
TRADITIONAL VERSUS NON-TRADITIONAL REINSURANCE IN
A DYNAMIC SETTING

Nicole Bäuerle
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Abstract
We consider a stochastic risk reserve process whose risk exposure can be controlled dy-
namically by applying proportional reinsurance and by issuing CAT Bonds. The CAT
Bond payments are only partly correlated with the insurers losses. The aim is to mini-
mize the probability of ruin. Using a two-dimensional diffusion approximation we obtain a
controlled diffusion problem which can be solved explicitly with the help of the HJB equa-
tion. We present some numerical results and discuss to which extend the proportional
reinsurance can be replaced by issuing CAT Bonds.
Key words: Optimal control, Hamilton-Jacobi-Bellman equation, diffusion approximation,
proportional reinsurance, Catastrophe bonds.

1 Introduction

In recent years there has been discussions about strategies to transfer part of the insurance
risk to the financial market. This idea has mainly been motivated by the hope to open
new capacity for the reinsurance market. In our paper we pick a specific new product
and investigate whether or not it is suitable to substitute a classical reinsurance product
like proportional reinsurance. The analysis is done in a dynamic setting. Nell/Richter
(2001) treat this question in a static demand theory environment. As in their paper we
focus our comments on a certain type of insurance securitization, namely the issuance of
Catastrophe Bonds (CAT Bonds).
A CAT Bond is a risk transfer instrument between the insurer and investor. The investor
provides a certain amount of money for which the insurance company offers a coupon
payment exceeding the risk-free rate at the end of the coverage period. However, this
coupon is only paid if a predefined trigger event does not occur. If the trigger event does
occur, then the coupon is not paid and sometimes even part of the invested money is
retained by the insurer (for details see Doherty (1997)). There are now different possi-
bilities to define the trigger event. It can be directly based on the insurers losses or on
exogeneous indices. The latter case will be treated in this paper. An exogeneous index
can for example be an industry loss index or a technical parameter like an earthquake’s
Richter scale reading or windstorm speed at a certain location. These trigger events if
choosen adequately are correlated with the insurers losses. But of course CAT Bonds do
not perfectly hedge the risk as traditional reinsurance does. There is still a so-called basis
risk. On the positive side, CAT Bonds are in general cheaper than classical reinsurance
products (see Froot/O’Connell (1999)).
In order to answer the question to which extend classical reinsurance can be substituted
by CAT Bonds, we consider a risk reserve process like in the classical Cramér Lundberg
model. We suppose that the management can dynamically control the risk exposure of
this process by a mixture of proportional reinsurance and the issuance of CAT Bonds. The



aim is to minimize the probability of ruin. There are a number of papers considering the
question of optimal reinsurance in a dynamic setting for traditional reinsurance contracts
and different target functions (among others Højgaard/Taksar (1998), Asmussen et al.
(2000), Hipp/Vogt (2001), Schmidli (2001, 2002a,b)). In order to obtain simple structural
results for the optimal risk management mix we work with the diffusion approximation of
this model. This has already been done in Højgaard/Taksar (1998). Besides these papers
there is a growing interest in models with combined reinsurance and investment decisions
and in models where the adjustment coefficient is optimized (see for example Schmidli
(2002a,b)).
The paper is organized as follows: in Section 2 we introduce our model. Section 3 explains
the diffusion approximation that is suitable for our setting and the controlled diffusion
problem is the subject of Section 4. With the help of the HJB equation we can solve
this problem explicitly. For the analysis we have to distinguish the cases of perfect and
non-perfect correlation between losses and trigger variable. The case of perfect correlation
is not realistic in our model, but treated for the sake of completeness. In Section 5 we
briefly discuss the relation between the original model and the diffusion approximation.
Numerical results and conclusions are contained in Section 6.

2 The Model

We consider a dynamic evolution of the risk reserve of an insurance company like in
the Cramér-Lundberg model. This means we suppose that claims arrive according to a
Poisson-process (Nt) with intensity λ > 0 and that the claim sizes X1, X2, . . . form a
sequence of non-negative independent and identically distributed random variables. By m
we denote the expected claim size and by s2 the claim size variance. Since we will make
a diffusion approximation later we have to assume that both quantities are finite. The
premium income until time t ≥ 0 is given by (1 + η1)λmt, where η1 > 0 is the safety load
of the insurance company. The usual risk reserve is then defined by

Rt = x + (1 + η1)λmt−
Nt∑
i=1

Xi,

where x > 0 is the initial risk reserve. In what follows we denote by (Ft) the filtration
which is generated by (Nt) and the observable claims.
In order to control the risk reserve, there are two possible risk management tools available:
a traditional reinsurance which we suppose to be a proportional reinsurance and a non-
traditional way to hedge against risk via CAT Bonds. For the proportional reinsurance
we suppose that a proportion αt ∈ [0, 1] can be chosen dynamically over time and (αt)
has to be predictable w.r.t. (Ft). This means that the proportion has to be fixed at time
t− before we know whether or not a claim at time t arrives. If a claim X arrives the
insurance company has to pay αtX. The remaining part is covered by the reinsurer.
The premium rate for this reinsurance product is given by (1 + η2)λm(1 − αt) where
η2 is the safety load of the reinsurer. It is reasonable to assume that η2 > η1 because
otherwise there exists an arbitrage opportunity for the cedent by giving the whole risk to
the reinsurer. On the other hand the insurance company is also able to issue CAT Bonds.
We suppose that βt ≥ 0 gives the amount of issued CAT Bonds at time t ≥ 0. Again (βt)
has to be predictable w.r.t. (Ft). At claim arrival time points the insurance company will
receive an index-linked coverage of fixed size A > 0 per CAT Bond when an exogenous
trigger variable Y which is correlated with the claim size X, reaches a certain level ȳ. Let
Y1, Y2 . . . denote the sequence of trigger variables which we suppose to be independent
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and identically distributed. The dependence relation between the claim size Xn and the
trigger variable Yn is given by the following conditional probability

p(x) = P (Y ≥ ȳ | X = x).

It seems to be reasonable to assume that the function p(x) which maps the outcomes of
X into [0, 1] is increasing. We denote p := E[p(X)]. The cost rate for the CAT Bonds is
given by λAp(1 + η3) where η3 > 0 reflects the issuance costs.
When the management chooses a risk management mix π = (αt, βt), the controlled risk
reserve process (Rπ

t ) is given by

Rπ
t = x + (1 + η1)λmt− (1 + η2)λm

∫ t

0
(1− αs) ds− λAp(1 + η3)

∫ t

0
βs ds−

Nt∑
i=1

XiαTi + A
Nt∑
i=1

1[Yi≥ȳ]βTi

where T1, T2, . . . are the claim arrival time points. Introducing the abbreviations

θ := (η2 − η1)λm, c1 := (1 + η2)λm, c2 = λAp(1 + η3)

and

St :=
Nt∑
i=1

Xi, Ŝt := A
Nt∑
i=1

1[Yi≥ȳ]

we obtain
d Rπ

t = (−θ + c1αt − c2βt) dt− αt dSt + βt dŜt. (1)

In what follows we assume that c2 < c1, i.e. the proportional reinsurance is more expensive,
however is perfectly correlated with the losses. The survival probability is now defined by

ϕπ(x) = P (Rπ
t ≥ 0 for all t ≥ 0 | Rπ

0 = x).

The optimization problem is then to find the risk management mix (if it exists) which
maximizes the survival probability

ϕ(x) := sup
π=(αt,βt)

ϕπ(x). (2)

This piecewise deterministic control problem can be investigated in the same way as similar
problems treated e.g. by Schäl (1998) and by Schmidli (2001). However, problems of this
kind are quite hard and besides the existence of optimal solutions one gets only a few
structural results for the optimal policy. Since our aim is to discuss the relevance of CAT
Bonds we pursue a different way. We approximate the problem by a controlled diffusion
problem as has been done in Højgaard/Taksar (1998). In this setting we get rather simple
explicit solutions (see Section 4). In general it is not clear whether the obtained optimal
control of the diffusion problem also behaves well in the original model. This question has
been dealt with in Bäuerle (2003) for a model with dividend pay out and reinsurance. We
will shortly discuss this question in Section 5.

3 Diffusion Approximation in the uncontrolled model

We consider now the uncontrolled risk reserve process given by

d Rt = (−θ + c1 − c2) dt− dSt + dŜt.
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Obviously it holds that

E[St] = λmt, V ar[St] = λ(s2 + m2)t

and
E[Ŝt] = λApt, V ar[Ŝt] = λA2pt.

Thus, the following two processes are martingales with respect to the filtration (Ft) for
arbitrary γ > 0

Mγ
t :=

1
√

γ

Ntγ∑
i=1

Xi − λmγt

 M̂γ
t :=

1
√

γ

A

Ntγ∑
i=1

1[Yi≥ȳ] − λApγt

 .

Of course (Mγ
t ) and (M̂γ

t ) are not independent. Some easy calculations show

Cov(Mγ
t , M̂γ

t ) = σ1σ2ρt

with
σ1 :=

√
λ(m2 + s2), σ2 := A

√
λp, ρ :=

E[Xp(X)]√
p(m2 + s2)

. (3)

For the following theorem we denote by ” ⇒ ” weak convergence with respect to the
Skorohod topology (for definitions and properties see e.g. Whitt (2001), Ethier/Kurtz
(1986) or Billingsley (1968)). Our main result of this section is

Theorem 1: (2-dimensional Functional Central Limit Theorem)
For γ →∞ we obtain (Mγ

t , M̂γ
t ) ⇒ (σ1Bt, σ2B̂t), where (Bt) and (B̂t) are two correlated

standard Brownian motions with correlation coefficient ρ. The parameters σ1, σ2 and ρ
are given in (3).

Proof: The proof is similar to the one given in Whitt (2001) Theorem 4.3.5. However,
we have to be a little bit more careful here, since the sums contain a random number of
terms. The convergence of the one-dimensional marginals is well-known (see e.g. Grandell
(1977) or Harrison (1977)). Thus, the marginal processes are tight by Prohorov’s Theorem
(see e.g. Whitt (2001) Theorem 11.6.1). This implies the tightness of the two-dimensional
process (Mγ

t , M̂γ
t ) (see e.g. Whitt (2001) Theorem 11.6.7). Next, it is not difficult to see

that for arbitrary a, â ∈ IR it holds that

(aMγ
t + âM̂γ

t ) ⇒ (σ3Bt),

where
σ2

3 := λ(a
√

m2 + s2 + ρâA
√

p)2 + λâ2A2p(1− ρ2)

and ρ is given in (3). The limit equals in distribution a mixture of two correlated Brownian
motions. Namely,

(σ3Bt)
d= (aσ1Bt + âσ2B̂t)

where σ1, σ2 are as in (3) and the correlation between Bt and B̂t is ρ. Thus, the convergence
of all finite dimensional distributions of (Mγ

t , M̂γ
t ) follows with the Cramér-Wold device

(see Billingsley (1968) Th. 7.7). This, together with the tightness yields the result.

Remarks:

a) Observe that Cov(σ1Bt, σ2B̂t) = σ1σ2ρt = Cov(Mγ
t , M̂γ

t ).
b) Suppose (Bt) and (B̃t) are two independent standard Brownian motions. (B̂t) is in

distribution equal to (ρBt +
√

1− ρ2B̃t).
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Now we use Theorem 1 to obtain a diffusion approximation for our model. The data is
scaled as follows: the claim arrival intensity λ is replaced by λγ := λγ, the claim sizes X
by Xγ := 1√

γ X and the drift (−θ+c1−c2) by (−θ+c1−c2−λm+λAp)+λm
√

γ−λAp
√

γ.
Altogether we obtain

Rγ
t = x + (−θ + c1 − c2 − λm + λAp)t−Mγ

t + M̂γ
t .

Note that γ = 1 is our original model. γ →∞ yields (Rγ
t ) ⇒ (Rt), with

Rt = x + (−θ + c1 − λm− (c2 − λAp))t−
∫ t

0
σ1d Bs +

∫ t

0
σ2 dB̂s.

Introducing the abbreviations

µ̃ := c1 − λm, ν̃ := c2 − λAp,

the dynamics of the diffusion risk reserve is given by

dRt = (−θ + µ̃− ν̃) dt− σ1 dBt + σ2 dB̂t.

4 The Control Problem

In a next step we introduce the control again. Since we will investigate the diffusion prob-
lem in the rest of the paper, we reuse the notations of Section 2. By (Ft) we denote now
the filtration generated by (Bt) and (B̂t).

Admissible controls
An (Ft)-progressively measurable process (α̃t) with values in [0, 1] is an admissible control
for the proportional reinsurance. Analogously, an (Ft)-progressively measurable process
(β̃t) with values in IR+ is an admissible control for the number of issued CAT Bonds. An
admissible risk management mix is denoted by π̃ = (α̃t, β̃t). As we will see, it is more
convenient to use the following transformation:

αt := α̃tσ1, βt := β̃tσ2, µ :=
µ̃

σ1
, ν :=

ν̃

σ2
.

Therefore, the transformed admissible controls have to satisfy αt ∈ [0, σ1] and βt ≥ 0. As
before we denote π = (αt, βt).

Dynamics of the risk reserve process
The risk reserve under control π̃ = (α̃t, β̃t) is now given by the following stochastic differ-
ential equation

dRπ̃
t = (−θ + µ̃α̃t − ν̃β̃t) dt− α̃tσ1 dBt + β̃tσ2 dB̂t.

Rπ̃
0 = x

or in terms of the transformed control π = (αt, βt), the stochastic differential equation for
the risk process is simply

dRπ
t = (−θ + µαt − νβt) dt− αt dBt + βt dB̂t.

Rπ
0 = x.
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Objective function
The survival probability in this model is given by

ϕπ(x) = P (Rπ
t ≥ 0 for all t ≥ 0 | Rπ

0 = x)

when we use the control π. The aim is to find the risk management mix which maximizes
the survival probability over all admissible controls

ϕ(x) := sup
π

ϕπ(x). (4)

This problem has some similarities to the one investigated by Browne (1995). In contrast
to our model, however, Browne deals with only one control.

The HJB equation
We will now solve this control problem via the so-called Hamilton-Jacobi-Bellman (HJB)
equation. Note that the quadratic variation of the controlled risk reserve process is given
by (see e.g. Karatzas/Shreve (1988))

d < Rπ
t >= (α2

t − 2αtβtρ + β2
t ρ2 + β2

t (1− ρ2))dt = (α2
t + β2

t − 2αtβtρ)dt.

Thus, the Hamilton-Jacobi-Bellman equation of our problem reads

max
0≤α≤σ1

0≤β

{
fx[µα− θ − νβ] +

1
2
fxx[α2 + β2 − 2αβρ]

}
= 0. (5)

The standard solution procedure for the control problem is now as follows (for a back-
ground see Fleming/Rishel (1975) or Fleming/Soner (1993)). First we will show that there
exists a simple classical solution for the HJB equation, i.e. we have to show that there
exists a twice continuously differentiable function f and functions α∗ : IR+ → [0, σ1], β∗ :
IR+ → IR+ such that

0 = max
0≤α≤σ1

0≤β

{
fx(x)[µα− θ − νβ] +

1
2
fxx(x)[α2 + β2 − 2αβρ]

}
=

= fx(x)[µα∗(x)− θ − νβ∗(x)] +
1
2
fxx(x)[(α∗(x))2 + (β∗(x))2 − 2α∗(x)β∗(x)ρ].

α∗ and β∗ must be admissible feedback controls, i.e. the stochastic differential equation

dRπ∗
t = (−θ + µα∗(Rπ∗

t )− νβ∗(Rπ∗
t )) dt− α∗(Rπ∗

t ) dBt + β∗(Rπ∗
t ) dB̂t.

Rπ∗
0 = x

must have a unique solution. In a second step we will then verify that the solution of
the HJB equation solves our control problem, i.e. f(x) = ϕ(x) and π∗ = (α∗t , β

∗
t ) with

α∗t := α∗(Rπ∗
t ) and β∗t := β∗(Rπ∗

t ) is an optimal control for our problem.
In what follows we assume that µ > ν which reflects the fact that CAT Bonds are cheaper
than traditional reinsurance. Since we want to investigate in particular the influence of the
correlation ρ between the trigger variable and the insurers losses we have to distinguish
between the cases ρ < 1 and ρ = 1. Of course ρ = 1 is not realistic but gives some insight
into the mathematical problem.

4.1 The Case ρ < 1

Suppose that σ1µ > θ, otherwise it is easy to see that under every admissible control
ϕπ(x) = 0 due to the sample path behavior of the Brownian motion (see e.g. Karatzas/Shreve
(1988) Section 2.9). In a first step, we solve the HJB equation (5). In order to simplify
the expressions we introduce the following notations:
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d1 := µ2 + ν2 − 2νµρ ≥ 0, d2 := µ− ρν ≥ 0, d3 := µρ− ν

and

η̂ = η̂(θ) :=
σ1(µ− νρ)− θ +

√
(σ1(µ− νρ)− θ)2 + σ2

1(1− ρ2)ν2

σ2
1(1− ρ2)

≥ 0. (6)

Theorem 2: (Solution of the HJB equation)
A solution of the HJB equation is given by f(x) = 1−e−ηx and constant feedback controls
α∗(x) ≡ α∗, β∗(x) ≡ β∗, where we have to distinguish between the following cases:

a) ρ < ν
µ and θ < σ1µ

2 :

α∗ =
2θ

µ
, β∗ = 0, η =

µ2

2θ
.

b) ρ < ν
µ and θ ≥ σ1µ

2 :

α∗ = σ1, β∗ = 0, η = 2
µσ1 − θ

σ2
1

.

c) ρ ≥ ν
µ and θ < d1σ1

2d2
:

α∗ =
2θd2

d1
, β∗ =

2θd3

d1
, η =

d1

2θ(1− ρ2)
.

d) ρ ≥ ν
µ and d1σ1

2d2
≤ θ < σ1(µ− ν

2ρ):

α∗ = σ1, β∗ = σ1ρ−
ν

η
, η = η̂.

e) ρ ≥ ν
µ and θ ≥ σ1(µ− ν

2ρ):

α∗ = σ1, β∗ = 0, η = 2
µσ1 − θ

σ2
1

.

Proof: For each of the parameter cases we have to check that

[µα∗ − θ − νβ∗]− 1
2
η[(α∗)2 + (β∗)2 − 2α∗β∗ρ] = 0 (7)

and that α∗, β∗ are feasible and solve the quadratic programme

(QP )


1
2η[α2 + β2 − 2αβρ]− [µα− θ − νβ] → min
0 ≤ α ≤ σ1

0 ≤ β
(8)

Note that the target function is convex. Thus, this optimization problem can easily be
solved with the Lagrange multiplier technique. We will now consider the parameter cases
separately:

a) ρ < ν
µ and θ < σ1µ

2 :
Plugging in α∗, β∗ and η verifies (7). To solve the quadratic programme (QP) we
consider the corresponding Lagrange function

L(α, β, y1, y2, y3) :=
1
2
η[α2 +β2−2αβρ]− [µα−θ−νβ]−y1α+y2(α−σ1)−y3β. (9)

The point (α∗, β∗) is optimal, if we find multipliers y∗1, y
∗
2, y

∗
3 ≥ 0 such that the

following Karush-Kuhn Tucker conditions are satisfied:
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(i) ∂L
∂α (α∗, β∗, y∗1, y

∗
2, y

∗
3) = 0

(ii) ∂L
∂β (α∗, β∗, y∗1, y

∗
2, y

∗
3) = 0

(iii) y∗1α
∗ = 0, y∗2(α

∗ − σ1) = 0, y∗3β
∗ = 0

(iv) 0 ≤ α∗ ≤ σ1, β
∗ ≥ 0

It can readily be check that these equations are satisfied if we choose y∗1 = 0, y∗2 =
0, y∗3 = ν − µρ. Due to our assumption y∗3 ≥ 0 is obvious.

b) ρ < ν
µ and θ ≥ σ1µ

2 :
Note that η ≥ 0 since we assume σ1µ > θ. Plugging in α∗, β∗ and η verifies (7). In
order to solve the quadratic programme we have to choose the multipliers y∗1 = 0 and

y∗2 = µ− 2
µσ1 − θ

σ1
, y∗3 = ν − 2ρ

µσ1 − θ

σ1
.

y∗3 ≥ 0 is equivalent to νσ1 ≥ 2(µσ1−θ)ρ. Due to our assumption we have σ1µ−2θ ≤
0. Thus,

νσ1 ≥ σ1µρ ≥ σ1µρ + ρ(σ1µ− 2θ)

which implies the result. y∗2 ≥ 0 is equivalent to 2θ ≥ µσ1 and is hence satisfied.
c) ρ ≥ ν

µ and θ < d1σ1
2d2

:
After some algebra which is quite lengthy this time we can again verify (7) by inserting
the given expressions for α∗, β∗ and η. Since ρ ≥ ν

µ we have β∗ ≥ 0 and since θ < d1σ1
2d2

we have α∗ < σ1. This parameter setting contains the case where the optimal values
for α and β are in the interior of the set of admissible actions. Thus, we have to set
y∗1 = y∗2 = y∗3 = 0 and the Karush-Kuhn-Tucker conditions are satisfied.

d) ρ ≥ ν
µ and d1σ1

2d2
≤ θ < σ1(µ− ν

2ρ):
Plugging in α∗ and β∗ in (7) gives us

η2σ2
1(ρ

2 − 1) + 2η(µσ1 − νσ1ρ− θ) + ν2 = 0.

It is not difficult to see that η as given in (6) is the only positive zero of this equation.
The condition β∗ ≥ 0 equals σ1ρη̂ ≥ ν. Let us have a look at the mapping θ 7→ η̂(θ)
as defined in (6). η̂(θ) is decreasing in θ. It can be shown that σ1ρη̂(0) > ν and
σ1ρη̂(θ) → 0 for θ →∞. Thus, there exists a θ̂ with σ1ρη̂(θ̂) = ν. Some calculations
show that θ̂ is given by θ̂ = σ1(µ− ν

2ρ). Therefore we have β∗ ≥ 0, if θ ≤ σ1(µ− ν
2ρ).

As far as the optimization problem (8) is concerned we have to choose the multipliers
y∗1 = y∗3 = 0 and y∗2 = µ− ησ1(1− ρ2)− νρ. Now y∗2 ≥ 0 if and only if

η ≤ µ− νρ

σ1(1− ρ2)
=

σ1(µ− νρ)
σ2

1(1− ρ2)
.

Taking a look at the definition of η we see that this is equivalent to

θ2 ≥ (σ1(µ− νρ)− θ)2 + σ2
1(1− ρ2)ν2.

It is now possible to bring this inequality into the form

2θ(µ− νρ) ≥ σ1(µ2 + ν2 − 2νµρ)

which is satisfied by our assumption.
e) ρ ≥ ν

µ and θ ≥ σ1(µ− ν
2ρ):

The verification of (7) is again easy. In order to satisfy the Karush-Kuhn-Tucker
conditions we choose y∗1 = 0 and

y∗2 = µ− 2
µσ1 − θ

σ1
, y∗3 = ν − 2

µσ1 − θ

σ1
.
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The condition y∗2 ≥ 0 is equivalent to θ ≥ 1
2σ1µ which is satisfied since due to our

assumption θ ≥ θ̂ = 1
2σ1µ + 1

2σ1(µ− ν
ρ ) and µ− ν

ρ ≥ 0. Finally y∗3 ≥ 0 is the same as

θ ≥ θ̂ which completes the proof.

Remarks:

a) Note that all parameter cases are - at least in principle - possible. In particular it
holds that

d1σ1

2d2
< σ1(µ−

ν

2ρ
).

b) Schmidli (2001) has considered among others the diffusion control problem where only
proportional reinsurance is allowed. His results (Theorem 1 and Lemma 1) coincide
with our findings in case a) and b).

Theorem 3: (Verification Theorem)
It holds that ϕ(x) = f(x), where f is given in Theorem 2 and π∗ = (α∗t , β

∗
t ) with α∗t ≡ α∗

and β∗t ≡ β∗ gives the optimal mix of traditional and non-traditional reinsurance.

Proof: Note that f(x) = ϕα∗,β∗(x). Hence it suffices to show that f(x) ≥ ϕ(x). For the
moment we consider only reinsurance strategies with the further restriction that βt ≤ M
for all t and a large constant M ∈ IR. Obviously (β∗t ) satisfies this constraint if M is large
enough. Let now π = (αt, βt) be such an arbitrary reinsurance strategy. We have

dRπ
t = (−θ + µαt − νβt) dt− αt dBt + βt dB̂t.

The ruin time under this control is given by

τπ := inf{t ≥ 0 | Rπ
t = 0}.

Using Itô’s formula with f ∈ C2 we obtain

f(Rπ
t∧τπ) = f(x) +

∫ t∧τπ

0

[
(−θ + µαs − νβs)f ′(Rπ

s ) +
1
2
(α2

s + β2
s − 2αsβsρ)f ′′(Rπ

s )
]

ds

−
∫ t∧τπ

0
f ′(Rπ

s )αs dBs +
∫ t∧τπ

0
f ′(Rπ

s )βs dB̂s

≤ f(x)−
∫ t∧τπ

0
f ′(Rπ

s )αs dBs +
∫ t∧τπ

0
f ′(Rπ

s )βs dB̂s

where the last inequality follows from the HJB equation (5). Since |f ′(x)| ≤ η and
αs ∈ [0, σ1], βs ∈ [0,M ] are bounded the last two stochastic integrals on the right-
hand side are martingales. Taking expectation on both sides yields E[f(Rπ

t∧τπ)] ≤ f(x).
Moreover, it holds that

E[f(Rπ
t∧τπ)] = E[f(Rπ

t∧τπ) | t < τπ]P (t < τπ) + E[f(Rπ
t∧τπ) | t ≥ τπ]P (t ≥ τπ)

= E[f(Rπ
t ) | t < τπ]P (t < τπ)

since f(0) = 0. The sample paths Rπ
t show the following behavior: either τπ < ∞ or

Rπ
t → ∞ for t → ∞. Thus, for t → ∞ the left hand side converges to ϕπ(x). Taking the

supremum over all bounded strategies π yields supπ bounded ϕπ(x) ≤ f(x) Since β∗ < M
for M large we do not obtain a better value if we allow β∗ to be unbounded. Thus, the
inequality holds for all admissible strategies and we obtain ϕ(x) ≤ f(x).
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4.2 The Case ρ = 1

Unfortunately the case ρ = 1 is not a special case of the previous section. We have to
consider it separately. The trigger variable for the index-linked payments is here perfectly
correlated with the insurers losses. The differential equation for the risk reserve process is
then given by

dRπ
t = (−θ + µαt − νβt) dt + (βt − αt) dBt.

In order to get a non-trivial problem we assume that (µ − ν)σ1 < θ < σ1µ. If θ ≥ σ1µ
it follows that ϕ(x) = 0, i.e. the survival probability is zero for all admissible controls. If
θ < (µ − ν)σ1 we obtain ϕ(x) = 1 by setting α∗ ≡ σ1 and β∗ ≡ σ1. This case inherits
an arbitrage opportunity: the whole risk can be eliminated by cheaper CAT Bonds. The
HJB-equation of this problem reads

max
0≤α≤σ1

0≤β

{
fx[µα− θ − νβ] +

1
2
fxx[α− β]2

}
= 0 (10)

We proceed in the same way as before. To ease notation we define

d4 := σ1(ν − µ) + θ.

The solution of the HJB equation is given by

Theorem 4: (Solution of the HJB equation)
A solution of the HJB equation is given by f(x) = 1−e−ηx and constant feedback controls
α∗(x) ≡ α∗, β∗(x) ≡ β∗, where we have to distinguish between the following cases:

a) θ < σ1(µ− 1
2ν):

α∗ = σ1, β∗ = σ1 −
2d4

ν
, η =

ν2

2d4
.

b) θ ≥ σ1(µ− 1
2ν):

α∗ = σ1, β∗ = 0, η = 2
µσ1 − θ

σ2
1

.

Proof: The technique of the proof is the same as for Theorem 2. For each of the parameter
cases we have to check that

[µα∗ − θ − νβ∗]− 1
2
η[(α∗ − β∗)2] = 0 (11)

and that α∗, β∗ is a minimum point of the quadratic programme

(QP )


1
2η[α− β]2 − [µα− θ − νβ] → min
0 ≤ α ≤ σ1

0 ≤ β
(12)

We consider the two parameter cases separately:

a) θ < σ1(µ− 1
2ν):

Plugging in α∗, β∗ and η in (11) verifies the first statement. Note that β∗ ≥ 0 is
equivalent to θ ≤ σ1(µ− 1

2ν). The Lagrange function of the quadratic programme is
given by

L(α, β, y1, y2, y3) :=
1
2
η[α− β]2 − [µα− θ − νβ]− y1α + y2(α− σ1)− y3β.

As Lagrange multipliers we have to choose y∗1 = 0, y∗3 = 0 and y∗2 = µ− ν ≥ 0.
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b) θ ≥ σ1(µ− 1
2ν):

Again, inserting α∗, β∗ and η in (11) verifies the first statement. The minimization
problem (12) is solved by α∗, β∗ and the Lagrange multipliers y∗1 = 0,

y∗2 = ηµ− η2σ1, y∗3 = ην + η2σ1.

y∗3 ≥ 0 is obvious. y∗2 ≥ 0 is equivalent to µ−ησ1 ≥ 0 which gives µσ1 ≤ 2θ by inserting
η. This inequality is satisfied since due to our assumption 2θ > σ1µ + σ1(µ− ν) and
µ− ν > 0.

The optimality of the solution of the HJB-equation follows as in Theorem 3.

Theorem 5: (Verification Theorem)
It holds that ϕ(x) = f(x), where f is given in Theorem 4 and π∗ = (α∗t , β

∗
t ) with α∗t ≡ α∗

and β∗t ≡ β∗ gives the optimal mix of traditional and non-traditional reinsurance.

5 Relation to the original model

An interesting question is whether the simple optimal control obtained for the diffusion
control problem in Theorem 3 is in some sense good for our original model. The answer
is ”Yes” under some additional assumptions. Suppose that the admissible controls for our
original model are restricted to feedback controls, i.e. αt = α(Rπ

t ), βt = β(Rπ
t ) where

α and β are Lipschitz-continuous with bounded module. Moreover, β is assumed to be
bounded. As before we denote by γ > 0 our scaling parameter. For an arbitrary admissible
control πγ = (αγ

t , βγ
t ), the scaled risk reserve is given by

dRπγ

t = (−θ + µαγ(Rπγ

t )− νβγ(Rπγ

t )) dt− αγ(Rπγ

t )σ−1
1 dMγ

t + βγ(Rπγ

t )σ−1
2 dM̂γ

t

Rπγ

0 = x

The following convergence result for the controlled model can now be proved in the same

way as Theorem 3.5 in Bäuerle (2003). Let Aγ
t :=

t∫
0

αγ(Rπγ

s )ds, Bγ
t :=

t∫
0

βγ(Rπγ

s )ds.

Theorem 6: Let (πγ) be a sequence of controls for γ →∞. Each sequence of stochastic
processes (Rπγ

t , Aγ
t , Bγ

t ,Mγ
t , M̂γ

t ) has a convergent subsequence, indexed by (γn), such that
for n →∞

(Rπγn

t , Aγn
t , Bγn

t ,Mγn
t , M̂γn

t ) ⇒ (Rπ
t ,

∫ t

0
α(Rπ

s )ds,

∫ t

0
β(Rπ

s )ds, σ1Bt, σ2B̂)

where (Bt) and (B̂t) are two correlated Brownian motions with correlation coefficient ρ.
The parameters σ1, σ2 and ρ are given in (3). Every limit satisfies Rπ

0 = x and

dRπ
t = (−θ + µα(Rπ

t )− νβ(Rπ
t )) dt− σ1α(Rπ

t )dBt + σ2β(Rπ
t )dB̂t.

The scaled maximal survival probability is given by

ϕγ(x) = sup
πγ

ϕπγ
(x) = sup

πγ
P

(
Rπγ

t ≥ 0 for all t | Rπγ

0 = x
)

.
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Note that for γ = 1 we obtain our original control problem of Section 2. The relation
between ϕγ and ϕ is now revealed in the following theorem.

Theorem 7: (Asymptotic optimality)

a) For all x ≥ 0 and all controls (πγ) it holds that

lim sup
γ→∞

ϕπγ
(x) ≤ ϕ(x).

b) For the optimal control π∗ of the diffusion model we obtain

lim
γ→∞

ϕπ∗,γ(x) = ϕ(x).

Proof:

a) Let (πγ) be an arbitrary sequence of controls and define τπγ
:= inf{t ≥ 0 | Rπγ

t < 0}.
Then ϕπγ

(x) = P (τπγ
= ∞ | Rπγ

0 = x). Suppose that {γ} is a subsequence which
yields convergence in Theorem 6. Note that the ruin probability in finite time is a
continuous mapping (see e.g. Grandell (1991) Sec. 1.2). Thus, due to the continuous
mapping theorem (see e.g. Whitt (2001) Theorem 3.4.1) and the monotonicity of the
probability measure we have

lim sup
γ→∞

ϕπγ
(x) = lim sup

γ→∞
lim

t0→∞
P (τπγ

> t0 | Rπγ

0 = x) ≤

≤ lim
t0→∞

lim sup
γ→∞

P (τπγ
> t0 | Rπγ

0 = x) = ϕπ(x) ≤ ϕ(x).

b) Under the optimal control π∗ of Theorem 3 the system behaves like a classical ruin
model where the convergence of the ruin probability is well known (see e.g. Grandell
Sec. 1.2 (1991)).

Theorem 7 in particular implies that if our original problem is close to the diffusion limit,
then the diffusion optimal control π∗ is nearly optimal for our problem.

6 Numerical Results and Conclusions

From Theorem 2 we can conclude that CAT Bonds are never used for reinsurance if the
correlation between the trigger variable and the insurers losses is too low (ρ < ν

µ). This
seems to be a reasonable behavior. However, it is quite surprising that β∗ is very sensitive
with respect to the parameter θ. θ is a measure for the difference of the premium rates
between cedent and reinsurer. In the following figures 1-3 we have plotted the optimal
reinsurance mix (σ1 − α∗, β∗) as a function of θ. Note that we take σ1 − α∗ here, which
means that σ1−α∗ = 0 corresponds to no proportional reinsurance. This seems to be more
intuitive than plotting α∗. We have set the parameters as follows: σ1 = σ2 = 1, µ = 3
and ν = 1. In figure 1 we chose ρ = 0.5, in figure 2, ρ = 0.75 and in figure 3, ρ = 0.99.
Thus, we are in case c)-e) of Theorem 2. The optimal quota share for the proportional
reinsurance decreases with ρ. This can be seen from the formulas as well as from the
figures. The amount of issued CAT Bonds increases with the correlation ρ which is again
intuitive. However, when we vary θ, we see that the number of issued CAT Bonds first
increases and after reaching a maximum decreases again in a nonlinear fashion. Thus,
in situations where the premium rate difference is large (which is reflected by large θ),
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the instrument of CAT Bonds is also of no use. When the insurance company faces a
moderate premium difference then indeed the proportional reinsurance is reduced in favor
of the CAT Bonds. In cases of low premium differences, the proportional reinsurance is
superior. Figure 3 also contains the case where ρ = 1. From Section 4 we know that in
this case σ1−α∗ = 0, i.e. we have no proportional reinsurance. If θ ≤ (µ−ν)σ1, the whole
risk can be eliminated by CAT Bonds. If θ > (µ− ν)σ1 again the amount of issued CAT
Bonds is decreasing. If θ > 2.5 no CAT Bonds are issued.
Of course the relation between the parameters of the diffusion model and the parameters of
the original model is quite involved. For example if one increases the cost of proportional
reinsurance by increasing η2, then also c1 is increasing which leads to an increasing µ. This
however means that the issuance of CAT Bonds becomes profitable for lower correlations
ρ.
Altogether it seems that CAT Bonds are only of limited value as a substitute for traditional
reinsurance. In any case the number of issued CAT Bonds is bounded. The usage of this
instrument is reasonable only when the correlation between trigger event and losses is
large enough and the insurance company faces a moderate premium rate difference.
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fig 1.: σ1 − α∗ (dashed line) and β∗ (solid line) depending on θ for ρ = 0.5.

fig 2.: σ1 − α∗ (dashed line) and β∗ (solid line) depending on θ for ρ = 0.75.

fig 3.: σ1 − α∗ (dashed line) and β∗ (solid line) depending on θ for ρ = 0.99 and β∗

depending on θ for ρ = 1 (dotted line).
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