a lower bound. It then essentially runs Dijkstra’s algorithm,
however, with the modification that it sets the key of a vertex u
in the priority queue to dist(s, u) + p(u). By these means the
order in which vertices are scanned is altered such that vertices
that are closer to the target t are scanned earlier during the

execution of the algorithm. See also Figure 2.3. Note that if p were an exact lower
bound, i. e., p(u) = dist(u, t), only vertices along shortest s–t paths would be scanned.
Precomputing exact potentials is, however, too expensive in practice. Therefore, in
road networks with travel time metric (and coordinates associated with the vertices),
one often uses the direct geographical distance [Poh71, SV86] between u and t
divided be the maximum travel speed (that occurs in the network) as lower bound.
Unfortunately, these bounds are poor, and the reduction in search space does not even
weigh out the additional overhead of computing potentials in the algorithm [GH05].

u

t

l

l0

Figure 2.4.
Triangle
inequalities for
ALT.

ALT. To obtain significantly better lower bounds, the ALT algorithm [GH05],
which stands for A*, landmarks, and triangle inequality, computes, in a pre-
processing phase, for a designated set of landmark vertices L ✓ V exact
distances to and from all vertices in the graph. It then uses, for a selected
landmark l 2 L, these distances and the following triangle inequalities to
obtain lower bounds on dist(u, t) in the algorithm:

dist(u, t) + dist(t, l) ≥ dist(u, l)) dist(u, t) ≥ dist(u, l)− dist(t, l),

dist(l, u) + dist(u, t) ≥ dist(l, t)) dist(u, t) ≥ dist(l, t)− dist(l, u).

Also see Figure 2.4 for an illustration of the inequalities. Note that landmark l
is used to illustrate the first inequality, while l0 illustrates the second.

Different landmark selection strategies exist, from which it turned out that
selecting landmarks that are at the “far boundary” of the graph results in
the best query performance on road networks [GW05]. Moreover, since lower
bounds obtained from the above triangle inequalities are still correct if arc

weights increase, ALT is robust with respect to dynamic scenarios that consider traffic
data [DW07].

Geometric Containers. Another method to guide the search toward t, called Geo-
metric Containers, precomputes, for each arc a = (u, v) 2 A, an arc label L(a) that
encodes (at least) the set Va of vertices to which a shortest path from u begins with the
arc a. Instead of storing Va explicitly, L(a) approximates this set by using geometric
information (i. e., the coordinates) of the vertices in Va. Then, if during query the
target vertex t is not contained in L(a), it is also not contained in Va, and the search

12

2.1. Route Planning in Road Networks

can be pruned at a. In [SWW00] the set Va is approximated by an angular sector (cen-
tered at u) that covers all vertices in Va. In [WWZ05] more complicated geometric
containers such as rectangles, ellipses, and the convex hull are evaluated. From these,
the bounding box consistently performs well. For the case that the graph is given
without geometric information, in [BSWW01, WW05] several graph layout algorithms
are evaluated with respect to the query performance of geometric containers.

Arc-Flags. A disadvantage of Geometric Containers is that its preprocessing essen-
tially requires an all-pairs shortest path computation, which is costly.

1
1

1

1 1 1

1 0 0

0
1

11
1

0

0 0 1

1 1 1

1
1

1

Figure 2.5. Arc flags for a small graph.

Arc Flags [Lau97, Lau04, KMS05, HKMS09] uses
a similar (to Geometric Containers) approach, but
drops geometry. Instead, the graph is partitioned
into K (balanced) regions with a preferably low num-
ber of boundary vertices. Each arc maintains a vector
of K bits (arc flags), indicating toward which regions
the arc a lies on a shortest path. The search algorithm
then prunes arcs which do not have the bit set for
the region which contains t. Figure 2.5 illustrates the
method (example taken from [Del09]). Vertices and
arc flags are colored with respect to their region. To
further improve the query performance, Arc Flags can be extended to nested multi-
level partitions [MSS+06]: Whenever the search reaches the region that contains t, it
descends one level of the partition, i. e., it evaluates arc flags with respect to the (finer)
cells of the next-lower level of the partition.

Arc flags for a region i are computed by growing a backward shortest path tree
from each boundary vertex (of region i) and, thereby, setting the respective flag for all
arcs of the tree. Alternatively, one can compute arc flags by running a label-correcting
algorithm from all boundary vertices simultaneously [HKMS09]. Moreover, to reduce
preprocessing space, one can use a (still correct) compression scheme which may flip
flags from zero to one [BDGW10]. Arc Flags is currently the fastest (regarding query
time) purely goal-directed method, with speedups of more than 5 000 over Dijkstra’s
algorithm on continental road networks [BDS+10]. Though high preprocessing
times (of several hours) have long been a drawback of Arc Flags, the recent PHAST
algorithm (mentioned later) computes arc flags within a few minutes [DGNW13].

Precomputed Cluster Distances. Another goal-directed technique is Precomputed
Cluster Distances [MSM09]. Like Arc Flags, it is based on a (preferably balanced) par-
tition C = (C1, . . . , CK) with K cells (or clusters). During preprocessing, it computes,
for each pair Ci, Cj of cells the shortest path distance between these cells, i. e.,

dist(Ci, Cj) = min
u2Ci
v2Cj

[dist(u, v)]. (2.2)

13

Chapter 2. Literature Overview

The query algorithm then maintains and minimizes a global upper bound µ on the
length of the shortest s–t path by evaluating the precomputed cluster distances at
vertices u 2 Ci which have been responsible for setting dist(Ci, C(t)). Moreover, at
any vertex u, the algorithm obtains a lower bound on the shortest s–t path via u by
evaluating dist(s, u) + dist(C(u), C(t)) + dist(v, t), where v is the boundary vertex
of cell C(t) with minimal distance to t. The algorithm prunes vertices at which this
lower bound exceeds µ. Query performance of PCD is similar to ALT, but it requires
less preprocessing space.

2.1.3. Hierarchical Techniques

Hierarchical methods aim to exploit the inherent hierarchy of road networks (with
travel time metric): Sufficiently long shortest paths eventually converge to a small
arterial network of important roads, such as highways. Intuitively, once one is far
from the source and target, it suffices to only scan vertices of this subnetwork in the
algorithm. The following methods formalize this notion.

u

s

t

r(u, P1)

r(u, P2) = r(u)

Figure 2.6. Reach of vertex u
determined by the paths P1 (red) and
P2 (blue). An s–t query may prune u.

Reach. The first algorithm that formalizes this observa-
tion is Reach [Gut04]. Reach is a centrality measure de-
fined on the vertices: Let P be a shortest s–t path that con-
tains vertex u. Then, the reach r(u, P) of u on P is defined
as min(dist(s, u), dist(u, t)). Based on this, the (global)
reach of u in the graph G is the maximum reach of u over
all shortest paths that contain u. Now, for given reach val-
ues the query algorithm prunes the search at any vertex u,
for which both dist(s, u) > r(u) and dist(u, t) > r(u)
hold true: The shortest path from s to t does provably
not contain u. To check these conditions, the algorithm
runs a bidirectional search (cf. Section 2.1.1) from s and t
and extracts lower bounds on dist(u, t) (forward search)
and dist(s, u) (backward search) from the respective op-
posite search direction [GKW09]. Also see Figure 2.6 for
an illustration of reach.

Determining exact reach values requires computing
shortest paths for all pairs of vertices, which is too expensive on large road networks.
However, the query is still correct if r(u) only depicts an upper bound on the
reach of u. Such bounds can be obtained faster by computing partial shortest path
trees [Gut04] and by (additionally) adding shortcuts to the graph [GKW09].

Contraction Hierarchies. Another approach that exploits the hierarchy is based on
the concept of shortcuts [SWW00]. A shortcut is an arc (u, v)—possibly not contained
in the original graph—that represents a shortest path from u to v in G. The goal is

14

2.1. Route Planning in Road Networks

to augment G with shortcuts such that long-distance queries use these shortcuts in
order to skip over “unimportant” vertices. Contraction Hierarchies [GSSD08, GSSV12]
implements this idea by repeatedly executing an operation called vertex contraction.

s

t

m

ve
rt

ex
im

po
rt

an
ce

Figure 2.7. Illustrating a Contraction
Hierarchies query.

During preprocessing, Contraction Hierarchies (heuristi-
cally) orders the vertices by an importance value and then
contracts them in this order (from least to most impor-
tant). To contract a vertex v, it is (temporarily) removed
from G and shortcuts are created between each pair of
neighboring vertices u, w, if the shortest path from u to w
is unique and contains v. The query algorithm then runs
a bidirectional search from s and t on G augmented by the
shortcuts computed during preprocessing. Thereby, it only
considers arcs to (forward search), respective from (back-
ward search) vertices with higher ranks (regarding the
contraction order). Also see Figure 2.7. Vertex orders are
usually determined online and bottom-up. The algorithm
selects the vertex to be contracted next, which minimizes
a linear combination of degree, arc expansion, number of
contracted neighbors, and other factors [GSSV12,KLSV10]. Better vertex orders can be
obtained by combining the bottom-up algorithm with a (more expensive) top-down
offline algorithm that is based on computing shortest path covers [ADGW12].

Contraction Hierarchies turned out to be versatile and many extensions of the
algorithm exist. Examples include time-dependent scenarios [BGSV13], dynamic
scenarios [GSSV12], distributed preprocessing [KLSV10], external memory implemen-
tations [SSV08], road networks with turn costs [GV11,DGPW11], computing route cor-
ridors [DKLW12], obtaining alternative routes [ADGW13, LS12], ride sharing scenar-
ios [GLS+10], minimizing energy consumption of electric vehicles [EFS11], handling
flexible arc restrictions [GRST12], or handling multiple criteria [GKS10, FS13]. More-
over, Contraction Hierarchies can be extended to compute distances to all [DGNW13]
or a restricted subset [KSS+07, DGW11] of the vertices. The algorithm is also used in
practice, for example, on OpenStreetMap [Ope04] data of planetary scale [LV11]. Note
that Contraction Hierarchies is a successor of Highway Hierarchies [SS05,SS12a] (and
Highway Node Routing [SS07]), which are based on similar ideas.

2.1.4. Separator-Based Techniques

Though road networks are not necessarily planar (think of bridges or tunnels), it has
been observed that they nevertheless have small separators [EG08, DGRW11, SS12b].
This fact is exploited by the methods in this section. Note that separator-based
algorithms may also classify as hierarchical techniques (cf. Section 2.1.3).

15

Chapter 2. Literature Overview

Vertex Separators. The first class of algorithms is based on vertex separators: A vertex
separator is a (preferably small) subset S ⇢ V of the vertices, such that removing S
from V decomposes the graph G into several (preferably balanced) cells (components).
This separator is then often used to compute an overlay graph over S: Shortcuts are
added to the overlay such that distances between any pair of vertices from S are
preserved, i. e., they are equivalent to the distance in G. A query algorithm may then
use the much smaller overlay graph for (parts of) the query.

Figure 2.8. Multilevel overlay graph with two levels.
The dots depict separator vertices in the
lower (orange) and upper (green) level.

In [SWW00] an overlay graph over a care-
fully chosen subset S (not necessarily a sep-
arator) of “important” vertices is used: For
each pair of vertices u, v 2 S an arc (u, v)
is added to the overlay, if the shortest path
from u to v in G does not contain any other
vertex w from S. This approach is further ex-
tended in [SWZ02] to multilevel separator hi-
erarchies V ⊃ S1 ⊃ S2 ⊃ · · · ⊃ Sk of k levels.
In addition to arcs between separator vertices
of the same level, the overlay contains, for each
cell on level i, arcs between the confining level i
separator vertices and the interior level i − 1
separator vertices. See Figure 2.8 for an illus-
tration. In [SWW00] and [SWZ02] performance
is experimentally evaluated on time-expanded
graphs from railway networks (cf. Sections 2.2
and 4.3.2). A systematic evaluation of the algo-
rithm is available in [HSW08]: Besides testing

separators obtained by different methods, such as by the Planar Separator Theo-
rem [LT79] and METIS [Kar07], it also includes experiments on road networks (re-
porting speedups of above 50).

A highly engineered variant of the multilevel overlay graph approach is called High-
Performance Multilevel Routing [DHM+09]. It achieves query times of 40 µs on the
road network of Europe by adding many more shortcuts to the overlay in a first step
and sparsing them out significantly in a second step. However, space consumption of
the auxiliary data is very high and preprocessing times are in the order of a full day.

Arc Separators. The second class of algorithms uses arc separators (instead of vertex
separators) to build the overlay graphs. Therefore, they compute in a first step a
partition C = (C1, . . . , Ck) of the vertices, such that cells are balanced and the number
of cut arcs is minimized. (Cut arcs connect boundary vertices of different cells.)
The Hierarchical MulTi (HiTi) method [JP02] builds an overlay graph as follows: It is
initially composed of all boundary vertices of the partition plus all cut arcs. Next,

16

2.1. Route Planning in Road Networks

for each cell Ci, and between each pair of its boundary vertices u, v, preprocessing
adds a shortcut (u, v) to the overlay that represents the restricted (to cell Ci) shortest
path from u to v in G. Thus, the overlay consists of |C| cliques, interconnected by cut
arcs. See also Figure 2.9. The query algorithm then (implicitly) runs Dijkstra on the
subgraph induced by the cells containing s and t plus the overlay. This approach can
be extended beyond one level by using nested multilevel partitions. Unfortunately
HiTi has only been tested on grid graphs [JP02].

Figure 2.9. Overlay graph constructed from arc
separators. Each cell contains a full clique
between its boundary vertices, and cut arcs are
drawn red.

A recent algorithm, called Customizable Route
Planning (CRP) [DGPW11,DGPW14] (also see Chap-
ter 6), builds on a similar approach, but is specif-
ically engineered to meet the requirements of a
real world (production) system. It handles turn
costs, continuous maneuver restrictions, and arbi-
trary metrics. To achieve these goals, preprocess-
ing is split into two phases: metric-independent
preprocessing and customization. The first com-
putes, besides the partition (for which it uses
PUNCH [DGRW11]), the topology of the overlays.
It does not represent them as graphs, but stores
them as matrices in contiguous memory. The cus-
tomization phase then computes the cost of the
clique arcs quickly, bottom-up, and in parallel. In-
corporating a new metric on the European road
network takes mere seconds and consumes only
few tens of Megabytes of space. Customization
time can be reduced even further to a few hundred
milliseconds by using alternate shortest path algorithms (such as Bellman-Ford)
paired with (metric-independent) contraction [DW13]. Note that customization times
are fast enough to enable real-time traffic updates and personalized cost functions.

The query algorithm runs (similarly to HiTi) a bidirectional search in the overlay
graph. It takes time in the order of milliseconds, including full path retrieval [DGPW11].
This makes CRP very suitable for production systems: It has a practical tradeoff
regarding query time, customization time, and space consumption. In fact, it is
currently the core of the routing engine in use by Bing Maps [Mic12]. Moreover, CRP
can be used to compute alternative routes [DGPW14] and has recently been extended
to compute energy-optimal routes for electric vehicles [BDPW13].

Distance Oracles. Besides work on separator based methods from an algorithm
engineering point of view, theoretic work on quick shortest path computation of-
ten also uses separator-based approaches. In particular, planar graphs have small
separators of size O(

p|V|) [LT79]. Road networks are observed to also have small

17

Chapter 2. Literature Overview

separators [EG08], thus, theoretical techniques developed for planar graphs are likely
to also perform well on road networks. A recent technique uses simple cycle separa-
tors [Mil86, FEMPS13] to construct, for any given parameter S 2 [|V| log log|V|, |V|2],
auxiliary data of size O(S) in time Õ(S). Then, queries can be answered in
time Õ(|V|/pS). Many other (also approximate) methods with different trade-
offs exist. Because the focus of this work is on algorithm engineering, we refrain
from going into more detail about the available theoretic work. Instead, we refer
the interested reader to the following overview articles: Sommer gives an excellent
overview on many (not only theoretical) algorithms in [Som12]. Exact and approxi-
mate distance oracles are surveyed in [Zwi01] and [Sen09] and a survey with focus
on route planning is given in [GP03].

2.1.5. Table-Based Techniques

Table-based methods precompute distances between important vertices such that
all shortest path information is fully encoded by these tables. The query then only
performs table lookups to retrieve distances. Algorithms in this category are not
Dijkstra-based, i. e., no graph is explored during the query.

A naïve approach precomputes the distance for all pairs of vertices u, v 2 V. A
single lookup then suffices to retrieve the shortest distance. While (pre)computing all-
pairs shortest paths has recently become feasible with the availability of the PHAST
algorithm [DGNW13], space consumption of such a table (of size |V|2) is prohibitive
for realistic road networks.

Distance Table

s

t

Figure 2.10. Illustrating a TNR query.

Transit Node Routing. A technique that uses
distance tables on a subset of the vertices is
called Transit Node Routing (TNR) [BFM+07,
BFSS07, BFM09, SS09]. During preprocessing,
it selects a small set T ✓ V of transit nodes
and computes all pairwise distances between
them. Moreover, it computes, for each remain-
ing vertex u 2 V \ T, its relevant set of transit
nodes A(u) ✓ T, called access nodes (of u).
Access nodes are defined as follows: A transit
node v 2 T is an access node of u, if there is
a shortest path P from u in G such that v is
the first transit node vertex contained in P. In
addition to the vertex itself, preprocessing also
stores the distances between u and its access
nodes. Now, the query algorithm uses the dis-

tance table to select the path that minimizes the combined s–A(s)–A(t)–t distance.
Note that the result is incorrect, if the shortest path does not contain a vertex from T.

18

2.1. Route Planning in Road Networks

Therefore, a locality filter first decides whether the query might be local (i. e., does
not contain a vertex from T). In that case, a fallback shortest path algorithm is
run to compute the correct distance. See Figure 2.10 for an illustration of a TNR
query. The red (blue) dots are the access nodes of s (t). The arrows point to the
respective rows/columns of the distance table. The highlighted entries correspond
to the access nodes which minimize the combined s–t distance. Note that, for sim-
plicity, we explained the algorithm for a single distance table. To obtain better
performance, it is usually extended to multiple (hierarchical) levels of transit (and
access) nodes [BFM09, SS09].

Crucial to the performance of the algorithm is the choice of the transit node set.
Besides selecting vertex separators or boundary vertices of arc separators as transit
nodes [Mül06, DHM+09, BFM09], vertices that are characterized as important by a
hierarchical speedup technique (such as Contraction Hierarchies) [SS09, BFM+07,
GSSV12, ALS13] work very well. The former approach admits a natural locality
filter, while for the latter an efficient locality filter can be constructed by using
the (graph-theoretic) Voronoi regions [Vor08, AKL13] that are induced by the transit
nodes [ALS13].

Labeling Algorithms. Another framework of algorithms that reorganizes the shortest
path structure of the network in order to perform distance queries is called Labeling
Algorithms [Pel00]: During preprocessing, a label L(u) is computed for each vertex u
of the graph, such that, for any pair of vertices u, v, their distance dist(u, v) can be
determined by only looking at the labels L(u) and L(v). Interestingly, general graphs
have labels of size at least Q(|V|) [GPPR04], which is too large to be practical.

s

t

Figure 2.11. Illustrating hub labels
of vertices s (blue) and t (red). The
intersection is drawn green.

However, for networks with small highway dimen-
sion h [AFGW10], the following labeling algorithm admits
labels of size O(D h log D). Here, D is the maximum degree
and D the diameter of the graph. Note that in [AFGW10] road
networks are conjectured to have small highway dimension.
The label L(u) of each vertex u consists of a set of vertices
and their distances from u, such that the following cover prop-
erty holds: For any two vertices s, t the intersection of L(s),
L(t), and the shortest s–t path P is nonempty. Then, the dis-
tance dist(s, t) can be determined in linear (in the label size)
time by evaluating dist(s, t) = min{dist(s, u) + dist(u, t) |
u 2 L(s) and u 2 L(t)}. Also see Figure 2.11 for an illus-
tration of this labeling method. Note that in [AFGW10] the
bound O(D h log D) is achieved by a theoretical algorithm
that computes labels according to small shortest path covers
at different scales.

A practical (and highly engineered) implementation of the labeling scheme is

19

Chapter 2. Literature Overview

Hub Labels [ADGW11]. Essentially, the label of vertex u is defined by the (upward)
search space of a Contraction Hierarchy query from u, but with suboptimal entries
removed. At the time of writing, this algorithm is the fastest method for exact
point-to-point queries in road networks: After roughly 2.5 h of preprocessing, in
which it produces 21.3 GiB of data, queries can be answered in about 0.25 µs on
average. Note that this is within only a factor of five of the memory access time
on the considered machine. Beyond different implementations that trade query
time for space [ADGW11], several optimizations that obtain smaller labels in less
time [ADGW12] and that efficiently compress the labels (yielding the HLC algo-
rithm) [DGW13], exist. Moreover, due to the very simple query algorithm, Hub
Labels can even be implemented on top of relational databases in SQL [ADF+12].

Compressed Path Databases. The final method we review in this section is Com-
pressed Path Databases (CPD) [Bot11]. Originally developed in the context of
pathfinding in game maps, the technique has been recently adapted to road net-
works [BH13]. Its goal is to efficiently store all-pairs shortest path information, such
that the shortest path can be retrieved quickly during the query. It therefore maintains,
for each vertex u 2 G, a label L(u) that stores the first move (or first to u incident
arc) of the shortest path toward every (other) vertex v of the graph. The query then
starts at the source vertex s and scans L(u) for t, which immediately yields the first
arc (s, u) of the shortest path (to t). The algorithm then recurses on u until it reaches t.

Storing, for each vertex, the first arc of the shortest path to every other vertex ex-
plicitly, results in O(|V|2) amount of data, which is prohibitive. Therefore, in [BH13]
the data is compressed in a lossless fashion, based on the intuition that vertices of
the same geographic region are likely to share the same first move from vertex u.
The algorithm groups vertices that share the same first move into nonoverlapping
geometric rectangles, and it only stores those with u. Further compression techniques
include list trimming (implicitly storing the most frequent first move as a default),
run length encoding, and sliding window compression on the rectangles.

Note that CPD can be seen as a hybrid goal-directed and table-based technique
which shares some similarities with Geometric Containers [WWZ05]. However, an
advantage of CPD over Geometric Containers (and in fact also other techniques) is
that the first arc of the shortest path is returned immediately at the beginning of the
query. In contrast, with Dijkstra-based methods the first arc of the shortest path is
usually not known before the end of the algorithm’s execution.

2.1.6. Combinations

Besides individual speedup techniques, systematic combinations of them have been
studied as well [SWW00, HSWW06, BDS+10]. We briefly recap them in the following.

20

2.1. Route Planning in Road Networks

Basic Combinations. In [HSW04, HSWW06] the following combinations for some
of the early speedup techniques have been considered. Goal-directed (A*) search
and bidirectional search, A* search and multilevel overlay graphs, A* search and
Geometric Containers (using bounding boxes), bidirectional search and multilevel
overlay graphs, as well as, bidirectional search and Geometric Containers. The
conducted experiments indicate that the combination of A* with multilevel overlay
graphs has the best performance on road networks.

Note that most of the combinations work out of the box, though some, such as
bidirectional geometric containers, may require additional auxiliary data. Moreover,
the combination of A* with bidirectional search requires a careful (quite conservative)
adaption of the stopping criterion, since otherwise queries may be incorrect [Poh69].
Unfortunately, this results in poor performance [KK97]. Therefore, in [HSWW06] the
backward search uses the same potentials as the forward search. As a result, it is not
goal-directed (toward s), but a stronger stopping criterion can be applied.

Moreover, in [SWW00] Geometric Containers, multilevel overlay graphs, and A*
have been combined. However, they were only evaluated on railway networks, on
which speedups in the order of 60 have been observed.

REAL. The REAL algorithm combines Reach, ALT and bidirectional search [GKW09].
Recall that ALT uses A* search with landmarks and the triangle inequality. To
enable the stronger stopping criterion of bidirectional search, REAL combines the
forward and backward potential functions p f and pr to obtain feasible potentials
via (p f − pr)/2 (forward search) and (pr − p f)/2 (backward search). Moreover, a
variant of the algorithm uses reach-aware landmarks: Landmarks and their distances
are only precomputed for vertices with high reach values, which drastically reduces
space consumption.

Core-ALT and HH*. Recall that the ALT algorithm [GH05] precomputes landmark
distances for all vertices and landmarks in the graph, which results in a very high
space consumption. This is remedied by Core-ALT [BDS+10,DN12]: It first computes
an overlay graph for a (small) subset (e. g., 1 %) of important vertices, which is
also called core graph. Core vertices are determined by, e. g., selecting the top most
important vertices from a contraction hierarchy [GSSV12]. Landmark selection and
their distance computation is then restricted to this core graph. The query works in
two phases: The first runs a bidirectional search from s and t (which are possibly not
in the core), until all branches of the shortest path trees are covered by core vertices.
The second phase then runs ALT between these entry and exit vertices restricted to
the core. Note that if t is not part of the core, the query must first determine the
closest (to t) core vertex, which is then used as proxy in the triangle inequalities of
ALT. Speedups of this method are less, if compared to other combinations. However,
(Core-)ALT is very robust with respect to the input [BDW11] and can also be applied

21

Chapter 2. Literature Overview

in dynamic [DW07] and time-dependent [DW09b, DN12] scenarios
Using Highway Hierarchies [SS12a] (instead of Contraction Hierarchies) together

with ALT results in the HH* algorithm [DSSW09b]. Similarly to Core-ALT, landmarks
and distances are only computed for important vertices and the query also works in
two phases, where the first does not utilize goal-directed search.

ReachFlags. The ReachFlags method [BDS+10] combines Reach with Arc Flags. The
preprocessing algorithm first computes (approximate) reach values for all vertices
in G [GKW07]. In a second step, it extracts the subgraph H induced by all vertices
whose reach value exceeds a certain (tuning) parameter. Arc-Flags are then only
computed for the restricted subgraph H. The query runs, similarly to Core-ALT, two
separate phases: The first utilizes a regular Reach query on G until all branches of
the shortest path trees are covered by vertices from H. The second phase runs a
combined Reach and Arc Flags query between these entry and exit vertices of H.

SHARC. The SHARC algorithm [BD09], which stands for shortcuts with arc flags,
combines the computation of shortcuts with multilevel arc flags. The preprocessing
algorithm first determines a partition of the graph and then computes shortcuts and
arc flags in turn. Shortcuts are obtained by contracting unimportant vertices with the
restriction that shortcuts never span different cells of the partition. The algorithm
then computes arc flags such that, for each cell C, the query only uses a shortcut arc if
and only if the target vertex is not contained in C. This results in an algorithm that is
unidirectional and hierarchical: Arc flags not only guide the query toward the target,
but also vertically across the hierarchy (of contracted vertices). This makes SHARC
an excellent algorithm for scenarios where a backward search is prohibitive, such as
in time-dependent route planning [Del11]. In addition, extensions of SHARC exist
that reduce space consumption [BDGW10] and compute Pareto paths with respect to
several optimization criteria [DW09a].

CHASE. Combining Contraction Hierarchies with Arc Flags results in the CHASE
algorithm [BDS+10]: During preprocessing, a regular contraction hierarchy is com-
puted and the search graph that includes all shortcuts is assembled. The algorithm
then extracts a subgraph H from the search graph that is induced by the top k
vertices of highest rank (with respect to the contraction order). Bidirectional arc
flags (and the partition) are finally computed on the restricted subgraph H. The
query runs, similarly to ReachFlags, two phases. The first performs a regular (bidi-
rectional) Contraction Hierarchies search until the subgraph H covers all branches
of the forward and backward shortest path trees. The second phase continues the
Contraction Hierarchies query but also utilizes the arc flags. Arc Flags accelerate
Contraction Hierarchies by about a factor of 10 with little additional overhead in
space consumption [BDS+10].

22

2.1. Route Planning in Road Networks

1 10 100 1,000 10,000

0.0001

0.001

0.01

0.1

1

10

100

Reach

HH
HNR

TNR

Arc FlagsREAL

HH*

CALT

ReachFlags

TNR with Arc Flags

HLC

HPML

Table Lookup
(PHAST)

ALT

SHARC

CHASE

Hub Labels

CH

CRP + PUNCH

Preprocessing time [min]

Q
ue

ry
tim

e
[m

s]

Figure 2.12. Preprocessing and average query time performance for algorithms with available
experimental data on the European road network (and travel time metric). Connecting lines
indicate different tradeoffs for the same algorithm. Figures for Reach, HH, HNR, ALT, Arc Flags,
REAL, HH*, SHARC, CALT, CHASE, ReachFlags and TNR+AF are taken from [BDS+10]. Figures
for TNR are taken from [BDS+10] and [DGW13]. Figures for Hub Labels are taken from [ADGW12]
and [DGW13]. The figure for HPML stems from [ADGW11]. Contraction Hierarchies (CH) figures
are taken from [GSSV12]. CRP (and the corresponding PUNCH) figures are taken from [DGPW14].
Note that CRP uses a more realistic graph model that also includes turn costs. Finally, the table
lookup figure is based on the time of a single memory access and the precomputation time of |V|
shortest path trees using PHAST [DGNW13]. We remark that some preprocessing times, e. g., of
Arc Flags and CHASE, could be accelerated by also using PHAST. Here, all figures correspond to a
sequential execution of the algorithm and are (if necessary) scaled to a common machine (AMD
Opteron 2218 with 2⇥ 1 MiB L2 cache). The figure is inspired by [Som12].

Transit Node Routing with Arc Flags. The final combination we survey is called
Transit Node Routing with Arc Flags (TNR+AF) [BDS+10]. Recall that the bottleneck
of the TNR query is performing the table lookups between pairs of access nodes
from A(s) and A(t). To reduce the number of lookups, TNR+AF’s preprocessing
decomposes the set of transit nodes T into k regions. Then, for any vertex s and each
of its access nodes u 2 A(s), it encodes in a k-bit vector to which regions the vertex u
is important. More precisely, it sets the i-th bit to true, if there is a shortest path to a
transit node v of region i that uses u as access node for a shortest path from s. The

23

Chapter 2. Literature Overview

query then only considers those access nodes from s that have their bits set with
respect to the regions of A(t) (and vice versa). TNR+AF requires quite some space to
store the flags (a factor of two more compared to plain TNR), however, query times
of only 1.9 µs on the road network of Europe make TNR+AF the fastest available
combination [BDS+10]. Note that only Hub Labels has lower query times.

2.1.7. Theoretical Results

Besides the great amount of experimental work, also some theoretical results on route
planning in road networks exist. We briefly recap the most important and group
them by results on preprocessing complexity and query performance bounds.

Preprocessing Complexity. Query algorithms of almost all (previously in this sec-
tion) surveyed methods compute provably optimal paths. On the other hand, the
preprocessing phase often leaves some degree of freedom, which is usually filled
in a heuristic way. For example consider Contraction Hierarchies [GSSV12]. Here,
the vertex order determines the number of added shortcuts and, as such, the perfor-
mance of the query algorithm. More generally, one may ask how to perform exact
preprocessing such that the (average or worst case) query time is minimized. Note
that, since query time is hard to analyze, one often uses search space as a proxy.

Shortcuts are an ingredient to many hierarchical speedup techniques, such as
SHARC [BD09]. Deciding whether a fixed number k of shortcuts can be added
to a graph, such that the search space size decreases by at least a constant c on
average, is an NP-hard problem. However, a greedy factor-k approximation algorithm
exists [BDD+12]. Unfortunately, it turns out that optimal preprocessing is also
NP-hard for the following methods [BCK+10]: ALT (with respect to landmark
selection), Arc Flags (with respect to the partition), SHARC (with respect to the
shortcuts), Multilevel Overlay Graphs (with respect to the separator), and Contraction
Hierarchies (with respect to the vertex order). Finally, in [BBRW13] preprocessing of
Arc Flags is analyzed in more detail and on restricted graph classes, such as paths,
trees, and cycles. It turns out that determining optimal partitions (which minimize
the query’s search space) is already NP-hard for binary trees.

Performance Bounds. Besides complexity, theoretical performance bounds for query
algorithms, which aim to explain their excellent practical performance, have also been
considered. However, proving better running time bounds than that of Dijkstra’s
algorithm seemed long challenging. In fact, it is not hard to construct inputs for
which most algorithms admit no speedup [AFGW10]. Therefore, a (theoretical)
explanation for the great practical performance of these speedup techniques can only
be achieved in conjunction with a formalization of a suitable property that defines
some key features of real world road networks.

24

2.2. Journey Planning in Public Transit Networks

In a seminal paper by Abraham et al. [AFGW10], such a graph property, called High-
way Dimension, is proposed. Roughly speaking, a graph has highway dimension h,
if at any scale r and any vertex u, in the ball Br(u) of radius r around u, all short-
est paths of length r/2 can be covered with at most h vertices. Depending on h,
bounds for Reach, Contraction Hierarchies, and the labeling method exist that
only depend on h, the graph’s diameter D, and its maximum degree D [ADF+11].
More precisely, after running a polynomial time preprocessing routine, which
adds O(h log h log D) shortcuts to G, Reach and Contraction Hierarchies run in
time O((D + h log h log D)(h log h log D)), and the labeling algorithm runs in time
O(D + h log h log D). Note that in [AFGW10], it is conjectured that road networks
have small highway dimension. These bounds, in particular the polynomial time
preprocessing algorithm, are achieved in [ADF+11] by connecting the notions of
highway dimension and VC-dimension [VC71].

Besides these results, Rice and Tsotras [RT12] analyze the (heuristic variant of
the) A* algorithm and obtain bounds on the search space size that depend on the
underestimation error of the potential function. Also, maintaining and updating
multilevel overlay graphs have been theoretically analyzed in [BCD+08]. For Transit
Node Routing, instance-based lower bounds on the size of a transit node set that
must cover shortest paths at a certain scale, are given in [EF12]. Regarding the
labeling method, bounds on the label size for different graph classes are given
in [GPPR04], and approximation algorithms that compute small labels have also been
studied [CHKZ03, BGGN13].

Finally, Contraction Hierarchies have been analyzed in [BCRW13] by connecting
them to the notions of filled graphs [Par61] and elimination trees [Sch82]. Nested
dissections of G imply vertex orders for CH, such that for graphs of treewidth k the
search space of CH is bounded by O(k log|V|). Similarly, for minor-closed graph
classes with balanced O(

p|V|)-separators, the search space is bounded by O(
p|V|).

2.2. Journey Planning in Public Transit Networks

This section surveys related literature on journey planning in (schedule-based) public
transit networks. In this scenario, the input is given by a timetable. Roughly speaking,
a timetable consists of a set of stops (or stations, platforms, etc), a set of routes (such
as bus lines), and a set of trips. Trips are individual vehicles that visit the stops along
a certain route at a specific time of the day. (See Section 4.1 for a precise definition.)

A key difference to road networks is that public transit networks are inherently
time-dependent: Certain segments of the network can be traversed at specific, discrete
points in time, only. As such, the first challenge concerns modeling the timetable
appropriately in order to enable the computation of journeys. While in road networks
the objective to compute a single shortest path (i. e., quickest journey) is often
sufficient, in public transit networks more involved problems (e. g., taking several

25

Chapter 2. Literature Overview

optimization criteria into account simultaneously) are important. We address them
in a separate modeling Section 2.2.1.

Work on accelerating queries for efficient journey planning started by Schulz et
al. in [SWW99]. Since then, a great amount of algorithms were developed that
concern—besides accelerating the query—extended scenarios that incorporate delays,
compute robust journeys, or optimize additional criteria, such as monetary cost.

Real world journey planning systems include ARIADNE [BS88], which was in use
by the German railways and later superseded by HAFAS (HaCon Fahrplan-Auskunfts-
System) [HaC] from HaCon [HaC84]. Another commercial system, especially used
by many local transit agencies, is EFA (Elektronische Fahrplanauskunft) from Mentz
Datenverarbeitung [Men]. The system TRAINS [TS88, TS91] has been used by the
Dutch railways as a prototype. Finally, the Transfer Patterns algorithm [BCE+10] is
currently in use by Google Transit [Goo10] and RAPTOR (which was developed in
this thesis; see Section 4.6) is currently in use by OpenTripPlanner [Ope12].

2.2.1. Modeling

The first challenge is to model the timetable in order to enable algorithms that
compute optimal journeys. Since the shortest path problem is well understood in
the literature, it seems natural to build a graph G = (V, A) from the timetable such
that shortest paths in G correspond to optimal journeys. Two main approaches
exist: The time-expanded approach and the time-dependent approach. We review them
in the following and also look at the type of problems one is often interested to
solve. Besides individual publications, there is an excellent overview article by
Müller-Hannemann et al. [MSWZ07]. Also, see Sections 4.2 and 4.3 for more details.

Time-Expanded Model. Recall that the input, i. e., the timetable, is time-dependent
by definition (cf. Section 4.1). Based on the fact that these time-dependent events (e. g.,
a vehicle departing at a stop) happen at discrete points in time, the idea of the time-
expanded model is to build a space-time graph (often also called an event graph) [PS98]
that “unrolls” time. Roughly speaking, the model creates a vertex for every event of
the timetable, connects subsequent events in direction of time flow by arcs. In [Möh99,
SWW00] a basic version of the model is used to compute shortest paths: For every
departure and arrival event, it contains a vertex, and each subsequent departure and
arrival event is connected by a connection arc. To enable transfers between vehicles,
all vertices at the same stop are (linearly in order of time) interlinked by transfer arcs.
Müller-Hannemann and Schnee [MW01] extend the model to distinguish trains (to
optimize the number of taken transfers during query) by subdividing each connection
arc by a new vertex, and then interlinking the vertices of each trip (in order of travel).
In [PSWZ08] the time-expanded graph is extended to incorporate minimum change
times (given by the input) that are required as buffer when changing trips at a station:
In their realistic model they introduce an additional transfer vertex per departure

26

2.2. Journey Planning in Public Transit Networks

event, and connect each arrival vertex to the first transfer vertex that obeys the
minimum change time constraints. Finally, the model has been further engineered
in [DPW09b] to reduce the number of “redundantly” explored arcs during query.
Also see Section 4.3.2 for details.

Time-Dependent Model. The main disadvantage of the time-expanded model is
that the resulting graphs are fairly huge [PSWZ04a]. The time-dependent approach,
in contrast, produces significantly smaller (in terms of number of vertices and arcs)
graphs by not unrolling the timetable. Instead, time-dependencies are encoded by
travel time functions on the arcs that map departure times to travel times. Evaluating
the cost of an arc then depends on the time, at which it is traversed. A general analysis
of time-dependent shortest paths under various waiting constraints is conducted
by Orda and Rom [OR90, OR91]. It turns out that the shortest path problem can
be efficiently solved if travel time functions are nonnegative and FIFO, i. e., waiting
never pays off.

In the context of computing optimal journeys in public transit networks, the time-
dependent approach has been proposed in [BJ04]. Here, vertices correspond to stops,
and an arc is added from u to v, if there is at least one trip serving the corresponding
stops in this order. Precise departure and arrival times are encoded by the associated
travel time function of the arc (u, v). In [PSWZ08] this basic model has been further
extended to enable minimum change times. Roughly speaking, it creates, for each
stop p and each route that serves p, a dedicated route vertex. Route vertices at p are
connected to a common stop vertex by arcs with constant cost depicting the minimum
change time of p. Trips are distributed among route arcs that connect the subsequent
route vertices of a route. In addition, a model that handles variable change times
that allow arbitrary minimum change times between pairs of routes is also presented
in [PSWZ08]. See Section 4.3.3 for details.

Problem Variants. In road networks an obvious problem is to compute the quickest
route (that is, the shortest path). Hence, much research focused on this task. For
public transit networks, however, several problems arise that are equally important.
We briefly review them in the following.

The simplest is the earliest arrival problem, which has been first considered by Schulz
et al. [SWW00]. Given source and target stops ps, pt and departure time t, it asks for
a journey that departs ps no earlier than t and arrives at pt as early as possible.

The range problem (also called profile problem) was first considered in the context of
public transit networks by Nachtigall [Nac95]. It drops the departure time from the
input. Instead, it asks for a set of journeys of minimum travel time that all depart
within a given time range (possibly the full day).

Both the earliest arrival and the range problems only consider (arrival or travel)
time as criterion. However, in public transit networks other criteria, such as the

27

Chapter 2. Literature Overview

number of transfers, are just as important. Therefore, Müller-Hannemann and
Weihe [MW01] consider the multicriteria problem. Given source and target stops ps, pt

and departure time t as input, it asks for a (maximal) Pareto set J of nondominating
journeys with respect to the considered optimization criteria. Thereby, a journey J1

dominates journey J2, if J1 is better or equal in all criteria than J2. Further variants of
the problem relax or strengthen these domination rules [MW01, MS07].

2.2.2. Search Algorithms without Preprocessing

This section discusses algorithms that solve one of the aforementioned problems,
without yet employing a preprocessing phase. We group them by the respective
problem they solve. Note that these algorithms can instantly be used in dynamic
scenarios that include delays, route changes, or trip cancellations.

Earliest Arrival Problem. Computing earliest arrival queries on the time-expanded
model can be achieved by Dijkstra’s algorithm [SWW00]. The algorithm is initialized
with the vertex that corresponds to the smallest (in time) event of the source stop ps

that occurs after t (in the realistic model, a transfer vertex must be selected). The
first scanned vertex associated with the target stop pt then represents the earliest
arrival s–t journey. On time-dependent graphs Dijkstra’s algorithm can be augmented
to compute shortest paths [CH66, Dre69], if the cost functions are nonnegative and
FIFO [OR90, OR91]. The only modification is the following: Whenever the algorithm
scans an arc (u, v), its cost is evaluated at time t + dist(s, u). Note that the algorithm
retains the label-setting (cf. Section 2.1.1) property, i. e., vertices are scanned at most
once. In the time-dependent public transit model, the query is run from the stop
vertex corresponding to ps and the algorithm may stop as soon as it extracts pt from
the priority queue.

Recently, a new approach to compute earliest arrival queries, called Connection Scan
Algorithm (CSA) [DPSW13], has been developed. It is not graph-based and uses no
priority queue. Instead, it organizes the connections of the timetable in a single array,
sorted by departure time. The query then only scans over this array once, which
turns out to be very efficient in practice.

Range Problem. The range problem can be solved on the time-dependent model by
variants of Dijkstra’s algorithm. The first variant, which has been studied in [Nac95,
Dea99], maintains at each vertex u of the graph a travel time function (instead of a
scalar label) depicting the optimal travel times from s to u for the considered time
range. Whenever the algorithm relaxes an arc (u, v), it links the travel time function
associated with u to the (time-dependent) cost function of the arc (u, v). The resulting
function is then merged into the (tentative) travel time function associated with the
vertex v. The algorithm loses the label-setting property, since travel time functions
cannot be totally ordered. As a result the algorithm may reinsert vertices into the

28

2.2. Journey Planning in Public Transit Networks

priority queue whenever it finds a journey that improves the travel time function of
an already scanned vertex. Another algorithm, considered in [Bau12], exploits the
fact that trips depart at discrete points in time. It, therefore, does not propagate the
full function when it relaxes an arc, but considers each connection point that represents
a discrete departure event. By these means, the number of redundant vertex scans
can be significantly reduced.

Finally, the Connection Scan Algorithm has also been extended to the range
problem in [DPSW13]. It uses the same array of connections, ordered by departure
time, as for earliest arrival queries. It still suffices to scan this array once, even to
obtain optimal journeys to all stops of the network.

Multicriteria Problem. The multicriteria problem received quite some attention in
the literature. Computing Pareto sets of shortest paths in (general) graphs can be
done by extensions of Dijkstra’s algorithm (see [EG02] for a survey on multicriteria
combinatorial optimization). More specifically, the Multi-Label-Correcting (MLC)
algorithm [Han79, Mar84, The95, Möh99] extends Dijkstra’s algorithm by keeping, for
each vertex, a bag of nondominated labels. Each label is represented as a tuple, with
one entry per optimization criterion. The priority queue maintains labels instead of
vertices and orders them lexicographically. In each iteration, it extracts the minimum
label L and scans the incident arcs a = (u, v) of the vertex u associated with L. It
does so by adding the cost of a to L and then merging L into the bag of v, eliminating
possibly dominated labels on the fly.

On the time-expanded model this algorithm has been considered in a framework
called PARETO by Müller-Hannemann and Schnee [MS07]. They optimize arrival
time, ticket cost, and number of transfers. On the time-dependent model, computing
Pareto sets of journeys for arrival time and number of transfers has been consid-
ered in [PSWZ08]. Disser et al. [DMS08] propose three optimizations to MLC that
reduce the number of queue operations: Hopping reduction, label forwarding, and
dominance by early results (also called target pruning in this thesis).

In [Han79] it is observed that Pareto sets may contain exponentially many solutions,
even for the restricted case of two optimization criteria. To accelerate the query,
one can compute approximate solutions, for example, by relaxing domination. In
particular, (1 + e)-Pareto sets have provable polynomial size [PY00] and can be
computed efficiently [Lor84, Whi86, TZ06]. This approach has been applied to public
transit journey planning in [MS07]. For the case of optimizing earliest arrival time
and number of transfers, the Layered Dijkstra (LD) algorithm [BJ04, PSWZ08] is also
more efficient: Given an upper bound K on the number of transfers, it copies the
graph into K layers, rewiring transfer arcs to point to the next higher level. It then
suffices to run a time-dependent (single criterion) Dijkstra query from the lowest
level to obtain Pareto sets.

29

Chapter 2. Literature Overview

2.2.3. Speedup Techniques

This section gives an overview on preprocessing-based speedup techniques for
journey planning in public transit networks. Most research focused on adapting
existing methods from road networks. This seemed quite natural because of their
exceptional performance on those networks (see Figure 2.12). Unfortunately, the
speedups observed in public transit networks are several orders of magnitude lower.
This is to some extent explained by the quite different structural properties of transit
and road networks [Bas09]. Thus, developing efficient preprocessing-based methods
for public transit remains a challenging goal.

Some road network methods were tested on public transit graphs without per-
forming realistic queries (i. e., according to one of the problems from Section 2.2.1).
In [HSWW06] basic combinations of bidirectional search, goal directed search, and
Geometric Containers have been evaluated on a simple stop graph (with average
travel times). In [BDW11] bidirectional search, ALT, Arc Flags, Reach, REAL, High-
way Hierarchies, and SHARC were evaluated on time-expanded graphs. Moreover,
Core-ALT, CHASE, and Contraction Hierarchies were evaluated in [BDS+10] (also on
time-expanded graphs). Note that both [BDW11] and [BDS+10] run point-to-point
queries between arbitrary vertices (events) of the graph.

A* Search. Basic goal-directed A* search [HNR68] has been considered on time-
dependent graphs in the context of road networks in [Fli04]. On public transit
networks, it has been applied to the time-dependent model in [DMS08] (in the context
of multicriteria optimization). Here, lower bounds for each vertex u to the target
stop pt are determined (before the query) by running a backward search (from pt)
using the (constant) lower bounds of the travel time functions as arc cost.

ALT. The (unidirectional) ALT [GH05] algorithm has been adapted to both the time-
expanded [DPW09b] and the time-dependent model [Del11] for computing earliest
arrival queries. In both cases, landmark selection and distance precomputation
is performed on an auxiliary stop graph: Vertices correspond to the stops of the
timetable, and an arc is added between two stops pi, pj, if there is a trip that serves pi
and pj (in this order) without intermediate stop. Arc costs depict lower bounds on
the travel time between their incident stops.

Geometric Containers. Geometric containers [SWW00, WWZ05] have been exten-
sively tested on the time-expanded model for computing earliest arrival queries. (In
fact, they were developed in the context of this model.) In [SWW00] the algorithm
has been evaluated using angular sectors as container, while more sophisticated
containers have been tested in [WWZ05]. The latter work concludes that bounding
box containers perform best.

30

2.2. Journey Planning in Public Transit Networks

Arc Flags and SHARC. Arc Flags [Lau04] have been adapted to the time-expanded
model as follows [DPW09b]: First, the partition is computed on the stop graph, which
is defined equally to ALT. Then, for each boundary stop p of cell C, and each of its
arrival vertices, a backward search in the time-expanded graph is performed. It is
observed in [DPW09b] that in public transit networks many paths of equal length
exist between the same pair of vertices. This makes the consideration of appropriate
tie breaking rules important. Furthermore, [DPW09b] combines Arc Flags with ALT
and Node Blocking—a technique that avoids exploring redundant parts of the graph.

SHARC, which combines Arc Flags with shortcuts [BD09], has been tested on the
time-dependent model with earliest arrival queries in [Del11]. Moreover, Arc Flags
for the Multi-Label-Correcting algorithm (MLC) have been considered for computing
full (i. e., using strict domination) Pareto sets regarding the criteria arrival time
and number of transfers on a realistic time-dependent model that handles traffic
days, train attributes, and minimum change times [BDGM09]. In time-dependent
graphs, a flag must be set, if its arc is at least once during the day on a shortest
path toward the respective cell [Del11]. In order to improve performance, one can
use different sets of flags for different times of the day (e. g., every two hours).
Beyond that, [BDGM09] combines Arc Flags with shortcuts (similarly to SHARC)
to gain additional speedups and [BGM10] further exploits a property called event-
dependent c-optimality. Combining all these optimizations, the total speedup of
the algorithm is still below 15, from which it is concluded that “accelerating time-
dependent multicriteria timetable information is harder than expected” [BDGM09].

Overlay Graphs. Using overlay graphs [SWW00, SWZ02] to accelerate queries has
been—similarly to Geometric Containers— introduced in the context of public transit
journey planning. In [SWW00] single level overlays are computed between “im-
portant” hub stations in the time-expanded model. Thereby, importance values are
determined by the input. Multilevel overlay graphs based on vertex separators were
developed in the context of time-expanded graphs in [SWZ02]. A systematic exper-
imental study, which also includes time-expanded transit networks, is conducted
in [HSW08].

Contraction Hierarchies. The Contraction Hierarchies algorithm [GSSV12] has been
adapted to the realistic time-dependent model with minimum change times for
computing earliest arrival and range queries [Gei10]. It turns out that simply applying
the algorithm to the route model graph results in too many shortcuts to be practical.
Therefore, contraction is performed on a condensed graph that contains only a single
vertex per stop. Minimum change times are then ensured by the query algorithm,
which must maintain multiple labels per vertex.

31

Chapter 2. Literature Overview

Transfer Patterns. A speedup technique specifically developed for public transit
networks is called Transfer Patterns [BCE+10]. It is based on the observation that
many optimal journeys share the same transfer pattern, i. e., the sequence of stops
where a transfer occurs. These transfer patterns are precomputed for all pairs of
stops during preprocessing. Then, given source and target stops ps, pt, the query
quickly builds a search graph of (at least) the relevant transfer patterns to get from ps

to pt. Note that arcs in this graph represent direct travel between transfers. Dijkstra’s
algorithm (or MLC) can then be applied to this significantly smaller search graph.

Precomputing transfer patterns between all pairs of stops turns out to be too
expensive in practice. Therefore, a two levels approach (similarly to Transit Node
Routing), first selects a subset of important hub stops (cf. transit nodes). Global
transfer patterns are precomputed between these hub stops. Additionally, for each
regular stop, local transfer patterns are computed toward (and from) its relevant
hub stops (cf. access nodes). Unfortunately, preprocessing times are still impractical
on continental networks. Therefore, one may trade optimality for a more practical
preprocessing, which restricts the computation of local transfer patterns to at most
three legs (two transfers). By these means, preprocessing times drop to slightly over
3 000 hours (on the large-scale transit network of North America), which then enables
queries in the order of 10 ms (earliest arrival and multicriteria). The Transfer Patterns
algorithm is currently in use by Google Transit [Goo10, BCE+10].

TRANSIT. Finally, Transit Node Routing [BFM+07, BFSS07, BFM09, SS09] has been
adapted to public transit journey planning in [AW12]. Preprocessing of the result-
ing TRANSIT algorithm uses the (small) stop graph to determine a set of transit
nodes (with a similar method as in [BFM09]), between which it maintains a distance
table that contains sets of journeys with minimal travel time (over the day). Each
stop p maintains, in addition, a set of access nodes A(p), which is computed on
the time-expanded graph by running local searches from each departure event of p
toward the transit stops. The query then uses the access nodes of ps and pt and the
distance table to resolve global requests. For local requests, it runs goal-directed A*
search.

2.2.4. Extended Scenarios

Besides computing journeys according to one of the problems from Section 2.2.1,
extended scenarios, e. g., incorporating delays, have been studied as well.

Uncertainty and Delays. Trains (and other means of transport) are often prone
to delays in the real world. Thus, handling delays (and other uncertainty) is an
important aspect of a practical journey planning system. Müller-Hannemann and
Schnee [MS09] consider the online problem where delays, train cancellations, and
extra trains arrive as a continuous stream of information. They present an approach

32

2.2. Journey Planning in Public Transit Networks

which quickly updates the time-expanded model to enable queries according to the
new traffic situation. A realistic stochastic model that predicts how such delays
propagate through the network is proposed in [BGMO11]. In particular, this model is
evaluated using real (delay) data from Deutsche Bahn.

In [DMS08] the computation of reliable journeys is studied via multicriteria opti-
mization. Thereby, the reliability of a transfer is defined by the probability that the
particular transfer can be made successfully. Note that by this notion, transfers (with
high chance of success) are also considered reliable, if no backup alternative for the
(unlikely) case that the transfer fails exists.

Therefore, Dibbelt et al. [DPSW13] minimize the expected arrival time. Instead of
journeys, their method outputs a decision graph depicting optimal instructions to
the user at each point of their journey. Note that these instructions include the
case that a connecting trip is missed. Interestingly, minimizing the expected arrival
time implicitly also minimizes the number of transfers: Each “unnecessary” transfer
introduces additional uncertainty which hurts the expected arrival time.

Finally, in [GKM+11, GKM+13] the computation of robust journeys is studied,
considering both strict robustness (i. e., computing journeys that are always feasible
for a given set of delay scenarios) and light robustness (i. e., computing journeys
that are most reliable when given some extra slack time). Strict robustness turns out
to be too conservative in practice, while the notion of light robustness seems more
promising.

Night Trains and Fares. Explicitly computing overnight train journeys has been
considered by Gunkel et al. [GMS07]. Interestingly, the optimization goals for such
journeys are quite different from regular “daytime” journeys: From a customer’s
point of view, the primary objective is usually to have a reasonably long sleeping
period. Moreover, arriving too early in the morning at the destination is often not
desired as well. In [GMS07] two approaches to compute overnight journeys are
presented. The first explicitly enumerates all overnight trains (which are given by
the input) and computes, for each, the optimal feeding connections. The second runs
multicriteria search with sleeping time as a maximization criterion.

Finally, several tariff schemes have been analyzed in [MS06]. Some of them
were also integrated as an optimization criterion (cost) into a multicriteria search
algorithm (called MOTIS), which works on the time-expanded model. However,
generally optimizing exact monetary cost is a challenging problem, since real world
pricing schemes are hard to capture by a mathematical model [MS06]. (See also
Section 4.6.6 where we optimize fare zones with our new McRAPTOR algorithm.)

33

Chapter 2. Literature Overview

2.3. Journey Planning in Multimodal Networks

This section surveys literature on journey planning in multimodal networks. Here,
the general problem is to compute journeys that reasonably combine different modes
of transport by a holistic approach. Transportation modes usually considered in-
clude (unrestricted) walking, (unrestricted) car travel, (local and long-distance) public
transit, flight networks, and rental bicycle schemes. We emphasize that our definition
of “multimodal” requires at least some diversity from the aforementioned trans-
portation modes. Moreover, optimizing the choice (and sequence) of transportation
modes should be an explicit ingredient of the algorithm. That is, computing, e. g.,
earliest arrival journeys that arbitrarily select the transportation modes bus, tram,
and railway does not yet classify as multimodal journey planning (according to our
definition). Also, these networks could essentially be represented by a single public
transit timetable (cf. Section 2.2).

In fact, considering modal transfers explicitly in the algorithm is crucial in practice:
The computed solutions should be feasible, i. e., not contain a sequence of transport
modes which is impossible for the user to take (such as a private car between train
rides). Ideally, even preferences of the user should be respected (e. g., some users may
prefer a taxi over public transit at certain parts of the journey, others may not). See
Section 5 for more details on these issues.

We organize this section in two parts: Modeling issues and search algorithms.

2.3.1. Modeling

This section presents important modeling issues arising in the context of multimodal
journey planning.

Multimodal Networks. A general approach to obtain a multimodal network first
builds an individual graph model of each considered transportation mode and
then merges them to a multimodal graph, adding link arcs (or vertices) to enable
modal transfers [Paj09, DPW09a, YL12]. In [Paj09, DPW09a] multimodal networks
consisting of the following graph models are studied. Car travel and walking are
both modeled as time-independent graphs, public transit networks are based on the
realistic time-dependent model [PSWZ08], and for the flight network a dedicated
flight model—which has been introduced in [DPWZ09]—is used. Beyond that,
Kirchler et al. [KLPC11, KLC12] compute multimodal journeys where car travel is
modeled as a time-dependent network in order to incorporate historic data on rush
hours and traffic congestions. (See [DW09b] for an overview on time-dependent
route planning in road networks.)

Combined Cost Functions. To avoid unreasonable combinations of transport modes,
one may utilize penalties in the objective function of the algorithm. Often such

34

2.3. Journey Planning in Multimodal Networks

penalties are integrated into the objective function by linearly combining them with
the primary optimization goal (usually travel time). In [AZC07] a linear programming
approach with a linear objective function is presented that computes multimodal
journeys. A multimodal journey planning algorithm, called TRANSIT [AW12], uses
a linear utility function to incorporate travel time, ticket cost, and inconvenience of
transfers. In [MS98] a combined network of unrestricted walking, unrestricted car
travel, and public transit is considered. Journeys are optimized according to a linear
combination of several criteria, which also handles user preferences.

Label-Constrained Shortest Paths. A quite elegant approach that guarantees comput-
ing journeys that obey certain transport mode constraints, is called label-constrained
shortest paths approach [BJM00]. It defines an alphabet S of transport modes and
each arc of the graph is labeled by the symbol from S that represents its respective
transport mode. Then, given a language L over S as additional input to the query, any
journey (path) must obey the constraints imposed by the language L. More precisely,
the concatenation of the labels along the path must satisfy L. The problem of comput-
ing shortest label-constrained paths becomes tractable for regular languages [BJM00].
Fortunately, regular languages suffice to model reasonable transport mode constraints
in multimodal journey planning [BBJ+02, BBH+08]. Often, even restricted classes of
regular languages are considered as constraints, for example, languages that impose
a hierarchy of transport modes [BBM06, Paj09, DPW09a, KLPC11, KLC12, YL12], or
Kleene languages that can only globally exclude (and include) certain transport
modes [RT10].

Note that label-constrained shortest paths are also useful in other scenarios, such
as in database query optimization [MW95].

Multicriteria Optimization. While label-constraints are useful to define feasible jour-
neys, computing the (single) shortest label-constrained path may be disadvantageous
for two reasons. First, the user has to define the constraints, for which he has to
know the characteristics of the particular transportation network, and, second, no
alternative journeys that differently combine the available transportation modes
are computed. To obtain a set of diverse alternatives, multicriteria optimization
has been considered: In [YL12] sets of journeys are obtained which are prioritized
according to the preferred transport modes (given as user input). In [EL11] Pareto
sets that optimize several criteria are computed. Unfortunately, these sets can get
fairly large, containing many solutions with insignificant tradeoffs in the considered
criteria [BBS13]. This makes it necessary to identify the most significant solutions of
the Pareto set in a postprocessing step.

35

Chapter 2. Literature Overview

2.3.2. Search Algorithms

This section discusses multimodal journey planning algorithms. Thereby, most work
focused on the label-constrained shortest path problem, for which also some speedup
techniques, which employ a preprocessing phase, exist. Note that the multicriteria
problem, can be solved—equivalently to journey planning in public transit networks—
by the MLC algorithm by applying it to the (integrated) multimodal graph.

Label-Constrained Shortest Paths. In [BJM00] it is proven by construction that the
label-constrained shortest path problem is solvable in deterministic polynomial time.
The algorithm, called label-constrained shortest path problem Dijkstra (LCSPP-D), first
builds a product network of the input (i. e., the multimodal graph) and the (possibly
nondeterministic) finite automaton that accepts the regular language L. Then, for
source and target vertices s, t (referring to the original input), Dijkstra’s algorithm is
run on the just-constructed product network between all vertices that correspond to s
and the initial states of the automaton and those which correspond to t and the final
states of the automaton. A followup experimental study that evaluates this algorithm
using linear regular languages (a special case) has been conducted in [BBJ+02].

In [Paj09] the LCSPP-D algorithm has been combined with time-dependent Di-
jkstra [CH66] to compute journeys in multimodal networks that contain a time-
dependent subnetwork. The adaption of basic ingredients (to speedup techniques
in road networks; cf. Section 2.1), such as bidirectional search [Dan62], ALT [GH05],
Arc Flags [Lau09, HKMS09], and shortcuts [SWW00, SS05, GSSV12], has been ana-
lyzed in [Paj09] as well. Also, some basic speedup techniques, such as bidirectional
search [Dan62], A* [HNR68], and the Sedgewick-Vitter Heuristic [SV86] have been
evaluated in the context of multimodal journey planning in [Hol08, BBH+09].

Access-Node Routing. A speedup technique developed for the label-constrained
shortest path problem (LCSPP) is called Access-Node Routing (ANR) [DPW09a]. It
handles hierarchical languages where walking and car travel is restricted to the begin-
ning and end of the journey. It works similarly to Transit Node Routing [BFM+07,
BFSS07, BFM09, SS09] and precomputes for each vertex u of the road (walking and
car) network its relevant set of entry (and exit) points (access nodes) to the public
transit and flight networks. More precisely, for any shortest path P originating from
vertex u (of the road network) that also uses the public transit network, the first
vertex v of the public transit network on P must be an access node of u. Having
computed these access nodes (with their corresponding distances), the query may
skip over the road network by running a multi-source multi-target algorithm on
the (much smaller) transit network between the access nodes of s and t, returning the
journey with earliest combined arrival time.

To further reduce preprocessing space and time, Access-Node Routing has been
combined with contraction, resulting in a method called Core-Based ANR [DPW09a].

36

2.3. Journey Planning in Multimodal Networks

Similarly to Core-ALT [BDS+10, DN12], it precomputes access nodes only for road
vertices in a much smaller core (overlay) graph. The query algorithm must, thus,
first (quickly) determine the relevant core vertices of s and t (i. e., core vertices covering
the branches of the shortest path trees rooted at s and t), before it commences with a
multi-source multi-target ANR query between these core vertices.

Access-Node Routing has been evaluated on multimodal networks of interconti-
nental size that include—besides walking and car travel—public transit and flights.
It achieves query times in the order of milliseconds, however, preprocessing per-
formance strongly depends on the density of the public transit and flight net-
works [DPW09a] (see also Section 5.3.5). Moreover, the regular language is de-
termined during preprocessing and can, thus, no longer be specified as an input to
the query without losing optimality.

State-Dependent ALT. Another multimodal speedup technique for LCSPP is State-
Dependent ALT (SDALT) [KLPC11]. It augments the ALT algorithm [GH05] based on
the idea that lower bounds from a vertex u may vary significantly depending on the
current state q of the automaton (corresponding to the considered regular language)
with which u is scanned. Thus, just precomputing a single landmark distance value
per vertex (like ALT) may result in poor bounds. In contrast, SDALT uses the
automaton to precompute state-dependent distances, providing lower bound values
per vertex and state. To further improve query performance, SDALT has also been
extended to handle incorrect lower bounds, which guides the search stronger toward
the target. To still maintain correctness, the query uses a label-correcting algorithm
(instead of Dijkstra’s algorithm), which may scan vertices multiple times [KLC12].

SDALT has been evaluated on a highly realistic multimodal network covering the
Île-de-France area (containing Paris) [KLPC11,KLC12], resulting in speedup factors of
up to 30. The considered transport modes include rental and private bicycles, public
transit, walking, and a time-dependent road network for car travel. Note that SDALT,
like ANR, also predetermines the regular language constraints during preprocessing.

Contraction Hierarchies. Contraction Hierarchies [GSSV12] have been adapted to
a restricted version of LCSPP that considers Kleene Languages [RT10, GRST12]. Note
that Kleene languages are a relatively strong restriction of regular languages: They
can specify which transport modes a journey may contain, but not the sequence in
which they are allowed to appear. However, the algorithm presented in [RT10] allows
arbitrary Kleene languages specified as a query input.

Therefore, the Contraction Hierarchies preprocessing is adapted as follows: Each
arc a 2 A maintains a set L(a) of labels from L, initially only containing the sym-
bol (from S) depicting the transport mode represented by a. Whenever the algorithm
contracts a vertex v, it must determine, for each pair (u, v), (v, w) of arcs, whether
a shortcut from u to w is necessary to preserve distances. It does so by running

37

Chapter 2. Literature Overview

a (modified) local search from u which excludes arcs whose labels contain symbols
from the set L \ (L(u, v) [L(v, w)). If the local search failed to find a shorter path
than the combined length of `(u, v) + `(v, w), the shortcut (u, w) must be added,
and its associated label L(u, w) is set to L(u, v) [L(v, w). Note that by these means
parallel edges that contain different subsets of S in their labels may exist [RT10]. The
algorithm has been further extended in [GRST12] to handle even more flexible edge
restrictions (such as vehicle height) as a query input.

38

Chapter 3
Fundamentals

W ithin this chapter we introduce fundamental notion that is used through-
out this work. In particular, we address graph theory, partitions, regular

languages, and finite automata. While we introduce most concepts that are
relevant to this work, we assume familiarity with basic set theory, predicate logic,
and basic tools for algorithm analysis, such as Landau notation. Also see [CLRS01].

3.1. Graph Theory

Transportation networks can be modeled as graphs. Therefore, graphs are at the
very heart of this thesis. We introduce basic notions of graph theory in the following.
Moreover, in time-dependent networks (such as those arising in public transit) costs
can be reflected by special functions, which are also introduced here.

Graphs. A graph G = (V, A) consists of a set V of vertices and a set A of arcs. Usually,
the graphs we work with in this thesis are directed, that is, A ✓ V ⇥ V consists of
ordered pairs of vertices. For two vertices u, v 2 V, we say there is an arc from u to v
in G, if and only if (u, v) 2 A holds. For short, we sometimes also write uv to refer to
the arc (u, v). Given an arc a = (u, v), we call u the arc’s tail and v the arc’s head. Note
that (u, v) and (v, u) are different arcs. For the case this distinction is not required,
we consider undirected graphs G = (V, E). They consist of a set V of vertices and a
set E of edges. Edges are (in contrast to arcs) defined as unordered pairs of vertices,
that is, we define them by E ✓ {{u, v} | u, v 2 V}. Here, the edges {u, v} and {v, u}
are equal, however, the definitions of an edge’s tail and head do not apply. For the
remainder of this section we define notion using directed graphs. Most definitions
carry over to undirected graphs, naturally.

Given a graph G = (V, A), the reverse graph
 −
G = (G,

 −
A) is obtained from G by

flipping all arcs, i. e., it holds that (u, v) 2 −A , (v, u) 2 A. (Note that for the

39

Chapter 3. Fundamentals

undirected case G =
 −
G .)

A vertex-induced subgraph (sometimes we may just write subgraph for short) of G,
is a graph G0 = (V 0, A0), such that V 0 ✓ V holds true, and A0 contains exactly
the arcs from A for which both incident vertices are in V 0. More precisely, A0 =
{(u, v) | (u, v) 2 A and u, v 2 V 0}. A less common type of subgraph is the arc-induced
subgraph G0 = (V 0, A0). Here the set of arcs is defined as A0 ✓ A and the set of
vertices is induced from A0 by V 0 = {u | u 2 V and 9(u, v) 2 A0 or (v, u) 2 A0}.

Attributes, Costs, and Functions. A graph G = (V, A) can be augmented by assign-
ing further attributes to its vertices and/or arcs. Of particular interest in this work
are arc costs which model the criterion one likes to optimize (for example, travel
time). Generally speaking, a cost function ` : A! R maps each arc to a real number.
If a = (u, v) 2 A is an arc, we interchangeably write `(a) and `(u, v) to refer to its
cost. Note that often costs are nonnegative, i. e., ` ≥ 0. For example, negative values
for lengths or travel times make little sense.

Section 4.3 shows how timetables can be modeled as a graph. Because vehicles
in a timetable operate at specific times only, we require the notion of time-dependent
cost (as opposed to the previously defined time-independent or constant cost). More
precisely, ` : A ! F now maps each arc to a function f from a function space F. We
refrain from using negative values from now on, hence, functions f 2 F are of the
form f : R≥0 ! R≥0. For the purposes of this work, it is important that domain and
codomain of f have the same “unit”. In our case of travel times, f maps departure
time to travel time (which have both the unit seconds). This allows us to define
binary link (composition) and merge operations on F. Given two functions f , g 2 F,
the link operation is defined as

link(f , g) := f + g ◦ (f + id). (3.1)

Here, id denotes the identity function, i. e., id(x) = x for any value x, and “◦”
denotes the function composition operator. Sometimes we use the (equivalent)
infix notation f ⊕ g to refer to link(f , g). Note that the link operation is neither
commutative nor associative, which makes the order of evaluation important. For
constant functions, i. e., f ⌘ `1 and g ⌘ `2, the link operation simplifies to link(f , g) =
`1 + `2.

For two functions f , g 2 F, the merge (sometimes we also call it minimum)
operation is, on the other hand, defined as

merge(f , g) = min(f , g). (3.2)

Here, by min we denote the component-wise minimum of two functions, that is,
min(f , g)(x) = min(f (x), g(x)) for any value x. Note that F is closed under both
merge and link operations. Finally, by f we denote the minimum value min(f (x))
of f and with f̄ the maximum value max(f (x)) for any x 2 R≥0.

40

3.1. Graph Theory

If for a given value P 2 R≥0 it holds that f (x) = f (x mod P), we call f periodic
with period P. Moreover, we say that f 2 F fulfills the FIFO-property, if and only if

x1  x2) x1 + f (x1)  x2 + f (x2) for any x1, x2 2 R≥0 (3.3)

holds true. Sometimes we also refer to this property as non-overtaking property: If x1, x2

are departure times mapped to travel times by f , Equation (3.3) basically states that
departing later (at x2) will never make one arrive earlier (i. e., before x1 + f (x1)). If
any f 2 F fulfills the FIFO-property, we simply say that the whole function space F

fulfills it. We now show that the FIFO-property is preserved by the merge and link
operations.

Lemma 1. Let f , g 2 F be functions that fulfill the FIFO-property, then the functions
obtained by link(f , g) and merge(f , g) also fulfill the FIFO-property.

Proof. We first prove the lemma for the link operation. Because f and g fulfill the
FIFO-property, we have for any x1, x2 2 R≥0:

x1  x2) x1 + f (x1)  x2 + f (x2) and

x1 + g(x1)  x2 + g(x2).
(3.4)

Recall that for any x 2 R≥0, link is defined as link(f , g)(x) = x + g(x + f (x)). Thus,
we obtain:

x1  x2) x1 + g(x1)  x2 + g(x2) (3.5a)

, x1 + x1 + g(x1)  x2 + x2 + g(x2) (3.5b)

, x1 + x1 + g(x1 + f (x1))  x2 + x2 + g(x2 + f (x2)) (3.5c)

, x1 + link(f , g)(x1)  x2 + link(f , g)(x2). (3.5d)

Note that Equation (3.5b) follows from x1  x2 and Equation (3.5c) holds because of
the FIFO-property of f . We now consider the merge operation. Again, because the
FIFO-property holds for f and g individually, we obtain from Equation (3.4):

x1  x2) min[x1 + f (x1), x1 + g(x1)]  x2 + f (x2) and (3.6a)

min[x1 + f (x1), x1 + g(x1)]  x2 + g(x2), (3.6b)

from which immediately follows:

x1  x2) min[x1 + f (x1), x1 + g(x1)]  min[x2 + f (x2), x2 + g(x2)] (3.7a)

, x1 + min[f (x1), g(x1)]  x2 + min[f (x2), g(x2)] (3.7b)

, x1 + merge(f , g)(x1)  x2 + merge(f , g)(x2). (3.7c)

This exactly proves our claim. We conclude that a function space F is even closed
under merge and link, if F fulfills the FIFO-property. ⌅

41

Chapter 3. Fundamentals

Paths, Cycles, and Trees. Of central relevance to this work is the notion of paths,
cycles, and trees, which we introduce next. Given a (directed) graph G = (V, A), a
path P is a sequence of vertices P = [u1, . . . , uk] such that for every subsequent pair
of vertices uiui+1, the arc (ui, ui+1) is contained in A. If u1 and uk coincide, we call P
a cycle. A subpath P0 of P, also written P0 ✓ P, is a subsequence of P’s vertices.

Two vertices u, v are connected in G, if there exists a u–v-path in G. If this is true
for all pairs of vertices, we call G strongly connected. A connected subgraph G0 of G
is called strongly connected component (of G). A graph G = (V, A) is called tree rooted
at u 2 V, if |A| = |V| − 1 holds, and for every vertex v 2 V exists a u–v-path in G.

The cost of a path P is the sum of the arc’s costs along P. More precisely,

`(P) := f (v1, v2)⊕ f (v2, v3)⊕ · · · ⊕ f (vk−1, vk), (3.8)

which simplifies to Âk−1
i=1 `(vi, vi+1), if all arcs have constant cost. (Recall that ⊕ is

the infix notation of the link operation.) In the nonconstant case, the result `(P) is
a function itself, i. e., `(P) 2 F, hence, we may sometimes also write fP for `(P).

s

0
7

9

11

20

20

7
15

9

14 11

10

2

9

6

Figure 3.1. A (constant) weighted
graph with shortest path tree rooted
at vertex s.

For designated source and target vertices s, t 2 V, an s–t-
path Ps,t is a path such that u1 = s and uk = t. Let from now
on the arc’s costs be constant. This allows us to define the
notion of shortest paths: For given vertices s and t, a shortest s–
t-path is an s–t-path with minimum cost (among all s–t-paths
that exist in G). Let Ps,t be a shortest s–t-path, then the
cost `(Ps,t) is also referred to as distance (from s to t), denoted
by dist(s, t). If no (shortest) path from s to t exists in G, we
define dist(s, t) = •. Moreover we define dist(u, u) = 0 for
any vertex u 2 V. In the case shortest paths are unique (that
is, for every pair s, t 2 V there is at most one shortest path
from s to t), the union of all shortest paths originating at
a common source vertex s forms a tree, called shortest path

tree (rooted at s). Figure 3.1 shows an example of a (weighted) graph with a shortest
path tree rooted at vertex s. Thick green edges are part of the tree (representing short-
est paths), and the green label of a vertex u denotes its distance from s, i. e., dist(s, u).

Metrics. A metric is a function d : R⇥R ! R on the reals, that satisfies the following
properties for any values x, y, z 2 R:

d(x, y) ≥ 0 (non-negativity)

d(x, y) = 0 if x = y (identity)

d(x, y) = d(y, x) (symmetry)

d(x, z)  d(x, y) + d(y, z). (triangle inequality)

If all properties but symmetry hold for d, the function d is called a quasimetric. Note
that, if all arc costs are non-negative, the distance function dist (as defined above)

42

3.2. Partitions

in graphs is a quasimetric, as can be easily checked: Non-negativity and identity
hold by definition. Regarding the triangle inequality, assume that it is false. This
implies vertices u, v, w, such that dist(u, w) > dist(u, v) + dist(v, w). However, the
concatenation of the corresponding shortest paths Pu,v and Pv,w results in an u–w-
path P with cost `(P) = dist(u, v) + dist(v, w) < dist(u, w) which is a contradiction.
If the graph is undirected, dist is a full metric, since for any vertices u, v 2 V reversing
the shortest u–v-path always yields a shortest v–u-path.

3.2. Partitions

Some of the algorithms in this work use partitions. While partitions can be defined
over any set of entities, we introduce them in the context of graphs.

Figure 3.2. A graph partitioned
into two nested levels.

Given a graph G = (V, A), a partition of the vertices V is
a family C = {C1, . . . , Ck} of cells Ci ✓ V, such that each
vertex u 2 V is contained in exactly one cell Ci. We augment
this definition to multiple levels, as follows. A nested multilevel
partition of L levels is a family {C1, . . . , CL} of partitions with
nested cells, that is, for each level `  L and cell C`

i 2 C` there
must exist a cell C`+1

j 2 C`+1 on level `+ 1, such that C`
i ✓

C`+1
j holds. We call C`+1

j the supercell of C`
i and C`

i a subcell

of C`+1
j . For consistency, we define C0 = V and CL+1 = {V}.

In other words, C0 consists of a singleton cell for each vertex,
while CL+1 consists of a single cell that contains all vertices. An
arc (u, v) 2 A is called a boundary arc on level `, if and only if u
and v are in different cells of C`. In this case, u and v are called
boundary vertices (of level `). Note that a boundary vertex of
level ` is also a boundary vertex on all lower levels. The union of all boundary arcs
for a given level ` is called the cut of level `. Usually, we aim for partitions with a
small cut. Figure 3.2 shows an example of a two-level partition of a graph. Boundary
vertices in the figure are marked black, while inner vertices are shallow.

3.3. Regular Languages and Finite Automata

Relevant to multimodal route planning are (regular) languages and finite automata.
They are used to define admissible sequences of transportation modes. We, therefore,
formally introduce basic notion for (regular) languages and finite automata in the
following.

Languages. All languages are based on symbols. Also formal languages are based
on this entity. We call a finite set S of symbols alphabet. A sequence of symbols w =

43

Chapter 3. Fundamentals

[s1, s2, . . . , sk] from S is called word. Often, we omit the square brackets and just
write w = s1s2 · · · sk for short. The empty symbol (sometimes also called empty word)
is denoted by # and has zero length. Moreover, it holds for any word w that w# = w
and #w = w. The length of a word, denoted by |w| is the number of (non-empty)
symbols it is composed of. For two words w1 = s1 · · · sk and w2 = sk+1 · · · sl , the
concatenation of w1 with w2, denoted w1w2 is defined as w1w2 = s1 · · · sksk+1 · · · sl .

A (not necessarily finite) set of words L over S is called a langauge. Regular set
operations, such as union and intersection, also apply to languages. For a given
language L, the i-th power language is defined, as follows. For i = 0, we set L0 := {#}.
For any i > 0, we define Li recursively by Li := {ww0 | w 2 Li−1 and w0 2 L}. Having
this notion at hand, the Kleene closure of a language L is defined as

L⇤ =
[

i≥0

Li. (3.10)

Note that if L is not empty, then L⇤ always yields a set with an infinite (but countable)
number of words. For the special case of L = S, the set S⇤ contains all words that
can be formed by symbols from S. Note that the empty word is always part of L⇤.
Finally, given two languages L1 and L2, the concatenated language L1 · L2 is obtained
by L1 · L2 := {ww0 | w 2 L1 and w0 2 L2}.

Of particular interest for multimodal route planning are regular languages. They are
a special class of languages according to the following definition.

Definition 1. Given an alphabet S, then a language L over S is called regular if and only if
it can be constructed by the following recursive rules.

• The empty language ∆ is regular.

• For each symbol s 2 S, the singleton language {s} is also regular.

• Finally, if L1 and L2 are regular languages, then so are L1 [L2, L1 · L2, and L⇤1 .

Note that set intersection is excluded explicitly as a construction rule.

Automata. Having established the notion of regular languages, we now introduce
another representation of them, namely finite automata. A nondeterministic finite
automaton A is a tuple A = (S, S, d, I, F) that consists of a set S of states, a set S
of symbols (again, also called alphabet), a transition function d : S⇥ S ! P(S) (note
that P(S) denotes the power set of S) which maps a state and symbol to a set of states;
a set I of initial states, and a set F of final states. Note that any nondeterministic finite
automaton can be converted into a deterministic one. For a deterministic automaton it
has to hold that |I| = 1, and the transition function maps to S instead of P(S). In this
work, however, we focus on nondeterministic automata, since they suit our purpose
best.

44

3.3. Regular Languages and Finite Automata

q1 q2
a

b

b

Figure 3.3. A finite
automaton.

Often, we define automata in terms of their transition graph GA =

(V, A). Here, vertices from V depict states (in other words, V = S),
and there is an arc uv 2 A, if and only if there exists a symbol s 2 S
such that v 2 d(u, s) holds. In this case, we label uv with s in GA. In
this work, we mark initial states by an incoming arrowp-tip, while
final states are twin-framed. Figure 3.3 shows an example of a finite
automaton that has two states over the alphabet S = {a, b} and
accepts the language L = ({b} [{ab})⇤, that is, all words that may
contain any numbers of a and b, however, any a must be followed by a b. Note that
the automaton is deterministic.

To connect finite automata to regular languages, we say that, given a (regular)
language L, a word w 2 L is accepted by a finite automaton A, if there is a path P in
the transition graph GA of A that starts with at an initial state from I, ends with a
final state from F, and where the subsequent arcs of P are labeled by the subsequent
symbols of w. If no such path exists, the word w is rejected by A. If every word from L
is accepted by A, then A accepts the language L. Kleene’s Theorem (see [Kle56,RS59]
for details) states that regular languages and finite automata are equivalent: For
every regular language L there exists a (nondeterministic) finite automaton A, such
that a word w is accepted by A if and only if it is in L. On the other hand, given a
finite automaton A, the words accepted by A, always form a regular language. We,
therefore, use the terms regular language and finite automaton interchangeably in
this work.

45

Chapter 4
Public Transit Journey Planning

T his chapter is devoted to journey planning in public transit networks. In
order to develop algorithms that compute journeys, we will first carefully define
the underlying input of a public transit network in a mathematical sense. In this

work, we consider schedule-based networks, i. e., the networks are specified in terms
of their timetable. The timetable includes all stops of the network and also vehicles
which operate at predefined times of the day along certain sequences of stops, as
well as, footpaths that enable transfers between nearby stops.

Problems. Going from there, we introduce the problems we are considering in
this chapter. In all of them, we are given origin and destination stops ps and pt,
and are then interested in computing “optimal” journeys from ps to pt. While, for
example, in (static) road networks the definition of an “optimal” journey is relatively
straight-forward (e. g., the journey that minimizes travel time), this is not necessarily
true for public transit networks. This is due to two reasons: time-dependency and
multiple important criteria. Regarding the former, transit networks are inherently
time-dependent, that is, the optimal journey depends on the departure time. To that
extent, we consider the earliest arrival problem, where the departure time t is given
as an additional input. Here, a journey is optimal if it arrives at the destination
stop pt as early as possible while not departing before t at the origin stop ps. If,
instead of a departure time t, we are given a whole time range D as input, the goal is
to compute all optimal (e. g., with respect to travel time) journeys from ps to pt that
depart within D. This type is called range problem (or profile problem, if D specifies
the whole operational time period of the timetable). Note that for time-dependent
road networks these two types of problems have been studied as well [DW09b].

Secondly, just optimizing for a single criterion (such as arrival time) may not be
enough. Usually other criteria, such as the number of transfers, or (monetary) cost,
are just as important. We tackle this by computing Pareto sets of journeys that

47

Chapter 4. Public Transit Journey Planning

minimize each criterion independently. The Pareto set contains all journeys which do
not dominate each other, that is, for no two journeys one is better in all considered
criteria than the other. Multicriteria optimization augments both the earliest arrival
and the range problem.

Models. Since the shortest path problem is well understood in the literature, a
common approach to computing journeys takes the timetable as input and builds
a graph from it, such that shortest paths correspond to optimal journeys. There
exist several different graph models that represent the timetable, who can roughly
be partitioned into two classes: Time-expanded and time-dependent models. The
former “expands” time in the sense that it contains a vertex for every event in the
timetable (such as a particular vehicle departing at a certain stop). Unfortunately, this
yields graphs of large size. Therefore, the time-dependent model aims to compress
the graph in the sense that it condenses vehicles that operate on the same segment
of the network into a single arc. The cost of an arc is then no longer constant, but
depends on the time of day (hence, the name of the model).

We first recap the widely used time-expanded and time-dependent graph models.
We then improve the time-dependent approach by modeling conflicting vehicles
inside stops more carefully. The key idea is to compute a (minimum) coloring of a
corresponding conflict graph, such that each color represents a vertex in the model
graph. Hence, using this Coloring Model, we are able to reduce the size of the graph
significantly, which directly accelerates any graph search algorithm running on it.

Moreover, for realistic queries footpaths are crucial to enable transfers between stops.
However, often such data is not available from the input. Thus, we present a heuristic
approach to generate artificial footpaths using the underlying road network. Our
method is based on snapping stops to (nearest) intersections and introducing cliques
between stops of the same intersection.

Algorithmic Approaches. Having set up the graph models, we describe basic algo-
rithmic approaches that solve the earliest arrival, range, and multicriteria problems.
In particular, we describe Dijkstra’s algorithm, which can be easily adapted to both
the time-expanded and time-dependent graph models. It is also the basis of all the
other algorithms for the more enhanced problems.

Starting from there, we introduce our two main contributions of this chapter:
A new algorithm that computes range (and profile) queries efficiently, and a new
approach to solve multicriteria earliest arrival and multicriteria range queries. Both
algorithms compute in their basic variant optimal journeys from a source stop ps

to all other stops of the network, but can be accelerated if one is only interested in
journeys to a designated target stop pt.

48

Parallel Self-Pruning Connection Setting Algorithms. The key idea of the first algo-
rithm, called Self-Pruning Connection Setting (SPCS), is that the number of possible
journeys is bounded by the number of outgoing connections from the source stop ps.
Moreover, all time-dependent travel time distances in public transit networks net-
works can be described by piecewise linear functions that have a representation
bounded by this number as well. Also, only few connections prove useful when
traveling sufficiently far away. The algorithm we present greatly exploits this fact by
pruning such connections as early as possible. To this extent, we introduce the notion
of connection-setting, that can be seen as an extension of the label-setting property
of Dijkstra’s algorithm, which usually is lost in profile searches. Unlike previous
algorithms, which are notoriously hard to parallelize (see [MBBC09] and [MS03]), we
parallelize SPCS (which we then call PSPCS) in a multicore scenario by distributing
different connections outgoing from ps to different CPU cores. Furthermore, we show
how connections can be pruned even across different cores.

While one-to-all queries are relevant for the preprocessing of many speedup
techniques (see, e. g., [DW09b, DPW09a]), we also accelerate the more common
scenario of point-to-point queries explicitly. Therefore, we propose to utilize the very
same algorithm for valuable preprocessing. The key idea is that we select a small
number of important stops (called hub stops) and precompute a full distance table
between all these stops, which then can be used to prune the search during the query.

Round-Based Public Transit Optimized Router. The second algorithm is RAPTOR,
our Round-bAsed Public Transit Optimized Router. It considers multicriteria opti-
mization and computes all Pareto-optimal journeys—minimizing the arrival time
and the number of transfers made. Unlike the previously mentioned approaches,
RAPTOR is not Dijkstra-based. Instead, it operates in rounds, one per transfer, and
computes arrival times by traversing every route (such as a bus line) at most once per
round. The algorithm boils down to a dynamic program with simple data structures
and excellent memory locality. RAPTOR can also be parallelized in a multicore
scenario by distributing independent routes among multiple CPU cores.

We also introduce two extensions of RAPTOR. The first, McRAPTOR, generalizes
RAPTOR to handle more criteria, beyond arrival time and transfers. As examples
we use fare zones, a common pricing model, and the reliability of transfers. The
second extension we propose, rRAPTOR, computes bicriteria range queries, which
output full Pareto sets of journeys for all departures within a time range. Because
our algorithms do not rely on preprocessing, they are fully dynamic, easily handling
delays, trip cancellations, or route changes.

Overview. Section 4.1 formally defines timetables, which are the basis of our public
transit networks. Section 4.2 then introduces the problems we are interested to solve
in this work. Section 4.3 revisits existing approaches for modeling timetables as

49

Chapter 4. Public Transit Journey Planning

graphs and introduces our new Coloring Model. Existing algorithmic approaches
to compute journeys are recapped in Section 4.4. Section 4.5 then introduces our
new approach to compute range and profile queries, called Self-Pruning Connection
Setting Algorithm (SPCS). Section 4.6 introduces our new Round-bAsed Public Transit
Optimized Router (RAPTOR) that computes multicriteria journeys.

4.1. Inputs

In this section we define the input to our route planning problems. We start by giving
a formal introduction to timetables, which form the basis of a public transit network.
We define the timetable in a “natural” way using the notion of stops, routes, and
trips. For some algorithms, however, a different view, using the notion of elementary
connections is more useful, which we derive next. Finally, we also define the output
of our problems. In our case of route planning in public transit networks, these are
usually (sets of) journeys.

Timetables. Our algorithms work on a timetable T = (P,S , T ,R,F) where P ⇢ Z≥0

is the period of operation (think of it as the seconds of a day), S is a set of stops, T a set
of trips, R a set of routes, and F a set of footpaths (sometimes also called transfers).

Elements t 2 P are called time points. Each stop in S corresponds to a distinct
location in the network where one can board or get off a vehicle (bus, tram, train,
etc.). Typical examples are bus stops and train platforms. Each trip t 2 T represents
a sequence of stops a specific vehicle (train, bus, subway, etc.) visits along a line. At
each stop in the sequence, it may drop off or pick up passengers. Moreover, each
stop p in a trip t has associated arrival and departure times tarr(t, p), tdep(t, p) 2 P,
with tarr(t, p)  tdep(t, p). The first and last stops of a trip have undefined arrival and
departure times, respectively. The trips in T are partitioned into routes: Each route
in R consists of the trips that share the same sequence of stops. Also, we require the
trips within a route to be non-overtaking (i. e., no trip overtakes any other within the
same route). Typically, there are many more trips than routes. Footpaths in F model
walking connections (or transfers) between stops. Each footpath consists of two
stops p1 and p2 with an associated constant walking time `(p1, p2). Sometimes, we
require F to be transitive: If p1 and p2 are indirectly connected by footpaths, (p1, p2)

is contained in F as well. The length `(p1, p2) then depicts the minimum time to get
from p1 to p2 using a sequence of footpaths. Finally, a stop p 2 S has an associated
minimum change time tch(p), the minimum time required to change trips at p (due to
long walking distances within p, for example). Note that the minimum change time
can be zero for some stops.

Sometimes we require to measure the duration between two time points t1, t2 2 P.
We therefore use a difference function d, which simply evaluates to d(t1, t2) = t2 − t1.
In the case we consider periodic timetables, d is computed by t2 − t1 if t2 ≥ t1

50

4.1. Inputs

Table 4.1. Exemplary excerpt of typical input data from the London timetable of 2011.
Each row represents one elementary connection.

Route and Departure Dep.- Arrival Arr.-
Trip No. Idx. Stop Time Stop Time

· · ·
Bakerloo-0 2 Charing Cross 06:46 Piccadilly Circus 06:48
Bakerloo-0 3 Piccadilly Circus 06:48 Oxford Circus 06:50
Bakerloo-0 4 Oxford Circus 06:50 Regent’s Park 06:52
Bakerloo-0 5 Regent’s Park 06:52 Baker Street 06:54
Bakerloo-0 6 Baker Street 06:54 Marylebone 06:56

· · ·
Victoria-6 1 Green Park 15:21 Oxford Circus 15:22
Victoria-6 2 Oxford Circus 15:22 Warren Street 15:24
Victoria-6 3 Warren Street 15:24 Euston 15:26
Victoria-6 4 Euston 15:26 King’s Cross St. Pancras 15:26

· · ·

and P + t2 − t1 otherwise. Note that d is not symmetric.

Elementary Connections. Given a timetable T, we may derive a set C of elementary
connections. Intuitively speaking, elementary connections are the smallest entity into
which a timetable can be decomposed. We require them for defining the graph
models, as well as for the algorithms. More formally, an elementary connection c 2 C
is a tuple c = (t, pdep, parr, tdep, tarr), which is interpreted as trip t 2 T going from
stop pdep 2 S to stop parr 2 S , departing at pdep at time tdep 2 P and arriving
at tarr 2 P. For simplicity, given an elementary connection c, the function X(c)
selects the X-entry of c. For example, tdep(c) refers to the departure time of c.
Table 4.1 shows an exemplary excerpt from the set of elementary connections for
the timetable of London (an input we often use). For any connection c, the column
“Route” refers to the associated route of c, and “Index” depicts the ordinal sequence
number of c along its route. The table shows partial trips for two subway (tube)
routes, namely of the Bakerloo line and the Victoria line.

Journeys. Any journey-planning algorithm operating on a timetable outputs a set
of journeys J . A journey is defined as a sequence of trips and footpaths in the
order of travel. In addition, each trip in the sequence is associated with two stops,
corresponding to the pick-up and drop-off points. Note that a journey containing k
trips has exactly k− 1 transfers. Journeys are associated with several optimization
criteria. We say a journey J1 dominates a journey J2, denoted by J1 4 J2, if J1 is no
worse in any criterion than J2. A set of pairwise nondominating journeys is a Pareto
set. In our algorithms we use labels (often associated with stops) for intermediate

51

Chapter 4. Public Transit Journey Planning

Dep: 10:00
19:00

Dep: 20:00

Arr: 10:30
19:30 Arr: 10:45

Dep: 20:10

Arr: 20:05
Dep: 10:10

ps

Dep: 09:00

Dep: 09:45
18:45

pt

Arr: 20:20

Figure 4.1. Example of three journeys from ps to pt. The departure time is set to t = 09:00.
Annotations depict departure/arrival times of trips on the route of respective color. The snaky line
illustrates a very long route in the network.

journeys. The definition of domination translates to labels naturally.

4.2. Problems

In this section we formally define the problems that we consider in this chapter.

4.2.1. Earliest Arrival Problem

The simplest problem we are considering is the earliest arrival problem. Given a public
transit timetable, a source stop ps, a target stop pt, and a departure time t, it asks for
a journey that departs at ps no earlier than t and arrives at pt as early as possible. An
algorithm which solves the earliest arrival problem is also called earliest arrival query.

The solution of the earliest arrival problem consists of (at most) one journey, namely
the one which arrives at pt earliest. We call this journey optimal. Often, more than
one optimal journey exists, in which case we break ties arbitrarily. On the other hand,
if no journey matching the requested criteria exists, the output is just the empty set.

Tight Journeys. Unfortunately, computing the earliest arrival solution does not nec-
essarily output the journey with minimum travel time. This may seem counterintuitive
at first1, however, imagine a low-frequency bus route which must be taken as the
last leg of any journey in order to reach the target pt. If the departure time t is
chosen such as there is sufficient “slack” time until the first (feasible) trip departs
toward pt, all journeys that somehow “spend” this slack time by going around the
transit network are optimal. See Figure 4.1 for an example. It depicts three journeys
from ps to pt for a departure time of 9:00. The earliest trip for the last leg of the
journey arrives at pt at 20:20. All three illustrated journeys are optimal (i. e., they

1In time-independent networks, e. g., static road networks, computing earliest arrival and minimum
travel time journeys is equivalent.

52

4.2. Problems

(a) Arrival time: 11:08; one transfer. (b) Arrival time: 11:09; zero transfers.

Figure 4.2. Exemplary solution to the multicriteria problem for a query from King’s Cross St. Pan-
cras station to Southwark station in London at 10:50. Optimization criteria are arrival time and
the number of transfers taken. The left solution uses the Northern and Jubilee tube lines, while
the right solution uses bus line 63.

share the same earliest arrival time of 20:20). In particular, the snaky gray trip is part
of a very long route where the slack time can be spent.

To remedy this issue, we extend the earliest arrival problem to the tight earliest
arrival problem as follows. Given a public transit timetable, a source stop ps, a target
stop pt, and a departure time t, it asks for a journey that departs at ps no earlier
than t and arrives at pt as early as possible. From all such journeys, it further asks for
the one that departs from ps latest. This results in a journey that is “tight” regarding
the arrival time in the sense that there is no other journey with a smaller travel time
for the considered departure time. Note that, in general, the solution is still not
necessarily unique, in which case we break ties arbitrarily. In Figure 4.1 taking the
orange route at 18:45, the blue one at 19:00, and, finally, the green one at 20:00 results
in a tight earliest arrival journey for the departure time of 9:00 at ps.

4.2.2. Multicriteria Problem

The multicriteria problem is a generalization of the earliest arrival problem taking
more than one optimization criterion into account. However, in this chapter, we
always require arrival time to be part of the criteria. Examples for further criteria
include the number of transfers taken or the monetary cost of a journey. Formally,
in the multicriteria problem one is given a public transit timetable, a source stop ps, a

53

Chapter 4. Public Transit Journey Planning

target stop pt, and a departure time t. It then asks for a (full) Pareto sets of journeys J ,
for which the following must hold. Each journey J 2 J must not leave ps earlier
than t, and for any two journeys J1, J2 2 J neither J1 may dominate J2, nor J2

may dominate J1. On the other hand, for any journey J from ps to pt that departs
after t and is not included in J , there must be a witness journey J0 2 J , such
that J0 dominates J. An algorithm which solves the multicriteria problem is called a
multicriteria query. An example is shown in Figure 4.2. It shows two journeys, one
which arrives one minute earlier than the other, but having one more transfer.

4.2.3. Range Problem

The range problem no longer requires a specific departure time as input, but rather
takes a time range (as the name implies), for which optimal journeys are computed.
More precisely, given a public transit timetable, a source stop ps, a target stop pt,
and a time range D ✓ P (recall that P is the timetable’s period), the range problem
asks for a minimal set of journeys, such that for each departure time t 2 D exists
a journey Jt 2 J that departs at ps no earlier than t and arrives at pt as early as
possible. Note that requiring a minimal set of journeys implies that if two journeys J1

and J2 with the same arrival time exist in J , only the one with later departure time
from ps is kept. If the input range D equals the full period P of the timetable, the
problem is also called profile problem. An algorithm which solves the range or profile
problem is called range or profile query.

Note that the range problem can be interpreted as a special case of the multicriteria
problem in the following sense. It takes a time range D instead of a departure time t

as input and considers two criteria: arrival time and departure time. It then computes
a Pareto set J of journeys, such that any journey J 2 J departs within D, and for any
two journeys J1 and J2, the journey J1 dominates J2 if and only if J1 departs no earlier
and arrives no later than J2. If additional criteria (besides arrival and departure time)
are considered, we also call the problem multicriteria range problem.

4.2.4. Reverse Problems

Up to now, all problems are specified in terms of their departure times at the source
stop ps. If, instead, one is interested to optimize for a given arrival time at the target
stop pt, any of the previous problems can be reversed. For the case of the earliest
arrival problem, we obtain the latest departure counterproblem. It takes a source stop ps,
a target stop pt, and an arrival time t as input, and it asks for a journey J from ps

to pt that arrives at pt no later than t and departs at ps as late as possible. The range
and multicriteria problems are defined analogously. Note that the notion of tight
journeys also carries over: In addition to asking for a journey that departs from ps

as late as possible, we also require it to arrive at pt as early as possible (while not
arriving later than t).

54

4.3. Graph Models

Usually, the reverse problems are equivalent to their forward counterparts: An
algorithm that computes the forward problem can be used for the respective reverse
problem by inverting the input: Stop sequences of all routes are reversed (i. e., they are
now operated in reverse order). Then, for every trip and every stop the departure and
arrival times are swapped. Also, all times occurring in the timetable are translated
by mirroring them at a sufficiently high value (e. g., P + 1). By these means, time is
considered in reverse order, and an algorithm that minimizes arrival time corresponds
to maximizing departure time on the original input. Hence, for the rest of this work,
we only focus on the forward problems.

4.3. Graph Models

This section presents several graph-based models that build a directed graph G =

(V, A) from the timetable. The idea is to model the graph in such a way that
problems from Section 4.2 can be solved by (possibly augmented) shortest path
algorithms. Recall that the timetable is inherently time-dependent (vehicles operate
at well-defined times during the day). Therefore, the graph must capture the notion
of time-dependency to yield meaningful solutions. Two distinct approaches exist: The
time-expanded approach (Section 4.3.2) expands time in the sense that for every event
of the timetable a vertex is cerated. The time-dependent approach 4.3.3 combines trips
of the same route into one arc, significantly reducing the graph size. Another (much
simpler) model is the stop model (Section 4.3.1). It is not useful to compute queries,
however, often used as a preprocessing ingredient to speedup techniques.

Note that using a graph to model the timetable is very common in the lit-
erature. Time-expanded models have been first used (in the context of public
transit) in [SWW00, SWZ02], while time-dependent models have been first used
in [Nac95, BJ04, PSWZ04b]. A more recent overview of the different graph-based
modeling approaches is also available in [PSWZ08].

Contributions and References. New contributions in this section are the (time-
dependent) Coloring Model (Section 4.3.4), which significantly reduces the graph
size of the time-dependent model for earliest arrival queries, as well as a heuristic
that generates artificial footpaths (Section 4.3.5). These are crucial for computing
realistic journeys. Both of these sections are based on [DKP12], which appeared in
the ACM Journal of Experimental Algorithmics, vol. 17, no. 1 in 2012. It is joint work
with Bastian Katz and Daniel Delling.

4.3.1. Stop Model

The simplest model that represents the timetable is the stop model. It was first
introduced in [SWZ02], where it was called station graph. It builds a directed

55

Chapter 4. Public Transit Journey Planning

graph G = (V, A) where each vertex from V exactly corresponds to a stop p 2 S of
the timetable. We, therefore, refer to vertices by their stops and just write p 2 V for
short. Arcs are then inserted as follow. An arc pi pj from vertex pi to pj is contained
in A if and only if there exists an elementary connection that goes from pi to pj.
More formally, there exists an elementary connection c 2 C for which pdep(c) = pi
and parr(c) = pj hold. The cost `(pi, pj) of an arc pi pj is the minimum travel time of
all elementary connections from pi to pj, i. e.,

`(pi, pj) = min{d(tdep(c), tarr(c)) | c 2 C and pdep(c) = pi and parr(c) = pj}. (4.1)

Figure 4.3. Stop graph of greater London.

Figure 4.3 shows the stop graph for the timetable
of the greater London area. Arcs between stops
served by bus routes (the vast majority) are drawn
thin and red, while all other arcs (Tube, DLR, and
ferry boats) are drawn with respect to their official
route color from the London network map.

While the stop model is certainly very simple,
it does not capture the time-dependent nature of
the timetable. Because arc costs are defined in
terms of minimum travel times between stops,
shortest paths only correspond to lower bounds on
the actual (total) travel time. In fact, none of the
problems from Section 4.2 can be solved by this
model. However, it is useful as a preprocessing
ingredient for some speedup techniques, such as

ALT [DPW09b], Arc-Flags [DPW09b, BGM10, BDGM09], or SHARC [Del11]. In Sec-
tion 4.5.3 we use it to compute “importance” values for stops. We use the most
important stops to compute a full distance table which then helps accelerating earliest
arrival queries.

4.3.2. Time-Expanded Model

The time-expanded approach remedies the issues of the stop model by encoding
time-dependencies into the graph via the notion of events. There exist two basic
variants of this approach, the simple and the realistic model [PSWZ08]. They are
described in the following. Finally, we explain, how footpaths can be integrated into
the model.

Simple Model. Given a timetable T and its set C of elementary connections, the
simple time-expanded model basically inserts two vertices per connection, which are
interconnected by an arc. More formally, it defines the simple time expanded model
graph G = (V, A). For every connection c 2 C it creates two vertices: A departure

56

4.3. Graph Models

vertex udep(c) and an arrival vertex uarr(c). Vertices in the time-expanded approach
always have (implicit) associated timestamps t(u). In our case the timestamp of a
departure vertex udep(c) is given by the departure time of the respective connec-
tion tdep(c), while the timestamp of an arrival vertex uarr(c) is given by the arrival
time tarr(c). Analogously, each vertex has an (implicit) associated stop value p(u).

t1

t1

t2

t3

Figure 4.4. Simple
time-expanded
model.

Arcs are created as follows. For every connection c 2 C the model
inserts an arc (udep(c), uarr(c) between the connection’s departure and
arrival vertices. By these subsequent connections of the same trip become
interconnected by arcs. To allow changing of trips inside stops, the model
inserts, independently for each stop p 2 S , transfer arcs uv between
subsequent vertices u and v of p in order of increasing time. More
precisely, there is a transfer arc uv 2 A if and only if p(u) = p(v), t(u) 
t(v) and there is no other vertex w with p(w) = p(u) and t(u) < t(w) <

t(v). All arcs uv are weighted by the time difference of their respective
incident vertices, i. e., `(u, v) = d(t(u), t(v)).

If multiple vertices with the same timestamp exist for a stop p, the
model may merge them into a single vertex. By these means, and under
the assumption that no connection has a duration of zero, all arcs point in
direction of increasing time. Thus, the simple time-expanded graph G is
acyclic, i. e, it does not contain any cycles. For the case that the timetable
is periodic, the model adds, at each stop p an additional arc uv from the
latest to the earliest vertex at p, enabling transfers from one period of the timetable to
the next. Note that by these means the graph is no longer acyclic.

Figure 4.4 shows an example of four connections belonging to three trips t1, t2,
and t3 at some stop p in the simple time-expanded model graph. Arrival vertices are
filled yellow, while departure vertices are filled green. Vertices are drawn such that
time increases from top to bottom.

As opposed to the stop model (cf. Section 4.3.1), it can be easily seen that any path
in the time-expanded graph correspond to a valid journey for the (input) timetable.
Another interesting observation is that (for the aperiodic case) in fact any path P
between two vertices s and t is also a shortest s–t-path. Recall that arc costs are defined
in terms of the time difference of their incident vertices. Therefore, the cost of the
individual arcs of P must exactly sum up to d(t(s), t(t)). A major disadvantage of
the simple time-expanded model is, however, that arbitrary quick transfers at stops
are possible, since it does not incorporate the minimum change times defined in the
timetable.

Realistic Model. The realistic time-expanded model extends the simple model by
incorporating minimum change times at stops.

Formally, it defines a directed graph G = (V, A) as follows. Similarly to before, it
creates for each connection c 2 C a departure vertex udep(c), an arrival vertex uarr(c),

57

Chapter 4. Public Transit Journey Planning

and adds the arc udep(c)uarr(c) with cost (t(udep(c), t(uarr(c))) to A. To enable
minimum change times, the model additionally creates, for each connection, a transfer
vertex utr(c), which it assigns to stop pdep(c)—i. e., p(utr(c)) = pdep(c). Analogously,
the timestamp of utr(c) is set to t(udep(c)), which is equivalent to the departure
time of c. Besides the already mentioned connection arcs, the model adds additional
transfer arcs into the model. For each connection it connects the transfer vertex utr(c)
to the departure vertex udep(c) with cost zero. Moreover, to enable staying within
a trip t, the model adds, for each connection c 2 C of trip t an arc from the arrival
vertex uarr(c0) of the preceding connection c0 of t to the departure vertex udep(c) of c.
For the first connection of t no preceding connection exists and no arc is created.
Note that uarr(c0) and udep(c) must belong to the same stop by definition.

t1

t1

t2

t3

Figure 4.5. Realistic
time-expanded model.

To enable transfers within a stop p 2 S , additional transfer arcs
are created: For each arrival vertex u at p, the model determines
the first transfer vertex v (also at p), for which t(u) + tch(p) 
t(v) holds true, and it adds an arc between these vertices, ac-
cordingly. If no such vertex v exists, no arc is added. Moreover,
subsequent transfer vertices are interconnected by arcs in in-
creasing order of their timestamp (similarly to the simple model).
Transfer vertices with the same timestamp may, again, be merged.

An example of the realistic time-expanded model graph is
shown in Figure 4.5. It depicts the same trips and connections
as Figure 4.4. Arrival vertices are filled yellow, departure vertices
are filled green, and transfer vertices are filled purple. Note that
transferring from trip t1 to t2 is not possible due to the minimum

change time (however, continuing the journey in trip t1 is very well possible). This
could not be captured by the simple time-expanded model of Figure 4.4.

Footpaths. Footpaths are integrated into the model as follows. For every existing
footpath (pi, pj) 2 F with length `(pi, pj), it adds several arcs between vertices
of pi and pj. More precisely, it adds from every arrival vertex u at pi an arc to the
earliest transfer vertex v at pj for which t(u) + `(u, v)  t(v) holds true. (Note that,
footpaths in the simple model are added in a similar manner between arrival and
departure vertices.)

Discussion. The main advantage of the time-expanded approach is that the resulting
graph is time-independent, i. e., all arcs have constant cost. This enables simple
queries algorithms: Essential, Dijkstra’s algorithm [Dij59] can be applied out of the
box to compute journeys. Moreover, for the case that the timetable is aperiodic, the
resulting graph is acyclic, which enables even simpler query algorithms, such as
Connection Scan [DPSW13].

On the downside, the size of the time-expanded graphs is rather huge, since every

58

4.3. Graph Models

event of the timetable is modeled by at least one vertex. In fact, the number of
vertices and arcs are both in the order of O(|C|). Additionally, modeling footpaths
is somewhat more complicated: Even though a footpath (pi, pj) is already time-
independent in the original data, it still creates as many arcs in G as there are arrival
events at the stop pi.

Some extensions to the time-expanded approach exist that were omitted in this
section. These include incorporating traffic days and variable transfer times at
stops [PSWZ08]. Also, further engineering the model helps accelerating query
performance [DPW09b].

4.3.3. Time-Dependent Model

In contrast to the time-expanded approach, the time-dependent model aims for
smaller graphs whose number of vertices and arcs is roughly in the order of the
number of stops and routes of the timetable. Instead of vertices that correspond
to events of the timetable, time-dependency is encoded as a special form of time-
dependent travel time functions on the arcs—hence, the name of the model.

We first describe how the travel time functions look like and discuss how they
can be efficiently linked and merged (cf. Section 3.1). We then recap the simple and
realistic time-dependent graph models [PSWZ08] and, finally, explain how footpaths
are integrated into the model.

Travel Time Functions. Recall that in the time-expanded graph (cf. Section 4.3.2),
each elementary connection c 2 C is modeled by an arc uv 2 A with constant
weight d(tdep(c), tarr(c)). The key idea of the time-dependent approach is to combine
several elementary connections into a single arc by a time-dependent travel time function.
We, therefore, consider a function space F consisting of travel time functions of the
form f : P! Z≥0. Each function f 2 F maps a departure time onto a travel time (or
cost). Departure times are taken from the interval P, which is the timetable’s period
of operation, while travel times may assume arbitrary nonnegative integers (think of
a train arriving after midnight).

The travel time functions in our scenario must encode elementary connections
that operate at specific times with respect to the timetable. Hence, each elementary
connection c 2 C that is represented by the function f , creates a connection point qc =

(tdep(c), d(tdep(c), tarr(c)), such that evaluating f at departure time t = tdep(c)
results in the respective travel time f (t) = d(tdep(c), tarr(c)). For simplicity we
write tdep(q) and ttra(q) to refer to the departure and travel times encoded by the
connection point q. Now let Pf be the set of connection points of f . Values of f between
subsequent connection points are obtained by interpolation via waiting. More
precisely, let t 2 P be an arbitrary departure time and q be the “next” connection
point, i. e., the connection point for which d(t, tdep(q)) is minimal. Then, f is evaluates

59

Chapter 4. Public Transit Journey Planning

at t to

f (t) = ttra(q)| {z }
Travel time associated with q

+

Waiting time for q’s departurez }| {
d(t, tdep(q)) . (4.2)

Note that if the connection points of f are kept sorted by their departure times,
evaluating f takes time O(log|Pf |) by using binary search, and time O(|Pf |) using a
simple linear scan. Preliminary experiments indicated that the algorithmic overhead
of a binary search results in worse practical performance than using a linear scan.
(Note that a linear scan admits excellent spatial locality and is, hence, extremely
cache-friendly.) In this work, we additionally use the following interpolation heuristic
when scanning Pf . Let t be the departure time at which f is evaluated, then we check
the connection point q at index i = t/P · |P|. If t ≥ tdep(q), we continue scan Pf in
ascending order, otherwise, we scan in descending order.

03:00
06:00

09:00
12:00

15:00
18:00

21:00

2

4

6

8

10

Departure time

Travel time [h]

Figure 4.6. Piecewise linear travel time function.

To ensure correctness of the model, the
travel time functions must fulfill the FIFO-
property (cf. Section 3.1). In the con-
text of connection points, this is inter-
preted as follows: There must be no two
subsequent connection points q1, q2 2 P
such that d(tdep(q1), tdep(q2)) + ttra(q2) 
ttra(q1) holds true. In other words, skip-
ping q1 and waiting for q2 must not result in
a smaller overall travel time. Note that sim-
ply deleting q1 restores the FIFO-property
of f .

Figure 4.6 illustrates an exemplary travel
time function f with eight connection points. Connection points are indicated by
dots and line segments indicate interpolation by waiting. The red connection point
violates the FIFO-property and, hence, must not be included in f .

Given two functions f1 and f2, the link operation can be efficiently implemented
by a linear sweep algorithm. For every connection point q1 from f1, it looks for the
connection point q2 from f2 that minimizes d = d(tdep(q1) + ttra(q1), tdep(q2)) and
inserts the connection point q = (tdep(q1), d + ttra(q2)) into the resulting function’s
connection point set. If no such q2 exists, no new connection point is created. Likewise,
no connection point q is created, if q would violate the FIFO-property. Note that the
number of connection points in the output function is bounded by min{|Pf1 |, |Pf2 |}
and the link algorithm runs in time O(|Pf1 |+ |Pf2 |).

Finally, the merge operation of two functions f1 and f2 can also be implemented by
a linear scan. The resulting function simply consists of the union Pf1 [Pf2 of each
function’s connection points, discarding those who violate the FIFO-property. As a

60

4.3. Graph Models

result, the number of connection points in the output is bounded by |Pf1 |+ |Pf2 | and
the merge operation also runs in time O(|Pf1 |+ |Pf2 |).

p1

p2

p3

r1, r2

r2, r3

Figure 4.7. Simple time-dependent
model.

Simple Model. After having set up the notion of travel
time functions, we now describe the simple time dependent
model [BJ04]. Given a timetable T and its corresponding
set of elementary connections C, the model builds a di-
rected graph G = (V, A) by creating one vertex up for
each stop p 2 S . For simplicity, we write p and up in-
terchangeably. Arcs are created as follows. The model
inserts the arc p1 p2 into A if and only if there exists an el-
ementary connection c 2 C that goes from p1 to p2, i. e, for
which pdep(c) = p1 and parr(c) = p2 holds. Note that up to
this point the model exactly matches the stop model (cf. Sec-
tion 4.3.1).

To make the model time-dependent, arc costs are defined in terms of travel-time
functions, that is, ` : A ! F. Each arc p1 p2 2 A, thereby, contains exactly those
connection points that correspond to elementary connections that travel from p1 to p2.
Connection points that violate the FIFO-property may either be discarded or put on
a separate parallel arc (in case they may not be omitted). Note that if we evaluate the
lower bound f p1 p2 of the travel time function at each arc p1 p2, we exactly obtain the
stop model (cf. Section 4.3.1). Figure 4.7 illustrates the simple time-dependent model
on three stops p1, p2, and p3.

Realistic Model. Like in the time-expanded scenario, the simple time-dependent
model fails to capture minimum change times at stops. The realistic model aims to
remedy this issue by slightly blowing up the graph [PSWZ04b, PSWZ08]. Instead of
a single vertex per stop, multiple vertices are created. The model is thereby based
on the intuition, that changing between trips of the same route is never optimal.
Therefore, the model groups elementary connections by their route. More precisely,
let Rp be the set of routes that serve stop p 2 S . (We may sometimes refer to them
by stop-routes.) The model now still creates a stop vertex p 2 V (like before), but
additionally creates a route vertex rp for every stop-route from Rp.

Arcs are created as follows. For each route r 2 R of the timetable, and two
subsequent stops pi, pj 2 S that are served by the route r, the model creates a
time-dependent route arc rpi rpj 2 A whose travel time function contains a connection
point for every elementary connection c 2 C for which pdep(c) = pi, parr(c) = pj
and r(c) = r hold. Again, non-FIFO connection points are either discarded or put
on separate parallel arcs. To enable transfers between trips of different routes, the
model additionally creates transfer arcs that connect the stop vertex to (and from) all
corresponding route vertices. More formally, it adds arcs p, rp and rp, p for every

61

Chapter 4. Public Transit Journey Planning

stop-route rp 2 Rp. Note that these arcs have constant cost. More precisely, the
model charges cost for the minimum change time by setting `(prp) = tch(p) (recall
that tch(p) depicts the minimum change time at stop p) for each arc that goes from
the stop vertex to the route vertices. Accordingly, it sets `(rp p) = 0 for arcs from
route vertices to the stop vertex.

p1

p2

p3

r1

r2

r2

r3

2

2
5

55

2

2

Figure 4.8. Realistic time-dependent model.

Figure 4.8 shows the same stops and routes in the
realistic model as Figure 4.7 showed them for the
simple model. Route vertices are drawn smaller in
orange. Note that changing routes at stop p2 now
requires five minutes time as it is indicated by the
green labels on the transfer arcs.

Footpaths. To incorporate footpaths between stops,
the graph is augmented by arcs between stop vertices.
Recall that each footpath of the input is defined as a
tuple (pi, pj) 2 S ⇥S with associated length `(pi, pj),
meaning that it is possible to walk from stop pi to
stop pj in time `(pi, pj). To incorporate them, we in-
sert, for each tuple (pi, pj) 2 F an arc (pi, pj) into G
with constant weight `(pi, pj)—similarly to transfer
arcs within stops.

Discussion. Like for the time-expanded model, several extensions exist that were
omitted here. These include incorporating traffic days and enabling variable transfer
times between routes [PSWZ08]. However, all of the (time-dependent) models share
the notion of time-dependent arcs in order to combine elementary connections into
a single arc. By these means, the graphs obtained by these models are significantly
smaller when compared to the time-expanded approach. This comes at the cost of
a (slightly) more complicated query algorithm, though, which must evaluate travel
time functions when considering arcs. However, in practice this is greatly outweighed
by the smaller graph sizes, making the time-dependent approach the more practical
one [BDW11].

Still, all (realistic) variants of the time-dependent model rely on the notion of routes
and add at least as many vertices per stop to the graph as there are routes serving it.
In fact, an analysis of the model reveals that the average number of route vertices
per stop is typically between 5 and 16, depending on the input (cf. Section 4.5.4),
which is quite high. To reduce this number, the next section introduces a new model
which is based on a formal notion of conflicting trips. Note that a smaller graph size
immediately results in faster query times for any search algorithm.

62

4.3. Graph Models

4.3.4. Coloring Model

One main reason of using the notion of routes in the realistic time-dependent model
is the observation that in any journey, transfers between two trips of the same route
are never beneficial. Thus, when assigning trips of the same route to the same route
vertex (i. e., assigning their respective elementary connections to arcs incident to the
route vertex), we ensure that we do not generate a journey with invalid transfers, i. e.,
violating the minimum change time at some stop. However, this property can also be
guaranteed by a more formal notion of conflicting trips.

Now, consider two trips t1 and t2 which serve some stop p. Let tarr(t1, p) be the
arrival time of trip t1 at p and tdep(t2, p) the departure time of t2 at p. Then, these
two trips conflict if and only if t2 departs after the arrival of t1 and the time in between
is smaller than the minimum change time at t. More precisely, t1 and t2 conflict if
and only if

tdep(t2, p) ≥ tarr(t1, p) and tarr(t1, p) + tch(p) > tdep(t2, p). (4.3)

In this case, putting t1 and t2 on the same route vertex could produce an illegal
journey, which must be avoided.

Testing the conflict condition for all pairs of trips serving p naturally induces
an undirected conflict graph G⇤(p) = (V⇤(p), E⇤(p)). The vertex set V⇤(p) ✓ T
contains exactly those trips t 2 T that serve p (i. e., where there exists an elementary
connection c 2 C with t(c) = t and pdep(c) = p or parr(c) = p. Two pairs of
vertices ti, tj 2 V⇤(p) are connected by an edge {ti, tj} 2 E⇤(p) if and only if ti and tj
are conflicting. Experiments on our instances (cf. Section 4.5.4) reveal that the number
of conflicting trips is small indeed: We observe that of all possible trip pairs per stop,
on average less than 0.5 % are actually conflicting. Thus, we may regard G⇤ as sparse.

It is now easy to see that a vertex coloring of G⇤(p) (i. e., each vertex gets a color
assigned), where no two adjacent vertices may share the same color, induces a set of
route vertices of the stop p in the model graph G: Let K be the number of distinct
colors used for G⇤(p), then for each color k = 1 . . . K we create a route vertex u in G
and put exactly those trips onto u that have assigned color k in G⇤(p). An example of
a conflict graph and its induced subgraph in the time-dependent model is illustrated
in Figure 4.9.

Computing Colorings. In general, our goal is to generate as few route vertices in G
as possible. Thus, we aim for computing a coloring on G⇤(p) with as few colors as
possible. In fact, a lower bound on the number of route vertices for p in p is given by
the chromatic number c(G⇤(G)). Since it is well known that computing c(G⇤(p)) is
NP-complete [Kar72], we use the following greedy heuristic to color G⇤(p) for every
p independently. We start with an uncolored graph and process the vertices of G⇤(p)
in order of decreasing degree. When considering vertex u, we assign u the smallest
color that is not used by any of u’s neighbors.

63

Chapter 4. Public Transit Journey Planning

(a) Conflict graph.

p

(b) Model graph.

Figure 4.9. Exemplary conflict graph G⇤(p) of a stop p with a valid vertex coloring that uses three
colors (left) and the corresponding induced subgraph for p of the time-dependent model having
three route vertices (right). In the right figure, route arcs are drawn bold while transfer arcs are
drawn thinner.

Note that this algorithm never uses more than maxdeg(G⇤(p)) + 1 colors, where
maxdeg(G⇤(p)) depicts is the maximum vertex degree of G⇤(p). Since we con-
sider G⇤(p) to be sparse, the results of the greedy algorithm on G⇤(p) are quite good
in practice (see Section 4.5.4 for experimental details).

Merging Small Stops. To further reduce the number of vertices in the time-dependent
model graph G, we may merge small stop p which have only one route vertex (i. e.,
G⇤(p) has been colored with one color). More precisely, we merge the stop vertex
with the (only) route vertex. Since there are no conflicting trips at p, we do not lose
correctness by applying this procedure to all stops of this type in G.

4.3.5. Artificial Footpaths

Considering footpaths turns out crucial for finding realistic journeys with reasonable
transfers. Even worse, the graph obtained from real-world timetables may even get
disconnected into several components when footpaths are omitted. Unfortunately,
footpath data is not always included with the available timetable data from the transit
agencies. Thus, we propose the following heuristic to generate an artificial set F of
footpaths.

Let R be the road network covering (at least) the geographical area of the public
transit network for which we are about to generate footpaths. Our heuristic then
assigns every stop p 2 S to a bucket b using R. Each intersection of the road network
maintains a bucket. The algorithm then finds for stop p the intersection b 2 R which
is geographically closest to p, and assigns p to b if the geographical distance is no
greater than a parameter (typically set to 100 m). It then looks at all buckets b it
created and adds, between all pairs of different stops pi, pj 2 b, a footpath (pi, pj)

to F . The length of (pi, pj) is obtained by the sum of the distances from pi to b and
from b to pj divided by an assumed average walking speed (typically 4 kph).

64

4.4. Basic Algorithms

Figure 4.10. Example of heuristically generated footpaths in a typical U. S. bus network (two bus
lines along two streets). Footpaths are depicted as highlighted arcs.

Note that since each stop is assigned to exactly one bucket, our heuristic obtains
many small components of stops that are interconnected by footpaths near inter-
sections. In particular, we avoid connecting large regions of the network through
sequences of footpaths. See Figure 4.10 for an example.

4.4. Basic Algorithms

In this section we describe basic algorithmic approaches for solving the problems
from Section 4.2. They all operate on one of the models we introduced in Section 4.3
and are variants of extensions of Dijkstra’s algorithm [Dij59]. Moreover, we also use
them as benchmark to evaluate the performance of our new algorithms in Sections 4.5
and 4.6.

We group the algorithms in this section by the problems they solve. Therefore,
we start in Section 4.4.1 with the simplest problem, the earliest arrival problem and
show how Dijkstra’s algorithm can be adapted to the time-expanded [SWW00] and
time-dependent [CH66] models. Then, in Section 4.4.2 we consider the multicriteria
and range problems. We first describe two algorithms which can be applied to both
problems: The label-correcting (LC) algorithm [Dea99] extends Dijkstra’s algorithm
by propagating collections of labels (bags) through the network, while the multi-
label-correcting (MLC) algorithm [PSWZ08, DMS08] still maintains a bag of labels at
each vertex, but propagates them individually. Both algorithms share the property,
that vertices may be scanned more than once. Finally, we also recap the Layered
Dijkstra (LD) [BJ04] algorithm. It is simpler in that it does not use bags and can be
applied to the bi-criteria problem where the second optimization criterion (besides
arrival time) is discrete and assumes a small number of different values (e. g., number
of transfers).

65

Chapter 4. Public Transit Journey Planning

4.4.1. Earliest Arrival Problem

Recall from Section 4.2 that for the earliest arrival problem we are given source and
target stops ps, pt 2 S and a departure time t. We are now interested in computing a
journey that departs ps no earlier than t and arrives at pt as early as possible. This
problem can be solved by Dijkstra’s algorithm [Dij59] on both the time-expanded
and time-dependent graph models (on the latter it requires one minor modification,
which we discuss later).

Dijkstra’s Algorithm. Given a directed graph G = (V, A) with source and target
vertices s, t 2 V (we discuss mapping ps, pt to s, t later), Dijkstra’s algorithm maintains
two data structures: A priority queue Q of vertices as well as arrival time labels t(u) for
every vertex u 2 V, initialized in the beginning to infinity. It starts by setting t(s) = t

and adding s to Q with key t. It now, in turn, extracts (or scans) the vertex u with
minimum (current) key from the priority queue. It then proceeds by scanning all
outgoing arcs a = (u, v) 2 A (in any order). For each, it creates a tentative arrival time
label ttent(v) = t(u) + `(a) at v. If ttent(v) improves t(v), i. e., ttent(v) < t(v) holds,
it relaxes a: It updates t(v) to ttent(v) and updates Q to contain v with key ttent(v).
The algorithm stops when Q runs empty.

Note that up to now, Dijkstra’s algorithm computes arrival times for all vertices
of G. We observe that it scans vertices in the order of increasing arrival time from s,
since it always extracts the vertex with minimum key. Thus, if we are only interested
in the arrival time for a single vertex t (point-to-point query), it may stop, as soon as t
is scanned. At this time, the target vertex t is guaranteed to have the correct arrival
time set. Note that this approach can be generalized to computing distances to a set
of target vertices.

Running Time. The running time of Dijkstra’s algorithm is determined by the data
structure used for the priority queue Q. Every vertex is scanned at most once,
resulting in |V| extractions from Q. Also, every arc is scanned at most once, which
results in up to |A| updates of Q. Using a binary heap, yields a running time
of O((|V|+ |A|) log|V|) [CLRS01]. This can be improved by, e. g., Fibonacci Heaps
to O(|A|+ |V| log|V|) [FT87] or, if all arc costs are integral in the range [0, C], Multi-
Level Bucket Queues to O(|A|+ |V|plog C) [DF79].

Throughout this work we use binary heaps in our experiments for two reasons.
First, our graphs are sparse, i. e., |A| 2 O(|V|), thus, the theoretical running time
reduces to O(|V| log|V|), and, second, their implementation is simple, thus, admitting
good spatial (memory) locality, which helps cache performance in practice.

Source and Target Vertices. It remains to discuss how we select s and t for the
stops ps and pt. In the time-expanded model, the source vertex s is selected, among
all departure vertices (simple model), respective all transfer vertices (realistic model),

66

4.4. Basic Algorithms

to be the one with minimum timestamp t(s) that is greater than t. Moreover, the
departure time, which is used to initialize the algorithm at s, is updated to t(s).

Unfortunately, the target vertex t is unknown before the query is executed. (Note
that knowing t immediately yields an (earliest) arrival time t(t).) Still, Dijkstra’s
algorithm may stop, as soon as any vertex u of pt has been scanned. The first scanned
vertex at pt provably corresponds to the earliest arrival time at pt. We call the
resulting algorithm Time-Expanded Dijkstra (TED).

In the time-dependent models, on the other hand, ps and pt are directly mapped
to the corresponding stop vertices, which are then used as source and target vertices
of Dijkstra’s algorithm.

Time-Dependency. Dijktra’s algorithm can be adapted to handle time-dependent
arc costs quite easily [CH66]. The algorithm remains essentially the same, except that
when it scans an arc a = (u, v), the tentative label ttent(v) is computed by evaluating
the time-dependent arc function fa at time t(u). (Recall that t(u) corresponds to
the earliest arrival time at u.) We call the resulting algorithm Time-Dijkstra (TD).
Pseudocode of TD is shown in Figure 4.11.

Aperiodic Timetables. In case the input timetable is aperiodic, the time-expanded
model enables a simpler algorithm to compute earliest arrival queries. It is based
on the observation that, in this case, the resulting (both simple and realistic) time-
expanded graphs are acyclic, i. e., they do not contain cycles. Therefore, any path
between two vertices u, v 2 V is also a shortest path. To see why, recall that vertices
have associated timestamps, and every arc’s cost exactly corresponds to the time
difference of its incident vertices. Hence, the earliest arrival problem can be reduced
to a reachability problem: Given a source vertex s 2 V, determine the smallest (in
terms of its timestamp) reachable vertex u at the target stop pt. This vertex can be
computed by, e. g., breadth-first search (from s), which runs in time O(|V|+ |A|). A
more sophisticated approach, called Connection Scan Algorithm (CSA), orders the
arcs topologically in a preprocessing step and scans them by a linear sweep during
the query [DPSW13].

Timestamps. If many queries are run on the same graph subsequently, a significant
amount of time in Dijkstra’s algorithm is spent resetting all labels to infinity during
the initialization phase. The algorithm may avoid this by keeping a global clock w,
initially set to zero. Moreover, every vertex maintains a timestamp (also initially set
to zero). Instead of setting all labels to infinity in the beginning, the algorithm just
increases the clock value w by one. Then, each time it updates a vertex label, it also
sets its corresponding timestamp to w. Whenever it attempts to read a label, it first
checks if its timestamp equals the current clock value w. If not, the label’s value

67

Chapter 4. Public Transit Journey Planning

// Input: Graph G = (V, A), source vertex s, target vertex t, departure time t
// Side Effects: Earliest arrival times t(u) at all vertices u 2 V, if t = ? or at t, otherwise

// Initialization of the algorithm
1 Q new PQueue() // Create empty priority queue
2 t(·) • // Initialize arrival time labels
3 t(s) t
4 Q.Insert(s, t)

// Main loop
5 while not Q.Empty() do

6 u Q.ExtractMin() // Scan next vertex

7 if u = t then // Stopping criterion
8 stop;

9 forall the outgoing arcs a = (u, v) 2 A do // Scan outgoing arcs

10 ttent(v) t(u) + fa(t(u)) // Compute tentative arrival time at v

11 if ttent(v) < t(v) then // Improve arrival time at v?

12 t(v) ttent(v) // Update label of v

13 if not Q.Contains(v) then // Update priority queue
14 Q.Insert(v, ttent(v))
15 else
16 Q.DecreaseKey(v, ttent(v))

Figure 4.11. Time-Dependent Dijkstra (TD).

does not stem from the current execution. Hence, it is discarded and assumed to be
infinity, instead.

4.4.2. Multicriteria and Range Problems

Recall that the multicriteria and range problems have in common that they may
output more than one journey. To reflect this, any algorithm that computes such
queries must maintain a (dynamic) collection of labels per vertex (instead of a single
label). In the following, we quickly recap three algorithms that are based on Dijkstra’s
algorithm and can be applied to, both, multicriteria and range queries. We consider
the Label-Correcting algorithm (LC), the Multi-Label-Correcting algorithm (MLC),
and the Layered Dijkstra algorithm (LD).

Label-Correcting Algorithm. The Label-Correcting Algorithm (LC) [Dea99] extends
Dijkstra’s algorithm by maintaining a collection of labels B(u) at each vertex u 2 V,
called bag. For the scenario of multicriteria queries, every label L 2 B(u) has an

68

4.4. Basic Algorithms

associated value per optimization criterion (arrival time always being among them).
The algorithm maintains the invariant that B(u) is a Pareto set at every vertex u,
i. e., no two labels L1, L2 2 B(u) dominate each other. (Recall that L1 dominates L2,
denoted L1 4 L2, if L2 is worse or equal in all criteria than L1.)

The algorithm now maintains, like Dijkstra’s algorithm, a priority queue Q of
vertices. Keys for the priority queue entries must be chosen consistently among the
criteria at every vertex u, e. g., one may choose the minimal arrival time of the labels
in B(u) [DW09b]. It is initialized by adding an initial label L0 to B(s) with all costs
set to zero. In each iteration, the algorithm then extracts the vertex u with minimum
key from Q and scans every arc a = (u, v). However, when it scans a, it now creates
a temporary bag Btent(v) by copying all labels from B(u) and adding the cost of the
arc a for every criterion to all labels in Btent(v). Then, Btent(v) is merged into B(v): All
labels from Btent(v) are copied into B(v), thereby eliminating dominated labels on
the fly. If any label from Btent(v) survived into B(v), the vertex v is updated in the
priority queue Q. The algorithm stops as soon as the priority queue runs empty.

If we are only interested in point-to-point queries to a target vertex t, we may
make use of the following target pruning. Whenever the algorithm extracts a vertex u
from Q, it checks if all labels in B(u) are dominated by labels from B(t). If this is the
case, the algorithm prunes u, i. e., it does not scan outgoing arcs from u.

Note that this algorithm no longer scans vertices with increasing “distance”, since
they can no longer be totally ordered. Therefore, vertices may be inserted and
extracted from Q multiple times, hence, the name label-correcting algorithm.

In the case of range queries on the time-dependent model, the same algorithm
can be used. Here B(u) corresponds to the connection points Pf (u) of the travel
time function representing optimal journeys from ps to u. When an arc a = (u, v)
is relaxed, it takes the connection points Pf (u) and computes tentative connection
points by performing the link operation f (u) ⊕ fa (cf. Section 3.1). Merging the
tentative connection points into Pf (v) exactly corresponds to the merge operation
defined in Section 3.1.

For range queries, LC may (in addition to target pruning) employ the following stop-
ping criterion: Whenever it scans a vertex u with associated connection points Pf (u),
it stops if the lower bound of the corresponding function f (u) exceeds the upper bound
of the travel time function f (t) represented by the connection points Pf (t) at the
target vertex t. Note that, to ensure correctness, this requires f (u) as keys in the
priority queue for the vertices u.

The running time of LC depends on the size of the bags B(u) at each vertex.
Merging two bags B1 and B2 requires time O(|B1||B2|), since it must check each
pair (L1, L2) 2 B1 ⇥ B2 for domination. Unfortunately, the number of labels main-
tained during the algorithm’s execution can be exponential in |V| in theory [Han79],
imposing a significant slowdown over Dijkstra’s algorithm. However, for the opti-
mization criteria we consider in this work, the algorithm remains practical.

69

Chapter 4. Public Transit Journey Planning

Multi-Label-Correcting Algorithm. The Multi-Label-Correcting Algorithm (MLC),
which has been considered in [PSWZ08, DMS08], works similar to LC in that it also
maintains a bag of labels B(u) with every vertex u 2 V. However, instead of pushing
entire bags when scanning an arc, it processes each label individually. More precisely,
the algorithm keeps a priority queue Q of labels (instead of vertices). In addition,
each label L in the priority queue Q also stores the vertex u 2 V to whom it belongs.
The labels of Q are kept in arbitrary (but consistent) lexicographic order regarding
the values of the associated criteria. Similarly to LC, the algorithm is initialized
with empty bags for every vertex, except s, where it adds an initial label L0 to B(s).
Moreover, it adds L0 (together with s) to Q. In each iteration, it then extracts the
label-vertex pair (L, u) with minimum (regarding the lexicographic order) key from Q
and scans all arcs a = (u, v) 2 A. For each, it creates a tentative label Ltent by adding
the cost of the arc a to L and merges Ltent into B(v), possibly dominating labels in B(v).
If Ltent is not dominated by any label from B(v), the algorithm additionally adds
it to Q (together with v). Note that every label that is removed from B(v) (due to
domination by Ltent) must also be removed from Q.

If we are only interested in point-to-point queries toward a vertex t, the target
pruning rule of LC naturally carries over to MLC: Before inserting the tentative
label Ltent into B(v), the algorithm checks if Ltent is dominated by any label from the
target bag B(t). If this is the case, Ltent is simply discarded. See Figure 4.12 for an
illustration of MLC in pseudocode.

In contrast to LC, handling range queries with MLC is conceptually easier and re-
quires neither the link nor merge operations of travel time functions. Again, bags B(u)
correspond to the connection points Pf (u) of the (partial) travel time function repre-
senting (tentative) journeys from s to u. MLC now works on the connection points
individually (as described above) by using the following domination rule. Given two
connection points q1, q2, the connection point q1 dominates q2, i. e., q1 4 q2 if and
only if tdep(q1) ≥ tdep(q2) and tarr(q1)  tarr(q2). Note that the stopping criterion
from LC does not carry over to MLC, however, target pruning can still be applied.

In [DMS08] two additional improvements to MLC are proposed: The first, hopping-
reduction, avoids propagating a label back to the vertex it originated from. More
precisely, each label L 2 B(v) additionally keeps a parent pointer to the vertex u it
originated from (i. e., the algorithm inserted L into B(v) when it scanned an arc (u, v)).
When the algorithm extracts L from Q at a later point in its execution, it may skip
scanning the arc (v, u) (if it exists). The second improvement is label forwarding,
which avoids using the priority queue for labels with no increase in cost: Whenever
the algorithm scans an arc a = (u, v) and creates a tentative label Ltent from L
where L = Ltent, it does not insert Ltent (with v) into Q. (Note that Ltent would be
extracted in the next iteration of the algorithm). Instead, it immediately proceeds
with Ltent, scanning all arcs (v, w) 2 A.

Similarly to LC, the MLC algorithm may also exhibit an exponential number of

70

4.4. Basic Algorithms

// Input: Graph G = (V, A), source vertex s, target vertex t, departure time t
// Side Effects: Pareto sets of labels B(u) at all vertices u 2 V, if t = ? or at t, otherwise

// Initialization of the algorithm
1 Q new PQueue() // Create empty priority queue
2 B(·) ∆ // Create empty bags for every vertex
3 B(s) {L0} // Add initial label to bag at s
4 Q.Insert((L0, s), Key(L0)) // Add initial label to priority queue

// Main loop
5 while not Q.Empty() do

6 (L, u) Q.ExtractMin() // Scan next label

7 forall the outgoing arcs a = (u, v) 2 A do // Scan outgoing arcs

8 Ltent L + Cost(a) // Create tentative label and add costs to it

9 forall the labels L0 2 B(v) do // Test for domination at v
10 if L0 4 Ltent then break
11 if Ltent 4 L0 then
12 B(v) B(v) \ {L0}
13 Q.Delete((L0, v))

14 forall the labels L0 2 B(t) do // Target pruning
15 if L0 4 Ltent then break

16 if Ltent was not dominated then // Merge tentative label into bag at v
17 B(v) B(v) [{Ltent}
18 Q.Insert((Ltent, v), Key(Ltent))

Figure 4.12. Multi-Label-Correcting algorithm (MLC).

labels during execution, which yields the same (exponential in |V|) running time
as LC in theory. However, for the criteria considered in this work, performance
remains practical. An experimental comparison of LC and MLC on range queries (in
a multimodal scenario) is conducted in [Bau12].

Layered Dijkstra. For a special case of the multicriteria problem, where one is
interested in optimizing (besides arrival time) a second criterion that is discrete and
only assumes a small number of different values, the following Layered Dijkstra (LD)
algorithm may be more efficient [BJ04] than LC and MLC. We describe it using the
number of transfers as exemplary criterion.

Therefore, let K be a bound on the number of transfers. During preprocessing, the
graph is copied into K layers. Each transfer arc (in any layer) is rewired to point to
the layer directly above. Then, running Dijkstra’s algorithm from the source vertex s
on the bottom layer results for each k  K in an earliest arrival time that corresponds

71

Chapter 4. Public Transit Journey Planning

to a journey having exactly k transfers for vertices on layer k. Instead of copying
the graph, the algorithm uses an implicit representation of the layers. It, therefore,
maintains an array of K labels at each vertex and reads/writes the k-th entry in
layer k.

Moreover, to implement domination, a label at vertex u on layer k can be pruned if
there exists a label with earlier arrival time at u on a layer lower than k. Similarly to
implement target pruning for point-to-point queries, the label can be pruned if the
target vertex has a label with smaller arrival time on any layer up to k. Note that we
can drop the requirement for the bound K as input by dynamically extending the
labels, whenever necessary.

Since LD essentially runs Dijkstra’s algorithm on K copies of the graph G, the
running time of this algorithm can be bounded by the number of layers K. Using a
binary heap data structure as priority queue, thus, yields a running time of O(K(|V|+
|A|) log(K|V|)).

4.5. Parallel Self-Pruning Connection Setting Algorithm

In this section we introduce our new parallel profile search algorithm for public
transit networks. We start with a basic sequential algorithm for the general one-to-all
setting in Section 4.5.1. Therefore, we first introduce the concept of connection-setting
and show how some journeys dominate others. We then show in Section 4.5.2 the
parallelization of our algorithm. In Section 4.5.3 we then present how it can also be
utilized to accelerate point-to-point queries. A detailed review of our experiments is
found in Section 4.5.4. We conclude with a summary in Section 4.5.5.

References. This section is based on [DKP09,DKP10,DKP12]. The publication [DKP10]
was accepted at the 24th International Parallel and Distributed Processing Symposium
(IPDPS’10) and [DKP12] appeared in the ACM Journal of Experimental Algorithmics,
vol. 17, no. 1 in 2012. It is joint work with Daniel Delling and Bastian Katz.

Departing Connections. A crucial observation in public transit networks is the fact
that each journey from a source stop ps to any other stop has to begin with an
elementary connection departing at ps. Let this set of departing connections be
denoted by Cdep(ps) and defined as

Cdep(ps) := {c 2 C | pdep(c) = ps}. (4.4)

A naïve and obvious way to compute the full travel time function dist(ps, ·, ·) would
be to compute an earliest arrival query for each elementary connection c 2 Cdep(ps)

with respect to its departure time tdep(c). However, such a connection does not
necessarily contribute to the travel time function dist(ps, pt, ·). A connection ci
with departure time tdep(ci) may as well be dominated by a connection cj with later

72

4.5. Parallel Self-Pruning Connection Setting Algorithm

departure time tdep(cj) > tdep(ci) in the following sense: If the earliest arrival time
at pt starting with cj is not greater than the earliest arrival time starting with ci, we
can—and must, for the sake of correctness—prune the result of the search regarding
connection ci, since starting with ci never yields the shortest travel time. Note
that this observation implies that for any target stop pt 2 S , the set of connection
points P(dist(ps, pt, ·)) of the travel time function dist(ps, pt, ·) is a subset of the set
of connection points induced by Cdep(ps) and their travel times to pt. More precisely,
the following holds:

P(dist(ps, pt, ·)) ✓ {(t, `) | there is c 2 Cdep(ps) such that

t = tdep(c) and

` = dist(ps, pt, tdep(c))}.

(4.5)

The problem to run |Cdep(ps)| earliest arrival queries and then pruning dominated
connections from dist(ps, pt, ·) afterwards is an embarrassingly parallel problem.
Going much further, we show how to extend the above observation to obtain a
pruning rule that we call self-pruning. It can be applied to eliminate “unnecessary”
connections as soon as possible. Thereby, we use self-pruning within the restricted
domain of each single thread, but also take advantage of communication between the
different threads yielding a rule we call inter-thread-pruning. Therefore, we require a
fixed assignment of the departing connections to the processors where each processor
handles a set of connections simultaneously.

The outline of our new parallel algorithm is as follows: First, we partition the
set Cdep(ps) of departing connections to a given set of processors. Second, every
processor runs a single thread applying our main sequential profile search algorithm
restricted to its subset of departing connections. In a third step, the partial results by
the different threads are combined, thereby eliminating dominated connections that
could not be pruned earlier, a step we will refer to as connection reduction.

4.5.1. The Main (Sequential) Algorithm

From the point of view of a single processor that has some subset of Cdep(ps) as
input, it basically makes no difference to the profile search algorithm that some of the
connections are ignored. We simply obtain distk(ps, ·, ·) restricted to the connections
assigned to the particular processor k. Hence, we describe the main algorithm as if it
was a purely sequential profile search algorithm and turn towards the parallel issues,
like merging the results from each processor, the way we partition the departing
connections Cdep(ps) and our inter-thread-pruning rule, afterwards.

The naive approach of running a separate earliest arrival query for each c 2 Cdep(ps)

by Dijkstra’s algorithm (cf. Section 4.4.1) would require an empty priority queue for
every connection c. By contrast, our algorithm maintains a single priority queue and
handles all of its connections simultaneously. Moreover, we use tentative arrival times

73

Chapter 4. Public Transit Journey Planning

as keys (instead of distances). By these means, we enable both the connection-setting
property as well as our self-pruning rule.

Initialization. At first, the set Cdep(ps) of departing conncetions is determined and
ordered non-decreasingly by the departure times of the elementary connections in
Cdep(ps). Thus, we may say that a connection ci 2 Cdep ps has index i according to
the ordering of Cdep(ps). We may use the term index and departing connection
interchangeably in the following. The elements of the priority queue are pairs (u, i)
where the first entry depicts a vertex u 2 V and the second entry a connection
index 0  i < |Cdep(ps)|. For each vertex u 2 V and for each connection i a
label L(u, i) is assigned which depicts the (tentative) arrival time at u when for a
journey that starts with connection i. In the beginning, all label L(u, i) are initialized
with •. Then, for each connection ci 2 Cdep(ps) we insert (ur, i) with key tdep(ci)

into the priority queue, where ur depicts the corresponding route vertex of ci at
stop ps in the graph G. Note that in the beginning the “arrival time” L(ur, i) equals
the departure time tdep(ci).

Connection-Setting. Like Dijkstra’s algorithm, we subsequently extract the queue el-
ement (u, i) with minimum key and assign key(u, i) as the final arrival time to L(u, i).
Then, for each arc a = (u, v) 2 A, we compute a tentative label L0(v, i) at vertex v
by evaluating the arc a at time L(u, i), i. e., we set L0(v, i) := L(u, i) + fa(L(u, i)) (for
connection i). If v has not yet been discovered using connection i, we insert (v, i) into
the priority queue with key(v, i) := L0(v, i), otherwise, the element (v, i) is already
in the queue and we set key(v, i) to min(key(v, i), L0(v, i)). Note that the following
holds for every connection i: When a queue item (u, i) is scanned, the label L(u, i) is
final, thus, the label-setting property holds with respect to each connection i. We call
this property connection-setting property. The algorithm stops as soon as the priority
queue runs empty. We end up with labels L(u, i) for each vertex u 2 V and each
connection 0  i < |Cdep(ps)|. Each label depicts the arrival time at u when starting
with the i-th connection from ps.

We stress out two things. First, although the computation is done for all connections
simultaneously, they can be regarded as independent, since the labels and the queue
items refer to a specific connection throughout the algorithm. Second, the original
variant of Dijkstra’s algorithm uses distances instead of arrival times as keys. However,
this has no impact on the correctness of the algorithm: For each connection the
distance can be obtained by subtracting the respective departure time from the arrival
time, which is constant for all vertices.

Connection Reduction and Self-Pruning. For each vertex u 2 V the final labels L(u, ·)
induce a set of connection points P by

P := {(tdep(ci), d(tdep(ci), L(u, i))) | ci 2 Cdep(ps)}. (4.6)

74

4.5. Parallel Self-Pruning Connection Setting Algorithm

Unfortunately, the travel time function f represented by P does not account for domi-
nation of connections and hence does not necessarily fulfill the FIFO property (cf. Sec-
tion 4.3.3). Formally, for two connection points (ti, `i), (tj, `j) 2 P with j > i it
is possible that tj + `j  ti + `i. The aforementioned connection reduction, which
remedies this issue at the end of the algorithm, reduces P to obtain P(dist(S, T, ·)) by
removing those connection points which are dominated by another connection point
with a later departure time and an earlier arrival time.

More precisely, the algorithm scans P backwards and keeps track of the minimum
arrival time t⇤arr along the way induced by the connection with index i⇤, i e., t⇤arr :=
tdep(i⇤) + ttra(i⇤). Each time it scans a connection point j < i⇤ with an arrival
time tarr(j) ≥ t⇤arr, the connection point is deleted. The remaining connection points
are exactly those of P(dist(ps, pt, ·)).

ps

Dep: 9:00

Dep: 8:00

pArr: 10:00 Arr: 11:00

Figure 4.13. Illustrating domination.

Performing this connection reduction after ter-
mination of the algorithm results in the computa-
tion of many unnecessary connections and, there-
fore, many unnecessary queue operations. Re-
call that the keys in the priority queue are ar-
rival times. Thus, we propose a more sophisti-
cated approach to eliminate dominated connec-
tions during the algorithm: We introduce a vertex
label maxconn : V ! {0, . . . , |Cdep(ps)| − 1} de-
picting for a vertex u 2 V the highest connection
index with which the vertex u has been scanned so
far. Now, each time the algorithm extracts a queue
element (u, i) with L(u, i) := key(u, i), it checks
if i > maxconn(u) holds. If this is not the case, the vertex u has already been scanned
earlier but with a later connection (remember that j > i) tdep(cj) ≥ tdep(ci)), thus,
implying L(u, j)  L(u, i). Therefore, the current connection does not contribute
to the solution, and the algorithm prunes the connection i at u, i. e., it does not
relax outgoing arcs from u. Moreover, it sets L(u, i) := •, depicting that no journey
beginning with the i-th connection reaches u. In case that i > maxconn(u), the
algorithm updates maxconn(u) to i and continues with scanning the outgoing arcs
of u, regularly.

Obviously, by applying self-pruning, the set of connection points P(dist(ps, u, ·))
at each vertex u induced by L(u, ·) fulfills the FIFO property automatically (labels
with L(u, i) = • have to be ignored).

Figure 4.13 illustrates domination between connections. The red route is an express
route, the blue one a local route. At (a vertices belonging to) stop p, the blue
connection is pruned by the red connection, since it has an earlier arrival time and
a later departure time at ps. Also for stops beyond p, only the red connection is
optimal.

75

Chapter 4. Public Transit Journey Planning

Theorem 1. Applying self-pruning is correct.

Proof. Let u 2 V be an arbitrary vertex. We show that no optimal connection to u has
been pruned by contradiction. Let L(u, i) be the arrival time at u of the (optimal) i-th
connection and assume that i has been pruned at u. Let j denote the connection
which was responsible for pruning i. Then, it holds that L(u, j)  L(u, i). Moreover,
since j pruned i, it holds that j > i, which implies tdep(cj) ≥ tdep(ci). Therefore, it
holds that d(tdep(cj), L(u, j))  d(tdep(ci), L(v, i)). This is a contradiction to i being
optimal: Using the j-th connection results in an earlier arrival time at u by departing
later at ps. ⌅

Putting things together, pseudocode of the complete (sequential) algorithm can be
found in Figure 4.14.

4.5.2. Parallelization

Unlike the trivial parallelization that would assign a connection c 2 Cdep(ps) for an
arbitrary idle processor which then runs Dijkstra’s algorithm on c, our algorithm
needs a fixed assignment of the connections to the processors beforehand. Let P
denote the number of processors available. In a first step, we partition Cdep(ps) into P
subsets where each thread k runs our main algorithm on its restricted subset Ck

dep(ps).

After each thread terminates, we obtain partial travel time functions distk(ps, ·, ·)
restricted to the connections that were assigned to thread k. Thus, the master
thread merges the labels Lk(u, ·) of each thread k to a common label L(u, ·), thereby,
preserving the ordering of the connections. This can be done by a linear sweep over
the labels. Note that the common label L(u, ·) does not necessarily fulfill the FIFO
property, since we do not self-prune between threads (so far). For that reason, the
connection points P(ps, pt, ·)) of the final distance function are obtained by reducing
the connection points induced by the common label L(u, ·) with our connection
reduction method described above. The pseudocode of the main parallel algorithm is
presented in Figure 4.15.

Choice of the Partition. The speedup achieved by the parallelization of our algorithm
depends on the partitioning of Cdep(ps). As the overall computation time is dominated
by the thread with the longest computation time (for computing the final travel time
function, all threads have to be in a finished state), nearly optimal parallelism
would be achieved if all threads share the same amount of queue operations, thus,
approximately sharing the same computation time. However, this figure is not known
beforehand, which requires us to partition Cdep(ps) heuristically. We propose the
following simple methods.

The equal time-slots method partitions the complete time interval P into P intervals
of equal size. While this can be computed easily, the sizes of Cdep(ps)i turn out

76

4.5. Parallel Self-Pruning Connection Setting Algorithm

// Input: Graph G = (V, A), source stop ps, outgoing connections Cdep(ps)

// Side Effects: Distance labels L(·, ·) for each vertex and connection

1 Q new PQueue() // Create empty priority queue

2 maxconn(·) −• // Initialization
3 L(·, ·) •
4 discovered(·, ·) false

5 Sort(Cdep(ps)) // Order outgoing connections by departure time

6 forall the connections ci 2 Cdep(ps) do // Add route vertices at ps to queue
7 r route vertex belonging to ci
8 Q.Insert((r, i), tdep(ci))

9 discovered(r, i) true

// Main loop
10 while not Q.Empty() do

11 (u, i) Q.ExtractMin() // Scan next vertex/connection

12 if maxconn(u) > i then // Self-pruning rule
13 L(u, i) •
14 continue

15 else
16 maxconn(u) i

17 forall the outgoing arcs a = (u, v) 2 A do // Scan outgoing arcs
18 L0(v, i) L(u, i) + fa(L(u, i)) // Create tentative label
19 if not discovered(v, i) then
20 Q.Insert((v, i), L0(v, i)) // Insert tuple into priority queue
21 L0(v, i) L(v, i)
22 discovered(v, i) true

23 else if L0(v, i) < Q.Key((v, i)) then
24 Q.DecreaseKey((v, i), L0(w, i)) // Update key in priority queue
25 L0(v, i) L(v, i)

Figure 4.14. Pseudocode of the Self-Pruning Connection-Setting Algorithm (SPCS).

77

Chapter 4. Public Transit Journey Planning

// Input: Graph G = (V, E), source stop ps, outgoing connections Cdep(ps), P processors
// Side Effects: Distance labels L(·, ·) for each vertex and connection

1 {C1
dep(ps), . . . , CP

dep(ps)} Partition(Cdep(S)) // Initialization

2 for k 1 . . . P do in parallel // Parallel computation
3 Lk(·, ·) •
4 SPCS(Ck

dep(ps)) // Invoke the sequential SPCS algorithm

5 L(·, ·) Merge(L1(·, ·), . . . , LP(·, ·)) // Merge labels from threads

// Connection reduction
6 forall the u 2 V do
7 last •
8 for i |Cdep(ps)| . . . 1 do
9 if L(u, i) < last then

10 last L(u, i)
11 else
12 L(u, i) •

Figure 4.15. Parallel Self-Pruning Connection-Setting algorithm (PSPCS).

to be very unbalanced, at least in our scenario. The reason for this is that connec-
tions in Cdep(ps) are not distributed uniformly over the day due to rush hours and
operational breaks at night.

The equal number of connections method tries to improve on that by partitioning
the set Cdep(ps) into P sets of equal size (i. e., containing equally many subsequent
elementary connections). This is also very easy to compute and improves over the
equal time-slots method regarding the balance. Besides these simple heuristics, in
principle, more sophisticated clustering methods like k-Means [Mac67] can be applied.
However, our experimental evaluation (cf. Section 4.5.4) shows that the improvement
in query performance is negligible compared to the simple methods, thus, we use
the equal number of connections method as a reasonable compromise. We stress that
for the correctness of our algorithm it is not necessary to partition Cdep(ps) into cells
of subsequent connections. However, it is intuitive to see that the self-pruning rule is
most effective on neighboring (regarding the departure time) connections.

Pruning Between Threads. When computing partial travel time functions indepen-
dently in parallel, the speedup gained by self-pruning may decrease, since a connec-
tion j cannot prune a connections i, if i is assigned to a different thread than j. Thus,
with an increasing number of threads, the effect achieved of self-pruning vanishes to
the extreme point where the number of threads equals the number of connections
in Cdep(ps). In this case, our algorithm basically corresponds to computing |Cdep(ps)|

78

4.5. Parallel Self-Pruning Connection Setting Algorithm

// Input: Thread number k, number of processors P, . . .

1 . . .
2 minarrk(·) •
3 . . .

4 while not Q.Empty() do
5 . . .

// Inter-thread-pruning rule
6 if there is l with k < l  P for which minarrl(u)  L(u, i) then
7 L(u, i) •
8 continue

9 minarrk(u) min(minarrk(u), L(u, i))
10 . . .

Figure 4.16. Inter-thread-pruning rule for PSPCS. To make the figure less cluttered, only the
relevant parts of the total algorithm are shown.

earliest arrival queries in parallel—without any pruning.
To remedy this issue, the self-pruning rule can be augmented in order to make

use of dominating connections across different threads. In the case that the parti-
tioning of Cdep(ps) is chosen such that each cell Cdep(ps)k only contains subsequent
connections, we may define a total ordering on the cells by Cdep(ps)k ≺ Cdep(ps)l

if for all connections c 2 Cdep(ps)k and all connections c0 2 Cdep(ps)l it holds
that tdep(c)  tdep(c0). Without loss of generality, let k < l , Cdep(ps)k ≺ Cdep(ps)l .
We introduce an additional vertex label minarrk : V ! P for each thread k that
depicts for every vertex u the earliest arrival time at u using connections assigned
to the k-th thread. In the beginning, the algorithm initializes minarrk(u) to infin-
ity and updates minarrk(u) := min(minarrk(u), tarr(u, i)) each time thread k scans
the vertex u for some connection i. Then, in addition to the self-pruning rule, we
propose the following inter-thread-pruning rule: Each time the algorithm scans a
queue element (u, i) with tarr(u, i) = key(u, i) in thread k, it checks if there exists a
thread l with l > k for which minarrl(u)  tarr(u, i). If this is the case, it holds by
the total ordering of the partition cells that there exists a connection j assigned to
thread l with tdep(cj) ≥ tdep(ci) but tarr(u, j)  tarr(u, i). In other words, connection i
assigned to thread k is dominated by a connection j assigned to thread l. Thus, the
algorithm prunes i at u the same way it does for self-pruning, i. e., it does not relax
outgoing arcs from u for connection i. Correctness of this rule can be proven analogue
to the the self-pruning rule described earlier.

In a shared memory setup like in multicore servers, the values of minarrk(·) can be
communicated through the main memory, thus, not imposing a significant overhead
to the algorithm. Moreover, for practical use it is sufficient to only check a constant

79

Chapter 4. Public Transit Journey Planning

number x of threads {k + 1, . . . , k + x}, since dominating connections are less likely
to be “far in the future”, i. e., assigned to threads l � k. Furthermore, we like to
mention that the inter-thread-pruning rule does not guarantee pruning of dominated
connections since the priority queue is not shared across threads. However, in most
cases connections j with small arrival times prune connections i with high arrival
time with respect to their particular thread. Hence, j is likely to be scanned before i
in the parallel execution, thus, enabling pruning of i. An pseudocode illustration of
the inter-thread-pruning rule is presented in Figure 4.16.

4.5.3. Point-to-Point Queries

Dijkstra’s algorithm can be accelerated by precomputing auxiliary data as soon as
we are only interested in point-to-point queries [DSSW09a]. In this section, we
present how some of the ideas, for example, the stopping criterion, map to our new
algorithm. Moreover, we show how the precomputation of certain journeys improves
the performance of our algorithm. The enhancements introduced in this section refer
to the sequential algorithm (cf. Section 4.5.1). Thus, all results translate to our parallel
algorithm naturally. Also note that they require a target stop as input, in particular,
they do not accelerate one-to-all queries.

Stopping Criterion

For point-to-point queries, Dijkstra’s algorithm can stop the query as soon as the
target node has been extracted from the priority queue. In our case, i. e., stop-to-stop,
we can abort the query as soon as the target stop pt has its final label L(pt, i) for
all i assigned. This is achieved as follows. The algorithm maintains an index Tm,
initialized with −•. Whenever it scans a connection i at the target stop pt, it
sets Tm := max{i, Tm}. Then, the algorithm may prune all queue entries (u, i) 2 Q
for which i  Tm holds (at any vertex u). The query terminates as soon as the queue
is empty.

Theorem 2. The stopping criterion is correct.

Proof. We need to show that no queue entry q = (u, i) 2 Q with i  Tm can improve
the arrival time at pt for the connection i. Let, therefore, q0 = (u0, i0) be the responsible
entry that has set Tm. Since i  Tm holds, we know that regarding the departure
times of the connections, tdep(c0i) ≥ tdep(ci) must hold. Moreover, since q is scanned
after q0, we know that L(u0, i0)  L(u, i) must hold. In other words, it does not pay
off to continue journey i at stop p. ⌅

Pruning with a Distance Table

Next, we show how to accelerate out point-to-point algorithm by pruning with the
help of a distance table. Since a distance table computed directly on the model

80

4.5. Parallel Self-Pruning Connection Setting Algorithm

Figure 4.17. The super station graph G̃ corresponding to the network depicted by Figure 4.10.

graph G would be too large to be practical, we use the smaller super stop network to
compute the distance table. Intuitively, super stops are obtained by merging stops
that are connected by footpaths.

Constructing Super Stops. Consider the foot graph Gfoot = (S ,F) whose vertices are
exactly the stops of the timetable and arcs correspond to footpaths. As mentioned in
Section 4.3, Gfoot is composed of small connected components of stops near the same
intersection of the underlying road network. Thus, we use Gfoot to obtain a super stop
graph G̃ = (S̃ , Ã) in the following way. For each connected component in Gfoot we
create a super stop p̃ in S̃ . An arc (p̃i, p̃j) is contained in Ã if and only if there exists
an elementary connection from any of the stops inside p̃i to any of the stops inside p̃j.
We use S̃(p) to refer to the super stop of a stop p 2 S . See Figure 4.17 for the super
stop graph obtained from the network depicted in Figure 4.10.

Furthermore, for our pruning rule, we require the notion of the diameter of a super
stop p̃. It is defined as the length of the longest shortest path inside a component
of Gfoot, but additionally takes the minimum change times at its respective source and
target stops into account. Formally, let dist(pi, pj) denote the shortest path distance
between two stops pi and pj in Gfoot. Then we define

diam(p̃) := max
pi ,pj2 p̃

{tch(pi) + dist(pi, pj) + tch(pj)}. (4.7)

Think of the diameter as an upper bound on the time one can spend walking inside a
super stop.

Hub Stops. We are now given a subset S̃hub ✓ S̃ of super stops, called hub super
stops (think of them as important hubs in the network) and a distance table D : S̃hub⇥
S̃hub⇥P! Z≥0. The distance table returns, for each pair of super stops p̃i, p̃j 2 S̃hub,
the quickest way of getting from p̃i to p̃j at time t 2 P, i. e., the earliest possible
arrival time at p̃j for any of the combinations of a stop inside p̃i and a stop inside p̃j.

81

Chapter 4. Public Transit Journey Planning

p̃

Figure 4.18. Local and via super stops of a super stop p̃. Local super stops are drawn blue, while
via super stops are marked bold and red.

Note that we do not consider the diameters of p̃i and p̃j here. In other words, the
distance table returns a lower bound on the distance between p̃i and p̃j at time t.

Before explaining the pruning rule in detail, we need the additional notion of local
and via super stops. The set of local super stops local(p̃) ✓ S̃ of an arbitrary super
stop p̃ 2 S̃ includes all super stops p̃0 such that there is a simple path from p̃0 to p̃
that contains only non-hub super stops in the super stop graph G̃. The set of hub
super stops that are adjacent to at least one local super stop of p̃ are called the via
super stops of p̃, denoted by via(p̃) ✓ S̃hub. They basically separate p̃ [local(p̃) from
any other super stop in G̃. Figure 4.18 gives a small example. In the special case of S̃
being a hub super stop itself, we set local(p̃) = ∆ and via(S̃) = { p̃}.

Applying the Distance Table. In the following, we call a ps–pt (with respective super
stops p̃s and p̃t) query local, if p̃s 2 local(p̃t); otherwise the query is called global.
Note that an optimal journey of a global query must contain a via super stop of p̃t.
We accelerate global ps–pt queries by maintaining an upper bound µi,j (initialized
with •) for each connection i and each via super stop p̃j from via(p̃t). Whenever the
algorithm extracts a queue entry q = (u, i) with p̃(v) 2 S̃hub, it sets

µi,j := min{µi,j,D(p̃(u), p̃j, L(u, i) + diam(p̃(u))) + diam(p̃j)} (4.8)

for all p̃j 2 via(p̃t). In other words, µi,j depicts an upper bound on the earliest trip
one can get at p̃j, even if it involved a transfer (and potential walk) at p̃j. So, the
algorithm prunes the search for q if

for all p̃j 2 via(p̃t) : D(p̃(u), p̃j, L(u, i)) > µi,j (4.9)

holds. In other words, the search is pruned at u for a connection i if the path
through p̃(u) is provably not important for the optimal journey to any via stop
of p̃j 2 via(p̃t). Figure 4.19 gives a small example.

Theorem 3. Pruning based on a distance table is correct.

The following proof is split into several lemmas and follows the intuition that
arriving at a time earlier than µi,j at p̃j ensures getting the optimal trip towards pt.
Moreover, when the algorithm prunes at u, the path through u yields a later arrival
time at p̃j than µi,j. Thus, the path at u can be pruned, since it is no improvement
over the path corresponding to µi,j.

82

4.5. Parallel Self-Pruning Connection Setting Algorithm

p̃s p̃tp̃a

p̃b

p̃j

) tarr(p̃j, i) + diam(p̃j)  µi,j

≥ µi,j

Figure 4.19. Example for pruning via a distance table, given an ps–pt query. The super stops p̃a
and p̃b are hub super stops, and p̃j are the via super stop of p̃t. When scanning a vertex of super
stop p̃a, we obtain that the arrival time at p̃j plus the diameter at p̃j is smaller or equal to µi,j.
Hence, the algorithm prunes the query at p̃b if the lower bound obtained from the distance table
yields an arrival time at p̃j greater than µi,j.

We prove the overall correctness by showing the correctness for each connection i
separately. Thus, let i be a fixed connection index and P = [ps, . . . , pt] the shortest
path of a global ps–pt query of connection i. Note that if ps-pt is a local query, no
pruning is applied and, hence, there is nothing to prove.

Now, let t⇤arr(pt, i) denote the optimal arrival time at pt of the path P (i. e., by
starting with connection i). Moreover, let p̃t be the corresponding super stop of the
target stop pt. To show the main theorem, we prove a series of lemmas first.

Lemma 2. For all tuples (u, p̃j) 2 V ⇥ via(p̃t) with p̃(u) 2 S̃hub it holds that

t⇤arr(pt, i) D�
p̃(u), p̃j, L(u, i) + diam(p̃(u))

�
+ diam(p̃j)| {z }

=: µi,u,j

+ dist(p̃j, pt, µi,u,j).

(4.10)

Proof. Assume that the equation is false and the right hand side yields an arrival
time at pt which is earlier than t⇤arr(pt, i). Then, the path induced by the right hand
side of the equation yields a shorter path to pt, which is a contradiction to t⇤arr(pt, i)
being optimal. ⌅

This proves that using the distance table via p̃j at any vertex u yields an upper
bound on the arrival time at pt (for connection i). Since this is true at all vertices
u 2 V (for which p̃(u) 2 S̃hub), the following corollary follows immediately.

Corollary 1. Let

µi,j := min
u2V

p̃(u)2S̃hub

(µi,u,j). (4.11)

Then it holds that t⇤arr(pt, i)  µi,j + dist(p̃j, T, µi,j).

Note that in the algorithm µi,j is maintained exactly the way it is defined in
Lemma 2, and the minimum operation is applied iteratively each time it scans a

83

Chapter 4. Public Transit Journey Planning

vertex u for which p̃(v) 2 S̃hub holds. Hence, the inequality of Corollary 1 holds in
the algorithm, as well.

Next, consider the combined shortest ps–u–p̃j–pt path of connection i and arrival

time t
(j)
arr(pt, i) at pt. We lower-bound t

(j)
arr(pt, i) by the distance table in the following

lemma.

Lemma 3. For all tuples (u, p̃j) 2 V ⇥ via(p̃t) with p̃(u) 2 S̃hub it holds that

t
(j)
arr (pt, i) ≥ D(p̃(u), p̃j, L(u, i))

| {z }
=: gi,u,j

+dist(p̃j, pt, gi,u,j) (4.12)

where t
(j)
arr (pt, i) depicts the arrival time of the combined shortest ps–u–p̃j–pt path.

Proof. Assume that the right hand side of the equation evaluates to t
(j)0
arr (pt, i) with

t
(j)0
arr (pt, i) > t

(j)
arr(pt, i). Then, because both D(p̃(u), p̃j, ·) and dist(p̃j, pt, ·) are fulfill-

ing the FIFO property, the departure time t of D(p̃(u), p̃j, t) of the path correspond-

ing to t
(j)0
arr (pt, i) on the left hand side of the inequation has to be strictly smaller

than tarr(u, i) at u. But, this cannot be true, since the path induced by t
(j)
arr(pt, i) is

assumed to be the shortest path. ⌅

Intuitively, Lemma 3 proves that any valid (shortest) ps–pt path that goes via u
and p̃j has to be at least as long as the ”path“ that ignores walking times at both p̃(u)
and p̃j (and basically acts as if one could catch any trip at p̃(u) and p̃j instantaneously).

Next, we establish that, when we apply our pruning rule during the algorithm, we
do not prune a path that is important (i. e., we only prune paths which are provably
not shortest to pt).

Lemma 4. Let u 2 V be a vertex with p̃(u) 2 S̃hub, and let gi,u,j > µi,j. Then

gi,u,j + dist(p̃j, pt, gi,u,j) ≥ µi,j + dist(p̃j, pt, µi, j) (4.13)

holds.

Proof. This follows immediately from the FIFO property of dist(p̃j, pt, ·). ⌅

We now conclude our proof of the main Theorem 3. Hence, let u 2 V be a vertex
with p̃(u) 2 S̃hub, where the pruning rule is potentially applied by the algorithm.
Then from Lemmas 3, 4, and Corollary 1 we obtain for a via super stop p̃j 2 via(p̃t)

that

gi,u,j > µi,j) t
(j)
arr(pt, i) ≥ µi,j + dist(p̃j, pt, µi,j)| {z }

=: y

≥ t⇤arr(pt, i). (4.14)

Since our algorithm keeps track of µi,j as the minimum over all µi,p̃,j with p̃ 2 S̃hub,
the path which corresponds to µi,j is not pruned. Hence, at the point where u is

84

4.5. Parallel Self-Pruning Connection Setting Algorithm

pruned, a path with arrival time y toward p̃j is guaranteed to be found. Since u is
only pruned if Equation 4.13 holds for all p̃j 2 via(p̃t), it follows that u is not on the
path P, thus, u is not important for the shortest ps–pt path. ⌅

Computing Via Super Stops. The query algorithm determines the via super stops
of p̃t on-the-fly: During the initialization phase it runs a depth-first search on the
reverse super stop graph from p̃t, pruning the search at stops p̃ 2 S̃hub. Any super
stop p̃ 2 S̃hub touched during the depth-first search is added to via(p̃t). Note that
the algorithm distinguishes local from global queries when computing via(p̃t): As
soon as the depth-first search visits p̃s, the query is local, otherwise it is global.

Selecting Hub Super Stops

The efficiency of pruning via a distance table highly depends on which super stops
are selected for S̃hub. In [SWW00], the authors propose to identify important stops
by a given “importance” value provided by the input. However, such values are
not available for all inputs. Hence, we compute importance values heuristically.
Consider the aforementioned super stop graph G̃. We augment G̃ with constant
arc weights `(p̃i, p̃j). Therefore, consider all connection poins (or, equivalently,
elementary connections) that go from any stop inside p̃i to any stop inside p̃j,
denoted by C(p̃i, p̃j). Then, we define `(p̃i, p̃j) to be the expected travel time to get
from p̃i to p̃j using solely connections from C(p̃i, p̃j). Note that the expected travel
time also includes waiting times between subsequent connections. We now use G̃
with ` to select important stops by one of the following methods.

Contraction Hierarchies. A fast approach for selecting important super stops is
using Contraction Hierarchies [GSSV12]. A contraction routine iteratively removes
unimportant vertices from G̃ and adds shortcuts in order to preserve the distances
between non-removed vertices. It stops as soon as the number of unremoved vertices
is c (an input parameter). It marks the remaining super stops as important, i. e., adds
them to S̃hub.

Shortest Path Covers. Abraham et al. [ADGW11] observed that Contraction Hier-
archies may do a poor job picking the most important vertices in the context of
road networks. Hence, they propose using shortest path covers for selecting them.
Unfortunately, computing such covers is hard, but the authors propose a polynomial
time O(log|V|) approximation algorithm which we adapt to our problem by the
following approach. It begins with S̃hub = ∆ and iteratively determines the next most
important super stop as the one that covers most (yet uncovered by S̃hub) shortest
path in G̃. The algorithm stops as soon as it selected c hub super stops. Note that this
algorithm requires c times the computation of all-pairs shortest path in G̃. However, G̃
is sufficiently small for this approach to be still practical.

85

Chapter 4. Public Transit Journey Planning

Figure 4.20. Super stop graph of one of our inputs,
the Los Angeles County Metro network. Hub super
stops are highlighted in thick red (cf. Section 4.5.3).
In this figure we used the Contraction Hierarchy
method to select 10 % of the stops as hub stops.

4.5.4. Experiments

We conducted experiments on up to 48 cores (4 CPUs, 8 NUMA-nodes, 6 cores
per NUMA-node) of an AMD Opteron 6172 machine running SUSE Linux. The
machine is clocked at 2.1 GHz, has 256 GiB of RAM, 512 KiB of L2 cache per core,
and 6 MiB of L3 cache per NUMA-node. The program was compiled with GCC 4.5,
using optimization level 3. Our implementation is written in C++ using the standard
template library solely for basic data structures, such as vectors. As parallelization
framework we use OpenMP and a 4-heap as priority queue.

To avoid congestion of the memory bus, we keep a copy of the graph in the
designated memory area of each NUMA-node.

Inputs. We use three different public transportation networks as inputs: The Los
Angeles County Metro (15 146 stops and 979 283 elementary connections), and the
complete network of Metropolitan Transport Authority of New York which includes
buses, ferries, and subways (16 897 stops and 2 062 846 elementary connections).
Moreover, we use the long-distance railway network of Europe. It has 30 517 stations
and 1 691 691 elementary connections.

The networks of Los Angeles and New York were created based on the timetable of
March 1 2011. The European railway network is based on the timetable of the winter
period 1996/1997. Note that the local networks are much denser than the railway
network, i. e., the connections per station ratio is significantly higher there. Moreover,
our data of the European railway network contains realistic minimum change times
for all stations. For the bus networks of New York and Los Angeles this data was not
available to us. Hence, we set a minimum change time of 90 seconds for all bus stops.

86

4.5. Parallel Self-Pruning Connection Setting Algorithm

Table 4.2. Comparison of the realistic time-dependent model to our Coloring Model.
We report the number of stops of the timetable, the number of vertices and arcs in the
graph, as well as the number of route vertices per stop and the percentage of stops that
could be merged (i. e., consisted of only one route vertex).

Los Angeles New York Europe

Figure Routes Colored Routes Colored Routes Colored

Stops 15 146 15 146 16 897 16 897 30 517 30 517
Vertices 89 111 21 680 79 881 27 203 515 062 83 732
Arcs 235 394 54 896 198 232 67 105 1 412 082 392 675

Rt. Vertices p. St. 4.9 0.4 3.7 0.6 15.9 1.7
% Merged St. — 79.5 — 71.7 — 33.2

Footpaths are computed on all networks by our heuristic, see Section 4.3.5.
The timetable data of the local city networks is publicly available via General

Transit Data Feeds [Gen10], while the timetable data of the European railway network
was kindly given to us by HaCon - Ingenieurgesellschaft [HaC84]. As an example,
see Figure 4.20 for the super stop graph of the Los Angeles network.

Modeling

Our first set of experiments focuses on evaluating the models, as presented in
Section 4.3. In particular, we compare the realistic time-dependent model with our
new Coloring Model. Table 4.2 shows figures on all of our inputs for both models.
We observe that using the Coloring Model reduces the graph size for all inputs. The
average number of route vertices per stop shrinks by a factor of between 6.1 (New
York) and 12.3 (Los Angeles).

Additionally, we observe for many stops that there exists no conflict between any
connections. In fact, the model merges the only route vertex with its stop vertex
for 79.5 % of the stops in the Los Angeles network. On the other hand, on the
European railway network about two thirds of the stops contain more than one route
vertex, which stems from the fact that in this network minimum change times are
higher, thus, increasing the likelihood of two trains having a conflict.

Since the Coloring Model yields smaller graphs, which improves performance
on all our algorithms compared to the realistic time-dependent model, we use the
Coloring Model for all subsequent experiments.

One-to-All Queries

Our second set of experiments focuses on the question how well our Parallel Self-
Pruning Connection-Setting Algorithm (PSPCS) performs if executed on a varying

87

Chapter 4. Public Transit Journey Planning

number of cores. Therefore, we ran 1 000 one-to-all queries with the source stop
picked uniformly at random. We report the average number of connections extracted
from the priority queue (sum over all cores) and the average execution time of a query.
Table 4.3 reports these figures for a varying number (between one and forty-eight)
of cores and different partitioning strategies. In order to evaluate the partitioning,
we also report the standard deviation with respect to the execution times of the
individual threads. In other words, a low deviation shows a good balance, whereas a
high deviation indicates that some threads are often idle.

For comparison, we also report the performance of the label-correcting (LC) ap-
proach (cf. Section 4.4.2), as well as of our Connection-Setting Algorithm (CS) without
self-pruning enabled. (Think of it as running Dijkstra’s algorithm simultaneously for
every outgoing connection of the source stop.) Regarding LC, for better comparability,
the number of connections figure here indicates the sum of the sizes of the connection
points (of the functions) taken from the priority queue.

We observe that our algorithm scales pretty well with increasing number of cores.
On both the Los Angeles and New York networks, the number of scanned connections
is only increasing mildly with the number of cores. So, on twelve cores we have a
speedup factor of around four to eight compared to an execution on one core. On
48 cores, the speedup factor is between 3.6 (Europe) and 17.5 (Los Angeles). The
relatively mild speedups on Europe compared to the other networks are explained
by the fact that the average number of connections at a station is much smaller than
in the dense metropolitan networks. Still, on all cores, we are able to compute all
optimal connections for a full day in less than 0.2 seconds. Note that this value is
achieved without any preprocessing, hence, we can directly use this approach in a
fully dynamic scenario (as discussed, for example, in [FMS08]).

Regarding load balancing, we observe that using the equal number of connections
strategy (equiconn) yields (on average) the lowest query times (and deviation). In few
occasions, the equal time-slots strategy (equitime) or k-means yield better results, but
over all inputs and number of cores, equiconn seems to be the best choice. Hence, we
use equiconn as default strategy for all further multi-core experiments. Another—not
too surprising—observation is that the deviation increases with increasing number of
cores. The more cores we use, the harder a perfect balancing can be achieved.

Comparing our new connection-setting to the label correcting approach, we observe
that PSPCS outperforms LC—on Los Angeles and Europe even when PSPCS is
executed on a single core. The main reason for this is that the number of connections
investigated during execution is much smaller for PSPCS than for LC. On the network
of New York, LC is slightly faster than PSPCS on a single core, but already on three
cores PSPCS outperforms LC by a factor of two. Note that the number of priority
queue operations for LC is up to four times lower than for PSPCS. Hence, the
advantage of PSPCS in number of scanned connections does not yield the same
speedup in query times.

88

4.5. Parallel Self-Pruning Connection Setting Algorithm

Table 4.3. One-to-all profile queries with our Parallel Self-Pruning Connection-Setting Algo-
rithm (PSPCS) on varying number of cores cores and different partitioning strategies. We com-
pare PSPCS to the label-correcting approach (LC). The column “Spdup” indicates the speedup in
running time of a multi-core over a single-core execution of PSPCS. The column “Dev“ reports the
standard deviation with respect to the execution times of the individual threads indicating how
well the threads are balanced (lower values are better).

Los Angeles New York Europe

Settl. Time Spd. Dev. Settl. Time Spd. Dev. Settl. Time Spd. Dev.
P Conns [ms] Up [%] Conns [ms] Up [%] Conns [ms] Up [%]

1 844 852 374.0 1.0 — 1 606 515 931.5 1.0 — 550 912 394.9 1.0 —

EQUICONN:

3 855 676 131.5 2.8 9.1 1 625 545 391.5 2.4 13.9 666 889 162.4 2.4 15.3
6 871 978 72.1 5.2 12.9 1 654 798 165.9 5.6 12.6 843 695 139.5 2.8 18.8

12 904 149 66.1 5.7 20.9 1 711 439 118.1 7.9 16.8 1 172 269 100.9 3.9 15.0
24 967 339 46.4 8.1 22.6 1 822 735 106.9 8.7 20.5 1 709 985 125.8 3.1 21.4
48 1 079 224 21.4 17.5 13.9 2 038 022 57.0 16.3 18.5 2 393 664 109.7 3.6 20.9

EQUITIME:

3 853 629 153.5 2.4 18.9 1 623 518 384.6 2.4 24.5 651 022 163.7 2.4 17.5
6 865 679 85.6 4.4 25.6 1 645 273 201.0 4.6 26.4 799 641 172.6 2.3 23.4

12 891 822 90.7 4.1 24.9 1 692 424 132.9 7.0 23.7 1 065 354 116.5 3.4 18.2
24 943 625 55.2 6.8 23.4 1 783 835 117.5 7.9 22.2 1 474 137 136.1 2.9 21.4
48 1 022 931 38.2 9.8 21.1 1 953 405 69.7 13.4 19.9 1 970 312 117.3 3.4 21.2

k-MEANS:

3 852 122 142.2 2.6 17.8 1 619 993 361.8 2.6 22.7 648 190 166.0 2.4 19.1
6 864 301 87.2 4.3 24.5 1 643 853 190.9 4.9 25.1 810 833 113.9 3.5 18.8

12 893 412 89.5 4.2 24.7 1 693 146 171.5 5.4 21.3 1 128 571 118.0 3.3 18.0
24 949 905 44.6 8.4 21.5 1 795 074 92.2 10.1 19.8 1 644 280 122.6 3.2 21.3
48 1 057 201 31.0 12.0 20.8 2 002 726 58.5 15.9 19.0 2 276 361 107.2 3.7 21.8

OTHER ALGORITHMS:

CS 1 352 894 586.7 — — 3 327 697 1 965.4 — — 4 377 790 3 843.3 — —
LC 2 529 009 445.9 — — 4 656 646 748.4 — — 1 278 093 635.3 — —

89

Chapter 4. Public Transit Journey Planning

When comparing the single core execution of PSPCS to a connection-setting al-
gorithm without self-pruning (CS), we observe that enabling self-pruning makes a
significant difference in both scanned connections and running time. Most notably, on
Europe the number of connections drops from 4.3 million to 0.5 million together with
a drop from 3.8 to 0.4 seconds in running time. The difference is less pronounced
on the metropolitan networks, which is due to the fact that these networks inherit a
weaker hierarchy, i. e., there are fewer “express” trains (respectively buses) that prune
local (slow) trains.

Inter-Thread-Pruning. In our previous experiment (cf. Table 4.3) we did not enable
inter-thread-pruning (cf. Section 4.5.2). Hence, in Table 4.4 we compare our Self-
Pruning Connection-Setting Algorithm with and without inter-thread-pruning on a
varying number of cores P. Thereby, we limit the number of threads we check for a
dominating connection to one.

We observe that activating inter-thread-pruning helps reducing the number of
scanned connections in all scenarios. Interestingly, even for a sequential execution
we are able to reduce the number of scanned connections. Here, the “thread” we
check for a dominating connection is the thread itself. By these means, we are able to
prune over the boundary of the time period, e. g., for a connection after midnight to
prune a connection in the late evening (remember that the timetable in this section is
periodic).

While the number of scanned connections decreases with inter-thread-pruning,
the additional computational overhead in the algorithm does not always justify the
smaller number of scanned connections. Hence, the gain in query time is mostly
small. In the network of New York, enabling inter-thread-pruning even leads to
slightly worse query times. We conclude that the benefit of inter-thread-pruning is
small. Thus, for the sake of simplicity and reduced communication overhead of the
algorithm, we disable inter-thread-pruning in subsequent experiments.

Point-to-Point Queries

In this experiment we evaluate our algorithm in a point-to-point scenario. We use
all 48 cores as default and evaluate the impact of different distance table sizes. Since
these tables need to be precomputed, we also report the preprocessing time and
the size of the tables in Megabytes. Furthermore, we report the average number of
via super stops per super stop if it were the target of a query. The distance tables
are computed by running our parallel one-to-all algorithm on 48 cores from every
hub super stop. As strategies for selecting hub stops, we evaluate both the Greedy
Covers (GC) and the Contraction Hierarchies (CH) approaches (cf. Section 4.5.3).
Table 4.5 gives an overview over the obtained results.

We observe that compared to Table 4.3, the stopping criterion alone (which requires
no preprocessing) already accelerates queries by up to 89 % (Europe).

90

4.5. Parallel Self-Pruning Connection Setting Algorithm

Table 4.4. Comparing our Self-Pruning Connection-Setting
Algorithm with and without inter-thread-pruning enabled on a
varying number of cores P. The column “Spdup” refers to the
speedup in running time over a sequential execution of the
same algorithm.

Without ITP With ITP

Settl. Time Spd. Settl. Time Spd.
P Conns [ms] Up Conns [ms] Up

LOS ANGELES:

1 844 852 374.0 1.0 838 331 381.5 1.0
3 855 676 131.5 2.8 836 759 215.9 1.8
6 871 978 72.1 5.2 835 494 72.7 5.2
12 904 149 66.1 5.7 836 186 41.7 9.1
24 967 339 46.4 8.1 856 631 47.6 8.0
48 1 079 224 21.4 17.5 919 060 32.9 11.6

NEW YORK:

1 1 606 515 931.5 1.0 1 595 121 958.3 1.0
3 1 625 545 391.5 2.4 1 594 007 413.8 2.3
6 1 654 798 165.9 5.6 1 594 153 173.9 5.5
12 1 711 439 118.1 7.9 1 600 842 158.0 6.1
24 1 822 735 106.9 8.7 1 625 629 104.7 9.2
48 2 038 022 57.0 16.3 1 711 238 59.5 16.1

EUROPE:

1 550 912 394.9 1.0 511 203 373.7 1.0
3 666 889 162.4 2.4 528 588 224.5 1.7
6 843 695 139.5 2.8 610 796 100.2 3.7
12 1 172 269 100.9 3.9 824 653 119.5 3.1
24 1 709 985 125.8 3.1 1 230 380 109.8 3.4
48 2 393 664 109.7 3.6 1 753 982 106.7 3.5

91

Chapter 4. Public Transit Journey Planning

Table 4.5. Performance of our Parallel Self-Pruning Connection-Setting Algorithm (PSPCS) with
stopping criterion enabled. As partitioning strategy we use the equal connections method.
Moreover, we prune by a distance table as described in Section 4.5.3. The number of hub super
stops is given in percentage of input super stops.

Los Angeles New York

PREPROCESSING QUERIES PREPROCESSING QUERIES

Size Time Space Via Settl. Time Spd. Time Space Via Scnd. Time Spd.
[%] [m:s] [MiB] St. Conns [ms] Up [m:s] [MiB] St. Conns [ms] Up

0 — — — 614 254 19.8 1.0 — — — 1 188 870 35.4 1.0

Greedy Covers:

2.5 2:48 52.5 39.3 392 872 25.7 0.8 5:07 115.0 20.0 547 307 32.3 1.1
5.0 5:15 171.7 8.4 214 620 12.8 1.5 9:57 394.8 4.7 280 011 18.9 1.9

10.0 10:50 577.5 3.7 141 348 10.0 2.0 20:29 1 352.7 2.6 198 315 15.7 2.3
15.0 16:29 1 189.5 2.8 126 509 9.9 2.0 31:45 2 807.8 2.1 181 965 14.8 2.4
20.0 22:24 1 980.7 2.5 121 244 9.8 2.0 43:57 4 791.7 1.9 174 438 14.5 2.4

Contraction Hierarchies:

2.5 1:09 53.3 295.4 565 832 60.7 0.3 1:43 110.9 165.2 784 445 82.8 0.4
5.0 2:41 196.3 28.0 250 452 26.0 0.8 4:31 412.0 8.1 299 851 12.8 2.8

10.0 6:12 659.0 3.8 128 265 9.8 2.0 10:50 1 500.4 2.6 183 729 10.7 3.3
15.0 9:35 1 323.1 2.7 109 229 8.0 2.5 17:23 3 126.8 1.9 167 777 9.5 3.7
20.0 13:12 2 166.4 2.3 110 502 8.8 2.2 24:53 5 213.8 1.7 162 283 11.9 3.0

Europe

PREPROCESSING QUERIES

Size Time Space Via Scnd. Time Spd.
[%] [m:s] [MiB] St. Conns [ms] Up

0 — — — 1 266 720 58.0 1.0

Greedy Covers:

2.5 44:59 71.9 5.9 347 156 21.5 2.7
5.0 84:13 261.3 3.0 261 894 17.8 3.3

10.0 161:41 930.6 2.2 256 514 18.4 3.2
15.0 216:31 1 956.0 2.1 263 867 19.4 3.0
20.0 280:02 3 354.7 2.0 260 812 18.0 3.2

Contraction Hierarchies:

2.5 2:32 72.7 42.7 507 466 41.8 1.4
5.0 5:21 269.5 4.9 280 494 19.1 3.0

10.0 12:01 985.8 2.2 220 550 16.1 3.6
15.0 18:37 2 068.6 1.9 208 599 14.1 4.1
20.0 27:01 3 492.4 1.7 218 388 15.4 3.8

92

4.5. Parallel Self-Pruning Connection Setting Algorithm

When we additionally use a distance table, we can accelerate our queries further. We
observe that the size of the distance table has a high impact on the query performance,
especially for smaller tables. Augmenting only 2.5 % of the super stops to hub super
stops hardly accelerates queries. In fact, especially on the very dense network of
Los Angeles, the performance even degrades for small tables, as the average number
of required via super stops per target super stop is too high. Note that we need to
separate the target super stop by via stops from the network (cf. Section 4.5.3), hence,
the more super stops are augmented as hub stops, the less of them are required to
separate the target super stop.

On the other hand, augmenting 10 % of the super stops yields additional speedups
between 2.0 and 3.6, depending on the input. Larger distance tables hardly pay off:
The size of the table increases significantly, and the gain in query performance is little.
Hence, selecting 10–15 % of the stops as hub stops seems to be a good compromise.

Regarding the preprocessing effort, we observe that with increasing number of hub
stops the size of the tables and the preprocessing time increase as well. Moreover,
while the fraction of the preprocessing time spent on selecting hub super stops is
negligible when using the Contraction Hierarchies method (CH), it is significant for
the Greedy Covers method (GC). This is because for each selected super stop, we
need to run an all-pairs shortest-path computation on the (sparse) super stop graph,
each of which takes time O(|S̃ |2 log |S̃ |). Recall that S̃ is the set of super stops.

However, when using 10 % hub super stops selected by the CH method, we
can compute the distance tables in 6 to 10 minutes while the tables consume less
than 1.5 GiB space for all of our inputs. For this scenario, we are able to compute all
quickest connections on all inputs in less than 16.1 ms time.

A Different Machine

In this final experiment, we run our parallel algorithm on different hardware. Here
we use a dual Intel Xeon 5430 machine which has 8 cores on two NUMA-nodes
clocked at 2.6 GHz, 32 GiB of RAM and 2 ⇥ 1 MiB of L2 cache. To evaluate our
algorithm on this machine, we use the one-to-all scenario, however, for the sake of
simplicity, only for the equal connections distribution strategy. Table 4.6 shows the
obtained results.

We observe that the figures of the sequential algorithms coincide with those in
Table 4.3, except that they are scaled: The Xeon machine is slightly faster, since it
has a higher clock frequency (2.6 GHz compared to 2.1 GHz of the Opteron machine).
Regarding the parallel performance we observe speedups in the range of 3.5 to 5.7
on 8 cores. Again, the number of scanned connections on the networks of Los
Angeles and New York is almost independent of the number of cores, even without
inter-thread-pruning (which is, again, disabled in this experiment). Concluding, we
are able to compute all best connections to all stations in under 131 ms on average in
all of our networks on this machine.

93

Chapter 4. Public Transit Journey Planning

Table 4.6. One-to-all profile queries as in Table 4.3, but on an Intel Xeon 5430 machine.
Regarding PSPCS, we only report results for the EQUICONN partitioning strategy.

Los Angeles New York Europe

Settl. Time Spd. Dev. Settl. Time Spd. Dev. Settl. Time Spd. Dev.
P Conns [ms] Up [%] Conns [ms] Up [%] Conns [ms] Up [%]

1 844 852 303.5 1.0 — 1 606 515 725.2 1.0 — 550 912 293.6 1.0 —

EQUICONN:

2 849 553 196.1 1.5 9.5 1 615 576 440.0 1.6 7.4 608 951 166.2 1.8 12.6
4 861 235 92.1 3.3 9.6 1 636 196 224.4 3.2 10.4 726 382 113.4 2.6 15.8
8 882 905 53.3 5.7 13.7 1 674 558 131.0 5.5 11.7 955 412 83.7 3.5 14.2

OTHER ALGORITHMS:

CS 1 352 894 451.1 — — 3 327 697 1 363.7 — — 4 377 790 2 881.5 — —
LC 2 529 009 356.2 — — 4 656 646 589.0 — — 1 278 093 519.3 — —

4.5.5. Conclusion

In this section, we presented a new parallel algorithm for computing all best journeys
of a day from a given stop to all other stops in a public transit network in a single
query. To this extent, we exploited the special structure of travel time functions
in such networks and the fact that only few connections are useful when traveling
sufficiently far away. Introducing the concept of connection-setting, we showed how
to transfer the label-setting property of Dijkstra’s algorithm to profile queries in
transit networks. By the fact that the outgoing connections of the source stop can be
distributed to different processors, our algorithm is easy to use in a multicore setup
yielding excellent speedups on today’s computers. Moreover, utilizing the very same
algorithm to precompute connections between important stations, we can greatly
accelerate point-to-point queries.

Regarding future work, it will be interesting to incorporate multicriteria connec-
tions, e. g., minimizing the number of transfers or incorporating fare zones which is
relevant especially in local networks (also see the next section). The main challenge
here is to keep up the connection-setting property and to find efficient criteria for self-
pruning in such a scenario. Moreover, our algorithm can be seen as a replacement for
the Label Correcting algorithm, which is the basis for most of today’s time-dependent
speedup techniques, e. g., [Del11]. Hence, it would be interested to apply those
techniques to our new connection-setting approach.

94

4.6. Round-Based Public Transit Optimized Router

4.6. Round-Based Public Transit Optimized Router

In this section we introduce RAPTOR, the Round-bAsed Public Transit Optimized
Router. It solves the multicriteria problem by computing Pareto sets of journeys
optimizing arrival time and the number of transfers taken. Unlike all approaches
mentioned so far in this work, it is not graph-based. Instead, it directly operates on the
data structures of the timetable (such as stops, routes, and trips), thereby, dropping
the need for a priority queue. We show that routes may be processed (almost) inde-
pendently, which allows for an easy parallelization of RAPTOR. Finally, we extend
the algorithm to the multicriteria range scenario and also to handle further (arbitrary)
criteria (besides arrival time and number of transfers taken).

Overview. The section is organized as follows. First, Section 4.6.1 introduces RAP-
TOR in its basic variant. Several improvements, such as pruning, are discussed in
Section 4.6.2. Section 4.6.3 shows how RAPTOR can be extended to compute full
Pareto sets using strict domination. In Section 4.6.4 we show how RAPTOR can be
easily parallelized. In Section 4.6.5 we discuss exploiting the fact that trips operate
with certain frequencies in order to compress the timetable and how RAPTOR can
be adapted to handle this compression scheme (FRAPTOR). Section 4.6.6 then ex-
tends RAPTOR to handle more criteria (McRAPTOR) and contains details how two
important criteria can be incorporated, namely fare zones and reliability of transfers.
Multicriteria range queries (rRAPTOR) are covered in Section 4.6.7. Section 4.6.8
reports a detailed experimental study, which also compares RAPTOR to SPCS (cf. Sec-
tion 4.5), and Section 4.6.9 describes implementation details about the data structures
used by RAPTOR. Finally, Section 4.6.10 contains concluding remarks.

References. This section is based on [DPW12a] which appeared at the 14th Meeting
on Algorithm Engineering and Experiments (ALENEX’12) and [DPW12b] which has
been accepted at the INFORMS Journal for Transportation Science. It is joint work
with Daniel Delling and Renato F. Werneck. Part of this chapter was developed while
the author of this thesis visited Microsoft Research Silicon Valley.

We would also like to thank Dominic Green, Hatay Tuna, Kutay Tuna, and Simon
Williams from Microsoft Services UK for inspirational discussions and processing the
London transit data.

4.6.1. Basic RAPTOR Algorithm

We now introduce the basic version of RAPTOR. It solves the bicriteria problem
minimizing arrival time and number of transfers taken—like LD or MLC. However,
our method is not based on Dijkstra’s algorithm. In fact, it does not even need a
priority queue. Let ps 2 S be the source stop and t 2 P the departure time. Recall
that our goal is to compute for every number of transfers k a nondominated journey

95

Chapter 4. Public Transit Journey Planning

to a target stop pt with minimum arrival time having at most k trips. We start with a
basic version of the algorithm, then propose some optimizations.

Round-Based Approach. The algorithm works in rounds. Round k computes the
fastest way of getting to every stop with at most k − 1 transfers (i. e., by taking
at most k trips). Note that some stops may not be reachable at all. To explain the
algorithm, we bound the number of rounds by K (which can be dynamically extended
during the algorithm, if necessary). More precisely, the algorithm associates with
each stop p a multilabel (t0(p), t1(p), . . . , tK(p)), where ti(p) represents the earliest
known arrival time at p with up to i trips. All values in all labels are initialized
to •. We then set t0(ps) = t. We maintain the following invariant: at the beginning
of round k (for k ≥ 1), the first k entries in t(p) (from t0(p) to tk−1(p)) are correct,
i. e., entry ti(p) represents the earliest arrival time at p using at most i trips. The
remaining entries are set to •. The goal of round k is to compute tk(p) for all p. It
does so in three stages.

Stage I. The first stage of round k sets tk(p) = tk−1(p) for all stops p; this sets an
upper bound on the earliest arrival time at p with at most k trips.

Stage II. The second stage then processes each route in the timetable exactly once.
Consider a route r, and let T (r) = (t0, t1, . . . , t|T (r)|−1) be the sequence of trips that
follow route r, from earliest to latest. When processing route r, we consider journeys
where the last (k-th) trip taken is in route r. Recall that tch(pi) is the minimum change
time at pi required for changing trips. Let et(r, pi) be the earliest trip in route r that
one can catch at stop pi, i. e., the earliest trip t such that tdep(t, pi) ≥ tk−1(pi)+ tch(pi).
Note that (1) this trip may not exist, in which case et(r, pi) is undefined, and (2) in
the first round we do not need to add the minimum change time tch(pi). To process
the route, we visit its stops in order until we find a stop pi such that et(r, pi) is
defined. This is when we can “hop on” the route. Let the corresponding trip t be
the current trip for k. We keep traversing the route. For each subsequent stop pj, we
can update tk(pj) using this trip. To reconstruct the journey, we set a parent pointer
to the stop at which t was boarded. Moreover, we may need to update the current
trip for k: At each stop pi along r it may be possible to catch an earlier trip (because
a quicker path to pi has been found in a previous round). Thus, we have to check
if tk−1(pi) + tch(pi) < tdep(t, pi) and update t by recomputing et(r, pi). Again, we
do not need to consider the minimum change time tch(pi) in the first round.

Stage III. Finally, the third stage of round k considers footpaths. For each foot-
path (pi, pj) 2 F it sets tk(pj) = min{tk(pj), tk(pi) + `(pi, pj)}. Note that since F is
transitive (see Section 4.1), we always find the fastest walking path, if one exists. The
algorithm can be stopped after round k, if no label tk(p) was improved.

96

4.6. Round-Based Public Transit Optimized Router

Running Time. The worst-case running time of our algorithm can be bounded as
follows. In every round, we scan each route r 2 R at most once. If |r| is the number
of stops along r, then we look at Âr2R |r| stops in total to process the route. For each
stop, we must find the earliest trip et(r, ·). If we keep the list of trips serving r sorted
by time, while traversing r we can find all et(r, ·) values with a single sweep over this
list, since et(r, ·) can only decrease.

In total, RAPTOR takes O�
K(Âr2R |r|+ |T |+ |F |)� time, where K is the number

of rounds. Note that the running time per round is potentially sublinear in the size
of the input: The work per route is linear in the number of trips and the size of
the route, but most of the departure/arrival times associated with individual trips
are not considered. Constant access to the stops along routes and the arrival and
departure times of specific trips can be achieved by a few arrays (see Section 4.6.9 for
details). In contrast, a similar analysis for the route-based model reveals that MLC
and LD are slower by at least a logarithmic factor, due to the priority queues.

4.6.2. Improvements

Having set up the basic version of our algorithm, we now propose some optimizations.

Marking Routes. Iterating over all routes in every round seems wasteful. Indeed,
there is no need to traverse routes that cannot be reached by the previous round,
since there is no way to “hop on” to any of its trips. More precisely, during round k, it
suffices to traverse only routes that contain at least one stop reached with exactly k− 1
trips. To see why, consider a route whose last improvement happened at round k0 <
k− 1. The route was visited again during round k0 + 1 < k, and no stop along the
route improved. There is no point in traversing it again until at least one of its stops
improves (due to some other route). To implement this version of the algorithm, we
mark during round k− 1 the stops pi for which we improved the arrival time tk−1(pi).
At the beginning of round k, we loop through all marked stops to find all routes that
contain them. Only routes from the resulting set Q are considered for scanning in
round k. Moreover, since the marked stops are exactly those where we potentially
“hop on” a trip in round k, we only have to traverse a route beginning at the earliest
marked stop it contains. To enable this, while adding routes to Q, we also remember
the earliest marked stop in each route. See also Figure 4.21.

Local Pruning. Another useful technique is local pruning. For each stop pi, we keep
a value t⇤(pi) representing the earliest known arrival time at pi. Since we are only
interested in Pareto-optimal paths, we now only mark a stop during route traversal at
round k when the arrival time with k trips is earlier than t⇤(pi). Local pruning, thus,
allows us to drop the first stage of each round (copying the labels from the previous
round): The value t⇤(pi) automatically keeps track of the earliest possible time to get
to pi.

97

Chapter 4. Public Transit Journey Planning

ps

pt
r1

r2
r4

r3

Figure 4.21. Scanning routes for a query from ps to pt. Route r1 is first scanned in round 1,
routes r2 and r3 in round 2, and finally, route r4 in round 3. Scanning a route starts at the earliest
marked stop (bold). Shallow stops are never visited.

Target Pruning. Note that, as described, RAPTOR computes journeys to all stops of
the network (which may be useful in some applications). If we are only interested in
journeys to a target stop pt, the performance of RAPTOR can be improved by target
pruning: During round k, there is no need to mark stops whose arrival times are
greater than t⇤(pt), which is the best known arrival time at pt.

Finally, a description in pseudocode of RAPTOR including marking and pruning
can be found in Figure 4.22.

4.6.3. Transfer Preferences and Strict Domination

In [BGM10] the authors show that MLC can be extended to the scenario where one is
interested in Pareto-optimal solutions with respect to strict domination, which means
one journey only dominates another if it is strictly better in at least one criterion.
This leads to bigger Pareto sets, sometimes called full Pareto sets. The motivation for
this extension is to output journeys that have transfers at preferred locations. The
best journey can be determined in a postprocessing step by looking at all possible
combinations of transfer locations.

Transfer Preferences. RAPTOR can handle basic transfer preferences without ex-
tending the Pareto set, as follows: When scanning a route r in round k while using
trip t, we keep track of the stop (among those where t can be boarded) that maximizes
the transfer preference value. Then, whenever we write a label tk(p), we set its parent
pointer immediately to the stop with the maximum preference encountered so far.

Strict Domination. In applications that actually require strict dominance, our algo-
rithm can be utilized as follows. Instead of computing all journeys of the Pareto
set explicitly (which can be quite many in practice), it outputs a set of partial trips,
which form a compact representation of the full Pareto set. Thereby, a partial
trip tp,p0 = (t, p, p0) 2 T ⇥S ⇥S is formally defined as a tuple representing trip t 2 T

98

4.6. Round-Based Public Transit Optimized Router

// Input: Source and target stops ps, pt and departure time t.
// Side Effects: Pareto set of journeys for arrival time and number of transfers.

// Initialization of the algorithm
1 Q new Unordered heap of route-stop-tuples
2 ti(p), t⇤(p) •
3 t0(ps) t
4 Mark ps

5 foreach k 1, 2, . . . do

6 Clear Q

// Accumulate routes through marked stops from previous round
7 forall the marked stop p do
8 forall the routes r going through p do
9 Let (r0, p0) 2 Q where r0 = r

10 Update Q to contain (r, minr{p, p0})
11 Unmark p

// Traverse each route
12 forall the routes (r, p) 2 Q do
13 t ?
14 foreach stop pi of r beginning with p do

// Can the label be improved in this round?
// Includes local and target pruning

15 if t 6= ? and arr(t, pi) < min{t⇤(pi), t⇤(pt)} then
16 tk(pi) tarr(t, pi)
17 t⇤(pi) min{t⇤(pi), tk(pi)}
18 Mark pi

// Can we catch an earlier trip here?
19 if tk−1(pi)  tdep(t, pi) then
20 t et(r, pi)

// Look at footpaths
21 forall the marked stops p do
22 forall the footpaths (p, p0) 2 F do
23 tk(p0) min{tk(p0), tk(p) + `(p, p0)}
24 Mark p0

// Stopping condition
25 if no stops are marked then
26 stop

Figure 4.22. Pseudocode of the RAPTOR algorithm.

99

Chapter 4. Public Transit Journey Planning

restricted to its section from stop p to stop p0. Note that p must be served before p0

by the associated route of t.

The algorithm now works as follows. Given a source stop ps with departure time t,
it first invokes RAPTOR (just as described above) from ps at departure time t. This
results for every number k of trips at every stop p in an earliest arrival time at p
when using exactly k trips. To obtain, to a (fixed) target stop pt the full Pareto set
of journeys that have (exactly) k trips, the algorithm invokes the inverse variant of
RAPTOR from pt at time tk(pt), beginning at round k. Inverse RAPTOR just works
like regular RAPTOR, except that k is decremented in each round, and that it optimizes
latest departure times. It does so by scanning routes in backward direction. Whenever it
visits a stop p of route r, it checks if the departure time t̂k(p) at p (for round k) can be
increased when departing with the currently considered trip of r. Moreover, it updates
the current trip (if possible) to the latest trip arriving at p on route r before t̂k+1(p).
The algorithm stops after round 1 is fully executed. This results for every stop p and
every round k in a latest departure time t̂k(p) for journeys where k trips have already
been taken (to get to p from ps).

Combining both the labels of forward and inverse RAPTOR, we obtain for every
stop p and round k an interval [tk(p), t̂k(p)]. (We define intervals [a, b] with a > b as
the empty interval.) This interval exactly specifies the times at which (a) the k-th trip
of any feasible journey (that is contained in the full Pareto set) must arrive at p, and
(b), the (k + 1)-th trip of any journey must depart from p. Therefore, the partial trips
that represent the full Pareto set are induced by these intervals. We build them in
a quick postprocessing step: For each round k, stop p, and every trip t that departs
at p within the interval [tk(p), t̂k(p)], the algorithms traverses t along the stops of
its associated route. Then, for each stop p0, it check if arriving at p0 using trip t is
feasible in round k + 1, i. e., if tarr(t, p0) 2 [tk+1(p), t̂k+1(p)] is true. If this is the case,
it adds the partial trip tp,p0 to the output.

If one is interested in the actual journeys of the full Pareto set, they can be obtained
from the partial trips as follows. Consider the directed (acyclic) graph G = (V, A)

of partial trip relations, which we define as follows. Each vertex u 2 V corresponds
to a partial trip. An arc (u, v) is added to A, if u ends at the same stop as v begins
at, and v stems from the subsequent round of u. Then, exhaustively enumerating all
paths from partial trips (vertices) s that begin at ps in round 0 to partial trips t that
end at pt exactly results in the journeys contained in the full Pareto set.

Note that computing full Pareto sets can be used to compute viable alternative
journeys between ps and pt, even for the same values of arrival time and number
of transfers. It turns out, that for public transit networks this already results in
interesting alternative journeys. To increase the number of alternatives even more,
we may further add an extra slack time on the arrival time at pt: Instead of running
inverse RAPTOR from pt at time tk(pt), we simply run it at time tk(pt)+ e(tk(pt)− t),
where e ≥ 0 is an input parameter which controls the additional amount of slack time.

100

4.6. Round-Based Public Transit Optimized Router

Figure 4.23. Alternative journeys computed by RAPTOR on our London instance (cf. Section 4.6.8).
All journeys depart at 6:13 pm at Elgin Avenue/Maida Vale Stn. and arrive at Cannon Street
at 6:42 pm with exactly two trips. Any sequence of two trips yields a feasible journey.

Greater values of e lead to higher departure time labels t̂k(p) by inverse RAPTOR,
thus, to bigger intervals and greater amount of feasible partial trips. See Figure 4.23
for an example of a full Pareto set computed by RAPTOR. We set e = 0.2 to obtain
the journeys in this figure.

4.6.4. Parallelization

While Dijkstra-based algorithms are notoriously hard to parallelize (see e. g. [MS03],
[MBBC09]), RAPTOR can be easily extended to work in parallel. Most of the work is
spent dealing with individual routes, which are processed in no particular order. If
several CPU cores are available, each can handle a different subset of the routes (in
each round). During round k, however, multiple threads may attempt to write
simultaneously to the same memory location tk(p). Race conditions could be avoided
with standard synchronization primitives (such as locks), but that can be costly.
Instead, we propose two lock-free parallelization approaches for our algorithm.

Update Logs. If the hardware architecture ensures atomic writes for the values
of tk(p), we can just “blindly” write to tk(p), ignoring race conditions. The corre-
sponding memory position will always have a valid upper bound on the arrival
time at p, even if a thread could not successfully write a better value. To restore

101

Chapter 4. Public Transit Journey Planning

consistency after the route scanning stage, each thread maintains a log of its update
attempts on any value tk(p). At the end of the round, the master thread uses the logs
to correct the labels sequentially. The same technique can also be used to keep t⇤(p)
consistent. We call this approach update log parallelization.

Conflict Graphs. If atomic writes are not guaranteed, we can still avoid locks with
the conflict graph approach. We use the fact that any two routes that have no stop in
common can be safely scanned in parallel. In a quick preprocessing step, we build an
undirected conflict graph G, where vertices correspond to routes and there are edges
between any two routes that share at least one stop. We then greedily color the routes
such that no two adjacent routes share the same color. Routes with the same color
can always be processed independently.

To implement this approach efficiently, we order the routes according to their
colors (with ties broken arbitrarily) to obtain a sequence R = {r0, r1, . . . , r|R|−1}.
We then compute for every route ri a dependent route pre(ri) = rj, defined as the
highest-indexed conflicting route that appears before i in the order (j < i). The route
scanning stage is now modified as follows. When a core becomes available, it is
assigned the next (in index order) available unprocessed route ri and waits (in a busy
loop) until all routes up to pre(ri) have been fully processed. Once this happens, it
can safely process ri: Conflicting routes rj with j < i have already been processed,
and those with j > i will wait until ri is finished. Threads can use shared memory to
communicate to others that their own routes have been processed, ensuring no two
threads ever write to the same location. Unmarked routes can be skipped and set to
processed. In dynamic scenarios, route dependencies must be updated whenever a
route changes, but this takes negligible time (below a second).

4.6.5. Timetable Compression

Realistic timetables are often (partially) periodic: Trips of the same route operate
with fixed frequencies over certain timespans during the day. For example, a bus
line operates every ten minutes from 6 am to 4 pm and every 15 minutes from 4 pm
to 9 pm. Up to now, we stored each individual trip explicitly. To save memory, we
exploit such periodicities to compress our data structures in a quick preprocessing
step.

For each route r we consider its trips in order, from earliest to latest, and group
contiguous sequences of trips if and only if each pair of subsequent trips (in the
group) shares the same departure/arrival time interval at every stop along the route.

102

4.6. Round-Based Public Transit Optimized Router

More formally, for subsequent trips ti, ti+1 and tj, tj+1 (in the group) we require

tarr(ti+1, p)− tarr(ti, p), (4.15a)

tarr(tj+1, p)− tarr(tj, p), (4.15b)

tdep(ti+1, p)− tdep(ti, p), and (4.15c)

tdep(tj+1, p)− tdep(tj, p) (4.15d)

to be equal among all stops p of the route r. We refer to this time interval as the
periodicity of the trip group.

We now delete all but the first (i. e., earliest) trip t in each group and additionally
store with t its periodicity per(t) and the size of its group as size(t). Note that for
aperiodic trips we have size(t) = 1, and per(t) is undefined.

To make use of the compressed timetable, we modify RAPTOR to expand trips on
the fly. When processing a route r, we not only keep track of the current trip t, but
also of an offset 0  a < size(t). Whenever we evaluate the departure time of t at a
stop p, we compute tdep(t, p) + a · per(t) (the arrival time is computed analogously).
Accordingly, et(r, p) now returns a trip/offset pair (t, a). We refer to RAPTOR on a
frequency-compressed timetable as FRAPTOR.

4.6.6. More Criteria: McRAPTOR

In this section we show how RAPTOR can be extended to handle additional criteria,
such as fare zones and reliability. We call the resulting algorithm McRAPTOR (for
“more criteria RAPTOR”). For the special case of bicriteria range queries, Section 4.6.7
will present a tailored extension, which we call rRAPTOR.

Extending RAPTOR. Recall that plain RAPTOR stores exactly one value tk(p) per
stop and round. To extend the algorithm to more criteria, we keep multiple nondomi-
nating labels for each stop p in round k, similarly to MLC (cf. Section 4.4.2). We store
these labels in bags, denoted by Bk(p).

The algorithm is then modified as follows. When processing a route r, we first
create an empty route bag Br which keeps track of all good journeys whose last trip is
in route r. Therefore, each label L in the route bag has an associated active trip t(L).
When traversing the stops of r in order, we process each stop p in three steps.

The first step updates the arrival times of every label L 2 Br to the arrival times of
their associated trips t(L) at p. Note that if two labels have the same associated trip,
one might be eliminated.

In the second step, we merge Br into Bk(p) by copying all labels from Br to Bk(p)
and discarding dominated labels in Bk(p).

The final step merges Bk−1(p) into Br and assigns trips to all newly-added labels.

103

Chapter 4. Public Transit Journey Planning

2 3 4 5 6

7 88
9

1
12

2

3

4

5
6

2

3

4

5
6

3456

River Thames

River Thames

Station outside
the zones

Station in Zone 5

Station in Zone 4

Station in Zone 3

Station in Zone 2
Station in both zones

Station in Zone 1

Revised September 2009

Travelcard Zones

6

5

4

3

2

1

Station in both zones

Station in both zones

Station in both zones

Station in Zone 6

Station in Zone 77

Station in Zone 88

Station in Zone 99

Bakerloo

Central

Circle

District

Interchange
StationStationKey to lines

Replacement bus services

London Overground

Hammersmith & City

Metropolitan

Northern

Victoria

DLR

Jubilee

National Rail

London Tramlink

Piccadilly

Waterloo & City

Smitham

Southwark

Northwood
Northwood
Hills

North Harrow
Harrow-
on-the-Hill Northwick

Park

Harrow & Wealdstone

Watford Junction

Bushey

Headstone Lane

Pinner

Stanmore

Canons Park

Queensbury

Preston Road

Edgware

Burnt Oak

Colindale
Kingsbury

Wembley
Park Hendon

Neasden
Dollis Hill

Willesden
Green

Kilburn

Hatch End

Elstree & Borehamwood

Mill Hill Broadway Mill Hill East

Hendon Central

Brent Cross
Golders Green

HampsteadCricklewood
Hampstead Heath

Gospel Oak

Kentish Town
 West

West Ruislip

 Ruislip
Gardens

South Ruislip

Rayners
Lane

South Harrow

Northolt
Park

West Harrow

Northolt

South Kenton

North Wembley Wembley
Stadium

Stonebridge
Park

Harlesden

South
Greenford

Castle Bar
Park

Drayton
Green

West
Drayton

Hayes &
Harlington

Southall

Hanwell West
Ealing

Ealing
Broadway

North Ealing

Boston Manor
Hounslow

East

Hounslow
West Hounslow

Central

Northfields
Chiswick

Park

Acton
Town

South
Acton

Acton
Main Line

West
Acton

St. Margarets

Kew
Gardens

Feltham

Strawberry
Hill

Hampton Wick

Hampton
Court

Thames
Ditton

Surbiton

Chessington
South

Chessington
North

Brondesbury Park

Kensal Rise

Queen’s
Park

Wembley
Central

Edgware
Road

Kilburn Park
Maida Vale

Warwick Avenue

Westbourne
Park

Ladbroke Grove

Edgware
Road

North
Acton

East
Acton

Latimer Road
Park Royal

Hanger
Lane

Ealing
Common

White
City

Shepherd’s
Bush Market

Goldhawk Road

Acton
Central

Barons
Court

Kensington
(Olympia)

West
Kensington

Ravenscourt
Park

Stamford
Brook

Turnham
Green

North
Sheen

Parsons Green

Putney Bridge

East Putney
Putney

Wimbledon Park

Southfields

Wimbledon

Raynes Park

New Malden
Norbiton

Cheam
Belmont

Sutton

West Sutton

Sutton
 Common

St. Helier

Worcester
Park

Malden
Manor

South
Merton

Morden
South

Morden

Motspur
Park

Wimbledon
Chase

South Wimbledon

Colliers
Wood

Earlsfield

Wandsworth
Town

Tooting
Bec

Tooting Broadway

Balham
Clapham South

Clapham
Common

Clapham North

Clapham
High Street

Wandsworth
RoadClapham Junction

Queenstown
Road

Battersea
Park

Fulham Broadway

West
Brompton

Pimlico

South
Kensington

Earl’s
Court

Sloane
Square

Gloucester
Road

Knightsbridge

High Street
Kensington

Hyde Park
Corner

Green
Park

High Barnet

Finchley Road
& Frognal

Belsize Park

West Hampstead
Chalk Farm

Camden Town

Finchley Road

Kentish Town

Swiss Cottage

St. John’s Wood

Mornington
Crescent

Camden
Road

Imperial
Wharf

Baker
Street

Great
Portland

Street
Euston

Warren
StreetRegent’s

Park

Oxford
Circus

Bond
Street

Tottenham
Court Road

Euston
Square

Goodge
Street

Holborn

Russell
Square

Chancery
Lane

Piccadilly
Circus

City
ThameslinkCovent

Garden

Leicester
Square
Charing
Cross

St. James’s
Park

Lambeth
North

Vauxhall

Borough

London
Bridge

Elephant
& Castle

South Bermondsey

Loughborough
Junction Denmark Hill Nunhead

East Dulwich

Peckham Rye

Herne Hill

Tulse Hill

North Dulwich

West Dulwich

Mitcham
Junction

West Croydon

Carshalton
Beeches

Waddon

Reedham
Coulsdon South

Purley Oaks

South
Croydon

East
Croydon

West
Norwood

Gipsy
Hill

Crystal
Palace

Birkbeck

Penge
West

Kent House
Penge East

Lower Sydenham

Forest Hill
Honor Oak Park

Crofton Park

New Cross Gate

Sydenham Hill

New CrossQueens Road
Peckham

St. Johns

Surrey Quays

Rotherhithe

Cannon Street

Fenchurch
Street

Tower
Gateway

Tower
Hill

Monument

Aldgate
East

St. Paul’s

Shadwell

Stepney
Green

Old Street

Essex Road

King’s Cross
St. Pancras

International

Liverpool
Street

Caledonian
Road &

Barnsbury

Caledonian
Road

Holloway
Road

Upper Holloway

Drayton
Park

Tufnell Park

Archway

Highgate

Totteridge &
Whetstone

Oakleigh
Park

Woodside Park

West Finchley

Finchley Central

New
Southgate

East Finchley
Alexandra Palace

Hornsey

Crouch Hill

Palmers Green

Cockfosters

Arnos Grove

Bowes Park

Wood Green

Turnpike Lane

Harringay
Green Lanes

Manor
House

New Barnet

Hadley Wood Crews Hill

Gordon Hill

Enfield
Chase

Grange Park

Winchmore Hill

Bush Hill
Park

Enfield
Town

Turkey Street

Southbury

Enfield Lock

Ponders End

Angel Road

Edmonton
Green

White Hart
Lane

Bruce Grove

South
Tottenham

Northumberland
Park

Tottenham
Hale

Seven
Sisters

Stamford
HillFinsbury Park

Silver Street

Blackhorse
Road

Stoke Newington
St. James
Street

ClaptonRectory Road

Highbury & Islington
Hackney

Downs
Hackney
Central

Dalston
Kingsland

London Fields
Cambridge Heath

Bethnal Green

Bethnal
Green

Mile
End

Bow Road

Hackney
Wick

Limehouse

Pudding
Mill
Lane

Bromley-
by-Bow

Catford Bridge

Beckenham
Hill

New Beckenham
Ravensbourne

Sundridge Park

Bromley
North

Beckenham
Junction

Elmers End

Eden Park
West
Wickham

Bromley
South

Petts Wood

Chelsfield
Knockholt

St. Mary Cray

Sidcup

Elmstead
Woods

Grove Park

New
Eltham

Lee

Hither Green

Albany
Park

Slade Green

Woolwich
Dockyard

Abbey
Wood

Maze
Hill

Westcombe
Park

Charlton Woolwich
Arsenal

Plumstead

Dagenham
Dock

West
Ham East Ham

Forest
Gate

Woodgrange
Park

Manor Park

Leytonstone
High Road

Wanstead
Park

Dagenham
Heathway

Dagenham East

Elm
Park

Seven
Kings

Hornchurch
Leyton
Midland
Road

Walthamstow
Queen’s Road Leytonstone

Wanstead Gants
Hill

Newbury Park

Walthamstow
Central

South Woodford

Chadwell
Heath Upminster

Bridge

Emerson
Park

Gidea Park

Harold Wood

Grange
Hill

Roding
Valley

Wood Street

Highams Park

Buckhurst Hill

Notting
Hill Gate

Denham

High
Wycombe

Moor Park

Carpenders Park

Watford High Street

Luton

Radlett

Slough

Staines

Hinchley Wood

Woking
Guildford

Ewell West

Ewell
East

Dorking

Banstead

Gatwick Airport

Caterham

East Grinstead

Upper Warlingham

Potters Bar

Welwyn
Garden
City

Cheshunt

Theobalds Grove

Stansted Airport

Waltham Cross

Dunton Green

Medway Towns
Sevenoaks

Gravesend
Medway Towns

Grays

Purfleet

Shoeburyness

West
Horndon

Shenfield

Debden

Devons
Road

East
India

Marble
Arch

Queensway

Theydon Bois
Loughton

Wood
Lane

Plaistow

Upton Park

Ruislip
Manor

Eastcote

Ruislip

Hemel Hempstead

Sevenoaks

West India Quay

Canada
Water

South
Ealing

Hillingdon

Uxbridge Ickenham

Norwood
Junction

Bow Church

Oakwood

Southgate

Bounds
Green

Hertford
North

Cuffley

Brimsdown Chingford

Epping

Chigwell

AlpertonGreenford

Perivale

Brondesbury

Harringay

Arsenal

Canonbury

Homerton Leyton

Stratford

Woodford

Snaresbrook

Goodmayes

Redbridge

Becontree

Hainault

Fairlop

Barkingside
Romford

Upminster

Brentwood

Ockendon

Tilbury

Iver

Hammersmith

Royal Oak
Marylebone

Paddington

Bayswater

Lancaster
Gate

Holland
Park

Victoria Westminster

Embankment

Blackfriars

Temple

Farringdon

Barbican

Moorgate

Bank Aldgate

Angel

Shoreditch

Wapping

Westferry Blackwall

Poplar

All Saints
Langdon

Park

Maryland
Ilford

Upney

Barking

Rainham

Ashford

Shepperton

Kempton
Park

Hampton

Fulwell

Whitton

Teddington

Twickenham

Osterley

Richmond Mortlake

Barnes

Waterloo

Oval Kennington

Stockwell

Brixton Brockley

Deptford

Blackheath Kidbrooke Falconwood

Eltham Welling

Belvedere

Bexleyheath

Barnehurst

Erith

Kingston
Berrylands

Esher

Guildford

Haydons Road

Tooting

Norbury
Streatham Common

Carshalton

Hackbridge

Sydenham

Anerley

Catford

Ladywell

Bellingham

Shortlands

Bickley

Mottingham

Chislehurst

Orpington

Bexley

Crayford

Dartford

Swanley

Tolworth

Stoneleigh

Woodmansterne Kenley
Whyteleafe

Riddlesdown

Sanderstead

Coombe Lane

Hayes

Mansion
House

Chesham

Chalfont
& Latimer

Amersham

Aylesbury Rickmansworth

Watford

CroxleyChorleywood

Bermondsey

Deptford Bridge

Elverson Road

Lewisham

Cutty Sark for
Maritime Greenwich

Greenwich

Bus 285 to
Heathrow Terminals 1, 2 & 3

Bus 490 to
Heathrow Terminals 4 & 5

Merton
Park

Therapia
Lane

Ampere
Way

George
Street

Church
Street

Beddington
Lane

Waddon
Marsh Wandle

Park
Reeves
Corner

Wellesley
Road

Mitcham

Lebanon
Road

Lloyd Park

Addiscombe

Avenue
Road

Belgrave Walk

Phipps Bridge

Morden Road

Sandilands

Woodside
Arena

Harrington
Road

Blackhorse
Lane

Beckenham
Road

Addington Village
King Henry’s Drive

New Addington

Gravel Hill
Fieldway

Purley

Clock House

Dundonald
Road

Kew
Bridge

Gunnersbury

Epsom

Hatton
Cross

Tramlink
Travelcards valid in

Zones 3, or 4, or 5, or 6 (or
combination of these Zones)

and Bus & Tram Passes are
available on Tramlink

throughout the grey area

Isleworth

Syon Lane

Brentford

Streatham

Streatham
Hill

Kenton

Barnes Bridge

Wandsworth
Common

Sudbury &
Harrow Road

Kensal
Green

Sudbury Hill
Harrow

Sudbury Hill

Sudbury
Town

Kilburn
High Road

South
Hampstead

Beckton

Canning
Town

West
Silvertown

Pontoon
Dock

London City
Airport

King George V

Prince Regent
Royal Albert

Beckton Park

Royal Victoria

Cyprus

Custom House for ExCeL

Gallions Reach

Travelcards are not
valid on Heathrow
Connect between

Hayes & Harlington
and Heathrow

and on Heathrow
Express

Centrale

Woldingham

Whyteleafe
South

Merstham

Tattenham
Corner

Chipstead
Kingswood

Tadworth

Epsom
Downs

Whitechapel

Willesden Junction

Thornton
Heath

Selhurst

Wallington

Chiswick

Hounslow

Mitcham
Eastfields

ELW

ELW

225

Terminal 4

Terminals
1, 2, 3

Terminal 5

Underground station
closed until late 2011

Shepherd’s
Bush

381/N381

The routes shown on this map are a guide to
weekday, off-peak services but do not guarantee
direct trains between the stations shown.

Some stations and lines have restricted opening times.

South Quay
Crossharbour

Mudchute
Island Gardens

Canary Wharf

Heron Quays

Improvement works may affect your journey,
particularly at weekends.
Check before you travel; look for publicity
at stations, visit tfl.gov.uk/check
or call 020 7222 1234

Watford Junction is outside
Transport for London zonal
area. Special fares apply.

East London line is closed
for major line extension
work to become part of
the London Overground
network.

Heathrow
Airport

North
Greenwich

Stadelhofen
Selnau

Stammheim

Ossingen

Marthalen

Dachsen

Schloss Laufen a. Rh.

Andelfingen

Rafz

Hüntwangen-Wil

Eglisau

Glattfelden

Bülach
Embrach-Rorbas

Pfungen-Neftenbach

Wülflingen

Töss

Kloten
Zürich

Flughafen

Balsberg
Bassersdorf

Opfikon

Wallisellen
Dietlikon

Oberglatt

Glattbrugg

Affoltern

Seebach

AltstettenSchlieren
Glanzen-
berg

Weihermatt

Birmensdorf ZH

Uitikon
Waldegg

Uetliberg

Wollishofen

Leimbach

KilchbergBonstetten-Wettswil

Hedingen Adliswil

Sood-
Oberleimbach

Enge
Tiefenbrunnen

Zollikon

Goldbach

Küsnacht ZH

Rüschlikon

Thalwil

Oberrieden

Horgen
Horgen Oberdorf

Sihlwald

Oberrieden Dorf
Langnau-Gattikon

Wildpark-Höfli
Sihlau

Affoltern
am Albis

Mettmenstetten

Knonau

Urdorf Wiedikon

Hardbrücke
Wipkingen

Zürich HB

Oerlikon

Regensdorf-Watt

Otelfingen

 Golfp
ark

Otelfingen

Buch
s-

Dällik
on

Sch
öfflisd

orf-

Oberw
eningen

Niederw
eningen

Niederw
eningen Dorf

Steinmaur

Dielsd
orf Niederglatt

Thalheim-Altikon

Dinhard

Seuzach
Hettlingen

Henggart

Wallrüti

Reutlingen

WiesendangenOberwinterthur

Winterthur

Grüze Hegi

Räterschen

Seen

Sennhof-Kyburg

Kollbrunn

Rikon Rämismühle-
Zell Turbenthal

Wila

Saland

Bauma

Steg

Fischenthal

Gibswil

Hinwil

Wetzikon

KemptenAathal

Uster

Nänikon-Greifensee

Fehraltorf

Pfäffikon ZH

Illnau

Effretikon

Kemptthal

Dübendorf

Stettbach
Schwerzenbach ZH

Rümlang

Erlenbach ZH

Herrliberg-
Feldmeilen

Meilen
Uetikon

Männedorf

Wädenswil

Stäfa
Au ZH

Burghalden

Grüenfeld

Samstagern

Schindellegi-
Feusisberg

Uerikon Feldbach

Hurden

Blumenau

Jona

Kempraten

Rüti ZH

Tann-Dürnten

Wald

Pfäffikon SZ

Freienbach SOB

Riedmatt SZ

Wollerau

Wilen
bei Wollerau

Winkel
am Zürichsee

Bubikon

Elgg

Schottikon

ZweidlenKaiserstuhl AG

Rich
tersw

il

Bäch
Fre

ienbach
 SBB

Niederhasli

Dietikon

Rapperswil

Rickenbach-Attikon

Wollishofen

Niederglatt

Wettswil

Feuerthalen

Flurlingen

Uhwiesen

Benken ZH

Rheinau

Marthalen

TrüllikonRudolfingen

Oerlingen Truttikon
Guntalingen

Waltalingen

Oberstamm-
heim

Oberneunforn

Adlikon

Gütighausen

Thalheim

Dägerlen

Hettlingen

Altikon

Rickenbach ZH

Ellikon
a. d. Thur

Gundetswil

Wiesendangen

Elsau

Elgg

Schlatt
bei Winterthur

Girenbad
bei Turbenthal

Strandbad
Bichelsee

Neubrunn

Sitzberg

Schmidrüti

Sternenberg

Gfell

Bäretswil
Adetswil

Oberhittnau

Hittnau

Russikon
Hermatswil

Madetswil
Rumlikon

Wermatswil

Wildberg

Weisslingen

Kyburg

Ottikon

Oberwil

Nürensdorf

Winterberg

Lindau

Rüdlingen

Flaach Volken Dorf

Berg am Irchel

Buch
am Irchel

Teufen

Freienstein
Rorbas

Embrach

Lufingen
Oberembrach

Bachenbülach

Niederhasli

Regensdorf

Hüttikon Dänikon

Oetwil
 a.d. Limmat

Silbern

Spreitenbach
Shopping Center

Stelzenacker

Bergdietikon

Schöneggstr.
Bergfrieden

Stoffelbach

Reppischhof

Oberurdorf

Farbhof

Triemli Binz

Giesshübel

Ringlikon

Aesch

Arni
Islisberg

Jonen

Ottenbach
Zwillikon

Obfelden

Maschwanden

Rifferswil

Aeugst
am Albis

Türlersee

Hausen
am Albis

Ebertswil

Kappel am Albis

Hirzel
Spitzen

Schönenberg ZH

Hütten Feusisberg

Insel
Ufnau

Sonnenfeld

Uelikon

Oetwil
am See

Grüningen

WolfhausenHombrechtikon

Herschmettlen

Dürnten

Oberdürnten

Laupen ZH

Faltigberg

Wagen

Buech

Roggenacker

Roos

Horgenberg

Rüschlikon Moosstrasse

Sanitas

Felsenegg

Aeugstertal

Oberengstr.

UnterengstringenGeroldswil

Dällikon

Oberhasli

Zehnten-
hausplatz

Boppelse
n

Juckern

Theilingen

Brütten

Zentrum Glatt

Kirche
Fluntern

Klusp
latz

Balgris
t

Rehalp Pfaffhausen Fä
lla

nden

Benglen

Binz

Ebmatin
gen

Waldburg

Zollik
erberg

Spita
l Zollik

erberg

Waltik
on

Zumikon

Maiach
er

Neue Fo
rch

Fo
rch

Sch
euren

Neuhaus

Hinteregg

Egg

La
ngwies Z

H

Emmat

Esslingen

Riedikon

Mönchaltorf
Bertschikon

Gossau ZH
Grüt

Ottikon

Weier

Sch
leinikon

Regensb
erg

Bach
s

Weiach

Windlach

Stadel

bei N
iederglatt

Neerach

Hoch
felden

Höri

Buchberg

Wil ZH

Hüntwangen

Wasterkingen

Glattfelden

Aesch
bei Neftenbach

Humlikon

Neftenbach

Dättlikon

Steinenbach
Volketswil

Gutenswil

Volkiland

Wangen

Brüttisellen

Bellevue

Bürkliplatz
Hegibachplatz

Oberlunkhofen

Bonstetten
Stallikon

Oberalbis
Passhöhe

Itschnach

Allmend

Frankental

Watt

Adlik
on

Ringwil

Wernetshausen

Kleinandelfingen

Sellenbüren
Maur

Greifensee

Glattpark

Schalchen

Hofstetten

Wildensbuch

113

118

117

114

115
161

124 160

110 *

122
170

162

163

120*
164

171

135

172

173

134132

131

142
133

181

152

153

141

151

155

154

156

150

184
130

140

180

112

130

143

123

116

111

182
183

121

Figure 4.24. Two examples of fare zones: London, UK from 2012 [Tra00] (left) and Zürich,
Switzerland from 2012 [Zü90] (right).

The footpaths stage of the algorithm is also modified. When looking at a foot-
path (pi, pj), we create a temporary copy of Bk(pi) and add `(pi, pj) to the arrival
time of every label. Then we merge this bag into Bk(pj).

Local and Target Pruning. We also adapt local and target pruning. Similarly to t⇤

in RAPTOR, we keep for every stop p a best bag B⇤(p) that represents the nondomi-
nated set of labels over all previous rounds. Thus, whenever we are about to add a
label L to a bag Bk(p), we check if L is dominated by B⇤(p) or B⇤(pt) (recall that pt

is the target stop). If either is the case, L is not added to Bk(p). Otherwise, we also
update B⇤(p) by adding L to B⇤(p), if necessary. See Section 4.6.9 for details on the
implementation of bags.

Parallelization. Like RAPTOR, McRAPTOR scans routes in no particular order and,
thus, can be parallelized in the same way. However, since updates to Br(p) cannot be
atomic, we must use the conflict graph approach.

First Example: Fare Zones

We now consider a practical scenario: fare zones. Transit agencies often assign each
stop p to one (or multiple) fare zones from a set Z (see Figure 4.24). The price of
a journey is then determined by which fare zones it touches. Since it is often not
clear how to handle prices directly during the algorithm, it is simpler to keep track of
fare zones instead. Thus, we are interested in computing all Pareto-optimal journeys
including the set of touched fare zones as a criterion. Precise fare information can
then be determined in a (quick) postprocessing step.

104

4.6. Round-Based Public Transit Optimized Router

Incorporating Fare Zones. We handle this scenario as follows. Each label is a tuple
L = (t(L), z(L)), where z(L) ✓ Z is the set of touched fare zones so far. (Recall that
number of transfers are not part of the label since they are handled implicitly by
RAPTOR.) Here, a label L1 dominates L2 if and only if t(L1)  t(L2) and z(L1) ✓
z(L2). Note that z(p) is a cost imposed by stops rather than travel. We initialize the
source bag B0(ps) with a label (t, z(ps)). Moreover, each time we are about to merge
a label L into a bag Bk(p), we first update z(L) z(L) [z(p). To implement z(·)
efficiently, we use integers as bit sets (one bit per fare zone). Domination is tested by
bitwise-and, and set union is equivalent to bitwise-or.

Second Example: Reliability

Another practical scenario we consider is the reliability of transfers. Following Disser
et al. [DMS08], we consider the reliability of one transfer (i. e., change of trips) as a
function of the buffer time of a transfer to the interval [0, 1]. Here, the buffer time is
the time difference between departure and arrival of two subsequent trips t1 6= t2 of
a journey at some stop. It represents the maximum time t1 may be delayed before t2

is missed. The reliability of a transfer therefore represents the probability that the
transfer will be made successfully. The reliability of a journey is the product over the
reliabilities of all its transfers.

Our experiments consider two natural reliability functions. The first is a (piecewise)
linear function

rel : t 7! min(a · t + b, 1), (4.16)

the second a discretized exponential function

rel : t 7! 1− eln(1−a)−b/t (4.17)

which has been proposed by Disser et al. [DMS08]). We may use a and b to set
the reliability value for a buffer time of 0 as well as the buffer time for which the
reliability reaches a “sufficiently high” value, e. g., 0.99.

To limit the number of Pareto-optimal journeys, we may—like [DMS08]—further
discretize the interval [0, 1] by subdividing it into a fixed number (e. g., 10) of
equivalence classes of equal width.

Incorporating Reliability. We incorporate this criterion into McRAPTOR as follows.
Each label is a tuple L = (t(L), x(L)), where x(L) 2 [0, 1] is the reliability value
so far. A label L1 dominates L2 iff t(L1)  t(L2) and x(L1) ≥ x(L2). The source
bag B0(ps) is initialized with a label (t, 1). Moreover, we modify the third stage
of every round (where we assign trips). Each label (t(L), x(L)) 2 Bk−1(p) may
now result in several new labels (with assigned trips) in Br: Taking a later trip
(of r) in favor of a higher reliability may contribute to a Pareto-optimal solution.

105

Chapter 4. Public Transit Journey Planning

Hence, in a loop we create new labels (t(L0), x(L0)) for each trip t that can be caught
after t(L) (ordered from earliest to latest). We set x(L0) = x(L) · rel(tdep(t, p)− t(L)),
possibly discretizing the value. We may stop the loop as soon as rel(tdep(t, p)− t(L))
reaches 1 (which we ensure by discretizing rel accordingly). Each newly created
label L0 is then merged into Br, thereby discarding dominated labels.

Note that incorporating reliability into MLC also requires modifications, which are
similar to McRAPTOR: One label may result in several new labels when evaluating
arcs of the graph. Additionally, one must use a weaker domination rule at route
vertices (cf. Section 4.3.3). Consider a vertex representing a route r. It may have two
types of labels: Transfer labels have the corresponding stop vertex as their parent,
while route labels have another route vertex as parent. A transfer label can only
dominate a route label if and only if their respective arrival times are more than the
maximum buffer time (of the reliability function) apart. The reason for this is that
the reliability for a transfer into route r will only be considered when relaxing the
next arc on route r.

4.6.7. Range Queries: rRAPTOR

As explained in Section 4.2, we can implement range queries using McRAPTOR by
simply adding departure times as a criterion to the labels. In practice, however, we
obtain a faster algorithm by extending RAPTOR using techniques from Section 4.5 in
the context of SPCS. In particular, it does not use costly bags. The resulting algorithm
is called rRAPTOR.

Let D ✓ P be the input time range. First, we accumulate into a set Y all departure
times of trips t at the source stop ps that depart within D. We then run standard RAP-
TOR for every departure time t 2 Y independently. This results in a label tk(p) for
every stop p, departure time t, and round k. However, not all journeys from Y are
useful to get to p. More precisely, a journey J1 dominates a journey J2 if and only
if tdep(J1) ≥ tdep(J2) and tarr(J1)  tarr(J2).

Integrating Domination. To integrate this domination rule, we order Y from latest to
earliest and then run RAPTOR for every t 2 Y in order, but we keep the labels tk(p)
between rounds, instead of reinitializing them. To see why this is correct, note
that tk(p) corresponds to an intermediate journey departing from ps no earlier than
journeys computed in the current run (recall that Y is ordered). Thus, if tk(p) is
smaller, we also know how to reach p earlier. Hence, we can safely prune the current
journey. However, we cannot use local pruning, since the best arrival times t⇤(p)
do not carry over to earlier departures. Instead, at the beginning of round k we
set tk(p) = tk−1(p) for all stops where tk−1(p) improves tk(p).

RAPTOR’s parallelization techniques also work for rRAPTOR. However, since |Y| is
usually larger than the number P of CPU cores, in practice we use the same approach
as in Section 4.5.2. We first partition Y into contiguous subsets Y0, . . . , YP−1 of equal

106

4.6. Round-Based Public Transit Optimized Router

Table 4.7. Size figures for our input instances. The graph figures refer to the realistic
time-dependent model graph (cf. Section 4.3.3).

Figure London Los Angeles New York Germany Europe

Stops 20 843 15 003 17 894 6 822 30 517
Routes 2 240 1 099 1 393 9 348 44 751
Trips 133 011 16 376 45 299 104 560 899 485
Trips (Compressed) 52 386 10 554 20 031 48 377 443 435
Foot Paths 45 652 15 482 49 858 0 0
Departure Events 5 130 905 931 846 1 825 129 1 019 830 8 341 980
Min. Change Times no no no yes yes

Vertices (Graph) 101 524 81 657 66 124 118 365 550 654
Arcs (Graph) 285 510 214 369 193 159 325 292 1 516 012

size. Then each core i runs rRAPTOR on Yi independently. The results are merged
in the end, and dominated journeys are discarded.

4.6.8. Experiments

In this section we present an experimental study to evaluate our RAPTOR algorithms.
Our main benchmark input uses realistic data from Transport for London [Tra00].
It includes tube (subway), buses, tram, Dockland Light Rail (DLR), and ferries. We
extracted a Tuesday from the periodic summer schedule of 2011, which is publicly
available from the London Data Store [Lon11]. The network has 20 843 stops, 2 240
routes served by 133 011 trips, and a total of 5 130 905 distinct departure events (a
trip departing from a stop). Moreover, there are 45 652 footpaths in the network.
Figure 4.3 on Page 56 shows the stop graph of this instance. When applying timetable
compression (cf. Section 4.6.5), the number of trips is reduced to 52 386 (a factor
of 2.5). Each tube and DLR station is also assigned to one of 11 fare zones. In
London a tube ticket automatically includes unlimited bus rides. Thus, we assign
bus stops to a special fare zone that every tube/DLR station is also a member of. We
compare our algorithms to existing graph-based techniques and also SPCS. They all
use the realistic time-dependent model graph (cf. Section 4.3.3), which has 100 524
vertices and 285 510 arcs. These figures are also shown in Table 4.7, together with the
corresponding sizes for the other instances we consider, which we discuss later in
this Section.

All experiments were conducted on a dual 8-core Intel Xeon E5-2670 machine that
has 16 cores in total, clocked at 2.6 GHz, with 64 GiB of DDR3-1600 RAM. We disabled
hypterthreading for all experiments. We implemented all algorithms in C++ (with
OpenMP for parallelization), and used GCC 4.6.2 (64 bit) with full optimization
as compiler. To evaluate performance, we ran 10 000 queries with source/target

107

Chapter 4. Public Transit Journey Planning

Table 4.8. Evaluation of different variants of RAPTOR and FRAPTOR on the London
instance, compared to Time-Dijkstra (TD), Layered Dijkstra (LD), and Multi-Label-
Correcting (MLC). Bullets (•) indicate different features: minimize arrival time (Arr),
minimize number of transfers (Tran), target pruning (Prn), unpacking journeys (Unp).

Relax. # Visits # Comp. Time
Algorithm Ar

r.
Tr

an
.

Pr
n.

U
np

.

Rnd. p. Route p. Stop p. Stop # Jn. [ms]

RAPTOR • • ◦ ◦ 9.8 4.0 15.2 12.3 1.8 7.6
RAPTOR • • • ◦ 8.3 3.0 10.6 10.9 1.8 5.4
RAPTOR • • • • 8.3 3.0 10.6 10.9 1.8 6.6

FRAPTOR • • • ◦ 8.3 3.0 10.6 10.9 1.8 5.6

TD • ◦ • ◦ — — 2.6 7.4 0.9 11.0
LD • • • ◦ — — 7.1 15.6 1.8 28.7
MLC • • • ◦ — — 6.0 23.7 1.8 50.0

stops and departure time selected uniformly at random. Results for more realistic
distributions are similar.

RAPTOR. In our first set of experiments we evaluate RAPTOR (cf. Section 4.6.1) and
compare it to LD and MLC (cf. Section 4.4.2), which solve the same problem (finding
Pareto sets according to arrival times and number of transfers). With RAPTOR
we separately evaluate the impact of (1) target pruning, and (2) the overhead of
tracking paths to output full journey descriptions. Additionally to RAPTOR, we also
evaluate FRAPTOR, which uses timetable compression (cf. Section 4.6.5). Note that
we always make use of marking and local pruning.

All other algorithms are fully optimized: LD has pruning enabled and MLC uses
pruning, label-forwarding, and hop-avoidance. For comparison, we also report the
performance of Time-Dijkstra (TD), which solves the (simpler) earliest arrival problem,
which does not take the number of transfers into account.

The results are presented in Table 4.8. We report the average number of visits
and label comparisons per stop, the average size of the Pareto sets (number of jour-
neys) output, and the average (sequential) running time in milliseconds. Moreover,
for RAPTOR we report the average numbers of rounds, as well as the average number
of times each route is processed.

We observe that, on average, RAPTOR (without target pruning) performs 9.8
rounds before it can stop (i. e., no labels can be improved) and scans each route 4
times. Recall that without target pruning, we compute optimal journeys to all stops
in the network (which may be useful in some applications). Enabling target pruning
reduces the number of rounds to 8.3 with 3 route scans on average. FRAPTOR on the
compressed timetable is only 4 % slower than RAPTOR, which is due to expanding
trips on the fly. However, it keeps 2.5 times fewer trips (with their associated

108

4.6. Round-Based Public Transit Optimized Router

26 27 28 29 210 211 212 213 214 215 216

1
10

10
0

1
10

10
0

0.
1

0.
1

MLC
LD
RAPTOR

Rank

Ru
nn

in
g

Ti
m

e
[m

s]

Figure 4.25. Running time of MLC, LD, and RAPTOR on the London instance subject to the
Time-Dijkstra Rank. Smaller ranks indicate more local queries.

departure/arrival times) in memory.
When considering the number of label comparisons per stop, we see that RAPTOR,

MLC, and LD are no more than a factor of 2 apart. However, RAPTOR strongly
benefits from its simpler data structures, better locality, and lack of a priority queue:
With an average query time of 5.4 ms, it is 9 times faster than MLC, and 5 times faster
than LD. Even TD, which only minimizes arrival time (regardless of the number of
transfers), is outperformed by RAPTOR: It outputs half the number of journeys in
twice the amount of time. Although TD could be accelerated using models yielding
smaller graphs (as in [BDGM09, DKP12, Gei10]), [BDGM09] show that these models
would make multicriteria queries more complicated.

When we are also interested in unpacking full journey descriptions, we observe
that managing parent pointers within RAPTOR increases the running time by 22 %
to 6.6 ms on average.

Local Queries. We also evaluate local queries with RAPTOR using the Dijkstra
rank method, introduced in [SS05] in the context of road networks. In our scenario,
we determine ranks by running Time-Dijkstra queries without stopping criterion
from 10 000 source stops ps (with random departure times). For each 2i-th (for
integral i) vertex extracted from the priority queue, we look up its corresponding
stop pt and create a ps–pt query. These queries are then run with RAPTOR in random
order. Figure 4.25 presents results using a box and whiskers plot. Besides RAPTOR,
we also evaluate MLC and LD.

We observe that MLC consistently performs worse than both RAPTOR and LD, due
to its complicated handling of bags. Interestingly, LD is up to an order of magnitude

109

Chapter 4. Public Transit Journey Planning

Table 4.9. Comparing several extensions of RAPTOR on the London instance (see Sections 4.6.6
and 4.6.7). We also include the Multi-Label-Correcting (MLC) and Self-Pruning Connection-
Setting (SPCS) algorithms. Besides arrival time (Arr), the criteria we may consider are number of
transfers (Tran), range (Rng), fare zones (Fare), and reliability (Rel).

Relax. # Visits # Comp. Time
Algorithm Ar

r.
Tr

an
.

Rn
g.

Fa
re

Re
l.

Rnd. p. Route p. Stop p. Stop # Jn. [ms]

McRAPTOR • • • ◦ ◦ 9.4 3.8 14.1 1 056.4 15.9 219.9
rRAPTOR • • • ◦ ◦ 139.0 36.5 119.0 110.2 15.9 61.3
SPCS • ◦ • ◦ ◦ — — 31.7 87.1 7.4 177.1

McRAPTOR • • ◦ • ◦ 10.6 4.5 16.4 277.5 8.8 100.9
MLC • • ◦ • ◦ — — 22.7 818.2 8.8 304.2

McRAPTOR • • ◦ ◦ • 8.4 3.1 11.1 89.6 4.7 71.9
MLC • • ◦ ◦ • — — 17.3 286.6 4.7 239.8

faster than RAPTOR for very local queries (rank below 211). The reason for this is
that RAPTOR must process routes in full length to ensure correctness (even when the
source and target stops are close). For higher ranks, RAPTOR outperforms LD (and
MLC) by up to an order of magnitude.

Extensions of RAPTOR. Next, we evaluate both McRAPTOR and rRAPTOR (cf. Sec-
tions 4.6.6 and 4.6.7). For rRAPTOR, we fix the time range to 2 hours (other time
ranges are evaluated later), and for McRAPTOR, we consider three variants. The
first emulates a two-hour range query by using departure time as an additional
criterion, the second uses fare zones, and the third uses reliability (as discussed in
Section 4.6.6).

Fare zones are implemented using bit sets. For reliability, we use the exponential
function mentioned in Section 4.6.6, given by

rel : t 7! 1− eln(1−a)−b/t. (4.18)

We set a and b such that rel(0 min) = 0.5 and rel(10 min) = 0.99, subdividing the
codomain of rel into 10 equivalence classes of equal width. Also, we store all relevant
values of rel (in the range [0 min, 10 min]) into a lookup table, which accelerates the
evaluation of rel during queries.

We compare our algorithms to two versions of MLC: one optimizes arrival time,
transfers, and fare zones, and the other arrival time, transfers, and reliability. We also
compare our algorithm to SPCS from Section 4.5 (with a 2-hour range). Recall that
SPCS is a range query minimizing only arrival time (regardless of transfers). The
results are presented in Table 4.9. Note that columns Arr (arrival time), Rng (range),
Tran (transfers), Fare (fare zones), Rel (reliability) indicate which criteria each method
takes into account.

110

4.6. Round-Based Public Transit Optimized Router

Round

#
Re

la
xe

d
Ro

ut
es

0
50

0
10

00
15

00

1 3 5 7 9 11 13 15 17

McRAPTOR
RAPTOR
rRAPTOR

4
5

6
7

5 15 25 35 45 55

N
o.

of
Jo

ur
ne

ys

10
0

15
0

20
0

Ru
nn

in
g

Ti
m

e
[m

s]

Maximum Buffer Time [min]

Linear
Exponential

Figure 4.26. Left: Number of relaxed routes per round. For rRAPTOR, we normalize the plot by
the number of calls to RAPTOR within each query. Right: Running time (thick) and number of
journeys (thin) of McRAPTOR (with criteria arrival time, transfers, and reliability) when varying
the maximum buffer time of the reliability function.

Recall that rRAPTOR runs RAPTOR repeatedly (without reinitializing labels). In
this experiment, it actually does so 20.7 times on average. Its performance reflects this:
It runs 17 times as many rounds and takes 61 ms on average. Using McRAPTOR to
emulate the same range queries reduces the number of rounds (relative to rRAPTOR),
but running times more than triple. Again, we profit from the simpler data structures.
McRAPTOR handles bags of labels instead of running more rounds, which is costly.
Compared to pure RAPTOR, taking London’s fare zones into account results in 4.9
times more reported journeys. Using McRAPTOR, we achieve a running time
of 101 ms, a factor of 3 faster than MLC. Using reliability with McRAPTOR yields
similar figures: We output 2.6 times the number of journeys (compared to RAPTOR)
in 72 ms. Note that McRAPTOR’s speedup over MLC is less than the factor of 9 for
RAPTOR (cf. Table 4.8); unlike RAPTOR, McRAPTOR also uses costly bags.

Number of Rounds. Figure 4.26 (left) shows the number of scanned routes per round
for RAPTOR, rRAPTOR, and McRAPTOR. We normalize rRAPTOR’s plot by the
number of calls to RAPTOR within each query, i. e., we report the average number
of routes visited in each call to RAPTOR. All algorithms reach the entire network
within about 5 rounds, when most routes are scanned. Beyond that, fewer routes are
useful, and the algorithms begin running dry. McRAPTOR takes longer to converge,
while rRAPTOR generally scans less routes (per departure time) than RAPTOR, since
it can prune across different departure times.

Impact of Reliability. Figure 4.26 (right) presents the performance of McRAPTOR
when varying the reliability function (with arrival times and number of transfers as
other criteria). We compare the linear function to the exponential function (cf. Sec-

111

Chapter 4. Public Transit Journey Planning

Table 4.10. Parallel performance of the RAPTOR, McRAPTOR, rRAPTOR, and SPCS algorithms.

1 core 4 cores 8 cores 16 cores

Comp. Time # Comp. Time # Comp. Time # Comp. Time
Algorithm Ar

r.
Tr

an
.

Rn
g.

Fa
re

p. Stop [ms] p. Stop [ms] p. Stop [ms] p. Stop [ms]

RAPTOR • • ◦ ◦ 10.9 5.4 11.0 3.0 11.0 2.6 11.1 3.1
rRAPTOR • • • ◦ 110.2 61.2 119.9 21.3 132.5 16.5 154.6 17.8
McRAPTOR • • • ◦ 1 099.4 231.9 1 099.4 72.3 1 099.9 46.8 1 100.3 53.3
McRAPTOR • • ◦ • 290.8 109.9 290.6 37.8 290.5 25.5 290.7 29.6

SPCS • ◦ • ◦ 87.1 176.9 101.7 57.3 120.1 45.0 149.8 38.9

tion 4.6.6). We fix rel(0 min) = 0.5 and vary the maximum buffer time tm (for
which rel(tm) = 0.99 is reached) from 5 to 60 minutes. Again, we use 10 equivalence
classes of equal width to subdivide the codomain of rel (cf. Section 4.6.6). We plot
the average running time over 1 000 queries for each value of tm.

We see that the running time increases from around 60 ms (for tm = 5 min) to
almost 250 ms (for tm = 60 min): Higher maximum buffer times yield more Pareto-
optimal journeys and, therefore, more work for McRAPTOR. The exponential function
always has faster running times compared to the linear function. While the linear
function distributes the buffer times (in the range from 0 to tm) evenly among the
equivalence classes, the exponential function maps values to equivalence classes of
high reliability earlier, thus reducing the number of Pareto-optimal solutions.

Parallelization. Table 4.10 shows the parallel performance of our algorithms. Since
writes to the labels tk(p) are atomic for RAPTOR, we use update logs; McRAPTOR is
parallelized using conflict graphs.

Among the Dijkstra-based algorithms, only SPCS can be parallelized efficiently
across departure times. We ran each algorithm on one, four, eight, and 16 cores,
pinning thread i to core i. Note that by this configuration, we utilize only one of the
two CPUs in our machine for up to eight cores.

Comparing the single-core execution of the parallel implementations (see Table 4.10)
with the sequential ones (see Tables 4.8 and 4.9), we observe a slowdown of less
than 10 % for all algorithms. Some slowdown is expected because we introduce
additional work for our parallel implementations (see Section 4.6.4). On eight cores,
RAPTOR achieves a speedup of only 2.1. Recall that we only parallelize scanning
routes, which limits the speedup due to Amdahl’s Law (see [Amd67]).

Because McRAPTOR spends more time on each route (due to the costly processing
of bags), it benefits more from parallelization (a factor of up to 5 with fare zones
or range query emulation). Finally, rRAPTOR achieves a speedup of 3.7 on eight
cores, which is consistent with SPCS. Using 16 cores hardly pays off. Compared to

112

4.6. Round-Based Public Transit Optimized Router

1 3 5 7 9 11 13 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

1 cores
2 cores
4 cores
8 cores
16 cores

Range [h]

Ru
nn

in
g

Ti
m

e
[s

]

1 3 5 7 9 11 13 15

1
2

3
4

5
6

7
8

9

Range [h]

Sp
ee

du
p

Figure 4.27. Evaluating rRAPTOR with varying range. All queries have a fixed departure time
at 6:00 am. The key of the speedup plot (right) corresponds to that of the running time plot (left).

eight cores, for most of the algorithm the performance even gets slightly worse again.
Increased memory contention is a factor in this case.

Impact of Range. Figure 4.27 evaluates our parallel implementation of rRAPTOR
for varying range values: We fix the departure time to 6:00 am, but vary the range
from 1 to 16 hours. For each range value we run 1 000 queries between (the same)
random pairs of stops. We report the average running time on one, two, four, eight,
and 16 cores, using the same configuration as above.

We observe that increasing the range results in higher running times, with (almost)
linear correlation. Note that journeys departing late (at night) might not always reach
the target stop due to London’s hours of operation. This may in particular occur for
high range values, which explains the slight sublinear growth rate for ranges greater
than 12 hours. As Figure 4.27 shows, parallelizing rRAPTOR pays off in all cases: For
a range of 16 hours we achieve speedup factors of 5.1 on eight, and 9.4 on 16 cores
over the sequential algorithm. Using eight cores, we can compute multicriteria range
queries in less than 0.15 sec in all cases.

Additional Inputs. We now consider four more test inputs: Los Angeles and New
York, which are also metropolitan networks, and two railway networks, Germany
and Europe. We generated the local networks from publicly available feeds using
the [Gen10]. The railway data was kindly provided to us by HaCon. Los Angeles
and New York contain subways and buses, and in both cases we use an extract
of August 10, 2011 (a Wednesday) to create the timetable. The German network
is based on the winter schedule of 2001/2002 and contains all trains operated by
Deutsche Bahn. The European network is based on the winter schedule of 1996/1997

113

Chapter 4. Public Transit Journey Planning

Table 4.11. Comparison of base RAPTOR, rRAPTOR, LD, MLC, and SPCS on other instances. A
trailing “8” in the algorithm description refers to a parallel execution on eight cores.

Los Angeles New York Germany Europe

Comp. Time # Comp. Time # Comp. Time # Comp. Time
Algorithm Ar

r.
Tr

an
.

Rn
g.

Re
l.

p. Stop [ms] p. Stop [ms] p. Stop [ms] p. Stop [ms]

RAPTOR • • ◦ ◦ 11.5 2.5 7.1 2.3 36.5 5.4 40.4 42.2
RAPTOR-8 • • ◦ ◦ 11.6 1.4 7.2 1.5 37.0 2.4 40.9 16.1
TD • ◦ ◦ ◦ 7.3 5.2 4.8 4.9 26.2 8.4 23.8 50.9
LD • • ◦ ◦ 13.5 14.8 9.6 13.3 55.5 26.9 68.9 207.3
MLC • • ◦ ◦ 16.6 27.9 13.5 22.0 82.4 61.9 152.4 462.7

rRAPTOR • • • ◦ 46.1 12.7 41.1 16.6 68.6 10.8 54.5 58.9
rRAPTOR-8 • • • ◦ 56.2 9.3 51.2 7.8 167.4 11.8 135.6 50.5
SPCS • ◦ • ◦ 35.9 39.7 33.3 48.0 69.5 34.4 44.9 118.9
SPCS-8 • ◦ • ◦ 52.7 18.8 54.4 17.7 185.5 25.5 134.8 92.5

McRAPTOR • • ◦ • 36.6 22.9 43.2 29.4 81.3 28.3 90.3 189.0
MLC • • ◦ • 73.4 69.0 115.4 82.3 180.7 114.5 329.0 839.7

and contains mostly long-distance trains. Figures for the sizes of all networks are
summarized in Table 4.7 on Page 107. Note that while Los Angeles and New York
are the biggest publicly available GTFS networks at the time of writing, they are both
smaller than the London instance.

Moreover, for the metropolitan networks footpath data was not available to us.
Hence, we generated footpaths on these instances with our heuristic from Section 4.3.5.
It creates cliques of footpaths between stops that are close to the same intersection of
the road network. For Germany and Europe we use minimum change times to model
transfers within railway stations. Since no fare zone data is readily available for any
of the networks, we did not run our multicriteria algorithms that include fare zones.

Table 4.11 shows the results for all relevant algorithms. The results are consistent
with the previous experiments: RAPTOR outperforms both LD and MLC on every
instance. It can compute all Pareto-optimal journeys between two random stops
within 2.5 ms on Los Angeles, 2.3 ms on New York, and 5.4 ms on Germany. On
Europe, RAPTOR takes 42.2 ms, which is due to the very high number of routes in
this instance (44 751 compared to, e. g., 2 240 on London, cf. Table 4.7). Parallelizing
RAPTOR shows moderate effect: Speedups are below a factor of 2.6 for eight cores
on all instances.

McRAPTOR (with reliability) computes journeys in under 30 ms on all instances
except Europe, where it takes 189 ms.

Running rRAPTOR results in query times below 17 ms for all instances except
Europe, where it is 59 ms. Parallelizing rRAPTOR only pays off on the dense urban
networks, but speedups are still limited. On the two railway networks parallel

114

4.6. Round-Based Public Transit Optimized Router

route 0 route 1

trip 0 trip 1 trip 2 trip 3 trip 4

StopTimes: · · ·

Routes: · · ·

RouteStops: · · ·

r0 r1 r2 r3 r4

Figure 4.28. Illustration of the adjacency structure of routes.

rRAPTOR does not scale. Here, trips operate too infrequently, thus, too few of
them can be distributed among the cores. Finally, we observe that rRAPTOR again
outperforms SPCS by a factor of up to 3.2.

4.6.9. Implementation Details

In this section, we present details on the data structures we use for RAPTOR. For
simplicity, we assume all routes, trips, and stops have sequential integral identifiers,
each starting at 0.

Route Traversal. For the main loop of the algorithm, we need to traverse routes. For
route r, we need its sequence of stops (in order), as well as the list of all trips (from
earliest to latest) that operate on that route.

To accomplish this, we store an array Routes where the i-th entry holds information
about route ri. It stores the number of trips associated with ri, as well as the number
of stops in the route (which is the same for all its trips). It also stores pointers to two
lists. The first pointer in Routes[i] is to a list representing the sequence of stops along
route ri. Instead of representing each list of stops separately (one for each route),
we group them into a single array RouteStops. Its first entries are the sequence of
stops of route 0, then those for route 1, and so on. The pointer in Routes[i] is to the
first entry in RouteStops that refers to route i. See Figure 4.28. The second pointer
in Routes[i] points to a representation of the list of trips that operate on that route.
Once again, instead of keeping separate lists for different routes, we keep a single
array StopTimes. (See Figure 4.28.) This array is divided into blocks, and the i-th
block contains all trips corresponding to route ri. Within a block, trips are sorted by
departure time (at the first stop). Each trip is just a sequence of stop times, represented
by the corresponding arrival and departure times.

A route ri can be processed by traversing the stops in RouteStops associated with ri.
To find the earliest trip departing from some stop p along the route after some time t,

115

Chapter 4. Public Transit Journey Planning

Stops: · · ·

· · ·StopRoutes:

· · ·
Transfers:

p0 p1 p2

Figure 4.29. Illustration of the adjacency structure of stops.

we can quickly access the stop times of all trips at ri at p in constant time per trip
due to the way we sorted StopTimes. In particular, when processing ri with trip t,
the arrival time of the next stop is determined by the subsequent entry in StopTimes.
Furthermore, to check for an earlier valid trip of ri, we jump |ri| (the length of the
route ri, which is stored in Routes) entries to the left to retrieve the departure time of
the next earlier trip. Note that these data structures are also suited for computing
latest departure queries (cf. Section 4.2).

Timetable Compression. To enable timetable compression (cf. Section 4.6.5) in our
data structure, we store the periodicity and size of the respective trip group with each
stop time. (Recall that each stop time is part of a unique trip.) For each trip group,
only the first (earliest) trip is represented in StopTimes. All subsequent trips (of
that trip group) are stored implicitly and are, thus, discarded. Since every stop time
knows about the periodicity and size of its trip group, the uncompressed stop times
can be easily reconstructed on the fly.

Note that the data structure could be compressed even further: Instead of storing
the periodicity and the size of a trip group at each stop time (which is redundant),
we could store them only once in a separate array indexed by trip id. However for
simplicity, we did not implement this approach.

Other Operations. We still need to support some operations outside the main loop
of the algorithm. For those, we need an array Stops, which contains information
about each individual stop. In particular, for each stop pi, we must know the list
of all routes that serve it in order to mark the appropriate routes between rounds.
Moreover, we also need the list of all footpaths that can be taken out of pi, together
with their corresponding lengths.

As before, we aggregate these two sets of lists in two arrays. StopRoutes contains
the lists of routes associated with each stop: First the routes associated with p0, than
those associated with p1, and so on. Similarly, Transfers represents the allowed
footpaths from p0, followed by the allowed footpaths from p1, and so on. (Each
individual footpath from pi is represented by its target stop pj together with the

116

4.6. Round-Based Public Transit Optimized Router

transfer time `(pi, pj).) The i-th entry in Stops points to the first entries in StopRoutes

and Transfers associated with stop pi. See Figure 4.29.

Bags. Some of our algorithms, such as McRAPTOR, use bags to represent sets of
nondominated labels. Each bag Bi is represented by a dynamic (unordered) array
which contains its labels. Whenever we merge another bag Bj into Bi, we check
domination between each pair of labels Li 2 Bi and Lj 2 Bj, adding labels to Bi
accordingly. Dominated labels in Bi are marked and erased from the array at the end
of the merge operation.

4.6.10. Conclusion

In this section, we have introduced RAPTOR, a new algorithm for fast multicriteria
journey planning in public transit networks. Unlike previous algorithms, it neither
operates on a graph nor requires a priority queue. Instead, it exploits the inherent
structure of such networks by operating in rounds and processing each route of
the network at most once per round. Moreover we extend it to range queries, and
additional criteria (such as fare zones and reliability of transfers) can be added.
Experiments on the transit network of London reveal that RAPTOR is more than
an order of magnitude faster than previous approaches. RAPTOR can be easily
parallelized, which accelerates queries even further. Finally, since RAPTOR does not
rely on preprocessing, it can be directly used in dynamic scenarios, easily handling
delays and trip cancellations.

Regarding future work, we are interested to handle networks of larger scale with
RAPTOR, i. e., inhomogeneous networks which contain (many) local transit agencies,
interconnected by long-distance travel, e. g., the network of a full country. Since
RAPTOR’s performance is determined by the number of scanned routes (per round),
preprocessing may be necessary to achieve fast queries. In particular, we are interested
to apply separator-based techniques, similarly to [SWW00, SWZ02], to RAPTOR.

Another open problem is whether uncertainty (beyond optimizing reliability) can
be incorporated into RAPTOR. In particular, minimizing the expected arrival time,
similarly to CSA [DPSW13], would be interesting.

Finally, further investigating the computation of full Pareto sets using strict domi-
nation (see Section 4.6.3) would be interesting. One challenge would be to identify
significant alternative journeys from the larger Pareto set for presentation to the user.
Alternatively, for dense metropolitan transit networks (where—at least in parts—
trips operate very frequently), an entirely different form of presentation (instead of
individual journeys) could be more useful to the user. For examples, for travelers
that want to get from Karlsruhe’s main railway station to KIT, one could suggest
to take either the routes S1, S4, or Tram 2 (whatever arrives first), and then transfer
at “Marktplatz” into Tram 4, Tram 5, or S2 (whatever arrives first), or take Tram 4

117

Chapter 4. Public Transit Journey Planning

from the main station directly. Automatically computing such “guidebook routing”
schemes from the full Pareto set would be an interesting problem.

118

Chapter 5
Multimodal Journey Planning

M ultimodal route planning refers to the problem where one is interested
in computing journeys that involve various different modal networks (such
as public transit, car/taxi travel, walking, and rental bicycles) in a single

and integrated query. Thereby, the main challenge is handling modal transfers. In
particular, a naïve approach that “merges” the networks and then simply applies a
shortest path algorithm that, e. g., solves the earliest arrival problem (as in Section 4.2),
might result in very undesirable journeys. For example, it might produce a journey
where the user is required to take a private car (or taxi) for a long segment between
two train trips. Clearly, taking a private vehicle is impossible, since the user will
not have it available at that point of the journey. Using a taxi instead might still be
undesirable for some users.

Figure 5.1 illustrates this problem in a metropolitan scenario including the following
transportation modes: Public transit, cars, walking, and rental bicycles. While the
journey that minimizes the earliest arrival time from s to t requires the user to take a
car two times, once between the subway rides, and again at the end; two preferable
alternatives (obviously, with somewhat higher arrival time at t) also exist: The first
involves some walking in the end, and the second requires a rental bicycle on the last
leg of the journey.

This chapter deals with multimodal route planning algorithms that take modal
transfers into account, explicitly considering these issues.

Inputs. To be able to design an algorithm, we must first describe what transportation
networks we consider and how they are modeled in a mathematical sense. While for
transit networks Chapter 4 already defined both the input (Section 4.1) and several
graph-based models (Section 4.3), we here define road networks (for car/taxi as well
as pedestrians), flight networks, and rental bicycle networks. Having established each
individual transportation network, we also explain how we combine them to obtain

119

Chapter 5. Multimodal Journey Planning

s t

subway line A

subway line B

private car
private car

walking

(a) Earliest arrival journey.

s t

subway line A

subway line B

walking rental bicycle

walking

(b) More desirable alternative journeys.

Figure 5.1. Journeys from s to t having different transportation mode sequences. The earliest arrival
journey (top) requires a private car between the two subway trips and also as the last leg. However,
this might not be desired by the user. The bottom two (slightly longer) alternative journeys may be
more convenient. The first has a direct transfer to subway line B with walking (instead of a car) as
last leg. The other uses subway line A longer and a rental bicycle as last leg.

an integrated multimodal network, for which we then design algorithms. Note that
this integrated multimodal network is inherently time-dependent, whenever a public
transit network is part of it.

Problems and Basic Algorithms. To obtain multimodal journeys between arbitrary
locations (in any of the networks), one could now simply consider one of the problems
from the previous chapter, such as the earliest arrival problem (cf. Section 4.2). In fact,
all of the problems mentioned in Section 4.2 carry over to the multimodal scenario.
However, they do not take modal transfers into account explicitly. We therefore
recap the well-known label-constrained shortest path problem (LCSPP) [BJM00]. Roughly
speaking, it defines an alphabet of transportation modes, and arcs in the multimodal
network are labeled by symbols from the alphabet that correspond to their respective
transportation mode. Then, the concatenation of the labels along any (shortest) path
must obey constraints defined in terms of a formal language (an input). For the case
of regular languages (cf. Section 3.3), Dijkstra’s algorithm can be extended to solve the
LCSPP [BJM00]. Finally, we consider a subset of regular languages that is sufficient
for the scenario of multimodal route planning, called mode sequence constraints: They
specify constraints on sequences of transportation modes rather than constraints on
individual arcs.

120

User-Constrained Contraction Hierarchies. Having established the label-constrained
shortest path problem (LCSPP) we present the User-Constrained Contraction Hierar-
chies (UCCH) algorithm. It is the first multimodal speedup technique that handles
arbitrary mode sequence constraints as input to the query (rather than to the prepro-
cessing) and requires significantly less preprocessing effort than previous techniques
with similar query performance, such as Access-Node Routing [DPW09a].

To this extent, we revisit one particular technique, namely vertex contraction, that
has proven successful in road networks in the form of Contraction Hierarchies,
introduced by Geisberger et al. [GSSV12]. By ensuring that shortcuts never span
multiple modes of transport, we extend Contraction Hierarchies in a sound manner.
Moreover, we show how careful engineering further helps our scenario.

Our experimental study is based on an intercontinental instance composed of cars,
railways and flights with over 50 million vertices, 125 million arcs, and 30 thousand
stations. With only 557 MiB of auxiliary data, we achieve query times that are fast
enough for interactive scenarios.

Multimodal RAPTOR. While label constraints can be used to restrict sequences of
transportation modes, a crucial disadvantage of this approach is that the user has to
specify (and therefore know) reasonable constraints in advance. Given these limitation,
we revisit the problem of finding multicriteria multimodal journeys on a metropolitan
scale. Instead of optimizing each mode of transportation independently [EL11], we
argue that most users optimize three criteria: travel time, convenience, and costs.
While this produces a large Pareto set, we propose using fuzzy logic [FA04, Zad88] to
filter it in a principled way to a modest-sized set of representative journeys.

This postprocessing step is not only quick, but can also be user-dependent, incor-
porating personal preferences. Combining RAPTOR (Section 4.6.6) with UCCH (Sec-
tion 5.3) into an algorithm called Multimodal Multicriteria RAPTOR (MCR) allows
us to answer exact queries optimizing time and convenience in less than two seconds
within a large metropolitan area (for a simpler scenario of walking, cycling, and
public transit). Unfortunately, this is not enough for interactive applications and
becomes much slower when additional criteria, such as costs, are incorporated. We
therefore also propose heuristics (still multicriteria) that are significantly faster and
closely match the top journeys in the Pareto set. A thorough experimental evaluation
of all algorithms in terms of both solution quality and performance shows that our
approach can be fast enough for interactive applications. Moreover, since it does not
rely on heavy preprocessing, it can be used in fully dynamic scenarios.

Overview. Section 5.1 formally defines the inputs to each transportation network
we are using in the following chapter and explains how they are combined to obtain
an integrated network. Section 5.2 recaps the label-constrained shortest path problem
and shows how Dijkstra’s algorithm can be extended to it. In Section 5.3 we introduce

121

Chapter 5. Multimodal Journey Planning

UCCH, our speedup technique for the label-constrained shortest path problem.
Finally, Section 5.4 presents MCR, our multicriteria multimodal approach.

5.1. Inputs

This section precisely defines our input to the multimodal route planning problems
considered in this chapter. We, therefore, introduce each modal (sub)network individ-
ually, before we explain how we combine them into a holistic multimodal network
that then enables transfers between different modes of transportation. The types of
networks considered in this chapter are street networks (for walking and cars), public
transportation (cf. Chapter 4) that is used for local and long-range transit (such as
busses, subways, and railways), flight networks (which can be regarded as a form of
public transit, but with special properties), and rental bicycle schemes. We explain
each network type in turn before turning toward combining them into a multimodal
network.

5.1.1. Street Networks

The input to the transportation modes car and walking (sometimes we also refer
to the walking mode by foot) is the street network which consists of a set of inter-
sections and a set of street segments, in which each segments connects exactly two
intersections. Street segments usually have different attributes, such as geographical
length (in meters), functional street category (such as “highway” or “rural road”),
flags indicating supported transportation modes (walking, car traffic, and bicycle
traffic), and the (average) traffic speed for cars (in kilometers per hour).

From this data, we build a directed graph G = (V, A), where each vertex u 2 V
corresponds to an intersection, and an arc (u, v) 2 a connects two intersections, if the
respective street segment supports the considered mode of transportation. (Note that,
for example, pedestrian zones only support walking but no car traffic, while highways
support car traffic but no walking.) Moreover, we define a cost function len : A! Z≥0

on the arcs, which depicts the travel time (usually in seconds) along the respective
arc. If the mode of transportation is car, we compute the arc’s travel time from its
associated average speed and geographical length. For pedestrians we assume a
constant walking speed of 5 kph and for bicycles a constant riding speed of 12 kph.

Note that more complex street network models exist. In the context of route
planning, turn costs (and turn restrictions) have been considered in [GV11, DGPW11]
and, also, in Chapter 6. They can be incorporated by either blowing up the graph at
each intersection that exhibits turn costs, or, by maintaining turn costs in a separate
data structure and adapting the query algorithm. Even more realistic models consider
polyvalent turn costs, which model dependencies between intersections [Sas11, Sch12]:
Depending on the turn a driver takes at some intersection, the cost may change at the

122

5.1. Inputs

next. An example for such restrictions is to forbid paths that leave and immediately re-
enter highways at the same exit. Polyvalent turn restrictions can also be incorporated
by either blowing up the graph or by adapting the query algorithm [Sas11]. In our
model we use neither turn costs nor polyvalent turn restrictions, since they were not
available from our input data.

5.1.2. Public Transit Networks

For the mode of public transit, the input (i. e., timetables) as well as various models
with different levels of realism have been discussed in Section 4.3 extensively. If not
stated otherwise, we use the realistic time-dependent model [PSWZ04b, PSWZ08] in
this chapter. Note that it keeps a stop vertex for each stop of the timetable and, at
each stop p, a route vertex for every route that serves the stop p. Arcs connect stop
vertices p to their associated route vertices with constant cost depicting the minimum
change time required for transferring at p. Moreover, subsequent route vertices (of
each route in the timetable) are connected by arcs with time-dependent cost that map
departure times of the day to travel times. See Section 4.3.3 for details.

5.1.3. Flight Networks

A0

s

o

s

o

A1
s

o

s

o

A2

oo

Figure 5.2. Realistic flight model graph
for two flight alliances: Star Alliance (s)
and Oneworld (o) [DPWZ09].

Regarding the flight mode of transportation, the in-
put is a flight schedule which is very similar to timeta-
bles (which have been introduced in Section 4.1) for
the mode of public transit. Following [Paj09, DPWZ09],
a flight schedule F = (P,S , T ,R) is defined in terms
of a set S of airports (equivalent to the stops of a pub-
lic transit timetable), a set T of trips (or flights), and a
set R of routes. Just like in timetables, P ⇢ Z≥0 de-
picts the period of operation. Any trip r 2 R defines—in
addition to the airports it serves—an associated flight
alliance, denoted by alliance(r). Based on this input any
of the graph-based models from Section 4.3, such as the
realistic time-dependent model, could be used. How-
ever, realistic railway models tend to produce graphs
of (unnecessarily) large size: In contrast to public transit
networks, routes in flight networks are short (in fact,
most of them have only a single hop). On the other
hand, airports usually serve a great amount of different destinations, which would
result in a very large number of route vertices per airport in the graph.

To overcome these issues, a tailored realistic time-dependent flight model is in-
troduced in [DPWZ09], which we also use in this chapter. Inspired by the time-
dependent railway model, it creates, for each airport, a single airport vertex p 2 V.

123

Chapter 5. Multimodal Journey Planning

Then, for every flight alliance served by p, it creates dedicated arrival and departure
vertices. The airport vertex, and the arrival and departure vertices of each flight
alliance, are interconnected by arcs with constant cost reflecting the different times
required for airport procedures such as check-in, check-out, and transfers within and
between flight alliances. To model travel, the model creates, for each route r and each
two subsequent airports p1, p2 served by r, a time-dependent arc (u, v) between the
departure and arrival vertices of flight alliance alliance(r) at p1 and p2. Equivalently
to public transit networks, the cost of route arcs encodes the flight schedule of the
respective route as a piecewise linear travel time function, see Section 4.3.3. The
complexity of the resulting flight model graph is significantly lower than for the
realistic time-dependent railway model: The number of vertices (and arcs) at every
airport is linear in the number of flight alliances (rather than routes). See [DPWZ09]
for details.

An illustration of the realistic flight model is shown in Figure 5.2. The network
contains three airports and two flight alliances: Star Alliance (s) and Oneworld (o).
Departure vertices are drawn in green while arrival vertices are yellow. Moreover,
vertex labels depict their associated flight alliance.

5.1.4. Rental Bicycle Schemes

Another mode of transportation we consider in this chapter is rental bicycles. (Note
that private bicycles are just a form of street travel, which we already discussed.)
The input to this mode of transportation is the street network and a set S of rental
bicycle stations that are spread over the street network at different locations. A
common scheme (which is for example in use by Transport for London [Tra00]) is the
following: A user may take a bicycle from any of the bicycle stations S and ride it to
any other station. Usually there is a small fee per pick-up, as well as an additional
fee depending on the riding duration.

Our graph models the street network equivalently to the car and walking modes
of transportation: Vertices depict intersections and arcs represent street segments
that are open for bicycles. Arc costs depict travel times which are obtained from
the geographical length of the street segment and an assumed average riding speed
of 12 kph. To model bicycle stations, we add an extra vertex per station p 2 S
and connect it to the geographically closest vertex of the street network (with cost
computed as before). Note that the extent of the bicycle network is limited: Since
any bicycle journey begins and ends at a bicycle station, the graph only needs to
cover (the area that includes) all shortest paths between pairs of bicycle stations.

Also note that other rental bicycle schemes exist that allow the user to drop their
bicycle at any “reasonable” location (such as major street intersections) and, thus, do
not employ special stations. However, in this chapter we focus on rental schemes
where the bicycle must be always picked up and dropped off at one of the stations.

124

5.2. Problems and Basic Algorithms

5.1.5. Combining the Networks

Having introduced the models we use for each individual mode of transporta-
tion, we now describe how we combine them into a multimodal graph. More
precisely, we create a multimodal graph G = (V , A) (we use bold letters to re-
fer to multimodal graphs) by merging the individual graphs of the subnetworks.
Let G1 = (V1, A1), . . . , Gk = (Vk, Ak) be graphs of k subnetworks, then we simply
set V = V1 [· · · [Vk and A = A1 [· · · [Ak. However, this results in k disconnected
subgraphs in G. To enable transfers between different modes of transportation, we
add link arcs: We link every stop vertex of the public transit network and every station
vertex of the bicycle network to its geographically closest vertex in both the walking
and car networks, unless the distance exceeds a certain threshold (we use 500 meters).
Similarly, we link airport vertices from the flight network to the walking and car
networks. In addition, we also link each airport to its geographically closest stop
vertex in the railway network, unless the link distance exceeds 5 000 m. Arc costs of
the inserted link arcs are computed from the geographical length of the arc and an
assumed average pedestrian walking speed of 5 kph. To compute accurate distances,
we compute the geodesic length on the GRS80-ellipsoid [Mor92], which is also used
by the Global Positioning System (GPS). (Note that all our vertices have associated
longitude and latitude coordinates.)

Some of the algorithms in Section 5.4 do not use an integrated graph G = (V , A).
Instead, they consider each subnetwork individually. To still enable modal transfers,
we identify linked vertices in different networks but keep them separate. While this
approach does not incur any cost (i. e., travel time) for modal transfers, the introduced
error is small in practice (recall that link arcs in G connect geographically closest
vertices).

5.2. Problems and Basic Algorithms

This section formally introduces the multimodal route planning problems we consider
in this chapter. The earliest arrival and multicriteria problems (Sections 5.2.1 and 5.2.2)
are essentially equal to their counterparts in the context of public transit networks (see
Section 4.2). However, they do not constrain modal transfers. Therefore, we recap
the label-constrained shortest path problem [BJM00] in Section 5.2.3 and present
an algorithm that computes label-constrained shortest paths for constraints that are
given by regular languages.

5.2.1. Earliest Arrival Problem

Similarly to public transit route planning (Chapter 4), the simplest problem we are
considering in the context of multimodal route planning is the earliest arrival problem.
Given a multimodal network (for example as a multimodal graph G = (V , A)) and

125

Chapter 5. Multimodal Journey Planning

source and target locations s, t 2 V , as well as a departure time t (recall that G is
time-dependent as soon as it contains public transit as a subnetwork), it asks for a
journey from s to t that departs s no earlier than t and arrives at t as early as possible.
Again, an algorithm that solves the earliest arrival problem is also called earliest
arrival query.

Equivalently to public transit route planning, the solution consists of (at most)
one (optimal) journey, namely the one which arrives at t earliest. If more than one
optimal journey exists, we break ties arbitrarily. Note that nothing is said (so far)
about the involved modes of transportation of the journey. In particular, it may
contain arbitrary transfers between any modes of transportation, at any point of the
journey. Clearly, this is a big disadvantage (from a practical point of view) concerning
earliest arrival queries in multimodal route planning. Also recall Figure 5.1a.

Algorithms. The earliest arrival problem in multimodal networks can be solved by a
time-dependent variant of Dijkstra’s algorithm (equivalently to the scenario of public
transit route planning) [Dij59, CH66]. It works on the combined multimodal graph G
and maintains for each vertex u 2 V a label depicting the (tentative) earliest arrival
time at u. It uses a priority queue Q to scan vertices in increasing order of arrival
time. Each time a vertex u 2 V is scanned, it relaxes its incident arcs a = (u, v) 2 A,
thereby, minimizing the arrival time at v (and updating Q, accordingly). Section 4.4.1
contains more details and a running time analysis of Dijkstra’s algorithm.

5.2.2. Multicriteria Problem

The multicriteria problem aims to remedy a key issue of the earliest arrival problem,
namely, that it only outputs a single journey. Therefore, it considers (besides arrival
time) further optimization criteria in order to compute a Pareto set of solutions that
trade off these criteria. More formally, the multicriteria problem takes a multimodal
network, source and target locations s, t 2 G, and a departure time t as input. It
asks for a Pareto set J of journeys that depart at s no earlier than t and arrive at t.
For each two journeys J1, J2 2 J it must hold, that neither J1 dominates J2, nor J2

dominates J1. Thereby, a journey J1 dominates a journey J2, if J1 is better (or equal) in
all criteria than J2. Also note that the Pareto set J must be maximal: For a journey J
to not be included in J , there must be a witness journey J0 2 J that dominates J. We
also call an algorithm that solves the multimodal multicriteria problem multimodal
multicriteria query. We consider the multicriteria problem in Section 5.4.

Algorithms. To solve the multicriteria problem, several algorithms have been dis-
cussed in the context of public transit route planning in Section 4.4.2. They can also
be used in our scenario by applying them to the multimodal graph G = (V , A). The
first algorithm is the label correcting algorithm (LC) [Dea99], which maintains a Pareto
set of labels at each vertex u 2 V . It then scans, beginning at s, vertices in some

126

5.2. Problems and Basic Algorithms

consistent order. Each time a vertex u 2 V is scanned by the algorithm, it looks at
each arc (u, v) 2 A and extends all labels from u over a (adding the cost of a to every
label). The resulting set of labels is then merged into the maintained Pareto set at v,
eliminating dominated labels on the fly. If this resulted in the insertion of a new label
at v, the vertex must be (re)considered for scanning by the algorithm.

The multi-label-correcting algorithm (MLC) [PSWZ08, DMS08] works similarly, but
instead of considering the whole Pareto set of labels of a vertex u (at the time of its
scan), it looks at labels individually: It maintains a priority queue Q of labels (and
associated vertices) and extracts, in each iteration, a minimum label (according to
some consistent ordering). This improves LC by not scanning the same label at the
same vertex more than once.

Finally, for the special case of bi-criteria optimization, where one of the criteria
is discrete and only assumes a small set of different values, the layered Dijkstra
algorithm [BJ04] may be more efficient. If K is a bound on the maximum value of the
discrete criterion, it copies the graph G into K layers G1, . . . , Gk. In each layer k, arcs
that exhibit cost on the discrete criterion are rewired such that they point one layer
upward. Then, computing an earliest arrival query from s0 2 V0 to the target vertex tK

for all layers k  K is results in a Pareto set of labels at the vertices tK (k  K).
Several optimizations, such as local and target pruning, hopping reduction, and

label forwarding, exist for the multicriteria algorithms. We refer to Section 4.4.2 for
more details.

5.2.3. Label-Constrained Shortest Path Problem

While the problems from Section 5.2.1 and 5.2.2 can both be used to obtain journeys
in a mutlimodal network, they (and in particular the earliest arrival problem) have
one major disadvantage: Neither modal transfers nor the sequence of transportation
modes is considered during query. As a result, the obtained journeys may require
the user to take arbitrary means of transportation in an arbitrary order. (Actually,
in Section 5.4 we use the multicriteria problem to obtain diverse solution sets that
reasonable trade off the usage of different means of transportation.) While for some
journeys this may just be inconvenient, for others it may even be infeasible for the
user. Reconsidering the example in Figure 5.1 on Page 120, the depicted earliest
arrival journey may require the user to drive a private car at two undesirable locations:
Between the subway rides and on the last leg of the journey. If a car is not available
at these points of the journey, this solution is of no value to the user. Therefore, we
are interested in computing journeys, where modal transfers between transportation
modes can be restricted (ideally by the user). For example, Figure 5.1b shows two
earliest arrival journeys where the order of the means of transportation is restricted
to (a), walking, public transit, and walking, or (b), walking, public transit, and taking
a rental bicycle.

An elegant approach to model such restrictions is the label-constrained shortest path

127

Chapter 5. Multimodal Journey Planning

problem (LCSPP). It has been first introduced in [BJM00] and has been applied in the
context of multimodal route planning in [BJM00, BBJ+02, BBH+09, Paj09, DPW09a,
KLPC11, KLC12, RT10]. Its general formal definition is as follows. We are given
as input an alphabet S, a S-labeled graph G = (V, A), that is, each arc a 2 A is
associated with a label from S denoted by s(a) 2 S, as well as, source and target
vertices s, t 2 V. Moreover, we are also given a language L ⇢ S⇤ as input. The
problem now asks for a shortest path in G from s to t, however, with the following
restriction: Any (shortest) path must obey the constraints given by the language L.
More formally, let P be a path in G, then the word w formed by concatenating
the (associated) labels along the arcs of P must be contained in L. We also call such a
path L-constrained.

The general formulation of the label-constrained shortest path problem states no
restriction on the language L given as input. The computational complexity of LCSPP
for different types of languages has been studied in [BJM00]. In particular, for regular
languages L, the problem is solvable in (deterministic) polynomial time. Note that in
this case we may—instead of a language L—give the corresponding (nondeterministic)
finite automaton AL as input. In fact, we use L and AL interchangeably whenever
we consider regular languages as input.

We apply LCSPP to the scenario of multimodal route planning as follows. Let G
be the multimodal graph according to Section 5.1. We now define S to contain a
designated symbol for each considered mode of transportation, for example,

S = {foot, car, rail, flight, link}. (5.1)

Moreover, we label every arc a 2 A with the symbol that reflects the mode of
transportation a belongs to. Then a regular language over S restricts modal transfers
in G. Note that since G is time-dependent, an additional input to the problem—
besides source and target vertices s, t 2 V—is the departure time t. We, hence, ask
for a L-constrained path from s to t that leaves s no earlier than t and arrives at t as
early as possible.

Mode Sequence Constraints. A subset of regular languages which is reasonable in
the context of multimodal route planning are languages that model mode sequence
constraints (LCSPP-MS). More formally, a regular language L models mode sequence
constraints if for any word w = s1 · · · sk 2 L and any symbol si 2 w that is other
than link the word s1 · · · s

j
i · · · sk is also contained in L for any j ≥ 0. Moreover, none

of the words may contain two (or more) consecutive symbols s = link (recall that
we use link for representing modal transfers). In other words, L restricts sequences of
transport modes, but it does not restrict travel within a transport mode.

Note that an even more restricted form of regular languages are Kleene languages.
Given an alphabet S, they are of the form (X)⇤, where X ✓ S is a subalphabet. They
are used to (globally) exclude certain means of transportation. However, they are not

128

5.2. Problems and Basic Algorithms

foot

foot

rail rail

rail

carcar foot

(a) Arbitrary regular language.

rail

foot

foot

car

(b) Mode sequence
constraints.

foot, rail

(c) Kleene
language.

Figure 5.3. Exemplary nondeterministic finite automata representing three types of regular lan-
guage constraints. General regular languages (left) allow arbitrary restrictions of travel, even within
a transport mode. Mode sequence constraints (middle) restrict sequences of transport modes,
while Kleene languages (right) include (or exclude) certain modes of transportation globally. Blue
arcs are labeled link.

powerful enough to define constraints on the order of transportation modes along
journeys. Kleene languages have been studied in the context of multimodal route
planning in [RT10].

Figure 5.3 shows exemplary nondeterministic finite automata that correspond to the
three types of regular languages: A general regular language automaton (Figure 5.3a),
a regular language automaton modeling mode sequence constraints (Figure 5.3b),
and a Kleene language automaton (Figure 5.3c).

Label-Constrained Dijkstra. Besides showing that the label-constrained shortest path
problem on regular languages is solvable in polynomial time, in [BJM00] an algorithm
that actually solves it is presented as well. Furthermore, it has been extended to time-
dependent graphs in [Paj09] by combining it with time-dependent Dijkstra [CH66].
To solve the LCSPP, the algorithm works on the product graph of the input network G
and the transition graph of the automaton AL representing the input language L.
The following definition captures the notion of product graphs.

Definition 2 (Product Graph). Given a S-labeled (multimodal) graph G = (V , A) and a
nondeterministic finite automaton A = (S, S, d, I, F), the product graph G⇥ = (V⇥, A⇥)
is defined as follows.

• The vertex set V⇥ is defined as V⇥ = {(u, q) | u 2 V and q 2 S}, and

129

Chapter 5. Multimodal Journey Planning

• the arc set A⇥ exactly consists of all arcs a⇥ =
�
(u1, q1), (u2, q2)

�
for which a =

(u1, u2) 2 G, and there exists a symbol s 2 S, such that q2 2 d(q1, s). Thereby, the
cost of a⇥ is set to the cost of a, and the label s(a⇥) of a⇥ is set to s.

Now, given source and target vertices s, t 2 V of the original graph as well
as a departure time t, the algorithm runs a multi-source multi-target earliest arrival
query on the product graph G⇥. More precisely it runs time-dependent Dijkstra’s
algorithm (cf. Figure 4.11 in Section 4.4.1) on G⇥ with the following modifications.
For every initial state q 2 I of the automaton AL it initializes the respective arrival
time label of the vertex (s, q) to t. It then proceeds as usual, extracting product
vertices (u, q) from the priority queue Q in increasing order of arrival times. Then,
for any vertex u 2 V the earliest arrival journey that obeys the regular language
constraints is determined by the minimum label among those product vertices (u, q),
for which q 2 F is a final state of the automaton AL. (Note that the algorithm actually
computes earliest arrival journeys for each final state of the automaton at every
vertex u 2 V .) We call this algorithm label-constrained time-dependent Dijkstra (LCSPP-
TD). If one is only interested in the earliest arrival time for the vertex t, the algorithm
may stop as soon as the first product vertex (t, q) for which q 2 F is a final state of AL

has been extracted from Q.
In practice, explicitly computing the product graph G⇥ is wasteful. Instead, the

algorithm uses G and AL to compute G⇥ on the fly. It, therefore, maintains at each
vertex u 2 V an array of |S| labels (depicting earliest arrival times for each state
of AL), with all entries initialized to infinity. The priority queue still keeps vertex-
state tuples. Whenever the algorithm extracts such a tuple (u, q) from Q, it scans
all arcs a = (u, v) 2 A and, for each such arc, it takes its associated symbol s 2 S
and enumerates all (via s) reachable states in AL. More precisely, for every state q0 2
d(q, s) it computes the arrival time of the path to v (via a) and minimizes the label
associated with q0 in v’s label array. If the algorithm improved the label, it updates
the respective entry for (v, q0) in Q, accordingly. Figure 5.4 illustrates the algorithm
in pseudocode.

The running time of LCSPP-TD is basically that of Dijkstra’s algorithm (see Sec-
tion 4.4.1), however, determined by the size of the (implicit) product graph G⇥.
Since V⇥ contains a vertex for every vertex-state pair of V and S, it has size |V ||S|.
Moreover, the number of arcs in A⇥ is bounded by |V ||A||d|, since for every ver-
tex (u, q) 2 V⇥ there is an (outgoing) arc for every arc a 2 A and every symbol s 2 S
for which there exists a transition from q in d. Using binary heaps as priority
queue (equivalently to Section 4.4.1), we thus obtain a total running time for LCSPP-
TD of O�|V ||A||d|+ |V ||S| log(|V ||S|)�.

Speedup Techniques for LCSPP. Unfortunately, LCSPP-TD is too slow to be practical
for real-time queries (such as for interactive server scenarios). Therefore, several
speedup techniques exist that accelerate LCSPP(-TD) by precomputing auxiliary data

130

5.2. Problems and Basic Algorithms

// Input: Graph G = (V , A), source vertex s, target vertex t, departure time t,
nondeterministic finite automaton A = (S, S, d, I, F)

// Side Effects: Earliest arrival times t(u, q) at all vertices u 2 V and states q 2 S, if t = ?
or at t, otherwise

// Initialization of the algorithm
1 Q new PQueue() // Create empty priority queue
2 t(·, ·) • // Initialize arrival time labels for each vertex and state

3 forall the initial states q 2 I do // Initialize arrival time for each initial state
4 t(s, q) t
5 Q.Insert((s, q), t)

// Main loop
6 while not Q.Empty() do

7 (u, q) Q.ExtractMin() // Scan next vertex-state tuple

8 if u = t and q 2 F then // Stopping criterion
9 stop;

10 forall the outgoing arcs a = (u, v) 2 A do // Scan outgoing arcs
11 forall the states q0 2 d(q, s(a)) do // Enumerate transitions

12 ttent(v, q0) t(u, q) + fa(t(u, q)) // Compute tentative arrival time at (v, q0)

13 if ttent(v, q0) < t(v, q0) then // Improve arrival time at (v, q0)?

14 t(v, q0) ttent(v, q0) // Update label of v and state q0

15 if not Q.Contains((v, q0)) then // Update priority queue
16 Q.Insert((v, q0), ttent(v, q0))
17 else
18 Q.DecreaseKey((v, q0), ttent(v, q0))

Figure 5.4. Label-Constrained Time-Dependent Dijkstra (LCSPP-TD).

in a preprocessing phase. See also Section 2.3.2. Because of the relevance to this
section, we briefly recap the most important.

In [BBJ+02] a first experimental study for linear regular languages is conducted.
In [Paj09] the adaption of basic ingredients (of road network speedup techniques),
such as bidirectional search [Dan62], goal-direction [GH05, Lau09, HKMS09], and
shortcuts [SWW00, SS05, GSSV12] to time-dependent label-constrained shortest paths
is discussed. It is observed that besides the challenges imposed by time-dependenc,
such as the unknown arrival time at t a priori, also the regular language con-
straints L are not known beforehand. This makes it nontrivial to adapt preprocessing
such that it handles arbitrary constraints at query times correctly. Basic speedup
techniques such as bidirectional search [Dan62], A* [HNR68], and the Sedgewick-

131

Chapter 5. Multimodal Journey Planning

Vitter Heuristic [SV86] have been tested in the context of multimodal route plan-
ning in [Hol08, BBH+09]. In [KLPC11] an algorithm called SDALT is presented
that is based on ALT [GH05] but uses state-dependent lower bounds. In [KLC12]
SDALT is extended to a label-correcting approach that can handle incorrect “lower
bounds” (which improves running times). Correctness is ensured by scanning vertices
multiple times.

Of particular interest to this chapter is Access-Node Routing (ANR), which has
been introduced in [DPW09a]. It is inspired by Transit Node Routing in road
networks [BFM+07] and handles hierarchical mode sequence constraints, where the
road network (i. e., walking and car) may only be used at the beginning or end of a
journey (see the automaton in Figure 5.7c for an example). During preprocessing, the
algorithm computes for every vertex u 2 V of the road network a (preferably minimal)
set of relevant access nodes together with their distances from/to u. The access nodes
are defined such that the following condition holds. For any shortest s–t-path (at any
departure time) that does not solely use the road network, the first vertex that is not
part of the road network has to be an access node of s. Analogously the last vertex
not part of the road network must be an access node of t. Then, during query the
algorithm skips the road network by running a multi-source multi-target LCSPP-TD
query between the access nodes of s and t, returning the globally minimal path. To
determine whether the query is local, i. e., solely uses the road network, a separate
algorithm (in [DPW09a] CHASE [BDS+10] is used) must (always) be run.

While Access-Node Routing achieves query times in the order of milliseconds
on continental networks, it has high preprocessing time (several hours) and space
consumption (several Gigabytes). Moreover, preprocessing time strongly depends
on the size of the public transit and flight subnetworks of G. Unfortunately, for
large networks, ANRs preprocessing is only feasible if the public transit and flight
subnetworks are rather sparse [DPW09a].

Besides these disadvantages, the fastest preprocessing-based acceleration tech-
niques, such as ANR and SDALT, fix the regular language L at preprocessing.
Therefore, the (costly) preprocessing phase must be executed for every language L
that should be supported during query time. In particular, label constraints cannot
be specified arbitrarily by the user as an input to the query.

5.3. User-Constrained Contraction Hierarchies

In this section we introduce User-Constrained Contraction Hierarchies (UCCH), a
speedup technique which solves the label-constrained shortest path problem for
mode sequence constraints (see Section 5.2.3). To this extent, we augment Contraction
Hierarchies [GSSV12] to the multimodal scenario. Its key idea is to not contracting
transfer vertices. Therefore, we ensure that shortcuts never span multiple modes
of transports. This enables the specification of mode sequence constraints as an

132

5.3. User-Constrained Contraction Hierarchies

input of the query (i. e., by the user), a feature unavailable from previous LCSPP
speedup techniques. Our experimental evaluation justifies our approach by indicating
that—besides enabling mode sequence constraints at query time—UCCH has faster
preprocessing times and significantly less space overhead than previous techniques
with comparable query performance (such as Access-Node Routing [DPW09a]).

Overview. The section is organized as follows. First, we briefly recap Contraction
Hierarchies for unimodal networks (such as road networks) in Section 5.3.1, which is
the basis of our algorithm. Next in Section 5.3.2 we discuss why a naïve adaption of
Contraction Hierarchies to a multimodal network has somewhat complicated prepro-
cessing and query algorithms and does not allow arbitrary sequence constraints as
a query input. In Section 5.3.3, we introduce User-Constrained Contraction Hierar-
chies (UCCH), our new algorithm which enables flexible mode sequence constraints
at query time. Section 5.3.4 discusses several improvements to the algorithm that
accelerate its performance, while Section 5.3.5 presents a detailed experimental study
of our algorithm. Finally, we conclude in Section 5.3.6.

References. This section is based on [DPW12c], which appeared at the 14th Meeting
on Algorithm Engineering and Experiments (ALENEX’12) and [DPW12d] which is (at
the time of writing) under review at the ACM Journal of Experimental Algorithmics.
It is joint work with Julian Dibbelt and Dorothea Wagner.

Moreover we thank Daniel Delling for interesting discussions on multimodal route
planning and Geisberger et al. for providing us their CH code from [GSSV12].

5.3.1. Contraction Hierarchies on Unimodal Networks

Our algorithm is based on Contraction Hierarchies (CH), a preprocessing-based
speedup technique developed for road networks. It has been introduced by Geisberger
et al. in [GSSD08,GSSV12]. Before we extend it to the multimodal scenario, we briefly
recap both preprocessing and query in the following.

v

u1

u2 w

3

10 2

5

6

Figure 5.5. Illustrating
vertex contraction.

Given a weighted (with constant weights), directed graph G =

(V, A), preprocessing works by heuristically ordering the vertices
of the graph by an importance value (a linear combination of arc
expansion, number of contracted neighbors, among others). Then,
all vertices are contracted in order of ascending importance. To
contract a vertex u 2 V, it is removed from G, and shortcuts are
added between its neighbors to preserve distances between the
remaining nodes. The index at which u has been removed is denoted
by rank(u). To determine if a shortcut (u, w) is added, a local
search from u is run (without looking at v), until w is scanned.
If len(u, w)  len(u, v) + len(v, w), the shortcut (u, w) is not added.

133

Chapter 5. Multimodal Journey Planning

The corresponding shorter path is called a witness. Figure 5.5 illustrates contraction
of a vertex v. The highlighted arc (u1, w) is added with length 5. The arc (u2, w) is
not needed since there exists an u2–w-path with length 6, which is smaller than 12.

The CH query algorithm is a bidirectional Dijkstra search operating on G, aug-
mented by the shortcuts computed during preprocessing. Each direction (forward
or backward) searches “upward” in the hierarchy: The forward search only vis-
its arcs (u, v) where rank(u)  rank(v), and the backward search only visits arcs
where rank(u) ≥ rank(v). Vertices where both searches meet represent candidate
shortest paths with combined length µ. The algorithm minimizes µ, and each search
can stop as soon as its minimum key of its priority queue exceeds µ.

Furthermore, we make use of the stall-on-demand technique [GSSV12]: When a
vertex u is scanned in either search, we check for all its incident arcs a = (u, v) of
the opposite direction if dist(v) + len(a) < dist(u) holds (dist(v) denotes the tentative
distance at v). If this is the case, the algorithm prunes the search at u, i. e., it does not
scan any of its incident arcs. Also see [GSSV12] for details.

Partial Hierarchy. If the preprocessing is stopped prematurely, i. e., before all vertices
are contracted, we obtain a partial hierarchy (pCH). For vertices which have not been
contracted, we simply set their rank to infinity, i. e., rank(u) = •. Then, the same
query algorithm as for Contraction Hierarchies is applicable and yields correct
results. We call the induced subgraph of all uncontracted vertices core and the
remaining (contracted) subgraph component. Note that both core and component can
contain shortcuts not present in the original graph. Moreover, by definition of vertex
contraction, the core is an overlay graph: For any pair of vertices u, v of the core, their
distance dist(u, v) in the core equals their distance in the original graph. (Recall that
during contraction, we always ensure that distances are preserved in the remaining
uncontracted graph.)

Performance. Both preprocessing and query performance of CH depend on the
number of shortcuts added. It works well if the network has a pronounced hierarchy,
i. e., if long shortest paths are covered by a sparse set of vertices [AFGW10, ADF+11]
or if the network has small separators [BCRW13]. Note that if computing a complete
hierarchy produces too many shortcuts, one can always stop preprocessing early and
compute a partial hierarchy in practice. A possible stopping criterion is the average
vertex degree in the core that is approached during the contraction process.

5.3.2. Contraction Hierarchies for Multimodal Networks

We now show how Contraction Hierarchies (CH) can be used to compute shortest
path with restrictions on sequences of transport modes. We first argue that apply-
ing CH on the combined multimodal graph G without careful consideration either

134

5.3. User-Constrained Contraction Hierarchies

yields incorrect results to LCSPP-MS or predetermines the automaton A during
preprocessing. We then introduce User-Constrained Contraction Hierarchies (UCCH):
A practical adaption of Contraction Hierarchies to LCSPP-MS that enables arbi-
trary modal sequence constraints as query input. Further improvements that help
accelerating both preprocessing and queries are presented in Section 5.3.4.

Now, let G = (V , A) be a multimodal network as defined in Section 5.1. Recall
that G is a combination of time-independent and time-dependent networks (for
example, of road and public transit), hence, it contains arcs having both constant
weights and travel time functions associated with them. Applying Contraction
Hierarchies to G, therefore, already requires some engineering effort: Shortcuts may
represent paths containing arcs of different type. In order to compute the shortcuts’
travel time functions, these arcs have to be linked, resulting in inhomogeneous functions
that slow down both preprocessing and query performance. More significantly, when
a path P = (a1, . . . , ak) is composed into a single shortcut arc a0, its labels need to
be concatenated into a super label L(a0) = L(a1) · · · L(ak). In particular, if there are
subsequent arcs ai, aj in P where L(ai) 6= L(aj), the shortcut induces a modal transfer.
Running a query where this particular mode change is prohibited potentially yields
incorrect results: The shortcut must not be used but the label constrained path (i. e. the
one without this transfer) may have been discarded during preprocessing by the
witness search (see Section 5.3.1). Note that the partial time-dependent nature of G
further complicates things. A shortcut a0 = (u, v) needs to represent the travel time
profile from u to v, that is, the underlying path P depends on the time of day. As a
consequence, the super label of a0 is time-dependent as well.

If the automaton A is known during preprocessing, we can modify Contraction
Hierarchies preprocessing to yield correct query results with respect to A. During
contraction of vertex v 2 G when the algorithm considers to add a shortcut a0 =
(u, w), it looks at its super label L(a0) = (L1, . . . , Lk). To determine if a0 has to be
inserted, it runs multiple witness searches as follows: For each state q 2 A for which q
represents L(v), it runs a multimodal profile search from u (ignoring v). The algorithm
runs it with q as initial state and all states q0 2 A as final state who are reachable
from q in A by applying L(a0). Only if for all these profile searches dist(w)  len(a0)
holds, the shortcut a0 is not required. (For every relevant transition sequence of the
automaton, there is a shorter path in the graph.) Note that shortcuts a0 = (u, w) may
be required even if an arc from u to w already existed before contraction. This results
in parallel arcs for different subsequences of the constraint automaton.

This approach which we call State-Dependent CH (SDCH) has some disadvantages.
First, witness search is slow and less effective than in the unimodal scenario, resulting
in many more shortcuts. This hurts both preprocessing and query performance.
Adding to it the more complicated data structures required for inhomogeneous travel
time functions and arbitrary label sequences, SDCH combines challenges of both
Flexible CH [GKS10] and Timetable CH [Gei10]. As a result we expect a significant

135

Chapter 5. Multimodal Journey Planning

slowdown over unimodal Contraction Hierarchies on road networks. Most notably,
however, SDCH predetermines the automaton A during preprocessing, which we
want to avoid.

5.3.3. UCCH: Contraction for User-Constrained Route Planning

We now introduce User-Constrained Contraction Hierarchies (UCCH). Unlike SDCH,
it can handle arbitrary sequence constraint automata during query and has an easier
witness search. We first turn toward preprocessing before we go into detail about the
query algorithm.

Preprocessing. The main reason behind the disadvantages discussed in Section 5.3.1
is the computation of shortcuts that span over boundaries of different modal networks.

Instead, let S be the alphabet of labels of a multimodal graph G. We now process
each subnetwork independently. We compute—in no particular order—a partial
Contraction Hierarchy restricted to the subgraph GL = (VL, AL) (for every L 2 S).
Here, GL is exactly the original graph of the particular transportation mode (before
merging). We keep the contraction order with the exception of transfer vertices:
Vertices which are incident to at least one arc labeled link in G. We fix the rank of all
such vertices u to infinity, i. e., they are never contracted. Note that all other vertices
have only incident arcs labeled L in G. As a result, shortcuts only span arcs within
one modal network. Hence, we neither obtain inhomogeneous travel time functions
nor “mixed” super labels. We set the label of each shortcut arc a0 to L(a), where a is
an (arbitrary) arc along the path represented by a0.

To determine if a shortcut a0 = (u, w) is required (when contracting a vertex v),
we restrict the witness search to the modal subnetwork GL of v. Restricting witness
search does never yield incorrect query results: Only unnecessary shortcuts might be
inserted, but no required shortcuts are omitted. In fact, this is a common technique
to accelerate CH preprocessing [GSSV12]. Note that broadening the witness search
beyond network boundaries is prohibitive in our case: It may find a shorter u–w-path
using parts of other modal networks. However, such a path is not necessarily a
witness if one of these other modes is forbidden during the query. Thus, we must
not take it into account to determine if a0 can be omitted.

Our preprocessing results in a partial hierarchy for each modal network of G. Its
transfer vertices are not contracted, thus, stay at the “top” of the hierarchy. Recall that
we call the subgraph induced by all vertices v with rank(v) = • the core. Because of
the added shortcuts, the shortest path between every pair of core vertices is also fully
contained in the core, i. e., the core is an overlay graph of G. As a result, we achieve
independence from the automaton A during preprocessing.

A Practical Variant. Recall that contraction is independent for every modal network
of G: We may use any combination of partial, full or no contraction. Our practical

136

5.3. User-Constrained Contraction Hierarchies

•

1

•

2

•

3

•

4

•

5

(a) Input graph.

•

1

•

2

•

3

•

4

•

5

(b) Graph after contraction.

Figure 5.6. Contracting only route vertices in the realistic time-dependent model [PSWZ08]. The
top row are stop vertices, and the bottom row are route vertices contracted in the order depicted
by their labels. Grey arcs represent added shortcuts. Note that these shortcuts are required as they
incorporate different transfer times (for entering and exiting vehicles at different stops).

practical variant only contracts time-independent modal networks, that is, the road
networks. Contracting the time-dependent networks is much less effective. Recall that
we do not contract stop vertices as they have incident link arcs. Applying contraction
only on the non-stop vertices, however, yields too many shortcuts (see Figure 5.6
and [Gei10]). It also hides information encoded in the timetable model (such as
routes), further complicating query algorithms [BDGM09].

Query. Our query algorithm combines the concept of a multimodal Dijkstra al-
gorithm with unimodal Contraction Hierarchies. Let s, t 2 V be source and target
vertices and A a finite automaton with respect to LCSPP-MS. Our query algorithm
works as follows.

First, it initializes distance values for all pairs of (u, q) 2 V ⇥A with infinity. It now
runs a bidirectional Dijkstra search from s and t. Each search runs independently
and maintains priority queues

−!
Q and

 −
Q of tuples (u, q) where u 2 V and q 2 A. We

explain the algorithm for the forward search; the backward search works analogously.
The queue

−!
Q is ordered by distance and initialized with (s, q) for all initial states q

in A (the backward queue is initialized with respect to final states). Whenever the
algorithm extracts a tuple (u, q) from Q, it scans all arcs a = (u, v) in G. For each
such arc, it looks at all states q0 in A that can be reached from q by L(A). For every
such pair (v, q0) the algorithm checks whether its distance is improved and updates
the queue, if necessary.

To incorporate the data from preprocessing, we consider the graph G, augmented
by all shortcuts computed during preprocessing. The algorithm then runs the
aforementioned method, but when scanning arcs from a vertex u, the forward search
only looks at arcs (u, v) where rank(u) ≥ rank(v). Similarly, the backward search
only looks at arcs (u, v) where rank(u) ≥ rank(v). Note that by these means the
algorithm automatically searches inside the core whenever it reaches the “top” of the

137

Chapter 5. Multimodal Journey Planning

hierarchy. Thereby, it never reinitializes any data structures when entering the core
like it is typically the case for core-based algorithms, such as Core-ALT [DSSW09a].
The stopping criterion carries over from basic CH: A search stops as soon as its
minimum key in the priority queue exceeds the best tentative distance value µ. We
also use stall-on-demand [GSSV12], however, only on the component.

Intuitively, the search can be interpreted as follows. It simultaneously searches
upwards in those hierarchies of the modal networks that are either marked as initial
or as final in the automaton A. As soon as it hits the “top” of the hierarchy, it
operates on the common core. Because it always finds correct shortest paths between
core vertices in any modal network, the algorithm supports arbitrary automata (with
respect to LCSPP-MS) as query input. Note that our algorithm implicitly computes
local queries which use only one of the networks. It makes the use of a separate
algorithm for local queries, as in [DPW09a], unnecessary.

Handling Time-Dependency. Some of the networks in G are time-dependent. Weights
of time-dependent arcs (u, v) are evaluated for a departure time t. However, running
a reverse search on a time-dependent network is non-trivial, since the arrival time
at the target vertex is not known in advance. Several approaches, such as using the
lower-bound graph for the reverse search, exist [DN08, BGNS10], but they complicate
the query algorithm. Recall that in our practical variant we do not contract any of
the time-dependent networks, hence, no time-dependent arcs are contained in the
component. This makes backward search on the component easy for us. We discuss
search on the core in the next section.

5.3.4. Improvements

We now present improvements to our algorithm, some of which also apply to
Contraction Hierarchies.

Average Node Degree. Recall that whenever the algorithm contracts a modal net-
work, it never contracts transfer vertices, even if they were of low importance in the
context of that network. As a result, the number of added shortcuts may increase
significantly. Thus, the algorithm stops the contraction process as soon as the average
vertex degree in the core exceeds a value a. By varying a, we trade the number of core
vertices and the number of core arcs: Higher values of a produce a smaller core but
with more shortcut arcs. We evaluated a good value of a experimentally.

Arc Ordering. Due to the higher average vertex degree compared to unimodal
Contraction Hierarchies, the query algorithm has to look at more arcs. Thus, we
improve performance of iterating over incident arcs of a vertex u by reordering them
locally at u: We first arrange all outgoing arcs, followed by all bidirected arcs and,

138

5.3. User-Constrained Contraction Hierarchies

finally, all incoming arcs. By these means, the forward respective backward search
only needs to look at their relevant subsets of arcs at u. The same optimization is
applied to the stalling routine. Preliminary experiments revealed that arc reordering
improves query performance by up to 21 %.

Vertex Ordering. To improve the cache hit rate of the query algorithm, we also
reorder vertices such that adjacent vertices are stored consecutively with high proba-
bility. We use a DFS-like algorithm to determine the ordering [DGNW13]. Because
most of the running time is spent on the core, we also move core vertices to the front.
This improves query performance up to a factor of two.

Core Pruning. Recall that a search stops as soon as its minimum key from the
priority queue exceeds the best tentative distance value µ. This is conservative, but
necessary for CH (and also UCCH) to be correct. However, UCCH spends a large
fraction of the search inside the core. We can easily expand road and transfer arcs
both forward and backward, but because of the conservative stopping criterion, many
core vertices are scanned twice. To reduce this amount, the algorithm does not scan
arcs of core vertices u, where u has been scanned by both searches and did not
improve µ. A path through u is provably not optimal. This increases performance by
up to 47 %.

Another alternative is not applying bidirectional search on the core at all. The
forward search continues regularly, while the backward search does not scan arcs
incident to core vertices. This approach turns out most effective with a performance
increase by a factor of two.

State Pruning. Recall that our query algorithm maintains distances for pairs (u, q)
where u 2 V and q 2 A. Thus, whenever it scans an arc (u, v) 2 A resulting in
some state q 2 A, it updates the distance value of (v, q) only if it is improved. It is
discarded (or pruned) otherwise. However, we can even make use of a stronger state
pruning rule: Let qi and qj be two states in A. We say that qi dominates qj if and only
if the language LA(qj) accepted by A with modified initial state qj is a subset of the
language LA(qi) accepted by A with modified initial state qi. In other words, any
feasible mode sequence beginning with qj is also feasible when starting with qi. As a
consequence, when the algorithm is about to update a pair (u, qj), it can additionally
prune (u, qj) if there exists a state qi that dominates qj and where (u, qi) has smaller
distance: Any shortest path from u is provably not using (u, qj).

As an example, consider the first automaton in Figure 5.7a on Page 142. Let its
states be denoted by {q0, q1, q2}, from left to right. Here, q0 dominates q2 with respect
to our definition: Any foot path beginning at state q2 is also a feasible (foot) path
beginning at state q0. Therefore, any pair (u, q2) can be pruned if (u, q0) has a smaller
distance value than (u, q2). State pruning improves performance by ⇡ 10 %.

139

Chapter 5. Multimodal Journey Planning

State-Independent Search in Component. We use automata to model sequence con-
straints, however, by definition their state may only change when traversing arcs
labeled link. In particular, when searching inside the component, there is never
a state transition (recall that all link arcs are inside the core). Thus, we use the
automaton only on the core. The algorithm starts with a regular (unimodal) CH
query. Whenever it is about to insert a core node u into the priority queue for the first
time on a branch of the shortest path tree, it creates labels (u, q) for all initial (final)
states q 2 A (regarding forward/backward search). Because the amount of scanned
vertices in the component is small on average compared to the total search space, we
do not observe a gain in running time. However, on large networks with complicated
query automata we save several gigabytes of memory during query by keeping
only one distance value for each component vertex. Recall that component vertices
constitute the major fraction of the graph.

Parallelization. In general, the multimodal graph G is composed of more than one
contractable modal subnetwork, for instance foot and car. In this case, we have to run
the aforementioned unimodal CH query on every component individually. Because
these queries are independent from each other, we may parallelize them quite easily.
In a first phase, we allocate one thread for every contracted network which then runs
the unimodal CH query algorithm on its respective component until it hits the core.
In the second phase, the threads are synchronized, and the algorithm continues the
search on the core sequentially. Note that we only need to run the first phase on those
components that are represented by an initial or final state in the input automaton A.

Combining all improvements yields a speedup of up to factor 4.9.

5.3.5. Experiments

This section presents an extensive experimental study of our algorithm introduced
in Section 5.3.3 and compares it to existing approaches, such as Access-Node Rout-
ing [DPW09a].

We conducted our experiments on one core of an Intel Xeon E5430 processor
running SUSE Linux 11.1. It is clocked at 2.66 GHz, has 32 GiB of memory and 12 MiB
of L2 cache. The program was compiled with GCC 4.5, using optimization level 3.
Our implementation is written in C++ using the STL and Boost at some points. As a
priority queue we use a 4-ary heap.

Inputs. We assembled a total of six multimodal networks where two are imported
from [DPW09a]. Their size figures are reported in Table 5.1.

• For ny-road-rail, we combine New York’s foot network with the public transit
network operated by the New York Metropolitan Transit Authority [Met66]. We

140

5.3. User-Constrained Contraction Hierarchies

Table 5.1. Comparing size figures of our input instances. The column “col.” indicates whether
we use the Coloring Model (see Section 4.3.4) for the railway subnetwork. The bottom two
instances are taken from [DPW09a].

Public Transit Road

Network Stops Connections Col. Vertices Arcs Density

ny-road-rail 16 897 2 054 896 • 579 849 1 527 594 1 : 56
de-road-rail 6 822 489 801 • 5 055 680 12 378 224 1 : 749
europe-road-rail 30 517 1 621 111 • 30 202 516 72 586 158 1 : 1 133
wo-road-rail-flight 31 689 1 649 371 • 50 139 663 124 625 598 1 : 1 846

de-road-rail(long) 498 16 450 ◦ 5 055 680 12 378 224 1 : 10 711
wo-road-flight 1 172 28 260 ◦ 50 139 663 124 625 598 1 : 139 277

link bus and subway stops to road intersections that are no more than 500 m
apart.

• The de-road-rail network combines the pedestrian and railway networks of
Germany. The railway network is extracted from the timetable of the winter
period 2000/01. It includes short and long distance trains (which are operated
by Deutsche Bahn). We link stations using a radius of 500 m.

• The europe-road-rail network combines the road (as in car) and railway net-
works of Western Europe. The railway network is extracted from the timetable
of the winter period 1996/97 and stations are linked within a radius of 5 km.

• The wo-road-rail-flight network is a combination of the road networks of
North America and Western Europe with the railway network of Western
Europe and the flight networks of Star Alliance and One World. The flight
networks are extracted from the winter timetable 2008. As radius we use 5 km.

• Both de-road-rail(long) and wo-road-flight stem from [DPW09a]. The first
combines the road network of Germany with all long-distance trains from the
railway network of Germany (which is a subset of the de-road-rail instance).
The latter combines the road networks of Europe and North America with the
flight networks of Star Alliance and One World. It is a subset of the wo-road-

rail-flight network.

The data of the Western European and North American road networks (thereby
also Germany and New York) was kindly provided to us by PTV AG [PTV79] for
scientific use. The timetable data of New York is publicly available through General
Transit Feeds [Gen10], while the data of the German and European railway networks
was kindly provided by HaCon [HaC84]. Unfortunately, the New York timetable did

141

Chapter 5. Multimodal Journey Planning

foot footrail

(a) foot-and-rail automaton.

car carflight

(b) car-and-flight automaton.

foot

car

foot

car

rail railflight

(c) hierarchical automaton.

Figure 5.7. Finite automata representing mode sequence constraints that are used in our Experi-
ments. The blue arcs are labeled “link”.

not contain any foot path data for transfers. Thus, we generated artificial foot paths
with the heuristic presented in Section 4.3.5.

Our instances have varying fractional size of their public transit parts. We call the
fraction of linked vertices in a subgraph density (see last column of Table 5.1). Our
densest network is ny-road-rail, which also has the highest number of connections.
On the other hand, de-road-rail(long) and wo-road-flight are rather sparse.
However, we include them to compare our algorithm to Access Node Routing (ANR).
Also note that for this reason we do not use the improved coloring model from
Section 4.3.4 (but the realistic time-dependent model, cf. Section 4.3.3) on these two
instances.

We use the following automata as query input. The foot-and-rail automaton (Fig-
ure 5.7a) allows either walking, or walking, taking the railway network and walking
again. Similarly, the car-and-rail automaton uses the road network instead of
walking, while the car-and-flight (Figure 5.7b) automaton uses the flight network
instead of the railway network. The hierarchical automaton (Figure 5.7c) is our
most complicated automaton. It hierarchically combines road, railways and flights (in
this order). All modal sequences are possible, except of going up in the hierarchy after
once stepping down. For example, if one takes a train after a flight, it is impossible
to take another flight. Finally, the everything automaton allows arbitrary modal
sequences in any order.

142

5.3. User-Constrained Contraction Hierarchies

Methodology. We evaluate both preprocessing and query performance. We always
compute the contraction order online during preprocessing according to the ag-
gressive variant from [GSSV12]. We report the time and the amount of computed
auxiliary data. Queries are generated with source, target vertices and departure times
uniformly picked at random. For Dijkstra’s algorithm we ran 1 000 queries, while
for UCCH we run a superset of 100 000 queries.

We report the average number of: (1) extracted vertices in the implicit product
graph from the priority queue (scanned vertices), (2) priority queue update opera-
tions (relaxed arcs), (3) touched arcs, (4) the average query time, and (5) the speedup
over Dijkstra’s algorithm. Note that we only report the time to compute the length
of the shortest path. Unpacking of shortcuts can be done efficiently in less than a
millisecond [GSSD08].

Evaluating Average Core Degree Limit

The first experiment evaluates preprocessing and query performance with varying
average core degree. We abort contraction as soon as the average vertex degree in
the core exceeds a limit a (cf. Section 5.3.4). In our implementation we compute the
average vertex degree as follows. We divide the number of arcs by the number of
vertices in the graph data structure. Note that we use an adjacency array data structure
with arc compression [Del09]: Whenever there are arcs a = (u, v) and a0 = (v, u)
where len(a) = len(a0), it combines both arcs in a single entry at u and v. As a result,
the number we report may be smaller than the true average degree (at most by a
factor of two). This is, however, irrelevant for the result of this experiment.

Table 5.2 shows preprocessing and query figures on de-road-rail. We use an
automaton that does not use public transit arcs. With higher values of a more vertices
are contracted, resulting in higher preprocessing time and more shortcuts (we report
them as a fraction of the input’s size). At the same time, less vertices (but with higher
degree) remain in the core. Setting a = • is infeasible. The amount of shortcuts
explodes, and preprocessing does not finish within reasonable time. Interestingly, the
query time decreases (with smaller core size) up to a ⇡ 25 and then increases again.
Though we scan less vertices, the increase in shortcuts results in more touched arcs
during query, that is, arcs the algorithm has to iterate when scanning a vertex.

We conclude that for de-road-rail the tradeoff between number of core vertices
and added shortcut arcs is optimal for a = 25. Hence, we use this value in subsequent
experiments. Accordingly, we determined a for all other instances.

Comparison to Unimodal CH. In Table 5.2 we also compare UCCH to CH when
run on the unimodal road network. We observe that computing a full hierarchy
results in queries that are faster by a factor of 11.2. Since UCCH does not compute a
full hierarchy by design, we evaluate two partial Contraction Hierarchies: The first
stops when the core reaches a size of 10 635—equivalent to the optimal core size

143

Chapter 5. Multimodal Journey Planning

Table 5.2. Performance of UCCH, partial CH, and CH on de-road-rail with varying
average core degree limit. For queries we use the foot automaton.

Preprocessing Query

Avg. Core- Core- Shortcut- Time Scanned Relaxed Touched Time
Degree Vertices Arcs [min] Vertices Arcs Arcs [ms]

UCCH:

10 30 908 42.3 % 6 15 531 27 506 155 776 5.85
15 16 003 43.1 % 7 8 090 16 844 121 631 3.11
20 12 239 43.7 % 9 6 240 14 425 124 201 2.82
25 10 635 44.2 % 10 5 465 13 687 135 151 2.80
30 9 742 44.7 % 12 5 049 13 486 148 735 2.96
35 9 171 45.1 % 14 4 794 13 598 163 376 3.15
40 8 788 45.4 % 15 4 628 13 787 179 483 3.38

PARTIAL CH:

13 10 635 41.7 % 6 5 567 11 402 71 860 1.93
15 6 750 41.8 % 7 3 636 7 970 53 655 1.37

CH:

— 0 41.8 % 9 677 1 290 11 434 0.25

of UCCH. We observe a query performance almost comparable to UCCH (slightly
faster by 45 %). The second partial hierarchy stops with a core size of 6 750 which
is equal to the number of transfer vertices in the network (i. e., the smallest possible
core size on this instance for UCCH). Here, CH is a factor of 2 faster than UCCH.
Recall that UCCH must not contract transfer vertices. In road networks these are
usually “unimportant”: Long-range shortest paths do not often pass railway stations
or bus stops in general, which explains that UCCH’s hierarchy is less pronounced.
However, for multimodal queries transfer vertices are indeed very important, as they
constitute the interchange points between different networks. To enable arbitrary
automata during query, we overestimate their importance by not contracting them at
all, which is reflected by the (relatively small) difference in performance compared
to CH.

Preprocessing

Table 5.3 shows preprocessing figures for UCCH on all our instances. Besides the
average degree we evaluate the core in terms of total and fractional number of
core vertices and the amount of added shortcuts. Added shortcuts are reported as
percentage of all road arcs and in total MiB.

We observe that the preprocessing effort correlates with the graph size. On the small

144

5.3. User-Constrained Contraction Hierarchies

Table 5.3. Preprocessing figures for UCCH and ANR on the road subnetwork. Figures for the latter
are taken from [DPW09a]. We scale the preprocessing time with respect to running time figures
compared to Dijkstra’s algorithm.

UCCH ANR

Avg. Core- Core Vertices Shortcuts Time Space Time

Network Deg. Total Ratio Percent [MiB] [min] [MiB] [min]

ny-road-rail 8 11 057 1:52 48.3 % 8 < 1 — —
de-road-rail 25 10 635 1:475 44.2 % 63 10 — —
europe-road-rail 25 39 665 1:761 39.0 % 324 38 — —
wo-road-rail-flight 30 38 610 1:1 298 39.1 % 558 87 — —

de-road-rail(long) 35 996 1:5 075 42.3 % 60 10 504 26
wo-road-flight 35 727 1:68 967 38.0 % 542 78 14 050 184

ny-road-rail instance it takes less than a minute and produces 8 MiB of data. On
our largest instance, wo-road-rail-flight, we need 1.5 hours and produce 558 MiB
of data. Because the size of the core depends on the size of the public transit network,
we obtain a much higher ratio of core vertices on ny-road-rail (1 : 52) than we do,
for example, on wo-road-rail-flight (1 : 1 298).

Comparing the preprocessing effort of UCCH to scaled figures of Access-Node
Routing (ANR) [DPW09a], we observe that UCCH is more than twice as fast and
produces significantly less amount of data: On de-road-rail(long) by a factor
of 8.4, while on wo-road-flight, ANR requires 14 GiB of space. Here, UCCH only
uses 542 MiB, a factor of 26. Concluding, UCCH outperforms ANR in terms of
preprocessing space and time.

Query Performance

In this experiment we evaluate the query performance of UCCH and compare it to
Dijkstra’s algorithm and Access-Node Routing (ANR) where applicable. Figures are
presented in Table 5.4. We observe that we achieve speedups of several orders of
magnitude over Dijkstra’s algorithm, depending on the instance.

Generally, UCCH’s speedup over Dijkstra’s algorithm correlates with the ratio of
core vertices present after preprocessing (thus, indirectly with the density of transfer
vertices): The sparser our networks are interconnected, the higher the speedups we
achieve. On our densest network, ny-road-rail, we obtain a speedup of 17, while
on wo-road-flight we achieve query times of less than a millisecond—a speedup
of over 50 540. Note that most of the time is spent inside the core (particularly, in
the public transit network), which we do not accelerate. (A detailed query time
distribution analysis follows later in this section.) Comparing UCCH with ANR, we
observe that query times are in the same order of magnitude, UCCH’s being slightly

145

Chapter 5. Multimodal Journey Planning

faster. Note that we achieve these running times with significantly less preprocessing
effort.

Improvements

In Table 5.5 we report figures for the improvements to UCCH which we described in
Section 5.3.4. The table is divided in two parts. The upper part addresses unimodal
improvements that are also applicable to (partial) CH. Therefore, we evaluate them
using the car automaton. For our two biggest networks, we provide the number
of scanned vertices and the query time for several combinations of improvements.
The first row (none) reports results for the basic version of UCCH. The other rows
use: Reordered vertices (rv), reordered arcs (ra), improved bidirectional search on the
core (bi), and unidirectional search on the core (fo), that is, no backward search is
performed on the core. Combining these techniques, we obtain a speedup of up to a
factor of 4.8.

The lower part of Table 5.5 is dedicated to improvements that are specific for UCCH.
We evaluate them using the car-and-rail automaton. We provide numbers for
state-independent search on the component (si) and state-pruning (sp). Note that
these figures already include the previous improvements. Interestingly, using state-
independent search results in slightly worse query times of about 5 %. However, we
reduce the memory footprint of the algorithm by a significant amount (up to several
Gigabytes) since we store distance values only once per component vertex.

Note that from the number of scanned vertices we can deduce which of the
improvements impact cache efficiency and which impact the search space.

In-Depth Analysis of Query Performance

Table 5.6 reports in-depth figures for the UCCH query including all (reasonable)
improvements from the previous section. We see that a large fraction of the query is
spent on the public transit part of the multimodal network: Up to 65 % of the scanned
vertices and also up to 65 % of query time. Recall that we do not further accelerate
the search on the core.

Interestingly, UCCH is slightly faster (up to a factor of 2.6) on the public transit
subnetworks when compared to Dijkstra’s algorithm. UCCH scans fewer vertices in
total, which helps cache performance on the public transit part.

When we compare the time spent on the road network (component and core) of
de-road-rail with the figures of Table 5.2 (where we use the same instance but with
the smaller foot automaton), we observe that the foot-and-rail automaton yields a
factor 1.8 slowdown. The reason is that the foot-and-rail automaton actually has
two “foot states” (cf. Figure 5.7a) and, thus, has to do twice the work on the road
subnetwork. Note that the number 1.8 (instead of exactly 2) stems from the fact that
we apply state pruning.

146

5.3. User-Constrained Contraction Hierarchies

Ta
bl

e
5.

4.
Q

ue
ry

pe
rf

or
m

an
ce

of
U

C
C

H
co

m
pa

re
d

to
m

ul
tim

od
al

D
ijk

st
ra

A
N

R
.F

ig
ur

es
fo

r
th

e
la

tte
r

ar
e

ta
ke

n
fr

om
[D

PW
09

a]
.

W
e

sc
al

e
th

e
ru

nn
in

g
tim

e
w

ith
re

sp
ec

tt
o

D
ijk

st
ra

’s
al

go
ri

th
m

.

D
ijk

st
ra

A
N

R
U

C
C

H

Sc
an

ne
d

Ti
m

e
Sc

an
ne

d
Ti

m
e

Sp
ee

d-
Sc

an
ne

d
Ti

m
e

Sp
ee

d-
N

et
w

or
k

A
ut

om
at

on
V

er
tic

es
[m

s]
V

er
tic

es
[m

s]
up

V
er

tic
es

[m
s]

up

ny
-r
oa
d-
ra
il

fo
ot

-a
nd

-r
ai

l
40

4
81

6
22

6
—

—
—

25
52

5
13

.6
1

17
de
-r
oa
d-
ra
il

fo
ot

-a
nd

-r
ai

l
2

61
1

05
4

2
00

5
—

—
—

18
27

5
12

.7
8

15
7

eu
ro
pe
-r
oa
d-

ra
il

ca
r-

an
d-

ra
il

30
02

1
56

7
23

99
3

—
—

—
90

57
9

53
.7

8
44

6
wo
-r
oa
d-
ra
il

-f
li

gh
t

ca
r-

an
d-

fl
ig

ht
36

05
3

71
7

33
69

2
—

—
—

42
05

6
26

.7
2

1
26

0
wo
-r
oa
d-
ra
il

-f
li

gh
t

hi
er

ar
ch

ic
al

36
12

4
10

5
35

26
1

—
—

—
12

6
07

2
70

.5
2

50
0

wo
-r
oa
d-
ra
il

-f
li

gh
t

ev
er

yt
hi

ng
25

26
7

20
2

23
97

2
—

—
—

71
38

9
50

.7
7

47
2

de
-r
oa
d-
ra
il

(l
on

g)
fo

ot
-a

nd
-r

ai
l

2
73

5
42

6
2

07
5

13
52

4
3.

45
60

2
12

50
9

3.
13

66
3

wo
-r
oa
d-
fl
ig

ht
ca

r-
an

d-
fl

ig
ht

36
58

2
90

4
33

86
2

4
20

0
1.

07
31

55
1

1
64

7
0.

67
50

54
0

147

Chapter 5. Multimodal Journey Planning

Table 5.5. Detailed analysis of the impact on query performance by our improvements (cf. Sec-
tion 5.3.4).

Scanned Time Spd.-
Network Automaton rv ra bi fo si sp Vertices [ms] up

europe-road-rail car ◦ ◦ ◦ ◦ ◦ ◦ 48 488 69.93 —
europe-road-rail car • ◦ ◦ ◦ ◦ ◦ 48 488 35.11 2.00
europe-road-rail car • • ◦ ◦ ◦ ◦ 48 488 29.38 2.38
europe-road-rail car • • • ◦ ◦ ◦ 31 628 20.02 3.49
europe-road-rail car • • ◦ • ◦ ◦ 24 297 14.57 4.80

wo-road-rail-flight car ◦ ◦ ◦ ◦ ◦ ◦ 35 539 54.42 —
wo-road-rail-flight car • ◦ ◦ ◦ ◦ ◦ 35 539 27.93 1.95
wo-road-rail-flight car • • ◦ ◦ ◦ ◦ 35 539 23.18 2.35
wo-road-rail-flight car • • • ◦ ◦ ◦ 29 695 19.84 2.74
wo-road-rail-flight car • • ◦ • ◦ ◦ 17 862 11.50 4.73

europe-road-rail car-and-rail • • ◦ • ◦ ◦ 95 095 57.23 —
europe-road-rail car-and-rail • • ◦ • • ◦ 95 024 60.12 0.95
europe-road-rail car-and-rail • • ◦ • ◦ • 89 770 51.72 1.11
europe-road-rail car-and-rail • • ◦ • • • 89 699 54.45 1.05

wo-road-rail-flight car-and-rail • • ◦ • ◦ ◦ 72 997 46.73 —
wo-road-rail-flight car-and-rail • • ◦ • • ◦ 72 895 49.09 0.95
wo-road-rail-flight car-and-rail • • ◦ • ◦ • 69 627 42.35 1.10
wo-road-rail-flight car-and-rail • • ◦ • • • 69 525 44.51 1.05

5.3.6. Conclusion

In section we introduced UCCH: A fast multimodal speedup technique that handles
arbitrary modal sequence constraints at query time—a problem considered challeng-
ing before. Besides not determining the modal constraints during preprocessing,
its advantages are small space overhead, fast preprocessing time and the ability
to implicitly handle local queries without the need for a separate algorithm. Its
preprocessing can handle huge intercontinental networks with many more stations
and airports than those of previous multimodal techniques.

For future work we are interested in augmenting our approach to more general
scenarios such as profile or multicriteria queries. We also like to further accelerate
search on the uncontracted core—especially on the rail networks. Moreover, we
are interested to improve the contraction order. In particular, we like to use ideas
from [DPW09a] to enable contraction of some transfer vertices in order to achieve
better results, especially on more densely interlinked networks.

148

5.4. Multicriteria Multimodal Route Planning

Table 5.6. In-depth analysis of UCCH’s query time. We report the distri-
bution of query time among the particular subnetworks and compare it to
Dijkstra’s algorithm.

Dijkstra’s Algorithm UCCH

Scanned Time Scanned Time Speed-
Subnetwork Vertices [ms] Vertices [ms] up

ny-road-rail on foot-and-rail:

road component — — 203 ⇡ 0.0 —
road core 389 578 215.5 9 944 4.8 45
rail 15 238 10.5 15 238 8.8 1.2

de-road-rail on foot-and-rail:

road component — — 188 ⇡ 0.0 —
road core 2 599 251 1 988.4 6 314 5.0 397
rail 11 803 16.6 11 803 7.8 2.1

europe-road-rail on car-and-rail:

road component — — 213 ⇡ 0.0 —
road core 29 973 817 23 933.3 43 017 24.4 982
rail 47 750 59.7 47 750 29.4 2.0

wo-road-rail-flight on hierarchical:

road component — — 301 ⇡ 0.0 —
road core 36 047 522 35 169.3 49 944 30.6 1 149
rail 75 682 89.9 75 682 39.2 2.3
flight 902 1.8 902 0.7 2.6

5.4. Multicriteria Multimodal Route Planning

In the previous section we considered the label-constrained shortest path problem
with mode sequence constraints (LCSPP-MS) and presented an algorithm (UCCH) to
quickly compute queries obeying mode sequence constraints that are given as a user
input. Now, recall for a moment that the motivation for LCSPP(-MS) was to compute
journeys, that utilize a reasonable sequence of transportation modes. For example,
reconsidering Figure 5.1, the automaton shown in Figure 5.8 ensures that one of the
desired solutions from Figure 5.1b is computed.

While this may seem a fine approach to the multimodal problem at first, com-
puting label-constrained shortest paths has two disadvantages. First, the output of
the query algorithm (such as UCCH’s) is a single journey that, albeit obeying the
label constraints, is the one that arrives at the target earliest. Consequently, one of
the options from Figure 5.1 will be hidden from the user, even though, the (user-

149

Chapter 5. Multimodal Journey Planning

specified) automaton encourages both. Second, LCSPP requires the user to specify
mode constraints. While this may be useful to exclude certain transportation mode se-
quences, it actually exposes a fundamental conceptual problem with label-constrained
optimization: It essentially relies on the user to know their (modal) options before
planning the journey.

walk transit

cycle

walk

Figure 5.8. Mode sequence
constraints corresponding to the
journeys in Figure 5.1b.

Given the limitation of label-constrained optimization, we
revisit the problem of computing multimodal journeys by com-
bining multimodal route planning with multicriteria optimiza-
tion in this section. The idea is to obtain a diverse (with respect
to the available transportation modes) and concise set of jour-
neys, from which the user can then choose their favorite. We
argue that users optimize—besides arrival time—for each trans-
portation mode a mode-dependent convenience criterion, such
as the number of transfers for public transit, or the total walk-
ing duration for walking. Computing Pareto sets then produces
solutions for various trade offs in these criteria. For example
in Figure 5.1b, the journey that uses walking as its last leg may
have an earlier arrival time, however, at the cost of more walk-
ing. Eventually, both solutions are Pareto-optimal. Note that
the earliest arrival journey from Figure 5.1a is Pareto-optimal,
as well. In fact, it is the best solution regarding the criterion
arrival time and is, therefore, presented to the user as a third

alternative.

Unfortunately, with increasing number of optimization criteria, the size of the
Pareto sets grows to the point that there are too many solutions to be presented to
the user. Moreover, many of them have insignificant tradeoffs in their criteria, such
as saving one minute in walking at the cost of arriving hours later. (An example
is presented in Figure 5.13.) To identify significant journeys of the Pareto set we
propose to use fuzzy logic [Zad88, Zad65] in order to rank them in a postprocessing
step [FA04]. This postprocessing step is not only quick but can also incorporate
user-dependent preferences on the “fuzziness” of each optimization criterion.

To compute exact Pareto sets, we propose two approaches. The first (MLC) ex-
tends the Multi-Label-Correcting algorithm [MSWZ07] (also see Section 4.4.2) to
the multimodal scenario. The second, called MCR, is based on RAPTOR (see Sec-
tion 4.6) and augments the round-based paradigm to incorporate further (unrestricted)
modes of transportation. We also propose to combine ideas from Contraction Hier-
archies [GSSV12] and UCCH (see Section 5.3) with both MLC and MCR, in order
to accelerate queries. Unfortunately, even with these optimizations, queries take
several seconds. Therefore, we further present different heuristics (still multicriteria),
which aim to not compute those (insignificant) journeys that would be filtered during
postprocessing. With these heuristics, we can compute on the full metropolitan

150

5.4. Multicriteria Multimodal Route Planning

network of London that includes all public transit, rental bicycles, walking, and taxis,
solutions of good quality in below one second. For a restricted scenario that excludes
taxi, journeys of excellent quality can be computed in under 500 ms time on average,
which is fast enough for server applications.

Overview. This section is organized as follows. First, we formally define the prob-
lem of multimodal multicriteria optimization as well as the considered criteria in
Section 5.4.1. We then show how we use fuzzy logic to relax domination in order
to rank the journeys in Section 5.4.2. Section 5.4.3 presents two algorithms that
compute exact Pareto sets of multimodal journeys for a restricted problem that only
considers public transit and walking: MLC and MCR. Thereby, the latter extends
RAPTOR (cf. Section 4.6) to this setting. We then show in Section 5.4.4 how we
combine UCCH (cf. Section 5.3) with both MLC and MCR to accelerate queries. Sec-
tion 5.4.5 extends both algorithms to the scenario that includes taxi and rental bicycles.
To reduce the number of solutions maintained during the algorithm, Section 5.4.6
presents several heuristic algorithms (based on MCR). Section 5.4.7 presents a corre-
sponding quality measure (using fuzzy set theory in a consistent way) which enables
us to evaluate the (qualitative) performance of the heuristics. Finally, Section 5.4.8
contains an extensive experiments, and Section 5.4.9 some concluding remarks.

References. The content of this section is based on [DDP+13] which appeared at
the 12th International Symposium on Experimental Algorithms (2013) and on a prior
technical report [DDP+12] which has been published at the Faculty of Informatics
of the Karlsruhe Institute of Technology. It is joint work with Daniel Delling, Julian
Dibbelt, Renato Werneck, and Dorothea Wagner.

5.4.1. Problem Statement

In the following, a query always takes as input a source location s, a target location t,
and a departure time t. It produces journeys that leave s no earlier than t and arrive
at t. Thereby, a journey is a valid path in the integrated multimodal transportation
network that obeys all timetable constraints.

Criteria. We still have to define which journeys the query should return. We argue
that users optimize two natural classes of criteria in multimodal networks: arrival
time, and mode-dependent “convenience”. For our first (simplified) scenario (with
public transit, cycling, and walking, but no taxi), we work with three actual criteria.
Besides arrival time, we use the number of trips and walking duration as proxies
for convenience (for public transit/cycling and walking, respectively). We later add
monetary cost for the scenario that includes taxi.

151

Chapter 5. Multimodal Journey Planning

Given this setup, a first natural problem we need to solve is the full multicriteria
problem, which must return a full (maximal) Pareto set of journeys. We say that
a journey J1 dominates J2 if J1 is strictly better than J2 according to at least one
criterion and no worse according to all other criteria. A Pareto set is a set of pairwise
nondominating journeys [MW01, Han79]. If two journeys have equal values in all
criteria, we only keep one.

5.4.2. Dominance and Fuzzy Set Theory

Solving the full multicriteria problem, however, can lead to solution sets that are
too large for most users (there is an example at the end of this section). Moreover,
many solutions provide undesirable tradeoffs, such as journeys that arrive much
later to save a few seconds of walking (or walk much longer to save a few seconds in
arrival time). Intuitively, most criteria are diffuse to the user, and only large enough
differences are significant. Pareto optimality fails to capture this.

To formalize the notion of significance, we propose to score the journeys in the
Pareto set in a post-processing step using concepts from fuzzy logic [Zad88] (and
fuzzy set theory [Zad65]). Loosely speaking, fuzzy logic generalizes Boolean logic to
handle (continuous) degrees of truth. For example, the statement “60 and 61 seconds
of walking are equal” is false in classical logic, but might be considered “almost true”
in fuzzy logic. We define some necessary notion from fuzzy logic in the following.

-20 0 20

0

0.5

1 =< >

Figure 5.9. Plot of the fuzzy relational
operators µ= (blue curve), µ> (green
curve), and µ< (red curve) for e = 5
and c = 0.8.

Fuzzy Sets. Formally, a fuzzy set is a tuple S = (U , µ),
where U is a set and µ : U ! [0, 1] a membership func-
tion that defines “how much” each element from U
is contained in S . Mostly, we use µ directly to refer
to S . Our application requires fuzzy relational opera-
tors µ<, µ=, and µ> (for “better”, “equal” and “worse”).
For any values x, y 2 R, they are evaluated by µ<(x− y),
µ>(y− x), and µ=(x − y). In this section, we use the
well-known [Zad88] exponential membership functions
for those operators:

µ=(x) := exp
✓

ln(c)
e2 x2

◆
, (5.2)

where 0 < c < 1 and e > 0 control the degree of
fuzziness (i. e., the “width” of the Gaussian). The other

two operators are derived by µ<(x) := 1− µ=(x) if x < 0 (0 otherwise) and µ> :=
1− µ=(x) if x > 0 (0 otherwise). Figure 5.9 shows plots of µ=, µ>, and µ< using the
exponential membership function from Equation 5.2. The parameters are c = 0.8
and e = 5, i. e., the Gaussian centered at x = 0 has a value of 0.8 for x = 5.

152

5.4. Multicriteria Multimodal Route Planning

0 0.25 0.5 0.75 1

00.25
0.5

0.75
1

0

0.25

0.5

0.75

1

xy

(a) Product norm T(x, y) = xy.

0 0.25 0.5 0.75 1

00.25
0.5

0.75
1

0

0.25

0.5

0.75

1

xy

(b) Probabilistic sum S(x, y) = x + y− xy.

0 0.25 0.5 0.75 1

00.25
0.5

0.75
1

0

0.25

0.5

0.75

1

xy

(c) Minimum norm T(x, y) = min(x, y).

0 0.25 0.5 0.75 1

00.25
0.5

0.75
1

0

0.25

0.5

0.75

1

xy

(d) Maximum norm S(x, y) = max(x, y).

Figure 5.10. Plots for two exemplary t- and s-norms pairs: Product norm, probabilistic sum,
minimum norm, and maximum norm.

Norms. Another important concept from fuzzy logic are t-norms and s-norms
which correspond to fuzzy binary logical operators. We recap them next. A tri-
angular norm (short: t-norm) T : [0, 1]2 ! [0, 1] is a commutative, associative, and
monotone (i. e., a  b, x  y) T(a, x)  T(b, y)) binary operator to which 1 is the
neutral element. If x, y 2 [0, 1] are fuzzy truth values, T(x, y) is interpreted as a
fuzzy conjunction (and) of x and y. Given a t-norm T, the complementary conorm (or
s-norm) of T is defined as S(x, y) := 1− T(1− x, 1− y), which we interpret as a
fuzzy disjunction (or). Note that the neutral element of S is 0. Two well-known
pairs of t- and s-norms are (min(x, y), max(x, y)), called minimum/maximum norms,
and (xy, x + y− xy), called product norm/probabilistic sum. Plots for both pairs of s-
and t-norms are shown in Figure 5.10.

A Notion of Fuzzy Dominance. In the following paragraphs, we recap and (re)derive
the concept of fuzzy dominance in multicriteria optimization. It has been introduced

153

Chapter 5. Multimodal Journey Planning

by Farina and Amato in [FA04]. Given two journeys J1 and J2 with C optimization
criteria, we denote by nb(J1, J2) the fuzzy number of criteria in which J1 is better than J2.
More formally,

nb(J1, J2) :=
C

Â
i=1

µi
<

�
ki(J1), ki(J2)

�
, (5.3)

where ki(J) evaluates the i-th criterion of J and µi
< is the fuzzy less-than opera-

tor associated with the i-th criterion. Note that each criterion may use different
fuzzy operators to control the amount of fuzzyness for every criterion individually.
Analogously, we define ne(J1, J2) for equality and nw(J1, J2) for greater-than (by sub-
stituting µi

< in Equation 5.3 by µi
= and µi

>, respectively). Now, it holds by definition
that nb(J1, J2) + ne(J1, J2) + nw(J1, J2) = C for any pair of journeys J1 and J2.

Having established this notion, Pareto dominance can be rephrased as follows. A
journey J1 (strictly) dominates another journey J2, if and only if ne(J1, J2) < C (they
differ at least in one criterion), and nw(J1, J2) = 0 (i. e., the journey J1 is not worse
than J2 in any criterion).

k-Dominance. To relax the latter condition, we define the following notion of k-
dominance for values of k in the interval [0, 1] ⇢ R. A journey J1 k-dominates another
journey J2 if and only if

ne(J1, J2) < C, and (5.4a)

(1− k)nb(J1, J2) ≥ nw(J1, J2). (5.4b)

In other words, the journey J1 still k-dominates the journey J2, if it is worse in at
least (1− k)-times the number of criteria for which it is better. Setting k = 1, we
exactly obtain Pareto dominance, since then the left-hand side of Equation 5.4b
becomes zero, which leads to nw(J1, J2) = 0. We may also say that in this case,
journey J1 “100 %-dominates” journey J2 (since k = 1). In contrast, consider a
journey J1 dominating J2 for k = 0, but not for any k > 0. For this, it has to
hold that nb(J1, J2) = nw(J1, J2). In fact, this may be regarded as the “threshold for
domination”. Note that for the case that nw(J1, J2) > nb(J1, J2) holds, the journey J1

never dominates J2, regardless of the choice of k.
Given the notion of k-dominance, a natural question is the following: For two

journeys J1 and J2, what is the largest value of k, such that J1 (still) k-dominates
journey J2? Obviously, for such a value of k, Equation 5.4b assumes equality. Hence,
we may derive k from Equation 5.4b by transformation:

(1− k)nb(J1, J2) = nw(J1, J2) (5.5a)

, knb(J1, J2) = nb(J1, J2)− nw(J1, J2) (5.5b)

, k =
nb(J1, J2)− nw(J1, J2)

nb(J1, J2)
. (5.5c)

154

5.4. Multicriteria Multimodal Route Planning

Note that the last step in the above transformation is only valid if nb(J1, J2) 6= 0.
However, recall that J1 may only k-dominate J2 for a value of k > 0, if nb(J1, J2) >

nw(J1, J2) holds (cf. Equation 5.4b), and no such k > 0 exists, otherwise.

Degrees of Domination. From Equation 5.5c, we may now define a binary function d,
which, given two journeys J1 and J2, defines the degree of domination, i. e., how much J1

dominates J2. More formally, we define d by

d(J1, J2) :=

(
0 if nb(J1, J2)  nw(J1, J2),�
nb(J1, J2)− nw(J1, J2)

�
/nb(J1, J2) otherwise.

(5.6)

-1 0 1 2 3 4 5

-15

-10

-5

0

5

0.1

0.2

0.3

0.4
0.5
0.6
0.7
0.8

0.9

0.99
strict

J1

Arrival Time [min]

W
al

ki
ng

D
ur

at
io

n
[m

in
]

Figure 5.11. Contour lines of the fuzzy dominance
function d(J1, J2) = t for different values t. The black
line marks strict Pareto-dominance.

Here, d(J1, J2) = 0 means that J1 does not
dominate J2, while a value of 1 indicates
that J1 Pareto-dominates J2. Otherwise, we
may also say that J1 fuzzy-dominates J2 by de-
gree d(J1, J2). Note that we never divide by
zero, since for nb(J1, J2) = 0, the first case in
Equation 5.6 (always) applies.

Figure 5.11 shows contour lines for values
of d between 0 and 1 for two exemplary crite-
ria: arrival time and walking duration (with
fuzziness parameters set as in Section 5.4.8).
In the figure we fix the criteria of J1 to (0, 0).
The area right-above each contour line t then
contains all journeys J2 (with respective val-
ues for their criteria) which are dominated
by J1 with degree at least t. For example,
a journey is still dominated by J1 with de-
gree 0.4 if it has 10 minutes less walking
while arriving 5 minutes later. The corre-
sponding surface plot of Figure 5.11 is shown
in Figure 5.12

Scoring Journeys. Now, given any (Pareto)
set J of n journeys J1, . . . , Jn, we define a
score function sc : J ! [0, 1] that computes the degree of domination by the whole
set for each individual journey J 2 J (independently). More precisely, sc(J) :=
1− S(J1, . . . , Jn). (We extend S beyond two parameters recursively, i. e, S(J1, . . . , Jn) =

S(S(J1, . . . , Jn−1), Jn).) Note that if we set S to be the maximum norm, the score is
determined by the (one) journey that dominates J most. On the other hand, with the
probabilistic sum the score may be based on several fuzzily dominating journeys.

155

Chapter 5. Multimodal Journey Planning

-4
-3

-2
-1

0
1

2

-10-8-6-4-202468101214161820

0

0.2

0.4

0.6

0.8

1

Arrival Time [min]
Walking Duration [min]

0

0.2

0.4

0.6

0.8

1

Figure 5.12. Fuzzy dominance function d(J1, J2) for journeys J1 and J2. We fix J1 to (0, 0) and
vary J2 = (x, y). The plot shows how much J1 dominates J2.

We finally use the score to order the journeys by significance. One may then decide
to only show the k journeys with highest score to the user.

Example. Figure 5.13 shows a (quite representative) location-to-location query from
William Road (near Warren Street Station) to Caxton Street (near Westminster Abbey)
on our London instance using public transit, walking, and taxi with optimization
criteria arrival time, number of transfers, walking duration, and cost (in pounds).
(More details on the input are found in Section 5.4.8.) The departure time is 4:27 pm.
The left figure shows all nondominating journeys of the full Pareto set (there are
65 in total), while the right figure shows the three journeys with highest score
from the (same) Pareto set, when our fuzzy dominance approach is used. This
example clearly demonstrates that we obtain too many nondominating solutions (left
figure), a known problem for multicriteria search. But not only is the number of
solutions too high for presentation to a user, in fact, most of the journeys are not
meaningful. Some of them take considerable detours (for example north of the
source location), just to save some (insignificant) amount of walking. In contrast, our
scoring approach by fuzzy domination (right figure) is able to identify the significant
solutions in the Pareto set, resulting in three meaningful journeys: One taking taxi
the full way (purple), one taking the subway (blue) which is faster at the cost of
more walking (black), and one taking the bus (red) which takes longer but with
significantly less total walking (4 min instead of 14 min).

156

5.4. Multicriteria Multimodal Route Planning

Figure 5.13. Exemplary multicriteria multimodal query on London with criteria arrival time,
number of transfers, walking duration, and cost. The left figure shows the full Pareto set (65
journeys), while the right figure shows the three journeys with highest score. Each dot represents a
transfer and included transportation modes are walking (thin black), taxi (thick purple), buses (thin
red), and tube (other thick colors).

5.4.3. Exact Algorithms

This section considers exact algorithms for the multicriteria multimodal problem
to obtain a Pareto set (which may then be used to score its journeys by the fuzzy
dominance approach). Recall that for the unimodal, but multicriteria, problem
in public transit networks, Section 4.4.2 considered a graph-based solution called
Multi-Label-Correcting algorithm (MLC), while in Section 4.6 we proposed RAP-
TOR, which computes Pareto sets of public transit journeys that include number
of transfers as a criterion. In this section, we first build on these two algorithms
and describe how they are extended to the multimodal multicriteria scenario. In
the subsequent Section 5.4.4 we then describe how ideas from User-Constrained
Contraction Hierarchies (UCCH) (cf. Section 5.3) apply to both algorithms.

To simplify the discussion (and notation), we first describe the algorithms in terms
of our simplest scenario, considering only the (timetable-based) public transit network
and the (unrestricted) walking network. Section 5.4.5 explains how to handle cycling
and taxis, which are unrestricted but have special properties.

157

Chapter 5. Multimodal Journey Planning

MLC: Multi-Label-Correcting Algorithm. As we introduced in Section 4.3, traditional
solutions to the multicriteria problem on public transit networks typically model
the timetable as a graph [BDGM09, DKP12, Gei10, MSWZ07]. A particularly effective
approach is the realistic time-dependent model [MSWZ07], recapped in Section 4.3.3.
Recall that for each stop p, it creates a single stop vertex linked by time-independent
transfer arcs to multiple route vertices, one for each route serving p. It also adds route
arcs between route vertices associated to consecutive stops within the same route. To
model the trips along a route, the cost of a route arc is given by a piecewise linear
function reflecting the traversal time (including waiting for the next departure).

Given this model, a journey in the public transportation network corresponds to a
path in this graph. The multi-label-correcting (MLC) [MSWZ07] algorithm uses this
to find full Pareto sets for arbitrary criteria that can be modeled as arc costs. MLC
extends Dijkstra’s algorithm [Dij59] (also see Section 4.4.1) by operating on labels
that have multiple values, one per criterion. Each vertex u maintains a bag B(u)
of nondominated labels. In each iteration, MLC extracts from a priority queue the
minimum (in lexicographic order) unprocessed label L(u). For each arc (u, v) out
of the associated vertex u, MLC creates a new label L(v) (by extending L(u) in the
natural way) and inserts it into B(v); newly-dominated labels (possibly including L(v)
itself) are discarded, and the priority queue is updated, if needed. MLC can be
sped up with target pruning and by avoiding unnecessary domination checks. See
Section 4.4.2 and [MSWZ07] for details.

To solve the multimodal problem, we extend MLC: It suffices to augment its
input graph to include the walking network. We combine the original graphs by
merging (public transportation) stops and (walking) intersections that share the same
location (and keeping all arcs). These link vertices are then used to switch between
modes of transportation. The MLC query remains essentially unchanged and still
processes labels in lexicographic order. Although labels can now be associated to
vertices in different networks, they can all share the same priority queue.

MCR: Round-based Algorithm. A drawback of MLC (even restricted to public transit
networks) is that it can be quite slow: Unlike Dijkstra’s algorithm, MLC may scan
the same vertex multiple times (the exact number depends on the criteria being
optimized), and domination checks make each such scan quite costly. In the context
of unimodal public transit networks, Section 4.6 presented the RAPTOR algorithm, a
faster alternative. To better understand how it is extended to multimodal queries, we
briefly recap it in the following. For more details on RAPTOR, see Section 4.6.

The simplest version of the algorithm optimizes two criteria: arrival time and
number of transfers. Unlike MLC, which searches a graph, RAPTOR uses dynamic
programming to operate directly on the timetable. It works in rounds, with round i
processing all relevant journeys with exactly i − 1 transfers (or, in other words, i
trips). It maintains one label per round i and stop p representing the best known

158

5.4. Multicriteria Multimodal Route Planning

arrival time at p for up to i trips. During round i, the algorithm processes each route
once. It reads arrival times from round i− 1 to determine relevant trips (on the route)
and updates the labels of round i at every stop along the way. Once all routes are
processed, the algorithm considers potential transfers to nearby (predefined) stops
in a second phase. Simpler data structures and better locality make RAPTOR an
order of magnitude faster than MLC. In Section 4.6.6 we also proposed McRAPTOR,
which extends RAPTOR to handle more criteria (besides arrival times and number of
transfers). It maintains a bag (set) of labels with each stop and round.

Even with multiple modes of transport available, one trip always consists of a
single mode. Moreover, switching modes of transports only occurs at a limited set of
locations (i. e., those entities such as stops or vertices that are linked). This motivates
adapting the round-based paradigm to the multimodal scenario.

We, therefore, propose MCR (multimodal multicriteria RAPTOR), which extends
McRAPTOR to handle multimodal queries. As in McRAPTOR, each round has several
stages. Recall from Section 4.6.1 that stage I initializes labels, stage II processes routes
in the public transit network, and stage III considers footpaths. While stage III
does not apply in the multimodal scenario, we substitute it by a new stage for each
additional (besides public transit) network. Therefore, to enable unrestricted walking,
the third stage considers arbitrary paths in the unrestricted walking network. We
compute them by using MLC (on the walking network). Thereby, MLC extends bags
instead of individual labels. To ensure that each label is processed at most once,
we keep track of which labels (in a bag) have already been extended. Therefore,
during round i, each stage in McRAPTOR reads labels from round i− 1 (which have
been computed in the previous round and are, thus, final) and writes to round i.
In contrast, the MLC subroutine may read and write labels of the same round i, if
walking is not regarded as a trip. However, in this case, it has to be run as the last
stage of round i (similarly to the footpath stage described in Section 4.6.1. Note
that additional modal subnetworks can be easily added to MCR (by just adding
another stage), and dedicated (sub)algorithms can be used for each. Moreover, any
two subnetworks which read labels from round i− 1 and write to round i can be
processed independently and in arbitrary order. This allows easy parallelization of
different modal subnetworks.

Finally, to enable queries between arbitrary locations (rather than only transfer
locations), the initialization routine (before the first round) runs Dijkstra’s algorithm
on the walking network from the source ps to determine the fastest walking path to
each stop in the public transportation network (and to pt), thus creating the initial
labels used by MCR.

5.4.4. Contracting the Unrestricted Networks

As our experiments will show in Section 5.4.8, the bottleneck of the multimodal
algorithms is processing the walking network G = (V, A). We improve performance

159

Chapter 5. Multimodal Journey Planning

by combining MLC (which is run in the walking stage) and UCCH from Section 5.3.
For any journey involving public transit, walking between trips always begins

and ends at the restricted set Vlink ⇢ V of link vertices. During queries, we must
only be able to compute the pairwise distances between these vertices. We therefore
use UCCH’s preprocessing (cf. Section 5.3.3) to compute a smaller core graph that
preserves these distances. Recapping it briefly, the algorithm starts from the original
graph and iteratively contracts [GSSV12] (cf. Section 5.3.1) each vertex in V \ Vlink in
the order given by a rank function rank. Each contraction step (temporarily) removes
a vertex and adds shortcuts between its uncontracted neighbors to maintain shortest
path distances (if necessary). It is usually advantageous to first contract vertices with
relatively small degrees that are evenly distributed across the network [GSSV12]. We
stop contraction when the average degree in the core graph reaches some thresh-
old (we use 12 in our experiments). See Section 5.3.3 for details.

To run a faster multimodal s–t query (for any vertices s, t 2 V), we use essentially
the same algorithm as before (based on either MLC or RAPTOR), but replacing
the full walking network with the (smaller) core graph. Since the source s and the
target t may not be in the core, we handle them during initialization. It works on the
graph G+ = (V, A [A+) containing all original arcs A as well as all shortcuts A+

added during the contraction process. We run upward searches (only following
arcs (u, v) such that rank(u) > rank(v)) in G+ from s (scanning forward arcs)
and t (scanning reverse arcs); they reach all potential entry and exit points of the core,
but arcs within the core are not processed. These core vertices (and their respective
distances) are used as input to MCR’s (or MLC’s) standard initialization, which can
operate only on the core from this point on.

The main loop works as before, with one minor adjustment. Whenever MLC
extracts a label L(u) for a scanned core vertex u, it check if it has been reached by
the reverse search during initialization. If so, it creates a temporary label L0(t) by
extending L(u) with the (already computed) walking path to t and adds it to B(t) if
needed. MCR is adjusted similarly, with bags instead of labels.

5.4.5. Beyond Walking

We now consider other unrestricted networks (besides walking). In particular, our
experiments include a bicycle rental scheme, which can be seen as a hybrid network:
It does not have a fixed schedule (and is thus unrestricted), but bicycles can only
be picked up and dropped off at designated cycling stations. Picking a bike from its
station counts as a trip. To handle cycling within MCR, we consider it during the first
stage of each round (together with RAPTOR and before walking). Because bicycles
have no schedule, we process them independently (from RAPTOR) by running MLC
on the bicycle network. To do so, we initialize MLC with labels from round i− 1
for all relevant bicycle stations and, during the algorithm, we update labels of (the
current) round i.

160

5.4. Multicriteria Multimodal Route Planning

We consider a taxi ride to be a trip as well, since we board a vehicle. Moreover, we
also optimize a separate criterion reflecting the (monetary) cost of taxi rides. If taxis
were not penalized in any way, an all-taxi journey would almost always dominate
all other alternatives (even sensible ones), since it is fast and has no walking. Our
round-based algorithms handle taxis as they do walking, except that in the taxi stage
labels are read from round i − 1 and written into round i. Note that we link the
taxi network to public transit stops as well as bicycle stations and that—unlike with
rental bicycles—we also allow taking a taxi as the first and/or last leg of any location-
to-location query. Dealing with personal cars or bicycles is simpler. Assuming that
they are only available for the first or last legs of the journey, we must only consider
them during initialization. Initialization can also handle other special cases, such as
allowing rented bicycles to be ridden to the destination (to be returned later).

Note that contraction can be used for cycling and driving. For every unrestricted
network (walking, cycling, driving), we keep the link vertices (stops and bicycle
stations) in one common core and contract (up to) all other nodes. As before, queries
start with upward searches in each relevant unrestricted network.

5.4.6. Heuristics

Even with all accelerations, the exact algorithms proposed in Section 5.4.3 are not fast
enough for interactive applications. This section proposes quicker heuristics aimed at
finding a set of journeys that is similar to the exact solution, which we take as ground
truth. We consider three approaches: Weakening the dominance rules, restricting the
amount of walking, and reducing the number of criteria. We also discuss how to
measure the quality of the heuristic solutions we find.

Weak Dominance. The first strategy we consider is to weaken the domination rules
during the algorithm, reducing the number of labels pushed through the network.

We test four implementations of this strategy. The first, MCR-hf, uses fuzzy domi-
nance (instead of strict dominance) when comparing labels during the algorithm: For
labels L1 and L2, we compute the fuzzy dominance value d(L1, L2) (cf. Section 5.4.2)
and dominate L2 if d exceeds a given threshold (we use 0.9). The second, MCR-hb(k),
uses strict dominance, but discretizes criterion k: Before comparing labels L1 and L2,
we first round k(L1) and k(L2) to predefined discrete values (buckets); this can be
extended to use buckets for several criteria. The third heuristic, MCR-hs(k), uses strict
dominance but adds a slack of x units to k. More precisely, L1 already dominates L2

if k(L1)  k(L2)+ x and L1 is at least as good L2 in all other criteria. The last heuristic,
MCR-ht, weakens the domination rule by trading off two or more criteria. More
concretely, consider the case in which walking (kwalk) and arrival time (karr) are crite-
ria. Then, L1 already dominates L2 if karr(L1)  karr(L2) + a · (kwalk(L1)− kwalk(L2)),
kwalk(L1)  kwalk(L2) + a · (karr(L1)− karr(L2)), and L1 is at least as good as L2 in all
other criteria, for a tradeoff parameter a (we use a = 0.3).

161

Chapter 5. Multimodal Journey Planning

Restricting Walking. Consider our simple scenario of walking and public transit.
Intuitively, most journeys start with a walk to a nearby stop, followed by one or
more trips (with short transfers) within the public transit system, and finally a short
walk from the final stop to the actual destination. This motivates a second class of
heuristics, MCR-tx. It still runs three-criterion search (walking, arrival, and trips),
but limits walking transfers between stops to x minutes; in this case we precompute
these transfers. MCR-tx-ry also limits walking in the beginning and end of the
journey (around s and t) to y minutes. Note that existing solutions often use such
restrictions [BCE+10].

Fewer Criteria. The last strategy we study is reducing the number of criteria con-
sidered during the algorithm. As already mentioned, this is a common approach
in practice. We propose MR-x, which still works in rounds, but optimizes only the
number of trips and arrival times explicitly (as criteria). To account for walking
duration, we count every x minutes of a walking segment (transfer) as a trip; the
first x minutes are free. With this approach, we can run plain Dijkstra to compute
transfers, since link vertices no longer need to keep bags. The round index to which
labels are written then depends on the walking duration (of the current segment) of
the considered label.

A special case is x = •, where a transfer is never a trip. Another variant is to
always count a transfer as a single trip, regardless of duration; we abuse notation
and call this variant MR-0. We also consider MR-•-tx: Walking duration is not an
explicit criterion and transfers do not count as trips, but are limited to x minutes.

For scenarios that include cost as a criterion (for taxis), we consider variants of the
MCR-hb and MCR-hf heuristics. In both cases, we drop walking as an independent
criterion, leaving only arrival time, number of trips, and costs to optimize. We
account for walking by making it a (cheap) component of the costs.

5.4.7. Evaluating Quality

To measure the quality of a heuristic from Section 5.4.6, we compare the set of
journeys it produces to the ground truth, which we define as the solution found by
MCR. To do so, we first compute the score of each journey with respect to the Pareto
set that contains it (cf. Section 5.4.2). Then, for a given parameter k, we measure
the similarity between the top k scored journeys returned by the heuristics and the
top k scored journeys in the ground truth. Note that the score depends only on
the algorithm itself and does not assume knowledge of the ground truth, which is
consistent with a real-world deployment.

To compare two sets of k journeys, we run a greedy maximum matching algorithm.
First, we compute a k⇥ k matrix where entry (i, j) represents the similarity between
the i-th journey in the first set and the j-th in the second. To measure the similarity,
we make use of the same fuzzy relational operators we use for scoring. More precisely,

162

5.4. Multicriteria Multimodal Route Planning

given two journeys J1 and J2, the similarity with respect to the i-th criterion is given
by ci := µi

=(k
i(J1) − ki(J2)), where ki is the value of this criterion and µi

= is the
corresponding fuzzy equality relation. Then, we define the similarity between J1

and J2 as T(c1, c2, . . . , cC), where T is an arbitrary t-norm (cf. Section 5.4.2). We always
select T to be consistent with the s-norm that we use to compute the score values.

After computing the pairwise similarities, we greedily select the unmatched pairs
with highest similarity (by picking the highest entry in the matrix that does not
share a row or column with a previously picked entry). The similarity of the whole
matching is the average similarity of its pairs, weighted by the fuzzy score of the
reference journey. This means that matching the highest-scored reference journey is
more important than matching the k-th one.

5.4.8. Experiments

This section presents an extensive evaluation of the methods introduced in the
previous subsections. All algorithms from Sections 5.4.3 and 5.4.6 were implemented
in C++ and compiled with g++ 4.6.2 (64 bits, flag -O3). We ran our experiments
on one core of a dual 8-core Intel Xeon E5-2670 clocked at 2.6 GHz, with 64 GiB
of DDR3-1600 RAM.

Inputs. We focus on the transportation network of London (England); results for
other instances are similar. We use the same timetable instance as in Section 4.6.8.
The data was made available by Transport for London (TfL) [Lon11, Tra00], from
which we extracted a Tuesday in the periodic summer schedule of 2011. The data
includes subway (tube), buses, tram, ferries, and light rail (DLR), as well as bicycle
station locations. To model the underlying road network, we use data provided by
PTV AG [PTV79] from 2006, which explicitly indicates whether each road segment is
open for driving, cycling and/or walking. We set the walking speed to 5 km/h and
the cycling speed to 12 km/h, and we assume driving at free-flow speeds. We do
not consider turn costs, which are not defined in the data. The resulting combined
network has 564 cycle stations and about 20 k stops, 5 M departure events, and 259 k
vertices in the walking network. Exact numbers are given in Table 5.7.

Parameterizing Fuzziness. Recall that we specify the fuzziness of each criterion by
a pair (c, e), roughly meaning that the corresponding Gaussian (centered at x = 0)
has value c for x = e. We set these pairs to (0.8, 5) for walking, (0.8, 1) for arrival
time, (0.1, 1) for trips, and (0.8, 5) for costs (given in pounds; times are in minutes).
Note that the number of trips is sharper than the other criteria. Later in this section
we show that our approach is robust to small variations in these parameters, but they
can be tuned to account for user-dependent preferences. If not indicated otherwise,
our experiments consider the minimum/maximum norms by default.

163

Chapter 5. Multimodal Journey Planning

Table 5.7. Size figures for our input instances. We link every stop and cycle
station with the walking/taxi network.

Figure London New York Los Angeles Chicago

PUBLIC TRANSIT:

Stops 20 843 17 894 15 003 12 137
Routes 2 184 1 393 1 099 710
Trips 133 011 45 299 16 376 20 303
Daily Departure Events 4 991 125 1 825 129 931 846 1 194 571
Vertices (Route Model) 99 230 66 124 81 657 47 561
Edges (Route Model) 260 583 193 159 214 369 118 452

WALKING:

Vertices 258 840 255 808 224 053 70 440
Vertices in Core 27 840 25 808 21 053 16 440
Edges 1 433 814 1 586 782 1 395 185 586 979
Footpaths  5 min 150 948 219 040 83 844 122 450
Footpaths  10 min 518 174 670 702 271 444 426 818

CYCLING:

Cycle Stations 564 — — —
Vertices 23 311 — — —
Vertices in Core 1 311 — — —
Edges 130 971 — — —

TAXI:

Vertices 259 122 — — —
Vertices in Core 27 122 — — —
Edges 1 339 487 — — —

Methodology. We ran location-to-location queries, with sources, targets, and departure
times picked uniformly at random (from the walking network and during the day,
respectively).

Algorithms Evaluation

For our first experiment, we use walking, cycling, and the public transportation net-
work and consider three criteria: arrival time, number of trips, and walking duration.
We ran 1 000 queries for each algorithm. Table 5.8 summarizes the results (additional
statistics are discussed later). For each algorithm, the table first shows which criteria
are explicitly taken into account. The next five columns show the average values
observed for the number of rounds, scans per entity (stop/vertex), label comparisons
per entity, journeys found, and running time (in milliseconds). The last four columns

164

5.4. Multicriteria Multimodal Route Planning

Table 5.8. Performance and solution quality on journeys considering walking, cycling, and public
transit. Bullets (•) indicate the criteria taken into account by the algorithm.

Scans Comp. Time Quality-3 Quality-6
Algorithm Ar

r.
Tr

p.
W

lk
.

Rnd. / Ent. / Ent. Jn. [ms] Avg. Sd. Avg. Sd.

MCR-full • • • 13.8 13.8 168.2 29.1 4 634.0 100 % 0 % 100 % 0 %
MCR • • • 13.8 3.4 158.7 29.1 1 438.7 100 % 0 % 100 % 0 %
MLC • • • — 10.6 1 246.7 29.1 4 543.0 100 % 0 % 100 % 0 %

MCR-hf • • • 15.6 2.9 14.3 10.9 699.4 89 % 15 % 89 % 11 %
MCR-hb • • • 10.2 2.1 12.7 9.0 456.7 91 % 12 % 91 % 10 %
MCR-hs • • • 14.7 2.6 11.1 8.6 466.1 67 % 28 % 69 % 23 %
MCR-ht • • • 10.5 2.0 6.4 8.6 373.6 84 % 22 % 82 % 20 %

MCR-t10 • • • 13.8 2.7 132.7 29.0 1 467.6 97 % 10 % 95 % 10 %
MCR-t10-r15 • • • 10.7 1.7 73.3 13.2 885.0 38 % 40 % 30 % 31 %
MCR-t5 • • • 13.8 2.7 126.6 28.9 891.9 93 % 16 % 92 % 15 %

MR-• • • ◦ 7.6 1.4 4.8 4.5 44.4 63 % 28 % 63 % 24 %
MR-0 • • ◦ 13.7 2.1 6.9 5.4 61.5 63 % 28 % 63 % 24 %
MR-10 • • ◦ 20.0 1.1 4.8 4.3 39.4 51 % 33 % 45 % 29 %
MR-•-t10 • • ◦ 7.6 1.1 4.8 4.5 22.2 63 % 28 % 62 % 24 %

evaluate the quality of the top 3 and 6 journeys found by our heuristics, as explained
in Section 5.4.6. Note that we show both averages and standard deviations.

The methods in Table 5.8 are grouped in blocks. Those in the first block compute
the full Pareto set considering all three criteria (arrival time, number of trips, and
walking). MCR, our reference algorithm, is round-based and uses contraction in the
unrestricted networks. As anticipated, it is faster (by a factor of about three) than
MCR-full (which does not use the core) and MLC (which uses the core but is not
round-based). Accordingly, all heuristics we test are round-based and use the core.

The second block contains heuristics that accelerate MCR by weakening the domi-
nation rules, causing more labels to be pruned (and losing optimality guarantees).
As explained in Section 5.4.6, MCR-hf uses fuzzy dominance during the algorithm,
MCR-hb uses walking buckets (discretizing walking by steps of 5 minutes for domina-
tion), MCR-hs uses a slack of 5 minutes on the walking criterion when evaluating
domination, and MCR-ht considers a tradeoff parameter of a = 0.3 between walking
and arrival time. All heuristics are faster than pure MCR, and MCR-hb gives the best
quality at a reasonable running time.

The third block has algorithms with restrictions on walking duration. Limiting
transfers to 10 minutes (as MCR-t10 does) has almost no effect on solution qual-
ity (which is expected in a well-designed public transportation network). Moreover,
adding precomputed footpaths of 10 minutes is not faster than using the core for
unlimited walking (as MCR does).

165

Chapter 5. Multimodal Journey Planning

Table 5.9. Detailed performance analysis of our algorithms. The total running time includes
additional overhead, such as for initialization.

Public Transit Walking Cycling Total

Scans Time Scans Time Scans Time Scans Time
Algorithm Ar

r.
Tr

p.
W

lk
.

/ Stop [ms] / Vert. [ms] / Vert. [ms] / Ent. [ms]

MCR-full • • • 32.1 350.6 9.6 3 030.9 43.6 1 203.1 13.8 4 634.0
MCR • • • 32.1 341.4 1.2 889.3 1.7 159.2 3.4 1 438.7
MLC • • • 119.3 — 2.6 — 2.1 — 10.6 4 543.0

MCR-hf • • • 28.1 157.7 1.0 483.9 0.7 25.6 2.9 699.4
MCR-hb • • • 21.1 115.2 0.7 297.4 0.5 19.7 2.1 456.7
MCR-hs • • • 25.1 97.3 0.9 322.2 0.6 16.8 2.6 466.1
MCR-ht • • • 20.2 86.8 0.7 246.4 0.5 17.4 2.0 373.6

MCR-t5 • • • 31.5 318.4 0.5 348.6 1.7 157.2 2.7 891.9
MCR-t10 • • • 31.6 326.2 0.5 913.7 1.7 158.5 2.7 1 467.6
MCR-t10-r15 • • • 20.0 207.5 0.3 554.0 1.2 103.6 1.7 885.0

MR-• • • ◦ 14.2 10.0 0.5 31.0 0.3 1.8 1.4 44.4
MR-0 • • ◦ 21.4 13.9 0.7 42.5 0.4 2.4 2.1 61.5
MR-10 • • ◦ 9.7 6.3 0.5 30.5 0.2 1.3 1.1 39.4
MR-•-t10 • • ◦ 14.4 9.4 0.2 9.5 0.3 1.6 1.2 22.2

Additionally limiting the walking range from s or t (MCR-t10-r15) improves speed,
but the quality becomes unacceptably low: The algorithm misses good journeys (in-
cluding all-walk) quite often. If instead we allow even more restricted transfers (with
MCR-t5), we get a similar speedup with much better quality (comparable to MCR-hb).

The MR-x algorithms (fourth block) reduce the number of criteria considered by
combining trips and walking. The fastest variant is MR-•-t10, which drops walking
duration as a criterion but limits the amount of walking at transfers to 10 minutes,
making it essentially the same as RAPTOR (cf Section 4.6), with a different initial-
ization. As expected, however, quality is much lower than for MCR-tx, confirming
that considering the walking duration explicitly during the algorithm is important to
obtain a full range of solutions. MR-10 attempts to improve quality by transforming
long walks into extra trips, but is not particularly successful.

Summing up, MCR-hb should be the preferred choice for high-quality solutions,
while MR-•-t10 can support interactive queries with reasonable quality.

Detailed Performance

Table 5.9 presents a more detailed analysis of the previous experiment (still without
taxis). For each algorithm, it shows the effort (number of scans per vertex and/or
stop, as well as running times in milliseconds) spent in each of the networks (public

166

5.4. Multicriteria Multimodal Route Planning

Arrival Time [min]

W
al

ki
ng

D
ur

at
io

n
[m

in
]

0

3

6

9

12

15

0 3 6 9 12 15

5

10

15

20

25

30

Arrival Time [min]

W
al

ki
ng

D
ur

at
io

n
[m

in
]

0

3

6

9

12

15

0 3 6 9 12 15

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Figure 5.14. Number of Pareto-optimal journeys with score higher than 0.1 for varying fuzziness.
We consider both the maximum norm (left) and probabilistic sum (right). The x axis varies the
fuzziness in the arrival time, while the y axis considers the walking duration. The intensity (color)
of the corresponding entry indicates the average number of journeys in the filtered output.

transit, walking, and cycling) and in total. The table shows that all round-based algo-
rithms except MR-•-t10 spend significantly more time processing the unrestricted
networks (walking and cycling) than dealing with public transportation. This was to
be expected: not only are the unrestricted networks bigger (they have more vertices),
but also they must be processed with a (slower) Dijkstra-based algorithm (as in MLC,
rather than RAPTOR). This is the reason for the good performance of the MR-•-t10
heuristic.

Fuzzy Parameters Evaluation

We also evaluated the impact of the fuzzy parameters on the number of journeys
we obtain. We again use London with walking, public transit, and cycling as input.
Figure 5.14 shows the number of journeys given a score higher than 0.1 (by the fuzzy
ranking routine) when we vary e (the level of fuzziness) for two criteria, walking and
arrival time. We set c = 0.8, as in our main experiments. To not overload the figure,
we keep the fuzziness of the third criterion (number of trips) constant.

A comparison between the plots shows that, for the same set of parameters,
probabilistic sum is significantly stricter than the maximum norm and reduces the
number of journeys much more drastically (for a fixed threshold). Qualitatively,
however, they behave similarly. Under both norms, making the walking criterion
fuzzier is more effective at identifying unwanted journeys. A couple of minutes of
fuzziness in the walking criterion is enough to significantly reduce the number of

167

Chapter 5. Multimodal Journey Planning

Journeys

#
Q

ue
ri

es
[%

]

0 5 10 15 20 25 30 35 40 45 50

0
20

40
60

80
10

0

MCR
MCR-hf
MCR-hb

MCR-t5
MCR-t10-r15
MR-•-t10

Figure 5.15. Evaluating the number of journeys returned by some of our algorithms: For a
given n (on the abscissa), we report the percentage of 1 000 random queries that compute n or
more journeys.

journeys above the threshold. Adding fuzziness only to the arrival time has much
more limited effect on the results.

Quality of the Heuristics

We here further investigate the quality of our heuristics. We use London with walking,
public transit, and cycling as input. Figure 5.15 reports the size of the Pareto set (the
input to scoring) for various algorithms, while Figure 5.16 shows how well the the
top k heuristic journeys match the ground truth, for varying k. We observe that exact
MCR (even if restricted to 5-minute transfers) does indeed produce many journeys,
supporting the notion of ranking them afterwards (by score). A good heuristic, such
as MCR-hb, computes much fewer journeys, but they match the top MCR journeys
quite well. An interesting observation is that the quality of the heuristic hardly
depends on the number of journeys we try to match.

Full Multimodal Problem

Our next experiment considers the full multimodal problem, including taxis. We
add cost as fourth criterion (at 2.40 pounds per taxi trip plus 60 pence per minute).
We do not consider the cost of public transit, since it is significantly cheaper. Ta-
ble 5.10 presents the average performance of some of our algorithms over 1 000
random queries in London. The first block includes algorithms that optimize all
four criteria (arrival time, walking duration, number of trips, and costs). While
exact MCR is impractical, fuzzy domination (MCR-hf) makes the problem tractable
with little loss in quality. Using 5-minute buckets for walking and 5-pound buckets
for costs (MCR-hb) is even faster, though queries still take more than two seconds.

168

5.4. Multicriteria Multimodal Route Planning

Journeys

Q
ua

lit
y

[%
]

1 2 3 4 5 6 7 8 9 10

0
20

40
60

80
10

0

Journeys

Q
ua

lit
y

[%
]

1 2 3 4 5 6 7 8 9 10

0
20

40
60

80
10

0

MCR (ref)
MCR-hf
MCR-hb

MCR-hs
MCR-ht
MCR-t5

MCR-t10-r15
MR-10
MR-•-t10

Figure 5.16. Evaluating the solution quality by matching the top k journeys in the solution with
the top k of the reference algorithm (MCR). The scores and similarity values are obtained by using
the minimum/maximum norms (left) and the product norm/probabilistic sum (right). The key of
the right plot also applies to the left.

The second block shows that we can reduce running times by dropping walking
duration as a criterion (we incorporate it into the cost function at 3 pence per minute,
instead), with almost no loss in solution quality. This is still not fast enough, though.
Using 5-pound buckets (MCR-hb) reduces the average query time to about 1 second,
with reasonable quality.

Additional Inputs

In addition to London, we tested inputs representing other large metropolitan ar-
eas (New York, Los Angeles, and Chicago). We built the public transit network from
publicly available General Transit Feeds (GTFS) [Gen10], restricting ourselves to the
timetable for August 10, 2011 (a Wednesday). The walking network data is still given
by PTV [PTV79], and these instances do not include bicycles. Detailed statistics for

Table 5.10. Performance on our London instance when taking taxi into account.

Scans Comp. Time Quality-3 Quality-6
Algorithm Ar

r.
Tr

p.
W

lk
.

Co
st

Rnd. / Ent. / Ent. Jn. [ms] Avg. Sd. Avg. Sd.

MCR • • • • 16.3 3.1 369 606.0 1 666.0 1 960 234.0 100 % 0 % 100 % 0 %
MCR-hf • • • • 17.1 2.1 137.1 35.2 6 451.6 92 % 12 % 92 % 6 %
MCR-hb • • • • 9.9 1.3 86.8 27.6 2 807.7 96 % 8 % 92 % 6 %

MCR • • ◦ • 14.6 2.4 7 901.4 250.9 25 945.8 98 % 6 % 97 % 5 %
MCR-hf • • ◦ • 12.0 1.4 33.6 17.6 2 246.3 87 % 12 % 74 % 12 %
MCR-hb • • ◦ • 9.0 1.0 20.0 11.6 996.4 86 % 12 % 74 % 12 %

169

Chapter 5. Multimodal Journey Planning

all instances are presented in Table 5.7 at the beginning of this section.
Table 5.11 compares the performance of our algorithms on these inputs. For

reference, we also consider a simplified version of the London network, without
bicycles. For each input, we show the average values (over 1 000 queries) for number
of journeys found, running time, and quality (considering the top 6 journeys). The
results are consistent with those obtained for the full London network, showing
that our preferred choice of heuristics also holds here. MCR-hb is always the best
choice in terms of solution quality (among methods with reasonable speedups), while
MR-•-t10 is preferred if query times should be as low as possible.

5.4.9. Conclusion

In this section, we have studied multicriteria journey planning in multimodal net-
works. We argued that users optimize two classes of criteria: arrival time, and
mode-dependent convenience. Although the corresponding full Pareto set is large
and has many unnatural journeys, fuzzy set theory can extract the relevant journeys
and rank them. Since exact algorithms are too slow, we have introduced several
heuristics that closely match the best journeys in the Pareto set. Our experiments
show that our approach enables efficient realistic multimodal journey planning in
large metropolitan areas.

A natural avenue for future research is accelerating our approach further to enable
interactive queries with an even richer set of criteria in dynamic scenarios, handling
delay and traffic information. The ultimate goal would be to compute multicriteria
multimodal journeys on a global scale in real time.

Besides accelerating the algorithm, we are also interested in objective criteria that
evaluate the significance of a journey. (Note we compute ranks with respect to the
other journeys of the Pareto set.) First ideas of objectively classifying journeys are
presented in [BBS13].

170

5.4. Multicriteria Multimodal Route Planning

Ta
bl

e
5.

11
.

Ev
al

ua
tin

g
th

e
pe

rf
or

m
an

ce
of

M
C

R
an

d
M

R
w

ith
di

ffe
re

nt
he

ur
is

tic
s

on
ot

he
r

in
st

an
ce

s.
Th

e
qu

al
ity

is
de

te
rm

in
ed

id
en

tic
al

ly
to

Ta
bl

e
5.

8.

Lo
nd

on
N

o
Bi

ke
N

ew
Yo

rk
Lo

s
A

ng
el

es
C

hi
ca

go

Ti
m

e
Q

ua
l.

Ti
m

e
Q

ua
l.

Ti
m

e
Q

ua
l.

Ti
m

e
Q

ua
l.

A
lg

or
ith

m

Arr.
Trp

.
Wlk.

Jn
.

[m
s]

A
vg

.
Jn

.
[m

s]
A

vg
.

Jn
.

[m
s]

A
vg

.
Jn

.
[m

s]
A

vg
.

M
C

R
•

•
•

27
.5

1
21

5.
9

10
0

%
25

.5
1

70
3.

0
10

0
%

16
.7

64
4.

6
10

0
%

22
.1

53
2.

8
10

0
%

M
C

R
-h

f
•

•
•

10
.5

67
7.

3
89

%
8.

6
61

1.
0

91
%

8.
9

44
5.

0
88

%
8.

3
24

1.
3

72
%

M
C

R
-h

b
•

•
•

8.
7

43
0.

3
91

%
7.

2
41

3.
8

94
%

7.
6

29
5.

8
93

%
7.

1
16

0.
8

92
%

M
C

R
-h

s
•

•
•

8.
5

45
0.

6
68

%
6.

7
41

4.
0

84
%

7.
4

31
0.

7
62

%
6.

6
15

8.
8

58
%

M
C

R
-h

t
•

•
•

8.
3

34
2.

6
81

%
6.

6
30

0.
9

80
%

6.
7

22
8.

4
69

%
6.

2
11

3.
9

79
%

M
C

R
-t5

•
•

•
27

.3
67

1.
7

94
%

25
.6

69
5.

5
69

%
16

.6
26

2.
7

93
%

21
.9

27
7.

7
95

%
M

C
R

-t1
0

•
•

•
27

.4
1

12
3.

0
96

%
25

.3
1

40
1.

4
85

%
16

.8
42

4.
5

96
%

22
.0

57
8.

8
98

%
M

C
R

-t1
0-

r1
5

•
•

•
11

.9
68

8.
1

28
%

5.
4

67
7.

9
10

%
3.

9
20

2.
0

13
%

9.
6

37
2.

7
28

%

M
R

-•
•

•
◦

4.
4

40
.0

61
%

3.
4

26
.3

65
%

3.
6

21
.5

51
%

3.
3

12
.3

63
%

M
R

-0
•

•
◦

5.
2

55
.7

61
%

3.
8

37
.6

65
%

4.
3

28
.5

52
%

3.
7

15
.6

63
%

M
R

-1
0

•
•
◦

6.
1

36
.8

43
%

6.
0

26
.1

41
%

6.
1

26
.6

42
%

5.
1

13
.9

50
%

M
R

-•
-t1

0
•

•
◦

4.
4

19
.7

61
%

3.
6

10
.6

60
%

3.
6

11
.0

51
%

3.
3

7.
1

63
%

171

Chapter 6
Customizable Route Planning
in Road Networks

T he past decade has seen a great deal of research on finding point-to-point short-
est paths on road networks (cf. Section 2.1). Although Dijkstra’s algorithm [Dij59]
runs in almost linear time with very little overhead, it still takes a few seconds on

continental-sized graphs. Practical algorithms use a two-stage approach: preprocessing
takes a few minutes (or even hours) and produces a (linear) amount of auxiliary
data, which is then used to perform queries in real time. Most previous research
focused on the most natural metric, driving times. Real-world systems, however,
often support other natural metrics as well, such as shortest distance, walking, biking,
avoid U-turns, avoid/prefer freeways, or avoid left turns.

In this chapter, we consider the customizable route planning problem, whose goal is
to perform real-time queries on road networks with arbitrary metrics. Such algorithms
can be used in two scenarios: They may keep several active metrics at once (to answer
queries for any of them), or new metrics can be generated on the fly. A system with
these properties has obvious attractions. It supports real-time traffic updates and
other dynamic scenarios, allows easy customization by handling any combination of
standard metrics, and can even provide personalized driving directions (for example,
for a truck with height and weight restrictions). To implement such a system, we need
an algorithm that allows real-time queries, has fast customization (a few seconds), and
keeps very little data for each metric. Most importantly, it must be robust: All three
properties must hold for any metric. No existing algorithm meets these requirements.

Contributions. To achieve the aforementioned goals, we distinguish between two
features of road networks. The topology is a set of static properties of each road
segment or turn, such as physical length, road category, speed limits, and turn types.
The metric encodes the actual cost of traversing a road segment or taking a turn. It

173

Chapter 6. Customizable Route Planning in Road Networks

can often be described compactly, as a function that maps (in constant time) the
properties of an arc/turn into a cost. We assume the topology is shared by the metrics
and rarely changes, while metrics may change quite often and even coexist.

To exploit this separation, we consider algorithms for customizable route planning
with three stages. The first, metric-independent preprocessing, may be relatively slow,
since it is run infrequently. It takes only the graph topology as input and may
produce a fair amount of auxiliary data (comparable to the input size). The second
stage, metric customization, is run once for each metric, must be much quicker (a few
seconds), and produce little data—a small fraction of the original graph. Finally,
the query stage uses the outputs of the first two stages and must be fast enough for
real-time applications.

In Section 6.1 we explore the design space by analyzing the applicability of existing
algorithms to this setting. We note that methods with a strong hierarchical component,
the fastest in many situations, are too sensitive to metric changes. We focus on
separator-based methods, which are more robust but have often been neglected
in recent research, since published results made them seem uncompetitive: The
highest speedups over Dijkstra observed were lower than 60 [HSW08], compared to
thousands or millions with other methods.

Section 6.2 revisits and thoroughly reengineers a separator-based algorithm. By
applying existing acceleration techniques, recent advances in graph partitioning—and
some engineering effort—we can answer queries on continental road networks in
about a millisecond, with much less customization time (a few seconds) and space (a
few tens of megabytes) than existing acceleration techniques.

Another contribution of this chapter is a careful treatment of turn costs (Section 6.4).
It has been widely believed that any algorithm can be easily augmented to handle
these efficiently, but we note that some methods actually have a significant perfor-
mance penalty, especially if turns are represented space-efficiently. In contrast, we
can handle turns naturally, with little effect on performance.

We stress that our algorithms are not meant to be the fastest on any particular
metric. For “nice” metrics, our queries are slower than the best hierarchical methods.
However, our queries are robust and suitable for real-time applications with arbitrary
metrics, including those for which the hierarchical methods fail. Our method can
quickly process new metrics, and the metric-specific information is small enough to
keep several metrics in memory at once.

References. The author of this thesis worked on this chapter while visiting Mi-
crosoft Research Silicon Valley. He contributed to Sections 6.1 and 6.2. Sections 6.3
and 6.4 have been developed without the author by the time he left Microsoft Re-
search. The content of this chapter is based on [DGPW11], which appeared at the
10th International Symposium on Experimental Algorithms (SEA’11). A journal
version [DGPW14] has been accepted for publication in the INFORMS Journal for

174

6.1. Analysis of Previous Algorithms

Transportation Science. This chapter is joint work with Daniel Delling, Andrew
Goldberg, and Renato Werneck.

We also like to thank Ittai Abraham and Ilya Razenshteyn for their valuable input,
and Christian Vetter for sharing his Contraction Hierarchies results with us.

6.1. Analysis of Previous Algorithms

There has been previous work on variants of the route planning problem that deal
with multiple metrics in a nontrivial way. The preprocessing of SHARC [BD09]
can be modified to handle multiple (known) metrics at once. In the flexible routing
problem [GKS10], one must answer queries on linear combinations of a small set
of metrics (typically two) known in advance. Queries in the constrained routing
problem [RT10] must avoid entire classes of arcs. In multicriteria optimization [DW09a],
one must find Pareto-optimal paths among multiple metrics. ALT [GH05] and
CH [GSSV12] can adapt to small changes in a benign base metric without rerunning
preprocessing in full. All these approaches must know the base metrics in advance,
and for good performance the metrics must be few, well-behaved, and similar to
one another. In practice, even seemingly small changes to the metric (such as higher
U-turn costs) render some approaches impractical. In contrast, we must process
metrics as they come and assume nothing about them.

We now discuss the properties of existing point-to-point algorithms to determine
how well they fit our design goals. Some of the most successful existing methods—
such as reach-based routing [GKW09], Contraction Hierarchies (CH) [GSSD08],
SHARC [BD09], Transit Node Routing [BFM+07], and Hub Labels [ADGW11]—rely
on the strong hierarchy of road networks with travel times: The fastest paths between
faraway regions of the graph tend to use the same major roads.

For metrics with strong hierarchies, such as travel times, CH has many of the
features we want. During preprocessing, CH heuristically sorts the vertices in
increasing order of importance and shortcuts them in this order. (To shortcut a vertex v,
we temporarily remove it from the graph and add arcs as necessary to preserve
the distances between its neighbors.) Queries run bidirectional Dijkstra, but only
follow arcs or shortcuts to more important vertices. If a metric changes only slightly,
one can keep the order and recompute the shortcuts in about a minute [GSSD08].
Unfortunately, an order that works for one metric may not work for a substantially
different one (e. g., travel times and distances, or a major traffic jam). Furthermore,
queries are much slower on metrics with less-pronounced hierarchies [BDS+10]. More
crucially, the preprocessing stage can become impractical (in terms of space and time)
for bad metrics, as Section 6.4 will show.

In contrast, techniques based on goal direction, such as PCD [MSM09], ALT [GH05],
and Arc Flags [HKMS09], produce the same amount of auxiliary data for any metric.
Queries are not robust, however: They can be as slow as Dijkstra for bad metrics.

175

Chapter 6. Customizable Route Planning in Road Networks

Table 6.1. Rough categorization of existing algorithms. In the columns one good metric, we report
the estimated relative performance of the algorithms when optimizing a single well-behaved metric,
such as travel times, starting from scratch. We look at the size of the auxiliary data (C.-Space),
customization times (C.-Time), and query times (Q.-Time). In arbitrary metrics, we consider the
same values when dealing with several arbitrarily bad metrics. Also compare to Figure 2.12

One Good Metric Arbitrary Metrics

Algorithm C.-Space C.-Time Q.-Time C.-Space C.-Time Q.-Time

Dijkstra [Dij59] +++ +++ --- +++ +++ ---
PCD [MSM09] +++ ++ -- +++ ++ --
ALT [GH05] ◦ ++ - ◦ ++ --
Reach [Gut04] ++ + + --- --- ---
Arc Flags [Lau04] + ++ + ◦ -- -
SHARC [BD09] ++ ++ ++ ◦ -- -
CH [GSSV12] +++ +++ ++ --- --- ---
HPML [DHM+09] -- --- +++ - - ++
TNR [SS09] - ◦ +++ --- --- --
Hub Labels [ADGW11] -- -- +++ --- --- ---

MLD (this chapter) +++ +++ + +++ +++ +

Even for travel times, PCD and ALT are not competitive with other methods.
A third approach is based on graph separators [HJR96,JP02,SWZ02,HSW08]. During

preprocessing, one computes a multilevel partition of the graph to create a series of
interconnected overlay graphs. A query starts at the lowest (local) level and moves
to higher (global) levels as it progresses. These techniques predate hierarchy-based
methods, but their query times are widely regarded as uncompetitive in practice,
and they have not been tested on continental road networks. (The exceptions are
recent extended variants [DHM+09, MZ07] that achieve great query times by adding
many more arcs during preprocessing, which is costly in time and space.) Because
preprocessing and query times are essentially metric-independent, separator-based
methods are the most natural fit for our problem.

Finally, Table 6.1 gives a very rough summary of previous algorithms (cf. Sec-
tion 2.1) and our proposed approach (MLD) regarding metric-dependent customiza-
tion space, customization time, and query time. None of the previous algorithms
give a practical solution for our scenario.

6.2. Our Approach to Customizable Route Planning

We will first describe a basic algorithm, then consider several techniques to make
it more practical, using experimental results to guide our design. Our code is
written in C++ (with OpenMP for parallelization) and compiled with Microsoft

176

6.2. Our Approach to Customizable Route Planning

Visual C++ 2010. We use 4-heaps as priority queues. Experiments were run on a
commodity workstation with an Intel Core-i7 920 (four cores clocked at 2.67 GHz
and 6 GiB of DDR3-1066 RAM) running Windows Server 2008 R2. Our standard
benchmark instance is the European road network, with 18 million vertices and 42 mil-
lion arcs, made available by PTV AG [PTV79] for the 9th DIMACS Implementation
Challenge [DGJ09]. Vertex IDs and arc costs are both 32-bit integers.

We must minimize metric customization time, metric-dependent space (excluding the
original graph), and query time, while keep metric-independent time and space
reasonable. We evaluate our algorithms on 10 000 s–t queries with s and t picked
uniformly at random. We focus on finding shortest path costs; Section 6.4 shows how
to retrieve the actual paths. We report results for travel times and travel distances,
but by design our algorithms work well for any metric.

6.2.1. Basic Algorithm

Our metric-independent preprocessing stage partitions the graph into connected cells
with at most U (an input parameter) vertices each, with as few boundary arcs (arcs
with endpoints in different cells) as possible.

Given a partition C = (C1, . . . , Ck), the metric customization stage builds a graph H
containing all boundary vertices (those with at least one neighbor in another cell) and
cut arcs of G. See Figure 6.1a. It also contains a clique for each cell C of the partition:
for every pair (u, v) of boundary vertices in C, it creates an arc (u, v) whose cost is
the same as the shortest path (restricted to CC) between u and v (or infinite if v is not
reachable from u). See Figure 6.1b. We do so by running Dijkstra’s algorithm from
each boundary vertex. Note that H is an overlay [SWW00]: The distance between any
two vertices in H is the same as in G.

Finally, to perform a query between s and t, we run a bidirectional version of
Dijkstra’s algorithm on the graph consisting of the union of H, C(s), and C(t).
Here, C(u) denotes the subgraph of G induced by the vertices in the cell containing u.
The fact that H is an overlay of G ensures that queries are correct.

As already mentioned, this is the basic strategy of separator-based methods. In
particular, HiTi [JP02] uses arc-based separators and cliques to represent each cell.
Unfortunately, HiTi has not been tested on large road networks; experiments were
limited to small grids, and the original proof of concept does not appear to have been
optimized using modern algorithm engineering techniques.

Our first improvement over HiTi and similar algorithms concerns the partition.
We use PUNCH [DGRW11]. Recently developed to deal with road networks, it
routinely finds solutions with half as many boundary arcs (or fewer), compared to
the general-purpose partitioners (such as METIS [KK99] or planar separators [LT79])
commonly used by previous algorithms. Better partitions reduce customization time
and space, leading to faster queries. For our experiments, we used relatively long
runs of PUNCH, taking about an hour. Our results would not change much if we

177

Chapter 6. Customizable Route Planning in Road Networks

(a) Boundary vertices and arcs. (b) Full clique.

(c) Skeleton graph. (d) Contraction.

Figure 6.1. Three possible overlay graphs to represent a cell: cliques, skeleton, and contraction.

used the basic version of PUNCH, which is only about 5 % worse but runs in mere
minutes.

We also use parallelism: Queries run forward and reverse searches on two CPU
cores, and customization uses all four cores of our machine (each cell is processed
independently).

6.2.2. Overlay Sparsification

Using full cliques in the overlay graph may seem wasteful, particularly for well-
behaved metrics. At the cost of making its topology metric-dependent, we consider
various techniques to reduce the overlay graph.

Edge Reduction. The first approach is edge reduction [SWW00], which eliminates
clique arcs that are not shortest paths. After computing all cliques, we run Dijkstra’s
algorithm from each vertex u in H, stopping as soon as all neighbors of u (in H) are
scanned. Note that these searches are usually quick, since they only visit the overlay.

Skeleton Graphs. A more aggressive technique is to preserve some internal cell
vertices [DHM+09, HSW08, SWZ02]. If B = {u1, u2, . . . , uk} is the set of boundary
vertices of a cell, let Ti be the shortest path tree (restricted to the cell) rooted at ui,
and let T0i be the subtree of Ti consisting of the vertices with descendants in B. We
take the union C = [k

i=1T0i of these subtrees and shortcut all internal vertices with

178

6.2. Our Approach to Customizable Route Planning

Metric-Dependent Space [MiB]

Q
ue

ry
Ti

m
e

[m
s]

0.25 0.5 1 2 4 8 16 32 64

4
8

16
32

64
12

8

x
+

cliques
red. cliques
skeleton
contraction

x

x

x

x

x
x x

x
x

x
x

x

+

+

+
+ + +

+
+

+
+

+
+

(a) Travel time metric.

Metric-Dependent Space [MiB]

Q
ue

ry
Ti

m
e

[m
s]

0.25 0.5 1 2 4 8 16 32 64

4
8

16
32

64
12

8

x
+

cliques
red. cliques
skeleton
contraction

x

x

x

x
x

x x
x

x
x

x
x

+

+
+ + ++

+
+

+
++

+

(b) Distance metric.

Figure 6.2. Effect of sparsification for travel time and distance metric. The i-th data point from the
left indicates a partition for U = 220−i.

two neighbors or fewer. Note that this skeleton graph is technically not an overlay, but
it preserves distances between all boundary vertices, which is what we need.

Contraction. Finally, we tried a lightweight contraction scheme. Starting from the
skeleton graph, we greedily shortcut low-degree internal vertices, stopping when no
such operation is possible without increasing the number of arcs by more than one.

Figure 6.1 illustrates the various overlay types.

Evaluation. Figure 6.2 compares all four overlays (cliques, reduced cliques, skeleton,
and contraction) on travel times and travel distances. Each plot relates the total
query time and the amount of metric-independent data for different values of U (the
cell size). Unsurprisingly, all overlays need more space as the number of cells
increases (i. e., as U decreases). Query times, however, are minimized when the effort
spent on each level is balanced, which happens for U ⇡ 215.

To analyze preprocessing times (not depicted in the plots), take U = 215 (with travel
times) as an example. Finding full cliques takes only 40.8 s, but edge reduction (45.8 s)
or building the skeleton graph (45.1 s) are almost as cheap. Contraction, at 79.4 s, is
significantly more expensive, but still practical. Most methods get faster as U gets
smaller: Full cliques take less than 5 s with U = 256. The exception is contraction:
When U is very small, the combined size of all skeletons is quite large, and processing
them takes minutes.

In terms of query times and metric-dependent space, however, contraction domi-
nates pure skeleton graphs. Decreasing the number of arcs (from 1.2 M with reduced
cliques to 0.8 M with skeletons, for U = 215 with travel times) may not be enough to
offset an increase in the number of vertices (from 34 k to 280 k), to which Dijkstra-

179

Chapter 6. Customizable Route Planning in Road Networks

Metric-Dependent Space [MiB]

Q
ue

ry
Ti

m
e

[m
s]

4 8 16 32 64 128 256

1
2

4
8

16
64

32

x
+

none
ALT
PCD

x

x

x

x

x

x
x

x
x x

x x

+

+

+

+

+

+
+

+

(a) Travel time metric.

Metric-Dependent Space [MiB]

Q
ue

ry
Ti

m
e

[m
s]

4 8 16 32 64 128 256

1
2

4
8

16
64

32

x
+

none
ALT
PCD

x

x

x

x

x
x

x
x x x

x x

+

+

+

+

+
+

+
+

(b) Distance metric.

Figure 6.3. Effect of goal-direction for travel time and distance metric. Equal to Figure 6.2, the i-th
data point from the left indicates a partition for U = 220−i.

based algorithms are more sensitive. This also explains why reduced cliques yield
the fastest queries, with full cliques not far behind.

All overlays have worse performance when we switch from travel times to dis-
tances (with less pronounced hierarchies), except full cliques. Since edge reduction is
relatively fast, we use reduced cliques as the default overlay.

6.2.3. Goal-Direction

For even faster queries, we can apply more sophisticated techniques (than bidirec-
tional Dijkstra) to search the overlay graph. While in principle any method could be
used, our model restricts us to those with metric-independent preprocessing times.
We tested Precomputed Cluster Distances (PCD) and ALT (cf. Section 2.1.2).

Precomputed Cluster Distances. To use Precomputed Cluster Distances (PCD), which
have been introduced in [MSM09], with our basic algorithm, we do the following.
Let k be the number of cells found during the metric independent preprocess-
ing (k ⇡ |V|/U). During metric customization, we run Dijkstra’s algorithm k times
on the overlay graph to compute a k⇥ k matrix with the distances between all cells.
Queries then use the matrix to guide the bidirectional search by pruning vertices that
are far from the shortest path. Note that, unlike “pure” PCD, we use the overlay
graph during customization and queries.

Core-ALT. Another technique is Core-ALT (CALT) [BDS+10]. Queries start with
bidirectional Dijkstra searches restricted to the source and target cells. Their boundary
vertices are then used as starting points for an ALT (A* search using landmarks and
the triangle inequality) query on the overlay graph. The ALT preprocessing runs

180

6.2. Our Approach to Customizable Route Planning

Metric-Dependent Space [MiB]

Q
ue

ry
Ti

m
e

[m
s]

20 30 40 50 60 70 80 90 100

1
2

3
4

5

x
+

U1=218

U1=217

U1=216

U1=215

U1=214

U1=213

x

x
xx

x

x

x

+
+++

+

+

+

(a)

Metric-Dependent Space [MiB]

Q
ue

ry
Ti

m
e

[m
s]

20 30 40 50 60 70 80 90 100

1
2

3
4

5

x
+

U1=218

U1=217

U1=216

U1=215

U1=214

U1=213

x
x

xx
x

x

x

++++
+

+

+

(b)

Figure 6.4. Performance of 2-level CALT with travel time and distance metric. For each line, U1 is
fixed and U0 varies; the i-th data point from the right indicates U0 = 27+i.

Dijkstra O(L) times to pick L vertices as landmarks, and stores distances between
these landmarks and all vertices in the overlay. Queries use these distances and the
triangle inequality to guide the search towards the goal. A complication of core-based
approaches [GKW09, BDS+10] is the need to pick nearby overlay vertices as proxies
for the source or target to get their distance bounds. Hence, queries use four CPU
cores: Two pick the proxies, while two conduct the actual bidirectional search.

Evaluation. Figure 6.3 shows the query times and the metric-dependent space con-
sumption for the basic algorithm, CALT (with 32 avoid landmarks [GKW09]), and
PCD, with reduced cliques as overlay graphs. With some increase in space, both
goal-direction techniques yield significantly faster queries (around one millisecond).
PCD, however, needs much smaller cells and, thus, more space and customization
time (about a minute for U = 214) than ALT (less than 3 s). Both methods are more
effective for travel times than travel distances.

6.2.4. Multiple Levels

To accelerate queries, we can use multiple levels of overlay graphs, a common
technique for partition-based approaches, including HiTi [JP02]. We need nested
partitions of G, in which every boundary arc at level i is also a boundary arc at
level i− 1, for any i > 1. The level-0 partition is the original graph, with each vertex
as a cell. See also Section 3.2 for more details on nested multilevel partitions. For
the i-th level partition, we create a graph Hi as before: It includes all boundary arcs,
plus an overlay linking the boundary vertices within a cell. Note that Hi can be
computed bottom-up by reusing Hi−1. We use PUNCH to create multilevel partitions,
in top-down fashion.

181

Chapter 6. Customizable Route Planning in Road Networks

An s–t query runs bidirectional Dijkstra on a restricted graph Gst. An arc (u, v)
from Hi will be in Gst if both u and v are in the same cell as s or t at level i + 1.
Goal-direction can still be used on the top level. We call the resulting algorithm
Multilevel Dijkstra (MLD).

Evaluation. Figure 6.4 shows the performance of the multilevel algorithm with two
overlay levels (with reduced cliques) and ALT on the top level. We report query times
and metric-dependent space for multiple values of U0 and U1, the maximum cell
sizes on the bottom and top levels. A comparison with Figures 6.2 and 6.3 reveals
that using two levels enables much faster queries for the same space. For travel
times, a query takes 1 ms with about 40 MiB (with U0 = 211 and U1 = 216). Here, it
takes 16 s to compute the bottom overlay, 5 s to compute the top overlay, and only 0.5 s
to process landmarks. With 60 MiB space, queries take as little as 0.5 ms.

6.3. Streamlined Implementation

Although sparsification techniques save space and goal direction accelerates queries,
the improvements are moderate and come at the expense of preprocessing time,
implementation complexity, and metric-independence (the overlay topology is only
metric-independent with full cliques). Furthermore, the time and space requirements
of the simple clique implementation can be improved by representing each cell of the
partition as a matrix, making the performance difference even smaller. The matrix
contains the 32-bit distances among its entry and exit vertices (these are the vertices
with at least one incoming or outgoing boundary arc, respectively; most boundary
vertices are both). We also need arrays to associate rows (and columns) with the
corresponding vertex IDs, but these are small and shared by all metrics.

We thus created a matrix-based streamlined implementation that is about twice as fast
as the adjacency-based clique implementation. It does not use edge reduction, since
it no longer saves space, slows down customization, and its effectiveness depends on
the metric. (Skipping infinite matrix entries would make queries only slightly faster.)
Similarly, we excluded CALT from the streamlined representation, since its queries
are complicated and have high variance [BDS+10].

Phantom Levels. Customization times are typically dominated by building the over-
lay of the lowest level, since it works on the underlying graph directly (higher
levels work on the much smaller cliques of the level below). As we have observed,
smaller cells tend to lead to faster preprocessing. Therefore, as an optimization, the
streamlined implementation includes a phantom level (with U = 32) to accelerate
customization, but throws it away for queries, keeping space usage unaffected. For
MLD-1 and MLD-2, we use a second phantom level with U = 256 as well.

182

6.3. Streamlined Implementation

Table 6.2. Performance of various algorithms for travel time and distance metrics.

Travel Times Distances

Customizing Queries Customizing Queries

Time Space Vertex Time Time Space Vertex Time
Algorithm [Cell Sizes] [s] [MiB] Scans [ms] [s] [MiB] Scans [ms]

CALT [211:216] 21.3 37.1 5 292 0.92 17.2 48.9 5 739 1.26
MLD-1 [214] 4.9 10.1 45 420 5.81 4.8 10.1 47 417 6.12
MLD-2 [212:218] 5.0 18.8 12 683 1.82 5.0 18.8 13 071 1.83
MLD-3 [210:215:220] 5.2 32.7 6 099 0.91 5.1 32.7 6 344 0.98
MLD-4 [28:212:216:220] 4.7 59.5 3 828 0.72 4.7 59.5 4 033 0.79

CH economical 178.4 151.3 383 0.12 1 256.9 182.5 1 382 1.33
CH generous 355.6 122.8 376 0.10 1 987.4 165.8 1 354 1.29

Evaluation. Table 6.2 compares our streamlined multilevel implementation (called
MLD, with up to 4 levels) with the original 2-level implementation of CALT. For each
algorithm, we report the cell size bounds in each level. (Because CALT accelerates the
top level, it uses different cell sizes than MLD-2.) We also consider two versions of
Contraction Hierarchies (CH): The first (economical) minimizes preprocessing times,
and the second (generous) the number of shortcuts [GSSV12]. For CH, we report the
total space required to store the shortcuts (8 bytes per arc, excluding the original
graph). For all algorithms, preprocessing uses four cores and queries use at least two.

We do not permute vertices after CH preprocessing (as is customary to improve
query locality), since this prevents different metrics from sharing the same graph.
Even so, with travel times, CH queries are one order of magnitude faster than our
algorithm. For travel distances, MLD-3 and MLD-4 are faster than CH, but only
slightly. For practical purposes, all variants have fast enough queries.

The main attraction of our approach is efficient metric customization. We require
much less space: For example, MLD-2 needs about 20 MiB, which is less than 5 %
of the original graph (more than 400 MiB) and an order of magnitude less than CH.
Most notably, customization times are small. We need only five seconds to deal with
a new metric, which is fast enough to enable personalized driving directions. This is
two orders of magnitude faster than CH, even for a well-behaved metric. Phantom
levels help here: Without them, MLD-1 would need about 20 s.

Note that CH customization can be faster if the processing order is fixed in ad-
vance [GSSV12]. The economical variant can rebuild the hierarchy (sequentially)
in 54 s for travel times and 178 s for distances (still slower than our method). Unfortu-
nately, using the order for one metric to rebuild another is only efficient if they are
very similar [GKS10]. Also note that one can save space by storing only the upper
part of the hierarchy [DSSW09a], at the expense of query times.

183

Chapter 6. Customizable Route Planning in Road Networks

Table 6.2 shows that we can easily deal with real-time traffic: if all arc costs
change (due to a traffic update), we can handle new queries after only five seconds.
We can also support local updates quite efficiently. If a single arc cost changes, we must
recompute at most one cell on each level, and MLD-4 takes less than a millisecond
to do so. This is another reason for not using edge reduction or CALT: With either
technique, changes in one cell may propagate beyond it.

6.4. Incorporating Turn Cost

So far, we have considered a simplified (but standard [DSSW09a]) representation
of road networks, with each intersection corresponding to a single vertex. This is
not very realistic, since it does not account for turn costs (or restrictions, a special
case). Of course, any algorithm can handle turns simply by working on an expanded
graph. A traditional [DSSW09a] representation is arc-based: Each vertex represents
one exit point of an intersection, and each arc is a road segment followed by a turn.
The expanded graph has one vertex for every road segment and one arc for every
turn.

Compact Representation. The expanded graph is wasteful. We propose a compact
representation in which each intersection becomes a single vertex with some associated
information. If a vertex u has p incoming and q outgoing arcs, we associate a p⇥ q
turn table Tu to it, where Tu[i, j] represents the turn from the i-th incoming arc into
the j-th outgoing arc. Note that in our customizable setting, each entry should
represent just a turn type (such as “left turn with stop sign”), since its cost may vary
with different metrics. In addition to the turn tables, we store with each arc (u, v)
its tail order (its position among u’s outgoing arcs) and its head order (its position
among v’s incoming arcs). These orders may be arbitrary. Since degrees are small, 4
bits for each suffice.

In practice, many vertices share the same turn table. The total number of such
intersection types is modest—in the thousands rather than millions. For example, many
degree-four vertices in the United States have four-way stop signs. Each distinct turn
table is, thus, stored only once, and each vertex keeps a pointer to the appropriate
type, with little overhead.

Figure 6.5 illustrates different approaches to model turn costs. Besides the discussed
models discussed, we also consider the fully expanded graph. Each entry and exit
point becomes a vertex in this model, while arcs represent turns and road segments.

Augmenting Query Algorithms. With the compact turn representation, Dijkstra’s
algorithm becomes more complicated. In particular, it may now visit each vertex (in-
tersection) multiple times, once for each entry point. It essentially simulates an
execution on the arc-based expanded representation, which increases its running

184

6.4. Incorporating Turn Cost

Figure 6.5. Turn representations (from left to right): none, fully expanded, arc-based, and compact.

time on Europe from 3 s to about 12 s. With a stalling technique, we can reduce the
time to around 7 s. When scanning one entry point of an intersection, we can set
bounds for its other entry points, which are not scanned unless their own distance
labels are smaller than the bounds. These bounds depend on the turn table and can
be computed during customization.

To support the compact representation, MLD needs two minor changes. First, it
uses a turn-aware version of Dijkstra’s algorithm on the lowest level (but not on
higher ones). Second, matrices in each cell now represent paths between incoming
and outgoing boundary arcs (and not boundary vertices, as before). The difference is
subtle. With turns, the distance from a boundary vertex v to an exit point depends on
whether we enter the cell from arc (u, v) or arc (w, v), so each arc needs its own entry
in the matrix. Since most boundary vertices have only one incoming (and outgoing)
boundary arc, the matrices are only slightly larger. (Note that, in essence, a cell can
be seen as a giant turn table.)

Evaluation. We are not aware of publicly-available realistic turn data, so we augment
our standard benchmark instance. For every vertex u, we add a turn between
each incoming and each outgoing arc. A turn from (u, v) to (v, w) is either a U-
turn (if u = w) or a standard turn (if u 6= w), and each of these two types has a cost.
We have not tried to further distinguish between turn types, since any automated
method would not reflect real-life turns. However, adding U-turn costs is enough to
reproduce the key issue we found on realistic (proprietary) data.

Table 6.3 compares some algorithms on the European network augmented with
turns. We consider two metrics, with U-turn costs set to 1 s or 100 s. The metrics are
otherwise identical: Arc costs represent travel times and standard turns have zero
cost. We tested four variants of MLD (with one to four levels) and two versions of
CH (generous): CH expanded is the standard algorithm run on the arc-based expanded
graph, while CH compact is modified to run on the compact representation. Column
vertex scans counts the number of heap extractions.

Small U-turn costs do not change the shortest path structure of the graph much.
Indeed, CH compact still works quite well: Preprocessing is only three times
slower (than reported in Table 6.2), the number of shortcuts created is about the same,
and queries take marginally longer. Using higher U-turn costs (as in a system that

185

Chapter 6. Customizable Route Planning in Road Networks

Table 6.3. Performance of various algorithms on Europe with varying U-turn costs.

U-turn: 1 s U-turn: 100 s

Customizing Queries Customizing Queries

Time Space Vertex Time Time Space Vertex Time
Algorithm [Cell Sizes] [s] [MiB] Scans [ms] [s] [MB] Scans [ms]

MLD-1 [214] 5.9 10.5 44 832 9.96 7.5 10.5 62 746 12.43
MLD-2 [212:218] 6.3 19.2 12 413 3.07 8.4 19.2 16 849 3.55
MLD-3 [210:215:220] 7.3 33.5 5 812 1.56 9.2 33.5 6 896 1.88
MLD-4 [28:212:216:220] 5.8 61.7 3 556 1.18 7.5 61.7 3 813 1.28

CH expanded 3 407.4 880.6 550 0.18 5 799.2 931.1 597 0.21
CH compact 846.0 132.5 905 0.19 23 774.8 304.0 5 585 2.11

avoids U-turns), however, makes preprocessing much less practical. Customization
takes more than six hours, and space more than doubles. Intuitively, nontrivial U-turn
costs are harder to handle because they increase the importance of certain vertices;
for example, driving around the block may become a shortest path. Query times also
increase, but are still practical. Note that recent independent work [GV11] shows that
additional tuning can make compact CH more resilient: Changing U-turn costs from
zero to 100 s increases customization time by a factor of only two. Unfortunately,
forbidding U-turns altogether still slows it down by an extra factor of six.

With the expanded representation, CH preprocessing is much costlier when U-turns
are cheap (since it runs on a larger graph), but is much less sensitive to an increase in
the U-turn cost; queries are much faster as well. The difference in behavior is justified.
While the compact representation forces CH to assign the same “importance” (order)
to different entry points of an intersection, the expanded representation lets it separate
them appropriately.

MLD is much less sensitive to turn costs. Compared to Table 6.2, we observe that
preprocessing space is essentially the same (as expected). Preprocessing and query
times increase slightly, mainly due to the lower level: High U-turn costs decrease the
effectiveness of the stalling technique on the turn-enhanced graph.

In the most realistic setting, with nontrivial U-turn costs, customization takes less
than 10 seconds on our commodity workstation. This is more than enough to handle
frequent traffic updates, for example. If even more speed is required, one could
simply use more cores: Speedups are almost perfect. On a server with two 6-core
Xeon 5680 CPUs running at 3.33 GHz, MLD-4 takes only 2.4 seconds, which is faster
than just running sequential Dijkstra on this input.

186

6.5. Further Experiments

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●●
●

●

●

●●
●

●

●

●
●●●●

●

●

●●
●

●●
●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●
●
●

●

●

●
●●●
●
●
●●

●

●

●

●
●●●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●●
●

●

●

●●
●
●

●

●

●

●

●●●
●●

●

●
●

●

●
●●●●

●

●

●
●
●
●
●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●

●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●●
●

●●

●

●
●

●

●●
●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●●

●
●

●

●

●

●

●●
●

●

●
●

●●●
●
●

●
●

●

●●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●
●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●
●●
●
●●

●
●

●
●
●

●

●

●

●
●●●●●
●●

●●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●
●●
●
●
●
●
●

●
●
●
●

●

●

●●●●

●

●

●
●●

●

●

●

●●

●

●

●
●
●●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●●

●

●

●

●●

●

●
●●

●

●●

●●
●●
●

●●
●
●

●●

●
●

●
●●

●●
●●
●●
●
●●
●
●

●●

●
●

●

●●●

●

●
●

●●

●
●
●
●
●
●
●●
●
●●

●

●
●●
●

●
●●●
●
●
●●●
●●
●●●●

●

●
●
●●●
●●
●

●

●
●●

●

●
●●
●●●●●
●
●

●
●

●
●

●

●

●
●●
●●●●●
●●●
●

●●●
●
●●
●●●●
●

●
●●
●●
●
●
●
●
●

●●●
●
●●
●●
●●

●

●●●

●
●●
●

●

●
●
●

●

●●●
●●
●
●
●

●●

●
●●●

●

●
●
●●●●
●●●
●
●●●●●

●

●
●●●

●
●

●

●
●●●

●

●

●
●
●

●●

●

●
●
●●
●
●●
●
●
●
●●●
●●

●

●●

●
●

●

●

●●●

●
●

●

●

●●●
●

●●●●

●

●

●●●

●

●

●

●●●

●
●●

●
●

●

●●

●

●●●●●
●

●●

●

●●
●●●
●
●●
●●
●●

●

●●●●

●●

●●●

●●

●●

●

●●

●
●●●●
●
●
●
●
●
●
●

●

●●
●
●●●

●

●●●

●

●●
●
●
●

●

●
●●●

●

●

●
●
●
●
●
●●
●
●●

●
●
●●●
●
●●●●●●
●
●●
●
●●●
●●●
●

●

●●●●●
●

●

●

●
●
●

●
●●
●●

●●

●

●●●●●●●●
●
●●
●●

●
●
●

●●

●●●

●

●●●●
●
●

●
●●

●●●●
●
●
●
●

●
●●●

●

●●●
●

●
●
●
●
●●●

●

●●●
●●●

●

●●●

●●●
●●

●

●

●

●●●●

●

●●●
●●●●
●

●

●●
●
●●

●

●●

●

●
●

●

●●●
●●
●
●●
●●●
●
●●
●
●

●

●
●
●●
●

●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●
●●
●
●●
●
●
●

●

●

●

●

●
●●

●

●●

●

●
●
●
●
●

●

●
●
●●●●●
●

●

●
●

●

●

●

●

●
●

●
●●●

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1
10

10
0

10
00

CALT
MLD−3
CH

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●●
●

●

●

●●
●

●

●

●
●●●●

●

●

●●
●

●●
●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●
●
●

●

●

●
●●●
●
●
●●

●

●

●

●
●●●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●●
●

●

●

●●
●
●

●

●

●

●

●●●
●●

●

●
●

●

●
●●●●

●

●

●
●
●
●
●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●

●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●●
●

●●

●

●
●

●

●●
●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●●

●
●

●

●

●

●

●●
●

●

●
●

●●●
●
●

●
●

●

●●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●
●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●
●●
●
●●

●
●

●
●
●

●

●

●

●
●●●●●
●●

●●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●
●●
●
●
●
●
●

●
●
●
●

●

●

●●●●

●

●

●
●●

●

●

●

●●

●

●

●
●
●●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●●

●

●

●

●●

●

●
●●

●

●●

●●
●●
●

●●
●
●

●●

●
●

●
●●

●●
●●
●●
●
●●
●
●

●●

●
●

●

●●●

●

●
●

●●

●
●
●
●
●
●
●●
●
●●

●

●
●●
●

●
●●●
●
●
●●●
●●
●●●●

●

●
●
●●●
●●
●

●

●
●●

●

●
●●
●●●●●
●
●

●
●

●
●

●

●

●
●●
●●●●●
●●●
●

●●●
●
●●
●●●●
●

●
●●
●●
●
●
●
●
●

●●●
●
●●
●●
●●

●

●●●

●
●●
●

●

●
●
●

●

●●●
●●
●
●
●

●●

●
●●●

●

●
●
●●●●
●●●
●
●●●●●

●

●
●●●

●
●

●

●
●●●

●

●

●
●
●

●●

●

●
●
●●
●
●●
●
●
●
●●●
●●

●

●●

●
●

●

●

●●●

●
●

●

●

●●●
●

●●●●

●

●

●●●

●

●

●

●●●

●
●●

●
●

●

●●

●

●●●●●
●

●●

●

●●
●●●
●
●●
●●
●●

●

●●●●

●●

●●●

●●

●●

●

●●

●
●●●●
●
●
●
●
●
●
●

●

●●
●
●●●

●

●●●

●

●●
●
●
●

●

●
●●●

●

●

●
●
●
●
●
●●
●
●●

●
●
●●●
●
●●●●●●
●
●●
●
●●●
●●●
●

●

●●●●●
●

●

●

●
●
●

●
●●
●●

●●

●

●●●●●●●●
●
●●
●●

●
●
●

●●

●●●

●

●●●●
●
●

●
●●

●●●●
●
●
●
●

●
●●●

●

●●●
●

●
●
●
●
●●●

●

●●●
●●●

●

●●●

●●●
●●

●

●

●

●●●●

●

●●●
●●●●
●

●

●●
●
●●

●

●●

●

●
●

●

●●●
●●
●
●●
●●●
●
●●
●
●

●

●
●
●●
●

●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●
●●
●
●●
●
●
●

●

●

●

●

●
●●

●

●●

●

●
●
●
●
●

●

●
●
●●●●●
●

●

●
●

●

●

●

●

●
●

●
●●●

●●●

●

●●
●●

●
●●
●●

●
●
●

●●●●●●●
●●●●
●
●

●

●●●●
●
●●
●

●

●

●●●●
●

●

●
●●●

●

●●●●●
●
●

●
●●
●●●
●
●●●
●
●

●●

●●●●●●
●
●●
●●
●
●

●
●
●

●●●●
●
●
●

●

●
●
●●●●●
●

●

●●
●

●●●●
●
●●
●●
●●

●

●
●

●
●●●
●●
●●
●
●
●
●
●●
●
●●

●
●●

●

●●
●●

●

●

●●●●●●

●

●●●●●●
●●
●●●●

●
●

●●●

●

●

●

●
●

●●

●

●

●
●
●●
●●

●

●
●

●

●

●
●
●
●

●

●● ●

●

●

●
●●●●
●
●●●●
●
●

●
●

●●

●

●
●●

●

●●●

●

●
●●

●

●

●

●

●●●
●

●

●
●●

●

●
●●●
●
●●

●

●

●
●●●

●●●

●

●●

●

●

●

●

●

●●●
●

●

●
●●●●

●

●●

●

●●●

●●●
●

●●
●●●●●
●
●●●●●●●●●
●

●●●●●●●
●
●●●

●

●
●
●●
●●●
●●●●

●●●●●●●●●●●
●●●

●
●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●
●●●
●

●●●
●●●●
●
●●●
●
●

●
●

●●●

●●

●●●●●

●

●
●●●

●
●
●●●●●●●●●●

●
●●●●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●
●●
●
●●

●

●

●●
●
●
●
●
●
●●

●

●
●●
●

●

●

●
●●●

●
●●●●

●

●

●

●
●
●
●
●●●

●
●
●
●●
●
●●
●
●
●●
●
●

●

●

●

●
●

●

●●●

●

●●
●●
●
●
●

●

●
●●
●●
●
●●
●
●
●

●

●
●

●
●
●●

●

●

●

●●

●●
●
●●
●●●●●
●●
●●●
●●

●

●●●

●

●●
●
●●●
●

●●●●●

●

●
●
●
●

●
●

●
●●●●
●

●

●
●●
●●
●●
●
●

●
●
●
●

●●●●●
●●

●●
●●
●●

●
●●●
●
●
●●

●

●

●

●●
●●●●
●●●●●●
●●●
●●

●●●
●
●●●

●

●
●●
●
●
●●●
● ●●●●

●●
●

●
●●

●

●

●

●●●

●

●●
●●●●
●●●●●

●

●
●
●●
●

●●●●●●●●●●●

●

●
●

●

●●●
●●●
●●●
●●●

●
●●●

●
●
●
●
●●
●
●●●●●●

●●●
●
●
●●●
●
●
●
●●
●

●
●●
●
●
●●●●●●
●
●●●●

●
●
●●●●
●●●●●●

●

●●
●●●
●
●●●
●
●

●●●●
●
●
●●●
●●●●

●
●●●●●●

●
●
●
●
●

●

●●●●●●●

●

●●
●●●
●
●●
●
●
●●●●●●
●●●●●
●●●●●
●
●
●

●

●
●●●●

●
●
●●
●●●●●

●
●●●
●
●●
●
●●●●●●●●●●●

Dijkstra Rank

Q
ue

ry
 T

im
e

[µ
s]

Figure 6.6. Performance of 2-level CALT, streamlined MLD-3, and CH for various query
ranges (with travel times).

6.5. Further Experiments

This section contains further experiments for local queries and additional inputs.

Local Queries. In real-world applications most queries tend to be local. To evaluate
our algorithm on queries of various ranges, Figures 6.6, 6.7, and 6.8 plot query
times (without turns) subject to Dijkstra rank [SS05]. For a search from s, the Dijkstra
rank of a vertex u is i if u is the i-th vertex scanned when Dijkstra’s algorithm is run
from s. We ran 1 000 queries per rank, with s chosen uniformly at random.

We observe that all algorithms are faster for local than for random queries. Only
CALT has some slow outliers which is due to the two-phase nature of the query. Even
local queries can be in different cells on the topmost level. In such a case the CALT
query scans all vertices up to the topmost level, which is considerably slower than
running MLD or CH. Adding a forth layer to MLD (Figure 6.8) accelerates queries on
all scales.

Other Inputs. Table 6.4 reports the performance of CALT, MLD, and CH on two
additional metrics (without turns). The first one is travel times avoiding freeways which
penalizes the top three road categories, while the other one is walking. Here, we
forbid highways and assign an average speed of 5 km/h to any other road segment,
which we make undirected. We observe that the performance of all algorithms falls

187

Chapter 6. Customizable Route Planning in Road Networks

●

●

●

●

●
●

●
●

●

●

●

●

●
●●●
●
●●●

●

●

●

●
●
●

●
●●

●●
●●
●
●

●

●

●

●●

●

●●

●

●
●

●●●

●

●●

●

●
●

●

●

●

●

●●●
●
●

●●

●●

●●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●
●
●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●●

●●

●

●●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●●

●

●●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●
●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●
●
●●●●

●

●

●
●●

●●

●

●

●●

●
●

●

●
●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●
●●●

●●●●

●●●
●

●● ●

●●

●

●
●●●
●
●

●

●
●●

●●

●
●

●

●●

●

●●●
●●

●

●
●

●

●●

●●
●
●

●

●

●

●

●●

●
●●
●

●●
●●

●
●
●●
●●●

●

●
●
●●
●

●

●

●●

●
●●●

●
●

●
●●

●

●

●

●

●

●
●

●●
●●
●
●

●

●●●

●●●●
●
●

●

●

●

●●

●

●

●
●
●

●●●
●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●●●

●●

●
●
●

●
●
●

●●●●●●

●

●
●
●●

●●

●

●

●

●●

●

●●●●●
●
●●
●
●●
●

●
●
●
●●
●

●
●●●
●●●
●●

●

●
●●
●●

●

●●
●●●
●●
●
●●

●
●

●

●
●

●
●●
●●●●●●
●
●●
●
●●●

●

●●
●
●
●●●
●

●
●
●
●●●●●●●●
●
●

●

●●

●●
●
●●●
●
●
●●●
●●
●

●

●●
●

●

●

●●

●●
●
●
●
●●
●
●
●●●●●●

●
●●●●●●
●

●
●●●●
●●●
●●
●●●
●●
●
●●●

●
●●
●●

●
●●●
●
●●
●
●●

●

●●●

●

●
●

●

●●●●

●

●

●●● ●●●
●●●

●

●

●

●●●●●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●●●●●
●
●●

●●
●
●●
●

●
●

●●●

●

●●●

●

●

●

●●

●

●
●

●

●
●
●
●

●

●

●●

●

●

●

●●

●●●●●●
●
●
●
●

●
●●

●●
●

●
●

●
●●●●●●
●●●●●
● ●

●●
●●
●●
●
●●
●
●●●●

●

●●●●●
●

●

●●

●

●●●●●●

●●

●●●
●
●

●
●●●●●

●
●

●●●
●

●

●●●
●
●
●●●●●●

● ●

●

●

●●●
●●●●

●

●

●
●●
●
●
●
●●●●●●

●

●●
●
●●●●

●

●

●
●

●

●
●
●

●

●●●●●

●

●
●●●●
●●●●
●●

●

●
●
●●●●

●
●●

●
●●
●
●
●●●

●●

●●

●
●
●●●●●●●●

●
●

●●

●

●
●
●
●●
●

●

●

●
●
●

●

●●●
●
●

●

●

●

●●
●●●●●●●●

●

●●
●●●

●
●

●
●
●

●●

●
●●
●●

●●
●
●
●●
●

●

●●
●
●

●

●

●
●●●●
●●●●

●

●

●
●●
●
●●●●
●
●

●
●
●
●
●●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●
●
●

●

●

●●

●

●
●

●
●

●●

●

●
●

●

●

●●●●

●

●●

●
●

●

●●
●

●●●●

●
●
●

●

●

●
●

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1
10

10
0

10
00

CALT
MLD−3
CH

●

●

●

●

●
●

●
●

●

●

●

●

●
●●●
●
●●●

●

●

●

●
●
●

●
●●

●●
●●
●
●

●

●

●

●●

●

●●

●

●
●

●●●

●

●●

●

●
●

●

●

●

●

●●●
●
●

●●

●●

●●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●
●
●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●●

●●

●

●●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●●

●

●●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●
●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●
●
●●●●

●

●

●
●●

●●

●

●

●●

●
●

●

●
●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●
●●●

●●●●

●●●
●

●● ●

●●

●

●
●●●
●
●

●

●
●●

●●

●
●

●

●●

●

●●●
●●

●

●
●

●

●●

●●
●
●

●

●

●

●

●●

●
●●
●

●●
●●

●
●
●●
●●●

●

●
●
●●
●

●

●

●●

●
●●●

●
●

●
●●

●

●

●

●

●

●
●

●●
●●
●
●

●

●●●

●●●●
●
●

●

●

●

●●

●

●

●
●
●

●●●
●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●●●

●●

●
●
●

●
●
●

●●●●●●

●

●
●
●●

●●

●

●

●

●●

●

●●●●●
●
●●
●
●●
●

●
●
●
●●
●

●
●●●
●●●
●●

●

●
●●
●●

●

●●
●●●
●●
●
●●

●
●

●

●
●

●
●●
●●●●●●
●
●●
●
●●●

●

●●
●
●
●●●
●

●
●
●
●●●●●●●●
●
●

●

●●

●●
●
●●●
●
●
●●●
●●
●

●

●●
●

●

●

●●

●●
●
●
●
●●
●
●
●●●●●●

●
●●●●●●
●

●
●●●●
●●●
●●
●●●
●●
●
●●●

●
●●
●●

●
●●●
●
●●
●
●●

●

●●●

●

●
●

●

●●●●

●

●

●●● ●●●
●●●

●

●

●

●●●●●

●●

●

●

●

●
●

●●●

●

●

●

●

●

●●●●●
●
●●

●●
●
●●
●

●
●

●●●

●

●●●

●

●

●

●●

●

●
●

●

●
●
●
●

●

●

●●

●

●

●

●●

●●●●●●
●
●
●
●

●
●●

●●
●

●
●

●
●●●●●●
●●●●●
● ●

●●
●●
●●
●
●●
●
●●●●

●

●●●●●
●

●

●●

●

●●●●●●

●●

●●●
●
●

●
●●●●●

●
●

●●●
●

●

●●●
●
●
●●●●●●

● ●

●

●

●●●
●●●●

●

●

●
●●
●
●
●
●●●●●●

●

●●
●
●●●●

●

●

●
●

●

●
●
●

●

●●●●●

●

●
●●●●
●●●●
●●

●

●
●
●●●●

●
●●

●
●●
●
●
●●●

●●

●●

●
●
●●●●●●●●

●
●

●●

●

●
●
●
●●
●

●

●

●
●
●

●

●●●
●
●

●

●

●

●●
●●●●●●●●

●

●●
●●●

●
●

●
●
●

●●

●
●●
●●

●●
●
●
●●
●

●

●●
●
●

●

●

●
●●●●
●●●●

●

●

●
●●
●
●●●●
●
●

●
●
●
●
●●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●
●
●

●

●

●●

●

●
●

●
●

●●

●

●
●

●

●

●●●●

●

●●

●
●

●

●●
●

●●●●

●
●
●

●

●

●
●

●●
●●●●●
●
●●

●●
●

●

●
●
●●
●
●
●●
●
●
●
●●●
●●●
●
●●●●●●●

●

●

●
●●
●●●●
●
●

●
●
●
●
●

●●●

●
●●●●●●

●
●●●●
●
●●
●●
●
●●
●
●● ●●●●

●●●●●●
●
●●
●
●
●●
●●
●●●
●
●●●●●●●●●●●●●
●●●●
●●
●
●●●●
●●●●●
●
●●
●●
●
●●
●
●
●
●
●
●●●
●
●
●●●
●

●
●●●●●
●●●●●●●
●
●●●
●●●●●●●●
●●●
●

●
●
●●●
●●
●●●●●●
●●●●●
●
●
●
●●●●

●●●●●●
●
●●●●

●●●●
●●
●●●●

●
●●●●

●

●●●

●●●
●●●●●
●●●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●
●

●

●●●

●

●
●

●

●
●

●

●
●●
●●
●
●

●

●●●

●●

●●●●

●●

●●

●

●

●

●

●

●

●

●●●●

●●

●●

●
●

●

●
●

●●

●

●●●●
●

●

●●●●
●●

●

●●

●

●
●●

●

●●●●●●
●●●●●●●●
●

●

●
●●
●
●

●●●●

●

●●●●

●●
●●

●
●

●
●●

●

●●●●

●

●

●

●

●●●
●

●
●

●
●●●●●

●
●●●●●
●
●●●●●●

●

●
●●●●●●●●●

●●●●●
●

●●●●●●●

●● ●

●

●

●●
●●
●

●●

●

●

●

●

●●
●
●
●
●●●●

●

●●●●

● ●

●
●
●●
●

●

●

●
●
●

●

●●●
●

●●

●●
●
●

●

●●●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●●

●
●●
●
●
●●
●●
●

●

●●
●
●

●

●
●●●●

●●●

●

●
●●●●●●
●
●●●●
●●
●

●
●

●●

●●
●

●
●●
●

●
●●●●●●

●

●●

●●●
●

●●●●●●
●
●
●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●
●
●●●●●
●
●●●●●●
●
●

●

●

●
●

●●

●

●

●
●
●●●

●

●
●
●●●

●

●●
●
●

●●●
●
●
●●●●●
●●
●
●

●

●

●
●●●

●

●

●●
●
●●
●
●
●

●

●●●
●●●
●●●●
●

●

●
●
●

●
●●
●
●

●
●
●
●●
●
●
●
●●●
●
●
●

●
●●
●

●

●

●●
●

●●
●
●
●●

●●
●
●●●
●●●
●
●

●
●

●●●●●
●
●●●
●
●

●
●
●●●●
●

●

●●●

●

●●
●●●●
● ●●●●●● ●

●●●●●●●●●●
●●●●

●●●

●
●●
●

●●●●
●
●
●●
●
●●●●●●

Dijkstra Rank

Q
ue

ry
 T

im
e

[µ
s]

Figure 6.7. Performance of 2-level CALT, streamlined MLD-3, and CH for various query
ranges (with distances).

●●●
●●
●●●●
●
●●●●●●●●●●

●●
●
●●●
●●●●●●

●

●●●●
●
●●
●
●●

●●●●
●●
●
●●●●●●●
●
●●●
●
●

●
●
●●
●●●●

●
●●
●
●

●

●●●●●
●●●●
●●
●
●●

●
●●●●●●●
●
●
●

●

●●●
●●●
●

●
●●
●

●●

●●

●

●

●●●●
●
●●●●●●
●●●
●
●●
●
●●●●●●

●

●
●

●
●
●
●●
●
●●●●

●
●

●●
●
●
●
●
●
●●●●●●●
●

●

●●

●

●

●
●
●●
●●
●
●
●
●
●●
●

●
●●●
●

●●
●●
●

●●

●
●●●●
●
●●●

●●
●
●
●
●●●

●
●
●

●●●

●

●●

●

●

●
●
●
●

●●

●

●

●
●●●

●

●●

●

●●

●

●
●●
●
●
●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●●●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●●

●●

●●

●

●
●

●
●

●●

●

●●

●

●
●

●
●
●●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●
●

●

●

●●
●●●●●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●●

●

●●●

●

●●

●●●

●

●●●●

●

●

●

●●
●
●
●
●
●
●●

●

●

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1
10

10
0

10
00

MLD−2
MLD−3
MLD−4

●●●
●●
●●●●
●
●●●●●●●●●●

●●
●
●●●
●●●●●●

●

●●●●
●
●●
●
●●

●●●●
●●
●
●●●●●●●
●
●●●
●
●

●
●
●●
●●●●

●
●●
●
●

●

●●●●●
●●●●
●●
●
●●

●
●●●●●●●
●
●
●

●

●●●
●●●
●

●
●●
●

●●

●●

●

●

●●●●
●
●●●●●●
●●●
●
●●
●
●●●●●●

●

●
●

●
●
●
●●
●
●●●●

●
●

●●
●
●
●
●
●
●●●●●●●
●

●

●●

●

●

●
●
●●
●●
●
●
●
●
●●
●

●
●●●
●

●●
●●
●

●●

●
●●●●
●
●●●

●●
●
●
●
●●●

●
●
●

●●●

●

●●

●

●

●
●
●
●

●●

●

●

●
●●●

●

●●

●

●●

●

●
●●
●
●
●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●●●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●●

●●

●●

●

●
●

●
●

●●

●

●●

●

●
●

●
●
●●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●
●

●

●

●●
●●●●●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●●

●

●●●

●

●●

●●●

●

●●●●

●

●

●

●●
●
●
●
●
●
●●

●

●

●●●

●

●●●

●
●●
●

●

●

●
●

●●●●●
●●●●
●
●●

●

●●●●
●●●

●

●●●●
●

●

●
●●●

●

●●●●●
●
●

●
●●
●●●●

●

●

●

●●
●
●
●

●●

●●●●●●
●
●●
●●●

●
●
●

●●●
●●
●

●

●

●

●

●
●●●●●
●

●

●●
●

●●●●●
●●
●●
●●
●●

●

●
●

●

●
●●
●●
●●●
●
●
●●●●
●
●●

●

● ●

●

●●
●●

●

●

●●●●●●

●

●●●●●●
●

●

●
●●●●

●
●

●●

●

●

●

●
●

●●

●

●

●
●
●●
●●

●

●
●

●

●

●
●
●
●

●

●● ●

●
●

●

●●●●●
●
●●●●●●

●
●

●●

●

●
●●●

●

●●●

●

●
●●

●

●

●

●

●
●●●

●

●●
●

●

●
●●●●
●
●●

●

●

●
●●●

●●

●

●●

●

●●

●

●●●
●●●●●●

●

●●

●

●●●

●●●
●

●●●●●
●
●●●●●●●●
●

●●
●
●
●●●●
●
●●●

●

●
●
●
●
●
●●●●●●

●●●●●●●●●●●
●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●●●

●
●●
●

●

●

●
●

●●●●●
●●●●
●
●●

●

●●●●
●●●

●

●●●●
●

●

●
●●●

●

●●●●●
●
●

●
●●
●●●●

●

●

●

●●
●
●
●

●●

●●●●●●
●
●●
●●●

●
●
●

●●●
●●
●

●

●

●

●

●
●●●●●
●

●

●●
●

●●●●●
●●
●●
●●
●●

●

●
●

●

●
●●
●●
●●●
●
●
●●●●
●
●●

●

● ●

●

●●
●●

●

●

●●●●●●

●

●●●●●●
●

●

●
●●●●

●
●

●●

●

●

●

●
●

●●

●

●

●
●
●●
●●

●

●
●

●

●

●
●
●
●

●

●● ●

●
●

●

●●●●●
●
●●●●●●

●
●

●●

●

●
●●●

●

●●●

●

●
●●

●

●

●

●

●
●●●

●

●●
●

●

●
●●●●
●
●●

●

●

●
●●●

●●

●

●●

●

●●

●

●●●
●●●●●●

●

●●

●

●●●

●●●
●

●●●●●
●
●●●●●●●●
●

●●
●
●
●●●●
●
●●●

●

●
●
●
●
●
●●●●●●

●●●●●●●●●●●
●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●
●
●

●

●
●
●
●

●

●●●●●●
●●
●●●●

●

●
●
●
●
●
●●●●●
●

●

●

●●●●●
●●●●●●●
●
●

●
●
●●●
●●
●
●●
●

●●

●●●●
●
●
●●

●●●●
●

●●●●●●

●

●

●●

●
●

●

●●●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●
●●

●

●●●●

●

●

●

●

●

●

●●●

●

●
●●
●

●●
●

●

●●

●

●
●
●

●
●

●

●
●

●

●
●●
●●
●●

●●
●●●●
●

●
●
●
●●●●●●
●
●●
●

●●

●

●
●●

●●●
●
●●●
●●●
●
●

●

●
●●
●
●

●

●

●●
●●●
●●●●
●
●●●
●
●
●
●

●

●●●●●
●●
●
●●●●●
●

●●●
●
●
●●●●●
●●●
●●●●●
●●
●●
●●●●●●●●●
●●●
●●●

●●●●●

●
●
●

● ●

Dijkstra Rank

Q
ue

ry
 T

im
e

[µ
s]

Figure 6.8. Comparison on MLD-2, MLD-3, and MLD-4 (travel times)

188

6.6. Path Unpacking

Table 6.4. Performance of various algorithms for walking metric and travel time metric that
avoids highways.

Avoid Freeways Walking

Customizing Queries Customizing Queries

Time Space Vertex Time Time Space Vertex Time
Algorithm [Cell Sizes] [s] [MiB] Scans [ms] [s] [MB] Scans [ms]

CALT [211:216] 19.7 38.8 5 519 1.12 18.1 44.6 5 724 1.21
MLD-1 [214] 6.4 9.8 45 958 5.73 4.7 9.8 45 982 5.77
MLD-2 [212:218] 6.0 12.6 12 936 1.71 5.0 12.6 12 847 1.73
MLD-3 [210:215:220] 5.6 32.3 6 231 1.20 5.0 32.3 6 130 0.95
MLD-4 [28:212:216:220] 5.1 59.0 4 041 0.77 4.9 59.0 3 939 0.75

CH economical 183.9 147.2 490 0.20 574.9 172.0 1 039 0.69
CH generous 367.4 119.6 489 0.18 973.4 152.5 1 037 0.71

Table 6.5. Performance of various algorithms for travel times and distances. The input is USA.

Travel Times Distances

Customizing Queries Customizing Queries

Time Space Vertex Time Time Space Vertex Time
Algorithm [Cell Sizes] [s] [MiB] Scans [ms] [s] [MiB] Scans [ms]

MLD-1 [214] 8.1 14.0 52 007 7.29 7.9 14.0 54 226 7.34
MLD-2 [212:218] 8.2 26.2 13 317 1.77 8.0 26.2 13 680 1.88
MLD-3 [210:215:220] 8.3 47.1 6 031 1.25 8.2 47.1 6 236 1.33
MLD-4 [28:212:216:220] 8.2 94.4 5 708 1.17 7.7 94.4 5 976 1.27

CH economical 302.6 191.4 333 0.08 884.8 206.0 1 078 0.46
CH generous 580.8 163.1 294 0.07 1 646.3 186.0 1 072 0.46

between travel times and travel distances (cf. Figure 6.2).
Moreover, Table 6.5 shows the performance of MLD and CH on the (simplified, non-

turn) road network of the United States of America (US). The graph has been made
available for the 9th DIMACS implementation challenge on shortest paths [DGJ09]. It
has 24 million vertices and 29 million road segments. We observe similar performance
as for Europe. Using MLD-4, however, seems to pay off less: The metric-dependent
space more than doubles compared to MLD-3, and queries are only slightly faster.

6.6. Path Unpacking

So far, we have reported the time to compute only the distance between two points.
Following the parent pointers of the meeting vertex of forward and backward searches,

189

Chapter 6. Customizable Route Planning in Road Networks

we may obtain a path containing shortcuts. To unpack a level-i shortcut, we run
bidirectional Dijkstra on level i− 1 (and recurse as necessary). Using all four cores,
unpacking less than doubles query times, with no additional customization space.
In contrast, standard CH unpacking stores the “middle” vertex of every shortcut,
increasing the metric-dependent space by 50 %. For even faster unpacking, one can
store a bit with each arc at level i indicating whether it appears in a shortcut at
level i + 1. This makes unpacking four times faster for MLD-2, but has little effect
on MLD-3 and MLD-4.

6.7. Implementation Details

This section provides details on the implementation of the streamlined variant of
MLD and on CH used in our experiments.

Streamlined MLD. Our non-turn implementation of MLD keeps an overlay graph
with multiple levels. It contains no vertices, mo arcs and Âi si matrices, where si is the
number of cells in level i. Each vertex, numbered from 0 to no − 1, can be an entry
or exit point of a cell and hence stores its entry or exit position for each level, if it
is a boundary vertex on this level. Moreover, it stores its ID in the original graph.
Arcs are stored explicitly, while matrices are stored as arrays. We store topology and
metric information separately.

Our query starts on the original graph but switches to the overlay graph at bound-
ary arcs. We keep a hash table for each boundary vertex in the original graph. Then,
when relaxing a boundary arc, we determine (via the hash table) the ID of the head
vertex in the overlay graph. Switching from the overlay to the original graph is
easy since we store the original ID for each overlay vertex explicitly. Note that our
query algorithm is bidirectional. The backward search has to access the matrices
in a cache-inefficient way. By also storing each matrix transposed, we can achieve
additional speedups of 15 % but the metric dependent data doubles. Hence, we store
each matrix only once.

There are only small differences between the non-turn and the turn-based imple-
mentations. In the latter, an overlay vertex is either an entry or an exit vertex. Hence,
we additionally store the type (exit or entry vertex) of a vertex. The second difference
is that we need to hash triples (u, p, t), where u is boundary vertex, p is the order of
the incident cut arc (cf. Section 6.4), and t is the type. The query algorithm uses a
turn-aware variant of Dijkstra’s algorithm on the lower level and switches to a normal
execution of Dijkstra’s algorithm on the overlay graph.

Contraction Hierarchies. Our non-turn implementation follows the one presented
in [GSSV12]. The differences are as follows. First, we use a different priority term
during contraction. The priority of a vertex u is given by 2 · ED(u) +CN(u) +H(u) +

190

6.8. Conclusion

5 · L(u), where ED(u) is the difference between the number of arcs added and
removed (if u were contracted), CN(u) is the number of contracted neighbors, H(u)
is the total number of arcs represented by all shortcuts added, and L(u) is the level u
would be assigned to. In this term, we bound H(u) such that every incident arc
of u can contribute at most 3. This ensures that this term is only important during
the beginning of the contraction process. Finally, our code is parallelized: After
contracting a vertex, we update the priorities of all neighbors simultaneously. This
gives a speedup of 2.5 over a sequential implementation.

Our generous and economical CH variants differ in how the witness searches are
bounded. In our generous variant, witness searches are bounded by 5 hops up to
an average degree (of the uncontracted graph) of 5, 10 hops up to degree 10, and no
limit beyond that. The economical version uses 1 hop up to degree 3.3, 2 up to 10, 3
up to 10, and 5 beyond that.

We use the same set of parameters when running CH on turn-based inputs. When
using the expanded graph, we can use our CH code without any modifications. On
the compressed graph, however, the witness search becomes more complex. When
contracting a vertex v, with incoming arcs (ui, v) and outgoing arcs (v, wj), we have
to run searches from all entry vertices of all ui to all exit vertices of all wi. Besides
that, the adaption is straightforward.

6.8. Conclusion

Recent advances in graph partitioning motivated us to reexamine the separator-
based multilevel approach to the shortest path problem. With careful engineering,
we drastically improved query speedups relative to Dijkstra’s algorithm from less
than 60 [HSW08] to more than 3000. With turn costs, the speedup increases even
more, to 7000. This makes interactive queries possible. Furthermore, by explicitly
separating metric customization from graph partitioning, we enable new metrics
to be processed in a few seconds. The result is a flexible and practical solution to
many real-life variants of the problem, such as real-time traffic and personalized cost
functions. In fact, the algorithm presented in this chapter is, at the time of writing,
the core of the routing engine in use by Bing Maps [Mic12].

Interesting open problems include adapting our approach to augmented scenarios,
such as mobile or time-dependent implementations. In particular, a unidirectional
version of MLD is also practical. Since partitions have a direct effect on performance,
we would like to improve them further, perhaps by explicitly taking the size of the
overlay graph into account.

191

Chapter 7
Computation of Jogging Routes

I n this chapter, we study the problem of computing jogging routes in pedestrian
networks. Given a source vertex s (the user’s starting point), and a desired
length L (in kilometers), the problem asks for a cycle of length (approximately) L

that contains the vertex s. A “good” jogging route is, however, not only determined
by its length; other criteria are just as important. An ideal route might follow paths
through nice areas of the map (e. g., forests, parks, etc.), has rather circular shape, and
not too many intersection at which the user is required to turn. A practical algorithm
must, therefore, take all of these criteria into account.

Related Work. Much research focused on efficient methods for the related, but
simpler, problem of computing point-to-point (shortest) paths. In fact, a plethora of
algorithms exist, many of which are surveyed in [DSSW09a, Som12]. See Chapter 2
for an overview on the available literature. Speedup techniques usually employ
sophisticated preprocessing to accelerate queries. In contrast, much less practical
work exists for computing cycles. Graphs may contain exponentially many (in the
number of vertices) cycles, even if they are planar [BKK+07]. If the length of the cycles
is restricted by L, they can be enumerated in time O((n + m)(c + 1)), where c is the
number of cycles of length at most L [LW06]. If one is interested in computing cycles
with exactly k edges, the problem can be solved in O(2km) expected time [YZ95].
Unfortunately, none of these methods seems practical in our scenario. To the best of
our knowledge, no efficient algorithm that computes sensible jogging routes exist.

Our Contribution. This chapter introduces the Jogging Problem. It turns out to
be NP-hard, hence, we propose two heuristic approaches. The first, Greedy Faces is
based on building the route by successively joining adjacent faces of the network.
The second, Partial Shortest Paths, exploits the intuition of constructing equilateral
polygons via shortest paths. The latter can be easily parallelized and has the inherent

193

Chapter 7. Computation of Jogging Routes

property of providing sensible alternative routes. The result of our algorithms are
routes of length within (1 ± e)L, but also consider other important criteria that
optimize the surrounding area, shape, and route complexity. An experimental study
justifies our approaches: Using OpenStreetMap data, we are able to compute jogging
routes of good quality in under 200 ms time; fast enough for interactive applications.

Overview and References. This chapter is organized as follows. Section 7.1 defines
variants of the problem and shows NP-hardness. Section 7.2 introduces our two
algorithmic approaches. Section 7.3 presents experiments, and Section 7.4 contains
some concluding remarks.

The chapter is based on [Zün12] and [GPWZ13], the latter of which has been
accepted at the 12th International Symposium on Experimental Algorithms (SEA’13).
It is joint work with Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf.

7.1. Problem Statement

Before we formally define the considered problems, we need to develop some no-
tation (which somewhat differs from Section 3). We model pedestrian networks
as undirected graphs G = (V, E) with nonnegative integral edge costs ` : E ! Z≥0.
Usually, vertices correspond to intersections and edges to walkable segments. Also,
we assume that our graphs admit straight-line embeddings, since vertices have associ-
ated latitude/longitude coordinates. For simplicity, our graphs are always connected.
A path P is a sequence of vertices P = [u1, . . . , uk] for which uiui+1 2 E must hold.
Note that we sometimes just write u1-uk-path or Pu1,uk for short. If the first and last
vertices coincide, we call P a cycle. The cost of a path, denoted by `(P), is the sum
of its edge-costs. A shortest path between two vertices u1 and u2 is a u1-u2-path with
minimum cost. At some places we require intervals around a value x 2 Z≥0 with
error # 2 R≥0. We define them by I(x, #) = [b(1− #)xc, d(1 + #)xe].

Simple Jogging Problem. The first problem we consider is the Simple Jogging Prob-
lem (SJP): We are given a graph G, source vertex s 2 V, and a targeted cost L 2 Z≥0

as input. The goal is to compute a cycle P through s with cost `(P) = L. In practical
scenarios, cost usually represent geographical length. It turns out that SJP is NP-hard
by reduction from Hamiltonian Cycle, which we prove in the following theorem.

Theorem 4. The Simple Jogging Problem is NP-hard.

Proof. We show NP-hardness of SJP by reduction from the problem Hamiltonian

Cycle, which is known to be NP-hard [Kar72]: Given an undirected graph G = (V =

{u1, . . . , un}, E) with n vertices and m edges, it asks for a cycle P that contains each
vertex from V exactly once. From G, we now construct a new graph G0 = (V 0, E0),
on which a solution of SJP corresponds to a Hamiltonian cycle in G (and vice versa).

194

7.1. Problem Statement

Note that solutions of SJP may, in general, contain vertices multiple times. We,
therefore, make the reduction work by carefully defining edge costs ` : E ! Z≥0

of G0 with respect to an appropriate base b. We set b to 2n + 1 and construct G0 as
follows. We duplicate each vertex ui 2 V to ini, outi 2 V 0 and create an edge iniouti
with cost `vert(i) = bn + bi. Moreover, each edge uiuj 2 E is represented in a0 by
adding the edge inioutj with constant cost `edge = bn. We set the source vertex s
to out0 and the requested length L = n · `edge + Âi `vert(i).

Now, if G contains a Hamiltonian cycle P = [ui0 , . . . , ui,n], the jogging route P0 =
[outi0 , ini1 , outi1 , . . . , inin , outin] in G0 is also feasible. Its length `(P0) is Âj(`edge +

`vert(j)), which by definition equals L.
On the other hand, assume that P0 is a jogging route of length L in G0. From the

way we chose edge costs, it follows that P0 must have exactly 2n + 1 vertices (i. e., 2n
edges): The shortest route with more than 2n + 1 vertices must be longer than L, and
the longest route with less than 2n + 1 vertices must be shorter than L. The definition
of L encodes the cost of each edge iniouti exactly once. From this, we also know
that P0 must contain each edge iniouti exactly once. The vertices of the Hamiltonian
cycle P are, then, given in order defined by their corresponding vertices in P0. ⌅

Note that from this, NP-hardness follows for the respective optimization problem,
i. e., finding a cycle that minimizes |`(P)− L|.

Dynamic Program for SJP. If we allow running time in the order of L, one can
solve SJP by a dynamic program, similarly as it is known for the Subset Sum

Problem [GJ79]. The algorithm maintains a boolean matrix Q : V ⇥Z≥0 ! {0, 1} of
size |V| ⇥ L, which indicates whether a path to vertex u with cost ` exists. Initially, Q
is set to all-zero, except for the entry Q(s, 0), which is set to 1. It then considers
subsequent cost values ` in increasing order (beginning at 0). In each step, the
algorithm checks for all edges uv 2 E if an existing path can be extended to v with
cost `. It does so by looking if Q(u, `− `(uv)) is set to 1, updating Q(v, `) accordingly.
The algorithm stops as soon as ` exceeds the input cost L. Then, the requested jogging
route exists iff Q(s, L) = 1 holds. The running time of the algorithm is O(L|E|) and,
thus, we conclude that the SJP is weakly NP-hard [GJ79].

Relaxed Jogging Problem. In practice, solely optimizing length (or cost) may result
in undesirable routes. Jogging is a recreational activity, therefore, one usually also
considers the surrounding area (parks and forests), the shape (preferably edge-
disjoint), and the complexity of the route (small number of turns). We argue that the
primary goal remains geographical length. However, we allow some (user-specified)
slack on the length to take the aforementioned criteria into account. This motivates
the Relaxed Jogging Problem (RJP): Given a graph G, a source vertex s 2 V, input
length L 2 Z≥0, and a parameter e 2 [0, 1], the goal is to compute a cycle P through s

195

Chapter 7. Computation of Jogging Routes

Figure 7.1. Illustrating the intuition of the Greedy Faces approach: A tentative jogging route (left)
is extended by attaching one of its adjacent blocks (right).

with cost `(P) 2 I(L, #) while optimizing a set of soft criteria. We identify three
important criteria in the following.

To account for the surrounding area, we introduce badness as a mapping on the
edges bad : E ! [0, 1]. Smaller values indicate “nicer” areas (e. g., parks). Badness
values on the edges are provided by the input data. To extend badness to paths,
we combine it with the path’s length. (Note that we assume costs to represent
geographical length for the remainder of this work.) That is, for a path P = [u1, . . . , uk]

its badness is defined by bad(P) = Â bad(uiui+1)`(uiui+1)/`(P). By these means,
badness values are scaled by their edge lengths, but are still in the interval [0, 1]. This
enables comparing paths (wrt. badness) of different lengths.

To optimize edge-disjointness of paths, we consider sharing. It counts edges that
appear at least twice on P, scaled by their length. Formally, it first accumulates
into a set D all indices i, j for which either uiui+1 = ujuj+1 or uiui+1 = ujuj−1

hold. (Note that edges are undirected.) The sharing of path P is then sh(P) =

Âi2D `(uiui+1)/`(P). Sharing values are also in [0, 1].
To evaluate route complexity, we consider turns. For two edges a and b, we measure

their angle](a, b) and regard them as a turn, if and only if](a, b) /2 I(180◦, a) holds.
We usually set a to 15 %.

7.2. Algorithms

We now introduce our two approaches for the Relaxed Jogging Problem: Greedy
Faces and Partial Shortest Paths. We present each approach in turn, starting with a
basic version, then, proposing optimizations along the way.

7.2.1. Greedy Faces

Assume that we are already given a tentative jogging route (i. e., a cycle in G that
contains s). A natural way to extend it, is to attach one of its adjacent “blocks” that

196

7.2. Algorithms

Figure 7.2. Illustrating duality: Faces of G (left) are represented by vertices in G⇤ (right).

lie on the “outer” side of the route. Then, repeat this step, until a route of desired
size and shape has been grown. See Figure 7.1 for the intuition.

In a planar graph, blocks correspond to faces. But our inputs may contain inter-
secting edges (such as bridges and tunnels), albeit only few in practice. We, therefore,
propose preprocessing G to identify blocks (we still call them faces). These are used
by our greedy faces algorithm. Finally, we present smoothening techniques to reduce
route complexity in a quick postprocessing step.

Identifying Faces. For our algorithm to work, we must precompute a set F of faces
in G. We identify each face f 2 F with its enclosing path Pf . Our preprocessing
involves several steps. First, we delete the 1-shell of G by iteratively removing
vertices (and their incident edges) from G that have degree one. The resulting graph
is 2-connected and no longer contains dead-end streets (which we want to avoid,
anyway). Next, we consider all remaining edges uv 2 E. For each, we perform a right-
first search, thereby, constructing an enclosing path Pf for a new face f . More precisely,
we run a depth-first search, beginning at uv. Whenever it reaches a vertex x (via
an edge a), it identifies the unique edge b that follows a in the (counterclockwise)
circular edge ordering at x. (Note that this ordering is always defined for embedded
graphs.) It adds b to Pf . If b = uv, the algorithm stops and adds f to F, discarding
duplicates. However, since G is not necessarily planar, the edge b might intersect
with one of its preceding edges on Pf . In this case, it removes b from Pf and considers
the next edge (after b) in the circular order at x for expansion. While constructing F,
the algorithm remembers for each edge a list of its incident faces. It uses them to
build a dual graph G⇤ = (V⇤, E⇤): Vertices correspond to faces (of G), and two faces
are connected in G⇤, iff they share at least one edge in G. This definition of G⇤

extends the well-known graph duality for planar graphs, however, as G may not be
planar, so may not be G⇤. An example of two corresponding graphs G and G⇤ is
illustrated in Figure 7.2. The running time of the preprocessing is dominated by the
face-detection step. For every edge it runs a right-first search, each in time O(|E|).
Whenever it expands an edge, it must perform intersection tests with up to O(|V|)

197

Chapter 7. Computation of Jogging Routes

preceding edges. This results in a total running time of O(|V||E|2). Note that we
expect much better running times in practice: On realistic inputs we may assume
faces to have constant size.

Greedy Faces Algorithm. Our greedy faces algorithm, short GF, now uses G⇤ as
input. Its basic idea is to run a (modified) breadth first search (BFS) on G⇤. It starts by
selecting an arbitrary face f 2 V⇤ that contains the source vertex s, i. e., where s 2 Pf
holds. It then grows a BFS-tree T (rooted at f), until a stopping condition is met.
When it stops, the jogging route P is retrieved by looking at the set of cut edges
that separate T from V⇤ − T: Their corresponding edges in G constitute a cycle.
(Note that this is a well-known property on planar graphs, but carries over to our
definition of G⇤.) However, to make P a feasible jogging route, we must ensure two
properties: The cycle must be (a) simple and (b) still contain s. We ensure both while
growing T. Regarding (a), we know that the corresponding cycle P in G is simple
iff the subgraph induced by V⇤ − T is connected. We check this condition when
expanding an edge f g 2 E⇤ during the BFS, discarding f g if adding g to T would
disconnect V⇤ − T. Regarding (b), The vertex s is still part of the jogging route as
long as at least one incident face of s remains in V⇤ − T. We also perform this check
while expanding edges, discarding them whenever necessary. The result of every
iteration of the BFS is a potential jogging route P. The algorithm stops as soon as the
cost of P exceeds (1 + e)L. It then returns, among all discovered routes whose length
is in I(L, e), the one with minimum total badness.

However, up to now, GF does not optimize badness. To guide the search to-
wards “nice” areas of the graph, we propose a force-directed approach. Therefore,
consider a face f and the geometric center C(f) of its enclosing path. Inspired by
Newton’s law of gravity, we define a force vector ~f(f , p) acting upon a point p of the
map by

~f(f , p) = (bad(f)− 0.5)`(f)/|~d|2 · ~d/|~d|, (7.1)

where ~d = p − C(f). Note that, depending on bad(f), the force is repelling or
attracting. Also, the vector ~f(f , p) is directed, and its intensity decreases with the
distance squared. Now, the force that acts upon a face g is the sum of the forces over
all (other) faces in the graph (toward g). More precisely, ~f(g) = Â f2V⇤ ~f(f , C(g)).
In practice, we quickly precompute these values restricted to reachable faces (i. e.,
faces within a radius of L/2 from s). The BFS in our algorithm now extends the
edge f g 2 E⇤ next, for which g has the highest force in direction of extension. More
precisely, it extends f g, iff g maximizes the term ~f(g) cos(](~f(g), C(f) − C(P))).
Note that C(P) is the geometric center of the current (tentative) jogging route P in
the algorithm, and](·, ·) measures the angle of two vectors. Figure 7.3 illustrates
force-direction. In principle, further criteria can be added to the BFS (e. g., via
linear combinations): The roundness considers the ratio of the route’s perimeter to its

198

7.2. Algorithms

(a) `: 3303 m, bad: 75 %. (b) `: 3036 m, bad: 43 %.

Figure 7.3. Two example jogging routes obtained by the basic GF algorithm without (left)
and with (right) force-direction (we set L = 3000 m and e = 20 %). Note that force-direction
successfully finds the nearby forest.

area (lower values are better); convexity takes the distance between a candidate face
and the current route into account (higher values are better). However, preliminary
experiments showed that (on realistic inputs) the effect of these criteria is limited. The
running time of GF is bounded by the BFS on G⇤. In the worst case, it scans O(|V⇤|)
faces. The next face it expands to can be determined in time O(|V⇤|), yielding a total
running time of O(|V⇤|2). Finally, recall that our preprocessing removes the 1-shell
of G. For the case that the source vertex s is part of the 1-shell, we quickly find
the (unique) path P0 to the first vertex s0 that is not in the 1-shell. We then run our
algorithm, but initialized with s0 and L0 = L− 2`(P), simply attaching P0 to the route
afterward. Also note that routes obtained by GF are optimal with respect to sharing:
The only (unavoidable) place it may occur is on P0 (in case s is in the 1-shell).

Route Smoothening. By default, GF provides no guarantee on route complexity (i. e.,
on the number of turns). We, therefore, propose reducing it by smoothing the route in a
postprocessing step. To do so, we first select a small subsequence P0 ⇢ P of the route’s
vertices. (Note that s must be part of P0.) Then, for each two subsequent vertices uv 2
P0, we compute a shortest u-v-path (e. g., by Dijkstra’s algorithm [Dij59]). Finally,
concatenating these paths produces the smoothened route. To also take badness into
account, we use a custom metric w : E! Z≥0, defined by w(a) = bad(a)`(a), when
computing shortest paths.

It remains to discuss how we choose the subsequence P0 from P. We propose
three rules. The first, called equidistant rule (es), simply selects the k (an input
parameter) vertices from P, which are distributed equally regarding their subsequent
distances. More precisely, vertex u 2 P is selected as the i-th vertex on P0 if it
minimizes `(P)i/k − `(Ps,u) (here, Ps,u denotes the subpath of P up to vertex u).
Unfortunately, this rule may select vertices at arbitrary (with respect to the route’s
shape) positions. Therefore, our second rule, called convex rule (cs), obtains P0 by

199

Chapter 7. Computation of Jogging Routes

(a) `: 8533 m, bad: 28 %. (b) `: 8181 m, bad: 29 %. (c) `: 8181 m, bad: 29 %. (d) `: 8181 m, bad: 29 %.

Figure 7.4. Example query from the computer science department in Karlsruhe with L = 8000 m
and e = 10 %. We use the GF algorithm without smoothening (a), opposed to smoothening by the
equidistant rule (b), convex rule (c), and important vertex rule (d).

computing the convex hull of P, e. g., by running Graham’s Scan algorithm [Gra72]
on P. In case the source vertex s is not part of the convex hull, we must still add it
to P0: We set its position next to the first vertex of P that is contained in P’s convex
hull. Finally, the third rule, called important vertex rule (ivs), tries to identify k (again,
an input parameter) “important” vertices of P: At first, it slices P into k subpaths of
equal length. From each, it then selects the vertex u whose incident edges have lowest
total badness (i. e., ’uv2E bad(uv) is minimized). This rule follows the intuition
that vertices that share many edges of low badness are more likely in “nicer” areas.
See Figure 7.4, which compares the effect of these rules. Note that while smoothening
helps to reduce route complexity, its drawback is that the route’s length may change
arbitrarily. We address this issue by our next approach.

7.2.2. Partial Shortest Paths

As discussed, GF provides no guarantee on the deviation from the requested route
length, if they are smoothened. We, therefore, propose a second approach: It directly
computes a set of via vertices, connected by shortest paths, but such that the length
of the resulting routes is guaranteed to be in I(L, e). In the following, we refer to
jogging routes that use k via vertices by k-via-routes.

2-via-routes. For our basic version, we exploit the intuition of constructing equilat-
eral triangles (see Figure 7.5, left, which illustrates the principle), thus, obtaining
2-via-routes. We know that s must be part of the route. Therefore, we choose s

200

7.2. Algorithms

s

u v

Ps,u

Pu,v

Pv,s

s

Rs

u

v

s
m

u0

v0

u

v

Figure 7.5. Left: Intuition of constructing 2-via-routes. Middle: Shortest path tree rooted at s and
ring Rs with candidate vertices u, v forming a feasible route (dotted). Right: Selecting middle
vertices m that lie “behind” u, v in the shortest path trees of u0, v0.

as one of the triangle’s vertices. It now remains to compute two vertices u, v (and
related paths), such that `(Ps,u), `(Pu,v), `(Pv,s) 2 I(L/3, e). From this, we obtain the
required total length of I(L, #). To select u and v, we, at first, define a metric on the
edges w : E ! Z≥0 that takes the edge’s badness into account. As in Section 7.2.1,
we set w(a) = bad(a)`(a). We now run a shortest path computation on G from s
using this metric with Dijkstra’s algorithm [Dij59]. To limit the search, we do not
relax edges out of vertices x for whom `(Ps,x) exceeds (1 + e)L/3. (Note that `(Px,s)

can be stored with x during the algorithm with negligible overhead.) The resulting
shortest path tree Ts (rooted at s) accounts for “nice” paths by optimizing w and
provably contains all feasible candidate vertices u (and v). We refer to this subset
of candidate vertices as ring around s with distance I(L/3, e), in short Rs. We must
now find two vertices of the ring that have a connecting path with length I(L/3, e).
To do so, we pick a vertex u from the ring Rs and compute its ring Ru (also with
respect to length I(L/3, e)) by running Dijkstra’s algorithm from u, similarly to before.
Now, the intersection of Rs with Ru exactly contains the matching vertices v, that is,
concatenating Ps,u, Pu,v, Pv,s yields an admissible jogging route (i. e., of length I(L, e)).
See Figure 7.5 (middle) for an illustration. The algorithm repeats this step for all
vertices in Rs, and it selects, among all admissible routes it discovers, the one mini-
mizing badness. We call this algorithm PSP2 (partial shortest paths with two vias).
We remark that distances other than L/3 are possible when computing rings. This
varies the route’s shape and corresponds to constructing “triangles” with nonuniform
side lengths. The running time of PSP2 is dominated by up to O(|V|) shortest path
computations, thus, it is bounded by O(|V|2 log |V|+ |V||E|). Note that we expect
much better performance in practice, as the shortest path computations are local.

We now propose two optimizations for PSP2. First, the algorithm can be sped up by
a stopping criterion. For it to work, it must pick vertices u from Rs in order of increasing
value w(Ps,u). Note that this order is automatically provided by Dijkstra’s algorithm.
It then only needs to consider paths Pv,s as third leg of the route, for whom w(Pv,s) ≥
w(Ps,u) holds (all others have been evaluated earlier). By this, the total badness of any
route P the algorithm may still find is lower-bound by badlb = 2w(Ps,u)/(1 + e)L. If
we keep track of the route Popt minimizing badness, the algorithm may stop as soon
as badlb exceeds bad(Popt)—it will provably not find any route with lower badness.

201

Chapter 7. Computation of Jogging Routes

(a) `: 8533 m, bad: 28 %. (b) `: 8181 m, bad: 29 %.

Figure 7.6. Example query for PSP2 from the computer science department in Karlsruhe with L =
8000 m and e = 10 %. Reduced sharing is disabled on the left and enabled on the right. The
markers represent the vertices s, u, and v. Note that the left output is an extreme case regarding
sharing—not the average case.

Up to now, PSP2 has no guarantee on the sharing of P. In fact, it can be up to 100 %
in extreme cases, thus, we propose the following optimization. When the algorithm
computes Ru for a vertex u 2 Rs, we forbid it to relax any edges from Ps,u. This
ensures that Ps,u and Pu,v are edge-disjoint. To also make Pu,v and Pv,s edge-disjoint,
we disregard routes whose last edges of Pu,v and Pv,s coincide. Note that we still
allow sharing wrt. to the first and last legs of the route (around s). See Figure 7.6 for
examples.

3-via-routes. Jogging routes obtained by PSP2 follow shortest paths for each of its
three legs Ps,u, Pu,v, and Pv,s. However, no such guarantee exists around u and v, which
might be undesirable. We now propose an optimized variant of our algorithm, PSP3.
It aims to smoothen the route around u and v. Moreover, it uses three via-vertices,
which, in general, produces more circular shaped routes.

The algorithm follows the intuition of constructing regular quadrilaterals. Taking
the source vertex s as one of the quadrilateral’s vertices, it must therefore com-
pute vertices u, m, and v, connected by paths Ps,u, Pu,m, Pm,v, and Pv,s, each with
length I(L/4, e). We refer to m as middle vertex. The algorithm starts, again, by first
computing a ring Rs of vertices from s, but now with distance I(L/4, e). (It does so
by using Dijkstra’s algorithm with metric w.) To smoothen the route around u and v,
we do not use u and v directly as sources for the subsequent shortest path computa-
tions (like we did with PSP2). Instead, we consider the (tighter) ring R0s of vertices

202

7.2. Algorithms

(a) `: 8538 m, bad: 28 %. (b) `: 8080 m, bad: 29 %.

Figure 7.7. Example query for PSP3 with L = 8000 m and e = 10 %. Sharing is avoided around m
on the right (as opposed to the left).

around s with distance I(aL/4, e). Here, the parameter a takes values from [0.5, 1]
and controls smoothness around u and v. We obtain the ring R0s by traversing the
shortest path tree from each vertex u 2 Rs upward, until the distance condition
is met. Moreover, the vertex u remembers which vertex u0 it created in R0s (this is
required later). Next, the algorithm picks vertices u0 from R0s (in any order) and
computes, for each, a ring Ru0 around u0. To account for a, we set the distance of Ru0

to I((2− a)L/4, e). It follows that vertices in Ru0 have distance I(L/2, e) from s,
containing potential middle vertices. Having computed all rings, we then consider for
each pair of vertices u0, v0 in R0s the intersection M of their rings, i. e., M = Ru0 \ Rv0 .
The algorithm now selects only such middle vertices m 2 M that result in smooth
paths around u and v. More precisely, a vertex m 2 M is selected, iff the smoothing
condition holds, i. e., the path Pu0,m contains u and the path Pv0,m contains v. Intuitively,
we are only interested in the part of M that lies “behind” u (resp. v) on the shortest
path tree of Ru0 (Rv0). See Figure 7.5 (right) for an illustration. Each vertex m that
fulfills the smoothing condition represents an admissible jogging route by concate-
nating Ps,u, Pu,m, Pm,v, and Pv,s. The algorithm returns, among those, the one with
minimum badness. With PSP3, the only vertex around which sharing may occur
is m (besides s). We avoid it by discarding middle vertices m, for which the last
edges of Pu0,m and Pv0,m coincide. This can be efficiently checked during the algorithm.
See Figure 7.7 for an example.

203

Chapter 7. Computation of Jogging Routes

Optimizations. We now propose two optimizations to speed up PSP3. The first
avoids the costly computation of set-intersections: Instead of storing (and intersecting)
rings Ru0 , the algorithm maintains a vertex-set Mm at each vertex m of the graph.
Whenever Dijkstra’s algorithm scans a potential middle vertex m, it adds u to Mm (iff
the smoothing condition holds). Moreover, it suffices to keep the (at most) two
vertices u, v with lowest associated badness values in each set Mm. As a result,
managing middle vertices is a constant time operation. The second optimization
avoids some calls to Dijkstra’s algorithm: If the ring R0s contains vertices u0 and v0

for which u0 is an ancestor of v0 in the shortest path tree, a single Dijkstra run
from u0 suffices to handle both u0 and v0. Including these optimizations, PSP3
essentially runs O(|V|) times Dijkstra’s algorithm. Its total running time is thus
O(|V|2 log |V|+ |V||E|), as well as PSP2’s.

Bidirectional Search. To allow more flexibility for selecting the middle vertex, we
propose the algorithm PSP3-Bi which is an extension of PSP3 using bidirectional
search [Dan62]. As PSP3, it starts by computing Rs and, from that, R0s. However, it
now runs (in turn) for each pair of vertices u0, v0 a bidirectional search. Whenever
it scans a vertex m that has already been scanned by the opposite direction, it
checks (a) whether u (resp. v) are ancestors of m in the forward (resp. backward)
shortest path tree, and (b) if the total length of the combined route is in I(L, e). If
both hold true, it stops and considers the just-found jogging route as output (it keeps
track of the one that minimizes badness). Note that by design, sharing around m
cannot occur. Since PSP3-Bi must run a bidirectional search for each pair of vertices
in R0s, its running time is bounded by O(|V|3 log |V|+ |V|2|E|).

Parallelization. All PSP-based algorithms can be easily parallelized in a shared
memory setup: They, first, sequentially compute the ring Rs (resp. R0s). Subsequent
Dijkstra runs may then be distributed among the available processors. Each proces-
sor computes its locally optimal route, and the globally optimal route is selected
in a sequential postprocessing step. To avoid race conditions, we use locking as
synchronization primitive, whenever necessary.

Alternative Routes. All PSP-based algorithms provide alternative routes without sig-
nificant computational overhead. Instead of just outputting the route with minimum
badness, we may output the k best routes. However, these routes tend to be too
similar. We, therefore, only consider routes as alternatives that are pairwise different
in their via-vertices u and v from Rs (still selecting the k best regarding badness).
By these means, we obtain jogging routes that cover different regions of the graph
around the source vertex s. See Figure 7.8 for an example.

204

7.3. Experiments

(a) `: 7600 m, bad: 20 %. (b) `: 7654 m, bad: 24 %. (c) `: 7697 m, bad: 27 %.

Figure 7.8. Example query using PSP3-Bi with L = 8000 m and e = 10 %. The figure shows the
best three (from a total of twelve found) alternative routes.

7.3. Experiments

We implemented all algorithms from Section 7.2 in C++ compiled with GCC 4.7.1
and flag -O3. Experiments were run on one core of a dual 8-core Intel Xeon E5-2670
clocked at 2.6 GHz with 64 GiB of DDR3-1600 RAM. We focus on the pedestrian
network of the greater Karlsruhe region in Germany. We extracted data from a
snapshot of the freely available OpenStreetMap (OSM) [Ope04] on 5 August 2012.
We only keep walkable street segments and use OSM’s highway and landuse (of
the surrounding polygon, if available) tags to define sensible badness values. They
are listed in Table 7.1. From these values, the badness of vertices u 2 V is defined
by bad(u) = bad(landuse(u)). Furthermore, the badness for edges a = {u, v} 2 E is
defined according to

bad(a) =

(
bad(highway(a)) if highway(a) = track,
1
2 bad(highway(a)) + 1

2 max{bad(u), bad(v)} otherwise.

The resulting graph has 104 759 vertices and 118 671 edges.

Evaluating Algorithms. Our first experiment evaluates quality and performance of
our algorithms. For each, we ran (the same) 1 000 queries with source vertex s
chosen at random. We request routes of 10 km length and e set to 10 %. Results are
summarized in Table 7.2. We report the average length (in km) of the computed
routes, the standard deviation (Std.-Dev.) of their length, their average badness

205

Chapter 7. Computation of Jogging Routes

Table 7.1. Badness values used in our experiments for different values of the landuse and highway
tags in the OpenStreetMap data.

Tag landuse Badness

allotments 0.5
brownfield 1
cemetery 1
commercial 1
construction 1
farm 0.2
farmland 0.2
farmyard 0.3
forest 0.1
garages 1
grass 0.15
greenfield 0.1
greenhouse_horticulture 0.6
industrial 1
landfill 1
leisure 0.15
meadow 0.1
military 1
orchard 0.5
plant_nursery 0.6
quarry 1
railway 0.5
recreation_ground 0.2
reservoir 0.3
residential 0.8
retail 1
unclassified 1
village_green 0.2
vineyard 0.4

Tag highway Badness

bridleway 0.6
crossing 0.6
cycleway 0.2
footway 0.5
ford 1
living_street 0.7
path 0.5
pedestrian 0.8
residential 0.9
road 0.8
secondary 1
secondary_link 1
service 0.9
steps 0.5
tertiary 1
tertiary_link 1
track 0.15
track, grade1 0.1
track, grade2 0.15
track, grade3 0.25
track, grade4 0.35
track, grade5 0.45
unclassified 0.9

206

7.3. Experiments

Table 7.2. Solution quality and performance on our Karlsruhe input for both the Greedy
Faces (GF) and Partial Shortest Paths (PSP) algorithms. For smoothening, we apply the
equidistant rule (es), convex hull rule (cs), and important vertex rule (ivs) to GF.

Length Std.- Bad. Sh. No. Succ. Time-1 Time-4 Time-8
Algorithm [km] Dev. [%] [%] Trn. Rate [ms] [ms] [ms]

GREEDY FACES:

GF 9.89 0.58 48.7 0.2 51 93 % 285 — —
GF-es 9.61 2.07 43.8 6.5 28 93 % 289 — —
GF-cs 9.73 2.23 43.0 6.9 29 93 % 296 — —
GF-ivs 9.48 1.98 41.7 6.0 30 93 % 293 — —

PARTIAL SHORTEST PATHS:

PSP2 9.99 0.58 27.3 52.5 16 98 % 179 84 63
PSP3 10.14 0.41 31.0 23.6 20 98 % 155 78 72
PSP3-Bi 10.06 0.53 33.4 13.9 21 98 % 446 177 140

values (Bad.), their average amount of sharing (Sh.), the number of turns on them (No.
Trn.), and the average running time of the algorithm on one, and, where applicable,
also on four and eight processors (Time-x). Sometimes our algorithms may not find
any feasible solution. Therefore, we also report their success rates (Succ. Rate).

Algorithms in Table 7.2 are grouped into blocks. The first evaluates the greedy
faces approach from Section 7.2.1. We observe that GF succeeds in approximating
the required route length of 10 km with very little error. However, for 7 % of our
queries no solution was found. One reason is that GF is unable to recover from
local optima. However, sharing is almost nonexistent with an average value of 0.2 %.
This is expected, since by design sharing for GF only occurs around s, iff it lies in a
dead-end street. On the downside, route complexity is quite high with 51 turns on
average. This justifies our smoothening rules by shortest paths. We set the number of
selected vertices to 6 for GF-es and to 9 for GF-ivs. Interestingly, figures are quite
similar for all rules: They reduce route complexity by a factor of almost two, which
comes with little increase in sharing (up to 6.9 %). Recall that smoothening may
arbitrarily change route lengths. Our experiments indicate that the average route
length deviates little (it is still 9.5–9.7 km, depending on the specific rule). However,
the figure is much less stable: The mean error (Std.-Dev.) increases to around 2 km.
Regarding running times, GF runs in 285 ms on average, with a mild increase up to
296 ms (⇡ 4 %), if we enable smoothening.

The second block evaluates the PSP approach from Section 7.2.2 (we set a to 0.6,
where applicable). Again, we succeed approximating the required route length
of 10 km with little error (⇡ 0.5 km on average for all algorithms). Because PSP
considers more route combinations than GF, it is more likely to find a feasible
solution. This is reflected by the excellent success rate of 98 % (for all PSP algorithms).

207

Chapter 7. Computation of Jogging Routes

Chosen Vertices

Re
l.

Le
ng

th
[%

]

5 10 15 20

50
70

90
11

0

equidistant rule
convex rule
imp. vertex rule

Chosen Vertices

Re
l.

B
ad

ne
ss

[%
]

5 10 15 20

75
80

85
90

Figure 7.9. Evaluating the effect of the smoothening rules on GF. We report the relative amount
by which the route’s length (left) and badness (right) change while varying the number of vertices
the algorithm selects to compute shortest paths (cf. Section 7.2.1). The key of the left figure also
applies to the right.

Regarding badness, PSP finds “nicer” routes (lower average badness) than any of
the GF algorithms. However, their sharing (still only possible around s) is much
higher. On average, sharing is 52 % for PSP2’s, though, we are able to reduce it to 14 %
with PSP3-Bi. This is well acceptable in practice. An important advantage of PSP
over GF is route complexity: With 16–21 turns on average, this figure is lower than
any of the GF algorithms, even with applied smoothening. Enabling the stopping
criterion decreases running times from 3 579 ms (not reported in the table) to 179 ms,
a factor of 20. The fastest algorithm is PSP3 with 155 ms on average. PSP3-Bi is
slower by a factor of 2.9. (Recall that it must run a bidirectional search for every pair
of vertices from Rs; cf. Section 7.2.2.) Regarding parallelism, we observe speedups
of factor 2.1 (PSP2) and 1.9 (PSP3) on four processors over a sequential execution.
As expected, with a speedup of 2.5, PSP3-Bi benefits most from parallelization.
Increasing the number of processors to eight, improves little. Still, PSP3-Bi benefits
most, with a total speedup of 3.1.

Detailed Experiments. We now present two detailed experiments. The first concerns
our smoothening rules, the second evaluates variations of the input parameter e.
Each datapoint is based on (the same) 1 000 queries with s selected at random and L
set to 10 km. Figure 7.9 shows results of our first experiment. We set e to 10 %
and vary (on the abscissa) the number of vertices between which the smoothening
process computes shortest paths. The left plot reports, for each smoothening rule,
how much it affects the length of the routes. We report the average amount (in
percent) it changes. The right plot shows the same figure, but for badness. We
observe that our routes tend to get shorter after smoothening. This is expected, since
we rebuild routes using shortest paths. Selecting too few vertices shortens routes
severely (to below 50 %). Their length eventually stabilizes above 90 % for six vertices
and more. Badness generally improves when using smoothening, but continuously

208

7.3. Experiments

e

Su
cc

es
s

R
at

e
[%

]

0.1 0.2 0.3 0.4 0.5

75
80

85
90

95
10

0

GF
GF-es
GF-cs
GF-ivs

PSP2
PSP3
PSP3-Bi

e

B
ad

ne
ss

[%
]

0.0 0.1 0.2 0.3 0.4 0.5

25
30

35
40

45
50

Figure 7.10. Evaluating success rate and badness on all algorithms for varying e. The key of the
left figure also applies to the right. Note that, regarding the greedy faces approach, smoothening
does not affect the success rate, hence, we only report it for GF.

increases with more vertices. Interestingly, the convex rule (which is independent of
the number of vertices) seems good regarding both length and badness, which makes
it the preferred rule in practice.

Our final experiment evaluates all algorithms for varying input parameter e.
Results are summarized in Figure 7.10, which evaluates, for each e, the average
success rate (left plot) and the resulting route’s badness (right plot). Note that
applying smoothening to GF does not affect the success rate, therefore, we do not
enumerate smoothening rules in the left figure. We observe that too much restriction
on the allowed length (small e-values), may result in a low success rate (down
to 75 %) and high badness values (more than 50 % for GF). Setting e > 0.07 already
significantly improves the success rate. Unsurprisingly, badness values gradually
improve with increasing e, as this gives the algorithms more room for optimization.
Here, a good tradeoff seems setting e to 0.1. Interestingly, PSP3-Bi’s success rate is
almost unaffected by e, even for tiny values below 0.07.

Additional Input. Here we provide an experimental evaluation of our algorithms on
another input. We use the greater region of Paderborn (Germany), which we (also)
extracted from OpenStreetMap (OSM) data on 5 August 2012. Again, our graph only
keeps walkable street segments with badness values defined using OSM’s highway

and landuse tags (see Table 7.1 for details). The resulting graph has 28 381 vertices
and 33 340 edges.

Table 7.3 summarizes quality and performance results. It reports the same figures
as Table 7.2 from Section 7.3. For each algorithm, they are based on running 1 000
queries with randomly selected source vertex s, 10 km length, and e set to 10 %. We
observe that, regarding quality, results are very similar: All algorithms approximate
the requested length of 10 km with small error on average (with the exception of ap-

209

Chapter 7. Computation of Jogging Routes

Table 7.3. Evaluating solution quality and performance on our Paderborn input for both
the Greedy Faces (GF) and Partial Shortest Paths (PSP) algorithms. We report the same
figures as in Table 7.2.

Length Std.- Bad. Sh. No. Succ. Time-1 Time-4 Time-8
Algorithm [km] Dev. [%] [%] Trn. Rate [ms] [ms] [ms]

GREEDY FACES:

GF 9.83 0.58 70.9 0.6 54 93 % 110 — —
GF-es 8.98 2.11 68.1 9.4 28 93 % 112 — —
GF-cs 8.97 2.01 67.7 6.3 27 93 % 113 — —
GF-ivs 9.10 1.86 65.8 9.0 31 93 % 112 — —

PARTIAL SHORTEST PATHS:

PSP2 9.95 0.56 53.6 50.6 20 98 % 476 222 121
PSP3 10.04 0.41 58.0 20.0 25 98 % 58 29 26
PSP3-Bi 9.99 0.53 60.0 12.9 23 97 % 154 62 48

plied smoothening for GF). Also, sharing and the number of turns show similar (with
respect to Table 7.2) figures for all algorithms. Interestingly, badness values are
consistently higher than on Karlsruhe. Indeed, the city of Karlsruhe has many parks
and is surrounded by more green areas, which allows for more jogging routes with
lower badness. Success rates are, again, almost identical to Table 7.2: GF succeeds
in in 93 % of the queries to find a solution, while PSP improves success rates to 97–
98 %. Regarding running time, we observe that GF computes solutions in 110 ms
time. Like on Karlsruhe, applying smoothening has almost no effect on running
time. PSP2, on the other hand, is slower (by a factor of 2.6) than on Karlsruhe, but
admits better parallel speedups (factor of 2.2 on four, and factor of 3.9 on eight cores).
However, PSP3 is faster by a factor of 8.2 over PSP2. (Recall that PSP3 computes
shortest paths from a tighter ring R0s with less vertices; cf. Section 7.2.2). Consistently
with Table 7.2, PSP3-Bi’s running time increases over PSP3 by a factor of 2.6.

Case Study. We conclude our experimental evaluation with a case study of all
algorithms. We evaluate them for three queries on the Karlsruhe input with varying
lengths of 8 km, 12 km, and 5 km. The computed routes are presented in Figures 7.11,
7.12, and 7.13/7.14, respectively.

Regarding our first example, Figure 7.11a shows the output of PSP3-Bi, which
seems to compute a generally attractive route. Thereby, its length is only exceeded by
38 m and the number of turns is 11, making the route relatively easy to remember.
Recall that PSP2 generally computes routes with higher sharing (cf. Table 7.2). This
is also depicted by Figure 7.11c. Note that in this example this may be beneficial:
The route is able to use the quickest path through the (less pleasant) urban area to

210

7.4. Conclusion

enter and exit the nearby forest. The GF approach produces less attractive results. We
observe the routes have significantly more turns. Even though this can be remedied
by the smoothening rules to some extent, in doing so, the algorithm loses the property
that it approximates the requested route length.

Looking at the second example in Figure 7.12, we observe a similar behavior of
our algorithms as in the previous example (Figure 7.11). The PSP algorithms tend
to produce superior results when compared to the GF approach. In particular, the
unsmoothened route in Figure 7.12f) has way too many turns to be practical. Also
note the slight difference of PSP3 and PSP3-Bi in Figures 7.12a and 7.12b, respectively.
Recall that PSP3 does not guarantee that the path at the middle vertex m is locally
optimal, which is reflected by the small detour around m in Figure 7.12a. In contrast,
this detour is avoided in the output of PSP3-Bi.

The last example, depicted in Figure 7.13 and 7.14, is somewhat more challenging
for our algorithms. Instead of a large forest close to the source vertex, it contains only
a small green strip along the river Alb (which is, in fact, a very popular jogging area
in Karlsruhe). We observe that, still, all algorithms succeed in finding this green area.
However, PSP3 struggles to remain in the park for the entire route. Interestingly,
in this example the performance of GF with smoothening enabled (Figures 7.13d
and 7.14a) improves compared to the previous examples. Nonetheless, the length of
the smoothened routes deviates significantly from the request input of L = 5 km.

7.4. Conclusion

In this chapter we introduced the NP-hard Jogging Problem. To compute useful
jogging routes, we presented two novel algorithmic approaches that solve a relaxed
variant of the problem. Besides length, both explicitly optimize two important criteria:
Badness (i. e., surrounding area) and sharing (i. e., shape of the route). The methods
are based on different intuitions. The first incrementally extends routes by carefully
joining adjacent faces of the graph, possibly smoothened by a quick postprocessing
step. The second computes sets of alternative routes that resemble equilateral
polygons via shortest path computations. Experiments on real-world data reveal that
our algorithms are indeed practical: They compute jogging routes of excellent quality
in under 200 ms time, which is fast enough for interactive applications.

Future work includes comparing our algorithms to exact solutions and better
methods for selecting via vertices—either as smoothening rules or for computing
routes directly. Also, providing via vertices (or “areas”) as input is an interesting
scenario. Finally, we like to accelerate our algorithms further. Especially, PSP may
benefit from speedup techniques [DSSW09a,Som12]. This, however, requires adapting
them to compute rings instead of point-to-point paths.

211

Chapter 7. Computation of Jogging Routes

(a) PSP3-Bi. `: 8038 m, bad: 35 %, turns: 11. (b) PSP3. `: 7996 m, bad: 35 %, turns: 14.

(c) PSP2. `: 7923 m, bad: 34 %, turns: 15. (d) GF-ivs. `: 7767 m, bad: 43 %, turns: 43.

(e) GF-cs. `: 6637 m, bad: 44 %, turns: 28. (f) GF. `: 7883 m, bad: 44 %, turns: 39.

Figure 7.11. First example. Output of our algorithms for L = 8 km and e = 10 %.

212

7.4. Conclusion

(a) PSP3-Bi. `: 11 687 m, bad: 23 %, turns: 12. (b) PSP3. `: 11 822 m, bad: 23 %, turns: 15.

(c) PSP2. `: 12 753 m, bad: 22 %, turns: 11. (d) GF-ivs. `: 10 811 m, bad: 27 %, turns: 14.

(e) GF-es. `: 11 129 m, bad: 30 %, turns: 23. (f) GF. `: 12 254 m, bad: 29 %, turns: 40.

Figure 7.12. Second example. Output of our algorithms for L = 12 km and e = 10 %.

213

Chapter 7. Computation of Jogging Routes

(a) PSP3-Bi. `: 4755 m, bad: 30 %, turns: 16. (b) PSP3. `: 4769 m, bad: 48 %, turns: 22.

(c) PSP2. `: 4838 m, bad: 30 %, turns: 18. (d) GF-ivs. `: 3987 m, bad: 37 %, turns: 21.

Figure 7.13. Third example. Output of our algorithms for L = 5 km and e = 10 %.

214

7.4. Conclusion

(a) GF-es. `: 3982 m, bad: 40 %, turns: 19. (b) GF. `: 4620 m, bad: 41 %, turns: 44.

Figure 7.14. Third example, continued. Output of our algorithms for L = 5 km and e = 10 %.

215

Chapter 8
Conclusion

I n this work, we developed new algorithms for four scenarios: Journey planning
in public transit networks, journey planning in multimodal networks, customiz-
able route planning in road networks, and computing jogging routes in pedestrian

networks. We developed, evaluated, and refined our algorithms by following the
paradigm of Algorithm Engineering: It is captured by a cycle of design, analysis,
implementation, and experimentation. (Also recall Figure 1.1.) Thereby, we based a
strong focus on real world applicability. We ran our experiments on real data and
developed our algorithms with the underlying hardware architecture in mind. Both
aspects turned out to be very important. We observed that the problems studied in
this work are generally memory bound: They require to scan huge amounts of data,
but with relatively little amount of performed computation per data item. As such,
an essential condition to obtain fast practical algorithms is to carefully design the
memory layout of the data structures that are maintained by the algorithm. Keeping
the memory hierarchy of the underlying hardware architecture in mind makes a
significant difference when it comes to the performance of the algorithms. This
strengthens our belief that bringing theory and (realistic) experimentation together
is vital for algorithmic research, if we aim to design efficient and provably correct
algorithms that are intended for practical applications.

The remainder of this chapter briefly summarizes the main results for the problems
we have studied and gives a general direction for interesting future work.

Public Transit Journey Planning. Most of the available journey planning methods
build a graph from the input (i. e., the timetable) on which they run a shortest path
algorithm that computes journeys. Thereby, the size of this graph has a direct impact
on the performance of the algorithm. To this extent, we analyzed the realistic time-
dependent model and refined it into a new Coloring Model for computing earliest
arrival and range queries. By merging certain vertices that are not “in conflict”, we
were able to reduce the number of vertices by up to a factor of 12 (depending on the

217

Chapter 8. Conclusion

input). Note that this accelerates any query algorithm. Moreover, we presented a
heuristic for generating artificial footpaths. It utilizes the underlying road network
to identify and interconnect stops that are close to the same intersection. Note that
footpaths (often missing from the input data) are crucial to enable realistic queries.

We then developed an efficient range query algorithm that is based on our new
Coloring Model, called SPCS. It systematically exploits the observation that in public
transit networks the number of relevant connections to travel to the target can be
limited in advance and that certain connections are dominated by others along the
way. Unlike previous algorithms, which are notoriously hard to parallelize, we
showed that our algorithm admits a natural and efficient parallelization. Moreover,
by utilizing the very same algorithm to precompute journeys between important
stops, we further accelerated point-to-point queries by up to a factor of four.

Inarguably important when planning public transit journeys is to consider the
number of transfers taken. We, therefore, addressed the problem of computing Pareto
sets of journeys that optimize arrival time and the number of transfers as criteria.
To this extent, we presented RAPTOR, an algorithm that is neither graph-based, nor
uses a priority queue. Instead, it efficiently organizes the timetable data into a few
simple arrays. On these, it operates in rounds (one per transfer) and scans each
route at most once per round. Our experiments on the full metropolitan network
of London revealed that RAPTOR is more than an order of magnitude faster than
previous approaches. Moreover, we showed how RAPTOR can be easily parallelized,
further accelerating queries. We also extended RAPTOR to handle strict domination,
additional criteria, and to compute multicriteria range queries. Since RAPTOR
does not rely on preprocessing, it can be directly used in dynamic scenarios, easily
handling delays and trip cancellations.

Multimodal Journey Planning. The second part of this thesis considered the problem
of computing multimodal journeys in heterogenous networks consisting of walking,
bicycles, car travel, public transit, and flights. We pointed out that a crucial task of
any journey planner is to combine the available modes of transports in a sensible way.

An elegant approach to this problem is computing label-constrained shortest
paths. To this extent, we presented UCCH: It augments Contraction Hierarchies to
label-constrained shortest path computation in a sound manner, and as a result, it
is the first multimodal preprocessing-based method that handles arbitrary mode
sequence constraints as an input to the query—a problem considered challenging
before. Besides that, since UCCH does not require a dedicated algorithm for local
queries, it is simpler than previous algorithms. At the same time, when compared to
previous approaches with similar query performance, UCCH handles multimodal
networks with significantly denser public transit with less preprocessing effort.

Going from here, we extended RAPTOR to optimize multicriteria journey planning
in multimodal networks. Instead of considering label-constraints, we argued that

218

8.1. Future Work

users optimize, in addition to arrival time, mode-dependent convenience criteria,
e. g., walking duration (walking), number of transfers (public transit), and monetary
cost (taxi). We presented MCR, a novel multicriteria algorithm that computes exact
Pareto sets of multimodal journeys. Since these Pareto sets are large, we used fuzzy
set theory to extract a concise and diverse subset of the most significant journeys
in a quick postprocessing step. To further accelerate our approach, we presented
heuristics (still multicriteria) that closely match the best journeys of the exact Pareto
set. We verified our approach on the full multimodal network of London, enabling
efficient realistic multimodal journey planning in large metropolitan areas.

Customizable Route Planning in Road Networks. In this part of the thesis we con-
sidered the customizable route planning problem in road networks: Its goal was a
technique that supports fast metric updates and has a query algorithm that is robust
with respect to any metric. After carefully analyzing previous work, we revisited a
method that is based on overlay graphs. Thereby, our approach splits preprocessing
into a metric-independent stage and a customization stage. The first computes the
topology of the overlays (using graph partitioning) and may take minutes or hours.
By storing the overlays efficiently in memory as matrices, the customization stage
can incorporate an arbitrary new metric within seconds. Our experiments on the
continental network of Europe revealed that our approach is indeed highly practi-
cal: Metric customization takes seconds with very little space overhead (per metric)
and our query algorithm is fast enough for interactive scenarios. This enables new
applications, e. g., supporting personalized cost functions and real-time traffic data.

Computing Jogging Routes. The final part of this thesis dealt with the problem of
computing jogging routes in pedestrian networks. To the best of our knowledge,
we presented the first practical algorithmic solutions to this problem. The problem
asks for a cyclic route that optimizes its shape, its vicinity, and its complexity, while
approximating a given (as input) length. We showed that a formalization of the
problem is weakly NP-hard. Nevertheless, we developed two general approaches to
compute sensible jogging routes heuristically: The first, Greedy Faces, incrementally
extends the route by attaching adjacent faces of the graph, possibly smoothening the
route in a postprocessing step. The second approach, Partial Shortest Paths, is based
on the intuition of constructing equilateral polygons. It can even be parallelized and
inherently computes diverse sets of alternatives routes. We justified our algorithms
by experiments on real-world data, showing that we are able to compute sensible
jogging routes fast enough for interactive applications.

8.1. Future Work

In this section, we discuss interesting future work.

219

Chapter 8. Conclusion

Public Transit Journey Planning. An interesting question deriving from our work on
RAPTOR is whether we can develop a speedup technique based on RAPTOR. Recall
that the performance of RAPTOR is bounded by the number of routes it scans per
round. While practical in our experiments on the network of London, this number
may be too high for networks beyond metropolitan scale. Large-scale networks, such
as that of a whole country, usually consist of many (presumably loosely intercon-
nected) local networks and an overlaying long-distance (train) network. Intuitively,
optimal (even multicriteria) journeys from, e. g., Karlsruhe to Berlin should only use
the respective local networks of Karlsruhe and Berlin. A first approach could be to
look at (multilevel) overlay techniques [SWW00,SWZ02, JP02,DGPW11]. They should
be helpful to distinguish routes that are important to travel through a cell versus
routes that are important for travel within a cell. A long-distance query could then
skip over local routes of intermediate cells.

Realistic public transit networks are notoriously prone to delays, cancellations,
and other types of uncertainty. It would therefore be an interesting question how
uncertainty can be incorporated into RAPTOR (beyond reliability). A first approach
that minimizes expected arrival time (under probabilistic delays) is the Connection
Scan Algorithm [DPSW13], however, it must look at the entire input for each query
and, hence, does not scale. Maybe we can combine CSA and RAPTOR to obtain an
algorithm that exploits (like RAPTOR) the notion of routes in a principled way in
order to obtain fast and more scalable queries.

Another very interesting problem is to compute a more comprehensive output
than individual journeys for public transit queries. Often, for the same values of, e. g.,
arrival time and number of transfers, many different journeys exist that vary in the
stop where the user can transfer or even in the routes the user may take. On the other
hand, in dense urban networks, exact departure and arrival times are of little value
for some routes (think of a subway line that runs every two minutes). Therefore, we
are interested to utilize RAPTOR with strict domination to compute comprehensive
instruction sets that encode these alternative routes in an easy-to-understand (for the
user) and compact way.

Multimodal Journey Planning. For multicriteria multimodal journey planning, we
see our approach (MCR) as a starting point rather than a final solution. Though we
observed that fuzzy logic helps to rank journeys according to their significance, their
rank is determined relative to the other journeys of the Pareto set. Therefore, we are
greatly interested in an absolute ranking scheme that does not depend on context.
While for a human it is (to some extent) relatively easy to assess the quality of a
journey by just looking at it, we were yet unable to formalize a notion of absolute
journey quality. An absolute ranking criterion would make it much easier to compare
solutions of different algorithms, and also enable us to evaluate algorithms that
compute sets of journeys by other means than by filtering (exact) Pareto sets.

220

8.1. Future Work

Another line of work is the development of faster speedup techniques for the
multimodal problem. Although, computing label-constrained shortest paths is quite
efficient with UCCH, this is not yet the case for the multicriteria problem. Even
with our heuristics, queries take seconds for the scenario that optimizes all modes of
transport. Yet, we believe that computing concise and diverse sets of journeys (rather
than single label-constrained journeys) is important, especially in a multimodal sce-
nario. We are, therefore, interested in new algorithms that compute sets of alternative
multimodal journeys with high quality. A first step could be to incorporate label-
constraints into MCR. By these means, we could restrict the number of Pareto-optimal
solutions during computation, making the algorithm faster, while still obtaining a
diverse set of solutions.

Customizable Route Planning in Road Networks. Regarding our Customizable Route
Planning (CRP) approach, it would be interesting to see, if the algorithm can be aug-
mented to time-dependent route planning [DW09b] in a way such that customization
is still fast. Here, a known problem is that the complexity of the associated travel
time functions increases significantly for long shortcuts (i. e., clique arcs). A possible
approach may approximate these travel time functions for higher levels to reduce
customization space and use exact functions only for lower levels. Other scenarios,
such as optimizing multiple criteria at once, are also interesting. Besides that, we
believe that CRP should also be a good candidate for an external memory setting.
Here, one is usually interested to minimize IOs, i. e., block reads (and writes) from (to)
external memory. An interesting approach would be to minimize IOs by dropping
the label-setting property of the query algorithm in order to process entire matrices
at once in an apt way.

Computation of Jogging Routes. Regarding the computation of jogging routes, this
thesis presented first algorithmic approaches to the problem. We, therefore, see this
line of work at the beginning. Although we proved that the problem is NP-hard,
we are, nevertheless, interested in comparing our algorithms to optimal solutions.
Such solutions could be obtained by, e. g., branch-and-bound or linear programming
approaches. Moreover, we would like to further refine the considered soft criteria,
which we defined somewhat arbitrarily up to now. For that, conducting an extensive
user study could be an approach. Finally, it would be interesting whether speedup
techniques from road networks can be adapted to the computation of jogging routes.
We believe that a good starting point is the Partial Shortest Path algorithm, which
is already based on shortest paths. However, this would require the adaption of
speedup techniques to compute rings (or isochrones [GSSV12, DGPW14]) instead of
point-to-point shortest paths.

221

Chapter 8. Conclusion

Algorithm Engineering. On a more general avenue, we are interested to apply the
paradigm of Algorithm Engineering to other combinatorial optimization problems
beyond shortest paths. Another exemplary success story of Algorithm Engineering is
the graph partitioning problem [BMSW13], where many efficient algorithms were
developed over the past years, some of which also benefit the computation of shortest
paths. We generally believe that Algorithm Engineering can be a viable scientific
principle to systematically and effectively obtain algorithmic solutions to real world
problems that are both efficient and practical.

222

Bibliography

[ADF+11] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and
Renato F. Werneck, VC-dimension and shortest path algorithms, Proceedings
of the 38th International Colloquium on Automata, Languages, and
Programming (ICALP’11), Lecture Notes in Computer Science, vol. 6755,
Springer, 2011, pp. 690–699.
(Cited on pages 25 and 134.)

[ADF+12] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and
Renato F. Werneck, HLDB: Location-based services in databases, Proceedings
of the 20th ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems (GIS’12), ACM Press, 2012, Best Paper
Award, pp. 339–348.
(Cited on page 20.)

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck, A hub-based labeling algorithm for shortest paths on road networks,
Proceedings of the 10th International Symposium on Experimental Algo-
rithms (SEA’11), Lecture Notes in Computer Science, vol. 6630, Springer,
2011, pp. 230–241.
(Cited on pages 20, 23, 85, 175, and 176.)

[ADGW12] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck, Hierarchical hub labelings for shortest paths, Proceedings of the 20th
Annual European Symposium on Algorithms (ESA’12), Lecture Notes in
Computer Science, vol. 7501, Springer, 2012, pp. 24–35.
(Cited on pages 15, 20, and 23.)

[ADGW13] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck, Alternative routes in road networks, ACM Journal of Experimental
Algorithmics 18 (2013), no. 1, pp. 1–17.
(Cited on page 15.)

223

Bibliography

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck,
Highway dimension, shortest paths, and provably efficient algorithms, Proceed-
ings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA’10), SIAM, 2010, pp. 782–793.
(Cited on pages 19, 24, 25, and 134.)

[AKL13] Franz Aurenhammer, Rolf Klein, and D.T. Lee, Voronoi diagrams and
delaunay triangulations, World Scientific Publishing, August 2013.
(Cited on page 19.)

[ALS13] Julian Arz, Dennis Luxen, and Peter Sanders, Transit node routing reconsid-
ered, Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13), Lecture Notes in Computer Science, vol. 7933,
Springer, 2013, pp. 55–66.
(Cited on page 19.)

[Amd67] Gene M. Amdahl, Validity of the single processor approach to achieving large
scale computing capabilities, Proceedings of the April 18-20, 1967, spring
joint computer conference (New York, NY, USA), AFIPS ’67 (Spring),
ACM, 1967, pp. 483–485.
(Cited on page 112.)

[AW12] Leonid Antsfeld and Toby Walsh, Finding multi-criteria optimal paths
in multi-modal public transportation networks using the transit algorithm,
Proceedings of the 19th ITS World Congress, 2012.
(Cited on pages 32 and 35.)

[AZC07] Georgia Aifadopoulou, Athanasios Ziliaskopoulos, and Evangelia Chriso-
hoou, Multiobjective optimum path algorithm for passenger pretrip planning in
multimodal transportation networks, Journal of the Transportation Research
Board 2032 (2007), no. 1, pp. 26–34, 10.3141/2032-04.
(Cited on page 35.)

[Bas09] Hannah Bast, Car or public transport – two worlds, Efficient Algorithms,
Lecture Notes in Computer Science, vol. 5760, Springer, 2009, pp. 355–
367.
(Cited on page 30.)

[Bau12] Andreas Bauer, Multimodal profile queries, Bachelor thesis, Karlsruhe
Institute of Technology, May 2012.
(Cited on pages 29 and 71.)

[BBH+08] Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, Madhav V.
Marathe, and Dorothea Wagner, Engineering label-constrained shortest-path

224

Bibliography

algorithms, Proceedings of the 4th International Conference on Algorith-
mic Aspects in Information and Management (AAIM’08), Lecture Notes
in Computer Science, vol. 5034, Springer, June 2008, pp. 27–37.
(Cited on page 35.)

[BBH+09] Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, Madhav V.
Marathe, and Dorothea Wagner, Engineering label-constrained shortest-path
algorithms, The Shortest Path Problem: Ninth DIMACS Implementation
Challenge, DIMACS Book, vol. 74, American Mathematical Society, 2009,
pp. 309–319.
(Cited on pages 36, 128, and 132.)

[BBJ+02] Chris Barrett, Keith Bisset, Riko Jacob, Goran Konjevod, and Madhav V.
Marathe, Classical and contemporary shortest path problems in road networks:
Implementation and experimental analysis of the TRANSIMS router, Proceed-
ings of the 10th Annual European Symposium on Algorithms (ESA’02),
Lecture Notes in Computer Science, vol. 2461, Springer, 2002, pp. 126–
138.
(Cited on pages 35, 36, 128, and 131.)

[BBM06] Maurizio Bielli, Azedine Boulmakoul, and Hicham Mouncif, Object mod-
eling and path computation for multimodal travel systems, European Journal
of Operational Research 175 (2006), no. 3, pp. 1705–1730.
(Cited on page 35.)

[BBRW13] Reinhard Bauer, Moritz Baum, Ignaz Rutter, and Dorothea Wagner, On the
complexity of partitioning graphs for arc-flags, Journal of Graph Algorithms
and Applications 17 (2013), no. 3, pp. 265–299.
(Cited on page 24.)

[BBS13] Hannah Bast, Mirko Brodesser, and Sabine Storandt, Result diversity
for multi-modal route planning, Proceedings of the 13th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’13), OpenAccess Series in Informatics (OASIcs),
September 2013, pp. 123–136.
(Cited on pages 35 and 170.)

[BCD+08] Francesco Bruera, Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di
Stefano, and Daniele Frigioni, Dynamic multi-level overlay graphs for shortest
paths, Mathematics in Computer Science 1 (2008), no. 4, pp. 709–736.
(Cited on page 25.)

[BCE+10] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris
Harrelson, Veselin Raychev, and Fabien Viger, Fast routing in very large

225

Bibliography

public transportation networks using transfer patterns, Proceedings of the
18th Annual European Symposium on Algorithms (ESA’10), Lecture
Notes in Computer Science, vol. 6346, Springer, 2010, pp. 290–301.
(Cited on pages 26, 32, and 162.)

[BCK+10] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and
Dorothea Wagner, Preprocessing speed-up techniques is hard, Proceedings of
the 7th Conference on Algorithms and Complexity (CIAC’10), Lecture
Notes in Computer Science, vol. 6078, Springer, 2010, pp. 359–370.
(Cited on page 24.)

[BCRW13] Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wag-
ner, Search-space size in contraction hierarchies, Proceedings of the 40th
International Colloquium on Automata, Languages, and Programming
(ICALP’13), Lecture Notes in Computer Science, vol. 7965, Springer, 2013,
pp. 93–104.
(Cited on pages 25 and 134.)

[BD09] Reinhard Bauer and Daniel Delling, SHARC: Fast and robust unidirectional
routing, ACM Journal of Experimental Algorithmics 14 (2009), no. 2.4,
pp. 1–29, Special Section on Selected Papers from ALENEX 2008.
(Cited on pages 22, 24, 31, 175, and 176.)

[BDD+12] Reinhard Bauer, Gianlorenzo D’Angelo, Daniel Delling, Andrea Schumm,
and Dorothea Wagner, The shortcut problem – complexity and algorithms,
Journal of Graph Algorithms and Applications 16 (2012), no. 2, pp. 447–
481.
(Cited on page 24.)

[BDGM09] Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller–
Hannemann, Accelerating time-dependent multi-criteria timetable information
is harder than expected, Proceedings of the 9th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems
(ATMOS’09), OpenAccess Series in Informatics (OASIcs), 2009.
(Cited on pages 31, 56, 109, 137, and 158.)

[BDGW10] Edith Brunel, Daniel Delling, Andreas Gemsa, and Dorothea Wagner,
Space-efficient sharc-routing, Proceedings of the 9th International Sympo-
sium on Experimental Algorithms (SEA’10), Lecture Notes in Computer
Science, vol. 6049, Springer, May 2010, pp. 47–58.
(Cited on pages 13 and 22.)

[BDPW13] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner,
Energy-optimal routes for electric vehicles, Tech. Report 2013-06, Faculty

226

Bibliography

of Informatics, Karlsruhe Institute of Technology, 2013.
(Cited on page 17.)

[BDS+10] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner, Combining hierarchical and goal-
directed speed-up techniques for Dijkstra’s algorithm, ACM Journal of Experi-
mental Algorithmics 15 (2010), no. 2.3, pp. 1–31, Special Section devoted
to WEA’08.
(Cited on pages 13, 20, 21, 22, 23, 24, 30, 37, 132, 175, 180, 181, and 182.)

[BDW11] Reinhard Bauer, Daniel Delling, and Dorothea Wagner, Experimental study
on speed-up techniques for timetable information systems, Networks 57 (2011),
no. 1, pp. 38–52.
(Cited on pages 21, 30, and 62.)

[Bel58] Richard Bellman, On a routing problem, Quarterly of Applied Mathematics
16 (1958), pp. 87–90.
(Cited on page 11.)

[BFM+07] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Do-
minik Schultes, In transit to constant shortest-path queries in road networks,
Proceedings of the 9th Workshop on Algorithm Engineering and Experi-
ments (ALENEX’07), SIAM, 2007, pp. 46–59.
(Cited on pages 18, 19, 32, 36, 132, and 175.)

[BFM09] Holger Bast, Stefan Funke, and Domagoj Matijevic, Ultrafast shortest-path
queries via transit nodes, The Shortest Path Problem: Ninth DIMACS Im-
plementation Challenge, DIMACS Book, vol. 74, American Mathematical
Society, 2009, pp. 175–192.
(Cited on pages 18, 19, 32, and 36.)

[BFSS07] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes, Fast
routing in road networks with transit nodes, Science 316 (2007), no. 5824,
p. 566.
(Cited on pages 18, 32, and 36.)

[BGGN13] Maxim Babenko, Andrew V. Goldberg, Anupam Gupta, and Viswanath
Nagarajan, Algorithms for hub label optimization, Proceedings of the 40th
International Colloquium on Automata, Languages, and Programming
(ICALP’13), Lecture Notes in Computer Science, vol. 7965, Springer, 2013,
pp. 69–80.
(Cited on page 25.)

[BGM10] Annabell Berger, Martin Grimmer, and Matthias Müller–Hannemann,
Fully dynamic speed-up techniques for multi-criteria shortest path searches in

227

Bibliography

time-dependent networks, Proceedings of the 9th International Symposium
on Experimental Algorithms (SEA’10), Lecture Notes in Computer Sci-
ence, vol. 6049, Springer, May 2010, pp. 35–46.
(Cited on pages 31, 56, and 98.)

[BGMO11] Annabell Berger, Andreas Gebhardt, Matthias Müller–Hannemann, and
Martin Ostrowski, Stochastic delay prediction in large train networks, Pro-
ceedings of the 11th Workshop on Algorithmic Approaches for Trans-
portation Modeling, Optimization, and Systems (ATMOS’11), OpenAc-
cess Series in Informatics (OASIcs), vol. 20, 2011, pp. 100–111.
(Cited on page 33.)

[BGNS10] Gernot Veit Batz, Robert Geisberger, Sabine Neubauer, and Peter Sanders,
Time-dependent contraction hierarchies and approximation, Proceedings of the
9th International Symposium on Experimental Algorithms (SEA’10), Lec-
ture Notes in Computer Science, vol. 6049, Springer, May 2010, pp. 166–
177.
(Cited on page 138.)

[BGSV13] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter,
Minimum time-dependent travel times with contraction hierarchies, ACM
Journal of Experimental Algorithmics 18 (2013), no. 1.4, pp. 1–43.
(Cited on page 15.)

[BH13] Adi Botea and Daniel Harabor, Path planning with compressed all-pairs
shortest paths data, Proceedings of the 23rd International Conference on
Automated Planning and Scheduling, AAAI Press, 2013.
(Cited on page 20.)

[BJ04] Gerth Brodal and Riko Jacob, Time-dependent networks as models to achieve
fast exact time-table queries, Proceedings of the 3rd Workshop on Algo-
rithmic Methods and Models for Optimization of Railways (ATMOS’03),
Electronic Notes in Theoretical Computer Science, vol. 92, 2004, pp. 3–15.
(Cited on pages 27, 29, 55, 61, 65, 71, and 127.)

[BJM00] Chris Barrett, Riko Jacob, and Madhav V. Marathe, Formal-language-
constrained path problems, SIAM Journal on Computing 30 (2000), no. 3,
pp. 809–837.
(Cited on pages 4, 35, 36, 120, 125, 128, and 129.)

[BKK+07] Kevin Buchin, Christian Knauer, Klaus Kriegel, André Schulz, and
Raimund Seidel, On the number of cycles in planar graphs, Proc. 13th
International Computing and Combinatorics Conference (COCOON),
2007, pp. 97–107.
(Cited on page 193.)

228

Bibliography

[BMSW13] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea
Wagner, Graph partitioning and graph clustering: 10th dimacs implementation
challenge, vol. 588, American Mathematical Society, 2013.
(Cited on page 222.)

[Bot11] Adi Botea, Ultra-fast optimal pathfinding without runtime search, Proceedings
of the Seventh AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE’11), AAAI Press, 2011, pp. 122–127.
(Cited on page 20.)

[BS88] Norbert Baumann and Richard Schmidt, Buxtehude–Garmisch in 6 Sekun-
den. Die elektronische Fahrplanauskunft (EFA) der Deutschen Bundesbahn,
Zeitschrift für aktuelle Verkehrsfragen 10 (1988), pp. 929–931.
(Cited on page 26.)

[BSWW01] Ulrik Brandes, Frank Schulz, Dorothea Wagner, and Thomas Willhalm,
Travel planning with self-made maps, Proceedings of the 3rd International
Workshop on Algorithm Engineering and Experiments (ALENEX’01),
Lecture Notes in Computer Science, vol. 2153, Springer, 2001, pp. 132–
144.
(Cited on page 13.)

[CH66] K. Cooke and E. Halsey, The shortest route through a network with time-
dependent intermodal transit times, Journal of Mathematical Analysis and
Applications 14 (1966), no. 3, pp. 493–498.
(Cited on pages 28, 36, 65, 67, 126, and 129.)

[CHKZ03] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick, Reachability
and distance queries via 2-hop labels, SIAM Journal on Computing 32 (2003),
no. 5, pp. 1338–1355.
(Cited on page 25.)

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, Introduction to algorithms, 2nd ed., MIT Press, 2001.
(Cited on pages 11, 39, and 66.)

[Dan62] George B. Dantzig, Linear programming and extensions, Princeton Univer-
sity Press, 1962.
(Cited on pages 11, 36, 131, and 204.)

[DDP+12] Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and
Renato F. Werneck, Computing and evaluating multimodal journeys, Tech.
Report 2012-20, Faculty of Informatics, Karlsruhe Institute of Technology,
2012.
(Cited on page 151.)

229

Bibliography

[DDP+13] Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and
Renato F. Werneck, Computing multimodal journeys in practice, Proceed-
ings of the 12th International Symposium on Experimental Algorithms
(SEA’13), Lecture Notes in Computer Science, vol. 7933, Springer, 2013,
pp. 260–271.
(Cited on page 151.)

[Dea99] Brian C. Dean, Continuous-time dynamic shortest path algorithms, Master’s
thesis, Massachusetts Institute of Technology, 1999.
(Cited on pages 28, 65, 68, and 126.)

[Del09] Daniel Delling, Engineering and augmenting route planning algorithms, Ph.D.
thesis, Universität Karlsruhe (TH), Fakultät für Informatik, 2009.
(Cited on pages 13 and 143.)

[Del11] Daniel Delling, Time-dependent SHARC-routing, Algorithmica 60 (2011),
no. 1, pp. 60–94.
(Cited on pages 22, 30, 31, 56, and 94.)

[DF79] Eric V. Denardo and Bennett L. Fox, Shortest-route methods: 1. Reaching,
pruning, and buckets, Operations Research 27 (1979), no. 1, pp. 161–186.
(Cited on pages 11 and 66.)

[DGJ09] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson (eds.),
The shortest path problem: Ninth dimacs implementation challenge, DIMACS
Book, vol. 74, American Mathematical Society, 2009.
(Cited on pages 10, 177, and 189.)

[DGNW13] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F.
Werneck, PHAST: Hardware-accelerated shortest path trees, Journal of Paral-
lel and Distributed Computing 73 (2013), no. 7, pp. 940–952.
(Cited on pages 13, 15, 18, 23, and 139.)

[DGPW11] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Wer-
neck, Customizable route planning, Proceedings of the 10th International
Symposium on Experimental Algorithms (SEA’11), Lecture Notes in
Computer Science, vol. 6630, Springer, 2011, pp. 376–387.
(Cited on pages 15, 17, 122, 174, and 220.)

[DGPW14] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Wer-
neck, Customizable route planning in road networks, Transportation Science
(2014), accpeted for publication.
(Cited on pages 17, 23, 174, and 221.)

230

Bibliography

[DGRW11] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F.
Werneck, Graph partitioning with natural cuts, 25th International Parallel
and Distributed Processing Symposium (IPDPS’11), IEEE Computer
Society, 2011, pp. 1135–1146.
(Cited on pages 15, 17, and 177.)

[DGW11] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck, Faster
batched shortest paths in road networks, Proceedings of the 11th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’11), OpenAccess Series in Informatics (OASIcs),
vol. 20, 2011, pp. 52–63.
(Cited on page 15.)

[DGW13] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck, Hub label
compression, Proceedings of the 12th International Symposium on Exper-
imental Algorithms (SEA’13), Lecture Notes in Computer Science, vol.
7933, Springer, 2013, pp. 18–29.
(Cited on pages 20 and 23.)

[DHM+09] Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz, and Dorothea
Wagner, High-performance multi-level routing, The Shortest Path Problem:
Ninth DIMACS Implementation Challenge, DIMACS Book, vol. 74, Amer-
ican Mathematical Society, 2009, pp. 73–92.
(Cited on pages 16, 19, 176, and 178.)

[Dij59] Edsger W. Dijkstra, A note on two problems in connexion with graphs, Nu-
merische Mathematik 1 (1959), pp. 269–271.
(Cited on pages 9, 10, 58, 65, 66, 126, 158, 173, 176, 199, and 201.)

[DKLW12] Daniel Delling, Moritz Kobitzsch, Dennis Luxen, and Renato F. Werneck,
Robust mobile route planning with limited connectivity, Proceedings of the
14th Meeting on Algorithm Engineering and Experiments (ALENEX’12),
SIAM, 2012, pp. 150–159.
(Cited on page 15.)

[DKP09] Daniel Delling, Bastian Katz, and Thomas Pajor, Parallel computation of
best connections in public transportation networks, Tech. Report 2009-16,
Faculty of Informatics, Karlsruhe Institute of Technology, 2009.
(Cited on page 72.)

[DKP10] Daniel Delling, Bastian Katz, and Thomas Pajor, Parallel computation of best
connections in public transportation networks, 24th International Parallel and
Distributed Processing Symposium (IPDPS’10), IEEE Computer Society,
2010, pp. 1–12.
(Cited on page 72.)

231

Bibliography

[DKP12] Daniel Delling, Bastian Katz, and Thomas Pajor, Parallel computation of best
connections in public transportation networks, ACM Journal of Experimental
Algorithmics 17 (2012), no. 4, pp. 4.1–4.26.
(Cited on pages 55, 72, 109, and 158.)

[DMS08] Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee, Multi-
criteria shortest paths in time-dependent train networks, Proceedings of the
7th Workshop on Experimental Algorithms (WEA’08), Lecture Notes in
Computer Science, vol. 5038, Springer, June 2008, pp. 347–361.
(Cited on pages 29, 30, 33, 65, 70, 105, and 127.)

[DN08] Daniel Delling and Giacomo Nannicini, Bidirectional core-based routing in
dynamic time-dependent road networks, Proceedings of the 19th International
Symposium on Algorithms and Computation (ISAAC’08), Lecture Notes
in Computer Science, vol. 5369, Springer, December 2008, pp. 813–824.
(Cited on page 138.)

[DN12] Daniel Delling and Giacomo Nannicini, Core routing on dynamic time-
dependent road networks, Informs Journal on Computing 24 (2012), no. 2,
pp. 187–201.
(Cited on pages 21, 22, and 37.)

[DP84] Narsingh Deo and Chi-Yin Pang, Shortest-path algorithms: Taxonomy and
annotation, Networks 14 (1984), no. 2, pp. 275–323.
(Cited on page 11.)

[DPSW13] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner, Intrigu-
ingly simple and fast transit routing, Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13), Lecture Notes in
Computer Science, vol. 7933, Springer, 2013, pp. 43–54.
(Cited on pages 28, 29, 33, 58, 67, 117, and 220.)

[DPW09a] Daniel Delling, Thomas Pajor, and Dorothea Wagner, Accelerating multi-
modal route planning by access-nodes, Proceedings of the 17th Annual
European Symposium on Algorithms (ESA’09), Lecture Notes in Com-
puter Science, vol. 5757, Springer, September 2009, pp. 587–598.
(Cited on pages 4, 34, 35, 36, 37, 49, 121, 128, 132, 133, 138, 140, 141, 145, 147,
and 148.)

[DPW09b] Daniel Delling, Thomas Pajor, and Dorothea Wagner, Engineering time-
expanded graphs for faster timetable information, Robust and Online Large-
Scale Optimization, Lecture Notes in Computer Science, vol. 5868,
Springer, 2009, pp. 182–206.
(Cited on pages 27, 30, 31, 56, and 59.)

232

Bibliography

[DPW12a] Daniel Delling, Thomas Pajor, and Renato F. Werneck, Round-based public
transit routing, Proceedings of the 14th Meeting on Algorithm Engineering
and Experiments (ALENEX’12), SIAM, 2012, pp. 130–140.
(Cited on page 95.)

[DPW12b] Daniel Delling, Thomas Pajor, and Renato F. Werneck, Round-Based Public
Transit Routing, Transportation Science (2012), accepted for publication,
to appear.
(Cited on page 95.)

[DPW12c] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner, User-constrained
multi-modal route planning, Proceedings of the 14th Meeting on Algorithm
Engineering and Experiments (ALENEX’12), SIAM, 2012, pp. 118–129.
(Cited on page 133.)

[DPW12d] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner, User-Constrained
Multi-Modal Route Planning, ACM Journal of Experimental Algorithmics
(2012), Under Review. Date of submission.
(Cited on page 133.)

[DPWZ09] Daniel Delling, Thomas Pajor, Dorothea Wagner, and Christos Zaroliagis,
Efficient route planning in flight networks, Proceedings of the 9th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’09), OpenAccess Series in Informatics (OASIcs),
2009.
(Cited on pages 34, 123, and 124.)

[Dre69] Stuart E. Dreyfus, An appraisal of some shortest-path algorithms, Operations
Research 17 (1969), no. 3, pp. 395–412.
(Cited on page 28.)

[DSSW09a] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner,
Engineering route planning algorithms, Algorithmics of Large and Complex
Networks, Lecture Notes in Computer Science, vol. 5515, Springer, 2009,
pp. 117–139.
(Cited on pages 10, 80, 138, 183, 184, 193, and 211.)

[DSSW09b] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner,
Highway hierarchies star, The Shortest Path Problem: Ninth DIMACS Im-
plementation Challenge, DIMACS Book, vol. 74, American Mathematical
Society, 2009, pp. 141–174.
(Cited on page 22.)

[DW07] Daniel Delling and Dorothea Wagner, Landmark-based routing in dynamic
graphs, Proceedings of the 6th Workshop on Experimental Algorithms

233

Bibliography

(WEA’07), Lecture Notes in Computer Science, vol. 4525, Springer, June
2007, pp. 52–65.
(Cited on pages 12 and 22.)

[DW09a] Daniel Delling and Dorothea Wagner, Pareto paths with SHARC, Proceed-
ings of the 8th International Symposium on Experimental Algorithms
(SEA’09), Lecture Notes in Computer Science, vol. 5526, Springer, June
2009, pp. 125–136.
(Cited on pages 22 and 175.)

[DW09b] Daniel Delling and Dorothea Wagner, Time-dependent route planning, Ro-
bust and Online Large-Scale Optimization, Lecture Notes in Computer
Science, vol. 5868, Springer, 2009, pp. 207–230.
(Cited on pages 10, 22, 34, 47, 49, 69, and 221.)

[DW13] Daniel Delling and Renato F. Werneck, Faster customization of road net-
works, Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13), Lecture Notes in Computer Science, vol. 7933,
Springer, 2013, pp. 30–42.
(Cited on page 17.)

[EF12] Jochen Eisner and Stefan Funke, Transit nodes – Lower bounds and refined
construction, Proceedings of the 14th Meeting on Algorithm Engineering
and Experiments (ALENEX’12), SIAM, 2012, pp. 141–149.
(Cited on page 25.)

[EFS11] Jochen Eisner, Stefan Funke, and Sabine Storandt, Optimal route planning
for electric vehicles in large network, Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI Press, August 2011.
(Cited on page 15.)

[EG02] Matthias Ehrgott and Xavier Gandibleux (eds.), Multiple criteria optimiza-
tion: State of the art annotated bibliographic surveys, Kluwer Academic
Publishers Group, 2002.
(Cited on page 29.)

[EG08] David Eppstein and Michael T. Goodrich, Studying (non-planar) road net-
works through an algorithmic lens, Proceedings of the 16th ACM SIGSPA-
TIAL international conference on Advances in geographic information
systems (GIS ’08), ACM Press, 2008, pp. 1–10.
(Cited on pages 15 and 18.)

[EL11] Andrew Ensor and Felipe Lillo, Partial order approach to
compute shortest paths in multimodal networks, Tech. report,

234

Bibliography

http://arxiv.org/abs/1112.3366v1, 2011.
(Cited on pages 35 and 121.)

[FA04] Marco Farina and Paolo Amato, A fuzzy definition of “optimality” for many-
criteria optimization problems, IEEE Transactions on Systems, Man, and
Cybernetics, Part A 34 (2004), no. 3, pp. 315–326.
(Cited on pages 121, 150, and 154.)

[FEMPS13] Eli Fox-Epstein, Shay Mozes, Phitchaya Mangpo Phothilimthana, and
Christian Sommer, Short and simple cycle separators in planar graphs, Pro-
ceedings of the 15th Meeting on Algorithm Engineering and Experiments
(ALENEX’13), SIAM, 2013, pp. 26–40.
(Cited on page 18.)

[Fli04] Ingrid C.M. Flinsenberg, Route planning algorithms for car navigation, Ph.D.
thesis, Technische Universiteit Eindhoven, 2004.
(Cited on page 30.)

[Flo62] Robert W. Floyd, Algorithm 97: Shortest path, Communications of the
ACM 5 (1962), no. 6, p. 345.
(Cited on page 11.)

[FMS08] Lennart Frede, Matthias Müller–Hannemann, and Mathias Schnee, Effi-
cient on-trip timetable information in the presence of delays, Proceedings of
the 8th Workshop on Algorithmic Approaches for Transportation Mod-
eling, Optimization, and Systems (ATMOS’08), OpenAccess Series in
Informatics (OASIcs), September 2008.
(Cited on page 88.)

[For56] Lester R. Ford, Jr., Network flow theory, Tech. Report P-923, Rand Corpora-
tion, Santa Monica, California, 1956.
(Cited on page 11.)

[FS13] Stefan Funke and Sabine Storandt, Polynomial-time construction of contrac-
tion hierarchies for multi-criteria objectives, Proceedings of the 15th Meeting
on Algorithm Engineering and Experiments (ALENEX’13), SIAM, 2013,
pp. 31–54.
(Cited on page 15.)

[FSR06] L. Fu, D. Sun, and L. R. Rilett, Heuristic shortest path algorithms for trans-
portation applications: State of the art, Computers & Operations Research
33 (2006), no. 11, pp. 3324–3343.
(Cited on page 10.)

235

Bibliography

[FT87] Michael L. Fredman and Robert E. Tarjan, Fibonacci heaps and their uses in
improved network optimization algorithms, Journal of the ACM 34 (1987),
no. 3, pp. 596–615.
(Cited on pages 11 and 66.)

[Gei10] Robert Geisberger, Contraction of timetable networks with realistic transfers,
Proceedings of the 9th International Symposium on Experimental Algo-
rithms (SEA’10), Lecture Notes in Computer Science, vol. 6049, Springer,
May 2010, pp. 71–82.
(Cited on pages 31, 109, 135, 137, and 158.)

[Gen10] General Transit Feed, https://developers.google.com/transit/gtfs/,
2010.
(Cited on pages 87, 113, 141, and 169.)

[GH05] Andrew V. Goldberg and Chris Harrelson, Computing the shortest path: A*
search meets graph theory, Proceedings of the 16th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA’05), SIAM, 2005, pp. 156–
165.
(Cited on pages 11, 12, 21, 30, 36, 37, 131, 132, 175, and 176.)

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A
guide to the theory of np-completeness, W. H. Freeman & Co., New York, NY,
USA, 1979.
(Cited on page 195.)

[GKM+11] Marc Goerigk, Martin Knoth, Matthias Müller–Hannemann, Marie
Schmidt, and Anita Schöbel, The price of robustness in timetable infor-
mation, Proceedings of the 11th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems (ATMOS’11),
OpenAccess Series in Informatics (OASIcs), vol. 20, 2011, pp. 76–87.
(Cited on page 33.)

[GKM+13] Marc Goerigk, Martin Knoth, Matthias Müller–Hannemann, Marie
Schmidt, and Anita Schöbel, The price of strict and light robustness in
timetable information, Transportation Science (2013), Published online be-
fore print.
(Cited on page 33.)

[GKS10] Robert Geisberger, Moritz Kobitzsch, and Peter Sanders, Route planning
with flexible objective functions, Proceedings of the 12th Workshop on
Algorithm Engineering and Experiments (ALENEX’10), SIAM, 2010,
pp. 124–137.
(Cited on pages 15, 135, 175, and 183.)

236

Bibliography

[GKW07] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck, Better land-
marks within reach, Proceedings of the 6th Workshop on Experimental
Algorithms (WEA’07), Lecture Notes in Computer Science, vol. 4525,
Springer, June 2007, pp. 38–51.
(Cited on page 22.)

[GKW09] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck, Reach for
A*: Shortest path algorithms with preprocessing, The Shortest Path Prob-
lem: Ninth DIMACS Implementation Challenge, DIMACS Book, vol. 74,
American Mathematical Society, 2009, pp. 93–139.
(Cited on pages 14, 21, 175, and 181.)

[GLS+10] Robert Geisberger, Dennis Luxen, Peter Sanders, Sabine Neubauer, and
Lars Volker, Fast detour computation for ride sharing, Proceedings of the
10th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’10), OpenAccess Series in Informat-
ics (OASIcs), vol. 14, 2010, pp. 88–99.
(Cited on page 15.)

[GMS07] Thorsten Gunkel, Matthias Müller–Hannemann, and Mathias Schnee,
Improved search for night train connections, Proceedings of the 7th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’07), OpenAccess Series in Informatics (OASIcs),
2007, pp. 243–258.
(Cited on page 33.)

[Gol01] Andrew V. Goldberg, A simple shortest path algorithm with linear average
time, Proceedings of the 9th Annual European Symposium on Algorithms
(ESA’01), Lecture Notes in Computer Science, vol. 2161, 2001, pp. 230–
241.
(Cited on page 11.)

[Goo10] Google, Google Transit, http://www.google.com, 2010.
(Cited on pages 26 and 32.)

[GP03] Cyril Gavoille and David Peleg, Compact and localized distributed data
structures, Distributed Computing 16 (2003), no. 2–3, pp. 111–120.
(Cited on page 18.)

[GPPR04] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz, Distance
labeling in graphs, Journal of Algorithms 53 (2004), pp. 85–112.
(Cited on pages 19 and 25.)

[GPWZ13] Andreas Gemsa, Thomas Pajor, Dorothea Wagner, and Tobias Zündorf,
Efficient computation of jogging routes, Proceedings of the 12th International

237

Bibliography

Symposium on Experimental Algorithms (SEA’13), Lecture Notes in
Computer Science, vol. 7933, Springer, 2013, pp. 272–283.
(Cited on page 194.)

[Gra72] Ronald L. Graham, An efficient algorithm for determining the convex hull of a
finite planar set, Information Processing Letters 1 (1972), no. 4, pp. 132–
133.
(Cited on page 200.)

[GRST12] Robert Geisberger, Michael Rice, Peter Sanders, and Vassilis Tsotras,
Route planning with flexible edge restrictions, ACM Journal of Experimental
Algorithmics 17 (2012), no. 1, pp. 1–20.
(Cited on pages 15, 37, and 38.)

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling,
Contraction hierarchies: Faster and simpler hierarchical routing in road net-
works, Proceedings of the 7th Workshop on Experimental Algorithms
(WEA’08), Lecture Notes in Computer Science, vol. 5038, Springer, June
2008, pp. 319–333.
(Cited on pages 15, 133, 143, and 175.)

[GSSV12] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter,
Exact routing in large road networks using contraction hierarchies, Transporta-
tion Science 46 (2012), no. 3, pp. 388–404.
(Cited on pages 4, 15, 19, 21, 23, 24, 31, 36, 37, 85, 121, 131, 132, 133, 134, 136,
138, 143, 150, 160, 175, 176, 183, 190, and 221.)

[Gut04] Ronald J. Gutman, Reach-based routing: A new approach to shortest path
algorithms optimized for road networks, Proceedings of the 6th Workshop
on Algorithm Engineering and Experiments (ALENEX’04), SIAM, 2004,
pp. 100–111.
(Cited on pages 14 and 176.)

[GV11] Robert Geisberger and Christian Vetter, Efficient routing in road networks
with turn costs, Proceedings of the 10th International Symposium on
Experimental Algorithms (SEA’11), Lecture Notes in Computer Science,
vol. 6630, Springer, 2011, pp. 100–111.
(Cited on pages 15, 122, and 186.)

[GW05] Andrew V. Goldberg and Renato F. Werneck, Computing point-to-point
shortest paths from external memory, Proceedings of the 7th Workshop
on Algorithm Engineering and Experiments (ALENEX’05), SIAM, 2005,
pp. 26–40.
(Cited on page 12.)

238

Bibliography

[HaC] HaCon Ingenieurgesellschaft mbH, HAFAS – A timetable information sys-
tem, Hannover, Germany, http://www.hacon.de/hafas.
(Cited on pages 1 and 26.)

[HaC84] HaCon - Ingenieurgesellschaft mbH, http://www.hacon.de, 1984.
(Cited on pages 26, 87, and 141.)

[Han79] Pierre Hansen, Bricriteria path problems, Multiple Criteria Decision Making
– Theory and Application –, Springer, 1979, pp. 109–127.
(Cited on pages 29, 69, and 152.)

[HJR96] Yun-Wu Huang, Ning Jing, and Elke A. Rundensteiner, Effective graph
clustering for path queries in digital maps, Proceedings of the 5th Interna-
tional Conference on Information and Knowledge Management, ACM
Press, 1996, pp. 215–222.
(Cited on page 176.)

[HKMS09] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling,
Fast point-to-point shortest path computations with arc-flags, The Shortest
Path Problem: Ninth DIMACS Implementation Challenge, DIMACS
Book, vol. 74, American Mathematical Society, 2009, pp. 41–72.
(Cited on pages 13, 36, 131, and 175.)

[HNR68] Peter E. Hart, Nils Nilsson, and Bertram Raphael, A formal basis for the
heuristic determination of minimum cost paths, IEEE Transactions on Systems
Science and Cybernetics 4 (1968), pp. 100–107.
(Cited on pages 12, 30, 36, and 131.)

[Hol08] Martin Holzer, Engineering planar-separator and shortest-path algorithms,
Ph.D. thesis, Karlsruhe Institute of Technology (KIT) - Department of
Informatics, 2008.
(Cited on pages 36 and 132.)

[HSW04] Martin Holzer, Frank Schulz, and Thomas Willhalm, Combining speed-up
techniques for shortest-path computations, Proceedings of the 3rd Workshop
on Experimental Algorithms (WEA’04), Lecture Notes in Computer Sci-
ence, vol. 3059, Springer, 2004, pp. 269–284.
(Cited on page 21.)

[HSW08] Martin Holzer, Frank Schulz, and Dorothea Wagner, Engineering multilevel
overlay graphs for shortest-path queries, ACM Journal of Experimental
Algorithmics 13 (2008), no. 2.5, pp. 1–26.
(Cited on pages 16, 31, 174, 176, 178, and 191.)

239

Bibliography

[HSWW06] Martin Holzer, Frank Schulz, Dorothea Wagner, and Thomas Willhalm,
Combining speed-up techniques for shortest-path computations, ACM Journal
of Experimental Algorithmics 10 (2006), no. 2.5, pp. 1–18.
(Cited on pages 20, 21, and 30.)

[JP02] Sungwon Jung and Sakti Pramanik, An efficient path computation model
for hierarchically structured topographical road maps, IEEE Transactions on
Knowledge and Data Engineering 14 (2002), no. 5, pp. 1029–1046.
(Cited on pages 5, 16, 17, 176, 177, 181, and 220.)

[Kar72] Richard M. Karp, Reducibility among combinatorial problems, Complexity of
Computer Computations, Plenum Press, 1972, pp. 85–103.
(Cited on pages 63 and 194.)

[Kar07] George Karypis, Metis - family of multilevel partitioning algorithms, 2007.
(Cited on page 16.)

[KK97] Hermann Kaindl and Gerhard Kainz, Bidirectional heuristic search reconsid-
ered, Journal of Artificial Intelligence Research 7 (1997), pp. 283–317.
(Cited on page 21.)

[KK99] George Karypis and Gautam Kumar, A fast and highly quality multilevel
scheme for partitioning irregular graphs, SIAM Journal on Scientific Com-
puting 20 (1999), no. 1, pp. 359–392.
(Cited on page 177.)

[KLC12] Dominik Kirchler, Leo Liberti, and Roberto Wolfler Calvo, A label correct-
ing algorithm for the shortest path problem on a multi-modal route network,
Proceedings of the 11th International Symposium on Experimental Algo-
rithms (SEA’12), Lecture Notes in Computer Science, vol. 7276, Springer,
2012, pp. 236–247.
(Cited on pages 34, 35, 37, 128, and 132.)

[Kle56] Stephen Cole Kleene, Representation of events in nerve nets and finite au-
tomata, Automata Studies, Annals of Mathematics Studies, Princeton
University Press, 1956, pp. 3–42.
(Cited on page 45.)

[KLPC11] Dominik Kirchler, Leo Liberti, Thomas Pajor, and Roberto Wolfler Calvo,
UniALT for regular language constraint shortest paths on a multi-modal trans-
portation network, Proceedings of the 11th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems
(ATMOS’11), OpenAccess Series in Informatics (OASIcs), vol. 20, 2011,
pp. 64–75.
(Cited on pages 34, 35, 37, 128, and 132.)

240

Bibliography

[KLSV10] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter, Dis-
tributed time-dependent contraction hierarchies, Proceedings of the 9th In-
ternational Symposium on Experimental Algorithms (SEA’10), Lecture
Notes in Computer Science, vol. 6049, Springer, May 2010, pp. 83–93.
(Cited on page 15.)

[KMS05] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling, Acceleration of
shortest path and constrained shortest path computation, Proceedings of the
4th Workshop on Experimental Algorithms (WEA’05), Lecture Notes in
Computer Science, vol. 3503, Springer, 2005, pp. 126–138.
(Cited on page 13.)

[KSS+07] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and
Dorothea Wagner, Computing many-to-many shortest paths using highway
hierarchies, Proceedings of the 9th Workshop on Algorithm Engineering
and Experiments (ALENEX’07), SIAM, 2007, pp. 36–45.
(Cited on page 15.)

[Lau97] Ulrich Lauther, Slow preprocessing of graphs for extremely fast shortest path
calculations, 1997, Lecture at the Workshop on Computational Integer
Programming at ZIB.
(Cited on page 13.)

[Lau04] Ulrich Lauther, An extremely fast, exact algorithm for finding shortest paths in
static networks with geographical background, Geoinformation und Mobilität
- von der Forschung zur praktischen Anwendung, vol. 22, IfGI prints,
2004, pp. 219–230.
(Cited on pages 13, 31, and 176.)

[Lau09] Ulrich Lauther, An experimental evaluation of point-to-point shortest path
calculation on roadnetworks with precalculated edge-flags, The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, DIMACS Book,
vol. 74, American Mathematical Society, 2009, pp. 19–40.
(Cited on pages 36 and 131.)

[Lon11] London Data Store, http://data.london.gov.uk/, 2011.
(Cited on pages 107 and 163.)

[Lor84] P Loridan, e-solutions in vector minimization problems, Journal of Optimiza-
tion Theory and Applications 43 (1984), no. 2, pp. 265–276.
(Cited on page 29.)

[LS12] Dennis Luxen and Dennis Schieferdecker, Candidate sets for alternative
routes in road networks, Proceedings of the 11th International Symposium

241

Bibliography

on Experimental Algorithms (SEA’12), Lecture Notes in Computer Sci-
ence, vol. 7276, Springer, 2012, pp. 260–270.
(Cited on page 15.)

[LT79] Richard J. Lipton and Robert E. Tarjan, A separator theorem for planar
graphs, SIAM Journal on Applied Mathematics 36 (1979), no. 2, pp. 177–
189.
(Cited on pages 16, 17, and 177.)

[LV11] Dennis Luxen and Christian Vetter, Real-time routing with OpenStreetMap
data, Proceedings of the 19th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, ACM Press, 2011.
(Cited on page 15.)

[LW06] Hongbo Liu and Jiaxin Wang, A new way to enumerate cycles in graph,
Proceedings of the Advanced International Conference on Telecommuni-
cations and International Conference on Internet and Web Applications
and Services, AICT-ICIW ’06, IEEE Computer Society, 2006, pp. 57–60.
(Cited on page 193.)

[Mac67] J. MacQueen, Some methods for classification and analysis of multivariate
observations, Fifth Berkeley Symposium on Mathematical Statistics and
Probability, 1967, pp. 281–297.
(Cited on page 78.)

[Mar84] Ernesto Queiros Martins, On a multicriteria shortest path problem, European
Journal of Operational Research 26 (1984), no. 3, pp. 236–245.
(Cited on page 29.)

[MBBC09] Kamesh Madduri, David A. Bader, Jonathan W. Berry, and Joseph R.
Crobak, Parallel shortest path algorithms for solving large-scale instances,
The Shortest Path Problem: Ninth DIMACS Implementation Challenge,
DIMACS Book, vol. 74, American Mathematical Society, 2009, pp. 249–
290.
(Cited on pages 49 and 101.)

[Men] Mentz Datenverarbeitung GmbH, EFA – A timetable information system,
München, Germany, http://www.mentzdv.de.
(Cited on page 26.)

[Met66] Metropolitan Transportation Authority of the State of New York, http:
//www.mta.info/, 1966.
(Cited on page 140.)

242

Bibliography

[Mey01] Ulrich Meyer, Single-source shortest-paths on arbitrary directed graphs in
linear average-case time, Proceedings of the 12th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA’01), 2001, pp. 797–806.
(Cited on page 11.)

[Mic12] Microsoft, Bing maps new routing engine, January 2012, http://www.bing.
com/blogs/site_blogs/b/maps/archive/2012/01/05/bing-maps-new-

routing-engine.aspx.
(Cited on pages 5, 17, and 191.)

[Mil86] Gary L. Miller, Finding small simple cycle separators for 2–connected planar
graphs, Journal of Computer and System Sciences 32 (1986), no. 3, pp. 265–
279.
(Cited on page 18.)

[Möh99] Rolf H. Möhring, Verteilte Verbindungssuche im öffentlichen Personenverkehr
– Graphentheoretische Modelle und Algorithmen, Angewandte Mathematik
insbesondere Informatik, Beispiele erfolgreicher Wege zwischen Mathe-
matik und Informatik, Vieweg, 1999, pp. 192–220.
(Cited on pages 26 and 29.)

[Mor92] H. Moritz, Geodetic reference system 1980, Journal of Geodesy 66 (1992),
no. 2, pp. 187–192.
(Cited on page 125.)

[MS98] Paola Modesti and Anna Sciomachen, A utility measure for finding multiob-
jective shortest paths in urban multimodal transportation networks, European
Journal of Operational Research 111 (1998), no. 3, pp. 495–508.
(Cited on page 35.)

[MS03] Ulrich Meyer and Peter Sanders, d-stepping: A parallelizable shortest path
algorithm, Journal of Algorithms 49 (2003), no. 1, pp. 114–152.
(Cited on pages 49 and 101.)

[MS06] Matthias Müller–Hannemann and Mathias Schnee, Paying less for train
connections with motis, Proceedings of the 5th Workshop on Algorithmic
Methods and Models for Optimization of Railways (ATMOS’05), Ope-
nAccess Series in Informatics (OASIcs), 2006, p. 657.
(Cited on page 33.)

[MS07] Matthias Müller–Hannemann and Mathias Schnee, Finding all attractive
train connections by multi-criteria pareto search, Algorithmic Methods for
Railway Optimization, Lecture Notes in Computer Science, vol. 4359,
Springer, 2007, pp. 246–263.
(Cited on pages 28 and 29.)

243

Bibliography

[MS09] Matthias Müller–Hannemann and Mathias Schnee, Efficient timetable
information in the presence of delays, Robust and Online Large-Scale Opti-
mization, Lecture Notes in Computer Science, vol. 5868, Springer, 2009,
pp. 249–272.
(Cited on page 32.)

[MS10] Matthias Müller–Hannemann and Stefan Schirra (eds.), Algorithm en-
gineering: Bridging the gap between algorithm theory and practice, Lecture
Notes in Computer Science, vol. 5971, Springer, 2010.
(Cited on pages v, 2, and 264.)

[MSM09] Jens Maue, Peter Sanders, and Domagoj Matijevic, Goal-directed shortest-
path queries using precomputed cluster distances, ACM Journal of Experi-
mental Algorithmics 14 (2009), pp. 3.2:1–3.2:27.
(Cited on pages 13, 175, 176, and 180.)

[MSS+06] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and
Thomas Willhalm, Partitioning graphs to speedup Dijkstra’s algorithm, ACM
Journal of Experimental Algorithmics 11 (2006), no. 2.8, pp. 1–29.
(Cited on page 13.)

[MSWZ07] Matthias Müller–Hannemann, Frank Schulz, Dorothea Wagner, and
Christos Zaroliagis, Timetable information: Models and algorithms, Algo-
rithmic Methods for Railway Optimization, Lecture Notes in Computer
Science, vol. 4359, Springer, 2007, pp. 67–90.
(Cited on pages 26, 150, and 158.)

[Mül06] Kirill Müller, Design and implementation of an efficient hierarchical speed-up
technique for computation of exact shortest paths in graphs, Master’s thesis,
Universität Karlsruhe (TH), Fakultät für Informatik, June 2006.
(Cited on page 19.)

[MW95] Alberto O. Mendelzon and Peter T. Wood, Finding regular simple paths in
graph databases, SIAM Journal on Computing 24 (1995), no. 6, pp. 1235–
1258.
(Cited on page 35.)

[MW01] Matthias Müller–Hannemann and Karsten Weihe, Pareto shortest paths is
often feasible in practice, Proceedings of the 5th International Workshop on
Algorithm Engineering (WAE’01), Lecture Notes in Computer Science,
vol. 2141, Springer, 2001, pp. 185–197.
(Cited on pages 26, 28, and 152.)

[MZ07] Laurent Flindt Muller and Martin Zachariasen, Fast and compact oracles
for approximate distances in planar graphs, Proceedings of the 14th Annual

244

Bibliography

European Symposium on Algorithms (ESA’07), Lecture Notes in Com-
puter Science, vol. 4698, Springer, 2007, pp. 657–668.
(Cited on page 176.)

[Nac95] Karl Nachtigall, Time depending shortest-path problems with applications to
railway networks, European Journal of Operational Research 83 (1995),
no. 1, pp. 154–166.
(Cited on pages 27, 28, and 55.)

[Ope04] OpenStreetMap, http://openstreetmap.org/, 2004.
(Cited on pages 15 and 205.)

[Ope12] OpenTripPlanner, OpenTripPlanner, http://opentripplanner.com, 2012.
(Cited on page 26.)

[OR90] Ariel Orda and Raphael Rom, Shortest-path and minimum delay algorithms
in networks with time-dependent edge-length, Journal of the ACM 37 (1990),
no. 3, pp. 607–625.
(Cited on pages 27 and 28.)

[OR91] Ariel Orda and Raphael Rom, Minimum weight paths in time-dependent
networks, Networks 21 (1991), pp. 295–319.
(Cited on pages 27 and 28.)

[Paj09] Thomas Pajor, Multi-modal route planning, Master’s thesis, Universität
Karlsruhe (TH), March 2009.
(Cited on pages 34, 35, 36, 123, 128, 129, and 131.)

[Par61] Seymour V. Parter, The use of linear graphs in Gauss elimination, SIAM
Review 3 (1961), no. 2, pp. 119–130.
(Cited on page 25.)

[Pel00] David Peleg, Proximity-preserving labeling schemes, Journal of Graph The-
ory 33 (2000), no. 3, pp. 167–176.
(Cited on page 19.)

[Poh69] Ira Pohl, Bi-directional and heuristic search in path problems, Tech. Report
SLAC-104, Stanford Linear Accelerator Center, Stanford, California, 1969.
(Cited on page 21.)

[Poh71] Ira Pohl, Bi-directional search, Proceedings of the Sixth Annual Machine
Intelligence Workshop, vol. 6, Edinburgh University Press, 1971, pp. 124–
140.
(Cited on page 12.)

245

Bibliography

[Pop34] Sir Karl Popper, The logic of scientific discovery, Hutchinson, 1934.
(Cited on page 2.)

[PS98] Stefano Pallottino and Maria Grazia Scutellà, Shortest path algorithms in
transportation models: Classical and innovative aspects, Equilibrium and Ad-
vanced Transportation Modelling, Kluwer Academic Publishers Group,
1998, pp. 245–281.
(Cited on page 26.)

[PSWZ04a] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaro-
liagis, Experimental comparison of shortest path approaches for timetable infor-
mation, Proceedings of the 6th Workshop on Algorithm Engineering and
Experiments (ALENEX’04), SIAM, 2004, pp. 88–99.
(Cited on page 27.)

[PSWZ04b] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaro-
liagis, Towards realistic modeling of time-table information through the time-
dependent approach, Proceedings of the 3rd Workshop on Algorithmic
Methods and Models for Optimization of Railways (ATMOS’03), Elec-
tronic Notes in Theoretical Computer Science, vol. 92, 2004, pp. 85–103.
(Cited on pages 55, 61, and 123.)

[PSWZ08] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaro-
liagis, Efficient models for timetable information in public transportation sys-
tems, ACM Journal of Experimental Algorithmics 12 (2008), no. 2.4,
pp. 1–39.
(Cited on pages 3, 26, 27, 29, 34, 55, 56, 59, 61, 62, 65, 70, 123, 127, and 137.)

[PTV79] PTV AG – Planung Transport Verkehr, http://www.ptv.de, 1979.
(Cited on pages 141, 163, 169, and 177.)

[PY00] Christos H. Papadimitriou and Mihalis Yannakakis, On the approximability
of trade-offs and optimal access of web sources, Proceedings of the 41st Annual
IEEE Symposium on Foundations of Computer Science (FOCS’00), 2000,
pp. 86–92.
(Cited on page 29.)

[RS59] Michael Oser Rabin and Dana Scott, Finite automata and their decision
problems, IBM Journal of Research and Development 3 (1559), pp. 114–
125.
(Cited on page 45.)

[RT10] Michael Rice and Vassilis Tsotras, Graph indexing of road networks for short-
est path queries with label restrictions, Proceedings of the VLDB Endowment

246

Bibliography

4 (2010), no. 3, pp. 69–80.
(Cited on pages 35, 37, 38, 128, 129, and 175.)

[RT12] Michael Rice and Vassilis Tsotras, Bidirectional A* search with additive
approximation bounds, Proceedings of the 5th International Symposium
on Combinatorial Search (SoCS’12), AAAI Press, 2012.
(Cited on page 25.)

[San09] Peter Sanders, Algorithm engineering – an attempt at a definition, Efficient
Algorithms, Lecture Notes in Computer Science, vol. 5760, Springer, 2009,
pp. 321–340.
(Cited on pages v, 2, and 264.)

[Sas11] Jan-Ole Sasse, Route planning in road networks with turn costs and multi edge
restrictions, Diploma thesis, Karlsruhe Institute of Technology, November
2011.
(Cited on pages 122 and 123.)

[Sch82] Robert Schreiber, A new implementation of sparse Gaussian elimination, ACM
Transactions on Mathematical Software 8 (1982), no. 3, pp. 256–276.
(Cited on page 25.)

[Sch12] Heiko Schilling, TomTom navigation – How mathematics help getting through
traffic faster, 2012, Talk given at ISMP.
(Cited on page 122.)

[Sen09] Sandeep Sen, Approximating shortest paths in graphs, Proceedings of the
3rd Workshop on Algorithms and Computation (WALCOM’09), Lecture
Notes in Computer Science, vol. 5431, Springer, February 2009, pp. 32–
43.
(Cited on page 18.)

[Som12] Christian Sommer, Shortest-path queries in static networks, 2012, submitted.
Preprint available at http://www.sommer.jp/spq-survey.htm.
(Cited on pages 10, 18, 23, 193, and 211.)

[SS05] Peter Sanders and Dominik Schultes, Highway hierarchies hasten exact
shortest path queries, Proceedings of the 13th Annual European Sympo-
sium on Algorithms (ESA’05), Lecture Notes in Computer Science, vol.
3669, Springer, 2005, pp. 568–579.
(Cited on pages 15, 36, 109, 131, and 187.)

[SS07] Dominik Schultes and Peter Sanders, Dynamic highway-node routing, Pro-
ceedings of the 6th Workshop on Experimental Algorithms (WEA’07),

247

Bibliography

Lecture Notes in Computer Science, vol. 4525, Springer, June 2007, pp. 66–
79.
(Cited on page 15.)

[SS09] Peter Sanders and Dominik Schultes, Robust, almost constant time shortest-
path queries in road networks, The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, DIMACS Book, vol. 74, American Mathemat-
ical Society, 2009, pp. 193–218.
(Cited on pages 18, 19, 32, 36, and 176.)

[SS12a] Peter Sanders and Dominik Schultes, Engineering highway hierarchies,
ACM Journal of Experimental Algorithmics 17 (2012), no. 1, pp. 1–40.
(Cited on pages 15 and 22.)

[SS12b] Peter Sanders and Christian Schulz, Distributed evolutionary graph parti-
tioning, Proceedings of the 14th Meeting on Algorithm Engineering and
Experiments (ALENEX’12), SIAM, 2012, pp. 16–29.
(Cited on page 15.)

[SSV08] Peter Sanders, Dominik Schultes, and Christian Vetter, Mobile route plan-
ning, Proceedings of the 16th Annual European Symposium on Algo-
rithms (ESA’08), Lecture Notes in Computer Science, vol. 5193, Springer,
September 2008, pp. 732–743.
(Cited on page 15.)

[SV86] Robert Sedgewick and Jeffrey S. Vitter, Shortest paths in Euclidean graphs,
Algorithmica 1 (1986), no. 1, pp. 31–48.
(Cited on pages 12, 36, and 132.)

[SW13] Peter Sanders and Dorothea Wagner, Algorithm engineering, Informatik
Spektrum 36 (2013), no. 2, pp. 187–190.
(Cited on pages v, 2, and 264.)

[SWW99] Frank Schulz, Dorothea Wagner, and Karsten Weihe, Dijkstra’s algorithm
on-line: An empirical case study from public railroad transport, Proceedings
of the 3rd International Workshop on Algorithm Engineering (WAE’99),
Lecture Notes in Computer Science, vol. 1668, Springer, 1999, pp. 110–
123.
(Cited on pages 9 and 26.)

[SWW00] Frank Schulz, Dorothea Wagner, and Karsten Weihe, Dijkstra’s algorithm
on-line: An empirical case study from public railroad transport, ACM Journal
of Experimental Algorithmics 5 (2000), no. 12, pp. 1–23.
(Cited on pages 5, 13, 14, 16, 20, 21, 26, 27, 28, 30, 31, 36, 55, 65, 85, 117, 131,
177, 178, and 220.)

248

Bibliography

[SWZ02] Frank Schulz, Dorothea Wagner, and Christos Zaroliagis, Using multi-level
graphs for timetable information in railway systems, Proceedings of the 4th
Workshop on Algorithm Engineering and Experiments (ALENEX’02),
Lecture Notes in Computer Science, vol. 2409, Springer, 2002, pp. 43–59.
(Cited on pages 16, 31, 55, 117, 176, 178, and 220.)

[The95] Dirk Theune, Robuste und effiziente methoden zur lösung von wegproblemen,
Ph.D. thesis, Universität Paderborn, 1995.
(Cited on page 29.)

[Tra00] Transport for London, http://www.tfl.gov.uk/, 2000.
(Cited on pages 104, 107, 124, and 163.)

[TS88] Eduard Tulp and Laurent Siklóssy, TRAINS, An Active Time-Table Searcher,
ECAI, vol. 88, 1988, pp. 170–175.
(Cited on page 26.)

[TS91] Eduard Tulp and Laurent Siklóssy, Searching Time-Table Networks, Artifi-
cial Intelligence for Engineering Design, Analysis and Manufacturing 5
(1991), no. 3, pp. 189–198.
(Cited on page 26.)

[TZ06] George Tsaggouris and Christos Zaroliagis, Multiobjective optimization:
Improved FPTAS for shortest paths and non-linear objectives with applications,
Proceedings of the 17th International Symposium on Algorithms and
Computation (ISAAC’06), Lecture Notes in Computer Science, vol. 4288,
Springer, 2006, pp. 389–398.
(Cited on page 29.)

[VC71] Vladimir N. Vapnik and Alexey Ya. Chervonenkis, On the uniform con-
vergence of relative frequencies of events to their probabilities, Theory of
Probability and its Applications 16 (1971), no. 2, pp. 264–280.
(Cited on page 25.)

[Vor08] Georges Voronoi, Nouvelles applications des paramètres continus à la théorie
des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres
primitifs., Journal für die reine und angewandte Mathematik (Crelles
Journal) 1908 (1908), no. 134, pp. 198–287.
(Cited on page 19.)

[Whi86] Douglas J White, Epsilon efficiency, Journal of Optimization Theory and
Applications 49 (1986), no. 2, pp. 319–337.
(Cited on page 29.)

249

Bibliography

[WW05] Dorothea Wagner and Thomas Willhalm, Drawing graphs to speed up
shortest-path computations, Proceedings of the 7th Workshop on Algorithm
Engineering and Experiments (ALENEX’05), SIAM, 2005, pp. 15–24.
(Cited on page 13.)

[WW07] Dorothea Wagner and Thomas Willhalm, Speed-up techniques for shortest-
path computations, Proceedings of the 24th International Symposium on
Theoretical Aspects of Computer Science (STACS’07), Lecture Notes in
Computer Science, vol. 4393, Springer, 2007, Invited Talk, pp. 23–36.
(Cited on page 10.)

[WWZ05] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis, Geometric
containers for efficient shortest-path computation, ACM Journal of Experi-
mental Algorithmics 10 (2005), no. 1.3, pp. 1–30.
(Cited on pages 13, 20, and 30.)

[YL12] Haicong Yu and Feng Lu, Advanced multi-modal routing approach for pedes-
trians, 2nd International Conference on Consumer Electronics, Commu-
nications and Networks, 2012, pp. 2349–2352.
(Cited on pages 34 and 35.)

[YZ95] Raphael Yuster and Uri Zwick, Color-coding, Journal of the ACM 42
(1995), no. 4, pp. 844–856.
(Cited on page 193.)

[Zad65] Lotfi A. Zadeh, Fuzzy sets, Information and Control 8 (1965), no. 3,
pp. 338–353.
(Cited on pages 150 and 152.)

[Zad88] Lotfi A. Zadeh, Fuzzy logic, IEEE Computer 21 (1988), no. 4, pp. 83–93.
(Cited on pages 121, 150, and 152.)

[Zün12] Tobias Zündorf, Effiziente berechnung guter joggingrouten, Bachelor thesis,
Karlsruhe Institute of Technology, October 2012.
(Cited on page 194.)

[Zwi01] Uri Zwick, Exact and approximate distances in graphs – A survey, Proceed-
ings of the 9th Annual European Symposium on Algorithms (ESA’01),
Lecture Notes in Computer Science, vol. 2161, 2001, pp. 33–48.
(Cited on page 18.)

[Zü90] Züricher Verkehrsverbund, http://www.zvv.ch, 1990.
(Cited on page 104.)

250

List of Figures

1.1. The Algorithm Engineering paradigm 2

2.1. Search space of Dijkstra’s algorithm . 10
2.2. Search space of bidirectional search . 11
2.3. Search space of the A* algorithm . 12
2.4. Illustration of the triangle inequalities for ALT 12
2.5. Illustration of arc flags on a small graph 13
2.6. Illustration of reach . 14
2.7. Illustration of a Contraction Hierarchies query 15
2.8. Illustration of multilevel overlay graphs 16
2.9. Illustration of an overlay graph based on arc separators 17
2.10. Illustration of a Transit Node Routing query 18
2.11. Illustration of a Hub Labels query . 19
2.12. Preprocessing and query performance of various speedup techniques 23

3.1. Illustration of a graph with shortest path tree 42
3.2. Illustration of a nested multilevel partition 43
3.3. Illustration of a finite automaton . 45

4.1. Example of journeys in a public transit network 52
4.2. Exemplary solution to the multicriteria problem in London 53
4.3. Stop graph of greater London . 56
4.4. Simple time-expanded model graph . 57
4.5. Realistic time-expanded model graph 58
4.6. Piecewise linear travel time function . 60
4.7. Simple time-dependent model graph . 61
4.8. Realistic time-dependent model graph 62
4.9. Conflict graph of a stop . 64
4.10. Heuristically generated footpaths . 65

251

List of Figures

4.11. Algorithm: Time-Dependent Dijkstra (TD) 68
4.12. Algorithm: Multi-Label-Correcting (MLC) 71
4.13. Illustration of dominating trips . 75
4.14. Algorithm: Self-Pruning Connection-Settting (SPCS) 77
4.15. Algorithm: Parallel SPCS (PSPCS) . 78
4.16. Algorithm: Inter-thread-pruning rule for PSPCS 79
4.17. Illustration of a super station graph . 81
4.18. Illustration of local and via super stops 82
4.19. Illustration of pruning via a distance table 83
4.20. Super stop graph of Los Angeles . 86
4.21. Illustration of scanning routes with RAPTOR 98
4.22. Algorithm: RAPTOR . 99
4.23. Exemplary alternative journeys computed with RAPTOR 101
4.24. Examples of fare zones in London and Zürich 104
4.25. Running time of RAPTOR, LD, and MLC subject to Dijkstra rank . . . 109
4.26. Number of relaxed routes and evaluating reliability 111
4.27. Evaluation of rRAPTOR subject to the time range 113
4.28. Illustration of the adjacency data structure of routes 115
4.29. Illustration of the adjacency data structure of stops 116

5.1. Illustration of different multimodal alternative journeys 120
5.2. Realistic flight model graph . 123
5.3. Finite automata illustrating various types of regular languages 129
5.4. Algorithm: Label-Constrained Time-Dependent Dijkstra (LCSPP-TD) 131
5.5. Illustration of vertex contraction . 133
5.6. Illustration of contracting the realistic time-dependent model graph . 137
5.7. Finite automata used for the UCCH experiments 142
5.8. Mode sequence constraints for Figure 5.1 150
5.9. Fuzzy relational operators µ=, µ>, and µ< 152
5.10. Product norm/probabilistic sum and maximum/minimum norm . . . 153
5.11. Contour lines of the fuzzy dominance function 155
5.12. Surface plot of the fuzzy dominance function 156
5.13. Exemplary multicriteria multimodal query on London 157
5.14. Number of Pareto-optimal journeys with score higher than 0.1 167
5.15. Evaluation of the number of journeys returned by the algorithms . . . 168
5.16. Evaluation of the solution quality . 169

6.1. Possible overlay graphs to represent a cell 178
6.2. Evaluation of sparsification . 179
6.3. Evaluation of goal-direction . 180
6.4. Evaluation of multilevel partitions . 181
6.5. Various turn representations . 185

252

List of Figures

6.6. Dijkstra rank plot for travel time metric 187
6.7. Dijkstra rank plot for distance metric 188
6.8. Dijkstra rank plot for variants of MLD and travel times 188

7.1. Illustration of the intuition behind GF 196
7.2. Illustration of duality for nonplanar graphs 197
7.3. Jogging routes by GF with and without force direction 199
7.4. Jogging routes by GF for various smoothening rules 200
7.5. Illustration of the intuition for PSP . 201
7.6. Jogging routes by PSP2 with and without sharing reduction 202
7.7. Jogging routes by PSP3 . 203
7.8. Three alternative jogging routes obtained by one PSP3-Bi query 205
7.9. Evaluation of the impact of the smoothening rules 208
7.10. Evaluation of success rate and badness subject to e 209
7.11. Case study, first example . 212
7.12. Case study, second example . 213
7.13. Case study, third example . 214
7.14. Case study, third example, continued 215

C.1. Prinzip des Algorithm Engineering . 264

253

List of Tables

4.1. Exemplary excerpt of typical timetable data 51
4.2. Comparison of the time-dependent model with and without coloring 87
4.3. One-to-all parallel profile queries with PSPCS 89
4.4. Comparison of PSPCS with and without inter-thread-pruning 91
4.5. One-to-one parallel profile queries with PSPCS 92
4.6. One-to-all profile queries with PSPCS on a different machine 94
4.7. Size figures of various inputs for RAPTOR 107
4.8. Evaluation of RAPTOR, LD, and MLC 108
4.9. Evaluation of several extensions of RAPTOR 110
4.10. Parallel performance of RAPTOR and its extensions 112
4.11. Comparison of RAPTOR and its extensions on further inputs 114

5.1. Size figures of various inputs for UCCH 141
5.2. Evaluation of the average core degree limit for UCCH and CH 144
5.3. Evaluation of preprocessing of UCCH and ANR 145
5.4. Evaluation of the query time performance of UCCH 147
5.5. Detailed analysis of the improvements for UCCH 148
5.6. In-depth evaluation of the query performance of UCCH 149
5.7. Size figures of various input instances for MCR 164
5.8. Evaluation of MCR and related algorithms 165
5.9. Detailed evaluation of MCR and related algorithms 166
5.10. Evaluation of MCR for the scenario that includes taxi 169
5.11. Evaluation of MCR on further inputs 171

6.1. Rough categorization of previous algorithms 176
6.2. Evaluation of various algorithms for travel times and distances 183
6.3. Evaluation of various algorithms with varying U-turn cost 186
6.4. Evaluation of other metrics . 189
6.5. Evaluation of another input . 189

255

List of Tables

7.1. Badness values used in the experiments 206
7.2. Solution quality and performance of all algorithms 207
7.3. Solution quality and performance of all algorithms on another input . 210

256

Appendix A
Curriculum Vitæ

Thomas Pajor

born 31 October 1982 in Potsdam, Germany

Current Status

since 10/2013 Post doc researcher at Microsoft Research Silicon Valley

Education

04/2009–07/2013 PhD student in Informatics
Karlsruhe Institute of Technology (KIT)
Advisors: Prof. Dr. Dorothea Wagner, Prof. Dr. Matthias Müller-
Hannemann

10/2003–03/2009 Diploma (German M. Sc.) with distinction in Informatics
Universität Fridericiana zu Karlsruhe (TH)
Thesis: Multi-Modal Route Planning

06/2002 Abitur (final secondary school examinations)
Hochrhein-Gymnasium Waldshut

Experience Abroad

08/2011–10/2011 Internship at Microsoft Research Silicon Valley
Supervisors: Daniel Delling and Renato F. Werneck
Researched on multicriteria public transit route planning

03/2011–05/2011 Contractor for Microsoft Consulting Services UK
Developed a journey planning engine for Transport for London

07/2010–10/2010 Internship at Microsoft Research Silicon Valley
Supervisors: Daniel Delling, Andrew Goldberg, Renato Werneck

257

Appendix A. Curriculum Vitæ

Researched on customizable route planning in road networks

09/2008–01/2009 Research group of Prof. Dr. Christos Zaroliagis
Department of Computer Engineering & Informatics
University of Patras, Greece

Awards

07/2013 Teaching award for the best lecture in the summer term 2012
Awarded for the course “Algorithms for Route Planning”

10/2009 Graduation Award of the City of Karlsruhe 2009

07/2009 Diploma with distinction
Universität Fridericiana zu Karlsruhe (TH)

Teaching Activities

04/2013–07/2013 Lecture “Algorithms for Route Planning”

10/2012–03/2013 Practical course “Algorithm Engineering”

04/2012–07/2012 Lecture “Algorithms for Route Planning”

10/2011–03/2012 Practical course “Algorithm Engineering”

04/2011–07/2011 Lecture “Algorithms for Route Planning”

04/2010–07/2010 Lecture “Algorithms for Route Planning”

10/2009–03/2010 Teaching assistant for “Algorithms and Data Structures”

05/2009–09/2009 Teaching assistant for “Algorithms for Route Planning”

258

Appendix B
List of Publications

All conference, journal, and book publications have been peer-reviewed.

Book Chapters and Journal Articles

Customizable route planning in road networks. Transportation Science, 2014, accpeted
for publication. Joint work with Daniel Delling, Andrew V. Goldberg, and Renato F.
Werneck.

On d-regular schematization of embedded paths. Computational Geometry: Theory
and Applications, 47(3A):381–406, 2014. Joint work with Daniel Delling, Andreas
Gemsa, Martin Nöllenburg, and Ignaz Rutter.

Round-based public transit routing. Transportation Science, 2014, accepted for publi-
cation. Joint work with Daniel Delling and Renato F. Werneck.

Parallel computation of best connections in public transportation networks. ACM
Journal of Experimental Algorithmics, 17(4):4.1–4.26, July 2012. Joint work with Daniel
Delling and Bastian Katz.

Engineering time-expanded graphs for faster timetable information. In: Robust and
Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science,
pages 182–206. Springer, 2009. Joint work with Daniel Delling and Dorothea Wagner.

Conference Proceedings

Computing multimodal journeys in practice. In: Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13), volume 7933 of Lecture Notes in
Computer Science, pages 260–271. Springer, 2013. Joint work with Daniel Delling,
Julian Dibbelt, Dorothea Wagner, and Renato F. Werneck.

259

Appendix B. List of Publications

Intriguingly simple and fast transit routing. In: Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13), volume 7933 of Lecture Notes in
Computer Science, pages 43–54. Springer, 2013. Joint work with Julian Dibbelt, Ben
Strasser, and Dorothea Wagner.

Efficient computation of jogging routes. In: Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13), volume 7933 of Lecture Notes in
Computer Science, pages 272–283. Springer, 2013. Joint work with Andreas Gemsa,
Dorothea Wagner, and Tobias Zündorf.

Round-based public transit routing. In: Proceedings of the 14th Meeting on Algorithm
Engineering and Experiments (ALENEX’12), pages 130–140. SIAM, 2012. Joint work
with Daniel Delling and Renato F. Werneck.

User-constrained multi-modal route planning. In: Proceedings of the 14th Meeting
on Algorithm Engineering and Experiments (ALENEX’12), pages 118–129. SIAM, 2012.
Joint work with Julian Dibbelt and Dorothea Wagner.

Customizable route planning. In: Proceedings of the 10th International Symposium on
Experimental Algorithms (SEA’11), volume 6630 of Lecture Notes in Computer Science,
pages 376–387. Springer, 2011. Joint work with Daniel Delling, Andrew V. Goldberg,
and Renato F. Werneck.

UniALT for regular language constraint shortest paths on a multi-modal trans-
portation network. In: Proceedings of the 11th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS’11), volume 20 of Ope-
nAccess Series in Informatics (OASIcs), pages 64–75, 2011. Joint work with Dominik
Kirchler, Leo Liberti, and Roberto Wolfler Calvo.

On d-regular schematization of embedded paths. In: Proceedings of the 37th In-
ternational Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM’11), volume 6543 of Lecture Notes in Computer Science, pages 260–271.
Springer, January 2011. Joint work with Andreas Gemsa, Martin Nöllenburg, and
Ignaz Rutter.

Automatic generation of route sketches. In: Proceedings of the 18th International
Symposium on Graph Drawing (GD’10), volume 6502 of Lecture Notes in Computer
Science, pages 391–392. Springer, 2011. Poster abstract., Joint work with Andreas
Gemsa, Martin Nöllenburg, and Ignaz Rutter.

Path schematization for route sketches. In: Proceedings of the 12th Scandinavian
Symposium and Workshop on Algorithm Theory (SWAT’10), volume 6139 of Lecture
Notes in Computer Science, pages 285–296. Springer, June 2010. Joint work with Daniel
Delling, Andreas Gemsa, and Martin Nöllenburg.

260

Parallel computation of best connections in public transportation networks. In: 24th
International Parallel and Distributed Processing Symposium (IPDPS’10), pages 1–12.
IEEE Computer Society, 2010. Joint work with Daniel Delling and Bastian Katz.

Efficient route planning in flight networks. In: Proceedings of the 9th Workshop on Algo-
rithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’09),
OpenAccess Series in Informatics (OASIcs), 2009. Joint work with Daniel Delling,
Dorothea Wagner, and Christos Zaroliagis.

Accelerating multi-modal route planning by access-nodes. In: Proceedings of the 17th
Annual European Symposium on Algorithms (ESA’09), volume 5757 of Lecture Notes in
Computer Science, pages 587–598. Springer, September 2009. Joint work with Daniel
Delling and Dorothea Wagner.

Engineering time-expanded graphs for faster timetable information. In: Proceedings
of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’08), OpenAccess Series in Informatics (OASIcs), September
2008. Joint work with Daniel Delling and Dorothea Wagner.

Technical Reports

Energy-optimal routes for electric vehicles. Technical Report 2013-06, Faculty of
Informatics, Karlsruhe Institute of Technology, 2013. Joint work with Moritz Baum,
Julian Dibbelt, and Dorothea Wagner.

Computing and evaluating multimodal journeys. Technical Report 2012-20, Faculty
of Informatics, Karlsruhe Institute of Technology, 2012. Joint work with Daniel
Delling, Julian Dibbelt, Dorothea Wagner, and Renato F. Werneck.

On d-regular schematization of embedded paths. Technical Report 2010-21, Faculty
of Informatics, Karlsruhe Institute of Technology, 2010. Joint work with Andreas
Gemsa, Martin Nöllenburg, and Ignaz Rutter.

Path schematization for route sketches. Technical Report 2010-02, Faculty of Infor-
matics, Karlsruhe Institute of Technology, 2010. Joint work with Daniel Delling,
Andreas Gemsa, and Martin Nöllenburg.

Parallel computation of best connections in public transportation networks. Technical
Report 2009-16, Faculty of Informatics, Karlsruhe Institute of Technology, 2009. Joint
work with Daniel Delling and Bastian Katz.

Submitted Journal Articles

User-Constrained Multi-Modal Route Planning. Journal on Experimental Algorithmics,
April 2012. Joint work with Julian Dibbelt and Dorothea Wagner.

261

Anhang C
Deutsche Zusammenfassung

D ie Routenplanung in Transportnetzwerken ist ein Problem, das aus dem
heutigen Alltag nicht mehr wegzudenken ist und eine Vielzahl interessanter

Anwendungsfälle umfasst. Die bekannteste Anwendung ist wahrscheinlich
das Navigationsgerät in Autos. Weitere Beispiele sind verschiedenen Kartendienste
im Internet und Fahrplanauskunftssysteme, wie das der Deutschen Bahn. Die zu-
grundeliegenden Algorithmen müssen dafür in möglichst kurzer Zeit, zu einer vom
Benutzer gestellten Anfrage, optimale Lösungen berechnen.

Ein gängiger Lösungsansatz modelliert das Transportnetzwerk als Graphen, dessen
Kantengewichte die zu optimierende Metrik (Reisezeit, Distanz, usw.) repräsentieren.
Dijkstras klassischer Algorithmus von 1959 ist dann in der Lage eine beweisbar
optimale Route zwischen zwei Knoten in diesem Graphen zu berechnen. Leider
ist dieser auf realistischen Eingaben zu langsam, um für interaktive Anwendungen
praktikabel zu sein. Daher wurde in den vergangenen Jahren daran geforscht, wie sich
Dijkstras Algorithmus (mit Hilfe einer Vorberechnungsphase) beschleunigen lässt.
Die schnellsten dabei entstandenen Verfahren sind bis zu sieben Größenordnungen
schneller als Dijkstras Algorithmus.

Fast alle dieser sehr effizienten Verfahren sind jedoch für Straßennetzwerke mit
Reisezeitmetrik ausgelegt. Zwar ließen sie sich prinzipiell auf andere Netzwerke, wie
beispielsweise öffentliche Verkehrsnetze, übertragen, verlieren dort allerdings ihre
gute Performanz. Des Weiteren ist man in solchen Netzwerken oftmals an komplexe-
ren Anfragetypen interessiert. So möchte man beispielsweise nicht nur die (einzige)
schnellste Verbindung zu einer vom Benutzer festgelegten Abfahrtszeit berechnen,
sondern eine Menge optimaler Verbindungen über einen ganzen Zeitraum. Betrachtet
man mehrere Arten von Transportnetzwerke zusammen (Straße, Fußgänger, öffent-
licher Verkehr, usw.), so spricht man von multimodaler Routenplanung. Es ist klar,
dass die Berechnung optimaler Routen in solchen Netzwerken mindestens die Her-
ausforderungen der jeweiligen Teilnetzwerke beinhaltet. Darüber hinaus hat man

263

Anhang C. Deutsche Zusammenfassung

noch das Problem, dass man die einzelnen Modalitäten sinnvoll kombinieren muss.
Zum Beispiel kann es unerwünscht sein, den Benutzer aufzufordern, zwischen zwei
Zugfahrten ein privates Auto zu benutzen.

Algorithmik

Entwurf

Experim
ent

A
n

alyse

Implement.

Abbildung C.1. Prinzip
Algorithm Engineering.

Diese Arbeit setzt sich mit den oben genannten erweiterten Pro-
blemstellungen auseinander und führt neue, effiziente algorithmi-
sche Verfahren für diese ein. Dabei nutzen die Verfahren explizit
die strukturellen Eigenschaften der jeweiligen Verkehrsnetze aus.
Das methodische Vorgehen beruht dabei auf dem Algorithm Enginee-
ring [San09,MS10,SW13] (siehe auch Abbildung C.1), das sich grob als
Kreislauf aus Algorithmenentwurf, theoretischer Analyse (bzgl. Kor-
rektheit und Laufzeit), Implementierung und einer experimentellen
Auswertung, beschreiben lässt. Grob lässt sich der Inhalt der Arbeit
in die folgenden vier Teile gliedern: Routenplanung für öffentlichen
Verkehr, multimodale Routenplanung, Metrik-unabhängige Routenplanung
in Straßennetzwerken und Berechnung von Joggingrouten. Im Folgenden

wird auf die jeweiligen Teile genauer eingegangen.

Routenplanung für öffentlichen Verkehr. Bei der Routenplanung auf öffentlichen
Verkehrsnetzwerken ist die Eingabe ein Fahrplan. Dieser definiert Halte und Fahr-
ten (Züge, Busse, usw.), welche Folgen von Halten zu bestimmten Zeiten abfahren. In
dieser Arbeit wird ein neuer, paralleler (Multikern-) Algorithmus eingeführt, der so-
genannte One-To-All-Profilanfragen berechnet. Bei diesen ist das Ergebnis eine Menge
optimaler (bezüglich der Reisezeit) Reisepläne für eine ganze Zeitperiode, und zwar
von einem Halt zu allen anderen im Netzwerk. Der Algorithmus ist graphbasiert und
nutzt geschickt aus, dass sich Routen gegenseitig dominieren, wodurch der Suchraum
deutlich reduziert werden kann. Die resultierenden Laufzeiten sind praktikabel, selbst
für 24-Stunden-Perioden auf dichten städtischen Nahverkehrsnetzen. Das ermöglicht
sogar für eine Teilmenge der Halte eine Distanztabelle vorzuberechnen, welche aus-
genutzt werden kann, um den gleichen Algorithmus weiter zu beschleunigen, falls
man nur in die optimalen Verbindungen zwischen Paaren von Halten interessiert ist.

Neben der Reisezeit ist ein weiteres, mindestens genauso wichtiges Kriterium, die
Anzahl der Umstiege. Um dem Benutzer eine sinnvolle Menge an Alternativrouten
zu präsentieren, wird in dieser Arbeit das Problem betrachtet, multikriterielle Routen
zu berechnen, d. h. Pareto-Mengen von nicht-dominierenden (bzgl. Reisezeit und An-
zahl Umstiege) Routen. Vor dieser Arbeit war hier der Stand der Technik, erweiterte
Versionen von Dijkstras Algorithmus zu benutzen. Diese sind jedoch recht langsam.
Die Arbeit führt einen neuen, effizienteren Ansatz ein, der direkt auf dem Fahrplan
operiert. Im Gegensatz zu Dijkstras Algorithmus benötigt er weder einen Graphen
noch eine Priority-Queue. Stattdessen nutzt er aus, dass Züge auf wohldefinierten
Routen fahren, wodurch sich ein dynamisches Programm konstruieren lässt, das
sukzessiv die Pareto-Lösung aufbaut. Der Algorithmus ist sehr Cache-effizient und

264

um eine Größenordnung schneller als bisherige (Graphen-basierte) Verfahren. Anfra-
gen in sehr dichten Netzwerken können so in wenigen Millisekunden beantwortet
werden. Der Algorithmus lässt sich außerdem effizient parallelisieren und um weitere
Kriterien erweitern. Da er auf keine Vorberechnungen angewiesen ist, lässt er sich
unmittelbar für dynamische Szenarien einsetzen, um Verspätungen oder Zugausfälle
direkt bei der Routenberechnung zu berücksichtigen.

Multimodale Routenplanung. Ein zweiter Aspekt der Arbeit beschäftigt sich mit
der multimodalen Routenplanung, bei der man an integrierten Lösungsverfahren,
die verschiedene Verkehrsmittel sinnvoll kombinieren, interessiert ist. Ein gängiger
Ansatz zulässige Sequenzen von Verkehrsmitteln zu definieren, ist das sogenannte
Label-Constrained Shortest-Path Problem, bei dem man die Sequenzen über reguläre
Sprachen spezifiziert. Eine Variante von Dijkstras Algorithmus auf einem aus den Teil-
netzwerken zusammengesetzten Graphen berechnet zwar beweisbar optimale Routen,
ist jedoch in der Praxis zu langsam. Die Arbeit präsentiert einen schnellen Ansatz, der
auf dem Konzept der Knotenkontraktion basiert und die Eingabe so vorverarbeitet,
dass beweisbar die optimalen Lösungen für alle möglichen Verkehrsmittel-Sequenzen
erhalten bleiben. Dadurch kann die Sequenz vom Benutzer bei der Anfrage spezifi-
ziert werden. Bisherige Verfahren haben, im Gegensatz dazu, die Sequenz bereits in
der (aufwendigen) Vorberechnungsphase fixiert.

Manchmal kann (oder will) der Benutzer jedoch keine Aussage über die erlaubten
Verkehrsmittel-Sequenzen treffen. Stattdessen wäre es wünschenswert, eine Menge
von sinnvollen Alternativrouten (mit unterschiedlichen Verkehrsmittel-Sequenzen)
zu berechnen, aus denen der Benutzer wählen kann. Aus diesem Grund wird in
der Arbeit die Kombination von multimodaler mit multikriterieller Routenplanung
betrachtet. Statt Verkehrsmittel-Sequenzen zu beachten, wird für jede Verkehrsart
ein Bequemlichkeitskriterium identifiziert. Mit Hilfe dieser Kriterien werden dann
Pareto-Mengen von Alternativrouten berechnet. Eine große Herausforderung hierbei
ist, dass diese Mengen hunderte, insignifikante Lösungen enthalten können. Diese
erhöhen (unnötigerweise) die Berechnungsdauer und sind für den Benutzer kaum von
Bedeutung. Daher wird basierend auf unscharfer Mengenlehre (Fuzzy Set Theory) ein
unscharfes Dominanzkriterium benutzt, das zuverlässig die k signifikantesten Routen
aus der Pareto-Menge extrahieren kann. Diese könnten dann dem Benutzer gezeigt
werden. Außerdem werden zur Beschleunigung der Suche heuristische Algorithmen
vorgestellt, die die Pareto-Mengen bereits im Laufe der Berechnung klein halten,
indem als insignifikant klassifizierte Lösungen entfernt werden. Die Qualität der
Heuristiken wird mit einem konsistenten Qualitätsmaß evaluiert.

Metrikunabhängige Routenplanung in Straßennetzwerken. In diesem Teil betrachten
wir nochmals das (klassische) Problem, optimale Routen in Straßennetzwerken zu
berechnen. Der Fokus liegt dabei allerdings auf der Vorberechnungsphase. Bei den

265

Anhang C. Deutsche Zusammenfassung

existierenden effizienten Algorithmen führt eine Änderung der Metrik im Graphen
zu einer Invalidierung der vorberechneten Daten, wodurch diese neu berechnet
werden müssen, was aufwendig sein kann. Der vorgestellte Algorithmus basiert auf
dem (bekannten) Konzept von Multilevel-Overlaygraphen. Die grundlegende Idee ist
dabei, die Vorberechnung in zwei Stufen zu unterteilen. In einer Metrik-unabhängigen
Stufe wird mit Hilfe eines Graph-Partitionierers die Topologie der Overlaygraphen
festgelegt. In der Metrik-abghängigen Stufe werden basierend auf der Topologie, die
Kantengewichte der Overlaygraphen ausgerechnet. Damit kann eine neue Metrik in
wenigen Sekunden integriert werden. Dies ermöglicht neue Anwendungen, wie das
Einbinden von Echtzeit-Staudaten oder die Unterstützung personalisierter Metriken.

Berechnung von Joggingrouten. Die letzte Problemstellung betrachtet das Berechnen
„guter“ Joggingrouten. Hier ist die Eingabe ein Startpunkt sowie die gewünschte
Länge der Route. Ziel ist es, einen Kreis in einem Fußgängernetzwerk zu berechnen,
der die gewünschte Länge annähert und den Startknoten enthält. Zudem müssen
sogenannte weiche Kriterien berücksichtigt werden. Beispielsweise soll die Tour eine
einfache Form haben, möglichst schöne Gebiete (z. B. Parks und Wälder) durchqueren
und wenig Strecke doppelt ablaufen. Für das Problem werden zwei Lösungsansätze
vorgestellt. Der Erste beruht auf der Intuition sukzessiv eine gegebenen Tour um eine
der angrenzenden Facetten im Graphen zu erweitern. Der zweite Ansatz überträgt
die geometrische Intuition bei der Konstruktion von gleichseitigen regelmäßigen
Polygonen auf Graphen, um so Touren zu erhalten. Der Algorithmus lässt sich
parallelisieren und ist inhärent in der Lage mehrere verschiedene Alternativtouren
auf einmal zu berechnen.

266

