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Abstract

Spacetime foam, which describes the quantum fluctuations of space-
time, is one of the possible characteristics of a quantum theory of gravity.
It is important to understand how it can affect particle propagation, in
order to be able to attain information from experimental data and shed
light on the nature of the gravitational interaction at the very smallest
scales (see part I for more details).

One of the many approaches to spacetime foam consists in equipping
spacetime with a distribution of microscopic structures with nontrivial
topology, known as “topological defects” or “spacetime defects.” In this
thesis, we follow this approach by considering various scenarios where dif-
ferent types of defects are embedded in spacetime, in order to investigate
different aspects of spacetime foam.

In particular, we are interested in understanding the effects of a Lorentz-
invariant distribution of time-dependent defects on the propagation of
particles. This is accomplished in part II for point-like defects, where we
find that no modification to the photon dispersion relation is introduced
(at most, in a certain extension of the model, the photon can acquire
mass). However, this model is very simple and does not take into account
the structure and extension of the defects.

In part III, we consider the case in which the defects have an exten-
sion, and we compare different types of defects. We determine that the
dispersion relation of electromagnetic waves is modified in this case and
depends not only on the topological structure of the defects but also on
their differential structure.

To study the effects of a distribution of extended time-dependent de-
fects, we develop in part IV a lattice model of spacetime foam and analyze
numerically the propagation of a scalar field. The results are in agreement
with those in the previous parts.

It has been observed that one of the defect types introduced in part III,
being a vacuum solution of general relativity, may serve to regularize the
Schwarzschild black hole. In part V, we study the behavior of geodesics
for such a solution. We observe that this regularized solution allows for
the appearance of closed time-like curves, though these disappear in a
non-eternal model of a black hole.

In part VI, we present the results of our studies.
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Part I

Introduction
The main goal that physics is trying to achieve nowadays is the unification of all
fundamental interactions—electromagnetic, weak, strong, and gravitational—
into a single fundamental theory. The first three interactions are already de-
scribed by a very successful and unified model, the standard model of particle
physics, which is a quantum field theory with local gauge invariance with re-
spect to the group SU(3)×SU(2)×U(1). This model has produced some of the
most accurate predictions in the history of physics, which have always been con-
firmed experimentally. As an example, theoretical estimations of the notorious
anomalous magnetic moment of the electron g − 2 agree with the experimental
results at order 10−11 [1, 2]. The standard model has also predicted the exis-
tence of a number of particles that have always been found experimentally, the
last example being the Higgs boson responsible for the spontaneous symmetry
breaking of the electroweak symmetry SU(2) × U(1), which has recently been
observed at the Large Hadron Collider.

Gravitational interaction is instead described by the classical field theory
of general relativity, in which gravitational attraction is described as the effect
of the curvature of spacetime caused by the presence of energy. Even in this
case, the theory has always been very successfully confirmed by experiments [3].
However, due to the classical nature of this theory, it cannot be reconciled with
the other interactions described instead by quantum models. So one would
expect general relativity to be just the classical limit of a more fundamental
quantum theory of gravity. Unfortunately, standard quantization techniques do
not work with this theory, so many alternative approaches are under investiga-
tion, the most famous examples of which are represented by string theory and
loop quantum gravity.

The main difficulty in constructing a quantum theory of gravity is the lack of
experimental data to constrain the theoretical models. As already mentioned,
in fact, current experimental results are in very good agreement with both the
standard model of particles than with general relativity, and there is no direct
evidence of physics beyond these models. In fact, the two theories apply to very
different scales, namely the standard model applying to (quantum) microscopic
scales and general relativity dealing with (classical) macroscopic scales, and
it is therefore a challenging task to test the overlapping region where gravity
becomes important at microscopic scales. This is due to the weakness of gravity
in particle interactions, which, compared to other forces, makes it completely
negligible even at the highest achievable energy scales. The scale at which
gravity is expected to become important in particle interactions is the Planck
scale, which is 8 orders of magnitude above the energy scale of the highest energy
particles ever observed [4].

It is nevertheless of crucial importance to find a way to measure experimen-
tally the effects of gravity at these scales, if one is ever to arrive at building a
theory of quantum gravity. One of the more widely accepted features of such
a theory is that, due to the uncertainty principle, it should describe quantum
fluctuations in spacetime, to which one usually refers using the label ‘spacetime
foam’. These fluctuations are, in general, expected to affect the propagation of
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particles, for example by introducing modifications to particle dispersion rela-
tions. These modifications are also expected to become relevant at energy scales
comparable to the Planck energy, and there is little hope of directly measuring
them at ordinary scales. However, it has been pointed out that these micro-
scopic effects could possibly be magnified in certain circumstances, for example
when particles travel through cosmological distances, and become detectable at
much lower energy scales. Hence, it is important to investigate how these space-
time fluctuations modify the propagation of particles, since these modifications
can be constrained with experimental data, and knowledge on the microscopic
structure of spacetime can possibly be obtained.

In this thesis, therefore, we consider different approaches to the study of
spacetime foam to understand how different characteristics of the spacetime
fluctuations modify the propagation of particles. We take into account very
simplified models in which spacetime fluctuations are described classically by
nontrivial topological small-scale structures (defects) distributed in spacetime.

In particular, in part II we try to construct a Lorentz-invariant spacetime
foam model based on point-like topological defects. In fact, many spacetime
foam models cause particles to have Lorentz-violating dispersion relations, but
this is usually due to the fact that these models explicitly break Lorentz invari-
ance from the outset. However, this non-invariance is not required a priori, and
it is interesting to see what happens when Lorentz invariance is maintained.
Moreover, some arguments indicate that Lorentz-violating models may be ruled
out on the basis that even tiny modifications in this respect, through radiative
corrections, could become excessively large at small energy scales.

In part III, instead, we compare the effects of different static spacetime foam
models, which are based on static extended topological defects that are homeo-
morphic to each other (they have the same topology) but are not diffeomorphic.
In particular, we start by reviewing an old result concerning the propagation of
electromagnetic waves in a spacetime foam model based on a defect that is ob-
tained by removing a ball from the spatial hypersurface of Minkowski spacetime
and identifying antipodal points on its surface. We generalize this result to the
case in which the defect is massive. Then, we consider another type of defect
that has been obtained recently, and that, unlike the previous one, is a vacuum
solution of general relativity. We compare the scalar and electromagnetic wave
solutions in the manifold describing this new defect with the solutions obtained
for the previous type of defect. Finally, we derive the dispersion relation for
electromagnetic waves propagating in a spacetime foam model based on this
new type defect.

In part IV, we approach the study of particle propagation in spacetime foam
in a different way, i.e. with the aid of numerical calculations. We introduce
the discretized action of a scalar field that propagates in a lattice filled with a
distribution of extended defects, and we consider both cases discussed in the
previous sections, i.e. time-dependent and static defects. This model serves on
one hand to investigate the effects of a distribution of extended time-dependent
defects, on the other hand to test the analytic results obtained in the previous
parts and to explore values of parameters not covered by the analytic models.

In part V, we explore a slightly different topic. It has been observed that the
second type of defect discussed in part III (which is a vacuum solution of general
relativity) can be interpreted as a regularization of the standard Schwarzschild
black hole solution. Away from the defect surface, the two solutions are in-
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deed diffeomorphic. Moreover, the defect solution is regular everywhere, so it
cures the Schwarzschild singularity albeit at the price of introducing a nontriv-
ial topology. Here, we investigate the behaviors of the geodesics in this defect
metric and compare them with standard Schwarzschild results.

Finally, in part VI, we present the conclusions of our studies.

1 General overview of spacetime foam and Lorentz
violation

Before introducing the specific spacetime foam models studied in this work, we
want to provide in this section a more detailed introduction to the concepts of
spacetime foam and Lorentz violation.

1.1 Spacetime foam

Spacetime foam (or quantum foam) is a concept introduced by Wheeler [5, 6]
to indicate the quantum fluctuations of spacetime. This is a widely accepted
feature of gravitational interaction despite the fact that, until now, there is no
experimental evidence to support it. Nevertheless, if gravitational interaction
were to be described ultimately by a quantum theory, then it must definitely
display quantum fluctuations. It is an intrinsic property of quantum mechanics
that the result of any measurement of an observable A in a general state ψ is
afflicted by uncertainty

δA =
√
〈Â2〉ψ − 〈Â〉2ψ , (1.1)

where 〈Â〉ψ is the expectation value of the operator Â in the state ψ. Moreover,
an uncertainty relation holds between the fluctuations of two non-commutating
observables A and B

δAδB ≥
∣∣∣∣ 1

2i

[
Â, B̂

]∣∣∣∣ . (1.2)

Considering, for example, the position and momentum operator with standard
commutation relation [x̂i, p̂j ] = i}δij , this equation provides the uncertainty
relation δxi δpi ≥ }/2.

Experimental evidence of quantum fluctuations has been observed in a wide
range of phenomena, both in quantum mechanics and in quantum field theories.
Consider, for example, the vacuum state of the standard model of particles. Due
to quantum fluctuations, this state is not really empty but can be depicted as a
continuous bubbling of virtual particles that appear and vanish everywhere in
spacetime for a very short time (in fact, the uncertainty relation between time
and energy, δE ' }/(2δt), tells us that the shorter the temporal scale of the
fluctuations, the higher their energy). The effects of these virtual particles have
been observed experimentally. In quantum electrodynamics (QED), the appear-
ance of virtual electron-positron pairs affects the propagation of photons—the
so-called vacuum polarization—so that the electric charge is effectively screened.
Such a screening effect depends on the distance away from the electric charge,
so that, in an atom, electrons closer to the nucleus perceive a larger charge than
distant electrons (Lamb Shift) [7]. Another example is the Casimir effect, which
also can be explained in terms of quantum vacuum fluctuations [8].
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In the same way that fields in a quantum field theory (e.g. the electron field
in QED) display quantum fluctuations, we would expect the metric describing
the geometry of spacetime to display fluctuations in a quantum theory of grav-
ity. As discussed by Wheeler, such fluctuations should affect both the geometry
and the topology of spacetime, and they are expected to become important at
the Planck scale. Indeed, at the Planck scale, the strength of the gravitational
field becomes comparable to that of the other forces, and the (quantum) grav-
itational interaction between fundamental particles cannot be neglected, as it
is, instead, in the present formulation of quantum field theory. We can use a
simple argument [9] to arrive at this result. Consider a photon of wavelength
λ = c/ν. From quantum mechanics, we know that the energy carried by this
photon is E = 2π}c/λ. On the other hand, special relativity tells us that this
energy is equivalent to the mass m = E/c2 which, due to general relativity,
curves the geometry of spacetime. To quantify this effect, we can calculate the
Schwarzschild radius rS associated with the mass m and compare it with the
wavelength of the photon, in which case we obtain

rS =
2Gm

c2
= 4π

}G
c3

1

λ
= 4π

`2P
λ
, (1.3)

where `P ' 1.6×10−35m is the Planck length. We observe that the Schwarzschild
radius associated with photons with wavelengths much larger than the Planck
length is negligible with respect to the wavelength itself, rS � λ. This means
that spacetime around the photon is almost exactly flat and we can therefore
ignore its gravitational field. However, this is not the case when the photon
wavelength approaches the Planck length. In this case, the Schwarzschild ra-
dius becomes comparable to the wavelength and we cannot avoid taking into
account the photon’s gravitational field. In particular, for λ < 2

√
π`P , we have

rS > λ and the photon seems to have no option but to collapse into a micro-
scopic black hole, at least according to classical general relativity. Nonetheless,
the classical formulation of general relativity is expected to break down at this
scale in favor of a quantum theory of gravity. One can infer this conclusion
not only from analogy with the other interactions (which are described, at the
microscopic level, by quantum theories), but also from the observation that
it seems impossible to couple a classical metric field to quantum matter fields
without running into inconsistencies [10]. Unfortunately, standard quantiza-
tion approaches do not work for general relativity and, up till now, there is no
definitive answer on to how quantize gravity.

To derive an estimate of the magnitude of the metric fluctuations, we can
initially proceed simply on the basis of dimensional considerations. Consider
the Einstein field equations

Gµν =
8πG

c4
Tµν . (1.4)

Since the Einstein tensor Gµν is given by second-order derivatives of the metric,
we can express it as Gµν ∼ gµν/L

2, where L is some length scale. In the
same way, the stress-energy tensor Tµν has dimensions of energy density Tµν ∼
E/L3. If, as before, we consider a photon with energy E = 2π}c/λ, from the
uncertainty principle we obtain a fluctuation in its energy at the scale L = λ,
given by δE ∼ }c/L. Inserting these expressions into the Einstein equations we
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Figure 1: Pictorial representation of spacetime foam. The structure of space-
time, which appears smooth and flat at large scales, becomes very complicated
and topologically nontrivial at the Planck scale. Image from Ref. [11]

obtain
δgµν
L2
∼ 8πG

c4
δE

L3
=⇒ δgµν ∼

`2P
L2

, (1.5)

from which we see that, indeed, the fluctuations become important at scales
comparable with the Planck scale.

A more reliable estimation [12] of the fluctuations’ magnitude can be ob-
tained in the context of linearized gravity which, as it is not afflicted by the
nonlinear nature of general relativity, can be quantized by employing standard
quantization techniques. Linearized gravity is obtained by assuming the metric
field is described by a background static metric, and for simplicity we consider
this to be the Minkowski metric ηµν , plus a perturbation hµν which must be
determined from the Einstein equations, explicitly

gµν = ηµν + hµν . (1.6)

Given this assumption, the Ricci scalar turns out to be

R = ∂µ∂νh
µν − ∂2h , (1.7)

where h = hµµ = ηµνhµν . Inserting this expression into the Einstein-Hilbert
action

S =

∫
d4x
√
−g
(

c4

16πG
R+ Lmatter

)
, (1.8)

expanded at the second order in hµν gives

S = − }
32π`2P

∫
d4xhµν∂2hµν + c

∫
d4xhµν

(
Tµν −

1

2
Tηµν

)
+O(h3) . (1.9)

Observing that this expression in vacuum, Tµν = 0, is analogous to the action of
a free massless scalar field, quantization can be performed in a straightforward
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manner. One finds that the correlator of field hµν can be expressed in terms of
the correlator of a quantum scalar field φ

〈h(t, ~x)h(t, ~y)〉 =
16π`2P

}
〈φ(t, ~x)φ(t, ~y)〉 =

8`2P
π(~x− ~y)2

, (1.10)

where we consider the special case of an equal time propagator. Observing that
the quantum propagator is a measure of the fluctuations of the field, by setting
L = |~x− ~y| we obtain

δh ∼
√
〈h(t, ~x)h(t, ~y)〉 =⇒ δgµν ∼

`P
L
. (1.11)

This expression differs from that derived previously, but again it shows that
vacuum fluctuations of the metric become important at the Planck scale (see
Fig. 1).

We stated briefly that not only the geometry but also the topology of space-
time should be afflicted by these fluctuations—this is a widely accepted conclu-
sion, and there are actually a couple of arguments in its favor [12]. The first is
simply that, since vacuum fluctuations of the metric below the Planck scale be-
come much more larger than the metric itself (δg � g ∼ 1), they can be better
described by a change in topology than by a change in geometry. The second is
based on the Feynman path integral approach to quantization. Observing that
in standard quantum field theory one has to sum over all possible configurations
of a field, independently of the fact that they are well-behaved, in the same way
in quantum gravity one should sum over all possible geometries independently
of their topology.

We have tried to provide some simple arguments in favor of the concept
of spacetime foam; however, lacking a definitive theory of quantum gravity,
we must be careful when dealing with these arguments and bear in mind that
they could turn out to be false in the end. In fact, they are based on the
assumption that the description of spacetime in terms of manifold, metric, and
Einstein field equations is still possible (in some quantized form) at the Planck
scale. Nevertheless, it could also be that these notions are emerging classical
manifestations at large scales of a completely different quantum theory at the
Planck scale [13, 14].

Given the fact that there is no definitive theory on quantum gravity, many
different approaches to the treatment of spacetime foam have been explored.
Just to list a few examples, we can cite Refs. [15, 16, 17], where a path inte-
gral approach to spacetime foam is considered, Ref. [18], where an algebraic
approach is proposed, Refs. [19, 20, 21], where spacetime foam is discussed in
the context of string theory, Ref. [22], where spacetime foam is discussed in
the context of loop quantum gravity, Refs. [23, 24], where spacetime foam is
modeled as a gas of wormholes, Ref. [25], where an approach based on random
walks is introduced, Ref. [26, 27], where a holographic model of spacetime foam
is discussed, and so on.

Interest in these models resides principally in understanding how the quan-
tum fluctuations of spacetime affect the propagation of particles. In fact, if they
produce any kind of modifications, these should be, in principle, experimentally
observable, thereby providing some experimental ground on which to construct
a suitable theory of quantum gravity. The main difficulty in this direction is in-
deed the lack of any experimental data, due to the smallness of the Planck scale,
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which is far below the experimental capability of current technology. As an ex-
ample, consider the Large Hadron Collider (LHC), which at present is the most
powerful particle accelerator in the world and is supposed to be able to reach en-
ergy in the center of the mass of proton-proton collisions of ECM ∼ 1013eV [28].
This is, however, 15 orders of magnitude below the Planck energy EP ∼ 1028eV
at which quantum gravity fluctuations are expected to become important, and
Eq. (1.11) tell us that the effects of these fluctuations at energy scale ECM
should be suppressed as δgµν ∼ ECM/EP ∼ 10−15. At the same time, ultra-
high energy cosmic rays (UHECRs) reach energies of Ecr ∼ 1021eV [4], which
are also way below Planck energy. One might even wonder if there will ever be
any chance of measuring these quantum gravitational effects.

The hope is that, even if it is not possible to probe the Planck scale directly,
it is nevertheless possible to measure some of its consequences at lower energies.
A strong argument in favor of this idea has been proposed in Ref. [29], where
it is argued that the tiny effects of spacetime fluctuations on the propagation
of cosmic rays can sum up over the huge distances traveled by these particles
and eventually become measurable. Another argument is discussed in Ref. [31],
where it is shown that, even if spacetime fluctuations are negligible at the energy
scale of ordinary particles, they are not for virtual particles that enter loop
diagrams (since these are integrated over all possible values of energy), in which
case these effects can show up as radiative corrections, even for low-energy
particles.

From these considerations, it seems worthwhile investigating how spacetime
foam affects the propagation of particles. The principal effect expected in the
majority of the approaches to spacetime foam is a modification of particle dis-
persion relations, as if foamy spacetime could be represented by a dispersive
medium with a nontrivial refractive index. This is usually associated with a
violation of Lorentz symmetry, due to the presence in these models of terms
that explicitly or spontaneously break this symmetry. Given the importance
of this phenomenon we will discuss it more in detail in subsection 1.2. The
modifications introduced by spacetime foam can lead to phenomena which do
not occur in Minkowski space such as the appearance of an energy-dependent
velocity of propagation for photons, vacuum birefringence, vacuum Cherenkov
radiation, decoherence, blurring images of distant sources, and so on. See Ref.
[30] for more details.

Before discussing Lorentz violation, we wish to provide some information on
the particular spacetime foam models investigated in this work. We consider a
very simplified situation in which spacetime foam is described at the classical
level, i.e. we introduce a classical manifold endowed with a given distribution
of nontrivial microscopic structures (representing the spacetime fluctuations)
in which the particles propagate. To arrive at a quantum model, in the path
integral formalism, we should sum over all possible distributions. Another sim-
plification is that we build our foam model out of one particular microscopic
structure, i.e. a specific type of topological defect, while, according to the idea
of quantum fluctuation, any kind of microscopic structure should be taken into
account.

To be more specific, in part II we try to build a Lorentz-invariant space-
time foam model made up of point-like topological defects; in reality, there is
no reason a priori why spacetime foam must break Lorentz symmetry. More-
over, it has been pointed out in Ref. [31], and further discussed in Refs. [32, 33],
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that even microscopic Lorentz-violating contributions at the Planck scale should
affect low-energy particles (through radiative effects) with very large contribu-
tions that are not experimentally observed. On this basis, it is interesting to
investigate spacetime foam models that preserve Lorentz invariance.

In part III, instead, we consider static but extended topological defects. In
this case, we investigate how defects with the same topological structure but
with different differential structures influence the propagation of particles. In
fact, the model of part II, dealing with point-like defects, does not take into
account the internal structure of the defects. But the defects are expected to
have an extension and therefore can be endowed with different topological and
differential structures. It is interesting to investigate how these structures affect
the propagation of particles.

1.1.1 Topological defects

Here, we want to sketch in a bit more detail the concept of topological defect, as
introduced above. Topological defects [34] are usually discussed in cosmology
and condensed matter theory, and in these contexts they are defined as topo-
logical solitons, i.e. non-perturbative solutions of the field equations that are
topologically distinct from the vacuum solution. In the context of cosmology,
they are expected to originate during symmetry-breaking phase transitions in
the early universe, such as the electroweak symmetry-breaking described by the
Higgs mechanism. Depending on which particular symmetry is broken, different
types of defect can originate. In cosmology, one finds four possible type of de-
fects, namely domain walls, cosmic strings, magnetic monopoles, and textures.
It is usually to these particular structures that one refers by using the term
“topological defect”.

In the context of spacetime fluctuations, we class as a topological defect
any microscopic structure of spacetime with non-trivial topology. The most
notorious example of these defects is represented by the wormhole, which, firstly
introduced in Ref. [5], can be obtained by removing two regions of spacetime
and identifying their boundary. This is usually schematically depicted as in
Fig. 2, where the two removed regions, the “mouths”, are connected by a
tunnel. In this work, however, we will not deal with Wheeler wormholes but

Figure 2: Pictorial representation of a Wheeler wormhole. Image from Ref. [5]

with simpler types of defect. In particular, in part III, we consider a (static)
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defect obtained by removing a single region of space and identifying antipodal
points on its boundary, as illustrated in Fig. 3. Observe that, as it happens for

Figure 3: Schematic representation of a defect with antipodal points on the
boundary identified. Image from Ref. [67]

the wormhole, the first homotopy group of this defect is nontrivial. Moreover, it
can be shown that the topology of the defect embedded in Minkowski spacetime
is R× (RP 3 − {0}), where RP 3 is the 3-dimensional projective space.

In part II, instead, we consider a defect represented by a single point removed
from Minkowski spacetime (M = R4 − {0}). We observe that the first (and
second) homotopy group in this case is trivial but higher homotopy groups
are not, and so we can conclude that M and Minkowski spacetime are really
topologically inequivalent manifolds.

1.2 Lorentz violation

We can now give a brief introduction to the topic of Lorentz violation. Lorentz
invariance is a well-established result of standard physics. In particular, the
standard model of particles is formulated to be Lorentz-invariant, which means
that its action is constructed to be invariant under the special orthogonal group
in Minkowski spacetime SO(1, 3), defined as the group of transformations that
preserve the Minkowski metric ηµν = diag(−1, 1, 1, 1), explicitly

Λνµ ∈ SO(1, 3) ⇐⇒ ΛρµΛσν ηρσ = ηµν . (1.12)

From this relation, one can immediately see that scalar products (obtained by
contracting two vectors with the metric) are Lorentz-invariant

p′ · k′ = ηµνp
′µk′ν = ηµνΛµρp

ρΛνσk
σ = ηρσpρkσ = p · k . (1.13)

It is also well-established, both theoretically and experimentally, that any result
obtained in the context of the standard model is Lorentz-invariant, and that no
spontaneous Lorentz symmetry breaking can occur in this theory. This is an
extremely useful result because, if a violation of Lorentz symmetry were ever to
be detected, one would know immediately that it is due to physics beyond the
standard model. On the other hand, it is a common feature of quantum gravity
models to display violations of Lorentz invariance, both by introducing terms
that explicitly break the symmetry or by allowing for mechanisms that break it
spontaneously (as discussed, for example, in Ref. [35] in the context of string
theory).
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A violation of Lorentz symmetry, in general, will result in a modification of
the dispersion relation of particles, such as

E2 = p2 +m2 + f(E, p, α) , (1.14)

where the parameter α is related to the scale at which the new physics appear
(the Planck scale in the case of quantum gravity). This result can be used to
constrain or falsify the particular spacetime foam or quantum gravity model one
is investigating.

As a simple toy example, we can consider the case in which Lorentz in-
variance is explicitly broken by the introduction of a preferred direction nµ =
{1, 0, 0, 0} (this can be achieved, for example, by considering a static spacetime
foam model). We assume also that this preferred direction modifies the equation
of motion of a massless scalar field in two different ways corresponding to two
different models, for example with the term αnµ∂

µφ in one case and α′ nµ∂
µ∂2φ

in the other (observe that α and α′ have different dimensionality). For the two
cases, we obtain the modified dispersion relations

E2 = αp+ p2 , E2 = p2 + α′ p3 , (1.15)

and, calculating the group velocity (vg = ∂E/∂p), we see that in both cases the
velocity of the particle depends on its frequency. However, in the first case the
velocity increases at small frequencies, while in the second case it increases at
large frequencies. Since experimentally we do not observe anomalous variations
in the velocity of particles at small energies, we can reject the first model, while
measuring the behavior of high-energy particles can constrain the parameter α′

in the second model.
A useful framework for dealing with Lorentz violation is the standard model

extension [36], which provides an extension of the standard model of particles
in which all possible Lorentz-violating terms that can arise from a more funda-
mental theory as the effect of spontaneous symmetry breaking are taken into
account. The importance of this model resides in its generality and the fact
that it is independent of the underlying theory. From an experimental point
of view, one can simply deal with the parameters of the model, while from the
theoretical standpoint, one simply has to use these parameters to constrain the
particular model at hand. For example, the extended quantum electrodynamics
Lagrangian is given by

LSME = LSM + LLV , (1.16)

where LLV is the Lorentz-violating Lagrangian and LSM is the standard QED
Lagrangian

LSM =
i

2
ψ̄nγ

µ
↔
Dµψn −mnψ̄nψn −

1

4
FµνF

µν , (1.17)

where n = 1, 2, 3 indicates the lepton family, the covariant derivative is given
by Dµ = ∂µ+ iqAµ, and the field strength is Fµν = ∂µAν −∂νAµ. The Lorentz-
violating terms in LLV can be grouped accordingly to their behavior under CPT
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transformation and are given by

L(+)
lepton =− 1

2
(Hl)µνnmψ̄nσ

µνψm +
i

2
(cl)µνnmψ̄nγ

µ
↔
Dνψm+

+
i

2
(dl)µνnmψ̄nγ5γ

µ
↔
Dνψm ,

L(−)
lepton = −(al)µnmψ̄nγ

µψm − (bl)µnmψ̄nγ5γ
µψm ,

L(+)
photon = −1

4
(kF )µνρσF

µνF ρσ ,

L(−)
photon =

1

2
(kAF )µεµνρσA

νF ρσ ,

(1.18)

where (+) indicates a CPT even term, while (−) is a CPT odd term. Note that
these terms preserve gauge invariance and power counting renormalizability.
From this extended Lagrangian, it is possible to derive the dispersion relations
for the leptons and photons given in the high energy limit (MPl � E � m) by
[37]

E2
e = m2

e + p2 + f (1)
e p+ f (2)

e p2 , electron ,

E2
γ = (1 + f2

γ )p2 , photon ,
(1.19)

where the coefficients f
(i)
A are obtained from the coupling parameters in LLV .

Note that, since the standard model can be interpreted very well as an effective
theory, the requirement for power counting renormalizability is often dropped
and other terms are allowed to enter into the dispersion relations. Hence, the
dispersion relations for electrons and photons can be expressed more generally
as

E2
e = m2

e + p2 + η(n)
e

pn

Mn−2
Pl

, electron ,

E2
γ = p2 + η(n)

γ

pn

Mn−2
Pl

, photon .

(1.20)

1.2.1 Experimental tests

Ultra high-energy cosmic/gamma rays (UHECR/UHEGR) are the best exper-
imental candidates for measuring the tiny effects (corresponding to Lorentz-
violating modified dispersion relations for particles) of spacetime fluctuations.
As mentioned previously, in fact, these phenomena possess two important fea-
tures that add up to and increase the chances of probing very small scales
(possibly even the Planck scale at which quantum gravity effects are expected
to appear). The first characteristic is the energy of these particles, E ∼ 1020eV ,
which is much higher than the energies obtainable with current technology. The
second is the cosmological distance traveled by these particles, which can mag-
nify microscopic effects. Note that, on the other hand, lack of knowledge on the
precise composition of cosmic rays and their emission mechanisms, as well as
the lack of a large experimental sample, is a significant source of error.

The idea that the cosmological distance traveled by high-energy particles
is a crucial characteristic is based on considerations about the time of flight
of photons [25]. As we have observed, a Lorentz-violating modified dispersion
relation implies an energy-dependent velocity of propagation, in which case
two particles with different energies will take different times to travel the same
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distance d. According to Eq. (1.20), the time difference for two photons of
momenta p1 and p2 is

∆t(n) =
n− 1

2

pn−2
2 − pn−2

1

Mn−2
Pl

η(n)
γ d , (1.21)

and increases linearly with the distance d. Consequently, the greater the dis-
tance traveled by the particles, the greater the time difference ∆t. This formula
is based on the assumption that the photons are emitted at the same time, but
the aforementioned incomplete understanding of how high-energy gamma rays
are produced (for example, in gamma ray bursts) introduces a large systematic
error into this type of measurement.

Other methods used to constrain the parameters of the modified dispersion
relations (1.20) include, for example, vacuum birefringence, based on the fact
that in principle different helicity states can be described by different disper-
sion relations, threshold reactions, based on the fact that modified dispersion
relations can allow for otherwise forbidden processes such as photon decay or
vacuum Cherenkov radiation, UHECR interactions with the cosmic microwave
backgrounds, based on the fact that the GZK limit on the energy of cosmic rays
could be altered by Lorentz-violating modifications, and so on. See Ref. [37] for
more details on these kinds of measurement.
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Part II

Spacetime foam from
time-dependent, point-like
defects
In this part, we present a Lorentz-invariant spacetime foam model and study
how it affects the propagation of particles. As mentioned in the introduction,
spacetime foam describes the quantum fluctuations of spacetime that originate
from applying the uncertainty principle to gravity in an eventual quantization of
this interaction. As pointed out in Ref. [6], these fluctuations may, in principle,
affect both the geometry and the topology of the spacetime manifold. In this
part (as well as in the rest of this thesis), we are mostly interested in the study
of the second type of fluctuation, namely topological fluctuations.

From the uncertainty principle, these fluctuations are expected to be larger
at smaller scales. We can therefore assume that nontrivial topological structures
will show up only at very small scales (comparable to the Planck scale). Since
ordinary particles have energies (and consequently resolving power) far below
the Planck scale, we can safely avoid describing the structure of the fluctuations
and just consider them to be simply point-like defects.

Also, since these defects originate from quantum fluctuations, they should be
properly described by a quantum model. However, in this work, we consider the
simpler case in which they are described by classical objects. As a result, space-
time foam can be represented by a classical background field which, through its
interaction with elementary particles, affects their propagation dynamics.

In the following, we start by introducing the basic features that characterize
the defects and their distribution in spacetime. Then, we show how the classical
background field describing the spacetime foam can be obtained in general and
how it affects the propagation of particles. Finally, we introduce a specific model
to describe, more accurately, the propagation of photons in such a spacetime
foam. We observe that, as long as the properties of the model remain Lorentz-
invariant, the dispersion relation of the photon remains unchanged. We observe
also that a possible modification of the photon dispersion relation can be ob-
tained in a certain extension of the model (which maintains Lorentz invariance),
and this modification is the appearance of a photon mass.

2 Basic features

In this section, we introduce the fundamental characteristics upon which the
spacetime foam model that we want to study is constructed, namely the CPT
anomaly and sprinkling. The CPT anomaly is an anomalous contribution to
the field action that originates from the non-trivial topology of the defects (i.e.
the fundamental constituents of the spacetime foam). Sprinkling, instead, is a
procedure that allow us to distribute the defects into spacetime in a Lorentz-
invariant manner.
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2.1 CPT anomaly

It has been shown [38, 39] that, in certain chiral gauge theories defined over a
manifold with nontrivial topology (e.g. with a compact spatial dimension), a
CPT anomaly can appear. Observe that, due to the theorem proved in Ref.
[41], such a violation of the CPT symmetry necessarily implies a violation of
the Lorentz symmetry. In Ref. [40], the appearance of the CPT anomaly has
been derived in case the nontrivial topology is realized at small scales (due to the
presence of a static topological defect). A spacetime foam model obtained by av-
eraging the effects of many defects distributed in spacetime has been introduced,
and modified dispersion relations for scalar and photons derived accordingly. It
should be noted, however, that due to the static nature of the defects, the space-
time foam model obtained in this way is intrinsically Lorentz-violating. Here,
we want to generalize this result to the case of time-dependent defects so that
we can construct a Lorentz-invariant spacetime foam model.

We start by briefly summarizing the framework of Ref. [40]. The manifold
considered in this work is M = R ×M3, where M3 = R × (R2 − {0}), and M
is equipped with the Minkowski metric ηµν = diag(1,−1,−1,−1). The gauge
group considered is SO(10) (which, we recall, contains the standard model as
a subgroup) with gauge fields Bµ(x) and Weyl fermions ψα(x) (α = 1, 2 is a
spinor index) in the 16 representation. The fermionic action is given by

S(ψ, ψ̄, B) = i

∫
M

d4x ψ̄ σ̄µ(∂µ +Bµ)ψ , (2.1)

where σ̄ = (1, σ1, σ2, σ3), and σi are the Pauli matrices. One is interested in
the effective action Γ(B) for the gauge fields obtained by integrating out the
chiral fermions

eiΓ(B) =

∫
DψDψ̄eiS(ψ,ψ̄,B) . (2.2)

By introducing cylindrical coordinates around the linear defect, and then choos-
ing a special class of gauge fields, B′, which are φ-independent and with van-
ishing components along φ (φ being the angular variable), one is able to in-
tegrate over the φ variable in the fermionic action (2.1). The result is a new
3-dimensional action that contains an infinite sum over Dirac fermions ηn(x)
(n ∈ (−∞,∞)). From this action, one can finally determine the contribution
to the effective gauge field action Γ(B′) corresponding to the sector n = 0 (that
describes a massless fermion). Such a contribution contains the CPT anomaly
and is given by

ΓCPT (B′) =

∫
M

d4x
x1 ωCS(B′0, B

′
1, B

′
3) + x2 ωCS(B′0, B

′
2, B

′
3)

2
√

(x1)2 + (x2)2
, (2.3)

in which ωCS is the Chern-Simons density [42, 43]

ωCS(B0, B1, B2) =
εµνρ

16π2
tr

(
BµνBρ −

2

3
BµBνBρ

)
(2.4)

where εµνρ is the 3-dimensional Levi-Civita symbol and Bµν is the Yang-Mills
field strength tensor, Bµν = ∂µBν − ∂νBµ + [Bµ, Bν ]. Restricting this result
to the Abelian subgroup U(1) ⊂ SO(10) corresponding to electromagnetism
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(whose gauge field has been renamed Aµ), one obtains the anomalous contribu-
tion to the effective electromagnetic action

ΓCPT (A) =
1

32π

∫
R4

d4xfM (x;A)εµνρσFµν(x)Fρσ(x) , (2.5)

where Fµν = ∂µAν −∂νAµ and fM (x;A) is a functional that carries the imprint
of the topological structure of the defect.

A static spacetime foam model is obtained by considering a random uniform
distribution of defects in space. Since it is not possible to calculate directly the
CPT anomalous term for many defects, one assumes that the contributions from
the individual defects add up incoherently, resulting in a static background field
g(~x). Hence, the photon action in this spacetime foam model takes the form

Sphoton = −1

4

∫
R4

d4x {Fµν(x)Fµν(x) + g(~x)εµνρσFµν(x)Fρσ(x)} . (2.6)

The background field is assumed to vanish on average and to vary over length
scales much smaller than the photon wavelength (a � λ, where a3 = 1/ρ and
ρ is the 3-dimensional number density of defects ρ = 〈N(V3)/V3〉). This is
explicitly given by

g(~x) = λ
∑
n

εn h(~x− ~xn) , (2.7)

where h(~xn) is the contribution of the defect placed at the random position
~xn ∈ R3 and the numbers εn = ±1 are assigned randomly to each defect (so
that the total contribution vanishes on average). From Eq. (2.6), it is possible
to obtain the modified dispersion relation

ω2 = (1− a0)c2~k2 − a1c
2~k4 + . . . , (2.8)

where the positive coefficients ai can be calculated once the specific form of h(~x)
is given.

Here, we want to generalize this approach to the case where the defects
are time-dependent. Explicitly, we consider a topological defect described by
the manifold M = R4 − {0} equipped with the standard Minkowski metric
ηµν = diag(1,−1,−1,−1) (that is, Minkowski spacetime with a single point
removed). We then make the assumption that such a spacetime causes an
anomalous contribution to the electromagnetic action analogous to that derived
for a static defect (Eq. (2.5)). We can obtain a (non-static) spacetime foam
model by randomly distributing the defects in spacetime according to a uniform
distribution with (4-dimensional) number density ρ = 〈N(V4)/V4〉, where again
the contributions from individual defects add up incoherently into a (non-static)
background field g(x). The photon action in this spacetime foam model is

Sphoton = −1

4

∫
R4

d4x {Fµν(x)Fµν(x) + g(x)εµνρσFµν(x)Fρσ(x)} , (2.9)

where the background field is given by

g(x) = λ
∑
n

εn h(x− xn) . (2.10)
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Note that the defect shape h(x) now also depends on the time (x ∈ R4), and
the random defect positions xn ∈ R4 are also chosen in the entire Minkowski
spacetime.

Since we are interested in building a spacetime foam model that is not only
time-dependent but also does not explicitly break Lorentz invariance, we want
the distribution of defects to be Lorentz-invariant. Therefore before proceeding
to study the model, in the next subsection we show how to obtain such a Lorentz-
invariant distribution.

2.2 Sprinkling and Lorentz invariance

In order to obtain a distribution of defects {xn} that is Lorentz-invariant, we
borrow a method introduced in causal set theory [44, 45, 46, 47], i.e sprinkling.
This method is used in causal set theory to discretize a Lorentzian manifold
maintaining local Lorentz invariance. Once the sprinkled points are obtained,
the rest of the manifold is removed and the points endowed with a causal struc-
ture form a causal set, namely a discrete realization of spacetime. Observe that
what we want to do to construct our spacetime foam model is somehow com-
plementary to what happens in causal set theory. In fact, in this instance, once
we have identified the Lorentz-invariant set of sprinkled points, we remove them
from Minkowski spacetime and use the continuum remnant of the manifold as
a description of spacetime.

Sprinkling is nothing more than a Poisson process realized over the manifold
at hand, in our case Minkowski spacetime, the result of which is a Poisson
distribution. This means that the probability of finding n defects in a spacetime
region of volume

V =

∫
region

d4x
√
−η , (2.11)

is given by

Pn(V ) =
(ρV )ne−ρV

n!
, (2.12)

where ρ is a parameter of the distribution. Note that, according to Eq. (2.12),
when we consider an infinitesimal volume δV , the probability of finding a single
defect in that region is proportional to the volume

Pn=1(δV ) = ρδV +O(δV 2) . (2.13)

Instead, the probability of finding more than one defect is negligible when δV →
0

Pn>1(δV ) = O(δV n) . (2.14)

An explicit realization of a Poisson process is given by the following prescription
[46]: given a region of spacetime of volume V

• divide V into small boxes of volume δV ,

• place a defect into each box with probability P = ρδV ,

• the Poisson process is obtained in the limit δV → 0.
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Since the Poisson process described by the previous steps only depends on
the spacetime volume, it must be invariant under any volume-preserving linear
transformation. The class of volume-preserving linear transformations contains,
of course, the Lorentz group. This can be seen simply by calculating the Jaco-
bian determinant, which, for a Lorentz transformation, is detJ = 1. Since this
is in unity, the volume form d4x is preserved, d4x → d4x′ = detJ d4x = d4x
(this implies that if in a Lorentz transformation the time coordinate is dilated
by a factor γ, one of the spatial coordinates undergoes contraction by the same
factor).

We have seen that the Poisson process is Lorentz-invariant, and the same is
true for the resulting Poisson distribution (2.12) (which also depends only on
the spacetime volume), but it could still be argued that, since it is a random
process, some of its realizations {xn} may exhibit some degree of asymmetry
and not be Lorentz-invariant. However, it has been proved in Ref. [47] that
each realization of a Poisson process is individually Lorentz-invariant.

Lorentz invariance in this context has the following meaning [46]:

“The discrete set of sprinkled points must not, in and of itself, serve to pick
out a preferred reference frame.”

This means that the statistical properties of the distribution of defects (e.g.
the mean density of defects) do not depend on the reference frame in which we
choose to measure them. In fact, we want to stress that the number of defects
contained in different regions of equal volume V is not constant but fluctuates
from region to region

N(V ) = 〈N(V )〉 ± δN(V ) . (2.15)

The mean value 〈N(V )〉 and the standard deviation δN(V ) can be calculated
from the Poisson distribution (2.12) and are given by

〈N(V )〉 =

∞∑
n=0

nPn(V ) = ρ V ,

δN(V ) =

√√√√ ∞∑
n=0

(n− 〈N(V )〉)2
Pn(V ) =

√
ρ V .

(2.16)

From these equations, we can also deduce the expected value of the number
density of defects ρobs in a region of spacetime volume V , which is given by

ρobs = 〈ρobs〉 ± δρobs =
〈N(V )〉
V

± δN(V )

V
= ρ±

√
ρ

V
, (2.17)

from which we can finally identify the parameter ρ in Eq. (2.12) with the
mean value of the density of defects ρobs. Note also that, even if the density
of defects is not constant from region to region, the fluctuations in its value
become negligible when the mean volume available to a single defect, Vd = 1/ρ,
is much smaller than volume V of the region considered

Vd =
1

ρ
� V ⇒ δρobs

ρobs
=

1√
ρ V
∼ 0 . (2.18)

This means that we can treat the density as a constant quantity in spacetime,
ρobs(x) = ρ, as long as we are dealing with scales much larger than volume Vd
available to the defects.
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In Figs. 4 and 5, we compare the behavior under Lorentz boost of a sprinkled
set of points and of a regular distribution.

(a) β = 0 (b) β = 0.7

Figure 4: Example of sprinkling in a finite region of 2-dimensional Minkowski
spacetime as it looks in two different inertial frames. The second frame (b) is
boosted by a Lorentz boost factor β = 0.7 along the positive spatial axis with
respect to the first frame (a). Observe that, while the shape of the region changes
from (a) to (b), it is not possible to find any difference in the distribution of
defects in the two cases.

(a) β = 0 (b) β = 0.7

Figure 5: Same as in the previous figure, where the sprinkling has been sub-
stituted by a regular distribution. Note that in this case both the shape of
the region and the characteristics of the distribution change from (a) to (b):
in (a) the density of defects is uniform, in (b) it is not. This distribution is
not Lorentz-invariant. In fact, in accordance with the definition given above, it
identifies a preferred reference frame (β = 0), in which the density of defects is
uniform.

3 Effective theory

Now that we have established a method to obtain a Lorentz-invariant distri-
bution of defects, we can proceed to study the effective theory introduced in
Sec. 2.1, given for a vector field by the action (2.9). We recall that this action
describes the effective theory of a photon propagating in a flat spacetime filled
with a Lorentz-invariant distribution (i.e. a sprinkling) of point-like defects,
where the effect of each defect, given by the anomalous contribution (2.5), is
averaged into a background field g(x) (Eq. (2.10)).

We begin by considering precisely the background field g(x), which, we recall,

22



is defined as
g(x) = λ

∑
n

εn h(x− xn) , (3.1)

where the numbers εn = ±1 are assigned randomly to each defect with uniform
probability and the distribution of defects {xn} has been obtained through a
sprinkling process over Minkowski spacetime with density parameter ρ so that

ρobs =
N(V )

V
= ρ±

√
ρ

V
. (3.2)

We assume that the volume available to each defect Vd is much smaller than
the scale of the process considered (determined, for example, by the wavelength
of the photon, Vd � λ4), in this way we can consider the density of defects
to be constant (ρobs(x) = ρ). We assume also that the shape function h(x),
which describes the contribution of a single defect to the background field, is a
Lorentz-invariant quantity

h(x) ≡ h(x2) . (3.3)

Since later in the calculation we will need to manipulate expressions involving
the Fourier transform of the field g(x), we want to derive here some simplified
formulas. We start by introducing the Fourier transform of g(x)

g(q) =

∫
d4x g(x) eiq·x = λ

∞∑
n

εn

∫
d4xh(x− xn)eiq·x = λh(q)

∞∑
n

εne
iq·xn ,

(3.4)
where, in the last step, we changed coordinates x′µ = xµ − xµn to obtain the
Fourier transform h(q) of the shape function h(x). To calculate the sum over n
we observe that, as long as we are concerned with scales much larger than Vd =
1/ρ, we can approximate the sum with an integral over a continuous variable
dn. Moreover, since the sprinkling process ensures proportionality between the
number of defects and the volume in which they are distributed (〈N(V )〉 =
ρ V ), we can rewrite the integral over the number variable dn as an integral in
spacetime d4x. Consider now the simpler case in which εn = 1, the sum in Eq.
(3.4) becomes

∞∑
n

eiq·xn =

∫ ∞
0

dn eiq·x(n) = ρ

∫
R4

d4x eiq·x = (2π)4ρδ4(q) . (3.5)

However, when the random number εn = ±1 is reintroduced, the sum vanishes
on average. To show this explicitly, one can simply rewrite the distribution of

defects {xn} as a sum of two subsets, collecting in one subset, {x(+)
n }, those

defects with εn = +1 and in the other, {x(−)
n }, the defects with εn = −1.

Since the numbers εn are associated randomly with each defect with uniform

probability, the two subsets {x(±)
n } still describe Poisson distributions with equal

densities ρ/2. Now, the sum in Eq. (3.4) can be carried on separately on the
two subsets as in Eq. (3.5), and since the result in the two cases differ only for
a minus sign, their contributions cancel out each other.

We can consider now the case in which we have to calculate the product of
two Fourier transforms of the background field

g(q)g(p) = λ2h(q)h(p)

∞∑
n,m

εnεme
iq·xneip·xm , (3.6)
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where we need to compute a double sum over n and m. This time, it is useful
to split the sum into a term where n = m and a term where n 6= m

∞∑
n,m

εnεme
iq·xneip·xm =

∞∑
n

(εn)2ei(q+p)·xn +

∞∑
n 6=m

εnεme
iq·xneip·xm . (3.7)

In this way, the first term can be immediately calculated as in Eq. (3.5), while
the second term vanishes on average. In fact, again, one can subdivide the
sum in the second term into two parts, one where εnεm = +1 and one where
εnεm = −1, the contributions of which are equals on average—apart for a minus
sign—and therefore their sum vanishes. Finally, the product (3.6) provides the
result

g(q)g(p) = (2π)4λ2ρ h(q)h(p)δ4(q + p) . (3.8)

3.1 Scalar field

We can now move on to study the effects of the spacetime foam model described
by the background field g(x) on the propagation of particles. We start by con-
sidering the simpler case of a scalar field φ(x) whose effective action (analogous
to Eq. (2.9) for a vector field) is given by [40]

Sφ =

∫
d4x eg(x)

(
∂µφ(x)∂µφ(x)−m2φ(x)2

)
. (3.9)

From this action one derives the equation of motion

(∂2 +m2)φ(x) = −∂µg(x)∂µφ(x) . (3.10)

Moving to momentum space, it is better to consider for the moment the system
confined to a box of 4-volume V (in order to have a non-vanishing Fourier
transform of the field g(x)), in which case we obtain

(k2 −m2)φ(k) = − 1

(2π)4

∫
V

d4q q · (k − q)gV (q)φ(k − q) . (3.11)

We note that at this stage, with the system inside a box, the Fourier integral over
q is actually a discrete Fourier sum. Since we will later take the limit V →∞,
we use for simplicity the symbol of integration, even for the intermediate steps.

We are interested in obtaining a modified dispersion relation from this equa-
tion in the form

(k2 −m2)φ(k) = A(k)φ(k) . (3.12)

Assuming we have a small coupling constant, λ� 1, we can expand the solution
φ(k) perturbatively in powers of λ

φ(k) = φ(0)(k) + λφ(1)(k) + λ2φ(2)(k) + . . . . (3.13)

Inserting this expression into Eq. (3.11) gives

(k2 −m2)
(
φ(0)(k) + λφ(1)(k) + λ2φ(2)(k) + . . .

)
=

=λ

∫
V

d4q

(2π)4
q · (q − k)gV (q)

(
φ(0)(k − q) + λφ(1)(k − q) + λ2φ(2)(k − q) + ...

)
,

(3.14)
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and equating the terms with the same number of powers of λ, we obtain

λ0 (k2 −m2)φ(0)(k) = 0 ,

λ1 (k2 −m2)φ(1)(k) = − 1

(2π)4

∫
V

d4q q · (k − q)gV (q)φ(0)(k − q) ,

λ2 (k2 −m2)φ(2)(k) = − 1

(2π)4

∫
V

d4q q · (k − q)gV (q)φ(1)(k − q) ,

. . .

(3.15)

from which we can calculate the terms of the expansion (3.13). Explicitly, taking
the limit V → ∞ and making use of the result (3.8), the first elements of Eq.
(3.13), in terms of the free solution φ(0)(q), are given by

φ(1)(k) =

∫
d4q

(2π)4
g(q)

q · (q − k)

k2 −m2
φ(0)(k − q) ,

φ(2)(k) =

∫
d4q

(2π)4

ρ h2(q)

k2 −m2

q · (q − k)q · k
(k − q)2 −m2

φ(0)(k) ,

φ(3)(k) =

∫
d4qd4p

(2π)8

ρ g(q)h2(q)q · (q − k)p · (p+ q − k)p · (k − q)
(k2 −m2)[(k − q)2 −m2][(k − q − p)2 −m2]

φ(0)(k − q) ,

φ(4)(k) =

∫
d4q d4p

(2π)8

ρ2h2(q)h2(p)q · (q − k)(q · k) p · (p− k)(p · k)

(k2 −m2)2[(k − q)2 −m2][(k − p)2 −m2]
φ(0)(k) ,

. . .

(3.16)

where we have suppressed, for simplicity, the factors +iε in the denominators.
We observe that all the odd terms of the expansion (φ(1), φ(3), . . .) contain a
factor g(q) which, as we have seen, vanishes in the limit V →∞; consequently,
they do not contribute to the expansion of φ(k).

If we now introduce the functions

F (k) =
ρ

(2π)4

∫
d4q

h2(q)

k2 −m2 + iε

q · (q − k)q · k
(k − q)2 −m2 + iε

, (3.17a)

F1(k) =
ρ

(2π)4

∫
d4q h2(q)

q · (q − k)q · k
(k − q)2 −m2 + iε

, (3.17b)

the expansion (3.13) for the field φ(k) can be rewritten as

φ(k) =
(
1 + λ2F (k) + λ4F (k)2 + λ6F (k)3 + . . .

)
φ(0)(k) , (3.18)

while the set of equations (3.15) becomes

λ0 (k2 −m2)φ(0)(k) = 0 ,

λ2 (k2 −m2)φ(2)(k) = F1(k)φ(0)(k) ,

λ4 (k2 −m2)φ(4)(k) = F1(k)F (k)φ(0)(k) ,

λ6 (k2 −m2)φ(6)(k) = F1(k)F (k)2φ(0)(k) ,

λ8 (k2 −m2)φ(8)(k) = F1(k)F (k)3φ(0)(k) ,

. . .

(3.19)
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Using these expressions we can rewrite Eq. (3.14) as

(k2 −m2)
(
φ(0)(k) + λ2φ(2)(k) + λ4φ(4)(k) + . . .

)
=

=
(
0 + λ2F1(k) + λ4F1(k)F (k) + λ6F1(k)F (k)2 + λ8F1(k)F (k)3 + ...

)
φ(0)(k) .

(3.20)

This can be further manipulated to obtain

(k2 −m2)
(
1 + λ2F (k) + λ4F (k)2 + λ6F (k)3 + . . .

)
φ(0)(k) =

= λ2F1(k)
(
1 + λ2F (k) + λ4F (k)2 + λ6F (k)3 + . . .

)
φ(0)(k) ,

(3.21)

and, given Eq. (3.18), we finally get

(k2 −m2)φ(k) = λ2F1(k)φ(k) , (3.22)

where we have re-summed all of the terms of the perturbative expansion of
φ(k). Observe that this equation has exactly the same form as Eq. (3.12) with
A(k) = λ2F1(k). The modified dispersion relation of the scalar field turns out
to be

k2 −m2 = λ2F1(k) . (3.23)

What remains to be done is to calculate the integral F1(k) (Eq. (3.17b)). We
note that, since in Eq. (3.19), F1(k) always acts on the zero order φ(0) of the
expansion of the scalar field, for which the standard dispersion relation holds,
we can make use of relation k2 −m2 = 0 in the integral (the Fourier transform
of φ(0)(x) contains a Dirac delta function δ(k2 −m2) see Refs. [40, 48]). Thus,
the modification A(k) that we want to calculate becomes

A(k) =
λ2ρ

(2π)4

∫
d4q h2(q2)

q · (q − k)q · k
q2 − 2q · k + iε

. (3.24)

In order to simplify this expression we use the Wick rotation [49] to move to
Euclidean space

q0 → qτ = −i q0 ,

k0 → kτ = −i k0 .
(3.25)

In this way, we can introduce spherical coordinates (in 4 dimensions) and inte-
grate over the angular variables. Equation (3.24) becomes

A(kE) =
λ2ρ

(2π)4
2π2 i

∫ ∞
0

dqE q
3
E h(−q2

E)2 q
2
E

8k2
E

(
2k2
E − q2

E + q2
E

√
1−

4k2
E

q2
E

)
.

(3.26)
Now, we can rewrite this integral as a 4-dimensional integral independent of the
angular variables, and then we can rotate it back to Minkowski spacetime and
obtain

A(k) =
λ2ρ

(2π)4

∫
d4q h2(q2)

q2

8k2

(
q2 − 2k2 − q2

√
1− 4k2

q2

)
. (3.27)

The problem with this expression is that it is valid only for 4k2 < q2, but we
have to integrate over all values of q. For a static background field g(~q) [40],
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a similar condition appears but it only concerns the spatial coordinates. In
that case, it is possible to produce a meaningful result by assuming the shape
function h(~q) is different from zero only for momenta ~q2 larger than a certain
threshold ~q2

low. In the present case, we can make an analogous assumption

h(q2) = 0 for q2 < q2
low ; (3.28)

however, there is no reasonable explanation which guarantees its validity. To
circumvent this problem, we will introduce in Sec. 4 an explicit model in which
the expression of the shape function h(q) is known, and that allows us to evaluate
completely the integral in the modification A(k).

For the moment, we simply assume that the shape function h(q) is such as
to ensure that the condition (3.28) is satisfied. Now we can proceed to expand
the square root in powers of k2 (provided k2 < q2

low/4)

A(k) =
λ2ρ

(2π)4

∫
d4q h2(q2)

1

4

(
k2 + 2

k4

q2
+ 5

k6

q4
+O(k8)

)
. (3.29)

The modified dispersion relation turns out to be

k2 −m2 = ak2 + bk4 + ck6 +O(k8) , (3.30)

where

a =
λ2ρ

4(2π)4

∫
d4q h2(q2) , b =

λ2ρ

4(2π)4

∫
d4q h2(q2)

2

q2
,

c =
λ2ρ

4(2π)4

∫
d4q h2(q2)

5

q4
.

(3.31)

In order to obtain a well-formed dispersion relation we can solve Eq. (3.30) as
an algebraic equation in k2. Neglecting for simplicity the terms O(k6), we end
up with two possible solutions

k2
1 =

m2

1− a
+

bm4

(1− a)3
+O(m6) ,

k2
2 =

1− a
2b
− m2

1− a
− bm4

(1− a)3
+O(m6) .

(3.32)

To choose the physical one, we require that when the perturbation weakens (i.e.
when λ→ 0), the modified dispersion relation approaches the dispersion relation
for the free theory. We see immediately that this requirement is satisfied only
by the first relation. We therefore have to discard the second option (which
diverges for λ→ 0) and we are left with the solution:

k2 =
m2

1− a
+

bm4

(1− a)3
+O(m6) , (3.33)

where the coefficients a and b are Lorentz-invariant quantities. These coefficients
are defined in equation (3.31) and depend on the microscopic features of the
model (such as the form of the function h(q) and the density of defects ρ).
We started with a Lorentz-invariant spacetime foam model and we arrived at a
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modified dispersion relation which is still completely Lorentz-invariant, the only
effect being a rescaling of the mass of the scalar field.

We wish to remark, however, that this result, Eq. (3.33), has been derived on
the basis of an assumption, namely Eq. (3.28), which is not physically justified
and consequently its validity is questionable. As we said, in order to circumvent
this problem, we will introduce in Sec. 4 an explicit model that allows us
to perform calculations without relying on this assumption. Moreover, in this
section, all the results have been obtained within the framework of classical field
theory. In Sec. 4 we will work instead within the framework of quantum field
theory.

3.2 Vector field

Before introducing the explicit model we mentioned above, we would like to
discuss briefly the propagation of a photon field within the framework of the
previous subsection.

We start by considering the photon effective action (2.9), which for conve-
nience we re-propose here:

SAµ = −1

4

∫
d4x (FµνF

µν + g(x)εµνρσFµνFρσ) , (3.34)

where the field strength tensor Fµν is given by Fµν = ∂µAν(x)− ∂νAµ(x), and
the background field g(x) is defined in equation (2.10). Imposing the Lorentz
gauge condition

∂µA
µ(x) = 0 , (3.35)

the equations of motion turn out to be

∂2Aν(x) = −∂µg(x)εµνρσ∂ρAσ . (3.36)

Taking the truncated Fourier transform of these equations (which we restrict to
a box of volume V for the moment), we obtain

k2Aν(k) = − 1

(2π)4

∫
V

d4qεµνρσqµ(kρ − qρ)gV (q)Aσ(k − q) . (3.37)

We would like to obtain an expression analogous to Eq. (3.24), from which we
can easily extract the dispersion relation of the photon, i.e.

k2Aν(k) = Bµν(k)Aµ(k) . (3.38)

Following the procedure used for the scalar field, we can expand the solution
Aν(k) in powers of the coupling constant λ

Aν(k) = A(0)ν(k) + λA(1)ν(k) + λ2A(2)ν(k) + . . . , (3.39)

and substitute this expansion in Eq. (3.37). Taking the limit V →∞, and after
some manipulations, we arrive at the result

k2Aν(k) = − 6λ2ρ

(2π)4

∫
d4q δµ[λδ

ν
βδ
ρ
γ]

qµ(kρ − qρ)qλkβ

(k − q)2 + iε
h2(q)Aγ(k) , (3.40)
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where the square brackets mean anti-symmetrization (δµ[λδ
ν
β] = δµλδ

ν
β − δ

µ
βδ
ν
λ).

Again, we can rely on the fact that A(0)γ(k) is the solution of the free theory for
which the condition k2 = 0 holds. Moreover, we can insert the Lorentz gauge
condition k · A(k) = 0 into the integral, in order to simplify its expression and
obtain

k2Aν(k) = − 6λ2ρ

(2π)4

∫
d4q

(
(q · k)2δνγ

q2 − 2q · k + iε
− (q · k)qγk

ν

q2 − 2q · k + iε

)
h2(q)Aγ(k) .

(3.41)
We want to compare this solution with the modified equation (3.38). Using the
Passarino-Veltman reduction formula [50], to manipulate the second term in the
round brackets of Eq. (3.41), we obtain

k2Aν(k) =

(
kµkν

k2
− gµν

)
6λ2ρ

(2π)4

∫
d4q h2(q)

(q · k)2

q2 − 2q · k + iε
Aµ(k) . (3.42)

Applying the Wick rotation, in order to simplify the angular integrals (and then
rotating back to Minkowski space), we get

Bµν(k) =

(
kµkν

k2
− gµν

)
B(k) , (3.43)

where

B(k) =
3λ2ρ

4(2π)4

∫
d4q h2(q)

q2

k2

(
q2 − 2k2 − q2

√
1− 4k2

q2

)
. (3.44)

As for the scalar field, this expression is valid only for 4k2 < q2, while we have
to integrate over all values of q. Assuming, then, that the shape function h(q)
satisfies the assumption (3.28), and that k2 < q2

low/4, we can now expand the
square root in powers of k2, thereby obtaining

B(k) =
3λ2ρ

4(2π)4

∫
d4q h2(q)

(
2k2 + 4

k4

q2
+ 10

k6

q4
+O(k6)

)
. (3.45)

Equation (3.42) can be written as

k2Aν(k) =

(
kµkν

k2
− gµν

)
B(k)Aµ(k) . (3.46)

Taking into account that we are working in the Lorentz gauge, for which con-
dition (3.35) holds, we see that (3.46) simplifies further and we remain with

k2Aν(k) = −B(k)Aν(k) , (3.47)

from which we obtain the modified dispersion relation

k2 = −ak2 − bk4 − ck6 +O(k8) , (3.48)

where the coefficients a, b, and c are given by

a =
3λ2ρ

2(2π)4

∫
d4q h2(q2) , b =

3λ2ρ

2(2π)4

∫
d4q h2(q2)

2

q2
,

c =
3λ2ρ

2(2π)4

∫
d4q h2(q2)

5

q4
.

(3.49)
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Solving equation (3.48) with respect to k2, we obtain three different solutions
(at order O(k6))

k2
1 = 0 ,

k2
2 = −1 + a

b
− (1 + a)2c

b3
+ . . . ,

k2
3 = −b

c
+

1 + a

b
+

(1 + a)2c

b3
+ . . . .

(3.50)

We have to choose the physical solution from amongst these three. In order
to do so, we require, as for the scalar field, that as the perturbation fades the
modified dispersion relation approaches the standard dispersion relation. We
see that the second and third relations diverge when the coupling constant λ
goes to zero. Hence, we are left with the standard dispersion relation

k2 = 0 . (3.51)

We can conclude that the dispersion relation for a massless vector field remains
completely unchanged in this model of spacetime foam.

4 Explicit model

We introduce in this section a specific model that allows us to calculate more
in detail the effects of Lorentz-invariant spacetime foam on the propagation of
photons. In this model, defects are represented simply by Dirac delta functions,
and they do not couple directly to the photon field as in the action (2.9). Instead,
the interaction between the defects and the photon is mediated by a scalar field.
The effective action of this model is given by [51]

S =

∫
d4x

{
−1

4
FµνF

µν − 1

2
(∂µA

µ)
2

+
m2

0

2

(
∂µφ∂

µφ−m2
1φ

2
)

+

+αφ

∞∑
n=1

εnδ
4(x− xn)− λ

4
φ εµνρσFµνFρσ

}
.

(4.1)

The first term in the action is the standard kinetic term of the photon field
Aµ(x), while the second is a gauge-fixing term (we use the Feynman gauge in
this case). The third term is the free action of the mediator scalar field, which
has been multiplied by a mass parameter m2

0 so that the field φ(x) has zero mass
dimension. The fourth term describes the interaction between the scalar field
and the defects, represented, as mentioned above, by Dirac delta functions. The
distribution of defects in Minkowski spacetime {xn} is still obtained through a
sprinkling process of density parameter ρ, to ensure Lorentz invariance, and
the numbers εn = ±1 are still assigned randomly to the defects with uniform
probability. The last term describes the interaction between the scalar field
and the photon. The particular form of this term is such as to resemble the
anomalous contribution due to the nontrivial topology of the defects (2.5). α
and λ are two dimensionless coupling constants.

We want to show how this model can be traced back to the effective action
introduced in the previous section, Eq. (2.9). Consider then the case of λ = 0, in
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which the interaction between the scalar field and the photon field is suppressed.
The equation of motion for the scalar field in this case is(

∂2 +m2
1

)
φ(x) =

α

m2
0

∑
n

εnδ
4(x− xn) , (4.2)

which has the solution

φ(x) =

∫
d4k

(2π)4
φ(k)eikx , φ(k) =

−α
m2

0(k2 −m2
1 + iε)

∑
n

εne
ikxn . (4.3)

If we reactivate the interaction with the photon, assuming that λ � 1, we can
substitute, in first approximation, this solution directly into the last term of the
action (4.1), in which case we obtain

SAµ = −1

4

∫
d4x

{
FµνF

µν + g(x)Fµν F̂
µν
}
, (4.4)

which is exactly the action (2.9) that we considered previously. The advantage
of the model presented here is that the background field g(x) is not arbitrary
but is proportional to the solution of the scalar field equation (4.2):

g(x) = λφ(x) =

∫
d4k

(2π)4

(
λh(k)

∑
n

εne
ikxn

)
e−ikx =

=

∫
d4k

(2π)4

(
−αλ

m2
0(k2 −m2

1 + iε)

∑
n

εne
ikxn

)
e−ikx .

(4.5)

In this way, we can compute the modified dispersion relation in the framework of
quantum field theory, by taking advantage of renormalization techniques. This
leads us to a finite result that is more reliable than the approximate expansions
obtained in the previous section.

We start by pointing out that the possible dispersion relations of a field
coincide with the poles of its propagator [52]. Therefore, we will calculate the
photon propagator

〈Ω|Aµ(a)Aν(b)|Ω〉 , (4.6)

where |Ω〉 represents the vacuum state in the spacetime foam model under con-
sideration. We need to expand perturbatively this vacuum state in order to
recover the more tractable Minkowski vacuum |0〉 (in which the expressions of
free particle propagators are known). In this work, we approach the calculation
within the canonical perturbative framework of quantum field theory and we
refer to Ref. [53] for an equivalent treatment based on Feynman diagrams.

Explicitly, the photon propagator can be expanded as

〈Ω|Aµ(a)Aν(b)|Ω〉 = 〈0|Aµ(a)Aν(b)e−i
∫
d4xHint(x)|0〉 =

= 〈0|Aµ(a)Aν(b)|0〉 − i
∫
d4x 〈0|Aµ(a)Aν(b)Hint(x)|0〉−

−
∫
d4x d4y 〈0|Aµ(a)Aν(b)Hint(x)Hint(y)|0〉+ . . . ,

(4.7)
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where the interaction Hamiltonian is given by

Hint(x) = −Lint(x) =
1

2
g(x)εαβρσ∂αAβ(x)∂ρAσ(x) . (4.8)

In terms of Feynman diagrams, the expansion (4.7) is described by

a b
=

a b
+

a x b
+

a x y b
+ . . .

(4.9)
where the double wavy line represents the full photon propagator, the single

wavy line denotes the photon propagator in Minkowski spacetime, the plain
line corresponds to the scalar propagator, and a cross represents the interaction
between the scalar field and the defects.

Due to the properties of the background field g(x), the first-order pertur-
bation vanishes (as we observed in the previous section). The first nontrivial
contribution comes from the second-order perturbation, which we indicate as

Cµν(a− b) = −
∫
d4x d4y 〈0|Aµ(a)Aν(b)Hint(x)Hint(y)|0〉 . (4.10)

4.1 Scalar propagator

Since the interaction between the defects and the photon field is mediated by a
scalar field in the action (4.1), we need the expression of the scalar propagator,
in order to compute the modified photon propagator. Observe that, in this
model, the scalar field does not perceive the topological structure of the defects.
In fact, while in the photon sector there is an anomalous term reminiscent of
the anomaly (2.5), the scalar sector is not in the form of (3.9), introduced in
Sec. 3.1 to describe the anomalous contribution of the defect topology to the
scalar action.

We can obtain two different expressions for the scalar propagator, by using
two different approaches. One considers the interaction between the scalar and
the defects as a small perturbation (α� 1) of the free scalar field in Minkowski
spacetime, while the second constructs the propagator starting directly from
the classical solution (4.3) of the scalar field equation (4.2). We will refer to the
first option as the “quantum propagator” and to the second as the “classical
propagator”. We note also that both propagators are derived in the case of
λ = 0, where the interaction between the scalar and the photon is turned off.
Hence, in principle, we should also consider the perturbative contribution caused
by this interaction when writing down the scalar propagator. However, this
correction contributes to the photon propagator only at order λ4, while the
quantity Cµν(a − b) (Eq. (4.10)) that we want to calculate is of order λ2. In
conclusion, we can safely ignore this correction to the scalar propagator.

We start by studying the quantum propagator.

32



4.1.1 Quantum propagator

Consider the scalar sector of the action (4.1) with λ = 0. For small α, we can
use perturbation theory to calculate the scalar field propagator in terms of the
standard free propagator in Minkowski space

〈Ω|φ(x)φ(y)|Ω〉 = 〈0|φ(x)φ(y)e−i
∫
d4zHint(z)|0〉 =

= 〈0|φ(x)φ(y)|0〉 − i
∫
d4z 〈0|φ(x)φ(y)Hint(z)|0〉−

−
∫
d4z d4w 〈0|φ(x)φ(y)Hint(z)Hint(w)|0〉+ . . . ,

(4.11)

where Hint(z) is given by

Hint(z) = −αφ(z)

∞∑
n=1

εnδ
4(z − zn) , (4.12)

and the free scalar propagator is given by [48]

〈0|φ(x)φ(y)|0〉 =

∫
d4q

(2π)4
D0(q)e−iq(x−y) , D0(q) =

i

m2
0(q2 −m2

1 + iε)
.

(4.13)

As usual, the first-order perturbation vanishes, while at the second order, we
have

C(x−y) = −α2

∫
d4z d4w〈0|φ(x)φ(y)φ(z)φ(w)

∑
n,m

εnεmδ
4(z−zn)δ4(w−wm)|0〉.

(4.14)
We can make some manipulations in the last factor:∑

n,m

εnεmδ
4(z − zn)δ4(w − wm) =

∑
n

δ4(z − zn)δ4(w − wn)+

+
∑
n 6=m

εnεmδ
4(z − zn)δ4(w − wm) ,

(4.15)

where the second sum in the right-hand side vanishes. Introducing the Fourier
transform of the delta function, and substituting the sum by an integral, one
gets∑

n

δ4(z − zn)δ4(w − wn) =
∑
n

∫
d4q

(2π)4

d4p

(2π)4
e−iq·ze−ip·wei(q+p)·zn =

= ρ

∫
d4s

d4qd4p

(2π)8
e−iq·ze−ip·wei(q+p)·s = ρ

∫
d4qd4p

(2π)4
e−iq·ze−ip·wδ4(q + p) =

= ρ

∫
d4q

(2π)4
e−iq·(z−w) = ρ δ4(z − w) .

(4.16)
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Replacing this result in equation (4.14) and using the Wick’s theorem [48], we
obtain

C(x− y) = −α2

∫
d4z d4w 〈0|φ(x)φ(y)φ(z)φ(w)ρ δ4(z − w)|0〉 =

= −α2ρ

∫
d4z 〈0|φ(x)φ(y)φ(z)φ(z)|0〉 =

= −α2ρ

∫
d4z 〈0|φ(x)φ(z)|0〉〈0|φ(z)φ(y)|0〉 ,

(4.17)

which, after inserting the free propagator (4.13), becomes

C(x− y) = −α2ρ

∫
d4z

d4q

(2π)4

d4p

(2π)4
D0(q)D0(p)e−iq(x−z)e−ip(z−y) =

= −α2ρ

∫
d4z

d4q

(2π)4

d4p

(2π)4
D0(q)D0(p)e−iqxeipyeiz(q−p) =

= −α2ρ

∫
d4q

(2π)4

d4p

(2π)4
D0(q)D0(p)e−iqxeipy(2π)4δ4(q − p) =

= −α2ρ

∫
d4q

(2π)4
D0(q)D0(q)e−iq(x−y) .

(4.18)

Finally, substituting this expression in the expansion (4.11), we get

〈Ω|φ(x)φ(y)|Ω〉 =

∫
d4q

(2π)4

{
D0(q)− α2ρD0(q)2 + . . .

}
e−iq(x−y) , (4.19)

where we observe that higher powers of the factor (−α2ρD0(q)) appear in higher
terms of the expansion. Taking them into account we obtain the re-summed
propagator:

Dq(q) = D(q) = D0(q)
{

1− α2ρD0(q) + (−α2ρD0(q))2 + . . .
}

=

= D0(q)

∞∑
n=0

(−α2ρD0(q))n = D0(q)
1

1 + α2ρD0(q)
.

(4.20)

Explicitly, inserting the expression for D0(q), the quantum propagator turns
out to be

Dq(q) =
i

m2
0(q2 −m2

1)
· 1

1 + α2ρ i
m2

0(q2−m2
1)

=

=
i

m2
0(q2 −m2

1) + iα2ρ
m2

0(q2−m2
1)

m2
0(q2−m2

1)

=
i

m2
0(q2 −m2

1 + iα2 ρ
m2

0
)
.

(4.21)

4.1.2 Classical propagator

The equation of motion for the scalar field derived from the action (4.1), in the
case of λ = 0, is

(∂2 +m2
1)φ(x) =

α

m2
0

∑
n

εnδ
4(x− xn) , (4.22)
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which has the classical solution

φcl(x) =

∫
d4q

(2π)4

(
−α

m2
0(q2 −m2

1 + iε)

∑
n

εne
iq·xn

)
e−iq·x . (4.23)

Using this expression, the classical propagator is given by

Dcl(x− y) = 〈0|φcl(x)φcl(y)|0〉 =

=

∫
d4qd4p

(2π)8

(
α2
∑
n,m εnεme

iq·xneip·xm

m4
0(q2 −m2

1 + iε)(p2 −m2
1 + iε)

)
e−iq·xe−ip·y .

(4.24)

As usual, we can replace the double sum with an integral, which gives us∑
n,m

εnεme
iq·xneip·xm = ρ

∫
d4xei(q+p)·x = (2π)4ρ δ4(q + p) , (4.25)

from which the classical propagator turns out to be

Dcl(x− y) = α2ρ

∫
d4q

(2π)4

1

m4
0(q2 −m2

1 + iε)2
e−iq·(x−y) . (4.26)

4.2 Vector propagator

We now turn to the study of the photon propagator 〈Ω|Aµ(a)Aν(b)|Ω〉 which,
for λ� 1, can be expanded perturbatively as in Eq. (4.7)

〈Ω|Aµ(a)Aν(b)|Ω〉 = 〈0|Aµ(a)Aν(b)e−i
∫
d4xHint(x)|0〉 =

= 〈0|Aµ(a)Aν(b)|0〉 − i
∫
d4x 〈0|Aµ(a)Aν(b)Hint(x)|0〉−

−
∫
d4x d4y 〈0|Aµ(a)Aν(b)Hint(x)Hint(y)|0〉+ . . . ,

(4.27)

where we remember

Hint(x) = −Lint(x) =
λ

2
φ(x)εαβρσ∂αAβ(x)∂ρAσ(x) . (4.28)

The free photon propagator is given by [48]

〈0|Aµ(a)Aν(b)|0〉 = Dµν(a− b) =

∫
d4k

(2π)4
Dµν(k)e−ik(a−b) ,

Dµν(k) = gµν∆F (k) , ∆F (k) =
−i

k2 + iε
,

(4.29)

and the scalar propagator is

〈0|φ(x)φ(y)|0〉 = D(x− y) =

∫
d4q

(2π)4
D(q)e−iq(x−y) , (4.30)
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where we have to choose the appropriate expression for D(q) from amongst those
derived in the previous subsection. As pointed out previously, the first-order
perturbation vanishes and we renamed the second-order perturbation

Cµν(a− b) = −
∫
d4x d4y 〈0|Aµ(a)Aν(b)Hint(x)Hint(y)|0〉 . (4.31)

This term gives us the first nontrivial modification to the photon propagator.
From this expression, we want to obtain the second-order re-summed propagator
of the photon, Dµν(k), which can be represented diagrammatically as

Dµν(k) = + + + . . . ,

(4.32)
where the crossed plain line represents one of the two possible scalar propagators
derived above (Dq(q) or Dcl(q)). We want to stress that this expression is
not equivalent to the perturbative expansion (4.27); in fact, it only contains
higher powers of the second-order contribution Cµν(a − b), but in Eq. (4.27)
other contributions also appear at higher orders. For example, the fourth-order
diagram

(4.33)

is not accounted for in the re-summation (4.32).
Inserting the explicit expression of Hint (Eq. (4.28)) into Cµν(a − b) (Eq.

(4.31)), we obtain

Cµν(a− b) =− λ2

4

∫
d4x d4y εαβρσεγδητ×

〈0|Aµ(a)Aν(b)φ(x)∂αAβ(x)∂ρAσ(x)φ(y)∂γAδ(y)∂ηAτ (y)|0〉 .
(4.34)

Using the Wick theorem, we can rewrite the above vacuum expectation value
in terms of propagators

〈0|Aµ(a)Aν(b)φ(x)∂αAβ(x)∂ρAσ(x)φ(y)∂γAδ(y)∂ηAτ (y)|0〉 = 〈0|φ(x)φ(y)|0〉×(
∂

∂xα
〈0|Aµ(a)Aβ(x)|0〉

)(
∂

∂xρ
∂

∂yγ
〈0|Aσ(x)Aδ(y)|0〉

)
∂

∂yη
〈0|Aτ (y)Aν(b)|0〉 .

(4.35)

We can now use the expressions (4.29) and (4.30) for the photon and scalar
propagators. Recalling furthermore that

εαβρσεγδητ = 4!δα[γ δ
β
δ δ

ρ
ηδ
σ
τ ] , (4.36)
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we get

Cµν(a− b) = −3!λ2δα[γ δ
β
δ δ

ρ
ηδ
σ
τ ]

∫
d4x d4y

d4q d4k d4p1 d
4p2

(2π)16
D(q)e−iq(x−y)×

gµβ∆F (k)δδσ∆F (p1)δτν∆F (p2)
∂

∂xα
e−ik(a−x) ∂

∂xρ
∂

∂yγ
e−ip1(x−y) ∂

∂yη
e−ip2(y−b) =

= −3!λ2δα[γ δ
β
δ δ

ρ
ηδ
σ
τ ]gµβδ

δ
σδ
τ
ν

∫
d4x d4y

d4q d4k d4p1 d
4p2

(2π)16
(ikα)(−ip1ρ)×

(ipγ1)(−ipη2)D(q)∆F (k)∆F (p1)∆F (p2)e−ix(q−k+p1)e−iy(p2−p1−q)e−ikaeip2b .

(4.37)

The product of Kronecker deltas in the above expression can be simplified as
follows:

δα[γ δ
β
δ δ

ρ
ηδ
σ
τ ]gµβδ

δ
σδ
τ
ν = δα[γ δ

β
σδ

ρ
ηδ
σ
ν]gµβ = (3− d)δα[γ δ

ρ
ηδ
β
ν]gµβ , (4.38)

and the integrals in x and y can be computed, resulting in two delta functions
that cancel out the integrals in p1 and p2. The result is

Cµν(a− b) =

∫
d4k

(2π)4
Cµν(k)e−ik(a−b) , (4.39)

where

Cµν(k) = 3!λ2δα[γ δ
ρ
ηδ
β
ν]gµβ∆F (k)2

∫
d4q

(2π)4
kαk

η(kρ−qρ)(kγ−qγ)D(q)∆F (k−q) .

(4.40)
We still have to do some manipulations with the Kronecker deltas

δα[γ δ
ρ
ηδ
β
ν]gµβkαk

η(kρ − qρ)(kγ − qγ) =
(
δαγ δ

ρ
ηδ
β
ν − δαγ δρνδβη +

+ δαν δ
ρ
γδ
β
η − δαν δρηδβγ + δαη δ

ρ
νδ
β
γ − δαη δργδβν

)
gµβkαk

η(kρ − qρ)(kγ − qγ) =

= gµνk · (k − q)k · (k − q)− kµ(kν − qν)k · (k − q) + kµkν(k − q)2−
− (kµ − qµ)kνk · (k − q) + (kµ − qµ)(kν − qν)k2 − gµνk2(k − q)2 =

= gµν(k4 − 2k2k · q + (k · q)2 − k4 − k2q2 + 2k2k · q)+
+ kµkν(k2 + k · q − k2 + q2 − 2k · q − k2 + k · q + k2)+

+ kµqν(k2 − k · q − k2) + qµkν(k2 − k · q − k2) + qµqνk
2 =

= gµν((k · q)2 − k2q2) + kµkνq
2 − kµqνk · q − qµkνk · q + qµqνk

2 =

= qαqβ
{
gµν(kαkβ− k2gαβ) + kµkνg

αβ − kµδαν kβ − δαµkνkβ + δαµδ
β
nuk

2
}
.

(4.41)

Inserting this result into Eq. (4.40), we obtain

Cµν(k) = 3!λ2∆F (k)2

∫
d4q

(2π)4
D(q)∆F (k − q)qαqβ×{

gµν(kαkβ − k2 gαβ) + kµkνg
αβ − kµδαν kβ − δαµkνkβ + δαµδ

β
ν k

2
}
.

(4.42)

Using the Passarino-Veltman reduction procedure, we can further simplify this
expression. It can be shown easily that the following equality holds∫

d4q

(2π)4
D(q)∆F (k − q)qαqβ =

{
(k2I0 − I1)

k2(d− 1)
gαβ −

(k2I0 − dI1)

k2(d− 1)

kαkβ
k2

}
,

(4.43)
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where I0 and I1 are given by

I0 =

∫
d4q

(2π)4
D(q)∆F (k − q)q2 ,

I1 =

∫
d4q

(2π)4
D(q)∆F (k − q)(q · k)2 .

(4.44)

Substituting the result (4.43) into Eq. (4.42), we obtain

Cµν(k) = 3!λ2∆F (k)2

{
(k2I0 − I1)

k2(d− 1)
gαβ −

(k2I0 − dI1)

k2(d− 1)

kαkβ
k2

}
×{

gµν(kαkβ − k2gαβ) + kµkνg
αβ − kµδαν kβ − δαµkνkβ + δαµδ

β
ν k

2
}

=

= 3!λ2∆F (k)2

{
(k2I0 − I1)

k2(d− 1)

[
gµνk

2(1− d) + kµkν(d− 2) + gµνk
2
]
−

− (k2I0 − dI1)

k2(d− 1)

kαkβ
k2

[
gµν(k4 − k4) + kµkν(k2 − 2k2 + k2)

]}
=

= −3!λ2∆F (k)2 (d− 2)

(d− 1)
(k2I0 − I1)

{
gµν −

kµkν
k2

}
.

(4.45)

So, finally, we arrive at

Cµν(k) = −
{
gµν −

kµkν
k2

}
∆F (k)2 a(k) , (4.46)

where a(k) is given by

a(k) = 3!λ2 (d− 2)

(d− 1)

∫
d4q

(2π)4
D(q)∆F (k − q)

(
k2q2 − (q · k)2

)
. (4.47)

The perturbation expansion (4.27) turns out to be

〈Ω|Aµ(a)Aν(b)|Ω〉 = gµν∆F (k)−
{
gµν −

kµkν
k2

}
a(k)∆F (k)2 + . . . , (4.48)

and we observe that higher powers of a(k)∆F (k) appear in higher terms of
the expansion. We need to take them into account in order to calculate the
re-summed propagator (4.32)

Dµν(k) =

{
gµν −

kµkν
k2

}
∆F (k)

∑
n

(−a(k)∆F (k))n +
kµkν
k2

∆F (k) . (4.49)

Since, as discussed in Ref. [48] regarding the vacuum polarization of the photon
in quantum electrodynamics, the last term does not contribute to any calcula-
tion, we can drop it and then obtain

Dµν(k) =

{
gµν −

kµkν
k2

}
∆F (k)

1

1 + Π(k)
, (4.50)

where, in analogy with the result in QED, we call

Π(k) = a(k)∆F (k) = 4λ2∆F (k)

∫
d4q

(2π)4
D(q)∆F (k − q)

{
k2q2 − (q · k)2

}
.

(4.51)
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In order to compute this integral, we need the explicit expression of the scalar
field propagator. We found in Sec. 4.1 that there are two possible expressions
for the scalar propagator, in which case we arrive at two different results, Πq(k)
and Πcl(k), inserting, respectively, Dq(q) (Eq. (4.21)) and Dcl(q) (Eq. (4.26))
into Eq. (4.51). Specifically, these are

Πq(k) =
−4λ2i

k2 + iε

∫
d4q

(2π)4

i

m2
0(q2 −m2

1 + iα
2ρ
m2

0
)

−i
(k − q)2 + iε

{
k2q2 − (q · k)2

}
,

(4.52a)

Πcl(k) =
−4λ2i

k2 + iε

∫
d4q

(2π)4

α2ρ

m4
0(q2 −m2

1 + iε)2

−i
(k − q)2 + iε

{
k2q2 − (q · k)2

}
.

(4.52b)

4.2.1 Πq(k)

In order to integrate Πq(k), we use the identity

(q ·k)2 =
1

4
(k2+q2−(k−q)2)2 =

1

4
(k4+q4+2q2k2+(k−q)4−2(k2+q2)(k−q)2) .

(4.53)
Inserting this expression into the curly brackets in Eq. (4.52a), we then obtain{

k2q2 − (q · k)2
}

=
1

4

{
2k2q2 − k4 − q4 − (k − q)4 + 2(k2 + q2)(k − q)2

}
,

(4.54)
and Πq(k) becomes

Πq(k) =
λ2

m2
0

i

k2 + iε

∫
d4q

(2π)4

k4 + q4 − 2k2q2 + (k − q)4 − 2(k2 + q2)(k − q)2

(q2 −m2
1 + iα

2ρ
m2

0
)((k − q)2 + iε)

.

(4.55)

Renaming for simplicity M2 = m2
1 − i

α2ρ
m2

0
, and dropping out temporarily the

factors iε, we have

Πq(k) =
λ2

m2
0

i

k2 + iε

∫
d4q

(2π)4

{
k4

(q2 −M2)(k − q)2
+

q4

(q2 −M2)(k − q)2
−

− 2k2q2

(q2 −M2)(k − q)2
+

(k − q)2

(q2 −M2)
− 2(k2 + q2)

(q2 −M2)

}
.

(4.56)

Using the substitution q2 = (q2 −M2) +M2, the expression between the curly
brackets becomes

{. . .} =

{
k4

(q2 −M2)(k − q)2
+

((q2 −M2) +M2)2

(q2 −M2)(k − q)2
− 2k2((q2 −M2) +M2)

(q2 −M2)(k − q)2
−

− 2q · k
(q2 −M2)

− k2

(q2 −M2)
− ((q2 −M2) +M2)

(q2 −M2)

}
=

=

{
k4 − 2k2M2 +M4

(q2 −M2)(k − q)2
+

q2

(k − q)2
− M2

(k − q)2
− 2(k2 −M2)

(k − q)2
−

− 2q · k
(q2 −M2)

− k2 +M2

(q2 −M2)
− 1

}
.

(4.57)
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Because of the invariance of the integral with respect to translation, we can
make the substitution q → q′ = (k − q) in the second, third, and fourth terms
of the above expression. In particular, the second term becomes

q2

(k − q)2
=

(k − q′)2

q′2
=
k2

q′2
+
q′2

q′2
− 2q′ · k

q′2
, (4.58)

and we obtain

{. . .} =

{
(k2 −M2)2

(q2 −M2)(k − q)2
+
k2 −M2

q2
+ 1− 2q · k

q2
− 2(k2 −M2)

q2
−

− 2q · k
(q2 −M2)

− k2 +M2

(q2 −M2)
− 1

}
=

=

{
(k2 −M2)2

(q2 −M2)(k − q)2
− k2 −M2

q2
− 2q · k

q2
− 2q · k

(q2 −M2)
− k2 +M2

(q2 −M2)

}
.

(4.59)

Now using the Wick rotation

q = (q0,
−→q ) −→ qE = (qτ ,

−→q ) = (−iq0,
−→q ) , (4.60)

and introducing spherical coordinates, we see that the two terms containing the
scalar product q · k vanish. The integral Πq(k) now becomes

Πq(k) = − λ2

m2
0k

2

∫
d4qE
(2π)4

{
(k2 −M2)2

(q2
E +M2)(kE − qE)2

+
k2 −M2

q2
E

+
k2 +M2

(q2
E +M2)

}
.

(4.61)

4.2.1.1 Dimensional regularization

The above integral is divergent, so we use dimensional regularization to calculate
it. First of all, we rewrite the 4-dimensional integral in d dimensions∫

d4qE
(2π)4

⇒
∫

ddq

(2π)d
= µ4−d

∫
dΩd

(2π)d

∫ ∞
0

dq qd−1 , (4.62)

where µ is a mass parameter introduced for dimensional reasons. Moreover, we
observe that ∫

dΩd
(2π)d

=
1

(2π)d
2π

d
2

Γ(d2 )
. (4.63)

Then, we set d = 4−ε so that the original four-dimensional integral is recovered
in the limit ε→ 0.

In this framework, we have to calculate three integrals:

A0(k) =

∫
d4qE
(2π)4

1

(q2
E +M2)

,

A00(k) =

∫
d4qE
(2π)4

1

q2
E

,

B1(k) =

∫
d4qE
(2π)4

1

(q2
E +M2)(kE − qE)2

.

(4.64)
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Consider first A0(k), which becomes

A0(k) = µ4−d
∫

dΩd
(2π)d

∫ ∞
0

dq qd−1

(q2 +M2)
=

µε

(2π)4−ε
2π2−ε/2

Γ(2− ε
2 )

∫ ∞
0

dq q3−ε

(q2 +M2)
.

(4.65)

In the radial integral, we can apply the consecutive changes of variables q′ = q2

and x = M2/(q′ +M2) from which we obtain∫ ∞
0

dq q3−ε

(q2 +M2)
=

1

2

∫ ∞
0

dq′ q′1−ε/2

(q′ +M2)
=

1

2
(M2)1−ε/2

∫ 1

0

dxx−2+ε/2 (1− x)
1−ε/2

.

(4.66)

Recalling that ∫ 1

0

dxxα(1− x)β =
Γ(1 + α)Γ(1 + β)

Γ(2 + α+ β)
, (4.67)

A0(k) becomes

A0(k) =
µε

(2π)4−ε
2π2−ε/2

Γ(2− ε
2 )

1

2
(M2)1−ε/2Γ(2− ε

2
)Γ(

ε

2
− 1) . (4.68)

Expanding this result in powers of ε, we can isolate the divergent terms and get

A0(k) =
M2

8π2

(
−1

ε
− 1

2
+
γ

2
+

1

2
log(M2)− 1

2
log(µ2)− 1

2
log(4π)

)
+O(ε) ,

(4.69)
where γ is the Euler-Mascheroni constant. Renaming for simplicity

1

ε
− γ

2
+

1

2
log(4π) =

1

2ε̂
, (4.70)

we finally obtain

A0(k) = − M2

16π2

(
1

ε̂
− log

(
M2

µ2

)
+ 1

)
+O(ε) . (4.71)

Moving to the next integral A00(k), we see that it is a special case (M2 = 0)
of the integral A0(k) that we have just computed. We can therefore conclude
that

A00(k) = lim
M2→0

A0(k) = 0 . (4.72)

The last integral we need to compute is

B1(k) =

∫
d4qE
(2π)4

1

(q2
E +M2)(kE − qE)2

=

=
µε

(2π)4−ε
2π2−ε/2

Γ(2− ε
2 )

∫ ∞
0

dq q3−ε

(q2 +M2)(kE − q)2
.

(4.73)

In this case, we need to introduce the Feynman parametrization

1

AB
=

∫ 1

0

dx
1

(xA+ (1− x)B)2
, (4.74)
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which gives us∫
ddq

(q2 +M2)(kE − q)2
=

∫ 1

0

dx

∫
ddq

(x(kE − q)2 + (1− x)(q2 +M2))2
=

=

∫ 1

0

dx

∫
ddq

(q2 − 2xq · kE + xk2
E +M2(1− x))2

=

=

∫ 1

0

dx

∫
ddq

((q − xkE)2 + (1− x)(M2 + xk2
E))2

=

∫ 1

0

dx

∫
ddl

(l2 + ∆)2
,

(4.75)

where we have renamed ∆ = (1 − x)(M2 + xk2
E) = (1 − x)(M2 − xk2) and

l = (q − xkE). Applying the changes to variables l′ = l2 and y = ∆2

l′+∆2 to the
radial component of the integral, we get∫ ∞

0

dl
l3−ε

(l2 + ∆)2
=

1

2

∫ ∞
0

dl′
l′1−ε/2

(l′ + ∆)2
=

1

2
∆−ε/2

∫ 1

0

dy yε/2−1(1− y)1−ε/2 .

(4.76)
Moreover, recalling that∫ 1

0

dy yα(1− y)β =
Γ(1 + α)Γ(1 + β)

Γ(2 + α+ β)
, (4.77)

we obtain

B1(k) =
µε

(2π)4−ε
2π2−ε/2

Γ(2− ε
2 )

1

2

∫ 1

0

dx∆−ε/2
Γ( ε2 )Γ(2− ε

2 )

Γ(2)
. (4.78)

Expanding in powers of ε the above expression

B1(k) =
1

16π2

(
1

ε̂
−
∫ 1

0

dx log(
∆(x)

µ2
)

)
+O(ε) , (4.79)

where the integral over x gives∫ 1

0

dx log(
∆(x)

µ2
) =

∫ 1

0

dx log

(
(1− x)(M2 − xk2)

µ2

)
=

= −2 + log

(
M2

µ2

)
+

(
1− M2

k2

)
log

(
1− k2

M2

)
,

(4.80)

B1(k) turns out to be

B1(k) =
1

16π2

(
1

ε̂
+ 2− log

(
M2

µ2

)
−
(

1− M2

k2

)
log

(
1− k2

M2

))
+O(ε) .

(4.81)
We now have all of the quantities that we need to write the Πq(k) expression:

Πq(k) =
λ2M2

16π2m2
0

{(
1

ε̂
− log

(
M2

µ2

))(
3− k2

M2

)
+

+

(
5− M2

k2
− 2

k2

M2

)
+

(k2 −M2)3

k4M2
log

(
1− k2

M2

)}
,

(4.82)

where, we recall, M2 = m2
1 − i

α2ρ
m2

0
.
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4.2.2 Πcl(k)

The calculation of Πcl(k) is similar to the computation of Πq(k) in the previous
section, in that we have

Πcl(k) =
−4λ2i

k2 + iε

∫
d4q

(2π)4

α2ρ

m4
0(q2 −m2

1 + iε)2

−i
(k − q)2 + iε

{
k2q2 − (q · k)2

}
,

(4.83)
which, using equation (4.53), becomes

Πcl(k) =
λ2α2ρ

m4
0k

2

{
A0(k) + (k2 +m2

1)B0(k) + 2(k2 −m2
1)B1(k)−

−(k2 −m2
1)2C0(k)

}
,

(4.84)

where the integrals A0(k), B0(k), B1(k) and C0(k) are analogous to those ob-
tained in the previous section and can been computed in the same way (via
dimensional regularization). Explicitly, they are given by

A0(k) =

∫
d4q

(2π)4

1

q2 −m2
1 + iε

=
1

16π2
m2

1

(
1

ε̂
− log

(
m2

1

µ2

)
+ 1

)
,

B0(k) =

∫
d4q

(2π)4

1

(q2 −m2
1 + iε)2

=
1

16π2

(
1

ε̂
− log

(
m2

1

µ2

))
,

B1(k) =

∫
d4q

(2π)4

1

(q2 −m2
1 + iε)((k − q)2 + iε)

=

=
1

16π2

(
1

ε̂
− log

(
m2

1

µ2

)
+ 2−

(
1− m2

1

k2

)
log

(
1− k2

m2
1

− iε
))

,

C0(k) =

∫
d4q

(2π)4

1

(q2 −m2
1 + iε)2((k − q)2 + iε)

=
1

16π2

1

k2
log

(
1− k2

m2
1

− iε
)
.

(4.85)

Inserting these expressions into Eq. (4.84), Πcl(k) turns out to be:

Πcl(k) =
3λ2α2ρ

16π2m4
0

{
1

ε̂
+

4

3
− m2

1

k2
− log

m2
1

µ2
−
(

1− m2
1

k2

)2

log

(
1− k2

m2
1

− iε
)}

.

(4.86)

4.3 Renormalization

Since both of the regularized expressions we have obtained, Eqs. (4.82) and
(4.86), are divergent in the limit ε̂→ 0 (i.e. when we try to restore the physical
4 dimensions of spacetime), we still need to renormalize them in order to obtain
finite and subsequently useful results. In order to achieve this aim, we need to
absorb the divergent term 1/ε̂ into a renormalized coupling constant λren.

Consider a generic process involving an internal photon propagator carrying
a certain momentum k2 = s, the amplitude for which can be expressed as

λ2Dµν(s)
1

1 + λ2Π0(s)
Sµν = λ2

renDµν(s)Sµν , (4.87)
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where we have defined Π0(s) = Π(s)/λ2 and Sµν contains the details of the
process. The relationship between the renormalized coupling constant λren at
the scale s and the bare coupling constant λ is given by

λ2
ren =

λ2

1 + λ2Π0(s)
, λ2 =

λ2
ren

1− λ2
renΠ0(s)

. (4.88)

Rewriting the same process at a different scale k2, in terms of the renormalized
coupling constant, we get

Dµν(k)
λ2

1 + λ2Π0(k)
Sµν = Dµν(s)

λ2
ren

(1− λ2
renΠ0(s))(1 + λ2

renΠ0(k))
Sµν =

= Dµν(k)
λ2
ren

1 + λ2
ren(Π0(k)−Π0(s))

Sµν = Dµν(k)
λ2
ren

1 + λ2
renΠren(k)

Sµν .

(4.89)

From this equation, we identify the renormalized quantity Πren(k) as

Πren(k) = Π0(k)−Π0(s) . (4.90)

This quantity, if the process considered is renormalizable, is finite1, as the diver-
gent part is absorbed into the new coupling constant λren. Since the scale s at
which we perform the renormalization is, in principle, arbitrary, we can choose
it in such a way as to simplify our expression. This happens at the pole of the
scalar propagator, specifically at s = M2, if we consider the quantum propaga-
tor Dq (Eq. (4.21)), or at s = m2

1, if we consider the classical propagator Dcl

(Eq. (4.26)).
If we try to apply this renormalization procedure to the quantity Πq(k) (Eq.

(4.82)), obtained from the quantum scalar propagator Dq, we obtain

Πq ren(k) =
1

λ2
(Πq(k)−Πq(M)) =

M2

16π2m2
0

{(
1

ε̂
− log

(
M2

µ2

))(
1− k2

M2

)
+

+

(
3− M2

k2
− 2

k2

M2

)
+

(k2 −M2)3

k4M2
log

(
1− k2

M2

)}
,

(4.91)

where we see that the divergence 1/ε̂ has not been removed, because the di-
vergent term’s coefficient depends on the momentum k2 (which in turn is at-
tributable to the presence of derivatives of the fields in the interaction Hamil-
tonian Hint (4.28)). We can try to absorb the residual divergence into other
parameters of the model, such as the photon field’s normalization. Introducing
the renormalized photon field as

Aµren(k) =
1√
Z
Aµ(k) , (4.92)

with Z = 1 + λ2
renδ, the amplitude (4.89) can be rewritten as

Dren
µν (k)

λ2
ren

1 + λ2
renΠren(k)

Sµν =
−iλ2

rengµνS
µν

k2 + λ2
ren(k2δ + Πq ren(k)k2)

; (4.93)

1In certain cases, some residual divergence may be left. However, if the theory can be
renormalized, this residual divergence can be absorbed into other parameters of the theory.
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however, we see immediately that, even in this case, it is not possible to cancel
the divergence. We conclude that the loop integral Πq(k) is not renormalizable,
and we therefore discard the quantum propagator (4.21) as a suitable scalar
propagator for the present model.

Luckily, when we apply the renormalization procedure to the other possible
integral Πcl(k) (Eq. (4.86)) obtained from the classical scalar propagator Dcl,
we obtain

Πcl ren(k) =
1

λ2

(
Πcl(k)−Πcl(m

2
1)
)

=

=
3α2ρ

16π2m4
0

{
m2

1

k2
+

(
1− m2

1

k2

)2

log

(
1− k2

m2
1

− iε
)
− 1

}
,

(4.94)

where the divergence, in this case, cancels out. Therefore, we will use only this
expression in the following discussion and we will drop the subscript cl, thus
referring to Eq. (4.94) simply as Πren(k).

Finally, we can state that the renormalized re-summed propagator for the
photon field at the second order in λ in the effective theory (4.1) is given by

Dren
µν (k) =

−igµν
k2(1 + λ2

renΠren(k))
, (4.95)

with Πren(k) given by Eq. (4.94).

4.4 Dispersion relation

As stated at the beginning of this section, the possible dispersion relations of a
field are determined by the poles of its propagator, i.e., they are the solutions
of the dispersion equation:

k2(1 + λ2
renΠren(k)) = 0 . (4.96)

Assuming for the moment that Πren(k) is regular at k2 = 0, we find immediately
that one possible solution is the standard dispersion relation

k2 = 0 . (4.97)

The other possible dispersion relation is the solution of the equation

(1 + λ2
renΠren(k)) = 0 , (4.98)

which, in this case, is

1 +
3α2λ2

renρ

16π2m4
0

{
m2

1

k2
+

(
1− m2

1

k2

)2

log

(
1− k2

m2
1

− iε
)
− 1

}
= 0 . (4.99)

In order to avoid tachyonic solutions we impose k2 ≥ 0. Moreover, introducing
for simplicity the two parameters

γ =
3α2λ2

renρ

16π2m4
0

, x =
k2

m2
1

, (4.100)
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and assuming 0 ≤ x < 1, Eq. (4.99) can be rewritten as

fγ(x) =

(
x

x− 1

)2(
1

γ
+

1

x
− 1

)
+ log (1− x) = 0 . (4.101)

Unfortunately, this equation cannot be solved analytically, and so the simplest
way to obtain some information on its solutions is to use a graphical method.
By plotting fγ(x) for various (real) values of γ, we find that the only possible
solution of this equation is given by x = 0, see Fig. 6.
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Figure 6: fγ(x) from Eq. (4.101) evaluated for different values of γ in the range
(0.01, 10). The intersections of the curves with the x axis correspond to the
solutions of the dispersion equation. We observe that the only possible solution
is x = 0 independently of the value of γ.

We conclude that, in the Lorentz-invariant spacetime foam model defined
by the effective action (4.1), the photon dispersion relation is unaffected by the
presence of the topological defects and remains unchanged, i.e.

k2 = 0 . (4.102)

4.5 Extensions of the model

In this subsection, we wish to discuss briefly how the dispersion relation (4.102)
changes when we introduce modifications to the spacetime foam model consid-
ered herein.

The previous results were obtained in line with the hypothesis that the
wavelength of the photon is much larger than the mean separation between the
defects, so that we could ignore the fluctuations of the density of defects and
simply consider ρobs = ρ = const, see Eq. (2.18). It is interesting to investigate
what happens when we discard this assumption and allow the photon to per-
ceive the density fluctuations. Unfortunately, the model becomes much more
complicated in this case, and we are not able to derive general results. For
simplicity, we consider a 2-dimensional spacetime and parametrize the fluctu-
ations with trigonometric functions (i.e. using periodic fluctuations instead of
random fluctuations). This allows us to perform some explicit calculations but
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nonetheless introduces a periodic structure that is not present in the original
model and which breaks Lorentz invariance as shown in Fig. 5.

We assume that the density of defects is given by

ρ(x) = ρ(1 +A2 cos(ω0x0) cos(ω1x1)) . (4.103)

By setting ω0 = ω1 = 2π/
√
V and A = (4/(ρ V ))1/4, where V ' λ2

photon, λphoton

being the wavelength of the photon, we determine that the mean value 〈ρ〉 and
standard deviation δρ are given by

〈ρ〉 =
1

V

∫
V

d2xρ(x) = ρ ,

δρ =

√
1

V

∫
V

d2x (ρ(x)− 〈ρ〉)2
=

√
ρ

V
,

(4.104)

as expected from Eq. (2.17). Inserting Eq. (4.103) into Eq. (3.8), which gives
the product of two Fourier transforms of the background field g(x), we obtain

g(q)g(p) =(2π)2λ2ρ h(q)h(p)

{
δ(2)(k + p) +

A2

4

[
δ(2)(k + p+ ω)+

+ δ(2)(k + p− ω) + δ(k0 + p0 + ω0)δ(k1 + p1 + ω1)+

+ δ(k0 + p0 − ω0)δ(k1 + p1 − ω1)
]}

,

(4.105)

where ω is the vector with components ω0 and ω1. From this equation it follows,
by assuming ω0 = ω1 = ω∗ ' 1/λphoton � 1 so that we can perform a power
expansion in ω∗ around zero, that the one-loop correction to the photon field is

Π(k) = − 4

k2

{
I2(k2)− 4ρA2ω2

∗
k4m4

0

(
k2I0(k2)− 2I1(k2)

)
(k2

0 + k2
1)

}
, (4.106)

where I0, I1, and I2 are one-loop integrals (which, unfortunately, are not renor-
malizable). We observe that this result contains a Lorentz- violating term pro-
portional to (k2

0 + k2
1). As mentioned, such a violation originates from the

periodic structure of the fluctuations, which explicitly breaks the Lorentz in-
variance of the Poisson distribution of defects. A more appropriate description
of the density fluctuations can be obtained by dividing spacetime into boxes of
volume V ' λ4

photon, and then assigning to each box a constant density that
varies from box to box according to the Poisson distribution. However, we are
unable to obtain explicit results in this model, and what one can observe nu-
merically is that Eq. (3.8) is modified also in this case, but by some random
function instead of simple delta functions as in Eq. (4.105). As a result, we
may infer that the density fluctuations do not break Lorentz invariance in this
case, but they may possibly introduce some other modifications to the one-loop
correction (4.94) that may reflect on the photon dispersion relation as well.

4.5.1 PT-symmetric extension

Here, we want to describe an interesting extension of the spacetime foam model
introduced in Sec. 4. This is obtained simply by replacing the real coupling
constant λ in the action (4.1) with an imaginary one:

λ→ λ′ = i λ . (4.107)
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Such a substitution makes the interaction Hamiltonian (4.28) non-Hermitian;
however, this is not necessarily a problem as long as the theory remains sym-
metric under the combination of parity transformation P and time reversal T

PT : L(x)→ L(x) . (4.108)

In fact, it has been shown [54, 55] that non-Hermitians but PT symmetric quan-
tum mechanics can still describe physically acceptable models. In particular,
the spectrum of the Hamiltonian operator remains real and positive under cer-
tain circumstances (see also Refs. [56, 57, 58] for applications of PT symmetric
models to the study of real physical systems). The extension to PT symmetric
quantum field theory has also been investigated in Refs. [59, 60].

We observe that the effective action (4.1) with the imaginary coupling con-
stant iλ is indeed symmetric under PT transformation, if we replace the scalar
field φ with a pseudoscalar φ̃ which transforms as

PT : φ̃(x)→ −φ̃(−x) . (4.109)

Consider, in particular, the fourth and fifth terms in Eq. (4.1). The fourth term
transforms under PT as

PT : αφ̃(x)

∞∑
n=1

εnδ
4(x− xn)→ −αφ̃(−x)

∞∑
n=1

εnδ
4(−x− xn) , (4.110)

and seems not to be invariant under PT transformation. Nevertheless, we ob-
serve that the minus sign coming from the pseudoscalar field can be absorbed
into the random numbers εn, without any observable consequences. From this
finding we can conclude that this term is indeed PT symmetric. The fifth term
also turns out to be PT symmetric

PT : − iλ
4
φ̃(x)Fµν(x)F̃µν(x)→ − iλ

4
φ̃(−x)Fµν(−x)F̃µν(−x) , (4.111)

given that

PT : Fµν(x)→ −Fµν(−x) , PT : F̃µν(x)→ −F̃µν(−x) , PT : i→ −i ,
(4.112)

where we have introduced the dual field strength tensor F̃µν(x) = εµνρσFµν(x).
Given these considerations, we can assume that the PT symmetric extension

of the effective action (4.1) still provides a physically acceptable description of a
photon propagating in the Lorentz-invariant spacetime foam model considered
herein. In this case, the photon re-summed propagator (4.95) is given by

Dren
µν (k) =

−igµν
k2(1− λ2

renΠren(k))
, (4.113)

with Πren(k) still given by Eq. (4.94). As a result, the second dispersion
equation (1−λ2

renΠren(k) = 0), in terms of the variables x and γ (Eq. (4.100)),
becomes

fγ(x) =

(
x

x− 1

)2(
1

γ
− 1

x
+ 1

)
− log (1− x) = 0 , (4.114)
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which is plotted in Fig. 7 (again, it is not possible to find an analytic solution,
and we must therefore rely on graphical methods).
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Figure 7: fγ(x) from Eq. (4.114) (obtained in the PT symmetric extension of the
model) evaluated for different values of γ in the range (0.01, 10). Intersections of
the curves with the x axis correspond to the solutions of the dispersion equation.
We observe that a second non-standard solution appears for γ > γc. The curve
corresponding to γ = γc is represented by a dashed line.

From Fig. 7, we see that, in this case, a second solution appears for large γ,
which provides the modified dispersion relation

k2 = β(γ)m2
1 , (4.115)

which describes the appearance of a photon mass. We observe that β(γ) varies
in the range [0, 1] and that it grows as γ grows (as we would have expected for a
physical solution, since γ ∝ λ2α2ρ). Studying the behavior of β(γ) for γ which
goes to zero, we find that it reaches zero at a critical value γc (γc = 2 at the
renormalization scale we used, though it changes at different renormalization
scales). Below this value, the second solution disappears and we are left with
the standard dispersion relation as the only possible solution. Then, a modified
dispersion relation, where the photon acquires mass, can appear only for

γ > γc =⇒ λ2
ren >

16π2m4
0γc

3α2ρ
. (4.116)

The presence of the critical point γc seems to indicate the presence of a phase
transition. We speculate, given the proportionality between γ and ρ, that this
transition could be related to the percolation of defects. Percolation theory [61],
as illustrated in Sec. 7.2, describes the formation and properties of clusters of
objects randomly distributed in a lattice with probability P , or in a continuum
space with density ρ. This model undergoes a second-order phase transition at
a certain critical probability (or critical density) where there appear infinitely
large clusters.

In support of this idea, we observe that the behavior of the parameter β(γ)
is well-described by the critical exponent β of percolation in 4 dimensions, see
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Fig. 8. In fact, from the general theory of second-order phase transition [62, 63],
we know that the behaviors of physical quantities (such as order parameter,
correlation length, etc.) near a critical point are described by power laws. The
exponents of these power laws are called “critical exponents” and are indepen-
dent of most of the particular characteristics of the model considered, instead
depending only on very general features (such as dimensionality and symme-
tries). As a result, it happens that very different models can be described by
the same set of critical exponents (it is said that they belong to the same uni-
versality class). Consequently, if the phase transition that we have observed
in our model is related to the percolation phase transition, we expect that the
order parameter β(γ) should be described by the same critical exponent β of
the continuous percolation model in four dimensions

β(γ) ∝
(

1− γc
γ

)β
. (4.117)

The exponent β in the lattice percolation in four dimensions is β = 0.64 [61], and
lattice percolation and continuous percolation belong to the same universality
class (at least in R2 and R3 [64], and we assume that the same is true in 4
dimensions).
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Figure 8: β(γ) from Eq. 4.115 (blue dots) compared with the expected behav-
ior of the order parameter (Eq. (4.117)) described by the exponent β = 0.64
obtained in four-dimensional lattice percolation (red solid line).

In Fig. 8, we indeed observe that the function β(γ) is well-interpolated by
Eq. (4.117) with β = 0.64.

The appearance of a photon mass from the interaction of the photon field
with spacetime defects has also been discussed in Refs. [65, 66]. These works
also consider the case in which defects are embedded in spacetime in a Lorentz
invariant way. However, they consider a different type of interaction between
photons and defects characterized by momentum violation.
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Part III

Spacetime foam from static
extended defects
In this part, we move to the study of topological defects that are extended and
time-independent. This means that a distribution of defects of this kind explic-
itly breaks Lorentz invariance. In fact, such a distribution selects a particular
reference frame in which the defects are static, but any Lorentz boost will break
this feature.

We start by describing a type of defect obtained from Minkowski spacetime
by surgery that has already been studied in the literature, see Refs. [67, 68].
We review the propagation of electromagnetic waves in a spacetime foam model
obtained from this kind of defect and how it modifies the dispersion relation.
We then generalize these results to the case where the defect becomes massive.

In the next section 6, we proceed to study another, more interesting, type of
defect that has been obtained in Ref. [69]. This defect has the same topology
of the previous one, but the two are not diffeomorphic. Unlike the first one,
this new type of defect is a vacuum solution of general relativity. We start by
studying how a scalar field behaves in the metric describing this type of defect,
and then we show how the propagation of waves changes in this metric with
respect to the first type of defect. We continue by deriving the electromagnetic
solutions and calculating the electromagnetic dispersion relation in a spacetime
foam model based on this type of defect.

5 Defects in Minkowski space

5.1 Defect structure (review)

Consider Minkowski spacetime R × R3 with metric ηµν = diag(−1, 1, 1, 1) and
Cartesian coordinates xµ = (x0, xi) = (x0, ~x). The topological defect is obtained
by removing a ball of radius b from the spatial hypersurface R3 and identify-
ing antipodal points on the boundary [67]. After this operation, Minkowski
spacetime must be substituted by the manifold R×Mb, where Mb is given by

Mb =
{
~x ∈ R3

∣∣~x2 ≥ b2 ∧
(
~x ≡ −~x for ~x2 = b2

)}
, (5.1)

and where we have chosen the origin of the coordinates xi to coincide with the
center of the defect and ‘≡’ stands for point-wise identification. The structure
of the submanifold Mb is illustrated in Fig. 9.

In spherical coordinates

(x1, x2, x3) = (r sin θ cosφ, r sin θ sinφ, r cos θ) , (5.2)

the defect is described by the standard Minkowski metric

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (5.3)

with the conditions

r ≥ b , (t, b, θ, φ) ≡ (t, b, π − θ, φ+ π) . (5.4)
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Figure 9: Section (x3 = 0) of the submanifold Mb. The interior of the sphere
of radius b, centered on the origin, is removed and antipodal points on the
boundary identified.

Observe that by using the diffeomorphism

r → ρ =
b

r
, (5.5)

it is possible to map the entire manifold Mb to the closed unit ball with antipodal
points on the boundary identified (minus the origin corresponding to r =∞ in
Mb) [68]. Since the closed ball with antipodal points on the boundary identified
has the topology of the 3-dimensional real projective space RP 3, we can conclude
that the topology of the defect manifold is

R×Mb ' R×
(
RP 3 − {0}

)
, (5.6)

where “'” stands for “homeomorphism”.
In Ref. [68], a new system of coordinates {ỹ, z, x} has been introduced

that is more suitable for describing the manifold Mb than standard spherical
coordinates. In this coordinate system, three charts Ui are needed to completely
cover Mb, each one surrounding one of the Cartesian axes xi but not intersecting
the others. We introduce a subscript to indicate to which particular chart
the new coordinates refer (the system of coordinates {ỹi, zi, xi} is associated
with the chart Ui, which surrounds the Cartesian axis xi). This new system
of coordinates and the standard spherical coordinates are related in the three
charts by the following transformations:

• Chart U1 surrounding x1
ỹ1 = r − b ,
z1 = θ ,

x1 = φ ,

|φ| < π

2
,


ỹ1 = b− r ,
z1 = π − θ ,
x1 = φ− π ,

|φ| > π

2
.

(5.7)
r = ỹ1 + b ,

θ = z1 ,

φ = x1 ,

ỹ1 > 0 ,


r = b− ỹ1 ,

θ = π − z1 ,

φ = x1 + π ,

ỹ1 < 0 . (5.8)
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• Chart U2 surrounding x2
ỹ2 = r − b ,
z2 = θ ,

x2 = φ− π

2
,

0 < φ < π ,


ỹ2 = b− r ,
z2 = π − θ ,

x2 = φ− 3π

2
,

π < φ < 2π .

(5.9)
r = ỹ2 + b ,

θ = z2 ,

φ = x2 +
π

2
,

ỹ2 > 0 ,


r = b− ỹ2 ,

θ = π − z2 ,

φ = x2 +
3π

2
,

ỹ2 < 0 .

(5.10)

• Chart U3 surrounding x3

|φ| < π

2
:


ỹ3 = r − b ,

z3 =
π

2
− θ ,

x3 = φ ,

0 < θ <
π

2
,


ỹ3 = b− r ,
z3 = θ ,

x3 = φ ,

π

2
< θ < π ,

|φ| > π

2
:


ỹ3 = r − b ,

z3 =
π

2
+ θ ,

x3 = φ− π ,

0 < θ <
π

2
,


ỹ3 = b− r ,
z3 = π − θ ,
x3 = φ− π ,

π

2
< θ < π .

(5.11)

ỹ3 > 0 :


r = b+ ỹ3 ,

θ =
π

2
− z3 ,

φ = x3 ,

0 < z3 <
π

2
,


r = b+ ỹ3 ,

θ = z3 −
π

2
,

φ = x3 + π ,

π

2
< z3 < π ,

ỹ3 < 0 :


r = b− ỹ3 ,

θ = π − z3 ,

φ = x3 + π ,

0 < z3 <
π

2
,


r = b− ỹ3 ,

θ = z3 ,

φ = x3 ,

π

2
< z3 < π .

(5.12)

Note that the standard spherical coordinates are ill-defined on the x3 axis.
A better approach is to introduce a new set of spherical coordinates to
describe the chart U3

(x1, x2, x3) = (r sin θ̂ sin φ̂, r cos θ̂, r sin θ̂ cos φ̂) . (5.13)

With this choice, the transformation rules between {ỹ3, z3, x3} and {r, θ̂, φ̂}
are obtained by substituting θ and φ with θ̂ and φ̂ and changing the index
to i = 3 in Eqs. (5.7) and (5.8). One therefore obtains
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• Chart U3 surrounding x3 (regular coordinates)
ỹ3 = r − b ,

z3 = θ̂ ,

x3 = φ̂ ,

|φ̂| < π

2
,


ỹ3 = b− r ,

z3 = π − θ̂ ,

x3 = φ̂− π ,

|φ̂| > π

2
.

(5.14)
r = ỹ3 + b ,

θ̂ = z3 ,

φ̂ = x3 ,

ỹ3 > 0 ,


r = b− ỹ3 ,

θ̂ = π − z3 ,

φ̂ = x3 + π ,

ỹ3 < 0 . (5.15)

Standard spherical coordinates range in

r ∈ [0,+∞) , θ ∈ [0, π] , φ ∈ [0, 2π) , (5.16)

while the new set of coordinates {ỹ, z, x} has ranges

ỹ ∈ (−∞,+∞) , z ∈ (0, π) , x ∈
(
−π

2
,
π

2

)
. (5.17)

We note that the standard angular coordinates θ and φ cover the entire solid
angle Ω = 4π. Instead, the new angular coordinates z and x cover only half
of it, namely Ω′ = Ω/2 = 2π. Conversely, the standard radial coordinate r is
restricted to the positive real numbers R+, while the new “radial coordinate”
ỹ takes value on the whole real line R. This is somewhat reminiscent of the
procedure adopted to describe the Einstein-Rosen bridge [70]. For such a so-
lution, a new radial coordinate u2 = r − 2m is also introduced whose range
is u ∈ (−∞,+∞) (see also Ref. [12]). However, in that case, the angular
coordinates are not modified.

The metric of the manifold R×Mb in these new coordinates becomes

ds2 = −dt2 + dỹ2 + (b+ |ỹ|)2
(
dz2 + sin2 z dx2

)
. (5.18)

Note that, since in each chart the metric turns out to be the same, we have
dropped the subscript i. One important feature of these coordinates is that
one does not need to implement additional boundary conditions to describe the
structure of the defect—as happens with spherical coordinates. Moreover, the
defect manifold in the new coordinate system is a well-defined differentiable
manifold, while in spherical coordinates this is not the case (spherical coordi-
nates are ill-defined at the defect surface). It follows that the new manifold,
described by the metric (5.18), is not globally diffeomorphic to the defect de-
scribed in standard spherical coordinates (Eqs. (5.3) and (5.4)). See Sec. 6 for
more details.

One can calculate the scalar curvature R and the Kretschmann scalar K
obtaining [68]

R = gµνRµν = −8
δ(ỹ)

b+ |ỹ|
, K = RµνρσR

µνρσ =
1

2
R2 , (5.19)

where Rµν is the Ricci curvature tensor and Rµνρσ is the Riemann tensor. From
these quantities we see that the metric (5.18) is flat everywhere apart from on
the defect surface, where it has a delta function singularity.

54



5.2 Massless case (review)

In this section, we briefly review the work done in Ref. [67], in which three
different types of defects were introduced. Here, we consider only the first one
(τ = 1 in Ref. [67]), which is described in standard spherical coordinates by the
metric

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2) , (5.20)

with the restriction r > b and the identification of antipodal points on the
surface of the defect

~xb ≡ −~xb ⇐⇒ (b, θ, φ) ≡ (b, π − θ, φ+ π) . (5.21)

From such a condition, it is possible to derive the behavior of vector and pseudo-
vector fields on the defect surface [68]. One finds, in fact, that given a smooth
map I from a manifold M into itself [71]

I : p ∈M → p′ = I(p) ∈M , (5.22)

the differential map I∗ describes the induced transformation on the tangent
space

I∗ : ~v ∈ TpM → ~v′ = I∗(~v) ∈ TI(p)M . (5.23)

Using the decomposition of a vector in its tangent and normal components
(and the fact that the normal versor can be obtained by the cross-product of
orthogonal tangent versors), one finds that the differential map I∗ completely
defines the behavior of vector fields with respect to the transformation I. For
the present case, the map I is

~x→ ~x′ = I(~x) = −~x . (5.24)

The differential map I∗ is given by the Jacobian of the transformation I. For
Eq. (5.24), it gives simply I∗ = −1. It follows that, on the defect surface, the

electric field ~E must satisfy the conditions

~E(xb) · ~n(xb) = − ~E(−xb) · ~n(−xb) , ~E(xb) ∧ ~n(xb) = ~E(−xb) ∧ ~n(−xb) .
(5.25)

The magnetic field ~B, being a pseudovector, must transform according to

~B(xb) · ~n(xb) = ~B(−xb) · ~n(−xb) , ~B(xb) ∧ ~n(xb) = − ~B(−xb) ∧ ~n(−xb) ,
(5.26)

where ~n(x) is the versor normal to the defect surface at the point ~x.
The idea behind this calculation is to study how an incident plane electro-

magnetic wave scatters with the defect. Since the incident electric and magnetic
fields do not satisfy the boundary conditions (5.25) and (5.26), a scattered field
must be introduced so that the total fields (given by the sum of the incident
and scattered fields) satisfy them accordingly. A spacetime foam model can be
obtained by randomly distributing the defects into R3 with number density ρ.
From the form of the scattered field, and from the characteristics of the distri-
bution, one can finally obtain the electric and magnetic permittivities ε and µ
of spacetime, which provide the electromagnetic dispersion relation throughout
the formula

ω2 =
c2k2

εµ
. (5.27)
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5.2.1 Plane wave in spherical coordinates

We consider the plane electromagnetic wave propagating along the Cartesian
axis Z

~E = E0 Re(eikr cos θ)X̂ ,

~B = E0 Re(eikr cos θ)Ŷ .
(5.28)

Rewriting the Cartesian basis vectors {X̂, Ŷ , Ẑ} in spherical coordinates

X̂ = sin θ cosφr̂ + cos θ cosφθ̂ − sinφφ̂ ,

Ŷ = sin θ sinφr̂ + cos θ sinφθ̂ + cosφφ̂ ,

Ẑ = cos θr̂ − sin θθ̂ ,

(5.29)

and expressing the trigonometric functions in terms of spherical harmonics, the
components of the electric field in spherical coordinates become

Er = −
√

2π

3
E0 Re(eikr cos θ)(Y 1

1 − Y −1
1 ) ,

Eθ = − 1

tan θ

√
2π

3
E0 Re(eikr cos θ)(Y 1

1 − Y −1
1 ) =

Er
tan θ

,

Eφ = − i

sin θ

√
2π

3
E0 Re(eikr cos θ)(Y 1

1 + Y −1
1 ) = −Er

tanφ

sin θ
.

(5.30)

We can now introduce the plane wave expansion [72]

eikr cos θ = 4π
∑
l,m

iljl(kr)Y
∗m
l (θk, φk)Y ml (θ, φ) , (5.31)

where θk = 0 for a wave propagating along the Z axis. Rewriting the products
of spherical harmonics as an expansion in terms of single spherical harmonics
[73]

Y m1

l1
Y m2

l2
=
∑
l,m

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
c(l1,m1; l2,m2; l,m)c(l1, 0; l2, 0; l, 0)Y ml ,

(5.32)
where c(l1,m1; l2,m2; l,m) are the Clebsch-Gordan coefficients, we finally obtain

Er =
√
πE0

∑
l=odd

il−1(jl−1(kr) + jl+1(kr))

√
l(l + 1)

2l + 1
(Y 1
l − Y −1

l ) ,

Eθ = Er tan θ ,

Eφ = Er
tanφ

sin θ
=

√
π

sin θ
E0

∑
l=odd

il−2(jl−1(kr) + jl+1(kr))

√
l(l + 1)

2l + 1
(Y 1
l + Y −1

l ) .

(5.33)
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We recall here some useful formulas:

2l + 1

kr
jl(kr) = (jl−1(kr) + jl+1(kr)) ,

P 1
l (cos θ) cosφ =

√
π

√
l(l + 1)

2l + 1
(Y 1
l − Y −1

l ) ,

P 1
l (cos θ) sinφ = −i

√
π

√
l(l + 1)

2l + 1
(Y 1
l + Y −1

l ) ,

(5.34)

which allow us to make a connection with the results of Ref. [74] and which we
will need in the study of massive defects. Using these formulas, we can rewrite
Er as

Er = E0

∑
l=odd

il−1 2l + 1

kr
jl(kr)P

1
l (cos θ) cosφ , (5.35)

and similarly for Eθ and Eφ.

5.2.2 Boundary conditions

We have written the expression for a plane wave propagating along the Z axis
in spherical coordinates. We wish to verify if this incident wave satisfies the
boundary conditions of the defect placed at the origin. The boundary condi-
tions for the electric and magnetic fields, Eqs. (5.25) and (5.26), expressed in
components in spherical coordinates are given by

Er(−xb) = −Er(xb) , Eθ(−xb) = Eθ(xb) , Eφ(−xb) = Eφ(xb) ,

Br(−xb) = Br(xb) , Bθ(−xb) = −Bθ(xb) , Bφ(−xb) = −Bφ(xb) ,
(5.36)

where xb represents a point on the boundary of the defect

xb = (b, θ, φ) , −xb = (b, π − θ, φ+ π) . (5.37)

We observe that the behavior of the fields under parity transformation is com-
pletely determined by their angular dependence. Considering first the electric
field, we can easily verify that these conditions are automatically satisfied by
Er and Eθ but not by Eφ, which means that the incident plane wave Ein reach-
ing the defect surface must produce a scattered field Es so that the total field
ET = Ein + Es satisfies the boundary conditions. The scattered field, in gen-
eral, can be expressed in terms of a multipole expansion. In order to simplify
the problem, we consider the case of an incident wave with a wavelength much
greater than the defect size (kb � 1) so that, in first approximation, we can
work with static fields. In this way, we can write the scattered field as the
gradient of an electrostatic potential (Es = −~∇Φ). In terms of a multipole
expansion, the potential is

Φ(r, θ, φ) =
∑
l,m

Aml
1

rl+1
Y ml (θ, φ) , (5.38)

where the coefficients Aml are determined by the boundary condition

ETφ (−xb) = ETφ (xb) ⇐⇒ Einφ (−xb) + Esφ(−xb) = Einφ (xb) + Esφ(xb) . (5.39)
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From this equation, one obtains

A±1
l = ∓il−1

√
πbl+2(jl−1(kb) + jl+1(kb))

√
l(l + 1)

2l + 1
E0 . (5.40)

5.2.3 Dispersion relation

Since the size of the defect is assumed to be small with respect to the wavelength,
the leading contribution to the multipole expansion of Φ comes from the first
term in the expansion. This term corresponds to a dipole oriented along the X
axis (parallel to the incident electric field) and with a dipole moment:

~p = pX̂ , p = b3(j0(kb) + j2(kb))E0 . (5.41)

Now, we can build a spacetime foam model based on this type of defect. We
replace standard Minkowski spacetime R × R3 with a new manifold R ×M1,
where M1 is obtained by filling R3 with a random distribution of defects with
number density ρ (〈N(V )〉 = ρ V ). The polarization of such a space is

~P =
1

V

∑
i

~pi = ρ ~p . (5.42)

From the relations2 ~P = χe ~E and ε = 1+4πχe, we can finally derive the electric
permittivity:

ε ' 1 + 4πρ b3(j0(kb) + j2(kb)) . (5.43)

An analogous derivation for the magnetic field leads to the magnetic permeabil-
ity

µ ' 1− 2πρ b3(j0(kb) + j2(kb)) . (5.44)

Finally, the dispersion relation turns out to be

ω2 =
c2k2

ε(k)µ(k)
' c2k2

[1 + 4πρ b3(j0(kb) + j2(kb))][1− 2πρ b3(j0(kb) + j2(kb))]
,

(5.45)
which, expanded in powers of kb, becomes

ω2 ' (1− 2ρπb3)c2k2 +
ρπb5

5
c2k4 + . . . . (5.46)

5.3 Massive case

We want to generalize the previous calculation to the case in which the defect
acquires a mass m = `/2. In such a case, the defect is no longer described by
the flat Minkowski metric (5.20), but it must be described by the Schwarzschild
metric

ds2 = −
(

1− `

r

)
dt2 +

1(
1− `

r

)dr2 + r2(dθ2 + sin2 θ dφ2) . (5.47)

Instead, the boundary conditions do not change:

r > b , (b, θ, φ) ≡ (b, π − θ, φ+ π) . (5.48)

2Following Ref. [67], we use Gaussian units [74].
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Given the spherical symmetry of the Schwarzschild metric, we find that all
modifications with respect to the massless case involve only the radial compo-
nent of the results, while the angular dependence remains the same. This is a
great simplification—as we can see from the fact that the boundary conditions
involve only the angular coordinates.

5.3.1 Maxwell equations in curved spacetime

Since the space around the defect is not flat in this case, we must find the
solutions of the Maxwell equations in the Schwarzschild metric. In order to
study a situation analogous to the one discussed for the massless defect, we can
require that these solutions approach the plane wave solution in flat spacetime
at spatial infinity (since the Schwarzschild metric is asymptotically flat).

Vacuum Maxwell equations in flat spacetime can be written as [75]

∂µF
µν = 0 ,

∂[µFνλ] = 0 ,
(5.49)

where Fµν is the Maxwell field strength tensor related to the vector potential
Aµ through the relation

Fµν = ∂µAν − ∂νAµ . (5.50)

The principle of minimal coupling [76] gives us a simple recipe to rewrite these
equations in a general metric. We need to replace the Minkowski metric with
the metric at hand and replace any partial derivative with a covariant derivative.
Maxwell equations in the general metric gµν become

∇µFµν = ∂µ

(
g1/2Fµν

)
= 0 ,

∇[µFνλ] = ∂[µFνλ] = 0 ,
(5.51)

where Fµν = gµρgνσFρσ, and g is minus the determinant of the metric (g1/2 =√
−det(gµν)), so that the argument of the square root is positive. The covariant

derivative of a 2-tensor is given by

∇µT ρσ = ∂µT
ρσ + ΓρµνT

νσ + ΓσµνT
ρν ,

∇µTρσ = ∂µTρσ − ΓνµρTνσ − ΓνµσTρν ,
(5.52)

where the Christoffel symbols Γλµν are obtained from the metric

Γλµν =
1

2
gλρ (∂νgρµ + ∂µgρν − ∂ρgµν) . (5.53)

Observe that, if the covariant derivative is contracted with the tensor and this
is completely antisymmetric (Tµν = −T νµ), the expression of the Christoffel
symbols simplifies and one gets

∇µTµν = g−1/2∂µ

(
g1/2Tµν

)
. (5.54)

Note also that following the minimal coupling prescription, one is led to rewrite
the Maxwell field strength tensor as

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ . (5.55)
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However, even if the final result is correct, inserting the covariant derivative is
not appropriate in this case. In fact, Fµν is by definition the exterior derivative
of the connection Aµ, and as such it always takes the form (5.50) independently
of the metric [77].

When one tries to write these equations explicitly, for example for the
Schwarzschild metric, one finds a system of coupled linear differential equa-
tions that is hard to solve. In flat spacetime, in spherical coordinates, the same
problem arises, but it can be circumvented by the introduction of Debye poten-
tials. That is, electromagnetic solutions can be obtained from the solutions of
the scalar wave equation (see Ref. [74]). In short, given a solution Π(t, r, θ, φ)
of the scalar wave equation ∂2Π = 0, one can verify that the vector quantities{

~EE = ∇∧∇ ∧ ~rΠ ,

~BE = −ik∇∧ ~rΠ ,

{
~EM = − ~BE ,
~BM = ~EE ,

(5.56)

are two sets of independent solutions of the vacuum Maxwell equations. Fortu-
nately, such a formalism has been generalized to curved spacetimes. In fact, the
study of electromagnetic waves in Schwarzschild geometry was quite popular in
the 1970s, see for example Refs. [78], [79], [80], [81], [82], [83]. Here, we want to
summarize briefly the work of Ref. [78], where it is described how the formalism
of Debye potentials can be extended to certain classes of curved geometries.

In this work, it was shown that the four potential Aµ can indeed be expressed
in terms of two Debye scalar potentials, π and φ:

Aµ = ∂νπ(uνvµ − vνuµ) + ε νρσµ ∂νφ vρuσ , (5.57)

where uµ and vµ are two vectors satisfying uµv
µ = 0. If it is possible to write

the metric in the form3

ds2 = H2(x, y, u, v)
(
dx2 + ε1F

2(x, y)dy2
)

+ ε2dv
2 + ε3du

2 , (5.58)

with the conditions

ε1 ε2 ε3 = −1;

vµ = ∂µv, vµv
µ = ε2 = ±1, ∇µvν =

1

2
Θhµν ;

uµ = ∂µu, uµu
µ = ε3 = ±1, ∇µuν =

1

2
V hµν ;

hµν = gµν − ε2vµvν − ε3uµuν ;

(5.59)

the four-potential Aµ (Eq. (5.57)) is then a solution of the Maxwell equations
(Eq. (5.51)), if the Debye potentials π and φ satisfy the Debye equation

D(π) = ∇µ∂µπ − ε2Θ∂µπv
µ − ε3V ∂µπu

µ = 0 . (5.60)

In a subsequent work [79], it was shown how the method can be applied
to the Schwarzschild spacetime. Rescaling the radial and time variables in the
Schwarzschild metric (5.47) to r′ = r/` and t′ = t/`, and introducing the Regge-
Wheeler coordinate v = r′ + ln(r′ − 1), the Schwarzschild metric can be cast in
the form

ds2 =
r′3

r′ − 1
(dθ2 + sin2θdφ2) + dv2 − dt′2 , (5.61)

3This is not the only possibility, as there is another suitable form for the metric, but it is
not relevant to our discussion.
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which is equivalent to Eq. (5.58) with the identifications

θ = x, φ = y, v = v, t′ = u;

ε1 = 1, ε2 = 1, ε3 = −1, H2(xµ) =
r′3(v)

r′(v)− 1
, F 2(θ, φ) = sin2 θ;

vµ = ∂µv = (0, 0, 1, 0), uµ = ∂µu = (0, 0, 0, 1) .

(5.62)

The Debye equation is now

D(π) = g−
1
2 ∂µg

1
2 gµν∂νπ −Θ∂vπ = 0 , (5.63)

where Θ = (2r′ − 3)/r′2. Expanding the first term, it becomes

D(π) =

[
r′ − 1

r′3 sin θ

(
∂θ(sin θ∂θ) +

1

sin θ
∂2
φ

)
+ ∂2

v − ∂2
t′

]
π = 0 . (5.64)

Given the spherical symmetry of this metric, we can use for the Debye potentials
the expressions

π = P (r′, θ) cosφ e−iωt
′
, φ = −P (r′, θ) sinφ e−iωt

′
, (5.65)

where ω = `k is a dimensionless separation constant proportional to the wave
number k. The expression P (r′, θ) is given by

P (r′, θ) =

∞∑
n=1

DnRn(r′)P 1
n(cos θ) , (5.66)

where Rn(r′) is a solution of the radial equation

∂2
vRn + ω2

(
1− n(n+ 1)

ω2

(r′ − 1)

r′3

)
Rn = 0 . (5.67)

The constants Dn are found by requiring the solution P (r′, θ) to represent an
incident plane wave at θ = π, r′ →∞.

5.3.2 Plane wave in the Schwarzschild metric

Before studying the radial equation (5.67), we want to describe the electromag-
netic plane wave in the Schwarzschild metric (following the approach of Ref.
[83]) and derive the dispersion relation for electromagnetic plane waves in a
spacetime filled with massive defects.

As in the previous subsection, we introduce dimensionless coordinates x =
r/`, α = `k and the Regge-Wheeler (tortoise) coordinate y = x+ log(x− 1). As
the Schwarzschild metric (5.47) is asymptotically flat, we can write an incoming
plane wave propagating along the Z axis as

~E
x→∞' E0 e

iαy cos θX̂ ,

~B
x→∞' E0 e

iαy cos θŶ ,
(5.68)

where {X,Y, Z} are Cartesian coordinates. Note that these expressions differ
from the standard plane wave solution in flat spacetime by a logarithmic factor,
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which reflects the long-range nature of gravity. We can then introduce the plane
wave expansion

eiαy cos θ =
∑
l

il(2l + 1)Pl(cos θ)
R

(plane)
lα (x)

αx
, (5.69)

with the requirement that this expression approaches that of a plane wave in
flat spacetime at infinity:

R
(plane)
lα (x)

αx

x→∞' jl(αy) '
sin(αy − π

2 l)

αx
, (5.70)

where Rlα is a solution of the radial wave equation (5.67). The radial wave
equation can be expressed equally in terms of the variable x instead of the
tortoise coordinate y, and one gets

x2(x− 1)2∂2
xRlα + x(x− 1)∂xRlα + (α2x4 − l(l + 1)x(x− 1))Rlα = 0 . (5.71)

Introducing an orthonormal frame {ω̂r, ω̂θ, ω̂φ} (where ω̂r =
√

1− `/r r̂,
ω̂θ = θ̂, ω̂φ = φ̂) we can expand the plane wave as

~E
x→∞' E0 e

iαy cos θ(sin θ cosφ ω̂r + cos θ cosφ ω̂θ − sinφ ω̂φ) =

=Erω̂r + Eθω̂θ + Eφω̂φ .
(5.72)

In Ref. [83], the authors follow closely the derivation of Ref. [74]. They write
the general solution of the wave equation in the Schwarzschild metric in terms
of Debye potentials as a multipole expansion and use the previous asymptotic
relations to identify the coefficients. They find, for the radial component of the
electric field, the expression

Er = E0

∞∑
l=1

il−1 2l + 1

α2x2
R

(plane)
lα (x)P 1

l (cos θ) cosφ . (5.73)

Here, we proceed following the approach of Ref. [67], described in Sec. 5.2.1,
and we obtain

Er =
√
πE0

∞∑
l=1

il−1 2l + 1

α2x2
R

(plane)
lα (x)

√
l(l + 1)

2l + 1
(Y 1
l − Y −1

l ) . (5.74)

Note that this expression coincides with Eq. (5.73), making use of the equiva-
lences (5.34). The other components follow from the identifications

Eθ = Er
tan θ√
1− `/r

, Eφ = −Er
tanφ

sin θ
√

1− `/r
. (5.75)

In particular

Eφ =

√
πE0

sin θ
√

1− `/r

∞∑
l=1

il−2 2l + 1

α2x2
R

(plane)
lα (x)

√
l(l + 1)

2l + 1
(Y 1
l + Y −1

l ) . (5.76)

The radial function R
(plane)
lα (x) can be rewritten as

R
(plane)
lα (x) =

1

2i

(
e−i

π
2 lR

(+)
lα (x)− e+iπ2 lR

(−)
lα (x)

)
, (5.77)
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where R
(±)
lα (x) are two independent solutions of the radial equation (5.71). In

Ref. [83], these solutions are obtained in the form of an asymptotic expansion

R
(+)
lα (x) = eiαy

∞∑
n=0

µn(l, α)
1

xn
, R

(−)
lα (x) = (R

(+)
lα (x))∗ , (5.78)

where the coefficients µn(l, α) are given by the recursion formula

µn+1(l, α) =
(n(n+ 1)− l(l + 1))µn(l, α)− (n2 − 1)µn−1(l, α)

2iα(n+ 1)
, (5.79)

with normalization µ0(l, α) = 1. The solution expressed in this form has the
asymptotic form

R
(±)
lα (x)

x→∞' e±iαy , (5.80)

from which we see that R
(plane)
lα (x) has the correct asymptotic behavior (5.70)

to represent a plane wave. However, we will see that the solution in this form is
not useful for our purposes, and we will therefore need to derive a more suitable
expression.

5.3.3 Boundary conditions

The boundary conditions for the massive defects are the same as those described
in Sec. 5.2.2 and the fields satisfy them in the same way (if we again restrict
the sum in Eq. (5.69) over odd values of l), since, as we mentioned, the angular
dependence of the two solutions is the same. So, again, we assume kb� 1 and
need to introduce a static electric potential to correct the behavior of Eφ. The
multipole expansion of such a potential in the Schwarzschild metric is given by
[84]

Φ =
∑
l,m

Aml fl(r)Y
m
l (θ, φ) . (5.81)

This corresponds to a scattered electric field

~Es = −∂rΦ ω̂r −
1

r
√

1− `/r
∂rΦ ω̂θ −

1

r sin θ
√

1− `/r
∂rΦ ω̂φ . (5.82)

The function fl(r) is given by

fl(r) = − 2(2l + 1)!

l!(l + 1)!`l+1
(r − `)∂rQl

(
2r

`
− 1

)
, (5.83)

where Ql are the Legendre functions of the second kind. In particular, for l = 1,
we have

f1(r) = 3
2r − `
`2r

+ 12
r − `
`3

arctanh

(
1− 2r

`

)
. (5.84)

The leading term of fl(r) as r →∞ is

fl(r)
r→∞' 1

rl+1
. (5.85)

The coefficients Aml are found from Eq. (5.39) to be

A±1
l = ∓

√
πE0 i

l−1

(
2l + 1

k2b2
R

(plane)
lk (b)

)√
l(l + 1)

2l + 1

b

fl(b)
≡ ∓Al . (5.86)
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From the assumption kb � 1, it follows that the leading contribution to the
scattered electric field comes from the dipole term. At large distances from the
origin, we can compare this result with the one for a dipole of moment ~p = px̂
in flat spacetime

Φ = A1f1(r)(−Y 1
1 + Y −1

1 )
r→∞' Φflat =

p

r2
sin θ cosφ , (5.87)

from which we obtain the dipole moment

p =

(
3

k2b2
R

(plane)
1k (b)

)
b

f1(b)
E0 . (5.88)

From Eqs. (5.34), (5.70), and (5.85), we observe that, for b → ∞ or ` → 0
(x→∞), this expression reduces to that obtained in flat spacetime.

A similar procedure applies to the magnetic field that gives the static mag-
netic potential

Ψ =
∑
l

Blfl(r)(Y
1
l + Y −1

l ) , (5.89)

where the coefficients Bl are

Bl = −
√
πE0 i

l−2

(
2l + 1

k2b2
R

(plane)
lk (b)

)√
l(l + 1)

2l + 1

1

∂rfl(r)|b
. (5.90)

Again, the leading contribution comes from the dipole term. We compare the
expression for Ψ, at large distances from the origin, with that obtained in flat
spacetime for a magnetic dipole ~m = mŷ

Ψ = B1f1(r)(Y 1
1 + Y −1

1 )
r→∞' Ψflat =

m

r2
sin θ sinφ . (5.91)

The magnetic moment of the defect turns out to be

m = E0

(
3

k2b2
R

(plane)
1k (b)

)
1

∂rf1(r)|b
. (5.92)

5.3.4 Dispersion relation

As for the case of massless defects, we now consider a space filled with a random
distribution of massive defects with number density ρ. From the relations

~P = ρ~p = χe ~E , ε = 1 + 4πχe ,

~M = ρ~m = χm ~B , µ = 1 + 4πχm ,
(5.93)

we obtain the electric and magnetic permeabilities of such a spacetime foam
model

ε ' 1 +
4πρb

f1(b)

(
3

k2b2
R

(plane)
1k (b)

)
,

µ ' 1 +
4πρ

(∂rf1(r))|b

(
3

k2b2
R

(plane)
1k (b)

)
,

(5.94)
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from which follows the dispersion relation

ω2 ' c2k2[
1 + 4πρb

f1(b)

(
3

k2b2R
(plane)
1k (b)

)] [
1 + 4πρ

(∂rf1(r))|b

(
3

k2b2R
(plane)
1k (b)

)] . (5.95)

We want to write this result as an expansion in powers of `. We start by
observing that

b

f1(b)
= b3 − 1

2
b2`− 1

20
b `2 +O(`3) ,

1

(∂rf1(b))|b
= −b

3

2
+

3

8
b2`− 9

32
b `2 +O(`3) .

(5.96)

We could introduce explicitly the first few terms of the expansion of R
(±)
1k (b)

(5.78):

R
(±)
1k (b) = e±ikb

(
b

`
− 1

)±i`k (
1± i

kb
− 1

2

`

k2b3
± 5

8

i`

k3b4
+O(b−5)

)
. (5.97)

However, the asymptotic expansion (5.78) is a good approximation to the solu-

tion R
(±)
lk (b) only for kb � 1, whereas we require kb � 1, in order to use the

static field approximation. We need to find another form for the solution of
the radial equation, in order to get a meaningful expansion for the dispersion
relation.

5.3.5 Radial equation

The asymptotic expansion (5.78) is only a good approximation to the solution of
the radial equation (5.71) for αx = kr & 5. In Ref. [83], the authors circumvent
this problem by expressing the solution at small x as a linear combination of
another set of (this time exact) solutions. These solutions are

S
(+)
lα (x) = eiαy

∑
n

νn(l, α)

(
1− 1

x

)n
, S

(−)
lα (x) = (S

(+)
lα (x))∗ , (5.98)

where the coefficients νn(l, α) are given by the recursion relation

νn+1(l, α) =
(2n(n+ 1) + l(l + 1))νn(l, α)− (n− 1)(n+ 1)νn−1(l, α)

(n+ 1)(n+ 1 + 2iα)
, (5.99)

with the normalization ν0(l, α) = 1. This series converges quickly for small x
but very slowly for large x. The asymptotic expansion (5.78) can be related to
this solution, by using the equations

R
(+)
lα (x) = E1(l, α)S

(+)
lα (x) + E2(l, α)S

(−)
lα (x) ,

∂xR
(+)
lα (x) = E1(l, α)∂xS

(+)
lα (x) + E2(l, α)∂xS

(−)
lα (x) ,

(5.100)

65



from which one obtains the coefficients

E1(l, α) =


(
∂xS

(−)
lα

S
(−)
lα

−
∂xR

(+)
lα

R
(+)
lα

)(
∂xS

(−)
lα

S
(−)
lα

−
∂xS

(+)
lα

S
(+)
lα

)−1
R

(+)
lα

S
(+)
lα


∣∣∣∣∣∣
x=xm

,

E2(l, α) =


(
∂xR

(+)
lα

R
(+)
lα

−
∂xS

(+)
lα

S
(+)
lα

)(
∂xS

(−)
lα

S
(−)
lα

−
∂xS

(+)
lα

S
(+)
lα

)−1
R

(+)
lα

S
(−)
lα


∣∣∣∣∣∣
x=xm

,

(5.101)

where the matching point xm satisfies the relation xm & 5/α. However, this

method is not suitable in our case; in fact, we want to expand R
(+)
lα (x) in powers

of k (α) around zero, but the matching point xm goes to infinity as α goes to

zero. Since the series expansion of S
(±)
lα (x) converges very slowly for large x,

we cannot truncate this series as α→ 0, so we have to sum the whole series to
obtain the coefficients.

Since this approach is not manageable, we resolve to investigate the solu-
tion with perturbative methods. As we are interested in the configuration of
parameters

bk � 1 , `� b , (5.102)

we can expand the radial equation in powers of `. In this way, it is possible to
use perturbation theory to obtain the solution at order `. As we have observed,
the radial wave equation (5.71) is equivalent to Eq. (5.67) when written in terms
of the tortoise coordinate y:

∂2
yRlα(y) +

[
α2 − x(y)− 1

x(y)3
l(l + 1)

]
Rlα(y) = 0 , (5.103)

where x(y) is given by the Lambert W function

x(y) = 1 +W (ey−1) . (5.104)

The radial equation in this form is analogous to the Schrodingher equation

∂2
yR(y) + (α2 − V (y))R(y) = 0 , (5.105)

with the potential V (y) depicted in Fig. 10 for l = 1.
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Figure 10: Potential V (y) in Eq. (5.105) for l = 1.
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We observe that in the regions where the potential V (y) is much smaller
than α2, we can ignore its contribution and the Schrodingher equation (5.105)
reduces to the free equation with solutions R(y) = e±αy. This happens in the
asymptotically flat region x→∞ (r →∞). However, this is not what we want
to study—we are interested in the situation where ` → 0 and k � 1/r. In
this case, V (y) is always larger than α2 (as ` → 0, V (r) ' `2/r2 � `2k2 since
rk � 1), so we expect the deviation from the flat spacetime case to be larger at
small values of k.

In order to apply perturbation theory, we rewrite the radial equation explic-
itly in terms of r and k

∂2
rRlk(r) +

`

r2(1− `/r)
∂rRlk(r) +

[
k2

(1− `/r)2
− l(l + 1)

r2(1− `/r)

]
Rlk(r) = 0 .

(5.106)
Expanding the solution Rlk(r) (and the coefficients of the equation) in powers
of `

Rlk(r) = R
(0)
lk (r) + `R

(1)
lk (r) + `2R

(2)
lk (r) + . . . , (5.107)

and inserting these expansions into the radial equation, we obtain

`0 ∂2
rR

(0)
lk (r) +

[
k2 − l(l + 1)

r2

]
R

(0)
lk (r) = 0 ,

`1 ∂2
rR

(1)
lk (r) +

1

r2
∂rR

(0)
lk (r) +

[
k2 − l(l + 1)

r2

]
R

(1)
lk (r)+

+

[
2k2

r
− l(l + 1)

r3

]
R

(0)
lk (r) = 0 ,

`2 ∂2
rR

(2)
lk (r) +

1

r2
∂rR

(1)
lk (r) +

1

r3
∂rR

(0)
lk (r) +

[
k2 − l(l + 1)

r2

]
R

(2)
lk (r)+

+

[
2k2

r
− l(l + 1)

r3

]
R

(1)
lk (r) +

[
3k2

r2
− l(l + 1)

r4

]
R

(0)
lk (r) = 0 ,

. . .

(5.108)

We also have to implement the boundary condition given by Eq. (5.70) at each
order

R
(plane)
lk (r)

r→∞' kr jl

(
kr + k` log

(r
`
− 1
))

. (5.109)

By expanding both sides of the above expression in powers of `, we obtain

`0 R
(0)
lk (r)

r→∞' kr jl(kr) ,

`1 R
(1)
lk (r)

r→∞' kr j′l(kr)k log
(r
`

)
,

`2 R
(2)
lk (r)

r→∞' kr

(
1

2
k2 log

(r
`

)2

j′′l (kr)− k

r
j′l(kr)

)
,

. . .

(5.110)

We need the radial equation solution only for l = 1. At zero order, from Eqs.
(5.108) and (5.110) it follows immediately that

R
(0)
1k (r) = kr j1(kr) =

sin(kr)

kr
− cos(kr) . (5.111)
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Inserting this result into Eq. (5.108) and making use of Eq. (5.110), we obtain
at first order in `

R
(1)
1k (r) =

{
cos(kr)

2kr
+

3 sin(kr)

4(kr)2
+

(
cos(kr)

kr
+ sin(kr)

)(
log
(r
`

)
− Ci(2kr)

)
+

+

(
cos(kr)− sin(kr)

kr

)(
Si(2kr)− π

2

)}
k ,

(5.112)

where Ci(x) (Si(x)) is the Cosine (Sine) integral. At second order, we can
still find an approximate solution for kr � 1; however, we are not able to find
a solution at r → ∞, and consequently we cannot implement the boundary
condition.

We want to compare the approximate solution derived here with the nu-
merical solution that one can obtain from the exact radial equation (5.106).

In Fig. 11, we plot the function R(k) = 3
k2b2R

(plane)
1k (b) for a certain range of

parameters.
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Figure 11: Numerical solutions of the radial wave equation, R(k) =
3

k2b2R
(plane)
1k (b), are represented by dots, while the first-order analytic solutions

are represented by solid lines. The lowest curve corresponds to the flat spacetime
solution R(k) = (j0(kb) + j2(kb)), while upper curves correspond to increasing
` in the range 10−9 ≤ ` ≤ 10−6. The size of the defect has been set to b = 0.2.

We observe good agreement between the two sets of solutions (perturbative
and numerical), and we notice also that, as expected, the solutions deviate from
the ` = 0 case as k decreases.

Inserting the solution R
(plane)
1k (r) = R

(0)
1k (r) + `R

(1)
1k (r) into Eq. (5.94),

which gives electric and magnetic permeabilities, we observe that, since R(k) =
3

k2b2R
(plane)
1k (b) grows indefinitely as k decreases, there exists a critical k = kc

below which the magnetic permeability µ is negative. This means that the
refractive index n =

√
εµ becomes imaginary and the plane wave, instead of

propagating through the space, is damped. We conclude that a spacetime filled
with a distribution of massive defects appears to be opaque to low-frequency
radiation. In Fig. 12 we show the behavior of the group velocity

v(k) =
d

dk
ω(k) =

d

dk

ck√
ε(k)µ(k)

, (5.113)
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that one obtains from this solution.
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Figure 12: Group velocity for different dispersion relations: the red dotted line
describes the standard dispersion relation in the absence of defects (ω2 = c2k2);
the blue dashed line represents the dispersion relation obtained from defects
with ` = 0 (Eq. (5.45)); and the green solid line corresponds to defects with
` > 0 (Eq. (5.95)). We used c = 1, b = 1, ρ = 0.006, ` = 0.005.

We note that indeed the velocity of propagation drops to zero at some kc
larger than zero. Moreover, for certain values of ρ, as k grows from kc a maxi-
mum peak is reached before the curve approaches the flat spacetime result.

Finally, expanding Eq. (5.95) in powers of `, ρb3, and kb we obtain

ω2 ' (1− 2ρπb3)c2k2 +
ρπb5

5
c2k4 + ρπc2`

{
3

2
(−5 + 4(γ + log(2`k))+

+

(
−13

4
+ 3(γ + log(2`k))

)
b2k2 − πb3k3+

+

(
143

20
− 3(γ + log(2`k))

)
b4

4
k4 + . . .

}
+ . . . ,

(5.114)

where γ is the Euler–Mascheroni constant. An interesting feature of this
dispersion relation, with respect to the flat spacetime case, is the appearance of
a negative (at first order in ρb3) mass term:

m2 = −3

2
ρπc2`(5− 4γ) + . . . . (5.115)

6 Defect metric

6.1 Metric (review)

We now introduce a different type of defect. As we mentioned at the beginning
of this part, such a defect has the same topology as that described in the previous
section, but the two are not diffeomorphic. An important feature of this new
type of defect is that it is a vacuum solution of general relativity. The defect
described in the previous section, instead, is not even a differentiable manifold
in spherical coordinates, while, in the coordinate system {t, ỹ, z, x}, it has a
singular Ricci scalar (see Eq. (5.19)). The metric describing the new defect was
obtained in Ref. [69] and further discussed in Refs. [85, 86, 87] in the context
of black hole physics (see part V in this regard).
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In a coordinate system {t, y, z, x} analogous to the one introduced in the
previous section, the metric takes the form

ds2 = −

(
1− `√

y2 + b2

)
dt2 +

y2

y2+b2

1− `√
y2+b2

dy2 + (y2 + b2)(dz2 + sin2 z dx2) ,

(6.1)
where b is the defect radius and ` is related to the defect mass by m = `/2. In
this section, however, we only consider the simplest case of a massless defect,
for which the defect metric simplifies to

ds2 = −dt2 +
y2

y2 + b2
dy2 + (y2 + b2)(dz2 + sin2 z dx2) . (6.2)

The coordinates {t, y, z, x} have ranges

t ∈ (−∞,+∞) , y ∈ (−∞,+∞) , z ∈ (0, π) , x ∈
(
−π

2
,
π

2

)
. (6.3)

A crucial difference with respect to the coordinates {t, ỹ, z, x} introduced in the
previous section is the relation between this new set of coordinates and standard
spherical coordinates (given by Eqs. (5.7)-(5.15) for the previous type of defect).
In this case, the radial coordinate r is related to y by the equation

r =
√
y2 + b2 , ∀y , (6.4)

whose inverse is  y =
√
r2 − b2 , |φ| < π

2
,

y = −
√
r2 − b2 , |φ| > π

2
.

(6.5)

The above transformations can be regarded as a posteriori conclusions. In
fact, one does not need to know the relationship between the coordinate system
{t, y, z, x} and standard spherical coordinates, in order to derive the metric
(6.2). However, Eq. (6.4) must hold if we want the metric (6.2) to be equivalent
to the Minkowski metric away from the defect surface.

Instead, the angular coordinates θ and φ are related to the coordinates z
and x, as in the previous section. So, for example, the change of coordinates in
the chart U1 surrounding the Cartesian axis x1 (given by Eqs. (5.7), (5.8) in
the previous section) is given in this case by


y1 =

√
r2 − b2 ,

z1 = θ ,

x1 = φ ,

|φ| < π

2
,


y1 = −

√
r2 − b2 ,

z1 = π − θ ,
x1 = φ− π ,

|φ| > π

2
.

(6.6)
r =

√
y2

1 + b2 ,

θ = z1 ,

φ = x1 ,

y1 > 0 ,


r =

√
y2

1 + b2 ,

θ = π − z1 ,

φ = x1 + π ,

y1 < 0 . (6.7)

The transformations for the charts U2 and U3 can be obtained similarly. In Fig.
13, the coordinate system {y, z, x} is compared to standard spherical coordi-
nates.
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Figure 13: Equatorial section (θ = z = π/2) of the defect. Blue solid lines
are used for spherical coordinates, red dashed lines are used for the coordinate
system {y, z, x} (observe that, from Eq. (6.4), we have r − b ' |y|

(
1− b

r

)
for large r). The shaded area represents the chart U1 in which the coordinate
system {y, z, x} is valid.

As for the previous type of coordinates, this new system of coordinates au-
tomatically implements the point-wise identification on the boundary of the
defect. Consequently, the defect manifold is completely determined by the met-
ric (6.2), with no need to introduce additional boundary conditions. Moreover,
the topology of the defect is the same as in the previous case (R× (RP 3−{0}),
see Eq. (5.6)); in fact, the change of coordinates (6.6) defines a global homeo-
morphism between the defect manifold (6.2) and the defect defined in Minkowski
spacetime (Eqs. (5.3) and (5.4)).

To show that the metric (6.1) is a vacuum solution of general relativity, we
simply need to compute the Ricci tensor Rµν . We recall that in vacuum the
Einstein field equations reduce to [88]

Rµν = 0 . (6.8)

The Ricci tensor is obtained by contracting the Riemann tensor Rρµσν and is
given by

Rµν = Rρµρν = ∂ρΓ
ρ
νµ − ∂νΓρρµ + ΓρρλΓλνµ − ΓρνλΓλρµ , (6.9)

where the Christoffel symbols are defined in Eq. (5.53). Inserting the metric
(6.1) into Eq. (6.9), one can readily verify that Eq. (6.8) is satisfied everywhere,
in particular at the defect surface y = 0. From this result it follows that the
Ricci scalar also vanishes everywhere, while the Kretschmann scalar does not
vanish but is regular everywhere

R = gµνRµν = 0 , K = RµνρσR
µνρσ =

12`2

(y2 + b2)3
. (6.10)

It is important to note that, also in this case, the change of coordinates (6.6)
is not a global diffeomorphism from the defect manifold (6.2) to Minkowski
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spacetime with a defect (Eqs. (5.3), (5.4)). This can be seen by considering
the transformation rule for the radial coordinate (6.4). This transformation is
continuous and differentiable everywhere, but it is not invertible around y = 0.
In fact, from the inverse function theorem it follows that a continuous differ-
entiable function is invertible around a point p only if its derivative does not
vanish at p. From Eq. (6.4), we have

r′(y) =
y√

y2 + b2
, (6.11)

which is indeed zero at y = 0. This implies that higher derivatives of the
inverse function (6.5) are divergent and discontinuous at the defect surface.
We observe that the transformation (6.6) is a local diffeomorphism in the two
separate regions y > 0 and y < 0.

Observe that, as we have already pointed out, the same is true for the
change of coordinates introduced in the previous section (Eqs. (5.7)-(5.15)); in
fact, it also does not define a global diffeomorphism from the defect manifold
(5.18) to Minkowski spacetime with a defect (Eqs. (5.3), (5.4)). Take again the
transformation rule for the radial coordinate, which is

r(y) = b+ |ỹ| . (6.12)

This function is not even differentiable at ỹ = 0, and it cannot represent a
global diffeomorphism. Once again, though, the transformation rule defines a
local diffeomorphism in the two separate regions ỹ > 0 and ỹ < 0.

A last remark concerns the case b = 0 (i.e. spacetime with no defect). In
this case, the two changes of coordinates (6.4) and (6.12) are equivalent and
reduce to

r(y) = |y| . (6.13)

Consequently, the metrics (5.18) and (6.2) also reduce to the same expression.
Equation (6.13) is again not differentiable at y = 0, but, as we shall see in the
next subsection, the scalar wave solutions that one obtains in this system of
coordinates are equivalent to those obtained in standard spherical coordinates
(this is not the case when b 6= 0). The point y = 0 now coincides with the origin
of the spherical coordinate system r = 0, which is itself ill-defined. There-
fore, the two manifolds, Minkowski spacetime in spherical coordinates and the
defect manifold in coordinates {t, y, z, x} with no defect (b = 0), are globally
diffeomorphic.

6.2 Scalar waves

In this subsection, we study the propagation of a scalar wave in the defect metric
(6.2), where the parameter b (the radius of the defect) is assumed to be strictly
larger than zero (b > 0). We refer to this metric as the “defect metric,” in
order to distinguish it from the Minkowski metric (which can be obtained, in
coordinates {t, y, z, x}, from Eq. (6.2) by setting b = 0).

The scalar wave equation (massless Klein-Gordon equation) in a general
metric is [89]

�Φ = ∇µ∇µΦ = g−
1
2 ∂µ

(
g

1
2 gµν∂νΦ

)
= 0 , (6.14)
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which, for the metric (6.2), reads

−∂2
t Φ+

y2 + b2

y2
∂2
yΦ+

2y2 − b2

y3
∂yΦ+

∂2
zΦ

y2 + b2
+

cot z ∂zΦ

(y2 + b2)
+

∂2
xΦ

(y2 + b2) sin2 z
= 0 .

(6.15)
Using the separation of variables Φ(t, y, z, x) = T (t)R(y)Z(z)X(x), one obtains
the set of equations

• ∂2
t T + k2T = 0 , (6.16a)

• y2 + b2

y2
∂2
yR+

2y2 − b2

y3
∂yR+

(
k2 − l(l + 1)

y2 + b2

)
R = 0 , (6.16b)

• ∂2
zZ + cot z ∂zZ +

(
l(l + 1)− m2

sin2 z

)
Z = 0 , (6.16c)

• ∂2
xX +m2X = 0 . (6.16d)

Observe that these equations, apart from the radial component (6.16b), are
locally equivalent to those obtained in spherical coordinates. Hence, we can
write the general solution as

Φ(t, y, z, x) =

∫
dk
∑
l,m

aklme
−ikt Φklm(y, z, x) , (6.17)

where
Φklm(y, z, x) = Rkl(y)Y ml (z, x) , (6.18)

and Rkl(y) are the solutions of the radial equation, while Y ml (z, x) are spherical
harmonics.

Solving the radial equation, we obtain for Rkl(y) the expression

Rkl(y) = c1 jl

(
k
√
y2 + b2

)
+ c2 yl

(
k
√
y2 + b2

)
, (6.19)

where c1 and c2 are arbitrary constants and jl(x) and yl(x) are the spherical
Bessel functions, respectively, of the first and second kind. The radial solution
for the case b = 0 is

R
(Min)
kl (y) = jl (k y) , (6.20)

and is equivalent to the solution that one finds in Minkowski spacetime in stan-
dard spherical coordinates. To fix the value of the constants c1 and c2 in Eq.
(6.19) we use the fact that, away from the origin y = 0, the change of variables
(6.6) is a local diffeomorphism. Hence, we can use it to impose the boundary
condition whereby, at spatial infinity

r =
√
b2 + y2

y→∞
' y , (6.21)

the solution Rkl(y) must approach the solution R
(Min)
kl (y) that one obtains in

Minkowski spacetime

Rkl(y)
y→∞
' jl(k y) . (6.22)

In this way, the radial solution (6.19) reduces to

Rkl(y) = jl(k
√
y2 + b2) . (6.23)
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By substituting this result into the expression for Φklm(y, z, x), we find a
scalar solution that behaves in a different way with respect to the result ob-
tained in Minkowski spacetime. In Minkowski spacetime, the solution has parity
eigenvalues (−1)l, while in the defect metric the solution has parity eigenvalues
(+1) for every l. The parity transformation in different systems of coordinates
is

~x =


(y, z, x)

(r, θ, φ)

(X,Y, Z)

P−→ −~x =


(−y, z, x) {t, y, z, x} ,
(r, π − θ, π + φ) Spherical ,

(−X,−Y,−Z) Cartesian .

(6.24)

Explicitly, the scalar solutions in the Minkowski and the defect metric transform
as

Φ
(Min)
klm = jl(kr)Y

m
l (θ, φ)

P→ jl(kr)Y
m
l (π − θ, φ+ π) = (−1)lΦ

(Min)
klm ,

Φ
(def)
klm = jl(k

√
y2 + b2)Y ml (z, x)

P→ jl(k
√

(−y)2 + b2)Y ml (z, x) = (+1)Φ
(def)
klm .

(6.25)

Since this is an important point, we wish to make it clear that the par-
ity behaviors of the two solutions are really different. Let us consider first
how the behavior under parity of the Minkowski solution in standard spheri-
cal coordinates translates in {y, z, x} coordinates. For simplicity, we consider
the case |φ| < π/2. The point ~x = (r, θ, φ) is mapped via Eq. (6.6) to

~x′ = (
√
y2 + b2, z, x). On the other hand, the parity transformation maps

the point ~x to −~x = (r, θ′, φ′) = (r, π − θ, π + φ), where now |φ′| > π/2.
Then, under the change of coordinates (6.6), the point −~x is mapped to −~x′ =

(
√
y2 + b2, π − z′, x′ + π), where z′ = π − θ′ = z and x′ = φ′ − π = x. Hence,

we have −~x′ = (
√
y2 + b2, π − z, x + π). From these considerations, we obtain

the scheme

jl(kr)Y
m
l (θ, φ)

coord←→
change

jl(k
√
y2 + b2)Y ml (z, x)

l P 6l P

jl(kr)Y
m
l (π − θ, φ+ π)

coord←→
change

jl(−k
√
y2 + b2)Y ml (z, x) .

(6.26)

The Minkowski solution expressed in {y, z, x} coordinates does not behave cor-
rectly under parity, i.e. it does not coincide with the solution obtained in the
defect metric. We can reverse the reasoning and investigate how the behavior
under parity of the defect solution Φ(def) is translated in spherical coordinates.
Avoiding the details, we end up with the scheme

jl(k
√
y2 + b2)Y ml (z, x)

coord←→
change

jl(kr)Y
m
l (θ, φ)

l P 6l P

jl(k
√
y2 + b2)Y ml (z, x)

coord←→
change

jl(kr)Y
m
l (θ, φ) .

(6.27)

Again, we see that the defect solution expressed in spherical coordinates is
different from the Minkowski solution. Instead, the solution that one obtains in
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Minkowski spacetime in coordinates {t, y, z, x} (i.e. setting b = 0 in the metric
(6.2))

Φ(Min)(t, y, z, x) = e−iktjl(ky)Y ml (z, x) , (6.28)

exhibits the same behavior under parity of the solution that one obtains in
Minkowski spacetime in spherical coordinates. The two solutions turn out to
be completely equivalent when b = 0.

One can try to build, in the defect metric, a radial solution that behaves like
the Minkowski solution, by imposing different boundary conditions at plus and
minus infinity, thereby obtaining

Rkl(y) = jl(kf(y)) =

{
jl(k

√
y2 + b2) , y > 0 ,

jl(−k
√
y2 + b2) , y < 0 .

(6.29)

This expression is completely equivalent to the solution in Minkowski spacetime.
The problem is that Eq. (6.29) is a solution of the radial equation (6.16b) only
in the two separate regions y > 0 and y < 0, but it is not a solution at y = 0
where it is discontinuous (for odd l). So, we have to reject this expression as a
possible solution of the scalar radial wave equation in the metric (6.2).

When we represent the defect in Minkowski spacetime (removing a ball of
radius b centered on the origin and identifying antipodal points on the bound-
ary), the solution (6.29) has to be corrected by a scattered field, in order to
satisfy the boundary condition at the defect surface. The boundary condition
we use is that the field must be continuous through the defect

Φ(t, b, θ, φ) = Φ(t, b, π − θ, φ+ π) . (6.30)

The total field is given by Φ(tot)(x) = Φ(Min)(x) + Φ(scat)(x), and we must
verify whether or not it can be an acceptable solution in the metric (6.2). The
scattered field can be written as a multipole expansion

Φ(scat)(x) =

∫
dk
∑
l,m

cklme
−iktzl(kr)Y

m
l (θ, φ) , (6.31)

where zl(kr) is a generic spherical Bessel function. Imposing the boundary
condition (6.30) at the defect surface, one can determine the constants cklm,
while the Sommerfeld radiation condition [90] allows us to identify zl(kr) with

the spherical Hankel function h
(1)
l (kr). In conclusion, the total field Φ(tot)(x)

can be expressed as

Φ(tot)(x) =

∫
dk
∑
l,m

aklme
−ikt

[
jl(kr)−

1− (−1)l

2

jl(kb)h
(1)
l (kr)

h
(1)
l (kb)

]
Y ml (θ, φ) .

(6.32)
Rewriting the radial part of this solution in the coordinate system {t, y, z, x},
we obtain

R
(tot)
kl (y) =


jl(k

√
y2 + b2)− 1− (−1)l

2

jl(kb)h
(1)
l (k

√
y2 + b2)

h
(1)
l (kb)

, y > 0 ,

jl(−k
√
y2 + b2)− 1− (−1)l

2

jl(−kb)h(1)
l (−k

√
y2 + b2)

h
(1)
l (−kb)

, y < 0 .

(6.33)
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Unlike Eq. (6.29), this last expression is continuous at the origin y = 0. More-
over, it satisfies the radial equation (6.16b) in the two separate regions y > 0
and y < 0. However, at the origin, the second derivative is discontinuous, and
therefore R(tot)(y) is not a solution of the radial equation (6.16b) at y = 0. We
conclude that the solution Φ(tot)(x) (Eq. (6.32)) that one obtains for a defect in
Minkowski spacetime is not a solution of the wave equation in the defect metric
(6.2). The solution of the wave equation in the metric (6.2) is given by Eqs.
(6.17), (6.18), and (6.23), namely

Φ(t, y, z, x) =

∫
dk
∑
l,m

aklme
−iktjl(k

√
y2 + b2)Y ml (z, x) . (6.34)

In Fig. 14, we show the behavior of the two radial functions Rkl(y) and

R
(tot)
kl (y) for l = 1 and l = 3.
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Figure 14: The behavior of the two radial functions obtained, respectively, in
the defect metric and in the manifold describing a defect in Minkowski space,
for l = 1 and l = 3 (k = 1 and b = 1). The blue solid line corresponds to Rkl(y)

(Eq. (6.23)), while the red dashed line describes R
(tot)
kl (y) (Eq. (6.33)).

6.2.1 Radial equation around y = 0

We have observed that the solutions that one obtains in Minkowski spacetime
and in the defect metric are equivalent in the two separate regions y > 0 and
y < 0, but they are not at the origin y = 0. We want to study in more detail, in
a neighborhood of the origin, the radial wave equation in the defect metric (6.2)
(b > 0) and in the Minkowski metric (b = 0), both expressed in the coordinate
system {t, y, z, x}. The two radial equations are

∂2
yR+

2

y
∂yR+

(
k2 − l(l + 1)

y2

)
R = 0 , Minkowski metric ,

(6.35a)

y2 + b2

y2
∂2
yR+

2y2 − b2

y3
∂yR+

(
k2 − l(l + 1)

y2 + b2

)
R = 0 , defect metric .

(6.35b)
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Since for both equations the origin is a regular singular point, we can use the
Frobenius method [91] to find the solutions around y = 0. With this method,
we look for solutions of the form

R(y) = ys
∞∑
n=0

cn y
n , c0 6= 0 , (6.36)

where the exponent s is, in general, a real number. Before proceeding, it is
useful to rewrite Eqs. (6.35) in the more suitable form

y2R′′ + y p(y)R′ + q(y)R = 0 , (6.37)

where the coefficients p(y) and q(y) are expanded in powers of y: p(y) = p0 +
p1y+p2y

2 + . . . , q(y) = q0 + q1y+ q2y
2 + . . . . Substituting the expansion (6.36)

into Eq. (6.37), one obtains

∞∑
n=0

[(n+ s)(n+ s− 1) + p(y)(n+ s) + q(y)] cn y
n+s = 0 , (6.38)

and, in particular, for n = 0, one has[
s2 + (p0 − 1)s+ q0

]
c0y

s = 0 , (6.39)

Recalling that we assumed c0 6= 0, we arrive at the so-called “indicial” equation

s2 + (p0 − 1)s+ q0 = 0 , (6.40)

which has, in general, two roots, s1 and s2, corresponding to two independent
solutions. We assume that the roots are real and s1 ≥ s2. The solution cor-
responding to the largest root can always be obtained from Eq. (6.36) with
s = s1, but if the difference between the two roots ∆s = s1 − s2 is an integer,
the second solution is given by

R2(y) = αR1(y) log y + ys2
∞∑
n=0

dn y
n , d0 6= 0 . (6.41)

We can now rewrite Eq. (6.38) as

ys
∞∑
n=0

{
[(n+ s)(n+ s− 1) + (n+ s)p0 + q0] cn + [(n+ s− 1)p1 + q1] cn−1+

+ [(n+ s− 2)p2 + q2] cn−2 + . . .
}
yn = 0 ,

(6.42)

from which the coefficients cn of the first solution can be determined and turn
out to be

cn = −
∑∞
i=1 [(n+ s1 − i)pi + qi] cn−i

[(n+ s1)(n+ s1 − 1) + (n+ s1)p0 + q0]
. (6.43)

When ∆s is an integer, one has to insert the expression (6.41) into the differential
equation (6.37), in order to find the coefficients of the second solution. After
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some algebra, one obtains the recursion relation

dn =
−1

[(n+ s2)(n+ s2 − 1) + (n+ s2)p0 + q0]

{ ∞∑
i=1

[
(n+ s2 − i)pi + qi

]
dn−i+

+α
[
− cn−∆s + 2(n+ s2 − 2)cn−∆s−2 +

∞∑
i=0

picn−∆s−i
]}

,

(6.44)

from which the value of α is also determined.
For the specific equations in which we are interested (Eq. (6.35)), the func-

tions p(y) and q(y), and their expansions, are{
p(y) = 2 ,

q(y) = −l(l + 1) + k2y2 ,
Minkowski metric , (6.45a)


p(y) =

2y2 − b2

y2 + b2
= −1 +

3

b2
y2 − 3

b4
y4 + . . . ,

q(y) =
y4

y2 + b2

(
k2 − l(l + 1)

y2 + b2

)
=
b2k2 − l(l + 1)

b4
y4 + . . . ,

defect metric ,

(6.45b)
from which we obtain the coefficients pi and qi. The solutions of the indicial
equation are the roots s1 = l, s2 = −(l + 1) in the Minkowski metric, and
s1 = 2, s2 = 0 in the defect metric, where, in both cases, the difference ∆s is
an integer. This is a crucial point. Observe, in fact, that while the roots in the
Minkowski metric depend on l, those in the defect metric are independent of
l. From this fact originates the different behavior of the solutions under parity
transformation in the two metrics.

From Eq. (6.43), the coefficients cn can be calculated for both metrics, and
the first solutions (corresponding to the largest root) turn out to be (we can set
c0 = 1 without any loss of generality)

R
(Min)
1 (y) = yl

{
1− k2

4l + 6
y2 +

k4

8(4l(l + 4) + 15)
y4 + . . .

}
, (6.46a)

R
(def)
1 (y) = y2

{
1− 3

4b2
y2 +

l(l + 1)− b2k2 + 15

24b4
y4 + . . .

}
, (6.46b)

From Eq. (6.44), which gives the coefficients of the second solutions, we obtain
(again, we set d0 = 1)

R
(Min)
2 (y) =αR

(Min)
1 log y+

+ y−l−1

{
1 +

k2

4l − 2
y2 +

αc2−2l

6(l − 1)
y3 +

k4

(8l − 12)(4l − 2)
y4 + . . .

}
,

(6.47a)

R
(def)
2 (y) = y0

{
1 + d2y

2 +
l(l + 1)− b2(k2 + 6d2)

8b4
y4 + . . .

}
. (6.47b)

Note that the parameter α in R
(Min)
2 (y) depends on the value of l (for example,

for l = 1 we obtain α = 0). In R
(def)
2 (y), the coefficient d2 is undetermined and

we can choose to set it to zero (d2 = 0).
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Finally, the general solutions are given by

R(Min)(y) = aR
(Min)
1 (y) + bR

(Min)
2 (y) , (6.48a)

R(def)(y) = cR
(def)
1 (y) + dR

(def)
2 (y) . (6.48b)

In Minkowski spacetime, the first solution R
(Min)
1 (y) is proportional to jl(ky)

and has parity (−1)l, while the second solution R
(Min)
2 (y) is proportional to

yl(ky) and has parity (−1)−l−1. In the defect metric, instead, both solutions,

R
(def)
1 (y) and R

(def)
2 (y), have parity +1, and consequently there is no way to

build a solution that is odd under parity.
In Fig. 15 we show the behavior of the solutions (6.48) (truncated at order

y4+s) for l = 1 compared to the exact solutions. To obtain the coefficients a, b,
c, and d we impose that the solutions (6.48) and their derivatives coincide with
the exact solutions in the proximity of the origin:

R(Min)(y) = jl(ky) y ∼ 0 , (6.49a)

R(def)(y) = jl(k
√
y2 + b2) y ∼ 0 . (6.49b)

-3 -2 -1 1 2
y

-0.4

-0.2

0.2

RHyL

(a) Minkowski metric, R(Min)(y)
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Figure 15: The behavior of the two radial solutions derived in this subsection
and truncated at order y4+s (red dashed lines) compared to the exact results
presented in the previous subsection (blue solid lines). Fig. (a) depicts the result
obtained in Minkowski spacetime, while Fig. (b) shows the results obtained in
the defect metric (6.2) for l = 1, k = 1, and b = 1.

Considering for a moment the defect manifold defined by Eq. (5.18), we
observe that this metric is not differentiable at ỹ = 0. This means that the
Klein-Gordon equation is not defined around ỹ = 0. If we write the scalar
radial equation (analogous to Eq. (6.16b)) in this metric, we obtain

∂2
ỹR+

2ỹ

|ỹ|(b+ |ỹ|)
∂ỹR+

(
k2 − l(l + 1)

(b+ |ỹ|)2

)
R = 0 , (6.50)

whose coefficients are not continuous at ỹ = 0. This equation is perfectly defined
instead in the two separate regions ỹ > 0 and ỹ < 0, in which the defect manifold
with metric (5.18) is diffeomorphic to Minkowski spacetime and to the defect
manifold with metric (6.2). Consequently, the scalar solutions obtained in these
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last two manifolds, opportunely transformed, can serve also as solutions in the
present case, since they are continuous at the defect surface. From the result in
Minkowski spacetime Eq. (6.32), we obtain the radial solution

RAkl(ỹ) =


Re

[
jl(k(b+ |ỹ|))− 1− (−1)l

2

jl(kb)h
(1)
l (k(b+ |ỹ|))
h

(1)
l (kb)

]
, ỹ > 0,

Re

[
jl(−k(b+ |ỹ|))− 1− (−1)l

2

jl(−kb)h(1)
l (−k(b+ |ỹ|))

h
(1)
l (−kb)

]
, ỹ < 0.

(6.51)
From the result in the defect metric Eq. (6.34), we obtain the solution

RBkl(ỹ) = jl(k(b+ |ỹ|)) , ∀ ỹ 6= 0 . (6.52)

Observe that these solutions have different behaviors under parity—RAkl(ỹ) has
parity eigenvalues (−1)l, while RBkl(ỹ) has parity eigenvalues (+1). We conclude
that in the non-smooth defect metric (5.18) the parity of the scalar solutions
is not determined. We want to stress also that the two solutions RAkl(ỹ) and
RBkl(ỹ), even if they do define functions everywhere, are not differentiable at
ỹ = 0 and therefore cannot be regarded as the solutions of any differential
equation around ỹ = 0 [91]. On the other hand, the solution (6.23) obtained in
the smooth defect metric (6.2) is perfectly defined and well-behaved (continuous
and differentiable) as a solution of the radial equation (6.16b) around y = 0.
See also Ref. [92] for a comparison of the different types of defects.

6.2.2 Plane waves

We wish to understand how a plane scalar wave propagating along the X Carte-
sian axis behaves in the defect metric (6.2) with b > 0, compared to the standard
Minkowski case b = 0. For the moment, we do not consider the time depen-
dence of the wave. Using the plane wave expansion, we obtain in the coordinate
system {y, z, x}

Φ(plane)
even (y, z, x) = 4πΦ0

∑
l=even

l∑
m=−l

iljl(k r(y))Y ml (z, x)Y ∗ml (zk, xk) , (6.53a)

Φ
(plane)
odd (y, z, x) = 4πΦ0

∑
l=odd

l∑
m=−l

iljl(k r(y))Y ml (z, x)Y ∗ml (zk, xk) , (6.53b)

where r(y) = y in Minkowski spacetime and r(y) =
√
y2 + b2 in the defect

metric. Setting zk = π/2 and xk = 0, corresponding to a wavevector ~k aligned
with the X axis, we can rewrite Eqs. (6.53) more compactly as

Φ(plane)
even (y, z, x) = Φ0 cos (k r(y) sin z cosx) , (6.54a)

Φ
(plane)
odd (y, z, x) = Φ0 sin (k r(y) sin z cosx) , (6.54b)

the behavior of which is shown in Fig. 16.
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Figure 16: Behavior of the plane waves propagating along the Cartesian X axis
in the defect metric (red solid line) and in Minkowski spacetime (blue dashed
line). The shaded area around the origin represents the defect of radius b. We
used z = π/2, x = 0, b = 1, and k = 2.

The plane wave on one side of the defect is equal to that on the other side
shifted by a phase δ (in Fig. 16, the phases are, respectively, δ = 0 (a) and δ = π
(b)). This phase shift can be expressed as a function of the distance between
the defect position and the zeros of the plane wave. For example, consider a
plane wave propagating along the X axis with initial phase δ0

Φ(plane)(X) = Φ0 sin (kX + δ0) , (6.55)

and a defect centered on the X axis at X1. The phase of the wave on the other
side of the defect is given by

δ1 = π − δ0 − 2kX1 . (6.56)

We can use this formula iteratively to obtain the phase δn of the plane wave
after encountering n defects randomly distributed along the X axis at positions
{Xi}:

δn =


δ0 + 2k

n∑
i=1

(−1)i+1Xi , n even ,

π − δ0 − 2k

n∑
i=1

(−1)i+1Xi , n odd .

(6.57)

Explicitly, the first few phases are

δ1 = π − δ0 − 2kX1 ,

δ2 = δ0 + 2k(X1 −X2) ,

δ3 = π − δ0 − 2k(X1 −X2 +X3) ,

δ4 = δ0 + 2k(X1 −X2 +X3 −X4) .

(6.58)

Examples are shown in Figs. 17 and 18.
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Figure 17: Plane wave propagating along the X axis encountering 4 defects (red
solid line), compared to the same wave propagating in Minkowski spacetime
(blue dashed line). The phase shifts are obtained from Eq. (6.57). We used
z = π/2, x = 0, b = 1, and k = 2.
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Figure 18: Same as in Fig. 17, but in the case of many defects with mean
separation and sizes much smaller than the wavelength of the plane wave.

If the distribution of defects is dense, we can use an approximation to ma-
nipulate Eq. (6.57). We assume that n defects are randomly distributed in
the interval ∆X with linear density ρl = n/∆X. Then, each defect has at its
disposal an average interval δX = ∆X/n = 1/ρl. When δX � ∆X, we can ap-
proximate the random distribution of defects with a regular distribution, where
the defects are separated by the fixed distance δX. In this way, we can rewrite
the sum in Eq. (6.57) as

n∑
i=1

(−1)i+1Xi '
δX

2
+

n∑
i=2

(−1)i+1δX

(
1

2
+ i− 1

)
= (−1)n+1 ∆X

2
. (6.59)

Substituting this result into Eq. (6.57), we arrive at

δn '

{
δ0 − k∆X , n even ,

π − δ0 − k∆X , n odd .
(6.60)

Observe that this result does not depend on the density of defects ρl (but it is
a good approximation only for δX � ∆X). By choosing the initial phase as
δ0 = π/2, Eq. (6.60) provides the same result for n even and n odd.

We now consider the case in which the plane wave interacts whit defects
obtained from Minkowski spacetime by surgery (Eqs. (5.3) and (5.4)), and then
we compare the results with those obtained above for defects described by the
defect metric (6.2). The solution of the radial Klein-Gordon equation around a
defect in Minkowski spacetime is given by Eq. (6.33). Note that this solution
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differs from that in the defect metric (Eq. (6.23)) only for odd values of l. From
the plane wave expansion, we obtain in this case

ΦM(plane)
even (y, z, x) = 4πΦ0

∑
l=even

l∑
m=−l

ilRkl(y)Y ml (z, x)Y ∗ml (zk, xk) , (6.61a)

Φ
M(plane)
odd (y, z, x) = 4πΦ0

∞∑
l=odd

l∑
m=−l

ilR
(tot)
kl (y)Y ml (z, x)Y ∗ml (zk, xk) , (6.61b)

where Rkl(y) and R
(tot)
kl (y) are given by, respectively, Eq. (6.23) and Eq. (6.33).

A plane wave of the form of Eq. (6.55), propagating along the X axis with an
initial phase δ0, can be written in the Minkowski and defect metrics as

Φ(plane)(y, z, x) = Φ0 sin (k r(y) sin z cosx+ δ0) , (6.62)

where r(y) = y in standard Minkowski spacetime and r(y) =
√
y2 + b2 in the

defect metric. For a defect in Minkowski spacetime, this plane wave can be
expressed as

ΦM(plane)(y, z, x) = sin δ0 ΦM(plane)
even (y, z, x) + cos δ0 Φ

M(plane)
odd (y, z, x) . (6.63)

In Fig. 19, we compare the behavior of Eq. (6.62) and Eq. (6.63) for δ0 = 0 (a)
and for δ0 = π/4 (b).
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Figure 19: Behavior of plane waves propagating along the Cartesian X axis in
the defect metric (6.2) (red solid line), in standard Minkowski spacetime (blue
dashed line) and in Minkowski spacetime with a defect (green dashed line).

Specifically, red solid lines describe Eq. (6.62) for r(y) =
√
y2 + b2, blue dashed

lines describe Eq. (6.62) for r(y) = y, and green dashed lines describe Eq.
(6.63). In Fig. (a) the initial phase is δ0 = 0, while in Fig. (b) we set δ0 = π/4.
The shaded area around the origin represents the defect of radius b. We used
z = zk = π/2, x = xk = 0, b = 1 and k = 2.

Observe that, when λ� b, Eq. (6.61b) differs significantly from the solution
in standard Minkowski spacetime only in a small neighborhood of the defect. We
can conclude that, in this limit, the plane wave does not experience any phase
shift when crossing a defect obtained from Minkowski spacetime by surgery.
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6.2.3 Dispersion relation

We can use the phase shifts calculated in the previous section to derive the
dispersion relation for scalar waves. Observe that Eq. (6.57) is obtained for
a distribution of defects centered on the X axis and for a plane wave propa-
gating along the same axis. This means, ultimately, that we are restricted to
a two-dimensional spacetime (t,X). We want to obtain the dispersion relation
for such a spacetime (that is, a two-dimensional spacetime filled with a distribu-
tion of defects described by the defect metric (6.2)), and then compare it with
the dispersion relation for a two-dimensional spacetime where the defects are
obtained by surgery on Minkowski spacetime (Eqs. (5.3), (5.4)).

We follow the approach of Ref. [93] and consider a plane wave propagating
initially in (two-dimensional) vacuum Minkowski spacetime (region I). At a
certain point (t0, X0), the plane wave enters a region II of length ∆X filled with
a distribution of defects with linear density ρl = n/∆X, and then continues to
propagate in vacuum Minkowski spacetime (region III), as illustrated in Fig.
20. The incident plane wave is (in Cartesian coordinates (t,X))

X0 X0+DX

I II III

X

t

Figure 20: Regions I and III represent vacuum Minkowski spacetime, while
region II, of length ∆X, is filled with a random distribution of defects with
density ρl. Also shown is the trajectory of a plane wave (red solid line) compared
to the trajectory of a plane wave propagating in standard Minkowski space (with
no defects) (blue dashed line).

Φ(plane)(t,X) = Φ0 sin(kX − ωt+ δ0) . (6.64)

In a vacuum, the plane wave covers the distance ∆X in the time ∆t = ∆X/c;
however, in the region filled with defects, the effective distance is ∆X ′ = ∆X −
2bn, and the crossing takes ∆t′ = (1− 2ρlb)∆X/c.

In the third (vacuum) Minkowski region, we translate the coordinates (t,X)
into a new set (t∗, X∗) whose origin is set at the point where the plane wave

emerges in region III. We indicate with Φ
(plane)
M0 the plane wave that crosses

region II with no defects (ρl = 0), with Φ
(plane)
Mρl

the plane wave that crosses a
region II filled with defects obtained from Minkowski spacetime by surgery and

with Φ
(plane)
dρl

the plane wave that crosses a region II filled with defects described
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by the defect metric (6.2). Explicitly, we have

Φ
(plane)
M0 (t∗, X∗) = Φ0 sin

(
k(X0 + ∆X) + kX∗ − ω

(
t0 +

∆X

c

)
− ωt∗ + δ0

)
,

Φ
(plane)
Mρl

(t∗, X∗) = Φ0 sin

(
k(X0 + ∆X) + kX∗ − ω

(
t0 +

∆X

c

)
− ωt∗+

+ω
2ρlb

c
∆X + δ0

)
,

Φ
(plane)
dρl

(t∗, X∗) = Φ0 sin

(
k(X0 + ∆X) + kX∗ − ω

(
t0 +

∆X

c

)
− ωt∗+

+ω
2ρlb

c
∆X + δn

)
,

(6.65)

where δn is given approximately by Eq. (6.60). Observe that, for a wave

propagating in a vacuum (Φ
(plane)
M0 ), coordinates (t∗, X∗) are related to standard

coordinates (t,X) by the transformations

t = t0 +
∆X

c
+ t∗ ,

X = X0 + ∆X +X∗ .
(6.66)

We can use these transformations to rewrite Eq. (6.65) in standard coordinates
(t,X)

Φ
(plane)
M0 (t,X) = Φ0 sin (kX − ωt+ δ0) ,

Φ
(plane)
Mρl

(t,X) = Φ0 sin

(
kX − ωt+ ω

2ρlb

c
∆X + δ0

)
,

Φ
(plane)
dρl

(t,X) = Φ0 sin

(
kX − ωt+ ω

2ρlb

c
∆X + δn

)
.

(6.67)

By choosing the initial phase shift as δ0 = π/2, the total phase shift experienced
by the plane wave crossing region II is

δMρl = ω
2ρlb

c
∆X ,

δdρl = ω
2ρlb

c
∆X − k∆X .

(6.68)

We remember that these results are based on approximations that are valid in
the limit λ� 1/ρl � b.

We can compare the above phase shifts with that obtained for a standard
material with a refractive index n

δmat =
ω

c
(1− n)∆X . (6.69)

The refractive index of the region of space filled with defects turns out to be

nMρl = 1− 2ρlb ,

ndρl = 2− 2ρlb ,
(6.70)
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where we have used the fact that ω and k, in Eq. (6.65), are related by ω = ck.
From Eq. (6.70) we see that the modified dispersion relation (ω = ck/n) of the
massless scalar field changes depending on which type of defect we consider. In
particular, for a spacetime filled with defects obtained from Minkowski space-
time by surgery, the group velocity vMρl is larger than c, while, for a spacetime
filled with defects described by the defect metric, vdρl is smaller than c.

6.3 Electromagnetic waves

We have derived the scalar wave solution in the defect metric (6.2). Now we
can construct the corresponding electromagnetic solutions. Since we have seen
that, in the two regions y > 0 and y < 0, the coordinates {y, z, x} and spherical
coordinates are related by diffeomorphism (see Eqs. (6.6), (6.7)), we can follow
two different approaches. The first is to interpret the scalar solution Φ(y, z, x)
as the Debye potential for the electromagnetic solution. The two are related (in
flat spacetime) by (see Sec. 6.3.1.1)

EE = ∇∧∇ ∧ (~rΦ) , EM = −BE , (6.71)

BE = −ik∇∧ (~rΦ) , BM = EE , (6.72)

where ‘E’ and ‘M ’ indicate two independent sets of solutions. The second
method involves starting directly from the electromagnetic solutions in spherical
coordinates and transforming them into the coordinate system {y, z, x} (see Sec.
6.3.1.2). In both cases, we arrive at the same two sets of solutions, depending

on which transformation law we use: ( ~E(+), ~B(+)) if we choose the change of

coordinates defined for y > 0, and ( ~E(−), ~B(−)) if we choose that defined for
y < 0. Explicitly, these solutions are

E(+)
y =

√
y2 + b2

y
Er(
√
y2 + b2, z, x) ,

E(+)
z = Eθ(

√
y2 + b2, z, x) ,

E(+)
x = Eφ(

√
y2 + b2, z, x) ,


E(−)
y = E(+)

y (y, π − z, x+ π) ,

E(−)
z = −E(+)

z (y, π − z, x+ π) ,

E(−)
x = E(+)

x (y, π − z, x+ π) ,

(6.73)
and

B(+)
y =

√
y2 + b2

y
Br(

√
y2 + b2, z, x) ,

B(+)
z = Bθ(

√
y2 + b2, z, x) ,

B(+)
x = Bφ(

√
y2 + b2, z, x) ,


B(−)
y = −B(+)

y (y, π − z, x+ π) ,

B(−)
z = B(+)

z (y, π − z, x+ π) ,

B(−)
x = −B(+)

x (y, π − z, x+ π) ,

(6.74)
where the electric and magnetic fields in spherical coordinates are given in Eqs.
(6.93), (6.94). The signs in the above expressions have been arranged so that
the electromagnetic tensor has the same form in both regions y > 0 and y < 0:

Fµν =


0 −Ey −Ez −Ex
Ey 0 −Bx

√
y2+b2

y sin z
Bz
√
y2+b2

y sin z

Ez Bx

√
y2+b2

y sin z 0 − Bx y
(y2+b2)3/2 sin z

Ex
Bz
√
y2+b2

y sin z
Bx y

(y2+b2)3/2 sin z
0

 .

(6.75)
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The solutions ( ~E(+), ~B(+)) are explicitly given by Eqs. (6.88), (6.91). We
have to verify if these expressions are indeed solutions of the Maxwell equations
in the defect metric. Maxwell equations in a general metric are given by

∂µ(g1/2Fµν) = 0, ∂λFµν + ∂µFνλ + ∂νFλµ = 0 . (6.76)

By inserting Eq. (6.75) into (6.76), we observe that both sets, ( ~E(+), ~B(+)) and

( ~E(−), ~B(−)), solve the equations. We want to stress that each of these sets is a
valid solution in the whole coordinate domain −∞ < y <∞, even if they have
been obtained from a change of coordinates valid only in a restricted region
y > 0 or y < 0 (see Sec. 6.3.2).

The spherical wave solutions ( ~EMin, ~BMin) that one obtains in standard
Minkowski spacetime are given in the system of coordinates {y, z, x} (setting
b = 0 in Eqs. (6.73), (6.74)), by the combinations


EMin
y = Θ(y)E(+)

y −Θ(−y)E(−)
y ,

EMin
z = Θ(y)E(+)

z −Θ(−y)E(−)
z ,

EMin
x = Θ(y)E(+)

x + Θ(−y)E(−)
x ,


BMin
y = Θ(y)B(+)

y + Θ(−y)B(−)
y ,

BMin
z = Θ(y)B(+)

z + Θ(−y)B(−)
z ,

BMin
x = Θ(y)B(+)

x −Θ(−y)B(−)
x ,

(6.77)
where Θ(y) is the Heaviside step function. We observe that, analogously to the
scalar case, the solutions that one obtains in the defect metric when b = 0 are
equivalent to those in Minkowski spacetime in standard spherical coordinates.

From the study of the scalar field, we know that the nonstandard parity be-
havior of the solutions for the defect metric is the main difference with respect
to the standard Minkowski solutions (see Sec. 6.2). In Table 1, we have sum-
marized the behavior under parity of the electromagnetic solutions in standard
Minkowski spacetime and in the defect metric.

Minkowski solution P

EEr = BMr (−1)l

EEθ = BMθ (−1)l+1

EEφ = BMφ (−1)l

BEr = −EMr +1∗

BEθ = −EMθ (−1)l

BEφ = −EMφ (−1)l+1

defect solution P

EEy = BMy −1

EEz = BMz +1

EEx = BMx +1

BEy = −EMy +1∗

BEz = −EMz +1

BEx = −EMx +1

Table 1: Parity eigenvalues of the electromagnetic solutions of types E and M
in Minkowski spacetime and in the defect metrics.

We observe that the basis vectors, in the {y, z, x} coordinates system, trans-
form under parity as

P : (ŷ, ẑ, x̂)→ (−ŷ, ẑ, x̂) . (6.78)

∗The component vanishes identically.
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Consequently, the electric and magnetic fields, in order to be a vector and a
pseudovector, respectively, must transform as

P : (Ey, Ez, Ex)→ (Ey,−Ez,−Ex) , vector ,

P : (By, Bz, Bx)→ (−By, Bz, Bx) , pseudovector .
(6.79)

From Table 1 we see instead that both electric and magnetic field solutions in
the defect metric behave like pseudovectors.

6.3.1 Derivation of electromagnetic solutions

In this section, we want to describe in more detail how the general electro-
magnetic solutions in the defect metric (6.2) can be obtained. As mentioned
previously, we follow two different approaches that lead to the same results. The
first approach is based on the formalism of Debye potential, which makes use of
the scalar solution obtained in Sec. 6.2. The second approach consists in apply-
ing the change of coordinates (6.6) to the standard electromagnetic solutions in
Minkowski spacetime.

6.3.1.1 From Debye potential

We recall that the massless Klein-Gordon equation in the defect metric (6.2)
gives

Φ(y, z, x) = jl(k
√
y2 + b2)Y ml (z, x) . (6.80)

Due to the spherical symmetry of the metric, we can interpret this solution
as the Debye potential for the electromagnetic solutions in the same metric.
Following Ref. [74], in Minkowski spacetime, one has the relations

EE = ∇∧∇ ∧ (~rΦ) , EM = −BE ,
BE = −ik∇∧ (~rΦ) , BM = EE ,

(6.81)

where the superscripts ‘E’ and ‘M ’ stand for “electric” and “magnetic” and
denote two independent sets of solutions.

Since the defect metric is related to the Minkowski metric by a diffeomor-
phism in the two separate regions y > 0 and y < 0, we can use the change
of coordinates (6.7) in one of these regions to rewrite Eq. (6.81) in the defect
metric. In a general metric, one has

(∇∧ v)i = g−1/2εijk∂jvk , vk = gklv
l . (6.82)

The defect metric and its Jacobian determinant are

gij = diag

(
y2

y2 + b2
, y2 + b2, (y2 + b2) sin2 z

)
, g−1/2 =

1

y
√
y2 + b2 sin z

,

(6.83)
and consequently

vy =
y2

y2 + b2
vy , vz = (y2 + b2) vz , vx = (y2 + b2) sin2 z vx . (6.84)
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From Eq. (6.81) we have, in Minkowski spacetime, vi = riΦ, and via a change

of coordinates (observe that r =
√
y2 + b2 in both regions y > 0 and y < 0) we

can rewrite this in the defect metric as

~rΦ = (r, 0, 0)Φ −→
(
y2 + b2

y
, 0, 0

)
Φ . (6.85)

Finally, the components vi are given by

vy = yΦ , vz = 0 , vx = 0 . (6.86)

Inserting them into Eq. (6.82) gives
(∇∧ v)y = g−1/2 (∂zvx − ∂xvz) = 0 ,

(∇∧ v)z = g−1/2 (∂xvy − ∂yvx) = g−1/2∂xvy ,

(∇∧ v)x = g−1/2 (∂yvz − ∂zvy) = −g−1/2∂zvy ,

(6.87)

from which we can immediately read the magnetic field solution of type E and
the electric field solution of type M

BEy = −EMy = 0 ,

BEz = −EMz =
mk√

y2 + b2 sin z
jl(k

√
y2 + b2)Y ml (z, x) ,

BEx = −EMx =
ik√

y2 + b2 sin z
jl(k

√
y2 + b2)∂zY

m
l (z, x) .

(6.88)

For the electric field solution of type E (and for the magnetic field solution
of type M), we still have to insert the components (6.87) into Eq. (6.82). For
simplicity, we introduce the vector ui = gij(∇ ∧ v)j , the components of which
are

uy = 0 , uz =

√
y2 + b2

y sin z
∂xvy , ux = −

√
y2 + b2 sin z

y
∂zvy . (6.89)

As a result, one obtains
(∇∧∇ ∧ v)y = (∇∧ u)y = g−1/2 (∂zux − ∂xuz) ,
(∇∧∇ ∧ v)z = (∇∧ u)z = −g−1/2∂yux ,

(∇∧∇ ∧ v)x = (∇∧ u)x = g−1/2∂yuz .

(6.90)

The electric (magnetic) field solution of type E (M) turns out to be

EEy = BMy =
l(l + 1)

y
jl(k

√
y2 + b2)Y ml (z, x) ,

EEz = BMz =
1

y
√
y2 + b2

∂y

(√
y2 + b2jl(k

√
y2 + b2)

)
∂zY

m
l (z, x) ,

EEx = BMx =
im

y
√
y2 + b2 sin2 z

∂y

(√
y2 + b2jl(k

√
y2 + b2)

)
Y ml (z, x) .

(6.91)

The solutions obtained above correspond to what we called ( ~E(+), ~B(+)) in

Eqs. (6.73) and (6.74). A second set of solutions, corresponding to ( ~E(−), ~B(−)),
can be obtained starting from the Debye potential

Φ = jl(−k
√
y2 + b2)Y ml (z, x) . (6.92)
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6.3.1.2 From a change of coordinates

The set of electromagnetic solutions of type E and M in spherical coordinates in
Minkowski spacetime can be calculated easily by following the derivation of the
previous subsection. One has to start from the massless Klein-Gordon solution
in Minkowski spacetime (Φ = jl(kr)Y

m
l (θ, φ)), and then use the Minkowski

metric in spherical coordinates (gij = diag(1, r2, r2 sin2 θ)) in Eq. (6.81) . The
result is 

EEr = BMr =
l(l + 1)

r
jl(kr)Y

m
l (θ, φ) ,

EEθ = BMθ =
1

r2
∂r(r jl(kr))∂θY

m
l (θ, φ) ,

EEφ = BMφ =
im

r2 sin2 θ
∂r(r jl(kr))Y

m
l (θ, φ) ,

(6.93)

and 
BEr = −EMr = 0 ,

BEθ = −EMθ =
mk

r sin θ
jl(kr)Y

m
l (θ, φ) ,

BEφ = −EMφ =
ik

r sin θ
jl(kr)∂θY

m
l (θ, φ) .

(6.94)

We observe that these solutions are slightly different from those discussed in
Ref. [74], which is due to the different normalizations of the basis vectors (in
Ref. [74] the solutions are expressed in an orthonormal frame).

The relations between spherical coordinates and defect coordinates {y, z, x}
are 

r =
√
y2 + b2 ,

θ = z ,

φ = x ,

y > 0 ,


r =

√
y2 + b2 ,

θ = π − z ,
φ = x+ π ,

y < 0 , (6.95)

and the components of the electric and magnetic vectors transform in the two
regions according to the standard rule:

~E = Ei(x)
∂

∂xi
= E′j(y)

∂

∂yj
=

(
E′j(y(x))

∂xi

∂yj

)
∂

∂xi
=

(
Ei(x(y))

∂yj

∂xi

)
∂

∂yj

=⇒ E′j(y) =
∂yj

∂xi
Ei(x(y)) , Ei(x) =

∂xi

∂yj
E′j(y(x)) .

(6.96)

The change of basis matrix for the transformation (6.95) is

∂yj

∂xi
= diag

(√
y2 + b2

y
, c , 1

)
, where c =

{
+ 1 y > 0 ,

− 1 y < 0 .
(6.97)

Explicitly, from the change of coordinates defined in the region y > 0, one
obtains
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
Ey =

√
y2 + b2

y
Er(
√
y2 + b2, z, x) ,

Ez = Eθ(
√
y2 + b2, z, x) ,

Ex = Eφ(
√
y2 + b2, z, x) ,


By =

√
y2 + b2

y
Br(

√
y2 + b2, z, x) ,

Bz = Bθ(
√
y2 + b2, z, x) ,

Bx = Bφ(
√
y2 + b2, z, x) .

(6.98)
From Eqs. (6.93) and (6.94), we finally arrive at

EEy = BMy =
l(l + 1)

y
jl(k

√
y2 + b2)Y ml (z, x) ,

EEz = BMz =
1

y
√
y2 + b2

∂y

(√
y2 + b2jl(k

√
y2 + b2)

)
∂zY

m
l (z, x) ,

EEx = BMx =
im

y
√
y2 + b2 sin2 z

∂y

(√
y2 + b2jl(k

√
y2 + b2)

)
Y ml (z, x) ,

(6.99)
and 

BEy = −EMy = 0 ,

BEz = −EMz =
mk√

y2 + b2 sin z
jl(k

√
y2 + b2)Y ml (z, x) ,

BEx = −EMx =
ik√

y2 + b2 sin z
jl(k

√
y2 + b2)∂zY

m
l (z, x) .

(6.100)

Note that these solutions are valid across the whole defect manifold (y ∈
(−∞,+∞)). Furthermore, they are equivalent to the solutions obtained in
the previous subsection (Eqs. (6.88) and (6.91)) and correspond to the set

( ~E(+), ~B(+)). The solutions that one obtains using the change of coordinates
defined for y < 0 are equivalent to the solutions that one obtains starting from
the second Debye potential (6.92), and they correspond to the set ( ~E(−), ~B(−)).

As a last point, we need to derive the form of the electromagnetic tensor
(6.75) in the defect metric. We observe that a second-order tensor transform
according to

F ′ρσ(y) =
∂yρ

∂xµ
∂yσ

∂xν
Fµν(x(y)) , (6.101)

where the indices now also run over the time component. In the coordinate
system {t, y, z, x}, using the change of coordinates defined in region y > 0, the
electromagnetic tensor takes the form

Fµν =


0 −Ey −Ez −Ex
Ey 0 −Bx

√
y2+b2

y sin z
Bz
√
y2+b2

y sin z

Ez Bx

√
y2+b2

y sin z 0 − Bx y
(y2+b2)3/2 sin z

Ex
Bz
√
y2+b2

y sin z
Bx y

(y2+b2)3/2 sin z
0

 .

(6.102)

6.3.2 Study of Maxwell equations around y = 0

We wish to study in more detail the behavior of the solutions ( ~E(±), ~B(±)) and

( ~E(Min), ~B(Min)) around the origin y = 0. The Maxwell equations in a general
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metric are given by (see Sec. 5.3.1)

∂µ(g1/2Fµν) = 0, ∂λFµν + ∂µFνλ + ∂νFλµ = 0 . (6.103)

Explicitly, the first set of equations in the defect metric becomes

Ey = −y(y2 + b2)

2y2 − b2
(cot zEz + ∂xEx + ∂zEz + ∂yEy) ,

∂tEy =

√
y2 + b2

y
(2 cos zBx − csc z∂xBz + sin z∂zBx) ,

∂tEz =
1

y(y2 + b2)3/2

(
y2∂xBy

sin z
− (y2 + b2) sin z(2yBx + (y2 + b2)∂yBx)

)
,

∂tEx =
csc z

y(y2 + b2)3/2

(
2y(y2 + b2)Bz − y2∂zBy + (y2 + b2)2∂yBz

)
.

(6.104)

By substituting into these equations the solutions ( ~E(±), ~B(±)) obtained in
the defect metric (see Eqs. (6.73) and (6.74)) and the Minkowski solutions

( ~E(Min), ~B(Min)) given by Eq. (6.77), we can verify that both are suitable so-
lutions in the two separate regions y > 0 and y < 0. However, only one of the
two sets is a solution at y = 0. When b = 0, the set which solves Eqs. (6.104)

at y = 0 is ( ~E(Min), ~B(Min)), while ( ~E(±), ~B(±)) is discontinuous at the origin.

When b > 0, the solution is ( ~E(±), ~B(±)) and ( ~E(Min), ~B(Min)) is discontinu-
ous at y = 0. In Figs. 21 and 22 we show this behavior for the first of Eqs.
(6.104). We plot each side of the equation for the solutions ( ~E(+), ~B(+)) and

( ~E(Min), ~B(Min)) for b = 0 and for b > 0. In both cases, only one set of solutions
at a time turns out to be continuous at the origin.
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0.10

Eq HyL

(a) ( ~E(+), ~B(+)), b = 0

-10 -5 5
y
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0.10

Eq HyL

(b) ( ~EMin, ~BMin), b = 0

Figure 21: The left-hand side (blue solid line) and right-hand side (red dashed
line) of the first of Eqs. (6.104) evaluated for the two sets of solutions

( ~E(+), ~B(+)) and ( ~EMin, ~BMin) in standard Minkowski spacetime (b = 0). In
this case, the equation evaluated for the defect solution is discontinuous at y = 0,
while that evaluated for the Minkowski solution is continuous. We used k = 1,
l = 1, m = 0, and b = 0.
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Figure 22: Same as in the previous figure, but for solutions in the defect metric
(b > 0). In this case, the equation evaluated for the defect solution is continuous
at y = 0, while that evaluated for the Minkowski solution is discontinuous. We
used k = 1, l = 1, m = 0, and b = 1. Note that the equation has been multiplied
by a factor y, in order to avoid divergences at the origin.

Analogous behaviors are observed for the other equations.

6.3.3 Plane waves

Having obtained the electromagnetic solutions in the defect metric (6.2), we
want to study how an electromagnetic plane wave behaves in a spacetime foam
model made of defects of this type. Then, we want to compare this behavior
with that obtained for defects in Minkowski spacetime (Sec. 5.2).

Since the expansion of plane waves in spherical waves simplifies when the
direction of propagation is aligned with the x3 = Z Cartesian axis, we would
like to use the transformations defined on the chart U3 to relate spherical and
{y, z, x} coordinates. However, from Eqs. (5.11) and (5.12), we see that these
transformations are not well-defined. We decide to slightly modify the coordi-
nate system {y, z, x}, to simplify the change of coordinates around the Z axis.
The new coordinate system {y, z′, x′} has ranges

y ∈ (−∞,+∞) , z′ ∈ [0, π/2) , x′ ∈ [0, 2π) , (6.105)

and is related to standard spherical coordinates by the transformations
y3 =

√
r2 − b2 ,

z′3 = θ ,

x′3 = φ ,

|θ| < π

2
,


y3 = −

√
r2 − b2 ,

z′3 = π − θ ,
x′3 = φ− π ,

|θ| > π

2
.

(6.106)
r =

√
y2

3 + b2 ,

θ = z′3 ,

φ = x′3 ,

y > 0 ,


r =

√
y2

3 + b2 ,

θ = π − z′3 ,
φ = x′3 + π ,

y < 0 . (6.107)

Observe that this new set of coordinates does not modify the form of the defect
metric or of the electromagnetic solutions.
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We can now easily expand a plane electromagnetic wave propagating along
the Z axis in the defect metric in spherical coordinates, analogously to what we
did in Sec. 5.2.1. We obtain for the electric field

E(def)
r = E0

∑
l odd

il−1 2l + 1

kr
jl(kr)P

1
l (cos θ) cosφ

{
Θ
(π

2
− θ
)
+ (−1)lΘ

(
θ − π

2

)}
,

E
(def)
θ = E0

∑
l odd

il−1 2l + 1

kr
jl(kr)P

1
l (cos θ)

cosφ

tan θ

{
Θ
(π

2
− θ
)
− (−1)lΘ

(
θ − π

2

)}
,

E
(def)
φ = E0

∑
l odd

il−1 2l + 1

kr
jl(kr)P

1
l (cos θ)

sinφ

sin θ

{
Θ
(π

2
− θ
)
+ (−1)lΘ

(
θ − π

2

)}
,

(6.108)

where the results are expressed in standard spherical coordinates. Compar-
ing these expressions with the results that one obtains in standard Minkowski
spacetime (see Eq. (6.109) for the radial component), we observe that the two
solutions coincide for θ < π/2

E(Min)
r = E0

∑
l odd

il−1 2l + 1

kr
jl(kr)P

1
l (cos θ) cosφ

{
Θ
(π

2
− θ
)

+ Θ
(
θ − π

2

)}
.

(6.109)
In principle, it is possible to rewrite the plane wave in the defect metric as the
sum of the plane wave in Minkowski spacetime plus a scattered field. However,
such a scattered field cannot be expressed as the gradient of a potential of the
form (5.38). Hence, we cannot proceed along the line of Ref. [67] to obtain a
dispersion relation in this case.

Instead, we use the approach applied in Sec. 6.2.2, where we studied the
propagation of scalar plane waves in the defect metric. Consider the incident
plane wave (θ < π/2)

~Ein = E0 e
i k r cos θX̂ ,

~Bin = E0 e
i k r cos θŶ .

(6.110)

In spherical coordinates, it takes the form

~Ein = E0

∑
l

il−1 2l + 1

kr
jl(kr)P

1
l (cos θ)

{
cosφr̂ +

cosφ

tan θ
θ̂ +

sinφ

sin θ
φ̂

}
,

~Bin = E0

∑
l

il−1 2l + 1

kr
jl(kr)P

1
l (cos θ)

{
sinφr̂ +

sinφ

tan θ
θ̂ +

cotφ

sin θ
φ̂

}
,

(6.111)

and, as we said, it has the same expression in Minkowski spacetime and in the
defect metric. Instead, the outgoing wave is different in the two cases. For the
electric field, we have

~E
(Min)
out =E0

∑
l

il−1 2l + 1

kr
jl(kr)P

1
l (cos(π − θ)) {cos(φ+ π)r̂−

−cos(φ+ π)

tan(π − θ)
θ̂ +

sin(φ+ π)

sin(π − θ)
φ̂

}
,

~E
(def)
out = E0

∑
l

il−1 2l + 1

kr
jl(kr)P

1
l (cos θ)

{
cosφr̂ +

cosφ

tan θ
θ̂ +

sinφ

sin θ
φ̂

}
,

(6.112)
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and similarly for the magnetic field. From these expressions, we obtain

~E
(def)
out = (−1)l ~E

(Min)
out ,

~B
(def)
out = (−1)l ~B

(Min)
out .

(6.113)

This result can be expressed in terms of a phase shift δ in the outgoing wave.
We have δeven = 0 and δodd = π, respectively, for even plane waves (when the
sum in Eqs. (6.111) and (6.112) is restricted to even values of l) and for odd
plane wave (when the sum is restricted to odd l).

In analogy to the scalar field case, we consider a distribution of defects with
centers on the Z axis at coordinates {Zi}. Writing the incident electromagnetic
plane wave as

~Ein = E0 cos(k Z + δ0)X̂ ,

~Bin = E0 cos(k Z + δ0)Ŷ ,
(6.114)

where δ0 is a generic initial phase, we determine that the phase δn after n defects
is given by

δn =


− δ0 + 2k

n∑
i=1

(−1)i+1Zi , n even ,

π + δ0 − 2k

n∑
i=1

(−1)i+1Zi , n odd .

(6.115)

Given the linear number density of defects ρl = n/∆Z, where ∆Z is the interval
along the Z axis occupied by n defects (∆Z ' Zn − Zi + 2b), we find that, for
ρl � 1/∆Z, the approximation (6.59) can be used to calculate the phase δn,
which produces

δn '

{
− δ0 − k∆Z , n even ,

π + δ0 − k∆Z , n odd .
(6.116)

6.3.4 Dispersion relation

We have found that the phase shifts experienced by a plane electromagnetic wave
propagating through a distribution of defects (described by the defect metric
(6.2)) are equivalent to those experienced by a scalar field. We can therefore
repeat the derivation described in Sec. 6.2.3 without any modification. We
consider in this case the full 4-dimensional spacetime foam model obtained by
a random distribution, in the spatial hypersurface of Minkowski spacetime, of
defects (described by the defect metric) with number density ρ. That is, we now
consider defects distributed throughout the 3-dimensional space and not only
along the Z axis. In this case, the presence of the defects produces a shrinking
of the effective (spatial) volume perceived by the electromagnetic wave given by

∆V ′ =

(
1− 4

3
πρb3

)
∆V , (6.117)

which corresponds to an effective distance traveled by the particles given by

∆L′ = (∆V ′)1/3 =

(
1− 4

3
πρb3

)1/3

∆L . (6.118)
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Since the wave can now hit the defect on any point of its surface, the iden-
tification of antipodal points introduces an additional “inverting effect” that
distorts the shape of the wavefront, and which was not accounted for in the
simplified one-dimensional configuration discussed for the scalar field. To keep
things simple, we assume that, when b is much smaller than the wavelength λ,
we can neglect this “inverting effect” in the calculation of the dispersion rela-
tion. Note also that, even when the wave crosses the defect along a non-radial
direction, the phase shift that it experiences is still given by Eq. (6.56). Con-
sequently, even for defects in 4-dimensional spacetime, we can make use of the
formula (6.116).

Ultimately, given the incident plane wave

~Ein = E0 cos(k Z − ω t+ δ0)X̂ ,

~Bin = E0 cos(k Z − ω t+ δ0)Ŷ ,
(6.119)

where we set for simplicity δ0 = −π/2, we determine that the dispersion relation
for such a wave in the spacetime foam model described herein is given by

ω =
c k

1 +
(
1− 4

3πρb
3
)1/3 . (6.120)

We emphasize that this result is valid in the limit λ3 � 1/ρ� b3.
Comparing the dispersion relation (6.120) with that for defects in Minkowski

spacetime, Eq. (5.46), we observe that the two are completely different. In
particular, the result obtained here describes a spacetime foam model that is
not dispersive, while Eq. (5.46) describes a dispersive medium.

96



Part IV

Numerical calculations of a
lattice spacetime foam model
In this part, we develop a numerical method to study non-perturbatively the
effects of a spacetime foam model, made up of extended topological defects, on
the propagation of particles. This approach is useful to investigate the effects
of a distribution of time-dependent extended defects on particle propagation.
We consider a free, massive scalar field in a regular square lattice (of lattice
spacing a) filled with a random distribution of topological defects. The defects
are represented by holes of volume vd in the lattice with appropriate boundary
conditions (see Fig. 23). In the resulting lattice model, it is useful to introduce
dimensionless parameters (defined in terms of the lattice spacing a) in place of
the dimensionful parameters of the continuous theory. For example, the mass m
is substituted by the dimensionless mass m1 = am, and the number density of
defects ρd is substituted by the dimensionless density η = vd ρd, which represents
the fraction of lattice sites occupied by the defects.

Figure 23: Example of a two-dimensional lattice filled with non-static extended
defects. Black disks represent ordinary sites, while small red circles represent
sites that have been removed from the lattice (defects). Sites separated by a
line or a column of empty sites become nearest neighbors.

For simplicity, we describe the case of a two-dimensional lattice, but the
extension to higher dimensions is straightforward, and ultimately we also present
results for three- and four-dimensional lattices.

7 Lattice action

The lattice scalar field action is obtained by discretizing the continuum action
of the free scalar field in Euclidean space. From the standard free scalar field
action in two dimensions (see, for example, Ref. [48]), after a Wick rotation, we
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obtain

SE = i

∫
V

d2x
1

2

{
(∂0φ(x))2 + (∂1φ(x))2 +m2φ(x)2

}
⇒

⇒ i

N(V )∑
i,j

a2 1

2

{(
φ(a(i+ 1), aj)− φ(ai, aj)

a

)2

+

+

(
(φ(ai, a(j + 1))− φ(ai, aj)

a

)2

+ +m2φ(ai, aj)2

}
⇒

⇒ i

N(V )∑
i,j

1

2

{
(φi+1,j − φi,j)2

+ (φi,j+1 − φi,j)2
+ a2m2φ2

i,j

}
,

(7.1)

where a is the lattice spacing. Finally, we arrive at

SE = i

N(V )∑
i,j

{(
2 +

a2m2

2

)
φ2
i,j − (φi+1,j + φi,j+1)φi,j

}
, (7.2)

where the sum over the indices i and j runs over all lattice sites. Then, if we
consider a lattice filled with a distribution of defects (as shown in Fig. 23), we
must obviously restrict the sum to the ordinary sites (black disks) and avoid
taking into account the empty sites (red circles).

We wish to investigate how particle motion is modified by the presence of the
spacetime defects. As we have seen in the previous parts, the dispersion relation,
which can be obtained from the particle propagator, gives useful information
in this regard. Consequently, we use a Monte Carlo algorithm to measure the
scalar propagator

Gη(z0) = 〈φ(x0 + z0, x1)φ(x0, x1)〉 =

∫
Dφφ(x0 + z0, x1)φ(x0, x1)eiSE∫

Dφ eiSE
, (7.3)

varying the density η of defects. When the density reaches zero, the model
reduces to the free theory and the propagator (also called the “correlator”) is
given by the exact result

G0(z0) =

∫
d2k

(2π)2

1

k2 +m2
e−ik0z0 =

1

2π
K0(m|z0|) , (7.4)

where K0 is the modified Bessel function of the second kind of order zero.

The structure of the defects is that of holes in spacetime of spacetime volume
vd with opposite points on the boundary identified (we mainly focus on the
study of non-static defects). There are two main differences with respect to the
spacetime foam model discussed in part II.

The first is that, here, the defects occupy a finite volume in spacetime, while
in the model in part II the defects are point-like. This is a problem if we want
to build a Lorentz-invariant spacetime foam model (i.e. a distribution of defects
that look statistically the same in every reference frame, see Sec. 2.2). In
fact, for point-like defects the sprinkling generates such a distribution, but if
we assign a finite volume to these sprinkled points, the shape of the defects will
change depending on which reference frame we choose.
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The second difference is the absence of the charge εn associated with the
defects introduced in part II. Hence, the average effect of the spacetime foam
is different from zero in this case and corresponds to a shortening of distances
given by

L′ = (1− η)1/dL . (7.5)

The volume of a standard lattice with no defects is given by V = N ad, where N
is the total number of sites, a the lattice spacing, and d the lattice dimension.
The volume occupied by a distribution of defects is Vd = η N ad, in which
case the effective volume of a lattice filled with defects reduces to V ′ = V −
Vd = (1 − η)N ad, from which follows (L = V 1/d) Eq. (7.5). The same effect
was encountered in the study of static extended defects, see Sec. 6.3.4. Note,
however, that for non-static defects the shortening of distances affects both the
spatial and temporal directions, while for static defects it only modifies the
spatial distances. From this fact, we can infer that the modification of the
refractive index produced by a distribution of static defects, Eq. (6.70), does
not occur when the defects are non-static (and symmetric in space and time).

Note also that the lattice structure introduced in this model is fundamentally
different from the random lattice approach introduced in Ref. [95] (see also
Ref. [96] for a numerical calculation of modified dispersion relations in this
context). A random lattice is a realization of a sprinkling process, where the
position of each lattice site is randomly determined. The only parameter that
describes this kind of lattice is the density of sites ρ, which determines the
mean separation between the sites 〈a〉 = 1/ρ. Such a lattice is intrinsically
Lorentz-invariant; moreover, by taking the continuum limit 〈a〉 → 0 (ρ → ∞),
one obtains continuum euclidean space with no defects. The lattice introduced
here is instead characterized by three parameters: the lattice spacing a, the
defect volume vd, and the defect density ρd. In this case, only the distribution
of defects is obtained by a sprinkling process, thus making it Lorentz-invariant.
The lattice itself, being a standard square lattice, is not invariant under Lorentz
transformations. By taking the continuum limit, which only affects the lattice
spacing a→ 0, one obtains a continuum euclidean space filled with a distribution
of defects (of density ρd and volume vd).

7.1 The algorithm

On the lattice, the structure of the spacetime foam is encoded in the structure
of the indices and does not enter into the dynamic of the field, which is still
described by the standard free Lagrangian. We have already discretized the
scalar action, see Eq. (7.2), and so what remains to be done, in order to com-
pute the propagator G(z0), is to perform the functional integral

∫
Dφ over the

field configurations in Eq. (7.3). The algorithm we use for this purpose is the
straightforward Metropolis-Hastings algorithm, described by the following steps
[94]:

• Create an initial random field configuration, assigning at each lattice site
a random value chosen with equal probability in a certain range {−∆,∆}.

• Selecting the sites one by one, propose a change to the field value, φi,j →
φ′i,j = φi,j + δ, where δ has been chosen randomly in the range {−∆,∆}.
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• Accept the change with probability min(1, e−δS(i,j)), where δS(i, j) is
the difference between the action evaluated with the new field configu-
ration, where at site (i, j) the field value is φ′i,j , and the action evaluated
with the old field configuration, i.e. δS(i, j) = S{φ1,1, . . . , φ

′
i,j , . . . φn,m}−

S{φ1,1, . . . , φi,j , . . . φn,m}.

• When all the sites of the lattice have been visited, measure the quantity
φi+L,j φi,j (which does not depend on which particular site (i, j) we choose
for the measurement) and repeat the procedure, starting from the second
point.

• After a large number N of iterations, the mean value of the measured
quantity 〈φi+L,j φi,j〉 corresponds to the expected value of the propagator
G(z0):

G(z0) = G(La) = lim
N→∞

∑N
n=1(φi+L,j φi,j)n

N
, (7.6)

where (φi+L,j φi,j)n is the result of the measurement obtained in the n-th
iteration.

Some comments and clarifications are necessary:

- In order to optimize the algorithm, the value of ∆ is chosen so that the
acceptance rate at point 3 is roughly 50%.

- Before starting the measurement, a number of Monte Carlo iterations
must be performed so that the random initial configuration can reach
equilibrium (thermalization).

- The proposed change φi,j → φ′i,j = φi,j + δ at site (i, j) produces the
variation: δS(i, j) = S{φ1,1, ..., φ

′
i,j , ..., φn,m} − S{φ1,1, ..., φi,j , ..., φn,m}.

After some manipulations, this can be rewritten as:

δS(i, j) =

(
2 +

a2m2

2

)
(δ2 +2δ φi,j)−δ (φi−1,j +φi+1,j +φi,j−1 +φi,j+1) .

(7.7)

- The correlator G(L) depends only on the distance L and not on which
particular site we choose to make the measurement, in which case we can
then select the site (i, j) randomly while remembering to ensure that the
site (i+L, j) belongs also to the lattice (it could happen that it corresponds
to a site that has been removed from the lattice; in fact, the distance L is
measured with respect to the standard lattice devoid of any defects).

- In order to avoid effects caused by a particular configuration of defects, we
average the measurements over a number of different lattices (describing
different realizations of the distribution of defects).

- The lattice is finite, while the analytic results have been obtained in an
infinite continuum space. To serve as a good approximation the lattice
must be large enough to resemble an infinite space, i.e. the finite-size
effects must be maintained at a negligible level. This can be accomplished
by choosing a lattice with edges much larger than the correlation length
and with periodic boundary conditions.
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7.2 Percolation

There are some advantages in employing numerical methods to study spacetime
foam models. Consider, for example, the non-static model described in part
II. This model is based on the generalization of a result, the CPT anomaly,
which has been derived explicitly only for static point-like defects, while the
direct study of time-dependent defects is much more complicated. On the lat-
tice, instead, the structure of extended time-dependent defects is very easily
implemented. In regard to the study of static defects presented in part III, we
observe that the results are based on the dilute gas approximation (the distance
between the defects is much greater than their extension). Again, on the lat-
tice, we are not bound by this restriction, and we can therefore investigate the
effects of the spacetime foam when the density of defects increases and clusters
are formed. On the other hand, it is more difficult to interpret the results of
numerical calculations and to give them an unambiguous meaning. This is due
to the fact that, in order to be able to implement the defect structure, we are
forced to work in configuration space, while we would be more interested in
producing results in momentum space (the dispersion relation).

The study of clusters of objects randomly distributed in a lattice or in a
continuum space is the goal of percolation theory [61], of which we want to
introduce some basic notions herein. We start by describing the simplest model
of percolation on a lattice—site percolation—as follows.

Consider an infinitely large lattice whose sites can be either occupied or
empty. Sites are occupied randomly with a certain probability P . Two nearest
neighbor sites that are both occupied are said to be linked together, and the
connected set of all sites linked together is said to be a cluster (that is, it is
possible to move from each site of a cluster to another one following a connected
path of nearest neighborhood links, see figure 24). The typical extension of the
clusters is related to the probability of occupation P (larger probabilities lead to
larger clusters). Despite its simplicity, this model shows a phase transition at a
critical probability Pc. Below Pc only clusters with a finite number of elements
arise, while for probabilities larger than Pc clusters with infinite elements appear.
At the critical point, the system is scale-invariant and has fractal properties.
The critical probability depends on the dimensionality of the space and on
the characteristics of the lattice considered. For square (2d), cubic (3d), and
hypercubic (4d) lattices, its values are listed in Table 2 [61].

Lattice dimension Pc
d = 2 0.5927
d = 3 0.3116
d = 4 0.197

Table 2: Critical probabilities for regular square lattices in 2, 3, and 4 dimen-
sions.

Consider now a continuous manifold Md of dimension d. It is still possible
to define a percolation model in this case (usually indicated as continuum per-
colation), see also Ref. [64]. Instead of considering occupied lattice sites, one
defines extended objects Pi of volume vd which are randomly distributed in Md

according to a Poisson distribution of density ρ. Two objects, Pi and Pj , are
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Figure 24: Percolation model on a square lattice. Occupied sites are represented
by black disks. Occupied sites connected to each other form clusters.

said to be linked or connected if their intersection is not empty (Pi ∩ Pj 6= 0).
Clusters are defined as the connected sets of all objects Pi linked together (see
Fig. 25). In this case, the dimension of the clusters depends not only on the

Figure 25: Continuous percolation in two dimensions. Disks are randomly dis-
tributed on the plane with density ρ, when they intersect each other form clus-
ters (colored in green in the figure).

density ρ of the distribution but also on the volume of the objects vd (larger
volumes lead to larger clusters). In this instance, it is convenient to introduce,
instead of the density, the dimensionless parameter

η = ρ vd , (7.8)

which is the equivalent of the occupation probability P on the lattice. Even in
this case, the system undergoes phase transition at a critical point ηc. As for
the lattice model, below ηc only finite clusters are present, but for η larger than
ηc infinitely large clusters appear. The value of ηc depends on the dimension d
and on the specific shape of the objects considered.

Using the algorithm presented in the previous subsection, we want to inves-
tigate how clusters of defects modify the propagation of a scalar field and how
this modification is related to the occupation probability P .
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8 Results

In this section, we present the results obtained from the numerical calculations.
As mentioned previously, we use the algorithm described in Sec. 7.1 to calcu-
late the scalar propagator (7.3) on a lattice filled with a distribution of defects
varying the probability of occupation P of the defects. In this work, we mainly
focus on the study of time-dependent extended defects in a 2-dimensional lat-
tice. We do provide results regarding 3 and 4-dimensional lattices at the end
of this section, and thereafter we present results for static extended defects in
3 and 4-dimensional lattices.

8.1 Time-dependent defects

We start by considering the standard case in which no defect is present. For
such a case, we know the analytic expression of the correlator (Eq. (7.4)), so
we can check if our algorithm works properly. Results are presented in Fig.
26. We repeated the measurement for different values of the mass parameter
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Figure 26: Numerical results for the two-dimensional correlator 〈φi+L,jφi,j〉 in
the absence of defects. Different curves correspond to different values of the mass
parameter, starting from the bottom: m1 = am = {0.3, 0.15, 0.1, 0.075, 0.06}.
The interpolating curves represent the analytic result G(L) = 1

2πK0(m1 L).
Since the correlation length changes in line with the mass parameter, we use
lattices of different sizes (from 80 × 80 to 400 × 150), in order to maintain
negligible finite-size effects. The number of Monte Carlo iterations is N =
3× 106.

m1 = ma (this operation can be interpreted either as a rescaling of the physical
mass or as a rescaling of the lattice spacing). As m1 decreases, the correlation
length increases, and it is necessary to increase the size of the lattice in order
to maintain negligible finite-size effects.

When we add a certain number of defects to the lattice, we expect a modi-
fication of the behavior of the correlator with respect to the standard case. In
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Fig. 27, we present the results obtained for a distribution of defects of density
η = ρ vd = 0.464 and volume vd = a2 (a single site removed from the lattice).
We do indeed observe a different behavior of the propagator with respect to the
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Figure 27: Numerical results for the correlator 〈φi+L,jφi,j〉 in the presence of
defects. The density of defects is η = ρ vd = 0.464, and the scale of the defects is
the lattice spacing (vd = a2). The lattice size is 80×80 and the mass parameter
is m1 = 0.3. The number of iterations is N = 106 and the results are averaged
over 5 different lattice configurations. The interpolating curve is given by Eq.
(8.2).

standard case η = 0. To find an appropriate interpolating curve we follow dif-
ferent approaches. The first is simply to assume a modified dispersion relation
given by (in Minkowski space)

k2
0 = m2 + [1 + a0(η)]k2

1 + b0(η)k4
1 , (8.1)

from which we obtain the modified propagator

G(1)
η (z0) =

∫
d2k

(2π)2

e−ik0z0

k2
0 + [1 + a0(η)]k2

1 + b0(η)k4
1 +m2

. (8.2)

We can perform the integral numerically and interpolate the data points with
respect to the unknown parameters a0(η) and b0(η). The result of the interpo-
lation is in very good agreement with the data, the reduced χ2 has a value of
χ2/ν = 0.93 (where ν is the number of degrees of freedom).

The second approach involves observing that in statistical mechanics the
correlation function of a critical system far from the critical point is given, in
general, by the expression [62, 63]

G(2)
η (z0) =

A

zτ0
e−z0/ξ (8.3)

where A is a normalization factor, while ξ (the correlation length) and τ are
two critical exponents (i.e. their value depends only on very general properties
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of the model, such as dimensionality and symmetries, but it is unaffected by
details such as the lattice structure or the value of the critical point). Again,
we can interpolate the data points with respect to the unknown parameters A,
ξ, and τ . We observe that, in this case, the result is not as good as in the
previous case; in fact, we have to exclude the first data point, in order to obtain
an acceptable reduced χ2 of χ2/ν = 1.07.

Repeating the same measurement for different densities of defects, we always
find good agreement between the interpolating curves (8.2) and (8.3), and the
data, see Fig. (28). Note, however, that when the density of defects becomes
large, the curve (8.2) no longer provides good interpolation (at least not at short
scales). This effect could be related to the percolation of defects. In fact, the
discrepancy appears at values of η that correspond to the critical region4 of the
percolation phase transition. It is known that the correlation function of the
defects changes from an exponential law to a power law at the critical point.
We expect such a behavior to have repercussions for the scalar field propagator,
too.
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Figure 28: Numerical results for the correlator 〈φi+L,jφi,j〉 in the presence of
defects. The density of defects varies from η = 0 (bottom line) to η = 0.608
(upper line). When the density η reaches the critical region (of the percolation
phase transition), Eq. (8.2) no longer provides a good interpolation at short
scales.

A third approach to finding the fitting curve to the modified propagator
obtained from the numerical calculations is to assume that the only effect of
the distribution of defects is the shortening of distances given by Eq. (7.5). In

4In a finite lattice, the phase transition does not happen sharply at one critical point,
but is smeared over a critical region where there is an increasing probability of observing the
transition.
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this case, the propagator would be given by Eq. (7.4), with z0 substituted by
z′0 = (1− η)1/2z0. We assume then

G(3)
η (z0) =

1

2π(1 + c)
K0

(
m

√
1− η
1 + c

|z0|

)
, (8.4)

where we have also introduced a free parameter c. In this way, the propagator
in momentum space takes the form

G̃(3)
η (k0, k1) =

1

(1 + c)(k2
0 + k2

1) + (1− η)m2
. (8.5)

Comparing this last expression with the Fourier transform of Eq. (8.3), we
find good agreement between the two expressions, if we choose c ∼ η

√
2. We

can conclude that the propagator (8.4) also provides a good interpolation of the
data points. We want to point out that, at this point, this expression is our best
candidate, as it depends on just one free parameter and its form is physically
motivated by the shortening of distances caused by the distribution of defects.

The coefficients a0(η) and b0(η) that appear in Eq. (8.2) have been ob-
tained from the interpolations. Their behavior with respect to the density η is
reproduced in Fig. 29. It turns out that they are well-described by power laws:

a0(η) = αa η
2 ,

b0(η) = a2αb η
10 ,

(8.6)

with αa ' 14.07 and αb ' 10.74× 103.
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Figure 29: Behavior of the coefficients a0(η) and b0(η) in Eq. (8.2) with respect
to the defect density η.

In Table 3, we report some explicit values for a0 and b0.

η a0 b0/a
2

0.145 0.448 0.25
0.271 1.12 0.434
0.375 1.81 1.66
0.464 2.87 7.21
0.538 3.88 23.5

Table 3: Values of the parameters a0 and b0 obtained from the interpolations.
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The behaviors of the parameters A, τ and ξ in Eq. (8.3) and c in Eq. (8.4)
with respect to the density η are depicted in Fig. 30. They all show linear
dependence with respect to η

A(η) = αA , (8.7a)

τ(η) = ατ + βτ η , (8.7b)

ξ(η) = αξ + βξ η , (8.7c)

c(η) = βc η , (8.7d)

(8.7e)

where αA ' 0.128, ατ ' 0.369, βτ ' −0.335, αξ ' 0.302, βξ ' 0.412 and
βc ' 1.41.
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Figure 30: Parameters A, τ , and ξ from Eq. (8.3) and c from Eq. (8.4) as a
function of the density of defects η.

In Table 4 we report some of the values obtained for A, τ , and ξ.

η A τ ξ
0.145 0.128 0.325 0.360
0.268 0.127 0.283 0.405
0.374 0.125 0.250 0.451
0.464 0.124 0.219 0.503
0.505 0.127 0.194 0.520

Table 4: Values of the parameters A, τ , and ξ obtained from the interpolations.

8.1.1 Continuum limit

The previous results were obtained for a discrete lattice, but the lattice in
this context has no physical meaning, as it represents just a cut-off regulator
that helps us to compute propagators. Hence, in order to extract physically
meaningful results, we have to remove the regulator. This is accomplished by
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taking the continuum limit
a→ 0 , (8.8)

where a is the lattice spacing.
To achieve this aim, we need to repeat the measurements of the previous

section for different lattices, reducing each time the lattice spacing. However,
we do not want to modify the other physical parameters of the model defined
in terms of a (the distance z0 = La, the mass m = m1/a, and the defect size
vd = na2).
Therefore, if in the original configuration a defect is represented by n sites
removed from the lattice, when we reduce the lattice spacing (a′ = λ a) it must
be represented by n′ = λ−2n sites removed from the lattice:{

a→ a′ = λ a ,

n→ n′ = λ−2n ,
=⇒ v′d = n′ a′2 = na2 = vd . (8.9)

In the same way, the physical distance z0 = La at which we perform the mea-
surement stays the same, while the distance L measured in terms of the lattice
spacing increases:{

a→ a′ = λ a ,

L→ L′ = λ−1L ,
=⇒ z′0 = L′ a′ = La = z0 . (8.10)

Also, the physical mass m remains unchanged, while the mass parameter m1

decreases: {
a→ a′ = λ a ,

m1 → m′1 = λm1 ,
=⇒ m′ =

m′1
a′

=
m1

a
= m. (8.11)

We have already mentioned that reducing the lattice spacing corresponds to an
increase in correlation length and fluctuations, so we also need to increase the
size of the lattice, to keep finite-size effects negligible.

In practice, we choose to rerun the algorithm with different lattice spacings
given by a′ = λ a, with λ = {1; 1/2; 1/3; 1/4; 1/5; 1/6}. For these scales, we find
(by studying the free theory) that a good choice of lattice sizes is {80×80; 200×
100; 250× 100; 320× 100; 400× 150; 450× 200}. We repeat the measurement
for different densities of defects η = {0.074, 0.143, 0.233, 0.385, 0.464, 0.594}.

In the results, we choose to represent distances not in terms of the lattice
spacing, but in units of the defect size ld =

√
vd, i.e. z0 = L ld. With this

definition, L does not depend on λ.
The values of the correlator G(L), evaluated at fixed values of L for different

values of the lattice spacing scale λ, are reproduced in the left column of Fig. 31
and Fig. 32 for different values of η. The continuum limit λ→ 0 is obtained from
these data through linear interpolation. It is reproduced in the right column
compared to the standard propagator (7.4) and to the modified propagator (8.2)
(obtained from the interpolations shown in Fig. 28).
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(a) Gλ(L) at fixed L, η = 0.074
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(b) Continuum limit of G(L) (blue dots)
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(c) Gλ(L) at fixed L, η = 0.143
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(d) Continuum limit of G(L) (blue dots)
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(e) Gλ(L) at fixed L, η = 0.233
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(f) Continuum limit of G(L) (blue dots)

Figure 31: On the left, the correlator Gλ(L) is represented at fixed values of L
as a function of the scale factor λ (the lattice spacing is a′ = λ a), while the
distance L is measured in units of the defect size (z0 = L

√
vd). The continuum

limit corresponds to λ = 0. On the right, the continuum limit (blue dotted
line) is compared to the lattice results from Fig. 28 (green solid line) and to the
unmodified propagator from Fig. 26 (red dashed line).
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(a) Gλ(L) at fixed L, η = 0.385
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(b) Continuum limit of G(L) (blue dots)
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(c) Gλ(L) at fixed L, η = 0.464
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(d) Continuum limit of G(L) (blue dots)
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(e) Gλ(L) at fixed L, η = 0.594

0 5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

L

GHLL
Η = 0.594,

Λ=0 Hc.l.L

Η = 0.594,

Λ=1

Η = 0

(f) Continuum limit of G(L) (blue dots)

Figure 32: As in the previous Figure 31 for other values of the parameter η.
We note that discrepancies between the lattice results from Fig.28 and the
corresponding continuum limits increase in line with the density η of defects.

We observe that the continuum limits (Figs. 31 and 32) differ from the
results shown in Fig. 28, and in particular they cannot be described by the
first proposed propagator Eq. (8.2), at least not at short scales (not even when
adding higher powers of k1 into Eq. (8.1)). On the other hand, it seems that
at large scales Eq. (8.2) still provides a good interpolation for the data. In the
left side of Figs. 31 and 32, we observe indeed that the slope of the line passing
through G(L, λ = 0) and G(L, λ = 1) decreases as L increases, so that, at large
L, the propagator seems to be almost independent of the lattice spacing scale.
Furthermore, we point out that these effects increase in line with the density of
defects.

When we consider the second and the third proposed propagators given by,
respectively, Eq. (8.3) and Eq. (8.4), we observe that they still provide a good
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interpolation of the continuum limit data points. Considering, for example,
the case η = 0.464, in Fig. 33 we compare how the first and third proposed
propagators interpolate the continuum limit data. We can see that Eq. (8.4)
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Figure 33: Continuum limit for the correlator 〈φi+L,jφi,j〉 in the presence of a

distribution of defects of density η = 0.464. We observe that G
(3)
η (Eq. (8.4)),

represented by a green solid line, provides an acceptable interpolation of the

data in this case, while G
(1)
η (Eq. (8.2)), represented by a blue dotted line,

provides a good interpolation only at large scales. We omit to plot the second

proposed propagator G
(2)
η (Eq. (8.3)), which also provides a good interpolation

and whose curve overlaps with G
(3)
η .

indeed provides a good interpolation of the data, while Eq. (8.2) does not do
so. Changing the defect density η we obtain similar results. We observe that
the free parameters of Eqs. (8.3), (8.4) (A, τ , ξ, c) are, even in this case, related
linearly to η as in Eq. (8.7). The coefficients now take the values αA ' 0.112,
ατ ' 0.378, βτ ' −0.432, αξ ' 0.307, βξ ' 0.556, and βc ' 3.27, see Fig. 34.

From these considerations, we are led to exclude G
(1)
η (Eq. (8.2)) as a valid

description of the data in the continuum limit. On the other hand, both G
(2)
η

and G
(3)
η give good interpolation of the data but, for the reasons already dis-

cussed, we are inclined to choose the second one. We conclude that, from the
measurements we made, the expression (8.4)

Gη(z0) =
1

2π(1 + βcη)
K0

(
m

√
1− η

1 + βcη
|z0|
)
, βc ' 3.27 , (8.12)

provides a good description of the 2-dimensional scalar propagator in a con-
tinuum spacetime foam model made of extended time-dependent defects with
density η. From the corresponding expression in momentum space, Eq. (8.5),
we can finally extract the dispersion relation (in Minkowski space)

k2
0 − k2

1 =
1− η

1 + βcη
m2 , (8.13)
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Figure 34: Parameters A, τ , and ξ from Eq. (8.3) and c from Eq. (8.4) as a
function of the density of defects η in the continuum limit case.

that describes a non-dispersive medium. The only effect produced by the distri-
bution of defects is a rescaling of the mass of the scalar field. We observe that
this is analogous to what has been obtained in part II (see Eq. (3.33)), even if
in that case the defects were point-like, while here they have an extension.

8.1.2 Results in 3 and 4 dimensions

In this subsection, we want to briefly present our findings for 3- and 4-dimensional
lattices. For these cases, we consider only the lattice theory without computing
the continuum limit. We observe that, now, the proposed modified propagator

G
(1)
η (Eq. (8.2) generalized to higher dimensions) does not provide good inter-

polation of the data, even at the lattice level. This observation provides further
confirmation that we must reject it as a possible expression for the numerical
modified propagator. On the other hand, we observe that the generalization to
higher dimensions of Eq. (8.12) still provides a good interpolation of the data
for any value of η, as shown in Figs. 35 and 36 for η = 0.464.

From these observations, we are led to conclude that the modified scalar
propagator on a lattice filled with a distribution of defects of density η is well-
described in 3 dimensions by the expression

Gη(z0) =
1

4π(1− η)1/3z0
e
−m

(
1−η

1+β
(3)
c η

)1/3

z0
, β(3)

c ' 1.5 , (8.14)

and in 4 dimensions by the expression

Gη(z0) =
m

4π2(1− η)1/4z0
K1

m( 1− η
1 + β

(4)
c η

)1/4

z0

 , β(4)
c ' 25 .

(8.15)
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Figure 35: Numerical results for the 3-dimensional correlator 〈φi+L,j,kφi,j,k〉
in the presence of defects. The density of defects is η = ρ vd = 0.464, while
the scale of the defects is the lattice spacing (vd = a3). The lattice size is
60× 60× 60 and the mass parameter is m1 = 0.3. The number of iterations is
N = 5× 105 and the results are averaged over 3 different lattice configurations.
The interpolating curve is given by Eq. (8.14).

From these expressions, we can extract the (Minkowskian) dispersion relations

k2
0 − k2

1 − k2
2 =

(
1− η

1 + β
(3)
c η

)2/3

m2 , (8.16)

in 3 dimensions and

k2
0 − k2

1 − k2
2 − k2

3 =

(
1− η

1 + β
(4)
c η

)2

m2 , (8.17)

in 4 dimensions, which are analogous to the result obtained in 2 dimensions, see
Eq. (8.13).

8.2 Static defects

We now consider a lattice spacetime foam model made of static defects. The
crucial difference with respect to the previous case is that spacetime is now not
isotropic, see Fig. 37. With time-dependent defects, the shortening of lengths
affects both the spatial directions and the time direction. Instead, with static
defects, the shortening of lengths only affects the spatial directions, while the
time direction remains unchanged.
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Figure 36: Numerical results for the 4-dimensional correlator 〈φi+L,j,k,lφi,j,k,l〉
in the presence of defects. The density of defects is η = ρ vd = 0.464, while
the scale of the defects is the lattice spacing (vd = a4). The lattice size is
72×50×50×50 and the mass parameter is m1 = 0.3. The number of iterations
is N = 3×105 and the results are averaged over 3 different lattice configurations.
The interpolating curve is given by Eq. (8.15).

Time

Space

(a) Time-dependent defects

Time

Space

(b) Static defects

Figure 37: Fig. (a) a distribution of time-dependent defects in a 2-dimensional
spacetime is isotropic. Fig. (b) a distribution of static defects is not isotropic.

In Figs. 38 and 39, we show the behavior of the scalar propagator on a
lattice filled with static defects in 3 and 4 dimensions.

We observe that the data points, measured in the spatial direction, are well-
described by the expressions found in the previous section Eqs. (8.14) and
(8.15). Instead, when we measure the correlator along the time direction, we
observe a different behavior. Consider the 3-dimensional case, we find that, in
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Figure 38: Numerical results for the 3-dimensional correlator 〈φi+L,j,kφi,j,k〉 in
the presence of static defects. The density of defects is η = 0.464. The lattice
size is 60×60×60 and the mass parameter is m1 = 0.3. The number of iterations
is N = 5×105 and the results are averaged over 3 different lattice configurations.
We measure the correlator both in the spatial direction (blue data points) and
in the time direction (black data points). The interpolating curves are obtained
from the correlator (in momentum space) given by Eq. (8.18).

momentum space, the correlator is well-described by the expression

G̃η(k) =

(
1 + β

(3s)
c η

)1/3

(1− η)2/3

(
k2

0 +
(

1+β
(3s)
c η

1−η

)2/3
~k2 +m2

) . (8.18)

In fact, when we evaluate the Fourier transform of this correlator in a spatial
direction, we obtain exactly Eq. (8.14). On the other hand, Fourier transforming
the above expression along the time direction gives a result proportional to the
standard correlator in a space with no defects. From Eq. (8.18), we can extract
the 3-dimensional dispersion relation (in Minkowski space)

k2
0 =

(
1 + β

(3s)
c η

1− η

)2/3

~k2 +m2 . (8.19)

Note that, in this case, the mass of the field is not rescaled. This result is
similar to what we found in Sec. 6.2.3, where we showed that a spacetime foam
model made of static defects is analogous, for a scalar field, to a non-dispersive
medium with a modified index of refraction (see Eq. (6.70)).

Analogous reasoning can be made in 4 dimensions, from which we obtain
the 4-dimensional dispersion relation (in Minkowski space)

k2
0 =

(
1 + β

(4s)
c η

1− η

)2

~k2 +m2 . (8.20)
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Figure 39: Numerical results for the 4-dimensional correlator 〈φi+L,j,k,lφi,j,k,l〉
in the presence of defects measured along a spatial direction. The density of
defects is η = 0.464. The lattice size is 72×50×50×50 and the mass parameter is
m1 = 0.3. The number of iterations is N = 3×105 and the results are averaged
over 3 different lattice configurations. The interpolating curve is given by Eq.
(8.15) for a different value of the parameter β4s

c .

It is important to note that the parameter η describes, even for static defects,
the portion of sites removed from the lattice, which is given by

η = ρs vd−1 L0 , (8.21)

where ρs is the number density of defects in the spatial hypersurface, vd−1

the spatial volume of one defect, and L0 the dimensionless temporal size of
the lattice (L0 = T/a). The correlator (8.18) can be equivalently re-expressed
in terms of the fraction of sites removed from the spatial hypersurface, ηs =
ρs vd−1. In this case, the dispersion relation for static defects in 4-dimensional
spacetime, Eq. (8.20), can be rewritten in the form

k2
0 =

(
1 + β̃

(4s)
c ρs vd−1

1− ρs vd−1

)2/3

~k2 +m2 , lattice result , (8.22)

for a different value of the parameter β̃
(4s)
c . This expression is very similar to

the result obtained in Sec. 6.2.3. From Eq. (6.70), using the arguments given in
Sec. 6.3.4 to generalize the result to higher dimensions, the analytic dispersion
relation for a massless scalar field in a 4-dimensional spacetime foam model
made of defects obtained from Minkowski spacetime by surgery turns out to be

k2
0 =

(
1

1− ρs vd−1

)2/3

~k2 , analytic result . (8.23)
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Part V

Regularized black hole from
extended defect metric
In this part, we deviate a little from the general framework of the previous parts.
In fact, we consider the defect metric (6.1) not in the context of spacetime foam,
as a microscopic fluctuation of spacetime, but rather as a possible regularization
of the Schwarzschild black hole. Such an idea was proposed and discussed in
Refs. [85, 86, 87].

Consider the case where the defect radius b is smaller than the Schwarzschild
radius `. In the exterior region r > `, the defect metric is equivalent to the
Schwarzschild metric (from the results of Sec. 6, we know that the two metrics
are diffeomorphic for r > b). Instead, in the interior region r < `, while the
Schwarzschild metric is singular at r = 0, the defect metric turns out to be
regular everywhere, since the defect of radius b removes the singular point r = 0
from spacetime. Take, for example, the Kretschmann curvature scalar given
in Eq. (6.10), which in spherical coordinates becomes K = 12`2/r3 both for
the Schwarzschild metric and for the defect metric. We see immediately that
this quantity is singular in the Schwarzschild metric at r = 0. Instead, in the
defect metric, the radius is constrained to be r ≥ b > 0, and consequently
K is regular everywhere. We remember also that both metrics are perfectly
acceptable solutions of the vacuum Einstein field equations.

We have argued that the defect metric (6.2) can provide a simple regular-
ization of the Schwarzschild metric, but we also have to take into account that,
while the Schwarzschild topology is simply R2 × S2, the defect exhibits a non-
trivial topology R × (RP 3 − {0}). So, on the one hand, we are able to solve
the singularity problem of the Schwarzschild metric by replacing it with the
defect metric. But, on the other hand, we have to explain the emergence of
the nontrivial topology of the defect, and we remember that classical general
relativity cannot account for topology changes (but they may possibly occur in
a quantum theory of gravity).

In the following, we investigate geodesics in the defect metric and establish
that closed time-like curves can appear in the regularized version of an eternal
black hole. However, these causally violating paths disappear if we consider a
non-eternal model of black hole described, for example, as the result of a star
collapse.

9 Geodesics

9.1 Metric and geodesic equations

For convenience, we restate here the defect metric (6.1)

ds2 = −

(
1− `√

y2 + b2

)
dt2 +

y2

y2+b2

1− `√
y2+b2

dy2 + (y2 + b2)(dz2 + sin2 z dx2) .

(9.1)
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To obtain the geodesic equations, we follow the Lagrangian approach (see, for
example, Ref. [88]). We rewrite the metric (9.1) in the more general form

ds2 = gµνdx
µdxν = −A(y)dt2 +B(y)dy2 +W (y)(dz2 + sin2 z dx2) , (9.2)

where

A(y) = 1− `√
y2 + b2

, B(y) =

y2

y2+b2

1− `√
y2+b2

, W (y) = y2+b2 . (9.3)

Then, we can define the Lagrangian

L = −gµν
dxµ

dτ

dxν

dτ
, (9.4)

whose Euler-Lagrange equations, it can be shown, are equivalent to the standard
geodesic equations

d

dτ

∂L
∂τxµ

− ∂L
∂xµ

= 0 ⇐⇒ d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0 . (9.5)

Moreover, evaluating the Lagrangian along a geodesic, we obtain the constraint

L = ε , (9.6)

where ε = +1, 0,−1, respectively, for time-like, null-like, and space-like geodesics.
For the metric (9.2), the Lagrangian (9.4) turns out to be

L = A(y)ṫ2 −B(y)ẏ2 −W (y)(ż2 + sin2 z ẋ2) , (9.7)

where ẋµ = dxµ/dτ .
We start by considering the Euler-Lagrange equation of z(τ)

d

dτ
(W (y)ż)−W (y) sin z cos z ẋ2 . (9.8)

We note that a solution is given simply by

z(τ) = const =
π

2
. (9.9)

Next, we observe that t(τ) and x(τ) are cyclic coordinates (that is, only their
derivatives appear in the Lagrangian) and therefore are associated with con-
served quantities. Their equations are

d

dτ
(A(y)ṫ) = 0 ,

d

dτ
(W (y)ẋ) = 0 , (9.10)

which give

ṫ =
E

A(y)
, ẋ =

L

W (y)
, (9.11)

where E and L are constants. The results obtained so far are a consequence of
the fact that the metric is time-independent and spherically symmetric.
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For the radial component y(τ), we do not need to write the Euler-Lagrange
equation, it is simpler to substitute the solutions for ṫ, ż and ẋ in the Lagrangian
and impose the constraint (9.6). We obtain

E2

A(y)
−B(y)ẏ2 − L2

W (y)
= ε , (9.12)

which can be rewritten as

ẏ2 +
ε

B(y)
+

L2

B(y)W (y)
− E2

B(y)A(y)
= 0 . (9.13)

Substituting the explicit expressions of A(y), B(y), and W (y) from Eq. (9.1),
we get

ẏ2 +

ε

(
1− `√

y2+b2

)
1− b2

y2+b2

+

(
1− `√

y2 + b2

)
L2

y2
− E2

1− b2

y2+b2

= 0 , (9.14)

which, as expected, reduces to the radial geodesic equation for the Schwarzschild
metric in the limit b→ 0

b→ 0 =⇒ ẏ2 + ε

(
1− `

y

)
+

(
1− `

y

)
L2

y2
− E2 = 0 . (9.15)

We can simplify Eq. (9.14) by rewriting it in terms of the variable w = W (y) =
y2 + b2,

ẏ =
1

2y

d

dτ
(y2 + b2) =

1

2y
ẇ . (9.16)

Inserting this result into Eq. (9.14), we arrive at

ẇ2 + 4

(
1− `√

w

)
(εw + L2)− 4E2w = 0 . (9.17)

9.2 Massless case

If we consider the case ` = 0 (defect of zero mass), Eq. (9.17) simplifies and a
general analytic solution for the geodesics can be found easily. We have

` = 0 =⇒ ẇ2 + 4w(ε− E2) + 4L2 = 0 , (9.18)

whose solutions are

w(τ) = (E2 − ε)(τ ± c)2 +
L2

E2 − ε
. (9.19)

Since y = ±
√
w − b2, we arrive at

y(τ) =


y(+)(τ) = +

√
(E2 − ε)(τ + c)2 +

L2

E2 − ε
− b2 , τ ≥ 0 ,

y(−)(τ) = −
√

(E2 − ε)(τ − c)2 +
L2

E2 − ε
− b2 , τ < 0 ,

(9.20)
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where the integration constant c is determined by the condition y(0) = 0:

c =

√
b2

E2 − ε
− L2

(E2 − ε)2
. (9.21)

Substituting the result (9.20) into the equation for the angular coordinate x
(Eq. (9.11)), we obtain

x(τ) =


x(+)(τ) = x0 + arctan

(
E2 − ε
L

(τ + c)

)
, τ ≥ 0 ,

x(−)(τ) = −x0 + arctan

(
E2 − ε
L

(τ − c)
)
, τ < 0 .

(9.22)

The equation for the time coordinate is trivial when ` = 0 and gives

t(τ) = t0 + Eτ . (9.23)

We recall that the other angular coordinate has been fixed to z(τ) = π/2, so we
have completely solved the geodesic equations.

In order to represent graphically this solution, we have to change variables
from the set (t, y, z, x) to the standard spherical coordinates (t, r, θ, φ). We recall
that these two systems of coordinates are related by the transformations (see
Eq. (6.7))

r =

{√
y2 + b2 ,√
y2 + b2 ,

θ =

{
z ,

π − z ,
φ =

{
x ,

x+ π ,

y > 0 ,

y < 0 .
(9.24)

The geodesic solution in the spherical coordinate system turns out to be

t(τ) = t0 + Eτ ,

r(τ) = Θ(τ)

√(
y(+)(τ)

)2
+ b2 + Θ(−τ)

√(
y(−)(τ)

)2
+ b2 ,

θ(τ) =
π

2
,

φ(τ) = Θ(τ)x(+)(τ)−Θ(−τ)
(
x(−)(τ) + π

)
,

(9.25)

where Θ(τ) is the Heaviside step function. The result is plotted in Fig. 40.
We observe that, when b goes to zero, these equations describe geodesics in
Minkowski spacetime.

9.3 Massive case

In the case of a massive defect, ` > 0, the geodesic equations become much
more complicated and cannot be solved in the general case. Therefore, in the
following, we consider separately the special cases of a null-like particle (ε = 0)
and a time-like particle (ε = +1), both restricted to the simplest situation of
radial motion (L = 0) for which analytic solutions can be found. The case in
which the motion of the particle also has an angular component could be studied
numerically but, since it is not possible to obtain an analytic solution, we will
not consider it in this instance.
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Figure 40: Fig. (a), geodesics from Eq. (9.25) in the plane θ = π/2 for b = 2,
ε = 0, E = 2, x0 = 0 and impact parameters d1 = 3/2 < b and d2 = 7/2 > b
(the impact parameter is given by d =

√
L2/(E2 − ε)). Fig. (b), radial geodesic

(Eq. (9.20)), blue solid line, angular geodesic (Eq. (9.22)), red dashed line, and
time geodesic (Eq. (9.23)), green dot-dashed line, evaluated for the same set of
parameters (d1 < b).

9.3.1 Null-like geodesics

In order to study the case ` 6= 0, we begin by considering the simplest possibility
of a massless particle (ε = 0) moving in the radial direction (L = 0). Then, the
radial equation (9.14) reduces to

ẏ2 − y2 + b2

y2
E2 = 0 , (9.26)

whose solution is

y(τ) =

 y(+)(τ) =

√
E2 (τ + b/E)

2 − b2 , τ > 0 ,

y(−)(τ) = −
√
E2 (τ − b/E)

2 − b2 , τ < 0 ,

(9.27)

where again the integration constant has been chosen so that y(0) = 0.
Since L = 0, the equation for the angular coordinate x reduces to ẋ = 0,

which gives the solution x = const. The only other equation we need to solve is
that for the time coordinate:

ṫ =
E

1− `√
y(τ)2+b2

. (9.28)

Because of the simplified situation we are studying, this is the only equation in
which the mass ` appears, which means that all differences with respect to the
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flat case ` = 0 are contained in this equation. Solving it yields the solution

t(τ) =


t(+)(τ) = t0 + Eτ + ` log

∣∣∣∣∣E
√

(τ + b/E)2/`− 1

b/`− 1

∣∣∣∣∣ , τ > 0 ,

t(−)(τ) = t0 + Eτ − ` log

∣∣∣∣∣E
√

(τ − b/E)2/`− 1

b/`− 1

∣∣∣∣∣ , τ < 0 .

(9.29)

In Fig. 41, we show the behavior of the two solutions y(τ) and t(τ) for the two
cases b > ` and b < `. In the first case, the particle approaching the defect
behaves almost as in the flat case ` = 0, the only difference being that the
velocity decreases in proximity to the defect. In the second case, the particle
behaves almost as in the Schwarzschild metric. It takes an infinite amount
of time to reach the event horizon, but once crossed, instead of falling into
singularity (which is shielded by the defect), the particle can proceed toward
the horizon on the other side (reaching it again in an infinite amount of time).
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Figure 41: Radial null geodesic for b > ` (a) and b < ` (b). The radial component
y(τ) (Eq. (9.27)) is represented by a blue solid line, while the time component
t(τ) (Eq. (9.29)) is represented by a red dashed line.

We wish to point out that the coordinates used here describe the behavior
of the particle as seen by an observer located far away from the event hori-
zon. However, the particle itself, in its own reference frame, has no problem in
reaching and crossing the horizon in a finite amount of time.

9.3.2 Painlevé-Gullstrand extension

With regard to the last point of the previous subsection, it can be more enlight-
ening to rewrite the solution in terms of Painlevé-Gullstrand (PG) coordinates
[97, 98]. PG coordinates describe the point of view of an observer which start
with zero velocity at infinity and free-fall radially into the black hole (or defect).
They are obtained by the transformation

T ∗+ = t+ 2`

(√
r/`+

1

2
log

∣∣∣∣∣
√
r/`− 1√
r/`+ 1

∣∣∣∣∣
)
, (9.30)

122



where we use the relation r =
√
y2 + b2. Under this change of coordinates, the

metric (9.1) becomes

ds2 = −dT ∗2+ +
(
dr +

√
`/r dT ∗+

)2

+ r2dΩ2 , (9.31)

where dΩ2 = dz2 + sin2 z dx2. We consider the case b < ` (size of the defect
smaller than the event horizon) and note that the metric (9.31) is now regular
at the horizon, i.e. it provides a future extension of the defect metric. Another
interesting feature is that slices of constant time are described by the flat metric

ds2|T∗+=const = dr2 + r2dΩ2 . (9.32)

Nonetheless, we must emphasize that such a coordinate system, in the region
inside the horizon, is only valid for describing ingoing geodesics (τ < 0 in Eqs.
(9.27), (9.29)) but not outgoing geodesics. This can be seen by calculating the
radial velocity

r′ =
dr

dT ∗+
= ±1−

√
`

r
, (9.33)

from which we read that, when r < `, the velocity is always negative. If we use
these coordinates to represent outgoing geodesics in the interior region, we find
particles moving backward in time, and that the time coordinate T ∗+ is singular
at the horizon (see Fig. 42).

To circumvent this problem, it is possible to introduce another set of PG
coordinates which corresponds to outgoing radial geodesics (and provides a past
extension of the defect metric) by defining

T ∗− = t− 2`

(√
r/`+

1

2
log

∣∣∣∣∣
√
r/`− 1√
r/`+ 1

∣∣∣∣∣
)
, (9.34)

which leads to the metric

ds2 = −dT ∗2− +
(
dr2 −

√
`/r dT ∗−

)2

+ r2dΩ2 . (9.35)

This new set of coordinates, in the region r < `, can only describe outgoing
geodesics (τ > 0) but not ingoing geodesics (see Fig. 42).

To summarize, when b < `, the radial null geodesic given by Eqs. (9.27) and
(9.29) in its ingoing phase (τ < 0) can be described in the coordinate system
(T ∗+, r) (which provides a future extension of the defect metric), while in its
outgoing phase (τ > 0) can be described in the coordinate system (T ∗−, r) (which
provides a past extension to the defect metric). However, it is not possible to
visualize the full geodesic in a single coordinate system. To achieve this aim
(so that we can better understand the causal structure of the defect metric) we
must turn to Kruskal coordinates or Penrose diagrams.
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Figure 42: Section of a defect with b < ` in PG coordinates (the radial coordinate
is positive on both sides of the T ∗ axis, while the angular coordinate φ changes
by π). Fig. (a) ingoing radial null geodesic described by coordinates (T ∗+, r).
Here, region II is a future extension of Schwarzschild spacetime (region I). Fig.
(b) outgoing geodesic described by coordinates (T ∗−, r). Region II is now a past
extension of Schwarzschild spacetime. The arrows represent the direction of
increasing proper time τ .

9.3.3 Kruskal extension

We now introduce Kruskal coordinates that provide a maximal extension to the
defect metric [99]:

T = TI(t, y) = e

√
y2+b2

2`

∣∣∣∣1`√y2 + b2 − 1

∣∣∣∣ 12 sinh

(
t

2`

)
,

R = RI(t, y) = e

√
y2+b2

2`

∣∣∣∣1`√y2 + b2 − 1

∣∣∣∣ 12 cosh

(
t

2`

)
.

(9.36)

In these coordinates, the defect metric (9.1) becomes

ds2 =
4`3e−

√
y2+b2

`√
y2 + b2

(
−dT 2 + dR2

)
+ (y2 + b2)dΩ2 , (9.37)

where y must be considered as a function of R and T , explicitly

r =
√
y2 + b2 = `

(
1 +W0

(
|R2 − T 2|

e

))
, (9.38)

where W0(x) is the Lambert W function and e is the base of the natural loga-
rithm. We observe that the metric (9.37) is regular everywhere.

In Fig. 43, using Kruskal coordinates, we show the behavior of the radial
null geodesic (Eqs. (9.27), (9.29)) for b > ` and b < ` compared to the behavior
of the radial null geodesic in the standard Schwarzschild metric (b = 0).

124



IV

III

IIr = 0

r =
0

r
=

br
=

b

r
=

{
;

t
=
+
¥

r
=

{ ;
t
=
-
¥

I

R

T

(a) b > `

IV

III

IIr = 0

r =
0

r =
b

r
= b

r
=

{
;

t
=
+
¥

r
=

{ ;
t
=
-
¥

I

R

T

(b) b < `

Figure 43: Radial null geodesic in Kruskal coordinates for b > ` (a) and b < `
(b). The standard Schwarzschild geodesic is represented by a red dashed line
(that ends on the singularity at r = 0), while the geodesic in the defect metric
is represented by a blue solid line (that changes direction hitting the defect at
r = b). Again, the arrows indicate the direction of increasing proper time. The
event horizon is represented by the curve T = ±R.

First, we observe that the event horizon divides spacetime into four distinct
regions (labeled I, II, III, and IV in Fig. 43). We must point out that Eq.
(9.36) provides the correct transformation between defect coordinates {t, y} and
Kruskal coordinates {T,R} only in region I (which is why we introduced the
subscript I in Eq. (9.36)). In the other regions the correct transformations are{
TII(t, y) = RI(t, y),

RII(t, y) = TI(t, y),

{
TIII(t, y) = −TI(t, y),

RIII(t, y) = −RI(t, y),

{
TIV (t, y) = −RI(t, y),

RIV (t, y) = −TI(t, y).

(9.39)
In Schwarzschild spacetime, regions I and III are both asymptotically flat

regions describing the exterior of the black hole, but they are causally discon-
nected (i.e. there is no null-like or time-like curve that can lead from I to III).
In the defect metric, this is no longer the case (when b < `), and in fact, we can
see from Fig. 43(b) that a null particle falling into the black hole in region I is
prevented from reaching the singularity by the presence of the defect. Instead,
the particle passes through the defect and continues to propagate, eventually
crossing the event horizon on the other side. It is interesting that it does not
emerge in region I (as happens in the case b > `), but instead it emerges in
region III. In this case, the two regions are not causally disconnected. It is also
important to note that, while the null particle in region I crosses the horizon
located at t = +∞, it emerges in region III from the horizon located at t = −∞
(which represents a white hole).

In relation to the previous subsection 9.3.2, we observe that ingoing PG
coordinates (T ∗+, y) cover only regions I and II (or alternatively their equivalent
counterparts, regions III and IV). Instead, outgoing PG coordinates (T ∗−, y)
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cover only regions IV and I (or alternatively II and III). However, we have seen
(Fig. 43(b)) that the maximally extended defect metric (9.37) admits geodesics
that move, for example, from region I to region III (passing through region
II). As a result of these considerations, we conclude that the defect metric in
ingoing PG coordinates Eq. (9.31) (or outgoing PG coordinates Eq. (9.35)) is
not geodesically complete (i.e. it contains geodesics that cannot be extended
indefinitely).

9.3.3.1 Kruskal topology

We wish to discuss the topology of the defect metric (9.1) and of its maximal
extension (9.37). We start by considering the simpler Schwarzschild metric.

The Schwarzschild metric in spherical coordinates is singular at r = 0 and
r = `, and so we can divide the manifold into an internal region (r < `) and an
external region (r > `). The topology of the two region is{

MI
S = P I × S2 , P I = {(t, r) ∈ R2 | 0 < r < `} ,

ME
S = PE × S2 , PE = {(t, r) ∈ R2 | r > `} .

(9.40)

Instead, the topology of the Schwarzschild metric in Kruskal coordinates is [100]

MSK = R2 × S2 . (9.41)

In this coordinate system, the horizon surface r = ` is not singular.
In the defect metric we have a similar situation whereby, in spherical coordi-

nates, we need to divide the manifold into two regions. Using the diffeomorphism
r → ρ = b/r, we deduce that the topology is{
MI

d = R× (RP 3 −D) , D = {(ρ, θ, φ) ∈ R3 | ρ ≤ b/`} ,
ME

d = R×DE , DE = {(ρ, θ, φ) ∈ R3 | 0 < ρ < b/`} .
(9.42)

In order to obtain the topology of the defect in Kruskal coordinates, we make
a couple of considerations. First, we observe that the transformation law from
spherical to Kruskal coordinates Eqs. (9.36) and (9.39) is a diffeomorphism (and
hence a homeomorphism) in each separate region I, II, III, and IV. Second, the
defect metric is diffeomorphic to the Schwarzschild metric for r > b. We can
use this information to obtain the topology of the defect metric in Kruskal
coordinates. To do so, we introduce a new length b < a < ` so that we can
rewrite the defect manifold as

MI1
d = R× (RP 3 −D′) , D′ = {(ρ, θ, φ) ∈ R3 | ρ < b/a} ,

MI2
d = P I2 × S2 , P I2 = {(t, r) ∈ R2 | a < r < `} ,

ME
d = PE × S2 , PE = {(t, r) ∈ R2 | r > `} .

(9.43)

We observe that MI2
d ∪ME

d is homeomorphic to the Schwarzschild manifold,
and therefore its topology in Kruskal coordinates is again R2 × S2. Conversely,
the topology of MI1

d is unchanged when moving to Kruskal coordinates. We
can use the transformation r → ρ = b/r again to map MI2

d ∪ME
d into the ball

D′ removed from MI1
d . In doing so, we finally find that the topology of the

defect metric in Kruskal coordinates is

MdK = R×
(
RP 3 − {point}

)
. (9.44)
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9.3.4 Penrose diagram

With a further conformal transformation [101]{
ψ = arctan(T +R) + arctan(T −R) ,

ξ = arctan(T +R)− arctan(T −R) ,
(9.45)

we can map the infinite-range Kruskal coordinates to a new set of finite-range
coordinates, from which in turn we obtain the Penrose diagram of the defect
metric (9.1) shown in Fig. 44.
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Figure 44: Penrose diagram of the defect metric (9.1) for b < ` (a) and b > `
(b). i− and i+ indicate, respectively, past and future time-like infinities, I−

and I+ indicate past and future null-like infinities, and i0 indicates space-like
infinity. The behavior of a radial null geodesic is shown in both cases (blue solid
line).

As we observed in the previous subsection 9.3.3, when the radius of defect
b is smaller than its Schwarzschild radius `, the two asymptotically flat regions
I and III become causally connected. Here, we want to show that this feature
can be used to build a “time machine” with all the causal paradoxes involved.
As a simple example, we can consider an emitter/receiver of electromagnetic
radiation placed at a fixed distance from the defect in region I (we consider a
spherical apparatus enclosing the defect). The apparatus is programmed to emit
a signal radially directed toward the defect at a certain time, t0, if it does not
receive any signal from the defect before t0. Similarly, in region III, someone has
placed a mirror at a fixed distance from the defect (a spherical mirror enclosing
the defect) so that the signal emerging from the defect is reflected back radially.
Thus, the reflected signal emerges back in region I and, in certain circumstances,
can reach the surface of the emitter before it has been emitted, hence preventing
its own emission. This configuration is illustrated in Fig. 45.
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Figure 45: Penrose diagram showing a paradoxical closed time loop: A signal
(blue solid line) reaches its source before it has been emitted, hence preventing
its own emission.

9.3.5 Time-like geodesics

We turn now to the study of radial time-like geodesics (ε = 1, L = 0). The
geodesic equation for the radial coordinate, Eq. (9.14), when L = 0, is

ẏ2 +
y2 + b2

y2

(
1− `√

y2 + b2
− E2

)
= 0 , (9.46)

which, using the change of variables r =
√
y2 + b2, becomes

ṙ2 = E2 − V (r) , V (r) = 1− `

r
. (9.47)

We can distinguish between three cases:

• E > 1, where the energy of the particle is larger than the gravitational
potential at infinity (V (∞) = 1). The orbit is unbounded, the particle
directed toward the defect passes through it and continues to propagate,
reaching infinity with non-zero velocity.

• E = 1, where the energy of the particle is equal to the gravitational
potential at infinity. The particle reaches infinity with zero velocity.

• E < 1, where the energy of the particle is smaller than the gravitational
potential at infinity. The orbit is bounded, and so the particle cannot
reach infinity but oscillates between two turning points passing through
the defect.

9.3.6 E > 1

We start by studying the first case, E > 1. The solution of Eq. (9.47), in this
case, has a simple form expressed parametrically in (hyperbolic) cycloidal form:

r(η) =
R

2
(cosh(η + η0)− 1) ,

τ(η) =
R

2

√
R

`
(sinh(η + η0)− η + C) ,

R =
`

E2 − 1
. (9.48)
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That this is a solution of Eq. (9.47) can be verified by direct insertion:(
dr

dτ

)2

=

(
dr

dη

dη

dτ

)2

=
`(cosh(η + η0)2 − 1)

R(cosh(η + η0)− 1)2
=
R`

4r2

(
4r2

R2
+

4r

R

)
=
`

r
+
`

R
.

(9.49)
Transforming back to the coordinate y, and imposing the conditions y(0) = 0
and τ(0) = 0, we obtain

y(+)(η) = +

√
R2

4
(cosh(η + η0)− 1)2 − b2 , η > 0 ,

y(−)(η) = −
√
R2

4
(cosh(η − η0)− 1)2 − b2 , η < 0 ,

(9.50)

and 
τ(η) =

R

2

√
R

`
(sinh(η + η0)− η − sinh η0) , η > 0 ,

τ(η) =
R

2

√
R

`
(sinh(η − η0)− η + sinh η0) , η < 0 ,

(9.51)

where

η0 = arccosh

(
2b

R
+ 1

)
. (9.52)

Integrating the equation for the time coordinate (9.28) is rather complicated
in this instance. Fortunately, the result has been obtained for the Schwarzschild
metric and we can transform it appropriately for the defect metric. We therefore
obtain

t(±)(τ) =t
(±)
0 − R

2

(
R

`
+ 1

)1/2 [(
1− 2`

R

)
η − sinh(η ± η0)

]
+

+ ` log

∣∣∣∣∣ (R/`+ 1)
1/2 − coth((η ± η0)/2)

(R/`+ 1)
1/2

+ coth((η ± η0)/2)

∣∣∣∣∣ ,
(9.53)

where the “+” sign corresponds to τ > 0, while the “−” sign has to be picked

when τ < 0. The constant t
(±)
0 has been chosen so that t(0) = 0:

t
(±)
0 = ±R

2

(
R

`
+ 1

)1/2

sinh η0 + ` log

∣∣∣∣∣ (R/`+ 1)
1/2 ∓ coth(η0/2)

(R/`+ 1)
1/2 ± coth(η0/2)

∣∣∣∣∣ . (9.54)

Results are shown in Fig. 46 in coordinates (r, τ) and in Fig. 47 in Penrose
coordinates.

9.3.7 E = 1

The second case is the simplest to be solved. In fact, when E = 1, Eq. (9.47)
simplifies further and one gets

r(τ) =

(
9`

4
(τ ± τ0)2

)1/3

, (9.55)
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which, rewritten in terms of the coordinate y (and imposing y(0) = 0), becomes
y(+)(τ) = +

√(
9`

4
(τ + τ0)

2

)2/3

− b2 , τ > 0 ,

y(−)(τ) = −

√(
9`

4
(τ − τ0)

2

)2/3

− b2 , τ < 0 .

τ0 =
2

3

√
b3

`
.

(9.56)
Inserting this result into the equation for the time coordinate (9.28), we obtain
t(+)(τ)= τ+t0 +

[
3(2`)2(τ0 + τ)

]1/3− ` log

∣∣∣∣∣1 + (3/(2`)(τ0 + τ))
1/3

1− (3/(2`)(τ0 + τ))
1/3

∣∣∣∣∣ , τ > 0,

t(−)(τ)= τ−t0−
[
3(2`)2(τ0 − τ)

]1/3
+ ` log

∣∣∣∣∣1 + (3/(2`)(τ0 − τ))
1/3

1− (3/(2`)(τ0 − τ))
1/3

∣∣∣∣∣ , τ < 0,

(9.57)
where again t0 has been chosen so that t(0) = 0:

t0 = −
[
3(2`)2τ0

]1/3
+ ` log

∣∣∣∣∣1 + (3τ0/(2`))
1/3

1− (3τ0/(2`))
1/3

∣∣∣∣∣ . (9.58)

Results are shown in Figs. 46 and 47.

9.3.8 E < 1

The case E < 1 is complicated by the fact that the geodesics pass through the
defect more than once. For the rest, the study of this case is similar to the first
one (E > 1). The solution of Eq. (9.47) can again be expressed parametrically
in (standard) cycloidal form, to produce

rn(η) =
R

2
(1 + cos(η − ηn)) ,

τn(η) =
R

2

√
R

`
(η + sin(η − ηn) + Cn) ,

R =
`

1− E2
, (9.59)

where the subscript n indicates that we are considering only the nth cycle.
Transforming back to the coordinate y and imposing the conditions y(0) = 0
and τ(0) = 0, we obtain

y
(+)
0 (η) = +

√
R2

4
(1 + cos(η + η

(+)
0 ))2 − b2 , 0 ≤ η ≤ 2η∗ ,

y
(−)
0 (η) = −

√
R2

4
(1 + cos(η + η

(−)
0 ))2 − b2 , − 2η∗ ≤ η ≤ 0 ,

(9.60)

and
τ

(+)
0 (η) =

R

2

√
R

`
(η + sin(η + η

(+)
0 ) + C

(+)
0 ) , 0 ≤ η ≤ 2η∗ ,

τ
(−)
0 (η) =

R

2

√
R

`
(η + sin(η + η

(−)
0 )− C(−)

0 ) , − 2η∗ ≤ η ≤ 0 ,

(9.61)
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where η
(±)
0 = ∓η∗ , C

(±)
0 = ± sin η∗ , and η∗ is given by

η∗ = arccos

(
2b

R
− 1

)
. (9.62)

This solution is only valid for the 0th cycle around the origin, η ∈ (−2η∗, 2η∗).
When the geodesic returns to hit the defect surface (y = 0) at η = 2η∗ (or

η = −2η∗, if we consider the past direction), we have to update the integration

constants for the next cycle (η
(±)
1 , C

(±)
1 ) so that the solution will satisfy the

conditions y1(2η∗) = y0(2η∗) = 0 and τ1(2η∗) = τ0(2η∗). This operation has to
be applied to each cycle, and we obtain the result

η(+)
n = −(4n+ 1)η∗ , C(+)

n = (4n+ 1) sin η∗ ,

η(−)
n = −(4n− 1)η∗ , C(+)

n = (4n+ 1) sin η∗ .
(9.63)

At this point, it is easy to construct solutions y(η), τ(η) that are valid

everywhere by replacing the constant n in η
(±)
n and C

(±)
n with an η dependent

function n(η) defined as

n(η) =

⌊
η

4η∗

⌋
−Θ(−η) , (9.64)

where bxc is the integer part of x and Θ(x) is the Heaviside step function.
Introducing also the function

n′(η) =

⌊
η

2η∗

⌋
−Θ(−η) , (9.65)

we can finally determine the general solutions y(η) and τ(η):

y(η) = y(+)(η)
1 + (−1)n

′(η)

2
+ y(−)(η)

1− (−1)n
′(η)

2
, (9.66a)

τ(η) = τ (+)(η)
1 + (−1)n

′(η)

2
+ τ (−)(η)

1− (−1)n
′(η)

2
, (9.66b)

where y(±)(η), τ (±)(η) are

y(±)(η) = ±
√
R2

4
(1 + cos(η + η

(±)
n(η)))

2 − b2 , (9.67a)

τ
(±)
0 (η) =

R

2

√
R

`
(η + sin(η + η

(±)
n(η)) + C

(±)
n(η)) . (9.67b)

Again, we can obtain the time coordinate (Eq. (9.28)) by transforming appro-
priately the result for the Schwarzschild metric. In this respect we find

t(±)(η) =t
(±)
0 (η) +

R

2

(
R

`
− 1

)1/2 [(
1 +

2`

R

)
η + sin(η + η

(±)
n(η))

]
+

+ ` log

∣∣∣∣∣∣ (R/`− 1)
1/2

+ tan((η + η
(±)
n(η))/2)

(R/`− 1)
1/2 − tan((η + η

(±)
n(η))/2)

∣∣∣∣∣∣ ,
(9.68)
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where t
(±)
0 (η) is given by

t
(±)
0 (η) = C

(±)
n(η)

{
R

2

(
R

`
− 1

)1/2

+
`

sin η∗
log

∣∣∣∣∣ (R/`− 1)
1/2

+ tan(η∗/2)

(R/`− 1)
1/2 − tan(η∗/2)

∣∣∣∣∣
}
.

(9.69)
Results are shown in Figs. 46 and 47.
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Τ

Figure 46: Time-like radial geodesics expressed in coordinates (r, τ) for different
energies. Note that we depict a section of the defect (the coordinate r is positive
both on the right and on the left of the τ axis, while the angular coordinate
φ changes by π). Also shown are the horizon r = ` (black solid line) and the
defect r = b (black dashed line)

Referring to Fig. 47, we observe that time-like geodesics with E < 1 are
causality-violating curves. That is, they cross the horizon in region I at t = +∞
and emerge (again in region I) from the horizon at t = −∞, i.e. before they
cross it in the first place. As a result, the paradoxical time machine described
at the end of Sec. 9.3.4 for null geodesics can be simplified for E < 1 time-like
geodesics, because we do not need to place a mirror in region III.

Since we would like to avoid paradoxes, we will study, in Sec. 10, a more
realistic model of defect described as the result of a star collapse, where it is
shown that closed time-like curves do not arise.

9.3.9 Closed time-like curves in a Skyrme exact solution

We now wish to discuss in this subsection geodesics in the defect solution ob-
tained in Ref. [69] in the presence of matter. The framework introduced in
that work describes a Skyrme scalar field Ω ∈ SO(3) that lives in a spacetime
manifold with metric gµν . The scalar field is governed by the standard Skyrme
Lagrangian [102] plus another contribution [103], while the metric is governed
by the standard Einstein Hilbert action [75]. Explicitly, the total action of the
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Figure 47: Time-like radial geodesics in Penrose coordinates for E > 1 (blue
solid line), E = 1 (green dot-dashed line), and E < 1 (red solid line); the arrows
indicate the direction of increasing proper time. The first two curves start at
i− in region I and terminate at i+ in region III, while the last curve oscillates
between the two regions (along a causality-violating path).

model is

S =

∫
d4x
√
−g (Lgrav,EH + Lmat,kin + Lmat,Skyrme + Lmat,metastab) , (9.70)

where the Lagrangian densities are given by

Lgrav,EH =
1

16πGN
R , (9.71)

Lmat,kin =
f2

4
tr (ωµω

µ) , (9.72)

Lmat,Skyrme =
1

16e2
tr ([ωµ, ων ] [ωµ, ων ]) , (9.73)

Lmat,metastab =
γ

48e2
(tr (ωµω

µ))
2
, (9.74)

(9.75)

and ωµ = Ω−1∂µΩ. Moreover, the metric is constrained by the spherically
symmetric Ansatz

ds2 = −e2ν̃(b2+y2)dt2 + e2λ̃(b2+y2)dy2 + (y2 + b2)(dz2 + sin2 z dx2) , (9.76)

and the scalar field is given by the Ansatz

Ω = cos
(
F̃ (r2)

)
1− sin

(
F̃ (r2)

)
x̂ · ~S +

(
1− cos

(
F̃ (r2)

))
x̂⊗ x̂ , (9.77)

where ~S = (S1, S2, S3) is the vector of the SO(3) generators and r2 = y2 + b2.
Observe that, in setting F̃ (r2) = 0, the matter Lagrangians evaluate to zero,

meaning that the action (9.70) describes a vacuum spacetime from which one
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can derive the vacuum solution (9.1). Another exact solution can be obtained
by setting F̃ (r2) = π, which corresponds to a non-vanishing matter sector. It is
precisely this metric whose geodesics we want to study. Explicitly, this solution,
in the form of Eq. (9.2), is

ds2 = −A(y)dt2 +B(y)dy2 +W (y)(dz2 + sin2 z dx2) , (9.78)

with

A(y) = 3C2
2

(
1 +

C1√
y2 + b2

+ 4η̃

(
1− 4

3γ

y2 + b2
− 1

))
, (9.79a)

B(y) =

y2

y2+b2

1 + C1√
y2+b2

+ 4η̃
(

1− 4
3γ

y2+b2 − 1
) , (9.79b)

W (y) = y2 + b2 , (9.79c)

where η̃ = 8πGNf
2 and C1, C2 are two integration constants. Note that, by

setting η̃ = 0 and C2 = 1/
√

3, this solution reduces to the vacuum solution with
the identification C1 = `.

Another interesting case is obtained by choosing for the coupling constant
the value γ = 3/4. By setting C2 = 1/(

√
3(1−η̃)), defining ˜̀= −C1/(1−4η̃)3/2,

and rescaling the coordinates to t =
√

1− 4η̃ t̃ and y =
√

1− 4η̃ ỹ, the metric
takes the form

ds2 = −

1−
˜̀√

ỹ2 + b̃2

 dt̃2 +

ỹ2

ỹ2+b̃2

1− ˜̀√
ỹ2+b̃2

dỹ2 +(1−4η̃)(ỹ2 + b̃2)dΩ2 , (9.80)

which is equivalent, in the radial and temporal coordinates, to the vacuum
solution (9.1). From this fact, we can see immediately that all the results
derived in the previous sections for the vacuum massive solution (since they
concern only the radial motion) are also valid for the solution with matter for
the particular choice γ = 3/4. In particular, the appearance of closed time-like
curves, discussed at the end of Sec. 9.3.4 for null-like radial geodesics and at the
end of Sec. 9.3.8 for time-like geodesics, affects also the metric (9.80) obtained
in the presence of matter.

To obtain the geodesics for a generic value of γ, we need to insert the ex-
pressions (9.79) into the equations (9.11) and (9.13). Explicitly, for a massless
particle (ε = 0) moving along a radial trajectory (L = 0), these equations
become

ṫ =
E

3C2
2

(
1 + C1√

y2+b2
+ 4η̃

(
1− 4

3γ

y2+b2 − 1
)) , (9.81a)

ẏ2 =
y2 + b2

y2
E2 , (9.81b)

where the radial equation is equal to that in the vacuum (9.26) whose solution,
we recall, is (9.27)

y(τ) =

 y(+)(τ) =

√
E2 (τ + b/E)

2 − b2 , τ > 0 ,

y(−)(τ) = −
√
E2 (τ − b/E)

2 − b2 , τ < 0 .

(9.82)
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Substituting this result into the equation for the time variable, we obtain

t(τ) =

{
t(+)(τ) , τ > 0 ,

t(−)(τ) , τ < 0 ,
(9.83)

where

t(+)(τ) =t0 + Eτ +
`

2
log

[
3(1− 4η)`(Eτ + b)

(
1− 4(1− 4/3γ)η

`(Eτ + b)(1− 4η)
−

−Eτ + b

`

)]
+

`2 − 8(1−4/3γ)η
1−4η√

`2 − 16η 1−4/3γ
1−4η

arctanh

 `− 2(Eτ + b)√
`2 − 16η 1−4/3γ

1−4η

 ,

t(−)(τ) =t0 + Eτ − `

2
log

[
3(1− 4η)`(b− Eτ)

(
1− 4(1− 4/3γ)η

`(b− Eτ)(1− 4η)
−

−b− Eτ
`

)]
+

`2 − 8(1−4/3γ)η
1−4η√

`2 − 16η 1−4/3γ
1−4η

arctanh

 `− 2(Eτ + b)√
`2 − 16η 1−4/3γ

1−4η

 ,

(9.84)

where we have set, for simplicity, C1 = −`(1 − 4η) and C2 = 1/(
√

3(1 − 4η)),
and t0 has been chosen so that t(0) = 0. This solution is compared with the
vacuum solution (9.29) in Fig. 48.
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t H ΤL

Figure 48: Time component of the null-like radial geodesic with matter, Eq.
(9.84), (blue solid line) compared with the same component obtained in vacuum,
Eq. (9.29), (red dashed line). For this particular plot we used η = 0.15 and
γ = 5, but analogous results are obtained for other values of η and γ, and in
particular for η = 0 the two curves coincide.

From Fig. 48, we see that, even for a generic value of η and γ, the radial null
geodesics with matter are qualitatively equivalent to the radial null geodesics in
the vacuum, apart for a shift in the event horizon given by

rh =
√
y2
h + b2 =

1

2

(
`+

√
`2 − 16η

1− 4/3γ

1− 4η

)
. (9.85)

We see that this expression reduces to the standard result (rh = `) for η = 0 or
γ = 3/4. From this fact, we can immediately conclude that the same features
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that characterize the vacuum’s radial geodesics, in particular the appearance of
closed time-like curves (due to the causally connectedness of the two asymptot-
ically flat regions that appear in the maximal extension of the metric), must
also affect the radial geodesics of the defect metric in the presence of matter.

10 Star collapse

In the previous section, we saw that the maximally extended defect metric (9.1)
contains causality-violating geodesics. However, as pointed out also for the
standard Schwarzschild metric [104], it could be that this metric is not a realistic
description of a physical object such as a black hole. In fact, it describes a static
eternal geometry, though one might expect that a black hole can originate only
as the result of some physical process such as the collapse of a star. Here, we
want to study this process in order to verify that, in this more realistic scenario,
causality-violating paths are not possible.

In the simplest model of collapse [105, 75], the star is represented by a ball of
dust with uniform density and zero pressure. The interior of the star is described
by the FLRW (closed) metric

ds2
I = −dτ2 + a2(τ)

(
dχ2 + sin2 χdΩ2

)
, (10.1)

where the radial coordinate is given by r = a(τ) sinχ. The (vacuum) region
outside the star is described by the Schwarzschild metric

ds2
E = −

(
1− `

r

)
dt2 +

dr2

1− `/r
+ r2dΩ2 . (10.2)

The evolution of the star’s interior geometry is determined by the Friedmann
equations, and one obtains in cycloidal form

a(η) =
a0

2
(1 + cos η) ,

τ(η) =
a0

2
(η + sin η) ,

(10.3)

and for the density

ρ(η) =
3

πa2
0

(1 + cos η)
−3

. (10.4)

The evolution of particles on the star’s surface R∗(τ) is described by radial
time-like geodesics in the Schwarzschild metric (Eq. (9.59)):

R∗(η) =
R0

2
(1 + cos η) ,

τ(η) =
R0

2

√
R0

`
(η + sin η) .

(10.5)

Note that, since the pressure is zero, the motion of particles inside the star
(at an initial position r0) is also described by radial time-like geodesics in a
Schwarzschild metric (determined this time by the mass contained in the sphere
of radius r0).
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By matching the internal and external solutions at the star’s surface, one
obtains the identifications

R0 = a0 sinχ0 , ` = a0 sin3 χ0 . (10.6)

From these equations, we see that the star collapses from its initial radius R∗ =
R0 at η = 0, to the singularity R∗ = 0 at η = π, where the density ρ becomes
infinite.

We want to modify this model by adding a transition at some critical density
ρc, where the topology of spacetime changes and the defect appears. Further-
more, we assume that the defect size b is equal to the size of the region whose
density has reached ρc. Since the density of the star is uniform in this model,
the entire star reaches the critical density at the same proper time τc. Conse-
quently, the entire star is transformed simultaneously to a defect whose size is
given by

b = R∗(τc) . (10.7)

After this transition, spacetime is described by the defect metric (9.1). This
scenario is illustrated in Fig. 49.

Friedmann

Schw
arzschild

Topology Change

Defect

r Φ+Π r ΦR0 R0

Τ

(a) Star collapse

ΡcΡ0

Τc

Ρ

Τ

(b) ρ(τ)

Figure 49: Fig. (a) section of a star collapsing into a defect in coordinates
(r, τ). The horizon r = ` is represented by a black solid line, the defect r =
b is represented by a black dashed line, and the region of critical density is
represented by a orange wavy line. Note that the entire star experiences a
topology change at the same proper time τc. Fig. (b) density evolution ρ(τ)
from Eq. (10.4).

It is important to note that topology changes in classical general relativity
are not allowed [12, 106], but they can possibly occur in a quantum theory of
gravity. Consequently, we can infer that the critical density ρc may be related
to the Planck density ρP = mP /l

3
P ' 5.1× 1096kg/m3.
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We can now turn to analyze the behavior of a null particle moving toward the
defect along a radial geodesic. Since both the star’s surface and the approaching
null particle are moving toward the defect, we can represent both of them in
PG coordinates (Sec. 9.3.2). This is shown in Fig. 50.

r Φ+Π r Φ

r
=

b

r
=

{

T
*

+

Figure 50: Section of the collapsing star in PG coordinates; note that the topol-
ogy change (orange wavy line) is not simultaneous in this frame. Also depicted
is a null radial geodesic and the shrinking of the horizon (black solid line) per-
ceived by the null particle inside the star.

One can observe that, in this reference frame, the topology change does not
occur at the same time. Moreover, the radial null geodesic, which after crossing
the defect r = b is moving backward in time, ends its path on the star’s surface.
If the null particle is not interacting (or weakly interacting) with the star, it
can continue to propagate inside the star. In this case, its path will end in the
region of critical density at which the topology change occurs. In fact, inside the
star, the particle is still propagating in a Schwarzschild metric, where the only
mass which contributes to the gravitational field is that contained in a sphere of
radius equal to the particle’s position (as happens for the star’s internal layers).
This produces a shrinking of the horizon, as shown in Fig. 50. Since, in this
reference frame, the particle cannot cross the horizon in a finite amount of time,
it must fall into the critical region ρc.

One could argue that this phenomenon is due to the particular choice of PG
coordinates, which are not good for representing outgoing geodesics. Therefore,
in Fig. 51, we illustrate the same process in Kruskal and Penrose coordinates.
We observe that in these coordinates the behavior of the null geodesics is the
same as described for the PG coordinates. The particle that has entered the
horizon can either stop at the star’s surface (and be dragged into the ρc region),
or propagate inside the star until, once again, it reaches the surface of topology
change.

From these diagrams, we see also that only one asymptotically flat region
(I) appears, and there is no anti-horizon. In this case, the outside of the black
hole is safe from causality-violating paths.
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Figure 51: Kruskal (a) and Penrose (b) diagrams of the defect originating by
a collapsing star. In this case spacetime does not contain causality-violating
paths (at least it the outside region I).
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Part VI

Conclusions
In this thesis, we have studied different classical models of spacetime foam in
different frameworks. The differences between these models reside mainly in
the particular representation of spacetime fluctuations, which we have modeled
using different types of topological defects. In particular, we were interested
in investigating how these models affect the propagation of particles, which
was achieved by calculating the particles’ modified dispersion relations. As we
discussed in part I, there is in fact a realistic chance to observe the effects of
spacetime fluctuations experimentally, or at least to use the experimental results
to place constraints on the parameters of the models. Here, we summarize the
results taken from these studies.

11 Summary of the results

In part II, we investigated how to construct a Lorentz-invariant spacetime foam
model. We observed that this is feasible, provided one uses point-like topologi-
cal defects and distributes them in spacetime according to a sprinkling process.
Then, we calculated the dispersion relations of scalar and vector particles in this
spacetime foam model, observing that Lorentz invariance is maintained in the
results as well. In particular, the only effect of the distribution of defects on the
scalar field is a rescaling of the mass of the field observed in the modified dis-
persion relation (3.33). For the photon field we found instead that the presence
of defects does not produce any modification in the dispersion relation, see Eq.
(4.102). However, in a PT symmetric extension of the model considered, the
photon dispersion relation is modified as well and is given by Eq. (4.115), from
which we find that, in certain circumstances, the photon can become massive.

In part III, we considered different types of static extended topological de-
fects with the same topological structure but different differential structures.
In Sec. 5, we studied a type of defect obtained by removing a ball from the
spatial hypersurface of Minkowski spacetime and identifying antipodal points
on its boundary. Such a defect was used in Ref. [67] to build a spacetime foam
model where the propagation of electromagnetic waves was modified according
to the modified dispersion relation (5.46), which describes a dispersive medium.
We generalized this result to the case of a massive defect obtaining, for electro-
magnetic waves, the dispersion relation (5.114). We note that this dispersion
relation predicts that spacetime should become opaque to low-energy photons.
Since no such effect is observed in nature, we are led to rule out this model as
a realistic description of spacetime foam.

In Sec. 6, we introduced a second type of defect obtained in Ref. [69] as
a vacuum solution of general relativity. This new defect is homeomorphic but
not diffeomorphic to the previous one, and we showed that, consequently, the
scalar solutions of the Klein-Gordon equation in the two cases are different (see
Eqs. (6.32), (6.34)). In particular, the two solutions exhibit different behaviors
under parity (see Fig. 14). Then, we calculated the dispersion relations for
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scalar waves in the two cases (i.e. considering two spacetime foam models with
the same characteristics but based on different types of defects), showing that
these results are different, too. We also observed that, for the scalar field,
both spacetime foam models describe a non-dispersive medium with a modified
refractive index (see Eqs. (6.70)).

From the scalar solution for the second type of defect, we were able to obtain
the corresponding electromagnetic solutions and calculate the modified disper-
sion relation for photons (see Eq. (6.120)). We observed that, also in this case
and differently from what happens with the first type of defects, the spacetime
foam model describes a non-dispersive medium with a modified index of refrac-
tion.

In part IV, we created a numerical program to study the propagation of a
scalar field in a regular lattice filled with a distribution of extended topological
defects (obtained by removing sites from the lattice and identifying opposite
points on the boundary). The program is based on a simple Metropolis algo-
rithm employed to calculate the modified propagator of the scalar field. First,
we examined the case of a distribution of extended time-dependent defects, ob-
taining a result analogous to that of part II, i.e. that the only modification to
the dispersion relation is a rescaling of the mass of the scalar field. See Eq.
(8.13) for the dispersion relation obtained in 2 dimensions, and Eqs. (8.16) and
(8.17) for the dispersion relations in 3 and 4 dimensions. Next, we considered
the case of static extended defects, for which we obtained a result analogous to
that obtained in part III for scalar particles. In other words, the static space-
time foam model describes a non-dispersive medium with a modified index of
refraction. In particular, we obtained the modified dispersion relations in 3 and
4 dimensions given by, respectively, Eqs. (8.19) and (8.22). Observe that the
latter expression resembles the analytic result given by Eq. (8.23).

In part V, we investigated the subject from a different perspective. In fact,
instead of regarding the topological defects as representations of the microscopic
fluctuations of spacetime, we considered one of these defects in the context of
black hole physics. As previously mentioned, the second type of defect discussed
in part III (which is a vacuum solution of general relativity) has been suggested
to provide a regularization to the Schwarzschild black hole. Here, we consid-
ered a black hole described by this type of defect, and studied the geodesics of
this solution. We found that the main difference with respect to the standard
Schwarzschild black hole is that, in this case, the two asymptotically flat regions
that appear in the maximal extension of the solution are causally connected (in
the Schwarzschild case they are not). A consequence of this fact is that closed
time-like curves are allowed to appear, as shown in Figs. 45 and 47. We also
showed that an analogous situation arises in the case where matter is present.

Lastly, we studied the case in which the black hole is not eternal but has been
originated by the collapse of a star. We observed that, in this case, closed time-
like curves are forbidden and the model is safe from causal paradoxes (see Figs.
50 and 51). This result seems to indicate that the defect solution can provide
a consistent description of black holes that avoids the problem of singularity,
provided that the black hole is not eternal but is the result of a star collapse.
Note, however, that this scenario is based on the assumption that a mechanism
of topology change occurs at some point, and this can only be accounted for in
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a quantum theory of gravity. It must also be pointed out that this regularized
solution requires the relaxation of the elementary flatness condition [87].

12 Discussion

The scope of this thesis was to study the topological structures of spacetime and
to investigate how these structures can influence the propagation of particles.
This idea is motivated by the search for experimental evidence of quantum
gravity. Nontrivial topological structures of spacetime are expected to be the
result at the microscopic scale of quantum gravitational fluctuations. Gaining
an understanding of how these structures modify the propagation of particles
can lead to predictions, which, constrained by experimental observations, in
turn can help to understand quantum gravitational interactions.

This study can be viewed as part of a more general investigation into the
effects of topological structures of spacetime; see, for example, Refs. [39, 107, 40,
109, 108, 67, 68, 69]. The approaches that we adopted (in particular in parts
II and III) are based on the works of Ref. [40] and Ref. [67], and represent
an extension of these studies. We observe that the approaches of these two
works are completely different and that, as pointed out in the latter article
(Ref. [67]), the first is less general than the second. As we have seen in part
II, the framework of Ref. [40] is valid only for chiral gauge theories, while the
framework of Ref. [67], which studies the direct interaction between photons
and defects, does not depend on the chirality of the theory. However, both
approaches have important characteristics that make them useful.

In the framework of Ref. [40] it is manageable to study time-dependent
defects, and so we used it in part II to formulate a Lorentz-invariant model of
spacetime foam. In the framework of Ref. [67], instead, the investigation of time-
dependent defects is much more complicated, which is one of the motivations
that led us to develop a lattice model of spacetime foam in part IV, where the
study of time-dependent extended defects presents no difficulties. On the other
hand, the approach of Ref. [67] is more suitable to investigating the particular
structure of the defects, and so we used it in part III to compare the effects
of different types of static topological defects (described in Refs. [67, 68] and
in Ref. [69]). From this comparison, we find the most interesting result of
this thesis, i.e. the implications of spacetime defects on particle propagation do
not depend solely on the topological structure of the defects but also on their
differential structure.

We observed that the analytic results of parts II and III for scalar fields are
in agreement with the numerical results of part IV. This is interesting, especially
for the case of time-dependent defects. In fact, the analytic results of part II are
obtained for point-like defects (which are Lorentz-invariant), while the numerical
results of part IV concern extended defects (which are not Lorentz-invariant).
An analytic investigation into extended time-dependent defects is necessary, in
order to better understand this point.

One must bear in mind that, lacking any direct experimental evidence of
spacetime foam, it is very difficult to draw definitive conclusions on the topic,
so all experimental results must be considered model-dependent. Spacetime
foam is usually expected to cause Lorentz violations which imply the vacuum
must be depicted as a dispersive medium. Particles in such a context display
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modified dispersion relations of the form found in Eq. (1.20). Most of the
current experiments are based on this assumption, a typical example of which is
the measurement of the time of flight of photons, which Eq. (1.20) predicts to
be energy-dependent. However, the assumption of a dispersive spacetime is not
a general result, and in many cases, as in those studied in this thesis, spacetime
foam turns out to describe a non-dispersive medium for which these kinds of
experiments are irrelevant (the velocity of propagation does not depend on the
photon energy in this case).

When the distribution of topological defects is explicitly Lorentz-invariant,
we saw in part II that no modifications in the dispersion relation of photons ap-
pear (at most, in certain circumstances, the photon can become massive). For
a distribution of extended static defects, which explicitly breaks Lorentz invari-
ance, we would expect to obtain modified dispersion relations corresponding to
a dispersive medium. Nevertheless, we observed in part III that, for electromag-
netic waves, this is the case only when the defects are not solutions of general
relativity. When the defect manifold is a vacuum solution of general relativity,
the corresponding spacetime foam model describes a non-dispersive medium.

In this latter case the defect manifold, whose geodesics we studied in part V,
can also serve to regularize the Schwarzschild black hole. We observed that the
regularization can be used consistently (without the appearance of paradoxical
time-machines), albeit only for non-eternal black holes and under the condition
of allowing for mechanisms of topology change.
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