
Large-Scale Data 

Management and Analysis

Big Data in Science

1st Edition



Large-Scale Data Management and Analysis

2 

Content

Editorial .......................................................................................................................... 3

Big Data in Photon Science .................................................................................................... 4

I/O performance Improvements Using Emerging Technologies ........................................................... 7

KaHIP – Karlsruhe High Quality Partitioning ................................................................................. 8

KIT Data Manager: The Repository Architecture Enabling Cross-Disciplinary Research ............................... 9

A Geospatial Data Life Cycle Services Framework ........................................................................ 12

FRESCO: A Framework to Estimate the Energy Consumption of Computers ........................................... 14

Towards Smart Archives for Scientific Data ................................................................................ 16

Petra III - Data Taking and Analysis ......................................................................................... 18

Fast Analysis of Image Stacks in Optical Nanoscopy ...................................................................... 20

Dynamic Storage Federations with Standard Protocols ................................................................... 22

Federated AAI: Enabling Collaboration ..................................................................................... 24

Imaging in Human Brain Project Using UNICORE Based Workflows ...................................................... 27

Real-time Response Framework Using MongoDB and 3D Visualisation .................................................. 28

Reducing Energy Consumption of Large-Scale Storage Systems ......................................................... 30

STXXL 1.4.0 and Beyond ...................................................................................................... 31

Best Practices for Metadata Management in LSDMA ...................................................................... 32

The Electrical Data Recorder ................................................................................................. 34

Complexity of Electro-Chemical Systems ................................................................................... 35

FAIR Tier0: Building Large-Scale Cross Site Connections ................................................................. 36

Bibliography .................................................................................................................... 38

LSDMA contacts ................................................................................................................ 39



Large-Scale Data Management and Analysis

3

Editorial 

Dear Readers, 

welcome to the first edition of the LSDMA brochure with many interesting articles 
about the fascinating R&D by the partners in the LSDMA consortium. The field of 
Big Data is broad: some articles give in-depth details on specific activities, others 
give an overview on Big Data research topics. 

LSDMA stands for “Large-Scale Data Management and Analysis” [1] and is a 
portfolio project funded by the German Helmholtz Association for a five year 
period. Under leadership of KIT, four Helmholtz centres (KIT, FZ Jülich, DESY, 
GSI), six universities (University of Hamburg, University of Ulm, Heidelberg 
University, HTW Berlin, TU Dresden and GU Frankfurt) and the German Climate 
Computing Centre (DKRZ) have joined to optimise data life cycles in selected 
scientific communities.  

In our Data Life Cycle Labs (DLCLs), data experts perform joint R&D together with the scientific communities to 
optimise data management and analysis tools, processes and methods. Complementing the activities in the 
DLCLs, the Data Services Integration Team (DSIT) focuses on the development of generic tools and solutions, 
which are applied by several scientific communities. Examples are authentication, authorization, identity 
management, archiving or metadata.  

LSDMA organises an annual, international symposium on “The Challenge of Big Data in Science” each autumn - 
more information about the next symposium can be found at our website http://www.helmholtz-lsdma.de. 
Furthermore, community forums, technical forums and PhD meetings bring together the LSDMA consortium 
partners with the scientific communities. 

I would like to thank all authors who contributed to this brochure. They are responsible for the contents of the 
respective articles and are your first contacts for any questions or comments. On page 39, you find a list of all 
LSDMA subprojects and their leaders as well as contact information for the project. 

I want to express our thanks to the German Helmholtz Association and the German Federal Ministry of Education 
and Research. 

Have a nice time reading the brochure. 

Prof. Dr. Achim Streit 

Lead-PI of the LSDMA Helmholtz Portfolio Project 
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Big Data in Photon Science 
Hermann Heßling - HTW Berlin 

Scientific Motivation 
In photon science, nano-structures of tiny samples 
are explored. An ultra-short X-ray flash propagates 
through a sample and generates a coherent 
diffraction image. The samples are destroyed due to 
the high intensity of every single flash. It is essential 
that the images are taken before the damage 
process sets in. Even from complex biological 
samples, e.g. proteins and viruses, high-resolution 
images can be obtained. 

The data rate produced in photon science will grow 
rapidly during the next years, and the success of the 
upcoming experiments increasingly depends on 
handling and processing huge amounts of data. 
Current analysis tools in photon science are not 
designed for high data volumes and will not scale 
well to cope with the strongly increasing demands. 

Efficient data reduction is a major topic in photon 
science. For pre-selecting events already during 
data-taking an on-detector vetoing has to be 
developed. The real-time data reduction has to be 
automated in a manner acceptable to photon 
scientists and the needs of ever-changing 
experiments: they are more dynamic than the LHC 
experiments at CERN. 

Big Data Challenges 
The setup at the Lineac Coherent Light Source 
(LCLS) is typical for experiments in photon science 
(see Figure 1). Due to limitations in preparing the 
beam that transports the samples, the laser pulses 
hit only a small fraction of the samples (approx. 5%). 
Nevertheless, every data frame is saved to disk 
and, in the subsequent workflow, “blank diffraction 
images” are identified and removed.  

Early vetoing has not been employed in any photon 
science experiment to date: due to the fear of losing 
valuable data and because it has been technically 
feasible to save all data. 

The upcoming new experiments will lead to a shift in 
paradigm: saving all data will no longer be feasible. 
Rapid experimental feedback and data analysis is 
critical for the experiments in photon science. At the 
European XFEL this is made challenging by a pulse 
repetition rate of up to 27,000 pulses per second, 
leading in turn to extremely high data rates and 
large data volumes. Without rapid data vetoing it will 
not be possible to take full advantage of the 
extremely intense, ultra-short pulses of laser light. 

Events that make it through the initial event veto 
layers may be amenable to either rejection or 
reduction in size using parallel algorithms. This layer 

forms part of the European XFEL conceptual DAQ 
plan and is deemed critical for reducing the amount 
of stored data to manageable levels. However, 
details of the algorithms for weeding out events of 
interest and performing preliminary data reduction 
remain to be defined and implemented. 

Figure 1 In femtosecond nanocrystallography, 
Ultra-short X-ray pulses from a free electron laser 
hit tiny crystals. The samples are transported in a 
liquid or gas stream, perpendicular to the laser 
beam. The detector consists of two panels 
(equipped with 1024 x 1024 pixels each) and 
records coherent diffraction images at the rate of 
up to 200 Hz [2; 3]. 

Experiments in photon science can be divided into 
various categories:  

 Two-dimensional imaging of single objects, 
 Three-dimensional imaging by analyzing 

ensembles of identical single objects, and  
 Imaging of organic giants, such as proteins 

and viruses.  

Each category demands its own data analysis 
solution. For all of these experiments it is necessary 
to separate useful hits from blank images. The 
Cheetah software [3], which will be part of the XFEL 
analysis workflow, is used to perform this task. 

Identification of Blank Diffraction Images 
In nanocrystallography, a laser flash propagates 
through a sample and is, thereby, broken into 
discrete sharp bright spots, the so-called Bragg 
peaks (see Figure 2). Roughly, the pattern structure 
of the Bragg peaks is related to the Fourier 
transform of the electron density of the crystallized 
object and the electron density, in turn, is given by 
the spatial distribution of the atoms in the unit cell of 
the object. Therefore, the locations, the intensities, 
and the widths of the Bragg peaks are essential for 
reconstructing an image of the sample. A 
reconstruction is made difficult as the detector 
records always a photon background and since 
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Bragg peaks not sufficiently bright, cannot be 
resolved.1

Figure 2 Diffraction image from a single nano-
crystal of the protein lysozyme taken at the LCLS 
[4]. The dark spots show the Bragg peaks. The 
“halo ring” around the center of the detector shows 
the photon background. 

Neural networks are used successfully for image 
recognition. Applying neural networks directly for 
exploring diffraction patterns is challenging. Firstly, 
the input from of the order of one million pixels has 
to be taken into account. Secondly, as the 
orientation of each single sample in the stream is 
not known, a priori, a huge training set of images 
and a large set of hidden neurons is needed to let 
the neural network learn all orientations of 
relevance. It should be noted that “deep neural 
networks” (built of many hidden layers of neurons) 
seem to have conceptual recognition problems as 
already an almost unnoticeable modification of input 
values may lead to misclassifications [5]. 

Concerning the problem of recognizing blank 
diffraction images the situation seems to be more 
comfortable since it is expectable that only a small 
amount of “relevant observables” is sufficient to 
determine whether or not a frame is useful in the 
subsequent analysis workflow. A natural approach 
is to reduce the large amount of information stored 
in the total set of pixels by applying coarse-graining 
methods.  

1 In diffraction experiments, image reconstruction 
is especially difficult as only intensities are 
measured but not phases. The phases store a 
significant amount of information about the 
positions of the atoms. To solve this “phase 
problem”, several methods are used, e.g. Patterson’s 
autocorrelation method allows a determination of 
the relative positions of atoms.

In [6], LCLS data from two proteins and a virus were 
analyzed. It was shown that an identification of 
blank diffraction images is feasible provided the 
Bragg peaks are sufficiently brighter than the 
background. Three “relevant observables” were 
suggested and analyzed by a small neural network, 
see Figure 3. The results are shown in Figure 4. For 
the protein CatB a recognition rate of more than 90 
% was achieved (after removing the photon 
background and taking the loss of intensity at large 
scattering angles into account2). The recognition 
rates of the other two probes were significantly 
smaller mostly because they showed almost no 
clear Bragg peaks. 

Figure 3 Neural network with three input 
neurons, two output neurons and no hidden layer. 
The lines indicate weights that were determined 
from a training set of diffraction images with 
known properties (either useful or blank images). 
For a given diffraction image Imax denotes the 
maximum photon number out of all pixels, Imean is 
the mean photon number from all pixel with a non-
vanishing photon number, and ∆I the associated 
standard deviation. The value of the bias neuron is 
always set to one. A diffraction image is considered 
as recognized correctly if the output neurons obey 
the inequality Ogood > Obad. 

Figure 4 Identification rates of two proteins 
(CatB, 5HT-2B) and a virus (GV5) [6]. The 
identification rate is determined from the sum of 
the truly recognized useful images and the truly 
recognized blank images. 

2 The photon number Ii of the i-th pixel is replaced 
by the transverse intensity Ii sin(µi) where µi is the 
angle between the beam axis, the interaction point, 
and the location of the i-th pixel.
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By incorporating the neural network into the online 
analysis framework it should be feasible to obtain a 
strong and effective reduction of the incoming data 
flood already during the data-taking period, at least 
for objects with clear Bragg peaks. 

Cross Application Communication on NUMA 
A detailed offline analysis of diffraction data in 
photon science can be done in parallel, at least in 
principal, as there are no correlations between 
different diffraction images. (The situation may 
change if time-series imaging is considered.) For 
improving significantly the speedup the analysis 
software, such as Cheetah [3], has to be ported on 
multi-core systems.  

Large multi-core systems are equipped with non-
uniform memory architectures (NUMA). Accessing 
memory associated to remote CPUs is a primary 
source of slowdown on NUMA. Different speeds on 
the interconnect links between the cores are also 
contributing significantly to the slowdown.  

Cheetah [3] is used in X-ray diffraction for sorting 
data according to different criteria, and for rapid 
filtering of events to reduce significantly the data 
volume. Data processing in Cheetah is based on a 
multi-threaded architecture: a single thread reads 
the data of a diffraction image and passes them to a 
worker thread from a pool of worker threads. The 
worker threads are processing their data 
independently.  

Cheetah does not scale if ported directly to a NUMA 
system, as can be extracted from the red curve of 
Figure 6. 

Figure 5 SGI NUMA system with 144 cores [7]. 
The system consists of 24 CPUs equipped with 6 
cores each. Every socket contains two CPUs. The 
topology of the connections between the sockets 
corresponds to a torus. The communication latency 
between sockets depends on the number of hops. 
The latency between neighboring sockets (green) is 
smaller than the latency over two hops (blue) or 
three hops (red). Each CPU has direct access to a 
memory of 32 GB (total memory: 768 GB). 

A bad scaling behavior is not untypical in the realm 
of Big Data. The resolution power of experimental 
devices and sensors is increasing and more and 
more data are collected. Often, the software for 
analyzing data was developed over years and is 
known for delivering reliable results. However, if it 
turns out that the flood of data can no longer be 
processed in a reasonable period of time, a decision 
has to be taken: is it efficient and effective to extend 
an existing sequential software by parallelization 
capabilities, or should a new software be developed 
from the scratch? 

Figure 6 Scaling of Cheetah [7]. The time t for 
processing 200 diffraction images (taken at LCLS) 
on a NUMA system (see Figure 5) is shown versus 
the number of worker threads. Red curve: no 
optimization, green curve: thread binding. 

The program code of Cheetah is written in C++ (and 
Python) and running on Linux. For managing 
threads, Cheetah uses the POSIX library PThread. 
PThread is steering the binding between the threads 
and the memory. However, the scheduling is not 
efficient for Cheetah (red curve, Figure 6) as the 
worker threads have to communicate quite often 
over multiple sockets to access their data on remote 
memory. The green curve of Fig. 5 indicates that the 
scaling of Cheetah may be improved considerably. 
It is obtained by binding the threads to the CPUs of 
the NUMA system. Linux provides a command line 
interface to a NUMA API that supports thread 
binding to CPUs and cores. 

The speedup of Cheetah that can be extracted from 
Figure 6 seems to be improvable. The set of 
parameters with a significant influence on the 
speedup should be determined systematically. For 
example, the optimal number of threads to be 
pinned to a CPU depends critically on the amount of 
data stored in the diffraction images and on the 
available local memory of each CPU. Moreover, it 
seems to be feasible to incorporate a thread binding 
directly into Cheetah by only weak modifications of 
the program code. The library libnuma provides 
access to the NUMA API within C/C++ programs.
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I/O performance Improvements Using Emerging Technologies 
Konstantinos Chasapis, Michael Kuhn, Manuel F. Dolz - University of Hamburg 

Scientific Motivation 
The continuously increasing needs for data storage 
in HPC systems have emerged as one of the main 
obstacles that we have to face as we are moving 
towards exascale systems. Today, the largest HPC 
storage systems are in a range of multiple petabytes 
and suffer from many inefficiencies. Many scientific 
applications, including climate models, produce a 
vast amount of data and their performance is limited 
by the performance of the data storage subsystem. 

To this end, the scientific community is working 
towards the performance improvement of 
input/output (I/O) operations. As part of this effort, in 
this work we evaluate the potential benefits of new 
hardware technologies that can be used in HPC 
storage systems. 

Technologies 
Traditionally, the performance gap between the 
CPU and the HDD is increasing. Starting from the 
previous decade, solid-state drives (SSDs) are 
being used to lower this gap. In contrast with HDDs, 
which are based on mechanical parts, SSDs are 
made entirely from electronics, which allows them to 
perform much faster. However, SSDs face two main 
drawbacks in comparison to HDDs. First is the cost 
factor since the price per gigabyte of SSDs is much 
higher than for HDDs; additionally, the durability of 
the SSDs is limited to a certain amount of write 
operations.  

Moreover, to overcome the CPU clock rate wall and 
increase even more computing power within the 
same server, newer architectures have more cores 
and more CPUs. However, this does not come for 
free since new obstacles arise. The most important 
ones are: synchronization between different 
processes executing in the same CPU and non-
uniform memory access (NUMA). 

Use Cases 
An important part of the data storage infrastructure 
is the metadata handling of the file system. The 
requirements of the metadata servers are different 
from the data storage servers. One of the main 
differences is the capacity needs: The size of the 
metadata is negligible in comparison to the actual 
data. For this specific use case, SSDs are a perfect 
fit and can be used as HDD replacements. 

Results 
In our evaluation we measure the effectiveness of 
SSDs and the implication of NUMA machines in 
Lustre’s metadata server (MDS). In Figure 1 we can 
see the improvement using SSDs as the backend 
device of the MDS. We also include a configuration 
with RAM disk as the underlying storage device to 
indicate the practical maximum performance. In 
comparison to HDDs, SSDs deliver almost double 
the performance for file creations per second and 
four times more for the unlink operation. For the stat 
operation there is only a slight improvement 
because stat highly depends on other parts of the 
system. 

Figure 1 Performance comparison of common 
metadata operations using HDD, SSD and RAM 
disk. 

Figure 2 illustrates the implication of NUMA 
machines on Lustre's MDS performance. The 
machine that we used for our experiments is 
equipped with four CPUs, 12 cores each. From our 
results we can observe that the performance 
improvement is limited to a single socket. We are 
currently carrying out a more extensive analysis to 
identify the limiting factors of the systems that 
prevent the performance scaling when using more 
than one socket. 

Figure 2 Performance of metadata operations 
when using multiple sockets in a NUMA machine.
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KaHIP – Karlsruhe High Quality Partitioning 
Yaroslav Akhremtsev, Peter Sanders, Sebastian Schlag, Christian Schulz - KIT 

Due to many technical advances of the last 
decades, networks are used everywhere. Graphs 
can be used to model relationships in networks or 
other important data. The graph partitioning problem 
asks for a division of a graph's node set into k 
roughly equally sized blocks such that the number 
of edges that run between the blocks is minimized. 
For example, in parallel computing good 
partitionings of unstructured graphs are very 
valuable. In this area, graph partitioning is mostly 
used to partition the underlying graph model of 
computation and communication. Roughly speaking, 
nodes in this graph denote computation units, and 
edges represent communication. This graph needs 
to be partitioned such that there are few edges 
between the blocks (pieces). Figure 1 shows an 
example graph stemming from a finite element 
simulation which is partitioned into four blocks. 
Other important applications of graph partitioning 
include route planning, VLSI Design or solving 
sparse linear equation systems. 

Figure 1 A mesh that is partitioned into four 
blocks.

It is well-known that the problem is NP-complete 
and that there is no approximation algorithm with a 
constant ratio factor for general graphs. Therefore 
mostly heuristic algorithms are used in practice. A 
successful heuristic for partitioning large graphs is 
the multilevel graph partitioning (MGP) approach 
where the graph is recursively contracted to achieve 
smaller graphs which should reflect the same 
structure as the input graph. After applying an initial 
partitioning algorithm to the smallest graph, the 
contraction is undone and a local search method is 
used at each level to improve the partitioning 
induced by the coarser level. 

Although several successful multilevel partitioners 
have been developed in the last 16 years, we had 
the impression that certain aspects of the method 
are not well understood. This motivated us to make 
a fresh start putting all aspects of MGP on trial.  

KaHIP – Karlsruhe High Quality Partitioning – is our 
family of graph partitioning programs that tackle the 
balanced graph partitioning problem. The framework 
implements many different algorithms. It includes a 
number of general purpose multilevel graph 
partitioning algorithms that use, among other 
techniques, flow-based methods and more-localized 
local searches to compute high quality partitions. 
KaHIP also includes a parallel evolutionary 
algorithm that is able to compute record setting 
solution quality in a couple of minutes for graphs of 
moderate size. Moreover, specialized techniques for 
different kinds of networks such as road networks or 
social networks are contained. Figure 2 illustrates 
the components of the KaHIP framework.  

Figure 2 Components of the KaHIP framework 

Parallel algorithms of the framework are more 
scalable and achieve higher quality than other state-
of-the-art systems. For large complex networks the 
performance differences are very big. For example, 
our algorithm can partition a web graph with 3.3 
billion edges in less than sixteen seconds using 512 
cores of a high performance cluster while producing 
a high quality partition – none of the competing 
systems can handle this graph on our system.  

KaHIP has been able to improve or reproduce the 
best known partitioning results in the well-known 
Walshaw Benchmark for almost all of the inputs 
using a short amount of time to create the partitions. 
Moreover, it scored most of the points in the graph 
partitioning subchallenge of the 10th DIMACS 
Implementation Challenge on Graph Partitioning 
and Graph Clustering. 



Large-Scale Data Management and Analysis

9

KIT Data Manager: The Repository Architecture Enabling Cross-
Disciplinary Research 
Thomas Jejkal, Alexander Vondrous, Andreas Kopmann, Rainer Stotzka, Volker Hartmann - KIT 

A repository is a managed location in which 
collections of digital data objects are registered 
preserved, made accessible and retrievable, and 
are curated. It is essential that data in a digital data 
object is accompanied by metadata describing the 
data contents and organization to enable their reuse 
in the future. Thus repositories are the mandatory 
building component for long-term archives. 

Figure 1 Volume rendering of a newt larva 
imaged using fast synchrotron X-ray 
microtomography. 

In scientific imaging as in other data intensive 
scientific fields we observe a growing need to build 
up scientific repositories with various challenging 
requirements (for details see [8]): Ultra-fast 
synchrotron tomography produces several 
Petabytes of experimental and analysis data per 
year. The data structures are very heterogeneous 
requiring a flexible data organization. 

Figure 2 Scans of medieval manuscripts (left) and 
a high-resolution digital elevation model used for 
discovering unknown archaeological sites (right). 

In the field of humanities a huge variety of data 
exists that needs to be preserved and accessed 
over decades and centuries. Thus repositories in 
humanities require long-term interoperability and 
must survive mid-term technology changes. 

Novel light sheet microscopes produce up to 16 TB 
of data per day that has to be ingested into a 
repository. Data ingest rates up to 1 GB/s are 
mandatory to free the local storage resources for 
uninterrupted scientific operation.

Figure 3 Maximum intensity projection of an 
image stack depicting a zebrafish embryo at 24 
hours post fertilization.

Lightoptical nanoscopy produces datasets of up to 
200 TB within one single measurement. These 
extreme large datasets generate novel challenges in 
handling, analysis and access. Furthermore 
nanoscopy is a novel imaging method and the 
interpretation of results is a challenging task. For 
that it is necessary to dynamically annotate the raw 
data images for experts to share and to compare 
their findings. 

Figure 4 Histone H2B distribution in HeLa cell 
nuclei and (pro-) metaphase chromosomes [9].

Many scientists are aware of the necessity to 
sustain their data over a long period of time like 
decades and beyond. Unfortunately, the related 
efforts are often underestimated leading to short-
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term solutions and long-term problems, e.g. missing 
support for technology and format changes, unclear 
ownership of data and tremendous amounts of dark 
data. Changing the view from simple file-based to 
object-based scientific data represents a paradigm 
shift solving many problems. Managing digital data 
objects in a repository allows long-term archiving, 
data access and sharing in an easy and sustainable 
way. Apart from sustainability and extensibility by 
design a repository system must be easy-to-use in 
order to raise its acceptance. For this purpose, 
human and machine readable interfaces must be 
provided by the system to allow immediate access 
as well as the integration into existing scientific 
workflows. Finally, especially for LSDMA, the 
support for high data rates, large-scale data and 
interfaces to data analysis are desirable to advance 
data-intensive science. Apart from these features, 
typical properties of an archive must be supported 
for long-term preservation:  

 Support for data citation 
 Access policies 
 Bit and content preservation 
 Curation 

Some institutions, e.g. libraries, are already perfectly 
equipped for long-term archiving, but their repository 
systems are customized for specific digital data 
objects. They are hard to adapt for other 
communities and are not applicable for experimental 
data. During the last years, we have supported 
many different communities solving their data 
management problems, often by providing custom 
solutions. Over time, the lessons learned from the 
various community projects merged into the 
development of a customizable architecture allowing 
to build-up repositories for scientific data, the KIT 
Data Manager. 

The idea behind KIT Data Manager is to provide a 
generic repository architecture that can be fully 

customized. The goal is to allow almost arbitrary 
communities to build up repositories for 
experimental data. If required, different of these 
repository systems can be combined to enable 
cross-disciplinary research. For this purpose the set 
of basic services shown in Figure 5 has been 
defined. 
The architecture integrates seamlessly a collection 
of basic services and resources which are the 
building blocks for high-level services. The access 
to these basic services and resources is abstracted 
by generic interfaces. This approach has two 
advantages: On the one hand, these interfaces 
define a basic set of functionalities and are normally 
hidden from the user. High-level services can 
benefit from this interface definition as they can rely 
on the availability of a particular functionality. On the 
other hand, standard technologies and software 
products are used, updated or replaced easily in the 
background without affecting high-level services, 
user- or community-applications. If products or 
technologies on this lowest layer are changed an 
interface implementation for the new product or 
technology and a data migration will be necessary in 
the worst case. However, this can be done without 
affecting the user’s work. This fosters the 
sustainability of implementations of this architecture. 

Public access to the KIT Data Manager is provided 
by a collection of high-level services. These services 
offer repository functionalities like storing, accessing 
and sharing data and metadata as well as enhanced 
services for lifecycle management, policy 
enforcement and data processing. As far as 
possible the high-level services depend only on the 
basic services. To compose specific community 
applications a subset of these high-level services 
can be used. 

Access to high-level services is offered by the top 
layer of the architecture. Various methods are 
provided depending on the user’s needs, e.g. Web 

Figure 5 The architecture of KIT Data Manager consists of several layers providing various levels of 
abstraction for long-term sustainability, extensibility and flexibility. 
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UIs, RESTful service interfaces or plain Java APIs. 
As the representation of a digital data object, its 
contained data and metadata is highly community 
dependent, implementing appropriate access is 
carried out in close cooperation with community 
experts. This provides an optimal user experience. 
Currently, the KIT Data Manager offers reference 
implementations of a comprehensible set of high-
level services:  

 Data Management and Staging 
 Metadata Management 
 Authorization and Sharing 
 Metadata Search 

This enables the composition of several community 
repositories by implementing the generic workflow 
presented in Figure 6 and a few community-specific 
extensions, e.g. graphical user interfaces on the 
access layer. Figure 6 shows the generic ingest 
process for transferring data into a repository 
provided by a KIT Data Manager instance. Most of 
the steps are identical for all communities or just 
have to be slightly customized, e.g. the metadata 
acquisition (step 1), the choice of the data transfer 
protocol (step 4) or defining default permissions for 
accessing the digital data objects (step 6). Other 
parts like the metadata extraction (step 5) or 
building up graphical user interfaces (not in Figure 
6) are highly domain-specific. In most cases this 

effort is negligible due to the layered architecture of 
the KIT Data Manager.  

Uniform interfaces, standardized workflows and the 
extensive enrichment of digital data objects with 
various kinds of metadata allow setting up relations 
between digital data objects originating from various 
scientific disciplines. Links between digital data 
objects can be determined by distributed searches 
over metadata directories of different communities in 
a semi-automated fashion. In the near future, 
identifying and classifying relationships between 
digital data objects will be performed fully 
automatically allowing cross-discipline exploitation 
of scientific repositories. 

The first public release of KIT Data Manager, 
targeted for the end of 2014, will be available as 
open source providing all tools and documentation 
necessary to build up cross-disciplinary repositories. 
Maintenance, support and extension of basic 
services, high-level services, community-
applications and integration of new data 
technologies will be continued supported by the 
Helmholtz programme “Supercomputing and Big 
Data”. The core development team of four computer 
scientists is supported by several PhD scientists 
building up domain-specific repositories and 
extending the system in close cooperation with the 
Data Life Cycle Labs “Key Technologies” and 
“Energy”. 

Figure 6 Generic workflow for initial data ingest implemented for different communities. The different steps 
are carried out in sequential order. Steps colored yellow and blue are performed on the user side, steps in red 
are executed on the server side.
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A Geospatial Data Life Cycle Services Framework 
Carsten Ehbrecht - DKRZ 
Jörg Meyer - KIT 

Motivation 
ClimDaPs (Climate Data Processing) is the name of 
a geospatial data services framework to enable the 
stepwise development and integration of data life 
cycle management services. The idea is to support 
end users in data life cycle management activities 
involving distributed data centers. 

Typical data management activities are composed 
of a set of basic operations. In the framework these 
operations are exposed as services by the data 
centres. Services can be composed to build up 
complex data management workflows. 

These services are discoverable and they expose 
standardised interface descriptions. 

Approach 
ClimDaPs uses Web Processing Services (WPS) to 
provide climate data processes via a standard 
interface. Web Processing Services are 
standardised by the Open Geospatial Consortium. 
WPS processes can be chained by a workflow 
engine. 

WPS processes are self-describing. A WPS server 
can be asked which processes are available 
(getCapabilities), which input and output parameters 
a process has (describeProcess) and finally a 
process can be submitted both synchronously and 
asynchronously (execute). In case of an 
asynchronous process the status of the process can 
be checked. Figure 1 shows these WPS operations. 

Figure 1 Web Processing Service Operations. 

WPS processes can be executed by simple HTTP 
requests or by WPS client libraries like OWSLib for 
Python. 

ClimDaPs comes with a graphical user interface for 
end users to access services conveniently via the 

web. The user can compose, invoke, and execute 
processes with individual parameters. Figure 2 
shows the basic interaction between a WPS client 
(Web UI or terminal) and a WPS server. 

Figure 2 WPS client submitting a job to a WPS 
server. 

Use Cases 
The following use case describes the quality check 
workflow of climate model data run by a climate 
researcher on KIT and DKRZ resources. 

A climate researcher wants to copy initial data from 
KIT to DKRZ. He or she then runs a climate model 
on compute resources at DKRZ and collects the 
output at DKRZ storage resources. A further step in 
the workflow involves running a data post-
processing in order to store the data in a 
standardised format or layout. Data then is checked 
by data quality check software. In case of 
successful tests a persistent identifier (PID) is 
assigned to the data set and it can be published to a 
worldwide data federation portal at DKRZ. This way 
the data is visible and accessible via any of the 
worldwide portals of the Earth System Grid 
Federation (ESGF). A final workflow step then could 
be the archival of important parts of the published 
data. 

This use case demonstrates the necessity for a 
close collaboration between researchers and data 
scientists coming from different institutions. Also it 
shows the large variety of services and tools 
involved in this collaboration. 

Figure 3 shows the steps of the described data 
quality check workflow. The workflow steps are 
available as WPS processes in ClimDaPs. 

Figure 3 Steps of the Data Quality Check 
Workflow.
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Components 
The main components of ClimDaPs are shown on 
Figure 4. 

Phoenix user interface 
Phoenix is a web-based user interface to provide 
convenient access to Web Processing Services. It is 
built on the Python Pyramid web framework. One 
can choose a process from a WPS server, enter 
process parameters and execute this process.  
Complex workflows which consist of several chained 
single WPS processes (like the QC workflow) can 
be submitted by a wizard component. Phoenix has a 
map to visualize climate data which is based on 
OpenLayers.  
The climate data map is generated by a Web 
Mapping Service (WMS). WMS supports a time 
attribute which can be used to step through the map 
by time. Phoenix uses OpenID for authentication. 

Malleefowl WPS Server 
Malleefowl is the WPS server part of the ClimDaPs 
project. It uses PyWPS as WPS service engine and 
provides a simplified interface to add new WPS 
processes. Malleefowl comes with some basic WPS 
processes, for example to access ESGF data and to 
publish results to a cloud service like OpenStack. 
Malleefowl has also a workflow-engine (Restflow ) to 
chain WPS processes. The workflow-engine again 
is accessible by a WPS process.  
Malleefowl uses the ncWMS Web Mapping Service 
to generate maps of NetCDF files. 

Available Services 
The following set of climate WPS processes is 
already available by the ClimDaPs project. 

Low level data/metadata operations 
Low level processes are metadata generation 
supporting ISO 19139 and ESGF solr metadata 
schemata, iRods based data transfer and 
publication of results on an OpenStack storage 
cloud. There is also a Handle system based 
persistent identifier (PID) process for assignment 
and retrieval of identifiers for single data products 
and data aggregations. 

Higher level operations 
Higher level operations implemented so far are data 
quality checking as well as CDO based climate data 
processing and calculation of climate indices. 

Complex	Workflows	
A complex workflow involving key parts of the 
described use case is implemented in the Cordex 
data quality control workflow including quality result 
publication on an openstack data cloud. 

Figure 4 Phoenix interacting with Web Processing 
Service and Web Mapping Service.

Outlook 
Further work has to be done on the security 
infrastructure of WPS servers. The WPS standard 
does not provide a solution besides using HTTPS 
and securing the WPS server with 
username/password. Currently we are using 
security tokens which are passed as simple WPS 
parameters. 

In addition to this the next steps include the 
collaboration with European partners to make WPS 
services interoperable and usable in international 
collaborations. 
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FRESCO: A Framework to Estimate the Energy Consumption of 
Computers 
Pavel Efros, Erik Buchmann, Klemens Böhm - KIT 

Many application areas, e.g., energy accounting or 
energy-aware scheduling, require estimates of the 
energy consumption of computer systems. 
However, existing estimation approaches often 
make restrictive assumptions regarding the effort at 
setup time or run time that is acceptable, they are 
tailored for specific hardware or software, or they 
cannot provide accuracy guarantees for the 
estimates. To tackle these issues, we introduce 
FRESCO, a FRamework for the Energy eStimation 
of COmputers. FRESCO is a flexible framework for 
the estimation of the energy consumption of a wide 
range of computer systems. Based on accuracy 
requirements and information available, FRESCO 
deploys and executes appropriate estimators.  
In the following we first describe three application 
scenarios, from which we derive requirements for 
FRESCO. We subsequently present the classes of 
effort it must take into account. We then explain the 
workflow of FRESCO and describe the estimators it 
integrates. Finally, we present our evaluation of 
FRESCO. 

Application Scenarios 
Energy-Aware Management of Data Centers
Increasing the performance per watt is a key 
performance optimization for data centers. For this 
purpose, it is important to obtain the energy 
consumption of a complex IT system as early as the 
design time of the data center or the allocation time 
of the various computing workloads. This is 
important to design the power distribution 
infrastructure, to decide about computing hardware 
acquisitions or to find out if a scheduled workload 
exceeds the cooling capacity. Thus, FRESCO must 
be able to provide estimates for the typical case that 
are sufficiently accurate to make educated decisions 
for hardware acquisitions, and to provide bounds for 
the energy consumption in extreme cases. 

Demand-Response 
Demand Response (DR) contains measures that 
influence energy-consumption patterns. For 
example, DR might be used to shift energy-intensive 
computing tasks to times of an energy surplus. 
Since a data center is a large, adjustable energy 
sink, it is particularly well suited to perform demand 
response measures. To realize DR in a data center, 
an estimator must deliver continuous estimates of 
the energy consumption of the various IT 
components at run time. 

Computer Energy Accounting and Billing 
Energy accounting and billing of the IT infrastructure 
becomes more and more important. For example, 

an enterprise might wish to assign each benefactor 
(a good or a service) the energy costs required for 
its production. Typically, computer energy 
accounting requires estimates of the consumption 
with a frequency of 15 minutes to one hour. 

Classes of Effort 
We identified two classes of effort an operator can 
invest to obtain energy consumption estimates:  
The Setup Effort is necessary to set the estimator 
up and running. This includes collecting technical 
specifications of the energy consumption of certain 
hardware components. Furthermore, it contains the 
effort of installing a monitoring application to 
measure run-time parameters of the hardware 
usage. Finally, the setup effort includes the 
calibration of an energy consumption profile for a 
given hardware.  
The Run-Time Effort includes the network and 
computational overhead of the estimation process, 
and the overhead of a monitoring application 
collecting hardware parameters like CPU frequency, 
if required by the estimator. 

The FRESCO Workflow 
With “Target System” we refer to the computer 
system whose energy consumption FRESCO must 
estimate. “The Operator” is responsible for installing 
and maintaining the estimator on the target system. 
FRESCO consists of three stages “Setup”, 
“Configuration” and “Estimation”, as shown in 
Figure 1. 
At the “Setup” stage, the operator quantifies the 
trade-off between effort and estimation accuracy for 
the target system. In particular, he specifies the 
categories of information obtainable from the target 
system. At the end of the setup stage, FRESCO 
either indicates the operator that, given his input, 
estimation is impossible or lets the operator choose 
one or a combination of estimators. At the 
“Configuration” stage, FRESCO helps the operator 
to configure the estimators selected. Finally, at the 
“Estimation” phase, FRESCO runs instances of the 
chosen estimators with the configuration parameters 
just fixed on the target system and estimates its 
energy consumption. 

FRESCO Estimators 
FRESCO can use static, dynamic or calibration-
based estimators or a combination of them. In the 
following we present a succinct description of each 
type of estimator. 
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Static Estimator 
Our static estimator uses solely technical 
information on the target system. Thus, it might be 
sufficient for any application that does not need time 
series of estimates. It requires a small effort at setup 
time for obtaining the hardware specifications, and 
no effort at run time. The accuracy of this estimator 
depends on the detail level of its input values and 
the availability of tolerance bounds. In particular, the 
static estimator can provide bounds on the energy 
consumption. 

Figure 1 Workflow of FRESCO 

Dynamic Estimator 
Our dynamic estimator models the energy 
consumption similarly to the static estimator, but 
installs a monitoring application on the target 
system to periodically measure detailed load 
information in real-time, e.g., CPU. Thus, our 
dynamic estimator generates time series of 
estimates. It is also possible to integrate specific 
models for multi-core systems and to model virtual 
machines as components of the target system.  
Calibration-Based Estimator: Our calibration-based 
estimator executes a detailed benchmark at setup 
time, which gradually stresses each system 
component in isolation. At the same time, a power 
meter records the actual energy consumption, and 
our monitoring application measures load 
information such as e.g., CPU frequency. FRESCO 
then builds a regression model which it uses to 
estimate energy consumption. 

Evaluation 
FRESCO operates as intended if its estimates are 
appropriate for a wide range of applications. In the 
following we evaluate FRESCO by means of one 
use case. More details about our evaluation can be 
found in [10]. 
The use case “Demand-Response” requires time 
series of estimates to identify periods of time with 

high energy consumptions (peaks), together with 
upper and lower bounds. As the operator is willing 
to invest only a small effort, FRESCO suggests our 
dynamic estimator model.  
To evaluate this scenario, we let FRESCO estimate 
the consumption based on the CPU load and on 
information on the maximal and minimal energy 
consumptions of our target systems with a 
frequency of one second. We use these estimates 
to identify points in time when the energy 
consumption is above a given threshold. In 
particular, we evaluate two thresholds (80 and 95%) 
that consider the difference between the largest and 
smallest values of a time series �: 

�� � ��� � �������|�| ���� � ������|�| �����
�� � ���� � �������|�| ���� � ������|�| �����

We compute time series of peak consumption from 
our measured values as well as for the time series 
FRESCO has estimated, by filtering out all values 
that are smaller than ����. If our estimates are 
accurate, FRESCO can identify periods with high 
energy consumption and can thus enable operators 
to perform Demand Response. 
Figure 2 illustrates the cumulative distribution 
function (CDF) of the real energy consumption 
during specific intervals for one of our datasets. The 
first set of intervals is when FRESCO estimated the 
consumption to be greater than �1 (continuous line). 
The second set is when FRESCO estimated the 
consumption to be greater than �2 (dashed line). 

Figure 2 CDF, Desktop Computer Energy 
Consumption Dataset

We observe that, if the estimator predicts a value 
greater than �1, then the real energy consumption is 
greater or close to �1. Thus, in around 88% of all 
cases, a value predicted to be greater than �1, is 
greater than �1. Similar results are obtained for �2. 

Conclusions 
FRESCO is a general and flexible FRamework for 
the Energy eStimation of COmputers. Depending on 
the effort the operator is willing to invest and on the 
requirements of the application, FRESCO can 
propose and run appropriate estimators with good 
parameter settings. It gives quality guarantees on 
the estimates and considers heterogeneous 
hardware components and loads. Experimental 
results show that our framework is useful in many 
business cases. 



Towards Smart Archives for Scientific Data 
Marco Strutz, Martin Gasthuber - DESY 

Purpose of Archives 
An archive is a place to store data for a longer 
period of time where the data is currently not longer 
needed to be actively accessed in a searchable 
way.  

For any given point in time the archive must be able 
to provide information about the health and validity 
of any single managed object. If necessary, data will 
be automatically migrated to different storage media 
or even converted to more proper file formats. Also 
it provides tools and interfaces for information 
retrieval like browsing and searching methods.  

While ingesting new data, policies needed to be 
assigned to it. Policies help to define constraints 
bound to data like after how many years data will be 
purged or under which license the content is 
allowed to be published. To proper scale up with the 
number of managed objects, most operations are 
being executed fully automatically.  

Metadata Are Crucial 
To be able as user to retrieve back files which have 
been stored in the past, a common practise is to 
assign additional information (so called metadata; 
data about data) along with the data, such as key-
value attributes.  

A currently wide spread way for users to define 
metadata is to encode them directly as part of 
filenames. Also, they save attributes and associated 
filenames inside separate text-files. Both methods 
will not scale in terms of how to search large data 
sets and to assure low latency query times. 
Furthermore, as the metadata is not part of the 
archive, the data will not be searchable.  

To be able to store vast amount of data but still 
keep it searchable with low latency responses the 
archive needs to handle the data itself and the 
associated metadata differently, in terms of such as 
storage media and aggregations. For example, the 
data itself might be stored on media optimized for 
low-energy cost where access time has a minor 
subordinate role.  

Whereas metadata needs to be placed on low-
latency media to speed up discovery operations on 
it.  

Also managing metadata within relational databases 
would not be efficient enough as they are mostly 
bound to a fixed schema. Whereas user-metadata 
can be highly schema-less over time as nobody can 
predict the structure or types of metadata for future 
data ingests. 

New workflows are needed for upcoming 
requirements 
In near future new guidelines for good scientific 
practises such as open access and the preservation 
of scientific data for at least 10 years become more 
important and even mandatory. Both instruments 
aiming to improve quality and traceability of 
scientific publications. 

As established practices cannot fully cope with 
future demands, new workflows need to be 
established. We think of a possible use case like 
described next. 

During an experiment a scientist will create various 
types of data such as raw data, derived data, 
personal logbooks, plots and vary kinds of paper. 
For a publication all relevant data need to be 
aggregated and bundled in a container-like manner 
(Figure 1). 

The more metadata the scientist will add to the data 
and to the container the easier it gets to index the 
content and to make it discoverable for other 
scientists or the creator.  

The container then will be ingested into an archive 
combined with a policy attached to it (Figure 2 - 1a). 
As reference for a publication, one or many 
universally unique identifiers (UUIDs) will be created 
(Figure 2 – 1b).  

These identifiers will be used to reference the work 
in journals, papers or other systems. Persons 
interested in the data would therefore be able to 
present UUIDs to the archive which stages all 

Figure 1 A Container enhanced by Metadata.



Imagine after feeding an archive for a couple of 
years with petabytes of data you need to retrieve 
specific information out of it. Unfortunately you 
hardly remember any details about it. Therefore, as 
an integral part, an archive should be able to 
provide proper discovering tools to let you search 
and browse for wanted data.  

From a user’s perspective an archive must offer 
suitable interfaces to ingest data and to get it back.  

An interface for ingesting must enable the user to 
define a set of files, to define metadata and to 
assign policies to it. The data doesn’t necessarily 
needs to be local but can also be stored in a remote 
place where the archive has access to. For 
retrieving the targeted data-set the user presents 
one or many UUIDs to the archive which results in a 
direct download (Figure 3). When the data-set 
exceeds a critical size where a direct download 
would take too long or would just consume too 
much space on the users local file-system a third 
party transfer needed to be activated. The user can 
tell the system to which supported storage location 
the data-set will be staged to and also will be 
informed as soon as the transfer has been 
completed. 

Furthermore, should UUIDs be unknown for the 
desired data-set, the archive must offers 
alternatives to search and browser for data instead. 
So the user will be able to execute interactive 
queries based on the underlying metadata 
(Figure 4). 

Conclusion 
Most of the described aspects results in workflows 
and requirements which cannot be met by today’s 
software solutions and hardware products. 
Therefore new concepts needed to be designed and 
practically tested to gain more experience, such as 
on how to handle metadata efficiently and how 
scientists can be easily handle the vast amount of 
data without remembering any little detail about 
every experiment. 

archive

2a 2b

archive
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Petra III - Data Taking and Analysis  
Marco Strutz, Steve Aplin - DESY 

Petra III 
With a circumference of 2.3 km, PETRA III at DESY 
(see Figure 1) is the biggest and most brilliant 
synchrotron light source in the world. Since the end 
of 2012 all 14 beam lines are available for users. 
New beam lines will be built and go into production 
for users data taking. This article sheds light on 
various kinds of problem domains regarding:  

 data taking for Photon Science, 
 next generation detectors and  
 why well established workflows needs to 

be adapted or rethought to handle 
upcoming data rates.  

Figure 1 Aerial view of the almost 300 m long 
PETRA III experimental hall “Max von Laue” 2012.

A Changing Landscape 
After data taking, data was put on local commodity 
media by users, recently on USB3 hard-drives. As 
upcoming data exceeds by far the 1-disk-capacity it 
is not possible to use single hard disks anymore. 
Also, it it not possible to have a proper data 
management, access control or archiving 
mechanismn in place for such external media. 
Furthermore, data rates become higher 
outperforming specifications for transportable media 
devices. As a result traditional workflows will not 
work for future detectors. This effects the whole 
chain of data handling. 

Data Taking since 2009 
Up to now most of the data pipelining happens 
inside the Computer Center. Experiment PCs and 
offices desktop PCs are connected to the Computer 
Center by 1GE to 10GE. Data permissions and 
delegation for data being produced at the  
beam lines are handled by a dedicated Data Portal. 

The data-processing chain starts with a detector for 
each beam line, producing many files per seconds 
with a specific file size. 

Typical data-rates from the detector to the data 
storage were up to 175 MByte/sec (25 Images per 
second, each 7 MByte). 

Next Generation Detectors 
Eiger, PCO Edge and LAMBDA (see Figure 2) are 
next generation detectors differing in frame rate, 
data rate and the operating system there are 
managed by. As example, data rates of these 
detectors will be orders of magnitudes higher, so 
instead of having 175MByte per seconds per beam 
line one can expect like 10 GBytes. 

Figure 2 LAMBDA, a next generation detector 
developed at DESY.

As beam lines at Petra III are generally not bound to 
a specific detector the underlying data management 
need to be able to cope with the heterogeneity.  

The Problem 
The development of detectors at 3rd generation light 
sources currently outpacing experimental method 
and data acquisition. Single clients will produce 0.5 
GBytes/sec and the next generation is already at 
frame rates of 2 kHz for 4MB files. For 30 beam 
lines they provide possible aggregated peak rates of 
up to an average of 50 GBytes/sec. Also, 
measurements last from a few hours to a few days 
resulting in many single data sets up to tens of TBs 
each. From next generation detectors we also 
expect multi GBytes/sec spread over many 10GE 
connections. 

Furthermore there is a very dynamic experimental 
setup with inherent burst nature and a very 
heterogeneous environment regarding technology, 
social context and requirements. 
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Figure 3 Detailed view of P11 crystallography 
experiment with goniometer. 

Phase Change 
On the one hand, we need to rethink previous 
common practices where storage systems were 
used as FIFOs, where faster and faster disks could 
have solved many speed constraints or where file 
systems were used as central data entry point. 

On the other hand there are more and more 
facilities for light sources with same detectors in 
place targeting the same user communities 
challenging same or similar issues regarding 
upcoming data taking. 

Data Handling for Experiments 
Four major steps are involved in a typical data 
processing chain for Photon Science experiments. 

1) Before: “Planning the next experiment.” 
Processing of older datasets combined 
with simulations which will be run at the 
users institution. 

2) Immediate: “Is the measurement setup and 
the data acquisition producing useful 
data?” 
During experiments “real time” data 

processing takes place, also analysis and 
visualisation to make experimental 
decisions. 

3) Short term: “Does the data I am taking help 
to answer my scientific question? 
Before the user goes home data reduction 
and processing is performed. Users go 
home with clean data free of instrument 
artefacts. This step is preliminary for the 
data analysis which might helpful, but may 
require significant processing power and 
know-how. 

4) Long term: “Does the data I am taking help 
to answer my scientific question? 
At last, users do a detailed analysis from 
their institution, turning data to information. 
This incorporated results from other 
techniques. 

Target Data Flow 
To cover the described aspects new approaches 
are being developed. One of the main focuses is to 
persist all data produced by a camera by all means 
within a realistic time frame. 

Before data will arrive in central storage it will be 
buffered in a dedicated, persistent cache. This 
cache also smoothing peak rates and burst pattern 
of the detectors data streams and enables the 
central storage to receive at a steady input rate 
(which is below the camera effective data rate). 

Additionally, visualization and near real-time 
analysis must not block the data stream to the 
central storage. 

Further effort is also put into developing a data 
distribution solution based on messaging systems 
instead of writing detectors data directly into a file 
system. 

Figure 4 Projected Data Flow.
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Fast Analysis of Image Stacks in Optical Nanoscopy 
Michael Hausmann, Jürgen Hesser, Nick Kepper - Heidelberg University 
Ajinkya Prabhune - Heidelberg University, KIT 

Scientific Motivation 
Light microscopy is a routine imaging technique in 
biological and medical research and diagnosis. Al-
though nowadays instrumentation has made sub-
stantial progress concerning imaging quality and 
speed, there is still a gap in resolution between light 
microscopy (~200 nm) and electron micro-scopy 
(~10 nm). This so far missing scale range would 
however open new insights into the nano-cosmos of 
a cell and its sub-cellular structures [9]. 

Localization nanoscopy, being a candidate to fill this 
gap, is a novel technique overcoming resolution 
limits due to diffraction. During the last decade 
several setups have been developed and used to 
answer interesting and challenging questions in the 
field of cellular biology and molecular biomedicine 
[11]. 

Figure 1 Histone H2B distribution in HeLa cell 
nuclei and (pro-)metaphase chromosomes [9].

Instrumentation 
For localization nanoscopy standard microscopic 
optics and fast imaging systems are required. The 
principle of the so far developed techniques de-
pends on optical isolation and separation of indi-
vidual dye molecules by their spectral signature. 
The embodiment (SPDM = Spectral Position Deter-
mination Microscopy) used in our collaboration 
makes use of dye molecules for specific labeling of 
cellular sub-structures that are able to undergo so 
called reversible photo-bleaching which results in 
stochastic molecular blinking. Taking a huge time 
stack of images (~1000 frames) the switch off/on of 
each molecule can be detected and the molecular 

coordinates can be determined precisely (in the 
range of nm). Hence, distances between dye 
molecules can be calculated in the ten nm range 
and thus sub-cellular structures can be visualized 
and measured also in 3D conserved cells or even 
under vital conditions. 

Examples 
In the following two typical examples will be 
explained: In Figure 1 an example of a cell nucleus 
and (pro-) metaphase chromosomes are shown. a) 
– c) show the wide field microscopic images; d) – f) 
present the merged images from the time stack of 
SPDM displaying thousands of individual molecules 
by a color dot. In g) – i) these images are enlarged 
and coded according to the numbers of next 
neighbors so that structural information can be 
elucidated [12]. Such chromatin 2D/3D nano-
structures are of importance to understand 
chromatin rearrangements during repair processes 
of DNA after exposure to ionizing radiation. This 
information is used to create and validate a 
consistent architectural model in the field of 
radiobiology.  

On the left of the Figure 2 an overlay of a standard 
wide-field image (green) is shown. The right image 
in Figure 2 shows the result of localization imaging 
(red) of a membrane section of a breast cancer cell. 
This is where the Human Epidermal growth factor 
Receptor 2 (Her2/neu, a typical breast cancer 
marker) is specifically labeled. The right image 
shows the result of localization imaging which is 
obtained from a time series of 1000 image frames 
(979 x 816 pixels, 150 ms per image). Here, each 
point represents a single fluorochrome respectively 
antibody attached to a receptor molecule. The wide-
field image does not allow the identification of any 
detailed nano-structural information about the 
spatial arrangement of the antibodies/receptors. 
This shortcoming of wide-field image is overcome by 
the localization image, which reveals details of the 
formation of receptor clusters or linear 
arrangements of receptors (inserts) which can be 
correlated to dimerization induced functional activity 
[13]. Such analyses help to elucidate mechanisms 
of breast cancer therapy using antibody treatment 
(e.g. Herceptin®). 

These examples indicate the huge progress going 
along with localization nanoscopy. However the 
volume of the data is drastically increasing by 
orders of magnitudes requiring novel approaches of 
managing, archiving and analyzing. 
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Technologies 
From the examples shown above we assume the 
digital volume of one cell nucleus of about 20 μm 
diameter with a resolution of approximately 10 nm is 
about 32 GB per channel of color. In larger 
screening experiments the limit of one PB data 
volume is thus reached easily. For the highly 
sensitive analyses and structure elucidation, very 
complex and highly variable algorithms have to be 
used to avoid artifacts and to find out structural re-
arrangements. This includes iterative variation 
based denoising and deblurring techniques. Still the 
data is saved and worked on in an ad hoc manner, 
which with serial computation systems leads to 
extremely long processing times and a limitation of 
the selectable volume size due to limitations in the 
computer memory. The data rate created by a 
nanoscope is in the range of up to GB/s depending 
on the size of the detected region of interest and the 
dimensionality (2D/3D) required for scientific 
investigations. 

Actual algorithms and techniques have been 
developed for a PC basis without usage of 
techniques for parallelization. This strongly limits the 
handling of large data sets as being necessary in 
biological research and medical diagnosis especially 
if a serious significance of statistics is required (i.e. if 
a large series of cells have to be evaluated). Here, 
we develop a pipeline for parallel data analysis.  

Variation based methods need, with parallel 
analysis of the data, a synchronous update of all 
analyzed regions, which will be realized with 
message passing. The access to the data has to be 

self-explaining for the user and has to fulfill the rules 
for storage of the DFG for several years. 

Nanoscopy Reference Data Archive  
Light optical nanoscopy produces datasets of up to 
200 TB. As nanoscopy is a novel methodology the 
archiving, analysis, access and handling of these 
extreme large datasets is a new challenge. For that 
it is necessary to dynamically annotate the datasets 
for experts to share and to compare their finding. 
Hence there is a need to build a Reference Data 
Archive which will enable the scientific research 
community to store and access extreme large 
datasets in a repository, annotate the datasets 
(reference data is important for disseminating 
knowledge, thus needs to be maintained if new 
insights about the data appear), share the 
annotated datasets, and analyze the datasets 
interactively. 

In the Data Life Cycle Lab “Key Technologies” data 
and microscopy experts jointly developed a 
repository for registering and storing extreme large 
datasets, a client for automatic ingest and access, 
web based tool for monitoring and accessing the 
datasets, and a basic representation of ingested 
data. 

Future components will include a content metadata 
schema to enable data discovery and reuse, 
automated metadata extraction, an annotation 
framework, and access to high performance 
computing infrastructure for large datasets analysis. 

Figure 2 Image section of the membrane of a breast cancer cell after specific labeling of the Her2-receptors by 
means of fluorescence labeled antibodies. (courtesy J. Neumann, Kirchhoff-Institute for Physics, University of 
Heidelberg).
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Dynamic Storage Federations with Standard Protocols 
Paul Millar, Patrick Fuhrmann, Karsten Schwank - DESY 
Fabrizio Furano - CERN 

In many current scientific communities the 
requirements for storing data are very strong and 
sophisticated. Both Data Security and Data Safety 
are crucial and have been addressed by several 
software-packages from the scientific community. 
Data Security is granted through powerful 
authentication and authorization methods and Data 
Safety has been addressed on different levels by 
means of redundant storage. This means, many of 
the data files are available from different storage 
endpoints at the same time. The problem that 
persists for the user is to know how to access them. 

To address this issue, different experiments around 
the Large Hadron Collider (LHC) have developed 
their own data federations, allowing users to access 
data using central entry points, while being 
transparently redirected to the actual location of the 
data. However those federations are based on 
limited sets of products often entangled with their 
own sets of proprietary data transfer protocols. 

To improve the situation of large numbers of 
incompatible systems and protocols, middleware 
providers from all over Europe have cooperated in 
the European Middleware Initiative (EMI) and have 
put additional effort into the development of 
endpoints supporting standard file transfer 
protocols, like HTTP/WebDAV and NFS4.1 in their 
systems, thus allowing the use of widely available 
clients (e.g. web browsers) to access data. 

Federating Storage 
The goal of the Dynamic Storage Federations-
project [14] was to make use of this advancement 
towards standards and to create a federation engine 
that can act as a smart central entry point to 
federations of storage endpoints. It allows file listing 
and metadata operations through a real-time 
consolidated global namespace, while the clients 
read data directly from the endpoints. It can 
integrate the most widespread data storage 
elements of the Grid software stack, like DPM and 
dCache [15; 16], as well as whole clusters of 
storage elements and even commercial cloud 
storage providers. To optimize data access it makes 
use of existing replicas, by providing smart 
redirection, i.e., it automatically picks the most 
suitable location of the data to redirect the clients to, 
based on, for example, their geo-location. Since 
every file's location is checked upon request it is 
also suited for loosely coupled federations with 
endpoints dynamically joining and leaving. 

In large international scientific communities, data is 
usually automatically distributed by sophisticated 
frameworks that take care of keeping replicas and of 
optimizing storage space and data access. The 
users usually don't know where the data is stored 
and they shouldn't have to. Instead they should be 
able to access all data through a single entry point: 
The Generic Redirector.  

Let us assume the following simple scenario 
(depicted in Figure 1): File 1 is available on a site 
with Endpoint A, File 3 is available on a site with 
Endpoint B and File 2 is available on both sites and 
through both endpoints. 

Figure 1 The Generic Redirector presents the 
consolidated namespace to the user.

If a user requests File 1, the Generic Redirector will 
redirect the request to Endpoint A, if she requests 
File 3, the request will get redirected to Endpoint B 
and if File 2 is requested, the Generic Redirector will 
redirect the request to the endpoint that can serve 
the file fastest. 

The Generic Redirector 
The Generic Redirector is the core component of 
the federation engine. It exposes an API for 
namespace operations including file metadata and 
directory listing information. Typically it will be 
loaded by some front end system, for example as a 
plug-in for the DMLite file catalogue system that can 
run inside an Apache web-server.

The Redirector has a plug-in interface enabling it to 
integrate with different types of endpoints. Currently 
available plug-ins support HTTP/WebDAV and 
DMLite. The latter allows native connections to LFC
databases and Hadoop Distributed File System 
(HDFS) storage clusters. 
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Figure 2 The Generic Redirector redirects a file 
request of the Client to an HTTP/WebDAV-
endpoint.

Internally the Redirector acts as a sophisticated 
handler of parallel requests for metadata 
information. Upon a request the Redirector will 
trigger all activated plugins with the query and wait 
for their replies. As soon as sufficient information 
has been returned by the plugins the client is 
notified. For even faster response times, an 
effective in-memory cache is being used. 

Use cases 
The following three generic use cases for the 
Storage Federation Engine are supposed to give 
clear examples of the features that the system 
provides and that have already been proven to work 
in different deployments. However, neither do these 
use cases exclude each other, nor is the system 
limited to these use cases. 

Use case #1: run application on clouds 
Canada’s Advanced Resource and Innovation 
Network (canarie) want to be able to run data-
intensive applications, like batch services, software 
distribution and storage federation, on distributed 
clouds using standard protocols. They use the 
Federated Storage Engine to federate multiple 
Storage Elements located on several sites in North 
America. 

Use case #2: add third-party storage farms
A company wants to offer their users a simple way 
to access files. Some files are hosted by the 

company, but additional space may need to be 
bought from commercial cloud storage providers. 
The company integrates the Generic Redirector into 
their web portal and allow the users to access their 
files using a standard web-browser. The requests to 
the files are transparently redirected to the different 
storage endpoints. This allows the company to 
change storage providers without interrupting the 
service.  

Use case #3: federate storage of several sites 
A company has several branches all over the world. 
User data is synchronized regularly between those 
branches, but it may take new files a couple of days 
to be distributed to all branches. The users often 
access their data from different locations (e.g., 
airports, hotels) and need to be able to have fast 
access to their data independent of their location. 
The company sets up a central site hosting the 
Generic Redirector. This allows the users to access 
their data in a normal fashion, while transparently 
being redirected to the optimal replica of some file, 
dependent on their current location. 

Summary 
The presented Federated Storage Engine is an 
efficient, persistency-free, scalable and easily 
manageable approach to federate remote storage 
and metadata endpoints. It is a big step forward 
towards open standards, simplification of data 
access in storage federations and to make powerful 
mechanisms and tools from the High-Energy-
Physics-Community, like DPM and dCache, 
available to users in other contexts. 

The plug-in interface and the possibility to integrate 
the Generic Redirector into web services already 
existing at sites, makes it highly adoptable to a 
multitude of use cases. 

The Federated Storage Engine is ready for 
production. It can currently be installed from our 
website at CERN. In the near future we will provide 
downloads and documentation of the Federated 
Storage Engine through EPEL and a dedicated 
website. 

A demonstration of the Federated Storage Engine
can be found at [17]. 
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Federated AAI: Enabling Collaboration 
Paul Millar, Patrick Fuhrmann - DESY 
Dennis Klein - GSI 
Arsen Hayrapetyan, Marcus Hardt - KIT 

Introduction 
Progress in experimental research has often gone 
hand-in-hand with technological advances. With 
more advanced equipment, more detailed 
investigations are possible: either through 
improvements in automation or by providing a 
higher level of detail. 

One effect of this progress is that an ever increasing 
amount of data is available for analysis. Where 
previously researchers could have their personal 
copy of the data (e.g., stored on their workstation), 
now sufficient data is collected that it becomes more 
economical that it be stored on dedicated 
equipment, from which authorised users can 
access. Also, with sufficiently large amounts of data, 
dedicated computing resources are required to 
process it; for example, analysis may use a High-
Throughput Computing (HTC) or High-Performance 
Computing (HPC) cluster. 

While this rich source of data is a boon for 
researchers, it places new burdens in how the data 
and the analysis is handled. One example is when 
two or more institutes wish to collaborate. To do 
this, they must allow members of the collaboration 
access to the shared resources: access to the data 
and access to any shared analysis facilities. 

There are many challenges in providing access to 
members of a collaboration spanning many 
institutes. In this article we describe just one part: 
that of how users identify themselves. 

Often an institute will have a common authentication 
framework, so that a user can authenticate with the 
same name and password when accessing any 
service at that institute. 

One solution to this is for all users to have an 
account on all shared resources. While functional, 
this approach has several disadvantages: 
The users face having to remember their account 
name (either because institutes have different 
naming policies or due to name clashes), best 
practice says that passwords should be different for 
each account. As the number of members in the 
collaboration increases, people joining or leaving 
quickly becomes a burden for all administrators in 
the collaboration. 

A better approach is for the user to have a single 
username and password to remember and accounts 
are created automatically. When a user wants to 

use a service for the first time, she sends her 
username and password to her home institute. If the 
information is correct, a token is returned that is 
automatically sent to the service. Provided the 
service and home institute trust each other, the user 
is logged in. This is the basis of federated identity. 

Figure 1 Using home-institute credentials for 
accessing distributed resources. 

While federated identity helps in forming 
collaborations, another key problem is knowing who 
should be allowed to use a service. The decision 
can be made simpler if the service is told (by a 
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trustworthy source!) of which groups is the user a 
member. If she is a member of the collaboration 
group, then the service should grant access. While 
this service could be run at any site, providing a 
centralised group-membership service facilitates 
creation of new collaborations: just create a new 
group. Another benefit of a central group server is 
that members can join or leave the collaboration at 
the discretion of the manager. 

There are several federated identity systems 
currently in place; for example, X.509, OpenID 
OAuth and SAML all allow users to “log in” to 
different services with the same credential. Each 
system has strengths and weaknesses: X.509 
provides excellent integration with data access but 
poor adoption; OpenID and OAuth have good 
adoption but (to a large extent) are limited to web-
based activity. 

We chose SAML as a technology basis for the work, 
as it is widely deployed and already covers many 
use cases; however, there are aspects that make 
SAML challenging: 

 Using SAML without a web-based isn't 
widely available. 

 No commonly deployed storage service 
accepts SAML authentication: X.509 is the 
current standard. 

 Group-membership assertion services are 
not commonly used in SAML. 

High Level Objectives 
The high level objective of LSDMA in the context of 
AAI is to provide software, services and support 
when a research community wishes to share 
resources between different facilities: to collaborate. 
To achieve this, users authenticate with their home 
institute (only one username and password) and 
membership of groups comes from a centrally run 
group server. Services allow access, either based 
on individual identity or from the user's membership 
of groups, shown as green and red dots in Figure 2. 

There are several “missing pieces” that need to be 
filled to achieve this. 

Integration with web portals 
We assume that the services that should be shared 
are not created for this project, but will already exist 
and be in active use. This might be web-portals that 
allow users to create analysis workflows or to query 
a database of images. To allow sites to adopt 
LSDMA solutions, we evaluate the problems 
associated and give practical advice on how they 
may be solved. We are developing expertise in this 
process, using the LSDMA wiki as a proving ground. 

Figure 2 Resource access through centralized 
group management.

Big Data Access 
In contrast to web-based access, large-scale data 
access is mostly achieved using X.509 credentials. 
Since almost all data facilities cannot make use of 
SAML-based credentials, the user must obtain an 
X.509 certificate before they can store or retrieve 
data. 

LSDMA is investigating how to allow users to 
authenticate using SAML and automatically obtain a 
short-lived (typically 24 hours) X.509 credential. This 
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also involves querying a service that provides 
group-membership information. This information is 
provided as an attribute certificate, which is 
embedded within the short-lived X.509 certificate. 
The resulting X.509 certificate allows the user to 
upload, download and manage their stored data on 
all existing storage systems that support X.509 
authentication. As obtaining the X.509 certificate 
happens automatically, the user is oblivious that this 
is happening. 

LSMDA Data Management and Data Transfer 
Moving data between different sites is a common 
requirement: analysis often requires data to be 
transferred. Control of such transfers requires 
access to both the source and destination storage 
systems, which the client authenticates via X.509. 

Transferring large amounts of data between sites 
can involve handling timeouts, retries and optimal 
network tuning. Specialist websites, such as 
GlobusOnline, exist to allow non-experts to transfer 
large amounts of data with ease. However, this 
presents an extra challenge: how to upload a freshly 
created X.509 credential to some external web 
portal so that portal can manage the transfers. 
To achieve this, LSDMA is running a demo service 
that allows a web-portal to receive the X.509 
credential it needs to transfer the data, which will be 
expanded to support all users in the DFN. 

Group Management 
Group membership was mentioned as a key 
element in making the authorisation problem 
tractable: a centrally run group-server is needed so 
collaboration can manage its user list. 

LSDMA has been evaluating different solutions. A 
very promising candidate is the HPC UNITY group 
management service that remembers which groups 
a particular user is a member. A web interface 
makes managing a group easy. The user's 
membership is then either provided directly (either 
as SAML assertion or X.509 certificate) or may be 
queried directly by the service. 

Use case #1: work-flow engine 
Researchers of a particular genomic field 
investigate active areas mostly through a web 

portal. Different levels of access are given to 
different users, based on who they are. The general 
public can use pre-defined queries against limited 
data-sets; ordinary members of the collaboration 
can use parameterised queries against different 
data-sets; power users can make arbitrary queries 
against any dataset. The researchers want to 
expand the set of people to include the institutes 
with which they collaborate. 

This use case makes use of web-based SAML 
authentication and the group-membership service. 

Use case #2: access to data 
Data taken from a telescope is embargoed for a 
fixed period before becoming publically available; 
this allows collaboration members access to the 
data before non-members. Therefore, to access 
embargoed data, a user must prove they are a 
member of the collaboration. As the collaboration 
involves many different institutes, the list of 
members is changing often. A web portal allows the 
users to browse the fresh data and direct access is 
available via X.509-authenticated FTP. 

This use case makes use of web-based and non-
web-based SAML authentication, the group-
membership service and X.509 credential-
translation. 

Use case #3: moving data 
An HPC centre and human genomic project want to 
team up to look for a possible cause for an illness 
that is believed to have a strong genetic component. 
Researchers must transfer large amounts of 
genomic data to the HTC centre so that it can be 
processed on the supercomputer. 

This use case makes use of web-based and non-
web-based SAML authentication, the group-
membership service, the X.509 credential-
translation service and the data transfer service. 

Summary 
LSDMA is developing technologies, gaining 
experience and deploying services to allow 
institutes to share access to data and computing 
resources becomes simple, enabling them to focus 
on their research. 
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Imaging in Human Brain Project Using UNICORE Based Workflows 
André Giesler - FZ Jülich 

Understanding the anatomical structure of the 
human brain on the level of single nerve fibers is 
one of the most challenging tasks in neuroscience 
nowadays. In order to understand the connectivity of 
brain regions (affecting the brain function) on the 
one hand and to study neurodegenerative diseases 
on the other hand, a detailed three-dimensional map 
of nerve fibers has to be created. 

The Human Brain Project (HBP) uses recent 
imaging techniques in post-mortem studies to derive 
patterns of connectivity between brain regions and 
to identify fibre tracts connecting layers and cells 
within brain regions. This data is essential for 
modelling the large-scale structural architecture of 
the brain and to verify data from in vivo
experiments. One state of the art technique applied 
to histological sections of post-mortem brains is 
Polarized Light Imaging (PLI) which allows the study 
of brain regions with a resolution at sub-millimetre 
scale (Figure 1). It is based on an optical property 
referred to as birefringence of myelin which 
surrounds the axons of nerve fibers. Therefore 
about 1500 slices, each 70 micron thick, of the post-
mortem brain are imaged with a microscopic device 
using polarized light. 

Figure 1 Cross-section image of a human brain 
after PLI processing.

The images of brain slices are processed with a 
chain of tools for cleaning, alignment, segmentation, 
and recognition. These tools have been integrated 
in a UNICORE workflow (Figure 2), exploiting many 
of the workflow system features, such as control 
structures and human interaction. Prior to the 
introduction of the UNICORE workflow system, the 
tools involved were run manually by their respective 

developers. Thus, once one step in the process was 
finished, the developer of the next tool in the chain 
would retrieve the image data and run his tools on 
the output of the former. Another difficulty is that the 
tools are located on distributed resources. Thus, the 
intermediate results must be transferred by the 
users between different storages and file systems. 
This manual approach led to delays in the entire 
process. 

The introduction of the UNICORE workflow system 
for this particular use case resulted in several 
benefits. First of all, the results are easier to 
reproduce now, as fewer manual steps are involved. 
Secondly, the processing time of the entire workflow 
could be reduced to hours rather than weeks, 
because of the almost fully automated data 
workflow. The amount of data for a single brain slice 
is on the order of 1TB, with intermediate results at 
the same scale. The performant UFTP file transfer 
protocol is used in the workflow system to move 
large files effectively between distributed storages. 
Lastly, only the automated approach will allow for 
the timely analysis of a large number of brain slices 
that are expected to be available in the near future. 

Figure 2 Excerpt of the UNICORE Workflow 
integrating PLI tools and data flows.
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Real-time Response Framework Using MongoDB and 
3D Visualisation 
Parinaz Ameri, Marek Szuba - KIT 

Introduction 
Observation of Earth from space has become an 
important part of climate studies, with dedicated 
satellites and instruments providing measurements. 
As a consequence of both high number of 
observables monitored by satellite instruments and 
wide geospatial distribution of observation points, 
the volume of data in modern climatology has 
become considerable. For instance, the ESA 
Envisat satellite alone – which featured 9 Earth-
observing instruments and orbited the Earth once 
every 100.16 minutes – during its 10 years of 
operation acquired over 1 PB of data. Furthermore, 
several Earth-based stations now produce huge 
amounts of data as well. Additionally, on top of 
dealing with large amounts data from one satellite at 
a time it is often useful to match results from two or 
more satellites with each other or with stations on 
Earth. 
The goal of the project at hand is to develop a state-
of-the-art framework facilitating management of 
satellite climate data. The framework is to gracefully 
handle high-volume data reads, and scale well as 
data from more satellites and instruments is added 
to the database. Last but not least, we aim to 
provide visualisation and basic analysis capabilities 
which could be used by scientists with minimal to no 
knowledge of the underlying infrastructure. 

Storage 
For storage purposes of this project we chose 
MongoDB – a document-based NoSQL database 
which stores data as structured key-value pairs. 
Input and output of documents is based on the 
JSON format, considerably simplifying the use of the 
database. This is particularly true in the context of 
Web applications, among which JSON is the de 
facto standard for data exchange, as well as object-
oriented programming, in which case documents 
can naturally be represented and treated as objects. 
For the handling of storage in a big-data project, it is 
very important to consider scalability of the system. 
MongoDB offers a horizontally scalable database 
solution with its sharding concept: each shard is a 
partition of the data that can be stored on different 
physical machines than any others. Information 
about the physical location of the data in each shard 
is kept in some redundant Config Servers and the 
routing process is done through mongos, a 
lightweight service which can be run on any system 
– even one that runs other cluster components. 
mongos is also responsible for balancing the load 
coming from clients (Figure 1). 

In order to increase the performance of the 
application, queries to the database are parallelised. 
Unlike traditional databases, MongoDB fully 
supports parallel query handling. In addition, in 
order to provide fault-tolerant architecture each 
shard is set up as the primary node in a replica set
of three nodes, where the other two are secondary 
nodes that can be used only for reading information 
from database. 

Figure 1 Illustration of different components of the 
project.

Finally, MongoDB offers a built-in index called 
2dsphere which is useful for indexing geospatial 
locations of satellite data information around the 
globe. 

Input and Output 
As a direct consequence of the nature of data at 
hand, our system is largely read-only. Writing is only 
necessary when data for new instruments is added 
to the system. Therefore, our input and output follow 
different designs and the framework has been 
optimised primarily for the latter. 
The fact that there is no universal data structure for 
all of the satellites was a motive to take advantage 
of MongoDB schema-less design for storing data. 
Although there are sets of variables that 
climatologists might be interested in, the exact 
combination of variables chosen to be measured 
differs from device to device.  
There are cases when as time passes one specific 
device might have different versions of an 
instrument (due to upgrades, changes of mode of 
operation, effects of aging or hardware failures and 
so on), or an instrument can measure different 



Large-Scale Data Management and Analysis

29

observables (concentration of different gasses, for 
instance) at different times. The user might want to 
target different gases in different ways and using 
different instrument versions in each of their 
analysis. 
For few satellites, there are some variables that are 
considered mandatory. The user cannot use the 
data of such devices without specifying a special 
value for these variables. On the other hand, there 
are also optional variables provided for some of the 
satellites that the user might freely choose to require 
or not. For on the ground stations, the user might 
want to filter the data taken by one specific station, 
or just simply use the data coming from all of the 
stations in one project. 
As a result, the import of data into the database is 
handled by IT experts who carefully analyse all of 
these conditions, then plan and implement 
necessary extensions of document structure and 
import scripts. Import operations themselves are 
typically handled by Python scripts executed on 
machines with direct access to the database. 
A different approach was employed in case of 
reading the data from the database as unlike input, 
it is primarily done by users who are not necessarily 
IT experts, have not got shell access to the 
database cluster and may or may not have 
MongoDB drivers installed on their local machines. 
In light of this, the primary read interface is a Web 
service which wraps database queries in a simple 
Representational State Transfer (REST) API. This 
API provides functions returning data as required by 
specific applications such as the visualisation 
interface described below, as well as a low-level 
MongoDB query interface which is useful e.g. for 
debugging purposes. In both cases the data is 
returned in JSON format over HTTP. 
Our tool of choice for the REST Web service is 
Node.js, a server-side JavaScript platform whose 
event-driven, non-blocking I/O model allows it to 
gracefully handle even highly data-intensive 
applications. Its high performance aside, Node.js 
also features an extensive library of modules usable 
in one’s application – including both a MongoDB 
driver and sophisticated Web-application 
frameworks such as Express. 

Visualisation 
In order to make our visualisation interface portable 
it was designed as a JavaScript Web application, 
which should automatically make it compatible with 
any platform capable of running a recent version of 
a standard-compliant Web browser such as Mozilla 
Firefox or Google Chrome. The application submits 
REST commands to the server, fetches requested 
data and renders it in 3D in the user’s browser 
superimposed on an image of Earth. Its current 
version can display orbital paths of the satellite as 

well as apply user-provided criteria to cloud-index 
measurements from the database in order to 
calculate and present the altitude of clouds on given 
days (Figure 2). 
We display acquired data using the WebGL Globe – 
an open platform for visualisation of geographic 
data which was developed by the Google Data Arts 
Team. This in turn, as the name suggests, employs 
the WebGL 3D-graphics JavaScript API, which 
allows it to take advantage of locally available GPU 
power. Preliminary performance tests have shown 
the current version of the visualisation interface to 
perform well even on relatively weak hardware such 
as integrated graphics chipsets found in modern 
laptop computers. 

Figure 2 Visualisation front-end showing 
measured cloud altitude.

As WebGL uses the HTML5 canvas element, we 
can take advantage of other features provided by 
this version of HTML. In particular, other canvas 
elements are used to display dynamically generated 
two-dimensional graphics such as heat-map 
legends, and the use of Web Storage is being 
considered for the caching of fetched and/or pre-
computed data sets. 

Summary and Outlook 
A framework has been developed for storage and 
visualisation of satellite climate data. The framework 
uses a MongoDB cluster as its storage back-end, 
several Python scripts for insertion of data, a 
RESTful Web service for queries and a WebGL-
based JavaScript application for visualisation of 
orbital paths and cloud altitude.  
In the near future we expect to extend the database 
and the input system to include more data. This 
requires a careful design for structure of data and 
generating and structuring metadata to store in the 
database. We are also working on a Node.js Web 
service to provide the first production version of the 
REST API. Last but not least, the visualisation 
interface is being modified to support further data 
types as well as to make it more flexible and user-
friendly. 
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Reducing Energy Consumption of Large-Scale Storage Systems 
Michael Kuhn, Konstantinos Chasapis, Manuel F. Dolz – University of Hamburg 

Due to the increasing electricity footprints, energy 
used for storage represents an important portion of 
the total cost of ownership (TCO). 

Processor speed and disk capacity have roughly 
increased by factors of 500 and 100 every 10 years, 
respectively. The speed of disks, however, grows 
more slowly: We have observed a 400-fold increase 
of throughput over the last 25 years for hard disk 
drives (HDDs). Even newer technologies such as 
solid-state drives (SSDs) only boost the speedup to 
1,200. In comparison, over the same period of time, 
the computational power increased by a factor of 
1,000,000 for supercomputers due to increasing 
investments. 

Moreover, the growth of disk capacity has recently 
also started to slow down. While the same is true for 
processor clock rate, this particular problem is being 
compensated for by growing numbers of 
increasingly cheap processor cores. Additional 
investment is required to keep up with the 
advancing processing power. 
While this problem cannot be solved without major 
breakthroughs in hardware technology, it is 
necessary to use the storage hardware as efficiently 
as possible to alleviate its effects. The outcome of 
this is that it is not possible to increase storage 
speed and capacity by the same factor as 
processing power when keeping investment 
constant. 

Figure 1 Power-performance traces make it 
possible to correlate the storage servers’ utilization 
with their power consumption.

As current-generation CPUs provide ample 
performance for data processing, we provide a case 

for turning on compression by default to reduce the 
number of required storage devices and thus 
minimize the storage system’s power consumption. 

To analyze power and performance metrics of the 
storage servers, we employ an integrated 
framework that works in combination with 
VampirTrace and Vampir, which are profiling/tracing 
and visualization tools, respectively. In addition to 
the power measurements, we can also account for 
the storage servers’ resource utilization values, 
such as CPU load, memory usage and storage 
device utilization. Finally, using the Vampir 
visualization tool, the power-performance traces can 
be easily analyzed through a series of plots and 
statistics (Figure 1). 

Initial evaluations show that data compression in 
HPC storage servers can be used to save energy 
and improve I/O performance. On the one hand, 
less HDDs are required to store the same amount of 
data due to the compression. On the other hand, it 
is also possible to achieve a higher throughput by 
storing more data in the same amount of time; this is 
especially relevant in I/O-intensive cases. These two 
advantages lead to lower procurement and 
operational costs (Figure 2). 

Figure 2 Necessary investments for a storage 
system of 40 petabytes with and without 
compression. 

However, it is important to carefully choose 
compression algorithms due to their inherent CPU 
overhead as expensive algorithms will increase 
power consumption. We have identified lz4 as a 
suitable compression algorithm for scientific data 
and will use it for further analysis in the future. 
Real world data-sets can achieve compression 
ratios of more than 1.5 without any significant 
increase in CPU utilization. We have observed a 
reduction of 7% in energy consumption for write-
intensive applications. 
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STXXL 1.4.0 and Beyond 
Timo Bingmann, Peter Sanders - KIT 

In the age of Big Data, we are challenged with 
designing and developing applications that process 
large amounts of data efficiently and gain 
knowledge from the data or transform it into other 
representations. As large amounts of RAM are 
expensive, most data remains stored on hard disks. 
If the working set of an application exceeds the 
amount of available RAM, then algorithms that 
process data efficiently in external memory are 
required. 

Efficient algorithms for external memory are 
characterized by the number of block I/O operations 
they require to process an input. While simple file 
access and databases queries are readily available, 
more sophisticated calculations, algorithms and 
advanced methods of computation with external 
memory are much tougher to implement. For 
example, highly efficient sorting in external memory, 
an efficiently priority queue, asynchronous I/O and 
overlapping of I/O and computation are data 
structures and acceleration techniques not easily 
accessible. 

The STXXL (Standard Template Library of Extra 
Large Datasets) is a multi-platform C++ template 
library which provides many efficient external 
memory algorithms and data structures with a well-
known interface. It was started in 2003 with the PhD 
thesis of Roman Dementiev, in which STXXL’s 
layered design (see Figure 1) was developed, and 
many authors have since contributed and extended 
it with new functionality. The library is fully open-
source and available under the liberal Boost 
Software License. 

Figure 1 Layer Diagram of STXXL. 

For the basic Standard Template Library (STL) data 
structures vector, stack, queue, priority_queue and 

map, the STXXL library provides a drop-in 
replacement which keeps its data in external 
memory, but has an interface that remains identical 
to the well-known STL data structure, as far as this 
is theoretically possible or desired. While vector, 
stack and queue are simple data structures, the 
priority_queue and map are sophisticated 
implementations with good theoretical performance 
guarantees. 

Besides the easy to use STL-like interface, the 
STXXL provides highly engineered sorting 
implementations and support for pipelining 
algorithms to reduced constant factors in time and 
I/O volume. It is the only library transparently 
supporting multiple parallel disks and also 
optimizing parallel disk access during sorting. 

In LSDMA the development of STXXL has 
continued and aims to create a reliable foundation 
for algorithms and applications to efficiently process 
large amounts of data. The release 1.4.0 of STXXL, 
published December 2013, was pivotal to bringing 
STXXL onto a modern software development stage. 

In release 1.4.0 the whole source code hierarchy 
was reorganized according to modern standards, 
and the old build system was replaced with CMake 
for easy cross-platform compilation on Linux, 
Windows with Visual C++, and Mac OS X. However, 
the most important improvement was to greatly 
extend the documentation of STXXL, now providing 
extensive design documentation, tutorials and 
examples for most data structures. Furthermore, the 
version 1.4.0 incorporates the efficient external 
matrix operations developed by Raoul Steffen, and 
the skew3 suffix sorter as a complex real-world 
pipelining application. 

In the next release 1.4.1, we plan to support the 
native Linux asynchronous I/O interface, which can 
take advantage of native command queueing (NCQ) 
on the hard disks, and to integrate asynchronous 
pipelined sorting with the aim of improving parallel 
sorting speed. Beyond these concrete 
improvements, we are currently doing research on a 
bulk-parallel priority queue which aims to exploit 
multi-core parallelism during bulk operations. With 
the availability of SSDs, which provide much higher 
I/O bandwidths than rational disks, more work will 
also be needed to further improve the throughput of 
external memory sorting and other algorithms.
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Best Practices for Metadata Management in LSDMA 
Richard Grunzke - TU Dresden 
Volker Hartmann, Thomas Jejkal - KIT 
Bernd Schuller - FZ Jülich 

Big Data applications in science are producing huge 
amounts of data. The management of this data is a 
challenge as it is no longer feasible to access the 
data directly due to limited local storage capacities, 
limited transfer rates, and too many files. As an 
alternative action like searching for specific data will 
be based on metadata which describes the content 
of the data. Metadata is specific to communities and 
some communities have already defined their own 
standard (e.g.: OME, TEI) while other communities 
even lack metadata completely. No global standard 
exists which is usable for all communities. Dublin 
Core is a kind of global standard but it covers only 
very basic properties. In the following metadata 
capabilities of the KIT Data Manager, UNICORE 
and the MoSGrid Science Gateway will be 
presented. 

KIT Data Manager 
KIT Data Manager is an architecture to build up 
experiment data repository systems suitable for 
huge amounts of primary data. It provides a set of 
services for managing data on terabyte scale 
supporting the whole data life cycle of scientific 
data. Therefore, different types of metadata are 
supported. For the different aspects of data life 
cycle management specific metadata exists (e.g.: 
base metadata, content metadata, data organization 
metadata, authorization metadata, workflow 
metadata, curation metadata). The metadata allows 
getting all necessary information about data without 
having direct access to it (base metadata, data 
organization metadata, content metadata). Other 
metadata describes rules on how the data should be 
treated (curation metadata) or who is allowed to 
access to which extend (authorization metadata). All 
this metadata sets are linked to the original data via 
the Object Identifier (OID) which provides a unique 
identifier for each dataset. The base metadata the 
KIT Data Manager uses is based on the Core 
Scientific Metadata Model (CSMD). Its hierarchical 
structure is shown in Figure 1. The ‘Digital Data 
Object’ is linked to the data and contains some base 
properties like experimenter, start of the data 
acquisition, end of data acquisition and upload date. 
The ‘Investigation’ holds one or more ‘Digital Data 
Objects’ which are in at least one aspect similar to 
each other. As they are organized as a collection 
there is the possibility to define unitary actions/rules 
for such a collection. The ‘Study’ itself can be 
regarded as a natural collection of ‘Investigations’.  
These base metadata entities are generated during 
the data ingest in XML format and are stored next to 
the data. As most tools support at least Dublin Core 
(DC) as metadata standard also an XML file holding 

the DC metadata is generated. If there is community 
specific metadata available it will also be extracted 
and stored in XML format. Based on these metadata 
additional services are available.  
To enable search the extracted metadata is 
registered to an elastic search cluster. If the 
metadata has also to be distributed an OAI-PMH 
server can be established which provides a 
standardized interface for harvesting metadata.  
As all metadata is available in XML it is possible to 
transform them to another format using XSLT 
transformations. Therefore the metadata concept of 
the KIT Data Manager is easily adaptable to new 
demands. 

Figure 1 The hierarchical base metadata structure 
of the KIT Data Manager is based on the Core 
Scientific Metadata Model (CSMD).

UNICORE Metadata Management 
The UNICORE middleware includes data and 
metadata management functionality as well. The 
metadata features are intended to complement the 
data management and file access functions, and are 
designed to be fully compatible with the UNICORE 
security and access control layers. The metadata 
interface offers the typical functions for creating, 
updating, deleting, indexing and searching 
metadata. Furthermore, there is a framework for 
extracting metadata from data automatically, using 
configurable parsers. The metadata is stored in a 
schema-free fashion as JSON key-value pairs. One 
distinguishing feature of UNICORE's metadata 
system is that the metadata is stored next to the 
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data, i.e. on the same physical storage, and is 
subject to the same access control and shares user 
and group management with the actual data. 
Indexing and searching uses the Apache Lucene 
engine, while the metadata extraction system is built 
on Apache Tika. The search indexes are updated 
automatically each time the metadata is updated. 
The search function can be executed on a single 
data store, but can also be run as a federated 
search on all the data stores that are available to 
the user. 
The metadata system can be accessed using 
UNICORE's command line, GUI clients and via its 
API in any Java application. Figure 2 shows a 
graphical metadata user interface built into the 
UNICORE Rich Client (URC). 

Figure 2 The metadata management within the 
UNICORE Rich Client includes capabilities for 
creating, updating, deleting and searching for 
metadata.

Generic Metadata Management based on the 
MoSGrid Science Gateway 
Science gateway architectures (Figure 3) provide a 
single point of entry to make complex infrastructures 
such as HPC and data resources more efficiently 
and readily available by integration with workflow, 
metadata, HPC, and data management systems to 
handle complex computing tasks and big data 
requirements. The user is enabled to utilize these 
resources in an easy to use and efficient way, 
despite of the complexity of the underlying 
infrastructure.  
The MoSGrid science gateway is such a solution for 
molecular simulations and docking tools. It is based 
on the Liferay portal, the WS-PGRADE/gUSE 
science gateway middleware, the distributed file 
system XtreemFS, and the grid middleware 
UNICORE. The integration of metadata 
management capabilities in MoSGrid necessitated 
two steps. First, MSML (Molecular Simulation 
Markup Language) has been designed to represent 
information about small and large molecular 
structures, workflows, and results. Besides the 
reasonable representation of data, one of the main 
aspects of metadata is the possibility to quickly 

search data on a large scale. Thus, the second step 
was to integrate the UNICORE metadata service 
which uses Apache Lucene as the most widely used 
library in efficiently searching data based on meta 
information. 
Building on these design and implementation 
experiences a novel and generic metadata 
management approach is currently being designed 
to significantly enhance big data on HPC systems. 
First, underlying metadata systems shall be 
transparently accessible via a programming 
interface. The interface is planned to support 
important metadata systems such as UNICORE and 
access standards such as CDMI and OAI-PMH. The 
goal is to enable users to utilize metadata systems 
without noticing which one is deployed. An 
important aspect is the efficient integration with HPC 
systems to enable the seamless execution of 
computing tasks based on metadata. Also, 
automatic extraction, annotation, and indexing of 
metadata is essential to enable management of 
millions of files.  
Then, advanced user interfaces are planned to be 
offered as generic components for integration in 
specific use cases. Developers shall be enabled to 
avoid re-creating user interfaces. An example is a 
search interface where results can be seamlessly 
used as input during job submission. Another 
example is a filterable metadata browser to flexibly 
discover large data sets. Also, data views are 
planned to display files depending on a given 
context. For example, in a monitoring display only 
relevant job results are shown. Automation will 
enable quick adaptions of these interfaces to 
different types of use cases. 

Figure 3 A generic metadata management design 
in a complex Science Gateway infrastructure is 
depicted that can enable the seamless handling of 
millions of files.
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The Electrical Data Recorder 
Fabian Rigoll, Heiko Maaß - KIT 

Our society heavily relies on the ubiquitous 
availability of energy. However, in order to slow 
down the possibly irreversible climate change a 
paradigm shift is needed: electrical power grids that 
are currently characterized by a demand-driven 
production will make a transition to a production-
dependent control of the electrical energy 
consumption.  
Even though today’s energy production is still 
largely based on fossil fuels, the future power 
generation will largely depend on volatile and 
decentralized energy sources, such as 
photovoltaics, wind turbines, and biogas plants. The 
increase in decentralized feed-in as well as the 
growing number of electric vehicles can cause 
imbalances in the electrical power grid.  

An electrical power grid’s quality is defined by two 
main properties: frequency and amplitude. In 
Europe, a frequency of 50 Hz is targeted as the 
balanced case between production and 
consumption. A decreasing energy demand causes 
the frequency to rise in the entire grid, whereas an 
increasing demand of energy causes the frequency 
to fall.  
In contrast to the frequency control, voltage is not a 
global property of an electrical power grid. The 
consumption has a retroactive effect on the local 
voltage in the same part of the grid. If they are not 
levelled out on a local level, deviations from the 
targeted 230 V can be observed.  
The rising number of decentralized feed-ins and the 
incorporation of electric vehicle charging affect the 
grid supply quality. Thus, it is important to monitor 
the grid comprehensively in order to maintain 
reliability, stability, and quality. 

The Electrical Data Recorder (EDR) is a KIT 
developed device which is capable to measure 
voltages and currents of three phases in an 
electrical power grid at a rate up to 25 kHz. This 
allows for a detailed estimation of frequency and 
voltage as well as for the detection of harmonics 
and irregularities in the electrical network. If 
equipped with Rogowski coils, the EDR is able to 
measure power flow parameters on all three 

phases. Distributed measurements using different 
EDRs are synchronized by GPS for enabling wide 
area monitoring and comparison. All data are 
transferred to a large database for permanent 
storage.  
As both temporal and voltage resolution are 
comparably high, large amounts of data are 
produced. Recording voltage channels only, one 
single EDR creates roughly 9 GiB of data per day or 
about 3 TiB of data per year at a typical acquisition 
rate of 12.8 kHz. Currently, three EDRs are installed 
and operate continuously. One of them is placed at 
KIT Campus south at the Energy Smart Home Lab, 
whereas the other two are used at different 
locations at KIT Campus North. More will be 
installed in the near future. 

A web service has been employed to receive the 
EDR data and store them in the Large-Scale Data 
Facility. A Hadoop cluster is used to provide data 
search, semantic search, and smart browsing on the 
data. Our big data methods provide access rates 
greater than 350 MiB/s even for evaluation intervals 
of 3 weeks. This allows for efficient data analysis 
and interactive visualisations as shown in Figure 1.  

The EDR offers sophisticated wide-area and large 
timescale comparison of measurements at different 
energy grid locations. New big data tools and 
pattern recognition techniques are currently being 
developed to contribute for advanced energy grid 
monitoring and reliable control in the future. 

Figure 1 The EDR enables detailed analysis of 
voltages, frequencies, and harmonics with 
subsequent interactive visualisation.
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Complexity of Electro-Chemical Systems 
Josef Anton, Timo Jacob – University of Ulm 

Motivation 
The relevant processes in electro-chemical energy 
storage occur on vastly varying time and length 
scales (see Figure 1). However, modeling of the 
crucial processes on the various scales also 
requires different methods and algorithms. By a 
combination of these methods, properties of electro-
chemical cells can be predicted on a first principles 
basis, i.e. without involving empirical parameters. 
For example, in order to understand the 
macroscopic charge and mass transport, various 
factors such as the barriers hindering the 
elementary diffusion steps have to be known. This 
information can be determined on the atomistic 
scale, where specific structural and energetic 
information is calculated using first principles 
methods. 

Figure 1 Schematic presentation of the hierarchy 
of multiscale modeling. Data generated on smaller 
time and length scales will be used as parameters 
for simulation on a larger time and length scales. 

The main aim of our activities is to bridge the gap 
between the different time and length scales 
involved in the electro-chemical energy storage 
establishing the appropriate methods for a reliable 
multiscale approach and by applying these methods 
to relevant systems such a Li-ion or metal-air 
batteries. Thus, the information gained on 
macroscopic level will help to understand the crucial 
processes on a mesoscopic and macroscopic level. 
Besides structural and stability aspects of the 
different battery materials (i.e. electrodes, liquid or 
solid electrolytes, and their interfaces), their 
influence on the electronic and macroscopic 
properties is addressed. 

Data Life Cycle 
In order to improve the Data Life Cycle for the 
community, a server-client solution (see Figure 2) is 
implemented. Clients establish an encrypted 
connection to the main server in order to access its 
services. This dedicated server provides all 
necessary software tools for multiscale modelling. It 
runs automatically plausibility checks of the input 
data, submits the calculations to one of the available 
computational clusters and monitors them. After the 
completion of a computation, the system checks the 
output data and will copy them back to the server. In 
addition, it will evaluate these data, will annotate 
them with metadata and it will take care of the long 
term archiving  

Figure 2 Schematic presentation of the server-
client solution. Besides the automatic pre- and post-
processing of the input and output as well as job 
submission and control, the main server annotates 
the generated data with the metadata and handles 
their archival. Post-analysis and visualisation of 
generated data will be performed on the clients.
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FAIR Tier0: Building Large-Scale Cross Site Connections 
Dennis Klein, Thorsten Kollegger, Walter Schön, Kilian Schwarz, Thomas Stibor - GSI 

Introduction 
At GSI an accelerator facility of the next generation, 
FAIR (Facility for Antiproton and Ion Research, see 
Figure 3) is being built. The computing resources 
required will be dictated mainly by the two large 
experiments, CBM (Compressed Baryonic Matter) 
and PAnDa (Proton Anti proton Darmstadt). Current 
estimates for the first year of data taking are 
200,000 CPU cores, 30 PB of disk space and the 
same amount of tape archive. The data rate from 
the experiments will be in the order of magnitude of 
1 TB/s. Due to the signature of the events the FAIR 
experiments cannot rely exclusively on hardware 
triggers, though. Therefore the complete 
reconstruction up to particle identification will have 
to be done in quasi real time in order to be able to 
distinguish between signal and background events 
and to reduce the amount of data to be stored in the 
end to manageable sizes.  

The FAIR computing model foresees a distributed 
tier0/tier1 centre consisting of GSI and the 
surrounding universities and partner institutions. 
The combined FAIR tier0 centre will be embedded 
in an international Grid/Cloud infrastructure. 
Computing clusters will be loosely and densely 
coupled and large data sets need to be efficiently 
processed and analysed in a distributed and parallel 
manner. A suited file system for the requirements 
presented above and in addition scales effectively 
and allows seamlessly accessing large data in wide 
area networks (WAN) environments is the Lustre file 
system.  

In the following sections we present a realization of 
Lustre high-speed connections for large-scale data 
transfers in WAN and address security related 
access control mechanisms required for the FAIR 
project. In addition we present how this approach 
can be embedded into international Grid and Cloud 
infrastructures. 

Tera-Link Connections with Lustre Routers 
For addressing the first issue a 120 GBit/s high-
speed connection between GSI (Hera cluster) and 
LoeweCSC in Frankfurt based on LNET routers is 
realized and seamless Lustre mounts are 
implemented (see Figure 1). 

Additionally, several experiments are performed to 
verify that full network bandwidth saturation can be 
achieved. Results on network performance are 
visualized in Figure 2. 

Figure 1 High-speed connection is realized by 
bundling 12 machines equipped with 10 GBit/s 
ethernet cards acting as LNET routers. Both 
computing sites LoeweCSC and Hera cluster at GSI 
seamlessly are connected via Infiniband over IP 
over a distance of around 84 km. 

Figure 2 Bandwidth saturation experiments 
between LoeweCSC in Frankfurt and the Hera 
cluster located at GSI. One can observe, that closely 
the optimal bandwidth saturation of 15 Gbyte/sec is 
achieved. 

A Lightweight Access Control Mechanism for 
Lustre in WAN Domains 
For controlling access to Lustre of clients outside 
the GSI domain, that is partner institutions and 
universities, a Linux kernel module based on Linux 
user and group identification (short UID/GID) and 
Lustre network identifier is developed. It allows 
controlling read and writing access for arbitrary 
specified UID’s /GID’s and Lustre network identifier 
ranges.  

In the context of WAN Lustre deployment the 
proposed mechanism enables a straightforward and 
lightweight access control of Lustre clients located 
in different WAN domains. The access control 
mechanism is implemented as a separate Linux 
kernel module and exports an access-granting 
function which is hooked into Lustre's core metadata 
system for granting or denying data access. Further 
details can be found at [18]. 
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Embedding in International Grid and Cloud 
Infrastructures. 
On the level of data management and repositories 
many software systems are available. 
Interoperability is rarely given due to missing 
implementation of common standards. In the long 
run reacting on changing technologies therefore is 
difficult.  

Under participation of GSI, a prototype of a globally 
distributed file system has been set up based on the 
xrootd protocol which is commonly used within the 
High Energy Physics community. An important idea 
is the transition from separated and localized 
storage elements to a global “file system”. A major 
building block is a working interface between xrootd 
and Lustre. This way it can be guaranteed that 
synergy effects are created and that aspects of both 
storage system which are important for FAIR are 
being taken into account.  

Via modular plugins which are available for xrootd 
version 4 also proxy solutions can be set up so that 
Grid jobs will be able to run in firewall protected 
HPC clusters. Moreover via plugins to various 
cluster file systems xrootd will be able to hand over 
to clients URLs pointing directectly to the cluster file 
systems used at the participating centres. 

 Summary 
A crucial step towards the tera-scale FAIR 
computing model was presented. That 
encompassed processing and analysing large-scale 
data in WAN environments and taking scalability 
and security related issues into account. In addition, 
the concept of embedding the combined FAIR 
tier0/tier1 centre into an international Grid and 
Cloud infrastructure was discussed. 

Figure 3 FAIR is an international accelerator facility currently under construction. In the final setup FAIR 
consists of eight ring colliders with up to 1,100 meters in circumference, two linear accelerators and about 3.5 
kilometers beam control tubes (see red coloured areas). The existing GSI accelerators serve as pre-accelerators 
(blue coloured areas). FAIR will use antiprotons and ions to perform research in the fields of: nuclear, hadron 
and particle physics, atomic and anti-matter physics, high density plasma physics, and applications in 
condensed matter physics, biology and the bio-medical sciences.
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