Portfolio Optimization with Markov-modulated stock a verification theorem which is useful for our portfolio problems.

prices and interest rates In section II-B, and 1I-C we solve the investment problems with
logarithmic utility and CRRA utility. In these cases it turns out that
Nicole Bauerle and Ulrich Rieder it is optimal to invest a constant fraction of the wealth in the stock,

depending on the current market conditidh The value function
Abstract—A financial market with one bond and one stock is consid- of these portfolio problems ce}n be V\.m.tten in such a way that it is
ered where the risk free interest rate, the appreciation rate of the stock €aSy to compare the stochastic coefficient problem to one where we
and the volatility of the stock depend on an external finite state Markov have constant (average) coefficients. The result of the comparison
chain. We investigate the problem of maximizing the expected utility from  depends on the utility function. Finally we investigate in section II-
terminal wealth and solve it by stochastic control methods for different b the benchmark optimization problem. In the case of deterministic

utility functions. Due to explicit solutions it is possible to compare the . . . . . .
value function of the problem to one where we have constant (average) coefficients this model has been considered in [1] and in a more

market data. The case of benchmark optimization is also considered. ~ general context by the paper [7]. In our setting we are only partly
) ) I able to solve the portfolio problem explicitly. A closed form solution
Index Terms— Markov-modulation, stochastic control, verification the-

orem, utility maximization is derived when the discounted stock price process is a martingale. In
the general model some statements concerning asymptotic optimality
are shown.
I. INTRODUCTION
The financial market considered in this paper is incomplete and Il. THE MODEL

consists of one bond and one risky asset. The incompleteness of thge ¢onsider a financial market with one bond and one risky asset.
market is due to stochastic coefficients appearing in the price procggs;q precisely let(Q2, F,§ = {F:,0 < t < T}, P) be a filtered
of the risky asset and the bond. More precisely we assume that H?Sbability space. W’e a’ssume thé‘t:_]-‘T__T >,0 e d time

interest rate of the bank account, the appreciation rate of the St%izon. The bond price proceds = (B;) evolves according to
and the volatility of the stock depend on an external continuous-

time, finite state Markov chaify’. The state of the Markov chain dB; = r(Y:)B:dt 1)
should represent the general market conditions (for a motivation . _ .
see e.g. [23]). Models with deterministic coefficients are only gogidqd the stock price process= (S:) according to

for a relative short period of time and cannot respond to changing dSy = u(Yy)Sedt + o (Ye)SedWy 2
conditions. In this Markov-modulated setting we want to solve the

classical portfolio optimization problem where an investor Want\ghereW = (W:) is a Brownian motion and’ = (1) is a

to maximize the expected utility from terminal wealth. As far aSontinuous-time Markov chain with finite state spacand intensity

the information is concerned, the investor has at the time point trix Q = (gi;)ijep UnderP w.rt §. W andy are assumed to

decision, we show that it makes no difference whether we assuﬁj‘ee independent. In what fOH_OWS W.e SUppose tl"rais cagid and

that the agent can only observe the stock price process or whet fp,r, 0 B — IRy and u(i) > r.(z) > 0 for al L€ E.

he can observe the stock price and the market condHtiofhis is ur _mc_)del allows for raanm Jumps of _the interest ratethe

due to the fact that in a diffusion price process model the quadraﬂBpreC'atlon rateu and VOlat'“.ty 0. These jumps can be due to

variation and thus the volatility can be approximated arbitrarily we hang_e s of extemal economic factors. .Of course n mc_;st of the
stablished models the volatility or the interest rate is given by a

h i f. . Theref itisi incipl ffici
by the price process (cf. [9]). Therefore it is in principle su ICIen?iﬁusion process, like for example in the Heston model (1993), the

to solve the optimization problem with complete observation. Th . .
is done using stochastic control methods for a number of differe P-Lee model (1986) or the Vasicek model (1977). However, in our

utility functions, namely for logarithmic utility, CRRA utility and for case the portfolio optimization problem is simpler to solve (compare

benchmark opt’imization ' e.g. [8], [4]) and it is well-known that diffusion processes can be
Motivated by the pap.er of Merton in 1971 there is a growinépprOXimated arbitrarily well by continuous-time Markov chains (see

literature dealing with portfolio optimization problems under differen -0[16]). Therefore, these standard models can be approximated by

aspects. Problems with stochastic volatility have for example bed rrj1ump Togﬂeli_ bl is to find i ¢ t strategies that
investigated in [4], [21], [22] and [8] among others. Most of these € optimization problem 1S 10 Tind investment strategies tha

papers assume that the external process is a diffusion process itgé?f),('m'ze the expected L.m“ty from termlnal weglth. In what follgws
like in the established volatility model of Heston (1993). To th&'® denote byr, the fracthn of wealth mvgsted In the stock at. tme
best of our knowledge the first paper to model the volatility as ta The processr = (m) Is callgd pQOrthI'O strategy A portfolio
continuous-time Markov chain is [3]. As we will see this model ha: tr:raltegy 'i admissible, whenevﬁT s d‘.s < oo almost surely. By
the advantage that many portfolio problems can be solved explici :_(Xt ) we de_note t_he correspondmg_wealth procgss._The S?If'
in contrast to the diffusion setting (compare for example [4], [8] fhancing assumption gives us the following stochastic differential
Moreover, a diffusion process can be approximated arbitrarily close 9“""“0” for the wealth process

by a continuous-time Markov chain (see [16]). Portfolio optimization ;= _ erthSz +XF(1— m)@
with stochastic interest rates are e.g. treated in [17] and [14]. The St B

authors of [14] consider the Ho-Lee and the Vasicek model for the = X[ [r(Ys) + me(u(Ys) — r(Y2)) dt] + X{ w0 (Ye)dWi)3)

interest rate which are both diffusion processes. with X5 = x > 0 being the initial wealth. This linear stochastic

The solutions we obtaln_ are found with the he_l!o O.f StOChaStbclf'ferential equation can be solved explicitly and the solution is given
control methods. More precisely by the use of a verification theorem,

For a comprehensive presentation of this theory the reader is referrgd ,

to [5] or [6] among others. XT . / v V) — (Vo)) — Lo (v2n2d
Our paper is organized as follows: in section Il we present a precise e eXp{, o r(¥e) 4 s (u(Ye) = r(¥s)) 20( o) msds

mathematical framework for our model and we shortly comment t

on the case with incomplete information In section II-A we prove + /0 o (Ys)msdWs}.



Finally we are given a concave and increasing utility functién is obviously optimal for the portfolio problem with wealth process
(0,00) — IR. Our aim is to solve the investment problem given by

sup E*[U(X7)] AXT = X7 [r(Ya) 4+ m(p(Ys) — r(Y2)] dt + X7 o (Ye)dW,.

where the supremum is taken over all admissible portfolio strategies
and E” is the conditional expectation, givek = x. o
A crucial question always concerns the information which i§- A Verification Theorem

available at decision time points. It seems to be natural to consider g, our model a solution of the HJB-equation (4) gives us indeed the
market where the agents are able to observe the stock price proggssna| value functionV (¢, z,4) and the optimal portfolio strategy

S only. This situation is referred to gsartial observation The . _ iy This is not true for general stochastic control problems.
case ofcomplete informatioris given, when agents can observgy orger to formulate the Verification Theorem properly we suppose

the Brownian motionW" as well as the driving proces¥” for 5t agmissible portfolio strategies take values in a compact set
the market data. However, the stock price process contains en01[|glM M], M € IR.. We will later see that this assumption is no
information to filter the evolution of¥” andY" from it. This is due astriction for our applications. More precisely it holds

to the fact that the quadratic variation of the stock price Processr aorem 1:Suppose’ € C'2 is a solution of the HIB-equation

_ [t g2.2 .
< S’.S == Jo 87°(Y-)dr, can be _observed and_thus n Cas%nd|G(t,x,i)\ < K(1+|z|®) for constantsk’ > 0 andk € IN and
o(-) is bijective, alsoY (for more details the reader is referred t rallicE and0 < t<T . Then
Pham/Quenez (2001)). Hence, the case of partial observation can%e - -
reduced to the case of complete information and we assume now thal G(t,z,4) > V(t,x,7) forall 0 <t < T,z € R+ andi € E.

the agent knows upon the time pointhe evolution of andy  b) If #* = (x}) is a maximizer of the HJB-equation, i.e

until time ¢. Or, what is equivalent, at time he knows his current maximizes

wealth and the state df;. Hence we assume that the filtratign u— GG(s, X7, Y5)

is generated by andY’, i.e. 7y = o(W,,Ys,s < t). The set of

admissible strategies over the planning peffiod’] is given by for all s € [t 7], where X*,=* and Y solve (3) then

. G(t,z,1) = V(t,z,i) = Va=(t,z,4) forallz € Ry,i € E. In

T particular,7* is an optimal portfolio strategy.
/ 72 ds < 00 a.s.}. Proof: Let 7 € A(t,§) be an arbitrary portfolio strategy

¢ and X™ the corresponding wealth process. Applying Ito’s Lemma
Note thatr; is not restricted to the intervd, 1]. = < 0 means that for semimartingales (see e.g. Jacod/Shiryaev (1987) Theorem 4.57)
the stock is sold short and; > 1 means that money is borrowedyields
from the bank at the interest rai€Y;). By E“*‘ we denote the

A(t,§) :={r: [t,T] — R | 7 is § — adapted,

conditional expectation, giveX; = xz andY; = . The optimization G(T,Xr7,Yr) =
problem is now ' ) T .
sup BT [U(XE)]. — G(t,a,0) + / [Gu(s, X7, Y)
TEA(0,3) S -
: . . . + Gals, X3, Vo) X3 (r(Ys) 4 ms (u(Ys) — 7(Y5)))
We are going to solve this problem via stochastic control. As usual 1
it is convenient to denote by + 5Gaa(s, X7, Ys)(XgﬂsU(Ys))Q} ds
V(t,z,i) = sup E"™'UX7 T
( ) TEA(F) ] + / Ga(s, X7, Ys) X meo (Ys)dWs

t

the value function of the investment problem over time horizof].

XTr Yé - >X;r7)/js
The key equation to solve the problem is the so-called Hamilton- + Z (G, X, Yor) = Gs )

Jacobi-Bellman (HJB) equation. It reads in this case tge<T
: ; . 1 59 o, Let us denote by, the jump measure df and byT;, the successive
sup{Vt + z[r(é) + u(p(@) —r@@))| Ve + Fu o (i) Vaa {ump time points. Then
u€lR
2 aalV(t2.9) - V(t,x,i)]} =0 4) 00([0,4] x {53) = D Tty =51 <0

JeE nelN
with the boundary conditio® (7', z,i) = U(z). In what follows we

will abbreviate the term appearing in bracketsdfV (¢, x, 7). In the The compensator ofo is given by

next section we will see how to obtain a solution of the optimization t
problem with the help of the HIB equation. v([0,t] x {5}) = / Z Gij Iy, —q ds.
Remark 1:In principle we could restrict to the case where only 0 izj

the interest rate and the volatility depends ¥in There is no extra
generality in allowing the appreciation rate to depend-oalso. This

can be seen as follows: suppadssg ) is the optimal strategy for the
portfolio problem with wealth processX; ), given by

Hence, we have

Z [G(s, XT,Ysy) — G(s, XT,Ys)] =

t<s<T
X7 = X[ [r(Ys i — r(Y2)] dt + X7 m65(Y2)dW, T
‘ t~[7“( 't) +me(fi — r(Ye))] dt + X{ 6 (Ye)dWy — / S (G(s, X7, 5) — G(s, XT,Y)] (g0 — v)(ds, 5)
whered (i) = #5050 (i). Thenm™ = (r;*) with ey
T
71':* _ //L - T(n) ﬂ_;k + / Z [G(57X;77.]) - G(57 X;: Yé)} qude
u(Ye) —r(Yt) It jem



SinceG satisfies the HIB equation we obtain Inserting the derivatives and* in the HIB-equation leaves us with
T, X7, Yr) < ; ) L1 (@) —r6)? . .
G( ,T T T) ) G(t7x77’) gt(t,l) +T(l) + 5 (L( )O'(’L) ( )) + Z qz][g(t7.]) - g(t>l)} =0
+ / Go(8, XTI, Y ) XTI ms0(Ys)dWs jeE
‘L and boundary conditio(7,i) = 0 for ¢« € E. It is well-known
+ / Z [G(s, XT,5) — G(s, X7, Y4)] (g0 — v)(ds, §) that this system of_dlfferer!tla}l equations has a unique solllglohs
a result, our functiory satisfies the HIB equatiot; € C*“ and

t jeE
’ |G(t,z,i)] < K(1+ |z|) for a suitable constank’. Sincer™ is an

Next we take expectation on both sides. Note fal’, X7, Y1) =  aqmissible portfolio strategy, the result follows from the Verification

U(XT) due to the boundary condition. As in Fleming/Soner (1993Pheorem 1. -
Theorem IV.3.1, it follows that the expectation of the first integral Remark 2: 1) In order to apply Theorem 1 we have to max-
vanishes. Since imize over all portfolio strategies with values iEH_—M,‘M].
» However, for largeM the fraction7* (¢, x,i) = % €
E"™T > |G(T, XE,, Y| | < oo (=M, M). Thus,=* is also optimal when maximizing over all
0<T;<T portfolio strategies. This observation is also valid for the CRRA
due to the growth condition od, it follows with Theorem 26.12 utility. _ o o
in Davis (1993) that the second integral is a martingale and thus?) In the model with known deterministic market coefficients
becomes zero under expectation. Hence, we obtain t()”)’ (1t), (o¢) the solution of the portfolio problem is given
. Yy
EYTNU(XT)] < G(t, 2,9). ot z) = P
’ - 2
Obviously if 7™ is a maximizer of the HJB equation we obtain ¢
equality. This observation concludes the proof. [ ] and )
In the following sections we solve the portfolio problem for a Vit z) = log(x) +/TT N 1 ps—rs ds
number of different utility functions. a ) o ’

In order to investigate the influence of the Markav-modulation on
the value of the optimization problem, the following Feyman-Kac
type representation of the value function is more convenient.

First we assume that the utility function is given By(z) = Lemma 1:The functiong(t,4) appearing in the value function of
log(z). In this case it can be shown in a rather general setting thetteorem 2 can be written as
the optimal portfolio strategy invests a constant fractidift, =, i) = T 2
% of the wealth into the stock (see e.g. Goll/Kallsen (2000)).  g(¢,i) = E* / r(Ys) + 1 (M) ds
We will prove this result via stochastic control and give several t 2 a(Ys) : ) )
representations of the value function which enable us in particular to P_roof: _Supp_oseg(t, i) solves the sy§ter_n of Ilnea,r ifferential
compare the Markov-modulated investment problem to the situati§Auations given in Theorem 2. An application of Ito's Lemma for
with constant (average) volatility and constant (average) squared =1 9\ves
market price of risk. . r

Theorem 2:In the case of logarithmic utility the optimal portfolio g(T, Yr) = g(t,7) +/t ge(s, Ys)ds + Z l9(s, Yor) —9(5, ¥o)).
strategy is given by tsest

B. Portfolio-Optimization with Logarithmic Utility

, . Replacin s,Ys) b
(i) — (i) placingg: (s, Ys) by

o) =) = g (ML) S o) - (s, )

2 o ;
JEE
and taking expectation yields
E"[g(T,Yr)] = g(t,4)

T (t, x, 1) =
and the optimal value is given by
V(t,x,1) = log(x) + g(t, )

whereg(t, 1) is the unique solution of the following system of linear

differential equations _ gt /TT(Y;) L1 <N(Ys) - r(Ys))2 ds:| .
. AN 2 t 2 U(YS)
. , 1 (@) —r(@) . .
g1(t: ) +7(i) + 2 ( o(i) ) + Z aisl9(t 7) = 9(t, 9)] = Sinceg(T, Yr) = 0 the statement follows. ]
ek Suppose now that the Markov chali has a unique stationary
with boundary conditiory(T,i) = 0 for ¢ € E. distributionp = (p;,j € E). Let
Proof: Suppose a solutio' of the HIB-equation can be written . N2
as G(t, i) = log(z) + g(t,i) with g(-,i) € C for all i € E. Fo= Y pr() and B2= g, (M)
Hence, we obtain iem ey o(9)
Gi=g:(t,1) be the average interest rate and the average squared market price
1 of risk. We want to compare the value functidn(¢, =) obtained
Gz:; in the model with averaged dataand R? with the value function
a _ 1 EP[V(t,z,Yp)] in the Markov-modulated case with, < p. It is
g2 easy to see that
Since the mapping: — G(t,z, 1) is concave, the maximizer* of EP[V(t,2,Y0)] = V(t, ).
the HJB-equation is given by This means that in the case of logarithmic utility it is sufficient to
(i) = p(@) —r(i) Ga(t,z,i) know the averaged data in order to compute the value of the portfolio

02(i)  #Gauu(t,®,i) problem.



C. Portfolio-Optimization with CRRA Utility Lemma 2:The functiong(t,7) appearing in the value function of

Next we assume that the utility function is Gonstant Relative Theorem 3 can be written as

Risk Aversion (CRRAJ.e. given byU(z) = 127 with 0 < v < 1. ) £ T

1 — « is calledrisk aversion coefficie(nt')rhis Is another case where 9(ti) = E {GXP {/t a(YS)dSH

the HJB equation can be solved explicitly in the classical setting.
Theorem 3:In the case of CRRA utility the optimal portfolio wherea

strategy is given by

(+) is defined in Theorem 3.
Proof: Suppose firstg(t,7) solves the system of differential
equations (5). Using Ito’s Lemma we obtain in the same way as in
. ) 1 w(i) — r(i) Lemma 1 that
T (tyxyz)zl_,y‘ 02(i)

and the optimal value is given by

oty =1+ 8% [ [ gt vatriyas]. ©)

Equation (6) has a unique solutigtt, :). This can easily be proved
by contradiction.
Now consider the function

Vit i) = ~a7 - g(t,1)
Y

whereg(t, 7) is the unique solution of the following system of linear

. . . ) T
differential equations Gt 1) = B {exp {/ a(Ys)dsH .
t ];5 g ] It holds that
T
with boundary conditiory(T,7) = 1 and 14+ B [/ g(r, Yf)a(Yf)dr}
t
) , 1 7 u(i) — i)\’ T T T
o) =rv+57 ( o) =1+ B [/t E {exp {/ a(Ys)ds} | .7-"7} a(YT)dT}
forie E. _ b T T
Proof: Suppose a solutio@’ of the HIB equation can be written =l+E [_/t xp {_/T a(Ys)ds o a(Yr)dr
as G(t,x,i) = %m"g(t,i) with g(-,i) € C* for all i € E. The s T o
derivatives are then given by =E" {exp {/t a(Ys)dSH =g(t,9).
Gt:lx”gt(t, i) Due to the uniqueness we haye= g and the statement followsm
v L Suppose now that the Markov chali has a unique stationary
Go=x"""g(t,1) distributionp = (p;,j € E) and let
Goa=(y = D" ?g(t,1). NN
. ) and B = N0 —.T(J))
If g > 0, the mappingr — G(t, z,) is concave and the maximizer " ijr(j) ij ( a(j)

j€EE j€EE
=™ of the HIB equation is given by ! ) ! ]
be the average interest rate and the average squared market price

7t i) = _ i) —r(@) Gt z,d) of risk. We want to compare the value functid(t,z) obtained
02(i)  2Gea(t,z,1) in the model with averaged dataand R> with the value function
. . d .
Inserting the derivatives and* in the HJB equation gives EP[V(t,z,Yp)] in the Markov-modulated case witth = p. Using
Jensen’s inequality
1 , . : 1 p(i) —r()\* 1
Vgt(t,l) +g(t,1) (T(Z) + 2(1—7) ( () EP[V(t,z,Yo)] = ;;ﬂ.
1 . . T 2
+ = > aislg(t,5) — g(t, )] = 0 B / vy 4 Lo (me) —r(Ys)
v expy | 7 ( s)+21_7 (V%) ds
and boundary conditiog(7,7) = 1 for ¢ € E. This differential > 1 5 T )5 1 v R\ —vau
eqguation has a unique positive solutigiisee Lemma 2 below for the - 'yx exp | ( )T+ 21—+ ( ) ()

fact thatg > 0). ThereforeG' € C*? and |G(t, z,i)| < K(1 + |z|)
and solves the HIB equation. Singé is an admissible portfolio
strategy, the result follows from Theorem 1. [ ]
Remark 3:1n the model with known deterministic market coeffi-
cients (1), (ut), (o+)the solution of the portfolio problem is given D. Benchmark-Optimization
by 1 7 We suppose now that the utility function is given by
t — Tt

(tyx) = ——
w () = o

Thus, the expected utility in the Markov-modulated case is larger
which means that an agent can take advantage of a changing volatility.

1,ifx>0b
U(‘L’):{o,ifx<b

- 5 for some fixedb € IR+. This means that we want to maximize the
V(t,z) = 1o - exp / rs + 17 <“5 - 7"5) ds S . probability that our terminal wealth exceeds the gbaSituations
v t 21—n Os like this arise for example in the context of professional portfolio
In order to investigate the influence of the Markov-modulation Oﬁ]anagement where an agent's portfo“o performance is So|e|y mea-
the value of the investment problem, the following Feyman-Kac typgired by a certain benchmark. Mathematically this problem is more
representation of the value function is more convenient. demanding. In his paper of 1999, Browne has solved this problem

and



for deterministic market date. The optimal (total) amount of monegives

which has to be invested in the stock at tite [0, 7] is given by dVi = gi dt + guw AWy + -0, dt + %gww dt.
* 0;10t —1 X/ . L L . N
fi = —=—=0bB(t,T)¢ | P Y= Inserting the derivatives implies (9) far € [0,T). Since V; is
T bB(t,T) ; , . >INee
J, 02 ds continuous and bounded dn, 7] we havelim;_r V; = V¢ and

thus
where B(t,T) = exp{— ftT rsds}, 0y = oy ' (ue — ) and X* =

(X7) is the wealth process generated By @, ¢ are the cumulative ~ P*™*(Xr > b) = P"**(lim X; > b)

distribution function and density respectively of a standard normal _ T =t
variate. The corresponding value function reads = phor (WT,,S + / O ds+T —td~" (%) > O)
Jt )
T T
_ -1 T ) _ ptai(_ Wy < 1 0. d +¢)71< x ))
Vit,z)=2 | D (7bB(t,T)> + /t 02ds | . ( VT =t~ VT =1/, 5 bB(t,T)
ds the result. ]

. iel
In the case of stochastic market data we are only partly able to soYvel.heorem 5:0f 4 = r, the investment strategy given in (7) is

this problem. We assume now thett) = r andu() = p, Le. only ot the henchmark optimization problem,

Loty oy OBl Note WL ot 1 10 LU proot Lt e an ey vesiment sty o 1 e
+ f_ ~f _1 . L
. i ) . rocessVy = X/ (B(t,T)b for0<t¢t< T isgivenb

at timet, i.e. we have the following relatioffy = . X/. (X} — f,) ¢ i (B 1)) = g y

is then the amount of money invested in the bond at tmé.et us f f /'t 1

) . : L - Vi =V B(s,T)b o (Ys)dWs.

first consider the following special investment stratggy ¢ 0 +, o (B(s,T)b) " fsor(¥)
R 1 . X, Since (V,/) is bounded,(V,/) is a martingale for any portfolio
fe= a()@)\/ﬁbB(t’ e (@ bB(t,T) : strategyf. Thus, we obtain with the Tchebychev inequality

. . . 0,2,i (v f _ pOzigy f T
where X = (X;) is the wealth process under investment stratégy PP (Xp 2b) =P (Vp 21) < bB(0,T)

Theorem 4:The wealth process under investment stratggge- and therefore

fined in (7) is for0 < t < T given by V(0,2,4) < T
. 1 . Y = bB(0,T)
) Wit [y 4575 ds + VT 07" (855 ) o
X; =bB(t,T)® ° ’ . On the other hand, Theorem 4 shows that the upper bound is achieved
T—t for = r under policy f. This observation completes the prooll
(8) Now suppose the intensity matrig of the Markov chainY is
The corresponding terminal wealth is given by multiplied by a constant > 0. In this model we index all appearing

processes witle. We will investigate the two cases whete— oo

t,z,i % _
E [U(XT)] - which means that the volatility changes rapidly and- 0 which

1 T 1 T w—r means that the volatility remains the same for a long time. Once
bB(t,T) T—1), oYs) again let us assume that= (p;,j € E) is the unique stationary
Proof: Using Ito’s Lemma we show thak = (j(t) defined distribution of Y. In these cases it is well-known that
in (8) satisfies the following stochastic differential equation for the L d 1 f
wealth process | o(ye) T Gt lore—eo
dX,=[rX: + fi(p — )] dt + fro(Y2) dW, 't
! rXe + flp =)} dt + fro (V1) ! / ! ds = ! t forc—0
Xo=x o o(Yy) a(yo)

on [0, 7). Since the solution of the stochastic differential equation wheres " = 3., pio " (i), yo is the initial stateYy = yo and=-
unique, the representation of follows. In order to simplify things denotes the usual weak convergence. Let us denote by

slightly we define 1 T w—r
Vg(t7$)—®(<b (W>+\/T—t pn )

g%e value function of the benchmark optimization problem with
constant volatilityo. Then we obtain with the properties of weak

Vi := Xy (B(t, T)b) .

Using the product rule it is easy to see that it suffices to verify th
V = (V;) solves the stochastic differential equation

convergence:
dVi = (u —r)(B(t, T)b) " fi dt + (B(t, T)b) " fro(Y2) dW; Corollary 1: For ¢ — oo andc¢ — 0, the investment strategy
_ G(y/t) 77:7 tqﬁ(@*l(Vt)) dt defined in (7) is a§ymp}otlcally optimal in the sense that
tl E"" ' U(X$)] — Vz(0,) forc — oo
—1 i
T ) EYU(X5)] = V() (0,2) for c— 0
Vo = i Remark 4:1t follows from the results of Kulldorff (1993) that
bB(0,T) the benchmark optimization problem is equivalent to maximizing the
Denote nowf. — 2= An applicati ) terminal utility
s = 2 pplication of Ito’s Lemma to the o itz <b
Brownian motionW = (W,), to the processZ = (Z; := [, 0. ds) Uz) = {b: it 2> b,

and to the function ) ) ) ] o ] )
This seems to be a simpler function since it is in particular continu-

— > _1
g(w,2,t) =@ ((w +z+VT ! <Vo)) (T —1) 2) ous. However, we were not able to exploit this fact for our analysis.



I1l. CONCLUSION

Portfolio optimization with stochastic market data is more realistic
than standard models with constant coefficients. The formulation
of the market condition as a continuous-time Markov chain makes
the analysis simpler as in the case of a driving diffusion. For the
utility functions treated here, the maximal portfolio value can be
computed as a solution of a simple linear differential equation. More
complicated is the case of benchmark optimization. It remains open
whether a closed form solution can be derived in the general Markov-
modulated case.
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