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‘[...] contact and friction problems are difficult to solve, since they are highly nonlinear
and nonsmooth, and the machinations required to treat them are not always aesthetically
pleasing.’ Laursen [97, Preface]





Abstract

The present thesis deals with large deformation contact problems of flexible bodies in
the field of nonlinear elastodynamics. The continuum mechanical description is based
on a total Lagrangian formulation incorporating both frictionless and frictional contact
constraints. For the former the Karush-Kuhn Tucker (KKT) conditions will be employed,
whereas for the latter a Coulomb dry frictional model will be used. The framework to be
provided will not be restricted to the Coulomb model and can be extended to arbitrary
frictional constitutive laws. Special emphasis will be placed on a consistent spatial and
temporal discretization. For the spatial discretization of the underlying solids, the finite
element method (FEM) will be used. For the contact boundaries the collocation type
node-to-surface (NTS) method as well as the variationally consistent Mortar method will
be applied. The former method will be formulated with a coordinate augmentation tech-
nique, leading to a very simple structure of the resulting differential-algebraic equations
(DAE), facilitating the design of structure preserving implicit integrators of second order.
The latter method will be supplemented by isotropic Coulomb friction, for which no split
into co- and contravariant components of the frictional traction needs to be considered.
To handle arbitrary curved surfaces, a segmentation algorithm based on a virtual segmen-
tation surface will be developed. On this basis, representative numerical examples will
emphasize the spatial and temporal behavior of the proposed methods. In particular, the
spatially consistent behavior of the Mortar method will be investigated in detail consider-
ing some static and quasi-static examples. Eventually, the superior stability properties of
the newly proposed NTS and Mortar approaches will be demonstrated by several dynamic
simulations.

Keywords: Nonlinear elastodynamics, contact constraints, KKT conditions, Coulomb
friction, NTS method, coordinate augmentation technique, Mortar method, implicit time
integration.





Kurzfassung

In der vorliegenden Dissertation werden Kontaktprobleme flexibler Festkörper der nicht-
linearen Elastodynamik, welche großen Deformationen unterliegen, betrachtet. Die kon-
tinuumsmechanische Beschreibung basiert auf einer ’total Lagrangian’ Methode und in-
kludiert reibungsfreie sowie reibungsbehaftete Kontaktzwangsbedingungen. Für erstere
werden die Karush-Kuhn Tucker (KKT) Bedingungen herangezogen und für letztere wird
das trockene Coulomb’sche Reibungsgesetz verwendet. Die vorgeschlagene Methodik wird
nicht auf das Coulomb Reibungsgesetz beschränkt sein, sondern kann mit beliebigen Rei-
bungsgesetzen erweitert werden. Besonderer Wert wird auf eine konsistente räumliche und
zeitliche Diskretisierung gelegt. Für die räumliche Diskretisierung der Festkörper wird die
Finite-Elemente-Methode (FEM) verwendet. Für die Kontaktränder wird die kollokation-
sartige ’Node-To-Surface’ (NTS) Methode und die variationell konsistente Mortar Meth-
ode herangezogen. Für erstere wird eine Koordinatenaugmentierungstechnik angewendet,
welche auf eine einfache Struktur der resultierenden differential-algebraischen Gleichungen
führt und dadurch die Konstruktion eines strukturerhaltenden impliziten Zeitintegrators
zweiter Ordnung ermöglicht. Letztere wird mit isotroper Coulomb Reibung ergänzt, die
keine Aufspaltung der Reibungsanteile des Kontakt in ko- und kontravariante Kompo-
nenten der Reibungsanteile erfordert. Um willkürlich geformte Oberflächen handhaben
zu können, wird ein Segmentierungsalgorithmus mit einer virtuellen Segmentierungsober-
fläche, entwickelt. Auf dieser Basis werden repräsentative numerische Beispiele aufge-
setzt und das räumliche und zeitliche Verhalten der vorgeschlagenen Methoden disku-
tiert. Im Besonderen wird das konsistente räumliche Verhalten der Mortar Methode für
einige statische und quasi-statische Beispiele herausgearbeitet. Schließlich werden die
wesentlichen Stabilitätseigenschaften der neu vorgeschlagenen NTS und Mortar Ansätze
in verschiedenen dynamischen Simulationen herausgearbeitet.

Schlüsselwörter: Nichtlineare Elastodynamik, Kontaktzwangsbedingungen, KKT Be-
dingungen, Coulomb Reibung, NTS Methode, Koordinatenaugmentierungstechnik, Mor-
tar Methode, implizite Zeitintegration.
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F deformation gradient
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stress tensor
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ζ consistency parameter
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Φ

f
Aug, Φd
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d, f additional augmented coordinates
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P, P̃ , P̄ projection matrices
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Div(•), div(•) material and spatial divergence operator
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L (•) Lie derivative
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Abbreviation Description
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1 Introduction

Over recent decades, the demand for computational simulations has been increased, which
can be attributed to several factors, such as efficiency, safety and innovation. Especially in
the automotive industry simulations are used to reduce the expensive testing equipments
and accelerate the development, since computational simulations provide a rapid and in
depth feedback for a draft. Production of prototypes, for instance, may be reduced by
using appropriate simulations which can be achieved by using the methods provided herein
or proper commercial software tools. In addition, a precise prediction of the estimated
service life and failure limits can improve efficiency and safety of products. Another
important issue is that difficult or non-feasible experiments, like complicated rendezvous
and docking orbital maneuvers of e.g. two spacecraft, can also be investigated using
computational simulations. Accordingly, computational simulations do not only support
the development of innovations, but also provide a deeper understanding of the system
considered.

In the present thesis dynamic contact simulations in the field of nonlinear continuum
mechanics are investigated. From a physical point of view, the topic of the thesis can
be assigned to the field of classical mechanics in which research is still going on since
many issues have not been studied so farI. From a mathematical point of view, the field
equations of flexible bodies (solids), which result from mechanical balance principles, are
partial differential equations (PDE) of second order in time and space. As analytical solu-
tions are only available for a few academic problems, approximate solutions are aimed at
instead. This can be accomplished by employing suitable numerical methods. Meanwhile,
the finite element method (FEM) has been well established for the spatial discretisation
of solids. Especially concerning sophisticated geometries of the involved solids, the FEM
is preferable to e.g. the finite difference or finite volume method (FVM). The FEM has
originally been developed in the field of civil engineering and aircraft construction. In
this connection, pioneering work has been provided by e.g. J.H. Argyris, R.W. Clough
and O.C. Zienkiewicz, which had a lasting impact on this scientific discipline in the early
1960s. Nowadays, the FEM is commonly applied to solve boundary value problems (BVP)
or to the spatial discretisation of initial boundary value problems (IBVP) in the field of
continuum mechanics.

The development of computers also is closely related to the development of computational
mechanics. As a pioneer, the former civil engineer Konrad Zuse should be mentioned,

ITo this end, it is worth noting that a wide classification of classical and continuum mechanics can be
found in Magnus [112].
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since he developed and built the first fully functional digital computer in his parents’ liv-
ing room in the late 1930s. The still used computer architecture, proposed by the famous
mathematician John von Neumann in 1945 and named in his honor, had already been
essentially registered by Zuse in two patents in 1937. Interesting and understandable, but
ahead of its time, Zuse’s motivation was to develop his first computer, the Z1. Actually,
the idea was to automate the laborious solutions of systems of linear equations, which he
was concerned with during his civil engineering studies within the lecture ‘statics of rigid
bodies’ and in later industrial activity at an aircraft company. The increasing computer
performance (see Moore’s law, Moore [118]) and the widespread use of numerical methods,
such as the FEM, have further accelerated the development of computational mechanics,
which is reflected by a name of a lecture of J.H. Argyris in 1965, ‘The computer shapes
the theory’. For systems with a large number of degrees of freedom (DOF), eventually
leading to a large system of equations, supercomputers or high-performance computing
(HPC) clusters have been increasingly used since the 1960s. The performance of super-
computers is measured by floating point operations per second (FLOPS)II. To this end,
the top 500 list http://www.top500.org/lists/ ranks the most powerful supercomput-
ers in the world, with the Tianhe-2 from China being at the top of the current list from
November 2013 with a peak performance of about 55 PetaFLOPS. The large-scale sim-
ulations associated with the present thesis were mainly computed using the Linux HPC
cluster of the University of Siegen ‘Hochleistungsrechner Universität Siegen’ (HorUS),
which is able to achieve a peak performance of about 17 TeraFLOPS. Additionally, the
‘Karlsruher InstitutsCluster II’ from the Karlsruhe Institute of Technology (KIT) was
used. It reaches a peak performance of about 135,5 TeraFLOPS.

In recent decades, research work was intensified in the field of nonlinear elastodynamics.
The FEM is commonly used for the numerical solution of a variety of continuum mechan-
ical problems. For instance, coupled problems like fluid-structure interactions, thermo-
mechanically coupled problems and multi-physics simulations are increasingly solved by
the FEM. During the past few decades, some issues of standard displacement-based ele-
ments have been studied and solved. In particular, standard low order displacement-based
elements suffer from locking behavior in case of dominant bending problems, nearly in-
compressible material behavior and coarse finite element meshes. To prevent this artificial
locking behavior, mixed elements, such as assumed enhanced strain (AES) or the mixed
enhanced (ME) elements (see e.g. Simo and Rifai [134], Simo and Armero [132], Kasper
and Taylor [80, 81]) have been developed. The idea of mixed elements is based on a
Hu-Washizu formulation by adding additional internal DOFs, which are approximated
by special shape functions and may be condensed out on element level. This is closely
related to the coordinate augmentation technique (CAT) subsequently used for the re-
dundant formulation of contact problems. To this end, it is worth mentioning, that mixed
elements have been developed extensively for structural mechanics (see e.g. Betsch [12]).
For temporal discretisation of the IBVP of elastodynamics, the Newmark integrator is
widely employed. However, it suffers from the blow up effect of the total energy for stiff
PDEs and large time step sizes. Structure preserving integrators, commonly referred to

IIThe unit FLOPS denotes the floating point operations, i.e. additions and multiplications, per second.
To this end the LINPACK software is usually used to benchmark supercomputers.



3

as mechanical integrators, are used to circumvent this problem. In this regard, it is worth
noting that the conservation laws follow from symmetry properties of the underlying
equations. Accordingly, translational and rotational invariance of the system provides for
the conservation of linear and angular momentum. Moreover, total energy conservation
follows for a conservative system, which is invariant with respect to time. It is obvi-
ous that mechanical integrators, which preserve these properties in the discrete setting,
remain stable independently of the employed time step size. As an example of a mechan-
ical integrator, the energy enforcing method (see Hughes et al. [74], Kuhl [91], Kuhl and
Ramm [93]) should be mentioned, which enforces the conservation properties by using
Lagrange multipliers. This method requires additional DOFs extending the total size of
the system. Furthermore, convergence problems were observed (see Kuhl and Crisfield
[92]). For this reason, the method is not pursued herein. By contrast, the energy momen-
tum scheme (EMS, see Gonzalez [42, 44], Betsch and Steinmann [16, 17]) is an energy
and momentum conserving integrator, which enforces the total energy conservation by
using an algorithmic stress evaluation for flexible bodies. EMS were investigated early
within the pioneering works of Greenspan [47], LaBudde and Greenspan [94, 95] and were
extended for the St. Venant-Kirchhoff model by Simo and Tarnow [135]. In Gonzalez
[42] the generalization to nonlinear Hamiltonian systems with symmetry was achieved by
using the concept of the discrete gradient. Moreover, general hyperelastic material mod-
els were addressed by Gonzalez [45]. The extension for bounded systems was proposed
in Gonzalez [44]. Among others, EMS were applied to 2D frictionless contact problems
(see Hesch [57]), multibody problems (see Uhlar [149]), optimal control theory (see e.g.
Siebert [131]), viscoelastic problems (see e.g. Krüger [90]) and were extended to higher
order formulations (see e.g. Gross [48]).

As the title of the thesis suggests, the focus relies on contact problems in the context
of nonlinear elastodynamics incorporating large deformations. Already in early times
contact problems were investigated, but on an experimental level first. In the late 15th
century, Leonardo da Vinci discovered that the frictional traction is nearly proportional
to the weight and the contact area of a rigid body in contact. Coulomb postulated the for-
mulas for this dependency in 1785, observed the distinction between static and dynamic
Coulomb coefficient of friction and discovered that it hardly depends on the contact area
and the normal pressure but even more on materials in contact and its surface texture.
Later on, this relationship was transferred to the framework of elasticity theory by Hein-
rich Hertz. In this regard Hertz published his famous work on the stress distribution of
contacting elastic solids (see Hertz [56]). However, Hertzian contact is restricted to small
displacements and strains which can be rarely assumed in reality. Instead, real life contact
problems suffer from large strains and large sliding, which is covered by the framework
of nonlinear elastodynamics, in which analytical solutions are inconceivableIII. Numerical
solutions for contact problems based on the FEM have been investigated since the early
1970s (see e.g. Wilson and Parsons [153]). In the late 1970s, systematic node-to-surface
(NTS) approaches for the contact boundary were pursued (see Hallquist [50] and Kikuchi
and Oden [82], Laursen [97], Wriggers [161] for more details). For the NTS method,
the variationally consistent weak form of the contact interaction potential is discretised

IIIA comprehensive overview of analytical approaches in contact mechanics can be found in Johnson [78].
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within a Dirac like evaluation of the contact traction. A systematic continuum based de-
scription was published by Laursen and Simo [103]. It is worth noting that a similar and
geometrically consistent approach was proposed within the covariant contact formulation
and extended to many structural mechanical problems (see Konyukhov [83] for a compre-
hensive overview of this approach). The covariant formulation is not restricted to nodal
based contact descriptions. However, the NTS method does not pass the patch test. To
remedy this drawback, the variationally consistent Mortar method has been developed,
which utilises the shape functions of the underlying geometry for the contact traction,
weakly enforces the contact constraints and accordingly passes the patch test. Besides a
highly accurate representation of the contact interface the total number of Lagrange mul-
tipliers are not extended. Compared to the NTS method, however, the computation time
of the Mortar method is rather challenging. The reason lies in the computation of the
segmentation needed for the Mortar scheme in every Newton iteration for each time step,
where the segmentation itself is based on a triangularisation algorithm, which is a very
demanding task. In this regard a simplified and computationally inexpensive variant of
the Mortar method was proposed in Fischer and Wriggers [37] which enforces the contact
constraints at the quadrature points and thus is sometimes called Gaußpoint-to-surface
method. Although it passes the patch test, the method may lead to over-constraining
and therefore is not pursued herein. The Mortar method had a rudimentary precursor
described in the work of Simo et al. [137]. Beside that it was developed in the frame-
work of domain decomposition problems within the linear theory in Bernardi et al. [11]
and was extended for nonlinear elastodynamics in Puso [124]. In McDevitt and Laursen
[117], Yang et al. [165] it was adapted to 2D contact problems. The 3D extension for
frictionless and frictional contact was given by Puso and Laursen [125, 126], respectively.
In both cases, the penalty method was employed for the enforcement of the contact con-
straints (cf. Yang et al. [165], Temizer [143]). Lagrange multipliers for frictional contact
in the context of the Mortar method have been used e.g. in Tur et al. [148] for the 2D
case. In the context of domain decomposition methods, a Mortar method with dual
shape functions for the Lagrange multipliers was developed (see Wohlmuth [154]). For
this approach, the resulting orthogonality condition leads to a local decoupling and sub-
sequent elimination of the Lagrange multipliers. This is achieved by static condensation.
Dual Mortar methods were employed for contact problems within the linear framework in
Hüeber and Wohlmuth [71] and for nonlinear contact problems with large deformations
in Hartmann et al. [52]. Afterwards, a consistent linearisation and associated active set
strategy were provided for 2D and 3D frictionless contact in Popp et al. [122, 123]. The
incorporation of tangential tractions, using Coulomb’s law for the dual Mortar approach
was proposed for 3D contact problems with small deformations in Hüeber et al. [72] and
for 2D contact problems incorporating large deformations in Gitterle et al. [41]. In addi-
tion, recent isogeometric analysis (IGA) approaches were developed for contact problems,
in order to benefit from a smooth contact behavior for e.g. NURBS based discretisations
of the solids (cf. Konyukhov and Schweizerhof [88], Temizer et al. [145], I. Temizer and
Hughes [75], Benson et al. [10], Lorenzis et al. [109, 110], Matzen et al. [116], Dittmann
et al. [34]).

For the temporal discretisation of dynamic contact problems, standard implicit time in-
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tegration schemes fail to preserve the fundamental mechanical properties in the discrete
setting, which may result in an non-physical behavior and in a numerical destabilization
of the simulation, i.e. in a divergence of Newton’s method. To overcome this problem,
structure preserving methods were proposed in conjunction with the NTS method e.g. in
Laursen and Chawla [98], Armero and Petöcz [3], Laursen and Love [100]. In the first to
publications the contact constraint was replaced by an algorithmic gap rate. The method
suffers from an inexact fulfillment of the contact constraints. In the latter publication
the velocity update method was proposed which corrects the velocity update in a post-
processing step. The velocity update method, however, is only first order accurate. The
concept of the discrete gradient within the EMS was adapted to contact problems by Hau-
ret and LeTallec [54], Betsch and Hesch [14]. Contrary to the former one, the approach
developed in the latter publication does not only conserve the total energy, but also the
linear and angular momentum of conservative systems. In both cases, the concept of the
so-called G-equivariant discrete gradient was applied for the Jacobian of the contact con-
straints. This EMS is second order accurate, but restricted to the 2D case in Betsch and
Hesch [14]. Recently, to overcome this drawback, an EMS was developed for the friction-
less 3D NTS method (see Hesch and Betsch [61]). The 3D extension was not trivial, since
the contact constraints need to be formulated redundantly first. The redundant formu-
lation is based on a coordinate augmentation technique (CAT) proposed by e.g. Betsch
et al. [21], Uhlar [149] in the context of multibody dynamics. As a consequence, the
constraints are structurally more simple and can be reformulated by means of quadratic
invariants at the most which facilitates the design of an EMS. Analogously to the EMS for
the NTS method, an EMS was developed for the frictionless Mortar method in Hesch and
Betsch [62]. The aim of the present thesis is the structure-preserving frictional extension
of the NTS and the Mortar method using Coulomb friction. For this purpose, CATs will
be applied. In particular, the convective coordinates can be augmented to the system
as primary variables. Next to a structurally simplified formulation for frictional contact
problems, an algorithmic conservation of angular momentum can be guaranteed by using
augmentation techniques. The conserving and the stability properties will be investigated
in detail. The application of the discrete nullspace method (DNM) will be executed, pro-
jecting the system to the minimal set of coordinatesIV. Another objective of this thesis
is the frictional extension of the Mortar method using the Coulomb’s dry friction model.
To this end, the segmentation needs to be improved, such that arbitrary curved surfaces
can be incorporated, which is ensured by a virtual segmentation surface. Since arbitrary
curved solids like e.g. tori can be exactly approximated by NURBS based discretisations,
a general segmentation formulation is intended. For NURBS based solids, it is then pos-
sible to approximate the Lagrange multiplier field by linear shape functions, which was
proposed recently in Dittmann et al. [34]. For the Mortar method with isotropic friction,
the discussion about co- and contravariant base system can be neglected by avoiding the
component form arising in the weak form of contact used in e.g. Puso and Laursen [126].
Another key aspect to be considered is the application of higher order elements, such as
NURBS. Based on the present thesis, a physically more sophisticated approach, using a
thermomechanically coupled Mortar method with NURBS discretized solids can easily be

IVNote the NTS method based on the CAT was already published in Franke et al. [40].
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adapted, which most recently was proposed in Dittmann et al. [34]. The overall aim is to
develop a stable and robust time integration scheme which is independent of the chosen
time step size.

Outline The thesis is structured as follows:V

In Chap. 2 the CAT and redundant formulation are motivated. In particular the origins
of the method and its functionality are demonstrated. To this end, a typical numerical
exampleVI is briefly examined.

In Chap. 3 the description of the solids in continuum mechanics, including some basics
about kinematics, stress, balance laws, hyperelastic material laws and frictionless as well
as frictional contact conditions, is outlined. In particular, the continuous description of
the solids within the continuum mechanics (strong formulation) by a total Lagrangian
description leading to a set of nonlinear hyperbolic PDEs and ensuing variational formu-
lation is dealt with. Eventually, the continuous virtual work of contact is provided.

Afterwards, the FEM is employed for spatial discretisation in Chap. 4. For the contact
boundaries, the NTS method is applied, where the newly developed CAT for Coulomb
friction is used. In addition, the variationally consistent Mortar method is supplemented
by the Coulomb friction model, based on an improved segmentation procedure. Both
proposed approaches lead to a set of ODEs or DAEs depending on the contact formulation
and constraint enforcement technique.

The temporal discretisation is dealt with in Chap. 5. First different DAE solvers are
introduced, briefly. Afterwards, EMSs for both the NTS as well as the Mortar method,
based on the contributions Hesch and Betsch [61, 62], are presented. In addition, suitable
time integration schemes for the frictional NTS and Mortar method are proposed for
both the global DAE as well as for the frictional evolution equations. Accordingly, the
temporal discretisation leads to a set of nonlinear algebraic equations, solved by Newton’s
method.

Based on these considerations, in Chap. 6 representative numerical examples are demon-
strated in order to outline the characteristics of the different approaches. First of all,
recent integrators are compared and investigated within a simple model problem. On this
basis, representative numerical examples are investigated employing the newly developed
frictional augmented NTS approach. To this end, the enhanced numerical stability prop-
erties of the proposed augmentation technique will demonstrate its advanced features over
classical formulations in the context of the NTS method. For the Mortar method, some

VIt is important to remark that the proposed CAT and the frictional Mortar approach are partly taken
from the already published peer-reviewed journal articles Franke et al. [40], Dittmann et al. [34] and
modified to fit in Chap. 3-6. The extracted parts of the original contributions were already provided
by the author.

VIThe numerical example in Chap. 2 is taken from Betsch et al. [22], which was already provided by the
author, but is supplemented with joint friction herein.
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static and quasi-static examples are investigated first to demonstrate the consistent spa-
tial behavior. Eventually, several numerical examples are presented in order to underline
the performance and accuracy of the proposed frictional Mortar method.

Finally, some conclusions will be drawn and an outlook on further interesting investiga-
tions will be given in Chap. 7.

1 Introduction





2 Motivation

The present thesis deals with coordinate augmentation techniques (CATs) applied to
contact problems of flexible bodies. CATs originate from the multibody regime for the
introduction of additional variables which are not primary variables of a system. A
typical task thereof could be the actuation of such systems (see Betsch et al. [21] and
the references therein). E.g. the application of torques on a joint where the angle is not
given within the formulation for the description of rigid bodies. In this connection the
rotationless formulation (see e.g. Uhlar [149], Sänger [129], J. García de Jalón [77]) with
its advantages is briefly introduced, where the spatial position of a material point X ∈ R3

of a rigid body (see Fig. 2.1) can be addressed with

ϕ(Θ, t) = ϕ̄(X̄, t) + Θi di, ∀i ∈ {1, 2, 3} . (2.1)

Therein ϕ̄ ∈ R3 denotes the center of mass of the rigid body, Θi ∈ R the material coor-
dinates, where Θ 6= Θ(t) and di ∈ R3 are the body-fixed (not necessarily orthonormal)
directors (see Hesch and Betsch [65]). In this connection the configuration vector

q =
[
ϕ̄T dT

1 dT
2 dT

3

]T
, (2.2)

is introduced. To enforce rigidity of the bodies the internal constraints

Φint
ij :=

1
2

(di(t) · dj(t) − di(0) · dj(0)) = 0, ∀i, j ∈ {1, 2, 3}, Φint ∈ R
3×3 , (2.3)

have to be incorporated which constrain the system to the correct 6-dimensional con-
figuration manifold Q = {q ∈ R12|Φint(q) = 0}. Based on the kinetic energy T , the
potential energy V and the energy due to internal constraints V int of the rigid bodies, the
augmented Lagrangian is defined as

LAug = T (q̇) − V (q) − V int(q, λint) , (2.4)

where the last term on the right hand side includes the internal constraints Φint and
the corresponding Lagrange multipliers λint (for more details see Sänger [129], Hesch and
Betsch [65]). Note, the constraint tensor provided in equation (2.3) and the corresponding
Lagrange multiplier tensor λint are symmetric, since only six independent constraints
are enforced. The above is used to employ Hamilton’s principle of stationary action as
follows

δS =

t2∫

t1

δLAug dt =

t2∫

t1

(
δT (q, q̇) − δV (q) − δ(Φint : λint)

)
dt , (2.5)
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ϕ̄(X̄, t)

ϕ(Θ, t)
X

B0

Bt

d1(0)

d2(0)

d3(0)

d1(t)

d2(t)

d3(t)

Figure 2.1: Director-based rigid body formulation.

which after some algebra leads to the well-known Euler-Lagrange equations for arbitrary
variations δq ∈ R12 and δλint ∈ R3×3. In accordance with the variational formulation
of continuum bodies, the virtual work formulation of the underlying rigid bodies is used
instead in what follows

G := Grb(q, δq, λint, δλint) , (2.6)

in order to account for the assembly procedure in case of different employed structural,
continuum mechanical and boundary (contact) elements (see Sänger [129]). Accordingly,
the structure of equation (2.6) does fit well in the provided framework for contact prob-
lems. The advantage of this director-based formulation (see Fig. 2.1) relies on the usage
of redundant coordinates providing a set of equations with minor nonlinearity which is in
contrast to the Newton-Euler equation, used to determine a set of minimal coordinates.
This philosophy facilitates the design of energy-momentum consistent integration schemes
(EMS) and serves as the foundation of the underlying thesis. An example for the usage
of CATs in a multibody problem, including both flexible elements of structural mechanics
as well as rigid bodies, is dealt with subsequently. Suppose the shooting process of a
trebuchet, as depicted in Fig. 2.2, should be modeled which indeed is taken from Betsch
et al. [22] but supplemented with joint friction between frame and cantilever. It is mod-
eled as a flexible multibody system including rigid bodies described by the rotationless
formulation, nonlinear beams based on geometrically exact beam theory (see e.g. Antman
[2], Betsch and Steinmann [18]) and nonlinear string elements. Thus, the virtual work

G := Grb + Gb + Gs = 0 , (2.7)

comprised of contributions from rigid bodies Grb, beam elements Gb and string elements
Gs, for details see Sänger [129]. The reference configuration of the trebuchet is depicted in
Fig. 2.2 (left). Lever (F) is hinged on the base frame (A). Furthermore the counterweight
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Figure 2.2: Trebuchet: Reference (left) and initial configuration with static equilibrium
(right).

(J) is hinged at (H). A rope (D) is connected at point (E) of the lever (F). At the other
end of the rope (D) the projectile (B) is connected at point (C). Mass and Euler tensor
of corresponding rigid bodies, i.e. of the counterweight, the projectile and the base frame
are depicted in Tab. E.2. The lever (F) is modeled as geometric exact beam with Simo-
Reissner kinematic and director formulationI. A hyperelastic material model with the
stored strain energy (or strain energy density) function

W =
1
2

(Γ · D1 Γ + K · D2 K) , (2.8)

where the strain measures Γ, K (see Betsch and Steinmann [18]) and the stiffness matri-
ces

D1 =




G A1 . . . 0
... G A2

...
0 . . . E A


 , D2 =




E I1 . . . 0
... E I2

...
0 . . . G J


 , (2.9)

are used. The material data such as the stiffness in the different directions as well as
the mass are given in Appx. E.1. The lever is discretized in space with ten 3-node (or
quadratic) beam Lagrangian finite elements. The rope (G) is modeled as a nonlinear
string with the following hyperelastic constitutive law

N =
1
2

EA

(
ν − 1

ν

)
, (2.10)

which relates the string force N to the stretch ν. In the above EA denotes the axial
stiffness and can be found in Appx. E.1 as well. For spatial discretization of the string
four 4-node (or cubic) Lagrangian finite elements are in use. Furthermore (C) and (D) are
revolute joints. The center marks of the reference configuration are depicted in Tab. E.1.
For a realistic simulation the revolute joint (C) is modeled including frictional damping.
Since the rotationless formulation is employed for this example the angle of the joint is not

INote, the geometric exact beam element is able to undergo large deformations and large rigid body
movements but are restricted by the kinematic assumptions of beam theory.

2 Motivation
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Figure 2.3: Trebuchet: Configuration after 50 time steps (top left), after 140 time steps
(bottom left) and after 220 time steps (right).

a primary variable of the system. To overcome this problem the angle can be augmented
to the system with the CAT as described above. In particular, the angle is introduced to
the system as an augmented variable. Accordingly, the vector of all degrees of freedom is
extended such that

q̄ =
[
qT γ

]T
, (2.11)

where γ denotes the augmented variable, hence the angle between the cantilever and the
frame. In order to incorporate the augmented variable γ, the augmented constraint ΦAug

is introduced

ΦAug := dI
2 · dII

3 + sin(γ) + dI
3 · dII

3 − cos(γ) = 0 . (2.12)

Therein the superscripted I and II denote the base frame (J) and the lever (E), respec-
tively. Accordingly, the virtual work of the system (2.7) can be augmented with the
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augmented virtual work

GAug = δλAug ΦAug + λAug δΦAug . (2.13)

Therein λAug denotes the Lagrange multiplier of the augmented constraint ΦAug. The
velocity dependent linear viscous friction force (see Uhlar [149]) can be incorporated as
follows

F = d γ̇ , (2.14)

where d denotes the damping coefficient and γ̇ the relative velocity between the lever and
the frame. For arbitrary virtual displacements and multipliers the virtual work of the
bounded system leads to a set of index-3 differential algebraic equations (DAEs)

M q̈ + F int,ext + GT(q̄) λ − F fric = 0 ∀δq ∈ R
nqdof (2.15)

Φ = 0 ∀δλ ∈ R
nλdof , (2.16)

where M denotes the consistent mass matrix, F int,ext = F int − F ext is comprised of the
internal forces F int and the external forces F ext, respectively. Furthermore the vector
of constraints Φ is comprised of all internal, external and augmented constraints of the
employed elements. The Jacobian of the constraints GT = ∇q̄ ⊗ Φ is used where λ

denote the corresponding Lagrange multipliers of total size nλdof and q̄ is the vector
of all (redundant) coordinates involved which is of total size nqdof. The friction force
F fric ∈ Rnqdof is incorporated as follows

F fric =

[
0(nqdof−1)×1

F

]
. (2.17)

Note that the saddle point problem (2.15)-(2.16) can be reduced to ordinary differential
equations (ODEs) by suitable projection methods (see e.g. Betsch [13], Uhlar [149]).
For the simulation of the shooting process the influence of gravity with g = −g0 ez is
taken into account. The static equilibrium configuration of the trebuchet is computed
first (see Fig. 2.2) in order to start the dynamic simulation afterwards. For the static
equilibrium a statically determinate system is achieved by fixing the projectile to the
ground. The static equilibrium (see Fig. 2.2) serves as initial pre-stressed configuration at
time t = 0 for the subsequent dynamic simulation. For the transient phase the connection
of the projectile with the ground is released. For the temporal discretisation an energy-
momentum consistent scheme (EMS)II based on the concept of the discrete gradient in the
sense of Gonzalez [42, 44] with a time step size of ∆t = 0.002 is employed (see Fig. 2.3).
In the dynamic simulation the fixed connection of the projectile with the rope is released
after 220 time steps. The applied EMS does not conserve the total energy for the discrete,
dissipative system at hand but consistently reproduces the energy as can be seen from
Fig. 2.4 (right). Accordingly, the dotted line therein represents the total energy of the
system including the dissipation, which is conserved within machine precision. Fig. 2.4
(left) shows the x-z parabolic trajectory of the projectile.

IINote the EMS is treated in detail in Chap. 5.2.6.

2 Motivation
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Figure 2.4: Trebuchet projectile: x-z trajectory (left) and energy plot (right).

The CAT has been extensively investigated in the multibody regime (see Betsch and Uhlar
[19], Uhlar [149]) as well as for frictionless contact problems in order to design an EMS
(see Hesch and Betsch [61], Franke et al. [38, 39]). Taking up the ideas therein one of the
main goals of the underlying thesis is to extend the CAT to frictional contact problems in
the node-to-surface (NTS) regime (see Franke et al. [40]), as well as to improve existing
Mortar methods.



3 Continuum mechanics for large

deformation contact analysis

For the modeling of deformable bodies from a mechanical point of view, a broad range of
theories exist for different length- and time-scales. Some popular are the quantum me-
chanics and the molecular dynamics (microscopic level), the phase field and dislocation
theories (mesoscopic level) and the continuum mechanics (macroscopic level), in order to
name a few (see Steinhauser [141] for a comprehensive overview). In physics the descrip-
tion of matter is focused on the discrete behavior of molecules, atoms, sub-atoms etc., for
that a microscopic point of view is preferred. In contrast to that, many engineering tasks
are not concerned with the motion of such particles which are small compared to typical
engineering materials. Beyond that even modern hardware with suitable parallelization
techniques would be too small to model macroscopic behavior incorporating every involved
particle. Within this work an engineering point of view is assumed and the consideration
is restricted to continuum mechanics theory in order to approximate the macroscopic be-
havior of the bodies, commonly referred as solids. The solids consist of particles which are
assumed to be continuously distributed despite the discrete nature of physical matter. The
underlying continuum mechanical model is based on macroscopic observations and exper-
iments. Accordingly, to each particle, field equations such as mass density, momentum,
energy etc. can be assigned. However, microscopic and mesoscopic properties of a body
can also be incorporated in a continuum mechanical description e.g. by homogenization
techniques. The underlying continuum description is based on the textbooks Holzapfel
[70], Eschenauer and Schnell [36], Bonet and Wood [23], Başar and Weichert [6], Altenbach
[1], Belytschko et al. [9], Eringen [35], Truesdell [147], Malvern [113], Spencer [140], It-
skov [76] and further contributions Weinberg [150], Hesch [58], Dittmann [33], Brodersen
[24]. Note that Sec. 3.1–3.4 contain the foundation of the development of the proposed
methods for computational contact mechanics.

Subsequently, in order to describe large deformation contact problems, the most impor-
tant basics of continuum mechanics are summarized. Specific attention is paid to the
description of several basics such as kinematics (see Sec. 3.1), stresses (see Sec. 3.2), bal-
ance principles (see Sec. 3.3) and material laws (see Sec. 3.4). On this basis the initial
boundary value problem (IBVP) of the considered solids, which are assumed to come into
contact, is introduced.
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Figure 3.1: Configurations of bodies B(i) in Rndim .

3.1 Kinematics

The underlying section deals with the kinematics of a mechanical system containing solids.
Therefore the motion of i-bodies located in the three-dimensional Euclidean space B(i) ⊂
Endim , where i ∈ N+ and ndim denotes the number of dimensions, is consideredI. Note
that any forces and momenta that cause the motion have not to be considered within the
kinematic point of view. For ease of exposition the consideration is restricted to a two
body contact problem. Accordingly, i ∈ {1, 2} as it is illustrated in Fig. 3.1. Furthermore
self-contact is excluded.II

3.1.1 Configuration

The aforementioned bodies B(i) consist of an infinite amount of particles (material points)
X

(i)
p ∈ B(i) within its boundaries ∂B(i). An arbitrary configuration of B(i) denotes the

IThe infinite set N+ is defined according to N+ = {i|i ∈ N|i > 0}.
IINote that from the two body contact system considered herein a derivation of special cases such as

two-dimensional contact, contact of many solids, self-contact of solids, contact of solids with rigid
obstacles (commonly referred as Signorini’s problem) etc. can be obtained in a straight forward
fashion.
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unique assignment of these particles (see Fig. 3.1) in the physical space Rndim . To de-
scribe the configuration mainly the Lagrangian and the Eulerian formulations are taken.
Within the Lagrangian description an observer is assumed in the reference frame. After-
wards, the observer moves with the body over time and observes the changing physical
properties. In contrast to that using the Eulerian description the current configuration
coincides with the reference configuration. Within the Eulerian description the changes
of position and properties of a body in a specific, fixed volume are observed. I.e. it is
not possible to trace a specific particle. The Lagrangian description is commonly used
in solid mechanics, whereas the Eulerian description is mostly used in fluid mechanics.
Both descriptions are transferable. Furthermore e.g. in order to couple solids and fluids
the so-called Arbitrary Lagrangian-Eulerian (ALE) formulation (cf. Hirt et al. [69]) is
used combining both methods. Focusing on the Lagrangian description the unstressed
reference configuration is defined by B(i)

0 at time t = 0 (known as the total Lagrangian
description), which corresponds to the mapping

B(i)
0 = Ψ

(i)
0 (B(i)) , (3.1)

Therein Ψ
(i)
0 denotes the bijective mapping B(i) → B(i)

0 (see Fig. 3.1). Furthermore the
two Cartesian base systems with origins O and o are introduced in order to describe the
reference configuration and the current configuration of the bodies, respectively. The
related position vector of the reference configuration according to the aforementioned
particle X

(i)
p of a body B(i)

0 can be addressed viaIII

X(i) = Ψ
(i)
0 (X(i)

p ) = X
(i)
A EA, A = 1, 2, 3 , (3.2)

where X(i) : B(i)
0 → Rndim denote the material point. Furthermore X

(i)
A denote the

components of the position vector and EA the corresponding base vectors of the reference
configuration (see Fig. 3.1). Note that EA is chosen as an orthonormal Cartesian base
system, however, other systems e.g. a skew base system can be used as well. After
some time t ∈ I, where I = [0, T ], T ∈ R+, the current configuration of the bodies
can be obtained by the bijective mappings Ψ

(i)
t : B(i) → B(i)

t and ϕ(i)(t) : B(i)
0 → B(i)

t ,
respectively

B(i)
t = Ψ

(i)
t

(
B(i), t

)
= ϕ(i)

(
B(i)

0 , t
)

. (3.3)

The bodies are assumed to contact each other within the considered time interval I.
Therefore the boundaries of the bodies in the reference and current configuration are of
special interest in the present work and discussed in a subsequent chapter. For convenience
the abbreviations of the boundaries

Γ(i) := ∂B(i)
0 = Ψ

(i)
0

(
∂B(i)

)
, γ(i) := ∂B(i)

t = ϕ(i)
(
Γ(i), t

)
, (3.4)

IIIEinstein’s summation convention is used here and in subsequent equations if not stated otherwise, such

that the sum is built over duplicate indices, i.e. X(i) =
∑

A X
(i)
A EA = X

(i)
A EA = X

(i)
1 E1 +X

(i)
2 E2 +

X
(i)
3 E3, A ∈ {1, 2, 3}. Note that this is not valid for indices in brackets like the superscripted (i).
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are introduced. Consequently, using a total Lagrangian description, the position vector
of the current configuration of the independent variable X(i) represents the unknown
variable ϕ(i) : B(i)

0 × I → Rndim and can be described as

x(i) = Ψ
(i)
t (X(i)

p , t) = ϕ(i)(X(i), t) = x(i)
a ea, a = {1, 2, 3} . (3.5)

Therein x
(i)
a denote the components of the position vector x(i) and ea the corresponding

base vectors of a second orthonormal Cartesian base system (see Fig. 3.1). For sake of
completeness the Eulerian description is also introduced as

X(i) =
(
ϕ(i)

(
x(i), t

))−1
, (3.6)

where ϕ(i),−1 : B(i)
t × I → Rndim denotes the inverse mapping B(i)

t → B(i)
0 . In order

to simplify notation the origin of both orthonormal Cartesian coordinate systems are
assumed to coincide (see Fig. 3.2). The displacement between a particle of the reference
and the current configuration in total Lagrangian description can be written as

U (i)(X(i), t) = x(i)(X(i), t) − X(i) . (3.7)

Therefore, the notation is organized such that capital letters are used to refer to the
reference configuration and lower case are used to refer to the current configuration, as is
common practice in the literature.

3.1.2 Deformation gradient

A spatial point does only change its position after deformation or rigid body motion, i.e.
translations or rotations. In contrast to that line, area and volume elements in general
deform and thus are suitable for the description of deformation (see Fig. 3.2). Accordingly,
some important relations for line, area and volume elements of the bodies between different
configurations are needed. The change of the length between infinitesimal line elements
dX(i) of the material configuration and line elements dx(i) of the spatial configuration
(see Fig. 3.2) can be specified with a Taylor series expansion of ϕ(i)(X(i), t) at a point
X0

ϕ(i)(X(i), t) = ϕ(i)(X0, t) + F (i)(X0, t)
(

X(i) − X0

)
+ O

(
(X(i) − X0)

2
)

(3.8)

⇔ ϕ(i)(X(i), t) − ϕ(i)(X0, t) = F (i)(X0, t)
(

X(i) − X0

)
+ O

(
(X(i) − X0)

2
)

. (3.9)

Neglecting higher order terms one obtains the desired relation at the limit X0 → X(i)

for the deformation gradient F (i)(X(i), t)

dx(i) = F (i)(X(i), t) dX(i) . (3.10)

In equation (3.10) the deformation gradient F (i) : B(i)
0 × I → Rndim×ndim is introduced.

Thus the deformation gradient maps a line element of the reference configuration at point
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Figure 3.2: Relations between reference and current configuration for points, line-, area-
and volume-elements.

X(i) to a line element of the current configuration at x(i). The deformation gradient can
be expressed in several notations

F (i)(X(i), t) =
∂x(i)(X(i), t)

∂X(i)
= Grad(ϕ(i)(X(i), t))

= ϕ(i)(X(i), t) ⊗ ∇X(i) =
∂x

(i)
a

∂X
(i)
A

ea ⊗ EA . (3.11)

As can be seen from the structure of equation (3.11) the deformation gradient is a so-
called two-point tensor, which means it contains the reference basis as well as the current
basis and therefore is in general an unsymmetrical tensor. The deformation tensor can
also be formulated using the displacement field, introduced in equation (3.7)

F (i)(X(i), t) = Grad(X(i) + U (i)(X(i), t)) = I + Grad(U (i)(X(i), t)) = I + H(i) . (3.12)

Therein the displacement gradient H(i) is introduced. As mentioned before the deforma-
tion mapping ϕ(i) needs to be bijective. Furthermore self-penetration of the bodies is not
allowed. The tensor F (i) remains non-singular and invertible throughout the considered
time interval I, i.e.

J (i)(X(i), t) = det(F (i)(X(i), t)) =

(
∂x

(i)
1

∂X(i)

)
·
(

∂x
(i)
2

∂X(i)
× ∂x

(i)
2

∂X(i)

)

=
dv(i)

dV (i)
> 0 ∀t ∈ I . (3.13)

Therein dV (i) is an arbitrary volume element with spatial counterpart dv(i) (see Fig. 3.2).
Moreover J (i) : B(i)

0 × I ∈ R+ is the Jacobian determinant and denotes the measure of
change in volume. For the transformation of quantities related to areas in the reference
configuration dA(i) to areas in the current configuration da(i), Nanson’s relation can be
deduced using equations (3.13) and (3.10) (see Appx. B.1), which finally yields

da(i) = J (i)(X(i), t) F (i),−T(X(i), t) dA(i) = cof(F (i)) dA(i) , (3.14)
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where the vectors dA(i) and da(i) are introduced according to the relations

dA(i) = dA(i) N (i), da(i) = da(i) n(i) . (3.15)

Therein N (i) and n(i) denote the outward unit normals of the reference and the current
area elements dA(i) and da(i), respectively.

3.1.3 Strain tensors

The deformation gradient F (i) is a fundamental kinematic relation of continuum mechan-
ics, but it has some disadvantages in analysis, since it is an unsymmetrical two-point
tensor. Therefore appropriate strain measures are provided subsequently with either re-
spect to reference or to current configuration. Although strain tensors are in general
physically not measurable, the aim is to simplify the analysis (see Holzapfel [70]). The
idea is to provide a measurement for line elements dX(i) in the reference configuration
to line elements dx(i) in the current configuration. Regarding these line elements the
absolute length of dx(i) denotes

dx(i) = ‖ dx(i)‖ = ‖F (i)(X(i), t) dX(i)‖

=

√(
F (i)(X(i), t) dX(i)

)
·
(

F (i)(X(i), t) dX(i)
)

. (3.16)

Now using the square of the absolute length, one obtains

‖ dx(i)‖2 = dX(i) ·
(

F (i),T(X(i), t) F (i)(X(i), t) dX(i)
)

= dX(i) · C(i) dX(i) . (3.17)

Therein the positive definite and symmetric right Cauchy-Green strain tensor C(i) : B(i)
0 ×

I → Rndim×ndim has been introduced. It is a strain measure associated with the reference
configuration, as can be seen in the following definition

C(i) = F (i),T(X(i), t) F (i)(X(i), t) =
∂x

(i)
a

∂X
(i)
A

∂x
(i)
a

∂X
(i)
B

EA ⊗ EB . (3.18)

In contrast to the deformation gradient, the right Cauchy-Green strain tensor is invariant
under rigid body translations and rotations. The spatial counterpart of the right Cauchy-
Green strain tensor is the left Cauchy-Green strain tensor c(i) : B(i)

t × I → Rndim×ndim . It
can be deduced analogously but starting with the absolute length of dX(i). Neglecting
the derivation for convenience the left Cauchy-Green strain tensor is defined by

c(i) = F (i)(X(i), t) F (i),T(X(i), t) =
∂x

(i)
a

∂X
(i)
A

∂x
(i)
b

∂X
(i)
A

ea ⊗ eb . (3.19)

For a pure rigid body movement without any deformation one obtains the identity matrix
I using the right Cauchy-Green strain tensor. To account for this ‘non-strain’ movement
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the Green-Lagrangian strain tensor is deduced by regarding the alteration of the line
elements

1
2

[
‖ dx(i)‖2 − ‖ dX(i)‖2

]
=

1
2

[
dx(i) · dx(i) − dX(i) · dX(i)

]

= dX(i) · 1
2

[
F (i),T(X(i), t) F (i)(X(i), t) − I

]
dX(i) = dX(i) · E(i) dX(i) . (3.20)

Therein the positive definite and symmetric Green-Lagrangian strain tensor E(i) : B(i)
0 ×

I → Rndim×ndim is introduced, which is based on the reference configuration, and can be
written as

E(i) =
1
2

(C(i) − I) =
1
2

(
∂x

(i)
a

∂X
(i)
A

∂x
(i)
a

∂X
(i)
B

− δAB) EA ⊗ EB . (3.21)

For a rigid body movement the ensuing application of the Green Lagrangian strain tensor
yields the desired zero tensor (the frame-indifferent properties of the most important
strain tensors are dealt with in Sec. 3.1.4). Therefore the Green-Lagrangian strain tensor
provides a proper strain measure for subsequent considerations. Within the underlying
contribution finite strains are considered. To account for the linear theory the linearized
strain measure ǫ(i) can be accomplished by linearisation of the Green-Lagrangian strain
measure

E(i) =
1
2

[(
I + H (i),T

) (
I + H(i)

)
− I

]
=

1
2

[
I + H(i) + H (i),T + H(i),T H(i) − I

]

=
1
2

[
H(i) + H (i),T

]
+

1
2

H(i),T H(i) = ǫ(i) +
1
2

H(i),T H(i) . (3.22)

Thus, the quadratic term therein is neglected for the linear theory. As a consequence
the invariance properties of ǫ(i) are no longer maintained. For sake of completeness the
spatial ‘counterpart’ of the Green-Lagrangian strain tensor is introduced

e(i) =
1
2

(
I − F (i),−T(X(i), t) F (i),−1(X(i), t)

)

=
1
2

(
I − c(i),−1

)
=

1
2

(
δab − ∂X

(i)
A

∂x
(i)
a

∂X
(i)
A

∂x
(i)
b

)
ea ⊗ eb , (3.23)

which is known as the Eulerian-Almansi strain tensor e(i) : B(i)
t × I → Rndim×ndim . It is

related to the current configuration and is frame indifferent (see Sec. 3.1.4).

3.1.4 Frame indifference

Various physical properties of a body B are frame indifferent. As a consequence, the
origin and orientation of an observer does not affect them. In the following the frame
indifferent properties of some strain measures are examined. This is important because
strain measures in general are not physically measurable quantities but are used to sim-
plify the analysis (see Holzapfel [70]). In order to proof the frame indifference of tensors
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of arbitrary order, two observers are introduced (see Fig. 3.3) with identical reference
configuration O ≡ Õ and base vectors EA. Afterwards the observers are moved au-
tonomously into their spatial configurations with origins o 6= õ and orthonormal base
vectors ea and ẽa, respectively (see Fig. 3.3). Accordingly, the physical observations may
differ for spatial quantities, whereas material quantities should remain unchanged in case
of frame indifference. A spatial vector seen by two observers can be transformed via Eu-

B(i)
0 B(i)

t

O, Õ, EA

X(i)

x(i)

x̃(i)

o, ea

õ, ẽa

ϕ(i)

ϕ̃(i)

Figure 3.3: Two observers for a spatial motion.

clidean transformation (preserves Euclidean geometry) to each other. In particular, this
is achieved by employing a translation with vector d(i)(t) ∈ Rndim and a rotation with the
orthogonal rotation tensor R(i)(t) ∈ SO(ndim) as follows

x̃(i) = R(i)(t) x(i) + d(i)(t) . (3.24)

With regard to the Rodriguez formula, the involved rotation tensor can be viewed as
a rotation by an angle θ with respect to an axis u(i) ∈ Rndim . In this connection the
Rodriguez formula can be exploited

R(i) = u(i) ⊗ u(i) + cos(θ(i))
(
I − u(i) ⊗ u(i)

)
+ sin(θ(i)) û(i) , (3.25)

where û(i) ∈ Rndim×ndim denotes the skew symmetric second order tensor which becomes
evident with

û(i) b(i) = u(i) × b(i) , (3.26)

for any b(i) ∈ Rndim . Thus, proper material scalar, vector and tensor fields remain un-
affected in case of rigid body motion (translation and rotation), whereas spatial scalar
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a(x) ∈ R, vector a(x) ∈ Rndim and tensor a(x) ∈ Rndim×ndim fields are frame indifferent
iff.

ã = a(R(t) x + d(t)) = a(x) , (3.27)

ã = a(R(t) x + d(t)) = R(t) a(x) , (3.28)

ã = a(x̃) = a(R(t) x + d(t)) = R(t) a(x) RT(t) . (3.29)

As a special case a frame-indifferent two-point tensor field, associated with both the
reference and the current configuration, transforms to

Ã = A(R(t) x + d(t)) = R(t) A(x) , (3.30)

which maps a material vector into a spatial vector. The relationship between the two
observers of the motion of a material point is given by

ϕ̃(i)(X(i), t) = R(i)(t)ϕ(i)(X(i), t) + d(i)(t) . (3.31)

Accordingly, the motion itself is not frame indifferent and so are the velocity and the accel-
eration. With equation (3.31) in hand the frame-indifferent property of the deformation
tensor can be verified easily as follows

F̃
(i)

= F (i)(x̃(i)) =
∂

∂X(i)

(
R(i)(t) ϕ(i)(X(i), t) + d(i)(t)

)
= R(i)(t) F (i) . (3.32)

The Jacobian determinant is not affected by a change of the observer since

J̃ (i)(X(i), t) = det(F̃
(i)

) = det(R(i)(t) F (i)) = det(R(i)) det(F (i)) = J (i) , (3.33)

and thus is a frame indifferent scalar. In the following the frame indifference of the most
important deformation and strain tensors are verified. Accordingly, the material strain
fields such as the right Cauchy-Green deformation tensor

C̃
(i)

= C(i)(x̃(i)) = F̃
(i),T

F̃
(i)

= F (i),T R(i),T(t) R(i)(t) F (i) = C(i) , (3.34)

and the Green-Lagrange strain tensor

Ẽ
(i)

=
1
2

(C̃
(i) − I) =

1
2

(R(i)(t) F (i),T F (i) R(i),T(t) − I) =
1
2

(C(i) − I) = E(i) , (3.35)

are frame-indifferent tensor fields. Furthermore, the spatial strain fields, i.e. the left
Cauchy-Green deformation tensor

b̃
(i)

= F̃
(i)

F̃
(i),T

= R(i)(t) F (i),T F (i) R(i),T(t) = R(i)(t) b(i) R(i),T(t) , (3.36)

and the Euler-Almansi strain tensor

ẽ(i) =
1
2

(I − b̃
(i),−1

) =
1
2

(I − R(i)(t) b(i),−1 R(i),T(t)) = R(i)(t) e(i) R(i),T(t) , (3.37)

are frame-indifferent tensors of second order.
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B(i)
t

e1

e2

e3

σ
(i)
11

σ
(i)
22

σ
(i)
33

σ
(i)
12

σ
(i)
21

σ
(i)
13

σ
(i)
31 σ

(i)
32

σ
(i)
23

Figure 3.4: Components of the Cauchy stress tensor.

3.2 Stress

In this section some stress quantities of the bodies B(i) are addressed. First of all the stress
of an infinitesimal volume element in the current configuration is defined as illustrated in
Fig. 3.4. Therefore the Cauchy stress tensorIV σ(i) : B(i)

t × I → Rndim×ndim contains six
independent entries (see Fig. 3.4) that can be arranged as

σ(i)(x(i), t) =




σ
(i)
11 σ

(i)
12 σ

(i)
13

σ
(i)
21 σ

(i)
22 σ

(i)
23

σ
(i)
31 σ

(i)
32 σ

(i)
33


 =




σ
(i)
11 σ

(i)
12 σ

(i)
13

σ
(i)
22 σ

(i)
23

σ
(i)
33




sym

. (3.38)

The diagonal elements σ
(i)
ab , a = b denote the normal stresses and the off diagonal elements

σ
(i)
ab , a 6= b denote the shear stresses. Sometimes it is useful to formulate the stress tensors

in its principle stress values σ
(i)
a (eigenvalues of σ(i)) and corresponding principle directions

aa (eigenvectors of σ(i))

σ(i)(x(i), t) =
3∑

a=1

σ(i)
a a(i)

a ⊗ a(i)
a , (3.39)

for the mathematical background see Appx. B.2. To accomplish this task the characteristic
equation (or Cayley-Hamilton theorem) to obtain the principal stress components isV

(σ(i)
a )3 − I1(σ

(i)) (σ(i)
a )2 + I2(σ

(i)) σ(i)
a − I3(σ

(i)) = 0, a ∈ {1, 2, 3} . (3.40)

IVThe Cauchy stress tensor is also known as the true stress tensor since it represents the true stress state
related to the current configuration unlike some other stress tensors introduced subsequently.

VNote in equation (3.40) Einstein’s summation convention is not in use.
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B(i)

B(i)
0 B(i)

t

dA(i)

da(i)

T (i)

N (i) t(i)

n(i)

EA, ea

Ψ
(i)
0

Ψ
(i)
t

ϕ(i)

ϕ(i),−1

Figure 3.5: Stress relations of bodies B(i) in R3.

Therein Ia(σ(i)) : B(i)
t × I → R, a ∈ {1, 2, 3} denote the three invariants of Cauchy’s

stress tensor, which are defined as follows

I1(σ
(i)) = tr(σ(i)) , (3.41)

I2(σ
(i)) =

1
2

(
tr(σ(i))2 − tr(σ(i),2)

)
, (3.42)

I3(σ
(i)) = det(σ(i)) . (3.43)

For more details about invariants of a second order tensor see Appx. B.3. Furthermore
the principal directions can be computed via

(
σ(i)(x(i), t) − σ(i)

a I
)

a(i)
a = 0, a ∈ {1, 2, 3} , (3.44)

where the eigenvectors a
(i)
a denote the desired principal directions and the eigenvalues σ

(i)
a

the desired principal values of the Cauchy stress tensor. For the reference configuration
the Piola-Kirchhoff stress (or nominal) vector T (i), the surface normal N (i) and the area
element dA(i) acting on an arbitrary internal interface are introduced and depicted in
Fig. 3.5. For the current configuration one obtains the Cauchy stress vector t(i), the
surface normal n(i) and the area element da(i). The illustrated Piola-Kirchhoff stress
vectorVI is related to the first Piola-Kirchhoff stress tensor P (i) : B(i)

0 × I → Rndim×ndim

via Cauchy’s stress theorem

T (i)(X(i), t) = P (i)(X(i), t) N (i) = P
(i)
aA N

(i)
A ea . (3.45)

VIAs can be seen in the structure of equation (3.45) the Piola-Kirchhoff stress vector acts in the current
configuration but is formulated with respect to the reference area dA(i). Therefore it is understood
as a ‘technical’ traction where the subsequently introduced Cauchy stress tensor t(i) represents the
true traction.
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Analogously, Cauchy’s stress tensor can be written as

t(i)(x(i), t) = σ(i)(x(i), t) n(i) = σ
(i)
ab n

(i)
b ea . (3.46)

The relation between the first Piola-Kirchhoff stress tensor and the Cauchy stress tensor
is

σ(i)(x(i), t) n(i) da(i) = P (i)(X(i), t) N (i) dA(i) . (3.47)

By using Nanson’s formula

n(i) da(i) = J (i)(X(i), t) F (i),−T(X(i), t) N (i) dA(i) , (3.48)

the relation between the first Piola-Kirchhoff and the Cauchy stress tensor can be written
as

σ(i)(x(i), t) =
1

J (i)(X(i), t)
P (i)(X(i), t) F (i),T(X(i), t) . (3.49)

While Cauchy’s stress tensor σ(i) is symmetricVII, the first Piola-Kirchhoff stress tensor
P (i) is not, which is due to the incomplete pull-back operation (see Appx. B.4 for the
definition of pull-back and push-forward operations). The first Piola-Kirchhoff stress
tensor P (i) is the work conjugate counterpart to the deformation gradient F (i). Thus, the
first Piola-Kirchhoff stress tensor is an unsymmetrical two-point tensor. Alternatively,
the second Piola-Kirchhoff stress tensor S(i) : B(i)

0 × I → Rndim×ndim proves convenient for
further formulations and can be introduced as follows

S(i)(X(i), t) = J (i)(X(i), t)
(

F (i)(X(i), t)
)−1

σ(i)(x(i), t) F (i),−T(X(i), t) (3.50)

=
(

F (i)(X(i), t)
)−1

P (i)(X(i), t) . (3.51)

The second Piola-Kirchhoff stress tensor is based on the reference configuration. It de-
notes the work conjugate counterpart to the right Cauchy-Green strain tensor C(i). It
is a symmetric second order tensor but is not physically interpretable. For sake of com-
pleteness the Kirchhoff stress tensor τ (i) : B(i)

t × I → Rndim×ndim is introduced which can
be obtained via a push forward of the second Piola-Kirchhoff stress tensor

τ (i)(x(i), t) = F (i)(X(i), t) S(i)(X(i), t) F (i),T(X(i), t) = J (i)(X(i), t) σ(i)(x(i), t) . (3.52)

The Kirchhoff stress tensor is a symmetric tensor as well.

3.3 Balance laws

In the following the fundamental conservation properties or ‘first integrals’ for a pure
mechanical contact system are formulated.

VIIAs a consequence of Cauchy’s second equation of motion, which will be developed in Sec. 3.3.3, Cauchy’s
stress tensor σ(i) is symmetric.
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Balance of

mass:
∑

i ṁ(i) = 0

linear momentum:
∑

i L̇
(i)

=
∑

i F (i),ext

angular momentum:
∑

i J̇
(i)

=
∑

i M (i),ext

total energy:
∑

i Ḣ(i) =
∑

i

(
Ṫ (i) + V̇ (i)

)

linear momentum on contact boundary:
∑

i t(i) = 0

Table 3.1: Balance principles for bodies B(i)

Hence, the consideration is restricted to an isothermal system. In this connection the
theorem of Noether is valid which can be stated as (see Thompson [146, Chap. 1, p. 5]):
‘If a system has a continuous symmetry property, then there are corresponding quantities
whose values are conserved in time’. In particular if the system is invariant with respect to
translations the components of linear momentum are conserved. If the system is invariant
with respect to rotations the components of angular momentum are conserved and if the
system is invariant with respect to time then the total energy of the system is conserved.
The balance of mass, linear and angular momentum, mechanical energy as well as linear
momentum on the contact boundary of the considered system are anticipated in Tab. 3.1
and will be briefly presented in the subsequent chapters.

3.3.1 Mass

The mass m(i) ∈ R+ is assumed to be continuously distributed within the boundaries Γ(i)

of the considered bodies B(i) and can be computed as follows

m(i) =
∫

B(i)
0

ρ
(i)
0 (X(i)) dV (i) =

∫

B(i)
t

ρ(i)(x(i), t) dv(i) . (3.53)

Therein ρ
(i)
0 : B(i)

0 → R+ and ρ(i) : B(i)
t → R+ denote the material and spatial mass

density, respectively. Equation (3.53) can be rearranged with regard to equation (3.13)
such that only one integral for the reference configuration is involved, i.e.

∫

B(i)
0

(
ρ

(i)
0 (X(i)) − ρ(i)(x(i), t) J (i)(X(i), t)

)
dV (i) = 0 . (3.54)

For an infinitesimal volume element dV (i) equation (3.54) must be satisfied, e.g. the local
mass equation obeys

ρ
(i)
0 (X(i)) = ρ(i)(ϕ(i)(X(i), t), t) J (i)(X(i), t) . (3.55)
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Since the material mass density ρ
(i)
0 is constant, the material time derivative of the mass

vanishes

ṁ(i) =
d
dt

∫

B(i)
0

ρ
(i)
0 (X(i)) dV (i) = 0 . (3.56)

Equation (3.56) denotes the desired balance of mass, thus the mass of the associated
system is invariant with respect to time.

3.3.2 Linear momentum – Cauchy’s 1st equation of motion

In order to deduce the balance of linear momentum the material velocity field is introduced
by

d
dt

ϕ(i)(X(i), t) = ϕ̇(i)(X(i), t) . (3.57)

Using equation (3.57) the total linear momentum with respect to the reference configu-
ration can be written as

L(i) =
∫

B(i)
0

ρ
(i)
0 (X(i)) ϕ̇(i)(X(i), t) dV (i) . (3.58)

The balance of linear momentum is obtained by the material time derivative of (3.58)
which is equal to the sum of all forces F (i),ext acting onto the body (Newton’s 2nd law),
which can be separated into forces acting on the boundary and the whole body, i.e.

L̇
(i)

= F (i),ext

⇔
∫

B(i)
0

ρ
(i)
0 (X(i)) ϕ̈(i)(X(i), t) dV (i) =

∫

B(i)
0

B(i)(X(i), t) dV (i) +
∫

Γ(i)

T (i)(X(i), t) dA(i) .

(3.59)

Therein B(i) and T (i) denote the body forces (e.g. gravitation) and surface tractions (dead
or follower loads owing to e.g. interactions with surrounding fluid) acting on B(i)

0 and Γ(i),
respectively. Hence, linear momentum conservation crucially depends on the applied
external forces acting on the solids. This should be borne in mind for the numerical
treatment with regard to the applied numerical methods. To obtain the global formulation
of the balance of linear momentum the divergence theorem in addition to Cauchy’s stress
theorem are applied to the last term of equation (3.59), which yields

∫

Γ(i)

P (i)(X(i), t) N (i) dA(i) =
∫

B(i)
0

Div(P (i)(X(i), t)) dV (i) . (3.60)
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Accordingly, the global formulation of Cauchy’s first equation of motion can be devel-
oped

L̇
(i) − F (i),ext = 0

⇔
∫

B(i)
0

(
ρ

(i)
0 (X(i), t) ϕ̈(i)(X(i), t) − B(i)(X(i), t) − Div(P (i)(X(i), t))

)
dV (i) = 0 (3.61)

Next, the aim is to provide the local balance of linear momentum. The desired local
formulation of Cauchy’s first equation of motion in material description is obtained by
equation (3.61), since it has to hold for arbitrary dV (i) i.e. one finds that

Div(P (i)(X(i), t)) + B(i)(X(i), t) − ρ0(X
(i), t) ϕ̈(i)(X(i), t) = 0 . (3.62)

Equation (3.62) is valid for all material configurations X(i) ∈ B(i)
0 .

3.3.3 Angular momentum – Cauchy’s 2nd equation of motion

The balance of angular momentum is briefly introduced. In this connection a fixed point
r0 ∈ Rndim needs to be introduced in order to express the angular momentum according to
the relative position r = ϕ(i)(X(i), t) − r0. For convenience the fixed point r0 is assumed
to be located in the origin O of the reference frame. Accordingly, the angular momentum
with respect to the origin O can be defined by

J (i) =
∫

B(i)
0

ρ
(i)
0 (X(i)) ϕ(i)(X(i), t) × ϕ̇(i)(X(i), t) dV (i) . (3.63)

To obtain the desired balance of angular momentum the material time derivative of the
angular momentum is calculated by

J̇
(i)

=
∫

B(i)
0

ρ
(i)
0 (X(i))

[
ϕ̇(i)(X(i), t) × ϕ̇(i)(X(i), t) + ϕ(i)(X(i), t) × ϕ̈(i)(X(i), t)

]
dV (i) .

(3.64)

The first term in equation (3.64) vanishes since ϕ̇(i)(X(i), t) × ϕ̇(i)(X(i), t) = 0. The time
derivative of the angular momentum is equal to all external momenta M

(i)
ext acting on the

whole bodies with B(i) and its boundaries with T (i), respectively, i.e.

J̇
(i)

(t) = M (i),ext (3.65)

⇔
∫

B(i)
0

ρ
(i)
0 (X(i)) ϕ(i)(X(i), t) × ϕ̈(i)(X(i), t) dV (i) =

∫

B(i)
0

ϕ(i)(X(i), t) × B(i)(X(i), t) dV (i)

+
∫

Γ(i)

ϕ(i)(X(i), t) × T (i)(X(i), t) dΓ(i) . (3.66)
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Equation (3.66) denotes the material description of the global balance of angular mo-
mentum. Similar to the balance of linear momentum the conservation of the balance of
angular momentum crucially depends on the applied external momenta. Subsequently,
the symmetry of the second Piola-Kirchhoff stress tensor S(i) is derived, which is a con-
sequence of the balance of the angular momentum:

Proof. First of all a special formulation of the divergence theorem of Gauß (see Appx. A.2)
given in spatial formulation is needed

∫

γ(i)

x(i) ×
(
σ(i)(x(i), t) n(i)

)
da(i) =

∫

B(i)
t

{x(i) × div(σ(i)(x(i), t))

+ε(i) : grad(x(i)) σ(i),T(x(i), t)} dv(i) , (3.67)

which can be related to the material configuration after some algebra using Nanson’s
relation (3.14), the relation of Cauchy and first Piola-Kirchhoff stress tensor (3.49), the
Jacobian determinant (3.13) and Cauchy’s stress theorem (3.45), which finally leads to

∫

Γ(i)

ϕ(i)(X(i), t) × P (i)(X(i), t) N (i) dA(i) =
∫

B(i)
0

{ϕ(i)(X(i), t) × Div(P (i)(X(i), t))

+ε : (F (i)(X(i), t) P (i),T(X(i), t))} dV (i) . (3.68)

Therein furthermore the identityVIII

Div(P (i)(X(i), t)) = Div(σ(i)(x(i), t) (J (i)(X(i), t) F (i),−T(X(i), t)))

= Grad(σ(i)(x(i), t)) : J F (i),−T(X(i), t) + σ(i)(x(i), t) Div(J (i)(X(i), t)F (i),−T(X(i), t))

= J (i)(X(i), t) div(σ(i)(x(i), t)) , (3.70)

has been used. Accordingly, with the aid of equation (3.68) the global balance of angular
momentum (3.66) can be rearranged as

∫

B(i)
0

ϕ(i)(X(i), t) ×


ρ

(i)
0 (X(i)) ϕ̈(i)(X(i), t) − B(i)(X(i), t) − Div(P (i)(X(i), t))︸ ︷︷ ︸

∗


 dV (i)

=
∫

B(i)
t

ε :
(

F (i)(X(i), t) P (i),T(X(i), t)
)

dV (i) . (3.71)

VIIIIn equation (3.70) the Piola identity Div(J F −T) = 0 has been used which can be deduced as follows
∫

B
(i)
0

Div(J (i)(X(i), t) F (i),−T(X(i), t)) dV (i) =

∫

Γ(i)

J (i)(X(i), t) F (i),−T(X(i), t) N (i) dA(i)

=

∫

γ(i)

I n(i) da(i) =

∫

B
(i)
t

div(I) dv(i) = 0 . (3.69)
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Therein ε denotes the third order permutation tensor which is used here with respect to
the reference configuration

ε = εABC EA ⊗ EB ⊗ EC , εABC = (EA × EB) · EB , (3.72)

where εABC denotes the Levi-Civita symbol. Furthermore on the left hand side of equation
(3.71) the symbol ∗ basically denotes Cauchy’s first equation of motion and thus vanishes.
Regarding the right hand side of equation (3.71) one obtains for all dV (i)

ε :
(

F (i)(X(i), t) P (i),T(X(i), t)
)

= ε : P̂
(i)

(X(i), t) =




P̂
(i)
23 − P̂

(i)
32

P̂
(i)
31 − P̂

(i)
13

P̂
(i)
12 − P̂

(i)
21


 = 0 , (3.73)

which proves that the for convenience introduced tensor P̂
(i)

must be symmetric

P̂
(i)

(X(i), t) = P̂
(i),T

(X(i), t) = F (i)(X(i), t) P (i),T(X(i), t) = P (i)(X(i), t) F (i),T(X(i), t) ,
(3.74)

and accordingly the first Piola-Kirchhoff stress tensor P (i) is non-symmetric. Insertion
of equation (3.51) yields the desired symmetry properties of the second Piola-Kirchhoff
stress tensor

F (i)(X(i), t) S(i),T(X(i), t) F (i),T(X(i), t) = F (i)(X(i), t) S(i)(X(i), t) F (i),T(X(i), t)

⇔ S(i),T(X(i), t) = S(i)(X(i), t) . (3.75)

With similar considerations one can show that Cauchy’s stress tensor is symmetric

σ(i)(x(i), t) = σ(i),T(x(i), t) . (3.76)

Accordingly, the conservation of angular momentum requires Cauchy’s stress tensor and
the second Piola-Kirchhoff stress tensor to be symmetric. Equation (3.76) is well-known
as Cauchy’s 2nd equation of motion.

3.3.4 Mechanical energy

Eventually, the balance of mechanical energy is formulated. The internal and external
power are assumed to be derived from corresponding potentials V (i),int and V (i),ext, which
indicates that the underlying system is a conservative system. Using the internal potential
energy

V (i),int =
∫

B(i)
0

W (i) dV (i) , (3.77)
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based on the stored strain energy density function W (i), to be dealt with in Chap. 3.4,
the internal power can be written as

P (i),int =
∫

B(i)
0

P (i)(X(i), t) : Ḟ (i)(X(i), t) dV (i) = V̇ (i),int

=
∫

B(i)
0

S(i)(X(i), t) : Ė
(i)

(X(i), t) dV (i) =
∫

B(i)
0

S(i)(X(i), t) :
1
2

Ċ
(i)

(X(i), t) dV (i) ,

(3.78)

where the first Piola-Kirchhoff stress tensor and the deformation gradient as well as the
second Piola-Kirchhoff stress tensor S(i) and the Green-Lagrangian strain tensor E(i) are
work conjugate pairs, respectively. The power of the surface and volume loads can be
written as

P (i),ext :=
∫

Γ(i)

T (i)(X(i), t) · ϕ̇(i)(X(i), t) dA(i) +
∫

B(i)
0

B(i)(X(i), t) · ϕ̇(i)(X(i), t) dV (i) .

(3.79)

The kinetic energy is defined by

T (i) =
1
2

∫

B(i)
0

ρ
(i)
0 ϕ̇(i)(X(i), t) · ϕ̇(i)(X(i), t) dV (i) . (3.80)

With the above equation the kinetic power can be deduced as follows

Ṫ (i) =
∫

B(i)
0

ρ0 ϕ̇(i)(X(i), t) · ϕ̈(i)(X(i), t) dV (i) . (3.81)

Substituting Cauchy’s stress theorem (3.45), the identity

Div(P (i),T(X(i), t) ϕ̇(i)(X(i), t)) = Div(P (i)(X(i), t)) · ϕ̇(i)(X(i), t)

+ P (i)(X(i), t) : Grad(ϕ̇(i)(X(i), t)) , (3.82)

and the local formulation of the balance of linear momentum (3.62) in equation (3.79)
eventually yields

P (i),ext =
d
dt

∫

B(i)
0

ρ
(i)
0

2
ϕ̇(i)(X(i), t) · ϕ̇(i)(X(i), t) dV (i) +

∫

B(i)
0

P (i)(X(i), t) : Ḟ
(i)

(X(i), t) dV (i)

= Ṫ (i) + P (i),int . (3.83)

Accordingly, the desired balance of mechanical energy Ḣ obeys

Ḣ :=
∑

i

(Ṫ (i) + P (i),int) =
∑

i

P (i),ext . (3.84)
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For a conservative system (P (i),ext = 0) the balance of mechanical energy vanishes and
the total energy is conserved. It becomes evident that

Ḣ =
∑

i

(Ṫ (i) + P (i),int) = 0, H = const. (3.85)

The above is of special interest for contact problems in the numerical treatment after
spatial and temporal discretization, since equation (3.85) should be valid as well in the
discrete setting. To this end, it is worth noting that (contact) constraints do not contribute
to work.

3.3.5 Local linear momentum on the contact boundary

The local balance of linear momentum on the contact boundary of two contacting bodies
can be written as (see Laursen [97])

2∑

i=1

T (i)
c dA(i) = T (1)

c dA(1) + T (2)
c dA(2) = 0 . (3.86)

Hence, the Piola-Kirchhoff contact tractions T (i)
c across the shared contact boundary

Γ(1)
c = Γ(2)

c are equal but with opposite direction and can include both frictional and fric-
tionless effects. For the NTS method the local balance of linear momentum is mostly con-
sidered in the reference configuration where for the variational consistent Mortar method
the local balance of linear momentum is typically considered on the current contact bound-
ary γ

(i)
c (see e.g. Wriggers and Laursen [162], Popp et al. [122], Hesch and Betsch [62]),

which can be stated as

2∑

i=1

t(i)
c da(i) = t(1)

c da(1) + t(2)
c da(2) = 0 . (3.87)

Therein t(i)
c denote the Cauchy contact tractions.

3.4 Hyperelastic material models

Due to the stress response in the continuum theory appropriate constitutive models, which
are based on observations and experimental data, need to be introduced. By focusing on
the contact behavior only commonly used hyperelastic (homogeneous, isotropic) material
models are considered within this work. Other materials such as linear elastic, hypere-
lastic, plastic, viscoelastic material models etc. can be considered as well and fit in the
provided framework but will be omitted here for convenience. A hyperelastic material
model requires the existence of a local strain energy density function W (i) : B(i)

0 ×I → R+

from which the stress response can be derived. A homogeneous material model provides
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the same behavior at each material point. Accordingly, the parameters of the strain en-
ergy function do not depend on the configuration. Isotropic material models provide the
same behavior in different directions, which can be verified using an imposed rigid-body
motion applied on the reference configuration

X̃
(i)

= R(i) X(i) + d(i) , (3.88)

where d(i) ∈ Rndim denotes a translation vector and R(i) ∈ SO(ndim) denotes a rotation
tensor. As a result the strain energy function remains equal, i.e.

W (i)(F (i)) = W (i)(F̃
(i)

) = W (i)(F (i) R(i),T) , (3.89)

W (i)(C(i)) = W (i)(C̃
(i)

) = W (i)(R(i) C(i) R(i),T) . (3.90)

Therein the deformation gradient F̃
(i)

F (i) =
∂x(i) ∂X̃

(i)

∂X̃
(i)

∂X(i)
= F̃

(i)
R(i) ⇒ F̃

(i)
= F (i) R(i),T , (3.91)

and the right Cauchy-Green strain tensor C̃
(i)

C(i) = (F̃
(i)

R(i))T (F̃
(i)

R(i)) = R(i),T F̃
(i),T

F̃
(i)

R(i) ⇒ C̃
(i)

= R(i) C(i) R(i),T , (3.92)

have been exploited. Thus an isotropic material model satisfies the conditions in equations
(3.89) and (3.90). In that event, one should not be confused with the invariance properties
for the deformation gradient (3.32) and the right Cauchy-Green strain tensor (3.34), which
are valid for all material models. The strain energy density function W (i) is always positive
during deformation

W (i)(F (i)(X(i))) ≥ 0 . (3.93)

I.e. the strain energy density increases if the deformation increases (cf. equation (3.93).
Furthermore a suitable strain energy density function should fulfill the following condi-
tions

W (i)(F (i) = I) = 0, lim
J(i)(X(i),t)→+∞

W (i) = +∞, lim
J(i)(X(i),t)→0+

W (i) = +∞ , (3.94)

Therein equation (3.94)1 denotes the normalization condition and implies that the strain
energy density should be zero for the stress free case. The conditions (3.94)2-(3.94)3

denote the so-called growth conditions (see Holzapfel [70]) which reflect the behavior of
the material model in the limits of total compression and total expansion, where the rule
of de l’Hospital is applied. In the following some important material models are presented.
First of all the Saint Venant-Kirchhoff model is introduced which is well suitable to model
steel materials. Then some hyperelastic material models are introduced which are usually
used to describe rubber or rubber-like materials. Namely the Ogden, the Mooney-Rivlin
and the Neo-Hookean material model are briefly introduced. For these material models
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there exist compressible and incompressible versions. In contrast to compressible models,
in incompressible models the involved bodies are assumed to not change their volume
during deformation. E.g. some polymeric materials show nearly such isochoric behavior.
But it is not sufficient to simply set J (i) = 1 in the strain energy density function (cf.
Spencer [140]). Instead the incompressibility constraint J (i) = 1 is incorporated for the
strain energy density function using Lagrange multipliers

W (i) = W (i)(F (i)(X(i), t)) − λ(i),p
(

J (i)(X(i), t) − 1
)

. (3.95)

Therein λ(i),p denotes a Lagrange multiplier which can be identified as a hydrostatic
pressure. In order to avoid difficulties in the numerical treatment of nearly incompressible
materials, the deformation and the right Cauchy-Green strain tensor are sometimes split
into a volumetric and an isochoric part (see Holzapfel [70])

F (i) = F (i),vol F (i),iso = (J (i))
1
3 I F (i),iso, C(i) = C(i),vol C(i),iso = (J (i))

2
3 I C(i),iso .(3.96)

Therein the dependencies are neglected here for convenience. As mentioned before the
strain energy density function depends on the deformation or the strain measure. With
regard to Cauchy’s representation theorem it is also common practice to use the prin-
cipal invariants I

(i)
A , A ∈ {1, 2, 3} (see Appx. B.3) of the strain energy density function

arguments or its eigenvalues λ
(i)
A (see Appx. B.2) in order to describe isotropic, hypere-

lastic material models. At any rate, the following different formulations can be likewise
employed

W (i)(C(i)) = W (i)(IA(C(i))) = W (i)(λ(i)
A ) . (3.97)

In order to obtain the stress response the derivative of the strain energy density function
with respect to the right Cauchy-Green strain tensor needs to be calculated. Using the
strain energy density function formulated in the principal invariants of the right Cauchy-
Green strain tensor the second Piola-Kirchhoff stress tensor can be expressed via

S(i) = 2
∂W (i)(I(i)

A )

∂C(i)
= 2

[
∂W (i)

∂I
(i)
1

∂I
(i)
1

∂C(i)
+

∂W (i)

∂I
(i)
2

∂I
(i)
2

∂C(i)
+

∂W (i)

∂I
(i)
3

∂I
(i)
3

∂C(i)

]
(3.98)

= 2

[
(
∂W (i)

∂I
(i)
1

+ I
(i)
1

∂W (i)

∂I
(i)
2

) I − ∂W (i)

∂I
(i)
2

C(i) + I
(i)
3

∂W (i)

∂I
(i)
3

C(i),−1

]
, (3.99)

where the chain rule has been applied. Moreover the derivatives of the principal invariants
with respect to the right Cauchy-Green strain tensor have been used (see Appx. B.6). In
the case of compressible materials the strain energy density function is usually split into
a volumetric W (i),vol and an isochoric part W (i),iso, i.e.

W (i)(λ̄(i)
A , J (i)) = W (i),iso(λ̄(i)

A ) + W (i),vol(J (i)) , (3.100)

where use has been made of the modified eigenvalues

λ̄
(i)
A = (J (i))− 1

3 λ
(i)
A , A ∈ {1, 2, 3} . (3.101)
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3.4.1 Saint Venant-Kirchhoff model

The Saint Venant-Kirchhoff model can simply be regarded as nonlinear extension of the
linear elastic model (Hooke’s law) which for sake of completeness is introduced as follows

W (i)(ǫ(i)) =
Λ(i)

2

(
tr(ǫ(i))

)2
+ µ(i) tr

(
(ǫ(i))2

)
. (3.102)

Therein ǫ(i) denotes the linearized strain tensor introduced in equation (3.22). Further-
more Λ(i) and µ(i) denote Lamé’s first and second parameter. The physical interpretation
of Lamé’s first parameter is difficult, whereas Lamé’s second parameter can physically be
assigned to the shear modulus (see Laursen [97]). It is important to note that the Lamé
parameters can be converted to standard Young’s modulus and Poisson’s ratio via

E(i) =
(3 Λ(i) + 2 µ(i)) µ(i)

Λ(i) + µ(i)
, ν(i) =

Λ(i)

2 (Λ(i) + µ(i))
. (3.103)

Note that the linear elastic model is suitable for many stiff engineering materials e.g.
metals etc., since such materials usually suffer only small deformations in most engineering
applications. The nonlinear extension of Hooke’s law is the Saint Venant-Kirchhoff model,
which can be written as

W (i)(E(i)) =
Λ(i)

2

(
tr(E(i))

)2

+ µ(i) tr
(

(E(i))2
)

=
1
2

E(i) : C(i) : E(i) . (3.104)

Unfortunately the Saint Venant-Kirchhoff model fails to satisfy the second part of the
growth condition (3.94). This becomes obvious by examination of the strain energy
function with regard to their limits, hence applying conditions (3.94) yields

W (i)(F (i) = I) = 0, lim
J(i)(X(i),t)→+∞

W (i) = +∞, lim
J(i)(X(i),t)→0

W (i) =
9
2

Λ(i) + 3 µ(i) .

(3.105)

This implies that in case of total compression the strain energy and the stresses do provide
finite values which is in disagreement with physical observations. Accordingly, reliable
results are only obtained in case of small deformations. With the strain energy function
at hand the first Piola-Kirchhoff stress tensor is deduced according to

P (i) =
∂W (i)(F (i))

∂F (i)
=

∂W (i)(C(i))

∂C(i)

∂C(i)

∂F (i)
= 2 F (i) ∂W (i)(C(i))

∂C(i)
= F (i) ∂W (i)(E(i))

∂E(i)
,

(3.106)

where the symmetry of the right Cauchy-Green strain tensor has been used. By applica-
tion of the Saint Venant-Kirchhoff model, the second Piola-Kirchhoff stress tensor can be
written as

S(i) =
∂W (i)(E(i))

∂E(i)
= Λ(i) tr(E(i)) I + 2 µ(i) E(i) = Λ(i) I : E(i) + 2 µ(i) E(i) . (3.107)
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Finally the elasticity tensor C(i) : B(i)
0 × I → Rndim×ndim×ndim×ndim , which is the second

derivative of the strain energy function with respect to the Green-Lagrangian strain tensor,
needs to be calculated for later use

C
(i) = 4

∂2W (i)

∂C(i) ∂C(i)
=

∂2W (i)

∂E(i) ∂E(i)
= Λ(i) (I ⊗ I) + 2 µ(i)

I . (3.108)

Therein I denotes the fourth order unit tensor by means of

I = EA ⊗ EB ⊗ EA ⊗ EB . (3.109)

In case of the Saint Venant-Kirchhoff model this fourth order tensor with 81 components
is constant since the model provides a linear relationship between S(i) and E(i). Due to
the conservative potential in use and due to the symmetry of C(i) and S(i) the elasticity
tensor is symmetric as well, accordingly

C
(i)
ABCD EA ⊗ EB ⊗ EC ⊗ ED = C

(i)
CDAB EC ⊗ ED ⊗ EA ⊗ EB . (3.110)

3.4.2 Ogden model

In the following the Ogden model is presented. It can be regarded as a family of material
models which as a special case contains the Mooney-Rivlin and the Neo-Hookean material
model. The strain energy density function of the Ogden model can be formulated, using
the eigenvalues λA, A ∈ {1, 2, 3} of the right Cauchy-Green strain tensor, as

W (i) =
µ

(i)
P

α
(i)
P

(
(λ(i)

A )α
(i)
P − 3

)
, (3.111)

where P ∈ {1, 2, 3}. Furthermore µ
(i)
P , α

(i)
P are the shear moduli and dimensionless pa-

rameters, respectively, which need to be determined by suitable experiments and fulfil
the consistency condition for the shear modulus µ(i) (parameter of resistance to shear
strain)

2 µ(i) =
∑

P

µ
(i)
P α

(i)
P . (3.112)

For compressible material behavior the Ogden model can be decomposed into an isochoric
part W (i),iso and a suitable volumetric part W (i),vol (see Ogden [121]), as follows

W (i) =W (i),iso(λ̄(i)
A ) + W (i),vol(J (i)(X(i), t))

=
µ

(i)
P

α
(i)
P

(
(λ̄(i)

A )α
(i)
P − 3

)
+ κ(i) (

ln(J (i)(X(i), t))
β(i)

+
(J (i)(X(i), t))−β(i)

(β(i))2
− 1

(β(i))2
) ,

(3.113)
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where κ(i) and β(i) denote the bulk modulus (parameter of resistance to uniform com-
pression) and an empirical coefficient, respectively (see Holzapfel [70]). The Ogden model
satisfies the conditions (3.94) since

W (i)(F (i) = I) = 0, lim
J(i)(X(i),t)→+∞

W (i) = +∞, lim
J(i)(X(i),t)→0

W (i) = +∞ , (3.114)

and it is well suited for rubber-like solids which suffer large strains. The disadvantage of
this model are the numerous material parameters which need to be determined. With the
strain energy density function at hand the stress response can be calculated. In particular
the second Piola-Kirchhoff stress tensor of the Ogden model (equation (3.113)) can be
written as

S(i) =2

(
∂W (i),iso(λ̄(i)

A )

∂C(i)
+

∂W (i),vol

∂C(i)

)
= S(i),iso(λ̄(i)

A ) + S(i),vol(J (i)(X(i), t))

=
1

(λ(i)
A )2

[
µ

(i)
P (λ̄(i)

A )α
(i)
P − 1

3
µ

(i)
P (λ̄(i)

B )α
(i)
P

]
A

(i)
A ⊗ A

(i)
A

+
κ(i)

β(i)

(
1 − (J (i)(X(i), t))−β(i)

)
(C(i))−1 . (3.115)

Therein A
(i)
A , A ∈ {1, 2, 3} are principal directions and λ

(i)
A are principal stretches of the

right Cauchy-Green strain tensor (see Appx. B.2). Furthermore the derivatives ∂W (i),iso

∂C(i)

and ∂J(i)

∂C(i) can be looked up in Appx. B.6. As before the elasticity tensor C(i) needs to be
calculated for the Ogden model

C
(i) = 4

∂2W (i)

∂C(i) ∂C(i)
= C

(i),iso + C
(i),vol . (3.116)

Therein the isochoric elasticity tensor C(i),iso and the volumetric elasticity tensors C(i),vol

are introduced. Both fourth order tensors are obtained after some algebra

C
(i)
iso =

1

λ
(i)
B

∂

∂λ
(i)
B

(
1

λ
(i)
A

∂W (i),iso

∂λ
(i)
A

)
A

(i)
A ⊗ A

(i)
A ⊗ A

(i)
B ⊗ A

(i)
B

+
3∑

A=2

1

λ
(i)
B

∂W (i),iso

∂λ
(i)
B

− 1

λ
(i)
A

∂W (i),iso

∂λ
(i)
A

λ
(i)2
B − λ

(i),2
A

(
A

(i)
A ⊗ A

(i)
B ⊗ A

(i)
A ⊗ A

(i)
B + A

(i)
A ⊗ A

(i)
B ⊗ A

(i)
B ⊗ A

(i)
A

)
,

(3.117)

C
(i),vol = 2

κ(i)

β(i)

(
1 − (J (i))−β(i)

)
Ĉ

(i) + κ(i) (J (i))−β(i)

(C(i))−1 ⊗ (C(i))−1 , (3.118)

where the derivative Ĉ(i) = ∂(C(i))−1

∂C(i) has been utilized (see Appx. B.6).

3.4.3 Mooney-Rivlin model

As mentioned before, the Mooney-Rivlin model can be regarded as special case of Ogden’s
model (3.111) with P ∈ {1, 2}, α1 = 2, α2 = −2. Accordingly, with regard to equation
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(3.111) the Mooney-Rivlin strain energy density function can be written as

W (i) =
µ

(i)
1

2

(
(λ(i)

A )2 − 3
)

− µ
(i)
2

2

(
(λ(i)

A )−2 − 3
)

. (3.119)

Introducing the principal invariants of the right Cauchy-Green strain tensor

I1(C
(i)) = tr(C(i)) = (λ(i)

A )2 , (3.120)

I2(C
(i)) =

1
2

(
tr
(

C(i)
)2

− tr
(

(C(i))2
))

= (λ(i)
2 )2 (λ(i)

3 )2 + (λ(i)
1 )2 (λ(i)

3 )2 + (λ(i)
1 )2 (λ(i)

2 )2 ,

(3.121)

I3(C
(i)) = det(C(i)) =

(
J (i)(X(i), t)

)2

= (λ(i)
1 )2 (λ(i)

2 )2 (λ(i)
3 )2 , (3.122)

the strain energy density function is obtained by

W (i) =
µ

(i)
1

2

(
(λ(i)

A )2 − 3
)

− µ
(i)
2

2

(
(λ(i)

2 )2 (λ(i)
3 )2 + (λ(i)

1 )2 (λ(i)
3 )2 + (λ(i)

1 )2 (λ(i)
2 )2 − 3

)

(3.123)

=
µ

(i)
1

2

(
I1(C

(i)) − 3
)

− µ
(i)
2

2

(
I2(C

(i)) − 3
)

. (3.124)

For compressible material behavior the Mooney-Rivlin model can be decomposed into an
isochoric and a volumetric part which either depends on the modified eigenvalues λ̄

(i)
A or

on the modified invariants Ī
(i)
A but can also be stated in the so-called coupled formulation

(see Holzapfel [70]) as follows

W (i) =
µ

(i)
1

2

(
I1(C

(i)) − 3
)

+
µ

(i)
2

2

(
I2(C

(i)) − 3
)

+c(i)
(

J (i)(X(i), t) − 1
)2

− (µ(i)
1 − 2 µ

(i)
2 ) ln(J (i)(X(i), t)) . (3.125)

Therein c(i) is an additional material parameter for the volumetric strain energy density
function. The Mooney-Rivlin model satisfies the normalization and growth conditions
(3.94) since

W (i)(F (i) = I) = 0, lim
J(i)(X(i),t)→+∞

W (i) = +∞, lim
J(i)(X(i),t)→0

W (i) = +∞ . (3.126)

The second Piola-Kirchhoff stress tensor is calculated as follows

S(i) =2
∂W (i)(I(i)

1 (C(i)), I
(i)
2 (C(i)))

∂C(i)

=
[
µ

(i)
1 I − µ

(i)
2

(
I

(i)
1 (C(i)) I − C(i)

)

+
(

2 c(i)
(

(J (i)(X(i), t))2 − J (i)(X(i), t)
)

− (µ(i)
1 − 2 µ

(i)
2 )
)

(C(i))−1
]

. (3.127)
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Accordingly, the corresponding elasticity tensor C(i) for the Mooney-Rivlin model reads

C
(i) =

[
2 µ

(i)
2 (S − I) +

(
4 c(i) ((J (i)(X(i), t))2 − J (i)(X(i), t)) − 2 (µ(i)

1 − 2 µ
(i)
2 )
)
Ĉ

(i)

+c(i)

(
4
(

J (i)(X(i), t)
)2

− 2 J (i)(X(i), t)

)
(C(i))−1 ⊗ (C(i))−1

]
, (3.128)

where the fourth order tensors I and S are defined in Appx. B.6.

3.4.4 Neo-Hookean model

The Neo-Hookean model denotes a further simplification of the Ogden model using P ∈
{1}, α

(i)
1 = 2 by means of equation (3.111). Hence, the strain energy density function of

the Neo-Hookean model is defined by

W (i) =
µ

(i)
1

2

(
(λ(i)

A )2 − 3
)

=
µ

(i)
1

2

(
I1(C

(i)) − 3
)

. (3.129)

Regarding the Mooney-Rivlin material model (3.125) a slightly different volumetric strain
energy is used for the Neo-Hookean model, which is defined by

W (i) =
µ(i)

2

(
I1(C

(i)) − 3
)

+
Λ(i)

2
(ln(J (i)(X(i), t)))2 − µ(i) ln(J (i)(X(i), t)) . (3.130)

Therein the first and second Lamé’s parameter Λ(i) and µ(i) are used which are related to
Young’s modulus and Poisson’s ratio as depicted in equation (3.103). The Neo-Hookean
model can be examined for satisfying the normalization and growth condition (3.94),
which yields

W (i)(F (i) = I) = 0, lim
J(i)(X(i),t)→+∞

W (i) = +∞, lim
J(i)(X(i),t)→0

W (i) = +∞ , (3.131)

and is therefore a physically realistic and very simple hyperelastic model. Accordingly,
the second Piola-Kirchhoff stress tensor and the fourth-order elasticity tensor for the
Neo-Hookean model can be computed as

S(i) =µ(i)
(

I − (C(i))−1
)

+ Λ(i) ln(J(X(i), t)) (C(i))−1 , (3.132)

C
(i) =2

(
Λ(i) ln(J (i)(X(i), t)) − µ(i)

)
Ĉ

(i) + Λ(i) (C(i))−1 ⊗ (C(i))−1 . (3.133)

3.5 Initial boundary value problem

In Sec. 3.5.1 the strong formulation of the contact problem is summarized. Afterwards
in order to solve the problem at hand, the finite element method is used for the spatial
discretization. Basis of that is the variational formulation of the problem described in
Sec. 3.5.2.
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0
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t

B(2)
0

B(2)
t

Γ(1)
c
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c

Γ(1)
n

Γ(2)
n

Γ(1)
d

Γ(2)
d

γ
(1)
c

γ
(2)
c

γ
(1)
n

γ
(2)
n

γ
(1)
d

γ
(2)
d

X(1)

X(2)

ϕ(1)(X(1), t)

ϕ(2)(X(2), t)

Figure 3.6: Configurations of the two body contact problem (B(i)
0 : bodies in the reference

configuration, B(i)
t : bodies in the current configuration).

3.5.1 Strong formulation

The bodies are assumed to contact each other within the considered time interval I. The
focus is on a two body contact problem (see Fig. 3.6) neglecting self-contact for simplicity.
In the following the intention is to set up the relevant equations of the underlying two-
body contact problem depicted in Fig. 3.6. First of all the boundaries of the bodies in
the reference configuration are introduced

Γ(i) = Γ(i)
n ∪ Γ(i)

c ∪ Γ(i)
d . (3.134)

Therein Γ(i) denotes the whole boundary of body B(i)
0 , Γ(i)

d ⊂ Γ(i) the Dirichlet boundary,
Γ(i)

n ⊂ Γ(i) the Neumann boundary and Γ(i)
c ⊂ Γ(i) the contact boundary. These boundaries

are required to not overlap each other and hence satisfy

Γ(i)
n ∩ Γ(i)

c = Γ(i)
n ∩ Γ(i)

d = Γ(i)
c ∩ Γ(i)

d = ∅ . (3.135)

This has to be valid for the spatial counterparts as well

γ
(i)
(•) = ϕ(i)(Γ(i)

(•), t) . (3.136)

Therein the abbreviation (•) is used to refer to the different boundaries as introduced in
equation (3.134), respectively. The strong formulation of Cauchy’s first equation of motion
in the material description (see equation (3.62)) denotes a nonlinear PDE of second order
in space and time. For this dynamic process besides appropriate boundary conditions,
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appropriate initial conditions must be provided. Therefore, the initial boundary value
problem (IBVP) can be summarized as follows:

Find ϕ(i)(X(i), t)∀t ∈ I in order to satisfy the underlying IBVP (see Laursen [97])

Div(P (i)(X(i), t)) + B(i)(X(i), t) − ρ
(i)
0 (X(i), t) ϕ̈(i)(X(i), t) = 0 (3.137)

ϕ(i)(X(i), t) = ϕ̄(i) on Γ(i)
d ∀ t ∈ I (3.138)

P (i)(X(i), t) N (i) = T̄
(i)

(X(i), t) on Γ(i)
n ∀ t ∈ I (3.139)

ϕ(i)(X(i), t = 0) = ϕ
(i)
0 in B(i)

0 (3.140)

ϕ̇(i)(X(i), t = 0) = ϕ̇
(i)
0 in B(i)

0 . (3.141)

In equations (3.138), (3.139) the prescribed displacements ϕ̄(i) : B(i)
0 ×I → Rndim and trac-

tions T̄
(i)

: Γ(i)
n ×I → Rndim are provided, where N (i) denotes the unit outward normal to

Γ(i)
n . In equations (3.140) and (3.141) the prescribed initial conditions ϕ

(i)
0 : B(i)

0 → Rndim

and ϕ̇
(i)
0 : B(i)

0 → Rndim are provided. Additionally, P (i) = F (i) S(i) contains the hyperelas-
tic constitutive response (see Sec. 3.4). Furthermore in order to incorporate finite strains
the right Cauchy-Green strain tensor C(i) by means of equation (3.11) is employed. In
addition to equations (3.137)-(3.141) contact conditions will be introduced subsequently
in order to complete the strong formulation of the underlying contact problem depicted in
Fig. 3.6. During the simulation the contact boundary Γ(i)

c is unknown in general. More-
over, dealing with contact boundaries the displacement is unknown in contrast to the
Dirichlet boundaries and the forces are unknown in contrast to Neumann boundaries.

Contact formulation For the underlying contact formulationIX, it is assumed that a
point ϕ(1)(X(1), t) ∈ γ

(1)
c on the slave surface γ

(1)
c = ϕ(1)(Γ(1)

c ) is in contact with the
opposing master surface γ

(2)
c . The orthogonal projection is then defined by

‖ϕ(1)(X(1), t) − ϕ(2)(X̄
(2)

(X(1), t))‖ → min , (3.142)

where ϕ̄(2) := ϕ(2)(X̄
(2)

(X(1)), t) is the closest point to ϕ(1) := ϕ(1)(X(1), t). The mas-
ter surface γ

(2)
c itself can be viewed as a 2-D manifold, parametrized by the convective

coordinates ξα, α ∈ {1, 2} (see Fig. 3.7). Thus, the projection is characterized by the
relationships

X̄
(2)

(X(1)) := X(2)(ξ̄) , (3.143)

and
ϕ̄(2) := ϕ(2)(ξ̄, t), ξ̄ = [ξ̄1, ξ̄2] , (3.144)

where the convected coordinates ξ̄α are calculated from (3.142). Furthermore the tangent
vectors of the surface γ

(2)
c are introduced

aα := ϕ(2)
,α (ξ̄, t) , (3.145)

IXNote, the subsequently introduced contact formulation is partly taken from Franke et al. [40].
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Figure 3.7: Parametrization of the spatial master surface γ
(2)
c .

where (•),α denotes the derivative with respect to ξα. Note that the vectors aα are directed
tangentially along the coordinate curves ξα at ϕ̄(2) (see Fig. 3.7) but are in general not
orthonormal. The convective coordinates can be regarded as engraved on the surface and
denote the coordinates of a local skew symmetric coordinate system with metric given
by

mαβ = aα · aβ . (3.146)

To the covariant base vectors aα the associated contravariant vectors are defined by

aα = mαβaβ . (3.147)

Therein mαβ = (mαβ)−1 is the inverse of the metric. Afterwards, the gap function is
introduced, which denotes the closest absolute distance between both surfaces

gN =
(
ϕ(1) − ϕ̄(2)

)
· n . (3.148)

Therein n denotes the unit outward normal to γ
(2)
c at ϕ̄(2) and can be calculated via the

tangents given in equation (3.145) as follows

n :=
a1 × a2

‖a1 × a2‖
. (3.149)

Note that the tangent vectors aα along with the normal vector n are covariant base
vectors where the normal vector n is assumed to be directed orthogonal to aα along the
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coordinate line ξ3 (see Fig. 3.7). According to the balance of linear momentum across the
shared contact boundary Γ(1)

c = Γ(2)
c (3.86) the Piola-Kirchhoff contact traction can be

written as

T (1)
c (X(1), t) dA(1) = P (1) N (1) dA(1) = −T (2)

c (X̄
(2)

(X(1)), t) dA(2) . (3.150)

As usual the contact traction is decomposed into a normal and a tangential part

T (1)
c (X(1), t) = tN + tT , (3.151)

where tN := t
(1)
N = −tN n and tT · n = 0. In a similar manner the relative velocity v can

be decomposed into a normal and a tangential part as follows

v = − d
dt

(ϕ(1)(X(1), t) − ϕ(2)(X̄
(2)

(X(1), t))) = ġN + ġT (3.152)

For the normal component the Karush-Kuhn-Tucker conditions

gN ≥ 0 , (3.153)

tN ≤ 0 , (3.154)

tN g = 0 , (3.155)

have to hold where the multivalued character is illustrated for the one-dimensional case
in Fig. 3.8. Thus even frictionless contact deals with nonlinear and non-smooth Karush-
Kuhn-Tucker conditions which are well-known in the optimization literature (see e.g.
Luenberger [111]). The impenetrability condition (3.153) prevents the penetration of
the contacting solids, whereas with equation (3.154) only compression rather than any
kind of adhesion in the normal direction is achieved. Equation (3.155) combines both
(i.e. equations (3.153) and (3.154)). Thus equation (3.155) denotes the complementarity
condition which demands the contact pressure to be zero if there is a positive gap (gap
is open). If the contact pressure is less than zero equation (3.155) demands that the gap
is zero (gap is closed). The Karush-Kuhn-Tucker conditions can be incorporated using
a constitutive relation instead, i.e. the penalty regularized formulation of the normal
traction can be defined as

tN = εN < -gN > , (3.156)

which is also illustrated in Fig. 3.8 (thin line). In equation (3.156) the penalty parameter
εN and the Macaulay brackets have been used, which can be defined as follows

< -gN >=

{
0, gN < 0

gN, gN ≥ 0
. (3.157)

Modeling unilateral contact, the Karush-Kuhn-Tucker conditions can be incorporated
with Lagrange multipliers and an active set strategy (for more details see Hüeber and
Wohlmuth [71], Hesch and Betsch [61, 62], Popp et al. [122]) in order to prevent any
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tN

gN

gN ≥ 0

tN ≤ 0
tN gN = 0

ǫN

Figure 3.8: Admissible region for normal traction tN (one dimensional illustration).

penetrations of the contacting bodies. To be specific the inequalities arising in the Karush-
Kuhn-Tucker conditions (3.153)-(3.155) are reformulated as equality constraint using the
max-operator (see Hintermueller et al. [68]). To this end, the equality constraint can be
defined as

ΦN := gN = λN − max(0, λN − c ΦN) = 0 , (3.158)

where ΦN denotes the constraint for unilateral contact and λN := tN the corresponding
Lagrange multiplier. Moreover, c ∈ R+ is a constant only influencing the convergence
but not the accuracy of the constraint enforcement quality like the penalty parameter for
the penalty method. A detailed explanation of the active set strategy together with a
discussion of the effects is given in the spatial and temporal discrete case in Chap. 5.4.
The vector tT lies in tangent space of the master surface γ

(2)
c . Accordingly, tT can be

resolved via the contravariant base vectors aα according to

tT := t
(1)
T = −tTα

aα . (3.159)

The corresponding frictional constitutive law can be incorporated with the tractions tTα
.

Many researchers have investigated various constitutive laws which are used to describe
the tangential tractions (see among others He and Curnier [55], Laursen and Oancea
[102]). A standard dry friction Coulomb law is used to complete the set of equations used
for the numerical examples. Based on this specific formulation, Coulomb’s law can be
written as

‖tT‖ ≤µ tN , (3.160)

Φ :=‖tT‖ − µ tN ≤ 0 . (3.161)

Therein µ denotes the Coulomb coefficient of friction. The tangential velocity in the case
of slip follows from

ġT = ζ̇

(
∂

∂tT

Φ

)
= ζ̇

tT

‖tT‖ , (3.162)
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tT

gT

µ tN

−µ tN
ǫT

Φ ≤ 0
ζ̇ ≥ 0
ζ̇ Φ = 0

Figure 3.9: Admissible region for tangential traction tT with respect to the tangential
gap gT in case of Coulomb law (one dimensional illustration, cf. Laursen
[97]).

where ζ̇ denotes the consistency parameter, which depends on (3.160). Hence, one can
write

ζ̇

{
= 0, if Φ < 0, (stick)

> 0, elseif ‖tT‖ = µ tN, (slip) .
(3.163)

With the velocity at hand the last statement can be rewritten in analogy to perfect
plasticity (cf. Simo and Hughes [133], de Souza Neto et al. [31]) as follows

ġT = ζ̇
tT

‖tT‖ , (3.164)

Φ ≤ 0 , (3.165)

ζ̇ ≥ 0 , (3.166)

ζ̇ Φ = 0 . (3.167)

The multivalued character of Coulomb’s law for the one dimensional case is depicted in
Fig. 3.9. Furthermore, if necessary, the tangential velocity ġT (3.164) can be regularized
using a constitutive relation, since perfect stick contact is not observed in nature. Hence,
the penalty regularized velocity is defined as

1
ǫT

L (tT) =
1
ǫT

ṫT = ġT − ζ̇
tT

‖tT‖ . (3.168)

Therein L (tT) denotes the Lie-derivative of the tangential traction (consult Appx. B.5
for more information about Lie-derivatives). Obviously, in the limit εT → ∞, equation
(3.168) approximates the contact condition (3.164). The (penalty regularized) traction is
illustrated in Fig. 3.9 (thin line). Note that the components in tangential direction can
easily be calculated using equation (3.168) and ġT = mαβ ξ̇β aα which leads to

ṫTα
= ǫT

(
mαβ ξ̇β − ζ̇

tTα

‖tT‖

)
. (3.169)
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3.5.2 Variational formulation – Virtual work

An analytical solution of the strong formulation (3.137)-(3.141) together with the normal
contact conditions (3.153)-(3.155) and the tangential contact conditions (3.164)-(3.167) is
not feasibleX. An approximate solution is sought instead. Accordingly, in what follows the
problem is discretized in space and time where the finite element method is used for the
former and a finite difference scheme for the latter. Therefore the strong formulation is
transferred into a variational or weak formulation which provides a symmetric formulation.
That means the same order of spatial differentiation in both the solution and the test-
function is guaranteed. To this end the solution space is defined by

V(i)
s = {ϕ(i) : ϕ(i)(X(i), t) ∈ H1(B(i)

0 )|ϕ(i)(X(i), t) = ϕ̄(i) on Γ(i)
d } , (3.170)

such that the solution function ϕ(i) is the element of the Sobolev space H1 which includes
the space of square-integrable functions and square-integrable first derivatives. Further-
more the solution function is required to satisfy the Dirichlet boundary condition. The
space of test functions with the corresponding test function δϕ(i) is postulated asXI

V(i)
t = {δϕ(i) : δϕ(i)(X(i)) ∈ H1(B(i)

0 )|δϕ(i)(X(i)) = 0 on Γ(i)
d } . (3.171)

Accordingly, the test-function vanishes at the Dirichlet boundary. The weak formulation
for each body i is obtained by the dot product of equation (3.137) with an arbitrary test
function δϕ(i) ∈ V(i)

s and by the integral over the domain B(i)
0 , such that

∫

B(i)
0

(
Div(P (i)(X(i), t)) · δϕ(i) + B(i)(X(i), t) · δϕ(i) − ρ

(i)
0 (X(i), t) ϕ̈(X(i), t) · δϕ(i)

)
dV (i)

= 0 . (3.172)

Using integration by parts and applying the divergence theorem of Gauß yields

∫

B(i)
0

Div(P (i)(X(i), t)) · δϕ(i) dV (i)

=
∫

B(i)
0

Div(P (i),T(X(i), t) δϕ(i)) dV (i) −
∫

B(i)
0

P (i)(X(i), t) : Grad(δϕ(i)) dV (i)

=
∫

Γ(i)

δϕ(i) · (P (i)(X(i), t) N (i)) dA(i) −
∫

B(i)
0

(F (i)(X(i), t) S(i)(X(i), t)) : Grad(δϕ(i)) dV (i) .

(3.173)

XNote that the considered problem provides beside geometric and material also boundary nonlinearities
which emanate from the contact conditions.

XINote that the test function δϕ(i) can also be interpreted as virtual displacement.
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As required in (3.171) for the first term on the right hand side in equation (3.173) the test
function is zero on the Dirichlet boundary. Furthermore equation (3.139) can be utilized
such that the desired weak formulation of the bodies is obtained after short calculations
∫

B(i)
0

ρ
(i)
0 ϕ̈(i)(X(i), t) · δϕ(i) dV (i) +

∫

B(i)
0

(F (i)(X(i), t)S(i)(X(i), t)) : Grad(δϕ(i)) dV (i) =

∫

B(i)
0

B(i)(X(i), t) · δϕ(i) dV (i) +
∫

Γ
(i)
n

T̄
(i)

(X(i), t) · δϕ(i) dA(i) +
∫

Γ̄
(i)
c

T (i)
c (X(i), t) · δϕ(i) dA(i) .

(3.174)

Assuming active contact for convenience, Γ̄(i)
c denotes the active contact boundary, here

and in what follows. Except for the contact contributions the underlying material weak
formulation is beneficial for the linearisation process since the integration limits do not
depend on the solution compared to a spatial weak form. Furthermore the double con-
traction of a symmetric and a skew symmetric second order tensor vanishes. This can be
utilized for the second term in equation (3.174), accordingly

(F (i)(X(i), t) S(i)(X(i), t)) : Grad(δϕ(i)) = S(i)(X(i), t) :
(

F (i),T(X(i), t) Grad(δϕ(i))
)

= S(i)(X(i), t) :
(

sym(F (i),T(X(i), t) Grad(δϕ(i))) + skew(F (i),T(X(i), t) Grad(δϕ(i)))
)

= S(i)(X(i), t) :
1
2

(
F (i),T(X(i), t) Grad(δϕ(i)) + GradT(δϕ(i)) F (i)(X(i), t)

)

= S(i)(X(i), t) : δE(i) = 2 DW (i)(C(i)) :
1
2

δC(i) = S(i)(X(i), t) :
1
2

δC(i) . (3.175)

For more details about subdivision of a second order tensor in a symmetric and a skew
symmetric part see Appx. A.1. Eventually, the virtual work in Lagrangian description for
the whole system can be written as

G =
2∑

i=1

G(i)(ϕ(i), δϕ(i)) =
2∑

i=1

{
∫

B(i)
0

ρ
(i)
0 ϕ̈(i)(X(i), t) · δϕ(i) dV (i)

+
∫

B(i)
0

S(i)(X(i), t) :
1
2

δC(i) dV (i) −
∫

B(i)
0

B(i)(X(i), t) · δϕ(i) dV (i)

−
∫

Γ
(i)
n

T̄
(i)

(X(i), t) · δϕ(i) dA(i) −
∫

Γ̄
(i)
c

T (i)
c (X(i), t) · δϕ(i) dA(i)} ∀ϕ(i) ∈ V(i)

s , δϕ(i) ∈ V(i)
t .

(3.176)

Therein the first term on the right hand side denotes the inertia virtual work G(i),dyn, the
second term denotes the internal virtual work G(i),int, the third and fourth term denote the
external virtual work G(i),ext, respectively and the last term denotes the contact virtual
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work G(i),c. Accordingly, the virtual work for the whole system can be written as

G(ϕ, δϕ) =
2∑

i=1

(
G(i),dyn(ϕ(i), δϕ(i)) + G(i),int(ϕ(i), δϕ(i)) + G(i),ext(ϕ(i), δϕ(i))

+G(i),c(ϕ(i), δϕ(i))
)

. (3.177)

Remark 1. Strictly speaking, the underlying virtual work (3.177) is not an equality but
an inequality equation, due to the contact constraints (3.153)-(3.155) and (3.164)-(3.167)
involved. Here and in what follows it is assumed that the contact interface is known using
e.g. an active set strategy, regularization techniques or others. Based on this assumption
the virtual work can be written as an equality (see e.g. Wriggers [161], Willner [152]).

In the last statement ϕ and δϕ contain the collection of the mappings ϕ(i) and virtual
displacements δϕ(i) as follows

ϕ =

[
ϕ(1)

ϕ(2)

]
, δϕ =

[
δϕ(1)

δϕ(2)

]
. (3.178)

Taking into account the balance of linear momentum across the contact interface (3.150)
the contact contribution to the virtual work can be summarized by

Gc(ϕ, δϕ) =
2∑

i=1

G(i),c(ϕ(i), δϕ(i)) = −
∫

Γ̄
(1)
c

T (1)
c ·

(
δϕ(1) − δϕ(2)

)
dA(1) (3.179)

= −
∫

γ̄
(1)
c

t(1)
c ·

(
δϕ(1) − δϕ(2)

)
da(1) , (3.180)

involving only one integral expression over the slave surface Γ(1)
c . Using equations (3.151)

and (3.159) the contact contribution to the virtual work can be decomposed as follows

Gc(ϕ, δϕ) =
∫

Γ̄
(1)
c

(
δϕ(1) − δϕ(2)

)
· (tN n + tTα

aα) dA(1) . (3.181)

The last statement crucially depends on the variation of the convective coordinates ξ̄ and
its derivatives.

3.5.3 Frictional kinematics

Next, particular attention is focused on the variation of the convective coordinates to com-
plete the contact formulation given in (3.181). In particular the most common approach
is outlined, referred to as the direct approachXII in the following (see Konyukhov and
Schweizerhof [84]) and subsequently a new augmentation technique for the description of
frictional kinematics is presented.

XIINote, the subsequently introduced direct approach is partly taken from Franke et al. [40].
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Direct approach The convective coordinates ξ̄ = [ξ̄1, ξ̄2] can be obtained from the
solution of the minimum distance problem (3.142). Correspondingly, the orthogonality
condition (

ϕ(1) − ϕ̄(2)
)

· aα = 0 ∀α ∈ {1, 2} , (3.182)

has to be valid. Computing the time derivative of the last equation yields

(ϕ̇(1) − ˙̄ϕ(2) − aβ
˙̄ξβ) · aα +

(
ϕ(1) − ϕ̄(2)

)
·
(

ȧα + aαβ
˙̄ξβ
)

= 0 . (3.183)

Using the unit length of the normal vector, i.e. n · n = 1 together with the gap vector
(cf. (3.148)) given by

g = gN n = ϕ(1) − ϕ̄(2) , (3.184)

the terms in (3.183) can be rearranged. Accordingly, the rate of change of the convective
coordinates can be expressed by

˙̄ξβ = Aαβ
[(

ϕ̇(1) − ˙̄ϕ(2)
)

· aα + gN n · ˙̄ϕ(2)
,α

]
, (3.185)

where Aαβ = (Aαβ)−1 denotes the contravariant counterpart of tensor

Aαβ := mαβ − gN hαβ . (3.186)

Therein hαβ denotes the curvature of the surface which can be computed as

hαβ := aαβ · n . (3.187)

Replacing the velocity by the variation yields

δξ̄β = Aαβ
(
(δϕ(1) − δϕ̄(2)) · aα + gN n · δϕ̄(2)

,α

)
. (3.188)

Assuming that gN = 0 is valid at the contact interface, the variation of ξ̄α boils down to

δξ̄α =
(
δϕ(1) − δϕ̄(2)

)
· aα . (3.189)

Accordingly, using the variation of the gap function

δgN =
(
δϕ(1) − δϕ̄(2)

)
· n , (3.190)

the virtual work expression (3.181) can be recast in the form

Gc(ϕ, δϕ) =
∫

Γ̄
(1)
c

(
tNδgN + tTα

δξ̄α
)

dA(1) , (3.191)

where its underlying contact tractions can be computed exactly employing the Lagrange
multiplier method or by a constitutive relation (penalty method). Thus, exemplary the
normal contact traction can be either calculated via

tN := λN , or tN := ǫN < −gN > . (3.192)
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In what follows the Lagrange multiplier method is used for the normal part which is
in good agreement with the assumption used in equation (3.189). The penalty method
is used for the tangential part. Other constraint enforcement techniques may also be
employed. Accordingly, the virtual work formulation of this kind of mixed approach can
be written as

Gc(ϕ, λN, δϕ, δλN) =
∫

Γ̄
(1)
c

(
λNδΦN + δλNΦN + tTα

δξ̄α
)

dA(1) . (3.193)

Therein ΦN := gN denotes the impenetrability constraint for closed gaps (active contact
boundaries Γ̄(1)

c ) and λN := tN denotes the corresponding Lagrange multiplier. Further-
more δΦN := δgN denotes the variation of the gap function. The tangential traction tTα

is calculated via an arbitrary frictional constitutive law, in which its action is directed
towards the virtual displacements of the convective coordinates. The majority of previ-
ous works dealing with large deformation frictional contact problems relies on equation
(3.193) using a penalty method for both normal and tangential direction (see Wriggers
[161], Laursen [97]). Note that statement (3.193) holds if (3.188) is used instead of (3.189),
since the additional terms to be considered only redefine the tractions tTα

in tangential di-
rection. For frictionless contact the term tTα

δξ̄α on the right hand side of equation (3.193)
has to be removed. The linearisation of (3.193) necessary for the Newton method can be
anticipated in the continuous settingXIII. The linearisation of the weak contribution can
be summarized as follows

∆Gc(ϕ, λN, δϕ, δλN) =
∫

Γ
(1)
c

∆
(
λNδΦN + δλNΦN + tTα

δξ̄α
)

dA(1)

=
∫

Γ
(1)
c

(
∆λNδΦN + λN∆δΦN + ∆δλNΦN + δλN∆ΦN + ∆tTα

δξ̄α + tTα
∆δξ̄α

)
dA(1) .

(3.194)

Therein ∆ΦN has the same structure as δΦN given in equation (3.190) and ∆ξ̄α has
the same structure as δξ̄α given in equation (3.188). Moreover ∆δλN vanishes. The
linearisation of the traction (∆tTα

) depends on the selected frictional constitutive law
and can be looked up for Coulomb dry friction model in Appx. D.3. The linearisation of

XIIINote that for a quadratic convergence of Newton’s method the linearisation in general needs to be
done after spatial and temporal discretization to obtain a consistent tangent matrix.
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the remaining terms are (cf. Laursen [97])

∆ δΦN = − (δϕ̄(2)
,α ∆ξα + ∆ϕ̄(2)

,α δξα + aαβ ∆ξβ δξα) · n

+ ΦN n · (δϕ̄(2)
,α + aαβ δξβ) mαγ (∆ϕ̄(2)

,γ + aγδ δξδ) · n , (3.195)

∆ δξ̄α =Aαβ
(
−aβ (δξ̄γ ∆ϕ̄(2)

,γ + δϕ̄(2)
,γ ∆ξ̄γ) − (aβ · aγδ − g n · aβγδ) δξ̄γ ∆ξ̄δ +

g (δϕ̄,βγ ∆ξ̄γ + ∆ϕ̄,βγ δξ̄γ) n − (δϕ̄
(2)
,β + aβγ δξ̄γ) · aδ ∆ξ̄δ−

(∆ϕ̄
(2)
,β + aβγ ∆ξ̄γ) · aδ δξ̄δ + (δϕ(1) − δϕ̄(2)) (∆ϕ̄

(2)
,β + aβγ ∆ξ̄γ)+

(∆ϕ(1) − ∆ϕ̄(2)) (δϕ̄
(2)
,β + aβγ δξ̄γ)

)
. (3.196)

Obviously the linearisation of the variation of the convective coordinates (3.196) is quite
cumbersome.

3.5.4 Coordinate augmentation technique

Following the arguments in Hesch and Betsch [61], a specific coordinate augmentation
technique is extended to frictional contact problemsXIV. As has been outlined in Chap. 2,
this technique relies on the introduction of additional coordinates to the global system.
Here the additional coordinates f = [f1, f2] ∈ R2 are introduced to represent the convective
coordinates. To link the new coordinates to the original ones, the following constraint
function needs to be provided

Φ
f
Aug(ϕ, f) :=

[(
ϕ(1) − ϕ(2)(f)

)
· ã1(f)(

ϕ(1) − ϕ(2)(f)
)

· ã2(f)

]
= 0 , (3.197)

which represents the orthogonality condition. Similar to definition (3.145) for the tan-
gent vectors in (3.197) the modified tangents based on the just defined augmented coor-
dinates

ãα(f) = ϕ(2)
,α (f) ∀α ∈ {1, 2} , (3.198)

are introduced. Analogous to the definition of the gap function (3.148), the impenetra-
bility constraint Φ̃N(ϕ, f) is introduced as follows

Φ̃N(ϕ, f) := g̃N(ϕ, f) =
(
ϕ(1) − ϕ(2)(f)

)
· ñ(f) . (3.199)

Therein ñ(f) follows from equation (3.149) by replacing aα with ϕ
(2)
,α (f). Furthermore in

order to facilitate the design of an energy-momentum scheme the additional coordinates
d ∈ R3, which represent the unit outward normal vector n, are introduced. Therefore the
augmented constraints

Φd
Aug(ϕ,d, f) =




d · ã1(f)
d · ã2(f)

1
2

(d · d − 1)


 , (3.200)

XIVNote, this section is partly taken from Franke et al. [40].
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are employed. Accordingly, the impenetrability constraint can be written as

˜̃ΦN(ϕ,d, f) :=
(
ϕ(1) − ϕ(2)(f)

)
· d , (3.201)

Therein ϕ, d and f denote primary variables which need to be solved for. For frictional
contact the augmentation of the normal is not mandatory since the aim of the underlying
contribution is to provide a robust and simple approach for frictional contact including
consistent momentum reproduction rather than to provide an energy consistent method
at any price. Hence, for the frictional case the vector with all degrees of freedom, the
constraints as well as the corresponding Lagrange multipliers are defined by

ϕ̃ =

[
ϕ

f

]
, Φ̃ =

[
Φ

f
Aug

Φ̃N

]
, λ̃ =

[
λ

f
Aug

λN

]
. (3.202)

Remark 2. The augmented coordinates f are introduced as primary variables of the un-
derlying system. I.e. the variation of them has to be done beside the solution function
which is in contrast to the established methods (covariant, direct approach etc.) where the
variation of ξ := ξ(ϕ) is considered. Accordingly, by using the additional coordinates,
the calculation of the first and second derivatives are simplified compared to the direct
approach using ξ(ϕ) (cf. (3.188)).

Similar to (3.193), the contact contribution to the virtual work for the frictional aug-
mented approach is given by

Gc(ϕ̃, λ̃, δϕ̃, δλ̃) =
∫

Γ̄
(1)
c

(
λN

(
δϕΦ̃N + δfΦ̃N

)
+ λ

f
Aug ·

(
δϕΦ

f
Aug + δfΦ

f
Aug

)
+

+tTα
δfα + δλN Φ̃N + δλ

f
Aug · Φ

f
Aug

)
dA(1)

=
∫

Γ̄
(1)
c

λ̃ · δϕΦ̃ dA(1)

︸ ︷︷ ︸
G

Aug
ϕ

+
∫

Γ̄
(1)
c

(λ̃ · δfΦ̃ + tTα
δfα) dA(1)

︸ ︷︷ ︸
G

Aug
f

+
∫

Γ̄
(1)
c

δλ̃ · Φ̃ dA(1)

︸ ︷︷ ︸
G

Aug

λ̃

. (3.203)

The resulting system of equations is obtained for arbitrary displacements, augmented
coordinates and Lagrange multipliers as

Gdyn + Gint − Gext − GAug
ϕ = 0 ∀δϕ(i) ∈ R

3 , (3.204)

GAug
f = 0 ∀δf ∈ R

2 , (3.205)

GAug

λ̃
= 0 ∀δλ̃ ∈ R

3 . (3.206)

Consequently, the newly proposed augmentation technique strongly affects the discretiza-
tion in space and time. It will be shown in the sequel that the proposed augmentation
technique simplifies the implementation compared to the direct approach. In order to
design an energy-momentum approach for frictionless contact, the vector of degrees of



54 3 Continuum mechanics for large deformation contact analysis

freedom, the constraints and the corresponding Lagrange multipliers is collected as fol-
lows

˜̃ϕ =




ϕ

f

d


 , ˜̃

Φ =




Φd
Aug

Φ
f
Aug

˜̃ΦN


 , ˜̃

λ =




λd
Aug

λ
f
Aug

λN


 . (3.207)

For frictionless contact, beside the introduction of further augmentation coordinates, the
third term of equation (3.203) is not present, which yields the virtual work contribution

Gc( ˜̃ϕ, ˜̃
λ, δ ˜̃ϕ, δ ˜̃

λ) =
∫

Γ̄
(1)
c

(
˜̃
λ · δ ˜̃

Φ + δ ˜̃
λ · ˜̃

Φ
)

dA(1) . (3.208)

3.5.5 Frictional Mortar approach

In order to apply the Mortar method in the spatial discrete setting equations (3.180)
and (3.87) are consulted and the contact virtual work is reconsidered with respect to the
current configuration. Accordingly, the contact virtual work can be written as

Gc(ϕ, δϕ) = −
∫

γ̄
(1)
c

t(1)
c ·

(
δϕ(1) − δϕ(2)

)
da(1)

=
∫

γ̄
(1)
c

(I − n ⊗ n + n ⊗ n) t(1)
c ·

(
δϕ(1) − δϕ(2)

)
da(1)

=
∫

γ̄
(1)
c

{(n ⊗ n) t(1)
c ·

(
δϕ(1) − δϕ(2)

)
+ (I − n ⊗ n) t(1)

c ·
(
δϕ(1) − δϕ(2)

)
} da(1)

=
∫

γ̄
(1)
c

{λN n ·
(
δϕ(1) − δϕ(2)

)
+ tT · (I − n ⊗ n)

(
δϕ(1) − δϕ(2)

)
} da(1) ,

(3.209)

whereas the last formulation is possible since I − n ⊗ n provides a symmetric second
order tensor. In this connection it is important to remark that no split into co- and
contravariant components of tangential traction is required.

3.6 Conservation properties

Various constants of motion exist for the underlying continuous contact system. Namely
the balance of energy, linear and angular momentum are preserved in case of a conserva-
tive system without friction. For a detailed investigation of the conservation properties,
first a homogeneous Neumann problem (see Armero and Petöcz [3]) without contact is
considered and the arising contact formulations are examined separately afterwards.
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3.6.1 Homogeneous Neumann problem without contact

In case of a conservative nonlinear elastodynamic problem without external forces and
momenta (i.e. T (i) = B(i) = 0) and without imposed Dirichlet boundaries (Γ(i)

d = ∅),
which is known as homogeneous Neumann problem, the conservation properties have to
hold for all times t ∈ R+.

Lemma 1. For the homogeneous Neumann problem excluding external Neumann, Dirich-
let and contact contributions, the conservation properties, e.g. total energy as well as total
linear and angular momentum, are conserved.

Proof. The weak formulation (3.177) for the homogeneous Neumann problem without
external forces and momenta are summarized as

G =
2∑

i=1

{
∫

B(i)
0

ρ(i) ϕ̈(i) · δϕ(i) dV (i) +
∫

B(i)
0

S(i)(X(i)) :
(

F (i),T(X(i), t) Grad(δϕ(i))
)

dV (i)} .

(3.210)

The conservation properties are examined by substituting the admissible variations, given
by δϕ(i) ∈ Rndim , with appropriate Lie-Group operations.

• For the conservation of total linear momentum the variation in (3.210) is chosen as
δϕ(i) = µ ∈ Rndim , where µ = const. which yields

G =
2∑

i=1

{
∫

B(i)
0

ρ(i) V̇
(i)

dV (i) · µ +
∫

B(i)
0

S(i)(X(i)) :
(

F (i),T(X(i), t) Grad(µ)
)

dV (i)}

= µ · dL

dt
= 0 . (3.211)

Accordingly, dL
dt

= 0 and L = const.

• For the conservation of angular momentum the variation in (3.210) is chosen as
δϕ(i) = µ × ϕ(i), which yields

G =
2∑

i=1

∫

B(i)
0

{ρ(i) ϕ̈(i) · µ × ϕ(i) + F (i)(X(i), t) S(i)(X(i)) :
(
Grad(µ × ϕ(i))

)
} dV (i)

=
2∑

i=1

∫

B(i)
0

{ρ(i) µ · (ϕ(i) × ϕ̈(i)) +
(

F (i)(X(i), t) S(i)(X(i)) F (i),T(X(i), t)
)

: µ̂} dV (i)

= µ · dJ

dt
= 0 , (3.212)

where the skew-symmetric tensor µ̂ ∈ Rndim×ndim subject to

µ̂ϕ(i) = µ × ϕ(i) , (3.213)
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has been used. Moreover the fact that a double contraction (inner product) of a
symmetric with a skew-symmetric tensor vanishes has been employed. Accordingly,
dJ
dt

= 0 and J = const.

• For the conservation of total energy the variation in (3.210) is chosen as δϕ(i) = ϕ̇(i),
which yields

G =
2∑

i=1

{
∫

B(i)
0

ρ(i) ϕ̈(i) · ϕ̇(i) dV (i) +
∫

B(i)
0

F (i) S(i)(X(i)) : Grad(ϕ̇(i)) dV (i)}

=
2∑

i=1

{Ṫ (i) +
∫

B(i)
0

∂W (i)

∂F (i)
: Ḟ

(i)
dV (i)}

= Ṫ + V̇ int = Ḣ = 0 . (3.214)

As expected, the conservation properties hold for all times t ∈ R+ for the spatial and
temporal continuous homogeneous Neumann problem at hand (3.210).

3.6.2 Contact contribution – direct approach

Following Chap. 3.5.3 the virtual work contribution of the direct approach reads

Gc
ϕ =

∫

Γ̄
(1)
c

{λN

(
δϕ(1) − δϕ(2)

)
· n

+ tTα
Aαβ

(
(δϕ(1) − δϕ(2)) · ϕ

(2)
,β + (ϕ(1) − ϕ(2)) · δϕ

(2)
,β

)
} dA(1) . (3.215)

Again, arbitrary variations are substituted using δϕ(i) = µ ∈ Rndim in order to verify
conservation of linear momentum

Gc
ϕ =

∫

Γ̄
(1)
c

{λN (µ − µ) · n

+ tTα
Aαβ

(
(µ − µ) · ϕ

(2)
,β + (ϕ(1) − ϕ(2)) · µ,β

)
} dA(1) = 0 . (3.216)

Obviously, the derivative µ,β becomes zero. To verify angular momentum conservation,
the arbitrary variations are replaced by δϕ(i) = µ × ϕ(i), which yields

Gc
ϕ =

∫

Γ̄
(1)
c

{λN µ · (
(
ϕ(1) − ϕ(2)

)
× n)

+ tTα
Aαβ

(
µ · (ϕ(1) − ϕ(2)) × ϕ

(2)
,β + µ · (ϕ(2)

,β × (ϕ(1) − ϕ(2)))
)

} dA(1)

=
∫

Γ̄
(1)
c

{λN µ · (gN n × n) + tTα
Aαβ

(
µ · gN n × ϕ

(2)
,β + µ · (−gN n × ϕ

(2)
,β )
)

} dA(1) = 0 .

(3.217)



3.6 Conservation properties 57

Accordingly, the direct approach does not affect the balance of total linear and angu-
lar momentum in the continuous setting. It is important to remark that energy is not
conserved due to the non conservative friction involved.

3.6.3 Contact contribution – augmented approach

The augmented system given by

GAug
ϕ =

∫

Γ̄
(1)
c

{λN

(
δϕ(1) − δϕ(2)

)
· ñ

+ λf,α
Aug

[
(δϕ(1) − δϕ(2)) · ãα + (ϕ(1) − ϕ(2)) · δãα

]
} dA(1) , (3.218)

is examined for conservation of total linear and angular momentum. For verifying the
conservation of linear momentum the variations are substituted by δϕ(i) = µ, which
yields

GAug
ϕ =

∫

Γ̄
(1)
c

{λN (µ − µ) · ñ + λf,α
Aug

[
(µ − µ) · ãα + (ϕ(1) − ϕ(2)) · µ,α

]
} dA(1) = 0 .

(3.219)

The conservation of angular momentum can be examined by replacing the arbitrary vari-
ations with δϕ(i) = µ × ϕ(i), which yields

GAug
ϕ =

∫

Γ̄
(1)
c

λN µ ·
(
ϕ(1) − ϕ(2)

)
× ñ

+ λf,α
Aug

[
µ · (ϕ(1) − ϕ(2)) × ãα + (ϕ(1) − ϕ(2)) · µ × ãα

]
} dA(1)

=
∫

Γ̄
(1)
c

{λN µ · g̃N ñ × ñ + λf,α
Aug [µ · (ϕ(1) − ϕ(2)) × ãα − µ · (ϕ(1) − ϕ(2)) × ãα]} dA(1)

=0 . (3.220)

Accordingly, in the continuous setting the augmented approach does not affect total lin-
ear and angular momentum conservation. Moreover the involved augmented constraints
ΦAug are frame indifferent which is shown in Franke et al. [40] and omitted herein for
convenience.

3.6.4 Contact contribution – Mortar approach

The virtual work of contact for the frictional Mortar method is given by

Gc =
∫

γ̄
(1)
c

{λN n · (δϕ(1) − δϕ(2)) + tT · (I − n ⊗ n) (δϕ(1) − δϕ(2))} da(1) = 0 . (3.221)
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Note the term λN δn · (ϕ(1) − ϕ(2)) vanishes in the time continuous case for the underly-
ing virtual work. For verifying the conservation of linear momentum the variations are
substituted by δϕ(i) = µ ∈ Rndim , which yields

Gc =
∫

γ̄
(1)
c

{λN n · (µ − µ) + tT · (I − n ⊗ n) (µ − µ)} da(1) = 0 . (3.222)

Accordingly, linear momentum conservation is not affected. The conservation of angular
momentum can be examined by replacing the arbitrary variations with δϕ(i) = µ × ϕ(i),
which yields

Gc =
∫

γ̄
(1)
c

{λN n · µ × (ϕ(1) − ϕ(2)) + tT · (I − n ⊗ n) µ × (ϕ(1) − ϕ(2))} da(1)

=
∫

γ̄
(1)
c

{λN n · µ × gN n + tT · (I − n ⊗ n) µ × gN n} da(1) = 0 . (3.223)

In the above case the gap is assumed to be zero (gN = 0).
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Next, the spatial discretization of the continuous bodies including its contact constraints
developed in Chap. 3 is considered. To achieve this the well-established displacement-
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Figure 4.1: FE-discretization for the two-body contact problem.

based finite element method (see e.g. Hughes [73], Belytschko et al. [9], Wriggers [160],
Zienkiewicz et al. [166]) is used for the bodies in contact, subdividing each body B(i) into
a finite number of elements n

(i)
el (see also Fig. 4.1) such that

B(i) ≈ B(i),h =
⋃

e

B(i),h,e , (4.1)

where e = {1, ..., n
(i)
el } corresponds to the respective element. In this connection the

discrete solution space V(i),h
s which is an approximation of V(i)

s is defined as follows

V(i),h
s = {ϕ(i),h ∈ C0(B(i),h) : ϕ(i),h(X(i), t) = NI(X(i)) q

(i)
I (t)|ϕ(i),h = ϕ̄(i)

on Γ(i),h
d ∀I ∈ ω(i)} .(4.2)

In equation (4.2) q
(i)
I : I → Rndim represents the nodal position at point I ∈ ω(i) =

{1, . . . , n
(i)
node} with the total number of nodes n

(i)
node. Here and in what follows the most
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general three-dimensional case ndim = 3 is considered. Moreover in equation (4.2), NI :
B(i)

0 → R denote global trilinear Lagrangian shape functions for standard brick elements
(see Fig. 4.2) which are obtained in physical space by the polynomial expression

N(X(i)
1 , X

(i)
2 , X

(i)
3 ) = N(X(i)) =a1 + a2 X

(i)
1 + a3 X

(i)
2 + a4 X

(i)
3 + a5 X

(i)
1 X

(i)
2

+ a6 X
(i)
1 X

(i)
3 + a7 X

(i)
2 X

(i)
3 + a8 X

(i)
1 X

(i)
2 X

(i)
3 . (4.3)

Therein the parameters aI , I ∈ {1, ..., 8} can be computed by using a basic property of
the shape functions at the vertices

NI(X(i)
J ) = δIJ , I, J ∈ ω(i) . (4.4)

In order to simplify the implementation, the shape functions are transformed to the par-
ent element (see Fig. 4.2). In the sequel local Lagrangian shape functions can be obtained

3 33

4
441 1

1

2 22

7 77

8
885 55

6 66

ξ

η

ζ

j(i),h,eJ (i),h,e

B(i),h,e
0

B(i)
�

B(i),h,e
t

ϕ(i),h

EA ea

Figure 4.2: FE transformations on element level.

by coordinate transformation or can be constructed with Lagrangian interpolation func-
tions. Accordingly, for one dimensional shape functions (see Fig. 4.3) the Lagrangian
interpolation functions (see Wriggers [160]) are defined as

N̄I(ξ) =
n∏

J=0,
J 6=I

ξ − ξJ

ξI − ξJ

, ξ ∈ [−1, 1] . (4.5)

The desired trilinear Lagrangian shape functions can be constructed by multiplying the
shape functions for each local coordinate direction, hence

NI(ξ, η, ζ) = NI(ξ) = N̄I(ξ) N̄I(η) N̄I(ζ) =
1
8

(1 − ξ ξI) (1 − η ηI) (1 − ζ ζI) . (4.6)
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1

1−1
ξ

N̄1(ξ) N̄2(ξ)

N̄(ξ)

Figure 4.3: One dimensional linear local shape functions.

The shape functions satisfy the properties

∑

I

NI(ξ) = 1, NI(ξJ) = δIJ , (4.7)

where global C0-continuity is complied (cf. equation 4.2). In order to get the trilinear brick
element [−1, 1] × [−1, 1] × [−1, 1] depicted in Fig. 4.2, local coordinates with vertices ξI ,
I ∈ {1, ..., 8} are applied. A Bubnov-Galerkin finite element method is used. It implies the
application of the same shape functions for the solution and test functionI, respectively,
i.e. the finite space of test functions V(i),h

t is an approximation of V(i)
t and defined by

V(i),h
t = {δϕ(i),h ∈ C0(B(i),h) : δϕ(i),h(X(i)) = NI(X(i)) δq

(i)
I |δϕ(i),h = 0

on Γ(i),h
d ∀I ∈ ω(i)} , (4.8)

usually it leads to a symmetric tangent matrix (certainly, frictional phenomena are an
exception). In equation (4.8) δq

(i)
I denotes the corresponding nodal variation at point

I ∈ ω(i). So, the polynomial approximations of the solution function, virtual displacement
and reference geometry of each element e can be written as

ϕ(i),h,e = NI(X(i)) q
(i),e
I (t), δϕ(i),h,e = NI(X(i)) δq

(i),e
I ,

X(i),h,e = NI(X(i)) X
(i),e
I ∀I ∈ ω(i) . (4.9)

Therein X
(i),e
I denotes the nodal reference position at point I for element e. In order

to employ transformations from parent to spatial or reference domain and vice versa the
Jacobians depicted in Fig. 4.2

J (i),h,e(ξ) =
∂X(i),h,e

∂ξ
= X

(i),e
I ⊗ ∇ξNI(ξ), j(i),h,e(ξ) =

∂ϕ(i),h,e

∂ξ
= q

(i),e
I ⊗ ∇ξNI(ξ) ,

(4.10)

IThis is in contrast to the Petrov-Galerkin finite element method, which uses different shape functions
for the solution and test space, respectively, leading to an unsymmetrical tangent matrix.

4 Spatial discretisation
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are introduced. With regard to the first term on the right hand side of equation (3.177),
the dynamic virtual work can be discretized using the polynomial approximations (4.9)
and the Jacobian (4.10)1 which gives

G(i),dyn,h =

n
(i)
el⋃

e=1

δq
(i),e
I ·

∫

B(i),h,e
0

ρ
(i)
0 NI(X(i)) NJ(X(i)) I dV (i) q̈

(i),e
J

=

n
(i)
el⋃

e=1

δq
(i),e
I ·

∫

B�

ρ
(i)
0 NI(ξ) NJ(ξ) I det(J (i),h,e(ξ)) dξ dη dζ q̈

(i),e
J

=

n
(i)
el⋃

e=1

δq
(i),e
I · M

(i),e
IJ q̈

(i),e
J = δq(i) · M (i)q̈(i) . (4.11)

Therein I ∈ Rndim×ndim is the identity matrix. Moreover the element mass matrix M
(i),e
IJ ∈

Rndim×ndim which does not depend upon the configuration and the global consistent mass
matrix M (i) ∈ Rndof×ndof with ndof = nnode ndim have been introduced. For the spatial
discretization of the internal virtual work in equation (3.177) the variation of the right
Cauchy-Green strain tensor needs to be discretized

δC(i),h,e = F (i),h,e,T (δϕ(i),h,e ⊗ ∇X(i)) + (δϕ(i),h,e ⊗ ∇X(i))T F (i),h,e . (4.12)

Here equation (3.175) has been consulted. Furthermore the chain rule has been employed
to deduce the gradient of the virtual displacement. The chain rule is also applied to the
semi-discrete deformation gradient which appears in equation (4.12)

F (i),h,e = ϕ(i),h,e ⊗ ∇X(i) = q
(i),e
I ⊗ ∇X(i)NI(X(i)) = q

(i),e
I ⊗

(
(J (i),h,e)−T∇ξNI(ξ)

)
.

(4.13)

Due to the symmetry of the second Piola-Kirchhoff stress tensor and the variation of the
right Cauchy-Green strain tensor the Voigt notation is applied

S(i),h,e
v =




S
(i),h,e
11

S
(i),h,e
22

S
(i),h,e
33

S
(i),h,e
12

S
(i),h,e
23

S
(i),h,e
13




, δC(i),h,e
v =




δC
(i),h,e
11

δC
(i),h,e
22

δC
(i),h,e
33

δC
(i),h,e
12 + δC

(i),h,e
21

δC
(i),h,e
23 + δC

(i),h,e
32

δC
(i),h,e
13 + δC

(i),h,e
31




= 2 B
(i),e
I δq

(i),e
I . (4.14)

It is advantageous for implementation regarding the computational effort. In equation
(4.14) the B-matrix B

(i),e
I in Voigt notation

B
(i),e
I =




F
(i),h,e
11 NI,X1

F
(i),h,e
21 NI,X1

F
(i),h,e
31 NI,X1

F
(i),h,e
12 NI,X2

F
(i),h,e
22 NI,X2

F
(i),h,e
32 NI,X2

F
(i),h,e
13 NI,X3

F
(i),h,e
23 NI,X3

F
(i),h,e
33 NI,X3

F
(i),h,e
11 NI,X2

+F
(i),h,e
12 NI,X1

F
(i),h,e
21 NI,X2

+F
(i),h,e
22 NI,X1

F
(i),h,e
31 NI,X2

+F
(i),h,e
32 NI,X1

F
(i),h,e
12 NI,X3

+F
(i),h,e
13 NI,X2

F
(i),h,e
22 NI,X3

+F
(i),h,e
23 NI,X2

F
(i),h,e
32 NI,X3

+F
(i),h,e
33 NI,X2

F
(i),h,e
11 NI,X3

+F
(i),h,e
13 NI,X1

F
(i),h,e
21 NI,X3

+F
(i),h,e
23 NI,X1

F
(i),h,e
31 NI,X3

+F
(i),h,e
33 NI,X1




, (4.15)



63

is given. Eventually, the semi-discrete internal virtual work can be written as

G(i),int,h =

n
(i)
el⋃

e=1

∫

B(i),h,e
0

S(i),h,e :
1
2

δC(i),h,e dV (i) =

n
(i)
el⋃

e=1

δq
(i),e
I ·

∫

B(i),h,e
0

B
(i),e,T
I S(i),h,e

v dV (i)

=

n
(i)
el⋃

e=1

δq
(i),e
I ·

∫

B�

B
(i),e,T
I S(i),h,e

v det(J (i),h,e(ξ)) dξ dη dζ

=

n
(i)
el⋃

e=1

δq
(i),e
I · F

(i),int,e
I = δq(i) · F (i),int . (4.16)

Therein the element contribution to the internal force vector F
(i),int,e
I : I → Rndim and

its corresponding global counterpart F (i),int : I → Rndof have been introduced. Finally
the external forces comprising of the body forces and Neumann boundary forces are
discretized. For the Neumann boundary different kind of forces, e.g. dead or follower
loads, can be applied. For convenience attention is focused on the former. In this case the
Cauchy traction is prescribed with a constant force vector t̄

(i) ∈ Rndim . Accordingly, the
Neumann virtual work can be formulated with respect to the current Neumann boundary
γ

(i)
n or to the reference Neumann boundary Γ(i)

n as follows

G(i),ext,n =
∫

γ
(i)
n

t̄
(i) · δϕ(i) da(i) =

∫

Γ
(i)
n

T̄
(i) · δϕ(i) dA(i) . (4.17)

Using dA(i) = ‖X
(i)
,ξ × X(i)

,η ‖ dξ dη the external virtual work is discretized as follows

G(i),ext,h = −
n

(i)
el⋃

e=1

∫

B(i),h,e
0

B(i),h,e · δϕ(i),h,e dV (i)

−
n

(i)
nel⋃

n=1

∫

Γ
(i),h,n
n

t̄
(i),h,n ‖ϕ

(i),h,n
,ξ × ϕ

(i),h,n
,η ‖

‖X
(i),h,n
,ξ × X(i),h,n

,η ‖
· δϕ(i),h,n dA(i)

= −
n

(i)
el⋃

e=1

δq
(i),e
I ·

∫

B�

NI(ξ) B(i),h,e det(J (i),h,e(ξ)) dξ dη dζ

−
n

(i)
nel⋃

n=1

δq
(i),n
I ·

∫

∂B�

N̂I(ξ) t̄
(i),h,n ‖ϕ

(i),h,n
,ξ × ϕ(i),h,n

η ‖ dξ dη

= −
n

(i)
el⋃

e=1

δq
(i),e
I · F

(i),extb,e
I −

n
(i)
nel⋃

n=1

δq
(i),n
I · F

(i),extn,n
I = −δq(i) · F (i),ext . (4.18)

4 Spatial discretisation
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Therein, N̂I(X(i)) : Γ(i)
n → R denote bilinear shape functions applied to the Neumann

boundary γ
(i),h
n with nodes I ∈ ω̂(i) = {1, ..., nnnode} and applied to the total num-

ber of nodes nnnode per Neumann boundary element n. This is in accordance with
the isoparametrical discretization of the bodies B(i)

0 employing trilinear shape functions.
Furthermore in equation (4.18) the element external body and Neumann force vectors
F

(i),extb,e
I : I → Rndim and F (i),extn,n : I → Rndim have been introduced, respectively. Both

are arranged in the global external force vector F
(i),ext
I : I → Rndof . For more details

about the finite element implementation of a Neumann boundary see Schweizerhof and
Ramm [130], Simo et al. [138], Rumpel and Schweizerhof [128], Haßler [53]. In equations
(4.11),(4.16) and (4.18) the assembly process has been applied. Accordingly, the mass
matrix as well as the internal and external forces are assembled over all elements e and
n, respectively

M (i) =
n

(i)
el

A
e=1

M
(i),e
IJ , F (i),int =

n
(i)
el

A
e=1

F
(i),int,e
I , F (i),ext =

n
(i)
el

A
e=1

F
(i),extb,e
I +

n
(i)
nel

A
n=1

F
(i),extn,n
I . (4.19)

In equations (4.19) the assembly operator A has been used (see Hughes [73]). In accor-
dance with the global contributions in (4.19) the solution and virtual displacement are
arranged in vectors as follows

q(i) =




q
(i)
1
...

q
(i)

n
(i)
node


 , δq(i) =




δq
(i)
1
...

δq
(i)

n
(i)
node


 . (4.20)

Eventually, the semi-discrete virtual work of the whole system can be written as follows

Gh(q, δq) =
∑

i

G(i),dyn,h + G(i),int,h + G(i),ext,h + G(i),c,h

=
∑

i

δq(i) · (M (i)q̈(i)(t) + F (i),int − F (i),ext) + G(i),c,h . (4.21)

Therein the last term G(i),c,h denotes the semi-discrete virtual work of contact including
both normal and frictional contact contributions, which is subject of the subsequent sec-
tions. Linearisation of the above is carried out in Appx. D.2. In order to further simplify
the notation the involved quantities in (4.21) are arranged as

q =

[
q(1)

q(2)

]
, δq =

[
δq(1)

δq(2)

]
, δq · M q, δq · F int,ext . (4.22)

Therein the internal and external forces are included in F int,ext such that F int,ext = F int −
F ext. The remaining integrals for the element contributions in equations (4.11),(4.16)
and (4.18) can be evaluated using numerical integration, like e.g. quadrature, which is
skipped to Appx. C.1.
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4.1 NTS element

For the discretization of the virtual work of contact the NTS method is employedII ,
which uses a slave-master concept (see for example the textbooks Wriggers [161], Laursen
[97], Konyukhov [83] and the pioneering work of Hallquist [50]). To be specific a slave node
and its corresponding master surface are depicted in Fig. 4.4 for a typical semi-discrete
contact situation. Similar to the approximations for the solution, virtual displacement
and the reference configuration, associated to the domain of the bodies, the following
approximations for the contact master surface (here arbitrarily determined as γ

(2),h
c ) are

given by

ϕ(2),h,s
c = N̂I(X(2)) q

(2),s
I (t), δϕ(2),h,s

c = N̂
(2)
I (X(2)) δq

(2),s
I ∀I ∈ Ω(2) , (4.23)

where s = {1, ..., ncel} denotes the s-th contact element of the in total ncel contact ele-
ments. In equation (4.23) N̂I : Γ(2)

c → R denote bilinear shape functions (cf. the Neumann
boundary). Moreover, for each contact element s the nodal point q

(2),s
I : I → Rndim and

its variation δq
(2),s
I ∈ Rndim are used, where I ∈ Ω(2) = {1, . . . , n

(2)
cnode}. Therein n

(2)
cnode

denotes the total number of nodes for the contact master element s.

EA, ea

ϕ
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ϕ
(2),h,s
c

q
(2),s
1 q

(2),s
2

q
(2),s
3

q
(2),s
4

nh,s

a
h,s
1

a
h,s
2

γ
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γ
(2),h
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Figure 4.4: Five node NTS contact element with slave (•)(1) and corresponding master
interface (•)(2).

IINote, the underlying section is partly taken from Franke et al. [40].
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4.1.1 Direct approach

With the application of the direct approach, the convected coordinates ξ ∈ R2 are com-
puted internally within each NTS element s by solving the orthogonal projection of the
slave node ϕ(1),s onto the master surface represented by ϕ(2),s. Based on these consider-
ations the nonlinear problem

Rop,s =

[(
ϕ(1),s − ϕ̄(2),s

)
· as

1(
ϕ(1),s − ϕ̄(2),s

)
· as

2

]
= 0 , (4.24)

has to be solved with respect to the convected coordinates ξs for each contact element s
yielding the solution point ξ̄

s
. In equation (4.24) the following abbreviations have been

utilized for convenience

ϕ(1),s := ϕ(1),h,s
c , ϕ(2),s := ϕ(2),h,s

c (ξ̄), as
α := ah,s

α (ξ̄) = ϕ
(2),h,s
,ξα (ξ̄) . (4.25)

Although simple structure of Rop,s ∈ R2 can be observed, an analytical solution thereof
is not feasible (see Wriggers [161]). Therefore a numerical solution is performed using an
internal Newton’s method (for a detailed explanation of Newton’s method see Chap. 5.3
and Appx. A.3). Taylor series expansion of Rop,s aborted after the linear element leads
to

Rop,s ≈ Rop,s(ξ̄
k,s

) + DRop,s(ξ̄
k,s

) ∆ξ̄
k+1,s

= 0 . (4.26)

Thus, the Newton increment and update are calculated by

∆ξ̄
k+1,s

= −
(

DRop,s(ξ̄
k+1,s

)
)−1

Rop,s(ξ̄
k,s

), ξ̄
k+1,s

= ξ̄
k,s

+ ∆ξ̄
k+1,s

, (4.27)

where k denotes the k-th iteration of Newton’s method. Newton’s method iterates until
the solution is fairly accurate, here ‖Rop,s‖ < ε, where ε ∈ R+ denotes the user de-
fined Newton tolerance (e.g. ε = 1e-10). In (4.27) the tangent matrix DRop,s has been
introduced and can be calculated using the Gateaux derivative as follows

DRop,s(ξs) ∆ξs =
d
dǫ

Rop,s(ξs + ǫ ∆ξs)|ǫ=0

=

[(
q(1),s − q̄(2),s

)
· as

11 − N̂I,ξ1 q
(2)
I · as

1

(
q(1),s − q̄(2),s

)
· as

12 − N̂I,ξ2 q
(2)
I · as

1(
q(1),s − q̄(2),s

)
· as

21 − N̂I,ξ1 q
(2)
I · as

2

(
q(1),s − q̄(2),s

)
· as

22 − N̂I,ξ2 q
(2)
I · as

2

]
∆ξs ,

(4.28)

where the second derivative of the master surface coordinate with respect to the convective
coordinates as

αβ := ϕ
(2),h,s

c,ξα,ξβ (ξ̄
s
) is used. For convenience the set of nodes qs : I → R15 is

employed for each NTS element s and collected as follows

qs =
[
q(1),s,T q

(2),s,T
1 q

(2),s,T
2 q

(2),s,T
3 q

(2),s,T
4

]T

. (4.29)

The frictional constraints are enforced via the penalty method, in which no further un-
knowns are added. The contact contributions in normal direction are incorporated using
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the Lagrange multiplier method. Therefore the discrete impenetrability constraint Φs
N for

an active contact elementIII s is defined as

Φs
N := gh,s

N =
(
ϕ(1),s − ϕ(2),s

)
· ns = 0 . (4.30)

Therein the discrete normal vector of the projection point ξ̄
s

is introduced as

ns := nh,s(ξ̄) =
as

1 × as
2

‖as
1 × as

2‖
. (4.31)

In order to define the discrete virtual work of contact, the discrete variation of the im-
penetrability constraint is introduced

δΦs
N := δgs

N =
(
δϕ(1),s − δϕ(2),s

)
· ns +

(
ϕ(1),s − ϕ(2),s

)
· δns . (4.32)

Therein the second term vanishes due to n · δn = 0 (see Wriggers [161]), but has to be
considered for the subsequent linearisation in order to employ Newton’s method, since a
function can become zero where it’s derivative need not to be zero f(x̄) = 0 ; f ′(x̄) = 0.
Moreover the discrete variation of the convective coordinates

δξ̄α,s := δξ̄α,h,s = Aαβ,s
(
(δϕ(1),s − δϕ(2),s) · as

α + gs
N ns · δϕ(2),s

,α

)
, (4.33)

is introduced. Therein the abbreviations

Aαβ,s :=
(

Ah,s
αβ

)−1

=
(
ms

αβ − gs
N hs

αβ

)−1
, ms

αβ := mh,s
αβ = as

α · as
β , hs

αβ := hh,s
αβ = as

αβ · ns ,

(4.34)

are employed, where ms
αβ denotes the semi-discrete metric and hs

αβ the semi-discrete
curvature of the master surface. The discrete variation of the convective coordinates boils
down to

δξ̄α,s = mαβ,s
(
δϕ(1),s − δϕ̄(2),s

)
· as

α , (4.35)

if the gap function is assumed to be zero, which is commonly applied in computational
contact mechanics (see Laursen [97]). Based on this consideration the semi-discrete virtual
work of contact for each NTS element s can be written as

Gc,h,s =
∫

Γ̄
(1),h,s
c

(
λs

N δΦs
N + δλs

N Φs
N + ts

Tα
δξ̄α,s

)
dA(1) . (4.36)

Therein the abbreviations λs
N := th,s

N and ts
Tα

:= th,s
Tα

denote the discrete counterparts of
the normal and tangential tractions for each contact element s, respectively. Eventually,
the semi-discrete virtual work of contact is given by

Gc,h =
ncel⋃

s=1

Gc,h,s =
ncel⋃

s=1

[
δqs

δλs
N

]
· As

[
F s

N(qs, λs
N) + F s

T(qs)
Φs

N(qs)

]

=

[
δq

δλN

]
·
[
F N(q, λN) + F T(q)

ΦN(q)

]
. (4.37)

IIIFor the simplicity of exposition the active set strategy is treated within the temporal discretization in
Sec. 5.4.
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The integral over the slave surface in equation (4.36) can be evaluated using quadrature,
where for NTS contact elements typically nodal quadrature is applied (see e.g. Konyukhov
[83]). Here As denotes the area of the s-th contact boundary. Moreover the normal and
tangential contact contributions F s

N ∈ R15 and F s
T ∈ R15 are introduced as

F s
N(qs, λs

N) = G
s,T
N (qs) λs

N = λs
N




ns

−N̂1(X
(2)) ns

−N̂2(X
(2)) ns

−N̂3(X
(2)) ns

−N̂4(X
(2)) ns




, (4.38)

F s
T(qs) = ts

Tα
Aαβ,s







as
α

−N̂1(X
(2)) as

α

−N̂2(X
(2)) as

α

−N̂3(X
(2)) as

α

−N̂4(X
(2)) as

α




+ Φs
N




03×1

N̂1,α ns

N̂2,α ns

N̂3,α ns

N̂4,α ns







. (4.39)

They can be assembled to the global normal and tangential forces using standard assembly
techniques

F N(q, λN) =
ncel

A
s=1

As F s
N(qs, λs

N), F T(q) =
ncel

A
s=1

As F s
T(qs) . (4.40)

In equation (4.37) the global counterparts of the nodal variations δqs are arranged in a
vector for all contact elements s

δq =
[
δq1,T . . . δqncel,T

]T
, δλN =

[
δλ

1,T
N . . . δλ

ncel,T
N

]T
. (4.41)

All normal constraints, the associated Lagrange multipliers and the corresponding varia-
tions are collected in single vectors

ΦN =
[
A1 Φ1,T

N . . . Ancel Φncel,T
N

]T
, λN =

[
λ1,T

N . . . λncel,T
N

]T
,

δλN =
[
δλ1,T

N . . . δλncel,T
N

]T
. (4.42)

Accordingly, the whole semi-discrete virtual work incorporating the direct approach for
frictionless and frictional contact interactions can be written compactly as

Gh = δq ·
(
Mq̈ + F int,ext(q) + F N(q, λN) + F T(q)

)
+ δλN · ΦN(q) . (4.43)

Eventually, for arbitrary variations δq ∈ Rndof and δλN ∈ Rncel the semi-discrete equations
of motion of the whole system read

Mq̈ + F int,ext(q) + F N(q, λN) + F T(q) = 0 ∀δq ∈ R
ndof ,

ΦN(q) = 0 ∀δλN ∈ R
ncel .

(4.44)

The full tangent matrix contribution of the above can be found in Appx. D.3. More-
over, suitable numerical methods providing a numerical tangent are briefly presented in
Appx. D.1.
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Remark 3. The linearisation especially of the variation of the convective coordinates is
quite cumbersome (see Appx. D.3). This is in contrast to the coordinate augmentation
technique which is subject of Sec. 4.1.2. The angular momentum for gh,s 6= 0 is not
algorithmically conserved, that is why an exact enforcement technique (instead of penalty
method) is applied for the normal contact constraints.

4.1.2 Coordinate augmentation technique

Next, the newly developed coordinate augmentation technique proposed in Franke et al.
[40] is presented in the semi-discrete setting for the NTS element based on the continuous
description in Sec. 3.5.4. In contrast to the direct approach the convective coordinates
are calculated on a global level, i.e. for each contact element s the algebraic system of
equations in (4.24) is not solved internally, but is reformulated by using augmented coor-
dinates and are enforced as additional constraints instead. Accordingly, the augmented
constraint vector is introduced such that

Φ
f,s
Aug(q

s, fs) =

[(
ϕ(1),s − ϕ(2)(fs)

)
· a1(f

s)(
ϕ(1),s − ϕ(2)(fs)

)
· a2(f

s)

]
, Φ

f
Aug =

[
A1 Φ

f,1,T
Aug . . . Ancel Φ

f,ncel,T
Aug

]T

,

(4.45)

where Φ
f
Aug : I → R2 ncel . That means the orthogonal projection is satisfied globally,

avoiding an internal Newton’s method on element level. As it has been employed within
the direct approach, all nodal vectors in equation (4.45) are arranged in q = {qs} : I →
R15 ncel . Furthermore use is made of a vector for each NTS element s, representing the
convective coordinates ξ̄

s
and collected as follows

fs =
[
f1,s f2,s

]T
, f =

[
f1,T . . . fncel,T

]T
, (4.46)

in a global vector, where f : I → R2 ncel and 2 ncel denotes the number of all convective
coordinates. In addition to that, the constraints in normal direction are given by

Φ̃s
N(qs, fs) =

(
ϕ(1),s − ϕ(2)(fs)

)
· ñ(fs), Φ̃N =

[
A1 Φ̃1

N . . . Ancel Φ̃ncel
N

]T
, (4.47)

where Φ̃N : I → Rncel . The associated Lagrange multipliers related to the augmented
constraints (4.45) and the normal constraints (4.47) are given by λ

f
Aug : I → R2 ncel and

λN : I → Rncel , respectively and collected analogously to (4.46) and (4.47) as

λ
f
Aug =

[
λ

f,1,T
Aug . . . λ

f,ncel,T
Aug

]T

, λN =
[
λ1

N . . . λncel
N

]T
. (4.48)

The sets of constraints and Lagrange multipliers are arranged in single vectors Φ̃(q, f) =
[Φf

Aug, Φ̃N]T : I → R3 ncel and λ̃ = [λf
Aug, λN]T : I → R3 ncel , respectively. Additionally,

the frictional tractions are arranged in a single vector

f s
Aug =

[
ts
T1

ts
T2

]T
, fAug =

[
A1 f

1,T
Aug . . . Ancel f

ncel,T
Aug

]T

, (4.49)
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where fAug : I → R2 ncel . Finally the vector of all degrees of freedom is arranged in

q̃s =
[
qs,T f s,T λ̃

s,T
]T

: I → R
20 , (4.50)

where λ̃
s

= [λf,s,T
Aug , λs

N]T. Accordingly, the contact contribution of the semi-discrete virtual
work can be written as

Gc,h =
ncel⋃

s=1

Gc,h,s

=
ncel⋃

s=1

δq̃s,T ·
∫

Γ̄
(1),h,s
c

([
∇q̃sΦf,s

Aug1
∇q̃sΦf,s

Aug2
∇q̃sΦ̃s

N

]
λ̃

s
+
[
01×15 f

s,T
Aug Φ̃

s,T
]T
)

dA(1)

=
ncel⋃

s=1

δq̃s,T · As

([
∇q̃sΦf,s

Aug1
∇q̃sΦf,s

Aug2
∇q̃sΦ̃s

N

]
λ̃

s
+
[
01×15 f

s,T
Aug Φ̃

s,T
]T
)

. (4.51)

Eventually, the semi-discrete virtual work for the whole system reads

Gh = δq ·
(

Mq̈ + F int,ext(q) +
(
∇q ⊗ Φ̃(q, f)

)
λ̃
)

+δf ·
((

∇f ⊗ Φ̃(q, f)
)

λ̃ + fAug(q, f)
)

+ δλ̃ · Φ̃(q, f) . (4.52)

For arbitrary variations the index threeIV differential algebraic equations of motion for
the whole system can be written as follows

Mq̈ + F int,ext(q) + G̃
q,T

(q, f) λ̃ = 0 ∀δq ∈ R
ndof ,

fAug(q, f) + G̃
f,T

(q, f) λ̃ = 0 ∀δf ∈ R
2 ncel ,

Φ̃(q, f) = 0 ∀δλ̃ ∈ R
3 ncel ,

(4.53)

where G̃
q,T

(q, f) = ∇q ⊗ Φ̃(q, f) and G̃
f,T

(q, f) = ∇f ⊗ Φ̃(q, f). To solve the underlying
nonlinear problem Newton’s method (a detailed explanation of Newton’s method is carried
out in the temporal discrete case see Chap. 5.3) can be stated as

DR(q̃k) ∆qk+1 = −R(q̃k) . (4.54)

Therein k denotes the iteration index which is neglected for convenience in the follow-
ing. Furthermore K := DR(q̃) denotes the tangent or iteration matrix. Accordingly,
Newton’s method can be written as

K ∆q̃ = R ⇔




Kqq Kqf Kqλ̃

Kfq Kff Kfλ̃

K λ̃q K λ̃f K λ̃λ̃






∆q

∆f

∆λ̃


 =




Rq

Rf

Rλ̃


 . (4.55)

IVThe index of a DAE denotes the number of time derivatives which are required in addition to some
algebraic calculations to obtain an ODE from a DAE (see Appx. C.2 and e.g. Lamour [96]).
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Therein the residual vector R is comprised of Rq which denotes equation (4.53)1, Rf

which denotes equation (4.53)2 and Rλ̃ which denotes equation (4.53)3. Moreover the
iteration matrix K is introduced with the single components K(•)(•) where an efficient
implementation is provided subsequently.V

Remark 4. Beside the advantageous simple and more intuitive structure the system now
contains two augmented coordinates with associated augmented Lagrange multipliers in
addition to the displacement unknowns for each NTS element. Of course a direct imple-
mentation of (4.53) can be accomplished as shown in equation (4.55). But to overcome
the drawback of the expanded system a special implementation is considered next.

Implementation To implement the newly proposed method in an efficient way, the
additional Lagrange multipliers λ

f
Aug can be eliminated by the algebraic condition (4.53)2.

For a single NTS element s equation (4.53)2 can be written as

(∇fs ⊗ Φ
f,s
Aug)λ

f,s
Aug + ∇fsΦ̃s

N λs
N + f s

Aug = 0

⇒ λ
f,s
Aug = −(∇fs ⊗ Φ

f,s
Aug)

−1 f s
Aug , (4.56)

where ∇fsΦ̃s
N λs

N = 0 is assumed to be valid at the solution point and the term ∇fs ⊗Φ
f,s
Aug

is assumed to be invertible. Accordingly, on the level of each NTS element, the Lagrange
multipliers associated with the augmented coordinates can be expressed in terms of the
extended set of coordinates qs, fs. The third term of equation (4.53)1 can be decomposed
as

(∇qs ⊗ Φ̃
s
) λ̃

s
= (∇qs ⊗ Φ̃

f,s

Aug) λ̃
f,s

Aug + (∇qsΦ̃s
N) λ̃s

N , (4.57)

whereas the first term on the right hand side can be combined with equation (4.56) for
each NTS element s as follows
(

∇qs ⊗ Φ
f,s
Aug(q, f)

)
λ

f,s
Aug = −

(
∇qs ⊗ Φ

f,s
Aug

) (
∇fs ⊗ Φ

f,s
Aug

)−1

f s
Aug = Ps f s

Aug . (4.58)

In total the assembled version thereof can be written as

PfAug =




P1 0 . . .
0 P2

...
. . .

Pncel







A1 f 1
Aug

A2 f 2
Aug

...
Ancel fncel

Aug


 , (4.59)

where the block diagonal matrix P = diag(P1, . . . , Pncel) ∈ R15 ncel×2 ncel is introduced.
Accordingly, the vector λ

f,s
Aug of Lagrange multipliers can be eliminated from the semi-

discrete equations of motion (4.53). This first reduction step can be written in matrix
notation using the modified projection matrix

P̃ =

[
I15 ncel×15 ncel P15 ncel×2 ncel 015 ncel×3 ncel

03 ncel×15 ncel 03 ncel×2 ncel I3 ncel×3 ncel

]
∈ R

18 ncel×20 ncel . (4.60)

VNote, beside a consistent linearisation the tangent matrix can also be approximated by suitable nu-
merical methods briefly presented in Appx. D.1.
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Pre-multiplication of (4.53) with the modified projection matrix P̃ leads to the desired
reduced system after some algebra

[
I P 0

0 0 I

] 


Rq

Rf

Rλ̃


 =

[
Rq + PRf

Rλ̃

]
=

[
R̃q(q, f, λN)

Rλ̃

]

=

[
Mq̈ + F int,ext(q) +

(
∇q ⊗ Φ̃N(q, f)

)
λN + PfAug

Φ̃(q, f)

]
. (4.61)

Accordingly, the residual boils down to

Mq̈ + F int,ext(q) +
(
∇q ⊗ Φ̃N(q, f)

)
λN + PfAug(q, f) = 0

Φ̃(q, f) = 0 .
(4.62)

In a second reduction step the augmented coordinates are eliminated within Newton’s
method which gives

[
Kr

qq Kr
qf Kr

qλN

Kr
λ̃q

Kr
λ̃f

Kr
λ̃λN

] 


∆q

∆f

∆λN


 =

[
R̃q

Rλ̃

]
. (4.63)

Therein terms labeled by the upper index (•)r represent the contributions arising from the
reduced system in (4.62) and in fact denote the following parts of the tangential stiffness
matrix

Kr
qq = D1 R̃q(q, f, λN), Kr

qf = D2 R̃q(q, f, λN), (4.64)

Kr
qλN

= D3 R̃q(q, f, λN) = ∇q ⊗ Φ̃N, Kr
λ̃q

= D1 Rλ̃(q, f, λN) = Φ̃ ⊗ ∇q, (4.65)

Kr
λ̃f

= D2 R̃λ̃(q, f, λN) = Φ̃ ⊗ ∇f, Kr
λ̃λN

= D3 R̃q(q, f, λN) = 0 . (4.66)

Using equation (4.63)2

Rλ̃ =Kr
λ̃q

∆q + Kr
λ̃f

∆f + Kr
λ̃λN

∆λN

⇒ Φ̃ =
(
Φ̃ ⊗ ∇q

)
∆q +

(
Φ̃ ⊗ ∇f

)
∆f , (4.67)

one obtains for each NTS element
[
Φs

Aug

Φ̃s
N

]
=

[
(Φs

Aug ⊗ ∇qs) ∆qs + (Φs
Aug ⊗ ∇fs) ∆fs

(∇qsΦ̃s
N) · ∆qs + (∇fsΦ̃s

N) · ∆fs

]
. (4.68)

In the above the equations for the augmented constraints Φs
Aug of a single NTS element

can be used to eliminate the augmented coordinates. Accordingly, equation (4.68)1 is
solved with respect to ∆fs which gives

∆fs =
(
Φs

Aug ⊗ ∇fs

)−1
Φs

Aug −
(
Φs

Aug ⊗ ∇fs

)−1 (
Φs

Aug ⊗ ∇qs

)
∆qs

=
(
Φs

Aug ⊗ ∇fs

)−1
Φs

Aug + Ps,T∆qs .
(4.69)

Insertion of the above into (4.63) yields the desired reduced system after some amount of
algebra (see Appx. C.3)

[
Kr

qq + Kr
qf P

T ∇q ⊗ Φ̃N

Φ̃N ⊗ ∇q 0

] [
∆q

∆λN

]
=

[
Rq − Kr

qf (ΦAug ⊗ ∇f)
−1

ΦAug

Φ̃N

]
. (4.70)
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Remark 5. The augmented variables f iterate together with the outer Newton loop. Thus
within the Newton update procedure the convective coordinates are determined internally
by using equation (4.69).

Obviously, regarding equation (4.70) the linearisation is simplified compared to the direct
approach given in Appx. D.3. It has to be noted that the covariant approach proposed
by Konyukhov [83] is also simplified compared to the direct approach. The last reduction
step can also be written in matrix notation using

P̄ =

[
I15 ncel×15 ncel P15 ncel×2 ncel 015 ncel×ncel

0ncel×15 ncel 0ncel×2 ncel Incel×ncel

]
∈ R

16 ncel×18 ncel . (4.71)

It is important to remark, that the whole reduction procedure can be carried out on
element level for each single NTS element, because P is of block diagonal structure. The
convective coordinates can be recovered using (4.69). The consistent linearisation can
now be carried out in two different ways:

1. As shown in (4.63) equations (4.62) have to be linearized with respect to the con-
figuration q and the augmented coordinates f. The involved constraints (4.45) and
(4.47) are at most quadratic in the configuration and in the augmented coordinates,
thus the only terms of higher order to be derived depend on the used constitutive law
fAug (this derivative is always necessary) and the 2×2 inverse matrix (∇fs ⊗Φs

Aug)
−1

has to be linearized.

2. For equation (4.62) the projection matrix P̃ is used to obtain a new residual vector,
which has to be linearized to get the (18 ncel) × (18 ncel) matrix in (4.63). Alterna-
tively, the full linearized original system (4.53) can be premultiplied by P̃ and one
obtains

[
Kqq + PKfq Kqf + PKff ∇q ⊗ Φ̃ + P

(
∇f ⊗ Φ̃

)

Φ̃ ⊗ ∇q Φ̃ ⊗ ∇f 0

]
·




∆q

∆f

∆λ̃


 = P̃




Rq

Rf

Rλ̃


 .

(4.72)

Next, ∆λAug and the corresponding columns are removed from the system, since it
is directly solved for λAug using (4.56). The second reduction step follows as before,
now avoiding the linearisation of P. Note, that it is taken again advantage of its
block-diagonal structure, such that all steps can be carried out for each contact
element.

The linearisation is remarkably simplified, compared with traditional methods, where the
linearisation of the variation of the convective coordinates needs to be calculated as shown
in (3.196) in the continuous setting with respect to space and time.

Remark 6. Although use is made of Lagrange multipliers to enforce the normal con-
straints, one can also apply an augmented Lagrangian method to calculate the Lagrange
multipliers λN or use a constitutive relation (e.g. the penalty method) to accomplish con-
tact constraint enforcement.
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4.1.3 Frictionless contact element

For frictionless contact an energy-momentum conserving integrator, based on the system-
atic construction of the augmented coordinates, has been developed in Hesch and Betsch
[61] which is briefly considered here and afterwards in Chap. 5.5.1. Therefore the contact
constraints are reformulated by suitable invariants. On the basis of equation (3.208) the
contact contribution of the semi-discrete virtual work can be written as

Gc,h =
ncel⋃

s=1

δ ˜̃q
s,T ·

∫

Γ̄
(1),h,s
c

(
[
∇˜̃qΦd,s

Aug1
∇˜̃qΦd,s

Aug2
∇˜̃qΦd,s

Aug3
∇˜̃qΦf,s

Aug1
∇˜̃qΦf,s

Aug2
∇˜̃q

˜̃Φs
N

]
˜̃
λ

s

+
[
01×21 ˜̃

Φ
s,T
]T

) dA(1) , (4.73)

where the involved extended vector of degrees of freedom ˜̃q
s

is organized as follows

˜̃q
s

=
[
qs,T ds,T fs,T ˜̃

λ
T
]T

: I → R
27 . (4.74)

The corresponding virtual work of the whole system can be written as

Gh =δq ·
(

M q̈ + F int,ext(q) − (∇q ⊗ ˜̃
Φ) ˜̃

λ
)

+ δd · (∇d ⊗ ˜̃
Φ) ˜̃

λ + δf · (∇f ⊗ ˜̃
Φ) ˜̃

λ + δ ˜̃
λ · ˜̃

Φ . (4.75)

To facilitate the design of an EMS based on a G-equivariant discrete gradient in the
discrete setting, the contact constraints need to be reformulated by at most quadratic
invariantsVI in the primary variables (see Gonzalez [44]). With regard to Cauchy’s rep-
resentation theorem, equation (4.75) can be re-parametrized by using at most quadratic
invariants π. Accordingly, the virtual work is rewritten as follows

Gh =δq ·
(

M q̈ + F int,ext(q) − (∇q ⊗ ˜̃
Φ

∗
(π)) ˜̃

λ
)

+ δd · (∇d ⊗ ˜̃
Φ

∗
(π)) ˜̃

λ + δf · (∇f ⊗ ˜̃
Φ

∗
(π)) ˜̃

λ + δ ˜̃
λ · ˜̃

Φ
∗
(π) . (4.76)

In order to find suitable invariants the impenetrability constraint is reformulated on ele-
ment level as follows (for more details see Hesch and Betsch [61])

˜̃Φs
N = (ϕ(1),s − ϕ(2)(fs)) · ds − f3,s

=


q(1),s − (q(2),s

1 + N̂I(X(2)) q
(2),s
I −

∑

I∈Ω(2)

N̂I(X(2)) q
(2),s
1 )


 · ds − f3,s

= (q(1),s − q
(2),s
1 ) · ds −

4∑

I=2

N̂I(X(2)) (q(2),s
I − q

(2),s
1 ) · ds − f3,s , (4.77)

VIA detailed and coherent description of the EMS based on a G-equivariant discrete gradient is skipped
to Sec. 5.2.6.
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where f3,s is introduced as the third entry of the vector fs representing the minimal
distance of the slave node to the opposing master surface. A possible choice of invariants
is given as follows

πs(qs,ds, fs) =




(q(1),s − q
(2),s
1 ) · ds

(q(2),s
2 − q

(2),s
1 ) · ds

(q(2),s
3 − q

(2),s
1 ) · ds

(q(2),s
4 − q

(2),s
1 ) · ds

ds · ds

(q(2),s
2 − q

(2),s
1 ) · (q(1),s − q

(2),s
1 )

(q(2),s
3 − q

(2),s
1 ) · (q(1),s − q

(2),s
1 )

(q(2),s
4 − q

(2),s
1 ) · (q(1),s − q

(2),s
1 )

(q(2),s
2 − q

(2),s
1 ) · (q(2),s

2 − q
(2),s
1 )

(q(2),s
2 − q

(2),s
1 ) · (q(2),s

3 − q
(2),s
1 )

(q(2),s
2 − q

(2),s
1 ) · (q(2),s

4 − q
(2),s
1 )

(q(2),s
3 − q

(2),s
1 ) · (q(2),s

3 − q
(2),s
1 )

(q(2),s
3 − q

(2),s
1 ) · (q(2),s

4 − q
(2),s
1 )

(q(2),s
4 − q

(2),s
1 ) · (q(2),s

4 − q
(2),s
1 )

fs




, (4.78)

where π ∈ R17. Other choices for the invariants are possible as well. Accordingly, the
original constraint vector is written as a function of the currently defined invariants in
(4.78) as follows

˜̃
Φ

∗,s

(πs(qs,ds, fs)) =




Φd
Aug(π

s)
Φ

f
Aug(π

s)
˜̃ΦN(πs)


 =




N̂ ξ · π̂

N̂ η · π̂

0.5 (π5 − 1)

N̂ ξ · π̃ − N̂2 N̂ ξ·
△
π −N̂3 N̂ ξ·

◦
π −N̂4 N̂ ξ·

∗
π

N̂ η · π̃ − N̂2 N̂ η· △
π −N̂3 N̂ η· ◦

π −N̂4 N̂ η· ∗
π

π1 − N̂ · π̃ − π17




,

(4.79)

where

˜̃
Φ

∗
=
[
A1 ˜̃

Φ
∗,1

. . . Ancel ˜̃
Φ

∗,ncel
]T

. (4.80)

In equation (4.79) the following abbreviations for the invariants

π̂ =
[
π2 π3 π4

]T
,

△
π=

[
π9 π10 π11

]T
, π̃ =

[
π6 π7 π8

]T
, (4.81)

◦
π=

[
π10 π12 π13

]T
,

∗
π=

[
π11 π13 π14

]T
, (4.82)

and the shape functions with its derivatives

N̂ =
[
N̂2 N̂3 N̂4

]T
, N̂ ξ =

[
N̂2,ξ N̂3,ξ N̂4,ξ

]T
, N̂ η =

[
N̂2,η N̂3,η N̂4,η

]T
,

(4.83)
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are employed. Accordingly, the semi-discrete equations of motion are obtained for arbi-
trary virtual displacements δ ˜̃q as

M q̈ + F int,ext(q) + (D1 π(q,d, f))T (∇π ⊗ ˜̃
Φ

∗
(π)) ˜̃

λ = 0 ∀δq ∈ R
ndof , (4.84)

(D2 π(q,d, f))T (∇π ⊗ ˜̃
Φ

∗
(π)) ˜̃

λ = 0 ∀δd ∈ R
3 ncel , (4.85)

(D3 π(q,d, f))T (∇π ⊗ ˜̃
Φ

∗
(π)) ˜̃

λ = 0 ∀δf ∈ R
3 ncel , (4.86)

˜̃
Φ

∗
(π(q,d, f)) = 0 ∀δ ˜̃

λ ∈ R
6 ncel . (4.87)

For the derivation of the fundamental properties of the constraints and for the verification
of the conservation of the angular momentum as well as of the total energy for the semi-
discrete system, reference is made to Hesch and Betsch [61] and therefore omitted here
for convenience.

4.2 Mortar element

The variational consistent Mortar method is considered next. Historically the Mortar
method has been developed to couple dissimilarly discretized meshes within the context
of domain decomposition methods (see Bernardi et al. [11], Wohlmuth [154, 155], Puso
[124], Hesch and Betsch [60]). In contrast to the NTS method the Mortar method has the
particularity that it satisfies the patch test (see Taylor and Papadopoulos [142], McDevitt
and Laursen [117]) which is considered numerically in Chap. 6. This is guaranteed by
using a specific solution space for the contact traction with an underlying optimality re-
quirement which is due to the specific construction of the Mortar method (see Wohlmuth
and Lamichhane [157]). Meanwhile, research in different ranges (unilateral contact for lin-
ear and nonlinear regime, frictional contact, etc.) has been intensified whereas in Laursen
et al. [104], Wohlmuth [156] extensive overviews of recent developments are provided.
Following this historical guideline first bilateral Mortar constraints (domain decomposi-
tion) and then unilateral Mortar constraints with Coulomb friction are developed. As
indicated in (3.221) the contact virtual work formulation in (3.179) is recovered using
a spatial description thereof, which is commonly done (see also Wriggers and Laursen
[162], Popp et al. [122], Hesch and Betsch [62]). Accordingly, the local balance of linear
momentum is considered on the current contact boundary γ

(i)
c as introduced in equation

(3.87) where for the Mortar method the convention is maintained, that γ
(1)
c denotes the

slave (or non-Mortar) and γ
(2)
c denotes the master (or Mortar) surface. Using equation

(3.87) the continuous virtual work can be formulated on the non-Mortar side for closed
contact as follows

Gc =
2∑

i=1

∫

γ̄
(i)
c

t(i)
c · δϕ(i) da(i) =

∫

γ̄
(1)
c

t(1)
c ·

(
δϕ(1) − δϕ(2)

)
da(1) . (4.88)
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For the spatial discretization the isoparametric finite element method is employed, where
within the Mortar method the Cauchy contact traction is (linearly) approximated using
the space of tractions

V(i),h
m = {t(i),h

c ∈ C0(Γ(1),h
c ) : t(i),h

c (X(i)) = N̂I(X(1)) λI(t) ∀I ∈ Ω(1)} , (4.89)

which is in contrast to the collocation type NTS method where the tractions are nodalwise
evaluated. Hence, using a Bubnov-Galerkin method the approximations for solution, test
function and Cauchy contact traction can be stated as

ϕ(i),h,s̄
c = N̂I(X(i)) q

(i),s̄
I (t), δϕ(i),h,s̄

c = N̂I(X(i)) δq
(i),s̄
I ,

t(1),h,s̄
c = N̂I(X(1)) λs̄

I(t) ∀I ∈ Ω(1) . (4.90)

Therein global bilinear shape functions N̂I : B(i) → R are used which are associated with
the nodes q

(i),s̄
I , δq

(i),s̄
I , and λs̄

I , I ∈ Ω(i) = {1, ..., n
(i)
cnode} where Ω(i) ⊂ ω(i) represents the

set of nodes on the respective interface couple s̄ → s1, s2. Here, s1 include all non-Mortar
surface elements, such that γ

(1),h
c =

⋃
s1

γ
(1),h,s1
c and s2 include all Mortar surface elements,

such that γ
(2),h
c =

⋃
s2

γ
(2),h,s2
c and only overlapping pairs are determined with

γh,s̄ = γ(1),h,s1 ∩ γ(2),h,s2 . (4.91)

Moreover, λs̄
I : I → R3 denotes the nodal Cauchy contact traction, where each λs̄

I is
uniquely defined on a single node I ∈ Ω(1) on the non-Mortar surface. For the subsequent
description it is beneficial to arrange the nodal quantities for each interface couple s̄ as
follows

q(i),s̄ =




q
(i),s̄
1

...

q
(i),s̄

n
(i)
cnode


 , qs̄ =

[
q(1),s̄

q(2),s̄

]
, λs̄ =




λs̄
1

...
λs̄

n
(1)
cnode


 . (4.92)

4.2.1 Domain decomposition

For domain decomposition problems it is more convenient to formulate the virtual work
with respect to the reference configuration on the non-Mortar side as it has been employed
for the NTS method. Accordingly, the virtual work of contact in the temporal and spatial
continuous setting can be defined as

Gcm =
2∑

i=1

∫

Γ
(i)
c

T (i)
c · δϕ(i) dA(i) =

∫

Γ
(1)
c

T (1)
c ·

(
δϕ(1) − δϕ(2)

)
dA(1) , (4.93)

where the Piola contact traction T (i)
c is applied instead of the Cauchy contact traction.

The field of the Lagrange multipliers is considered on one surface (here on the non-Mortar
surface) and approximated consistent to the discretization used for the solids (cf. Hesch
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and Betsch [59]). Accordingly, using linear shape functions the Piola contact traction is
approximated by

T (1),h,s̄
c = N̂I(X(1)) λs̄

I(t) ∀I ∈ Ω(1) . (4.94)

Employing the Lagrange multiplier method to enforce the Mortar constraints and using
the approximations (4.90)1 and (4.94) leads to the desired semi-discrete virtual work
contribution

Gdd,h =
ncel⋃

s̄=1

∫

Γ
(1)
c

(
T (1),h,s̄

c · (δϕ(1),h,s̄ − δϕ(2),h,s̄) + δT (1),h,s̄
c · (ϕ(1),h,s̄ − ϕ(2),h,s̄)

)
dA(1)

=
ncel⋃

s̄=1

(
λs̄

I · (ns̄
IJ δq

(1),s̄
J − ns̄

IK δq
(2),s̄
K ) + δλs̄

I · (ns̄
IJ q

(1),s̄
J − ns̄

IK q
(2),s̄
K )

)

=
ncel⋃

s̄=1

(λs̄
I · δΦs̄

I + δλs̄
I · Φs̄

I) , (4.95)

where λs̄
I denote the nodal Lagrange multipliers. Furthermore ncel denotes the total

number of contact elements. In equation (4.95) the typical Mortar integrals evaluated on
global level are defined by

ns̄
IJ :=

∫

Γ
(1),s̄
c

N̂I(X(1)) N̂J(X(1)) dA(1) , ns̄
IK :=

∫

Γ
(1),s̄
c

N̂I(X(1)) N̂K(X(2)) dA(1) . (4.96)

Moreover, the Mortar domain decomposition constraints

Φs̄
I = ns̄

IJ q
(1),s̄
J − ns̄

IK q
(2),s̄
K ∀I, J, K ∈ Ω(1) , (4.97)

have been introduced.VII As has been shown in Hesch and Betsch [60] the above constraint
is not frame invariant. Accordingly, a similar but frame invariant version thereof has been
proposed in Hesch and Betsch [60] as follows

Φs̄
I =




as̄
1 · (ns̄

IJ q
(1),s̄
J − ns̄

IK q
(2),s̄
K )

as̄
2 · (ns̄

IJ q
(1),s̄
J − ns̄

IK q
(2),s̄
K )

ns̄ · (ns̄
IJ q

(1),s̄
J − ns̄

IK q
(2),s̄
K )


 ∀I, J, K ∈ Ω(1) , (4.98)

and is used in what follows instead of (4.97). The evaluation of the Mortar integrals is
based on the integration of both dissimilarly discretized surfaces. Therefore the overlap-
ping discretized Mortar and non-Mortar grids can in general be identified as polygons
(see Fig. 4.5). The polygons can be computed with triangular segments with a common
parametrization based on triangular Lagrangian shape functions (see Fig. 4.5). Eventu-
ally, Gaussian quadrature is employed to numerically compute the Mortar integrals on
segment level and finally all segment contributions are assembled into a global vector
of constraints. To this end, the segmentation process itself is defined in detail by the
following algorithm.

VIINote, ΦI are also well known as mesh tying constraints.
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γ
(1),h,1
c γ

(2),h,1
c

Figure 4.5: An overlapping Mortar and non-Mortar element (left), the identification as
polygon and triangularization (right).

Segmentation algorithm Suppose a typical Mortar element s̄ consists of two dissim-
ilarly discretized interface elements γ

(1),h,1
c and γ

(2),h,1
c (see Fig. 4.6). For that case the

segmentation algorithm can be carried out by the following three stepsVIII:

(i) Loop over each node q
(1),s̄
I on the non-Mortar side γ

(1),h,s̄
c and subsequent orthogonal

projection of them to the Mortar surface q
(1),s̄
I → γ

(2),h,s̄
c and vice versa q

(2),s̄
I →

γ
(1),h,s̄
c .

Remark 7. The above denotes the standard segmentation procedure but here a slight
different way is pursued. To this end using the projected nodes q

(1),s̄
I → γ

(2),h,s̄
c , a

virtual segmentation surface γ̄
(2),h,s̄
c is constructed. Eventually, an orthogonal pro-

jection of the Mortar nodes to the virtual segmentation surface q
(2),s̄
I → γ̄

(2),h,s̄
c is

executed.

In detail the following three steps are processed:

a) The nodes q
(1),s̄
I of the non-Mortar side γ(1),h,s̄, are projected orthogonal to each

element of the opposing Mortar side γ(2),h,s̄ using the closest point projection
(identically the same as has been used for the NTS element) to determine the
corresponding local coordinates (see Fig. 4.6). Therefore the following nonlinear
problem has to be solved with respect to the convected coordinates ξ for each
node I ∈ Ω(1)

R
(1),OP
I =

[
a

(2)
1 (ξ̄

(2)

I ) · (q(1)
I − N̂J(ξ̄

(2)

I ) q
(2)
J )

a
(2)
2 (ξ̄

(2)

I ) · (q(1)
I − N̂J(ξ̄

(2)

I ) q
(2)
J )

]
= 0 . (4.99)

VIIIThe segmentation algorithm is basically taken from Hesch and Betsch [60, 62]. It is presented here in
detail since in the authors opinion the desired Mortar algorithms can only be comprehended on the
basis of the segmentation algorithm. Moreover, the segmentation is improved with a kind of virtual
segmentation surface, which is introduced subsequently.
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q
(1)
I q

(2)
I

γ
(1),h,1
c

γ
(2),h,1
c

ξ1,(1)

ξ2,(1)

Figure 4.6: Segmentation of elements γ
(1),h,1
c and γ

(2),h,1
c

Remark 8. For the domain decomposition problem under consideration the Mor-
tar integrals do not depend upon the configuration. Accordingly, the hole segmen-
tation process can be calculated at problem initialization. This is in contrast to
contact problems considered subsequently and therefore the segmentation is stated
more generally for that type of problems, where the domain decomposition task
can be seen as a more simple special case thereof.

The residual R
(1),OP
I is solved using Newton’s method which yields the linearized

problem for each iteration k

DR
(1),OP,k
I ∆ξ̄

(2),k+1

I = −R
(2),OP,k
I , I ∈ Ω(i) , (4.100)

where the summation convention over I is not employed here. One obtains the

set of projection points ξ̄
(2)

I on the Mortar surface.

b) Definition of a virtual segmentation surface γ̄
(2),h
c which represents surface γ

(1),h
c

by using bilinear approximation

q̄
(2)
I = N̂K(ξ̄

(2)

I ) q
(2)
K , K ∈ {1, ..., 4} , (4.101)

which is illustrated in Fig. 4.7. The use of the virtual segmentation is advan-
tageous in order to obtain a reliable segmentation for e.g. two convex curved
surfaces in contact. Beyond that, for flat surfaces in contact the virtual segmen-
tation surface approaches the original surface γ

(1)
c .
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γ
(1)
c , q

(1)
K

γ
(2)
c , q

(2)
J

γ̄
(2)
c , q̄

(2)
I

Figure 4.7: 2D illustration of virtual segmentation surface (red).

c) Subsequent orthogonal projection of each node q
(2)
J of the Mortar surface γ

(2),h,s̄
c

to adjacent virtual segmentation surface γ̄
(2),h,s̄
c using the closest point projection

R
(2),OP
J =

[
ā

(2)
1 (ξ̄

(1)

J ) · (q(2)
J − N̂I(ξ̄

(1)

J ) q̄
(2)
I )

ā
(2)
2 (ξ̄

(1)

J ) · (q(2)
J − N̂I(ξ̄

(1)

J ) q̄
(2)
I )

]
= 0, J ∈ Ω(i) , (4.102)

where again Newton’s method is used to solve this nonlinear problem

DR
(2),OP,k
J ∆ξ̄

(1),k+1

J = R
(2),OP,k
J , J ∈ Ω(i) . (4.103)

Therein the summation convention over J is not employed. Accordingly, the

second set of projection points ξ̄
(2)

J is obtained by using the projection nodes on
the virtual segmentation surface for the desired surface γ

(1),h
c (see Fig. 4.7).

(ii) Next the intersections of the element edges ∂γ(2),h,s̄ ∩ ∂γ̄(2),h,s̄ are identified. Com-
putation of the intersections (see Fig. 4.8) relies on the solution of the nonlinear
problem

RInt
K = N̄I(ξ̃2K

) q
(2)
I − N̄J(ξ̃1K

) (q̄(2)
J + n̄

(2)
J ξ̃3K

) = 0, I, J ∈ {1, 2} , (4.104)

with respect to the coordinates ξ̃ = {ξ̃1, ξ̃2, ξ̃3} for all potential pairs of the edges of
both sides, which is solved using Newton’s method

DR
Int,k
K ∆ξ̃

k+1

K = −R
Int,k
K , I ∈ Ω(i) . (4.105)

Note in (4.104) n̄
(2)
J are the unit outward normals at nodes J ∈ {1, 2} of the Mor-

tar side (see Fig. 4.8). In a second step the polygons are determined by the pro-
jected nodes of the Mortar side, the non-Mortar nodes and the intersection nodes
(see Fig. 4.9 for a possible pairing). Based on the previous steps the polygons are
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ξ̃2

ξ̃1

ξ̃3

q
(2)
1

q̄
(2)
1

q
(2)
2

q̄
(2)
2

n
(2)
1

n
(2)
2

Figure 4.8: Intersections of the element edges of ∂γ
(2),h,s̄
c and ∂γ̄

(2),h,s̄
c for an element

couple s̄.

subdivided into triangles which is accomplished via a Delaunay triangularization
algorithm (see e.g. de Berg et al. [30]). Each specific segment es̄ depends on the
corresponding nodal coordinates which can be collected into

qs̄,es̄ =

[
q

(1),s̄
I

q
(2),s̄
J

]
∈ R

24, I, J ∈ Ω(i) . (4.106)

ξ1,(1)

ξ2,(1)

ξ̄
(1)

1

ξ̄
(1)

2

ξ̄
(1)

3

ξ̄
(1)

4

es̄ = 1

es̄ = 2

Projected node

Non-Mortar node

Intersection node

Figure 4.9: Polygon and triangularization.

(iii) Afterwards, each triangular segment es̄ is approximated by

ξ(i),h,s̄(η) =
∆

N I(η) ξ
(i),es̄

I ∀I ∈ {1, 2, 3} , (4.107)

where ξ
(i),es̄

I denote the 3 vertices of the segment es̄ (see Fig. 4.9). In this connection

bilinear triangular shape functions
∆

N I(η) with local coordinates η = {η1, η2} (see
Fig. 4.10) are in use

∆

N1(η) = 1 − η1 − η2 ,
∆

N2(η) = η1 ,
∆

N3(η) = η2 . (4.108)
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seg

η1

η2

1

1

Figure 4.10: Triangular reference element of segment es̄.

After the segmentation procedure the approximations in (4.90)1 and (4.94) for the Mortar
description can be recast as follows

ϕ(1),h,s̄
c = N̂i(ξ

(1),h,es̄(η))q(1),s̄
i , ϕ(2),h,s̄

c = N̂i(ξ
(2),h,es̄(η))q(2),s̄

i ,

T (1),h,s̄
c = N̂i(ξ

(1),h,es̄(η))λ(1),s̄
i ∀i ∈ Ω(1) . (4.109)

Accordingly, the segmentwise Mortar constraints are calculated by

Φ
s̄,es̄

i =




aes̄

1 · (n̄es̄

ij q
(1),s̄
j − n̄es̄

ik q
(2),s̄
k )

aes̄

2 · (n̄es̄

ij q
(1),s̄
j − n̄es̄

ik q
(2),s̄
k )

nes̄ · (n̄es̄

ij q
(1),s̄
j − n̄es̄

ik q
(2),s̄
k )


 , (4.110)

where the Mortar integrals on segment-level n̄es̄

ij , n̄es̄

ik are introduced and can be approxi-
mated by quadrature as follows

n̄es̄

ij =
∫

Γ
(1),h,es̄
c

N̂i(ξ
(1),h,es̄(η)) N̂j(ξ

(1),h,es̄(η)) dA(1) (4.111)

≈
ngp∑

g=1

N̂i(ξ
(1),h,es̄(ηg)) N̂j(ξ

(1),h,es̄(ηg)) Jseg(ξ(1),h,es̄(ηg)) wg , (4.112)

n̄es̄

ik =
∫

Γ
(1),h,es̄
c

N̂i(ξ
(1),h,es̄(η)) N̂k(ξ(2),h,es̄(η)) dA(1) (4.113)

≈
ngp∑

g=1

N̂i(ξ
(1),h,es̄(ηg)) N̂k(ξ(2),h,es̄(ηg)) Jseg(ξ

(1),h,es̄(ηg)) wg . (4.114)

Therein the Jacobian determinant

Jseg(ξ
(1),h,es̄(η)) = ‖A1(ξ

(1),h(η)) × A2(ξ
(1),h(η))‖ det(D ξ(1),h(η)) , (4.115)

has been introduced. Furthermore, a 4 point Gauss quadrature rule (see Fig. 4.11) with
Gaussian points and weights (see Tab. 4.1) for bilinear triangular elements is sufficient to
approximate the integral expressions.
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η1

η2

1√
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1

1

1√
3

1√
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1√
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❶

❷ ❸

❹

●
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Gauss points
❶–❹

nodes

Figure 4.11: 4 point Gauss rule for triangular element.

Gauss: number point η1g
point η2g

weight wg

❶
1
3

1
3

−27
96

❷
1
5

1
5

25
96

❸
3
5

1
5

25
96

❹
1
5

3
5

25
96

Table 4.1: Four-point Gauss rule for triangular element.

Accordingly, the segment contribution of the constraints for each interface couple s̄ can
be arranged in

Φs̄,es̄ =
[
Φ

s̄,es̄

i

]
=




Φ
s̄,es̄

1

Φ
s̄,es̄

2

Φ
s̄,es̄

3

Φ
s̄,es̄

4


 . (4.116)

Eventually, the semi-discrete virtual work (4.88) is approximated on segment level as

Gdd,h =
ncel⋃

s̄=1

nseg⋃

es̄=1

(λs̄
i · δΦ

s̄,es̄

i + δλs̄
i · Φ

s̄,es̄

i ) ∀i ∈ Ω(1) . (4.117)

The semi-discrete DAE system can be written straight forwardly as

Mq̈ + F int,ext(q) + GT(q) λ = 0 , (4.118)

Φ(q) = 0 , (4.119)
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where GT(q) = ∇q ⊗ Φ(q) denotes the Jacobian of the Mortar constraints. The vector
of constraints is assembled as follows

Φ = Ā
s

⋃

es̄




Φ
s̄,es̄

1

Φ
s̄,es̄

2

Φ
s̄,es̄

3

Φ
s̄,es̄

4


 = Ā

s

⋃

es̄

Φs̄,es̄ . (4.120)

Based on this quite standard formulation a new energy-momentum consistent formulation
of Mortar domain decomposition constraints using quadratic invariants has been intro-
duced in Hesch and Betsch [60]. The invariants are scalars which are at most quadratic
with respect to the primary variables and invariant with respect to the action of Lie group
operators. Beside the spatial consistency of the Mortar method the temporal consistency
of the EMS leads to a very accurate method, where objectivity of the modified constraints
has been proven in Hesch and Betsch [60]. This algorithm consistently reproduces linear
and angular momentum as well as the total energy of the discrete system, independent
of the time step size. Moreover, due to generality of the approach, it is easy to adopt
for higher order finite elements. Specifically, it has been extended for a NURBS-based
spatially discretized formulation in Hesch and Betsch [64] without any modifications of
the time integration scheme. Additionally, the algorithm has been adopted for thermo-
mechanically coupled problems in Hesch and Betsch [63], which in fact yields a four
dimensional Mortar method.

4.2.2 Unilateral contact with Coulomb friction

Modeling contact instead of domain decomposition two major differences need to be con-
sidered. On the one hand, as the name suggests, unilateral contact constraints bound the
contacting bodies only in one direction. On the other hand the contact boundary is not
known a priori in contrast to the domain decomposition problem, yielding an inequality
constraint in the continuous setting. The inequality constraint for the discrete system is
converted in an equality constraint using e.g. the active set strategy or using a regular-
ization technique like the penalty method. For the Mortar method transient frictional
contact is considered next, whereas attention is focused on Coulomb dry friction modelIX.
Accordingly, the tangential contact conditions (3.164)-(3.167) are incorporated. Note
that the provided framework is readily extendible to incorporate more involved frictional
constitutive laws such as discussed in Laursen and Oancea [102]. Within the framework
of the Mortar method the application of a frictional constitutive law like e.g. Coulomb’s
law does not require the decomposition of the base vectors into co- and contravariant
components (see e.g. Puso and Laursen [126]). Accordingly, the semi-discrete weak form

IXNote, the subsequently provided method is basically proposed in Dittmann et al. [34], but is restricted
to the mechanical field herein with Lagrangian shape functions for spatial discretization. The method
proposed in Dittmann et al. [34] is based on a (fully) thermomechanically coupled description and is
extended to NURBS for spatial discretization.
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of contact for the frictional Mortar method based on equation (3.209) can be stated as

Gc,h =
ncel⋃

s̄=1

∫

γ̄
(1),h,s̄
c

(
t

(1),h,s̄
N · (δϕ(1),h,s̄ − δϕ(2),h,s̄) + δt

(1),h,s̄
N · (ϕ(1),h,s̄ − ϕ(2),h,s̄)

+t
(1),h,s̄
T · (I − ns̄ ⊗ ns̄)(δϕ(1),h,s̄ − δϕ(2),h,s̄)

)
da(1) , (4.121)

where λN is regarded as independent parameter by enforcing the normal contact constraint
with the Lagrange multiplier method. Note for frictionless contact the tangential traction
vanishes t

(1),h,s̄
T = 0. Using the variational consistent Mortar method the Cauchy contact

traction, which is decomposed into a normal and a tangential part (t(1),h,s̄ = t
(1),h,s̄
N +

t
(1),h,s̄
T ), is (linearly) approximated as follows

t
(1),h,s̄
N = N̂I(X(1)) λs̄

NI
(t) ns̄, t

(1),h,s̄
T = N̂I(X(1)) λs̄

TI
(t) ∀I ∈ Ω(1) . (4.122)

Hence, equation (4.121) can be written as

Gc,h =
ncel⋃

s̄=1

λs̄
NI

(ns̄ · [ns̄
IJ δq

(1),s̄
J − ns̄

IK δq
(2),s̄
K ] + δns̄ · [ns̄

IJ q
(1),s̄
J − ns̄

IK q
(2),s̄
K ])

+δλs̄
NI

(ns̄ · [ns̄
IJ q

(1),s̄
J − ns̄

IK q
(2),s̄
K ]) + λs̄

TI
· (I − ns̄ ⊗ ns̄) [ns̄

IJ δq
(1),s̄
J − ns̄

IK δq
(2),s̄
K ]

=
ncel⋃

s̄=1

(λs̄
NI

δΦs̄
NI

+ δλs̄
NI

Φs̄
NI

+ λs̄
TI

· (I − ns̄ ⊗ ns̄) δgs̄
TI

) . (4.123)

Therein the Mortar integrals

ns̄
IJ =

∫

γ
(1),h,s̄
c

N̂I(X(1)) N̂J(X(1)) da(1), ns̄
IK =

∫

γ
(1),h,s̄
c

N̂I(X(1)) N̂K(X(2)) da(1) , (4.124)

are introduced. Moreover, in the above the normal ns̄ can be computed as

ns̄ =
a1(ξ

(1),h,es̄(η)) × a2(ξ
(1),h,es̄(η))

‖a1(ξ
(1),h,es̄(η)) × a2(ξ

(1),h,es̄(η))‖
. (4.125)

The nodalwise regularized traction can be stated as

λ̇
s̄

TI
= εT (ġs̄

TI
− ζ̇ s̄

I

λs̄
TI

‖λs̄
TI

‖) , (4.126)

whereas the spatially discrete velocity needs to be provided (see (3.168)). Employing the
spatially discrete versions of ġTα

= (ϕ̇(1) − ϕ̇(2)) · aα in vector notation (using (I − n ⊗
n) · aα = aα) the tangential velocity at local node I can be stated as

ġs̄
TI

= (I − ns̄ ⊗ ns̄) (n(1),s̄
IJ q̇

(1),s̄
J − n

(2),s̄
IK q̇

(2),s̄
K ) . (4.127)
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As shown in Appx. C.4, using the Mortar framework instead of the NTS framework,
the above velocity is in general not frame indifferent except if gs̄

NI
= 0. To remedy

this drawback an algorithmic modification of the slip rate in the tangential velocity is
sometimes used which has been proposed in Yang et al. [165] as follows

ġs̄
TI

= (I − ns̄ ⊗ ns̄) [ṅs̄
IK q

(2),s̄
K − ṅs̄

IJ q
(1),s̄
J ] . (4.128)

Accordingly, frame indifference can be assured using the above modified velocity. Based
on this consideration the Coulomb frictional tractions are determined with a trial state-
return mapping strategy, which is examined in detail in Sec. 5.6.2. Using an active set
strategy (see Hesch and Betsch [62]) an inequality constraint Φs̄

NI
, which in the underlying

contribution is incorporated with Lagrange multipliers, can be replaced by the equality
constraint (for more details see Sec. 5.4)

Φs̄
NI

= λs̄
NI

− max{0, λs̄
NI

− c Φs̄
NI

} , c > 0 . (4.129)

Considering only active constraints for convenience, with c = 1, the impenetrability
constraint is stated as

Φs̄
NI

= ns̄ · (ns̄
IJ q

(1),s̄
J − ns̄

IK q
(2),s̄
K ) . (4.130)

The segmentation process can be applied as stated earlier in this section. Accordingly,
the segment contributions of the Mortar approximations are recast as

ϕ(1),h,s̄ = N̂i(ξ
(1),h,es̄(η))q(1),s̄

i , ϕ(2),h,s̄ = N̂i(ξ
(2),h,es̄(η))q(2),s̄

i ,

t
(1),h,s̄
N = N̂i(ξ

(1),h,es̄(η))λ(1)
Ni

∀i ∈ Ω(1) . (4.131)

With the above approximations in hand the segment contributions of the Mortar con-
straints are defined as

Φs̄,es̄

Ni
= n̄s̄,es̄ · (n̄s̄,es̄

ij q
(1),s̄
j − n̄s̄,es̄

ik q
(2),s̄
k ) . (4.132)

Furthermore the Mortar integrals on segment-level n̄s̄,es̄

ij and n̄s̄,es̄

ik are introduced. To
compute the Mortar integrals the area Jacobian mapping on Gauss point level can be
arranged as (for more details see Simo et al. [138])

jseg(ξ(1),h,es̄(ηg)) = ‖a1(ξ
(1),h(ηg)) × a2(ξ

(1),h(ηg))‖ det(D ξ(1),h(ηg)) . (4.133)

Finally the Mortar integrals can be approximated using Gaussian quadrature

n̄s̄,es̄

ij =
∫

γ̄
(1),h,es̄
c

N̂i(ξ
(1),h,es̄(η)) N̂j(ξ

(1),h,es̄(η)) jseg(ξ(1),h,es̄(η)) da(1) (4.134)

≈
ngp∑

g=1

N̂i(ξ
(1),h,es̄(ηg)) N̂j(ξ

(1),h,es̄(ηg)) jseg wg , (4.135)

n̄s̄,es̄

ik =
∫

γ̄
(1),h,es̄
c

N̂i(ξ
(1),h,es̄(η)) N̂k(ξ(2),h,es̄(η)) jseg(ξ(1),h,es̄(η)) da(1) (4.136)

≈
ngp∑

g=1

N̂i(ξ
(1),h,es̄(ηg)) N̂k(ξ(2),h,es̄(ηg)) jseg wg . (4.137)
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Therein a 4 point Gauss quadrature (see Fig. 4.11) with Gaussian points and weights (see
Tab. 4.1) is sufficient to approximate the integral expressions. Accordingly, the segment
contribution of the constraints and its corresponding Jacobian matrix GT

N(q) are arranged
in

ΦN(q) = Ā
s

⋃

es̄

[
Φs̄,es̄

Ni

]
= Ā

s

⋃

es̄

Φ
s̄,es̄

N , GT
N(q) = Ā

s

⋃

es̄

[
∇

q
(i),s̄

i

Φs̄,es̄

Ni

]
= Ā

s

⋃

es̄

G
T,s̄,es̄

N ,

(4.138)

where standard assembly techniques are used. Moreover a tangential force vector F T(q)
including the tangential contributions is provided

F T(q) = Ā
s

⋃

es̄

(I − ns̄,es̄ ⊗ ns̄,es̄)
[
λ

s̄,es̄

Ti
· ∇

q
(i),s̄

i

⊗ g
s̄,es̄

Ti

]
. (4.139)

Eventually, the semi-discrete DAE system is accomplished as

M q̈ + F int,ext(q) + GT
N(q) λN + F T(q) = 0 ∀δq ∈ R

ndof , (4.140)

ΦN(q) = 0 ∀δλ ∈ R
4 ncel . (4.141)

4.2.3 Frictionless contact element

Based on the systematic construction of the augmented coordinates a consistent time
integration scheme with consideration of the deformation of the segments has been de-
veloped in Hesch and Betsch [62]. The formulation is computationally very demanding,
which is addressed in Hesch and Betsch [62] by several simplifications without sacrificing
algorithmic energy- and momentum conservation. The second method proposed in Hesch
and Betsch [62], where the convective coordinates are kept constant throughout the time
step, is briefly present here and in Chap. 5.6. In order to facilitate the design of an EMS
the augmented coordinate vector d, representing the unit outward normal, is incorporated
with the augmented constraint vector

Φ
s̄,es̄

Augi
=




ds̄,es̄ · a
s̄,es̄

1

ds̄,es̄ · a
s̄,es̄

2

ds̄,es̄ · ds̄,es̄ − ‖a
s̄,es̄

1 × a
s̄,es̄

2 ‖2


 . (4.142)

In a subsequent step a set of possible invariants is introduced

S̄ = {(q(1),s̄
I − q

(1),s̄
1 ) · (q(i),s̄

J − q
(1),s̄
1 )} , (4.143)

S̃ = {(q(i),s̄
I − q

(1),s̄
1 ) · ds̄,es̄} , (4.144)

S̊ = {ds̄,es̄ · ds̄,es̄} , (4.145)

where I, J ∈ {1, 2, 3, 4}, i ∈ {1, 2}. All invariants are arranged in π as follows

π =
[
π̄(i),T π̃(i),T π̊

]T
, (4.146)
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where π̄(i) ∈ S̄, π̃(i) ∈ S̃ and π̊ ∈ S̊ (for more details see Hesch and Betsch [62]). The
final step to facilitate the design of an EMS in the semi-discrete setting is to rewrite the
normal constraint (4.132) in terms of the just defined invariants (4.146). In order to do
that the frictionless constraint contribution of each segment is rearranged as follows

Φs̄,es̄

i = ds̄,es̄ · (n̄s̄,es̄

ij q
(1)
j − n̄s̄,es̄

ik q
(2)
k ) . (4.147)

Assuming that the completeness condition holds exactly

q
(1),s̄
1 (

∑

j

n̄s̄,es̄

ij −
∑

k

n̄s̄,es̄

ik ) = 0 , (4.148)

equation (4.147) can be written as

Φs̄,es̄

i = n̄ij(q
(1),s̄
j − q

(1),s̄
1 ) · ds̄,es̄ − n̄ik(q(2),s̄

k − q
(1),s̄
1 ) · ds̄,es̄ . (4.149)

Eventually, the above equation can be rewritten in terms of the invariants (4.146) as

Φs̄,es̄

i (π(q,d)) = n̄s̄,es̄

ij π̃
(1)
j − n̄s̄,es̄

ik π̃
(2)
k . (4.150)

Moreover the augmented constraints (4.142) are rewritten in terms of the invariants
(4.146) as

Φ
s̄,es̄

Augi
(π(q,d)) =




N
i,ξ

(1)
1

π̃
(1)
i

N
i,ξ

(1)
2

π̃
(1)
i

π̊ −
(

(N
i,ξ

(1)
1

N
j,ξ

(1)
1

π̄
(1)
i,j ) (N

i,ξ
(1)
2

N
j,ξ

(1)
2

π̄
(1)
i,j ) − (N

i,ξ
(1)
1

N
j,ξ

(1)
2

π̄
(1)
i,j )2

)


 .

(4.151)

For ease of notation the constraints are arranged in a single vector as

Φ(π(q,d)) =

[
Φs̄,es̄

i (π(q,d))
Φ

s̄,es̄

Augi
(π(q,d))

]
. (4.152)

Eventually, the semi-discrete equations of motion are obtained as follows

M q̈ + F int,ext(q) + (D1 π(q,d))T (∇π ⊗ Φ(π)) λ = 0 ∀δq ∈ R
ndof , (4.153)

(D2 π(q,d))T (∇π ⊗ Φ(π)) λ = 0 ∀δd ∈ R
3 ncel , (4.154)

Φ(π(q,d)) = 0 ∀δλ ∈ R
6 ncel . (4.155)

The derivation of the fundamental properties of the constraints and the verification of the
conservation of the angular momentum as well as of the total energy for the semi-discrete
system is presented in detail in Hesch and Betsch [62] and for convenience not presented
here again.
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4.3 Conservation properties

For the semi-discrete systems at hand, various constants of motion, such as linear and
angular momentum, exist, which is subject of the following consideration. Therefore
again the homogeneous Neumann problem (see Chap. 3.6.1) now for the semi-discrete
elastodynamic system is examined first. Afterwards the semi-discrete contact elements
are investigated regarding their conservation properties.

4.3.1 Semi-discrete homogeneous Neumann problem without

contact

Linear momentum, angular momentum and the total energy of the semi-discrete system
are defined by

Lh =
2∑

i=1

n
(i)
el⋃

e=1

∑

I∈ω(i)

M
(i),e
IJ q̇

(i),e
J , Jh =

2∑

i=1

n
(i)
el⋃

e=1

M
(i),e
IJ (q(i),e

I × q̇
(i),e
J ), (4.156)

Hh =
2∑

i=1

n
(i)
el⋃

e=1

(
1
2

q̇
(i),e
I · M

(i),e
IJ q̇

(i),e
J +

∫

B(i),e
0

W (C(i),h,e) dV (i)) . (4.157)

Moreover, the semi-discrete virtual work of the homogeneous Neumann problem without
contact is given by

Gh =
2∑

i=1

n
(i)
el⋃

e=1

δq
(i),e
I · (M (i),e

IJ q̈
(i),e
J + F

(i),int,e
I ) = 0 . (4.158)

Lemma 2. For the semi-discrete homogeneous Neumann problem (4.158) the total energy
as well as total linear and angular momentum are conserved.

Proof. The conservation of the semi-discrete system (4.158) is investigated for conserva-
tion of the basic balance principles.

• For conservation of total linear momentum the variation in (4.158) is chosen as
δq

(i),e
I = µ ∈ R3, which yields

Gh =
2∑

i=1

n
(i)
el⋃

e=1

∑

I∈ω(i)

µ · (M (i),e
IJ q̈

(i),e
J + F

(i),int,e
I ) . (4.159)

where the internal force vector F
(i),int,e
I depends on the B-matrix B

(i),e
I , which itself

depends on the derivatives of the shape functions with respect to the configura-
tion. Accordingly, using the partition of unity property of the shape functions, i.e.
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∑
I NI = 1, the second term vanishes and one obtains

Gh =
2∑

i=1

n
(i)
el⋃

e=1

∑

I∈ω(i)

µ · M
(i),e
IJ q̈

(i),e
J = µ · L̇

h
= 0 . (4.160)

Accordingly, L̇
h

= 0 and Lh = const.

• The conservation of the angular momentum can be obtained by substitution of
δq

(i),e
I = µ × q

(i),e
I , µ ∈ Rndim into equation (4.158), i.e. one obtains

Gh =
2∑

i=1

n
(i)
el⋃

e=1

(µ × q
(i),e
I ) · (M (i),e

IJ q̈
(i),e
J + F

(i),int,e
I ) = 0 . (4.161)

Employing the derivative of the semi-discrete angular momentum with respect to
time

J̇
h

=
2∑

i=1

n
(i)
el⋃

e=1

M
(i),e
IJ (q(i),e

I × q̈
(i),e
J ) , (4.162)

the symmetry of the second Piola-Kirchhoff stress tensor in F
(i),int,e
I and the skew

symmetry of µ × q
(i)
I , one obtains

Gh =
2∑

i=1

n
(i)
el⋃

e=1

(µ × q
(i),e
I ) · (M (i),e

IJ q̈
(i),e
J ) = −J̇

h · µ = 0 . (4.163)

Note, a double contraction (inner product) of a symmetric with a skew-symmetric
second order tensor vanishes. Hence, for arbitrary µ ∈ Rndim the semi-discrete

balance of angular momentum is J̇
h

= 0. Accordingly, the angular momentum
itself is conserved Jh = const. for the semi-discrete system at hand.

• Finally the semi-discrete system (4.158) is examined for energy conservation. There-
fore, δq

(i),e
I = q̇

(i),e
I is substituted and F

(i),int,e
I =

∫
B(i),h,e

0
B

(i),e,T
I S(i),h,e

v dV (i) is used,
which yields

Gh =
2∑

i=1

n
(i)
el⋃

e=1

q̇
(i),e
I · (M (i),e

IJ q̈
(i),e
J +

∫

B(i),h,e
0

B
(i),h,e,T
I S(i),h,e

v dV (i))

=
2∑

i=1

n
(i)
el⋃

e=1

(q̇(i),e
I · M

(i),e
IJ q̈

(i),e
J +

∫

B(i),h,e
0

S(i),h,e
v :

1
2

Ċ
(i),h,e

dV (i)) = Ṫ h + V̇ int,h .

(4.164)

Accordingly, the total energy (Hh = T h + V int,h = const.) is conserved.

In the next step the influence of the contact forces in case of the direct approach and the
coordinate augmentation technique are investigated, respectively.
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4.3.2 Semi-discrete contact contribution – direct approach

The semi-discrete contact contribution of the direct approach, which can be stated as

Gc,h =
ncel⋃

s=1

As [λs
N ns · (δq(1) − N̂I δq

(2)
I )

+ts
Tα

Aαβ,s
(

as
β · (δq(1) − N̂I δq

(2)
I ) + (ϕ(1),s − ϕ(2),s) · N̂I,β δqI

)
] = 0 , (4.165)

is examined for conservation of linear and angular momentum. The conservation of linear
momentum may be verified by substitution of δq(1),s = µ ∈ Rndim and δq

(2),s
I = µ ∈ Rndim

into the virtual work expression, which gives

Gc,h =
ncel⋃

s=1

∑

I∈Ω

As [ts
N ns · (µ − N̂I µ)

+ts
Tα

Aαβ,s
(

as
β · (µ − N̂I µ) + (ϕ(1),s − ϕ(2),s) · N̂I,β µ

)
] = 0 , (4.166)

where the partition of unity
∑

I N̂I = 1 and
∑

I N̂I,β = 0 have been employed for the
applied bilinear shape functions. For the verification of conservation of the angular mo-
mentum δq(1),s = µ × q(1),s and δq

(2),s
I = µ × q

(2),s
I are substituted into (4.165). This

yields

Gc,h =
ncel⋃

s=1

As [ts
N

(
µ × q(1),s − N̂I (µ × q

(2),s
I )

)
· ns

+ts
Tα

Aαβ,s
(

(µ × q(1),s − N̂I µ × q
(2),s
I ) · as

β + gs
N ns · N̂I,β (µ × q

(2),s
I )

)
]

=
ncel⋃

s=1

−µ · As
(
ts
N ns × gs

N ns + ts
Tα

Aαβ,s (as
β × gs

N ns + gs
N ns × as

β)
)

= 0 , (4.167)

where countercyclical permutation of the triple product and again the property
∑

I N̂I = 1
have been taken into account. Note that the simplified variation used in (3.189) allows
only conservation of angular momentum if the normal gap is equal to zero.

4.3.3 Semi-discrete contact contribution – augmented approach

Next, the conservation properties of the augmented system (4.53) are verified. The cor-
responding augmented contact virtual work readsX

GAug,h
ϕ =

ncel⋃

s=1

As [λs
N (δq(1),s − N̂I(f)δq

(2),s
I ) · ñs

+λf,α,s
Aug

(
(δq(1),s − N̂I(f)δq

(2),s
I ) · ãs

α + (q(1),s − N̂I(f)q(2),s
I ) · N̂J,α(f) δq

(2),s
J

)
] . (4.168)

XNote, in the present paragraph the involved bilinear shape functions N̂I(f) are dependent on the
augmented coordinates f which is in contrast to the previous paragraph.
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The conservation of linear momentum is verified by substitution of δq(1),s = µ ∈ Rndim

and δq
(2),s
I = µ ∈ Rndim into the virtual work expression, which yields

GAug,h
ϕ =

ncel⋃

s=1

As [λs
N (µ −

∑

I∈Ω(2)

N̂I(f)µ) · ñs

+λf,α,s
Aug ((µ −

∑

I∈Ω(2)

N̂I(f)µ) · ãs
α + (q(1),s − N̂I(f)q(2),s

I ) · (
∑

J∈Ω(2)

N̂J,α(f) µ))] = 0 . (4.169)

For the verification of the conservation of the angular momentum δq(1),s = µ × q(1),s and
δq

(2),s
I = µ × q

(2),s
I are substituted into (4.36), which yields

GAug,h
ϕ =

ncel⋃

s=1

As [λs
N µ · (q(1),s − N̂I(f)q(2),s

I ) × ñs

+λf,α,s
Aug

(
µ · (q(1),s − N̂I(f)q(2),s

I ) × ãs
α + (q(1),s − N̂I(f)q(2),s

I ) · µ × N̂J,α(f) q
(2),s
J

)
]

=
ncel⋃

s=1

As [λs
N µ · g̃s

N ñs × ñs + λf,α,s
Aug (µ · (q(1),s − N̂I(f)q(2),s

I ) × ãs
α

−µ · (q(1),s − N̂I(f)q(2),s
I ) × N̂J,α(f) q

(2),s
J )] = 0 . (4.170)

Note that it can be shown that the associated augmented constraints Φs
Aug are frame

indifferent. This is presented in detail in Franke et al. [40] and is therefore omitted here
for convenience.

4.3.4 Semi-discrete contact contribution – Mortar approach

Finally, the conservation properties of the semi-discrete frictional Mortar element (4.123)
are verified. The corresponding semi-discrete Mortar contact virtual work reads

Gc,h =
ncel⋃

s̄=1

λs̄
NI

(ns̄ · [ns̄
IJ δq

(1),s̄
J − ns̄

IK δq
(2),s̄
K ] + δns̄ · [ns̄

IJ q
(1),s̄
J − ns̄

IK q
(2),s̄
K ])

+λs̄
TI

· (I − ns̄ ⊗ ns̄) [ns̄
IJ δq

(1),s̄
J − ns̄

IK δq
(2),s̄
K ] . (4.171)

The conservation of linear momentum is verified by substitution of δq
(i),s̄
I = µ ∈ Rndim

into the virtual work expression, which yields

Gc,h =
ncel⋃

s̄=1

λs̄
NI

(ns̄ · µ[
∑

J∈Ω(1)

ns̄
IJ −

∑

K∈Ω(1)

ns̄
IK ] + δns̄(µ) · [ns̄

IJ q
(1),s̄
J − ns̄

IK q
(2),s̄
K ])

+λs̄
TI

· (I − ns̄ ⊗ ns̄) µ[
∑

J∈Ω(1)

ns̄
IJ −

∑

K∈Ω(1)

ns̄
IK ] = 0 , (4.172)

with

δns̄(µ) = − âs̄
2 µ,1

‖as̄
1 × as̄

2‖
+

âs̄
1 µ,2

‖as̄
1 × as̄

2‖
+

as̄
1 × as̄

2

‖as̄
1 × as̄

2‖3
(−âs̄

2 µ,1 + âs̄
1 µ,2) = 0 , (4.173)
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where µ,1 = µ,2 = 0. Therein âs̄
1 ∈ Rndim×ndim and âs̄

2 ∈ Rndim×ndim denote skew symmetric
second order tensors according to the following assignments

âs̄
1 µ,2 = as̄

1 × µ,2, âs̄
2 µ,1 = as̄

2 × µ,1 . (4.174)

Moreover the partition of unity property of the shape functions can be used for each s̄
such that

∑

J∈Ω(1)

ns̄
IJ −

∑

K∈Ω(1)

ns̄
IK = 0 . (4.175)

Accordingly, linear momentum conservation is not affected by the semi-discrete Mortar
method. For the verification of the conservation of the angular momentum δq

(i),s̄
I =

µ × q
(i),s̄
I and substituted into (4.171), which yields

Gc,h =
ncel⋃

s̄=1

λs̄
NI

(ns̄ · µ × [ns̄
IJ q

(1),s̄
J − ns̄

IK q
(2),s̄
K ] + (− âs̄

2 (µ × as̄
1)

‖as̄
1 × as̄

2‖

+
âs̄

1 (µ × as̄
2)

‖as̄
1 × as̄

2‖
+

as̄
1 × as̄

2

‖as̄
1 × as̄

2‖3
(−âs̄

2 (µ × as̄
1) + âs̄

1 (µ × as̄
2))) · [ns̄

IJ q
(1),s̄
J − ns̄

IK q
(2),s̄
K ])

+λs̄
TI

· (I − ns̄ ⊗ ns̄) µ × [ns̄
IJ q

(1),s̄
J − ns̄

IK q
(2),s̄
K ]

=
ncel⋃

s̄=1

λs̄
NI

(ns̄ · µ × gs̄
NI

ns̄ + (− âs̄
2 (µ × as̄

1)
‖as̄

1 × as̄
2‖

+
âs̄

1 (µ × as̄
2)

‖as̄
1 × as̄

2‖

+
as̄

1 × as̄
2

‖as̄
1 × as̄

2‖3
(−âs̄

2 (µ × as̄
1) + âs̄

1 (µ × as̄
2))) · gs̄

NI
ns̄) + λs̄

TI
· µ × gs̄

NI
ns̄ = 0 . (4.176)

In the above the nodal gaps gs̄
NI

are assumed to vanish for the bodies in contact.
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The arising sets of semi-discrete DAEs have to be discretized in time. Accordingly, the
time discretization of both the frictionless and frictional contact problems is considered in
the following. For frictional contact analysis one separates the time discretization into a
global time stepping scheme used to integrate the DAE’s and a local time stepping scheme
in order to integrate the frictional evolution equations (3.164)-(3.167). The chapter is
organized as follows. First in Sec. 5.1 standard integrators and then in Sec. 5.2 more
recent integrators are briefly introduced. For the arising nonlinear discrete equations
Newton’s method is introduced in Sec. 5.3. The necessary implementation of the contact
inequality constraints are accounted for with an active set strategy presented in Sec. 5.4.
Finally, the DAEs resulting from the NTS method as well as from the Mortar method are
temporally discretized in Sec. 5.5 and 5.6, respectively, where suitable time integration
schemes are developed.

5.1 ODE solvers

Within the temporal discretization the time interval I of interest is subdivided into N
equidistant increments ∆t = tn+1 − tn (see Fig. 5.1), as follows

I = [0, T ] =
N−1⋃

n=0

[tn, tn+1] . (5.1)

Initially time stepping schemes have been developed to solve first order ODEs of the

tn tn+1

tn+ 1
2

tn− 1
2

tn−1tn−2

∆t

t

Figure 5.1: Time scale with equidistant time step size ∆t.

general form

ẏ(t) = f(y(t)) , (5.2)

and can be classified by several properties. Accordingly, the integrators are distinguished
by considering unknown or known integration points (i.e. explicit or implicit integrators),
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different numbers of time steps (i.e. single-, multi-step methods), the (error) order of
the integrators, the control of the time step size (fixed or variable step size), the control
of the order of the integrator (fixed or variable order), the conserving properties (en-
ergy, momentum, symplectic conserving or decaying) etc. (see Wood [158], Quarteroni
et al. [127], Bathe [7], Wiechert [151] for classification of integrators and Hairer [49]
for a great overview of standard and more recent numerical integration schemes). The
energy-momentum conserving schemes can basically be distinguished in energy enforcing
methods (see e.g. Hughes et al. [74], Kuhl [91], Kuhl and Ramm [93]) and algorithmic
EMS (see e.g. Gonzalez [42, 44], Betsch and Steinmann [16, 17], Hesch and Betsch [61]).
For energy enforcing methods (or ‘constraint energy method’ see Hughes et al. [74]) the
preservation of energy is enforced with the Lagrange multiplier method (see e.g. Hughes
et al. [74], Kuhl [91], Kuhl and Ramm [93]), where beside additional unknowns and sub-
sequent enlarging of the system a bad convergence rate (see Kuhl and Crisfield [92]) has
been observed. Algorithmic EMS are integration schemes where the energy and both
momentum maps are algorithmically preserved (see e.g. Gonzalez [42, 44], Betsch and
Steinmann [16, 17], Hesch and Betsch [61]). A third method developed for contact prob-
lems is the velocity update method proposed by Laursen [97]. The above three methods
can be distinguished by considering the typical second order semi-discrete DAEs

M q̈ + F int,ext(q) + GT(q) λ = 0 , (5.3)

Φ(q) = 0 , (5.4)

where the velocity update method provides a suitable post processing step on velocity
level to obtain energy conservation. The EMS provides algorithmic energy-momentum
conservation by applying the discrete gradient on the gradient of the internal energy and
on the Jacobian of the contact constraints in (5.3). Eventually, the energy enforcing
method works on constraint level by introducing seven additional constraints which con-
strain the momentum conservation (six constraints) and total energy conservation (one
constraint). To this end the guideline in Bathe [7] for practical time stepping schemes to
choose a suitable scheme is briefly summarized and sorted as follows: A time stepping
scheme should

1. be second order accurate

2. be numerically stable even in large deformation and long term simulations

3. be stable even for large time steps

4. have no additional parameters to be provided by the analyst

5. be applicable to elastic and inelastic analyses

6. not provide additional unknowns

7. solve the whole dynamic equilibrium equations at the time point of interest

8. be simple and efficient e.g. do not lead to an unsymmetrical tangent matrix.
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Herein for convenience but without restricting the generality the focus relies on one step
methods of at most second order accuracy with fixed time step size. For single-step inte-
grators the nodal values at time tn are assumed to be given and the nodal values at time
tn+1 are sought (see Fig. 5.1) which is in contrast to multi-step integrators where the steps
tn−1, tn−2, ... etc. dependent on the number of steps of the integrator, need to be provided.
For explicit time integrators the right hand side of (5.2) depends only on given/older time
steps e.g. tn, tn−1, ... etc. Explicit time integrators are well suited to capture high frequency
response phenomena and are therefore often used for impact simulations (see e.g. Laursen
[97]). A handicap of explicit time integrators is that they are only conditionally stable,
which means that the time step size ∆t needs to be chosen below some critical value
to maintain stability. For explicit integrators there is in principle no need for the use
of Newton’s method which is an advantage considering the computational effort in com-
parison to implicit integration schemes. Even nonlinear elastodynamic problems can be
solved directly where no linearisation needs to be provided. This is in contrast to implicit
integrators where the right hand side of (5.2) depends beside given states on the sought
time step tn+1. Implicit time integrators are well suited to capture low frequency response
phenomena (see e.g. Laursen [97]). Furthermore in linear elastodynamics implicit integra-
tors are unconditionally stable (for A-stable methods see Dahlquist [29]), which has the
practical consequence that although larger time steps can be applied, implicit integrators
remain stable. Hence, using implicit time integration schemes, the user is not concerned
by providing sufficiently small time steps which are in the stability region of an explicit
integrator. Moreover, using implicit time integration schemes significant computation
time can be saved, at least for not to small finite elements and for smooth problems. But
in nonlinear elastodynamics the stability properties of implicit integrators are not guaran-
teed in general. Implicit integrators usually lead to a system of nonlinear equations which
are commonly solved using Newton’s method. Note that in order to obtain a consistent
tangent the weak form has to be discretized first and then the linearisation is performed
in the discrete setting. In what follows the most common standard integrators are briefly
introduced, where for detailed informations the reader is referred to standard literature
on this topic given at the beginning of this Section. Integration of equation (5.2) over the
time interval In = [tn, tn+1] leads to

tn+1∫

tn

ẏ dt =

tn+1∫

tn

f(y) dt (5.5)

⇒ yn+1 − yn =

tn+1∫

tn

f(y) dt . (5.6)

Integration of the right hand side of equation (5.6) can be approximated using different
integration schemes. Applying the first order accurate forward Euler method, the update
formula for equation (5.6) can be written as

yn+1 − yn = ∆t f(yn) , (5.7)

where yn := y(tn) and yn+1 := y(tn+1). Thus, the forward Euler method uses only the
information of the given time step tn. The error is large as depicted in Fig. 5.2a which
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can be minimized using small time step sizes ∆t. The forward Euler method is known to
numerically gain energy for coarse time step sizes at least in the nonlinear regime. The
update formula for the A-stable backward Euler method is given by

yn+1 − yn = ∆t f(yn+1) . (5.8)

Hence, the backward Euler method uses the information of the current time step tn+1,
which is depicted in Fig. 5.2b. The backward Euler method is only first order accurate
and is known to numerically damp the system, which is advantageous for different tasks
e.g. for blasting simulations and numerically sensitive problems. The update formula for
the second order accurate and A-stable trapezoidal rule can be written as

yn+1 − yn = ∆t
f(yn+1) + f(yn)

2
, (5.9)

where both the time step tn and tn+1 are involved as can be seen in Fig. 5.2c. Eventually,
the second order accurate and A-stable midpoint rule is introduced as

yn+1 − yn = ∆t f(yn+ 1
2
) , (5.10)

which is depicted in Fig. 5.2d. For the midpoint rule the right hand side of (5.6) is eval-
uated at tn+ 1

2
= 1

2
(tn + tn+1) (see Fig. 5.1). The midpoint rule algorithmically conserves

tntn

tn tn

tn+1tn+1

tn+1tn+1

tn+ 1
2

tt

tt

ff

f f

f(yn)

f(yn)

f(yn+1)

f(yn+1)

f(yn+ 1
2
)

a) b)

c) d)

Figure 5.2: Integration of a typical 1D function f(y) : R → R with a) forward Euler
method, b) backward Euler method, c) trapezoidal rule and d) midpoint
rule.
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the linear and angular momentum. For at most quadratic expressions (in the primary
variables) of the residual, it conserves the total energy of the system for conservative
systems as well. The main focus within this thesis lies on second order implicit time
integrators for constraint systems in nonlinear elastodynamics. In this connection more
recent DAE solvers are briefly introduced in the next section.

5.2 DAE solvers

The typical problem considered herein can be assigned to nonlinear elastodynamics where
contact constraints Φ(q) are imposed. Using Lagrange multipliers to enforce the contact
constraints and neglecting frictional effects for convenience, the typical governing first
order semi-discrete DAEs with index 3 can be stated as (cf. equations (4.44), (4.118)-
(4.119) and (4.140)-(4.141))

q̇ − v = 0 ,

M v̇ + F int,ext(q) + GT(q) λ = 0 ,

Φ(q) = 0 . (5.11)

Therein the velocity v has been introduced as additional primary variable and as before
the mass matrix is assumed to be constantI. Moreover the internal and external force
vector is given by F int,ext(q) = F int(q) − F ext(q). GT(q) = (∇q ⊗ Φ(q)) denotes the
Jacobian of the constraint function which contains the derivative of all involved (active)
holonomic constraints Φ(q). Note, for DAEs related to constrained mechanical systems
promising integrators have been developed to meet the specific demands of mechanical
systems stemming from nonlinear structural elastodynamics (see Betsch et al. [22]). To
name a few these are the generalized-α scheme (see e.g. Negrut et al. [119], Arnold and
Brüls [5]), variational integrators (see e.g. Leyendecker et al. [108]), Lie group integrators
(see Brüls and Cardona [25], Brüls et al. [26]) and EMSs (see e.g. Leyendecker et al. [107]).
The standard implicit ODE solvers (see Sec. 5.1) can be applied with small modifications
for DAEsII as well (cf. Sänger [129]).

ITo be specific, this is valid for continuum bodies discretized with the finite element method as well
as for the redundant formulation of rigid bodies and structural elements (see trebuchet example in
Chap. 2) like beam and shell elements.

IINote, it is not possible to apply the forward Euler method for DAEs since the involved constraints and
its corresponding Lagrange multipliers need to be evaluated at time step tn,n+1.
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5.2.1 Backward Euler DAE solver

First the backward Euler DAE solver is applied. Accordingly the fully discrete system of
nonlinear equations can be written as

qn+1 − qn − ∆t vn+1 = 0 , (5.12)

M (vn+1 − vn) + ∆t F int,ext(qn+1) + ∆t GT(qn+1) λ̄n,n+1 = 0 , (5.13)

Φ(qn+1) = 0 . (5.14)

Note that the Lagrange multipliers λ̄n,n+1 remain constant within the time step. The
backward Euler method is known to be first order accurate and fails to conserve beside
the components of the angular momentum the total energy of a conservative system.
Insertion of (5.12) in (5.13) yields

M an+1 + F int,ext(qn+1) + GT(qn+1) λ̄n,n+1 = 0 , (5.15)

Φ(qn+1) = 0 , (5.16)

where the acceleration evaluated at the endpoint tn+1 has been introduced

an+1 =
1

∆t2
(qn+1 − qn − ∆t vn) . (5.17)

Moreover the velocity update is computed by

vn+1 =
1

∆t
(qn+1 − qn) . (5.18)

5.2.2 Trapezoidal DAE solver

Next, the trapezoidal rule is applied to the DAEs (5.11). Thus one obtains

M

(
2

∆t2
(qn+1 − qn) − 2

∆t
vn

)
+

1
2

(
F int,ext(qn) + F int,ext(qn+1)

)

+
1
2

(
GT(qn) + GT(qn+1)

)
λ̄n,n+1 = 0 , (5.19)

Φ(qn+1) = 0 , (5.20)

where the velocity update is given by

vn+1 =
2

∆t
(qn+1 − qn) − vn . (5.21)

Again the Lagrange multipliers λ̄n,n+1 remain constant within the time step. This is the
main difference when compared to the standard trapezoidal ODE solver.
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5.2.3 Midpoint DAE solver

The last standard integrator considered is the midpoint rule. It is applied to the system
of equations (5.11) which gives

M an+ 1
2

+ F int,ext(qn+ 1
2
) + GT(qn+ 1

2
) λ̄n,n+1 = 0 (5.22)

Φ(qn+1) = 0 , (5.23)

where the acceleration and configuration evaluated at the midpoint tn+ 1
2

are defined by

qn+ 1
2

=
1
2

(
qn+1 + qn

)
, (5.24)

an+ 1
2

=
2

∆t2

(
qn+1 − qn − ∆t vn

)
. (5.25)

Obviously the midpoint type evaluation is modified for the DAE system at hand such that
Lagrange multipliers λ̄n,n+1 remain constant within the time step and are not evaluated
at the midpoint tn+ 1

2
which is due to provide a correct solution with regard to constraint

enforcement. The velocity update is then computed by

vn+1 =
2

∆t

(
qn+1 − qn

)
− vn . (5.26)

5.2.4 Generalized-α DAE solver

The generalized-α method, introduced in the field of linear structural dynamics for ODEs
in Chung and Hulbert [27], and applied to the nonlinear regime (for contact problems) in
Hartmann [51] can be regarded as an extension of the HHT method (see Hilber et al. [67]).
It represents a compromise between high frequency damping with second order accuracy
and unconditional stability at least for the linear regimeIII. It contains the HHT, the
WBZ-α (see Wood et al. [159]) method and the Newmark family (see Newmark [120]) as
special cases. The integrator has been extended to DAEs resulting from bounded systems
e.g. in Negrut et al. [119], Arnold and Brüls [5]. For the underlying DAEs (5.11) the
generalized-α scheme can be summarized as proposed in Arnold and Brüls [5] as

M an+1−αm
+ αf (F int,ext(qn) − GT(qn) λ̄n,n+1)

+ (1 − αf ) (F int,ext(qn+1) − GT(qn+1) λ̄n,n+1) = 0 , (5.27)

Φ(qn+1) = 0 , (5.28)

where

an+1−αm
= (1 − αm) an+1 + αm an . (5.29)

IIINote, the mentioned tasks are dependent on the chosen parameters and may vanish.
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Therein the acceleration can be formulated depending on the current configuration as
follows

an+1 =
1

∆t2 β
(qn+1 − qn) − 1

∆tβ
vn − (

1
2 β

− 1) an . (5.30)

Regarding the numerous parameters in (5.27)-(5.30) it is possible to choose them such
that an unconditionally stable and second order accurate integrator is obtained, with

β ≥ 1
4

+
1
2

(αf − αm) , γ =
1
2

− αm + αf , (5.31)

where the parameters αm and αf can be chosen as

αm =
2 ρ∞ − 1
ρ∞ + 1

, αf =
ρ∞

ρ∞ + 1
. (5.32)

Therein the spectral radius at infinite frequency ρ∞ ∈ [0, 1] is introduced. Accordingly,
following these suggestions, the numerous parameters for the generalized-α scheme boils
down to one parameter employing the relations (5.31) and (5.32). The spectral radius ρ∞
can be chosen such that no numerical dissipation is obtained (ρ∞ = 1) whereas in this
specific case the solution has been observed to be affected by numerical oscillations (see
Arnold and Brüls [5]). For high frequency numerical dissipation the parameter should
be chosen as 0 ≤ ρ∞ < 1. A good choice for the spectral radius may be ρ∞ = 0.7 (see
Arnold and Brüls [5]).

5.2.5 Generalized midpoint variational DAE solver

The generalized variational midpoint integrator is considered next. The idea of variational
integrators is to discretise the action principle first. Accordingly, the Lagrange function
L is approximated on each time interval I with a discrete Lagrange function Ld. Thus,
the action S and discrete action Sd are given by

S =

T∫

0

L(q, q̇) dt ≈ Sd =
N−1∑

n=0

Ld(qn, qn+1) . (5.33)

Considering first the unbounded case for convenience (see Marsden and West [114], Lew
et al. [105, 106], Kane et al. [79]) a generalized midpoint approximation leads to the
discrete Lagrangian function

Ld(qn, qn+1) = ∆t L

(
(1 − α) qn + α qn+1,

qn+1 − qn

∆t

)
. (5.34)
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Taking the variation of the discrete action and setting it to zero gives

δSd =
N−1∑

n=0

(
D1Ld(qn, qn+1) · δqn + D2Ld(qn, qn+1) · δqn+1

)

= D1Ld(q0, q1) · δq0 + D2Ld(qN−1, qN) · δqN (5.35)

+
N−1∑

n=1

(
D2Ld(qn−1, qn) + D1Ld(qn, qn+1)

)
· δqn = 0 , (5.36)

where the variations are zero at the boundaries i.e. δq0 = δqN = 0. For arbitrary
variations δqn the discrete Euler-Lagrange (DEL) equations are finally obtained by

D1Ld(qn, qn+1) + D2Ld(qn−1, qn) = 0 , (5.37)

which indeed is a two step method but can be implemented as one step method using
the so-called position-momentum form of the discrete Euler-Lagrange equations (see Lew
et al. [105, 106]): Given (qn, pn) find (qn+1, pn+1) by solving

D1Ld(qn, qn+1) + pn = 0 , (5.38)

with tangent contribution K = D2 D1Ld(qn, qn+1) and then update the momentum

pn+1 = D2Ld(qn, qn+1) . (5.39)

For bounded systems the constraint forces and the constraints are added as has been
proposed in Leyendecker et al. [108], Betsch et al. [20], Sänger [129]. Accordingly, one
obtains

D1Ld(qn, qn+1) + D2Ld(qn−1, qn) − ∆t GT(qn) λn = 0 , (5.40)

Φ(qn+1) = 0 , (5.41)

which can be written as

M
1

∆t
(qn+1 − 2 qn + qn−1) +

∆t

2
(F int,ext(qn− 1

2
) + F int,ext(qn+ 1

2
) + GT(qn) λn) = 0 ,

(5.42)

Φ(qn+1) = 0 . (5.43)

In the above the configuration at time steps tn− 1
2

= 1
2

(tn−1 + tn) and tn+ 1
2

= 1
2

(tn+1 + tn)
are provided as follows (see also Fig. 5.1)

qn− 1
2

=
1
2

(qn−1 + qn), qn+ 1
2

=
1
2

(qn + qn+1) . (5.44)

5.2.6 Energy-momentum consistent DAE solver

In the general nonlinear regime the midpoint-rule (see Chap. 5.2.3) does not conserve the
total energy of the system. To be specific, the energy conservation condition in the discrete
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setting for a midpoint evaluation of the configuration for general nonlinear material models
is not satisfied (see Simo and Tarnow [135]). To overcome this drawback, the promising
EMS which initially goes back to early works Greenspan [47], LaBudde and Greenspan [94,
95] and later generalized in Simo and Tarnow [135], Gonzalez [42, 44, 45] is introduced. For
EMS, beside the linear and angular momentum maps, the total energy of a conservative
system is preserved. The idea of the EMS is to maintain the properties of the midpoint
rule, namely the linear and angular momentum conservation, and to supplement it with
energy conservation by sacrificing conservation of the symplectic transformation property.
An energy-momentum difference method has been firstly introduced in [135, 139] for
quadratic material models like the Saint Venant-Kirchhoff model. The energy-momentum
difference method has been generalized for non-quadratic material models by Laursen
and Meng [101]. Note, it has been shown that the energy conservation of the energy-
momentum difference method contributes more to the stability than the preservation
of the symplectic transformation property represented by the symplectic midpoint rule
(see Simo and Tarnow [135]). It has been extended for arbitrary nonlinear hyperelastic
material models in [42] based on a (G-equivariant) discrete gradient. In Gonzalez [44]
it has been extended to bounded systems with holonomic constraints and in Gonzalez
[45] it has been applied for compressible and incompressible hyperelastic material models
in principal stretches. The EMS has been developed as finite-difference time integration
scheme but it has been readily extended to a family of time finite-element methods in
Betsch and Steinmann [15, 16, 17] which is based on a continuous Galerkin method
with a special conservative approximation quadrature and has been extended to index-
3 DAEs where it was eventually called mixed Galerkin method. It can be interpreted
as assumed strain method in time (see Betsch and Steinmann [16]) due to the analogy
of the well-known assumed strain method in space which is a special spatially finite
element formulation developed to overcome the drawback of locking behavior as observed
by standard displacement based finite elements. The initially proposed finite difference
EMS (see Gonzalez [42, 44]) can be recovered with the unified framework proposed in
Betsch and Steinmann [15, 16, 17] by using certain quadrature points and are considered
herein for convenience. The discrete gradient of an arbitrary function f(qn, qn+1) ∈ R is
defined as

∇f(qn, qn+1) = ∇f(qn+ 1
2
) +

f(qn+1) − f(qn) − ∇f(qn+ 1
2
) · (qn+1 − qn)

‖qn+1 − qn‖2
(qn+1 − qn) .

(5.45)

The discrete gradient has the following properties, it

• satisfies the discrete directionality condition

∇f(qn, qn+1) · (qn+1 − qn) = f(qn+1) − f(qn) , (5.46)

• satisfies the discrete consistency condition

∇f(qn, qn+1) ≈ ∇f(qn+ 1
2
) , (5.47)
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• does not affect total linear and angular momentum preservation of the midpoint
rule and supplements it with total energy conservation, accordingly

Ln+1 = Ln, Jn+1 = Jn, Hn+1 = Hn , (5.48)

• is a second order accurate approximation of the exact gradient evaluated at the
midpoint of the configuration.

In Gonzalez [42] furthermore a G-equivariant discrete gradient of an invariant function
f(qn, qn+1) ∈ R which incorporates the symmetry properties of the system has been in-
troduced. One can show that for each function which can be represented by at most
quadratic invariants π with regard to Cauchy’s representation theorem f(qn, qn+1) =
f̃(π(qn), π(qn+1)) a G-equivariant discrete gradient can be constructed, defined as fol-
lows

∇f̃(qn, qn+1) = DπT(qn+ 1
2
)∇f(πn+1, πn) , (5.49)

∇f(πn+1, πn) = ∇f(πn+ 1
2
) +

f(πn+1) − f(πn) − ∇f(πn+ 1
2
) · (πn+1 − πn)

‖πn+1 − πn‖2
(πn+1 − πn) .

(5.50)

The G-equivariant discrete gradient satisfies the orthogonality and the consistency condi-
tion as well and is a second order approximation of the exact gradient, by using at most
quadratic invariants. In what follows the energy momentum conserving method based on
the application of the (G-equivariant) discrete gradient is simply called EMS. The EMS
retains the unconditional stability properties even in the nonlinear regime (see Betsch
and Steinmann [16]) which is in stark contrast to the symplectic midpoint rule (cf. Simo
and Tarnow [136]). The strategy pursued herein for the underlying contact problem is
explained next. The bounded system (5.11) is considered whereby the contact constraints
Φ(q) are assumed to be active. The following steps are then performed

• Hamiltonian formulation of the continuous system:

Given the kinetic and the potential energy T (q̇), V (q) = V int,ext := V int + V ext,
respectively, the Lagrangian L = T (q̇)−V (q) can be augmented with the augmented
potential energy V Aug leading to the augmented Lagrangian

LAug(q, q̇, λ) = T (q̇) − (V (q) + V Aug(q, λ)) . (5.51)

Reformulation of the system via Legendre transformation to a Hamiltonian structure
yields

HAug(q, p, λ) = p · q̇ − L̃Aug(q, p) , (5.52)

where the the conjugate momenta p and the augmented Lagrangian L̃Aug(q, p) have
been introduced.
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• Reformulation of the semi-discrete Hamiltonian by at most quadratic invariants:

Find at most quadratic invariants and reformulate the augmented Hamiltonian with
them. Accordingly,

HAug(q, p, λ) = H̃Aug(π(q), p, λ) , (5.53)

is valid.

• Midpoint type discretization with application of the discrete gradient:

A midpoint type discretization is employed where both the gradient of the inter-
nal energy evaluated in the midpoint of the configuration and the Jacobian of the
constraints evaluated in the midpoint of the configuration are replaced by an ap-
propriate discrete gradient F int,ext(qn+ 1

2
) → F̄

int,ext
(qn, qn+1) and an appropriate

G-equivariant discrete gradient G̃(πn+ 1
2
) → ¯̃

G(πn, πn+1), respectively, such that

F̄
int,ext

(qn, qn+1) =∇V (qn+ 1
2
) +

V (qn+1) − V (qn) − ∇V (qn+ 1
2
) · ∆qn,n+1

‖∆qn,n+1‖2
∆qn,n+1 ,

(5.54)

¯̃
G

T

(πn, πn+1) =∇Φ(qn, qn+1) = ∇Φ(πn, πn+1)
(

π(qn+ 1
2
) ⊗ ∇q

)
, (5.55)

where

∇Φ(πn, πn+1) = ∇Φ(πn+ 1
2
) +

Φ(πn+1) − Φ(πn) − ∇Φ(πn+ 1
2
) · ∆πn,n+1

‖∆πn,n+1‖2
∆πn,n+1 ,

(5.56)

= ∇Φ(πn+ 1
2
) +

(
Φ(πn+1) − Φ(πn)

‖∆πn,n+1‖
− ∇Φ(πn+ 1

2
) · M

)
M .

(5.57)

In the above the following identities

M =
∆πn,n+1

‖∆πn,n+1‖
, ∆qn,n+1 = qn+1 − qn, ∆πn,n+1 = πn+1 − πn , (5.58)

have been employed. In case of hyperelastic material models as considered in Sec. 3.4
the discrete directionality condition can be written as

Wn+1 − Wn = ∇C W (Cn,n+1) : ∆Cn,n+1 =
1
2

Sn,n+1 : ∆Cn,n+1 , (5.59)

where the right Cauchy Green strain tensor is averaged

Cn,n+1 =
1
2

(Cn+1 + Cn) . (5.60)

Accordingly, using the discrete gradient the algorithmic stress is computed by

∇W (Cn,n+1) = ∇W (Cn,n+1) +
Wn+1 − Wn − ∇W (Cn,n+1) : ∆Cn,n+1

‖∆Cn,n+1‖2
∆Cn,n+1 .

(5.61)
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Eventually, the discrete equations can be summarized as follows

M an+ 1
2

+ F̄
int,ext

(qn, qn+1) + ¯̃GT(qn+ 1
2
) λ̄n,n+1 = 0 , (5.62)

Φ(qn+1) = 0 , (5.63)

where the configuration, the velocity and the acceleration are evaluated in the midpoint
as has been utilized by the midpoint rule in equations (5.24)-(5.25). The update for the
EMS is given by

vn+1 =
2

∆t

(
qn+1 − qn

)
− vn . (5.64)

Remark 9. The denominator in equation (5.56) can become zero in the limit e.g. in the
very first Newton iteration of each time step, that is the case when the initial guess for
Newton’s method is chosen as the last converged solution qn+1 → qn (which is the most
intuitive choice), then the denominator becomes zero. There are different strategies to
overcome this problem. An initial guess can be introduced e.g. the initial guess of the very
first Newton iteration can be chosen like provided in Krenk [89], where the initial guess is
computed by

a0
n+1 = an , (5.65)

v0
n+1 = vn + ∆t an , (5.66)

q0
n+1 = qn + ∆t vn +

∆t2

2
an . (5.67)

A similar initial guess is proposed e.g. in Crisfield [28] by using an approximation of the
internal and external force vectors

F int,ext(q0
n+1) ≈ F int,ext(qn) + K int,ext(qn) (q0

n+1 − qn) , (5.68)

where K int,ext := K int + Kext denote the internal and external tangent contributions of
the respective force vectors. Accordingly, the residual for calculation of the initial guess
R(q0

n+1) can be displayed linearly in the primary variable q0
n+1 and can be solved for it

directly (i.e. without Newton’s method). Beside the possible implementation of the discrete
gradient without any further modifications provided by the initial guesses the number of
convergence steps usually decreases up to one step. Nevertheless, here and in what fol-
lows a simple if-query is implemented which works as follows: If the denominator is
approximately zero (i.e. less than a user defined tolerance like e.g. the Newton toler-
ance) then a pure midpoint evaluation of the internal and external forces is performed

(F̄
int,ext

(qn, qn+1) → F̄
int,ext

(qn+ 1
2
)) else the discrete gradient (5.56) is used. This simple

strategy works quite well and does not affect the solution since in the authors experience
the problem only appears in the very first Newton iteration.

5.3 Newton’s method for nonlinear elastodynamics

In order to solve the underlying nonlinear problem, e.g. equations (5.62)-(5.63), an incre-
mental iterative solution method of Newton’s type is applied for every time step (more
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details on Newton’s method for an one dimensional function is given in Appx. A.3). The
iteration usually is applied until the equations are fulfilled within a user defined tolerance
ε ∈ R+, ε ≈ 0. In particular a stop criterion ‖R(qk

n+1)‖2 < ε for the Newton iteration is
predefined, where ‖•‖2 denotes the Euclidean norm. Accordingly, ε determines the accu-
racy of the solution. The roots of the non-linear function R(qn+1) (i.e. it is assumed that
R(qn+1) is differentiable with respect to its arguments as often as required) are sought,
such that

R(q∗
n+1) = 0 . (5.69)

A Taylor series of the function R(qn+1) with initial guess qk
n+1 is developed

R ≈ R(qk
n+1) + DR(qk

n+1) ∆qk
n+1 + O((∆qk

n+1)
2) = 0 . (5.70)

Therein k denotes the k-th iteration. Neglecting higher order terms, Taylor series boils
down to

R ≈ R(qk
n+1) + DR(qk

n+1) ∆qk
n+1 = 0 , (5.71)

which is well known as Newton’s method. The increment ∆qk
n+1 at each iteration k ∈ N+

can be computed by solving the linear system of equations

DR(qk
n+1) ∆qk

n+1 = −R(qk
n+1) . (5.72)

The necessary linearisation step can be carried out by using the Gateaux derivativeIV as
follows

DR(qk
n+1) ∆qk

n+1 =
d
dθ

Rop,s(qk
n+1 + θ ∆qk

n+1)|θ=0 =: Kk ∆qk
n+1 . (5.73)

Then the update is defined by

qk+1
n+1 = qk

n+1 + ∆qk
n+1 . (5.74)

Usually Newton’s method iterates until the solution is sufficiently precise, i.e. if the Eu-
clidean norm of the function R(qk+1

n+1) is less than the user defined tolerance ε

‖R(qk+1
n+1)‖2 < ε . (5.75)

Newton’s method converges quadratically near the solution point q∗
n+1, i.e. it is local con-

vergent. The corresponding algorithm of Newton’s method for computer implementation
is depicted in Algorithm 1.

IVNote the linearisation in equation (5.73) has to be carried out in the spatial and temporal discrete
setting for transient problems. Accordingly the tangent given for the internal forces in Chap. 3.4
is computed in the spatial and temporal continuous case and must be therefore carried out for the
temporal discrete case again, which is straightforward and omitted here for convenience.



5.4 Active set strategy - Modified constraint 109

Algorithm 1 Newton’s method for nonlinear elastodynamics

Require: Given initial conditions q0, v0; number of time steps timeSteps;
time step size ∆t; Newton tolerance ε;

1: for timeSteps do

2: Set iteration counter k = 0
3: Initial guess for Newton’s method: q

(0)
n+1 = qn, λ̄

(0)

n,n+1 = 0

4: Set flagIteration = true
5: while flagIteration do

6: compute residual Rk

7: active set strategy (see Algorithm 2)
8: if ‖Rk‖2 < ε and Sk

A = Sk−1
A and Sk

I = Sk−1
I (see Algorithm 2) then

9: Convergence reached flagIteration = false
10: Update velocity vn+1

11: else

12: compute tangent matrix Kk

13: compute increment Kk ∆qk = −Rk

14: update qk+1
n+1 = qk

n+1 + ∆qk

15: update k = k + 1
16: end if

17: end while

18: end for

5.4 Active set strategy - Modified constraint

In what follows the incorporation of inequality contact constraints is accomplished, where
the active set strategy (for more details see e.g. Hüeber and Wohlmuth [71], Hesch and
Betsch [61], Popp et al. [122]) is used for this task. The active set strategy is introduced
using a simple mass point example which is depicted in Fig. 5.3. Accordingly, the initial
position of a mass point m is given by x0 > h1 (here x0 = 15). The motion of the mass
point, which is simulated under the influence of gravity (g = 9.81), is restricted by a
rigid contact boundary positioned at h1 = 5. The kinetic and the potential energy are
calculated by

T =
1
2

m ẋ2, V = m g x . (5.76)

For the bounded system the potential energy is augmented with

V Aug = λ Φ̃(λ, x) , (5.77)

where the Lagrange multiplier method is used for constraint enforcement with correspond-
ing Lagrange multiplier λ. In equation (5.77) Φ̃ denotes the equality constraint which is
achieved by the active set strategy. Therefore the Karush-Kuhn-Tucker constraints

Φ(x) := x − h1 ≥ 0, λ ≤ 0, λ Φ(x) = 0 , (5.78)
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h1

x

m
g

Figure 5.3: Mass point contact example.

are incorporated with the aid of the active set strategy. In particular the inequality
constraints in (5.78) can be written as holonomic equality constraint using the max-
operator (see Hintermueller et al. [68]) and a constant c ∈ R+ as

Φ̃(λ, x) = λ − max(0, λ − c Φ) = 0, c > 0 . (5.79)

Note, the parameter c is of algorithmic nature in contrast to e.g. the penalty parameter
and does not influence the quality of the constraint enforcement but may influence the
convergence rate (for more details see Popp et al. [122, Sec. 7.3]). The virtual work of
the underlying system can be written as

G = m ẍ δx + m g δx + δλ Φ̃(λ, x) + λ δΦ̃(λ, x) = R · δq . (5.80)

Now using a midpoint type discretizationV the constraint Φ̃k
n+1 at Newton iteration k can

take two states

Φ̃k
n+1 =

{
λ̄k

n,n+1, if λ̄k
n,n+1 − c Φ(xk

n+1) < 0 (inactive constraint)

c Φ(xk
n+1), elseif λ̄k

n,n+1 − c Φ(xk
n+1) ≥ 0 (active constraint) .

(5.81)

The constraint is active in case of λ̄k
n,n+1 − c Φ(xk

n+1) ≥ 0 and the governing equations are
(omitting the iteration index k for convenience)

xn+1 − xn − ∆t vn+ 1
2

= 0 (5.82)

m (vn+1 − vn) + ∆t (m g + c λ̄n,n+1) = 0 (5.83)

c (xn+1 − h1) = 0 . (5.84)

VAlthough an analytical solution can be found for (5.80), here a midpoint discretization is applied in
order to account for the more complex problems considered in the underlying contribution. Subse-
quently, Newton’s method (see Sec. 5.3) is applied to solve the discrete equations.
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Using Newton’s method

K(qn+1) ∆qn+1 = −R(qn+1) , (5.85)

where equations (5.82)-(5.84) denote the residual R and q =
[
vn+1 xn+1 λ̄n,n+1

]T
de-

notes the vector of all degrees of freedom. The tangent matrix can be computed using
the Gateaux derivative which yields

K =




−∆t
2

1 0
m 0 ∆t c
0 c 0


 . (5.86)

The constraint is inactive in case of (5.81)1 and the governing equations boil down to

Algorithm 2 Active set strategy for mass point example.

Require: given λ̄k
n,n+1, Φk

n+1, Sk−1
A and Sk−1

I
1: if λ̄k

n,n+1 = 0 then

2: if Φk
n+1 < 0 then

3: set Φk
n+1 ∈ Sk

A
4: else

5: set Φk
n+1 ∈ Sk

I and λ̄k
n,n+1 = 0

6: end if

7: else

8: if λ̄k
n,n+1 < 0 then

9: set Φk
n+1 ∈ Sk

A
10: else

11: set Φk
n+1 ∈ Sk

I and λ̄k
n,n+1 = 0

12: end if

13: end if

xn+1 − xn − ∆t vn+ 1
2

= 0 (5.87)

m (vn+1 − vn) + ∆t m g = 0 (5.88)

2 λ̄n,n+1 = 0 , (5.89)

which in fact denotes a Dirichlet mechanism on the Lagrange multipliers since Newton’s
method can be reduced to

K̄(qn+1) ∆q̄n+1 = −R̄(qn+1) , (5.90)

with corresponding shrunken contributions

q̄ =

[
vn+1

xn+1

]
, R̄ =

[
xn+1 − xn − ∆t vn+ 1

2

m (vn+1 − vn) + ∆t m g

]
, K̄ =

[
−∆

2
1

m 0

]
. (5.91)
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Accordingly, the implementation relies on a split of all constraints S = SA ∪ SI into a set
of active constraints

SA = {a ∈ S|λa − c Φa ≥ 0} , (5.92)

and a set of inactive constraints

SI = {a ∈ S|λa − c Φa < 0} . (5.93)

The corresponding algorithm is depicted in Algorithm 2VI. In the discrete setting, a
problem becomes obvious, where the active constraint can be written as

Φa(xn+1) = xn+1 − h1 = 0 . (5.94)

As depicted in Fig. 5.4 the active constraint (Φa(xn+1)), using standard time stepping
schemes, can in general not hit the ground placed at h1 exactly. The constraint (5.94)

t

h1

tn tn+1

xn xn+1, λ̄n,n+1

xn+1, λ̄n,n+1

xn+1

t

Figure 5.4: Temporal discrete illustration of standard xn+1, λ̄n,n+1 (blue), modified con-
straint xn+1, λ̄n,n+1 (green) with artificial surface (dotted line) and without
constraint xn+1 (red).

enforces the position of the mass point to the ground, which in general destroys the balance
of energy (i.e. dissipates energy). This can be demonstrated considering the simulation
of the example depicted in Fig. 5.3 with initial conditions x0 = 15, v0 = −5 and time
step size ∆t = 0.05. Accordingly, as depicted in Fig. 5.5, the energy is dissipated for each
time step where the contact constraint becomes active. Of course the error becomes small
using a very small time step size ∆t. So a possible strategy to remedy this drawback is
to use a very small time step size for contact problems, ideally an adaptive integration
scheme should be used. Since with the subsequently proposed implicit time integration
schemes coarse time step sizes are aimed at, another pragmatic solution to overcome this
problem can be achieved with a modified active constraint, such that

Φn+1 := Φ(xn+1) − Φ(xn) = 0 . (5.95)

VINote the algorithm is nested in Newton’s method as depicted in Algorithm 1.



5.4 Active set strategy - Modified constraint 113

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5

6

7

8

9

10

11

12

13

14

15

t

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
80

90

100

110

120

130

140

150

160

t

en
er

gy
Figure 5.5: Active set strategy with standard constraint: configuration plot (left), energy

plot (right).

This constraint can be interpreted as a kind of artificial surface placed at xn when the
constraint becomes active (see Fig. 5.4), which approximates the original boundary at h1

for decreasing time step sizes ∆t → 0. It is important to remark that this strategy is
critical for both large time steps and frictional contact (i.e. stick-slip behavior). Accord-
ingly, this strategy should only be employed for frictionless contact and is well suitable for
adaptive time stepping schemes. As a consequence of the modified constraint, the energy
balance is not affected any more (see Fig. 5.6) and is perfectly conserved. Moreover, the
energy balance is independent of the chosen time step size ∆t.
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Figure 5.6: Active set strategy with modified constraint: configuration plot (left), energy
plot (right).
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5.5 Discrete equations for NTS method

In Sec. 5.5.1 an EMS for frictionless contact based on the NTS method (firstly proposed
in Hesch and Betsch [61]) is presented, which beside the momentum maps conserves the
total energy of a conservative system. On this basis a robust integration scheme for
frictional contact is developed in Sec. 5.5.2 which is applied to the newly proposed CAT.
Afterwards major conserving properties are examined for this new approach.

5.5.1 Energy-momentum scheme

As mentioned before energy and momentum consistent methods for frictionless contact
simulations have been provided in some publications. To be specific in Laursen and
Chawla [98], Laursen [97] and Armero and Petöcz [3] an energy and momentum con-
serving scheme based on a kind of algorithmic gap rate has been proposed. Therein the
normal contact constraint is substituted by the afore mentioned algorithmic gap rate. The
problem of this method is, that the constraint is not fulfilled exactly anymore. Accord-
ingly, the penetration of the bodies is possible but tends to zero if the time step size tends
to zero. A more common approach is the velocity update procedure (see e.g. Laursen
and Love [99], Laursen [97], Wriggers and Laursen [162]). In particular the velocity for
contact interactions is corrected in a post-processing step with a discrete velocity jump.
Accordingly, it is a very simple intervention since it affects only the update procedure
but the disadvantage is that it is only first order accurate. In order to provide a second
order accurate energy and momentum conserving time integration scheme (see Hesch and
Betsch [61]) the aim is the time discretization of the mixed formulation in Sec. 4.1.3. In
this connection a discrete gradient in the sense of Gonzalez [42] (see also Gonzalez [43]) is
used. Hence, the totally discrete system relies on a midpoint type evaluation of equation
(4.155) together with the concept of the discrete gradient and can be written as follows

M
2

∆t2

(
qn+1 − qn − ∆t vn

)
+ F̄

int,ext
(qn, qn+1)

+
ncel∑

s=1

(
D1 π(qs

n+ 1
2
, ds

n+ 1
2
, f s

n+ 1
2
)
)T

∇π
˜̃
Φ

s

(πn, πn+1) · λ̄
s

n,n+1 = 0

ncel∑

s=1

(
D2 π(qs

n+ 1
2
,ds

n+ 1
2
, fs

n+ 1
2
)
)T

∇π
˜̃
Φ

s

(πn, πn+1) · λ̄
s

n,n+1 = 0

ncel∑

s=1

(
D3 π(qs

n+ 1
2
,ds

n+ 1
2
, fs

n+ 1
2
)
)T

∇π
˜̃
Φ

s

(πn, πn+1) · λ̄
s

n,n+1 = 0




˜̃
Φ

1

(π(q1
n+1,d

1
n+1, f

1
n+1))

...
˜̃
Φ

ncel

(π(qncel
n+1,d

ncel
n+1, f

ncel
n+1))


 = 0 . (5.96)
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Here the discrete gradient F̄
int,ext

(qn, qn+1) = ∇q V (qn, qn+1) applied on the potential
energy is used (for more details see Betsch and Steinmann [16]). In addition to that, the

G-equivariant discrete gradient ∇π
˜̃
Φ(πn, πn+1) applied on the Jacobian of the contact

constraints using the at most quadratic invariants π can be written as

∇π
˜̃
Φ

s

(πn, πn+1) = ∇π
˜̃
Φ

s

(πn+ 1
2
)

+
˜̃
Φ

s

(πn+1) − ˜̃
Φ

s

(πn) − ∇π
˜̃
Φ

s

(πn+ 1
2
) (πs

n+1 − πs
n)

‖πs
n+1 − πs

n‖2
(πs

n+1 − πs
n) . (5.97)

For the first time energy and momentum conservation has been shown without artificial
modifications of the velocity or constraints in Hesch and Betsch [61]. The verification of
the conservation of the angular momentum and the total energy of the discrete system
can be found in Hesch and Betsch [61] as well. To this end it should be remarked that
the consistency condition is always violated by a constraint which changes its status from
inactive to active. This produces some artificial energy but it does not affect the stability
and robustness of the integrator. With a slight modification of the active constraints (see
Chap. 5.4)

ΦN(qn+1, qn) := ΦNn+1 − ΦNn
= 0 , (5.98)

the energy is perfectly conserved, but as pointed out in Chap. 5.4 a small time step or an
adaptive time integration scheme are recommended.

5.5.2 Coordinate augmentation technique with Coulomb friction

The semi-discrete equations of motion (4.44) and (4.53) are discretized in time subse-
quentlyVII. Considering the time interval I = [0, T ] =

⋃N−1
n=0 [tn, tn+1] subdivided into

increments ∆t = tn+1 − tn the full discrete version of (4.44) using a midpoint type ap-
proximation reads

M
2

∆t2

(
qn+1 − qn − ∆t vn

)
+ F int,ext(qn+ 1

2
) + F N(qn+ 1

2
, λ̄Nn,n+1) + F T(qn, qn+1) = 0

ΦN(qn+1) = 0 .
(5.99)

Therein the discrete frictional kinematics are used with F T(qn, qn+1) = {ts
Tα

δξ̄α,s

n+ 1
2

}.

Accordingly, it depends on the variation of the discrete convective coordinates. Using a
midpoint type discretization, the variation of the convective coordinates yields

δξ̄α,s

n+ 1
2

= Aαβ,s

n+ 1
2

(
(δq(1),s − δq(2),s) · as

β,n+ 1
2

+ gs
N

n+ 1
2

ns
n+ 1

2
· δas

β

)
. (5.100)

Note that the adjoint discrete traction ts
Tα

is dealt with using a local evolution scheme
which is subject of the following considerations.

VIINote, the underlying section is partly taken from Franke et al. [40].
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Local time stepping scheme for the frictional evolution equations In order to incor-
porate Coulomb’s law the frictional evolution equations (3.164)-(3.167), which in anal-
ogy to elastoplasticity can formally be regarded as DAEs (see de Souza Neto et al. [31,
Chap. 7.2.8]), have to be solved. Therefore a return mapping scheme (for more details
see Laursen [97] and Wriggers [161]) is applied. For convenience the backward Euler in-
tegration scheme is employed to discretise the local evolution equations (3.169), which
yields

ts
Tα,n+1

− ts
Tα,n

= ∆t ǫT (ms
αβ,n+1 ξ̇β,s

n+1 − ζ̇s
n+1

ts
Tα,n+1

‖ts
Tn+1

‖) , (5.101)

Therein the velocity of the convective coordinates and the consistency parameter (plastic
multiplier) can be approximated as (see Laursen [97] and Simo and Hughes [133, pp. 33
ff])

ξβ,s
n+1 − ξβ,s

n = ∆t ξ̇β,s
n+1, ∆t ζ̇s

n+1 = ∆ζs
n+1 . (5.102)

Accordingly, the discrete consistency parameter is a Lagrange multiplier. Taking the
inequality conditions (3.164)–(3.167) into account, one obtains

ts
Tα,n+1

= ts
Tα,n

+ ǫT (ms
αβ,n+1 (ξβ,s

n+1 − ξβ,s
n ) − ∆ζs

n+1

ts
Tα,n+1

‖ts
Tn+1

‖) , (5.103)

Φs
n+1 = ‖ts

Tn+1
‖ − µ ts

Nn,n+1
≤ 0, ∆ζs

n+1 ≥ 0, ∆ζs
n+1 Φs

n+1 = 0 . (5.104)

Note that ts
Nn,n+1

is represented by a Lagrange multiplier, constant within the time step.
To implement (5.103)-(5.104) a return mapping scheme is applied. Therefore, initially
stick contact is assumed, i.e. ∆ζn+1 = 0

ttr,s
Tα,n+1

= ts
Tα,n

+ ǫT ms
αβ,n+1 (ξβ,s

n+1 − ξβ,s
n ) , (5.105)

Φtr,s
n+1 = ‖t

tr,s
Tn+1

‖ − µ ts
Nn,n+1

≤ 0 , (5.106)

which defines the trial state and is abbreviated with the superscripted tr in the follow-
ing. Note within the return mapping scheme regarding the last term of equation (5.105)
more involved strategies are employed in the literature. For more details it is referred to
Wriggers et al. [163], Konyukhov and Schweizerhof [85, 86, 87], where additional history
variables need to be stored. The trial state is assumed in the very first increment of
Newton’s method. Depending on condition (5.106), slip occurs and the tractions read

ts
Tα,n+1

= ts
Tα,n

+ εT ms
αβ,n+1 (ξβ,s

n+1 − ξβ,s
n ) − ǫT ∆ζs

n+1

ts
Tα,n+1

‖ts
Tn+1

‖

⇔ ttr,s
Tα,n+1

= ts
Tα,n+1

+ ǫT ∆ζs
n+1

ts
Tα,n+1

‖ts
Tn+1

‖ , (5.107)

where equation (5.105) has been used. After short calculations using the relation

t
tr,s
Tn+1

‖t
tr,s
Tn+1

‖ =
ts

Tn+1

‖ts
Tn+1

‖ , (5.108)
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one obtains

‖t
tr,s
Tn+1

‖ = ‖ts
Tn+1

‖ + εT ∆ζs
n+1 . (5.109)

With the above equation and equations (5.104) for slip the discrete counterpart of the
consistency parameter in the case of slip is achieved by

∆ζs
n+1 (‖t

tr,s
Tn+1

‖ − µ ts
Nn,n+1

) = ∆ζs
n+1 Φtr,s

n+1 > 0

⇔ ∆ζs
n+1 (‖ts

Tn+1
‖ + εT ∆ζs

n+1 − µ ts
Nn,n+1

) = ∆ζs
n+1 Φtr,s

n+1 > 0

⇔ εT (∆ζs
n+1)

2 = ∆ζs
n+1 Φtr,s

⇔ ∆ζs
n+1 =

Φtr,s
n+1

ǫT

> 0 . (5.110)

Thus, the final contribution in the case of slip reads

ts
Tα,n+1

= µ ts
Nn+1

ts
Tα,n+1

‖t
tr,s
Tn+1

‖ . (5.111)

To summarize, the return mapping scheme can be separated into two cases

ts
Tα,n+1

=





ttr,s
Tα,n+1

, if Φtr,s
n+1 ≤ 0 (stick)

µ ts
Nn+1

t
tr,s
Tα,n+1

‖t
tr,s
Tn+1

‖ , elseif Φtr,s
n+1 > 0 (slip) ,

(5.112)

which denotes the definition of the tractions. Note that for the implementation of the
return mapping scheme the frictional tractions as well as the convected coordinates have
to be stored to obtain the new trial traction in equations (5.103)-(5.104). Furthermore
the above equations have to be evaluated consistent with the applied global time stepping
scheme. Accordingly, instead of a backward Euler scheme a midpoint type integration
should be used to approximate the local evolution equations (3.169). Therefore, following
the arguments in Armero & Petöcz [4] the frictional tractions are evaluated as follows

ts
Tα,n+ϑ

= ϑ ts
Tα,n+1

+ (1 − ϑ) ts
Tα,n

. (5.113)

where ϑ ∈ [0, 1] controls the corresponding time stepping scheme and should be chosen
consistent with the global time stepping scheme. After straightforward calculations, which
are quite similar as for the backward Euler scheme and neglected here for convenience,
one obtains the desired result

ts
Tα,n+1

=





ttr,s
Tα,n+1

, if Φtr,s
n+1 ≤ 0 (stick) ,

µ ts
Nn+1

t
tr,s
Tα,n+ϑ

‖t
tr,s
Tn+ϑ

‖ , elseif Φtr,s
n+1 > 0 (slip) ,

(5.114)

where in case of ϑ = 1
2

the second order midpoint rule is obtained. The consistent
linearisation of the frictional tractions for both the stick and the slip case are given in
Appx. D.3.
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The temporal discrete version of the augmented system in (4.53) using a midpoint type
approximation reads

M
2

∆t2

(
qn+1 − qn − ∆t vn

)
+ F̄

int,ext
(qn, qn+1) + G̃

q,T
(qn+ 1

2
, fn+ 1

2
) ¯̃
λn,n+1 = 0 ,

fAug
n+ 1

2

+ G̃
f,T

(qn+ 1
2
, fn+ 1

2
) ¯̃
λn,n+1 = 0 ,

Φ̃(qn+1, fn+1) = 0 ,
(5.115)

where fAug
n+ 1

2

has to be evaluated as shown above. Following the arguments outlined in

the previous section, a local projection matrix can be created as follows

Ps
n+ 1

2
= −(∇qs ⊗ Φ

f,s
Aug

n+ 1
2

) (∇fs ⊗ Φ
f,s
Aug

n+ 1
2

)−1 . (5.116)

Accordingly, the reduced system is obtained by

M
2

∆t2
(qn+1 − qn − ∆t vn) + F̄

int,ext
(qn, qn+1) + (∇q ⊗ ΦN

n+ 1
2

) λ̄Nn,n+1

+Pn+ 1
2
fAug

n+ 1
2

= 0 ,

Φ̃(qn+1, fn+1) = 0 . (5.117)

For the second reduction step the projection matrix in (5.116) needs to be evaluated at
time tn+1 which yields

Ps
n+1 = −

(
∇qs ⊗ Φs

Augn+1

) (
∇fsΦs

Augn+1

)−1

. (5.118)

Accordingly, the discrete equation system eventually can be written as

[
Kqq + KqfP

T
n+1 ∇q ⊗ ΦN

n+ 1
2

ΦNn+1 ⊗ ∇q 0

] [
∆q

∆λN

]
=

[
Rq

n+ 1
2

− Kqf

(
ΦAugn+1

⊗ ∇f

)−1
ΦAugn+1

ΦNn+1

]
.

(5.119)

Therein Rq
n+ 1

2

denotes the residual contributions given in (5.117)1 and Kqq, Kqf denote

corresponding consistent tangent matrix where the derivatives are with respect to q and
f, respectively. The augmented coordinates can be calculated in a post processing step
via

∆fs =
(

Φs
Augn+1

⊗ ∇fs

)−1

Φs
Augn+1

+ P
s,T
n+1∆qs . (5.120)

The linearisation is simplified in contrast to more traditional schemes and ensures the
exact fulfillment of the orthogonality conditions (5.115)4 at each time node within the
chosen mid-point type scheme.
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5.6 Discrete equations for Mortar method

In Sec. 5.6.1 an EMS based on the augmented frictionless Mortar contact formulation
introduced in Sec. 4.2.3 (see also Hesch and Betsch [61]) is presented which beside the
momentum maps conserves the total energy of a conservative system. Afterwards in
Sec. 5.6.2 a robust integration scheme is developed for frictional Mortar contact using
Coulomb’s law. Eventually, the conservation properties of this new approach are exam-
ined.

5.6.1 Energy-momentum scheme

The semi-discrete DAEs for the Mortar contact element for frictionless contact based on a
suitable invariant formulation proposed in Hesch and Betsch [62] is temporally discretized
next. Therefore a midpoint type discretization together with concept of the G-equivariant
discrete gradient in the sense of Gonzalez [44] is employed on the bounded system, which
yields

M
2

∆t2

(
qn+1 − qn − ∆t vn

)
+ F̄

int,ext
(qn, qn+1)

+
ncel∑

s̄=1

(
D1 π(qs̄

n+ 1
2
,ds̄

n+ 1
2
)
)T

∇π Φs̄(πn,n+1) · λs̄
n+1 = 0 ,

ncel∑

s̄=1

(
D2 π(qs̄

n+ 1
2
,ds̄

n+ 1
2
)
)T

∇π Φs̄(πn,n+1) · λ̄
s̄

n,n+1 = 0 ,




Φ1(π(q1
n+1,d

1
n+1))

...
Φncel(π(qncel

n+1,d
ncel
n+1))


 = 0 . (5.121)

Accordingly, beside the gradient of the internal energy the G-equivariant discrete gradient
is applied on the Jacobian of the Mortar contact constraints Φs̄,es̄ . The former is given
by F̄

int,ext
(qn, qn+1) = ∇q V (qn, qn+1) (for more details see Betsch and Steinmann [16])

while the latter is segmentwise defined as follows

∇π Φs̄,es̄(πn, πn+1) = ∇πΦs̄,es̄(πn+ 1
2
)

+
Φs̄,es̄(πn+1) − Φs̄,es̄(πn) − ∇πΦs̄,es̄(πn+ 1

2
) (πn+1 − πn)

‖πn+1 − πn‖2
(πn+1 − πn) . (5.122)

Beside both momentum maps the total energy is conserved for the whole system. The
energy and momentum conserving properties can be shown for the fully discrete system
(see Hesch and Betsch [62]) which is omitted here for convenience.
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5.6.2 Mortar method with Coulomb friction

For the Mortar method with Coulomb friction a trial state return map strategy is em-
ployed to determine the Coulomb frictional tractionsVIII. Using first a backward Euler
scheme the trial state where stick is assumed (ζI,n+1 = 0), is given by

ttr
Tn+1

= tTIn
+ ∆t εT vTIn+1

. (5.123)

The tangential velocity in (5.123) can be approximated as follows

vTn+1 := ġTn+1
= (I − nn+1 ⊗ nn+1) [nIJ∆q

(1)
J − nIK∆q

(2)
K ] . (5.124)

Therein and in what follows the increments ∆q can be approximated with ∆q
(1)
J =

1
∆t

(q(1)
Jn+1

− q
(1)
Jn

) and ∆q
(2)
K = 1

∆t
(q(2)

Kn+1
− q

(2)
Kn

). A consistent velocity given by

vTn+1 = (I − nn+1 ⊗ nn+1) [
1

∆t
(nIJn+1 − nIJn

) q
(1)
Jn+1

− 1
∆t

(nIKn+1 − nIKn
) q

(2)
K,n+1] ,

(5.125)

is often used (see Sec. 4.2.2), which prevents large errors in angular momentum conser-
vation. In both cases the nodal slip function is computed by

ΦIn+1 = ‖ttr
Tn+1

‖ − µ λ̄Nn,n+1 , (5.126)

and one obtains the desired frictional tractions

tTn+1 =





ttr
Tn+1

, if ΦIn+1 ≤ 0

µ λ̄Nn,n+1

ttr
Tn+1

‖ttr
Tn+1

‖ , elseif ΦIn+1 > 0 .
(5.127)

A midpoint approximation of the above is obtained quite similar where the arguments
outlined in Armero & Petöcz [4] can be consulted. To be specific the equations (5.124)-
(5.125) need to be evaluated with respect to the midpoint tn+ 1

2
= 1

2
(tn + tn+1). The

midpoint evaluation of the frictional tractions is given by

tT
n+ 1

2

=
1
2

(tTn+1 + tTn
) . (5.128)

The spatial and temporal discretized virtual work of contact using the midpoint approx-
imation leads to

Gh
c = λ̄NI,n,n+1

nn+ 1
2

· [nIJ δq
(1)
J − nIK δq

(2)
K ] + λNIn+1

δn · [nIJ q
(1)

J,n+ 1
2

− nIK q
(2)

K,n+ 1
2

]+

δλNI
(nn+ 1

2
· [nIJ q

(1)
J − nIK q

(2)
K ]) + tT

n+ 1
2

· (I − nn+ 1
2

⊗ nn+ 1
2
) [nIJ δq

(1)
J − nIK δq

(2)
K ] .

(5.129)

Eventually, the discrete equations of motion are given by

M
2

∆t2

(
qn+1 − qn − ∆t vn

)
+ F̄

int,ext
(qn, qn+1) + GT(qn+ 1

2
) λ̄Nn,n+1 + F T(qn+ 1

2
) = 0 ,

Φ(qn+1) = 0 .
(5.130)

VIIINote, the underlying section is partly taken from Dittmann et al. [34].
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Remark 10. The above integration scheme with stabilization via an algorithmic stress

calculation in F̄
int,ext

(qn, qn+1) can be replaced by a more simple implicit Euler approach,
evaluating all corresponding terms at tn+1, if the specific contact situation enforces com-
paratively small time steps anyway.

Remark 11. Within the proposed temporal discrete Mortar contact element (5.129) a
simplification can easily achieved, such that the Mortar integrals involved are kept constant
within a time step nIJn+1 → nIJn

which leads to a tremendous reduction of computation
time since challenging linearisation of the Mortar integrals is not necessary any more.

5.7 Conservation properties

The conservation properties are examined for the spatial and temporal discrete homoge-
neous Neumann problem and afterwards for each contact elements.

5.7.1 Discrete homogeneous Neumann problem without contact

In order to proof the conservation issues of the discrete homogeneous Neumann problem
the discrete linear momentum, angular momentum and energy for time step tn+1 are
defined by

Lh
n+1 =

2∑

i=1

n
(i)
el⋃

e=1

∑

I∈ω(i)

M
(i),e
IJ v

(i),e
Jn+1

, Jh
n+1 =

2∑

i=1

n
(i)
el⋃

e=1

M
(i),e
IJ (q(i),e

In+1
× v

(i),e
Jn+1

), (5.131)

Hh
n+1 =

2∑

i=1

n
(i)
el⋃

e=1

(v(i),e
In+1

· M
(i),e
IJ v

(i),e
Jn+1

+ q
(i),e
In+1

· F̄
(i),int,e

I (qn, qn+1)) . (5.132)

The discrete virtual work for the homogeneous Neumann problem without contact using
midpoint type discretization can be stated as

Gh =
2∑

i=1

n
(i)
el⋃

e=1

δq
(i),e
I · (M (i),e

IJ a
(i),e

J,n+ 1
2

+ F̄
(i),int,e

I (qn, qn+1)) . (5.133)

Lemma 3. For the spatial and temporal discrete homogeneous Neumann problem (5.133)
the total energy as well as total linear and angular momentum are conserved.

Proof. The conservation properties of the fully discrete system (5.133) are investigated.
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• First the conservation of total linear momentum is examined. Therefore the varia-
tion in (5.133) is chosen as δq

(i),e
I = µ ∈ R3, which yields

Gh =
2∑

i=1

n
(i)
el⋃

e=1

∑

I∈ω(i)

µ ·
(

1
∆t

M
(i),e
IJ (v(i),e

Jn+1
− v

(i),e
Jn

) + F̄
(i),int,e

I (qn, qn+1)

)

= µ · 1
∆t

(Ln+1 − Ln) = 0

⇒ Ln+1 = Ln . (5.134)

Accordingly, the linear momentum is conserved.

• The conservation of the angular momentum can be obtained by the substitution of
δq

(i),e
I = µ × q

(i),e

I,n+ 1
2

, µ ∈ Rndim into (5.133), i.e. one obtains

Gh =
2∑

i=1

n
(i)
el⋃

e=1

(µ × q
(i),e

I,n+ 1
2

) · (M (i),e
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2

+ F̄
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I (qn, qn+1))

=
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n
(i)
el⋃

e=1

(
µ · (q(i),e

I,n+ 1
2

× 1
∆t

M IJ (v(i),e
Jn+1

− v
(i),e
Jn

))

+µ · (q(i),e

I,n+ 1
2

× F̄
(i),int,e

I (qn, qn+1))
)

= µ · (Jn+1 − Jn) = 0 . (5.135)

Hence, for arbitrary µ ∈ Rndim , neglecting all contact interactions the angular mo-
mentum is conserved

Jn+1 = Jn . (5.136)

• Finally, the discrete system is examined for energy conservation by substituting
δq

(i)
I = v

(i)

I,n+ 1
2

into (5.133), which yields
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=
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) + V int
n+1 − V int

n )

=Tn+1 − Tn + V int
n+1 − V int

n . (5.137)
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In the above the discrete gradient applied on the discrete internal force vector F̄
int

I,n,n+1 =

F̄
int

I (qn, qn+1) is used (for more details see Betsch and Steinmann [16]). Next, the con-
tact contribution for the direct approach and the coordinate augmentation technique are
investigated separately.

5.7.2 Discrete contact contribution – direct approach

The temporal and spatial discrete virtual work of contact for the direct approach can be
stated as

Gc,h =
ncel⋃

s=1

As[λ̄s
Nn,n+1

ns
n+ 1

2
· (δq(1),s − N̂I δq

(2),s
I ) + tTα

Aαβ,s

n+ 1
2

(
(δq(1),s − N̂I δq

(2),s
I ) · as

β,n+ 1
2

+(q(1),s − N̂I q
(2),s
I ) · N̂I,β δq

(2),s
I

)
] = 0 . (5.138)

For the above, the linear and angular momentum conservation are examined. To this end,
δq(1),s = µ and δq

(2),s
I = µ are substituted into (5.133) which gives

Gc,h =
ncel⋃

s=1

As [λ̄s
Nn,n+1

ns
n+ 1

2
· (µ − µ) + ts

Tα
Aαβ,s

n+ 1
2

((µ − µ) · as
β,n+ 1

2
+ gs

N
n+ 1

2

ns
n+ 1

2
· N̂I,βµ)]

= 0 . (5.139)

Accordingly, this confirms that the constraints do not affect linear momentum conserva-
tion. Substituting δq(1),s = µ × q

(1),s

n+ 1
2

and δq
(2),s
I = µ × q

(2),s

I,n+ 1
2

into the weak form (5.133)

yields

Gc,h =
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N
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× ns

n+ 1
2
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n+ 1

2
× as

β,n+ 1
2
)

)
= 0 , (5.140)

which confirms that the constraints do not affect angular momentum conservation as
well.

5.7.3 Discrete contact contribution – augmented approach

Finally, the conservation properties of the augmented system are verified. The corre-
sponding augmented contact virtual work can be stated as

GAug,h
ϕ =

ncel⋃

s=1

As [λ̄s
Nn,n+1

(δq(1),s − N̂I(fn+ 1
2
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− N̂I(fn+ 1
2
)q(2),s
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2

) · N̂J,α(fn+ 1
2
) δq

(2),s
J )] .

(5.141)
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The conservation of linear momentum is verified by substitution of δq(1),s = µ ∈ Rndim

and δq
(2),s
I = µ ∈ Rndim into the virtual work expression, which gives

GAug,h
ϕ =

ncel⋃

s=1

As [λ̄s
Nn,n+1

(µ − N̂I(fn+ 1
2
)µ) · ñs

n+ 1
2

+ λ̄f,α,s
Augn,n+1

((µ − N̂I(fn+ 1
2
)µ) · ãs

α
n+ 1

2

+ (q(1),s

n+ 1
2

− N̂I(fn+ 1
2
)q(2),s

I,n+ 1
2

) · N̂J,α(fn+ 1
2
) µ)] = 0 . (5.142)

For the verification of conservation of the angular momentum δq(1),s = µ × q
(1),s

n+ 1
2

and

δq
(2),s
I = µ × q

(2),s

I,n+ 1
2

are substituted into (5.141), which gives

GAug,h
ϕ =

ncel⋃

s=1

As [λ̄s
Nn,n+1

µ · (q(1),s

n+ 1
2

− N̂I(fn+ 1
2
)q(2),s

I,n+ 1
2

) × ñs
n+ 1

2
+ λ̄f,α,s
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(µ · (q(1),s

−N̂I(fn+ 1
2
)q(2),s

I ) × ãs
α
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2

+ (q(1),s
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2

− N̂I(fn+ 1
2
)q(2),s

I,n+ 1
2
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2
) q

(2),s

J,n+ 1
2

)]

=
ncel⋃

s=1

As [λ̄s
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µ · gs
N

n+ 1
2

ñs
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2
× ñs
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Augn,n+1
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2
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2
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α
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2

)] = 0 . (5.143)

Note that the last statement is also true for the reduced system, since the algebraic
reformulation of the system does not change any properties of the underlying formulation.
The augmented constraints Φs

Aug are frame indifferent which is shown in Franke et al. [40]
and omitted here for convenience.

5.7.4 Discrete contact contribution – Mortar approach

Finally, the conservation properties of the discrete Mortar system (5.129) are verified.
The corresponding discrete Mortar contact virtual work reads

Gh
c =

ncel⋃

s̄=1

λ̄s̄
NI,n,n+1

ns̄
n+ 1

2
· [ns̄

IJδq
(1),s̄
J − ns̄

IKδq
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K ] + λ̄s̄
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δns̄ · [ns̄

IJq
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J,n+ 1
2

− ns̄
IK q
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K,n+ 1
2

]

+λs̄
T
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2

· (I − ns̄
n+ 1

2
⊗ ns̄

n+ 1
2
) [ns̄

IJ δq
(1),s̄
J − ns̄

IK δq
(2),s̄
K ] . (5.144)

The conservation of linear momentum is verified by substitution of δq(i),s̄ = µ ∈ Rndim

into the virtual work expression, which yields

Gc,h =
ncel⋃

s̄=1
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2
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ns̄
IK ] = 0 , (5.145)
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with
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+âs̄
1,n+ 1

2
µ,2) = 0 . (5.146)

Therein âs̄
1,n+ 1

2
∈ Rndim×ndim and âs̄

2,n+ 1
2

∈ Rndim×ndim denote skew symmetric second order

tensors similar to the assignments in (4.173). Moreover the partition of unity property of
the shape functions can be used for each s̄ such that

∑

J∈Ω(1)

ns̄
IJ −

∑

K∈Ω(1)

ns̄
IK = 0 . (5.147)

For the verification of the conservation of the angular momentum δq(1),s̄ = µ × q
(i),s̄

n+ 1
2

are

substituted into (4.36), which yields
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1,n+ 1
2

(µ × as̄
2,n+ 1

2
))) · gs̄

N
I,n+ 1

2

ns̄
n+ 1

2
)

+λs̄
T

I,n+ 1
2

· (I − ns̄
n+ 1

2
⊗ ns̄

n+ 1
2
) µ × gs̄

N
I,n+ 1

2

ns̄
n+ 1

2
. (5.148)

Note the above is only zero for the frictionless case (λs̄
T

n+ 1
2

= 0) or in case of perfect con-

tact gs̄
N

I,n+ 1
2

= 0. Accordingly, the conservation of the angular momentum is endangered

for the proposed Mortar method (for more details see Chap. 6.3.2).





6 Numerical examples

In this chapter the accuracy and performance properties of the newly proposed methods
are investigated. Moreover, the results are compared to more traditional methods. To
solve the arising non-linear system of equations, a Newton-Raphson solution procedure
has been implemented (see Sec. 5.3). First the considered time integration schemes from
Chap. 5 are compared within a simple but nonlinear example without contact boundaries.
Eventually, static, quasi-static and dynamic numerical examples are examined. In partic-
ular attention is focused on structure preserving integrators, which are known to posses
superior stability and robustness properties. The chapter is organized as follows: In order
to demonstrate and compare the transient behavior of the introduced integrators a simple
model problem is considered in Sec. 6.1. In Sec. 6.2 numerical contact simulations are
investigated using the NTS method. Finally quasi-static and transient contact problems
are examined using the Mortar method in Sec. 6.3.

6.1 Model problem

The intention of the present section is to investigate the numerous introduced integrators
from Chap. 5 within a simple dynamic model problem in order to emphasize the basic
properties of the considered integrators. In particular the augmentation technique used
for the formulation of the NTS method can be accomplished for a simple model problem
as well (see also the trebuchet example in Chap. 2). On the one hand the example should
be simple but on the other hand it should represent a more complex problem. Therefore
a nonlinear spring in R3 with spring constant c ∈ R+ is used which is fixed on the one
end and a mass m ∈ R+ is attached on the other end (see Fig. 6.1). There are no
external forces involved. The spring pendulum can be considered as a special case of a
flexible string modeled with one string element (see Fig. 6.1) and linear Lagrangian shape
functions for spatial discretization. Different material laws can be applied e.g. a simple
St. Venant material law (see Chap. 3.4.1) is used where the one dimensional deformation
measure

ν(q) =
‖q‖
‖q0‖

=
√

q · q

L
, (6.1)

is employed. Moreover the one dimensional Green-Lagrangian strain

e =
1
2

(
ν2(q) − 1

)
, (6.2)
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Figure 6.1: Spring (left) and string pendulum (right).

is used. Accordingly, the St. Venant-Kirchhoff strain energy function (see Chap. 3.4.1)
can be defined as

V =
1
2

c

(
1
2

(‖q‖ − ‖q0‖)

)2

=
c L2

8
(ν2(q) − 1)2 =

1
2

c L2 e2(q) , (6.3)

which is also used in Gonzalez and Simo [46] and in Krenk [89, Chapter 9]. In equation
(6.3) the spring stiffness (or elasticity constant) c has been introduced. The corresponding
string potential to the spring potential in (6.3) can be defined as

V =

L∫

0

W dS, W =
1
2

E A

(
1
2

(ν2 − 1)

)2

. (6.4)

Therein the Young’s modulus E, the cross section area A, the length L of the rod pendu-
lum and the strain energy density function W have been introduced. For the spatial finite
element discretization using a single element with linear Lagrangian shape functions of
the parent element

N̄1 =
1
2

(1 − ξ) , N̄2 =
1
2

(1 + ξ) , (6.5)

is introduced. Accordingly, the discrete strain energy of the rod pendulum is approximated
as

V h =
1
8

E A (νh,2 − 1)2 Lh . (6.6)

Therein the axial stiffness E A is assumed to be constant and can be related to the spring
potential c as follows

c =
E A

Lh
. (6.7)
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The St. Venant-Kirchhoff material model can be examined for no strain (ν → 1), total
expansion (ν → ∞) and total compression (ν → 0) as follows (cf. the normalization and
growth condition in equation (3.94)),

lim
ν→1

W = 0, lim
ν→∞

W = ∞, lim
ν→0

W =
1
8

E A , (6.8)

Obviously, in case of total compression, the St. Venant-Kirchhoff material law provides
finite stresses which is in contrast to physical observations. This has been already outlined
in Chap. 3.4 for the more general three dimensional case. Note in Hesch and Betsch [61]
a Neo-Hookean material law V = c L2

8
(ν2(q) − 1

ν2(q)
)2 is used which can be applied here

as well. However, for the underlying example including the subsequently chosen initial
and boundary conditions only slight compression is provided, accordingly, the St. Venant-
Kirchhoff model is sufficient for this task. Using standard (non-redundant) formulation
the kinetic and the potential energy for the underlying problem can be stated as

T =
1
2

q̇ · M q̇, V =
c L2

8

(
ν2(q) − 1

)2
. (6.9)

Accordingly, the virtual work contribution can be written as

G = δq ·
(
M q̈ + F int(q)

)
= δq · R , (6.10)

where the (semi-discrete) residual R ∈ R3 has been introduced. The internal force vector
F int denotes the gradient of the strain energy, accordingly

F int(q) = ∇qV (q) =
c

2

(
ν2(q) − 1

)
q . (6.11)

Linearisation can be achieved using the Gateaux derivative and is exemplary carried out
for the midpoint rule in Appx. D.4. For the temporal continuous setting the tangent
contribution is given by

∆G = δq ·
(

M
∂q̈

∂q
+

c

2
(ν2(q) − 1) I +

c

L2
q ⊗ q

)
∆q = δq · K ∆q , (6.12)

where the symmetric tangent matrix K ∈ R3×3 has been introduced. The resulting system
of differential equations from the above equation (6.12) is a classical ODE of second order.
For contact problems where the contact constraints are enforced by Lagrange multipliers,
DAE systems are obtained instead. Accordingly, the main focus within the underlying
contribution relies on the temporal discretization of DAEs. Subsequently, the intention in
this section is to give an overview for standard (see e.g. Quarteroni et al. [127]) and more
recent integrators for a simple problem, where the integrators are applied and presented
first and afterwards compared.

Forward Euler method Applying the forward Euler method leads to

qn+1 = qn + ∆t vn , (6.13)
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where the update for the velocity can be calculated by

vn+1 = vn − ∆t M−1
( c

2

(
ν2(qn) − 1

)
qn

)
. (6.14)

Thus, the unknowns can be solved directly and there is no need for Newton’s method. The
forward Euler method is only conditionally stable and only first order accurate. Beside this
it fails to conserve both the components of the angular momentum and the total energy of
a conservative system. Despite these drawbacks it is often used in contact analysis since
very small time steps are necessary for this kind of tasks and the computational effort of
the forward Euler method is very low.

Backward Euler method For the backward Euler method the residual is evaluated in
the endpoint tn+1. Accordingly, the residual and tangent contributions are quite simple
to compute

REI = M
1

∆t2
(qn+1 − qn) − M

1
∆t

vn +
c

2
(ν2(qn+1) − 1) qn+1 , (6.15)

KEI =
1

∆t2
M +

c

2
(ν2(qn+1) − 1) I +

c

L2
qn+1 ⊗ qn+1 . (6.16)

The backward Euler method is an A-stable first order accurate integration scheme. Al-
though it fails to conserve the components of the angular momentum and the total energy
of a nonlinear system it is frequently used to discretise local evolution equations (e.g. fric-
tion, plasticity etc.).

Trapezoidal rule The residual and tangent contributions for the trapezoidal rule are
given by

RTR = M
4

∆t2
(qn+1 − qn) − 4

∆t
M vn + F int(qn+1) + F int(qn) , (6.17)

KTR =
4

∆t2
M +

c

2
(ν2(qn+1) − 1) I +

c

L2
qn+1 ⊗ qn+1 . (6.18)

This method is second order accurate and A-stable but in general fails to conserve the
components of the angular momentum and the total energy of a conservative nonlinear
system.

Midpoint rule Applying the A-stable midpoint rule for temporal discretization the sys-
tem of nonlinear discrete equations can be written as

RMP = M
2

∆t2
(qn+1 − qn) − M

2
∆t

vn +
c

2
(ν2(qn+ 1

2
) − 1) qn+ 1

2
, (6.19)

KMP =
2

∆t2
M +

c

4
(ν2(qn+ 1

2
) − 1) I +

c

2 L2
qn+ 1

2
⊗ qn+ 1

2
. (6.20)

Beside the second order accuracy, the conservation of the angular momentum of a con-
servative nonlinear system makes it an attractive standard integration scheme.
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Generalized-α scheme For the generalized-α scheme a modified evaluation of the in-
ternal force vector is applied. To be specific it is evaluated midpoint like as proposed in
Hartmann [51] rather then trapezoidal like which in case of linear elastodynamics does
not matter since both lead to the same result. After some algebra the residual and the
tangent contribution for the underlying problem can be stated as

RGα =M
1 − αm

β ∆t2
qn+1 − M (

1 − αm

β ∆t2
qn − 1 − αm

β ∆t
vn − 1 − β − αm

2 β
an)

+
c

2
(ν2(qn+1−αf

) − 1) qn+1−αf
, (6.21)

KGα =
1 − αm

β ∆t2
M + (1 − αf )

( c

2
(ν2(qn+1−αf

) − 1) I +
c

L2
qn+1−αf

⊗ qn+1−αf

)
, (6.22)

where

qn+1−αf
= (1 − αf ) qn+1 + αf qn . (6.23)

The updates for the acceleration and velocity can be computed by

an+1 =
1

β ∆t2
(qn+1 − qn − ∆t vn) − (

1
2 β

− 1) an , (6.24)

vn+1 = vn + ∆t ((1 − γ) an + γ an+1) . (6.25)

In the very first time step the acceleration is initialized by

a0 = −M−1 (F int(q0)) . (6.26)

The A-stable generalized-α scheme combines second order accuracy with high frequency
damping (ρ∞ < 1). Due to numerical dissipation, the total energy of the system de-
creases.

Variational midpoint rule For the second order accurate variational midpoint rule the
residual and tangent contributions can be written as

RVM = −M
1

∆t
(qn+1 − qn) − ∆t

c

2 L
(1 − α) (ν2(qα) − 1) qα + pn , (6.27)

KVM = − 1
∆t

M − ∆t
c

2
(1 − α)2(ν2(qα) − 1) I − c

L2
qα ⊗ qα (1 − α)2 , (6.28)

where for the variational midpoint rule α = 1
2

and the abbreviation

qα = (1 − α) qn + α qn+1 , (6.29)

has been employed. Furthermore the update

pn+1 = M
1

∆t
(qn+1 − qn) − ∆t

c

2
(
qα · qα

L2
− 1)

qα

L2
α , (6.30)

needs to be provided. Note the variational midpoint rule conserves the angular momentum
and the symplectic phase space by sacrificing the conservation of the total energy of a
conservative system.
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Energy-momentum scheme Next, the aim is to apply an EMS which beside the second
order accuracy is able to conserve the components of both momentum maps and the total
energy of a conservative system. First the discrete gradient is applied directly to the
problem introducing the at most quadratic invariant in its primary variable q

π := ε =
1
2

(
q · q

L2
− 1) . (6.31)

Accordingly, the internal force vector rewritten in the just defined invariant π gives

F int(π(q)) = ∇qV (π(q)) = ∇πV (π) Dπ(q) . (6.32)

Applying a midpoint type discretization together with the concept of the discrete gradient
in the sense of Gonzalez [42], the discrete equations are obtained with

REM = M
2

∆t2

(
qn+1 − qn − ∆t vn

)
+ ∇π V (πn+1, πn) qn+ 1

2
, (6.33)

KEM =
2

∆t2
M +

c

2
I πn+ 1

2
+

c

2 L2
qn+ 1

2
⊗ qn+1 , (6.34)

where the introduced g-equivariant discrete gradient (see Gonzalez and Simo [46]) can be
calculated as

∇π V = ∇πV (πn+ 1
2
) +

V (πn+1) − V (πn) − ∇V (πn+ 1
2
) (πn+1 − πn)

‖πn+1 − πn‖2
(πn+1 − πn) (6.35)

=
V (πn+1) − V (πn)

πn+1 − πn

= c πn+ 1
2

. (6.36)

Thus for the simple material model applied, with a scalar invariant, it boils down to
an average evaluation of the Green-Lagrangian strain which coincides with the energy-
momentum difference method proposed in Simo and Tarnow [136]. Accordingly, there is
no need for special implementation as proposed in Remark 9. The velocity update for the
EMS remains unchanged (compared to the midpoint rule). It is worth noting that the
tangent matrix is unsymmetrical as can be seen in the structure of equation (6.34).

Energy-momentum scheme based on CAT A different ansatz to facilitate the design
of an EMS is to employ a redundant formulation of the problem at hand. Therefore
the augmented coordinate v corresponding to the right Cauchy-Green strain measure ν2

is introduced as primary variable. In this connection the augmented constraint ΦAug is
introduced as follows

ΦAug(v, q) = v − q · q

L2
= 0 . (6.37)

Accordingly, the potential energy can be augmented and rewritten as

V = V (v) + V Aug(λAug, v, q) =
c L2

8
(v − 1)2 + λAug ΦAug(v, q) . (6.38)
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Using the set of independent variables q∗ =
[
qT v λAug

]T
: I → R5 the virtual work

contribution can be computed straightforwardly as follows

G = δq ·
(

M q̈ − 2 λAug

L2
q

)
+ δv

(
c L2

4
(v − 1) + λAug

)
+ δλAug

(
v − q · q

L2

)

=




M q̈ − 2
L2 λAug q

∇vV + λAug

ΦAug(v, q)


 ·




δq

δv
δλAug


 = RCA · δq∗ . (6.39)

Therein the residual RCA : I → R5 and the variation δq∗ → R5 have been introduced.
Nevertheless the system of equations is extended, the structure has become more simple,
i.e. the nonlinearity of the terms involved decreases. Exactly that is the philosophy of
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Figure 6.2: Reference (overkill) solution computed with midpoint rule (∆t = 1e-6) for
soft (c = 103, left) and stiff (c = 106, right) spring potential (see Gonzalez
and Simo [46]).

redundant formulations, e.g. the director-based rotationless formulation (see e.g. Sänger
[129], Uhlar [149], Betsch et al. [21], Becker et al. [8]) which facilitates the design of an
EMS. For arbitrary variations δq∗ and applying a midpoint type discretization together
with the concept of the discrete gradient using the linear invariant π = v, one obtains

RCA =




M an+ 1
2

− 2
L2 λ̄Augn,n+1

qn+ 1
2

∇π V (πn+1, πn) + λ̄Augn,n+1

ΦAug(vn+1, qn+1)


 = 0 , (6.40)

KCA =




2
∆t2 M − 1

L2 λAug I 03×1 − 2
L2 qn+ 1

2

01×3 c L2

8
1

− 2
L2 qT

n+1 1 0


 . (6.41)

Therein the discrete gradient ∇π V has been introduced which after some algebra boils
down to

∇π V (πn+1, πn) =
V (πn+1) − V (πn)

πn+1 − πn

(6.42)

=
c L2

4
(πn+ 1

2
− 1) . (6.43)
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Figure 6.3: Energy plots for the stiff spring potential with time step size ∆t = 5e-4:
a) forward Euler method, b) backward Euler method, c) trapezoidal rule,
d) midpoint rule, e) EMS, f) EMS based on CAT, g) generalized-α method
(ρ = 0.7) and h) variational midpoint scheme (α = 1

2 ).

Again it can be observed that the tangent matrix in equation (6.41) becomes unsymmet-
rical for the midpoint type evaluation, since the evaluation of the constraints and the cor-
responding Lagrange multipliers remain constant for each time step (see also Sec. 5.2.3).
In order to compare the behavior of the different integrators the initial conditions for
configuration and linear momentum are chosen as (see Gonzalez and Simo [46])

q0 =




4
5

1√
2

0
4
5

1√
2


 , p0 =




0
−121

2

0


 . (6.44)

The total simulation time is given by T = 0.63. In Fig. 6.2 the reference solutions for a
non-stiff (c = 103) and a stiff (c = 106) spring potential are plotted. A comparison of all
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Figure 6.4: Energy plots for the stiff spring potential with time step size ∆t = 1e-2.
Integrators are equally classified as in Fig. 6.3.

integrators with respect to the total energy is given in Fig. 6.3 and Fig. 6.4 for time step
sizes ∆t = 5e-4 and ∆t = 1e-2, respectively. The results obtained by the forward Euler
method is unusable which is caused by an energy blow up for the small as well as for the
coarse time step size (see Fig. 6.3 and Fig. 6.4). The opposite but equally bad behavior
provides the backward Euler method where a very high damping is observed, such that
all the energy is numerically dissipated, for both the small and the coarse time step size.
The generalized-α method shows little damping behavior of the high frequency domain
for the small time step size but experiences an energy blow up for the coarse time step
size. The trapezoidal, the midpoint rule and the variational midpoint rule experience an
energy blow up for the coarse time step size and show remarkable oscillations even for
a very small time step size of ∆t = 5e-4. The most robust methods are the EMS and
EMS with redundant formulation which remain stable independent of the chosen time
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Figure 6.5: Error plot of different integrators for the soft spring with reference solution
computed by the midpoint rule and a time step size of ∆t = 10−6

step size which is due to exact conservation of the discrete balance principles. Finally, the
accuracy is compared for the different integrators. Therefore the relative displacement
error is calculated as follows

er(T ) =
‖q(T ) − qref(T )‖

‖qref(T )‖ , (6.45)

where qref denotes the reference solution computed with the midpoint rule and a time step
size of ∆t = 1e-6. Moreover, a total simulation time T = 0.1 is aimed at. In Fig. 6.5 the
relative error of all integrators is plotted double logarithmically and immediately shows a
well classification of first and second order methods. The results therein suggest that all
the second order methods fit quite well which is due to the soft spring potential chosen
(see Fig. 6.2 left).

6.2 NTS method

In the current section dynamic frictionless and frictional numerical examples, where the
contact behavior is modeled with the NTS method, are considered. As a very first contact
example the impact of a hollow ball with a plate is taken into account. The initial
configuration is displayed in Fig. 6.6. The plate is of size 2.5 × 2.5 × 0.25, whereas the
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Figure 6.6: Initial configuration of the hollow ball and plate.

hollow ball has an inner and outer diameter of ∅inner = 0.8 and ∅outer = 1.0, respectively.
The center point of the plate is placed at

[
0 0 0.125

]T
and the center point of the

hollow ball is placed at
[
0 −0.6 0.8

]T
. Both bodies are modeled with an Ogden material

model employing the material parameters depicted in Tab. 6.1. Accordingly, the material
parameters, which are proposed by Holzapfel [70], are chosen such that a rather soft
material behavior is obtained (see also the impact snapshots in Fig. 6.9). The hollow

α
(i)
1 = 1.3 µ

(i)
1 = 6.30 · e3 kN

m2

Ogden model α
(i)
2 = 5.0 µ

(i)
2 = 0.012 · e3 kN

m2 β(i) = 9
(lower block) α

(i)
3 = −2.0 µ

(i)
3 = −0.10 · e3 kN

m2 κ(i) = 2 · e3

Table 6.1: Ogden material parameters.

ball is discretized in space with 432 and the plate with 100 eight-node trilinear brick
elements. The initial velocity of the hollow ball is v

(1)
I0

=
[
0 1 −1

]T ∀I ∈ ω(1) where

the plate is at rest v
(2)
I0

=
[
0 0 0

]T ∀I ∈ ω(2). No external forces and momenta are
acting on the bodies, thus the system considered is conservative, which means that the
basic properties of the bodies, namely total energy, angular as well as linear momentum,
are conserved for the continuous system. For the underlying frictionless contact example
shown in Fig. 6.6 the midpoint rule is compared with the proposed EMS. A time step
size of ∆t = 0.01 during the interval I = [0, 1] is used in both simulations. The surface of
the yellow ball is chosen as slave whereas the surface of the cyan plate (both see Fig. 6.6)
is chosen as master for the NTS method. A typical NTS projection at time t = 0.33 is
shown in Fig. 6.7. Three snapshots at times t = 0.33, t = 0.66 and t = 1.0 using the
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Figure 6.7: NTS projection at time t = 0.33 with slave nodes (yellow circle) and projected
master nodes (blue x-mark).
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Figure 6.8: Linear (left), angular momentum (middle) and total energy (right) achieved
for the ball plate impact example corresponding to the midpoint rule.

Figure 6.9: Snapshots for the energy-momentum scheme at time t = 0.33 (left), t = 0.66
(middle) and t = 1.0 (right).
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Figure 6.10: Linear (left), angular momentum (middle) and total energy (right) of the
ball plate impact example corresponding to the EMS.
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EMS are displayed in Fig. 6.9. Moreover, in Fig. 6.8 and Fig. 6.10 the balance principles
of both bodies regarding the discrete system are displayed for the midpoint rule and
the EMS, respectively. It becomes obvious that the EMS (see Fig. 6.10) conserves all
quantities whereas the midpoint rule (see Fig. 6.8) fails to conserve the total energy of
the system, but the energy discrepancy is rather small. Moreover no crucial deviation in
the configuration can be observed.

Figure 6.11: Reference configuration of the two elements impact example.

Contact of two elements To examine the properties of the frictional algorithms under
consideration, a simple nonlinear three-dimensional example is investigated, which is con-
structed such that reproducible results are obtainedI (see Fig. 6.11). In particular, two
3D elements are considered, using trilinear shape functions. A compressible Neo-Hookean
material model is employed (the associated strain energy density function can be found in
Sec. 3.4) with Lamé parameters µ(i) = 865.3846, Λ(i) = 1298.1 corresponding to a Young’s
modulus of E(i) = 2250 and a Poisson’s ratio of ν(i) = 0.3, respectively. The reference
density is given by ρ

(i)
0 = 1000 and the coefficient of friction by µ(i) = 0.5. The initial

position of the 16 nodes are given in Tab. 6.2 together with the initial velocities (see also
Fig. 6.11). Due to the initial configuration the tangent vectors aα of the master surface
are not orthonormal. Both elements are free in space, i.e. no boundary conditions are

INote, this example is basically taken from Franke et al. [40].
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upper block lower block
node position velocity node position velocity
1 [-0.5, -1, 2.1] [0, 0.1, -0.04] 1 [-1, -1, 1] [0 0 0]
2 [-0.5, 0, 2.1] [0, 0.1, -0.04] 2 [-1.5, 1.5, 1] [0 0 0]
3 [-0.5, -1, 1.1] [0, 0.1, -0.04] 3 [-1, -1, 0] [0 0 0]
4 [-0.5, 0, 1.1] [0, 0.1, -0.04] 4 [-1.5, 1.5, 0] [0 0 0]
5 [ 0.5, -1, 2.1] [0, 0.1, -0.04] 5 [1, -1, 1] [0 0 0]
6 [ 0.5, 0, 2.1] [0, 0.1, -0.04] 6 [1.2, 1, 1] [0 0 0]
7 [ 0.5, -1, 1.1] [0, 0.1, -0.04] 7 [1, -1, 0] [0 0 0]
8 [ 0.5, 0, 1.1] [0, 0.1, -0.04] 8 [1.2, 1, 0] [0 0 0]

Table 6.2: Nodal positions and initial velocities.
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Figure 6.12: z-position of node 8 plotted over time (left: direct approach, right: aug-
mented approach) employing the backward Euler scheme.
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Figure 6.13: Comparison of the different approaches under consideration (left). Aug-
mented coordinates midpoint type evaluation (right).

prescribed. The z-position of node 8 of the upper block, which suddenly is in contact
with the lower block, is plotted over time for the Euler backward algorithm in Fig. 6.12.
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In particular, Fig. 6.12 (right) shows the results for different time step sizes of the newly
proposed algorithm using both reduction steps, whereas Fig. 6.12 (left) shows the results
of the conventional direct approach. As expected, the Euler backward algorithm damps
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Figure 6.14: Total energy over time (left) and total angular momentum over time (right).

oscillations for larger time step sizes. In Fig. 6.13 (left) a comparison of the augmented
system, the reduced system and the direct approach is shown for a time step size of
∆t = 0.005. The results coincide extremely well for the used implicit Euler backward
algorithm. Thus, the advantages of the new approach considered here, relies on the sim-
plified structure of the contact element. Fig. 6.13 (right) additionally shows the results of
the newly proposed algorithm using a midpoint type evaluation, as presented in Section
5. Using the midpoint type evaluation, even for large time step sizes reliable results are
obtained, e.g. for ∆t = 0.2, using only 100 time steps for the whole simulation. Note
that Lagrange multipliers have been used to enforce the constraints in normal direction
throughout all shown examples. Finally, total angular momentum and total energy are
plotted in Fig. 6.14 on the left and right, respectively, for the proposed scheme using the
midpoint type evaluation. As can be seen for the midpoint type evaluation, total energy is
conserved before and after frictional impact. Although not shown here, linear momentum
is algorithmically conserved. In addition, total angular momentum is also conserved.

Two tori impact problem The next example deals with an impact problem of two
tori to demonstrate, that the proposed algorithm is also well suitable for large systems
concerning the involved degrees of freedomII. Initial values and the material properties are
taken from Yang and Laursen [164]. The initial configuration is displayed in Fig. 6.15,
the inner and outer diameter of the tori are ∅inner = 52 and ∅outer = 100, the wall
thickness of each hollow torus is 4.5. Moreover, the center point of the yellow torus is
placed at the origin

[
0 0 0

]T
and the z-axis denotes the axis of symmetry. The center

point of the cyan torus is placed at
[
140 140 0

]T
and rotated with respect to the y-axis

and the yellow torus by an angle of −45◦ (see Fig. 6.15). Both tori are subdivided into

IINote, this example is partly taken from Franke et al. [40].
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Figure 6.15: Initial configuration of the two tori impact problem.

Figure 6.16: Deformation snapshots at time 2.5 and 5.

3120 elements, using a hyperelastic Neo-Hookean material model with Lamé parameters
corresponding to a Young’s modulus and Poisson ratio of E(i) = 2250 and ν(i) = 0.3,
respectively. The initial densities are chosen as ρ(i) = 0.1 and the homogeneous, initial
velocity of the left torus is given by v

(1)
I0

=
[
30 0 23

]T ∀ω(1), where the right torus is
initially at rest. A rather coarse time step size of ∆t = 0.01 is used throughout the whole
simulation. The deformation at different time steps is shown in Fig. 6.16. The evolution
of the total energy is shown in Fig. 6.17, whereas the three components of linear and
angular momentum are shown in Fig. 6.18. As expected, total energy decreases due
to the frictional behavior. Since the proposed midpoint type evaluation of the system is
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Figure 6.17: Total energy plotted over time (black line: frictionless EMS from Hesch and
Betsch [61], colored lines: frictional CAT).
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Figure 6.18: Components of linear (left) and angular momentum (right) plotted over
time.

used, the components of angular momentum are algorithmically conserved (see Fig. 6.18),
which is an important issue for a robust integration scheme. Finally, Fig. 6.19 shows the
deformation at time t = 5 for different coefficients of friction (µ = 0.1 and µ = 0.3). The
deformation changes significantly, since large sliding effects are directly correlated with
the coefficient of friction.

6.3 Mortar method

To outline the smooth spatial behavior of the proposed Mortar method some static and
quasi-static simulations are considered in Sec. 6.3.1. Eventually, in Sec. 6.3.2 the desired
transient impact problems are dealt with.
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Figure 6.19: Comparison at t = 5 for µ = 0.1 (left) and µ = 0.3 (right).

6.3.1 Static and quasi-static problems

In the following a patch test, an ironing and a rotating example are consideredIII. The
patch test is a purely static example whereas the ironing and the rotating example can be
regarded as quasi-static examples using a pseudo time t. For all examples an incremental,
iterative Newton’s method is employed.

Patch test To outline the spatial consistent behavior of the Mortar method a static
patch test (see e.g. Taylor and Papadopoulos [142] or Dittmann et al. [34]) including two
dissimilar discretized blocks (see Fig. 6.20) is examined first. As shown in Fig. 6.20, two
independently meshed blocks of dimensions 60×60×60 each, are tied together with given
boundary conditions. The upper block consists of 3 × 3 × 2 trilinear Lagrangian brick
elements with in total 48 nodes while the lower block comprises of 4 × 4 × 2 elements
with in total 75 nodes. Altogether 369 unknowns control the nonconforming discretized
mechanical field neglecting the Dirichlet boundaries. For both bodies a Mooney-Rivlin
material model (see Sec. 3.4.3) with material data

µ
(i)
1

2
= 176051,

µ
(i)
2

2
= 4332.63, c(i) = 2 · 1e6 , (6.46)

is applied. As depicted in Fig. 6.20 (right) the upper block is loaded (Neumann boundary
with a uniform pressure field of σ = 1e5), whereas the lower block is stronger bounded
(Dirichlet boundary) such that two edges are separately fixed in e1 and e2 direction.
Furthermore, the bottom surface of the lower block is fixed in e3 direction (which for
simplicity of exposition is not shown in Fig. 6.20). Obviously, one node is fixed in all
directions and two edges are clamped (see Fig. 6.20) which is an important issue otherwise
the problem is statically indeterminate. The segmentation for both non-Mortar and

IIINote, the examples are partly taken from Dittmann et al. [34] but are restricted to the mechanical
field herein.
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Figure 6.20: Initial configuration with loading and boundary conditions for the patch
test.
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Figure 6.21: Initial segmentation of non-Mortar side (left) and Mortar side (right) for
the patch test.

Mortar surface is shown in Fig. 6.21. The results of the static loading (see Fig. 6.22) show
a smooth behavior resulting in an accurate transmission of the stress and displacement
fields guaranteed by the spatially consistent Mortar method, which is in contrast to the
(one-pass) NTS method (see Taylor and Papadopoulos [142]).

Ironing The well-known ironing example (see Puso and Laursen [126], Dittmann et al.
[34]) is considered next. The initial position and the loading conditions of the two blocks
coming into contact are depicted in Fig. 6.23. Note that the geometry, the boundary
conditions and the material data are taken from Puso and Laursen [126] (see also Popp
et al. [123]). Accordingly, the upper block (indenter) is of dimensions 1 × 1 × 1 whereas
the lower block (slab) is of dimensions 9×4×3. For both bodies a Neo-Hookean material
model (see Sec. 3.4) is employed where for the upper stiff indenter a Young’s modulus
of E(1) = 1000 and for the slab a Young’s modulus of E(2) = 1 is chosen. For both
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Figure 6.22: Displacement (left) and Von Mises stress distribution (right) of the patch
test.

blocks a Poisson’s ratio of ν(i) = 0.3 is employed. Accordingly, Lamé’s parameters can be
computed using relation (3.103), which yields

Λ(1) =
7500
13

, µ(1) =
5000
13

, (6.47)

Λ(2) =
15
26

, µ(2) =
5
13

, (6.48)

where the superscripted (1) refers to the indenter and (2) to the slab. The boundary
conditions are applied as depicted in Fig. 6.23 (right). The lower surface of the slab is
fixed, whereas the movement of the upper surface of the upper block is predefined. In
particular, a standard Dirichlet boundary condition is employed in x-, y- and z-direction
on the lower surface of the slab. Likewise a Dirichlet boundary is imposed in y-direction

Figure 6.23: Initial configuration (left) and boundary conditions (right).

to the upper surface of the indenter. A temporal moving Dirichlet boundary is imposed
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to the upper surface of the indenter in z-direction, such that

z(t) =

{
z − a t ∀t ≤ 1

z − a ∀t > 1 ,
(6.49)

and in x-direction, such that

x(t) =

{
x ∀t ≤ 1

x + 0.15 (t − 1) ∀t > 1 .
(6.50)

In equation (6.49) a denotes the depth and is chosen as a = 0.7 for the frictionless case and
it is chosen as a = 0.4 for the frictional case. Accordingly, approximately 70% respectively
40% of the indenter is pressed into the lower block by firstly moving it downwards.IV After
this it moves forward into the positive x-axis, such that it slides over the upper surface of
the slab. Both bodies are discretized with standard trilinear brick elements. The indenter
is discretized with in total 64 elements (4 × 4 × 4) where the slab is discretized with in
total 300 brick elements (20×5×3). Altogether 1887 unknowns (displacement degrees of
freedom) without considering Dirichlet and contact boundary conditions are involved. For
the underlying example a frictionless simulation and a frictional simulation are performed.
Both are exploited within a quasi-static simulation by setting the mass density to zero.
The results for three load steps are depicted in Fig. 6.24. Accordingly, even for such a
difficult example with high pressure peaks at the indenter vertices very smooth results
are obtained, for both frictionless and frictional case. This is in stark contrast to the NTS
method, where both simulations diverge after some time steps for the second movement
in x-direction. For the frictional case a Coulomb’s coefficient of friction of µ = 0.5 and

Figure 6.24: Frictionless ironing simulation at t = 1 (left), at t = 10 (middle) and at
t = 20 (right).

a tangential penalty parameter of ǫT = 1e3 are employed. Moreover, for this transient
simulation a pseudo time step size (or load step size) of ∆t = 0.001 is applied. The
top view of the configuration for both the frictionless and the frictional simulation are
depicted in Fig 6.25.

IVNote that it is equally well possible to press the indenter deeper into the lower block. The only limitation
is the implemented segmentation, which is a technically demanding task and not the main focus of
the present investigation. In particular segments were dropped for deeper cases, such that a = 0.7
and a = 0.4 for the frictionless and frictional cases, respectively, do work well for the implemented
segmentation.
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Figure 6.25: Frictionless (left) and frictional (right) ironing simulation at time t = 10.

Rotating blocks The next example consists of an indenter with curved geometry and a
block (see Fig. 6.26). The problem is similar to the one shown in Temizer [144], Dittmann
et al. [34] but instead of higher order NURBS, linear Lagrangian shape function are used
for spatial discretization. Both bodies are modeled with a Neo-Hookean material model

Figure 6.26: Initial configuration of the indenter and the block.

using Lamé parameters corresponding to a Young’s Modulus of E(i) = 1 and a Poisson’s
ratio of µ(i) = 0.3. The system is assumed to behave in a quasi-static manner, i.e the
density of the bodies in contact is zero. The initial configuration consists of 10 × 10 × 7
elements for the indenter and 7×7×6 elements for the block (see Fig. 6.26). The bottom
surface of the block is fixed in all three coordinate directions, whereas the top surface of
the indenter first moves downwards such that

z(t) =

{
z − a t ∀t ≤ 1

z − a ∀t > 1 ,
, (6.51)

and afterwards starts with a rotational movement where

x(t) =

{
x ∀t ≤ 1

R(t) x ∀t > 1
. (6.52)
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In equation (6.51) a = 0.5 denotes the depth, x =
[
x y

]T
and R ∈ SO(2) denotes the

plane rotation tensor

R(t) =

[
cos(b (t − 1)) − sin(b (t − 1))
sin(b (t − 1)) cos(b (t − 1))

]
, (6.53)

with b = 0.8 which denotes a measure of the rotational increment. For this problem a
Coulomb coefficient of friction of µ = 1 together with a tangential penalty parameter of
εT = 1e3 are employed to model the quasi-static frictional behavior. In Fig. 6.27 the
deformed configuration after the first phase (t = 1) of the movement is shown along
with the segmentation of both surfaces and the Von Mises stress results. Moreover in
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Figure 6.27: Deformed configuration (upper left) with top view (upper right), segmen-
tation (lower left) and Von Mises stress (lower right) after the first transla-
tional movement (t = 1).

Fig. 6.28 the configuration, segmentation and Von Mises stress results are depicted for
the final rotational movement (t = 2). Accordingly, this complex problem demonstrates
the robust and smooth spatial behavior of the variational consistent Mortar method and
its necessary technical demanding segmentation procedure.

6.3.2 Transient problems

In this section dynamic contact problems are considered using the proposed frictional
Mortar method. To be specific a simple example represented by two blocks and a more
complex example represented by two tori coming into contact are examined.
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Figure 6.28: Deformed configuration (upper left) with top view (upper right), segmenta-
tion (lower left) and Von Mises stress (lower right) after the final rotational
movement (t = 2).

Frictional blocks impact First the impact of two blocks is considered reflecting the
example of Yang and Laursen [164, Sec. 6.2]V. The reference configuration is depicted in

Figure 6.29: Initial configuration of the friction blocks.

VNote, this example is partly taken from Dittmann et al. [34] but is restricted to the mechanical field
herein.
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Fig. 6.29. The lower larger block of size 2 × 2 × 1 consists of 75 elements and is modeled

Mooney Rivlin model α1 = 1.3 c1 = 176051 c = 2 · e6
(upper block) α2 = 5.0 c2 = 4332.63 d = 2 (c1 + 2 c2)

α1 = 1.3 µ1 = 6.30 · e5 kN
m2

Ogden model α2 = 5.0 µ2 = 0.012 · e5 kN
m2 β = 9

(lower block) α3 = −2.0 µ3 = −0.10 · e5 kN
m2 κ = 2 · e5

Table 6.3: Material properties of frictional blocks

with an Ogden material model using material data depicted in Tab. 6.3. The upper block
of size 1×1×1 consists of 27 elements and is modeled with a Mooney-Rivlin material model
depicted in Tab. 6.3 as well. Accordingly, different material models are in use (for both
see Chap. 3.4), where the material data depicted in Tab. 6.3 are taken from Holzapfel [70].

The initial velocity of the upper body is set to v
(1)
I0

=
[
3 3 −2

]T
, ∀I ∈ ω(1), whereas

Figure 6.30: Initial Von Mises stress of the upper block with µ = 0.8.

the lower block is at rest, albeit both bodies are unbounded. The coefficient of friction is
set to µ = 0.2 (see configurations depicted in Fig. 6.31) and µ = 0.8 (see configurations
depicted in Fig. 6.33), where the tangential penalty parameter is chosen as ǫT = 1e7 in
both cases. Within the initial impact phase after the first few time steps both surfaces
are geometrically in a perfect flat contact situation, such that for a frictionless scheme
the stress distribution would be uniformly distributed. The Von Mises stress after the
initial impact t = 0.06 is depicted in Fig. 6.30 for the Coulomb coefficient of friction of
µ = 0.8. Since friction is taken into account, the upper body rotates after the impact,
more or less strongly depending on the chosen coefficient of friction (see Fig. 6.31 and 6.33,
respectively). The conservation properties are depicted in Fig. 6.32 and Fig. 6.34. The
components of the linear momentum are conserved, since no external forces and momenta
are acting onto the bodies, nor any kind of Dirichlet boundary is present. As shown the
midpoint type approximation conserves the components of the angular momentum as well
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Figure 6.31: Snapshots of the blocks at t = 0.06 (left), t = 0.13 (middle) and t = 0.20
(right) with Coulomb coefficient of friction of µ = 0.2.
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Figure 6.32: Linear (left), angular momentum (middle) and total energy (right) of the
blocks with Coulomb coefficient of friction of µ = 0.2.

Figure 6.33: Snapshots of the blocks at t = 0.06 (left), t = 0.13 (middle) and t = 0.20
(right) with Coulomb coefficient of friction of µ = 0.8.

as the total energy algorithmically before and after the impact phase. During the impact
the angular momentum is not exactly preserved but the error is rather small (less than
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Figure 6.34: Linear (left), angular momentum (middle) and total energy (right) of the
blocks with Coulomb coefficient of friction of µ = 0.8.

0.1%). Due to friction involved, the total energy decreases during the impact more or less
depending on the chosen Coulomb coefficient of friction (see Fig. 6.32 and Fig. 6.34).

Two tori impact problem Again the two tori example of Sec. 6.2 is treated now using
the Mortar method to model the contact behavior. The initial conditions, the material
model and its parameters are the same as in Sec. 6.2 (for initial configuration see also
Fig. 6.15). For the frictionless simulation a time step size of ∆t = 0.01 is sufficient, whereas
for the frictional case a time step size of ∆t = 0.0025 is required. The deformation at
different time steps with corresponding segmentations is shown in Fig. 6.36. It becomes
obvious that the segmentation is a rather complicated task but does work quite well for
this example. But if one looks carefully, one might find some dropped segments. This is
due to the complicated implementation of the rather technical challenging segmentation
algorithm which has been indicated in Sec. 4.2.1. Within this work the implementation
of the segmentation algorithm has been improved but as this example reveals, it further
needs some improvements. The components of the linear momentum are depicted in
Fig. 6.35 for the frictionless and frictional case, respectively, which are conserved in both
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Figure 6.35: Components of linear momentum plotted over time for frictionless (left)
and frictional (right) case.
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Figure 6.36: Deformation and segmentation snapshots at times t = 2.5 and t = 5.

cases. Moreover, the components of angular momentum are depicted in Fig. 6.37. It is
important to remark that although angular momentum seems to be conserved it is not
conserved for the frictional case in the sense that the error is beyond Newton’s tolerance,
but again the deviation is rather small. This issue is subject of current research and
should be investigated in future work. The evolution of the total energy is shown in
Fig. 6.38.
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Figure 6.37: Components of angular momentum plotted over time for frictionless (left)
and frictional (right) case.
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Figure 6.38: Total energy plotted over time (black line: frictionless EMS from Hesch and
Betsch [62], colored lines: frictional Mortar approach).





7 Summary and outlook

7.1 Summary

Within the present thesis, large deformation contact problems in the field of nonlinear
elastodynamics were examined. Special emphasis was placed on the consistent spatial
and temporal discretisation. In particular, NTS and Mortar based contact elements with
appropriate implicit time stepping schemes were developed and investigated in depth.

A total Lagrangian framework incorporating large deformations was used. In order to
incorporate frictionless and frictional contact, the contact traction was subdivided into a
normal and a tangential part. To prevent penetrations of the solids, the classical Karush-
Kuhn Tucker conditions were taken into account for the normal part of contact traction.
For the ensuing implementation, an active set strategy was employed. Concerning the
tangential part of contact traction, the Coulomb dry frictional model was used. Eventu-
ally, an appropriate variationally consistent virtual work of contact was provided.

For the spatial discretisation of the solids, the FEM was employed. In addition, both a
Dirac like evaluation of the contact traction and an approximation of the contact traction
with the same shape functions as for the underlying solids were provided. The former
leads to the NTS method, which enforces the contact constraints in a nodal wise manner,
whereas the latter leads to the variationally consistent Mortar method, which weakly en-
forces the contact constraints. For the NTS method, a new frictional approach based on
a suitable CAT was developed (see also Franke et al. [40]) in addition to the traditional
approach (see Laursen and Simo [103]). In particular, the convective coordinates were
augmented to the system as primary variables, which yielded a simple structure facili-
tating the ensuing linearisation. Furthermore, a DNM can be used to reduce the system
to the minimal set of coordinates. Besides, the variationally consistent Mortar method
was supplemented with by a Coulomb dry frictional model. Using isotropic friction, a
component-free formulation of the tangential contact traction was employed to avoid co-
and contravariant formulations. For the Mortar method, a segmentation algorithm sup-
plemented by a virtual segmentation surface was developed. The virtual segmentation
surface facilitates the triangularisation of arbitrary curved contact pairs, which became
obvious from the numerical examples chapter. In addition, the segmentation algorithm
was standardised such that higher order spatially discretised solids can be covered. In
this connection, it is worth noting, that a fully coupled thermoelastic frictional Mortar
approach based on NURBS discretised solids was developed and proposed in Dittmann
et al. [34], recently. Eventually, the conservation properties for the semi-discrete NTS and
Mortar approaches were verified in detail.
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For frictionless contact, structure preserving integrators were briefly introduced for both
the NTS and the Mortar method. For frictional contact, a midpoint type discretisation
was applied for the proposed NTS and Mortar contact elements. In case of the NTS
method, the angular momentum is algorithmically conserved.

Finally, representative numerical examples were investigated. First, a simple model prob-
lem was discretised by standard and more recent integrators. Both were compared briefly,
it turned out that all the integrators suffered from a blow up effect for stiff problems with
large time step sizes, except for the backward Euler scheme and the EMS. The backward
Euler scheme, however, numerically dissipated the energy such that after a few time steps,
all the energy was lost. Beyond that the frictional NTS approach based on CAT was inves-
tigated with respect to the numerical behavior in different transient examples. It turned
out that the frictional NTS approach exhibited superior numerical stability properties,
which is due to the conservation of both momentum maps. In addition to that, the newly
proposed frictional Mortar approach was examined for some representative static and
quasi-static examples. Since the Mortar method weakly enforces the contact constraints,
highly accurate results were obtained. Eventually, the desired transient examples were
investigated. It became evident, that the proposed frictional Mortar approach still deliv-
ers reliable results, even in case of coarse meshes, which is in contrast to more traditional
methods.

To summarise, the present thesis provides the following results concerning the

• NTS approach:

– frictional extension based on a suitable CAT leading to a simple and more
intuitive structure of the involved constraints (see also Franke et al. [40]),

– reduction is possible to recover the original size of standard NTS approaches,

– facilitates the design of a momentum preserving integrator,

– makes possible the robust and stable implicit midpoint type discretization of
second order, which guarantees reliable results even for coarse time step sizes,

• Mortar approach:

– isotropic frictional extension of the Mortar approach using a component-free
tangential contact contribution,

– introduction of a newly constructed standardised segmentation procedure, to
account for both arbitrary curved contact pairs and higher order discretisations
of the bodies, such as NURBS (see e.g. Dittmann et al. [34]),

– reliable results even for coarse spatial meshes,

– robust and stable implicit midpoint type discretization of second order.
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7.2 Outlook

Current work Based on the present contribution, the following research projects are
currently in progress:

• Higher order discretisations of the solids for both the NTS and the Mortar method
need to be investigated. A NURBS based knot-to-surface (KTS) method was
proposed in Dittmann [33]. Moreover, a newly developed fully coupled frictional
thermoelastic Mortar approach with NURBS discretised solids was developed in
Dittmann et al. [34].

• Algorithmic conservation of the angular momentum for the newly proposed frictional
Mortar method based on an augmentation strategy needs to be developed. To this
end, it is important to note, that in case of the frictional Mortar method, the
conservation of the angular momentum is a difficult task, which is due to the weak
enforcement of the contact constraints.

• For many applications, such as crash simulations and hydraulic fracking, the combi-
nation of contact problems with crack propagation is necessary. Recently, a finite-
deformation phase-field approach for crack propagation was proposed in Hesch and
Weinberg [66], which fits well in the provided frictional Mortar framework. Cur-
rently, the frictional Mortar framework is supplemented by the above phase-field
model for crack propagation.

Future work Based on the present contributions, the following research projects seem
to be worth investigating:

• The optimal control of contact problems is a new and and very promising field of
interest for both research and industrial applications.

• In industrial applications adhesive frictional tasks are important. The provided
Mortar framework is readily extendible to incorporate adhesion. To this end, a fric-
tional Mortar approach in conjunction with adhesive models seems to be promising.





A Mathematical tools

A.1 Mathematical operators

A material scalar field A and a spatial scalar field a are considered. The nabla operator of
these scalar fields (tensor of zeroth order dependent on a tensor of first order) dependent
on the reference and current configuration, respectively, is defined as

∇A(X) =
∂A(X)

∂XA

EA = Grad(A(X)), ∇a(x) =
∂a(x)
∂xa

ea = grad(a(x)) . (A.1)

Hence, it coincides with the corresponding gradient operator. The gradient of a material
vector field (tensor of first order dependent on a tensor of first order) A can be written
as

Grad(A(X)) = A(X) ⊗ ∇ =
∂

∂XA

AB EB ⊗ EA , (A.2)

whereas the gradient of a spatial vector field a can be stated as

grad(a(x)) = a(x) ⊗ ∇ =
∂

∂xa

ab eb ⊗ ea . (A.3)

The divergence operator of a material vector field (tensor of first order dependent on a
tensor of first order) can be written as

Div(A(X)) = ∇ · A(X) =
∂

∂XA

AA , (A.4)

where the divergence operator of a spatial vector field is defined as

div(a(x)) = ∇ · a(x) =
∂

∂xa

aa . (A.5)

The divergence operator of a material tensor field (tensor of second order dependent on
a tensor of first order) can be calculated via

Div(A(X)) = ∇ · A(X) = A(X) ∇ =
∂

∂XB

AAB EA . (A.6)

The divergence operator of a spatial tensor field is defined by

div(a(x)) = ∇ · a(x) = a(x) ∇ =
∂

∂xb

aab ea . (A.7)
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Furthermore the curl operator of a material vector field can be written as

Curl(A(X)) = ∇ × A(X)

=

(
∂A3

∂X2

− ∂A2

∂X3

)
E1 +

(
∂A1

∂X3

− ∂A3

∂X1

)
E2 +

(
∂A2

∂X1

− ∂A1

∂X2

)
E3 , (A.8)

where the curl operator of a spatial vector field is defined by

curl(a(x)) = ∇ × a(x)

=

(
∂a3

∂x2

− ∂a2

∂x3

)
e1 +

(
∂a1

∂x3

− ∂a3

∂x1

)
e2 +

(
∂a2

∂x1

− ∂a1

∂x2

)
e3 . (A.9)

Every second order tensor can be subdivided into a symmetric and a skew symmetric
part, such that

A = sym(A(X)) + skew(A(X)) . (A.10)

Therein symmetric part of a second order tensor is defined as

sym(A(X)) =
1
2

(
A(X) + AT(X)

)
, (A.11)

where the skew symmetric part of a second order tensor is defined as

skew(A(X)) =
1
2

(
A(X) − AT(X)

)
. (A.12)

A.2 Integral theorems

First of all the divergence theorem of Gauß is utilized, which transforms a volume integral
of a region B0 into an integral over its surface ∂B0. For a material vector field A one
obtains

∫

B0

Div(A(X)) dV =
∫

B0

∇ · A(X) dV =
∫

∂B0

A(X) · N dA , (A.13)

where N denotes the outward unit normal to the surface ∂B0 at X. For a spatial tensor
field a one obtains similarly

∫

Bt

div(a(x)) dv =
∫

Bt

∇ · a(x) dv =
∫

∂Bt

a(X) n da . (A.14)

The theorem of Stokes is an important integral theorem as well, which transforms a
surface integral into a line integral and is defined as

∮

X

A(X) · dX =
∫

∂B0

Curl(A(X)) · N dA . (A.15)
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A.3 Newton’s method

In order to solve a nonlinear problem f(x) = 0 usually an iterative solution method
of Newton’s type is applied. For Newton’s method the underlying problem has to be
linearized. As a result linear update formulas are obtained for every iteration step. The
iteration usually is applied until the equations are fulfilled within a user defined tolerance
ε ∈ R+, ε ≈ 0. The roots of the non-linear but smooth function f(x), i.e. it is assumed
that f(x) is differentiable with respect to its arguments as often as required, are sought,
such that

f(x∗) = 0 . (A.16)

A Taylor series of the function f(x) with the initial guess x(0) is developed

f(x) = f(x(0)) + f ′(x(0))
(
x − x(0)

)
+

f ′′(x(0))
2

(
x − x(0)

)2
+ ... +

f (n)(x(0))
n!

(
x − x(0)

)n

(A.17)

=
∞∑

n=0

f (n)(x(0))
n!

(
x − x(0)

)n
. (A.18)

When the Taylor series is aborted after the linear element one obtains the linearisation
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Figure A.1: Graphical illustration of the iteration process for Newton’s
method using the function f(x) = ln(x) +

√
x − 2.

of f(x) at point x(0)

f lin(x(1)) = f(x(0)) + f ′(x(0))
(
x − x(0)

)
= 0 (A.19)

= f(x(0)) + f ′(x(0)) ∆x = 0 . (A.20)



164 A Mathematical tools

Therein the increment

∆x(0) = − f(x(0))
f ′(x(0))

, (A.21)

has been introduced and is needed to obtain a better solution

x(1) = x(0) + ∆x(0) , (A.22)

where x(1) is not necessarily the solution but a good guess for the next iteration (see
Fig. A.1). The algorithm for Newton’s method is defined by

xk+1 = xk + ∆xk, ∆xk = − f(xk)
f ′(xk)

, (A.23)

where k ∈ N+ denotes the k-th iteration. Newton’s method converges quadratically
(order p = 2) near the solution x∗, i.e. it is local convergent.



B Additional considerations for

continuum mechanics

B.1 Nanson’s relation

Nanson’s relation is usually used in order to transform quantities related to areas of the
reference configuration dA(i) to areas of the current configuration da(i) (see Fig. 3.2).
Nanson’s relation can be deduced using equations (3.13) and (3.10), accordingly one
obtains

dv(i) = da(i) dx(i) = J (i)(X(i), t) dV (i) = J (i)(X(i), t) dA(i) dX(i)

⇔( dx
(i)
1 × dx

(i)
2 ) · dx

(i)
3 = J (i)(X(i), t) ( dX

(i)
1 × dX

(i)
2 ) · dX

(i)
3

⇔( da(i) n(i)) · (F (i)(X(i), t) dX
(i)
3 ) = J (i)(X(i), t) ( dA(i) N (i)) · dX

(i)
3

⇔( da(i) F (i)T(X(i), t) n(i) − J (i)(X(i), t) dA(i) N (i)) · dX
(i)
3 = 0 , (B.1)

where N (i) and n(i) denote the outward unit normals to reference and current area dA(i)

and da(i), respectively. For arbitrary dX
(i)
3 one finally obtains Nanson’s relation

da(i) = J (i)(X(i), t) F (i)−T(X(i), t) dA(i) . (B.2)

B.2 Spectral representation

For a symmetric and positive definite second order tensor H ∈ R3×3 it can be shown
that

H A = λ A . (B.3)

Therein λ denotes the eigenvalue and A the eigenvector of H . The characteristic equation
to obtain the eigenvalues is defined by

det(H − λ I) = 0 . (B.4)

With equation (B.4) one obtains the desired eigenvalues λA, A = {1, 2, 3}. By rearranging
equation (B.3) the eigenvectors can be calculated according toI

(H − λA I) AA = 0 . (B.5)

INote in equation (B.5) Einstein’s summation convention is not in use.
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Afterwards the spectral representation of the symmetric right Cauchy-Green strain tensor
C = F T F is accomplished

C A = λ2 A . (B.6)

The characteristic polynomial to obtain the eigenvalues can be written as

det
(
C − λ2 I

)
= 0 . (B.7)

Since the right Cauchy-Green strain tensor is symmetric and positive definite one obtains
the squares of the principal stretches λA, with A = {1, 2, 3}, which can be used to calculate
the eigenvectors

(
C − λ2

A I
)

AA = 0 . (B.8)

Therein AA denote the three principal directions of C. Finally, the right Cauchy-Green
deformation tensor can be represented in its principal stretches and directions

C = λ2
A AA ⊗ AA . (B.9)

Beyond that, the Green-Lagrangian strain tensor can be recast with the principal stretches
and directions, i.e.

E =
1
2

(λ2
A − 1) AA ⊗ AA . (B.10)

B.3 Invariants

Subsequently, the invariants of tensors, which remain unaffected for rigid body rota-
tions or translations, are introduced. With the aid of invariants constitutive laws can be
constructed. The invariants of the right Cauchy-Green strain tensor C are illustrated.
Therefore the characteristic equation of C can be calculated via

det(C − λa I) = 0 , (B.11)

λ3
a − I1(C) λ2

a + I2(C) λa − I3(C) = 0 . (B.12)

Therein the eigenvalues λa, a = 1, 2, 3 and the invariants of C are used. The latter can
be specified as follows

I1(C) = tr(C) = λ2
1 + λ2

2 + λ2
3 , (B.13)

I2(C) =
1
2

(
tr (C)2 − tr

(
C2
))

= λ2
1 λ2

2 + λ2
2 λ2

3 + λ2
3 λ2

1 , (B.14)

I3(C) = det(C) = J2 = λ2
1 λ2

2 λ2
3 . (B.15)

Using the relation Cα Aa = λα
a Aa the Cayley-Hamilton theorem is obtained by

C3 − I1(C) C2 + I2(C) C − I3(C) I = 0 . (B.16)
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B.4 Pull-back and push-forward operations

B.4.1 First order tensors

For first order tensors a push forward operation for a material covariant tensor A♭ and a
material contravariant tensor A♯ is defined as follows

a♭ = ϕ(A♭) = F −T A♭, (B.17)

a♯ = ϕ(A♯) = F A♯ , (B.18)

where the pull back operation for the spatial covariant tensor a♭ and the spatial con-
travariant tensor a♯ is defined as follows

A♭ = ϕ−1(a♭) = F T a♭, (B.19)

A♯ = ϕ−1(a♯) = F −1 a♯ . (B.20)

B.4.2 Second order tensors

For second order tensors a push forward operation for a material covariant tensor A♭ and
a material contravariant tensor A♯ is defined as follows

a♭ = ϕ(A♭) = F −T A♭ F −1, (B.21)

a♯ = ϕ(A♯) = F A♯ F T , (B.22)

where the pull back operation for the spatial covariant tensor a♭ and the spatial con-
travariant tensor a♯ is defined as follows

A♭ = ϕ−1(a♭) = F T a♭ F , (B.23)

A♯ = ϕ−1(a♯) = F −1 a♯ F −T . (B.24)

B.5 Lie derivative

For a frame indifferent time derivative of a spatial tensor A the following steps are neces-
sary. First a pull back of the tensor A to the material configuration is pursued. Then the
material time derivative is applied. Finally, the result is pushed forward to the current
configuration. This procedure is summarized by the Lie derivative and can be defined
mathematically as

L (A(X)) = ϕ

(
d
dt

(
ϕ−1(A(X)

))
. (B.25)
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B.6 Important derivatives

The important derivatives of the invariants of the right Cauchy-Green strain tensor with
respect to the right Cauchy-Green strain tensor can be written as

∂I1(C)
∂C

= I , (B.26)

∂I2(C)
∂C

= I1(C) I − C , (B.27)

∂I3(C)
∂C

= I3(C) C−1 = det(C) C−1 = λ2
1 λ2

2 λ2
3 C−1 = J2 C−1 . (B.28)

For the second Piola-Kirchhoff stress tensor of the Ogden model with strain-energy energy
function Wiso =

∑3
P =1

µP

αP
(λ̄αP

1 + λ̄αP

2 + λ̄αP

3 − 3) the following derivatives are necessary

∂J(F )
∂C

=
∂
√

det(C)

∂C
=

1
2

1√
det(C)

∂ det(C)
∂C

=
1
2

J−1 J2 C−1 =
1
2

J C−1 , (B.29)

∂Wiso(λ̄A)
∂C

=
∂Wiso

∂λA

∂λA

∂C
, (B.30)

with C = λ2
A AA ⊗ AA, ∂C

∂λA
= 2 λA AA ⊗ AA and λ̄A = J− 1

3 λA one obtains

∂Wiso(λ̄A)
∂C

=
∂Wiso

∂λ̄B

∂λ̄B

∂λA

1
2 λA

(AA ⊗ AA) . (B.31)

Therein the following derivatives are necessary

∂J− 1
3

∂λA

= −1
3

J− 4
3

∂J

∂λA

, (B.32)

∂J

∂λA

=
∂(λ1 λ2 λ3)

∂λA

= λ1 λ2 λ3 λ−1
A = J λ−1

A , (B.33)

λB

λA

= �
�J

1
3 λ̄B

�
�J

1
3 λ̄A

, (B.34)

in order to obtain

∂Wiso(λ̄A)
∂C

=
1

2 λA

∂Wiso

∂λ̄B

(J− 1
3 δAB − 1

3
J− 4

3 J λ−1
A λB) (AA ⊗ AA) (B.35)

=
1

2 λA

∂Wiso

∂λ̄B

(J− 1
3

λA

λA

δAB − 1
3

J− 1
3 J

λA

λA

λB

λA

) (AA ⊗ AA) (B.36)

=
1

2 λ2
A

∂Wiso

∂λ̄B

(λ̄A δAB − 1
3

λ̄B) (AA ⊗ AA) (B.37)

=
1

2 λ2
A

(λ̄A

∂Wiso

∂λ̄A

− 1
3

λ̄B

∂Wiso

∂λ̄B

) (AA ⊗ AA) . (B.38)
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Therein the derivative

∂Wiso

∂λ̄A

=
µP

αP

αP λ̄αP −1
1 = µP λ̄αP −1

A , (B.39)

leads finally to the desired result

∂Wiso(λ̄A)
∂C

=
1

2 λ2
A

[
µP λ̄αP

A − 1
3

µP λ̄αP

B

]
AA ⊗ AA . (B.40)

Furthermore the following derivatives are useful

Wiso

∂λA

=
Wiso

∂λ̄B

∂λ̄B

∂λA

= µP λ̄αP −1
A J− 1

3 (δAB − 1
3

λB

λA

) , (B.41)

Ĉ :=
∂C−1

∂C
= −1

2
(C−1

AC C−1
BD EA ⊗ EC ⊗ EB ⊗ ED (B.42)

+ C−1
AD C−1

BC EA ⊗ ED ⊗ EB ⊗ EC) , (B.43)

S =
∂C(i)

∂C(i)
=

1
2

(I + Ī) , (B.44)

I − S =
∂(I(i)

1 I − C(i))

∂C(i)
. (B.45)

Therein Ī denotes the fourth order unit tensor according to

Ī = EA ⊗ EB ⊗ EB ⊗ EA . (B.46)





C Additional considerations to spatial

discretisation

C.1 Quadrature for element contributions in nonlinear

elastodynamics

The element contributions can be approximated using quadrature. The Gaussian quadra-
ture rule applied for an arbitrary function g(ξ) integrated over the domain ξ ∈ [−1, 1] for
one dimensions can be stated as

1∫

−1

g(ξ) dξ ≈
ngp∑

g=1

g(ξg) wg . (C.1)

Therein the Gauss points ξg, the number of Gauss points g ∈ N+ with total number of
Gauss points ngp and Gauss weights wg have been introduced. Gaussian quadrature rule
is 2 ngp-order accurate, meaning polynomials of order 2 ngp − 1 are integrated exactly.
Accordingly, the element contributions due to mass matrix (4.11) can be approximated
by applying Gaussian quadrature in each coordinate direction, which yields

M
(i),e
IJ =

∫

B�

ρ
(i)
0 NI(ξ) NJ(ξ) Indim×ndim det(J (i),h,e(ξ)) dξ dη dζ

=

1∫

−1

1∫

−1

1∫

−1

ρ
(i)
0 NI(ξ) NJ(ξ) Indim×ndim det(J (i),h,e(ξ)) dξ dη dζ

≈
ngp1∑

g1=1

ngp2∑

g2=1

ngp3∑

g3=1

ρ
(i)
0 NI(ξg1 , ηg2 , ζg3) NJ(ξg1 , ηg2 , ζg3) Indim×ndim

det(J (i),h,e(ξg1 , ηg2 , ζg3)) wg1 wg2 wg3

≈
ngp∑

g=1

ρ
(i)
0 NI(ξg) NJ(ξg) Indim×ndim det(J (i),h,e(ξg)) wg . (C.2)

Therein the following abbreviations have been employed for convenience

ngp = ngp1 ngp2 ngp3 , (C.3)

ξg = {ξg1 , ηg2 , ζg3} , (C.4)

wg = wg1 wg2 wg3 . (C.5)
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The corresponding values for the fourth orderI Gaussian quadrature rule (here a 2× 2 × 2
point Gaussian quadrature rule is applied) are depicted in Fig. C.1 and the corresponding
values, i.e. the Gauss points and weights are listed in Tab. C.1.

number point ξg1 point ηg2 point ζg3 weight wg1 weight wg2 weight wg3

❶ − 1√
3

− 1√
3

− 1√
3

1 1 1
❷

1√
3

− 1√
3

− 1√
3

1 1 1
❸ − 1√

3
1√
3

− 1√
3

1 1 1
❹

1√
3

1√
3

− 1√
3

1 1 1
❺ − 1√

3
− 1√

3
1√
3

1 1 1
❻

1√
3

− 1√
3

1√
3

1 1 1
❼ − 1√

3
1√
3

1√
3

1 1 1
❽

1√
3

1√
3

1√
3

1 1 1

Table C.1: Eight-point Gaussian quadrature rule for three dimensions.
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Figure C.1: Eight-point Gaussian quadrature rule for trilinear brick element.

IFourth order Gaussian quadrature rule means that constants, linear, quadratic and cubic polynomials
can be integrated exactly.



C.1 Quadrature for element contributions in nonlinear elastodynamics 173

The element contributions for the internal force vector due to equation (4.16) can be
approximated using quadrature as follows

F
(i),int,e
I =

∫

B�

B
(i),e,T
I (ξ) S(i),h,e

v (ξ) det(J (i),h,e(ξ)) dξ dη dζ

≈
ngp∑

g=1

B
(i)
I (ξg) S(i),h,e

v (ξg) det(J (i),h,e(ξg)) wg , (C.6)

Eventually, the external force vector due to equation (4.18) with respect to the body
forces

F
(i),extb,e
I =

∫

B�

NI(ξ) B(i),h,e det(J (i),h,e) dξ dη dζ

≈
ng∑

g=1

N
(i)
I (ξg) B(i),h,e det(J (i),h,e(ξg)) wg , (C.7)

and the external force vector with respect to the Neumann forces can be approximated
as follows

F
(i),extn,e
I =

∫

Γ
(i),h,n
n

N̂I(ξ) t̄
(i),h,n ‖ϕ

(i),h,n
,ξ × ϕ(i),h,n

,η ‖ dξ dη

≈
n̂gp∑

g=1

N̂
(i)
I (ξ̂g) t̄

(i),h,n ‖ϕ
(i),h,n
,ξ × ϕ(i),h,n

,η ‖ ŵg . (C.8)

Therein the following abbreviations have been employed for convenience

n̂gp = ngp1 ngp2 , (C.9)

ξ̂g = {ξg1 , ηg2} , (C.10)

ŵg = wg1 wg2 . (C.11)

The corresponding values for the fourth order Gaussian quadrature rule (here a 2 × 2
point Gaussian quadrature rule has been applied) are depicted in Fig. C.2 and are listed
in Tab. C.2.

number point ξg1 point ηg1 weight wg1 weight wg2

❶ − 1√
3

− 1√
3

1 1
❷

1√
3

− 1√
3

1 1
❸ − 1√

3
1√
3

1 1
❹

1√
3

1√
3

1 1

Table C.2: Four-point Gaussian quadrature rule for two dimensions.
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❸ ❹

1 2

34

ξ

η

Figure C.2: Four-point Gaussian quadrature rule for trilinear brick element.

C.2 Index reduction for a simple model problem

In order to obtain the number of the index of a DAE the following definition is known:

Definition 1. The number n of the index of a DAE is obtained by the temporal derivatives
which are necessary to recover an ODE by algebraic manipulations.

Accordingly, a simple flat mathematical pendulum under the influence of gravity (g = 1)
serves as example with mass m = 1 and pendulum length l = 1 (see Fig. C.3). The

x1

x2

g

l

m

Figure C.3: Flat mathematical pendulum.

configuration manifold is restricted by the constraint

Φ = x2
1 + x2

2 − 1 = 0 , (C.12)
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whereas kinetic and potential energy are given by

T =
1
2

m ẋ2
1 +

1
2

m ẋ2
2, V = −m g x2 + λ Φ . (C.13)

With the Lagrangian L = T − V in hand the Lagrangian formalism

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi

= 0 (C.14)

Φ = 0 , (C.15)

is employed in order to obtain the following equations of motion

m ẍ1 − 2 λ x1 = 0 ⇔ ẍ1 = 2 λ x1 , (C.16)

m ẍ2 − 2 λ x2 + 1 = 0 ⇔ ẍ2 = 2 λ x2 − 1 , (C.17)

x2
1 + x2

2 − 1 = 0 . (C.18)

The above can be written as

ẋ = v (C.19)

M v̇ + λ

[
2 x1

2 x2

]
+

[
0
1

]
= 0 (C.20)

Φ(x1, x2) = 0 , (C.21)

whereas the index of the underlying DAE system is sought. Accordingly, two times time
derivative of Φ yields

2 (x1 ẍ1 + ẋ2
1) + 2 (x2 ẍ2 + ẋ2

2) = 0 . (C.22)

Inserting equations (C.16) and (C.17) into the above gives

x2
1 2 λ + ẋ2

1 + 2 x2
2 λ − x2 + ẋ2

2 = 0 , (C.23)

which can be solved for λ with equation (C.18) as follows

λ =
1
2

x2 − 1
2

(ẋ2
1 + ẋ2

2) . (C.24)

Again temporal derivative (third one) of the above and subsequently insertion of (C.16)
and (C.17) finally yields

λ̇ = −3
2

ẋ2 , (C.25)

where furthermore use has been made of d
dt

(x2
1 +x2

2) = 2 (ẋ1 x1 + ẋ2 x2) = 0. Accordingly,
the following ODE is obtained

ẋ − v = 0 (C.26)

v̇1 − 2 λ x1 = 0 (C.27)

v̇2 − 2 λ x2 − 1 = 0 (C.28)

λ̇ +
3
2

v2 = 0 . (C.29)
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Obviously the index of the DAEs (C.16)-(C.16) is n = 3. Using a midpoint discretization
and subsequent application of Newton’s method in order to solve for the degrees of freedom
q =

[
v1 v2 x1 x2 λ

]T
requires the following residual and tangential contributions

R =




xn+1 − xn − ∆t vn+1

vn+1 − vn − ∆t (2 λn+1

[
x1n+1

x2n+1

]
+

[
0
1

]
)

λn+1 − λn + ∆t 3
2

v2n+1


 , (C.30)

K =




−∆t 0 1 0 0
0 −∆t 0 1 0
1 0 −∆t 2 λn+1 0 −∆t 2 x1n+1

0 1 0 −∆t 2 λn+1 −∆t 2 x2n+1

0 ∆t 3
2

v 0 0 1




. (C.31)

Numerical results of the index reduced system as well of the midpoint discretized DAE
system are depicted in Fig. C.4. Interestingly, for coarse time step sizes the index reduced
system, the constraint manifold is violated.
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Figure C.4: Trajectory (upper) and energy (lower) plots of the ODE system (left) and
of the reduced DAE system (right) using a time step size ∆t = 0.1.
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C.3 Reduction of the augmented system

Inserting equation (4.69) into (4.63) using

(ΦAug ⊗ ∇f) PT = − (ΦAug ⊗ ∇q) , Φ̃N ⊗ ∇f = 0 , (C.32)

yields the desired reduced system



R̃q

ΦAug

Φ̃N


 =

[
Kr

qq ∆q + Kr
qf

(
(ΦAug ⊗ ∇f)

−1
ΦAug + PT ∆q

)
+ (∇q ⊗ Φ̃N) ∆λN

(Φ̃ ⊗ ∇q) ∆q + (Φ̃ ⊗ ∇f)
(
(ΦAug ⊗ ∇f)−1ΦAug + PT∆q

)
]

=




(
Kr

qq + Kr
qf P

T
)

∆q + (∇q ⊗ Φ̃N) ∆λN + Kr
qf (ΦAug ⊗ ∇f)

−1
ΦAug([

ΦAug ⊗ ∇q

Φ̃N ⊗ ∇q

]
+

[
ΦAug ⊗ ∇f

Φ̃N ⊗ ∇f

]
PT

)
∆q +

[
ΦAug

0

]



⇔




R̃q − Kr
qf (ΦAug ⊗ ∇f)

−1
ΦAug

0

Φ̃N


 =




Kr
qq + Kr

qf P
T ∇q ⊗ Φ̃N

0 0

Φ̃N ⊗ ∇q 0



[

∆q

∆λN

]
. (C.33)

Hence, the system reduces to
[
Kr

qq + Kr
qf P

T ∇q ⊗ Φ̃N

Φ̃N ⊗ ∇q 0

] [
∆q

∆λN

]
=

[
R̃q − Kr

qf (ΦAug ⊗ ∇f)
−1

ΦAug

Φ̃N

]
. (C.34)

C.4 Frame indifference of tangential velocity in Mortar

framework

Equation (4.127) is not frame indifferent anymore as has been recognized in Yang et al.
[165], which will be accounted for in the following. The frame indifference of the tangen-
tial velocity can be verified for two observers with an Euclidean transformation q̃(i) =
R(t) q(i) + d(i)(t), as has been employed in Sec. 3.1.4. Accordingly, one obtains

˙̃gTI
= (I − nI ⊗ nI) [n(1)

IJ (Ṙ q
(1)
J + R q̇

(1)
J ) − n

(2)
IK (Ṙ ϕ

(2)
K + R q̇

(2)
K )]

= (I − nI ⊗ nI) R [n(1)
IJ q̇

(1)
B + (I − nI ⊗ nI) n

(2)
IK q̇

(2)
K ] − Ṙ [n(1)

IJ ϕ
(1)
J − n

(2)
IK ϕ

(2)
K ] , (C.35)

where the arguments of d and R and the superscripted contact element s̄ are dropped
for convenience. The above can be arranged as follows

˙̃gTI
= R ġTI

− (I − nI ⊗ nI) Ṙ [n(1)
IJ q

(1)
J − n

(2)
IK q

(2)
K ]︸ ︷︷ ︸

6=0

. (C.36)

Therein, the term on the right hand side is in general not equal zero which is responsible
for the frame difference of the tangential velocity (4.127). In Yang et al. [165] a small
modification of the tangential velocity has been proposed, such that

ġTI
= (I − nI ⊗ nI) [n(2)

IK q̇
(2)
K − n

(1)
IJ q̇

(1)
J − ġI ] , (C.37)
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where the time derivative of the Mortar gap function

gNI
= n

(1)
IJ q

(1)
J − n

(2)
IK ϕ

(2)
K , (C.38)

can be calculated as follows

ġNI
= ṅ

(1)
IJ q

(1)
B − ṅ

(2)
IK q

(2)
C + n

(1)
IJ q̇

(1)
J − n

(2)
IK q̇

(2)
K . (C.39)

The modified tangential velocity is obtained by inserting equation (C.39) into (C.37),
which yields

ġTI
=(I − nI ⊗ nI) [(n(2)

IK q̇
(2)
K − n

(1)
IJ q̇

(1)
J ) − (ṅ(1)

IJ q
(1)
J − ṅ

(2)
IK q

(2)
K ) − (n(1)

IJ q̇
(1)
J − n

(2)
IK q̇

(2)
K )]

=(I − nI ⊗ nI) [ṅ(2)
IK q

(2)
K − ṅ

(1)
IJ q

(1)
J ] . (C.40)

Frame-indifference of the above is examined next

˙̃gTI
=(I − nI ⊗ nI) [ṅ(2)

IK

(
d + R q

(2)
K

)
− ṅ

(1)
IJ (d + R q

(1)
J )]

=(I − nI ⊗ nI) R [ṅ(1)
IJ q

(1)
J − ṅ

(2)
IK q

(2)
K ] − (I − nI ⊗ nI) d [ṅ(2)

IK − ṅ
(1)
IJ ] , (C.41)

where ṅ
(2)
IK = ṅ

(1)
IJ which finally gives

˙̃gTI
= R ġTI

. (C.42)

Accordingly, the modified tangential velocity is frame-indifferent.



D Additional considerations to

temporal discretisation

D.1 Numerical tangent

In order to provide an easy tool for linearisation or to validate an analytical tangent
numerical tangents are often used. Accordingly four most frequently used methods are
introduced. That are the forward, backward and central finite difference schemes as well
as the complex-step derivative method (see Martins et al. [115], Diehl [32]). Assume a
function f(x) need to be linearized with respect to the primary variable x. The derivative
located at x̄ approximated with the forward finite difference scheme is defined by

Df(x̄) =
f(x̄ + h) − f(x̄)

h
. (D.1)

The forward finite difference method is an approximation of first order. In equation (D.1)
h ∈ R+ needs to be provided sufficiently small. The first order accurate backward finite
difference scheme is given by

Df(x̄) =
f(x̄) − f(x̄ − h)

h
.. (D.2)

The central finite difference scheme is defined by

Df(x̄) =
f(x̄ + h) − f(x̄ − h)

2 h
., (D.3)

which is second order accurate, but provides a two times higher computational effort in
comparison to the first both mentioned methods. Since all the finite difference methods
tend to be ill-conditioned for lower h, the promising complex-step derivative method is
considered next. It uses complex numbers and is defined by

Df(x̄) = Im(
f(x̄ + i h)

h
) . (D.4)

Note the function f(x) needs to be holomorph. h can be provided sufficiently small where
no numerical cancellation errors are expected which is in contrast to the finite difference
methods. In Diehl [32] a vector notation of (D.4) has been proposed such that

Df(x̄) · p = Im(
f(x̄ + i h p)

h
) . (D.5)

Therein p denotes the seed vector.
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Simple example As a simple model problem the numerical derivative of following func-
tion

f(x) = sin(x) + x4 , (D.6)

with analytical derivative given by

f ′(x) = cos(x) + 4 x3 , (D.7)

is sought (see Fig. D.1). The corresponding error plot for the above considered methods is
depicted in Fig. D.1 (right). It can be observed that the finite difference schemes approx-
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Figure D.1: Function f(x) (left) and error plot of numerical tangents (εfd: forward finite
difference, εbd: backward finite difference, εcd: central finite difference and
εcsd: complex-step derivative) for function f(x) at x = 2.

imates the analytical solution only until some limitI. In contrast to that the complex-step
derivative is second order accurate until some limit and then approximates the analytical
function nearly exactly which is a remarkable result.

D.2 Linearisation of the elastodynamic problem without

contact boundaries

The semi-discrete weak form in equation (4.21) needs to be solved for the nodal unknowns
q. For convenience the contact contributions are neglected Gc,h = 0, hence one obtains

Gh(q, δq) =
∑

i

δq(i) ·
(

M (i)q̈(i)(t) + F (i),int − F (i),ext
)

= δq · R = 0 . (D.8)

IThe typical choice of h is 1e-6 < h < 1e-4.
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Since in equation (D.8) the residual R is highly nonlinear in q Taylor series is employed.
Breaking after the linear element yields

R ≈ R(qk) + DR(qk) ∆qk + O(q2) = 0 (D.9)

⇒ DR(qk) ∆qk = −R(qk) (D.10)

The tangent contribution can be calculated using the directional derivative

d
dε

R(qk + ε ∆qk)|ε=0 = DR(qk) ∆qk . (D.11)

Accordingly, the linearized virtual work can be written as

∆Gh(q, δq) =
∑

i

δq(i) ·
(

K(i),dyn + K(i),int − K(i),ext
)

∆q =
∑

i

δq(i) · K(i) ∆q . (D.12)

Therein the following tangent contributions have been utilized (neglecting the external
forces which depend upon the loading utilized)

K(i),dyn = M (i) ∂q̈(i)(t)
∂q

, (D.13)

K(i),int = K(i),int,geo + K(i),int,mat , (D.14)

K(i),int,geo =
n

(i)
el

A
e=1

∫

B(i)
0

∇X(i)NI(X(i)) · S(i),h,e ∇X(i)NJ(X(i)) dV (i) I , (D.15)

K(i),int,mat =
n

(i)
el

A
e=1

∫

B(i),h,e
0

B
(i),e,T
I C

(i),h,e
v B

(i),e
J dV (i) . (D.16)

Therein C
(i),h,e
v denotes the discrete elasticity tensor using notation of Voigt, which de-

pends on the applied material model (see Chap. 3.4).

D.3 Linearisation of the direct approach

For the direct approach a kind of mixed approach is used for constraint enforcement.
In particular for the normal contact constraints the Lagrange multiplier method is used,
whereas for the tangential contact constraints the penalty method is used. Hence, the
underlying virtual work expression for the contact contribution can be written as

Gc(ϕ, λN, δϕ, δλN) =
∫

Γ̄
(1)
c

(
λNδΦN + δλNΦN + tTα

δξ̄α
)

dA(1) . (D.17)
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The linearisation can be done in the continuum setting as it has been proposed in Laursen
[97]. The linearisation of the weak contribution for this mixed approach can be summa-
rized as follows

∆Gc(ϕ, λN, δϕ, δλN) =
∫

Γ̄
(1)
c

∆
(
λNδΦN + δλNΦN + tTα

δξ̄α
)

dA(1) (D.18)

=
∫

Γ̄
(1)
c

(
∆λNδΦN + λN∆δΦN + ∆δλNΦN + δλN∆ΦN + ∆tTα

δξ̄α + tTα
∆δξ̄α

)
dA(1) .

(D.19)

For the frictional tractions a return mapping scheme is employed according to

tTα,n+1 =

{
ttr
Tα,n+1 if Φtr

n+1 ≤ 0 (stick)

−µ tN,n+1
ttr
Tα,n+1

ttr
T,n+1

else (slip) .
(D.20)

The linearisation can be employed using the Gateaux derivative, leading to the following
contributions

∆ tn+1
Tα

=





ǫT

[
mαβ ∆ξ̄β +

(
∆ϕ̄(2)

,α · aβ + ∆ϕ̄
(2)
,β · aα+

+ (aαγ · aβ + aα · aβγ) ∆ξ̄γ
) (

ξ̄β
n+1 − ξ̄β,n

)]
if Φtr

n+1 ≤ 0

−
(

µ ∆ tn+1
N

ttr
Tα,n+1

ttr
T,n+1

+ µ ∆ tn+1
N

∆ ttr
Tα,n+1

ttr
T,n+1

+

+ µ tn+1
N ttr

Tα,n+1

(
− 1

‖tT‖3
2

ttr
T · aα

(
∆ttr

Tα
− tT · ∆ϕ

(2)
,α

)))
else ,

(D.21)

∆ δΦN = −
(
δϕ̄(2)

,α ∆ξα + ∆ϕ̄(2)
,α δξα + aαβ ∆ξβ δξα

)
· n

+ ΦN n ·
(
δϕ̄(2)

,α + aαβ δξβ
)

mαγ
(
∆ϕ̄(2)

,γ + aγδ δξδ
)

· n , (D.22)

∆ δξ̄α =Aαβ
[
−aβ

(
δξγ ∆ϕ̄(2)

,γ + δϕ̄(2)
,γ ∆ξγ

)
− (aβ · aγδ − ΦN n · aβγδ) δξγ ∆ξδ

+ ΦN

(
δϕ̄,βγ ∆ξγ + ∆ϕ̄,βγ δξγ

)
n

−
(

δϕ̄
(2)
,β + aβγ δξγ

)
· aδ ∆ξδ −

(
∆ϕ̄

(2)
,β + aβγ ∆ξγ

)
· aδ δξδ

+
(
δϕ(1) − δϕ̄(2)

) (
∆ϕ̄

(2)
,β + aβγ ∆ξγ

)
+
(
∆ϕ(1) − ∆ϕ̄(2)

) (
δϕ̄

(2)
,β + aβγ δξγ

)]
,

(D.23)

where α, β, γ, δ ∈ {1, 2}. After the spatial discretization the matrix expressions of the
weak contribution (residual) and the linearized weak contribution (tangent) can be com-
puted. Therefore the variation of the normal constraint and the convective coordinates
can be written as follows

δΦs
N = ns · δ

(
ϕ(1),s − ϕ̄(2),s

)
=: δqs · N s , (D.24)

δξβ,s = Aαβ,s
[(

δϕ(1),s − δϕ̄(2),s
)

· as
α + Φs

N ns · δϕ̄(2),s
,α

]

= δqs · Aαβ,s (T s
α + Φs

N N s
α) = δqs · Ds

β , (D.25)
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with the matrix expressions

δqs =




δq(1)

δq
(2)
1

δq
(2)
2

δq
(2)
3

δq
(2)
4




, N s =




ns

−N̂1 ns

−N̂2 ns

−N̂3 ns

−N̂4 ns

0




, T s
α =




as
α

−N̂1 as
α

−N̂2 as
α

−N̂3 as
α

−N̂4 as
α

0




, N s
α =




0

N̂1,α ns

N̂2,α ns

N̂3,α ns

N̂4,α ns

0




, NΦ,s =




0

0

0

0

0

Φs
N




.

(D.26)

The semi-discrete virtual work can then be written in full detail as follows

Gc,h =
ncel

A
s=1

Gc,h,s =
ncel

A
s=1

[
δq(1),s,T δq

(2),s,T
1 δq

(2),s,T
2 δq

(2),s,T
3 δq

(2),s,T
4 δλs

N

]T

·

∫

Γ̄
(1),h,s
c




λs
N




ns

−N̂1 ns

−N̂2 ns

−N̂3 ns

−N̂4 ns

0




+




0

0

0

0

0

Φs
N




+ ts
Tα

Aαβ,s







as
α

−N̂1 as
α

−N̂2 as
α

−N̂3 as
α

−N̂4 as
α

0




+ Φs
N




03×1

N̂1,α ns

N̂2,α ns

N̂3,α ns

N̂4,α ns

0










dA(1)

=
ncel

A
s=1

δq̃s ·
∫

Γ̄
(1),h,s
c

(
λs

N N s + NΦ,s + ts
Tα

Ds
α

)
dA(1)

=
ncel

A
s=1

δq̃s · As (Rs
N + Rs

T) . (D.27)

The tangent contributions to the virtual work can be written as

∆Gc,h =
ncel

A
s=1

δq̃s ·
∫

Γ̄
(1),h,s
c

(Ks
N + Ks

T) dA(1) ∆q̃s =
ncel

A
s=1

δq̃s · As (Ks
N + Ks

T) ∆q̃s , (D.28)

where the normal tangent contribution can be written as

Ks
cN =ts

N

[
Φs

N

(
mαγ,s N̄

s

α ⊗ N̄
s

γ

)
−
(
N s

α ⊗ Ds
α + Ds

α ⊗ N s
α +

(
as

αβ · ns
)

Ds
α ⊗ Ds

β

)]

+ N 0 ⊗ N s , (D.29)

with

N̄
s

α = N s
α +

(
as

αβ · ns
)

Ds
β, N 0 =

[
015×1

1

]
. (D.30)

The matrix expressions for the tangential part can be split into a geometric and a con-
stitutive part (which can be subdivided into stick or slip contributions)

Ks
cT = K

geo,s
cT + K

direct,s
cT . (D.31)
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The geometric part can be written as

K
geo
cT = ts

Tα
Aαβ,s Ks

cTβ
, (D.32)

where

Ks
cTβ

= − T s
βγ ⊗ Ds

γ − Ds
γ ⊗ T s

βγ −
(
as

β · as
γδ − Φs

N ns · as
βγδ

)
Ds

γ ⊗ Ds
δ

+ Φs
N

(
N s

βγ ⊗ Ds
γ + Ds

γ ⊗ N s
βγ

)

−
(
T s

δβ + as
βγ · as

δ Ds
γ

)
⊗ Ds

δ − Ds
δ ⊗

(
T s

δβ + as
βγ · as

δ Ds
γ

)

+ Es ⊗
(
Es

β + as
βγ Ds

γ

)
+
(
Es

β + as
βγ Ds

γ

)
⊗ Es , (D.33)

with the matrix expressions

T s
αβ =




0

N̂1,β as
α

N̂2,β as
α

N̂3,β as
α

N̂4,β as
α

0




, N s
αβ =




0

N̂1,αβ ns

N̂2,αβ ns

N̂3,αβ ns

N̂4,αβ ns

0




, Es =




I

−N̂1 I

−N̂2 I

−N̂3 I

−N̂4 I

0




, Es
α =




0

N̂1,α ns

N̂2,α ns

N̂3,α ns

N̂4,α ns

0




.

(D.34)

For the constitutive part one has to distinguish between the stick case

K
direct,stick,s
cT =ǫT

[
mαβ,s Ds

α ⊗ Ds
β

+Ds
α ⊗

(
T s

βα + T s
αβ +

(
as

αγ · as
β + as

α · as
βγ

)
Ds

γ

)
(ξ̄β,s

n+1 − ξ̄β,s
n )
]

, (D.35)

and the slip case

K
direct,slip,s
cT = µ ǫN H(Φs

N) ps
Tα

Ds
α ⊗ N s +

µ ts
N

‖t
tr,s
T ‖ ǫT

[
ms

αβ Ds
α ⊗ Ds

β + Ds
α ⊗ Gs

β

]

−µ ts
N ps

Tα
pβ,s

T

ǫT

‖t
tr,s
T ‖

[
ms

βγ Ds
α ⊗ Ds

γ + Ds
α ⊗ Gs

β

]
+ µ ts

N ps
Tα

pβ,s
T Ds

α ⊗ P̄
s

β , (D.36)

with

ps
T =

t
tr,s
T,n+1

‖t
tr,s
T,n+1‖

, ps
Tα

=
t

tr,s
T,n+1 · as

α

‖t
tr,s
T,n+1‖

, P̄
s

=




0

N̂ s
1,α ps

T

N̂ s
2,α ps

T

N̂ s
3,α ps

T

N̂ s
4,α ps

T

0




+
(
as

αβ · ps
T

)
Ds

β . (D.37)

The expressions for the residual and the tangent for the penalty regularized case can be
looked up in Laursen and Simo [103].



D.4 Tangent contribution of the nonlinear spring 185

D.4 Tangent contribution of the nonlinear spring

Applying the midpoint rule to the virtual work contribution given in (6.10) yields

GMP = δq ·
(

M an+ 1
2

+ F int(qn+ 1
2
)
)

= δq · RMP . (D.38)

Linearisation of the above using the Gataeux derivative works as follows

∆GMP =
d
dǫ

GMP(qn+1 + ǫ ∆q)|ǫ=0 = δq · d
dǫ

(
M

2
∆t2

(qn+1 + ǫ ∆q − qn) − M
2

∆t
vn

+
c

2
(ν2(

1
2

(qn+1 + ǫ ∆q + qn)) − 1)
1
2

(qn+1 + ǫ ∆q + qn)

)
|ǫ=0 . (D.39)

After some algebra one obtains the desired result

∆GMP = M
2

∆t2
∆q +

c

2 L2
(qn+ 1

2
· ∆q) qn+ 1

2
+

c

2
(ν2(qn+ 1

2
) − 1)

1
2

∆q = δq · KMP ∆q .

(D.40)

Finally, the whole tangent is given by

KMP =
2

∆t2
M +

c

4
(ν2(qn+ 1

2
) − 1) I +

c

2 L2
qn+ 1

2
⊗ qn+ 1

2
. (D.41)





E Additions to numerical examples

E.1 Material data and dimensions of the trebuchet

Regarding the trebuchet in Fig. 2.2 the center marks of the reference configuration as well
as the mass and the Euler tensor of the

center marks x-z coordinates

(B) (0.1500, −0.0250)
(C) (0.1500, 0.0000)
(E) (0.0745, 0.3350)
(G) (0.8850, 0.6300)
(H) (1.1011, 0.7087)
(I) (1.1552, 0.7283)
(J) (1.1011, 0.5128)

Table E.1: x-z coordinates [m] of center
marks.

involved rigid bodies are given in Tab. E.1 and Tab. E.2, respectively.

body mass Euler tensor

(B) 0.6545 1e-4 diag(0.8181, 0.8181, 0.8181)
(J) 51.6584 diag(0.1682, 0.1085, 0.2007)

Table E.2: Total mass [kg] and Euler tensor [kg m2].

The lever (F) depicted in Fig. 2.2 is modeled with nonlinear beam elements and a mass
density of ρ = 750 kg/m3. To this end the following stiffness data are employed

EA = 4.4 106N, EI = 146.6Nm2, GA = 1.466 106N, GJ = 97.7Nm2 . (E.1)

Therein EA and EI denote the axial and the bending stiffness, respectively. Moreover
GA and GJ denote the transverse shear stiffness and the torsional stiffness, respectively.
The rope (D) depicted in Fig. 2.2 is modeled by nonlinear string elements, where an axial
stiffness of EA = 690N and a mass density of ρ = 1480 kg/m3 are employed.
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