Bewegungs- und Verschleißverhalten von Hartmetallamellen bei der Betonbearbeitung

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der Fakultät für

Bauingenieur-, Geo- und Umweltwissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Ing. Sebastian Hentschel

geb. Königer aus Görlitz

Tag der mündlichen Prüfung: 31.07.2014

Referent: Prof. Dr.-Ing. Sascha Gentes, Technologie und Management im Baubetrieb

Korreferent: Prof. Dr.-Ing. habil. Volker Schulze, Institut für Produktionstechnik

Karlsruhe 2014

Für meine Eltern

Vorwort

Während meiner Tätigkeit als wissenschaftlicher Mitarbeiter zwischen 2011 und 2014 am Karlsruher Institut für Technologie, Institut für Technologie und Management im Baubetrieb, Fachbereich Rückbau kerntechnischer Anlagen, wurde mir die Möglichkeit gegeben die vorliegende Dissertation anzufertigen.

Für die Übernahme des Hauptreferates und die wissenschaftliche Betreuung möchte ich mich bei Herrn Prof. Dr.-Ing. Sascha Gentes bedanken.

Weiterhin danke ich Herrn Prof. Dr.-Ing. habil. Volker Schulze für die Mitwirkung als Korreferent meiner Dissertation.

Besonderen Dank gilt vor allem Herrn Dipl.-Ing. Steffen Reinhardt, welcher mir stets mit konstruktiver Kritik und Tatkraft beim Aufbau meines Versuchsstandes zur Seite stand. Ebenso gebührt mein Dank Herrn Dipl.-Ing. Daniel Knecht, Herrn Dipl.-Ing. Patrick Kern und meinen Kollegen für die fachliche Unterstützung. Außerordentliche Anerkennung gilt den Werkstattmitarbeitern des Institutes für die erfolgreiche praktische Zusammenarbeit.

Für die sorgfältige Korrektur und die nützlichen Anregungen bedanke ich mich bei meinen Eltern Frank und Martina Hentschel und meinem Bruder Christoph Hentschel.

Karlsruhe, 2014

Sebastian Hentschel

Zusammenfassung

Die vorliegende Forschungsarbeit beinhaltet eine Analyse zum Bewegungs- und Verschleißverhalten von Hartmetalllamellen bei der Betonbearbeitung. Für eine qualitative Bewertung des Werkzeugverschleißes sind grundlegende Kenntnisse zur Dynamik der Lamelle und zu den Betoneigenschaften erforderlich. Dazu wurde ein theoretisches Bewegungsmodell entwickelt, welches die geometrischen und kinetischen Haupteinflussgrößen charakterisiert.

Experimentelle und numerische Untersuchungen dienen in dieser Arbeit zur Modell-Verifizierung sowie zur Definition der Verschleißcharakteristika. Als Verschleißkenngrößen werden direkte makroskopische Messgrößen, wie zum Beispiel der Masseverlust der Lamelle, und indirekte Messgrößen, wie beispielsweise die Werkzeug-Standzeit, verwendet. Die Untersuchungen zum Verschleißverhalten beziehen die resultierenden Veränderungen der Schlagkräfte, Impulse und erreichten Abtragstiefen mit ein. Die numerischen FEM-Berechnungen lassen einen expliziten Wertevergleich der Geschwindigkeit und der kinetischen Energie der Lamelle mit dem theoretischen Bewegungsmodell zu.

Die Modellverifizierung anhand der numerischen und experimentellen Ergebnisse führt in dieser Arbeit zu Lösungsansätzen, welche eine werkstofftechnologische und konstruktive Weiterentwicklung der Hartmetallamelle beinhalten.

Summary

The present research study is concerning the kinetics and the wear out analysis of carbid tipped cutters during the scabbling procedure of concrete surfaces. A basic understanding of the cutter dynamics and concrete properties has been established to evaluate the wear out process of these tools. Therefore a theoretical dynamic model, including the most important geometrical and dynamic values, has been developed.

Experimental measurements and numerical analyses are used to verify the theoretical dynamic approach and to specify the wear out characteristics. The determination of the wear out process is separately examined by measuring direct wear out variables like the cutter mass loss during the scabbling process and indirect variables like the tool lifetime. The wear out analyses comprises the resulting time variable changes in impact forces, dynamic momentum and the cutting depth of the concrete surfaces. Results of the additional numerical investigations further allow a qualitative comparison of the theoretical dynamic model, especially for the variables cutter velocity and kinetic energy.

By verifying the theoretical dynamic model with both numerical and experimental results, allows an optimization of the cutters geometry and the used construction material.

Inhaltsverzeichnis

Inhaltsverze	ichnis	I
Nomenklatu	r	IV
1. Einleitu	ng	1
1.1 Pro	blematik	1
1.2 Zie	lstellung	2
1.3 Aut	bau der Arbeit	2
2. Relevar	nte Werkstoffeigenschaften und Materialverhalten	4
2.1 Bet	on als Werkstoff	4
2.1.1	Einführung und Definition	4
2.1.2	Spannungs-Dehnungsbeziehung und Festigkeit	5
2.1.3	Bruchmechanische Eigenschaften	9
2.2 Au	sgewählte Fließbedingungen für Beton und Stahl	12
2.2.1	Fließbedingung nach <i>von Mises</i>	12
2.2.2	Fließbedingung nach Tresca	13
2.2.3	Fließbedingung nach Mohr-Coulomb	15
2.2.4	Fließbedingung nach Drucker-Prager	16
2.3 Ha	rtmetall als Schlagwerkzeug	19
2.3.1	Herstellung von Hartmetall	19
2.3.2	Mechanische Eigenschaften von WC-Co-Hartmetallen	20
2.3.3	Anwendungsgebiete für WC-Co-Hartmetalle	22
3. Grundla	gen zum Abtragen von Betonoberflächen	24
3.1 Bet	on unter allgemeiner Stoßeinwirkung	24
3.1.1	Grundlagen zur Impulserhaltung und zum Stoßvorgang	24
3.1.2	Ermittlung der Schlagkraft	28
3.1.3	Lokale Fragmentierung	31
3.2 Ob	erflächenabtrag durch den Einsatz von Schlagwerkzeugen	34
3.2.1	Definition und Einordnung von Schlagwerkzeugen	34
3.2.2	Wirkmechanismus der Schlagwerkzeuge	

	3.3 Ver	schleißmechanismus beim Abtragen von Betonoberflächen	38
	3.3.1	Allgemeine Grundlagen zu Verschleißvorgängen und Verschleißarten	38
	3.3.2	Verschleißbeanspruchung der Schlagwerkzeuge	41
4.	Oberfläd	chenentfernung durch Hartmetalllamellen	45
	4.1 Die	Maschinentechnik leichter Bodenfräsen zur Betonbearbeitung	45
	4.1.1	Grundaufbau und technische Parameter von leichten Bodenfräsen	45
	4.1.2	Eigenschaften und Aufbau der Hartmetallamelle	47
	4.2 Die	Dynamik und das Wirkprinzip der Hartmetallamelle	49
	4.2.1	Beschreibung der Dynamik in einem dreistufigen Bewegungsmodell	49
	4.2.2	Aufnahmen mit einer Hochgeschwindigkeitskamera	55
5.	Experim	enteller Versuchsaufbau und Versuchsprogramm	58
	5.1 Ver	suchsprogramm	58
	5.1.1	Messung der Schlagkräfte zur Impulsanalyse	58
	5.1.2	Programm zur Verschleißmessung	59
	5.2 Ver	suchsaufbau	61
	5.2.1	Maschinentechnik und Betonzusammensetzung	61
	5.2.2	Versuchseinrichtung und Messtechnik zur Ermittlung der Reaktionskräfte	64
	5.2.3	Versuchseinrichtung und Analysetechnik zu Verschleißcharakterisierung	66
6.	Ergebni	sse und Auswertung der experimentellen Versuche	68
	6.1 Ana	alyse der Vorversuche zur Überprüfung der Randbedingungen	68
	6.1.1	Ermittlung der Stoßzahl e für die Werkstoffpaarung Stahl/Beton	68
	6.1.2	Bestimmung der Trommeldrehzahl n_T für verschiedene Betriebszustände	69
	6.1.3	Vergleich zwischen Gleichlauf- und Gegenlaufbetrieb der Werkzeugtromme	əl .70
	6.2 Ana	alyse der Kraftreaktionen als Funktion der Haupteinflussparameter	71
	6.2.1	Bestimmung der mittleren Reaktionskräfte als Funktion der Zustelltiefe z_T	71
	6.2.2	Bestimmung der mittleren Reaktionskräfte als Funktion der Drehzahl n_E	75
	6.2.3	Bestimmung der mittleren Reaktionskräfte als Funktion der Standzeit T_{t}	77
	6.3 Aus	swertung der Verschleißkenngrößen	80
	6.3.1	Verschleißbewertung mit Hilfe der Abtragstiefe z	80
	6.3.2	Resultate zur Verschleißmessaröße W_{-}	84
	633	Bestimmung der geometrischen Verschleißkenngrößen	۳-0 ۹۶
	0.0.0		

7.	Starrkö	rpersimulation und FEM-Analyse	95
7	7.1 Sta	arrkörpersimulation	95
	7.1.1	Modellaufbau und Parametervorgabe	95
	7.1.2	Ergebnisse zum Rotations- und Geschwindigkeitsverhalten der Lam	elle98
	7.1.3	Ergebnisse zur Verschiebung der Lamelle während der Starrkörperr	otation .102
7	'.2 Ex	plizite FEM-Analyse der Kraftreaktionen und Vergleichsspannungen	104
	7.2.1	Aufbau des FEM-Modells und Simulationsvorgaben	104
	7.2.2	Analyse der Kraftreaktionen, Energie- und Impulsbilanzen am FEM-	Modell107
	7.2.3	Analyse der Spannungsverteilung an der Lamelle	111
8.	Bewert	ung der Ergebnisse für eine Werkzeugoptimierung	114
8	8.1 Ve	rgleich und Bewertung der Ergebnisse	114
	8.1.1	Vergleich der experimentellen und numerischen Reaktionskräfte	114
	8.1.2	Vergleich der Impulsbilanz aus den Versuchsreihen und der FEM-A	nalyse116
	8.1.3	Bewertung des theoretischen Bewegungsmodells anhand der Simulationsergebnisse	118
8	8.2 Lö	sungsansätze zur Optimierung der Hartmetalllamelle	123
	8.2.1	Werkstofftechnologische Optimierung	123
	8.2.2	Optimierung des Konstruktionsprinzips Hartmetallamelle	124
9.	Fazit ur	nd Ausblick	127
9	0.1 Fa	zit	127
9	0.2 Au	sblick	128
Lite	eraturverz	zeichnis	130
Anł	nang		137
А	. Daten	und Informationen zur verwendeten Maschinen- und Messtechnik	138
E	8. Ergebr	nisse der Kraftreaktionen in Abhängigkeit der Betriebssituation	140
C	C. Ergebr	nisse der Verschleißanalyse	154
C). Modell	aufbau und Ergebnisse der Starrkörpersimulation	159
E	. Modell	aufbau und Ergebnisse der FEM-Analyse	165

Nomenklatur

Formelzeichen	Einheit	Bezeichnung
Α	m^2	Fläche; Bruchfläche
а	mm	Risslänge
С	m/s	Wellenausbreitungsgeschwindigkeit
b	mm	Breite
d	mm	Durchmesser
d_{max}	mm	Größtkorndurchmesser
D_W	kg	Durchsatz
Ε	N/mm^2	Elastizitätsmodul
E ₀	N/mm^2	Elastizitätsmodul als Tangente im Ursprung der σ-ε-Linie
E _{trans}	J	(Translations-) Energie
E _{rot}	J	(Rotations-) Energie
E _{th}	J	(Thermische-) Energie
E_W	J	(Verformungs-) Energie durch Verschleiß
f	Hz	Frequenz
f_{NI}	Hz	Abtastfrequenz (NI-Datenerfassungsgerät)
f_c	N/mm^2	einachsige Druckfestigkeit Beton
f_{c2}	N/mm^2	zweiaxiale Druckfestigkeit Beton
f_t	N/mm^2	Zugfestigkeit Beton
F	Ν	Kraft
G_F	J/m^2	spezifische Bruchenergie
h	mm	Höhe
HV	МРа	Vickers-Härte
Ī	$N \cdot s$	(Gesamt-) Impuls
J	$kg\cdot m^2$	Trägheitsmoment
K _C	$MPa\cdot\sqrt{mm}$	kritischer Spannungsintensitätsfaktor
k	N/m	Federkonstante
\overline{L}	$N \cdot m \cdot s$	(Gesamt-) Drehimpuls
l_1	m	Messstrecke für Kraftmessungen
l_2	m	Messstrecke für Verschleißmessungen
Μ	-	Massenanteil
m	kg	Masse
n	U/min	Drehzahl
Ν	-	Formfaktor für den Stoßkörper
P_0	-	Bezeichnung für Schwerpunkt
P_M	W	Motorleistung

r	m	Radius
\dot{r}	m/s	Vektorgeschwindigkeit
S	т	Beanspruchungsweg
Sz	-	Beiwert für den Zementtyp
t	S	Zeit
T_L	т	Standzeit einer Lamelle
U	J	Innere Energie
V	m^3	Volumen
ν	m/s	Geschwindigkeit
W	т	Verformung
W	J	Arbeit
Y_L	-	Anzahl der Lamellen auf der Werkzeugtrommel
Z_T	mm	Zustelltiefe Werkzeugtrommel
Z_E	mm	Eindringtiefe
Z_A	mm	Abtragstiefe
β_{cc}	-	Beiwert zur Bestimmung des Betonalters
α_s	-	Beiwert zur Druckfestigkeitssteigerung
γ	J/m^2	spezifische Bruchflächenenergie
γ_s	-	Beiwert zur Druckfestigkeitssteigerung bei $\dot{\varepsilon} \ge 30 \ s^{-1}$
ρ	kg/m^3	Dichte
σ	N/mm^2	Normalspannung
σ_{C}	N/mm^2	kritische Bruchlast Beton
σ_B	N/mm^2	Biegebruchfestigkeit
σ_Z	N/mm^2	Zugfestigkeit
σ_E	N/mm^2	Elastizitätsgrenze
ε	-	Dehnung
ε ₁	-	Dehnung bei maximaler Druckspannung
ε _{1u}	-	Bruchdehnung
η	-	Wirkungsgrad
τ	N/mm^2	Schubspannung
ν	-	Querkontraktionszahl
arphi	Grad	Lamellenwinkel
ζ	-	Dichtefunktion der Normalverteilung
ϕ	Grad	Aufprallwinkel
θ	Grad	Rotationswinkel der Werkzeugtrommel
$\overline{\omega}$	rad/s	Winkelgeschwindigkeit
Γ	J	Bruchflächenenergie
Φ	N/mm^2	Fließfläche

Indizes	Bezeichnung
А	Trommelachse
В	Bruch
BM	Bewegungsmodell
С	concrete (Beton), compression (Druckrichtung)
cone	Kegel, Konus
cyl	Zylinder
cube	Würfel
E	Elektromotor
FE	Finite Element
Fps	frames per second (Bilder pro Sekunde)
HM	Hartmetallstift
К	Kugel
k	charakteristisch
L	Lamelle
I	linear
ME	Messung
m	Mittelwert, auf die Masse bezogen
Ν	Normalrichtung
oct	Oktaeder-System
р	planimetrisch
r	relativ
S	Schwerpunkt
st	steel (Stahl S235JR)
S	statisch
Т	Werkzeugtrommel
t	tension (Zugrichtung)
WC-Co	Wolframcarbid-Cobalt
W	Wasser
V	Vorschub
V	volumetrisch
х	kartesische Koordinate
у	kartesische Koordinate
Z	Zement; kartesische Koordinate
Abkürzungen	Bezeichnung
Abb	Abbildung
AtG	Atomgesetz
ESZ	Ebener-Spannungs-Zustand

- EVZ Ebener-Verzerrungs-Zustand
- HGK Hochgeschwindigkeitskamera

1. Einleitung

1.1 Problematik

Die Nuklearkatastrophe von Fukushima am 11. März 2011 führte zu einem Kurswechsel der deutschen Politik mit der Novellierung des Atomgesetzes (AtG) am 31. Juli 2011. Infolge eines beschlossenen deutschen Ausstieges aus der Produktion der Kernenergie rücken vermehrt Technologien und Managementmethoden zum Rückbau von kerntechnischen Anlagen in den Forschungsmittelpunkt. Insbesondere die Erforschung und Weiterentwicklung von Dekontaminationsverfahren gilt als Notwendigkeit bei Forschungseinrichtungen und Anlagenbetreibern.

Beim Rückbau kerntechnischer Anlagen in Deutschland ist eine Entlassung vorhandener Anlagenstrukturen aus dem AtG das primäre Ziel. Nach der Freigabe können diese Anlagen konventionell abgebaut und die Reststoffe dem Rohstoffkreislauf zugeführt werden. Kontaminierte Gebäudestrukturen, insbesondere Betonwände und Betonböden, müssen zeit- und kostenaufwendig dekontaminiert werden, um die Freigabewerte nach AtG zu erreichen. Zur Einhaltung der Freigabewerte werden nach *Thierfeldt* [1] bei den Dekontaminationsverfahren grundlegend chemische und mechanische Verfahren unterschieden. Ist die Kontamination bereits in den Beton eingedrungen, muss die Oberfläche abgetragen werden. Der Begriff Abtragen bezeichnet nach *Werner* [2] das Entfernen von Betonschichten ab einer Tiefe von 3 mm. Aufgrund der Festigkeitseigenschaften von Betonen kommen hierfür vorwiegend mechanische Verfahren, wie das Stemmen, Nadeln und Fräsen, zum Einsatz. Für eine großflächige Dekontamination von Betonoberflächen werden in Kernkraftwerken zunehmend mit Hartmetalllamellen bestückte Fräsen verwendet (siehe Abbildung 1.1).

Abb. 1.1: Wandfräse AMANDA am Karlsruher Institut für Technologie (KIT)

Der Arbeitsgang ist ein schlagender Prozess, bei welchem die Hartmetalllamellen auf einer Werkzeugtrommel angeordnet rotieren und auf die Betonoberfläche schlagen. Beim konventionellen Einsatz der Maschinen werden Estriche und niederfeste Betone bearbeitet, wobei die Standzeiten T_L der Lamellen nach Herstellerangaben zwischen $T_L = 1.000 m$ und $T_L = 2.000 m$ variieren. Die kerntechnischen Gebäudestrukturen bestehen jedoch vorwiegend aus Normalbeton mit Druckfestigkeiten $f_c \ge 25$ MPa. Die höhere Festigkeit führt zu einer verminderten Standzeit T_L der Lamelle. Die Folgen sind eine steigende Anzahl an Werkzeug-Wechseln, höhere Materialkosten und ein größerer Personalaufwand.

1.2 Zielstellung

Bisher existieren keine wissenschaftlichen Untersuchungen zum Verschleißverhalten der Hartmetalllamellen. Die Angaben von marktführenden Herstellern und Vertrieben (wie zum Beispiel *SITEK-Spikes GmbH* und *Contec – Maschinentechnik und Entwicklungstechnik – GmbH*) zu Standzeiten und Verschleißerscheinungen basieren auf empirischen Ermittlungen. Im konventionellen Einsatzbereich werden diese Erfahrungswerte als ausreichend angesehen. In kerntechnischen Anlagen sind bis zu 100.000 m^2 Betonoberflächen zu dekontaminieren. Für eine effiziente Dekontamination werden deshalb lange Werkzeugstandzeiten und ökonomisch rentable Werkzeugkosten verlangt. Eine wissenschaftliche Untersuchung zum Verschleißverhalten der Hartmetalllamellen ist daher erforderlich und Schwerpunkt der vorliegenden Dissertation.

Die Zielstellung der Forschungsarbeit ist es, eine Standzeitvorhersage bei der Bearbeitung von Normalbeton treffen zu können. Praktische Messungen zu auftretenden Kräften, Simulationen zum Bewegungsverhalten und Verschleißanalysen sollen die Bewertungsgrundlage bilden. Weiterhin soll anhand der Verschleißanalyse ein konstruktiv einfacher und kostengünstiger Optimierungsvorschlag für die Hartmetalllamelle erarbeitet werden.

1.3 Aufbau der Arbeit

Der Aufbau der Dissertation lehnt sich an die praktizierte Forschungsmethodik an. Das Wissen über die einzelnen Materialeigenschaften von Werkzeug und Werkstoff ist bei der Interaktion zwischen zwei Bauteilen entscheidend. Daher werden in Kapitel 2 die relevanten Werkstoffeigenschaften, speziell für den Bearbeitungswerkstoff Beton, näher beschrieben. Die Entfernung von Betonschichten erfolgt bei mechanischen Verfahren stets über stoßartige nicht statische Lasteinträge. Die resultierenden Verschleißcharakteristika und Fragmentierungen, sowie die speziellen Anwendungsfälle werden in Kapitel 3 erläutert. Ausgehend von den allgemeinen Grundlagen wird detailliert auf die Entfernung von Betonoberflächen durch Hartmetalllamellen in Kapitel 4 eingegangen. Dafür wird ein theoretisches 3-Stufen Bewegungsmodell erstellt, welches das dynamische Verhalten der Lamelle während des Bearbeitungsprozesses beschreibt. Die resultierenden Annahmen und Schlussfolgerungen werden unter anderem durch praktische Versuche und Verschleißmessungen (siehe Kapitel 5 und Kapitel 6), sowie mit einer anschließenden FEM-Analyse entsprechend Kapitel 7 bewertet

und verglichen (siehe Kapitel 8). Anhand der Verschleißbewertung und des entwickelten Bewegungsmodells werden anschließend geeignete werkstofftechnologische und konstruktive Lösungsansätze zur Optimierung der Lamelle abgeleitet.

2. Relevante Werkstoffeigenschaften und Materialverhalten

Für die Bewertung und Analyse jedes mechanischen Bearbeitungsprozesses sind werkstofftechnologische Kenntnisse erforderlich. In diesem Kapitel werden die grundlegenden und für diese Arbeit relevanten Werkstoffeigenschaften zur Betonbearbeitung beschrieben. Besonders das Materialverhalten beim Überschreiten der Fließgrenze von Werkstoff und Werkzeug wird berücksichtigt. Als Werkzeuge werden hierfür Stahl- und Hartmetallwerkzeuge (Wolfram-Carbid) verwendet. Die spezifischen Materialeigenschaften und Anwendungsgebiete von Hartmetall sind im Kapitel 2.3 beschrieben. Zu den allgemeinen Materialeigenschaften des Qualitätsstahls C45, welcher beispielsweise den Schaftwerkstoff von Hartmetalllamellen darstellt, wird auf die umfangreiche Fachliteratur der Materialwissenschaft und der Werkstofftechnik verwiesen.

2.1 Beton als Werkstoff

2.1.1 Einführung und Definition

Beton ist ein inhomogener Baustoff, welcher aus den Hauptbestandteilen Wasser, Zement und Gesteinskörnung (auch Zuschlag genannt) hergestellt wird. Zusätzlich werden je nach Herstellungsart und Einsatzgebiet noch Betonzusatzstoffe und Betonbindemittel verwendet. Nach *Bergmeister* und *Wörner* [4] wird der Beton als ein Zweiphasensystem aufgefasst, welches im erhärteten Zustand aus einer Zementmatrix und dem Betonzuschlag besteht (siehe Abbildung 2.1). Der Erstarrungsvorgang, eine chemische Reaktion zwischen Wasser und Zement, wird als Hydratation bezeichnet.

Abb. 2.1: Makroskopische Aufnahme einer Betonprobe

Der Betonzuschlag entspricht im Normalfall 70 % des Betonvolumens und besteht nach *Neumann* und *Weinbrenner* [8] unter anderem aus Grubensand und Flusskies, welche Ge-

steinsarten wie Granit, Basalt und Quarzit beinhalten. Die Hauptbestandteile von Zement, wie Hüttensand und Puzzolane, richten sich nach *DIN EN 197-1*. Die Festbetondichte ρ_c für Normalbeton schwankt nach *Grübl* [6] zwischen $\rho_c = 2.100 \ kg/m^3$ und $\rho_c = 2.400 \ kg/m^3$. Betone mit einer Festbetondichte $\rho_c \leq 2.000 \ kg/m^3$ bzw. $\rho_c \leq 2.600 \ kg/m^3$ werden als Leicht- bzw. Schwerbetone bezeichnet.

Die internationale Klassifizierung und Bezeichnung von Beton erfolgt nach Festigkeitsklassen und ist in der *DIN 1045-1* geregelt. Zum Beispiel gilt für einen Beton C30/37 eine charakteristische Zylinderdruckfestigkeit $f_{ck,cyl} = 30 N/mm^2$ und eine charakteristische Würfeldruckfestigkeit $f_{ck,cube} = 37 N/mm^2$. Aufgrund einer verhinderten Querdehnung bei der Prüfung der Würfel übersteigt die Druckfestigkeit $f_{ck,cube}$ die einachsige Druckfestigkeit f_c um 20 – 25 %.

2.1.2 Spannungs-Dehnungsbeziehung und Festigkeit

Die Haupteinflussgrößen auf die Festigkeit sind die Zementart, der Betonzuschlag und der Wasserzementwert w/z entsprechend der Gleichung (2-1):

$$w/z = \frac{m_W}{m_Z}.$$
(2-1)

Nach *Moro* [5] beschreibt der Wasserzementwert das Massenverhältnis zwischen Anmachwasser und beigefügter Zementmasse. Mit einem sinkenden w/z-Wert, steigt allgemein die Festigkeit des Betons [6]. Für hochfeste Betone wird ein w/z-Wert von mindestens 0,2 gefordert, um eine ausreichende Hydratation des Zementes noch zu gewährleisten. Zusätzlich ist die Festigkeitsentwicklung für Normalbeton nach *Zlich* und *Zehetmaier* [7] abhängig von den Lagerungsbedingungen, wie die Umgebungstemperatur und die Luftfeuchtigkeit.

Durch die fortschreitende Hydratation des Zementes steigt die Festigkeit an. Als Referenzwert wird die mittlere einachsige Druckfestigkeit f_{cm} des Betons nach 28 Tagen bestimmt. In *EN 1992-1-1* werden die Gleichungen (2-2) und (2-3) zur Druckfestigkeitsentwicklung $f_{cm}(t)$, in Abhängigkeit der Erhärtungszeit t in Tagen, eingeführt:

$$f_{cm}(t) = \beta_{cc}(t) \cdot f_{cm} \tag{2-2}$$

mit

$$\beta_{cc}(t) = e^{S_z \cdot \left[1 - \sqrt{\frac{28}{t}}\right]}.$$
(2-3)

Der Beiwert s_z ist abhängig von der Festigkeitsklasse der verwendeten Zementart und variiert zwischen den Werten 0,2 und 0,38. Weiterhin verändert sich das elastische Verformungsverhalten des Betons mit zunehmender Druckfestigkeit $f_{cm}(t)$. Die Gleichung (2-4) gibt die zeitabhängige Veränderung des Elastizitätsmoduls $E_{cm}(t)$ an:

$$E_{cm}(t) = \left[\frac{f_{cm}(t)}{f_{cm}}\right]^{0,3} \cdot E_{cm} .$$
 (2-4)

Die zentrische Betonzugfestigkeit f_{ct} allgemeiner Betone liegt zwischen $f_{ct} = 1,5 MPa$ und $f_{ct} = 5 MPa$ [6]. Zielinski [23] untersuchte den Einfluss verschiedener Parameter, wie der Zementtyp, der Wasserzementwert oder die Korngröße, auf die Zugfestigkeit. Zur Berechnung der Zugfestigkeitsentwicklung wird hier auf die *EN 1992-1-1* verwiesen.

Ein charakteristisches Merkmal jedes Werkstoffes ist die Spannungs-Dehnungs-Beziehung, welche den Zusammenhang zwischen der aufgebrachten Spannung σ_c und der ausgelösten Dehnung ε_c entlang der Beanspruchungsrichtung darstellt. Für Verformungsberechnungen bei dynamisch wirkenden Beanspruchungen wird die Spannungs-Dehnungs-Linie durch die *DIN 1045-1* angegeben (Gleichungen (2-5), (2-6), (2-7)):

$$\frac{\sigma_c}{f_{cm}} = -\left[\frac{k\cdot\eta - \eta^2}{1 + (k-2)\cdot\eta}\right]$$
(2-5)

mit

$$\eta = \frac{\varepsilon_c}{\varepsilon_{c1}}, \qquad (2-6)$$

$$k = -E_{c0m} \cdot \frac{\varepsilon_{c1}}{f_{cm}}.$$
(2-7)

Für die elastische Verformung wird der Elastizitätsmodul E_{c0m} als Tangente im Ursprung der Spannungs-Dehnungslinie verwendet. Die Spannungsgrenze des annähernd linear elastischen Verhaltens liegt bei $\sigma_c = -0.4 \cdot f_{cm}$ (siehe Abbildung 2.2). Mit zunehmender Belastung verläuft die Spannungs-Dehnungs-Linie nichtlinear und erreicht bei der maximalen Betondruckspannung $\sigma_c = -f_{cm}$ die Dehnung ε_{c1} .

Abb. 2.2: Spannungs-Dehnungs-Linie für Verformungsberechnungen nach DIN 1045-1

Anschließend kommt es zur Entfestigung des Betons bis die Bruchdehnung ε_{c1u} erreicht ist, wobei es zum Bruch beziehungsweise zum Versagen des Materials kommt.

Für die Berechnung der Spannungs-Dehnungslinie von Beton existieren weitere verschiedene internationale Vorschriften und Standards, wie beispielsweise die Regelung im *British Standard BS 5400* oder im *CEB-FIP Model Code 90* vom *Comité Euro international du Béton*. Einen Überblick zu den einzelnen Richtlinien zeigt *Schümann* [9] auf.

Nach *Mülller* [15] weist Beton im elastischen und plastischen Bereich ein von der Dehnrate $\dot{\varepsilon}$ beeinflusstes Verformungsverhalten auf. Bei stoßartiger Belastung sind die Form der Spannungs-Dehnungs-Linie und deren Scheitelwert von der Belastungsgeschwindigkeit abhängig. Der Einfluss des Dehnrateneffekts auf die Festigkeit wurde von verschiedenen Autoren bisher praktisch untersucht und wird von *Bischoff* [30] im Überblick zusammengestellt. Die relative Druckfestigkeitsänderung (DIF = *dynamic increase factor*) wird im *CEB-FIP Model Code 90* anhand der Gleichungen (2-8) und (2-9) angegeben:

$$\frac{f_c}{f_{cs}} = \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_s}\right)^{1,026\cdot\alpha_s} \qquad \qquad \text{für } \dot{\varepsilon} \le 30 \ s^{-1} , \qquad (2-8)$$

$$\frac{f_c}{f_{cs}} = \gamma_s \cdot \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_s}\right)^{\frac{1}{3}} \qquad \qquad \text{für } \dot{\varepsilon} \ge 30 \ s^{-1} , \qquad (2-9)$$

mit

$$\alpha_s = \left(5 + 9 \cdot \frac{f_{cs}}{f_{c0}}\right)^{-1},\tag{2-10}$$

$$\log(\gamma_s) = 6,156 \cdot \alpha_s - 2$$
. (2-11)

Für dynamische Lasteinträge unterhalb der statischen Dehnrate $\dot{\varepsilon}_s = 30 \cdot 10^{-6} s^{-1}$ kommt es zu keiner relativen Druckfestigkeitsänderung. Die Festigkeit f_{c0} gilt als Referenzwert und beträgt $f_{c0} = 10 MPa$. Der DIF ist bei Betonen geringerer Festigkeit mit zunehmender Belastungsgeschwindigkeit größer. Für eine alternative Formulierung zum *CEB-FIP Model Code 90* wird auf *Malvar* [16] verwiesen.

Die Ursachen und Grenzen der Festigkeitssteigerung von Beton bei hohen Belastungsgeschwindigkeiten wurden intensiv von *Curbach* [17] untersucht. Als eine Ursache der Festigkeitssteigerung gilt die zeitliche Verschiebung zwischen dem tatsächlichen Spannungsverlauf und der Rissgeschwindigkeit. Das Risswachstum beginnt infolge der Massenträgheit der Rissufer verzögert und führt zu einer scheinbar höheren Spannungsaufnahme. Eine weitere Ursache ist der Homogenisierungseffekt der Betonstruktur. Im quasistationären Zustand kommt es bei einer Belastung zu Spannungsspitzen an den Betonzuschlägen und an den Fehlstellen wie z.B. an Luftporen. Mit Zunahme der Belastungsgeschwindigkeit stellt sich eine gleichmäßigere Spannungsverteilung im Betonquerschnitt ein, weil vermehrt Spannungen über die Zuschlagkörner abgebaut werden [17]. Die Folge ist eine höhere Belastungsfähigkeit der Betonstruktur. Einen zusätzlichen Einfluss auf die Festigkeitssteigerung hat der Feuchtegehalt im Beton. Untersuchungen von *Rossi* [18] haben gezeigt, dass Wasser in Betonporen bei dynamischen Einwirkungen zusätzliche Spannungen aufnehmen kann. Weitere Ursachen und Einflüsse des Dehnrateneffektes sind in den Arbeiten von *Ortlepp* [19] und *Larcher* [21] zusammengestellt.

Bei stoßartigen Belastungen hat die Schlagfestigkeit von Beton, wie der Dehnrateneffekt, Einfluss auf die Festigkeit. Nach *Neroth* und *Vollenschaar* **[64]** wird allgemein die Schlagfestigkeit eines Körpers als Widerstand gegen Stoß- bzw. Schlagbeanspruchung bezeichnet. Nach *DIN 1048* kann die Schlagfestigkeit von Beton durch eine Vielzahl gleicher Schläge mit vorgegebener Energie ermittelt werden. Als Mess- und Schlaggeräte dienen Rückprallhammer und Kugelschlaghammer. Die Schlagfestigkeit von Beton wird angegeben als die Anzahl definierter Schläge, welche zum Bruch der Probe oder zu einer Rissbildung geführt haben. Ausführliche praktische Untersuchungen zur Schlagfestigkeit von Beton erfolgten durch *Dahms* **[65]** und *Bonzel* **[66]**. Die Versuche spiegelten die Druckbeanspruchung von Beton beim Rammen von Pfählen wieder. Es wurden im Versuchsprogramm unter anderem die Fallhöhe und die Wasser-Zement-Werte w/z der Betonproben variiert. Die Ergebnisse von *Dahms* **[65]** sind in Abbildung 2.3 dargestellt.

Abb. 2.3: Veränderung der Schlagfestigkeit von Beton in Abhängigkeit vom Wasser-Zement-Wert [65]

Mit steigendem Wasser-Zement-Wert w/z nimmt die Schlagfestigkeit regressiv ab. Zum Vergleich weisen die Druckfestigkeit und die Spaltzugfestigkeit ein lineares Verhalten auf. Für zylindrische Betonproben (d = 150 mm, h = 300 mm) mit einer Druckfestigkeit von $f_c = 50 MPa$ und einem Wasser-Zement-Wert von w/z = 0,42 ergaben die Untersuchungen eine mittlere Schlagfestigkeit von 250 Schlägen bei einer Fallhöhe von 0,8 m. Als standardisiertes Fallgewicht diente für diese Versuche ein 50 kg schweres Fallbeil. Die Schlagfestigkeit kann durch einen hohen Anteil an feinkörnigen Betonzuschlag, eine Gesteinskörnung mit niedrigem E-Modul und eine dünne Zementschicht zwischen den Körnern des Betonzuschlags erhöht werden.

Bei wiederholter Schlagbeanspruchung geht der Bruch selten durch die Zuschlagkörner, sondern verläuft überwiegend durch die Zementschicht [6].

2.1.3 Bruchmechanische Eigenschaften

Das Bruchverhalten von Beton ist aufgrund der Inhomogenität sehr komplex, da die Betonzuschläge und die Zementmatrix unterschiedliche mechanische Eigenschaften besitzen. Nach *Schnetzer* [22] verhalten sich die Zementmatrix und die Zuschläge annähernd linear elastisch und zeigen beim Bruch ein sprödes Verhalten.

Der Bruchvorgang von Beton bei Druckbelastung beginnt mit der Ausbreitung von vorhandenen Mikrorissen in den Kontaktzonen zwischen Betonzuschlag und Zementmatrix. Die Existenz der Mikrorisse ist die Folge von eingebrachten Eigenspannungen aufgrund der Hydratation des Zementes. Bei Steigerung der Spannung pflanzen sich nach *Hillemeier* [12] die Mikrorisse in der Zementmatrix fort. Es kommt zum Zusammenschluss mehrerer Mikrorisse zu einem Makroriss, welcher schließlich eine durchgehende Bruchfläche bildet (siehe Abbildung 2.4).

Abb. 2.4: Schematische Darstellung der Rissausbreitung im Beton

Die Zugfestigkeit des Betons ist erreicht, wenn die Ausdehnung der Bruchfläche einen kritischen Zustand bzw. die Risszähigkeit erlangt **[12]**. Beim Überschreiten der Risszähigkeit kommt es zur spontanen Selbstfortpflanzung des Makrorisses und zum vollständigen Bruch des Betons.

Zur Bruchmechanik Beton drei analytischen Beschreibung der bei sind die bruchmechanischen Einflussgrößen die kritische Bruchlast, die Bruchflächenenergie und der Spannungsintensitätsfaktor wesentlich. In der vorliegenden Arbeit ist eine vereinfachte Darstellung dieser Bruchkennwerte zur Beschreibung des Bruchvorganges ausreichend. Für eine intensivere Auseinandersetzung wird hier auf die Lehrbücher der klassischen Bruchmechanik verwiesen, wie Blumenauer und Pusch [96], Gross und Seelig [13] sowie Rossmanith [27].

Bereits 1921 stellte *Griffith* **[24]** eine Energiebilianz als Kriterium für den Bruch ideal spröder Werkstoffe auf. Das Kriterium besagt, dass sich ein bestehender Riss ausbreitet, wenn die zur Rissbildung verfügbare Energie mindestens gleich groß ist wie die für die Oberflächenvergrößerung erforderliche Energie. Aufbauend auf diesem Ansatz wurde das bekannte Bruchkriterium nach *Griffith*, wie in Gleichung (2-12) dargestellt, abgeleitet:

$$\sigma_C = \sqrt{\frac{2 \cdot E^* \cdot \gamma}{\pi \cdot a}} \tag{2-12}$$

mit

$$E^* = E$$
 für den ESZ, (2-13)

$$E^* = \frac{E}{1-\nu^2} \qquad \text{für den EVZ.} \tag{2-14}$$

Die kritische Bruchlast σ_c wird bestimmt durch eine vorhandene Risslänge 2*a*, den E-Modul *E* und die spezifische Oberflächenenergie γ . Bei der Betrachtung des ebenen Spannungszustands (ESZ) und des ebenen Verzerrungszustandes (EVZ) ergibt sich nach den Gleichungen (2-13) und (2-15) für Beton nach *Trunk* **[25]** eine Abweichung der Bruchlast um 9 % bei einer Querkontraktionszahl $\nu = 0,4$.

Nach *Gross* und *Seelig* **[13]** wird allgemein bei einem Bruchvorgang eine neue Oberfläche geschaffen und dazu die Bruchflächenenergie Γ benötigt. Diese kann durch die materialbedingte spezifische Oberflächenenergie γ und die makroskopische Bruchfläche *A* nach Gleichung (2-15) **[13]** bestimmt werden:

$$\Gamma = \gamma \cdot A \ . \tag{2-15}$$

Die Ermittlung der spezifischen Oberflächenenergie γ ist aufgrund der Inhomogenität der Betonstruktur schwierig und wird vereinfacht mit der experimentell bestimmten spezifischen Bruchenergie G_F (unabhängige Materialkenngröße) ersetzt. Die spezifische Bruchenergie G_F kann mit Hilfe einer Split-Hopkinson-Bar-Versuchsanlage (*Hopkinson* [42]) ermittelt werden und hängt von der Betonfestigkeit und dem Größtkorndurchmesser d_{max} des Betonzuschlages ab [22]. Für Normalbeton mit einem Größtkorndurchmesser des Zuschlages von $d_{max} = 16 mm$ bis $d_{max} = 32 mm$ beträgt nach *Marti* [40] die spezifische Bruchenergie $G_F = 80...140 J/m^2$. Ein Vorschlag zur Berechnung der Bruchenergie G_F macht *Remmel* [50], entsprechend der Gleichung (2-16):

$$G_F = G_{F0} \cdot ln\left(1 + \frac{f_{cm}}{f_{cm0}}\right).$$
(2-16)

Für Beton mit einem Betonzuschlag aus Rheinkies beträgt der Basiswert zur Bruchenergie $G_{F0} = 65 J/m^2$. Die Erhöhung der Bruchenergie wird durch das Druckfestigkeitsverhältnis f_{cm}/f_{cm0} mit $f_{cm0} = 10 MPa$ bestimmt. Der Vorschlag nach *Remmel* berücksichtigt nicht

den Größtkorndurchmesser d_{max} und liefert konservativere Bruchenergiewerte als die Methode nach *CEB-FIP Model Code 90* (Gleichung (2-17) und Tabelle 1):

$$G_F = G_{F0} \cdot \left(\frac{f_{cm}}{f_{cm0}}\right)^{0,7}$$
 (2-17)

Tabelle 1: Bruchenergie G_{F0} in Abhängigkeit von der Korngröße

maximale Korngröße	Bruchenergie	
d _{max} [mm]	$G_{F0}\left[J/m^2\right]$	
8	25	
16	30	
32	58	

Zusätzlich wird zur Abschätzung des Sprödbruchversagens von Beton der Einfluss des kritischen Spannungsintensitätsfaktors K_c (Bruchzähigkeit) benötigt **[12].** Die Bruchzähigkeit ist ein Materialkennwert und beschreibt den Widerstand gegenüber instabilem Risswachstum und beträgt für Normalbeton $K_{c,c} = 5 \dots 30 MPa \cdot \sqrt{mm}$ **[13].**

Das Bruchverhalten bei Druckzerkleinerung wurde durch *Kiss* **[26]** für Zementstein und Quarzpartikel untersucht. Vorrangig wurden anhand der praktischen Versuche die Brucharbeiten zur Zerkleinerung bestimmt. Die Brucharbeit W_B ist die bis zum Bruchpunkt bzw. zur Bruchkraft F_B des Materials zugeführte Arbeit (siehe Abbildung 2.5 und Gleichung (2-18)):

$$W_B = \int F(s) \cdot ds . \tag{2-18}$$

Abb. 2.5: Kraft-Weg Diagramm bis zum Bruchpunkt s_u

Grundlegende experimentelle Ergebnisse zum Schädigungs- und Festigkeitsverhalten von Beton unter dynamischen Lasten lieferten außerdem die Arbeiten von *Ross* **[31]**, *Weerheijm* **[32]**, *van Doormaal* **[38]** und *Lambert* **[39]**. Aufbauend auf diesen Erkenntnissen zu den Materialeigenschaften und den Erfahrungen aus dem Bruchverhalten wurden geeignete Stoffgesetze für Beton entwickelt. Für eine qualitative Validierung des Verformungs- und Schädigungsmechanismus sind die Fließbedingungen bzw. Bruchkriterien aus diesen Stoffgesetzen unabdingbar. Daher werden im folgenden Kapitel 2.2 ausgewählte Fließbedingungen für Beton und Stahl, welche in Finite-Elemente-Programmen (FEM = engl. *finite element method*) wie ANSYS oder ABAQUS implementiert sind, vorgestellt.

2.2 Ausgewählte Fließbedingungen für Beton und Stahl

Im Rahmen dieser Arbeit werden die Fließbedingungen bzw. Bruchkriterien für die Kurzeitbeanspruchung von Beton und Stahl betrachtet. Das Langzeitverhalten, wie Kriechen oder Schwinden, wird vernachlässigt. Spannungen und Dehnungen im elastischen Bereich werden mit dem Gesetz nach *Hooke* $\sigma = \varepsilon \cdot E$ ausgewertet.

Im Mittelpunkt stehen die klassischen Fließbedingungen der Plastizitätstheorie. Für duktile Werkstoffe, wie beispielsweise Baustahl, haben sich die Gestaltänderungshypothese mit der Fließgrenzspannung nach *von Mises* **[47]** sowie die Hypothese der maximalen Schubspannung nach *Tresca* **[47]** bewährt. Die Fließbedingungen nach *Drucker-Prager* und *Mohr-Coulomb* berücksichtigen die Unterschiede zwischen Zug- und Druckfestigkeit und eignen sich daher für spröde Werkstoffe, wie Beton. Die Vorteile dieser Modelle sind die geringe Anzahl an notwendigen Materialparametern und die vorhandene Implementierung in den kommerziellen FEM-Programmen. Als Nachteile gelten die Ungenauigkeiten bei den Berechnungen zu Schädigungsmechanismen und Entfestigungserscheinungen. Für eine effizientere Beschreibung der Schädigungsentwicklung und des Materialversagens von Beton eignen sich nach dem heutigen Stand der Technik die Materialmodelle von *Ottosen* **[44]**, *Holmquist* **[41]**, *Schmidt-Hurtienne* **[43]** und das Riedel-Hiermaier-Thoma (RHT) Modell nach *Riedel* **[45,46]** sowie dessen Erweiterung nach *Schuler* **[14]**. In dieser Arbeit werden jedoch die klassischen Fließbedingungen als ausreichend angesehen.

2.2.1 Fließbedingung nach von Mises

Die Gestaltänderungshypothese besagt, dass alle drei Hauptspannungen Einfluss auf den Bruchvorgang haben. Zudem bewirken Spannungszustände entlang einer hydrostatischen Achse (allseitig konstanter Druck) keine Zerstörung des Materials. Gleichung (2-19) gibt die Vergleichsspannung entlang der Hauptachsen an:

$$\sigma_{\nu} = \sqrt{\frac{1}{2} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2 \right]} .$$
(2-19)

Nach *Göldner* und *Holzweißig* [36] wird die Hypothese als die wichtigste Vergleichsspannungshypothese angesehen. Plastisches Fließen tritt auf, wenn die Vergleichsspannung σ_v die Fließgrenzspannung σ_F des Materials, entsprechend der Fließbedingung Φ nach Gleichung (2-20), übersteigt:

$$\Phi = \sqrt{\frac{1}{2} [(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2]} - \sigma_F \le 0.$$
 (2-20)

Die allgemeine technische Spannungs-Dehnungs-Linie für den duktilen Werkstoff Stahl mit der Fließgrenzspannung σ_F ist schematisch in Abbildung 2.6 dargestellt.

Abb. 2.6: Technische Spannungs-Dehnungs-Linie für Baustahl

Die Spannung σ_E ist die elastische Gültigkeitsgrenze für das *Hooke*-Gesetz. Das plastische Fließen setzt bei einem Qualitätsstahl C45 normalgeglüht ab einer mittleren Fließspannung von $\sigma_F = 320 MPa$ ein. Die mittlere Zugfestigkeit als maximale Belastungsgrenze beträgt $\sigma_Z = 600 MPa$.

2.2.2 Fließbedingung nach Tresca

Die Fließbedingung bezieht sich auf die maximale Schubspannungstheorie nach *Henri Édouard Tresca* (1814 –1885). Die Theorie besagt, dass plastisches Fließen eintritt, wenn die maximale Schubspannung τ_{max} die Fließgrenzspannung σ_F übertrifft. Die maximale Schubspannung berechnet sich aus der Differenz der maximalen und minimalen vorkommenden Hauptspannungen:

$$\tau_{max} = \frac{\sigma_{max} - \sigma_{min}}{2} \,. \tag{2-21}$$

Die Fließbedingung nach Tresca ergibt sich nach Gleichung (2-22):

$$\Phi = max(|\sigma_1 - \sigma_2|, |\sigma_2 - \sigma_3|, |\sigma_3 - \sigma_1|) - \sigma_F \le 0.$$
(2-22)

Die Fließfläche nach *Tresca* stellt ein hexagonales Prisma um die hydrostatische Achse dar. Das regelmäßige Sechseck, welches die Deviatorebene abbildet, ist numerisch ungünstig, da die Fließfläche aufgrund der Ecken und Kanten nicht stetig differenzierbar ist. Weiterhin ist der Verlauf der Fließkante bei der industriellen Auslegung von Grenzlasten konservativer als die *von Mises* Fließbedingung. Abbildung 2.7 stellt beide Spannungshypothesen grafisch im dreidimensionalen Hauptspannungsraum gegenüber.

Abb. 2.7: Fließfläche nach von Mises und Tresca im dreidimensionalen Hauptspannungsraum

Für viele mechanische Betrachtungen ist die Analyse im ebenen Spannungszustand (z.B. $\sigma_3 = 0 MPa$) ausreichend. Die Fließflächen nach *von Mises* und nach *Tresca* vereinfachen sich und sind für den ebenen Spannungszustand in Abbildung 2.8 dargestellt.

Abb. 2.8: Fließfläche nach von Mises und Tresca im ebenen Spannungszustand ($\sigma_3 = 0 MPa$)

2.2.3 Fließbedingung nach Mohr-Coulomb

Die Fließbedingung nach *Mohr-Coulomb* ist geeignet für die Beschreibung der Plastizität von Reibungsmaterialien, wie granulare Stoffe. In der Bodenmechanik ist das *Mohr-Coulombsche*-Kriterium, aufgrund der nicht statischen Fließfläche, weit verbreitet. Die Fließfläche ist durch einen unregelmäßigen hexaederförmigen Konus im Hauptspannungsraum definiert (siehe Abbildung 2.9).

Abb. 2.9: Fließfläche nach Mohr-Coulomb im dreidimensionalen Hauptspannungsraum

Nach *Stoecker* **[48]** resultiert die unregelmäßige Form des hexagonalen Konus aus der Vernachlässigung der mittleren Hauptspannung σ_2 . Der Bruchvorgang wird entsprechend Gleichung (2-23) durch die Schubspannung τ in Abhängigkeit von der Normalspannung σ bestimmt:

$$\tau = \sigma \cdot \tan(\phi) + c \tag{2-23}$$

mit

$$\phi = \arcsin\left(\frac{f_c - f_t}{f_c + f_t}\right),\tag{2-24}$$

$$c = \frac{f_t \cdot (1 + \sin(\phi))}{2 \cdot \cos(\phi)}.$$
(2-25)

Der Winkel ϕ bezeichnet den inneren Reibungswinkel und schließt die Fließfläche mit der Normalspannung ein. Der Reibungswinkel wird maßgeblich durch den Unterschied zwischen der Zug- und Druckfestigkeit bestimmt. Die Kohäsion *c* gibt den Schnittpunkt der Fließfläche mit der Schubspannung τ vor. Mit Hilfe des *Mohr'schen*-Spannungskreises wird, entsprechend Abbildung 2.10, die Fließbedingung im Spannungszustand überprüft.

Abb. 2.10: Fließbedingung nach Mohr-Coulomb

Plastisches Fließen setzt, im Gegensatz zur Fließbedingung nach *Tresca*, nicht erst bei maximaler Schubspannung τ_{max} ein. Durch den Einfluss vom Reibungswinkel ϕ wird die Fließbedingung bereits für $\tau = \tau_{max} \cdot \cos(\phi)$ erfüllt. Die Schubspannung τ und die Normalspannung σ können, entsprechend den Gleichungen (2-26) und (2-27), durch die zwei Hauptspannungen σ_1 und σ_3 ausgedrückt werden:

$$\tau = \frac{\sigma_1 - \sigma_3}{2} \cdot \cos(\phi) , \qquad (2-26)$$

$$\sigma = \frac{\sigma_1 + \sigma_3}{2} + \frac{\sigma_1 - \sigma_3}{2} \cdot \sin(\phi) . \qquad (2-27)$$

Mit Hilfe des Additionstheorems $\cos(\phi)^2 + \sin(\phi)^2 = 1$ wird die *Mohr-Coulomb*-Fließbedingung in Abhängigkeit der Hauptspannungen nach Gleichung (2-28) beschrieben:

$$\Phi = (\sigma_1 - \sigma_3) \cdot \cos(\phi) + (\sigma_1 + \sigma_3) \cdot \sin(\phi) - 2 \cdot c \cdot \cos(\phi) = 0.$$
 (2-28)

2.2.4 Fließbedingung nach Drucker-Prager

Die Fließbedingung nach *Drucker-Prager* ist die Erweiterung der von Mises Fließbedingung um die lineare Druckabhängigkeit (analog wie die Fließbedingungen *Mohr-Coulomb* zu *Tresca*). Das *Drucker-Prager*-Modell eignet sich als Bruchkriterium für Beton und findet überwiegend in numerischen Simulationen Anwendung. Beispielsweise verwendete *Höhler* **[49]** das Materialmodell zur Simulation von Stahlbetonkonstruktionen unter kollapsdynamischen Belastungen. *Seider* **[51]** ermittelte mit Hilfe des Materialgesetzes in der FEM-Umgebung ANSYS die Spaltzugfestigkeiten von Beton. In der vorliegenden Arbeit wird das *Drucker-Prager*-Modell ebenfalls zur Beschreibung des Materialverhaltens von Beton angewendet und bedarf daher im Folgenden einer ausführlicheren Darstellung. Die Fließfläche des *Drucker-Prager*-Modells ist ein Kreiskegel um die hydrostatische Achse (siehe Abbildung 2.11).

Abb. 2.11: Fließfläche nach Drucker-Prager im dreidimensionalen Hauptspannungsraum

Die Fließbedingung Φ ist von den drei Hauptspannungen abhängig und wird zur Übersicht im Oktaeder-System formuliert (Gleichung (2-29):

$$\Phi = \frac{3}{\sqrt{2}} \cdot \tau_{oct} + \sqrt{3} \cdot \beta \cdot \sigma_{oct} - \sqrt{3} \cdot k = 0$$
(2-29)

mit

$$\tau_{oct} = \frac{1}{3} \cdot \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}, \qquad (2-30)$$

$$\sigma_{oct} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} \,. \tag{2-31}$$

Die Materialparameter β und k sind von Kohäsion c und dem Reibungswinkel ϕ abhängig. Nach *Schlegel* **[52]** kann das *Drucker-Prager*-Modell an die *Mohr-Coulomb*-Fließfläche im Druckmeridian oder Zugmeridian angenähert werden (siehe Abbildung 2.12).

Abb. 2.12: Drucker-Prager-Fließfläche als umschriebener Kegel

Zur realitätsnahen Beschreibung des unterschiedlichen Materialverhaltens von Beton unter Zug- und Druckbelastung wird von *Hintze* **[53]** ein *Drucker-Prager*-Modell bestehend aus zwei Fließkriterien vorgeschlagen. Die zwei Fließflächen definieren einen Druck-Druck-Bereich und einen Druck-Zug-Bereich. Aufgrund dieser Annahme resultieren verschiedene Materialparameter β und *k* (Gleichungen (2-32), (2-33), (2-34) und (2-35).

Für den Druck-Zug-Bereich gilt [53]:

$$\beta_t = \frac{6 \cdot \sin(\phi)}{\sqrt{3}(3 + \sin(\phi))} = \frac{\sqrt{3} \cdot (f_c - f_t)}{f_c + f_t} , \qquad (2-32)$$

$$k_t = \frac{6 \cdot c \cdot \cos(\phi)}{\sqrt{3}(3 + \sin(\phi))} = \frac{2 \cdot f_c \cdot f_t}{\sqrt{3} \cdot (f_c + f_t)} \,. \tag{2-33}$$

Für den Druck-Druck-Bereich gilt [53]:

$$\beta_c = \frac{6 \cdot \sin(\phi)}{\sqrt{3}(3 - \sin(\phi))} = \frac{\sqrt{3} \cdot (f_{c2} - f_c)}{2 \cdot f_{c2} - f_t}, \qquad (2-34)$$

$$k_c = \frac{6 \cdot c \cdot \cos(\phi)}{\sqrt{3}(3 - \sin(\phi))} = \frac{f_{c2} \cdot f_c}{\sqrt{3} \cdot (2 \cdot f_{c2} - f_c)}.$$
 (2-35)

Die resultierende *Drucker-Prager*-Fließfläche setzt sich aus den zwei Fließkriterien zusammen (siehe Abbildung 2.13).

Abb. 2.13: Drucker-Prager-Modell mit den zwei Fließkriterien

Zur Beschreibung der Fließkriterien werden die drei Festigkeiten f_c , f_t und f_{c2} benötigt, welche experimentell bestimmbar sind und die Anwendung dieses Materialmodells gegenüber komplexeren Modellen, wie das Vier-Parameter-Modell nach *Ottosen* **[44]**, vereinfachen.

Bei großem Druck können Böden oder granulare Materialien verdichtet werden. Für diese Form plastischen Fließens unter Druck, kann das *Drucker-Prager*-Modell durch eine zusätzliche Fließfläche, welche als Kappe im Druckbereich bezeichnet wird, erweitert werden. Zur Begrenzung des elastischen Druckbereichs durch die zweite Fließfläche wird auf die Arbeit von *Resende* [54] verwiesen.

Die Grundlagen zu der Fließbedingung Φ nach *von Mises* für den duktilen Werkstoff Stahl sind in dieser Arbeit zur Analyse der FEM-Berechnungen bezüglich der Spannungsverteilung an der Hartmetallamelle während der Interaktion mit der Betonoberfläche notwendig. Zur Beschreibung eines geeigneten Materialmodells für Beton, welches in die FEM-Simulation implementiert werden kann und die erforderlichen Eigenschaften der experimentellen Probekörper aufweist, wird das in diesem Kapitel beschriebene *Drucker-Prager*-Modell verwendet.

2.3 Hartmetall als Schlagwerkzeug

Bei der mechanischen Bearbeitung von Beton werden selten Werkzeuge aus allgemeinen Baustahl S235JR eingesetzt. Zum Trennen und Zerkleinern von Werkstoffen werden nach *Zimmermann* und *Günther* **[55]** vorwiegend Hartlegierungen aus Chrom, Wolfram, Nickel und Molybdän verwendet. Die Kaltarbeitswerkzeuge eignen sich als Pressluft-, Bergbau- und Gesteinsbearbeitungswerkzeuge und Werkzeuge zum Hartzerkleinern. Speziell die Hartmetalle (gesinterte Carbid-Hartmetalle) definieren sich durch eine hohe Härte bei einem sehr guten Verschleißwiderstand gegenüber Abrasion. Die Hartmetalle gehören zu den Verbundwerkstoffen und bestehen aus metallischen Hartstoffen und Bindematerial. Die Werkzeuge aus Hartmetall werden nach Anwendungsgebiet in zwei Untergruppen gegliedert. Die erste Gruppe umfasst die reinen WC-Co-Hartmetalle (Wolframcarbid-Cobalt), welche vorzugsweise bei der Bearbeitung kurzspanender Werkstoffe, wie Guss oder Glas, eingesetzt werden. Die zweite Gruppe bezeichnet Hartmetalle aus mehreren Carbid-Gruppen, wie WC-TiC-Co. Die Werkstoffe der zweiten Gruppe eignen sich für die Bearbeitung langspanender Werkstoffe, wie allgemeine Baustähle oder Aluminiumlegierungen.

2.3.1 Herstellung von Hartmetall

Nach *Schatt, Wieters* und *Kieback* **[56]** sind die marktbeherrschenden Hartmetallgrundtypen die WC-Co-Hartmetalle. Die Herstellung erfolgt durch Sintern eines WC-Co-Gemisches bei 1.350 °*C* bis 1.500 °*C*. Das Wolfram gilt als Verstärkungsphase und das Cobalt als Bindemittel, welches die Zwischenräume füllt. Zur Leistungssteigerung können Additive dem Ausgangsgemisch hinzugegeben werden, wie beispielsweise Titancarbid (TiC). Vor dem Sintern wird das Ausgangsgemisch bis zur gewünschten Feinheit zermahlen und in eine Form gepresst. Die Massenzusammensetzung des Pulvers aus Carbiden und Cobalt hat entscheidenden Einfluss auf die mechanischen Eigenschaften des Hartmetalls. Nach Herstellerangaben können die Massenanteile zwischen 73 % und 96 % Wolframcarbid und

4 % und 27 % Cobalt variieren. Beim Zehrmahlen wird besonders eine gleichmäßige Verteilung des Cobalts zwischen den Carbiden angestrebt, um später im Sinterprozess ein dichtes Gefüge zu erreichen. Zwischen dem Pressen und dem Sintern können die Grundkörper (auch *Grünlinge* genannt) durch Schleifen oder Schneiden nachbearbeitet werden. Abhängig von der Zusammensetzung erfolgt der Sinterprozess unter Vakuum oder Wasserstoff. Nach der Herstellung kann das Hartmetall aufgrund der hohen Härte nur aufwendig nachbearbeitet werden. Verfahren zur Nachbearbeitung sind beispielsweise Diamantschleifen oder Funkenerodieren.

2.3.2 Mechanische Eigenschaften von WC-Co-Hartmetallen

Mit zunehmendem Massenanteil an Wolframcarbid nimmt die Dichte ρ_{WC-C0} des Hartmetalls zu. Zusätzlich hat der Sinterungsgrad Einfluss auf die Dichte. Verunreinigungen oder Überhitzung können zu Dichteminderungen und geringeren Festigkeitswerten führen. Die Härte und die Festigkeit des Hartmetalls sind abhängig vom Anteil des Bindemittels Cobalt und der Carbidkorngröße. Nimmt der Bindergehalt zu, sinkt die Härte und die Druckfestigkeit. Nach *Prakash* [57] hat die Druckfestigkeit ein Maximum bei einem Bindergehalt von 5 %, die Biegebruchfestigkeit hingegen steigt bis zu einem Bindergehalt von 25 % an. Mit steigender Carbidkorngröße sinkt die spezifische Oberfläche des Binders, die Härte sowie die Festigkeit des Hartmetalls nehmen ab. Einen Überblick zur Einteilung der Carbidkorngröße wird in Tabelle 2 dokumentiert und ist ein Vorschlag des Arbeitskreises Hartmetall im Fachverbund Pulvermetallurgie aus dem Jahr 1999.

WC-Korngröße $[\mu m]$	Bezeichnung
< 0,2	Nano
0,2 - 0,5	Ultrafein
0,5 - 0,8	Feinst
0,8 - 1,3	Fein
1,3 – 2,5	Mittel
2.5 – 6	Grob
> 6	Extragrob

Tabelle 2: Klassifizierung nach der WC-Korngröße [56]

Eine umfassende Zahlentafel der grundlegenden Eigenschaften von WC-Co-Hartmetallen wurde von *Kieffer* und *Benesovsky* **[58]** zusammengestellt. Ein Ausschnitt dieser Zahlentafel ist in Tabelle 3 festgehalten.

M _{WC} [%]	M_{Co} [%]	$ ho_{WC-C0}\left[rac{kg}{m^3} ight]$	HV [MPa]	$\sigma_{B} [MPa]$	σ _C [MPa]	E [MPa]
100	-	15.700	1.800 – 2.000	300 - 500	3.000	722.000
97	3	15.100 – 15.200	1.600 – 1.700	1.000 – 1.200	5.900	670.000
91	9	14.500 – 14.700	1.400 – 1.500	1.500 – 1.900	4.800	590.000
87	13	14.000 - 14.200	1.250 – 1.350	1.700 – 2.100	4.500	560.000
75	25	12.800 – 13.000	900 - 1.000	2.000 - 2.800	3.200	470.000

 Tabelle 3: Übersicht der Festigkeitseigenschaften von WC-Co-Hartmetallen [58]

Die Angaben in der Tabelle 3 sind Mittel- oder Grenzwerte, welche in Abhängigkeit von der Kornfeinheit schwanken. Die WC-Co-Hartmetalle können bei gleicher Zusammensetzung mit wachsender Kornfeinheit härter oder bei Vergröberung weicher und zäher werden. Entsprechend der Tabelle 3 nimmt der E-Modul mit steigendem Bindergehalt ab und beeinflusst entscheidend die Bruchflächenenergie G_F , entsprechend der experimentell ermittelten Gleichung (2-36) **[56]**:

$$G_F = \frac{K_C^2}{\pi \cdot E} \,. \tag{2-36}$$

Der kritische Spannungsintensitätsfaktor $K_{C,WC-Co}$ (Bruchzähigkeit) für WC-Co-Hartmetalle liegt in den Grenzen zwischen 220 $MPa \cdot \sqrt{mm}$ und 950 $MPa \cdot \sqrt{mm}$. O'Quigley [59] stellt, aufbauend auf experimentellen Ergebnissen, einen näherungsweisen linearen Zusammenhang zwischen der *Vickers*-Härte *HV* und der Bruchzähigkeit her (Gleichung 2-37):

$$HV = -c_1 \cdot K_C + c_2 . (2-37)$$

Die Variablen c_1 und c_2 sind Funktionen der WC-Korngröße und variieren mit dem Bindergehalt. Weiterführend wird auf die Forschungsarbeit von *Schubert* **[60]** verwiesen, welcher insgesamt 65 verschiedene WC-Co-Zusammensetzungen auf Bruchzähigkeit und *Vickers*-Härte hin analysierte. Der maximale Cobalt-Gehalt betrug bei diesen Untersuchungen 20 %.

Bei einem Defekt im Materialgefüge der Größe *a* kann bei lokaler Zugspannung in Abhängigkeit der Bruchzähigkeit die kritische Spannung σ_{krit} erreicht werden. Die Folge kann eine Rissbildung mit anschließendem Risswachstum sein:

$$\sigma_{krit} = A \cdot \frac{\kappa_C}{a} \,. \tag{2-38}$$

Der Formfaktor *A* nimmt bei kugelförmigen Defekten den Wert A = 1 an. Die Bruchzähigkeit und die Bruchflächenenergie steigen mit zunehmendem Co-Gehalt. Die Auswirkungen sind im technischen Spannungs-Dehnungs-Diagramm (entsprechend der Abbildung 2.14) für den Druckversuch mit verschiedenen WC-Co-Zusammensetzungen sichtbar. Die Ergebnisse gehen auf die experimentellen Untersuchungen von *Chermant* [61] zurück.

Abb. 2.14: Technisches Spannungs-Dehnungsdiagramm für Hartmetall [61]

Die analysierten Hartmetallproben nach Abbildung 2.14 haben eine mittlere Carbid-Korngröße von $d_{WC} = 2,2 \ \mu m$. Für den Verlauf der Spannungs-Dehnungs-Linien bei Hartmetallen mit einem niedrigen Co-Gehalt sind ein hoher E-Modul und das anschließende Spröd-Bruch-Versagen charakteristisch. Der Bindergehalt beeinflusst das plastische Verformungsverhalten maßgeblich. Für Hartmetalle mit einem höheren Gehalt an Cobalt steigt das plastische Verformungsvermögen ε_p bis zum Zehnfachen. Im Vergleich zum Baustahl ($\varepsilon_p \ge 25\%$) ist die Plastizität bei Hartmetallen gering. Der resultierende Anstieg an Verformungsarbeit führt zum erwähnten Anstieg der Bruchflächenenergie G_F .

2.3.3 Anwendungsgebiete für WC-Co-Hartmetalle

Die Klassifizierung und Einteilung der Hartmetalle nach den Anwendungsgebieten erfolgt nach der *DIN ISO 513*. Die Hartmetallsorten werden auf die ISO Anwendungsgruppen P, M und K verteilt. P-Hartmetalle und M-Hartmetalle haben hauptsächlich additive Carbidzusätze, wie Titancarbide, und werden zur Bearbeitung von langspanenden Werkstoffen verwendet. Die K-Hartmetalle bestehen aus WC-Co ohne Additive und kommen vorwiegend bei der Bearbeitung kurzspanender Werkstoffe zum Einsatz. Einen Überblick zu den Anwendungsgebieten der K-Hartmetalle in Abhängigkeit des Bindergehalts Carbid wird in Tabelle 4 gegeben [58].

	Co 3 – 5 %	Co 6 – 8 %	Co 9 – 13 %	Co 15 – 30 %
	Feinbohren	Bearbeitung	Bestückung von	Schlagwerkzeuge,
Anwondung	von Guss	von Gestein,	Schlagbohrern,	Schnitt- und
Anwendung	Bohrformstücke für	Hartguss	Stanzwerkzeugen,	Stanzwerkzeuge,
	den Bergbau		Spikes	Hammerbacken

Tabelle 4: Übersicht der Anwendungsgebiete von K-Hartmetallen

Aus dieser Tabelle wird ersichtlich, dass Schlagwerkzeuge aus WC-Co-Hartmetall über einen höheren Co-Gehalt verfügen. Der hohe Energieeintrag und die lokalen Spannungskonzentrationen am Schlagwerkzeug fordern eine erhöhte Werkstoffzähigkeit, um einen zu frühen Sprödbruch zu vermeiden. Die Zähigkeit des Schlagwerkzeugs kann dessen Verschleißwiderstand negativ beeinflussen. Daher ist die Wahl des Co-Gehaltes anwendungsabhängig und ein Kompromiss zwischen Werkstoffhärte und Zeitstandfestigkeit.

Im folgenden Kapitel 3 sind diese Werkstoffeigenschaften die Voraussetzung, um den Abtrag von Betonoberflächen durch Stoßeinwirkungen beschreiben zu können. In Abhängigkeit der Materialbeanspruchung werden die resultierenden Verschleißmechanismen und -verhalten der eingesetzten Werkzeuge aus Hartmetall und Stahl aufgezeigt.

3. Grundlagen zum Abtragen von Betonoberflächen

Das Abtragen von Betonoberflächen kann aus verschiedenen Notwendigkeiten hervorgehen, wie die Sanierung von Fahrbahnen und Gehwegen aus Beton oder die Untergrundvorbereitung für die Betoninstandsetzung. Die Auswahl an mechanischen Verfahren ist vielfältig. Beim Straßenbau werden oft schwere Kaltfräsen (Eigengewicht ca. 4 – 40 t) mit bestückten Rundschaftmeißel (Quelle: Firma Wirtgen GmbH, Windhagen) oder Diamantschneiden eingesetzt, um den erforderlichen Tiefenabtrag von mehreren Zentimetern zu erreichen. Das Verfahrensprinzip ist stets eine werkzeugschneidende Frästechnik. Die Verfahren für die Dekontamination von Betonoberflächen oder die Instandhaltung von Industrieböden basieren auf einer werkzeugschlagenden Bearbeitungstechnik. Resultierend aus der geringeren Abtragstiefe ergeben sich Gewichtsersparnisse bei Werkzeug und Maschine sowie Einsparungen im Antriebskonzept. Im folgenden Kapitel wird die Bearbeitung von Beton mit Schlagwerkzeugen erläutert. Ausgehend von den mechanischen Grundlagen zu den Stoßgesetzen und der Impulserhaltung werden die theoretischen Ansätze zur Wechselwirkung von Stoßkörper und Betonoberfläche formuliert. Anschließend wird die praktische Anwendung mit ausgewählten Maschinen dargestellt, um die auftretenden Verschleißcharakteristika der Werkzeuge interpretieren zu können.

3.1 Beton unter allgemeiner Stoßeinwirkung

3.1.1 Grundlagen zur Impulserhaltung und zum Stoßvorgang

In der Kinetik des starren Körpers wird der Impuls als eine physikalische Bewegungsgröße eines massebehafteten Körpers beschrieben. Der Impuls eines Körpers wird durch die Masse und die Geschwindigkeit des Körpers, bezogen auf ein einheitliches Koordinatensystem, bestimmt. Für eine allgemeine Bewegung des Körpers kann der vektorielle Gesamtimpuls nach *Balke* [11], entsprechend der Gleichung (3-1), ermittelt werden:

$$\bar{I} = \int \dot{\bar{r}} \, dm = \int \dot{\bar{r}} \cdot \rho \cdot dV \,. \tag{3-1}$$

Den Gesamtimpuls \overline{I} ergibt das Integral über alle Massenelemente, welche sich mit dem jeweiligen Geschwindigkeitsvektor $\dot{\overline{r}}$ bewegen. Bei der translatorischen Bewegung eines starren Körpers bewegt sich jedes Massenelement mit der gleichen Geschwindigkeit, der Körperschwerpunktsgeschwindigkeit \overline{v}_{s} . Der Gesamtimpuls kann vereinfacht nach Gleichung (3-2) beschrieben werden:

$$\bar{I} = m \cdot \bar{v}_S . \tag{3-2}$$

Während der translatorischen Bewegung kann der Körper, aufgrund eines auftretenden Widerstandes, seine Geschwindigkeit ändern. Die Wirkung der Geschwindigkeitsänderung

des Körpers hat eine Wechselwirkungskraft \overline{F} als Ursache. Die Folge ist eine Impulsänderung, welche nach Gleichung (3-3) als das Integral über dem zeitlichen Kraftverlauf resultiert:

$$\Delta \bar{I} = \int_{t_0}^{t_1} \bar{F}(t) \cdot dt = m \cdot \bar{v}_1 - m \cdot \bar{v}_0 .$$
 (3-3)

Bei einer Wechselwirkungskraft $\overline{F}(t) = \overline{0}$ folgt, dass die Geschwindigkeit und der Impuls des Körpers konstant bleiben. Es gilt die Impulserhaltung entsprechend der Gleichung (3-4):

$$m \cdot \bar{v}_0 = m \cdot \bar{v}_1 \ . \tag{3-4}$$

Die kinetische Energie eines Körpers, welcher eine Translationsbewegung ausführt, wird durch die Translationsenergie E_{trans} formuliert:

$$E_{trans} = \frac{1}{2} \cdot m \cdot v_s^2 . \tag{3-5}$$

Für einen rotierenden starren Körper wird sein Bewegungszustand durch den Drehimpuls \overline{L} beschrieben (Gleichung 3-6):

$$\bar{L} = \bar{r} \times \bar{I} . \tag{3-6}$$

Rotieren alle Massenelemente mit einer festen Winkelgeschwindigkeit ω um eine einheitliche Drehachse mit dem Radius r, können die Massenanteile durch das Trägheitsmoment J des Körpers zusammengefasst werden:

$$J = \int r^2 \cdot dm \,. \tag{3-7}$$

Die Anteile der Massenelemente dm am Trägheitsmoment steigen quadratisch mit steigendem Abstand r von der Drehachse. Mit Hilfe der Winkelgeschwindigkeit ω kann der Drehimpuls in der Ebene in Abhängigkeit des Trägheitsmomentes ermittelt werden (Gleichung 3-8):

$$L = J \cdot \omega. \tag{3-8}$$

Der Drehimpuls bleibt ohne die Einwirkung von äußeren tangentialen Kräften erhalten. Der Körper rotiert bei einer ebenen Bewegung um die Drehachse mit der Rotationsenergie E_{rot} :

$$E_{rot} = \frac{1}{2} \cdot J \cdot \omega^2 . \tag{3-9}$$

Die Impulsätze für die Bewegungsformen Translation und Rotation werden bei Stoßvorgängen angewendet. Nach *Gross* [62] ist ein Stoß gekennzeichnet durch eine definierte Kraft F, welche über einen sehr kurzen Zeitraum, der Stoßdauer t_s , wirkt. Die Stoßvorgänge werden in zwei Hauptgruppen gegliedert, der zentrale Stoß und der exzentrische Stoß (siehe Abbildung 3.1).

Abb. 3.1: Zentraler und Exzentrischer Stoß zweier Körper

Beim exzentrischen Stoß gehen die Stoßnormalen nicht durch die Schwerpunkte der Stoßkörper, entsprechend den Körpern K_1 und K_2 in Abbildung 3.1. Die Folgen sind auftretende Drehmomente bzw. Drehimpulse um den Schwerpunkt der Körper. Der zentrale und exzentrische Stoß werden jeweils unterteilt in einen geraden oder schiefen Stoß. Für einen schiefen Stoß variieren die Richtungen der Geschwindigkeiten von den Stoßnormalen der Körper.

Im Folgenden wird das Stoßproblem des schiefen exzentrischen Stoßes einer homogenen Kugel, welche schief auf eine Wand auftrifft, beschrieben. Zusätzlich wird vorausgesetzt, dass an der Wand, aufgrund der Rauigkeit, Haftung auftritt. Die Abbildung 3.2 zeigt schematisch den Stoßvorgang.

Abb. 3.2: Schiefer exzentrischer Stoß einer Kugel

Die Kugel besitzt vor dem Stoß die Winkelgeschwindigkeit ω_0 und die translatorische Geschwindigkeit v_0 , welche durch die kartesischen Komponenten $v_{y,0}$ und $v_{z,0}$ bestimmt
wird. Die Geschwindigkeiten ω_1 und v_1 definieren den Bewegungszustand der Kugel kurz nach dem Stoß. Zu diesem Zeitpunkt haben Erdanziehungskraft und Luftreibung einen vernachlässigbaren Einfluss auf die Geschwindigkeiten ausgeübt. Im Stoßpunkt *S* erfolgt die Änderung der Kugelgeschwindigkeit durch die Reaktionskräfte F_z und F_y . Die Reaktionskraft F_y resultiert aus der Haftbedingung entlang der rauen Wandoberfläche und erzeugt eine Drehimpulsänderung der Kugel. Zur Bestimmung der Geschwindigkeits- und Impulsänderungen nach Abbildung 3.2 wird die Impulsbilanz im Schwerpunkt P_1 der Kugel aufgestellt (siehe Gleichungen (3-10), (3-11) und (3-12)):

Impulsbilanz in y-Richtung
$$m_K \cdot (v_{y,1} - v_{y,0}) = -\int_0^{t_s} F_y(t) \cdot dt = -\Delta I_y$$
, (3-10)

Impulsiblanz in z-Richtung
$$m_K \cdot (v_{z,1} - v_{z,0}) = -\int_0^{t_s} F_z(t) \cdot dt = -\Delta I_z$$
, (3-11)

Drehimpuls
$$\Im$$
 um P_1 $J_K \cdot (-\omega_1 - \omega_0) = -r \cdot \int_0^{t_s} F_y(t) \cdot dt = -r \cdot \Delta I_y$. (3-12)

Im Stoßpunkt *S* erfolgt der Impulsaustausch zwischen der Wand und der Kugel. Aufgrund der Haftbedingung gilt die Geschwindigkeitsbeziehung nach Gleichung (3-13):

$$v_{y,S} = v_{y,1} + r \cdot \omega_1 = 0 . \tag{3-13}$$

Für reale Werkstoffpaarungen ist dieser Stoß teilelastisch $v_{z,0} \neq v_{z,1}$. Die Körper werden nach dem Stoß nicht vollständig zurückverformt. Im Stoßpunkt *S* wird dieses Verhalten anhand des Kraftverlaufs (siehe Abbildung 3.3) deutlich.

Abb. 3.3: Kraftverlauf F(t) für einen teilelastischen Stoß

In der Restitutionsphase wird die gespeicherte elastische Energie wieder an die Stoßkörper zurückgegeben. Das Verhältnis von Kompression und Restitution der Stoßkörper wird durch die Stoßzahl *e* ausgedrückt (siehe Gleichung (3-14)):

$$e = \frac{I_1}{I_0} = -\frac{v_{Z,1}}{v_{Z,0}} \,. \tag{3-14}$$

Die Stoßzahl *e* wird durch die Geschwindigkeitskomponenten v_z , welche orthogonal zur Stoßfläche gerichtet sind, bestimmt und hängt von der Werkstoffpaarung ab. *Mahnken* [63] zeigt einen Überblick zu den Stoßzahlen verschiedener Werkstoffe, beispielsweise für die Paarung Stahl/Stahl beträgt die Stoßzahl e = 0, 6...0, 8.

Mit Hilfe der Gleichungen (3-13) und (3-14) kann die Impulsbilanz für den schiefen exzentrischen Stoß nach den resultierenden Geschwindigkeiten $v_{z,1}$ und $v_{y,1}$, aufgelöst werden:

$$v_{z,1} = -e \cdot v_{z,0} , \qquad (3-15)$$

$$v_{y,1} = \frac{v_{y,0} \cdot r^2 \cdot m_K - r \cdot \omega_0 \cdot J_K}{r^2 \cdot m_K + J_K} \,. \tag{3-16}$$

Die Rückprallgeschwindigkeit v_1 des Schlagkörpers ist für einen stoßbeanspruchten Beton von der Werkstoffpaarung, der Werkzeuggeometrie, der Aufprallgeschwindigkeit v_0 und der Schlagfestigkeit des Stoßpartners abhängig. Mit einer ausreichend hohen Schlagkraft kann die Schlagfestigkeit des Stoßpartners überschritten werden. Im folgenden Abschnitt werden die theoretischen Ansätze zur Ermittlung der Schlagkraft von Normalbeton beschrieben.

3.1.2 Ermittlung der Schlagkraft

Im folgenden Abschnitt werden Stoßvorgänge mit einem Stoßkörper aus Stahl und einer Widerstandsfläche aus Beton betrachtet. Die Stoßzahl e bestimmt maßgeblich den Schlagkraftverlauf die Werkstoffpaarung Stahl/Beton durch und wird für die Betonzusammensetzung beeinflusst. Für Normalbeton untersuchte Jüngert [67] experimentell die Stoßzahlen für die Zementmatrix und Betonzuschlag den ($d_{max} = 20 \ mm$). Aufgrund des höheren Verformungsvermögens von Zement ist die ermittelte Stoßzahl für die Zementmatrix kleiner und beträgt $e = 0.73 \pm 0.01$. Für den Betonzuschlag wurde eine Stoßzahl $e = 0.9 \pm 0.01$ gemessen. Bei feinkörnigeren Beton $(d_{max} = 4 mm)$ konnten Stoßzahlen von $e = 0.62 \pm 0.02$ bestimmt werden.

Zur Beurteilung des Stoßvorganges und des Impulsaustausches sind die Größe und der Verlauf der Schlagkraft entscheidend. Als Grundlage dient in der Mechanik das Kontaktkraftgesetz, welches auf die *Hertzsche*-Theorie des elastischen Stoßes aufbaut. Zur

Modellbildung wird der Stoß als Normalkontakt ($v_0 = v_{z,0}$) zwischen einer Kugel und einem elastischen Halbraum betrachtet (siehe Abbildung 3.4).

Abb. 3.4: Stoßkontakt einer Kugel mit einem elastischen Halbraum

Für die *Hertzsche*-Kontakttheorie kann nach *Popov* **[68]** die maximale Spannung σ_{max} im Kontaktbereich entsprechend Gleichung (3-17) bestimmt werden:

$$\sigma_{max} = \frac{2}{\pi} \cdot E^* \cdot \sqrt{\frac{w}{r}}$$
(3-17)

mit

$$\frac{1}{E^*} = \frac{(1 - \nu_c^2)}{E_c} + \frac{(1 - \nu_K^2)}{E_K} \,. \tag{3-18}$$

Die maximale Spannung ist nach Gleichung (3-18) vom kombinierten E-Modul E^* , dem Kugelradius r und von der erzeugten Verformung w abhängig. Die resultierende Normalkraft bzw. Schlagkraft F_z ergibt sich aus der Grundgleichung der Mechanik (siehe Gleichung (3-19)):

$$F_z = m_K \cdot \frac{d^2 w}{dt^2} \,. \tag{3-19}$$

Die Berechnung der Schlagkraft F_z , entsprechend Gleichung (3-19), ist selten direkt möglich, aufgrund der fehlenden Information zur Größe der elastischen Verformung w. Die Verformung w ist abhängig von den Materialparametern und der Geometrie der Stoßkörper. Für den elastischen Stoßkontakt leitet *Fischer-Cripps* **[69]** die maximalen Schlagkräfte F_z für drei Arten von Stoßkörpern durch eine geeignete Substitution der Verformung w her. Mit Verweis auf die Abbildung 3.4 kann für die Kugel die Verformung w nach Gleichung (3-20) beschrieben werden:

$$w^{3} = \left(\frac{3}{4 \cdot E^{*}}\right)^{2} \cdot \frac{F_{z}^{2}}{r} \,. \tag{3-20}$$

Wird die Gleichung (3-20) nach der Normalkraft F_z aufgelöst, ergibt die Gleichung (3-19) folgenden Ausdruck:

$$m_K \cdot \frac{d^2 w}{dt^2} = m_K \cdot \frac{dv}{dt} = -\frac{4}{3} \cdot \sqrt{w^3 \cdot r} \cdot E^* . \qquad (3-21)$$

Die Multiplikation der Gleichung (3-21) mit der Geschwindigkeit v und eine anschließende Integration ergeben die kinetische Energie bei der elastischen Verformung der Betonfläche:

$$\frac{1}{2} \cdot m_K \cdot v_0^2 = \frac{8}{15} \cdot \sqrt{w^5 \cdot r} \cdot E^* .$$
 (3-22)

Mit Hilfe der Rücksubstitution für die Verformung w (siehe Gleichung 3-20) folgt aus der Gleichung (3-22) die Schlagkraft beim elastischen Stoßvorgang zwischen der Kugel und der Betonoberfläche:

$$F_{z} = \left[\left(\frac{5}{4}\right)^{3} \cdot \frac{16}{3} \cdot r \cdot m_{K}^{3} \cdot v_{0}^{6} \cdot E^{*2} \right]^{\frac{1}{5}}.$$
 (3-23)

Fischer-Cripps **[69]** gibt, analog den Randbedingungen für den elastischen Kugelstoß auf die Betonoberfläche, zusätzlich die maximale Schlagkraft für einen kegelförmigen und einen zylindrischen Stoßkörper an (siehe Abbildungen 3.5 und 3.6, sowie die Gleichungen (3-24) und (3-25)).

Abb. 3.5: Stoßkontakt eines Zylinders mit einem elastischen Halbraum

Die maximale Schlagkraft F_z für den Stoßvorgang eines Zylinders entsprechend der Abbildung 3.5 kann nach Gleichung (3-24) bestimmt werden:

$$F_z = v_0 \cdot \sqrt{2 \cdot r \cdot m_{cyl} \cdot E^*} \,. \tag{3-24}$$

Abb. 3.6: Stoßkontakt einer Kegelspitze mit einem elastischen Halbraum

Die maximale Schlagkraft F_z für den Stoßvorgang nach Abbildung 3.6 wird durch den Winkel δ der Kegelspitze bestimmt (siehe Gleichung (3-25)):

$$F_z = \sqrt[3]{\frac{2}{\pi} \cdot E^* \cdot tan(\delta) \cdot \left(\frac{3}{2} \cdot m_{cone} \cdot v_0^2\right)^2} .$$
(3-25)

Das elastische Kontaktkraftgesetz gilt ausschließlich für eine reversible Energieumsetzung. Trifft der Stoßkörper mit einer hohen Geschwindigkeit v_0 auf die Betonoberfläche, kann dies zu lokalen Materialzerstörungen bzw. Fragmentierungen führen. Ein irreversibler Energieanteil, infolge der geleisteten Brucharbeit W_B (siehe Gleichung 2-18), kann nicht mehr vom Beton bei der Entlastung freigeben werden.

3.1.3 Lokale Fragmentierung

Als Bedingung für eine örtliche Zerstörung des Betons nennt *Eibl* **[20]** die kritische Eindringgeschwindigkeit $v_{0,krit}$ des Stoßkörpers, entsprechend Gleichung (3-26):

$$v_{0,krit} = \varepsilon_{krit} \cdot c_c = \varepsilon_{krit} \cdot \sqrt{\frac{1}{\rho_c} \cdot \frac{d\sigma}{d\varepsilon}}.$$
 (3-26)

Die kritische Geschwindigkeit $v_{0,krit}$ wird durch die kritische Dehnung ε_{krit} sowie durch die Wellenausbreitungsgeschwindigkeit c_c bestimmt. Übersteigt die Eindringgeschwindigkeit des Stoßkörpers die Grenze $v_0 \ge v_{0,krit}$, können drei verschiedene Formen der Materialzerstörung auftreten. Die Abbildung 3.7 zeigt schematisch die örtlichen Zerstörungen, welche bei Betonbauteilen unter einem harten Stoß auftreten können. Als harter Stoß wird die Vernachlässigung von elastischer und plastischer Verformung des Stoßkörpers bezeichnet.

Abb. 3.7: Lokale Fragmentierungen bei einem harten Stoß

Bei der einseitigen Fragmentierung dringt der Stoßkörper in den Beton (*penetration*) und erzeugt um die Kontaktzone örtliche Materialzerstörungen (*spalling*). Mit höherer Eindringgeschwindigkeit werden die beim Stoß erzeugten Druckwellen refelektiert. Aufgrund der Reflektion wirken diese Wellen in Zugrichtung und können *nach Kennedy* **[28]** zur Fragmentierung der Bauteilrückseite (*scabbing*) führen. In Abhängigkeit der Werkstoffdicke kann es bei hinreichend hoher kinetischer Energie des Stoßkörpers zur Durchdringung (*perforation*) des Betons kommen.

Die Ansätze zur analytischen Bestimmung der Schlagkraft F_z sowie der Eindringtiefe z_E divergieren meist stark zu den experimentellen Ergebnissen. In zahlreichen Forschungsarbeiten werden empirische Gleichungen vorgegeben, um die Reaktionskraft von Betonstrukturen unter Stoßeinwirkung zu beschreiben. Die Formeln haben aufgrund der zahlreichen Randbedingungen für die einzelnen Versuchsanordnungen einen begrenzten Gültigkeitsbereich. Bisher konnte die Gültigkeit nur für Aufprallgeschwindigkeiten $v_0 \ge 150 m/s$ bestätigt werden [20]. Eine Vielzahl der Ansätze basieren auf militärischen Forschungsarbeiten im Bereich der Geschosseinwirkung auf Betonstrukturen. Einen umfassenden Überblick zu den verschiedensten Modellentwicklungen geben Bangash [71] und Murthy [70]. Grundlegend sind diese Modelle auf die Petry- (1910) und die ACE-Gleichung (Army Corps of Engineers [10], 1946) zurückzuführen. Adeli [73], Schwarzkopp [29] und Forrestal [72] untersuchten mit Hilfe dieser Gleichungen sowie deren Modifikationen die Schlagkraft Fz und die Eindringtiefe z_E von Projektilen. Auf Grundlage der Ergebnisse erweiterten Wen [74] und Li [75] die Parameterstudie, um zusätzlich verschiedene Werkstoffe und unterschiedliche Projektile auf die Gültigkeit der einzelnen Modelle hin zu überprüfen. Resultierend aus der Vielfalt an vorhandenen Lösungsansätzen, werden im Folgenden die drei klassischen empirischen Formeln für die Penetration eines zylindrischen Stoßkörpers vorgestellt.

Modifizierte Petry-Gleichung entsprechend der Darstellung nach Kennedy [28]:

$$z_E = B_c \cdot \frac{m_{cyl}}{(2 \cdot r)^2} \cdot \log_{10} \left(1 + \frac{{v_0}^2}{19974} \right)$$
(3-27)

Der Faktor B_c in Gleichung (3-27) ist ein dimensionsfreier Materialparameter, welcher den Penetrationswiderstand für Beton angibt und für unbewehrten Normalbeton $B_c = 6,36 \cdot 10^{-4}$ beträgt.

BRL-Gleichung (Ballistic Research Laboratory) [73]:

$$z_E = \frac{0,00133}{\sqrt{f_c}} \cdot \frac{m_{cyl}}{(2 \cdot r)^2} \cdot (2 \cdot r)^{0,2} \cdot v_0^{1,33}$$
(3-28)

NDRC-Gleichung (National Defense Research Committee 1946) [76]:

$$z_E = 4 \cdot r \cdot \sqrt{3.8 \cdot 10^{-5} \cdot \frac{N \cdot m_{cyl}}{2 \cdot r \cdot \sqrt{f_c}} \cdot \left(\frac{v_0}{2 \cdot r}\right)^{1.8}}$$
(3.29)

Der Formfaktor *N* bezeichnet den Einfluss der Spitze des Stoßkörpers. Für flache und sphärische Oberflächen beträgt der Formfaktor N = 0,72 und für eine spitze Geometrie N = 1. Falls die Eindringtiefe z_E den Geschossdurchmesser $d = 2 \cdot r$ übersteigt, haben die vorgestellten Gleichungen (3-27), (3-28) und (3-29) zusätzliche Randbedingungen, welche in dieser Arbeit vernachlässigt werden. Die Abbildung 3.8 zeigt einen Vergleich der drei Gleichungen für die Penetration eines Normalbetons mit einer Festigkeit $f_c = 37 MPa$. Der zylindrische Stoßkörper (N = 0,72) mit einem Radius $r = 2,5 \cdot 10^{-3} m$ ist starr und hat die Masse $m_{cyl} = 0,1 kg$.

Der Geschwindigkeitsbereich wurde in Abhängigkeit der relevanten Eindringgeschwindigkeiten v_0 gewählt. Für die *NDRC*- und *BRL*-Gleichung besteht zwischen der Eindringtiefe z_E und der Aufprallgeschwindigkeit v_0 ein annähernd linearer Zusammenhang. Die *Petry*- Formel weist im Vergleich dazu ein progressives Verhalten auf. Kennedy **[28]** leitet aus den empirischen Gleichungen die Kontaktzeit t_{0-1} und die Stoßkraft F_z ab (siehe Gleichung (3-30) und (3-31)):

$$t_{0-1} = \frac{2 \cdot z_E}{v_0} \,, \tag{3-30}$$

$$F_{Z} = \frac{m_{cyl} \cdot v_0^{\ 2}}{2 \cdot z_E}.$$
 (3-31)

Die Stoßkrafteinwirkung F_z verursacht ein charakteristisches Reaktionsverhalten der Betonstruktur, welche auf die Spannungsausbreitung und die Dehnung zurückzuführen ist. In diesem Zusammenhang wird auf die Arbeiten von *Sahlin* [35], *Bentur* [34] und *Fujikake* [33] verwiesen, wodurch hochdynamische Stoßeinwirkungen auf Betonstrukturen theoretisch analysiert und experimentell untersucht werden.

Der Effekt der lokalen Fragmentierung durch eine Schlagbeanspruchung findet zahlreiche praktische Anwendungen bei der Oberflächenbearbeitung. Speziell das Aufbrechen und Abtragen von Betonoberflächen erfolgt durch den Einsatz von Schlagwerkzeugen.

3.2 Oberflächenabtrag durch den Einsatz von Schlagwerkzeugen

3.2.1 Definition und Einordnung von Schlagwerkzeugen

Klassische Schlagwerkzeuge für das Zerkleinern und Abtragen von Betonoberflächen sind Stemm- und Fräswerkzeuge. Als Stemmwerkzeuge kommen pneumatisch, elektrisch oder hydraulisch angetriebene Hämmer, Meißel und Stahlnadeln zum Einsatz, wie beispielsweise bei der Nadelpistole oder dem Drucklufthammer (siehe Abbildung 3.9). Die Stemmwerkzeuge werden handgeführt oder an Trägergeräte angebaut. Die Verwendung von benzinbetriebenen Aggregaten wird aufgrund der schwierigen Abgasbehandlung bei der Innenraumverwendung nicht betrachtet.

Abb. 3.9: Nadelpistole und Drucklufthammer (Quelle: MANNESMANN-DEMAG, Stuttgart)

Die Geometrie der Schlagwerkzeuge für den Drucklufthammer variieren in Abhängigkeit von der Anwendung. Spitzmeißel werden für den direkten Betonabbruch eingesetzt, Breitmeißel sind dagegen für den leichteren Asphaltaufbruch geeignet. Stemmwerkzeuge ermöglichen einen tiefen Betonabtrag in einem Arbeitsgang und finden Anwendung bei der Erzeugung von Spalten und Aussparungen im Beton. Für einen großflächigen Abtrag der Betonoberfläche ist die Verwendung dieser Werkzeuge aufgrund der geringen Arbeitsbreite zu zeitaufwendig. Nach Momber [3] wird ein Einsatz von Fräswerkzeugen bei der Entfernung von Betonoberflächen empfohlen. Der Begriff Fräswerkzeug bezieht im Gegensatz zur klassischen Fertigungstechnik bei Abbrucharbeiten schlagende und schneidende Werkzeuge mit ein. Der Deutsche Abbruchverband e.V. empfiehlt in den 1997 erschienenen Technischen Vorschriften rotierende Fräsmeißel als Fräswerkzeuge zur Betonabtragung. Die konstruktive Gestaltung der Fräsmeißel sowie der Abtragsmechanismus sind von der erforderlichen Abtragstiefe und der gewünschten Oberflächenbeschaffenheit abhängig. Für Abtragstiefen $z_A < 10 \ mm$ werden leichte handgeführte Bodenfräsen mit Fräsmeißeln in Form von Lamellen bestückt. Die Abbildung 3.10 zeigt eine handelsübliche Bodenfräse für die Bearbeitung von Betonoberflächen.

Abb. 3.10: Handgeführte Bodenfräse mit Lamellen der Firma CONTEC® GmbH, Alsdorf

Die Werkzeugtrommel mit den am Umfang angeordneten Lamellen wird durch einen Riemenantrieb in Rotation versetzt. Die Lamellen schlagen bei diesem Verfahren auf die Betonoberfläche und erzeugen lokale Fragmentierungen. Nach Herstellerangaben ermöglicht das Verfahren in Abhängigkeit der Antriebsleistung handgeführte Bodenfräsen bis zu einer Arbeitsbreite von $b_T = 350 \text{ mm}$. Die geometrische Ausführung der Lamellen ist von der Arbeitsaufgabe entsprechend der Tabelle 5 abhängig.

Bezeichnung	Form	Anwendung
Hartmetalllamelle/ Schlaglamelle mit eingelassenen Hartmetallstiften		Aufrauen und Entfernen von Beton- und Asphaltoberflächen
Schällamelle		Entfernen von Beschichtungen, Farben und Markierungen
Strahllamelle	SUN	Entfernen von Verunreinigungen, Fetten und Ablagerungen

Tabelle 5: Lamellen als Fräswerkzeuge (Quelle: CONTEC® GmbH, Alsdorf)

Die Lamellen nach Tabelle 5 sind auf der Werkzeugtrommel mit einem radialen Spiel gelagert. Eine Fixierung der Werkzeuge erfolgt im Vergleich zu schweren Fräsgeräten, wie bspw. Kaltwalzen, erst während des Betriebes infolge der wirkenden Zentrifugalkraft.

Für einen Oberflächenabtrag $z_A > 10 mm$ werden vorwiegend schwere Fräsgeräte mit bestückten Fräswalzen, Hartmetallwendeplatten, Diamantwerkzeugen oder Rundschaftmeißel verwendet **[3]**. Die Abbildung 3.11 zeigt eine Fräswalze mit den Rundschaftmeißel der Firma *Wirtgen GmbH*, welche bei der Fahrbahnsanierung zum Einsatz kommt.

Abb. 3.11: Fräswalze mit Rundschaftmeißel (Quelle: Wirtgen GmbH, Windhagen)

Diese Bearbeitungsverfahren basieren auf einer werkzeugschneidenden Frästechnik und setzen im Vergleich zu den Lamellen bestückten Bodenfräsen ein hohes Maschinengewicht bzw. einen großen Anpressdruck voraus, um das Werkzeug durch den Beton oder Asphalt zu führen.

Die gegenwärtige Forschungsarbeit zum Oberflächenabtrag von Betonstrukturen $(z_A > 10 \text{ mm})$ ist auf die Entwicklung eines kombinierten Verfahrens aus schneidender und schlagender Frästechnik konzentriert. Die Entwicklung erfolgt in Anlehnung an die Schlagbohrtechnik, welche bei standardisierten Bohrmaschinen für Mauerwerke zum Einsatz kommt. Das Funktionsprinzip basiert auf der Hinterschneid-Technologie, wodurch ein exzentrisch gelagerter Fräser rotierend eine schlagende und schneidende Bewegung ausführt. Das Prozessverhalten und der Abtragsmechanismus werden in der Forschungsarbeit von *Reinhardt* [78] eingehend untersucht.

Für das Dekontaminieren von Betonoberflächen in Kernkraftwerken werden aufgrund der erforderlichen Abtragstiefe $z_{A,max} = 10 mm$ und der flexibleren Handhabbarkeit von leichten Bodenfräsen die schlagenden Bearbeitungsverfahren mit Hartmetalllamellen bevorzugt. Die Konstruktion geeigneter Maschinensysteme zur Führung der Bodenfräsen an Wänden und Decken in Kernkraftwerken ist derzeitiger Entwicklungsschwerpunkt bei Forschungseinrichtungen und Anlagenbetreibern.

3.2.2 Wirkmechanismus der Schlagwerkzeuge

Im folgenden Abschnitt werden praxisbezogene Ansätze zur Beschreibung des Wirkmechanismus von Schlagwerkzeugen erläutert. Die resultierende Materialbeanspruchung und der Abtragsmechanismus von Schlagwerkzeugen werden in den theoretischen Ausführungen zu den Stoßvorgängen und der lokalen Fragmentierung im Kapitel 3.1 beschrieben.

Eine Notwendigkeit zur Funktionserfüllung des Oberflächenabtrages ist die Bereitstellung der Einzelschlagenergie E_E . Diese Energie wird dem Werkzeug durch das entsprechende Antriebskonzept (z. B. pneumatisch oder elektrisch) zur Verfügung gestellt und definiert den Energiebetrag, mit welcher das Schlagwerkzeug an der Materialoberfläche aufschlägt. Nach *Momber* [3] kann für ein pneumatisches Schlagwerk, welches mit Hilfe eines zylindrisch gelagerten Stoßkolbens arbeitet, die Einzelschlagenergie entsprechend Gleichung (3-32) bestimmt werden:

$$E_E = \frac{m_{Ko} \cdot v_{Ko}^2}{2 \cdot \eta_{Ko}} \,. \tag{3-32}$$

Der Stoßkolben überträgt seine kinetische Energie auf das Einsteckende des Schlagwerkzeuges. Die Höhe der resultierenden Stoßenergie ist primär von der Auftreffgeschwindigkeit v_{Ko} des Kolbens abhängig. Die Einzelschlagenergie ist aufgrund der Umwandlung von Druckenergie in kinetische Kolbenenergie verlustbehaftet. Die Differenz wird durch die Einbeziehung des reziproken Wirkungsgrades η_{Ko} berücksichtigt. Nach *Schwarte* [77] kann die Schlagenergie für Drucklufthämmer in Abhängigkeit der Baugröße Werte zwischen $E_E = 750 J$ und $E_E = 2.800 J$ annehmen. Die Schlagenergie ist für elektrisch betriebene Handstemmwerkzeuge wesentlich geringer und liegt zwischen $E_E = 2 J$ und $E_E = 30 J$. Zusätzlich wird der Wirkmechanismus von Schlagwerkzeugen durch die Schlagzahl f_E be-

stimmt. Die Schlagzahl f_E gibt die Frequenz der Schläge und entsprechend die Häufigkeit

der übertragenen Einzelschlagenergie E_E an. Für handgeführte Bodenfräsen siehe Kapitel 3.2.1 kann die Schlagfrequenz nach Gleichung (3-33) ermittelt werden:

$$f_E = n_T \cdot Y_L . \tag{3-33}$$

Im Nennlastbereich rotieren die Werkzeugtrommeln der Bodenfräsen mit Drehzahlen zwischen $n_T = 1.500 \text{ min}^{-1}$ und $n_T = 2.000 \text{ min}^{-1}$. Die Anzahl Y_L an Lamellen, welche auf der Werkzeugtrommel montiert sind, beeinflusst maßgeblich die Schlagzahl f_E und variiert, abhängig von der Maschinengröße, zwischen $Y_L = 24$ und $Y_L = 144$ (Angaben des Herstellers *Contec GmbH*, Alsdorf).

Die Fräs- und Stemmwerkzeuge unterliegen aufgrund des stoßartigen Wirkmechanismus beim Abbruch und der Zerkleinerung von Beton einem hohen Abrasiv-Verschleiß. Die bisherigen Verschleißuntersuchungen sind vorwiegend auf Diamantwerkzeuge, Hartmetallwendeplatten und Rundschaftmeißel beschränkt. Im folgenden Kapitel werden die Grundlagen zu den auftretenden Verschleißarten und Verschleißmechanismen beim Abtragen von Betonoberflächen durch Schlagwerkzeuge beschrieben.

3.3 Verschleißmechanismus beim Abtragen von Betonoberflächen

3.3.1 Allgemeine Grundlagen zu Verschleißvorgängen und Verschleißarten

Grundsätzlich ist Verschleiß ein Teilgebiet der Tribologie, welche die drei Bereiche Reibung, Schmierung und Verschleiß umfasst. Nach der 1997 zurückgezogenen *DIN 50320*, welche bis zur vollendeten Überarbeitung dieser Normschrift als allgemeingültige Grundlage gilt, wird Verschleiß als der fortschreitende Materialverlust aus der Oberfläche eines festen Körpers bezeichnet, welcher durch mechanische Ursachen wie Kontakt und Relativbewegungen zwischen Körpern hervorgerufen wird. Die tribologische Beanspruchung ist die Gesamtheit aller Beanspruchungsgrößen, welche auf das Verschleißsystem einwirken.

Die Verschleißvorgänge sind durch die auftretenden physikalischen und chemischen Verschleißmechanismen gekennzeichnet. Nach der *Gesellschaft für Tribologie – GfT* **[81]** sind die vorwiegenden Verschleißmechanismen die Adhäsion, Abrasion, Oberflächenzerüttung und die Tribochemische Reaktion. Die Verschleißvorgänge werden nach dem auftretenden Verschleißsystem unterteilt. In einem geschlossenen System, wie z.B. Gleitlager, können die Kontaktpartner durch konstruktive sowie werkstofftechnologische Anpassungen und der Verwendung von Schmiermittelen in einen verschleißarmen Zustand überführt werden. Für ein offenes System, wie zum Beispiel bei der Oberflächenbearbeitung von Beton, ist der Abrasivstoff oft unveränderbar. Es sind lediglich werkzeugseitige Optimierungen möglich. Im Folgenden werden ausschließlich Verschleißarten und den Verschleißmechanismen bei ausgewählten tribologischen Beanspruchungen für offene Systeme betrachtet. Eine Übersicht zu den Verschleißarten und den Verschleißmechanismen bei ausgewählten tribologischen Beanspruchungen für offene Systeme zeigt die Tabelle 6 (Anlehnung an die zurückgezogene *DIN 50320*). Der Verschleiß

in offenen Systemen durch Erosion von Gasen oder Flüssigkeiten mit Festkörpern wird nicht betrachtet.

	Tribologische		Mana ak la 10 ant	Mechanismus*			
Systemstruktur	Beansp	ruchung	verschiellsaft	a)	b)	c)	d)
	Gleiten		Gleitverschleiß	•	0	0	•
Festkörper/Festkörper	Rollen/Wälzen		Roll- und Wälzverschleiß	0	0	•	0
	Oszillieren		Schwingungs- verschleiß	•	•	•	•
	Stoßen		Stoßverschleiß	0	0	•	0
Festkörper/Partikel	Stoßen	\square	Zweikörper- Abrasiv- Stoßverschleiß	-	•	•	0
restkorpen/Partiker	Gleiten/Rollen/ Wälzen		Zweikörper- Abrasiv- Gleitverschleiß	-	•	-	0
	Gleiten			0	•	0	0
Festkörper/Partikel/ Festkörper	Wälzen		Dreikörper- Abrasiv- Verschleiß	0	•	•	0
	Stoßen			0	0	•	0

 Tabelle 6: Übersicht zu Verschleißarten und Verschleißmechanismen (Anlehnung an DIN 50320)

* a) Adhäsion b) Abrasion c) Oberflächenzerüttung d) Tribochemische Reaktion

● Hauptwirkung ○ Eventuelle Nebenwirkung

Die Gestalt- oder Masseänderung eines Werkzeuges durch zunehmenden Verschleiß wird mit Hilfe der Verschleißmessgrößen *W* beschrieben. In der *DIN 50321* werden die Verschleißmessgrößen charakterisiert und in direkte, abgeleitete und indirekte Messgrößen unterteilt. Direkte Messgrößen sind auf die Werkzeugeigenschaften wie Masse und Volumen

bezogen. Indirekte Größen geben eine Vorhersage über die Dauer der Funktionstüchtigkeit eines Werkzeuges an. Einen Überblick zu den allgemein gültigen Verschleißmessgrößen zeigt die Tabelle 7.

Direkte Messgrößen	Abgeleitete Messgrößer	ı	Indirekte Mes	sgrößen
Längenänderung W_l	[m] relativer Verschleiß	$\frac{W_1}{W_1} = W_1$	Standzeit	$T_W[h]$
Flächenänderung W_q	$[m^2]$	W_0 W_r	Durchsatz	$D_W[kg]$
Volumenänderung $W_{\!v}$	$[m^3]$ Verschleißwiderstand	$\frac{1}{44} = \epsilon$		
Massenänderung W_m	[kg] relativer Verschleiß-	1		
	Widerstand	$\frac{1}{W_r} = \epsilon_r$		

Tabelle 7: Übersicht der Verschleißmessgrößen (Anlehnung an DIN 50321)

Zur Verifizierung des Gesamtprozesses können die direkten Verschleißmessgrößen auf die Zeit t, den Beanspruchungsweg s oder den Durchsatz D_W bezogen werden.

Nach *Czichos* **[82]** gilt der makroskopische Verschleißkoeffizient k_v als international bewährte Verschleißreferenzgröße (siehe Gleichung (3-34)):

$$k_{\nu} = \frac{W_{\nu}}{F_N \cdot s} \,. \tag{3-34}$$

Der Verschleißkoeffizient k_v gibt den Volumenverlust je Lasteinheit nach einem zurückgelegten Beanspruchungsweg *s* an.

Zur Bestimmung der Verschleißmessgrößen existiert in Abhängigkeit der Verschleißmechanismen eine Vielzahl an Messverfahren. Uetz [80] zeigt diese tabellarisch mit den zugehörigen Einsatzmöglichkeiten und Grenzwerten auf. Für den abrasiven Verschleiß bezieht sich die Prüftechnik vor allem auf die Gleitbewegungen. Prüfverfahren mit gebundenem oder losem Korn eigenen sich bei der Untersuchung von Zweikörper- bzw. Dreikörper-Abrasiv-Gleitverschleiß. International angewendete Prüfverfahren mit gebundenem Korn sind die Schleifpapierverfahren oder das Taber-Abraser-Verfahren nach DIN 52347, welches auf einer Schleifradtechnik basiert. Ein Prüfverfahren mit losem Korn ist beispielsweise das Verschleißtopfverfahren. Die Anzahl geeigneter Messverfahren zur Charakterisierung von Abrasiv-Stoßverschleiß ist begrenzt. Vorwiegend werden die Messungen im Dauerschlag- und Fallwerkverfahren durchgeführt oder durch die Werkzeugvermessung im Praxiseinsatz. Bei den Messungen im Praxiseinsatz werden die Geometrie- und Massenänderungen der Werkzeuge untersucht. Die Längenänderung im makroskopischen Bereich wird weitestgehend durch optische Verfahren (z.B. Lichtmikroskopie) bestimmt. Für die Ermittlung der Masseunterschiede werden gravimetrische Methoden bevorzugt [80].

Die verschiedenen Verschleißmechanismen erzeugen unterschiedliche Erscheinungsformen am Werkzeug. Einen ausführlichen Überblick zu den Schadensarten und Erscheinungsformen bei tribologischen Beanspruchungen wird durch die *VDI*-Richtlinie *VDI 3822 Blatt 5* gegeben. Der Verschleißmechanismus Abrasion ist beispielsweise gekennzeichnet durch die makroskopischen Verschleißerscheinungsformen wie Kratzer, Riefen, Ausbrüche und Mulden.

3.3.2 Verschleißbeanspruchung der Schlagwerkzeuge

Das Funktionsprinzip bei der Betonbearbeitung durch Schlagwerkzeuge (siehe Kapitel 3.2) ist durch das Brechen und Zerkleinern gekennzeichnet. Der Verschleiß der Werkzeuge bei der Zerkleinerung mineralischer Werkstoffe ist nach *Uetz* [80] von den stofflichen und technischen Eigenschaften abhängig. Stoffliche Eigenschaften des Werkstoffes sind die mineralogische Zusammensetzung, das Werkstoffgefüge und die Beziehung der Stoffbestandteile untereinander. Technische Eigenschaften beziehen sich auf die Werkstofffestigkeit σ_c und die Härte *HV*.

Die tribologische Beanspruchung der Schlagwerkzeuge ist der Stoß, welcher nach Tabelle 6 durch die Hauptverschleißmechanismen Abrasion und Oberflächenzerrüttung beschrieben wird. Die auftretenden Verschleißarten sind der Zweikörper- bzw. Dreikörper-Abrasiv-Verschleiß, welche beispielsweise nach *Holländer* **[83]** zu Leistungsdefiziten bei Hammerbrechern in der Zerkleinerung führen können.

Beim Zweikörper- bzw. Dreikörper-Abrasiv-Verschleiß wird das Schlagwerkzeug aufgrund vorhandener Abrasivstoffe relativ zum Grundkörper beansprucht. Die Abrasivstoffe sind der Gegenkörper Beton und die vorgeschädigten losen Fragmente (aufgrund der Schlagbeanspruchung nach Kapitel 3.1). Die Abbildung 3.12 zeigt schematisch den Dreikörper-Abrasiv-Verschleiß bei einem schiefen Stoß mit einer rauhen Betonoberfläche.

Abb. 3.12: Skizze zum Dreikörper-Abrasiv-Verschleiß eines Schlagwerkzeuges

Nach *Czichos* **[82]** wird der nach Abbildung 3.12 dargestellte Verschleißvorgang als Furchungsverschleiß bezeichnet. Bei einem Furchungsverschleiß dringen Rauheitshügel des Gegenkörpers oder harte Partikel in die Oberfläche des Schlagwerkzeuges. Die Partikel bzw. Fragmente sind meistens harte und gebrochene Körner (*VDI 3822*), welche das Schlagwerkzeug infolge einer Überlagerung von Stoß- und Gleitbewegungen schädigen. Die auftretenden Schadensformen sind gekennzeichnet durch Furchungen, Kratzer und plastischen Oberflächenverformungen. Bei einer wiederholten Beanspruchung sind makroskopische Geometrieveränderungen des Schlagwerkzeuges, wie beim Spitzmeißel für Stemmwerkzeuge in Abbildung 3.13, die Folge.

abrasiver Stoß- und Gleitverschleiß Abb. 3.13: Abrasive Verschleißentwicklung beim Spitzmeißel

Der fortschreitende Abrasiv-Verschleiß am Spitzmeißel führt zum Abschliff der Kanten, zur Reduzierung der Werkzeuglänge und zur Ausbildung einer sphärischen Kappe an der Werkzeugspitze. Detaillierte Untersuchungen zum abrasiven Verschleißverhalten in der Beton- und Gesteinsbearbeitung sind vorwiegend auf den Verschleiß von Rund-schaftmeißel und Gesteinsbohrer konzentriert. *Thuro* **[79]** und *Vorona* **[85]** geben einen umfassenden Überblick zu den abrasiven Verschleißerscheinungsformen beim Einsatz von Rund-schaftmeißel. Die Abbildung 3.14 zeigt die Furchenbildung am Stahlschaft eines Rundschaftmeißels nach einer halben Stunde Einsatzdauer. Der Bearbeitungswerkstoff ist Sandstein mit einem Quarzanteil von 60 %.

Abb. 3.14: Furchenbildung am Stahlschaft eines Rundschaftmeißels (Quelle: Uetz [80])

Der Furchungsverschleiß wird anhand der Tieflage-Hochlage-Charakteristik nach *Wahl* **[86]** bewertet. Die Charakteristik stellt den Einfluss der Einzelhärten des Abrasivstoffes und des Werkzeuges auf den Verschleiß in einer 3-Phasen-Beziehung dar (siehe Abbildung 3.15).

Abb. 3.15: Einfluss der Abrasivstoff-Härte HV_A auf das Verschleißvolumen W_V

Steigt die Härte HV_A vom Abrasivstoff, entsprechend der Abbildung 3.15, weist das Verschleißverhalten, bei einer annähernd gleichen Härte $HV_A \approx HV_M$ mit dem Werkzeugmaterial, einen sprunghaften Anstieg auf. Mit zunehmender Härte HV_M des Werkzeugmaterials sinkt die wirkende Abrasivität der Körner, wodurch die Verschleißkurve für WC-Co-Hartmetall nicht den ausgeprägten Anstieg aufweist wie im Vergleich zu Stahl. Der Übergang zwischen der Verschleiß-Tieflage und der Verschleißhochlage konzentriert sich für mehrphasige Werkstoffe, wie die Hartmetalle, über einen größeren Härtebereich des Abrasivstoffes. Nach *Herr* [87] liegt der Übergangsbereich zwischen $HV_A/HV_M = 0.7$ und $HV_A/HV_M = 1.5$. Die Ursache für diese Ausprägung ist die unterschiedliche Härte des Mehrphasengefüges bezüglich der Hartphase und der Matrix. Bei technischen Anwendungen zur Werkstoffwahl gilt nach *Czichos* [82] die Grenze $HV_M > 1.3 \cdot HV_A$, um das Verschleißniveau in der Tieflage zu halten.

Die Abrasivstoffe bei der Betonbearbeitung bestehen aus den Zement- und Betonzuschlagsstoffen, wie Quarz und Basalt. Der Abrasivstoff Quarz beeinflusst, aufgrund der hohen Härte ($HV_A = 1.120 MPa$, Vickers-Härte-10 nach *Herrmann* [88]) maßgeblich das Verschleißverhalten der Schlagwerkzeuge. Die Tabelle 8 zeigt die Zuordnung der Verschleißlage für den weit verbreiteten Grundwerkstoff Qualitätsstahl C45 nach *DIN EN 20277* und zwei ausgewählten WC-Co-Hartmetallen (siehe Tabelle 3) bei der abrasiven Beanspruchung durch Quarz.

Tabelle 8: Zuordnung der	Verschleißlage für Baustahl und Hartmetall

	Härte <i>HV_M [MPa</i>]	HV_A/HV_M	Verschleißlage nach Abb. 3.15
C45	180-255	4,4-6,2	Hochlage, sehr starker Verschleiß
87 WC 13 Co	1.250-1.350	0,83-0,9	Übergangsbereich, schwacher Verschleiß
97 WC 3 Co	1.600-1.700	0,65-0,7	Tieflage, Verschleißerscheinungen gering

Nach *Haworth* **[84]** steigen die Verschleißwerte um ein Vielfaches, wenn die Beanspruchung des Werkzeuges durch gebrochene anstatt durch gerundete Quarzkörner erfolgt. Einen weiteren Einfluss auf das Verschleißverhalten hat das Verhältnis der Werkstoffhärten zwischen dem Schlagwerkzeug und dem Abrasivstoff. Nach *Uetz* **[80]** ergaben Verschleißuntersuchungen mit dem Abrasiv-stoff Quarz ($d_{max} = 0.3 mm$) einen um den Faktor 80 größeren Verschleißwiderstand ϵ_r von WC-Co-Hartmetallen (siehe Kapitel 2.3) gegenüber dem Qualitätsstahl C45. Die Ursachen der Verschleißunterschiede sind die geringere Werkstofffestigkeit und die verminderte Härte des Stahls.

Die in diesem Kapitel beschriebenen Grundlagen zum Verschleißmechanismus beim Abtragen von Betonoberflächen sind die Vorrausetzung für eine qualitative Analyse der Verschleißerscheinungen an den Hartmetalllamellen. Die Zuordnung und Charakterisierung von Verschleißkenngrößen stellt eine Notwendigkeit bei den experimentellen Untersuchungen der vorliegenden Arbeit dar. Die resultierenden werkstofftechnologischen und konstruktiven Lösungsansätze zur Minimierung des Werkzeugverschleißes in Kapitel 8 basieren auf diesen Grundlagen.

4. Oberflächenentfernung durch Hartmetallamellen

Der Einsatz leichter Bodenfräsen (siehe Kapitel 3.2) eignet sich für die Entfernung von Betonoberflächen bis zu Abtragstiefen $z_A < 10 mm$. Das Abtragen der Oberflächen wird durch die schlagende Beanspruchung von Hartmetalllamellen, welche in Tabelle 5 dargestellt sind, ermöglicht. In Folge des verstärkten Einsatzes in Kernkraftwerken, zur Dekontamination von Betonoberflächen entsprechend Kapitel 1.1, ist eine wissenschaftliche Untersuchung des Wirkprinzips und des Verschleißverhaltens von Hartmetalllamellen erforderlich. Im folgenden Kapitel werden die Maschinentechnik mit den wesentlichen Betriebsparametern und der Aufbau der Hartmetalllamelle beschrieben. Anschließend erfolgt die Beschreibung eines entwickelten 3-Stufen-Bewegungsmodells zur Beschreibung der Dynamik und des theoretischen Wirkprinzips der Lamelle.

Die Aufnahmen mit der Hochgeschwindigkeitskamera sowie die Untersuchung der abgetragenen Betonoberfläche und Fragmente werden zur Verifizierung theoretischer Ansätze aus Kapitel 3.1 hinzugezogen

4.1 Die Maschinentechnik leichter Bodenfräsen zur Betonbearbeitung

4.1.1 Grundaufbau und technische Parameter von leichten Bodenfräsen

Der Grundaufbau und das Funktionsprinzip von leichten Bodenfräsen, wie beispielsweise die Maschinen von den Herstellern *Contec*® *GmbH* in Alsdorf (D) oder *Von Arx*® *AG* in Sissach (CH), entsprechen allgemein der Skizzendarstellung in Abbildung 4.1.

Abb. 4.1: Skizze zum Grundaufbau einer leichten Standard-Bodenfräse

Die Werkzeugtrommel wird vorwiegend mit Hilfe eines Elektro- oder Benzinmotors angetrieben. Die Leistung der Motoren beträgt in Abhängigkeit der Maschinengröße zwischen $P_M = 1,5 \ kW$ und $P_M = 11 \ kW$. Im Nennlastbetrieb arbeitet der Elektromotor mit

einer Drehzahl von $n_E \approx 3.000 U/min$. Ein Riemenantrieb, welcher eine herstellerabhängige Übersetzung von näherungsweise $n_T/n_E \approx 0.5$ hat, gibt die Leistung des Elektromotors an die Werkzeugtrommel weiter. Die Werkzeugtrommel befindet sich in einem Schutzgehäuse und rotiert mit der Drehzahl n_T . Die Steuerung der Bodenfräse erfolgt handgeführt vom Bedienpersonal. Die Vorschubgeschwindigkeit der Maschine beträgt $v_V = 1 m/min$ bis $v_V = 3 m/min$ und wird manuell durch den Bediener gewählt oder automatisch mit einem elektrischen Vorschubmotor eingestellt. Mit Hilfe einer Handspindel wird die Werkzeugtrommel in die gewünschte Zustelltiefe z_T zur Betonoberfläche justiert. Die Abbildung 4.2 zeigt die Anordnung der Hartmetalllamellen im Trommelquerschnitt.

Abb. 4.2: Querschnitt einer Werkzeugtrommel mit Hartmetalllamellen

Die Hartmetalllamellen sind auf den festen Achsen der Trommel lose und drehbar montiert. Entlang einer Trommelachse mit dem Durchmesser d_A werden zwischen den Lamellen Distanzscheiben angeordnet. Die Parameter, wie der Trommeldurchmesser d_T , die Arbeitsbreite b_T und die Größe der Lamellen d_L , sind von der Antriebsleistung P_M abhängig. Die Tabelle 9 zeigt einen Überblick zu den technologischen Parametern mit der entsprechenden Antriebsleistung (Angaben des Herstellers *Contec*® *GmbH* [89]).

Antriebsleistung	Trommeldurchmesser	Arbeitsbreite	Lamellengröße
$P_{M}[kW]$	$d_T \ [mm]$	$\boldsymbol{b}_T[\boldsymbol{m}\boldsymbol{m}]$	$d_L[mm]$
1,5 - 3	108	160 - 200	46
7,5	180	250	57
11	210	320	80

Tabelle 9: Technische Parameter verschiedener Maschinengrößen (Angaben Contec® GmbH [89])

Die Untersuchung des Prozess- und Verschleißverhaltens von Hartmetalllamellen erfolgt in dieser Arbeit unter Verwendung der mittleren Maschinengröße $P_M = 7,5 kW$ und den dazugehörigen Werkzeugkenngrößen (siehe Tabelle 9). Zur Beschreibung der dynamischen Wechselwirkung zwischen Hartmetalllamelle und der Betonoberfläche sind Kenntnisse über die Geometrie und den Aufbau der Lamelle erforderlich.

4.1.2 Eigenschaften und Aufbau der Hartmetalllamelle

Die Hartmetalllamelle ist sternförmig aufgebaut und besitzt fünf bis zwölf Spitzen. Der Grundwerkstoff ist der Qualitätsstahl C45 mit einem Kohlenstoffanteil von 0,45 Massenprozent. Der Werkstoff ist im Maschinenbau, aufgrund der kostengünstigen Herstellung und der guten Bearbeitungseigenschaften, für Bauteile mit niedriger Beanspruchung weit verbreitet. Ein Nachteil, entsprechend der Tabelle 8, ist der geringe Verschleißwiderstand gegenüber Abrasion. Zur Vermeidung der Verschleißzunahme sind am Umfang der Lamelle Hartmetall-Stifte eingelötet. Die Hartmetall-Stifte bestehen aus 91 % Wolframcarbid und 9 % Cobalt. Die mechanischen Eigenschaften der Hartmetalle sind in der Tabelle 3, entsprechend dem Kapitel 2.3 zu den werkstofftechnologischen Grundlagen, enthalten. Die Abbildung 4.3 zeigt eine sechskantige Hartmetalllamelle, welche beim Abtrag von Betonoberflächen eingesetzt wird.

Abb. 4.3: Hartmetalllamelle mit sechs Hartmetallstiften

Die Grundform der Lamelle kann mit verschiedenen Herstellungsverfahren produziert werden. Ursprünglich wurde die Sternenform kostenintensiv gestanzt und entgratet. Anschließend wurden die Bohrungen für die Hartmetallstifte eingebracht. Kostengünstigere und zeitersparende Verfahren sind das Löten von zwei Halb-Stern-Flächen (Patent *Märzheuser* [91]), welche die Aussparungen für die Bohrungen bereits enthalten, oder das Sintern der Sternenform (Patent *Karl SIMON GmbH Co. KG* [92]), wodurch eine Erhöhung der Oberflächenhärte des Qualitätsstahls C45 auf $HV_M = 710 MPa$ möglich ist. Abschließend erhält die Grundform eine Zinkbeschichtung gegen Korrosion.

In Abhängigkeit des Anwendungsfalls und der Maschinengröße variieren die Lamellendurchmesser d_L und d_i , sowie die Breite b_L der Lamelle. Für das Abtragen von Betonoberflächen mit einer Bodenfräse in der Leistungsklasse $P_M = 7,5 kW$ nach Tabelle 9, werden vorwiegend Lamellen mit Durchmessern von $d_L = 57 mm$ und $d_i = 25 mm$ verwendet.

Die Hartmetallstifte haben nach dem Datenblatt des Herstellers *SITEK-Spikes GmbH* **[90]**, eine Länge von $h_{HM} = 6,5 mm$ bis $h_{HM} = 8,3 mm$. Die Stifte sind konisch ausgeführt und haben einen maximalen Durchmesser von $d_{HM,max} = 4,1 mm$. Die Masse der Hartmetallstifte beträgt $m_{HM} = 1,3 g$ bis $m_{HM} = 1,4 g$. Die Abbildung 4.4 zeigt die Vermessung einer Schnittdarstellung des Hartmetallstiftes mit einem digitalen Lichtmikroskop (*KEYENCE VHX-600* siehe entsprechende Tabelle in Anhang A).

Abb. 4.4: Zentrale Schnittdarstellung eines eingelöteten Hartmetallstiftes (Vergrößerung: 20fach)

Der Abstand h_{HM-L} zwischen den Hartmetallspitzen und den Lamellenflanken (Messung 4 in Abbildung 4.4) kann fertigungsbedingt variieren und beträgt nach eigenen Messungen zufolge $h_{HM-L} \approx 0.85 \pm 0.3 \ mm$.

Der schlagende Bearbeitungsprozess der Hartmetalllamellen von Betonoberflächen führt zu einer hohen Beanspruchung von Grundwerkstoff und Hartmetall. Die Beschreibung der Dynamik der Lamelle während des Schlagprozesses gilt als Voraussetzung zur Charakterisierung des Schädigungsverhaltens.

4.2 Die Dynamik und das Wirkprinzip der Hartmetalllamelle

4.2.1 Beschreibung der Dynamik in einem dreistufigen Bewegungsmodell

Die folgende Beschreibung der Dynamik von Hartmetalllamellen basiert auf den theoretischen Grundlagen zum schiefen exzentrischen Stoß aus Kapitel 3.1. Für die Analyse und die Bewertung des Bewegungsverhaltens von Lamellen wurde in dieser Arbeit ein dreistufiges Bewegungsmodell entwickelt. Das Modell betrachtet den zweidimensionalen Bewegungszustand einer einzigen Lamelle in drei dynamischen Zuständen. Der Zustand 1 beschreibt die Anfangsbedingungen vor dem Stoßvorgang. Im Zustand 2 erfolgt die Wechselwirkung der Lamelle mit der Betonoberfläche. Die resultierende Dynamik der Lamelle wird im Zustand 3 ermittelt. Die Lamelle ist entsprechend den geometrischen Randbedingungen aus Kapitel 4.1 auf einer Trommelachse mit dem Abstand $r_T = d_L/2$ zu einem festen Rotationsmittelpunkt gelagert. Die Abbildung 4.5 zeigt das Bewegungsschema für den Schlagverlauf einer Hartmetalllamelle.

Abb. 4.5: Darstellung des Schlagverlaufs einer Hartmetalllamelle als dreistufiges Ereignis-Schema

Die Darstellung in Abbildung 4.5 wird als Flussbild angesehen. Mit fortschreitender Drehung der Trommelachse im Zustand 3 gelangt die Lamelle wieder vor dem Auftreffen auf die Betonoberfläche in den Zustand 1. In Abhängigkeit der Trommeldrehzahl n_T wiederholt sich der Vorgang zyklisch. Die Umfangsgeschwindigkeit v_T der Trommelachse im Punkt P_T bleibt während des Schlagvorganges stets konstant, siehe Gleichung (4-1):

$$\nu_T = \frac{r_T}{1000} \cdot \omega_T = 2 \cdot \pi \cdot \frac{r_T \cdot n_T}{1000 \cdot 60} = konstant .$$
(4-1)

Ausgehend von einer konstanten Trommeldrehzahl werden nachfolgend die einzelnen Zustände beschrieben. Der Einfluss der Vorschubgeschwindigkeit v_V auf den Schlagvorgang wird, aufgrund $v_T \gg v_V$, vernachlässigt.

Im Zustand 1 wird die Lamelle ausschließlich von der Kreisbewegung der Trommel bestimmt. Es gibt keine Relativbewegung zwischen Lamelle und Trommelachse. Aufgrund der resultierenden Zentrifugalkraft F_{rad} (Gleichung 4-2) wird die Lamelle mit der Masse m_L radial zur Kreisbewegung an die Trommelachse gepresst:

$$F_{rad} = m_L \cdot \omega_T^2 \cdot r_L \ . \tag{4-2}$$

Die Abbildung 4.6 zeigt die für den Schlagprozess relevanten, geometrischen und kinetischen Größen.

Abb. 4.6: Dynamik der Hartmetalllamelle im Zustand 1

Zur Charakterisierung des späteren Stoßkontaktes und der Energie- und Impulsbilanz des Schlagvorgangs werden die Punkte P_0 und *B* betrachtet. Der Radius r_0 beschreibt die Lage des Schwerpunktes P_0 der Lamelle und ist achsengleich mit dem Radius r_T der Trommel. Der Radius wird mit Hilfe des inneren Durchmessers d_i der Lamelle und des Durchmessers d_A der Trommelachse (geometrische Bezeichnungen siehe Abbildung 4.2 und 4.3 im vorherigen Kapitel 4.1) nach Gleichung (4-3) bestimmt:

$$r_0 = r_T - \frac{d_A}{2} + \frac{d_i}{2} \,. \tag{4-3}$$

Der Umfangsradius r_{L_B} definiert die Position eines beliebigen Punktes *B* auf dem Kreisumfang und ist, entsprechend Gleichung (4-4) und Abbildung 4.6, der Radius des Grundkörpers der Lamelle ohne Hartmetallspitzen:

$$r_{L_B} = \frac{d_L}{2} - h_{HM-L} . ag{4-4}$$

Die Lamelle stellt während des Schlagvorganges kein festes Bezugssystem dar. Der Punkt *B* wird demzufolge durch den Radius r_{B_1} auf das feste Koordinatensystem im Rotationsmittelpunkt *M* der Trommel bezogen (siehe Gleichung 4-5):

$$r_{B_1} = \sqrt{\left(r_{L_B} \cdot \cos(\varphi_1) + r_0\right)^2 + \left(r_{L_B} \cdot \sin(\varphi_1)\right)^2} .$$
(4-5)

Die Bezugspunkte *B* und P_0 rotieren mit unterschiedlichen Umfangsgeschwindigkeiten um den Mittelpunkt *M*. Die zugehörigen Geschwindigkeitsanteile v_y und v_z werden nach den Gleichungen (4-6) und (4-7) bestimmt:

Geschwindigkeit
$$v_y$$
 im Punkt P_0 $v_{y,0}(t) = \frac{d(-r_0 \cdot \sin(\omega_T \cdot t))}{dt} = -r_0 \cdot \omega_T \cdot \cos(\omega_T \cdot t)$, (4-6)

$$v_{y,B}(t) = \frac{d(-r_{B_1} \cdot \sin(\omega_T \cdot t))}{dt} = -r_{B_1} \cdot \omega_T \cdot \cos(\omega_T \cdot t) ,$$

Geschwindigkeit
$$v_z$$
 im Punkt P_0

Geschwindigkeit v_{v} im Punkt B

$$v_{z,0}(t) = \frac{d(-r_0 \cdot \cos(\omega_T \cdot t))}{dt} = r_0 \cdot \omega_T \cdot \sin(\omega_T \cdot t) , \quad (4-7)$$

Geschwindigkeit v_z im Punkt B

$$v_{z,B}(t) = \frac{d(-r_{B_1} \cdot \cos(\omega_T \cdot t))}{dt} = r_{B_1} \cdot \omega_T \cdot \sin(\omega_T \cdot t) .$$

Mit der Definition von den Geschwindigkeitskomponenten des Schwerpunktes P_0 und eines beliebigen Punktes *B* auf dem Grundkörper der Lamelle, sind die kinetischen Anfangsbedingungen für den Zustand 2 beim Erreichen des Stoßzeitpunktes bestimmt. Der Zustand 2 behandelt entsprechend der Abbildung 4.7 den unmittelbaren Stoßvorgang der Hartmetalllamelle auf die Betonoberfläche.

Abb. 4.7: Dynamik der Hartmetallamelle im Zustand 2

Auf der Betonoberfläche gilt aufgrund der Rauigkeit die Haftbedingung $v_0 \rightarrow 0 m/s$. Die Hartmetallamelle trifft mit einer Aufprallgeschwindigkeit v_0 (siehe Zustand 1) und einer kinetischen Energie $E_{kin.0}$ auf die Betonoberfläche:

$$E_{kin,0} = m_L \cdot \frac{{v_0}^2}{2} \,. \tag{4-8}$$

Entscheidend für die Energie- bzw. Impulsbilanz der Lamelle sowie die resultierende Fragmentierung der Betonoberfläche ist der Aufprallwinkel ϕ_0 bzw. für den Stoßpunkt *S* der Winkel ϕ_S (nach Gleichung (4-9)). Der Aufprallwinkel wird maßgeblich durch die Lamellenposition φ_1 und die gewählte Trommelzustelltiefe z_T (siehe Abbildung 4.2) bestimmt:

$$\cos(\phi_S) = \frac{r_M}{r_S} = \frac{r_{S-Z_T}}{r_S}$$
 (4-9)

Der Radius r_S definiert ausgehend vom Rotationsmittelpunkt *M* den Stoßpunkt *S* der Lamelle und wird nach der Gleichung (4-4), welche für beliebige Punkte auf der Umfangskurve eines Lamellengrundkörpers gilt, ermittelt. Die Höhendifferenz h_{HM-L} (siehe Messung 4 in Abbildung 4.4 im Kapitel 4.1) der Hartmetallspitzen ist im Vergleich zum Radius r_S vernachlässigbar. Geometrisch bedingt treten vorwiegend Punkte auf der Umfangskurve, speziell an der Lamellenflanke, in Stoßkontakt.

Im Stoßpunkt *S*, entsprechend Abbildung 4.7, erfolgt der Impulsaustausch zwischen der Hartmetallamelle und der Betonoberfläche. Die Impulsbilanz der Lamelle vor und unmittelbar nach dem Stoß (Luftreibung und Erdanziehungskraft werden vernachlässigt) ergeben die Gleichungen (4-10), (4-11) und (4-12):

Impulsbilanz in y-Richtung
$$m_L \cdot (v_{y,1} - v_{y,0}) = -\int_0^{t_s} F_y(t) \cdot dt = -\Delta I_y$$
, (4-10)

Impulsbilanz in z-Richtung
$$m_L \cdot (v_{z,1} - v_{z,0}) = -\int_0^{t_s} F_z(t) \cdot dt = -\Delta I_z$$
, (4-11)

Drehimpuls
$$\mathcal{O}$$
 um Punkt P_0 $J_L \cdot -\omega_1 = -r_{S_L} \cdot \cos(\varphi_2) \cdot \Delta I_y + r_{S_L} \cdot \sin(\varphi_2) \cdot \Delta I_z$. (4-12)

Die resultierenden Geschwindigkeitskomponenten $v_{y,1}$ und $v_{z,1}$ der Lamelle können mit Hilfe der Stoßzahl *e* für die Werkstoffpaarung Stahl/Beton, entsprechend den Gleichungen (3-15) und (3-16) aus Kapitel 3.1, ermittelt werden. Der exzentrische Stoß der Lamelle bewirkt nach Gleichung (4-12) und der Abbildung 4.7 einen Drehimpuls, welcher die Lamelle mit der Winkelgeschwindigkeit ω_1 nach dem Stoß rotieren lässt.

Der Energieverlust ΔE_{trans} für die Translationsbewegung der Lamelle während des Stoßvorganges wird in verschiedene Energieformen umgewandelt. Die Abbildung 4.8 zeigt schematisch die Energieverteilung für den Zustand 2.

Abb. 4.8: Übersicht Energiebilanz der Lamelle vor und nach dem Stoß

Der thermische Energieanteil E_{th} ist charakterisiert durch die Reibungsmechanismen bei der Relativbewegung zwischen Lamelle und Betonoberfläche. Aufgrund der Haftbedingung ist dieser Energieanteil vernachlässigbar und wird in der folgenden Energiebilanz nicht weiter betrachtet. Die Stoßvorgänge auf Betonoberflächen sind, entsprechend Kapitel 3.3, durch einen abrasiven Werkzeugverschleiß gekennzeichnet. Die für diesen Verschleiß benötigte Energie wird durch die Verformungsenergie E_W bereitgestellt. Bei hohen Aufprallgeschwindigkeiten der Lamelle erfolgt an der Betonoberfläche ein hoher Spannungseintrag, welcher lokal die Bruchlast σ_c des Betongefüges erreichen kann und zur Rissausbreitung führt. In Abhängigkeit der bruchmechanischen Eigenschaften (Kapitel 2.1) führt das fortschreitende Risswachstum zur Fragmentierung (Kapitel 3.1) einzelner Zuschlagskörner und Zementbestandteile (siehe Abbildung 4.7). Die Bruchenergie Γ , als ein Anteil der translatorischen Energiedifferenz, wird zur Schaffung dieser Bruchfläche aufgewendet. Zusätzlich wird durch den Drehimpuls, nach Gleichung (4-12), Rotationsenergie $E_{rot,1}$ beansprucht. Die Energiebilanz für den Schlagvorgang im Zustand 2 wird in der Gleichung (4-13) dargestellt:

$$\Delta E_{trans,0-1} = m_L \cdot \frac{v_0^2 - v_1^2}{2} = \frac{1}{2} \cdot J_L \cdot \omega_1^2 - \frac{1}{2} \cdot J_L \cdot \omega_T^2 + E_W + \Gamma .$$
(4-13)

Die Bewegung der Lamelle unmittelbar nach dem Schlag ist geprägt durch ein Ablösen von der Trommelachse (Abbildung 4.7). Die kinetische Energie $E_{kin,1} = E_{trans,1} + E_{rot,1}$ der Lamelle wird nicht durch die Bewegungsenergie der Trommel beeinflusst. Mit fortschreitender Rotation der Trommel wird die Hartmetallamelle in den Zustand 3 des Bewegungsmodells überführt.

Der Zustand 3 zeichnet zwei Phasen der Lamellenbewegung auf. In der ersten Phase wird die Rotationsenergie der Lamelle, resultierend aus dem wiederholten Impulsaustausch mit der Trommelachse, in thermische Energie und Verformungsenergie umgewandelt.

Die zweite Phase ist geprägt durch eine Beschleunigung der Lamelle infolge der Rotationsbewegung der Trommel. Mit einer abnehmenden Winkelgeschwindigkeit ω_1 steigt der Einfluss der Zentrifugalkraft F_{rad} . Die Relativbewegung zwischen Lamelle und Trommelachse verschwindet beim Erreichen der Haftbedingung nach Gleichung (4-14):

$$m_L \cdot r_{L_B} \cdot \frac{d\omega_1}{dt} \le F_{rad} \cdot \mu_R . \tag{4-14}$$

Nach *Kuchling* **[93]** beträgt der Reibungskoeffizient μ_R bei der Werkstoffpaarung Stahl/Stahl für einen Kraftschluss $\mu_R = 0,15$. In diesem Zustand wird die Dynamik der Lamelle, analog zum Zustand 1, ausschließlich von der Rotation der Trommel bestimmt. Die Abbildung 4.9 zeigt den Zustand 3, nach dem Eintreten der Haftbedingung zwischen der Lamelle und der Trommelachse.

Abb. 4.9: Dynamik der Hartmetallamelle im Zustand 3 für $\omega_1 \rightarrow 0 \ rad/s$

Die relative Drehbewegung ω_1 , resultierend aus der Dynamik im Zustand 2, führt zu einer Verschiebung des Punkts *B* (siehe Zustand 1). Mit Hilfe des Winkels φ_3 wird die neue Position des Punktes *B*, entsprechend der Vorgehensweise aus Zustand 1, bestimmt. Die Geschwindigkeitskomponenten $v_{y,B}$ und $v_{z,B}$ können, analog zu den Gleichungen (4-6) und (4-7), für den Radius r_{B_2} ermittelt werden. Die Position des Schwerpunktes P_0 bleibt, im Vergleich zum Zustand 1, unverändert. Es gilt die Geschwindigkeitsbeziehung $v_2 = v_0$. Die Winkelverschiebung $\Delta \varphi_{1-3}$ der Lamelle um den Schwerpunkt P_0 wird nach den Gleichungen (4-15) und (4-16) ermittelt:

$$\Delta \varphi_{1-3} = \varphi_1 - \varphi_3 \quad \text{ für } \varphi_1 > \varphi_3 , \qquad (4-15)$$

$$\Delta \varphi_{1-3} = \varphi_1 + \varphi_3 \quad \text{ für } \varphi_1 < \varphi_3 . \tag{4-16}$$

Aufgrund der Winkelverschiebung ist der Stoßpunkt *S* beim folgenden Schlag auf der Umfangskurve der Lamelle verschoben. Der Auftreffwinkel ϕ sowie die Geschwindigkeitskomponenten $v_{y,0}$ und $v_{z,0}$ der Aufprallgeschwindigkeit variieren mit der Position des Stoßpunktes *S*. Bei der Analyse mehrerer Schläge einer Lamelle führt diese Abhängigkeit zu verschiedenen Schlagkraft- und Impulsverläufen. Einen zusätzlichen Einfluss auf die kinetischen Bedingungen der Schlagabläufe hat die erreichte Fragmentierungstiefe z_A der einzelnen Schläge. Aufgrund der geringen Vorschub-geschwindigkeit v_V und der hohen Drehzahl n_T schlagen die Lamellen vermehrt auf einen vorbeschädigten Kontaktpunkt vorangegangener Schläge. Für die Charakterisierung der gesamten Bearbeitungsprozesse werden in dieser Arbeit Mittelwerte für die Impuls- und Schlagkraftverläufe angesetzt.

Zur Funktionserfüllung dieses dreistufigen Bewegungsmodells gilt die Annahme, dass die Rotationsenergie $E_{rot,1}$ der Lamelle zwischen zwei Schlägen vollständig umgewandelt wird und die Relativbewegung zwischen Hartmetallamelle und Trommelachse aufgrund der Haftbedingung verschwindet. Zur Unterstützung dieser Annahme sind im folgenden Abschnitt die Aufnahmen mit einer Hochgeschwindigkeitskamera abgebildet.

4.2.2 Aufnahmen mit einer Hochgeschwindigkeitskamera

Die Filmaufnahmen mit einer Hochgeschwindigkeitskamera (HGK) von der Betonoberflächenentfernung durch Hartmetalllamellen werden im folgenden Abschnitt betrachtet, um das in dieser Arbeit aufgestellte dreistufige Bewegungsmodell hinsichtlich der Annahmen und Schlussfolgerungen zu unterstützen. Die Aufnahmen erfolgten für eine leichte Bodenfräse der mittleren Maschinen-Klasse $P_M = 7,5 kW$. Die Trommeldrehzahl der Aufnahmen beträgt $n_T = 1.650 U/min$ bei einer Vorschubgeschwindigkeit von $v_V = 1 m/min$. Weitere technologische Parameter für die verwendete Maschineklasse sind in Tabelle 9 dargestellt. Die HGK ist eine Speed Cam – Visario 1500 mit einer maximalen Aufnahmefrequenz von $f_{fps,max} = 10.000 Hz$. Zusätzliche Spezifikationen der HGK sowie die verwendete Bearbeitungssoftware sind im Anhang A beschrieben. Die Aufnahmen zeigen aufgrund der erschwerten Zugänglichkeit für Filmaufnahmen (Gehäuseabdeckung und Trommelflansche) vorwiegend die Dynamik einer Lamelle nach dem Zustand 2 des Bewegungsmodells. In Abbildung 4.10 ist schematisch der Bildausschnitt der HGK-Aufnahmen dargestellt.

Abb. 4.10 Schematischer Bildausschnitt der HGK-Aufnahme

Zur Verbesserung des Kontrastes zwischen der Hartmetallamelle und der Betonoberfläche wurde die Lamelle rot gefärbt. Die Bildrate für die Aufnahmen beträgt $f_{fps} = 2.227 Hz$, um

eine Aufnahmedauer von zwei Sekunden bei einer maximalen Bildauflösung von 768 *x* 512 Bildpunkten zu erreichen. Jede Bildaufnahme entspricht einer Winkeländerung $\Delta\theta = 4,5^{\circ}$ der Werkzeugtrommel. Die Abbildung 4.11 zeigt die HGK-Aufnahme für jede zweite Bildaufnahme bei einer Winkeländerung von $\Delta\theta = 9^{\circ}$.

Aufnahme 1: $\theta = 0^{\circ}$

Aufnahme 5: $\theta = 18^{\circ}$

Aufnahme 9: $\theta = 36^{\circ}$

Aufnahme 7: $\theta = 27^{\circ}$

Aufnahme 11: $\theta = 45^{\circ}$

Aufnahme 13: $\theta = 54^{\circ}$

Abb. 4.11: Aufnahme des Schlagvorganges einer Hartmetalllamelle mit Hochgeschwindigkeitskamera

Bei der Auswertung von 200 Stoßvorgängen der Hartmetalllamelle konnte die Annahme für den Zustand 3 bestätigt werden. Zwischen zwei Stoßvorgängen verschwindet die Relativbewegung, resultierend aus dem Drehimpuls im Zustand 2, zwischen der Trommelachse und der Lamelle. Die Dynamik der Lamelle vor dem Stoßkontakt wird ausschließlich durch die Rotation der Werkzeugtrommel bestimmt. Die Winkelverschiebung $\Delta \varphi_{1-3}$ der Lamelle zur Trommelachse bewirkt, dass der Stoßpunkt *S* mit jedem Schlag auf der Umfangskurve verschoben wird. Die Analyse der Aufnahmen zeigte eine gleichmäßige Kontakthäufigkeit der einzelnen Lammellenflanken. Entsprechend der geometrischen Bedingungen der Lamelle und des Auftreffwinkels ϕ (Zustand 2) konnte ein bevorzugter Kontakt der Lamellenflanke, wie die Aufnahme 9 in Abbildung 4.11 zeigt, gegenüber der Hartmetallspitze beobachtet werden. Das Bewegungsverhalten des Punktes *B* auf der Hartmetallspitze in Abbildung 4.11 verdeutlicht den Ablöseeffekt der Lamelle von der Trommelachse nach dem Stoßkontakt. In Aufnahme 5 bis Aufnahme 9 bewegt sich der Punkt *B* gleichmäßig mit der Kreisbewegung der Trommel. Im Moment des Stoßkontaktes wird die Lamelle gebremst und löst sich anschließend von der Trommelachse. Der Punkt *B* verändert seine Höhenlage zur Betonoberfläche von Aufnahme 13 bis Aufnahme 15, bedingt durch die Ablösung der Lamelle, unwesentlich bei fortschreitender Trommelrotation.

In den Fließbildern in Abbildung 4.11 wird die hohe Energiefreisetzung bei der Fragmentierung deutlich. Die Betonoberfläche wird lokal explosionsartig aufgebrochen (siehe Aufnahme 9). Die Analyse der Aufnahmen ergab, dass die Abtragstiefe z_A nur durch eine Anzahl von zwei bis drei Schlägen im gleichen lokalen Wirkradius erreicht wird.

Für eine genaue Verifizieruna des Bewegungsmodells ist die Kenntnis der Geschwindigkeitskomponenten an beliebigen Punkten der Lamelle erforderlich. Die Ergebnisse einer Bewegungssimulation in Kapitel 7 werden als Vergleichswerte zum theoretischen Modell eingesetzt. Eine praktische Messung der Lamellengeschwindigkeit ist aufgrund des Rotationssystems, der Zugänglichkeit und der abrasiven Betonfragmente mit einem hohen technischen Aufwand verbunden, wie zum Beispiel die Installation von Schleifringen zur Datenübertragung.

Die Analyse und Bewertung der Verschleißerscheinungen von Hartmetalllamellen bei der Betonbearbeitung erfolgt in dieser Arbeit mit Hilfe von praktischen Messungen. Im folgenden Kapitel werden ein geeignetes Versuchsprogramm und der dazugehörige Versuchsaufbau beschrieben.

5. Experimenteller Versuchsaufbau und Versuchsprogramm

In Kapitel 3.3 werden die Verschleißmechanismen und die Verschleißerscheinungen bei der Bearbeitung von Betonoberflächen durch Schlagwerkzeuge beschrieben. Ausgehend von diesen Grundlagen und der Dynamik von Hartmetalllamellen, entsprechend Kapitel 4.2, werden in diesem Abschnitt das experimentelle Versuchsprogramm und der Versuchsaufbau dargestellt. Der Versuchsaufbau erfolgte am Karlsruher Institut für Technologie (KIT) auf dem Freigelände des Institutes für Technologie und Management im Baubetrieb in Linkenheim-Hochstetten.

Das Ziel der Untersuchungen sind die Ermittlung der Standzeit T_L der Lamelle, die Höhe des übertragenen Impulses und die Analyse der resultierenden Verschleißerscheinungen. Als eine Randbedingung gilt die Zusammensetzung von Beton, entsprechend der spezifischen Klassifikation für Kernkraftwerke (siehe Kapitel 5.2). Der Haupteinflussparameter auf den Impuls bzw. die Schlagkraft F_z entsprechend dem Bewegungsmodell aus Kapitel 4.2 die Trommeldrehzahl n_T , welche maßgeblich die Aufprallgeschwindigkeiten der Lamelle auf die Betonoberfläche bestimmt. Für die experimentellen Messungen wird die Trommeldrehzahl n_T als variabler Parameter verwendet.

5.1 Versuchsprogramm

5.1.1 Messung der Schlagkräfte zur Impulsanalyse

Die Abtragstiefe z_A der Lamelle wird durch die Höhe des übertragenen Impulses I_z , welcher orthogonal zur Betonoberfläche wirkt, bestimmt. Zur Ermittlung der Impulshöhe werden die Verläufe der Reaktionskräfte $F_z(t)$ und $F_y(t)$ des Betons mit Hilfe von Kraftmessdosen gemessen. Die Messungen werden jeweils mit einer Hartmetalllamelle durchgeführt, um eine direkte Zuordnung der Kräfte zu erreichen. Die eingesetzten Hartmetalllamellen sind in einem neuen Zustand. Die Messstrecke für die Kraftmessungen wird auf $l_1 = 0,15 m$, entsprechend der Kantenlänge eines Betonprüfwürfels, festgelegt. Die Vorschubgeschwindigkeit v_V und die Drehrichtung der Werkzeugtrommel sind feste Randbedingungen. Als variabler Betriebsparameter wird die Drehzahl n_E des Antriebmotors bestimmt, welche Messungen in den Betriebssituationen Teillast, Nennlast und Überlast ermöglicht. Das Versuchsprogramm zur Ermittlung der Schlagkräfte sieht die Analyse einer Vielzahl von Einzelschlägen vor. Die Tabelle 10 zeigt das Versuchsprogramm zur Messung der Reaktionskräfte bei der Betonbearbeitung mit einer Hartmetalllamelle.

Tabelle 10:	Versuchsprogramm zu	r Messung der Reaktionsk	räfte für den Stoßvorgang einer Lamelle
-------------	---------------------	--------------------------	---

Messgrößen	Teillast	betrieb	Nennlastbetrieb	Überlas	tbetrieb
$F_z(t)[N]$	$n - 20 H_{7}$	n = 40 Hz	$n_E = 50 Hz$	$n_E = 60 Hz$	$n_E = 70 Hz$
$F_y(t)[N]$	$n_E = 50 \Pi Z$	$m_E = 40 m_Z$	Variation z_T	~	2

Zusätzlich erfolgt nach Tabelle 10 eine Variation der Zustelltiefe z_T im Nennlastbetrieb für $z_T = 3 mm$ bis $z_T = 5 mm$. In Abhängigkeit der Betriebssituation ist innerhalb der Messstrecke l_1 die Analyse von 150 bis 350 Einzelschlägen bei einer entsprechenden Riementriebübersetzung möglich. Die Analyse der Einzelschläge erfolgt für zwei bis drei Messreihen, um die Reproduzierbarkeit der Ergebnisse zu gewährleisten. Zusätzlich werden die Randbedingungen, wie die Drehrichtung der Werkzeugtrommel und die Vorschubgeschwindigkeit v_V , im Nennlastbetrieb nach Tabelle 11 überprüft.

Tabelle 11: Versuchsprogramm zur Überprüfung der Randbedingungen im Nennlastbetrieb

Messgrößen	Drehrichtu	ng Trommel	Vorschub 1	v _V [m/min]
$F_z(t)[N]$	Gleichlauf	Gegenlauf	1	2
$F_{y}(t)[N]$		-		

5.1.2 Programm zur Verschleißmessung

Die Verschleißmessungen werden mit 12 Hartmetalllamellen durchgeführt, um den Einfluss von möglichen Messfehlern zu minimieren. Die Anzahl der Hartmetallamellen entspricht einer vollbesetzten Trommelachse. Die Auswirkungen des zunehmenden Werkzeugverschleißes werden im Versuchsprogramm mit zwei Prüfmethoden untersucht. Die erste Methode betrachtet den Einfluss auf die des Verschleißes Effektivität des Abtragsmechanismus der Lamelle. Die Untersuchung der Reaktionskräfte $F_z(t)$ und $F_v(t)$ sowie die Veränderung der Abtragstiefe z_A bezogen auf die Betonoberfläche sind Bestandteil der Messreihen. Als konstante Betriebsparameter gelten, entsprechend Kapitel 5.1.1, die Vorschubgeschwindigkeit v_V und die Drehrichtung. Als weitere Randbedingung wird eine feste Zustelltiefe z_T des Werkzeuges eingeführt. Die Zeitpunkte für die Kraftmessungen werden nach je einem Beanspruchungsweg von $s_L = 90 m$ gesetzt. Die Anzahl der Messreihen wird durch die erreichte Standzeit T_L der Lamelle bestimmt. Tabelle 12 zeigt das Versuchsprogramm für die Verschleißmessung nach der ersten Methode.

Messg	größen	Teillast	petrieb	Nennlastbetrieb	Überlas	stbetrieb
$F_z(t)$	[<i>N</i>]					
$F_y(t)$	[N]	$n_E = 30 Hz$	$n_E = 40 \ Hz$	$n_E = 50 Hz$	$n_E = 60 \ Hz$	$n_E = 70 Hz$
Z_A	[mm]					

Tabelle 12: Versuchsprogramm zum Verschleißverhalten bezogen auf den Abtragsmechanismus

Die zweite Methode untersucht die Verschleißerscheinungen an der Hartmetalllamelle. Die Bodenfräse wird während der Versuche im Nennlastbetrieb gefahren und die Antriebsmaschine rotiert konstant mit einer Drehzahl $n_E = 50 Hz$ bei einer Zustelltiefe von $z_T = 4 mm$. In einer ersten Phase werden die früh auftretenden Verschleißerscheinungen an der Lamelle innerhalb eines Beanspruchungsweges von $s_L = 12 m$ untersucht. Die Messgrößen sind vorwiegend geometrische Kennwerte, wie der Flankenradius r_2 (siehe Abbildung 5.1). Die zweite Phase analysiert die Masse- und Geometrieänderungen der Hartmetallamelle, welche in Abhängigkeit des Beanspruchungsweges $s_L = T_L$ auftreten. Abbildung 5.1 zeigt die geometrischen Messgrößen, welche im Versuchsprogramm zur Verschleißcharakterisierung der Hartmetalllamellen verwendet werden.

Abb. 5.1: Geometrische Messgrößen der Hartmetallamelle zur Verschleißcharakterisierung

In Tabelle 13 sind die direkten Verschleißmessgrößen für das Versuchsprogramm der zweiten Prüfmethode zusammengefasst.

Verschleißmessgröße		Beanspruchungsweg s_L
Masseverlust der Lamelle W_{m_L}	[g/m]	а — Т
Reduktion Lamellendurchmesser W_{d_L}	[mm/m]	$S_L = I_L$
Reduktion Innendurchmesser W_{di}	[mm/m]	
Verschleiß der Sternform W_{r_1}	[mm/m]	
Verschleiß vom Flankenradius W_{r_2}	[mm/m]	$s_L = 12 m, s_L = T_L$
Verschleiß HM-Spitze $W_{arphi}{}_{HM}$	[Grad/m]	
Reduktion der HM-Spitzenhöhe $W_{h_{HM}}$	[mm/m]	

Tabelle 13: Versuchsprogramm zur Ermittlung der Verschleißkennwerte von Hartmetalllamellen

Die Messgrößen sind in Anlehnung an die *DIN 50321*, entsprechend der Tabelle 7 aus dem Kapitel 3.3, gewählt. Die Änderungen des Durchmessers d_L und der Masse m_L der Lamelle werden ausschließlich bei der Verschleißmessung über die gesamte Standzeit betrachtet. Für kleine Beanspruchungswege, wie zum Beispiel $s_L = 12 m$, treten keine signifikanten Änderungen dieser Verschleißmessgrößen auf. Die Standzeit T_L der Lamelle wird erreicht, wenn keine effiziente Abtragstiefe z_A , für eine der gewählten Betriebssituationen entsprechend Tabelle 12, bestimmt werden kann.

5.2 Versuchsaufbau

5.2.1 Maschinentechnik und Betonzusammensetzung

Für die Versuche zur Ermittlung der Reaktionskräfte und der Verschleißkennwerte wurde die Bodenfräse CT 250 der Firma *CONTEC®* GmbH verwendet. Die Maschine entspricht der mittleren Leistungsklasse $P_M = 7,5 kW$ mit den zugehörigen Kennwerten nach Tabelle 9. Zur automatisierten Führung der Maschine wurde ein Trägersystem konstruiert (siehe Abbildung 5.2)

Abb. 5.2: Führungssystem der Bodenfräse CT 250 am Versuchsstand

Die Bodenfräse wird mit einem Stahlrahmen in zwei liegenden U-Stahlprofilen $(100 \ mm \ x \ 40 \ mm \ x \ 1.200 \ mm)$ geführt. Innerhalb der U-Profile kann die Fräse durch zwei elektronische Zahnstangenantriebe (siehe Anhang A für *MiNGARDi*® - *Linea System 0*⁺) in die gewünschte x-Position zur Betonoberfläche gebracht werden. Die Fräse wird in z-Richtung, entsprechend dem industriellen Einsatz, ausschließlich durch das Eigengewicht $(m_{Fräse} = 135 \ kg)$ im Rahmen gehalten. Die Zustelltiefe z_T der Werkzeugtrommel im Maschinengehäuse erfolgt mit Hilfe von vier M20-Gewindestangen, welche eine Steigung von 2,5 mm besitzen. Zur Vermeidung von Abhebeeffekten des Trägerrahmens im Betrieb wird die Halterung auf den Gewindestangen in der gewählten z-Position fixiert. Das gesamte Trägersystem in Abbildung 5.2 ist auf zwei I-Profil-Trägern nach DIN 1025-S235JR

(150 mm x 170 mm x 1.500 mm) gelagert, welche mit der Führungstraverse verschweißt sind. Die Traverse (5.900 mm x 2.510 mm x 180 mm) wird fahrbar auf zwei Schienen geführt. Der Vorschub der Traverse bzw. der Bodenfräse in y-Richtung übernehmen zwei Elektromotoren ($P_E = 15 kW$), welche jeweils eine Spindel mit einer Länge von zwei Meter antreiben. Die Abbildung 5.3 zeigt das Antriebskonzept zur Vorschubsteuerung der Traverse.

Abb. 5.3: Ausschnitt der Führungstraverse mit Kettenantrieb

Die Spindeln haben einen Durchmesser von d = 80 mm und eine Steigung von p = 9 mm. Zur Drehzahlsteuerung von der Werkzeugtrommel und den Spindeln werden drei Frequenzumrichter (*Hitachi – WJ200* siehe Anhang A) eingesetzt. Die Anordnung der Frequenzumrichter erfolgte in einem Sicherheitsabstand von der Messtechnik, um elektronische Störsignale zu vermeiden.

Die Werkzeugtrommel der Bodenfräse wird für Kraftmessungen mit einer Hartmetalllamelle bzw. für die Verschleißuntersuchungen mit 12 Hartmetalllamellen bestückt. Die Werkzeugtrommel besitzt sechs satellitenförmig angeordnete Achsen mit je einem Durchmesser von $d_A = 16 mm$. Die Lamellen besitzen sechs Spitzen. Der Lamellenaußendurchmesser beträgt $d_L = 57 mm$ und die Breite $b_L = 6 mm$. Der Innendurchmesser $d_i = 25 mm$ ermöglicht der Lamelle eine radiales Spiel auf der Trommelachse von $(d_i - d_A)/2 = 4,5 mm$. Entlang der Umfangskurve des Lamellengrundkörpers sind nach Abbildung 5.4 sechs Hartmetallspitzen mit einer Länge von $h_{HM} = 8,3 mm$ eingelötet.

Abb. 5.4 Hartmetalllamelle mit eingelöteten Hartmetallspitzen für die praktischen Versuchsreihen
Die Hartmetallamellen in Abbildung 5.4 werden von Bodenfräsen der mittleren Leistungsklasse $P_M = 7,5 \ kW$ als standardisierte Schlagwerkzeuge eingesetzt.

Die Werkzeugtrommel rotiert mit den dazugehörigen Lamellen, entsprechend dem Wirkprinzip aus Kapitel 4.2, über die Betonoberfläche. Die Drehzahl n_T ist abhängig von der Übersetzung des Riemenantriebes der Bodenfräse. Zur Bestimmung der Riemenübersetzung werden die Drehzahlen der Werkzeugtrommel mit einem digitalem Drehzahlmesser (*Ono Sokki – HT440* siehe Anlage A) bestimmt.

In Kernkraftwerken werden nach *Manns* **[97]** vorwiegend Normalbetone (ausgenommen der Reaktor-Spanndruckbehälter) eingesetzt. Nach der Klassifikation für den Normalbeton C30/37 erfolgte die Herstellung der Probekörper durch die Firma *Züblin AG*. Die Hauptmerkmale der Rezeptur des Betons sind in Tabelle 14 zusammengefasst.

Hauptmerkmale des Betons			
Festigkeitsklasse		C30/37	
w/z -Wert		0,58	
Zementgehalt	$[kg/m^3]$	320	
Zementart		CEM I 52,5 R	
Betonzuschlag	$[kg/m^3]$	1851	
		Rheinsand (37 %)	$(0 \le d \le 2 mm)$
Betonzuschlag		Kiessand (23 %)	$(2 \le d \le 8 mm)$ $(8 \le d \le 16 mm)$
		Rheinkies (40%)	$(0 \leq u \leq 10 mm)$
Gehalt an Zusatzmittel	$[kg/m^3]$	2,24	

Tabelle 14: Merkmale der Betonrezeptur von der Firma Züblin AG

Die Bestandteile der Rezeptur beeinflussen maßgeblich die mechanischen Eigenschaften des Betons. In Kapitel 2.1 werden diese Parameter, hinsichtlich der Bedeutung auf die Werkstoffeigenschaften, eingehender erläutert. Zur Bestimmung der Festigkeitseigenschaften wurde an der Material-Prüf-Anstalt (MPA) des Instituts für Massivbau (IMB) am Karlsruher Institut für Technologie (KIT) die einaxiale Druckfestigkeit f_c und der Elastizitätsmodul E_c mit Hilfe von Würfel- und Zylinderprüfkörpern ermittelt. Die Prüfkörper wurden zusammen mit den Probekörpern in einem Fertigungsprozess nach der Rezeptur aus Tabelle 14 hergestellt. Die Prüfungen erfolgten, entsprechend der Normvorschrift EN 1992-1-1, nach 28 Tagen und ergaben eine mittlere Druckfestigkeit des Betons von $f_{cm} = 62,8 MPa$ und einen mittleren E-Modul von $E_{cm} = 30.020 MPa$. Die mittlere Dichte für die Betonkörper beträgt $\rho_c = 2.342 kg/m^3$.

Für die experimentellen Versuche wurden zwei geometrisch verschiedene Probekörper produziert. Zur Ermittlung der Reaktionskräfte wurden drei Prüfwürfel als Probekörper $(m_{c,1} \approx 7,9 \ kg)$ mit 150 mm Kantenlänge nach DIN 1048 Teil 5 ausgewählt. Die Geometrie ist durch eine hohe Steifigkeit ausgezeichnet und ermöglicht realitätsnahe Messergebnisse. Die zweite Geometrieausführung gewährt durch eine größere Betonoberfläche die Bestimmung der Verschleißkennwerte durch einen dauerhaften Bearbeitungsprozess. In Abbildung 5.5 sind die zwei Varianten der Probekörper dargestellt

Abb. 5.5: Beton-Probekörper für die Kraft- und Verschleißmessungen

Die Höhe und Breite der Probekörper ($m_{c,2} = 842 \ kg$) für die Verschleißmessungen sind auf die geometrischen Rahmenbedingungen des Trägersystems und die Höhe der Traverse angepasst.

5.2.2 Versuchseinrichtung und Messtechnik zur Ermittlung der Reaktionskräfte

Die Oberflächen der Betonprobekörper werden im Versuchsprogramm durch die schlagenden Hartmetallamellen beansprucht bzw. fragmentiert. Der Untergrund für die Betonproben muss für realitätsnahe Kraftmessungen eine hohe Steifigkeit aufweisen. Zur Bettung der Proben wurde hierfür ein Betonfundament vergossen. Auf dem Fundament ist eine Stahlplatte (S235JR, 1500 mm x 500 mm x 20 mm) verschraubt. Für die Messungen der Reaktionskräfte sind auf der Stahlplatte vier Kraftsensoren (*ME-Meßsysteme – Mehrachsen Kraftsensor K3D160* siehe Anlage A) befestigt, welche die Reaktionskräfte $F_z(t)$, $F_y(t)$ und $F_x(t)$ messen. Die maximale Nennkraft F_{max} der Sensoren beträgt $F_{max} = \pm 10 kN$. Die Anordnung von vier Sensoren erlaubt entsprechend der Abbildung 5.6 ebenfalls eine Kraftmessung bei den Verschleiß-untersuchungen mit den Probekörpern der Variante 2.

Abb. 5.6: Anordnung der Kraftsensoren auf dem Betonfundament

Zur Messung der Reaktionskräfte für die Impulsanalyse (siehe Kapitel 5.1) wurde eine Halterung (S235JR, 160 mm x 180 mm x 20 mm) für den Betonprobekörper der Variante 1 konstruiert. Die Halterung ermöglicht die Fixierung der Betonprobe in die y- und z-Richtung und ist mit dem Kraftsensor verschraubt. Die x-Richtung wird, aufgrund der Klemmung in y-Richtung, zusätzlich fixiert (siehe Abbildung 5.7).

Abb. 5.7: Versuchsstand zur Kraftmessung für den Betonprobekörper der Variante 1

Bei den experimentellen Versuchen wird die Bodenfräse mit Hilfe der Traverse über den Betonprobekörper geführt. Es treten ausschließlich die schlagenden Lamellen in Kontakt mit der Betonoberfläche. Die entsprechende Versuchsanordnung zeigt die Abbildung 5.8.

Abb. 5.8 Versuchsanordnung für die Messung der Kräfte beim Fräsen mit Hartmetallamellen

Die Datenerfassung erfolgt durch ein Multifunktions-Datenerfassungsgerät (*National Instruments – NI USB-6212* siehe Anlage A) mit einer Abtastfrequenz von $f_{NI} = 10.000 Hz$. Zwischen dem Datenerfassungsgerät und den Kraftsensoren ist ein Messverstärker (*Hottinger Baldwin Messtechnik – MGA*) integriert. Die Auswertung und Aufzeichnung der Daten erfolgt mit der Software *LabVIEW 2009* und *DIAdem 11.1* der Firma *National Instruments*.

5.2.3 Versuchseinrichtung und Analysetechnik zur Verschleißcharakterisierung

Die Untersuchungen zum Verschleißverhalten der Hartmetalllamelle werden an den Betonprobekörpern der Variante 2 (siehe Kapitel 5.2.1) durchgeführt. Entsprechend dem Versuchsprogramm aus Kapitel 5.1 erfolgt die Häufigkeit der Verschleißanalysen nach den zurückgelegten Beanspruchungswegen s_L . Eine gefräste Strecke am Betonprobekörper der Variante 2 ergibt einen Beanspruchungsweg von $s_L = 1,5 m$ (siehe Abbildung 5.9). Der Betonkörper wird auf eine Stahlplatte (S235JR, 1.500 mm x 500 mm x 20 mm) fixiert, welche mit den vier Kraftsensoren, nach Abbildung 5.6, verschraubt ist. Die Versuchsanordnung zur Ermittlung der Standzeit T_L der Hartmetalllamellen zeigt die Abbildung 5.9.

Abb. 5.9 Versuchsanordnung für die Verschleißmessung zur Ermittlung der Standzeit T_L

Zur Reduzierung der Staubemissionen wird während der Verschleißmessung das Abtragsgut direkt an der Bodenfräse abgesaugt. Das Verhalten der Abtragstiefe z_A mit einem zunehmenden Werkzeugverschleiß wird durch eine Oberflächenvermessung untersucht. Das Messgerät (*Polytec – CL 5 MG 35* siehe Anhang A) tastest die Oberfläche in einer Breite von

Die Analyse des Masseverlustes W_{m_L} der Hartmetallamelle erfolgt durch eine Wägeplattform (SOEHNLE – S20 2760 siehe Anhang A). Die geometrischen Verschleißkenngrößen, nach Tabelle 13, werden mit einem digitalen Lichtmikroskop (Keyence - VHX 600 siehe Anhang A) bestimmt. Die Ermittlung der geometrischen Verschleißkenngrößen basiert auf der Vermessung der makroskopischen Geometrieveränderungen an der Lamelle in Abhängigkeit vom Beanspruchungsweg s_L . Abbildung 5.10 zeigt die Versuchseinrichtung zur Vermessung der Hartmetalllamelle am Institut für Angewandte Materialien (IAM) am Karlsruher Institut für Technologie (KIT).

(VH-Z05/ VH-Z25)

Einspann-Vorrichtung

Abb. 5.10: Versuchseinrichtung zur Vermessung der Hartmetallamelle am IAM

Die Analysetechnik des digitalen Mikroskops erlaubt die Vermessung von Profilen und dreidimensionalen Flächendarstellungen. Die Profile werden als Schnittdarstellungen (maximal 45 Schnitte) in allgemeingültigen Datenformaten gespeichert und sind nachhaltig für spezifische Auswertungen verwendungsfähig. In Abhängigkeit der gewählten Vergrößerung am Mikroskop werden die Schnitte der Tiefenschärfe für Lamellen in einem vertikalen Abstand von $\Delta h = 0,1 - 0,2 mm$ durchgeführt. Das maximal auflösbare Höhenprofil für die Untersuchungen der Hartmetallamelle beträgt $h_{max} = 9 mm$.

6. Ergebnisse und Auswertung der experimentellen Versuche

Die Auswertung entsprechend dem Versuchsprogramm nach Kapitel 5.1 beginnt mit der Überprüfung der Randbedingungen für die Ermittlung der Reaktionskräfte und Verschleißmessungen. Als Randbedingungen werden eine konstante Vorschubgeschwindigkeit v_V und Zustelltiefe z_T , sowie die Unabhängigkeit der Drehrichtung bei gleicher Vorschubrichtung angesehen. Anschließend erfolgt die Messung und Bewertung der Reaktionskräfte für verschiedene Betriebssituationen. Mit einem zunehmenden Beanspruchungsweg s_L treten Verschleißerscheinungen an der Lamelle und eine Abnahme der Abtragstiefe z_A auf der Betonoberfläche auf. Die resultierenden Auswirkungen werden im Kapitel 6.3 dargestellt und analysiert.

6.1 Analyse der Vorversuche zur Überprüfung der Randbedingungen

6.1.1 Ermittlung der Stoßzahl e für die Werkstoffpaarung Stahl/Beton

In Kapitel 3.1 werden Angaben zu den Stoßzahlen für die Werkstoffpaarung Stahl/Beton nach *Jüngert* **[67]** gegeben. Die Stoßzahlen hängen von der Betonzusammensetzung, der Geometrie der Stoßpartner sowie der Steifigkeit des Fundamentes ab. Eine Ermittlung der Stoßzahlen für den Versuchsaufbau nach Kapitel 5.2 ist zur Bewertung der Dynamik der Lamelle nach dem Bewegungsmodell aus Kapitel 4.2 erforderlich. Zur Ermittlung der Stoßzahl wurde ein geführtes definiertes Fallgewicht verwendet. Das Fallgewicht entspricht einer Kugel mit einer Masse von $m_K = 4,92 kg$. Abbildung 6.1 zeigt schematisch die Versuchsanordnung zur Bestimmung der Stoßzahl *e*.

Abb. 6.1: Darstellung der Versuchsanordnung zur Messung der Schlagzahl im Querschnitt

Zur Ermittlung der Stoßzahl *e* für den Versuchsaufbau wurde das Fallgewicht in einer Höhe von $h_0 = 0.5 m$ positioniert. Durch die Entfernung eines Sicherungsstiftes fällt das Fallgewicht infolge der Erdbeschleunigung *g* und stößt mit der Geschwindigkeit v_0 auf die Betonoberfläche. Entsprechend des teilelastischen Stoßvorganges (siehe Kapitel 3.1) ist die Rückprallgeschwindigkeit $v_1 < v_0$. Die resultierende Rückprallhöhe h_1 wird mit einer Hoch-Geschwindigkeits-Kamera dokumentiert. Der Impuls I_0 der Kugel vor dem Stoßkontakt wird resultierend aus der Energiebilanz nach Gleichung (6-1), bestimmt:

$$I_0 = m_K \cdot v_0 = m_K \cdot \sqrt{2 \cdot g \cdot h_0} = 4,92 \ kg \cdot \sqrt{2 \cdot 9,81 \frac{m}{s^2} \cdot 0,5 \ m} = 15,4 \ N \cdot s \ . \ (6-1)$$

Zur Verwendung der Gleichung (6-1) gilt die Vorrausetzung, dass die Luftreibung vernachlässigbar ist. Die aufgezeichnete Rückprallhöhe beträgt $h_1 = 0,17 \pm 0,015 m$. Die Abweichungen in den 15 Messungen können auf eine Ungenauigkeit im Aufprallwinkel sowie auf die Betonzusammensetzung zurückgeführt werden. Treten an der Kontaktstelle auf der Betonoberfläche Zuschlagskörner als Stoßpunkte auf, kann die Rückprallhöhe h_1 aufgrund der höheren Festigkeit der Körner gegenüber der Zementmatrix ansteigen. Der Impuls I_0 der Kugel nach dem Stoß kann, analog zur Gleichung (6-1), für die Rückprallhöhe h_1 bestimmt werden:

$$I_1 = m_K \cdot v_1 = m_K \cdot \sqrt{2 \cdot g \cdot h_1} = 9 \pm 0.39 \, N \cdot s \,. \tag{6-2}$$

Die Stoßzahl *e* für den Versuchstand wird nach Gleichung (3-14) ermittelt und beträgt unter Berücksichtigung der gemessenen Impulse $e = 0,59 \pm 0,02$. Im Vergleich zu den Literaturangaben (siehe Kapitel 3.1), welche eine Streuung der Stoßzahlen zwischen e = 0,60 und e = 0,74 aufzeigen, ist die gemessene Stoßzahl *e* für den Versuchstand ein akzeptabler Wert zur Bewertung der Stoßvorgänge zwischen der Werkstoffpaarung Stahl/Beton bzw. Lamelle/Betonprobekörper.

6.1.2 Bestimmung der Trommeldrehzahl n_T für verschiedene Betriebszustände

Die Trommeldrehzahl n_T ist der Haupteinflussparameter zur Charakterisierung der Lamellendynamik (siehe Bewegungsmodell Kapitel 4.2). Die Steuerung der Motordrehzahl n_E der Bodenfräse am Versuchsstand erfolgt mit Hilfe eines Frequenzumrichters. Infolge einer Riementriebübersetzung rotiert die Werkzeugtrommel mit $n_T \neq n_E$. Zur Bestimmung der Übersetzung bzw. der Trommeldrehzahl wird, entsprechend der Darstellung im Kapitel 5.2, ein digitaler Drehzahlmesser verwendet. Das Drehzahlmessgerät analysiert die Rotation der Trommel mit dem Messprinzip der Laser-Reflex-Abtastung. Ein Markierungsstreifen wird an der Werkzeugtrommel angebracht, welcher durch das Drehzahlmessgerät bei jeder Rotation erfasst wird. Die Messungen erfolgten am Versuchsstand für verschiedene Betriebssituationen im laufenden Fräsbetrieb. Das Diagramm in Abbildung 6.2 zeigt die Ergebnisse der Drehzahlmessung.

Abb. 6.2: Ergebnisse zur Bestimmung der Trommeldrehzahl n_T als Funktion der Motordrehzahl n_E

Die Messungen mit Hilfe des Drehzahlmessgerätes ergaben eine Riementriebübersetzung von $n_T/n_E = 0.55$. Im Nennlastbetrieb $n_E = 3.000 U/min$ beträgt die Trommeldrehzahl $n_T = 1.653 \pm 1 U/min$ für eine jeweilige Anzahl von drei Messungen. Die Ungenauigkeit ist auf die Fehlerangabe des Herstellers für den Drehzahlbereich n < 7.000 U/min (siehe *Ono Sokki – HT 440* Anlage A) bezogen. Die Messungen zeigen einen linearen Anstieg der Trommeldrehzahl mit zunehmender Motorfrequenz. Der Messfehler beträgt $\Delta n_T/n_T \leq 0.001$ und wird in der weiteren Betrachtung vernachlässigt. In Anlage B sind die Ergebnisse zur Drehzahlmessung tabellarisch dargestellt.

6.1.3 Vergleich zwischen Gleichlauf- und Gegenlaufbetrieb der Werkzeugtrommel

Die Messungen zur Überprüfung des Gleich- und Gegenlaufbetriebes wurden für den Nennlastbetrieb $n_E = 3.000 U/min$ durchgeführt. Die Werkzeugtrommel wurde mit einer Hartmetallamelle bestückt. Die Vorschubgeschwindigkeit beträgt $v_V = 1 m/min$ und die Zustelltiefe $z_T = 4 mm$. Die Datenerfassung erfolgte mit einer Abtastfrequenz f_{NI} von $f_{NI} = 10.000 Hz$. Die Auswertungen der Kraftreaktionen $F_z(t)$ und $F_y(t)$ ergaben 280 Einzelschläge im Gleichlaufbetrieb und 300 Einzelschläge im Gegenlaufbetrieb. Als Bewertungsgrundlage dient die Normalverteilung für die Kraftamplituden $F_{z,max}$ und $F_{y,max}$ der aufgezeichneten Einzelschläge für die Kraftamplituden $F_{z,max}$, welche orthogonal zur Betonoberfläche gerichtet sind. Der Vergleich zur Dichtefunktion $\zeta = f(F_{y,max})$ ist im Anhang B dargestellt.

Abb. 6.3: Normalverteilung der Kraftamplituden F_{z,max} für den Gegen- und Gleichlaufbetrieb

Die Normalverteilung der Kraftamplituden $F_{z,max}$ weist für den Gleichlauf- und Gegenlaufbetrieb eine *Gaußsche*-Glockenkurve auf. Im Gleichlaufbetrieb beträgt die mittlere Kraftamplitude $\overline{F}_{z,max}(Gleichlauf) = 702 N$. Die Analyse der Kraftamplituden im Gegenlaufbetrieb ergab einen Mittelwert von $\overline{F}_{z,max}(Gegenlauf) = 740 N$. Der Vergleich der Messergebnisse zwischen einem Gleichlauf- und Gegenlaufbetrieb der Werkzeugtrommel ergibt bei konstanten Betriebsbedingungen und einer Differenz der Kraftamplituden von $\Delta \overline{F}_{z,max} = \overline{F}_{z,max}(Gegenlauf) - \overline{F}_{z,max}(Gleichlauf)$ eine maximale Abweichung von $\Delta \overline{F}_{z,max} - \overline{F}_{z,max} = 0,054$ bezogen auf den Gleichlaufbetrieb. Die Messergebnisse zeigen keinen signifikanten Unterschied bezogen auf die Drehrichtung der Werkzeugtrommel. Die Resultate stützen die Annahmen nach dem Bewegungsmodell aus Kapitel 4.2, dass der Abtragsmechanismus vorwiegend durch die Drehzahl n_T und die Zustelltiefe z_T bestimmt wird und unabhängig von der Drehrichtung der Werkzeugtrommel ist.

6.2 Analyse der Kraftreaktionen als Funktion der Haupteinflussparameter

6.2.1 Bestimmung der mittleren Reaktionskräfte als Funktion der Zustelltiefe z_T

Die Messung der Kraftreaktion am Betonprobekörper erfolgte, entsprechend dem Versuchs-Aufbau in Kapitel 5.2, für einen Beanspruchungsweg $s_L = 0,15 m$. Die Messungen wurden unabhängig für drei Hartmetalllamellen durchgeführt, um eine Reproduzierbarkeit der Ergebnisse zu gewährleisten. Für eine genaue Zuordnung der Kraftkomponenten $F_z(t)$ und $F_y(t)$ wurde die Werkzeugtrommel mit einer Hartmetalllamelle bestückt. Zur Einflussdefinition der Zustelltiefe z_T erfolgten die Messungen im Gleichlaufbetrieb der Werkzeugtrommel mit einer Nennlastbetriebsdrehzahl $n_E = 3.000 U/min$ bzw. $n_T = 1.650 U/min$ (siehe Kapitel 6.1) Die Vorschub-Geschwindigkeit v_V blieb während der Versuche mit $v_V = 1 m/min$ konstant. Abbildung 6.4 zeigt einen Ausschnitt ($\Delta t = 1 s$) der aufgezeichneten Rohdaten für die Kraftkomponente F_z mit einer Zustelltiefe $z_T = 4 mm$.

Abb. 6.4: Kraftreaktion $F_z(t)$ im Nennlastbetrieb mit $z_T = 4 mm$

Der Verlauf der Kraftreaktion F_z in Abbildung 6.4 weist eine hohe Streuung der Kraftamplituden auf. Die Streuung resultiert aus den variierenden Randbedingungen für den jeweiligen Stoßvorgang der Hartmetallamelle mit der Betonoberfläche. Entsprechend dem Bewegungsmodell aus Kapitel 4.2 folgt aus dem Drehimpuls im Stoßkontakt eine Relativverschiebung der Lamelle auf der Trommelachse. Der Aufprallwinkel ϕ der Lamelle ist für den nachfolgenden Stoßvorgang verschieden und ergibt neue Geschwindigkeitskomponenten $v_{z,0}$ und $v_{y,0}$ (siehe Gleichungen (4-6) und (4-7)). Resultierend aus diesen Stoßvorgängen sind variierende Kraftstöße bzw. Impulse. Unterschiedliche Kraftamplituden folgen zusätzlich den wechselnden Kontaktstellen der Lamelle, welche auf die Zementmatrix oder den Betonzuschlag schlägt. Eine weitere Ursache der Streuung folgt der Randbedingung, dass die Vorschubgeschwindigkeit v_V gegenüber der Umfangsgeschwindigkeit v_0 der Lamelle vernachlässigbar ist. Die Lamelle schlägt im Zeitraum von $\Delta t = 1 s$ mit 27 Einzelschlägen (siehe Abbildung 6.4) auf die Betonoberfläche. Der in diesem Zeitraum zurückgelegte Beanspruchungsweg $s_L = 0,017 m$ führt vorwiegend zu Stoßkontakten der Lamelle mit der bereits vorgeschädigten Betonoberfläche. Als Folge der variierenden Kraftstöße wird in der Auswertung der Mittelwert für die aufgezeichneten Kraftreaktionen gebildet.

In Abbildung 6.5 ist der Verlauf der Kraftreaktionen F_z als Mittelwertbildung für 290 Einzelschläge der Lamelle im Nennlastbetrieb mit der Zustelltiefe $z_T = 4 mm$ dargestellt.

Abb. 6.5: Verlauf der Kraftreaktion F_z als Mittelwerte von 290 Einzelschlägen

Der Verlauf der Messergebnisse folgt den theoretischen Grundlagen zur Impulserhaltung und den Stoßvorgängen aus Kapitel 3.1. Die mittlere Kraftamplitude wird nach $\Delta t = 0,001 s$ erreicht und beträgt $F_{z,max} = 702 N$. Zur Bestimmung des Impulses $I_{z,0}$ nach der Gleichung (4-11) wird der Verlauf der Mittelwerte mit Hilfe eines Polynoms 6. Grades, entsprechend Gleichung (6-3), approximiert:

$$F_{z} = f(t) = A \cdot t^{6} + B \cdot t^{5} + C \cdot t^{4} + D \cdot t^{3} + E \cdot t^{2} + F \cdot t + G.$$
(6-3)

Die Koeffizienten des Polynoms sind in Anhang B für die gemittelten Kraftreaktionen F_z und F_y zusammengefasst. Der Impuls $I_{z,0}$ der Hartmetallamelle für den Stoßvorgang nach Abbildung 6.5 wird nach Gleichung (6-4) bestimmt und ergibt die Kompressionsphase (siehe theoretische Grundlagen im Kapitel 3.1 in Abbildung 3.3) unter dem Kraft-Zeit-Verlauf von $F_z = f(t = 0,000048 s) = 0 N$ bis zur Kraftamplitude $F_z = f(t = 0,00096 s) = F_{z,max}$:

$$I_{z,0} = \int_{0,000048}^{0,00096} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,384 \, Ns \,. \tag{6-4}$$

Der Impuls $I_{y,0}$ wird analog der Vorgehensweise zu den Kraftreaktionen F_z ermittelt und ist in Anlage B formuliert.

Die Bestimmung des Verlaufes der Reaktionskräfte am Betonkörper erfolgte für unterschiedliche Zustelltiefen z_T . Die Trommeldrehzahl $n_T = 1650 U/min$ blieb während der Messungen konstant im Nennlastbetrieb. Die Abbildung 6.6 zeigt die Messergebnisse für den Verlauf der Kraftreaktionen F_z als Mittelwerte der aufgezeichneten Stoßvorgänge bei einer variablen Zustelltiefe z_T . Die zugehörigen Kraftreaktionen F_z sind im Anhang B dargestellt.

Abb. 6.6: Verlauf der Kraftreaktionen F_z als Mittelwerte für verschiedene Zustelltiefen z_T

Die Ergebnisse zeigen einen Anstieg der mittleren Kraftamplituden $F_{z,max}$ in Abhängigkeit der Zustelltiefe z_T . Die Dauer der Kompressions- und Restitutionsphasen nimmt mit Lastanstieg, aufgrund des höheren Impulseintrages bei konstanter Lamellenmasse, ab. Für eine Zustelltiefe $z_T = 3 mm$ entspricht die Kraftamplitude $F_{z,max} = 610 N$. Entsprechend dem Bewegungsmodell aus Kapitel 4.2 nimmt der Aufprallwinkel ϕ der Hartmetalllamelle mit steigender Zustelltiefe z_T zu. Der resultierende Anstieg der Geschwindigkeitskomponente $v_{z,0}$, welche die Hauptursache zur Fragmentierung der Betonoberfläche darstellt, führt zu einer steigenden Kraftkomponente F_z bzw. einer Impulsänderung $\Delta I_{z,0}$. Die Messergebnisse ergaben ein annähernd lineares Verhalten zwischen den Amplituden der Kraftreaktionen am Betonkörper und der Zustelltiefe z_T (siehe Abbildung 6.7).

Abb. 6.7: Analyse der Kraftamplituden F_{max} als Funktion der Zustelltiefe z_T bei $n_T = konst$.

Der Anstieg der Kraftreaktion $F_{y,max}$ in Abhängigkeit der Zustelltiefe beträgt, entsprechend der linearen Approximation der Messwerte in Abbildung 6.7, $\Delta F_{y,max}/\Delta z_T \approx 13 \pm 4 N/mm$. Im Vergleich ist der Einfluss der Zustelltiefe auf die Kraftreaktion $F_{z,max}$ mit einem Anstieg von $\Delta F_{z,max}/\Delta z_T \approx 90 \pm 5 N/mm$ wesentlich größer. Die Zustelltiefe z_T kontrolliert vorwiegend die Kraftreaktion $F_z(t)$. Infolge von Reibungseffekten und zu kleinen Kraftamplituden ist ein Einfluss der Zustelltiefe z_T auf die Kraftreaktion F_y in dem untersuchten Messbereich nicht anzunehmen.

Der Impuls $I_{z,0}$ der Hartmetallamelle beim Aufprall steigt, entsprechend der Messergebnisse nach Abbildung 6.6 und Anlage B, von $I_{z,0} = 0.31 Ns$ für $z_T = 3 mm$ auf $I_{z,0} = 0.4 Ns$ für $z_T = 5 mm$.

6.2.2 Bestimmung der mittleren Reaktionskräfte als Funktion der Drehzahl n_E

Ein Haupteinflussparameter auf die Dynamik und die Fragmentierung ist die Motordrehzahl n_E bzw. die Trommeldrehzahl n_T . Die Vorgehensweise zur Bestimmung der mittleren Reaktionskräfte F_z und F_y als Funktion der Drehzahl n_E folgt der Beschreibung aus dem vorherigen Kapitel 6.2.1 zur Mittelwertbildung der Einzelschläge. Die Messungen erfolgten, entsprechend den Untersuchungen zur Zustelltiefe z_T , mit einer neuen Hartmetalllamelle für jeden Einzelversuch. Zur Reproduzierbarkeit wurden drei Hartmetalllamellen unabhängig voneinander eingesetzt und die Messwerte verglichen. Die Zustelltiefe wurde mit $z_T = 4 mm$ während der Messungen konstant gehalten. Die Abbildung 6.8 stellt den Verlauf der mittleren Kraftamplituden $F_{z,max}$ und $F_{y,max}$ in Abhängigkeit der Motordrehzahl n_E dar.

Abb. 6.8: Analyse der mittleren Kraftamplituden F_{max} als Funktion der Drehzahl n_E bei $z_T = konst$.

Die Ergebnisse der Abbildung 6.8 zeigen, dass mit zunehmender Drehzahl die Reaktionskräfte bzw. die Stoßeinwirkungen der Hartmetalllamelle ansteigen. Mit Hilfe einer linearen Approximation wird der Anstieg die Kraftamplitude $F_{z,max}$ zu $\Delta F_{z,max}/\Delta n_E \approx 0,19 N \cdot min$ bestimmt. Die maximale Differenz der Approximation beträgt $\Delta F_{z,max}/F_{z,max}(n_E) = 0,035$, welcher auf die Messungenauigkeiten sowie die Abweichungen in der Mittelwertbildung zurückgeführt werden kann. Der Verlauf der Kraftamplitude $F_{y,max}$ weist, im Vergleich zur Kraft-Amplitude $F_{z,max}$, mit $\Delta F_{y,max}/\Delta n_E \approx 0,07 N \cdot min$ einen um 63 % flacheren Anstieg der Kräfte mit zunehmender Drehzahl auf. Die maximale Abweichung der Approximation für die Kraftkomponente in Vorschubrichtung beträgt $\Delta F_{z,max}/F_{z,max}(n_E) = 0,059$.

Die Messergebnisse stützen die Annahme des Bewegungsmodells aus Kapitel 4.2, dass mit zunehmender Drehzahl die Umfangsgeschwindigkeiten der Hartmetalllamelle steigen. Die Folge sind steigende Geschwindigkeitskomponenten $v_{z,0}$ und $v_{y,0}$, welche zu größeren Schlagkräften führen. Der Anstieg der Schlagkräfte bzw. der Reaktionskräfte F_z und F_y des Probekörpers weisen eine lineare Abhängigkeit mit steigender Drehzahl n_E auf. Ausgehend von dem linearen Verhalten der Reaktionskräfte in Bezug auf eine sich gleichmäßig ändernde Zustelltiefe z_T (siehe Kapitel 6.2.1) wird die Annahme getroffen, dass ebenfalls ein linearer Zusammenhang zwischen der Drehzahl n_E und der Zustelltiefe z_T innerhalb des untersuchten Messbereiches besteht.

Zur Bestimmung der Impulse $I_{z,0}$ und $I_{y,0}$ wurden die Kraftmessungen in Abhängigkeit der Drehzahl n_E , analog zu der Vorgehensweise im Kapitel 6.2.1, mit Hilfe eines Polynoms sechsten Grades angenähert. Die jeweiligen Polynomfunktionen für die Messergebnisse sind im Anhang B aufgeführt. Abbildung 6.9 zeigt das Verhalten der übertragenen Stoßimpulse $I_{z,0}$ und $I_{y,0}$ einer Hartmetallamelle auf den Betonprobekörper bei variablen Drehzahlen n_E .

Abbildung 6.9: Auswertung der Stoßimpulse I_0 als Funktion der Drehzahl n_E bei $z_T = konst$.

Die Auswertungen der Polynomfunktionen 6. Grades ergaben einen minimalen Impuls von $I_{z,0} = 0,22 Ns$ bei der Drehzahl $n_E = 1.800 U/min$. Mit steigender Drehzahl nimmt der Impuls $I_{z,0}$, welcher orthogonal zur Betonoberfläche wirkt und entscheidend für die Fragmentierung ist, linear zu. Der maximale Impuls $I_{z,0} = 0,537 Ns$ konnte bei einer Drehzahl $n_E = 4.200 U/min$ bestimmt werden. Die Auswertung der Approximation der Impuls-komponente $I_{y,0}$ zeigt im Vergleich zur Analyse der Impulskomponente $I_{z,0}$ einen geringfügigen Anstieg mit zunehmender Drehzahl. Die Approximation weist einen maximalen Fehler von $\Delta I_{y,0}/I_{y,0}(n_E) = 0,107$ auf. Die hohe Streubreite der Impulse $I_{y,0}$ sind analog zu den Ergebnissen für eine variable Zustelltiefe z_T aus Kapitel 6.2.1 auf Reibungseffekte und die geringe Kraftübertagung der Lamelle in Vorschubrichtung zurückzuführen.

6.2.3 Bestimmung der mittleren Reaktionskräfte als Funktion der Standzeit T_L

Der zunehmende Verschleiß der Hartmetalllamelle bei der dauerhaften Betonbearbeitung beeinflusst den Abtragsmechanismus sowie die Reaktionskräfte F_z und F_y . In den praktischen Versuchsreihen wurden 12 Lamellen zur Standzeitermittlung verwendet. Die Bodenfräse wurde zur Standzeitermittlung T_L im Nennlastbetrieb mit $n_E = 3.000 U/min$ und einer Zustelltiefe $z_T = 4 mm$ betrieben. Nach jedem Prozessbetrieb mit dem Beanspruchungsweg $s_L = 90 m$ auf dem Betonprobekörper der Variante 2 (siehe Abbildung 5.9 im Kapitel 5.2) wurden für drei Hartmetalllamellen die jeweiligen Reaktionskräfte in Abhängigkeit der Drehzahl gemessen. Das Ziel ist, einen einheitlichen Einfluss des zunehmenden Verschleißes auf die Reaktionskräfte bei unterschiedlichen Betriebssituationen aufzuzeigen. Abbildung 6.10 zeigt die Messergebnisse für die mittlere Kraftamplitude $F_{z,max}$ in Abhängigkeit vom Beanspruchungsweg s_L .

Abb. 6.10: Analyse der mittleren Kraftamplituden F_{max} in Abhängigkeit vom Beanspruchungsweg s_L

Die Analyse der Messungen ergibt, dass mit Zunahme des Beanspruchungsweges s_L der Hartmetalllamelle die wirkenden Kräfte bzw. Kraftamplituden F_{max} auf den Betonprobekörper abnehmen. Die Abnahme der Kräfte erfolgt nicht linear sondern annähernd in der Form einer Polynomfunktion. Für den Nennlastbetrieb wurde eine Polynomfunktion 3. Grades zur Beschreibung der Kraftamplitude $F_{z,max} = f(s_L)$ als Funktion der Standzeit eingeführt (siehe Abbildung 6.10 und Gleichung (6-4)):

$$F_{z,max}(s_L) = -6 \cdot 10^{-6} \cdot s_L^3 + 0,005 \cdot s_L^2 - 1,54 \cdot s_L + 703 N.$$
(6-4)

Die Beanspruchungswege $0 \ m \le s_L \le 180 \ m$ sowie $450 \ m \le s_L \le 540 \ m$ sinken die Kraftamplituden stärker als im Bereich $180 \ m \le s_L \le 450 \ m$. Die Nichtlinearität ist auf das Verschleißverhalten der Hartmetalllamelle mit dem zunehmenden Beanspruchungsweg s_L zurückzuführen. Infolge makroskopischer Geometrieveränderungen an der Lamelle variieren die Stoßkontaktfläche und die Masse der Lamelle. Die Standzeit T_L wurde im Nennlastbetrieb bei $s_L = 630 \ m$ erreicht. Als Abbruchkriterium der Versuche galt, dass die erreichte Abtragstiefe der Lamelle $z_A(s_L = T_L)$ als Funktion der Standzeit unterhalb der Grenze $z_A(s_L = T_L) < 0.5 \cdot z_A(s_L = 0 \ m)$ liegt.

Nach den Messungen entsprechend der Abbildung 6.10 beträgt die Kraftamplitude im Nennlastbetrieb $F_{z,max}(s_L = 0 m) = 704 N$. Beim Erreichen der Standzeit T_L reduzieren sich die Kraft-amplituden $F_{z,max}$ unabhängig von der Drehzahl n_E nach Gleichung (6-5):

$$F_{z,max}(s_L = T_L) = (0.68 \pm 0.025) \cdot F_{z,max}(s_L = 0 m)$$
. (6-5)

Der fortschreitende Verschleiß führt zur Reduzierung der Kraftamplituden $F_{z,max}$ um $32 \pm 2,5 \%$. Die Analyse der Kraftamplituden $F_{y,max}(s_L)$ mit einem zunehmenden Beanspruchungsweg s_L ist im Anhang B dargestellt und zeigt ein analoges Verhalten wie die Auswertung zu den Kraftamplituden $F_{z,max}(s_L)$. Im Anhang B sind die Messergebnisse und die zugehörigen Polynomfunktionen 6. Grades, entsprechend Kapitel 6.2.1 und 6.2.2, für die gemittelten Kraft-Zeit-Verläufe im Nennlastbetrieb in Abhängigkeit vom Beanspruchungsweg s_L aufgeführt.

Infolge der Reduzierung der Kraftamplituden durch den fortschreitenden Verschleiß an der Hartmetalllamelle resultieren die Impulsverluste ΔI_z und ΔI_y beim Schlagvorgang. Abbildung 6.11 zeigt die ermittelten Impulse $I_{z,0}(s_L)$ und $I_{y,0}(s_L)$ mit Hilfe der jeweiligen Polynomfunktionen in Abhängigkeit des Beanspruchungsweges. Für den Verlauf der Impulse $I_{z,0}(s_L)$ im Nennlastbetrieb wird eine Übereinstimmung zum Verlauf der Kraftamplituden nach der Abbildung 6.10 deutlich.

Abb. 6.11: Auswertung der Stoßimpulse I_0 als Funktion vom Beanspruchungsweg s_L

Im Nennlastbetrieb überträgt die Lamelle zu Prozessbeginn einen mittleren Impuls von $I_{z,0}(s_L = 0 m) = 0,384 Ns$. Mit einer Verschleißzunahme der Hartmetallamellen sinkt der Impuls auf $I_{z,0}(s_L = 540 m) = 0,246 Ns$. Die Impulsdifferenz beträgt $\Delta I_{z,0} = 0,138 Ns$, welche einen Verlust von 36 % zum Ausgangszustand dargestellt. Die Auswertung vom Impulsverlust in Vorschubrichtung der Werkzeugtrommel ergab $\Delta I_{y,0} = 0,059 Ns$ bei einem Verlust von 39 % zu $I_{y,0}(s_L = 0 m) = 0,15 Ns$. Der unterschiedliche Impulsverlauf von $I_{z,0}(s_L)$ und $I_{y,0}(s_L)$ ist bei der Vernachlässigung von Mess- und Approximationsfehlern durch das Kontaktverhalten der Lamelle mit der Betonoberfläche begründet. Innerhalb der Grenze $0 m \le s_L \le 270 m$ ist der Impulsverlauf $I_{y,0}(s_L)$ vorwiegend durch einen Abfall gekennzeichnet, welcher aus der Massereduzierung der Hartmetallamelle durch den fortschreitenden Verschleiß resultiert. Ab einem Beanspruchungsweg $s_L \ge 270 m$ wirken die makroskopischen Geometrieveränderungen, welche durch eine Stoßflächenvergrößerung an der Lamelle infolge des abrasiven Verschleißes gekennzeichnet sind, dem Masseverlust entgegen. Mit zunehmender Stoßfläche vergrößern sich die Kontaktzeit und die Reibungsfläche in Vorschubrichtung.

Die Analyse dieser Messergebnisse zu den Reaktionskräften und den Stoßimpulsen ist für einen Vergleich mit den Simulationsergebnissen im Kapitel 7 sowie zur Bewertung des entwickelten Bewegungsmodells (siehe Kapitel 8) erforderlich.

Die verschiedenen experimentellen Versuchsreihen mit Variation der Betriebsparameter beeinflussen zusätzlich das Verschleißverhalten und den Abtragsmechanismus der Hartmetalllamelle, welche im folgenden Kapitel analysiert werden.

6.3 Auswertung der Verschleißkenngrößen

Zur Klassifizierung der Auswirkungen des fortschreitenden Verschleißes an der Hartmetallamelle wurden der Abtragsmechanismus, bezogen auf die Abtragstiefe z_A , die geometrischen und massebezogenen Verschleißerscheinungen an der Lamelle untersucht und gemessen.

6.3.1 Verschleißbewertung mit Hilfe der Abtragstiefe z_A

Die Verschleißbewertung mit Hilfe der Abtragstiefe z_A erfolgt durch die Oberflächenvermessung der gefrästen Betonoberfläche. Die Hartmetalllamellen schlagen während des Bearbeitungsprozesses Fugen mit der Breite x_A und der Abtragstiefe z_A in die Oberfläche (siehe Abbildung 6.12).

Abb. 6.12: Bildung von Fugen bei der Betonbearbeitung durch Hartmetallamellen

Die Messung der Fugenbreite x_A und der Abtragstiefe z_A wurden mit dem Oberflächenmessgerät *Polytec – CL 5 MG 35*, entsprechend der Anlage A und Kapitel 5.2, durchgeführt. Die Abtastfrequenz der Datenerfassung beträgt $f_{NI} = 100 Hz$ und die Vorschubgeschwindigkeit des Spektroskops $v_{NI} = 0,0015 m/s$. Für eine genaue Zustellung des Spektroskops wurde der Betonprobekörper der Variante 2 mit den erzeugten Fugen auf einer Fräsmaschine eingespannt. Die Vermessung erfolgte für jede Fuge in einem Abschnitt $y_A = 30 mm$ bei einem Raster $\Delta y_A = 1 mm$. Die Vernetzung der 30 Schnitte ergibt eine Oberflächenstruktur der Fuge. Abbildung 6.13 zeigt die Messergebnisse für die erzeugte Fugengeometrie der Hartmetalllamelle im Nennlastbetrieb für $s_L = 0 m$.

Abb. 6.13: Erzeugte Fugengeometrie einer Hartmetallamelle im Nennlastbetrieb bei $s_L = 0 m$

Die Auswertung der Ergebnisse nach Abbildung 6.13 ergaben eine Fugengeometrie, welche eine maximale Breite von $x_{A,max} = 12 mm$ und eine maximale Abtragstiefe $z_{A,max} = 1,8 mm$ aufweist. Mit einem anwachsenden Vorschubweg *y* variiert die Abtragstiefe z_A um die maximale Differenz $\Delta z_A = 0,8 mm$. Die Analyse zeigt, dass die hohe Streuung der Abtragstiefen z_A aufgrund der Betonzusammensetzung resultiert. Fest in die Zementmatrix eingebettete Zuschlagskörner (siehe Kapitel 2.1) können, aufgrund der Haft-Bindung und der Härte, in einem Arbeitsgang nicht vollständig fragmentiert oder gelöst werden. Der Zement weist gegenüber dem Zuschlagskorn ($d_{max} = 16 mm$) wesentliche kleinere Korngrößen bzw. bindende Oberflächen auf. Bei einer schlagenden Beanspruchung führt diese Ausgangslage zu größeren Abtragstiefen z_A des Zementgesteins.

Mit einem zunehmenden Beanspruchungsweg s_L steigen die Verschleißerscheinungen an der Hartmetalllamelle. Der Verschleiß hat Auswirkungen auf die Effizienz des Oberflächenabtrages bzw. die Abtragstiefe z_A . Für einen Vergleich der resultierenden Fugengeometrie in unterschiedlichen Verschleißzuständen der Lamelle wurden die Mittelwerte für die jeweiligen 30 Schnitte der Oberflächenmessungen ermittelt. Abbildung 6.14 zeigt den Vergleich der erzeugten Fugengeometrie einer Hartmetalllamelle im Originalzustand ($s_L = 0 m$) und einer Hartmetalllamelle beim Erreichen der Standzeit ($s_L = T_L = 530 m$) im Nennlastbetrieb $n_E = 3.000 U/min$.

Abb. 6.14: Vergleich der mittleren Fugengeometrie einer Lamelle im Nennlastbetrieb

In Abbildung 6.14 wird deutlich, dass die erzeugte Fugengeometrie im Querschnitt annähernd einer Parabelfunktion entspricht. Der Scheitelpunkt entspricht der mittleren Abtragstiefe z_A . Eine Hartmetallamelle ohne Verschleißerscheinungen erzeugt bei der Bearbeitung der Betonoberfläche des Betonprobekörpers der Variante 2 im Nennlastbetrieb eine mittlere Abtragstiefe von $z_A(s_L = 0 m) = 1,5 mm$. Die Fuge weist eine mittlere Breite von $x_A(s_L = 0 m) = 12 mm$ an der Betonoberfläche auf. Als Messegrenze zur Bestimmung der Fugenbreite gilt, dass die Abtragstiefe $z_A(x)$ im Randbereich weniger als 5 % der mittleren Abtragstiefe z_A aufweist. Mit steigendem Beanspruchungsweg s_L sinken im Nenn-Lastbetrieb die Abtragstiefe z_A und die Fugenbreite x_A infolge der wachsenden Verschleißerscheinungen an der Hartmetallamelle. Nach einem Beanspruchungsweg $s_L = 530 m$ sind, nach den Messergebnissen zufolge, die Abtragstiefe auf $z_A(s_L = 530 m) = 0,66 mm$ und die Fugenbreite auf $x_A(s_L = 530 m) = 8 mm$ reduziert. Das Ergebnis zu der Abtragstiefe $z_A(s_L = 530 m)$ liegt unterhalb der in Kapitel 6.2.3 bestimmten Verschleiß-Grenze von $z_A(s_L = T_L) < 0.5 \cdot z_A(s_L = 0 m)$. Der Verschleißzustand der Hartmetallamelle erfordert mindestens zwei Arbeitsgänge, um annähernd die Abtragstiefe $z_A(s_L = 0 m)$ zu erreichen. Im industriellen Einsatz, besonders bei der Dekontamination von Betonoberflächen, resultieren aus diesem Zustand ein doppelter Zeitaufwand und höhere Personalkosten.

Das Verschleißverhalten der Hartmetalllamelle, bezogen auf die Abtragstiefe z_A , wurde zusätzlich für den Teillast- und Überlastbetrieb untersucht. Die Messergebnisse zeigen eine lineare Abhängigkeit zu dem Verschleißverhalten im Nennlastbetrieb auf. In Abbildung 6.15 sind die Ergebnisse zu den Abtragstiefen z_A bei unterschiedlichen Betriebs- und Verschleißzuständen dargestellt.

Abb. 6.15: Darstellung der Abtragstiefe z_A in Abhängigkeit der Drehzahl und des Verschleißzustands

Nach dem Bewegungsmodell aus Kapitel 4.2 steigt bei einer Zunahme der Drehzahl n_E die Geschwindigkeitskomponente $v_{z,0}$ der Hartmetalllamelle. Der erhöhte Energieeintrag bzw. Impuls senkrecht zur Betonoberfläche führt zu einem Spannungsanstieg in der Kontaktzone und zu einer erhöhten Fragmentierung (siehe Kapitel 3.1). Die Messergebnisse in Abbildung 6.15 unterstützen diese theoretische Formulierung. Die Abtragstiefe z_A nimmt von $z_A(s_L = 0 m) = 0.5 mm$ im Teillastbetrieb auf $z_A(s_L = 0 m) = 2.3 mm$ im Überlastbetrieb zu. Der Anstieg der Fragmentierung mit zunehmender Drehzahl n_E beträgt für eine Hartmetallamelle im Originalzustand $\Delta z_A/\Delta n_E = 0,001 \cdot (0.522 \pm 0.02 \ mm \cdot min/U)$. Mit fortschreitender Beanspruchung der Hartmetalllamelle sinkt in allen Betriebszuständen die Abtragstiefe. Im Teillastbetrieb $n_E = 1.800 U/min$ tendiert die Abtragstiefe bei $z_A(s_L = 530 m) = 0.1 mm$ gegen den Wert null. Das Ergebnis entspricht einem maximalen Verlust von 80 % der Abtragstiefe z_A in Abhängigkeit der Drehzahl n_E . Für den Überlastbetrieb $n_E = 4.200 U/min$ ergaben die Auswertungen mit $z_A(s_L = 530 m) = 1,3 mm$ einen Verlust von 44 % zur erreichten Abtragstiefe einer Lamelle im Originalzustand. Der Unterschied zu den Einzelverlusten steht im Zusammenhang mit den theoretischen Erläuterungen zur Fragmentierung in Kapitel 3.1.3. Die Schlagkraft und die Eindringtiefe z_E eines Schlagwerkzeuges steigen mit zunehmender Drehzahl n_E quadratisch an. Folglich sind die Auswirkungen auf die Fragmentierung der Betonoberfläche und die Abtragstiefe z_A nicht linear und zeigen geringere Verschleißdefizite der Abtragstiefen bei höheren Drehzahlen auf. Unter Berücksichtigung der zulässigen Beanspruchungen für die Maschinenkomponenten ist der Betrieb im Überlastbereich, bezogen auf das Verhalten der Abtragstiefe zum Verschleiß, zu empfehlen.

6.3.2 Resultate zur Verschleißmessgröße W_{m_L}

Die Verschleißmessgröße W_{m_L} definiert, entsprechend den Ausführungen zum Versuchsprogramm im Kapitel 5.1.2, den mittleren Masseverlust Δm_L der Hartmetallamelle im Bezug zum zurückgelegten Beanspruchungsweg s_L . Die Auswertung der Messreihen berücksichtigt den Beanspruchungsweg $s_L = T_L$ in einem Raster von $\Delta s_L = 30 m$. Zur Reproduzierbarkeit der Messergebnisse wurden zwei Messreihen A und B mit jeweils sechs Hartmetallamellen verglichen. Als ein Messgerät diente die Wägeplattform *SOEHNLE – S20 2760* (siehe Anlage A). Die Abbildung 6.16 zeigt die Ergebnisse für die mittlere Lamellenmasse m_L der jeweiligen Untersuchungsreihe in Abhängigkeit vom Beanspruchungsweg s_L für den Nennlastbetrieb.

Abb. 6.16: Ergebnisse der mittleren Lamellenmasse m_L in Abhängigkeit vom Beanspruchungsweg s_L

Im Originalzustand ($s_L = 0 m$) beträgt die Lamellenmasse m_L der 12 Hartmetalllamellen einheitlich $m_L(s_L = 0 m) = 0,071 kg = 71 g$. Infolge des abrasiven Verschleißes mit zunehmendem Beanspruchungsweg s_L wird die Masse der Lamelle beim Erreichen der Standzeit $s_L = T_L$ auf $m_L(s_L = 570 \text{ m}) = 0.054 \text{ kg} = 54 \text{ g}$ reduziert. Die Ergebnisse weisen einen hohen Materialverlust von 24 % der Lamellenmasse zum Ausgangszustand der Hartmetallamelle auf. Die Resultate zum Verhalten der Lammellenmasse m_L zeigen Übereinstimmungen mit den Analysen zu den mittleren Reaktionskräften als Funktion der Standzeit T_L (siehe Kapitel 6.2.3). Während der ersten Messstrecke $s_L = 30 m$ ist der mittlere Masseverlust $\Delta m_L(s_L = 30 \text{ m}) = 2,7 \text{ g}$ maximal im Vergleich zu der Gesamtheit der Messergebnisse. In Analogie zu den Reaktionskräften steigt der Masseverlust der Lamelle erst bei einer Annäherung vom Beanspruchungsweg s_L an die Standzeit $s_L \rightarrow T_L$ erneut an. Der maximale Fehler der Messreihen Mittelwert m_L zwei zum beträgt $\Delta m_L(Messreihe)/m_L = 0,0078$ und ist vernachlässigbar. Die Verschleißkenngröße W_{m_L} wird aus dem Mittelwert der Gesamtheit an Massenverlusten $\Delta m_L(s_L)$ im Verhältnis zum Beanspruchungsweg s_L nach Gleichung (6-6) gebildet:

$$W_{m_L} = \frac{1}{\Delta s_L} \cdot \sum_{i=1}^n \frac{\Delta m_{L,i}}{n} = 0,03 \ \frac{g}{m} .$$
 (6-6)

Die Analyse der Verschleißkenngröße ergab, dass die Masse der Hartmetalllamelle im Nennlastbetrieb um $\Delta m_L = 0,03 g$ für einen Meter Beanspruchungsweg s_L bis zum Erreichen der Standzeit T_L sinkt. Die Folgen sind eine stetige Schlagkraft- bzw. Impulsabnahme, wie entsprechend die theoretischen Grundlagen von Stoßvorgängen aus dem Kapitel 3.1 und die Messergebnisse aus dem Kapitel 6.2.3 zeigen. Der Materialverlust der Lamelle, infolge von Dreikörper-Abrasiv-Verschleiß (siehe Kapitel 3.3.2), führt zu makroskopischen Geometrieveränderungen mit den zugehörigen geometrischen Verschleißkenngrößen, welche im folgenden Abschnitt experimentell ermittelt wurden.

6.3.3 Bestimmung der geometrischen Verschleißkenngrößen

Die geometrischen Verschleißkenngrößen der Hartmetalllamelle wurden durch die Vermessung der Geometrie mit Hilfe eines digitalen Lichtmikroskops (siehe Tabelle *Keyence – VHX-600* in Anlage A) bestimmt. Die Ergebnisse zu den mittleren Reaktionskräften und zu dem Masseverlust der Lamelle in Abhängigkeit vom Beanspruchungsweg s_L , entsprechend den Kapitel 6.2.3 und Kapitel 6.3.2, ergaben, dass in der Anfangsphase der mechanischen Beanspruchung von Hartmetalllamellen signifikante geometrische Verschleißerscheinungen stattfinden. Die Analyse zur Bestimmung der Verschleißkenngrößen nach der Tabelle 13 zum Versuchsprogramm aus Kapitel 5.1.2 ist in zwei Phasen aufgeteilt. Innerhalb des Beanspruchungsweges $s_L = 12 m$ sollen die geometrischen Verschleißerscheinungen in der Anfangsphase untersucht werden, um die Messergebnisse zu stützen. In der zweiten Phase erfolgen die Analysen zu den Kenngrößen im Bezug zur Standzeit $s_L = T_L$.

Die Auswertung der Verschleißkenngrößen für einen Beanspruchungsweg $s_L = 12 m$ sind auf den Flankenradius r_2 und die Winkelgeometrie φ_{HM} der Hartmetallspitze fokussiert. Die Änderung weiterer Verschleißkenngrößen ist, infolge des geringen zurückgelegten Weges, entsprechend den Ergebnissen in Anlage C vernachlässigbar. Zur Analyse werden zwei Hartmetallamellen nach jeweils $\Delta s_L = 3 m$ unter Berücksichtigung aller geometrischen Verschleißkenngrößen vermessen. Die Vermessung der Lamellenflanken erfolgt für sechs Spitzen der Lamellen. Abbildung 6.17 zeigt die Zunahme der Verschleißerscheinungen an einer Lamellenflanke innerhalb des Beanspruchungsweges $s_L = 12 m$.

Abb. 6.17: Entwicklung des Abrasiv-Verschleißes an der Lamellenflanke bis $s_L = 12 m$

Der Verschleiß der Lamellenflanken entspricht den Eigenschaften des Drei-Körper-Abrasiv-Verschleißes nach Kapitel 3.3.2. Innerhalb eines Beanspruchungsweges $s_L = 6 m$ treten verstärkt Rillen, Furchen und Kratzer am Grundwerkstoff C45 der Hartmetalllamelle auf. Dieser Verschleiß führt zu einem Materialverlust und einer makroskopischen Geometrieveränderung der Lamellenflanke innerhalb einer kurzen Beanspruchungszeit (siehe Abbildung 6.17). Der Verschleiß an der Lamellenflanke wird zusätzlich durch plastische Verformungen, welche in Gratbildungen und Materialverwerfungen resultieren, bestimmt. In Abbildung 6.18 werden diese Verformungen für den Verschleißzustand nach einem Beanspruchungsweg $s_L = 12 m$ deutlich.

Abb. 6.18: Gratbildung an der Lamellenflanke nach einem Beanspruchungsweg $s_L = 12 m$

Die Verschleißanalysen ergaben, dass die Grate bzw. Materialverwerfungen, aufgrund von plastischen Verformungen auf der Lamellenflanke, eine Höhe von 0,5 mm erreichen können (siehe Abbildung 6.18). Mit einer Zunahme vom Beanspruchungsweg s_L werden die Materialverwerfungen durch weitere Kontakte mit der Betonoberfläche vom Grundwerkstoff getrennt. Dieser Prozess wird während der Standzeit einer Lamelle mehrmals wiederholt. Die Folgen sind für den Flankenradius r_2 und der Winkelgeometrie φ_{HM} signifikant. Der Flankenradius r_2 einer abrasiven Verschleißbeanspruchung, welche zu einer exponentiellen Vergrößerung der Flankenradien führt. Die Messergebnisse in Abbildung 6.19 zeigen, dass für einen Beanspruchungsweg $s_L = 12 m$ der Verschleiß an der Lamellenflanke von der Position der Flanke zur Drehrichtung abhängt.

Abb. 6.19: Verschleißverhalten der Lamellenflanke für einen Beanspruchungsweg $s_L = 12 m$

Der Radius r_{2,r} bezeichnet den Krümmungsradius der Lamellenflanke, welcher der Drehrichtung zugeneigt ist und vorwiegend mit der Betonoberfläche in Stoßkontakt kommt. Der Krümmungsradius $r_{2,l}$ der Lamellenflanke ist entgegen der Drehrichtung ausgerichtet. Die Ergebnisse in Abbildung 6.19 stellen die Mittelwerte für zwölf analysierte Lamellenflanken dar. Die Flanke mit dem Radius $r_{2,r}$ unterliegt, aufgrund der Kontakthäufigkeit mit der Betonoberfläche, stets einem größeren Verschleißprozess als die Flanke mit dem Radius $r_{2,l}$. Diese Annahme wird durch den Vergleich der approximierten Funktionen $r_2 = f(s_L)$ für die Resultate in Abbildung 6.19 gestützt. Aufgrund der exponentiellen Verschleißzunahme am Flankenradius r_2 war eine Radien-Messung bis zu einem Beanspruchungsweg $s_L = 9 m$ möglich. Nach einem Beanspruchungsweg $s_L > 9 m$ wird das Verschleißverhalten am Flankenradius r_2 durch die Winkeländerung zur horizontalen Koordinatenachse gemessen. Im Originalzustand ($s_L = 0 m$) der Lamelle sind die Radien r_2 für die jeweilige Lamellenflanke, entsprechend der Abbildungen 6.17 und 6.19, annähernd gleich und betragen $r_2(s_L = 0 m) = 3 mm$. Innerhalb von einem zurückgelegten Beanspruchungsweg $s_L = 9 m$ kann die Verschleißkenngröße W_{r_2} (siehe Tabelle 13 im Kapitel 5.1) nach den exponentiellen Approximationen in den Gleichungen (6-7) und (6-8) näherungsweise ermittelt werden:

$$W_{r_{2,r}} = \frac{3.7 \cdot e^{0.28 \cdot s_L} - r_2(s_L = 0 m)}{s_L} \qquad \text{für } r_{2,r} , 0 \le s_L \le 9 m , \qquad (6-7)$$

$$W_{r_{2,l}} = \frac{3.7 \cdot e^{0.23 \cdot s_L} - r_2(s_L = 0 m)}{s_L} \qquad \qquad \text{für } r_{2,l}, \ 0 \le s_L \le 9 m . \tag{6-8}$$

Infolge der Vorzugsrichtung beim Schlagvorgang der Lamelle mit der Betonoberfläche werden die Hartmetallspitzen nicht gleichmäßig mechanisch beansprucht. Die Richtungsabhängigkeit zeigt die abrasiven Verschleißerscheinungen für die Hartmetallspitzen in Abbildung 6.20.

Abb. 6.20: Entwicklung des Abrasiv-Verschleißes an der Hartmetallspitze bis $s_L = 12 m$

Die Schnittfläche der Hartmetallspitze mit dem Winkel $\varphi_{HM,r}$ ist die Körperseite, welche beim Stoßvorgang vorwiegend in Kontakt tritt. Die visuellen Verschleißerscheinungen zeigen auf dieser Seite der Spitze plastische Verformungen in Form von Materialanhäufungen. Die Materialanhäufungen werden durch den abrasiven Verschleiß des Grundwerkstoffes C45 der Lamellenflanke hervorgerufen. Die von der Stoßfläche abgewandte Schnittfläche der Hartmetallspitze mit dem Winkel $\varphi_{HM,l}$ zeigt dieses Verhalten für einen Beanspruchungsweg $s_L = 12 m$ nicht. Die Kegelspitzen der Hartmetallstifte nähern sich nach einem Beanspruchungsweg von $s_L = 6 m$ einer flachen sphärischen Oberfläche an. Die Vermessung des Spitzenwinkels φ_{HM} ist aufgrund der sphärischen Oberflächenbildung bis zu einem maximalen Beanspruchungsweg $s_L = 12 m$ möglich. Die Riefen bzw. Furchenbildung der Hartmetallspitzen weisen nach Abbildung 6.20 im Vergleich zu den Lamellenflanken keine makroskopischen Strukturen auf. In Abbildung 21 sind die Messergebnisse des jeweiligen Spitzenwinkels φ_{HM} in Abhängigkeit vom Beanspruchungsweg s_L dargestellt.

Abb. 6.21: Verschleiß der Spitzenwinkel φ_{HM} für einen Beanspruchungsweg $s_L = 12 m$

Die Resultate in Abbildung 6.21 zeigen die gemessenen Mittelwerte für sechs Hartmetallspitzen. Die Auswertung der Ergebnisse ergibt, dass der abrasive Verschleiß bei einem Beanspruchungsweg $s_L = 9 m$ vorwiegend den Spitzenwinkel $\varphi_{HM,r}$ beeinflusst und zu einer Reduzierung von $\Delta \varphi_{HM,r}(s_L = 9 m) = 5 \pm 0.6^{\circ}$ führt. Im Vergleich zum analogen Beanspruchungsweg ist die Differenz für den Spitzenwinkel $\varphi_{HM,l}$ kleiner und beträgt $\Delta \varphi_{HMI}(s_L = 9 m) = 2 \pm 0.8^{\circ}$. Die Ursache für diese abweichende Differenz der beiden Spitzenwinkel ist in der höheren Anzahl an Stoßkontakten zwischen der Spitzenfläche mit dem Winkel $\varphi_{HM,r}$ und der Betonoberfläche begründet. Dieser Effekt wird ebenfalls deutlich bei der Betrachtung des Verschleißverlaufs normal zur Hartmetallspitze, welcher in der Anlage C dargestellt ist. Nach einem Beanspruchungsweg $s_L > 9 m$ ist der Abtrag der Kegelspitze derart fortgeschritten, dass die abrasive Verschleißbeanspruchung auch bei der Spitzenfläche mit dem Winkel $\varphi_{HM,l}$ einsetzt. Die Verschleißkenngröße $W_{\varphi_{HM}}$ kann ausschließlich innerhalb des Beanspruchungsweges $s_L \leq 12 m$ angewendet werden und beträgt in Annäherung eines linearen Verschleißverhaltens $W_{\varphi_{HM,r}}(s_L \leq 12 m) \approx 0.7 \circ/m$ bzw. $W_{\varphi_{HM,l}}(s_L \le 12 m) \approx 0.4 \circ/m$. Die Verschleißkenngrößen W_{d_L} und W_{r_1} sind für einen Beanspruchungsweg $s_L \le 12 m$, entsprechend den Auswertungen zu den Messergebnissen im Anhang C, zu vernachlässigen.

Die Verschleißanalysen für einen Beanspruchungsweg $s_L = T_L = 540 m$ wurden in einem Raster von $\Delta s_L = 90 m$ durchgeführt. Für die Auswertung wurden in den Messreihen stets die identischen zwei Hartmetalllamellen vermessen. Die Vorgehensweise ermöglicht eine qualitative Aussage zum Verschleißverhalten einer Lamelle über die Standzeit T_L . Bei der Auswertung sind die Verschleißmessgrößen W_{d_L} (Verschleißmessgröße des Lamellendurchmessers d_L) und $W_{h_{HM}}$ (Verschleißmessgröße zur Höhe h_{HM} der Hartmetallspitze) signifikant, weil die zugehörigen Geometriegrößen entscheidend den Abtragsmechanismus der Lamelle beeinflussen. Der Radius r_1 beschreibt die geometrische Sternform der Lamelle und wird mit zunehmenden Beanspruchungsweg s_L stark vom Verschleiß beansprucht. Die makroskopische Geometrieveränderung der Sternform resultiert aus dem fortschreitenden Abrasiv-Verschleiß der Lamellenflanken. In Abbildung 6.22 sind die Aufnahmen zur Vermessung des Lamellendurchmessers d_L für einen Beanspruchungsweg $s_L = T_L$ dargestellt.

Abb. 6.22: Fortschreitender Abrasiv-Verschleiß der Lamelle für den Beanspruchungsweg $s_L = T_L$

Eine signifikante Eigenschaft vom Verschleißverhalten der Hartmetalllamellen ist die makroskopische Geometrieveränderung innerhalb der Standzeit $s_L = T_L$ von der ursprünglichen Sternform in ein geometrisches Sechseck. Die digitalen Aufnahmen in Abbildung 6.22 zeigen, dass der Radius r_1 mit zunehmendem abrasiven Materialabtrag der Lamellenflanken für einen Beanspruchungsweg $s_L \ge 360 m$ keine Messgröße mehr darstellt. Aufgrund der hohen dauerhaften Schlagbeanspruchung bis $s_L = 540 m$ erfolgt der Materialabtrag an den sechs Lamellenflanken für die Radien $r_{2,r}$ und $r_{2,l}$ (siehe Abbildung 6.17) annähernd gleichmäßig. Infolge der Reduktion der Lamellendurchmesser $d_{L,1}$, $d_{L,2}$ und $d_{L,3}$ (siehe Abbildung 6.22) mit einem fortschreitenden Beanspruchungsweg s_L wird die in Stoßkontakt tretende Fläche vergrößert. Die Vergrößerung der Stoßfläche erreicht ein Maximum bei einer vollständigen Auflösung der Sternform mit dem Lamellenradius r_1 .

In der Abbildung 6.23 wird der abrasive Verschleiß der Lamellengeometrie beim Vergleich einer Hartmetallamelle mit einem Beanspruchungsweg $s_L = 0 m$ und $s_L = 540 m$ deutlich.

Abb. 6.23: Vergleich der Lamellengeometrie für $s_L = 0 m$ (helle Darstellung) und $s_L = 540 m$

Die Fläche zwischen zwei Hartmetallspitzen wird zu einer einheitlichen Stoßfläche (siehe Abbildung 6.24), welche durch Riefen und Kratzer abrasive Verschleißmerkmale aufweist. Infolge einer größeren Reibungsfläche steigt beim Stoßvorgang der Materialabtrag an den Lamellen und führt zum Erreichen der Lamellenstandzeit T_L .

Abb. 6.24: Ausbildung einer einheitlichen Stoßfläche zwischen zwei Hartmetallspitzen

Die Vergrößerung der Lamellen-Stoßfläche reduziert, entsprechend den theoretischen Ausführungen zur Ermittlung der Schlagkraft in Kapitel 3.1.2, die maximale Spannung σ_{max} im Kontaktbereich. Die Folge ist ein Verlust in der Prozesseffektivität, welche durch geringere Abtragstiefen z_A gekennzeichnet ist (siehe Ergebnisse zur Verschleißbewertung mit Hilfe der Abtragstiefe z_A im Kapitel 6.3.1). Zusätzlich sinkt der Lamellendurchmesser d_L nach der Bildung einer einheitlichen Stoßfläche stärker. Diese Auswirkung zeigen die Messergebnisse für die Lamellendurchmesser $d_{L,1}$, $d_{L,2}$ und $d_{L,3}$ in Abbildung 6.24.

Abb. 6.25: Verlauf des Lamellendurchmessers d_L in Abhängigkeit vom Beanspruchungsweg s_L

Der Verschleiß der Hartmetallamelle in Bezug auf den Lamellendurchmesser d_L weist im Verlauf ein ähnliches Verhalten zu den Kraftreaktionen des Betonprobekörpers (siehe Abbildung 6.10 in Kapitel 6.2.3) auf. Die Anfangsphase der Beanspruchung für $s_L \leq 180 m$ ist geprägt durch einen höheren Verschleiß der Lamellenflanken mit dem Radius r2 sowie der sphärischen Ausbildung der Hartmetallspitzen, welche maßgeblich zur Reduktion des Lamellendurchmessers beitragen. Der Lamellendurchmesser sinkt für diesen Messbereich von $d_L(s_L = 0 m) = 57 \pm 0.5 mm$ auf $d_L(s_L = 180 m) = 55.1 \pm 0.3 mm$. Im weiteren Beanspruchungsverlauf für $180 \le s_L \le 360 m$ wird der Lamellendurchmesser d_L ausschließlich durch die Abrasion der Hartmetallspitzen bestimmt, welche aufgrund der geometrischen Positionierung eine geringere Kontakthäufigkeit als die Lamellenflanken mit der Betonoberfläche haben. Der abrasive Verschleiß am Lamellendurchmesser d_L sinkt. Mit Ausbildung der Sechseckgeometrie als Verschleißerscheinungsform für $s_L \ge 360 m$ steigt infolge der einheitlichen Stoßfläche die Kontakthäufigkeit und die mechanische Beanspruchung der Hartmetallspitzen an. Beim Erreichen der Standzeit $s_L = T_L$ sinkt der Lamellendurchmesser auf $d_L = 52.4 \pm 0.3 \ mm$. Für die Messergebnisse in Abbildung 6.25 wurden in Abhängigkeit des Beanspruchungsweges s_L die zugehörigen Mittelwerte gebildet und eine Polynomfunktion $d_L = f(s_L)$ zur Ermittlung der Verschleißmessgröße W_{d_L} (entsprechend der Tabelle 13 im Kapitel 5.1 zum Versuchsprogramm) eingesetzt (siehe Gleichung 6-9):

$$W_{d_L}(s_L) = \frac{d_L(s_L=0\ m) + 1\cdot 10^{-7} \cdot s_L^3 - 0.75 \cdot 10^{-5} \cdot s_L^2 + 0.021 \cdot s_L - 57}{s_L} \quad \text{für } s_L > 0\ m\ . \tag{6-9}$$

Die Verschleißfunktion $W_{d_L}(s_L)$ weist nach Gleichung (6-9) und Abbildung 6.26 für $s_L = 380 m$ eine Extremstelle in Form von einem Minimum auf. Der Verschleißabtrag für den Lamellendurchmesser d_L bezogen auf diesen zurückgelegten Beanspruchungsweg s_L

beträgt $W_{d_L}(s_L = 380 \text{ m}) = 0,0065 \text{ mm/m}$. Im Vergleich zum abrasiven Materialabtrag in der Anfangsphase entspricht der Wert einer Verschleißreduzierung um 67 %. Der Tiefpunkt ist auf den Rückgang der Längenänderung des Durchmessers d_L im Beanspruchungsbereich $180 \le s_L \le 360 \text{ m}$ zurückzuführen (siehe die Erläuterung zur Abbildung 6.24).

Abb. 6.26: Verlauf der approximierten Verschleißfunktion $W_{d_L}(s_L)$ für den Lamellendurchmesser d_L

Während der Standzeitermittlung der Hartmetalllamellen wurden in einem Messintervall von $\Delta s_L = 90 m$ sechs Lamellen aus dem Prozess separiert und für die Untersuchung zur Hartmetallspitzenhöhe h_{HM} präpariert. Die Vermessung erfolgte für den Querschnitt der Lamellengrundkörper. Die Abbildung 6.27 zeigt die Reduzierung der Hartmetallspitzenhöhe h_{HM} mit einem steigenden Beanspruchungsweg s_L .

Abb. 6.27: Hartmetallspitzenhöhe h_{HM} in Abhängigkeit vom Beanspruchungsweg s_L

Mit fortschreitendem Verschleiß der Lamelle wird die Hartmetallspitze freigelegt und unterliegt einer höheren mechanischen Belastung. Nach einem Beanspruchungsweg $s_L = 540 m$ werden Rissbildungen und Bruchvorgänge am eingelöteten Hartmetallstift ersichtlich. Die notwendige Spannung zur Rissbildung muss das Kriterium, entsprechend

den Ausführungen zu den mechanischen Eigenschaften von WC-Co-Hartmetallen im Kapitel 2.3.2, $\sigma_{max} \ge \sigma_{krit}$ nach Gleichung (2-38) erfüllen. Bei fortschreitender Beanspruchung besteht das Risiko des Ausbrechens und Abscherens der Stifte aus der Fassung. Die Messergebnisse zeigen eine annähernd lineare Abhängigkeit zwischen der Hartmetallspitzenhöhe h_{HM} und dem Beanspruchungsweg s_L (siehe Abbildung 6.28).

Abb. 6.28: Messergebnisse zur Höhe h_{HM} der Hartmetallspitze

Die Hartmetallspitzenhöhe h_{HM} sinkt infolge der Wirkung des Abrasiv-Verschleißes von $h_{HM}(s_L = 0 m) = 8,3 mm$ auf $h_{HM}(s_L = T_L) = 5,7 mm$. Die Höhe wird für die Standzeit einer Lamelle um 31 % reduziert. Die Verschleißmessgröße $W_{h_{HM}}$ zur Hartmetallspitzenhöhe (siehe Tabelle 13 im Kapitel 5.1 zum Versuchsprogramm) entspricht nach der Abbildung 6.28 dem linearen Ansatz $W_{h_{HM}} = 0,005 mm/m$.

Die weiteren Untersuchungen des Verhaltens der Lamellenflanken $r_{2,l}$ und $r_{2,r}$ sowie des Radius r_1 für einen Beanspruchungsweg $s_L = T_L$ sind im Anhang C aufgeführt. Der Verschleiß an der Lamellenflanke mit den Radien $r_{2,l}$ und $r_{2,r}$ wurde, entsprechend der aufgeführten Ergebnisse für einen Beanspruchungsweg $s_L = 12 m$, durch die Messung der Winkeländerung $\Delta \varphi_{r_2}$ zur horizontalen Koordinatenachse analysiert (siehe Abbildung C.8 in Anlage C). Der Radius r_1 weist für $r_1(s_L \leq 360 m)$ keine signifikante Abhängigkeit vom Beanspruchungsweg s_L auf. Für $r_1(s_L \geq 360 m)$ ist aufgrund der vollständigen Abrasion der Krümmung zwischen den Lamellenflanken keine Messung mehr möglich.

Die Ergebnisse der vorliegenden Verschleißuntersuchung zur Hartmetalllamelle sind die Vorrausetzung für eine geeignete werkstofftechnologische und konstruktive Optimierung der Lamelle (siehe Kapitel 8.2). Weiterhin wird im folgenden Kapitel die Dynamik der Lamelle, welche die in diesem Abschnitt beschriebenen Verschleißerscheinungen herbeiführt, in einer Mehrkörpersimulation untersucht, um anschließend in einer expliziten FEM-Analyse die mechanischen Spannungen an den Lamellenflanken zu analysieren und zu bewerten.

7. Starrkörpersimulation und FEM-Analyse

Die experimentelle Bestimmung der einzelnen Geschwindigkeitskomponenten einer Hartmetalllamelle im Betrieb ist mit sehr hohem Aufwand verbunden, weil die Rotationsbewegung, die Staubemissionen und die mechanische Stoßbeanspruchung eine direkte Messung an der Lamelle verhindern. Für eine Verifizierung der theoretischen Ansätze zu der Dynamik der Hartmetalllamelle, entsprechend dem dreistufigen Bewegungsmodell aus Kapitel 4.2, wird eine Starrkörpersimulation mit dem Finite-Element-Programm *ANSYS 14.0* durchgeführt. Das Ziel ist es, das Bewegungsverhalten und die Geschwindigkeiten der Lamelle bei unterschiedlichen Trommeldrehzahlen n_T zu charakterisieren und mit dem Bewegungsmodell zu vergleichen. Im Anschluss erfolgt in Anlehnung an die geometrischen Vorgaben des Versuchsaufbaus aus Kapitel 5.2.3 eine explizite FEM-Analyse zur Bestimmung der Kraftreaktionen bzw. Impulsverläufe am Betonprobekörper und den Vergleichsspannungen an der Hartmetalllamelle. Die Vergleichsspannungen zeigen die lokalen Verschleißerscheinungsformen am Grundkörper der Lamelle auf.

7.1 Starrkörpersimulation

7.1.1 Modellaufbau und Parametervorgabe

Die Starrkörperbewegung wird für eine Hartmetalllamelle durchgeführt, welche auf der Trommelachse gelagert ist. Die Abmessungen des Simulationsmodells entsprechen den Maßstäben der in den Versuchsreihen eingesetzten Werkzeuge (siehe Kapitel 5.2.1). In Abbildung 7.1 ist das geometrische Modell für die Starrkörpersimulation dargestellt.

Abb. 7.1: Geometrisches Simulationsmodell zur Untersuchung der Starrkörperdynamik

Das Simulationsmodell besteht aus den drei starren Körpern Werkzeugtrommel, Lamelle und Betonoberfläche, welche mit einem Netz von Elementen aus Hexaedern und Tetraedern numerisch abgebildet werden. Die einzelnen Netzgrößen und geometrischen Abmessungen sind im Anhang D tabellarisch aufgeführt. Die Werkzeugtrommel wird als ein Ausschnitt, bestehend aus einem Trommelflansch und einer starr verbundenen Trommelachse, modelliert. Die Trommel rotiert, analog dem dreistufigen Bewegungsmodell in Abbildung 4.5 und 4.6 aus Kapitel 4.2.1, um den fixen Rotationsmittelpunkt M (siehe Abbildung 7.1). Die Lamelle wird infolge der Rotationbewegung der Trommel mitgeführt. In Abhängigkeit der Lamellenstellung und der Zustelltiefe z_T schlägt die Lamelle auf die Betonoberfläche. Die theoretischen Betrachtungen zum Bewegungsmodell sowie die experimentellen Untersuchungen zum Stoßverhalten der Lamelle ergaben, dass die Kontakthäufigkeit mit der Betonoberfläche vorwiegend durch die Ausrichtung der Lamellenflanke bestimmt wird und der Einfluss der Hartmetallspitze vernachlässigbar ist. Zur Reduzierung der numerischen Komplexität und des Rechenaufwandes erfolgt die Modellierung der Lamelle ohne die Hartmetallspitzen. Die Hartmetallspitzen sind resultierend aus den Erkenntnissen zum entwickelten Bewegungsmodell und aus den Aufnahmen mit der Hoch-Geschwindigkeits-Kamera (siehe Kapitel 4.1 und 4.2) sowie der Verschleißanalyse (siehe Kapitel 6.3) nicht für den Stoßvorgang bzw. für die Tiefe des Betonabtrages relevant.

Tabelle 15 fasst die zur Analyse der Dynamik relevanten Eigenschaften des Simulationskörpers Lamelle zusammen.

Tabelle 15: Relevante Eigenschaften des Simulationskörpers Lamelle

Die Kontaktdefinition zwischen den Körpern Lamelle und Trommelachse sowie Lamelle und Betonoberfläche ist reibungsbehaftet mit den Reibungskoeffizienten $\mu_{L-T} = 0,15$ bzw. $\mu_{L-c} = 0,35$. Eine wirklichkeitsgetreue Starkörpersimulation der Lamelle wird durch die Definition der Zwangsbedingungen und Analyseeinstellungen bestimmt. Das Simulationsmodell ist durch vier Zwangsbedingungen definiert. Die Betonoberfläche, welche mit der Lamelle interagiert, ist in die drei Koordinatenrichtungen x, y und z fest gelagert. Zusätzlich wird keine Verschiebung Δx_L der Lamelle in x-Richtung zugelassen, welche in der Praxis durch den Einsatz von Distanzscheiben unterbunden wird. Als äußere Last bzw. Zwangskraft wirkt auf das gesamte System die Erdbeschleunigung $g = 9,81 m/s^2$ in *z*-Richtung (orthogonal zur Betonoberfläche). Die Drehzahl n_T ist für die jeweilige Parametervariation stets konstant und eine weitere Zwangsbedingung zur Analyse der Dynamik.

In Abbildung 7.2 sind die Zwangsbedingungen für das Simulationsmodell dargestellt.

Abb. 7.2: Zwangsbedingungen der Starrkörpersimulation

Die Analyseeinstellungen und Ausgabesteuerungen sind für die Parameterstudien in Anhang D tabellarisch zusammengefasst. Die Drehzahl n_T und die Zustelltiefe z_T beeinflussen, entsprechend dem Bewegungsmodell im Kapitel 4.2 sowie der Analyse der Messergebnisse im Kapitel 6.2, die Dynamik der Lamelle maßgeblich und werden in der Parameterstudie als variable Größen eingeführt. Die numerischen Berechnungen werden in Anlehnung an die praktischen Messungen für die Drehzahlen $n_T = 990 U/min$ bis $n_T = 2.310 U/min$ und für die Zustelltiefen $z_T = 3 mm$ bis $z_T = 5 mm$ durchgeführt. Für eine genaue Analyse der Starrkörperbewegung werden sechs bis zehn Umdrehungen der Werkzeugtrommel für jede Parametervariation numerisch berechnet und ausgewertet. Zur Auswertung der Geschwindigkeitskomponenten und Verschiebungen der Lamelle werden Messpunkte *B* entsprechend dem theoretischen Modell nach Abbildung 4.6 am Umfang der Lamelle definiert. Die Anordnung der Messpunkte *B* entspricht der Verteilung der Hartmetallspitzen. Abbildung 7.3 zeigt beispielsweise die Positionierung der Messpunkte *B* für die Parametersimulation mit der Zustelltiefe $z_T = 3 mm$ zum Zeitpunkt t = 0 s.

Abb. 7.3: Verteilung der Messpunkte *B* in der Starrkörpersimulation für $z_T = 3 mm$

Die Koordinaten der Messpunkte *B* in Abhängigkeit der gewählten Zustelltiefen sind für den Zeitpunkt t = 0 s im Anhang D tabellarisch aufgeführt. Die Ausgabe der einzelnen Verschiebungen Δy_B und Δz_B sowie den Geschwindigkeitskomponenten $v_{y,B}$ und $v_{z,B}$ erfolgt aufgrund der notwendigen Speicher- und Rechenkapazität für jeden achten Zeitschritt. Ein Rechenzeitschritt beträgt maximal $\Delta t_{max} = 1 \cdot 10^{-5} s$. Während einer Umdrehung im Nennlastbetrieb bei einer Drehzahl $n_E = 3.000 U/min$ bzw. $n_T = 1.650 U/min$ werden die dynamischen Bewegungsgrößen für mindestens 455 Zeitpunkte gespeichert.

7.1.2 Ergebnisse zum Rotations- und Geschwindigkeitsverhalten der Lamelle

Die Analyse der Starrkörpersimulation zeigt das Bewegungsverhalten der Lamelle für eine bestimmte Anzahl an Rotationen auf. Die Untersuchungen zum Einfluss des Stoßvorganges mit der Betonoberfläche sowie der wiederholten Zusammenstöße mit der Trommelachse auf die Geschwindigkeitskomponenten der Lamelle sind das primäre Ziel der Analyse. Die Bewertung der Geschwindigkeitskomponenten der Lamelle ist für die Verifikation der Annahmen zur Dynamik der Lamelle entsprechend dem entwickelten Bewegungsmodell (siehe Kapitel 4.1) erforderlich. Weiterhin ist die Gültigkeit dieser Annahmen, wie z.B. die Haftbedingung der Lamelle mit der Trommelachse, für unterschiedliche Betriebszustände zu überprüfen.

In Abbildung 7.4 ist der Verlauf der Geschwindigkeitskomponenten $v_{z,B}$ für die Messpunkte B_1 , B_3 und B_5 (siehe Abbildung 7.3) dargestellt. Die Geschwindigkeitsverläufe werden durch die Approximation der Ergebnisse aus 3.250 Zeitschritten ermittelt und entsprechen sechs Umdrehungen der Werkzeugtrommel für eine Drehzahl $n_T = 1.650 U/min$ (Nennlastbetrieb) und einer Zustelltiefe $z_T = 4 mm$.

Abb. 7.4: Verlauf der Geschwindigkeit $v_{z,B}$ für ausgewählte Messpunkte im Nennlastbetrieb

Die Geschwindigkeitsverläufe in Abbildung 7.4 sind auf das feste Koordinatensystem entsprechend der Abbildung 7.3 bezogen. Die Geschwindigkeit $v_{z,B}$ nimmt einen maximalen Betrag an, wenn der Trommelflansch (siehe Abbildung 7.1) orthogonal zur Betonoberfläche steht. Die Geschwindigkeitskomponente $v_{y,B}$ erreicht für diesen Zustand, entsprechend dem theoretischen Bewegungsmodell aus Kapitel 4.2.1, einen minimalen Betrag. Die Simulationsergebnisse nach Abbildung 7.4 weisen drei charakteristische Merkmale auf. Die Geschwindigkeiten $v_{z,B}$ sind während und nach dem Stoßvorgang für den Bereich $v_{z,B} < 0 m/s$ durch sprunghafte Wertänderungen gekennzeichnet. Dieses Verhalten ist auf die Interaktion der Lamelle mit der Betonoberfläche sowie den anschließenden Stößen mit der Trommelachse zurückzuführen. Für die Geschwindigkeitsbereiche $v_{z,B} > 0 m/s$ dominiert die Haftung der Lamelle mit der Trommelachse aufgrund der Zentrifugalwirkung. Die Relativbewegung zur Trommelachse ist vernachlässigbar und die Lamelle folgt der harmonischen Kreisbewegung. Ein weiteres Merkmal der Ergebnisse nach Abbildung 7.4 ist das Wirken eines Drehimpulses L_L auf die Lamelle, welcher durch die reibungsbehaftete Kontaktstelle beim Stoßvorgang hervorgerufen wird. Die einzelnen Messpunkte B werden nach dem Stoßvorgang um die x-Achse der Lamelle (siehe Achsenbezeichnung in Tabelle 15) verschoben. Die Radien r_B der Messpunkte B zum Rotationsmittelpunkt M sind infolge der Drehimpulswirkung nach jedem Stoßvorgang verschieden. Die Folge sind entsprechend den Ergebnissen in Abbildung 7.4 variable Geschwindigkeitsamplituden $v_{z,max}$ der einzelnen Messpunkte B. Dieses dynamische Verhalten ergeben ebenfalls die Analysen für die Geschwindigkeitskomponenten $v_{v,B}$ der Starrkörperrotation (siehe Ergebnisse in Anlage D).

Bei der Bewertung der Simulationsergebnisse für unterschiedliche Betriebssituationen der Lamelle werden die Mittelwerte der numerisch bestimmten Geschwindigkeitskomponenten $v_{v,B}$ und $v_{z,B}$ verwendet. Die Mittelwertbildungen ergeben die Komponenten v_{v,P_0} und v_{z,P_0}

der Schwerpunktsgeschwindigkeit v_{P_0} . Abbildung 7.5 zeigt die Simulationsergebnisse der Geschwindigkeitskomponente v_{z,P_0} für variable Drehzahlen n_T . Die Darstellung umfasst einen Zeitbereich von $\Delta t = 0,2 s$ bei einer Zustelltiefe von $z_T = 4 mm$.

Abb. 7.5: Vergleich der Geschwindigkeitskomponenten v_{z,P_0} in Abhängigkeit der Drehzahl n_T

Die Ergebnisse zu der Schwerpunktsgeschwindigkeit v_{z,P_0} der Lamelle zeigen eine direkte Abhängigkeit zu der Drehzahl n_T auf. Steigt die Drehzahl der Werkzeugtrommel nimmt die Rotationsgeschwindigkeit v_{P_0} der Lamelle bei konstantem Radius r_0 (siehe theoretisches Bewegungsmodell in Kapitel 4.2.1) linear zu. Die Amplituden der Geschwindigkeitskomponenten v_{y,P_0} und v_{z,P_0} steigen entsprechend den Ergebnissen in Abbildung 7.5 und der Anlage D ebenfalls an. Die Lamelle erreicht für eine Drehzahl von $n_T = 990 U/min$ eine maximale Geschwindigkeit in z-Richtung von $v_{z,max,P_0} = v_{P_0} = 9,6 m/s$. Folglich ist die Geschwindigkeitskomponente v_{y,P_0} mit $v_{y,P_0} \rightarrow 0 m/s$ vernachlässigbar. Die numerischen Simulationen wurden bis zu einer maximalen Drehzahl von $n_T = 2.310 U/min$ durchgeführt. Die Rotationsgeschwindigkeiten steigen bei maximaler Drehzahl $n_T = 2.310 U/min$ auf $v_{z,max,P_0} = v_{P_0} = 22 m/s$. Infolge einer linearen Zunahme der Umfangsgeschwindigkeiten steigen die wirkenden Radialkräfte auf die Lamelle, entsprechend den Ausführungen zum theoretischen Bewegungsmodell aus Kapitel 4.2.1, quadratisch an. Dieser Effekt wird in den Ergebnissen nach Abbildung 7.5 wiedergespiegelt. Die Lamelle haftet nach dem Stoßvorgang bei einer Drehzahl von $n_T = 1.650 U/min$ nach einer Winkeländerung von $\Delta \phi \approx \pi/2$ mit der Trommelachse. Im Vergleich benötigt die Lamelle bei einer Drehzahl von $n_T = 990 U/min$ zur Haftung eine halbe Achsenrotation $\Delta \phi \approx \pi$ (siehe Ergebnisse in Abbildung 7.5). Haftet die Lamelle mit der Trommelachse, wird die anschließende Geschwindigkeit der Lamelle von der Drehzahl bzw. von der Kreisbewegung der Trommelachse dominiert.

Die Simulationsergebnisse zeigen einen signifikanten Einfluss der Drehzahl n_T auf die Geschwindigkeitskomponenten der Lamelle, welche die resultierende Schlagenergie zur Fragmentierung der Betonoberfläche bilden. In den Simulationen wurde ebenfalls der Einfluss einer variablen Zustelltiefe z_T auf die Geschwindigkeitskomponenten der Lamelle untersucht. In Abbildung 7.6 ist der Verlauf der ermittelten Geschwindigkeitskomponente v_{z,P_0} für verschiedene Zustelltiefen z_T im Nennlastbetrieb $n_T = 1.650 U/min$ dargestellt.

Abb. 7.6: Vergleich der Geschwindigkeitskomponenten v_{z,P_0} in Abhängigkeit der Zustelltiefe z_T

Die Untersuchungen zu einer variablen Zustelltiefe z_T zeigen, dass der Einfluss auf die Geschwindigkeitskomponenten v_{y,P_0} und v_{z,P_0} der Lamelle für den Zustellbereich von $z_T = 3 mm$ bis $z_T = 5 mm$ minimal ist. Der Aufprallwinkel ϕ der Lamelle (siehe dreistufiges Bewegungsmodell in Kapitel 4.2.1) variiert in den Starrkörpersimulationen zwischen $\phi(z_T = 3 mm) = 16 \pm 1,5^\circ$ und $\phi(z_T = 5 mm) = 20 \pm 1,5^\circ$. Die Varianz des Aufprallwinkels ϕ bei einer bestimmten Zustelltiefe z_T resultiert aus der variablen Position der Lamelle auf der Trommelachse. Die Differenz der Aufprallwinkel bei unterschiedlichen Zustelltiefen führt zu Abweichungen in den Geschwindigkeitskomponenten $v_{y,0}$ und $v_{z,0}$ beim Aufprall auf die Betonoberfläche. Die Geschwindigkeitskomponente $v_{z,0}$ variiert beim Stoßvorgang entsprechend den Ergebnissen nach Abbildung 7.6 zwischen $v_{z,0}(z_T = 3 mm) = 4 m/s$ und $v_{z,0}(z_T = 5 mm) = 5 m/s$. Die Abhängigkeit der Geschwindigkeitskomponente v_{y,P_0} von der Zustelltiefe z_T ist in dem Anhang D dargestellt. Des Weiteren werden im Anhang D die Ergebnisse zu den ermittelten Geschwindigkeitsverläufen bei variablen Drehzahlen n_T und unterschiedlichen Zustelltiefen z_T grafisch aufgezeigt.

Die Ergebnisse zu den Geschwindigkeitskomponenten der Starrkörpersimulation ergaben, dass die Lamelle nach dem Stoßkontakt und vor dem Eintritt der Haftbedingung eine Relativbewegung zur Trommelachse in Abhängigkeit der Drehzahl n_T ausführt. Dieser

Relativbewegung folgt eine Verschiebung der Lamelle um die Trommelachse, welche im folgenden Abschnitt analysiert wird.

7.1.3 Ergebnisse zur Verschiebung der Lamelle während der Starrkörperrotation

Infolge von Reibungseffekten und Impulsaustausch bei den Stoßvorgängen der Lamelle mit der Betonoberfläche resultieren Relativbewegungen zwischen der Lamelle und der Trommelachse. Diese Ablöseeffekte von der Trommelachse konnten in den Starrkörpersimulationen durch die unstetigen Geschwindigkeitsänderungen der Schwerpunktskomponenten v_{y,P_0} und v_{z,P_0} in Kapitel 7.1.2 nachgewiesen werden. Die Relativbewegung hat eine Verdrehung bzw. Verschiebung der Lamelle auf der Trommelachse zur Folge. In Abbildung 7.7 ist die Auswertung der Verschiebungen für die Lamelle während der zweiten simulierten Trommelrotation im Nennlastbetrieb dargestellt (Drehsinn der Trommel ist mathematisch positiv). Die Messpunkte *B* entsprechen der Zuordnung nach der Abbildung 7.3 im Kapitel 7.1.1.

Abb. 7.7: Verschiebung der Lamelle bei einer Drehzahl $n_T = 1.650 U/min mit z_T = 4 mm$

Die Analyse weist, analog zu den Auswertungen der Geschwindigkeitskomponenten in Kapitel 7.1.2, ein Rotationsverhalten auf, welches durch einen Ablöseeffekt der Lamelle von der Trommelachse geprägt ist. Dieses Verhalten tritt bei der Gesamtheit der analysierten Verschiebungen in den unterschiedlichen Betriebssituationen auf (siehe Anhang D). Die Haftung der Lamelle mit der Achse erfolgt für den Nennlastbetrieb entsprechend den Verschiebungskurven $B_1(y,z)$, $B_3(y,z)$ und $B_5(y,z)$ nach einer Winkeländerung $\Delta \phi \approx \pi$ nach dem Stoßkontakt. Mit Hilfe der Verschiebungskurven wird die Verdrehung $\Delta \phi$ der Lamelle um die körpereigene x-Achse (siehe Tabelle 15 im Kapitel 7.1.1) bestimmt. Die Verdrehung $\Delta \phi$ ist ein Maß für die Wirkung des Drehimpulses *L* infolge des Stoßvorganges und wird für einen bestimmten Messpunkt *B* im Rotationszeitraum zwischen dem Stoßkontakt mit der Betonoberfläche und dem ersten Kontakt mit der Trommelachse gemessen. Die Auswirkungen des Drehimpulses werden bei der Betrachtung des Messpunktes B_5 in Bezug zur $M - P_0$ - Linie vor und nach dem Stoßkontakt in Abbildung 7.7 deutlich. Die Abbildung 7.8 zeigt die mittlere Winkelgeschwindigkeit ω_1 der Lamelle, welche durch das Verhältnis der berechneten Verdrehung $\Delta \varphi$ zum Zeitintervall Δt definiert wird (siehe theoretisches Bewegungsmodell im Kapitel 4.2.1).

Abb. 7.8: Ergebnisse zu der Winkelgeschwindigkeit ω_1 der Lamelle in Abhängigkeit der Drehzahl n_T

In Abbildung 7.8 ist die Wirkung des Drehimpulses auf die Lamelle bei einer konstanten Zustelltiefe von $z_T = 4 mm$ dargestellt. Die Ergebnisse zeigen, dass mit zunehmender Trommeldrehzahl n_T der Drehimpuls bzw. die Winkelgeschwindigkeit ω_1 für konstante Kontaktbedingungen zwischen Betonoberfläche und Lamelle annähernd linear ansteigen. Für eine Drehzahl $n_T = 990 U/min$ beträgt die Winkelgeschwindigkeit $\omega_1 = 180 rad/s$. Als lineare Approximation $\omega_1 = f(n_T)$ steigt die Winkelgeschwindigkeit in Abhängigkeit der Drehzahl mit $\Delta \omega_1 / \Delta n_T = 0.344 rad \cdot min/(s \cdot U)$. Die maximale Abweichung der ermittelten Winkelgeschwindigkeiten zur linearen Approximation konnte für die Drehzahl $n_T = 1.650 U/min$ mit einer Abweichung von $\Delta \omega_{1,max} / \omega_1 = 0.072$ ermittelt werden.

Die Resultate der Starrkörperrotation konnten die Annahmen und Beobachtungen zum Rotationsverhalten der Lamelle, welche im theoretischen Bewegungsmodell und in den Aufnahmen mit der Hoch-Geschwindigkeits-Kamera im Kapitel 4.2 begründet sind, wiedergeben. Ausgehend vom Rotationsverhalten der Lamelle für mehrere Trommelumdrehungen werden im nachfolgenden Kapitel 7.2 die auftretenden Spannungen an der Lamelle sowie die Kraftreaktionen am Betonprobekörper numerisch ermittelt. Das Ziel ist die Ermittlung der Spannungen an der Lamelle während des Stoßkontaktes, um die Verschleißerscheinungen an der Lamellenflanke nach Kapitel 6.3 zu verifizieren.

7.2 Explizite FEM-Analyse der Kraftreaktionen und Vergleichsspannungen

7.2.1 Aufbau des FEM-Modells und Simulationsvorgaben

Die explizite FEM-Simulation in der vorliegenden Arbeit betrachtet den Stoßvorgang der Hartmetalllamelle mit der Betonoberfläche. Das Ziel ist es, die Energie- und Impulsbilanz sowie die Spannungsverteilungen an der Lamelle während des Stoßvorganges zu ermitteln. Die Auswertung der Spannungsverteilung dient der Überprüfung der Fließbedingung Φ des Lamellenwerkstoffes C45 (siehe Gleichung (2-20)). Beim Erreichen der Fließbedingung setzt plastisches Fließen bzw. makroskopischer Verschleiß an der Lamelle ein. Die Analysen der Kraftreaktionen am Simulationsmodell dienen dem Vergleich mit den praktischen Kraftmessungen (siehe Kapitel 6.2) sowie zur Verifizierung der Verschleißergebnisse. Die Analyse der Kraftreaktionen erfolgte in Analogie zu den praktischen Versuchsreihen in Kapitel 6.2 für $F_y(t)$ und $F_z(t)$. Für eine eindeutige Interpretation des Kraft-Zeit-Verlaufes einer Kraftkomponente wurden zwei Simulationsmodelle entwickelt. In Abbildung 7.9 ist das vernetzte Simulationsmodell für die Kraftmessung $F_z(t)$ in z-Richtung dargestellt.

Abb. 7.9: Simulationsmodell zur expliziten FEM-Analyse für die Kraftmessung in z-Richtung

Das Simulationsmodell in Abbildung 7.9 entspricht den geometrischen und technologischen Randbedingungen des Versuchsstandes zu den Kraftmessungen aus Kapitel 5.2. Der

Betonprobekörper ist verschiebungsfrei mit der Stahlplatte im Verbund. Die Modellierung der Trommelachse wurde vernachlässigt, weil ausschließlich der Zeitausschnitt des Stoßvorganges betrachtet wird. In der Praxis weist der Versuchsstand eine elastische Gesamtsteifigkeit auf, welche sich aus der Steifigkeit der Einzelkomponenten und den Verbindungen zueinander zusammensetzt. Der Einfluss der Steifigkeit auf die Kraftreaktionen wurde im Simulationsmodell durch ein Federelement mit der Federkonstante k zwischen der Stahlplatte und dem Kraftsensor entsprechend der Abbildung 7.9 bzw. der Abbildung 7.10 berücksichtigt. In Anlage E sind das Simulationsmodell zur expliziten FEM-Analyse für die Kraftmessung in y-Richtung sowie die Netzgrößen und Elementarten der Einzelkomponenten aufgeführt. Im Vergleich zur Starrkörpersimulation im Kapitel 7.1 wurde das numerische Netz an den Lamellenflanken zur Spannungsanalyse verfeinert. Die Kontaktdefinition zwischen den Körpern Lamelle und Betonoberfläche ist reibungsbehaftet mit den Reibungskoeffizienten $\mu_{L-c} = 0.35$. Als ein reibungsfreier Kontakt in z-Richtung ist die Kontaktstelle zwischen den Führungselementen (siehe Abbildung 7.9) mit dem Betonprobekörper definiert. Die Führungselemente verhindern ein Kippmoment um die elastische Feder und führen zu einem zentrischen Lasteintrag entsprechend der Funktionalität der verwendeten Kraftmessdosen. Die Rand- und Zwangsbedingungen des FEM-Modells werden in der Abbildung 7.10 aufgezeigt.

Abb. 7.10: Rand- und Zwangsbedingungen des FEM-Modells für Kraftmessung in z-Richtung

Als Anfangsbedingung wird der Lamelle in den FEM-Berechnungen eine Winkelgeschwindigkeit zugewiesen, welche der Drehzahl n_T um den Rotationsmittelpunkt M entspricht. Die Resultate der Starrkörperrotation (siehe Kapitel 7.1) zeigen, dass diese Annahme aufgrund der Haftbedingung mit der Trommelachse unmittelbar vor dem Stoßkontakt berechtigt ist. In Anlehnung an den praktischen Versuchsstand ist der Kraftsensor in Richtung der drei Raumkoordinaten mit dem Untergrund fest gelagert (siehe Abbildung 7.10). Für eine zentrische Krafteinleitung auf das Federelement wird der Betonprobekörper durch ein reibungsfreies Gleitlager geführt. Für alle Simulationskörper wird die Erdbeschleunigung berücksichtigt. Die Rand- und Zwangsbedingungen für die Kraftmessung in y-Richtung sind nach der Darstellung in Anlage E in Analogie zu dem Modell für die Kraftmessungen in z-Richtung.

Das Verformungsverhalten der Lamelle, des Betonprobekörpers und der Stahlplatte ist materialabhängig und flexibel. Der Kraftsensor und die Führungselemente werden bezüglich des Verformungsvermögens in der FEM-Simulation als starr betrachtet. Die Materialvorgaben für die Lamelle entsprechen den Eigenschaften des Qualitätsstahls C45 nach der Normzuordnung *EN 10083-2*. Die zugehörigen Werkstoffdaten sind auf die Publikation von *Deutsche Edelstahlwerke* [94] bezogen. Die wesentlichen Materialeigenschaften für die Lamelle 16 aufgeführt.

Bezeichnung		Werte C45
Dichte ρ_{C45}	$[kg/m^3]$	7.700
Fließspannung $\sigma_{F,C45}$	[MPa]	320
Zugfestigkeit $\sigma_{z,C45}$	[MPa]	600
Elastizitätsmodul E _{C45}	$[10^3 \cdot MPa]$	210
Querkontraktionszahl v_{C45}		0,3
Bruchdehnung $\varepsilon_{c1u,C45}$	[%]	14

Tabelle 16: Materialvorgaben (Qualitätsstahl C45) für den Simulationskörper Lamelle

Das Spannungs-Dehnungsverhalten des Qualitätsstahls entspricht den theoretischen Ausführungen zum Materialverhalten nach Kapitel 2.2. Die Auswertung der Spannungen an der Lamelle erfolgt vorwiegend nach der *von Mises*-Fließbedingung (siehe Kapitel 2.2.1). Die Kennwerte aus der Materialprüfung der Betonprobekörper nach Kapitel 5.2.1 sind die Voraussetzung zur Erstellung des Materialmodells Beton. Die Grundlage zum Materialverhalten ist das Drucker-Prager-Fließmodell nach Kapitel 2.2.4. Die Drucker-Prager-Fließbedingung wird stückweise für die Druck-Zug-Fließläche und die Druck-Druck-Fließläche berechnet. Die Fließfläche für den eingesetzten Beton sowie die zugehörigen Materialparameter sind im Anhang E tabellarisch aufgeführt. Aufgrund der Vielzahl an Schlägen der Lamelle auf die Betonoberfläche wird auf eine Unterscheidung zwischen Zementmatrix und Zuschlagkorn verzichtet. Ziel ist die Ermittlung der Reaktionskräfte als Mittelwerte entsprechend den Auswertungen zu den experimentellen Versuchen aus Kapitel 6.2.

Die FEM-Berechnungen zum Stoßvorgang der Lamelle mit der Betonoberfläche beinhalten eine Parametervariation der Drehzahl n_T von $n_T = 990 U/min$ bis $n_T = 2.310 U/min$, so-

wie eine Variation der Lamellenposition φ_1 auf der Trommelachse unmittelbar vor dem Stoßkontakt. Die Berechnungen erfolgten, entsprechend der Darstellung in Abbildung 7.11, für sechs verschiedene Lamellenpositionen im Abstand von $\Delta \varphi_1 = 10^{\circ}$.

Abb. 7.11: Parametervariation φ_1 der Lamellenposition vor dem Stoßkontakt

Die Parametervariation φ_1 der Lamellenposition stellt die Verschiebung der Lamelle infolge des Drehimpulses *L* vorangegangener Stöße dar (siehe Ergebnisse im Kapitel 7.1 zur Starrkörpersimulation). Die relevanten Analyseeinstellungen und Eingaben zur Ausgabesteuerung der FEM-Berechnungen sind im Anhang E tabellarisch aufgeführt.

Die Steifigkeit k des Federelementes im Simulationsmodell wurde iterativ mit Hilfe der experimentellen Kraftmessungen für den Nennlastbetrieb $n_T = 1.650 U/min$ bei einer Zustelltiefe $z_T = 4 mm$ ermittelt und auf die folgenden numerischen Berechnungen übertragen. Der Vergleich zu den gemessen Reaktionskräften erfolgte nach einer Mittelwertbildung der numerisch ermittelten Reaktionskräfte F_z in der Lagerung B (siehe Abbildung 7.10) unter Berücksichtigung der Parametervariation φ_1 . Die Steifigkeit k des numerisch modellierten Versuchsstandes konnte näherungsweise mit $k = 2,8 \cdot 10^{10} N/m$ bestimmt werden. Die resultierenden Ergebnisse werden im folgenden Abschnitt dargestellt und beschrieben.

7.2.2 Analyse der Kraftreaktionen, Energie- und Impulsbilanzen am FEM-Modell

Die Berechnungen zu den Kraftreaktionen, Energie- und Impulsbilanzen wurden für eine konstante Zustelltiefe von $z_T = 4 mm$ durchgeführt. Die Auswertungen der Starrkörpersimulationen entsprechend dem Kapitel 7.1 nach Abbildung 7.6 zeigten, dass der Einfluss der Zustelltiefe z_T auf den kinetischen Zustand der Lamelle vernachlässigbar ist. Zusätzlich ergibt die Parametervariation φ_1 , welche eine Verschiebung der Lamelle um die körpereigene x-Achse darstellt, eine geometrisch bedingte Abweichung des Aufprallwinkels ϕ bzw. der Zustelltiefe z_T um $\Delta z_T = \pm 0.9 mm$. Die Abbildung 7.12 zeigt die Ergebnisse der Reaktionskraft F_z in Abhängigkeit von der Zeit *t* und dem Parameter der Verschiebung φ_1 .

Abb. 7.12: Ergebnisse zum Verlauf der Reaktionskraft $F_z(t)$ in Abhängigkeit der Verschiebung φ_1

Die Resultate nach Abbildung 7.12 zeigen eine große Streuung der Kraftamplitude $F_{z,max}$ für die verschiedenen Lamellenpositionen φ_1 . Die Hauptursache für die Abweichungen ist die variierende Größe der Kontaktfläche zwischen der Lamellenflanke und der Betonoberfläche. Für die Winkel $0^{\circ} \le \varphi_1 \le 30^{\circ}$ sinkt die Kraftamplitude von $F_{z,max}(\varphi_1 = 0^{\circ}) = 878 N$ um $\Delta F_{z,max} = 302 N$ auf $F_{z,max}(\varphi_1 = 30^\circ) = 576 N$. Eine entsprechend hohe Streuung der Kraftamplituden $F_{z,max}$ wurde ebenfalls bei den praktischen Messreihen entsprechend der Abbildung 6.3 und Abbildung 6.4 nach Kapitel 6 aufgezeichnet. Die Verteilung und Feinheit des numerischen Netzes beeinflusst zusätzlich die Streuung der Kraftamplituden und ist aufgrund der begrenzten Rechenkapazität stets als Fehlerquelle vorhanden. In Anlehnung an die theoretischen Erläuterungen nach Kapitel 3.1 benötigt die Kompressionsphase des Stoßvorganges bis zum Erreichen der Kraftamplitude $F_{z,max}$ die Zeit $t_1 = 0,001 s$. Für die Betrachtung der Impulsbilanz zwischen der Lamelle und der Betonoberfläche wurde ausschließlich die Kompressionsphase des Kraft-Zeit-Verlaufes betrachtet. Die Dämpfungskonstante der Feder als Einflussparameter auf die Restitutionsphase hat in Bezug auf den Impulsaustausch mit der Lamelle keinen Einfluss und wurde vernachlässigt. Die Ergebnisse zur Reaktionskraft F_{ν} in Vorschubrichtung sind im Anhang E grafisch dargestellt. Die mittlere Kraftamplitude beträgt $F_{y,max} = 191 N$.

Für einen qualitativen Vergleich der Kraftreaktionen in unterschiedlichen Betriebssituationen wurde aus der Gesamtheit der berechneten Reaktionskräfte jeder Parametervariation φ_1 eine Mittelwertfunktion $F_z(t)$ nach Abbildung 7.12 gebildet.

Abbildung 7.13 zeigt die Mittelfunktionen $F_z(t)$ in Abhängigkeit der Drehzahl n_T bei einer konstanten Zustelltiefe $z_T = 4 mm$.

Abb. 7.13: Ergebnisse der Mittelwertfunktionen $F_z(t)$ in Abhängigkeit der Drehzahl n_T

Die FEM-Berechnungen nach Abbildung 7.13 zeigen einen Anstieg der Kraftamplituden $F_{z,max}$ mit zunehmender Trommeldrehzahl n_T von $F_{z,max} = 447 N$ für den Teillastbetrieb $n_T = 990 U/min$ bis zu $F_{z,max} = 910 N$ für den Überlastbetrieb $n_T = 2.310 U/min$. Der Zeitanspruch der Kompressionsphase nimmt mit steigender Drehzahl n_T von $t_1(n_T = 990 U/min) = 0,00094 s$ bis $t_1(n_T = 2.310 U/min) = 0,00105 s$ zu. Die Ursache ist im Energieeintrag der Lamelle auf die Betonoberfläche begründet. Steigt die Rotationsgeschwindigkeit nehmen die Schlagkräfte der Lamelle bzw. die Reaktionskräfte $F_z(t)$ und $F_y(t)$ am Kraftsensor sowie die Kontaktzeit bei konstanten Randbedingungen zu (siehe Kapitel 3.1). Die Ergebnisse in Anlage E zu den Reaktionskräften $F_y(t)$ in Abhängigkeit der Drehzahl n_T zeigen ein analoges Verhalten auf.

Die Zunahme der Rotationsgeschwindigkeit und der Schlagkräfte hat Einfluss auf die kinetische Energiebilanz der Lamelle. Die Differenz von kinetischer Energie ΔE_{kin} der Lamelle, welche beim Stoßvorgang umgewandelt wird, zeigen die numerischen Ergebnisse nach Abbildung 7.14 zu verschiedenen Betriebssituationen. Die Ergebnisse sind als Mittelwertfunktionen $E_{kin}(t)$ für die entsprechende Trommeldrehzahl n_T dargestellt.

Abb. 7.14: Die kinetischen Energie der Lamelle beim Stoßvorgang in Abhängigkeit der Drehzahl n_T

Die umgewandelte kinetische Energie ΔE_{kin} der Lamelle nimmt mit steigender Drehzahl n_T von $\Delta E_{kin}(n_T = 990 \ U/min) = 1,13 \ J$ bis $\Delta E_{kin}(n_T = 2.310 \ U/min) = 6,37 \ J$ während eines Stoßkontaktes zu. Die Kontaktzeiten der Lamelle mit der Betonoberfläche ergeben sich nach Abbildung 7.14 aus der Zeitdifferenz Δt_{0-1} zwischen den jeweiligen zwei Energiezuständen vor und nach dem Stoß. Die berechnete Kontaktzeit der Lamelle für die Trommeldrehzahl $n_T = 990 \ U/min$ entspricht $\Delta t_{0-1} = 7 \cdot 10^{-5} \ s$. Im Vergleich steigt die Kontaktzeit für eine Trommeldrehzahl $n_T = 2.310 \ U/min$ auf $\Delta t_{0-1} = 1,6 \cdot 10^{-4} \ s$. Der Zuwachs an kinetischer Energie der Lamelle infolge einer größeren Trommeldrehzahl n_T bewirkt, dass die Lamelle mit einem größeren Impuls $I_{z,0}$ auf die Betonoberfläche schlägt (siehe die numerischen Ergebnisse in Abbildung 7.15).

Abb. 7.15: Impulsverlauf $I_z(t)$ der Lamelle beim Stoßvorgang in Abhängigkeit der Drehzahl n_T

Der Impulsverlauf $I_{z,0}(t)$ in Abbildung 7.15 sowie der Impulsverlauf $I_{y,0}(t)$ in Anlage E sind abhängig von den Geschwindigkeitskomponenten $v_z(t)$ und $v_y(t)$ der Lamelle. Auf Grundlage des Koordinatensystems nach Abbildung 7.11 ist der Wert der Geschwindigkeitskomponente $v_z(t)$ bzw. des Impulses $I_{z,0}$ vor Stoßbeginn (für t < 0,0001 s nach Abbildung 7.15) stets positiv. Während des Stoßvorganges ändert die Lamelle die Bewegungsrichtung und der Impuls $I_{z,0}$ wird infolge der Richtungsabhängigkeit negativ. Die Impulsdifferenz der Lamelle vor und nach dem Stoßkontakt ist entsprechend den theoretischen Erläuterungen in Kapitel 3.1 auf den teilelastischen Stoß zurückzuführen und wird durch die Differenz der Beträge $\Delta I_z = |I_{z,0}| - |I_{z,1}|$ ermittelt. Eine maximale Impulsdifferenz der Lamelle ergibt sich nach Abbildung 7.15 für die größte Drehzahl $n_T = 2.310 U/min$ mit $\Delta I_{z,max} = 0,305 N \cdot s$ (siehe Abbildung 7.15). Die Schlagwirkung bzw. der Impulsaustausch der Lamelle mit dem Betonkörper sinkt durch eine Reduktion der Trommeldrehzahl auf $\Delta I_{z,min} = 0,088 N \cdot s$ für $n_T = 990 U/min$.

Die zunehmende Schlagwirkung der Lamelle mit steigender Drehzahl beeinflusst die mechanische Beanspruchung der Lamelle. Im folgenden Abschnitt werden die auftretenden Spannungen an der Lamelle lokalisiert und in Abhängigkeit von der Lamellenposition φ_1 und der Drehzahl n_T untersucht.

7.2.3 Analyse der Spannungsverteilung an der Lamelle

Die Variation der Trommeldrehzahl n_T beeinflusst die Impulsbilanz ΔI der Lamelle beim Stoßvorgang sowie die übertragenden Schlagkräfte auf die Betonoberfläche bzw. die mechanische Beanspruchung der Stoßkörper. Im folgenden Abschnitt werden die ermittelten numerischen Ergebnisse zur Analyse der Spannungsverteilung an der Lamelle während des Stoßvorganges beschrieben. Eine direkte Abhängigkeit der mechanischen Beanspruchung des Lamellenkörpers von der Drehzahl n_T zeigen die Ergebnisse in Abbildung 7.16 zur Vergleichsspannung σ_v nach von Mises (siehe Kapitel 2.2). Die Darstellung betrachtet die Spannungsverteilung σ_v der Lamelle beim Erreichen der maximalen Eindringtiefe z_E in die Betonoberfläche. Die Geschwindigkeitskomponente der Lamelle senkrecht zur Betonoberfläche beträgt in diesem Zustand $v_z = 0 m/s$.

Abb. 7.16: Spannungsverteilung σ_v nach von Mises an der Lamelle bei $z_T = 4 \ mm$ und $\varphi_1 = 10^{\circ}$

Die Resultate zeigen eine lokale Zunahme der maximalen Spannungsfelder $\sigma_V \ge \sigma_F$ ($\sigma_F = 320 MPa$ für Qualitätsstahl C45) mit steigender Drehzahl n_T bei konstanter Zustelltiefe z_T und gleicher Lamellenposition φ_1 . An den lokalen Bereichen der Lamelle mit Spannungen $\sigma_V \ge \sigma_F$ (rot in Abbildung 7.16 markiert) wird die Fließgrenze nach *von Mises* überschritten. Die Folgen sind lokale plastische Verformungen bzw. abrasive Verschleißerscheinungen. Die Auswertungen der Spannungsfelder zeigen, dass vorwiegend die Flanke der Lamellenspitze in Stoßkontakt mit der Betonoberfläche tritt. Ausschließlich für eine Lamellenposition $\varphi_1 = 50^\circ$ (siehe Abbildung 7.11 im Kapitel 7.2) konnten Vergleichsspannungen mit $\sigma_V \ge \sigma_F$ entlang der Lamellenspitze ermittelt werden. Die Spannungen direkt an den geometrischen Kanten der Lamellenflanke sind aufgrund der fehlenden Radien im Hinblick auf Singularitäten kritisch zu bewerten. Die Berechnungen zum Stoßvorgang der Lamelle wurden zur Minimierung einer groben Elementstruktur und von numerischen Fehlern für unterschiedliche Netzgrößen durchgeführt und bewertet (siehe Abbildung E.4 in Anlage E).

Analog zur Analyse der Kraftreaktionen in Kapitel 7.2.2 erfolgte die Spannungsauswertung für verschiedene Lamellenpositionen φ_1 . Die folgende Abbildung 7.17 zeigt den Verlauf der maximalen lokalen Vergleichsspannungen $\sigma_{v,max}(t)$ der Lamelle in Abhängigkeit der Lamellenposition φ_1 während des Stoßvorganges mit der Betonoberfläche.

Abb. 7.17: Verlauf der maximalen Vergleichsspannung $\sigma_{v,max}(t)$ für $n_T = 1.650 U/min$

Das Verhalten der maximalen Vergleichsspannungen $\sigma_{v,max}(t)$ weist für verschiedene Lamellenpositionen φ_1 unterschiedliche Extremwerte auf. Die Ursachen sind bei der Vernachlässigung numerischer Fehler die variable Größe der Kontaktfläche, sowie die scheinbare Verschiebung der Zustelltiefe z_T infolge der Parametervariation φ_1 . Die auftretenden Spannungsmaxima steigen von $\sigma_{v,max}(t = 0,00014 s) = 865 MPa$ für $\varphi_1 = 30^\circ$ auf $\sigma_{v,max}(t = 0,00016 s) = 1.226 MPa$ für $\varphi_1 = 0^\circ$. Die Auswertungen zeigen, dass unabhängig von der Lamellenposition φ_1 stets lokale Vergleichsspannungen $\sigma_{v,max} \ge \sigma_F$ bzw. Verschleißerscheinungen an den Flanken der Lamellenspitze auftreten. Für einen Vergleich der Spannungen $\sigma_{v,max}(t)$ nach von Mises für unterschiedliche Betriebssituationen wurden die jeweiligen Mittelwertfunktionen $\sigma_{v,m}(t)$ gebildet und entsprechend der Abbildung 7.18 gegenübergestellt.

Abb. 7.18: Vergleich der Spannungen $\sigma_{v,m}(t)$ an der Lamelle in Abhängigkeit der Drehzahl n_T

Bei konstanten numerischen Parametern (bspw. Elementgröße und Elementanzahl) steigt mit zunehmender Drehzahl n_T die mechanische Belastung bzw. die Spannung $\sigma_{v,m}$ an der Lamelle nach Abbildung 7.18 an. Für eine Drehzahl $n_T \ge 1.650 U/min$ reduziert sich der Anstieg der Spannungen und die Spannungsmaxima von $\sigma_{v,m}(t)$ liegen zwischen $\sigma_{v,m}(n_T = 1.980 U/min) = 972 MPa$ und $\sigma_{v,m}(n_T = 2.310 U/min) = 1.050 MPa$. Diese Stagnation im Anstieg der Spannungen $\sigma_{v,m}$ wird durch eine Zunahme der Kontaktzeit für eine Betriebsdrehzahl $n_T \ge 1.650 U/min$ begründet.

Die Auswertungen der Spannungen an der Hartmetalllamelle zeigen, dass Verschleißerscheinungen an den Flanken der Lamelle auftreten. Die lokale Ausbreitung der abrasiven Verschleißcharakteristika ist von den Betriebsbedingungen und der geometrischen Position der Lamelle während des Stoßkontaktes abhängig. Die FEM-Ergebnisse konnten Annahmen zu den Verschleißerscheinungen und der Dynamik der Lamelle für die praktischen Messreihen und das entwickelte Bewegungsmodell bestätigen. Im folgenden Kapitel werden diese Ergebnisse im Hinblick auf eine geeignete Werkzeugoptimierung bewertet.

8. Bewertung der Ergebnisse für eine Werkzeugoptimierung

Im folgenden Kapitel werden die Ergebnisse aus den praktischen Versuchsreihen (siehe Kapitel 6) und die Simulationsergebnisse (Kapitel 7) hinsichtlich der Reaktionskräfte und Impulsbilanzen miteinander verglichen, um die Nachweisführung der Starrkörper- und FEM-Simulation zu prüfen. Im Anschluss wird das theoretische Bewegungsmodell nach Kapitel 4.2.1 anhand der Simulationsergebnisse für die Geschwindigkeitskomponenten, Impulsbeträge und Energiedifferenzen bewertet. Mit Hilfe der theoretischen Grundlagen zur Werkstofftechnologie (siehe Kapitel 2) und des theoretischen Bewegungsmodells sowie durch die Erkenntnisse aus der Simulation und der Verschleißcharakterisierung (siehe Kapitel 6.3) erfolgt anschließend die Darstellung von Lösungsansätzen zur Optimierung der Hartmetalllamelle.

8.1 Vergleich und Bewertung der Ergebnisse

8.1.1 Vergleich der experimentellen und numerischen Reaktionskräfte

Ein Vergleich der numerisch bestimmten Reaktionskräfte mit den Messreihen zu den Kraftreaktionen nach Kapitel 6.2 dient der Bewertung zur Realitätsnähe des Simulationsmodells. Die Reaktionskraft $F_z(t)$ ist bei dieser Bewertung entscheidend, weil die Kraftkomponente wesentlich die Dynamik der Lamelle und die Abtragstiefe z_A der Betonoberfläche beeinflusst. In Abbildung 8.1 ist der Verlauf der Kraftkomponente $F_z(t)$ der FEM-Rechnung und der experimentellen Versuchsreihe für den Nennlastbetrieb $n_T = 1.650 U/min$ und der Zustelltiefe $z_T = 4 mm$ gegenübergestellt. Die Kraft-Zeit-Verläufe entsprechen den nach Kapitel 6.2 und Kapitel 7.2 gebildeten Mittelwertfunktionen.

Abb. 8.1: Vergleich der experimentell und numerisch ermittelten Kraft $F_z(t)$ für $n_T = 1.650 U/min$

Der Maximalwert $F_{z,max} = 752 N$ der FEM-Rechnung weist mit einer Differenz von $\Delta F_{z,max} = 48 N$ einen Fehler von $\Delta F_{z,max}/F_{z,max} = 0,064$ zu den Messergebnissen auf. Die Abweichung ist unter anderem auf eine Differenz der Federsteifigkeit des FE-Modells zur Steifigkeit des Versuchsstandes, sowie auf numerische Fehler infolge der Netzqualität zurückzuführen. Der Verlauf der Kompressionsphase der numerischen Simulation weist für eine anschließende Analyse der maximalen Kräfte und Impulsbilanzen eine akzeptable Übereinstimmung mit der Versuchsreihe auf. Die Vernachlässigung von Dämpfungseigenschaften führt zu einer größeren Zeitdifferenz der Restitutionsphase bei der FEM-Rechnung in Abbildung 8.1 als für die Versuchsreihe. Diese Abweichung hat keinen Einfluss auf die Auswertung der relevanten Parameter zur Beschreibung der Dynamik und Schlagwirkung der Lamelle. Die Abbildung 8.2 zeigt den Vergleich der maximalen Reaktionskräfte $F_{z,max}$ zwischen der Simulation und den Versuchsreihen in Abhängigkeit der Trommeldrehzahl n_T .

Abb. 8.2: Vergleich der maximalen Reaktionskräfte $F_{z,max}$ in Abhängigkeit der Drehzahl n_T

Die Ergebnisse der Simulation nach Abbildung 8.2 zeigen, dass das Simulationsmodell hinsichtlich der Reaktionskräfte bzw. Schlagkräfte der Lamelle orthogonal zur Betonoberfläche annähernd die Beanspruchung des experimentellen Versuchstandes wiedergibt. Für eine Trommeldrehzahl $n_T = 990 U/min$ ist die Abweichung der maximalen Reaktionskräfte aus der FEM-Simulation mit $\Delta F_{z,max}/F_{z,max} = 0,008$ minimal. Die Approximationsfunktionen $F_{z,max}(n_T)$ nach den Simulations- und Messergebnissen besitzen einen Anstieg von $\Delta F_{z,max}/\Delta n_T = 0,34 N \cdot min/U$. Der Fehler im Anstieg der einzelnen Funktionen ist vernachlässigbar.

In der weiteren Analyse werden die Vergleiche und Bewertungen zu den Impuls- und Energiebilanzen auf Grundlage der Ergebnisse zum Simulationsmodell für die Kraftmessung $F_z(t)$ in z-Richtung durchgeführt. Die Ergebnisse für die numerischen Reaktionskräfte $F_y(t)$ weisen eine zu hohe Streuung von den Versuchsergebnissen auf. Die Ursache hierfür können unter anderem Abweichungen in der Steifigkeit des Versuchsstandes in y-Richtung, der Haftungsunterschied der Lamelle durch Fragmente auf der Betonoberfläche im Praxiseinsatz sowie numerische Fehler aufgrund einer zu groben Elementstruktur sein.

8.1.2 Vergleich der Impulsbilanz aus den Versuchsreihen und der FEM-Analyse

Der Vergleich der Impulsbilanz aus den praktischen Messreihen und der FEM-Analyse betrachtet den Impuls $I_{z,0}$ der Lamelle unmittelbar vor dem Stoßkontakt sowie die Impulsdifferenz ΔI_z und ΔI_y der Lamelle für den Stoßvorgang mit der Betonoberfläche. Die abgeleiteten Impulse für die Kompressionsphase der experimentell ermittelten Kraft-Zeit-Messungen (siehe Kapitel 6.2) entsprechen den Impulsen $I_{z,0}$ der Lamelle. Die Bedingung resultiert aus der Annahme, dass die Lamelle den Impuls $I_{z,0}$ vollständig überträgt bis die Lamelle eine Geschwindigkeit $v_z = 0 m/s$ erreicht. Anschließend beginnt die Restitutionsphase und die Lamelle bekommt in Abhängigkeit der Stoßzahl *e* den Impuls $I_{z,0}$ zwischen den experimentellen und numerischen Ergebnissen in Abhängigkeit der Drehzahl n_T .

Abb. 8.3: Vergleich der Impulse $I_{z,0}$ der Lamelle in Abhängigkeit der Drehzahl n_T

Für den Anstieg und die Wertigkeit der ermittelten Impulse $I_{z,0}$ besteht entsprechend der Abbildung 8.3 zwischen den experimentellen und numerischen Ergebnissen eine Ähnlichkeit. Der approximierte Anstieg des Impulses zur Drehzahl beträgt unter Vernachlässigung einer minimalen Fehlerabweichung zwischen den Messungen und der FEM-Simulation $\Delta I_{z,0}/\Delta n_T = 0,0002 N \cdot s \cdot min/U$. Hinsichtlich der Wertigkeitsanalyse beträgt die maximale Abweichung der Simulationsergebnisse von den Messreihen $\Delta I_{z,0} = 0,095 N \cdot s$ bei einer Drehzahl $n_T = 2.310 U/min$. Die Abweichungen sind vorwiegend auf die Mittelwertbildungen und systembedingten Messfehler der Sensoren sowie der hohen Streuung der gemessenen Kraftamplituden $F_{z,max}$ zurückzuführen.

Die Analyse der Impulse $I_{y,0}$ zu den Kraftmessungen in y-Richtung entsprechen hingegen der Impulsdifferenz ΔI_y der Lamelle. Das Verhalten ist durch den unvollständigen Impulsaustausch in y-Richtung zurückzuführen, weil die Lamelle stets eine Geschwindigkeitskomponente $v_y > 0 m/s$ während des Stoßvorganges aufweist. Die Impulsdifferenzen ΔI_z , welche aus den praktischen Versuchsreihen resultieren, werden mit Hilfe der experimentell bestimmten Stoßzahl *e* (siehe Kapitel 6.1.1) und dem Ausgangsimpuls $I_{z,0}$ der Lamelle (siehe Kapitel 6.2) nach $\Delta I_z = I_{z,0} - I_{z,0} \cdot e$ bestimmt. Die Abbildung 8.4 stellt die Impulsdifferenzen ΔI_z und ΔI_y für die numerischen Berechnungen und die experimentellen Messreihen gegenüber.

Abb. 8.4: Vergleich der Impulsdifferenzen ΔI_y und ΔI_y für Praxismessungen und FEM-Simulation

Die Ergebnisse nach Abbildung 8.4 zeigen, dass der Anstieg der Impulsdifferenzen in Abhängigkeit der Drehzahl n_T für die numerischen und die experimentellen Ergebnisse näherungsweise linear verläuft. Der Vergleich für die Impulsbilanzen ΔI_y weist geringe Differenzen für den gesamten Drehzahlbereich 990 $U/\min \le n_T \le 2.310 U/min$ auf. Die Simulations-Ergebnisse haben eine maximale Abweichung zu den numerischen Ergebnissen von $|\Delta I_{y,ME} - \Delta I_{y,FE}| = 0,026 N \cdot s$ bei einer Drehzahl $n_T = 1.320 U/min$. Hingegen nehmen die Abweichungen beim Vergleich der Impulsdifferenzen ΔI_z für eine Trommeldrehzahl $n_T > 1.650 U/min$ zu. Die maximale Abweichung der Simulationsergebnisse von den Messungen beträgt $|\Delta I_{z,ME} - \Delta I_{z,FE}| = 0,07 N \cdot s$ für die Drehzahl $n_T = 2.310 U/min$. Für die Drehzahlen $n_T \le 1.650 U/min$ ergeben die numerischen Ergebnisse $\Delta I_{z,FE}$ eine gute Übereinstimmung zu den Impulsdifferenzen $\Delta I_{z,ME}$. Das Verhalten der Abweichungen resultiert aus der Zunahme von Streuungen, Messungenauigkeiten und numerischer Komplexität

mit zunehmender Drehzahl der Werkzeugtrommel. Der Vergleich der FEM- und Messergebnisse zeigt, dass das Impulsverhalten und die Kraftübertragung der Lamelle bei der Betonbearbeitung mit dem verwendeten Simulationsmodell bis zur Nenndrehzahl $n_T = 1.650 U/min$ vollständig wiedergegeben werden kann.

8.1.3 Bewertung des theoretischen Bewegungsmodells anhand der Simulationsergebnisse

Das theoretische Bewegungsmodell nach Kapitel 4.2.1 wird in diesem Abschnitt der Arbeit anhand der Simulationsergebnisse, welche mit den praktischen Versuchsreihen in Kapitel 8.1.1 und 8.1.2 verifiziert wurden, bewertet. Zur Bewertung des Bewegungsmodells werden die dynamischen Kenngrößen der Lamelle betrachtet, welche die Geschwindigkeitskomponenten $v_y(t)$ und $v_z(t)$, sowie die Impuls- und Energiebilanzen beinhaltet. Als Randbedingung zur Parametereingabe des Bewegungsmodells wird die experimentell ermittelte Stoßzahl $e = 0,59 \pm 0,02$ des Versuchstandes festgelegt. Weitere wesentliche Randbedingungen für einen qualifizierten Vergleich des Bewegungsmodells mit den Simulationsergebnissen sind die geometrischen Kenngrößen (siehe Kapitel 4.2.1) nach den realen Bedingungen entsprechend der Tabelle 17.

Tabelle 17: Geometrische Kenngrößen zur Bewertung des Bewegungsmodells

$d_i [mm]$	$d_L \left[mm ight]$	$r_T [mm]$	$r_0 \left[mm ight]$	$r_{L_B} = r_{S_L} \left[mm \right]$
25	57	90	94,5	27

In Abhängigkeit der Lamellenposition φ_1 (siehe Abbildung 4.6 in Kapitel 4.2.1) und der Zustelltiefe z_T kann der Aufprallwinkel ϕ der Lamelle auf die Betonoberfläche variieren. Infolge der Variation resultieren nach Tabelle 18 Abweichungen der Geschwindigkeitskomponenten $v_{y,0}$ und $v_{z,0}$ der Lamelle beim Stoßkontakt mit der Betonoberfläche für eine Trommeldrehzahl $n_T = 1.650 U/min$ bzw. $v_T = 15,6 m/s$ im Nennlastbetrieb. Die Bestimmung der Parameter folgt den Gleichungen (4-5), (4-6), (4-7) und (4-9).

Tabelle 18: Aufprallwinkel und Geschwindigkeitskomponenten für den Nennlastbetrieb

		$z_T = 3 mm$	$z_T = 4 mm$	$z_T = 5 mm$
$\phi_{0,Max}(\varphi_1 = 45^\circ)$	[°]	17	18	20
$\phi_{0,Min}(\varphi_1=10^\circ)$	[°]	12	15	17
$v_{y,0}(\phi_{0,Max})$	[m/s]	15,5	15,4	15,3
$v_{y,0}(\phi_{0,Min})$	[m/s]	15,9	15,7	15,5
$v_{z,0}(\phi_{0,Max})$	[m/s]	4,7	5	5,6
$v_{z,0}(\phi_{0,Min})$	[m/s]	3,4	4,2	4,7

Die Ergebnisse nach Tabelle 18 zeigen, dass der Einfluss der Zustelltiefe z_T auf die Geschwindigkeitskomponente $v_{v,0}$ analog zu den Simulationsergebnissen nach Kapitel 7.1.2

vernachlässigbar ist. Die Abhängigkeit der Geschwindigkeitskomponente $v_{z,0}$ von der Zustelltiefe z_T bestätigt der Vergleich mit den Simulationsergebnissen nach Abbildung 8.5.

Abb. 8.5: Vergleich der Geschwindigkeitskomponente $v_{z,0}$ in Abhängigkeit der Zustelltiefe z_T

Die Abweichungen der Aufprallgeschwindigkeiten $v_{z,0}$, welche auf numerische Fehler sowie auf die Streuung in der Mittelwertbildung bei einer steigenden Dynamik der Lamelle zurückzuführen sind, nehmen mit steigender Trommeldrehzahl n_T und Zustelltiefe z_T zu. Die Ergebnisse entsprechend Abbildung 8.5 weisen einen maximalen Fehler des theoretischen Bewegungsmodells von $\Delta v_{z,0}/v_{z,0} = 0,069$ bei $z_T = 5 mm$ und $n_T = 2.310 U/min$ auf. Eine ausreichende Überstimmung des theoretischen Bewegungsmodells mit der Simulation zeigt in Abbildung 8.6 der Vergleich der Geschwindigkeitskomponenten $v_{y,0}$ und $v_{z,0}$.

Abb. 8.6: Vergleich der Geschwindigkeitskomponenten $v_{v,0}$ und $v_{z,0}$ der Lamelle für $z_T = 4 mm$

Die Resultate in Abbildung 8.6 gelten für eine konstante Zustelltiefe von $z_T = 4 mm$. Der Vergleich zeigt, dass die dynamischen Voraussetzungen vor dem Stoßkontakt der Lamelle mit der Betonoberfläche ausreichend durch die theoretischen Ansätze beschrieben werden können.

Infolge des teilelastischen Stoßes (siehe Kapitel 3.1) weist die Lamelle für den Stoßvorgang eine Impulsdifferenz auf. In Abbildung 8.7 werden die mittleren Impulsdifferenzen ΔI_z der Lamelle als Ergebnisse nach dem dreistufigen Bewegungsmodell, der Simulation, sowie der zugehörigen experimentellen Messreihen für eine Zustelltiefe $z_T = 4 mm$ gegenübergestellt.

Abb. 8.7: Vergleich der Impulsbilanz ΔI_z zwischen Bewegungsmodell, Simulation und Messung

Die Simulationsergebnisse zur Ermittlung der Impulsdifferenzen für einen Drehzahlbereich $n_T \leq 1.650 \ U/min$ korrelieren mit den Ergebnissen des theoretischen Modells sowie der praktischen Versuchen. Für den Drehzahlbereich $n_T > 1.650 \ U/min$ sind die Abweichungen der FEM-Ergebnisse nach Abbildung 8.7 für einen quantitativen Vergleich zu groß. Die gemessenen Impulsdifferenzen der praktischen Messreihen stimmen mit den theoretischen Modellwerten für den in dieser Arbeit betrachteten Drehzahlbereich überein. Die maximale Abweichung $|\Delta I_{z,BM} - \Delta I_{z,ME}| = 0,0075 \ N \cdot s$ der theoretischen Ergebnisse von den experimentalen Resultaten weist einen Fehler von $|\Delta I_{z,BM} - \Delta I_{z,ME}| = 0,0581$ auf, welcher vernachlässigbar ist. Die Abweichungen der Impulsdifferenzen $\Delta I_{z,FE}$ zu den Mess-und Modellergebnissen ist analog den Untersuchungen entsprechend der Abbildung 8.4 auf die Abhängigkeit der numerischen Ergebnisse von der Dynamik der Lamelle zurückzuführen (bei konstanter Elementnetzdichte).

Entsprechend dem aufgestellten dreistufigen Bewegungsmodell resultiert aus dem teilelastischen Stoß bzw. der Impulsdifferenz ΔI eine Energiebilanz nach Gleichung (4-13), welche die Umwandlung der translatorischen kinetischen Energie $\Delta E_{trans,0-1}$ der Lamelle in einen Rotationsanteil $E_{rot,1}$, Verformungsenergie E_W und Bruchenergie Γ darstellt. Mit Hilfe der ermittelten Impulsdifferenzen ΔI_y und ΔI_z kann nach der Gleichung (4-12) der Drehimpuls $L_{L,1} = J_L \cdot \omega_1$ bzw. der Energieanteil $E_{rot,1} = 1/2 \cdot J_{L,x} \cdot \omega_1^2$ bestimmt werden (Trägheitsmoment $J_{L,x}$ bezüglich der x-Drehachse entsprechend Tabelle 15 Kapitel 7.1.1). Abbildung 8.8 zeigt die Ergebnisse zum Energieanteil $E_{rot,1}$ nach dem theoretischen Bewegungsmodell als Parametervariation der Lamellenposition φ_2 (Winkelbezeichnung siehe Abbildung 4.7) in Abhängigkeit der Trommeldrehzahl n_T .

Abb. 8.8: Energieanteil $E_{rot,1}$ nach dem Bewegungsmodell als Parametervariation von φ_2

Der Drehimpuls $L_{L,1}$ bzw. die Rotationsenergie $E_{rot,1}$ der Lamelle unmittelbar nach dem Stoß ist entsprechend der Abbildung 8.8 von der Lage des Stoßpunktes *S* zum Schwerpunkt P_0 der Lamelle abhängig (siehe Abbildung 4.7). Das eingeleitete Drehmoment beim Stoßkontakt mit der Betonoberfläche um den Schwerpunkt P_0 erreicht bei einem Winkel $\varphi_2 = -20^\circ$ ein Maximum. Der resultierende Drehimpuls bewirkt, dass sich die Lamelle mit einer mittleren Rotationsenergie von $E_{rot,1} = f(n_T = 1.650 U/min) = 1.9 J$ im Nennlastbetrieb nach dem Stoß bewegt. Mit zunehmender Drehzahl n_T steigt der Anteil an Rotationsenergie bis auf $E_{rot,1} = f(n_T = 2.310 U/min) = 3.9$. Die maximale Abweichung der mittleren Rotationsenergie $E_{rot,1}$ beträgt $\Delta E_{rot,1}/E_{rot,1} = 0.13$ und ist drehzahlunabhängig für die Lamellenposition $\varphi_2 = 10^\circ$.

Mit Hilfe der ermittelten Rotationsenergie $E_{rot,1}$ sowie den translatorischen Energieanteilen $E_{trans,0}$ und $E_{trans,1}$ der Lamelle ($E_{rot,0} = 0 J$ nach den Randbedingungen zum dreistufigen Bewegungsmodell im Kapitel 4.2.1) kann nach der Energiebilanz (siehe Gleichung 4-13) der Energieanteil $\Delta E_{kin} = E_W + \Gamma$ für die resultierende Verformung (elastisch und plastisch) als auch zur Schaffung der Bruchfläche (entsprechend den Abbildungen 6.12 und 6.13) bestimmt werden. Eine einzelne Angabe zu den Energieanteilen E_W und Γ ist aufgrund technologischer Einschränkungen bei der komplexen Bestimmung von den Bruchflächen der

Betonfragmente, welche durch einen einzelnen Stoßkontakt der Lamelle entstehen, nicht möglich. Die Abbildung 8.9 zeigt den Vergleich der kinetischen Energie $E_{kin,0}$ der Lamelle und der resultierenden Energiedifferenz ΔE_{kin} für die Verformung und Brucharbeit zwischen den theoretischen Modellergebnissen und der Resultate der FEM-Simulation.

Abb. 8.9: Vergleich der kinetischen Energie $E_{kin,0}$ und der Differenz ΔE_{kin} für den Stoßvorgang

Der Vergleich nach Abbildung 8.9 weist übereinstimmende Ergebnisse vor und nach dem Stoß zwischen dem Bewegungsmodell und der numerischen Lösung auf. Die Ergebnisse zeigen, dass die Lamelle beim Stoßvorgang unabhängig von der Drehzahl n_T stets kinetische Energie abgibt mit dem Faktor $E_{kin,0}/\Delta E_{kin} = 3 \pm 0.05$.

Mit einem linearen Anstieg der Drehzahl n_T folgt ein progressiver kinetischer Energiezuwachs $E_{kin,0}$ der Lamelle. Die Folge ist eine größere Energieumwandlung ΔE_{kin} , welche zur Erhöhung der Brucharbeit an der Betonoberfläche (siehe praktische Messergebnisse zur Abtragstiefe $z_A = f(n_T)$ im Kapitel 6.3.1) als auch zur Vergrößerung der plastischen Fließzonen an der Lamelle und folglich zu einem Anstieg des Werkzeugverschleißes führt (entsprechend der FEM-Ergebnisse im Kapitel 7.2).

8.2 Lösungsansätze zur Optimierung der Hartmetalllamelle

8.2.1 Werkstofftechnologische Optimierung

Für einen Ansatz zur werkstofftechnologischen Optimierung gelten die Voraussetzungen, dass im Vergleich zu der bisher eingesetzten Maschinentechnik keine Veränderungen vollzogen werden. Die Maschinenstruktur bleibt entsprechend den Ausführungen nach Kapitel 4 und 5 konstant. Die werkstofftechnologische Optimierung zielt auf die Veränderung der Festigkeit und der Härte der Lamelle ab, welche maßgeblich Verschleiß der Lamelle und den Betonabtrag beeinflussen. Die Auswahl von geeigneten Werkstoffen basiert auf der Gegebenheit, dass der Qualitätsstahl C45 den bisherigen Grundwerkstoff der Lamelle darstellt und der Quarzanteil im Beton den Hauptabrasivstoff ($HV_A = 1.120 MPa$) für die Verschleißerscheinungen entsprechend dem Kapitel 3.3 bildet. Tabelle 19 zeigt die Verschleißverhältnisses HV_A/HV_M für den Ersatz des Grundwerkstoffes C45 mit einem handelsüblichen höherwertigeren Grundwerkstoff. Das Auswahlkriterium der Werkstoffe aus den unterschiedlichen Werkstoffgruppen für Stahl [95] ist eine Mindestfließspannungsgrenze $\sigma_F \ge 600 MPa$ (ausgenommen der Vergütungsstahl C60), welche dem Maximalwert $\sigma_{v,max}$ der mittleren Vergleichsspannung $\sigma_v(t)$ nach den Ergebnissen der FEM-Simulation für $n_T = 990 U/min$ (siehe Abbildung 7.18 in Kapitel 7.2.3) entspricht.

		Unlegierter Vergütungsstahl		Legierter Vergütungsstahl		Legierter	
						Einsatzstahl	
		C45	C60	42CrMo4	34CrNiMo6	15NiCr13	20MnCr5
σ_F	[MPa]	320	480	700	700	685	785
σ_z	[MPa]	600	805	1.100	1.100	1.125	1.075
HV_M	[MPa]	220	238	253	261	228	268
HV_A/HV_M		5	4,7	4,4	4,3	4,9	4,2

Tabelle 19: Vergleich der Festigkeits- und Härtecharakteristika für ausgewählte Ersatzwerkstoffe [95]

Der Einsatz von legierten Vergütungs- und Einsatzstählen erhöht die Fließgrenze σ_F des Grundwerkstoffes der Lamelle und reduziert die lokalen plastischen Verformungen bzw. die Ausprägung der abrasiven Verschleißerscheinungen. Mit zunehmender Fließgrenze steigt bei den ausgewählten Materialien der Tabelle 19 die Härte HV_M . Das Verschleißverhältnis HV_A/HV_M kann beim Einsatz von einem legierten Einsatzstahl 20MnCr5 um 16 % minimiert werden. Die Verschleiß-Hochlage $W_v(HV_A > HV_M)$ nach Abbildung 3.15 in Kapitel 3.3.2 verschiebt sich zu Gunsten des Lamellenwerkstoffes und vermindert den Volumenverschleiß bzw. erhöht die Standzeit der Lamelle. Aufgrund der hohen Material- und Fertigungskosten wird auf die Betrachtung von Grundwerkstoffen für Lamellen aus WC-Co-Hartmetallen oder Werkzeugstählen (z.B. X-Stähle) verzichtet.

Eine weitere Maßnahme zur Erhöhung der Standfestigkeit der Lamelle ist die Nachbehandlung des Grundwerkstoffes durch das Einsatzhärten. Das Verfahren beinhaltet die Aufkohlung, das Härten und Anlassen des Lamellengrundkörpers. Das Ergebnis ist eine Randhärtung mit sehr verschleißfesten Oberflächen bei gleichbleibender duktiler Kernfestigkeit, welche ein Zerspringen des Grundkörpers bei stoßartiger Belastung verhindert. Tabelle 20 zeigt die Oberflächenhärten **[95]** bis zu einer Tiefe von 3 *mm* nach dem Einsatzhärten für die ausgewählten Werkstoffe nach Tabelle 19.

Härteangaben im Abstand von 3 <i>mm</i> zur Oberfläche		Unlegierter Vergütungsstahl		Legierter Vergütungsstahl		Legierter Einsatzstahl	
		C45	C60	42CrMo4	34CrNiMo6	15NiCr13	20MnCr5
HV_M	[MPa]	669	720	646	585	487	501
HV_A/HV_M		1,7	1,5	1,7	1,9	2,3	2,2

Tabelle 20: Erhöhung der Oberflächenhärte durch Einsatzhärten ausgewählter Werkstoffe [95]

Für den Vergütungsstahl C60 kann mit Hilfe des Einsatzhärtens eine maximale Oberflächenhärte von $HV_M = 720 MPa$ erreicht werden. Das Verschleißverhältnis sinkt für diesen Werkstoffeinsatz auf $HV_A/HV_M = 1,5$. Nach *Herr* [87] und den theoretischen Ausführungen in Kapitel 3.3.2 wird hierfür der Volumenverschleiß dem Übergangsbereich zur Verschleißtieflage $W_v(HV_A \approx HV_M)$ eingeordnet. Die Standzeiterhöhung der Lamelle ist von der erreichten Tiefe der Oberflächenhärtung abhängig. Die Verschleißmessungen für den Durchmesser d_L der Hartmetallamelle entsprechend Kapitel 6.3.3 zeigen, dass das Einsatzhärten der Lamelle bis zu einer Tiefe von 3 mm den gesamten Einsatzbereich bis zur vollständigen Abnutzung beeinflussen kann.

Die Entscheidung zur Werkstoffwahl und einer anschließenden Randhärtung der Lamelle ist von den Randbedingungen wie beispielsweise Werkstoffkosten, energetischer und zeitlicher Produktionsaufwand und dem anschließenden Einsatzgebiet der Lamellen abhängig. Für den Einsatz zur Dekontamination in kerntechnischen Anlagen ist im Vergleich zum konventionellen Einsatz ein erhöhtes Kontaminationsrisiko für den Menschen und die Umgebung als Risikofaktor zu berücksichtigen, welcher eine Forderung zur Werkstoff-optimierung unterstützt.

8.2.2 Optimierung des Konstruktionsprinzips Hartmetalllamelle

Der Lösungsansatz zur konstruktiven Weiterentwicklung der Lamelle resultiert aus den in dieser Arbeit ermittelten Erkenntnissen zur Dynamik der Lamelle und den Ergebnissen der Verschleißuntersuchungen. Aufgrund der geometrischen Ausführung, dass beim Stoßkontakt der Lamelle mit der Betonoberfläche vorwiegend die Lamellenflanken in Kontakt treten (siehe das theoretisches Modell und die HGK-Aufnahmen in Kapitel 4.2 sowie die Resultate der Starrkörpersimulation in Kapitel 7.1), ist eine Optimierung der Flanken zur Verschleiß-minimierung zielführend.

Die Flanken der Lamelle unterliegen einem hohen Abrasiv-Verschleiß (siehe Abbildung 6.22 in Kapitel 6.3.3), welcher zu einer stetigen Abnahme der Lamellenmasse m_L nach den Ergebnissen in Abbildung 6.16 aus Kapitel 6.3.2 führt. Mit einer Abnahme der Lamellenmasse folgt ein Reduzierung des Stoßimpulses I_0 sowie der kinetischen Energie $E_{kin,0}$. Folglich sinkt die Effektivität des Verfahrens zur Betonabtragung. Der konstruktive Lösungsansatz beinhaltet anhand der auftretenden Verschleißcharakteristika die Versetzung der Hartmetallspitzen zur optimalen Verstärkung der Lamellenflanke. Abbildung 8.10 zeigt einen entsprechenden Prototyp der Lamelle mit versetzten Hartmetallspitzen. Der Versatz der Hartmetallspitzen zur Ursprungsposition erfolgt mit einer Winkeländerung $\Delta \varphi \approx 8 \pm 1^{\circ}$. Die Abweichungen entstehen durch die Fertigungsprozesse Bohren und Löten. Der Grundwerkstoff des Prototypens ist analog zu der handelsüblichen Lamelle der Vergütungsstahl C45. Der Stoßkontakt der optimierten Lamelle mit der Betonoberfläche erfolgt geometrisch bedingt vorwiegend mit den Hartmetallspitzen, wodurch nach Tabelle 8 in Kapitel 3.3.2 ein Verschleißverhältnis zum Abrasivstoff Quarz von $HV_A/HV_M < 1$ erreicht wird.

Anordnung der Hartmetall-Spitzen an die Lamellenflanke

Abb. 8.10: Konstruktive Weiterentwicklung der Hartmetallamelle

Die Abmessungen der Durchmesser d_L und d_i sowie der Radien r_1 und r_2 der Weiterentwicklung entsprechen den Originalabmessungen der verwendeten Hartmetalllamellen nach Kapitel 5.2.1 und Kapitel 6.3.3. Die Besetzung der Lamellenspitze mit jeweils zwei Hartmetallstiften an den Flanken ermöglicht eine von der Drehrichtung unabhängige Montage und eine Erhöhung der Lamellenmasse um $\Delta m_L = 7,8 g$ auf $m_L \approx 80 g$. Die Steigerung der Lamellenmasse mit konstanten Durchmessern d_L und d_i sowie einer identischen Schwerpunktlage $P_0(x, y, z)$ zur Originallamelle führt zu einem Anstieg der kinetischen Energie $E_{kin,0}$ in Abhängigkeit der entsprechenden Betriebssituation. Die Abbildung 8.11 zeigt anhand des theoretischen Bewegungsmodells die Steigerung von der kinetischen Energie $E_{kin,0}$ der Lamelle bzw. der Energiebilanz ΔE_{kin} für den Stoßvorgang.

Abb. 8.11: Energievergleich zwischen der Original-Lamelle und der Weiterentwicklung

Die Erhöhung der Lamellenmasse m_L ermöglicht nach den Ergebnissen in Abbildung 8.11 einen Anstieg der kinetischen Energie der Lamelle vor dem Schlag um 11 %. Im Vergleich zu einer Trommeldrehzahl $n_T = 2.310 U/min$ beträgt die kinetische Energie der Originallamelle $E_{kin,0} = 18,6 J$ und für die Weiterentwicklung der Lamelle nach Abbildung 8.10 $E_{kin,0} = 20,6 J$. Infolge der Energiezunahme vor dem Schlag resultiert eine größere Energiedifferenz ΔE_{kin} , welche für die Betonfragmentierung und den Werkzeugverschleiß aufgewendet wird (siehe Ergebnisse in Abbildung 8.11). Aufgrund der Versetzung der Hartmetallstifte an die Flanken der Lamelle und die höhere Stückzahl kann eine Verschleißreduzierung mit einer verbunden Leistungssteigerung, welche durch einen Anstieg in der Fragmentierung geprägt ist, erreicht werden.

9. Fazit und Ausblick

9.1 Fazit

Die vorliegende Forschungsarbeit beinhaltet die Analyse zum Bewegungs- und Verschleißverhalten von Hartmetallamellen bei der Betonbearbeitung. Ausgehend von den theoretischen Betrachtungen bei der stoßartigen Beanspruchung und Fragmentierung von Betonoberflächen (siehe Kapitel 3) wurde ein dreistufiges Bewegungsmodell zur Dynamik der Hartmetallamelle erstellt (siehe Kapitel 4.2). Die dynamischen Haupteinflussparameter sind im Modell die Schwerpunktsgeschwindigkeit v_0 , die Lamellenmasse m_L sowie der resultierende Impuls I_0 und die kinetische Energie $E_{kin,0}$ der Lamelle. Diese dynamischen Parameter werden maßgeblich durch die technologischen und geometrischen Kenngrößen, wie die Trommeldrehzahl n_T und der Abstand r_0 vom Schwerpunkt P_0 der Lamelle zum Rotationsmittelpunkt M beeinflusst. Das Verhalten der Lamelle während und nach dem Stoßkontakt ist von der Zustelltiefe z_T , der Lamellenposition φ_1 und dem Verschleißzustand abhängig. Für das Erreichen qualitativer Modellergebnisse gilt die Bedingung, dass die Lamelle vor jedem Stoßvorgang die Haftbedingung mit der Trommelachse erfüllt.

Die Modellannahmen wurden anschließend mit den praktischen Messreihen zur Verschleißcharakterisierung (siehe Kapitel 6) und den numerischen Simulationen zum Bewegungsverhalten der Lamelle (siehe Kapitel 7) untersucht. Die Verschleißerscheinungen und die Aufnahmen der Hoch-Geschwindigkeits-Kamera (HGK) (siehe Kapitel 4.2) zeigen, dass vorwiegend die Lamellenflanke in Stoßkontakt mit der Betonoberfläche steht. Die Auswertung der gemessenen Stoßvorgänge ergibt, dass die Lamelle im Originalzustand beim Stoßvorgang mittlere Kraftamplituden von $F_{z,max} = 441 N$ für $n_T = 990 U/min$ bis $F_{z,max} = 896 N$ für $n_T = 2.310 U/min$ auf den Betonprobekörper überträgt. Mit einem wachsenden Beanspruchungsweg s_L nimmt der Werkzeugverschleiß zu und die Schlagkräfte bzw. Reaktionskräfte nehmen nach den Ergebnissen in Kapitel 6.2.3 ab. Die mittleren Kraftamplituden $F_{z,max}$ sinken beim Erreichen der Standzeit $s_L = T_L = 530 m$ für die jeweilige Betriebssituation auf $F_{z,max}(s_L = T_L) = (0,68 \pm 0,025) \cdot F_{z,max}(s_L = 0 m)$. Der Kraftverlust $\Delta F_{z,max}$ von 32 % kann zu einer reduzierten Abtragstiefe bis maximal $z_A(s_L = T_L) = 0,2 \cdot z_A (s_L = 0 m)$ führen (siehe Abbildung 6.14 und 6.15).

Die abrasiven Verschleißerscheinungen an der Hartmetalllamelle sind durch Rillen, Furchen und Kratzer am Grundwerkstoff C45 der Hartmetalllamelle geprägt. Die Auswertung der Verschleißkenngrößen entsprechend dem Kapitel 6.3.2 und Kapitel 6.3.3 zeigen makroskopische Geometrieveränderungen und einen hohen Masseverlust der Lamelle auf. Der Masseverlust ist durch die Verschleißkenngröße W_{m_L} gekennzeichnet und beträgt nach den experimentellen Auswertungen zu der Lamelle $W_{m_L} = 0,03 \ g/m$. Beim Erreichen der Standzeit $s_L = T_L$ wurde ein Masseverlust der Lamelle von 24 % gemessen. Die anschließenden Ergebnisse nach Kapitel 7 zur Starrkörper- und FEM-Simulation konnten die Annahmen zur Dynamik der Lamelle und den resultierenden Verschleißerscheinungen bestätigen. Die Analysen zum Verhalten der Geschwindigkeitskomponente v_{z,P_0} der Lamelle zeigen nach Abbildung 7.5 eine direkte Abhängigkeit zur Trommeldrehzahl n_T und einen vernachlässigbaren Einfluss der Zustelltiefe z_T (siehe Abbildung 7.6). Die Ergebnisse der Starrkörpersimulation zum Rotationsverhalten der Lamelle rechtfertigen die Annahmen des theoretischen dreistufigen Bewegungsmodells zu der Haftbedingung der Lamelle mit der Trommelachse vor jedem Stoßkontakt sowie die Abhängigkeit des Drehimpulses L_L bzw. der Rotationsgeschwindigkeit ω_1 von der Lamellenposition φ_1 und der Trommeldrehzahl n_T (siehe Kapitel 7.1.2 und 7.1.3).

Die Auswertung der Vergleichsspannungen σ_v nach von Mises an der Lamelle ergaben, dass lokal an der Lamellenflanke (siehe Abbildung 7.16) die Fließspannung $\sigma_F = 320 MPa$ für den Qualitätsstahl C45 für den Drehzahlbereich 990 $U/min \le n_T \le 2.310 U/min$ erreicht bzw. überschritten wird. Mit steigender Drehzahl n_T nimmt die lokale Verteilung und die Höhe der maximalen Spannungen an der Lamellenflanke entsprechend Abbildung 7.17 zu. Die Folge ist eine Ausbreitung der abrasiven Verschleißerscheinungen entlang der Lamellenflanke.

Das theoretische Bewegungsmodell zu der Dynamik der Lamelle konnte anhand der experimentellen Ergebnisse und den numerischen Resultaten für die Hauptkenngrößen Aufprallgeschwindigkeit $v_{z,0}$, Impulsdifferenz ΔI_z für den Stoßvorgang und die kinetische Energiebilanz ΔE_{kin} verglichen und positiv bewertet werden (siehe Kapitel 8.1).

9.2 Ausblick

Auf Grundlage der Ergebnisse, welche in dieser Arbeit zum Bewegungs- und Verschleißverhalten der Hartmetalllamelle bei der Betonbearbeitung ermittelt wurden, ist eine qualifizierte Werkzeugoptimierung möglich. Das vorrangige Ziel der Weiterentwicklung besteht aufgrund des vermehrten Einsatzes von Hartmetalllamellen bei der Dekontamination von Betonoberflächen beim Rückbau kerntechnischer Anlagen in der Standzeiterhöhung T_L bei gleichzeitiger Maximierung der Abtragstiefe z_A . Eine erfolgreiche Optimierung der Hartmetalllamelle verringert das Kontaminationsrisiko für das Betriebspersonal, die Anzahl an Werkzeugwechseln sowie den Sekundärabfall an verbrauchten Werkzeugen.

In dieser Arbeit wurden aufbauend auf den Erkenntnissen zu der Interaktion der Lamelle mit der Betonoberfläche Lösungsansätze (siehe Kapitel 8.2) für eine Weiterentwicklung dargestellt. Die Lösungsansätze umfassen eine werkstofftechnologische Optimierung hinsichtlich einer Behandlung, wie bspw. Einsatzhärten, oder eines Austausches des Lamellen-Grundwerkstoffes C45 sowie eine konstruktive Lösung zum Versatz der Hartmetallspitzen. Der Versatz der Hartmetallspitzen an die Lamellenflanken, welche nach den praktischen und numerischen Untersuchungen dieser Forschungsarbeit am stärksten der abrasiven Verschleißbeanspruchung unterliegen und vorrangig den Stoßkontakt ausüben, ermöglicht eine Verschleißreduzierung der Lamelle sowie höhere Abtragstiefen z_A .

9. Fazit und Ausblick

Das Bewegungsmodell sowie die praktischen Ergebnisse dieser Arbeit sollen als Grundlage für die zukünftige Optimierung und Weiterentwicklung der Hartmetalllamelle dienen.

Literaturverzeichnis

- [1] **Thierfeldt S., Schartmann F.:** *Stilllegung und Rückbau kerntechnischer Anlagen* 2012, 4. Auflage, Bundesministerium für Bildung und Forschung
- [2] Werner, M.: Vorbereitung von Betonuntergründen in Theorie und Praxis bei Betoninstandsetzungsmaßnahmen.
 1989, Technische Akademie Esslingen
- [3] **Momber A.W.:** Handbuch der Oberflächenbearbeitung Beton 2006, Birkhäuser-Verlag, Basel
- [4] Bergmeister K.; Wörner J.: Beton Kalender 2005 Fertigteile · Tunnelbauwerke,
 2005, Kapitel VIII: Hans-Wolf Reinhardt Beton, Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin
- [5] Moro J. L.: Baukonstruktion vom Prinzip zum Detail Band 1 Grundlagen,
 2009, Springer-Verlag Berlin Heidelberg
- [6] Grübl P.: Beton Arten, Herstellung und Eigenschaften
 2001, 2. Auflage, Ernst & Sohn Verlag für Architektur und technische Wissenschaften Berlin
- [7] Zlich K.; Zehetmaier G.: Bemessung im konstruktiven Betonbau2010, 2. Auflage, Springer-Verlag Berlin Heidelberg
- [8] **Neumann D.; Weinbrenner U.:** *Baukonstruktionslehre Teil 1,* 1992, 30. Auflage, B.G. Teubner-Verlag Stuttgart
- [9] **Schümann B.:** *Wirklichkeitsnahe Berechnung von Stahlbetonstabtragwerken,* 2006, Studienarbeit, Technische Universität Hamburg-Harburg
- [10] ACE.: Fundamentals of protective design1946, Army Corps of Engineers, Report AT120 AT1207821
- [11] **Balke H.:** *Einführung in die Technische Mechanik Kinetik,* 2011, 3.Auflage, Springer Verlag Berlin Heidelberg
- [12] Hillemeier B.: Bruchmechanische Untersuchungen des Rissfortschritts in zementgebundenen Werkstoffen
 1976, Dissertation, Universität Karlsruhe

- [13] Gross D., Seelig T.: Bruchmechanik2011, 5. Auflage, Springer Verlag Berlin-Heidelberg
- [14] Schuler H.: Experimentelle und numerische Untersuchungen zur Schädigung von stoßbeanspruchtem Beton
 2004, Dissertation, Universität der Bundeswehr München
- [15] Müller F.P.: Dynamische Probleme im Stahlbetonbau Teil 1: Der Baustoff Stahlbeton unter dynamischer Belastung
 1983, Deutscher Ausschuss für Stahlbeton, Heft 342, Berlin
- [16] Malvar L.J.: Dynamic increase factors for concrete1998, Twenty-Eighth DoD Explosives Safety Seminar, Orlando (USA)
- [17] Curbach M.: Festigkeitssteigerung von Beton bei hohen Belastungsgeschwindigkeiten
 1987, Dissertation, Universität Karlsruhe
- [18] Rossi P.: A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates
 1991, Materials and Structures, Vol.24, pp. 422-424
- [19] Ortlepp S.: Zur Beurteilung der Festigkeitssteigerung von hochfesten Beton unter hohen Dehnungsgeschwindigkeiten
 2006, Dissertation, Technische Universität Dresden
- [20] Eibl J.: Dynamische Probleme im Stahlbetonbau -Teil 2: Stahlbetonbauteile und bauwerke unter dynamischer Beanspruchung
 1988, Deutscher Ausschuss für Stahlbeton, Heft 392, Berlin
- [21] Larcher M.: Numerische Simulation des Betonverhaltens unter Stoßwellen mit Hilfe des Elementfreien Galerkin-Verfahrens
 2007, Dissertation, Universität Karlsruhe
- [22] **Schnetzer H.** : *Stochastische Baustoffmodelle für Beton* 2000, Dissertation, ETH Zürich
- [23] **Zielinski A.J.:** *Fracture of concrete and mortar under uniaxial impact tensile loading* 1982, Dissertation, Delft University of Technology

- [24] Griffith A.A.: The phenomena of rupture and flow in solids 1921, Philosophical Transactions of the Royal Society of London, Vol. 221, pp.163-198
- [25] **Trunk B.G.:** *Einfluss der Bauteilgröße auf die Bruchenergie von Beton* 1999, Dissertation, ETH Zürich
- [26] Kiss L.: Vergleich der Prall- und Druckzerkleinerung eines zweikomponentigen, mineralischen Modellstoffes
 1979, Dissertation, Universität Karlsruhe
- [27] **Rossmanith H.P.:** *Grundlagen der Bruchmechanik* 1982, 1.Auflage, Springer Verlag Wien
- [28] Kennedy R.P.: A review of procedures for the analysis and design of concrete Structures to Resist Missile Impact Effects
 1976, Nuclear Engineering and Design, Vol.37, pp.183-203
- [29] **Schwarzkopp D.:** Impact response analysis including missile-structure interaction 1989, Paper J 0385, Proceeding of the 10th SMiRT-Conference, Anaheim (USA)
- [30] **Bischoff P.H.:** *Compressive behaviour of concrete at high strain rates,* 1991, Materials and Structures, Vol. 24, No. 144, pp. 425-450
- [31] **Ross A.:** *Split-Hopkinson pressure bar tests* 1989, Final Report, Air Force Engineering and Services center
- [32] Weerheijm J.: Concrete under impact tensile loading and lateral compression 1992, Dissertation, Delft University of Technology
- [33] Fujikake K.: Impact response of reinforced concrete beam and its analytical evaluation
 2009, Journal of Structural Engineering, Vol. 135, No. 8, pp.938-950
- [34] Bentur A.: The behaviour of concrete under impact loading: Experimental procedures and method of analysis
 1986, Materials and Structures, Vol. 19, No. 113, pp. 371-378
- [35] **Sahlin S.:** *Theoretical analysis of stress and strain propagation during impact* 1975, Materials and Structures, Vol, 8, No. 44, pp. 88-101
- [36] **Göldner H.; Holzweißig F.:** *Leitfaden der technischen Mechanik* 1976, 5. Auflage, VEB Fachbuchverlag Leipzig

- [37] Reiners E.: Der Mechanismus der Prallzerkleinerung beim geraden, zentralen Stoß und die Anwendung dieser Beanspruchungsart bei der Zerkleinerung, insbesondere bei der selektiven Zerkleinerung von spröden Stoffen 1961, Dissertation, Technische Hochschule Aachen
- [38] Van Doormaal J.C.A.M.: Experimental and numerical determination of the dynamic fracture energy of concrete 1994, Journal De Physique IV, Colloque C8, Vol.4, pp. 501-506
- [39] Lambert D.E.: Strain rate effects on dynamic fracture and strength2000, International Journal of Impact Engineering, Vol. 24, pp. 985-998
- [40] Marti P.; Sigrist V.: Tragverhalten von Beton1999, Institut f
 ür Baustatik und Konstruktion, ETH Z
 ürich
- [41] Holmquist T.J.; Johnson G.R.; Cook W.H.: A computational constitutive model for concrete subjected to large strain rates, and high pressures
 1993, 14th International Symposium on Ballistics Québec, pp. 591-600
- [42] Hopkinson B.: A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets
 1914, Proceedings of the Royal Society, Vol. 89, No.612, pp. 411-413
- [43] Schmidt-Hurtienne B.: Ein dreiaxiales Schädigungsmodell für Beton unter Einschluss des Dehnrateneffektes bei Hochgeschwindigkeitsbelastung
 2000, Dissertation, Universität Karlsruhe
- [44] Ottosen N. S.: A failure criterion for concrete1977, Journal of Engineering Mechanics Division, Vol. 103, No.4, pp.527-535
- [45] Riedel W.: Beton unter dynamischen Lasten. Meso- und Makomechanische Modelle und ihre Parameter
 2004, Ernst-Mach-Institut-Schriftreihe EMI6/00, Heft Nr. 5
- [46] Riedel W.: Numerical Assessment for Impact Strength Measurements in Concrete Materials
 2009, International Journal of Impact Engineering, Vol. 36, pp. 283-293
- [47] von Mises R.: Mechanik der festen Körper im plastisch- deformablen Zustand
 1913, Nachrichten v. d. Gesellschaft der Wissenschaften zu Göttingen, pp. 582-592
- [48] Stoecker T.: Zur Modellierung von granularen Materialien bei nicht ruhenden Lasteinwirkungen
 2002, Dissertation, Schriftenreihe Geotechnik, Heft 13, Universität Kassel

- [49] **Höhler S.:** Zur Modellierung von Stahlbetonkonstruktionen mittels spezieller Mehrkörpersysteme unter statischen und kollapsdynamischen Aspekten 2008, Dissertation, Ruhr-Universität Bochum
- [50] **Remmel G.:** *Zum Zug- und Schubtragverhalten von Bauteilen aus hochfesten Beton* 1994, Deutscher Ausschuss für Stahlbeton, Band 444
- [51] **Seider T.:** *Untersuchungen zur Ermittlung der Spaltzugfestigkeit* 2001, Diplomarbeit, Universität Weimar
- [52] **Schlegel R.:** *Materialmodelle für das Bauwesen und die Geotechnik in ANSYS* 2006, Fachvortrag, 24th CAD-FEM User's Meeting 2006, Stuttgart
- [53] Hintze D.: Zur Beschreibung des physikalisch nichtlinearen Betonverhaltens bei mehrachsigem Spannungszustand mit Hilfe differentieller Stoffgesetze unter Anwendung der Methode der finiten Elemente
 1986, Dissertation, Hochschule für Architektur und Bauwesen, Weimar
- [54] Resende L.: Formulation of Drucker-Prager Cap Model1985, Journal of Engineering Mechanics, Vol.111, No.7, pp. 855-881
- [55] **Zimmermann R.; Günther K.:** *Metallurgie und Werkstofftechnik* 1975, 1.Auflage, VEB Deutscher Verlag für Grundstoffindustrie Leipzig
- [56] Schatt W.; Wieters K. P.; Kieback B.: Pulvermetallurgie Technologien und Werkstoffe
 2007, 2. Auflage, Springer-Verlag Berlin Heidelberg
- [57] Prakash L. J.: Weiterentwicklung von Wolframcarbid Hartmetallen unter Verwendung von Eisen-Basis-Bindelegierungen
 1980, Dissertation, Kernforschungszentrum Karlsruhe GmbH, Karlsruhe
- [58] **Kieffer R.; Benesovsky F.:** *Hartmetalle* 1965, 1. Auflage, Springer-Verlag Wien
- [59] O'Quigley D.G.F.: New results on the relationship between hardness and fracture toughness of WC hardmetal
 1996, Materials Science and Engineering, A, Vol.209, pp.228-230
- [60] Schubert W.D.: Hardness to toughness relationship of fine-grained WC-Co hardmetals
 1998, International Journal of Refractory Metals and Hard Metals, Vol.16, pp.133-142
- [61] **Chermant J. L.:** *Factors influencing the rupture stress of hardmetals* 1977, Powder Metallurgy, Vol.2, pp. 63-69
- [62] **Gross D.; Hauger W.; Schröder J.; Wall W. A.**: *Technische Mechanik 3* 2012, 12. Auflage, Springer-Verlag Berlin Heidelberg
- [63] **Mahnken R.:** *Lehrbuch der Technischen Mechanik Dynamik* 2012, 2. Auflage, Springer-Verlag Berlin Heidelberg
- [64] **Neroth G.; Vollenschaar D.:** *Wendehorst Baustoffkunde* 2011, 27. Auflage, Vieweg+Teubner Verlag
- [65] **Dahms J.:** *Die Schlagfestigkeit von Beton* 1967, Dissertation, Technische Hochschule Carolo-Wilhelmina, Braunschweig
- [66] **Bonzel J.; Dahms J.:** *Schlagfestigkeit von faserbewehrten Beton* 1981, Verein Deutscher Zementwerke,Betontechnischer Bericht, Heft 31,
- [67] Jüngert A.: Untersuchung von GFK-Bauteilen mit akustischen Verfahren am Beispiel der Rotorblätter von Windenergieanlagen
 2010, Dissertation, Universität Stuttgart
- [68] **Popov V.L.:** *Kontaktmechanik und Reibung* 2010, 2. Auflage, Springer-Verlag Berlin Heidelberg
- [69] **Fischer-Cripps A.C.:** Introduction to Contact Mechanics 2007, 2.Auflage, Springer Science+Business Media, LLC
- [70] **Murthy A.R.C.:** *Impact analysis of concrete structural components* 2010, Defence Science Journal, Vol. 60, No. 3, pp. 307-319
- [71] **Bangash M.Y.H.:** *Schock, Impact and Explosion* 2009, 1. Auflage, Springer-Verlag Berlin Heidelberg
- [72] **Forrestal, M.J.:** *Penetration of concrete targets with deceleration-time measurements* 2003, International Journal of Impact Engineering, Vol. 28, pp. 479-497
- [73] Adeli H.: Local effects of Impactors on concrete structures 1985, Nuclear Engineering and Design, Vol. 88, pp 301-317
- [74] Wen H.M.: Predicting the penetration and perforation of targets struck by projectiles at normal incidence
 2002, Mechanics of Structures and Machines, Vol. 30(4), pp. 543-577
- [75] Li Q.M.: Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile
 2003, International Journal of Impact Engineering, Vol. 28, pp. 93-116
- [76] NDRC: Effects of impact an explosion
 1946, National Defence Research Committee Washington DC, Summary Technical Report Division 2, Vol.1

- [77] **Schwate W.:** *Druckluftbetriebene Baugeräte* 1996. Bauverlag Wiesbaden Berlin
- [78] **Reinhardt S.:** *Ein neues Konzept zum gezielten Abtrag von Stahlbetonstrukturen* 2011, Tagungsband, Jahrestagung Kerntechnik 2011, Berlin
- [79] **Thuro K.:** *Geologisch-felsmechanische Grundlagen der Gebirgslösung im Tunnelbau* 2002, Habilitation, Technische Universität München
- [80] **Uetz H.:** *Abrasion und Erosion Grundlagen Betriebliche Erfahrungen Verminderung* 1986,Carl Hanser Verlag München Wien
- [81] GfT: Tribologie Definitionen Begriffe Prüfung
 2002, GfT Gesellschaft für Tribologie e.V., Aachen, Arbeitsblatt 7
- [82] **Czichos H.; Habig K. H.:** *Tribologie-Handbuch* 2010, 3 Auflage, Vieweg+Teubner Verlag
- [83] **Holländer J.:** *Berechnung und Analyse von Hammerbrechern* 2001, Dissertation, Technische Universität Bergakademie Freiberg
- [84] Haworth R. D.: The abrasion resistance of metals1949, Transactions of the American Society for Metals, Vol. 41, pp.819-869
- [85] Vorona M.: Optimierung des Schneidprozesses und Prognose der relevanten Arbeitsgrößen bei der Gesteinszerstörung unter Berücksichtigung des Meißelverschleißes 2012, Dissertation, Technische Universität Bergakademie Freiberg
- [86] **Wahl H.:** *Verschleißprobleme im Braunkohlenbergbau* 1951, Braunkohle Wärme Energie, Heft 5/6, S. 75-87
- [87] Herr M.: Tribologisches Verhalten von ultra-feinkörnigen Hartmetallen mit verschiedenen Binderlegierungen
 2002, Dissertation, Universität Erlangen-Nürnberg
- [88] Herrmann K.: Härteprüfung an Metallen und Kunstoffen 2007, expert verlag Renningen
- [89] Contec® GmbH: Bedienungsanleitung für Hubbel / Bedienungsanleitung für CT 200 Bedienungsanleitung für CT 250 / Bedienungsanleitung für CT 320
 2010, CONTEC Maschinenbau & Entwicklungstechnik GmbH, Alsdorf

[90] SITEK-Spikes GmbH & Co. KG: SITEK Produktblatt Lamellen
 2010, http://www.simon.de/de/sitek/, Abgerufen am 12.10.2013
 SIMON Firmengruppe, SITEK-Spikes GmbH & Co. KG, Aichhalden

[91] Märzheuser P.: Fräslamelle

1996, 24. Oktober, Deutsches Patentamt, Patentnummer: DE 296 18 547 U1

- [92] Karl Simon GmbH Co. KG: Verfahren zum Herstellen einer Fräslamelle und dem Verfahren hergestellte Fräslamelle
 2000, 28. September, Weltorganisation für geistiges Eigentum, (WIPO), Veröffentlichungsnummer: WO 00/56487
- [93] Kuchling K.: *Taschenbuch der Physik* 1986, VEB Fachbuchverlag Leipzig
- [94] **Deutsche Edelstahlwerke:** Unlegierter Vergütungsstahl 1.1191 / 1.1201 2011, Werkstoffdatenblatt, Deutsche Edelstahlwerke GmbH, Witten
- [95] Europa Lehrmittel: Tabellenbuch Metall
 2011, 45. Auflage, Verlag Europa Lehrmittel, Nourney,
 Vollmer GmbH & Co. KG, Haan-Gruiten
- [96] Blumenauer H.; Pusch G.: Technische Bruchmechanik1993, 3. Auflage, Deutscher Verlag für Grundstoffindustrie, Leipzig
- [97] Manns W.: Beton f
 ür den Bau von Kernkraftwerken1971, Betontechnische Berichte, Verein Deutscher Zementwerke

Anhang

A. Daten und Informationen zur verwendeten Maschinen- und Messtechnik

Tabelle: Hochgeschwindigkeitskamera Speed Cam-Visario 1500

Technische Parameter / Analysemedien					
Sensor	Sensor APS-CMOS-Sensor				
Bildformate	1.536 x 1.024	$f_{fps,max} = 1.000 Hz$			
	1.024 <i>x</i> 768	$f_{fps,max} = 2.000 Hz$			
	768 <i>x</i> 512	$f_{fps,max} = 4.000 Hz$			
	512 <i>x</i> 192	$f_{fps,max} = 10.000 Hz$			
Aufzeichnungsdauer	1 - 4 Sekunden	I			
Farbtiefe	30 Bit				
Bearbeitungssoftware	VISART-Media Player 2.4.7				
Analysesoftware	WINanalyze-Pla	yer 2.5.0			

Tabelle: Elektronische Spureinstellung MiNGARDi \mathbb{B} - Linea System 0⁺

Technische Parameter	
Antrieb	Zahnstangenantrieb
Hub	$1.000\ mm$
Schubkraft	500 <i>N</i>
Steuerspannung	230 V ~

Tabelle: Frequenzumrichter Hitachi – WJ200

Technische Parameter	WJ200 – 075 HF	WJ200 – 0110 HF
Leistungsbereich	7,5 <i>kW</i>	15 <i>kW</i>
Frequenzbereich	0 – 400 <i>Hz</i>	0 – 400 <i>Hz</i>
Steuerspannung	380 – 480 V 3~	380 - 480 V 3~

Tabelle: Digitaler Drehzahlmesser Ono Sokki – HT 440

Technische Parameter			
Messbereich	50 – 15.000 U/min		
Messfehler	± 1 U/min (50 – 7.000 U/min)		
	± 2 U/min (> 7.000 U/min)		
Messprinzip	Reflex-Licht-Abtastung		
Steuerspannung	4 x 1,5 V		

Technische Parameter	
Messbereich	0 - 10.000 <i>N</i>
Messfehler	maximal 1 %
Bauform	160 x 160 x 66 mm
Material	Federstahl (vernickelt)
Steuerspannung	10 V

Tabelle: Mehrachsen-Kraftsensor ME-Meßsysteme – K3D160

 Tabelle:
 Multifunktions-Datenerfassungsgerät
 National Instruments – NI USB-6212

Technische Parameter	
Kanäle	16
Auflösung	16 Bit
Abtastrate	400 kS/s
Max. Eingangssteuerung	10 V
Spannungsbereich	-10 V bis + 10V
Genauigkeit	2,71 <i>mV</i>

Tabelle: Wägeplattform zur Verschleißmessung SOEHNLE – S20 2760

Technische Parameter	
Messbereich	0 – 30/60 <i>kg</i>
Genauigkeit	\pm 0,001 kg
Abmessungen	260 mm x 225 mm x 60 mm
Steuerspannung	230 V

Tabelle: Oberflächenmessgerät Polytec – CL 5 MG 35

Technische Parameter	
Sensor	CL 5
Axiale Genauigkeit	0,9 μm
Vergrößerungsoptik	MG 35
Messfleckdurchmesser	16 μm
Laterale Auflösung	8 µm

Tabelle: Digitales Lichtmikroskop Keyence – VHX-600

Technische Parameter	
Vergrößerung Objektiv VH-Z05	0,1 - 40
Vergrößerung Objektiv VH-Z25	25 - 15
Auflösung Aufnahmen	1.600 <i>x</i> 1.200

B. Ergebnisse der Kraftreaktionen in Abhängigkeit der Betriebssituation

Ergebnisse der Vorversuche

Vorgabe $n_E [U/min]$	Mittlere Messwert $n_T [U/min]$	Übersetzung n_T/n_E
1.800	992	0,551
2.400	1.317	0,549
3.000	1.653	0,551
3.600	1.981	0,550
4.200	2.313	0,550

Tabelle: Ergebnisse zur Bestimmung der Trommeldrehzahl n_T

Abb. B.1: Normalverteilung der Kraftamplituden F_{y,max} für den Gegen- und Gleichlaufbetrieb

Abb. B.2: Normalverteilung der Kraftamplituden F_{z,max} für den Gegen- und Gleichlaufbetrieb

Analyse der mittleren Kraftreaktionen für $n_E = 3000 U/min$ und $z_T = 3 mm$

Abb. B.3: Verlauf der Kraftreaktion F_z als Mittelwerte von 260 Einzelschlägen

Abb. B.4: Verlauf der Kraftreaktion F_y als Mittelwerte von 260 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

		-					
	А	В	С	D	E	F	G
F_z	-4,6474E+20	2,937E+18	-6,372E+15	5,06E+12	-872541569	323934,26	-8,82
F_y	-2,3654E+20	1,048E+18	-1,2668E+15	3,877E+10	226593717	573840,29	-19
F_y	-2,3654E+20	1,048E+18	-1,2668E+15	3,877E+10	226593717	573840,29	-19

$$I_{z,0} = \int_{0,000029}^{0,00105} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0.31 Ns$$

$$I_{y,0} = \int_{0,000033}^{0,00077} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,149 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 3000 U/min$ und $z_T = 4 mm$

Abb. B.5: Verlauf der Kraftreaktion F_z als Mittelwerte von 290 Einzelschlägen

Abb. B.6: Verlauf der Kraftreaktion F_y als Mittelwerte von 290 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	Е	F	G
F_z	6,0849E+20	-3,487E+18	8,0772E+15	-9,857E+12	5645273543	-284496,05	1,69
F_y	-4,1697E+20	1,935E+18	-2,7784E+15	9,4863E+11	47073399,7	582787,61	-25,51

 $I_{z,0} = \int_{0,000048}^{0,00096} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,37 \text{ Ns}$

$$I_{y,0} = \int_{0,000043}^{0,00077} A \cdot t^{6} + B \cdot t^{5} + C \cdot t^{4} + D \cdot t^{3} + E \cdot t^{2} + F \cdot t + G \cdot dt = 0,15 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 3000 U/min$ und $z_T = 5 mm$

Abb. B.7: Verlauf der Kraftreaktion F_z als Mittelwerte von 286 Einzelschlägen

Abb. B.8: Verlauf der Kraftreaktion F_y als Mittelwerte von 286 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	Е	F	G
F_z	-3,0499E+20	2,323E+18	-5,5855E+15	4,395E+12	-365685481	339137,6	-23,28
F_y	8,3763E+19	-7,210E+17	2,254E+15	-3,0125E+12	1050503840	661341,51	-22,67

$$I_{z,0} = \int_{0,00007}^{0,00106} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0.4 Ns$$

$$I_{y,0} = \int_{0,000031}^{0,00071} A \cdot t^{6} + B \cdot t^{5} + C \cdot t^{4} + D \cdot t^{3} + E \cdot t^{2} + F \cdot t + G \cdot dt = 0,151 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 1800 U/min$ und $z_T = 4 mm$

Abb. B.9: Verlauf der Kraftreaktion F_z als Mittelwerte von 187 Einzelschlägen

Abb. B.10: Verlauf der Kraftreaktion F_y als Mittelwerte von 187 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	E	F	G		
F_z	-3,2258E+20	2,186E+18	-5,0508E+15	4,37E+12	-1046730911	306049,62	0,41		
F_y	-3,0457E+20	1,468E+18	-2,1831E+15	6,8273E+11	355693259	229991,63	-9,18		
$I_{z,0} = \int_0^{0,00104} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,22 Ns$									

$$I_{y,0} = \int_{0,000037}^{0,00083} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,116 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 2400 U/min$ und $z_T = 4 mm$

Abb. B.11: Verlauf der Kraftreaktion F_z als Mittelwerte von 229 Einzelschlägen

Abb. B.12: Verlauf der Kraftreaktion F_y als Mittelwerte von 229 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	Е	F	G
F_z	4,7308E+20	-2,474E+18	5,21993E+15	-6,0515E+12	3461207056	-63813,61	-4,14
F_y	-4,0447E+19	-8,824E+16	1,11417E+15	-2,1231E+12	745571362,9	638729,42	-53,94

$$I_{z,0} = \int_{0,000045}^{0,00102} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,315 Ns$$

$$I_{y,0} = \int_{0,000078}^{0,00069} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,107 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 3600 U/min$ und $z_T = 4 mm$

Abb. B.13: Verlauf der Kraftreaktion Fz als Mittelwerte von 325 Einzelschlägen

Abb. B.14: Verlauf der Kraftreaktion F_y als Mittelwerte von 325 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	Е	F	G
F_z	5,2585E+20	-2,54E+18	4,98117E+15	-5,8684E+12	3706351681	-21835,69	10,63
F_y	-2,3222E+20	1,182E+18	-1,89617E+15	7,94611E+11	-106525785,4	651069,89	-16,86

$$I_{z,0} = \int_0^{0,00105} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,456 Ns$$

$$I_{y,0} = \int_{0,000027}^{0,00085} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,198 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 4200 U/min$ und $z_T = 4 mm$

Abb. B.15: Verlauf der Kraftreaktion Fz als Mittelwerte von 288 Einzelschlägen

Abb. B.16: Verlauf der Kraftreaktion F_y als Mittelwerte von 288 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	Е	F	G
F_z	-1,5386E+20	1,403E+18	-4,0704E+15	4,1485E+12	-1077852083	584762	-12,74
F_y	-1,4682E+20	8,251E+17	-1,4231E+15	6,9736E+11	-408874051	894924,94	-48,47

$$I_{z,0} = \int_{0,000022}^{0,00121} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,538 Ns$$

$$I_{y,0} = \int_{0,000055}^{0,00084} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,203 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 3000 U/min$, $z_T = 4 mm$ und $s_L = 90 m$

Abb. B.17: Verlauf der Kraftreaktion F_z als Mittelwerte von 272 Einzelschlägen

Abb. B.18: Verlauf der Kraftreaktion F_y als Mittelwerte von 272 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	Е	F	G
F_z	-5,0564E+19	5,881E+17	-1,68476E+15	1,08427E+12	669386266,5	-55798,51	3,76
F_y	-1,6567E+20	5,484E+17	-2,25513E+13	-1,3981E+12	882693476,5	438016,11	-39,59

$$I_{z,0} = \int_0^{0,00118} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,328 Ns$$

$$I_{y,0} = \int_{0,00079}^{0,00075} A \cdot t^{6} + B \cdot t^{5} + C \cdot t^{4} + D \cdot t^{3} + E \cdot t^{2} + F \cdot t + G \cdot dt = 0,117 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 3000 U/min$, $z_T = 4 mm$ und $s_L = 180 m$

Abb. B.19: Verlauf der Kraftreaktion F_z als Mittelwerte von 223 Einzelschlägen

Abb. B.20: Verlauf der Kraftreaktion F_y als Mittelwerte von 223 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	Е	F	G
F_z	9,2992E+19	-3,193E+17	3,31895E+14	-5,8021E+11	754216535,9	255173,67	9,38
F_y	1,6885E+20	-9,243E+17	2,15285E+15	-2,45202E+1	671525361	640433,51	-52,16

$$I_{z,0} = \int_0^{0,00109} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,319 Ns$$

$$I_{y,0} = \int_{0,000077}^{0,00069} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,105 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 3000 U/min$, $z_T = 4 mm$ und $s_L = 270 m$

Abb. B.21: Verlauf der Kraftreaktion Fz als Mittelwerte von 248 Einzelschlägen

Abb. B.22: Verlauf der Kraftreaktion F_y als Mittelwerte von 248 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	A	В	С	D	Е	F	G
F_z	-1,3777E+20	1,02E+18	-2,48681E+15	2,09861E+12	-506779739,6	560550,1	-7,34
F_y	-2,2269E+20	7,686E+17	-4,50151E+14	-8,1203E+11	438614143,8	490773,57	-38,16
	0.00107						

$$I_{z,0} = \int_{0,000013}^{0,00106} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,314 Ns$$

$$I_{y,0} = \int_{0,000073}^{0,00069} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,088 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E=3000 \ U/min$, $z_T=4 \ mm$ und $s_L=360 \ m$

Abb. B.23: Verlauf der Kraftreaktion F_z als Mittelwerte von 248 Einzelschlägen

Abb. B.24: Verlauf der Kraftreaktion F_y als Mittelwerte von 248 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	Е	F	G
F_z	4,8377E+20	-2,557E+18	5,45877E+15	-6,2672E+12	3364101985	60037,17	-0,5
F_y	-5,9988E+19	-5,972E+16	1,13476E+15	-2,1612E+12	880788628,2	457059,27	-28,57

$$I_{z,0} = \int_{0,000006}^{0,00097} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,302 Ns$$

$$I_{y,0} = \int_{0,000057}^{0,00064} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,084 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 3000 U/min$, $z_T = 4 mm$ und $s_L = 450 m$

Abb. B.25: Verlauf der Kraftreaktion F_z als Mittelwerte von 251 Einzelschlägen

Abb. B.26: Verlauf der Kraftreaktion F_y als Mittelwerte von 251 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

	А	В	С	D	Е	F	G
F_z	1,4529E+20	-8,949E+17	2,51169E+15	-4,133E+12	3051826655	-147590,47	7,55
F_y	-9,8015E+19	1,899E+17	4,47702E+14	-1,2541E+12	372068624,1	559412,72	-39,27

$$I_{z,0} = \int_0^{0,001} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,291 Ns$$

$$I_{y,0} = \int_{0,00068}^{0,00066} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,083 Ns$$

Analyse der mittleren Kraftreaktionen für $n_E = 3000 U/min$, $z_T = 4 mm$ und $s_L = 540 m$

Abb. B.27: Verlauf der Kraftreaktion Fz als Mittelwerte von 231 Einzelschlägen

Abb. B.28: Verlauf der Kraftreaktion F_y als Mittelwerte von 231 Einzelschlägen

Tabelle: Koeffizienten der Polynom-Funktion 6. Grades zur Approximation der Kraft-Zeit-Messwerte

		-					
	A	В	С	D	E	F	G
F_z	-2,5105E+19	5,564E+17	-1,71338E+15	1,176E+12	412786820	48467,43	2,82
F_y	-1,3679E+20	6,457E+17	-9,07252E+14	2,79761E+11	-168795886,5	491624,56	-24,74

$$I_{z,0} = \int_0^{0,00109} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,246 Ns$$

$$I_{y,0} = \int_{0,000051}^{0,00075} A \cdot t^6 + B \cdot t^5 + C \cdot t^4 + D \cdot t^3 + E \cdot t^2 + F \cdot t + G \cdot dt = 0,09 Ns$$

C. Ergebnisse der Verschleißanalyse

Auswertung der Oberflächenvermessung (30 Schnitte) zur Abtragstiefe z_A

Abb. C.1: Vergleich der mittleren Fugengeometrie für den Teillastbetrieb $n_E = 1.800 U/min$

Abb. C.2: Vergleich der mittleren Fugengeometrie für den Überlastbetrieb $n_E = 4.200 U/min$

	Teillas	tbetrieb	Nennla	stbetrieb	Überlastbetrieb		
Parameter	$n_E = 1.800 U/min$		$n_E = 3.$	000 U/min	$n_E = 4.200 U/min$		
	$s_L = 0 m$	$s_L = 530 m$	$s_L = 0 m$	$s_L = 530 m$	$s_L = 0 m$	$s_L = 530 m$	
$z_A \ [mm]$	0,52	0,1	1,5	0,66	2,3	1,3	
$x_A[mm]$	7,4	3,3	12	8	11,7	9,2	

Tabelle: Die mittlere Abtragstiefe z_A und die Fugenbreite x_A in verschiedenen Betriebssituationen

Flankenbereich ohne Verschleiß (Normal-Ansicht)

Verschleißverlauf der Hartmetallspitze für einen Beanspruchungsweg $s_L = 12 m$

Betriebsparameter: $n_E = 3.000 U/min$, $z_T = 4 mm$

Hartmetallspitze (Normal-Ansicht)

Abb. C.3: Übergang der Flankenfläche zur Hartmetallspitze mit zunehmendem Verschleiß

Abbildung C.4: Messergebnisse zum Verschleißverhalten im Umfeld der Hartmetallspitze

Anhang

Die Verschleißmessgrößen W_{r_2} und W_{r_1} für einen Beanspruchungsweg $s_L = 12~m$

Betriebsparameter: $n_E = 3.000 U/min$, $z_T = 4 mm$

Abb. C.6: Messergebnisse zum Lamellenradius r_1 für $s_L = 12 m$

Die Verschleißmessgrößen W_{r_1} und W_{r_2} für einen Beanspruchungsweg $s_L = T_L$

Betriebsparameter: $n_E = 3000 U/min$, $z_T = 4 mm$

Die Analyse der Messgröße Radius r_1 ist aufgrund des fortschreitenden Verschleißes der Lamellenflanken bis zu einem Beanspruchungsweg $s_L = 360 m$ möglich.

$$W_{r_1}(s_L = 360 m)$$
: $W_{r_1} = \frac{r_1(s_L = 0 m) - r_1(s_L = 360 m)}{360 m} \approx 0,0004 mm/m \to 0 mm/m$

Die Vermessung der Lamellenflanke mit dem Radius r_2 wird durch die Messgröße $\varphi_{r_2,l}$ bzw. $\varphi_{r_2,r}$ ersetzt (siehe Abbildung C.8).

Abb. C.8: Digitale Lichtmikroskop-Aufnahme von der Vermessung der Lamellenflanke

Abb. C.9: Messergebnisse für den Winkel φ_{r_2} zur Analyse vom Verschleiß der Lamellenflanke

D. Modellaufbau und Ergebnisse der Starrkörpersimulation

Modellaufbau und Analyseeinstellungen zur Starrkörpersimulation

Tabelle: Relevante Eigenschaften des S	Simulationskörpers Werkzeugtrommel
--	------------------------------------

Eigenscl	naften	Werte	
Volumen	V_T [m ³]	9,6e-06	
Masse	$m_T \left[kg ight]$	0,077	
Trägheitsmoment	$J_{T,x} \left[kg \cdot m^2 \right]$	1,08e-04	
Trägheitsmoment	$J_{T,y}\left[kg\cdot m^2 ight]$	1,11e-04	×
Trägheitsmoment	$J_{T,z} \left[kg \cdot m^2 \right]$	4,91e-06	
Elementgröße	$h_{FE} \ [mm]$	3	
Anzahl Elemente	(Tetraeder)	8.762	
Anzahl Knoten		1.872	0 m 0,05 m

Tabelle: Relevante Eigenschaften des Simulationskörpers Betonoberfläche (100 x 100 x 5 mm)

Eigenscl	naften	Werte	
Volumen	$V_{c} \ [m^{3}]$	5e-05	
Masse	$m_c [kg]$	0,12	
Trägheitsmoment	$J_{c,x} \left[kg \cdot m^2 \right]$	1,02e-04	
Trägheitsmoment	$J_{c,y}\left[kg\cdot m^2\right]$	1,02e-04	
Trägheitsmoment	$J_{c,z} \left[kg \cdot m^2 \right]$	2,04e-04	
Elementgröße	$h_{FE} \ [mm]$	5	
Anzahl Elemente	(Hexaeder)	400	
Anzahl Knoten		882	

Tabelle: Analyseeinstellungen und Ausgabesteuerung der Starrkörpersimulation

Parameter	Wertevorgabe			
Endzeit <i>t</i>	[<i>s</i>]	0,2 0,38 (drehzahlabhängig)		
Anfangszeitschritt Δt_0	[<i>s</i>]	5e-06		
Minimaler Zeitschritt Δt_{min}	[<i>s</i>]	1e-06		
Maximaler Zeitschritt Δt_{max}	[<i>s</i>]	1e-05		
Intervall der Datenspeicherung		8 Zeitschritte		
Maximaler Energiefehler		0,1		

Tabelle: Koordinaten der Messpunkte B in Abhängigkeit der Zustelltiefe z_T für t = 0 s

$z_T [mm]$	$B_1[mm]$		B ₂ [mm]	B ₃ [[mm]	B ₄ [mm]	B ₅ [1	nm]	В ₆ [1	nm]
	у	Z	у	Z	у	Z	у	Z	у	Z	у	Z
3	-34	116	-8	110	1	84	19	65	-45	71	-53	97
4	-40	114	-12	113	0	89	15	66	-42	68	-54	92
5	-47	112	-19	112	6	89	19	65	-46	65	-59	89

Geschwindigkeitskomponente $v_{y,B}$ im Nennlastbetrieb $n_T = 1.650 U/min$, $z_T = 4 mm$

Abb. D.1: Verlauf der Geschwindigkeit $v_{y,B}$ für ausgewählte Messpunkte im Nennlastbetrieb

Simulationsergebnisse zu den Geschwindigkeitskomponenten der Lamelle in unterschiedlichen Betriebssituationen

Abb. D.2: Vergleich der Geschwindigkeitskomponenten v_{z,P_0} für eine Zustelltiefe $z_T = 3 mm$

Abb. D.4: Vergleich der Geschwindigkeitskomponenten v_{z,P_0} für eine Zustelltiefe $z_T = 4 mm$

Abb. D.5: Vergleich der Geschwindigkeitskomponenten v_{y,P_0} für eine Zustelltiefe $z_T = 4 mm$

Abb. D.7: Vergleich der Geschwindigkeitskomponenten v_{y,P_0} für eine Zustelltiefe $z_T = 5 mm$

Simulationsergebnisse zu der Verschiebung der Lamelle in unterschiedlichen Betriebssituationen während der zweiten simulierten Trommelrotation

Abb. D.8: Verschiebung der Lamelle bei einer Drehzahl $n_T = 990 U/min mit z_T = 4 mm$

Abb. D.9: Verschiebung der Lamelle bei einer Drehzahl $n_T = 1.320 U/min mit z_T = 4 mm$

Abb. D.10: Verschiebung der Lamelle bei einer Drehzahl $n_T = 1.980 U/min mit z_T = 4 mm$

Abb. D.11: Verschiebung der Lamelle bei einer Drehzahl $n_T = 2.310 U/min mit z_T = 4 mm$

Taballas	\/~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		- D !	A la la # a.! a.l. a !(a	dan Duala-aldu
i abelle:	verschiedung	des Messpunktes	s B ₅ IN	Abnangigkeit von	der Drenzani n_T

	-		-							
Drehzahl n_T	990 U	J/min	1320	U/min	1650	U/min	1980	U/min	2310	U/min
B ₅	у	Z	у	Z	у	Z	у	Z	у	Z
Start	-35,7	115,6	-9,2	111,8	-9,7	112,5	-35,6	115,2	-34,5	116
Ende	12,8	102,8	41,6	112,5	38,3	114	14,3	105,4	7,5	109,4
$\Delta \varphi \ [rad]$	1,	,16	1	,32	1	,24	1	,5	1,	28
$\Delta t [s]$	0,0	064	0,0	0052	0,0	0035	0,0	029	0,0	021

E. Modellaufbau und Ergebnisse der FEM-Analyse

Modellaufbau und Analyseeinstellungen

Abb. E.1: Simulationsmodell zur expliziten FEM-Analyse für die Kraftmessung in y-Richtung

Tabelle: Netz- und Körper-Eigenschaften der Komponenten des FEM-Modells	;

Bezeichnung		Lamelle	Betonkörper	Stahlplatte	Kraftsensor
Volumen V	$[m^{3}]$	8,9e-06	3,4e-03	4,5e-04	4,5e-04
Masse <i>m</i>	[kg]	0,07	7,9	3,5	3,5
Anzahl Elemente		2.840	27.000	3.600	3.600
Elementgröße h_{FE}	[mm]	1,3	5	5	5
Anzahl Knoten		4.000	29.791	4.805	4.805

Tabelle: Materialvorgaben für den Werkstoff Beton

Materialeigenschaft		
Dichte $ ho_c$	$[kg/m^3]$	2.342
Druckfestigkeit f_c	$[N/mm^2]$	62,8
Zugfestigkeit f_{ct}	$[N/mm^2]$	12
E-Modul E _c	$[N/mm^2]$	30.020
Querkontraktionszahl v_c		0,195

Abb. E.2: Fließbedingung Φ_c für den Werkstoff Beton zur Implementierung in die FEM-Simulation

Abb. E.3: Rand- und Zwangsbedingungen des FEM-Modells für Kraftmessung in y-Richtung

Tabelle 21: Analyseeinstellungen und Ausgabesteuerung der FEM-Simulation

Abb. E.4: Vergleich der $\sigma_{v,max}(t)$ in Abhängigkeit der Netzgröße für $n_T = 1.650 U/min$, $\varphi_1 = 10^{\circ}$

Simulationsergebnisse zu den Reaktionskräften $F_z(t)$ und $F_y(t)$ sowie zu den Impulskomponenten $I_z(t)$ und $I_y(t)$ in Abhängigkeit der Drehzahl n_T

Abb. E.5: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_z(t)$ für $n_T = 990 U/min$

Abb. E.6: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_{\nu}(t)$ für $n_T = 990 U/min$

Abb. E.7: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_z(t)$ für $n_T = 1.320 U/min$

Abb. E.8: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_{v}(t)$ für $n_{T} = 1.320 U/min$

Abb. E.9: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_z(t)$ für $n_T = 1.650 U/min$

Abb. E.10: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_v(t)$ für $n_T = 1.650 U/min$

Abb. E.11: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_z(t)$ für $n_T = 1.980 U/min$

Abb. E.12: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_{y}(t)$ für $n_T = 1.980 U/min$

Abb. E.13: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_z(t)$ für $n_T = 2.310 U/min$

Abb. E.14: Simulationsergebnisse zum Verlauf der Reaktionskraft $F_{v}(t)$ für $n_{T} = 2.310 U/min$

Abb. E.15: Impulsverlauf $I_z(t)$ der Lamelle beim Stoßvorgang in Abhängigkeit der Drehzahl n_T

Abb. E.16: Impulsverlauf $I_y(t)$ der Lamelle beim Stoßvorgang in Abhängigkeit der Drehzahl n_T