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Abstract

numerous interesting applications. Probably one of the best known applications

are navigation devices for cars. More examples include map services on the
Internet and timetable information systems, such as the one by Deutsche Bahn. In all
cases, underlying algorithms must quickly compute optimal solutions for any query
from the customer.

In this thesis, we introduce algorithmic solutions for the following topics: Journey
planning in public transit and multimodal networks, customizable route planning
in road networks, and the computation of jogging routes in pedestrian networks.
The presented algorithms thereby exploit the structural properties of the underlying
transportation networks explicitly. To obtain efficient and practical algorithms, we
base our methodology of research on the paradigm of Algorithm Engineering [San09,
MS10,SW13]. It is characterized by a cycle consisting of four steps: Algorithm design,
theoretical analysis, implementation, and experimentation.

ROUTE PLANNING IN TRANSPORTATION NETWORKS is a fundamental problem with

Public Transit Journey Planning. For the case of journey planning in public transit
networks, the input is given as a timetable. It defines stops and trips (buses, trains,
etc.), which operate along sequences of stops at certain times of the day. This thesis
introduces a new multicore algorithm that computes one-to-all range queries. They ask
for a set of optimal (regarding travel time) journeys all departing within a certain
time range from one stop to all other stops of the network. The algorithm is based on
a newly introduced graph model and carefully exploits the fact that journeys may
dominate each other, which significantly reduces the search space size. The obtained
query times are practical, even on dense metropolitan networks for a time range
of a full day. This enables precomputation of a full distance table over a subset of
important stops of the network. By these means, the very same algorithm can be
further accelerated, if one is only interested in queries between pairs of stops.
Besides travel time, another—just as important—criterion is the number of transfers.
To give the user a sensible set of alternative journeys, this thesis considers computing
Pareto sets of nondominating journeys regarding travel time and the number of
transfers. Here, state-of-the-art approaches use variants of Dijkstra’s algorithm,
which is slow in practice. In this work, a novel algorithm, which operates directly
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on the underlying timetable, is presented. It, therefore, neither requires a graph,
nor a priority queue. Instead, it exploits the fact that vehicles operate on well-
defined routes, which allows for a dynamic program that successively constructs the
Pareto set. The algorithm is very cache-efficient and faster by an order of magnitude
than previous (graph-based) approaches. It answers queries in dense metropolitan
networks within a few milliseconds. Moreover, we parallelize it and extended it to
handle further criteria. Since it does not require preprocessing, it can be directly used
in dynamic scenarios, easily handling delays and trip cancellations.

Multimodal Journey Planning. Another scenario considered in this thesis is multi-
modal journey planning. Here, one is interested in integrated algorithms, that combine
different modes of transport in a reasonable way. A common approach to obtain
feasible mode sequences is the label constrained shortest path problem, which models
mode sequences by regular languages. A variant of Dijkstra’s algorithm that runs on
the union of each modal subnetwork computes provably optimal solutions, but is too
slow in practice. This work presents a faster approach, which is based on the concept
of vertex contraction. It preprocesses the input such that arbitrary mode sequences
are retained. This enables the user to specify mode sequence contraints at query time,
a problem considered challenging before.

Sometimes, the user is unwilling to (or simply cannot) state feasible mode se-
quences. Instead, it might be preferable to provide the user with a choice from a set
of concice and diverse alternative journeys. Therefore, in this thesis, an approach is
considered that combines multimodal and multicriteria route planning. Instead of
obeying specific modal sequences, it identifies, for each mode of transportation, a
convenience criterion. These criteria are then used to compute Pareto sets of alternative
journeys. Here, one particular challenge is that the resulting sets may contain hun-
dreds of insignificant solutions. They (unnecessarily) increase computation time and
are of little value to the user. Therefore, based on fuzzy set theory, a fuzzy dominance
criterion is used that is successful in extracting the k most relevant journeys.

Customizable Route Planning in Road Networks. In this part we revisit the classical
problem of computing optimal routes in road networks. For most existing efficient
algorithms, an update of the metric (e. g., because of a new traffic situation) requires
rerunning a costly preprocessing phase. Our approach addresses this issue and is
based on the (known) concept of multilevel overlay graphs. The key idea is to split
the preprocessing phase: In a first (potentially slow) metric-independent stage, the
graph is partitioned into loosely connected regions of roughly equal size. This defines
the topology of the overlay graphs. The second metric-dependent stage then quickly
computes weights on the arcs of the overlay graphs. Integrating a new metric only
requires rerunning the second stage. This takes mere seconds in practice and enables
new applications, such as real-time traffic or personalized cost functions.

Vi



Computation of Jogging Routes. The last part of this thesis considers computing
“good” jogging routes: Given a source vertex in a pedestrian network and a length (of
the desired route), it asks to compute a cycle containing the source vertex that ap-
proximates the given length. Moreover, an ideal route might have a rather circular
shape and travel through nice areas (such as parks and forests) of the map. In this
thesis, two approaches to solve this problem are presented. The first successively
extends a (given) route by joining adjacent faces of the network. The second trans-
fers the intuition of constructing equilateral polygons to graphs in order to obtain
jogging routes. The algorithm can be easily parallelized and even computes sensible
alternative routes.

vii
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Chapter

Introduction

vices that are available today. In fact, such services have become quite ubiqui-

tous and are more or less taken for granted. Examples include online services

like Bing Maps, GPS navigation devices for private vehicles, or the journey planning

systems offered by many public transit agencies, such as Deutsche Bahn [HaC].

Thereby, these services are usually either offered online on the Internet or offline by
mobile devices and smartphone applications.

A key component of any journey planning service is an algorithm that computes the
actual journeys for given pairs of source and destination locations. These algorithms
must be fast, and they should provide exact and optimal solutions for any query
requested by the customer. A common approach to this problem models the trans-
portation network as a directed graph whose arc weights represent the metric (travel
time, distance, etc.) one aims to optimize. Dijkstra’s algorithm, which has been
already introduced in the year 1959, can then be used to compute provably optimal
journeys between vertices of this graph. Unfortunately, Dijkstra’s algorithm is too
slow on realistic inputs of country or continental scale to be practical: Answering
a single query takes several seconds, even on current server hardware. Therefore
over the last years, a plethora of research focused on accelerating Dijkstra’s algo-
rithm by utilizing an offline preprocessing phase. The fastest available techniques
achieve—after a few minutes or hours of preprocessing—query times in the order of
microseconds or less on networks of continental scale. This is up to seven orders of
magnitudes faster than Dijkstra’s algorithm.

However, most of these methods were developed with road networks and travel
time metric in mind. While they can, in principle, be augmented to other types of
networks (such as public transit), most methods lose their excellent performance on
them. Moreover, besides computing only one (quickest) route, on these networks
one is often interested in more complicated query scenarios. For example, in public
transit networks it is often desirable to compute a set of optimal journeys that depart

S NYBODY WHO TRAVELS FREQUENTLY knows the numerous journey planning ser-



Chapter 1. Introduction

within a specified time range. Also, only optimizing a single criterion, like travel time,
may not be sufficient. In practice, considering further criteria, such as the number of
transfers, is just as important.

The ultimate journey planner should go even further and consider different modes
of transportation like car travel, walking, bicycles, public transit, and flights in
a holistic approach. We call this scenario multimodal journey planning. Clearly,
developing algorithms that compute optimal journeys in this scenario includes at
least the challenges from each individual mode of transport. On top of that, different
modes of transport must be combined in a reasonable way. For example, requiring the
customer to use their private car between train rides may be infeasible. Also, some
customers may prefer to use their bicycle for parts of their journey, while others may
not. Any multimodal journey planning algorithm should explicitly consider such
constraints and, ideally, provide concise and diverse sets of alternative journeys to
the customer.

One of the main goals of our work is to
Realistic : develop algorithms that are both efficient and
machine models esisn practical. Therefore, it is crucial to implement
the algorithms carefully and conduct exten-
sive experimental studies using real world
data. The outcome of these experiments then
gives new insights into the behavior of an al-
gorithm, which in return, leads to a possibly
refined design of the algorithm. This circular
[Performance guarantees & practical algorithms] process is Captured by the paradigm of Algo—
rithm Engineering [San09, MS10,SW13]. At its
core, it constitutes a cycle of algorithm design,
theoretical analysis (in our case ensuring correctness), careful implementation, and
extensive experiments, ideally, on real world data. The algorithm is thereby already
designed with the underlying hardware and the characteristics of the inputs in mind.
We then claim falsifiable hypotheses about its performance which are validated (or
falsified) by the experiments. In that, Algorithm Engineering resembles Popper’s
scientific method [Pop34]. Also see Figure 1.1 for an illustration of the principle.

Falsifiable
Hypotheses

91/\\E'U 1%

Figure 1.1. The Algorithm Engineering paradigm.

1.1. Main Contributions

This thesis contains contributions on the following topics: Public transit journey
planning, multimodal journey planning, customizable route planning in road networks, and
the computation of jogging routes. In this section we highlight the key contributions for
each of these topics in turn.



1.1. Main Contributions

1.1.1. Public Transit Journey Planning

For the problem of computing journeys in public transit networks, we consider
timetables as input. Roughly speaking, a timetable is comprised of a set of stops (e.g.,
platforms, bus stops, etc.), a set of routes (e. g., bus lines), and a set of trips. A trip
is thereby a vehicle that serves a route at a specific time of the day. Typically, the
timetable is translated into a graph on which shortest paths correspond to optimal
journeys. Several such graph models exist, incorporating different levels of realism.

Coloring Model and Footpaths. We present a new realistic time-dependent graph
model, called the Coloring Model, which is useful to compute journeys that min-
imize arrival time. The model is based on the realistic time-dependent model
from [PSWZ08]. By computing conflicting trips at stops in a principled way, we
obtain significantly smaller graphs (up to a factor of 12). This immediately accel-
erates any query algorithm that runs on this model. Moreover, we present a new
heuristic to generate artificial footpaths that connect stops which are close to the same
intersection (of the underlying road network). Such footpaths are crucial to obtain
realistic journeys, but are often missing from real world timetable data.

The Coloring Model is presented in Section 4.3.4 and our footpath heuristic is
introduced in Section 4.3.5.

Parallel Range Query Algorithm. Based on our Coloring Model, we introduce a
novel algorithm, called Self-Pruning Connection-Setting Algorithm (SPCS) that com-
putes one-to-all range queries: For a given source stop ps, such a query asks for
optimal (regarding travel time) journeys departing within a given time range to all
stops of the network. Unlike previous algorithms, it systematically exploits the com-
binatorial structure of public transit networks: The number of relevant connections
to travel from p; is limited and can be bounded in advance. In addition, certain
connections are dominated by others along the way. Exploiting these principles in
a sound manner, we augment the label-setting property of Dijkstra’s algorithm to
obtain a connection-setting algorithm for range queries in public transit networks.
Unlike previous algorithms, which are notoriously hard to parallelize, SPCS admits a
natural and efficient parallelization. As a result, SPCS is a more efficient substitute for
Dijkstra’s algorithm for the scenario of one-to-all range queries. Such queries are of
particular importance as an ingredient to the preprocessing phase of many speedup
techniques. Finally, for the case one is only interested in journeys to a designated
target stop, we show how SPCS itself can be utilized for valuable preprocessing to
further accelerate point-to-point queries.
Our new Self-Pruning Connection-Setting algorithm is presented in Section 4.5.

RAPTOR. Besides optimizing arrival time, another important criterion in public
transit networks is the number of transfers. We, therefore, consider the problem
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of computing Pareto sets of nondominating journeys regarding arrival time and
number of transfers. To this extent, we present a novel algorithmic approach called
Round-bAsed Public Transit Optimized Router (RAPTOR). Unlike previous algorithms,
it is neither graph-based, nor does it require a priority queue. Instead, it organizes
the timetable data efficiently into a small number of arrays. The algorithm then
operates on these arrays in rounds (one per transfer) and scans each route of the
timetable at most once per round. Essentially, the algorithm boils down to a dy-
namic program with simple data structures and excellent memory locality. By these
means, query performance on the full metropolitan network of London is faster
by an order of magnitude compared to previous algorithms. Moreover, we extend
RAPTOR to handle strict dominance, multicriteria range queries, and additional
criteria. In particular, we consider fare zones and reliability of transfers as additional
criteria (besides arrival time and number of transfers) and present optimized variants
of McRAPTOR (the more-criteria variant of RAPTOR) for them. Since RAPTOR does
not rely on preprocessing, it can be directly used in dynamic scenarios, including
delays, route changes, and trip cancellations.
Our new RAPTOR algorithm is presented in Section 4.6.

1.1.2. Multimodal Journey Planning

The second part of this thesis deals with multimodal journey planning. Here, we ask
for a holistic algorithmic approach that computes journeys that reasonably combine
different modes of transportations. In this work, we consider car travel, walking,
rental bicycles, public transit, and flights as transportation modes.

User-Constrained Contraction Hierarchies. A quite elegant approach to the multi-
modal journey planning problem computes label-constrained shortest paths [BJM00].
Essentially, it imposes restrictions on the sequences of transportation modes in form
of a regular language, to which any computed journey must obey. Although Dijkstra’s
algorithm can be augmented to handle such constraints, its performance is too slow
to be practical. To this extent, we present a preprocessing-based speedup technique,
called User-Constrainted Contraction Hierarchies (UCCH). It augments the Contraction
Hierarchies algorithm [GSSV12] to handle label-constrained shortest paths in a sound
manner. By ensuring that shortest paths for any mode sequences are retained during
the preprocessing phase, we obtain the first preprocessing-based algorithm that can
handle arbitrary mode sequence constraints as an input to the query—a problem
considered challenging before. Moreover, when compared to previous algorithms
with similar query performance (such as Access Node Routing [DPW09a]), UCCH
has some key advantages: It does not require a dedicated algorithm to compute local
queries, has faster preprocessing time, and can handle multimodal networks with a
much denser public transit subnetwork.

The User-Constrained Contraction Hierarchies algorithm is presented in Section 5.3.
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Multimodal Multicriteria Journey Planning. Even though label-constrained shortest
paths can be used to forbid infeasible sequences of transportation modes (such as us-
ing a private car between two train rides), the customer still has to specify—and thus
know—these constraints in advance. Preferably, a multimodal journey planner should
provide the customer with a concise and diverse set of alternative journeys, from
which they can choose their favorite option. To this extent, we drop label-constraints
and consider to combine multimodal with multicriteria journey planning. We argue that
users optimize—besides arrival time—specific mode-dependent convenience criteria.
Examples include the number of transfers for public transit, walking duration for
walking, and monetary cost for taxis. We present a new algorithm, called multimodal
multicriterin RAPTOR (MCR), that builds on the round-based framework of RAPTOR
and computes exact Pareto sets of journeys that optimize these convenience criteria.
However, it turns out that these Pareto sets contain too many insignificant journeys
with little value to the user. Therefore, we propose to use fuzzy logic to extract a
subset of the most significant journeys in a quick postprocessing step. Going further,
we present several heuristics (still multicriteria) that relax domination during the
algorithm. They avoid computing insignificant journeys, but still closely match the
best journeys of the exact Pareto set. Our experiments on the full multimodal network
of London confirm that we are able to compute multimodal multicriteria journeys of
high quality for large metropolitan areas.

Multimodal multicriteria journey planning and MCR are presented in Section 5.4.

1.1.3. Customizable Route Planning in Road Networks

The third part of this thesis considers the computation of shortest paths in road
networks. While most research focused on fast methods that optimize travel time,
we address the customizable route planning problem. Its goal is a method that is
metric-independent: It must incorporate new metrics quickly, have only little space
overhead (per metric), and admit a query algorithm that is robust with respect to any
metric. To this extent, we analyze previous algorithms with regard to our scenario
and propose an approach that is based on overlay graphs [SWWO00, JP02]. To achieve
our goals, we split the preprocessing phase into a metric-independent preprocessing stage
and a customization stage. The first stage considers only topology, may take several
minutes, and must be run only once. The customization stage then incorporates a
new metric, which takes mere seconds, even for the continental network of Europe.
Queries, which utilize the overlay graph, take a few milliseconds. This is fast enough
for interactive scenarios. By these means, our approach is highly practical and enables
new applications with obvious attraction: Traffic updates can be incorporated in real
time, and customers may state personalized cost functions, such as “avoid highways”,
“avoid toll roads”, “height restrictions for trucks”, and others. In fact, the proposed
method is currently the core of the routing engine in use by Bing Maps [Mic12].
Our approach to customizable route planning is presented in Section 6.
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1.1.4. Computation of Jogging Routes

The final part of this thesis considers the computation of jogging routes in pedestrian
networks. To the best of our knowledge, we are the first to consider practical
algorithms for this problem: Given a source vertex s and a desired length L, it asks
for a simple cycle that contains s, whose length approximates L. Besides length,
we identify further soft criteria one is usually interested to optimize: The route
should have a rather circular shape, pass through “nice” areas of the map (such
as parks and forests), and it should not contain too many turns that have to be
remembered by the user. We show that the problem is NP-hard, even for the
simple version that only considers length. Nevertheless, we present two novel
and practical algorithms to compute sensible jogging routes heuristically. The first,
called Greedy Faces (GF) iteratively extends the route by attaching adjacent faces
of the graph. The second, called Partial Shortest Paths (PSP), concatenates several
shortest paths with respect to an appropriate metric, and is based on the intuition of
constructing equilateral polygons. The latter approach can be parallelized quite easily
and inherently computes admissible alternative routes. We validate our algorithms
in a systematic experimental study and present a case study on the map of Karlsruhe.
The outcome of the experiments indicates that our algorithms are indeed able to
compute sensible jogging routes fast enough for interactive applications.
The computation of jogging routes is considered in Chapter 7.

1.2. Outline
The rest of this thesis is organized as follows:

Chapter 2 gives an extensive overview on the current state-of-the-art that is related
to this work. It recaps methods for route planning in road networks, journey planning
in public transit networks, and journey planning in multimodal networks.

Chapter 3 settles (mathematical) notation that is fundamental to this work. In
particular, it gives a formal introduction to graphs, shortest paths, partitions, and
regular languages.

Chapter 4 contains the first main contribution of this thesis. It considers journey
planning in public transit networks. In order to present our new algorithms, the
chapter first gives a detailed introduction on the inputs, i. e., timetables (Section 4.1),
the considered problems (Section 4.2), related graph models (Section 4.3), and basic
algorithmic approaches (Section 4.4), which we use as baseline in our experiments.
Going from there, the chapter introduces our new Self-Pruning Connection-Setting
algorithm (Section 4.5) and RAPTOR (Section 4.6).

Chapter 5 contains the second main contribution of this thesis and considers
journey planning in multimodal networks. We first analyze models for the individual
modes of transport that make up our multimodal networks (Section 5.1) and present
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journey planning problems that arise in the context of them (Section 5.2). In Section 5.3
we present User-Constrained Contraction Hierarchies, our new speedup technique
that computes label-constrained journeys. Finally, our new MCR algorithm for
multicriteria multimodal journey planning that uses fuzzy set theory to identify
significant journeys, is presented in Section 5.4.

Chapter 6 contains the third main contribution of this thesis. It considers cus-
tomizable route planning in road networks. We start by analyzing the shortcomings
of existing algorithms with respect to our scenario (Section 6.1). We then present
our approach to customizable route planning (Section 6.2) and show how it can be
implemented efficiently (Section 6.3) on realistic road networks with turn costs (Sec-
tion 6.4). Furthermore, we present detailed experiments (Section 6.5), describe how
we retrieve the full path description (Section 6.6), and give some implementation
details (Section 6.7). We conclude the chapter in Section 6.8.

Chapter 7 contains the last main contribution of this thesis. Section 7.1 formally
defines the Jogging Problem and proves its NP-hardness. Section 7.2 presents our
two novel algorithmic approaches: Greedy Faces and Partial Shortest Paths. Finally,
Section 7.3 contains our experimental study while Section 7.4 summarizes the results
and contains some interesting open questions.

Chapter 8 concludes our work with a summary of the most important results and
discusses interesting open problems for future research.
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Literature Overview

for route planning that are related to this work. We start in Section 2.1 with route

planning in road networks. Section 2.2 addresses work on journey planning in
public transit networks, which have different properties from road networks. Finally,
in Section 2.3 we present related work on multimodal journey planning that integrates
road and public transit networks—among others—in a holistic approach.

T HIS CHAPTER GIVES AN OVERVIEW on state-of-the-art in algorithmic approaches

To recap some of the techniques, we may use mathematical notation for graphs,
partitions, and other things. A precise definition of these notions is given in Chapter 3.

2.1. Route Planning in Road Networks

Route planning in road networks has received tremendous amount of attention. A
well-known approach to compute (optimal) routes models the road network as a
directed graph G = (V, A) with associated (usually nonnegative) arc costs ¢: A —
Z>. Thereby, vertices correspond to intersections (of the road network) and arcs
represent street segments. The cost function ¢ can be any metric, however, most
research focused on travel time. In the so-constructed graph, a shortest path between
vertices s and t then corresponds to the optimal route with respect to the cost function /.

While algorithms that compute shortest paths in graphs—such as Dijkstra’s seminal
algorithm [Dij59]—have been around for over sixty years, it has only been recently
that computers became powerful enough to handle realistic and large-scale road net-
works, such as that of a whole continent. Paired with the observation that Dijkstra’s
algorithm is too slow for interactive applications (queries take seconds, even today),
this motivated research on speedup techniques (for Dijkstra’s algorithm) [SWW99]:
Under the assumption that shortest path queries occur significantly more often than
changes to the graph, one can use a (somewhat costly) preprocessing phase that com-
putes auxiliary data which then helps to accelerate the query algorithm. When in
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2005 large road networks were publicly released for the 9th DIMACS Implementa-
tion Challenge [DGJ09], research on speedup techniques culminated in a downright
“horse race” about the fastest query algorithm for road networks.

In the following, we give an overview on the most important techniques for
route planning in road networks. Besides individual publications there are also
survey articles on the topic: In [WWO07] and [DSSW09a] overviews on speedup
techniques for shortest path queries are given. Extensions to time-dependent shortest
paths are discussed in [DW09b]. A recent survey [Som12] also covers (besides
practical algorithms) theoretical results, such as distance oracles. Another survey over
some heuristic methods (which are not the focus of this thesis) is given in [FSRO06].
Finally, Figure 2.12 (on Page 23) summarizes performance of those surveyed methods,
for whom experimental data on the European road network is available.

2.1.1. Basic Algorithms

Here, we give an overview on basic algorithms for the shortest path problem including
Dijkstra’s algorithm [Dij59]. These algorithms do not employ a preprocessing phase.

Classical Algorithms. Probably the most well-known approach to compute short-
est paths on a weighted graph with nonnegative arc cost is Dijkstra’s algorithm
introduced in the year 1959 [Dij59]. Given a source vertex s € V, it computes
distances dist(s, 1) to every vertex u € V of the graph.

Therefore, it maintains a priority queue Q of vertices or-
dered by their (tentative) distances from s. The algorithm
initializes dist(s,s) = 0 and adds s to Q. In each iteration, it
extracts (scans) the vertex u with minimum distance from Q
and looks at all (to u incident) arcs a = (u,v) € A. For each

® _ @ such arc it determines the distance to v via arc a by com-
puting dist(s, ) + ¢(a). If this value improves dist(s,v), the
algorithm updates it and adds vertex v with key dist(s, v) to the
priority queue Q. Dijkstra’s algorithm has the label-setting prop-
erty, that is, once a vertex u € V has been extracted (scanned)
from the priority queue, its distance value dist(s, u) is correct
Figure 2.1. Schematic search and will not be improved anymore. Therefore, if one is inter-
space of Dijkstra’s algorithm with  ested in computing the distance to a dedicated target vertex t,
stopping criterion. the algorithm may stop as soon as it scanned t. The set of
vertices S C V scanned by the algorithm is called search space
and consists of exactly those vertices 1 € V that have distance smaller than dist(s, f).
Note that S is actually a graph-theoretic disc centered at s with radius dist(s, t). See
Figure 2.1 for an illustration.
The running time of Dijkstra’s algorithm is determined by the data structure
that is chosen as priority queue Q. Using a binary heap, the running time is

10
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in O((|V]| + |A])log|V|) [CLRS01], which can be improved by, e. g., Fibonacci Heaps
to O(|A| + |V|log|V]) [FT87]. If all arc costs are integers in the range [0, C|, Multi-
Level Bucket Queues yield a running time of O(|A|+ |V|/logC) [DF79]. For
sparse graphs (i.e., |A| € O(|V|)) the running time of Dijkstra’s algorithm with
binary heaps drops to O(|V|log|V|). Note that better bounds exist for the average
case [Mey01, Gol01].

If the cost function may assume negative values, but the graph does not con-
tain negative cycles, simple shortest paths (i. e., paths that contain no vertex twice)
can be computed by the Bellman-Ford algorithm [For56, Bel58] in time O(|V||A]).
Another approach, based on Dijkstra’s algorithm, may rescan vertices whenever a
path with negative arcs improves its distance [DP84]. Moreover, the Floyd-Warshall
algorithm [Flo62] computes distances between all pairs of vertices in time O( | V\3) (re-
quiring O(|V|?) space). Note that, on sparse graphs with nonnegative arc weights,
running | V| times Dijkstra’s algorithm yields a better running time of O(|V|*log|V|).

Bidirectional Search. A first attempt to reduce the search

space is bidirectional search [Dan62, GHO5]. It simultane-

ously (and possibly in parallel) runs a backward search from ‘

the target vertex t. The algorithm may stop as soon as the :/\/.’\A;
intersection of the search spaces of the forward and backward
search provably contains a vertex m on the shortest path from s
to t. This is (roughly) the case when the searches meet. Also
see Figure 2.2. While the theoretic running time does not im-
prove that of Dijkstra’s algorithm, in road networks the search
space can be approximated by geometric discs: Bidirectional
search grows two disks (centered at s and t) with radii % dist(s,t). Thus, if one
considers the disc’s area, the speedup over Dijkstra’s algorithm is roughly

m

Figure 2.2. Schematic search
space of bidirectional search.

Dijkstra’s algorithm 7 dist(s, t)?
bidirectional search 271(% dist(s,t))z

speedup ~ =2, (2.1)

which is also observed in practice. While this seems limited, bidirectional search is
nevertheless an important ingredient to many—especially hierarchical—methods.

2.1.2. Goal-Directed Techniques

Dijkstra’s algorithm scans all vertices with distance smaller than dist(s,t). Goal-
directed techniques, in contrast, aim to “guide” the search toward the target by
avoiding to scan vertices that are not in direction of t. They either exploit the (ge-
ographical) embedding of the network or graph-theoretic properties, such as the
structure of shortest path trees toward (connected) regions of the graph.

11
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A* Search. A classic goal-directed shortest path algorithm is
A* search [HNR68]. It uses a potential function 77: V — R on

® _—___—@t the vertices, which estimates the distance dist(u,t) from u to ¢

Figure 2.3. Schematic search

by a lower bound. It then essentially runs Dijkstra’s algorithm,
however, with the modification that it sets the key of a vertex u
in the priority queue to dist(s,u) + 7r(u). By these means the

space of the A* algorithm. order in which vertices are scanned is altered such that vertices

that are closer to the target t are scanned earlier during the
execution of the algorithm. See also Figure 2.3. Note that if 7 were an exact lower
bound, i.e., 7r(u) = dist(u, t), only vertices along shortest s—t paths would be scanned.
Precomputing exact potentials is, however, too expensive in practice. Therefore, in
road networks with travel time metric (and coordinates associated with the vertices),
one often uses the direct geographical distance [Poh71, SV86] between u and t
divided be the maximum travel speed (that occurs in the network) as lower bound.
Unfortunately, these bounds are poor, and the reduction in search space does not even
weigh out the additional overhead of computing potentials in the algorithm [GHO5].

ALT. To obtain significantly better lower bounds, the ALT algorithm [GHO05],
which stands for A%, landmarks, and triangle inequality, computes, in a pre-
processing phase, for a designated set of landmark vertices L C V exact
distances to and from all vertices in the graph. It then uses, for a selected
landmark [ € L, these distances and the following triangle inequalities to

dist(l, u) + dist(u, t) > dist(l,t) = dist(u,t) > dist(l, t) — dist(l, u).

Also see Figure 2.4 for an illustration of the inequalities. Note that landmark /

) obtain lower bounds on dist(u, t) in the algorithm:
dist(u,t) 4+ dist(t,1) > dist(u,l) = dist(u,t) > dist(u,1) — dist(t,1),

Figure 2.4.

Triangle

inequalities for

ALT.

is used to illustrate the first inequality, while I illustrates the second.

Different landmark selection strategies exist, from which it turned out that
selecting landmarks that are at the “far boundary” of the graph results in
the best query performance on road networks [GW05]. Moreover, since lower
bounds obtained from the above triangle inequalities are still correct if arc
weights increase, ALT is robust with respect to dynamic scenarios that consider traffic
data [DWO07].

Geometric Containers. Another method to guide the search toward ¢, called Geo-
metric Containers, precomputes, for each arc a = (u,v) € A, an arc label L(a) that
encodes (at least) the set V, of vertices to which a shortest path from u begins with the
arc a. Instead of storing V; explicitly, L(a) approximates this set by using geometric
information (i. e., the coordinates) of the vertices in V,. Then, if during query the
target vertex t is not contained in L(a), it is also not contained in V,, and the search

12
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can be pruned at 4. In [SWWOO0] the set V, is approximated by an angular sector (cen-
tered at u) that covers all vertices in V,. In [WWZ05] more complicated geometric
containers such as rectangles, ellipses, and the convex hull are evaluated. From these,
the bounding box consistently performs well. For the case that the graph is given
without geometric information, in [BSWWO01, WWO05] several graph layout algorithms
are evaluated with respect to the query performance of geometric containers.

Arc-Flags. A disadvantage of Geometric Containers is that its preprocessing essen-
tially requires an all-pairs shortest path computation, which is costly.
Arc Flags [Lau97, Lau04, KMS05, HKMS09] uses

a similar (to Geometric Containers) approach, but o T — 7@

drops geometry. Instead, the graph is partitioned
into K (balanced) regions with a preferably low num- i
ber of boundary vertices. Each arc maintains a vector ~ _
of K bits (arc flags), indicating toward which regions - - -
the arc a lies on a shortest path. The search algorithm |

then prunes arcs which do not have the bit set for O— 11 HQ— 00 1 HO

the region which contains t. Figure 2.5 illustrates the

method (example taken from [Del09]). Vertices and Figure 2.5. Arc flags for a small graph.

arc flags are colored with respect to their region. To

further improve the query performance, Arc Flags can be extended to nested multi-
level partitions [MSS™06]: Whenever the search reaches the region that contains ¢, it
descends one level of the partition, i. e., it evaluates arc flags with respect to the (finer)
cells of the next-lower level of the partition.

Arc flags for a region i are computed by growing a backward shortest path tree
from each boundary vertex (of region i) and, thereby, setting the respective flag for all
arcs of the tree. Alternatively, one can compute arc flags by running a label-correcting
algorithm from all boundary vertices simultaneously [HKMS09]. Moreover, to reduce
preprocessing space, one can use a (still correct) compression scheme which may flip
flags from zero to one [BDGW10]. Arc Flags is currently the fastest (regarding query
time) purely goal-directed method, with speedups of more than 5000 over Dijkstra’s
algorithm on continental road networks [BDST10]. Though high preprocessing
times (of several hours) have long been a drawback of Arc Flags, the recent PHAST
algorithm (mentioned later) computes arc flags within a few minutes [DGNW13].

Precomputed Cluster Distances. Another goal-directed technique is Precomputed
Cluster Distances [MSMO09]. Like Arc Flags, it is based on a (preferably balanced) par-
tition C = (Cy, ..., Ck) with K cells (or clusters). During preprocessing, it computes,
for each pair C;, G of cells the shortest path distance between these cells, i.e.,

dist(C;, C;) = mi(ljn[dist(u,v)]. (2.2)
uel;

'UGCI‘
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The query algorithm then maintains and minimizes a global upper bound y on the
length of the shortest s—t path by evaluating the precomputed cluster distances at
vertices u € C; which have been responsible for setting dist(C;, C(t)). Moreover, at
any vertex u, the algorithm obtains a lower bound on the shortest s—t path via u by
evaluating dist(s, u) + dist(C(u), C(t)) + dist(v, t), where v is the boundary vertex
of cell C(t) with minimal distance to t. The algorithm prunes vertices at which this
lower bound exceeds y. Query performance of PCD is similar to ALT, but it requires
less preprocessing space.

2.1.3. Hierarchical Techniques

Hierarchical methods aim to exploit the inherent hierarchy of road networks (with
travel time metric): Sufficiently long shortest paths eventually converge to a small
arterial network of important roads, such as highways. Intuitively, once one is far
from the source and target, it suffices to only scan vertices of this subnetwork in the
algorithm. The following methods formalize this notion.

Reach. The first algorithm that formalizes this observa-

s @ tion is Reach [Gut04]. Reach is a centrality measure de-
o fined on the vertices: Let P be a shortest s— path that con-

tains vertex u. Then, the reach r(u, P) of u on P is defined

as min(dist(s, u), dist(u,t)). Based on this, the (global)

u reach of u in the graph G is the maximum reach of u over
OO N NN @ all shortest paths that contain u. Now, for given reach val-

ues the query algorithm prunes the search at any vertex u,

r(u, Py) for which both dist(s,u) > r(u) and dist(u,t) > r(u)

hold true: The shortest path from s to t does provably

r(u, Py) = r(u) not contain u. To check these conditions, the algorithm

Y runs a bidirectional search (cf. Section 2.1.1) from s and ¢

® and extracts lower bounds on dist(u, t) (forward search)

Figure 2.6. Reach of vertex u and dist(s, u) (backward search) from the respective op-

determined by the paths P; (red) and posite search direction [GKWO09]. Also see Figure 2.6 for
P; (blue). An st query may prune u.  an illustration of reach.

Determining exact reach values requires computing
shortest paths for all pairs of vertices, which is too expensive on large road networks.
However, the query is still correct if (1) only depicts an upper bound on the
reach of u. Such bounds can be obtained faster by computing partial shortest path
trees [Gut04] and by (additionally) adding shortcuts to the graph [GKW09].

Contraction Hierarchies. Another approach that exploits the hierarchy is based on
the concept of shortcuts [SWWO0O0]. A shortcut is an arc (1, v)—possibly not contained
in the original graph—that represents a shortest path from u to v in G. The goal is

14
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to augment G with shortcuts such that long-distance queries use these shortcuts in
order to skip over “unimportant” vertices. Contraction Hierarchies [GSSD08, GSSV12]
implements this idea by repeatedly executing an operation called vertex contraction.

During preprocessing, Contraction Hierarchies (heuristi-
cally) orders the vertices by an importance value and then
contracts them in this order (from least to most impor- m
tant). To contract a vertex v, it is (temporarily) removed
from G and shortcuts are created between each pair of
neighboring vertices u, w, if the shortest path from u to w
is unique and contains v. The query algorithm then runs
a bidirectional search from s and ¢t on G augmented by the
shortcuts computed during preprocessing. Thereby, it only
considers arcs to (forward search), respective from (back-
ward search) vertices with higher ranks (regarding the s
contraction order). Also see Figure 2.7. Vertex orders are
usually determined online and bottom-up. The algorithm
selects the vertex to be contracted next, which minimizes
a linear combination of degree, arc expansion, number of
contracted neighbors, and other factors [GSSV12,KLSV10]. Better vertex orders can be
obtained by combining the bottom-up algorithm with a (more expensive) top-down
offline algorithm that is based on computing shortest path covers [ADGW12].

Hierarchies query.

Contraction Hierarchies turned out to be versatile and many extensions of the
algorithm exist. Examples include time-dependent scenarios [BGSV13], dynamic
scenarios [GSSV12], distributed preprocessing [KLSV10], external memory implemen-
tations [SSV08], road networks with turn costs [GV11,DGPW11], computing route cor-
ridors [DKLW12], obtaining alternative routes [ADGW13,L512], ride sharing scenar-
ios [GLS"10], minimizing energy consumption of electric vehicles [EFS11], handling
flexible arc restrictions [GRST12], or handling multiple criteria [GKS10,FS13]. More-
over, Contraction Hierarchies can be extended to compute distances to all [DGNW13]
or a restricted subset [KSST07, DGW11] of the vertices. The algorithm is also used in
practice, for example, on OpenStreetMap [Ope04] data of planetary scale [LV11]. Note
that Contraction Hierarchies is a successor of Highway Hierarchies [S505,5512a] (and
Highway Node Routing [SS07]), which are based on similar ideas.

2.1.4. Separator-Based Techniques

Though road networks are not necessarily planar (think of bridges or tunnels), it has
been observed that they nevertheless have small separators [EG08, DGRW11,5512b].
This fact is exploited by the methods in this section. Note that separator-based
algorithms may also classify as hierarchical techniques (cf. Section 2.1.3).

15
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Vertex Separators. The first class of algorithms is based on vertex separators: A vertex
separator is a (preferably small) subset S C V of the vertices, such that removing S
from V decomposes the graph G into several (preferably balanced) cells (components).
This separator is then often used to compute an overlay graph over S: Shortcuts are
added to the overlay such that distances between any pair of vertices from S are
preserved, i.e., they are equivalent to the distance in G. A query algorithm may then
use the much smaller overlay graph for (parts of) the query.

In [SWWO0O0] an overlay graph over a care-
fully chosen subset S (not necessarily a sep-
arator) of “important” vertices is used: For
each pair of vertices u,v € S an arc (u,v)
is added to the overlay, if the shortest path
from u to v in G does not contain any other
vertex w from S. This approach is further ex-
tended in [SWZ02] to multilevel separator hi-
erarchies V. O S§1 D S, D --- D S; of k levels.
In addition to arcs between separator vertices
of the same level, the overlay contains, for each
cell on level i, arcs between the confining level i
separator vertices and the interior level i — 1
separator vertices. See Figure 2.8 for an illus-
tration. In [SWWO00] and [SWZ02] performance
is experimentally evaluated on time-expanded
graphs from railway networks (cf. Sections 2.2
and 4.3.2). A systematic evaluation of the algo-
rithm is available in [HSWO08]: Besides testing
separators obtained by different methods, such as by the Planar Separator Theo-
rem [LT79] and METIS [Kar07], it also includes experiments on road networks (re-
porting speedups of above 50).

Figure 2.8. Multilevel overlay graph with two levels.
The dots depict separator vertices in the
lower (orange) and upper (green) level.

A highly engineered variant of the multilevel overlay graph approach is called High-
Performance Multilevel Routing [DHM™09]. It achieves query times of 40 ps on the
road network of Europe by adding many more shortcuts to the overlay in a first step
and sparsing them out significantly in a second step. However, space consumption of
the auxiliary data is very high and preprocessing times are in the order of a full day.

Arc Separators. The second class of algorithms uses arc separators (instead of vertex
separators) to build the overlay graphs. Therefore, they compute in a first step a
partition C = (Cy, ..., Cy) of the vertices, such that cells are balanced and the number
of cut arcs is minimized. (Cut arcs connect boundary vertices of different cells.)
The Hierarchical MulTi (HiTi) method [JP02] builds an overlay graph as follows: It is
initially composed of all boundary vertices of the partition plus all cut arcs. Next,
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for each cell C;, and between each pair of its boundary vertices u, v, preprocessing
adds a shortcut (u,v) to the overlay that represents the restricted (to cell C;) shortest
path from u to v in G. Thus, the overlay consists of |C| cliques, interconnected by cut
arcs. See also Figure 2.9. The query algorithm then (implicitly) runs Dijkstra on the
subgraph induced by the cells containing s and ¢ plus the overlay. This approach can
be extended beyond one level by using nested multilevel partitions. Unfortunately
HiTi has only been tested on grid graphs [JP02].

A recent algorithm, called Customizable Route
Planning (CRP) [DGPW11,DGPW14] (also see Chap-
ter 6), builds on a similar approach, but is specif-
ically engineered to meet the requirements of a
real world (production) system. It handles turn
costs, continuous maneuver restrictions, and arbi-
trary metrics. To achieve these goals, preprocess-
ing is split into two phases: metric-independent
preprocessing and customization. The first com-
putes, besides the partition (for which it uses
PUNCH [DGRW11]), the topology of the overlays.
It does not represent them as graphs, but stores
them as matrices in contiguous memory. The cus-
tomization phase then computes the cost of the

clique arcs quickly, bottom-up, and in parallel. In- Figure 2.9. Overlay graph constructed from arc

corporating a new metric on the European road
network takes mere seconds and consumes only
few tens of Megabytes of space. Customization
time can be reduced even further to a few hundred
milliseconds by using alternate shortest path algorithms (such as Bellman-Ford)
paired with (metric-independent) contraction [DW13]. Note that customization times
are fast enough to enable real-time traffic updates and personalized cost functions.

drawn red.

The query algorithm runs (similarly to HiTi) a bidirectional search in the overlay
graph. It takes time in the order of milliseconds, including full path retrieval [DGPW11].
This makes CRP very suitable for production systems: It has a practical tradeoff
regarding query time, customization time, and space consumption. In fact, it is
currently the core of the routing engine in use by Bing Maps [Mic12]. Moreover, CRP
can be used to compute alternative routes [DGPW14] and has recently been extended
to compute energy-optimal routes for electric vehicles [BDPW13].

Distance Oracles. Besides work on separator based methods from an algorithm
engineering point of view, theoretic work on quick shortest path computation of-
ten also uses separator-based approaches. In particular, planar graphs have small
separators of size O(1/[V]) [LT79]. Road networks are observed to also have small
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separators [EGO08], thus, theoretical techniques developed for planar graphs are likely
to also perform well on road networks. A recent technique uses simple cycle separa-
tors [Mil86, FEMPS13] to construct, for any given parameter S € [|V|loglog|V|, |V |*],
auxiliary data of size O(S) in time O(S). Then, queries can be answered in
time O(|V|/+/S). Many other (also approximate) methods with different trade-
offs exist. Because the focus of this work is on algorithm engineering, we refrain
from going into more detail about the available theoretic work. Instead, we refer
the interested reader to the following overview articles: Sommer gives an excellent
overview on many (not only theoretical) algorithms in [Som12]. Exact and approxi-
mate distance oracles are surveyed in [Zwi01] and [Sen(09] and a survey with focus
on route planning is given in [GP03].

2.1.5. Table-Based Techniques

Table-based methods precompute distances between important vertices such that
all shortest path information is fully encoded by these tables. The query then only
performs table lookups to retrieve distances. Algorithms in this category are not
Dijkstra-based, i. e., no graph is explored during the query.

A naive approach precomputes the distance for all pairs of vertices u,v € V. A
single lookup then suffices to retrieve the shortest distance. While (pre)computing all-
pairs shortest paths has recently become feasible with the availability of the PHAST
algorithm [DGNW13], space consumption of such a table (of size |V|?) is prohibitive
for realistic road networks.

Transit Node Routing. A technique that uses
distance tables on a subset of the vertices is
called Transit Node Routing (TNR) [BEM ™07,
BFSS07, BEM09, SS09]. During preprocessing,
it selects a small set T C V of transit nodes
and computes all pairwise distances between
them. Moreover, it computes, for each remain-
ing vertex u € V'\ T, its relevant set of transit
nodes A(u) C T, called access nodes (of u).
Access nodes are defined as follows: A transit
node v € T is an access node of u, if there is
a shortest path P from u in G such that v is
the first transit node vertex contained in P. In
addition to the vertex itself, preprocessing also
Figure 2.10. lllustrating a TNR query. stores the distances between u and its access
nodes. Now, the query algorithm uses the dis-

tance table to select the path that minimizes the combined s—A(s)-A(t)-t distance.
Note that the result is incorrect, if the shortest path does not contain a vertex from T.

Distance Table
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Therefore, a locality filter first decides whether the query might be local (i.e., does
not contain a vertex from T). In that case, a fallback shortest path algorithm is
run to compute the correct distance. See Figure 2.10 for an illustration of a TNR
query. The red (blue) dots are the access nodes of s (t). The arrows point to the
respective rows/columns of the distance table. The highlighted entries correspond
to the access nodes which minimize the combined s—t distance. Note that, for sim-
plicity, we explained the algorithm for a single distance table. To obtain better
performance, it is usually extended to multiple (hierarchical) levels of transit (and
access) nodes [BFM09,SS09].

Crucial to the performance of the algorithm is the choice of the transit node set.
Besides selecting vertex separators or boundary vertices of arc separators as transit
nodes [Miil06, DHM (09, BEM(9], vertices that are characterized as important by a
hierarchical speedup technique (such as Contraction Hierarchies) [SS09, BEM 107,
GSSV12, ALS13] work very well. The former approach admits a natural locality
filter, while for the latter an efficient locality filter can be constructed by using
the (graph-theoretic) Voronoi regions [Vor08, AKL13] that are induced by the transit
nodes [ALS13].

Labeling Algorithms. Another framework of algorithms that reorganizes the shortest
path structure of the network in order to perform distance queries is called Labeling
Algorithms [Pel00]: During preprocessing, a label L(u) is computed for each vertex u
of the graph, such that, for any pair of vertices u, v, their distance dist(u, v) can be
determined by only looking at the labels L(u) and L(v). Interestingly, general graphs
have labels of size at least @(|V|) [GPPR04], which is too large to be practical.
However, for networks with small highway dimen-
sion i [AFGW10], the following labeling algorithm admits s
labels of size O(Ahlog D). Here, A is the maximum degree

and D the diameter of the graph. Note that in [AFGW10] road ° .. . R
networks are conjectured to have small highway dimension. °
The label L(u) of each vertex u consists of a set of vertices P
and their distances from u, such that the following cover prop- Y
erty holds: For any two vertices s, t the intersection of L(s), . ®, .
L(t), and the shortest s—t path P is nonempty. Then, the dis- °

° [ ]

tance dist(s, t) can be determined in linear (in the label size)
time by evaluating dist(s,t) = min{dist(s,u) + dist(u, ) |
u € L(s) and u € L(t)}. Also see Figure 2.11 for an illus- o
tration of this labeling method. Note that in [AFGW10] the
bound O(AhlogD) is achieved by a theoretical algorithm
that computes labels according to small shortest path covers
at different scales.

Figure 2.11. lllustrating hub labels
of vertices s (blue) and ¢t (red). The
intersection is drawn green.

A practical (and highly engineered) implementation of the labeling scheme is
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Hub Labels [ADGW11]. Essentially, the label of vertex u is defined by the (upward)
search space of a Contraction Hierarchy query from u, but with suboptimal entries
removed. At the time of writing, this algorithm is the fastest method for exact
point-to-point queries in road networks: After roughly 2.5h of preprocessing, in
which it produces 21.3GiB of data, queries can be answered in about 0.25ps on
average. Note that this is within only a factor of five of the memory access time
on the considered machine. Beyond different implementations that trade query
time for space [ADGW11], several optimizations that obtain smaller labels in less
time [ADGW12] and that efficiently compress the labels (yielding the HLC algo-
rithm) [DGW13], exist. Moreover, due to the very simple query algorithm, Hub
Labels can even be implemented on top of relational databases in SQL [ADF*12].

Compressed Path Databases. The final method we review in this section is Com-
pressed Path Databases (CPD) [Botll]. Originally developed in the context of
pathfinding in game maps, the technique has been recently adapted to road net-
works [BH13]. Its goal is to efficiently store all-pairs shortest path information, such
that the shortest path can be retrieved quickly during the query. It therefore maintains,
for each vertex u € G, a label L(u) that stores the first move (or first to u incident
arc) of the shortest path toward every (other) vertex v of the graph. The query then
starts at the source vertex s and scans L(u) for t, which immediately yields the first
arc (s, u) of the shortest path (to t). The algorithm then recurses on u until it reaches ¢.

Storing, for each vertex, the first arc of the shortest path to every other vertex ex-
plicitly, results in O( ]V\Z) amount of data, which is prohibitive. Therefore, in [BH13]
the data is compressed in a lossless fashion, based on the intuition that vertices of
the same geographic region are likely to share the same first move from vertex u.
The algorithm groups vertices that share the same first move into nonoverlapping
geometric rectangles, and it only stores those with u. Further compression techniques
include list trimming (implicitly storing the most frequent first move as a default),
run length encoding, and sliding window compression on the rectangles.

Note that CPD can be seen as a hybrid goal-directed and table-based technique
which shares some similarities with Geometric Containers [WWZ05]. However, an
advantage of CPD over Geometric Containers (and in fact also other techniques) is
that the first arc of the shortest path is returned immediately at the beginning of the
query. In contrast, with Dijkstra-based methods the first arc of the shortest path is
usually not known before the end of the algorithm’s execution.

2.1.6. Combinations

Besides individual speedup techniques, systematic combinations of them have been
studied as well [SWW00, HSWW06,BDS*10]. We briefly recap them in the following.
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Basic Combinations. In [HSW04, HSWWO06] the following combinations for some
of the early speedup techniques have been considered. Goal-directed (A*) search
and bidirectional search, A* search and multilevel overlay graphs, A* search and
Geometric Containers (using bounding boxes), bidirectional search and multilevel
overlay graphs, as well as, bidirectional search and Geometric Containers. The
conducted experiments indicate that the combination of A* with multilevel overlay
graphs has the best performance on road networks.

Note that most of the combinations work out of the box, though some, such as
bidirectional geometric containers, may require additional auxiliary data. Moreover,
the combination of A* with bidirectional search requires a careful (quite conservative)
adaption of the stopping criterion, since otherwise queries may be incorrect [Poh69].
Unfortunately, this results in poor performance [KK97]. Therefore, in [HSWWO06] the
backward search uses the same potentials as the forward search. As a result, it is not
goal-directed (toward s), but a stronger stopping criterion can be applied.

Moreover, in [SWWO00] Geometric Containers, multilevel overlay graphs, and A*
have been combined. However, they were only evaluated on railway networks, on
which speedups in the order of 60 have been observed.

REAL. The REAL algorithm combines Reach, ALT and bidirectional search [GKW09].
Recall that ALT uses A* search with landmarks and the triangle inequality. To
enable the stronger stopping criterion of bidirectional search, REAL combines the
forward and backward potential functions 7y and 71, to obtain feasible potentials
via (7ty — 71,) /2 (forward search) and (71, — 71¢) /2 (backward search). Moreover, a
variant of the algorithm uses reach-aware landmarks: Landmarks and their distances
are only precomputed for vertices with high reach values, which drastically reduces
space consumption.

Core-ALT and HH*. Recall that the ALT algorithm [GHO05] precomputes landmark
distances for all vertices and landmarks in the graph, which results in a very high
space consumption. This is remedied by Core-ALT [BDS*10,DN12]: It first computes
an overlay graph for a (small) subset (e.g., 1%) of important vertices, which is
also called core graph. Core vertices are determined by, e. g., selecting the top most
important vertices from a contraction hierarchy [GSSV12]. Landmark selection and
their distance computation is then restricted to this core graph. The query works in
two phases: The first runs a bidirectional search from s and t (which are possibly not
in the core), until all branches of the shortest path trees are covered by core vertices.
The second phase then runs ALT between these entry and exit vertices restricted to
the core. Note that if t is not part of the core, the query must first determine the
closest (to t) core vertex, which is then used as proxy in the triangle inequalities of
ALT. Speedups of this method are less, if compared to other combinations. However,
(Core-)ALT is very robust with respect to the input [BDW11] and can also be applied
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in dynamic [DW07] and time-dependent [DW09b, DN12] scenarios

Using Highway Hierarchies [SS12a] (instead of Contraction Hierarchies) together
with ALT results in the HH* algorithm [DSSW09b]. Similarly to Core-ALT, landmarks
and distances are only computed for important vertices and the query also works in
two phases, where the first does not utilize goal-directed search.

ReachFlags. The ReachFlags method [BDS™10] combines Reach with Arc Flags. The
preprocessing algorithm first computes (approximate) reach values for all vertices
in G [GKWO07]. In a second step, it extracts the subgraph H induced by all vertices
whose reach value exceeds a certain (tuning) parameter. Arc-Flags are then only
computed for the restricted subgraph H. The query runs, similarly to Core-ALT, two
separate phases: The first utilizes a regular Reach query on G until all branches of
the shortest path trees are covered by vertices from H. The second phase runs a
combined Reach and Arc Flags query between these entry and exit vertices of H.

SHARC. The SHARC algorithm [BD09], which stands for shortcuts with arc flags,
combines the computation of shortcuts with multilevel arc flags. The preprocessing
algorithm first determines a partition of the graph and then computes shortcuts and
arc flags in turn. Shortcuts are obtained by contracting unimportant vertices with the
restriction that shortcuts never span different cells of the partition. The algorithm
then computes arc flags such that, for each cell C, the query only uses a shortcut arc if
and only if the target vertex is not contained in C. This results in an algorithm that is
unidirectional and hierarchical: Arc flags not only guide the query toward the target,
but also vertically across the hierarchy (of contracted vertices). This makes SHARC
an excellent algorithm for scenarios where a backward search is prohibitive, such as
in time-dependent route planning [Dell1]. In addition, extensions of SHARC exist
that reduce space consumption [BDGW10] and compute Pareto paths with respect to
several optimization criteria [DW09a].

CHASE. Combining Contraction Hierarchies with Arc Flags results in the CHASE
algorithm [BDS"10]: During preprocessing, a regular contraction hierarchy is com-
puted and the search graph that includes all shortcuts is assembled. The algorithm
then extracts a subgraph H from the search graph that is induced by the top k
vertices of highest rank (with respect to the contraction order). Bidirectional arc
flags (and the partition) are finally computed on the restricted subgraph H. The
query runs, similarly to ReachFlags, two phases. The first performs a regular (bidi-
rectional) Contraction Hierarchies search until the subgraph H covers all branches
of the forward and backward shortest path trees. The second phase continues the
Contraction Hierarchies query but also utilizes the arc flags. Arc Flags accelerate
Contraction Hierarchies by about a factor of 10 with little additional overhead in
space consumption [BDS*10].
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Figure 2.12. Preprocessing and average query time performance for algorithms with available
experimental data on the European road network (and travel time metric). Connecting lines
indicate different tradeoffs for the same algorithm. Figures for Reach, HH, HNR, ALT, Arc Flags,
REAL, HH*, SHARC, CALT, CHASE, ReachFlags and TNR + AF are taken from [BDS™*10]. Figures
for TNR are taken from [BDS™10] and [DGW13]. Figures for Hub Labels are taken from [ADGW12]
and [DGW13]. The figure for HPML stems from [ADGW11]. Contraction Hierarchies (CH) figures
are taken from [GSSV12]. CRP (and the corresponding PUNCH) figures are taken from [DGPW14].
Note that CRP uses a more realistic graph model that also includes turn costs. Finally, the table
lookup figure is based on the time of a single memory access and the precomputation time of | V|
shortest path trees using PHAST [DGNW13]. We remark that some preprocessing times, e. g., of
Arc Flags and CHASE, could be accelerated by also using PHAST. Here, all figures correspond to a
sequential execution of the algorithm and are (if necessary) scaled to a common machine (AMD
Opteron 2218 with 2 x 1 MiB L2 cache). The figure is inspired by [Som12].

Transit Node Routing with Arc Flags. The final combination we survey is called
Transit Node Routing with Arc Flags (TNR+AF) [BDS*10]. Recall that the bottleneck
of the TNR query is performing the table lookups between pairs of access nodes
from A(s) and A(t). To reduce the number of lookups, TNR+AF’s preprocessing
decomposes the set of transit nodes T into k regions. Then, for any vertex s and each
of its access nodes u € A(s), it encodes in a k-bit vector to which regions the vertex u
is important. More precisely, it sets the i-th bit to true, if there is a shortest path to a
transit node v of region i that uses u as access node for a shortest path from s. The
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query then only considers those access nodes from s that have their bits set with
respect to the regions of A(t) (and vice versa). TNR+AF requires quite some space to
store the flags (a factor of two more compared to plain TNR), however, query times
of only 1.9 us on the road network of Europe make TNR+AF the fastest available
combination [BDS10]. Note that only Hub Labels has lower query times.

2.1.7. Theoretical Results

Besides the great amount of experimental work, also some theoretical results on route
planning in road networks exist. We briefly recap the most important and group
them by results on preprocessing complexity and query performance bounds.

Preprocessing Complexity. Query algorithms of almost all (previously in this sec-
tion) surveyed methods compute provably optimal paths. On the other hand, the
preprocessing phase often leaves some degree of freedom, which is usually filled
in a heuristic way. For example consider Contraction Hierarchies [GSSV12]. Here,
the vertex order determines the number of added shortcuts and, as such, the perfor-
mance of the query algorithm. More generally, one may ask how to perform exact
preprocessing such that the (average or worst case) query time is minimized. Note
that, since query time is hard to analyze, one often uses search space as a proxy.

Shortcuts are an ingredient to many hierarchical speedup techniques, such as
SHARC [BD09]. Deciding whether a fixed number k of shortcuts can be added
to a graph, such that the search space size decreases by at least a constant ¢ on
average, is an NP-hard problem. However, a greedy factor-k approximation algorithm
exists [BDD"12]. Unfortunately, it turns out that optimal preprocessing is also
NP-hard for the following methods [BCK*10]: ALT (with respect to landmark
selection), Arc Flags (with respect to the partition), SHARC (with respect to the
shortcuts), Multilevel Overlay Graphs (with respect to the separator), and Contraction
Hierarchies (with respect to the vertex order). Finally, in [BBRW13] preprocessing of
Arc Flags is analyzed in more detail and on restricted graph classes, such as paths,
trees, and cycles. It turns out that determining optimal partitions (which minimize
the query’s search space) is already NP-hard for binary trees.

Performance Bounds. Besides complexity, theoretical performance bounds for query
algorithms, which aim to explain their excellent practical performance, have also been
considered. However, proving better running time bounds than that of Dijkstra’s
algorithm seemed long challenging. In fact, it is not hard to construct inputs for
which most algorithms admit no speedup [AFGW10]. Therefore, a (theoretical)
explanation for the great practical performance of these speedup techniques can only
be achieved in conjunction with a formalization of a suitable property that defines
some key features of real world road networks.
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In a seminal paper by Abraham et al. [AFGW10], such a graph property, called High-
way Dimension, is proposed. Roughly speaking, a graph has highway dimension £,
if at any scale r and any vertex u, in the ball B,(u) of radius r around u, all short-
est paths of length r/2 can be covered with at most & vertices. Depending on #,
bounds for Reach, Contraction Hierarchies, and the labeling method exist that
only depend on £, the graph’s diameter D, and its maximum degree A [ADF*11].
More precisely, after running a polynomial time preprocessing routine, which
adds O(hloghlogD) shortcuts to G, Reach and Contraction Hierarchies run in
time O((A + hloghlogD)(hloghlogD)), and the labeling algorithm runs in time
O(A + hloghlog D). Note that in [AFGW10], it is conjectured that road networks
have small highway dimension. These bounds, in particular the polynomial time
preprocessing algorithm, are achieved in [ADF*11] by connecting the notions of
highway dimension and VC-dimension [VC71].

Besides these results, Rice and Tsotras [RT12] analyze the (heuristic variant of
the) A* algorithm and obtain bounds on the search space size that depend on the
underestimation error of the potential function. Also, maintaining and updating
multilevel overlay graphs have been theoretically analyzed in [BCD"08]. For Transit
Node Routing, instance-based lower bounds on the size of a transit node set that
must cover shortest paths at a certain scale, are given in [EF12]. Regarding the
labeling method, bounds on the label size for different graph classes are given
in [GPPRO4], and approximation algorithms that compute small labels have also been
studied [CHKZ03, BGGN13].

Finally, Contraction Hierarchies have been analyzed in [BCRW13] by connecting
them to the notions of filled graphs [Par61] and elimination trees [Sch82]. Nested
dissections of G imply vertex orders for CH, such that for graphs of treewidth k the
search space of CH is bounded by O(klog|V|). Similarly, for minor-closed graph
classes with balanced O(/]V|)-separators, the search space is bounded by O(1/|V]).

2.2. Journey Planning in Public Transit Networks

This section surveys related literature on journey planning in (schedule-based) public
transit networks. In this scenario, the input is given by a timetable. Roughly speaking,
a timetable consists of a set of stops (or stations, platforms, etc), a set of routes (such
as bus lines), and a set of trips. Trips are individual vehicles that visit the stops along
a certain route at a specific time of the day. (See Section 4.1 for a precise definition.)

A key difference to road networks is that public transit networks are inherently
time-dependent: Certain segments of the network can be traversed at specific, discrete
points in time, only. As such, the first challenge concerns modeling the timetable
appropriately in order to enable the computation of journeys. While in road networks
the objective to compute a single shortest path (i.e., quickest journey) is often
sufficient, in public transit networks more involved problems (e. g., taking several
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optimization criteria into account simultaneously) are important. We address them
in a separate modeling Section 2.2.1.

Work on accelerating queries for efficient journey planning started by Schulz et
al. in [SWW99]. Since then, a great amount of algorithms were developed that
concern—besides accelerating the query—extended scenarios that incorporate delays,
compute robust journeys, or optimize additional criteria, such as monetary cost.

Real world journey planning systems include ARTADNE [BS88], which was in use
by the German railways and later superseded by HAFAS (HaCon Fahrplan-Auskunfts-
System) [HaC] from HaCon [HaC84]. Another commercial system, especially used
by many local transit agencies, is EFA (Elektronische Fahrplanauskunft) from Mentz
Datenverarbeitung [Men]. The system TRAINS [TS88, TS91] has been used by the
Dutch railways as a prototype. Finally, the Transfer Patterns algorithm [BCE10] is
currently in use by Google Transit [Gool0] and RAPTOR (which was developed in
this thesis; see Section 4.6) is currently in use by OpenTripPlanner [Opel2].

2.2.1. Modeling

The first challenge is to model the timetable in order to enable algorithms that
compute optimal journeys. Since the shortest path problem is well understood in
the literature, it seems natural to build a graph G = (V, A) from the timetable such
that shortest paths in G correspond to optimal journeys. Two main approaches
exist: The time-expanded approach and the time-dependent approach. We review them
in the following and also look at the type of problems one is often interested to
solve. Besides individual publications, there is an excellent overview article by
Miiller-Hannemann et al. [MSWZ07]. Also, see Sections 4.2 and 4.3 for more details.

Time-Expanded Model. Recall that the input, i. e., the timetable, is time-dependent
by definition (cf. Section 4.1). Based on the fact that these time-dependent events (e. g.,
a vehicle departing at a stop) happen at discrete points in time, the idea of the time-
expanded model is to build a space-time graph (often also called an event graph) [PS98]
that “unrolls” time. Roughly speaking, the model creates a vertex for every event of
the timetable, connects subsequent events in direction of time flow by arcs. In [M6h99,
SWWO00] a basic version of the model is used to compute shortest paths: For every
departure and arrival event, it contains a vertex, and each subsequent departure and
arrival event is connected by a connection arc. To enable transfers between vehicles,
all vertices at the same stop are (linearly in order of time) interlinked by transfer arcs.
Miiller-Hannemann and Schnee [MWO01] extend the model to distinguish trains (to
optimize the number of taken transfers during query) by subdividing each connection
arc by a new vertex, and then interlinking the vertices of each trip (in order of travel).
In [PSWZ08] the time-expanded graph is extended to incorporate minimum change
times (given by the input) that are required as buffer when changing trips at a station:
In their realistic model they introduce an additional transfer vertex per departure
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event, and connect each arrival vertex to the first transfer vertex that obeys the
minimum change time constraints. Finally, the model has been further engineered
in [DPWQ9b] to reduce the number of “redundantly” explored arcs during query.
Also see Section 4.3.2 for details.

Time-Dependent Model. The main disadvantage of the time-expanded model is
that the resulting graphs are fairly huge [PSWZ04a]. The time-dependent approach,
in contrast, produces significantly smaller (in terms of number of vertices and arcs)
graphs by not unrolling the timetable. Instead, time-dependencies are encoded by
travel time functions on the arcs that map departure times to travel times. Evaluating
the cost of an arc then depends on the time, at which it is traversed. A general analysis
of time-dependent shortest paths under various waiting constraints is conducted
by Orda and Rom [OR90,OR91]. It turns out that the shortest path problem can
be efficiently solved if travel time functions are nonnegative and FIFO, i.e., waiting
never pays off.

In the context of computing optimal journeys in public transit networks, the time-
dependent approach has been proposed in [BJ04]. Here, vertices correspond to stops,
and an arc is added from u to v, if there is at least one trip serving the corresponding
stops in this order. Precise departure and arrival times are encoded by the associated
travel time function of the arc (u#,v). In [PSWZ08] this basic model has been further
extended to enable minimum change times. Roughly speaking, it creates, for each
stop p and each route that serves p, a dedicated route vertex. Route vertices at p are
connected to a common stop vertex by arcs with constant cost depicting the minimum
change time of p. Trips are distributed among route arcs that connect the subsequent
route vertices of a route. In addition, a model that handles variable change times
that allow arbitrary minimum change times between pairs of routes is also presented
in [PSWZ08]. See Section 4.3.3 for details.

Problem Variants. In road networks an obvious problem is to compute the quickest
route (that is, the shortest path). Hence, much research focused on this task. For
public transit networks, however, several problems arise that are equally important.
We briefly review them in the following.

The simplest is the earliest arrival problem, which has been first considered by Schulz
et al. [SWWO00]. Given source and target stops ps, pr and departure time 7, it asks for
a journey that departs p; no earlier than T and arrives at p; as early as possible.

The range problem (also called profile problem) was first considered in the context of
public transit networks by Nachtigall [Nac95]. It drops the departure time from the
input. Instead, it asks for a set of journeys of minimum travel time that all depart
within a given time range (possibly the full day).

Both the earliest arrival and the range problems only consider (arrival or travel)
time as criterion. However, in public transit networks other criteria, such as the
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number of transfers, are just as important. Therefore, Miiller-Hannemann and
Weihe [MWO01] consider the multicriteria problem. Given source and target stops ps, p:
and departure time T as input, it asks for a (maximal) Pareto set 7 of nondominating
journeys with respect to the considered optimization criteria. Thereby, a journey [
dominates journey Jp, if J; is better or equal in all criteria than J,. Further variants of
the problem relax or strengthen these domination rules [MW01, MS07].

2.2.2. Search Algorithms without Preprocessing

This section discusses algorithms that solve one of the aforementioned problems,
without yet employing a preprocessing phase. We group them by the respective
problem they solve. Note that these algorithms can instantly be used in dynamic
scenarios that include delays, route changes, or trip cancellations.

Earliest Arrival Problem. Computing earliest arrival queries on the time-expanded
model can be achieved by Dijkstra’s algorithm [SWWO00]. The algorithm is initialized
with the vertex that corresponds to the smallest (in time) event of the source stop ps
that occurs after T (in the realistic model, a transfer vertex must be selected). The
first scanned vertex associated with the target stop p; then represents the earliest
arrival s—t journey. On time-dependent graphs Dijkstra’s algorithm can be augmented
to compute shortest paths [CH66, Dre69], if the cost functions are nonnegative and
FIFO [OR90,OR91]. The only modification is the following: Whenever the algorithm
scans an arc (u,v), its cost is evaluated at time T 4 dist(s, #). Note that the algorithm
retains the label-setting (cf. Section 2.1.1) property, i. e., vertices are scanned at most
once. In the time-dependent public transit model, the query is run from the stop
vertex corresponding to ps and the algorithm may stop as soon as it extracts p; from
the priority queue.

Recently, a new approach to compute earliest arrival queries, called Connection Scan
Algorithm (CSA) [DPSW13], has been developed. It is not graph-based and uses no
priority queue. Instead, it organizes the connections of the timetable in a single array,
sorted by departure time. The query then only scans over this array once, which
turns out to be very efficient in practice.

Range Problem. The range problem can be solved on the time-dependent model by
variants of Dijkstra’s algorithm. The first variant, which has been studied in [Nac95,
Dea99], maintains at each vertex u of the graph a travel time function (instead of a
scalar label) depicting the optimal travel times from s to u for the considered time
range. Whenever the algorithm relaxes an arc (u,v), it links the travel time function
associated with u to the (time-dependent) cost function of the arc (u,v). The resulting
function is then merged into the (tentative) travel time function associated with the
vertex v. The algorithm loses the label-setting property, since travel time functions
cannot be totally ordered. As a result the algorithm may reinsert vertices into the
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priority queue whenever it finds a journey that improves the travel time function of
an already scanned vertex. Another algorithm, considered in [Baul2], exploits the
fact that trips depart at discrete points in time. It, therefore, does not propagate the
full function when it relaxes an arc, but considers each connection point that represents
a discrete departure event. By these means, the number of redundant vertex scans
can be significantly reduced.

Finally, the Connection Scan Algorithm has also been extended to the range
problem in [DPSW13]. It uses the same array of connections, ordered by departure
time, as for earliest arrival queries. It still suffices to scan this array once, even to
obtain optimal journeys to all stops of the network.

Multicriteria Problem. The multicriteria problem received quite some attention in
the literature. Computing Pareto sets of shortest paths in (general) graphs can be
done by extensions of Dijkstra’s algorithm (see [EG02] for a survey on multicriteria
combinatorial optimization). More specifically, the Multi-Label-Correcting (MLC)
algorithm [Han79, Mar84, The95, M6h99] extends Dijkstra’s algorithm by keeping, for
each vertex, a bag of nondominated labels. Each label is represented as a tuple, with
one entry per optimization criterion. The priority queue maintains labels instead of
vertices and orders them lexicographically. In each iteration, it extracts the minimum
label L and scans the incident arcs a = (u,v) of the vertex u associated with L. It
does so by adding the cost of 2 to L and then merging L into the bag of v, eliminating
possibly dominated labels on the fly.

On the time-expanded model this algorithm has been considered in a framework
called PARETO by Miiller-Hannemann and Schnee [MS07]. They optimize arrival
time, ticket cost, and number of transfers. On the time-dependent model, computing
Pareto sets of journeys for arrival time and number of transfers has been consid-
ered in [PSWZ08]. Disser et al. [DMS08] propose three optimizations to MLC that
reduce the number of queue operations: Hopping reduction, label forwarding, and
dominance by early results (also called target pruning in this thesis).

In [Han79] it is observed that Pareto sets may contain exponentially many solutions,
even for the restricted case of two optimization criteria. To accelerate the query,
one can compute approximate solutions, for example, by relaxing domination. In
particular, (1 + €)-Pareto sets have provable polynomial size [PY00] and can be
computed efficiently [Lor84, Whi86, TZ06]. This approach has been applied to public
transit journey planning in [MS07]. For the case of optimizing earliest arrival time
and number of transfers, the Layered Dijkstra (LD) algorithm [B]J04, PSWZ08] is also
more efficient: Given an upper bound K on the number of transfers, it copies the
graph into K layers, rewiring transfer arcs to point to the next higher level. It then
suffices to run a time-dependent (single criterion) Dijkstra query from the lowest
level to obtain Pareto sets.

29



Chapter 2. Literature Overview

2.2.3. Speedup Techniques

This section gives an overview on preprocessing-based speedup techniques for
journey planning in public transit networks. Most research focused on adapting
existing methods from road networks. This seemed quite natural because of their
exceptional performance on those networks (see Figure 2.12). Unfortunately, the
speedups observed in public transit networks are several orders of magnitude lower.
This is to some extent explained by the quite different structural properties of transit
and road networks [Bas09]. Thus, developing efficient preprocessing-based methods
for public transit remains a challenging goal.

Some road network methods were tested on public transit graphs without per-
forming realistic queries (i. e., according to one of the problems from Section 2.2.1).
In [HSWWO06] basic combinations of bidirectional search, goal directed search, and
Geometric Containers have been evaluated on a simple stop graph (with average
travel times). In [BDW11] bidirectional search, ALT, Arc Flags, Reach, REAL, High-
way Hierarchies, and SHARC were evaluated on time-expanded graphs. Moreover,
Core-ALT, CHASE, and Contraction Hierarchies were evaluated in [BDS™10] (also on
time-expanded graphs). Note that both [BDW11] and [BDS"10] run point-to-point
queries between arbitrary vertices (events) of the graph.

A* Search. Basic goal-directed A* search [HNR68] has been considered on time-
dependent graphs in the context of road networks in [Fli04]. On public transit
networks, it has been applied to the time-dependent model in [DMS08] (in the context
of multicriteria optimization). Here, lower bounds for each vertex u to the target
stop p; are determined (before the query) by running a backward search (from p;)
using the (constant) lower bounds of the travel time functions as arc cost.

ALT. The (unidirectional) ALT [GHO5] algorithm has been adapted to both the time-
expanded [DPW09b] and the time-dependent model [Del11] for computing earliest
arrival queries. In both cases, landmark selection and distance precomputation
is performed on an auxiliary stop graph: Vertices correspond to the stops of the
timetable, and an arc is added between two stops p;, p;, if there is a trip that serves p;
and p; (in this order) without intermediate stop. Arc costs depict lower bounds on
the travel time between their incident stops.

Geometric Containers. Geometric containers [SWW00, WWZ05] have been exten-
sively tested on the time-expanded model for computing earliest arrival queries. (In
fact, they were developed in the context of this model.) In [SWWO00] the algorithm
has been evaluated using angular sectors as container, while more sophisticated
containers have been tested in [WWZ05]. The latter work concludes that bounding
box containers perform best.
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Arc Flags and SHARC. Arc Flags [Lau04] have been adapted to the time-expanded
model as follows [DPW09b]: First, the partition is computed on the stop graph, which
is defined equally to ALT. Then, for each boundary stop p of cell C, and each of its
arrival vertices, a backward search in the time-expanded graph is performed. It is
observed in [DPW09b] that in public transit networks many paths of equal length
exist between the same pair of vertices. This makes the consideration of appropriate
tie breaking rules important. Furthermore, [DPW09b] combines Arc Flags with ALT
and Node Blocking—a technique that avoids exploring redundant parts of the graph.

SHARC, which combines Arc Flags with shortcuts [BD09], has been tested on the
time-dependent model with earliest arrival queries in [Dell1]. Moreover, Arc Flags
for the Multi-Label-Correcting algorithm (MLC) have been considered for computing
full (i.e., using strict domination) Pareto sets regarding the criteria arrival time
and number of transfers on a realistic time-dependent model that handles traffic
days, train attributes, and minimum change times [BDGMO09]. In time-dependent
graphs, a flag must be set, if its arc is at least once during the day on a shortest
path toward the respective cell [Delll]. In order to improve performance, one can
use different sets of flags for different times of the day (e.g., every two hours).
Beyond that, [BDGMO09] combines Arc Flags with shortcuts (similarly to SHARC)
to gain additional speedups and [BGM10] further exploits a property called event-
dependent c-optimality. Combining all these optimizations, the total speedup of
the algorithm is still below 15, from which it is concluded that “accelerating time-
dependent multicriteria timetable information is harder than expected” [BDGMO09].

Overlay Graphs. Using overlay graphs [SWWO00,SWZ02] to accelerate queries has
been—similarly to Geometric Containers— introduced in the context of public transit
journey planning. In [SWWO00] single level overlays are computed between “im-
portant” hub stations in the time-expanded model. Thereby, importance values are
determined by the input. Multilevel overlay graphs based on vertex separators were
developed in the context of time-expanded graphs in [SWZ02]. A systematic exper-
imental study, which also includes time-expanded transit networks, is conducted
in [HSWO8].

Contraction Hierarchies. The Contraction Hierarchies algorithm [GSSV12] has been
adapted to the realistic time-dependent model with minimum change times for
computing earliest arrival and range queries [Geil0]. It turns out that simply applying
the algorithm to the route model graph results in too many shortcuts to be practical.
Therefore, contraction is performed on a condensed graph that contains only a single
vertex per stop. Minimum change times are then ensured by the query algorithm,
which must maintain multiple labels per vertex.
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Transfer Patterns. A speedup technique specifically developed for public transit
networks is called Transfer Patterns [BCET10]. It is based on the observation that
many optimal journeys share the same transfer pattern, i.e., the sequence of stops
where a transfer occurs. These transfer patterns are precomputed for all pairs of
stops during preprocessing. Then, given source and target stops ps, p;, the query
quickly builds a search graph of (at least) the relevant transfer patterns to get from p;
to p:. Note that arcs in this graph represent direct travel between transfers. Dijkstra’s
algorithm (or MLC) can then be applied to this significantly smaller search graph.

Precomputing transfer patterns between all pairs of stops turns out to be too
expensive in practice. Therefore, a two levels approach (similarly to Transit Node
Routing), first selects a subset of important hub stops (cf. transit nodes). Global
transfer patterns are precomputed between these hub stops. Additionally, for each
regular stop, local transfer patterns are computed toward (and from) its relevant
hub stops (cf. access nodes). Unfortunately, preprocessing times are still impractical
on continental networks. Therefore, one may trade optimality for a more practical
preprocessing, which restricts the computation of local transfer patterns to at most
three legs (two transfers). By these means, preprocessing times drop to slightly over
3000 hours (on the large-scale transit network of North America), which then enables
queries in the order of 10 ms (earliest arrival and multicriteria). The Transfer Patterns
algorithm is currently in use by Google Transit [Goo10, BCE*10].

TRANSIT. Finally, Transit Node Routing [BFM 07, BFSS07, BEM09,5509] has been
adapted to public transit journey planning in [AW12]. Preprocessing of the result-
ing TRANSIT algorithm uses the (small) stop graph to determine a set of transit
nodes (with a similar method as in [BFM09]), between which it maintains a distance
table that contains sets of journeys with minimal travel time (over the day). Each
stop p maintains, in addition, a set of access nodes A(p), which is computed on
the time-expanded graph by running local searches from each departure event of p
toward the transit stops. The query then uses the access nodes of p; and p; and the
distance table to resolve global requests. For local requests, it runs goal-directed A*
search.

2.2.4. Extended Scenarios

Besides computing journeys according to one of the problems from Section 2.2.1,
extended scenarios, e. g., incorporating delays, have been studied as well.

Uncertainty and Delays. Trains (and other means of transport) are often prone
to delays in the real world. Thus, handling delays (and other uncertainty) is an
important aspect of a practical journey planning system. Miiller-Hannemann and
Schnee [MS09] consider the online problem where delays, train cancellations, and
extra trains arrive as a continuous stream of information. They present an approach
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which quickly updates the time-expanded model to enable queries according to the
new traffic situation. A realistic stochastic model that predicts how such delays
propagate through the network is proposed in [BGMO11]. In particular, this model is
evaluated using real (delay) data from Deutsche Bahn.

In [DMS08] the computation of reliable journeys is studied via multicriteria opti-
mization. Thereby, the reliability of a transfer is defined by the probability that the
particular transfer can be made successfully. Note that by this notion, transfers (with
high chance of success) are also considered reliable, if no backup alternative for the
(unlikely) case that the transfer fails exists.

Therefore, Dibbelt et al. [DPSW13] minimize the expected arrival time. Instead of
journeys, their method outputs a decision graph depicting optimal instructions to
the user at each point of their journey. Note that these instructions include the
case that a connecting trip is missed. Interestingly, minimizing the expected arrival
time implicitly also minimizes the number of transfers: Each “unnecessary” transfer
introduces additional uncertainty which hurts the expected arrival time.

Finally, in [GKM*11, GKM*13] the computation of robust journeys is studied,
considering both strict robustness (i. e., computing journeys that are always feasible
for a given set of delay scenarios) and light robustness (i.e., computing journeys
that are most reliable when given some extra slack time). Strict robustness turns out
to be too conservative in practice, while the notion of light robustness seems more
promising.

Night Trains and Fares. Explicitly computing overnight train journeys has been
considered by Gunkel et al. [GMS07]. Interestingly, the optimization goals for such
journeys are quite different from regular “daytime” journeys: From a customer’s
point of view, the primary objective is usually to have a reasonably long sleeping
period. Moreover, arriving too early in the morning at the destination is often not
desired as well. In [GMS07] two approaches to compute overnight journeys are
presented. The first explicitly enumerates all overnight trains (which are given by
the input) and computes, for each, the optimal feeding connections. The second runs
multicriteria search with sleeping time as a maximization criterion.

Finally, several tariff schemes have been analyzed in [MS06]. Some of them
were also integrated as an optimization criterion (cost) into a multicriteria search
algorithm (called MOTIS), which works on the time-expanded model. However,
generally optimizing exact monetary cost is a challenging problem, since real world
pricing schemes are hard to capture by a mathematical model [MS06]. (See also
Section 4.6.6 where we optimize fare zones with our new McRAPTOR algorithm.)
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2.3. Journey Planning in Multimodal Networks

This section surveys literature on journey planning in multimodal networks. Here,
the general problem is to compute journeys that reasonably combine different modes
of transport by a holistic approach. Transportation modes usually considered in-
clude (unrestricted) walking, (unrestricted) car travel, (local and long-distance) public
transit, flight networks, and rental bicycle schemes. We emphasize that our definition
of “multimodal” requires at least some diversity from the aforementioned trans-
portation modes. Moreover, optimizing the choice (and sequence) of transportation
modes should be an explicit ingredient of the algorithm. That is, computing, e.g.,
earliest arrival journeys that arbitrarily select the transportation modes bus, tram,
and railway does not yet classify as multimodal journey planning (according to our
definition). Also, these networks could essentially be represented by a single public
transit timetable (cf. Section 2.2).

In fact, considering modal transfers explicitly in the algorithm is crucial in practice:
The computed solutions should be feasible, i. e., not contain a sequence of transport
modes which is impossible for the user to take (such as a private car between train
rides). Ideally, even preferences of the user should be respected (e. g., some users may
prefer a taxi over public transit at certain parts of the journey, others may not). See
Section 5 for more details on these issues.

We organize this section in two parts: Modeling issues and search algorithms.

2.3.1. Modeling

This section presents important modeling issues arising in the context of multimodal
journey planning.

Multimodal Networks. A general approach to obtain a multimodal network first
builds an individual graph model of each considered transportation mode and
then merges them to a multimodal graph, adding link arcs (or vertices) to enable
modal transfers [Paj09, DPW09a, YL12]. In [Paj09, DPW(9a] multimodal networks
consisting of the following graph models are studied. Car travel and walking are
both modeled as time-independent graphs, public transit networks are based on the
realistic time-dependent model [PSWZ08], and for the flight network a dedicated
flight model—which has been introduced in [DPWZ09]—is used. Beyond that,
Kirchler et al. [KLPC11, KLC12] compute multimodal journeys where car travel is
modeled as a time-dependent network in order to incorporate historic data on rush
hours and traffic congestions. (See [DW09b] for an overview on time-dependent
route planning in road networks.)

Combined Cost Functions. To avoid unreasonable combinations of transport modes,
one may utilize penalties in the objective function of the algorithm. Often such
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penalties are integrated into the objective function by linearly combining them with
the primary optimization goal (usually travel time). In [AZC07] a linear programming
approach with a linear objective function is presented that computes multimodal
journeys. A multimodal journey planning algorithm, called TRANSIT [AW12], uses
a linear utility function to incorporate travel time, ticket cost, and inconvenience of
transfers. In [MS98] a combined network of unrestricted walking, unrestricted car
travel, and public transit is considered. Journeys are optimized according to a linear
combination of several criteria, which also handles user preferences.

Label-Constrained Shortest Paths. A quite elegant approach that guarantees comput-
ing journeys that obey certain transport mode constraints, is called label-constrained
shortest paths approach [BJMOO]. It defines an alphabet X of transport modes and
each arc of the graph is labeled by the symbol from ¥ that represents its respective
transport mode. Then, given a language L over ¥ as additional input to the query, any
journey (path) must obey the constraints imposed by the language L. More precisely,
the concatenation of the labels along the path must satisfy L. The problem of comput-
ing shortest label-constrained paths becomes tractable for regular languages [BJMO00].
Fortunately, regular languages suffice to model reasonable transport mode constraints
in multimodal journey planning [BBJ*02, BBH08]. Often, even restricted classes of
regular languages are considered as constraints, for example, languages that impose
a hierarchy of transport modes [BBMO06, Paj09, DPW09a, KLPC11, KLC12, YL12], or
Kleene languages that can only globally exclude (and include) certain transport
modes [RT10].

Note that label-constrained shortest paths are also useful in other scenarios, such
as in database query optimization [MW95].

Multicriteria Optimization. While label-constraints are useful to define feasible jour-
neys, computing the (single) shortest label-constrained path may be disadvantageous
for two reasons. First, the user has to define the constraints, for which he has to
know the characteristics of the particular transportation network, and, second, no
alternative journeys that differently combine the available transportation modes
are computed. To obtain a set of diverse alternatives, multicriteria optimization
has been considered: In [YL12] sets of journeys are obtained which are prioritized
according to the preferred transport modes (given as user input). In [EL11] Pareto
sets that optimize several criteria are computed. Unfortunately, these sets can get
fairly large, containing many solutions with insignificant tradeoffs in the considered
criteria [BBS13]. This makes it necessary to identify the most significant solutions of
the Pareto set in a postprocessing step.
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2.3.2. Search Algorithms

This section discusses multimodal journey planning algorithms. Thereby, most work
focused on the label-constrained shortest path problem, for which also some speedup
techniques, which employ a preprocessing phase, exist. Note that the multicriteria
problem, can be solved—equivalently to journey planning in public transit networks—
by the MLC algorithm by applying it to the (integrated) multimodal graph.

Label-Constrained Shortest Paths. In [BJMO00] it is proven by construction that the
label-constrained shortest path problem is solvable in deterministic polynomial time.
The algorithm, called label-constrained shortest path problem Dijkstra (LCSPP-D), first
builds a product network of the input (i. e., the multimodal graph) and the (possibly
nondeterministic) finite automaton that accepts the regular language L. Then, for
source and target vertices s, t (referring to the original input), Dijkstra’s algorithm is
run on the just-constructed product network between all vertices that correspond to s
and the initial states of the automaton and those which correspond to t and the final
states of the automaton. A followup experimental study that evaluates this algorithm
using linear regular languages (a special case) has been conducted in [BBJ*02].

In [Paj09] the LCSPP-D algorithm has been combined with time-dependent Di-
jkstra [CH66] to compute journeys in multimodal networks that contain a time-
dependent subnetwork. The adaption of basic ingredients (to speedup techniques
in road networks; cf. Section 2.1), such as bidirectional search [Dan62], ALT [GHO05],
Arc Flags [Lau09, HKMS09], and shortcuts [SWWO00, SS505, GSSV12], has been ana-
lyzed in [Paj09] as well. Also, some basic speedup techniques, such as bidirectional
search [Dan62], A* [HNR68], and the Sedgewick-Vitter Heuristic [SV86] have been
evaluated in the context of multimodal journey planning in [Hol08, BBH09].

Access-Node Routing. A speedup technique developed for the label-constrained
shortest path problem (LCSPP) is called Access-Node Routing (ANR) [DPWQ9a]. It
handles hierarchical languages where walking and car travel is restricted to the begin-
ning and end of the journey. It works similarly to Transit Node Routing [BEM 07,
BFSS07, BFM09, SS09] and precomputes for each vertex u of the road (walking and
car) network its relevant set of entry (and exit) points (access nodes) to the public
transit and flight networks. More precisely, for any shortest path P originating from
vertex u (of the road network) that also uses the public transit network, the first
vertex v of the public transit network on P must be an access node of u. Having
computed these access nodes (with their corresponding distances), the query may
skip over the road network by running a multi-source multi-target algorithm on
the (much smaller) transit network between the access nodes of s and ¢, returning the
journey with earliest combined arrival time.

To further reduce preprocessing space and time, Access-Node Routing has been
combined with contraction, resulting in a method called Core-Based ANR [DPW09al].
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Similarly to Core-ALT [BDS*10,DN12], it precomputes access nodes only for road
vertices in a much smaller core (overlay) graph. The query algorithm must, thus,
first (quickly) determine the relevant core vertices of s and f (i. e., core vertices covering
the branches of the shortest path trees rooted at s and t), before it commences with a
multi-source multi-target ANR query between these core vertices.

Access-Node Routing has been evaluated on multimodal networks of interconti-
nental size that include—besides walking and car travel—public transit and flights.
It achieves query times in the order of milliseconds, however, preprocessing per-
formance strongly depends on the density of the public transit and flight net-
works [DPW09a] (see also Section 5.3.5). Moreover, the regular language is de-
termined during preprocessing and can, thus, no longer be specified as an input to
the query without losing optimality.

State-Dependent ALT. Another multimodal speedup technique for LCSPP is State-
Dependent ALT (SDALT) [KLPC11]. It augments the ALT algorithm [GHO5] based on
the idea that lower bounds from a vertex u may vary significantly depending on the
current state g of the automaton (corresponding to the considered regular language)
with which u is scanned. Thus, just precomputing a single landmark distance value
per vertex (like ALT) may result in poor bounds. In contrast, SDALT uses the
automaton to precompute state-dependent distances, providing lower bound values
per vertex and state. To further improve query performance, SDALT has also been
extended to handle incorrect lower bounds, which guides the search stronger toward
the target. To still maintain correctness, the query uses a label-correcting algorithm
(instead of Dijkstra’s algorithm), which may scan vertices multiple times [KLC12].
SDALT has been evaluated on a highly realistic multimodal network covering the
fle-de-France area (containing Paris) [KLPC11,KLC12], resulting in speedup factors of
up to 30. The considered transport modes include rental and private bicycles, public
transit, walking, and a time-dependent road network for car travel. Note that SDALT,
like ANR, also predetermines the regular language constraints during preprocessing.

Contraction Hierarchies. Contraction Hierarchies [GSSV12] have been adapted to
a restricted version of LCSPP that considers Kleene Languages [RT10, GRST12]. Note
that Kleene languages are a relatively strong restriction of regular languages: They
can specify which transport modes a journey may contain, but not the sequence in
which they are allowed to appear. However, the algorithm presented in [RT10] allows
arbitrary Kleene languages specified as a query input.

Therefore, the Contraction Hierarchies preprocessing is adapted as follows: Each
arc a € A maintains a set L(a) of labels from L, initially only containing the sym-
bol (from X)) depicting the transport mode represented by a. Whenever the algorithm
contracts a vertex v, it must determine, for each pair (u,v), (v, w) of arcs, whether
a shortcut from u to w is necessary to preserve distances. It does so by running
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a (modified) local search from u which excludes arcs whose labels contain symbols
from the set L\ (L(u,v) UL(v,w)). If the local search failed to find a shorter path
than the combined length of ¢(u,v) 4+ ¢(v,w), the shortcut (1, w) must be added,
and its associated label L(u, w) is set to L(u,v) U L(v, w). Note that by these means
parallel edges that contain different subsets of X in their labels may exist [RT10]. The
algorithm has been further extended in [GRST12] to handle even more flexible edge
restrictions (such as vehicle height) as a query input.
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Chapter

Fundamentals

out this work. In particular, we address graph theory, partitions, regular
languages, and finite automata. While we introduce most concepts that are
relevant to this work, we assume familiarity with basic set theory, predicate logic,
and basic tools for algorithm analysis, such as Landau notation. Also see [CLRS01].

W ITHIN THIS CHAPTER we introduce fundamental notion that is used through-

3.1. Graph Theory

Transportation networks can be modeled as graphs. Therefore, graphs are at the
very heart of this thesis. We introduce basic notions of graph theory in the following.
Moreover, in time-dependent networks (such as those arising in public transit) costs
can be reflected by special functions, which are also introduced here.

Graphs. A graph G = (V, A) consists of a set V of vertices and a set A of arcs. Usually,
the graphs we work with in this thesis are directed, that is, A C V x V consists of
ordered pairs of vertices. For two vertices u,v € V, we say there is an arc from u to v
in G, if and only if (u,v) € A holds. For short, we sometimes also write uv to refer to
the arc (1, v). Given an arc a = (u,v), we call u the arc’s tail and v the arc’s head. Note
that (u,v) and (v, u) are different arcs. For the case this distinction is not required,
we consider undirected graphs G = (V,E). They consist of a set V of vertices and a
set E of edges. Edges are (in contrast to arcs) defined as unordered pairs of vertices,
that is, we define them by E C {{u, v} | u,v € V}. Here, the edges {u,v} and {v, u}
are equal, however, the definitions of an edge’s tail and head do not apply. For the
remainder of this section we define notion using directed graphs. Most definitions
carry over to undirected graphs, naturally.

Given a graph G = (V, A), the reverse graph G = (G, Z) is obtained from G by
flipping all arcs, i.e., it holds that (u,v) € A < (v,u) € A. (Note that for the
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undirected case G = E.)

A vertex-induced subgraph (sometimes we may just write subgraph for short) of G,
is a graph G' = (V’, A’), such that V/ C V holds true, and A’ contains exactly
the arcs from A for which both incident vertices are in V’'. More precisely, A’ =
{(u,v) | (u,v) € Aand u,v € V'}. A less common type of subgraph is the arc-induced
subgraph G' = (V’/, A”). Here the set of arcs is defined as A’ C A and the set of
vertices is induced from A’ by V' = {u | u € V and 3(u,v) € A’ or (v,u) € A'}.

Attributes, Costs, and Functions. A graph G = (V, A) can be augmented by assign-
ing further attributes to its vertices and/or arcs. Of particular interest in this work
are arc costs which model the criterion one likes to optimize (for example, travel
time). Generally speaking, a cost function : A — R maps each arc to a real number.
If a = (u,v) € A is an arc, we interchangeably write ¢(a) and ¢(u,v) to refer to its
cost. Note that often costs are nonnegative, i.e., £ > 0. For example, negative values
for lengths or travel times make little sense.

Section 4.3 shows how timetables can be modeled as a graph. Because vehicles
in a timetable operate at specific times only, we require the notion of time-dependent
cost (as opposed to the previously defined time-independent or constant cost). More
precisely, /: A — F now maps each arc to a function f from a function space IF. We
refrain from using negative values from now on, hence, functions f € F are of the
form f: R>9 — R>g. For the purposes of this work, it is important that domain and
codomain of f have the same “unit”. In our case of travel times, f maps departure
time to travel time (which have both the unit seconds). This allows us to define
binary link (composition) and merge operations on F. Given two functions f,¢ € F,
the link operation is defined as

link(f,g) :== f+go (f +id). (3.1)

Here, id denotes the identity function, i.e., id(x) = x for any value x, and “o”
denotes the function composition operator. Sometimes we use the (equivalent)
infix notation f @ g to refer to link(f,g). Note that the link operation is neither
commutative nor associative, which makes the order of evaluation important. For
constant functions, i.e., f = {1 and g = /», the link operation simplifies to link(f, g) =
1+ 0s.

For two functions f,g € F, the merge (sometimes we also call it minimum)
operation is, on the other hand, defined as

merge(f, g) = min(f, g). (32)

Here, by min we denote the component-wise minimum of two functions, that is,
min(f, g)(x) = min(f(x),g(x)) for any value x. Note that F is closed under both
merge and link operations. Finally, by f we denote the minimum value min(f(x))
of f and with f the maximum value max(f(x)) for any x € R>o.
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If for a given value IT € R~ it holds that f(x) = f(x mod IT), we call f periodic
with period I1. Moreover, we say that f € FF fulfills the FIFO-property, if and only if

x1<x = X +f(x1) < xp +f(x2) for any Xxi, X3 € R>o (3.3)

holds true. Sometimes we also refer to this property as non-overtaking property: If x1, x,
are departure times mapped to travel times by f, Equation (3.3) basically states that
departing later (at x) will never make one arrive earlier (i.e., before x1 + f(x1)). If
any f € F fulfills the FIFO-property, we simply say that the whole function space IF
fulfills it. We now show that the FIFO-property is preserved by the merge and link
operations.

Lemma 1. Let f,¢ € [F be functions that fulfill the FIFO-property, then the functions
obtained by link(f, g) and merge(f, g) also fulfill the FIFO-property.

Proof. We first prove the lemma for the link operation. Because f and g fulfill the
FIFO-property, we have for any x1,x2 € R>:

x1<xp = x1+ f(x1) <x2+ f(x2) and

34
x1+ g(x1) < x0 4 g(x2). G4

Recall that for any x € R, link is defined as link(f, g)(x) = x + g(x + f(x)). Thus,
we obtain:

x1<x = x1+g(x) < x4 g(x2) (3.5a)
& x1+x1+g(x1) < x4+ x4+ g(x2) (3.5b)
& x1+x1+g(x+ f(x)) <xo+ x4+ g(x2 + f(x2)) (3.50)
< x1+link(f, g)(x1) < x2 +link(f, g)(x2). (3.5d)

Note that Equation (3.5b) follows from x; < x, and Equation (3.5c) holds because of
the FIFO-property of f. We now consider the merge operation. Again, because the
FIFO-property holds for f and g individually, we obtain from Equation (3.4):

x1 <xp = min[x; + f(x1),x1 +g(x1)] < x4+ f(x2) and (3.6a)
min[xq + f(x1),x1 + g(x1)] < 22+ g(x2), (3.6b)

from which immediately follows:

x1 < xp = min[x1 +f(x1),x1 + g(xl)] < min[xz —I—f(XQ),Xz + g(xz)] (3.7a)
< x1+min[f(x1),g(x1)] < x2 + min[f(x2), §(x2)] (3.7b)
& x1+merge(f,g)(x1) < xp +merge(f,g)(x2). (3.7¢)

This exactly proves our claim. We conclude that a function space [ is even closed
under merge and link, if FF fulfills the FIFO-property. n
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Paths, Cycles, and Trees. Of central relevance to this work is the notion of paths,
cycles, and trees, which we introduce next. Given a (directed) graph G = (V, A), a
path P is a sequence of vertices P = [uy, ..., u;] such that for every subsequent pair
of vertices u;u; 1, the arc (u;,u;,1) is contained in A. If u; and uy coincide, we call P
a cycle. A subpath P’ of P, also written P’ C P, is a subsequence of P’s vertices.

Two vertices u, v are connected in G, if there exists a u—v-path in G. If this is true
for all pairs of vertices, we call G strongly connected. A connected subgraph G’ of G
is called strongly connected component (of G). A graph G = (V, A) is called tree rooted
atu € V,if |A| = |V| — 1 holds, and for every vertex v € V exists a u—v-path in G.

The cost of a path P is the sum of the arc’s costs along P. More precisely,

K(P) = f(ZJl, 02) EBf(Uz, 03) D--- @f(vk,l,vk), (3.8)

which simplifies to Zi-:ll £(v;,viy1), if all arcs have constant cost. (Recall that & is
the infix notation of the link operation.) In the nonconstant case, the result ¢(P) is
a function itself, i.e., /(P) € F, hence, we may sometimes also write fp for ¢(P).
For designated source and target vertices s,t € V, an s—t-

9 02 path Ps; is a path such that u; = s and u = t. Let from now

on the arc’s costs be constant. This allows us to define the

notion of shortest paths: For given vertices s and ¢, a shortest s—
O\HO 5o  t-pathis an s—t-path with minimum cost (among all s—t-paths
that exist in G). Let P;; be a shortest s—t-path, then the
cost £(Ds;) is also referred to as distance (from s to t), denoted
O by dist(s, t). If no (shortest) path from s to t exists in G, we

define dist(s, t) = co. Moreover we define dist(u, 1) = 0 for

Figure 3.1. A (constant) weighted ~ any vertex u € V. In the case shortest paths are unique (that
graph with shortest path tree rooted is, for every pair s,t € V there is at most one shortest path
at vertex s. from s to t), the union of all shortest paths originating at
a common source vertex s forms a tree, called shortest path

tree (rooted at s). Figure 3.1 shows an example of a (weighted) graph with a shortest

path tree rooted at vertex s. Thick green edges are part of the tree (representing short-

est paths), and the green label of a vertex u denotes its distance from s, i.e., dist(s, u).

6

Metrics. A metricis a functiond: R x R — IR on the reals, that satisfies the following
properties for any values x,y,z € R:

d(x,y) >0 (non-negativity)
dlx,y) =0if x =y (identity)
d(x,y) = d(y,x) (symmetry)
d(x,z) <d(x,y)+d(y,z). (triangle inequality)

If all properties but symmetry hold for d, the function d is called a quasimetric. Note
that, if all arc costs are non-negative, the distance function dist (as defined above)
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in graphs is a quasimetric, as can be easily checked: Non-negativity and identity
hold by definition. Regarding the triangle inequality, assume that it is false. This
implies vertices u,v, w, such that dist(u, w) > dist(u,v) + dist(v, w). However, the
concatenation of the corresponding shortest paths P,, and P, results in an u—w-
path P with cost ¢(P) = dist(u,v) + dist(v, w) < dist(u, w) which is a contradiction.
If the graph is undirected, dist is a full metric, since for any vertices u,v € V reversing
the shortest u—v-path always yields a shortest v—u-path.

3.2. Partitions

Some of the algorithms in this work use partitions. While partitions can be defined
over any set of entities, we introduce them in the context of graphs.

Given a graph G = (V, A), a partition of the vertices V is
a family C = {Cy,...,Cx} of cells C; C V, such that each
vertex u € V is contained in exactly one cell C;. We augment
this definition to multiple levels, as follows. A nested multilevel

partition of L levels is a family {C!,...,CL} of partitions with
nested cells, that is, for each level ¢ < L and cell Cf € C! there

must exist a cell Cf“ € C"*1 on level £ + 1, such that C! C
Cf“ holds. We call CfH the supercell of C{ and C! a subcell

i

o
>
A

of Cj”l. For consistency, we define C* = V and C!*! = {V}.

i
L
o
7]

-
o
5
X

ASTICIaN

In other words, C° consists of a singleton cell for each vertex,
while C*! consists of a single cell that contains all vertices. An

(.

arc (u,v) € Ais called a boundary arc on level £, if and only if ' Figure 3.2. A graph partitioned

and v are in different cells of C’. In this case, 1 and v are called into two nested levels.
boundary vertices (of level /). Note that a boundary vertex of

level / is also a boundary vertex on all lower levels. The union of all boundary arcs
for a given level / is called the cut of level /. Usually, we aim for partitions with a
small cut. Figure 3.2 shows an example of a two-level partition of a graph. Boundary
vertices in the figure are marked black, while inner vertices are shallow.

3.3. Regular Languages and Finite Automata

Relevant to multimodal route planning are (regular) languages and finite automata.
They are used to define admissible sequences of transportation modes. We, therefore,
formally introduce basic notion for (regular) languages and finite automata in the
following.

Languages. All languages are based on symbols. Also formal languages are based
on this entity. We call a finite set ¥ of symbols alphabet. A sequence of symbols w =
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[1,09,...,0¢] from X is called word. Often, we omit the square brackets and just
write w = 0102 - - - 0% for short. The empty symbol (sometimes also called empty word)
is denoted by € and has zero length. Moreover, it holds for any word w that we = w
and ew = w. The length of a word, denoted by |w| is the number of (non-empty)
symbols it is composed of. For two words wy = 01 -- -0 and wy = 0y4q - - - 07, the
concatenation of wy with wy, denoted wyw; is defined as wywy = 04 - - - 040k 1 - - - 07.

A (not necessarily finite) set of words L over X is called a langauge. Regular set
operations, such as union and intersection, also apply to languages. For a given
language L, the i-th power language is defined, as follows. For i = 0, we set L? := {e}.
For any i > 0, we define L recursively by L' := {ww' | w € L'"! and w’ € L}. Having
this notion at hand, the Kleene closure of a language L is defined as

L*=[JL. (3.10)

i>0

Note that if L is not empty, then L* always yields a set with an infinite (but countable)
number of words. For the special case of L = %, the set ©* contains all words that
can be formed by symbols from X. Note that the empty word is always part of L*.
Finally, given two languages L; and L, the concatenated language L1 - L, is obtained
by Ly Ly :={ww' | w € Ly and v’ € L,}.

Of particular interest for multimodal route planning are regular languages. They are
a special class of languages according to the following definition.

Definition 1. Given an alphabet %, then a language L over ¥ is called reqular if and only if
it can be constructed by the following recursive rules.

* The empty language @ is regular.
* For each symbol o € %, the singleton language {c} is also regular.
* Finally, if Ly and Ly are regular languages, then so are L1 U Ly, Ly - Ly, and Lj.

Note that set intersection is excluded explicitly as a construction rule.

Automata. Having established the notion of regular languages, we now introduce
another representation of them, namely finite automata. A nondeterministic finite
automaton A is a tuple A = (S,%,6, [, F) that consists of a set S of states, a set &
of symbols (again, also called alphabet), a transition function 6: S x £ — P(S) (note
that P(S) denotes the power set of S) which maps a state and symbol to a set of states;
a set I of initial states, and a set F of final states. Note that any nondeterministic finite
automaton can be converted into a deterministic one. For a deterministic automaton it
has to hold that |I| = 1, and the transition function maps to S instead of P(S). In this
work, however, we focus on nondeterministic automata, since they suit our purpose
best.
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Often, we define automata in terms of their transition graph G4 = b
(V,A). Here, vertices from V depict states (in other words, V = 5), Q
and there is an arc uv € A, if and only if there exists a symbol o € X H a |
such that v € 6(u,0) holds. In this case, we label uv with ¢ in G4. In b
this work, we mark initial states by an incoming arrowp-tip, while
final states are twin-framed. Figure 3.3 shows an example of a finite
automaton that has two states over the alphabet ¥ = {a,b} and
accepts the language L = ({b} U {ab})*, that is, all words that may
contain any numbers of 4 and b, however, any a2 must be followed by a b. Note that
the automaton is deterministic.

To connect finite automata to regular languages, we say that, given a (regular)
language L, a word w € L is accepted by a finite automaton A, if there is a path P in
the transition graph G4 of A that starts with at an initial state from I, ends with a
final state from F, and where the subsequent arcs of P are labeled by the subsequent
symbols of w. If no such path exists, the word w is rejected by A. If every word from L
is accepted by A, then A accepts the language L. Kleene’s Theorem (see [Kle56, RS59]
for details) states that regular languages and finite automata are equivalent: For
every regular language L there exists a (nondeterministic) finite automaton .4, such
that a word w is accepted by A if and only if it is in L. On the other hand, given a
finite automaton A, the words accepted by 4, always form a regular language. We,
therefore, use the terms regular language and finite automaton interchangeably in
this work.

Figure 3.3. A finite
automaton.
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Chapter

Public Transit Journey Planning

order to develop algorithms that compute journeys, we will first carefully define

the underlying input of a public transit network in a mathematical sense. In this
work, we consider schedule-based networks, i. e., the networks are specified in terms
of their timetable. The timetable includes all stops of the network and also vehicles
which operate at predefined times of the day along certain sequences of stops, as
well as, footpaths that enable transfers between nearby stops.

T HIS CHAPTER IS DEVOTED to journey planning in public transit networks. In

Problems. Going from there, we introduce the problems we are considering in
this chapter. In all of them, we are given origin and destination stops ps and p,
and are then interested in computing “optimal” journeys from p; to p;. While, for
example, in (static) road networks the definition of an “optimal” journey is relatively
straight-forward (e. g., the journey that minimizes travel time), this is not necessarily
true for public transit networks. This is due to two reasons: time-dependency and
multiple important criteria. Regarding the former, transit networks are inherently
time-dependent, that is, the optimal journey depends on the departure time. To that
extent, we consider the earliest arrival problem, where the departure time 7 is given
as an additional input. Here, a journey is optimal if it arrives at the destination
stop p; as early as possible while not departing before 7 at the origin stop ps. If,
instead of a departure time T, we are given a whole time range A as input, the goal is
to compute all optimal (e. g., with respect to travel time) journeys from ps to p; that
depart within A. This type is called range problem (or profile problem, if A specifies
the whole operational time period of the timetable). Note that for time-dependent
road networks these two types of problems have been studied as well [DW09b].
Secondly, just optimizing for a single criterion (such as arrival time) may not be
enough. Usually other criteria, such as the number of transfers, or (monetary) cost,
are just as important. We tackle this by computing Pareto sets of journeys that
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minimize each criterion independently. The Pareto set contains all journeys which do
not dominate each other, that is, for no two journeys one is better in all considered
criteria than the other. Multicriteria optimization augments both the earliest arrival
and the range problem.

Models. Since the shortest path problem is well understood in the literature, a
common approach to computing journeys takes the timetable as input and builds
a graph from it, such that shortest paths correspond to optimal journeys. There
exist several different graph models that represent the timetable, who can roughly
be partitioned into two classes: Time-expanded and time-dependent models. The
former “expands” time in the sense that it contains a vertex for every event in the
timetable (such as a particular vehicle departing at a certain stop). Unfortunately, this
yields graphs of large size. Therefore, the time-dependent model aims to compress
the graph in the sense that it condenses vehicles that operate on the same segment
of the network into a single arc. The cost of an arc is then no longer constant, but
depends on the time of day (hence, the name of the model).

We first recap the widely used time-expanded and time-dependent graph models.
We then improve the time-dependent approach by modeling conflicting vehicles
inside stops more carefully. The key idea is to compute a (minimum) coloring of a
corresponding conflict graph, such that each color represents a vertex in the model
graph. Hence, using this Coloring Model, we are able to reduce the size of the graph
significantly, which directly accelerates any graph search algorithm running on it.

Moreover, for realistic queries footpaths are crucial to enable transfers between stops.
However, often such data is not available from the input. Thus, we present a heuristic
approach to generate artificial footpaths using the underlying road network. Our
method is based on snapping stops to (nearest) intersections and introducing cliques
between stops of the same intersection.

Algorithmic Approaches. Having set up the graph models, we describe basic algo-
rithmic approaches that solve the earliest arrival, range, and multicriteria problems.
In particular, we describe Dijkstra’s algorithm, which can be easily adapted to both
the time-expanded and time-dependent graph models. It is also the basis of all the
other algorithms for the more enhanced problems.

Starting from there, we introduce our two main contributions of this chapter:
A new algorithm that computes range (and profile) queries efficiently, and a new
approach to solve multicriteria earliest arrival and multicriteria range queries. Both
algorithms compute in their basic variant optimal journeys from a source stop ps
to all other stops of the network, but can be accelerated if one is only interested in
journeys to a designated target stop p;.
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Parallel Self-Pruning Connection Setting Algorithms. The key idea of the first algo-
rithm, called Self-Pruning Connection Setting (SPCS), is that the number of possible
journeys is bounded by the number of outgoing connections from the source stop ps.
Moreover, all time-dependent travel time distances in public transit networks net-
works can be described by piecewise linear functions that have a representation
bounded by this number as well. Also, only few connections prove useful when
traveling sufficiently far away. The algorithm we present greatly exploits this fact by
pruning such connections as early as possible. To this extent, we introduce the notion
of connection-setting, that can be seen as an extension of the label-setting property
of Dijkstra’s algorithm, which usually is lost in profile searches. Unlike previous
algorithms, which are notoriously hard to parallelize (see [MBBC09] and [MS03]), we
parallelize SPCS (which we then call PSPCS) in a multicore scenario by distributing
different connections outgoing from p; to different CPU cores. Furthermore, we show
how connections can be pruned even across different cores.

While one-to-all queries are relevant for the preprocessing of many speedup
techniques (see, e.g., [DW09b, DPW09a]), we also accelerate the more common
scenario of point-to-point queries explicitly. Therefore, we propose to utilize the very
same algorithm for valuable preprocessing. The key idea is that we select a small
number of important stops (called hub stops) and precompute a full distance table
between all these stops, which then can be used to prune the search during the query.

Round-Based Public Transit Optimized Router. The second algorithm is RAPTOR,
our Round-bAsed Public Transit Optimized Router. It considers multicriteria opti-
mization and computes all Pareto-optimal journeys—minimizing the arrival time
and the number of transfers made. Unlike the previously mentioned approaches,
RAPTOR is not Dijkstra-based. Instead, it operates in rounds, one per transfer, and
computes arrival times by traversing every route (such as a bus line) at most once per
round. The algorithm boils down to a dynamic program with simple data structures
and excellent memory locality. RAPTOR can also be parallelized in a multicore
scenario by distributing independent routes among multiple CPU cores.

We also introduce two extensions of RAPTOR. The first, McRAPTOR, generalizes
RAPTOR to handle more criteria, beyond arrival time and transfers. As examples
we use fare zones, a common pricing model, and the reliability of transfers. The
second extension we propose, rRAPTOR, computes bicriteria range queries, which
output full Pareto sets of journeys for all departures within a time range. Because
our algorithms do not rely on preprocessing, they are fully dynamic, easily handling
delays, trip cancellations, or route changes.

Overview. Section 4.1 formally defines timetables, which are the basis of our public
transit networks. Section 4.2 then introduces the problems we are interested to solve
in this work. Section 4.3 revisits existing approaches for modeling timetables as
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graphs and introduces our new Coloring Model. Existing algorithmic approaches
to compute journeys are recapped in Section 4.4. Section 4.5 then introduces our
new approach to compute range and profile queries, called Self-Pruning Connection
Setting Algorithm (SPCS). Section 4.6 introduces our new Round-bAsed Public Transit
Optimized Router (RAPTOR) that computes multicriteria journeys.

4.1. Inputs

In this section we define the input to our route planning problems. We start by giving
a formal introduction to timetables, which form the basis of a public transit network.
We define the timetable in a “natural” way using the notion of stops, routes, and
trips. For some algorithms, however, a different view, using the notion of elementary
connections is more useful, which we derive next. Finally, we also define the output
of our problems. In our case of route planning in public transit networks, these are
usually (sets of) journeys.

Timetables. Our algorithms work on a timetable T = (I1,S, T, R, F) where Il C Z>
is the period of operation (think of it as the seconds of a day), S is a set of stops, T a set
of trips, R a set of routes, and F a set of footpaths (sometimes also called transfers).

Elements T € IT are called time points. Each stop in S corresponds to a distinct
location in the network where one can board or get off a vehicle (bus, tram, train,
etc.). Typical examples are bus stops and train platforms. Each trip t € T represents
a sequence of stops a specific vehicle (train, bus, subway, etc.) visits along a line. At
each stop in the sequence, it may drop off or pick up passengers. Moreover, each
stop p in a trip t has associated arrival and departure times Tar(t, p), Taep(t, p) € I1,
with Tarr(, p) < Taep(t, p). The first and last stops of a trip have undefined arrival and
departure times, respectively. The trips in 7 are partitioned into routes: Each route
in R consists of the trips that share the same sequence of stops. Also, we require the
trips within a route to be non-overtaking (i. e., no trip overtakes any other within the
same route). Typically, there are many more trips than routes. Footpaths in F model
walking connections (or transfers) between stops. Each footpath consists of two
stops p1 and p, with an associated constant walking time ¢(p1, p2). Sometimes, we
require F to be transitive: If p; and p; are indirectly connected by footpaths, (p1, p2)
is contained in F as well. The length ¢(p1, p2) then depicts the minimum time to get
from p; to py using a sequence of footpaths. Finally, a stop p € S has an associated
minimum change time T, (p), the minimum time required to change trips at p (due to
long walking distances within p, for example). Note that the minimum change time
can be zero for some stops.

Sometimes we require to measure the duration between two time points 7;, 7, € I1.
We therefore use a difference function 6, which simply evaluates to d(1, ) = ©» — 7.
In the case we consider periodic timetables, J is computed by ©, — 1 if » > 7y
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Table 4.1. Exemplary excerpt of typical input data from the London timetable of 2011.
Each row represents one elementary connection.

Route and Departure Dep.- Arrival Arr.-
Trip No. Idx. Stop Time  Stop Time
Bakerloo-0 2 Charing Cross 06:46  Piccadilly Circus 06:48
Bakerloo-0 3 Piccadilly Circus 06:48 Oxford Circus 06:50
Bakerloo-0 4 Oxford Circus 06:50 Regent’s Park 06:52
Bakerloo-0 5 Regent’s Park 06:52 Baker Street 06:54
Bakerloo-0 6 Baker Street 06:54 Marylebone 06:56
Victoria-6 1 Green Park 15:21  Oxford Circus 15:22
Victoria-6 2 Oxford Circus 15:22  Warren Street 15:24
Victoria-6 3 Warren Street 15:24  Euston 15:26
Victoria-6 4

Euston 15:26  King’s Cross St. Pancras  15:26

and IT+ 7 — 71 otherwise. Note that J is not symmetric.

Elementary Connections. Given a timetable T, we may derive a set C of elementary
connections. Intuitively speaking, elementary connections are the smallest entity into
which a timetable can be decomposed. We require them for defining the graph
models, as well as for the algorithms. More formally, an elementary connection c € C
is a tuple ¢ = (¢, Pdeps Parts Tdeps Tarr), Which is interpreted as trip t € 7 going from
Stop paep € S to stop par € S, departing at pgep at time Tgep € I1 and arriving
at T,r € I1. For simplicity, given an elementary connection ¢, the function X (c)
selects the X-entry of c. For example, Tgep(c) refers to the departure time of c.
Table 4.1 shows an exemplary excerpt from the set of elementary connections for
the timetable of London (an input we often use). For any connection ¢, the column
“Route” refers to the associated route of ¢, and “Index” depicts the ordinal sequence
number of ¢ along its route. The table shows partial trips for two subway (tube)
routes, namely of the Bakerloo line and the Victoria line.

Journeys. Any journey-planning algorithm operating on a timetable outputs a set
of journeys J. A journey is defined as a sequence of trips and footpaths in the
order of travel. In addition, each trip in the sequence is associated with two stops,
corresponding to the pick-up and drop-off points. Note that a journey containing k
trips has exactly k — 1 transfers. Journeys are associated with several optimization
criteria. We say a journey J; dominates a journey J», denoted by J; < Jo, if J; is no
worse in any criterion than J. A set of pairwise nondominating journeys is a Pareto
set. In our algorithms we use labels (often associated with stops) for intermediate
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’ Dep: 10:00 Arr: 10:30
Dep: 09:45 19:00 19:30  Arr: 10:45
18:45
‘ .D—.ﬁ‘_.—.—.—.—.—.—.—. ) Dep: 2000
.—.—. ./._._. °, Dep: 20:10
\. : O =@
Dep:09:00 S @ @ , [
| Arr: 20:05 Arr: 20:20
Dep: 10:10 T

Figure 4.1. Example of three journeys from ps to p;. The departure time is set to T = 09:00.
Annotations depict departure/arrival times of trips on the route of respective color. The snaky line
illustrates a very long route in the network.

journeys. The definition of domination translates to labels naturally.

4.2. Problems

In this section we formally define the problems that we consider in this chapter.

4.2.1. Earliest Arrival Problem

The simplest problem we are considering is the earliest arrival problem. Given a public
transit timetable, a source stop ps, a target stop p;, and a departure time 7, it asks for
a journey that departs at ps no earlier than T and arrives at p; as early as possible. An
algorithm which solves the earliest arrival problem is also called earliest arrival query.

The solution of the earliest arrival problem consists of (at most) one journey, namely
the one which arrives at p; earliest. We call this journey optimal. Often, more than
one optimal journey exists, in which case we break ties arbitrarily. On the other hand,
if no journey matching the requested criteria exists, the output is just the empty set.

Tight Journeys. Unfortunately, computing the earliest arrival solution does not nec-
essarily output the journey with minimum travel time. This may seem counterintuitive
at first!, however, imagine a low-frequency bus route which must be taken as the
last leg of any journey in order to reach the target p;. If the departure time 7 is
chosen such as there is sufficient “slack” time until the first (feasible) trip departs
toward p;, all journeys that somehow “spend” this slack time by going around the
transit network are optimal. See Figure 4.1 for an example. It depicts three journeys
from p;s to p; for a departure time of 9:00. The earliest trip for the last leg of the
journey arrives at p; at 20:20. All three illustrated journeys are optimal (i. e., they

IIn time-independent networks, e. g., static road networks, computing earliest arrival and minimum
travel time journeys is equivalent.
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(a) Arrival time: 11:08; one transfer. (b) Arrival time: 11:09; zero transfers.

Figure 4.2. Exemplary solution to the multicriteria problem for a query from King’s Cross St. Pan-
cras station to Southwark station in London at 10:50. Optimization criteria are arrival time and
the number of transfers taken. The left solution uses the Northern and Jubilee tube lines, while
the right solution uses bus line 63.

share the same earliest arrival time of 20:20). In particular, the snaky gray trip is part
of a very long route where the slack time can be spent.

To remedy this issue, we extend the earliest arrival problem to the tight earliest
arrival problem as follows. Given a public transit timetable, a source stop ps, a target
stop p:, and a departure time T, it asks for a journey that departs at ps no earlier
than T and arrives at p; as early as possible. From all such journeys, it further asks for
the one that departs from ps latest. This results in a journey that is “tight” regarding
the arrival time in the sense that there is no other journey with a smaller travel time
for the considered departure time. Note that, in general, the solution is still not
necessarily unique, in which case we break ties arbitrarily. In Figure 4.1 taking the
orange route at 18:45, the blue one at 19:00, and, finally, the green one at 20:00 results
in a tight earliest arrival journey for the departure time of 9:00 at ps.

4.2.2. Multicriteria Problem

The multicriteria problem is a generalization of the earliest arrival problem taking
more than one optimization criterion into account. However, in this chapter, we
always require arrival time to be part of the criteria. Examples for further criteria
include the number of transfers taken or the monetary cost of a journey. Formally,
in the multicriteria problem one is given a public transit timetable, a source stop ps, a
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target stop p;, and a departure time 7. It then asks for a (full) Pareto sets of journeys 7,
for which the following must hold. Each journey | € J must not leave p; earlier
than 7, and for any two journeys [i, [, € J neither J; may dominate |5, nor J,
may dominate J;. On the other hand, for any journey | from p; to p; that departs
after 7 and is not included in 7, there must be a witness journey J' € J, such
that ]’ dominates J. An algorithm which solves the multicriteria problem is called a
multicriteria query. An example is shown in Figure 4.2. It shows two journeys, one
which arrives one minute earlier than the other, but having one more transfer.

4.2.3. Range Problem

The range problem no longer requires a specific departure time as input, but rather
takes a time range (as the name implies), for which optimal journeys are computed.
More precisely, given a public transit timetable, a source stop ps, a target stop py,
and a time range A C IT (recall that IT is the timetable’s period), the range problem
asks for a minimal set of journeys, such that for each departure time 7 € A exists
a journey [ € J that departs at ps no earlier than T and arrives at p; as early as
possible. Note that requiring a minimal set of journeys implies that if two journeys J;
and ], with the same arrival time exist in 7, only the one with later departure time
from ps is kept. If the input range A equals the full period IT of the timetable, the
problem is also called profile problem. An algorithm which solves the range or profile
problem is called range or profile query.

Note that the range problem can be interpreted as a special case of the multicriteria
problem in the following sense. It takes a time range A instead of a departure time T
as input and considers two criteria: arrival time and departure time. It then computes
a Pareto set J of journeys, such that any journey | € J departs within A, and for any
two journeys J; and J», the journey J; dominates J; if and only if J; departs no earlier
and arrives no later than J,. If additional criteria (besides arrival and departure time)
are considered, we also call the problem multicriteria range problem.

4.2.4. Reverse Problems

Up to now, all problems are specified in terms of their departure times at the source
stop ps. If, instead, one is interested to optimize for a given arrival time at the target
stop p:, any of the previous problems can be reversed. For the case of the earliest
arrival problem, we obtain the latest departure counterproblem. It takes a source stop ps,
a target stop py, and an arrival time T as input, and it asks for a journey | from p;
to p; that arrives at p; no later than T and departs at p; as late as possible. The range
and multicriteria problems are defined analogously. Note that the notion of tight
journeys also carries over: In addition to asking for a journey that departs from p;
as late as possible, we also require it to arrive at p; as early as possible (while not
arriving later than 7).
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Usually, the reverse problems are equivalent to their forward counterparts: An
algorithm that computes the forward problem can be used for the respective reverse
problem by inverting the input: Stop sequences of all routes are reversed (i. e., they are
now operated in reverse order). Then, for every trip and every stop the departure and
arrival times are swapped. Also, all times occurring in the timetable are translated
by mirroring them at a sufficiently high value (e. g., IT + 1). By these means, time is
considered in reverse order, and an algorithm that minimizes arrival time corresponds
to maximizing departure time on the original input. Hence, for the rest of this work,
we only focus on the forward problems.

4.3. Graph Models

This section presents several graph-based models that build a directed graph G =
(V,A) from the timetable. The idea is to model the graph in such a way that
problems from Section 4.2 can be solved by (possibly augmented) shortest path
algorithms. Recall that the timetable is inherently time-dependent (vehicles operate
at well-defined times during the day). Therefore, the graph must capture the notion
of time-dependency to yield meaningful solutions. Two distinct approaches exist: The
time-expanded approach (Section 4.3.2) expands time in the sense that for every event
of the timetable a vertex is cerated. The time-dependent approach 4.3.3 combines trips
of the same route into one arc, significantly reducing the graph size. Another (much
simpler) model is the stop model (Section 4.3.1). It is not useful to compute queries,
however, often used as a preprocessing ingredient to speedup techniques.

Note that using a graph to model the timetable is very common in the lit-
erature. Time-expanded models have been first used (in the context of public
transit) in [SWWO00, SWZ02], while time-dependent models have been first used
in [Nac95,BJ04, PSWZ04b]. A more recent overview of the different graph-based
modeling approaches is also available in [PSWZ08].

Contributions and References. New contributions in this section are the (time-
dependent) Coloring Model (Section 4.3.4), which significantly reduces the graph
size of the time-dependent model for earliest arrival queries, as well as a heuristic
that generates artificial footpaths (Section 4.3.5). These are crucial for computing
realistic journeys. Both of these sections are based on [DKP12], which appeared in
the ACM Journal of Experimental Algorithmics, vol. 17, no. 1 in 2012. It is joint work
with Bastian Katz and Daniel Delling.

4.3.1. Stop Model

The simplest model that represents the timetable is the stop model. It was first
introduced in [SWZ02], where it was called station graph. It builds a directed
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graph G = (V, A) where each vertex from V exactly corresponds to a stop p € S of
the timetable. We, therefore, refer to vertices by their stops and just write p € V for
short. Arcs are then inserted as follow. An arc p;p; from vertex p; to p; is contained
in A if and only if there exists an elementary connection that goes from p; to p;.
More formally, there exists an elementary connection ¢ € C for which pgep(c) = p;
and parr(c) = pj hold. The cost £(p;, pj) of an arc p;p; is the minimum travel time of
all elementary connections from p; to pj, i.e.,

U(pi, pj) = min{d(Tgep(c), Tarr(c)) | ¢ € C and pyep(c) = pi and pare(c) = p;}. (4.1)

Figure 4.3 shows the stop graph for the timetable
of the greater London area. Arcs between stops
served by bus routes (the vast majority) are drawn
thin and red, while all other arcs (Tube, DLR, and
ferry boats) are drawn with respect to their official
route color from the London network map.

While the stop model is certainly very simple,
it does not capture the time-dependent nature of
the timetable. Because arc costs are defined in
terms of minimum travel times between stops,
shortest paths only correspond to lower bounds on
the actual (total) travel time. In fact, none of the
problems from Section 4.2 can be solved by this
model. However, it is useful as a preprocessing
ingredient for some speedup techniques, such as
ALT [DPWOQ9b], Arc-Flags [DPW09b, BGM10, BDGMO09], or SHARC [Del11]. In Sec-
tion 4.5.3 we use it to compute “importance” values for stops. We use the most
important stops to compute a full distance table which then helps accelerating earliest
arrival queries.

Figure 4.3. Stop graph of greater London.

4.3.2. Time-Expanded Model

The time-expanded approach remedies the issues of the stop model by encoding
time-dependencies into the graph via the notion of events. There exist two basic
variants of this approach, the simple and the realistic model [PSWZ08]. They are
described in the following. Finally, we explain, how footpaths can be integrated into
the model.

Simple Model. Given a timetable T and its set C of elementary connections, the
simple time-expanded model basically inserts two vertices per connection, which are
interconnected by an arc. More formally, it defines the simple time expanded model
graph G = (V, A). For every connection ¢ € C it creates two vertices: A departure
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vertex uqep(c) and an arrival vertex uar(c). Vertices in the time-expanded approach

always have (implicit) associated timestamps T(u). In our case the timestamp of a

departure vertex ugep(c) is given by the departure time of the respective connec-

tion Tyep(c), while the timestamp of an arrival vertex uar(c) is given by the arrival

time Tare(¢). Analogously, each vertex has an (implicit) associated stop value p(u).
Arcs are created as follows. For every connection ¢ € C the model

inserts an arc (ugep(c), Uarr(c) between the connection’s departure and

arrival vertices. By these subsequent connections of the same trip become ~~# _ v
interconnected by arcs. To allow changing of trips inside stops, the model o
inserts, independently for each stop p € &, transfer arcs uv between l
subsequent vertices u and v of p in order of increasing time. More o
precisely, there is a transfer arc uv € A if and only if p(u) = p(v), T(u) < Cl)

T(v) and there is no other vertex w with p(w) = p(u) and 7(u) < T(w) < l
T(v). All arcs uv are weighted by the time difference of their respective

@)

incident vertices, i.e., £(u,v) = 6(t(u), t(v)).
If multiple vertices with the same timestamp exist for a stop p, the v
model may merge them into a single vertex. By these means, and under - 14
igure 4.4.

the assumption that no connection has a duration of zero, all arcs point in
direction of increasing time. Thus, the simple time-expanded graph G is
acyclic, i. e, it does not contain any cycles. For the case that the timetable
is periodic, the model adds, at each stop p an additional arc v from the
latest to the earliest vertex at p, enabling transfers from one period of the timetable to
the next. Note that by these means the graph is no longer acyclic.

model.

Figure 4.4 shows an example of four connections belonging to three trips 1, t,,
and f3 at some stop p in the simple time-expanded model graph. Arrival vertices are
filled yellow, while departure vertices are filled green. Vertices are drawn such that
time increases from top to bottom.

As opposed to the stop model (cf. Section 4.3.1), it can be easily seen that any path
in the time-expanded graph correspond to a valid journey for the (input) timetable.
Another interesting observation is that (for the aperiodic case) in fact any path P
between two vertices s and t is also a shortest s—t-path. Recall that arc costs are defined
in terms of the time difference of their incident vertices. Therefore, the cost of the
individual arcs of P must exactly sum up to 6(7(s), 7(t)). A major disadvantage of
the simple time-expanded model is, however, that arbitrary quick transfers at stops
are possible, since it does not incorporate the minimum change times defined in the
timetable.

Realistic Model. The realistic time-expanded model extends the simple model by
incorporating minimum change times at stops.

Formally, it defines a directed graph G = (V, A) as follows. Similarly to before, it
creates for each connection ¢ € C a departure vertex udep(c), an arrival vertex uar(c),
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and adds the arc ugep(c)uarr(c) with cost (T(ugep(c), T(#arr(c))) to A. To enable
minimum change times, the model additionally creates, for each connection, a transfer
vertex uy(c), which it assigns to stop pgep(c)—i-e., p(uu(c)) = paep(c). Analogously,
the timestamp of uy(c) is set to T(ugep(c)), which is equivalent to the departure
time of c. Besides the already mentioned connection arcs, the model adds additional
transfer arcs into the model. For each connection it connects the transfer vertex u(c)
to the departure vertex ugep(c) with cost zero. Moreover, to enable staying within
a trip t, the model adds, for each connection ¢ € C of trip ¢ an arc from the arrival
vertex uar(c’) of the preceding connection ¢’ of t to the departure vertex ugep(c) of c.
For the first connection of t no preceding connection exists and no arc is created.
Note that uar(c’) and ugep(c) must belong to the same stop by definition.

To enable transfers within a stop p € S, additional transfer arcs
are created: For each arrival vertex u at p, the model determines

~
H
o the first transfer vertex v (also at p), for which (1) + T, (p) <

60~ b 7(v) holds true, and it adds an arc between these vertices, ac-
cordingly. If no such vertex v exists, no arc is added. Moreover,
©-0- o subsequent transfer vertices are interconnected by arcs in in-
creasing order of their timestamp (similarly to the simple model).
00O~ ts Transfer vertices with the same timestamp may, again, be merged.

An example of the realistic time-expanded model graph is
shown in Figure 4.5. It depicts the same trips and connections
as Figure 4.4. Arrival vertices are filled yellow, departure vertices
are filled green, and transfer vertices are filled purple. Note that
transferring from trip #; to t; is not possible due to the minimum
change time (however, continuing the journey in trip t; is very well possible). This
could not be captured by the simple time-expanded model of Figure 4.4.

Y

Figure 4.5. Realistic
time-expanded model.

Footpaths. Footpaths are integrated into the model as follows. For every existing
footpath (p;, p;) € F with length £(p;, p;), it adds several arcs between vertices
of p; and p;. More precisely, it adds from every arrival vertex u at p; an arc to the
earliest transfer vertex v at p; for which 7(u) + £(u,v) < t(v) holds true. (Note that,
footpaths in the simple model are added in a similar manner between arrival and
departure vertices.)

Discussion. The main advantage of the time-expanded approach is that the resulting
graph is time-independent, i.e., all arcs have constant cost. This enables simple
queries algorithms: Essential, Dijkstra’s algorithm [Dij59] can be applied out of the
box to compute journeys. Moreover, for the case that the timetable is aperiodic, the
resulting graph is acyclic, which enables even simpler query algorithms, such as
Connection Scan [DPSW13].

On the downside, the size of the time-expanded graphs is rather huge, since every
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event of the timetable is modeled by at least one vertex. In fact, the number of
vertices and arcs are both in the order of O(|C|). Additionally, modeling footpaths
is somewhat more complicated: Even though a footpath (p;, p;) is already time-
independent in the original data, it still creates as many arcs in G as there are arrival
events at the stop p;.

Some extensions to the time-expanded approach exist that were omitted in this
section. These include incorporating traffic days and variable transfer times at
stops [PSWZ08]. Also, further engineering the model helps accelerating query
performance [DPWQ9b].

4.3.3. Time-Dependent Model

In contrast to the time-expanded approach, the time-dependent model aims for
smaller graphs whose number of vertices and arcs is roughly in the order of the
number of stops and routes of the timetable. Instead of vertices that correspond
to events of the timetable, time-dependency is encoded as a special form of time-
dependent travel time functions on the arcs—hence, the name of the model.

We first describe how the travel time functions look like and discuss how they
can be efficiently linked and merged (cf. Section 3.1). We then recap the simple and
realistic time-dependent graph models [PSWZ08] and, finally, explain how footpaths
are integrated into the model.

Travel Time Functions. Recall that in the time-expanded graph (cf. Section 4.3.2),
each elementary connection ¢ € C is modeled by an arc uv € A with constant
weight 6(Tgep (), Tarr(c)). The key idea of the time-dependent approach is to combine
several elementary connections into a single arc by a time-dependent travel time function.
We, therefore, consider a function space IF consisting of travel time functions of the
form f: Il — Z>o. Each function f € IF maps a departure time onto a travel time (or
cost). Departure times are taken from the interval I1, which is the timetable’s period
of operation, while travel times may assume arbitrary nonnegative integers (think of
a train arriving after midnight).

The travel time functions in our scenario must encode elementary connections
that operate at specific times with respect to the timetable. Hence, each elementary
connection ¢ € C that is represented by the function f, creates a connection point q. =
(Tdep(c), 6(Tdep(c), Tarr(c)), such that evaluating f at departure time T = Tyep(c)
results in the respective travel time f(7) = J(Tgep(c), Tarr(c)). For simplicity we
write Tqep(q) and Tira(g) to refer to the departure and travel times encoded by the
connection point . Now let P be the set of connection points of f. Values of f between
subsequent connection points are obtained by interpolation via waiting. More
precisely, let T € I1 be an arbitrary departure time and q be the “next” connection
point, i. e., the connection point for which 6(T, Tgep(q)) is minimal. Then, f is evaluates
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at T to

Waiting time for ¢’s departure

F(1) = Tea(g) + 57, Taep (9)) (42)

Travel time associated with g

Note that if the connection points of f are kept sorted by their departure times,
evaluating f takes time O(log|Ps|) by using binary search, and time O(|Py|) using a
simple linear scan. Preliminary experiments indicated that the algorithmic overhead
of a binary search results in worse practical performance than using a linear scan.
(Note that a linear scan admits excellent spatial locality and is, hence, extremely
cache-friendly.) In this work, we additionally use the following interpolation heuristic
when scanning Ps. Let T be the departure time at which f is evaluated, then we check
the connection point g at index i = 7/IT - |P|. If T > Tqep(q), we continue scan Py in
ascending order, otherwise, we scan in descending order.
To ensure correctness of the model, the
travel time functions must fulfill the FIFO-

such that ‘S(Tdep(ql)lrdep(qZ)) + Ttra(’h) <
Departure time ~ Ttra(q1) holds true. In other words, skip-

O O ® O P
oY W @ P o @

ping g1 and waiting for 4o must not result in
1\'90 a smaller overall travel time. Note that sim-
ply deleting g, restores the FIFO-property

QQ

Figure 4.6. Piecewise linear travel time function. of f.

Figure 4.6 illustrates an exemplary travel
time function f with eight connection points. Connection points are indicated by
dots and line segments indicate interpolation by waiting. The red connection point
violates the FIFO-property and, hence, must not be included in f.

Given two functions f; and f,, the link operation can be efficiently implemented
by a linear sweep algorithm. For every connection point q; from fj, it looks for the
connection point g, from f, that minimizes d = 6(Tgep(91) + Tra(q1), Tdep(42)) and
inserts the connection point g = (Tgep(q1),d + Tira(q2)) into the resulting function’s
connection point set. If no such g, exists, no new connection point is created. Likewise,
no connection point g is created, if ¢ would violate the FIFO-property. Note that the
number of connection points in the output function is bounded by min{|P,|, |Pf,|}
and the link algorithm runs in time O(|Py,| + |Py,]).

Finally, the merge operation of two functions f; and f, can also be implemented by
a linear scan. The resulting function simply consists of the union Py, U Py, of each
function’s connection points, discarding those who violate the FIFO-property. As a
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result, the number of connection points in the output is bounded by |Py,| + |P,| and
the merge operation also runs in time O(|Py, | + [Py,]).

Simple Model. After having set up the notion of travel

time functions, we now describe the simple time dependent ()
model [BJ04]. Given a timetable ¥ and its corresponding /7

set of elementary connections C, the model builds a di- o
rected graph G = (V,A) by creating one vertex u, for < >
each stop p € §. For simplicity, we write p and u, in- r2,73
terchangeably. Arcs are created as follows. The model ~

inserts the arc pyp; into A if and only if there exists an el- <>
ementary connection ¢ € C that goes from p; to p», i.e, for
which pgep(c) = p1 and pare(c) = p2 holds. Note that up to
this point the model exactly matches the stop model (cf. Sec-
tion 4.3.1).

To make the model time-dependent, arc costs are defined in terms of travel-time
functions, that is, /: A — F. Each arc p1p, € A, thereby, contains exactly those
connection points that correspond to elementary connections that travel from p; to p.
Connection points that violate the FIFO-property may either be discarded or put on
a separate parallel arc (in case they may not be omitted). Note that if we evaluate the
lower bound f, », of the travel time function at each arc p;p>, we exactly obtain the
stop model (cf. Section 4.3.1). Figure 4.7 illustrates the simple time-dependent model
on three stops p1, p2, and ps.

Figure 4.7. Simple time-dependent
model.

Realistic Model. Like in the time-expanded scenario, the simple time-dependent
model fails to capture minimum change times at stops. The realistic model aims to
remedy this issue by slightly blowing up the graph [PSWZ04b, PSWZ08]. Instead of
a single vertex per stop, multiple vertices are created. The model is thereby based
on the intuition, that changing between trips of the same route is never optimal.
Therefore, the model groups elementary connections by their route. More precisely,
let R, be the set of routes that serve stop p € S. (We may sometimes refer to them
by stop-routes.) The model now still creates a stop vertex p € V (like before), but
additionally creates a route vertex r, for every stop-route from R .

Arcs are created as follows. For each route r € R of the timetable, and two
subsequent stops p;, p; € S that are served by the route r, the model creates a
time-dependent route arc ry,r,, € A whose travel time function contains a connection
point for every elementary connection ¢ € C for which pgep(c) = pi, parr(c) = p;
and r(c) = r hold. Again, non-FIFO connection points are either discarded or put
on separate parallel arcs. To enable transfers between trips of different routes, the
model additionally creates transfer arcs that connect the stop vertex to (and from) all
corresponding route vertices. More formally, it adds arcs p,r, and rp, p for every
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stop-route r, € R;,. Note that these arcs have constant cost. More precisely, the
model charges cost for the minimum change time by setting £(pr,) = T (p) (recall
that 7, (p) depicts the minimum change time at stop p) for each arc that goes from
the stop vertex to the route vertices. Accordingly, it sets /(r,p) = 0 for arcs from
route vertices to the stop vertex.

Figure 4.8 shows the same stops and routes in the

O realistic model as Figure 4.7 showed them for the
/ { A simple model. Route vertices are drawn smaller in
/ " orange. Note that changing routes at stop p, now
o >@ 2\ ) requires five minutes time as it is indicated by the
R " _#O=> green labels on the transfer arcs.
Bo
S -
5( A g P

Figure 4.

e 72 Footpaths. To incorporate footpaths between stops,

\ the graph is augmented by arcs between stop vertices.

\2A ( y; Recall that each footpath of the input is defined as a

S PIR tuple (p;, pj) € S x S with associated length £(p;, p;),

meaning that it is possible to walk from stop p; to

8. Realistic time-dependent model.  stop p; in time ¢(p;, p;). To incorporate them, we in-

sert, for each tuple (p;, p;) € F an arc (p;, p;) into G

with constant weight £(p;, p;)—similarly to transfer
arcs within stops.

Discussion. Like for the time-expanded model, several extensions exist that were
omitted here. These include incorporating traffic days and enabling variable transfer
times between routes [PSWZ08]. However, all of the (time-dependent) models share
the notion of time-dependent arcs in order to combine elementary connections into
a single arc. By these means, the graphs obtained by these models are significantly
smaller when compared to the time-expanded approach. This comes at the cost of
a (slightly) more complicated query algorithm, though, which must evaluate travel
time functions when considering arcs. However, in practice this is greatly outweighed
by the smaller graph sizes, making the time-dependent approach the more practical
one [BDW11].

Still, all (realistic) variants of the time-dependent model rely on the notion of routes
and add at least as many vertices per stop to the graph as there are routes serving it.
In fact, an analysis of the model reveals that the average number of route vertices
per stop is typically between 5 and 16, depending on the input (cf. Section 4.5.4),
which is quite high. To reduce this number, the next section introduces a new model
which is based on a formal notion of conflicting trips. Note that a smaller graph size
immediately results in faster query times for any search algorithm.
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4.3.4. Coloring Model

One main reason of using the notion of routes in the realistic time-dependent model
is the observation that in any journey, transfers between two trips of the same route
are never beneficial. Thus, when assigning trips of the same route to the same route
vertex (i. e., assigning their respective elementary connections to arcs incident to the
route vertex), we ensure that we do not generate a journey with invalid transfers, i.e.,
violating the minimum change time at some stop. However, this property can also be
guaranteed by a more formal notion of conflicting trips.

Now, consider two trips #; and t, which serve some stop p. Let Ta(t1, p) be the
arrival time of trip #; at p and Tdep( tp, p) the departure time of t, at p. Then, these
two trips conflict if and only if t, departs after the arrival of t; and the time in between
is smaller than the minimum change time at t. More precisely, t; and t; conflict if
and only if

Tdep(tZI P) > Tarr(tll P) and Tarr(tlr P) + Tch(p) > Tdep(tZI P) (43)

In this case, putting t; and f; on the same route vertex could produce an illegal
journey, which must be avoided.

Testing the conflict condition for all pairs of trips serving p naturally induces
an undirected conflict graph G*(p) = (V*(p),E*(p)). The vertex set V*(p) C T
contains exactly those trips t € T that serve p (i. e., where there exists an elementary
connection ¢ € C with t(c) = t and pgep(c) = p or pan(c) = p. Two pairs of
vertices t;,t; € V*(p) are connected by an edge {t;,t;} € E*(p) if and only if t; and ¢,
are conflicting. Experiments on our instances (cf. Section 4.5.4) reveal that the number
of conflicting trips is small indeed: We observe that of all possible trip pairs per stop,
on average less than 0.5 % are actually conflicting. Thus, we may regard G* as sparse.

It is now easy to see that a vertex coloring of G*(p) (i.e., each vertex gets a color
assigned), where no two adjacent vertices may share the same color, induces a set of
route vertices of the stop p in the model graph G: Let K be the number of distinct
colors used for G*(p), then for each color k = 1...K we create a route vertex u in G
and put exactly those trips onto u that have assigned color k in G*(p). An example of
a conflict graph and its induced subgraph in the time-dependent model is illustrated
in Figure 4.9.

Computing Colorings. In general, our goal is to generate as few route vertices in G
as possible. Thus, we aim for computing a coloring on G*(p) with as few colors as
possible. In fact, a lower bound on the number of route vertices for p in p is given by
the chromatic number x(G*(G)). Since it is well known that computing x(G*(p)) is
NP-complete [Kar72], we use the following greedy heuristic to color G*(p) for every
p independently. We start with an uncolored graph and process the vertices of G*(p)
in order of decreasing degree. When considering vertex u, we assign u the smallest
color that is not used by any of u’s neighbors.
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(a) Conflict graph. (b) Model graph.

Figure 4.9. Exemplary conflict graph G*(p) of a stop p with a valid vertex coloring that uses three
colors (left) and the corresponding induced subgraph for p of the time-dependent model having
three route vertices (right). In the right figure, route arcs are drawn bold while transfer arcs are
drawn thinner.

Note that this algorithm never uses more than maxdeg(G*(p)) + 1 colors, where
maxdeg(G*(p)) depicts is the maximum vertex degree of G*(p). Since we con-
sider G*(p) to be sparse, the results of the greedy algorithm on G*(p) are quite good
in practice (see Section 4.5.4 for experimental details).

Merging Small Stops. To further reduce the number of vertices in the time-dependent
model graph G, we may merge small stop p which have only one route vertex (i.e.,
G*(p) has been colored with one color). More precisely, we merge the stop vertex
with the (only) route vertex. Since there are no conflicting trips at p, we do not lose
correctness by applying this procedure to all stops of this type in G.

4.3.5. Artificial Footpaths

Considering footpaths turns out crucial for finding realistic journeys with reasonable
transfers. Even worse, the graph obtained from real-world timetables may even get
disconnected into several components when footpaths are omitted. Unfortunately,
footpath data is not always included with the available timetable data from the transit
agencies. Thus, we propose the following heuristic to generate an artificial set F of
footpaths.

Let R be the road network covering (at least) the geographical area of the public
transit network for which we are about to generate footpaths. Our heuristic then
assigns every stop p € S to a bucket b using 3. Each intersection of the road network
maintains a bucket. The algorithm then finds for stop p the intersection b € R which
is geographically closest to p, and assigns p to b if the geographical distance is no
greater than a parameter (typically set to 100m). It then looks at all buckets b it
created and adds, between all pairs of different stops p;, p; € b, a footpath (p;, p;)
to F. The length of (p;, p;) is obtained by the sum of the distances from p; to b and
from b to p; divided by an assumed average walking speed (typically 4 kph).
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Figure 4.10. Example of heuristically generated footpaths in a typical U.S. bus network (two bus
lines along two streets). Footpaths are depicted as highlighted arcs.

Note that since each stop is assigned to exactly one bucket, our heuristic obtains
many small components of stops that are interconnected by footpaths near inter-
sections. In particular, we avoid connecting large regions of the network through
sequences of footpaths. See Figure 4.10 for an example.

4.4. Basic Algorithms

In this section we describe basic algorithmic approaches for solving the problems
from Section 4.2. They all operate on one of the models we introduced in Section 4.3
and are variants of extensions of Dijkstra’s algorithm [Dij59]. Moreover, we also use
them as benchmark to evaluate the performance of our new algorithms in Sections 4.5
and 4.6.

We group the algorithms in this section by the problems they solve. Therefore,
we start in Section 4.4.1 with the simplest problem, the earliest arrival problem and
show how Dijkstra’s algorithm can be adapted to the time-expanded [SWW00] and
time-dependent [CH66] models. Then, in Section 4.4.2 we consider the multicriteria
and range problems. We first describe two algorithms which can be applied to both
problems: The label-correcting (LC) algorithm [Dea99] extends Dijkstra’s algorithm
by propagating collections of labels (bags) through the network, while the multi-
label-correcting (MLC) algorithm [PSWZ08, DMS08] still maintains a bag of labels at
each vertex, but propagates them individually. Both algorithms share the property,
that vertices may be scanned more than once. Finally, we also recap the Layered
Dijkstra (LD) [BJ04] algorithm. It is simpler in that it does not use bags and can be
applied to the bi-criteria problem where the second optimization criterion (besides
arrival time) is discrete and assumes a small number of different values (e. g., number
of transfers).
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4.4.1. Earliest Arrival Problem

Recall from Section 4.2 that for the earliest arrival problem we are given source and
target stops ps, pr € S and a departure time 7. We are now interested in computing a
journey that departs ps no earlier than 7 and arrives at p; as early as possible. This
problem can be solved by Dijkstra’s algorithm [Dij59] on both the time-expanded
and time-dependent graph models (on the latter it requires one minor modification,
which we discuss later).

Dijkstra’s Algorithm. Given a directed graph G = (V, A) with source and target
vertices s,t € V (we discuss mapping ps, p: to s, t later), Dijkstra’s algorithm maintains
two data structures: A priority queue Q of vertices as well as arrival time labels T(u) for
every vertex u € V, initialized in the beginning to infinity. It starts by setting 7(s) = T
and adding s to Q with key 7. It now, in turn, extracts (or scans) the vertex u with
minimum (current) key from the priority queue. It then proceeds by scanning all
outgoing arcs a = (u,v) € A (in any order). For each, it creates a tentative arrival time
label Tient(v) = T(u) + £(a) at v. If Tent(v) improves T(v), i.e., Tent(v) < T(v) holds,
it relaxes a: It updates 7(v) to Tient(v) and updates Q to contain v with key Tient(v).
The algorithm stops when Q runs empty.

Note that up to now, Dijkstra’s algorithm computes arrival times for all vertices
of G. We observe that it scans vertices in the order of increasing arrival time from s,
since it always extracts the vertex with minimum key. Thus, if we are only interested
in the arrival time for a single vertex t (point-to-point query), it may stop, as soon as ¢
is scanned. At this time, the target vertex t is guaranteed to have the correct arrival
time set. Note that this approach can be generalized to computing distances to a set
of target vertices.

Running Time. The running time of Dijkstra’s algorithm is determined by the data
structure used for the priority queue Q. Every vertex is scanned at most once,
resulting in |V| extractions from Q. Also, every arc is scanned at most once, which
results in up to |A| updates of Q. Using a binary heap, yields a running time
of O((|V| +|A])log|V]) [CLRSO01]. This can be improved by, e. g., Fibonacci Heaps
to O(|A| + |V|log|V|) [FT87] or, if all arc costs are integral in the range [0, C], Multi-
Level Bucket Queues to O(|A| + |V|4/log C) [DF79].

Throughout this work we use binary heaps in our experiments for two reasons.
First, our graphs are sparse, i.e., |A| € O(|V]), thus, the theoretical running time
reduces to O(|V|log|V|), and, second, their implementation is simple, thus, admitting
good spatial (memory) locality, which helps cache performance in practice.

Source and Target Vertices. It remains to discuss how we select s and ¢t for the
stops ps and p;. In the time-expanded model, the source vertex s is selected, among
all departure vertices (simple model), respective all transfer vertices (realistic model),
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to be the one with minimum timestamp 7(s) that is greater than 7. Moreover, the
departure time, which is used to initialize the algorithm at s, is updated to 7(s).

Unfortunately, the target vertex t is unknown before the query is executed. (Note
that knowing t immediately yields an (earliest) arrival time 7(t).) Still, Dijkstra’s
algorithm may stop, as soon as any vertex u of p; has been scanned. The first scanned
vertex at p; provably corresponds to the earliest arrival time at p;. We call the
resulting algorithm Time-Expanded Dijkstra (TED).

In the time-dependent models, on the other hand, ps; and p; are directly mapped
to the corresponding stop vertices, which are then used as source and target vertices
of Dijkstra’s algorithm.

Time-Dependency. Dijktra’s algorithm can be adapted to handle time-dependent
arc costs quite easily [CH66]. The algorithm remains essentially the same, except that
when it scans an arc a = (u,v), the tentative label Tient(v) is computed by evaluating
the time-dependent arc function f, at time 7(u). (Recall that T(u) corresponds to
the earliest arrival time at u.) We call the resulting algorithm Time-Dijkstra (TD).
Pseudocode of TD is shown in Figure 4.11.

Aperiodic Timetables. In case the input timetable is aperiodic, the time-expanded
model enables a simpler algorithm to compute earliest arrival queries. It is based
on the observation that, in this case, the resulting (both simple and realistic) time-
expanded graphs are acyclic, i.e., they do not contain cycles. Therefore, any path
between two vertices u, v € V is also a shortest path. To see why, recall that vertices
have associated timestamps, and every arc’s cost exactly corresponds to the time
difference of its incident vertices. Hence, the earliest arrival problem can be reduced
to a reachability problem: Given a source vertex s € V, determine the smallest (in
terms of its timestamp) reachable vertex u at the target stop p;. This vertex can be
computed by, e. g., breadth-first search (from s), which runs in time O(|V| + |A|). A
more sophisticated approach, called Connection Scan Algorithm (CSA), orders the
arcs topologically in a preprocessing step and scans them by a linear sweep during
the query [DPSW13].

Timestamps. If many queries are run on the same graph subsequently, a significant
amount of time in Dijkstra’s algorithm is spent resetting all labels to infinity during
the initialization phase. The algorithm may avoid this by keeping a global clock w,
initially set to zero. Moreover, every vertex maintains a timestamp (also initially set
to zero). Instead of setting all labels to infinity in the beginning, the algorithm just
increases the clock value w by one. Then, each time it updates a vertex label, it also
sets its corresponding timestamp to w. Whenever it attempts to read a label, it first
checks if its timestamp equals the current clock value w. If not, the label’s value
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// Input: Graph G = (V, A), source vertex s, target vertex t, departure time T
// Side Effects: Earliest arrival times (1) at all vertices u € V, if t = | or at t, otherwise

// Initialization of the algorithm

1 Q < new PQueue() /I Create empty priority queue
2 T(+) ¢ o0 /I Initialize arrival time labels
37(s) T

4 Q.Insert(s, T)

// Main loop

5 while not Q.Empty() do

6 u < Q.ExtractMin() // Scan next vertex

7 if u =t then // Stopping criterion

8 | stop;

9 forall the outgoing arcs a = (u,v) € A do /I Scan outgoing arcs
10 Tient(0) = T(u) + fa(T (1)) /I Compute tentative arrival time at v
1 if Tent(v) < T(v) then // Improve arrival time at v?
12 T(v) < Teent(v) /I Update label of v
13 if not Q.Contains(v) then /I Update priority queue
14 | QInsert(v, Tient(v))

15 else
16 L Q.DecreaseKey (v, Tient(v))

Figure 4.11. Time-Dependent Dijkstra (TD).

does not stem from the current execution. Hence, it is discarded and assumed to be
infinity, instead.

4.4.2. Multicriteria and Range Problems

Recall that the multicriteria and range problems have in common that they may
output more than one journey. To reflect this, any algorithm that computes such
queries must maintain a (dynamic) collection of labels per vertex (instead of a single
label). In the following, we quickly recap three algorithms that are based on Dijkstra’s
algorithm and can be applied to, both, multicriteria and range queries. We consider
the Label-Correcting algorithm (LC), the Multi-Label-Correcting algorithm (MLC),
and the Layered Dijkstra algorithm (LD).

Label-Correcting Algorithm. The Label-Correcting Algorithm (LC) [Dea99] extends
Dijkstra’s algorithm by maintaining a collection of labels B(u) at each vertex u € V,
called bag. For the scenario of multicriteria queries, every label L € B(u) has an
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associated value per optimization criterion (arrival time always being among them).
The algorithm maintains the invariant that B(u) is a Pareto set at every vertex u,
i.e., no two labels Ly, L, € B(u) dominate each other. (Recall that L; dominates Lo,
denoted L < Lo, if L, is worse or equal in all criteria than L;.)

The algorithm now maintains, like Dijkstra’s algorithm, a priority queue Q of
vertices. Keys for the priority queue entries must be chosen consistently among the
criteria at every vertex u, e.g., one may choose the minimal arrival time of the labels
in B(u) [DWOQ9b]. It is initialized by adding an initial label Ly to B(s) with all costs
set to zero. In each iteration, the algorithm then extracts the vertex u with minimum
key from Q and scans every arc a = (u,v). However, when it scans 4, it now creates
a temporary bag Bient(v) by copying all labels from B(u) and adding the cost of the
arc a for every criterion to all labels in Bient(v). Then, Bient(v) is merged into B(v): All
labels from Bient(v) are copied into B(v), thereby eliminating dominated labels on
the fly. If any label from Bient(v) survived into B(v), the vertex v is updated in the
priority queue Q. The algorithm stops as soon as the priority queue runs empty.

If we are only interested in point-to-point queries to a target vertex ¢, we may
make use of the following target pruning. Whenever the algorithm extracts a vertex u
from Q, it checks if all labels in B(u) are dominated by labels from B(t). If this is the
case, the algorithm prunes u, i.e., it does not scan outgoing arcs from u.

Note that this algorithm no longer scans vertices with increasing “distance”, since
they can no longer be totally ordered. Therefore, vertices may be inserted and
extracted from Q multiple times, hence, the name label-correcting algorithm.

In the case of range queries on the time-dependent model, the same algorithm
can be used. Here B(u) corresponds to the connection points Pr(u) of the travel
time function representing optimal journeys from p; to u. When an arc a = (u,v)
is relaxed, it takes the connection points P¢(u) and computes tentative connection
points by performing the link operation f(u) @ f, (cf. Section 3.1). Merging the
tentative connection points into P¢(v) exactly corresponds to the merge operation
defined in Section 3.1.

For range queries, LC may (in addition to target pruning) employ the following stop-
ping criterion: Whenever it scans a vertex u with associated connection points Pr(u),
it stops if the lower bound of the corresponding function f(u) exceeds the upper bound
of the travel time function f(t) represented by the connection points Pf(t) at the
target vertex t. Note that, to ensure correctness, this requires f(u) as keys in the
priority queue for the vertices u. )

The running time of LC depends on the size of the bags B(u) at each vertex.
Merging two bags By and B, requires time O(|B1||Bz|), since it must check each
pair (L1, Ly) € By x By for domination. Unfortunately, the number of labels main-
tained during the algorithm’s execution can be exponential in |V| in theory [Han79],
imposing a significant slowdown over Dijkstra’s algorithm. However, for the opti-
mization criteria we consider in this work, the algorithm remains practical.
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Multi-Label-Correcting Algorithm. The Multi-Label-Correcting Algorithm (MLC),
which has been considered in [PSWZ08, DMS08], works similar to LC in that it also
maintains a bag of labels B(u) with every vertex u € V. However, instead of pushing
entire bags when scanning an arc, it processes each label individually. More precisely,
the algorithm keeps a priority queue Q of labels (instead of vertices). In addition,
each label L in the priority queue Q also stores the vertex u € V to whom it belongs.
The labels of Q are kept in arbitrary (but consistent) lexicographic order regarding
the values of the associated criteria. Similarly to LC, the algorithm is initialized
with empty bags for every vertex, except s, where it adds an initial label Ly to B(s).
Moreover, it adds Ly (together with s) to Q. In each iteration, it then extracts the
label-vertex pair (L, u) with minimum (regarding the lexicographic order) key from Q
and scans all arcs @ = (u,v) € A. For each, it creates a tentative label Lient by adding
the cost of the arc a to L and merges Lient into B(v), possibly dominating labels in B(v).
If Lient is not dominated by any label from B(v), the algorithm additionally adds
it to Q (together with v). Note that every label that is removed from B(v) (due to
domination by Lient) must also be removed from Q.

If we are only interested in point-to-point queries toward a vertex ¢, the target
pruning rule of LC naturally carries over to MLC: Before inserting the tentative
label Lient into B(v), the algorithm checks if Lient is dominated by any label from the
target bag B(t). If this is the case, Lient is simply discarded. See Figure 4.12 for an
illustration of MLC in pseudocode.

In contrast to LC, handling range queries with MLC is conceptually easier and re-
quires neither the link nor merge operations of travel time functions. Again, bags B()
correspond to the connection points P¢(u) of the (partial) travel time function repre-
senting (tentative) journeys from s to u. MLC now works on the connection points
individually (as described above) by using the following domination rule. Given two
connection points 41, 42, the connection point q; dominates g, i.e., g1 < g2 if and
only if Tgep(q1) > Taep(q2) and Tar(q1) < Tarr(q2). Note that the stopping criterion
from LC does not carry over to MLC, however, target pruning can still be applied.

In [DMS08] two additional improvements to MLC are proposed: The first, hopping-
reduction, avoids propagating a label back to the vertex it originated from. More
precisely, each label L € B(v) additionally keeps a parent pointer to the vertex u it
originated from (i. e., the algorithm inserted L into B(v) when it scanned an arc (u, v)).
When the algorithm extracts L from Q at a later point in its execution, it may skip
scanning the arc (v, u) (if it exists). The second improvement is label forwarding,
which avoids using the priority queue for labels with no increase in cost: Whenever
the algorithm scans an arc @ = (u,v) and creates a tentative label Lient from L
where L = Lient, it does not insert Lient (with v) into Q. (Note that Lien would be
extracted in the next iteration of the algorithm). Instead, it immediately proceeds
with Lient, scanning all arcs (v, w) € A.

Similarly to LC, the MLC algorithm may also exhibit an exponential number of
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// Input: Graph G = (V, A), source vertex s, target vertex t, departure time T
// Side Effects: Pareto sets of labels B(u) at all vertices u € V, if t = | or at t, otherwise

// Initialization of the algorithm

1 Q < new PQueue() // Create empty priority queue

2 B(-)«+ @ // Create empty bags for every vertex

3 B(s) «+ {Lo} /I Add initial label to bag at s

4 Q.Insert((Lg,s), Key(Lg)) /I Add initial label to priority queue
// Main loop

5 while not Q.Empty() do

6 (L,u) < Q.ExtractMin() // Scan next label

7 forall the outgoing arcs a = (u,v) € A do /I Scan outgoing arcs

8 Lient < L + Cost(a) /I Create tentative label and add costs to it

9 forall the labels L’ € B(v) do // Test for domination at v

10 if L' <X Lient then break

1 if Lient < L' then

12 B(v) «+ B(v) \ {L'}

13 Q.Delete((L',v))

14 forall the labels L’ € B(t) do /I Target pruning

15 | if L’ < Lient then break

16 if Ltent Was not dominated then // Merge tentative label into bag at v

17 B(v) <= B(v) U{Lient}

18 Q.Insert((Lient, v), Key(Lient))

Figure 4.12. Multi-Label-Correcting algorithm (MLC).

labels during execution, which yields the same (exponential in |V|) running time
as LC in theory. However, for the criteria considered in this work, performance
remains practical. An experimental comparison of LC and MLC on range queries (in
a multimodal scenario) is conducted in [Baul2].

Layered Dijkstra. For a special case of the multicriteria problem, where one is
interested in optimizing (besides arrival time) a second criterion that is discrete and
only assumes a small number of different values, the following Layered Dijkstra (LD)
algorithm may be more efficient [BJ04] than LC and MLC. We describe it using the
number of transfers as exemplary criterion.

Therefore, let K be a bound on the number of transfers. During preprocessing, the
graph is copied into K layers. Each transfer arc (in any layer) is rewired to point to
the layer directly above. Then, running Dijkstra’s algorithm from the source vertex s
on the bottom layer results for each k < K in an earliest arrival time that corresponds
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to a journey having exactly k transfers for vertices on layer k. Instead of copying
the graph, the algorithm uses an implicit representation of the layers. It, therefore,
maintains an array of K labels at each vertex and reads/writes the k-th entry in
layer k.

Moreover, to implement domination, a label at vertex u on layer k can be pruned if
there exists a label with earlier arrival time at u on a layer lower than k. Similarly to
implement target pruning for point-to-point queries, the label can be pruned if the
target vertex has a label with smaller arrival time on any layer up to k. Note that we
can drop the requirement for the bound K as input by dynamically extending the
labels, whenever necessary.

Since LD essentially runs Dijkstra’s algorithm on K copies of the graph G, the
running time of this algorithm can be bounded by the number of layers K. Using a
binary heap data structure as priority queue, thus, yields a running time of O(K(|V|+
|A) log(K|V/)).

4.5. Parallel Self-Pruning Connection Setting Algorithm

In this section we introduce our new parallel profile search algorithm for public
transit networks. We start with a basic sequential algorithm for the general one-to-all
setting in Section 4.5.1. Therefore, we first introduce the concept of connection-setting
and show how some journeys dominate others. We then show in Section 4.5.2 the
parallelization of our algorithm. In Section 4.5.3 we then present how it can also be
utilized to accelerate point-to-point queries. A detailed review of our experiments is
found in Section 4.5.4. We conclude with a summary in Section 4.5.5.

References. This section is based on [DKP09,DKP10,DKP12]. The publication [DKP10]
was accepted at the 24th International Parallel and Distributed Processing Symposium
(IPDPS"10) and [DKP12] appeared in the ACM Journal of Experimental Algorithmics,
vol. 17, no. 1 in 2012. It is joint work with Daniel Delling and Bastian Katz.

Departing Connections. A crucial observation in public transit networks is the fact
that each journey from a source stop ps to any other stop has to begin with an
elementary connection departing at ps. Let this set of departing connections be
denoted by Cyep(ps) and defined as

Caep(ps) == {c € C | paep(c) = ps}- (4.4)

A naive and obvious way to compute the full travel time function dist(ps, -, -) would
be to compute an earliest arrival query for each elementary connection ¢ € Cqep(ps)
with respect to its departure time Tgep(c). However, such a connection does not
necessarily contribute to the travel time function dist(ps, pt,-). A connection c;
with departure time Tgep(c;) may as well be dominated by a connection ¢; with later
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departure time Tgep(¢j) > Taep(ci) in the following sense: If the earliest arrival time
at p; starting with ¢; is not greater than the earliest arrival time starting with c;, we
can—and must, for the sake of correctness—prune the result of the search regarding
connection c;, since starting with ¢; never yields the shortest travel time. Note
that this observation implies that for any target stop p; € S, the set of connection
points P(dist(ps, pt, -)) of the travel time function dist(ps, pt, -) is a subset of the set
of connection points induced by Cqep(ps) and their travel times to p;. More precisely,
the following holds:

P(dist(ps, pt,+)) € {(7,£) | there is ¢ € Cgep(ps) such that
T = Tgep(c) and 4.5)
= diSt(pS/ pt Tdep(c))}'

The problem to run |Cyep(ps)| earliest arrival queries and then pruning dominated
connections from dist(ps, ps, -) afterwards is an embarrassingly parallel problem.
Going much further, we show how to extend the above observation to obtain a
pruning rule that we call self-pruning. It can be applied to eliminate “unnecessary”
connections as soon as possible. Thereby, we use self-pruning within the restricted
domain of each single thread, but also take advantage of communication between the
different threads yielding a rule we call inter-thread-pruning. Therefore, we require a
fixed assignment of the departing connections to the processors where each processor
handles a set of connections simultaneously.

The outline of our new parallel algorithm is as follows: First, we partition the
set Cqep(ps) of departing connections to a given set of processors. Second, every
processor runs a single thread applying our main sequential profile search algorithm
restricted to its subset of departing connections. In a third step, the partial results by
the different threads are combined, thereby eliminating dominated connections that
could not be pruned earlier, a step we will refer to as connection reduction.

4.5.1. The Main (Sequential) Algorithm

From the point of view of a single processor that has some subset of Cyep(ps) as
input, it basically makes no difference to the profile search algorithm that some of the
connections are ignored. We simply obtain dist,(ps, -, ) restricted to the connections
assigned to the particular processor k. Hence, we describe the main algorithm as if it
was a purely sequential profile search algorithm and turn towards the parallel issues,
like merging the results from each processor, the way we partition the departing
connections Cyep(ps) and our inter-thread-pruning rule, afterwards.

The naive approach of running a separate earliest arrival query for each ¢ € Cqep(ps)
by Dijkstra’s algorithm (cf. Section 4.4.1) would require an empty priority queue for
every connection c. By contrast, our algorithm maintains a single priority queue and
handles all of its connections simultaneously. Moreover, we use tentative arrival times
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as keys (instead of distances). By these means, we enable both the connection-setting
property as well as our self-pruning rule.

Initialization. At first, the set Cqep(ps) of departing conncetions is determined and
ordered non-decreasingly by the departure times of the elementary connections in
Caep(ps). Thus, we may say that a connection ¢; € Cyepps has index i according to
the ordering of Cyep(ps). We may use the term index and departing connection
interchangeably in the following. The elements of the priority queue are pairs (1, 1)
where the first entry depicts a vertex u € V and the second entry a connection
index 0 < i < |C4ep(ps)|- For each vertex u € V and for each connection i a
label L(u,i) is assigned which depicts the (tentative) arrival time at u when for a
journey that starts with connection i. In the beginning, all label L(u, i) are initialized
with co. Then, for each connection ¢; € Cyep(ps) we insert (u,,i) with key Tgep(c;)
into the priority queue, where u, depicts the corresponding route vertex of c; at
stop ps in the graph G. Note that in the beginning the “arrival time” L(u,,1) equals
the departure time Tgep (c;).

Connection-Setting. Like Dijkstra’s algorithm, we subsequently extract the queue el-
ement (u,7) with minimum key and assign key(u, i) as the final arrival time to L(u, i).
Then, for each arc a = (u,v) € A, we compute a tentative label L'(v, i) at vertex v
by evaluating the arc a at time L(u, i), i.e., we set L'(v,1) := L(u,i) + fo(L(u,i)) (for
connection 7). If v has not yet been discovered using connection i, we insert (v, i) into
the priority queue with key(v,i) := L'(v, i), otherwise, the element (v, i) is already
in the queue and we set key(v, i) to min(key(v,i), L'(v,7)). Note that the following
holds for every connection i: When a queue item (u, i) is scanned, the label L(1,1) is
final, thus, the label-setting property holds with respect to each connection i. We call
this property connection-setting property. The algorithm stops as soon as the priority
queue runs empty. We end up with labels L(u,i) for each vertex u € V and each
connection 0 < i < [Cyep(ps)|- Each label depicts the arrival time at u when starting
with the i-th connection from p;.

We stress out two things. First, although the computation is done for all connections
simultaneously, they can be regarded as independent, since the labels and the queue
items refer to a specific connection throughout the algorithm. Second, the original
variant of Dijkstra’s algorithm uses distances instead of arrival times as keys. However,
this has no impact on the correctness of the algorithm: For each connection the
distance can be obtained by subtracting the respective departure time from the arrival
time, which is constant for all vertices.

Connection Reduction and Self-Pruning. For each vertex u € V the final labels L(u, -)
induce a set of connection points P by

P := {(Taep(ci), 6 (Taep(ci), L(1,i))) | ci € Caep(ps)}- (4.6)
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Unfortunately, the travel time function f represented by P does not account for domi-
nation of connections and hence does not necessarily fulfill the FIFO property (cf. Sec-
tion 4.3.3). Formally, for two connection points (7, ;), (7j,¢;) € P with j > i it
is possible that T + 6]' < 1; + ¥¢;. The aforementioned connection reduction, which
remedies this issue at the end of the algorithm, reduces P to obtain P(dist(S, T, -)) by
removing those connection points which are dominated by another connection point
with a later departure time and an earlier arrival time.

More precisely, the algorithm scans P backwards and keeps track of the minimum
arrival time 7, along the way induced by the connection with index i*, ie., 7, :=
Tdep(i*) + Tira(i*). Each time it scans a connection point j < i* with an arrival
time Tarr () > T4, the connection point is deleted. The remaining connection points
are exactly those of P(dist(ps, pt,-))-

Performing this connection reduction after ter-
mination of the algorithm results in the computa-
tion of many unnecessary connections and, there-
fore, many unnecessary queue operations. Re- Ar:10:00 P} Arr:11:00
call that the keys in the priority queue are ar-
rival times. Thus, we propose a more sophisti- ° °

. . Dep: 9:00
cated approach to eliminate dominated connec- | I
tions during the algorithm: We introduce a vertex . °
label maxconn: V. — {0,...,|Caep(ps)| — 1} de- !
picting for a vertex u € V the highest connection = P¢P:8:00
index with which the vertex u has been scanned so
far. Now, each time the algorithm extracts a queue
element (u,i) with L(u,i) := key(u, 1), it checks
if i > maxconn(u) holds. If this is not the case, the vertex u has already been scanned
earlier but with a later connection (remember that j > i = Tgep(cj) > Taep(ci)), thus,
implying L(u,j) < L(u,i). Therefore, the current connection does not contribute
to the solution, and the algorithm prunes the connection i at u, i.e., it does not
relax outgoing arcs from u. Moreover, it sets L(u,1) := co, depicting that no journey
beginning with the i-th connection reaches u. In case that i > maxconn(u), the
algorithm updates maxconn(u) to i and continues with scanning the outgoing arcs
of u, regularly.

Figure 4.13. lllustrating domination.

Obviously, by applying self-pruning, the set of connection points P(dist(ps, u, -))
at each vertex u induced by L(u, -) fulfills the FIFO property automatically (labels
with L(u,7) = oo have to be ignored).

Figure 4.13 illustrates domination between connections. The red route is an express
route, the blue one a local route. At (a vertices belonging to) stop p, the blue
connection is pruned by the red connection, since it has an earlier arrival time and
a later departure time at p;. Also for stops beyond p, only the red connection is
optimal.
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Theorem 1. Applying self-pruning is correct.

Proof. Let u € V be an arbitrary vertex. We show that no optimal connection to u has
been pruned by contradiction. Let L(u, i) be the arrival time at u of the (optimal) i-th
connection and assume that i has been pruned at u. Let j denote the connection
which was responsible for pruning i. Then, it holds that L(u,j) < L(u,i). Moreover,
since j pruned i, it holds that j > i, which implies Tgep(cj) > Tgep(ci). Therefore, it
holds that 6(Tgep(cj), L(1,])) < d(Taep(ci), L(v,7)). This is a contradiction to i being
optimal: Using the j-th connection results in an earlier arrival time at u by departing
later at p;. u

Putting things together, pseudocode of the complete (sequential) algorithm can be
found in Figure 4.14.

4.5.2. Parallelization

Unlike the trivial parallelization that would assign a connection ¢ € Cyep(ps) for an
arbitrary idle processor which then runs Dijkstra’s algorithm on c, our algorithm
needs a fixed assignment of the connections to the processors beforehand. Let P
denote the number of processors available. In a first step, we partition Cqep (ps) into P
subsets where each thread k runs our main algorithm on its restricted subset Cgep(ps).

After each thread terminates, we obtain partial travel time functions distk(ps, )
restricted to the connections that were assigned to thread k. Thus, the master
thread merges the labels L*(u, ) of each thread k to a common label L(u,-), thereby,
preserving the ordering of the connections. This can be done by a linear sweep over
the labels. Note that the common label L(u, -) does not necessarily fulfill the FIFO
property, since we do not self-prune between threads (so far). For that reason, the
connection points P(ps, pt, -)) of the final distance function are obtained by reducing
the connection points induced by the common label L(u,-) with our connection
reduction method described above. The pseudocode of the main parallel algorithm is
presented in Figure 4.15.

Choice of the Partition. The speedup achieved by the parallelization of our algorithm
depends on the partitioning of Cgep (ps). As the overall computation time is dominated
by the thread with the longest computation time (for computing the final travel time
function, all threads have to be in a finished state), nearly optimal parallelism
would be achieved if all threads share the same amount of queue operations, thus,
approximately sharing the same computation time. However, this figure is not known
beforehand, which requires us to partition Cqep(ps) heuristically. We propose the
following simple methods.

The equal time-slots method partitions the complete time interval IT into P intervals
of equal size. While this can be computed easily, the sizes of Cgep(ps)’ turn out
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// Input: Graph G = (V, A), source stop ps, outgoing connections Cyep (ps)
// Side Effects: Distance labels L(-,-) for each vertex and connection

Q <+ new PQueue() // Create empty priority queue
maxconn(-) ¢ —oo // Initialization
L(:,+) < o
discovered(, -) < false
Sort(Cyep(ps)) // Order outgoing connections by departure time
forall the connections ¢; € Cdep(ps) do /I Add route vertices at ps to queue
r < route vertex belonging to c¢;
Q.Insert((r,i), Tgep(ci))
discovered(r,i) < true
// Main loop
while not Q.Empty() do
(u,i) « Q.ExtractMin() // Scan next vertex/connection
if maxconn(u) > i then /I Self-pruning rule
L(u,i) + o0
continue
else
L maxconn(u) < i
forall the outgoing arcs a = (u,v) € A do // Scan outgoing arcs
L'(v,i) + L(u,i) + fa(L(u,1)) /l Create tentative label
if not discovered(v,i) then
Q.Insert((v,i), L'(v,i)) /I Insert tuple into priority queue
L'(v,i) « L(v,i)
discovered (v, i) < true
else if L'(v,i) < QKey((v,1)) then
Q.DecreaseKey((v,i), L' (w,)) // Update key in priority queue
| L'(v,i) < L(v,i)

Figure 4.14. Pseudocode of the Self-Pruning Connection-Setting Algorithm (SPCS).
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// Input: Graph G = (V, E), source stop ps, outgoing connections Cqe (ps), P processors
// Side Effects: Distance labels L(-, -) for each vertex and connection

1 {Céep(ps),...,cgep(ps)} < Partition(Cyep(S)) // Initialization
2 fork<+1...Pdo in parallel // Parallel computation
3 LX(-,-) < o0

4 SPCS(C’d‘ep(ps)) /I Invoke the sequential SPCS algorithm
5 L(-,-) < Merge(L'(-,-),...,LP(-,-)) / Merge labels from threads

// Connection reduction
6 forall theu € V do

7 last < o0

8 fori < [Cep(ps)|...1do
9 if L(u,i) < last then
10 | last « L(u,i)

11 else

12 L L(u,i) + oo

Figure 4.15. Parallel Self-Pruning Connection-Setting algorithm (PSPCS).

to be very unbalanced, at least in our scenario. The reason for this is that connec-
tions in Cgep(ps) are not distributed uniformly over the day due to rush hours and
operational breaks at night.

The equal number of connections method tries to improve on that by partitioning
the set Cyep(ps) into P sets of equal size (i. e., containing equally many subsequent
elementary connections). This is also very easy to compute and improves over the
equal time-slots method regarding the balance. Besides these simple heuristics, in
principle, more sophisticated clustering methods like k-Means [Mac67] can be applied.
However, our experimental evaluation (cf. Section 4.5.4) shows that the improvement
in query performance is negligible compared to the simple methods, thus, we use
the equal number of connections method as a reasonable compromise. We stress that
for the correctness of our algorithm it is not necessary to partition Cgep(ps) into cells
of subsequent connections. However, it is intuitive to see that the self-pruning rule is
most effective on neighboring (regarding the departure time) connections.

Pruning Between Threads. When computing partial travel time functions indepen-
dently in parallel, the speedup gained by self-pruning may decrease, since a connec-
tion j cannot prune a connections i, if i is assigned to a different thread than j. Thus,
with an increasing number of threads, the effect achieved of self-pruning vanishes to
the extreme point where the number of threads equals the number of connections
in Cgep (ps)- In this case, our algorithm basically corresponds to computing |Cyep (ps)|
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/[ Input: Thread number k, number of processors P, ...
2 minarr¥(.) < oo
4 while not Q.Empty() do

/I Inter-thread-pruning rule
6 if there is I with k < [ < P for which minarr! (1) < L(u,i) then

7 L L(u,i) + oo

continue

9 minarr® () < min(minarr®(«), L(u, 1))

Figure 4.16. Inter-thread-pruning rule for PSPCS. To make the figure less cluttered, only the
relevant parts of the total algorithm are shown.

earliest arrival queries in parallel—without any pruning.

To remedy this issue, the self-pruning rule can be augmented in order to make
use of dominating connections across different threads. In the case that the parti-
tioning of Cgep(ps) is chosen such that each cell Cgep(ps)* only contains subsequent
connections, we may define a total ordering on the cells by Caep(ps)* < Cdep(ps)l
if for all connections ¢ € Caep(ps)© and all connections ¢’ € Cgep(ps)’ it holds
that Tgep (¢) < Taep(c’). Without loss of generality, let k < I < Caep(ps)* < Caep(ps)".
We introduce an additional vertex label minarr*: V — IT for each thread k that
depicts for every vertex u the earliest arrival time at u using connections assigned
to the k-th thread. In the beginning, the algorithm initializes minarr*(u) to infin-
ity and updates minarr*(u) := min(minarry (1), Tarr(1,7)) each time thread k scans
the vertex u for some connection i. Then, in addition to the self-pruning rule, we
propose the following inter-thread-pruning rule: Each time the algorithm scans a
queue element (u,i) with Ta (1, i) = key(u, 1) in thread k, it checks if there exists a
thread ! with [ > k for which minarr! (1) < T (1, ). If this is the case, it holds by
the total ordering of the partition cells that there exists a connection j assigned to
thread ! with Tdep(Cj) > Tdep(cl-) but Tarr (14, j) < Tare (1, 7). In other words, connection i
assigned to thread k is dominated by a connection j assigned to thread /. Thus, the
algorithm prunes i at u the same way it does for self-pruning, i.e., it does not relax
outgoing arcs from u for connection i. Correctness of this rule can be proven analogue
to the the self-pruning rule described earlier.

In a shared memory setup like in multicore servers, the values of minarr®(-) can be
communicated through the main memory, thus, not imposing a significant overhead
to the algorithm. Moreover, for practical use it is sufficient to only check a constant
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number x of threads {k+1, ...,k + x}, since dominating connections are less likely
to be “far in the future”, i.e., assigned to threads | > k. Furthermore, we like to
mention that the inter-thread-pruning rule does not guarantee pruning of dominated
connections since the priority queue is not shared across threads. However, in most
cases connections j with small arrival times prune connections i with high arrival
time with respect to their particular thread. Hence, j is likely to be scanned before i
in the parallel execution, thus, enabling pruning of i. An pseudocode illustration of
the inter-thread-pruning rule is presented in Figure 4.16.

4.5.3. Point-to-Point Queries

Dijkstra’s algorithm can be accelerated by precomputing auxiliary data as soon as
we are only interested in point-to-point queries [DSSW09a]. In this section, we
present how some of the ideas, for example, the stopping criterion, map to our new
algorithm. Moreover, we show how the precomputation of certain journeys improves
the performance of our algorithm. The enhancements introduced in this section refer
to the sequential algorithm (cf. Section 4.5.1). Thus, all results translate to our parallel
algorithm naturally. Also note that they require a target stop as input, in particular,
they do not accelerate one-to-all queries.

Stopping Criterion

For point-to-point queries, Dijkstra’s algorithm can stop the query as soon as the
target node has been extracted from the priority queue. In our case, i. e., stop-to-stop,
we can abort the query as soon as the target stop p; has its final label L(p;, i) for
all i assigned. This is achieved as follows. The algorithm maintains an index T},
initialized with —co. Whenever it scans a connection i at the target stop p;, it
sets T, := max{i, T,, }. Then, the algorithm may prune all queue entries (u,i) € Q
for which i < T}, holds (at any vertex u). The query terminates as soon as the queue
is empty.

Theorem 2. The stopping criterion is correct.

Proof. We need to show that no queue entry q = (u,i) € Q with i < T, can improve
the arrival time at p; for the connection i. Let, therefore, g = (u',i") be the responsible
entry that has set Ty,. Since i < T;, holds, we know that regarding the departure
times of the connections, Tgep(c;) > Tqep(c;) must hold. Moreover, since g is scanned

after ¢/, we know that L(u/,i") < L(u,i) must hold. In other words, it does not pay
off to continue journey i at stop p. u

Pruning with a Distance Table

Next, we show how to accelerate out point-to-point algorithm by pruning with the
help of a distance table. Since a distance table computed directly on the model
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Figure 4.17. The super station graph G corresponding to the network depicted by Figure 4.10.

graph G would be too large to be practical, we use the smaller super stop network to
compute the distance table. Intuitively, super stops are obtained by merging stops
that are connected by footpaths.

Constructing Super Stops. Consider the foot graph Ggoor = (S, F) whose vertices are
exactly the stops of the timetable and arcs correspond to footpaths. As mentioned in
Section 4.3, Gfot is composed of small connected components of stops near the same
intersection of the underlying road network. Thus, we use Gy, to obtain a super stop
graph G = (S, A) in the following way. For each connected component in Ggyor We
create a super stop pin S. An arc (f;, fjj) is contained in A if and only if there exists
an elementary connection from any of the stops inside f; to any of the stops inside ;.
We use S(p) to refer to the super stop of a stop p € S. See Figure 4.17 for the super
stop graph obtained from the network depicted in Figure 4.10.

Furthermore, for our pruning rule, we require the notion of the diameter of a super
stop p. It is defined as the length of the longest shortest path inside a component
of Gioot, but additionally takes the minimum change times at its respective source and
target stops into account. Formally, let dist(p;, p;) denote the shortest path distance
between two stops p; and p; in Gyeor- Then we define

diam(p) := max {7 (pi) + dist(pi, pj) + Ten(pj)}- (4.7)
Think of the diameter as an upper bound on the time one can spend walking inside a
super stop.

Hub Stops. We are now given a subset Sy, C S of super stops, called hub super
stops (think of them as important hubs in the network) and a distance table D : Shub X
Shup X IT — Z>. The distance table returns, for each pair of super stops p;, p; € Shub,
the quickest way of getting from p; to p; at time T € 11, i.e., the earliest possible
arrival time at p; for any of the combinations of a stop inside ; and a stop inside p;.
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Figure 4.18. Local and via super stops of a super stop f. Local super stops are drawn blue, while
via super stops are marked bold and red.

Note that we do not consider the diameters of p; and p; here. In other words, the
distance table returns a lower bound on the distance between p; and p; at time 7.

Before explaining the pruning rule in detail, we need the additional notion of local
and via super stops. The set of local super stops local() C S of an arbitrary super
stop f# € S includes all super stops ' such that there is a simple path from §' to p
that contains only non-hub super stops in the super stop graph G. The set of hub
super stops that are adjacent to at least one local super stop of /i are called the via
super stops of p, denoted by via(#) C Shup. They basically separate p U local(#) from
any other super stop in G. Figure 4.18 gives a small example. In the special case of S
being a hub super stop itself, we set local(f) = @ and via(S) = {p}.

Applying the Distance Table. In the following, we call a ps—p; (with respective super
stops ps and py) query local, if ps € local(p;); otherwise the query is called global.
Note that an optimal journey of a global query must contain a via super stop of f;.
We accelerate global ps—p; queries by maintaining an upper bound ; ; (initialized
with oo) for each connection i and each via super stop f; from via(p;). Whenever the
algorithm extracts a queue entry g = (u,i) with p(v) € Spup, it sets

pij -= min{pij, D(p(u), pj, L(u, i) + diam(p(u))) + diam(p;) } (4.8)

for all p; € via(fi;). In other words, y;; depicts an upper bound on the earliest trip
one can get at fj;, even if it involved a transfer (and potential walk) at p;. So, the
algorithm prunes the search for g if

for all p; € via(p): D(p(u), pj, L(u,i)) > i, (4.9)

holds. In other words, the search is pruned at u for a connection i if the path
through p(u) is provably not important for the optimal journey to any via stop
of p; € via(p;). Figure 4.19 gives a small example.

Theorem 3. Pruning based on a distance table is correct.

The following proof is split into several lemmas and follows the intuition that
arriving at a time earlier than y;; at fj; ensures getting the optimal trip towards p;.
Moreover, when the algorithm prunes at u, the path through u yields a later arrival
time at p; than p; ;. Thus, the path at u can be pruned, since it is no improvement
over the path corresponding to y; ;.
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= Tarr(ﬁ]'r Z) + dlam(fj]) S Vi,j

Figure 4.19. Example for pruning via a distance table, given an ps—p; query. The super stops f,
and i are hub super stops, and p; are the via super stop of p;. When scanning a vertex of super
stop s, we obtain that the arrival time at p; plus the diameter at p; is smaller or equal to y; ;.
Hence, the algorithm prunes the query at p; if the lower bound obtained from the distance table
yields an arrival time at f; greater than y; ;.

We prove the overall correctness by showing the correctness for each connection i
separately. Thus, let i be a fixed connection index and P = [ps, ..., p:] the shortest
path of a global ps—p; query of connection i. Note that if p,-p; is a local query, no
pruning is applied and, hence, there is nothing to prove.

Now, let 7. (p:, i) denote the optimal arrival time at p; of the path P (i.e., by
starting with connection 7). Moreover, let fi; be the corresponding super stop of the

target stop p;. To show the main theorem, we prove a series of lemmas first.
Lemma 2. For all tuples (u, ;) € V x via(p;) with p(u) € Spyp it holds that
T (Pt 1) <D(P(u), pj, L(w, i) + diam(p(u))) + diam(p;)
S (4.10)
+ dist(f), pr, ti)-

Proof. Assume that the equation is false and the right hand side yields an arrival
time at p; which is earlier than 7, (p;, 7). Then, the path induced by the right hand
side of the equation yields a shorter path to p;, which is a contradiction to 7. (p:, 1)
being optimal. n

This proves that using the distance table via f; at any vertex u yields an upper
bound on the arrival time at p; (for connection 7). Since this is true at all vertices
u € V (for which fi(u) € Spup), the following corollary follows immediately.

Corollary 1. Let

pij = r&ig(ui,ll,j). (4.11)
p(4) €ESpup

Then it holds that T, (pt, i) < p;j+dist(p;, T, pi j)-

Note that in the algorithm y;; is maintained exactly the way it is defined in
Lemma 2, and the minimum operation is applied iteratively each time it scans a
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vertex u for which p(v) € Shub holds. Hence, the inequality of Corollary 1 holds in
the algorithm, as well.

Next, consider the combined shortest ps—u—p;—p: path of connection i and arrival
time Tﬂz (ps, i) at pr. We lower-bound Tﬂz (p:, 1) by the distance table in the following
lemma.

Lemma 3. For all tuples (u, pj) € V x via(pt) with p(u) € Sy it holds that

wf)(pe,i) > D(pw), By, L(u, 1)) + dist(Bj, pe, Yin)) (412)

= Yiuj

where Ta(fr) (p1, i) depicts the arrival time of the combined shortest ps—u—p;—p; path.

Proof. Assume that the right hand side of the equation evaluates to Tﬂz/( pt, i) with
Tg) (pt, i) > Ta(fz(pt, i). Then, because both D(fi(u), p;,-) and dist(p;, p:, -) are fulfill-
ing the FIFO property, the departure time T of D(f(u), p;, T) of the path correspond-

ing to ng/( pt,i) on the left hand side of the inequation has to be strictly smaller
than o (14,1) at u. But, this cannot be true, since the path induced by Ta(fz(pt, i) is
assumed to be the shortest path. [ |

Intuitively, Lemma 3 proves that any valid (shortest) ps—p; path that goes via u
and f; has to be at least as long as the “path” that ignores walking times at both p(u)
and p; (and basically acts as if one could catch any trip at (1) and p; instantaneously).

Next, we establish that, when we apply our pruning rule during the algorithm, we
do not prune a path that is important (i. e., we only prune paths which are provably
not shortest to py).

Lemma 4. Let u € V be a vertex with j(u) € Sy, and let i, j > ;i ;. Then

Vi, + dist(Fj, pr, Vi) > pij + dist(Fj, pr, pi, j) (4.13)
holds.
Proof. This follows immediately from the FIFO property of dist(p;, p:, -). u

We now conclude our proof of the main Theorem 3. Hence, let u € V be a vertex
with fi(u) € Shup, where the pruning rule is potentially applied by the algorithm.
Then from Lemmas 3, 4, and Corollary 1 we obtain for a via super stop ; € via(p;)
that

Yiuj > Hij = Ta(Q(Pt/i) > i+ dist(pj, pr, i) = T (pr 1) (4.14)
=: 1/]

Since our algorithm keeps track of j; ; as the minimum over all y1; 5 ; with j € Shub,
the path which corresponds to y;; is not pruned. Hence, at the point where u is
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pruned, a path with arrival time ¥ toward p; is guaranteed to be found. Since u is
only pruned if Equation 4.13 holds for all p; € via(f}), it follows that u is not on the
path P, thus, u is not important for the shortest ps—p; path. [ |

Computing Via Super Stops. The query algorithm determines the via super stops
of p; on-the-fly: During the initialization phase it runs a depth-first search on the
reverse super stop graph from f, pruning the search at stops f € Spu,- Any super
stop p € Shup touched during the depth-first search is added to via(p;). Note that
the algorithm distinguishes local from global queries when computing via(p;): As
soon as the depth-first search visits f, the query is local, otherwise it is global.

Selecting Hub Super Stops

The efficiency of pruning via a distance table highly depends on which super stops
are selected for Spyp. In [SWWO0], the authors propose to identify important stops
by a given “importance” value provided by the input. However, such values are
not available for all inputs. Hence, we compute importance values heuristically.
Consider the aforementioned super stop graph G. We augment G with constant
arc weights £(f;, p;). Therefore, consider all connection poins (or, equivalently,
elementary connections) that go from any stop inside p; to any stop inside fj,
denoted by C(f;, p;). Then, we define £(p;, fi;) to be the expected travel time to get
from p; to p; using solely connections from C(f;, p;). Note that the expected travel
time also includes waiting times between subsequent connections. We now use G
with £ to select important stops by one of the following methods.

Contraction Hierarchies. A fast approach for selecting important super stops is
using Contraction Hierarchies [GSSV12]. A contraction routine iteratively removes
unimportant vertices from G and adds shortcuts in order to preserve the distances
between non-removed vertices. It stops as soon as the number of unremoved vertices
is ¢ (an input parameter). It marks the remaining super stops as important, i. e., adds
them to Spyp.

Shortest Path Covers. Abraham et al. [ADGW11] observed that Contraction Hier-
archies may do a poor job picking the most important vertices in the context of
road networks. Hence, they propose using shortest path covers for selecting them.
Unfortunately, computing such covers is hard, but the authors propose a polynomial
time O(log|V|) approximation algorithm which we adapt to our problem by the
following approach. It begins with Shub = @ and iteratively determines the next most
important super stop as the one that covers most (yet uncovered by Shup) shortest
path in G. The algorithm stops as soon as it selected ¢ hub super stops. Note that this
algorithm requires ¢ times the computation of all-pairs shortest path in G. However, G
is sufficiently small for this approach to be still practical.
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Figure 4.20. Super stop graph of one of our inputs,
the Los Angeles County Metro network. Hub super
stops are highlighted in thick red (cf. Section 4.5.3).
In this figure we used the Contraction Hierarchy
method to select 10 % of the stops as hub stops.

4.5.4. Experiments

We conducted experiments on up to 48 cores (4 CPUs, 8 NUMA-nodes, 6 cores
per NUMA-node) of an AMD Opteron 6172 machine running SUSE Linux. The
machine is clocked at 2.1 GHz, has 256 GiB of RAM, 512KiB of L2 cache per core,
and 6 MiB of L3 cache per NUMA-node. The program was compiled with GCC 4.5,
using optimization level 3. Our implementation is written in C++ using the standard
template library solely for basic data structures, such as vectors. As parallelization
framework we use OpenMP and a 4-heap as priority queue.

To avoid congestion of the memory bus, we keep a copy of the graph in the
designated memory area of each NUMA-node.

Inputs. We use three different public transportation networks as inputs: The Los
Angeles County Metro (15146 stops and 979 283 elementary connections), and the
complete network of Metropolitan Transport Authority of New York which includes
buses, ferries, and subways (16897 stops and 2062846 elementary connections).
Moreover, we use the long-distance railway network of Europe. It has 30517 stations
and 1691691 elementary connections.

The networks of Los Angeles and New York were created based on the timetable of
March 1 2011. The European railway network is based on the timetable of the winter
period 1996/1997. Note that the local networks are much denser than the railway
network, i. e., the connections per station ratio is significantly higher there. Moreover,
our data of the European railway network contains realistic minimum change times
for all stations. For the bus networks of New York and Los Angeles this data was not
available to us. Hence, we set a minimum change time of 90 seconds for all bus stops.
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Table 4.2. Comparison of the realistic time-dependent model to our Coloring Model.
We report the number of stops of the timetable, the number of vertices and arcs in the
graph, as well as the number of route vertices per stop and the percentage of stops that
could be merged (i. e., consisted of only one route vertex).

Los Angeles New York Europe
Figure Routes Colored Routes Colored Routes  Colored
# Stops 15146 15146 16897 16897 30517 30517
# Vertices 89111 21680 79881 27203 515062 83732
# Arcs 235394 54896 198232 67105 1412082 392675
Rt. Vertices p. St. 4.9 0.4 3.7 0.6 15.9 1.7
% Merged St. — 79.5 — 71.7 — 33.2

Footpaths are computed on all networks by our heuristic, see Section 4.3.5.

The timetable data of the local city networks is publicly available via General
Transit Data Feeds [Gen10], while the timetable data of the European railway network
was kindly given to us by HaCon - Ingenieurgesellschaft [HaC84]. As an example,
see Figure 4.20 for the super stop graph of the Los Angeles network.

Modeling

Our first set of experiments focuses on evaluating the models, as presented in
Section 4.3. In particular, we compare the realistic time-dependent model with our
new Coloring Model. Table 4.2 shows figures on all of our inputs for both models.
We observe that using the Coloring Model reduces the graph size for all inputs. The
average number of route vertices per stop shrinks by a factor of between 6.1 (New
York) and 12.3 (Los Angeles).

Additionally, we observe for many stops that there exists no conflict between any
connections. In fact, the model merges the only route vertex with its stop vertex
for 79.5% of the stops in the Los Angeles network. On the other hand, on the
European railway network about two thirds of the stops contain more than one route
vertex, which stems from the fact that in this network minimum change times are
higher, thus, increasing the likelihood of two trains having a conflict.

Since the Coloring Model yields smaller graphs, which improves performance
on all our algorithms compared to the realistic time-dependent model, we use the
Coloring Model for all subsequent experiments.

One-to-All Queries

Our second set of experiments focuses on the question how well our Parallel Self-
Pruning Connection-Setting Algorithm (PSPCS) performs if executed on a varying
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number of cores. Therefore, we ran 1000 one-to-all queries with the source stop
picked uniformly at random. We report the average number of connections extracted
from the priority queue (sum over all cores) and the average execution time of a query.
Table 4.3 reports these figures for a varying number (between one and forty-eight)
of cores and different partitioning strategies. In order to evaluate the partitioning,
we also report the standard deviation with respect to the execution times of the
individual threads. In other words, a low deviation shows a good balance, whereas a
high deviation indicates that some threads are often idle.

For comparison, we also report the performance of the label-correcting (LC) ap-
proach (cf. Section 4.4.2), as well as of our Connection-Setting Algorithm (CS) without
self-pruning enabled. (Think of it as running Dijkstra’s algorithm simultaneously for
every outgoing connection of the source stop.) Regarding LC, for better comparability,
the number of connections figure here indicates the sum of the sizes of the connection
points (of the functions) taken from the priority queue.

We observe that our algorithm scales pretty well with increasing number of cores.
On both the Los Angeles and New York networks, the number of scanned connections
is only increasing mildly with the number of cores. So, on twelve cores we have a
speedup factor of around four to eight compared to an execution on one core. On
48 cores, the speedup factor is between 3.6 (Europe) and 17.5 (Los Angeles). The
relatively mild speedups on Europe compared to the other networks are explained
by the fact that the average number of connections at a station is much smaller than
in the dense metropolitan networks. Still, on all cores, we are able to compute all
optimal connections for a full day in less than 0.2 seconds. Note that this value is
achieved without any preprocessing, hence, we can directly use this approach in a
fully dynamic scenario (as discussed, for example, in [FMS08]).

Regarding load balancing, we observe that using the equal number of connections
strategy (equiconn) yields (on average) the lowest query times (and deviation). In few
occasions, the equal time-slots strategy (equitime) or k-means yield better results, but
over all inputs and number of cores, equiconn seems to be the best choice. Hence, we
use equiconn as default strategy for all further multi-core experiments. Another—not
too surprising—observation is that the deviation increases with increasing number of
cores. The more cores we use, the harder a perfect balancing can be achieved.

Comparing our new connection-setting to the label correcting approach, we observe
that PSPCS outperforms LC—on Los Angeles and Europe even when PSPCS is
executed on a single core. The main reason for this is that the number of connections
investigated during execution is much smaller for PSPCS than for LC. On the network
of New York, LC is slightly faster than PSPCS on a single core, but already on three
cores PSPCS outperforms LC by a factor of two. Note that the number of priority
queue operations for LC is up to four times lower than for PSPCS. Hence, the
advantage of PSPCS in number of scanned connections does not yield the same
speedup in query times.
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4.5. Parallel Self-Pruning Connection Setting Algorithm

Table 4.3. One-to-all profile queries with our Parallel Self-Pruning Connection-Setting Algo-
rithm (PSPCS) on varying number of cores cores and different partitioning strategies. We com-
pare PSPCS to the label-correcting approach (LC). The column “Spdup” indicates the speedup in

running time of a multi-core over a single-core execution of PSPCS. The column “Dev” reports the
standard deviation with respect to the execution times of the individual threads indicating how

well the threads are balanced (lower values are better).

Los Angeles New York Europe
Settl. Time Spd. Dev. Settl. Time Spd. Dev Settl. Time Spd. Dev.

P Conns [ms] Up [%] Conns [ms] Up [%] Conns [ms] Up [%]

1 844852 3740 1.0 — 1606515 931.5 1.0 — 550912 3949 1.0 —
EQUICONN:

3 855676 131.5 2.8 9.1 1625545 391.5 2.4 139 666 889 162.4 2.4 153
6 871978 72,1 5.2 129 1654798 1659 56 12.6 843695 1395 2.8 18.8
12 904149 66.1 5.7 20.9 1711439 118.1 79 16.8 1172269 100.9 3.9 15.0
24 967339 46.4 8.1 22.6 1822735 106.9 8.7 20.5 1709985 125.8 3.1 214
48 1079224 214 17.5 13.9 2038022 57.0 16.3 18.5 2393664 109.7 3.6 20.9
EQUITIME:

3 853629 153.5 2.4 189 1623518 384.6 2.4 245 651022 163.7 2.4 175
6 865679 856 4.4 25.6 1645273 201.0 4.6 264 799 641 1726 2.3 234
12 891822 90.7 4.1 249 1692424 1329 7.0 23.7 1065354 116.5 3.4 18.2
24 943625 55.2 6.8 23.4 1783835 1175 7.9 22.2 1474137 136.1 2.9 214
48 1022931 38.2 9.8 21.1 1953405 69.7 13.4 199 1970312 1173 3.4 21.2
k-MEANS:

3 852122 142.2 2.6 17.8 1619993 361.8 2.6 22.7 648190 166.0 2.4 19.1
6 864301 87.2 4.3 245 1643853 190.9 4.9 25.1 810833 113.9 3.5 18.8
12 893412 89.5 4.2 24.7 1693146 1715 5.4 21.3 1128571 118.0 3.3 18.0
24 949905 44.6 8.4 21.5 1795074 92.2 10.1 19.8 1644280 1226 3.2 21.3
48 1057201 31.0 12.0 20.8 2002726 58.5 159 19.0 2276361 107.2 3.7 21.8
OTHER ALGORITHMS:
CS 1352894 586.7 — — 3327697 1965.4 — — 4377790 3843.3 — —
LC 2529009 445.9 — — 4656646 748.4 — — 1278093 635.3 — —
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When comparing the single core execution of PSPCS to a connection-setting al-
gorithm without self-pruning (CS), we observe that enabling self-pruning makes a
significant difference in both scanned connections and running time. Most notably, on
Europe the number of connections drops from 4.3 million to 0.5 million together with
a drop from 3.8 to 0.4 seconds in running time. The difference is less pronounced
on the metropolitan networks, which is due to the fact that these networks inherit a
weaker hierarchy; i. e., there are fewer “express” trains (respectively buses) that prune
local (slow) trains.

Inter-Thread-Pruning. In our previous experiment (cf. Table 4.3) we did not enable
inter-thread-pruning (cf. Section 4.5.2). Hence, in Table 4.4 we compare our Self-
Pruning Connection-Setting Algorithm with and without inter-thread-pruning on a
varying number of cores P. Thereby, we limit the number of threads we check for a
dominating connection to one.

We observe that activating inter-thread-pruning helps reducing the number of
scanned connections in all scenarios. Interestingly, even for a sequential execution
we are able to reduce the number of scanned connections. Here, the “thread” we
check for a dominating connection is the thread itself. By these means, we are able to
prune over the boundary of the time period, e. g., for a connection after midnight to
prune a connection in the late evening (remember that the timetable in this section is
periodic).

While the number of scanned connections decreases with inter-thread-pruning,
the additional computational overhead in the algorithm does not always justify the
smaller number of scanned connections. Hence, the gain in query time is mostly
small. In the network of New York, enabling inter-thread-pruning even leads to
slightly worse query times. We conclude that the benefit of inter-thread-pruning is
small. Thus, for the sake of simplicity and reduced communication overhead of the
algorithm, we disable inter-thread-pruning in subsequent experiments.

Point-to-Point Queries

In this experiment we evaluate our algorithm in a point-to-point scenario. We use
all 48 cores as default and evaluate the impact of different distance table sizes. Since
these tables need to be precomputed, we also report the preprocessing time and
the size of the tables in Megabytes. Furthermore, we report the average number of
via super stops per super stop if it were the target of a query. The distance tables
are computed by running our parallel one-to-all algorithm on 48 cores from every
hub super stop. As strategies for selecting hub stops, we evaluate both the Greedy
Covers (GC) and the Contraction Hierarchies (CH) approaches (cf. Section 4.5.3).
Table 4.5 gives an overview over the obtained results.

We observe that compared to Table 4.3, the stopping criterion alone (which requires
no preprocessing) already accelerates queries by up to 89 % (Europe).
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Table 4.4. Comparing our Self-Pruning Connection-Setting
Algorithm with and without inter-thread-pruning enabled on a
varying number of cores P. The column “Spdup” refers to the
speedup in running time over a sequential execution of the
same algorithm.

Without ITP With ITP
Settl.  Time Spd. Sett.  Time Spd.
P Conns [ms] Up Conns [ms] Up

LOS ANGELES:

844852 374.0 1.0 838331 381.5 1.0
855676 1315 2.8 836759 2159 1.8
871978 72.1 5.2 835494 72.7 5.2
2 904 149 66.1 5.7 836186  41.7 9.1
24 967339 46.4 8.1 856631 47.6 8.0
48 1079224 214 175 919060 329 11.6

—_ O W =

NEW YORK:

1606515 931.5 1.0 1595121 958.3 1.0
1625545 3915 2.4 1594007 413.8 2.3
1654798 165.9 5.6 1594153 1739 5.5
2 1711439 118.1 7.9 1600842 158.0 6.1
24 1822735 106.9 8.7 1625629