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Portfolio Optimization with Markov-modulated stock
prices and interest rates

Nicole Bäuerle and Ulrich Rieder

Abstract— A financial market with one bond and one stock is consid-
ered where the risk free interest rate, the appreciation rate of the stock
and the volatility of the stock depend on an external finite state Markov
chain. We investigate the problem of maximizing the expected utility from
terminal wealth and solve it by stochastic control methods for different
utility functions. Due to explicit solutions it is possible to compare the
value function of the problem to one where we have constant (average)
market data. The case of benchmark optimization is also considered.

Index Terms— Markov-modulation, stochastic control, verification the-
orem, utility maximization

I. I NTRODUCTION

The financial market considered in this paper is incomplete and
consists of one bond and one risky asset. The incompleteness of the
market is due to stochastic coefficients appearing in the price process
of the risky asset and the bond. More precisely we assume that the
interest rate of the bank account, the appreciation rate of the stock
and the volatility of the stock depend on an external continuous-
time, finite state Markov chainY . The state of the Markov chain
should represent the general market conditions (for a motivation
see e.g. [23]). Models with deterministic coefficients are only good
for a relative short period of time and cannot respond to changing
conditions. In this Markov-modulated setting we want to solve the
classical portfolio optimization problem where an investor wants
to maximize the expected utility from terminal wealth. As far as
the information is concerned, the investor has at the time point of
decision, we show that it makes no difference whether we assume
that the agent can only observe the stock price process or whether
he can observe the stock price and the market conditionY . This is
due to the fact that in a diffusion price process model the quadratic
variation and thus the volatility can be approximated arbitrarily well
by the price process (cf. [9]). Therefore it is in principle sufficient
to solve the optimization problem with complete observation. This
is done using stochastic control methods for a number of different
utility functions, namely for logarithmic utility, CRRA utility and for
benchmark optimization.

Motivated by the paper of Merton in 1971, there is a growing
literature dealing with portfolio optimization problems under different
aspects. Problems with stochastic volatility have for example been
investigated in [4], [21], [22] and [8] among others. Most of these
papers assume that the external process is a diffusion process itself,
like in the established volatility model of Heston (1993). To the
best of our knowledge the first paper to model the volatility as a
continuous-time Markov chain is [3]. As we will see this model has
the advantage that many portfolio problems can be solved explicitly
in contrast to the diffusion setting (compare for example [4], [8]).
Moreover, a diffusion process can be approximated arbitrarily closely
by a continuous-time Markov chain (see [16]). Portfolio optimization
with stochastic interest rates are e.g. treated in [17] and [14]. The
authors of [14] consider the Ho-Lee and the Vasicek model for the
interest rate which are both diffusion processes.

The solutions we obtain are found with the help of stochastic
control methods. More precisely by the use of a verification theorem.
For a comprehensive presentation of this theory the reader is referred
to [5] or [6] among others.

Our paper is organized as follows: in section II we present a precise
mathematical framework for our model and we shortly comment
on the case with incomplete information In section II-A we prove

a verification theorem which is useful for our portfolio problems.
In section II-B, and II-C we solve the investment problems with
logarithmic utility and CRRA utility. In these cases it turns out that
it is optimal to invest a constant fraction of the wealth in the stock,
depending on the current market conditionY . The value function
of these portfolio problems can be written in such a way that it is
easy to compare the stochastic coefficient problem to one where we
have constant (average) coefficients. The result of the comparison
depends on the utility function. Finally we investigate in section II-
D the benchmark optimization problem. In the case of deterministic
coefficients this model has been considered in [1] and in a more
general context by the paper [7]. In our setting we are only partly
able to solve the portfolio problem explicitly. A closed form solution
is derived when the discounted stock price process is a martingale. In
the general model some statements concerning asymptotic optimality
are shown.

II. T HE MODEL

We consider a financial market with one bond and one risky asset.
More precisely let(Ω,F , F = {Ft, 0 ≤ t ≤ T}, P ) be a filtered
probability space. We assume thatF = FT . T > 0 is a fixed time
horizon. The bond price processB = (Bt) evolves according to

dBt = r(Yt)Btdt (1)

and the stock price processS = (St) according to

dSt = µ(Yt)Stdt + σ(Yt)StdWt (2)

where W = (Wt) is a Brownian motion andY = (Yt) is a
continuous-time Markov chain with finite state spaceE and intensity
matrix Q = (qij)i,j∈E underP w.r.t. F. W and Y are assumed to
be independent. In what follows we suppose thatY is càgl̀ad and
that µ, r, σ : E → IR+ andµ(i) > r(i) > 0 for all i ∈ E.

Our model allows for random jumps of the interest rater, the
appreciation rateµ and volatility σ. These jumps can be due to
changes of external economic factors. Of course in most of the
established models the volatility or the interest rate is given by a
diffusion process, like for example in the Heston model (1993), the
Ho-Lee model (1986) or the Vasicek model (1977). However, in our
case the portfolio optimization problem is simpler to solve (compare
e.g. [8], [4]) and it is well-known that diffusion processes can be
approximated arbitrarily well by continuous-time Markov chains (see
e.g.[16]). Therefore, these standard models can be approximated by
our jump model.

The optimization problem is to find investment strategies that
maximize the expected utility from terminal wealth. In what follows
we denote byπt the fraction of wealth invested in the stock at time
t. The processπ = (πt) is called portfolio strategy. A portfolio
strategy is admissible, whenever

∫ T

0
π2

s ds < ∞ almost surely. By
Xπ = (Xπ

t ) we denote the corresponding wealth process. The self-
financing assumption gives us the following stochastic differential
equation for the wealth process

dXπ
t = Xπ

t πt
dSt

St
+ Xπ

t (1− πt)
dBt

Bt

= Xπ
t [r(Yt) + πt(µ(Yt)− r(Yt)) dt] + Xπ

t πtσ(Yt)dWt](3)

with Xπ
0 = x > 0 being the initial wealth. This linear stochastic

differential equation can be solved explicitly and the solution is given
by

Xπ
t = x · exp{

∫ t

0

r(Ys) + πs(µ(Ys)− r(Ys))−
1

2
σ(Ys)

2π2
sds

+

∫ t

0

σ(Ys)πsdWs}.
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Finally we are given a concave and increasing utility functionU :
(0,∞) → IR. Our aim is to solve the investment problem

sup
π

Ex[U(Xπ
T )]

where the supremum is taken over all admissible portfolio strategies
andEx is the conditional expectation, givenXπ

0 = x.
A crucial question always concerns the information which is

available at decision time points. It seems to be natural to consider a
market where the agents are able to observe the stock price process
S only. This situation is referred to aspartial observation. The
case of complete informationis given, when agents can observe
the Brownian motionW as well as the driving processY for
the market data. However, the stock price process contains enough
information to filter the evolution ofW andY from it. This is due
to the fact that the quadratic variation of the stock price process
< S, S >t=

∫ t

0
S2

τσ2(Yτ )dτ , can be observed and thus in case
σ(·) is bijective, alsoY (for more details the reader is referred to
Pham/Quenez (2001)). Hence, the case of partial observation can be
reduced to the case of complete information and we assume now that
the agent knows upon the time pointt the evolution ofW and Y
until time t. Or, what is equivalent, at timet he knows his current
wealth and the state ofYt. Hence we assume that the filtrationF
is generated byW and Y , i.e. Ft = σ(Ws, Ys, s ≤ t). The set of
admissible strategies over the planning period[t, T ] is given by

A(t, F) := {π : [t, T ] → IR | π is F− adapted,∫ T

t

π2
s ds < ∞ a.s.}.

Note thatπt is not restricted to the interval[0, 1]. πt < 0 means that
the stock is sold short andπt > 1 means that money is borrowed
from the bank at the interest rater(Yt). By Et,x,i we denote the
conditional expectation, givenXt = x andYt = i. The optimization
problem is now

sup
π∈A(0,F)

E0,x,i[U(Xπ
T )].

We are going to solve this problem via stochastic control. As usual
it is convenient to denote by

V (t, x, i) := sup
π∈A(t,F)

Et,x,i[U(Xπ
T )]

the value function of the investment problem over time horizon[t, T ].
The key equation to solve the problem is the so-called Hamilton-
Jacobi-Bellman (HJB) equation. It reads in this case

sup
u∈IR

{
Vt + x[r(i) + u(µ(i)− r(i))]Vx +

1

2
x2u2σ2(i)Vxx

+
∑
j∈E

qij [V (t, x, j)− V (t, x, i)]
}

= 0 (4)

with the boundary conditionV (T, x, i) = U(x). In what follows we
will abbreviate the term appearing in brackets byGuV (t, x, i). In the
next section we will see how to obtain a solution of the optimization
problem with the help of the HJB equation.

Remark 1: In principle we could restrict to the case where only
the interest rate and the volatility depends onY . There is no extra
generality in allowing the appreciation rate to depend onY also. This
can be seen as follows: suppose(π∗t ) is the optimal strategy for the
portfolio problem with wealth process(Xπ

t ), given by

dXπ
t = Xπ

t [r(Yt) + πt(µ̃− r(Yt))] dt + Xπ
t πtσ̃(Yt)dWt

whereσ̃(i) = µ̃−r(i)
µ(i)−r(i)

σ(i). Thenπ∗∗ = (π∗∗t ) with

π∗∗t =
µ̃− r(Yt)

µ(Yt)− r(Yt)
π∗t

is obviously optimal for the portfolio problem with wealth process
given by

dXπ
t = Xπ

t [r(Yt) + πt(µ(Yt)− r(Yt))] dt + Xπ
t πtσ(Yt)dWt.

A. A Verification Theorem

In our model a solution of the HJB-equation (4) gives us indeed the
optimal value functionV (t, x, i) and the optimal portfolio strategy
π∗ = (π∗t ). This is not true for general stochastic control problems.
In order to formulate the Verification Theorem properly we suppose
that admissible portfolio strategies take values in a compact set
[−M, M ], M ∈ IR+. We will later see that this assumption is no
restriction for our applications. More precisely it holds

Theorem 1:SupposeG ∈ C1,2 is a solution of the HJB-equation
and |G(t, x, i)| ≤ K(1+ |x|k) for constantsK > 0 andk ∈ IN and
for all i ∈ E and0 ≤ t ≤ T . Then

a) G(t, x, i) ≥ V (t, x, i) for all 0 ≤ t ≤ T , x ∈ IR+ and i ∈ E.
b) If π∗ = (π∗t ) is a maximizer of the HJB-equation, i.e.π∗s

maximizes

u 7→ GuG(s, X∗
s , Ys)

for all s ∈ [t, T ], where X∗, π∗ and Y solve (3) then
G(t, x, i) = V (t, x, i) = Vπ∗(t, x, i) for all x ∈ IR+, i ∈ E. In
particular,π∗ is an optimal portfolio strategy.
Proof: Let π ∈ A(t, F) be an arbitrary portfolio strategy

and Xπ the corresponding wealth process. Applying Ito’s Lemma
for semimartingales (see e.g. Jacod/Shiryaev (1987) Theorem 4.57)
yields

G(T, Xπ
T , YT ) =

= G(t, x, i) +

∫ T

t

[
Gt(s, X

π
s , Ys)

+ Gx(s, Xπ
s , Ys)X

π
s (r(Ys) + πs(µ(Ys)− r(Ys)))

+
1

2
Gxx(s, Xπ

s , Ys)(X
π
s πsσ(Ys))

2

]
ds

+

∫ T

t

Gx(s, Xπ
s , Ys)X

π
s πsσ(Ys)dWs

+
∑

t≤s<T

[G(s, Xπ
s , Ys+)−G(s, Xπ

s , Ys)]

Let us denote byq0 the jump measure ofY and byTn the successive
jump time points. Then

q0([0, t]× {j}) =
∑
n∈IN

I[YTn+=j,Tn≤t].

The compensator ofq0 is given by

ν([0, t]× {j}) =

∫ t

0

∑
i6=j

qijI[Ys=i] ds.

Hence, we have∑
t≤s<T

[G(s, Xπ
s , Ys+)−G(s, Xπ

s , Ys)] =

=

∫ T

t

∑
j∈E

[G(s, Xπ
s , j)−G(s, Xπ

s , Ys)] (q0 − ν)(ds, j)

+

∫ T

t

∑
j∈E

[G(s, Xπ
s , j)−G(s, Xπ

s , Ys)] qYsjds
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SinceG satisfies the HJB equation we obtain

G(T, Xπ
T , YT ) ≤ G(t, x, i)

+

∫ T

t

Gx(s, Xπ
s , Ys)X

π
s πsσ(Ys)dWs

+

∫ T

t

∑
j∈E

[G(s, Xπ
s , j)−G(s, Xπ

s , Ys)] (q0 − ν)(ds, j)

Next we take expectation on both sides. Note thatG(T, Xπ
T , YT ) =

U(Xπ
T ) due to the boundary condition. As in Fleming/Soner (1993)

Theorem IV.3.1, it follows that the expectation of the first integral
vanishes. Since

Et,x,i

 ∑
0<Ti≤T

|G(Ti, X
π
Ti

, YTi)|

 < ∞

due to the growth condition onG, it follows with Theorem 26.12
in Davis (1993) that the second integral is a martingale and thus
becomes zero under expectation. Hence, we obtain

Et,x,i[U(Xπ
T )] ≤ G(t, x, i).

Obviously if π∗ is a maximizer of the HJB equation we obtain
equality. This observation concludes the proof.

In the following sections we solve the portfolio problem for a
number of different utility functions.

B. Portfolio-Optimization with Logarithmic Utility

First we assume that the utility function is given byU(x) =
log(x). In this case it can be shown in a rather general setting that
the optimal portfolio strategy invests a constant fractionπ∗(t, x, i) =
µ(i)−r(i)

σ2(i)
of the wealth into the stock (see e.g. Goll/Kallsen (2000)).

We will prove this result via stochastic control and give several
representations of the value function which enable us in particular to
compare the Markov-modulated investment problem to the situation
with constant (average) volatility and constant (average) squared
market price of risk.

Theorem 2:In the case of logarithmic utility the optimal portfolio
strategy is given by

π∗(t, x, i) =
µ(i)− r(i)

σ2(i)

and the optimal value is given by

V (t, x, i) = log(x) + g(t, i)

whereg(t, i) is the unique solution of the following system of linear
differential equations

gt(t, i) + r(i) +
1

2

(
µ(i)− r(i)

σ(i)

)2

+
∑
j∈E

qij [g(t, j)− g(t, i)] = 0

with boundary conditiong(T, i) = 0 for i ∈ E.
Proof: Suppose a solutionG of the HJB-equation can be written

as G(t, x, i) = log(x) + g(t, i) with g(·, i) ∈ C1 for all i ∈ E.
Hence, we obtain

Gt=gt(t, i)

Gx=
1

x

Gxx=− 1

x2
.

Since the mappingx 7→ G(t, x, i) is concave, the maximizerπ∗ of
the HJB-equation is given by

π∗(t, x, i) = −µ(i)− r(i)

σ2(i)

Gx(t, x, i)

xGxx(t, x, i)
.

Inserting the derivatives andπ∗ in the HJB-equation leaves us with

gt(t, i) + r(i) +
1

2

(
µ(i)− r(i)

σ(i)

)2

+
∑
j∈E

qij [g(t, j)− g(t, i)] = 0

and boundary conditiong(T, i) = 0 for i ∈ E. It is well-known
that this system of differential equations has a unique solutiong. As
a result, our functiong satisfies the HJB equation,G ∈ C1,2 and
|G(t, x, i)| ≤ K(1 + |x|) for a suitable constantK. Sinceπ∗ is an
admissible portfolio strategy, the result follows from the Verification
Theorem 1 .

Remark 2: 1) In order to apply Theorem 1 we have to max-
imize over all portfolio strategies with values in[−M, M ].
However, for largeM the fractionπ∗(t, x, i) = µ(i)−r(i)

σ2(i)
∈

(−M, M). Thus,π∗ is also optimal when maximizing over all
portfolio strategies. This observation is also valid for the CRRA
utility.

2) In the model with known deterministic market coefficients
(rt), (µt), (σt) the solution of the portfolio problem is given
by

π∗(t, x) =
µt − rt

σ2
t

and

V (t, x) = log(x) +

∫ T

t

rs +
1

2

(
µs − rs

σs

)2

ds.

In order to investigate the influence of the Markov-modulation on
the value of the optimization problem, the following Feyman-Kac
type representation of the value function is more convenient.

Lemma 1:The functiong(t, i) appearing in the value function of
Theorem 2 can be written as

g(t, i) = Et,i

[∫ T

t

r(Ys) +
1

2

(
µ(Ys)− r(Ys)

σ(Ys)

)2

ds

]
.

Proof: Supposeg(t, i) solves the system of linear differential
equations given in Theorem 2. An application of Ito’s Lemma for
t < s ≤ T gives

g(T, YT ) = g(t, i)+

∫ T

t

gt(s, Ys)ds+
∑

t≤s<T

[g(s, Ys+)−g(s, Ys)].

Replacinggt(s, Ys) by

−r(Ys)−
1

2

(
µ(Ys)− r(Ys)

σ(Ys)

)2

−
∑
j∈E

qYsj [g(s, j)− g(s, Ys)]

and taking expectation yields

Et,i[g(T, YT )] = g(t, i)

− Et,i

[∫ T

t

r(Ys) +
1

2

(
µ(Ys)− r(Ys)

σ(Ys)

)2

ds

]
.

Sinceg(T, YT ) = 0 the statement follows.
Suppose now that the Markov chainY has a unique stationary

distributionp = (pj , j ∈ E). Let

r̄ :=
∑
j∈E

pjr(j) and R̄2 :=
∑
j∈E

pj

(
µ(j)− r(j)

σ(j)

)2

be the average interest rate and the average squared market price
of risk. We want to compare the value function̄V (t, x) obtained
in the model with averaged datār and R̄2 with the value function
Ep[V (t, x, Y0)] in the Markov-modulated case withY0

d
= p. It is

easy to see that
Ep[V (t, x, Y0)] = V̄ (t, x).

This means that in the case of logarithmic utility it is sufficient to
know the averaged data in order to compute the value of the portfolio
problem.
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C. Portfolio-Optimization with CRRA Utility

Next we assume that the utility function is ofConstant Relative
Risk Aversion (CRRA), i.e. given byU(x) = 1

γ
xγ with 0 < γ < 1.

1 − γ is calledrisk aversion coefficient. This is another case where
the HJB equation can be solved explicitly in the classical setting.

Theorem 3:In the case of CRRA utility the optimal portfolio
strategy is given by

π∗(t, x, i) =
1

1− γ
· µ(i)− r(i)

σ2(i)

and the optimal value is given by

V (t, x, i) =
1

γ
xγ · g(t, i)

whereg(t, i) is the unique solution of the following system of linear
differential equations

gt(t, i) + a(i)g(t, i) +
∑
j∈E

qij [g(t, j)− g(t, i)] = 0 (5)

with boundary conditiong(T, i) = 1 and

a(i) = r(i)γ +
1

2

γ

1− γ

(
µ(i)− r(i)

σ(i)

)2

for i ∈ E.
Proof: Suppose a solutionG of the HJB equation can be written

as G(t, x, i) = 1
γ
xγg(t, i) with g(·, i) ∈ C1 for all i ∈ E. The

derivatives are then given by

Gt=
1

γ
xγgt(t, i)

Gx=xγ−1g(t, i)

Gxx=(γ − 1)xγ−2g(t, i).

If g ≥ 0, the mappingx 7→ G(t, x, i) is concave and the maximizer
π∗ of the HJB equation is given by

π∗(t, x, i) = −µ(i)− r(i)

σ2(i)

Gx(t, x, i)

xGxx(t, x, i)
.

Inserting the derivatives andπ∗ in the HJB equation gives

1

γ
gt(t, i) + g(t, i)

(
r(i) +

1

2(1− γ)

(
µ(i)− r(i)

σ(i)

)2
)

+
1

γ

∑
j∈E

qij [g(t, j)− g(t, i)] = 0

and boundary conditiong(T, i) = 1 for i ∈ E. This differential
equation has a unique positive solutiong (see Lemma 2 below for the
fact thatg ≥ 0). ThereforeG ∈ C1,2 and |G(t, x, i)| ≤ K(1 + |x|)
and solves the HJB equation. Sinceπ∗ is an admissible portfolio
strategy, the result follows from Theorem 1.

Remark 3: In the model with known deterministic market coeffi-
cients (rt), (µt), (σt)the solution of the portfolio problem is given
by

π∗(t, x) =
1

1− γ
· µt − rt

σ2
t

and

V (t, x) =
1

γ
xγ · exp

{∫ T

t

γrs +
1

2

γ

1− γ

(
µs − rs

σs

)2

ds

}
.

In order to investigate the influence of the Markov-modulation on
the value of the investment problem, the following Feyman-Kac type
representation of the value function is more convenient.

Lemma 2:The functiong(t, i) appearing in the value function of
Theorem 3 can be written as

g(t, i) = Et,i

[
exp

{∫ T

t

a(Ys)ds

}]
wherea(·) is defined in Theorem 3.

Proof: Suppose first,g(t, i) solves the system of differential
equations (5). Using Ito’s Lemma we obtain in the same way as in
Lemma 1 that

g(t, i) = 1 + Et,i

[∫ T

t

g(s, Ys)a(Ys)ds

]
. (6)

Equation (6) has a unique solutiong(t, i). This can easily be proved
by contradiction.

Now consider the function

g̃(t, i) = Et,i

[
exp

{∫ T

t

a(Ys)ds

}]
.

It holds that

1 + Et,i

[∫ T

t

g̃(τ, Yτ )a(Yτ )dτ

]
=1 + Et,i

[∫ T

t

E

[
exp

{∫ T

τ

a(Ys)ds

}
| Fτ

]
a(Yτ )dτ

]
=1 + Et,i

[∫ T

t

exp

{∫ T

τ

a(Ys)ds

}
a(Yτ )dτ

]
=Et,i

[
exp

{∫ T

t

a(Ys)ds

}]
= g̃(t, i).

Due to the uniqueness we haveg = g̃ and the statement follows.
Suppose now that the Markov chainY has a unique stationary

distributionp = (pj , j ∈ E) and let

r̄ :=
∑
j∈E

pjr(j) and R̄2 :=
∑
j∈E

pj

(
µ(j)− r(j)

σ(j)

)2

be the average interest rate and the average squared market price
of risk. We want to compare the value function̄V (t, x) obtained
in the model with averaged datār and R̄2 with the value function
Ep[V (t, x, Y0)] in the Markov-modulated case withY0

d
= p. Using

Jensen’s inequality

Ep[V (t, x, Y0)] =
1

γ
xγ ·

E

[
exp

{∫ T

t

γr(Ys) +
1

2

γ

1− γ

(
µ(Ys)− r(Ys)

σ(Ys)

)2

ds

}]

≥ 1

γ
xγ · exp

{
(T − t)r̄γ +

1

2

γ

1− γ
R̄2(T − t)

}
= V̄ (t, x)

Thus, the expected utility in the Markov-modulated case is larger
which means that an agent can take advantage of a changing volatility.

D. Benchmark-Optimization

We suppose now that the utility function is given by

U(x) =

{
1, if x ≥ b
0, if x < b

for some fixedb ∈ IR+. This means that we want to maximize the
probability that our terminal wealth exceeds the goalb. Situations
like this arise for example in the context of professional portfolio
management where an agent’s portfolio performance is solely mea-
sured by a certain benchmark. Mathematically this problem is more
demanding. In his paper of 1999, Browne has solved this problem
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for deterministic market date. The optimal (total) amount of money
which has to be invested in the stock at timet ∈ [0, T ] is given by

f∗t =
σ−1

t θt√∫ T

t
θ2

s ds
bB(t, T )φ

(
Φ−1

(
X∗

t

bB(t, T )

))

whereB(t, T ) = exp{−
∫ T

t
rsds}, θt = σ−1

t (µt − rt) and X∗ =
(X∗

t ) is the wealth process generated byf∗. Φ, φ are the cumulative
distribution function and density respectively of a standard normal
variate. The corresponding value function reads

V (t, x) = Φ

Φ−1

(
x

bB(t, T )

)
+

√∫ T

t

θ2
s ds

 .

In the case of stochastic market data we are only partly able to solve
this problem. We assume now thatr(·) ≡ r andµ(·) ≡ µ, i.e. only
volatility is Markov-modulated. Note that in contrast to the previous
sectionsft is now the total amount of money invested in the stock
at timet, i.e. we have the following relationft = πtX

f
t . (Xf

t − ft)
is then the amount of money invested in the bond at timet . Let us
first consider the following special investment strategyf̂ :

f̂t =
1

σ(Yt)
√

T − t
bB(t, T )φ

(
Φ−1

(
X̂t

bB(t, T )

))
. (7)

whereX̂ = (X̂t) is the wealth process under investment strategyf̂ .
Theorem 4:The wealth process under investment strategyf̂ de-

fined in (7) is for0 ≤ t < T given by

X̂t = bB(t, T )Φ

Wt +
∫ t

0
µ−r

σ(Ys)
ds +

√
T Φ−1

(
x

bB(0,T )

)
√

T − t

 .

(8)
The corresponding terminal wealth is given by

Et,x,i
[
U(X̂T )

]
=

Φ

(
Φ−1

(
x

bB(t, T )

)
+

1√
T − t

∫ T

t

µ− r

σ(Ys)
ds

)
.

Proof: Using Ito’s Lemma we show that̂X = (X̂t) defined
in (8) satisfies the following stochastic differential equation for the
wealth process

dX̂t=[rX̂t + f̂t(µ− r)] dt + f̂tσ(Yt) dWt

X̂0=x

on [0, T ). Since the solution of the stochastic differential equation is
unique, the representation of̂X follows. In order to simplify things
slightly we define

V̂t := X̂t(B(t, T )b)−1.

Using the product rule it is easy to see that it suffices to verify that
V̂ = (V̂t) solves the stochastic differential equation

dV̂t = (µ− r)(B(t, T )b)−1f̂t dt + (B(t, T )b)−1f̂tσ(Yt) dWt

=
µ− r

σ(Yt)
√

T − t
φ(Φ−1(V̂t)) dt

+
1√

T − t
φ(Φ−1(V̂t)) dWt (9)

V̂0 =
x

bB(0, T )

Denote nowθs = µ−r
σ(Ys)

. An application of Ito’s Lemma to the

Brownian motionW = (Wt), to the processZ = (Zt :=
∫ t

0
θs ds)

and to the function

g(w, z, t) := Φ
((

w + z +
√

T Φ−1
(
V̂0

))
(T − t)−

1
2

)

gives

dV̂t = gt dt + gw dWt + gzθt dt +
1

2
gww dt.

Inserting the derivatives implies (9) fort ∈ [0, T ). Since V̂t is
continuous and bounded on[0, T ] we havelimt→T V̂t = V̂T and
thus

P t,x,i(X̂T ≥ b) = P t,x,i( lim
t→T

X̂t ≥ b)

= P t,x,i

(
WT−t +

∫ T

t

θs ds +
√

T − t Φ−1

(
x

bB(t, T )

)
≥ 0

)
= P t,x,i

(
− WT−t√

T − t
≤ 1√

T − t

∫ T

t

θs ds + Φ−1

(
x

bB(t, T )

))
yields the result.

Theorem 5:If µ = r, the investment strategŷf given in (7) is
optimal for the benchmark optimization problem.

Proof: Let f be an arbitrary investment strategy. Forµ = r the
processV f

t = Xf
t (B(t, T )b)−1 for 0 ≤ t < T is given by

V f
t = V f

0 +

∫ t

0

(B(s, T )b)−1fsσ(Ys)dWs.

Since (V f
t ) is bounded,(V f

t ) is a martingale for any portfolio
strategyf . Thus, we obtain with the Tchebychev inequality

P 0,x,i(Xf
T ≥ b) = P 0,x,i(V f

T ≥ 1) ≤ x

bB(0, T )

and therefore
V (0, x, i) ≤ x

bB(0, T )
.

On the other hand, Theorem 4 shows that the upper bound is achieved
for µ = r under policyf̂ . This observation completes the proof.

Now suppose the intensity matrixQ of the Markov chainY is
multiplied by a constantc > 0. In this model we index all appearing
processes withc. We will investigate the two cases wherec → ∞
which means that the volatility changes rapidly andc → 0 which
means that the volatility remains the same for a long time. Once
again let us assume thatp = (pj , j ∈ E) is the unique stationary
distribution ofY . In these cases it is well-known that∫ t

0

1

σ(Y c
s )

ds ⇒ 1

σ̄
t for c →∞∫ t

0

1

σ(Y c
s )

ds ⇒ 1

σ(y0)
t for c → 0

whereσ̄−1 =
∑

i∈E piσ
−1(i), y0 is the initial stateY0 = y0 and⇒

denotes the usual weak convergence. Let us denote by

Vσ(t, x) = Φ

(
Φ−1

(
x

bB(t, T )

)
+
√

T − t
µ− r

σ

)
the value function of the benchmark optimization problem with
constant volatilityσ. Then we obtain with the properties of weak
convergence:

Corollary 1: For c → ∞ and c → 0, the investment strategŷf
defined in (7) is asymptotically optimal in the sense that

E0,x,i[U(X̂c
T )] → Vσ̄(0, x) for c →∞

E0,x,i[U(X̂c
T )] → Vσ(y0)(0, x) for c → 0

Remark 4: It follows from the results of Kulldorff (1993) that
the benchmark optimization problem is equivalent to maximizing the
terminal utility

U(x) =

{
x, if x ≤ b
b, if x ≥ b.

This seems to be a simpler function since it is in particular continu-
ous. However, we were not able to exploit this fact for our analysis.
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III. C ONCLUSION

Portfolio optimization with stochastic market data is more realistic
than standard models with constant coefficients. The formulation
of the market condition as a continuous-time Markov chain makes
the analysis simpler as in the case of a driving diffusion. For the
utility functions treated here, the maximal portfolio value can be
computed as a solution of a simple linear differential equation. More
complicated is the case of benchmark optimization. It remains open
whether a closed form solution can be derived in the general Markov-
modulated case.
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model with stochastic volatility, ”Finance & Stochastics, vol. 7, pp. 245-
262, 2003.

[5] W. H. Fleming and R. W. Rishel,Deterministic and stochastic optimal
control, Springer-Verlag, New York, 1975.

[6] W. H. Fleming and H. M. Soner,Controlled Markov processes and
viscosity solutions, Springer-Verlag, New York, 1993.
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