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Preamble 

 

The thesis deals with the microbial lipid production based on renewable raw material.  

This thesis is structured into a general introduction about basic knowledge and the research 

subject, three main chapters (I, II, III) which are partially based on peer-review works and 

ends with concluding remarks. 

The introduction contains excerpts of the section “Case studies: SCOs as Raw material and 

Intermediate” in the book chapter “Existing Value Chains” in “Renewable Raw Materials” 

(Wiley VCH).  

Chapter I focuses in particular on the fermentative production processes of microbial lipids 

with the oleaginous yeast Cryptococcus curvatus and the recycling of the waste stream CO2 

by coupling the yeast process with the lipid production process of the autotrophic oleaginous 

microalgae Phaeodactylum tricornutum. This chapter contains the main part of the submitted 

publication “Combination of algae and yeast fermentation for an integrated process to 

produce single cell oils” in Applied Microbiology and Biotechnology (2014) which was 

performed in cooperation with Robert Dillschneider  (Institute of Bioprocessing, Karlsruhe 

Institute of Technology) within the ERA-SME project BiCycle funded by BMWI. The author of 

this dissertation was responsible for the part concerning the yeast process, while Robert 

Dillschneider worked on the algal part. 

Chapter II describes the screening of new oleaginous yeasts via Sudan black B staining 

technique. Four yeast strains were isolated and characterized in the context of lipid 

production. This chapter is based on the publication “Characterization of newly isolated 

oleaginous yeasts - Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis 

in AMB Express (2014), and contains additional data concerning the fourth isolated yeast 

Candida shehatae.  

Chapter III presents studies for a fast and easy applicable method in 96-well plate format to 

roughly quantify the lipid content in oleaginous yeast strains in suspension using the 

fluorescent lysochrome Nile red. This technique was applied to estimate the lipid content of 

the oleaginous yeast Cryptococcus curvatus and for the establishment of a rapid HTP 

screening assay to identify new oleaginous yeast strains. 
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Zusammenfassung  

 

Ölhaltige Mikroorganismen sind in der Lage, Kohlenstoffquellen in Speicherlipide 

umzuwandeln und sie als intrazelluläre Lipidtröpfchen in der Zelle einzulagern. 

Mikroorganismen werden als oleogen bezeichnet, wenn mehr als 20 % ihrer 

Biotrockenmasse aus Lipiden besteht. Diese Lipide sind auch als Einzelleröle (SCO) bekannt 

und werden in der stationären Wachstumsphase unter Stickstofflimitierung mit gleichzeitigem 

Überschuss einer Kohlenstoffquelle produziert. Abhängig von der Art des Mikroorganismus 

(Hefe, Mikroalgen, Schimmelpilze und Bakterien) variieren diese mikrobiellen Lipide in der 

Zusammensetzung ihrer Fettsäureprofile und sind daher für verschiedene industrielle 

Anwendungen geeignet. Aufgrund der sinkenden Erdöl-Ressourcen, des umstrittenen 

Einsatzes von Pflanzenölen für die Biodieselproduktion und der Überfischung der Ozeane  

werden SCOs als Möglichkeit gesehen Erdöl, Pflanzen- und Fischöl teilweise ersetzen zu 

können. Allerdings ist die mikrobielle Lipidproduktion noch nicht ökonomisch realisierbar, 

abgesehen von einer kleinen Anzahl an Produktionsanlagen für hochwertige Fettsäuren, wie 

z.B. Docosahexaensäure (DHA), Eicosapentaensäure (EPA) und Arachidonsäure (ARA).  Es 

sind daher Strategien erforderlich, um die Produktionskosten mikrobieller Öle zu reduzieren 

und die Produktivität zu erhöhen.  

Cryptococcus curvatus ist eine der am besten untersuchten ölhaltigen Hefen und wird daher 

in dieser Studie als Modellorganismus genutzt. Wie alle heterotrophen Organismen, emittiert 

auch C. curvatus das Treibhausgas CO2, dessen Ausstoß in industriellen Prozessen 

verringert werden soll, um der globalen Erderwärmung entgegen zu wirken. Das emittierte 

Abgas CO2 des Lipid produzierenden Hefe-Prozesses wurde daher beim Prozess Lipid 

bildender Mikroalgen als Kohlenstoffquelle genutzt und auf diese Weise  recycelt. Es wurde 

gezeigt, dass eine Kultivierung der ölhaltigen Hefe C. curvatus in einem 1,2 L-Maßstab 

ausreicht, um eine Kultivierung der ölhaltigen Mikroalge Phaeodactylum tricornutum in einem 

21 L-Blasensäulenreaktor mit CO2 zu versorgen, während in beiden Prozessen gleichzeitig 

Einzelleröle produziert wurden. Die von C. curvatus hergestellten Hauptfettsäuren sind 

Ölsäure (49,0 %), Palmitinsäure (18,5 %), Stearinsäure (17,7 %) und Linolensäure (8,6 %). 

Die Mikroalge P. tricornutum produziert hauptsächlich Palmitoleinsäure (44,9 %), 

Palmitinsäure (25,0 %), Eicosapentaensäure (8,9 %) und Ölsäure (7,6 %).  

Vier Hefestämme wurden aus Bodenproben isoliert und mit dem Farbstoff Sudanschwarz B 

angefärbt, der Neutralfette färbt. Diese vier Stämme wurden als Cryptococcus podzolicus, 

Trichosporon porosum, Pichia segobiensis und Candida shehatae identifiziert und in 

Bioreaktoren kultiviert, um sie hinsichtlich ihrer Lipidproduktion zu charakterisieren. Mit 



 
 

Glucose als Kohlenstoffquelle produzierte C. podzolicus 31,8 % Lipid pro Biotrockenmasse 

bei 20 °C, T. porosum 34,1 % bei 25 °C und P. segobiensis 24,6 % bei 25 °C. Daher können 

diese drei Isolate als oleogene Hefen klassifiziert werden, wohingegen C. shehatae mit 

17,8 % Lipidgehalt pro Biotrockenmasse auf Glucose bei 25 °C nicht als oleogen klassifiziert 

werden kann. Gluconsäure wurde als Nebenprodukt nachgewiesen, wenn C. podzolicus und 

T. porosum auf Glucose kultiviert wurden (jeweils 30 g/L und 12 g/L). Wenn Glucose durch 

Xylose als Kohlenstoffquelle ersetzt wurde, konnte Gluconsäure für beide Stämme nicht 

nachgewiesen werden. Mit Xylose als Kohlenstoffquelle waren die Lipidgehalte nur 

geringfügig niedriger als bei der Verwendung von Glucose. Daraus folgt, dass sich Xylose 

als Kohlenstoffquelle für C. podzolicus und T. porosum eignet, wenn lediglich Lipide 

produziert werden sollen. Glucose könnte als Kohlenstoffquelle zum Einsatz kommen, wenn 

die gleichzeitige Produktion von Gluconsäure als extrazelluläres Produkt und Lipid  als 

intrazelluläres Produkt erwünscht sind. Xylose - als Bestandteil der Hemicellulosen, die 

Biomasse der zweiten Generation darstellen - ist somit eine lohnende Kohlenstoffquelle für 

die mikrobielle Lipidproduktion. Die Hauptfettsäure in allen vier Isolaten ist Ölsäure 

(zwischen 39,6 % und 63,0 %), die z. B. für die Biodiesel-Produktion geeignet ist. Auch 

Palmitinsäure (zwischen 9,8 % und 21,1 %) und Linolensäure (zwischen 7,5 % und 18,7%) 

sind in einer angemessenen Menge vertreten, welche für kosmetische Anwendungen 

wertvoll sind. P. segobiensis erzeugt einen erheblichen Anteil an Palmitoleinsäure (16,0 %), 

die für medizinische Anwendungen geeignet ist. 

Zusätzlich zur Lipidfärbung mit dem Farbstoff Sudanschwarz B, eignet sich auch der 

fluoreszierende Farbstoff Nilrot, um Neutralfette anzufärben, sodass er daher auch für die 

Färbung der intrazellulären Lipide in oleogenen Mikroorganismen geeignet ist. Die Intensität 

der Fluoreszenz ist proportional zur Lipidmenge. Daher ist die Intensität der Fluoreszenz ein 

Kriterium, um den Lipidgehalt pro Biotrockenmasse abschätzen zu können, ohne die 

zeitintensive Analyse per Gaschromatographie zu verwenden – die Standardmethode zur 

Quantifizierung und Qualifizierung für Lipide. Zu diesem Zweck wurden Zellsuspensionen  

oleogener Hefen mit Nilrot in 96-Well-Mikrotiter-Platten angefärbt und sowohl die optische 

Dichte (OD600) als auch die Fluoreszenz gemessen. Es wurde der Quotient 

"Fluoreszenz/OD" gebildet und mit dem Lipidgehalt verglichen, der über 

gaschromatographische Analyse bestimmt wurde. Diese Methode wurde in Mikrotiterplatten 

erfolgreich angewendet, um den Lipidgehalt der ölhaltigen Hefe C. curvatus abzuschätzen. 

Der Lipidgehalt von C. curvatus konnte mittels einer Kalibrierung mit einer Abweichung von 

5 % für einen Lipidgehalt im Bereich von 18,3 % und 35,6 % quantifiziert werden. Diese 

Quantifizierungs-Methode kann nun auf andere oleogene Hefen übertragen werden. 



 
 

C. curvatus und fünf andere Hefestämme wurden zusätzlich mit der gleichen Methode 

angefärbt und mit den gleichen Geräteeinstellungen bezüglich Fluoreszenz und optischer 

Dichte untersucht. Die Quotienten "Fluoreszenz/OD" und "Fluoreszenz/Biotrockenmasse" 

wurden mit dem Lipidgehalt ins Verhältnis gesetzt und die Ergebnisse wurden zwischen den 

verschiedenen Hefestämmen verglichen. Es wurde gezeigt, dass sich dieses Verfahren als 

Methode eignet, um in einem Hochdurchsatz-Verfahren neue oleogene Hefen zu 

identifizieren. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract  

 

Oleaginous microorganisms are able to convert carbon sources into storage lipids as 

intracellular lipid droplets yielding in more than 20 % lipid per dry biomass. These lipids are 

also known as single cell oils (SCOs) and are produced in the stationary growth phase under 

nitrogen limitation with simultaneous excess of a carbon source. Depending on the species 

(yeast, microalgae, filamentous fungi or bacteria), these microbial lipids vary in the 

composition of their fatty acid profiles and are therefore suited for diverse industrial 

applications. Considering the depletion of crude oil, the controversial use of plant oils for 

biodiesel production and the overfishing of the oceans, SCOs are considered as suitable oil 

substitutes for crude, plant and fish oil. However, microbial lipid production is still not 

economical feasible, apart from a small number of production plants for high value fatty 

acids, e.g. docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid 

(ARA). Therefore strategies are required to reduce the production costs of SCOs and to 

increase the productivity.  

Cryptococcus curvatus is one of the most examined oleaginous yeasts and was therefore 

suited as a model organism in this study. Like all heterotrophic organisms, C. curvatus emits 

the greenhouse gas CO2 which should be decreased in industrial processes to prevent 

further global warming. Therefore, the emitted gas CO2 of the yeast process was channeled 

into a microalgae process in order to recycle the waste stream CO2. It was shown that the 

cultivation of the oleaginous yeast C. curvatus on a 1.2 L scale was sufficient to supply a 

culture of the oleaginous microalgae P. tricornutum in a 21 L bubble column reactor with CO2 

while SCOs were produced simultaneously in both processes. The main fatty acids produced 

by C. curvatus were oleic acid (49.0 %), palmitic acid (18.5 %), stearic acid (17.7 %) and 

linoleic acid (8.6 %). The microalgae, P. tricornutum produced mainly palmitoleic acid 

(44.9 %), palmitic acid (25.0 %), eicosapentaenoic acid (8.9 %) and oleic acid (7.6 %). 

Four yeast strains were isolated from soil samples and stained by the lipid staining dye 

Sudan black B. They were identified as Cryptococcus podzolicus, Trichosporon porosum, 

Pichia segobiensis and Candida shehatae and were cultivated in bioreactors to characterize 

their lipid producing capacities. When cultured on glucose as sole carbon source 

C. podzolicus yielded in 31.8 % lipid content per dry biomass at 20 °C, while T. porosum 

yielded in 34.1 % at 25 °C and P. segobiensis in 24.6 % at 25 °C. Hence, those three yeast 

isolates can be classified as oleaginous, whereas C. shehatae with 17.8 % lipid content on 

glucose at 25 °C was not classified as oleaginous. Gluconic acid was detected as additional 

product if C. podzolicus and T. porosum were cultured on glucose (30 g/L and 12 g/L, 



 
 

respectively). When glucose was substituted by xylose as carbon source gluconic acid was 

not detectable for both strains. Using xylose, lipid yields were slightly lower than with 

glucose. Therefore, it was concluded that when using either C. podzolicus or T. porosum as 

the production strain, xylose is the carbon source of choice for exclusive lipid production, but 

glucose may be used for the simultaneous production of gluconic acid as extracellular 

product and lipid as intracellular product. Xylose – as a component of the second generation 

biomass hemicelluloses – is a worthwhile carbon source for microbial lipid production. The 

main fatty acid in all four isolates was oleic acid (between 39.6 % and 63.0 %) which is 

applicable for e.g. biodiesel production. A distinctive percentage of palmitic acid (between 

9.8 % and 21.1 %) and linolenic acid (between 7.5 % and 18.7 %) was determined, which 

are valuable for cosmetic applications. P. segobiensis produces a considerable percentage 

of palmitoleic acid (16.0 %) which is suitable for medical applications. 

In addition to the lipid staining dye Sudan black B, the fluorescent lysochrome Nile red is 

suited to stain neutral fats and is therefore also applicable to stain intracellular lipids in 

oleaginous microorganisms. The intensity of the fluorescence is proportional to the lipid 

amount. Therefore, the intensity of fluorescence can be used to rapidly estimate the lipid 

content per dry biomass without use of the time consuming gas chromatographically analysis 

- the standard lipid quantification and qualification method. For this purpose liquid samples of 

oleaginous yeasts were stained with Nile red in 96-well microtiter plates and the optical 

density (OD) and the fluorescence were measured. The ratio fluorescence/OD was formed 

and compared with lipid quantities gained via gas chromatographically analysis. This 

technique in 96-well plate format was successfully applied to estimate the lipid content of the 

oleaginous yeast C. curvatus. The lipid content of C. curvatus can be quantified via a linear 

fit with a deviation from 5 % for lipid contents in the range of 18.3 % and 35.6 %. This 

quantification method can now be transferred to other oleaginous yeasts.  

C. curvatus and five other yeast strains were additionally stained with the same method and 

the same device settings for the measurement of fluorescence and optical density (OD). The 

ratios fluorescence/OD and fluorescence/dry biomass were set into relation with the lipid 

content and compared among the various yeast strains. It was shown that this method is 

suitable to apply for rapid lipid estimation within a high-throughput (HTP) screening assay to 

identify new candidates of oleaginous yeasts. 
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I. Introduction 

 

Crude oil and natural gas are nowadays the main raw materials for the chemical industry and 

for energy supply. Even 95 % of the worldwide primary building blocks for organic chemicals 

originate from crude oil and natural gas (Wittcoff et al. 2004). In consideration of the growing 

world population and the forthcoming exhaustion of crude oil, alternative resources as energy 

and chemical feedstock have to be explored to meet the needs of the increasing world 

population (Clark and Deswarte 2008). In addition to the above mentioned reasons, also 

ecological aspects like the reduction of greenhouse gas (GHG) emissions, which are caused 

by the combustion of petrol based fuels, should be respected. Therefore bioenergy and 

biomaterials from renewable resources based on biomass are getting more important since 

the last decades. It has to be distinguished between two different generations of biomass 

feedstock, the first and the second generation of biomass feedstock. While first generation 

biomass originates from edible biomass or rather food or feed crop, second generation 

biomass includes different non-food feedstock like lignocellulosic material, forest residues or 

municipal solid wastes (Lee and Lavoie 2013). Biomass in solid form can be directly 

converted into heat energy by e.g. pelletizing wood. The conversion into liquid fuels as 

transport fuel, however, is more complex and needs e.g. microbial fermentative conversion 

technologies such as conversion of sugar and oil into bio-ethanol, biogas or biodiesel. 

Currently, main biofuel producers of the first generation are Brazil with bioethanol based on 

sugar cane, USA with bioethanol from corn, Germany with biodiesel from oilseed rape and 

Malaysia with biodiesel based on palm oil. The production amount of first generation biofuels 

tripled from 2000 to 2007 and amounted in 2007 even 1.5 % of the global transport fuel 

(around 37 Mt oil equivalents) (Sims et al. 2008). Even though biofuels represent a 

renewable feedstock, one main drawback is the fact that first generation biofuels are 

primarily based on food crops which leads to a competition with feed and food and 

consequently leads to increasing food prices. Especially in developing countries, increasing 

food prices, but also the use of scarce water for the cultivation of biofuel’s crop lead to 

famine among the poor population. Further drawbacks are seen in accelerating 

deforestation, monocultures of biofuel crops and resulting loss of biodiversity (Sims et al. 

2008). As the sustainability of first generation biofuels is controversial, second generation 

biofuels got more important. One advantage is that non-food biomass like cellulosic wastes 

or forest residuals are less expensive than first generation biomass like vegetable oil, corn or 

sugar cane (Lee and Lavoie 2013). On the other hand lignocellulosic second generation 

biomass is more complex than sugar or oil and therefore needs special conversion 

techniques to be degraded, before being further processed into biofuel. In this context 
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biorefineries are refineries which convert biomass – a renewable resource – within multiple 

parallel processes into several low and high value products, which can be used as material 

products or for energy supply. Biorefineries need interdisciplinary collaboration as it works in 

combination of physical, chemical, biotechnological and thermo chemical technologies 

including pyrolysis, Fischer-Tropsch synthesis and other catalytic reactions to gain all 

possible chemicals and materials from the rich biomass (Naik et al. 2009). The concept of 

biorefineries is one possibility to replace fossil feedstock with plant-based feedstock (Clark 

and Deswarte 2008). Only 3 % of world’s biomass, amounting to 170 million tons, is currently 

used for food and non-food applications, therefore plant-based biorefineries including the 

production of second generation biofuels are worthwhile for the future. The aim is to 

maximize the value of biomass and to minimize the waste by recycling certain waste streams 

within the whole biorefinery (Clark and Deswarte 2008). The biotechnological part of the 

biorefinery consists of a microbial fermentation using a certain microorganism able to 

metabolize the carbonic second generation biomass directly or one of its constituents after 

chemical or thermal treatment into the final product (Lee and Lavoie 2013). One single 

process in such a whole biorefinery concept may be the microbial production of oil by using 

so-called oleaginous microorganisms. These microorganisms may partially substitute several 

conventional oil sources like crude oil, fish or vegetable oils for the application in the energy 

sector, food industry, pharmaceutical or cosmetic industry depending on the fatty acid profile 

of the microbial oil. The recycling of waste streams within such microbial lipid production 

processes and the search and determination of new lipid producing microorganisms, which 

are also able to convert complex second generation biomass, are challenges for the 

development of microbial oil production processes to compete with conventional methods of 

oil production.       
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II. Research subject 

 

Microbial lipids are similar to plant oils. Hence, they are suited to substitute plant oils for 

industrial applications. However, microbial lipid production is still not economically feasible, 

therefore strategies are required to reduce the production costs and to increase the 

productivity. Recycling of waste streams and the identification of new microorganisms with 

high-value products or/and higher productivities are possibilities. 

The first objective of this study was to develop and establish a microbial lipid production 

process with the well known oleaginous yeast strain Cryptococcus curvatus with glucose as 

carbon source as platform process. The lipid production process was characterized in terms 

of nitrogen limitation, carbon source consumption and exhaust gas analysis of CO2. The 

obtained data were used to couple the yeast process to an algal lipid production process in 

order to recycle the greenhouse gas CO2 which is produced by the yeasts to introduce as 

carbon source for the algae cells. Hence, this study presents an integrated microbial lipid 

production process with reduced emission of the green house gas CO2.     

The second purpose of this study was to identify new oleaginous yeast strains and to 

characterize them regarding to their fatty acid profile, lipid content and lipid productivity. A 

subsequent cultivation in bioreactors gave further information about each single process 

concerning lipid production and possible by-products with glucose as carbon source. Xylose 

– as a component of the second generation biomass hemicelluloses – was evaluated as 

carbon source for the microbial lipid production using the new isolated yeast strains.  

To accelerate the lipid quantification, e.g. to monitor the lipid production during a process,  

the third aim was to establish a rapid lipid quantification method for oleaginous yeast strains 

in suspension in 96-well plate format using the fluorescent lysochrome Nile red instead of the 

time and solvent consuming gas chromatographical analysis. This method should also be 

applicable for a high-throughput-assay to identify new oleaginous yeast strains which 

produce fatty acids for several industrial applications.   
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III. Theoretical background 

 

1. Fats and oils 

Fats and oils are compounds in plants, animals, fish and microalgae. They belong to the 

molecular group of lipids and are molecules serving in cells as structure molecules, as 

energy storage molecules or as molecules for signal transmissions. Lipids can be divided 

into five subclasses including free fatty acids, triacylglycerols, glycerophospholipids, 

sphingolipids and steroids (Voet et al. 2002). The main part of plant and animal fats are 

triacylglycerols (TAGs) which are also called neutral fats (fig. 1) as they do not contain any 

charged groups (Czabany et al. 2007). They occur by esterification of one glycerol molecule 

with three free fatty acids (Voet et al. 2002). Glycerol is a trivalent alcohol while fatty acids 

are carboxylic acids with a long aliphatic tail (chain), which is either saturated or unsaturated. 

TAGs serve as intracellular energy storage. Because of their lower state of oxidation, they 

are better applicable for energy storage than storage polysaccharides or proteins (Voet et al. 

2002). In case of energy demand, the fatty acids are cleaved from the glycerol backbone and 

oxidized via β-oxidation to gain energy and generate reducing equivalents.  

 

Fig. 1 Schematic illustration of the esterification of a glycerol with three fatty acids to one triacylglycerol (TAG)     

 

Lipids and oils deliver interesting derivatives, also called oleochemicals, for several industrial 

applications depending on the composition of their fatty acid profiles, on the carbon chain 

length and the saturation grade of the fatty acids within the TAG. Due to their chemical 

functionality available in their structure, they are excellent bioresources for the production of 

detergents, biopolymers and other oleochemicals (Verhé 2010). Those oleochemicals which 

derive from fat and oil are renewable raw materials and belong to biodegradable substances 

and are therefore ecologically friendly in contrast to the conventional petrochemicals 

http://en.wikipedia.org/wiki/Carboxylic_acid
http://en.wikipedia.org/wiki/Aliphatic
http://en.wikipedia.org/wiki/Chain
http://en.wikipedia.org/wiki/Saturation_(chemistry)
http://en.wikipedia.org/wiki/Unsaturated_compound
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(Metzger and Bornscheuer 2006). A summary of oleochemicals and their industrial 

applications is given in table 1. 

 

Table 1 Applications of oleochemical products (Baerns et al. 2013)  

Products Applications 

Fatty acids 
Soaps, cleansing agents, laundry detergents, plastics, lubricants, natural 

rubber, cosmetics, dye, coatings 

Fatty acid methyl esters Cosmetics, cleansing agents, laundry detergents, biodiesel 

Fatty alcohols 
Cleansing agents, laundry detergents, mineral oil additives, cosmetics, 

textile and paper industry 

Fatty amines 
Softener, mineral oil additives, road construction, mining, biocides, fibre 

industry 

Glycerol 
Pharmaceuticals, cosmetics, synthetic resin, plastics, toothpaste, tobacco, 

nutrition, processing of cellulose 

 

One advantage of plant and animal fat is the possibility to gain fatty acids in such a purity to 

be suitable for chemical conversions and for the synthesis of chemically pure compounds. 

Plant oils are particularly gained by mechanical extraction under pressure from the plant’s 

seeds or nuts. Most global oil production in 2009/2010 with 84.6 Mt arose from palm oil plant, 

soybean, rape seed, peanut, sunflower, palm kernel, olives and coconut. In addition 3.8 Mt 

were produced from sesame, flax, castor oil plant and corn. Animal fat production amounted 

to 22.1 Mt including butter, lard, schmaltz and fish oil. Primary use of those plant and animal 

fats is the food industry. However, the production of palm, soybean and rapeseed oil 

increased in the following decade enormously (fig. 2) due to their use for biodiesel production 

(Biermann et al. 2011), but with the consequence of increasing prices for agricultural foods. 

Large agricultural crop lands are used for such energy plants for biodiesel production 

resulting in increasing prices. The price for soybean and corn e.g. increased up to 25 % from 

2001 till 2011 (Hochmann et al. 2012). That leads to nutrition problems especially in 

developing countries. To avoid price increase for food, which is essential for life, oil based 

feedstock for biodiesel production should be substituted by non edible and sustainable 

sources to produce second generation biofuel. Oleaginous microorganisms, which are able 

to produce intracellular storage lipids, represent one promising strategy. High value fatty 

acids which arise from fish oil originate from microalgae which are in the beginning of the 

food chain for fish. However, pollution of the environment leads to the accumulation of health 

hazardous substances like dioxins, chlorinated diphenyls (PCBs) and heavy metals in fish, 

which makes the use of fish oil as nutrient highly questionable (Ratledge 2004). In addition, if 

the market for high value fatty acids from fish oil further rises, oceans are endangered of 

overfishing and the global fish stock will be in severe decline (Venegas-Caleron et al. 2010). 

Microalgae as lipid producer are therefore worthwhile to examine. 
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Fig. 2 Production of oils and fats as resource for the oleochemical industry in the years 1999/2000 and 2009/2010 

(Biermann et al. 2011)  

 

Castor oil derives from the castor plant Ricinus communis, which grows in tropical and sub-

tropical regions. It contains 90 % of the mono-saturated fatty acid ricinoleic acid C18:1 (ω9). 

The castor seeds contain toxic substances which make these seeds poisonous, but the 

extracted oil contains only trace amounts of these toxins. It has been used as a purgative 

(Mutlu and Meier 2010), but because of its toxin and allergen characteristics in the seed it is 

not bearable for large applications in pharmacy, cosmetics or nutrition. Additionally, it is not 

suited to be cultivated in high amounts because the field workers suffer from these negative 

health effects (Holic et al. 2012). However, it is well suitable as raw material for the chemical 

industry e.g. for paints, coatings, inks or lubricants (Ogunniyi 2006) and does not compete 

with feed or food if gained from Ricinus communis plant. Therefore it is especially suited in 

developing countries as raw material. 

2. Fatty acids 

Fatty acids are aliphatic carbon chains with one terminal carboxylic group and are common 

with chain lengths between 12 and 24 carbon atoms. Fatty acids with 18 and more carbon 

atoms are named long chain fatty acids (LCFA), fatty acids with less than 18 carbon atoms 

are named short chain fatty acid (SCFA). The carbon atoms within the carbon chain are 

covalently linked with single bonds or double bonds. Hence, the fatty acids can be divided 

into saturated (sFA), mono-unsaturated (MUFA) or poly-unsaturated (PUFA) fatty acids. 

Saturated fatty acids contain only single bonds, unsaturated fatty acids feature double bonds 

with cis-configuration which leads to a curved form. Hence, the degree of saturation or rather 
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unsaturation of the fatty acids within a triacylglycerol (TAG) determines the melting point of 

the lipid. The more double bonds the lower is the melting point. This effect leads to the 

differentiation into fats and oils. Fats are solid at room temperature while oils are present in 

liquid form. Most plant oils have a certain amount of mono- and poly-unsaturated fatty acids, 

which makes it liquid at room temperature while butter, an animal fat with high amounts of 

saturated fatty acids, tends to be solid. Different fats and oils with their composition of 

saturated fatty acids (sFA), mono-unsaturated (MUFAs) and poly-unsaturated fatty acids 

(PUFAs) are listed in table 2. The nomenclature of the unsaturated fatty acids is based on 

the position number of the double bond within the carbon chain. The position of the double 

bond, which is next to the methyl end (ω-carbon atom) of the fatty acid, determines the name 

of the fatty acid, no matter how many double bonds exist (fig. 3). The most important groups 

are ω3 and ω6 fatty acids. There is a number of so called essential fatty acids (eFA) which 

cannot be synthesized by the human body. As they are important for human health they have 

to be taken up by nutrition and serve as precursors for other longer chain fatty acids (Voet et 

al. 2002).   

Table 2 Saturation grades of fatty acids included in several plant and animal fats (Hofer, website)  

 Fatty acid composition (%) 

 Saturated FAs MUFAs PUFAs 

Butter 64 33 3 

Safflower oil 14 24 62 

Peanut oil 19 50 31 

Coconut oil 92 6 2 

Pumpkin seed oil 18 24 58 

Corn oil 17 32 51 

Olive oil 19 73 8 

Palm kernel fat 83 15 2 

Rapeseed oil 8 60 32 

Lard 41 49 10 

Soy bean oil 14 24 62 

Sunflower oil 8 27 65 

 

Fig. 3 Examples for ω fatty acids with none to three double bonds with 18 carbon atoms 
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3. Industrial applications of fatty acids 

Fatty acids are mainly produced by hydrolysis of triacylglycerol (TAGs) from plant, fish oil 

and animal fat and the final industrial applications of each fatty acid depend on their carbon 

chain length and grade of saturation. A summary of the most important fatty acids and their 

applications are listed in table 3. Fatty acids can be classified into low- and high-value fatty 

acids depending on their market value. While nutrition industry favors high-value LC-PUFAs, 

biodiesel as a transport fuel consisting of fatty acid methyl esters requires fatty acids with 

C16 and C18 fatty acids in saturated or mono-unsaturated form (Christophe et al. 2012). 

Highly unsaturated fatty acid methyl esters tend to be oxidized easily during long term 

storage which could have negative influence to the engine motor. Coconut and palm kernel 

oil are composed of a high percentage of saturated C12 and C14 fatty acids and are 

therefore suitable for the production of surfactants (Metzger and Bornscheuer 2006). 

Linoleic acid (C18:2) provides the most potential benefit for the skin barrier and is therefore 

used in the cosmetics industry (Darmstadt et al. 2002). Gamma linolenic acid (GLA, C18:3, 

ω6) is essential for the brain and the nerve conduction (Coste et al. 1999) and lowers blood 

pressure (Engler 1992). Palmitoleic acid (C16:1) is known to prevent cerebral- and 

cardiovascular diseases by enhancing the function of vascular smooth muscle cells. 

Therefore, this fatty acid seems to find novel and valuable uses in human nutrition and 

medicine (Matsunaga et al. 1995; Yamori et al. 1986). Even in the therapy against obesity, 

palmitoleic acid can be applied (Yang et al. 2011). Palmitoleic acid can be extracted from 

some seed oils, e.g. sea-buckthorn (Fatima et al. 2012) or macadamia (Nestel et al. 1994), 

but the availability is insufficient for higher medicinal demand in future. Therefore alternative 

production ways are required (Matsunaga et al. 1995).  

Highly poly-unsaturated fatty acids (PUFAs) are used for nutritional and health applications. 

Fish oil e.g. deriving from the tissue of oily fish, contains predominantly two of those PUFAs, 

docosahexaenoic acid (DHA, C22:6, ω3) and eicosapentaenoic acid (EPA, C20:5, ω3). 

These PUFAs are important for human’s health, but cannot be synthesized by the human 

body. That’s why they have been longtime used as supplementary compounds in dietary and 

health applications (Sahena et al. 2009). Studies have shown that these PUFAs may be 

valuable for the prevention of atherosclerosis, heart attack, hypertension and cancer.  

Furthermore, they have been suited to medicate patients with rheumatoid arthritis and 

diabetes and for the protection of human coronary artery (Sahena et al. 2009), (Kremer 

2000; Leaf et al. 2008). EPA and DHA are in addition to arachidonic acid (ARA, C20:4, ω6), 

which is included in low concentrations in meat, egg, poultry and seafood, important for the 

neurocognitive development and normal brain functions. ARA acts as an important structural 

component of the lipids in the neural system and “serves as a precursor of several classes of 
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biologically active molecules” (Streekstra 1997). Therefore, all three fatty acids show benefit 

even against Alzheimer’s disease (Zhang et al. 2011). Arachidonic acid (ARA, C20:4, ω6) 

and docosahexaenoic acid (DHA, C22:6, ω3), which is found in brain tissue and mother’s 

milk, are used as dietary supplements in infant nutrition (Ratledge 2004). It has been 

concluded that these two fatty acids are important for the development of neural and retinal 

functions of newborn babies and hence ensure good memory and good eyesight (Ratledge 

2004).  

 

Table 3 Most important fatty acids from conventional sources  

Name Carbon length Applications Source Acronym 

Palmitic acid C16:0 Cosmetics 
Fat of animals and 

plants 
 

Palmitoleic acid C16:1 (ω7) Pharma 
Milk fat, train oil, fats 
of plants and animals 

 

Oleic acid C18:1 (ω9) Biodiesel All natural oils  

Linolic aicd C18:2 (ω6) Cosmetics 
Sunflower oil, 
safflower oil 

 

α-Linolenic acid C18:3 (ω3) Pharma 
Linseed oil, palm oil, 
soybean oil, walnut 

ALA 

γ-Linolenic acid C18:3 (ω6) Pharma 
Evening primrose oil, 

hempseed oil 
GLA 

Arachidonic acid C20:4 (ω6) Dietary supplement Animal fats, train oil ARA 

Eicosapentaenoic acid C20:5 (ω3) Dietary supplement Fish oils EPA 

Docosahexaenoic acid C20:6 (ω3) Dietary supplement Fish oils DHA 

Docosapentaenoic acid C22:5 (ω3) Dietary supplement Fish oils DPA 

 

 

4. Oleaginous microorganisms 

Oleaginous microorganisms are a good alternative source for industrial used oil. Lipids are 

produced by all microorganisms (MOs) usually in the range of 6 to 8 % of the dry biomass, 

principally as components for the cell membrane. However, oleaginous microorganisms, 

including yeasts, bacteria, filamentous fungi and microalgae contain more than 20 % lipid per 

dry biomass as carbon storage. They convert a carbon source available in excess into 

intracellular triacylglycerol (TAGs) as soon as nitrogen limitation occurs (Ratledge 2002; 

Ratledge 2004; Ageitos et al. 2011). Therefore the formulated medium should have a high 

C/N ratio of about 40:1 (Ratledge 2005). These storage lipids are also called single cell oils 

(SCO) and are stored as lipid droplets within cells. Baker’s yeast Saccharomyces cerevisiae 

does not produce intracellular lipid droplets (Vorapreeda et al. 2012), but several other yeast 

strains are known to belong to the oleaginous microorganisms, e.g. Cryptococcus sp., 

Yarrowia sp., Candida sp., Rhodotorula sp., Rhodosporidium sp., Trichosporon porosum and 

Lipomyces sp. (Ratledge 1991; Papanikolaou and Aggelis 2011b). A summary about the 

best examined oleaginous yeasts with lipid percentage and fatty acid profile is given in fig. 4. 
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Depending on the chosen microorganism, different carbon and energy sources are required 

and the microbial lipids contain a vast diversity of different fatty acids suitable as alternative 

base material for industrial applications (Ratledge and Cohen 2005).  

Cryptococcus curvatus is one of the best explored oleaginous yeasts able to grow on several 

carbon sources, e.g. glucose, glycerol or xylose (Meesters et al. 1996; Zhang et al. 2011; 

Heredia and Ratledge 1988). Hence, it is well suited as a model organism for research in 

microbial lipid production. It was classified to the genus Candida and to the species curvata. 

It is also known as Apiotrichum curvatum and Candida curvata C, but nowadays 

Cryptococcus curvatus is used as the official name in data bases (Akindumila and Glatz 

1998). The lipid composition is similar to that of palm oil with a high amount of oleic acid and 

is therefore suitable as a sustainable substitute of palm oil (Meesters et al. 1996). 

Examples among autotrophic microalgae are Phaeodactylum sp., Chlorella sp. and 

Monodus sp., which have shown to produce the ω3 fatty acid EPA and Crypthecodinium 

cohnii the ω3 fatty acid DHA (Ward and Singh 2005; Vazhappilly and Chen 1998). 

Moreover, heterotrophic marine traustochytrides exist, e.g. Aurantiochytrium limacinum, 

(Nagano et al. 2009; Vazhappilly and Chen 1998) which has also potential to produce DHA.  

Advantages of microbial oil production compared to plant oil is the short life cycle of microbes 

and the possibility of a production process not influenced by external factors such as venue, 

season or climate (Thiru et al. 2011). The production of single cell oil in large scale is suited 

to avoid the conflict with plants used for energy and material industry, and to avoid the 

appearance of mono cultures and exhaustion of the soils. Furthermore, less land is needed 

for microbial production than for conventional agricultural production (Ratledge and Cohen 

2008). Autotrophic microalgae as well as heterotrophic yeasts, bacteria and filamentous fungi 

implicate still limitations for a commercial SCOs production process. The main reasons are 

the costly downstream process (Chisti and Moo-Young 1986) of the intracellular SCOs and 

the high costs of carbon sources for heterotrophic microorganisms. The relation between the 

costs for carbon sources (1/4 of product oil) and the stoichiometry of carbon to oil conversion 

is not efficient. Theoretical calculations reveal that 33 g oil can be achieved from 100 g 

glucose, excluding energy consumption for the maintenance metabolism (Ratledge and 

Cohen 2008). In principle, conversion from glucose to oil is only a conversion from one 

agricultural resource into another without economic gain. This problem can only be overcome 

for heterotrophic organisms if carbon sources are less expensive or if the product is of higher 

value than usual commodity oils. Possibilities are therefore using carbon sources originating 

from waste material or constituents of hemicellulosic material like xylose. Many 

microorganisms, e.g. Pichia pastoris (Lee et al. 1986), are able to convert xylanes, a 
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constituent of hemicelluloses and polymer of xylose molecules. Hemicellulosic material is 

accessible in large quantities all over the world (Pan et al. 2009) and can therefore be 

classified as low-cost substrate suitable as carbon source for heterotrophic oleaginous 

microorganisms. 

In contrast, oleaginous microalgae, using CO2 as carbon source, might become a realistic 

alternative within the next 10 to 15 years if the price for crude oil continues to increase like it 

did over the last 12 years. Moreover algal lipids are promising substitutes for fish oils as they 

contain a lot of poly unsaturated fatty acids (PUFAs) (Ratledge and Cohen 2008). Moreover, 

oleaginous microalgae might become energy storage systems if wind energy, solar energy or 

thermal solar energy is excessively available by converting the surplus electricity from light 

energy into storage lipids.  

 

Fig. 4 Overview of various yeast strains grown on substrates like sugars, glycerol or molasses with lipid content 

per dry biomass and their corresponding fatty acid profiles of the accumulated lipid; References can be found in 

(Papanikolaou and Aggelis 2011a). Note the use of three different names for Cryptococcus curvatus = Candida 

curvata = Apiotrichum curvatum 

 

5. The biosynthesis of single cell oil 

The production of single cell oil in oleaginous microorganisms depends on the composition of 

the culture medium. Whereas the carbon source has to be available in excess, another cell 

growth limiting factor like nitrogen (N), phosphor (P), magnesium (Mg), zink (Zn), calcium 
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(Ca) or vitamins, has to be limited – which is most cases nitrogen. Once nitrogen is limited, 

the cell growth stops, but available carbon will be assimilated into the cell and stored as 

SCO. The carbon source is converted into pyruvate in the cytosol, pyruvate is transported 

into the mitochondrion, decarboxylized to acetyl-CoA (C2) which reacts with oxalacetat (C4) 

and then further to citrate and subsequently usually to iso-citrate within the citrate cycle. In 

the case of nitrogen limitation the enzyme AMP-deaminase is activated by cleaving 

adenosin-monophosphat (AMP) into inosin-monophospaht (IMP) and NH4
+ to provide cell 

own nitrogen for cell functions. However, AMP is required for the functionality of the enzyme 

isocitrate-dehydrogenase (ICDH), which converts isocitrate into α-ketoglutarate within the 

citrate cycle in order to produce NADH++H+ for the production of ATP within the respiratory 

chain. If no AMP is available, iso-citrate accumulates in the mitochondrion. Because of 

equilibrium reactions iso-citrate is converted into citrate which accumulates in the 

mitochondrion as well and is channeled into the cytosol via malat/citrat transporter. At this 

point citrate is cleaved under the consumption of ATP into oxalacetat (C4) and one C2-unit 

acetyl-CoA which is the chemical precursor for the fatty acid synthesis. This conversion is 

done by the enzyme ATP-Citrate-Lyase (ACL), which is special in oleaginous 

microorganisms (Laoteng et al. 2011; Ratledge 2002; Ratledge 2004). The extent of fatty 

acid production depends on the malic enzyme (ME) concentration which converts malate to 

pyruvate via NADPH release. This chemical conversion is the sole source of NADPH for the 

enzyme fatty-acid-synthase (FAS), which is required in the fatty acid biosynthesis. A 

summary is shown in fig. 5. The fatty acids are constructed by condensations of the C2-units 

acetyl-CoA up to the C16 or C18 saturated fatty acids. These saturated fatty acids are 

extended to longer chain saturated fatty acids (sFA) via the enzyme elongase and can be 

subsequently converted into unsaturated fatty acids (PUFAs) via the enzyme complex of 

desaturases. The enzyme complexes of desaturases and elongases are part of the cell 

membrane in the periplasmatic reticulum (Ratledge 2004; Rossi et al. 2011). 
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Fig. 5 Overview diagram of the biosynthesis of single cell oils in oleaginous microorganisms (Rossi et al. 2011)  

 

 

6. Oleaginous microorganisms in industry  

The yield and type of lipid in oleaginous microorganisms depend on several factors including 

the type of microorganism, the culture conditions and the chosen substrates (Li et al. 2008; 

Griffiths and Harrison 2009). Yeast strains produce mainly fatty acids, which are similar in 

composition to those in plant oils containing predominantly saturated or mono-unsaturated 

fatty acids with carbon lengths of C16 and C18 (Papanikolaou and Aggelis 2011a). Other 

microorganisms, e.g. microalgae or filamentous fungi are also able to produce significant 

amounts of poly unsaturated fatty acids (PUFAs) like ω3 or ω6 fatty acids, e.g. 

docosahexaeonic acid (DHA) or eicosapentaenoic acid (EPA) (Ward and Singh 2005), which 

are usually extracted from fish oil. This knowledge permits the use of different 

microorganisms for different industrial applications.  

Even though much research effort was put into the production of SCOs in the last 30 years, 

only few processes could be commercialized, including the production of cacao butter 
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equivalent (CBE), gamma linolenic acid (GLA, C18:3, ω6), docosahexaenoic acid 

(DHA, C22:6, ω3) and arachidonic acid (ARA, C20:4, ω6). CBE was produced by the yeast 

Apiotrichum curvatum (=Cryptococcus curvatus), GLA by the fungi Mortierella isabellina and 

Mucor circinelloides. However, most of the commercialization attempts failed because of 

lower cost alternatives on the market (Kyle 2005). DHA and ARA could be produced since 

late 1980s successfully by Martek, the new division of DSM’s new Nutritional Lipids division. 

Martek developed economic microbial production processes with the filamentous fungus 

Mortierella alpina to produce fish free arachidonic acid (ARA, C20:4, ω6) and 

docosahexaenoic acid (DHA, C22:6, ω3) with the use of the microalgae 

Crypthecodinium cohnii. Both fatty acids are used as nutrition supplements which are also 

applicable for vegetarians under the labels life’sDHA and life’sARA. The non-toxicity of 

Mortierella alpina and Crypthecodinium cohnii enables to use these fatty acids as nutrition 

supplement even in infant formulas (Streekstra 1997). Neste Oil in Porvoo in Finland 

announced promising patents for the microbial production process from waste and residues 

with the help of various yeasts and molds for the use as raw material for NExBTL renewable 

diesel. A pilot plant being tested may be commercialized in 2015. 

(http://www.nesteoil.com/default.asp?path=1,41,11991,12243,12139,15694; 03.07.2013). 

Ricinoleic acid (C18:1) was detected in the dark-colored sclerotia, the overwintering form - of 

the filamentous fungus Claviceps spp. also known as ergot (Franzmann et al. 2010). First 

investigations in early years to produce ricinoleic acid with the fungi Claviceps purpurea 

(Morris et al. 1966) unfortunately failed. Younger studies revealed progress in the microbial 

production of ricinoleic acid due to genetic engineering manipulation techniques (Holic et al. 

2012). 

7. Screening methods for oleaginous microorganisms 

To identify new oleaginous microorganisms which are applicable for economic industrial 

applications, suitable screening experiments are required. The most important information is 

the amount of produced lipid, but also the fatty acid profile is useful for classifying interesting 

hits for possible industrial applications. In literature several examples are described either the 

Sudan black B method (Evans et al. 1985; Pan et al. 2009) or Nile red (Greenspan and 

Fowler 1985). Sudan black B and Nile red are both lysochromes which have been 

successfully applied to identify new oleaginous microorganisms. Pan et al. (2009) and Evans 

et al. (1985) focused on the isolation of yeast cells from soil samples whereas Waltermann et 

al. (2000) screened successfully mutants from the best known oleaginous bacteria 

Rhodococcus opacus. In all above mentioned studies the Sudan black B staining technique 

was applied on agar plates for a qualitative analysis of lipid production in microorganisms. 

This described technique enables to stain microorganisms grown on agar plates via a 

http://www.nesteoil.com/default.asp?path=1,41,11991,12243,12139,15694
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replicate printing technique on filter paper. Sudan black B dissolves better in oil than in water 

and stains neutral fats unspecifically. It diffuses from the liquid phase into the oil phase, in 

the case of oleaginous microorganisms into the lipid containing cells, and leaves a blue 

staining in those cells. Microorganisms that can be stained blue with Sudan black B are 

potential lipid producing organisms. To further examine the lipid production capacities of 

potential strains, cell cultures have to be prepared, lipid containing biomass has to be dried 

and lipid amount and lipid composition have to be checked via the time-consuming gas 

chromatographically analysis. Agar plates can be supplemented with either antibiotic or a 

certain carbon source like xylose to especially screen for yeast and fungi – not for bacteria – 

and additionally for strains which are able to convert xylose.  

Compared to Sudan black B, Nile red (C20H18N2O2) is a fluorescent lipophilic dye and well 

described in literature. It is highly fluorescent in organic solvents, but solubility and 

fluorescence are negligible in water. Its excitation and emission spectra shift to shorter 

wavelengths with decreasing polarity (Greenspan and Fowler 1985). The fluorescence 

intensity of lipids composed of unsaturated fatty acids is stronger than that of the saturated 

fatty acids (Kimura et al. 2004). Due to Kimura et al. (2004) the intensity of fluorescence 

corresponds to the amount of lipid and should therefore be suited for quantitative analyses. 

Nile red has been successfully used as a staining method for a rapid estimation of lipid in 

oleaginous yeast and fungi using a cuvette (Kimura et al. 2004). As a high throughput 

screening method in suspensions using 96-well microtiter plates Nile red has been used for 

algal cells (Chen et al. 2009). Mammalian oocytes were checked for lipid with Nile red using 

a microscope (Genicot et al. 2005). All results of the former mentioned studies conclude that 

Nile red is a fluorescent lipophilic dye characterized by a shift of emission from red to yellow 

according to the degree of hydrophobicity of lipids (Diaz et al. 2008). An emission beneath 

580 nm was proven to be a good wavelength for neutral lipids whereas emission higher than 

590 nm is well suited for polar membrane lipids (Greenspan and Fowler 1985). Hence, polar 

membrane lipids (phospholipids) are stained red whereas neutral lipids are stained yellow. 

This knowledge allows the application of Nile red for sensitive measurement of either neutral 

or polar lipids to roughly quantify the lipid content in oleaginous microorganisms. 
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 IV. Main Part 

Chapter I: 

Combination of algae and yeast fermentation for an integrated process 

with low CO2 footprint for the production of single cell oils 

 

1 Abstract 

Economic and ecological reasons cause the industry to develop new innovative bio-based 

processes for the production of oil as renewable feedstock. Petroleum resources are 

expected to be depleted in the near future. Plant oils as sole substituent are highly criticized 

because of the competitive utilization of the agricultural area for food and energy feedstock 

production. Microbial lipids of oleaginous microorganisms are therefore a suitable alternative, 

but their production is still too expensive to compete with plant oils. To decrease production 

costs of microbial lipids and gain spatial independence from industrial sites of CO2 emission, 

a combination of heterotrophic and phototrophic cultivation with integrated CO2 recycling was 

investigated in this study. It was shown that the cultivation of the oleaginous yeast 

Cryptococcus curvatus on a 1.2 L scale was sufficient to supply a culture of the oleaginous 

microalgae Phaeodactylum tricornutum in a 21 L bubble column reactor with CO2 while 

single cell oils were produced in both processes due to a nutrient limitation. 

 

2 Introduction 

Concerns about the increasing emission of greenhouse gases, the resulting global warming 

and the need to reduce our dependence from crude oil force the industry to develop 

innovative bio-based industrial processes with reduced CO2 emission (Lee et al. 2002). The 

substitution of petroleum is a long term objective not only because of its importance as fuel 

for the transport sector, but it is also main raw material for oleochemicals (Carlsson 2009). 

The production of plant based first generation biofuels is increasingly criticized because of 

the rising competition between agricultural production for the food and for the energy sector. 

Against this backdrop, single cell oils from microorganisms seem promising substitutes. 

Heterotrophic oleaginous microorganisms are able to convert a carbon source, which is 

available in excess, into storage lipids inside the cells as soon as a concurrent nitrogen 

limitation stops cell growth (Ratledge 2002). Advantages of such a microbial lipid production 

compared to petroleum production or agricultural production of plant oils are the 
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independence from the season and from the location. Cryptococcus curvatus is a well 

examined oleaginous yeast, simple to cultivate in bioreactors with high growth rates, high 

lipid yields and a cultivation duration of maximum 6 days. It was first isolated 1978 by Moon 

and Hammond (1978) from cheese plant floors and floor drains during fermentation 

experiments on lactose. The lipid composition is similar to that of palm oil with high amount 

of oleic acid suitable for applications as biodiesel. C. curvatus is able to convert several 

various carbon sources into fatty acids (Hassan et al. 1994), e.g. glucose, galactose, 

cellobiose, sucrose and lactose converts even waste substrates like whey as carbon and 

nitrogen sources (Ratledge and Cohen 2005).  

In addition to heterotrophic oleaginous microorganisms, autotrophic microorganisms like 

microalgae have shown efficient microbial lipid production. One important advantage is that 

microalgae do not need any carbohydrates as carbon source, but require just the gas CO2. 

They fix CO2 and hence contribute to CO2 sequestration. Moreover, they can accumulate 

lipids to high specific contents up to more than 80 % of their dry weight (Spolaore et al. 2006; 

Tredici 2010). Most importantly, growth and lipid accumulation are more efficient than that of 

higher plants, which are cultivated as feedstock for biofuel production (Chisti 2007).    

The establishment of economic processes for the production of microbial oil requires energy-

efficient and cost-effective strategies. While algae harvesting and cell disruption of the 

resistant yeast cells are main cost drivers in downstream processing (Cerff et al. 2012; Chisti 

and Moo-Young 1986), the cultivation itself offers great potential for optimization. CO2 is 

generally assumed to be available for free in phototrophic processes as shown by studies 

assessing the economic viability (Singh et al. 2011). It can potentially be obtained from the 

flue gas of power plants (Brennan and Owende 2010), but its nitrous gases and sulphur 

oxides can entail negative effects on growth rates and volumetric productivity of algae (Lee 

et al. 2002). Moreover, optimal locations of plants for microalgae fuel production are often 

remote and distant from industrial sites of CO2 emission (Ratledge and Cohen 2008). In 

consequence, Feron and Hendriks suggest that a price in the range of 0.15 $/kg to 0.20 $/kg 

should be attached to CO2 to account for the cost of its capture and transport (Feron and 

Hendriks 2005). With a demand of approximately 1.8 kg CO2 for the production of 1 kg algal 

dry material, this imposes cost for the process in a dimension that cannot be neglected. 

Phaeodactylum tricornutum is suited as oleaginous microalgae since the organism 

accumulates lipids up to high specific contents. It grows with high growth rates at nutrient 

replete conditions and showed reasonable photosynthetic efficiency when nutrients were 

limiting (Dillschneider et al. 2013). Extensive research has been performed with 

P. tricornutum as a model organism, also because it is an interesting producer of 
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polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) (Yongmanitchai and Ward 

1991).  

The purpose of this study was to investigate requirements and implications of the 

combination of a heterotrophic and a phototrophic single cell oils production process (fig. I.1). 

Thereby, the heterotrophic process supplies the algae with CO2 and thus gains a lower CO2 

footprint. On the other hand, the phototrophic lipid production benefits from the cost reduction 

in terms of the carbon source, but at the same time also gains independence from industrial 

plants in terms of location.   

For this purpose the exhaust gas of the yeast cycle of C. curvatus had first to be analyzed to 

establish a proper process management to combine it with the microalgae cycle of 

P. tricornutum. The course of the carbon dioxide concentration during the process was 

monitored to plan a time adjusted coupling with the microalgae cultivation adapted to the CO2 

needs for the microalgae cultivation. A further aspect to consider was the concentration of 

the carbon source glucose for the yeast cultivation which has to be available in excess 

throughout the whole process, to ensure lipid production, but concurrently to prevent 

substrate inhibition. However, no online-measurement exists for the measurement of 

glucose, why glucose is measured and refilled manually. A further important aspect to 

consider is the influence of glucose deprivation in the yeast process to the emission of CO2 

with regard to a constant CO2 supply for the microalgae.     

 

 

Fig. I.1 Schematic diagram of the coupled process of yeast and microalgae lipid production processes to reuse 

the emitted CO2 of the yeast cycle as carbon source for the microalgae 
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3 Materials and methods 

3.1 Microorganisms and culture medium  

Cryptococcus curvatus (ATCC 20509) was obtained from the American Type Culture 

Collection. Phaeodactylum tricornutum (SAG 1090-1a) was obtained from the Culture 

Collection of Algae (SAG), University of Göttingen, Germany. 

The culture medium for the yeast fermentation was formulated on a phosphate buffer at pH 5 

(8.99 g/L KH2PO4 and 0.12 g/L Na2HPO4·2H2O). The medium constituents were 0.1 g/L 

sodium citrate (C6H5O7Na3·2H2O), 0.1 g/L yeast extract, 0.2 g/L MgSO4·7H2O, 18.9 g/L 

(NH4)2SO4. The initial culture was supplemented with 2 mL trace elements solution (4 g/L 

CaCl2·2H2O, 0.55 g/L FeSO4·7H2O, 0.475 g/L citric acid, 0.1 g/L ZnSO4·7H2O, 0.076 g/L 

MnSO4·H2O, 100 µL 18 M H2SO4) and 1 mL salt solution (20 g/L MgSO4·7H2O, 10 g/L yeast 

extract) per 100 mL cultivation medium. Trace element and salt solution were supplemented 

once a day to the culture broth during the whole cultivation time in the fermenter. Initial 

glucose concentration was 50 g/L and was fed using a stock solution of 500 g/L.  

The first preculture was prepared in 20 mL medium in 100 mL conical shake flasks and was 

inoculated with 100 µL glycerol stock culture (15% w/w, stored at -80 °C). The second 

preculture was prepared from the first preculture in 200 mL culture medium in 2 L shake 

flasks with an initial OD600 of 1. Both precultures were incubated at 28 °C with 120 rpm for 

approximately 24 hours.  

The culture medium for the phototrophic process was originally published by Mann and 

Myers (1986). The following modifications were made: NaCl concentration was 27.0 g/L, 

K2HPO4 concentration was 0.15 g/L and MgSO4·7H2O was reduced to a final concentration of 

0.6 g/L. 30 mg/L Na2SiO3·5H2O were added. In order to attain a nitrogen limitation early in 

the process, the NaNO3 concentration was adjusted to 0.4 g/L. Tris buffer was present in the 

preculture medium, but otherwise omitted in order to prevent growth of heterotrophic 

organisms (Fábregas et al. 1993).  

The algae inoculum for the experiments was cultivated in shaking flask cultures incubated at 

21 °C for 3 weeks with LED illumination adjusted to a PFD of 150 µmol/(m²∙s). The pH of the 

preculture medium was adjusted to pH 7.5. During the process the pH was controlled at 

pH 7.7 as described below.  

3.2 Set-up of the integrated bioprocess 

The set-up of the integrated bioprocess is depicted in fig. I.2. Yeast fermentation was 

conducted in a 2.5 L stirred tank reactor (Infors Minifors, left) with 1.2 L culture medium and 
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an initial OD600 of 1. Mixing was achieved by stirring with a rotation speed of 600 rpm. The 

cell suspension was aerated with compressed air at an aeration rate of 1 vvm and a slight 

overpressure of maximum 2·104 Pa. The pH was set to pH 5.0 and controlled by addition of 

4 M H3PO4 and 4 M NaOH in the fermenter. Contraspum A 4050 HAC (Zschimmer und 

Schwarz) was applied as antifoam agent. Initial glucose concentration was 50 g/L. Glucose 

concentration was measured daily and was replenished to a maximum concentration of 

120 g/L if it was depleted in the culture. A minimum of five samples were taken per day (four 

samples of 3 mL for the determination of OD600, dry biomass (g/L), carbon and nitrogen 

source and by-products; one sample of 20 mL for lipid analysis (% lipid/dry biomass) via gas 

chromatography). The partial pressure of oxygen (pO2) was measured by pO2-elektrode 

(Hamilton). 

The exhaust gas from the yeast fermenter was filtered (Millex-FG, 0.2 µm, Millipore) and 

directly fed into the photobioreactor. The latter was an annular bubble column reactor 

consisting of a 1.3 m long glass cylinder with 0.3 m diameter. The inner cylinder – made from 

stainless steel – contained the cooling water circulation system. The temperature was 

controlled at 21 °C. Before inoculation the reactor was autoclaved with a SIP steam 

generator (DG 7/6, Zirbus) and filled under sterile conditions with the medium, which was 

separately autoclaved (Vakulab, MMM Group). The pH of the media was adjusted to pH 10.3 

with NaNO3 prior to autoclaving, but decreased in the course of the cultivation due to 

saturation with CO2. The pH was measured by an Easyferm Plus 425 Sensor (Hamilton) and 

controlled at pH 7.7. pH-control was implemented by addition of 4 M NaOH and CO2 by the 

additional mass flow controller (shown in fig. I.2) which was integrated to supply the algae 

culture with CO2 in case the volume fraction in the off-gas of the yeast culture was not 

sufficiently high. To account for fluctuations in the volume fraction of CO2 dead zones of the 

pH-controller were + 0.5 and – 0.3.  

The volume fractions of O2 and CO2 in the off-gas were analyzed by an off-gas analyzer 

(Multor 610, Maihak). The annular column reactor was illuminated with 76 halogen spotlights 

(Decostar 20 W, Osram) which were adjusted circularly around the reactor so that the 

illumination was as homogenous as possible. The photon flux density amounted to 

250 µE/(m²·s). 
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Fig. I.2 Process flow chart of the integrated bioprocess (Dillschneider et al. 2014)  

 

 

Fig. I.3 Experimental set-up in the laboratory 

 

3.3 Biomass concentration 

Yeast dry biomass was analyzed gravimetrically. A 1 mL aliquot of the culture broth was 

transferred into a pre-dried and pre-weighed 1.5 mL reaction tube and centrifuged at 

13,000 rpm for 5 min. The supernatant was collected and used for the determination of 
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glucose and NH4
+. The cell pellet was washed with 800 µL saline (0.9 % NaCl), dried at 

60 °C for 24 h and weighed. 

Algae biomass concentration was determined by spectrophotometry. The absorbance was 

measured with a T60 U spectrophotometer (PG Instruments) at 750 nm and the calculation 

of biomass concentration was based on a correlation factor of 

0.376 g dry biomass/OD750nm. The correlation factor was obtained from a calibration with 6 

duplicate samples of 10 mL. The suspension was centrifuged, the pellet was washed, frozen 

and freeze-dried (ALPHA 1-2 LDplus, Christ). The weight of the dried biomass samples was 

determined gravimetrically.  

3.4 Glucose concentration 

Glucose was enzymatically measured in the supernatant of centrifuged samples for biomass 

concentration measurement with the D-Glucose kit (r-Biopharm). Glucose was measured in 

triplicates using microtiter plates. 

3.5 Ammonium concentration  

Ammonium concentration was measured photometrically with the Spectroquant kit (Merck) in 

the supernatant of samples for the measurement of biomass concentration. The assay was 

downsized to 300 µL per sample and measured in microtiter plates in triplicates. 

3.6 Nitrate concentration 

Nitrate concentration in the supernatant of samples were measured by ion chromatography 

(882 Compact IC plus, Metrohm) equipped with a conductivity detector (Metrohm). Samples 

were automatically diluted (1:10) and injected by an autosampler unit (Professional Sample 

Processor 858). The device was equipped with a Metrosep A Supp 5 column (Metrohm) 

consisting of polyvinyl-alcohol with quaternary ammonium groups. The elution buffer 

consisted of 3.2 mM Na2CO3, 1.0 mM NaHCO3 and 12.5 % (v/v) acetonitrile in water.  

3.7 Lipid quantification 

Fatty acid concentrations and total lipid content were measured in a gas chromatograph 

(Agilent 6890N, Agilent Technologies) equipped with a 30 m DB-Wax column (I: 30 m d: 

0.25 mm, Agilent Technologies) and FID detector. For sample preparation duplicates of 20 

mg freeze dried biomass samples were transesterified according to the method described by 

Meesters et al. (1996), but using hexane instead of chloroform. Methyl benzoate (FLUKA) 

was added as internal standard to a final concentration of 0.5 mg/mL in the lipophilic phase. 

The temperature program consisted of heating up at a rate of 8 °C/min starting from 40 °C. 
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Final temperature was held at 250 °C until the end of the measurement. The analytical 

standards Marine Oil FAME Mix (Restek) and AOCS No. 3 (RM-3, Supelco) were used for 

calibration and fatty acid identification.  

Due to the lower biomass concentration algae lipid quantification was performed with a 

combination of Nile red (9-diethylamino-5H-benzo[a]phenoxazine-5-one, Sigma-Aldrich) 

staining and fluorescence measurement and calibration with data gained from gas 

chromatography. The protocol was described by Dillschneider et al. (2013). 

3.8 Exhaust gas composition 

The volume fraction of O2 and CO2 in the exhaust gas was analyzed with a Multor 610 

System (Maihak). 

 

 

4 Results 

4.1 Preliminary study: Characterization of the cultivation of Cryptococcus curvatus 

In order to plan a possible setup for the combination of the yeast and algae cultivation 

considering the different cultivation durations of both kinds of microorganism, preliminary 

experiments with the oleaginous yeast Cryptococcus curvatus were investigated. The 

process was characterized with regard to lipid production in response to nitrogen limitation 

and consumption of the carbon source glucose. Moreover, the time course of the exhaust 

gases CO2 and the counterpart O2 were analyzed with regard to carbon source consumption, 

depletion and re-feeding.   

The cultivation results for the lipid production process of Cryptococcus curvatus in a 2.5 L-

bioreactor in mineral salt medium are presented in fig. I.4. The initial glucose concentration 

was 50 g/L and did not exceed 80 g/L during the whole process. The carbon source glucose 

was added three times after total consumption of glucose and two times before consumption 

of the glucose to examine the influence of glucose deprivation on the carbon dioxide 

emission. 

The growth rate of biomass was maximal until the nitrogen source was totally consumed. 

Interpolation of the nitrogen consumption during night shows that the nitrogen limitation was 

probably reached after 35 hours when no samples were taken. The cessation of base pump 

to control the pH due to consumption of the base NH4
+ confirms this time of nitrogen 

consumption as well (fig. I.4). After 40 hours the growth curve leveled off and the cells 
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started to accumulate lipids. Fig. I.5 illustrates the course of the emitted gases CO2 and O2. 

Until the maximal growth rate the CO2 increased to a value of 1.49 % in the exhaust gas and 

leveled off continuously up to 1 % at the end of the cultivation. As soon as glucose was 

depleted, the CO2 value dropped down immediately. By adding glucose CO2 production did 

increase and attained the original level. O2 and the partial pressure of oxygen (pO2) ran anti-

parallel to CO2. As soon as glucose was consumed, the values for O2 and pO2 increased 

immediately and decreased again as soon as new glucose was added.  

Considering possible by-products, organic acids were most probably, but were not produced 

due to missing pH adaption after NH4
+ depletion and ethanol was not detected at any time. 

One further interesting aspect is the respiration coefficient during the process of the microbial 

lipid production, an online indicator for the metabolic state. The RQ value was calculated 

according to equation (1) and is shown in fig. I.6.      

 

RQ = 
      

 
     

 

         (1) 

V(CO2) = produced CO2; V(O2) = consumed O2; t = time 

 

The RQ value increased up to a maximum value of 1 at the time of the maximal growth rate 

during the growth phase on glucose and runs parallel to the production of CO2. After 

approximately 40 hours, when lipid production started, the RQ value started to increase 

above 1 up to 1.3 and fluctuated between those two values until the total consumption of 

glucose was reached. At this time point the RQ decreased immediately to values below 1. 

During the glucose deprivation phase up to the end of the process the RQ value decreased 

to minimum values of 0.25. Summing up, the course of the RQ value can be used as 

indication for the lipid production phase in oleaginous yeasts.  
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Fig. I.4 Cultivation of the oleaginous yeast Cryptococcus curvatus in 2.5 L bioreactor in mineral salt medium at pH 

5 at 28 °C with manually feeding of glucose; base pump for pH control, NH4
+
: nitrogen source ammonium 

 

 

Fig. I.5 Cultivation of the oleaginous yeast Cryptococcus curvatus in 2.5 L bioreactor in mineral salt medium at pH 

5 at 28 °C with manually feeding of glucose, pO2: oxygen partial pressure 
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Fig. I.6 Cultivation of the oleaginous yeast Cryptococcus curvatus in 2.5 L bioreactor in mineral salt medium at pH 

5 at 28 °C with manually feeding of glucose, RQ: respiratory coefficient 

 

4.2 Process integration – Combination of the heterotrophic and phototrophic process 

The heterotrophic and phototrophic processes were set up as described in section 2.2. The 

yeast cultivation was conducted in a repeated fed-batch mode. C. curvatus was growing 

exponentially until nitrogen limitation (36 h), when lipid accumulation started (fig. I.7). 

Afterwards, the culture was fed every day with a glucose solution to keep the carbon source 

in excess and sustain lipid synthesis. At day 5 the culture reached a biomass concentration 

of 76.2 g/L and lipid concentration was 34.5 g/L when the first harvesting of biomass was 

conducted. 1 L of the culture suspension was harvested and refilled with 1 L fresh culture 

medium. Glucose was added to a maximum value of 100 g/L. Thereby, a biomass 

concentration of 15.1 g/L remained in the culture suspension to continue metabolizing the 

carbon source and hence incessantly supplied the algae culture with CO2. At this point the 

yeast cells were also provided with NH4
+. Renewed availability of the nitrogen source led to 

the cessation of lipid production and adaption to a new growth phase of the yeast cells. This 

change in the metabolic state led to a fast drop-down of the CO2, as the metabolism of the 

yeast cells had to change from lipid production to growth mode, but CO2 level increased 

again as soon as the yeast cells reached growth phase. The maximal volumetric productivity 

in this second cycle was slightly lower than in the first cycle. During this exponential growth 

phase the mass fractions of lipids in biomass decreased from initially 45.3 % to a minimum 

value of 18.2 %. When the culture entered again the nitrogen-limitation, a rapid switch to lipid 

production occurred. Lipids were then accumulated to a maximum value of 39.3 % before the 
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second harvest was performed. Like in the first cycle the intermittent glucose feeding was 

continued throughout the process until it was stopped at day 15. In the third cycle the lipid 

content decreased first from 39.4 % to 17.5 % during the growth phase and afterwards 

reached a maximum lipid content of 34.3 %. 

 

Fig. I.7 Repeated fed-batch process of oleaginous yeast C. curvatus in 2.5 L bioreactor in mineral salt medium at 

pH 5 at 28 °C with regular feeding of glucose (not shown) 
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Fig. I.8 Process integration by combination of the heterotrophic and phototrophic process. A: Phototrophic 

process; B: heterotrophic process. : Biomass concentration   ; : Lipid concentration   ; : Nitrate 

concentration     
  in the photobioreactor; : Ammonium concentration     

  in the yeast fermenter. Online data: 

: Volume fraction of CO2 in the exhaust gas     
; ---: pH-value in the photobioreactor. Arrows indicate 

temporary supply with additional CO2 from an external source (Dillschneider et al. 2014)  

 

Table I.1 Yield coefficients and volumetric lipid production rates of the heterotrophic repeated fed-batch process  

Cycle number 1 2 3 

Yx/s  0.3 0.34 0.29 
Yp/s 0.13 0.11 0.09 
QL(g/(L·h) 0.36 0.21 0.21 

 

 

Comparing the yield coefficients (biomass and lipid synthesis related to glucose 

consumption) as shown in table I.1, it can be concluded that the lipid yields decreased 

slightly from 0.13 to 0.09 from the first to the third cycle. The values for the lipid production 
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rate QL show a similar trend. The first cycle reached a value of 0.36 g/(L·h) and decreased 

subsequently to 0.21 g/(L·h) in the second and third cycle. 

Fig. I.8 summarizes the coupled process of the yeast C. curvatus and the microalgae 

P. tricornutum. The phototrophic process was supplied with CO2 throughout the entire 

process by the exhaust gas from the yeast culture. The only exceptions were the time points 

of harvesting. At these time points the pH value in the culture suspension of the phototrophic 

process reached the upper limits of the pH-controller, which were defined as described in 

section 2.2. The automatic controller action prevented the pH-value from increasing and 

supplied CO2 from a pressure cylinder through the action of a mass flow controller. At these 

harvesting points CO2 had to be supplied from the external source for about 100 min with a 

flow rate of 2.8 mL/min (average value) during the start of the second cycle of yeast growth. 

Similarly, CO2 with an average flow rate of 4.1 mL/min had to be supplied for about 180 min 

at the beginning of the third cycle.  

The phototrophic culture of P. tricornutum showed exponential growth during the first 7 days 

after a short initial lag-phase. At day 7 the nitrate in the culture medium was completely 

consumed and lipid accumulation started. Biomass was ca. 1 g/L at the onset of the nitrogen-

limitation. An early limitation at low concentrations of biomass was aimed to keep the 

planned time period for the experiment of 16 days. In the following days the biomass growth 

curve showed a linear evolution and storage lipids accumulated in this phase. Biomass 

increased to a final value of 2.3 g/L at day 15. The lipid concentration increased from initially 

0.2 g/L at the onset of the nutrient limitation to about 1.0 g/L at the end of the process. The 

volume fraction of CO2 was measured in the exhaust gas of the photobioreactor. Therewith, 

the signal comprises the CO2 emission caused by the yeast respiration and also the effect of 

CO2 uptake of the algae. The CO2 emission was low in the beginning of the cultivation and 

increased subsequently with exponential growth of the yeast. A maximum value of about 2 % 

was reached at the onset of the first nitrogen-depletion when metabolic rates slowed down 

compared to nutrient-replete growth. At the end of the first lipid accumulation phase the 

volume fraction dropped below 1 %. In the subsequent two cycles maximal values of 2.4 % 

and 1.9 % were reached. Even though the variation of the volume fraction of CO2 in the gas 

stream was considerable, it never fell below a value of 1 % except for the time points of 

harvesting. Therefore, CO2 limitation was prevented throughout the entire process and the 

phototrophic process could be sufficiently supplied with CO2 by the heterotrophic yeast 

culture.  

Due to the considerable changes in the volume fraction of CO2 in the gas stream entering the 

phototrophic reactor moderate changes in the pH-value in the algae culture suspension 

occurred. The latter varied in a range between pH 7.5 and pH 8.2. Further variation of the pH 
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was prevented due to the pH-controller settings. During the harvesting process of yeast and 

the subsequent adaption period the CO2 flow temporarily decreased slightly so that the pH 

temporarily reached a value of pH 8.2, where additional CO2 was added for a short period as 

described above. 

 

Table I.2 Measured and calculated parameters for the algae cultivation of P. tricornutum and one yeast cycle of 

C. curvatus  

 
Concentration 
of dry biomass 

(g/L) 

Lipid content 
(%lipid/dry 
biomass) 

Lipid 
concentration 

(g/L) 

Culture 
volumetotal 

(L) 

Total dry 
biomass (g) 

Total lipid 
(g) 

Algae 2.3 43.5 1 21 48 21 

Yeast 74.4 39.3 29.3 3 223.2 87.72 

 

Table I.2 summarizes the produced lipid amounts of the 16 day lasting algae cycle as well 

one 5-6 days lasting yeast cycle. Although the algal fermenter had a 7-fold volume than the 

yeast fermenter, one single yeast cultivation resulted in a 4-fold lipid amount. Taking into 

account that three yeast cultivation cycles were performed, the 12-fold lipid amount could be 

obtained with yeast. 

4.3 Fatty acid profiles of the oleaginous microorganisms 

The fatty acid profiles of both production strains were analyzed in order to state possible 

industrial applications of the microbial oil. The fatty acid profiles are presented in fig I.9. The 

fatty acid profile of the yeast C. curvatus (fig. I.9, A) refers to the last taken sample after 115 

hours at the end of the first cycle. The main component of the stored lipid is oleic acid 

(C18:1) with 48.8 %. Palmitic acid (C16:0) and stearic acid (C18:0) reached values of 18.5 % 

and 17.7 %, respectively. Linoleic acid (C18:2) with 8.6 % and lignoceric acid (C24:0) with 

3 % were less represented. Myristic acid (C14:0), linolenic acid (C18:3), arachidic acid 

(C20:0) and behenic acid (C22:0) are negligible with less than 1 % of total fatty acids. The 

fatty acid profile of the microalgae P. tricornutum (fig. I.9, B) contains 45 % palmitoleic acid 

(C16:1) as the main component followed by palmitic acid (C16:0) with 25 %. High amounts of 

the industrially relevant fatty acids DHA (C20:5, 8.9%) and oleic acid (C18:1, 7.6 %) were 

obtained. Myristic acid (C14:0), linoleic acid (C18:2) and arachidonic acid (C20:4) are rather 

negligible with less than 5 %. Fatty acids detected with amounts less than 1 % are combined 

to “others”. 
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Fig. I.9 Fatty acid profiles of the yeast Cryptococcus curvatus (A) and the microalgae Phaeodactylum tricornutum 

(B); fatty acids detected with amounts less than 1 % are combined to “others”; values in detail in appendix; 

(Dillschneider et al. 2014)  

 

4.4 Variation of the fatty acid profile of C. curvatus during the course of the process 

The fatty acid profile of the yeast C. curvatus was examined in further detail for the transition 

phase from the second to the third cycle (fig. I.10). The fatty acid profile started to change as 

soon as the yeast cells were provided with new medium containing nitrogen in the form of 

NH4
+. At this point lipid production stopped and cell growth was initiated. As soon as the 

refilled nitrogen was totally consumed the fatty acid profile tended to change again to the 

same profile as before harvesting and refilling with new medium. Oleic acid (C18:1) 

decreased slightly from 48.5 % to 46.2 %. Palmitic acid (C16:0) decreased from 19.5 % to 

15.8 %. A more intense decrease can be measured for stearic acid (18:0) falling from 17.7 % 

to 12.4 %. By contrast, the percentage of linoleic acid (18:2) and linolenic acid (18:3) 

increased during the renewed growth phase from 8.6 % to 16.5 % and from 0.6 % to 1.9 %, 

respectively.   
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Fig. I.10 Composition of fatty acid profile during the fermentation of the oleaginous yeast C. curvatus  

 

5 Discussion 

5.1 Preliminary study of Cryptococcus curvatus 

C. curvatus has been long proven as a microbial lipid producer and many production 

processes have been described in literature (Meesters et al 1996; Thiru et al. 2011; Zhang et 

al. 2011). However, attempts to use those processes economically failed because of the high 

production costs. Hence, the microbial lipids cannot compete with conventional lipid products 

arising from plants and fish (Ratledge and Cohen 2008). To reduce the overall costs of a lipid 

production process, the setup of this study was to recycle the exhaust gas CO2, one of the 

resulting waste streams of the yeast cycle. To solve this problem, the lipid production with 

the yeast Cryptococcus curvatus process itself was primarily analyzed with respect to 

nitrogen consumption and lipid production as well as the course of CO2 emission during the 

process and especially the response to carbon deprivation. A constant flow of CO2 as carbon 

source for the microalgae is important for a successful cultivation process whereas an 

excess of the carbon source is necessary for the yeast cultivation to produce microbial lipids.     

As shown by Ratledge (2002), the lipid production started as soon as the nitrogen was totally 

consumed and growth leveled down. The partial pressure of oxygen (pO2) level decreased to 

0 % at high biomass production. Therefore, aeration or stirrer speed may not be optimal for 

maximal growth or lipid accumulation. However, the pO2 increased rapidly each time as soon 
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as the carbon source glucose got totally consumed. This is an indication that the metabolism 

switches rapidly to a non-glucose-consuming metabolism.   

Considering the course of the CO2, CO2 behaves anti-parallel to the exhaust gas O2 and the 

pO2. The maximum value for CO2 was reached at the point of maximal growth and 

decreased slowly during the lipid production phase. Each time of glucose deprivation, the 

CO2 decreased rapidly. With respect to the coupling of CO2 to a microalgae process such a 

glucose deprivation is disadvantageous for the algae as they require a constant flow of CO2. 

Therefore a continuous CO2 production is required and thus a continuous and sufficient 

feeding of the carbon source has to be guaranteed. The best option would be a glucose 

sensor for an online-measurement. Such a technique would permit to stabilize the level of 

the carbon source and to hold it constant during the whole process in excess to guarantee 

lipid production. On the other hand the glucose concentration should not exceed a certain 

concentration level which may lead to a substrate inhibition and thus to an inhibited lipid 

production (Zhang et al. 2011). Considering the values of the respiratory coefficient (RQ), RQ 

and CO2 exhaustion resemble each other. As it was to be expected (Dilly 2005), RQ is 1 

during the maximal growth rate on glucose. Parallel to a rapid decrease of CO2, a rapid 

decrease of the RQ value was observed. The calculated RQ value at the point of the 

maximal growth rate reached 1 which corresponds to the value of the complete oxidation of 

the carbon source. As soon as the lipid production starts, the RQ value increased to values 

above 1 up to 1.3. This means that more CO2 is produced than oxygen is consumed during 

the lipid production phase. The rapid decrease of CO2 after deprivation of glucose and the 

rapid increase after refilling of glucose show that the metabolism of the yeast cells switches 

rapidly between glucose deprivation state and lipid production phase.  

5.2 Fatty acid composition  

In general C16 and C18 fatty acids are well suited for the production of biodiesel. Those 

kinds of fatty acids are main components of plant oils used for biodiesel production (Ma and 

Hanna 1999) which fit well with the profiles of C. curvatus as well as that of P. tricornutum. 

Hence, microbial oil from those two strains can be used for the production of biodiesel. 

However, biodiesel from microbial oils cannot yet compete with those from plant oils. In 

addition to the use as biodiesel, the vast amount of different fatty acids in the described 

process can find applications in other industrial sectors. The main fatty acid in the 

microalgae, palmitoleic acid (C16:1), is known to prevent not only cerebral diseases, but also 

cardiovascular diseases by enhancing the function of vascular smooth muscle cells. It can 

also be applied in the therapy against obesity. Therefore, this fatty acid can find novel and 

valuable uses in human nutrition and medicine (Yamori et al. 1986; Matsunaga et al. 1995; 

Yang et al. 2011). Oleic acid, the main fatty acid in the yeast lipid, finds application as 
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lubricant, for cosmetics and cleansing agents, as food addition and for biodiesel production 

(Yin et al. 2009; Liebert 1987). Palmitic acid which is found in high concentrations in both cell 

types, is used for the production of biodiesel (Carmo et al. 2009), soaps, cosmetics, 

lubricants, release agent and food additions (Thieme Römpp online; Liebert 1987) 

The fatty acid composition differs in the course of the cultivation cycles. The increasing 

percentages of linoleic acid (C18:2) and linolenic acid (C18:3) during the transition phase 

from lipid production and renewed cell growth can be explained by membrane lipids which 

are required for cell growth consisting of those unsaturated fatty acids. During the lipid 

production phase the percentage of those two fatty acids decreased whereas the percentage 

of C16:0, C18:0 and C18:1 increased again as already shown by Meesters et al. (1996). The 

important fatty acid profile of the microbial lipid is the moment with a high lipid amount, hence 

at the end of a cycle, shortly before harvesting. By implementation of a semi-continuous or 

continuous yeast process for microbial production, the fatty acid profile would be more or 

less the same corresponding to the composition of the single cell oils in the end of one batch 

cycle.      

5.3 Challenges and chances of the process integration  

The coupling of algae and yeast cultivation has been already described by Puangbut and 

Leesing (2012), but those results are based on shake flask cultivations and the exhaust gas 

of the yeast cultivation was supplemented by air flow. In contrast, this study focuses on the 

development of a scalable process strategy which is feasible to supply algae cultures with 

CO2. Furthermore, the study investigates on challenges and solutions with regard to an 

entirely automated process for biodiesel production with both organisms.  

The challenge of the process integration in order to achieve CO2 recycling was the 

adaptation of the diverging process duration of heterotrophic cultivations and phototrophic 

processes. Since yeast grows on average with a growth rate of 0.4/h and therewith attains 

about 10 doublings per day algae usually attain significantly lower growth rates in the range 

of 1/d for fast growing species. Another significant difference is that phototrophic processes 

are light dependent and the exponential growth is limited to low biomass concentrations due 

to shading of the cells. Once light is limited the culture grows more or less linearly.  

One possibility to match process durations in order to achieve constant supply of the algae 

cultures with CO2 would be the implementation of time delayed independent yeast 

bioprocesses. In such a set-up several yeast fermenters are started at different time points 

and in phases of peak metabolic turnover the exhaust gas could be connected with the 

photobioreactor. A switch would allow using the exhaust gas of the next fermenter, when a 

limitation occurs in one reactor. The obvious disadvantage of such a process would be the 
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high investment required for the implementation. The other option was a repeated fed-batch 

process which was conducted as shown in 4.3. The advantage of such a repeated fed-batch 

is the possibility to reduce the set-up and maintenance time because the bioreactor does not 

have to be cleaned and newly autoclaved after each batch process. Instead just fresh 

medium needs to be added (Zhao et al. 2011). This strategy contributes to cost reduction in 

terms of cost of operation and besides reduces disbursement for the initial investment of the 

plant. Furthermore, studies have shown that C. curvatus has higher lipid production rates 

when cultured in fed-batch process (Zhang et al. 2011).  

Another challenge was the approach of changing volume fractions of CO2 in the gas stream. 

Through the chemical equilibrium of dissolved CO2, hydrogen-carbonate and carbonate 

changing partial pressures of CO2 affect the pH in the solution (Camacho et al. 1999). This 

problem could be avoided in principle by using a combination of a continuous yeast process 

and an autotrophic algae process. However, such a strategy was not feasible in the study 

presented here, since the objective was the production of lipids in both process stages. The 

approach to deal with the changing CO2 partial pressures was a pH-control in the 

photobioreactor that allows minor variations of the pH due to a defined dead band of the 

controller. Nevertheless, the mere adaptation of the pH-control in the photo bioreactor is not 

sufficient to achieve constant supply of the algae cultures with their carbon source. 

Therefore, the preliminary experiment presented in 3.1 was conducted in order to analyze 

the CO2 emission in a microbial production process with yeast cells. The study was important 

to align the yeast process with the need of a relatively constant CO2 release in the exhaust 

gas. One basic necessity for continuous respiratory activity and additionally for the lipid 

production in yeast was that the carbon source has to be available in excess. This necessity 

entails that the carbon source is regularly added. On the other hand, a maximal 

concentration of 120 g/L should not be exceeded because of substrate inhibition (Zhang et 

al. 2011). An exhaustion of glucose leads to an immediate decrease of CO2 in the exhaust 

gas and must be avoided in the integrated process. An automatic glucose feed could be 

installed to avoid such declines of CO2. Control of the glucose feed could be achieved by 

immediately feeding of glucose as soon as the CO2 value decreases. A rapid increase of the 

pO2 in the culture suspension could also be used as a controlled variable as it indicates 

declining respiratory activity. The latter would be advantageous, because other than CO2 

emission, which is measured in the exhaust gas of the phototrophic process, the pO2 can 

easily be measured independently of the second process stage. An automatic calculation of 

the RQ value with the online-measured values O2 and CO2 in the exhaust gas could be used 

as a direct indicator of the metabolic state of the yeast cells. Once an RQ value of 1 is 

reached, a decrease (RQ<1) could indicate that the carbon source is exhausted, whereas an 

increase (RQ>1) depicts the lipid production phase.   
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Complementary to the presented process strategy a semi-continuous fed-batch process with 

more frequent harvesting might be implemented for the heterotrophic process stage. It was 

shown that the two harvesting events had the strongest impact on the CO2 partial pressure. 

More frequent harvesting of smaller volumes would lead to a more constant CO2 volume 

fraction and peaks could be dampened. One further aspect to prove is the vitality of the yeast 

cells from one to another cycle as it was shown that the volumetric productivity of the yeast 

cells decreased from the first to the second and third cycle within the repeated-batch 

process. It could be that a part of the yeast cells of the residual biomass which was used as 

inoculum for the next cycle were not alive anymore as the aeration conditions were not 

sufficient. Process optimization regarding oxygen transfer could further improve the lipid 

yields.  

5.4 Potential benefits of the overall process  

In general assessments of the economic viability of biodiesel production with microalgae CO2 

is often regarded as a free resource (Singh et al. 2011). It can potentially be obtained from 

the atmosphere, from the flue gas of power plants, from the by-product streams of other 

industrial plants or from soluble carbonates (Brennan and Owende 2010). Atmospheric 

partial pressures are usually too low and allow only growth with reduced growth rates due to 

underlying kinetic coherences (Doucha and Lívanský 2009). The suitability of flue gas is 

controversial (Clarens et al. 2010). Experiments were published that have shown a negative 

impact of nitric oxides and sulphur oxides on growth rates and the volumetric productivity of 

microalgae (Lee et al. 2002). In other experiments the tolerance of limited contents of nitric 

oxides and sulphur oxides were demonstrated (Brown 1996). Even though the sequestration 

of CO2-emissions from power plants or other industrial plants is desirable, their location is 

often remote from potential locations of microalgae production facilities. Due to the specific 

requirements in terms of climate and price of land optimal locations are often distant from 

urban areas or industrial bases (Ratledge and Cohen 2008). Consequently, the transport of 

CO2 to the site of its consumption would be necessary and increases the costs of operation 

of the biomass production (Feron and Hendriks 2005; García et al. 2003).  

In summary, it can be stated that independence from sites of CO2-emission can be achieved 

by the scale-up of the integrated bioprocess with the combination of heterotrophic cultivation 

of yeast and CO2-recycling in a phototrophic process. Moreover, a significant cost saving 

potential can be accessed so that process integration can significantly improve the economic 

viability of the microbial production with oleaginous microorganisms. Furthermore yeast and 

algae oil are intracellular products which means that the same technique of downstream 

processing can be used leading to further cost-savings of the overall process. 
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Chapter II: 

Screening for new oleaginous microorganisms  

 

1 Abstract 

Four yeast strains were isolated from soil samples and characterized as Cryptococcus 

podzolicus, Trichosporon porosum, Pichia segobiensis and Candida shehatae. All four 

isolates were tested positive by Sudan black B staining. Cultivation in bioreactors identified 

C. podzolicus, T. porosum and P. segobiensis as oleaginous yeast strains. When cultured in 

bioreactors with glucose as the sole carbon source C. podzolicus yielded 31.8 % lipid per dry 

biomass at 20 °C, while T. porosum yielded 34.1 % at 25 °C and P. segobiensis 24.6 % at 

25 °C. These amounts correspond to lipid concentrations of 17.97 g/L, 17.02 g/L and 

12.7 g/L and volumetric productivities of 0.09 g/L*h, 0.1 g/L*h and 0.07 g/L*h, respectively. 

During the cultivation of C. podzolicus and T. porosum with glucose gluconic acid was 

detected as by-product (30 g/L and 12 g/L, respectively). 

The production of gluconic acid was not detectable for both strains when glucose was 

substituted by xylose as the carbon source. Using xylose lipid yields were slightly lower than 

using glucose. Therefore, it was concluded that when using either C. podzolicus or 

T. porosum as the production strain, xylose is the carbon source of choice for exclusive lipid 

production, but glucose may be used for the simultaneous production of gluconic acid as 

extracellular product and lipid as intracellular product. C. shehatae yielded just 17.8 % lipid 

content on glucose at 25 °C, but produced more than 5.8 % ethanol as extracellular product. 

The fatty acid profile analysis showed that oleic acid was the main component (between 

39.6 % and 63 %) in all four strains and could be applicable for biodiesel production. Palmitic 

acid (between 9.8 % and 21.1 %) and linolenic acid (between 7.5 % and 18.7 %) are 

valuable for cosmetic applications. Pichia segobiensis had a considerable percentage of 

palmitoleic acid (16 %) and may be therefore suitable for medical applications. 

 

2 Introduction  

As world population continues to grow, there is an ever-increasing demand on energy and 

material resources. Therefore, to ensure long-term sustainability suitable, alternative 

production methods for oil as feedstock for several industrial applications have to be 

developed. Biodiesel and bioethanol derived from plant oil for example, have been used 
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since decades, but the disadvantage is the competition with the need to produce feed and 

food (Ratledge 1993). Therefore, oleaginous microorganisms represent an alternative 

production system for sustainable lipid production as they share the special feature to 

produce more than 20 % lipid per dry biomass as carbon storage reserves with similar fatty 

acid compositions to plant oils.  

Lipids are produced by all microorganisms (MOs) usually in the range of 6 to 8 % per dry 

biomass principally as components for the cell membrane. However, oleaginous 

microorganisms, belonging to the yeasts, bacteria, filamentous fungi and microalgae, convert 

a carbon source when it is available in excess into intracellular triacylglycerols (TAG) as soon 

as a nitrogen limitation occurs (Ratledge 2003). These lipids are also called single cell oils 

(SCO) and are stored as lipid droplets within cells. 

Baker’s yeast Saccharomyces cerevisiae does not produce any intracellular lipid droplets 

(Vorapreeda et al. 2012), but several other yeast strains are known to belong to the 

oleaginous microorganisms, e.g. Cryptococcus sp., Yarrowia sp., Candida sp., 

Rhodotorula sp., Rhodosporidium sp., Trichosporon porosum and Lipomyces sp. 

(Ratledge 1991). Cryptococcus curvatus is one of the most known oleaginous 

microorganisms able to grow on several carbon sources, e.g. glucose, glycerol or xylose 

(Meesters et al. 1996; Zhang et al. 2011). Advantages of microbial oil production compared 

to plant oil is the short life cycle of microbes and the possibility of an in vitro production 

process not influenced by external factors such as venue, season or climate (Thiru et al. 

2011).  

The yield and type of lipid depend on several factors including the type of microorganism, the 

culture conditions and the chosen substrates (Li et al. 2008; Griffiths et al. 2010). Yeast 

strains produce mainly fatty acids which have a similar composition to those in plant oils 

containing predominantly saturated or monounsaturated fatty acids with carbon lengths of 

C16 and C18 (Papanikolaou and Aggelis 2011a). Other microorganisms, e.g. microalgae or 

molds are also able to produce significant amounts of poly unsaturated fatty acids (PUFAs) 

like ω-3 or ω-6 fatty acids, e.g. docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) 

(Ward and Singh 2005) which are usually extracted from fish oil. This knowledge permits the 

use of different microorganisms for different industrial applications. 

Costs for microbial lipid production include the payments of the raw materials (chosen 

substrates), the payments of the fermentation process (monitoring, control, labour and 

operating costs) and downstream processing expenses. Fermentation costs are almost 

unchangeable. Substrate costs can be reduced by using low-cost substrates or waste 

material as carbon and nitrogen source. The greatest challenge for the downstream 
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processing of intracellular lipid is overcoming the high energy expenses for the cell 

disruption.  

The establishment of an economic production process entails either attaining higher 

volumetric output of lipid or producing lipids with high value fatty acids. Therefore, suitable 

microorganisms have to be identified or new strains have to be isolated from the 

environment, which are able to grow on low-cost substrates, e.g. hemicellulosic wastes 

including xylose as monomers. 

Glucose can be converted by almost every microorganism. Thus, it is suitable for screening 

experiments. However, many microorganisms, e.g. Pichia pastoris (Lee et al. 1986) are able 

to convert xylanes, a constituent of hemicelluloses and polymer of xylose molecules. 

Hemicellulosic material is accessible in large quantities all over the world (Pan et al. 2009) 

and can therefore be classified as low-cost substrate suitable as carbon source for 

oleaginous microorganisms. Soil samples contain old wood; hence products of 

decomposition like xylanes might be biotransformed by several soil microbes. Some of those 

microbes might belong to the group of oleaginous microorganisms showing the ability to 

convert xylose as carbon source into SCO. New isolates from soil samples may therefore be 

qualified for the application in biotechnological processes using hemicellulosic feedstock as 

cost-efficient substrate. 

This study aimed to identify new yeast isolates from soil samples for the production of SCO, 

which can be used as oil substitute for industrial applications in the cosmetic, 

pharmaceutical, nutritional or energy sectors. Furthermore, xylose as low-cost substrate 

should be examined and evaluated as carbon source for promising lipid producing isolates. 

                 

3 Materials and methods 

3.1 Microorganisms   

Cryptococcus curvatus (ATCC 20509) as an oleaginous yeast was used as a positive control 

for SCO production. Saccharomyces cerevisiae (DSM 11285) as a non oleaginous yeast was 

taken as the negative control for yeasts which are not able to produce SCO.  

Characterized soil isolates used in this study were deposited at the DSMZ culture collection. 

CPOH4 Cryptococcus podzolicus as DSM 27192, SSOH12 Pichia segobiensis as DSM 

27193 and TPST6 Trichosporon porosum as DSM 27194. CSOH1 Candida shehatae has 

not yet been deposited at any culture collection. 
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3.2 Soil sample collection 

Two samples were taken in summer time (2011) from peat bog soil in Kaltenbronn near Bad 

Wildbad in the black forest of Germany (sample 1: 48.720°N, 8.471°E, 894.4 m above sea 

level; sample 2: 48.716°N, 8.456°E, 911.8 m above sea level) and one soil sample was taken 

in summer time from a grassland in Karlsruhe (Baden-Württemberg, Germany, 48.98989°N, 

8.40462°E, 116.7 m above sea level). All samples were taken at a depth of 5 cm. The soil 

samples were stored at -20 °C.  

3.3 Yeast isolation from soil samples  

A fraction of the collected soil sample (10 mg) was resuspended in 1 mL sterile 

demineralized water. An aliquot (100 µL) of the suspension was plated out on YM agar plates 

(3 g/L yeast extract, 3 g/L malt extract, 5 g/l peptone, 10 g/L glucose, 20 g/L agar, pH 7) 

containing antibiotics (10 mg/L ampicillin, 20 mg/L tetracycline). Agar plates were incubated 

at 20 °C until 1 mm diameter colonies became visible. Each colony was picked and looked at 

under a microscope to determine if it was a yeast. For long-term storage the isolated strains 

were stored in glycerol stocks (15% w/w) at -80 °C. 

3.4 Screening for oleaginous microorganisms with Sudan black B staining 

Isolated yeasts were cultivated on YM agar plates for 4 days at 20 °C. Replica plates were 

prepared by transferring the colonies from the original agar plate to a round filter paper (size 

of agar plate, GE Healthcare Europe GmbH, Freiburg, Germany, Whatman; Ref No 

10311610). The filter paper was dried for 15 min at 60 °C and subsequently stained for 

20 min with 0.08 % Sudan black B in 96 %-Ethanol (EtOH) solution under shaking. 

Afterwards the filter was washed twice for 5 min with 96 % EtOH under shaking. Colonies 

which were stained blue could be potential oleaginous MOs with intracellular TAGs (Evans et 

al. 1985). 

3.5 Identification of the isolates 

Genomic DNA was isolated using the commercial kit “Precellys Bacterial/ Fungal DNA-Kit” 

(PEQLAB Biotechnologie GmbH, Erlangen, Germany; 12-7511-00). Afterwards Polymerase-

chain-reaction (PCR) fragments were produced applying universal primers ITS1 (5’-

TCCGTAGGTGAACCTGCG-3’) (Eurofins MWG GmbH, Ebersberg, Germany) and ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’) (Eurofins MWG GmbH, Ebersberg, Germany) (fig. II.1) 

(Fujita et al. 2001). Polymerase chain reaction (PCR) amplification was performed in a total 

volume of 50 µL. The composition of each PCR reaction was as followed: 5 µL PCR buffer 

(Dream Taq Green buffer, Thermo Scientific Fermentas, Schwerte, Germany; ♯B71), 5 µL of 

dNTP mixture (2 mM each) (Thermo Scientific Fermentas, Schwerte, Germany; #R0241), 
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1 µL ITS1 primer (10 µM), 1 µL ITS4 primer (10 µM) and 0.5 µL Dream Taq DNA polymerase 

(Thermo Scientific Fermentas, Schwerte, Germany; ♯EP0701) were filled up with PCR water 

(Carl ROTH GmbH, Karlsruhe, Germany; T143.4). The PCR amplification started with 95 °C 

for initial denaturation, followed by 30 cycles of denaturation at 95 °C for 30 s, annealing at 

48 °C for 30 s, and extension at 72 °C for 1 min. The final extension was done at 72 °C for 

10 min. PCR products were visualized on 1 % agarose gel (1x TAE-buffer: 40 mM Tris base, 

1 mM EDTA, pH 8 adjusted with acetic acid; 0.1 µg/mL ethidium bromide) after carrying out 

gel electrophoresis of each PCR amplification product and 6 µL Quick Load 1 kb DNA 

Ladder (New England Biolabs, Frankfurt/Main, Germany; N0468 S) with 1x TAE buffer at 

100 V for 1 h. Distilled water was used as negative control. The amplified DNA (including the 

5.8 S rDNA) was sequenced by GATC Biotech Corporation (Konstanz, Germany). 

Alignments were performed via MEGABLAST with NCBI database 

(http://www.ncbi.nlm.nih.gov/). 

 

Fig. II.1 Illustration of the fungal ribosomal genes containing the primer target areas used in this study (Fujita et 

al. 2001)  

 

3.6 Cultivation in shake flasks 

YM medium (3 g/L yeast extract, 3 g/L malt extract, 5 g/l peptone, pH 7) was supplemented 

with glucose to an initial concentration of 50 g/L glucose. 50 mL initial culture volume filled in 

500 mL conical shake flasks with an initial optical density (OD600) of 0.5 were incubated at 

130 rpm at 25 °C for 120 hours. 35 g/L glucose was daily added to ensure that the carbon 

source was in excess.  

3.7 Cultivation in bioreactors  

For the cultivation in the bioreactor a mineral salt medium was used, formulated on a 

phosphate buffer at pH 5 (8.99 g/L KH2PO4 and 0.12 g/L Na2HPO4 * 2H2O) which was based 

on the medium used in Meesters et al. (1996). The medium constituents were 0.1 g/L sodium 

citrate * 2H2O, 0.1 g/L yeast extract, 0.2 g/L MgSO4 * 7H2O, 4.72 g/L (NH4)2SO4 (refers to 

1 g/L N). Once a day the culture broth was supplemented with 2 mL trace elements solution 

(4 g/L CaCl2 * 2H2O, 0.55 g/L FeSO4 * 7H2O, 0.475 g/L citric acid, 0.1 g/L ZnSO4 * 7H2O, 

0.076 g/L MnSO4 * H2O, 100 µL 18 M H2SO4) and 2 mL salt solution (20 g/L MgSO4 * 7H2O, 
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10 g/L yeast extract) per 100 mL cultivation medium. Precultures were prepared in conical 

shake flasks with initial OD600 of 0.5 and 120 rpm. Fermentation was performed in a 2.5 L 

fermenter (Infors HT, Bottmingen, Switzerland; Minifors fermenter) with 1 L initial culture 

medium, initial OD600 of 1, at 600 rpm and with 1 vvm aeration rate without control of the pO2 

for at least 188 h. CPOH4 was grown at 20 °C, SSOH12 and TPST6 at 25 °C. The control of 

pH was done automatically by addition of 4 M H3PO4 and 4 M NaOH in each fermenter, 

Contraspum A 4050 HAC (Zschimmer und Schwarz GmbH und Co KG, Lahnstein, Germany) 

was applied as antifoam agent. Initial glucose or xylose concentration was 50 g/L. Each day 

the carbon source was replenished to a maximum concentration of 90 g/L after measuring 

the actual concentration. A minimum of five samples were taken per day (four samples of 

3 mL for the determination of OD600, dry biomass (g/L), carbon and nitrogen source and by-

products; one sample of 20 mL for lipid analysis (% lipid/dry biomass) via gas 

chromatography). The exhaust gas O2 and CO2 were measured via exhaust gas analyzer 

(BlueSens).The partial pressure of oxygen (pO2) was measured by pO2-elektrode (Hamilton).  

3.8 Sample preparation for dry biomass and analysis of supernatant 

Dry biomass was analyzed gravimetrically. A 1 mL aliquot of the culture fluid was transferred 

into a pre-dried and pre-weighed 1.5 mL reaction tube and centrifuged at 13,000 rpm for 

5 min. The supernatant was collected and used for the determination of glucose and NH4
+. 

The cell pellet was washed with 800 µL saline (0.9 % NaCl), dried at 60 °C for 24 h and 

weighed.  

3.9 Analysis of NH4
+, glucose, xylose, ethanol and gluconic acid 

All components were measured in triplicates with enzymatic test kits. D-Glucose, ethanol and 

gluconic acid were purchased at R-biopharm (Darmstadt, Germany). NH4
+ was measured via 

Spectroquant kit (Merck KGaA, Darmstadt, Germany). D-Xylose assay kit was taken for the 

concentration of xylose (Megazyme, Bray, Ireland; K-XYLOSE). 

3.10 HPLC analysis of organic acids 

The pure supernatant was taken to measure five different organic acids (gluconic, malic, 

citric, succinic and fumaric acid) using a standard high pressure liquid chromatography 

(HPLC) device (Agilent 1100 Series, Agilent Technologies Deutschland GmbH, Böblingen, 

Germany) equipped with a 150 x 4.6 mm HPLC column Synergi™ 4 µm Fusion-RP 80 Å 

(Phenomenex, Aschaffenburg, Germany; 00F-4424-E0) at 30 °C column temperature. 

20 mM KH2PO4 pH 2.5 (A) and 100 % Methanol (B) were used as eluents to drive the 

following temporal gradients. 0-0.5 min 100 % eluent A, 0.5-10 min increase of eluent B from 

0 % to 10 %, 10-12 min decrease of eluent B from 10 % back to 0 % and 12-14 min again 
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100 % eluent  A. 10 µL sample was injected, a flow rate of 1 mL/min was adjusted and peaks 

were detected via UV at 220 nm. 

3.11 Lipid analysis 

A 20 mL aliquot of the culture broth was centrifuged (4,700 rpm 5 min), the pellet was 

resuspended in saline (0.9 % NaCl) and again centrifuged (4,700 rpm, 5 min). The 

supernatant was discarded and the pellet was freeze dried (-30 °C, 0,370 mbar). Preparation 

for the quantitative and qualitative gas chromatographically analysis was done in a one-step-

procedure by direct esterification plus extraction. A portion (20 mg) of freeze dried biomass 

was weighed into a 15 mL glass falcon with Teflon cap. 1.5 mL hexane and 0.5 mL of 

2 mg/mL internal standard (methyl benzoate) dissolved in hexane were added as solvent for 

the extraction of lipid. In addition, 2 mL 15 % H2SO4 in methanol was added for the 

esterification step. Each sample was heated up to 100 °C for 2 h with continuous shaking. 

After cooling on ice, 1 mL demineralized water was added. The mixture was centrifuged for 

5 min at 2,500 rpm. 1 µL of the upper phase, containing the fatty acid methyl esters extract, 

was analyzed via chromatography (Agilent Technologies, 6890 N Network GC-System). The 

instrument was equipped with a DB-Wax column (l: 30m d: 0.25 mm, Agilent Technologies 

Deutschland GmbH, Böblingen, Germany; 122-7032), a flame ionization detector and 

working with a pressure of 1.083 bar and initial temperature of 40 °C. The column 

temperature was increased from 40 °C to 250 °C with a rate of 8 °C/min. The temperature 

was held at 250 °C for 10 min before cooling down to 40 °C. The total fatty acid content and 

the identification of fatty acids were performed using the standard RM3 FAME Mix (Sigma 

Aldrich, Taufkirchen, Germany; 07256-1AMP) and Marine FAME Mix (Acid Methyl Ester 

Marine Oil FAME Mix) (Restek GmbH, Bad Homburg, Germany; 35066). Fatty acids which 

represented less than 1 % of total fatty acids were combined to “trace fatty acids”.    

3.12 Accession numbers  

The following EMBL accession numbers have been assigned for the fungal ribosomal genes 

of the isolates: CPOH4 Cryptococcus podzolicus as HG737350, SSOH12 Pichia segobiensis 

as HG737349 and TPST6 Trichosporon porosum as HG737348.  

 

4 Results  

4.1 Screening and identification of yeast isolates 

Four different yeast strains in total could be isolated from three soil samples using agar 

plates with YM medium supplemented with antibiotic and glucose as carbon source.  
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Glucose was taken as a standard carbon source as it can be converted by almost every 

microorganism and is therefore suitable for screening experiments. Three isolates (CPOH4, 

CSOH1 and SSOH12) arose from peat bog samples and one isolate (TPST6) from grass 

land soil sample. Peat bog soil is assumed to contain a high level of carbon compared to 

nitrogen. All four isolates were stainable by lysochrome Sudan black B (Evans et al. 1985), 

and were therefore regarded as potential lipid producer (fig. II.2). 

The sequences of ITS region were compared with the nucleotide data base using the NCBI-

blast tool. SSOH12 showed highest genetic agreement with Pichia segobiensis closely 

followed by Scheffersomyces stipitis which is a synonym of Pichia stipitis. CPOH4 was 

identified as Cryptococcus podzolicus. TPST6 was identified as Trichosporon porosum and 

CSOH1 showed highest agreement to Candida shehatae. The results are presented in 

table II.1.  

 

Fig. II.2 Sudan black B staining of the four isolates CSOH1, SSOH12, CPOH4 and TPST6 

 

Table II.1 Results of the sequencing of ITS region including 5.8 S rRNA of isolates SSOH12, CPOH4 and TPST6 

Isolate 
Deposited at DSMZ as                    

(EMBL accession 

number) 

Total 

score 

Query 

coverage 

[%] 

E-

value 
Max 

identity 

Closest relative in NCBI 

data bank              

(Accession number) 

CSOH1 - 1044 100 0.0 100 
Candida shehatae 

(JQ026374.1) 

SSOH12 
DSM 27193 

(HG737349) 

1062 99 0.0 99 
Pichia segobiensis 

(DQ409166.1) 

1059 99 0.0 99 
Scheffersomyces stipitis 

(JQ026363.1) 

CPOH4 
DSM 27192 

(HG737350) 
852 100 0.0 100 

Cryptococcus podzolicus 

(HF558652.1) 

TPST6 
DSM 27194 

(HG737348) 
878 100 0.0 100 

Trichosporon porosum 

(HF558656.1) 
DSMZ: German Collection of Microorganisms and Cell Cultures, EMBL: The European Molecular Biology 

Laboratory, NCBI: National Center for Biotechnology Information  

 

4.2 Shake flask cultivation in YM medium 

All four isolates were cultured in 500 mL shake flasks containing 50 mL YM medium 

supplemented with 50 g/L glucose. The flasks were incubated at 25 °C for 120 hours. 
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Cryptococcus curvatus - a well examined oleaginous yeast - was taken as positive control 

and Saccharomyces cerevisiae as negative control. Glucose was taken as standard carbon 

source and was held in excess throughout the fermentation period. The pH value did not 

decrease below 4 in all cultivations. The results are presented in fig. II.3. As expected, the 

oleaginous yeast C. curvatus yielded more than 40 % lipid per dry biomass whereas 

S. cerevisiae, a typical non-oleaginous microorganism, yielded less than 10 % lipid per dry 

biomass corresponding to the normal cellular amount of lipids.  

The best lipid producer among the four new isolates was CPOH4 with 34.6 % lipid per dry 

biomass and can therefore be classified as oleaginous under the chosen conditions in YM 

medium and shake flasks. TPST6 yielded 24.5 % lipid per dry biomass, hence this yeast also 

belongs to the oleaginous microorganisms. However, CSOH1 yielded 8.5 % and SSOH12 

yielded 11.2 % lipid per dry biomass; hence the latter two yeasts cannot be classified as lipid 

producing strains under the chosen conditions in shake flasks.  

  

Fig. II.3 Lipid yield in shake flask cultivation at 25 °C in YM medium after 120 h of all four isolates TPST6, 

CSOH1, SSOH12 and CPOH4 as well as oleaginous yeast Cryptococcus curvatus (C.c.) and non oleaginous 

yeast Saccharomyces cerevisiae (S.c.) 

 

4.3 Cultivation of the isolated yeasts in 2.5 L-bioreactor on glucose or xylose 

All four isolates CSOH1, SSOH12, CPOH4 and TPST6 were cultivated in bioreactors at pH 5 

and 600 rpm during the whole cultivation. Hence, compared to shake flask cultivation a 

constant pH and higher aeration rates were ensured. CPOH4 was cultivated at 20 °C as 

preliminary studies (data not shown) revealed best growth at this temperature. CSOH1, 

SSOH12 and TPST6 were cultivated at 25 °C as this was the suggested cultivation 
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temperature for Trichosporon porosum (Middelhoven et al. 2001) and described growth 

conditions for Scheffersomyces segobiensis and Candida shehatae according to ATCC data 

bank. The carbon source, glucose or xylose, was held in excess throughout the fermentation, 

but less than 90 g/L to prevent substrate inhibition. All strains were cultivated on glucose as 

the carbon source, but CPOH4 and TPST6 were additionally grown on xylose. Table II.2 

summarizes the main results of the different fermentations; growth yield coefficient (yx/s), 

product yield coefficient (yp/s), volumetric productivity (QL), lipid content per dry biomass 

(% lipid/dry biomass), lipid concentration (g/L) and detected by-products are presented. The 

data for CPOH4 on glucose and xylose and the data for CSOH1 on glucose in table II.2 

represent the mean from two independent fermentations. The data for TPST6 on glucose 

and xylose as well as the data for SSOH12 on glucose are single fermentations. To illustrate 

the lipid production processes in more detail the fermentations of all four isolates are 

exemplarily shown for one single fermentation in fig. II.4 till fig. II.9. The first diagram (a) of 

each strain presents the lipid production and by-product production compared to nitrogen 

consumption and dry biomass production. The second diagram (b) focuses on the 

consumption of the carbon source and the development of the pO2 compared to dry biomass 

and by-product development. Due to daily feeding of the carbon source in the case of 

CSOH1, CPOH4 and SSOH12 the values for the dry biomass are shown before and after 

feeding. Concerning TPST6 feeding of the carbon source was repeated two times after 29 

and 48 h. A third feeding was conducted after 94 h only for the glucose cultivation. 

For all isolates the lipid production started as soon as the nitrogen source NH4
+ was totally 

consumed (approximately after 50 hours). In addition, the level of pO2 reached minimum 

values of 0 % during the maximal growth phase, but increased again as soon as the nitrogen 

source NH4
+ was exhausted. At this time point growth rate stagnated and lipid production 

started.  

The three yeast isolates SSOH12, CPOH4 and TPST6 exceeded a lipid content of more than 

20 % lipid per dry biomass (table II.2). CSOH1 yielded just less than 18 % lipid content per 

dry biomass (table II.2). The highest lipid content was reached with yeast isolate TPST6. 

Using glucose as carbon source this strain produced up to 33.4 % lipid per dry biomass, 

followed by CPOH4 (31.8 %) and SSOH12 (24.6 %). When cultured on xylose CPOH4 gave 

26.8 % lipid per dry biomass, whereas TPST6 yielded even 33.4 %. Under the chosen 

conditions of the fermentations the isolates SSOH12, SPOH4 and TPST6 may be classified 

as oleaginous yeasts. However, CSOH1 with 17.8 % lipid content cannot be classified as 

oleaginous.  

The determination of by-products was carried out as there were some indications for ethanol 

and acid production. In the culture broth of CSOH1 and SSOH12 ethanol was detected 
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whereas ethanol production by CPOH4 and TPST6 was negligible (table II.2). Instead, 

CPOH4 and TPST6 showed evidence of acid production when cultured on glucose. This acid 

was identified as gluconic acid by HPLC analysis and was confirmed with an enzymatic test. 

Malic, citric, succinic and fumaric acids were not detected. These acids were neither 

detected for CSOH1 and SSOH12 cultured on glucose nor for CPOH4 and TPST6 cultured 

on xylose.  

When cultured on glucose, CPOH4 yielded the highest lipid concentration of 18.0 g/L and the 

highest concentration of gluconic acid of 30 g/L, followed by TPST6 with 17.0 g/L lipid 

concentration and 12 g/L gluconic acid. CSOH1 yielded only 5.6 g/L lipid concentration, but 

instead reached the ethanol concentrations above 5.8 g/L. SSOH12 resulted only in 12.7 g/L 

lipid and a minimum of 3.3 g/L ethanol as by-product. Considering the lipid productivity (QL), 

TPST6 grown on glucose may be the best lipid producer (0.10 g/L*h) followed by TPST6 on 

xylose and CPOH4 on glucose with the same value of 0.09 g/L*h.  

Considering the ethanol production in CSOH1 and SSOH12 it is visible that CSOH1 starts to 

produce ethanol directly from the beginning. At this time the pO2 is sufficient for aerobic 

growth which points out that CSOH1 is crabtree positive. In contrast, SSOH12 starts ethanol 

production under oxygen limitation, hence is a facultative anaerobic strain. As soon as the 

pO2 level increased again and sufficient oxygen is available, the ethanol was degraded and 

decreased to negligible amounts. 

Table II.2 Overview about performed fermentations of isolates SSOH12, CPOH4 and TPST6; SSOH12 and 

TPST6 represent single fermentations, whereas CPOH4 are mean of two independent fermentations 

 
CSOH1 SSOH12 CPOH4 TPST6 

C-source Glucose Glucose Glucose Xylose Glucose Xylose 

Process time 
[h] 

188 188 188 161 

T [°C] 25 25 20 25 

Dry 
biomassmax 

[g/L] 
31.9±0.9 51.7 56.5±5.2 41.5±1.24 49.9 41.5 

Yx/s [g/g] 0.174±0.03 0.35 0.50±0.0 0.53±0.02 0.38 0.41 

Yp/s [g/g] 0.024±0.003 0.06 0.11±0.01 0.09±0.0 0.11 0.12 

QL [g/L*h] 0.029±0.002 0.07 0.09±0.04 0.07±0.01 0.1 0.09 

Lipid content 
[%lipid/dry 
biomass] 

17.8±0.07 24.6 31.8±8.0 26.8±1.2 34.1 33.4 

Concentration 
of lipid [g/L] 

5.6 12.7 18 11.1 17 13.9 

Gluconic acid 
[g/L] 

n.d. n.d. 30 n.d. 12 n.d. 

EtOH [g/L] > 5.8 >3.3 < 1.0 <1.0 < 1.0 <1.0 
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Fig. II.4a CPOH4 cultivated on glucose in 2.5 L-bioreactor in mineral salt medium at pH 5.0 and 20 °C; glucose 

was fed daily 

 

Fig. II.4b CPOH4 cultivated on glucose in 2.5 L-bioreactor in mineral salt medium at pH 5.0 and 20 °C; glucose 

was fed daily 
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Fig. II.5a CPOH4 cultivated on xylose in 2.5 L-bioreactor in mineral salt medium at pH 5.0 and 20 °C; xylose was 

fed daily 

 

Fig. II.5b CPOH4 cultivated on xylose in 2.5 L-bioreactor in mineral salt medium at pH 5.0 and 20 °C; xylose was 

fed daily 
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Fig. II.6a TPST6 cultivated on glucose in 2.5 L-bioreactor in mineral salt medium at pH 5.0 and 25 °C; glucose 

was fed daily  
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Fig. II.6b TPST6 cultivated on glucose in 2.5 L-bioreactor in mineral salt medium at pH 5.0 and 25 °C; glucose 

was fed daily  
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Fig. II.7a TPST6 cultivated on xylose in 2.5 L-bioreactor in mineral salt medium at pH 5 and 25 °C; xylose was fed 

daily 
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Fig. II.7b TPST6 cultivated on xylose in 2.5 L-bioreactor in mineral salt medium at pH 5 and 25 °C; xylose was 

fed daily 

 



52 
 

 

 

Fig. II.8a SSOH12 cultivated on glucose in 2.5 L-bioreactor in mineral salt medium at pH 5 and 25 °C; glucose 

was fed daily 

 

 

Fig. II.8b SSOH12 cultivated on glucose in 2.5 L-bioreactor in mineral salt medium at pH 5 and 25 °C; glucose 

was fed daily 
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Fig. II.9a CSOH1 cultivated on glucose on 2.5 L-bioreactor in mineral salt medium at pH 5 and 25 °C; glucose 

was fed daily 

 

 

Fig. II.9b CSOH1 cultivated on glucose on 2.5 L-bioreactor in mineral salt medium at pH 5 and 25 °C; glucose 

was fed daily 
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4.4 Fatty acid profiles 

The analysis of the fatty acid profile (table II.3) revealed different profiles for each isolate. 

The main fatty acid in all isolates was oleic acid (C18:1) with contents ranging between 

39.6 % and 63 %. Relatively high yields of palmitic acid (C16:0) ranging from 18.4 % to 

21.1 % were obtained for the three best lipid producing isolates SSOH12, CPOH4 and 

TPST6. In addition to oleic and palmitic acid, palmitoleic acid (C16:1) with 16 % was one of 

the main products in SSOH12 and at least 10.4 % in CSOH1 fermentation whereas CPOH4 

and TPST6 produced only negligible amounts of this fatty acid. In contrast, TPST6 was 

characterized by high amounts of stearic acid (C18:0) and linoleic acid (C18:2) ranging 

between 15.5 % and 18.7 %. CPOH4 produced between 4.7 % and 5.3 % of stearic acid 

(C18:0) and just 8.7 % to 11.1 % of linoleic (C18:2) acid. The amount of linolenic acid 

(C18:3) was less than 1.4 % and is therefore negligible in all isolates. 

No remarkable difference in most of the fatty acid profiles were noticed comparing glucose 

and xylose as the carbon source. However, for both isolates CPOH4 and TPST6 a slightly 

higher amount of oleic acid (C18:1) and slightly lower amount of linoleic acid (C18:2) were 

observed when cultured on glucose.   

 

Table II.3 Fatty acid profile of the four isolates CSOH1, SSOH12, CPOH4 and TPST6 with respect to chosen 

carbon source employed in growth medium; fatty acids detected with percentages less than 1 % are combined to 

“others”; grey marked fatty acids indicate saturated fatty acids 

Isolate C source Type of fatty acid (% of total fatty acids) 
  C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 others 

CSOH1 Glucose 9.8 10.4 2.0 63.0 11.4 1.4 2.0 
SSOH12 Glucose 19.1 16.0 2.0 51.8 7.5 0.5 3.1 

CPOH4 
Glucose 18.4 0.3 5.3 59.4 8.7 0.9 7.0 
Xylose 20.1 0.4 4.7 55.1 11.1 1.1 7.5 

TPST6 
Glucose 19.5 0.3 17.0 40.4 17.8 1.3 3.7 
Xylose 21.1 0.3 15.5 39.6 18.7 1.0 3.8 

  

 

5 Discussion 

Four yeast strains were isolated from soil samples taken from peat bog and grassland. Peat 

bog soil as screening source was chosen due to its high amount of carbon arising from 

decomposed wood and plants accompanied by low nitrogen content. The use of a grassland 

sample was chosen as a comparison sample without any specific limitations. High carbon 

content and low nitrogen content as it is found in peat bog samples are important for the 

production of intracellular lipid in oleaginous strains (Ratledge 2002). The lysochrome Sudan 

black B stains triacylglycerols (TAG), even TAG which are found in oleaginous 
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microorganisms. Hence, positive staining with Sudan black B of certain microorganisms may 

indicate possible intracellular lipid accumulation; therefore, Sudan black B is suitable to 

screen for oleaginous microorganisms. 

In this study four yeast isolates, SSOH12, CPOH4, TPST6 and CSOH1, were tested via 

Sudan black B staining technique on agar plates, but only three of them, SSOH12, CPOH4 

and TPST6, could be finally classified as oleaginous via cultivation in bioreactors and 

subsequent quantitative lipid analysis with gas chromatography.   

The first strain, SSOH12, was identified as Pichia segobiensis and produced a considerable 

amount of 16 % palmitoleic acid (C16:1) of total lipid amount. The second strain CPOH4 was 

identified as Cryptococcus podzolicus and yielded the highest lipid concentration with 

18.0 g/L of all isolates. The third strain TPST6 was identified as Trichosporon porosum and 

produced a considerable amount of 17.8 % linoleic acid (C18:2) on glucose and 18.7 % on 

xylose. All three strains have not been described as oleaginous before. Due to sufficient 

production of lipid amounts and interesting fatty acid profiles, further studies of all three 

strains are worthwhile to establish sustainable bioprocesses for the production of adequate 

amounts of microbial oil for industrial applications.  

The fourth strain CSOH1 was identified as Candida shehatae which is in particular known for 

the production of ethanol (Sanchez et al. 2002). This yeast could not be classified as 

oleaginous yeast under the performed conditions, but an increase of the pO2 might reduce 

the ethanol production in favor to increase lipid production. 

5.1 Influence of cultivation conditions on lipid production for screening experiments 

Different lipid contents per dry biomass were reached depending on cultivation condition, 

meaning shake flask cultivation with YM medium or a bioreactor cultivation in mineral salt 

medium with defined pH value and improved supply of oxygen. C. podzolicus CPOH4 and 

T. porosum TPST6 were able to produce high amounts of lipid between 24.5 % and 34.1 % 

lipid per dry biomass in both cultivation methods. In contrast, P. segobiensis SSOH12 with 

just 11.2 % lipid per dry biomass and C. shehatae CSOH1 with 8.5 % could not be classified 

as oleaginous yeast when cultured in shake flasks with the chosen medium. Nevertheless, 

when cultured in a 2.5 L-bioreactor with defined conditions 24.6 % lipid per dry biomass was 

realized with P. segobiensis SSOH12, which corresponds to twice the amount obtained with 

shake flask cultivation. The same applies to C. shehatae CSOH1. Low aeration rates in 

shake flasks may be the reason for low lipid level as increasing cell densities lead to less 

available oxygen. Moreover, a nitrogen limiting mineral salt medium with adequate buffering 

capacities would be more appropriate for shake flask cultures. Under low aeration rates 

facultative anaerobic strains start to produce ethanol. The reason, why the oxygen limitation 
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occurred during the maximal growth in the cultivations with bioreactors, could be explained 

because of the agitation speed was too low for the present cell density.  

In the present study P. segobiensis SSOH12 produced ethanol as by-product as soon as the 

level of pO2 reached 0 % (fig. II.8b). Hence, this strain may be classified as facultative 

anaerobic. Concerning the isolate C. shehatae CSOH1 ethanol was produced directly from 

the beginning which is an evidence for the crabtree effect. In this case, the increase of the 

aeration rate and thereby the increase of the pO2 together with a fed-batch cultivation with 

low initial glucose level might reduce the ethanol production and favor lipid formation. By this 

way C. shehatae CSOH1 may get also oleaginous characteristics. This shows the 

importance of adequate aeration even for screening experiments. To prevent the production 

of ethanol and to increase the production of lipid by a higher pO2 value the agitation speed 

has to be increased. Strains that gave a positive test result with Sudan black B staining on 

agar plates, but a negative result in shake flasks with YM medium supplemented with 

glucose, are worthwhile to examine in further detail in a well aerated bioreactor as not only 

the nitrogen limitation, but also sufficient oxygen supply may be a prerequisite for lipid 

production.  

In addition to the aeration rate, the pH of the medium is also an important parameter to 

consider during the screening of lipid producing strains as the pH value cannot be controlled 

in shake flasks. Most strains are acid labile and are not growing well in acidic environment 

like Candida shehatae (Kastner et al. 1996), and therefore will not produce any favored 

product like lipid. The shake flask cultivation of Cryptococcus curvatus and Cryptococcus 

podzolicus CPOH4 in mineral salt medium (data not shown) resulted in a decrease of the pH 

value from 5.0 to 2.0 within 60 hours. The well known oleaginous yeast C. curvatus produced 

a maximum of 15 % lipid per dry biomass under these conditions whereas C. podzolicus 

CPOH4 ended up with 23 % lipid within 100 h cultivation time (data not shown). The 

advantage of C. podzolicus CPOH4 is its acid resistance, which is beneficial in podsol soil, 

an acidic environment, from which C. podzolicus CPOH4 once had been isolated and from 

which arose its name (Botes et al. 2005). When cultivating C. curvatus in YM medium the pH 

decreased slightly from 5 to 4 and yielded up to more than 40 % lipid per dry biomass. This 

shows that the YM medium supplemented with glucose has good buffering capacities and is 

a useful medium for a first examination of yeast strains. 

5.2 Characterization of newly isolated yeast strains 

SSOH12 was identified as Pichia segobiensis. This strain belongs to the ascomycetes. The 

second highest agreement of SSOH12 was found with Scheffersomyces stipitis, also known 

as Pichia stipitis. Pichia stipitis (Nigam 2001; Sanchez et al. 2002) and Scheffersomyces 
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stipitis (Liu et al. 2012) are well described within the context of microbial ethanol production, 

but have not been mentioned previously with regard to lipid production. Furthermore they are 

able to assimilate hemicellulosic compounds (Ferreira et al. 2011, Nigam 2001, Sanchez et 

al. 2002).  

Aside from the focus on the production of ethanol under anaerobic conditions, this study has 

shown that Pichia segobiensis SSOH12 is able to produce more than 24 % lipid content 

under aerobic conditions and sufficient aeration. As the ethanol production of P. segobiensis 

SSOH12 commences only after oxygen limitation occurs, the crabtree effect like in 

Saccharomyces cerevisiae (Al-mhanna 2010) is excluded. This could be confirmed for the 

closely related yeast, Scheffersomyces stipitis (Papini et al. 2012). Under aerobic conditions 

this yeast can be classified as oleaginous yeast and process optimization with higher pO2 

level might increase the lipid yield.   

The special feature of P. segobiensis SSOH12, concerning the fatty acid profile, is the 

different composition to most other oleaginous yeasts containing a fatty acid profile similar to 

cacao-butter with the main components of C16:0, C18:0, C18:1 and C18:2. In addition, 

P. segobiensis SSOH12 produces 16 % palmitoleic acid (C16:1), an omega-7 mono-

unsaturated fatty acid which has been shown to have positive effects against obesity (Yang 

et al. 2011) and potential for the prevention of brain and cardiovascular diseases (Matsunaga 

et al. 1995). It is a component of some oil seeds, especially sea-buckthorn (Fatima et al. 

2012) or macadamia (Nestel et al. 1994). An alternative source via microbial production is 

the opportunity to produce palmitoleic acid (C16:1) in sufficient quantities for possible future 

applications in medicine. P. segobiensis SSOH12 has been described as one of the best 

xylose-converting strains (Liu et al. 2012; Toivola et al. 1984). Hence, the investigation of 

lipid production with xylose as the carbon source may be a worthwhile exercise.  

CSOH1 was identified as Candida shehatae. The strain belongs to the ascomycetes. It is 

well known for the production of ethanol (Sanchez et al. 2002), but has never been 

mentioned with regard to intracellular lipid production. This study has shown that cultured in 

shake flasks Candida shehatae CSOH1 formed a maximum of 8 % intracellular lipids 

whereas the cultivation in a bioreactor with pH control and a higher aeration rate than in 

shake flasks resulted in a lipid content of 17.8 %. Considering that the cultivation was 

partially oxygen limited it can be assumed that a higher agitator speed leading to a higher 

level of pO2 might achieve lipid contents above 20 % which is the threshold for a 

classification as oleaginous microorganism.  

The ethanol production started from the beginning of the cultivation which indicated that 

Candida shehatae CSOH1 is a crabtree positive strain and does not produce ethanol 
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principally due to anaerobic conditions. The ethanol production, based on the crabtree effect, 

may be the reason for the low growth rate of CSOH1 compared to SSOH12, which grew 

twice as fast. One possibility in case of C. shehatae CSOH1 would be a controlled fed-batch 

feeding strategy of glucose to prevent the crabtree effect or to choose xylose as carbon 

source which is known to be metabolized by Candida shehatae (Sanchez et al. 2002), but 

does not induce the crabtree effect. The ethanol production due to oxygen limited conditions 

in the case of CSOH1 and SSOH12 could be avoided by increasing the agitator speed and 

hence to favor the lipid production instead.  

The fatty acid profile of C. shehatae CSOH1 contains a predominant amount of oleic acid 

(C18:1) with 63 % whereas the three other important fatty acids C16:0, C16:1 and C18:2 

amount only values around 10 %. Oleic acid is the main fatty acid which is present in all plant 

oils used for biodiesel production (Christophe et al. 2012). Consequently, if the microbial lipid 

production with isolate C. shehatae CSOH1 was optimized to worthwhile amounts, it would 

be especially qualified as resource for biodiesel.  

 

The two other isolated strains were identified as Cryptococcus podzolicus (CPOH4) and 

Trichosporon porosum (TPST6). Both strains belong to the yeast-like anamorphic 

basidiomycetes and are found in soil (Botes et al. 2005; Colombo et al. 2011). They are also 

known to assimilate hemicelluloses (Middelhoven et al. 2001; Shubakov 2000). 

Trichosporon sp. and Cryptococcus sp. in general are known to belong to the oleaginous 

strains (Gujjari et al. 2011; Zhu et al. 2008; Hu et al. 2011), whereas Trichosporon porosum 

and Cryptococcus podzolicus have not been mentioned before in relation to microbial oil 

production. The results of this study reveal that both strains are able to produce 

approximately 30 % lipid per dry biomass when grown on glucose or xylose as carbon 

source. Therefore, Cryptococcus podzolicus CPOH4 and Trichosporon porosum TPST6 can 

be characterized for the first time as oleaginous yeasts. T. porosum TPST6 produced in this 

study almost 20 % linoleic acid which makes it unique among other Trichosporon species, 

which generally yield less than 10 % linoleic acid, e.g. Trichosporon fermentans less than 

8 % linoleic acid (Huang et al. 2012) and Trichosporon cutaneum less than 3.4 % linoleic 

acid (Hu et al. 2011). 

The first assumption to explain the observed acid production in the culture broth of 

C. podzolicus CPOH4 and T. porosum TPST6 was that excessive citric acid may be secreted 

into the medium which serves as a precursor for acetyl-CoA and further for the production of 

triacylglycerols in oleaginous strains (Ratledge 2002). However, no citric acid could be 

determined in the culture broth. Instead, gluconic acid was measured as additional by-
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product with high concentrations up to 30 g/L for C. podzolicus CPOH4 and 12 g/L for 

T. porosum TPST6. Both strains are simultaneous producers of lipid and gluconic acid. 

Gluconic acid and its derivates find wide application in the food and pharmaceutical 

industries. Therefore, it could be worthwhile to improve gluconic acid production with the 

newly isolated yeasts Cryptococcus podzolicus CPOH4 or Trichosporon porosum TPST6. 

The ascomycete Aspergillus niger (Ramachandran et al. 2006) and yeast like Aureobasidium 

pullulans (Anastassiadis and Rehm 2006) are other examples of gluconic acid producers 

with high production rates of 120-140 g/L and up to 370 g/L, respectively. 

The production of gluconic acid by the fungus Aspergillus niger is favored at high glucose 

concentrations between 110 and 250 g/L, at low concentrations of nitrogen and phosphorus, 

at pH values between 4.5 and 6.5 and high aeration rates (Ramachandran et al. 2006). In 

this study the requirements for low nitrogen conditions and acid conditions (pH 5) are met. 

The glucose concentration of 90 g/L is rather minor, but sufficient for the production of 

gluconic acid and lipid production.  

C. podzolicus CPOH4 and T. porosum TPST6 give the opportunity to favor either the 

production of intracellular oil or the production of gluconic acid or rather the simultaneous 

production. An advantage of the simultaneous production of lipid and gluconic acid would be 

the easy separation of both products as the oil is produced intracellular, whereas the 

gluconic acid is secreted into the culture broth. Higher aeration rates to prevent oxygen 

limitation are required in any case to increase the product levels, although ethanol production 

is negligible. This low ethanol production, which started just at the stage of oxygen limitation, 

verifies that both strains are crabtree negative. To avoid the production of gluconic acid as 

by-product in a lipid production process, xylose may be the carbon source of choice.  

However, another interesting approach could be the combined feeding of glucose and xylose 

as both carbon sources are components of hydrolyzed wood and straw waste. If glucose and 

xylose were consumed simultaneously hydrolyzed straw and wood wastes could be used as 

low-cost carbon source. Trichosporon cutaneum (Hu et al. 2011) and Candida curvata D 

(Heredia and Ratledge 1988) could be described as such strains. The use of other low-cost 

carbon sources and further process optimization to increase the lipid yield are further 

possible approaches.  

Both isolates C. podzolicus CPOH4 and T. porosum TPST6 are suitable for a lipid production 

bioprocess, but T. porosum TPST6 shows a more interesting fatty acid profile with 18.7 % 

linoleic acid (C18:2). Moreover, xylose as carbon source favors the lipid production whereas 

glucose as carbon source leads to a simultaneous production of gluconic acid and 

intracellular lipid. If further optimized C. shehatae CSOH1 may produce a sufficient amount 



60 
 

of intracellular lipid with high amount of oleic acid (C18:1) on glucose or xylose. Therefore, it 

could be worthwhile to further examine CSOH1 as lipid producer for subsequent processing 

to biodiesel. P. segobiensis SSOH12 is worthwhile to be further investigated because of its 

considerable amount (16 %) of palmitoleic acid (C16:1), which may be suitable for medical 

applications. 
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IV. Chapter III 

Establishment of an easy lipid quantification method and a rapid screening assay for 

oleaginous yeasts using the fluorescent dye Nile red in microtiter plates  

 

1 Abstract 

The fluorescent lysochrome Nile red stains neutral fats and is therefore also applicable to 

stain intracellular lipids in oleaginous microorganisms. The staining intensity can be used to 

rapidly estimate the lipid content per dry biomass without use of the time consuming analysis 

by gas chromatography.   

The dye Nile red was taken for the quantification of intracellular lipid of the oleaginous yeast 

Cryptococcus curvatus grown in liquid culture. For this purpose, the optical density and the 

fluorescence of a defined volume of the yeast culture were measured in a 96-well microtiter 

plate; the ratio fluorescence/OD was formed and compared with the lipid content per dry 

biomass gained via gas chromatographically analysis – the standard lipid quantification 

method. The lipid content could be quantified via a linear fit with a deviation from 5 % for lipid 

content in the range of 18.3 % to 35.6 %.  

To test the transferability of the method, five other yeast strains were stained by the same 

method and the same device settings for the measurement of fluorescence and optical 

density (OD). The ratio fluorescence/OD was set into relation to the lipid content and the 

results were compared among the various yeast strains. It was concluded that the ratio 

fluorescence/OD for intracellular lipids is proportional to the lipid content within one species, 

but not among various oleaginous yeast strains. The optical density as well as the measured 

values for the fluorescence depend on the shape and the size of the yeast cells and is 

influenced by cell agglomeration. However, this method is suitable for rapid lipid estimation 

within a high-throughput (HTP) screening assay to identify new oleaginous microorganisms.  

 

2 Introduction 

The quantification and qualification of fatty acids in form of fatty acid methyl esters via gas 

chromatography (GC) with flame ionization detection (FID) is a well-established method and 

gives precise results. It is the common method in biochemical, biomedical, microbiological, 

agricultural and ecological research (Dodds et al. 2005). Several oleaginous microorganisms 

have been characterized via GC relating to their intracellular lipid content 
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(single cell oil = SCO) and their corresponding fatty acid profile (Alvarez and Steinbüchel 

2002; Sorger and Daum 2003; Sakuradani and Shimizu 2009; Hu et al. 2008). However, 

some disadvantages relating to the GC procedure for fatty acid analysis exist. The sample 

preparation takes a lot of time as the biomass cannot be analyzed in suspension, but has to 

be dried in advance over-night. Furthermore, two hours are required for the final sample 

preparation to extract the intracellular lipids from the biomass and to transesterify them to 

fatty acid methyl esters, which is the required chemical structure to detect them via GC. In 

addition, the samples are measured consecutively taking 30 to 40 minutes each. 

Furthermore, a plenty of solvents (in total 2 mL per sample) and a minimum of 20 mg of 

freeze-dried biomass is required for one single measurement.   

For the determination of the fatty acid profile in oleaginous microorganisms GC is the only 

method, but the quantification of lipid is more often the value required. Therefore, alternative 

methods for the quantification of lipid content are required which need less sample volume, 

less solvent and less time: a quantitative assay which is applicable for suspensions with low 

required volume and with less or without solvent use. Furthermore, it should be possible to 

measure several samples simultaneously, preferably in a 96-well microtiter plate with 

minimal use of other additional consumables. Such a method could be applicable to establish 

a high-throughput-assay to check a high number of different strains from e.g. strain 

collections as candidates for lipid production. In addition, the influence of different cultivation 

conditions (carbon source, nitrogen source, concentration of substrates, temperature, pH) on 

the lipid content could be rapidly determined.  

In literature, two staining dyes for neutral lipids are described. They are suitable for screening 

approaches aiming the identification of new oleaginous microorganisms. Sudan black B -

 a lipophilic lysochrome – was successfully applied to screen microorganisms cultivated on 

solid media (Evans et al. 1985), but this is a qualitative approach. Nile red - a fluorescent 

lipophilic dye (C20H18N2O2) - is also able to stain neutral fats and intracellular lipid droplets 

(Greenspan et al. 1985). Due to Kimura et al. (2004) the intensity of fluorescence 

corresponds to the amount of lipid and should therefore be suitable for quantitative analyses 

(Kimura et al. 2004). Nile red has been successfully used for the staining of intracellular lipid 

droplets in various oleaginous microorganisms in suspensions. In most studies the cell 

suspension was taken and the fluorescence of a single sample was measured using the 

fluorescence microscope or fluorescence photometer including a cuvette as reaction vessel 

(Kimura et al. 2004). Chen et al. (2009) developed a high throughput screening method using 

Nile red in a 96-well microtiter plate for algal cells. Sitepu et al. (2012) disproved the results 

of Kimura et al. (2004). Due to Sitepu et al. (2012) the emission maxima of the fluorescent 

dye Nile red vary between different yeast species. Hence, the procedure with one specific 
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wavelength for excitation and one specific wavelength for emission could not be used for the 

exact lipid quantification of various oleaginous yeast strains. Reasons might be that the 

penetration of Nile red into the cells depends on the thickness of the cell wall and the 

cytoplasmic membrane. Chen et al. (2009) and Sitepu et al. (2012) added dimethyl sulfoxide 

(DMSO) as a solvent to improve cell permeability of the dye. Because of the toxic 

characteristics of DMSO, in this study acetone was used according to Kimura et al. (2004).  

This study includes two subjects. In both parts the optical density (OD600) of a culture broth 

and the fluorescence after staining with Nile red were measured to form the ratio 

fluorescence/OD as a measure of the lipid content per dry biomass.  

The first subject was to determine a correlation factor for the rough quantification of the lipid 

content in the oleaginous yeast Cryptococcus curvatus in suspension using Nile red in a 

microtiter plate. The application in a microtiter plate enabled parallel measurements of 

several samples or multiple determinations. The correlation factor is applicable for future 

experiments with C. curvatus in which the approximate estimation of intracellular lipids will be 

of interest, e.g. for process optimizations. The established technique for C. curvatus in this 

study acetone was used according to Kimura et al. (2004) can be easily transferred to other 

strains, which will be of importance for experiments with lipid quantification.  

For the second subject the same device settings for the fluorescence measurement were 

adopted. The established quantification method with Nile red was applied to other yeast 

strains and compared with each other to evaluate this Nile red staining technique for a high-

throughput-assay to screen for new oleaginous microorganisms.       

 

3 Materials and methods 

3.1 Applied strains 

The oleaginous yeast C. curvatus (ATCC 20509) was used as positive control for SCO 

production. The non-oleaginous yeast Saccharomyces cerevisiae (DSM 11285) was taken 

as negative control for yeasts which do not produce any SCO. The isolates which are 

described in chapter II were used as additional lipid producer strains to test the method: 

CPOH4 Cryptococcus podzolicus (DSM 27192), SSOH12 Pichia segobiensis (DSM 27193) 

and TPST6 Trichosporon porosum (DSM 27194) and CSOH1 Candida shehatae (not yet 

deposited at any strain collection).  
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3.2 Cultivation in shake flasks 

Part I (lipid quantification in C. curvatus)  

C. curvatus was cultured in YM medium (3 g/L yeast extract, 3 g/L malt extract, 5 g/L 

peptone, pH 7) in 2 L conical shake flasks in a total volume of 400 mL supplemented with 

50 g/L glucose for four days at 28 °C at 120 rpm with an initial OD600 of 1. The culture broth 

was daily supplemented with 35 g/L glucose as carbon source to ensure lipid accumulation 

within the yeast cells. Three shake flasks were prepared and 10 samples were taken in total 

from all shake flasks within the four day cultivation to obtain cells with different lipid contents 

and from different growth phases. 

Part II (screening assay for oleaginous yeast)  

50 mL YM medium (3 g/L yeast extract, 3 g/L malt extract, 5 g/l peptone, pH 7) with 50 g/L 

glucose in 500 mL conical shake flasks were inoculated directly with a colony from an agar 

plate and incubated at 130 rpm at 25 °C for 120 hours. 35 g/L glucose was daily added to 

ensure that the carbon source was in excess. The OD600 was measured once a day, whereas 

the lipid content via GC was only determined on day 4 and day 5.  

YM medium did not show any fluorescence in preliminary studies with Nile red (results not 

shown); therefore a washing step of the cells was not required.  

3.3 Microscopic observation 

Microscopic observation of the lipid accumulating yeast cells was performed using 

Eclipse E200 (Nikon) with a total enlargement of 400 x.  

3.4 Lipid analysis via gas chromatography 

A 20 mL aliquot of the culture broth was centrifuged (4,700 rpm, 5 min) and the cell pellet 

was resuspended in saline (0.9 % NaCl) and again centrifuged (4,700 rpm, 5 min). The 

supernatant was discarded and the pellet was freeze dried (-30 °C, 0,370 mbar). Preparation 

for the quantitative and qualitative gas chromatographically analysis was performed in a one-

step-procedure by direct esterification plus extraction. A portion (20 mg) of freeze dried 

biomass was weighed into a 15 mL glass falcon with Teflon cap. 1.5 mL hexane and 0.5 mL 

of 2 mg/mL internal standard (methyl benzoate) dissolved in hexane were added as solvent 

for the extraction of lipid. In addition, 2 mL 15 % H2SO4 in methanol were added for the 

esterification step. Each sample was incubated at 100 °C for 2 h with continuous shaking. 

After cooling on ice 1 mL distilled water was added. The mixture was centrifuged for 5 min at 

2,500 rpm. 1 µL of the upper phase, containing the fatty acid methyl esters extract, was 
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analyzed via GC (Agilent Technologies, 6890 N Network GC-System). The instrument was 

equipped with a DB-Wax column (l: 30 m d: 0.25 mm, Agilent Technologies) and a flame 

ionization detector. It worked at a pressure of 1.083 bar and initial temperature of 40 °C. The 

column temperature was increased from 40 °C to 250 °C with a rate of 8 °C/min. The 

temperature was held at 250 °C for 10 min before cooling down to 40 °C. The total fatty acid 

content and the identification of fatty acids were performed using the standard RM3 FAME 

Mix (Sigma Aldrich) and Marine FAME Mix (Restek).  

3.5 Nile red assay 

The optical density (OD600) and the fluorescence of the Nile red stained lipid cell culture were 

measured using the Fluorescence Photometer Infinite®M200PRO (Tecan). All 

measurements for optical density (OD600) and fluorescence were performed in black 96-well-

microtiter plates (3603, Costar). The OD600 of each undiluted sample was adjusted with 

saline (0.9 % NaCl) to a maximum value of 0.7 measured in a microtiter plate with a volume 

of 200 µL to stay within the linear range of OD600 measurements (data not shown). 200 µL of 

each diluted culture were filled into the wells of a microtiter plate in six copies for a six-fold 

determination. Saline was used as negative control. After 15 s of shaking, OD600 was 

measured. Afterwards 10 µL freshly prepared Nile red solution (0.1 g/L in acetone, stored on 

ice) were added into each sample. The microtiter plate was covered with aluminum foil to 

prevent evaporation of acetone and was shaken for 15 min at room temperature. Thereafter, 

fluorescence was measured at 490 nm extinction and 580 nm emission. The settings of the 

device were 10 flashes for the OD600 and 25 flashes for fluorescence (z-position 19,441, 

gain 94). Average values were calculated by subtracting the negative control and standard 

deviations were determined. To normalize the results, the obtained values for fluorescence 

were divided by the values for the OD600.  

 

4 Results 

4.1 Lipid estimation in the oleaginous yeast Cryptococcus curvatus  

C. curvatus was cultured in YM medium and the lipid content per dry biomass was measured 

via chromatography (GC), which is a very accurate, but time consuming method. The value 

for the lipid content measured via GC and the ratio fluorescence/OD were set into relation for 

each sample to create a correlation factor which should enable a rapid determination of the 

lipid content via the Nile red staining method. Fig. III.1 shows the results which originate from 

ten single samples from a four day cultivation period. A linear fit of the Nile red values was 

possible for lipid contents between the minimum value 18.3 % and the maximum 35.6 %. 
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Fig. III.1 presents the resulting calibration. The linear equation of the fit was determined as: 

       
     

 
                            

This equation was used to calculate the lipid content at day 4 (second part, Fig. III.3 and 

Fig. III.4) with the measured value of 118,540.2 units. 

  
               

      
     
  

 
                             

      
     
   

       

The determination of lipid content via gas chromatography gives a value of 33.1 %. 

Compared to the above calculated value of 31.5 % this corresponds to a deviation from 

4.7 %.   

 

Fig. III.1 Regression line to determine the lipid content in the yeast Cryptococcus curvatus via measuring the 

fluorescence/OD600; data result from a four day cultivation (96 h); Fluorescence/OD600 mean of six measurements; 

Lipid content mean of three measurements 

4.2 Rapid screening assay in microtiter plates 

Cryptococcus curvatus (C.c.) - an oleaginous yeast - was taken as positive control, 

Saccharomyces cerevisiae (S.c.) - a non oleaginous yeast - was taken as negative control 

and all four newly isolated yeasts from Chapter II (CSOH1, SSOH12, CPOH4 and TPST6) 

were used to test the determination of lipid content using the fluorescent dye Nile red.  

All yeast strains were cultured in shake flasks using YM medium and were incubated at the 

same temperature of 25 °C, as this is the average optimum temperature for yeast cells. The 

OD600 of all six strains developed differently (Fig. III.2). 
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Fig. III.2 Growth curve of a five day shake flask cultivation in YM medium of six different yeast strains (TPST6, 

CSOH1, SSOH12, CPOH4, Cryptococcus curvatus (C.c.), Saccharomyces cerevisiae (S.c.)); OD600 mean of two 

measurements 

 

While S. cerevisiae and CSOH1 stopped growing after two days, the OD600 of the four other 

strains was still increasing up to the fifth cultivation day to values between 60 and 100. The 

highest value for the optical density with final values of 102 was obtained by strain SSOH12. 

TPST6 reached 65, C. curvatus 77 and CPOH4 82. CSOH1 stopped growing at an OD600 of 

37 and S. cerevisiae stopped growing even at a value of 13. The lipid content per dry 

biomass was determined for all strains of samples taken at day 4 and 5. The ratio 

fluorescence/OD was determined for all strains at day 2, 3, 4 and 5. 

Considering the lipid content per dry biomass (Fig. III.3), which was measured via GC, an 

increase from day 4 to day 5 for all six strains was recognized. After five cultivation days 

TPST6, CPOH4 and C. curvatus reached more than 20 % lipid content, which classifies 

these three strains as oleaginous microorganisms. TPST6 reached 24.5 %, CPOH4 34.6 % 

and the oleaginous yeast C. curvatus reached 41.5 % lipid per dry biomass. CSOH1 and 

SSOH12 reached low values between 7.9 % and 11.2 % under the given conditions in shake 

flasks, similar to the non-oleaginous yeast S. cerevisiae which reached only 7.7 % lipid 

content. That means that the two strains CSOH1 and SSOH12 cannot be classified as 

oleaginous under the chosen conditions in shake flasks.  
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Fig. III.3 Lipid content [%lipid/dry biomass] at 4
th

 and 5
th

 day of a five day shake flask cultivation in YM medium of 

six different yeast strains measured via GC (TPST6, CSOH1, SSOH12, CPOH4, Cryptococcus curvatus (C.c.), 

Saccharomyces cerevisiae (S.c.)); the line indicates the threshold of 20 % lipid content to be classified as 

oleaginous; lipid content mean of three measurements; values in detail are found in appendix 
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Fig. III.4 Fluorescence/OD600 determined for daily samples of a five day shake flask cultivation in YM medium of 

six different yeast strains (TPST6, CSOH1, SSOH12, CPOH4, Cryptococcus curvatus (C.c.),  Saccharomyces 

cerevisiae (S.c.)); Fluorescence/OD600  mean of six measurements; values in detail are found in appendix 
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Considering the ratio fluorescence/OD (Fig. III.4), C. curvatus reached after four days of 

cultivation the highest value with 118,540 units, CPOH4 reached with a value of 50,970 units 

nearly the half of C. curvatus. TPST6 resulted just in 9,259 units which is roughly a twelfth of 

C. curvatus. Nevertheless, TPST6 reached 16,638 units after five days cultivation which is 

nearly a doubling within one day. The negative control S. cerevisiae remained the same 

value with an average of around 6,439 units. Even smaller values were obtained by CSOH1 

and SSOH12 with maximum values after five days cultivation of 3,611 units and 1,546 units, 

respectively. Strikingly, the value for C. curvatus at the second day reached already 

56,096 units, more than a five-fold higher value than CPOH4. 

 

Table III.1 Linear fit between dry biomass and optical density (OD600); data are based on fermentations of 

Chapter II  

 
Regression line for OD600/dry biomass  

[L/g] 
   

C. curvatus               0.9524 

CSOH1               0.9823 

SSOH12               0.9739 

CPOH4               0.9336 

TPST6               0.9828 

 

Table III.1 presents the linear fit between dry biomass and optical density (OD600) for 

C. curvatus and for each isolate of Chapter II (CSOH1, SSOH12, CPOH4 and TPST6) to 

calculate the dry biomass directly from the OD600. The data of C. curvatus arises from the 

fermentation described in chapter I and the data of the four isolates (CSOH1, SSOH12, 

CPOH4 and TPST6) from the fermentations described in chapter II. All five correlation 

factors are different which means that each yeast strain has another OD600 for one defined 

biomass.  

The correlation factors from table III.1 enable the calculation of the dry biomasses for each 

day corresponding to the OD600 of each yeast strain. Hence, the factor 

[fluorescence/dry biomass] can be calculated (Fig. III.5). C. curvatus and CPOH4 achieved 

by far the highest values with 430,753 units/(g/L) and 357,313 units/(g/L) at day 4, 

respectively. Slightly lower values, about ¾ of day 4 were reached at day 3. C. curvatus 

showed already 5-fold higher values than CPOH4 on the second cultivation day. The values 

of TPST6 are very low compared to C. curvatus and CPOH4. They increased continuously 

within the five days from 7,271 units/(g/L) to 52,620 units/(g/L). The values for CSOH1 and 

SSOH12 are very low; they did not even reach the minimum values of TPST6 at day 2.  
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Fig. III.5 [Fluorescence/dry biomass] for daily samples of a five day shake flask cultivation in YM medium of six 

different yeast strains (TPST6, CSOH1, SSOH12, CPOH4, Cryptococcus curvatus (C.c.)) – dry biomass was 

calculated via correlation factors from table III.1 using the average values of OD600; values in detail are found in 

appendix 
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Fig. III.6 Microscopic pictures of a 48 h shake flask cultivation in YM medium with 400 x enlargement 
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Fig. III.7 Microscopic pictures of a 120 h shake flask cultivation in YM medium with 400 x enlargement 
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Fig. III.6 depicts the microscopic images of all six examined yeast strains after 48 h 

cultivation in shake flasks, fig. III.7 after 120 h cultivation. The lipid droplets within the cells 

indicate the lipid content. Enormous differences among the different yeast species were 

detected and differences in shape and size were observed. The cells of CSOH1 are 

significant smaller than the other strains. TPST6 e.g. shows round cells as well as bigger 

oval cells. Most cells of SSOH12 are quite big and round shaped while CPOH4 forms smaller 

and oval cells. The cells of SSOH12 tend to agglomerate. 

In conclusion, the ratio fluorescence/OD is specific for each single strain. To use this factor 

as lipid quantification method, GC analysis for the lipid quantification is unavoidable to create 

calibration for each single strain using the here described method with Nile red in microtiter 

plates.  

Taking into consideration that different optical densities represent different biomasses, the 

factor fluorescence/dry biomass was divided by the lipid content to make comparisons 

between the fluorescence and the lipid content normalized to the biomass. The results are 

listed in table III.2. It is noticeable that the two yeast strains CSOH1 and SSOH12 with low 

lipid contents below 11 % reached low values below 300 units/(g/L) at the fourth day, 

whereas those with lipid amounts above 20 % reach more than three to 45 times. TPST6 

amounts around 1,070 units/(g/L), C. curvatus 13,025 units/(g/L) and CPOH4 even 

16,878 units/(g/L). The value of TPST6 is another dimension compared to C. curvatus and 

CPOH4. The same tendency can be recognized for the fifth cultivation day. 

 

Table III.2 Calculation of the ratio ”Fluorescence/dry biomass]/[lipid content/dry biomass]”  

Yeast strain 
Lipid content 

 [%/dry biomass] 

[Fluorescence/dry biomass]/[lipid content/dry biomass]  

[units/(g/L)] 

 
day4 day5 day4 day5 

TPST6 21.0 24.5 1,072 2,144 

CSOH1 7.9 8.5 257 477 

SSOH12 10.4 11.2 282 450 

CPOH4 21.2 34.6 16,878 n.d. 

C.c. 33.1 41.5 13,025 14,880 
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5 Discussion 

5.1 Quantification of lipid content using Nile red 

The quantification of lipid in oleaginous yeasts using the fluorescent lysochrome Nile red was 

successfully applied for the oleaginous yeast C. curvatus. A linear correlation between 

fluorescence/OD600 and the lipid content was identified between 18.3 % and 35.6 % lipid 

content (fig. III.1) and can be used to calculate the lipid content. The approximate deviation 

was shown to be 5 % when using the fluorescence photometer Infinite®M200PRO (Tecan) 

with the setting parameters of 10 flashes for the OD600 and 25 flashes for the fluorescence 

measurement (z-position 19,441; gain 94). Further studies are necessary to determine the 

exact threshold upwards and downwards, which delimit the linear range of the calibration. 

Using this calibration, the lipid contents can only be calculated from the values for the ratio 

fluorescence/OD between 20,293 and 157,878 including the range of the determined fit. The 

quantification method via Nile red is suitable for HTP assays in which an approximate value 

of lipid content is of interest, e.g. for a medium or pH optimization. If the exact value of lipid 

content is important, gas chromatographical analysis is required which gives simultaneous 

information about the fatty acid profile.   

5.2 Screening assay for oleaginous yeast using Nile red 

The ratio fluorescence/OD was evaluated as a measurement technique for the lipid content in 

oleaginous yeast cells in order to be applied for a high throughput (HTP) screening assay for 

oleaginous yeasts in suspension. Such an assay should be easily and rapidly feasible to 

check a vast number of yeast strains contemporaneous for lipid production. 

The fluorescence of Nile red stained yeast cells and the OD600 are easily measurable in a 96-

well microtiter plate. The ratio fluorescence/OD (fig. III.4) would therefore be a perfect 

measure to quantify the lipid content in oleaginous yeast. However, the measured values of 

the various yeast strains TPST6, CSOH1, SSOH12, CPOH4, C. curvatus and S. cerevisiae 

(fig. III.4) did not show any proportionality to the lipid content (fig. III.3) which was measured 

via GC analysis. These differences may be achieved either by the measured OD600 or by the 

fluorescence intensity. The optical density is influenced by the size and shape of the yeast 

cells and also if the cells agglomerate. Those differences of the cells can be considered on 

the microscopic images (fig. III.6 and fig. III.7). The reasons for varying fluorescence 

intensities at same lipid contents are different compositions of the cell membrane, the 

thickness of the cell wall and also the size of the cells. This phenomenon has been proven 

already on algal cells by Chen et al. (2009). This explains that the ratior fluorescence/dry 

biomass (table III.2) is also not proportional to the lipid content among various yeasts with 

different sizes and shapes. This confirms the results described by Sitepu et al. (2012).  
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In particular TPST6 with lipid amounts of 24.5 % at day 5 gives very low values for the ratio 

fluorescence/OD of 16,639 units, whereas CPOH4 at day 4 with a similar value of 27.2 % 

lipid content reached even 50,971, which represents the 3-fold amount. However, the values 

for TPST6 from the third day are all higher compared to the constant values of the non-

oleaginous yeast S. cerevisiae. Hence, it can be concluded that values for fluorescence/OD 

which are higher than those measured for S. cerevisiae are promising lipid producers and 

are worthwhile to be further examined via GC. Therefore S. cerevisiae should be always 

measured as a reference strain when screening for new oleaginous microorganisms using 

the technology described in this study. Another influencing factor is the degree of saturation 

of the fatty acids produced by the different strains. Kimura et al. (2004) showed that the 

fluorescence intensity of lipids is higher the more unsaturated fatty acids are present. That 

may explain the lower fluorescence values of TPST6 whose lipids are composed of 59.8 % 

unsaturated fatty acids (Chapter II table II.3) compared to CPOH4 with 69.3 % unsaturated 

fatty acids (Chapter II, table II.3). Concerning C. curvatus with 57.9 % unsaturated fatty acids 

(Chapter I, fig. I.9), the grade of saturation cannot be the reason for the higher ratio 

fluorescence/OD. In this case, Nile red might better penetrate into the cells and leads 

therefore to higher values. 

As a conclusion, the Nile red staining of unknown yeast strains can be used for a high-

throughput (HTP) screening approach for oleaginous yeast strains in 96-well microtiter plates 

by measuring the fluorescence and the optical density when compared to a known non-

oleaginous yeast, e.g. S. cerevisiae. The here described approach is only suited to check if 

the unknown strains might be lipid producers. As next step, to use Nile red staining for a 

rough quantification of the lipid content in each isolate, new correlations have to be created 

for each new strain. 
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V. Concluding Remarks 

 

The aim of this work was to develop strategies for the economic and ecological production of 

microbial lipids, which are also named single cell oils (SCO) to partially substitute plant oil, 

crude oil or fish oil as renewable raw material. Prerequisites for an economic and ecological 

process are high lipid yields, high volumetric productivities, low-cost substrates and high-

value products. Another aspect can be to recycle all the waste streams, e.g. the CO2 or the 

residual biomass leftover after single cell oil extraction.  

In this work, the recycling of CO2 was realized. Therefore, the typical oleaginous yeast 

Cryptococcus curvatus was used as a model organism to establish a platform process, 

based on a fed-batch process with glucose as carbon source, transferable to other 

oleaginous yeast strains. The process was characterized due to nitrogen limitation, carbon 

source consumption and the analysis of the exhaust gas CO2. The data were used to 

establish a set-up for an integrated bioprocess with lower ecological impact by reducing the 

overall CO2 emission. Therefore, the emitted greenhouse gas CO2 was channeled into the 

lipid production process of the microalgae Phaeodactylum tricornutum in order to supply the 

microalgae with the required carbon source CO2.  One challenge in this coupled process was 

to keep the yeast’s emission of CO2 constant to guarantee a constant supply for the 

microalgae in order to keep the pH value constant. Depletion of the carbon source or 

harvesting a certain quantity of the yeast cells within the repeated fed-batch process, led to a 

sudden decrease of the CO2 emission. An automatic glucose feed or a more frequent 

harvesting of less biomass may prevent those sudden declines of CO2. Consequently, a 

semi-continuous production process may be worthwhile to be investigated. If no glucose 

sensor is available, an automated glucose feed may be controlled via the respiration 

coefficient (RQ) or the pO2 value in the yeast process.  

A screening strategy, using the lysochrome Sudan black on solid media, was applied to 

identify new oleaginous yeast strains applicable for an economic lipid production. Four 

promising yeast strains were cultured in bioreactors according to the platform process 

mentioned above and their lipid contents and fatty acid profiles were analyzed. Three yeast 

strains, - Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis - were 

classified as oleaginous, yielding 31.8 %, 34.1 % and 24.6 %, respectively. In addition to 

glucose, C. podzolicus and T. porosum were also cultivable on xylose with similar lipid 

productivities as with glucose.  Xylose and glucose are both components of hydrolyzed straw 

and wood wastes, hence oleaginous microorganisms converting both substrates are 
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worthwhile for lipid production processes with hydrolyzed hemicellulosic waste material. 

That’s one further possibility to reduce process costs.   

To control the lipid content during a fermentation process like those described above, a fast 

analysis of the SCO-content of the biomass is necessary. Gas chromatographical analysis is 

one accurate method to determine the quantity and quality of the SCO, but is far too slow for 

process control. At least 20 mg over-night dried biomass, extraction and transesterification of 

the SCO are required to finally analyze one sample via GC, taking in total 10 hours each. 

Therefore, a fast assay (30 min duration) with the fluorescent lysochrome Nile red on 96-well 

plate format for a rough SCO quantification was developed. With this assay the lipid content 

of C. curvatus with lipid contents between 18 and 36 % per dry biomass could be analyzed 

with a deviation from 5 %. This method is based on the measurement of the optical density, 

subsequent staining of the cell suspension with Nile red and the measurement of the 

fluorescence. Subsequently, a correlation of the ratio fluorescence/OD and the lipid content 

measured via GC was created. It was shown that the ratio fluorescence/OD is proportional to 

the lipid content within the same yeast strain, but differs among various strains due to 

different cell sizes, different shapes and cell agglomerations. Therefore, specific correlations 

can be determined for each oleaginous yeast strain whenever a rough quantification method 

for e.g. process optimizations is required. The developed quantification method was 

transferred to a high-throughput (HTP) screening assay to easily identify promising 

oleaginous yeast strains. Comparing the obtained values for fluorescence/OD of various 

unknown strains with those of the non oleaginous yeast Saccharomyces cerevisiae, it was 

possible to screen for promising oleaginous yeast strains which are worthwhile to be further 

examined for microbial lipid production processes. This HTP-screening-assay supplies a 

basis for a vast screening approach to identify promising oleaginous microorganisms with 

high lipid yields, high volumetric productivities, high-value fatty acids or even microorganisms 

able to grow on hydrolyzed hemicellulosic wastes. If those oleaginous microorganisms are 

supplied with world’s vast amounts of non edible hydrolyzed hemicellulosic waste biomass 

as carbon source in bioprocesses with reduced CO2 emission, an economic and ecological 

large-scale production of microbial lipids as renewable raw material for oleochemicals will be 

possible.   
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VII. List of abbreviations 

 

ACL ATP-citrate lyase  

AMP Adenosine-monophosphat 

ARA arachidonic acid 

ATCC American Type Culture Collection 

ATP adenosintriphosphat  

C. curvatus   Cryptococcus curvatus 

C. podzolicus Cryptococcus podzolicus 

C. shehatae Candida shehatae 

C.c Cryptococcus curvatus 

C/N carbon to nitrogen ratio 

CBE cacao butter equivalent  

CO2 carbon dioxide 

CoA coenzyme A 

CPOH4 yeast isolate identified as Cryptococcus podzolicus 

CSOH1 yeast isolate identified as Candida shehatae 

DHA docosahexaenoic acid 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

DSMZ German Collection of Microorganisms and Cell cultures 

e.g. exempli gratia; for example 

eFA essential fatty acid 

EMBL The European Molecular Biology Laboratory 

EPA eicosapentaenoic acid 

FA fatty acid 

FAME fatty acid methyl esters 

FAS fatty acid synthase 

FID flame ionization detector  

GC gas chromatography  

GHG green house gas 

GLA gamma linolenic acid 

HPLC high pressure liquid chromatography 

HTP high throughput 

ICDH isocitrate-dehydrogenase 
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IMP Inosin-monophosphat 

ITS internal transcribed spacer 

LCFA long chain fatty acid 

LC-PUFA long-chain poly-unsaturated fatty acid 

ME malic enzyme  

MO microorganism 

MUFA mono-unsaturated fatty acid 

NADH+ +H+  nicotinamide adenine dinucleotide 

NCBI National Center for Biotechnology Information 

O2 oxygen 

OD optical density 

P. segobiensis Pichia segobiensis  

P. tricornutum Phaeodactylum tricornutum 

PCB  polychlorinated biphenyls 

PCR polymerase chain reaction  

pO2 partial pressure of oxygen 

PUFA poly-unsaturated fatty acid 

QL volumetric lipid productivity 

RNA ribonucleic acid 

rpm revolutions per minute 

RQ respiratoy coefficient  

rRNA ribosomal ribonucleic acid 

SAG Culture Collection of Algae at Göttingen University 

SCFA short chain fatty acid 

SCO single cell oil 

sFA saturated fatty acid 

SIP sterilization in place 

SSOH12 yeast isolate identified as Pichia segobiensis 

T temperature 

t duration time of cultivation/ process  

T. porosum Trichosporon porosum 

TAG triacylglycerol 

TPST6 yeast isolate identified as Trichosporon porosum 

YM yeast extract 

yp/s product yield coefficient 

yx/s growth yield coefficient 
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VIII. Appendix 

 

Chapter I, II and III 

Composition of FAME Mix standards 

 

 

 

 

 

 

 

 

 

Fatty acid methyl ester 
Carbon length and 

degree of saturation 
Marine FAME mix 

(Restek) (%) 
FAME MIX RM3  
(Supelco) (%) 

Methyl myristate C14:0 6 1 

Methyl myristoleate C14:1 1 - 

Methyl palmitate C16:0 16 4 

Methyl palmitoleate C16:1 5 - 

Methyl stearate C18:0 8 3 

Methyl oleate C18:1(1) 13 45 

Methyl vaccenate C18:1(2) 4 - 

Methyl linoleate C18:2 2 15 

Methyl linolenate C18:3 2 3 

Methyl arachidate C20:0 1 3 

Methyl-11-eicoenoate C20:1 9 - 

Methyl 11-14 eicosadienoate C20:2 1 - 

Methyl aradichonate C20:4 3 - 

Methyl 11-14-17 eicosapentaenoate C20:3 1 - 

Methyl eicosapentaenoate C20:5 10 - 

Methyl behenate C22:0 1 3 

Methyl erucate C22:1 3 20 

Methyl lignocerate C24:0 1 3 

Methyl docosahexaenoate C22:6 12 - 

Methyl nervonate C24:1 1 - 
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Chapter I 

Fatty acid profile of C. curvatus  

(Standard deviation <0.05), grey marked fatty acids indicate saturated fatty acids 

Fatty acid Percentage of fatty acid of total fatty acids (%) 

14:0 0.5 

16:0 18.5 

18:0 17.7 

18:1 48.7 

18:2 8.6 

18:3 0.6 

20:0 0.7 

22:0 0.5 

24:0 3.0 

others 1.2 

 

Fatty acid profile of P. tricornutum 

(Standard deviation <0.05), grey marked fatty acids indicate saturated fatty acids 

Fatty acid 
Percentage of fatty acid of total fatty acids 

 [%] 

14:0 4.5 

16:0 25.0 

16:1 44.9 

18:1 7.6 

18:2 1.7 

20:4 1.5 

20:5(n-3) 8.9 

others 5.8 

 

Chapter II 

Lipid content shake flask 

 
lipid content 

[%lipid/dry biomass] 
Standard deviation 

TPST6 24.5 2.0 

CSOH1 8.5 1.1 

SSOH12 11.2 1.2 

CPOH4 34.6 2.9 

C.c. 41.5 5.8 

S.c. 7.7 0.9 
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Sequences of the intervening 5.8S rDNA of the new isolates using primer ITS1 and ITS4 

 

All sequences were accessed on 03.04.2013 at NCBI; all nucleotide blast exclude uncultured/model 

organisms 

 

TPST6 Trichosporon porosum DSM 27194 

TATATCCATTTACACCTGTGAACCGTTTGATTGACACTCTGTGTTGATTTTACAAACAATATGTAAA

GAAAGTCAAGTTATTATAACAAAAAATAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGA

AGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAAC

GCAACTTGCGCTCTCTGGTATTCCGGAGAGCATGCCTGTTTGAGTGTCATGAAATCTCAACCATT

AGGGTTTCTTAATGGCTTGGATTTGGGTGTTGCCAGTCTCTGGCTCGCCTTAAAGGAGTTAGCGA

GTTTAACAATGTCGTCTGGCGTAATAAGTTTCGCTGGTAAGACTTGTGAAGTTTGCTTCTAATCGT

CTTCGGACAATTACTTTGACTCTGGCCTCAAATCAGGTAGGACTACCCGCTGAACTTAAGCATATC

AATAAGCGGAGGAA 

SSOH12 Pichia segobiensis (DSM 27193) 

GCGCGCTTACTGCGCGGCGAAAAAACCTTACACACAGTGTTTTCTTTATTAGAAACTATTGCTTTG

GTTTGGCTCAGAAATGAGTTGGGCCAGAGGTTTACCAAACTTCAATTTTATTGAATTGTTATTTTAT

TAATTTGTCAATTTGTTGATTAAATTCAAAAATCTTCAAAACTTTCAACAACGGATCTCTTGGTTCTC

GCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATATGAATTGCAGATTTTCGTGAATCATCG

AATCTTTGAACGCACATTGCGCCCTTTGGTATTCCAAAGGGCATGCCTGTTTGAGCGTCATTTCTC

TCTCAAACCCTCGGGTTTGGTATTGAGTGATACTCTTAGTCGAACTAGGCGTTTGCTTGAAAAGTA

TTGGCACGAGTGGTACTAAATAGTACTGACAGAATATTTCAATGTATTAGGTTTATCCAACTCGTT

GAGACTTCTGGCGGTGAATTTTTGGTATATTGGCTTTGCCTTACAAAACAACAAACAAGTTTGACC

TCAAATCAGGTAGGATTACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA 

 

CPOH4 Cryptococcus podzolicus (DSM 27192) 

TATTCCAAACCTCTGTGAACCGTGCCCTTCGGGGCTATTTTACAAACATGGTGTAATGAACGTCAT

ATATCATAACAAAACAAAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGC

GAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCG

CCCTCTGGTATTCCGGAGGGCATGCCTGTTTGAGTGTCATGTAGACTCAATCCCTCGGGTTTCCG

AGGAGATTGGACTTGGGTGTTGCCGCTCTGCCGGCTCGCCTTAAAAGACTTAGCGGGATAGCAC

CGTAGTCGGCGTAATAAGTTTCGTCGGTGAAGGTTGTGATGACTGCTTACAATCGCCCTCGGGCA

ATTTTTGACTCTGACCTCAAATCAGGTAGGACTACCCGCTGAACTTAAGCATATCAATAAGCGGAG

GAA 
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CSOH1 Candida shehatae 

 

CCTTACACACAGTGTTTTCTTTATTAGAAACTATTGCTTTGGTCTGGCTTAGAAATAAGTTGGGCC

AGAGGTTTAACTAAACTTCAATTTTATTATTGAATTGTTATTTTATTTAATTTGTCAATTTGTTGATTA

AATTCAAAAAATCTTCAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAG

CGAAATGCGATAAGTAATATGAATTGCAGATTTTCGTGAATCATCGAATCTTTGAACGCACATTGC

GCCCTCTGGTATTCCAGAGGGCATGCCTGTTTGAGCGTCATTTCTCTCTCAAGCCCTCGGGTTTG

GTATTGAGTGATACTCTTAGTCAGACTAGGCGTTTGCTTGAAAAGTATCGGCATGAGTAGTACTAG

ATAGTGCTTTCAGGATATTTCAATGTATTAGGTTTATCCAACTCGTTGAGAATTCTTGGTAGTGAAT

TTTTAGTATCATGGCTCTGCCTTACAAAACAACAAACAAGTTTGACCTCAAATCAGGTAGGATTAC

CCGCTGAACTTAAGCATATCAATAAGCGGAGGAA 

 

 

Chapter III 

Part II: Screening assay 

Lipid content 

  TPST6 CSOH1 SSOH12 CPOH4 C.c. S.c. 

day 4 %lipid/dry biomass 20.95 7.88 10.44 27.17 33.07 6.39 

 Standard deviation 1.12 0.34 0.32 1.55 1.90 0.22 

  
      

day 5 %lipid/dry biomass 24.54 8.46 11.20 34.63 41.54 7.72 

 Standard deviation 2.03 1.14 1.23 2.86 5.77 0.87 

 

Fluorescence/OD600 

 
 

TPST6 CSOH1 SSOH12 CPOH4 C.c. S.c. 

 
       

day 2 units 4,344 1,180 914 10,179 56,096 6,211 

 Standard deviation 594 104 84 4,343 10,651 578 

 
       

day 3 units 8,213 1,807 1,038 49,164 98,416 6,314 

 Standard deviation 1,205 269 164 14,387 21,607 760 

 
       

day 4 units 9,259 2,061 942 50,971 118,540 6,935 

 Standard deviation 981 193 118 28,144 20,111 1,021 

 
       

day 5 units 16,639 3,611 1547 n.d. 149,778 6,300 

 Standard deviation 1736 201 195 n.d. 0.0 914 
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Fluorescence/dry biomass 

 
 TPST6 CSOH1 SSOH12 CPOH4 C.c. 

day2 units/(g/L) 7,271 1,224 1,810 19,284 158,444 

day3 units/(g/L) 18,719 1,863 2,854 263,658 317,012 

day4 units/(g/L) 22,459 2,025 2,942 357,313 430,753 

day5 units/(g/L) 52,620 4,039 5,040 n.d. 618,119 
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