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ZUSAMMENFASSUNG

Die Informationsarchitektur der meisten Websites — also die logische Organisation und
Darstellung der Inhalte — stitzt sich auf eine hierarchische Gliederung. Diese Gliederung
wird den Benutzern durch mehrstufige Mentustrukturen kommuniziert, d.h. Haupt- und
Untermenis unterteilen Websites aus Perspektive der Benutzer in eine logische Hierarchie.
Menschen kénnen diese Struktur aufgrund der grafischen Darstellung identifizieren, die es
ihnen ermdglicht, Meniis von anderen Inhalten und Ober- von Untermeniis zu unterschei-
den. HTML erlaubt zwar, mit semantischen Annotationen die interne Struktur einzelner
Dokumente in maschinenlesbarer Form abzubilden, allerdings kann die logische Struktur
ganzer Sites nicht mit Hilfe von HTML spezifiziert werden. Dabei ist die logische Struktur in
der Regel klar definiert, nur eben nicht explizit, sondern visuell kodiert. In der Dissertation
wird aufgezeigt, dass das Konzept der logischen Struktur, wie es im Bereich des User Inter-
face Designs verwendet wird, im Bereich des Web Mining kaum aufgegriffen wurde und
Methoden zur automatischen Extraktion logischer Hierarchien fehlen. Damit bleiben
Metadaten ungenutzt, die etwa fir die Bewertung und Darstellung von Suchergebnissen
wertvoll sein kdnnen — und der Nutzen des WWW als Informationsquelle hangt wesentlich
von der Qualitat der Suchergebnisse und deren Darstellung ab. Eine prazisere Abbildung der
Informationsarchitektur, wie sie von Menschen wahrgenommen wird, kann neue Crawling-
Strategien ermoglichen, Ranking-Verfahren verbessern und eine Ubersichtlichere Darstel-
lung der Suchergebnisse ermoglichen. Daher ist das Ziel dieser Arbeit, Losungen fiir die
automatische Extraktion logischer Hierarchien zu entwickeln und zu evaluieren.

Zunachst werden die grundlegenden Konzepte geklart und Arbeitsdefinitionen wichti-
ger Begriffe entwickelt. Die besondere Herausforderung liegt im Umgang mit der Subjektivi-
tat und Unscharfe des Konzepts der von Benutzern wahrgenommenen logischen Struktur,
die Gegenstand der vorliegenden Forschungsarbeit ist. Dazu wird das O*-Modell eingefiihrt,
das drei Aspekte der Organisation von Websites voneinander abgrenzt: Die inhaltliche
Organisation (,logische Struktur®), die funktionale Organisation (Hyperlinks) und die Seiten-
organisation (,Layout”). Die Analyse des Zusammenspiels der inhaltlichen und funktionalen
Organisation bildet die Grundlage fiir die in der Arbeit vorgestellten Losungsansdtze. Als



Zusammenfassung

Bindeglied zwischen beiden Aspekten werden Navigations-Entwurfsmuster identifiziert, die
nun als Regeln fiir die Transformation der inhaltlichen Organisation in die funktionale
Organisation aufgefasst werden. Das zugrundeliegende Navigations-Entwurfsmuster fassen
wir als den Typ eines Navigationselements, d.h. Menus, auf. Auf diesen Uberlegungen
aufbauend, werden vier Teilprobleme der automatischen Hierarchieextraktion identifiziert:
(1) die Unterteilung von Seiten in inhaltliche Blocke, (2) die Erkennung von Bldcken, die
Navigationselemente darstellen, (3) das Erkennen der Instanzen gleicher Navigationsele-
mente auf unterschiedlichen Seiten und (4) die Rekonstruktion der Hierarchie auf Basis der
Navigationselemente.

Wéhrende die Teilprobleme (3) und (4) in existierenden Arbeiten bisher kaum behandelt
wurden, wurden Lésungen fiir die Teilprobleme (1) und (2) als Nebenaspekte einiger Arbeiten
mit ganz unterschiedlichen Schwerpunkten bereits diskutiert. Allerdings zeigt die Evaluie-
rung eines ersten Prototyps, dass konventionelle Methoden zu fehleranfallig sind und sich
als Grundlage fiir die Hierarchie-Extraktion nur bedingt eignen. Dies fiihrt zur Entwicklung
des GRABEX-Ansatzes (,Graph-based block extraction“) fur die Extraktion bestimmter
Navigationselement-Typen. Der GRABEX-Ansatz unterscheidet sich durch zwei wesentliche
Merkmale von konventionellen Methoden: (a) Alle Links, die zu den Instanzen eines be-
stimmten Navigationselements gehéren, werden als Graph aufgefasst. Bestimmte Graph-
Muster lassen auf den Typ des Navigationselements schlieRen und werden fiir die Klassifi-
zierung verwendet. (b) Die Navigationselemente und ihre Instanzen werden nicht zuerst
extrahiert und dann klassifiziert. Stattdessen wird angenommen, dass alle Seitenuntertei-
lungen und alle Kombinationen von Blocken potentielle Navigationselemente darstellen
und dieser Raum wird durchsucht, bzw. die Klassifizierung wird auf dieser Menge durchge-
fihrt. Wird ein charakteristisches Muster gefunden, kann auch auf eine korrekte Seitenun-
terteilung und Gruppierung von Navigationselement-Instanzen geschlossen werden.

Wir stellen die MenuMiner-Methode vor, eine Umsetzung des GRABEX-Ansatzes zur Ex-
traktion hierarchischer Menis. Charakteristische Graph-Muster sind vollstandigen Teilgra-
phen (Cliquen). Zur Evaluierung werden die erkannten Meniis verwendet, um die Grenzen
unterschiedlicher Websites zu identifizieren, die unter derselben Domain abgelegt sind. Im
Gegensatz zu Losungen, die in vorherigen Arbeiten beschrieben wurden, konnte die neue
Methode die Sitebegrenzungen nahezu fehlerfrei bestimmen. Das MenuMiner-Verfahren ist
die Grundlage fir weitere Algorithmen, die darauf aufbauend die logische Hierarchie
extrahieren. Zur Evaluierung wurde das Verfahren auf 350 Domains angewandt und die
automatisch extrahierte hierarchische Struktur mit der zuvor manuell annotierten Hierar-
chie verglichen. Die Resultate zeigen, dass mit dieser Methode nun ein Verfahren verfiigbar
ist, das es erlaubt, z.B. die erste Menii-Ebene, welche die Hauptthemen einer Website
reprasentiert, mit groBer Genauigkeit zu bestimmen. Weiterhin wird eine zweite Umset-
zung des GRABEX-Ansatzes beschrieben, BreadcrumbMiner, das erste veréffentlichte und
praxistaugliche Verfahren zur Extraktion von Breadcrumbs. Breadcrumbs zeigen die Position
einer Seite in der Hierarchie an (z.B. Home > Produkte > Elektronik) und stellen deshalb eine
weitere Moglichkeit zur Rekonstruktion der logischen Struktur einer Site dar. Breadcrumb-
Miner kombiniert das GRABEX-Verfahren mit klassischen Maschine-Learning-Methoden.

vi



Ein weiterer Beitrag der vorliegenden Arbeit ist ein empirisches Experiment, dass Aussa-
gen dariiber ermoglicht, wie stark die logische Struktur das Navigationsverhalten von
Benutzern beeinflusst. Es konnte gezeigt werden, dass Benutzer, die von einer Suchmaschi-
ne zu einer Seite einer hierarchisch organisierten Website navigieren, im nachsten Schritt
dazu tendieren, die Hierarchie weiter hinabzusteigen. Daraus folgern wir, dass die Integrati-
on von Hierarchie-Informationen in die Suchergebnisdarstellung es Benutzern ermdglichen
wiirde, die nachsten moglichen Navigations-Schritte im Voraus zu bewerten.

vii






ABSTRACT

The information architecture of most Web sites, i.e. the logical organization of the con-
tents, is based on a hierarchical structure. This structure is communicated to the users
through multi-level menu systems, i.e. main and submenus define a logical hierarchy from
the perspective of the users. Humans are able to identify this structure based on the visual
presentation, which allows them to distinguish menus from other contents as well as main
menus from submenus. While HTML allows encoding the logical structure of individual
pages, it does not include language features that allow specifying the logical structure of
entire sites in a machine-readable way. At the same time, the logical organization of a site is
clearly defined, although not explicitly but visually encoded. In this thesis, we show that the
concept of logical organization as used in the field of user interface design did not yet play a
major role in the area of Web mining. Hence, there is a lack of methods for automatically
extracting the logical structure. As a results, valuable metadata are left unexploited that
could be used, e.g. for improving Web search — which is a highly relevant research area
because the benefit that we can gain from the information source WWW strongly depends
on the functionality provided by search engines. Being able to extract the actual information
architecture automatically with more accuracy than before enables more efficient crawling
strategies, improved ranking methods and an enhanced arrangement of search results.
Hence, this thesis aims at the development and evaluation of solutions for automatically
extracting logical hierarchies.

First, the basic concepts are clarified and working definitions of important terms are de-
veloped. In this context, it is a particular challenge to find a way for dealing with the fact
that the logical organization as understood in this thesis is based on human perception and
hence a fuzzy concept. For that purpose, the O*-model is introduced in which three aspects
of the organization of a Web site are distinguished: The content organization (logical
structure), the functional organization (hyperlink structure) and the page organization
(layout). The solutions presented in this thesis are based on analyzing the relationship
between the content organization and the functional organization. We identify navigation
design patterns as link between both aspects, which we interpret as rules transforming the
content organization into the functional organization. We will refer to the underlying



Abstract

navigation design pattern of a navigation element as its type. Based on these observations,
four partial problems of automated hierarchy extraction are identified: (1) Segmenting pages
into visual blocks, (2) recognizing blocks that represent navigation elements, (3) identifying
all instances of the same navigation element on different pages, and (4) reverse engineering
navigation elements in order to recover the content hierarchy.

There is not much related work that addresses the partial problems (3) and (4), but the
partial problems (1) and (2) have been considered as side issues of some previous research on
different topics. However, the evaluation of a first prototype indicates that conventional
methods are prone to error and do not represent a suitable foundation for hierarchy extrac-
tion solutions. This leads to the development of the GRABEX-approach (graph-based block
extraction approach) for mining specific types of navigation elements. The GRABEX-
approach has two basic characteristics that differ from previous approaches: (a) The links
that belong to the instances of a particular navigation element are represented as graph.
Specific graph patterns reveal the type of a navigation element and can be used for classifi-
cation. (b) The navigation elements and their instances are not first extracted and after-
wards classified. In contrast, it is assumed that all possible segmentations and all possible
combinations of blocks represent potential navigation elements and this space is searched
for characteristic patterns, i.e. classification is conducted on this set. If a characteristic
pattern is found, it can be concluded that it results from correctly segmented and joined
navigation element instances.

We present MenuMiner, an implementation of the GRABEX-approach for extracting hi-
erarchical menus. Characteristic patterns that are mined are complete subgraphs (cliques).
To evaluate the solution, the retrieved menus are used to detect the boundaries of sites that
are hosted under the same domain. In contrast to previous solutions, the MenuMiner-based
method solves this task almost errorless. For further processing the menus delivered by
MenuMiner in order to recover the hierarchy, rule-based methods are implemented and
evaluated on a manually labeled dataset of 350 domains. The results of the experiment
demonstrate that the method allows extracting, e.g., the first hierarchy level which repre-
sents the main topics of a site with high accuracy — previous approaches were not able to
extract such information. Furthermore, we describe a second implementation of the
GRABEX approach, BreadcrumbMiner, the first published and applicable method for mining
breadcrumbs. Breadcrumbs show the location of a page in the hierarchy (e.g, home >
products > electronics) and, hence, are another way of recovering the content hierarchy of a
site. BreadcrumbMiner combines the GRABEX-approach with common machine-learning
methods.

Another contribution of this thesis is an empirical experiment that allows insights into
the influence of hierarchies on human browsing behavior. We show that users that navigate
from a search engine to a page of a hierarchically organized Web site tend to further de-
scend the hierarchy in the next browsing step. This allows the conclusion that integrating
hierarchy information into the presentation of search results would help users to anticipate
the next browsing steps.
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1 INTRODUCTION

"The Web is the minimal concession to hypertext that a sequence-and-
hierarchy chauvinist could possibly make." [TEDNQQ]

Ted Nelson, hypertext visionary and creator of the term hypertext

To structure ideas and information can be hard work. For instance, before the first words
of this thesis were written, the author faced the challenge of specifying the order in which
the contents would be presented. In addition to this sequential structure, a hierarchical
structure had to be defined on top: the text was divided into chapters, sections and sub-
sections. Such structures that describe the overall organization of a document or document
collection will be referred to as content organization (CO)." In this thesis, we understand the
CO as the conceptual arrangement of the contents as it is perceived by humans. The CO may
or may not correspond to the syntactical organization of the document. The CO can consist
of multiple, overlapping conceptual structures, e.g. a hierarchy and a sequence. Each CO-
structure can be modeled as a graph: The vertices represent pieces of content and the edges
their relation. Considering the structure of this thesis as example again, the content pieces
are given by headlines and text paragraphs and the edges by their hierarchical relationships.
While this example illustrates that the principle of organizing contents into hierarchies is
universal for all kind of media, the focus of this thesis will be on COs for organizing collec-
tions of HTML documents. The collections that we consider are Web sites. The CO of a Web
site is the logical structure in which the pages of a Web site are organized in the eyes of
humans. In this thesis, we research how COs of Web sites can be automatically extracted
and how they can be exploited to enhance applications such as search engine user interfac-
es.

' A definition of the term “content organization” is provided in Chapter 2.



Benefits and Relevance

Many applications would benefit from methods that allow mining the CO because the
CO represents the organization of a Web site as it is perceived and interpreted by humans.
The CO guides the human interaction with a site. The CO describes how the pages of a site
relate in detail. A hierarchical CO corresponds to a precise, well-engineered topical segmen-
tation. It allows, for instance, to identify pages that contain more specific information on the
same topic of a given page (those pages are the child pages). Machine-processing of Web-
resources becomes increasingly important at the moment and if the CO could be made
available to machines at a large scale, this information could be used in different fields. On
the one hand, for instance, applications that involve human search could be improved, e.g.
methods of indexing, ranking and presenting search results, because they could build on top
of a more fine-grained model of the site structure. On the other hand, methods that involve
the analysis of human behavior such as Web analytics or usability engineering could be
enhanced because the site structure as a major influence factor could be reverse engineered
and included in the analysis as well.

Why Hierarchies?

In principle, the usage of sequences and hierarchies for structuring documents has not
changed in centuries. But inspired by the rise of new possibilities for storing and represent-
ing content electronically, a fundamentally different way of writing and representing
knowledge has fascinated visionaries and researchers since the mid-2oth-century: Hypertext
—the idea of content chunks that are not formed into sequential or hierarchical structures a
priori but are loosely coupled by associative linking. Ted Nelson who coined the term "hyper-
text" considers it as a concept that is opposed to traditional COs: "Hypertext is non-
sequential writing" [NELS75]. In hypertexts, users can freely choose those paths through the
information chunks that best suit their information needs. The contents are presented
without predefined structures such as hierarchies and sequences.

Today, outside the research community, the term hypertext does not denote a concept
of representing information anymore but a specific implementation of a hypertext system
that outshines all others: the World Wide Web (WWW). The above quote by Ted Nelson
illustrates that not all hypertext pioneers believe that the WWW is a hypertext system
deserving this name. In the eyes of Nelson, sequential and hierarchical COs dominate the
WWW. We argue that this is true. Almost every Web site today has some kind of hierarchical
menu. Usability experts agree that hierarchical structures are "far and away the most
common" [GARR1]. But, the negative connotation Nelson attributes to sequences and
hierarchies was neither shared by other hypertext pioneers nor is it shared by today’s
experts on user experience. In a study on early hypertext systems that preceded the WWWw,
Conklin reports that 16 out of 18 considered hypertext systems support additional hierar-
chies [CONK87]. One can conclude that other early adopters considered hypertext as a
complement to traditional CO structures, not as a replacement. Up-to-date books on Web
design also recommend the use of hierarchies because well-designed hierarchies are the
"“foundation of almost all good information architectures” [MORO06]. Sequential structures
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are common as well, and it is hard to imagine a WWW without them. For instance, search
results are returned as sequential lists and it seems there is no reasonable alternative.
Nevertheless, in the following, the focus will be on hierarchies because (1) sequences can be
considered as single-level hierarchies, and (2) hierarchies provide more valuable information
(as we will see in Section 3.1).

Current Web Standards Do Not Feature Machine-Readable COs

The ability of current Web standards to encode COs in a machine readable way is lim-
ited, even though the idea of hierarchically organized contents is an integral part of the
WWW since its beginnings, which is reflected in the design of Uniform Resource Locators
(URLs), the addressing scheme used to identify resources. The path part of URLs assumes
that the resources residing on a host are arranged hierarchically, similar to a hierarchical file
system [TBLMg4]. However, URL hierarchies and the CO as it is perceived by humans diverge
and the CO cannot be extracted from URLs in general. One reason is that today’s Web pages
are generated dynamically. Thus, one resource, i.e., one URL path on a host, often represents
a multitude of different pages, which are distinguished by non-hierarchical query strings.
Another reason is that multiple hierarchy levels would lead to long URLs which are difficult
to memorize and to type. Hence, in practice, COs are not accurately represented by URL
paths. Aside from URL paths, current Web standards do not allow Web developers to
explicitly define hierarchical COs in a machine-readable way. In HTML-code, there is only a
single type of hyperlink, which can represent parent-child relationships as well as non-
hierarchical, associative relationships. Hence, these semantics cannot be distinguished on
code level and CO structures cannot be easily extracted automatically.

Challenges and Limitations of Current Methods for Site Structure Mining

Current Web standards provide great freedom of visual design. Hence, although the COs
of current Web sites are not encoded in a machine-readable way, hierarchical structures can
indeed be visualized for humans. This is achieved by grouping hyperlinks visually into
navigation elements, i.e. menus. Navigation elements reflect the semantics of the hyperlinks,
e.g., the fact that the main menu contains links to the pages of the first hierarchy level and a
local menu contains links to the siblings of the active page and its child pages and so on.
Humans can easily decode these semantics based on the page layout. Users are able to
understand which navigation elements constitute the hierarchical CO and which fulfill other
purposes. In contrast, current methods of Web structure mining, i.e. approaches for automat-
ically analyzing the structure of the WWW, do not take into account that links can have
different semantics in dependence of the navigation element to which they belong. The
fundamental model of current Web structure mining approaches is the Web graph. The
vertices of the Web graph represent documents and the edges represent the hyperlinks
between the documents. The Web graph can be derived directly from the untyped hyper-
links in the HTML markup of the analyzed documents. The Web graph is the most straight-
forward way of representing the structure of the Web or of parts of the Web. Many success-
ful solutions are based on the Web graph, e.g. well-known ranking methods such as Pag-
eRank [PBMWa9g]. But parent-child relationships cannot be distinguished from other

3



i“‘“'“ﬁ” Banoreme./Spoct [Xulbur |} (b) ’Nachrichten > Sport > FuBball > FuBball-Nationalteams
puni z Bérs

Verbraucher & Service (c)

rtseite m3 I44 4 Seite 2 von 12 b M

ateste in Brag

- Unternehmen & Markte

Staat & Soziales

Figure 1: Examples of navigation design patterns. (a) Hierarchical pop-up menu, (b) breadcrumb
trail, (c) pagination

relationship types in the Web graph and, thus, this model is not suitable for extracting the
original CO.

If neither the URL structure nor the link structure provide machine-readable hierarchy
information, the visual presentation could be automatically analyzed instead. But imitating
the human perception and conducting a visual page analysis in order to mine navigation
elements, i.e. link semantics, is a task that seems to be almost unsolvable in the near future.
Automated recognition and distinction of objects based on vision is up until now considered
as an extremely difficult computational problem [PICDo8] and general solutions are not in
sight. Even the automated segmentation of Web pages into visually distinct regions as they
are perceived by humans is challenging today (cf. Section 4.3). And even more difficult is the
task of determining the purpose of a navigation element and deriving the link semantics
based on the graphical presentation. All kind of visual characteristics such as font types, font
sizes, positions, colors, et cetera must be taken into account as well as the visual characteris-
tics of all other blocks on the page.

An Alternative Approach to CO Mining: Reverse Engineering Web Navigation Elements

In this thesis, we present an alternative way, which is based on the idea of navigation
design patterns. With the growth of the WWW, certain types of navigation elements such as
hierarchical pop-up menus, paginations or breadcrumb trails (Figure 1) have evolved and are
now used as de facto standards, even if they have not been formally defined. Users as well as
designers are familiar with these concepts. From the designer’s perspective, they can be
considered as design patterns because they represent well-known solutions to common
navigation problems. Academia and designers widely agree on the existence and im-
portance of navigation design patterns. Inspired by the concept of design patterns in
architecture and software engineering, academia has focused on collecting common
navigation design patterns (e.g. [GECO00]). Furthermore, many practical books on Web
information architecture or navigation design contain catalogues of navigation design
patterns (e.g. [KALBO7]).

The idea of navigation design patterns is the foundation of all mining methods present-
ed in this thesis, because we can base our mining methods not only on explicitly defined
standards but also on de-facto standards for implementing Web navigation. This reduces
the problem from mining for all kind of navigation elements, i.e. visually separate blocks of
links, to the problem of mining specific patterns with specific properties. We can focus on
those navigation design patterns that allow determining the hierarchical CO, e.g. bread-
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Figure 2. Approach overview. We exploit the fact that designers use navigation design patterns as
de-facto standards for implementing Web navigation. The properties of common navigation
design patterns are well-known and we can derive dedicated extraction-rules for selected
patterns.

crumb trails. Hence, instead of ignoring link semantics as done in Web-graph based mining
approaches or conducting a holistic visual analysis, we focus on well-understood patterns
that designers use to implement Web navigation (Figure 2). We exploit the knowledge about
these patterns for finding features that allow mining them. Those features are not neces-
sarily visual features because the characteristics of design patterns are also reflected in the
way they are implemented in HTML-code. Since we rely on a-priori knowledge about specific
design patterns, most mining methods presented in this thesis are rule-based. If rules alone
are not sufficient because of noise and irregularities, we apply machine-learning methods in
addition (cf. Section 6.4).

Research Questions and Contributions

In this thesis, we research how the navigation elements belonging to specific navigation
design patterns can be mined and how they have to be processed in order to regain the
original CO. We furthermore present selected applications based on CO-mining.

In more detail, the research problems addressed in this thesis are as follows:
—  Which navigation design patterns can be used for CO-extraction?

Most books on Web information architecture discuss navigation design patterns that
can be applied to transform hierarchical COs into a hyperlink structure. For instance,
breadcrumbs or pop-up menus are typical patterns for implementing navigation on hi-
erarchical COs. But the opposite direction — how the CO can be regained from the
HTML-code of specific navigation design patterns —has not been addressed yet.

—  How can those navigation design patterns that allow CO-extraction be mined? Are the
methods accurate enough to produce valuable hierarchy information?



Methods for segmenting Web pages and determining the types of the resulting blocks
have been described before. However, most of these methods do not have a particular
focus on mining navigation elements and their types. Some methods extract naviga-
tion elements in general, without discerning different types. In addition, the existing
methods have only been evaluated as part of more complex solutions. Thus, the actual
performance of existing methods for classifying navigation elements and their suitabil-
ity for CO-mining is widely unknown.

How can we evaluate the correctness of CO-mining solutions?

The CO as understood in this thesis is the content structure as perceived by humans.
Designers usually specify the CO formally, e.g. by using tables or graphs. But in the re-
sulting implementation, the CO is only visually encoded without a machine-readable
specification. Thus, to evaluate CO-mining methods at a large scale, the results have to
be compared to the human interpretations of the visual design.

Which new possibilities arise from the availability of CO-information?

Although Web structure mining is a lively field of research and all information that can
be used for indexing, ranking and searching Web resources is considered to be very val-
uable by the research community, few existing works have focused on CO-mining and
consequently applications based on CO-data have rarely been discussed.

This thesis addresses the above research questions. The structure of this thesis and the main
contributions are as follows:

Chapter 2: Conceptual Approach

In Chapter 2, we define concepts and terms related to the addressed research ques-
tions and introduce the O*-model, a reference model for the structural aspects of Web
sites. Most practical literature on Web usability distinguishes between the underlying
content organization on the one hand and the hyperlink structure, i.e. navigation, on
the other hand (e.g. [GARR11], [MOROO06]). We formalize this separation of concerns and
present a model for Web navigation that consists of three distinct aspects, Content Or-
ganization (CO), Functional Organization (FO) and Page Organization (PO). In the O
model, these aspects are closely connected by transformation rules. We show that
these rules actually correspond to the well-researched navigation design patterns and
that the O*-model can be applied to describe and classify patterns. The O*-model is the
foundation of the rest of this thesis, including the analysis of related work.

Chapter 3: Problem Statement

In Chapter 3, we analyze and refine the problem statement based on the conceptual
framework developed in Chapter 2. We describe applications that would benefit from
CO-mining solutions, outline the basic CO-mining process and technical challenges.
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Chapter 4: Related Work

The tasks of the basic CO mining process (cf. Section 3.3.1) define the scope and
structure of an extensive related work review, conducted in Chapter 4.

Chapter 5: Towards a Solution

In Chapter 5, we show that graph representations of navigation elements reveal the
used navigation design patterns. We discuss a catalogue of sample patterns. Further-
more, we describe the implementation and evaluation of a basic method for mining
navigation elements. Mining navigation elements has been a side-issue of previous re-
search on Web mining. The common approach is to extract textual, structural and visu-
al features of page segments to identify navigation elements. However, these methods
have not been evaluated previously since they were only used as part of larger solu-
tions. We implemented and extended conventional methods and demonstrate their
limits.

Chapter 6: The GRABEX-Approach

In Chapter 6, we introduce the Graph-based Block Extraction (GRABEX) approach for
mining navigation elements, an accurate and efficient approach that overcomes the
limitations of conventional methods. GRABEX is based on link analysis but in contrast
to previous approaches, it does not analyze the links between entire pages but between
page blocks that potentially belong to the same navigation element. Whether or not
these page blocks represent a valid navigation element is revealed by characteristic
graph patterns. The proof of concept is delivered by the presentation and evaluation of
CO mining solutions based on GRABEX. We introduce two dedicated instances of the
GRABEX-approach, which focus on mining navigation design patterns that are particu-
larly suitable for extracting the hierarchies. The first GRABEX-instance is the Menu-
Miner-algorithm, which allows the efficient extraction of menus that represent hierar-
chy levels. We demonstrate that the method can be applied to detect site boundaries
more accurately than previous solutions. We propose additional rule-based algorithms
to process the extracted menus and reassemble the underlying hierarchies. An exten-
sive evaluation shows that the method performs with high precision and good recall.
The second GRABEX-instance allows the extraction of breadcrumbs. In an evaluation,
we found that it is able to achieve perfect precision and a good recall. Thus, we are the
first ones to describe an applicable solution to the breadcrumb mining task.

Chapter 7: Augmentation of Search Results with Site Structure Information

In Chapter 7, we focus on applications that benefit from CO-mining, in particular search
engine user interfaces. By analyzing the usage data of three highly-frequented Web
sites, aligned with the hierarchical CO-structure, we show that the availability of CO-
data provides new insights. We found for all of the three analyzed sites that the CO-
structure strongly influences the navigation behavior. Users tend to navigate down, fol-



lowing the edges of the hierarchy. We discuss the implications for the design of search
user interfaces and we conclude that hierarchy information can help users save clicks.

The contributions presented in this thesis have been partially published in:
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2 CONCEPTUAL APPROACH

In the introduction of this thesis, we argued that Web sites have predefined hierarchical
COs, which are visually encoded and differ from the hyperlink structure. In contrast to many
previous methods in the field of Web mining (e.g. [BORS92], [MLGR98], [DUCHo0], [CLZCos5)],
[LYHL10] or [HOEX12]), we claim not to generate new hierarchies but extract existing, though
not easily machine-readable, structures. By existing, we mean that the hierarchical COs have
been conceptually created by designers. Although the hierarchical CO is embedded in a non-
hierarchical data structure (the hyperlink structure) it can be decoded by human observers
based on the visual design (Figure 3). Developing a deeper understanding of the process
depicted in Figure 3 and the nature of the involved objects is crucial to formulating the
problem statement, assessing related work as well as for evaluating and developing solu-
tions: In this thesis, we are developing methods for automatically analyzing a hypertext
system in order to retrieve the hierarchical structures that correspond to the COs observed
by human users. Hence, we clarify our perspective on the hypertext system WWW in Section
2.1. Since COs do not correspond to physical objects, we analyze the nature of COs and
operationalize the fuzzy concept by providing working definitions in Section 2.2. Further-
more, the CO implementation process and in particular the role of navigation design pat-
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Figure 3. Creation and observation of hierarchical COs
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terns is examined in Section 2.3 because the resulting observations provide the basis for the
solutions presented in this thesis.

The conceptual approach taken in this thesis, including the underlying perspective on
the hypertext system, the definition of a CO and the relationship between these aspects is
subsumed in the O*-model (Figure 4). In the O*-model, we distinguish three different as-
pects: The content organization (CO), the functional organization (FO) and the page organi-
zation (PO). The CO models the logical organization of the content as graph on labels, each
of which is associated with a content chunk. The FO represents the possible page transitions,
i.e. the link structure. The PO describes the organization on page level, including the pre-
sented content, the page structure and the page presentation. To analyze the implementa-
tion process, we assume rational designers, who are trying to maximize usability with
minimal effort. Such designers will specify the FO and those parts of the PO that are related
to navigation by combining well-engineered and site-specific COs with simple, common
menu patterns. We will refer to these menu patterns as navigation design patterns (cf.
Section 2.3). Based on the O°-model, we conclude that the key to successful CO mining is
reverse engineering navigation design patterns. While the focus of this thesis is on reverse
engineering menus, the engineering perspective can also benefit from the concepts devel-
oped in this chapter as the GAPD-notation described in Appendix A demonstrates.

An overview over the terms that are introduced in this chapter can be found in Table 1.
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Table 1: Overview over terms introduced in this section

Terminology Overview

Aspect Term Introduced in
Content Site Section 2.1.1
organization (CO) Labels Section 2.2.2
Self-explanatory relationships Section 2.2.3
Content chunks Section 2.2.4
Content organization Section 2.2.5
Organizational schema Section 2.2.5
—  Taxonomy Section 2.2.5
-~ Sequential schema Section2.2.5
- Associative schema (Hypertext) SECt!O” 2.25
- Database-Schema Section 2.2.5
Functional Functional Organization Section 2.1.2
organization (FO) Navigation design patterns Section 2.3.2
—  Horizontal / vertical / global / local menu Section 2.3.2
Page organization - Breadcrumb Section 2.3.2
(PO) Navigational block Sect!on 233
Navigation element Section 2.3.3
Navigational block /navigation element type Section2.3.3
Page organization Section 2.1.3
Page structure Section 2.1.3
Page content Section 2.1.3
Page presentation Section 2.1.3
Page block Section 2.1.3

2.1 The Hypertext System: FO and PO

In Section 2.1.1, we will clarify the hypertext system model that we assume and discuss
its generalizability. In the O>-model, the hypertext system is represented by the FO and PO,
which will be discussed in Section 2.1.2 and Section 2.1.3 respectively.

2.1.1  Choice of Perspective

The focus of the Web mining methods discussed in this thesis is neither on analyzing
individual pages nor on analyzing the entire Web. Instead, we are analyzing collections of
closely related pages, so-called Web sites. One domain can host multiple Web sites: Figure 5
shows four pages hosted under the same domain. Pages a) and d) are similar with respect to
the visual design, the navigation mechanisms and the topics. The same applies to pages b)
and c). But comparing both pairs to each other, we can identify differences regarding these
aspects. One would say that pages a) and d) originate from the same site and pages b) and c)
originate from another site. There are few attempts in literature to define the term site (e.g.
in [MEMFo7], [ALCZ10]), which usually agree that the pages of a site have at least 1) a
common entry point, 2) consistent styles and 3) shared navigation mechanisms. We adopt
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Figure 5. Different sites hosted under the same domain name. Pages a) and d) originate from the
same site, pages b) and c) from another.

this understanding of a site. Since a common entry point and a shared navigation mecha-
nism imply a shared CO and FO, while consistent styles imply a shared PO design, we can say
that a collection of Web pages with shared CO, FO and PO is called a Web site.

2111 Hypertext System Model

The focus of this thesis is on the CO as it is perceived by human users and how it can be
mined automatically. In the client-server architecture of the WWW, both, human users and
Web crawlers represent the client-side. Thus, the client-perspective is adopted in this thesis.
We abstract from all server-side data management and business logic because these aspects
are hidden from users as well as from Web crawlers. In the original design of the WWW, the
client-perspective was simple: User agents retrieved static HTML pages from Web servers.
They parsed the HTML code to render the visual representation. Documents contained
hyperlinks to other static HTML pages. User interaction was limited to proceeding from one
document to another by the use of hyperlinks. We adopt this fundamental perspective and
consider a Web site as collection of linked pages. The PO describes the visual organization of
the pages, while the FO represents the hyperlink structure. All analyses and methods
presented in the remainder of this thesis will assume this fundamental hypertext system
model.

2.1.1.2 Generalizability of the Hypertext System Model

Applied to today’s Web, the fundamental hypertext system model is a simplification be-
cause user interactions are not limited to moving from one URL to another by clicking
hyperlinks. For instance, Web forms can be used to submit search queries or other data and
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user actions can trigger client-side scripts that manipulate the document using the DOM®
APl without retrieving an entire new document from a different URL. However, the hyper-
text-navigation model is appropriate for addressing the research questions of this thesis:

- From an information architecture perspective, the appearance and behavior of the
user interface matters but not how the changes in the state of the Ul are imple-
mented. From this perspective, it makes no difference, whether the DOM is modified
on the client-side or whether a new page from a different URL is loaded when a user
clicks on an element. Both can be considered as valid transitions according to the hy-
pertext navigation model. However, from the Web crawling perspective, the differ-
ence matters, because crawling client-side modifications of the DOM is challenging
and a research topic on its own [CDMM12]. However, Web developers are aware of
this fact and usually implement Web sites in a way that all important information
can be accessed without Javascript execution to ensure their availability to search
engines. The Web crawling experiments conducted in this thesis are also based sole-
ly on following links and do not involve the execution of Javascript — with good suc-
cess as the evaluations show.

- Aside from content that can only be accessed via Javascript execution, Web forms
that require user input represent a barrier that Web crawlers cannot easily cross. For
example, Web contents that can only be accessed by keyword search are difficult to
retrieve by Web crawlers, even though some strategies exist (e.g. [MKKG08]). How-
ever, this is a general problem of Web crawling and not specific to the methods pre-
sented in this thesis. The so-called hidden Web can be mapped on the hypertext-
navigation perspective if each possible form entry is considered as a hyperlink and
each follow-up state is considered as an individual Web resource.

2.1.2  The Functional Organization

While the CO defines semantic relationships, we consider hyperlinks, which form the FO,
solely as page transitions. CO and FO are not merely two stages in the design process but
describe different aspects. The distinction of both aspects is not only suitable in case of
hierarchies. To illustrate this, we consider an example from the physical world: a book. The
book pages are obviously arranged sequentially and, hence, the CO can be thought of as a
linear graph. However, a reader does not have to traverse the pages in this order. For exam-
ple, from the first page he can proceed to any other page of the book (Figure 6(a)). These
options for navigating define the FO. In the digital world, there are many different ways of
implementing the FO on top of a sequential structure. For example, image galleries can
often be traversed only in a strictly sequential way (Figure 6(b)). In other cases, the FO allows

? Document Object Model (DOM) is an API specification that allows an object-oriented manip-
ulation of structured documents such as HTML instances (http://www.w3.org/DOM/). In contrast
to the definition, the term DOM is commonly used — also in this thesis — to denote not only the API
but also the browser’s internal representation of the document.
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Figure 6. The FO differs from the CO. (a) The pages in a book are arranged sequentially (CO) but a
user may jump from a specific page to any other page. (b, ¢) The possible transitions between
pages presented on a screen depend on the FO. In example b) users are able to proceed to the

successor of the active page while they can proceed to one of the next three pages in example c).

skipping a defined number of pages (Figure 6(c)) or jumping directly to the first or last page.
The CO models characteristics of the content. In contrast, the FO models characteristics of
the content and the medium used to present it.

21.3  The Page Organization

So far, we only considered pages as atomic nodes in the FO. However, navigation design
patterns, which are the foundation of the mining methods present in this thesis, also have
implications on the structure and design of individual pages. We need to consider these
aspects in order to implement successful CO mining solutions and hence, integrate them
into our model. We refer to the page-related aspects as page organization (PO). In our
model, Web pages consist of chunks of informative content and outgoing hyperlinks. The PO
is the way in which hyperlinks and content chunks are arranged and decorated on a page.
We distinguish three PO layers: content, structure and presentation (Figure 7). This corre-
sponds to the document model proposed by the W3C in the Web Content Accessibility
Guidelines 1.0 [WCREQQ]. According to the W3C recommendation, the content is what the
document “says to the user” [WCREQQ], structure is given by the logical organization of the
document and the presentation is the way the document is rendered. We specify the layers
in more detail and adopt them in the O*-model:

—  Page content: The page content is given by the content chunks and hyperlinks that are
presented on the page.

—  Page structure: The spatial arrangement of the content on the page is called page
structure. In contrast to the definition by the W3C in context with the Web Content Ac-
cessibility Guidelines [WCREQQ], structure is not understood as the logical organization
of the page but as the basic layout. This understanding of structure corresponds to a
wireframe model (Figure 7), which is commonly used in current Web design practice.
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Wireframes are abstracted presentations of the visual design that lack colors and other
decorative elements.

— Page presentation: The presentation layer includes all further aspects of the visual
design such as colors, fonts or decorative elements.

A wireframe model typically divides a page into a number of rectangular areas that serve
different purposes (e.g. page header, main content, menus, etc.). The wireframe model
illustrates the arrangement of these functional blocks on a page, not the graphic design and
the visual borders. However, the functional blocks are also distinguishable in the final
graphic design (cf. Figure 7), i.e. the page presentation layer. This is required because users
must be able to distinguish these areas and understand their purpose in order to interact
with a Web site. We refer to these rectangular areas that are visually separated from their
surroundings as page blocks. Depending on the context, the term is also used to denote the
markup code that corresponds to the area. Page blocks can be nested, i.e. a page block can
contain other page blocks. Visual separation does not always refer to explicitly drawn
boundaries. Different background colors or delimiting white spaces can also separate page
blocks in the eyes of the users. The underlying mental processes are complex — an own
branch of research, Gestalt psychology, has focused on the laws of perceiving shapes and
their boundaries (cf. Section 3.3.2).

Web sites are visual media and the page organization defines the final appearance.
Thus, the CO and the FO are communicated through the PO. This means, that users must be
able to understand the logical structure of the contents (CO) and the possible next naviga-
tion steps (FO) based on the visual presentation.
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2.2 The Perceived Organization: CO

While the components of the FO, pages and hyperlinks, correspond to physical entities,
this does not apply for the CO. Hence, we provide formal definitions for the components of
the CO in order to clarify our model.

If designers want to specify a hierarchical CO, they can simply draw a tree-structured
graph on the whiteboard or create a nested bullet list. In these typical representations, the
pages are represented by their titles. The mathematical equivalent would be a tree-
structured graph, whose nodes are textual labels. While a hierarchical CO can always be
thought of as tree on labels, not all trees on labels are potential COs. There are special
characteristics that such trees must fulfill in order to be a potential CO that could be used to
organize a Web site. We analyze these characteristics in Section 2.2.1 and find that 1) labels
must to be meaningful, 2) relations must be self-explanatory and 3) labels must describe the
content well. The definitions in Section 2.2.2 (labels), Section 2.2.3 (self-explanatory relations)
and Section 2.2.4 (descriptive label assignment) follow these observations.

2.21 Definition Approach

To motivate the definitions provided in this section, we consider the most basic and in-
tuitive hierarchy browsing scenario: A users arrives at the homepage of a site and descends
the hierarchy in order to locate some specific information. Based on this fundamental
scenario, we derive properties that COs must have to fulfil their purposes. These properties
are used to formulate working definitions afterwards. In the basic scenario, we assume that
a user arrives on the homepage of a site seeking specific information. The hierarchy consists
of labels which are associated with pages. On each page, only the labels of the child nodes
are displayed to identify the corresponding links. We assume that the user has an idea
about the probable label of the page of interest and that this page is not located at the first
level of the hierarchy and, hence, not linked on the homepage. We can now ask, which
requirements the hierarchy must fulfill to allow the user to navigate to the page of interest:

—  First, the user must be able to decode the meaning of each label in order to make the
right decision.

— Second, he must be able to understand that it makes more sense to associate the page
of interest with a specific first level node (the correct branch) than with the other first
level nodes. This means that he must be able to decode the meaning of the tree edges
with no other information at hand except the link names. In this sense, the relation
must be self-explanatory.

— Third, if the user reaches a destination page directed by the link labels, navigation was
only successful if the information he is seeking for is really located on this page. Hence,
it is required that the labels and the content match.

We define COs as structures that fulfill all three requirements.
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2.2.2 Labels

Term definition 2-1 (Labels) A label is a textual or visual symbol that different human inter-
preters associate with similar mental models.

One difference between a random graph of labels and a (potential) CO is that the CO is
“meaningful” or, in other words, the graph edges represent semantic relationships. Figure
8(a) shows a hierarchical structure that has semantic edges. In contrast to the structure
shown in Figure 8(b), the edges intuitively “make sense”. If we assume that the structure
shown in Figure 8(a) is the CO of a Web site, we can state that it is a reasonable way of
organizing the content based on the labels, i.e. page titles —without even knowing the actual
content. The site could offer operating instructions for various products, but it could be a
shopping portal or a store locator as well. Thus, in the O*-model, COs are modeled as graphs
on labels not as graphs on content objects. As labels we consider symbols that carry mean-
ings. To clarify what this means, we use the concept of mental models in our definition.
Mental models have been proposed in the field of cognitive sciences [GEST83] to explain
human thinking and problem solving. Mental models denote abstractions of real world
entities in our minds, or, in other words, the data-objects on which our mind operates. For
example, we consider the textual symbol “Kitchen” as a label, because human interpreters
would associate it with a similar real world entity, which means that they agree on the
meaning. In contrast, the symbol “aaaaa” is not a label, because it has no agreed-upon
meaning. The agreed-upon meaning of a symbol is essential for its suitability as a vehicle for
communication, which requires that consumer (user) is able to decode the intended mes-
sage of the sender (designer). In the context of this thesis, labels have the purpose of
describing the content of Web pages.

a)

— Kitchen & Dining
—> Furniture & Décor
Home, —> Bedding & Bath
Garden & Pets s
Home,
Garden & Tools — Home Improvement
Tools, —> Power & Hand Tools
Home Improvements 7:: Lamps & Light Fixtures

Excerpt of the Amazon product taxonomy, http://www.amazon.com

Electricity ———— > Horoscope

Cat

Onion —— > Triangle

Figure 8: Two hierarchies of labels. Obviously, example a) can be used to organize the contents of
a site in an appropriate manner because the relations “make sense”, while example b) is not
useful for organizing the contents. We would consider example a) as a valid CO, in contrast to
example b).
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2.2.3 Self-Explanatory Relationships

Term definition 2-2 (self-explanatory relationships): Given a relation R € L x L on a set of
labels L, R is self-explanatory if different human interpreters are able to map the relation on
mental associations with similar semantics.

This means that a relation on a set of labels is self-explanatory if the meaning of the re-
lation is obvious to humans. The difference between the two structures depicted in Figure 8
is that the edges in Figure 8(a) are self-explanatory, while they are not in Figure 8(b). The
idea of Term definition 2-2 is illustrated in Figure 9. According to the definition of a label,
humans are able to associate labels with mental models. In case of a self-explanatory
relation, humans are also able to map each tuple of labels in the relation on a mental
association between the two corresponding mental models. Since the purpose of our
considerations is a term definition and not gaining insights into the field of cognitive
sciences, we think of a mental association simply as an obvious logical connection between
two things or, more precisely, between their cognitive representations, i.e. mental models.
For example, humans would agree that there is an obvious connection between the con-
cepts “car” and “steering wheel”, which is that a steering wheel is part of a car. At the same
time, for instance, the association between “soap” and “rhinoceros” is much more difficult
to find. Another aspect of the definition is that it requires semantic similarity of the mental
associations two individuals have. This means that two individuals must agree on the
meaning of the connection associated with a tuple of labels.

2.2.4 Descriptiveness of Labels

We require that a label is associated to a piece of content in a way that it describes the
content well. To be more precisely, a label creates expectations about what information a
user can gain from a piece of content. This is a two-step process (cf. Figure 10): First, a user
decodes the label itself (e.g, he understands the meaning of the word “contact”) and,
second, he hypothesizes which information he can gain from the content denoted by the

i Data 'i' Semantics

Interpretation
Label |, | I . Mental model M,

Interpretation
(I, 1)eR Semantic relation

Interpretation
Labellzl I .’ Mental model M,

Figure 9. Self-explanatory relationships.Tuple of labels are considered as self-explanatory
relationships if humans are able to associate them with agreed-upon meanings. For instance, a
tuple (kitchen, oven) “makes sense” in a way that the connection between the labels (which
represent mental models) is obvious.
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[ ]
i Data 'H' Semantics
Interpretation
Label | I .’ Mental model
Label Expectation
assignment

Interpretation A
Content ‘ e = e

chunk
Information  Expected
gained from  information
content chunk

Figure 10. Descriptiveness of labels. An assignment of labels to content chunks is descriptive if the
expectations about the available information created by the labels match the actual information
that can be gained from the content.

label (e.g., he assumes that he will find email and postal addresses on a page). At this point,
it becomes clear that it is useful to assume that the pieces of content we are dealing with
can be generally exploited by humans to gain information®. Hence, we introduce the term
content chunk as follows:

Term definition 2-3 (Content chunk): A data object is called content chunk if it can be exploited
by humans to gain information.

Humans are able to gain information from a data object if they are able to decode the
semantics. A data object can be everything, for example a word, a paragraph, a book or a
picture. We can apply different levels of abstraction: Single sentences or pictures are regard-
ed as content chunks, but also larger aggregations of content. Although the “page”-concept
is not part of the CO but the FO in the O*-model, we can assume that the content chunks we
are dealing with correspond to the content of an entire Web page each. While all definitions
also apply to content chunks on a sub-page level, these fine-grained structures are beyond
the scope of this thesis.

Term definition 2-4 (Descriptiveness of labels): Given a set of labels L, a set of content chunks C
and a relation A € L x C that assigns labels to content chunks; A is called a descriptive label
assignment if for each tuple (I, c) € A the information that users expect based on the mental
model inferred from Lis similar to the information that can actually be gained from c.

With Term definition 2-3, we can say that a label assignment is descriptive if the ex-
pected information matches the information that can be gained from a content chunk
(Figure 10). For example, the label “shop” triggers a mental model of a facility or service that
allows purchasing things. In context with a Web site, it creates the expectation of an entry
page to a Web store. If the label is assigned to a content chunk that represents such an entry

3 We use the term information to denote meaning attributed to a message (data) by humans
(cf. Goos and Zimmermann [GOZlo6])
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Das Auto. Product World  Innovation & Technology =~ Volkswagen Live | Company

Models

Commercial Vehicles

Das WeltAuto

Genuine Parts

Genuine Accessories

Figure 11. A hierarchical CO implemented as a pop-up menu*

page, i.e. if the menu item “shop” really links a store entry page, the user expectations are
met and the label assignment is descriptive according to the definition.

2.2.5 Content Organization and Organizational Schemas

Term definition 2-5 (Content organization, CO): A self-explanatory relation on a set of labels L
is called content organization of Web site W if a descriptive assignment of the elements of L to
the content chunks provided by W exists.

We define the term CO based on the introduced concepts. To summarize, a CO of a Web
site consists of a set of labels on which a relation is defined. Human interpreters agree on
the meaning of the labels and are able to infer the meaning of the relation. In addition, the
labels are assigned to the content chunks, i.e. pages, of a Web site in a way that the user
expectations are met. To illustrate this, Figure 11 shows a screenshot of a Web menu that
represents a CO (or a part of a CO). Humans are able to associate meanings with the menu
items (“Product World”, “Innovation & Technology”, etc.), thus they are valid labels. Parent-
child relationships are visually encoded, e.g. it is obvious that the label “Model” is a child of
“Product World”. The relation is self-explanatory because humans can infer the meaning of
the relation, e.g. that all the child items of “Product World” refer to products of the brand.
Each label is linked with a Web page (content chunk) that contains the expected infor-
mation. Hence, the labels are assigned to content chunks in a descriptive way and we can
conclude that the underlying structure is a CO according to our definitions. It should be
pointed out here that the menu shown in the figure only represents the CO. The CO is the
graph structure that is underlying the menu.

For readability, we will not always strictly follow the terminology introduced in this sec-
tion: According to the proposed definitions, the CO is a relation on labels and not on the
content chunks or the pages themselves. However, each label is associated with a specific
content chunk and page. Hence, whenever reasonable, we will not explicitly distinguish
between a content chunk, the containing page and its label.

* Source: http://en.volkswagen.com/en.html
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We can distinguish different types of COs in dependence of their graph structure, e.g.

hierarchical COs and sequential COs. We will refer to the type of a CO as its organizational
schema:

Term definition 2-6 (Organizational Schema): An organizational schema denotes a subset of
all possible COs whose graph-structures have specific characteristics.

Although the focus of this thesis is on the hierarchical schema, we will also shortly dis-

cuss other schemas in the following because the framework developed in this section is not
limited to hierarchies. We propose to distinguish four different organizational schemas (cf.
Figure 12):

Hierarchical schema (taxonomy): A CO is organized according to the hierarchical
(taxonomical) schema if the graph-representation of the CO is an arborescence, i.e. a di-
rected tree in which all edges are directed away from the root. In a hierarchical CO, the
nodes, i.e. labels, can be considered as classes. Each label describes not only the associ-
ated content chunk but all content chunks associated with descendant labels. For ex-
ample, if the structure shown in Figure 8(a) is the CO of a Web site, the label “Home,
Garden & Pets” describes not only a single page but also the pages that are associated
with the child labels. Hence, hierarchical COs can be considered as hierarchical classifi-
cation schemas, i.e. taxonomies. In this thesis, we will use the terms hierarchical sche-
ma and taxonomy synonymously.

Sequential schema: A CO is organized according to the sequential schema if the graph-
representation of the CO is a linear graph. A linear graph is an arborescence without
branches. The sequential schema is used to arrange content chunks in a strict linear or-
der. For example, if a long article is split up into multiple pages, these pages are ar-
ranged sequentially, because it only makes sense to traverse the pages in the original
order. Another example is a photo gallery in which the images are arranged chronologi-
cally.

a) b)
4] d)
Year Genre
D . .
Writer E Movie Director
Actor

Figure 12. Organizational schemas: a) Hierarchical, b) sequential, ¢) associative and d) database

schema.
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- Associative schema: A CO is organized according to the associative schema if the graph-
representation of the CO is not based on a specific pattern. The edges associate related
labels without following a fixed schema. In both the hierarchical and the sequential
schema, a single node exists from which all other nodes can be reached and that has no
incoming edge itself. Such an entry node does not necessarily exist in the associative
schema. Hierarchical and sequential organizational schemas can be used to organize
traditional media, e.g. books, as well, but the associative schema is strongly connected
to the idea of hypertext. The content chunks are not pushed into fixed organizational
schemas but are loosely coupled by associative linking. Nelson, who coined the word
hypertext, had the associative schema in mind (cf. [NELS75]). Based on the proposed
framework, we can describe the concept of hypertext as follows: A CO that is organized
according to the associative schema is called hypertext if the labels are themselves part
of the content chunks. In hypertext, the labels are not separated from the content. In-
stead, parts of the content (usually words, phrases or images) are linked with other con-
tent chunks.

— Database schema: The database schema is another way of organizing content chunks,
which are, in this case, database records. Although more powerful representations such
as entity-relationship models (cf. [CHEN76]) are used to model database schemas, the
basic structure of a database schema can be represented as a relation on labels as Fig-
ure 12(d) illustrates. The labels in the database schema do not describe individual con-
tent chunks but types of content chunks, for example author names. Web sites that al-
low browsing a large number of similar structured information chunks follow the data-
base content organization if there is a fixed linking schema (e.g. if product summary
pages always link a product gallery and a product detail page on a shopping site, or
movie pages always link pages about the featured actors on a movie database site).

Often, multiple COs are used to organize the contents of a Web site. For example, the
high-level organization of a page might be hierarchical but some sections might follow the
database schema. In addition, an associative schema might be used link related pages.

2.2.6 Discussion

We aim at clarifying that hierarchies have special characteristics and are useful for a
broad range of applications because they carry meaning. But meaning is attributed by
humans and, thus, humans come into play. Human interpretation is fuzzy and defining a
model that includes aspects of human interpretation and that is simple enough to be
applicable in the context of this thesis is challenging. To solve this problem, our definitions
are based on the following assumptions:

e The focus is not on a detailed and accurate model of human interpretation but on a
detailed and accurate model of the design aspects of interactive media. We model hu-
man interpretation in a naive and straightforward fashion, without considering current
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research in the fields of cognitive sciences or neurolinguistics. Instead, the focus is on
clarifying the nature of the design aspects. For example, mental models have been dis-
cussed in depth in several fields of psychology [GEST83]. But in this thesis, the term can
be understood in a literal sense, without the psychological background — as a mental
representation of a real-world entity. Whether human thinking and reasoning is really
based on mental models is irrelevant in the context of this thesis. What matters is that
the idea of mental models can be utilized to define our model.

The focus is on clarifying the nature of the three design aspects and not on providing a
method for discerning whether a given object is a valid instance of the O*-model in the
individual case. For example, we define a label as a symbol on whose meaning human
interpreters agree. Because a label means the same thing to different individuals, it can
be utilized as a vehicle for communication. This characteristic explains the nature of la-
bels but does not allow discerning labels from symbols that are not labels in non-
obvious cases. This is because a label will never mean exactly the same thing to two dif-
ferent individuals. It is also unclear how to determine the overlap of meaning for two
individuals and a given label. However, an empirical test could be developed and practi-
cal thresholds could be identified — but this is beyond the scope of this thesis.

We assume an idealized perspective and abstract from usability flaws. We illustrate
this, again, by the example of the term label. We assume that a label is a symbol that
has an agreed-upon meaning (cf. section above) and that all link names are labels. In
practice, this is not always the case. Some link names might be misleading and difficult
to interpret. But we can assume that rational designers strive to use symbols as link
names that fall under the proposed definition of a label in order to maximize usability.
Thus, in practice, link names typically are labels, with few exceptions due to usability
problems. Therefore, it is reasonable to simplify and assume the absence of usability
problems.

We assume a homogeneous target audience. Some of the proposed term definitions
rely on the distinction whether two individuals agree on the interpretation of a thing.
But given a group of people, some pairs of individuals might have a shared understand-
ing while others have not. However, we disregard these cases. This simplification does
not limit the applicability of the O*-model because it is in accordance with the design
objectives. For example, all target users should be able to understand a link name, thus,
only symbols should be used on whose meaning all target users agree, i.e. labels. If it is
not possible to find labels that fulfill this requirement, the target audience must be di-
vided and separate labels must be specified for each group. This is necessary, e.g., if the
target audience includes an English speaking community as well as a Chinese speaking
community.
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2.3 The Implementation Process: Navigation
Design Patterns

Although a hierarchical CO must have certain properties for being suitable in the basic
browsing scenario (cf. previous section), such a tree structure alone would not represent an
appropriate FO in the eyes of a rational designer. If the edges of the CO would be mapped
directly onto hyperlinks, users would only be able to navigate downward in this tree struc-
ture. Users should at least be able to return to the homepage (root node) from all other
pages. Typically, there is not only a link to the homepage but to all pages of the first hierar-
chy level on each page and to the siblings of a page, too. However, many different variations
are possible (cf. examples in Figure 13). In all these examples, the edges extending the tree
structure can be described by few simple, schematic rules. We can assume that a rational
designer will act in a very similar way by not making design decisions involving individual
links but by making design decision involving general transformation patterns. In fact, the
benefit of using common design patterns for implementing Web navigation is widely
agreed-upon in academic and practical literature.

We can consider navigation design patterns as patterns that, on the one hand, define
how the CO is translated into the FO and, on the other hand, determine certain aspects of
the PO®. For example, a typical pattern specifies that from each page in a hierarchical CO, the
ancestors, the siblings and the child pages are accessible. In fact, considering navigation
design patterns as transformation rules is a new perspective on a well-known concept. This
alternative point of view allows are more systematic pattern analysis and classification.

2.3.1  Navigation Design Patterns: An Established Concept

Patterns for designing Web navigation have been widely discussed in academic and
practical literature, although they have not yet been described as rules transforming CO
structures into FOs. Inspired by the concept of software design patterns for object-oriented
programming languages, academia brought up the idea of patterns for hypermedia design
in the late 1990s. Design patterns are well-understood and well-documented solutions for
common design problems. When adopting design patterns in the area of hypermedia
development, not only the idea of providing templates to solve recurrent problems played a
role. Design patterns also provide a shared vocabulary within development teams and
improve communication [ROSG97]. Rossi et al. [ROSG97] were among the first to introduce
hypermedia design patterns in the year 1997 and in the following years a number of design
patterns were proposed and described by different authors. German and Cowan [GECO00]

> In the following, we will focus only on the aspects of the PO that are related to the interac-
tive elements, i.e. spatial arrangement and visual presentation of the hyperlinks not on the design
of the entire page.
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Getting started

&&A&éééé 66}‘66666

Source: http://msdn.microsoft.com

Media | Responsibilty | Careers

< Relatises  Reporting nd Everts A Reisases

2013 66&66666 66}166666

Raporting and Events:
re:

2012 201 Archive

Deutsche Bank reports second
income taxes of EUR 782 million|

@ Active page O Linked pages

Cornorata Gonarmane
Source: http://www.db.com

Figure 13. Examples for different patterns of menu behavior. a) The menu contains links to the
child pages, the siblings, the parent and all first level pages. The siblings of the second level are
collapsed. b) The menu contains links to the child nodes and all ancestors. Siblings of ancestors
are collapsed. ¢) The menu shows the first level of the hierarchy. d) The menu contains links to the
child pages, the siblings of the active page, the parent and the siblings of the parent.

made an attempt to list all proposed patterns in the year 2000 and gathered more than so
patterns.

Although research interest has moved away from hypermedia design patterns, they are
an integral part of Web design today. Many practical books on Web user interface develop-
ment contain collections of hypermedia design patterns (e.g. [MORO06], [KALBo7]). The
main reason, why Web design heavily relies on design patterns today was not discussed in
the early academic works on this topic: Not only designers benefit from design patterns but
also users. Over the years a set of design patterns has evolved as de-facto standards, e.g.
breadcrumbs, tag clouds or navigation tabs (see [TOXB13] for a description of these pat-
terns). Those patterns are solutions that are well-known, not only by designers but also by
users (although not necessarily by name). Reusing known patterns is essential in Web
design because, as Garrett remarks [GARR11], there are no instruction manuals or training
seminars for Web sites.

The academic design patterns gathered, e.g., in [GECO00] as well as more recent collec-
tions (e.g. [TOXB13]) by practitioners list not only navigation-related patterns but also other
kind of patterns, for instance, related to forms (autocomplete, captcha, etc.). In this thesis,
we are only interested in hypermedia design patterns related to navigation, hence, we use
the more specific term navigation design patterns.

25



The Implementation Process: Navigation Design Patterns

2.3.2 Categorizing Navigation Design Patterns

Integrating the concept of navigation design patterns into the 0°>-model does not only
explain the interrelation between the CO, FO and PO, it also provides a systematic way of
characterizing and distinguishing navigation design patterns.

Existing catalogues of navigation design patterns do not agree, which concepts should
be considered as patterns and which should not. They differ in granularity and often, a
pattern that can be found in one catalogue either overlaps with a different pattern from
another catalogue or has no corresponding pattern. For example, a horizontal bar represent-
ing the first level of the hierarchy (the main menu) most closely matches the general pattern
“navigation bar” in [KALBo7], which includes any “horizontal chain of plain hypertext links”®.
In contrast, the corresponding pattern from [GARR1] would be the “global navigation”,
which contains the “key access points”’, while the catalogue from [TOXB13] does not list a
matching pattern. These inconsistencies demonstrate that there is no systematic methodol-
ogy for classifying navigation design patterns. This prevents consolidating existing cata-
logues or conducting sound empirical studies in this field.

The 0*-model provides such a methodology. We can use three dimensions to character-
ize navigation design patterns and to clarify which patterns should be distinguished: the
underlying organizational schema of the CO, the implications of the pattern on the FO and
its implications on the PO. We propose that a navigation design pattern should be defined
by describing its unique characteristics regarding each dimension. Two navigation design
patterns should be regarded as distinct if they differ in at least one dimension. For example,
the horizontal main menu should be regarded as distinct navigation design pattern, which
can be specified as follows:

Navigation Design Pattern: Horizontal main menu

CO-dimension: Based on a hierarchical CO

FO-dimension: The pattern generates links to the first level of the hierar-
chy

PO-dimension: Links are arranged horizontally at the top of each page

In a similar way, we can distinguish vertical main menus, horizontal local menus (represent-
ing any other than the first hierarchy level) and vertical local menus.

Figure 6(b) and Figure 6(c) on page 14 show examples of another pattern, commonly
called “pagination” that can be defined as follows:

® Kalbach [KALBo7] uses the term navigation mechanisms, which closely resembles the con-
cept of navigation design patterns.
" Garrett [GARR11] refers to navigation design patters as navigation systems.
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Navigation Design Pattern

Pagination

CO-dimension
FO-dimension

PO-dimension

Based on a sequential CO

The pattern generates links to a fixed number of direct
predecessors and direct successors of the active element
in the sequence. Optionally, a link to the first and last
element of the sequence is provided.

Links are arranged horizontally above or below the
presented content chunk.

The focus of this section is not on providing a complete list of navigation design pat-
terns, but on clarifying the central concepts of this thesis. A design pattern that we will
consider later in this thesis is commonly called breadcrumb navigation (e.g. in [KALBo7] or
[TOXB13)). It corresponds to the pattern referred to as active reference in the more academic
publications (cf. [GECO00]). Using the proposed methodology we define a breadcrumb

navigation as follows:

Navigation Design Pattern

Breadcrumb navigation

CO-dimension
FO-dimension

PO-dimension

Based on a hierarchical CO

The pattern generates links to all ancestor pages in the
hierarchical CO, i.e. pages on the path from the root node
to the active page

Links are arranged horizontally above the presented
content chunk. Separator symbols between the links
indicate breadcrumb trails. Common separator symbols
are>and |

Breadcrumb navigations indicate the current position in the CO to the user (cf. Figure 14).
If they can be extracted automatically, the hierarchy of the entire site can be recovered.

a) IBM Software > Cloud & Smarter Infrastricture 5 Soltions '3 ERdpontManagement b)
Source: http://www.ibm.com

’Techno\ogy & Innovation > Safety > Prevent\on‘

Source: hitp://www.daimler.com

‘ Home > Products & Services » Commercial * Linoprint C 751 ‘

Source: http://www.heidelberg.com

000000@0

! SAP.com . Services and Support

Business Transformation ‘

Source: http://www.sap.com

@ Activepage @ Breadcrumb Trail

Figure 14. (a) Breadcrumb trails are a common navigation design pattern that (b) represents the
path to the active page in a hierarchical CO.
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2.3.3 Navigational Blocks and Navigation Elements

If a designer decides to apply a certain navigation design pattern, he implicitly specifies
hyperlinks between the pages of the site. The hyperlinks that belong to the same navigation
design pattern usually form an adjacent block on each page that can be distinguished
visually from the surrounding content. This is due to the fact that navigation design pat-
terns are not only utilized by designers but also by users because they are familiar with
these concepts. Page blocks resulting from navigation design pattern will be referred to as
navigational blocks:

Definition 2-7 (Navigational block). A page block that contains no content chunks but only
hyperlinks is called navigational block if the hyperlinks result from the same navigation design
pattern and the block contains all hyperlinks from this navigation design pattern.

A navigational block is a code snippet that corresponds to a navigation design pattern.
All pages from the same Web site usually have a similar FO and PO (cf. Section 2.1.1) and,
usually, only a small number of sample pages are visually modeled by designers, using
dedicated graphic-design software. These mockups are used as templates for generating all
pages of the site. Hence, a navigation design pattern that is specified once within a template
is often applied to a multitude of pages. This is in accordance with usability requirements
because users are not forced to reorient themselves after each page transition (cf. transi-
tional volatility [DANIo3]). After a page transition, users should find the same navigation
design patterns being implemented at similar positions on a page. From the client-
perspective, a navigation design pattern is physically manifested as all code snippets, i.e.
navigational blocks that result from this pattern. This set of navigational blocks will be
referred to as navigation element:

Term definition 2-8 (Navigation element). The implementation of a navigation design pattern
is called navigation element. From the client-perspective, a navigation element consists of the
set of navigational blocks from different pages that result from the same navigation design
pattern.

We can classify navigation elements and navigational blocks based on the navigation design
patterns from which they result:

Term definition 2-9 (Type of a navigation element / navigational block). The type of a naviga-
tion element or a navigational block is given by the used navigation design pattern.
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3 PROBLEM STATEMENT

We will refer to the problem of automatically extracting the CO based on the FO and PO,
which is introduced in this section, as CO-mining. In Section 3.1 we explain, how CO-mining,
on the one hand, can improve existing applications and, on the other hand, can enable new
applications. In Section 3.2, we present the main methodological challenges, which might
have hindered research on this subject previously and explain how we were dealing with
these challenges. In Section 3.3, we discuss the technical challenges in more detail by
analyzing the sub-tasks that are necessary in order to mine the CO.

3.1 CO-Mining Applications

If the CO can be automatically extracted from Web sites, applications in different fields
will benefit. These fields include (1) automated sitemap generation and reverse engineering,
(2) search result presentation and ranking, (3) Web analytics, (4) focused crawling (5) contex-
tual advertising and (6) Web site transcoding for mobile applications. In this section, we
explain how CO-information can be utilized in these fields. The utilization of CO information
has been discussed in most of these areas before and we pick up existing ideas. An excep-
tion is the field of search result presentation, for which we contribute novel ideas of utilizing
CO-information in Chapter 7.
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(1) Automated sitemap generation and reverse engineering: Most Web sites today are based
on a content management system (CMS). Content management is the process of collecting,
managing and publishing contents [BOIKos]. Hence, CMSs are systems that support these
tasks, e.g. by providing tools for non-technical editing, which allow users to contribute
contents without requiring special technical skills. In other words, most Web sites are built
for frequently changing contents. Thus, the original information architecture evolves over
time. Since Web sites often consist of thousands or ten-thousands of pages, the global
information architecture may become more and more unclear and unmanageable in this
process, even if the microscopic information architecture, i.e. the appearance of individual
pages is well-designed and maintained. In theory, the CMS should provide an overview over
the global information architecture. This is, however, not always the case, e.g., if the underly-
ing CMS is not well-adapted to the application or different data-sources are involved. As a
result, resource-consuming reverse engineering of the information architecture is necessary
prior to redesigning and/or re-engineering the site. With respect to the 0°*-model, this
means, first of all, to generate a model of the CO. Currently, this can only be achieved
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Figure 15. A sample page from the English KIT Web site (source:
http://www.kit.edu/kit/english/index.php). The (A) first level of the hierarchy and (B) the second
level can clearly be identified. The first level consists of 6 items.
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Figure 16. The sitemap automatically generated by the commercial tool Powermapper (Vers. 5.11,
www.powermapper.com) does not reproduce the original CO correctly. For example, the first
level of the generated sitemap consists of 26 items instead of 6.
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through time-consuming manual work, since no automated approaches for mapping the CO
exist. If a Web site is dominated by a single hierarchical CO, a model of this CO, e.g., a graph
or list, is commonly called sitemap. Up until now, it is not possible to automatically mine
sitemaps with satisfying precision, although some commercial tools exist.

PowerMapper seems to be the leading tool®, but it is not able to reproduce the CO as per-
ceived by humans (cf. Figure 15 and Figure 16)°. Previous academic works on automatic
sitemap extraction achieve only low accuracies as well (e.g. [LICC11], see also Section 4.5).
More precise approaches for mining the CO, or at least for mining certain aspects of the CO,
will lower the costs for reverse engineering the information architecture and facilitate the
redesign of large, grown Web sites.

(2) Search result presentation and ranking: Web search engines maintain an index of
crawled Web sites. If a user submits a search query, the search engine returns an ordered list
of the best-matching results for this query. But the COs of the indexed Web sites are not
available to current search engines and, hence, they cannot be evaluated in order to enhance
the ranking order and the result presentation. For example, search results from the same
site are presented as flat lists (cf. Figure 17). Information about the site section from which
the results originate or the relationships of the listed pages (e.g., whether a page is a child
page of another) is not presented to the user. Another limitation of this kind of presentation
is that it does not consider the fact that a user’s information need often cannot be satisfied
by a single page alone. Users that click on a search result often continue to navigate on the
target site (e.g. [WHHU10]). But users cannot anticipate from the result presentations
provided by current search engines, whether a search result is a good starting point for
further exploration. The integration of CO-information, especially the utilization of hierar-
chical COs, would allow several improvements:
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Figure 17. Search results from the same site are presented as a flat list by the most popular search

engines, e.g. (A) google.com or (B) bing.com. Since the COs of the sites are not considered by the

search engines, it is not obvious to the users from which section of the site these results originate
or how the pages relate, e.g., which page is a child page of another.
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First, pages that originate from the same site could be aggregated. If, e.g., several pages
from a site section match the query, the shared parent page could be returned as search
result instead of showing each individual page. The result list would be condensed and more
clearly arranged. Second, the original hierarchical structure could be depicted in the search
result presentation, i.e. the search results could be arranged not as a list but as a tree. This
would allow the users to get an idea of the global organization of the target site. Third,
hierarchy information could be used to rank search results. For example, a result page that is
an ancestor of another result page in a hierarchical CO could be placed more prominently.
Fourth, the summary of a linked search result page could be extended by the page’s child
nodes. As we show in Chapter 7, this would allow users to anticipate, whether it is worth
visiting a search result or not.

(3) Web analytics: User interactions with Web sites can directly be observed and monitored
by the vendor. HTTP-requests logged by the Web server already provide enough information
to gain valuable insights into the Web site usage. In addition, client-based technologies such
as tracking cookies can be applied to gather more detailed and precise information. The
process of analyzing the collected usage data in order to exploit this feedback information
for improving Web sites is called Web analytics. A key method in the field of Web analytics is
the analysis of clickstreams. The term clickstream denotes the trail a user leaves in the log
files, or, more precisely, the ordered list of visited pages and the dwell time on each page.
Through the log files, thousands or ten-thousands of clickstreams are usually available and
in order to be interpreted, they must be aggregated. Interpretation is relatively simple if the
ultimate goal is to maximize the number of transactions and if it is possible to identify
consecutive steps (each of which is represented by a page) that lead to such transactions.
Based on the clickstream data, the percentages of users that proceeded to the next step can
be calculated and visualized as illustrated in Figure 18. State of the art tools such as Google
Analytics'® are able to generate similar visualizations for live data. The percentage of users
that proceed from one step to another towards the transaction goal is called the conversion
rate. Conversion rates can provide important insights. For instance, the conversion rate
between the last two steps in Figure 18 is very low, which means that most of the users
cancel the checkout process. The shop vendor can now apply different changes to the Ul in
order to track which changes have a positive influence on the conversion rate.
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Figure 18. Conversion rates between different steps towards a successful transaction can be
measured and visualized.
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However, this method is not applicable for Web sites that are not transaction-based but
have an informational focus because it is not possible to identify a sequence of navigational
steps that represent a successful transaction or site visit. The analysis of dwell times is also
difficult, because a short stay on a site might indicate either that a user quickly realized that
he will not find what he is looking for or the opposite — which is that a user was able to find
the information he was seeking for in a short time. Aligning clickstream information with
mined COs would allow interpreting the user behavior on informational sites. By overlaying
the CO with clickstreams it could be identified, for example, whether users quickly find a
straight path to information they are seeking or whether they are lost on the site.

(4) Focused Crawling: Due to the rapid growth of the WWW and the enormous number Web
documents, only few industrial Web crawlers that feed the major search engines such as
Google.com or Bing.com are able to maintain an index that covers a significant proportion of
today’s Web. Other dedicated industrial crawling solutions or academic Web crawlers with
limited resources are only able to retrieve and analyze small fractions of the Web. Which
fraction of the Web the crawler downloads is crucial in most cases. Chakrabarti et al.
[CHBDg9] developed the concept of focused Web crawlers. The crawling strategy of focused
Web crawelers aims at downloading only documents that are relevant to a predefined topic.
The topic is usually specified by providing sample documents. Whether a document is
relevant for a given topic can only be verified after the document was downloaded. Thus, the
number of irrelevant documents among the downloaded documents must be minimized in
order to increase the efficiency of a focused crawler, or, in other words, a focused crawler
must be able to predict whether a document is relevant before downloading it. Once rele-
vant pages are found on a Web site, information about the CO of the site can help Web
crawlers to proceed to other relevant pages. Ying et al. [YZYH12] have proposed a focused
Web crawler that is based on breadcrumb navigations (cf. Section 2.3.2). Breadcrumb naviga-
tions allow deriving the hierarchical COs (called “semantic trees” by Ying et al.). The idea is
that each subtree of a CO contains pages with similar topics. Thus, once a relevant page was
found, it is likely that other relevant pages can be found in the same subtree. In a first step,
the crawler retrieves sample pages to determine relevant subtrees and then only those
subtrees are downloaded. However, Ying et al. evaluated the method only for a single site
and did not consider the problem of automatically extracting hierarchical COs or bread-
crumb navigations — a necessary prerequisite for the deployability of their method. Furche et
al. [FGKS12] argue that sequential COs can also be utilized to direct focused crawlers. In case
of long sequences such as the results of a Web search or a product search, the results are
paginated. If a crawler is interested in the entire result list but not in the entire content of
the site, an efficient focused crawler must be able to decode the sequential CO in order to
traverse it.

(5) Contextual advertising: Contextual advertising is the source of revenue of many content
providers in today’s Web and an important factor in the digital economy. Contextual adver-
tising means that Web pages are enriched with advertisements that fit the content. For
example, an advertisement of a car company might be displayed in conjunction with a news
article about a Formula One race. This approach aims at increasing the efficiency, i.e. at
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leading to more clicks per ad. To apply this concept on a large scale, the advertisements
must be matched automatically with the content. Thus, the advertiser usually provides
target keywords for his campaign, which can be matched with page keywords to place ads
on topically related pages. However, if no or too few keywords are assigned to a page, the
approach cannot be applied. To achieve a higher keyword coverage and improve the effi-
ciency of contextual advertising, Kumar et al. [GLPG1] utilized the hierarchical CO of a site.
Their approach is based on the idea that subtrees contain topically similar pages and thus,
keywords can be propagated buttom-up and top-down along the edges of the CO. However,
Kumar et al. rely on the URL folder hierarchy as a model for the hierarchical CO. The URL
folder hierarchy often induces a tree that approximates the hierarchical CO, but this does
not apply to the general case [KUPTo6]. More advanced methods of CO-mining will over-
come this this limitation and make CO-based keyword enrichment applicable to more Web
sites in practice.

Website transcoding for mobile clients: While Web standards such as HTML and CSS were
developed from the beginning to be adaptive to different screen sizes and resolutions, the
concept of resizable layouts has its limits if the range of target resolutions is too broad. On
the one hand, screen sizes and average resolutions have dramatically increased [NEMN11]
while on the other hand, mobile devices with small screen sizes are more and more used as
Web clients. Maximizing the usability for both scenarios cannot be achieved by simply
resizing the page elements in most cases. As a result, the contents which fit on one large
screen must be split up into multiple pages to be easily accessible on small screens or, at
least, they should be rearranged. A few years ago, most Web sites were only optimized for
large screens ([HYCDog], [HHMSo7]) but today, many vendors provide two separate ver-
sions, one optimized for PCs and one optimized for mobile devices. To avoid the costs and
effort of maintaining two site versions in parallel, research has focused on automatically
transcoding PC-optimized sites for mobile devices. Those approaches focus on the challenge
of automatically distinguishing different page blocks and determining their role and im-
portance (e.g. [CZSZo1, HHMSo7, YASHOQ]). But to generate mobile sites automatically that
resemble manually coded sites in terms of quality and usability, navigation mechanisms
must be analyzed and tailored to the use on mobile devices, too. This implies the necessity of
CO-mining, because the site structure must be extracted in order to generate appropriate
navigation elements. In other words, currently, the unsolved problem of CO mining sets the
limits for automatically transcoding sites for mobile devices.

3.2 Methodological Challenges

Although many applications would benefit, CO mining has not yet attracted much inter-
est from the research community and industry. Based on the O*-model, we argue that there
are two main methodological challenges that hindered research in this field:
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Ground truth problem: A CO represents a logical arrangement of labels (and the
corresponding contents) as designed and perceived by humans. A corresponding data
structure might be stored on the server to dynamically generate and manage naviga-
tion elements. But only the resulting navigational blocks and not the original CO data
sources are available on the client-side. Thus, it is difficult to evaluate CO mining ap-
proaches at a large scale, because the original CO is locked in the content management
database on the server-side.

To solve this problem, we rely on manually labeled data sets. This is the only way to test,
whether extracted structures reflect the COs. We have developed dedicated tools that
support human assessors and reduce the labeling effort. However, the manually generat-
ed data sets are too small to be used as training data for machine learning approaches if
the features space is large. Thus, most of the presented mining approaches are rule-based.

Visually encoded information: Humans rely primarily on visual information, i.e. the
presentational and structural layers of the PO, to derive information about the CO: (1)
The presentational layer of the PO provides information about the navigation design
pattern of a navigational block. For example, certain separator symbols between hyper-
links indicate breadcrumb navigations (cf. Figure 14). (2) The structural layer of the PO
additionally supports the identification of navigation design patterns. For example, a
breadcrumb trail is usually placed above the main content of the page. In the following
Section 3.3, we will discuss in more detail the technical challenges that arise if we want
to process visual information in order to automatically extract the CO. We conclude
that vision-based approaches will be very difficult to implement in the near future giv-
en the current state of the art.

The approaches presented in this thesis are not vision-based and the presentational layer
of the PO is not considered. According to the O*-model, navigation design patterns deter-
mine not only parts of the PO but also the FO. We show that it is possible to decode the
CO based on the FO and the structural layer of the PO. The structural layer information
that we exploit can be derived directly from the HTML structure. The methods presented
in this thesis require neither CSS information nor HTML rendering. Hence, our methods
gain CO information in a different way than humans do. However, we demonstrate that
the results correlate very well.

3.3 Technical Challenges

For humans, the CO of a Web site is obvious because humans are able to interpret the

navigational blocks and their relationships based on visual information. At the same time,
automatically extracting this structural information is challenging. In this section, we will
explain why and describe the necessary subtasks for retrieving the CO. For this, we analyze
the cognitive steps humans conduct to gain information about the CO of a site. Again, the
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focus is not on analyzing human perception and reasoning but on decomposing the prob-
lem. Thus, our examinations might be naive from the perspective of cognitive sciences, but
nevertheless, they fulfill the purpose of deriving a basic mining process.

3.3.1  Basic CO-Mining Process

The CO is visually communicated to human users through the graphical appearance of
the rendered page. Humans gain CO information from the displayed navigational blocks
such as horizontal or vertical menus. (This is obvious because one can think of any hierarchi-
cally organized Web site and then imagine a page of this site with all other content removed
except for the navigational blocks — then the CO-information is still available). Thus, naviga-
tional blocks and their types must be identified in order to extract the CO. This task is
referred to as navigational block classification in this thesis. But before the blocks can be
classified, their boundaries must be determined. Hence, the first step of the basic CO-mining
process is the conduction of a page segmentation that resembles the human perception (cf.
Figure 19). Both, page segmentation and page block classification are known problems of
Web mining, for which no general solutions exist yet (see Chapter 4).

Once the navigational blocks are extracted and their types are identified, their semantics
must be understood. For example, in order to recover the CO, the different levels of a hierar-
chy must be reassembled if each level is represented by a different menu. However, in our
basic CO-Mining process, this is the fourth step (cf. Figure 19), not the third. An intermediate

Page A Page A Page A

co
Page ) Navigational @ Navigational @ Navigation
segmentation block element element reverse
classification mining engineering

Figure 19. The problem of extracting the CO can be divided into four subproblems: (1) Segmenting
the page into visually distinct blocks, (2) identifying navigational blocks and the underlying
navigation design pattern, (3) identifying navigational blocks that belong together and form
navigation elements and (4) the interpretation of the navigation elements / navigation design
patterns.
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step is necessary, because usually the navigational blocks of a page represent only fractions
of the CO, e.g. in case of hierarchically organized sites, they show the subtree in which the
active page is located (cf. Figure 13). But we are interested in the entire CO, and in order to
retrieve it, not only the different levels but also the different subtrees must be put together.
For this, the CO-information from different pages has to be merged. If we use the approach
of reassembling the hierarchy levels on a per page basis first (cf. Figure 20(A)) and then
merging the partial hierarchies, we have to ensure that the parts are assembled in the right
way, i.e. that only subtrees are merged that really belong to the same hierarchy and that the
subtrees are attached at the right positions. However, we can achieve the same result with a
slightly different approach that makes the problem easier to handle: Instead of first extract-
ing page-based partial hierarchies as depicted in Figure 20(A), we can first mine all appear-
ances, i.e. navigational blocks, of a certain navigation element (Figure 20(B)), analyze them
and then reassemble the global hierarchy. In case of hierarchical menus, one navigation
element usually represents a single level of the global hierarchy. As illustrated in Figure 20,
approach B) first extracts the hierarchy levels separately before the hierarchical relationships
themselves are analyzed. Method A), in contrast, analyses the hierarchical relationships of
the navigational blocks for each page individually before the partial hierarchies are put
together. In this thesis, we assume a basic mining process that is based on method B), which
means that navigational element mining is conducted before navigational element interpre-
tation. This is reasonable since method B) brings an important advantage: We found that
discovering the hierarchical relationships is easier if not conducted on a per-page level but
on a per-site level because we can take more information into account.

The fours tasks will be discussed in more detail in the following sections.

3.3.2  Web Page Segmentation

Current Web pages can be thought of as graphical user interfaces (GUIs). User interac-
tions are not solely based on textual information and textual input but on visual infor-
mation and the manipulation of graphical symbols. As a result, human users have to distin-
guish page elements, i.e. page blocks, with different functionality based on visual signals in
order to interact with a Web page. A user must be able, for example, to distinguish the main
navigation, the local navigation, the page header and the main content of the page. If the
main content consists of separate objects, e.g. a number of article teasers, the user also
must be able to differentiate these objects. Thus, graphically clearly arranged and distin-
guishable page elements are an important requirement to ensure the usability of Web sites.
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Figure 20. There are two basic mining approaches: A) For all pages, the partial hierarchies are
extracted first before the partial hierarchies are joined into the global hierarchy. B) The hierarchy
levels can be joined first across all pages, before the hierarchical relationships are discovered on a
site-wide basis. We found that approach B) is easier to implement.

However, automated page segmentation by imitating the way humans discern page
elements is a complex problem, for which a general solution is not in sight. Recognizing and
distinguishing objects is regarded as an extremely difficult computational problem up until
now [PICD08]. The human ability of discerning and identifying objects is the key subject of
Gestalt Theory — a psychological school with roots in the beginning of the 20" century that
still influences research in visual perception in general [PICD08] and automated Web page
segmentation in particular, today [YASHog]. The idea behind Gestalt theory is that humans
process visual input rather based on forms and figures than based on more fine-grained,
fundamental visual characteristics such as dots, lines and colors. In other words, Gestalt
theory assumes that our visual system has the “build-in” capability of recognizing objects. “/
stand at the window and see a house, trees, sky. Theoretically | might say there were 327
brightnesses and nuances of colour. Do | have 327°? No. | have sky, house, and trees.” Gestalt
theory pioneer Max Wertheimer wrote in 1923 [WERT38]. We perceive objects even before
we are aware of its individual parts and their visual properties.

As a result, Gestalt theory has focused researching the rules that are applied by the hu-
man visual system in order to discover closed forms and figures, i.e. grouping basic visual
elements such as dots into more complex shapes. Among others, Wertheimer proposed the
rules of similarity and proximity in [WERT38]. The rule of similarity says that objects with
similar visual properties such as color, size or shape tend to appear as being grouped to-
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gether. The rule of proximity postulates that objects that are located closer to each other
compared to surrounding objects tend to be perceived as a group. Other rules have been
proposed more recently, e.g. the rule of common region, which assumes that objects within
the same bounded region tend to be perceived as a single, larger form [PALMg2]. A machine
that is able to conduct a page segmentation that comes close to the one perceived by
humans must be able to apply this kind of rules. However, even in case of pages with little
content and minimalistic design, humans seem to derive the page structure by applying
combinations of different rules. In addition, although the grouping rules seem simple at first
sight, each of it is fuzzy in practice and cannot be easily utilized in the field of computer
vision. For example, consider the page depicted in Figure 21. Humans are able to distinguish
e.g. the header, the menu and the different article teasers. We can identify to which text
snippets the presented images belong. The resulting perceived page segmentation is
outlined below the screenshot. The different blocks can be explained by Gestalt rules, which
we have annotated. For example, we can associate the pictures with the appropriate text
snippets because of the law of proximity. In the navigation bar at the bottom of the page,
we can identify two blocks of hyperlinks that differ in color — the rule of similarity applies
here. The header is confined by the boundaries of a black area, i.e. a common region.

The reason that automated visual page segmentation is so challenging is that the rules
depend on the context and that they interfere. For example, there is no absolute distance at
which the proximity rule starts to take effect. It depends on the distances to the surrounding
objects and the entire page layout. Rules can also conflict or confirm each other. Close
objects may be attributed to different groups, if they are placed inside areas with different
backgrounds and so on. To derive an adequate page segmentation automatically, a holistic
analysis is necessary that considers all complex interrelations. Although approaches for
vision-based Web page segmentation exist (e.g. [CYWMo3]), the results still differ from the
human perception (cf. Section 4.3).

The page segmentation can also not be derived directly from the HTML structure. While
the tree structure induced by the HTML-tags defines a hierarchical page segmentation, this
structure is much more fine grained. In fact, the visual segmentation is contained within the
HTML-induced segmentation because each block with distinct visual properties needs to be
enclosed in separate HTML-tags to set those properties. However, the HTML elements that
define visual blocks cannot be easily distinguished from other blocks.
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Figure 21. The discussed Gestalt laws are intuitive, but when real-world documents are consid-
ered, the complexity becomes obvious: Even in this simple example, multiple Gestalt laws seem
to take effect, e.g. law of similarity (S), law of proximity (P) and law of common region (C).

3.3.3 Navigational Block Classification

In the basic CO-mining process, the page segmentation task is followed by the naviga-
tional block classification task. At this stage, the page is already divided into blocks that
resemble the different visual page elements as perceived by humans (cf. Figure 22). The
objective is to identify the navigational blocks and to determine their types. For example,
humans can distinguish several navigational blocks with different purposes on the page
shown in Figure 22. Block (a) is a supplementary navigation that contains several shortcut
links to key pages. Block (b) represents the main navigation (i.e. the first level of the global
hierarchy), while the blocks (c) and (d) are implementing the second and third level of the
hierarchy, respectively. Block (e) consists of a breadcrumb navigation that visualizes the
current position in the global hierarchy. The blocks (f) and (g) result from contextual naviga-
tion elements, which display different hyperlinks in dependence of the page content.
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The correct identification of navigational blocks and their roles is a prerequisite for hu-
man users to be able to interact with the Web site. We will now analyze, which attributes of
navigational blocks indicate the block types to users, because these attributes must poten-
tially be considered in computer-based classification, too. We will do this based on the
example page shown in Figure 22. We are aware that the list of attributes might be incom-
plete and could be extended by the conduction of an empirical study. However, the observa-
tions based on the example page are sufficient to illustrate the complexity of the naviga-
tional block identification problem. We argue that at least the following attributes support
the block classification by the users:

Accentuation: First, we can ask, why it is obvious to viewers of the page that not block (a)
represents the main navigation but block (b). We can conclude that block (b) is more accen-
tuated. In this case, the font size is larger, the font-style is bold and the font color is stronger.
In general, the background color is another factor and also the contrast between the back-
ground and font color.

Relative and absolute position: Although the font size of block (b) is larger than the font
size of block (c), it is not apparent, which of the blocks is more accentuated, because block (c)
has a stronger background color in turn. Still, a user will not confuse the hierarchy levels
because of the order in which the blocks appear on the page. Thus, relative position is
another aspect. If both bars were located on the bottom of the page, it would be much
harder to recognize them as the site’s main navigation. Thus, absolute position matters, too.

“« n

Characteristic visual symbols: Because of the separator symbol “>” between the links of
block (e), users can clearly identify the block as a breadcrumb navigation and can distinguish
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Figure 22. Navigational block classification aims at identifying the navigational blocks and their
types, e.g. (a) supplementary navigation, (b) main navigation, (c) second level local navigation, (d)
third level local navigation, (e) breadcrumb navigation, (f}+(g) contextual navigation.
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an

it from a potential fourth level navigation. The symbol “>” has evolved as a typical character-
istic of breadcrumb navigations. Thus, visual symbols can play an important role in naviga-
tional block classification.

Textual information: On the presented sample page, the separator symbol “>” is not only
used in block (e) but also in block (a). At first sight, a user could mistake block (a) for the
breadcrumb navigation. However, the link names (e.g., “downloads”, “sitemap”, “contact”)
indicate that block (a) fulfills a different purpose and serves as a supplementary navigation.
Another example of textual information that has influence on the interpretation of naviga-
tional blocks is the caption of block (g). It indicates that the navigational block provides links

to related content. Thus, textual contents can be considered by humans, too.

Functional aspects: If the link names in block (a) would not allow distinguishing the block
from a breadcrumb navigation, a user can still learn the block type if he browses the site and
visits other pages. The user would observe how the navigational blocks behave and would
notice that the links in block (a) are not changing at page transitions. Thus, it cannot be a
breadcrumb navigation. He would also see that block (e) changes in dependence of the
active page. Thus, he learns that this page block represents a breadcrumb navigation.

Hence, a navigational block classification solution that imitates the way humans recognize
navigational block types must consider at least all the listed aspects: font-size, font-style,
font-color, background-color, absolute and relative position, visual symbols, textual infor-
mation and even functional aspects. But the major challenge is that it is not possible to
conduct the classification for each block in isolation. A holistic analysis of the entire page
layout must be conducted. For example, if the navigational block (b) would not exist, users
would assume that block (c) represents the first level of the hierarchy. Thus, the interpreta-
tion of a block can depend on the existence of other blocks. Even if block (b) would be on the
page but the font size would be very small in comparison to block (c), users would take block
(c) for the main navigation. Thus, the interpretation of a block can depend on the character-
istics of other blocks. As a result, it is very difficult to decode how all these aspects inter-
twine. We also cannot easily apply machine learning methods, because it is very challenging
if not impossible to find an appropriate set of features that captures all these aspects.

3.3.4 Navigation Element Mining

In order to extract the side-wide hierarchy, we must identify all navigational blocks from
different pages that belong to the same navigation element. In other words, if a menu
appears on multiple pages, we want to identify all its occurrences. Figure 23 shows a screen-
shots of two pages from the same site. A viewer can easily identify four navigation elements
that are shared by both pages. Deciding whether two navigational blocks from different
pages belong to the same navigation element automatically is the problem to which we
refer to as navigation element mining. Even this seemingly simple task is challenging,
because all straightforward solutions have its limits:
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Comparing the navigational blocks’ visual appearances: Relying on the visual features
such as colors, font-sizes, decorative elements, etc. for finding recurring navigation el-
ements is prone to errors and requires an elaborated model. Pixel-wise comparison of
two rendered blocks will not work because the hyperlinks that a navigational block dis-
plays can differ (cf. Figure 23). Also the font colors or background colors of a menu often
change in dependence of the active page. Sometimes different page templates are used
and the visual appearance of a navigation element unintentionally varies slightly. At
the same time, different navigational elements might have a very similar visual ap-
pearance, e.g. the second and the third menu in Figure 23.

Matching the spatial position: The position of a menu on the page can provide hints
but it does not allow reliably identifying navigational blocks that belong to the same
navigation element. For example, the position of the lower menu in Figure 23 differs
because of additional content on the right-hand page.

Comparing HTML code: Matching the code strings of two blocks to determine whether
they belong to the same navigational element will also not work in general. There are
several reasons, why the navigational blocks of one and the same navigational element
often differ. First, depending on the page, different hyperlinks and fractions of the CO
might be displayed. Second, certain attributes of the HTML-elements might be gener-
ated in dependence of the page, e.g. CSS class names. Third, different templates might
be used and the code might differ, even if the visual presentation matches.

Comparing element ids: To avoid the difficulties related to visual features, one could
consider using identifiers assigned to HTML-elements in the DOM-tree to match navi-
gational blocks. Usually, a specific identifier exists that is associated with all naviga-
tional blocks of a certain navigation element because such identifiers can be referenced
in CSS-Code to attach dedicated presentational attributes. However, either the id-

Deutsche Bank = aCoLdli o oo ool

Ivestor Relations | Media

explore Deutsche Bank

Press Releases

Deutsche Bank Supervisory Board extends contract of
Jorgen Fitschen

Deutsche Bank reports third quarter 2013 net income
of EUR 51 million impacted by significant itiqation

Figure 23. Navigation elements that are shared by two pages of the same site.
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attribute or the class-attribute can both be used to define such identifiers. The identifi-
ers could also be attached not directly to a navigational block but to a parent element.
It is not evident from the source code, whether an identifier denotes all blocks of a nav-
igational element or whether it fulfills another purpose.

e Matching the DOM-tree position: Aligning the DOM-trees of two pages and matching
navigational blocks that are located at the same position in the trees does also not de-
liver reliable information. As Figure 23 illustrates, the page layout may differ and so
does the structure of the DOM-tree. A navigational block with a different visual appear-
ance that human users will not consider as the same menu might also be located at the
same position in the DOM-tree on another page.

e  Comparing the hyperlink overlap: Comparing the hyperlink-URLs of two navigational
blocks does not reliably indicate whether the blocks belong to the same navigational
element because the hyperlinks often change in dependence of the active subtree (cf.
Figure 23)

A reliable navigation element mining solution must be based on a combination of mul-
tiple features. But how to combine and weight the features is a challenging problem on its
own that has not yet been solved in previous work (cf. Section 4.4).

3.3.5 Navigation Element Reverse Engineering

To solve the problem of CO mining, it is not sufficient to mine navigation elements relia-
bly and to determine their types. The internal structure of the navigation elements must be
understood and analyzed. Often, the state of a navigational element differs in dependence
of the active page. In other words, the links in the navigational blocks that belong to the
same navigational element are varying. This is the case, for instance, if the state of the
navigational block represents not the entire hierarchy but only the active subtree. Then, all
partial trees must be joined accurately to retrieve the global hierarchy. But even extracting
the partial tree represented by an individual navigational block is challenging because the
tree structure of the underlying code diverges from the content structure. Again, the visual
structure is crucial and the challenges of analyzing it described in the previous sections
apply here, too. Sometimes, even visual clues are not sufficient and the internal structure of
a menu can only be understood if the menu behavior is observed or the label semantics are
considered as Figure 24 illustrates.
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Figure 24. The subtree of the CO represented by menu A) is obvious because of the visual presen-
tation but it is also reflected in the structure of the HTML code. Thus, it can easily be extracted
automatically. However, this is often not the case, as menu B) illustrates. Here, the visual presen-
tation indicates a tree structure similar to menu A) while it is not. In menu A), the first four items
are siblings, in menu B) they are descendants (for example, the item “Design Tools” is a child item
of "MSDN Library”). This is not obvious from the visual presentation but it is also not reflected in
the HTML code structure where all menu items are located at the same level. In contrast, humans
are able to understand the structure once they browse the menu and explore different states.
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4 RELATED WORK

Before we review related work, we explain the organization and scope of this chapter in
Section 4.1.

4.1 Organization and Scope of Related Work
Analysis

The organization of this chapter is illustrated in Figure 25. We start by reviewing the
terminologies used in related publications (Section 4.2) and conclude that wording incon-
sistencies indicate limited scholarly exchange between the involved parties. As a result of
the wording inconsistencies, in depth analysis of related work is at the same time compli-
cated and helpful. The basic CO-mining process outlined in Section 3.3.1, in which four
different subtasks are distinguished, is used to structure the related work chapter as well. In
addition, we consider methods for site structure analysis in general that are not based on
reverse engineering menus but share the objective of extracting hierarchies (Section 4.5).

A lot of work has been done in the field of Web page segmentation (Section 4.3) but the
contributions are difficult to overview and to assess. There seems to be no straight line of
development but a large number of more or less isolated contributions that are not evaluat-
ed in comparison with previous solutions. However, page segmentation is only one partial
problem to solve in order to implement CO-mining solutions and not the main focus of this
thesis. Since, at the same time, the implementations of the existing methods are not
available (with the vision-based page segmentation method, VIPS, being an exception), we
neither can nor want to fill this research gap by conducting a comparative empirical evalua-
tion of previous work in this thesis. Instead, the review of related work in this field aims at a)
showing that a general solution reproducing the human perception does not exist and b)
giving an overview over the used features, techniques and algorithms. Due to space limita-
tions, we can only include a selection of previous work in our review. We choose the most
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Figure 2s5. This chapter is organized according to the basic CO mining process (cf. Section 3.3.1)

popular work (based on citations) and work that introduced unique aspects with regard to
the applied methodology.

The second task in the basic CO-mining process is navigational block classification,
which aims at identifying the blocks related to navigation among all page blocks. Since not
much work with focus on identifying navigational blocks exists, we include solutions for
determining other block types as well and review solutions for Web page block classification
in general in Section 4.4. The majority of the solutions in this field aim not at extracting
navigational blocks but at identifying main content blocks. For the sake of completeness, a
review of main content block extraction methods is provided in Appendix B.2. There are a
couple of solutions for classifying all blocks of a page. However, existing work differs in the
set of block types that are distinguished and even in the type granularity. The problem of a
missing straight line of development and a lack of incremental improvements also applies to
this field. This might be partly due to the evaluation difficulties described in Section 3.2.
There is only little work that considers navigation element mining, the third task in the basic
CO-mining process, which aims at finding all occurrences of navigational blocks belonging
to the same navigation element. These solutions will not be discussed in a separate section
but in conjunction with navigational block classification in Section 4.4.2 (cf. Figure 25).

The fourth task in the basic CO-mining process is reverse engineering extracted naviga-
tion elements in order to retrieve the CO. This specific problem has attracted not much
attention from the research community yet. But there is some other work on extracting
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hierarchical COs that is not strictly based on menu interpretation. Thus, instead of focusing
on navigation element interpretation in particular, we review work that is related to analyz-
ing site structures in general in Section 4.5, no matter if it involves reverse engineering
menus or not.

We will not consider work that is related to the extraction of data records: The extraction
of data records from Web pages (also called wrapper induction) has attracted much atten-
tion from the research community in the recent years ((CKGSo6] and [SLCO12] provide good
overviews). These methods focus on retrieving data objects from repetitive page structures
such as table rows. Actually, data record extraction is an application of CO-mining but it
aims at analyzing sites that follow the database schema of organization (cf. Section 2.2.5)
and not the hierarchical or sequential schema. Naturally, data record extractors are based on
discovering repetitive content structures and not on navigation elements. Hence, data
record extraction is a topically related field but the applied methods differ and are only
marginally relevant to research problems discussed in this thesis.

4.2 Examples of Terminology Differences

Web page segmentation, block classification and CO-mining have been described in pre-
vious publications, but, for the most part, not as research problems on their own but as
preprocessing tasks in combination with other problem statements. As a result, previous
methods related to our research problem are often isolated solutions, which are not built on
each other. Hence, it is not only difficult to discover related methods but also to compare
methods because a common terminology has not yet evolved. However, we found that,
although the terms and their definitions vary, we can map most of the underlying concepts
on corresponding concepts of the 0>-model. In this section, we will exemplify the wording
differences, to illustrate the challenges in retrieving and interpreting related work. To
discuss related work in the following sections, we will translate the alternative terms used in
other publications into the terms introduced in Section 2, whenever possible.

The idea that a Web page does not consist of a single homogenous region but is com-
posed of small blocks is quite common in the field of Web mining. In an early work by Chen
et al. [CZSZo1], the page blocks are called “objects”. These objects are nested and fulfill
different purposes. In the eyes of the authors, the objects correspond to the HTML structure.
Cai et al. [CYWMo3] use the term “blocks” and consider blocks as semantic units, which can
be identified by “visual and spatial clues”. They explicitly state that the “HTML structure is
far different from the layout structure”. This contrasts with the work by Debnath et al.
[DMPGos], published two years later, which assumes that blocks correspond to HTML
elements again. Zou et al. [ZOLTo6] refer to page blocks as “zones”, although their “zones”
resemble the block concept of Cai et al. [CYWMo3] closely. According to Wang et al.
[WALZo7] a Web site consist of “information blocks” with logically related content, while
Hattori et al. [HHMSo7] state that a page is composed of “small objects”. Fernandes et al.
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[FMSR11] use the terms “structural block” and “segment” synonymously for a “self-contained
logical region” of a page that is not nested. Most related work assumes that page blocks can
indeed be nested. Cai et al. [CYWMo3] believe that page blocks are organized into a hierar-
chical “semantic structure”. Similar interpretations can be found in [YAZHo1] or [XIYS06].
Chen et al. [CZSZo1] use the term “Function-based Object Model” for the object hierarchy, i.e.
block hierarchy. Other terms for similar concepts are e.g. “zone tree” [ZOLTo6], “partition
tree” [GMBSo07] or “tree of areas” [BURUOQ]. There is also no uniform wording for the task of
classifying page blocks. Besides “block classification” (e.g., [JJO00]), the terms “block
identification” [DMPGos], “Web page element classification” [BURUog] or “role identifica-
tion” [AKYE13] have been used. Most block classification methods focus on extracting the
main content block, which is also referred to as “Information object [CZSZo1]”, “Body text”
[FIKSo1], “Informative content block” [LIHO02]”, simply “Content block” [CHMZo3], “Primary
content section” [DMPGos] or “Article text” [PARO0Q]. Wang et al. [WALZo7] extract naviga-
tional blocks, which they call “key information”. Structures that correspond to a hierarchical
CO are referred to as “Thesaurus” [CLWPo03], “Website skeleton“ [LINLo4], “Web-site topic
hierarchy” [YALIog] or “Sitemap” [LICC11]. Another example of the sometimes confusing
terminology in this field is the term “navigational link”, which is used in [CLWPo3] to denote
non-semantical and non-hierarchal links. This is exactly the opposite meaning of the term as
in [LINLog], where navigational links denote hierarchical links.

4.3 Page Segmentation

In this section, we review existing solutions for segmenting Web pages into smaller
units, i.e. blocks. Page segmentation can enhance the quality of Web search, e.g., by improv-
ing deduplication (e.g., [KONE08], [CHKP08]) and keyword-based Web search performance
(e.g., [CYWMo3], [KONEO8], [FMSR11]). Furthermore, page segmentation is a prerequisite for
reorganizing Web pages to be accessible on smaller screens (e.g. [CZSZo1], [CHMZo3],
[BALUO6], [HHMS07]). Most of the methods either generate a set of blocks (e.g. [HHMSo7],
[CHKPo8], [ALCO1]) or a hierarchy of blocks (e.g. [CYWMo3], [XIYS06], [ZOLTo6], [GMBS07] )
for each page that reflects the visual or semantic structure. But not all solutions fall into one
of those categories: The method by Fernandes et al. [FMSR11] produces not individual blocks
but classes of blocks with similar tag paths. Baluja’s solution [BALUO6] segments a Web
page into exactly g tiles for displaying the page on small screens. Chen et al. [CHMZo3] work
with a predefined block set and mine for 5 specific block types (header, footer, body, left side
bar, right side bar). Most solutions have in common that a subset of the DOM elements,
which defines the block boundaries, is returned as output. Hence, the segmentation cuts
usually follow the boundaries of the DOM elements. An exception is the method by Cao et
al. [CAML10], which is a pure image processing approach and does not take the DOM struc-
ture into account.

In Section 4.3.1, we analyze the features that are exploited by different methods, before
we discuss common techniques in general (Section 4.3.2). A more detailed description of
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selected algorithms is provided in Appendix B.1. In Section 4.3.3, we review how the existing
methods have been evaluated and how they performed.

4.31 Overview: Exploited Features

In this section, we focus on the features that are exploited by the reviewed solutions in
order to conduct page segmentation. The feature selection is crucial not only for the classifi-
cation performance but also for the runtime performance and compatibility with future
HTML standards. Table 2 provides an overview over the features used by the solutions
included in the survey. The table illustrates that most Web page segmentation methods are
dedicated solutions that differ from traditional image segmentation algorithms. While
traditional solutions are typically based on pixel bitmaps (e.g. [SHMA©00]), only two of the
reviewed solutions consider color information at pixel-level at all: the method of Cao et al.
[CAML10], which is a pure image-based method and Baluja’s solution [BALU06] which uses
pixel information only to fine tune the segmentation cuts.

All other methods utilize the DOM-structure in one way or the other. Commonly, the po-
sitions and sizes of the individual DOM-elements are evaluated - this is done by 11 out of 18
reviewed solutions and can improve segmentation quality in comparison with traditional
pixel-based solutions. Some of the solutions (e.g., [CYWMo3], [CHMZo3]) use relative
distance and position metrics instead of absolute values in order to deal with pages that are
optimized for different screen resolutions.

However, exploiting size and position information requires visual rendering. Methods
that do not need the page to be visually rendered bring the advantage of reduced resource
consumption. For this reason, Hattori et al. [HHMSo7] only estimate the actual element sizes
based on the length of the contained text or explicit height- and width-attributes. But there
are also a couple of alternative features that do not require page rendering. The most
common non-visual feature is given by the types of the HTML elements. While tag types are
usually used as one feature among others (e.g. [CYWMo3], [CHMZo3], [KONEo8] or
[GMBS07]), the solutions by Debnath et al. [DMPGos] and Lin et al. [LICC11] conduct page
segmentation solely based on this feature. However, the dependency on HTML elements has
a major drawback: When the Web standards and coding conventions change over time such
methods might not work anymore in the same way. For example, most of the type-
depended solutions exploit the table-element to compute the blocks (e.g., [CYWMo3],
[CHMZo3], [DMPGos]). Previously, this element was playing an important role for organizing
the page layout. But, in current practice, the div-element is used for this purpose and the
table-element is only applied to format actual data tables.
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Features that are based not on the element types but on the structure of the DOM-tree
are also popular. For example, Cai et al. [CYWMo3] divide nodes with a single child, while
Chakrabarti et al. [CHKP08], Hattori et al. [HHMSo07] as well as Alcic and Conrad [ALCO11] use
the DOM tree structure to compute distance metrics between two elements. Fernandes et

Table 2. Comparison of the features that are exploited by the reviewed solutions

Element Back- Font Element DOM- Site- Text Pixel
types ground- features position structure | wide fea- data
colors and size structure | tyures"

Yang and Zhang

X X X
[YAZHO1]

VIPS, Cai et al.
[CYWMO3]

Chenetal.
[CHMZo3]

Debnath et al.
[DMPGos]

Baluja
[BALUO6]

Xiang et al.
[XIYS06]

Zou et al.
[ZOLTo6]

Guoetal.
[GMBS0O7]

Hattori et al. 12
[HHMSo7]

Kohlschiitter
and Nejd| (X)13 X
[KONEO8]

Chakrabarti et
al. [CHKPo8]

Burget
[BURUO9]

Yang and Shi
[YASHo9]

Vineel
[VINEoQ]

Caoetal.
[CAML10]

Alcicet al.
[ALCOM]

Linetal.
[LICCn]

Fernandes et al.
[FMSR11]

"E.g., sentence length or text density

" Estimated, the page is not visually rendered

¥ Tag-agnostic and tag-aware methods are used, but tag-aware methods achieve significantly
better segmentation performance
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al. [FMSR11] use a different approach: they align the DOM structure of multiple pages to
conduct the segmentation on a per-site basis instead of on a per-page basis.

Some approaches make use of text-based features, which do also not require page ren-
dering. For example, Kohlschiitter and Neidl [KONEo8] use text-density as their main
criterion for segmentation, while Chakrabarti et al. [CHKPo8] consider sentence length as
one component in their feature pool.

4.3.2 Common Segmentation Techniques

This section provides an overview over techniques that are commonly applied in previ-
ous work to conduct page segmentation. Specific algorithms are described in Appendix A.
The techniques are not mutually exclusive — page segmentation solutions may involve
multiple of the described techniques.

DOM element removal / selection: The most primitive way of conducting page segmenta-
tion is to simply consider specific HTML element types as blocks and ignore all other ele-
ments. Early segmentation solutions (e.g., the method used in [DLCToo]) are solely based on
this principle™. However, some newer solutions remove specific tags in a preprocessing
phase (e.g., br-elements in the solution presented by Xiang et al. [XIYSo6]), before more
sophisticated segmentation techniques are applied.

DOM tree traversal: A very common technique is to either traverse the DOM tree in a top-
down manner to iteratively split the tree or to traverse it in a bottom-up manner to iterative-
ly combine leafs into larger blocks. The top-down approach is taken, e.g., in the first phase of
the VIPS algorithm [CYWMo3], in both segmentation phases of the method by Chen et al.
[CHMZo3], by the method described by Debnath et al. [DMPGos] and by the solution of Zou
et al. [ZOLTo6]. Examples for the bottom-up method can be found in [CYWMo3] (second
phase), in [XIYSo6], where it is used for preprocessing, and in [GMBS07].

Identification of recurring pattern: The analysis of recurrent structures within a page can
also yield segmentation information. This is because a block often consists of child blocks
with similar structure. For example, the main content block of a homepage of a site from the
news domain may be composed of a number of similar structured article teasers, each with
a headline, a short abstract and a link. If such patterns can be discovered, each individual
pattern occurrence indicates a separate block and the pattern sequence indicates a contain-
er block. The methods described in [YAZHo1], [XIYS06] and [GMBS07] are based on this
principle but they differ in the considered features and pattern recognition algorithms. The
solution by Lin et al. [LICC1] exploits information about recurring patterns in a different way
by separating page regions with high-complexity from regions with low-complexity, i.e. high
repetitiveness.

" We did not include these methods in our review because their applicability to today’s Web
sites is limited and we consider them as obsolete.
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Segmentation as 1-dimensional problem: Kohlschiitter and Nejdl [KONE08] as well as Lin et
al. [LICCn1] interpret Web pages as sequences of tokens and disregard the hierarchical
structure of HTML-documents. Interestingly, both apply solutions from other domains to
address the page segmentation problem. The solution by Kohlschiitter and Nejdl [KONEo8]
is motivated by a linguistic perspective. The authors mine changes in the text density in
order to separate different page regions. Lin et al. [LICC11] approach the problem with a
bioinformatical background and consider Web pages as protein sequences by mapping tags
onto amino acids. A sequence splitting algorithm from the bioinformatics domain is applied
that separates regions with high complexity from regions with low complexity.

Graph-clustering: With an appropriate distance metric, the DOM-tree elements can be
considered as vertices in a weighted graph to map the page segmentation problem onto a
graph-clustering problem, as shown in [CHKPo8] and [ALCOm]. The resulting clusters
represent page blocks. Alcic and Conrad combine three different distance metrics with three
different clustering algorithms and present the results in [ALCO].

4.3.3 Empirical Evaluations

In this Section, we provide an overview over empirical experiments, in which the re-
viewed page segmentation methods were evaluated. Precision, recall, Fi-measure and
accuracy are measures typically used to evaluate information retrieval tasks that involve
discovering relevant items, i.e. positives in a set of relevant and irrelevant items (negatives).
Each item can be classified into one of the four types: 1) true positive (TP) if the item is
relevant and was retrieved, 2) false positive (FP) if the item is irrelevant but was retrieved, 3)
true negative (TN) if the item is irrelevant and was not retrieved and 4) false negative (FN) if
the item is relevant but was not retrieved. Precision, recall, Fi-measure and accuracy are
based on this typology:

.. TP
Precision = (1)
TP+FP
TP
Recall = (2)
TP+FN

2:TP

F1 —measure = ———— ()
2:-TP+FP+FN
TP+TN

Accuracy = ————

Y = TperP+TN+FN (4)

The F1 measure combines precision and recall into one value by using the harmonic
mean. Accuracy expresses the ratio of the number of correctly classified items (either true
positive or true negative) to the number of all items. Although these measures have been
used to evaluate page segmentation methods, there is no straightforward way of applying
them in this scenario. This is due to the fact that a perfect agreement of two different
segmentations is unlikely (when comparing machine-generated segmentation to human
labeled segments as well as when comparing segmentation conducted by two different
human assessors). Hence, it is reasonable to tolerate small deviations and impractical to
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distinguish true and false positives without allowing for some fuzziness. But unclear and
undocumented criteria for these distinctions undermine the comparability of some of the
reviewed solutions.

We distinguish 1) experiments that aim at directly measuring the segmentation quality
in comparison with manually labeled data, 2) experiments that involve a previous method as
baseline and 3) experiments that involve page segmentation as preprocessing and only
indirectly capture the segmentation quality.

1)  Evaluation against manually labeled data:

e Inthe original paper [CYWMo3], the VIPS-method is applied to 600 selected Web pages
and the results are manually assessed by 5 volunteers. The authors report 93% at least
satisfactory results. Although VIPS is probably the most popular method, later evalua-
tions confirmed (e.g. [YASHog] and [FAHBog9]) that the results of the VIPS-method are
often inaccurate.

e  The method by Zou et al. [ZOLTo6] was only evaluated for Web pages from the medical
domain. 104 pages from 11 journals were manually segmented. The authors report an
accuracy of 96.40% but do not report the criteria for true positives.

e  Hattori et al. [HHMSo07] used 100 selected Web sites to evaluate their method. They
excluded sites with much CSS and Javascript, which means that their evaluation set
does not represent current Web sites very well. The sites were manually segmented.
Precision, Recall and Fi-measure are provided. For sites from the US, a Fi-measure of
0.75 was achieved. According to the authors, a true positive means that the segmenta-
tion positions of the automated method and the human labeling “are in agreement”.

e Chakrabarti et al. [CHKPo8] manually label blocks from 105 randomly sampled pages.
The evaluation methodology is well-documented and plausible. They consider each
page block as a cluster of DOM-elements. Thus, a page segmentation is considered as a
clustering of DOM elements and standard metrics for measuring cluster similarities
(Adjusted RAND [HUARSs], Normalized Mutual Information [STGHo3]) are applied.
However, the measured agreement between the manually labeled segmentation and
the automatically determined partitions is low (AdjustedRAND: 0.6, NMI: 0.76).

e  Kohlschiitter and Nejdl [KONEo8] adopt the evaluation methodology of Chakrabart et
al. [CHKPo8] but the clustering agreement is measured based on tokens (words) but
not on DOM-elements. However, the authors assume comparability and report that
their tag-agnostic method has a very similar classification performance as the method
by Chakrabart et al. [CHKP08]. A rule-based extension that involves tag-types boosts
the classification performance by still leaving much room for improvements. Remarka-
bly, a pure tag-based variant that does nothing else than selecting specific tags as seg-
ments did not perform significantly worse in the evaluation.

55



Page Segmentation

2)

56

Vineel [VINEoQ] uses 400 manually segmented Web pages to evaluate his solution.
According to the author, precision and recall are around 0.9 and 0.8 respectively. The
paper does not provide details on how true positives are defined.

Alcic and Conrad [ALCO11] also apply cluster comparison to evaluate their algorithms
similar to [CHKPo8] and [KONEo8]. Their data set contained 78 manually labeled pages.
However, their results are not comparable to [CHKPo8] and [KONE08] because the orig-
inal version of the RAND index [RAND71] and not the corrected-for-chance version
[HUARSs] is used. With a maximal RAND agreement of 0.61, the segmentation perfor-
mance of the solution is not convincing.

Lin et al. [LICC11] use manually labeled samples from three different sites. They address
the problem of block overlap and define their own interpretations of precision and re-
call metrics. But it is very hard to assess their results because, although their metrics
seem sound, they are non-standard and no baseline method is evaluated.

Evaluation against a baseline method:

Fernandes et al. [FMSR11] generate four large baseline data-sets from different sites by
applying the VIPS algorithm [CYWMo3] with manual parameter settings. The quality of
this baseline segmentation is not empirically evaluated. The data sets are used to
measure cluster agreement based on terms. In comparison to the approach by
Kohlschiitter and Nejdl [KONE08], the method by Fernandes et al. [FMSR11] achieved a
significantly higher agreement with the baseline segmentation. However, a substantial
difference between the authors’ method and the baseline method remains.

Xiang et al. [XIYSo6] use a collection of 40 manually labeled pages from 13 selected sites
to compare their method to the VIPS algorithm [CYWMo3]. The authors measure only
recall and do not publish precision values. Hence, it is difficult to assess the quality of
their segmentation results.

Yang and Shi [YASHog] apply their method and the VIPS-method [CYWMo3] to seg-
ment 160 Web pages from different domains. Human assessors assigned one of the
three labels “error”, “not-bad” and “perfect” to each retrieved block. The results are
normalized according to the block areas. It is reported that with the method proposed
by the authors in average 88.22% of the page area is segmented at least not-bad, while
VIPS only reaches a value of 74.14%.

Indirect evaluation of segmentation quality

Often, the quality of page segmentation solutions is evaluated indirectly by assessing
the ability of the solution for improving other tasks related to information retrieval. Cai
et al. [CYWMo3] show that their VIPS-method is able to slightly improve retrieval re-
sults if query expansion is conducted in a block-aware way. Fernandes et al. [FMSR11]
apply a block-aware ranking model, which is described in [MFRS10], and report that
their automated approach increases result quality and is only slightly inferior to a
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block-aware model based on manual segmentation. Chakrabarti et al. [CHKPo8] show
that the detection of duplicate pages can be significantly improved if not conducted
based on the full textual content but on their segmentation method. Kohlschiitter and
Nejdl [KONEo8] adopt the evaluation methodology of Chakrabarti et al. [CHKPo8] and
demonstrate that their own segmentation methods are more suitable for duplicate de-
tection. Hattori et al. [HHMSo7] use their segmentation solution to transcode sites for
mobile applications. For evaluation they estimate the time a user needs to access in-
formation, solely based on screen distances. Cao et al. [CAML10] show that their meth-
od can be used to recognize phishing sites. However, they use a non-segmenting meth-
od as baseline and do not consider previous segmentation solutions.

4.4 Block Classification and Navigation Element
Mining

In this Section, we distinguish methods for navigational block classification, informative
content block classification (discussed in detail in Appendix B.2) and general block classifica-
tion:

e Methods for navigational block classification / navigation element mining: There are
only few solutions that involve block classification with specific focus on navigational
blocks. As a result, there is also not much research on finding recurring navigational
blocks that represent the same navigation element. The majority of the existing meth-
ods that involve navigational block classification, use it to generate some kind of hier-
archical Web site model (e.g., [LINLo4], [WALZo7], [YALIog] and [LICC11]).

¢ Informative content block classification methods: Most work on block classification
focusses on detecting a single block type, the informative content block. The informa-
tive content block is the block that contains the actual page content, e.g., an article. Dis-
tinguishing informative content blocks from “noisy” blocks, e.g., advertisements, navi-
gational blocks, etc., is important for the performance of search engines. First, only the
informative content block is relevant to the users’ search queries and the noisy blocks
can distort the results. Hence, only the informative content block should be indexed.
Second, to de-duplicate URLs effectively, i.e. to detect different URLs that point to doc-
uments with the same content, the noisy blocks should be filtered because dynamically
inserted advertisements can prevent de-duplication. Third, considering only the in-
formative content blocks does not only increase the quality of the index but also de-
creases its size. Fourth, as a result of a search query, a fragment of the informative con-
tent block should be presented to the user that he can effectively judge whether the
page contains the information he is looking for or not. Since most methods for informa-
tive content extraction cannot be applied to mine navigational blocks, we discuss these
methods in Appendix B.2.
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e  General block classification methods: There are a couple of methods that aim at
deriving the types of all blocks. Existing methods do not agree on the classification
schema or the classification granularity (e.g., Chen et al. [CHMZo3] distinguish 5 block
classes, while Akpinar and Yesilada [AKYE13] use a schema with 27 block classes). The
main motivation behind general block classification solutions is transcoding Web sites
(e.g., in the case of [CZSZo1], [CHMZo3]) for small screen devices. The idea is to use
knowledge about page block types to rearrange pages and possibly split them up into
multiple screens. Besides transcoding, other discussed applications include ad blocking,
information extraction in general and improvement of the accessibility with regard to
disabled people (e.g., [LEKLo4], [AKYE13]).

In the next section, we first provide an overview over the reviewed solutions, before
methods for navigational block classification and general block classification are discussed
separately in Section 4.4.2 and Section 4.4.3, respectively. Methods for informative content
block classification are discussed in Appendix B.2.

4.4.1 Overview

In this section, we summarize the key characteristics of the considered related work in
the field of block classification. Table 3, Table 4 and Table 5 provide an overview over the
reviewed solutions for navigational block classification, informative content block classifica-
tion and general block classification respectively. We present the classes that are distin-
guished (in the terminology of the authors), a brief summary of the method, the exploited
features and the evaluation methodology. Regarding the evaluation methodology, we only
mention experiments that focus on the classification performance, i.e. the quality of the

results.

Table 3. Navigational block classification methods

Classes

Method

Features

Evaluation

Liu et al. [LINLo4]

Navigational link
sets (= hierarchical
menus) / other

Links are first clustered
and the resulting sets are
ranked; highest ranked set

Link texts and URLs

Leave-one-out evaluation
for 5 news sites, overall
classification perfor-

blocks is considered as main mance not evaluated

menu
Rodrigues et al. Different types of  [Site-oriented method; Number of block Classification perfor-
[ENMGo6][MEMFo7][Inavigation rule-based extraction and |occurrences, ULRs mance not evaluated

elements: s-nodes,
c-nodes, i-nodes

classification of naviga-
tional blocks

Wanget al.
[WALZo7]

“Key information”
(breadcrumb or
active menu item) /
all other blocks

Site-oriented method;
simple rule-based method

Number of words, tag
paths, occurrence
entropy

5 selected sites, rank of
key information in result
list

Lin et al. [LICC11]

Structure blocks (=
navigational blocks)
/ content blocks

Rule-based method, Web
pages are considered as
protein sequences

Block complexity based
on tag sequence, ratio
of link text to all text

Evaluated on 2 sites;
precision, recall and F1-
measure calculated in a
non-standard way
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Table 4. Informative content block classification methods

Classes

Method

Features

Evaluation

Finn et al. [FIKSo1]

Body text / clutter

Cumulative distribution of
tags is analyzed

Two types of tokens:
words and tags

Classification perfor-
mance is not evaluated

Lin and Ho [LIHO02]

Informative block /
redundant blocks

Word entropy is comput-
ed; blocks with low
average word entropies
are classified as informa-
tive blocks

Word frequencies

Classification perfor-
mance is not directly
evaluated

Yietal. [YILLo3]

Main content block
/ noisy block

Site-oriented method;
Entropy is computed
based on text and DOM-
attributes; low entropy
values indicate main
content blocks

DOM tree structure and
DOM element
attributes

Classification perfor-
mance is not evaluated

Kao et al. [KAHCos5]

Informative blocks
(articles and TOCs) /
redundant blocks

Method is based on term
entropy and text-length
entropy; entropies are
aggregated; classification
based on thresholds

Word frequencies, text
length distribution, link
text length distribution,
link text and target
page text overlap

Classification perfor-
mance evaluated for
selected news sites;
optimal thresholds
estimated in advance

Song et al.
[SLWMo4]

Three levels of
importance

Method is based on
machine learning (SVM
and Neural Network);
manually labeled training
set and classic features

Absolute and relative
heights / positions,
image numbers and
sizes, link numbers, text
and link text lengths,
numbers and sizes of
form elements

s-fold cross validation,
600 pages from 405 sites
(manually labeled)

Debnath et al.
[DMPGos]

Primary content
blocks / nonin-
formative content
blocks

Three different algo-
rithms: Content extractor
(site-oriented), Feature
extractor, k-feature
extractor

Content extractor: Block
similarity

Feature extractor, k-
feature extractor: Word
number, tag number,
list number, etc.

Precision and recall
based on manually
labeled samples from 15
sites

Gottron et al.

Informative content

Distribution of tags is

Number of words and

13 selected sites,

[GOTTo8] block / other blocks |analyzed tags, number of precision and recall for
characters in words and |longest common
tags subsequence
Burgetet al. Sub-blocks of main |Decision tree (C4.5) Font sizes and weights, |Evaluated ononly 4
[BURUO9] informative content |classifier trained on a number of blocks (unseen) sites; precision,

area, e.g., h1, h2,
subtitle, author,
date, etc.

small feature set

below, left, right and
above, contrast, 5 more
textual features

recall and Fi-measure

Pasternack and Roth
[PAROOQ]

Article text (=
informative content
block) 7 other blocks

Naive bayes classifier
trained on two features;
supervised and unsuper-
vised methods

Token trigrams and
most-recent unclosed
tags

Evaluated on 5 news sites
and 4o sites from other
domains; precision, recall
and F-measure
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Table 5. General block classification methods

Classes Method Features Evaluation
Chen et al. [CZSZo1] [[Information object, Simple, rule-based Navigation bar: Classification perfor-
navigation bar, method; only classes of child nodes, |mance is not evaluated.
navigation list, algorithms for uniformity of child
independent navigation |navigation barand |nodes, text length,
guide, interaction object, | page objects hyperlink targets,
decoration object, described index page, content
special function object, page:
index page, content out-/ in-degree ratio
page
Chenetal. Header, footer, left side  |Only positions of Block positions Classification perfor-
[CHMZo3] bar, right side bar, body |blocks on the page mance is not directly
are considered to evaluated

determine type

Lee et al. [LEKLo4] 17 different classes: Main |Co-trained machine |Stylistic (table cell flow, |Evaluated on 50

content, title, navigation, | learning method table cell word density, |manually labeled
search, supporting relative position, font  |samples, satisfying
content, site content, features, etc.) and results only for the 3
advertisement, etc. lexical (bag of words, most frequent classes
part-of-speech features,
etc.)
Akpinar and Yesilada (|27 different classes: Rule-based method |Diverse features Survey with 30 sample
[AKYE13] advertisement, article, including tag names,  |pages
logo, copyright, header, element sizes, element
etc. attributes, CSS styles,

keywords, etc.

4.4.2 Navigational Block Classification /
Navigation Element Mining

We first describe previous work on navigational block classification and navigation ele-
ment mining in Section 4.4.2.1, before we analyze in Section 4.4.2.2 how these methods have
been evaluated.

4.4.2.1 Methods

The hierarchy extraction framework of Liu et al. [LINLo4] contains a method for identify-
ing navigational link sets, which are understood as those menus that contain links to child
nodes of a page. The authors first cluster the links of a page by their position (depth and
path) in the DOM tree. These candidate link sets are further cleaned by analyzing link
attributes. Link types (images or plain text), style uniformity of the links, physical proximity
of the links and text lengths are considered in this procedure. The cleaned list of candidate
link sets is then ranked by evaluating six features solely based on the link texts and the URLs
(e.g. text length, text length variance, etc.). The authors use manually labeled navigational
link sets to precompute the average values for each feature. The derivation from these
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averages is used to rank the candidate set and to estimate the probability that a candidate
actually represents a navigational link set.

Rodrigues et al. propose a way of extracting and classifying navigational blocks in
[ENMGo6] and [MEMFo7]. Since they are only interested in navigational blocks, they simply
extract continuous lists of hyperlinks from pages instead of conducting real page segmenta-
tion. Isolated links are aggregated into virtual blocks, so called i-nodes. Similar blocks from
different pages are grouped if they share at least 60% of the hyperlinks. This block grouping
task corresponds to a simple navigation element mining solution as defined in our basic CO
extraction process. The resulting navigation elements are classified into three classes:
besides i-nodes, c-nodes and s-nodes are distinguished. A navigation element is classified as
s-node if and only if more than 60% of its links point to pages that contain this node as well.
In other words, s-nodes are “fixed” menus in a way that when a user clicks on a link, the
menu is still present after the page transition. According to the authors, these navigational
elements underpin the organization of the site.

Wang et al. [WALZo7] proposed a method for extracting the “key information” of Web
pages. In their paper, the term key information refers to navigation elements that allow
locating the position of a Web page in the hierarchical CO. Breadcrumb navigations and
navigation elements that include links to the active page are mentioned but the authors do
not further specify the types or properties of the blocks that they are interested in. Although
the approach aims at distinguishing the navigation elements of interest from “noisy infor-
mation menus” and “accidental menus”, it does not recognize the type of the navigational
block, e.g. whether it is a breadcrumb navigation or not. Wang et al. use a very simple rule-
based approach: First, they extract DOM elements whose child nodes only contain text with
less than five words. These blocks are merged across all pages by joining two elements if the
tag path and the text of the first child elements are identical. The merged blocks are further
grouped if either the tag paths or the texts of the first child elements match. This results in a
set of navigation elements, each of which consisting of a set of instances and each instance
associated with a number of source pages. Based on the instance / page number distribu-
tion, the entropy is calculated for each navigation element. The authors argue that naviga-
tion elements for which a higher entropy value is computed are more likely to contain key
information.

The hierarchy extraction solution of Yang and Liu [YALlog] (cf. Section 4.5) includes a
primitive method for identifying navigational blocks: DOM elements for which the ratio of
the length of linked text to the length of all text exceeds a threshold of 0.8 are considered as
navigation bars, i.e. navigational blocks.

The framework of Lin et al. [LICC11] contains a solution for identifying navigational blocks
as well as a method for merging them into navigation elements. The unique characteristic of
their approach is the fact that Web pages are considered as protein sequences in which the
element types represent different amino acids. A method from the field of bioinformatics is
used to estimate the complexity, i.e. repetitiveness, of a block based on the elements it
contains. Simple rules based on the complexity values and on the ratio of link text to all text

61



Block Classification and Navigation Element Mining

in a block are used to identify navigational blocks. If the rules cannot be applied, a previous
block classification framework [LIHO02] is used as fallback solution. Another algorithm from
the field of bioinformatics is used to discover similar navigational blocks, i.e. to find blocks
that represent the same navigation element. A predefined similarity threshold allows for
some fuzziness.

4.4.2.2 Performance Evaluations

Liu et al. [LINLog] use 5 manually labeled Web sites from the news domain to evaluate
their framework. The evaluation includes analyzing the performance of detecting those
menus that represent the hierarchy levels. A two-step menu extraction method is used,
which first generates menu candidates and then selects the most-likely main menu. Both
steps are evaluated individually but combined classification performance is not listed.
However, very good precision and recall are measured for both tasks.

Rodrigues et al. [ENMGo6] and [MEMFo7] do not evaluate the classification performance
of their method for identifying different navigation elements.

Wang et al. [WALZo7] evaluate their method for 5 selected Web sites. Their algorithm
returns a sorted list of navigation elements. As evaluation metric, solely the position of the
first correctly identified navigation element type in the list is provided for each Web site.
Only in two cases, the top-ranked navigation element actually contained “key information”,
i.e. a hierarchical menu or breadcrumb navigation. However, in all five cases, a navigation
element considered as key information was among the top 3 results.

Yang and Liu’s simple method for extracting navigational blocks is not evaluated in their
paper [YALlog].

Lin et al. [LICC11] evaluate the performance of their method for extracting navigational
blocks only for three selected sites. Based on a manually labeled sample set, an average
precision of 0.88 and an average recall of 0.83 are measured. However, even if their interpre-
tation of precision and recall seems sound in the evaluation scenario, it differs from the
common usage and the results are difficult to assess.

4.4.3 Universal Block Classification Methods

Jinlin Chen et al. [CZSZ0o1] were among the first to propose a method for classifying dif-
ferent kinds of page segments. They argue that the semantic information provided by the
HTML element types does not express the category of the element (or object in the author’s
terminology) and the Webpage author’s intention very well. Chen et al. derive a list of block
classes from a single sample page. They distinguish page blocks that present content,
different classes of navigational blocks, blocks for decorative purposes, et cetera (cf. Table 5).
The authors only describe algorithms for the detection of three different classes, namely
navigation bars, index pages and content pages and do not provide solutions for other block
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types. The algorithms are simple and rule-based. The threshold values used to set up the
algorithms are not mentioned in the paper.

A method for adapting Web pages to small screen devices by Yu Chen et al. [CHMZo03]
distinguishes five different high-level elements: header, footer, left side bar, right side bar
and body. The body block corresponds to the informative content area at the center of the
page. To distinguish the other four types, only the block position is considered. For example,
blocks located in the left-most quarter of the page are classified as left side bar. To detect
the header and the footer a dynamic threshold depending on the block with/height ratio is
used.

Lee et al. [LEKLo4] use a very fine-grained set of 17 different block classes. The set of clas-
ses ranges from common types such as informative content or navigation to classes that are
not considered as separate blocks by other approaches such as article date or article title.
Consequently, the authors understand blocks as much smaller units compared to previous
approaches (the 20 manually labeled documents result in 1625 labeled blocks). Lee et al.
apply co-training [BLMIg8] in order to boost classification performance at the basis of only a
small training set (cf. Figure 26). In co-training, the feature set is split into two halves to train
two independent classifiers. Both classifiers are trained initially on a small labeled set. They
are then applied on the unlabeled samples. From each classifier, the k most confident newly
labeled samples are added to the labeled training set. The idea is that one classifier often is
able to determine the class with high confidence, while the other is not able to classify the
same sample. Thus, this sample can be used as additional training sample for improving the
second classifier. The labeling/feedback/re-training cycle is iteratively repeated. Lee et al.
train one classifier on a set of stylistic features (e.g. font properties, positions, etc.) and a
second one on lexical properties (bag of words, part-of-speech tags, etc.) and perform up to
20 co-training iterations.

Akpinar and Yesilada describe a method for detecting fine-grained block classes in
[AKYE13]. They distinguish 27 different classes, ranging from common high-level types such
as article, header, footer, sidebar or menu to very specific classes such as logo, figure or
separator. The used class library also contains very general concepts such as container. The
method is based on the evaluation of manually specified rules. The authors do not give
details about the used rules and how they were generated in the paper.

4.4.31 Evaluations of Universal Block Classification Methods

Jinlin Chen et al. [CZSZo1] do not empirically evaluate their universal method but exem-
plify the performance for a single sample page.

Yu Chen et al. [CHMZo3] do not evaluate the block classification separately but the result
of the small screen adaption with mixed results (ranging from complete fails for some sites
to perfect adaption for others).
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Figure 26. Principle of co-traininig: (1) Two different classifiers are trained with the labeled data
set, while each classifier uses different features; (2) both classifiers are applied on the unlabeled
training data; (3) from each of the self-labeled sets, the k most confident samples are added to
the labeled data set L; (4) in the next iteration, the extended set of labeled data is used to re-train
the classifiers.

Lee et al. [LEKLo4] train classifiers for 17 different block types and use a sample set of 50
manually labeled pages from the news domain for evaluation. Their method shows a
satisfying performance for only the three most frequent block types (main content, naviga-
tion and search) but performs poorly in classifying the remaining block types. The authors
compare the classification performance of their method to the results of the main content
extraction method by Song et al. [SLWMog4] and find that their own, co-trained method
results in higher error rates.

Akpinar and Yesilada describe an evaluation of their rule-based approach in [AKYE13].
Only 30 different pages were considered in their evaluation. The interpretation of the results
is difficult because the paper does not contain enough details on how the used accuracy
measure was calculated. Furthermore, the participants of the survey used a different
classification system, which was ex post matched with the classes of the authors’ solution.
In addition, the authors report that in only about 33% of the cases more than 50% of the
participants agreed on the block label. This might indicate that the used classification
system is inappropriate.
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4.5 Navigation Element Reverse Engineering
and Alternative CO-Mining Approaches

While the focus of the previous sections was on analyzing the intra-page structure, we
now review methods that aim at analyzing inter-page structures.

4.5.1 Overview

We consider only solutions for analysis on site-level and do not include structure mining
methods that are typically applied in a cross-domain scenarios such as PageRank [PBMWgg].
We can distinguish solutions that extract structures from solutions that generate structures.
Solutions that extract structures are compliant with the O*-model in a way that they assume
an existing CO that is obvious to humans but concealed to machines. These solutions are
considered as related work in this section.

Solutions that generate structures do not make the assumption of a embedded CO. In-
stead, they induce new structures and, hence, the underlying research questions are differ-
ent. Many authors seem not to be aware of the existence of predefined COs, while other
authors assume COs as a matter of course. Since many authors are not aware of the two
different perspectives themselves, the distinction is often not clearly formulated in the
publications in this field. However, the authors’ argumentations usually reveal whether the
focus is on hierarchy extraction or hierarchy generation. In addition, solutions that are not
evaluated against manually labeled data sets clearly indicate the hierarchy generation
perspective. Examples for solutions that are not considered as related work in this thesis
because the focus is on hierarchy generation include link-based methods (e.g., [BORS92]),
text-based methods (e.g. [MLGR98], [DUCHo00]), hybrid text-/link-based methods (e.g.,
[LYHL10][HOEX12]) and usage-based methods (e.g., [CLZCos]). Since the terminology used in
this field is very heterogeneous and not yet settled, the title of a publication is not always a
good indicator, whether the work is related to the research questions addressed in this
thesis or not. For example, the paper by Yang and Liu titled “Web Site Topic-Hierarchy
Generation Based on Link Structure” [YALIog] is indeed relevant to our research. A very
similar title of a different work is “Hierarchical Topic Segmentation of Websites” [KUPTo6]
but here, the addressed research problem is different. The authors of the latter publication
focus on finding homogenous sections in a given tree (URL-induced) whose nodes are
labeled with topics. An overview over the approaches that are considered in this section is
provided in Table 6. Since little work has been done that aims at mining COs, we included
not only methods that focus on hierarchical COs but also two solutions that extract non-
hierarchical Web-site structures (the work done by Chen et al. [CLWPo3] and by Rodrigues et
al. [ENMGo6, MEMFo7]).
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Table 6. Overview over related CO-mining approaches

Extracted model

Method

Features

Evaluation

Chen et al. [CLWPO3]

Thesaurus for sites
from the same
domain (hierar-
chical CO with
associative links)

Removal of navigation
links

URL structure, block types
using [CZSZo1], number of
navigational block occur-
rences

13 sites from the
shopping domain,
only precision

Liu et al. [LINLo4]

Hierarchical CO

Main menu extraction

Style, URL and text features
for main menu extraction

5 sites from the
news domain,
precision, recall and
f1 measure

Rodrigues et al.
[ENMGo6, MEMF07]

Abstracted, non-
hierarchical site
model

Navigation element
mining

DOM structure

2 sites, method is
applied to detect
entry pages.

Yang and Liu [YALlog]

Hierarchical CO

Training of classifiers for
parent-child links and
standard graph-based
algorithms

URL structure, content
relevance (tf-idf-based),
navigation bar extraction,
co-teference, link position,
link text length, font size

Leave-one-out
evaluation, 5 sites

Yang et al. [YJZN10]

Hierarchical CO

Parsing of HTML lists

DOM structure, HTML
element types

Indirectly (in
conjunction with
related entity
finding)

Linetel. [LICC1]

Hierarchical CO

Recursive hierarchy
construction by iteratively
selecting the most
important navigation
element starting from the
entry page

Number of navigation
element occurrences, HITS-
based [KLEI99] hub score

Precision, recall and
F1 measure, actual
sitemaps as
baseline, 3 sites

4.5.2

Hierarchy Extraction

Although Liu et al. [LINLo4] use a very uncommon terminology and claim to extract the
“skeleton” of a Web site, their method is actually one of the first solutions for mining
hierarchical COs. Like the methods presented in this thesis, Liu et al. aim at reverse engineer-
ing menus. The authors’ framework relies on the identification of “navigational link sets”,
which represent those menus that contain the links to the immediate child nodes of a page
(the applied menu extraction approach is discussed in Section 4.4.2). The hierarchy construc-
tion method is quite simple: First, the navigational link set of the entry page is extracted. The
contained links define the first hierarchy level. Then, the navigational link sets for all first-
level pages are mined to generate the second level of the hierarchy and so on. At each level,
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the navigational link sets of the previous levels are ignored to ensure that the links point to
lower-level pages.

Yang and Liu present another method for extracting hierarchical structures from Web
sites in [YALIog]. Although a different terminology is used, the covered research problem
resembles the CO-mining problem as formulated in this thesis very closely. The authors
distinguish two different link types, aggregation links and shortcut links. According to the
definition by Yang and Liu, aggregation links represent parent-child relationships, while
shortcut links do not. The set of aggregation links represents the hierarchical CO, i.e. the
topic-hierarchy in the terminology of the authors. A machine-learning approach is taken to
train classifiers for the two link types. The authors train and evaluate three different classifi-
er types: a decision tree classifier, a naive Bayes classifier and a logistic regression classifier.
The classifiers are trained on a broad range of features which capture the URL hierarchy, the
existence of an index page, the content relevance estimated using a tf-idf-model [SAWY75],
the presence of a navigation bar, the number of co-occurrences of a link, the position of a
link within a text, the link text length and the font size. Interestingly, the method does not
simply output the links classified as aggregation links. Instead, the probabilities of links
being aggregation links, which are estimated by the classifiers, are transformed into edge
weights. Then, two different graph-based algorithms that make use of edge weights are
applied to generate a tree structure rooted at the entry page of the site. Although not
explicitly mentioned by the authors, this approach might be motived by the fact that the
classification results are not accurate enough to produce tree-like structures. In addition to
the two weight-sensitive algorithms, the authors also generate a hierarchical model by
traversing the Web site in breadth-first manner.

Yang et al. claim to reconstruct the “logical hierarchical sitemap”, which can be under-
stood as the hierarchical CO, in [YJZN10]. However, the proposed method is very primitive
and basically consists of parsing HTML lists. Since there are often many different HTML lists
on a single page and not all lists represent the hierarchical site structure, the approach is not
applicable in most scenarios. However, the focus of the authors is not on accurately mining
the CO but on gaining some hierarchy information to enhance related entity finding.

Lin et al. [LICC11] propose a sophisticated system for extracting hierarchical COs. In the
authors’ terminology, they automatically generate sitemaps. The system includes a page
segmentation module (discussed in Section 4.3) and a module for identifying navigation
elements (discussed in Section 4.4). The actual sitemap building is based on the number of
times a navigation element occurs on the entire site and the hub values that are computed
for each navigation element with a modified version of the HITS algorithm [KLEI9g]. Both
values aim at estimating the importance of a navigation element. The product of both
values is used to combine them into a single measure. The sitemap construction starts by
selecting the top-ranked navigation element from the entry page, which is considered as the
first sitemap level. Navigation elements at the bottom of a page are excluded a priori in
order to ignore copyright statements or similar blocks placed in the page footer. In a second
step, the top-ranked navigation elements are selected for each of the first-level pages to
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construct the third level of the hierarchy and so on. In each recursion step, the navigation
elements that were previously selected are not considered any more.

4.5.3 Extraction of Alternative Site Models

Chen et al. [CLWPo3] do not extract hierarchical COs but thesauri. While hierarchies only
involve a single kind of relationship, which are parent-child-relations, thesauri model
additional associative connections to link terms with similar meanings. A thesaurus contains
the same information as two separate COs, one being hierarchical and one being associative
(cf. Section 2.2.5). The objective of the authors is to build a combined thesaurus, i.e. a com-
bined CO, for Web sites from the same domain. To achieve this, first, the hierarchical CO is
extracted individually for each site and, then, the COs are merged into a single thesaurus.
Thus, the research problem of extracting hierarchical COs on site-level is addressed in the
author’s work. The authors distinguish navigation links and semantic links. With the termi-
nology that we have introduced in the O’-model, we can say that semantic links are those
links that match the edges in the hierarchical CO, while all other links are navigational links
(e.g., links from a child back to the parent node). The approach of Chen et al. is to filter all
navigational links. To achieve this, the authors 1) remove links that point to a URL directory
higher than the directory of the current page because it is assumed that these links repre-
sent child-parent relationships, 2) remove “high-level” navigation bars discovered with the
method described in [CZSZo1] because it is assumed that they do not contain downward
links and 3) remove navigation lists that occur multiple times because it is assumed that
they are not semantically related to the page on which they appear. The used block classifi-
cation method [CZSZo1] also distinguishes index and content pages. This information is
used to separate hierarchical links from associative links: all links on index-pages are consid-
ered as being hierarchical, while the associative links are given by the links on the content
pages.

Although Rodrigues et al. ((ENMGo6, MEMFo7]) propose extracting a site structure
model based on navigation elements, the resulting model, called link structure graph (LSG),
is not hierarchical. The authors distinguish two kinds of navigation elements: so-called s-
nodes that are stable in a way that they reoccur on the linked pages and c-nodes that do not
fulfil this condition. Obviously, menus that represent hierarchy levels are s-nodes because
they usually allow navigating from each sibling to all other siblings in the same hierarchy
level. Thus, the hierarchical CO of a site should have a major influence on the LSG. However,
the LSG representation is not hierarchical because an edge between two nodes is always
drawn if the source node contains a hyperlink to a page on which the target node is present.
In addition, the nodes in the LSG represent navigation elements and not pages. Thus, the
LSG representation has a different focus and does not correspond to the CO as it is under-
stood in this thesis.
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4.5.4 Evaluations of CO-Mining Solutions

Chen et al. [CLWPo3] remove “navigational” links in order to recover the CO structure.
They evaluated the performance of navigational link detection on 13 sites from the shopping
domain. For each site, 25 pages were manually labeled. The authors only list precision (about
93% in average), recall values are not provided. How well the remaining links could be
separated into hierarchical and associative links is not measured as well. Their method
assumes that the semantic links on a page either consist of only hierarchical links (“index
page”) or of only associative links (“content pages”). Although this might apply to some
pages from the shopping domain, the assumption does obviously not hold in the general
case.

Liu et al. [LINLo4] conduct a leave-one-out evaluation based on five, manually-labeled
sites from the news domain. The interpretation of their result is difficult because they do not
directly evaluate the quality of the extracted CO. Instead, they measure the number of
correctly identified “navigation pages”, which are hubs that contain links to content pages
or other navigation pages located deeper in the hierarchy. However, the results indicate that
their approach works very well for the first hierarchy levels of the analyzed pages but
performs poorly on the extraction of deeper hierarchy levels.

Yang and Liu [YALIog] evaluate different combinations of graph-generating algorithms
and classifiers for estimating the used edge weights. They perform a leave-one-out evalua-
tion with five selected Web sites. Since the evaluation was conducted more than five years
ago, the complexity of the tested sites at time of the experiments is difficult to assess.
However, a screenshot of one of the sites, which is included in the paper, indicates that the
considered sites had a low-complexity and do not represent current Web sites well. Parts of
the CO were manually labeled for each Web site. As evaluation metric, the percentage of
nodes in the benchmark trees for which the manually assigned parents and the extracted
parent nodes match is used. According to this metric, the combination of the decision tree
learner and the directed minimum-spanning tree algorithm performed best with an average
result of 91.9%.

Yang et al. [YJZN10] as well as Rodrigues et al. [ENMGo6, MEMFo7] evaluate their meth-
ods only indirectly in combination with other tasks.

The hierarchy extraction method of Lin et al. [LICC11] is weakly evaluated. Only three se-
lected sites are considered. All three sites contained sitemap pages, so it was possible to
evaluate against the actual CO without labeling effort. An average precision of 0.69 and an
average recall of 0.63 are reported by the authors.
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4.6 Conclusion

We conclude that CO-mining is an unsolved research problem. Although there is some
previous work that addressed the problem, practical applicability of previous solutions has
not been proven. All reviewed solutions that are directly related to CO-mining (cf. Section
4.5) have in common that they are weakly evaluated. Only one method is evaluated for more
than 5 sites and [CLWPo3], which considers 13 different sites, reports precision values
without the corresponding recall results. In Section 2.3, we have discussed that the CO and
the link structure differ significantly and, furthermore, that the application of multiple
navigation design patterns defines the FO on top of a CO. In Chapter 3, we have also argued
that effective CO-mining requires decoding the navigation design patterns. Based on these
premises, we can conclude that the existing CO-mining solutions are limited by design. Chen
et al. [CLWPo3] and Yang et al. [YALIog] work on the level of individual hyperlinks and do not
consider link aggregations, i.e. navigational blocks at all. Liu et al. [LINLog] and Lin et al.
[LICC11] do mine specific navigation elements but ignore that sites often contain a broad
range of different navigation elements and only few of them hold hierarchy information. In
addition, their frameworks are obviously not capable of handling the subtle differences
between different navigation design patterns that we demonstrated in Section 3.3.

Having found that the CO-mining problem has not yet been solved by previous solu-
tions, we can focus on the research questions formulated in Section 1 and review them
under the light of the surveyed work™:

1. Which navigation design patterns can be used for CO mining?

Although the methods by Liu et al. [LINLo4] and Lin et al. [LICC11] aim at mining nav-
igation elements that contain links to child nodes, the specific characteristics of
such navigation elements remain vague in both publications. There are multiple
ways of implementing hierarchical navigation and an effective CO-mining ap-
proach requires a deeper analysis of the applied navigation design patterns, which
is not covered by previous work.

2. How can those navigation design patterns that allow CO extraction be mined? Are the
methods accurate enough to produce valuable hierarchy information?

A reliable method for extracting navigation elements that could serve as founda-
tion for an applicable CO-mining method does not yet exit. There is little previous
work on this problem statement. None of the reviewed existing solutions has been
evaluated for more than five different Web sites and even for those selected sites,
the solutions did not work perfectly (cf. Section 4.4.3). There is also no convincing
universal block classification method with satisfying performance that delivers spe-
cific navigation elements. Methods with focus on main content extraction (cf. Ap-

> Work related to the fourth research question is discussed in Section 3.1.
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pendix B.2) have been applied with more success, but the extraction techniques are
different and cannot be generalized to mine navigation elements.

3. How can we evaluate the correctness of CO mining solutions?

Related work in general and existing CO mining solutions in particular have been
evaluated on usually small, manually labeled data sets. There seems to be no alter-
native to time-consuming human assessments. However, evaluation data sets that
involve less than s different sites are too small to draw conclusions on the generali-
zability of an approach.
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5 TOWARDS A SOLUTION

In this section, we lay the foundations for an applicable CO-mining solution. The organi-
zation of this chapter is depicted in Figure 27. In Section 5.1 and Section 5.2, we introduce a
solution that allows identifying the navigation design patterns of navigation elements. For
this, we analyze graph representations of the links in the navigational blocks of a navigation
element. We refer to these graphs as block graphs. Our approach requires conducting the
identification of navigation design patterns not as part of task 2 in the basic CO-miniing
process but after the navigational blocks have been joined to navigation elements (task 3 in
the basic CO-mining process). In Section 5.3, we focus on the generation of block graphs by
implementing a prototypical solution with conventional methods. The evaluation of the
prototype reveals problems that are difficult to address with traditional Web mining meth-
ods. (Hence, in Chapter 6, we rethink the basic CO-mining process and present the GRABEX-
method that solves the first three tasks simultaneously in a single step.)

5.1 Representing Navigation Elements as Block
Graphs

In this section, we introduce the block graph model. The block graph model is character-
ized by a fundamental navigation element model and graph structures that are defined
based on this fundamental model. In the fundamental navigation element model, naviga-
tion elements are modeled as sets of blocks, while blocks are modeled as sequences of links.
To actually represent a site with the block graph model, it is required that 1) page segmenta-
tion is conducted successfully, 2) all navigational blocks are extracted but their types are not
identified and 3) navigational blocks that belong to the same navigation element are
grouped. This means that the first three tasks in the basic CO-mining process are completed
at least partially: As Figure 28 illustrates, it is assumed that the boundaries of navigational
blocks are known. Assumption 1) and 3) correspond to tasks 1 and 3 respectively of the basic
CO-mining process (cf. Section 3.3.1). The second task, navigational block classification, is
completed only partially because navigational blocks can be distinguished from other blocks
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Section 3.3.1:
Introduction of a basic CO-mining process

Page Navigational Navigation element Navigation element
segmentation block classification mining reverse engineering
a) identifying navigational a) Joining navigational
blocks blocks

b) Identifying underlying
navigation design
patterns

Section 5.1 and Section 5.2:
The problem of identifying navigation design patterns is addressed. To solve this problem we modify the
basic CO-mining task and change the task order.

Page Navigational Navigation element Navigation element
segmentation block classification mining reverse engineering
a) identifying navigational a) Joining navigational
blocks. blocks
b) Identifying underlying
- navigation design
patterns

Modification of basic CO-mining process

Section 5.3:
Having identified an approach to solve task 3b, we address the prior tasks by implementing and
evaluating a prototype

Page Navigational Navigation element Navigation element
segmentation block classification mining reverse engineering
a) identifying navigational a) Joining navigational
blocks blocks
Scope of prototype b) Identifying underlying
navigation design
patterns
Chapter 6:

Based on the findings of the prototype, we rethink the basic CO-mining process and present the
GRABEX-approach, which subsumes tasks 1,2,and 3.

Navigation element
GRABEX reverse engineering;

The GRABEX approach is introduced in Section 6.1,imp tations are p. ted in Sect. 6.2 and 6.4  Addressed in Sect. 6.3

Figure 27. Organization of Chapters 5 and 6.

but the types of the navigational blocks, i.e. the underlying navigation design patterns, are
not known.

By assuming that the first three tasks of the basic CO-mining process are executed suc-

cessfully and the fourth task is not yet solved, we approach the CO-mining problem in a
reverse direction. As we will see in Section 6.1, this makes sense because navigation ele-
ments result in characteristic block graph patterns and on this basis we can translate the
first three mining task into a single task that is easier to solve — the task of discovering
characteristic block graph patterns in the set of all possible page segmentations and naviga-
tion element combinations.

74

In the following, we will assume that a site S consists of a set of z pages:

S={P,P,, ... B} (5)




Towards a Solution

Navigational blocks Navigation element

How the EU works

CONTACT

General information enquirtes

CONTACT
::::: J information enquiries

Figure 28. Requirements of the block graph model. In the block graph model, we assume that the
navigational blocks are extracted but their types are not determined (left side). Furthermore,
blocks from different pages that belong to the same navigation element are grouped (right side).

Each page P; contains a (possibly empty) set of k; navigational blocks:
P; ={Bi1,Biz, ... Bix,} (6)

The navigational block B;;, which is the /-th block of page /, is modeled as a sequence of
m;, linked pages:

_ (1 .2 MmN 1o miy
B = (ui’l,ui,l, T ) with Ui Ufy, s Uy €S (7)

Since we assume a successful completion of the navigation element mining task, the

grouping of navigational blocks into navigation elements is known as well and we model a
navigation element N; as a set of navigational blocks:

N; = {Bx,y € Up,es P; |Bx,y results from navigation element NJ} (8)

These are the components of the fundamental navigation element model, as illustrated
in Figure 29. In the depicted example, the site S consists of only three pages. On each page,
three navigational blocks are found. The first block on each page (B, 1, By, and Bj 3 respec-
tively) contains links to the other two pages and, hence, those blocks are modeled as se-
quence of two pages. All three blocks belong to the same navigation element N;.

The Web graph W = (Vy, Ey), whose vertices represent pages and whose edges are de-
fined by the hyperlinks, is contained within the block graph model. The set of vertices Vy, is
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Pages / Navigational Blocks Navigation Elements
B1,1 B1,2 Bl,g
P, P, P, P,
P, 5. B3 IBY B2
Page P,
N1
s— | P
P
> B,
Page P,
P1
P,
B.;
- Page P,

Figure 29. lllustration of the block graph model.The navigational blocks (gray boxes) of navigation
element N, contain links to the other pages of the site (e.g., P2 and P3 on page P1).

given by the set of pages S and the set of edges can be formulated as follows if u, is used
according to formula (7) and denotes the h-th linked page of the /-th block of page x:

B = (B B) € S7[aLh € Niud = ) ol

This means that Ey, contains an edge from page P, to page P, if P, contains a block By,
of which the h-th element is a link to page P,. While the Web graph is contained within the
block graph model, the latter provides additional information because it allows splitting the
Web graph into separate components that originate from different navigation elements.
Hence, we define the partial Web graph W; = (VJ Ej) that corresponds to the subset of links
which result from the navigation element N;. Again, the vertices are given by the set of
pages S. The set of edges E; only includes those edges that originate from a block that
belongs to N;:

Ej ={(P.P,)) € S?|3l,h € N:ul!; = P, AB,, € N;} (10)

As we will see in the next section, partial Web graphs allow drawing conclusions about
the underlying navigation design pattern. In this context, another graph representation is
useful. We call this graph the partial link graph L; = (V';, E';). As before, the set of vertices
V'; corresponds to the set of pages S and only links within blocks that belong to the naviga-
tion element N; are considered. An edge from a page P, to a page P, is drawn, if a block of N;
exists, in whose sequence of linked pages, page P, immediately follows page P,. For exam-
ple, the block By; = (u}}, u, ..., u;,") defines the edges (ufy, u?,), (u?, ufy), (ud, uf,) and so
on.
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Formally, the set of edges E’; can be specified as:

E'; ={(P.P) € S*|3z,Lh e N:ully = B Auli' =P, AB, €N;} (1)

5.2 Block Graph Patterns Reveal Navigation
Design Patterns

In this section, we demonstrate by examples that the block graph model allows to derive
information about the used navigation design patterns.

5.2.1 Methodology and Visualization

In the following, we present a selection of patterns that is neither based on 1) a specific
design pattern catalogue nor 2) on an empirical evaluation because:

1) There is no final, empirically grounded design pattern catalogue. Existing design
pattern catalogues typically represent “best practices” rather than actual snapshots of
commonly used patterns. In addition, the granularity of navigation design patterns and
block graph patterns differs. Naturally, some navigation design patterns are not distin-
guishable based on their block graph representation, while in other cases, different
block graph patterns are variations of a single navigation design pattern.

2) The block graph model assumes successful page segmentation and detection of
navigational blocks as well as navigation elements (but not their types). These premises
are open issues (we address them in Section 5.3 and Section 6.1) that hinder an empiri-
cal analysis at this stage.

Hence, we discuss a selection of navigation design patterns that are either based on a
hierarchical CO or that result in distinctive block graph patterns illustrating the expressive-
ness of the model. We use the methodology for describing navigation design patterns that
was introduced in Section 2.3.2. Since the block graph model is not able to capture infor-
mation about the PO dimension, patterns that only differ in this dimension result in the
same block graph pattern. Although, we mention alternative navigation design patterns
that obviously share a presented block graph pattern, we do not claim to present an exhaus-
tive list. The list of examples is a revised version of the examples that we presented in
[KENU11]. For each example, we plot the graphs W; and L; (cf. previous section). In order to
reveal further characteristics, we distinguish four classes of nodes in W;. We define the set
SR; that contains all pages on which a block belonging to the navigation element N; is
present and the set TG; that contains all pages that are linked from within a block of N;:
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SR; = {P, € S|3y: (P, ) € E}} 2
TG; = {P, € S|3y: (B, P,) € Ej} )

Since a page can belong to SR; and TG; at the same time, we can define four mutually
exclusive sets:

1) SR; \ TG;, which contains pages on which the navigation element N; is present, and
that are at the same time not linked from within N;.

2) SR; N TG;, which contains pages on which the navigation element N; is present and
that are linked from within N;.

3) TG; \ SG;, which contains pages on which the navigation element N; is not present
but that are linkied from within N;.

4) S\ (SGj U TGj), which contains pages on which the navigation element N; is not
present and that are not linked from within N;."

Visualization of block graph footprint: To visualize W;, we separate the canvas on which
the graph is drawn into three zones that correspond to the sets 1), 2) and 3). We do not draw
nodes that belong to set 4) because those nodes are not of interest for analyzing the naviga-
tion element N;. Bidirectional edges are drawn black, in contrast to unidirectional edges, for
which we have chosen a lighter gray. In order to not overload the presentation, arrows to
illustrate edge directions are shown only if they provide interesting information. For pat-
terns that are based on a hierarchical CO, we assume the CO depicted in Figure 30. We will
refer to this kind of visualization as block graph footprint.

a b c d e
at a2 a3 bib2b3bg c1c2c3

Figure 30. Assumed hierarchical CO
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5.2.2 Pattern Examples

Horizontal main menu

First, we discuss the block graph footprint of the navigation design pattern “horizontal
main menu” (as introduced in Section 2.3.2):

Navigation Design Pattern: Horizontal main menu

CO-dimension Based on a hierarchical CO

FO-dimension The pattern generates links to the first level of the hierar-
chy

PO-dimension Links are arranged horizontally at the top of each page

The resulting graphs W; and L; are depicted in Figure 31. We can assume that the main
menu is visible on all pages and thus, all pages are source pages, i.e. are contained in SR;.
However, only the five first-level pages of the hierarchy are accessible. Hence, these pages
belongto SR; N TG;. Since from each page in SR; N TG, each other page in SR; N TG; can be
accessed, the partial graph SR; N TG; forms a complete subgraph, i.e. a clique (Figure 31 (2)).
The pages in SR; \ TG; are not connected to each other. In L;, there is a single linear graph
consisting of the five first level pages, because only links to these pages appear and they

appear always in the same order.
w;
SR\ TG; | SR;NTG; | TGy \ SR,

®
®
®
@
®

Figure 31. Block graph footprint of the horizontal main menu pattern.

Discussion — navigation design patterns with similar block graphs: Since the PO-dimension
is not captured in the block graph model, horizontal main menus cannot be distinguished
from main menus that are placed, e.g., vertically at the left side, solely based on this model.
In addition, other, supplementary menus that appear on all pages of a site and always
contain the same links result in similar block graph patterns.
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Vertical submenu

We now assume another pattern commonly used to implement hierarchies, which is a
submenu placed in the left sidebar of a page:

Navigation Design Pattern:

Vertical submenu

CO-dimension
FO-dimension

PO-dimension

Based on a hierarchical CO

The pattern generates links to an active hierarchy level
below the first level. In this context, hierarchy level
denotes a set of pages that are child pages of the same
parent. Active hierarchy level means that either the page
that contains the menu or an ancestor page of this page
belong to the hierarchy level.

Links are arranged vertically in the left or right sidebar

Since three nodes of the first level contain child nodes, there are three submenu “in-
stances”, one for each subtree. Each menu instance generates a clique in SR; N TG; because
from each second level node, all of its siblings are accessible (Figure 32, (2)). There are three
nodes, that contain the submenu but that are not accessible via the menu, which are the
parents of the second level nodes (Figure 32, (1)). In L;, there are three line graphs, each
representing an instance of the submenu.

Discussion — navigation design patterns with similar block graphs: Menus that differ only
in the PO-dimension from vertical submenus, e.g., horizontal submenus, result in similar
patterns. However, the pattern is a strong indicator for a submenu within a hierarchy.

W; L
SR\ TG, | SR NTG, | TG, \ SR,
‘ ‘ &
®
C)
@
@
0 7 ° L
<: o °
@
@

Figure 32. Block graph footprint of the vertical submenu pattern
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= Home

= Special Interest Groups

o 1. level

= Publications

= Membership

= Digital Library

1. level

= Communications of the
ACM I I
= AlaCarte 2.leve
Subscriptions

Figure 33. Example of a vertical multilevel menu. All first level nodes are expanded, while sub-
menus are only expanded if the subtree is active. (Source: http://www.acm.org)

TG\ SR;

L;

Figure 34. Block graph footprint of the vertical 2-level menu pattern.

Vertical 2-level menu

Often, instead of separate main and submenus (cf. previous patterns), multiple hierarchy
levels are accessible via a single menu. A typical example is a vertical menu in which the first
hierarchy level is always visible while only the submenu of the active subtree is expanded

(cf. Figure 33):

Navigation Design Pattern:

Vertical 2-level-menu

CO-dimension
FO-dimension

PO-dimension

Based on a hierarchical CO

The pattern generates links to the first hierarchy level and
the second hierarchy level if the subtree is active. If the
children of a page are expanded, they appear directly
below the parent and before the next sibling page.

Links are arranged vertically at the left or right side of a
page. The submenus are indented or in another way
visually separated from parent levels.
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Since the vertical 2-level-menu pattern is present on all pages of the site and allows ac-
cessing all pages at the same time, all nodes of W; belong to SR; N TG;. The pattern results in
a flower-like structure consisting of multiple cliques (Figure 34). The central clique (Figure 34,
(2)) originates from the first hierarchy level, while the second level pages produce the
adjacent cliques (Figure 34, (1)). In L;, the submenus add cycles (Figure 34, (3)) to an otherwise
linear graph.

Discussion — navigation design patterns with similar block graphs: Based on our current
considerations, we believe that this pattern typically appears only in conjunction with a
vertical multilevel menu. In case of horizontally-arranged menus, the child nodes are usually
not placed in between the first level nodes but below. Hence, L; would not show the charac-
teristic cycles.

Multilevel menus

The vertical 2-level menu pattern is an instance of a broader class of navigation design
patterns, which subsumes all menus (typically vertically aligned) that represent subtrees of
the hierarchical CO that span multiple levels. The examples a) and b) from Figure 13 on page
25 fall into this category as well as the examples shown in Figure 24 on page 45. There are
different patterns of behavior that are discussed in Section 6.3. As explained in Section 5.2.3,
the block graph representations of the vertical 2-level menu pattern reflect the fact that the
pattern is a combination of a main and a local menu. This generalizes to the multilevel menu
pattern class. Multilevel menus can be considered as combination of a main menu and
multiple local menus. Hence, they are characterized by multiple cliques in W; — this is an
important aspect, which is utilized by the menu extraction method presented in Section 6.2.

Breadcrumb navigation

Another navigation design pattern with a distinct block graph footprint is the pattern
Breadcrumb navigation as introduce in Section 2.3.2:

Navigation Design Pattern Breadcrumb navigation
CO-dimension Based on a hierarchical CO
FO-dimension The pattern generates links to all ancestor pages in the

hierarchical CO, i.e. pages on the path from the root node
to the active page
PO-dimension Links are arranged horizontally above the presented
content chunk. Separator symbols between the links
indicate breadcrumb navigations. Common separator
symbols are > and |
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Figure 35. Block graph footprint of the breadcrumb navigation pattern

If a breadcrumb navigation shows the active path including the current page and the
breadcrumb appears on all pages of a site, all nodes of W; belong to SR; N TG;. In this
example, we assume that the site has an explicit homepage h that can be considered as the
root node of the exemplary CO (cf. Figure 30)"°. Since page h is an ancestor of all pages, the
breadcrumb always contains a link to this page and h is characterized by the fact that it has
the most in-links (Figure 30 (1)), followed by the first level pages that have child nodes
(Figure 30(2)). In case of a breadcrumb navigation, L; is particularly interesting, since it
corresponds to the original CO and thus shows a strict tree structure.

Discussion — navigation design patterns with similar block graphs: We believe that the
block graph footprint of a breadcrumb navigation is unique and does not appear in combi-
nation with other common patterns.

Sitemap navigation

Many Web sites contain so-called sitemaps, which visualize the hierarchical CO.
Sitemaps can be considered as navigation design patterns as well. According to our schema,
we can describe the sitemap pattern as follows:

Navigation Design Pattern Sitemap navigation

CO-dimension Based on a hierarchical CO

FO-dimension The sitemap appears usually on only a single page of the site.
The sitemap pattern generates links to all pages in the
hierarchy. The order in which the links appear usually reflects
a depth-first tree traversal.

PO-dimension The sitemap is presented in the main content area. The tree
structure is visualized, e.g. by indenting lower tree levels.

"SFor practical reasons, hierarchical COs are often modeled without an explicit root node in the
field of Web information architecture. Instead, the homepage is considered as the first sibling of
the first hierarchy level. For simplicity reasons, we adopt this view in this section, except for the
Breadcrumb example, where we assume an additional root node to point out the pattern.
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Figure 36. Block graph footprint of the sitemap navigation pattern

Since sitemap navigations typically appear only on a single page of each site, SR; con-
tains only one node. A sitemap visualizes the entire CO, hence, TG; contains all pages of a
site that are part of the hierarchical CO (Figure 36). L; consists of a single linear graph,
defined by the order in which the links appear on the sitemap page. This order usually
corresponds to the order of a depth-first traversal of the CO.

Discussion — navigation design patterns with similar block graphs: Without additional
knowledge and judging only from W; and L;, the sitemap pattern cannot be distinguished
from other patterns, e.g., a list to related information that appears only once on the entire
site. However, if the pages that are part of the hierarchical CO are known (not necessarily
their hierarchical arrangement and order), the discussed Wj; and L; patterns should indeed
allow identifying sitemap navigations.

Language switch

Many Web sites today are multilingual. Due to maintenance reasons, each language ver-
sion of a site contains typically the same contents and shares the structure with the other
site versions. This means that for each page in one language, corresponding pages in other
languages exist that provide the same information. Since users enter a site not only via the
homepage but may arrive on an arbitrary page of the site indexed by a search engine,
commonly, the language can be selected on every individual page. By “Language switch” we
refer to the frequent navigation design pattern that allows switching between pages that
contain the same information but in different languages (Figure 37). The pattern can be
specified as follows:

¥ Languages O 4.1 Pros
I_«_;—.;-"___I 4.2 Cons
—> 1 Deutsch : 5 Resources
I Espafiol 6 External links
| Euskara ! 6.1 Books
|_ _Fr;an_gaf 1 6.2 Bibliographic references

Figure 37. Language switch in Wikipedia
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Navigation Design Pattern Language switch

CO-dimension Based on multiple parallel COs (e.g. hierarchies) with
similar structure. Each of the parallel COs represents one
language. Each page in one CO has a single corresponding
page in each of the other COs (which represent the
alternative language version of the page).

FO-dimension On each page, links to all alternative language versions of
the page are presented.
PO-dimension The language switch can appear in the header, in the

footer or in a sidebar.

Since the language switch is present on all pages and at the same time all pages are nav-
igable from other pages, SR; N TG; contains all pages of the site. W; is divided into a large
number of isolated cliques. Each clique represents pages with the same content in different
languages. This is due to the fact that a language switch alone allows users only to set the
language of a page but not to proceed to pages with other information. L; exposes a similar
structure, except for the edges, which are not bidirectional if there is a fixed order in which
the languages are listed on each page.

Discussion — navigation design patterns with similar block graphs: Currently we are not
aware of any confusable patterns and believe that the language switch pattern results in
distinctive graph structures.

Context switch

In the language switch pattern example, we assumed that users can switch between
alternative language versions of a page. However, pages might not exist in all languages
and sometimes, the entire site structure and content may differ in dependence of the
language version. Hence, if users on an arbitrary page want to switch to another language,
they are directed to the homepage of the alternative sub site because a corresponding page
does not exist. This kind of pattern for switching between otherwise separated sub sites is

w;j L
SR\ TG; SR; N TG; TG\ SR;
‘ @ﬂ | @ @
S, @
o- 7 ® o
f; S / ®°
e Te 6o
j ® @ 0 9@
@@ e @ @
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Figure 38. Block graph footprint of the language switch pattern
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also applied in the context of use cases than language selection. For example, there might
be separate sub sites for different brands of a company that are connected in this way. We
will refer to this pattern as context switch. The detailed description is as follows:

Navigation Design Pattern Context switch

CO-dimension Based on multiple parallel COs (e.g., hierarchies). The
structure of the COs can differ.

FO-dimension On each page, links to the entry page of each alternative

CO are presented. The entry page is, e.g., the root node of
a hierarchical CO or the first page in a sequential CO.

PO-dimension Context switches typically appear in the header of a page

Figure 39 visualizes the context switch pattern in case of two alternative sub sites, i.e.
COs. The context switch is present on all pages of the site, hence, all pages belong to SR;. We
have two alternative COs, represented by the pages ar-ay and b1-b7 respectively in the figure.
On each page, the entry page of the alternative CO is linked (Figure 39(2)). Hence, both entry
pages constitute the set SR; N TG;. In the case of only two alternative COs, L; is empty
because the context switch contains only a single link on each page.

Discussion — navigation design patterns with similar block graphs: Currently, we are not
aware of alternative patterns which result in similar block graphs and do not represent some
kind of context switch. However, the patterns themselves do not reveal the type of a context
switch, e.g., whether it is used for switching between different brands or languages.

| TG;\ SR;

Figure 39. Block graph footprint of the context switch pattern.
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Pagination

In Section 2.3.2, we have introduced the pattern pagination as follows:

Navigation Design Pattern Pagination
CO-dimension Based on a sequential CO
FO-dimension The pattern generates links to a fixed number of direct

predecessors and direct successors of the active element
in the sequence. Optionally, a link to the first and last
element of the sequence is provided.

PO-dimension Links are arranged horizontally above or below the
presented content chunk.

We now assume an implementation of the pagination pattern in which links to the im-
mediate predecessor and successor of the active page are displayed (typically labelled with
previous / next). The resulting patterns in W; and L; for a sequence ar-aro are depicted in
Figure 40. Since all pages contain the pagination and all pages of the sequence are accessi-
ble, all pages are contained in the set SR; N TG;. W; is a linear graph that reproduces the
original linear CO. If not only links to the immediate neighbors of a page are rendered but,
e.g., also to the two preceding and the two successive pages, W; will contain additional
edges. However, these edges could be easily eliminated to reproduce the original order. L;
shows two separate linear graphs, one containing pages with even numbers and one
containing pages with odd numbers. This results from the fact that, for instance, on an even
page, a link two the previous page is followed by the link to the succeeding page, both being
odd.

Discussion — navigation design patterns with similar block graphs: We believe that the de-
scribed pattern is a reliable indicator for navigation over sequential structures. However, this
also includes multiple more specific patterns such as the “guided tour” or “purchase pro-
cess” patterns, which have been discussed as individual types.”

w; L
SR; \TG]' TGj\SRj
1 @
“ e
@
5l
W

Figure 40. Block graph footprint of a pagination pattern

7 See, e.g., http://www.welie.com/patterns
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5.2.3 Compound Patterns

As demonstrated in the previous section, block graph patterns can reveal the underlying
navigation design patterns. Since all block graphs of a site share the same underlying COs,
the block graph patterns of a site are interrelated. Analyzing the relationships between
different patterns — or studying patterns of patterns — can provide additional signals for the
detection and classification of navigation design patterns. A detailed survey of interacting
patterns is out of scope of this thesis. Instead, we provide two examples to illustrated how
patterns relate. In the remainder of this thesis, interacting patterns are discussed in the
context of specific problem statements.

Example 1- Given a main menu j and a submenu i, the combined graph W; U W; equals
the multilevel pattern18 (Figure 41). This relationship is intuitive since a multilevel menu is in
fact a combination of a main and a submenu. However, even trivial relationships can have
implications on pattern analysis: If we assume that a submenu appears only in combination
with a main menu, block graphs could be examined pairwise. Instead of searching separate-
ly for main and submenus, we can search for navigation element pairs that follow the
multilevel menu pattern.

Example 2 - Given a breadcrumb j and a multilevel menu i, then L; ¢ W; (Figure 42)"°.
Moreover, the structure of L; can be inferred from W;, and W; is at least partially determined
by L; (except for the nodes d and e that do not have child nodes). In other words, if we have
found a possible multilevel menu pattern but some uncertainty remains, an identified
breadcrumb pattern can confirm this interpretation — and the other way around. Hence, the
consideration of interacting block graph pattern can increase classification performance.
However, such a combined classification is out of scope of this thesis and considered as
future work.

'® We ignore the PO-dimension (e.g,, vertical or horizontal alignment) in this context, since it
has no influence on the block graph patterns
" In this example, we do not model an explicit root node (see footnote 16)
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Figure 41. A multilevel menu corresponds to the combined block graph of a separate main and

submenu.
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Figure 42. The link graph L; of a breadcrumb is a subset of the Web graph W; of a multilevel menu.
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5.3 Exploring the Limits of Block Graph
Generation with Conventional Methods

To generate the block graph model, navigational block classification has to be solved as
well as page segmentation and navigation element mining (cf. Figure 27, page 74). In this
section, we explore to which extent this can be achieved with conventional methods. We
implement methods described in related work whenever it appears to be reasonable and
rely on simple straightforward techniques if they seem to be more suitable. Following
previous solutions, the prototype presented in this section requires visual rendering of Web
pages to access specific attributes such as block widths and heights. The GRABEX-approach
presented in Section 6.1 succeeds without page rendering, which boosts runtime perfor-
mance.

Since main menus, submenus and multilevel menus are the most fundamental solutions
for implementing hierarchical navigation, we focus on the corresponding block graph
patterns. We subsume the navigation elements implementing the first two levels of a
hierarchical CO under the term main navigation system, regardless of whether they are
implemented as multilevel menu or as main-/submenu combination. Parts of the contribu-
tions presented in this section have been published in [KENU1]. In [KENU11], we have also
evaluated a simple rule-based approach for navigation element reverse engineering (the
fourth task of the basic CO-mining process). This approach will not be discussed in this
section, since a revised and extended approach for rule-based reverse engineering of menus
is presented in Section 6.3.

5.3.1 Implementation of a First Prototype

In Section 5.3.1.1, we explain that the block graph generation scenario results in relaxed
requirements for page segmentation and navigational block extraction in comparison with
more general scenarios. This has influence on implementations of page segmentation and
block extraction, which are described in Section 5.3.1.2 and Section 5.3.1.3, respectively. In
Section 5.3.1.4, details of a prototypical solution for navigation element mining are present-
ed. An experiment to evaluate the accuracy of the solution is described in Section 5.3.2.

5.3.1.1 Page Segmentation and Navigational Block Extraction Strategy

From the analysis of existing work on page segmentation in Section 4.3 and block classi-
fication in Section 4.4, we concluded that no general solutions to these problems exist up
until now. Moreover, there are few comparative evaluations of existing solutions that target
specific use cases. At the same time, evaluating existing methods is difficult due to the lack
of published implementations and out of scope of this thesis. As a result, it is not possible to
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determine the most suitable page segmentation and block classification solution for our
purpose in an easy way.

However, we are only interesting in isolating and recognizing navigational blocks cor-
rectly and do not require an accurate segmentation of the entire page and an accurate
classification of all page blocks. Besides, we do not necessarily require the exact set of
navigational blocks. Additional, “noisy” page blocks can be tolerated. This results from the
assumption that the block graph model allows distinguishing the main navigation system
from other navigation element types. Hence, additional, “faulty” page blocks do not have
negative effects as long as they are not combined into navigation elements that accidently
resemble block graph patterns of the main navigation system. In principle, we can work with
a superset of page blocks as long as this superset contains the true navigational blocks.
However, we should try to keep this superset as small as possible for three reasons: 1) to
reduce runtime overhead of downstream processing, 2) to keep the effort of manual evalua-
tion low, i.e. to limit the number of navigation elements that need to be inspected, and 3) to
avoid negative effects on the accuracy of downstream tasks. Additional noisy page blocks
could complicate joining navigational blocks to navigation elements and, as aforemen-
tioned, could lead to the accidental appearance of typical block graph pattern.

Since all reviewed page segmentation methods except for [CAML10O] return subsets of
the DOM elements, in which each DOM element represents a page segment, the set of all
DOM elements of a page defines an adequate superset. Thus, the fundamental strategy
behind both, our page segmentation solution and the navigational block extraction method,
is to remove DOM elements that are unlikely to represent navigational blocks.

5.3.1.2 Page Segmentation Algorithm

Figure 43 visualizes the fine-grained page segmentation defined by the DOM elements
of a sample page. This structure still contains much redundancy with respect to our purpose:
We are only interested in navigational blocks and, hence, can ignore blocks that do not

KT [Gomm—

| —— |

Figure 43. Segmentation defined by the original DOM-tree of a page (source: http://www.kit.edu)
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contain hyperlinks. Furthermore, we can tolerate small variations of the assumed block
boundaries as long as they do not affect the hyperlinks within the block (because the block
graph presentation is only based on the hyperlinks in each block). Based on these observa-
tions, we can simplify the original DOM-tree to reduce the superset without eliminating the
true navigational blocks. By this, we reduce the runtime of all downstream processing and
limit the required effort of manually inspecting the results. The DOM-tree simplification is
conducted by processing the tree bottom-up and applying the following rules:

— Ifanodeis a leaf node and a hyperlink (a-element): keep node

If a node is a leaf node and not a hyperlink: remove node
— Ifanode has a single child: remove node but append child node to parent node
— If a node has multiple child nodes: keep node

The effect of this simple graph transformation algorithm is illustrated in Figure 44. The
algorithm prunes subtrees whose leaf nodes are not hyperlinks and keeps only those
internal nodes at which the tree branches. In case of an internal node with a single child, the
node and its child node both represent the same aggregation of links. Hence, we consider
the node as redundant and remove it.

5.3.1.3 Navigational Block Extraction

After the DOM-tree transformation, we can consider a-elements that share the same
parent node as potential navigational blocks (e.g., blocks a, b and c in Figure 44). Further-
more, we can assume that very large blocks, blocks with much non-linked text and blocks in
which the proportion of linked text is small are unlikely to be navigational blocks®. The
evaluation framework presented in Section 5.3.2.1 was used to find appropriate thresholds
and to derive the following rules for eliminating page blocks:

—  Elimination Rule 1: Screen size of element exceeds 70% of the size of the entire page
—  Elimination Rule 2: Length of non-hyperlinked text exceeds 150 characters
- Elimination Rule 3: More than 5o percent of the text is not hyperlinked

We found that by solely applying these three rules many obviously noisy blocks remain.
In contrast to general block classification methods, we are only interested in specific blocks
that aggregate a number of other items, the links. Since users must be able to recognize
which links belong to the same navigation element, we can assume that all links of the
same navigational block have a similar formatting (cf. law of similarity, [WERT38]). However,
there are many visual attributes that could be considered for comparing the formatting
similarity of two elements, e.g. font face, font size, colors, positions, et cetera. First experi-
mental results showed that not all of these attributes are good indicators of whether two

*° By linked text we refer to text that is part of a hyperlink, i.e. text below an ag-element. All
other text is referred to as non-linked text.
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Figure 44. DOM-tree simplification example

links belong to the same navigational block or not. For example, in one and the same
navigational block, link colors may indeed vary depending on the link target. In addition, the
same font type and font size is often used throughout the entire page and, hence, both
properties do not work well as distinguishing features. We found that position and size
attributes are more reliable characteristics. Thus, we added a fourth rule which is based on
comparing the heights, widths, vertical positions and horizontal positions of the links in a
navigational block candidate. As we argued in Section 5.3.1.1, removing a true navigational
block is worse than keeping a faulty block. For this reason, we do not require that all child
nodes are equal in all four attributes. Instead, we formulate the fourth rule as follows:

—  Elimination Rule 4: No pair of child nodes exists that are equal in at least two of the
following properties: x-offset, y-offset, width and height.
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5.3.1.4 Navigation Element Mining

To generate block graph models, knowing navigational blocks is not sufficient. In addi-
tion, navigational blocks that belong to the same navigation element must be identified —
this task was introduced as navigation element mining in our basic CO-mining process
(Section 3.3.1). Analyzing related work (Section 4.4.2), we found that only Rodriguez et al.
[ENMGo6][MEMFo7] addressed this problem previously. The authors’ approach is based on
link comparison. Page blocks are pairwise compared by applying a similarity-measure
introduced by Jaccard [JACC12] and commonly referred to as Jaccard-index in other publica-
tions. The Jaccard-index is popular in the field of citation-analysis (e.g.[SCZS06]) and allows
comparing sets with different cardinalities. Given two sets A and B, the Jaccard-index is
defined as:

|AnB|
|AUB|

SIM;qc(4,B) = (14)

Rodriguez et al. [ENMGo6] consider two navigational blocks as similar if the Jaccard-
index is 1, i.e. if both sets are similar. Obviously, this approach is not suitable for the naviga-
tion element mining task in our scenario since we do not assume that the navigational
blocks of a navigation element all contain the same links. At least, we have to allow for some
fuzziness and lower the threshold. Furthermore, we found that a modified similarity-
measure is more appropriate:

|AnB|
max(|Al|B])

SIMy0q(4,B) = (15)

If A S Bor B € A, then SIM;,. = SIMy,q as we show for the case A € B, which implies
|A] < |Bland |AU B| = |B|:

|AnB| _ |AnB| _ |AnB]| — SIMMad(A,B) (16)

$1Mjac (A, B) = {100 = T = el zD

The modified similarity measure is motivated by the multilevel menu pattern, in which
the links of the navigational blocks change in dependence of the active page (cf. Section
5.2.2). This pattern is important for mining hierarchical COs because it is frequently used and
provides rich hierarchy information. If we consider this pattern, we can say that the Jaccard-
index and the modified index do not differ if a submenu is expanded in one navigational
block and collapsed in the other (Figure 45-1). However, the Jaccard-index is lower than the

1) Item 1 Item 1 2) Item 1 Item 1
Item 2 ? Item 2 Item 1.1 ? ltem 2
Item 3 — Item 2.1 Item 1.2 — Item 2.1
Item 4 Item 2.2 ltem 1.3 ltem 2.2

4 Iltem 2.3 Item 2 4 ltem 2.3
SIM]aC = SIMpoq = 7 Item 3 ltem 3 51M]ac =— Item 3
Item 4 ltem 4 10 ltem 4
SIM, 4
Mod — 7

Figure 45. The wused modified similarity measure and the Jaccard-index differ
if [ A\B|>0A|B\A|l>0
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modified index if different submenus are expanded in both navigational blocks (Figure 45-2).
In such cases, the Jaccard-index tends to drop below any reasonable threshold while the
modified version is more likely to reflect the similarity of both menus. Experimenting with
different thresholds, we found that a value of 0.5 works well.

However, not all navigation design patterns result in navigational blocks that overlap
with respect to the hyperlinks they contain. For example, the language switch pattern (cf.
Section 5.2.2) generates different links on each page. While the links differ, the link texts stay
the same (the names of the alternative languages). Hence, we apply the modified metric
also to compare the link texts. In preliminary experiments, we found that a slightly higher
threshold should be used and set the threshold to a value of 0.6.

First tests revealed that both criterions alone lead to faulty associations between naviga-
tional blocks because of accidental overlappings. Considering how humans identify reap-
pearing navigation elements, we can say that users solely rely on visual features. This
includes two aspects: 1) the consistent visual design of the navigation element on all pages
and 2) a more or less fixed position of the navigation element on all pages. Again, both
aspects are fuzzy: visual design may vary to some extent, e.g., because of topic-depended
color-coding or additional hyperlinks and positions may change, for instance, because of
different page layouts and contents. Dealing with this fuzziness is complicated by the
number of visual attributes that matter (e.g, vertical and horizontal position, width, height,
colors, fonts, border, etc.) and that interact as well (cf. Section 3.3.4). However, those dimen-
sions can be reduced if common Web standards are taken into account and a rational
designer is assumed. Rational designers separate content and presentation [WCoo] and
store both in different files. Moreover, they reuse HTML code across pages whenever possi-
ble by defining page templates or at least reusing specified formatting rules to reduce their
own implementation effort. This allows us to assess whether two blocks from different
pages are likely to be similar with respect to the visual design and position based on the
HTML-structure alone, even if the actual visual characteristics are stored in a separate
document. To achieve this, we compare what we call the selector token paths of two HTML
elements. The selector path of an HTML-element is defined by all tag names, CSS-class-
attributes and id-attributes of the element itself and all ancestor elements (Figure 46).
Selector token paths reflect the most common types of CSS selectors (cf. [KENU10]). To
compare two paths, tokens with the same tree positions are compared pairwise (e.g., using
the labeling of Figure 46, the to.o-token of a block is compared to the to.o-token of another
block, the t1.o-token to the other t1.0-token and so on). The number of discrepancies is
summed up and used as similarity-measure. The lower the sum of discrepancies, the more
likely both blocks have a similar visual appearance and are placed at similar page positions
because:

a) Position: In general, there are many possible DOM tree structures for a single page
design. However, we assume that rational designers reuse HTML structures and
pages with similar visual design also have similar DOM trees. As a result, page
blocks located at similar positions on different pages have similar ancestors.
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Figure 46. The element types, class-attributes and id-attributes of an element and its ancestors
define the selector token path.

The individual tokens are labelled to.0-13.3.

b) Visual appearance: CSS-definitions are abstract presentation rules that are not di-
rectly associated with specific HTML-elements. Instead, they describe how HTML-
elements with specific attributes shall be rendered. The attributes of HTML-
elements to which CSS-definitions refer are typically HTML-element types, class-
attributes and id-attributes (the three attributes used in the token paths). Further-
more, CSS-definitions can refer to the DOM-hierarchy in order to specify the scope
of rules. For instance, a CSS-definition may set the font color for all elements of type
a that are descendants of elements with the class-attribute “maincontent”. Hence,
the element types, CSS-classes and ID-attributes of ancestors also influence the vis-
ual presentation of a page block and two page blocks are likely be formatted in a
similar way if their selector token paths are similar.

Based on preliminary experiments, we set the tolerated number of discrepancies be-
tween the selector token paths of two navigational blocks that belong to the same naviga-
tion elements to 4. In summary, if we denote the selector token path of a navigational block
A as STP,and the function returning the number of discrepancies as DIFF, we consider two
navigational blocks A and B as belonging to the same navigation element if:

(SIMyyoq(Links,, Linksg) > 0.5V SIM,,,,(Texts,, Textsy) > 0.6) A DIFF(STP,,STPy) < 4 (17)

If the above expression is true for page blocks A and B as well as for B and C, it follows
that also A and C belong to the same navigation element, even if the expression evaluates to
false for A and C. To improve runtime performance, we only compare page blocks of pages
that are connected by a hyperlink.

5.3.2 Evaluation
In Section 5.3.2.1, we describe a dedicated visualization tool that was developed to allow

an efficient inspection of the quality of the extracted information. The experimental setup
and the results of the empirical study are discussed in Section 5.3.2.2.

96



Towards a Solution

5.3.2.1 Result Visualization

For evaluating the prototypical solution, we need to assess whether tasks 1, 2 and 3 of
the basic CO-mining process have been conducted successfully for the main navigation
system. In detail, we must be able to answer the following questions:

A) Page segmentation: Were the boundaries of the blocks belonging to the main navi-
gation system correctly identified?

B) Navigational block classification: Were the blocks of the main navigation system rec-
ognized as navigational blocks?

C) Navigation element mining: Were the navigational blocks of the main navigation
system grouped successfully?

Question A and question C require inspecting all page blocks belonging to the main nav-
igation system. To assess whether the boundaries were correctly identified (question A), the
inspection must be based on the visually rendered page blocks. In addition, we have to
manually scan all navigation elements in search of the main navigation system to answer
question B.

Hence, visual inspection of a large number of elements and their relationships is neces-
sary to identify errors. Manually browsing the actual Web sites and comparing the visual
presentation with the extracted data would be too time-consuming and hinder efficient
development and evaluation. We avoided this limitation by developing a dedicated presen-
tation that can be efficiently inspected with the use of a zoomable user interface. The used
Web crawler was extended to render each crawled page and to save a screenshot. In addi-
tion, the position (in pixels) of every DOM-element was saved. This allowed us to generate a
cropped screenshot of each page block ex post. To visualize the grouping of navigational
blocks, we applied the graph visualization software Graphviz” for arranging the screenshots
of the page blocks, which we used as node symbols. To allow assessors to quickly explore
large graphs, the results were displayed with the graph browsing toolkit ZGRViewer™.

Figure 47 depicts the structure of the generated diagrams. The mining results of an en-
tire site are summarized on a large canvas (Figure 47-a). Using ZGRViewer, assessors can pan
in any direction with the desired speed and adjust the zoom-level using the mouse-wheel.
On the canvas, groups of page blocks are horizontally arranged. The groups, which represent
navigation elements, are visualized by bounding boxes (Figure 47). In addition, a number
plotted on each page block (not shown in the figure) indicates the number of times the page
block appeared.

" Available from http://www.graphviz.org/
** Available from http://zvtm.sourceforge.net/zgrviewer.html
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Figure 47. Visualization of the navigation element extraction results. All mined navigation
elements were arranged on a large canvas (a). Human assessors can zoom in to inspect
individual navigation elements (b).

5.3.2.2 Experiment

To evaluate the prototypical implementation, we first generated a list of 50 domains as
follows: An English dictionary was used to create a list of 50 random keywords. Each key-
word is passed as search query to a search engine and the first site that did not violate one
of the following criteria was manually selected:

— Thesite is hierarchically organized and the hierarchy has at least two levels.

— There are no other dominant types of organization schemas as, e.g., in wikis (associa-
tive schema) or directories (database schema)

— The site does not use frames or Javascript-based menus

This list of domains was then automatically crawled. For each site up to a maximum
number of 250 pages were retrieved. We used the evaluation tool described in Section 5.3.2.1
to assess the quality of navigational block extraction (including the correctness of the
boundaries) and navigation element mining (i.e. correctness of grouping of navigational
blocks). We evaluated whether the tasks were conducted without any errors, with minor
errors or with major errors:

— Errorless: The task was conducted without any errors for the entire sites

— Minor errors: The task was conducted with errors that would result in single addi-
tional or missing links in the hierarchical CO, while the fundamental structure of
the main navigation system is intact.

— Majorerrors: The extraction of the main navigation system failed.

If one task leads to major errors, subsequent tasks will fail, too. Hence, sites with major
navigational block extraction errors were excluded from navigation element mining. The
results are summarized in Table 7. For the second task, we provide the percentage of major
errors excluding the sites that produced major errors in the previous tasks at the one hand
and the aggregated major errors, representing the overall rate of major errors.
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Table 7. Summary of evaluation results.

0
Page segmentation and Noerrors 78.0%
navigational block Minor errors 16.0%
extraction
Major errors 6.0%
No errors 70.2%
Navigation element -
. Minor errors 213 %
mining
Major errors 8.5%
Both tasks combined Aggregated major errors 14.0%

5.3.3 Conclusions

The prototype was designed to evaluate how challenging the generation of block graph
models is. The implemented solution represents the current state-of-the-art as analyzed in
Chapter 4 with some extensions, whenever more appropriate techniques were available
(e.g., dedicated page segmentation, comparison of selector token paths instead of visual
attributes, etc.). The evaluation results are ambivalent: We made some restrictions on the
evaluated sites that excluded challenging samples from the beginning, e.g., sites that are
not dominated by a hierarchy at all or sites that rely on Javascript-based menus. And still, for
almost 1/3 of the sites, the hierarchy extraction was erroneous. This error rate is too high for
most applications that could make use of hierarchy information. A major problem is the fact
that the errors of each individual task sum up in the end. Based on the empirical results and
the experiences from the prototype development, we gained further insights:

e  Page segmentation and navigational block extraction work well and caused few major
errors. Most observed errors resulted from too large blocks causing additional links to
be included in navigational blocks that are did not result from the same navigation de-
sign pattern.

e Navigation element mining seems to be much harder to solve. If a single pairwise
comparison of navigational blocks results in an error, the entire results can become use-
less because two navigational elements are wrongly interpreted as a single one.

To summarize, the implemented page segmentation method can serve as foundation
for future CO reverse-engineering solutions. In contrast, the used link-based similarity
measures do not promise to solve the problem of navigation element mining well enough to
be practically applied.
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6 THE GRABEX-APPROACH

In this chapter, we introduce the Graph-based block extraction approach (GRABEX) for
extracting navigation elements (Section 6.1). For applying the GRABEX-approach, we focus
on the most prominent navigation design patterns that are based on hierarchical COs in
order to extract hierarchy information from as many sites as possible. These patterns are:

1) Hierarchical menus, which subsume the main/local menu and the multilevel menu
pattern —We describe a GRABEX-application to mine these patterns (Section 6.2)
and a rule-based solution for reverse engineering the CO (Section 6.3).

2) Breadcrumb navigations — We describe a GRABEX-application (Section 6.4). Deriving
the hierarchy is trivial once the breadcrumbs are extracted correctly.

Besides the fact that the GRABEX-method allows reverse-engineering COs, it has other
advantages over current page segmentation and block classification methods, since current
methods for page segmentation and block classification exploit different kinds of features.
For example, 11 out of 18 reviewed page segmentation solutions (cf. Section 4.3) use features
that are based on the position and size of elements and 14 solutions evaluate the types of
HTML-elements (e.g., table, div, etc.). Both kind of features result in drawbacks: to compute
sizes and positions, computationally expensive page rendering is required and relying on the
semantics of HTML-elements to conduct page segmentation results in a strong dependency
on current Web standards and their usage. Given the rapid change in trending technologies
in the field of Web development, such solutions can become obsolete within a few years.

In contrast, the GRABEX-method is tag-agnostic and does not require page rendering.
Furthermore, only HTML files are required. CSS files, script files or images are not download-
ed.
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Basic CO-reverse engineering tasks as filters
Identifying underlying

Page Identifying navigational Joining navigational navigation design
@ segmentation @ blocks blocks patterns
Filter Filter Filter Classification
* Input: « Input: « Input: * Input:
All DOM elements All blocks All pairs of Navigation
* Output: . Output: navigational blocks elements
DOM elements that Navigational blocks « Output: * Output:
represent blocks Pairs of navigational - Recognized patterns
blocks that belong to - Unrecognized
the same navigation patterns
element

GRABEX-approach
Identifying underlying
Page Identifying navigational Joining navigational navigation design
patterns

@ segmentation @ blocks blocks
Classification

All DOM elements All DOM elements All combinations

* Input:
All potential
Navigation elements

* Output:
- Recognized patterns
- Unrecognized

patterns

Figure 48. GRABEX does not assume that all navigation elements have been correctly identified.
Instead, it is assumed that specific block graph patterns reveal true navigation elements in a large
set of candidates.

6.1 GRABEX: Mining for Specific Block Graph
Patterns

From the evaluation of the described prototype described in the previous section, we
conclude that it is difficult to solve navigation element mining, i.e. the joining of navigation-
al blocks, based on the applied similarity measures. However, searching for alternative
similarity measures is not promising, since a suitable measure must not produce any error
for a large number of comparisons to deliver useful results for a site. It is an open question,
whether such similarity measure can be found at all. Hence, we rethink the basic CO-reverse-
engineering process based on the assumption that block graphs allow to reveal the underly-
ing navigation design pattern. For this, we address the CO-mining task in a different way
and consider it as search for specific block graph patterns.

To explain the GRABEX-approach, the first three tasks (the tasks necessary to generate
block graphs) can be thought of as filters (Figure 48). Task 1, page segmentation takes as
input all DOM-elements and filters those DOM-elements that do not represent page blocks.
Task 2, the identification of navigational blocks (block classification is considered as task 3a
according to Figure 27) can be regarded as a filter that removes all non-navigational blocks.
Task 3a, takes as input all pairs of navigational blocks and returns only those pairs that
belong to the same navigation element (this is equivalent to grouping the navigational
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blocks to navigation elements). Finally, task 3b classifies navigation elements based on their
block graphs into classes representing different underlying navigation design patterns. In
contrast, an application that implements the GRABEX-approach is not based on such a
general classifier but on a dedicated binary classifier that determines whether a block graph
represents one specific design pattern or not. The GRABEX-approach is based on the idea of
removing all prior filters and feeding the classifier with all navigation element candidates
(i.e. all possible DOM element combinations) instead of requiring that the true navigation
elements are identified a priori. The problem of identifying navigation elements is trans-
ferred to the classifier: We do not use a classifier that classifies navigation elements accord-
ing to their types but a binary classifier that distinguishes 1) a specific type of navigation
elements from 2) other types of navigation elements and random block combinations. The
analysis of block graph patterns in Section 5.1 indicates that it is possible to implement such
a classifier based on the block graph model and the solutions presented in this chapter
provide the proof of concept.

Instead of trying to identify all navigation elements and then determining their types,
the GRABEX-approach postulates to search for combinations of page blocks that result in
characteristic block graph footprints (cf. Section s5.2.2). Each GRABEX-application for a
specific navigation design pattern consists of the following components:

a) Ablock graph representation that reveals characteristic patterns

There are various ways of generating graph representations for the block graph model.
As demonstrated in Section 5.2.2, different graph representations are suitable for differ-
ent navigation design patterns.

b) A classification method for the characteristic patterns

In Section 5.2.2, we have only discussed the visualizations of block graph patterns but not
how specific patterns can be automatically distinguished from other patterns or random
structures.

¢) A method for reducing the navigation element candidate set

Because of combinatorial explosion, analyzing all possible combinations of DOM-
elements would not scale and hence, to pick up the filter metaphor, the filters are not
entirely removed but relaxed. For instance, instead of trying to remove all non-
navigational blocks in task 2, we only try to reduce the set by removing candidates that
are very unlikely to represent navigational blocks.
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6.2 Mining Hierarchical Menus with GRABEX

In this Section, we present an application of the GRABEX-framework, the MenuMiner-
method. Parts of the contributions have been published previously in [KENU12A]. Following
the GRABEX-framework, MenuMiner can be described by three components:

a) Ablock graph presentation that reveals characteristic patterns (Section 6.2.1)
MenuMiner extracts navigation elements that follow the main menu, local menu or
multilevel menu pattern (cf. Section 5.2.2). The partial Web graph presentation (as in-
troduced in Section 5.1) is analyzed in order to identify characteristic patterns. Charac-
teristic patterns are complete subgraphs, so-called cliques .

b)  Aclassification method for the characteristic patterns (Section 6.2.2)
Classification is conducted rule-based by searching for navigation element candidates
whose partial Web graph presentations form maximal cliques.

c¢) A method for reducing the navigation element candidate set (Section 6.2.3)
Dedicated rule-based extraction algorithms are presented that reduce the navigation
element candidate search space with greedy strategies. In addition, the DOM-tree is
preprocessed to reduce the number of page block candidates.

In an empirical evaluation, we demonstrate that the MenuMiner-method is able to solve
open Web mining problems (Section 6.2.4). It is also shown that the hierarchical CO can be
reverse-engineering based on MenuMiner-data (Section 6.3).

6.2.1 Characteristic Patterns: Cliques

The partial Web graphs W of several navigation design patterns analyzed in Section 5.2.2
contained cliques, i.e. complete subgraphs in which each pair of nodes is connected by an
edge, with more than three nodes in SR; N TG;. Cliques were found to be characteristic for
the main menu pattern, the local menu pattern, the multilevel menu pattern and the
language switch pattern. If a Web site is organized based on a hierarchical CO, it typically
contains either main- and submenus or a multilevel menu. Hence, mining for navigation
elements that result in cliques should deliver all navigation elements that are necessary to
reverse-engineer the hierarchical CO in subsequent processing steps (however, it must be
considered that not all delivered navigation elements necessarily represent parts of the
hierarchy). We can also argue in a different way that the navigation elements that define
cliques in the Web graph usually represent the backbone of a site’s navigation: These
navigation elements allow users to navigate over a number of pages while the menu
remains fixed. After a user has moved from one page to another, the menu is still present
and contains the same links as before (cf. Figure 49). Hence, such menus define fixed
landmarks from which users learn the CO of a site.
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In Section 5.2.2, we observed a single clique in the partial Web graph of the main menu
pattern and multiple cliques in the graphs of the local and multilevel patterns. We search for
combinations of block candidates that result in single cliques only and do not consider the
multi-clique case in the classification-rules. Hence, a single navigation element may be split
up into multiple groups of navigational blocks. However, we can easily consolidate these
groups by post-processing (cf. Section 6.2.3.3).

6.2.2 Classification Method

The large graph visualized in the background of Figure 49 is the complete Web graph of
the site from which the four sample pages originate. The depicted clique of four is a sub-
graph of the Web graph. However, the three pages “Discover”, “How-to” and “Apps” alone,
for instance, form a clique as well. But we can assume that navigation element candidates
that form larger cliques are more likely to represent navigation elements than candidates
resulting in smaller ones. Hence, we only need to search for cliques that are not part of
larger ones, so called maximal cliques. In a single graph, there can be multiple maximal
cliques, which may or may not overlap. For example, the page “Discover” could form a clique
with some other nodes than the depicted ones, too. Although enumerating all maximal
cliques of an undirected graph is known to be a NP-complete problem in the general case, it
can be solved in O(A*) time, if the maximum node degree A is fixed [MAUNo4]. Since the
Web graph can easily be transformed in an undirected representation by removing all edges
that are not bidirectional and we can assume a fixed upper limit of links that can be placed
on a page, it would be possible to enumerate the cliques in this way.

However, the problem to solve is more complex, since maximal cliques in the Web graph
do not necessarily indicate navigation elements that form maximal cliques. The reason is
that the edges in a Web graph clique may result from multiple different navigation ele-
ments. Hence, we have to search for maximal cliques under the constraint that only a single
page block from each page is involved in defining the clique. In other words, we have to
search for maximal cliques among all possible combinations of pages blocks (each from a
different page). To not confuse this kind of cliques with cliques in the Web graph, we will

Discover - Buy L
g aa@
L.om SR | E

How-to

sy
e

Figure 49. Fixed menus define cliques [KENU12A]
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refer to them as block cliques. There is another constraint that we have to consider: Since
each clique represents a menu and each link can only be part of a single menu, we should
not attribute a single link to multiple cliques. However, a page block can indeed be part of
multiple cliques, since in case of a multilevel menu, each menu level forms a separate clique
(cf. Figure 34, page 81). Hence, an appropriate block clique extraction process is to iteratively
search for the largest block graph clique in the candidate set and modify afterwards the
candidate set by removing all clique links from the blocks that are involve in the clique
(while maintaining the blocks themselves). If multiple cliques of the same size are found in
an iteration, additional criteria can be considered in order to prioritize the cliques.

To formalize the block clique extraction process, we define the set SC that contains all
block cliques of a site (including non-maximal cliques). SC contains all combinations of at
least three blocks under the constraints that 1) each block belongs to a different page and 2)
each block links the source pages of all other blocks.

To formally specify the set SC, we use the notation introduced in Section 5.1 and denote
the [-th page block of page i as B;;. Let BA be the set of all page blocks. SC can be expressed
as:

SC ={C € P(BA)|VB;;,B;x € C:(By; # Bjx = i # j) AP € B A|C| > 2} (18)

The above definition expresses that if € belongs to SC, and we take two different blocks
from C, then both originate from different pages. Furthermore, the page, to which the first
block belongs is linked in the second block (clique property). In addition, C must have at least
three elements.

MenuMiner extracts a set of block graph cliques SC* € SC by selecting the largest block
graph cliques in a greedy way and taking the above constraints into account. The extraction
rule can be formulated as an algorithm if r denotes a scoring function for prioritizing cliques
of the same size:

1) Find C; € SC that fulfills the following condition:

vG e sc:lcl 2 gl a (Il = g = () 2 7(c))
If no element of SC fulfills the above condition: terminate and return SC*
2) AddC;toSC*
3) Update SC by removing C; and all subsets of C;:
SC:=SC\ P()
4) Let P¢, be the set of pages that form the clique C;. Remove all block cliques from SC
that share an edge, i.e. hyperlink with C;:
sc=sc\ {g €5C: [P, P | =2AlCn G = 1}

5) If|SC| > 0 gotostep1, else stop and return SC*
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In step 1, the largest block clique is selected. If there are multiple cliques of the same size,
the one with the highest value of the scoring function r is chosen. Step 3 ensures that
smaller cliques embedded within C; are removed from the candidate set as well. Step 4
guarantees the condition that a hyperlink contributes only to a single clique. If |C; n ¢;| > 1,
then both block cliques share a page block and at least one page that is part of the clique

(the page to which the shared page block belongs). If |Pci nPCI,| > 2, then at least one

additional page is part of both cliques and, hence, the links to these additional shared pages
in the shared page block contribute to both cliques, which would violate the constraint.

6.2.3 Efficient Computation

In this Section, we describe how the clique extraction rule can be implemented effective-
ly. Cliques are processed with a local perspective (Section 6.2.3.1), a dedicated algorithm for
reducing the search space of page block combinations is implemented (Section 6.2.3.2) and
the set of page blocks is further decreased by applying preprocessing rules (Section 6.2.3.3).

6.2.3.1 Local Computation and Updating

If we would directly translate the extraction rule defined in Section 6.2.2 into an execut-
able algorithm, we would have to operate on very large graphs. The first step of the extrac-
tion rule requires that we find the largest maximal block graph cliques. This could be done
by generating a graph whose nodes are defined by all extracted page blocks and which
contains an edge from page block a to page block b if block a contains a link to the source
page of block b. Since we can assume an upper limit A of the maximal number of links in a
block, all maximal cliques could be enumerated in O(A*) [MAUNo4] and the largest maximal
cliques can be retrieved from the result set in linear time by sequential search. To avoid
operating on this large graph structure, a more practical approach is to search for cliques
locally, i.e. to process page after page and only search for cliques in which the processed
page is involved. In addition, this approach has the advantage that MenuMiner can be
applied while the crawling process is still running and the results can be fed back to direct
the crawling strategy. For example, if not the entire domain should be crawled but only the
most important pages, the extracted menus can be used to identify the upper levels of the
hierarchy.
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We also utilize the fact that block graph cliques are embedded in Web graph cliques.
Hence, we mine for cliques in the Web graph, which is much smaller than the block graph,
and then decompose the Web graph cliques to discover embedded block graph cliques.
Figure 5o illustrates this approach. When we process page P1, we first expand the local Web
graph, whose set of nodes consists of P71 and all pages linked by P1. All links between these
pages are considered as edges. We generate an undirected graph by removing all edges that
do not have a counterpart in the reverse direction. Then we use an implementation of the
Bron-Kerbosch-algorithm [BRKE73] to efficiently enumerate all maximal cliques. In the
example depicted in Figure 50, the three maximal Web graph cliques WC1, WC2 and WC3 are
returned. Now all cliques are decomposed to reveal embedded block graph cliques. This is
achieved by iteratively applying the BlockCliqueFinder-algorithm described in the next
section. The BlockCliqueFinder-algorithm delivers the largest block graph clique embedded
within a Web graph clique. If there are multiple possible solutions, the scoring function r as
motivated in Section 6.2.2 is taken into account. In our implementation, the similarity of the
selector token paths (cf. Section 5.3.1.4) is used as scoring function r. After a block graph
clique has been extracted, the involved links cannot be attributed to another clique anymore
due to the constraint that one and the same link can only be part of a single menu. Hence,
we have to update our model after each iteration of the BlockCliqueFinder-algorithm (cf.
Figure 50). Figure 50 is a simplified illustration, since links are not actually deleted from the
model. Instead, the links are marked as being already bound to a clique of a specific size. This
is necessary to avoid that, for instance, the common edge of WC1 and WC2 is bound to a
smaller block graph clique embedded in WC2 and not to the block graph clique of size four
embedded in WCs, if WC2 is decomposed prior to WC1. Hence, BlockCliqueFinder operates
always on the entire local Web graph and if a block graph clique is found that shares a link
with another previously extracted block graph clique, the algorithm a) removes the link from

Local Web graph cliques BlockCliqueFinder-algoritm BlockCliqueFinder-algoritm
1. iteration 2. iteration O
we3 O
P1
Update Update
WC2 O
o)
O P1
P1
©)
o O
(@) O
©)

Figure 50. Decomposing Web graph cliques
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the existing block graph clique if this clique is smaller or b) removes the link from the new
block graph clique if the existing clique is larger. Note that to guarantee the correctness of
the algorithm with respect to the extraction rule formulated in Section 6.2.2, we would have
to propagate the changes because by reducing the size of the existing clique all of its links
are now bound to a smaller clique than before and possibly should be attributed to another
block graph clique. However, we found that these kinds of updates are seldom and tolerate a
small chance of violating the extraction rule instead of allowing unmanageable complex
cascades of updates.

6.2.3.2 Reduction of Search Space: BlockCliqueFinder-algorithm

In this section, the BlockCliqueFinder-algorithm, a fast method for decomposing Web
graph cliques into block graph cliques is described. The BlockCliqueFinder-algorithm returns
the largest block graph clique embedded within a Web graph clique by considering the
scoring function r. To motivate the algorithm, we consider the exemplary clique of four
shown in Figure 51. (Note that this is not a real-world example, since we are typically dealing
with much more complex structures with respect to the number of involved pages, page
blocks and links.) Each page in the example contains two page blocks. If there is an embed-
ded block graph clique, there are three options for each of the pages P1, P2 and P3: 1) block o
can be part of the clique, 2) block 1 can be part of the clique or 3) none of the blocks of the
page is involved. There are only two options for page Po, since this is the page being current-
ly processed and we are only interested in cliques adjacent to the current page. Hence, either
block o or block 1 of page Po is involved in an embedded block graph clique of interest.

All possible combinations can be thought of as leaf nodes of a search tree (Figure 52).
The path from the root to the leaf describes the combination of blocks. For instance, solution
S4 results from including block o of page Po, block o of page P1, block 1 of page P2 and block
o of page P3. The numbers within the squared brackets of the solutions express which links
appear in all blocks on the path. For instance, “[1, o, 1, 0]” means that all involved blocks
contain links to pages Po and P2. Solutions with the maximum number of shared links (3 in
the example) represent maximal block graph cliques (solutions S1-S4). We want to find the
maximal block graph clique with the highest score, without having to expand the entire tree

Po P,
Block 0 -~ Py PoPLP,Py || P Block 0
Py P,
Block 1 Ps Ps e Block 1
P, | X L,
Block 0 — Py P, P, P, B Block 0
Py P,
Block 1 P, P
e Py = .- Block 1

Figure 51. A Web graph clique of four pages.
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in order to save runtime. To achieve this, we apply three strategies:

Pruning: A transition from a parent node to a child node, i.e. considering the intersec-
tion of links with an additional block, will either not change the number of shared links
or decrease it. Hence, if we have found a solution (leaf node) representing a clique of
size k, we do not need to further expand branches that represent less than k shared
links because we can be sure that they do not evaluate to larger maximal cliques. In our
example, for instance, all branches with less than three shared links can be pruned once
one of the solutions $1-S4 is discovered.

Greedy-Expansion: In order to effectively reduce the search tree by pruning, solutions
(i.e. leaf nodes) with many shared links should be discovered as quickly as possible.
Hence, the tree is not expanded in a depth first or breadth first manner but in a greedy
way. This is done by expanding the most promising branches, i.e. the branches with the
largest number of shared links first.

Branch merging: Branches located at the same level and representing the same set of
shared links (for example A1 and A2 at processing level P2), are ancestors of the same
set of solutions. In other words, if we have expanded the subtree A1, we can be sure
that there will be no better solution below A2 with respect to the clique size. However,
the solutions below A1 and below A2 represent different block combinations and the
scoring function r can differ. We use a heuristic and apply the scoring function to the
intermediate results A1 and A2. Then, only the more promising branch is expanded
while the other one is pruned.

In addition to the tree expansion strategy, we have to check each time a new branch is

generated, whether the shared links are not already bound to another, larger block graph
clique. Links for which this applies are removed.

A pseudo-code formulation of the BlockCliqueFinder-algorithm, which was published in

[KENU12A] can be found in Appendix A.
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Figure 52. The block graph clique search tree for the Web graph clique depicted in Figure 51.
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6.2.3.3 Pre- and Postprocessing

In principle, every DOM-element of every page could be considered as page block candi-
date and the BlockCliqueFinder-algorithm could be run on this set. However, we can reduce
the set of page block candidates considerably to save runtime by applying the DOM-tree
transformation method presented in Section 5.3.1.2. This segmentation method is further
improved by taking the particular use case into account and considering specific properties
of the navigation elements of interest. The original transformation method was to process
the DOM-tree bottom up, removing leafs that are no hyperlinks and internal nodes that
have only a single child. Figure 53 illustrates the effect of these rules on a typical DOM-
structure of a multilevel menu. In the example, four hyperlinks, each wrapped inside an
individual div-element, represent the first level of the hierarchy. Below the third menu item,
an expanded submenu is present. The submenu is implemented as sibling of the a-element
and the second level links are wrapped inside a separate div-element. We found this kind of
tree structure to be very common for implementing menus. However, if the original trans-
formation rules are applied, the div-parents of the first, second and fourth a-element are
removed because each has only a single child element, while the div-element wrapping the
third a-element and the submenu remains. As a result, the logical structure of the menu in
which the four links of the first level are all located at the same depth of the hierarchy is
degraded after the tree transformation. To avoid this, we implemented an additional, menu-
specific transformation rule that applies if an element has exactly two child elements and
one is an a-element while the other is not. In this case, we treat the element similar to
elements with a single child, by removing it and appending the children to the parent.

After the transformation of the DOM-tree, the internal nodes of the resulting tree repre-
sent the block candidates. Obviously, the block candidates are nested. Consider the example
depicted in Figure 54: We do not know if the outer block containing Link 1- Link 6 represents
the boundaries of a menu or the inner block containing Link 3 - Link 5. We have to consider
both candidates, but to reduce the size of the data structure and further improve runtime
performance we remove the links of the inner block from the outer block candidate. If the
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Figure 53. Menu-specific rule to preserve logical structure ([KENU12A], revised).
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outer page block represents a navigational block, the inner block represents a submenu. As
illustrated in Section s5.2.2, both levels define separate cliques and, hence, the clique defined
by the outer block candidate remains intact which allows us to still recognize the menu.Ina
post-processing step, we can easily reassemble the page blocks by including all child blocks.

HTML Source Block Candidates
. Candidate1 Candidate 2
<div>
Link1 Link1
Link 2 <div> Link 2
Link 3 —) Link 3
Link 4 Link 4
Link 5 Link 5
Link 6 Link 6

Figure 54. Treatment of nested blocks

6.2.4 Evaluation

To evaluate MenuMiner, a selected domain that contains a large number of diverse sites
was crawled. The domain microsoft.com was chosen and we filtered for pages targeting the
US-audience by testing for the substring “en-us” in the URL. We processed 10,000 pages
with MenuMiner. A total number of 74,798 pages had to be downloaded because for each
processed page, all its neighbors need to be retrieved as well®,

6.2.41 Runtime Performance

MenuMiner ran on a single Pentium D, 3 GHZ node with 3 GBs of RAM. The mean execu-
tion time of the Bron-Kerbosch algorithm was o.15ms. For the BlockCliqueFinder-algorithm a
mean execution time of 2.23ms was measured. Interestingly, there were few outliers that
took up to 371ms to process while for 87% of the pages, the execution time was below 2ms.
For each page, we also tracked the number of neighboring pages, the number of Web graph
cliques, the number of block candidates and the number of returned block cliques. We found
that the number of Web graph cliques correlates most strongly with the measured runtime
(Figure 55). Although our sample contains few pages with more than 200 Web graph cliques,
the plot indicates that MenuMiner is able to process more complex pages as well because
the processing time seems to increase almost linearly with the number of maximal Web
graph cliques. Since the processing of a page is not influenced by the number of previously
processed pages, MenuMiner scales well in the number of processed pages.

3 This overhead solely results from the fact that we were not processing the entire domain for
practical reasons.
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Figure 55. The number of maximal Web graph cliques vs. BlockCliqueFinder runtime [KENU12A]

6.2.4.2 Evaluation of Correctness

MenuMiner extracts the fixed navigation elements of a site and, in particular, the navi-
gation elements that represent the hierarchy levels. For reverse-engineering the CO, further
processing of the results is necessary to reassemble the hierarchy. We focus on these aspects
in Section 6.3, where we present and evaluate a navigation element reverse-engineering
method based on MenuMiner.

The evaluation described in this section demonstrates that MenuMiner is a successful
implementation of the GRABEX-approach because navigation elements can be extracted
correctly and effectively by mining for specific graph patterns. In Section 5.3.3, we concluded
that a main challenge that hindered the extraction of navigation elements is the problem of
determining which navigational blocks belong to the same navigation elements and which
do not. A single faulty association can corrupt the results of CO reverse-engineering entirely.
Hence, the evaluation in this section focuses on that aspect and we apply the method for
discovering the boundaries of Web sites. In doing so, we do not only evaluate whether
navigational blocks are combined correctly into navigation elements but demonstrate at the
same time that MenuMiner is a GRABEX-instance that allows to solve open Web mining
problems.

Web site boundary detection — problem statement

Domains often host multiple different Web sites (sometimes called subsites). Humans
can intuitively distinguish Web sites, since they differ in styles, navigation mechanisms and
typically also the topical focus (cf. Section 2.1.1). In addition, the page headers indicate
whether two pages belong to the same site or not. Recently there have been efforts to
automatically mine Web site boundaries (e.g. [SENEos], [MEMFo7],[ALCZ10], [ALCZ1])
because sites reflect the logical aggregation of Web pages better than domains. Web
archiving solutions and ranking methods [SENEos] would benefit from the ability to deter-
mine site boundaries. Search result presentation could also be improved by organizing pages
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according to their source sites and not according to their source domains. However, none of
the previously proposed solutions proved to be accurate enough to be applicable in practice.

Our approach to Web site boundary detection

In Section 2.1.1, a Web site was defined as a number of pages that have a shared CO, FO
and PO. We argued that this reflects the intuitive and common understanding. For our
evaluation, we utilize the fact that a common navigation element implies a shared CO and
FO. It also implies a partially shared PO because both pages have at least the design and
position of this navigation element in common. Hence, we can compute Web site bounda-
ries based on the results delivered by MenuMiner and evaluate whether these boundaries
reflect the Web site boundaries perceived by human users. MenuMiner outputs navigational
blocks that form cliques. For instance, in case of a fixed menu with five hyperlinks, Menu-
Miner would return five navigational blocks, one from each linked page. However, the menu
possibly appears on many more pages. To discover these occurrences, we use the selector
token paths introduced in 5.3.1.4. First, the selector path tokens (element names, id-
attributes and class attributes) that are shared by all navigational blocks of a navigation
element are detected. The shared token path can be considered as template identifying
navigational blocks belonging to this navigation element. Then, we search on the other
pages of the site whether we can find additional blocks with the same selector token path
pattern. We consider these blocks as occurrences of the navigation element as well. To
compute site boundaries, we initially treat each page as a separate cluster, i.e. site. Then, all
mined navigation elements are processed and the clusters of the source pages of all naviga-
tional blocks belonging to the same navigation element are merged successively.

Evaluation metric

To evaluate the quality of the computed site boundaries, we want to compare them to
the boundaries perceived by humans. We can consider the computed site boundaries as
clustering of the pages that we want to compare to the clustering perceived by humans.
Metrics for comparing clusterings have been discussed and researched [WAWAo07] but we
are facing the problem that it is not practicable to manually cluster 10,000 pages. However,
we can manually label a subset and estimate the Rand index [RAND71], a well-known
measure for comparing clusterings. An advantage of the Rand index with respect to our
scenario is the fact that it is based on pair-wise comparison. If there are two clusterings C1
and C2 for a set O, we can assign each possible pair of elements in O to the set of agree-
ments A or the set of disagreements D. The set of agreements A contains all pairs on which
both clusterings agree that either both elements belong to different clusters or both ele-
ments belong to the same cluster. The set of disagreements D contains pairs whose ele-
ments are assigned to the same cluster in one clustering but are placed in different clusters
in the other clustering. The Rand index is defined as the fraction of agreements of C1and C2:

A

R =—
cLe2 = 7p

(19)
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If we draw a random sample S € 02 that is not too small, we can estimate the Rand in-
dex for both clusterings by computing the fraction of agreements based on the sample.
Hence, if one of the clustering represents the site boundaries perceived by humans, we only
need to determine for the sample pairs whether humans would attribute both pages to two
different sites or not and not for all possible pairs. We labeled 845 pairs of pages in this way.
In all cases the decision was obvious and undoubted.

Results

Based on MenuMiner, we computed 58 clusters and measured an almost perfect esti-
mated Rand index of 0.996. A small error was expected since the crawling process was
aborted after processing 10,000 pages and it is likely that some pages were included in the
evaluation that originate from sites whose menus were not extracted since the clique
members were not reached.

We implemented three different baseline methods

- Baseline method 1: To test whether the site boundaries could have been derived from
the structure of the URL, we generated clusterings of three different granularities from
the URL structure. First, we considered only subdomains as different sites, then, the first
level of the folder hierarchy was included and finally, we also used the second level of
the hierarchy to derive the clustering.

- Baseline methods 2 and 3: We implemented the methods for Web site boundary
detection that performed best in a previous study [ALCZ10].** Both methods are based
on a bisecting k-means algorithm which is used to iteratively split clusters into two
parts. In contrast to MenuMiner, this approach requires specifying the number of clus-
ters, i.e. iterations, a priori (a severe limitation with respect to the practical applicabil-
ity). To evaluate if these methods could theoretically extract site boundaries correctly if
the right number of clusters is specified, we varied the numbers of iterative splits. Base-
line methods 2 and 3 differ only in the used features. Method 2 uses the set of internal
hyperlinks that are present on a page as feature and method 3 uses words gained from
tokenizing URLs (“/” and “.” are considered as delimiters).

Figure 56 summarizes the results. There is no configuration of a baseline method that
reaches an estimated Rand index as high as MenuMiner. The most accurate alternative
method is the URL-hierarchy baseline in the configuration that solely considers subdomains.
It achieves a Rand index of 0.97 but generates only g clusters, which is obviously too few.
Hence, we conclude that MenuMiner is an applicable solution to the problem of Web site
boundary detection that allows detecting site boundaries more accurately than previous
solutions.

* Another method evaluated in the study relied on a combination of eight different features.
However, it did not perform significantly better in the study and thus, we did not include it in our
evaluation.

16



The GRABEX-Approach

-2 Hyperlinks / K-means
.. —+ — URL hierarchy
095 e —=— URL words / K-means
=T .\\ O MenuMiner
\
Hoox, N
ot :
0.9F: \\
: ST w
o A 4
085 -
0.8
075 L 1 1 1 1 1 1 1 1 |
i} 20 40 B0 a0 100 120 140 160 180 200

Number of clusters

Figure 56. Rand index R based on manually labeled samples for different boundary detection
methods [KENU12A]

6.3 Reverse Engineering Hierarchical Menus

MenuMiner delivers navigation elements but does not determine which parts of the hi-
erarchy they represent. In this Section, we describe a rule-based approach to reverse engi-
neer navigation elements delivered by MenuMiner in order to retrieve the hierarchical CO. In
addition to the requirement of correctness in the sense that the CO as perceived by humans
is returned, we developed this rule-based approach under consideration of the following
requirements:

—  MenuMiner is tag-agnostic and not bound to the semantics of specific HTML-tags.
Thus, it neither depends on the tags included in current or future Web standards nor on
the current practice of their usage. Downstream navigation element analysis should be
sustainable in the same way, and, hence, a tag-agnostic solution is favorable.

—  MenuMiner has an excellent runtime performance which allows for processing data at
Web-scale. It does not require HTML-rendering, downloading additional resources such
as images or CSS files and the execution of Javascript. Navigation element reverse en-
gineering should not induce additional overhead by requiring any of these things.

—  MenuMiner results can include navigation elements that do not follow the main-, sub-
or multilevel-menu patterns because other navigation design patterns can also be
characterized by cliques. An appropriate solution for navigation element reverse engi-
neering should be fault tolerant with respect to these additional navigation elements.
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6.3.1 Decomposing the Problem

We found that the problem can be decomposed into three subproblems (Figure 57),
which will be discussed in the following sections:

1) Analyzing the internal hierarchy of individual menus (intra-menu hierarchies, Sec-
tion 6.3.1.1)

2) Assigning additional pages to menu items (page assignment, Section 6.3.1.2). This is
done by exploiting information that is available to users from visually highlighted
menu items. Items in hierarchical menus that are highlighted, i.e. marked as active,
indicate that the active page is arranged below this item in the hierarchical CO,
even if the active page does not appear in the menu.

3) Discovering menu-submenu-relationships (inter-menu hierarchies, Section 6.3.1.3).

6.3.1.1 Analyzing Multilevel-Menus

In this section, we introduce the sub-problem of analyzing intra-menu hierarchies and
describe our solution to this problem.

Problem Description

In Section 5.2.2, we have introduced multilevel menus as a class of navigation design
patterns that represent subtrees of hierarchical COs. The examples a) and b) of Figure 13 on
page 25 illustrate that multilevel menus can implement different strategies of expanding
and collapsing menu levels in dependence of the active page. Human users are usually able
to identify the logical tree structure of a multilevel menu because of the visual design. Users
are able to learn the CO of the entire site by browsing and successively expanding different
sections of the hierarchy. However, the CO is not reflected in a similar way in the structure of

Intra-menu Page Inter-menu
hierarchies assignment hierarchies

Teaching
Head of geoup Europs
Office Management
Researchers

3
+!

Figure 57. The three subproblems of navigation element analysis: 1) Analysis of the internal
hierarchy, 2) Identifying pages that are arranged under a menu item and 3) combing the
hierarchy information of different menus
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the DOM-tree as motivated in Section 3.3.5 and exemplified in Figure 24 on page 45. From
solely parsing the HTML-source, we cannot determine the logical structure of the menu
items.

Solution

We distinguish two classes of multilevel menus: The first class subsumes menus whose
state can be dynamically changed on the client-side via mouse actions (“pop-up menus”).
The source code delivered by the server stays the same for all pages in case of this class. We
will refer to such menus as client menus. The second class consists of multilevel menus for
which the server returns a different state in dependence of the active page. Because the
state is generated on the server side, we denote these menus as server menus.

Processing of client menus. The problem of crawling contents that are made available to
users through Javascript manipulations of the DOM-tree is a challenging problem and a
research field on its own (e.g, [MEBDo8]). To our surprise, we found that retrieving the
hierarchical CO from typical Javascript-based menus is not as challenging as expected. In
most cases, the structure of the DOM-tree reflects the CO well. By applying a slightly modi-
fied version of the tree transformation method used by MenuMiner (Section 6.2), the
original CO can be easily recovered. There are several explanations for the close match
between the CO and the DOM-structure: First, the entire hierarchy is available on each page
and not only specific subtrees. Second, it must be possible to address all levels of the hierar-
chy individually with Javascript to expand or collapse them. Hence, all levels are clearly
separated by individual container elements. Third, usually Javascript frameworks are used to
implement pop-up functionality. These frameworks are more mature than proprietary
scripts and produce cleaner HTML-code with fewer presentation-related tags. Fourth, the
structure of the hierarchy must be available to client-side scripts for allowing them to
expand and collapse the correct levels. This hierarchy information is usually directly encoded
in the DOM-structure and not gained from additional Javascript data structures that link
parent and child elements. Hence, it is crucial for the functionality of a menu that the DOM-
structure reflects the hierarchical CO. Using nested lists has emerged as a kind of standard
for encoding the hierarchy of client-menus. To take account of this fact and to further
improve the accuracy, we make an exception from the requirement of being tag-agnostic
and include a specific rule for processing this kind of menus in our page transformation
method: UL-elements are never discarded and Ll-elements are always thrown away.
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Processing of Server Menus. In case of server menus, the DOM-structure does not reliably
reflect the structure of the CO. However, we can analyze which links are contained in the
menu on each page and derive the original CO based on this information as we show in this
section. We introduce the ListWalker-algorithm which achieves this by processing naviga-
tional blocks as sequences of hyperlinks. Due to space limitations and for readability, we
focus on motivating the algorithm’s functionality. A pseudo-code description can be found
in [KEHA13A]. We assume that the state (by state, we mean the presented sequence of links)
of a menu does not depend on the browsing history but solely on the active page. This
reflects current best practices and exceptions are hard to find.

The ListWalker-algorithm covers solutions for three sub problems (Figure 58): 1) A way of
identifying the root and the first level of the hierarchy, 2) a method for deriving the grand-
children if a parent-child relationship is known, and 3) a method for identifying cross-links.
Solutions to the first two subproblems allow retrieving the entire hierarchy by starting from
the first level and iteratively expanding the children. Solving the third subproblem is re-
quired to ensure applicability on real-world Web sites. We experienced that many hierar-
chical COs contain cross-links to pages located in other subtrees of the CO. Typically, pages
that appear multiple times in the hierarchy have unique locations that can be identified by
the state of the menu on the page itself. Hence, in hierarchy extraction, these pages should
be placed at the location indicated by the menu state. Identifying this location is the third
subproblem covered by the ListWalker-algorithm. In the following, we describe how the
three subproblems are addressed:

1. Identifying the root and the first level: If the menu state on the root page of the hierar-
chical CO, i.e. on the homepage of the site, is known, we also know the first level of the
hierarchy because we can assume that all deeper levels are collapsed. To identify this
state, we proceed as follows: Let /, denote the first link in the link sequences, which is
usually the same in all navigational blocks. We take the menu state on page /, (referred
to as state /) and check whether another state exists, whose set of links is a subset of
the links of state /.. If such a state exists, we consider it as root state, if not we consider
state /, as root state.

Identification of Inductive expansion of hierarchy Identification of cross-links
root node and first level

Parent Parent

=

Child Child

Root

First hierarchy level

Grandchildren

Figure 58. The three subproblems covered by the ListWalker-algorithm
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Explanation: Let h denote the homepage and a, a,,... a, the pages of the first level, i.e.
the child nodes of the homepage. If h is part of the menu, then we can assume that /, =
h because the homepage typically appears at the first position. In this case, state /, will
have the form (h, a, a,, .., a,). Since all other levels except the first level are collapsed,
we will not find another state whose links are a subset of this state and correctly identi-
fy it as root state. If h is not part of the menu and a, does not have child nodes, state /,
will have the form (a, a,, .., a,). This sequence equals the menu state on h and we will
correctly choose it because there is no other state with more collapsed levels. If h is not
part of the menu and g, does have child nodes, denoted as b, b,,... b, state I, will have
the form (a, b, b,, b, a,, .., a,). However, the root state on which the links b, b,,... b, are
collapsed is correctly identified because its links are a subset of the links in state /,.

Deriving grandchildren from parent-child relationships: If page b is a child node of page
a, we assign all pages as child nodes to b that are linked on page b without being linked
on page a. Hence, the rule can only be applied top down, starting from the root node
and its children. The assumption behind this rule is that if a user navigates one level
deeper in the hierarchy, only the immediate child nodes of the visited page appear ad-
ditionally in the menu. Although multilevel menus can be implemented in many differ-
ent ways, it is hard to find examples that violate this rule. The differences in the behav-
ior of multilevel menus seem to lie only in the way intermediate levels collapse when
descending the hierarchy (cf. Figure 59, also examples in Figure 13 on page 25 and Figure
24 0n page 45).

3. Identification of cross-links: Another general rule that is hardly ever violated by multi-
level menus is that the ancestors of the active page are always visible, even if interme-
diate levels collapse when descending the hierarchy. For instance in Figure 59-b, the sib-
ling nodes of /tem 2.1, which are visible on the parent page are hidden on the page rep-
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Figure 59. The ListWalker-algorithm successively expands child items of menus. This allows
recovering the original CO by processing menus as flat lists without considering the HTML-

structure. [KEHA13A]
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resenting Item 2.1 itself. However, even if the sibling nodes of the active page or its an-
cestors are hidden, the path from the root node of the CO to the active page is typically
included in the menu. We hypothesize that this is caused by two reasons: First, users
should be able to navigate back to higher levels of the hierarchy in an easy way and,
second, the ancestors of the active page indicate the location of the page in the CO to
the users. This allows us to test for crosslinks: If we identify a new child node by the rule
described above, we check whether the path of the node to which we would append it
is consistent with the menu state on the potential child. For this, we check whether all
links of the path appear in the original order previous to the menu item representing
the potential child itself. If this does not apply, we can assume a crosslink to another
section of the CO hierarchy instead of a true child node.

6.3.1.2 Page Assignment

In this section, we describe how additional pages can be arranged in the hierarchy, even
if they are not linked in a menu.

Problem Description

Highlighted menu items indicate to users the location of a page in the hierarchy to us-
ers. Figure 60 shows two pages in which the menu item “Asia” is highlighted. Users learn
from this visually encoded information that both pages are located below the node “Asia” in
the global hierarchy. Hence, hierarchy information can be gained from marked menu items.
Often, marked menu items are even the only way to derive the position of a page in the CO
besides content semantics. The left-hand page shown in Figure 60 is the page linked by the
menu item “Asia”. If we know, for instance, that the menu containing the link represents the
main menu of the site, we can conclude that the linked page is located at the first-level of
the hierarchy in the CO. However, the right-hand page can only be reached by a link in the
content area and there is no menu that contains a link to this page. Still, it is obvious to
human users that the second page is also part of the section “Asia” because of the high-
lighted menu item®. In order to automatically reverse engineer the entire CO, we need ways
of automatically identifying the position of pages in the hierarchical CO, even if the pages
are not directly linked in hierarchical menus.

Se odition proforence

Home Video World US. Africa [FXIH Europe

More Asia South Korea's president-e!
challenges

Peter Shadbolt

Figure 60. The page on the right side is not linked by a menu item but by a link in the content area
(L) only. still, it is a child page of the active menu item “Asia” (A) [KEHA13A]

* Even if the menu item “Asia” would not be highlighted, human users would probably attrib-
ute the right-hand page to the section “Asia” because of link context and semantic knowledge.
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Solution

Since the menu boundaries delivered by MenuMiner are known, we can extract features
that allow determining the location of a page in the hierarchy. If we have two sample pages
a and b, and we know that page a is part of a certain site section while page b is not, we can
try to automatically extract distinguishing features for this section by comparing a to b.
These distinguishing features can be used to identify other pages that are arranged under
the same site section, i.e. CO subtree. In other words, we consider page a as positive sample
for the specific site section and page b as negative sample. Finding positive samples is trivial
because each page can be considered as positive sample for the site section rooted at the
page itself. Knowing menu boundaries allows also identifying negative examples: If a page
belongs to a menu, we can assume that all other pages in the menu represent sibling nodes
and not child or successor nodes. Hence, they are part of other site sections. For deriving
distinguishing features, we analyze (1) CSS-classes that are assigned to menu items and (2)
the URL-structure of child nodes:

(1) The first method aims at determining visually highlighted menu items. Designers typ-
ically use specific CSS-classes for assigning the visual properties to highlight menu items. As
Figure 61 illustrates, our method allows identifying these CSS-classes automatically. “For
example, the method assumes that the menu item ‘Europe’ is highlighted on the page
‘Europe’ but not on any other page linked in the same menu. If there are one or more CSS-
classes that are assigned to the menu item ‘Europe’ if that page is active and, at the same
time, these classes are not assigned to that menu item on any other page linked in the
menu, it can be derived that these classes mark the item as active. Thus, if there are other

a) edition.cnn.com/EUROPE/

Home Video World US. Africa Asia [QEVGEE Latin Ame

<a id="nav-europe" class="nav-on" href="/EUROPE/" title="[..]">Europe</a>

0

b) | edition.cnn.com

IO Video World US. Africa Asia Europe Latin Ame)

<a id="nav-eurcpe" elass="" href="/EUROPE/" title="[..]">Europe</a>

U, Africa Asia Europe Latun Ame|

<a id="nav-eurcpe" class="! href="/EUROPE/" title="[..]">Europe</a>

I
T

Figure 61. When the linked page is active, the menu item “Europe” has a CSS class that is missing
when another menu item is active, indicating that the class “nav-on” is used to mark the active
menu item.” [KEHA13A]

?6 €SS classes to highlight menu items can also be assigned to parent items of the a-elements,
which must be considered in the implementation.

123



Reverse Engineering Hierarchical Menus

— Intra-menu hierarchy is known
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The URL of no other item contains the Common Path of item ,,Audi Sport"
Common Path of item ,Audi Sport*

All other documents of the site that are below the directory http://www.audi.com/com/brand/en/audi_sport
are arranged under the node ,Audi Sport" in the taxonomy

Figure 62. The child nodes have a common directory and in turn all other pages residing under this
directory can be interpreted as child nodes of the same menu item [KEHA13A].

pages of the site on which the same classes are assigned to the menu item ‘Europe’, it can
be concluded that these are child pages of the item as well.” [KEHA13A]

“(2) The second feature that can be used for page assignment is the hierarchical URL
structure. Often the pages belonging to a site section, i.e. the child pages of a certain menu
item, reside under the same directory. While the directory structure of a Web site may or
may not reflect the logical structure, aligning it with menu items allows determining
whether this is the case. Similar to the CSS feature it can be analyzed for all menu items
whether they point to a directory that differs from the directory the other menu items point
to. If menu items have child nodes, they can be considered additionally.” [KEHA13A] This
approach is illustrated in Figure 62. “The URLs of the child nodes of the menu item ‘Audi
Sport’ have a common directory prefix that is exclusive in the sense that no other pages
linked by other menu items reside under this directory. All other pages of the site that are
not linked in the menu and are located below this directory can now be assigned as child
nodes to the menu item ‘Audi Sport’ as well.” [KEHA13A]

6.3.1.3 Inter-Menu Hierarchy
In this section, we describe our findings on discovering menu-submenu-relationships.
Problem Description

A hierarchical CO can either be implemented as a single multi-level menu or as a combi-
nation of different main- and submenus. To cover the latter case, a CO reverse engineering
solution must be able to detect which level of a hierarchy is represented by an individual
menu.

Solution

We found that this subproblem is more difficult to address than the others. A submenu
represents the child nodes of one of the pages in the main menu. Hence, there is only one
page in the main menu on which the submenu is displayed. On the other hand, we can
assume that all pages linked in the submenu also contain the main menu. If a pair of two
navigation elements meets both criteria, we could regard them as main- and submenu. We
applied this approach in [KENU11]. However, we found that this approach is not viable in
practice because inconsistencies such as the same submenu being arranged under two
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different main menu items, appear to be too common. A possible solution would be to
derive an appropriate set of graph-based features and train a classifier on a large data set as
done in the BreadcrumbMiner-implementation (Section 6.4). The results of the other two
sub-problems, i.e. intra-menu hierarchies and the set of pages arranged under a menu
would be important features. Hence, we concentrate on those aspects in this chapter.
Instead of a general solution to the problem of determining hierarchy levels, which is
considered as future work, we focus on determining the main menu only. We experimented
with different heuristics for identifying main menus and achieved good results with a
simple scoring function K. The design of the scoring function is based on the consideration
that a) more pages are arranged below the global main menu than below any local sub-
menu and the average distance (cf. Figure 63) of the descendant nodes tends to be higher in
case of a global menu and b) the order in which the menus appear in the HTML-source code
reflects the importance in a way that higher menu levels tend to appear prior to lower level
menus. For each menu, K; is computed as K; = A; / P, with A, being the average page distance
and P; being the average menu position. To compute the average page distance A, the
distance for pages that are arranged under the menu is specified as illustrated in Figure 63
and set to o for all other pages. P; is defined by the average position of the menu in the
source code. For instance, if a menu is the first menu in the source code on all pages on
which it appears, P; is 1. We select the menu with highest K; as the main menu if additional
boundary conditions apply: a) the menu has less than 15 items, b) in average, not more than
30% of the textual content appear before the menu (this conditions ensures that footer
menus are avoided) and c) there is no other menu with a lower P;value that appears on more
pages. If a menu is identified in this way and pages of a domain do not contain this menu,
we retrieve another main menu for these pages iteratively in the same way.

6.3.2 Implementation and Evaluation

The solutions to the three subproblems discussed above were implemented to process
the menus extracted by MenuMiner. Navigational blocks of each navigation element were
consolidated by joining similar menu states (in accordance with the block graph model, we
consider the link sequence of a block as menu state). To discover similar menu states of a
navigation element even if there is some noise (for instance, a single additional hyperlink
appears on one page), the overlap coefficient is used as similarity measure [JOFU87]. First,
intra-menu analysis is conducted by applying the methods for server-menu parsing and

?
Menu d)

bd=1 d=2

000b0dbbb0000000

Figure 63. Distance d of descendant nodes to a menu
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client-menu parsing for each menu. If both methods deliver hierarchy information, the
result representing the largest tree structure is kept and the other one is thrown away.
Second, page-assignment is conducted. Third, the heuristic for identifying main menus
described in Section 6.3.1.3 is applied.

6.3.2.1 Evaluation Methodology

MenuMiner scales well in the number of pages (cf. Section 6.2.4.1) and the number of
delivered menus grows sublinear in the number of pages. At the same time, the rule-based
solutions presented in this chapter consume only little resources. Hence, runtime perfor-
mance is no major concern and we focus on evaluating the result quality.

To the best of our knowledge, a suitable labeled data set does not exist that could be
used to evaluate the hierarchy extraction performance of our solution. Thus, we had to
generate an own, manually labeled evaluation data set. For this, we crawled 350 randomly
selected domains. We seeded the crawler with yahoo.com and implemented a depth-first
search for new domains as crawling strategy. To spread the samples, we included only every
25" discovered domain in our analysis. After 350 domains were retrieved in this way, up to
100 pages were processed by MenuMiner for each domain. Since processing a page by
MenuMiner requires downloading all neighbors as well, 259,525 pages were downloaded all
in all. For each domain, one page was randomly selected and the main menu, the active
main menu item, the secondary menu and the active secondary menu item were manually
labelled according to the guidelines described in [KEHA13A]. In ambiguous cases, the sample
pages were excluded from the data set™.

The four evaluated subproblems, main menu detection, active main menu item detec-
tion, secondary menu detection and active secondary menu detection are evaluated as
binary classification task. If a menu or active menu item is returned by our method, we
consider it as positive sample, otherwise as negative. For a menu to count as true positive
(TP), all links appearing in the mined menu must be contained in the labeled menu as well
(the mined menu must not contain any false links). Otherwise, we count it as false positive
(FP). On the other hand, we tolerate additional links in the labeled menu because it repre-
sents the local perspective (the hierarchy information contained on a single page) and
supplementary, “noisy” links on a page are possible. However, 76.4% of the cases were a
perfect match between the links in the mined menu and the labeled menu. Moreover, if it
was not a perfect match, in average 74.6% of the hyperlinks of the labeled menu were
contained in the mined menu. If no menu or active menu item was extracted for a page, we
consider it a false negative (FN) if a menu was labeled for this page and a true negative (TN)
otherwise. Precision and recall were calculated as described in Section 4.3.3 for all four
subtasks. For evaluating the identification of active menu items, we included only samples
for which the menu itself was correctly extracted. We evaluated four different configura-
tions: In configurations A and B we exclusively applied the CSS selector-based method and

I The evaluation data set can be downloaded from
http://dsn.tm.kit.edu/download/icwe2013/data.zip
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the URL-based method, respectively, for page assignment. In configuration AB, we applied
both methods. Configuration A.s is a more restrictive version of A, achieving a higher
precision at the expense of a reduced recall by returning only menus if a second level has
been detected.

6.3.2.2 Evaluation Results

Configurations A, B and AB deliver the first level of the CO hierarchy with a precision
around 0.9 and recall around 0.75. “Method A is a very accurate solution for detecting active
menu items, with a precision close to 0.97. Because the active menu items indicate different
site sections, the method delivers precise topical segmentations of sites that were not
available previously. Method B has a higher recall but reduced precision. The combined
method performs well with a precision of 0.89 and recall of 0.8. For detecting the secondary
menu, the configurations succeed with good precision values above 0.85. Menu items that
are no hyperlinks seem to be the main reason for errors here. However, recall is low, because
only secondary menus that are nested within the main menu can be found yet. We believe
that precision is fundamental for the applicability of a hierarchy mining method in most
scenarios. Since no comparable methods exist, even a low recall is an improvement. The
results show that there is room for increasing Precision at the cost of recall. Thus we imple-
mented method A, which only delivers global menus that contain a second level, based on
the idea that if a nested secondary menu was found, the main menu is identified correctly
with high probability. As expected, recall is significantly reduced, but precision is almost
perfect.” [KEHA13A].

Table 8. Evaluation results [KEHA13A]

| Config. A | Config. B | Config. AB | con. Aes
Main Menu
Precision 0.903 0.898 0.893 0.986
Recall 0.756 0.755 0.754 0.278
TP/FP/TN/FN 177/19/44/57 176/20/44/57 175/21/44/57 70/1/44/182
Active Main Menu Item
Precision 0.968 0.882 0.894 0.96
Recall 0.555 0.714 0.8 0.511
TP/FP/TN/FN 61/2/65/49 75/10/61/30 84/10/60/21 24/1/22/23
Secondary Menu
Precision 0.864 0.857 0.857 0.857
Recall 0.373 0.471 0.471 0.529
TP/FP/TN/FN 19/3/123/32 24/4/121/27 24/4/120/27 18/3/33/16
Active Secondary Menu ltem
Precision 0.933 0.9 0.9 0.933
Recall 1 1 1 1
TP/FP/TN/FN 14/1/4/0 18/2/4/0 18/2/4/0 14/1/3/0

127



Mining Breadcrumbs with GRABEX

AMM

MM = Main Menu

AMM = Active Main Menu Item
SM = Secondary Menu

ASM = Active Secondary Menu Item

=~ Precision
—— Recall

Figure 64. Precision and recall of the evaluated configurations [KEHA13A].

6.4 Mining Breadcrumbs with GRABEX

In this Section, we describe an application of the GRABEX-approach that allows mining
breadcrumb navigations with high accuracy. The breadcrumb navigation design pattern was
introduced in Section 2.3.2. Breadcrumb navigations indicate the position of a page in the CO
of a site. The hyperlinks in a breadcrumb navigation describe the path from the root node to
the active page. Hence, if the breadcrumb navigations from all pages of a site are extracted,
the CO can be easily assembled. At the same time, the breadcrumb navigation design
pattern is one of the most common patterns, which is present on many hierarchically
organized sites. Yet, to the best of our knowledge, an applicable breadcrumb extraction
method was not published previous to our GRABEX-based solution [KEHA13B]. However, the
search engine Google is able to extract breadcrumbs to enrich the presentation of search
results®. Although details of Google’s solution are not published, we can use it as baseline
method for performance evaluation. Since we consider the presentation of search results as
one of the main use cases for hierarchical CO-extraction and argue that more hierarchy
information should be integrated in the presentation of search results as currently done (cf.
Chapter 7), our mining solutions is developed with focus on this use case. As a consequence,
we consider the presentation of faulty hierarchy information as more harmful from the user

*® The Official Google Blog: New site hierarchies display in search results,
http://googleblog.blogspot.com/2009/11/new-site-hierarchies-display-in-search.html
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perspective than the absence of hierarchy information. Hence, we prioritize high precision
over high recall (cf. Section 4.3.3).

Breadcrumb-Miner implements the four components of the GRABEX framework as fol-
lows:

a) Ablock graph presentation that reveals characteristic patterns (Section 6.4.1)
As observed in Section 5.2.2, the breadcrumb navigation design pattern is characterized
by tree structures in the partial link graph. We show that small inconsistencies that
commonly appear in practice can easily corrupt the tree structure if the graphs are gen-
erated this way. Hence, we define another graph representation in which breadcrumb
navigations are characterized by tree structures as well but that is more robust against
irregularities and random trees.

b) Aclassification method for the characteristic patterns (Section 6.4.2)
To handle inconsistencies (e.g., pages that appear multiple times in the hierarchy) and
to avoid misclassification of accidental tree structures, we train a decision tree classifier
on a manually labeled training set.

c) A method for reducing the navigation element candidate set (Section 6.4.3)
The principle that similar selector token paths indicate a similar visual presentation,
which is motivated in Section 5.3.1.4 and also used in MenuMiner, is more systematical-
ly exploited. We assume that either all navigational blocks of a navigation element or
their parents share at least a class- or id-attribute. Only page block combinations for
which this applies are considered as navigation element candidates.

6.4.1 Breadcrumb Graph

In Section 5., we have introduced the partial link graph L; for a navigation element j,
which contains an edge between two pages a and b, if a link to b succeeds a link to a in one
of the navigational blocks. If the underlying CO is a clean hierarchy without inconsistencies,
and j is a breadcrumb navigation, L; will be a tree. However, we found that exceptions are
very common and have to be considered. In particular, individual pages often appear multi-
ple times in the hierarchy despite the fact that they represent individual nodes in the CO. As
Figure 65 illustrates, in these cases, the link graph representation does not reflect the
hierarchical structure any more. The limitation can be avoided by choosing a more appropri-
ate graph representation in which nodes do not represent individual pages but sequences of
pages. We will refer to this graph representation as breadcrumb graph. The breadcrumb
graph is generated by iteratively adding new page blocks and proceeding as follows: 1) If the
node representing the sequence of links in the page block is not part of the graph, add a new
node, 2) if the sequence of links gained by removing the last element is already part of the
graph, add a new edge from the existing node to the new node, 3) if it is not part of the
graph, add this node as well, connect both new nodes with an edge and go back to step 2.
The resulting graph is depicted in Figure 66.
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Link graph L;

Extracted breadcrumbs
Europe

l Home > Sports > Breaking News > Soccer ‘ /

l Home > Sports > Breaking News > Tennis ‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ¢ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

l Home > Politics> Breaking News > Europe ‘ Underlying CO
occer

l Home > Politics> Breaking News > Asia ‘
l Sports H Breaking News
Tennis

l Politics H Breaking News
Asia

Breaking News

Figure 65. If a page appears multiple times in the hierarchy as different logical nodes (“Breaking
News” in the example), the link graph representation does not reproduce the tree structure any
more.

More formally, we define the breadcrumb graph (; as follows. According to the notation
used in Section 5.1, the /-th block of page i is modelled as a sequence of m;; hyperlinks:

mi

— 1 2 mi . 1 2
By = (ulpufy, ouy ) withufy,u?y, . u) " €S (20)

If B = (ul, u?, .., ud)) denotes the subsequence of the first d elements of B;;, with
d € N*,d < my, the set of nodes of the breadcrumb graph (;is defined by (N; denotes the
set of navigational blocks associated with j) :

Ve, = Unen,{Bl B2, BY: .. B} (21)
Ve, is the set of link sequences of all page blocks belonging to a navigation element and

their subsequences. Each two consecutive prefixes define an edge:

mii=1 mg

Ec, = UBi,leNj{( By, BY),(BY, B2, (B}, Bh), ""(Bi,l ' By )} (22)

6.4.2 Classification

Simply testing whether the breadcrumb graph is a tree is not sufficient for reliably dis-
tinguishing breadcrumb navigations from other navigation design patterns, since tree
structures might appear accidentally, in particular small trees. Thus, factors such as tree
depth, tree breadth or the number of involved pages must be taken into account. The
thresholds to use and the interactions between different factors are not obvious and, hence,
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A
r 1

prefix

1 ’ Home, Sports, Breaking News, Soccer ‘

prefix I l prefix
Y_A_V
’ Home, Sports H Home, Sports, Breaking News Home, Sports, Breaking News, Tennis ‘

Home
: Home, Politics, Breaking News, Europe ‘

’ Home, Politics H Home, Politics, Breaking News

Home, Politics, Breaking News, Asia ‘

Figure 66. In the breadcrumb graph, the nodes do not represent pages but sequences of pages.
Removing the last element of the sequence delivers the parent node.

a decision tree classifier is trained. We extracted nine different features describing the
structure of the breadcrumb graph that we considered to be relevant for the classification:

Fnumtinks — the average number of hyperlinks in each block sequence is an obvious structural
characteristic. Formally, this feature is defined as:

XB; jen;mit

o 3

Enumtinks =

FumLinksinteger — W€ assume that some navigation elements will always contain the same
number of hyperlinks on each page, while this does not apply in case of the breadcrumb
navigation design pattern. To make this characteristic available to the classifier, we compute
the average number of hyperlinks, which is an integer if the number of links does not vary. In
case of an integer value, FumLinksinteger 15 s€t 10 1, otherwise to o.

Fiogicaipepth — We found that the number of hyperlinks does not always reflect the depth of the
CO in the same way because different breadcrumb implementations exist. First, the root
node may or may not be included in the breadcrumb as a hyperlink (in Figure 66, the root
node “Home” is included). Second, the active page may or may not be included in the
breadcrumb. In order to reflect the true depth of the CO and to abstract from the different
implementations, we added the feature Fiogicaipeptn. The feature also measures the average
number of hyperlinks (like Fyuminks), but we increased the link count 1) for all page blocks if
there are multiple 1-tuple nodes in the breadcrumb tree, since we assume a breadcrumb
implementation without homepage link and 2) for each page block whose link sequence
appears on multiple pages since we assume that the active page is not part of the bread-
crumb. Formally, if we define r(x) as

=1 ifx>1

0 otherwise (24)

and the function sb;(B;;) that returns all pages blocks of a navigation element that con-
sist of the same link sequence as B;, Fiogicaipeptn IS given by:

EBi'leNj(mi,l"'T(lej (Bi,z)D)
Injl

FLagicalDepth = T(|{x € ch E”’l:Bi.l € N] ABil.l = X}|) +
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Foeptnoife — if links to the root node and the active page are part of the breadcrumb, Fiogicaipeptn
is possibly a more reliable indicator compared to adjusted Fiogicaipeptn Values. Hence, we
included the feature Foepnpier, Which expresses the extent of the correction:

FDepthDiff = FLogicalDepth — Fyumdinks (26)

Fnumsranches — another obvious structural characteristic of the breadcrumb graph that is
available as classification feature is the number of branches:

FyumBsranches = ZUEVer (|{x € VC]-|(17' x) € EC]-}D (27)

Fpredecessors— The used graph representation avoids that the tree structure is violated even if
pages appear multiple times in the hierarchy (cf. Figure 65 and Figure 66). However, the
number of times such inconsistencies appear can be an important classification feature.
Hence, Fpregecessors cOUNts the average number of times each page appears in the hierarchy,
i.e. the average number of predecessors. With B;; = (ul}, u%, ..., u;,"") being the sequence of
hyperlinks in block B;;, we define the function pr;(u) that returns the set of all predecessors
of a page u from Site S in the navigational blocks of navigation element j:

pr;(w) = {x € S|i, Lk € N:B;; € N; Al = x Al = u} (28)
Then, we calculate Fpregecessors aS:

Zuespr(w)
Fpredecessors = m (29)

FLabelratio — The previous features are solely URL-based and do not include information about
the link labels, i.e. the text embedded in an a-element. But we can assume that in case of the
breadcrumb navigation design pattern, page names are used as link labels and hence, one
and the same URL always has the same label. This does not apply in case of all navigation
design pattern: For example, in navigation elements based on the pagination design pattern
(cf. Section 5.2.2), a URL can be labeled with “previous” on one page and with “next” on
another. Hence, in case of some navigation design patterns other than breadcrumbs, the
number of different labels (e.g. “previous” and “next”) is small in comparison to the number
of different URLs that appear and this characteristic can be used as additional classification
feature. Thus, the ratio of the number of different link labels to the number of different
hyperlinks is included as another feature.

Fnumig — This is an additional feature resulting from the applied method for reducing the set
of navigation element candidates (cf. Section 6.4.3). The feature expresses how often the
class- or id-attribute that is used in the style identifier of the navigation element candidate
appears in average on a page. If the style identifier really represents the unique formatting
rules of a navigation element, it should appear only a single time on each page. To allow for
some fuzziness, we used the average number of occurrences on a page to express this
characteristic instead of a Boolean value.
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Feount — The number of navigational blocks that are associated with the navigation element
candidate is another obvious feature that is considered.

6.4.3 Reduction of Navigation Element Candidate Set

In this section, we describe how the set of navigation element candidates is reduced in
order to allow efficient computation.

6.4.31 Page Segmentation and Initial Candidate Set

In the context of MenuMiner, we introduced the concept of selector token paths to es-
timate the visual similarity of two navigational blocks. This was motivated by the assump-
tion that rational designers reuse CSS-rules and selector tokens are used to attach these
rules. Since we experienced that this assumption holds for almost all sites, we exploit CSS-
selectors more systematically for BreacrumbMiner: We assume that if Web designers
implement breadcrumbs, they also implement dedicated CSS-rules that apply only to the
breadcrumb navigation and not to other elements of the page. Hence, they need a way to
address the breadcrumb with dedicated CSS-selectors. Furthermore, we assume that this is
done in one of the following ways:

1. Anexclusive id- or class-attribute is assigned to all navigational blocks of the navigation
element. This attribute is referred to for defining the CSS-rules for the breadcrumb.

2. An exclusive id- or class-attribute is assigned to the parent element of all navigational
blocks. Contextual CSS-selectors such as descendant or child selectors (cf. [KENU10]) are
used to address the navigational blocks of the breadcrumb via the parent element.

In theory, CSS-rules that exclusively apply to the navigational blocks of the navigation
element can be defined as well if neither the navigational blocks nor their parent elements
have an exclusive id- or class-attribute. However, this requires more complex CSS-selectors,
more cognitive effort and results in CSS-code that is difficult to understand and to maintain.
Hence, CSS-code is written rarely in this way and the above cases cover the vast majority of
implementations. With these assumptions, not all combinations of page blocks have to be
considered as navigation element candidates any more: Each id- or class-attribute that
appears on the site corresponds to a set of page blocks, which is the set containing all the
HTML-elements to which this attribute is assigned. These sets have to be considered to cover
case 1. To cover case 2 as formulated above, we would have to consider all possible combina-
tions of child nodes of these sets. However, we can also take into account that usually the
same page template is used for all pages and that breadcrumbs typically appear on the
upper part of a page. The usage of a shared page template implies a shared basic page
structure and, hence, we can assume that the breadcrumb is located at the same position in
the sequence of its sibling nodes on all pages (e.g. on all pages, the breadcrumb is a second
child of the parent element). Furthermore, we cover most cases if we consider only the child
nodes at the first child positions because most likely the breadcrumb is placed somewhere
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Source Generated Style Identifiers

<div class="wrapper" id="wr">-1—> .wrapper[0], #wr[0]
<div class="nav"> > .wrapper[0][0], #wr[0][0], .nav[0]
<ul>.</ul> > .nav[0][0]
</div>

<div class="main">.</div>-—4—> .wrapper[0][1], #wr[0][1], .main[0]
<div>.</div> > .wrapper[0][2], #wr[0][2]

</div>

<div class="wrapper">.</div> ——> .wrapper[1]
Figure 67. Computation of style identifers [KEHA13B]

at the upper part of the page. To generate the initial set of navigation element candidates
under these constraints, we compute identifiers for each DOM-element, to which we will
refer as style identifiers (Figure 67). The CSS selector syntax is used to distinguish id- and
class-attributes: for id-attributes the prefix “.” is prepended and for class-attributes the
prefix “#”). To improve generality, an additional index is appended to distinguish attributes
that appear multiple times on a page (e.g., “#wrapper[1]” denotes the second appearance of
the class-attribute “wrapper”). This allows extracting breadcrumbs as well, whose page
blocks or parent blocks have class- or id-attributes that are not exclusive and appear multi-
ple times on the pages. Style identifiers are transferred to the child nodes by appending an
additional index reflecting the position in the sequence of child nodes. All page blocks that
share a style identifier represent navigation element candidates. As explained above, we
limit the number of child positions that are considered and exclude all style identifiers
whose second index exceeds 1to further reduce the set of candidates.

6.4.3.2 Further Reduction of Candidate Set

Prior to feature extraction, the set of navigation element candidates is further reduced
by removing candidates that are unlikely to represent breadcrumbs:

1. We assume that hierarchies with more than ten levels are very unlikely and hence, we
remove candidates that contain blocks with more than ten hyperlinks.

2. We assume that all links of a breadcrumb navigation are implemented with the same
tags and are located at the same level of the DOM tree. Hence, if links in a navigational
block differ in their tag paths (e.g, /html/body/div/div/span/a and
/html/body/div/div/a), we discard the corresponding navigation element candidate.

After the features are extracted, we use the feature values to remove more candidates
that are not likely to represent breadcrumbs:

3. A high Fpredecessors indicates many violations of the tree structure and is a clear hint that
the candidate does not represent a breadcrumb. Hence, we remove candidates if Fpege.
cessors 1S above the threshold of 1.2, which was derived from preliminary experiments.
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4. We can assume that a site has only a single breadcrumb navigation. It is also obvious
that the higher the values of Fyumgranches: Flogicalpepths Fiabeiratio areé and the lower the value
Of Fpredecessors 1S, the more likely the candidate represents a breadcrumb. Hence, we re-
moved all candidates that are not pareto-maximal with respect to Fyymgranches Frogicalpepths
Flabelratio aNd - Fpredecessors from the candidate set of a site.

6.4.4 Classifier Training and Evaluation

To evaluate the method, 700 randomly selected domains were crawled. We seeded the
crawler with the URL http://www.msn.com. The crawler was configured to search for new
domains in a depth first manner. To ensure a diverse set of domains, we included only every
fifth discovered domain in our evaluation data set. These domains were crawled in breadth-
first manner with a page limit of 200.

6.4.4.1 Runtime Performance

Breadcrumb miner ran on a dual core, 3GHz node with 4GBs of RAM. To evaluate how
the method scales in the number of pages, we conducted 20 runs with varying number of
processed pages per domain. The results plotted in Figure 68 indicate an only sublinear
growth of the processing time. This can be explained by the fact that the size of the naviga-
tion element candidate set is based on the number of style identifiers. At the same time, the
number of style identifiers depends on the number of CSS-rules — which are mainly influ-
enced by the complexity of the visual design and not by the number of pages.

6.4.4.2 Labeled Data Set

If existing, the breadcrumbs of the 700 domains were labeled manually. For this, a ran-
dom page was selected for each domain and presented in a dedicated Web-frontend that
allowed marking the boundaries of page blocks effectively using the mouse pointer. We
found that only 4.5% of the breadcrumbs had semantic annotations in the format proposed
by schema.org that would allow to retrieve them directly. We removed these breadcrumbs
from the data set to ensure a fair comparison with the breadcrumb extraction method of
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Figure 68. Runtime in dependency of the processed pages [KEHA13B]
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Table 9. Classification Performance [KEHA13B]

Precision Recall

Breadcumb Miner C1 0.747 0.661
Breadcumb Miner C2 1 0.536
Baseline 1 0.438

Google. Since Google is involved in schema.org, it is likely that in case of these domains not
the breadcrumb classification method is applied but the semantic annotations are evaluat-
ed. The feature vectors for all style identifiers that were found on the labeled page were
generated. Style identifiers representing the boundaries of breadcrumbs were labeled as
positives, all other style identifiers appearing on the page as negative. Style identifiers
appearing on the domain but not present on the page that was labeled were excluded, since
we cannot be sure that they do not represent a breadcrumb that is not present on the
labeled page but on others (e.g., a breadcrumb of a sub site).

6.4.4.3 Cross-Validation

A decision tree learner’® was trained and evaluated in a 10-fold cross-validation. Since
the set of feature vectors contains only a small portion of positive samples and decision tree
learners are not capable of dealing with unbalanced data sets well, we oversampled posi-
tives and undersampled negatives to achieve a balanced training set of 1000 positives and
1000 negatives in each iteration. Since we are interested in the overall performance of our
solution and not only in the performance of the trained classifier, we calculated precision
and recall not based on the feature vectors but based on the labeled pages. Otherwise, the
conducted preprocessing and candidate set reduction would not be taken into account. For
example, a navigation element candidate wrongly discarded at the preprocessing stage
would not count as false negative if precision and recall would be computed based on the
final feature vectors. We denote this basic configuration as C1and list the results in Table 9.

Since the focus is on the extraction of hierarchy information to improve the presentation
of search results, false positives are more costly than false negatives. In other words, pre-
senting false hierarchy information to users is much more harmful to the business model of
the search engine vendor than lacking hierarchy information. We can assume that precision
should be close to 1 for a hierarchy extraction approach to be applicable in practice. To make
the decision tree learner cost sensitive, we used the MetaCost-method [DOMIgg], which can
be applied in combination with arbitrary classifiers. The MetaCost-method was configured

* The source code of the crawled pages, the labeled breadcrumbs and the generated feature
vectors can be downloaded from http://dsn.tm.kit.edu/download/wi2013/data.zip

The C4.5-decision-tree learner of the data mining solution Rapidminer
(http://www.rapidminer.com) was used in its default configuration.
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with 10 iterations, a false negative penalty of 1and a false positive penalty of 25. We repeat-
ed the 10-fold cross-validation and computed a perfect precision and a recall slightly above
o.5 for this configuration C2 (Table 9).

To the best of our knowledge, details of an applicable breadcrumb mining solution have
not been published prior to our own paper [KEHA13B]. However, the search engine Google is
able to extract breadcrumbs for some domains and integrate them into the presentation of
search results. This allows us to estimate the performance of Google’s method without
knowing any implementation details: We searched for each of the 700 labeled pages using
Google until the page of interest was presented as search result. Then, we could determine
whether Google was able to extract the breadcrumb. Since this process is very time-
consuming, we checked only pages for which a breadcrumb was labeled and assumed that
Google’s method does not produce false positives. The results indicate that our own method
achieved as higher recall compared to this baseline (Table 9).

6.5 Summary

In this chapter, we presented two GRABEX-applications that differ not only in the block
graph pattern of interest but also in the way the GRABEX-approach is implemented with
respect to classification strategy and reducing the navigation element candidate set. With
hierarchical menus and breadcrumb navigations, the presented solutions address the most
frequent navigation design patterns that are based on hierarchies and hence, the solutions
can be applied to many sites. While reverse engineering breadcrumb navigations is trivial
once the navigation element itself is extracted, it is a challenging problem in case of hierar-
chical menus that was also addressed in this chapter.

The core conclusion of this chapter is that GRABEX-applications allow conducting chal-
lenging Web structure mining tasks better than previous solutions with respect to accuracy
and computational efficiency in a way that they can be considered as solutions to previously
open problems. Evaluations indicate that the first level of hierarchical menus and bread-
crumb navigations can be extracted with almost perfect precision and still satisfactory
recall. In addition, we found that GRABEX-applications allow detecting site boundaries
precisely and more accurately than previous solutions.

The solutions presented in this chapter are applicable in practice and at Web-scale with-
out limitations, since they consume little resources, scale well and neither require page
rendering nor downloading other resources than HTML files. Extraction rules as well as
classification features are motivated by general Web design rules and not by current Web
standards that permanently undergo changes. Hence, they are future-proof and will not be
rendered obsolete once new standards emerge.
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7 AUGMENTATION OF SEARCH RESULTS
WITH SITE STRUCTURE INFORMATION

Search engines are a core component of the information source WWW. Without search
engines that allow searching billions of indexed pages within seconds, this vast information
space would not be accessible. Since search engines are such fundamental tools used by
millions of people every day, small improvements have high impact. Current search engines
are document-centric in the sense that they consider the WWW as a large collection of
HTML-documents. Consequently, search queries are answered by returning a list of ranked
HTML-documents. Most research on search engines focusses on how to compose the list of
search results, for instance, research on ranking (e.g., [KWCT12]), diversification (e.g.
[RABS10]) and personalization (e.g., [SCBW12]) or on how to present search results, for
instance, research on clustering results [SFMC12] or improving the visual arrangement
[CHKR].

However, the document-centric approach of current search engines, which results from
the lack of appropriate methods for analyzing site structures, contrasts with the way
humans experience and interact with the information source WWW. In the eyes of users,
the WWW is not a collection of millions of pages but a collection of sites, mostly hierarchi-
cally organized. Current search engines aim at satisfying the information need of users by
transferring them to the relevant HTML-documents but often, a more appropriate perspec-
tive would be trying to transfer users to relevant sites or site sections, i.e. relevant CO-
substrees. To the best of our knowledge, except for integrating breadcrumbs of some pages
into search result snippets, none of the major search engines is able to analyze and exploit
hierarchical COs. In this section, we argue that methods for CO-mining such as the ones
presented in this thesis, can provide valuable context information to overcome the limita-
tions of the document centric approach.
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7.1 Overcoming Limitations of Search Result
Presentation by Integration of Hierarchy
Information

Search does not replace navigation. Research on human searcher behavior reveals that
the usage of search engines does not eliminate link-based navigation. In contrast, studies on
logged search trails show that a phase of link-based navigation typically follows after users
click on search results (e.g., [WHHU10][SIWH10]). We will refer to link-based navigation after
keyword search as post-search navigation. One could argue that post-search navigation
results from limitations of the search engine, which is not always capable of transferring
users directly to the desired HTML-page. However, a study indicates that “the perfect search
engine is not enough” [TAAKo4] and that post-search navigation reflects human searcher
behavior rather than search engine limitations. According to Teevan et al. [TAAKo4], users
prefer to enter less specific search queries in order to reduce cognitive load and approach the
target subsequently in a series of navigation steps — a process which is called orienteering by
the authors. Besides these findings, there is another obvious argument for the necessity of
post-search navigation: in many cases, the information need is too complex to be satisfied
by a single page alone [WHHU10]. For example, when a scientist is using a search engine to
find information about a conference, he is typically interested in the entire conference Web
site and not only in a single page of the site.

Search engines should consider post-search navigation. The post-search navigation sce-
nario considered in this section is depicted in Figure 69. “(1.) By entering the search query,
the user is transferred to the Search Engine Result Page (SERP). (2.) Then, the user clicks on a
promising result and is transferred to the landing page. (3.) The user assesses the infor-
mation found on the landing page and decides if either to end the search, to return to the
SERP or to continue browsing on the target site. Current search engines display short
summaries of the target pages on the SERP, called search result snippets. By this they are
trying to give hints whether the user can satisfy his information need on the target page.”
[KEMH13]. We argue that the focus of search result presentation should shift from the

Search Query Search Engine Result Page (SERP)

Search

v

Navigation on Target Site

Figure 69. Scenario: (1) After the search results are displayed, (2) the user is transferred to the
landing page of a target site by clicking on a promising result. (3) The user ends his search,
returns to the SERP or continues browsing. [KEHA13A]
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1)  WWW 2013 — Rio de Janeiro, Brazil » Participants
www2013.org/attendees/
WWW 2013 - 22nd Intenational World Wide Web Conference. 13th-17th, Ma
Janeiro, Brazil. International conference on the topic of the future direction ...

2)  www 2013 - Rio de Janeiro, Brazil » Participants

www2013.org/attendees/
[Conference Venue] [Accomodation] [Visa information]
[About Rio De Janeiro] [About Brazil] [Useful Information]

Figure 70. Current search results presentation and mockup. (1) Search result snippet for the page
“Participants” from the official WWW2013 Web site as presented by google.com (retrieved in).
The displayed text is the description provided by the corresponding meta-tag. (2) Mockup in
which the description is replaced by links to the child pages. While the original presentation does
provide few useful hints about the navigation target, the mockup gives a very good summary.
[KEMHA13] (Source page: http://www2013.0rg/attendees, retrieved on 2013/2/14)

document-centric perspective, which tries to “teleport” (cf. [TAAKo4]) users to the final
HTML-document, towards a site-oriented perspective, which considers post-search naviga-
tion as well. Hence, the presentation of a search result should not only provide information
about what a user can find on the target document but also answer the question whether
the target document is a good starting point for further exploration. Thus, search result
snippets should also include information about where users can go next on the target page.

Hierarchies determine post-search navigation options. According to Kalmbach [KALBo7]
“Where can | go next?” is one of the three basic questions Web navigation has to answer
(besides “Where am [2” and “What’s here?”). Hence, information gained from reverse-
engineering navigation elements provides hints about the possible post-search navigation
options if integrated into the presentation of search results. The mockup shown in Figure 70
demonstrates this idea. The upper search result snippet (Figure 70 - 1) shows how the page
“Participants” of a conference Web site is presented by google.com. The text used to sum-
marize the page originates from the HTML metadata fields. In the mockup below (Figure 70 -
2), we replaced this text with links to the child nodes of the target page. In contrast to the
metadata field, which in this example contains the same site summary on all pages of the
site, the child links provide specific and useful information about the contents of the particu-
lar site section represented by the “Participants”-page. By this mockup, we do not want to
motivate that textual search result summaries should generally be replaced by child node
information. Instead, we want to demonstrate that there are cases in which child node
information is more useful than traditional page summarizes. However, the question, when
to use which kind of information or possibly a combination of both is out of the scope of this
thesis.

Current deep-links do not reflect the entire site content. Current search engines already
integrate additional links in the presentation of some results (Figure 71 - 1). But these, so-
called deep-links or site-links, do not reflect the CO-hierarchy, but the top-ranked pages
based on the search-engine’s ranking method. Figure 71 —1 shows how the Web site of our
research group is presented by Google. Deep-links to the pages of some individual group
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1) Forschungsgruppe DSN - Willkommen am Forschungsbereich ... - KIT

dsn.tm kit.edu/
Bitte vorher per E-Mail anmelden: hannes.hartenstein@kit.edu ... von Jens Kohler
angefertigt und von Konrad Ju in derF ppe DSN betreut
Prof. Dr.rer.nat. Hannes ... DSN Research Group - Staff ...
Prof. Dr.rer.nat. Hannes Hartenstein ... Decentralized Systems and Network
Services Research ...
Jens Mittag the Decentralized Systems ...
Dr-Ing. Jens Mittag. Team leader. Decentralized Systems and Network
Office Hours: on appointment ... Services Research ...
Sebastian Labitzke H. Hartenstein
sebastian labitzke Tqrodkit edu, hannes hartensteinOme0dkit edu,
Forschungsbereich DSN Institut ... Forschungsbereich DSN Institut ...

More results from kit.edu »

2) Forschungsgruppe DSN - Willkommen am Forschungsbereich ... - KIT

dsn.tm kit.edu/
Bitte vorher per E-Mail anmelden: hannes.hartenstein@kit.edu ... von Jens Kohler
angefertigt und von Konrad in der Fi ippe DSN betreut.
[News] [Teaching]
[Staff] [Research]
[Publications] [Traffic Telematics Junior Res...
[Miscellaneous / Software] [How to contact us!]

More results from kit.edu »

Figure 71. Replacing site links with child links. (1} Google supports shortcut links to pages that are
considered as the most important pages of the site. The linked pages are computed using
Google’s ranking algorithms and do not reflect the main topics of the site. (2) The mockup below
shows an alternative presentation of the site based on the hierarchy. Users are able to get an
overview of the content, even if the text snippet is not understandable. [KEMH13] (Source site:
http://dsn.tm.kit.edu/, retrieved on 2013/2/14)

members are shown in combination with a link to the page listing all employees. While all
deep-links point to English pages, they are arranged below the German homepage, because
the search engine is not aware of the existence of two separate hierarchies — one for the
German contents and one for the English contents. Deep links aim at providing short-cut
links to pages of a site that are estimated to be most interesting, but they do not summarize
the entire range of site contents well. In contrast, hierarchy links can serve both purposes:
providing shortcut links and an overview over the entire site content (mockup in Figure 71—
2). Current deep-links are only useful to those users that are interested in one of the linked
pages, while child links are useful to all potential visitors of the site. This demonstrates the
limitations of the document-centric approach fundamental to current search engines.
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a) From SERP 'B) From SERP

RIS
FTURETT ST OER

Figure 72. The user in a) arrives from a search engine and proceeds to a child node, the user
in b) proceeds to a non-child node

7.2 Empirical Study

We start by formulating two hypotheses and conduct a study to test whether the hy-
potheses are supported by the empirical findings.

7.21  Hypotheses

Hypothesis 1: In average, links to child pages are clicked more often than links to non-
child pages. In particular, this is true for users arriving from a search engine (Figure 72).

In the previous section, we argued that the CO and in particular the child nodes of a
node provide answers to the question “Where can | go next?”. The underlying hypothesis is
that users visiting a page prefer child links over non-child links as options for the next
navigation step and, hence, the list of child nodes reflects the list of the most-interesting
next navigation options well.

Hypothesis 2: Current deep links do not generally outperform child links as shortcut
links.

We have argued that child links do not only reflect the options for further site explora-
tion but also represent effective shortcut links. While the first aspect is not considered by
current search engines because of the document-centric perspective, current search engines
do already provide shortcut links. A better overview over the range of contents of the target
site or site section should not be bought at the expense of less effective shortcut links.
Hence, it should be tested whether child links can serve as shortcut links as well.

7.2.2 Experimental setup

To test both hypotheses, we observe how users arriving from a search engine navigate
on target sites in relation to the underlying CO. Such kind of analysis requires a large num-
ber of post-search clickstreams, which are only available to providers of search engine

143



Empirical Study

toolbars or site owners. In addition, the underlying COs must be known. Hence, we studied
the usage data of three large-scale Web sites for which we had access to the server log files
and could extract the CO from the used content management system (CMS).

“We extracted clickstreams from the server log files of three Web sites for a period of
two weeks in May 2012. We considered the sites www.kit.edu (A), www.scc kit.edu (B) and
the site of a municipality responsible for about 25,000 citizens (C). The clickstreams were
preprocessed to remove entries from crawlers and to identify individual sessions. At the end
470,827 clickstreams for Site A were analyzed, 89,360 for Site B and 15,953 for Site C. The
clickstreams were aligned with a model of the content hierarchy to analyze the navigation
behavior in relation to it. At that time the hierarchies consisted of 628 (A), 632 (B) and 154 (C)
elements. They had a maximum depth of 10 (A), 9 (B) and 4 (C).” [KEMH13]

7.2.3 Testing Hypothesis 1

“For a Web site W= {wy, w,... w,} consisting of n pages w1, wz... wn, the taxonomy is de-
fined by sets C,,, € W of child pages associated with a parent page wi. A set of j clickstreams
S ={S.,S, ... S;} is given. The k-th clickstream Sy = {sy.1,Si2, - Siz, } deScribes a user session
consisting of zx consecutive clicks, where s,; € W for 1=1...z.. Regarding the post-search
navigation scenario, we are interested in users that arrive from a search engine (which can
be identified by the HTTP referer) on a landing page and continue browsing on the site.”
[KEMH13]. The ratio of clickstreams in which the second visited page is a child page of the
first visited page can be calculated as follows, if 1,(x) denotes the indicator function that
hasthe value 1if x € A and o otherwise:

ISl

1
RCs = 15 Zl 1c,,  (Sm2)
F=

However, if calculated in this way, RC, is strongly biased by the ratio of child node links
on the landing page. For normalization, we divide by the average number of child nodes on
the landing pages and define:

1gisl 4 Is|
mZ,,,:l Csm,l(sml) _ Zm=1 1C5m‘1(sm_2)
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“In other words ACs is the ratio of the number of all clicks on child nodes of the landing
pages to the number of all child nodes that were shown on the visited landing pages. The
same way we computed ACg as the ratio of clicks on non-children to the number of all
shown non-child links. By comparing both values we can estimate if it is more likely that a
user clicks on a certain link that leads to a child page of the landing page than clicking on a
certain link which does not. For both ACs and ACg we only considered clickstreams with
length > 1 and landing pages that belong to the Web site taxonomy and had child nodes.”
[KEMH13].

The results are summarized in Table 10. We found that on average, child-links receive
much more clicks than non-child links. The ratio of the average number of clicks on child
links to the average number of clicks on non-child links ranges from 4.70 to 11.74 if we
consider users arriving from a search engine. This trend is not specific to the search engine
scenario, since we observed a similar preference towards child links if all clicks are consid-
ered without filtering links incoming from search engines. We used the same method to
compare the average number of clicks on parent-links to the average number of clicks on
non-parent links (Table 11). For only two of the three Web sites, we observed a preference for
parent-links at all, but it is by far not as significant as in the case of child links.

Conclusion with respect to hypothesis 1: Our analysis of three highly frequented Web sites
supports hypothesis 1, since we found that users tend to navigate down the hierarchy moving
from a page to its child pages. In particular, this is true for users arriving from a search engine.

7.2.4 Testing Hypothesis 2

So-called deep- or site-links of current search engines aim at providing the option for
directly jumping to the most relevant pages of a site (Figure 71-1). Site-links are computed by

Table 10. Child node hits vs. non-child node hits [KEMH13]

Hits from Search Engines All Hits
#Clicks AC AC & #Clicks AC AC &
s S AC-S s S AC:S
Site A 14918 0.0681 0.0058 1.74 91520 0.081 0.009 9
Site B 1672 0.0672 0.0143 4.7 19017 0.074 0.013 5.69
Site C 736 0.0925 | 0.0085 10.88 3525 | 0.068 0.012 5.67
Table 11. Parent node hits vs. non-parent node hits [KEMH13]
Hits from Search Engines All Hits
#Clicks AP, AP AR #Clicks AP, AP AR
s S AP, s E AP;
Site A 371 0.0182 0.0189 0.96 93858 0.019 0.024 0.79
Site B 2031 0.0429 0.0259 1.66 27930 0.04 0.021 1.9
Site C 294 0.068 0.021 3.24 3908 0.044 0.023 1.91
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search engines using ranking algorithms such as PageRank [PBMWgg] and click-through
rates. Typically, site-links are presented in combination with the homepage of a site. Despite
the fact that site-links do not summarize the content of a site or site section as well as child
links do, they could be more useful if they would help users saving more clicks than child
links, i.e. if they would be more effective as shortcut links. We want to estimate if this
applies for the three sites under examination. Since the ranking-mechanisms of the search
engines are not known, we assume that 1) the number of page visits determines the rele-
vance, and 2) the search engine has a perfectly accurate method for determining the most
relevant pages of the sites. Hence, we assume that a search engine would display those
pages as shortcut links that receive the site-wide most hits. Now, we can consider the
following scenario: If we would provide a single shortcut link in combination with each
search result, would it be more useful to show the most-visited page of the target site or the
first child-link of the target page? To answer this question, we can assume that users that
arrived from a search engine and proceeded to another page of the site would have directly
accessed the other page in the first place if the corresponding shortcut links would have
been present on the SERP. Hence, we can analyze to which kind of pages more people
proceeded after arriving from a search engine - to the first child link or the top-ranked page
of a site. Figure 73 visualizes the results. The results for considering only a single shortcut
link can be found at k=1 for each site. All clickstreams incoming from a search engine with
length > 1 were considered. We calculated the fraction of clickstreams in which the second
click was on a child page of the landing page on the one hand and the fraction of click-
streams in which the second click was on the page with the site-wide most hits on the other
hand. The values at k=2 reflect a scenario in which two shortcut links are displayed in
combination with a search result snippet and consequently, the fraction of clicks on the first
two child nodes and the fraction of clicks on the links to the two pages with the site-wide
most hits are compared.

Conclusions with respect to hypothesis 2: Hypothesis 2 is supported by the results of the
study as well. Although we found that site-links would allow users saving more clicks than
child nodes in case of site A, the situation is reversed in case of site B, where child links would be
more effective as shortcut links. In case of site C, both methods perform with almost identical
results.
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Figure 73. Child links vs. site-wide ranking: For each site, the ratio of hits received by the first k
child nodes and the ratio of hits received by the k linked pages with the site-wide most hits are
plotted. [KEMH13]
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7.3 Implications of the Study

To the best of our knowledge, we were the first to analyze browsing behavior in relation

to hierarchical COs of real-world Web sites. The findings and implications can be summa-
rized as follows:
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The study indicates that hierarchical COs of Web sites determine the flow of users.
Users tend to navigate down the hierarchy from parent pages to child pages. Hence, hi-
erarchical COs allow predicting clickstreams to a certain extent.

The tendency towards navigating down the hierarchy can be observed for users arriving
from a search engine as well. Hence, mining hierarchical COs allows predicting where
users navigate next if they explore a target site. By integrating information about the
child pages of a target page into the presentation of search results, the next options for
further navigation can be anticipated. This would allow users to decide more effectively
in advance, whether it is worth visiting the target site or not.

The study indicates that besides the fact that child links provide more information
about the contents of a site or site section, they can be even more effective as shortcut
links than the site-links displayed by current search engines.

The question whether the dominance of parent-child navigation can only be observed
for some sites with hierarchical COs or if the results generalize to all such sites was out
of the scope of the study. However, automatically determining for a particular site the
strength of the influence of the hierarchy on the browsing behavior is an interesting fu-
ture research topic because it would allow trading off site-links and child-links for dif-
ferent search results individually.



8 CONCLUSIONS

This thesis was motivated by the observation that content hierarchies as perceived by
humans cannot be automatically extracted. Content hierarchies manifest themselves
through human observation and are hence difficult to grasp. Nevertheless, we were able to
motivate and develop the 0*-model that clearly defines and separates different aspects of
site structure, including content organization. The O*-model was the foundation to opera-
tionalize the fuzzy concept of content hierarchies and to formulate a well-defined problem
statement.

The contributions presented in this thesis push forward the boundaries of automatically
understanding site structure and provide a basis for future research in this field. Several
solutions to previously unsolved problems were presented in this thesis. These solutions are
applicable in practice, in particular with respect to accuracy and computational efficiency:

MenuMiner (Section 6.2) proved to be a very reliable solution for extracting main menu
systems. It can be applied to solve the previously open problem of site boundary detection
because a site can be considered as a collection of pages that share the main menu system.
Aside from the conducted empirical evaluations, we experienced that MenuMiner is a
mature solution. We hardly see any need or room for improvements, except for, maybe, a
different trade-off between complexity of the implementation and runtime savings in
dependence of the scenario, i.e. implementing a simpler clique extraction method in case of
scenarios in which runtime savings are of less importance.

The rule-based approach of reverse-engineering navigation systems (Section 6.3) allows
identifying the first two hierarchy levels and the active menu items. The approach processes
menus delivered by MenuMiner. We tested different configurations that trade off precision
and recall in a different way. If a precision around 0.9 can be tolerated, the approach is able
to identify the main menu of more than %4 of the sites. This configuration can be applied,
e.g., in combination with ranking algorithms. A more precision-oriented configuration
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delivered only a single false positive out of 71 extracted main menus at the expense of
reduced recall. Though the latter configuration extracts hierarchy information only for the
minority of the pages, the results are almost perfectly reliable and can be used to enhance
the presentation of search results. Since the first hierarchy level represents the main topics
of a Web site, our approach allows to automatically retrieve an accurate list of topics for a
significant fraction of sites. In contrast to MenuMiner, there is much room for fine-tuning
and further improving menu reverse engineering, e.g.,, by combining the rule-based ap-
proach with machine learning methods. Although we believe that precision and recall can
be further increased, the solution is applicable in real-world scenarios and can be regarded
as proof of concept.

BreadcrumbMiner (Section 6.4) is the first published and applicable solution for extract-
ing breadcrumb navigations. The conducted evaluation indicates that the approach allows
identifying breadcrumbs with perfect precision and recall above o.5. Based on a comparison
with the breadcrumbs integrated in the presentation of search results by Google, we
conclude that our method is slightly superior. Although not all hierarchically organized sites
contain breadcrumb navigations, extracting breadcrumbs is beneficial for understanding
site structures because from breadcrumbs the entire hierarchy of a site can be easily re-
trieved. Our method is solely based on link-analysis and does not yet consider any conven-
tional features such as CSS class names (e.g., CSS classes such as “breadcrumb” or “crumbs”
could be used as indicator for breadcrumbs) or separator symbols (“>”). Combining link-
based features and conventional features will further improve classification performance.

Based on the findings of this thesis, we can now answer the research questions formu-
lated in the introduction of this thesis as follows:

1. Which navigation design patterns can be used for CO extraction?

We focused on two types of navigation elements that are frequently used and that can
be reverse engineered in order to retrieve the hierarchical CO: Hierarchical menus, in-
cluding menus that implement multiple levels of the hierarchy as well as separate main
and local menus on the one hand and breadcrumb navigations on the other hand. Most
hierarchically organized sites contain at least one of the two navigation element types.
We contributed the proof of concept that both navigation element types can be ex-
tracted and reverse engineered in order to gain accurate hierarchy information. If sites
contain breadcrumbs, it is more likely that accurate hierarchy information can be ex-
tracted with the methods presented in this thesis. While breadcrumbs, if existing, could
be extracted for the majority of the sites without any false positives, in case of hierar-
chical menus, we were only able to retrieve the first level of the hierarchy with a similar
precision but lower recall. The second level of the hierarchy is more difficult to extract
from hierarchical menus and we only achieved precisions below 0.9. However, if a larg-
er data set of manually labeled Web sites would be made available, e.g., by crowdsourc-
ing menu labelling, machine-learning methods could be combined with the rule-based
approach to further improve the method.
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How can those navigation design patterns that allow CO extraction be mined? Are the
methods accurate enough to produce valuable hierarchy information?

First, we took an intuitive approach and derived a basic CO-mining process. The process
consists of four tasks: 1) segmenting the pages of a Web site to identify the individual
page blocks, 2) classifying the page blocks to identify navigational blocks and their
types, e.g., breadcrumb navigations, 3) identifying all navigational blocks that belong to
the same navigation element, i.e. aggregating all occurrences of the same breadcrumb
from different pages, and 4) reverse-engineering navigation elements in order to re-
trieve the hierarchical CO. This fundamental process was the basis for surveying relat-
ed work. Analysis of related work was complicated by inconsistent terminologies in the
related fields (cf. Section 4.2) but the O*-modell allowed interpreting and comparing dif-
ferent approaches. We found that for none of the four tasks a general solution exits
that could be applied to our problem, though some research has been done on page
segmentation and page block classification.

We made the observation that although it is difficult to automatically derive the type of
a navigational block based on a single page, graph representations of the links in navi-
gational blocks that appear on multiple pages show typical patterns that allow deriving
the type. Hence, we refined the fundamental CO-mining process and extraction strate-
gy by first aggregating navigational blocks that belong together into navigation ele-
ments and then deriving the type. Although the type can be derived in this way, a pro-
totypical implementation demonstrated that mining navigation elements without pri-
or knowledge about the type is still too challenging if based on the fundamental CO-
mining process. We were rethinking the process and proposed the GRABEX-approach,
one of the core contributions of this thesis. Instead of trying to extract all navigation el-
ements, GRABEX aims at extracting specific navigation element types, i.e. navigation
elements that can be identified by specific patterns of hyperlinking. Basically, GRABEX
tries to find these specific patterns among the set of all possible combinations of all
possible page blocks. Practically, strategies are needed to reduce the search space, but
GRABEX avoids the necessity of an accurate, general navigation element extraction pri-
or to the classification of the navigation element type. Different methods for generat-
ing graphs from the links of navigation elements can be applied and suitable methods
for reducing the search space can vary in dependence of the GRABEX-application. For
discovering characteristic patterns, we implemented a rule-based solution (MenuMiner,
Section 6.2) as well as a machine-learning-based approach using decision trees (Bread-
crumbMiner, Section 6.4). The conducted evaluations demonstrated that GRABEX-
applications allow not only extracting navigation elements accurately but also effi-
ciently. A vast majority of existing page segmentation methods requires computation-
ally expensive visual page rendering and evaluates HTML tag types. The latter results in
a strong dependency on the Web standards to which they are tailored to and many so-
lutions can be considered already as deprecated because they were built for outdated
standards. GRABEX applications avoid these drawbacks because they are entirely tag-
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agnostic and do not require page rendering or downloading additional resources such
as CSS files or images.

3. How can we evaluate the correctness of CO mining solutions?

Since the solutions presented in this thesis aim extracting hierarchies that reflect the
content organization as it is perceived by humans, evaluation can only be conducted
against human perception. In our first prototypical implementation (Section 5.3), we
had to assess different aspects, such as the quality of page segmentation, the quality of
navigational block identification and the quality of navigation element mining for a
large number of pages. Hence, we implemented a dedicated visualization tool that al-
lowed inspecting a large number of pages. While we favored efficient evaluation over
comparability in this use case, we applied standard measures such as precision and re-
call in all other evaluations. In contrast to previous CO-mining solutions that have only
been evaluated for up to a maximum of 13 selected sites (cf. Section 4.5.4), we applied
more rigorous evaluations, including hundreds of randomly gathered sites. This fact il-
lustrates that our solutions are deployable in real-world scenarios.

4.  Which new possibilities arise from the availability of CO-information?

We believe that applications in many fields can benefit from CO-mining, e.g., automat-
ed sitemap generation, information architecture reverse engineering, search result
presentation, search result ranking, web analytics, focused crawling, contextual adver-
tising or Web site transcoding for mobile clients (cf. Section 3.1). In this thesis, we con-
centrated on the presentation of search results due to this field’s relevance. To the best
of our knowledge, we presented the first study of post-search navigation with focus on
hierarchies. We analyzed three highly-frequented Web sites and gained interesting in-
sights into the influence of hierarchies on users’ navigation behavior in particular if
they arrive from a search engine. It could be demonstrated that users tend to navigate
down towards pages located deeper in the hierarchy, i.e. they gradually move from
more general information to more specific information. This has implications for the
presentation of search results: We conclude that information about child pages should
be integrated into the presentation of search results anticipate more effectively wheth-
er it is worth visiting a search result or not.

There are several threads of research that can be picked up in future works. We believe
that the rule-based approach of reverse engineering menus should be extended by integrat-
ing machine learning methods. We were facing the problem that manually labeling hierar-
chical menus is very time-consuming and hence, an appropriate data set to train classifiers
was not available. However, our rule-based solution in the strict configuration can now be
used to produce such a data set and to address the problem with machine learning solutions
in the future. BreadcrumbMiner can be applied in the same way and additionally consider-
ing conventional features will further improve recall. Another interesting future research
field is the development of other GRABEX-instances. They could either focus on hierarchical
structures as well or on other organizational schemas such as linear structures (e.g. pagina-
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tions, cf. Section 2.3). Combining the structural information gained from different GRABEX-
instances to achieve a more complete picture of the site organization and a higher coverage
is another interesting research topic that could not be addressed in this thesis. Exploiting
extracted hierarchy information in the application fields described in Section 3.1 are possible
future research directions as well. This includes other ways of integrating hierarchy infor-
mation into the presentation of search results than the concept of child links proposed in
this thesis. For example, if the list of search results contains multiple sibling pages, the
parent page could be presented instead to improve the clarity of the presentation. Or, if
users search individual sites, the original site hierarchy could be used to arrange the search
results instead of returning solely a sorted list.
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A GAPD: ENGINEERING THE FUNCTIONAL
ORGANIZATION

Although the purpose of the O*-model is not primarily to support the Web application
development process and the focus of this thesis is on Web mining, the O*>model has
implications on the design process, too. In this section, we propose Graph Access Pattern
Diagrams (GAPD), a method for implementing FO-aspects that results from the 0*-model.
This excursion into the area of Web application development aims at demonstrating the
usefulness of the O°*-model. We have published a first draft of the GAPD-notation in
[KENU12B] and present an enhanced version in this appendix.

A.1 Problem Statement

In the design process, navigation design patterns are usually specified implicitly by de-
veloping visual prototypes such as wireframes and mockups. There are many different
options for designers to realize navigation over hierarchical COs. For example, different
hierarchy levels can be represented by distinct navigation elements; child nodes may pop-up
when the mouse cursor is moved over the parent item; intermediate levels may be expand-
ed or not, et cetera. In many use cases, all details of menu design and behavior are specified
in mandatory style guides. But, in current Web development practice, these patterns of
menu behavior cannot be configured but have to be programmed. It is virtually not possible
to reuse the menu-generating, server-side code between different applications, because the
code heavily depends on the application context, e.g.,, the used programming language,
database system, database connection or database schema. In order to reduce development
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costs, research with focus on Web engineering has proposed modularization of navigation
elements at the granularity of navigation element types [GANMo4]. Although this approach
is first step towards more efficient implementation of navigation elements, it has limita-
tions because it is difficult to find an adequate set of predefined navigation modules that
covers all cases.

A.2 Approach

The O*-model suggests a solution to this problem. According to the O*-model, navigation
design patterns have a CO-, a FO- and a PO-dimension. In the implementation, the CO can be
managed by users with administrative rights via a user interface in most application frame-
works with CMS functionalities. The FO corresponds to the HTML link structure of the
generated navigational blocks and the PO primarily to the CSS-code. In this thesis, we have
motivated that navigation design patterns can be considered as patterns that define how
the CO is transformed into the FO. Graph Access Pattern Diagrams (GAPD) is a domain-
specific language (DSL) for defining such patterns formally. A DSL s a “small, usually declara-
tive, language that offers expressive power focused on a particular problem domain”
[DEKVoo]. Nussbaumer et al. [NUFGo6] argued that DSLs can support a reuse-oriented
approach of developing Web applications. GAPD-instances can be directly compiled by a
corresponding software module — which will be referred to as solution building block (SBB) in
accordance with the terminology proposed in [NUFGo6]. The GAPD-SBB takes as input the
CO, a GAPD-instance and the information, which page is requested, to generate the HTML-
source code of the resulting navigational block (Figure 74). GAPD-instances are independent
from the used server-side technologies and can be shared between all systems that support
the DSL. Nussbaumer et al. [NUFGo6] distinguish between the formal language schema —
they call it Domain-specific Model (DSM) — and visual notations for manipulation instances,

%
Content Org. (CO) @ L
ik
Graph Access Pattern GAPD-
Diagram (GAPD) Renderer
Context )
(active page) Template engine HTML code
Navigational
block

Figure 74. The GAPD solution building block (SBB) compiles a GAPD-instance in combination with
the CO and context information (requested page) to generate the HTML-code of the navigational
block. The GAPD-SBB is integrated into a template engine.
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called Domain Interaction Model (DIM). In this section we will introduce GAPD as a visual
notation, i.e. DIM. Deriving a serialized representation, i.e. DSM, is trivial and will therefore
be omitted. Visual notations are common in software engineering, according to Moody
because they “tap into the capabilities of the powerful and highly parallel human visual
system” [MOOD10]. We believe that GAPD allows implementing all common variations of
navigation elements efficiently without server-side programming, as long as the server
provides a GAPD-SBB module. GAPD-instances can be shared between different applications
and once the reuse repository of GAPD-instances is large enough, creating an entirely new
instance is usually not necessary.

A.3 The GAPD-Notation

In the GAPD-notation, only position, shape and orientation are used as visual variables
(cf. [BERT83]), due to the language’s relatively low complexity. Value, color and texture are
not used to encode information. A GAPD-instance defines, which hyperlinks are generated
on a specific page based on the underlying CO. GAPD assumes that two kinds of relation-
ships appear in the CO: edges that represent parent-child relationships, which are used to
model hierarchies and edges that represent predecessor-successor relationships, which are
used to model sequences. In GAPD, the arrow symbol is used for both relationships, which
can be distinguished by the orientation of the arrow (cf. Figure 75). In case of a hierarchical
CO, we assume that the child nodes of each node are ordered and consider the ordered list
of children as a sequence (Figure 76(a))*".

Each GAPD instance has a single starting symbol. A filled disc represents the active node
(cf. Figure 75). Starting from the active node, other nodes can be referred to by visualizing
their relative location in the CO. For instance, the pattern shown in Figure 76(b) would select
the parent node of the active node (single nodes are depicted with the circle symbol). To
include a link to a selected node, the square symbol is used. For example, the GAPD-instance
in Figure 76(c) would output a link to the parent node of the active node. To select chains of
nodes, the asterisk symbol is used (cf. Figure 75). The asterisk symbol selects as many nodes
as possible by repeating the relation connecting the symbol (directly or indirectly) with the
starting symbol. For example, the pattern showed in Figure 76(d) iteratively selects and
outputs the parents of the active node. As a result, all links on the path from the root node to
the active node are generated (this pattern can be used to generate a breadcrumb naviga-
tion). The maximum number of times that an asterisk symbol is repeated can be specified

" According to definition Term definition 2-5, the vertices of the CO represent labels. At the
same time, each vertex represents a page, too, because the labels are associated with pages. For
convenience reasons, we will use the general term “node” in this section.
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Figure 75. GAPD visual vocabulary

explicitly. The GAPD-instance shown in Figure 76(e) generates hyperlinks only to the two
direct ancestors of the active node.

Another rule takes precedence over the rule of repeating asterisk nodes as often as pos-
sible: the rule of matching as many symbols as possible with nodes of the CO. Figure 76(f) is
an example in which this rule is applied. When processing this GAPD-instance, the asterisk
symbol is matched with all ancestors but not the root node, which is matched with the
single node symbol above instead. If the asterisk symbol would be applied to the root node,
the single node symbol would be left unmatched. Figure 76(f) outputs a link to the root
node. To achieve this, an alternative start symbol can be used that is not dependent on the
active page. This allows generating, e.g., a link to the root node of a CO, even if the active
page is not part of the referred CO. It also facilitates simplified notations. The usage of the
static start symbol is illustrated in Figure 76(g) and Figure 76(h). This symbol can be consid-
ered as a virtual node for selecting the root or the leafs of a hierarchy as well as the first or
the last elements in sequences. If this symbol occurs as parent in a parent-child relationship,
it represents a virtual (non-existent) parent. Thus, the child of the start symbol is matched
with the root node — the only node that does not have a real parent (Figure 76(g)). Similarly,
if the static start symbol is part of a predecessor-successor-relationship, the symbol repre-
sents a non-existing predecessor, which means that the successor is matched with the first
node in case of a sequential CO (Figure 76(h)). The leaf nodes in a hierarchy or the last
element in a sequence can be selected in the same way.

Complete GAPD-instances also specify how the link names are generated. The letter “L”
means that the CO-labels are used as links names. Alternatively, the “#”-symbol specifies
that a consecutive numbering is used to generate link names in case of sequential struc-
tures. The link name type can be defined individually for each node or, alternatively, for the
entire GAPD-instance, which is surrounded by a bounding box. Figure 76(i) shows an exam-
ple of a GAPD-instance generating a paging navigation element that provides links to the
previous 4 and the next 4 pages of a sequence (cf. Figure 6(d)). “S1” is the identifier of the
underlying sequential CO and the sharp symbol specifies that numbers are used as link
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Figure 76. GAPD examples
labels. Figure 77 demonstrates the expressiveness of the GAPD vocabulary with a real world
example. We manually reverse engineered the navigation elements of a sample page and
modeled them as GAPD-instances.

GAPD is designed for hierarchical COs and sequential COs (the latter can be considered
as degraded hierarchies). GAPD-instances define which parts of the CO are translated into
hyperlinks in dependence of the active page. In other words, GAPD-instances select frag-
ments of the CO. As a result, the original organizational schema is preserved: for instance,
the selected nodes of sequential COs maintain sequentially arranged and the selected nodes
of a hierarchy remain hierarchically organized as well. These structures can be translated
into a hierarchical HTML structure as follows: The resulting hyperlinks are serialized in a
depth-first manner. On each descend in the tree structure a new opening tag for an HTML-
container® is generated. On each ascend a corresponding closing tag is written. In addition,
the link to the active page can be tagged, i.e. by application of the “<strong>"-tag. By this,
the logical structure is preserved. If the resulting navigational block can be addressed
unambiguously by CSS selectors, it is not necessary to add class- or id-attributes to each
hyperlink because the HTML-structure alone allows designers to specify different visual
properties for each menu level, e.g., by using descendant selectors (cf. [WC1]).

3 By container elements we mean block level elements [WCgg] that can contain other block
level elements. To implement navigation elements the unordered list element, i.e. the “<ul>”-tag is
usually used. In this case, each hyperlink represents a list entry and is wrapped inside a “<li>"-
element.
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Figure 77. Assuming an existing list, i.e. a sequential CO, of the car models of the company (S1)
and a hierarchical CO in which the pages of the site are organized (H1), all essential navigation
elements of the site can be expressed with GAPD: (a) The complete list of models, (b) a pop-up
menu of the first two levels, (c) a simple breadcrumb trail or (left-hand pattern) or a breadcrumb
trail showing only the first three levels (right-hand pattern) and (d) a local menu for traversing
the lower levels of the hierarchy.
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In this appendix, we complete the overview over related fields provided in Section 4 by
discussing additional aspects that do not directly impact the methods presented in this
thesis. In Appendix B.1, we describe specific page segmentation algorithms in more detail. In
Appendix B.2, we analyze block classification methods that do not aim at identifying naviga-
tional blocks but at recognizing informative content blocks.

B.1 Specific Page Segmentation Algorithms

In this Section, we discuss the individual solutions included in the survey in Section 4.3.
In dependency of their novelty and impact, selected algorithms are described in more detail,
while others are summarized at the end of the section.

VIPS: Vision-based Page Segmentation Algorithm by Cai et al. [CYWMo3]

The Vision-based Page Segmentation algorithm (VIPS) is a method proposed in 2003 by
Cai et al. [CYWMo3] that was also applied in a couple of follow-up works and that is fre-
quently used as baseline method to evaluate competing approaches. It is a rule-based
method, which incorporates a broad range of features such as tag types, font styles, block
sizes and block positions, background colors, et cetera. VIPS generates a hierarchy of blocks
for each Web page. The basic VIPS-process is illustrated in Figure 78. In a first step, the block
extraction phase, the page is segmented into individual blocks by processing the DOM-tree
top-down. Thirteen rules are used to decide whether a DOM-node represents a block on its
own or whether the algorithm descends further to the child nodes in search of valid blocks.
The rules that are applied depend on the node types, e.g., for table-elements different rules
are used than for p-elements. Most of the rules are based on the number and types of the
child nodes, only three rules capture visual properties such as the size, background color or
font styles. In the next step, the visual separator detection, gaps between the found page
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Figure 78. Overview over the vision-based page segmentation algorithm (VIPS): (1+2) A rule-based
approach is used to discover page blocks, (3) visual separators and their weights are extracted, (4)
the semantic structure is constructed by iteratively merging blocks in dependence of the separa-
tor weights, and (5) a threshold is used to determine whether individual page blocks are further
analyzed to extend the tree structure by recursion.

blocks are analyzed to generate a grid. The grid consists of separators, horizontal and vertical
lines, each of which cross the entire width and height respectively of the page. For each
separator, a weight is calculated that expresses the strength of the visual separation. For
example, distances between the blocks, background colors or differences in the font style
are considered to estimate the separator weights. In the Structure construction phase,
adjacent blocks are iteratively merged, starting from the blocks that are divided by the
separators with the lowest weights. This merging process generates the hierarchical seman-
tic page structure. A metric is used to estimate the degree of coherence within each leaf
node. If the degree of coherence is lower than a predefined threshold for one of the leaf
nodes, a recursion on the leaf is conducted to further refine the hierarchy.

Web-Page Segmentation based on decision tree learning by Baluja [BALU06]

Baluja presents an interesting approach in [BALU06] that has a couple of unique charac-
teristics. First, the number of cuts or the number of segments respectively is predefined. The
use case of the algorithm is to segment a page into 9 tiles that can be selected using the
numerical keypad on a mobile phone. Hence, the fixed number of segments is not a limita-
tion but a requirement in this scenario. Second, Baluja’s method can produce segments that
do not correspond to the DOM-segmentation. This means that the cuts may be conducted in
a way that a part of a DOM-element belongs to one block while the rest of the element
belongs to another (Figure 80). Other methods usually are able to generate blocks that
consist of multiple DOM-elements but they do not cut DOM-elements in halves. A third
specific feature of Baluja’s method is that color information at pixel-level is analyzed to
place the cuts. The method takes a top-down approach that iteratively splits page regions
into two parts. Baluja maps this problem onto the problem of training a decision tree
classifier. Each DOM-element is considered as a separate class and the area of the DOM-
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Figure 80. The segmentation method presented by Baluja [BALU0O6] can produce cuts that

divide DOM elements (e.g., div 1in this figure).
element defines the class probability. A standard decision tree learner is employed, which
uses the expected information gain as metric to find the best splits along the x- or y-axis.
The decision tree learner also considers three other features. One feature penalizes cuts that
are not close to 1/3 or 2/3 of the edge lengths of the region to cut. The background is that the
method should have a bias toward blocks of uniform size. In addition, the types of the DOM-
elements to cut are considered as well as the entropy of the pixels along the cut. In fact,
Baluja’s method is not a machine learning method in the sense that parameters are learned
from a training set. Instead, an algorithm intended to train a classifier is applied in a differ-
ent context, which is to generate page segmentations instead of classifier instances.

Block distance metric for page segmentation by Hattori et al. [HHMSo7]

Hattori et al. [HHMSo7] describe a method that combines a tag-type and block-size
based approach for generating the coarse-grained segmentation with an approach for
refining the blocks that is based on the structure of the DOM-tree. In the first phase, the
DOM tree is processed top-down to discover DIV- and TD-elements that exceed a predefined
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Figure 79. The gray area illustrates the idea of the content distance metric as defined in
[HHMSo7]. Not only the number of elements enclosed between two elements influences the
metric but also, whether these elements are located at a similar depth of the DOM-tree or not.
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size threshold. Those elements define the preliminary coarse-grained segmentation. How-
ever, visual page rendering is not required because the method estimates the element size
based on the (deprecated) HTML-attributes width and height or the number of contained
characters. For further segmenting the preliminary blocks into the final blocks, the authors
propose a metric for measuring the distance between two content elements in the DOM
tree. Text data, images, a-elements and scripts are regarded as content elements. The idea
of the content distance metric is illustrated in Figure 79. The size of the gray area reflects the
value of the content distance metric for the two marked content elements. The design of the
metric is inspired by the typical formatting style of HTML code in which each HTML-element
creates a new line and the child nodes are indented at each level. Two factors influence the
size of the gray area as depicted in Figure 79: First, an increasing number of other HTML
elements between two content elements (y-axis in the figure) leads to an increased size of
the area and thus to a higher value of the content distance metric. Second, as the enclosed
elements are located higher in the DOM-tree, the gray area is becoming larger (x-axis in the
figure). The latter aspect captures whether the two elements are located in similar or distant
subtrees. If the content distance exceeds a predefined threshold, the segment is split into
two separate blocks. The authors also present a way of estimating the optimal threshold
value in the paper.

Site-oriented method by Fernandes et al. [FMSR11]

Fernandes et al. [FMSR1] present an approach that does not rely on tag semantics (only
textual and non-textual nodes are distinguished) or any visual attributes. Instead, only the
structure of the DOM-tree influences the segmentation results. In contrast to other ap-
proaches, Fernandes et al. conduct the segmentation not on a per-page basis but on a per
site basis. The rationale behind this is that through the usage of templates, all pages of the
same site have a similar structure. This structure is discovered by merging the DOM trees of
all or at least a subset of a site’s pages. Then, the segmentation is conducted for the com-
bined DOM-tree (called SOM-tree by the authors). However, Fernandes et al. assume a non-
hierarchical segmentation that does not allow nested blocks. The algorithm first pre-
processes the DOM-trees of each page individually. In this step, a label for each DOM-
element is computed based on the path from the root node to element itself. The element
names and all attributes of the ancestor elements are included in the label. Then, the DOM
tree is simplified by transforming inner nodes that contain textual content into leaf nodes.
In this case, the textual content of the child nodes is appended to the new leaf. Recurring
structures such as repeated list items or menu entries are also simplified by merging all child
nodes that have a similar structure into a single node. After the pre-processing phase, the
SOM-tree is generated. The node labels are used to align the DOM-trees: nodes with the
same label from different pages are represented by a single node in the SOM-tree. The SOM-
tree is then further processed in order to remove “noisy” nodes. Two heuristics are used: two
nodes that are located close to each other in the SOM-tree are merged if both contain
textual contents. Also, SOM-tree nodes that were found on only a small number of pages (a
threshold of 8 pages is used) are pruned. The remaining leaf nodes of the SOM-tree repre-
sent the resulting segmentation.
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Web page segmentation based on text density by Kohlschiitter and Nejdl [KONEo08]

Kohlschitter and Nejdl present a method in [KONE08] that is independent of HTML-
element semantics in its basic configuration. However, the authors evaluate extensions of
the method that are element-aware. Kohlschiitter and Nejdl propose to adopt segmentation
strategies from the fields of linguistics and computer vision to solve the problem of Web
page segmentation: region growing [ADBI94] is a common method for image segmentation
that iteratively merges adjacent regions into a combined region if they fulfil a similarity
requirement (e.g., similar colors). Kohlschiitter and Nejdl apply this strategy without consid-
ering visual parameters. Instead, their method is based on text density. They consider an
HTML-page as a sequence of strings separated by tags. In the basic configuration, no differ-
entiation is made between start and end tags as well as between different tag types. Each
text-string is word-wrapped using fixed number of allowed words per line to compute the
text-density, which is basically the ratio of words to the number of lines. The difference in
text-density is used to iteratively merge adjacent strings into larger regions. These regions
represent the resulting segmentation. A text-density threshold must be predefined for
controlling the segmentation granularity. The authors also implement a version of the
algorithm that merges blocks that are “dominated” by the preceding and succeeding block,
i.e. groups of three blocks in which the intermediate block with a low density is surrounded
by blocks with high densities. The rationale behind this is that single intersecting blocks do
not affect the segmentation results. Furthermore, the authors also enhance their method by
adding very simple splitting rules based on the HTML element semantics. Interestingly, the
element-awareness dramatically boosts segmentation performance.

Web page segmentation based on graph clustering by Chakrabarti et al. [CHKP08]

Chakrabarti et al. [CHKPo8] transform the problem into an optimization problem on a
weighted graph. The basic idea is to consider the DOM-elements of a page as graph nodes
and use edge weights to represent the costs for placing two elements in different blocks.
However, an element can only be part of a single block. This constraint has to be considered
in the formulation of the optimization problem, too. Chakrabarti et al. propose two different
approaches. First, they formulate the problem in a way that correlation clustering [BABC04]
can be applied and, second, they propose another formulation targeting energy-minimizing
graph cuts [BOVZo1]. The cost functions for both approaches must be learned. In their paper,
the authors rely on 25 manually segmented pages from randomly selected sites for learning
the costs. A broad range of features is considered: the position of a segment, its aspect ratio,
the background color, the font sizes, the font types, the average sentence length, the
fraction of linked text, the element names, et cetera. GCuts, the energy-minimizing graph
cuts approach, also models the distance of two nodes in the DOM-tree. Hence, a parameter
must be estimated using additional manually labelled sample-data for balancing the two
used cost-functions.
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Others Solutions

In this Section, we will summarize the specific characteristics of the other solutions that
are considered in our review but were not discussed above.

One of the first segmentation approaches is presented by Yang et al. in [YAZHo1]. The
method is based on the detection of recurring structures (cf. Section 4.3.2). Unlike the later
method by Xiang et al. [XIYS06], not only patterns of tag types are mined but visual similari-
ties are also considered. In addition to the tag types, the authors use font sizes, font styles
and text lengths to compare DOM-elements. The authors apply a similarity metric to deal
with fuzziness. Container elements are compared by comparing the child elements. DBSCAN
[EKSX96] is applied to cluster the containers based on the similarities. Then, frequent
patterns are detected in the clustered results. If a pattern is found, the element is considered
as a so called “list-object” defining a page block.

Chen et al. presented an early rule-based approach [CHMZo3] that includes a broad
range of different features. In a first segmentation phase, the DOM-tree is split into prede-
fined high-level blocks such as header, body, sidebar or footer in a top-down manner. For
this, the widths of the HTML-elements and their aspect ratios are analyzed. In a second
phase, the fined-grained structure is extracted by detecting explicit separators (specific
HTML-element types such as hr-elements or table-elements) and implicit separators (gaps
between atomic blocks). Chen et al. evaluate their method only indirectly by applying it to
transcode Web sites for mobile devices.

Debnath et al. [DMPGos] apply a solely tag-type-based page segmentation method as
preprocessing for identifying the main content block. Their method is based on a predefined,
ordered list of HTML-element types. The DOM-tree is iteratively split into subsections
according to the element types and their order. For example, the first element in the used
list was the table-tag. Thus, each table-element is considered as an own block in the first
iteration. Discovered blocks are further divided in the successive iterations, e.g. in the
second iteration, the tr-element is used as splitting criterion and so on.

Xiang et al. [XIYSo6] extended the VIPS-method by preprocessing the DOM-tree and
mining recurring block-structures. In the preprocessing phase, specific tags such as line-
breaks (br-elements) are removed. Continuous sequences of nodes that are defined as
“inline” in the HTML-specification (the authors do not mention, which version of the specifi-
cation) are merged into a single auxiliary node. After the preprocessing phase, recurring
blocks with similar tag structures are identified. The idea is that recurrent patterns deter-
mine blocks. For instance, a result page of a search engine contains a list of search results.
Each search result is contained within an individual block but all the blocks have a similar
DOM-tree structure. Hence, if a repetitive DOM-structure can be discovered, it is very likely
that each appearance of this pattern represents a valid page block.

Zou et al. [ZOLTo6] adopt the recursive X-Y cut method [HAHPgs] to segment Web pag-
es. This method is a general image segmentation algorithm based on bounding boxes. To
generate the bounding boxes, called “zones” by the authors, the DOM-tree is processed top-
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down. Simple segmentation rules are applied that rely mainly on the element types. The
authors distinguish inline-elements, tables, insignificant elements and line-breaking ele-
ments. The recursive X-Y cut algorithm is applied to induce a tree structure on the atomic
zones. According to the authors, the position of the DOM elements and the HTML-attributes
align, font-face, font-color and bgColor* are evaluated to build the tree structure, but details
are not reported.

The method by Guo et al. [GMBSo7] consists of two phases. In the first phase, the main
blocks of a page are discovered by analyzing the alignment of the child elements. If all child
elements are consistently aligned either along the x- or along the y-axis, the parent element
is considered as block. In the second phase, these blocks are further segmented. This is done
by extracting recurring patterns of child element styles. Similar to the idea of Xiang et al.
[XIYSo6], repetitive structures are considered as separate blocks. However, not the types of
the child elements are analyzed but their font-properties (type, style and size).

Burget presents another segmentation method in [BURUOQ]. He starts with “basic visual
areas”, by which he means all text-boxes, images and DOM-elements with non-transparent
background or borders. These basic areas are arranged in a grid and adjacent areas are
successively merged. First, areas that share the same rows are merged if they have the same
background color and no separating border. Second, adjacent areas with the same font-style
are merged if they are not visually separated. For detecting visual separators, the VIPS-
method [CYWMo3] is applied.

Yang et al. claim that their method introduced in [XIYSo7] and refined in [YASHoQ] is
based on Gestalt theory. The authors argue that their method uses four laws of Gestalt
theory: proximity, similarity, closure and simplicity. However, the authors do not motive why
they focus on these laws and not on others (e.g., the ones described in [CHDTo2]). Moreover,
their implementation rather resembles common segmentation strategies than using novel
approaches motivated by Gestalt theory. For instance, the rule of simplicity states that
human perception simplifies in a way that the simplest forms are recognized first [CHDTo2].
In [YASHo9] this rule is implemented by detecting recurring patterns, very similar to the
previous method by Xiang et al. [XIYS06].

Vineel describes a method in [VINEog] that conducts the segmentation based on an only
2-dimensional feature space. The first feature is the length of textual content that is ar-
ranged under an element (the number of words is used) and the second feature is the
Shannon entropy of child element types. Predefined thresholds are set and if both measures
exceed the threshold, the corresponding DOM element is considered as block.

Cao et al. [CAML10] present a method that differs from previous approaches because it is
solely based on image-processing. This means, rendered Web pages are converted into
images before the page segmentation is conducted on the graphic file. A boundary detec-

3 Note that all evaluated attributes are considered deprecated since HTML 4.0 [WCgg] and are
typically not used any more.
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tion filter is applied to generate a binary image. In a “dividing and shrinking” phase, the
image is iteratively split into smaller segments by detecting horizontal and vertical gaps.

Alcic and Conrad [ALCOM] consider DOM-elements as graph nodes and apply graph clus-
tering to generate the page segmentation as done by Chakrabarti et al. [CHKPo8] previously.
The authors implemented and evaluated three different distance metrics to calculate the
edge weights. While a DOM-based distance metric has been proposed before [HHMSo7] and
geometric distance metrics are commonly used, the application of the third metric, the
semantic distance, is an interesting novel contribution in this context. The authors use text
processing techniques to estimate the semantic similarity of two text blocks and use the
WordNet database [MBFG9o] as background knowledge. However, the semantic distance
performs worst compared to the other two metrics in the evaluation.

A creative way of segmenting Web pages is proposed by Lin et al. in [LICC11]. They con-
sider Web pages as protein sequences, in which each tag type represents a different amino
acid. To find the page segmentation, the authors use an algorithm from the domain of
bioinformatics, which separates areas of low complexity (repetitive structures) from areas
with high complexity. Hence, the tag types and their order are the only feature exploited.

B.2 Informative Content Extraction Methods

One of the first methods for extracting informative content blocks was published by
Finn et al. [FIKSo1]. The authors consider a document as a sequence of two types of tokens:
words and tags. They express the aggregated number of tag tokens as a function of the
number of all tokens, i.e. the number of tags among the i-th first tokens. The authors
observed that if the function is plotted, plateaus indicate the main content area (cf. Figure
81). To detect the plateau boundaries, a simple optimization problem is formulated, which is
based on the idea of maximizing the number of tags outside the plateau while minimizing
the number of tags within the plateau at the same time.

Another early method for extracting informative content blocks is presented by Lin et al.
in [LIHOO2]. It is assumed that clusters of similar structured pages are known are priori and
that the same blocks appear on all pages. The author’s idea is to determine the blocks with
the lowest average redundancy of the textual content — these blocks are considered as
informative blocks. In a first step, Lin et al. filter stop words and apply Porter stemming
[PORT80]. The resulting term-document matrix is used to calculated term entropies based
on Shannon’s formula [SHAN48]. The average entropy of the terms occurring in a block is
used to distinguish informative blocks from noisy blocks. The authors assume that blocks
with low entropy represent the blocks that contain non-redundant information and keep
these blocks. The authors also propose a method to compute the threshold value based on a
manually labeled training set.
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Figure 81. Finn et al. [FIKSo1] analyze the aggregated number of tags as a function of all tokens
(tags and words) to discover plateaus.

A method by Yi et al. [YILLo3] is also based on the idea of measuring block entropy and
considering high-entropy blocks as redundant and noisy. However, Yi et al. apply a different
approach and exploit a larger set of features. In contrast to Lin et al. [LIHO02], the entropy is
not computed based on the textual content but on DOM-element attributes. The approach
of Yi et al. includes a method to merge DOM-trees for finding recurring blocks — a problem
that was not discussed by Lin et al. previously. All pages of a site are merged into a single
tree structure, which is called style tree by the authors. A style tree consists of two kinds of
nodes, element nodes and style nodes (cf. Figure 82) and is generated top-down. For exam-
ple, the body elements of both DOM trees in Figure 82 contain the same sequence of child
nodes (table, div). Hence, they are mapped onto a single style node in the combined style
tree. For each style node, the number of occurrences is also saved (2 in this case). In the style
tree, the child nodes of a style node — called element nodes — are given by the elements in
the sequence that the style node represents. A single element node in the style tree can
represent multiple nodes from different source trees. The child sequences of these source
nodes can now again be compared to generate the next level of the style tree. If the se-
quences of child nodes differ, multiple style nodes are created. For example, the div-element
in Figure 82 appears in conjunction with varying sequences of child nodes and thus, multiple
style nodes are inserted below this node in the style tree. All leaf nodes in the style tree are
element nodes. After the style tree is generated, the importance of each leaf node is esti-
mated based on Shannon’s entropy definition [SHAN48]. For this, the value distributions of
the attributes (e.g., link references, background colors, widths or heights) of the source DOM
elements are taken into account. More variations among these values increase the value of
the used entropy-based importance metric. Entropy is also used to assess the distribution of
the style nodes below each element node in the style tree. Both metrics are combined and
propagated bottom-up. A predefined threshold is used to distinguish main content nodes
from noisy nodes.
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Figure 82. Merging two DOM trees into a single style tree according to [YILLo3]

Different entropy measures are the foundation of a method by Kao et al. [KAHCo5] as
well. The method returns up to k informative blocks for each page, with k being a predefined
parameter. In contrast to most other methods, Kao et al. consider not only the blocks
containing informative text passages as informative blocks but also blocks that contain
tables of contents (TOCs). The main routine of their method selects informative blocks of a
preprocessed page in a greedy way. In each iteration, the block with the highest aggregated
anchor precision index (API) is selected (the authors also introduce other measures but the
API performs best in their evaluation). The API is computed for each hyperlink: the inverse
values of the term entropies (calculated as in [LIHO02]) for all terms that appear at the same
time in the link text and on the linked page are summed up. Before a block is selected, it is
checked whether it does not violate one of the type constraints. The first type constraint
requires that the average term entropy of the textual content within the block is below a
predefined threshold (cf. [LIHO02], low entropy indicates informative sections). The second
type constraint requires that the average API of the links within the block exceeds a thresh-
old. If the type constraints are not violated, the block is added to the candidate block set and
the algorithm proceeds with the next iteration until k candidates are found. The candidate
set is further refined by merging additional elements into the candidate blocks. This is done
by checking whether direct sibling nodes or siblings of the first ancestor that actually has
siblings pass the type constraints. If this is true, the siblings are added to the candidate block
as well. In a last step, parts of the merged subtrees are pruned again if they violate the type
constraints and the remaining blocks are considered as informative blocks.

Song et al. [SLWMo4] present a systematic machine-learning approach in conjunction
with an interesting user study. In the user study, they distinguish four levels of block im-
portance with redundant blocks at the one end of the scale and the blocks containing the
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main information at the other end. The study included 600 pages from 405 different sites,
resulting in a total number of 4539 blocks, which are obtained with the VIPS algorithm
[CYWMo3]. Five human assessors assigned one of the four importance values to each of the
blocks. It was found that in 92.9% of the cases at least three assessors agree on the im-
portance of the blocks. If the importance levels 3 and 4 are combined, this value increases to
99.5%. Hence, the three level approach is applied to train the classifiers. A dozen of classical
features are used, including image number, image sizes, link text length, text length, et
cetera. For classification, a linear Support Vector Machine (SVM), a non-linear SVM with RBF
kernel and a RBF neural network are trained.

Debnath et al. [DMPGos] present three different rule-based algorithms for extracting
main content blocks, targeting sites from the news domain. The first algorithm, ContentEx-
tractor, is a site-oriented method that detects non-redundant blocks, i.e. blocks that are not
repeated on multiple pages of the site. The feature vectors of two blocks are compared using
cosine similarity and a threshold determines whether two blocks are considered as being
identical on not. The feature vectors consist of simple quantities: the number of words
within the block, the number of tables, the number of links, et cetera. The second algorithm,
FeatureExtractor, allows specifying target features, e.g., the word number. Then, each
feature of a block is normalized by divided by the maximum observed value of this feature.
All blocks of a page for which the sum of the normalized target features exceeds the sum of
the normalized non-target features, form a new “winner” set (the rationale behind this
approach is not documented in the paper). The normalization is repeated, now, based on the
maximal observed values within the winner set. The block with the highest value of the
target feature is selected as informative content block. The third algorithm, K-
FeatureExtractor is similar to FeatureExtractor but it is able to output multiple informative
blocks for each page. This is achieved by applying k-means clustering to the winner set and
selecting the highest ranked cluster.

Grotton presents another method that considers a document as token sequence in
[GOTTo8]. Grotton experiments with two token granularities: word tokens and character
tokens. In each case, tokens that correspond to tags are distinguished from tokens that
correspond to textual content. Content tokens are initialized with 1 and tag tokens are
initialized with o. The token sequence is iteratively blurred using weighted averages until
the values start to settle. Afterwards, a threshold is used to decide for each token whether it
is regarded as informative content or not. Grotton also proposes a modified version of his
solution which ignores hyperlinks in order to improve classification performance on wiki-like
sites.

A straightforward solution by Burget and Rudolfova [BURUOQ] (cf. Appendix A for the
page segmentation method) distinguishes g different classes of main content blocks,
including h1 (headline 1), h2 (headline 2), subtitle, author, date, et cetera. Nine font-based,
spatial, textual and color-based features are used to train a decision tree classifier (based on
Qinlan’s C4.5 algorithm [QUIN9Q3]).
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Another machine-learning based solution that operates on token sequences is proposed
by Pasternack and Roth in [PAROOg]. Tokenization of documents is conducted by filtering
uncommon tags, deleting script- and style-elements, applying porter stemming [PORT80]
and converting all numbers to 1. The authors use a naive Bayes classifier to assign a value in
the range [-0.5, 0.5] to each token, with a higher value expressing a higher probability that
the token belongs to the main content block. The classifier is trained on only two features:
token trigrams and the most-recent-unclosed tag. To identify a coherent subsequence
corresponding to the main content block, the maximum subsequence, i.e. the coherent
subsequence with the maximimal sum of the contained tokens, is extracted. Besides the
basic supervised approach, the authors also propose a semi-supervised extension in order to
boost classification performance. Before the semi-supervised approach is applied on a site,
the classifier is iteratively refined with the use of unlabeled pages from the same site. This is
done by applying the classifier and selecting a predefined number of pages for which the
predictions are estimated to be most-likely correct. The weight of trigrams that are located
close to the main content borders in this subset is increased in order to guarantee a higher
influence in subsequent iteration rounds. The maximum subsequence extraction is repeated
with the token values being corrected by the learned weights. Ten such iterations are
conducted before the main content extraction is considered as finalized.

Evaluation of Informative Content Extraction

The method for informative content extraction by Lin et al. [LIHO02] is evaluated empiri-
cally for selected sites. However, the results are difficult to interpret because although
precision and recall values are provided, these metrics are not applied intuitively to measure
the block classification performance. Instead, it is measured whether the same terms appear
in the manually labelled and automatically detected informative blocks.

Yiet al. [YILLo3] show that their main content extraction solution can improve Web page
classification and clustering quality but they do not compare their method to previous block
classification solutions.

Song et al. [SLWMo4] conducted an elaborate and convincing evaluation of their meth-
od, which assigns one of three importance classes to each page block. Five human assessors
labeled 4539 blocks extracted from 600 pages originating from 4os different sites. Only
blocks for which at least three human assessors assigned the same class label were included
in the evaluation. Hence, 4517 individual blocks remained. Three classifiers were evaluated in
a 5-fold cross-validation. Precision and recall are provided for each of the three class labels
separately as well as the overall Fi-performance. With an Fi-value of 0.790, the SVM classifi-
er outperforms the other methods. To assess the classification quality, the authors compare
this value to the performance of the worst human assessor who reached an only slightly
higher Fi-value of 0.792. Thus, the gap between the human and machine-based importance
assessment is only small.

Kao et al. [KAHCos], which distinguish informative blocks and redundant blocks, evalu-
ate the classification performance for a couple of selected sites from the news domain. The
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data set is manually labeled to compute precision and recall. The bar plots, which are
included in the paper, indicate good performance of the method for most sites. Average
precision and recall values are not provided and the method is not compared to previous
solutions.

Debnath et al. [DMPGos], which propose three different main content extraction algo-
rithms in their paper, evaluate their methods on 15 selected sites, mostly from the news
domain. The number of crawled pages ranges from 100 for some sites to a maximum
number of 415 for another site. The blocks are manually labelled. Precision and recall are
calculated. All three methods perform well, with F1-measures mostly above 0.9 and often
close to 1. These are surprisingly good results, achieved with rather simple algorithms.
However, it is unclear if these methods would work this well if applied on today’s more
complex Web sites.

Grotton [GOTTo8] evaluates his own method and three baseline methods, including the
solution by Finn et al. [FIKSo1]**. Since the considered methods are all token-based (docu-
ments are considered as sequences of tokens) rather than block based, precision and recall
are calculated on a token basis and not on a block basis. To compute these metrics, the
number of tokens that appear at the same time in the retrieved and relevant texts is consid-
ered. The evaluation data consists of a set of 65 manually labeled pages (the sources are not
mentioned) and 13 larger sets from selected sites, labeled semi-automatically. The authors
provide Fi1-measures for all data set / algorithm combinations individually but no average
values that would allow to assess the overall performance. The results are mixed: the
performance of all tested algorithms (including the novel ones proposed by Grotton) strong-
ly depend on the data set. Grotton’s methods do also not significantly outperform previous
solutions, although the evaluation indicates a slight improvement.

The method by Burget and Rudolfova [BURUog], which aims at distinguishing different
classes of main content areas, is evaluated empirically as well. On unseen sites, the perfor-
mance of the method is disappointing, with the block type “date” reaching the highest F1-
measure of 0.769 among the block types.

Pasternack and Roth [PARO09] evaluate their supervised and semi-supervised algo-
rithms on two different data sets. One data set includes samples from five news sites. For
each site, 50 samples were manually labeled. The second data set originates from 40
different sites and contains five manually labeled samples from each site. A large training
set was used: from each of the 12 training sites, 2000 samples were gathered. To label this
amount of training data, a dedicated wrapper was written for each of the twelve sites. The
supervised method performs well on both data sets with Fi-scores around 0.9s5. The average
recall is almost perfect, but precision values are below 0.95. The semi-supervised approach
improves the performance to very good F1 scores above 0.97.

3 The other two methods are not discussed in this section because (1) the method by Gupta et
al. [GKNGo3] is not considered as a block classification method and (2) the method used by Pinto
et al. [PBCCo2] is very similar to the solution present in [FIKSo1].
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C BLOCKCLIQUEFINDER-ALGORITHM

The description of the BlockCliqueFinder below is an excerpt from our paper “MenuMiner:
Revealing the Information Architecture of Large Web Sites by Analyzing Maximal Cliques”
[KENU12A]. However, we adapted some terms to be in line with the terminology used in this
thesis and adjusted the references.

The BlockCliqueFinder-algorithm returns the local SC* (cf. Section 6.2.2), which is the set
containing all block graph cliques to which a block of the processed page belongs. Given is
the list of maximal cliques in the partial web graph defined by the current page and all its
neighbors. According to Section 6.2.2, the algorithm successively computes the largest clique
of blocks from different pages and removes all links that are part of that block graph clique.
It terminates if no block graph clique of a minimal size of 3 is found. If multiple block graph
cliques with maximal size are possible, the algorithm returns the one whose blocks are most
uniform concerning their placement in the DOM tree.

One, multiple or no block graph clique can be embedded in a web graph clique. For each
page of a web graph clique WC that contains a block graph clique SC, a block on that page is
either part of SC or not, because SC can be smaller than WC. To avoid testing all possible
combinations a greedy approach can be used. Figure 83 shows an example of four pages p,-
p, that form a clique in the web graph. The menu in the upper left corner of each page is a
typical main menu with links to p,-p;and an additional link in p,. The first page p, is the page
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Figure 83. Four sample pages that form a clique in the web graph [KENU12A]
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that is currently processed, so only blocks containing links to p, have to be considered on the
other pages. The blocks are encoded as a three dimensional array SP[i][jj[k] that has the
value 1if the block j on page i contains a hyperlink to page k and the value o otherwise. The
blocks on pages p,-p; can contain links that are already assigned to a block graph clique
when previous pages were processed. Since according to Section 6.2.2, larger block graph
cliques are preferred, these links have to be removed from the original clique and assigned
to a new block graph clique if the new clique is larger. For this the array SB[i][j][k] contains
the minimum sizes that a new block graph clique must have to include a hyperlink or target
page respectively. In the example shown in Figure 83 only the link to p; in block 1 of p, is
bound to another clique, which has the size of 4. The other links can be assigned to block
graph cliques of any size so SB has the value o.

Each web graph clique is compared to all blocks of p,. If the web graph clique and the
block j share at least three pages, the block arrays SP[o][j] and SB[o][j] become initial states
of the algorithm by removing from SP[o][j] the pages that are not shared. The initial states,
SP and SB are the input of the BlockCliqueFinder algorithm. The example includes only a
single web graph clique and both blocks of p, are added to the initial state list. The ordered
list of pages represents levels that the states have to pass to become end states. The initial
states are associated with level o or page p, respectively. In each iteration of the algorithm
one state is removed from the list and processed (Algorithm 1, line o4, function
GetStateWithMaxScore). From the states with the maximal number of pages the state
associated with the smallest level is selected.

In Figure 84 both initial states contain three pages and both states are associated with
level o, so a random state is picked. A new state is created that represents a block graph
clique that does not contain the page of the next level (Algorithm 1, lines 10-12). New states
are also created for each block of the page representing the next level (line 13). If such a block
does not contain a target page it is removed from the target pages of the state (line 16) and
the binding of all links is updated (line 17). Before a new state is added to the state list it is
tested to see if links are already bound to larger block graph cliques. If that is the case these
links are removed (lines 21-23). If the block graph clique represented by the state is still larger
than 2 and the state has not reached the final level, it is added to the list States (line 25). The
function AddToStatelist consolidates the state list by applying a scoring function that
measures the uniformity of the page blocks that are included in a state. If an equal state
(regarding SP and $B) associated with the same level already exists, only the state with the
higher block uniformity is kept. To compute the uniformity we align the DOM paths of all
blocks. Node names, class- or id-attributes that differ are replaced by wildcards. A lower
number of wildcards indicates that the blocks are placed at similar positions in the page
templates and it is more likely that their visual representation is similar too. In the example
shown in Figure 84(3) the state that is joined with SP[2][o] is kept because its blocks are
more uniform.
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Figure 84. lllustration of the BlockCliqueFinder-algorithm [KENU12A]

New states that have reached the maximal level are added to the list of end states only if
the list does not contain an end state that represents a larger clique. If there are end states
that represent smaller cliques these end states are removed (lines 26-30). The algorithm
terminates if no other end states of at least the same clique size than the current end states
can be reached. The end state with the highest uniformity is then returned (line 06) if one or
more valid end states were generated. For the finding of all block graph cliques of SC* of
which the page is part of, SP has to be updated by removing all links that are bound by the
returned end state and the algorithm has to be executed again until no more end states can
be found.
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Algorithm 1: BlockCliqueFinder

Input: States (initial states), SP (target pages of blocks), SB (clique binding of blocks)

Output: ~ Maximal block graph clique

01: EndStates — new List; MaxEndScore — 0;
02: WHILE (States.count > 0)

03: NewStates — new List;

04: S — GetStateWithMaxScore(States);

05: IF (%5 S.pages[j] < MaxEndScore)

06: RETURN BestState(EndStates);

07: NextLevel = S.level+1;

08: States.remove(S);

09: IF (S.level < M - 1)

10: SN — S.copy();

11: SN.pages[NextLevel] — 0;

12: NewStates.add(SN)

13: FOR(all blocks k of page Pyextievel)

14: SN — new State;

15: FOR(all Pj)

16: SN.pages[j] — min(S.pages[j], SP[NextLevel][k][j]);
17: SN.binding[j] < max(S.binding [j], SB[NextLevell[kI[j]);
18: SN.level — NextlLevel

19: NewStates.add(SN);

20: FOR(all States SN in NewStates)

21: FOR(i = 0.M)

22: IF(SN.binding[i] > % SN.pages[j])

23: SN.pages[i] -« 0; i - 0;

24: IF (% SN.pages[j] > 2)

25: IF (SN.level < M-1) AddToStateList(States, SN);
26: ELSE IF (Z; SN.pages[j] = MaxEndScore)

27: EndStates.add(SN);

28: ELSE IF (Z; SN.pages[j] > MaxEndScore)

29: MaxEndScore — %j SN.pages[j];

30: EndStates — new List; EndStates.add(SN);
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