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Multivariate stochastic processes with Poisson marginals are of interest in
insurance and finance; they can be used to model the joint behaviour of sev-
eral claim arrival processes, for example. We discuss various methods for the
construction of such models, with particular emphasis on the use of copulas.
An important class of multivariate counting processes with Poisson marginals
arises if the events of a background Poisson process with constant intensity
are moved forward in time by a random amount and possibly deleted; here
we think of the events of the background process as triggering later claims in
different categories. We discuss structural aspects of these models, their depen-
dence properties together with stochastic order aspects, and also some related
computational issues. Various actuarial applications are indicated.
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1. Introduction. The standard model from risk theory assumes that claim
arrival times form a (homogeneous) Poisson process and that claim sizes are inde-
pendent and identically distributed; also, claim sizes and claim arrival times are
independent. There is considerable interest in and need for models that take de-
pendencies into account. One specific such question deals with the claim arrival
times only: If we consider more than one type of claim then naturally the ques-
tion arises as to how dependencies between the claim arrival times for the different
claim types can be modelled. (Often, it is easy to extend such models so that they
include claim sizes. Also, the counting processes can be regarded as representing
the total claim size(s) in the degenerate situation where all claims have size 1.)
A standard example for such possible interdependencies is that of a windstorm
giving rise to immediate claims, but also leading to heavy rain and flooding with
the corresponding later claims. Another important case arises in connection with
claims originating at different spatial locations.

In the present paper we specifically consider models that have classical, but
possibly dependent marginals. We are interested in the construction and analysis
of multivariate stochastic processes X = (X1, . . . , Xd) with the property that the
one-dimensional marginal processes Xi are Poisson processes with constant rates
λi respectively, i = 1, . . . , d. As Xi counts the claims of type i we are therefore
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in the classical situation as far as the individual components are concerned. The
emphasis is on modelling dependencies between the marginal processes.

We also assume stationarity in time; in order to avoid confusion with other
stationarity concepts referring to space shifts in multivariate point processes, for
example, we will use the term time shift stationarity . Informally, the component
counting processes count events, such as claims of a particular type in the present
application context. Formally, we regard a counting process Xi as a family of
nonnegative, integer-valued random variables indexed by subsets A of the real line
R, where Xi(A) denotes the number of events of type i with ‘time stamp’ in A.
If observations start at time 0, then it is customary to work with t 7→ Xi([0, t])
as the random measure A 7→ Xi(A) can then conveniently be described by its
‘distribution function’. This leads to the familiar situation where the stochastic
process is a family of random variables indexed by real numbers. However, the
slightly more abstract view of counting processes as random measures is the key
to a concise description and also, in our opinion, to a deeper understanding of our
models. In particular, time shift stationarity can now formally be expressed as the
requirement that the distribution of the random vector

(

X1(A1+t), . . . , Xd(Ad+t)
)

does not depend on t ∈ R. Here A1, . . . , Ad are Borel subsets of the real line and
we have written Ai + t for the shifted set {x+ t : x ∈ Ai}.

The paper is organized as follows. In Section 2 we review two recent ap-
proaches to the construction of multivariate counting processes with Poisson pro-
cess marginals. Both are related to the idea of modelling dependencies via copulas.
In the first approach X is assumed to be a multivariate Lévy process which implies
that the component processes can be regarded as thinnings of a basic (univariate)
Poisson process; see Lindskog and McNeil (2003). In the second approach, due
to Pfeifer and Nešlehová (2004), copulas are used to construct X((0, T ]) for fixed
T > 0. In Section 3 we introduce models that incorporate thinning and shifts; we
will use the acronym ‘TaS’ for this class. These models avoid some of the limitations
of the constructions discussed in Section 2. We present some auxiliary (elemen-
tary) material from the theory of point processes and then obtain a structural
result which is the basis for the further analysis, in particular for the investigation
of dependence properties and stochastic order aspects of TaS models in Section 4.
A key step is the interpretation of the thinning and shift operations as operations
on the multivariate Poisson process that results if we attach suitable marks to the
points of the initial univariate process of triggering events. In Section 5 we show
that TaS models arise quite naturally from the assumption of time shift station-
arity if the multivariate counting process X can be obtained from a multivariate
Poisson process N by coordinate projections. We relate time shift stationarity of
X to a spatial form of stationarity of N and an invariance property of the intensity
measure associated with N . Interestingly, a variant of the copula idea of separating
marginal distributions and dependence aspects reappears in a version for Poisson
point processes. In Section 6 we list various actuarial applications. Section 7 deals
with related computational issues; in this last section we also look more closely at
the two-dimensional case, we work out an example in detail and we close with some
summarizing comments.

The models discussed below also give rise to some interesting statistical problems,
but these will be investigated in a separate paper.
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2. Copula-based models. The distribution function F of a d-dimensional
random vector ξ = (ξ1, ξ2, . . . , ξd) can be written in the form

F (x1, . . . , xd) = C
(

F1(x1), . . . , Fd(xd)
)

,

where F1, . . . , Fd are the one-dimensional distribution functions associated with
the components ξ1, . . . , ξd of the random vector and where C is a d-dimensional
distribution function on the unit cube with uniform marginals, i.e. C(u, 1, . . . , 1) =
· · · = C(1, . . . , 1, u) = u for all u in the unit interval [0, 1]. This decomposition
separates the marginal distributions from the dependence structure; standard ref-
erences are Nelsen (1999) and Joe (1997). Chapter 5 of a forthcoming book by
McNeil, Frey and Embrechts (2004) reviews copulas in the context of risk theory
and in particular discusses the use of the decomposition to explain the practically
important phenomenon of tail clustering.

Suppose now that we start observations at time 0 so that our multivariate count-
ing process can be indexed by R+ as explained in the introduction. Then the
transformation to uniform marginals can be applied to the individual random vec-
tors (X1(t), . . . , Xd(t)) for each t ≥ 0. This would result in a family (Ct)t≥0 of
copulas. In comparison to the above static situation this has two disadvantages:
First, a whole family of copulas is simply an unwieldy object. Secondly, as we
will explain in Remark (d) at the end of Section 5, this family would not satisfy
our demands: Whereas in the random vector case the distribution is completely
specified by the copula and the marginal distibutions, the family (Ct)t≥0 and the
distributions of the component processes Xi, 1 ≤ i ≤ d, together do not determine
the finite-dimensional distributions of the multivariate counting process X .

We are aware of two attempts to overcome these difficulties. For the first of these,
we introduce some notation that will also be useful in the subsequent sections. Let
D := {1, . . . , d} and for all D ⊂ D,

e(D) =







e1(D)
...

ed(D)






with ei(D) =

{

1, if i ∈ D,
0, otherwise

(we switch between row and column vectors whenever typographically convenient).
The condition that the marginal processes be constant rate Poisson processes im-
plies that the paths of X are of pure jump type and that the jumps X(t) −X(t−)
are of the form e(D) for some (non-empty) D ⊂ D. A jump e(D) at time t means
that the component processesXi with i ∈ D (and only these) have a jump of height
1 at time t. If we assume in addition to the above that X is a Lévy process, then
the Markov property and the homogeneity in time imply that the copula family
introduced above can be described by its ‘infinitesimal generator’, the Lévy copula,
which together with the other characteristics of a Lévy process is enough to specify
the distribution of the whole multivariate process; see e.g. the recent monograph
by Cont and Tankov (2004). In particular, for counting processes with paths of
pure jump type and jumps of the form e(D) the Lévy assumption implies that
the distribution of X is completely specified by (up to) 2d − 1 numbers λD ≥ 0,
∅ 6= D ⊂ D: A counting process X of Lévy type can be represented as

Xi(t) =
∑

D3i

ND(t), i = 1, . . . , d,
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where ND are independent Poisson processes with rate λD , D as above. The
rates λi of the marginal processes are related to the rates λD by λi =

∑

D3i λD,
i = 1, . . . , d. A similar result has been used in Lindskog and McNeil (2003). The
processes ND in turn can be obtained from one single (univariate) Poisson process
N with rate λ =

∑

D⊂D
λD by independent marking of the points of N with

probabilities pD = λD/λ and then collecting the marked points into ND. This may
be easier to understand with the help of an example: Figure 1 shows a segment of
a simulated path for d = 2, with λ{1} = λ{2} = λ{1,2} = 1.
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Figure 1: Representation of counting processes of Lévy type

Lévy type counting processes have a very specific dependence structure: In
the random measure notation, Xi(Ai) and Xj(Aj) will always be independent
if Ai ∩ Aj = ∅ because of the independence of the increments of X . Hence, for
such processes, dependence of the marginal processes is only possible via the syn-
chronicity of the jumps.

A completely different approach has recently been suggested by Pfeifer and
Nešlehová (2004). In one of their models these authors consider the finite time
interval [0, T ] instead of R+ and condition on the final random vector X(T ) =
(X1(T ), . . . , Xd(T )) of the process. A static d-dimensional copula can be used, to-
gether with the condition that the components Xi(T ) have a Poisson distribution
with parameter λiT , i = 1, . . . , d, to construct the law of the vector X(T ). Pfeifer
and Nešlehová (2004) discuss in detail the use of standard copulas, including a
description of an algorithm that implements the discretization step. To obtain
(X(t))0≤t≤T from the final random vector X(T ) one can use the familiar fact that,
conditionally on their total number in [0, T ] being equal to n, the n points of a
Poisson process with constant rate are independent and uniformly distributed on
[0, T ]. Hence, in the d-dimensional case, we obtain (X(t))0≤t≤T from X(T ) via

Xi(t) =

Xi(T )
∑

j=1

1[0,t](ξij), 1 ≤ i ≤ d, 0 ≤ t ≤ T,

where ξij , 1 ≤ i ≤ d, 1 ≤ j ≤ Xi(T ), are independent and uniformly distributed
on [0, T ]. Here 1A denotes the indicator function associated with the set A.

In this approach the dependence modelling of the component processes is thus
based entirely on the dependence modelling of the total number of claims in the
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period of interest. This means that this period has to be fixed in advance. In
order to overcome the restriction to a finite time interval there are two strategies:
First, one could simply take T large enough. The second method makes use of
the fact that the superposition of independent Poisson processes is again a Poisson
process. One could therefore extend the construction to arbitrary time intervals by
patching together enough intervals of the form [k, k+1), k = 0, 1, . . .; see Section 5
in Pfeifer and Nešlehová (2004). Note, however, that with the second approach
the dependence of the component processes is limited to the somewhat arbitrary
base intervals: What happens in [k, k + 1) and [l, l + 1) is independent if k 6= l.
Also, the result is not a time shift stationary process in the sense explained in the
introduction: Whereas X1(k + 1) −X1(k + 1/2) and X1(k + 1 + 1/2)−X1(k + 1)
will always be independent this is in general not the case with X1(k+1/2)−X1(k)
and X1(k + 1)−X1(k + 1/2), if the base intervals are chosen as above; i.e., in the
random measure notation, we may (and in general will) have that the distribution
of (X1(A1), X2(A2)) is not the same as the distribution of (X1(A1 + t), X2(A2 + t))
if A1 = A2 = (0, 1/2] and t = 1/2.

If instead we choose T large enough another problem arises. The construction
implies that the conditional distribution L(X(t)|X(T )) of X(t) given X(T ) can be
written as

L
(

X(t)|X(T )
)

= Bin
(

X1(T ), t/T
)

⊗ · · · ⊗ Bin
(

Xd(T ), t/T
)

,

where Bin(n, p) denotes the binomial distribution with parameters n and p and
the ‘⊗’ is product measure, representing independence. From the familiar law of
small numbers we know that Bin(λT , t/T ) converges to the Poisson distribution
with parameter tλ if limT→∞ λT /T = λ. The conditions on the marginal pro-
cesses (together with the strong law of large numbers) imply that Xi(T )/T → λi

almost surely as T → ∞, for i = 1, . . . , d. Hence the components of X(t) will
asymptotically be independent, almost surely. This can easily be generalized to
the finite-dimensional increments of X and leads to the overall conclusion that,
asymptotically as T → ∞, the copula chosen for the final value will be irrelevant
to any fixed initial segment (X(s))0≤s≤t of the process and that the components
of such a segment will become independent.

Thus, in summary, despite their intrinsic interest both constructions have short-
comings if we analyze the resulting models from the point of view that we adopt in
the present paper. First, as an immediate consequence of their defining properties,
Lévy type counting processes have no dependence ‘across time’, and the depen-
dence ‘across components’ is of a very special nature. For this class of processes
dependence modelling is reduced to the choice of thinning probabilities. Secondly,
the models introduced by Pfeifer and Nešlehová (2004) are more flexible as they
can make use of the whole range of (static) copulas, but they require the choice of
a compact base interval [0, T ]. If such an interval does not suggest itself from the
application of interest, then both remedies known so far, letting either T tend to
∞ or patching together several such intervals, have their disadvantages, the second
getting into conflict with our assumption of time shift stationarity.

In the next section we introduce a family of models that extends the Lévy models
by incorporating random shifts of the individual points. We will see that, at least
to some extent, this can be used to overcome the difficulties that we have discussed
in detail in this section.
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3. Models with thinning and shifts. We first recall some elementary facts
from the general theory of point processes; Daley and Vere-Jones (1988) and
Resnick (1987) are standard references in this area. In order to keep the pre-
sentation compact we skip some technical details, such as measurability issues. In
connection with our models the special class of Poisson point processes suffices:
Given a σ-finite measure ν on some space E, an integer-valued random measure
N on E is a Poisson process with intensity measure ν, which we abbreviate to
N ∼ PP(ν), if

(D1) N(A) has a Poisson distribution with mean ν(A),
(D2) for pairwise disjoint A1, . . . , Ak, the random variables N(A1), . . . , N(Ak) are

independent.

With E = R and ν = ρ`, ρ > 0 and ` Lebesgue measure, we obtain the familiar
Poisson process on the real line with constant rate (or intensity) ρ. Quite generally,
if ν is diffuse in the sense that ν({x}) = 0 for all x ∈ E, in addition to being σ-finite,
then N ∼ PP(ν) has countable support and no multiple points (with probability
1). This means that, with δx the one-point mass in x ∈ E, N =

∑∞
i=1 δRi

, with
(Ri)i∈N a sequence of E-valued random quantities.

There are four basic operations on Poisson processes that we will need below,
see e.g. Section 3.3.2 in Resnick (1987). First, a mapping T : E → F transforms a
point process NE on E into a point process NF on F via NF (A) := NE(T−1(A)).
The class of Poisson processes is stable under such mappings in the sense that
NE ∼ PP(νE) implies NF ∼ PP(νF ), where νF (A) = νE(T−1(A)) is the measure-
theoretical image of νE under T , in the same way as NF is the image of NE under
T . Secondly, if we split N independently such that each point of N becomes a
point of N1 with probability p and of N2 with probability 1 − p, then N1 and
N2 are independent and N1 ∼ PP(pν), N2 ∼ PP((1 − p)ν) if N ∼ PP(ν). This
splitting property may in fact be deduced from the marking property: If (Yi)i∈N is
a sequence of independent and identically distributed F -valued random variables
and N =

∑∞
i=1 δRi

∼ PP(ν), then Ñ :=
∑∞

i=1 δ(Ri,Yi) is a Poisson process on
E × F with intensity measure ν̃ := ν ⊗ Q, where Q is the distribution of the
Yi’s. Finally, from (D1) and (D2) the superposition property follows easily: If
N1 ∼ PP(ν1), N2 ∼ PP(ν2) are independent, both with the same state space
E, then N1 + N2 ∼ PP(ν1 + ν2), where (N1 + N2)(A) = N1(A) + N2(A). The
splitting, marking and superposition properties extend to the case of more than
two constituents by induction.

For the construction of the TaS models we start with a background Poisson
process N on R with constant intensity λ and a thinning mechanism described by
a probability distribution (pD)D⊂D on P(D), the power set (set of all subsets) of
D, as in the first model type discussed in Section 2. Additionally, we now have a
sequence (Yl)l∈Z of independent d-dimensional random vectors, the shifts, all with
distribution Q. In the actuarial applications, Q will in general be concentrated on
the non-negative orthant R

d
+, but our results below do not require such a support

condition. We assume that the Poisson process, the thinning mechanism and the
shift sequence are independent; as a consequence, the stochastic structure of all
subsequent constructions is fully determined by λ, (pD)D⊂D and Q. We may order
the points (Tl)l∈Z of the background process in such a way that

−∞ < · · · < T−2 < T−1 < T0 < 0 ≤ T1 < T2 < · · · <∞.
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Figure 2: An example combining thinning and shifts

The points for component Xi of X are now constructed by shifting those Tl that
are not deleted for this component (which happens with probability

∑

D3i pD) by
the amount Yli, Yl = (Yl1, . . . , Yld). Again, it may be easier to understand this
construction by way of an illustration: Figure 2 has the same basic parameters
as used for Figure 1 but includes shifts simulated from a distribution Q that is
the product of the uniform distribution on the unit interval and the exponential
distribution with mean 1 (shifts with origin to the left or destination to the right
of the plotting window are not shown).

N Y1 Y2 D X1 X2

0.960 0.316 0.230 {2} — 1.190
2.481 0.916 0.206 {1} 3.397 —
4.543 0.660 0.008 {2} — 4.551
4.987 0.308 0.463 {1} 5.295 —
6.022 0.455 0.369 {1, 2} 6.477 6.391
6.773 0.663 5.642 {1} 7.436 —
7.211 0.328 0.429 {1} 7.539 —
8.440 0.181 0.533 {1, 2} 8.621 8.973

Table 1: Numerical values for Figure 2

Table 1 displays the numerical values for the first eight claims in Figure 2. For
example, an event occurring at time 0.960 gives rise to a claim of type 2 only; the
corresponding delay is 0.230, so that the claim is registered at time 1.190. The
event occurring at time 6.022 is the first to trigger claims of both types.

This example also helps to explain a technical point: Whereas, in order to em-
phasize the connection with the Lévy case, Figure 2 suggests that first the thinning
is done and then the shifts are applied, Table 1 lists also those shifts that because of
the thinning later become irrelevant, such as the value Y1 = 0.316 in the first line.
Because of our basic independence assumptions the order of the two operations is
irrelevant; in the proofs it will be more convenient to delete components in the sec-
ond step. Indeed, we will think of the first four columns of the table as the points
of a marked Poisson process in the proof of Theorem 1 below. With this order
of the operations of shifting and thinning, we start with a simple one-dimensional
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Poisson process with constant rate. With each event of this process we associate a
d-dimensional shift vector and a subset D ⊂ D of surviving components. Once the
shifts are carried out a Poisson process on R

d results whose points consist of the
potential claim arrival times for each of the d different claim types, with one point
for each of the triggering events (the time stamps of the triggering events are lost
in the process). Each point of this d-dimensional process is additionally marked
by the set D ⊂ D of claim types that are going survive the thinning step. After
the second (thinning) step, we have independent Poisson processes on R

D , one for
each D with pD > 0. The number Xi(A) of claims of type i with time stamp in
A is now obtained by taking the sum of the number of points in these individual
processes that have their ith coordinate in A.

It should be clear that this generalizes the Lévy model which we would obtain
with Q concentrated on the zero vector. Also, this model is easy to simulate. We
abbreviate the above by calling X a TaS model (‘thin and shift’) with parameters
λ, p and Q, where λ is the intensity of the Poisson base process, p = (pD)D⊂D the
thinning mechanism and Q the shift distribution. That these models satisfy our
basic requirement of Poisson marginals is a standard fact from the general theory of
point processes, see e.g. p.138 in Resnick (1987): Shifting the points of a constant
rate Poisson process (on R) by i.i.d. amounts results in a constant rate Poisson
process.

TaS models can be used to represent a mechanism underlying the generation of
claims: There are triggering events, occurring with rate λ; these may or may not
generate claims (here p is used) at later instances (Q describes the delay distri-
bution). Similar models are popular in quite diverse fields where they are used to
explain clustering. They are special cases of the Neyman-Scott or cluster processes;
see e.g. Sections 3.4 and 4.4 in Cox and Isham (1980). Here, however, we associate
different component processes to the different shifts of one original point and we
are interested in the dependence of the components, an aspect that is lost once the
component processes have been merged into a point process on R. (We will briefly
discuss the merged processes in Section 6.3 below.)

Suppose now that the d-dimensional counting process X = (X1, . . . , Xd) is of
TaS type with parameters λ, p and Q. The following is our basic structural re-
sult for these models; it gives a general description of the joint distribution of
X1(A1), . . . , Xd(Ad) in terms of these parameters. We need two more definitions:
For subsets A1, . . . , Ad of R and D,D′ ⊂ D with D ⊂ D′ let

M(D,D′;A1, . . . , Ad) := B1 × · · · ×Bd with Bi :=

{

Ai, for i ∈ D,
Ai

c, for i ∈ D′ \D,
R, otherwise.

Further, with e = e(D) = (1, . . . , 1) the d-dimensional vector that has all compo-
nents equal to 1, we define a measure ν(Q) on R

d by

ν(Q)(A) :=

∫

Q(A− te) dt

for all d-dimensional Borel sets A; here A − x denotes the set {a − x : a ∈ A}.
This measure plays an important role throughout the sequel. It is obvious from
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the result cited above on i.i.d. shiftings of constant rate Poisson processes that the
marginal measures ν(Q)πi , 1 ≤ i ≤ d, where πi : R

d → R denotes the projection
on the ith coordinate, are all equal to the Lebesgue measure. The following direct
computation may be instructive:

ν(Q)πi(B) = ν(Q)
(

R
i−1 ×B × R

d−i−1
)

=

∫

R

∫

Rd

1Ri−1×B×Rd−i−1(x− te)Q(dx) dt

=

∫

Rd

∫

R

1B−xi
(t) dtQ(dx)

= `(B)

for all one-dimensional Borel sets B. Other properties of ν(Q) will be given where
they are needed.

Theorem 1 Let X be a d-dimensional counting process of TaS type with base
rate λ, thinning mechanism p = (pD)D⊂D and shift distribution Q. Then, for
any Borel subsets A1, . . . , Ad of the real line, we have the following distributional
representation:







X1(A1)
...

Xd(Ad)






=distr







∑

D31 ξ(D;A1, . . . , Ad)
...

∑

D3d ξ(D;A1, . . . , Ad)






,

where the random variables ξ(D;A1, . . . , Ad), ∅ 6= D ⊂ D, are independent and
Poisson distributed with

Eξ(D;A1, . . . , Ad) = λ
∑

D′⊃D

pD′ ν(Q)
(

M(D,D′;A1, . . . , Ad)
)

.

Proof: Marking the events of the background process by their shift vectors
and the respective set of surviving component indices leads to a Poisson process
on R ×R

d
+ ×P(D) with intensity measure λ`⊗Q⊗ (pD)D⊂D. The transformation

T : R × R
d
+ ×P(D) → R

d ×P(D),
(

t, (y1, . . . , yd), D
′
)

7→
(

(t+ y1, . . . , t+ yd), D
′
)

,

makes this into a Poisson process Z on R
d×P(D) with intensity λν(Q)⊗ (pD)D⊂D;

Z can be regarded as a marked point process on R
d, with marks from P(D).

Now let A1, . . . , Ad be given. The vector X(A) := (X1(A1), . . . , Xd(Ad)) can be
written as a linear combination of the vectors e(D), D ⊂ D, with non-negative inte-
ger coefficients: Each event of the background process contributes one such vector,
with D = ∅ in all but finitely many cases. A marked point

(

t, (y1, . . . , yd), D
′
)

contributes to e(D) if and only if D ⊂ D′ and t+ yi ∈ Ai for i ∈ D, t+ yi /∈ Ai for
i ∈ D′ \D, which translates into

D ⊂ D′, (t+ y1, . . . , t+ yd) ∈M(D,D′;A1, . . . , Ad)
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for the Z-process. Now let η(D,D′;A1, . . . , Ad) be the part of the coefficient of
e(D) that comes from the points of Z with mark D′; obviously,

Xi(Ai) =
∑

D3i

∑

D′⊃D

η(D,D′;A1, . . . , Ad) for i = 1, . . . , d.

Using (D1) we see that η(D,D′;A1, . . . , Ad) has a Poisson distribution with

Eη(D,D′;A1, . . . , Ad) = λ pD′ ν(Q)
(

M(D,D′;A1, . . . , Ad)
)

.

If (D′
1, D1) 6= (D′

2, D2) then η(D1, D
′
1;A1, . . . , Ad) and η(D2, D

′
2;A1, . . . , Ad) refer

to disjoint regions of the state space of Z, hence with

ξ(D;A1, . . . , Ad) :=
∑

D′⊃D

η(D,D′;A1, . . . , Ad)

an appeal to (D2) completes the proof. �

For some of the applications of the theorem the following interpretation of the
variables in the representation, apparent from its proof, is useful: The random
variable ξ(D;A1, . . . , Ad) is the number of points t of the base process whose set
D′ of surviving components includes D and whose shifts t+ yi are in Ai for i ∈ D
and in Ai

c for i ∈ D′ \D.
Despite its somewhat complicated appearance Theorem 1 has some useful qual-

itative and quantitative consequences. It displays, for example, the simple ‘mul-
tiplicative’ way that the parameters enter the dependency structure of the model.
If Q is concentrated on the zero vector, in which case we have thinning only, then,
for A = A1 × . . .×Ad,

ν(Q)(A) =

∫

δ0(A− te) dt = `({t ∈ R : te ∈ A}) = `(A1 ∩ . . . ∩ Ad),

which identifies ν(δ0) as ‘Lebesgue measure on the diagonal’, i.e. the image of `
under the transformation R 3 x 7→ (x, . . . , x) ∈ R

d. As a consequence, components
referring to disjoint time intervals become independent, as mentioned previously
in Section 2.

4. Dependence properties of TaS models. The main conclusion with re-
spect to the dependency of the component processes is the general structure of
the components as overlapping sums of independent, Poisson distributed random
variables. For example, for i 6= j we have

(

Xi(Ai)
Xj(Aj)

)

=distr

(

ξ0 + ξ1
ξ0 + ξ2

)

with ξ0, ξ1, ξ2 independent and Poisson distributed. This type of multivariate
Poisson distribution is discussed in Chapter 37 of Johnson, Kotz and Balakrish-
nan (1997). It follows immediately that

cov(Xi(Ai), Xj(Aj)) = var(ξ0) = Eξ0.

10



We can also use Theorem 1 to relate the covariance to the model parameters.
For this, we define the tail measure q = (qD)D⊂D associated with the thinning
mechanism p = (pD)D⊂D by

qD :=
∑

D′⊃D

pD′ for all D ⊂ D.

In words: qD is the probability that at least the components with indices in D
survive, whereas pD is the probability that exactly these survive. If the individual
components survive independently with probability ρ, for example, then

pD = ρ|D|(1 − ρ)d−|D|, qD = ρ|D| for all D ⊂ D.

For D0, D
′ ⊂ D fixed with D0 ⊂ D′ the sets M(D,D′;A1, . . . , Ad) with D0 ⊂ D ⊂

D′ are disjoint, and it is easy to check that

∑

D0⊂D⊂D′

M(D,D′;A1, . . . , Ad) = B1 × · · · ×Bd with Bi :=

{

Ai, for i ∈ D0,
R, otherwise.

In particular, this union does not depend on D′. Hence, if ξ0 denotes as above the
sum of the ξ-variables that are common to Xi(Ai) and Xj(Aj),

cov(Xi(Ai), Xj(Aj)) = Eξ0

=
∑

D⊃{i,j}

λ
∑

D′⊃D

pD′ ν(Q)
(

M(D,D′;A1, . . . , Ad)
)

= λ
∑

D′⊃{i,j}

∑

{i,j}⊂D⊂D′

pD′ ν(Q)
(

M(D,D′;A1, . . . , Ad)
)

= λ
∑

D′⊃{i,j}

pD′ ν(Q)
(

∑

{i,j}⊂D⊂D′

M(D,D′;A1, . . . , Ad)
)

= λ q{i,j}

∫

P (t+ Yi ∈ Ai , t+ Yj ∈ Aj) dt,

where Y = (Y1, . . . , Yd) is a random vector with distribution Q and P refers to
the background probability space (Ω,A, P ) on which all the random quantities are
defined. Alternatively, we can write the integral as ν(Qij)(Ai ×Aj) if Qij denotes
the distribution of the two-dimensional random vector (Yi, Yj).

Obviously it follows that only non-negative correlations are possible in TaS mod-
els. We will now investigate the dependence structure in greater detail. It turns out
that TaS models as a rule display some kind of strong positive dependence, namely
association. Recall that a random vector ξ = (ξ1, . . . , ξd) is called (positively)
associated if

cov(f(ξ), g(ξ)) ≥ 0

for all increasing functions f, g : R
d → R. We obtain the following result:

11



Theorem 2 Let X be a d-dimensional counting process of TaS type. Then

(i) for any Borel subsets A1, . . . , Ad of the real line, (X1(A1), . . . , Xd(Ad)) is
associated, and

(ii) the components of X are independent if and only if pD = 0 for all D ⊂ D

with |D| ≥ 2.

Proof: (i) The random variables ξ(D;A1, . . . , Ad), ∅ 6= D ⊂ D are associated,
since they are independent; see Theorem 2.1 in Esary et al. (1967). Xi(Ai) is a
nondecreasing function (sum) of the random variables ξ(D;A1, . . . , Ad), ∅ 6= D ⊂ D.
Thus, according to property (P4) in Esary et al. (1967) the statement follows.

(ii) If pD = 0 for all D ⊂ D with |D| ≥ 2, the independence of the components
follows from the construction. Now suppose there exists a D ⊂ D with i, j ∈ D
and pD > 0. Then there also exist Borel sets Ai and Aj with ν(Qij)(Ai ×Aj) > 0.
Thus, Xi(Ai) and Xj(Aj) are dependent. �

Theorem 2 now has the following implications. Suppose A1, . . . , Ad are Borel
subsets of the real line. The association property of the components yields

P
(

X1(A1) > x1, . . . , Xd(Ad) > xd

)

≥
d

∏

i=1

P
(

Xi(Ai) > xi

)

= P
(

X⊥
1 (A1) > x1, . . . , X

⊥
d (Ad) > xd

)

for all x1, . . . , xd, where (X⊥
1 (A1), . . . , X

⊥
d (Ad)) has the same marginals as the

random vector (X1(A1), . . . , Xd(Ad)) but with independent components. Thus, a
model with independent component processes underestimates the probability for a
mutual occurrence of a large number of claims in arbitrary time intervals. Moreover,
association implies positive supermodular dependence (see e.g. Christofides and
Vaggelatou (2004)), i.e. we have

Ef(X1(A1), . . . , Xd(Ad)) ≥ Ef(X⊥
1 (A1), . . . , X

⊥
d (Ad))

for all functions f : R
d → R for which the expectations exist and which are super-

modular. A function f : R
d → R is called supermodular, if

f(x) + f(y) ≤ f(x ∨ y) + f(x ∧ y)

for all x, y ∈ R
d with x ∨ y and x ∧ y denoting the componentwise maximum

and minimum of x and y respectively. This property immediately implies some
interesting ordering relations. To this end, let us recall some basic definitions from
the theory of stochastic orders. For given random variables X,Y we say X ≤st Y
if Ef(X) ≤ Ef(Y ) for all increasing f : R → R and X ≤cx Y if Ef(X) ≤ Ef(Y )
for all convex f : R → R whenever these expectations exist. For a comprehensive
review we refer the reader to Müller and Stoyan (2002). For our counting variables
we thus obtain

∑

i

X⊥
i (Ai) ≤cx

∑

i

Xi(Ai)

12



which means that the situation is more risky measured in the convex ordering in
case we have dependence. Moreover it holds that

max{Xi(Ai), i = 1, . . . , d} ≤st max{X⊥
i (Ai), i = 1, . . . , d}

which means that the maximum number of points in given sets is stochastically
larger in the case with independent components. For these and further results see
Chapter 3.9 in Müller and Stoyan (2002).

We now use Theorem 1 to obtain the global dependency structure of TaS models,
by which we mean the distributional asymptotics of the random vector that counts
the number of events of different type in a large time interval. We writeNd(µ,Σ) for
the d-dimensional normal distribution with mean vector µ and covariance matrix
Σ; ‘→distr’ denotes convergence in distribution.

Theorem 3 Let X = (X1, . . . , Xd) be a d-dimensional counting process of TaS
type with base rate λ, thinning mechanism p = (pD)D⊂D and shift distribution Q.
We assume that

∫

‖x‖Q(dx) <∞. Then, as T → ∞,

T−1/2







X1([0, T ])− λq1T
...

Xd([0, T ])− λqdT






→distr Nd(0,Σ),

where Σ = (σij)1≤i,j≤d is given by σij = λq{i,j}, 1 ≤ i, j ≤ d.

Proof: As in the proof of Theorem 1 let η(D,D′;A1, . . . , Ad) be the number
of events in the background process that contribute to the coefficient of e(D) in
(X1(A1), . . . , Xd(Ad)) and have survival mark D′. Let

ζT (D,D′) := η
(

D,D′; [0, T ], . . . , [0, T ]
)

.

Then ζT (D,D′) is Poisson distributed with

EζT (D,D′) = λpD′ν(Q)
(

AT (D,D′)
)

where

AT (D,D′) = B1 × . . .×Bd with Bi :=







[0, T ], for i ∈ D,
[0, T ]c, for i ∈ D′ \D,
R, otherwise.

(We have AT (D,D′) = M(D,D′; [0, T ], . . . , [0, T ]) in the notation introduced in
Section 3.) Fubini’s theorem gives

ν(Q)
(

AT (D,D′)
)

=

∫ ∫

1AT (D,D′)(x− te) dtQ(dx).

In the case D = D′ the value of the indicator function is equal to 1 if and only if
−xi ≤ t ≤ T − xi for all i ∈ D. Hence the inner integral evaluates to

∫

1AT (D,D′)−te(x) dt = T − max
i∈D

xi + min
i∈D

xi,

13



which, as a function of x ∈ R
d
+, is bounded by T . We can therefore use dominated

convergence to obtain that, for all D ⊂ D, D 6= ∅,

lim
T→∞

1

T
ν(Q)

(

AT (D,D)
)

= 1.

The familiar asymptotics for Poisson distributions now provides

1

T

(

ζT (D,D) −EζT (D,D)
)

→distr N(0, λpD).

In the case D 6= D′ we have, because of D 6= ∅, an i ∈ D and a j ∈ D′ \D, so that
x ∈ AT (D,D′) − te implies

−xi ≤ t ≤ T − xi and (t < xj or t > T − xj),

which leads to

∫

1AT (D,D′)−te(x) dt ≤ |xi − xj | ≤ xi + xj for all xi, xj ∈ R+.

Using the assumption that
∫

‖x‖Q(dx) <∞ and dominated convergence we obtain
that ζT (D,D′)/T converges to 0 in probability.

We now regard ζT =
(

ζT (D,D′)
)

∅6=D⊂D′⊂D
as a random vector. The components

of ζT are independent and asymptotically normal in the sense that, after subtracting
the mean and dividing by T , letting T → ∞ yields a limiting normal distribution,
possibly degenerate (with variance 0). This implies that the vector as a whole
is asymptotically normal. The vector (X1([0, T ]), . . . , Xd([0, T ])) of interest is a
(fixed and deterministic) linear transformation of ζT by Theorem 1, hence also
asymptotically normal.

Finally, using the calculation preceding the theorem and

lim
T→∞

1

T

∫

P (t+ Yi ∈ [0, T ] , t+ Yj ∈ [0, T ]) dt = lim
T→∞

1

T
EζT

(

{i, j}, {i, j}
)

= 1

we obtain the asserted covariance structure. �

An important consequence of Theorem 3 is the fact that asymptotically the shift
distributionQ does not matter, as long as its mean is finite. In particular, TaS mod-
els have the same global dependence structure as the pure thinning processes with
Q = δ0, i.e. the Lévy models. The TaS models provide additional local features,
but not global ones. In contrast, as explained in Section 2, in the construction by
Pfeifer and Nešlehová (2004) we can have completely arbitrary dependence for the
vector (X1([0, T ]), . . . , Xd([0, T ])) but the local dependence is small if T is large.

5. Towards Poisson process copulas. In the previous sections we intro-
duced TaS models as a class of multivariate counting processes X = (X1, . . . , Xd)
and discussed some of their properties. We now investigate the extent to which
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such models arise naturally from the basic assumptions that the marginal pro-
cesses X1, . . . , Xd are Poisson processes with constant rate and that X is time shift
stationary.

The definition of TaS models in Section 3 begins with a ‘parent’ Poisson process
that describes the times of the triggering events. As explained in that section, we
can alternatively regard a multivariate counting process X of TaS type as a super-
position of independent Poisson processes, if we mark the time points of the parent
process by the set D ⊂ {1, . . . , d} of coordinates of X where the triggering event
results in a claim. The thinning part of the models thus leads to a superposition
of independent Poisson processes; the dependence ‘across time’, which is our main
interest, is entirely due to the shift part of the TaS models. In this section we
therefore concentrate on one such process (no thinning, shifts only, so that in the
marked Poisson process construction, all points have survival mark D = D) and
we assume that X arises by projection from a Poisson point process N with state
space R

d in the sense that, for i = 1, . . . , d,

Xi(B) = N
(

π−1
i (B)

)

for all Borel sets B ⊂ R.

Here πi : R
d → R, x = (x1, . . . , xd) 7→ xi, denotes the projection onto the ith

coordinate. Let ν be the intensity measure associated with N . What can be said
about N and ν if X is time shift stationary with constant rate marginals?

We assume throughout this section that the counting processes are locally finite
with probability 1. In terms of insurance applications this means that we exclude
the case where we could have an infinite number of claims in a finite time interval.
This assumption implies that, if X arises by projection from a Poisson process with
intensity measure ν,

ν
(

π−1
i ([ai, bi))

)

<∞ for i = 1, . . . , d, ai, bi ∈ R, ai < bi.

For example, a d-dimensional Poisson process with constant positive intensity,
i.e. with ν = λ`d where `d denotes d-dimensional Lebesgue measure and λ > 0,
would not generate a locally finite multivariate counting process if d > 1. To avoid
trivialities at the other extreme we also assume that ν 6≡ 0, i.e. with probability 1
there is at least one claim.

As X is a deterministic function of N , the distribution of N determines the
distribution of X , hence the distribution of X is completely specified by ν. Our
first result in this section implies that, conversely, the distribution ofX also specifies
the intensity measure ν and therefore the distribution of N . This aspect will be
further expounded at the end of this section.

Theorem 4 Let X = (X1, . . . , Xd) and X̃ = (X̃1, . . . , X̃d) be multivariate
counting processes that arise by projection from the Poisson processes N and Ñ
with intensity measures ν and ν̃ respectively. Suppose that the random vectors

(

X1(B1), . . . , Xd(Bd)
)

and
(

X̃1(B1), . . . , X̃d(Bd)
)

have the same distribution for all sets of finite intervals Bi = [ai, bi), i = 1, . . . , d.
Then N and Ñ have the same distribution, i.e. ν = ν̃.
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Proof: We show that the condition implies ν(A) = ν̃(A) for all A ∈ Bd of the
form A = B1× . . .×Bd with Bi = [ai, bi) ⊂ R. Since this is a ∩-stable generator of
Bd the result then follows. Let ξ = (X1(B1), . . . , Xd(Bd)). We will show that ν(A)
can be obtained from the characteristic function ϕξ associated with ξ. Equality
in distribution implies equality of the characteristic functions, hence this would
indeed lead to ν(A) = ν̃(A).

It follows from the properties of a Poisson process similar as in the proof of
Theorem 1 that there are disjoint sets AD ∈ Bd, D ⊂ D and D 6= ∅, which depend
on B1, . . . , Bd, such that

Xk(Bk) =
∑

D3k

ξD for k = 1, . . . , d,

where the ξD are Poisson distributed with respective (finite) parameters λD :=
ν(AD); in particular, A = AD and hence ν(A) = λD. Moreover, the ξD are mutually
independent. We have to show that λD can be obtained from the characteristic
function ϕξ of ξ. For t ∈ R

d we obtain

t′ξ =

d
∑

k=1

∑

k∈D

tkξD =
∑

D 6=∅

ξD
∑

k∈D

tk

and thus we have

ϕξ(t) = Eeit′ξ =
∏

D 6=∅

E exp
(

iξD
∑

k∈D

tk

)

=
∏

D 6=∅

ϕξD

(

∑

k∈D

tk

)

.

The characteristic function ϕξD
of the Poisson distributed random variable ξD is

given by ϕξD
(θ) = exp(λD(eiθ − 1)), θ ∈ R. Inserting we obtain

ϕξ(t) = exp
(

∑

D 6=∅

λD

(

e
i
∑

k∈D
tk − 1)

)

.

Differentiating logϕξ(t) with respect to tj gives

∂

∂tj
logϕξ(t) = i

∑

D3j

λD exp
(

i
∑

k∈D

tk

)

and we arrive at

∂d

∂td · · ·∂t1
logϕξ(t) = id λD exp

(

i

d
∑

k=1

tk

)

.

Inserting t = 0 we obtain the required formula for λD in terms of ϕξ. �

Note that there are no assumptions about the marginal processes in Theorem 4.
We next relate the stationarity properties of X and N to each other. We recall that
X is said to be time shift stationary if, for fixed B1, . . . , Bd ∈ B, the distribution of
(X1(B1 + t), . . . , Xd(Bd + t)) does not depend on t. If N is a d-dimensional point
process we say that N is spatially stationary with respect to diagonal shifts if, for
fixed A1, . . . , Ak ∈ Bd, the distribution of (N(A1 + te), . . . , N(Ak + te)) does not
depend on t. Finally, a measure ν on (Rd,Bd) is invariant with respect to diagonal

shifts if ν(A + te) = ν(A) for all A ∈ Bd.

16



Theorem 5 Let X be a multivariate counting processes that arises by projec-
tion from a Poisson processes N with intensity measure ν. Then the following
statements are equivalent:

(i) X is time shift stationary,

(ii) N is spatially stationary with respect to diagonal shifts,

(iii) ν is invariant with respect to diagonal shifts.

Proof: Using (D1) and (D2) from Section 3 we see that (iii) implies that the
distribution of the random vector (N(A1 + te), . . . , N(Ak + te)) does not depend on
t, for fixed d-dimensional Borel sets A1, . . . , Ak, k ∈ N. Because of the definition
of X this in turn implies that the distribution of

(

X1(B1 + t), . . . , Xd(Bd + t)
)

=
(

N(π−1
1 (B1) + te), . . . , N(π−1

d (Bd) + te)
)

does not depend on t, which is (i). Finally, to see that (i) implies (iii), we use
Theorem 4 with X the original counting process and X̃ the shifted process given
by

(

X̃1(B1), . . . , X̃d(Bd)
)

=
(

X1(B1 + t), . . . , Xd(Bd + t)
)

. �

Our next result shows that intensity measures that are invariant with respect to
diagonal shifts must be of a very specific form. As in Section 3, for a probability
measure Q on R

d we define the measure ν(Q) by ν(Q)(A) =
∫

Q(A − te) dt, a
minor case of notational overloading in the present framework. Sometimes it is
more convenient to work with integrals of functions than with measures of sets; the
definition of ν(Q) is equivalent to the requirement that

∫

φ(x1, . . . , xd) ν(Q)(dx) =

∫ ∫

φ(x1 − t, . . . , xd − t)Q(dx1, . . . , dxd) dt

for all non-negative and measurable functions φ : R
d → R.

Theorem 6 A measure ν on (Rd,Bd) is invariant with respect to diagonal shifts
if and only if it is of the form ν = λν(Q) for some λ > 0 and some probability
measure Q on R

d.

Proof: Let ν̃ be the measure-theoretical image of ν under the transformation

T : R
d → R

d, (x1, x2, . . . , xd) 7→ (x1, x2 − x1, . . . , xd − x1).

Let t ∈ R be fixed and let φ : R
d → R be a non-negative measurable function.

Using
∫

ψ dν̃ =
∫

ψ ◦ T dν with ψ : R
d → R defined by ψ(x1, . . . , xd) = φ(x1 +

t, x2, . . . , xd), we obtain

∫

φ(x1 + t, x2, . . . , xd) ν̃(dx) =

∫

φ(x1 + t, x2 − x1, . . . , xd − x1) ν(dx).
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Further, the invariance of ν implies that

∫

ψ(x1, . . . , xd) ν(dx) =

∫

ψ(x1 − t, . . . , xd − t) ν(dx) for all t ∈ R

for all non-negative measurable functions ψ : R
d → R. In particular, with ψ :

R
d → R defined by ψ(x1, . . . , xd) = φ(x1 + t, x2 − x1, . . . , xd − x1),

∫

φ(x1 + t, x2 − x1, . . . , xd − x1) ν(dx)

=

∫

φ
(

(x1−t) + t, (x2−t) − (x1−t), . . . , (xd−t) − (x1−t)
)

ν(dx)

=

∫

φ(x1, x2 − x1, . . . , xd − x1) ν(dx)

=

∫

φ(x1, x2, . . . , xd) ν̃(dx).

Putting these two arguments together we see that

∫

φ(x1 + t, x2, . . . , xd) ν̃(dx) =

∫

φ(x1, x2, . . . , xd) ν̃(dx)

for all t ∈ R and for all non-negative measurable functions φ : R
d → R. This shows

that ν̃ is invariant under shifts in the direction of the first coordinate.

Further, because of

ν̃(A× R
d−1) =

∫

1A×Rd−1(x1, x2, . . . , xd) ν̃(dx)

=

∫

1A×Rd−1(x1, x2 + x1, . . . , xd + x1) ν̃(dx)

=

∫

1A×Rd−1(x1, x2, . . . , xd) ν(dx)

= ν(A × R
d−1),

the transformed measure ν̃ also has first marginal ν̃1 = λ`. For B ∈ Bd−1 fixed the
measure A 7→ ν̃(A×B) therefore has to be a multiple of Lebesgue measure, i.e. we
have

ν̃(A×B) = λ `(A)Q0(B)

where Q0(B) is a function of B that has the property Q0(R
d) = 1 because of the

above statement on the first marginal measure ν̃1 of ν̃. Since B → ν̃([0, 1] × B)
also is a (finite, non-zero) measure, we see that Q0 is in fact a probability measure
on (Rd−1,Bd−1).

Now let Q := δ0 ⊗ Q0; we claim that ν = λν(Q). For φ : R
d → R measurable
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and non-negative again, we have

∫

φ dν =

∫

φ ◦ T−1(x) ν̃(dx)

=

∫

φ(x1, x2 + x1, . . . , xd + x1) ν̃(dx)

= λ

∫ ∫

φ(x1, x2 + x1, . . . , xd + x1)Q0(dx2, . . . , dxd) dx1

= λ

∫ ∫

φ(−t, x2 − t, . . . , xd − t)Q0(dx2, . . . , dxd) dt

= λ

∫ ∫

φ(x1 − t, x2 − t, . . . , xd − t) (δ0 ⊗Q0)(dx1, dx2, . . . , dxd) dt

= λ

∫ ∫

φ(x1 − t, x2 − t, . . . , xd − t)Q(dx1, dx2, . . . , dxd) dt

= λ

∫

φ dν(Q),

which completes the first part of the proof.
Conversely, if ν = λν(Q), then

ν(A+ te) = λ

∫

Q(A+ te− t′e) dt′ = λ

∫

Q(A− t′e) dt′ = ν(A),

where the second equality follows by substitution. �

Because of the cause-effect relationship between the background events and the
claims of different types, it is natural in our application to think of shifts as moves
forward in time. This leads to the requirement in the actuarial applications of the
TaS models that Q be concentrated on the non-negative orthant R

d
+, whereas the

representation in Theorem 6 may involve shifts that can be negative. We now argue
that the support condition on Q is a minor one in the sense that TaS models with
this restriction on the shift distribution are dense in the full class. For this we need
a concept of convergence for multivariate counting processes. We first recall some
basic facts about the particular distance of probability distributions on which this
concept relies. These can be found in many textbooks; see e.g. the appendix in
Barbour, Holst and Janson (1992) for a comprehensive overview or Rachev (1991)
for a thorough treatment in the larger context of probability metrics.

The total variation distance of two probability measures P and Q on some mea-
surable space (E,A) is given by

dTV(P,Q) := sup
A∈A

∣

∣P (A) −Q(A)
∣

∣.

For countable E we have

dTV(P,Q) =
1

2

∑

x∈E

∣

∣P ({x}) −Q({x})
∣

∣.
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If P, P1, P2, P3, . . . are probability measures on (E,A) then we say that Pn con-
verges to P in total variation as n → ∞ if limn→∞ dTV(Pn, P ) = 0, and then
limn→∞

∫

f dPn =
∫

f dP for all bounded and measurable functions f : E → R.
By a slight abuse of notation we will also apply this terminology to random vari-
ables and, for example, say that ξn converges to ξ in total variation if this holds
for the respective distributions. For discrete real random variables, especially for
counting variables which take their values in N0, convergence in total variation is
equivalent to the familiar concept of convergence in distribution. In particular, if
ξ, ξ1, ξ2, . . . are Poisson distributed with finite parameters λ, λ1, λ2, . . . respectively,
then limn→∞ λn = λ implies convergence in total variation of ξn to ξ as n → ∞.
Finally, if ξn1, . . . , ξnk are independent and ξni converges to ξi in total variation
as n → ∞ for i = 1, . . . , k, then f(ξn1, . . . , ξnk) converges in total variation to
f(ξ1, . . . , ξk) for any measurable function f : Ek → R.

Theorem 7 Let X = (X1, . . . , Xd) be a time shift stationary multivariate
counting process that arises by projection from a Poisson point process with in-
tensity measure ν. Then there exists a sequence (Qn)n∈N of probability measures
on the non-negative orthant R

d
+ such that the TaS processes X (n) with rate λ :=

ν([0, 1] × R
d−1), thinning mechanism (pD)D⊂D given by pD = 1 (i.e., no thinning)

and shift distribution Qn converge to X as n→ ∞ in the sense that, for all Borel
subsets B1, . . . , Bd of the real line with finite Lebesgue measure, the random vector

(X
(n)
1 (B1), . . . , X

(n)
d (Bd)) converges in total variation to (X1(B1), . . . , Xd(Bd)).

Proof: By Theorems 5 and 6 we have ν = λν(Q) for some probability measure
Q on R

d; we may assume that λ = 1. Let Q̃n and Qn be the distributions of

(

ξ1 ∨ (−n), . . . , ξd ∨ (−n)
)

and
(

n+ ξ1 ∨ (−n), . . . , n+ ξd ∨ (−n)
)

respectively where ξ = (ξ1, . . . , ξd) is a random vector with distribution Q. Clearly,
Qn is concentrated on R

d
+. From the properties of the operatorQ 7→ ν(Q) we obtain

ν(Qn) = ν(Q̃n), as Qn arises from Q̃n by a diagonal shift. Also, by the construction
of Q̃n via ξ,

∣

∣Q̃n(A) −Q(A)
∣

∣ ≤ 1 −Q
(

[−n,∞)d
)

for all A ∈ Bd,

which implies that Q̃n converges to Q in total variation as n→ ∞.
Now let B1, . . . , Bd ⊂ R be as in the statement of the theorem. As in the proofs

of Theorem 1 and Theorem 4 we can write
(

X
(n)
1 (B1), . . . , X

(n)
d (Bd)

)

as a fixed

deterministic function of the random vector
(

N (n)(AD)
)

D⊂D,D 6=∅
, with AD ∈ Bd

disjoint and depending on B1, . . . , Bd, and similarly for X . The components of
these vectors are independent Poisson random variables with parameters given
by ν(Qn)(AD), n ∈ N, and ν(Q)(AD) respectively. The sets AD arising in the
decomposition are d-dimensional rectangles C1 ×· · ·×Cd where at least one of the
Cj ’s has finite Lebesgue measure. In particular, x 7→

∫

1AD−x(te) dt is bounded by

`(Cj), hence the total variation convergence of Q̃n to Q together with

ν(Qn)(AD) =

∫

Rd

∫

R

1AD−x(te) dt Q̃n(dx)
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yields the convergence of ν(Qn)(AD) to ν(Q)(AD). This in turn implies the con-
vergence in total variation of N (n)(AD) to N(AD) for all D ⊂ D, D 6= ∅. Using
the last of the properties of total variation convergence given before the statement
of the theorem we now obtain the assertion. �

In summary these results show that within the class of multivariate counting
processes generated by Poisson point processes the requirements of constant rate
marginals and time shift stationarity essentially lead to the class of TaS models.

We close this section with some remarks, related to the above material or making
use of the ideas underlying the above proofs and constructions.

Remarks (a) If Q has a density f with respect to d-dimensional Lebesgue
measure `d then ν(Q) also has a density with respect to `d. Suppose that the
random vector Y = (Y1, . . . , Yd) has density f and let f̃ be the density of the
(d−1)-dimensional random vector (Y2−Y1, . . . , Yd−Y1). Then x = (x1, . . . , xd) 7→
f̃(x2 − x1, . . . , xd − x1) is a density of ν(Q). To see this, let again φ : R

d → R be
measurable and non-negative. Then

∫

φ dν(Q)

=

∫

· · ·

∫

φ(x1 − t, . . . , xd − t) f(x1, . . . , xd) dx1 · · · dxd dt

=

∫

· · ·

∫

φ(x1, . . . , xd)
(

∫

f(x1 + t, . . . , xd + t) dt
)

dx1 · · · dxd,

=

∫

· · ·

∫

φ(x1, . . . , xd)
(

∫

f(t, x2 − x1 + t, . . . , xd − x1 + t) dt
)

dx1 · · · dxd.

On the other hand, it is easy to see that

(z2, . . . , zd) 7→

∫

f(t, z2 + t, . . . , zd + t) dt

is a density for (Y2 − Y1, . . . , Yd − Y1). This formula for the density of ν(Q) can be
used to simplify some calculations, such as in Section 7 below.

(b) The parametrization of TaS models by a base intensity λ, the survival prob-
abilities pD, D ⊂ D, and the shift distribution Q is convenient but somewhat
redundant. For example, we could demand that p∅ = 0 since otherwise a proper
change in the base rate together with the corresponding change in the survival
probabilities would lead to the same stochastic process. Similarly, a shift of Q by a
scalar multiple of e = (1, . . . , 1) leaves ν(Q) unaffected and hence would also lead to
the same multivariate counting process. Informally, the points of the background
process may be moved backwards and forwards in time and this can be undone by
a corresponding change in the delay times. This simple fact is the basis for the
denseness property of TaS models formalized in Theorem 7. Such redundancies
are also important in connection with statistical estimation of the model parame-
ters; this aspect of the TaS models will be further investigated in a separate paper
dealing with statistical issues.
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(c) Formally, a counting process X on R is a measurable function, defined on
some probability space and with values in the space M(R) of N0-valued, locally
finite measures µ on (R,B), where the σ-field on the latter is the one generated by
the ‘projections’ µ 7→ µ(B), B ∈ B. The finite-dimensional distributions of X are
the distributions of the random vectors

(

X(B1), . . . , X(Bk)
)

, k ∈ N, B1, . . . , Bk ∈ B.

These determine the distribution of X , see e.g. Section 6.2 in Daley and Vere-
Jones (1988). To obtain multivariate counting processes we essentially ‘vectorize’
the one-dimensional concept. This means that the family of finite-dimensional
distributions associated with the d-dimensional counting process X = (X1, . . . , Xd)
now relates to the distributions of

(

X1(B11), . . . , X1(B1l1), X2(B21), . . . , X2(B2l2), . . . , Xd(Bd1), . . . , Xd(Bdld)
)

with B11, . . . , Bdld ∈ B. It is a consequence of Theorem 4 that in the case that X
arises by projection from a multivariate Poisson process, it is enough to consider
the random vectors

(

X1(B1), . . . , Xd(Bd)
)

, B1, . . . , Bd ∈ B; in fact, we may take
these sets to be intervals.

(d) It has already been mentioned at the beginning of Section 2 that the straight-
forward translation of the copula idea from random vectors to multivariate counting
processes leads to two major problems. Using our general approach via Poisson
point processes we now discuss the second of these. For simplicity we suppose that
X = ((X1,t, X2,t))t≥0 is a two-dimensional counting process, where counting starts
at time t = 0 and Xi,t is the number of events of type i = 1, 2 up to and including
time t. Then, for each t ≥ 0, (X1,t, X2,t) is an ordinary two-dimensional ran-
dom vector; let Ct be an associated copula. We now show, by giving an example,
that the family (Ct)t≥0, together with the distribution of the marginal processes,
does not suffice to determine the distribution of X . Our starting point is an or-
dinary static two-dimensional copula C, which we assume to be non-symmetric,
i.e. C(a, b) 6= C(b, a) for some a, b ∈ (0, 1). Let N be a Poisson point process on
the unit square (0, 1) × (0, 1) with intensity measure ν given by

ν
(

(0, s] × (0, t]
)

= C(s, t) for all s, t ∈ (0, 1) × (0, 1).

We define X = ((X1,t, X2,t))t≥0 by

X1,t := N
(

(0, t] × (0, 1]
)

, X2,t := N
(

(0, 1] × (0, t]
)

(the counting processes remain constant from time t = 1 onwards). For the second
process X̃ = ((X̃1,t, X̃2,t))t≥0 we simply switch components, i.e., X̃1,t := X2,t and

X̃2,t := X1,t for all t ≥ 0. We claim that X and X̃ generate the same family of

copulas in the above sense, but that X and X̃ do not have the same distribution.
To see this, we first fix t ∈ (0, 1). Then, as in the proof of Theorem 1,

(

X1,t

X2,t

)

=

(

ξ0 + ξ1
ξ0 + ξ2

)

,

(

X̃1,t

X̃2,t

)

=

(

ξ0 + ξ2
ξ0 + ξ1

)

,
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where ξ0, ξ1, ξ2 are independent Poisson random variables with respective parame-
ters λ0, λ1, λ2 given by

λ0 = C(t, t), λ1 = t− C(t, t) and λ2 = t− C(t, t).

Because of λ1 = λ2 this implies that the two random vectors (X1,t, X2,t) and

(X̃1,t, X̃2,t) have the same distribution and therefore lead to the same copula. On
the other hand,

(

X1,a

X2,b

)

=

(

ξ0 + ξ1
ξ0 + ξ2

)

,

(

X̃1,a

X̃2,b

)

=

(

ξ̃0 + ξ̃1
ξ̃0 + ξ̃2

)

.

Again, ξ0, ξ1, ξ2 are independent Poisson random variables, now with parameters
given by

λ0 = C(a, b), λ1 = a− C(a, b) and λ2 = b− C(a, b),

and ξ̃0, ξ̃1, ξ̃2 are independent Poisson random variables with the respective param-
eters

λ̃0 = C(b, a), λ̃1 = a− C(b, a) and λ̃2 = b− C(b, a).

In particular,

var
(

X1,a +X2,b

)

= 2C(a, b) + a+ b 6= 2C(b, a) + a+ b = var
(

X̃1,a + X̃2,b

)

,

which shows that the random vectors (X1,a, X2,b) and (X̃1,a, X̃2,b) have different
distributions. In the terminology of the previous part we therefore see that a fur-
ther reduction in the family of random vectors

(

X(B1), . . . , X(Bd)
)

to the sets
B1, . . . , Bd = (0, t], t ≥ 0, would destroy the property that the distributions char-
acterize the distribution of X , even in the case that X arises by projection from a
Poisson process.

(e) Multivariate Poisson processes with constant intensity marginals are in a
way analogous to multivariate random variables with uniform marginals, i.e. we
could consider the corresponding intensity measure ν as a Poisson process copula.
Theorem 7 characterizes those copulas that lead to counting processes that are time
shift stationary. It is well known that a non-homogeneous one-dimensional Poisson
processes can be obtained from a homogeneous such process with a suitable time
transformation, similar to the quantile transformation that underlies the usefulness
of classical copulas. At present, this observation may be used to serve as a guideline
in the construction of suitable models. Due to the fact that the transformations of
the marginals refer to time, which will in general lead to different ‘speeds’ in the
respective component processes, it seems that the practical consequences of this
observation may be of limited value.

6. Actuarial applications. It seems that nowadays models in insurance are
towards a broader perspective on assets and liabilities which particularly takes into
account dependencies between processes. As possible applications of our general
TaS models we suggest the following situations:
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6.1 Different lines of business. Suppose the points of the base process represent
time points of natural catastrophes like earthquakes, floods, hurricanes etc. An im-
mediate damage to houses and cars which produces claims in the non-life insurance
branch is then most likely followed by claims in health insurance due to epidemics
or general bad health conditions after the catastrophe. Thus, X1 and X2 would
count the claims in non-life and health insurance respectively. In the context of
this application, an extension of our models, where a single event may generate
more than one event in the individual component processes, may be of interest.

6.2 Reinsurance. Consider an insurance company and its main reinsurer which
are connected via e.g. a stop-loss treaty. The reinsurer pays up to a specified limit,
all claims which in total exceed a certain retention within one year. The points of
the base process correspond here to the claim arrival time points for the insurer
and these may also be claim arrival time points for the reinsurer. Thus, X1 and
X2 would count the claims for the insurer and for the reinsurer respectively.

6.3 Late claims. A somewhat different application of the TaS model is as follows:
Suppose we add up all components and obtain a new counting process X̂, i.e.
X̂ =

∑

iXi. Note that X̂ is not a Poisson process anymore due to the dependence
in the components. The interpretation is as follows: A point at time t with mark D
in the base process corresponds to an event which triggers a series of claims which
arrive at time points t + Yi1 , . . . , t + Yi|D|

where Y ∼ Q and D = {i1, . . . , i|D|}.
This situation is well-known from the IBNR (incurred but not reported) problem.
Often insured events need several years until they are settled completely. Here we
assume that at most d payments are needed in order to settle all claims arising
from the same event.

For the expected total number EX̂(A) of claims with time stamps in A the
possible non-independence of the component processes is irrelevant and we simply
obtain EX̂(A) = λd`(A) if there is no deletion. Beyond expected values, Theorem 1
yields the distributional representation

X̂(A) =distr 1 · Z1 + 2 · Z2 + · · · + d · Zd,

where Z1, . . . , Zd are independent random variables, each with a Poisson distribu-
tion with parameter depending on A; see Section 7 for an example.

6.4 Distribution of the next claim arrival. An interesting quantity for insurance
applications is the time of the first claim arrival after time 0 say, which we denote
by τ . Let X = (X1, . . . , Xd) be a d-dimensional counting process of TaS type with
base rate λ, thinning mechanism p = (pD)D⊂D and shift distribution Q. Formally,
we define

τ = inf
{

t ≥ 0 : Xi((0, t]) > 0 for some i ∈ D
}

.

The distribution of τ can be expressed with the help of the model parameters as
follows:

P (τ > t) = P (X1([0, t]) = 0, . . . , Xd([0, t]) = 0)

= P (ξ(D; [0, t], . . . , [0, t]) = 0, ∀D ⊂ D, D 6= ∅)

=
∏

D⊂D,D 6=∅

P (ξ(D; [0, t], . . . , [0, t]) = 0)
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= exp
(

−λ
∑

D⊂D,D 6=∅

∑

D′⊃D

pD′ ν(Q)
(

M(D,D′; [0, t], . . . , [0, t])
)

)

= exp
(

−λ
∑

D′⊂D,D′ 6=∅

∑

D⊂D′,D 6=∅

pD′ ν(Q)
(

M(D,D′; [0, t], . . . , [0, t])
)

)

= exp
(

−λ
∑

D′⊂D,D′ 6=∅

pD′ν(Q)
(

⋃

i∈D′

π−1
i ([0, t])

)

)

.

Note that τ is in general not exponentially distributed; again, Section 7 contains
an example.

For further applications, also to portfolio credit risk, we refer to Lindskog and
McNeil (2003).

7. Computational issues and examples. Suppose we are given a TaS
model X with parameters λ, (pD)D⊂D and Q. How can we obtain quantities of
interest (expectations, probabilities etc.) for such a model? Under the heading
‘computational’ we summarize Monte Carlo simulations, standard numerical pro-
cedures but also algorithmic issues. With respect to the first, it should be clear
how to simulate values from the random variables of interest once it is known how
to simulate values from the shift distribution. As so often, stochastic simulation is
easy to carry out and can be an invaluable tool for getting a ‘feel’ for the model,
but its accuracy is limited. Also, the dependence of the values of interest on the
model parameters is normally beyond the reach of plain Monte Carlo procedures.
With standard numerical methods we may at least hope for better accuracy. A
typical case is that of evaluating the probabilities associated with overlapping sums
of independent Poisson variables that appear in Theorem 1 and its applications;
this is discussed in Chapter 37 of Johnson, Kotz and Balakrishnan (1997).

First we consider the case d = 2, Y = (Y1, Y2) with Y1 ≡ 0, Y2 ≥ 0, so that
Q = δ0⊗Q0 with Q0 concentrated on [0,∞). In the actuarial framework this means
that there are only two types of claims and that each claim of type 1 triggers a
later claim of type 2. We now investigate the covariance of X1([0, t]) and X2([0, t]).
Using the formula in Section 4 we obtain

cov(X1([0, t]), X2([0, t])) = λ q{1,2}

∫

P (x+ Y1 ∈ [0, t] , x+ Y2 ∈ [0, t]) dx,

= λ q{1,2}

∫ t

0

P (x+ Y2 ∈ [0, t]) dx

= λ q{1,2}

∫ t

0

P (Y2 ≤ t− x) dx

= λ q{1,2}

∫ t

0

P (Y2 ≤ x) dx

= λ q{1,2}

(

t−

∫ t

0

P (Y2 > x) dx
)

.

From this representation of the covariance we immediately see that whenever
Q0 ≤st Q

′
0 we obtain

cov
(

X1([0, t]), X2([0, t])
)

≥ cov
(

X1([0, t]), X
′
2([0, t])

)

.
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This means that stochastically larger shifts lead to a smaller covariance. This is
of course what one expects. However, we also get the following somewhat more
surprising result. Suppose that Q0 is a distribution with support [0,∞) and finite
first moment µ. Then we have

cov
(

X1([0, t]), X2([0, t])
)

= λ q{1,2}

(

t−

∫ t

0

P (Y2 > x)dx
)

= λ q{1,2}

(

t− µ+

∫ ∞

t

P (Y2 > x) dx
)

= λ q{1,2}

(

t− µ+E(Y2 − t)+
)

.

Due to the properties of the convex order we thus obtain that Q0 ≤cx Q
′
0 implies

cov
(

X1([0, t]), X2([0, t])
)

≤ cov
(

X1([0, t]), X
′
2([0, t])

)

.

This means that more variability in the shift distribution (leaving the mean un-
changed) leads to a higher covariance.

We now consider a special parametric subclass of the general TaS model, without
the above support assumption onQ but still in dimension d = 2, where some general
computations can be carried out on the basis of the results of the previous sections.
In this subclass we assume independent survival of the components, so that p{1} =
p{2} = ρ(1 − ρ), p{1,2} = ρ2 and p∅ = (1 − ρ)2. We further assume that the shifts
are independent and both exponentially distributed with the same parameter α,
i.e. with Exp(α) for the latter distribution we have Q = Exp(α)⊗Exp(α). Models
from this parametric TaS class are therefore completely specified by the three (real)
parameters λ, ρ and α; our aim is to obtain some quantities of interest explicitly
as functions of these.

It is known that, with Y1, Y2 independent and L(Y1) = L(Y2) = Exp(α), the
distribution of Y1 − Y2 is two-sided exponential with parameter α. Together with
Remark (a) at the end of Section 5 this gives the density

(x1, x2) 7→
α

2
e−α|x1−x2|, x1, x2 ∈ R,

for ν(Q). In particular, for all t > 0,

ν(Q)
(

[0, t] × [0, t]
)

=

∫ t

0

∫ t

0

α

2
e−α|x1−x2| dx1dx2 = t −

1 − e−αt

α
.

The formula for the covariance given at the beginning of Section 4 leads to

cov
(

X1([0, t]), X2([0, t])
)

= λρ2
(

t−
1 − e−αt

α

)

.

We next consider the time τ of the first claim arrival after time 0. Because of
D = {1, 2} the last sum in the formula for P (τ > t) given in Section 6.4 reduces to
the cases {1}, {2} and {1, 2}. As both marginal measures of ν(Q) are equal to `,
we have

ν(Q)
(

π−1
1 ([0, t])

)

= ν(Q)
(

[0, t] × R
)

= t
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and similarly ν(Q)
(

π−1
2 ([0, t])

)

= t. Further, with the computation used above for
the covariance,

ν(Q)
(

π−1
1 ([0, t]) ∪ π−1

2 ([0, t])
)

= ν(Q)
(

[0, t] × R
)

+ ν(Q)
(

R × [0, t]
)

− ν(Q)
(

[0, t] × [0, t]
)

= t +
1 − e−αt

α
,

hence

P (τ > t) = exp

(

−λ
(

2ρt− ρ2t+
ρ2

α

(

1 − e−αt
)

)

)

.

As announced at the end of Section 6.4, this is not an exponential distribution.
Finally, we consider the total number X̂([0, t]) = X1([0, t]) +X2([0, t]) of claims in
the time interval [0, t]. In the notation that we used at the beginning of Section 4
we can write this as X̂([0, t]) = 2ξ0 + ξ1 + ξ2, so that

X̂([0, t]) = Z + 2Z ′

with independent random variables Z and Z ′. Here Z and Z ′ both have a Poisson
distribution and, using similar calculations as for the covariance and the arrival
time,

EZ ′ = λρ2t−
λρ2

α

(

1 − e−αt
)

, EZ = 2λρ(1 − ρ)t+
2λρ2

α

(

1 − e−αt
)

.

It is known that distributions of this type are compound Poisson, which means
that Panjer recursion or transform methods can be applied to obtain numerical
values for the probabilities P

(

X̂([0, t]) = k
)

, k ∈ N0, for any specific values of the
parameters λ, ρ and α.

In summary, we have introduced a flexible class of models for multivariate count-
ing processes. The underlying structural assumptions of this class appear to be
quite natural in a variety of insurance applications. Some general results have
been obtained, in particular for the covariance of the component processes and the
waiting time for the next claim. These aspects can be related to the stochastic
ordering of the shift distributions that are part of the model specification. We have
also shown that these models arise in a natural way in connection with time shift
stationarity. Finally, at least in some simple but prototypical cases some explicit
computations can be carried out that reveal the dependence of quantities of interest
on the model parameters.
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