
Er
ik

 B
u

rg
er

15

Flexible Views for View-based
Model-driven Development

Erik Burger

The Karlsruhe Series on
Software Design

and Quality

15

Fl
ex

ib
le

 V
ie

w
s

fo
r

V
ie

w
-b

as
ed

 M
o

d
el

-d
ri

ve
n

 D
ev

el
o

p
m

en
t

Erik Burger

Flexible Views for View-based
Model-driven Development

The Karlsruhe Series on Software Design and Quality
Volume 15

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Flexible Views for View-based
Model-driven Development

by
Erik Burger

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Informatik
Tag der mündlichen Prüfung: 17. Juli 2014
Referenten: 	 Prof. Dr. Ralf H. Reussner
	 Prof. Dr. Colin Atkinson (Universität Mannheim)

Print on Demand 2014

ISSN 1867-0067
ISBN 978-3-7315-0276-0
DOI: 10.5445/KSP/1000043437

This document – excluding the cover – is licensed under the
Creative Commons Attribution-Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Flexible Views for View-based

Model-driven Development

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

des Karlsruher Instituts für Technologie

genehmigte

Dissertation

von

Erik Burger
aus Mosbach (Baden)

Tag der mündlichen Prüfung: 17. Juli 2014

Erster Gutachter: Prof. Dr. Ralf H. Reussner

Zweiter Gutachter: Prof. Dr. Colin Atkinson (Universität Mannheim)

Abstract

Modern software development faces growing size and complexity of the
systems that are being developed. To cope with this complexity, several
languages and modelling formalisms are used during the development of a
system in order to describe it from various view points and at multiple levels
of abstraction. These languages and modeling formalisms are specific to the
domain of the system under development, to the paradigms that are followed,
and to the developer tools being used. For example, in a component-based
process, the software architecture may be defined using a component meta-
model, while class diagrams are used for the object-oriented design of the
system; performance and reliability models express the extra-functional prop-
erties; program code in a general-purpose programming language defines
the execution semantics, and is used for the implementation of the system.
Although all these artefacts follow different concepts and formalisms, they
express the same system from various view points and can thus be under-
stood as views on the system under development. The entirety of these
views can be identified as a complete definition of the system. Although the
usage of multiple formalisms offers the advantage that different developers
can describe the system from different view points, and in languages and
models that are specially designed for this purpose, it introduces the problem
of fragmentation of information across heterogeneous artefacts in differ-
ent formats, concepts, and languages. With increasing complexity of the
systems, this makes navigation through the system description difficult for
developers and other roles in the development process. Furthermore, since
the concepts and formalisms are managed independently, they can share
semantic overlaps, so that a piece of information about the system under

i

Abstract

development can be expressed in several ways and contexts. For example,
while a component model may be used to express the prescriptive software
architecture of a system, the implementation in a general-purpose program-
ming language also determines an implicit architecture of the system, which
leads to redundancies in the system descriptions. The independent evolution
of these artefacts can lead to inconsistencies, which cannot be identified
automatically if the semantic correspondances between the artefacts are not
modelled explicitly.

View-based software development processes offer two fundamental prin-
ciples of adressing this problem: While synthetic approaches integrate the
information of heterogeneous models to form a complete system description,
projective approaches introduce a common formalism in which all view
points of the system can be represented, and generate the views from this
central model. While the pure synthetic approach suffers from a quadratic
increase of interdependencies between the view types, which become very
numerous with a growing number of formalisms that have to be supported,
the projective approach faces the problem of providing a common formalism
that is able to cover all the view points of the development process, while at
the same time providing compatibility to existing formalisms.

The VITRUVIUS approach for view-based software development is based
on model-driven technologies and combines the advantages of the projective
and synthetic approach, while aiming to reduce the disadvantages. It is
based on the concept of Orthographic Software Modeling and its core idea
that all information about the system under development is represented in a
single underlying model (SUM). This concept is refined in the VITRUVIUS

approach by constructing metamodels for SUMs as virtual, modular entities
that are composed of existing metamodels, and concepts for the semantic
correspondances between them. The contribution of this dissertation is
an approach for view-based engineering with VITRUVIUS. To that end,
this thesis contains a conceptual foundation and a development process for
the single underlying model. The development process presented in this

ii

Abstract

dissertation contains a method for the systematic construction of such a
modular SUM metamodel for specific development scenarios.

The view types, which are used for retrieval and modification of informa-
tion in a SUM, hide the modular structure and offer a uniform way of access
that makes modifications to the structure of the SUM metamodel possible
without having to change the view type structure. The focus of this work and
the main contribution is the declarative definition of these view types. This
thesis contains the definition of the flexible views concept and the supporting
ModelJoin language. Flexible views offer a compact definition of views at
the metamodel and at the instance level, together with information about the
editability of elements in the views.

The modular nature of the SUM and the decoupling of view definitions
and the underlying model is also beneficial for the evolution of the modular
SUM metamodel and the view type definitions, since the impact of changes
can be describe in a fine-granular way for sub-metamodels, correpondences,
transformations, and existing instances. One contribution of this dissertation
is a change metamodel for the description of changes at the metamodel level
as well as at the instance level. Based on this metamodel, we have developed
a change impact analysis method for changes to Ecore-based metamodels.
The method is agnostic of the way in which the change is applied to the
metamodel, since it uses a state-based differencing approach to determine
deltas between two metamodels, which serve as the basis for a rule-based
analysis of change severity.

The view-based VITRUVIUS approach and the flexible view type concept
have been validated using a two-step approach: The completeness of the
flexible view definition method is demonstrated by showing that the elements
of the Ecore metamodel are covered, as well as all possible change operations
that can be applied to these elements. The concept of flexible views has been
realised in the ModelJoin language, for which a prototypical implementation
based on EMF, Xtext and QVT-O has been created. In the second step, the
VITRUVIUS approach as a whole was validated using case studies in the field

iii

Abstract

of model-driven software development, which combine several established
standards in the field of component-based development, such as the Palladio
Component Model, UML, and the Java programming language, as well as in
the field of automotive and embedded software, using the standards SysML,
EAST-ADL, and MATLAB/Simulink.

iv

Kurzfassung

Moderne Software-Systeme weisen eine hohe Komplexität und eine umfang-
reiche Größe auf. Daher werden in der Entwicklung solcher Systeme mehre-
re Sprachen und Modelle verwendet, um unterschiedliche Gesichtspunkte
und Abstraktionsebenen der Systeme zu beschreiben. Diese Sprachen und
Formalismen unterscheiden sich je nach der Domäne des zu entwickelnden
Systems, dem jeweiligen Entwicklungsparadigma, sowie den eingesetzten
Entwicklungswerkzeugen. Zum Beispiel werden in komponentenbasierten
Entwicklungsprozessen Komponentenmodelle zur Beschreibung der Soft-
ware-Architektur verwendet, Klassendiagramme für den objektorientiertem
Entwurf, Performance- und Zuverlässigkeitsmodelle für nichtfunktionale
Eigenschaften, und schließlich Programmcode für die Beschreibung der
Ausführungssemantik der Software. Obwohl all diesen Artefakten unter-
schiedliche Konzepte und Formalismen zugrunde liegen, beschreiben sie
dasselbe System aus unterschiedlichen Blickwinkeln, und können daher als
Sichten auf das Software-System verstanden werden. Die Gesamtheit dieser
Sichten stellt dabei die vollständige Definition des Systems dar. Während die
Aufteilung in unterschiedliche Sichten eine Arbeitsteilung durch verschie-
dene Entwicklerrollen erlaubt und diesen Entwicklerrollen spezialisierte
Sprachen und Modelle für den jeweiligen Entwicklungsschritt bietet, kommt
es durch diese Aufteilung jedoch auch zur Fragmentierung der Information
über das System in mehrere Entwicklungsartefakte, die in verschiedenen For-
maten, Konzepten und Sprachen verfasst sind. Bei steigender Komplexität
des Systems erschwert dies die Navigation durch die Entwicklungsartefakte
für die Entwickler und andere Rollen im Entwicklungsprozess. Da die unter-
schiedlichen Konzepte und Formalismen unabhängig voneinander verwaltet

v

Kurzfassung

werden, ist es möglich, dass sie semantische Überlappungen aufweisen. Ei-
genschaften des zu entwickelnden Systems können somit auf mehrere Arten
und in verschiedenen Kontexten ausgedrückt werden. Während ein Kompo-
nentenmodell beispielsweise dazu verwendet werden kann, eine präskriptive
Architektur für ein System zu definieren, wird auch durch die Implementie-
rung in Programmcode eine implizite Architektur des Systems definiert. Die
unabhängige Weiterentwicklung dieser Artefakte kann zu Inkonsistenzen
führen, die nicht automatisch erkannt werden, wenn die semantischen Be-
ziehungen zwischen unterschiedlichen Artefakten nicht explizit modelliert
sind.

In sichtenbasierten Software-Entwicklungsprozessen wird dieses Pro-
blem auf zwei grundlegende Arten angegangen: Bei synthetischen Ansätzen

werden die Informationen aus heterogenen Modellen integriert, um eine
vollständige Definition des Systems zu erstellen. Bei projektiven Ansätzen

hingegen wird ein gemeinsamer Formalismus eingeführt, der alle Blick-
winkel auf das System abdeckt, und von dem aus Sichten auf das zentrale
Modell erstellt werden können. Bei rein synthetischen Ansätzen ergibt sich
das Problem, dass die Anzahl der Konsistenzbeziehungen quadratisch mit
der Anzahl der Sichten wächst und mit einer steigenden Anzahl von Forma-
lismen somit sehr groß werden kann. Bei projektiven Ansätzen hingegen
muss jeweils ein gemeinsamer Formalismus gefunden werden, der alle
Schritte des Entwicklungsprozesses abbildet und dennoch die Kompatibilität
zu bestehenden Formalismen wahrt.

Der VITRUVIUS-Ansatz zur sichtbasierten Software-Entwicklung basiert
auf modellgetriebenen Techniken und kombiniert die jeweiligen Vorteile
des projektiven und synthetischen Ansatzes, während die Nachteile der bei-
den Ansätze vermieden werden sollen. Der Ansatz baut dabei auf der Idee
des Orthographic Software Modelling (OSM) auf, dass alle Gesichtspunk-
te eines Software-Systems in einem einzelnen Modell (Single Underlying
Model, SUM) ausgedrückt werden, auf das ausschließlich durch benutzer-
spezifische, automatisch generierte Sichten zugegriffen wird. Da bisherige

vi

Kurzfassung

Implementierungen des OSM-Ansatzes nicht beschreiben, wie ein solches
allumfassendes Modell für Software erstellt werden kann, wird im Rahmen
des VITRUVIUS-Ansatzes ein Verfahren entwickelt, mit dem das SUM-
Metamodell als modulare Kombination bestehender Metamodelle erzeugt
wird, dessen Instanzen automatisch synchronisiert werden. Ein Beitrag
dieser Dissertation ist ein Konzept für die sichtbasierte Entwicklung mit
VITRUVIUS. Dazu werden die Grundlagen des Konzeptes definiert und ein
Entwicklungsprozess für die systematische Konstruktion eines modulare
SUM-Metamodells für spezifische Entwicklungsszenarien vorgestellt.

Die Sichten auf das SUM-Metamodell werden durch Sichttypen beschrie-
ben und werden für das Extrahieren und Modifizeren von Informationen
in einem SUM verwendet. Die Sichttypen kapseln die modulare Struktur
des SUM-Metamodells und bieten eine einheitliche Zugriffsmethode auf
das SUM, die es ermöglicht, die innere Struktur des SUM-Metamodells zu
ändern, ohne die Zugriffsmethode verändern zu müssen. Der Fokus dieser
Dissertation liegt auf einer Methode zur deklarativen Beschreibung dieser
Sichttypen, welche den Hauptbeitrag der Arbeit bildet. In dieser Arbeit wird
das Konzept der flexiblen Sichttypen (flexible view types) vorgestellt, das in
der textuellen Beschreibungssprache ModelJoin realisiert wurde. Flexible
Sichttypen bieten eine kompakte Definitionsmethode für die Eigenschaften
von Sichten auf Metamodell-Ebene und Instanz-Ebene, sowie Informationen
über die Editierbarkeit der Elemente in den Sichten. Die Herausforderungen
bestehen dabei darin, die benutzerspezifischen Informationsbedürfnisse so
zu erfassen, dass von der Komplexität der zugrundeliegenden Modell-zu-
Modell-Transformationen abstrahiert wird.

Aus dem modularen Aufbau des SUMs und der Entkopplung der Sicht-
Definitionen von dem zugrundeliegenden Modell ergeben sich Vorteile für
die Evolution des modularen SUM-Metamodells und der Sichttyp-Defi-
nitionen, da die Auswirkungen von Änderungen auf feingranulare Weise
für die einzelnen Elemente (Teil-Metamodelle, Korrespondenzbeziehun-
gen, Transformationen, bestehende Instanzen) beschrieben werden können.

vii

Kurzfassung

Die automatische Genierung von Metamodellen, Transformationen und In-
stanzen vermeidet Inkonsistenzen zwischen diesen Artefakten im Fall von
Änderungen. Ein weiterer Beitrag dieser Dissertation ist ein Änderungs-
Metamodell für die Beschreibung von Änderungen sowohl auf Metamodell-
Ebene als auch auf Instanzebene. Basierend auf diesem Metamodell wurde
eine Methode zur Änderungs-Auswirkungs-Analyse (change impact analy-
sis) für Ecore-basierte Metamodelle entwickelt. Diese Analysemethode ist
unabhängig von der Weise, in der diese Metamodelle verändert werden, da
sie auf einer zustandsbasierten Differenzberechnung zwischen zwei Meta-
modellversionen basiert, die als Grundlage für eine regelbasierte Analyse
des Schweregrads der Änderung dient.

Der sichtenbasierte VITRUVIUS-Ansatz und das Konzept der flexiblen
Sichttypen wird durch einen zweistufigen Ansatz validiert. Die Vollständig-
keit des Konzepts der flexiblen Sichttypen wird durch eine Abdeckungsana-
lyse für die Elemente des Ecore-Metamodells gezeigt, bei der alle möglichen
Änderungsoperationen, die auf Ecore-Elementen ausgeführt werden können,
berücksichtigt werden. Weiterhin existiert eine protoypische Implementie-
rung des Konzepts und der ModelJoin-Beschreibungssprache, die mit den
modellgetriebenen Technologien EMF, Xtext und QVT-O umgesetzt wurde.
Im zweiten Schritt wird der VITRUVIUS-Ansatz als ganzes durch Fallbei-
spiele validiert, die verschiedene modellgetriebene Software-Entwicklungs-
szenarien und etablierte Standards abdecken. Hierbei wird ein Szenario aus
der komponentenbasierten Entwicklung gewählt, das das Palladio-Kompo-
nentenmodell, UML und die Programmiersprache Java verwendet, sowie ein
Szenario aus der Entwicklung eingebetteter Systeme im Automobilbereich,
in dem die Standards SysML, EAST-ADL und MATLAB/Simulink zum
Einsatz kommen.

viii

Contents

Abstract . i

Kurzfassung . v

1. Introduction . 1
1.1. Motivation . 1
1.2. Problem Statement . 2

1.2.1. Situation . 2
1.2.2. Motivating Example 3
1.2.3. Problem Areas . 5

1.3. Approach . 8
1.4. Envisioned Benefits . 9
1.5. Contributions . 10
1.6. Structure of the Thesis . 12

2. Foundations and State-of-the-art 13
2.1. View-based Software Development 13

2.1.1. Concept . 13
2.1.2. Challenges of View-Based Approaches 16

2.2. Model-Driven Development 19
2.2.1. Concept . 19
2.2.2. Model-Driven Architecture 21

2.3. Eclipse Modeling Framework (EMF) 24
2.3.1. The Ecore Metamodel 25
2.3.2. Set Notation of Ecore Metamodels 26

ix

Contents

2.3.3. Textual Domain-Specific Languages 29
2.4. Orthographic Software Modeling 30
2.5. Notational Conventions 32

2.5.1. UML Activity Diagrams 32
2.5.2. Fundamental Modeling Concepts 34

3. Related Work . 35
3.1. View-based Approaches 35
3.2. Multi-Paradigm Modelling 36

3.2.1. Simulation Approaches 37
3.2.2. Approaches for Model-based Data Exchange 38

3.3. Model-driven Engineering 39
3.3.1. Architectural Frameworks 39
3.3.2. Round-trip Engineering 41
3.3.3. Collaboration . 41

3.4. Evolution of Models and Metamodels 43
3.4.1. Editability of Ecore-based Metamodels and Models 43
3.4.2. Changes at the Metamodel Level 44
3.4.3. Changes at the Model Level 46

3.5. Bidirectional Transformations 47
3.5.1. BX . 47
3.5.2. Lenses . 49
3.5.3. Triple Graph Grammars 50

3.6. Aspect-Oriented Software Development 51
3.7. Databases . 53

3.7.1. View Update Problem 53
3.7.2. Schema Integration 55

3.8. Ontologies and Semantic Web 56
3.8.1. Ontology Modularization 57
3.8.2. Queries and Views on Ontologies 58
3.8.3. Ontology Evolution 59

x

Contents

4. An Approach for View-Based Engineering using VITRUVIUS 61
4.1. The VITRUVIUS Approach 61

4.1.1. Design Rationale 62
4.1.2. Proposed Benefits of the Modular SUM Metamodel 63
4.1.3. Assumptions . 64

4.2. A Modular Way of Defining Single Underlying Models . . 65
4.2.1. Definition . 65
4.2.2. Structure of the Modular SUM Metamodel 68
4.2.3. Modelling of Intrinsic and Extrinsic Information . . 74

4.3. View Types and Views in VITRUVIUS 81
4.3.1. Definition . 81
4.3.2. Scope of View Types 88
4.3.3. Projectional and Combining View Types 91
4.3.4. Editability of Views Types and Synchronisation with

the SUM metamodel 92
4.4. Development Process . 97

4.4.1. Process Model . 99
4.4.2. View Type Categories by Developer Role 101
4.4.3. Collaboration . 103
4.4.4. Access Control . 105

4.5. Evolution of the SUM Metamodel 107
4.5.1. Adding Additional View Points 108
4.5.2. Converting Custom View Types to Pre-defined View

Types . 109
4.5.3. Refactoring of the SUM Metamodel 109

4.6. Example . 110

5. Metamodel and Model Evolution 117
5.1. Motivation . 117
5.2. A Change Metamodel for Metamodel and Model Changes . 119

5.2.1. Requirements . 119

xi

Contents

5.2.2. Structure of the Metamodel 121
5.2.3. Specification of Metamodel-Specific Submodels . . 124
5.2.4. Change Sequences as Delta-Based Representation of

Model Changes 128
5.2.5. Delta-based vs. State-Based Change Description . . 131
5.2.6. Example . 135

5.3. A Change Impact Classification for Metamodel Evolution
and Reuse . 140
5.3.1. Severities of Changes to Ecore-based Metamodels . 140
5.3.2. Severity of Change Sequences 143
5.3.3. State-based Analysis of Change Impact 146

6. Flexible View Type Definitions 151
6.1. Concept . 151

6.1.1. Motivation . 151
6.1.2. Flexible View Types for the Rapid Creation of Views 154
6.1.3. Editability in Flexible View Types 157
6.1.4. Discussion . 168

6.2. Definition of Flexible Views at Run-Time Using ModelJoin 171
6.2.1. Concept . 171
6.2.2. Abstract Syntax 177
6.2.3. Implementation 198
6.2.4. Re-Use of Target Metamodels 206
6.2.5. Assumptions/Limitations 209

6.3. Flexible View Types in VITRUVIUS 211
6.3.1. Applicability . 211
6.3.2. ModelJoin as a View Specification Language in

VITRUVIUS . 216
6.3.3. Synchronisation 218

xii

Contents

7. Evaluation . 225
7.1. Expressivity of ModelJoin 225

7.1.1. Projectional Expressivity 226
7.1.2. Selectional Expressivity 230

7.2. Applicability of the Flexible View Concept in the
VITRUVIUS Approach . 231
7.2.1. GQM Plan . 231
7.2.2. Case Study: Component-based Software Development234
7.2.3. Case Study: Automotive Systems Engineering . . . 249

7.3. Discussion . 259

8. Future Work . 263
8.1. VITRUVIUS . 263

8.1.1. Coupling of View Type Definitions with SUM
Metamodel Correspondences 263

8.1.2. Mapping to Textual General Purpose Programming
Languages . 264

8.1.3. Versioning . 265
8.1.4. Metamodel Evolution in the Modular SUM Metamodel266
8.1.5. VITRUVIUS for Non-Software Engineering Models 267

8.2. Flexible View Types . 268
8.2.1. Editability . 268
8.2.2. Metamodel Conformance Checking 270
8.2.3. Performance Properties of the ModelJoin

Algorithms and Implementation 272

9. Conclusion . 275

A. ModelJoin Language Definition 279

B. Change Classification for Metamodel Evolution 285

xiii

Contents

C. Example Metamodels . 289
C.1. PCM Metamodel . 289
C.2. IMDB/Library example 290

D. ModelJoin Experiment Task Sheet 293
D.1. Preparations . 293
D.2. Task . 293

D.2.1. Create a new Metamodel 294
D.2.2. Create the Transformation 294
D.2.3. Results . 294

Bibliography . 294

xiv

List of Figures

1.1. Views in the Component-based Software Engineering
Example Scenario . 4

2.1. Terminology for view, view type and view point (from [57]) 15
2.2. Example: PCM Component with Excerpts from the PCM

Metamodel and Ecore, Annotated With Multi-Level
Modelling Potencies . 24

2.3. Main Components of the Ecore Metamodel 25
2.4. Hub-and-Spoke vs. Peer-to-Peer 30
2.5. SysML Activity Diagram Syntax 33
2.6. Fundamental Modeling Concept: Elements in the

Compositional Structure Diagram 34

3.1. Multiple Formalisms in the Palladio Approach 40

4.1. Structure of the Modular SUM Metamodel in the CBSE
Example Use Case . 69

4.2. The MOF Modelling Layers in VITRUVIUS 73
4.3. Example for Mapping in an Additional Metamodel 76
4.4. Example for Mapping with Profiles and Stereotypes . . . 78
4.5. View and View Type Terminology 82
4.6. Sets of Elements in VITRUVIUS 84
4.7. The is-represented-by Relation rep 85
4.8. Editing Workflow in Views 95
4.9. Roles in the VITRUVIUS Development Process 98

xv

List of Figures

4.10. Process for the Creation of the Modular SUM Metamodel 99
4.11. Use Cases for Developer Roles in VITRUVIUS 102
4.12. Distributed Component-Based Modelling with Component

Façades . 107
4.13. Example: View-centric Component-based Development

Process . 111

5.1. Metamodel-Independent Change Metamodel 122
5.2. Example for Metamodel-Specific Change Metamodels

(CM) that inherit from the Core Metamodel: Ecore-CM
and PCM-CM . 127

5.3. Applying a Change Model 130
5.4. Structure of the Ecore-Specific Change Metamodel 135
5.5. Example for a Metamodel Change: Pull Up Feature 138
5.6. Example for a Change in an Instance of the Palladio

Component Model . 141
5.7. State-based Impact Analysis Process 149

6.1. Abstract Concept of Flexible Views Showing Merged
Instances of Different Metamodels 155

6.2. Class-Component Implementation View Type with
Metamodel-level Editability Scopes 160

6.3. Component Diagram View with Instance-level Editability
Scopes . 163

6.4. State-based and Delta-based Synchronisation of Base
Models and View Types 165

6.5. Target Metamodel for the ModelJoin Query in Listing 3 . 175
6.6. ModelJoin Target and Source Models 178
6.7. ModelJoin Query Execution Workflow (in FMC notation,

from [29]) . 200
6.8. Steps of ModelJoin Query Execution 201
6.9. The QVT Template for a Theta Join (from [29]) 204

xvi

List of Figures

6.10. Re-Use of Target Metamodels in ModelJoin 208
6.11. Example for Joining over References 210
6.12. View Type Categories 212
6.13. The PUTGET Property of a View is Affected By The

VITRUVIUS Synchronisation Mechanism 222

7.1. Metamodel of the Sensor Framework (Excerpt Showing
the Top-level Classes) 237

7.2. Generated Target Metamodel for the Component Speed
Example . 243

7.3. Mapping between the Metamodels of Simulink, SysML,
and EAST-ADL (showing relevant excerpts of the
metamodels) . 255

C.1. Strongly Simplified Extract of the Palladio Component
Metamodel (from [29]) 289

C.2. IMDB Metamodel . 290
C.3. Library Metamodel . 291

D.1. The Sensor Model Metamodel 295

xvii

List of Tables

2.1. Sets and Functions in the Set Notation of Ecore 28

4.1. Notation for SUM Metamodels and SUMs 83
4.2. View Type Categories in the CBSE example of Figure 4.1 . 92

5.1. Comparison of Methods to Determine a Change Sequence
Between Two Metamodels 132

5.2. Mapping of EMF Compare Diff Elements to the Change
Metamodel . 134

5.3. Atomic Change Classes in the Ecore-specific Change
Metamodel (without Generics) 136

5.4. Change Severities . 143

6.1. Analogy between Relational Concepts and MDD Concepts
(from [28]) . 172

6.2. Textual Syntax of ModelJoin statements 199

7.1. Structural Primitives for Metamodel Generation Covered by
ModelJoin Operators (adapted from [29]) 228

7.2. Metrics for the Empirical Study of the Component Speed
Example (from [30]) . 245

7.3. Statistical Evaluation of the Empirical Results (from [30]) . 247
7.4. Mapping of Concepts from SysML, Simulink, and EAST-ADL254

xix

Listings

1. Example for Declarative Mapping of Components and
Classes (from [95]) . 79

2. Drools Rule for Deletion of an Attribute/Reference (from [30])150

3. Movie Database ModelJoin Example 174
4. ModelJoin Natural Join Example 183
5. ModelJoin Outer Join Example 184
6. ModelJoin Theta Join Example 186
7. ModelJoin Keep Attributes Example 188
8. ModelJoin Aggregation Example 191
9. ModelJoin Aggregation Example 192
10. ModelJoin Keep Reference Example 194
11. ModelJoin Keep Supertype Example 196
12. ModelJoin Keep Subtype Example 196
13. ModelJoin Query for the Movie Database Example 206

14. Response Time ModelJoin Example 242
15. Grey-Box Control Flow View Type for EAST-ADL and

Simulink . 257

16. Definition of the Concrete Syntax of ModelJoin as an Xtext
Grammar . 279

xxi

1. Introduction

1.1. Motivation

Most of today’s software delopment processes make use of models and
model-based technologies to cope with the complexity of larger systems
by expressing features of the system at a higher level of abstraction. With
the extensive use of models in complex systems, these models can them-
selves grow large and become too complex to be understood by a single
developer. Furthermore, with the use of several metamodels, information
is spread across instances of metamodels, which are often heterogeneous.
Thus, inconsistencies can occur, which lead to drift and erosion between the
models and the implementation of the system. To lower the complexity for
the developer, partial views on the system restrict the amount of information
that is presented to the developer and structure the displaying and manipu-
lation of information. Pre-defined views are however often limited to the
information contained in one specific metamodel, and cannot be defined by
the developers themselves.

In this dissertation thesis, model-driven development techniques are used
to define a view-based modelling approach based on the Orthographic Soft-
ware Modeling concept by Atkinson et al. [7]. Dynamically created, so
called flexible views are introduced to help the software developer focus
on the parts of the system that are relevant for his or her current role, and
offer an abstraction for the rest of the system. They can be defined by the
lightweight domain-specific language (DSL) ModelJoin, and are part of a
novel construction method for the single underlying model (SUM), which is
a central prerequisite for any OSM-based approach.

1

1. Introduction

The goal of the approach is to improve software quality by giving de-
velopers permanent access to consistent, up-to-date and complete informa-
tion about the system under development, which is tailored to the information
needs of different developer roles (e.g., domain experts, system architects,
or software developers). Flexible views are customised to the needs of a
single developer and can be defined by the developers themselves. They
reduce the complexity by displaying only the type of information that is
relevant at the time of modelling, and enable collaborative editing of model
artefacts. Flexible views may also be used to hide information and thus to
implement access control to parts of a software system.

1.2. Problem Statement

In this section, we will identify the problem areas and challenges in view-
based software engineering and will motivate them with an example from
component-based software engineering (CBSE).

1.2.1. Situation

In any large software development process, several formalisms, such as
programming languages, domain-specific languages and metamodels, are
used in the development process to describe the system under development
from a specific view point or at an aedequate level of abstraction. Represent-
ing information about the software system in domain-specific models and
languages has multiple purposes:

• The information is formalised in a machine-readable way, which
makes it possible to define and check for constraints, and to re-use the
information through model transformations.

• Appropriate levels of abstraction increase the understandibility of the
models for developers.

2

1.2. Problem Statement

• Language- or metamodel-specific tools offer a convenient way of
modelling the software system.

Depending on the development process, some of the artefacts that are
created with a specific modelling or programming language have a higher
importance than others. In classical software development processes, soft-
ware models such as component models or UML class diagrams are often
seen as only an intermediate step for the creation of the implemention of
the system in a general-purpose programming language. Model-driven de-

velopment processes, on the contrary, put models at the centre of attention
by making them the primary artefacts of software development [137], and
giving them the same importance as executable program code, which is
partially generated from model-based artefacts. Since there is, however,
not one formalism that can offer the right abstraction level for all phases of
a software development process, multiple metamodels and languages are
usually applied.

1.2.2. Motivating Example

In Figure 1.1, the usage of multiple formalisms in software development is
shown at the example of a component-based software engineering (CBSE)
process. The architecture of the system is modelled using the Palladio
Component Model (PCM) [13] as an architectural description language
(ADL). PCM also supports the modelling of performance properties, which
are the basis of simulations and analyses. The results of these methods are
persisted in the format of the Palladio sensor framework. The object-oriented

design of the system is modelled using UML class diagrams [125]. The class
structure of the system refines the architecture: Several classes implement a
component, including the composite structure and the interface definitions.
The runtime semantics of the system are represented in object-oriented Java
code, which refines the object-oriented design of the class diagrams.

3

1. Introduction

component model

C1

C2 C3

class diagram

public class C2 extends C1 {

public static void main (String[] args) {

System.out.println ("Hello World!");

}

}

source code

«implements»

«refines»

Pr
ob

ab
ili

ty

Time

simulation results

«describes
performance»

comp1comp2

Figure 1.1.: Views in the Component-based Software Engineering Example Scenario

4

1.2. Problem Statement

These artefacts represent the system under development from different
view points, and are used to describe the same software system, but are
developed technically independent of each other. Furthermore, the formal-
isms do not represent four completely disjoint view points of the system.
The four standards that are part of the running example in Figure 1.1 share
overlaps and redundancies, as well as implicit correspondences between
the elements of the different views: The interfaces and method signatures
of UML classes that implement PCM components have to be compatible
to the interface definitions of this component. The same is true for the
relation of Java classes to UML classes, and, as a transitive consequence,
the Java implementation has to be compatible with the interface defini-
tions of the components. Further relations between the architecture and the
object-oriented structure of the system exist.

1.2.3. Problem Areas

We have identified the following primary problems, which arise from the
usage of heterogeneous models in software development. We will illustrate
each of these with the CBSE scenario.

• Fragmentation: Different aspects of one entity of the software sys-
tem are spread over several instances of heterogeneous metamodels.
Tracing the model elements that represent the same entity or parts
thereof is difficult if elements are edited independently, since the map-
ping between elements is often not explicitely modelled, but rather
depends on common identifiers, or other naming conventions, which
are more ambiguous than identifiers. In the example of Figure 1.1, the
simulation results refer to the software architecture in the component
model, but are stored in an independent metamodel. In this case, the
design decision to separate the models has been taken deliberately
to keep the component metamodel free of performance-specific ele-
ments. Here, the overlap is minimal since simulation results of the

5

1. Introduction

sensor framework refer to assembly contexts in instances of the PCM
through textual identifiers.

• Redundancy: The same piece of information is represented in mul-
tiple artefacts of heterogeneous formalisms. Although redundancy
may be a desired property in some development scenarios, it is one
of the reasons for inconsistencies in a system description. In the
example, there is high redundancy between the class diagram and the
object-oriented source code, since the object-oriented design, such
as the class inheritance structure, element naming, and features, is
expressed in both UML and Java. Further redundancies exist between
the component model and code: the (normative) architecture of the
system is defined in the component model. The implementation in
Java, however, also defines an (implicit) software architecture. In both
cases, the semantic overlap is high.

• Inconsistency: Inconsistencies between the artefacts can arise if they
are modified independently and not synchronised manually. They
occur since the artefacts share a semantic relation or overlap that is
not formally defined, and for which consistency constraints are not
available, so they cannot be checked automatically. In the example
of Figure 1.1, inconsistencies lead to drift and erosion between the
software architecture, the object-oriented design, and the implementa-
tion. Inconsistency can occur in two ways: First, if there is redundant
information in the models, modifications have to be applied to all
elements that represent the entity under modification. If only a sub-
set of the models is modified, inconsistencies occur. For example,
modifications to the Java code can violate the prescriptive architec-
ture of the component model, if a class calls a method in another
class, although this is not expressed by an interface definition in the
component model. Second, if there are semantic relations between
the elements that are not formalised and checked automatically, in-

6

1.2. Problem Statement

consistencies can occur if this relation is violated. For example, the
simulation results in the example refer to a component by a common
identifier. If the component is deleted, the simulation results become
obsolete since there is no element with a matching identifier.

• Complexity: In large systems, the models of the software can grow
so big that single developers cannot understand them in their entirety,
and navigating the models becomes a time-consuming and frustrating
task [52]. To satisfy the information need of developers, only parts of
these models are of relevance, so there should be a means of selecting
and displaying only these elements.

In addition to the main problem areas that we have just stated, we have
also identified secondary problems, which apply to software engineering in
general. These problems are not in the main focus of our research, but are
affected by the view-based engineering approach.

• Collaboration Since most software projects are not developed by a
single group of persons, they have to be partitioned so that different
groups of developers can work on parts of the project. This applies
especially to physically distributed projects, but also to projects that
are developed at the same site but by several teams. The partitioning
of software is however often quite inflexible and has to be adapted
frequently if there are changes in the organizational structure of the
development project or if new functional requirements are added.
It would thus be desirable if developers (or any other role in the
development process) could work on parts of the system that are
relevant to his current interests without being limited by the borders
of the modelling formalisms or programming language used. Of
course, this should also be possible if several individuals are working
on the system simultaneously. The latter is well supported in the
implementation phases of the software development process, but not

7

1. Introduction

during architecture and OO-design of the system. Furthermore, the
use of heterogeneous models in the different development phases
induces problems of traceability and evolution; it is hard to identify
what effect changes to code or OO-design will have on the software
architecture.

• Access control could also be a reason for restricted views, e.g. in
an outsourcing scenario where a certain group of developers should
only be allowed to see the part of the system that is relevant to them,
whereas other parts should be hidden in order to protect intellectual
property, as is practised with databases, where views are also used for
access control. Nevertheless, even developer groups of outsourcing
partners should be included in all stages of development, which means
that they should also be able to contribute to a system’s architecture
without gaining too much knowledge about the system that could be
used in harmful way.

1.3. Approach

In this thesis, we present a view-based model-driven software development
approach, which is based on the concept of Orthographic Software Modeling
(OSM) [7], and which contributes to the VITRUVIUS approach [26, 95,
104]. The VITRUVIUS approach aims to realise the concept of the Single
Underlying Model (SUM) of OSM by combining existing metamodels
into a virtual, modular metamodel with information on the synchronisation
between these parts. To our knowledge, VITRUVIUS is the first approach that
aims to describe a systematic process for the creation of a SUM metamodel.
The modular structure of the virtual SUM metamodel requires a special
method for the definition of the view types, which serve as the exclusive
interfaces by which the contents of a SUM can be accessed and modified.

8

1.4. Envisioned Benefits

1.4. Envisioned Benefits

Software Quality The goal of our approach is to improve software quality
by giving developers access to consistent, up-to-date and complete informa-
tion about the system under development, tailored to the information needs
of different developer roles, e.g., domain experts, system architects, or soft-
ware developers. Flexible views are customised to the needs of a single
developer, and can be defined by the developers themselves. They reduce
the complexity by displaying only the type of information that is relevant at
the time of modelling.

Access Control A separation of views can be used to create a fine-
grained access control mechanism for models without having to change
or re-structure the model itself. For each role in the access control mechan-
ism, a rule set should be defined that controls the set of elements that are
displayed in the views that are adjacent to the respective role. Elements
can also be subsumed into new elements at a higher level of abstraction or
granularity.

Collaborative MDSD If flexible views are integrated into a collaboration
workflow, the abstraction levels and access control methods can be used to
enable distributed editing of parts of the model. The development process
can contain a role that is analogous to that of the methodologist in the OSM
approach, which is responsible for the definition of restricted, editable views.

The frequency of view updates can be adapted for different scenarios. In
a completely real-time online scenario, changes to the underlying model are
propagated to all views immediately, which is useful if the editors involved in
the process are in contact via other means of communication, e.g. telephone.
At the other extreme of possible update frequency, a classical check-in/check-
out mechanism can be installed; mixtures of these two paradigms could also
be implemented.

9

1. Introduction

Metamodel Federation Flexible views support the displaying and editing
of objects from heterogeneous metamodels. This would normally require
the definition of a seperate “glue” metamodel that references elements from
the original metamodels. With the rule set of a flexible view, displaying
objects from heterogeneous models is possible in an easier way.

Usability of Modeling Tools If only certain parts or aspects of a model
have to be edited, the complexity of a large model can be confusing to an
editing person who only wants to see certains aspects of the model. With
flexible views, the complexity of such a model could be abstracted in view
types that are more intuitive to the editing developer.

Metamodel and view evolution Since views are treated as first-class
entities in the proposed approach, they can evolve on their own and have to
be maintained. While this introduces a higher maintenance effort at first,
it has the advantage that the view type and the underlying metamodels can
evolve independently. A change to the metamodel does not necessarily cause
a change in the view type. Thus, developers and user can continue with the
same formalisms and use the same tools, reducing maintenance effort since
the tools do not have to be adapted. On the other hand, the effort of evolving
the bi-directional transformations between views and the underlying model
can also be high and should not be underestimated.

1.5. Contributions

We will list the contribution of this dissertation thesis here. The contributions
of this thesis can be arranged in three groups:

Systematic Process for VITRUVIUS: The view-centric VITRUVIUS ap-
proach is currently developed by several researchers in the Software Design
and Quality group at KIT. The goal of VITRUVIUS is to deliver a systematic

10

1.5. Contributions

construction process for a metamodel for Single Underlying Metamodels
(SUM) of the Orthographic Software Modeling method. The contribution of
this thesis to the VITRUVIUS approach is a formal specification of the core
concepts in VITRUVIUS, such as the single underlying model and its meta-
model, correspondences between sub-metamodels, and the relation between
view types and the modular metamodel. Furthermore, a development process
for VITRUVIUS has been developed, which describes the transition of soft-
ware development with independent formalisms to the VITRUVIUS-based
process.

Metamodel and Model Evolution For the description of changes to
metamodels and models, this thesis contains an change metamodel that
can be used for a unified representation of changes both at the metamo-
del level and the model level. Furthermore, a change impact analysis for
changes to Ecore-based metamodels, based on the change metamodel and a
state-based analysis of different metamodel versions, is presented.

Flexible View Types The definition of view types on a modular SUM
metamodel poses special requirements on the description formalism. The
flexible view types concept, which is presented in this thesis, offers a com-
pact definition of the types of elements that can occur in a view, the selection
of elements in an actual view, as well as information on how these ele-
ments can be modified, and how modifications are propagated back to the
model. Besides the abstract definition of the concept, the ModelJoin lan-
guage is presented, which offers a declarative description mechanism for
flexible views. The formal definition of the semantics of this language is a
contribution of this thesis.

11

1. Introduction

1.6. Structure of the Thesis

This dissertation is strucured as follows: In chapter 2, we will present the
technologies and concepts on which the approach is built, most importantly
the Orthographic Software Modeling approach by Atkinson et al. Related
work is described in chapter 3.

The first major contribution of this dissertation will be the definition of a
construction process for the single underlying model (SUM) as part of the
VITRUVIUS approach. We will describe our concept of a modular SUM in
chapter 4.

The evolution of metamodels and models in VITRUVIUS will be discussed
in chapter 5.

The second contribution is the concept of flexible views, which will be
presented in chapter 6. For the realisation of this concept, the ModelJoin

language has been developed and has been implemented prototypically. We
will describe the design of the language and its realisation.

We will discuss scenarios for the validation of our approach in chapter 7.
The thesis closes with a look at future work and the next steps in chapter 8,
and the conclusion in chapter 9.

12

2. Foundations and State-of-the-art

In this chapter, we will present the conceptual and technical foundations
on which this thesis is based. First, we will give an overview of view-
based software development approaches and standards in section 2.1. In
section 2.2, we will introduce the model-driven development paradigm and
the OMG standards that are part of the Model-Driven Architecture (MDA),
followed by a description of the Eclipse Modeling Framework and the Ecore
metamodel in section 2.3. The Orthographic Software Modeling approach is
presented in section 2.4. A short explanation of the notational conventions
in this thesis (section 2.5) concludes this chapter.

2.1. View-based Software Development

2.1.1. Concept

The concept of view-based software development goes back even before the
era of object-oriented languages. It can be traced back until 1985, when
Wood-Harper [157] presented the multiview approach. The term ViewPoint

was coined by Finkelstein et al. in the early 1990s to describe the structuring
of software in certain methods, languages, formalisms and work plans:

[A ViewPoint] is a loosely coupled, locally managed object
which encapsulates partial knowledge about the system and
domain, specified in a particular, suitable representation scheme,
and partial knowledge of the process of design. [49, sect. 3]

Recently, the terms view and view point have been specified for software
architecture engineering. The IEEE 1471/ISO 42010 standard [76, 77],

13

2. Foundations and State-of-the-art

which was finalised in 2011, contains a definition for the terms architecture

view and architecture viewpoint. The term architecture view is defined as a
“work product expressing the architecture of a system from the perspective of
specific system concerns”, and architecture viewpoint is defined as a “work
product establishing the conventions for the construction, interpretation and
use of architecture views to frame specific system concerns” [77]. These
conventions may include “languages, notations, model kinds, design rules,
and/or modelling methods, analysis techniques and other operations on
views”. In addition to these terms, the term model kind is introduced as
“conventions for a type of modelling”.

The usage of the term metamodel in the ISO 42010 standard deviates from
the understanding of the term in model-driven development, for example
as defined by the OMG [117]. Hilliard [74] has debated the usage of this
term in the ISO standard. He has concluded that the ISO standard contains a
conceptual model for architecture, which is expressed as a metamodel, but
that existing architectural frameworks share a different notion, even although
claming conformance to ISO 42010.

The ISO standard also differentiates between synthetic and projective

view-based approaches:

In the synthetic approach, an architect constructs views of
the system-of-interest and integrates these views within an ar-
chitecture description using model correspondences. In the
projective approach, an architect derives each view through
some routine, possibly mechanical, procedure of extraction
from an underlying repository. [77, sect. A.4]

The IEEE 1471/ISO 42010 standard [76, 77] gives only a broad definition
of the terms view and viewpoint. Most importantly, no distinction is made
between the metamodel level and the instance level of views. The standard
contains the term model kind, which can be understood as the metamodel of
a view. We will use the more precise definition of Goldschmidt et al. [58,

14

2.1. View-based Software Development

System

Model Metamodel

Stakeholder

ViewPoint Concern

View

ViewType

1

1

models

modelledBy

1

1..*

analyses

stakeholders

*

1

views

instantiates

*

1shows
Elements

represents *

1defines

definedBy

1..*

stakeholders

1

hasStakesIn

*

*

viewTypes

defines

*has

1represents

1representedIn 1concern

*

defines

*definedBy

*

* interestedIn

Figure 2.1.: Terminology for view, view type and view point (from [57])

57], which we have rephrased into Definition 1. The full terminology is
displayed in Figure 2.1.

Definition 1. A view type defines the set of metaclasses whose instances

a view can display. It comprises a definition of a concrete syntax plus a

mapping to the abstract metamodel syntax. The actual view is an instance

of a view type showing an actual set of objects and their relations using a

certain representation. A view point defines a concern.

In UML, for example, diagram types such as sequence or class diagrams
would be view types. A view is an actual diagram containing classes A, B and
C. The static architecture or dynamic aspects of a system are characterised
as view points of UML by Definition 1.

The main difference of this definition to the IEEE/ISO standard is the in-
troduction of the term view type, which can be interpreted as a metamodel for
actual views. Goldschmidt also defines different notions for completeness

15

2. Foundations and State-of-the-art

and partiality of view types and views, such as containment-completeness,
selectional completeness, and a definition for overlaps of view types [58,
sect. 4.4].

A developer will rarely use a complete view on a system because it is
often too complex and tends to be confusing. This is why today’s software
modelling tools offer possibilities to restrict a view to certain elements; the
possibilities for creating custom views are however limited to the selection
mechanisms implemented in the tools, so that often only a manual selection
of elements is possible. The idea of restricted views for developers goes
back to the 1990s [49, 98, 131]. Today’s model-driven techniques, such
as model transformations and the support for textual syntaxes, offer new
perspectives for model-driven view-based approaches.

2.1.2. Challenges of View-Based Approaches

The problem fields mentioned in subsection 1.2.3 are addressed in the field
of multi-viewpoint modelling by presenting information to developer in
specific views, which contain only the pieces of information that are of
interest to the developer in a familiar formalism. These partial views reduce
the complexity for the single developers, but raise other problems that are
rooted in the inherent complexity of the definition and generation of view
types.

The challenges of these view-based approaches do not apply to all kinds
of approaches in the same way. Thus, we differentiate the challenges here
by the type of approach (projectional, synthetic, see section 2.1). The
challenges that we have identified for view-based approaches are:

• Synchronisation: With a growing number of views, synthetic ap-
proaches suffer from the complexity of synchronising information
across the views, since the number of synchronisation relations grows
quadratically with the number of views. Although not all views have
to be synchronised with every other view, adding a view means that

16

2.1. View-based Software Development

the effects of this view are to be determined for each of the other
views, which does not scale well if a high number of views exists, and
which always requires a modification of the complete set of views if a
view is added.

• Common Metamodel: Projectional approaches avoid the problem of
synchronisation complexity at the cost of having to define a formalism
for a central model that covers all view points. Thus, the synchron-
isation relations only grow linearly with the number of views. The
metamodel for this central model, however, has to be created for
each development scenario and the combination of view types that
are required in the scenario. If a fixed metamodel is defined a priori,
the domains where the approach can be applied are limited by the
expressional powers of this metamodel. On the other hand, if a meta-
model has to be created from scratch for every scenario, the effort of
instantiating a view-based process is very high, and re-usability is low
since the metamodel can be used only for the specific scenario.

• Compatibility: Existing languages and metamodels must be suppor-
ted in a view-based development process, either because of existing
software tools and model transformations, or because compliance
to a certain standard is required by external factors, such as legal
regulations. Often, it is not possible to alter metamodels or language
definitions, so they have to be supported without modifications, or an
import/export function has to be included that offers compatibility to
the standards.

Since these challenges apply to every software development process, we
will differentiate the challenges by those which are caused by the essential

or accidental complexity of the problem, as defined by Brooks [80].

Essential Complexity If a software development process involves several
formalisms whose artefacts have to be synchronised, the relations between

17

2. Foundations and State-of-the-art

these artefaccts have to be made explicit, and the effects of changes to
one of the artefacts on the other artefacts have to be formalised. View-
based approaches cannot eliminate this kind of complexity. It is, however,
possible, to shift the complexity away from developer and support them with
a framework that offers means for synchronisation.

If a projectional approach is chosen, the definition of a common meta-
model or language that covers all the information of interest is a problem
that adds to the inherent complexity of the approaches. Finding the right
abstraction level for the common metamodel is a difficult task: If the meta-
model is to specific, the re-use in scenarios that are similar to the one for
which it was defined is hindered; if it is too general, the expressivity of the
models may be insufficient, and too much of the logic has to be put into the
transformations to view types and other metamodels.

Accidental Complexity Accidental complexity in view-based approaches
is caused by the multiple formalisms, which are the base of the view types.
Although the usage of different formalisms helps to analyse the various prop-
erties of a software system, it also aggravates the problem of recognizing
the semantic relations between the respective artefacts of the languages. Fur-
thermore, not all information is persisted in well-defined, formal languages.
Semantic relations between existing, formally defined artefacts may be or
may not be known to the developers, and are often, if at all, only defined in
natural language documents. This hinders the traceability of elements across
heterogeneous formalisms, which is a necessary precondition for automatic
support in synchronising the artefacts.

Furthermore, the definition of view types, views and the synchronisation
policies requires the development of several artefacts (such as metamodels,
transformations and tools) that have to be maintained manually, since there
are no standardised languages for the description of view types and their
synchronisation behaviour.

18

2.2. Model-Driven Development

2.2. Model-Driven Development

2.2.1. Concept

Model-driven development (MDD), also called Model-driven engineering

(MDE), is a software development paradigma that raises the abstraction
level in comparison to third-generation programming languages. The model-
driven development process puts models in the centre of attention and gives
them the status of primary development artefacts, in comparison to other
development processes, where models serve only as intermediate artefacts
for the development of program code, or for the documentation of software
systems.

Model-driven development is essentially the combination of two con-
cepts [137]: First, domain-specific languages (DSL) offer means for the
expression of domain concepts to reduce the complexity in the modelling
of systems. In contrast to general-purpose textual languages, which are
usually defined using a grammar definition, domain-specific languages are
defined using metamodels, which themselves are defined using a standard-
ised, fixed meta-metamodel. Second, transformations engines are used to
transform these models into instances of other domain-specific languages
(model-to-model-transformation), or into textual representations (model-to-
text-transformation) of other formalisms, which can again be programming
languages, or textual data formats.

A core paradigma of model-driven development is the representation of
all concepts and entities as model, often called “Everything is a model”
[16]. The precise definition of the term “model” is often neglected in the
specification of model-based or model-driven approaches. The common
model theory of Stachowiak [144, sect. 2.1.1] is an appropriate foundation of
the model notion in model-driven development. According to Stachowiak, a
model has three main properties: First, models are representations of natural
or artificial originals, which can themselves be models; second, models do
not capture all attributes of the original that they represent, but are reductions

19

2. Foundations and State-of-the-art

that only contain the attributes that are relevant to the creator or user of the
model; third, models are always tied to a certain purpose (pragmatism).1

Bézivin [16] has also identified representation as one of the core con-
cepts of model-driven engineering, which is given between a model and
the system that it represents. The second core concept is the concept of
conformance, which is the relation between a models and the metamodel.
Bézivin argues that models should not be seen as instances of metamodels,
since the semantics of conformance differ to the instantiation principle in
object-oriented languages. Atkinson et al. [6] have developed this differenti-
ation further by distinguishing the ontological classification (to which the
instantiation relation belongs) from the linguistic classfication of elements
(of which conformance is an example).

A key benefit of model-driven development is the possibility to define
domain-specific languages and generate appropriate tooling rapidly and
comparably easily. Developers can use several modelling languages in the
different phases of a software development process, like models for re-
quirements engineering, architecture and object-oriented design, specialised
models depending on the domain for which the software is being developed,
and code for the implementation and runtime behaviour of system, which
can also be seen as a model.

During the model-driven development of an actual software system, sev-
eral of these languages can be used, which may differ in the level of abstrac-
tion and the type of modelled information, but should essentially represent
the same system. Developers have to take manual steps to achieve synchron-
isation of information across these models. This is why developers usually
work in only one kind of model at a time.

1These concepts have been originally defined by Stachowiak in German as “Abbildungs-
merkmal” (representation), “Verkürzungsmerkmal” (reduction), and “Pragmatisches
Merkmal” (pragmatism). Translation by the author of this thesis.

20

2.2. Model-Driven Development

2.2.2. Model-Driven Architecture

The model-driven architecture (MDA) standard has been defined by the
Object Management Group (OMG) [112]. It describes the development of
software systems using OMG’s own standards such as UML [125], MOF
[117], QVT [116], OCL [123], and others. In the MDA standards document,
the terms view and viewpoint are used in the same way as in the ISO standard.
The MDA standard thus specifies three view points (written as “viewpoint”):
computation independent viewpoint, platform independent viewpoint, and
platform specific viewpoint with the accompanying models computation

independent model (CIM), platform independent model (PIM), and platform

specific model (PSM). The more specific models are derived from the more
abstract models by refinement, during which the step from PIM to PSM
should ideally be performed by automatic transformations.

In this subsection, we will shortly describe the standards and models of
MDA that are relevant in the further course of this thesis.

2.2.2.1. Unified Modelling Language (UML)

The Unified Modelling Language (UML) was developed in the 1990s as a
graphical description language for the development of software systems [18].
As such, it precedes the conception of model-driven software development.
Originally developed at Rational Software, it is now managed by the Object
Management Group and has been established as the ISO/IEC standard
19505.

In the current version 2.4.1 [125], the UML specification contains 14
types of diagrams, called language units. In are recent survey [100], which
investigated 121 UML models, UML class diagrams have been identified
as the most frequently used diagram type by far (used in 100% of the
investigated models), followed by use case diagrams (47%), and interaction
diagrams (39%).

21

2. Foundations and State-of-the-art

2.2.2.2. Meta-Object Facility (MOF)

The Meta-Object Facility (MOF) [117] is a language for the definition of
domain-specific languages. The MOF standard was defined by the OMG
as a most general metamodel, which is suited for the definition of arbitrary
languages. It can be seen as a generalization of UML, and today serves
as the metamodel in which the UML metamodel is described. Due to its
high genericity, the MOF metamodel is self-descriptive, and can thus be
understood as conforming to itself, in terms of ontological classification.

In the current version 2.4.1, the MOF standard specifies two flavours of
the MOF language: Complete MOF (CMOF) and Essential MOF (MOF).
While CMOF is supposed to be used for more sophisticated metamodelling
purposes, EMOF offers a simpler and pragmatic standard, which is compat-
ible to serialization formats and programming interfaces such as XMI [158]
and JMI [81].

2.2.2.3. Modelling Layers and Instantiation Potencies

The MOF standard defines the fixed number of four meta-levels (M3-M0),
where elements at the lower levels conform to elements of the next higher
level. Figure 2.2 illustrates this with the WebGUI component from the run-
ning example, modelled in PCM. Since instatiation is only possible between
neigbouring layers, the concepts of higher levels cannot be instantiated or
modified if there is more than one meta-level between the elements. For
example, the Ecore metamodel contains an EAnnotation element with which
M2 elements, such as classes, attributes, or packages, can be annotated.
Since the class EAnnotation is at the M3 level, it can be instantiated in
an M2 metamodel, but not at deeper levels. If it is desired to use annota-
tions at the M1 level, they have to be specified seperately in the respective
metamodel.

In the implementations of MOF, such as JMI [81] and EMF [47], this
is realised by the instantiation mechanism of Java, which has two levels

22

2.2. Model-Driven Development

of instantiation: Class level and object level. Depending on the context,
an element of, e.g., the M2 level can be a obtained as a class or as an
object; reflection operations are used to “lift” an element between the the
two metamodelling levels. The mixture of the ontological and linguistical
classification in these implementations further adds to the misunderstandings
and complications that can arise during modelling.

In contrast to modelling with fixed layers, multi-level modelling [6] offers
concepts for the definition of deep instantiation, which make the aforemen-
tioned observations explicit by equipping each element with a number of
levels across which it can be instantiated, called potency. A potency of 2 of
an element expresses, for example, that the element can be instantiated as an
element, which can have instances of its own. In the example of Figure 2.2,
the elements are based on Ecore, so the potencies are “hard-wired” by the
definition of the Ecore meta-metamodel and the instantiation mechanisms.
In Figure 2.2, we have added the potencies to illustrate these conventions.

In the Ecore metamodel, EClass and EStructuralFeature (and its subtypes)
are the only concepts that have a potency of 2. All other concepts in Ecore,
such as inheritance, composition, definitions of abstractness of classes, and
so on, are elements that can only be instantiated once at the metamodel (M2)
level. As explained above, it is not directly possible to use these concepts
with M1 instances.

To analyse differences between instances, we have to determine which
kinds of edit operations can be applied to instances of Ecore-based metamod-
els. Thus, we have to regard the elements of Ecore that can be instantiated
twice, across two meta-levels. In the running example of Figure 1.1, there
are four metamodels involved, which can all be expressed as instances of
the MOF metamodel. For example, the class EClass in Ecore is instan-
tiated as the class BasicComponent in the PCM metamodel. The class
BasicComponent can be instantiated as the component WebGUI in a PCM
instance.

23

2. Foundations and State-of-the-art

EClassifier0

name1:EString

EClass2 EPackage1

BasicComponent1

entityName1:EString

pcm::repository0

«instance of»

«instance of»

«instance of»

M3

M2

M1
WebGUI0

Figure 2.2.: Example: PCM Component with Excerpts from the PCM Metamodel
and Ecore, Annotated With Multi-Level Modelling Potencies

The class BasicComponent contains attributes and references, which are
instances of the Ecore class EAttribute and EReference. For example, Basic-

Component contains the attribute entityName (inherited from NamedEle-

ment), which is instantiated as the String WebGUI in the PCM instance.
The instances of Eclass instances can be created and deleted, and their

features can be set, changed, and unset. This is the most generic description
of editability of instances of Ecore-based metamodels (see also Figure 2.2).

2.3. Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) is a development framework for
model-driven development that is implemented using the Java-based Eclipse
platform. The EMF project2 encompasses several sub-projects for managing,
querying and transforming model-based data.

2http://www.eclipse.org/modeling/emf/, retrieved 13 May 2014

24

http://www.eclipse.org/modeling/emf/

2.3. Eclipse Modeling Framework (EMF)

EModelElement

getEAnnotation(source:String):EAnnotation

ENamedElement
name:String

EAnnotation
source:String
details:EStringToStringMapEntry

EFactory

create(eClass:EClass):EObject
createFromString(eDataType:EDataType, literalValue:String):EJavaObject
convertToSTring(eDataType:EDataType, instanceValue:EJavaObject):String

ETypedElement

ordered:boolean=true
unique:boolen=true
lowerBound:int
upperBound:int=1
many:boolean
required:boolean

EClassifier
instanceClassName:String
instanceClass:EJavaClass
defaultValue:EJavaObject

isInstance(object:EJavaObject):boolean
getClassifierID():int

EPackage

nsUri:String
nsPrefix:String

getEClassifier(name:String):EClassifier

EOperation EParameter

EClass
abstract:boolean
interface:boolean
isSuperTypeOf(someClass:EClass):boolean
getEStructuralFeature(featureID:int):EStructuralFeature
getEStructuralFeature(featureName:String):EStructuralFeature

EStructuralFeature
changeable:boolean=true
volatile:boolean
transient:boolean
defaultValueLiteral:String
defaultValue:EJavaObject
unsettable:boolean
derived:boolean
getFeatureID():int
getContainerClass():EJavaClass

EDataType

serializable:boolean=true

EEnumLiteral
value:int
instance:EEnumerator

EReference
containment:boolean
container:boolean
resolveProxies:boolean=true

EAttribute
id:boolean

EEnum

getEEnumLiteral(name:String):EEnumLiteral
getEEnumLiteral(value:int):EEnumLiteral

+eModelElement

+eAnnotations0..∗

+ePackage+eClassifiers0..∗ +eSuperPackage

+eSubPackages 0..∗

+eOperation

+eParameters

0..∗

+eContainingClass+eOperations

0..∗

+eContainingClass

0..∗

+eStructuralFeatures

+eEnum

+eLiterals 0..∗

+eType

0..1

+eExceptions

0..∗

0..∗

+eAllOperations

+eAllStructuralFEatures 0..∗ 1 +eReferenceType

+eOpposite 0..1

0..∗

+eAllContainments

0..∗

+eAllReferences
0..∗

+eReferences

0..∗ +eAllAttributes

0..∗ +eAttributes

0..1 +eIDAttribute

+eAttributeType

1

+eAllSuperTypes

0..∗

+eSuperTypes

0..∗

1 +ePackage

1 +eFactoryInstance

Figure 2.3.: Main Components of the Ecore Metamodel

In the following subsections, we will describe the Ecore meta-metamodel,
which is part of the Eclipse Modeling Workbench. After that, we will adapt
a set-based notation for MOF-based metamodels, so that it can be used with
Ecore-based metamodels.

2.3.1. The Ecore Metamodel

The Ecore metamodel can be seen as the most popular implementation of
the MOF standard. Originally created as an alternative to the flawed MOF
1.4 standard, some concepts of Ecore have been integrated in the newer

25

2. Foundations and State-of-the-art

2.0 versions of Essential MOF, which is a pragmatic and more compact
alternative to the Complete MOF standard. Perhaps most notably, Ecore
does not contain a concept for associations between classes as first-order
elements. Instead, Ecore only implements the concept of references, which
are contained in classes and thus share the same life-cycle. Furthermore,
Ecore metamodels have to be organised in a rigid containment hierarchy
with a single root element.

Ecore is, in most points, aligned with EMOF. The documentation of Ecore
describes it as a “dialect of UML”.3 The Eclipse Modeling Framework
contains an Ecore-based UML metamodel, which can be used to create
instances of UML, and which is the base of Ecore-based UML modelling
tools, such as Papyrus.4

The core components of Ecore are displayed in Figure 2.3: As mentioned
above, the EReference element is a structural feature that is always contained
in an EClass element. While EReferences are typed with other EClass

elements, EAttributes are typed with EDataTypes. This is a main difference
to the MOF 1.4 standard, where class-typed attributes were possible.

2.3.2. Set Notation of Ecore Metamodels

The OCL standard [123, Appendix A] contains a set notation for MOF
metamodels, which we will use in this thesis for the formalisation of me-
tamodelling concepts. The OCL notation is based on MOF 2.0. Since the
VITRUVIUS approach is based on the Ecore meta-metamodel and the EMF
framework, we have modified this set notation so that it fits the properties of
the Ecore metamodel. The elements of the notation are listed in Table 2.1.

Most of the concepts of MOF are also valid in Ecore. We can use, without
adaption, the definition of types and classes. The definition of attributes has
been adapted since EAttributes can only be typed with EDataTypes, but not

3http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/

ecore/package-summary.html, retrieved 13 May 2014
4http://www.eclipse.org/papyrus, retrieved 14 May 2014

26

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://www.eclipse.org/papyrus

2.3. Eclipse Modeling Framework (EMF)

with EClassifiers. While associations in MOF are first-class entities, which
can also have more than two association ends, Ecore only has the concept
of references (EReference), which have to be contained in an Eclass, and
which have only two ends (the eContainingClass and the eReferenceType).
The term system state in the OCL definition denotes the set of instances of
the metamodels, and can be used to describe instances of Ecore metamodels.

Since the metamodel definition in the OCL standard is based on the notion
of associations rather then references, we will redefine the term metamodel
here, so that it fits the Ecore definition.

Definition 2 (Metamodel). A metamodel is a structure

M := (CLASS,ATT,REF,associates,multiplicites,≺)

The sets CLASS, ATT, and REF are described in Table 2.1. The set of ref-
erences REF replaces the set of associations ASSOC of the OCL specification.
The relation associates describes the signature of these references, while
relation multiplicites describes the cardinality of features, i.e., attributes and
references.

Note that the elements c,c′ ∈ CLASS represent class names; hence, c = c′

expresses that the (simple) names of two elements are identical, but not
object identity. The identity of classes is expressed by the identity of their
types: tc = tc′ .

Type system The OCL standard contains generalization hierarchy≺ with
the reflexive extension 4. The sets ATTc and REFc contain the attributes
and associations for a class c. The sets ATT∗c and REF∗c additionally contain
the attributes and associations inherited from all superclasses of c.

The OCL standard contains the primitive types UnlimitedNatural, Integer,
Real, Boolean, and String. The operator =t only allows the comparison of
elements of the exact same type, so it is not possible to compare e.g. integers

27

2. Foundations and State-of-the-art

M Metamodels (see Definition 2)
CLASS Class names with a generalization hierarchy ≺

N Named elements, N = CLASS∪T ∪ATT∪REF
T Type names where tc ∈ T is the type of a class

c ∈ CLASS
TB Hard-coded basic (=primitive) type names;

TB = {UnlimitedNatural, Integer,Real,
Boolean,String} ⊂T

ATT Attribute signatures. The set of attribute signatures
ATTc of a class c ∈ CLASS is defined as a : tc →
t; t ∈TB.

REF Reference names
REFc References of a class c ∈ CLASS. A reference

has a signature associates(r) = 〈c,c′〉 ∈ CLASS×
CLASS

multiplicities() Cardinality of attribute signatures and references.
The function multiplicites(a) = N assigns each at-
tribute or reference a non-empty set N ⊆ N0 with
N 6= {0}

I(e) = {e1,e2, . . .} Possible instances of an element e ∈N . The in-
stances of classes, attributes, and references are
called objects, attribute values, and links.

I∗(c) For a class c, I(c) is the set instances of c and all its
subclasses. The set I∗(c) contains direct instances
only.

I =
⋃

e∈N I(e) all possible instances
σCLASS,σATT,σREF Snapshot functions that return all instances of a

given class, attribute or reference, together forming
the system state

L(r)(c1)⊆ I(c2) Instances that are linked to c1 ∈ I(c1) via a refer-
ence r with the signature associates(r) = 〈c1,c2〉

Table 2.1.: Sets and Functions in the Set Notation of Ecore

28

2.3. Eclipse Modeling Framework (EMF)

with real numbers. We weaken this requirement and allow coercion for the
number types UnlimitedNatural, Integer, and Real.

Helper functions Several helper functions are defined in the OCL stand-
ard to ease the usage of the formal definition. We list the functions that will
be used later in this thesis below:

• parents() : CLASS→P(CLASS) returns all superclasses of a given
class;

• class() : ICLASS → CLASS returns the name of the most special class
of which an object is an instance.

2.3.3. Textual Domain-Specific Languages

Recent textual concrete syntax frameworks such as Xtext5 and EMFText
[66] offer a convenient way of defining textual syntaxes for Ecore-based
metamodels. These approaches suffer, however, from the synchronisation
with other concrete syntaxes of the models, since formatting information may
be lost if models are edited in other editors and re-opened in a textual editor;
if models are edited in the textual editor, renaming and move operations
must be detected so that unwanted deletions and creations of model elements
are avoided. The FURCAS approach of Goldschmidt [56] is based on MOF
1.4 and offers algorithms for the detection and synchronisation of such cases.
The approach furthermore supports the definition of partial and overlapping
textual view types.

Framework-specific languages (FSML) [2] offer the usage of application
programming interfaces (API) with specialised modelling languages. In
contrast to model-driven engineering, the models are supporting artefacts,
which assist developers in code-based development; they can be generated
by reverse engineering and can be discarded rapidly if not needed anymore.

5http://www.eclipse.org/Xtext/, retrieved 26 May 2014

29

http://www.eclipse.org/Xtext/

2. Foundations and State-of-the-art

SUM

view1

view2

view3

view4

view5

view6

view7

view1

view2

view3

view4

view5

view6

view7

Figure 2.4.: Hub-and-Spoke vs. Peer-to-Peer

2.4. Orthographic Software Modeling

With the Orthographic Software Modeling (OSM) [7] approach, Atkinson et
al. aim to establish views as first-class entities of the software engineering
process. In the envisioned view-centric development process, all information
about a system is represented in a single underlying model (SUM); thus,
the SUM even transcends the function of being a model, but becomes the
system itself. This makes the approach somewhat radical, as even source
code is treated as only a special textual view. The SUM itself has to contain
all execution semantics and could theoretically also be executed without the
use of source code.

The OSM concept is based on three principles [7]:

1. Dynamic View Generation

2. Dimension-based View Navigation

3. View-oriented Methods

The authors of OSM suggest that user-specific custom views be generated
dynamically based on transformations from and to the SUM. These views
are organised in dimensions that are ideally independent from each other

30

2.4. Orthographic Software Modeling

(orthogonal) – hence the name orthographic software modelling, which is
an analogy to orthographic design in computer aided design (CAD). Tech-
nically, a view is a model of its own, which also has a metamodel. Model-
to-model transformations create the views dynamically from the SUM. This
also – theoretically – solves the issue of keeping views consistent, since
every edit operation is immediately represented in the SUM and thus avail-
able to all other views. This concept requires however that bi-directional
transformations exist for every view type (i.e. metamodel); they provide the
synchronisation of views with the SUM, and edit operations are propagated
back to the SUM likewise. Although bi-directional transformations are
complex to develop, and bi-directionality cannot be easily ensured or even
proven (see section 3.5), the complexity of a hub-and-spoke architecture like
OSM is linear in terms of the number of transformations that have to be writ-
ten and maintained, in contrast to the quadratic number of transformations
in a peer-to-peer synchronisation scenario for views (see Figure 2.4).

OSM also encompasses a development process with a developer role,
who uses the generated views, and a role called methodologist, who creates
the different view types along the orthogonal dimensions. Atkinson et al. [5]
have developed a prototypical implementation of the OSM approach, based
on KobrA, which uses UML and OCL, and offers the dimensions abstraction
(defined by notions of model-driven development), variability (defined by
notions of product line engineering), compositionality (defined by notions of
component-based development), encapsulation (e.g. public/private), and pro-
jection (structural/operational/behavioural). The approach lacks a method
for the construction of the single underlying model (and the metamodel it
is based on), which is supposed to carry all information of the software
development lifecycle. Atkinson et al. have however proposed a multi-level
modelling approach [6] that could theoretically solve many issues of MOF
and UML, most importantly the deficiencies of the meta-level principle,
which is fixed to four levels in MOF. The problem of bi-directional trans-
formations has not been solved in this protopye either; the implementation

31

2. Foundations and State-of-the-art

of M2M transformations is based on the Atlas Transformation Language
(ATL).

2.5. Notational Conventions

In this section, we will specifiy notational conventions for UML activity
diagrams and Fundamental Modeling Concepts diagrams, which we will
follow in this document.

2.5.1. UML Activity Diagrams

For the description of the control and data flow of processes, we will use
UML activity diagrams [125]. For the concrete graphical syntax, we will use
the SysML [124] variant of this diagram type. The elements of the syntax
are displayed in Figure 2.5: An activity is labelled with the keyword act
in the top left corner, followed by the activity’s name. Inside the activity,
the control flow is displayed in a similar way to the notation of finite state
machines: Start states and final states are displayed as black circles. The
activity contains actions, which are diplayed as rounded rectangles . Input
and output parameters of an activity are displayed as regular rectangles .
Inside an activity, the control flow is displayed as dashed arrows , while
data and object flow are displayed as solid arrows . If data and control
flow occur together, they are also displayed as a solid arrow. The input
and output parameters of single actions are marked by pins . To model
the control flow inside an activity, fork and join nodes are used to describe
parallelity in the execution of the action. They are displayed as black bars

. Branch and merge points in the control flow are displayed as diamond
shapes . Branches can have guards, as in the example of Figure 2.5.

Activity diagrams contain further concepts, such as swim lanes, events,
and signals, which are not described here, since they are not used in this
thesis.

32

2.5. Notational Conventions

act activity

action action

action action

action

input output

input

output

[x > 0] [x≤ 0]

Figure 2.5.: SysML Activity Diagram Syntax

33

2. Foundations and State-of-the-art

structural variance

human agent

active
system

passive system/
storage/data

active
system

active
system

channel

write read

read/write

Figure 2.6.: Fundamental Modeling Concept: Elements in the Compositional Struc-
ture Diagram

2.5.2. Fundamental Modeling Concepts

The Fundamental Modeling Concepts (FMC) [89] are a simple description
method for systems with a graphical syntax. The Compositional Structure
Diagram of FMC is used to describe the structural view point of systems
(see Figure 2.6). While acting nodes are depicted as rectangles , passive
nodes, which can represent data containers and artefacts, are depicted as
rounded rectangles . Arrows indicate data flow: data flow to a passive
node represents a write operation, and data flow from a passive node repres-
ents a read operation. The Compositional Structure Diagram also contains
structural variance elements , which can be created, modified, or deleted
at runtime of the system.

34

3. Related Work

The related work to the VITRUVIUS approach will be presented here in
eight sections. First, we will present related view-based approaches in sec-
tion 3.1. The field of multi-paradigm modelling (section 3.2) addresses
similar problems of model synchronisation and specification of correspond-
ences. Related work in model-driven engineering is presented in general
in section 3.3, with a special focus on metamodel and model evolution in
section 3.4. The topic of synchronisation is investigated in research about bi-
directional transformations, which will be discussed in section 3.5. Aspect-
oriented development approaches (section 3.6) follow a different approach
to address the problems of concistency and complexity in software devel-
opment. The definition of views and their updatability has been studied
extensively in the field of relational databases, which will be covred in
section 3.7. Finally, methods for modularization, view definition, and evolu-
tion in ontologies and the semantic web, and their relation to model-driven
development are discussed in section 3.8.

3.1. View-based Approaches

The ViewPoints approach of Finkelstein (see subsection 2.1.2) has been
implemented in the ViewPoints framework [122] for requirements engin-
eering. The framework supports the specification of semantic overlaps
with rule-based inter-view point corresondance definitions, and allows the
management of desirable redundencies in heterogeneous view points. A
development process for requirements engineering with view points is also
described.

35

3. Related Work

The first object-oriented methods like OMT [136] and Fusion [38] already
featured several diagram types for structural, behavioural and operational
view points. This was further extended in approaches like the 4+1 view
points by Kruchten [98], leading to today’s standards like RUP [97] and
UML [125], which contain several (fixed) diagram types for the descrip-
tion of software architectures (see subsubsection 2.2.2.1 for details). The
views described in these standards are partial, i.e. they do not represent all
information contained in the underlying model.

Goedicke et al. [55] have applied distributed graph transformations to
Finkelstein’s ViewPoints modelling framework to synchronise the hetero-
geneous artefacts without unifying them to a single model. The approach
formalises ViewPoints, so that a mathematical description of consistency is
possible. Graph rewriting rules serve as a description language for in- and
inter-viewpoint consistency.

The ADORA approach by Glinz et al. [54] takes a different approach to
object-oriented modelling of systems, which, in contrast to UML, is not
based on classes, but on abstract objects that are organised in a hierarchical
decompositition structure. This structure is used for the visualization of a
system at different levels of abstraction and formality. The aim of this re-
organization of object-oriented models is to solve several problems of the
UML language, such as weak semantics of the compositional structure, and
bad integration of the different view points for structure, behaviour, and the
execution environment of systems.

3.2. Multi-Paradigm Modelling

Multi-paradigm modelling approaches are concered with the modelling of
software systems with multiple languages, metamodels, or schemata. Map-

ping languages [151] have already been defined in the 1990s to bridge the
semantic gap between multiple models. Similar to transformation languages
in model-driven engineering, these mapping languages have been developed

36

3.2. Multi-Paradigm Modelling

in declarative, functional, and imperative style, as well as with knowledge-
based rules.

3.2.1. Simulation Approaches

Multi-formalism approaches have been developed in concunction with meth-
ods for simulation coupling. The AToM3 tool by Vangheluwe et al. [41] uses
meta-modelling techniques and graph grammars to create visual modelling
tools for simulations. The AToM3 Kernel serves as a metamodel and model
repository that is able to load, manipulate, and save models. The tool is
based on the scripting language Python, so Python code can be embedded
to describe constraints on the models, but constraints expressed in OCL as
well as in graph grammar rules are also supported. These grammar rules
also serve as the definition of the editability scope of the models: In the so-
called syntax-directed approach, the allowed editing actions on a model are
defined as graph grammar rules. The semantic relations between multiple
formalisms is established by a Formalism Transformation Graph (FTG),
which serves as a documentation of which formalisms can be transformed
into other formalisms by a homomorphic mapping. The transformations
themselves are described as graph grammar rules, which can be composed
in the visual editor of AToM3, and which can also be used to generate code
from the models. Since the tool is targeted at the simulation of multi-formal-
ism models, it does not provide means for the synchronisation of the models
in different formalisms.

The OsMoSys framework [152, 119] is a multi-formalism tool with a
focus on the analysis of systems with heterogeneous models. A modelling
methodology has been defined for OsMoSys, which is based on metamod-
elling, and which is used to include existing modelling formalisms into
an OsMoSys-based process. The approach differentiates between explicit

multi-formalisms, which are visible to the user, and which can be used to
model a system with different formalisms, and implicit multi-formalisms,

37

3. Related Work

which are only used internally to exploit existing analysis tools, solvers, and
processes. Several OsMoSys-specific languages have been developed for the
representation of models, metamodels, queries, and solution processes. The
implementation of the framework contains a database backend that serves as
a repository for the aforementioned artefacts. A disadvantage of this custom
implementation of metamodelling concepts, queries, and processes is the
incompatibility to established modelling standards and tools, which hinders
the import and export of models, and which prevents the framework from
profiting from advances in these standards and their implementations, such
as EMF, QVT, OCL, and other languages.

3.2.2. Approaches for Model-based Data Exchange

The NAOMI platform [42] has been developed by the research department of
Lockheed Martin. It contains an XML-based repository that stores models
of multiple formalisms, and also offer version control. The formalisms
themselves do not have do be adapted in order to work with NAOMI; for
each formalism, however, a connector has to be specified that translates
the native formats of the formalisms into the NAOMI XML representation.
From there, correspondences and update actions can be specified in the
multi-model manager (M3) of NAOMI. Rather than checking semantic
consistency between the models, the information of interdependency is
used to manage the modelling workflow with different formalisms. For
this purpose, a workflow engine called Automated Multi-Mode Execution
Engine (AMMEE) is connected to the NAOMI toolset. Despite the name,
the engine is used for the execution of projects and their workflows, and
does not execute the models themselves.

The exchange of information between heterogeneous systems has also
been the focus of the Standard for the Exchange of Product Model Data
(STEP), which has been standardised in ISO 10303 [130]. The standard is
not targeted at software development, but rather at the software-supported

38

3.3. Model-driven Engineering

mechanical and electrical development. It originated in the exchange of
graphical and geometrical data in Computer-Aided Design (CAD), but is
intended for the entire life-cycle of products in the field of eclectrical and
mechanical engineering. The synchronisation of heterogeneous models is
mostly described using common exchange file formats, and recommenda-
tions for the development process. The standard has been extended with
ontologies [129] to represent the semantic relations between sub-elements,
and to simplify models from different domains for the purpose of design
review walkthroughs.

3.3. Model-driven Engineering

3.3.1. Architectural Frameworks

The approach of Cicchetti [33] uses model-driven technologies to create a
hybrid view-based architectural framework that combines the projective and
synthetic concept (as defined in ISO 42010 [77], see also section 2.1). It
is based on the Eclipse Modeling Framework (EMF) and combines several
model transformation and textual template languages to offer the creation
and customization of user-specific views, similar to projective approaches,
but without creating a single model where the information about the system
under development is integrated. Instead, generated transformations syn-
chronise the view types directly, similar to a synthetic approach. Although
the approach is very customizable, the complexity of synchronisation still
suffers from the quadratic increase of synthetic approaches.

The MEGAF infrastructure [75] is an implementation of the ISO42010
standard, and offers a repository for existing viewpoints. The models that
are created with MEGAF are denoted as megamodels, since they consist of
a combination of existing models, which are transformed into each other,
or woven into new combinations of models. MEGAF can be used to define
project- or system-specific architecture frameworks, which cover only the
relevant viewpoints and their formalisms. Users of these architecture frame-

39

3. Related Work

Component
Dev.

DSL Instance

Softw.
Architect

DSL Instance

System
Deployer

DSL Instance

Domain Expert
DSL Instance

part of

part of

part of

pa
rt

of

Palladio
Component

Model

Instance

Queueing
Network

SPA with
Scheduling

Stochastic
Reg. Expr.

Performance
Prototype

Java Code
Skeletons

Transformation

TransformationTran
sfo

rm
ati

on

TransformationTransformation

void main(){

}

Analysis

Analysis +

Simulation

Simulation

Execution +

Measurement

Completion +

Compilation

Figure 3.1.: Multiple Formalisms in the Palladio Approach

works can than instantiate architecture descriptions, for which consistency
is automatically checked by the framework.

The Palladio approach [13] consists of a component-based software archi-
tecture development process, a metamodel for component-based modelling
(Palladio Component Model) [134], and an architecture simulator (Palla-
dio Simulator) that offers the coupling of Palladio models with different
formalisms (see Figure 3.1). These formalisms include layered queueing
networks [93], queueing Petri nets [113], Java code for simulation [115]
and prototyping [109], and OMNeT++ models for simulation [69]. Further-
more, Palladio models can be converted into and from Use Case Maps [153]
for intuitive modelling. The Palladio approach can thus also be seen as a
multi-paradigm modelling approach that supports several formalisms for
simulations, specification of semantics, and for compatibility to existing
standards.

40

3.3. Model-driven Engineering

3.3.2. Round-trip Engineering

The VITRUVIUS approach presented in this thesis can also be seen as a
special form of round-trip engineering (RTE) [73], which is concerned with
the reflection of changes to a target model of a development process back
to the source model. The proposed concept of a single underlying model
requires however that the cycles of re-integrating changes to a certain view
back into the SUM be short, essentialy after each editing step. Thus, many
problems of RTE, like the merging of large sets of changes that were applied
simultaneously, do not always apply to the approach presented here, but are
dependent on the frequency of synchronisation.

Hettel [73] has used abductive logic reasoning to describe the synchron-
isation of heterogeneous models with partial, non-injective functions. The
approach is used for round-trip-engineering (RTE) in heterogeneous models,
which is similar to the synchronisation of editable views with a base model
in view-based model-driven engineering. The synchronisation of changes
is restricted to those cases of model changes that can be reflected back to
a change in a source model. Thus, the ability for the synchronisation of
changes is guaranteed by restricting the set of possible changes. The ap-
proach offers methods for distinguishing these kinds of changes and proves
the synchronisation properties of possible changes with formal reasoning.

3.3.3. Collaboration

Classical code engineering follows an asynchronous paradigm: code parts
are checked out from a repository, modified, and checked in again. If
there have been any changes to the repository in the mean time, a line-
based three-way textual merge can be performed before the changes are
committed to the repository. This works well for the development of code.
For modelling tasks, it is often desirable to work synchronously, so that
changes are reflected to the underlying model immediately and seen by

41

3. Related Work

all users. Tools like EtherPad1 or Google Docs2 even offer synchronous
real-time editing of (non-structured) textual documents.

Collaborative editing of documents online is a widespread practice as
long as textual documents are edited. With the SLIM tool [149], Thum
et al. have presented a browser-based collaborative editing tool that aims
to be a “Google Docs for models”. The tool is browser-based and offers
synchronous editing of UML diagrams as well as XMI im- and export. Since
the approach is designed for multi-user scenarios, synchronisation is also
provided via locking mechanisms at the model element level. SLIM follows
a complete online editing paradigm where changes are immediately reflected
in the model repository.

The ModelBus approach [67, 3] aims to provide sharing mechanisms for
models in a distributed and heterogenous model-driven process. A central
repository serves as the store for models, which are then transformed into
tool-specific formats using service-based invocation techniques. ModelBus
also supports collaborative work on a software model using different tools,
e.g. Enterprise Architect and Papyrus. ModelBus is a tool-centric approach
an does not contain any mechanisms for the transformation of heterogeneous
metamodels or DSLs; it is a purely technical solution that supports the
interchange of EMF/MOF-based metamodels between modelling tools.

DuALLy [111] is a framework that aims to create interoperability between
architecture description languages (ADL). It uses higher-order transforma-
tions to translate existing languages via a hard-coded core set of architectural
models and weaving models. This is similar to the idea of the SUM in the
OSM approach, but limited to the domain of architectural engineering. An
implementation of DuALLy based on Eclipse and ATL exists.

1http://etherpad.org, retrieved 26 May 2014
2http://docs.google.com, retrieved 26 May 2014

42

http://etherpad.org
http://docs.google.com

3.4. Evolution of Models and Metamodels

3.4. Evolution of Models and Metamodels

In model-driven engineering, models and metamodels usually have different
development cycles: While metamodels are often part of development
standards, and thus remain unchanged during the develoment of a software
system, models are instantiated, changed, and discarded frequently. Changes
to metamodels require additional efforts to co-evolve existing instances,
transformations, and tools. In this subsection, we will first describe the ways
in which models and metamodels can be modified, and give an overview of
existing approaches for the managing of changes to models and metamodels.

3.4.1. Editability of Ecore-based Metamodels and Models

Instances of Ecore-based metamodels can only be edited in a limited number
of ways, since the kinds of elements of which such an instances consist are
limited by the layout of the Ecore Meta-Metamodel and the way in which
instantiation in EMF works. Since EMF and Ecore follow the classical four-
layers instantiation model of MOF, there are two places where elements can
be instantiated: The Ecore metamodel can be instantiated into metamodels,
which themselves can have instances. (See subsubsection 2.2.2.2 for a
detailed discussion of editability of MOF-based metamodels and models.)

Langer et al. [102] have presented an approach based on graph trans-
formation, which offers an a posteriori analysis of changes to EMF-based
metamodels and their instances, independent of the way in which the models
were edited. The approach is able to extract complex change operations
from atomic difference descriptions, which have been determined with EMF
Compare. It has been validated in a metamodel evolution scenario using
Ecore as the metamodel, thus being able to extract the change operators of
Herrmannsdörfer [70]. The differences between models are not represented
as models themselves, but rather as signatures, which serve as an input for an
algorithm that computes the differences as operations in the EMF Modeling
Operations language, based on pre- and postconditions expressed in OCL.

43

3. Related Work

3.4.2. Changes at the Metamodel Level

The possible modifications to metamodels have been investigated in the
field of metamodel evolution and co-evolution of metamodels and models.
The basic principle of describing the difference between two metamodels in
a metamodel-independent way has already been identified by Alanen and
Porres [1] for UML class diagrams. They distinguish the two cases element

creation and deletion as well as feature modification. The difference between
two UML class diagrams is then described as a sequence of this atomic
change operators. The approach offers a difference calculation algorithm,
which converts a state-based description of two metamodel versions into
the delta-based description in the form of sequences of these atomic change
operations. These sequences are then used to merge different versions of
UML models at the M2 level, rather than for co-evolving existing instances.

The approach of Wachsmuth [154] uses concepts from object-oriented
refactoring and grammar adaptation for the purpose of metamodel evolution,
and automatic model co-evolution. The approach uses model transform-
ations to describe the refactoring steps. These steps can then serve as
patterns in the construction of new metamodels, for the description of ver-
sioning of metamodels, for documenting changes to metamodels, and for
the co-evolution of existing instances of these metamodels. The approach is
based on MOF 2.0 and uses QVT-R for the declarative description of model
transformations. The adaptation operations are categorised by the way in
which they preserve the semantics of a metamodel. Inverses of adaptation
operations are also identified.

The MOF-based change metamodel by the author of this thesis [27] uses
the categorization of [12] to estimate the impact that changes to MOF-based
metamodels have on existing instances. The change metamodel can be used
to describe changes that have been determined either by state-based or by
delta-based analysis of metamodel versions. It offers a worst-case analysis
of the impact of changes on existing metamodels, which is agnostic of the

44

3.4. Evolution of Models and Metamodels

actual set of instances, but computes the impact on any possible instances.
The descriptions of the changes themselves as instances of a MOF-based
metamodel allows the processing of change description using model-based
technologies, such as model transformations or code generators.

The COPE approach of Herrmannsdörfer, which has been developed
into the Eclipse project Edapt [72], offers a comprehensive catalogue of
change operators for Ecore-based metamodels. To adress the problem that
the completeness of such an operator catalogue cannot be proven formally,
due to the lack of a formal basis of the Ecore metamodel, the authors
have applied the change operators in several case studies to demonstrate
the practical completeness (in constrast to theoretical completeness) of
the change operations. The change operations are aligned with object-
oriented refactoring operators and are classified into three categories, which
express the effort for co-evolving existing instances. The operations contain
low-level, atomic edit operations, as well as more complex, semantically
richer refactoring operations, which can also be expressed as a sequence of
atomic operations. The respective inverses of the operators are analysed to
determine whether inverting the operations yields the same result, and also
classified into safe and unsafe inverses. The table of change operations is
included in the appendix of this thesis. (see Appendix B). Edapt has been
implemented as an Eclipse plug-in that can execute the change operators
and record the changes for the creation of co-adaptation scripts.

While the approach of Herrmannsdörfer is a delta-based approach and re-
lies on manual definition of edit operations, the approach of Kehrer et al. [84]
determines consistency-preserving edit scripts from state-based difference
descriptions between two versions of a model. The authors use a rule-based
approach to extract high-level edit operations, such as refactorings, from
low-level descriptions of atomic edit operations. A similar approach has
been taken by the author of this thesis in [30], where a difference-based
analysis of metamodels is combined with a rule-based approach to determine
a conformance relation between two Ecore-based metamodels.

45

3. Related Work

3.4.3. Changes at the Model Level

The challenge of describing changes at the model level is to find a form-
alism that is generic enough to describe changes to instances of arbitrary
metamodels. While metamodel evolution can always be described relative
to a meta-metamodel, which is usually fixed, the evolution of models has to
be described in a metamodel-specific, but still general way.

EMF Compare [22] is an extensible tool for the differencing of models
in the Eclipse Modeling Framework. It uses a heuristic differencing engine
to match elements and determine the delta between two models, even if
the elements do not contain universal unique identifiers (UUIDs). The
differencing engine can be extended by metamodel-specific filters to describe
change types that are tailored to the metamodels of which the models under
comparison are instances. EMF Compare offers a graphical user interface
that displays the differences between two models in a tree structure, and
a programming interface that can be used to query the results of a model
comparison for specific elements. The differences are expressed as instances
of a comparison model, which is described in the EMF Compare developer
guide.3 Besides matching and differencing, EMF Compare can also be used
for a full three-way comparison of conflicting model revisions, and also for
the resolution of these conflicts.

Cicchetti et al. [34] have developed a metamodel-based description
for changes at the model level. The metamodel-specific difference model

is generated by a metamodel-to-metamodel transformation and contains
elements for the atomic change operations add, delete modify for each
element in the metamodel of the elements that shall be modified. The model
elements that describe the changes can be composed to change sequences,
which can be concatenated in sequence, or in a parallel way. The detection
of possible conflicts is, however, not covered.

3http://www.eclipse.org/emf/compare/doc/21/developer/developer-guide.html,
retrieved 26 May 2014

46

http://www.eclipse.org/emf/compare/doc/21/developer/developer-guide.html

3.5. Bidirectional Transformations

The DeltaEcore approach [139] also uses a metamodel-based description
of changes to models. Although mainly targeted at modelling variance in
product lines, DeltaEcore provides means that are also suited for describ-
ing evolutionary steps between versions of metamodels and models. The
description language for differences between models consist of a metamo-
del-independent base language, for which a specific delta dialect, which
describes atomic changes, can automatically be created for actual metamod-
els. DeltaEcore also offers the possibility to extend the metamodel-specific
dialects with domain-specific complex operations, so called custom delta

languages. The languages themselves can be described using a textual
concrete syntax, which is processed by the EMFText framework to yield
model-based representations from the textual descriptions.

The approach of Taentzer and al. [148] provides a mapping of Ecore-
based models to typed graph structures to describe state-based as well as
delta-based modification to models. The aim of the approach is to support
versioning of models, including the resolution of merge conflicts.

3.5. Bidirectional Transformations

Bidirectional transformations are used in model-driven view-based ap-
proaches for the synchronisation of the views with the underlying base mod-
els. To offer editable views, these transformation have to be bi-directional to
reflect changes in the views as well as in the base models. Depending on the
transformation language, bi-directionality can be a feature of the language,
or can be guaranteed by proving certain properties of a transformation.

3.5.1. BX

Perdita Stevens distinguishes bidirectional transformations (abbreviated as
bx) from bijective transformations [146], and identifies several requirements
that bidirectional transformations should satisfy: In the context of QVT-R,
the basic requirements are correctness (the transformation engine produces

47

3. Related Work

models that satisfy the relations), hippocraticness (models that satisfy a
relation are not modified by the executions of the transformation engine),
and additionally undoability. Diskin et al. [44] give a weaker definition
for undoability and invertibility, which is more suitable for practical ap-
plications of bidirectional transformation, and which is based on lenses.
They also argue that delta-based approaches are superior to state-based

approaches: While state-based transformations have the complete models
in their current status as input and output, delta-based approaches use the
differences between models. These deltas may carry semantic information
that cannot be computed by comparing model versions, such as refactorings
like renaming and changes in containment. This is especially important in
scenarios where UUIDs/primary keys are not always available, such as in
EMF, where they are only optional for model elements.

Bidirectional transformations can be classified into symmetric and assy-

metric cases: In the symmetric case, both source and target models of a
transformation can contain new information that is not yet present in the
respective other model and has to be added there by the transformation. In
the asymmetric case, one model does not contain new information, which is
the case for (non-editable) views. In the general case however, views may
be editable and thus, the framework must support changes on both sides
of the transformation. For read-only views, it is sufficient to define only a
unidirectional transformation, thus reducing the complexity.

Some transformation languages support bidirectionality better than others;
for example, in the context of QVT [116], it is possible to define bidirec-
tional transformations in QVT-R as well as in QVT-O; but while QVT-R
supports bidirectionality by its design, it must be defined manually in im-
perative transformation languages, such as QVT-O, or in hybrid languages,
such as the Epsilon Transformation Language (ETL) [90], by writing two
transformations and ensuring that they fulfil bidirectionality manually. The
Atlas Transformation Language [79] contains reverse operations for each of
the language’s primitive operations, to support bidirectionality.

48

3.5. Bidirectional Transformations

Bi-directionality can also be achieved by allowing only injective func-
tions for the definition of pairs of transformations between a source and
a target model. The Inv language of Hu et al. [120] provides a reversible
transformation language for the synchronisation of views and base models.

3.5.2. Lenses

The lenses approach by the Harmony group [50] offers a language for the
definition of bi-directional mappings between tree-based structures. The
authors define lenses as mappings between a “concrete” and and “abstract”
domain, which does not describe the level of conceptual abstraction, but
is used in the sense that the abstract domain contains less information. In
the context of view-based modelling, the “concrete” entity is the model that
contains the information of interest, while the “abstract” entity would be the
view that contains information representing the model. The mappings consist
of pairs of functions for the creation of views (called get) and the propagation
of changes to the views (called putback). The get functions are designed in a
way that the view can always be computed from the underlying data structure.
For the put function, only the modified view and the original underlying
data structure is needed as input; thus, the approach is state-based. Based on
these operations, the authors define the laws GETPUT and PUTGET, which
describe hippocraticness properties (see previous paragraph) for roundtrips
from views to the source and vice versa: The GETPUT law describes that
creating a view and writing back the information to the source, without
modifying the view, should also leave the source unmodified; the analogous
PUTGET law states that a view that is written to the source and created again
should remain identical. If lenses fulfill both these laws, they are called
well-behaved. If, in addition, the PUTPUT law is fulfilled, which states that
the double propagation of the identical view update has the same effect as
the single propagation, the lense is called very well-behaved. Based on these
properties, the authors define composition operators on lenses and show that

49

3. Related Work

the set of well-behaved lenses is closed under these operators. Lenses have
been applied to relational databases [17].

Diskin et al. have extended the lenses approach to delta-based synchron-
isation for metamodel-based structures in the symmetric [44] and the asym-
metric case [43]. The delta-based approach aims to reduce problem of
state-based bidirectional transformations such as incorrect sequential com-
position and poor modularity. Algebraic frameworks for delta-based lenses
have been defined for the asymmetric case (based on category theory), and
the symmetric case (so-called sd-lenses). The approach has been further
developed by Diskin into the tiles formalism, which allows a visual com-
bination of synchronisation blocks for the definition of mappings between
models. The algebraic frameworks of Diskin offer a sound theoretical found-
ation, and prove important properties of the proposed operators, such as
hippocraticness, well-behavedness, invertability, and undoability. To apply
these theoretical proofs to existing metamodelling tools, a formal foundation
for metamodelling languages such as MOF and Ecore would have to be
provided first. Taentzer et al. [148] have provided a theoretical foundation
for Ecore-based metamodels using a graph-based representation of models,
which could serve as such a formal basis.

3.5.3. Triple Graph Grammars

Triple graph grammars (TGG) [138] are a formalism for the specification of
interdependencies in graph-like data structures. The grammar rules of TGGs
define the modification of three graphs (left, right, and correspondence).
Each rule contains a pre- and a postcondition, which have to be satisfied
before and after the rule application.

TGGs can be used for the declarative specification of bi-directional model-
to-model transformations [53]. The concept has been implemented in various

50

3.6. Aspect-Oriented Software Development

tools for Ecore-based metamodels, such as TGG interpreter [60], eMoflon
[105], and EMorF4.

Bergmann et al. [15] have used graph patterns and graph transformations
to define a change-driven model transformation approach. This approach is
similar to the synchronisation mechanisms in VITRUVIUS, which are also
triggered by change operations to views or parts of the SUM. The approach
of Bergmann processes change elements into other change elements, and
thus offers a delta-based transformation approach for models.

The previously mentioned approach by Taentzer et al. [148] offers a
formalisation of metamodels as graphs to define change operations and
conflicts that can occur during editing and creation of new versions of a
model.

3.6. Aspect-Oriented Software Development

The concept of Aspect-Oriented Programming (AOP) [87] is a method
for the decomposition of software in code-based development processes.
Approaches such as subject-oriented design [36] sought to improve the
alignment between requirements, object-oriented design models and pro-
gram code by re-structuring the software development process along system-
wide, higher level concepts. The AOP approach has been extended to the
field of model-driven development as Aspect-Oriented Modelling, and to
generalised to Aspect-Oriented Software Development (AOSD) [35], which
defines a complete development process that is based on aspect orientation.
The rationale behind aspect orientation is “breaking the hegemony of the
dominant decomposition” [10] in software development. In aspect-oriented
approaches, software development is re-structured along system-wide, so
called cross-cutting concerns, which have to be distinguished from non-
cross-cutting concerns like component/object-structures. Changes to such a
concern are not reflected in the underlying system immediately, but unified

4http://www.emorf.org/, retrieved 15 May 2014

51

http://www.emorf.org/

3. Related Work

afterwards in a weaving or composition process, which is a central concept
of aspect orientation.

For the description of aspects, several languages have been developed. For
code-based aspect-oriented programming, the AspectJ language extension
for Java [86] is most notable, which is supported in the Spring framework
for Eclipse [78]. Aspect-oriented modelling approaches usually come with
a modelling language of their own, often an extension to UML, such as
Theme/UML [31], or the approach of Klein et al. [88]. The survey of UML-
based AOM approaches by Wimmer et al. [156] gives a good overall view
of existing approaches. A more extensive survey by Chitchyan et al. from
2005 [32] also offers a comparison with non-aspect-oriented approaches.

The main difference between view-based modelling approaches and
aspect-oriented approaches is the process of weaving and composing, which
is special to aspect-oriented approaches. In AOM, the sub-models, which
represent a specific aspect or concern, are edited independently and integ-
rated into the system afterwards. Thus, in terms of view-based modelling,
each aspect or concern is a partial, editable view of the system; the approach
of weaving is comparable with the synthetic view-based approached, where
the system description is derived from the information in the views in an
integration step. The view-based approaches do, however, in general not
distinguish between cross-cutting and non-cross-cutting view types.

The process of integrating the concerns into a model that describes all
the aspects and concerns is called unification in AOM. The unification step
can be performed at different points in the development process: If the
concerns are unified statically (at modelling time), the resulting models can
be used without changes to the tool chain, at the cost of losing traceability
information. Dynamic unification requires an execution environment that
supports the AOM constructs.

52

3.7. Databases

3.7. Databases

Many of the problems that are encountered in view-based modelling have
counterparts in database research. The term view in relational databases can
be understood as a stored database query in a relational algebra, for example,
using the Standard Query Language (SQL).

Queries in relational algebra, and thus also views, define two dimensions
of the result set: First, the schema of the result set, i.e. the attributes
(columns in SQL), and second, a selection of tuples (rows in SQL), of
which the attributes that have been specified in the schema are contained.
The different types of operators have different effects on these dimensions:
While projection affect the set of attributes, selection affects only the set of
tuples. Join operators affect both these dimensions.

3.7.1. View Update Problem

If data in a partial view is manipulated, the view update problem [9, 37]
arises, which is a central issue in relational databases research. Although it
is well understood, and has been investigated since the 1980s, it is mainly
unsolved [106]. The process of re-integrating changes on a partial view into
the underlying database is called translation. Bancilhon and Spyratos [9]
have defined translation as a co-evolution operator that converts updates
on a view into updates on the underlying database. They also define the
complement of a view, which is an other view on the database so that
the whole database can be computed from the information in both these
views. A view can have several complements; the updatability of a view
is dependent on the choice of a complement. For a fixed complement,
Bancilhon and Spyratos show that a view is updatable if and only if it is
translatable in such a way that the complement remains invariant, which
they call translation under constant complement. Buff [24] has shown
that such a translation does not always exist for any kind of view update,
and that it is undecidable if a unique translation exists. The problem can,

53

3. Related Work

however, be alleviated by carefully designing the views, so that every edit
operation of a user in a certain view can also be reverted in that same
view without losing information in the underlying database. The careful
design of these views is, however, a manual process that requires of the view
designer to estimate the translatability of the view definitions. Lechtenbörger
et al. [107] have developed a heuristic algorithm for the computation of
“resonably small” view complements, which can be minimal in special cases.
Translation under constant complement fulfils the properties correctness,
hippocraticness, undoability, history ignorance, and invertability [73, sect.
2.2.1].

Dayal et Bernstein [40] have formalised update translation for view up-
dates, and thus defined the semantics of view updates. To this end, two
graphs have been defined: The view-trace graph and the view-dependency
graph. If updates in a view are translated to updates in a databes, these
updates to the underlying database have to be exact updates, which means
that a re-generation of the view from the updated databes yields the same
result as the original view with the applied edit operation. Exact updates
are possible if clean sources in the database exist for the edited tuples in the
view. A change to a clean source does not have any effects on other views
on the database except from the view where the initial update operation was
applied.

Gottlob et al. [59] have defined a hierarchy of restriction in views on
databases. The define the set of consistent views, which offer an unam-
biguous translation of update operations to database updates. These views
contain the set of views that translate under constant complement as a subset.
Thus, the concept of consistent views is a generalization of the definition
of Bancilhon and Spyratos. Gottlob et al. concede that consistent views do
not necessarily cover all reasonable views, since there are many examples
of existing realistic views that do not fulfil this property.

In recent database research, the view-update problem has also been invest-
igated using the lenses approach by Foster et al. [50] (see also section 3.5).

54

3.7. Databases

The approach operates on general tree-based structure rather than on re-
lational databases. Based on translation under constant complement, as
defined by Bancilhon et al., Foster et al. have investigated the properties
definedness and continuity of bi-directional transformations over tree-based
structures. The lens operators are assembled using lens combinators that
are based on constructs from functional programming, such as composition,
mapping, projection, conditionals, and recursion.

The view-update problem is closely related to the problem of bi-directional
transformations in metamodelling and view-based approaches. The com-
munality of both approaches lies in the fact that views on an underlying
database can re-arrange and aggregate data, or present it differently, but do
not add information that is not present in the underlying database. Views
only contain information that is not in the underlying database after an
edit operation. This is the same case in projectional view-based software
development approaches (see section 2.1), where views are only transient
projections on a base model of the system under development.

3.7.2. Schema Integration

If several databases are used in federation, identical data may be represented
in heterogeneous schemata, which have to be integrated so that they can
used in a unified way. Methods for the integration of such schemata [133,
140] require manual interaction of experts that have a semantic understand-
ing of both domains, which is necessary to define the mapping between
heterogeneous elements. This process cannot be fully automated since the
semantics that are not formalised in the databases have to be added by human
interaction. A global database schema is used to express data from various
sources.

This insight can also be transferred to the field of model-driven develop-
ment. Heuristic approaches, which attempt a mapping based on structural
similarities or naming convention of heterogeneous metamodels are not able

55

3. Related Work

to capture certain semantic relations. These can only be determined by a hu-
man specialist who has the understanding of all the domains that are affected
by a semantic overlap. The global database schema is similar to the concept
of a single underlying model (SUM) in Orthographic Software Modeling
(see section 2.4), for which a metamodel (which is analogous to a database
schema) has to be defined first; with this metamodel, developers must be
able to express all the concepts of those metamodels that are integrated into
the development process.

3.8. Ontologies and Semantic Web

In model-driven development, metamodels describe exactly the elements
and the relations that can be expressed in a domain-specific language. Thus,
a metamodel can be seen as a special form of an ontology [62]. Aßmann et
al., on the other hand, state that “ontologies are special models” [4, p.256].
They further destinguish between descriptive and prescriptive models and
argue that prescriptive models should not be called ontologies. Despite
the similarities in the concept of metamodelling and ontology modelling,
model-driven development and semantic web technologies have been de-
veloped almost independently of each other. Ontologies are mostly used for
knowledge representation in connection with technologies of the semantic
web. They can be used as domain models, domain-specific languages, and
description languages in software development processes [4].

The most important language standards for the definition of ontolgies
are RDF Schema [19], and the Web Ontology Language (OWL) with its
three species OWL Full, OWL DL, and OWL Lite [126]. Ontologies can
contain a strong formal basis for the semantic description, which is usually
expressed in description logics (DL) [8]. OWL implements several levels of
description logic that differ in their decidability and and the time complexity
for reasoning.

56

3.8. Ontologies and Semantic Web

The sentences in description logic are categorised into two kinds of
sentences: While the Terminological Box (TBox) describes the knowledge
about a domain, the Assertional Box (ABox) describes facts about individual
objects. In model-driven terms, the the metamodel is part of the TBox, while
the models that are instances of a metamodel are part of the ABox.

Ontologies follow the open-world assumption, which means that everything
that is not explicitly expressed by an ontology is unknown. This con-
trasts with the closed-world assumption of metamodelling, which states
that everything that has not been specified is either implicitly disallowed or
implicitly allowed [4].

3.8.1. Ontology Modularization

In general, ontologies suffer from similar problems as model-based ap-
proaches: With a rising number of elements in an ontology, no single user
or developer has a full understanding of all the concepts in the ontology.
Furthermore, ontology languages allow the mixing of data at the instance
level and at the schema level, which is not possible in standard metamod-
elling approaches such as MOF [117] or EMF [47]. While working with a
large ontology is cumbersome, the problem of complexity increases when
several ontologies are used that represent overlapping parts of knowledge.
Ontologies that cover fields of knowledge that are requested by many users
often grow very large in terms of the number of concepts. For example,
the Foundational Model of Anatomy [135] contains tens of thousands of
concepts and classes and more than two million relations.

Techniques for ontology modularization aim to alleviate this problem. The
goals of modularization have overlaps to the ones that have been identified
in this thesis for view-based model-driven approaches [127]: Although
some of the primary goals of ontology modularization, such as improving
the performance of querying and reasoning of data, are not comparable
with the goals of this thesis, the problem of scalability for evolution and

57

3. Related Work

maintenance, complexity management, understandability, personalization
and reuse are very similar to the problems that we have identified for view-
based approaches.

Ontology mapping approaches [20] are used for the composition of ex-
isting ontologies to form a larger, modular ontology. These approaches are
concerned with automatic identification, as well as with the formalisation of
ontology mappings. These mappings are usually defined declaratively, and
can be categorised into three types [147]: equivalence, containment, and
overlap. In [20], Brockmans et al. have created a metamodel that describes
ontology mappings, and have defined a UML profile for the visual notation
of them.

3.8.2. Queries and Views on Ontologies

Several query languages for ontologies have been developed, which are used
for the retrieval of information from knowledge databases. Most of these
languages are low-level languages comparable with the SQL language for
relational databases, and can only be used to retrieve data elements, but not
to define parts of a schema. The SPARQL language [61] is a query language
for RDF that offers a SQL-like textual syntax. The RDF Query language
(RQL) [82] is a semi-formal language, which can be used to query RDF
schema and resource descriptions with minimal knowledge of the schema.

While the creation of views is a well-understood notion in the field of
relational databases and in model-driven engineering, the concept of onto-
logy views raises specific questions concerning the definition and technical
creation of the views. This problem is similar to the definition of view types
in the VITRUVIUS approach; unlike view in relational databases, the view
types in VITRUVIUS and sub-ontologies that are defined for ontology views
are not just projections of the underlying database or model.

Rajugan et al. [132] propose a layered view model, which offers formal
semantics for ontology views. The RDFS/OWL visualization language

58

3.8. Ontologies and Semantic Web

(RVL) [128] offers the mapping of RDFS/OWL concepts to graphical ele-
ments. Noy et al. [121] have presented a concept for the creation of views
and ontologies that is similar to the concept of the ModelJoin language (see
section 6.2): Starting from a core concept, they provide the definition of
traversal specifications, which describe the relations and concepts of interest
that should be included in the ontology view. Similar to ModelJoin, which
defines a target metamodel and a set of target instances, traversal views
collect the schema elements as well as the data. Traversal views define a
subsect of the underlying ontology that is self-contained, and that is related
to a specific concept.

3.8.3. Ontology Evolution

Like every formalism, ontologies also suffer from the problem of evolution.
Ontology evolution occurs when new concepts have to be included into an
ontology, for example, if changes in the domain that it describes occur, so
that the ontology is developed into a new version. These modifications have a
potential impact on consistency and coherence of the ontology. Zablith et al.
[159] have surveyed ontology evolution approaches. They have identified the
stages in the ontology evolution process, and defined an ontology evolution
cycle that describes these changes and their interdependencies. The change
cycle consists of five steps:

1. Detecting the Need for Evolution

2. Suggesting Changes

3. Validating Changes

4. Assessing Impact

5. Managing Changes

This process is also viable for the evolution of metamodels and their
instances in general, and for the VITRUVIUS approach in particular. Al-

59

3. Related Work

though the formalisms for describing validity and consistency between the
artefacts differ from those in metamodel definitions, the process model itself
is, however, applicable to the evolution scenarios in VITRUVIUS as well.

With the evolution of ontologies, the problem of inexpressibility arises:
Ontologies can be evolved in such a way that the result of the evolution
is not an element of the description language in which the ontology was
formulated. This problem is adressed by restricting the expressibility of
the languages to a set elements that are closed under evolution [85]. The
evolution of ontologies that are expressed in different languages is managed
by separating the linguistic layer from the knowledge layer [45], similar to
the concept of separating the linguistic classification of models from the
ontological classification in multi-level modelling [6].

60

4. An Approach for View-Based Engineering
using VITRUVIUS

In this chapter, we will present a view-based software development approach
based on VITRUVIUS and Orthographic Software Modelling (OSM). The
contributions of this chapter include a construction method for a modular
single underlying model and the management of views, which are used to
retrieve and modify information in the SUM.

After the description of the overall approach in section 4.1, we will present
the method for constructing the single underlying model in section 4.2. In
section 4.3, the terminology for view types and views in VITRUVIUS is
defined. The development process for the view-based approach is presented
in section 4.4, followed by evolution scenarios in section 4.5. The application
of the whole approach to the example scenario is described in detail in
section 4.6.

4.1. The VITRUVIUS Approach

The VITRUVIUS1 approach, which we will present in this dissertation, is
a view-based software engineering approach. It is currently (2014) being
developed at the Chair for Software Design and Quality [26, 95, 104].
VITRUVIUS is based on concepts of Orthographic Software Modelling ([7].
In this section, we will introduce the design rationale of VITRUVIUS as
well as assumptions and limitations of the approach. In the remaining
sections of this chapter, we will describe the core concepts (sections 4.2,

1View-Centric Engineering Using a Virtual Underlying Single Model, after the roman archi-
tect Marcus Vitruvius Pollio (ca. 80-70 B.C. – 15 B.C.)

61

4. An Approach for View-Based Engineering using VITRUVIUS

4.3), the development process (section 4.4), and give an extended example
(section 4.6).

4.1.1. Design Rationale

VITRUVIUS is a projectional approach ([77], see section 2.1), which imple-
ments the following core ideas of Orthographic Software Modelling:

• All information about the system under development is represented in
a single underlying model (SUM).

• This model can be accessed exclusively by specific views.

Using a single underlying model is a theoretically elegant solution to the
aforementioned problems of fragmentation, redundancy, and inconsistency.
Specific views serve the purpose of taming the complexity for developers.
Existing research on OSM is, however, lacking a description of how such a
single underlying model should be created, so that it can be used in arbitrary
software development scenarios. If a SUM is created using model-driven
technologies, a metamodel for SUMs would have to be defined first, but such
an all-purpose metamodel has not been defined yet for the OSM approach.

There is a prototypical implementation [5] for component-based software
development, for which a SUM metamodel was constructed manually as an
extension to UML 2.0 [125]. This monolithic SUM metamodel contains all
the necessary concepts for the CBSE scenario, such as structural, functional,
and behavioural views on the UML components. As a general procedure for
the creation of a SUM metamodel, however, we deem this approach to be
impractical due to the problems listed in section 1.2: A monolithic SUM
metamodel causes high effort in construction and is difficult to reuse, since
the SUM metamodel has to be defined anew for each scenario. Furthermore,
existing software development processes make use of several pre-defined
metamodels, called legacy metamodels in the following, to which compat-

62

4.1. The VITRUVIUS Approach

ibility has to be preserved. Thus, import and export functionality has to be
added to the monolithic SUM metamodel.

4.1.2. Proposed Benefits of the Modular SUM Metamodel

The VITRUVIUS approach addresses these shortcomings and proposes the
usage of a modular SUM metamodel rather than a monolithic SUM me-
tamodel. The modular SUM metamodel consists of existing metamodels,
mapping between these metamodels and rules for semi-automatic synchron-
isation of elements. The concept is described in detail in section 4.2. The
proposed benefits of using a modular SUM metamodel over a monolithic
SUM metamodel are listed in the following:

• Maintainability and Re-use: Many projective view-based approaches,
such as DuALLy [111], or KobrA [5], rely on a fixed metamodel,
which represents all the concepts that are necessary for the modelling
task. If functionality is added to this metamodel, the developer who
modifies the metamodel has to possess knowlegde of the complete,
and possibly large, metamodel. In a modular SUM metamodel, the
sub-metamodels and explicit correspondences between them can be
maintained separately by experts of the respective domain. Further-
more, parts of the modular SUM metamodel can be re-used to build a
different scenario-specific SUM metamodel.

• Compatibility to Existing Metamodels: Software projects usually
have to adhere to certain languages and standards, such as UML, Java,
and further domain-specific models. If a project is realised with the
VITRUVIUS approach, changes to the metamodels are unnecessary
for the inclusion into the modular SUM metamodel. Thus, existing
instances of the metamodels, tools, and transformation can be re-used.
For this purpose, the metamodel can be exposed as a view type that
offers import and export functionality.

63

4. An Approach for View-Based Engineering using VITRUVIUS

• Evolution of Metamodels: If a new version of a metamodel has to
be supported in the development process, only the sub-metamodel
and the adjacent correspondences and view type have to be modified
to include this new version into the modular SUM metamodel. The
impact of such a change can be estimated better than for a monolithic
SUM, since the relation of the metamodel elements to the rest of the
SUM metamodel is modelled explicitly.

The usage of a modular SUM metamodel requires a novel way of creating
view types, which are used to display and manipulate the information in
the SUM. In section 4.3, we will define the properties of view types in
VITRUVIUS and introduce the notion of view type scope. The development
process of VITRUVIUS (section 4.4) is based on the development process
of OSM and contains the developer role of the methodologist, who is re-
sponsible for the definition of the modular SUM metamodel and the view
types. The developers who use the SUM metamodel for the development
of software systems can instantiate SUMs as well as views to describe the
system. The SUM metamodel can however also be extended by custom view
types, which are defined by the developer.

4.1.3. Assumptions

In this subsection, we will state the assumptions that we make for the cases
where the VITRUVIUS approach is applicable.

The VITRUVIUS approach is intended for software development processes
that make use of several formalisms, such as metamodels, languages, or
developer tools, during the specification, planning and implementation of
software. Although it is based on model-driven technologies such as model
transformations, it is not only targeted at model-driven development pro-
cesses. It is however a precondition for the approach that the formalisms that
are used in the process can be expressed as a metamodel. Since there are
model-based representations for many formalisms, including programming

64

4.2. A Modular Way of Defining Single Underlying Models

languages such as Java [23, 66], we do not see this as a severe limitation.
Furthermore, it is often possible to define a metamodel for existing standards
with reasonable effort, for example, by creating the metamodel from a given
grammar.

In development processes where several formalisms are used to describe
a software system from different perspectives, we assume that there are
implicit relations between the artefacts of these formalisms that are not
specified formally. It is possible that the information in the different artefacts
complements each other or is overlapping.

We claim that the VITRUVIUS approach is especially helpful if there are
more view types than metamodels. This is the case either if there are already
different view types for the single metamodels or if there is the demand for
view types that integrate information from several metamodels.

While the view types in the OSM approach are organised along orthogonal
dimensions, this is not a requirement for the design of view types in the
VITRUVIUS approach. This requirement has been loosened to support
legacy view types, which may follow a different pattern of organization than
orthogonal dimensions. It is, however, of course possible to define the view
types with VITRUVIUS in such a way that they are orthogonal to each other,
and to implement a fully OSM-compatible development process with it.

4.2. A Modular Way of Defining Single Underlying Models

In this section, we will describe the construction of the modular SUM
metamodel. Since existing OSM publications [5, 7] do not contain a formal
definition of the term single underlying model, we will first define it here to
clarify our understanding of a SUM and its metamodel.

4.2.1. Definition

Definition 3 (Single Underlying Model (SUM)). A single underlying model
(SUM) is a complete definition of a software system. It contains all available

65

4. An Approach for View-Based Engineering using VITRUVIUS

information about the system. The information in the SUM is displayed or

manipulated exclusively by specific views, which adhere to these description

formalisms.

The formalism that is used to describe the SUM is called a SUM metamo-
del.

As suggested in the OSM approach [7], the SUM metamodel is specific to
the software development process, the domain where the software system is
used, and the modelling standards that have to be supported. The information
in a SUM metamodel is expressed using well-defined description formal-
isms, such as domain specific languages, metamodels, or general-purpose
programming languages. In the CBSE example, the SUM metamodel has to
contain concepts for the representation of software architecture (compon-
ents), object oriented design, Java code, and performance simulation. The
SUM metamodel is instantiated for every software system that is developed,
so the same SUM metamodel can be re-used for multiple software projects.

To our knowledge, no generic SUM metamodel for software development
has been defined yet. There are several approaches (see subsection 3.3.3)
that use a single underlying model (although not labelled as such) as a
hub for the synchronisation of diverse development artefacts. For example,
DuALLy [111] uses an A0 model to which all the other models have to be
synchronised. These approaches rely on a monolithic metamodels that are
either very general, so that they support the most common concepts in a
specific area (such as architecture modelling in DuALLy), or have to be
created manually for each specific scenario, so that they support a specific
development process, domain models, or modelling languages (such as the
UML2 extension for KobrA [5]). For arbitrary development scenarios, there
is however no method for the construction of a single underlying metamodel
based on the formalisms that have to be supported in the development
process. This is why we propose a method for the construction of a modular

SUM metamodel.

66

4.2. A Modular Way of Defining Single Underlying Models

Definition 4 (Modular SUM metamodel). A modular SUM metamodel
Msum ⊆Msum is a structure of metamodels that are connected by corres-
pondence mappings. These mappings express the semantic relationships

and overlaps between the metamodels.

Msum := {M ,corr}

with the correspondence relation

corr = 〈e1,e2〉 ∈M ×M

The metamodels that are part of the modular SUM metamodel can be di-
vided into legacy metamodels and additional metamodels. Legacy metamod-
els have been defined outside the VITRUVIUS-based development process,
and are also used independently of the SUM metamodel. Metamodels that
are created for existing formalisms are also counted as legacy metamodels, al-
though they are specifically created for the VITRUVIUS-based process. Since
the formalisms, such as a textual language or a file format, are developed
by external parties, the specification and evolution of these formalisms is
not under control of the developers of the VITRUVIUS-based process, so
these metamodels are also considered as legacy. Additional metamodels are
defined especially for the VITRUVIUS-based process to represent further in-
formation, which shall be included into the modular SUM metamodel, such
as mapping information between elements of the legacy metamodels, and
additional information that is not represented in any of the legacy metamod-
els. An instance of a modular SUM metamodel, i.e., a SUM representing
an actual software system, is a set of heterogeneous models, which are
instances of the metamodels that are part of the modular SUM metamodel.

Since these heterogeneous models represent the same software system,
a meaningful connection between the metamodels exists, which is made
explicit in the mappings in the modular SUM. In an implementation of a
VITRUVIUS-based framework, these mappings have to be complemented

67

4. An Approach for View-Based Engineering using VITRUVIUS

with rules for checking and restoring consistency between instances of the
metamodels. Since there is no restriction on which metamodels can be
used in the modular SUM metamodel, the semantic overlap between the
metamodels can be of various size. The modelling of these mapping and
the checking of consistency constraints is the subject of ongoing research
[95], but not in the focus of this dissertation. We will outline the possible
methods of specifying these mappings in 4.2.3.

Finally, the view types are also part of the SUM metamodel definition.
View types decouple the inner structure of the SUM from the way that it is
presented to the developers. Despite the modular structure, the SUM shall be
perceived as a single entity that it represents, which is the software system
under development. The view types serve as the interface for the interaction
between developers and the system. The definition of view types make it
possible to change the layout of the SUM metamodel without altering the
way in which it can be accessed. View types will be described in detail in
section 4.3.

4.2.2. Structure of the Modular SUM Metamodel

In this section, we will describe the parts of a modular SUM metamodel
through the example of the CBSE scenario depicted in Figure 4.1 (We will
exclude the performance view point for now).

In general, any facet of software development can be integrated into
the approach in this way as long as a metamodel exists. Since the SUM
is method-specific, as suggested by [7], the selection of metamodels for
the SUM metamodel can vary from project to project: Depending on the
domain for which software is being developed, metamodels for security,
performance, real-time properties etc. can be included; depending on the
development paradigm, component models, class models, aspect models
etc. can be included. The CBSE example here is just one case that we have
selected as a running example.

68

4.2. A Modular Way of Defining Single Underlying Models

PCM

UML

Java

MIRMIR

C1

C2 C3

UML class diagram view

VT1

C1

C2

implements

implements

component-class implementation view

VT2

component diagram view

VT3

@ADLImplements(implements-component comp_1)

public class C2 extends C1 {

public static void main (String[] args) {

System.out.println ("Hello World!");

}

}

annotated Java source view

VT4

instance of a view type

view transformation
MIR mapping/invariant/response

comp1

comp1comp2

Figure 4.1.: Structure of the Modular SUM Metamodel in the CBSE Example Use
Case

69

4. An Approach for View-Based Engineering using VITRUVIUS

4.2.2.1. Metamodels

In the CBSE scenario, three formalisms are used: The Palladio Component
Model (PCM) for the definition of software architecture, UML for the object-
oriented design, and Java for the runtime semantics and implementation.
PCM and UML are already based on a metamodel definition, so the PCM and
UML metamodel are included into the modular SUM metamodel as legacy

metamodels. Java is not originally based on a metamodel definition, but
defined as a textual programming language with a specific grammar. There
are, however, possibilities to express Java code in a metamodel-based format,
such as the KDM Java metamodel of MoDisCo (Model Discovery) [23], or
JaMoPP (Java Model Printer and Parser) [66]. Based on the availability of
import and export tools that offer the conversion of textual and model-based
Java programs, one of these approaches has to be chosen. In our example,
we have decided to use the JaMoPP approach, since, at the time of writing,
it offers stable tool support. Thus, the JaMoPP metamodel is also part of
the modular SUM metamodel. These three legacy metamodels serve as sub-
metamodels, but have not been modified in any way before being embedded
into the modular SUM metamodel.

4.2.2.2. Correspondences

The elements in the respective sub-metamodel in the modular SUM me-
tamodel share semantic relations, which are reflected by correspondence

mappings. These mappings can be understood as an implementation of the
correspondence concept in the ISO 42010 standard [77], which proposes the
usage of correspondence elements to detect and express inconsistencies in
architecture descriptions. The standard also contains a concept for corres-

pondence rules, which are used as a declarative description of consistency
and semantic relations.

To express the correspondence mappings between the sub-metamodels
in VITRUVIUS, several methods exist (see subsection 4.2.3 for a detailed

70

4.2. A Modular Way of Defining Single Underlying Models

comparison). In the CBSE example, MIR elements [95] (mapping/invari-
ant/resonse, depicted as MIR) have been chosen. MIR elements contain
the actual mapping of classes and features in the different metamodels, in-

variants, which express consistency constraints between the metamodels,
and response actions for consistency conservation, which guarantee that the
SUM is always in a consistent state if changes are made to one of the sub-
models. In the example, MIR elements are defined for the combinations
PCM/UML and UML/Java. It is not necessarily the case that there are map-
pings for every combination of metamodels in the modular SUM metamodel,
either because the semantics of the connection could not be determined, is
left undefined on purpose, or because none exists. The constraints and the
mechanisms to establish consistency ensure that the conglomerate of models
can interact in a uniform way with the outside, i.e. the views that are defined
on top of the SUM.

4.2.2.3. View Types and Views

View types (depicted as VT) are defined based on the information in the
metamodels of the SUM metamodel, and the additional mapping informa-
tion. For each legacy metamodel, at least one view type is defined, which
represents the complete metamodel or parts thereof. In the example, these
legacy view types are UML class diagram (VT1), component diagram (VT3),
and Java source (VT4). While the PCM and UML view types only represent
information from one metamodel respectively, the Java Source view type
also contains information from the software architecture, i.e., the PCM
metamodel. This information is displayed in Java annotations, which are a
language element of Java, so the Java view type itself is a legacy view type
that is fully compatible with the Java language definition. In addition to
this enriched Java code view, a pure Java view without these architectural
annotations can also be defined. The information about the mapping of
Java classes to architectural element is, however, acquired by an analysis

71

4. An Approach for View-Based Engineering using VITRUVIUS

of the MIR elements between the metamodels of Java, UML, and PCM.
Since the UML is only needed as the linking metamodel between object-
oriented Java code and PCM instances, view type VT4 does not display any
explicit information from the UML metamodel, but only from PCM, such
as component names. While the Java and PCM information can be edited in
this view type (indicated by the bidirectional arrow), the mapping itself
cannot be altered, since this would affect elements in the UML metamodel,
which is not modified by this view type.

In addition to these legacy view types, VT2 is a specific view type for
this SUM metamodel. It displays classes from UML, components from
Java, and information on which classes implement which components. For
this view type, a specific metamodel has to be defined, which contains the
necessary concepts for the elements and relations. The information in the
view type is acquired from the UML and PCM metamodel, as well as from
the MIR element between these metamodels, which store the information
of the implements-relation. Only this relation can be modified in VT2; the
classes and components themselves are not editable in this view type.

The actual views (depicted as) instantiate the view types. Of course,
view types can be instantiated several times to express different parts of the
SUM. Since the generation of views from the SUM instance is deterministic,
multiple instantiation of the same subset of a SUM yields, however, the
identic set of view elements. The definition of view types and views is
described in detail in section 4.3.

4.2.2.4. Modelling Levels

The SUM metamodel and the view types consist of meta-elements, which
are instantiated in actual SUMs and views. Using the terminology of MOF
[118], SUM metamodels and view types reside on the M2 layer, whereas
SUMs and views reside on the M1 layer. In Figure 4.2, the SUM metamodel
and the instantiating views from Figure 4.1 has been extruded into the third

72

4.2. A Modular Way of Defining Single Underlying Models

PCMinstance
UMLinstance

JaMoPP
instance

public class C2 {

public C2 {

}}

SUM Metamodel: Metamodel Level (M2)

SUM: Instance Level (M1)

in
st

an
ce

ofin
st

an
ce

of

in
st

an
ce

of

in
st

an
ce

of

VT3

VT4

VT1

VT2

C1C2
C3

C4
C5

PCMUML

Java

MIR

MIR

comp1

Figure 4.2.: The MOF Modelling Layers in VITRUVIUS

73

4. An Approach for View-Based Engineering using VITRUVIUS

dimension to demonstrate the affiliation of the elements to the metamodelling
layers.

4.2.3. Modelling of Intrinsic and Extrinsic Information

The information that is expressed in the SUM can be distinguished into
two types: Intrinsic and extrinsic information. Intrinsic information is the
information that is expressed by instances of the legacy sub-metamodels of
the SUM metamodel. In the CBSE example, this kind of information con-
sists of the following parts: the component-based architecture is expressed
by instances of the PCM metamodel, while the class structure is expressed
as a UML model, and the implementation is expressed as Java code (more
specificly, a model-based representation thereof). Although these artefacts
represent the same system from different viewpoints, there may be incon-
sistencies between them, since, in contrast to a pure OSM approach, the
SUM in the VITRUVIUS approach is not redundancy-free. It is possible
that the information in the sub-metamodels overlaps, complements, or is
contradictory [122]. Furthermore, there may be semantic links between the
elements of the sub-models that are not expressed formally, but are only
expressed in natural language documents, or not persisted at all.

The semantic correspondences between the sub-models are called ex-

trinsic information. This information is not explicitely modelled in the
legacy metamodels. We can distinguish two cases of extrinsic information:

• information that can be derived from the information that is modelled
in the legacy metamodels, e.g., by a set of rules;

• information that has to be specified manually.

As an example of information that can be derived by rules, we can use the
correspondence between the component model and the simulation results
metamodel in the CBSE example: The simulation results can be traced
to the components to which they belong by a naming convention of the

74

4.2. A Modular Way of Defining Single Underlying Models

sensors, which contain the universal identifier of the AssemblyContext of
the PCM component. An integrated view that displays this relationship
can be computed automatically from this information. Of course, the rules
and transformations themselves have to be defined manually, or can be
determined by an automatic matching of similar elements, which is however
not in the scope of this thesis.

As an example for the second case, the implements-relation between
classes and component is one kind of additional information that cannot be
derived automatically, but has to be specified manually. The component-

class implementation view shows the correspondence links and offers means
for the manipulation of them.

In either case, extrinsic information is made explicit in the VITRUVIUS

approach, and thus persisted in the SUM metamodel. In contrast to the legacy
metamodels, which are integrated without change, extrinsic information can
be modelled in various ways, depending on the nature of the information
and the way in which it is determined. Thus, for a certain combination of
legacy metamodels, there can be various SUM metamodels, which differ
in the way that the extrinsic information is modelled. This is, however, not
relevant for the access to the information in the SUM, since view types fulfil
the purpose of conceptual interfaces in the VITRUVIUS approach, so that
the access to a SUM is decoupled from its inner representation. Thus, it is
possible to use the same view types with different internal representations
of the additional information.

In our previous work [64], we have investigated ways of extending
metamodels with additional information. In the following subsections,
we will apply these methods in the context of VITRUVIUS to persist ex-
trinsic information in SUM metamodels, and estimate the advantages and
disadvantages of each solution.

75

4. An Approach for View-Based Engineering using VITRUVIUS

Class2Component

RepositoryComponent
from PCM

Class
from UML

class1..∗component 1..1

Figure 4.3.: Example for Mapping in an Additional Metamodel

4.2.3.1. Additional Metamodel

The simplest way of expressing the additional information is a special meta-
model, which serves only the purpose of expressing the mapping between
elements of other metamodels. This metamodel can be described as a
“bridge” or “glue” metamodel. Furthermore, the set of valid mappings can
be restricted in the metamodel using constraints in a declarative language,
such as OCL in Ecore-based metamodels.

In the CBSE example, the component-class implementation relation of the
example would be stored in a separate metamodel that contains an element
for the mapping of components to classes, as displayed in Figure 4.3.

Advantages: The mappings can be expressed for any kind of metamodels.
The mapping metamodel can be amended with arbitrary additional informa-
tion, which as modelled as additional classes and references in the mapping
metamodel.

Disadvantages: An additional view type is always necessary to display
the information, since the information is stored in neither of the participating
metamodels.

76

4.2. A Modular Way of Defining Single Underlying Models

4.2.3.2. Metamodel Extension Mechanisms

The VITRUVIUS approach follows the principle that the involved metamod-
els are included non-intrusively, meaning that no changes to the metamodels
are necessary for the inclusion in the modular SUM. Some metamodels
already offer means for extension and customization, which preserve the
compatibility of existing instances. Thus, they can be used in VITRUVIUS

for the persistence of correspondence information.
In the CBSE example, the component-class mapping information could be

stored either in the PCM metamodel, or in the UML metamodel, or in both.
This is possible since these metamodels contain extension mechanisms, so
that arbitrary information, such as the structural information in this example,
can be added to the instances without having to change the metamodel. In
UML, this is the profiles extension mechanism, with which instances can
be extended by additional, user-defined information. In PCM, a profile
extension mechanism is under development [96] based on the EMF Profiles
project [101]. In Figure 4.4, an example application of the profiles approach
is displayed: The stereotype UMLClassImplementation is defined using
the EMF profiles approach for PCM. It expresses that a PCM component
is implemented by a set of classes in UML, through a cross-metamodel
reference to the Class element in the UML metamodel. To model a concrete
mapping between a PCM component and a UML class, the stereotype is
applied to a PCM element and linked to the UML classes that implement
the component.

The profile approach offers a type-safe mechanism for adding custom
information without breaking compatibility to tools and instances. From a
metamodelling point of view, the stereotypes and profiles in this example
are used a standardised method for creating a decorator model [91].

In general, all instances of Ecore-based metamodels can be extended
using textual annotations. This method is however not very convenient,
since there is no type safety, and information has to be serialised to a

77

4. An Approach for View-Based Engineering using VITRUVIUS

RepositoryComponent
(from PCM)

«Stereotype»
UMLClassImplementation

Class
(from UML)

«extends»
implementedComponent implementingClass0..∗

Figure 4.4.: Example for Mapping with Profiles and Stereotypes

textual representation. Furthermore, this annotation is only available at the
meta-level by default and has to be explicitely included in the respective
metamodels, if it is to be used at the instance level, e.g., by including a
reference to the EAnnotation class.

Advantages: The information can be displayed in legacy view types that
support the metamodel extension mechanism. The stereotypes can contain
arbitrary additional information and references to other metamodels.

Disadvantages: This method is only applicable to metamodels that con-
tain an extension mechanism.

4.2.3.3. Declarative Definition

If the correspondence between the elements of the different sub-metamodels
can be determined automatically, it is possible to describe the mapping using
a declarative language, such as the Mapping/Invariant/Response language by
Kramer et al. [95]. The links between actual elements can then be derived
from this declarative definition. An example for such a definition, using a
textual domain-specific language, is displayed in Listing 1. In this example,
the interface concept of PCM is mapped to UML class diagrams. Lines
5–13 describe the correspondences between the interface concepts of both

78

4.2. A Modular Way of Defining Single Underlying Models

1 import "http://sdq.ipd.uka.de/PCM/Repository/5.0" as repo

2 import "http://www.eclipse.org/uml2/2.1.0/UML" as umlcd

3
4 // correspondence rules

5 map repo:OperationInterface to umlcd:Interface

6 with signatures::OperationSignature

7 to ownedOperation::Operation

8 with returnType::DataType

9 to ownedParameter::Parameter.type::Type

10 when ownedParameter.direction = return

11 and with parameters::Parameter

12 to ownedParameter::Parameter

13 when ownParam.direction <> return

14
15 // consistency invariant

16 context repo:Repository

17 inv uniqueInterfaceNames(i::repo:Interface,j::repo:Interface):

18 self.interfaces->forAll(i,j | i.entityName <> j.entityName)

19
20 // response action

21 var interfaceNameCount : Map<String,Integer>

22 on creation of interface:repo:Interface

23 restore inv interfaceNamesUnique(i::repo:Interface, j::repo:Interface)

24 by {

25 var occurrences = interfaceNameCount.get(i.entityName)

26 occurrences = (occurrences == null) ? 2 : occurrences++

27 interfaceNameCount.put(i.entityName, occurrences)

28 interface.entityName += occurrences

29 }

30 if (occurrences == null) {

31 occurrences = 2

32 } else {

33 occurrences++

34 }

Listing 1: Example for Declarative Mapping of Components and Classes (from [95])

79

4. An Approach for View-Based Engineering using VITRUVIUS

languages: PCM interfaces are mapped to UML interfaces; signatures are
mapped to operations; return types and parameters are mapped to parameters.
In addition, an invariant is defined in lines 16–18, which realises a naming
convention between PCM and UML. The response action in lines 21–34 is
not necessary for the mapping itself, but describes a behaviour that reacts
to changes in one of the models, in this case the creation of an interface in
PCM.

Since the declarative definition is an all-quantified expression that applies
to all instances in a SUM, this method does, of course, not apply to informa-
tion that has to be specified manually. For such correspondences, the MIR
elements would have to hold explicit mappings between actual instances
(e.g., component comp1 corresponds to class c1), which is exactly the first
approach described above, using a glue metamodel.

Advantages: The declarative description offers a compact method for the
definition of general correspondences that are applied to all elements in a
SUM. The automatic application avoids the manual definition of correspond-
ances for every element in the SUM

Disadvantages: The declarative definition is not suitable for special cases
at the instance level that cannot be described with general rules. It would
be possible to encode these exceptions in the declarative definition using
naming conventions or identifiers of elements, although this would mix
the definition levels (M2 and M1). Thus, exceptions from the declarative
mapping rules have to be handled by a framework that implements the VIT-
RUVIUS approach and that provides an execution engine for the declarative
mappings.

80

4.3. View Types and Views in VITRUVIUS

4.3. View Types and Views in VITRUVIUS

In this section, we will define the notions view type and view in the context
of VITRUVIUS. For the formal definition of the terms, we will use the set
notation for metamodels and instances presented in section 2.2.

4.3.1. Definition

In VITRUVIUS, views are the means by which a developer interacts with
the SUM to retrieve or manipulate information of the software system. The
VITRUVIUS concept of a view is based on Atkinson’s understanding of the
view concept in the Orthographic Software Modeling approach:

“a view is a normal model which just happens to have been
generated dynamically for the purpose of allowing a user to see
the system from a specific viewpoint” [7, section 3.1]

Thus, the elements in a view represent elements in the SUM. The notion
of view type has been introduced by Goldschmidt et al. [57]. It describes
the kinds of elements that a view can contain; thus the view type is the
metamodel of the view. In VITRUVIUS, the term view point is used to group
view types by the concerns that they serve (cf. Figure 2.1 and the ISO 42010
standard [77]). View points are not modelled explicitly by a model element
in the SUM metamodel.

The relation of the terms view, view type, and view point, as well as
model and metamodelmodel is depicted in Figure 4.5: Views and view types
are special models and metamodels, which represent elements from other
models and metamodels. The models and metamodels of Figure 4.5, which
are represented by the views and view types, are part of the SUM and the
SUM metamodel respectively.

In the categories of the ISO 42010 standard [77], VITRUVIUS is a project-

ive approach, since the views are generated artefacts that are derived from
the single underlying model (SUM). In a consistent model, views do not

81

4. An Approach for View-Based Engineering using VITRUVIUS

Model Metamodel
«instance of»

View View Type«instance of»

View Point

shows
elements of

∗

1..∗
represents
parts of

∗

1..∗

defines
∗

∗ view types

Figure 4.5.: View and View Type Terminology

contain any information that cannot be computed from the information in the
SUM. VITRUVIUS contains, however, also concepts of synthetic approaches,
since the “single repository”, which is demanded for a projective approach,
is indeed a modular SUM, where correspondences between sub-models are
explicitly defined, which is a characteristic of synthetic approaches. Thus,
the approach is not synthetic in the sense that correspondences are defined
directly between the views, but between the model elements in the SUM.

Although views and view types are “normal” models and metamodels,
they have special properties that the models and metamodels in the SUM
and SUM metamodel do not posess, and that are specified in the following
definitions.

We will use the symbols listed in Table 4.1 to denote the differents sets of
elements. A complete overview of the elements at the metamodel level and
at the instance level is given in Figure 4.6.

4.3.1.1. View Type

Definition 5 (View Types in VITRUVIUS). The set of view types is a subset of

the set of metamodels VIEWTYPE ⊆M . In a view type V T ⊆ VIEWTYPE,

an element evt ∈ V T represents information of elements in a metamodel

82

4.3. View Types and Views in VITRUVIUS

symbol meaning

Msum SUM metamodels
SUM SUM instances
VIEWTYPE View types
VIEW Views
rep is represented by, metamodel↔view type
rep is represented by, model↔view

Table 4.1.: Notation for SUM Metamodels and SUMs

esum ∈M,M ⊆Msum, which is part of a modular SUM metamodel Msum ⊆
Msum. This is expressed by the is-represented-by relation

rep = 〈esum,evt〉 ∈Msum×VIEWTYPE

To respect the generalization hierarchy in the SUM metamodel and in the

view type, we define an extension of the relation rep that covers also the

representation information in the superclasses of the elements:

rep∗ = {〈esum,evt〉 ∈Msum×VIEWTYPE |

∃〈e′sum,e
′
vt〉 ∈ parents(esum)×parents(evt) : rep(e′sum,e

′
vt)}

The relation of elements in a view type to elements in a SUM metamodel
can be seen in Figure 4.6: The view type VT1 contains an element e5,
which represents information from a modular SUM metamodel (Msum1),
specifically from two different sub-metamodels M1 and M2. This semantic
connection is expressed through the relation rep. Note that the direction of
the relation rep is from the metamodel to the view type. We have chosen this
direction since it follows the direction of the transformation of information
in the SUM metamodel to the view type. We will use this relation to describe
properties of the view types in the following.

83

4. An Approach for View-Based Engineering using VITRUVIUS

M1
e1
e2

M2 e3

M3 e4

Msum1

Msum2

Msum

corr

VT1

VT2

e5

rep

rep

e6rep

VIEWTYPE

metamodel (M2) level

scopeπ (VT1)

e1
e2 e3

e4
e5

SUM2

SUM1

I(Msum1)

SUM3

I(Msum2)

SUM

scopeς (V1) V1
e6
e7

V2e8

rep

rep

rep

VIEW

instance (M1) level

Figure 4.6.: Sets of Elements in VITRUVIUS: SUM metamodels Msum, SUM in-
stances SUM, view types, and views

84

4.3. View Types and Views in VITRUVIUS

C1

C2

C3

C4

metamodel

V1

V2

V3

view type

rep

rep∗

rep

rep

rep

Figure 4.7.: The is-represented-by Relation rep and its generalization closure rep∗

between Classes C1, . . . ,C4 in a Metamodel in the SUM Metamodel and
View Type Elements V1, . . . ,V3 a View Type

A view in VITRUVIUS is transient, wich means that all the information
that is contained in a view must also be contained in the SUM, so that the
view can be generated from it. As a consequence of this, for the elements
of a SUM metamodel and its view types, the relation rep has the following
properties:

• It is surjective, since all elements in a view type represent at least one
element in the SUM metamodel or of another view type.

• It is in general not functional, since an element of the SUM metamodel
may be represented by several elements in the view type.

• If the view type is a subset of the underlying SUM metamodel, e.g.,
it is identical with one of the metamodels M ⊆Msum of the modular
SUM, the relation is injective.

As introduced in the preceding section, VITRUVIUS is based on a modular
SUM that is not free of redundancies and overlaps, and contains additional
information to make the semantic relations between the sub-models explicit.
Since the views serve as a uniform way of accessing the information in
the SUM, they must be able to abstract from these redundancies and to re-

85

4. An Approach for View-Based Engineering using VITRUVIUS

organise information in such a way that the developer is presented only the
desired parts of the SUM. This is why the view types in VITRUVIUS are
strongly decoupled from the SUM metamodel regarding the structure of the
view type metamodel: It is not necessary (although still possible) that the
elements in the view type are a subset of the elements in the metamodels of
the SUM, so that VIEWTYPE⊆{M1∪ . . .∪Mn}. A view type can reproduce,
re-arrange, or aggregate information from these metamodels.

4.3.1.2. View

Definition 6 (Views in VITRUVIUS). Let VT ∈ VIEWTYPE be a view type.

The instances I(V T) of this view type are called views. An element ev in a

view v⊆ I(V T) represent an element esum of a SUM. This is expressed by

the is-represented-by relation at the instance level:

rep = 〈esum,ev〉 ∈ SUM,VIEW

The relation rep respects the is-represented-by relation at the meta-level.

That is, an element ev in a view v can only represent an element esum in the

SUM if the respective elements of which they are instances are also in the is-

represented-by relation:

∀esum ∈ I∗(esum),ev ∈ I∗(evt) : rep(esum,evt)⇒ rep∗(esum,evt)

The relation rep is a relation at the instance level (M1). It has the same
properties as the relation rep at the metamodel level: It is surjective and in
general not functional.

In the consistent state, views contain only transient information, which
is also persisted in instances of the sub-metamodels of the SUM that it
represents. Thus, a view can always be generated from the elements in the
SUM with a view defintion function:

86

4.3. View Types and Views in VITRUVIUS

Definition 7 (View Definition Function). A view is defined by a view defini-
tion function, which calculates a view of a specific view type V T from an

actual single underlying model Msum ⊆ I(Msum):

DEFV T : SUM→ I(V T)

During editing, temporary inconsistencies may occur, which have to be
propagated back to the SUM (see subsection 4.3.4 for details), so that the
view can always be generated from the information in the SUM.

This difference in the role of models and views results in a fundamental
difference between the consistency relations (represented by double ar-
rows in Figure 4.1) in the SUM, and the bidirectional transformations
between the SUM and the views (represented as single arrows and):
The consistency relations provide the semantic links between the modular
sub-metamodels of the SUM in the form of explicit models or constraints.
They also contain update policies and strategies to restore consistency if
an update violates a constraint. The bidirectional transformations between
views and SUM serve the purpose of keeping the views up-to-date with the
SUM and to update the SUM likewise.

In the following subsections, we will introduce the term view type scope

to express the relation of view types to the SUM metamodel. Then, we
will define view categories based on the scope definition. Finally, we will
describe how editability and synchronisation of view types are managed in
VITRUVIUS.

4.3.1.3. Relation of View Types and Views

As displayed in Figure 4.6, and specified in Definition 6, elements at the
instance level can only be part of the relation rep if their corresponding meta-
elements are in the relation rep. This structural similarity can be expressed
as a homomorphism of the instantiation relation I∗() between the elements.

87

4. An Approach for View-Based Engineering using VITRUVIUS

Corollary 1. Let I = (ICLASS,rep) and C = (CLASS,rep∗) be relational

structures. Then the function class : ICLASS → CLASS is a homomorphism

of I in C.

Proof. The helper function class() (see subsection 2.3.2) determines the
class c ∈ CLASS of an instance element c ∈ I . Thus, the function is an
inverse of the instance-relation I∗:

class(c) = c⇒ c ∈ I∗(c)

Using Definition 6, we can conclude that for any instances c,ev ∈ICLASS,
the following relation holds:

rep(c,ev)⇒ rep∗
(
class(c),class(ev)

)
Thus, the function class is a homomorphism for the fundamental operations
rep and rep∗.

4.3.2. Scope of View Types

4.3.2.1. Projectional Scope

As a consequence of the strong decoupling of view types from the metamod-
els that they represent, a single view type in VITRUVIUS can represent more
than one metamodel. In the example of Figure 1.1, the component-class

implementation view contains components and classes, which are elements
from two distinct metamodels: PCM and UML. As a consequence of this,
Definition 1 is insufficient for the purposes of VITRUVIUS, since in this
definiton, view types only contain a definition of a concrete syntax and a
mapping to elements of a single metamodel, which the view type represents.
(cf. Figure 2.1 on page 15). Due to the modular nature of the SUM, we will
extend this definition so that views on heterogeneous models are possible.

88

4.3. View Types and Views in VITRUVIUS

Definition 8 (Projectional Scope). The projectional scope of a view type is

defined by the relation of the elements in the view type to elements of the

metamodels that the view type represents:

scopeπ(V T) := {e ∈Msum | ∃e′ ∈V T : rep(e,e′)}

If there exists a metamodel M ∈M so that scopeπ(V T) ⊆M, then we

say that V T has a single-metamodel projectional scope, which means that it

contains elements that represent elements from one metamodel; otherwise,

we say that V T has a multi-metamodel projectional scope, since it contains

elements that represent elements from multiple metamodels.

The projectional scope of a view type is a subset of a SUM metamodel,

since a view type cannot represent information from several SUM metamod-

els.

∃Msum ⊆Msum : scopeπ(V T)⊆Msum

In the example of Figure 4.6, the view type V T1 has a multi-metamodel
projectional scope (M1 and M2), while view type V T2 has a single-metamo-
del projectional scope (M3).

Since a view type is a metamodel, it can also serve as a source metamodel
for other view types. View types that represent elements from other view
types are called composed view types.

Definition 9 (Composed View Type). A view type V T ⊆ VIEWTYPE with

scopeπ(V T)∩VIEWTYPE 6= /0

is called a composed view type.

A view type can represent elements of one or multiple metamodels. If
a view type represents all the elements of the metamodels that are in its
projectional scope, the view type is called total view type.

89

4. An Approach for View-Based Engineering using VITRUVIUS

Definition 10 (Total View Type). A view type V T ⊆ VIEWTYPE with

∀e ∈ scopeπ(V T),∀M ∈Msum : e ∈M⇒M ⊆ scopeπ(V T)

is called a total view type.

The totality of view types is aligned with the notion of totality in the
lenses approach [50]: A total view type is able to represent all elements that
are in a particular sub-metamodel of a SUM metamodel. This property alone
would only qualify for left-totality in the terms of the totality in lenses. For
right-totality, the co-domain of the rep relation has to be a superset of the
view type metamodel. In VITRUVIUS, the view type metamodel is part of
the view type definition, and does not contain elements that do not represent
any elements of the SUM metamodel. Thus, view types in VITRUVIUS are
always right-total, and left-totality is sufficient for the totality of a view type.

4.3.2.2. Selectional Scope

Definition 11 (Selectional Scope). The selectional scope of a view type

is determined by a logical function ϕ : I 7→ {true, false}, which imposes

restrictions on the instances of the view type:

scopeς (V T) := {i ∈
⋃

e∈scopeπ (vt)

I(e) | ϕ(i)}

The selectional scope of a view type can be expressed by constraints in
the view type metamodel; although defined at the metamodel level, it affects
the instances of the view type, which are the views. Of course, the actual set
of elements in a view is determined by a manual selection, which can only
be a subset of the elements in the view type’s selectional scope.

In the CBSE example, V T2 shows the implements-relation between classes
and components. The selectional scope of this view type restricts the ele-
ments to only those that are part of an implements-relation; if a class or
component is not connected to a component or class repectively, it is not

90

4.3. View Types and Views in VITRUVIUS

part of the view. Since the selectional scope of the view type affects all
possible instantiating views, it has to be defined in a constraint language
such as OCL.

An actual view also has a selectional scope, which is usually determined
manually by selecting the set of elements that should be displayed in the view.
The view shown in Figure 4.1 displays a subset of the possible instances
(the elements comp1, C1, and C2).

4.3.3. Projectional and Combining View Types

In VITRUVIUS, view types are divided into two categories, which depend
on the property of the relation from elements in the SUM elements in the
views that are instances of the view types. For the black-box usage of the
SUM, the category of a view type is irrelevant. It is however relevant for
the definition of the modular SUM metamodel, since the complexity of the
SUM-to-view transformation and the definition of update semantics differ
in their complexity for the view type categories. In Table 4.2, the categories
for the CBSE examle in Figure 4.1 can be seen.

4.3.3.1. Projectional View Types

A view type is called projectional if every element in the view type repres-
ents only a single element of the SUM metamodel. This means that the rep

relation of metamodel elements to view type elements is injective. Projec-
tional view types do not necessarily have a single-metamodel projectional
scope; it is possible that a projectional view type contains elements from
several metamodels in the SUM metamodel.

Existing view types are integrated in the VITRUVIUS approach as legacy

view types. These view types are projectional and have a single-metamodel
projectional scope. In the example shown in Figure 4.1, the PCM component

diagram view types and the UML class diagram view types are legacy
view types. Projectional view types require less effort in defining, since

91

4. An Approach for View-Based Engineering using VITRUVIUS

view type categories

component diagram projectional (legacy)
class diagram projectional (legacy)
component-class implementation combining
annotated Java source combining

Table 4.2.: View Type Categories in the CBSE example of Figure 4.1

the underlying metamodel can be used as the view type metamodel, so no
specific metamodel has to be created, and the represents-relation is just a
projection of a subset of the underlying metamodel.

4.3.3.2. Combining View Types

View types that contain elements that represent multiple elements of the
underlying metamodels are called combining view types. The rep relation
for these view types is not injective.

In the CBSE example, the component-class implementation diagram and
the annotated Java Source view type are examples of combining view types:
The component-class implementation diagram combines information of
the UML class diagram and the MIR element into a class element in the
view type that contains a reference to the component that it implements.
Combining view types are always necessary to display intrinsic and extrinsic
information together in an integrated view type, like in this example.

4.3.4. Editability of Views Types and Synchronisation with the SUM

metamodel

The views in VITRUVIUS are created by transformations from the SUM (de-
picted as in Figure 4.1). The transient nature of views (cf. Definition 6)
guarantees that the SUM always contains sufficient information to generate
the views. Since the views are the only vehicle by which information in

92

4.3. View Types and Views in VITRUVIUS

the SUM can be modified, rules for the editability of view types have to be
specified.

Definition 12 (Editability of views). For views in VITRUVIUS, the set of

elements that can be modified is called the editability scope. This scope is

defined for a view type at the metamodel level, but can be refined for actual

views.

Furthermore, a view type definition contains rules for the propagation of

changes back to the metamodels that the view type represents.

4.3.4.1. Constraint Violations through Edit Operations

If a view type has a multi-metamodel projectional scope, the views that
instantiate this view type can represent several heterogeneous models, which
are affected by edit operations on the views. It is possible that there
are further consistency constraints in MIR elements that exist between
the metamodels, and also between the affected metamodels and further
metamodels in the modular SUM metamodel. In the running example (see
Figure 4.1 on page 69), the component-class implementation view type
affects instances of UML and PCM, between which a MIR element exists.
Furthermore, a MIR element exists between UML and Java.

An edit operation on the class-component view can, theoretically, affect
the following constraints:

1. constraints of the PCM or UML metamodel;

2. constraints in the MIR element between PCM and UML;

3. constraints in the MIR element between UML and Java.

The constraints in the first and second case affect elements that are repres-
ented in the view type, and are thus inside the projectional scope of the view
type, whereas the constraints in the third case are outside the projectional
scope of the view type.

93

4. An Approach for View-Based Engineering using VITRUVIUS

It would be desirable that the rules of the view type were so restrictive that
edit operations in views cannot introduce inconsistencies by violating any of
these constraints inside the scope of the view type. This would require that
the definition of the view type rules is coupled to the consistency constraints
between the metamodels whose elements the view type represents. Since
the consistency rules can be defined in arbitrary languages, this coupling can
neither be determined nor checked automatically due to the undecidability
of language inclusion [14]. Thus, the rules of the view types have to be
specified manually in such a way that inconsistencies in the scope of the
view type are avoided.

In VITRUVIUS, we allow that view types are constructed in such a way
that edit operations can cause constraint violations in those parts of the
SUM that are outside the view type scope. If view types had to be restricted
manually to edit operations that can never cause constraint violations, the
editabilitiy restrictions for each view type would always have to respect the
complete set of constraints in the SUM metamodel, which would add the
complexity of the whole SUM metamodel to each view type. If all possible
cases of inconsistencies had to be regarded in the rule definition for view
types, it would mean that the person who defines the view types would have
to know all the sub-metamodels in the SUM metamodels and all consistency
rules between them. Furthermore, each of the view type definitions would
have to be adapted at any changes to the SUM metamodel.

This would violate the concept of modularity and would also aggravate
the problem of evolution of the sub-metamodels, since any change to the
modular SUM metamodel, such as a modification to a metamodel or a MIR
element, would cause a complete refactoring of all view types, since every
one of them could possibly be affected. Since it is not possible to check
automatically if a view type definition may introduce inconsistencies, we
follow a different approach:

Instead, the view types in VITRUVIUS only have to respect the constraints
of the metamodels and those MIR elements that are inside their projectional

94

4.3. View Types and Views in VITRUVIUS

v1

original view
edit

v∗1
dirty view

save
consistency
conservation

operation
triggers

SUM not
consistent

update v′1
saved view

SUM
consistent

act edit view

Figure 4.8.: Editing Workflow in Views

scope. This way, if a metamodel or MIR element in the SUM metamodel is
added, deleted, or modified, only the view types that are directly accessing
these elements have to co-evolve. Furthermore, this property reduces the
strain on the methodologist, since it is not required that an “omniscient”
methodologist is present who is an expert for every part of the SUM me-
tamodel. Thus, the methodologist role can also be distributed between
multiple persons with expert knowledge of the respective metamodels and
the dependencies between them. Of course, it is recommended that the
editability and propagation rules respect as many consistency constraints as
possible, since it is not possible to exclude inconsistencies completely by
static checks of the view types.

4.3.4.2. Semi-Automatic Checking and Resolution of Consistency

The VITRUVIUS approach includes a semi-automatic process for the check-
ing and resolving of consistency constraint violations, which involves users
in re-establishing the concistency in the SUM.

95

4. An Approach for View-Based Engineering using VITRUVIUS

The process of editing a view can be seen in Figure 4.8: While a view is
being edited, it can contain information that is not yet part of the SUM. If
elements in the view v1 are edited, the view enters a dirty state (indicated as
v∗1) where the elements in the view are not synchronised with the underlying
model. Since the edited information in a view is not persisted in the SUM, it
is lost if the view is closed and re-opened, thus re-generated. To persist the
changes, the edit operations have to be written back to the SUM by a save

operation so that they are still available on re-opening. The modifications
in a view can, however, violate consistency constraints in the SUM, either
because constraints inside a sub-metamodel are violated, or because the
inter-metamodel constraints in the MIR elements are violated, or both.
To restore the consistency, the MIR elements define response actions,
which conserve the consistency of the SUM. These actions can themselves
cause further responses, which attempt to conserve consistency within the
SUM. It is possible that the conflicts that were raised through the edit
operation in the view, or by the subsequent response actions, cannot be
resolved automatically, but have to be fixed manually. These further editing
operations can be performed either by the user role who committed the
initial edit operation, or, if access restrictions are in place that limit the edit
operations on other parts of the SUM, by other user roles.

If the consistency check was successful, i.e., the SUM is in a consistent
state, the view returns to the non-dirty state (indicated as v′1) and can be
edited anew. If the operation was not successful and a sequence of consist-
ency conservation operations that leads to a consistent state could not be
determined, the conservation operations have to be rolled back, and the view
remains in the dirty state. The user of the view is informed that the edit
operation was unsuccessful and can perform further editing steps in the view
to avoid the inconsistency.

96

4.4. Development Process

4.3.4.3. Discussion

The editing process in VITRUVIUS requires that the views are synchronised
with the SUM at every save operation. Thus, the consistency check is an
online operation. If a view is edited offline, it is not possible to check whether
the changes in the view violate consistency constraints in the SUM. We
have deliberately chosen to design the views in VITRUVIUS this way, since
the advantage of modularization would be lost if every view type contained
all the constraints that are necessary to prevent consistency violations. If
this were the case, the complexity of each view type would be equal to the
complexity of the total SUM metamodel. Furthermore, the constraints would
have to be synchronised manually with the correspondence mappings and
rules in the SUM. We expect that an automatic extraction of these constraints
is not possible or only possible in special cases. Thus the consistency of
a view in VITRUVIUS is not checked statically, meaning without applying
changes to the SUM and analyzing the result.

4.4. Development Process

The VITRUVIUS development process is an extension of the development
process of the Orthographic Software Modelling approach [7]. The process
distinguishes between the role of the methodologist and the role of the de-

veloper. It is of course possible that specialised instantiations of VITRUVIUS

contain further roles, depending on the domain that the development happens
in. For example, in a component-based software engineering process such
as Palladio [13], the developer role is refined to system architect, component
developer, system deployer, and domain expert. These roles are subsumed
as a single developer role, i.e., user of the modular SUM, in the VITRUVIUS

process as displayed in Figure 4.9.

97

4. An Approach for View-Based Engineering using VITRUVIUS

UML

JavaPCM

Sensor

MIR MIRmethodologist

developer

modular SUM
metamodel

defines

uses

VT VT

VT

VT VT

VT

custom view type

pre-defined view types

defines
VT view

Figure 4.9.: Roles in the VITRUVIUS Development Process

98

4.4. Development Process

Existing
Formalisms

Collect
Metamodels

Specify
Legacy

View Types

Elicit
Combined
View Types

Specify
Corres-

pondences

Specify
Combined
View Types

modular
SUM

metamodel

MIR

act create SUM
metamodel

Figure 4.10.: Process for the Creation of the Modular SUM Metamodel

4.4.1. Process Model

In this subsection, we will describe the process for the definition and usage
of the modular SUM metamodel and the view types. We will describe the
responsibilities and the process for each of the roles.

4.4.1.1. Methodologist

The methodologist role is responsible for the creation of the modular SUM
metamodel for a specific development scenario. This task includes the

99

4. An Approach for View-Based Engineering using VITRUVIUS

eliciation of the set of legacy metamodels that has to be supported in the
scenario and the definition of the mappings between these metamodels (cf.
Definition 4). In the example in Figure 4.1, these legacy metamodels are
PCM, UML, and Java (a model-based representation of Java has to be chosen
by the methodologist).

For each of the legacy metamodels, at least one legacy view type exists,
which has projectional-complete view type scope (after the definition of [56,
sec. 4.4]). The view type contains the complete legacy metamodel, which is
exposed as a view type by the SUM metamodel, and possibly augmented
with additional information. Legacy applications can use the view type as
an import/export function. In the example, the Java source view type is
able to display all elements of Java; architecture information is added in
Java annotations of the respective classes, which are elements of the Java
language.

Since a view type expects edit operations as a sequence of atomic editing
steps, it is not possible to export a model through a view, modify it and re-
import the modified model directly, since this state-based modification of
instances is not support by VITRUVIUS. To use external tools to modify
models, they either have to provide means to record the atomic editing steps,
which are compatible to the view type definition of VITRUVIUS, or use
algorithms for change detection to extract the atomic editing steps from a
difference calculation of two model versions.

Further existing legacy view types are integrated by the methodologist. In
the CBSE example, the different contexts of PCM (assembly, deployment,
usage), and the diagram types of UML (class diagram, package diagram,
. . .) are integrated as legacy view types.

The methodologist role aggregates information about existing metamodel
and elicits the semantic connections and overlaps that may exist between
them. The elicitation process is view-driven: The methodologist identi-
fies which kinds of information need exists, and, based on this informa-
tion, defines additional view types that aggregate information from several

100

4.4. Development Process

metamodels. Since semantic correspondences between the metamodels may
often not be represented formally in any of the metamodels, it is the task of
the methodologist to decide between the different methods for adding this
information to the modular SUM (see subsection 4.2.3).

As shown in Figure 4.9, the methodologist is responsible for the elicitation
and specificatino of all the parts of the modular SUM metamodel.

4.4.1.2. Developer

The developer uses the pre-defined view types, which have been specified
by the methodologist, to create, access, and manipulate the SUM for the
system under consideration. Depending on the specific development process
of the domain, the developer role can be sub-divided into several roles. In
the running example, the CBSE process defines the roles system architect,
component developer, system deployer, and domain expert. All these roles
use a subset of the view types of the SUM metamodel.

The developer role is primarily concerned with the elements at the model
level, such as the elements in the SUM and the views (see Figure 4.11). The
SUM metamodel cannot be changed by the developer. It is however possible
that developers define custom view types. This feature of VITRUVIUS

supports the use case that developers have information needs that have not
been foreseen by the methodologist (see next subsection).

4.4.2. View Type Categories by Developer Role

As described in the preceding subsection, the view types in VITRUVIUS can
also be distinguished by the developer role that specifies the view type. We
will call these categories pre-defined and custom.

4.4.2.1. Pre-defined View Types

The view types that are defined by the methodologist are called pre-defined

view types. These view types include the existing formalisms, which have

101

4. An Approach for View-Based Engineering using VITRUVIUS

create SUM metamodel

define view type

modify SUM metamodel

instantiate SUM

instantiate view

methodologist developer

«include»

«include»

Figure 4.11.: Use Cases for Developer Roles in VITRUVIUS

been included into the VITRUVIUS-based development process by the meth-
odologist. These are called legacy view types.

The pre-defined view types are seen as a part of the modular SUM me-
tamodel, since a SUM metamodel specification only makes sense with a
minimal number of view types, so that information from a SUM instance
can be displayed and modified. Pre-defined view types have the same devel-
opment cycle as the sub-metamodels of SUM metamodel. This means that
they are usually not modified during a development project that makes use
of the modular SUM metamodel.

4.4.2.2. Custom View Types

The SUM metamodel is a black-box entity for the developer role of the
VITRUVIUS development process. The only means of accessing and modify-
ing information in a SUM are instances of the pre-defined view types. It is
however possible that the developer would like to combine information from
the SUM in a way that has not been specified by the methodologist. Using

102

4.4. Development Process

the legacy view types, the developer can access information of the single
sub-metamodels, or use other pre-defined view types, and re-arrange this
information into new projectional or combined views, which are instances
of a newly created view type.

VITRUVIUS provides means for the definition of such user-specific, cus-

tom view types. These view types can of course not violate the black-box
principle of the SUM metamodel, so they are restricted to the available
view types and their editability definitions. In the example of Figure 4.9,
the developer creates a custom view type that combines information from
the component model (PCM) and performance result data (Sensor model).
Since the sensor view type is read-only (indicated by the direction of the
arrow), the resulting custom view type can only modify instances of the
PCM, but not the sensor data.

4.4.3. Collaboration

The benefits of a single underlying model and view-based modelling make
a new type of collaborative process for software development possible. In
this subsection, we will outline two possible collaboration workflows for the
VITRUVIUS approach in an asynchronous and a synchronous scenario.

In classical asynchronous check-out/check-in collaboration workflows,
developers retrieve working copies from a central repository, modify the
working copy, and resolve concurrent changes when checking in the modi-
fied artefacts. This is also feasable in the VITRUVIUS approach. Existing
metamodelling frameworks such as EMF [47] support versioning systems
and offer means of displaying the differences between varying versions
of model-based data [22]. Depending on the size and complexity of the
SUM, developers can choose to check out the complete SUM as a working
copy, or to work only on the relevant parts of the SUM that they plan to
modify. The modular structure of the SUM makes it possible to modify
the parts independently, and to analyse the impact of changes to parts of

103

4. An Approach for View-Based Engineering using VITRUVIUS

the SUM on the consistency with the rest of the SUM. In addition to the
internal consistency of the view that is used to manipulate the part of the
SUM, which is continuously checked, the consistency check with the rest of
the SUM is only performed before saving of checking in the modifications.
The repository infrastructure has to support this similar to the way that build
infrastructures support code-based development today.

In contrast to the asynchronous check-out/check-in collaboration work-
flow, synchronous online modelling can also be supported. The editability
scope of view types and views defines the actions that the developers can
perform. A framework that implements synchronous editing for VITRUVIUS

must offer ways of locking parts of the SUM. This locking can also be
done by checking out certain parts of the SUM and then editing these parts
synchronously [160]. After the editing process, a new revision is created by
a commit in the versioning system. This way, classical versioning systems
can be used together with the synchronous approach. The SUM itself should
be constructed while having in mind that parts of it may be checked out
and edited separately. The editing tools should be aware of other parts in
the SUM that may become inconsistent by the current modifications and
should warn the user (but should not prohibit the editing step). During
the restoration of consistence, edit operations of the user can be reverted
or modified, which may not have been the intent of the user; in this case,
the development framework should offer a possibility of interaction for
the developer to resolve the incosistency [92]. In combination with access
control, it is possible to show the user that editing steps may have an effect
on other parts of the SUM, which would have to be changed to preserve
consistency, but for which the user’s role has no editing permissions (see
subsection 4.4.4).

In the running CBSE example, the developer roles system architect and
component developer may work independently and modify the architecture
of the system using the componentn diagram view, or modify the object-
oriented design using a class diagram view. In the asynchronous case, the

104

4.4. Development Process

workflow is identical with working at the single component or class model.
Temporary inconsistencies are allowed in the views, can be persisted in
the local working copy, and are not resolved until the user checks in the
current set of changes. In the synchronous case, the developers are notified
immediately if changes to the SUM are performed by other developers, and
have the possibility to update the view in order to see the concurrent changes.
This kind of real-time online modelling [149] requires that the developers
are connected to a central repository, so that the notifications of changes
can be propagated to the views. The synchronous case has, however, the
advantage that, e.g., the component developer always has up-to-date about
the system architecture, and can estimate the impact of editing operations
immediately.

4.4.4. Access Control

The collaborative process that has been proposed in the previous subsection
can also be used to introduce access control for development artefacts into
the view-based developement process. As mentioned in preceding section,
editable custom views may warn the user if they create an inconsistent state
by editing a part of the SUM (the part that is affected by their custom view).
Since not all developers are familiar with all parts of the system, or should
not be allowed to change important parts like e.g. the software architecture,
the view-based approach can also be used to enforce access control on the
development artefacts.

If a developer tries to make a change to the system that would require a
change of parts of the SUM for which he or she has no editing permission,
the development framework would at first not allow the editing operation,
but create an issue that could be delegated to a senior developer that is
entitled to decide about this change. This could be realised technically
by using issue-tracking or task management software. Depending on the
collaboration scenario (synchronous, asynchronous or mixed), the developer

105

4. An Approach for View-Based Engineering using VITRUVIUS

may not be able to perform the editing operation or may not submit his/her
changes to the repository until the senior developer has allowed the edit
operation and/or made the appropriate changes to the rest of the SUM to
ensure consistency.

If a user edits a model, the modelling tool can assist the user in limiting
the part of the model that is visible in the editor, which is common practice
in graphical editors. This mechanism could be extended in a way that the
user can determine certain parts of an arbitrary model that he wants to edit
– for example by marking an area in a graphical editor. The parts of the
model that are removed from the view could then be abstracted in a specific
element that represents the not visible parts, like a kind of “firewall” behind
which the rest of the model is hidden, as seen in Figure 4.12. In the scenario
depicted there, to users are editing parts of a component model, but are only
allowed to see the part they are editing. Partial views are used here to enable
the following workflow:

À User 1 tries to bind the required interface of Component 2 to a
provided interface of a component that he is not allowed to see.

Á The framework then decides, based on a set of pre-defined rules, if
the the user is allowed to set this connection at all, and, if successful,
delegates to the user who is responsible for the respective part of the
component model, in our case User 2.

Â User 2 then decides to bind the incoming request to the provided
interface of Component 4. He could also decide to bind it to a
different component, depending on the nature of the request. The
workflow messaging system should also provide for a possibility of
sending messages to support the decision.

Additional constraints limit the kinds of elements that the modeler can
create or edit. If a user tries to create an element that would not be permitted

106

4.5. Evolution of the SUM Metamodel

User 1 User 2

À
Á

Â

Component 1

Component 2

Component 3

Component 4

Figure 4.12.: Distributed Component-Based Modelling with Component Façades

in his current view, the modelling environment can forbid the action and
abort the modelling step, or, if possible, offer auto-correction proposals.

The benefit of this representation would be that associations to elements
that are not in the current view could still be displayed, unlike in current
editors where the removal of elements also causes the removal of the as-
sociations to it from the view. This abstraction could also be useful for
collaborative modelling scenarios: If the user wants to model an association
that reaches outside the scope of his current view, which would normally be
forbidden, a collaborative environment could send a message to modellers
that have the appropriate view or permission to handle this kind of request.

4.5. Evolution of the SUM Metamodel

A SUM metamodel that has been created by the methodologist can be
instantiated multiple times to model different systems that use all or a subset

107

4. An Approach for View-Based Engineering using VITRUVIUS

of the metamodels and languages that are part of the SUM metamodel. In the
running CBSE example, multiple systems can be modelled using the SUM
metamodel that contains PCM, UML, and Java. Like every metamodel,
the SUM metamodel is also subject to modifications that affect the internal
structure of the SUM as well as the interface definition, i.e., the view types.
In the following, we will describe change scenarios for the SUM and the
view types. We will categorize these scenarios using the terminology of
Lientz and Swanson [110] (adaptive, perfective, corrective and preventive
changes).

4.5.1. Adding Additional View Points

Category of Change: Adaptive, Perfective
If additional view points have to be respected in the SUM metamodel,

e.g., if requirements on the system are modified, the SUM metamodel has to
be extended by new concepts, which can be represented in additional sub-
metamodels, additional correspondences between existing sub-metamodels,
and new view types. The elicitation of these metamodels and correspond-
ences follows the same principle as the development of a new SUM meta-
model: First, the methodologist collects the new view types that have to be
supported, and derives the additional metamodels and correspondences from
these view types.

The strong decoupling of the SUM metamodel and the view types allows
the methodologist to add elements to the SUM metamodel without breaking
the compatibility to existing tools that use the view type definitions of the
SUM metamodel as an interface description. Thus, compatibility problems
at the metamodel-level can be avoided by continuing to support the existing
view types.

Existing SUMs that are instances of the SUM metamodel have to be
co-evolved to the new version of the SUM metamodel. Depending on the
severity of the changes to the SUM, this requires manual effort by the

108

4.5. Evolution of the SUM Metamodel

methodologist (see subsection 4.5.3). In the case of additional changes, the
effort is usually small, since this kind of changes usually does not break
compatiblity to existing instances.

4.5.2. Converting Custom View Types to Pre-defined View Types

Category of Change: Perfective
Custom composed view types that have proven to be useful, since they are

repeatedly used by developers, can be integrated into the SUM metamodel
and become pre-defined view types. The methodologist can persist these
view types as composite view types, which are synchronised with existing
view types, or re-organise the synchronisation in such a way that the inform-
ation is related directly to the sub-metamodels in the SUM metamodel.

A further cause for integration of a custom view type is the enhancement
of the view with editability, which may not be possible due to editability
restrictions of the view types that are the source of the custom view type.
After the conversion to a pre-defined view-type, the view type can be en-
hanced by allowing additional edit operations, which could not be defined
before by the developer because of the black-box principle of the SUM.

4.5.3. Refactoring of the SUM Metamodel

Category of Change: Preventive
If a VITRUVIUS-based development process is installed in a software de-

velopment project, the modular SUM metamodel is created from the existing
metamodels that are used in the development, and additional information that
should be represented in the SUM. For the additional information, a model-
based representation is chosen and integrated into the SUM metamodel.
A SUM metamodel that has been created this way will contain controlled
redundancies, which are specified in the MIR elements and managed by the
synchronisation mechanisms of the implementations of VITRUVIUS.

109

4. An Approach for View-Based Engineering using VITRUVIUS

The decoupling of view types, which are used as an interface definition,
and the structure of the SUM metamodel makes it possible to change the
internal structure of the SUM metamodel without modifying the interface.
Thus, it is possible to refactor the SUM metamodel, for example to reduce
the redundancies by combining sub-metamodels into new, redundancy-free
metamodels. Candidates for the refactoring can be determined by an analysis
of the number of view types that access information from a certain subset of
the SUM metamodel. If there is a high number of combined view types for a
certain combination of sub-metamodels, it could be beneficiary to combine
these sub-metamodel into one metamodel. This reduces the number of
synchronisation operations that are necessary after an editing step to one
of the combining views. Furthermore, it is possible to consolidate the
consistency information into constraints of the new sub-metamodel, and
align the constraints of the view types with these constraints. Thus, offline
editability of the views without the need to synchronise with the SUM is
made possible while preserving the consistency of at least the sub-model
that is modified by the view.

In the example of Figure 4.9, this could be the case for the PCM meta-
model and the Sensor model, since the performance results in this scenario
relate only to the component-based architecture, but not to other parts of
the system description. The connection to the components to which the
performance simulation results relate is achieved via common identifiers,
which are stored in String attributes.

4.6. Example

In this section, we provide an extended example for the running CBSE
scenario. The application of the VITRUVIUS approach to the scenario is
shown in Figure 4.13.

The example describes a scenario where software is developed using PCM
as a component-based representation for the software architecture, UML

110

4.6. Example

PCM

UML

Java

Sensor
Model

SUM

MIR

MIR

MIR

MIR

C1

C2 C3

UML class diagram view

VT2

VT3

C1

C2

implements

implements

component-class implementation view

component developer

uses

use
s

/* @implements-component comp_1

*/

public class C2 extends C1 {

public static void main (String[] args) {

System.out.println ("Hello World!");

}

}

Java Source

VT1

programmer

uses

component diagram view

VT4

system architectuses

us
es

Pr
ob

ab
ili

ty

Time

simulation results

VT5

performance engineer

usesus
es

methodologist

de
fine

s

comp1

comp1comp2

Figure 4.13.: Example: View-centric Component-based Development Process

111

4. An Approach for View-Based Engineering using VITRUVIUS

as a class-based representation for the object-oriented design, and Java as
the implementation language. Furthermore, results of performance analyses
from PCM are persisted in a model-based format for sensor data (Sensor
Model). The development process itself is not model-driven, meaning
that the artefacts are developed independently of each other and are not
transformed into other representations.

The developer roles in this scenario are divided into the four types system

architect, component developer, programmer, and performance engineer.
The developer roles use (legacy) view types, such as component diagrams

(VT4) or class diagrams (VT2) to access the information in the metamodels,
but would also like to have integrated views, such as the component-class

implementation view (VT3) displayed in the example. The SUM metamodel
(indicated as the large circle in the middle) consists of four sub-metamodels
(PCM, UML, Java, Sensor Model) and also stores extrinsic information,
e.g., the class-component mapping, which is not part of any of the single
models. Developers can continue to use their legacy view types, such as
class diagrams and Java source code, but can also use combined views that
gather information from heterogeneous metamodels.

The SUM metamodel is created and maintained by the methodologist

role. The methodologist elicits the existing metamodels, view types, and
the correspondences between them. He defines the MIR elements that
formalise the correspondences, store extrinsic information and provide rules
for checking and restoring consistency between the sub-metamodels.

In a forward engineering scenario, the system architect first creates a
component model using the component diagram view. He or she uses a real-
time synchronous editor to develop the model and to discuss the layout with
other developers. Since performance is also an issue, he or she collaborates
with a performance engineer. The performance engineer uses a simulation
framework, such as SimuCom or EventSim, which store the results as an
instance of the SensorModel metamodel. The results can then be displayed
in a custom view that combines simulation results and information from the

112

4.6. Example

component model. Afterwards, the component developer defines the class
structure of the system, and a programmer implements the system using
Java.

System architects and component developers both use a component-class

implementation view to display the implements-relationship between classes
and components. For both roles, it is irrelevant where the information about
this relationship is stored – it could be persisted as an annotation on either
side, or in the Java code, or in a third metamodel that is part of the SUM –
the architect or developer can edit the implements-relationship transparently
in the custom view. Other information that is displayed in the view cannot
be edited, e.g. class or component names. If the architect or developer
removes a class or component from a view, it is not deleted in the SUM; a
deletion operation can only be performed in the specific component or class
diagrams.

The programmer has a pure code-view in Java and works with asyn-
chronous check-out/check-in versioning. There are however consistency
constraints that limit the modifications to the code: the code structure must
always be aligned with the UML class structure (cons2); e.g. if the user
adds new classes in Java, the UML class model must be updated accordingly.
Furthermore, the calls to methods of other classes (which may implement a
different component than the calling class) are only allowed if there is an
appropriate interface in the component model (cons3) and if the respective
components are bound to each other. In Figure 4.13, the code also contains
information about which component is implemented by a Java class in the
commentary; this information is woven into the textual view, but can be
stored anywhere in the SUM, similar to the implements relations in the
component-class view.

A view type can be understood as a metamodel, with the single views
as instances of this metamodel respectively (indicated by the solid arrow

). To create a view, a model transformation has to be executed from the
SUM to the view type. In the example of Figure 4.13, this is indicated as

113

4. An Approach for View-Based Engineering using VITRUVIUS

. In case of the legacy view type VT1 (class diagram), the view type
corresponds to only one sub-metamodel of the modular SUM metamodel;
hence, the view type is fully editable, and the transformation is the identity
relation. (Additional operations between the sub-models of the SUM may
be necessary so that all consistency constraints are satisfied after an editing
step.) The legacy view types enable the usage of existing modelling tools
and can also be used for im- and export. View type VT2 represents a more
complex example: A developer would like to have a “class-component im-
plementation view” that shows instances of two heterogeneous metamodels
(PCM and UML) and an implements-relation between them. The purpose of
this view type is to edit the mapping information between classes and com-
ponents, but not to edit the class or component model. Thus, the developer
creates a custom view with the following parameters:

• PCM components and UML classes can only be displayed, but not be
deleted or edited, e.g., renamed

• details of classes and components are omitted, e.g. attributes are not
shown for classes, only provided interfaces are shown for components

• the implements-relation is editable

The synchronisation between the view and the SUM depends on the design
decision of where to store the extrinsic information of the implements-
relation; since it is neither present in the PCM nor in the UML metamodel,
it could be stored as an annotation on either side, or in an additional artefact,
e.g., a mapping model, which would have to be added to the SUM then.
Let us assume that a methodologist has decided to store the information
as an annotation in the UML sub-model of the SUM. Since components
cannot be edited by a view of this view type, the transformation from
PCM to VT2 will be unidirectional; although classes themselves are not
modified by the view either, but the mapping information is added as an
annotation, the transformation from UML to VT2 is bi-directional. Neither

114

4.6. Example

of the metamodels has to be modified, since the existing UML annotation
mechanism is used. The user of the view need not know how the implements-
relation is technically represented in the SUM; it is even possible to change
the representation strategy without modifying the view type.

In general, readability and editability restrictions in views can also be
used to implement access control to the system: A software engineer who is
responsible for the object-oriented design of a system may not be authorised
to change the software architecture, since this is the responsibility of a
software architect. In the example, the component-class implementation
view type VT2 guarantees that the software engineer does not change the
architecture by making the components read-only, but gives the ability
to update the class-component mapping. This prohibits changes in the
descriptive system architecture by unauthorised developers; nevertheless,
the implicit architecture of the object-oriented structure of the Java code can
be influenced by modifications of the component developer or programmer.
These inconsistencies are detected by the declarative correspondences rules
in the MIR elements, and, if possible, resolved automatically.

The scenario presented in this example shows the benefits of a modular
SUM compared to a monolithic SUM: developers can use the languages to
which they are used (PCM, UML, Java), but are made aware that changes to
their parts can affect the whole system and lead to inconsistencies. These
inconsistencies are resolved with the help of the collaborative process. This
does not require a white-box view of the SUM: a Java programmer may
not know all parts of e.g. the component model, but only the parts that
are relevant for the part of the code on which he or she is working; access
control prohibits that the other parts are visible. Although the programmer
is not able to change the component model, even the parts that are visible,
he or she can request a change if it is necessary to fulfil the consistency
constraints, which will then be carried out by the system architect. Thus, the
explicit system architecture is always consistent with the implementation,
and the rest of the SUM.

115

5. Metamodel and Model Evolution

In this chapter, we will present a method for the description and handling
of the evolution of metamodels and models. After the motivation of the
problem in section 5.1, we will present a metamodel that can be instan-
tiated to describe changes to metamodels that are instances of Ecore, as
well as changes to instances of these metamodels (section 5.2). Based on
this metamodel, a change impact classification with a state-based analysis
method has been developed for Ecore-based metamodels, which is presented
in section 5.3.

5.1. Motivation

Model-driven development processes suffer from the problem of metamo-
del evolution and model co-evolution [48]. If metamodels are modified,
existing instances may become invalid, which means that they no longer
conform to the metamodels. Furthermore, existing model transformations or
tools, which are based on a certain version of metamodel, can also become
incompatible after changes to the metamodel.

Co-evolution approaches address this problem by describing changes to
metamodels in a well-defined format [34, 27], and by creating adaptation
scripts or transformations for existing instances [72]. For Ecore metamodels,
the most sophisticated approach is the Edapt tool by Herrmannsdörfer et al.
[70]. Edapt is a delta-based approach (see section 3.4), where refactoring
steps to metamodels are explicitly defined by the user and recorded to
generate adaptation scripts for existing models, and to estimate the impact
of changes to metamodels on existing instances.

117

5. Metamodel and Model Evolution

The delta-based refactoring mechanisms work well for manual changes
to metamodels, since the user can express the intent of a modification by
choosing the appropriate refactoring operation from a pre-defined set. Fur-
thermore, changes to metamodels do not occur frequently in model-based
development processes, since they require the adaption of the aforemen-
tioned artefacts. In VITRUVIUS, however, metamodels and transformations
are generated automatically from declarative textual descriptions, such as
the ModelJoin view type definitions (see section 6.2). On the one hand, the
automatic generation of metamodels and matching transformations allevi-
ates the problem of evolution, since these artefacts co-evolve automatically.
On the other hand, the development cycles for metamodels are significantly
shorter than in classical model-driven engineering, since new metamodels
are generated on-the-fly, instead of being modelled manually.

Thus, the automatic generation of view type metamodels in VITRUVIUS

poses three challenges in the context of metamodel evolution:

• State-Based Evolution: Since metamodels are generated automatic-
ally, the change impact analysis and co-evolution mechanisms cannot
rely on a manual delta-based description, but have to work in a state-

based way, comparing different versions of a metamodel.

• Evolution at the Instance Level: Metamodel evolution approaches
describe changes at the metamodel level and generate adaptation
scripts at the model level. The change description language is thus spe-
cific for Ecore as the fixed metamodel at the M3 level, and metamodels
as instances at the M2 level.

In the VITRUVIUS approach, it is however also necessary to describe
modifications to instances of metamodels, e.g., for editability of views,
or for the synchronisation mechanisms between the sub-models of a
SUM. Thus, changes have to be detected and described at the M1 level
for instances of arbitrary metamodels. A metamodel evolution mech-
anism is not usable here since it contains only change descriptions

118

5.2. A Change Metamodel for Metamodel and Model Changes

for the concepts of Ecore. A formalism for change descriptions at the
M1 level must be generic enough to express changes to instances of
arbitrary metamodels.

• Compatibility of View Types: Declarative descriptions of view types
in VITRUVIUS can be used to automatically generate transformations
that translate information from the SUM metamodel to a specific
view type. Such a transformation requires, however, a specific target
metamodel with a compatible structure. Although it is possible to
derive the view type metamodel from the declarative definition, an
existing view type metamodel may be used as the target of the view
type transformation. In this case, the compatibility of the declarative
definition of the view type with the existing metamodel has to be
checked to determine whether the transformation can be used with
the existing view type.

In the following sections, we will present a method for determining
metamodel conformity based on the change impact classifications of Her-
rmannsdörfer and our own previous work [27]. We will then present a
method for state-based determination of this classification.

5.2. A Change Metamodel for Metamodel and Model Changes

5.2.1. Requirements

A change operation to a metamodel, which is an instance of the Ecore
meta-metamodel, or to a model, which is an instance of an Ecore-based
metamodel, can only occur in a finite number of ways. As discussed in the
foundations section (see section 2.2), this is due to the fact that the meta-
metamodel, the Ecore metamodel is fixed, which means that it is normally
not modified or extended for the usage in tools and transformations. The
Ecore metamodel contains, of course, only a finite number of concepts, so
the kinds of changes can also be classified into a finite number of categories.

119

5. Metamodel and Model Evolution

Such a classification of the kinds of changes that are possible in Ecore-based
metamodels, and their instances, can be organised along several dimensions:

• Modelling Level: Changes can affect metamodels (M2) or instances
of metamodels (M1).

• Granularity: A change can describe a minimal difference or editing
operation, or a more complex operation, which carries higher semantic
information.

• Impact: Changes affect the internal consistency of models, or the
conformance of instances and other models to the model under change.

Change descriptions for the co-evolution of metamodels and models,
such as in [72] and [27], often only offer possibilities for the description of
changes to metamodels. As such, they are specific to the meta-metamodel
that is used in the approach, usually MOF, UML, or Ecore, and describe the
effects of specific refactoring operations, or other, more complex changes.
The approach of Cicchetti [34] can be used to describe changes to arbitrary
models. Change descriptions are generated automatically for all the elements
in the respective metamodel, so a type-safe description of changes is possible,
but due to the automatic generation, the semantics of complex changes are
not considered, and the change descriptions contain only atomic changes
(add/delete/change). The diff metamodel of EMF Compare [22] uses a
mixture of atomic changes and Ecore-specific changes such as containment
or resources. The DeltaEcore tool [139] follows a similar approach and
offers a textual DSL for the definition of change descriptions between
arbitary instances of MOF-based metamodels.

In contrast to the description of changes in a textual language, changes
to metamodels and models are often described as models themselves, so
they can be used as input for further model transformations. The approaches
of Cicchetti [34] and our previous work [27] also follow this approach.
Herrmannsdörfer et al. [72] use a set of change operators, which can be

120

5.2. A Change Metamodel for Metamodel and Model Changes

invoked in the Edapt plug-in in Eclipse the perform metamodel changes.
These operators can also be seen as a classification of change types and
could be described in a model-based format, although Herrmannsdörfer et
al. have not explicitly included this option.

5.2.2. Structure of the Metamodel

We also follow the approach of describing changes in a model-based format
and have created an extensible change metamodel (see Figure 5.1), which
can be used for Ecore itself, and for any Ecore-based metamodel. Since
the topmost level of the metamodel hierarchy in MOF is self-descriptive,
the Ecore metamodel can be seen as an instance of itself. Our change
metamodel offers the solution that covers the aforementioned dimension:
It can be used for several modelling levels (M2 and M1), since changes
to Ecore-based metamodels can be described with the same formalism as
changes to instances of such metamodels; changes to metamodels are a
special case of changes to models, where the metamodel is Ecore itself. The
change metamodel also covers several levels of granularity, since it contains
concepts for the description of fine-granular atomic changes and or several
coherent changes, which together form a sequence of changes. Finally, the
metamodel can be specialised into metamodel-specific parts, which can be
used to describe the specific impact of changes in the respective domain of
the metamodels.

The change metamodel consists of a core part, which is called metamodel-

independent change metamodel (see Figure 5.1). This core is specialised
by metamodel-specific change metamodels (see Figure 5.2), whose classes
inherit from the abstract classes in the core part. The metamodel-independent
part is reduced to the most abstract kinds of changes that can occur in Ecore-
based instances of metamodels. As discussed in section 2.2, the only classes
in the Ecore metamodel that have a potency of 2, meaning that instances
of these classes can themselves have instances, are the classes EClass and

121

5. Metamodel and Model Evolution

ModelElementChange

ComplexChange AtomicChange〈E〉
→ affectedElement:E

ExistenceChange〈E〉
extends AtomicChange〈E〉

type:ExistenceChangeType

FeatureChange〈E, V〉
extends AtomicChange〈E〉

type:FeatureChangeType

AttributeChange〈E, V〉
extends FeatureChange〈E, V〉

changeValue:V

ReferenceChange〈E, V〉
extends FeatureChange〈E, V〉

→ changeValue:V

«enumeration»
ExistenceChangeType

CREATE
DELETE

«enumeration»
FeatureChangeType

ADD
REMOVE
CHANGE
UNSET

{ordered}1..∗

subchanges

Figure 5.1.: Metamodel-Independent Change Metamodel

122

5.2. A Change Metamodel for Metamodel and Model Changes

EStructuralFeature with its subclasses EReference and EAttribute. Thus,
the two main classes in the metamodel-independent change metamodel are
ExistenceChange and FeatureChange, which concern these two types of
elements.

The main difference between instances of classes and instances of features
at the M1 level is object identity: While objects (instances of classes) possess
object identity, and can be seen as first-class elements, features such as refer-
ences and attributes can only exist in the context of their containing objects.
This can be exemplified by the generated Java code of Ecore metamodels:
While Ecore objects are represented by Java objects, references and attrib-
utes are only fields in the objects, which do not have object identity. This
fact is represented in the change metamodel by the class ExistenceChange,
which represents the creation and destruction of objects. The type of change
(CREATE/DELETE) is modelled as the enumeration-typed attribute type.
While objects can be created and deleted, the same is not true for instances
of features: Attribute values and links (instances of references) can neither
be created nor deleted, but only changed, and, if the property unsettable is
set to true for the feature in the metamodel, can be put into the unset state.
(The unset state is a special state in Ecore, which is different from setting
the feature to null.) For single-valued features, the change type CHANGE

indicates a modfication. For multi-valued features, the change types ADD

and REMOVE indicate that elements are added to or removed from the set
of instances and values.

The change types ExistenceChange and FeatureChange constitute the
kind of atomic changes. Although the difference between two models can be
always expressed with these elementary operations [1], such a description
may be undesirable, since atomic changes carry only little semantic inform-
ation. For example, a change in an Ecore-based metamodel during which
an attribute is moved up to a superclass (called pull up feature after Fowler
et al. [51]) should be perceived as a single contingent change operation.
Using only atomic changes, it would, however, have to be expressed as two

123

5. Metamodel and Model Evolution

elements of the type FeatureChange: The containment link between the
attribute and the containing class is deleted for the original class and created
for the superclass. Since containment is stored on the containing side of the
association, and since links do not have object identity, this change cannot be
expressed as a single atomic change, but has to be expressed as two changes:
the removal of the containment link in the subclass, and the addition of a
containment link in the new containing superclass. It should also be noted
that an atomic change can damage the consistency of the model, so that
several atomic changes may be necessary to restore consistency in a model;
in the example here, deleting the containment link without setting a new link
would lead to a feature that is not contained in a class, which leads to an
invalid metamodel (that violates the constraint of Ecore that every feature
has to be contained in a class). The pull up feature change is an example
for a complex change, which consists of several atomic changes, but has
specific semantic information attached to it. In this case, we say that the
complex change subsumes a sequence of atomic changes. Depending on the
purpose of the change analysis, complex changes can be used to cover the
relevant cases for co-evolution, impact analysis, synchronisation, or other
purposes. The process of deriving complex changes from a series of atomic
changes is also called semantic lifting by Kehrer et al. [83].

In the change metamodel presented in this section, complex changes are
represented by the abstract element ComplexChange, which is specialised
by inheritance in the metamodel-specific change metamodels. A Complex-

Change consists of at least one other change element, which can again be a
complex change, or an atomic change.

5.2.3. Specification of Metamodel-Specific Submodels

If changes to a metamodel shall be described with the change metamo-
del presented in this section, a metamodel-specific change metamodel (see
Figure 5.2) has to be created first. For the atomic change types, the spe-

124

5.2. A Change Metamodel for Metamodel and Model Changes

cific change metamodel is straightforward: For each EClass, a class that
specialises the class ExistenceChange has to be created, and for each ES-

tructuralFeature, a specialization of FeatureChange has to be created. The
reference affectedElement points to the element that is subject to modific-
ation. For ExistanceChanges, the affected element is the instance that is
created or deleted; for FeatureChanges, the affected element is the instance
that contains the attribute value or the link, whose new value is stored in the
field changeValue.

Ecore contains the concept of generics, with which we have parameterised
the classes ExistenceChange and ParameterChange, so that the type of af-

fectedElement can be specified by the subclasses in the metamodel-specific
change metamodels. Thus, the subclasses of ExistanceChange and Feature-

Change are typed, with the limitation that any EObject can be inserted for
the parameters E and V . The type safety for E and V cannot be achieved
by generic supertypes of theses parameters, since there is no common su-
perclass of all metamodel classes and features except EObject. Since the
straightforward definition of metamodel-specific atomic changes is not pos-
sible with the means of Ecore, we have chosen a generator approach similar
to the one of Cicchetti [34]: For each class and feature in a metamodel, the
appropriate atomic change elements are generated automatically, along with
OCL constraints that guarantee the right type for the affectedElement and
newValue features of the change models. The algorithm for the creation of
the metamodel-specific change metamodels is displayed in pseudo-code in
Algorithm 1. In contrast to the approach of Cicchetti, the classes in the gener-
ated metamodels can be distinguished by their supertypes ExistenceChange

and FeatureChange, instead of naming conventions. Furthermore, the in-
formation whether a change is additive/destructive or changing/unsetting is
not represented by distinct elements at the meta-level, but at the instance
level of the change model, as an attribute value in the enumeration-typed
attribute type.

125

5. Metamodel and Model Evolution

Algorithm 1 Generation of an Atomic Change Metamodel D for a Metamo-
del M
Require: M = (CLASSM,ATTM,REFM)

for all c ∈ CLASSM do . c is a class name
if ¬isAbstract(c) then. only non-abstract classes can be instantiated

dc ∈ CLASSD← c+“Change” . naming convention
dc ≺ ExistenceChange. dc inherits from metamodel-independent

classes
genericTypeT (dc)← tc

end if
for all a : tc→ t ∈ ATTM do

if ¬isDerived(a) then . derived features cannot be changed
directly

if t = Boolean then
da ∈ ATTD←“Is”+a+“Change”

else
da ∈ ATTD← a+“Change”

end if
da ≺ AttributeChange
genericTypeT (da)← tc
genericTypeV (da)← t

end if
end for
for all r ∈ REFM,associates(r) = 〈c,c′〉 do

if ¬isDerived(r) then
dr ∈ REFD← r+“Change”
dr ≺ ReferenceChange
genericTypeT (ra)← tc
genericTypeV (ra)← c′

end if
end for

end for
Ensure: D = (CLASSD,ATTD,REFD)

126

5.2. A Change Metamodel for Metamodel and Model Changes

MM-independent
Change Metamodel

(see Figure 5.1)

Ecore-specific CM

atomic

complex

PCM-specific CM

atomic

complex

Ecore

PCM

metamodel
generation manually defined

Figure 5.2.: Example for Metamodel-Specific Change Metamodels (CM) that inherit
from the Core Metamodel: Ecore-CM and PCM-CM

127

5. Metamodel and Model Evolution

The metamodel-independent change metamodel contains the element
ComplexChange, which is used to express the semantic connections between
a sequence of atomic changes. In contrast to the atomic changes, which
can be derived from any metamodel using the algorithm displayed in Al-
gorithm 1, the semantic connection between atomic changes is specific for
the domain to which the metamodel belongs, and specific for the purpose of
the change description. For example, a change metamodel for Ecore (which
is used to express differences between Ecore-based metamodels) serves the
purpose of describing metamodel evolution. This is used for co-evolution
of existing instances, and for impact analysis of how instances are affected
by changes at the metamodel level, which will be described in detail in
section 5.3. Change metamodels for other metamodels, such as PCM or
UML, as in the running example of this thesis (see Figure 1.1 on page 4)
can be used to estimate the effects on existing simulations, transformations,
or synchronisation in the context of a modular single underlying model in
VITRUVIUS. Since the elements are domain- and purpose specific, the com-
plex change elements at the metamodel level are specific to the semantics of
the metamodel, and have to be specified manually. At the instance level, the
complex change descriptions can either be determined by recording changes
in a modelling tool that supports them, or by analysis of the atomic changes.
In section 5.3, we will present a method for deriving complex changes from
atomic changes to Ecore-based metamodels.

5.2.4. Change Sequences as Delta-Based Representation of Model

Changes

The instances of the change metamodel describe the difference between two
models, usually two versions of the same model, as a sequence of atomic
and complex change operations. The change metamodel is agnostic of the
way that this change sequence is determined; it can either be determined by
tracing change operations in an editor, or by the comparison of two existing

128

5.2. A Change Metamodel for Metamodel and Model Changes

versions of a model. Indepently of the way that a change description is
determined, a change model is always a complete delta-based description of
the difference of two models. This property is described in Figure 5.3: If
a change model describes the difference between a model M and a model
M′, then the model M′ can be calculated (indicated as merge in the figure)
from the information in M and the change model. The change descriptions
are invertible, since every change can be undone by a corresponding inverse
change: CREATE operations can be undone by DELETE operations, ADD

operations by REMOVE operations, and so on. It is, however, not possible in
general to derive the inverse of a change model (or a single change element)
automatically. For example, the inverse of a delete operation cannot be
determined if the source model is not known, since the properties of the
deleted element are not contained in the change model itself; thus, the
change model cannot be used to determine M from M′. A change model is
only automatically invertible in the special case that none of its operations
leads to a loss of information. For the Ecore-specific change metamodel, this
is true for the operations that have safe inverses according to the catalogue
of Herrmannsdörfer [72].

The single change elements that are instances of subclasses of ModelEle-

mentChange have to be arranged in a sequence to form a complete change
description. This is why the reference subchanges in the change metamodel
is ordered.

Definition 13 (Change Sequence). Let D= {d ∈CLASS | d≺ModelElement-

Change be the set of classes in the change metamodels that inherit from

the metamodel-independent change metamodel. A change sequence D is a

sequence of instances of this classes:

D = (d1,d2, . . . ,dn)

where di ∈ I(D) and i,n ∈ N, i≤ n. For every change sequence D, there

exists an evaluation function evalD : I → I , which applies the change

129

5. Metamodel and Model Evolution

M merge M′

Change Model

M

Change Metamodel

instance of instance of

instance of

Figure 5.3.: Applying a Change Model to a Model M to obtain the new version M′

sequence to instances of metamodels, so that a change sequence D that

describes the difference between models M,M′ ∈I can be applied to M to

calculate the model M′:

evalD(M) = M′

The description of the difference between two models as a sequence of
changes is ambiguous: Multiple change sequences can describe the same
change between two models. As a pathologic example, a change sequence
that contains two ExistenceChange elements that create and delete the same
element, describes the same change as an empty change sequence.

Definition 14 (Equivalence and Minimality of Change Sequences). Two

change sequences D,D′ are called equivalent if the evaluation of these

sequences yields the same result for all possible instances:

D∼ D′⇔∀M ∈I : evalD(M) = evalD′(M)

130

5.2. A Change Metamodel for Metamodel and Model Changes

A change sequence D is called minimal iff

∀D′ : D∼ D′⇒ |D| ≤ |D′|

Depending on the layout of the metamodel-specific change metamodel,
there may be several minimal change sequences for an actual change, since
a sub-sequence of atomic changes can be replaced by a complex change that
subsumes the atomic changes. There may, however, be different possible
combinations for the subsumption of atomic to complex changes. For
example, if there are three atomic change types {a,a′,a′′} and two complex
changes c,c′ with c.subchanges= {a,a′} and c′.subchanges= {a′,a′′}, then
there can be two equivalent, minimal changes {c,a′′} ∼ {a,c′}.

5.2.5. Delta-based vs. State-Based Change Description

5.2.5.1. Comparison of Methods

To determine a change sequence between any two models, which can be
two versions of one metamodel, two fundamental methods exist: First, the
changes can be determined by tracking the changes during the editing of the
model (delta-based comparison), and second, the resulting models can be
compared directly (state-based comparison). The description of changes
with the change metamodel presented in section 5.2 is based on a sequence
of change operations. Both methods can be used in conjunction with the
change metamodel, since the change metamodel is agnostic of the way that
the change descriptions are determined. Each of the methods has advantages
and disadvantages, which are displayed in Table 5.1: Delta-based approaches
that capture the editing operations of a user have the advantage that the user
can be prompted to specify his or her intent during the change operation, as
it is the case in the Edapt approach by Herrmannsdörfer [72]. If the editing
tool captures only atomic operations, or if the developer does not make
use of the advanced operations, then this advantage does not apply. Thus,

131

5. Metamodel and Model Evolution

Delta-based State-based

+© user intent can be captured
with complex change
operations

+© can be used with generated
metamodels

+© change sequence does not
have to be calculated

+© minimal (for atomic
changes)

−© only applicable if
metamodels are edited
manually

−© change sequence has to be
determined by diff tool

−© generally not minimal
−© tool support in editor is
necessary

Table 5.1.: Comparison of Methods to Determine a Change Sequence Between Two
Metamodels

the quality of the change description depends on whether the developer
plans the editing steps well. In general, a recorded change sequence is not
minimal, since a developer can perform editing steps that are reverted later
on. Furthermore, the delta-based approach is not applicable if models are
generated automatically, or if the editing tool does not support the recording
of changes. State-based analysis tools such as EMF Compare1 [22] are
independent of model editing tools. The result of such a comparison yields
a minimal change description, which, however, only contains low-level
differences between metamodels, which can each

The algorithms of EMF Compare contain heuristics to detect basic refact-
oring steps, such as moving an element into another container. For more
complex changes, a post-processing of the change sequence is necessary.

1http://www.eclipse.org/emf/compare/doc/21/developer/developer-guide.html,
retrieved 26 May 2014

132

http://www.eclipse.org/emf/compare/doc/21/developer/developer-guide.html

5.2. A Change Metamodel for Metamodel and Model Changes

5.2.5.2. Mapping of EMF Compare Changes to the Change

Metamodel

To determine the changes that are necessary to gain one model from another,
we use EMF Compare to calculate the difference between two models. EMF
Compare also stores information in a model-based format, so that difference
descriptions are instances of the comparison metamodel of EMF Compare.
A comparison model stores information about the difference between two
models, and also matches and conflicts, which are used for the merging
of three-way comparisons of models. For our considerations, a two-way
comparison is sufficient, so only the class Diff of the comparison metamodel
and its subclasses have to be regarded. These classes can be mapped exactly
to the atomic changes of the change metamodel (see Table 5.2).

EMF Compare does not distinguish between the creation or deletion of
an element and the addition or removal of a reference, as the change meta-
model does. It is possible to model every creation or deletion of elements
as a change in a reference due to the strict containment hierarchy of EMF;
for changes in the root element of a resource, EMF Compare contains the
class ResourceAttachmentChange. Furthermore, the change kinds in EMF
Compare do not represent distinct change operations, but are used to ex-
press multiple actions: In contrast to our change metamodel, changes in
containment are expressed by the special kind of change (MOVE). This
change kind is mapped to two seperate atomic changes of the type ECon-

tainingClassChange or EPackageChange, depending on whether a feature
or a class/package is moved in our change metamodel. The MOVE kind
is, however, also used to express the re-ordering of a multi-valued feature.
Apart from the special meaning of MOVE when containment is changed,
the change kind CHANGE also has an ambiguous meaning depending on
the kind of feature that is changed: In mono-valued features, CHANGE

represents a modification of the value, while for containment references, the
same is expressed by MOVE.

133

5. Metamodel and Model Evolution

EMF Compare Change Metamodel

ResourceAttachmentChange
ADD ExistenceChange(CREATE)
DELETE ExistenceChange(DELETE)
MOVE —
AttributeChange
ADD AttributeChange(ADD)
CHANGE AttributeChange(CHANGE)
DELETE AttributeChange(REMOVE/UNSET)
MOVE AttributeChange(CHANGE) (re-ordering)
ReferenceChange
ADD ReferenceChange(ADD), ExistenceChange
CHANGE ReferenceChange(CHANGE)
DELETE ReferenceChange(REMOVE), ExistenceChange
MOVE ReferenceChange(CHANGE) (re-ordering)

ReferenceChange(DELETE, ADD) (containment)

Table 5.2.: Mapping of EMF Compare Diff Elements to the Change Metamodel

In EMF Compare, the creation and deletion of elements is expressed as
a ReferenceChange. This unintuitive wording arises by the fact that all
Ecore instances have to follow a strict containment hierarchy, and every
element except the root package has to be contained in another element.
The EMF Compare metamodel treats these cases specially with the class
ResourceAttachmentChange, which describes the fragementation of mod-
els, which means that a subpackage of a model is moved to a resource of
its own. Furthermore, the containment relation is treated especially by the
additional MOVE kind. In our change metamodel, we have refrained from
treating containment specially to preserve the generality of the model. In
the Ecore-specific change metamodel, these changes are represented by the
aforementioned change classes for the explicit containment references.

134

5.2. A Change Metamodel for Metamodel and Model Changes

EcoreChangeSequence complex changes
(see Appendix B)

atomic
changes

(see Table 5.3)

ComplexChange
(see Figure 5.1)

EcoreChange

severity:SeverityKind

AtomicChange
(see Figure 5.1)

SeverityKind

NON_BREAKING
BREAKING_RESOLVABLE
BREAKING_NOT_RESOLVABLE

Figure 5.4.: Structure of the Ecore-Specific Change Metamodel

5.2.6. Example

In this subsection, we will give two examples of change metamodels: The
change metamodel for Ecore, which is used for the description of metamodel
evolution, and the change metamodel for the Palladio Component Model
(PCM).

Ecore The modification of a metamodel is a special case of model evolu-
tion, where Ecore is the metamodel of the models that are modified. Apart
from that, the description of changes is identical to the description of changes
of other models. The Ecore metamodel is relatively small, with 12 classes,
30 attributes, and 18 references. The atomic change classes for these ele-
ments are displayed in Table 5.3. While this table has been created manually,
the atomic change classes for a metamodel can also be created automatically
using the method presented in section 5.3.

The complex change classes for a specific metamodel can, however, not
be determined automatically, since they are specific for the semantics of the

135

5. Metamodel and Model Evolution

ExistenceChange AttributeChange ReferenceChange

(EModelElement)* EAnnotationsChange
(ENamedElement)* NameChange
(ETypedElement)* IsOrderedChange

IsUniqueChange
UpperBoundChange
LowerBoundChange
IsManyChange
IsRequiredChange

ETypeChange

(EStructuralFeature)* IsChangeableChange
IsVolatileChange
IsTransientChange
DefaultValueLiteralChange
DefaultValueChange
IsUnsettableChange
IsDerivedChange

EContainingClassChange

EClassChange IsAbstractChange
IsInterfaceChange

ESuperTypesChange
EStructuralFeaturesChange
EOperationsChange

EOperationChange EParametersChange
ETypeParametersChange
EExceptionsChange

EParameterChange
EReferenceChange IsContainmentChange

IsContainerChange
IsResolveProxiesChange

EOppositeChange
EReferenceTypeChange
EKeysChange

EAttributeChange IsIDChange EAttributeTypeChange
EPackageChange NsURIChange

NsPrefixChange
EClassifiersChange
ESubPackagesChange

EFactoryChange EPackageChange
EDataTypeChange IsSerializableChange
EEnumChange ELiteralsChange
EEnumLiteralChange ValueChange

InstanceChange
LiteralChange

EAnnotationChange SourceChange DetailsChange
EStringtoString-
MapEntryChange

KeyChange
ValueChange

* Abstract classes, for which no change classes are generated, are listed here in italics to group
the attribute and feature changes.

Table 5.3.: Atomic Change Classes in the Ecore-specific Change Metamodel
(without Generics)

136

5.2. A Change Metamodel for Metamodel and Model Changes

metamodel and the purpose of the change description. Herrmannsdörfer et
al. have defined a catalogue of change operations to Ecore-based metamod-
els [72], which consists of 61 change operators. The full table of change
operators is displayed in Appendix B. Each of these operators is represented
by a class in the Ecore-specific change metamodel. These classes inherit
from ComplexChange and contain OCL constraints that limit the types and
ordering of the contained atomic changes. For example, the subchanges
of a pull up feature operation have to contain a set of arbitrary EStructur-

alFeatureChange elements of type DELETE, and one of the type CREATE,
for which the containing classes of the deleted features are (possibly indir-
ect) subclasses of the containing class of the added feature. The affected
elements (features) must have the same name, type, and multiplicity.

A concrete example can be seen in Figure 5.5: A part of the IMDB
metamodel (see Figure C.2) is modified by introducing the new abstract
class Person as a superclass of existing classes User and Actor. Then,
the common attribute name is moved from these two classes to the new
superclass. The table below the class diagrams in Figure 5.5 shows a
change sequence that consists entirely of atomic changes, and that describes
the change between the two versions of the metamodel depicted in the
figure. The elements 1.–10. can be contained in one root change sequence
element, which is of the type EcoreChangeSequence (see Figure 5.4). The
example change sequence shows the special case of the pull up feature

operation: In the Ecore-specific change metamodel, PullUpFeatureChange

is a change type that inherits from ComplexChange. Thus, it can contain
several other change elements in its reference subchanges. In this example,
the change elements 6.–10. can be subsumed as one element of the type
PullUpFeatureChange. By subsuming the elements into a complex change,
the effect of the change sequence on the metamodel is not altered in any
way. The additional information that these changes are grouped to a pull up

feature change is, however, relevant for the impact of the change sequence
on existing instances of the metamodel.

137

5. Metamodel and Model Evolution

User
name:EString
userName:EString
email:EString

Actor
name:EString

User
userName:EString
email:EString

Actor

Person
name:EString

before change

after change

Change type affected el. value

1. EClassChange CREATE
2. NameChange CHANGE (new class) Person
3. IsAbstractChange CHANGE Person true
4. ESuperTypesChange ADD User Person
5. ESuperTypesChange ADD Actor Person
6. EAttributeChange DELETE User.name
7. EAttributeChange DELETE Actor.name
8. EAttributeChange CREATE
9. ENameChange CHANGE (new attr.) name

10. EContainingClassChange ADD name Person

Figure 5.5.: Example for a Metamodel Change: Pull Up Feature

138

5.2. A Change Metamodel for Metamodel and Model Changes

PCM In this paragraph, we will give an example of a change description
at the instance level. We use the Palladio Component Model [134], which is
part of the running example in this dissertation, and the standard example
MediaStore [94] to illustrate the description of a change to an instance
of PCM. Since the PCM is a larger model (∼100 classes), we have not
reproduced the complete atomic change metamodel for PCM here; the
adjacent elements of the change descriptions can, however, be derived using
the naming conventions introduced in Algorithm 1.

The change to the PCM instance is diplayed in Figure 5.6: The two
basic components UserMgmt and DBAdapter are connected in a component
assembly that directly links their provided and required roles that are of the
interface type IUserDB. The change scenario is a standard scenario that is
included in the example workspace of the PCM bench: A database caching
component DBCache is inserted between the user management component
and the database. Even this small change leads to quite a high number of 16
atomic changes, as displayed in the table of Figure 5.6: First, the connector
between the roles of the user management and the database, respectively,
is deleted (1.). Then, a new assembly context is created, given a name,
and connected to the already existing DBCache component (2.–4.). After
this, the new connectors between user management and cache (5.–10.) and
between cache and database (11.–16.) are created, named, and connected to
the appropriate roles.

The example shows that meaningful complex changes are dependent on
the semantics of the metamodel: In this case, a direct connection to an
assembly was replaced by an intermediate component in a new assembly
context. This modification can be described by a single complex operation,
if this case represents a frequent modification type in component modelling.
The complex change would only need the information of the connector that
has to be removed and the component that has to be inserted. Of course,
additional constraints have to guarantee that the component to be inserted
has each a required and provided role of the compatible type as the ones of

139

5. Metamodel and Model Evolution

the connector that it replaces. This can easily be modelled in OCL for each
complex change type. An analysis of meaningful change types for PCM has,
however, not been conducted yet and is subject to future work.

5.3. A Change Impact Classification for Metamodel Evolution and

Reuse

In this section, we will present a change impact classification for Ecore-
based metamodels. This classification can be used in two ways: First, to
determine if co-evolution efforts are necessary for existing instances of a
metamodel, and second, to determine whether existing metamodels can be
re-used in scenarios where metamodels are generated automatically. We will
first introduce change severities for Ecore-based metamodels, which will
then be used for a difference-based conformance checking that can be used
on any two versions of a metamodel, independently of the way in which the
metamodel has been modified.

5.3.1. Severities of Changes to Ecore-based Metamodels

Changes to Ecore-based metamodels have an impact on existing models
that are instances of these metamodels: Changes to the metamodel may
break the instance-of-relation between existing models and the metamodels,
so that existing instances contain features that are no longer present in the
new version of the metamodel, or do not possess values for mandatory
features that have been added, or violate other constraints of the metamodel.
Since the metamodel developer who is responsible for the evolution of the
metamodel usually does not know all existing instances of a metamodel,
the impact of a metamodel change has to be estimated as a worst-case
assumption, which is not limited to an actual set of instances, but describes
the possible impact in an instance-independent way. In our previous work
[27], we have described changes to metamodels based on MOF 1.4 [118]
using a change metamodel, similar to the one presented in section 5.2. We

140

5.3. A Change Impact Classification for Metamodel Evolution and Reuse

IUserDB

IUserDB IUserDB

before change

after change

UserMgmt DBAdapter

UserMgmt DBCache DBAdapter

Change type affected el. value

1. Assembly-
ConnectorChange

DELETE

2. AssemblyContextChange CREATE
3. NameChange CHANGE (new el.) DBCache
4. EncapsulatedComponent__-

AssemblyContextChange
CHANGE DBCache DBCache

5. Assembly-
ConnectorChange

CREATE

6. NameChange CREATE (new el.) Mgmt_DBCache
7. RequiringAssemblyContext_-

AssemblyConnectorChange
CHANGE Mgmt_DBCache DBCache

8. ProvidingAssemblyContext_-
AssemblyConnectorChange

CHANGE Mgmt_DBCache DBCache

9. RequiredRole_-
AssemblyConnectorChange

CHANGE Mgmt_DBCache (req. role of User-
Mgmt)

10. ProvidedRole_-
AssemblyConnectorChange

CHANGE Mgmt_DBCache (prov. role of DB-
Cache)

11. Assembly-
ConnectorChange

CREATE

12. NameChange CREATE (new el.) DBCache_Adpt
13. RequiringAssemblyContext_-

AssemblyConnectorChange
CHANGE DBCache_Adpt DBCache

14. ProvidingAssemblyContext_-
AssemblyConnectorChange

CHANGE DBCache_Adpt DBCache

15. RequiredRole_-
AssemblyConnectorChange

CHANGE DBCache_Adpt (req. role of DB-
Cache)

16. ProvidedRole_-
AssemblyConnectorChange

CHANGE DBCache_Adpt (prov. role of DBAd-
apter)

Figure 5.6.: Example for a Change in an Instance of the Palladio Component Model

141

5. Metamodel and Model Evolution

have categorised the effects of metamodel changes into three general change

severities, which are not specific to the MOF 1.4 meta-metamodel; thus,
these severities can also be applied for the impact analysis of changes to
Ecore-based metamodels.

Definition 15 (Change Severities). The severity of metamodel changes

describes the possible impact on instances of the metamodel. We specify the

following three severity levels:

• Non-breaking (NB) changes do not change metamodels in a way that

existing models become invalid instances of the metamodel. Most

additive changes have this change severity.

• Breaking and Resolvable (BR) changes may invalidate existing in-

stances, but a co-evolution operation can be derived automatically

from the change, so that existing instances can be migrated to a state

where they are valid instances of the new version of the metamodel.

• Breaking and not Resolvable (BN) changes may invalidate existing

instances. If instances are invalidated, manual interaction is neces-

sary to migrate them.

The severities are ordered in the following way:

NB < BR < BN

For every change description d ∈ I(D) at the instance level, there exists a

function that determines the change severity:

severity : I(D)→{NB,BR,BN}

Breaking changes do not necessarily invalidate any possible instances of
metamodels, but only those that actually contain instances of the elements
that are changed. The change severities express that, in the case of breaking

142

5.3. A Change Impact Classification for Metamodel Evolution and Reuse

Herrmannsdörfer et al. [72] Burger et al. [27]

model preserving non-breaking
safely model-migration breaking and resolvable
unsafely model-migration breaking and not resolvable

Table 5.4.: Change Severities

changes, there are possible instances that may be affected, or in the case of
non-breaking changes, that there cannot be any instances that are affected
by the change.

Herrmannsdörfer et al. [72] have also defined three categories for metamod-
els changes (see Table 5.4), which are however not identical to the change
severities of Definition 15, since the purpose of the change representation ist
not the impact analysis, but the generation of co-evolution migration scripts.
While model-preserving changes are identical to non-breaking changes,
the difference between safely and unsafely model-migration changes is
determined by the information loss in the models during a co-evolution
step. While safely migrating changes do not lead to loss of information,
unsafely migrating changes may do so. Thus, the semantics of breaking and
model-migration are not identical.

5.3.2. Severity of Change Sequences

The notion of severity for changes to metamodels describes the effect of
single change operations to a metamodel. The three severities presented in
subsection 5.3.1 can also be applied to sequence of changes to describe their
effect on metamodels. The severity of a sequence is, of course, dependent
upon the severities of the change operations that it contains. A change
sequence that contains only non-breaking change operations is also a non-
breaking change sequence itself. If a change sequence contains breaking
changes, however, the severity of the sequence may be breaking or non-
breaking. We express this fact in the following corollary:

143

5. Metamodel and Model Evolution

Corollary 2. The severity of change sequence D⊆ I(D) is at most as high

as the highest severity in the elements that the sequence contains:

severity(D)≤max(severity(d) | d ∈ D)

An example for a change sequence that contains a breaking change, but
has a non-breaking severity, can easily be constructed: Let D = {d1,d2} be a
change sequence that consist of an operation d1 that creates a mandatory ref-
erence in class, and an operation d2 that deletes this same reference: d1,d2 ∈
I(ExistenceChange), d1.type = CREATE, d2.type = DELETE, d1.affected

Element = d2.affectedElement. The change sequence D does not change
the metamodel at all, since d1 is reverted by d2, and thus evalD(M) = M for
all metamodels M ∈M . The severity of D is, trivially, non-breaking, even
although the creation of a mandatory reference in d1 as a single operation
may invalidate existing instances, and would thus be classified as breaking

and not resolvable, following the classification of changes to Ecore-based
metamodels (see Appendix B).

To correctly determine the severity of a change sequence, the inequality of
Corollary 2 is not precise enough, since it only offers a worst-case estimation.
For the purposes of co-evolution and metamodel re-use, an overestimation
of the severity of changes is undesirable, since it would classify changes as
breaking that do not actually lead to the invalidation of instances. Thus, we
have developed a method to refactor change sequences, so that the inequality
can still be used to estimate the overall severity of a change sequence, but
which respects a number of cases where the change severity is non-breaking.
The refactoring of change sequences does not change the semantics of the
sequence, so that after a refactoring of change sequence D into a sequence
D′, equivalence between these sequences holds: D ∼ D′. The refactoring
operations are divided into two groups, which will be presented in the
following subsections.

144

5.3. A Change Impact Classification for Metamodel Evolution and Reuse

5.3.2.1. Removal of Redundant Operations

As demonstrated in the example above, later change operations can modify
the outcome of earlier change operations. We have identified three cases of
combinations of changes that affect each other:

• Deletion after Change: If an element is deleted (expressed by Exist-

enceChange(DELETE)), all modifications to features of the element
that occur before its deletion do not have any effect, neither on the
new version of the metamodel, nor on existing instances.

• Transitive Changes: Subsequent FeatureChanges of type CHANGE

on the same feature can be subsumed by the last change. For example,
if an element is renamed twice, only the name of the last change is
relevant for the outcome of the change sequence.

• Inverses: Pairs of changes that are classified as inverses of each other
following the change catalogue of Herrmannsdörfer, [72], can be
deleted without modifying the effect of the change sequence.

The refactoring of this changes removes all but the respective last change
(in the first two cases), or removes the pairs of changes (in the inverse case).

5.3.2.2. Replacing Atomic Changes with Complex Changes

As a consequence of the observation in Corollary 2, a ComplexChange

always has the same or a lower severity than the ModelElementChange

elements that it contains. Thus, the semantic lift [83] from a series of atomic
changes to a complex change can lead to an improvement in the estimation
of the change impact, since a lower change severity is a desired property of
a change sequence.

Cases where a sequence of changes has a truly lower total severity than
the maximum of its single change severities occur frequently in the change
operators of Appendix B. As shown in the example of Figure 5.5, the

145

5. Metamodel and Model Evolution

operation Pull up Feature extracts a feature that is present in all subclasses
and moves it to a superclass. In the example, Person is an abstract class
with the two subclasses User and Actor. The two attributes in the two
subclasses with the equal name name, type String, and multiplicities (1,1)
are pulled up to the superclass Person. The complex change sequence that
represents the pull up operation contains a change operation (10.) of the type
EContainingClassChange, which adds the attribute name to the contained
features of class Person. Since name is a mandatory feature, this addition, as
a single operation, would be a breaking change, since there may be instances
of this class that do not possess a value for this feature, and would thus not
be valid instances. Since Person is, however, abstract, there can be no direct
instances of this class; since the name attribute was present in all subclasses
(User, Actor) in the previous version of the metamodel, all indirect instances
of the class Person also possess a value for the feature, and will not become
invalid. This information is encoded into the complex change operation
Pull up Feature, and thus, the change severity of the complex operation is
non-breaking.

5.3.3. State-based Analysis of Change Impact

As shown in the preciding sections, delta-based descriptions are superior to
the state-based descriptions of changes since they contain more semantic
information on the nature and provenance of the changes. To use delta-
based analyses, such as the change severities in the change metamodel,
the description of changes between to versions of a metamodel have to be
expressed in a delta-based format. In this section, we present a method for
the estimation of the impact of changes to metamodels that is independent
of the way that these changes are applied. The goal of the impact analysis
is the re-use of metamodels with existing tools and instances that require a
specific metamodel as the target.

146

5.3. A Change Impact Classification for Metamodel Evolution and Reuse

5.3.3.1. Metamodel Conformity

While co-evolution methods such as Edapt are focussed on the migration of
existing instances, the impact analysis of metamodel changes is used to assist
the metamodel developer to plan modifications to metamodels in such a way
that the migration effort that is caused by these modifications is as minimal as
possible. This is why the change severities presented in in Definition 15 are
focussed on the impact on existing instances, so that metamodel developers
can estimate the migration efforts, and possibly improve the planned changes.
In the ideal case, no co-adaptations are necessary, and the set of possible
instances of the new version of the metamodel is a superset of the set of
instances of the old version. In this case, we say that the old metamodel
conforms to the new version.

Definition 16 (Metamodel Conformity). Let M1, M2 ∈M be metamodels

and I(M1), I(M2) the sets of all possible instances of M1 and M2. Metamodel

conformity is defined as

conforms = {〈M1,M2〉 ∈M 2 | I(M1)⊆ I(M2)}

The conformance relation between metamodels is a special case of model
typing [145], where M1 is a subtype of M2. It does not require full type sub-
stitutability, which also concerns operations and return types of metamodels.
Instead, the conformance relation poses weaker restrictions on the rela-
tion between the two metamodels, which is only affected by the possible
instances of the metamodels.

By definition, non-breaking/model-preserving changes alter the meta-
model in such a way that all possible existing instances will still be valid
instances after the change. Thus, metamodel conformity follows from the
existence of a non-breaking change sequence between the two metamodels.

147

5. Metamodel and Model Evolution

Corollary 3. If there exists a series D of non-breaking changes that can be

applied to obtain M2 from M1, then M1 conforms to M2:

∃D
(
severity(D) = NB∧ evalD(M1) = M2

)
⇒ conforms(M1,M2)

Thus, to show that two metamodels conform to each other, it is sufficient
to find a non-breaking change sequence between these metamodels.

5.3.3.2. State-based Analysis of Metamodel Conformity

In this subsection, we will present a state-based method for determining the
conformance of two metamodels by direct comparison. This method has
been developed in the course of the diploma thesis of Aleksandar Toshovski
[150], and is contained in a joint publication with the author of this disserta-
tion [30].

As we have shown in subsection 5.2.5, the diff model of EMF Compare
can be mapped to our Change Metamodel, so that the engine of EMF Com-
pare can be used to extract a change sequence that describes the difference
between two Ecore-based metamodels. As listed in Table 5.1, the state-based
comparison has the advantage that the change sequence is minimal and does
not contain any redundant operations, since the difference algorithm of EMF
Compare yields a minimal sequence of atomic changes. Thus, the removal
of operations is unnecessary. The change sequence contains, however, only
atomic change operations. To correctly estimate if a change sequence is non-
breaking, and, as a consequence of this, the metamodels conform to each
other, it has to be refactored with the method presented in subsection 5.3.2.

The process for the state-based analysis of the metamodel change im-
pact is displayed in Figure 5.7. Two metamodels are analysed with EMF
Compare, which computes a description of the difference between them.
This description is converted into instances of the atomic Ecore change
metamodel. This refactoring of atomic changes to complex changes is per-
formed by a rule-based engine, which extracts the complex changes types

148

5.3. A Change Impact Classification for Metamodel Evolution and Reuse

EMFCompare

convert atomic
changes

rule-based
analysis

input
metamodels

atomic
changes

complex
changes

act change model generation

diff

atomic changes

Figure 5.7.: State-based Impact Analysis Process

149

5. Metamodel and Model Evolution

(see Appendix B), for which the change severities have been analysed by
Burger [27] and Herrmannsdörfer [70], and can be looked up in Appendix B.

Since the aim of the conformity analysis is the checking of metamodel
conformance, we have implemented rules to check the cases of non-breaking
changes. In total, 24 rules have been defined, which cover the non-breaking
complex change types. In the protoypical implementation of the analysis,
the Java-based Drools framework2 has been used to realise the rules. An
example for such a rule can be seen in Listing 2. The shown rule covers
the case where the deletion of a structural feature from an EClass element
was performed in the course of a Pull Up Feature complex change, as in the
example of subsection 5.3.2. The IDiff element describes the delta between
the two elements of the respective metamodels. The Java helper function
isPullUpFeature() and isParentAbstract() have been implemented by
us in the DroolsUtils library, and check for the border conditions that
have to hold, so that the change can be classified as non-breaking. If the
conditions are fulfilled, the rule fires and the change is classified. (The
then-clause in the rule is empty since we use a listener-base approach to
detect rule application.)

rule "ReferenceChange EClass remove Attribute/Reference"

when diff: IDiff(operationType == OperationType.DELETE,

differenceType == DiffType.REFERENCE, parameter=="

eStructuralFeatures", DroolsUtils.isPullUpFeature(

oldValue,newValue,newParent)

then

end

Listing 2: Drools Rule for Deletion of an Attribute/Reference (from [30])

If an IDiff element cannot be classified as non-breaking, we assume that
its application can lead to the invalidation of existing instances, and thus,
the metamodels do not conform to each other.

2http://www.jboss.org/drools/, retrieved 26 May 2014

150

http://www.jboss.org/drools/

6. Flexible View Type Definitions

In this chapter, we will present the concept of flexible view types, which
offers the compact and rapid definition of user-specific view types and
views on model-based data. Since flexible views are a general concept for
view-based model-driven development, we will first describe the concepts
independently of the VITRUVIUS approach. Then, we will discuss the role
of these concepts and the integration of tools into the VITRUVIUS approach.

We will introduce the abstract concept of flexible views in section 6.1.
For the declarative definition of flexible views, the domain-specific language
ModelJoin has been developed and implemented, which will be presented in
section 6.2. Finally, we describe the usage of flexible views and ModelJoin
in the context of VITRUVIUS in section 6.3.

6.1. Concept

In this section, we will describe the concept of flexible views in a technology-
independent way. We will first motivate the concept, then introduce the
definition of flexible views, and finally, we will define the different notions
of editability for flexible views.

6.1.1. Motivation

In software development processes, metamodels and models are used for
various purposes; even in processes not labelled as model-based nor model-
driven, models are often used in various stages of development, such as
specificition, design, or analysis of non-functional properties. In addition,
models are used for domain modelling in the specific area for which the

151

6. Flexible View Type Definitions

software is developed, such as hardware models for embedded design, auto-
motive architecture models, energy topology models, traffic models, and
so on. Although often a combination of these models is used, the corres-
pondences between them is rarely made explicit, since every metamodel is
usually implemented with a specific modelling tool of its own, and thus the
semantic interdependencies between the various models are not specified
and cannot be expressed at the instance level due to the lack of an appropri-
ate formalism. The integration of information from heterogeneous models
suffers from the problems of fragmentation, redundancy, inconsistency, and
complexity, as described in subsection 1.2.3.

To tackle the complexity of the usage of multiple models, view-based
approaches offer developers specialised view types that reduce the amount of
information and combine elements and properties from several models into
integrated views. The definition of these view types requires a metamodel
that specifies the elements that can be part of a view that instantiates the
view type, and transformations that generate the views and that synchron-
ise them with the models that they represent. Since the specification and
maintenance of these metamodels and transformations requires high effort,
view-based modelling approaches usually only contain a fixed number of
pre-defined view types. In some approaches, special developer roles, such as
the methodologist in the Orthographic Software Modeling approach [7], are
responsible for the a priori definition of view types, so that they can later be
used by developers. If a developer who uses these view-based approaches
would like to fulfil a kind of information need that has not been foreseen by
the methodologist, or another role who is responsible for the definition of
view types, the developer has to resort to a standard model transformation
language, which means that he or she has to define the view type metamodel
and the bi-directional transformations manually. Since this is a heavy-weight
process that requires the definition of several interconnected artefacts, it is
not possible to define custom views rapidly, and the evolution of views and
viewtypes requires the effort of adapting these artefacts. Furthermore, the

152

6.1. Concept

definition of view types at the metamodel level is not sufficient to define
views that depend on properties at the instance level. Of course, the result of
a model transformations (which is defined at the metamodel level) contains
elements at the instance level whose properties depend on the source in-
stances; the rules for the creation of these elements do, however, apply to all
possible instances that can be used as a source of the model transformation.

As a scenario, we consider the running example of software develop-
ment with the Palladio Component Model, used for software architecture
modelling, and UML, used for the modelling of the object-oriented design.
A customised view in the UML-Palladio scenario could display only the
classes that implement the component comp1, and that are responsible for a
certain execution time in the performance simulation of Palladio, with an
annotation that displays this execution time. To create such a view manually,
a developer would first have to create an appropriate metamodel for the view
type, in this case a subset or extension of UML; then, the transformation
from the metamodels UML, PCM, and Sensor model to the view type meta-
model, and back if editability of the view is desired; finally, constraints for
the view type metamodel to disallow certain kinds of changes, such as the
deletion of a class, or renaming that would violate naming conventions.

This scenario is representative for modern software development, where
more and more of the artefacts that are created during the development
process, are formalised and thus adhere to a certain metamodel or description
language. Metamodels are an appropriate format for the description of these
formalisms, since they are suited for any kind of structured information.
Even all-purpose programming languages such as Java can be represented
in a metamodel-based format, using approaches such as JaMoPP [66]. Thus,
view-based modelling can be used for the combination of any kinds of data,
system descriptions, documentation, and source code.

153

6. Flexible View Type Definitions

6.1.2. Flexible View Types for the Rapid Creation of Views

As a solution to the problem of defining custom, user-specific views on
instances of heterogeneous metamodels, we present the concept of flexible

view types. Flexible view types are defined declaratively and contain a
compact definition of the meta level (view type), instance level (view), and
information on the editability of elements. The approach is applicable to
projective view-based approaches (see section 2.1), where the information
is persisted in one or multiple base models, so that the views only contain
transient information that has been extracted from the base models. The
concept of flexible view types has been published by the author of this
dissertation in [26] and [25].

6.1.2.1. Definition

The following definition of flexible view types makes use of the view type

scope notion as introduced in Definition 8 and Definition 11 on page 88.

Definition 17 (Flexible View Type). A flexible view type over a set of

models contains:

• the definition of the view type metamodel and its projectional scope.

The view type may have a single- or multi-metamodel projectional

scope;

• the definition of the selectional scope, i.e., the selection of elements

that are contained in the flexible view. This selection is based on

instance properties;

• a set of rules for editability of the view and for the back propagation

to the source models.

In Figure 6.1, the abstract concept of flexible view types is shown: Two
metamodels M1 and M2 and their respective instances M1 and M2 share a
semantic overlap, i.e., different elements of M1 and M2 represent the same

154

6.1. Concept

a : Ax : X

b′ : B′ c : Cy : Y

Flexible view V1

User 1

a : Ax : X

b : B c : C

M1

M1
«instance of»

specifies flexible view type definition

a : A′

b : B c : C

Flexible view V2

User 2

a′ : A′

b′ : B′y : Y

M2

M2
«instance of»

specifies flexible view type definition

shows inform-

ation from

shows inform-
ation from

shows inform-ation from

Figure 6.1.: Abstract Concept of Flexible Views Showing Merged Instances of Dif-
ferent Metamodels

155

6. Flexible View Type Definitions

entitity type in the system of interest. In the example, this is indicated by
similar naming of the elements at the metamodel level (A corresponds to
A′, etc.) and at the model level (a corresponds to a′, etc.). Each of the
models carry additional information that is not available in the respective
other model, i.e., the elements x,y and the references to these elements.
User 1 wants to create a view that aggregates all information from M1 and
M2, while at the same displaying overlapping elements as one element.
The resulting flexible view V1 integrates information from both models and
identifies the overlapping elements by a naming convention. User 2 creates
the view V2, which shows only the overlapping elements, but always the
elements of type C. The views in this example are read-only.

6.1.2.2. Proposed Advantages of Flexible View Types

With a flexible view type definition facility, users of view-based approaches
can create a merged view of elements from M1 and M2, based on, e.g.,
naming of elements or other semantic connections that can be described
declaratively based on instance properties. It is not necessary to modify
the metamodels M1 and M2, for example, by creating explicit references
between these metamodels, to define the flexible view type. The correspond-
ences between the instances of M1 and M2 are defined in the flexible view
type definition. This way of defining views and view type using a single
declarative definition has multiple advantages:

• Compactness: The definition of the three parts – projectional scope,
selectional scope, and editability – in a single, declarative definition,
using a domain-specific language, offers a compact way for the com-
plete definition of all properties that have to be defined for a view type
and the actual view instance.

• Non-intrusiveness: In comparison to other approaches that require
the explicit modelling of semantic links that represent the overlaps
between models, e.g., EMF-INCQUERY [65], the source metamodels

156

6.1. Concept

and instances do not have to be modified in any way, since the corres-
pondences are expressed declaratively, and a custom view type and
view instance is created from this declarative definition.

• Rapid Definition: As a consequence of the compact definition, flex-
ible view type definitions offer a rapid way of defining and modifying
view types. Flexible views have a transient nature and can change
rapidly as the developer modifies the declarative definitions and ex-
periments with different variants. If the textual definition of a flexible
view evolves, the resulting view type and transformations co-evolve
automatically, since they are generated from the declarative defini-
tion. Therefore, users can develop different versions of flexible views
without having to keep metamodel and transformation consistent
manually.

6.1.3. Editability in Flexible View Types

Flexible views can be used to display information from heterogeneous mod-
els for the purpose of analysis, or to facilitate the navigation in large systems
that are described in several formalisms. For the usage in view-based devel-
opment processes, it is however necessary that the views contain concepts
for editability, since views are the only means of modifying information in
view-based approaches.

The editability of views is a persisting problem in research of databases
([9, 106], see section 3.7) and metamodelling ([146, 73], see section 3.5).
Thus, we do not claim to provide a general solution to this problem in this
dissertation. Instead, we follow the principle of the Lenses approach by
Foster et al. [50]: The flexible view definition contains not only information
on how the information of the base models is represented in the views, but
also offers means for the definition of editability, from which an automatic
update behaviour can be derived where applicable, and which requires the
user to define this behaviour manually in the other cases. We deem this

157

6. Flexible View Type Definitions

semi-automic solution to be superior, since the view developer keeps control
over the behaviour of the edit operation while being able to use automatic
solutions for recurring cases of editability. This is an approach that is also
taken in architectural description frameworks (e.g., [63]).

The specification of the editability of a view consists of two parts: The
editability scope (see Definition 12 on page 93), which describes which
elements can be modified, and rules for the synchronisation with the source
models.

6.1.3.1. Editability Scope

The editability scope of a flexible view type is defined at the metamodel
level as well as at the instance level. At the metamodel level, the editability
scope specifies the elements in the view types for which the instances are
modifiable. In addition, the scope can be refined at the instance level to
include or exclude instance elements in a view from editability.

Metamodel Level Since a view type is a special kind of metamodel,
editability permissions have to be specified for all the elements of this
metamodel that can be instantiated, and whose instances can be changed
after instantiation.

In this dissertation, we use Ecore as the meta-meta-model. Without loss
of generality, we will define the notion of editability in view types as edit
operations on Ecore-based metamodels. We will apply the considerations of
section 3.4, which describe changes to models and metamodels, to define
a notion of editability. In Ecore, the following elements have a potency of
2, which means that they can be instantiated twice: A non-abstract EClass

can be instantiated as an object, a non-derived attribute can be instantiated
as an attribute value, and a non-derived reference can be instantiated as a
link. Ecore metamodels also contain elements that cannot be instantiated,
such as derived features, abstract classes, or inheritance information. In
Ecore metamodels, features of classes (i.e., attributes and references) can

158

6.1. Concept

furthermore be restricted in their editability by the properties changeable and
unsettable: While the changeable property describes whether an feature may
be changed after instantiation, the unsettable property describes whether
it can be returned to the unset state, which is a special state for features in
Ecore that is not equivalent to filling the feature value with the null value. If
a feature is not changeable, the value of an attribute or reference can only be
set once, usually during construction of the element, but cannot be changed
afterwards.

These properties specify the inherent editability of a view type, which is
defined by the set of valid instances that can be created for the view type me-
tamodel. It can, however, be desired by the methodologist or the developer
to specifiy restrictions that cannot be expressed just by the restrictions of
Ecore metamodels. For example, with the formalisms of Ecore, a metamodel
cannot be specified in a way that instances of a class may not be deleted
from a model. It is thus especially not possible to restrict the deletion of
elements to certain conditions, for example to only allow the deletion of
objects if there are no links pointing to this object.

Thus, the editability scope of flexible views can be further refined by
editability specifications. These specification, like constraints, are defined at
the metamodel level, but affect instances. In contrast to constraints, they do,
however, not influence the validity of static instances of a metamodel, but do
describe the allowed operations on these instances. For the elements in the
view types that can be instantiated and whose elements are changeable, i.e.,
which are inherently editable, the editability scope can be further refined
for all edit operations that are possible on these instances. These operations
are specific for the view type metamodel and are exactly covered by the
metamodel-specific change metamodel presented in section 5.2. Thus, we
can use the categorization of change operations of this metamodel to define
editability by allowing or disallowing operations, which are described by
instances of the metamodel.

159

6. Flexible View Type Definitions

Component

componentName:String

Class
className:String

implements

ExistenceChange Cr Del
ComponentChange 7 7

FeatureChange Add Rem Chg Uns
ComponentNameChange – – 7 7

ExistenceChange Cr Del
ClassChange 7 7

FeatureChange Add Rem Chg Uns
ClassNameChange – – 7 7
ImplementsChange 3 3 3 7

Figure 6.2.: Class-Component Implementation View Type with Metamodel-level Ed-
itability Scopes (Cr=Create, Del=Delete, Rem=Remove, Chg=Change,
Uns=Unset)

160

6.1. Concept

For example, the class-component implementation view type of the run-
ning example contains components, classes, and an implementation relation
between these elements (see Figure 6.2). Thus, the view type metamodel
contains the two classes Class and Component, and the reference imple-

ments, which is directed from the class element to the component, and thus
contained in the Eclass Class. To describe the changes that are possible to
this view type, a metamodel-specific change metamodel for this view type
has to be created using the methods described in section 5.2. In this example,
the existence change classes ComponentChange and ClassChange, and the
feature change classes ComponentNameChange, ClassNameChange, and
ImplementsChange can be extracted automatically using the change meta-
model generation algorithm. The algorithm respects the inherent editability
of the metamodel, since change classes are not created for abstract classes
and derived features in the metamodel for which the changes are described.

The operations in the change metamodel can now be allowed (3) or
disallowed (7) to define the editability scope of the view type. In the example
of the class-component implementation view, the addition or deletion of
classes and components should be disallowed, as well as the modification
of the element names. Thus, the only allowed change operation in this
view tpye is the ImplementsChange operation, which sets the implements-
relation between classes and components. The editability operations that
can be restricted by these definitions are defined by the edit types of the
change metamodel: For classes, ADD and REMOVE operations can be allowed
or disallowed, while for features, depending on the cardinality of the feature,
the operation types ADD, REMOVE (for multi-valued features), CHANGE (single-
valued features), and UNSET (both cardinalities) operations can be allowed
or disallowed. In the example of Figure 6.2, change operations that do
not apply are marked with a “–” symbol. For example, to enforce that
each class has to implement a component, the UNSET operation can be
disallowed, so that the relation can only be changed by assigning the class
to a new component. The change metamodel can now be amended with

161

6. Flexible View Type Definitions

additional constraints in the form of OCL expressions, which further limit
the way in which the changes to the implements-relation can be applied. The
enforcement of these rules can be handled in several ways in an actual editor
that implements the flexible views concept. It is possible that the action
is actually forbidden, so the user cannot execute the operation at all, and
receives a warning immediately when trying to, e.g., delete the reference.
It is also possible that the operation is recorded and the evaluation whether
the operation is allowed is deferred until the point where the view is saved
and synchronised with the source models, so that the user can work with
temporary inconsistencies, but has to revert forbidden operations before a
save operation is possible.

If all possible edit operations are disallowed in a view type, it is a read-
only view type, and the views that are instances of this view type cannot
be modified at all. If these operations are allowed on all elements, no
restrictions in editability apply, except those that are defined by the inherent
editability of the view type metamodel.

Model Level The modification operation create, delete, and update are
also defined at the instance level for actual views. In flexible views, it is
also possible to allow or disallow these operation kinds for actual instances.
For example, a user-specific component-diagram view of the system in the
running example may allow the editing of the comp1 component, but not of
the comp2 component. The editability of the components can be defined in
the the same granularity as it is possible for the elements in the metamodel:
Edit operations can be allowed or disallowed for every ClassChange and
FeatureChange element in the metamodel-specific change metamodel; the
change operations for restrictions at the model level are the same ones that
are used to describe restrictions at the metamodel level. The only difference
is that they do not accompany a class of the view type, but actual instances
in the view. In the example, the comp1 in Figure 6.3 component may be

162

6.1. Concept

ExistenceChange Cr Del
BasicComponentChange 3 3

FeatureChange Add Rem Chg Uns
EntityNameChange – – 3 7
ComponentTypeChange – – 3 7

ExistenceChange Cr Del
BasicComponentChange 7 7

FeatureChange Add Rem Chg Uns
EntityNameChange – – 7 7
ComponentTypeChange – – 7 7

comp1comp2

Figure 6.3.: Component Diagram View with Instance-level Editability Scopes

edited with FeatureChange elements, such as EntityNameChange, but this
is disallowed for the comp2 component.

This instance-specific restriction of editability and update behaviour can
be used for collaborative processes, where certain developers are only al-
lowed to change parts of the system, but may browse also the parts of the
system that they cannot change.

6.1.3.2. Synchronisation Rules

For the synchronisation of modifications in views, two parts have to be
defined: First, changes have to be detected and expressed in a well-defined
format, and second, the response to this changes has to be defined.

Change Detection and Description In projective view-based approaches,
which are supported by flexible view types, the views are special models

163

6. Flexible View Type Definitions

that are extracted from base models. Thus, a view is per se only a model,
which can be displayed and modified by any kind of textual or visual editor,
transformation, or further tool that exports model-based data. Modifications
to the view have to be detected so that they can be persisted in the source
models of the view. Therefore, the problem of detecting and describing
changes in a view can be reduced to the problem of change detection in
models.

There are two basic approaches to describe changes in a model (see
section 3.5): While in the state-based approach, two versions of a model are
compared to each other to determine the difference, the delta-based approach
uses atomic edit operations to describe the differences. As shown by Stevens
et al. [146] and discussed in subsection 5.2.5, delta-based approaches are
superior to state-based approaches since the edit operations in delta-based
descriptions may carry information that cannot be determined by calculating
the difference between two versions of a model. For example, if an element
in a model can only identified by its name, and not by another universal
identifier, then the renaming of the element will lead to a change that, in the
state-based approach, is indistinguishable from the deletion and creation of
a new element with the new name. In the delta-based approach, this change
can be described as an atomic rename operation. To determine the change
operations, editing tools that are used to manipulate the model can record
the changes to the model. In the Edapt tool by Herrmannsdörfer et al. [72],
for example, developers can choose from a set of refactoring operation to
explicitly specify the intent of changes to a model. It is possible to convert a
delta-based change description into a state-based description by applying
the deltas to a model. During this process, the additional information in
the deltas is lost. A conversion from state-based to delta-based descriptions
is also possible by using a diff algorithm (such as EMFCompare [22]) on
the different versions of the model. Since these algorithms use heuristics to
recreate the change operations from the state-based difference, the resulting

164

6.1. Concept

base
models Views

delta-based sync.

state-based sync.

Figure 6.4.: State-based and Delta-based Synchronisation of Base Models and View
Types

delta-based description contains less information than a set of deltas that has
been recorded during the actual editing by the user (see section 5.3.)

As a consequence of this, the synchronisation rules in flexible view types
are defined for delta-based change descriptions. It is not relevant how these
descriptions are determined: They can either be determined by recording
editing steps or by a state-based comparison of two versions of a view. Since
the possible edit operations are specific to the view type, we also use the
change metamodel from section 5.2 and require that the editing operations
are described as instances of the view type-specific change metamodels.
Thus, we can use a unified description formalism for editability and actual
changes in a view.

Since the flexible view type approach is based on projective views, views
on a system can always be extracted from the information in the base models
of the system. These automatically generated views do not contain original
information, as it would be the case in synthetic views. Only when views
are edited do they contain information that is not in the base models. In this
case, the view is called dirty, until the modifications have been translated
back to the base models. Thus, it is sufficient that only the changes in the
views have to be described in a delta-based format; changes in the base
models do not have to be propagated to the views, since a re-creation of
the views is always possible from the information in the base models. In
Figure 6.4, this is depicted at the example of views that synchronise with a
single underlying model.

165

6. Flexible View Type Definitions

Response Action Once a modification to a view has been detected, a
response action is triggered that propagates the changes back to the base
models. The semantics of changes to a view are encoded in these response
actions. Since our approach of flexible views gives the user the possibility to
define the views declaratively, the user expresses the intent for the displaying
and combining of information with this declarative definition. Thus, the
provenance of elements in a view is explicitely specified and can be used
to automatically determine the synchronisation behaviour in the form of
response actions.

The response action defines the behaviour of an editing operation to
a view. Due to the complexity of the view-update problem, there is no
universal strategy of how an edit operation in a view should be translated to
the underlying base models. This is a persistent problem in database research
[40, 59] and has also been applied to other abstract data structures; Foster[50]
demands that an update to a view should be translated in a “reasonable” way,
which is a general principle to which the flexible view types should also
adhere. The rationale behind the flexible view concept is to assume that
the user, e.g., a developer who defines a flexible view type, is aware of the
complexity of the view-update problem and does not expect the framework
that implements the flexible view type concept to be able to handle all update
scenarios automatically. The approach of the flexible view type concept
is to reduce the accidental complexity of the problem by offering the user
means to distinguish the cases where automatic synchronisation is possible
from those where manual interaction is necessary, and to provide means to
describe this “reasonable” interaction.

As mentioned above, the synchronisation behaviour can not be determined
automatically for all kinds of flexible view types definitions. To distinguish
between the cases where the synchronisation behaviour can unambiguously
be determined, i.e., there is a unique response action for an actual change to
the view, and the cases where manual interaction is necessary, we introduce
the following synchronisation modes, which can be chosen by the user for

166

6.1. Concept

each element evt of a view type vt. These modes depend on the provenance
of elements, which is expressed in the is-represented-by relation rep between
the elements in the base models and those in the view, as well as on the type
of the change that triggered the response action. For an element evt in a view
type, one of these three synchronisation modes can be chosen:

• Automatic: The edit operation is propagated automatically to the
source elements. The default behaviour for changes to this element is
executed.

• Select Policy: The developer of the view type can choose from a set
of update policies.

• Manual: The developer has to define the synchronisation behaviour
manually in the form of a transformation from the view type to the
source models.

Depending on the way in which the view type evt and the mapping of
SUM elements to the view type rep(esum,evt) (see Definition 6 on page 86)
are defined, not all synchronisation modes may be available for every com-
bination of elements and triggering edit operations. Of course, a manual

synchronisation behaviour can always be defined, but it may be impossible
to prove any properties of this synchronisation behaviour, if it is specified in
a general-purpose language (due to the possible indecidability of runtime
properties). The manual behaviour is intended as a fallback mechanism if
none of the other methods is available.

The select policy behaviour lets the user or developer who defines the view
type choose from a set of synchronisation behaviours, which are offered
by the framework that implements the flexible view type concept. This
solution has the advantage that the view type developer stays in control of
the behaviour of the view type and can select a synchronisation mechanism
for which certain properties, such as well-behavedness and hippocraticness,

167

6. Flexible View Type Definitions

are known, and can be taken into respect for the selection of the appropriate
behaviour.

The automatic mode is only possible if the relation rep is invertible. This
does not necessarily mean that the relation is bijective: For example, if two
elements of different metamodels represent the same concept, a view type
could combine these elements into one element of the view type. A change of
properties on this element, e.g. the name of the element, can unambiguously
be written back to both source elements, although the relation rep is not
even injective in this case. The invertability of rep is thus dependent on the
semantics of the base models and the intent of the developer of the view
type.

6.1.4. Discussion

The definition of editability in flexible view types does not require a full
bi-directional synchronisation of models. As explained in the preceding
subsection, the difference between bi-directional synchronisation of arbitrary
models and the synchronisation of views with base models lies in two areas:

1. Information Asymmetry: In projective approaches, the views can
always be extracted from the information in the base models. Thus, a
state-based synchronisation from the models to the views is sufficient
and does not have to deal with differences beween the model and the
view. These would have to be regarded in a real-time editing scenario,
where the base models are subject to change while a view is in the
dirty state. At the moment, however, we do not support real-time
concurrent modifications of base models.

2. Well-Defined Edit Operations: The editability scope of flexible view
types limits the edit operations that can be applied to a view to those
cases that can be translated back to the base models. For other cases,
the synchronisation does not have to be taken into account, since those
cases are not allowed in the flexible view types.

168

6.1. Concept

This strategy of allowing editability only if there exists a translation
operation for persisting the changes back into the base models is also pursued
in the lenses approach [50] (see section 3.5). To describe the behaviour of
flexible views, we can use the properties invertibility, well-behavedness,
and hippocraticness, which have been defined for lenses. We assume that
the “concrete” domain consists of the base models, whereas the “abtract”
domain consists of views.

6.1.4.1. Invertibility

The automatic generation of a response action for a an element of a view is
always possible if the represents relation at the instance level (rep) between
the element in the base models and the element in the view is injective.
This is the case for projectional views. In projectional views, every edit
operation can be translated unambiguously to an element in the base models.
In the case of combining views, the automatic synchronisation behaviour
can only offer one default behaviour of many possible translations that fulfil
the definition of the view. If the view is not automatically invertible, the
user can be prompted by the select policy behaviour to choose between one
of the valid inversions of the view definition to persist an edit operation, or
define a manual update behaviour.

6.1.4.2. Well-behavedness

Well-behavedness in views is given if two laws are fulfilled:
The GETPUT law states that the generation of a view and an immediate

consequent save operation, without changes to the view, must not change
the base models. This property is always fulfilled in flexible views, since the
response action (which is equivalent to the PUT action) is delta-based, and
thus only triggered if a change is detected in a view. Given that the deltas
are determined correctly, a save operation without prior change to the view

169

6. Flexible View Type Definitions

will not cause any response action; thus, flexible views always adhere to the
GETPUT law.

The PUTGET law, on the other hand, states that saving and re-generatiing
a view from the base model yields a view that is identical to the one that
has been saved. The declarative definition of views are, however, useful
for generating the transformations that create a view together with those
response actions that execute the changes to a view. If an automatic strategy
exists, the designer of the view type has to ensure that the automatic response
action adheres to the PUTGET law. The same is true for the available
operations in the select policy strategy. For manually defined resonse actions,
the user who defines the action has to ensure that the PUTGET law is obeyed.
Thus, the well-behavedness of views depends entirely on the adherence to
the PUTGET law.

6.1.4.3. Hippocraticness

The hippocraticness property in the context of views describes that a com-
bination of model and view that satisfies the declarative view definition are
not modified by the view generation engine; thus, if a view already fulfils
the view type definition, it must not be re-generated by the view generation
mechanism. If an automatic synchronisation mode exists for a certain edit
operation, the methodologist has to ensure that the synchronisation fulfils the
hippocraticness property. If the user is able to select a policy, the pre-defined
policies have to contain a declaration about whether they fulfil hippocratic-
ness or not. For manual response actions, it is in general unknown whether
they fulfil hippocraticness or not; the user who specifies the response ac-
tion has to check manually whether the action fulfils hippocraticness. If
a general-purpose programming or model transformation language can be
used to specify the response actions, it is in general not possible to prove
whether such an action fulfils the property.

170

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

A definition language for flexible views has to fulfil two contradicting goals:
First, the language must be expressive enough to provide means for the
properties of flexible views, which have been listed in Definition 17. Second,
the language should be as simple as possible and should allow short develop-
ment cycles, so that developers can write and modify flexible views rapidly.
With these goals in mind, we have developed the ModelJoin language. Mod-
elJoin is a declarative domain-specific language for the definition of flexible
view types, which has a human-readable textual concrete syntax that bears
similarities to that of the Structured Query Language (SQL). The language
focusses on the information needs of the developer, and is used to describe
the desired properties of a view. It abstracts from the technical details of
how the view types and views are created. Since the language is designed to
be written and understood by developers, the textual ModelJoin definitions
can also serve as a documentation of the purpose of a view type.

The concepts and the language definition, which are presented in this
section, have been published previously in [29], and are extended in the
following subsections. The prototypical implementation of ModelJoin and
its technical details are described in the ModelJoin technical report [28].

6.2.1. Concept

6.2.1.1. Analogy to Relational Databases

For the compact definition of flexible view specifications, we exploit the
analogy to views in relational databases (see section 3.7). Views in relational
detabases can be defined with queries. Such a query determines the schema
of the result (which corresponds to the metamodel/view type in the model-
driven scenario), and the result set itself (which corresponds to instances/a
view). Just as a query can be written and interpreted dynamically, or stored
and used as a database view, flexible views can be pre-defined and persisted,

171

6. Flexible View Type Definitions

relational concept Ecore concept

database schema metamodel
table model

table row (tuple) object/instance
column feature (attribute/reference)

query model transformation

Table 6.1.: Analogy between Relational Concepts and MDD Concepts (from [28])

or defined at runtime (of the development framework). Different flexible
views can be instantiated from an existing view type. A flexible view is
defined by rules that determine its contents and behaviour; these rules can
be altered for specific modelling purposes by developers themselves or by
an additional developer role.

This is an approach that is also followed by other query languages for
model-based data, such as EMFQuery.1 In Table 6.1, we have listed the
corresponding constructs of metamodel-based structures and relational struc-
tures, which we have identified. If we assume that a metamodel corresponds
to a database schema, and a model corresponds to a database table, then
a query corresponds to a model transformation. The target metamodel of
the transformation, is, however, not defined a priori, but is part of the the
query itself: When a query on a relational database is executed, the result set
consists of relations that instantiate a new relation schema. For example, in
SQL, the table schema of the result of a query is dependent on the columns
chosen in the SELECT clauses, renaming statements (AS), JOIN statements,
and other constructs. In the model-driven world, this would mean that a
query would have to contain a definition of a result metamodel of its own.
The result set of this query would combine information from heterogen-
eous models into a single result model, which instantiates this new result
metamodel.

1http://www.eclipse.org/modeling/emf/?project=query, retrieved 26 May 2014

172

http://www.eclipse.org/modeling/emf/?project=query

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

Existing query languages for Ecore-based models offer, however, only pro-
jectional operations on instances of a single metamodels (e.g., EMFQuery),
thus making queries on instances of multiple metamodels impossible. This
is, however, required to create flexible views with a multi-metamodel pro-
jectional scope. Model transformation languages (such as QVT [116], ATL
[79]) allow the transformation of information from heterogeneous models,
but require a fixed pre-defined result metamodel. ModelJoin overcomes
these limitations, and offers developers statements that are similar to the
operators of SQL, so that selection, projection and joining of elements from
heterogeneous models is possible. Like SQL, ModelJoin is a declarative
language, so ModelJoin expressions describe the desired properties of the
result set and its metamodel.

The principle for the construction of the result set in ModelJoin is dif-
ferent from that in relational algebra: While the join in relational algebra
constructs the cross product of the base relations and reduces these relations
via projection, ModelJoin uses a constructive approach that only includes
the elements that are specificly defined. Thus, if an operator degenerates to
the case where none of the conditions are fulfilled, the execution of the Mod-
elJoin query delivers an empty result set, in contrast to relational algebra,
where the complete cross product would be contained in the result set.

6.2.1.2. Example

An example ModelJoin query is displayed in Listing 3. (The metamodels on
which the example is based are depicted in Figure C.2 and Figure C.3 in the
appendix.) The query selects elements from a library model and an online
movie database model.

The library and movie database metamodel contain elements that represent
similar concepts, such as persons, films, and the information on which person
belongs to the cast of a movie. An integrated view on these two metamodels
should thus combine the information from both of the metamodels and

173

6. Flexible View Type Definitions

1 import "platform:/resource/edu.kit.ipd.sdq.mdsd.mj.example/models/imdb.

ecore"

2 import "platform:/resource/edu.kit.ipd.sdq.mdsd.mj.example/models/

extlibrary.ecore"

3 target "http://mdsd.sdq.ipd.kit.edu/modeljoin#joinexample"

4
5 THETA JOIN imdb.Actor WITH library.Person

6 WHERE "Actor.name = Person.firstName.concat(’ ’).concat(Person.

lastName)"

7 AS jointarget.Person {

8 KEEP ATTRIBUTES imdb.Person.firstName

9 KEEP ATTRIBUTES imdb.Person.lastName

10 KEEP SUBTYPE library.Borrower AS TYPE jointarget.Customer

11 }

12
13 LEFT OUTER JOIN imdb.Film WITH library.VideoCassette AS jointarget.

Movie {

14 KEEP ATTRIBUTES imdb.Film.year

15 KEEP CALCULATED ATTRIBUTE "AudioVisualItem.title.concat(’ (’).

concat(Film.year).concat(’)’)" AS jointarget.Movie.extTitle

16 KEEP OUTGOING imdb.Film.votes AS TYPE jointarget.Vote {

17 KEEP ATTRIBUTES imdb.Vote.score

18 }

19 KEEP SUPERTYPE library.AudioVisualItem AS type jointarget.

MediaItem {

20 KEEP ATTRIBUTES library.AudioVisualItem.minutesLength

21 }

22 KEEP OUTGOING imdb.Film.figures AS TYPE jointarget.Figure {

23 KEEP ATTRIBUTES imdb.Figure.name

24 KEEP OUTGOING imdb.Figure.playedBy AS TYPE jointarget.

Person

25 }

26 KEEP INCOMING library.Borrower.borrowed AS TYPE jointarget.

Customer {

27 }

28 }

Listing 3: Movie Database ModelJoin Example

174

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

Person
firstName:EString
lastName:EString

Customer

MediaItem
minutesLength:EInt

Movie
title:EString
extTitle:EString
year:EInt

Vote
score:EInt

Figure

name:EString

votes0..*

borrowed

0..*

pl
ay

ed
B

y

1.
.*

figures1..*

Figure 6.5.: Target Metamodel for the ModelJoin Query in Listing 3

remove redundancies. Since the metamodels are not linked with each other
in any way, the instances of these metamodels are also independent of
each other, so that the semantic connection between the instances can only
be established by structural similarities and naming conventions. Similar
to SQL, ModelJoin contains concepts to express these semantic relations
at a low level; it is the responsability of the view designer to determine
the semantic or structural similarities. ModelJoin is not a data integration
framework and does not offer heuristics to determine the similarities between
heterogeneous metamodels.

In the example of Listing 3, the elements from the two metamodels are
combined by JOIN expressions, which, similar to relational algebra, merge
two classes into one class in the result set metamodel. The THETA JOIN (line
5) expression merges the class Actor from the movie database with the class
Person from the library metamodel. The condition of the join is expressed
in the WHERE-clause using a logical expression written in OCL. Since the
two metamodels are not connected in any way, the join operates on name
equality of the two classes. Since Actor has a single name attribute, while

175

6. Flexible View Type Definitions

Person has two attributes for first and last name, a string concatenation
operation is necessary to compare the names.

The LEFT OUTER JOIN (line 13) expression selects instances of Film and
Videocassette based on equally named attributes (like in SQL), in our case
the attribute name. The target class name is defined as Movie. Only the
attribute name of the target metamodel is generated automatically, since it
is part of the join condition. All other parts that should be created in the
target metamodel have to be specified by KEEP statements. Here, the attribute
year has to be added manually with the KEEP ATTRIBUTES statement, which
creates the attribute in the target class and sets it to the value of the instances
of imdb.Film. Likewise, the outgoing references votes and figures as well as
a supertype are included via the respective statements. The attribute extTitle

of the class Movie is calculated by an OCL expression from properties of
the source elements.

The semantics of natural and outer join is inspired by relational algebra,
as well as the THETA JOIN, which can have an arbitrary condition for the
joining of elements. In the current implementation, OCL expressions can be
used to reduce the set of instances to a subset that fulfills the OCL constraint
in the WHERE condition.

The target metamodel, that is defined by the query in Listing 3, is depicted
in Figure 6.5. The target metamodel of a ModelJoin query can be derived
entirely from the information in the query and the structure of the source
metamodels. The structure of the metamodel is independent from the actual
instances that are joined during the execution of a query. The relation of
source models, metamodels, query, execution, target models, and target
metamodels is depicted in Figure 6.6: While the ModelJoin query is aware
of the source metamodels, the source metamodels themselves do not have to
be in any relation to each other, e.g., by cross-metamodel references. The
execution of the query yields a result set that conforms to a target metamodel,
which can be derived from the query and the source metamodels.

176

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

This example serves as a motivation of the concept of ModelJoin and is
written in the textual concrete syntax of ModelJoin, which will be explained
in detail in subsection 6.2.3. Before, we will define the abstract syntax of
ModelJoin and give a formal definition of the semantics of the ModelJoin
statements.

6.2.2. Abstract Syntax

In this section, we will present the abstract syntax of the ModelJoin DSL,
which realises the flexible view concept presented in section 6.1. In the
following subsections, we will define the abstract syntax of ModelJoin,
which contains statements that are semantically similar, but not equivalent,
to Selection, Projection and Join of relational algebra.

A ModelJoin expression takes at least two models as input, called source

models in the following, which conform to the source metamodels. The
evaluation of a ModelJoin expression returns a result set, called the target

model, which conforms to the target metamodel (see Figure 6.6).
To distinguish between the elements at the metamodel level and at the

model level, we will refer to the elements of the metamodel as classes,
attributes, and references. The elements at the model level, i.e. the instances,
will be denominated as objects, attribute values and links respectively.

We use the set notation of Ecore metamodels from subsection 2.3.2
in the following definitions. To distinguish between source and target
metamodels, we will write Msource = {Msource1 ∪Msource2 ∪ . . .} for the set
of source metamodels, and Mtarget for the set of target metamodels, with
the respective sets CLASSsource, CLASStarget, ATTsource, ATTtarget, and so on,
which together form the sets of named elements Nsource and Ntarget.

The ModelJoin language is declarative, so the ModelJoin expressions
describe the desired properties of source and target elements after the ex-
ecution of the query. In the formal definition, we express this as relations
between the source and target sets. Since it is possible that an element in

177

6. Flexible View Type Definitions

ModelJoin
Query

Source
Metamodel 1

Source
Metamodel 2

Source
Model 1

Source
Model 2

«references»

«conform
s

to»

«conform
s

to»

Execution

input

Target
Metamodel

Result
Set

output output

«conforms to»

Figure 6.6.: ModelJoin Target and Source Models

a source metamodel is represented by several elements in the target meta-
model, this relation is in general not functional. Thus, we cannot formalise
the ModelJoin statements as functions in the mathematical sense, although
the target metamodel and instances in the result set can always be computed
from the elements in the source metamodels. Thus, the following definitions
of the statements are not expressed with functions on the source metamodels,
but with relations that may not be right-unique.

A ModelJoin expression q is a relation between a tuple of n source
metamodels and one target metamodel:

q ∈Q = 〈Msource1 ,Msource2 , . . . ,Msourcen ,Mtarget〉 ∈M n+1

Since the result of the execution of a ModelJoin query contains not only
the metamodel, but also instances, the relation is twofold. The ModelJoin
expressions will be described as such in the following: First, the signature of
the expressions and the properties of the elements of the target metamodel

178

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

are defined; second, the properties of the system state (i.e., the instances) are
defined. We will define the effects on the system state as boundary conditions
of the target metamodel. The properties of the target metamodel only depend
on the source metamodel, but not on its instances, so the target metamodel
can always be computed via static analysis of a ModelJoin expression and
the source metamodels. Thus, the same ModelJoin expression can be used
with different instances, using the same target metamodel.

For each operator, we will use an example in the textual concrete syntax
of the prototypical ModelJoin implementation, which has already been
used in the example of Listing 3, and which will be explained in detail in
subsection 6.2.3.

There are four kinds of ModelJoin expressions:

• join expressions on∈J

• keep expressions κ ∈K

• selection expression ς ∈S

• rename expressions ρ ∈R

Thus, the set of ModelJoin queries is the union of these expressions:
Q =J ∪K ∪R∪S . The single expressions are described in detail in the
following subsections. In the relations that are used for the definition of the
expressions, the element of the target class represents the “return value” of
the expression. To describe the semantic correspondence between elements
in the result set and elements from the source set, we introduce a mapping
relation at the metamodel and at the instance level.

Definition 18 (Mapping relation). The target metamodel and the result set

contain elements that represent elements in the source metamodels and

models (cf. Figure 2.1). To express this, we introduce a mapping relation

179

6. Flexible View Type Definitions

both at the metamodel and at the model level. A named element e ∈N is

mapped to a named element e′ ∈N with the relation

∼on= {〈e,e′〉 ∈N ×N | e is mapped to e′}

The elements in N are at the metamodel level. Thus, the mapping relation

∼on expresses the mapping at the metamodel level. To describe the mapping

between possible instances I(c), I(c′) of classes c,c′ ∈ CLASS, we define an

instance mapping relation at the model level as

∼on= {〈c,c′〉 ∈ I(c)× I(c′) | c is mapped to c′}

6.2.2.1. Join Expressions

The core concept of the ModelJoin language is the joining of model elements
from heterogeneous models. This may be used for elements that represent
the same concept in two different metamodels (cf. the example in Listing 3).
The join statements are defined over two metamodel classes as input and
return a target class, which is newly created in the target metamodel with
a specified name. Join operations are ternary relations over two source
metamodels and one target metamodel. It is however also possible to join
more than two source metamodels by cascading join operations, so that the
target metamodel of one join operation serves as the source metamodel of
another join operation.

In analogy to relational algebra, we define a natural join operator, which
joins classes based on identically named attributes that have a compatible
type. We call these attributes join-conforming. If two classes are joined with
a natural join, join-conforming attributes in both of the classes are added
to the resulting class in the target metamodel, similar to the columns of the
result table of a relational join operation. At the instance level, two objects
are joined if they have the same values in the join-conforming attributes, and
a corresponding object is created in the target model.

180

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

Definition 19 (Join Conformity). Let a1 ∈ ATTc1 : tc1 → t1 and a2 ∈ ATTc2 :
tc2 → t2 be attributes of classes c1,c2 ∈ CLASS. Join conformity is a prop-

erty at the metamodel level. It is given if two attributes have the same name,

type and multiplicities:

∼=ATT = {〈a1,a2〉 ∈ ATTc1 ×ATTc2 | (a1 = a2)∧ (t1 = t2)

∧ (multiplicities(a1) = multiplicities(a2))}

For two classes c1 and c2, all possibly joinable attributes are contained

in the set of join-conforming attribute pairs:

Aon
c1,c2

= {〈a1,a2〉 ∈ ATT∗c1
×ATT∗c2

| a1 ∼=ATT a2}.

At the instance level, two objects c1 ∈ I(c1), c2 ∈ I(c2) fulfil instance-

conformity if they carry equal values in their join-conforming attributes:

∼=I = {〈c1,c2〉 ∈ I(c1)× I(c2) |

∀〈a1,a2〉 ∈ Aon
c1,c2

(
σATT(a1)(c1) = σATT(a2)(c2)

)
}

With these helper sets and relations, we will now define the join opera-
tions.

Definition 20 (Natural join). For two classes c1 ∈ CLASSsource1 , c2 ∈
CLASSsource2 and a target class c′ ∈ CLASStarget, the natural join is defined

as

on= 〈c1,c2,c′〉 ∈ CLASSsource1 ×CLASSsource2 ×CLASStarget

where the target class and its instances have the following properties:

• The the mapping relation holds for each of the source classes and the

target class:

(c1 ∼on c′)∧ (c2 ∼on c′)

181

6. Flexible View Type Definitions

• For each of the join-conforming attribute pairs in the source classes,

an attribute of the same name and type exists in the target class:

∀〈a1,a2〉 ∈ Aon
c1,c2
∃ a′ ∈ ATTc′

(
(a′ : tc′ → t1)∧ (a1 = a′)∧ (a1 ∼on a′)∧ (a2 ∼on a′)

)
• For all instance-conforming pairs in the source models, an instance

that has the same attribute values in the join-conforming attributes

exists in the target model:

∀〈c1,c2〉 ∈ σCLASS(c1)×σCLASS(c2)
(

c1
∼=I c2⇒∃ c′ ∈ σCLASS(c′)(c′ ∼=I c1)

)
When executing a natural join expression, the target class c′ is always

created and contains only the common attributes. If no common attributes
exist, the target class is generated without attributes. This is different to
the natural join in relational algebra in two ways: Firstly, the natural join
in ModelJoin does not add the other non-join-conforming attributes to the
target class; secondly, it does not degenerate to the cartesian product if no
common attributes exist. To add attributes to a class in the target metamodel,
the keep attributes expression is used (see subsubsection 6.2.2.2). In contrast
to the projectional approach in relational algebra, we use a constructive way
of building the target metamodel. The name of the target class is by default
set to c1 and can be changed with the rename expression.

Example In the running example, the classes Film from the IMDB me-
tamodel and AudioVisualItem from the library metamodel represent the
same concept of a motion picture. Thus, these classes can be joined into a
newly created class Movie in the target metamodel. The classes Film and
AudioVisualItem contain the join-conforming attributes title, which is of the
type EString in both classes and has the same upper cardinality 1. Thus,

182

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

the NATURAL JOIN expression can be used to create the target class. The
necessary ModelJoin expression is depicted in Listing 4.

NATURAL JOIN imdb.Film WITH library.AudioVisualItem AS jointarget.

Movie {

}

Listing 4: ModelJoin Natural Join Example

Although the class Film contains the further attribute year, and the class
AudioVisualItem contains the attributes minutesLength and damaged, these
attributes are not created in the target class by the NATURAL JOIN operator. At
this point, the semantics of the natural join in ModelJoin deviates from that
of the natural join in relational algebra, which would include all columns
from the source tables of a natural join into the result set. The class Movie is
created in the target metamodel regardless of the existence of instances that
fulfil the join condition (identical values in the attribute title). At the instance
level, an element in the result set is created if there are two instances of Film

and AudioVisualItem respectively that have identical values in the attribute
title. The target instance then also carries this value.

ModelJoin furthermore provides an outer join operator, which also creates
instances of the target metamodel for unmatched instances of elements in
one of the metamodels CLASSsource.

Definition 21 (Outer join). The outer join operator is equivalent to the

natural join operator in its type signature and the constraints on the target

metamodel. Deviating from the natural join, the result set {c′1,c′2, . . .} con-

tains a respective instance for each instance in the source model, regardless

of instance-conformity:

∀c1 ∈ σCLASS(c1)∃ c′ ∈ σCLASS(c′)
(
c′ ∼=I c1

)
∧

∀c2 ∈ σCLASS(c2)∃ c′ ∈ σCLASS(c′)
(
c′ ∼=I c2

)
183

6. Flexible View Type Definitions

In addition to the general outer join, there is a left outer join and right
outer join operator, which only creates instances for the left class (c1) and

right class (c2) respectively.

Example If we modify the natural join example from Listing 4 to an right
outer join, the element Movie in the target metamodel is not affected at all. It
is also created independently of matching instances and will contain the join-
compatible common attribute title. The difference of the outer join statement
to the natural join statement is only in the generation of the instances. In the
example of Listing 5, if a film is present in the library but not in the movie
database, an instance of the class Movie would still be created in the result
set.

RIGHT OUTER JOIN imdb.Film WITH library.AudioVisualItem AS jointarget.

Movie {

}

Listing 5: ModelJoin Outer Join Example

The outer join thus may create elements in the target result set that are
only mapped with the relation ∼on to one instance of the source instances. If
the example contained a keep statement for attributes or references of the
class Film, these target instances do not have an instance of the Film from
which these values are taken. This could lead to invalid instances of the
target model if the lower bound of the multiplicity of these features is 1.
Thus, if attributes or references from the left class are are included in a keep
statement of a right outer join and vice versa, their lower multiplicity is set
to zero in the target metamodel. For instances that have no corresponding
element in the source models, the features are initialised with a null value
(⊥) in the target model.

The natural and outer joins are specialised statements for the most com-
mon cases of attribute equality in heterogeneous classes, when attributes
have the same name and a compatible type. The join condition can, however,

184

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

be generalised from join conformity to arbitrary logical conditions (depend-
ing on the actual language used in the implementation) on the instances
of the source metamodels. In analogy to relational algebra, we call this
operator theta join.

Definition 22 (Theta join). For source classes c1 ∈ CLASSsource1 , c2 ∈
CLASSsource2 , a target class c′ ∈ CLASStarget, and a logical expression θ =

I(c1)∪ I(c2)→ true, false, the theta join is defined as

onθ= 〈c1,c2,c′〉 ∈ CLASSsource1 ×CLASSsource2 ×CLASStarget

where the target class c′ has the following properties:

• The the mapping relation holds from the source classes to the target

class:

(c1 ∼on c′)∧ (c2 ∼on c′)

• For all pairs in the source models for which the join condition θ holds,

an instance exists in the target model:

∀〈c1,c2〉 ∈ σCLASS(c1)×σCLASS(c2)
(

θ(c1,c2)⇒∃ c′ ∈ σCLASS(c′)
(
(c1 ∼on c′)∧ (c2 ∼on c′)

))
The target class c′ does not have to contain any attributes from the source

classes; if desired, they have to be added manually by a keep attributes

statement. (This behaviour is different to the theta join of relational algebra,
where all columns are added to the result table.)

The theta join is the most general of join statements, since it can contain an
arbitrary join condition. In the prototypical implementation, these conditions
can be expressed in OCL. Natural and outer joins can be expressed by a
theta join operator, where the θ -expression contains the join conformity
constraints, and where appropriate keep attribute expressions add the join-
conforming attributes.

185

6. Flexible View Type Definitions

Example The natural and outer join statements are only applicable when a
join-conforming attribute is present in both of the classes that are joined. In
the library example, the classes Actor and Person represent similar concepts,
but do not have such a common attribute. Although they can be identified
by their names, the name is stored in a single attribute in the class Actor,
while first name and last name are stored separately in the class Person. This
simple circumstance cannot be expressed with the natural join operator.

THETA JOIN imdb.Actor WITH library.Person WHERE "Actor.name = Person.

firstName.concat(’ ’).concat(Person.lastName)" AS jointarget.

Person {

}

Listing 6: ModelJoin Theta Join Example

In Listing 6, a theta join is displayed, which creates the class Person

in the target metamodel. The join condition is expressed using OCL. The
names of the classes (Actor, Person) act as variables in the OCL expression.
The theta join operator does not add an attribute to the class Person in the
target metamodel, not even if this attribute is part of the join-condition. At
the instance level, the execution of the theta join operator will create an
instance of the target class Person only if the join condition is fulfilled for
the source instances. In this example, it is of course quite impractical that
no attribute is added to the target class; to acquire a meaningful result, the
attribute name should be included using a KEEP ATTRIBUTE statement.

6.2.2.2. Keep Expressions

The keep operator defines additional structural features (i.e., attributes and
references) and supertype relations of the target model that are not defined
by the join statements. It serves a purpose that is similar to the projection
operator in relational algebra, but unlike projection, the keep operator is
constructive: if there is no explicit keep statement, no attributes (apart from
those that are added because they are part of a natural join condition) or

186

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

references are included in the target metamodel. The rationale behind this
behaviour is to avoid the potentially high number of attributes and references
inherited from superclasses. Keep statements can be applied to classes that
have been mapped by join statements or other keep statements.

There are different statements for the inclusion of attributes, references,
and supertype relations. For the definition of references in set notation,
we assume the existence of functions associates() and multiplicities() that
express the respective properties of a reference as described in [123].

Definition 23 (Keep attributes). Let a : tc → t ∈ ATT∗c be an attribute of

class c ∈ CLASSsource (directly defined or in one of its superclasses) and

c′ ∈ CLASStarget a class in the target metamodel with c ∼on c′. The keep
attributes operator is then defined as

κatt = 〈a,a′〉 ∈ ATTc×ATTc′

where the target attribute a′ has the following properties:

• a′ is an attribute of the target class c′:

a′ : tc′ → t ∈ ATTc′

• a′ has the same name and multiplicity as the attribute a in the source

class c. In case the target class c′ was created by an outer join, it

is necessary to allow empty values for the attribute, so the lower

boundary of the multiplicity of a′ must always be 0:

(a∼on a′)∧ (a = a′)∧ (multiplicities(a′) = multiplicities(a)∪{0})

• The instances of c′ carry the same attribute values as those instances

of c that they are mapped to. For unmapped instances, the attribute

187

6. Flexible View Type Definitions

value is null (⊥):

∀c′ ∈ σCLASS(c′) : σATT(a′)(c′) =σATT(a)(c) if ∃c ∈ σCLASS(c) | c∼on c′

⊥ else

Example Keep statements can only be used in the context of join state-
ments or other keep statements. For the keep attributes operator, this context
determines the class in which the attribute is contained in the target metamo-
del; thus, it can only be used in the context of joins, keep references, and
keep super-/subtype statements. In Listing 7, there are three keep attributes
statements inside a join, a keep references operator, and a keep supertype
operator.

LEFT OUTER JOIN imdb.Film WITH library.VideoCassette AS jointarget.

Movie {

KEEP ATTRIBUTES imdb.Film.year

KEEP OUTGOING imdb.Film.votes AS TYPE jointarget.Vote {

KEEP ATTRIBUTES imdb.Vote.score

}

KEEP SUPERTYPE library.AudioVisualItem AS type jointarget.

MediaItem {

KEEP ATTRIBUTES library.AudioVisualItem.minutesLength

}

}

Listing 7: ModelJoin Keep Attributes Example

The keep attributes operator can be invoked for attributes that are con-
tained in the source classes directly, and for attributes that are inherited
from a superclass. The attribute minutesLength, for example, could also be
contained directly in the class Movie of the target metamodel by moving

188

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

the KEEP ATTRIBUTES statement so that it is a direct child of the outer join
operator in the ModelJoin statement of Listing 7.

Attributes can also be defined as an aggregation of values in the source
model, similar to the SQL feature GROUP BY.

Definition 24 (Aggregation function). An aggregation function is defined

as fα : S→ R,S ∈ Rn

ModelJoin supports the following arithmetic aggregation functions for
s1, . . . ,sn ∈ S:

• sum: fsum(s1, . . . ,sn) =
n
∑

i=1
si

• average: favg(s1, . . . ,sn) =
1
n

n
∑

i=1
si

• maximum: fmax(s1, . . . ,sn) = max(s1, . . . ,sn)

• minimum: fmin(s1, . . . ,sn) = min(s1, . . . ,sn)

In addition to these arithmetic functions, a size function fsize : S→R,S∈TB

is defined, which can also operate on non-numerical attributes.

• size: fsize(s1, . . . ,sn) = n

The aggregation operator groups elements by a certain reference through
which they are linked to the source class. The result of the aggregation is
then persisted as a new attribute in the target class.

Definition 25 (Aggregation). Let r ∈ REFsource be a reference between

classes c, ĉ ∈ CLASSsource, i.e., the reference signature is associates(r) =

〈c, ĉ〉, and let â : tĉ→ t ∈ ATT∗ĉ be an attribute of class ĉ that is of a numeral

type t ∈ {UnlimitedNatural, Integer,Real}, and c′ ∈ CLASStarget a class in

the target metamodel with c∼on c′, and let fα be an aggregation function.

The aggregation operator is then defined as

α = 〈r, â,a′〉 ∈ REFc×ATTĉ×ATTc′

189

6. Flexible View Type Definitions

where the aggregate result a′ has the following properties:

• a′ is an attribute of the target class c′ with type t:

a′ : tc′ → t ∈ ATTc′

• The instances of c′ carry an attribute value in a′ that is determined by

an aggregation function fα those instances of c that they are mapped

to. For unmapped instances, the attribute value is null (⊥):

∀c′ ∈ σCLASS(c′) : σATT(a′)(c′) =
fα

(⋃
ĉ∈L(r)(c)

σATT(â)(ĉ)

)
if ∃c ∈ σCLASS(c) | c∼on c′

⊥ else

Depending on the type of the aggregation function, the aggregation op-
erator is written as αsum, αavg, αmax, αmin, or αsize. In the case of αsize, the
attribute â can also be of a non-numeral type.

Example The aggregation operator groups features of a set of elements
that are linked to a certain instance. They are grouped as an attribute that is
calculated by one of the aggregation functions. In the library example, the
votes for a movie by members of the movie database platform are represented
as instances of the class Vote in the IMDB metamodel. This class contains
the numerical attribute score.

With the aggregation operator, it is possible to define a flexible view that
does not contain all the vote elements, but only the average of all votes. In
Listing 8, such a flexible view is defined using the KEEP AGGREGATE operator.

The instances that are in the result set contain only the aggregated value
for the attribute avgScore. This way, the result set is a small model even if
the source models contain a large number of instances of the class Vote.

190

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

LEFT OUTER JOIN imdb.Film WITH library.VideoCassette AS jointarget.

Movie {

KEEP AGGREGATE avg(imdb.Vote.score) OVER idmb.Film.votes AS

jointarget.Movie.avgScore

}

Listing 8: ModelJoin Aggregation Example

To generalise the aggregation operation, ModelJoin also allows generic
calculated attributes in the target model. The values of these attributes
are derived from arbitrary values of source instances. These attribute are,
however, called calculated and not derived in ModelJoin, since the term
derived attribute is defined in EMF as an attribute that is derived from other
properties of the same instance. A calculated attribute in ModelJoin depends
on properties of source instances that are not linked to the target instance
in any way. The process of calculating the values of the attributes is part
of the query execution, in contrast to the on-access computation of derived
attributes in EMF, which is called the volatile property of attributes. Further-
more, the values are persisted in the result set, so they are not transient like
derived values in EMF.

Definition 26 (Calculate attribute). Let a′ : tc′ → t ∈ ATT∗c′ be an attribute

of type t in a target class c′ ∈ CLASStarget and φ = N n→ t a function over

arbitrary elements with the return type t. The calculate attribute operator is

defined as

δφ = 〈e1, . . . ,en,a′〉 ∈N n
source×ATTc′

where the attribute values of a′ are defined by the function φ over instances

e1, . . . ,en ⊆ {σCLASS ∪σATT ∪σREF}:

∀c′ ∈ σCLASS(c′) : σATT(a′)(c′) = φ(e1, . . . ,en)

191

6. Flexible View Type Definitions

The operator for calculated attributes is the most general way of defining
attributes in the target model. The keep attributes operator and the aggreg-
ations of Definition 25 can also be expressed by calculated attributes. In
actual use cases, the function φ will very likely (but not necessarily) be over
classes c1,c2 with c1 ∼on c′, so that the calculation is based on instances
instances c1,c2 that have been mapped to the target instance by another
operator. In the prototypical implementation, we use the general purpose
language OCL [123] for the definition of calculated attributes.

Example The calculate attribute operator exposes the full expressivity of
OCL in ModelJoin. Similar to the theta join operator, the class names of the
keep statements context can be used as variables, which are replaced by the
actual instances of the classes. In Listing 9, the target class Movie contains
an extended title attribute extTitle, which contains the title of the movie and
its year to distinguish movies with the same title. (For example, “Star Trek
(1979)” and “Star Trek (2009)”).

LEFT OUTER JOIN imdb.Film WITH library.VideoCassette AS jointarget.

Movie {

KEEP CALCULATED ATTRIBUTE "AudioVisualItem.title.concat(’(’).

concat(Film.year).concat(’)’)" AS jointarget.Movie.extTitle

}

Listing 9: ModelJoin Aggregation Example

The preceding three keep statements have the identical effect on the target
metamodel and the instances: They create attributes and attribute values.

The keep references operator, on the other hand, defines which references
exist in the target metamodel. It can only be applied to classes that have
already been mapped, e.g., by a join operator or another keep references
operator. The keep references operator is realised in two directions, keep

incoming and keep outgoing. These variants only differ in the end of the
reference, which already has to be mapped: either the start point of the

192

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

reference (keep outgoing) or the end point of the reference (keep incoming).
If the class at the respective other side of the reference has not been mapped
yet by another join or keep operator, it is generated in the target metamodel.
The differentiation between incoming and outgoing references is, however,
only relevant for the concrete syntax and the prototypical implementation,
but not for the formal definition; thus, this differentiation is not made in the
following definition.

Definition 27 (Keep references). Let r ∈ REFsource be a reference between

classes c, ĉ ∈ CLASSsource, i.e., the reference signature is associates(r) =

〈c, ĉ〉, and c′ ∈ CLASStarget a class in the target metamodel with c ∼on c′.

The keep references operator is defined as:

κref = 〈r,r′〉 ∈ REFsource×REFtarget

where the target reference r′ has the following properties:

• r′ is defined between the classes that are mapping targets of the classes

of r.

associates(r′) = 〈c′, ĉ′〉∧ (ĉ∼on ĉ′); ĉ′ ∈ CLASStarget

• Since there may be target instances where the reference is not set, the

multiplicity of r′ is extended by 0:

multiplicities(r′) = multiplicities(r)∪{0}

• For every instance pair of c and ĉ that is linked by r, a mapped

instance pair of c′ and ĉ′ also exists that is linked by r′:

∀〈c, ĉ〉 ∈ σCLASS(c)×L(r)(c) :

∃〈c′, ĉ′〉 ∈ σCLASS(c′)×L(r′)(c′) | c∼on c′∧ ĉ∼on ĉ′

193

6. Flexible View Type Definitions

The evaluation of κref creates the class ĉ′, if it does not exist in the target
metamodel, and creates the reference r′ between c′ and ĉ′.

Example The keep references operator can be used to construct the meta-
model along the references between classes in a star-shaped manner. The
join statements at the root of ModelJoin expressions serve as the starting
point for the creation of the target metamodel. Since the direction of ref-
erences plays an important role in EMF, the ModelJoin concrete syntax
contains two seperate statements for the keeping of outgoing and incoming
references. The keep references statements can cause the creation of classes
in the target metamodel, if they have not been created by another join or
keep operation.

LEFT OUTER JOIN imdb.Film WITH library.VideoCassette AS jointarget.

Movie {

KEEP OUTGOING imdb.Film.votes AS TYPE jointarget.Vote {

}

KEEP INCOMING library.Borrower.borrowed AS TYPE jointarget.

Customer {

}

}

Listing 10: ModelJoin Keep Reference Example

In Listing 10, the classes Vote and Customer are created in the target
metamodel by the KEEP INCOMING and KEEP OUTGOING statements. If there
are any other statements that also map the source classes at the respective
other ends of the source references to a target class of the same name as that
in the keep references operator, the classes in the target metamodel will be
identical.

If several classes are created in the target metamodel that have a common
superclass in the source model, common attributes or references have to be
created in each of the single classes if they should be included in the target

194

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

metamodel. To avoid this redundancy, it is also possible to include super-
or subtype relations of the source metamodels in the target metamodel with
the keep supertype and keep subtype statements. Again, ModelJoin does not
automatically create any of these inheritance relationships. They have to be
made explicit by the author of the ModelJoin expressions. If the respective
super- or subclass is not present in the target metamodel, it is created during
the execution of the ModelJoin expression.

Definition 28 (Keep supertype). Let c, ĉ ∈ CLASSsource,c′ ∈ CLASStarget be

classes with c≺ ĉ and c∼on c′. The keep supertype operator is defined as:

κsuper = 〈c,c′〉 ∈ CLASSsource×CLASStarget

with ∃ĉ′ ∈ CLASStarget | (c′ ≺ ĉ′)∧ (ĉ∼on ĉ′)

Example The keep supertype operator is only responsible for the creation
of the class and the generalization link in the target metamodel. It does not
have a direct influence on instances in the result set, although instances are
influenced indirectly since additional features, which are inherited from the
superclass, can now be contained in the instances. These features, how-
ever, have to be included explicitely by a keep attributes or keep reference
statement.

In the example of Listing 11, the superclass AudioVisualItem of the class
VideoCassette in the source models is added as the superclass MediaItem

to the target class Movie. The attribute minutesLength has to be included
explicitely in this keep supertype statement. If this statement were included
right below the join statement, the attribute would be contained in Movie

rather than in MediaItem in the target metamodel.

Definition 29 (Keep subtype). Let c, ĉ ∈ CLASSsource,c′ ∈ CLASStarget be

classes with c� ĉ and c∼on c′. The keep subtype operator is defined as:

κsub = 〈c,c′〉 ∈ CLASSsource×CLASStarget

195

6. Flexible View Type Definitions

LEFT OUTER JOIN imdb.Film WITH library.VideoCassette AS jointarget.

Movie {

KEEP SUPERTYPE library.AudioVisualItem AS type jointarget.

MediaItem {

KEEP ATTRIBUTES library.AudioVisualItem.minutesLength

}

}

Listing 11: ModelJoin Keep Supertype Example

with ∃ĉ′ ∈ CLASStarget | (c′ � ĉ′)∧ (ĉ∼on ĉ′).

It should be noted that the κsuper / κsub statements do not automatically
alter the signature of attributes or references, i.e., they do not move attributes
or references to a superclass. This has to be made explicit in the respective
κatt and κref statements. The keep super-/subtypes statements have no effect
on the system state of the target metamodel.

Example The keep subtype operator is useful if instances of the result set
shall be distinguishable by the type that the corresponding source instances
have. When the query is executed, instances are transformed into the most
special class of the target metamodel that is applicable. In the example of
Listing 11, the class Borrower is added to the target metamodel. This way, it
is visible if the element that was joined with an Actor element belonged to
the class Borrower in the source model.

THETA JOIN imdb.Actor WITH library.Person WHERE "Actor.name = Person.

firstName.concat(’ ’).concat(Person.lastName)" AS jointarget.

Person {

KEEP SUBTYPE library.Borrower

}

Listing 12: ModelJoin Keep Subtype Example

The keep subtype operator can lead to ambiguities if more than one op-
erator is applied to a joined class: If the example of Listing 12 contained

196

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

another statement that included a subclass of Actor, such as TVActor (which
does not exist in our example metamodel), the evaluation of such an expres-
sion would be ambiguous: If an instance of Borrower were joined with an
instance of TVActor, it would be unclear whether the joined instance should
be of type Borrower or TVActor. For this reason, keep subtype statements as
children of join statements are only allowed for either the left or the right
source class of the join. This limitation of the keep subtype operator is
described in detail in the ModelJoin technical report [28, section 3.2.2.6].

6.2.2.3. Select

The selection operator restricts the result set to a subset of elements for
which a logical predicate is fulfilled. Since only the set of instances is
reduced by this operator, selection does not have any impact on the generated
metamodel.

Definition 30 (Selection). Let I(c) be a set of instances of a class c∈CLASS

and ϕ = J→{true, false},J ∈ I(c)n be a logical expression over instances

c ∈ I(c). The selection operator is defined as an unary operator

ςϕ(I(c)) = {c ∈ I(c) | ϕ(c)}

Our prototypical implementation uses OCL statements for the logical
expressions, since it is based on QVT. In general, any other language could
be used.

6.2.2.4. Rename

Since the join and keep operations take the entity names from the first of
the source elements as the name of the target element, a rename operator is
needed to specify the entity names in the target metamodel.

Definition 31 (Rename). Let e,e′ ∈N be a names. Rename is an unary

operation ρe′(e) = e′.

197

6. Flexible View Type Definitions

The rename operator is realised as part of the keep and join statements in
the AS-statements.

6.2.3. Implementation

The prototypical implementation of the ModelJoin approach is joint work
of the authors of the ModelJoin Tech Report [28] and [29]. The project
is being developed as open source and can be obtained via the ModelJoin
Homepage2. We will not describe the technical details of the implementation
here, but instead highlight crucial design decisions that had major influences
on the way the protoype has been implemented.

6.2.3.1. Concrete Syntax

The ModelJoin statements, whose semantics has been defined in subsec-
tion 6.2.2, are implemented in the ModelJoin prototype with the textual
concrete syntax that has already been used in the examples of the preceding
subsections.

The keywords of the language have been chosen in analogy to those
of the Standardized Query language (SQL). The root of every ModelJoin
expression consists of a join expression, which is either a NATURAL JOIN,
OUTER JOIN or a THETA JOIN statement. Based on these expressions, further
KEEP statements can be added as children. The KEEP REFERENCE statements
can have further children of their own. This hierarchical structure is noted in
curly brackets in the textual syntax. The correspondence of the statements
in formal notation to the concrete textual syntax can be seen in Table 6.2.

In the protoypical implementation, the textual syntax of ModelJoin has
been implemented using the Xtext3 framework. The complete Xtext gram-
mar definition is displayed in Listing 16 on page 279 of the appendix. The
implementation prototype features a textual editor with syntax highlighting,

2https://sdqweb.ipd.kit.edu/wiki/ModelJoin, retrieved 26 May 2014
3http://www.eclipse.org/Xtext, retrieved 9 May 2014

198

https://sdqweb.ipd.kit.edu/wiki/ModelJoin
http://www.eclipse.org/Xtext

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

operator keyword

on NATURAL JOIN

onlo LEFT OUTER JOIN

onro RIGHT OUTER JOIN

onθ THETA JOIN

κatt KEEP ATTRIBUTE

α KEEP AGGREGATE

δφ KEEP CALCULATED ATTRIBUTE

κre f KEEP REFERENCE

κsuper KEEP SUPERTYPE

κsub KEEP SUBTYPE

ςϕ WHERE

ρ AS

Table 6.2.: Textual Syntax of ModelJoin statements

autocompletion and automatic triggering of the generation workflow when a
query is saved. Furthermore, the generation workflow also validates whether
the ModelJoin query leads to the creation of a valid metamodel and diplays
error markers in the textual editor if this is not the case. A parsed query is
converted into a model-based representation by Xtext automatically, which
eases further processing of the information with model-based technologies.

6.2.3.2. Query Execution Workflow

The execution of a ModelJoin query yields a target metamodel and a result
set (see Figure 6.6). In the protoypical implementation, this process that
realises query execution consists of three parts:

1. generation of the target metamodel, which contains the elements that
have been declared in the query;

2. generation of a QVT-O transformation, which realises the logic of the
query;

199

6. Flexible View Type Definitions

generated at
compile time

generated at runtime

ModelJoin
Query

Input
Metamodels

Input
Metamodels

Input
Metamodels

references

Input ModelsInput ModelsInput Models

«instance of»

Metamodel
Synthesis

Model-to-model
Transformation

references

Target
Metamodel

Transformation
Generation

Transformation
Execution Join Result

«instance of»

Figure 6.7.: ModelJoin Query Execution Workflow (in FMC notation, from [29])

3. execution of the transformation, which yields the result set.

The process is depicted in Figure 6.7: While the upper section contains
the first and second step of the query execution, which produces the target
metamodel and the transformation, the lower section contains the third step
of transformation execution, which produces the join result. The elements
in the structural variance blocks represent generated artefacts, which
vary with the input query and metamodels (in the upper section), or the
input models (lower section). The generation of target metamodel and the
model-to-model transformation is denoted as a compile-time generation,
since these artefacts can be re-used on varying input models. If the query
itself is not modified, the execution of the query on actual input models does
not require the re-generation of these artefacts. The execution of the query
itself at runtime is performed by executing the generated transformation
code with the given input models.

200

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

metamodel
generation

transformation
generation

QVT-O
execution

query

input
metamodels

input models

target me-
tamodel

target model

act query execution

annotated .ecore file

.qvto file

Figure 6.8.: Steps of ModelJoin Query Execution

In the prototypical implementation, the metamodel generation component
has been realised in plain Java, while the transformation generation is
implemented as a model-to-text transformation in Xtend.4

6.2.3.3. Annotated Target Metamodel

The transformation generator needs to be aware of the layout of the target
metamodel, but also requires information about how the elements in the
target metamodel were created during the metamodel synthesis. For example,
the creation of a class in the target metamodel can be caused by a JOIN, a
KEEP SUPERTYPE/SUPTYPE or a KEEP REFERENCE operation. The behaviour
of the transformation differs for each of these cases. The information on
how a class is created is available during metamodel synthesis, but is not

4http://www.eclipse.org/xtend/, retrieved 26 May 2014

201

http://www.eclipse.org/xtend/

6. Flexible View Type Definitions

directly necessary for the creation of the metamodel. Thus, we are using
the EAnnotation element of Ecore to encode the information on which kind
of statements lead to the creation of the element. The information in the
annotation is sufficient for the transformation generator to calculate the
transformation statements without having to analyse the input query at all.
This strategy avoids a double analysis of the parsed ModelJoin query, which
would lead to duplicate code and would increase the execution time for a
query.

A detailed description of the functionality of the metamodel generator
and the algorithm that is used to calculate the target metamodel is found
in [28] and will not be included here. During the generation process, the
generator determines which elements of the source metamodel were joined
to an element of the target metamodel, which was the attribute for the
join condition, etc. The information is stored in the target metamodel
using EAnnotation elements, which reference the elements in the source
metamodels directly.

This is possible since the EAnnotation element in Ecore contains a refer-
ence named references, which is typed with the reflective element EObject,
which is the superclass of all classes in the EMF framework. Since there is
no linguistic supertype of all metamodel classes in Ecore, this would not
be possible in a strict MOF-compliant metamodel, since it would violate
the metamodel levels. The EAnnotation class is an EMF-specific element
that relates to the reflective class EObject. The generated target metamodel
will thus contain references to the source metamodels, but only inside these
EAnnotation elements. EAnnotations have a name (called source in EMF),
an element that they refer to (reference), and can contain additional inform-
ation details in key/value pairs. Since EAnnotations cannot be differentiated
through subtypes, we have introduced naming conventions for the different
annotation types.

As displayed in Figure 6.8, the annotated Ecore metamodel serves as an
input for the transformation generation step, and is also part of the produced

202

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

artefacts of the query execution. This strict decoupling of the metamodel
generator and the transformation generator increases the modularity of
the prototype and simplifies a possible re-implementation of one of the
components using a different technology, such as a model transformation for
the metamodel generator instead of the existing plain Java implementation,
or the generation of transformations using a higher-order transformation
instead of the textual generation of QVT-O code with templates. Future
modifications to the ModelJoin prototype have been outlined in the future
work section of [28].

6.2.3.4. Transformation Generation

A ModelJoin query is executed as a model-to-model transformation taking
the input models and resulting in a model that conforms to the generated joint
metamodel. In order to generate the transformation, we used a model-to-
text (M2T) approach based on Xtend2, which generates the transformation
directly using templates.

We chose QVT-O [116] as the transformation language, into which the
Xtend templates generate the textual queries, because of the stability of the
transformation engine, debugging support and Eclipse integration.

The following steps are necessary when automatically generating the
transformation in the transformation generation step of Figure 6.7.

1. Create the OCL expression to filter joinable elements. In accordance
with Definition 19, “joinable” means that they have the same name
and are type-compatible.

2. Convert the (optional) where-clause to an OCL selection on the joined
elements.

3. Create mappings to transfer attributes from source to target model
(only those marked as “keep”).

203

6. Flexible View Type Definitions

theta join FirstClass with SecondClass where "OCL-condition"

as TargetClass

mapping FirstClass ::

thetaJoin_ FirstClass _ SecondClass _To_ TargetClass (rightElement

: SecondClass) : TargetClass

when {

OCL-condition

}

{ -- create the target instances

end {

rightElement.map thetaJoin_update_ SecondClass (result);

}

}

mapping SecondClass ::thetaJoin_update_ SecondClass (rightElement :

TargetClass) : TargetClass {

init {

result:=rightElement;

}

}

Figure 6.9.: The QVT Template for a Theta Join (from [29])

4. Create mappings to transfer references from source to target model
(only those marked as “keep”). Note that this usually includes setting
values to the newly created meta classes in the target model.

5. Combine the single fragments generated in 1.-4. to one transforma-
tion.

Let us consider the exemplary template shown in Figure 6.9. The theta
join of FirstClass and SecondClass means that the model elements are
joined using a condition expressed as an OCL constraint. The resulting
QVT-O script will have two mappings for realising the join, as QVT-O
has no support for n-to-1 mappings. While the first mapping is used for
checking the condition of the theta join and instantiating the TargetClass, the

204

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

second mapping is used solely for storing tracing information. The tracing
information is later on required for resolving the source instances of a target
instance. To be more specific, they are put to use in the mappings created
for transferring attributes and references.

In addition to the shown code, the main method of the QVT-O script is
extended to call the generated mappings for the cartesian product of the sets
of instances of FirstClass and SecondClass. Mappings for natural joins are
created in a similar manner by using the joinable features, identified during
synthesis, as join criteria. For realising the left outer join functionality, the
sets of instances that the mappings are called with are adjusted accordingly.

As an alternative, the transformation generator could create a mapping
from a set of Firstclass elements and a set of SecondClass elements to
TargetClass elements (i.e. building the Cartesian product). This would,
however, have negative effects on performance, since a potentially large
number of objects would be loaded into memory. The selection criteria
would be ignored until checked in the mapping. Therefore, we decided to
filter on the left element side first.

6.2.3.5. Transformation Execution

As last step of the ModelJoin query evaluation process, the generated QVT-
O transformation is executed to automatically create instances for the syn-
thesised metamodel (step Model-to-model transformation in Figure 6.7).
Currently, our workflow uses the QVT-O engine that is part of the Eclipse
M2M project. For every source metamodel, a corresponding model can be
defined in the workflow all of which are then used as input models for the
transformation engine. After the transformation workflow has been executed,
the resulting model can be visualised using the standard EMF editors.

Transformation execution can be repeated for multiple instances of the
source metamodels without having to create the target metamodel and trans-
formations again, thus creating new views for the generated view type.

205

6. Flexible View Type Definitions

6.2.4. Re-Use of Target Metamodels

Since the target metamodel of a ModelJoin query can be completely derived
from the statements in the query itself, it is possible to generate an appropri-
ate metamodel for each ModelJoin query automatically. In the ModelJoin
prototype, this is realised by metamodel generator component. The auto-
matic generation has the advantage that the generated metamodel and the
generated transformations are always compatible to each other, since they
are generated in pairs. The automatic generation of the target metamodel is,
however, also a disadvantage since it limits the further usage of the results
of a ModelJoin query.

In model-based processes, models are the primary artefacts that are created
and modified at runtime. Metamodels usually stay stable for a longer period
of time, since the modification of a metamodel causes further adaptation
activities, such as co-evolution of existing instances, and adaptation of
existing editors, concrete syntaxes, and transformations that are based on the
metamodels. This problem does not occur if ModelJoin is used for the ad-hoc
definition of views [25] to satisfy particular information needs of a developer.
If the ModelJoin view is, however, persisted and re-used frequently, the
target metamodel may be used for the aforementioned purposes, so the
compatibility to this specific metamodel has to be preserved. If a change is
applied to the ModelJoin query, a new target metamodel is generated, and
the compatibility may be violated.

NATURAL JOIN imdb.Film WITH library.VideoCassette AS jointarget.Movie

{

KEEP ATTRIBUTES library.AudioVisualItem.minutesLength

}

Listing 13: ModelJoin Query for the Movie Database Example

As an example, let us consider the movie database query in Listing 3. Let
us assume that the target metamodel of this query (Figure 6.5) is already

206

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

in use, so the compatibility to the metamodel would be beneficial, since a
visualization or further transformation can be used. A further ModelJoin
query on the movie databases is displayed in Listing 13. Similarly to
the query in Listing 3, it joins the classes Film and VideoCassette, but
in a natural join rather than in an outer join. Furthermore, the attribute
minutesLength, which is an attribute of the superclass AudioVisualItem in
the source metamodel, is included directly in the class Movie in the target
metamodel, rather than in a superclass, like in the previous query. The
resulting metamodel for this query consists only of the class Movie with the
attributes name (from the natural join) and minutesLength. Its instances
are however also valid instances of the target metamodel of the query in
Listing 3, since the class Movie also exists in this metamodel, contains the
attribute name, and inherits the attribute minutesLength from the superclass
MediaItem. Thus, we can re-use this target metamodel for the current query.

We use the metamodel conformity relation of Definition 16 (see page 147)
to check whether a metamodel can be re-used for a ModelJoin query. In
the example, the difference between the classes Movie in the different target
metamodels is detected as an extract superclass operation (cf. Appendix B),
which is a non-breaking operation, and thus, the target metamodel of this
query conforms to the target metamodel of the query in Listing 3.

The prototypical implementation of the conformance check [30] contains a
simple file-based metamodel repository, which makes it possible to discover
if there are conforming metamodels that can be used for a given ModelJoin
query. The process is displayed in Figure 6.10: The conformance check is
performed between the generation of the target metamodel and the usage
of the target metamodel. It can replace the generated target metamodel
with a compatible metamodel from a repository. During the checking, the
generated metamodel is compared with the metamodels in the repository. If
a conforming metamodel is found, the repository metamodel is used instead
of the generated target metamodel. If no conforming metamodel is found,
the generated metamodel is used and added to the repository for further

207

6. Flexible View Type Definitions

conformance
check

metamodel
repository

generated
metamodel

target
metamodel

use
generated
metamodel

use re-
pository

metamodel

act conformance check

∃ conforming

metamodel?

no

yes

metamodel

repo. mm

gen. mm

Figure 6.10.: Re-Use of Target Metamodels in ModelJoin

usage, so that ModelJoin queries that are created later can possibly use the
metamodel. In the UI of the prototypical implementation, the user has the
possibility to choose whether the generated or the repository model shall be
used.

The conformance checker can also be used to formulate a ModelJoin
query whose target metamodel conforms to a pre-existing metamodel: The
UI of the conformance check presents two metamodel metrics to the user,
which indicate the number of conflicts that prevent the conformity of a
ModelJoin query with an existing metamodel. This information can be used
by the editor of the ModelJoin query to modify it in such a way that the
target metamodel conforms to the desired existing metamodel.

Since the conformance checker acts as a proxy between metamodel gen-
eration and metamodel usage, it can be integrated into the ModelJoin query
execution process (see Figure 6.7) between metamodel synthesis and trans-

208

6.2. Definition of Flexible Views at Run-Time Using ModelJoin

formation execution. The transformation generator has to be adapted to
always take the generated metamodel as input, since it contains the neces-
sary annotations for the generation of the model-to-model transformation,
but to take the repository metamodel as the target of the transformation.
The transformation execution will then generate instances of the repository
metamodel.

6.2.5. Assumptions/Limitations

In this subsection, we will discuss the current assumptions and limitations of
the ModelJoin language. These limitations concern the language itself; lim-
itations that concern the prototypical implementation will not be discussed
here. We refer the reader to the technical report of ModelJoin [28] instead.

6.2.5.1. Joining over References

The natural and outer join statements are based on the definition of join-
conformity, which is given if the classes to be joined contain join-conforming
attributes. The join statements could be extended to support joins over
common references. This is, however, currently not supported in ModelJoin,
since the semantics of such a join are complex, and several preconditions
would have to be fulfilled. The join condition of natural and outer joins
demands that attributes with equal name, type, and cardinality have the
same values. A join over a reference would have the join condition that
the same element is linked via a reference with equal name and cardinality.
The problem with this condition is the fact that the definition of identity
of two elements is not possible as easily as with primitive-typed attribute
values. If the join is over two classes from heterogeneous metamodels with
no common classes, it is impossible to have references with an identical
type. Thus, the type-compatiblity and identity can only be derived from the
fact that the respective classes at the end of the references are also joined
by another join expression in the same query. This is shown in an example

209

6. Flexible View Type Definitions

A B

A′ B′
ref ref

onref

on

Figure 6.11.: Example for Joining over References

in Figure 6.11: If class A and B are joined over the reference ref, it would
require that there are identical instances linked to instances of A and B. Since
A and B can be part of distinct source models, the classes at the end of ref

may also be distinct, like the classes A′ and B′ in the example.
Thus, a join over a reference would require that the classes at the end of

the references are either identical or have also been joined, so that the identity
of the instances can be determined. This is, however, a serious restriction
to the ModelJoin language, since the validity of one join statement would
depend on the existence of another join statement (in the example, a join over
classes A′ and B′). For this reason, there is no specific operator to join over
references. The behaviour of such an operator can, however, be expressed
with a THETA JOIN with an appropriate OCL statement, and additional join
and keep operations.

6.2.5.2. Purpose of the ModelJoin Language

The ModelJoin language does not contain constructs for identifying struc-
tural similarities of different metamodels. It is not meant as a data integration
framework, but for the creation of views. Thus, it assists the developer in
the rapid definition and execution of a view, but not in finding the semantic
overlap of two heterogeneous models. It should also be noted that we did not
aim at creating a complete query or transformation language. ModelJoin is
a domain-specific language for the rapid creation of views. Hence, it cannot
be used for any kind of fixed, pre-existing target metamodels. It is however

210

6.3. Flexible View Types in VITRUVIUS

possible to align ModelJoin queries with pre-existing metamodels using the
conformance checking mechanism.

6.3. Flexible View Types in VITRUVIUS

The flexible view types concept is applicable to any view-based model-driven
scenario, where view types on heterogeneous metamodels are required or
can be useful. In this section, we will describe the integration of the flexible
view concept in the VITRUVIUS approach. We will first describe the way
in which the flexible view concept can be applied in VITRUVIUS-based
development scenarios (subsection 6.3.1). The integration of the ModelJoin
language and implementation is the subject of subsection 6.3.2. Finally, we
will investigate how the synchronisation policies of VITRUVIUS affect the
properties of flexible view types in subsection 6.3.3.

6.3.1. Applicability

VITRUVIUS is a view-centric approach and extends the Orthographic Soft-
ware Modeling concept [7]. One of the core prinicples of OSM is the
dynamic generation of views, at the instance level, from the single under-
lying model. The definition of view types, at the metamodel level, and
of the transformations that synchronise the views with the SUM is in the
responsibility of the methodologist role. Thus, for the developer who uses
an OSM-based development framework, the view types are fixed and are
usually not meant to be changed by the developers themselves. The flexible
view concept in VITRUVIUS overcomes this limitation by offering the de-
velopers means to define user-specific view types, or, to put it differently, to
create views that fulfil a specific information need for which no view type
has been pre-defined by the methodologist. This specific information can
also be created by restricting or re-organizing an existing view type.

The concept of flexible view types can be used in VITRUVIUS for the
definition of view types. Flexible view types are used by the methodologist

211

6. Flexible View Type Definitions

single-metamodel
projectional scope

(projectional)

multi-metamodel
projectional scope

(combining)

pre-defined user-specific

flexible

legacy

Figure 6.12.: View Type Categories

212

6.3. Flexible View Types in VITRUVIUS

as well as the developers to specify view types, views and editability proper-
ties. In the prototypical implementation of VITRUVIUS, the ModelJoin DSL
is used as a compact language for the definition of flexible view types.

Flexible views can be applied at several points of the development process
and by different developer roles. We will explain this with the view type
categories pre-defined and user-specific, as introduced in subsection 4.4.2.
The connection between the view type terms specificity (pre-defined/user-
specific), projectional scope (single-/multi-metamodel), legacy, and flexible

is displayed in Figure 6.12: Specificity and and projectional scope are
orthogonal categories. All of these kinds can be defined with flexible views,
or with other view definition methods. Legacy metamodels are a special
case of pre-defined view types with a single-metamodel projectional scope.
They can be defined as flexible view types or by other means.

In the following, we will describe the application fields of the flexible
views concept and the ModelJoin DSL in the context of VITRUVIUS.

6.3.1.1. Pre-defined View Types

The ModelJoin DSL can be used by the methodologist role to define view
types that combine information from several sub-metamodels of the modular
SUM metamodel. In this case, the source metamodels for a ModelJoin
expression are a subset of the metamodels in the modular SUM metamodel.
These metamodels can be legacy metamodels that have been included by
the methodologist during the creation of the modular SUM metamodel,
or additional metamodels that express semantic relations between these
metamodels, or metamodels that express further additional information. The
artefacts that are automatically generated by ModelJoin, i.e., target metamo-
del and model-to-model transformations, can be used to create custom views
at the instance level. If the methodologist wishes to further customize the
view types with functionality that cannot be expressed with ModelJoin, the
generated artefacts can be further refined by the methodologist by editing

213

6. Flexible View Type Definitions

them manually. Similar to code generation in model-driven software devel-
opment, these manual modifications may, however, be overwritten if the
artefacts are re-generated from the ModelJoin expression. The state-based
metamodel conformance checking of section 5.3 can be used to check if the
manual modifications to the target metamodel preserve the compatibility to
the generated metamodel, so that the transformations are still compatible to
the metamodel.

In the case that the flexible view type is used exactly as defined in the
ModelJoin expression, the ModelJoin code then also serves as a specification
for the view type and can be used as documentation of what is contained in
the view type.

6.3.1.2. Legacy View Types

Legacy view types are a special case of pre-defined view types, which
have a single-metamodel projectional scope. They are specified to offer
compatibility to existing tools and transformations that are based on a
specific sub-metamodel of the modular SUM metamodel. Legacy view
types may be total view types if the legacy metamodel is partitioned in to
sub-metamodel in the same way as the legacy view types are partitioned. It
is possible to define legacy view types with a flexible view definition that
conforms to a fixed view type metamodel, for example, UML class diagrams.
The flexible view definition can pose restrictions on the selectional scope of
elements and restrict the editability. Thus, the compatibility of the flexible
view type with the legacy view type is preserved, since the projectional
scope and the represents-relation are not modified, but the restrictions in
selectional scope and editability can be used to integrate these view types in
the VITRUVIUS-based development process.

214

6.3. Flexible View Types in VITRUVIUS

6.3.1.3. User-specific view types

In addition to the pre-defined view types that are specified by the method-
ologist, developers in a VITRUVIUS-based development process also have
the possibility to define user-specific view types. The flexible views concept
and the ModelJoin DSL offer the developer a method for the declarative,
rapid definition of additional view types that have not been pre-defined
by the methodologist. Compared to the methodologist, the developer is
however limited in accessing information in the SUM, since the developer
is not supposed to change the structure of the modular SUM metamodel
(which includes the pre-defined view types and the transformations). Thus,
user-specific flexible views can only access information that is exposed in
other, pre-defined view types (see Figure 4.9 on page 98) and must comply
with the editing restrictions that have been defined on them. Thus, the SUM
metamodel still remains a black-box for the developer. Nevertheless, a
developer can combine information from those sub-metamodels by legacy
or other view types; existing view types can serve as a starting point for the
definition of user-specific view types, which may restrict the set of instances;
for example, they may only show the abstract classes of a class diagram
or only show specific kinds of elements, such as interfaces of a Palladio
component diagram.

If total legacy view types expose the complete sub-metamodels with full
editability, the developer can specify new view types in the same way that a
methodologist can.

6.3.1.4. Projectional Scope

The typical case for flexible view types that are defined with ModelJoin are
combining view types, which integrate information from several other view
types or sub-metamodels. It is, however, also possible to join classes from
just one metamodel, or to use self-joins to re-arrange the information at the

215

6. Flexible View Type Definitions

instance level. Although this is not the main purpose of ModelJoin, it is thus
also possible to create projectional views.

6.3.2. ModelJoin as a View Specification Language in VITRUVIUS

The usage of a textual DSL, as provided by ModelJoin, offers the developers
the possibility to rapidly define views on a SUM, which combine information
in a different way than the existing view types do. The view types that
are created in this way have a transient nature, since the metamodels are
generated on-the-fly by the implementation of ModelJoin. If the ModelJoin
expression is modified, the metamodel is generated anew. It is of course
possible to persist such a view type and the transformations, so that they
become part of the SUM metamodel. In this case, the methodologist can
integrate a user-specific view type that has been defined by a developer into
the SUM metamodel, so that it becomes a pre-defined view type.

Since ModelJoin offers the declarative specification of view types based
on equality of attributes or other features, it is suited for cases where the
metamodels, on which the view type shall be defined, are completely hetero-
geneous. Thus, it can be helpful in the construction of the modular SUM.
Semantic overlaps can be expressed in ModelJoin, and the resulting view
type can be reused as part of the interface that the SUM offers. The consist-
ency relations in the SUM can also be derived from ModelJoin expressions,
since they represent semantic relations that the author of the expression has
already identified.

6.3.2.1. ModelJoin Queries as Flexible View Type Definitions

The definition of flexible view types in VITRUVIUS with the ModelJoin
language is performed with a ModelJoin expression

q ∈Msum×VIEWTYPE

216

6.3. Flexible View Types in VITRUVIUS

The target metamodel of the query q is the view type metamodel VT ∈
VIEWTYPE. The elements in VT are related to elements in Msum by the
mapping relations ∼on,∼on of ModelJoin. These mappings realise the is-
represented-by relations rep and rep of VITRUVIUS. In the prototypical
implementation of ModelJoin, the relation ∼on is expressed in the EAn-

notation elements of the generated target metamodel, which contain the
information about the provenance of a view type element. At the instance
level, the relation ∼on is persisted in the trace model that is created by
the QVT-O engine during the execution of the generated model-to-model
transformation.

This tracing information at the metamodel level as well as at the instance
level is necessary for the delta-based synchronisation mechanism of VIT-
RUVIUS. The effects of changes to elements in a view are expressed as
change operations to the corresponding elements in the SUM.

6.3.2.2. Editability

The ModelJoin language does not contain language constructs to define
editabilty of the view types and views that can be specified with a ModelJoin
query. The specification of editability scopes and response behaviour in
VITRUVIUS is very fine-grained, since editability can be described for each
class and feature in a view type, and additionally for single elements at the
instance level. Thus, the ModelJoin language would have to be extended by
a great number of language elements to support the definition of editability
scopes.

Including editability into the ModelJoin DSL would thus introduce new
advantages as well as disadvantages: On the one hand, a consistent definition
of the three parts of a flexible view type (view type, view, and editability)
is beneficial for the evolution of such a view type, since the generated
parts evolve together when the textual definition is changed. On the other
hand, the specification language would gain additional complexity, which

217

6. Flexible View Type Definitions

is opposed to the aim of ModelJoin to offer a compact language for the
definition of view types. In the current state of ModelJoin, we have thus
not included language elements for the specification of editability. This
functionality may, however, be included in future version of ModelJoin (see
section 8.2).

The consideration of the trade-off between these factors should be based
on the purpose for which ModelJoin is used. For the ad-hoc definition of
user-specific view types, editability is not a central factor, since the primary
purpose of such a view type is to fulfil a specific information need of the
developer. Thus, it is acceptable if such a view type is not editable, as it is
the case for view types defined with ModelJoin. If ModelJoin is used by
the methodologist to specify pre-defined view types for a SUM metamodel,
editability must, however, be specified for these view types. Since ModelJoin
does not offer means for the specification of editability, these specification
has to be expressed for the generated artefacts of the a ModelJoin query
execution (view type metamodel, instances) by the means of VITRUVIUS.
Since pre-defined view types have a longer evolution cycle than user-specific
view types, the problem of co-evolution of these view type specifications
and the adjacent editability specifications does not arise as frequently as in
the user-specific case. If a methodologist modifies a ModelJoin specification
of a pre-defined view, he or she has to adapt the editability specification
manually.

6.3.3. Synchronisation

In this subsection, we will describe how the flexible view types concept
interacts with the synchronisation mechanisms of VITRUVIUS.

6.3.3.1. Description of Edit Operations

The synchronisation of views with a SUM in VITRUVIUS requires that
the edit operations in the views are expressed as a series of atomic edit

218

6.3. Flexible View Types in VITRUVIUS

operations [95] to trigger the synchronisation mechanisms. Such a series
of editing operations can be determined in different ways, as discussed in
subsection 5.2.5. The advantages and disadvantages of recording editing op-
erations compared with the delta-based determination of a change sequence
also apply to edit operation in flexible views. Depending on the frequency
in which the views are synchronised with the SUM, an operation-based de-
scription that has been gained by recording manual editing steps in an editor
can be minimised using the method presented in subsection 5.3.2, to avoid
unnecessary synchronisation operations from the view to the SUM. This has
to be determined based on a trade-off of the execution time of the minimiz-
ing operation for change sequences in comparison to the synchronisation
operation with the SUM.

The VITRUVIUS approach allows developers to work with temporary
inconsistencies in a view. If every atomic action were immediately syn-
chronised with the SUM, the developer would have to react to a great number
of requests for manual interaction, if an edit operation cannot be synchron-
ised automatically. For this reason, the synchronisation of views with the
SUM should be triggered at points of time that are specified by the user of a
flexible view type, e.g., when a saving operation is invoked by the user. If a
view is to be synchronised with the SUM, it must contain a valid instance of
the view type. It is, however, still possible to create invalid instances of the
view type, just as it is possible to create invalid instances of any metamodel.
The validity of a view itself is precondition for the synchronisation with
the SUM, so only valid instances can trigger a consistency conservation
operation in the SUM (see Figure 4.8 on page 95).

Before the synchronisation operation, the validity of the view type can
only be checked with respect to the rules and restrictions that are defined in
the view type itself. The consistency with the base models in the selectional
scope of the view, and the consistency with the rest of the SUM, can only be
checked through the synchronisation operation. Depending on the execution
time of such a consistency check, a framework that implements the flexible

219

6. Flexible View Type Definitions

view type concept should give the developer the possibility to distinguish
between a local consistency check, which only determines the consistency
of the view with its base models, and a global consistency check, which
determines the total consistency of the SUM. In flexible views with a multi-
metamodel projectional scope, the local consistency check also includes the
correspondences that are defined between the sub-metamodel of the SUM
metamodel that are in the projectional scope of view. If the view type is
defined thoroughly, the constraints of the view type should already respect
these correspondences, as mentioned in subsection 4.3.4.

The separation of local and global consistency checks can be compared
to code-based development scenarios, where users can check the validity
of their working copy by executing a local build of the software, and use a
continuous integration server or nightly builds to determine the conformity
of the project parts on which they are working (which can be seen as a partial
textual view of the system under development).

6.3.3.2. Well-behavedness of Flexible Views in VITRUVIUS

In section 6.1, we have evaluated the properties invertibility, well-behavedness,
and hippocraticness for flexible views. In the context of the VITRUVIUS

approach, the well-behavedness property is affected by the synchronisation
mechanisms of the modular SUM, because the PUTGET law is not always
adhered to: The PUTGET states that a modification to a view, which is
written back to the base model, followed by a re-generation of the view from
the base model, leads to an identical view. In VITRUVIUS, this property
cannot be guaranteed, since the propagation of a change in a view to the
SUM can lead to further consistency-preserving operations in the SUM,
which may also alter the part of the SUM by which the contents of the
view is affected. This is not a property of the view type itself, but rather
of the whole view-based development framework; even if the view type

220

6.3. Flexible View Types in VITRUVIUS

itself is well-behaved, the PUTGET property is affected by the automatic
synchronisation mechanism in VITRUVIUS.

As an example, let us consider a possible edit operation in a UML class
diagram view of the CBSE scenario (see Figure 6.13). The PCM component
model may contain a constraint that component names in an the instance
MPCM have to be unique. If such a naming collision is caused by the syn-
chronisation of the component model with other models, such as UML class
models that are linked to the component metamodel with correspondence
links, a response action has been specified that renames the conflicting com-
ponent. For example, if a synchronisation operation causes two components
with the name comp1 to be created, they are renamed into comp1 and comp′1
to avoid the name conflict. Let us furthermore assume that the SUM con-
tains a mapping by which every component is implemented by exactly one
class in the UML model, and a response action that creates new classes
or components if an element is created in the respective other sub-model.
The UML model, however, does not contain a constraint that requires name
uniqueness for classes, since uniqueness is preserved by other features, such
as a unique identifier. If a class with the name comp1 already exists, and
a developer adds a second class with the name comp1 in a UML class dia-
gram view, this modification will thus violate neither the inner consistency
of the class diagram view, nor that of the UML instances in the SUM, so
no conflict is detected and displayed fo the user. The save operation will
however cause the creation of the class comp1 in the UML sub-model of the
SUM (indicated by the plus symbol + in Figure 6.13), which will cause
a response action that creates a PCM component of the same name in the
PCM sub-model. Because of the name uniqueness constraint in PCM, this
component is renamed into comp′1 by the consistency preservation response.
(The rename operation, which is created by this response, is depicted as AB

in the figure.) Since the component is mapped to the class comp′1 with a
correspondence link, this change will be propagated back to to the UML
model, where the class is also renamed to comp′1. The update operation on

221

6. Flexible View Type Definitions

comp1

comp1
+

edited view

add comp1 save update

comp′1

comp1

updated view

SUM
comp1 comp1 comp′1

response

MUML

+

MPCM

response
response

AB

AB

comp1

comp1

comp′1

+

Figure 6.13.: The PUTGET Property of a View is Affected By The VITRUVIUS

Synchronisation Mechanism

222

6.3. Flexible View Types in VITRUVIUS

the view will then also rename the class in the view into comp′1. Although
the developer did not create the class with this name, the save operation has
altered the contents of the view, and thus the PUTGET law was not adhered
to.

It could of course be argued that in such a case, the UML metamodel
should also contain a constraint that requires name uniqueness in classes.
This would, however, violate the principle of modularity in VITRUVIUS. If
every one of the sub-metamodels would be required to contain constraints
that respect all other sub-metamodels in the SUM metamodel, each of
the sub-metamodels would carry the total complexity of the SUM in its
constraints. This would severely impede evolution to the sub-metamodels,
since every change to a single element would cause the investigation and
possible modification of all other elements in all sub-metamodels of the
SUM metamodel. To prevent this case, the VITRUVIUS approach is built on
a modular SUM and explicit correspondence information with rules for the
re-establishing of consistency in case of a rule violation.

223

7. Evaluation

In this section, we will evaluate the two main contributions of this disserta-
tion:

In section 7.1, we will evaluate the flexible view type concept and its
protoypical implementation, the ModelJoin language. We will demonstrate
that the expressivity of the ModelJoin language is sufficient to specify user-
specific views on heterogeneous models, and that it reduces the complexity
of this task in comparison with manual definitions.

In section 7.2, the view-based VITRUVIUS approach will be evaluated.
Since the VITRUVIUS prototype is not fully functional at the point of writing
of this dissertation, we will focus the potential benefits of the flexible view
types approach within VITRUVIUS using two case studies: one from the
field of component-based software development, and one from the field of
systems engineering in the automotive domain.

7.1. Expressivity of ModelJoin

In this subsection, we will evaluate the completeness of the ModelJoin
language for the definition of flexible view types. ModelJoin implements the
concept of flexible view types in a textual DSL that is suited for the definition
of the projectional and selectional scope of view types. The rationale behind
ModelJoin was not to create a full-fledged model transformation language
(see subsection 6.2.5), but rather a specialised DSL for the rapid definition of
view types and views. Thus, we do not intend to demonstrate that ModelJoin
has the same expressivity as common model transformation languages, such

225

7. Evaluation

as QVT [116], ATL [79], or Xtend,1 or even general-purpose programming
languages such as Java, which can also be used for model transformations.
Nevertheless, methodologists and developers should be able to cover all
kinds of modelling elements with a ModelJoin expression.

Instead, we will analyse the expressivity of ModelJoin using the follow-
ing two categories: The projectional expressivity describes which kinds of
metamodels can be defined with ModelJoin, while the selectional expressiv-

ity defines the sets of elements at the model level that can be defined with
ModelJoin.

7.1.1. Projectional Expressivity

The projectional expressivity of the ModelJoin language is determined by
the kinds of elements in the target metamodels that can be created with
ModelJoin expressions. Since ModelJoin is neither a metamodel definition
language nor a model transformation language, the properties of elements in
the target metamodel always depend on the properties of the elements in the
source metamodels of a ModelJoin query. It is not possible to freely create
classes, attributes, references, etc., which are not in a relation to elements in
the source metamodels. For example, it is not possible to specify a reference
between two classes in the target model if there is no reference between the
classes in the source models that they represent.

Thus, the notion of projectional expressivity in the context of ModelJoin
describes that all parts of a metamodel are reached by the ModelJoin operat-
ors. In VITRUVIUS and ModelJoin, without loss of generality, we assume
that Ecore is used as the meta-metamodel for the definition of metamod-
els. Since the Ecore model only contains a finite number of elements, it
is possible to check whether these elements are reachable by ModelJoin.
The Ecore model contains, however, also elements that are only relevant
for the generation of Java code from the metamodels, but not for the cre-

1http://www.eclipse.org/xtend/, retrieved 26 May 2014

226

http://www.eclipse.org/xtend/

7.1. Expressivity of ModelJoin

ation of view types, such as the EFactory or the EOperation class. This is
why we will not analyse for every element in the Ecore model if it can be
reached with a ModelJoin query. Instead, we use the change operator cata-
logue by Herrmannsdörfer [72], which has already been used in chapter 5
to describe the evolution of Ecore-based metamodels. The operators of
the catalogue already exclude those classes that are not relevant for non-
programmatic instantiation of models. In Appendix B, we have further
categorised these operators into atomic and complex operators. Complex
operators can be expressed with a sequence of atomic operators. Since
the operators of Herrmannsdörfer cover all practical cases of changes to
Ecore-based metamodels, we assume that it is sufficient to show that every
element that can be created with such an operator can also be created with
an operator of ModelJoin. For the complete coverage, it is furthermore
sufficient to only regard the atomic operators, since all other operators can
be expressed by them.

In Table 7.1, we have listed the atomic operators and their coverage by the
ModelJoin operators. We have only listed these change operators that are re-
sponsible for the creation of elements, and excluded those that are reponsible
for the deletion of elements, since the evaluation of ModelJoin should cover
the generation of metamodels rather than the modification or destruction.
For example, the operator catalogue contains the operators Create Class and
Delete Class; of such pairs, we only regard the respective “create” operators.
The table shows that the basic elements of Ecore Metamodels (Packages,
Classes, Attributes), whose creation is covered in the structural primitives

of the catalogue, are created by several of the ModelJoin operators. Classes
are created implicitely by join (on) and keep (κ) operators, and can only be
created by these operators; it is impossible to construct a class that is not a
result of these operators. Attributes are created by natural and outer joins
and by the keep operators for attribute (κatt), calculated attributes (δφ), and
aggregations (α). Data Types, enumerations and enumeration literals are
automatically created in the target metamodel if an attribute of this type is

227

7. Evaluation

on κsuper/sub κref κatt, δφ , α ρ

Structural Primitives
Create Package 3 3 3 - -
Create Class 3 3 3 - -
Create Attribute 3 - - 3 -
Create Reference - - 3 - -
Create Data Type 3 - - 3 -
Create Enum 3 - - 3 -
Create Literal 3 - - 3 -

Non-structural Primitives
Rename - - - - 3
Add Super Type - 3 - - -
Make Class Abstract - 3 - - -
Make Attr. Identifier - - - 3 -
Make Ref. Composite - - 3 - -
Make Ref. Opposite - - - - -

Table 7.1.: Structural Primitives for Metamodel Generation Covered by ModelJoin
Operators (adapted from [29])

228

7.1. Expressivity of ModelJoin

created with a keep operator. References can only be created with the keep
reference operator (κref), since joining over references is not possible with
ModelJoin (see subsection 6.2.5). The non-structural primitives concern
those parts of the metamodels that do not lead to an instantiation (of an M3
class at the M2 level), but only change an attribute value at the M2 level.

The rename operator ρ offers the renaming of every element that has
been created with one of the other four operator types. In the concrete
textual syntax of ModelJoin, this is realised with the keyword AS, which
can be appended to the join and keep operators. The supertype hierarchy
can be specified in the target metamodel by keeping supertype relations
of the source metamodel with the keep supertype operator. The last four
entries in Table 7.1 concern properties of classes and features. Although
these properties are not directly influenced by the ModelJoin operators, the
operators copy these properties from the source metamodels to the target
metamodel, where possible. For example, an abstract class that is joined
with another class will be non-abstract in the target metamodel, since the
view generation may create instances of this class. If an abstract superclass
of a class is processed by the keep supertype operator, the abstractness
property will be preserved, since there is at least one non-abstract subclass
in the target metamodel. The abstractness property can thus not be changed
directly by the author of the ModelJoin query; it is set automatically based
on properties of the source metamodel and depending on the ModelJoin
operator with which the class in the target metamodel is created. The same
is true for the identifier and composite property: they cannot be actively set
by ModelJoin, but are respected by the metamodel generation if the property
is set in the source models. The last property in the table, the opposite field
of references, is not supported by ModelJoin.

As a conclusion from this analysis, we estimate that the ModelJoin lan-
guage is sufficient to specify the view type part of flexible view types, since
all constructs that can be created in Ecore metamodels can be reached. For
some properties, this is only possible if the respective property has been

229

7. Evaluation

defined in the source metamodel. We do, however, not see this as a serious
limitation, since the semantics of changing these properties for individual
elements in a view type are not evident, and would have to be respected
with a high number of special language constructs. Since this would reduce
the comprehensibility of the ModelJoin language, we have refrained from
including these concepts into the language. If a developer whishes to include
them, they will have to be modified in the target metamodels manually. Such
a modified target metamodel can still be used with the ModelJoin query if it
fulfils the metamodel conformance relation (see section 5.3).

7.1.2. Selectional Expressivity

The selection of elements that are contained in the actual views, and that are
created by the execution of a ModelJoin query, are mainly determined by the
join statements in the query. While natural and outer join statements match
elements in the source models based on equality of common attributes, the
theta join operator offers arbitrary join conditions, which can be formulated
in the Object Constraint Language (OCL) [123]. Since the join operators
are the starting point of any ModelJoin query, the initial set of elements in
the generated view is determined by these selections. From these elements,
further instances are added to the views with the keep references operator,
which adds the instances to the target model for which a link exists in the
source model.

The ModelJoin language thus allows selections based on the properties
in the source models using the join operators. Since the theta join operator
offers the usage of OCL, the selectional expressivity is only limited to that
of OCL. Although ModelJoin only offers restrictions that are based on
properties of the source instances, the result sets of ModelJoin can always
be filtered by additional means, such as evaluation of an OCL constraint on
the set of target instances. In contrast to the target metamodel, which should
not be changed after its generation, the instance filtering does not have an

230

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

effect on the compatibility of these instances to the generated view type, so
the result set can be restricted by further manual or automatic selection of
elements.

7.2. Applicability of the Flexible View Concept in the VITRUVIUS

Approach

In this section, we will evaluate the applicability of the Flexible Views
concept in the VITRUVIUS approach. To this end, we have conducted two
case studies from the field of software and systems development: The first
case study is an extension of the running CBSE scenario example that
is used throughout this dissertation. The second case study is a systems
engineering scenario in the automotive systems engineering domain. We
will analyse both of these case studies using the same criteria, which we will
now formulate in the form of goals, questions, and metrics.

7.2.1. GQM Plan

The goal-question-metric (GQM) approach [11] is a systematic method
of defining and measuring the quality properties of software systems. We
will, however, use this method to evaluate the aptitude of the flexible views
concept for the scenarios of the case studies, rather than measure the quality
of a software system. The goals, questions, and metrics that we define are
then applied equally to both of the case studies.

In the introduction chapter of this dissertation, we have identified four
problem areas of software development with heterogeneous models (sub-
section 1.2.3): Fragmentation, redundancy, inconsistency, and complexity.
View-based approaches tackle these problem areas by explicit modelling of
correspondences between heterogeneous artefacts. Rather than reducing the
essential complexity (see subsection 2.1.2) of the aforementioned problem
fields, the aim of these approaches is to reduce the accidental complexity of
working with heterogeneous formalisms. The same is true for VITRUVIUS;

231

7. Evaluation

thus, we have formulated the following goals for the evaluation of the ap-
proach along these problem areas. For each of the goals mentioned above,
specific questions have been formulated that refine the goals and enable the
quantification of the feedback. To evaluate the questions in the GQM plan,
we have formulated generic metrics, which will be refined in the individual
case studies.

7.2.1.1. Fragmentation

G1 The VITRUVIUS approach aims to reduce the fragmentation of in-
formation across heterogeneous modelling formalisms.

Q1.1 Which concepts suffer from fragmentation and are expressed by
heterogeneous model elements in the system description?

M1.1.1 How many combining view types are identified by the meth-
odologist that contain information from heterogeneous sub-
metamodels?

Q1.2 How is this fragmentation reduced for the modeler?

M1.2.1 How many of such combining view types are specified by
the methodologist?

7.2.1.2. Redundancy

G2 The VITRUVIUS approach aims to create a controlled redundancy in
information that is modelled about the system under development.

Q2.1 Which redundancies in the modelled systems can be indentified?

M2.1.1 How many semantic overlaps between classes in the sub-
metamodels of the modular SUM metamodel are identified
by the methodologist?

Q2.2 Which of these redundancies are under control by the means of
VITRUVIUS?

232

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

M2.2.1 How many combining view types are specified by the meth-
odologist that merge information from heterogeneous sub-
metamodels?

7.2.1.3. Inconsistency

G3 The purpose of VITRUVIUS is the detection and prevention of incon-
sistencies between heterogeneous models that are used in the view-
based development of software and systems.

Q3.1 Can inconsistencies can be dectected with the flexible view
approach?

M3.1.1 How many MIR mappings between classes of heterogen-
eous sub-metamodels are specified by the methodologist?

Q3.2 Can inconsistencies can be prevented with the flexible view
approach?

M3.2.1 How many response actions for violations of consistency
are defined by the methodologist?

7.2.1.4. Complexity

G4 The purpose of VITRUVIUS is to reduce the accidental complexity of
view-based development for developers in the context of software and
systems development.

Q4.1 Does the flexible view concept help to answer information needs
of developers?

M4.1.1 How many of the identified integrated view types could be
modelled with the flexible views concept?

Q4.2 Does the flexible view concept facilitate the definition of view
types and views in comparison with manual modelling?

233

7. Evaluation

M4.2.1 How many elements in the metamodel of the view type
definition have to be modelled manually without the flexible
view concept?

M4.2.2 How much lines-of code are necessary in a common model
transformation language in comparison to ModelJoin?

7.2.2. Case Study: Component-based Software Development

In this section, we will use the running example of component-based soft-
ware development with the Palladio Component Model, UML, and the
Sensor Model, which has been introduced in subsection 1.2.2. In this case
study, we will integrate these three formalisms into a modular SUM me-
tamodel and evaluate the VITRUVIUS approach using the aforementioned
GQM plan. Although the scenario presented in subsection 1.2.2 contains
Java as a fourth formalism, we will not regard the support of general purpose
programming languages in this case study, since the integration of textual
programming languages into the VITRUVIUS approach is subject of ongoing
work [103].

7.2.2.1. Modelling Languages

In this section, we will briefly describe those properties of the modelling
languages in the scenario that are relevant for the integration into a VIT-
RUVIUS-based development process: the view types that are part of each
language’s specification, the extension mechanisms that the modelling lan-
guages offer, and interdependencies to other modelling languages. For
a more detailed description of the models and languages, please refer to
chapter 2.

PCM The Palladio Component Model (version 5.00) [134] is a domain-
specific metamodel for the description of software architectures with a
special focus on extrafunctional properties, such as performance, reliability,

234

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

and maintainablility. The component model is organised in five diagram
types: repository, system, behaviour, deployment, and usage. The Palladio
Workbench is an EMF-based tool, which contains an Ecore intance of the
Palladio Component Model.

The Palladio Component Model has been amended by a customised
version of EMF Profiles [96], which offers an extension mechanism that is
similar to profiles and stereotypes in UML [125].

Sensor Model The sensor model is a data model for the storage of meas-
urements of various properties of systems, such as performance, or system
state. It is used for the persisting of sensors, experiments, and simulation
runs, and stores the results of these experiments. The sensor model is part of
the Sensor Framework2. Although this framework has been developed in the
course of the Palladio Workbench, it can be used for arbitrary measurements
of live systems or simulations, and does not depend in any way on the
Palladio Component Model. The metamodel of the sensor model is generic
and does not contain any references to an actual metamodel of the entities
for which the measurements are stored. Its instances can be used for the
storage of various data items, which are not limited to software performance
data. The sensors in an instance contain a universal identifier, which allows
expressing a relation to elements of another model by naming conventions.

UML In its current version 2.4.1 [125], the UML specification contains
14 types of diagrams. Class diagrams are by far the most frequently used
diagram type [100]. Although the UML specification also contains concepts
for the modelling of components and usage profiles with the component
diagram and the use case diagram, we will only use the class diagram type in
this scenario, which is used to model the object-oriented design of systems.

2https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model/Sensorframework,
retrieved 12 May 2014

235

 https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model/Sensorframework

7. Evaluation

7.2.2.2. Process

The languages and metamodels that are used in this scenario are already part
of specific software development processes that are built on these formalisms.
For example, the component-based Palladio approach defines a process
model of its own, and also five developer roles (compent developer, software
architect, system deployer, domain expert, and quality-of-service analyst).
Existing developer roles are included into the VITRUVIUS-based process as
sub-roles of the VITRUVIUS role developer. In this section, we will describe
how the CBSE scenario has been adapted to use the VITRUVIUS approach.
The following process steps realise the development process described in
section 4.4.

Selection/Definition of Metamodels In the first step, the metamodels
and languages that are used in the scenario are identified by the methodo-
logist, so that they can later be part of the modular SUM metamodel. If an
Ecore-based metamodel exists for a particular formalism or language, it is
integrated without modification into the modular SUM metamodel; if a me-
tamodel for this particular formalism does not exist yet, the methodologist
is responsible of specifying a metamodel for this formalism.

The metamodel of the Palladio Component Model, which is included in
the Palladio Workbench, is defined by the Palladio developers with the IBM
tool Rational Software Architect3, and exported from there into the Ecore
format. The Ecore-based metamodel is included in the deployed versions
of the EMF-based Palladio Workbench. Thus, the Ecore Metamodel for
Palladio is available for each released version of the Palladio Workbench
and can be extracted from there. The current version (5.00) of the Palladio
Metamodel contains about 100 classes and about 200 other metamodel
elements.

3http://www-03.ibm.com/software/products/en/swarchitect-websphere, retrieved 14
May 2014

236

http://www-03.ibm.com/software/products/en/swarchitect-websphere

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

Experiment

experimentName : Estring
experimentID : ELong

ExperimentRun

experimentDateTime : Estring
experimentRunID : ELong

Sensor

sensorName : EString
sensorID : ELong

Measurement

measurementID : ELong
eventTime : EDouble

0..1

0..*experiment

experimentRuns

1

0..*sensor
measurements

0..* sensors 0..* measurements

Figure 7.1.: Metamodel of the Sensor Framework (Excerpt Showing the Top-level
Classes)

The UML metamodel is available in the Ecore format as part of the UML
plug-in provided by the Eclipse Modeling Framework itself. It is the basis
of EMF-based UML modelling tools, such as Papyrus.4

The Sensor Framework supports several persistence engines; a memory-
based and a database store are included in the Sensor Framework imple-
mentation. The Java objects that are created in the memory-based store can
be serialised and persisted as files using a binary serialization format. In the
course of the development of the ModelJoin prototype [29], an Ecore-based
metamodel of the Sensor Framework result model and an XMI serialiser
for instances of sensor framework data have been developed. If we see the
development of the ModelJoin protoype as a part of the process of introdu-
cing VITRUVIUS in the component-based scenario, then this development is
part of the responsibilities of the methodologist. An excerpt of this resulting
metamodel is displayed in Figure 7.1 (only the classes at the top level of the
inheritance hierarchy are shown).

Specification of View Types After the metamodels have been determ-
ined, the existing and desired view types for the development scenario are

4http://www.eclipse.org/papyrus, retrieved 14 May 2014

237

http://www.eclipse.org/papyrus

7. Evaluation

investigated by the methodologist. As mentioned above, PCM contains five
diagram types, which are included as legacy view types in the modular SUM
metamodel. Since the Palladio metamodel is structured along these diagram
types, the view types are projections of the PCM sub-metamodel.

Of the 14 diagram types that the UML metamodel specification contains,
only the class diagram is used in this scenario. Thus, it is the only legacy
view type for the UML sub-metamodel in the SUM metamodel.

For the sensor model, there is only one legacy view type, which is a total

view type, since it is identical to the metamodel in Figure 7.1.
In addition to the legacy view types, the methodologist determines which

kind of information from the legacy view types and the sub-metamodels
can be included into meaningful combined view types. As already men-
tioned in the description of the running example in section 4.6, the relation
between classes and components is of interest in this scenario: In a spe-
cialised combining view, the class-component implementation view, the
implements-relation between components and classes shall be displayed,
with the possibility to edit this relation, but not the classes and components
themselves. As a further combining view type, the system view of Palladio,
which displays the components and their assembly contexts, is combined
with the results sensor model to offer the developer an integrated view of
components and performance properties. This view type is called component

performance view.

Specification of Correspondences The correspondences between the
sub-metamodels of the SUM metamodel are identified by analyzing the
desired combining view types, which have been specified in the preceding
step. These combined view types, which have been specified, but not
implemented yet, can be understood as requirements on the correlations that
have to be supported in the VITRUVIUS-based development process.

The first combining view type that has been identified above is the class-

component implementation view type, whose projectional scope intersects

238

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

with the PCM and the UML sub-metamodel. Since there is no connection
between the PCM and the UML metamodel at the metamodel-level, the in-
formation of which component is implemented by which class was expressed
by naming conventions before the introduction of the VITRUVIUS-based
process: If a class carries the same name as a component, this indicates
that the class is an implementation of the component. In addition, further
UML classes can be part of the implementation of the component, which
are not named in a particular way, and for which the connection to the
component is only expressed in natural language in the documentation of
the object-oriented design. For this reason, the correspondence between
PCM components and UML classes has to be modelled explicitely in the
SUM metamodel, so that it can also be specified manually.

The component performance view type combines information from the
sensor model and the component model. The correspondence between the
respective elements can be determined by exploiting a naming convention.
The instances of the Sensor Framework metamodel element Sensor contain
the attribute sensorName. A Sensor element describes particular perform-
ance properties that are bound to a PCM component in an AssemblyContext

element. By convention, the sensor contains the identifier string id of the
AssemblyContext element in the attribute sensorName. Thus, the connec-
tion between a sensor and an assembly context can be determined by a
comparison of these attributes. It is not persisted explicitely in mapping
elements.

The Modular SUM Metamodel The modular SUM metamodel for the
CBSE scenario contains the three sub-metamodels PCM, UML, and the
Sensor Framework Metamodel. Although only the class diagram view type
is supported in the VITRUVIUS-based development process, the UML meta-
model is included completely into the SUM metamodel, since a reduction to
the parts that are relevant to the class diagrams would require a refactoring
of the metamodel and its constraints. Thus, the advantage of compatibility

239

7. Evaluation

to existing instances would be lost. Furthermore, the reduction step would
have to be repeated each time that the UML sub-metamodel evolves, for
example, when a new version of UML is issued. By integrating the UML
metamodel completely, this effort is avoided.

Implementation of Correspondences The information of how PCM
components are implemented by UML classes is expressed as a special,
PCM-specific UML profile that is applied to the UML classes, and which
contains a reference to the respective component which the class implements.
This is only one possibility to express the information (see subsection 4.2.3).
The alternative methods would have been to apply a profile to PCM, or to
define a third linking metamodel, which contains elements that link classes
to components with, e.g., an implements and implemented reference. The
UML profile approach was chosen over the PCM profile approach since
the UML class diagram can be seen as a refinement of the component dia-
gram, and thus the more specific model contains the reference to the more
generic metamodel. This is useful if there are multiple object-oriented imple-
mentations of a component-based architecture, so that the class-component
implementation can always be determined unambiguously for a specific
implementation. Furthermore, the profile approach has the advantage that
the information can also be included if a UML model is exported, e.g., to be
processed by a model transformation.

The second combined view type that has been identified is the component

performance view type. Since the elements of PCM and the sensor model
are implicitely connected with a universal identifier, the correspondence
between the elements Sensor and AssemblyContext need not be modelled
explicitely in the modular SUM. The methodologist can specify this implicit
corresondence in a MIR element to detect changes in the universal identifiers,
so that sensor model instances can be co-adapted if the universal identifier
in a PCM instance should be modified.

240

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

Implementation of View Types The class-component implementation
view type is implemented as a manually created metamodel that only con-
tains the necessary elements for components, classes, and the implements-
relation. The view types are created by a model-to-model transformation,
which takes the UML models with the applied component implementation
profile and the PCM instances as an input and produces the view. Thus,
the class-component implementation view is realised as a pre-defined view,
which is created by the methodologist.

The component performance view type, on the other hand, is described as
a flexible view type using a declarative ModelJoin specification. Thus, the
component performance view type can either be specified by the methodolo-
gist as a pre-defined view type, but can also be specified by the developer as
a user-specific view type. The ModelJoin definition thereof is displayed in
Listing 14: The element of interest in the sensor model is the class TimeSpan-

Sensor, which represents performance data such as execution times and
waiting periods. The implicit correspondence with PCM elements, which is
realised by a naming convention, is used in the THETA JOIN statement (lines
5–6) to combine the TimeSpanSensor class with the class AssemblyContext

from PCM into the identically named target class AssemblyContext. The
components in this assembly context are included with the KEEP OUTGOING

statement in lines 8–12. To distinguish between basic and composite com-
ponents in the created view, these subtypes are also specified in the target
model using the KEEP SUBTYPE operator. The experiment data is included
into the view type with the KEEP INCOMING statement in lines 13–22. The
time spans of the measurements are aggregated using the ModelJoin operator
KEEP AGGREGATE to display size, average, minimum, and maximum of an
experiment run. The target metamodel that is specified by this ModelJoin
query is displayed in Figure 7.2.

Connection with Existing Tools The legacy view types preserve the
compatibility to existing tools and transformations that are based on the

241

7. Evaluation

1 import "platform:/plugin/de.uka.ipd.sdq.pcm/model/pcm.ecore"

2 import "platform:/plugin/edu.kit.ipd.sdq.mdsd.sensormodel/model/Sensor.

ecore"

3 target "http://sdq.ipd.kit.edu/mdsd/ComponentSpeed/0.2"

4
5 theta join Entities.TimeSpanSensor with pcm.core.composition.

AssemblyContext

6 where "TimeSpanSensor.sensorName.indexOf(AssemblyContext.id) > 0" as

jointarget.AssemblyContext {

7 keep attributes pcm.core.entity.NamedElement.entityName, Entities.

Sensor.sensorName

8 keep outgoing pcm.core.composition.AssemblyContext.

encapsulatedComponent__AssemblyContext as type jointarget.

Component {

9 keep attributes pcm.core.entity.NamedElement.entityName

10 keep subtype pcm.repository.BasicComponent as type jointarget.

BasicComponent

11 keep subtype pcm.repository.CompositeComponent as type jointarget.

CompositeComponent

12 }

13 keep incoming Entities.Experiment.sensors as type jointarget.

Experiment {

14 keep attributes Entities.Experiment.experimentName, Entities.

Experiment.experimentID

15 keep outgoing Entities.Experiment.experimentRuns as type jointarget.

Run {

16 keep attributes Entities.ExperimentRun.experimentRunID, Entities.

ExperimentRun.experimentDateTime

17 keep aggregate size(Entities.ExperimentRun.measurements) as

jointarget.Run.measurementCount,

18 avg(Entities.TimeSpanMeasurement.timeSpan) over Entities.

ExperimentRun.measurements as jointarget.Run.avgTime,

19 min(Entities.TimeSpanMeasurement.timeSpan) over Entities.

ExperimentRun.measurements as jointarget.Run.minTime,

20 max(Entities.TimeSpanMeasurement.timeSpan) over Entities.

ExperimentRun.measurements as jointarget.Run.maxTime

21 }

22 }

23 }

Listing 14: Response Time ModelJoin Example

242

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

AssemblyContext

entityName : EString
sensorName : Estring

Experiment

experimentName : EString
exterimentID : ELong

Run

experimentRunID : ELong
experimentDateTime : EString
measurementCount : EInt
avgTime : EDouble
minTime : EDouble
maxTime : EDouble

Component

entityName : String

BasicComponent

CompositeComponent

sensors

0..*

experimentRuns0..*

encapsulatedComponent__AssemblyContext 1

Figure 7.2.: Generated Target Metamodel for the Component Speed Example

243

7. Evaluation

metamodels of UML, PCM, and the Sensor Model. The instances that are
created as views can be serialised as XMI files, which can be exported and
used by other tools. For the sensor model, the Ecore-based representation
of results has to be converted by the Sensor Framework implementation in
the the binary serialziation format, so that the visualization tools and further
statistic analyses can use the data.

If models have to be imported into the SUM, e.g., after an exported model
has been edited by an external tool, these models have to be described as a
series of atomic editing operations. This can be achieved by using the EMF
Compare tool, as described in subsection 5.3.3

7.2.2.3. Empirical Study

To evaluate the usability and benefit of the Flexible View concept and
the ModelJoin language, we have conducted an empirical study using the
MediaStore example from [13]. The results of this case study have previously
been published in [29]; the study has been conducted in cooperation with
the authors of this publication.

To adress the question whether flexible view types reduce the complexity
of the definition of view types (Q4.2), we have conducted a case study
using the Palladio Metamodel and the Sensor Model. Using the MediaStore
example from [13], we simulated performance properties of the MediaStore
system and persisted them as instances of the Sensor Model.

Test Design The question of whether ModelJoin reduces the complex-
ity of view type definitions was in the focus of the empirical study. To
estimate this complexity, the comparison between generated ModelJoin
transformation code and manually implemented code was not of interest,
since generated code is usually less readable and larger in size than manually
optimised code. Instead, we compared the manual creation of a combined
view type with a multi-metamodel projectional scope to the definition of
such a view type with ModelJoin. Since the ModelJoin prototypes is based

244

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

Metric P1 P2 P3 P4 Gen MJ

Metamodel
Classes 4 8 5 5 6

Attributes 4 14 0 5 7
References 3 6 7 2 2
Inheritance 1 8 2 2 3

Transformation
Source LoC 46 76 53 50 179 18

Operations 6 10 10 5 24 9

Table 7.2.: Metrics for the Empirical Study of the Component Speed Example (from
[30])

on Ecore and the transformation language QVT-O, and due to the stability of
the language and the execution support in the Eclipse Modeling Framework,
we chose these standards for comparison.

We asked researchers who had two to four years of experience in the
design of model transformations, and who were familiar with the Palladio
Component model and the model transformation language QVT-O, to imple-
ment the component performance view type as an Ecore metamodel, and the
transformations that create the views from the base models, using QVT-O
as the transformation language. Four participants (P1–P4) were asked to
create the component performance view type manually, based an assignment
sheet that contained the task description in natural language, and links to the
models in a Subversion repository. The participants did not receive detailed
information on where the desired information in the view type can be found
in the metamodels, but only the description of the desired contents of the
view type. The time to solve the task was not limited. This assignment sheet
that was given to the researchers is replicated in Appendix D.

245

7. Evaluation

Statistical Evaluation We used the M2M quality measurement frame-
work5 to apply code metrics to the QVT-O implementations that were
created by the participants. The results can be seen in Table 7.2. While
the first four columns contain the metrics for the implementations by the
participants, the last two columns contain the metrics for a reference imple-
mentation of the view type with ModelJoin, against which the participants’
implementations where compared. We have applied a statistical analysis to
these results, which is displayed in Table 7.3: The column S shows the stand-
ard deviation of the sample, while P̄ shows the average. The test statistic
T was determined by the calculation of

√
n(P̄−µMJ)/S. The significance

level for rejection of the null hypothesis is 1−α (one-tailed test) or 1−α/2
(two-tailed test). The Student’s one-sample t-Test [114] was applied to
analyse the data.

For the comparison of the manually implemented transformation code
with the ModelJoin query, we assumed that the experimental results would
be larger than the reference ModelJoin query. Thus, we used the one-tailed
t-statistic to to calculate the significance levels. The size of the generated
metamdoels was analysed with a two-tailed test, since we did not assume
that the size of the manually implemented metamodels would be either larger
or smaller than the automatically generated metamodels.

The results in Table 7.3 indicate that the complexity of creating the com-
ponent speed view on heterogeneous models is high, and that the effort of
creating such a view with ModelJoin is lower than the manual implementa-
tion. As the null hypothesis H0, we assumed that the size of the ModelJoin
definition of the view type and the implementation in QVT-O were identical.
This hypothesis can be rejected at a significance level of 99% The alternative
hypothesis H1 states that the average number of lines of code (LoC) is higher
for the manual implementation.

The sizes of the manually implemented model, shown in the rows for
number of classes (Cl.), attributes (Attr.), references (Ref.), and inheritance

5http://code.google.com/p/m2m-quality/, retrieved 26 May 2014

246

http://code.google.com/p/m2m-quality/

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

Metric S(P1..4) P̄ Gen/MJ T Sign. Level

Cl. 1.732 5.50 6 -0.577 -
Attr. 5.909 5.75 7 -0.423 -
Ref. 2.380 4.50 2 2.100 80%∗∗

Inh. 3.202 3.25 3 0.156 -

LoC 13.475 56.25 18 5.677 99%∗

Ops 2.630 7.75 9 -0.951 -
∗ one-tailed test (1−α)

∗∗ two-tailed test (1−α/2)

Table 7.3.: Statistical Evaluation of the Empirical Results (from [30])

relations (Inh.) in Table 7.3 only produced significant results for the number
of references. Here, we assumed as the alternative hypothesis that the
number of artefacts in the manually implemented solution is significantly
higher than in the automatically generated solution. We conclude from
this observation that the participants have over-engineered the solution, i.e.,
they have implemented more features than those that were demanded in the
precisely formulated task specification. Defining the information need of
the task specification with ModelJoin was beneficial in this case to create a
compact textual definition.

Biases and Threats to Validity In the preparation of the case study, we
did not treat the population. The participants served as a reference candidates
who implemented a typical problem, and who were selected based on their
expertise in model-driven engineering. Since this sample was not randomly
chosen, it lead to and overestimation of similarities, and an underestimation
of variance, in the population.

Due to the low number of participants, it is unclear whether the results of
this case study can be generalised to other metamodelling scenarios. The
population of the experiment was very small and not representative. The
selection of the task was, however, a typical scenario in model-driven and

247

7. Evaluation

view-based development, where information from heterogeneous models is
combined into custom representations.

7.2.2.4. Evaluation of the Scenario

In this case study, seven legacy view types have been defined by the method-
ologist, which have been included from the existing formalisms. In addition
to these, two desired view types have been identified by analysis of the se-
mantic correlations for these formalisms (M1.1.1). Both have been specified
as combining view types and as a part of the modular SUM metamodel
(M1.2.1).

The redundancy in this scenario was low, since the metamodels have
little semantic overlap and are almost orthogonal to each other. The nam-
ing conventions that are used to identify the correspondenc of classes and
components as well as assembly contexts and sensors can be seen as a form
of redundancy. It is identified by the combining view types for both cases
(M2.1.1), but only controlled in the MIR element between components and
sensor data (M2.2.1). For the class-component relation, the naming conven-
tion states that from name equality follows correspondence, but the opposite
is not true in general. Thus, this redundancy is not controlled automatically,
but has to be managed manually by the developer in the class-component
view type.

This also directly affects the detection and handling of inconsistencies:
While inconsistencies can be detected in the class-component view type, they
cannot be analysed in the component speed type, since this view type only
displays elements for which the naming convention is obeyed. Thus, only
one of the inconsistencies can be detected (M3.1.1) and resolved (M3.2.1).

The flexible view approach could only be used in for the component
speed type, since the declarative definition of the correspondence between
the sub-metamodels on which the view type is based was only possible there
(M4.1.1).

248

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

The statistic analysis of the ModelJoin example offers an estimation of
the reduction of complexity that the flexible view type approach offers: The
ModelJoin language reduces the complexity of defining a view type with
a multi-metamodel procjectional scope in terms of lines-of-code that have
to be written for the transformation (M4.2.2). Regarding the size of the
resulting view type metamodel, a significant difference in the size can be
identified for the number of references that has been modelled, but not for
classes, attributes, or inheritance relations (M4.2.1). Of course, it should be
noticed that this comparison disregards the fact that the metamodel still has
to be modelled manually, while in the ModelJoin scenario, it is automatically
generated by the execution of the query.

7.2.3. Case Study: Automotive Systems Engineering

The construction of automobiles has seen an exponential increase of the
usage of software in automobiles during the last 30 years [21]. While more
and more software systems are built into automobiles, the construction of
these systems suffers from the usage of heterogeneous modelling languages
and tooling. Automotive architectural description languages [39] have been
proposed as a method to model all relevant information of automotive sys-
tems. Domain-specific tools such as MATLAB/Simulink are, however, often
required in the development process nevertheless, since they offer specific
analyses of the system under development. Model-driven technologies have
been used to combine standard languages, such as UML and SysML, with
tools such as Simulink [142, 141]. These approaches are, however, limited
to a specific combination of two models or languages, and offer only a
conversion into one direction instead of full bidirectionality.

To demonstrate the benefits of the VITRUVIUS approach for the automot-
ive systems development, we have applied VITRUVIUS to an automotive
system development scenario where three languages are used: SysML,
EAST-ADL, and Simulink. Each of these languages incorporates special

249

7. Evaluation

concepts that are not present in the respective other two. In the following
subsections, we will introduce the three languages shortly, describe the
VITRUVIUS-based development process, and evaluate the questions of the
GQM plan for this scenario.

7.2.3.1. Modelling Languages

SysML The Systems Modeling Language (SysML) [124] is a derivate of
the UML2 standard for systems engineering. SysML features a set of nine
diagram types, which overlaps with the diagram types of UML2: while two
diagrams are specific to SysML, five diagrams are identical with those of
UML2, and two are modifications of UML2 diagrams. The diagram types
cover requirements, structural, and behavioural view points, which can be
used for the modelling of hardware, software, and processes.

MATLAB/Simulink Simulink6 is a graphical programming language for
the modelling of dynamic systems. The Simulink tool can be used for
analysis and simulation of systems, as well as for code generation. The basic
elements in Simulink diagrams are graphical blocks, which are connected
via ports and signals. Simulink is a proprietary software and is not based
on a metamodelling standard. There are, however, several research projects
during which a grammar and metamodel for the Simulink file format has
been reverse-engineered [68, 143, 3]. These approaches offer a conversion
of the Simulink MDT file format into a metamodel-based representation,
which can be used for further analysis and transformations.

EAST-ADL The Embedded Architectures and Software Technologies –
Architecture Description Language (EAST-ADL) [46] is a language for the
automotive domain. The language is organised in four abstraction levels:
Vehicle level, analysis level, design level, and implementation level. At each

6http://www.mathworks.com/products/simulink/, retrieved 12 May 2014

250

http://www.mathworks.com/products/simulink/

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

level, the full system is represented at a specific level of detail EAST-ADL
integrates concepts from SysML as well as from AUTOSAR. The latter is
used to represent the software architecture and implementation details of
the hardware. EAST-ADL is supported by a number of tools, including the
Eclipse-based demonstrator EATOP,7 which also contains the EAST-ADL
metamodel in Ecore format.

7.2.3.2. Process

Selection/Definition of Metamodels In the first step of the VITRUVIUS

process, the methodologist role determines the languages and metamodels
that are used in the development of the system and choses or specifies an
Ecore-based metamodel for each of these languages. In the automotive
scenario, the three modelling languages EAST-ADL, SysML and Simulink
are used. Since EAST-ADL and SysML are both model-based concepts, we
can use the metamodels of these languages directly. For EAST-ADL, we
have used the metamodel defined in conjunction with the EATOP demon-
strator. The SysML metamodel has been defined in Ecore format for the
TOPCASED tool.8 Finally, for Simulink, a model-based representation
has to be chosen, since the native MDL format of simulink is not based on
a metamodel. There are however several efforts in literature to represent
Simulink models in a metamodel-based way; in our case study, we have
chosen the the approach of [68], which uses the conQAT9 parser for the
conversion of MDL files to instances of a Ecore-based Simulink metamodel,
and an Xpand model-to-text transformation for the generation of MDL files
from these models.

Specification of View Types After the sub-metamodels of the SUM me-
tamodel have been determined, the methodologist role defines the view types

7https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/wiki/EATOP,
retrieved 12 May 2014

8http://www.topcased.org/, retrieved 12 May 2014
9https://www.cqse.eu/en/products/conqat/overview/, retrieved 12 May 2014

251

https://code.google.com/a/eclipselabs.org/p/eclipse-auto-iwg/wiki/EATOP
http://www.topcased.org/
https://www.cqse.eu/en/products/conqat/overview/

7. Evaluation

that are used to display and modify the modelled system. As a first step,
existing diagram types and views are integrated into the SUM metamodel
as legacy view types. In EAST-ADL, we have identified eight view types,
which are defined by the eight top level packages: structure, environment, be-
haviour, variability, requirements, timing, dependability, and infrastructure.
For SysML, the view types are the nine diagram types: block definition dia-
gram, internal block diagram, package diagram, use case diagram, activity
diagram, sequence diagram, state machine diagram, requirements diagram,
and parametric diagram. Simulink contains only two kinds of structural
view types that are relevant for the architectural modelling of systems: block
diagrams and state chart diagrams. In total, we have defined 18 legacy view
types this way.

In addition to the legacy view types, the methodologist specifies com-
bining view types, which aggregate information from more than one of the
metamodels. The existing SysML and Simulink views offer black-box and
white-box views of the function blocks: While the SysML block diagram
is used to show the connection of blocks, the Simulink view of a block
shows the internal definition of control flow. An analysis of the control flow
between block requires switching between view types. Thus, a Grey-box

Control Flow View Type, which combines the assembly information from
SysML with the control flow information from Simulink, is desirable.

The EAST-ADL metamodel contains elements for the feature modelling
of automotive systems. Similar to SysML, the function blocks are modelled
as black-box components. To combine this with the block definitions in Sim-
ulink, a customised view has to be created, which combines the information
of control flow from the Simulink model with the architectural information
from the EAST-ADL model.

Specification of Correspondences After the view types have been spe-
cified, concepts in the different metamodels are mapped to each other in
MIR (mapping/invariant/response) elements. A MIR mapping definition

252

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

is defined between each two metamodels, so the methodologist who is re-
sponsible for creating the mapping has to be familiar with the concepts in
these two metamodels. To gather the semantic correspondences between the
metamodels, the methodologist analyses the required combining view types
and deducts the necessary mappings in the metamodels of which the view
types display information.

In the example scenario, MIR elements have to be defined between Sim-
ulink and SysML, and between Simulink and EAST-ADL. These correspond-
ences result from the existing scenarios, where in all cases combinations
of two modelling formalisms are used and synchronised by means other
than VITRUVIUS, such as the import and export functionalities of the IBM
Rational Rhapsody modelling tool10, which offers a Simulink im- and ex-
porter. Thus, the correspondences are not modelled between each three
pairwise combinations of SysML, EAST-ADL and Simulink. Through
transitive synchronisation rules, the complete SUM metamodel is covered
nevertheless.

The EAST-ADL model of a system also contains concepts for the mod-
elling of functional components, ports, and the connectors between them.
Since EAST-ADL is a language specifically designed for the automotive
domain, its elements are aligned with the AUTOSAR standard. The relevant
part of EAST-ADL that corresponds to the function blocks of SysML and
MATLAB/Simulink is the FunctionModel sub-package of the EAST-ADL
specification. EAST-ADL uses the terminology of AUTOSAR for the func-
tional model. Thus the appearance of a function is called prototype, which
conforms to a more general type. A prototype corresponds to a block in
SysML/Simulink. Ports are first-class entities in EAST-ADL: They are
bound to prototypes with a connector element.

For the functional structure, the classes FunctionPrototype with its sub-
classes AnalysisFunctionPrototype and DesignFunctionPrototype are of

10http://www-03.ibm.com/software/products/en/ratirhapfami, retrieved 7 May 2014

253

http://www-03.ibm.com/software/products/en/ratirhapfami

7. Evaluation

Simulink SysML EAST-ADL

Block Block FunctionType
SimulinkModel View
PortBlock FlowPort FunctionFlowPort
Line Connector (UML) FunctionConnector

Table 7.4.: Mapping of Concepts from SysML, Simulink, and EAST-ADL

relevance. FunctionFlowPorts can be connected to these prototypes with
FunctionConnector elements.

The Modular SUM Metamodel Once the metamodels, view types, and
correspondences have been selected or defined by the methodologist, they
are combined to form the modular SUM metamodel, which forms a base
for development of automotive systems. The three metamodels of SysML,
Simulink, and EAST-ADL do not have to be modified in any way to be
part of the SUM metamodel. All additional information, such as view type
definitions and correspondences, are defined declaratively and do not require
invasive changes to the metamodels.

Implementation of Correspondences The correspondences between
the elements listed in Table 7.4 have been implemented in the declarative
MIR description language [95]. The mapping rules relate the elements
via naming conditions. For the Port elements, a special mapping has been
defined since the directionality of ports is modelled differently in Simulink
than it is modelled in the other two metamodels: While Simulink distin-
guishes InPortBlock and OutPortBlock model elements, EAST-ADL and
SysML contain only concepts for generic port elements with an attribute
direction that indicates the nature of the port. The mapping of the concepts
is displayed in Figure 7.3. The figure shows the relevant elements from the
three metamodels in use, and the mapping of elements as double lines .

254

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

Element

Block LineStateFlowElement

StateFlowMachine

SubSystem PortBlock

InPortBlock

OutPortBlock

SimulinkFile SimulinkModel

Chart State Node

TransitionAction
guard

action

target
Port

sourcePort

target

source

Simulink

FlowPort
direction:FlowDirection
isAtomic:Boolean

Port
(from UML)

Property
(from UML)

Connectable
Element
(from UML)

Connector
End

(from UML)

Connector
(from UML)

Block

ViewPoint

View

Class
(from UML)

Package
(from UML)

role

1

end ∗

viewpoint1

SysML

FunctionTypeFunctionPort
direction:EADirectionKind

FunctionFlowPort

«Enumeration»
EADirectionKind

in
out
inout

FunctionConnector

AnalysisFunctionType AnalysisFunctionProtoType

port 2

isOfType

EAST-ADL

Figure 7.3.: Mapping between the Metamodels of Simulink, SysML, and EAST-ADL
(showing relevant excerpts of the metamodels)

255

7. Evaluation

Implementation of View Types The 18 legacy view types that have been
identified by the methodologist are exposed by the SUM metamodel for
compatibility reasons. In addition, two grey-box control flow view types
have been specified, which integrate information from Simulink and one of
the other sub-metamodels.

The view type that combines information from EAST-ADL and Simulink
has been defined with the ModelJoin language. The view type definition
is displayed in Listing 15. The methodologist has used the NATURAL JOIN

feature to establish the connection between the EAST-ADL element Func-

tionType and the Simulink element SimulinkModel, which represents a spe-
cial block in the Simulink model that can contain the execution semantics,
expressed as a state machine. This element StateFlowMachine is included
into the view type, so that the execution semantics of the FunctionType are
visible in a grey-box view.

The view types each combine information from two sub-metamodels of
the SUM metamodel. A view type that combines more than two elements
into a single element cannot be specified in ModelJoin with the current
protoype, since joining of more than two elements is not directly possible.
In this scenario, however, this limitation does not reduce the expressiveness
of the view types, since the information in the SUM is synchronised by the
MIR elements between each of the sub-models. Thus, a partial view on,
e.g., EAST-ADL and Simulink always contains the updated structure that
is synchronised with the SysML sub-model. To integrate information from
the SysML sub-model into this view type, it is possible to define a flexible
view type that takes the EAST-ADL/Simulink view type and the SysML
metamodel (or its block definition diagram view type) as source metamodel.
This way, a single view type element can represent information from all
three sub-metamodels. Such a view type would reduce fragmentation, but,
as mentioned above, would not affect the consistency in the SUM.

256

7.2. Applicability of the Flexible View Concept in the VITRUVIUS Approach

1 import "de.uni_paderborn.fujaba.simulink.model"

2 import "http://east-adl.info/2.1.10/eastadl21/east_adl/structure/

functionmodeling"

3
4 natural join functionmodeling.FunctionType with model.SimulinkModel as

jointarget.System {

5 keep outgoing model.SimulinkFile.stateFlowMachine as type jointarget.

StateFlowMachine {

6 keep outgoing model.stateflow.StateFlowMachine.charts as type

jointarget.Chart {

7 keep supertype model.stateflow.State as type jointarget.State {

8 keep attributes model.stateflow.State.name

9 keep supertype model.stateflow.Node as type jointarget.Node

10 keep outgoing model.stateflow.State.transitions as type

jointarget.Transitions

11 keep outgoing model.stateflow.Transition.source as type

jointarget.Node

12 keep outgoing model.stateflow.Transition.target as type

jointarget.Node

13 }

14 }

15 }

16 keep outgoing functionmodeling.Functionport.Port as type joinTarget.

Port {

17 }

18 }

19 }

20
21 theta join functionmodeling.FunctionFlowPort with model.PortBlock

22 where "FuncionFlowPort.direction==in and PortBlock.oclIsKindOf(

InPortBlock) or FuncionFlowPort.direction==out and PortBlock.

oclIsKindOf(OutPortBlock)"

23 as jointarget.FlowPort {

24 keep attributes functionmodeling.FunctionFlowPort.direction

25 keep attributes model.PortBlock.type

26 keep supertype functionmodeling.Flowport as type jointarget.Port

27 }

Listing 15: Grey-Box Control Flow View Type for EAST-ADL and Simulink

257

7. Evaluation

Connection with Existing Tools Existing instances that have been mod-
elled in the modelling languages EAST-ADL, SysML, and Simulink, have to
be imported into the Ecore-based format to be used in the VITRUVIUS-based
process. For EAST-ADL and SysML, this import poses only small effort
since the formats are model-based, so that modelling tools either use XMI
as the native format or offer an import and export function to XMI. In the
case of Simulink, the conversion developed in [142] is used to convert MDT
files into the model-based format.

7.2.3.3. Results

In this case study, 18 legacy view types have been defined, which are
derived from the diagram types in SysML, the top level packages in EAST-
ADL, and the two types block diagram and state chart of Simulink. As
mentioned above, each of these three sub-metamodel contains information
that cannot be expressed with the respective other two formalisms. In
the case study, two combining view types have been specified (M1.1.1)
that concern the structural information in the EAST-ADL and SysML sub-
metamodel. Although these models also contain formalisms to model the
behaviour of systems (behaviour view type in EAST-ADL, activity/sequence
diagrams in SysML), these formalisms are not used in the scenario in favour
of Simulink models. This fragmentation is alleviated by the two grey-box
control flow view types (M1.2.1). These view types have been specified
with the flexible view type concept.

The three metamodels in the scenario share a high semantic overlap, since
they have been designed for very similar purposes in the field of systems
modelling. In the scenario, overlaps have only been specified in the parts
of the metamodels that describe the structural aspects of the systems, since
the functional specification is only modelled in the Simulink part of the
models. Thus, the overlapping concepts are those that have been identified
in Table 7.4, and which can be seen as the common denominator of systems

258

7.3. Discussion

modelling with blocks, ports, and connectors (M2.1.1). This redundancy is
controlled by the MIR elements that have been defined between EAST-ADL
and Simulink, and Simulink and SysML (M2.2.1). Since the ModelJoin
prototype is at the moment not able to merge more than two source elements
into view type elements, it has not been possible to create a view type
that contains information from all three of the sub-models with a single
ModelJoin query.

Inconsistencies are controlled in the case study between the EAST-ADL
submodels and Simulink, as well as between the SysML submodels and
the Simulink models. For these purpose, a MIR element has been specfied
for each of this cases (M3.1.1). These definition of these MIR elements
is defined according to the combining grey-box view types that have been
described above. It is in the responsibility of the methodologist to check
that the MIR definitions match the semantic overlaps that have been defined
for the view types; currently, the VITRUVIUS prototype does not contain
any means to check whether they do or do not match. Thus, inconsistencies
between the EAST-ADL/SysML model and the Simulink model can be
prevented by the MIR elements that result from the combining view types
(M3.2.1). Further inconsistencies, which may exist between the EAST-ADL
and the SysML model, can be prevented as far as the common Simulink
model to which they refer is affected; otherwise, they cannot be prevented.

The reduction of complexity (goal G4) has not been measured in this case
study, since a manual implementation of the identified combining view types
was not carried out.

7.3. Discussion

The current state of the implementation of the VITRUVIUS and ModelJoin
prototypes lack two main features, which have impeded the full validation
of the flexible view types concept:

259

7. Evaluation

• Editability: Currently, the ModelJoin prototype only supports read-
only views. Thus, it can only be used to specify the projectional
and selectional scopes of flexible view types, but not the editability
information.

• SUM Synchronisation: The VITRUVIUS prototype is currently being
developed and does not yet support the evaluation of MIR elements
with automatic synchronisation.

Thus, the validation in this section has focussed on the expressivity of
the flexible views concept by showing the coverage of all relevant elements
in the Ecore metamodel, as well as the applicability of the approach in
software development scenario, and a systems development scenario. The
lack of editability in ModelJoin is partly caused by the lacking synchronisa-
tion functionality in the VITRUVIUS prototype. Since the synchronisation
mechanisms from a view type to a sub-model of the SUM uses the same
description concepts for changes in the respective instances, the editability
of flexible view types that are defined with ModelJoin have to be aligned
with the underlying synchronisation mechanisms.

The case studies show that the flexible views concept as such is appropri-
ate for the definition of views with a multi-metamodel projectional scope,
which is a novel concept of the VITRUVIUS approach, and which offers
the possibility to integrate information from heterogeneous sub-models into
custom view types. Although it is possible to define these view types in a
manual way, for example, by creating metamodels and model-to-model trans-
formations by hand, the empirical study in the CBSE scenario has shown
that the compact, declarative, and textual definition of flexible view types
with the ModelJoin language reduces the complexity of such a definition by
a considerable amount. Although the scenarios used real-life metamodels
and example systems, the user base for the empirical study was small, so that
the results cannot be generalised to all kinds of model-based development
scenarios. To investigate the benefits of ModelJoin, further studies should

260

7.3. Discussion

be conducted with a larger user base, and a real-life development scenario
with heterogeneous models.

A ModelJoin expression serves as a central point for the definition of a
flexible view type. Thus, the potential benefit of ModelJoin is the evolution
of view type definitions, either because of external factors such as changes
in the source metamodels, or because of internal factors such as desired
changes in the semantics of a view type. The investigation of these positive
effects in an evolution scenario should be quantified in a larger case study
with a realistic evolution scenario. The Palladio Component Model, which
has undergone several releases with evolutionary modifications in the past
years, could again serve as an example metamodel for such a scenario.

Of the problem areas that have been identified in the introduction of
this thesis (subsection 1.2.3), fragmentation and complexity have been
adressed most by the case studies in this section. Flexible view types
do reduce fragmentation and complexity by integrating information with
the novel concept of combining views, so that developers gain an overall
view of the system under development. While the problem of controlled
redundancy is yet to be fully adressed by the VITRUVIUS prototype in the
MIR elements and their implementation, these case studies have shown
that the process of first specifying combined view types and then deriving
the redundancies in the modular SUM metamodel from them is a viable
solution. The problem of inconsistency cannot be solved by flexible view
types alone, but depends strongly on the synchronisation mechanisms in
the implementation of VITRUVIUS. Nevertheless, flexible views are helpful
for the identification of inconsistencies, even if they have to be resolved
manually at the current state of the implemenation of VITRUVIUS.

The scenarios in this section have been evaluated against engineering
processes where semantic overlaps and interdependencies are not made ex-
plicit. We believe that this is a realistic scenario, since existing approaches,
to our knowledge, do not offer the possibility to create view types with
multi-metamodel projectional scopes, and thus to combine information from

261

7. Evaluation

heterogeneous sources in a view-based approach. To further evaluate the
benefits of VITRUVIUS in general, and the flexible view concept in partic-
ular, these scenarios should be extended with realistic instance data from
component-based projects and automotive system engineering scenarios,
and evaluated against existing approaches (see chapter 3). Although these
approaches may only offer parts of the functionality of VITRUVIUS, such
as synchronisation between pairs of formalisms, the impacts of existing ap-
proaches in the problem fields fragmentation, redundancy, consistency, and
complexity should be investigated with larger case studies when a complete
VITRUVIUS prototype is available.

262

8. Future Work

In this chapter, we will identify future work in the development of the VIT-
RUVIUS approach as well as in the flexible view concept and the ModelJoin
language. We will cover potential conceptual advances in these approaches
as well as technical developments that have not yet been adressed.

8.1. VITRUVIUS

8.1.1. Coupling of View Type Definitions with SUM Metamodel

Correspondences

During a development process that implements the VITRUVIUS approach,
the methodologist first specifies the desired view types, and then derives the
correspondences in the modular SUM metamodel from these specifications;
the identification of desired combined view types serves as a requirements
document and a starting point for the definition of the correspondences in

MIR elements. After the specification of correspondences, the methodo-
logist implements the view types by using either the flexible view concept,
or by manual implementation of the view types and the necessary trans-
formations. Although the information about how information is combined
is strongly coupled to the way in which elements in the SUM are related
to each other, it is, however, not possible with the current methods of VIT-
RUVIUS to create the correspondences from the view types automatically or
vice versa. To derive the correspondences from the view type specification,
the methodologist has to implement the MIR manually and respect the in-
formation in the view type information while doing so. Since this semantic
relation is not formalised in the SUM, it cannot be checked automatically

263

8. Future Work

whether a view type definition is compliant with the correspondences that
are defined between the sub-metamodels of the modular SUM metamodel.
Thus, the conciseness of these definitions has to be determined manually
at every change, which can lead to co-evolution problems if one of these
definitions is altered independently of the other.

The absence of a connection between view type definitions and MIR
elements also leads to problems of editability at runtime: When instances in
a view are modified, this can lead to the violation of consistency constraints
in the SUM, which may not be resolved automatically. For projectional
view types, this behaviour is tolerable since a view type should not have
to be aware of all possible consistency violations that may occur. For
combining view types, however, modification operations should not violate
the consistency constraints between the sub-metamodels from which they
combine the information.

The cross-pollination of consistency constraints in the SUM on the one
side and in the view types on the other side is thus an important factor in
the creation of a modular SUM metamodel. In the process of installing the
VITRUVIUS approach, the methodologist first defines the desired view types,
then implements the MIR relations, and finally implements the view types.
Thus, a method should be developed to derive properties of the combined
view types from the MIR definitions and to check whether they conform to
each other.

8.1.2. Mapping to Textual General Purpose Programming

Languages

The case studies that have been presented in this dissertation deal with the
combination of metamodels that mostly describe the structural properties
of systems in graphical languages such as PCM, UML, SysML, and EAST-
ADL. Recent advances in model-driven engineering offer metamodel-based
representations of textual languages, so that model-based tools can be used

264

8.1. VITRUVIUS

to deal with textually defined languages. These approaches have been used
to define a model-based representation of general-purpose programming
languages such as Java. Examples for such projects are the KDM Java
metamodel of MoDisCo (Model Discovery) [23], or JaMoPP (Java Model
Printer and Parser) [66], which is based on EMFText1.

The integration of such metamodel-based representations into the VIT-
RUVIUS approach is subject of ongoing research [103]. The support of
general purpose programming languages is an important step towards the
overall vision of Orthographic Software Modeling, which the VITRUVIUS

approach aims to realise, that all the information available on the system un-
der development is represented in a single underlying model. Although the
technical representation of program code in a model-based format does not
pose a real challenge with the aforementioned tools, the synchronisation of
these models with the other sub-models of the SUM is yet to be investigated.
Proposed benefits of such a synchronisation could be the automatic checking
of architecture rule violations in the implementation of a system, support in
the refactoring of systems across several formalisms, and a higher usability
of code generators, since the generated code would stay synchronised with
the other sub-models in the SUM even after manual adaptations of the code.

8.1.3. Versioning

As mentioned above, the VITRUVIUS approach aims to cover all aspects
of a software engineering process. This also includes meta-information of
the artefacts that are developed. The support of versioning elements in a
model is normally achieved by specialised tools that offer the connection
between file-based versioning systems, such as Subversion or Git. These
systems work very well for the management of text-based documents, and
developers are usually familiar with the differencing and merging of textual
formats. For model-based data, special differencing and merging tools,

1http://www.emftext.org/index.php/EMFText, retrieved on 9 May 2014

265

http://www.emftext.org/index.php/EMFText

8. Future Work

such as EMFCompare [22] have been developed. The Edapt tool, although
developed as a a metamodel co-evolution approach, can also be used as an
operator-based versioning tool [71].

With VITRUVIUS, the information about the version history of each
element in a SUM can, however, be recorded in a semantically rich way,
since all change operations to the instances in a SUM are carried out by
atomic change operators, which are propagated between the model elements.
Thus, it is possible to encode the information of the history of a model
element directly into the SUM, so that the elements are aware of their
own version and can also carry a record of how (and why) they have been
modified. Since the elements in the SUM can exclusively be modified
by the view types that are defined on the modular SUM metamodel, this
information can be stored with richer semantic information than in ordinary
versioning systems. For example, the cause for a change in a model element
can be traced back to a manual change via a view type, a change because of
a synchronisation response that was triggered in another part of the SUM
metamodel, or to the violation of a specific consistency rule. Since all this
context information can be derived automatically from the synchronisation
mechanisms in the SUM, the context of a change would less depend on the
interactions of developers, which have to describe changes in a meaningful
textual description, e.g., in a commit message of the versioning system.

The support for versioning could be realised as a special small metamodel,
which is truly orthogonal to every other metamodel in the modular SUM
metamodel, and which is supported by default in every implementation of
VITRUVIUS.

8.1.4. Metamodel Evolution in the Modular SUM Metamodel

The modular SUM metamodel that is used in a VITRUVIUS-based project
is initially defined by a methodologist. The metamodel can be created spe-
cifically for a project, or an existing SUM metamodel can be re-used from

266

8.1. VITRUVIUS

similar types of projects. In most cases, the modular SUM metamodel will
contain legacy metamodels that have to be supported because of external
factors, such as compatibility to tools or because of other obligations. Thus,
the development cycle of these metamodels is not in the control of the
methodologist; if a new version of such a metamodel has to be supported,
adaptations are necessary to the modular SUM metamodel. These adapt-
ations may either be applied by defining new view types, which act as a
compatibility layer between the SUM metamodel and the new version, or by
modifying the sub-metamodels of the SUM metamodel directly. The latter
approach has the advantage that migration scripts, which may be provided
by the creator of the metamodel that is evolving, can be used to co-evolve
existing instances of this sub-metamodel. It has, however, the disadvantage
that all adjacent elements of the SUM metamodel, such as MIR definitions
and view type definitions, also have to co-evolve. While co-evolution of
metamodels and instances [70, 27] as well as the co-evolution of metamodels
and transformations [99] have been investigated in related work, the effect of
metamodel evolution on the VITRUVIUS-specific artefacts (MIR definitions,
flexible view types) has not been investigated yet and is the subject of future
work.

8.1.5. VITRUVIUS for Non-Software Engineering Models

The VITRUVIUS approach has its roots in the Orthographic Software Mod-
eling approach and has thus initially been developed for scenarios where
software engineering is the central part of development. Metamodels and
model-based tools are, however, used in a large number of disciplines where
the users of these tools are not software developers, but other engineers,
such as electrical engineers, mechanical engineers, and so on. Especially in
the development of cyber-physical systems [108], which contain software
and non-software parts that are both modelled in specialised languages, in-

267

8. Future Work

consistencies and redundancies also lead to problems that could be adressed
with the VITRUVIUS approach.

Although the case studies in this dissertation are focussed on software
modelling languages, the VITRUVIUS approach as such is a general approach
that is not limited to software metamodels. It can be used to model any kind
of data that can be represented as instances of an Ecore-based metamodel.
Since, in contrast to UML, the Ecore metamodel is not a software-specific
meta-metamodel, it is not limited to the software engineering domain. The
aptitude of VITRUVIUS for these models would have to be tested with
more case studies that cross the borders of software development and the
modelling of other systems, such as energy nets, network topologies, traffic
simulation, production plant planning, and other systems.

8.2. Flexible View Types

8.2.1. Editability

The ModelJoin language currently only contains constructs for the definition
of read-only views. Thus, it can only be used for the definition of the
projectional and selectional scope of flexible view types, but not for the
definition of the editability of the elements in the generated view types and
views. Furthermore, the generated view types and views do not offer any
synchronisation mechanism for the propagation of changes that are applied
in a view back to the source models.

To support the definition of editability scopes, as defined for flexible view
types in subsection 6.1.3, the ModelJoin language must be extended by the
following concepts:

• Inherent Editability and Synchronisation Mode of ModelJoin Op-
erators: The definition of view types with the ModelJoin language
offers the advantage that the purpose of the view type is expressed
declaratively with the well-defined operators of the ModelJoin DSL.

268

8.2. Flexible View Types

The definition of these operators should be extended by a default
editability behaviour, so that the effects of an element that has been
created by, e.g., a keep reference or a join statement, are clear to the
developer, and that an editable view can be generated automatically
using the automatic synchronisation mode.

• Editability Specifications: In addition to the inherent editability of
view type elements that have been created by a specific ModelJoin
operator, the user of ModelJoin should have the possibility to specify
the editability scope at the metamodel level. Since the operators of
ModelJoin describe the elements in the target metamodel, which acts
as the view type, additional language elements for the existing keep
operators could be introduced, which describe the editability scope of
of the target metamodel element. At the instance level, the editability
scope description would require that single instances are identified
by a universal unique identifier (UUID) or an unambiguous name;
although this would also be possible in the ModelJoin DSL, it would
restrict a ModelJoin query to a certain set of instances, and hinder
its re-use for other instances. Thus, the instance-level editability
scope should better be specified in an graphical or tree-based editor
that shows the actual instances that are in the result set of an actual
execution of a ModelJoin query.

• Synchronisation Modes: The synchronisation modes for flexible
view types (automatic, select policy, manual, see subsection 6.1.3)
should be specifiable within a ModelJoin query. While the automatic
synchronisation mode, as mentioned above, should be active by de-
fault, the extension of the ModelJoin behaviour by the editability
behaviour should include policies that are specific to the respective
operation. For example, a modification to an element in a view that
was created by a join operator could be propagated to the source
models by changing the left element, the right element, or both (if

269

8. Future Work

it is allowed at all). These policies can be selected by the user by
including additional language constructs to the respective ModelJoin
operators.

These extensions mentioned here would amend the ModelJoin DSL at
the conceptual level. The prototypical implementation of ModelJoin would
of course also have to be extended by new, essential functionality. Al-
though the ModelJoin prototype is a stand-alone tool that can be used
independently of VITRUVIUS, an integration of the ModelJoin engine into
the VITRUVIUS workbench would profit from the synchronisation mechan-
isms of VITRUVIUS to realise the editability of view types. The definition
of editability in subsection 6.1.3 is compatible with the planned definition of
change propagation in the VITRUVIUS approach, so that the synchronisation
mechanisms, once implemented, can also be used with ModelJoin.

8.2.2. Metamodel Conformance Checking

The metamodel conformance checking in ModelJoin (see subsection 6.2.4)
can be used to find a suiting metamodel from a repository that can be used
with a specific query. The current prototype of the conformance checker
implements a simple metric that presents to the developer of a view type
the number of conflicts that exist between the view type definition in the
current ModelJoin query, and the existing metamodels in the repository.
These conflicts have to be solved manually by the developer. To assist
the developer in adjusting the ModelJoin query in such a way that the
conformance to an existing metamodel is given, the ModelJoin editor should
offer the developer the information on which statement is responsable for
the non-conformance, and also possible hints on corrections (quick-fixes)
that would establish conformance.

Although this is mainly a convenience function for the developer of the
ModelJoin query, the tracing of view type elements to the actual expression
in the textual ModelJoin definition can also be helpful in the development

270

8.2. Flexible View Types

process of a view type in general: Since the ModelJoin definition of a
view type can also be seen as a documentation on the purpose of the view
type, the traceability between the generated view type and this definition
would increase the quality of the documentation of the generated view
type. Since the protoype of ModelJoin uses the Xtext2 framework to define
the grammar of ModelJoin, and to generate the textual editors, a model-
based representation of the textual queries is available during the process
of executing the query. Thus, the traceability information could be encoded
into the target metamodel during the metamodel synthesis step by linking it
to the Xtext model.

Furthermore, the repository that stores the target metamodels for com-
parison is currently implemented as a simple, file-based registry of Ecore
metamodels [30]. In future versions, the conformance validator can be
extended to support other metamodel repositories, such as CDO3, Teneo4,
or EMFStore.5 These repositories offer a database backend and are thus
suited for large amounts of instances. This is especially important if target
metamodels of former ModelJoin queries are persisted frequently, which
would lead to a large number of metamodels that have to be persisted and
loaded for comparison. A metamodel repository that supports versioning
of metamodels is beneficial in this case to record the history of changes
to a ModelJoin query and the generated target metamodel. To keep these
artefacts consistent, the repository can also save the model-based Xtext
representation of the ModelJoin query together with the target metamodel.

2http://www.eclipse.org/Xtext/, retrieved 9 May 2014
3http://www.eclipse.org/cdo, retrieved 9 May 2014
4http://wiki.eclipse.org/Teneo, retrieved 9 May 2014
5http://www.eclipse.org/emfstore, retrieved 9 May 2014

271

http://www.eclipse.org/Xtext/
http://www.eclipse.org/cdo
http://wiki.eclipse.org/Teneo
http://www.eclipse.org/emfstore

8. Future Work

8.2.3. Performance Properties of the ModelJoin Algorithms and

Implementation

The ModelJoin prototype consists of two main components that contain
complex execution logic: The metamodel synthesis component and the
transformation generation component (see Figure 6.7 on page 200). The
performance of these components in terms of execution time and memory
consumption depends on several factors: size of the input metamodels, size
of the input models, size of the query, and complexity of the query. To test
the runtime behaviour of the ModelJoin prototype, a systematic exploration
of these parameters is necessary. The problem with a systematic variation
of this parameters is, however, that the metamodels, models, and queries
have to conform to each other, and should also produce reasonable results.
Thus, an automatic generation of test cases and data requires a sophisticated
mechanism for the creation of appropriate models.

To address this problem, a synthetic test framework for ModelJoin is
currently under development.6 The framework incorporates advanced con-
cepts for the parameterised creation of synthetic metamodels, instances and
matching queries. Furthermore, it already provides the measurement of
execution times for the ModelJoin metamodel synthesizer and transform-
ation generator. To explore the multi-dimensional parameter space of the
synthesizer, an adapter for the Software Performance Cockpit (SoPeCo)
[155] experimentation tool has been developed.

In future work, the model and query synthesizer can be used to create
extensive tests of the ModelJoin implementation. With these test, the in-
terdependencies between the various size dimensions of the input data and
runtime behaviour can be measured. At the moment, the performance of
the ModelJoin prototype is expected to depend mostly on the metamodel
and query size. The size of the input instances only effects the query execu-
tion, which is carried out by the QVT-O engine of the Eclipse Modelling

6https://sdqweb.ipd.kit.edu/wiki/ModelJoin/Synthetic_Tests, retrieved 7 May 2014

272

https://sdqweb.ipd.kit.edu/wiki/ModelJoin/Synthetic_Tests

8.2. Flexible View Types

Framework. The test framework offers, however, means to measure the
execution time of this engine seperately from the components of the Model-
Join prototype. The investigation of the behaviour of ModelJoin with large
amounts of data is an important factor for the aptitude of ModelJoin for
model-based scenarios such as automotive systems development, which can
contain thousands of elements.

273

9. Conclusion

The view-based VITRUVIUS approach pursues the vision of model-based
development that “Everything is a model”, and aims to reach this goal with
the concept of Orthographic Software Engineering that the system under
development, in all its facets, is represented by a single underlying model,
and that automatically generated, user-specific views give developers access
to the information in this model.

In this thesis, we have presented a systematic construction method for a
modular SUM metamodel, which integrates legacy metamodels non-intrus-
ively, and thus provides compatibility to existing metamodels and standards.
To this end, the relation of views and view types to the single underlying
model and its metamodel has been formalised, including the description of
view and view types scopes and editability. The construction of the modu-
lar SUM metamodel is embedded in a view-centric development process,
with which existing software development processes can be migrated to a
VITRUVIUS-based process, or which can be used for the instantiation of
VITRUVIUS-based development projects. The process is founded on the
development process and developer role model of OSM and refines the
creation of the SUM and its metamodel as well as the description of the
OSM-specific developer role methodologist.

Metamodel evolution affects every development process that makes use of
metamodels and models at some point. The change metamodel that has been
presented in this thesis offers a uniform way of representing modifications
at the metamodel level as well as at the instance level. This representation
is the base of a change impact analysis that can be used to determine the
effects of changes to metamodels on existing instances without executing

275

9. Conclusion

the changes. This is an important contribution to metamodel design and sup-
ports metamodel developers in the planning of the releases of new versions
of a metamodel. Based on this analysis, a conformance relation between
metamodels has been defined in this thesis, which describes the substitut-
ability between different versions of a metamodel or between structurally
similar metamodels. The change metamodel is agnostic of whether the
changes are elicited in a delta-based or in a state-based way. The state-based
conformance checking, which has been presented in this thesis, offers a
tool-independent analysis of metamodel changes for determining possible
re-use of metamodels.

The flexible view types concept, which is the main contribution of this
thesis, has been developed for the purpose of defining custom, user-specific
views on heterogeneous models. The approach has been implemented in
the textual, declarative ModelJoin query language, which offers a compact
description method for the rapid definition of flexible view types. In the
context of VITRUVIUS, flexible views can be used both by methodologists
and users to define view types on the modular SUM metamodel. The
ability of ModelJoin to integrate data from heterogeneous models into highly
customizable view types, which exceed the possibilities of pure projectional
model query approaches, allow methodologists to define view types as
independent, stable interfaces on heterogeneous model data, and allow
developers to define user-specific view types that satisfy information needs
that were not foreseen by the methodologist during the creation of the SUM
metamodel.

Although the development of a prototype that implements all phases of the
VITRUVIUS development process is ongoing work, the metamodel evolution
methods as well as the flexible view type definitions with the ModelJoin have
been implemented and can be used independently of the planned VITRUVIUS

prototype. The completeness of the ModelJoin language has been evaluated
by a reachability analysis for the elements in the Ecore metamodel. While
the aptitude of the ModelJoin language for the definition of the projectional

276

and selectional scope of view types has been demonstrated successfully, an
extension of the language to support the definition of editability scopes is
considered desirable. The VITRUVIUS process as a whole has been evaluated
with a scenario from the field of component-based software development,
and a scenario from the field of the development of embedded software
in the automotive domain. The scenarios have been analysed with the
VITRUVIUS development process that has been presented in this thesis.
Since the VITRUVIUS protoype does not yet support the implementation of
SUM metamodels and the synchronisation policies for their sub-metamodels,
the development of the modular SUM metamodel has been described at the
conceptual level for these scenarios, while the view type definition has been
conducted using the ModelJoin prototype. The evaluation of the scenarios
revealed semantic dependencies between the formalisms that had not been
specified before, and would have been managed manually, or in a non-
uniform way through particular synchronisation mechanisms of specialised
tools. Fragmentation and complexity can be reduced best by the introduction
of flexible views and the VITRUVIUS approach, while the introduction of
controlled redundancy and the reduction of inconsistencies have yet to be
evaluated fully once the VITRUVIUS prototype is available.

The VITRUVIUS approach and the flexible view types offer new perspect-
ives for the development of software and the combination of software models
with non-software domain models, such as energy topology models, traffic
simulations, production plant planning, and other systems. The foundation
of model-based development and sophisticated methods for automatic syn-
chronisation and generation of views offer developers of domain-specific
software als well as users means to create view types and views rapidly,
while reducing the accidental complexity of managing large models and
heterogeneous formalisms. Flexible views give users access to consistent,
up-to-date, and complete information about the system under consideration,
which is tailored to the information needs of different developer roles.

277

9. Conclusion

A. ModelJoin Language Definition

grammar edu.kit.ipd.sdq.mdsd.ModelJoin with org.eclipse.xtext.common.

Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

generate modelJoin "http://www.kit.edu/ipd/sdq/mdsd/ModelJoin"

Grammar:

(imports+=Import)*

(target+=Target)

(joinExpr+=JoinExpr)*;

JoinExpr :

(NaturalJoinExpr | LeftOuterJoinExpr | ThetaJoinExpr) ’as’

targetType=CpxID

(’{’

(keepAttributesExpr+=KeepAttributesExpr)?

(keepCalcAttributesExpr+=KeepCalcAttributesExpr)?

(keepAggregatesExpr+=KeepAggregateExpr)?

keepExpr+=KeepExpr*

’}’)?

;

NaturalJoinExpr:

’natural’ ’join’ left=[ecore::EClass|CpxID] ’with’ right=[ecore::

EClass|CpxID]

;

LeftOuterJoinExpr:

279

A. ModelJoin Language Definition

’left’ ’outer’ ’join’ left=[ecore::EClass|CpxID] ’with’ right=[

ecore::EClass|CpxID]

;

ThetaJoinExpr:

’theta’ ’join’ left=[ecore::EClass|CpxID] ’with’ right=[ecore::

EClass|CpxID] ’where’ condition=STRING

;

KeepExpr :

(KeepTypeExpr | KeepOutgoingExpr | KeepIncomingExpr)

(’{’

(keepAttributesExpr+=KeepAttributesExpr)?

(keepCalcAttributesExpr+=KeepCalcAttributesExpr)?

(keepAggregatesExpr+=KeepAggregateExpr)?

keepExpr+=KeepExpr*

’}’)?

;

KeepTypeExpr :

KeepSuperTypeExpr | KeepSubTypeExpr

;

KeepSuperTypeExpr :

’keep’ ’supertype’ superType=[ecore::EClass|CpxID]

(’as’ ’type’ targetSuperType=CpxID)?

;

KeepSubTypeExpr :

’keep’ ’subtype’ subType=[ecore::EClass|CpxID]

(’as’ ’type’ targetSubType=CpxID)?

;

KeepOutgoingExpr :

280

’keep’ ’outgoing’ outgoing=[ecore::EReference|CpxID]

(’as’ ’type’ targetOutgoing=CpxID (’as’ ’reference’

targetReference=CpxID)?)?

;

KeepIncomingExpr :

’keep’ ’incoming’ incoming=[ecore::EReference|CpxID]

(’as’ ’type’ targetIncoming=CpxID (’as’ ’reference’

targetReference=CpxID)?)?

;

KeepAttributesExpr :

’keep’ ’attributes’ attribute=[ecore::EAttribute|CpxID] (’,’

attributes+=[ecore::EAttribute|CpxID])*

;

KeepAggregateExpr :

’keep’ ’aggregate’ aggregate+=KeepAggregate (’,’aggregate+=

KeepAggregate)*

;

KeepCalcAttributesExpr :

’keep’ ’calculated’ ’attribute’ calculateRule=STRING ’as’

targetAttribute=CpxID

;

KeepAggregate:

KeepNumericalAggregate | KeepCollectionAggregate

;

KeepNumericalAggregate :

aggregateKind=NumericalAggregateKind’(’value=[ecore::EAttribute|

CpxID]’)’

281

A. ModelJoin Language Definition

A. ModelJoin Language Definition

’over’ context=[ecore::EReference|CpxID] ’as’ targetAttribute=

CpxID

;

KeepCollectionAggregate :

aggregateKind=CollectionAggregateKind (

’(’value=[ecore::EAttribute|CpxID]’)’ ’over’ context=[ecore::

EReference|CpxID]

| ’(’value=[ecore::EReference|CpxID]’)’

) ’as’ targetAttribute=CpxID

;

enum NumericalAggregateKind :

SUM=’sum’ | AVG=’avg’ | MIN=’min’ | MAX=’max’

;

enum CollectionAggregateKind :

SIZE=’size’

;

WhereExpr :

’true’

;

Projection :

star=’*’

| id=ID

| cId=CpxID

;

Import:

’import’ importURI=STRING

;

282

Target:

’target’ targetURI=STRING

;

CpxID : ID (’.’ ID)+;

PackageQualifiedID : ID (’::’ ID)* ’::’ (CpxID|ID) ;

Listing 16: Definition of the Concrete Syntax of ModelJoin as an Xtext Grammar

283

A. ModelJoin Language Definition

B. Change Classification for Metamodel
Evolution

Name Atomic/ Severity Derivable
Complex

Structural Primitives

1 Create Package A NB 3

2 Delete Package A BR 3

3 Create Class A NB 3

4 Delete Class A BR 3

5 Create Attribute A 3

– mandatory BN
– non-mandatory NB

6 Create Reference A 3

– mandatory BN
– non-mandatory NB

7 Delete Feature A BR 3

8 Create Oppos. Ref. C 3

– mandatory BR
– non-mandatory NB

9 Delete Oppos. Ref. C BR 3

10 Create Data Type A NB 3

11 Delete Data Type A BR 3

12 Create Enum A NB 3

13 Delete Enum A BR 3

14 Create Literal A NB 3

285

B. Change Classification for Metamodel Evolution

15 Merge Literal C BR 7

Non-Structural Primitives

1 Rename A BR 7

2 Change Package C BR 3

3 Make Class Abstract A BR 3

4 Drop Class Abstract A NB 3

5 Add Super Type A 3

– mandatory features BR
– no mandatory feat. NB

6 Remove Super Type A BR 3

7 Make Attr. Identifier A BN 3

8 Drop Attr. Identifier A NB 3

9 Make Ref. Comp. A BR 3

10 Switch Ref. Comp. A BR 3

11 Make Ref. Opposite A NB 3

12 Drop Ref. Opposite A NB 3

Specialization/Generalization Operators

1 Generalize Attribute C NB
2 Specialize Attribute C BN
3 Generalize Reference C NB
4 Specialize Reference C BN
5 Specialize Comp. Ref. C BN
6 General. Super Type C NB
7 Specialize Super Type C BN

Inheritance Operators

1 Pull up Feature C 3

– mandatory
– supercl. abstract NB
– supercl. not abstract BN

286

– non-mandatory NB
2 Push down Feature C NB 3

3 Extract Super Class C NB 3

4 Inline Super Class C 7

– abstract NB
– not abstract BR

5 Fold Super Class C BR 7

6 Unfold Super Class C BR 7

7 Extract Sub Class C BR 3

8 Inline Sub Class C BR 3

Delegation Operators

1 Extract Class C BR 3

2 Inline Class C BR 3

3 Fold Class C BR 3

4 Unfold Class C BR 3

5 Move Feat. over Ref. C BR 3

6 Collect Feat. over Ref. C BR 3

Replacement Operators

1 Subclasses to Enum. C BR 7

2 Enum. to Subclasses C BN 7

3 Reference to Class C BR 7

4 Class to Reference C BR 7

5 Inheritance to Deleg. C BR 3

6 Deleg. to Inheritance C BN 3

7 Reference to Identifier C BR 7

8 Identifier to Reference C BR 7

Merge/Split Operators

1 Merge Features C BR 7

2 Split Ref. by Type C BR 7

287

B. Change Classification for Metamodel Evolution

B. Change Classification for Metamodel Evolution

3 Merge Classes C BR 7

4 Split Class C BR 7

5 Merge Enumerations C BR 7

288

C. Example Metamodels

C.1. PCM Metamodel

NamedElement
(from entity)

entityName:EString

Entity
(from entity)

AssemblyContext
(from composition)

BasicComponent
(from repository)

CompositeComponent
(from repository)

ImplementationComponentType
(from repository)

componentType:ComponentType

RepositoryComponent
(from repository)

encapsulatedComponent__AssemblyContext 1

Figure C.1.: Strongly Simplified Extract of the Palladio Component Metamodel
(from [29])

289

C. Example Metamodels

C.2. IMDB/Library example

IMDB
Film

title:EString
year:EInt

Vote
score:EInt

Figure

name:EString

Person
name:EString
dob:EDate

User
userName:EString
email:EString

Actor

0..1
library

films
0..∗

1libraryvotes 0..∗

0..1film
figures 1..∗

0..1
library

actors
0..∗

1
library

users
0..∗

1
film

votes
0..∗

user 1

0..∗
plays

playedBy1..∗

Figure C.2.: IMDB Metamodel

290

C.2. IMDB/Library example

Item
publicationDate:EDate

CirculatingItem
Periodical

title:EString
issuesPerYear:EInt

Book
title:EString
pages:EInt
category:BookCategory

AudioVisualItem
title:EString
minutesLength:EInt
damaged:EBoolean

VideoCassette

BookOnTape

Person
firstName:EString
lastName:EString

Library

name:EString
people:EFeatureMapEntry

Writer
name:EString

Borrower

Employee

«enumeration»
BookCategory

Mystery
ScienceFiction
Biography

writers
0..∗

borrowers
0..∗

employees

0..∗
branches 0..∗ parentBranch 0..1

stock
0..∗ cast

0..∗
reader

0..1

author 0..1

manager 0..1

Figure C.3.: Library Metamodel

291

D. ModelJoin Experiment Task Sheet

D.1. Preparations

• Open an Eclipse Modeling Tools 4.2 with installed PCM 3.4 (available
via Eclipse Marketplace) and QVT-O support.

• Import the project provided in the Zip file or check it out from
SVN (https://svnserver.informatik.kit.edu/i43/svn/code/
MDSD/trunk/edu.kit.ipd.sdq.mdsd.mj.experiment) into your
workspace.

• Install the Sensor Model plug-in found in the lib folder in the dropins
folder of your Eclipse and restart Eclipse.

D.2. Task

Your task is to create an integrated view type (i.e., metamodel) and view on
the Sensor Model and the Palladio Component Model. The metamodel of
the Sensor Model is depicted in Figure D.1.

In this view type, the measured sensor statistic values, in terms of response
time (mean, stddev and variance), are assigned to the corresponding Palladio
assembly contexts and components. The view type shall be a partial view
type that omits all unnecessary details.

Hint: Since the Sensor Model does not reference the PCM directly, the
assignment of Sensor elements to PCM model elements has to be made by
the sensorName attribute, which contains the ID of the PCM element (see
the example measurements contained in the Zip file).

293

https://svnserver.informatik.kit.edu/i43/svn/code/MDSD/trunk/edu.kit.ipd.sdq.mdsd.mj.experiment
https://svnserver.informatik.kit.edu/i43/svn/code/MDSD/trunk/edu.kit.ipd.sdq.mdsd.mj.experiment

D. ModelJoin Experiment Task Sheet

D.2.1. Create a new Metamodel

As first step, create a new metamodel that resembles your view type and
later on will be the target for your transformation. Therefore, only include
those classes, relations and attributes relevant for the task.

D.2.2. Create the Transformation

Create a QVT-O transformation that produces the desired views for the given
model and measurement (found in measurements.xmi). You can build upon
the transformation stub included in the transforms directory. If necessary,
adapt your target view type/metamodel to fit your transformation.

D.2.3. Results

Please send the results via mail to Erik Burger or check them into your
personal sub-folder at https://svnserver.informatik.kit.edu/i43/svn/
paper/2012/Burger_SoSyM/experiment

294

mailto:burger@kit.edu
https://svnserver.informatik.kit.edu/i43/svn/paper/2012/Burger_SoSyM/experiment
https://svnserver.informatik.kit.edu/i43/svn/paper/2012/Burger_SoSyM/experiment

D.2. Task

Experiment

experimentName:EString
experimentID:ELong

ExperimentRun

experimentRunID:ELong
experimentDateTime:EString

Measurement
measurementID:ELong
eventTime:EDouble

SensorStatistics
measurementCount:ELong

Sensor
sensorID:ELong
sensorName:EString

TimeSpanSensor

StateSensor

TimeSpanMeasurement

timeSpan:Double

StateMeasurement

TimeSpan-
SensorStatistics
mean:EDouble
variance:EDouble
stddev:EDouble

StateSensorStatistics

State
StateLiteral:EString
StateID:ELong

StateStatistic
absoluteTime:EDouble
percent:EDouble

ExperimentRepository

0..∗ measurements 0..∗ sensorstatistics0..∗ sensors

0..1

experiment 0..1

experimentRuns

states

0..∗

0..∗ statestatistics

ex
pe

rim
en

ts

0..∗

1 sensors 0..∗ measurements

sensor1

state

1

1 sensorStateinitialState 1 states0..∗

Figure D.1.: The Sensor Model Metamodel

295

Bibliography

[1] Marcus Alanen and Ivan Porres. “Difference and Union of Mod-
els”. In: “UML 2003” – The Unified Modeling Language, Modeling

Languages and Applications 6th International Conference, San Fran-

cisco, CA, USA, October 20–24, 2003, Proceedings. Ed. by Perdita
Stevens, Jon Whittle and Grady Booch. Vol. 2863. Lecture Notes in
Computer Science. Berlin/Heidelberg: Springer Verlag, 2003, pp. 2–
17. ISBN: 978-3-540-20243-1.

[2] Michał Antkiewicz, Krzysztof Czarnecki and Matthew Stephan.
“Engineering of Framework-Specific Modeling Languages”. In: Soft-

ware Engineering, IEEE Transactions on 35.6 (Nov. 2009), pp. 795–
824. ISSN: 0098-5589. DOI: 10.1109/TSE.2009.30.

[3] Eric Armengaud, Markus Zoier, Andreas Baumgart, Matthias Biehl,
DeJiu Chen, Gerhard Griessnig, Christian Hein, Tom Ritter and
Ramin Tavakoli Kolagari. “Model-based Toolchain for the Efficient
Development of Safety-Relevant Automotive Embedded Systems”.
In: SAE 2011 World Congress & Exhibition. 2011.

[4] Uwe Aßmann, Steffen Zschaler and Gerd Wagner. “Ontologies,
Meta-models, and the Model-Driven Paradigm”. In: Ontologies for

Software Engineering and Software Technology. Ed. by Coral Calero,
Francisco Ruiz and Mario Piattini. Springer Berlin Heidelberg, 2006,
pp. 249–273. ISBN: 978-3-540-34517-6. DOI: 10.1007/3-540-3451
8-3_9. URL: http://dx.doi.org/10.1007/3-540-34518-3_9.

297

http://dx.doi.org/10.1109/TSE.2009.30
http://dx.doi.org/10.1007/3-540-34518-3_9
http://dx.doi.org/10.1007/3-540-34518-3_9
http://dx.doi.org/10.1007/3-540-34518-3_9

Bibliography

[5] Colin Atkinson, Philipp Bostan, Daniel Brenner, Giovanni Falcone,
Matthias Gutheil, Oliver Hummel, Monika Juhasz and Dietmar Stoll.
“Modeling Components and Component-Based Systems in KobrA”.
In: The Common Component Modeling Example. Ed. by Andreas
Rausch, Ralf Reussner, Raffaela Mirandola and František Plášil.
Vol. 5153. Lecture Notes in Computer Science. Berlin/Heidelberg:
Springer, 2008, pp. 54–84. URL: http://dx.doi.org/10.1007/978
-3-540-85289-6_4.

[6] Colin Atkinson, Matthias Gutheil and Bastian Kennel. “A Flexible
Infrastructure for Multilevel Language Engineering”. In: Software

Engineering, IEEE Transactions on 35.6 (Nov. 2009), pp. 742–755.
ISSN: 0098-5589. DOI: 10.1109/TSE.2009.31.

[7] Colin Atkinson, Dietmar Stoll and Philipp Bostan. “Orthographic
Software Modeling: A Practical Approach to View-Based Develop-
ment”. In: Evaluation of Novel Approaches to Software Engineering.
Ed. by Leszek A. Maciaszek, César González-Pérez and Stefan
Jablonski. Vol. 69. Communications in Computer and Information
Science. Berlin/Heidelberg: Springer, 2010, pp. 206–219. ISBN:
978-3-642-14819-4.

[8] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi and Peter F. Patel-Schneider, eds. The Description Logic

Handbook: Theory, Implementation, and Applications. New York,
NY, USA: Cambridge University Press, 2003. ISBN: 0-521-78176-0.

[9] François Bancilhon and Nicolas Spyratos. “Update semantics of
relational views”. In: ACM Trans. Database Syst. 6.4 (Dec. 1981),
pp. 557–575. ISSN: 0362-5915. DOI: 10.1145/319628.319634.

[10] Elisa Baniassad and Siobhan Clarke. “Theme: An Approach for
Aspect-Oriented Analysis and Design”. In: Proceedings of the 26th

International Conference on Software Engineering. ICSE ’04. Wash-
ington, DC, USA: IEEE Computer Society, 2004, pp. 158–167.

298

http://dx.doi.org/10.1007/978-3-540-85289-6_4
http://dx.doi.org/10.1007/978-3-540-85289-6_4
http://dx.doi.org/10.1109/TSE.2009.31
http://dx.doi.org/10.1145/319628.319634

Bibliography

ISBN: 0-7695-2163-0. URL: http://portal.acm.org/citation.cf
m?id=998675.999390.

[11] Victor R. Basili, Gianluigi Caldiera and H. Dieter Rombach. “The
Goal Question Metric Approach”. In: Encyclopedia of Software

Engineering - 2 Volume Set. Ed. by John J. Marciniak. John Wiley
& Sons, 1994, pp. 528–532.

[12] Steffen Becker, Heiko Koziolek and Ralf Reussner. “Model-based
Performance Prediction with the Palladio Component Model”. In:
Proceedings of the 6th International Workshop on Software and

Performance (WOSP2007). ACM Sigsoft, Feb. 2007.

[13] Steffen Becker, Heiko Koziolek and Ralf Reussner. “The Palladio
component model for model-driven performance prediction”. In:
Journal of Systems and Software 82 (2009), pp. 3–22. DOI: 10.1016
/j.jss.2008.03.066. URL: http://dx.doi.org/10.1016/j.jss.2
008.03.066.

[14] Bernhard Beckert, Uwe Keller and Peter H. Schmitt. “Translating
the Object Constraint Language into First-order Predicate Logic”. In:
In Proceedings, VERIFY, Workshop at Federated Logic Conferences

(FLoC. 2002, pp. 113–123.

[15] Gábor Bergmann, István Ráth, Gergely Varró and Dániel Varró.
“Change-driven model transformations”. English. In: Software &

Systems Modeling 11.3 (2012), pp. 431–461. ISSN: 1619-1366. DOI:
10.1007/s10270-011-0197-9. URL: http://dx.doi.org/10.1007
/s10270-011-0197-9.

[16] Jean Bézivin. “On the unification power of models”. English. In:
Software & Systems Modeling 4.2 (2005), pp. 171–188. ISSN: 1619-
1366. DOI: 10.1007/s10270-005-0079-0. URL: http://dx.doi.or
g/10.1007/s10270-005-0079-0.

299

http://portal.acm.org/citation.cfm?id=998675.999390
http://portal.acm.org/citation.cfm?id=998675.999390
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1007/s10270-011-0197-9
http://dx.doi.org/10.1007/s10270-011-0197-9
http://dx.doi.org/10.1007/s10270-011-0197-9
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1007/s10270-005-0079-0

Bibliography

[17] Aaron Bohannon, Benjamin C. Pierce and Jeffrey A. Vaughan. “Re-
lational Lenses: A Language for Updatable Views”. In: Proceedings

of the Twenty-fifth ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems. PODS ’06. Chicago, IL, USA:
ACM, 2006, pp. 338–347. ISBN: 1-59593-318-2. DOI: 10.1145/114
2351.1142399. URL: http://doi.acm.org/10.1145/1142351.1142
399.

[18] Grady Booch, James Rumbaugh and Ivar Jacobson. The Unified

Modeling Language User Guide. 1st ed. Reading, MA: Addison-
Wesley, 1998. ISBN: 0-201-57168-4.

[19] Dan Brickley and R.V. Guha, eds. RDF Schema 1.1. 25th Feb. 2014.
URL: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[20] Saartje Brockmans, Peter Haase, Luciano Serafini and Heiner Stuck-
enschmidt. “Formal and Conceptual Comparison of Ontology Map-
ping Languages”. In: Modular Ontologies. Ed. by Heiner Stuck-
enschmidt, Christine Parent and Stefano Spaccapietra. Vol. 5445.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2009, pp. 267–291. ISBN: 978-3-642-01906-7. DOI: 10.1007/978-3
-642-01907-4_13. URL: http://dx.doi.org/10.1007/978-3-642-
01907-4_13.

[21] Manfred Broy. “Challenges in Automotive Software Engineering”.
In: Proceedings of the 28th International Conference on Software

Engineering. ICSE ’06. Shanghai, China: ACM, 2006, pp. 33–42.
ISBN: 1-59593-375-1. DOI: 10.1145/1134285.1134292. URL: http:
//doi.acm.org/10.1145/1134285.1134292.

[22] Cédric Brun and Alfonso Pierantonio. “Model Differences in the Ec-
lipse Modelling Framework”. In: UPGRADE The European Journal

for the Informatics Professional IX.2 (2008), pp. 29–34. URL: http:
//www.cepis.org/upgrade/files/2008-II-pierantonio.pdf.

300

http://dx.doi.org/10.1145/1142351.1142399
http://dx.doi.org/10.1145/1142351.1142399
http://doi.acm.org/10.1145/1142351.1142399
http://doi.acm.org/10.1145/1142351.1142399
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://dx.doi.org/10.1007/978-3-642-01907-4_13
http://dx.doi.org/10.1007/978-3-642-01907-4_13
http://dx.doi.org/10.1007/978-3-642-01907-4_13
http://dx.doi.org/10.1007/978-3-642-01907-4_13
http://dx.doi.org/10.1145/1134285.1134292
http://doi.acm.org/10.1145/1134285.1134292
http://doi.acm.org/10.1145/1134285.1134292
http://www.cepis.org/upgrade/files/2008-II-pierantonio.pdf
http://www.cepis.org/upgrade/files/2008-II-pierantonio.pdf

Bibliography

[23] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault and Frédéric Madiot.
“MoDisco: a generic and extensible framework for model driven re-
verse engineering”. In: Proceedings of the IEEE/ACM international

conference on Automated software engineering. ASE ’10. Antwerp,
Belgium: ACM, 2010, pp. 173–174. ISBN: 978-1-4503-0116-9. DOI:
10.1145/1858996.1859032. URL: http://doi.acm.org/10.1145/1
858996.1859032.

[24] H. W. Buff. “Why Codd’s Rule No. 6 Must be Reformulated”. In:
SIGMOD Record 17.4 (1988), pp. 79–80.

[25] Erik Burger. “Flexible Views for Rapid Model-Driven Develop-
ment”. In: Proceedings of the 1st Workshop on View-Based, Aspect-

Oriented and Orthographic Software Modelling. VAO ’13. Montpel-
lier, France: ACM, 2013, 1:1–1:5. ISBN: 978-1-4503-2070-2. DOI:
10.1145/2489861.2489863. URL: http://doi.acm.org/10.1145/2
489861.2489863.

[26] Erik Burger. “Flexible Views for View-Based Model-Driven Devel-
opment”. In: Proceedings of the 18th international doctoral sym-

posium on Components and architecture. WCOP ’13. Vancouver,
British Columbia, Canada: ACM, 2013, pp. 25–30. ISBN: 978-1-
4503-2125-9. DOI: 10.1145/2465498.2465501. URL: http://doi.a
cm.org/10.1145/2465498.2465501.

[27] Erik Burger and Boris Gruschko. “A Change Metamodel for the
Evolution of MOF-Based Metamodels”. In: Proceedings of Model-

lierung 2010. Ed. by Gregor Engels, Dimitris Karagiannis and Hein-
rich C. Mayr. Vol. P-161. GI-LNI. Klagenfurt, Austria, 26th Mar.
2010. URL: http://sdqweb.ipd.kit.edu/publications/pdfs/bu
rger2010a.pdf.

[28] Erik Burger, Jörg Henß, Steffen Kruse, Martin Küster, Andreas
Rentschler and Lucia Happe. ModelJoin. A Textual Domain-Specific

Language for the Combination of Heterogeneous Models. Tech. rep.

301

http://dx.doi.org/10.1145/1858996.1859032
http://doi.acm.org/10.1145/1858996.1859032
http://doi.acm.org/10.1145/1858996.1859032
http://dx.doi.org/10.1145/2489861.2489863
http://doi.acm.org/10.1145/2489861.2489863
http://doi.acm.org/10.1145/2489861.2489863
http://dx.doi.org/10.1145/2465498.2465501
http://doi.acm.org/10.1145/2465498.2465501
http://doi.acm.org/10.1145/2465498.2465501
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf

Bibliography

1. Karlsruhe Institute of Technology, Faculty of Informatics, 2014.
URL: http://digbib.ubka.uni-karlsruhe.de/volltexte/100003
7908.

[29] Erik Burger, Jörg Henß, Martin Küster, Steffen Kruse and Lucia
Happe. “View-Based Model-Driven Software Development with
ModelJoin”. English. In: Software and Systems Modeling 14 (2014).
Ed. by Robert France and Bernhard Rumpe, pp. 1–24. ISSN: 1619-
1366. DOI: 10.1007/s10270-014-0413-5.

[30] Erik Burger and Aleksandar Toshovski. “Difference-based Con-
formance Checking for Ecore Metamodels”. In: Proceedings of

Modellierung 2014. Vol. 225. GI-LNI. Vienna, Austria, 21st Mar.
2014. URL: http://sdqweb.ipd.kit.edu/publications/pdfs/bu
rger2014a.pdf.

[31] Andrew Carton, Cormac Driver, Andrew Jackson and Siobhán
Clarke. “Model-Driven Theme/UML”. In: Transactions on Aspect-

Oriented Software Development VI. Ed. by Shmuel Katz, Harold
Ossher, Robert France and Jean-Marc Jézéquel. Vol. 5560. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2009,
pp. 238–266. ISBN: 978-3-642-03763-4. DOI: 10.1007/978-3-642-
03764-1_7. URL: http://dx.doi.org/10.1007/978-3-642-03764-
1_7.

[32] Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro Garcia,
Mónica Pinto Alarcon, Jethro Bakker, Bedir Tekinerdoğan, Siob-
hán Clarke and Andrew Jackson. Survey of Analysis and Design

Approaches. Tech. rep. AOSD-Europe, May 2005. URL: http://ww
w.comp.lancs.ac.uk/computing/aod/papers/d11.pdf.

[33] Antonio Cicchetti, Federico Ciccozzi and Thomas Leveque. “A
hybrid approach for multi-view modeling”. In: Electronic Commu-

nications of the EASST 50 (2011).

302

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037908
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000037908
http://dx.doi.org/10.1007/s10270-014-0413-5
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2014a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2014a.pdf
http://dx.doi.org/10.1007/978-3-642-03764-1_7
http://dx.doi.org/10.1007/978-3-642-03764-1_7
http://dx.doi.org/10.1007/978-3-642-03764-1_7
http://dx.doi.org/10.1007/978-3-642-03764-1_7
http://www.comp.lancs.ac.uk/computing/aod/papers/d11.pdf
http://www.comp.lancs.ac.uk/computing/aod/papers/d11.pdf

Bibliography

[34] Antonio Cicchetti, Davide Di Ruscio and Alfonso Pierantonio. “A
Metamodel Independent Approach to Difference Representation”.
In: Journal of Object Technology 6.9 (Oct. 2007). Ed. by Jean Béz-
ivin and Bertrand Meyer. TOOLS EUROPE 2007 — Objects, Mod-
els, Components, Patterns, pp. 165–185. ISSN: 1660-1769. DOI:
10.5381/jot.2007.6.9.a9. URL: http://www.jot.fm/contents/i
ssue_2007_10/paper9.html.

[35] Siobhán Clarke and Elisa Baniassad. Aspect-Oriented Analysis and

Design. Addison-Wesley Professional, 2005. ISBN: 0321246748.

[36] Siobhán Clarke, William Harrison, Harold Ossher and Peri Tarr.
“Subject-oriented design: towards improved alignment of require-
ments, design, and code”. In: ACM SIGPLAN Notices 34.10 (Oct.
1999), pp. 325–339. URL: http://www.acm.org/pubs/citations
/proceedings/oops/320384/p325-clarke/.

[37] Edgar Frank Codd. The relational model for database management:

version 2. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1990. ISBN: 0-201-14192-2.

[38] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Helena Gilchrist,
Fiona Hayes and Paul Jeremaes. Object-oriented Development: the

Fusion method. Englewood Cliffs, NJ: Prentice Hall, 1994.

[39] Yanja Dajsuren, Mark van den Brand, Alexander Serebrenik and
Rudolf Huisman. “Automotive ADLS: A Study on Enforcing Con-
sistency Through Multiple Architectural Levels”. In: Proceedings of

the 8th International ACM SIGSOFT Conference on Quality of Soft-

ware Architectures. QoSA ’12. Bertinoro, Italy: ACM, 2012, pp. 71–
80. ISBN: 978-1-4503-1346-9. DOI: 10.1145/2304696.2304710.
URL: http://doi.acm.org/10.1145/2304696.2304710.

[40] Umeshwar Dayal and Philip A. Bernstein. “On the Correct Trans-
lation of Update Operations on Relational Views”. In: ACM Trans.

Database Syst. 7.3 (Sept. 1982), pp. 381–416. ISSN: 0362-5915.

303

http://dx.doi.org/10.5381/jot.2007.6.9.a9
http://www.jot.fm/contents/issue_2007_10/paper9.html
http://www.jot.fm/contents/issue_2007_10/paper9.html
http://www.acm.org/pubs/citations/proceedings/oops/320384/p325-clarke/
http://www.acm.org/pubs/citations/proceedings/oops/320384/p325-clarke/
http://dx.doi.org/10.1145/2304696.2304710
http://doi.acm.org/10.1145/2304696.2304710

Bibliography

DOI: 10.1145/319732.319740. URL: http://doi.acm.org/10.114
5/319732.319740.

[41] Juan De Lara, Hans Vangheluwe and Manuel Alfonseca. “Meta-
modelling and graph grammars for multi-paradigm modelling in
AToM3”. In: Software and Systems Modeling 3.3 (2004), pp. 194–
209.

[42] Trip Denton, Edward Jones, Srini Srinivasan, Ken Owens and
Richard W. Buskens. “NAOMI – An Experimental Platform for
Multi–modeling”. In: Model Driven Engineering Languages and

Systems. Ed. by Krzysztof Czarnecki, Ileana Ober, Jean-Michel
Bruel, Axel Uhl and Markus Völter. Vol. 5301. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2008, pp. 143–157.
ISBN: 978-3-540-87874-2. DOI: 10.1007/978-3-540-87875-9_10.
URL: http://dx.doi.org/10.1007/978-3-540-87875-9_10.

[43] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig,
Frank Hermann and Fernando Orejas. “From State- to Delta-Based
Bidirectional Model Transformations: the Asymmetric Case”. In:
Journal of Object technology 10 (2011), 6:1–25. DOI: 10.5381/jot
.2011.10.1.a6.

[44] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig,
Frank Hermann and Fernando Orejas. “From State- to Delta-Based
Bidirectional Model Transformations: The Symmetric Case”. In:
Model Driven Engineering Languages and Systems. Ed. by Jon
Whittle, Tony Clark and Thomas Kühne. Vol. 6981. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2011, pp. 304–318.
ISBN: 978-3-642-24484-1. DOI: 10.1007/978-3-642-24485-8_22.

[45] Mauro Dragoni, Chiara Francescomarino, Chiara Ghidini, Julia
Clemente and Salvador Sánchez Alonso. “Guiding the Evolution of a
Multilingual Ontology in a Concrete Setting”. In: The Semantic Web:

Semantics and Big Data. Ed. by Philipp Cimiano, Oscar Corcho,

304

http://dx.doi.org/10.1145/319732.319740
http://doi.acm.org/10.1145/319732.319740
http://doi.acm.org/10.1145/319732.319740
http://dx.doi.org/10.1007/978-3-540-87875-9_10
http://dx.doi.org/10.1007/978-3-540-87875-9_10
http://dx.doi.org/10.5381/jot.2011.10.1.a6
http://dx.doi.org/10.5381/jot.2011.10.1.a6
http://dx.doi.org/10.1007/978-3-642-24485-8_22

Bibliography

Valentina Presutti, Laura Hollink and Sebastian Rudolph. Vol. 7882.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013, pp. 608–622. ISBN: 978-3-642-38287-1. DOI: 10.1007/978-3
-642-38288-8_41. URL: http://dx.doi.org/10.1007/978-3-642-
38288-8_41.

[46] EAST-ADL Domain Model Specification. Version 2.1.12. EAST-
ADL Association. Nov. 2013. URL: http://www.east-adl.info/S
pecification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf.

[47] Eclipse Foundation. Eclipse Modeling Framework Homepage. htt
p://www.eclipse.org/modeling/emf/. last retrieved 2007-10-24.
URL: http://www.eclipse.org/modeling/emf/.

[48] Jean-Marie Favre. “Languages Evolve Too! Changing the Software
Time Scale”. In: Proceedings of the Eighth International Workshop

on Principles of Software Evolution. IWPSE ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 33–44. ISBN: 0-7695-2349-
8. DOI: 10.1109/IWPSE.2005.22. URL: http://dx.doi.org/10.11
09/IWPSE.2005.22.

[49] Anthony Finkelstein, Jeff Kramer, Bashar Nuseibeh, L. Finkelstein
and Michael Goedicke. “Viewpoints: A Framework for Integrating
Multiple Perspectives in System Development”. In: International

Journal of Software Engineering and Knowledge Engineering 2.1
(1992), pp. 31–57.

[50] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce and Alan Schmitt. “Combinators for bi-directional
tree transformations: a linguistic approach to the view update prob-
lem”. In: SIGPLAN Not. 40.1 (Jan. 2005), pp. 233–246. ISSN: 0362-
1340. DOI: 10.1145/1047659.1040325.

[51] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don
Roberts. Refactoring: Improving the Design of Existing Code. Addi-
son-Wesley, Reading, MA, USA, 1999.

305

http://dx.doi.org/10.1007/978-3-642-38288-8_41
http://dx.doi.org/10.1007/978-3-642-38288-8_41
http://dx.doi.org/10.1007/978-3-642-38288-8_41
http://dx.doi.org/10.1007/978-3-642-38288-8_41
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://dx.doi.org/10.1109/IWPSE.2005.22
http://dx.doi.org/10.1109/IWPSE.2005.22
http://dx.doi.org/10.1109/IWPSE.2005.22
http://dx.doi.org/10.1145/1047659.1040325

Bibliography

[52] Robert France and Bernhard Rumpe. “Does model driven engineer-
ing tame complexity?” English. In: Software & Systems Modeling

6.1 (2007), pp. 1–2. ISSN: 1619-1366. DOI: 10.1007/s10270-006-0
041-9. URL: http://dx.doi.org/10.1007/s10270-006-0041-9.

[53] Holger Giese and Robert Wagner. “Incremental Model Synchroniza-
tion with Triple Graph Grammars”. In: Model Driven Engineering

Languages and Systems. Ed. by Oscar Nierstrasz, Jon Whittle, David
Harel and Gianna Reggio. Vol. 4199. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2006, pp. 543–557. ISBN:
978-3-540-45772-5.

[54] Martin Glinz, Stefan Berner and Stefan Joos. “Object-oriented mod-
eling with Adora”. In: Information Systems 27.6 (2002), pp. 425–
444. ISSN: 0306-4379. DOI: http://dx.doi.org/10.1016/S0306-4
379(02)00015-7. URL: http://www.sciencedirect.com/science
/article/pii/S0306437902000157.

[55] Michael Goedicke, Torsten Meyer and Gabriele Taentzer.
“ViewPoint-Oriented Software Development by Distributed Graph
Transformation: Towards a Basis for Living with Inconsistencies”.
In: Proceedings of the 4th IEEE International Symposium on Re-

quirements Engineering. RE ’99. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 92–99. ISBN: 0-7695-0188-5. URL:
http://dl.acm.org/citation.cfm?id=647646.731261.

[56] Thomas Goldschmidt. “View-based textual modelling”. PhD thesis.
Karlsruhe, 2011. ISBN: 978-3-86644-642-7. URL: http://digbib
.ubka.uni-karlsruhe.de/volltexte/1000022234.

[57] Thomas Goldschmidt, Steffen Becker and Erik Burger. “View-Based
Modelling – A Tool-Oriented Analysis”. In: Proceedings of the

Modellierung 2012. Ed. by Elmar J. Sinz and Andy Schürr. Vol. P-
201. GI-Edition – Lecture Notes in Informatics (LNI). Bamberg,
Mar. 2012.

306

http://dx.doi.org/10.1007/s10270-006-0041-9
http://dx.doi.org/10.1007/s10270-006-0041-9
http://dx.doi.org/10.1007/s10270-006-0041-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0306-4379(02)00015-7
http://dx.doi.org/http://dx.doi.org/10.1016/S0306-4379(02)00015-7
http://www.sciencedirect.com/science/article/pii/S0306437902000157
http://www.sciencedirect.com/science/article/pii/S0306437902000157
http://dl.acm.org/citation.cfm?id=647646.731261
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022234
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022234

Bibliography

[58] Thomas Goldschmidt, Steffen Becker and Axel Uhl. “Incremental
Updates for Textual Modeling of Large Scale Models”. In: Proceed-

ings of the 15th IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS 2010) - Poster Paper. IEEE,
2010.

[59] Georg Gottlob, Paolo Paolini and Roberto Zicari. “Properties and
Update Semantics of Consistent Views”. In: ACM Trans. Database

Syst. 13.4 (Oct. 1988), pp. 486–524. ISSN: 0362-5915. DOI: 10.1145
/49346.50068. URL: http://doi.acm.org/10.1145/49346.50068.

[60] Joel Greenyer, Sebastian Pook and Jan Rieke. “Preventing Inform-
ation Loss in Incremental Model Synchronization by Reusing Ele-
ments”. In: Modelling Foundations and Applications. Ed. by Robert
B. France, Jochen M. Kuester, Behzad Bordbar and Richard F. Paige.
Vol. 6698. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 144–159. ISBN: 978-3-642-21469-1. DOI:
10.1007/978-3-642-21470-7_11. URL: http://dx.doi.org/10.1
007/978-3-642-21470-7_11.

[61] W3C SPARQL Working Group, ed. SPARQL 1.1 Overview. W3C
Recommendation. 21st Mar. 2013. URL: http://www.w3.org/TR/2
013/REC-sparql11-overview-20130321/.

[62] Thomas R. Gruber. “A translation approach to portable ontology
specifications”. In: Knowledge Acquisition 5.2 (1993), pp. 199–220.
ISSN: 1042-8143. DOI: http://dx.doi.org/10.1006/knac.1993.1
008. URL: http://www.sciencedirect.com/science/article/pii
/S1042814383710083.

[63] Thomas Haitzer and Uwe Zdun. “Semi-automated architectural
abstraction specifications for supporting software evolution”. In:
(Oct. 2013). URL: http://eprints.cs.univie.ac.at/3862/.

307

http://dx.doi.org/10.1145/49346.50068
http://dx.doi.org/10.1145/49346.50068
http://doi.acm.org/10.1145/49346.50068
http://dx.doi.org/10.1007/978-3-642-21470-7_11
http://dx.doi.org/10.1007/978-3-642-21470-7_11
http://dx.doi.org/10.1007/978-3-642-21470-7_11
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://dx.doi.org/http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/http://dx.doi.org/10.1006/knac.1993.1008
http://www.sciencedirect.com/science/article/pii/S1042814383710083
http://www.sciencedirect.com/science/article/pii/S1042814383710083
http://eprints.cs.univie.ac.at/3862/

Bibliography

[64] Lucia Happe, Erik Burger, Max Kramer, Andreas Rentschler and
Ralf Reussner. “Completion and Extension Techniques for Enter-
prise Software Performance Engineering”. In: Future Business Soft-

ware – Current Trends in Business Software Development. Ed. by
Gino Brunetti, Thomas Feld, Joachim Schnitter, Lutz Heuser and
Christian Webel. Progress in IS. New York, Heidelberg: Springer
International Publishing, 2014. ISBN: 978-3-319-04143-8. DOI: 10
.1007/978-3-319-04144-5.

[65] Ábel Hegedüs, Ákos Horváth, István Ráth and Dániel Varró. “Query-
Driven Soft Interconnection of EMF Models”. In: Model Driven

Engineering Languages and Systems. Ed. by Robert France, Jürgen
Kazmeier, Ruth Breu and Colin Atkinson. Vol. 7590. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2012, pp. 134–
150. ISBN: 978-3-642-33665-2. URL: http://dx.doi.org/10.1007
/978-3-642-33666-9_10.

[66] Florian Heidenreich, Jendrik Johannes, Mirko Seifert and Chris-
tian Wende. “Closing the Gap Between Modelling and Java”. In:
Software Language Engineering. Springer, 2010, pp. 374–383.

[67] Christian Hein, Tom Ritter and Michael Wagner. “Model-Driven
Tool Integration with ModelBus”. In: Workshop Future Trends of

Model-Driven Development. 2009.

[68] Christian Heinzemann and Steffen Becker. “Executing Reconfigur-
ations in Hierarchical Component Architectures”. In: Proceedings

of the 16th International ACM SigSoft Symposium on Component-

Based Software Engineering (CBSE). ACM, 2013.

[69] Jörg Henss, Philipp Merkle and Ralf H. Reussner. “Poster Abstract:
The OMPCM Simulator for Model-Based Software Performance
Prediction”. In: Proceedings of the 6th International ICST Confer-

ence on Simulation Tools and Techniques. Cannes, France, 2013.

308

http://dx.doi.org/10.1007/978-3-319-04144-5
http://dx.doi.org/10.1007/978-3-319-04144-5
http://dx.doi.org/10.1007/978-3-642-33666-9_10
http://dx.doi.org/10.1007/978-3-642-33666-9_10

Bibliography

[70] Markus Herrmannsdörfer. “COPE – A Workbench for the Coupled
Evolution of Metamodels and Models”. In: Software Language

Engineering. Ed. by Brian Malloy, Steffen Staab and Mark Brand.
Vol. 6563. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 286–295. ISBN: 978-3-642-19439-9. DOI:
10.1007/978-3-642-19440-5_18. URL: http://dx.doi.org/10.1
007/978-3-642-19440-5_18.

[71] Markus Herrmannsdörfer. “Operation-based Versioning of
Metamodels with COPE”. In: Proceedings of the 2009 ICSE Work-

shop on Comparison and Versioning of Software Models. CVSM ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 49–54.
ISBN: 978-1-4244-3714-6. DOI: 10 . 1109 / CVSM . 2009 . 5071722.
URL: http://dx.doi.org/10.1109/CVSM.2009.5071722.

[72] Markus Herrmannsdörfer, Sander D. Vermolen and Guido Wachs-
muth. “An extensive catalog of operators for the coupled evolution
of metamodels and models”. In: Proceedings of the Third inter-

national conference on Software language engineering. SLE’10.
Berlin/Heidelberg: Springer, 2011, pp. 163–182. ISBN: 978-3-642-
19439-9. URL: http://www4.in.tum.de/~herrmama/publications
/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf.

[73] Thomas Hettel. “Model round-trip engineering”. PhD thesis.
Queensland University of Technology, 2010. URL: http://epr

ints.qut.edu.au/32082/.

[74] Rich Hilliard. On Metamodels in 42010. Feb. 2011. URL: http://w
ww.iso-architecture.org/ieee-1471/docs/Hilliard-On-Metam

odels-in-42010.pdf.

[75] Rich Hilliard, Ivano Malavolta, Henry Muccini and Patrizio Pel-
liccione. “On the Composition and Reuse of Viewpoints across
Architecture Frameworks”. In: Joint Working IEEE/IFIP Confer-

ence on Software Architecture (WICSA) and European Conference

309

http://dx.doi.org/10.1007/978-3-642-19440-5_18
http://dx.doi.org/10.1007/978-3-642-19440-5_18
http://dx.doi.org/10.1007/978-3-642-19440-5_18
http://dx.doi.org/10.1109/CVSM.2009.5071722
http://dx.doi.org/10.1109/CVSM.2009.5071722
http://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
http://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
http://eprints.qut.edu.au/32082/
http://eprints.qut.edu.au/32082/
http://www.iso-architecture.org/ieee-1471/docs/Hilliard-On-Metamodels-in-42010.pdf
http://www.iso-architecture.org/ieee-1471/docs/Hilliard-On-Metamodels-in-42010.pdf
http://www.iso-architecture.org/ieee-1471/docs/Hilliard-On-Metamodels-in-42010.pdf

Bibliography

on Software Architecture (ECSA). Aug. 2012, pp. 131–140. DOI:
10.1109/WICSA-ECSA.212.21.

[76] “ISO/IEC Standard for Systems and Software Engineering – Recom-
mended Practice for Architectural Description of Software-Intensive
Systems”. In: ISO/IEC 42010 IEEE Std 1471-2000 First edition

2007-07-15 (July 2007), pp. c1–24. DOI: 10.1109/IEEESTD.2007.3
86501.

[77] ISO/IEC/IEEE Std 42010:2011 – Systems and software engineering

– Architecture description. Los Alamitos,CA: IEEE, 2011.

[78] Rod Johnson, Juergen Hoeller, Alef Arendsen, Thomas Risberg and
Dmitriy Kopylenko. Professional Java Development with the Spring

Framework. Birmingham, UK, UK: Wrox Press Ltd., 2005. ISBN:
0764574833, 9780764574832.

[79] Frédéric Jouault and Ivan Kurtev. “Transforming models with ATL”.
In: Satellite Events at the MoDELS 2005 Conference. Vol. 3844.
LNCS. Berlin: Springer Verlag, 2006, pp. 128–138. URL: http://d
oc.utwente.nl/61719/.

[80] Frederick Phillips Brooks Jr. “No Silver Bullet Essence and Acci-
dents of Software Engineering”. In: Computer 20.4 (1987), pp. 10–
19. ISSN: 0018-9162. DOI: 10.1109/MC.1987.1663532.

[81] JSR 40: JavaTM Metadata Interface(JMI) Specification. 2002. URL:
https://www.jcp.org/en/jsr/detail?id=40.

[82] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Di-
mitris Plexousakis and Michel Scholl. “RQL: A Declarative Query
Language for RDF”. In: Proceedings of the 11th International Con-

ference on World Wide Web. WWW ’02. Honolulu, Hawaii, USA:
ACM, 2002, pp. 592–603. ISBN: 1-58113-449-5. DOI: 10.1145/511
446.511524. URL: http://doi.acm.org/10.1145/511446.511524.

310

http://dx.doi.org/10.1109/WICSA-ECSA.212.21
http://dx.doi.org/10.1109/IEEESTD.2007.386501
http://dx.doi.org/10.1109/IEEESTD.2007.386501
http://doc.utwente.nl/61719/
http://doc.utwente.nl/61719/
http://dx.doi.org/10.1109/MC.1987.1663532
https://www.jcp.org/en/jsr/detail?id=40
http://dx.doi.org/10.1145/511446.511524
http://dx.doi.org/10.1145/511446.511524
http://doi.acm.org/10.1145/511446.511524

Bibliography

[83] Timo Kehrer, Udo Kelter and Gabriele Taentzer. “A rule-based
approach to the semantic lifting of model differences in the context
of model versioning”. In: Proceedings of the 2011 26th IEEE/ACM

International Conference on Automated Software Engineering. ASE
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 163–
172. ISBN: 978-1-4577-1638-6. DOI: 10.1109/ASE.2011.6100050.
URL: http://dx.doi.org/10.1109/ASE.2011.6100050.

[84] Timo Kehrer, Udo Kelter and Gabriele Taentzer. “Consistency-
preserving edit scripts in model versioning”. In: Automated Software

Engineering (ASE), 2013 IEEE/ACM 28th International Conference

on. Nov. 2013, pp. 191–201. DOI: 10.1109/ASE.2013.6693079.

[85] Evgeny Kharlamov, Dmitriy Zheleznyakov and Diego Calvanese.
“Capturing Model-Based Ontology Evolution at the Instance Level:
The Case of DL-Lite”. In: J. of Computer and System Sciences 79.6
(2013), pp. 835–872.

[86] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm and William G. Griswold. “An Overview of AspectJ”. In:
Proceedings of the 15th European Conference on Object-Oriented

Programming. ECOOP ’01. London, UK, UK: Springer-Verlag,
2001, pp. 327–353. ISBN: 3-540-42206-4. URL: http://dl.acm.or
g/citation.cfm?id=646158.680006.

[87] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier and John Irwin.
“Aspect-Oriented Programming”. In: Proceedings of the European

Conference on Object-Oriented Programming (ECOOP). Finland:
Springer-Verlag, Berlin, Germany, June 1997.

[88] Jacques Klein, Franck Fleurey and Jean-Marc Jézéquel. “Transac-
tions on Aspect-oriented Software Development III”. In: ed. by
Awais Rashid and Mehmet Aksit. Berlin, Heidelberg: Springer-
Verlag, 2007. Chap. Weaving Multiple Aspects in Sequence Dia-

311

http://dx.doi.org/10.1109/ASE.2011.6100050
http://dx.doi.org/10.1109/ASE.2011.6100050
http://dx.doi.org/10.1109/ASE.2013.6693079
http://dl.acm.org/citation.cfm?id=646158.680006
http://dl.acm.org/citation.cfm?id=646158.680006

Bibliography

grams, pp. 167–199. ISBN: 3-540-75161-0, 978-3-540-75161-8.
URL: http://dl.acm.org/citation.cfm?id=1805812.1805819.

[89] Andreas Knöpfel, Bernhard Gröne and Peter Tabeling. Fundamental

Modeling Concepts: Effective Communication of IT Systems. Wiley,
2006. ISBN: 978-0-470-02710-3.

[90] Dimitrios S. Kolovos, Richard F. Paige and Fiona A.C. Polack.
“The Epsilon Transformation Language”. In: Theory and Practice

of Model Transformations. Ed. by Antonio Vallecillo, Jeff Gray
and Alfonso Pierantonio. Vol. 5063. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2008, pp. 46–60. ISBN: 978-
3-540-69926-2. DOI: 10 . 1007 / 978 - 3 - 540 - 69927 - 9 _ 4. URL:
http://dx.doi.org/10.1007/978-3-540-69927-9_4.

[91] Dimitrios S. Kolovos, Louis M. Rose, Nikolaos Drivalos Matrag-
kas, Richard F. Paige, Fiona A.C. Polack and Kiran J. Fernandes.
“Constructing and Navigating Non-invasive Model Decorations”. In:
Theory and Practice of Model Transformations. Ed. by Laurence
Tratt and Martin Gogolla. Vol. 6142. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, pp. 138–152. ISBN: 978-
3-642-13687-0. DOI: 10.1007/978- 3- 642- 13688- 7_10. URL:
http://dx.doi.org/10.1007/978-3-642-13688-7_10.

[92] Patrick Könemann. “Capturing the Intention of Model Changes”.
In: Model Driven Engineering Languages and Systems. Ed. by Dor-
inaC. Petriu, Nicolas Rouquette and Øystein Haugen. Vol. 6395.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2010, pp. 108–122. ISBN: 978-3-642-16128-5. DOI: 10.1007/978-3
-642-16129-2_9. URL: http://dx.doi.org/10.1007/978-3-642-1
6129-2_9.

[93] Heiko Koziolek. “Parameter Dependencies for Reusable Perform-
ance Specificationsof Software Components”. PhD thesis. University

312

http://dl.acm.org/citation.cfm?id=1805812.1805819
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-642-13688-7_10
http://dx.doi.org/10.1007/978-3-642-13688-7_10
http://dx.doi.org/10.1007/978-3-642-16129-2_9
http://dx.doi.org/10.1007/978-3-642-16129-2_9
http://dx.doi.org/10.1007/978-3-642-16129-2_9
http://dx.doi.org/10.1007/978-3-642-16129-2_9

Bibliography

of Oldenburg, 2008. URL: http://sdqweb.ipd.uka.de/publicati
ons/pdfs/koziolek2008g.pdf.

[94] Heiko Koziolek, Steffen Becker and Jens Happe. “Predicting the
Performance of Component-based Software Architectures with dif-
ferent Usage Profiles”. In: Proc. 3rd International Conference on

the Quality of Software Architectures (QoSA’07). Vol. 4880. Lecture
Notes in Computer Science. Springer-Verlag Berlin Heidelberg, July
2007, pp. 145–163. URL: http://sdqweb.ipd.uka.de/publicatio
ns/pdfs/koziolek2007b.pdf.

[95] Max E. Kramer, Erik Burger and Michael Langhammer. “View-
centric engineering with synchronized heterogeneous models”. In:
Proceedings of the 1st Workshop on View-Based, Aspect-Oriented

and Orthographic Software Modelling. VAO ’13. Montpellier,
France: ACM, 2013, 5:1–5:6. ISBN: 978-1-4503-2070-2. DOI: 1
0.1145/2489861.2489864. URL: http://doi.acm.org/10.1145/24
89861.2489864.

[96] Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss, Martin
Küster, Philipp Merkle and Andreas Rentschler. “Extending the
Palladio Component Model using Profiles and Stereotypes”. In:
Palladio Days 2012 Proceedings (appeared as technical report). Ed.
by Steffen Becker, Jens Happe, Anne Koziolek and Ralf Reussner.
Karlsruhe Reports in Informatics ; 2012,21. Karlsruhe: KIT, Faculty
of Informatics, 2012, pp. 7–15. URL: http://digbib.ubka.uni-ka
rlsruhe.de/volltexte/documents/2350659.

[97] Philippe Kruchten. The Rational Unified Process: An Introduction.
3. ed., 6. pr. Addison-Wesley object technology series. Upper Saddle
River, NJ [u.a.]: Addison-Wesley, 2007. ISBN: 0-321-19770-4.

[98] Philippe B. Kruchten. “The 4+1 View Model of Architecture”. In:
Software, IEEE 12.6 (Nov. 1995), pp. 42–50. ISSN: 0740-7459. DOI:
10.1109/52.469759.

313

http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2008g.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2008g.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2007b.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2007b.pdf
http://dx.doi.org/10.1145/2489861.2489864
http://dx.doi.org/10.1145/2489861.2489864
http://doi.acm.org/10.1145/2489861.2489864
http://doi.acm.org/10.1145/2489861.2489864
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/2350659
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/2350659
http://dx.doi.org/10.1109/52.469759

Bibliography

[99] On the Use of Operators for the Co-Evolution of Metamodels and

Transformations. 2011.

[100] Philip Langer, Tanja Mayerhofer, Manuel Wimmer and Gerti Kappel.
“On the Usage of UML: Initial Results of Analyzing Open UML
Models”. In: Proceedings of Modellierung 2014. Vol. 225. GI-LNI.
Vienna, Austria, 21st Mar. 2014, pp. 289–304.

[101] Philip Langer, Konrad Wieland, Manuel Wimmer and Jordi Cabot.
“EMF Profiles: A Lightweight Extension Approach for EMF Mod-
els”. In: Journal of Object Technology 11.1 (2012), 8:1–29. ISSN:
1660-1769. DOI: 10.5381/jot.2012.11.1.a8.

[102] Philip Langer, Manuel Wimmer, Petra Brosch, Markus Herrmanns-
dörfer, Martina Seidl, Konrad Wieland and Gerti Kappel. “A posteri-
ori operation detection in evolving software models”. In: Journal of

Systems and Software 86.2 (2013), pp. 551–566. ISSN: 0164-1212.
DOI: http://dx.doi.org/10.1016/j.jss.2012.09.037. URL:
http://www.sciencedirect.com/science/article/pii/S016412

1212002762.

[103] Michael Langhammer. “Co-evolution of component-based
architecture-model and object-oriented source code”. In: Proceed-

ings of the 18th international doctoral symposium on Components

and architecture. ACM. 2013, pp. 37–42.

[104] Michael Langhammer, Sebastian Lehrig and Max E. Kramer. “Reuse
and configuration for code generating architectural refinement trans-
formations”. In: Proceedings of the 1st Workshop on View-Based,

Aspect-Oriented and Orthographic Software Modelling. VAO ’13.
Montpellier, France: ACM, 2013, 6:1–6:5. ISBN: 978-1-4503-2070-
2. DOI: 10.1145/2489861.2489866. URL: http://doi.acm.org/10
.1145/2489861.2489866.

314

http://dx.doi.org/10.5381/jot.2012.11.1.a8
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2012.09.037
http://www.sciencedirect.com/science/article/pii/S0164121212002762
http://www.sciencedirect.com/science/article/pii/S0164121212002762
http://dx.doi.org/10.1145/2489861.2489866
http://doi.acm.org/10.1145/2489861.2489866
http://doi.acm.org/10.1145/2489861.2489866

Bibliography

[105] Erhan Leblebici, Anthony Anjorin and Andy Schürr. “Developing
eMoflon with eMoflon”. In: ICMT 2014. Lecture Notes in Com-
puter Science (LNCS). accepted for publication. Springer Verlag.
Heidelberg: Springer Verlag, 2014.

[106] Jens Lechtenbörger. “The impact of the constant complement ap-
proach towards view updating”. In: Proceedings of the twenty-

second ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems. PODS ’03. New York, NY, USA: ACM, 2003,
pp. 49–55. ISBN: 1-58113-670-6. DOI: 10.1145/773153.773159.

[107] Jens Lechtenbörger and Gottfried Vossen. “On the Computation
of Relational View Complements”. In: ACM Trans. Database Syst.

28.2 (June 2003), pp. 175–208. ISSN: 0362-5915. DOI: 10.1145/777
943.777946. URL: http://doi.acm.org/10.1145/777943.777946.

[108] Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In:
Object Oriented Real-Time Distributed Computing (ISORC), 2008

11th IEEE International Symposium on. 2008, pp. 363–369. DOI:
10.1109/ISORC.2008.25.

[109] Sebastian Lehrig and Thomas Zolynski. “Performance Prototyping
with ProtoCom in a Virtualised Environment: A Case Study”. In:
Palladio Days 2011 Proceedings (appeared as technical report). Ed.
by Steffen Becker, Jens Happe and Ralf Reussner. Karlsruhe Reports
in Informatics ; 2011,32. Karlsruhe: KIT, Fakultät für Informatik,
2011, pp. 15–22. URL: http://digbib.ubka.uni-karlsruhe.de/v
olltexte/1000025188.

[110] Bennett P. Lientz and E. Burton Swanson. Software Maintenance

Management. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1980. ISBN: 0201042053.

[111] Ivano Malavolta, Henry Muccini, Patrizio Pelliccione and Damian A.
Tamburri. “Providing Architectural Languages and Tools Interoper-
ability through Model Transformation Technologies”. In: Software

315

http://dx.doi.org/10.1145/773153.773159
http://dx.doi.org/10.1145/777943.777946
http://dx.doi.org/10.1145/777943.777946
http://doi.acm.org/10.1145/777943.777946
http://dx.doi.org/10.1109/ISORC.2008.25
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188

Bibliography

Engineering, IEEE Transactions on 36.1 (Jan. 2010), pp. 119–140.
ISSN: 0098-5589. DOI: 10.1109/TSE.2009.51.

[112] OMG Model Driven Architecture. URL: http://www.omg.org/mda/.

[113] Philipp Meier, Samuel Kounev and Heiko Koziolek. “Automated
Transformation of Component-Based Software Architecture Mod-
els to Queueing Petri Nets”. In: Modeling, Analysis Simulation of

Computer and Telecommunication Systems (MASCOTS), 2011 IEEE

19th International Symposium on. July 2011, pp. 339–348. DOI:
10.1109/MASCOTS.2011.23.

[114] William Mendenhall, Robert J. Beaver and Barbara M. Beaver.
Introduction to Probability and Statistics. 12th ed. Stamford, CT:
Cengage Learning, 2005. ISBN: 9780534418700.

[115] Philipp Merkle and Jörg Henss. “EventSim – An Event-driven Pal-
ladio Software Architecture Simulator”. In: Palladio Days 2011

Proceedings (appeared as technical report). Ed. by Steffen Becker,
Jens Happe and Ralf Reussner. Karlsruhe Reports in Informatics ;
2011,32. Karlsruhe: KIT, Fakultät für Informatik, 2011, pp. 15–22.
URL: http://digbib.ubka.uni-karlsruhe.de/volltexte/100002
5188.

[116] Meta Object Facility (MOF) 2.0 Query/View/Transformation Spe-

cification. Object Management Group. January 2011. URL: http:
//www.omg.org/spec/QVT/1.1/.

[117] Meta Object Facility (MOF) Core. Version 2.4.1. Object Manage-
ment Group. August 2011. URL: http://www.omg.org/spec/MOF/2
.4.1/.

[118] Object Management Group (OMG). MOF 2.0 Core Specification

(formal/2006-01-01). 2006. URL: http://www.omg.org/cgi-bin/d
oc?formal/2006-01-01.

316

http://dx.doi.org/10.1109/TSE.2009.51
http://www.omg.org/mda/
http://dx.doi.org/10.1109/MASCOTS.2011.23
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

Bibliography

[119] Francesco Moscato, Francesco Flammini, G. Di Lorenzo, Valerio
Vittorini, Stefano Marrone and Mauro Iacono. “The Software Archi-
tecture of the OsMoSys Multisolution Framework”. In: Proceedings

of the 2Nd International Conference on Performance Evaluation

Methodologies and Tools. ValueTools ’07. Nantes, France: ICST
(Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2007, 51:1–51:10. ISBN: 978-963-9799-
00-4. URL: http://dl.acm.org/citation.cfm?id=1345263.13453
28.

[120] Shin-Cheng Mu, Zhenjiang Hu and Masato Takeichi. “An Injective
Language for Reversible Computation”. In: Mathematics of Program

Construction. Ed. by Dexter Kozen. Vol. 3125. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2004, pp. 289–313.
ISBN: 978-3-540-22380-1. DOI: 10.1007/978-3-540-27764-4_16.
URL: http://dx.doi.org/10.1007/978-3-540-27764-4_16.

[121] Natalya F. Noy and Mark A. Musen. “Traversing Ontologies to
Extract Views”. In: Modular Ontologies. Ed. by Heiner Stuck-
enschmidt, Christine Parent and Stefano Spaccapietra. Vol. 5445.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2009, pp. 245–260. ISBN: 978-3-642-01906-7. DOI: 10.1007/978-3
-642-01907-4_11. URL: http://dx.doi.org/10.1007/978-3-642-
01907-4_11.

[122] Bashar Nuseibeh, Jeff Kramer and Anthony Finkelstein. “A frame-
work for expressing the relationships between multiple views in
requirements specification”. In: Software Engineering, IEEE Trans-

actions on 20.10 (1994), pp. 760–773. ISSN: 0098-5589. DOI: 10.1
109/32.328995.

[123] OMG Object Constraint Language (OCL). Object Management
Group. Jan. 2012. URL: http://www.omg.org/spec/OCL/2.3.1/.

317

http://dl.acm.org/citation.cfm?id=1345263.1345328
http://dl.acm.org/citation.cfm?id=1345263.1345328
http://dx.doi.org/10.1007/978-3-540-27764-4_16
http://dx.doi.org/10.1007/978-3-540-27764-4_16
http://dx.doi.org/10.1007/978-3-642-01907-4_11
http://dx.doi.org/10.1007/978-3-642-01907-4_11
http://dx.doi.org/10.1007/978-3-642-01907-4_11
http://dx.doi.org/10.1007/978-3-642-01907-4_11
http://dx.doi.org/10.1109/32.328995
http://dx.doi.org/10.1109/32.328995
http://www.omg.org/spec/OCL/2.3.1/

Bibliography

[124] OMG Systems Modeling Language (OMG SysML). Version 1.3.
Object Management Group. June 2012. URL: http://www.omg.org
/spec/SysML/1.3/.

[125] OMG Unified Modeling Language (UML). Object Management
Group. Aug. 2011. URL: http://www.omg.org/spec/UML/2.4.1/.

[126] W3C OWL Working Group, ed. OWL 2 Web Ontology Language:

Document Overview. W3C Recommendation. 11th Dec. 2012. URL:
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/.

[127] Christine Parent and Stefano Spaccapietra. “An Overview of Mod-
ularity”. In: Modular Ontologies. Ed. by Heiner Stuckenschmidt,
Christine Parent and Stefano Spaccapietra. Vol. 5445. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2009, pp. 5–23.
ISBN: 978-3-642-01906-7. DOI: 10.1007/978-3-642-01907-4_2.
URL: http://dx.doi.org/10.1007/978-3-642-01907-4_2.

[128] Jan Polowinski. “Towards RVL: A Declarative Language for Visual-
izing RDFS/OWL Data”. In: Proceedings of the 3rd International

Conference on Web Intelligence, Mining and Semantics. WIMS ’13.
Madrid, Spain: ACM, 2013, 38:1–38:11. ISBN: 978-1-4503-1850-1.
DOI: 10.1145/2479787.2479825. URL: http://doi.acm.org/10.1
145/2479787.2479825.

[129] Jorge Posada, Carlos Toro, Stefan Wundrak and Andre Stork. “Using
ontologies and STEP standards for the semantic simplification of
CAD models in different engineering domains”. In: Applied Onto-

logy 1.3 (2006), pp. 263–279. URL: http://iospress.metapress
.com/content/1XBR3P1MVJD7NT4P.

[130] Michael J. Pratt. “Introduction to ISO 10303—the STEP Stand-
ard for Product Data Exchange”. In: Journal of Computing and

Information Science in Engineering 1.1 (2001), pp. 102–103. ISSN:
1530-9827. DOI: 10.1115/1.1354995.

318

http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/UML/2.4.1/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://dx.doi.org/10.1007/978-3-642-01907-4_2
http://dx.doi.org/10.1007/978-3-642-01907-4_2
http://dx.doi.org/10.1145/2479787.2479825
http://doi.acm.org/10.1145/2479787.2479825
http://doi.acm.org/10.1145/2479787.2479825
http://iospress.metapress.com/content/1XBR3P1MVJD7NT4P
http://iospress.metapress.com/content/1XBR3P1MVJD7NT4P
http://dx.doi.org/10.1115/1.1354995

Bibliography

[131] Janis Putman. Architecting with RM-ODP. Upper Saddle River, NJ:
Prentice Hall, 2001.

[132] Rajagopal Rajugan, Elizabeth Chang and Tharam S. Dillon. “Onto-
logy Views: A Theoretical Perspective”. In: On the Move to Mean-

ingful Internet Systems 2006: OTM 2006 Workshops. Ed. by Robert
Meersman, Zahir Tari and Pilar Herrero. Vol. 4278. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2006, pp. 1814–
1824. ISBN: 978-3-540-48273-4. DOI: 10.1007/11915072_88. URL:
http://dx.doi.org/10.1007/11915072_88.

[133] M.P. Reddy, Bandreddi E. Prasad, P.G. Reddy and Amar Gupta. “A
methodology for integration of heterogeneous databases”. In: IEEE

Transactions on Knowledge and Data Engineering 6.6 (Dec. 1994),
pp. 920–933. ISSN: 1041-4347. DOI: 10.1109/69.334882.

[134] Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe, Michael
Hauck, Anne Koziolek, Heiko Koziolek, Klaus Krogmann and Mi-
chael Kuperberg. The Palladio Component Model. Tech. rep. Karls-
ruhe: KIT, Fakultät für Informatik, 2011. URL: http://digbib.ubk
a.uni-karlsruhe.de/volltexte/1000022503.

[135] Cornelius Rosse and José L.V. Mejino Jr. “The Foundational Model
of Anatomy Ontology”. In: Anatomy Ontologies for Bioinformatics.
Ed. by Albert Burger, Duncan Davidson and Richard Baldock. Vol. 6.
Computational Biology. Springer London, 2008, pp. 59–117. ISBN:
978-1-84628-884-5. DOI: 10.1007/978-1-84628-885-2_4. URL:
http://dx.doi.org/10.1007/978-1-84628-885-2_4.

[136] James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy and William Lorenson. Object-Oriented Modeling and Design.
1. Englewood Cliffs, NJ: Prentice Hall, Inc., Oct. 1991.

[137] Douglas C. Schmidt. “Guest Editor’s Introduction: Model-Driven
Engineering”. In: Computer 39.2 (2006), pp. 25–31. ISSN: 0018-

319

http://dx.doi.org/10.1007/11915072_88
http://dx.doi.org/10.1007/11915072_88
http://dx.doi.org/10.1109/69.334882
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://dx.doi.org/10.1007/978-1-84628-885-2_4
http://dx.doi.org/10.1007/978-1-84628-885-2_4

Bibliography

9162. DOI: http://doi.ieeecomputersociety.org/10.1109/MC.2
006.58.

[138] Andy Schürr. “Specification of graph translators with triple graph
grammars”. In: Graph-Theoretic Concepts in Computer Science. Ed.
by Ernst W. Mayr, Gunther Schmidt and Gottfried Tinhofer. Vol. 903.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1995, pp. 151–163. ISBN: 978-3-540-59071-2. DOI: 10.1007/3-540
-59071-4_45. URL: http://dx.doi.org/10.1007/3-540-59071-4
_45.

[139] Christoph Seidl, Ina Schaefer and Uwe Aßmann. “DeltaEcore –
A Model-Based Delta Language Generation Framework”. In: Pro-

ceedings of Modellierung 2014. Vol. 225. GI-LNI. Vienna, Austria,
21st Mar. 2014.

[140] Amit P. Sheth and James A. Larson. “Federated database systems for
managing distributed, heterogeneous, and autonomous databases”.
In: ACM Comput. Surv. 22 (3 Sept. 1990), pp. 183–236. ISSN: 0360-
0300. DOI: 10.1145/96602.96604.

[141] Andrea Sindico, Marco Di Natale and Gianpiero Panci. “Integrating
SysML with Simulink using Open-source Model Transformations.”
In: SIMULTECH. Ed. by Janusz Kacprzyk, Nuno Pina and Joaquim
Filipe. SciTePress, 2011, pp. 45–56. ISBN: 978-989-8425-78-2. URL:
http://dblp.uni-trier.de/db/conf/simultech/simultech2011

.html#SindicoNP11.

[142] Carl-Johan Sjöstedt, Martin Törngren, Jianlin Shi, De-Jiu Chen
and Viktor Ahlsten. “Mapping Simulink to UML in the design of
embedded systems: Investigating scenarios and transformations”. In:
OMER4 Post-proceedings, 2008. QC 20100810. 2008, pp. 137–160.

[143] Hyun Seung Son, Woo Yeol Kim, Robert Young Chul Kim and
Hang-Gi Min. “Metamodel Design for Model Transformation from

320

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2006.58
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2006.58
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1145/96602.96604
http://dblp.uni-trier.de/db/conf/simultech/simultech2011.html#SindicoNP11
http://dblp.uni-trier.de/db/conf/simultech/simultech2011.html#SindicoNP11

Bibliography

Simulink to ECML in Cyber Physical Systems”. In: Computer Ap-

plications for Graphics, Grid Computing, and Industrial Environ-

ment. Ed. by Tai-hoon Kim, Hyun-seob Cho, Osvaldo Gervasi and
Stephen S. Yau. Vol. 351. Communications in Computer and Inform-
ation Science. Springer Berlin Heidelberg, 2012, pp. 56–60. ISBN:
978-3-642-35599-8. DOI: 10.1007/978-3-642-35600-1_8. URL:
http://dx.doi.org/10.1007/978-3-642-35600-1_8.

[144] Herbert Stachowiak. Allgemeine Modelltheorie. Springer Verlag,
Wien, 1973. ISBN: 3-211-81106-0.

[145] Jim Steel and Jean-Marc Jézéquel. “On model typing”. English.
In: Software & Systems Modeling 6.4 (2007), pp. 401–413. ISSN:
1619-1366. DOI: 10.1007/s10270-006-0036-6. URL: http://dx.d
oi.org/10.1007/s10270-006-0036-6.

[146] Perdita Stevens. “Bidirectional model transformations in QVT: se-
mantic issues and open questions”. English. In: Software & Systems

Modeling 9.1 (2010), pp. 7–20. ISSN: 1619-1366. DOI: 10.1007/s1
0270-008-0109-9. URL: http://dx.doi.org/10.1007/s10270-00
8-0109-9.

[147] Heiner Stuckenschmidt and Michael Uschold. “Representation of
Semantic Mappings.” In: Semantic Interoperability and Integration.
Ed. by Yannis Kalfoglou, W. Marco Schorlemmer, Amit P. Sheth,
Steffen Staab and Michael Uschold. Vol. 04391. Dagstuhl Seminar
Proceedings. IBFI, Schloss Dagstuhl, Germany, 12th Apr. 2005.
URL: http://dblp.uni-trier.de/db/conf/dagstuhl/P4391.html
#StuckenschmidtU05.

[148] Gabriele Taentzer, Claudia Ermel, Philip Langer and Manuel Wim-
mer. “A fundamental approach to model versioning based on graph
modifications: from theory to implementation”. English. In: Soft-

ware and Systems Modeling 13.1 (2014), pp. 239–272. ISSN: 1619-

321

http://dx.doi.org/10.1007/978-3-642-35600-1_8
http://dx.doi.org/10.1007/978-3-642-35600-1_8
http://dx.doi.org/10.1007/s10270-006-0036-6
http://dx.doi.org/10.1007/s10270-006-0036-6
http://dx.doi.org/10.1007/s10270-006-0036-6
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-008-0109-9
http://dblp.uni-trier.de/db/conf/dagstuhl/P4391.html#StuckenschmidtU05
http://dblp.uni-trier.de/db/conf/dagstuhl/P4391.html#StuckenschmidtU05

Bibliography

1366. DOI: 10.1007/s10270-012-0248-x. URL: http://dx.doi.or
g/10.1007/s10270-012-0248-x.

[149] Christian Thum, Michael Schwind and Martin Schader. “SLIM—A
Lightweight Environment for Synchronous Collaborative Model-
ing”. In: Model Driven Engineering Languages and Systems. Ed. by
Andy Schürr and Bran Selic. Vol. 5795. Lecture Notes in Computer
Science. Berlin/Heidelberg: Springer, 2009, pp. 137–151.

[150] Aleksandar Toshovski. “Wiederverwendung von Metamodellen in
ModelJoin-Sichten”. MA thesis. Am Fasanengarten 5, 76131 Karls-
ruhe, Germany: Karlsruhe Institute of Technology (KIT), July 2013.
URL: http://sdqweb.ipd.kit.edu/publications/pdfs/toshovsk
i2013a.pdf.

[151] Marcel Verhoef, Thomas Liebich and Robert Amor. “A multi-
paradigm mapping method survey”. In: Workshop on Modeling of

Buildings through their Life-cycle. Stanford University, California,
USA, 1995, pp. 233–247.

[152] V. Vittorini, M. Iacono, N. Mazzocca and G. Franceschinis. “The
OsMoSys approach to multi-formalism modeling of systems”. Eng-
lish. In: Software and Systems Modeling 3.1 (2004), pp. 68–81. ISSN:
1619-1366. DOI: 10.1007/s10270-003-0039-5. URL: http://dx.d
oi.org/10.1007/s10270-003-0039-5.

[153] Christian Vogel, Heiko Koziolek, Thomas Goldschmidt and Erik
Burger. “Rapid Performance Modeling by Transforming Use Case
Maps to Palladio Component Models”. In: Proceedings of the 4th

ACM/SPEC International Conference on Performance Engineering.
ICPE ’13. Prague, Czech Republic: ACM, 2013, pp. 101–112. ISBN:
978-1-4503-1636-1. DOI: 10.1145/2479871.2479888. URL: http:
//doi.acm.org/10.1145/2479871.2479888.

322

http://dx.doi.org/10.1007/s10270-012-0248-x
http://dx.doi.org/10.1007/s10270-012-0248-x
http://dx.doi.org/10.1007/s10270-012-0248-x
http://sdqweb.ipd.kit.edu/publications/pdfs/toshovski2013a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/toshovski2013a.pdf
http://dx.doi.org/10.1007/s10270-003-0039-5
http://dx.doi.org/10.1007/s10270-003-0039-5
http://dx.doi.org/10.1007/s10270-003-0039-5
http://dx.doi.org/10.1145/2479871.2479888
http://doi.acm.org/10.1145/2479871.2479888
http://doi.acm.org/10.1145/2479871.2479888

Bibliography

[154] Guido Wachsmuth. “Metamodel Adaptation and Model Co-
adaptation”. In: ECOOP 2007 – Object-Oriented Programming.
Ed. by Erik Ernst. Vol. 4609. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, pp. 600–624. ISBN: 978-3-540-
73588-5. DOI: 10.1007/978-3-540-73589-2_28. URL: http://dx
.doi.org/10.1007/978-3-540-73589-2_28.

[155] Dennis Westermann, Jens Happe and Roozbeh Farahbod. “An Ex-
periment Specification Language for Goal-Driven, Automated Per-
formance Evaluations”. In: Proc. of the ACM Symposium on Applied

Computing, SAC 2013. 2013, to appear.

[156] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner
Retschitzegger, Wieland Schwinger and Elizabeth Kapsammer. “A
survey on UML-based aspect-oriented design modeling”. In: ACM

Comput. Surv. 43 (4 Oct. 2011), 28:1–28:33. ISSN: 0360-0300. DOI:
10.1145/1978802.1978807.

[157] A.T. Wood-Harper, Lyn Antill and D.E. Avison. Information sys-

tems definition: the multiview approach. Computer science texts.
Blackwell Scientific, 1985.

[158] Object Management Group (OMG). Meta Object Facility (MOF)

2.0 XMI Mapping Specification, v2.1 (formal/05-09-01). 2006. URL:
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf.

[159] Fouad Zablith, Grigoris Antoniou, Mathieu d’Aquin, Giorgos
Flouris, Haridimos Kondylakis, Enrico Motta, Dimitris Plexousakis
and Marta Sabou. “Ontology evolution: a process-centric survey”. In:
The Knowledge Engineering Review FirstView (May 2014), pp. 1–
31. ISSN: 1469-8005. DOI: 10.1017/S0269888913000349. URL: htt
p://journals.cambridge.org/article_S0269888913000349.

[160] Rixin Zhang and Ajay Krishnan. “Using Delta Model for Collab-
orative Work of Industrial Large-Scaled E/E Architecture Models”.
In: Model Driven Engineering Languages and Systems. Ed. by Jon

323

http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.1145/1978802.1978807
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf
http://dx.doi.org/10.1017/S0269888913000349
http://journals.cambridge.org/article_S0269888913000349
http://journals.cambridge.org/article_S0269888913000349

Bibliography

Whittle, Tony Clark and Thomas Kühne. Vol. 6981. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2011, pp. 714–728.
ISBN: 978-3-642-24484-1. DOI: 10.1007/978-3-642-24485-8_52.

324

http://dx.doi.org/10.1007/978-3-642-24485-8_52

Band 1	 Steffen Becker
	� Coupled Model Transformations for QoS Enabled

Component-Based Software Design. 2008
	 ISBN 978-3-86644-271-9

Band 2	 Heiko Koziolek
	� Parameter Dependencies for Reusable Performance

Specifications of Software Components. 2008
	 ISBN 978-3-86644-272-6

Band 3	 Jens Happe
	� Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments. 2009
	 ISBN 978-3-86644-381-5

Band 4	 Klaus Krogmann
	� Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis. 2012
	 ISBN 978-3-86644-804-9

Band 5	 Michael Kuperberg
	� Quantifying and Predicting the Influence of Execution

Platform on Software Component Performance. 2010
	 ISBN 978-3-86644-741-7

Band 6	 Thomas Goldschmidt
	 View-Based Textual Modelling. 2011
	 ISBN 978-3-86644-642-7

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 7	 Anne Koziolek
	� Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes. 2013
	 ISBN 978-3-86644-973-2

Band 8	 Lucia Happe
	 �Configurable Software Performance Completions through

Higher-Order Model Transformations. 2013
	 ISBN 978-3-86644-990-9

Band 9	 Franz Brosch
	� Integrated Software Architecture-Based Reliability

Prediction for IT Systems. 2012
	 ISBN 978-3-86644-859-9

Band 10	 Christoph Rathfelder
	� Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation. 2013
	 ISBN 978-3-86644-969-5

Band 11	 Henning Groenda
	� Certifying Software Component

Performance Specifications. 2013
	 ISBN 978-3-7315-0080-3

Band 12	 Dennis Westermann
	� Deriving Goal-oriented Performance Models

by Systematic Experimentation. 2014
	 ISBN 978-3-7315-0165-7

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 13	 Michael Hauck
	� Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments. 2014
	 ISBN 978-3-7315-0138-1

Band 14	 Zoya Durdik
	� Architectural Design Decision Documentation through

Reuse of Design Patterns. 2014
	 ISBN 978-3-7315-0292-0

Band 15	 Erik Burger
	� Flexible Views for View-based

Model-driven Development. 2014
	 ISBN 978-3-7315-0276-0

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Er
ik

 B
u

rg
er

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

Modern software development faces growing size and complexity of systems.
Several languages and modelling formalisms are used to describe a system from
various view points and at multiple levels of abstraction. Although multiple
formalisms support different view points in specially-designed languages and
models, they introduce the problem of fragmentation of information across het-
erogeneous artefacts in different formats, concepts, and languages.

The Vitruvius approach for view-based engineering is based on model-driven
technologies and offers the modular construction of single underlying models
to describe systems. In this thesis, the conceptual foundations for Vitruvius are
presented. Flexible views are introduced as a concept for the compact defi nition
of user-specifi c views at the metamodel and the instance level. Furthermore,
the ModelJoin language is presented as a textual domain-specifi c language for
the defi nition of fl exible views. The view-based development process is sup-
ported by a change metamodel for the description of metamodel evolution and
a change impact analysis.

ISSN 1867-0067
ISBN 978-3-7315-0276-0 9 783731 502760

ISBN 978-3-7315-0276-0

Fl
ex

ib
le

 V
ie

w
s

fo
r

V
ie

w
-b

as
ed

 M
o

d
el

-d
ri

ve
n

 D
ev

el
o

p
m

en
t

	Abstract
	Kurzfassung
	Introduction
	Motivation
	Problem Statement
	Situation
	Motivating Example
	Problem Areas

	Approach
	Envisioned Benefits
	Contributions
	Structure of the Thesis

	Foundations and State-of-the-art
	View/based Software Development
	Concept
	Challenges of View/Based Approaches

	Model-Driven Development
	Concept
	Model-Driven Architecture

	Eclipse Modeling Framework (EMF)
	The Ecore Metamodel
	Set Notation of Ecore Metamodels
	Textual Domain-Specific Languages

	Orthographic Software Modeling
	Notational Conventions
	UML Activity Diagrams
	Fundamental Modeling Concepts

	Related Work
	View-based Approaches
	Multi-Paradigm Modelling
	Simulation Approaches
	Approaches for Model-based Data Exchange

	Model-driven Engineering
	Architectural Frameworks
	Round/trip Engineering
	Collaboration

	Evolution of Models and Metamodels
	Editability of Ecore-based Metamodels and Models
	Changes at the Metamodel Level
	Changes at the Model Level

	Bidirectional Transformations
	BX
	Lenses
	Triple Graph Grammars

	Aspect-Oriented Software Development
	Databases
	View Update Problem
	Schema Integration

	Ontologies and Semantic Web
	Ontology Modularization
	Queries and Views on Ontologies
	Ontology Evolution

	An Approach for View-Based Engineering using Vitruvius
	The Vitruvius Approach
	Design Rationale
	Proposed Benefits of the Modular SUM Metamodel
	Assumptions

	A Modular Way of Defining Single Underlying Models
	Definition
	Structure of the Modular SUM Metamodel
	Modelling of Intrinsic and Extrinsic Information

	View Types and Views in Vitruvius
	Definition
	Scope of View Types
	Projectional and Combining View Types
	Editability of Views Types and Synchronisation with the SUM metamodel

	Development Process
	Process Model
	View Type Categories by Developer Role
	Collaboration
	Access Control

	Evolution of the SUM Metamodel
	Adding Additional View Points
	Converting Custom View Types to Pre-defined View Types
	Refactoring of the SUM Metamodel

	Example

	Metamodel and Model Evolution
	Motivation
	A Change Metamodel for Metamodel and Model Changes
	Requirements
	Structure of the Metamodel
	Specification of Metamodel-Specific Submodels
	Change Sequences as Delta-Based Representation of Model Changes
	Delta-based vs. State-Based Change Description
	Example

	A Change Impact Classification for Metamodel Evolution and Reuse
	Severities of Changes to Ecore-based Metamodels
	Severity of Change Sequences
	State-based Analysis of Change Impact

	Flexible View Type Definitions
	Concept
	Motivation
	Flexible View Types for the Rapid Creation of Views
	Editability in Flexible View Types
	Discussion

	Definition of Flexible Views at Run-Time Using ModelJoin
	Concept
	Abstract Syntax
	Implementation
	Re-Use of Target Metamodels
	Assumptions/Limitations

	Flexible View Types in Vitruvius
	Applicability
	ModelJoin as a View Specification Language in Vitruvius
	Synchronisation

	Evaluation
	Expressivity of ModelJoin
	Projectional Expressivity
	Selectional Expressivity

	Applicability of the Flexible View Concept in the Vitruvius Approach
	GQM Plan
	Case Study: Component-based Software Development
	Case Study: Automotive Systems Engineering

	Discussion

	Future Work
	Vitruvius
	Coupling of View Type Definitions with SUM Metamodel Correspondences
	Mapping to Textual General Purpose Programming Languages
	Versioning
	Metamodel Evolution in the Modular SUM Metamodel
	Vitruvius for Non-Software Engineering Models

	Flexible View Types
	Editability
	Metamodel Conformance Checking
	Performance Properties of the ModelJoin Algorithms and Implementation

	Conclusion
	ModelJoin Language Definition
	Change Classification for Metamodel Evolution
	Example Metamodels
	PCM Metamodel
	IMDB/Library example

	ModelJoin Experiment Task Sheet
	Preparations
	Task
	Create a new Metamodel
	Create the Transformation
	Results

	Bibliography

