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Notation

We always denote matrices with bold capital letters A,B, . . . and vectors with bold small
letters v,w, . . . . Linear operators are designated by capital letters A,B, . . . and functions
by small letters f, g, v, . . . .

I identity matrix

O zero matrix

0 zero vector

Pm space of polynomials with degree less than or equal to m

Pm−1

qm−1

{pm−1(z)
qm−1(z) : pm−1 ∈ Pm−1

}
for a fixed qm−1 ∈ Pm−1

diag( · · · ) diagonal matrix

tridiag( · · · ) tridiagonal matrix

pmin
A minimal polynomial of the matrix A

pmin
A,v minimal polynomial of A with respect to the vector v

deg(p) degree of the polynomial p

int(Γ) interior of the closed contour Γ

(· , ·) inner product

‖ · ‖ operator, matrix, or vector norm

‖ · ‖2 Euclidean vector norm

‖ · ‖M ‖M1/2 · ‖2, where M is some positive definite Hermitian matrix

σ(A) set of eigenvalues of A

W (A) field of values of A given by {(Ax,x) : ‖x‖ = 1}
C−0 closed left complex half-plane {z ∈ C : Re(z) ≤ 0}
R+

0 real numbers greater than or equal to zero

⊗ Kronecker product

∆, ∇ Laplace and Nabla operator

∇n normal derivative

u′ derivative of u with respect to the time t

∂Ω boundary of the domain Ω

O(·) Landau notation for asymptotic behavior
(f(z) = O

(
g(z)

)
as z → ξ means that there exist constants C, ε > 0

with |f(z)| ≤ C|g(z)| for |z − ξ| < ε)

Cn(Ω) space of n-times continuously differentiable functions on Ω

L1(Ω) space of Lebesgue integrable functions on Ω



L2(Ω) space of quadratically Lebesgue integrable functions on Ω

C∞c (Ω) space of infinitely differentiable functions with compact support on Ω

Hk(Ω) Sobolev space of k-times weakly differentiable L2-functions on Ω

H1
0 (Ω) closure of C∞c (Ω) in H1(Ω)

I identity operator

T (t) strongly continuous semigroup

D(A) domain of the operator A

ρ(A), σ(A) resolvent set and spectrum of A

Range(A) image of A

Null(A) null space of A

AH complex conjugate transpose of the matrix A

Vm
+ Moore-Penrose inverse of Vm

Km(A,v) polynomial Krylov subspace

Qm(A,v) rational Krylov subspace

Kγq+1,m(A,v) extended Krylov subspace

Rm(A) rational matrix subspace

span{· · · } set of all linear combinations of the vectors in brackets

dim(·) dimension of the space

D, D open and closed unit disk

T interval [−π, π) (real numbers modulo 2π)

ω(g, δ) modulus of continuity defined as sup|s−t|≤δ |g(s)− g(t)|
ωr(· , ·) rth modulus of smoothness

ωrφ(· , ·) weighted φ-modulus of smoothness

Tm set of real trigonometric polynomials of degree m

bxc largest integer not greater than x

Ff Fourier transform of f

Lf Laplace transform of f

BV (X) set of functions with bounded variation on the interval X

VarXf variation of f on the interval X

Var∗Xf variation of a correction f∗ of f

1X indicator function of the interval X



Chapter 1

Introduction

1.1 Motivation

Many problems in science and engineering are modeled by partial differential equations.
After a discretization in space, for example, by finite differences, finite elements or pseu-
dospectral methods, such problems can be written as a semi-linear system of ordinary
differential equations

u′(t) = Au(t) + g
(
t,u(t)

)
, u(0) = u0 (1.1)

with functions u : R → RN , g : R × RN → RN , and a large sparse discretization
matrix A ∈ RN×N . The parameter N depends on the chosen space grid. Moreover,
u0 ∈ RN denotes the initial value and t is the time parameter. Typically, the nonlinear
part g

(
t,u(t)

)
is non-stiff and the linear part Au(t) is stiff. As the matrix A in the linear

part of (1.1) usually stems from the discretization of an unbounded linear differential
operator, the norm of A grows for finer and finer space grids.

There is no precise definition of “stiffness”. In the literature, for instance [33, 36, 51], one
can find various descriptions. On the one hand, stiff ordinary differential equations might
be characterized by the fact that the eigenvalues λi of the discretization matrix A satisfy

max
i
|Re(λi)| � min

i
|Re(λi)| . (1.2)

On the other hand, we often say that a given problem is stiff, if the use of an explicit
numerical integration scheme requires impractically small time steps to obtain the desired
accuracy, so that for the efficient integration an implicit method is needed which allows
for larger time steps, but is more costly. A third possible definition is that stiff problems
may have fast (stiff) and slowly (non-stiff) varying components. This is, for example, the
case in chemical kinetics, where very fast and slow reactions take place simultaneously.

In this context, the example of the wave equation shows the difficulty of measuring stiffness:
For explicit schemes, the Courant-Friedrichs-Lewy (CFL) condition enforces a restriction
of the time step size dependent on the spatial mesh. To overcome this drawback, we thus
have to use an implicit time integration method. However, the characterization (1.2) does
not apply in this case, since the discretization matrix A, corresponding to the first order
formulation of the wave equation, has purely imaginary eigenvalues.

In order to cover these different cases of stiffness, we study problems of the form (1.1) with
a matrix A whose field of values W (A) is located somewhere in the closed left complex
half-plane. More precisely, W (A) is generally widely distributed in the left half-plane and
the norm of A can become arbitrarily large. Roughly speaking, we can denote A as a
“stiff” matrix.
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Up to now, many numerical time integration schemes have been designed to handle stiff
differential equations. These include exponential integrators which were developed in
the 1960s and are primarily attributable to Certaine [11], Pope [67], Lawson [50], and
Nørsett [61]. The idea behind this very important class of integrators is to solve the linear
part Au(t) of the model problem (1.1) exactly by the matrix exponential and to integrate
the remaining nonlinear part by an explicit scheme. Here, the so-called ϕ-functions come
into play, which are closely related to the exponential function. These ϕ-functions are
given as

ϕ`(z) =

∫ 1

0
e(1−θ)z θ`−1

(`− 1)!
dθ , ` ≥ 1 .

In the simplest case, we approximate the nonlinearity g
(
t,u(t)

)
by g(0,u0) with u0 = u(0)

and obtain the exponential Euler method

u(τ) ≈ eτAu0 + τϕ1(τA)g(0,u0) , ϕ1(z) =
ez − 1

z
,

which involves the action of the matrix exponential eτA on u0 and the entire ϕ1-function
evaluated at τA times g(0,u0). If g is constant, the scheme reproduces the exact solution.

Exponential integrators have the great advantage that even if ‖A‖ is large, this does not
imply a restriction of the admissible time step size τ in the integration. Furthermore,
the error bounds do not depend on ‖A‖ as well. Since, in general, A is a huge matrix,
the required matrix functions cannot be computed directly. This is why exponential
integrators have been regarded as impractical for a long time. But in the last decades,
it became apparent that there is hope to overcome this drawback by approximating the
occurring products of matrix functions with vectors in a suitable manner.

One possibility is to project A ∈ RN×N onto a subspace of dimension m � N , reducing
the problem to the evaluation of a matrix function for a small m × m - matrix, see for
instance [16, 23, 85]. This is the basic idea of the well-known standard Krylov subspace
method, where f(A)v is approximated by the action of a polynomial matrix function
on the vector v ∈ RN . Besides the standard Krylov subspace method, rational Krylov
subspace techniques have been studied recently in, e.g., [29–31,46,52,59,60,62,69,84]. As
their name suggests, these methods are based on a rational approximation.

In order to retain the beneficial properties of exponential integrators, it is crucial and
indispensable to approximate the occurring matrix functions in such a way that the ap-
proximation quality is independent of ‖A‖. Rational Krylov subspace methods represent
a very promising approach in this direction: In contrast to the polynomial Krylov method,
the convergence of the rational process is independent of ‖A‖. This reveals the rational
Krylov subspace method as the optimal choice for our purposes. The following standard
model problem illustrates these facts.

We consider the one-dimensional heat equation u′ = ∆u on the interval (0, 1) with ini-
tial function u0(x) = x(1 − x) and homogeneous Dirichlet boundary conditions. The
discretization with finite differences leads to the system of ordinary differential equations

u′(t) = Au(t) , u(0) = u0 , A = (N + 1)2 tridiag(1,−2, 1) ∈ RN×N ,

where the parameter N specifies how many inner space points are chosen in the considered
domain from 0 to 1. In Figure 1.1, we plot the error of the approximation to the exact
solution eτAu0 at time τ = 0.05 with the polynomial (red dashed line) and a rational (blue
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solid line) Krylov subspace method against the number of iteration steps for N = 50 on
the left and N = 200 on the right-hand side. The convergence behavior of the standard
Krylov approximation is strongly linked to the number N of inner grid points. The finer
the discretization the later the method starts to converge. The rational Krylov subspace
process clearly outperforms the polynomial Krylov approximation and achieves a high
accuracy after only a few iterations independent of the value N .

0 5 10 15 20 25
10−14

10−11

10−8

10−5

10−2

N = 50

0 20 40 60 80 100
10−14

10−11

10−8

10−5

10−2

N = 200

Figure 1.1: Comparison of the polynomial (red dashed line) and the rational (blue solid
line) Krylov subspace method with N = 50, 200 discretization points.

However, the polynomial Krylov subspace method often works well in the first few iteration
steps and then gives no further improvement. This is the case if the initial value u0 of the
differential equation fulfills specific smoothness properties. In our example involving the
Laplace operator with homogeneous Dirichlet boundary conditions, smoothness refers to
the order of differentiability of u0 while preserving zero boundary conditions. In Figure 1.2,
this effect is illustrated by replacing u0(x) = x(1 − x) with the “smoother” functions
u0(x) = x6(1− x)6 (on the left) and u0(x) = x8(1− x)8 (on the right). The smoother the
initial value the better the polynomial approximation performs in the first steps.

This observation has inspired the study of extended Krylov subspace methods in this
thesis which combine the standard and the rational process in the following way: Initially,
some polynomial Krylov steps are performed, until the convergence stagnates. Then the
approximation is continued with the rational method. The first iteration steps are then
cheap, since they usually involve only matrix-vector-products. As soon as the standard
Krylov approximation does not further improve, the more efficient but more expensive
rational Krylov process is used which requires solving a large linear system in each step.

For the approximation of f(A)v by an extended or a rational Krylov subspace process,
several authors prove linear and superlinear convergence rates, e.g., [3, 4, 48]. These es-
timates depend on the geometry and the size of the field of values W (A) of the matrix
A. They are very useful in the case that the geometry of W (A) is known and that the
field of values is a bounded set of moderate size. However, if W (A) is huge, the error
bounds suggest a very slow convergence. Therefore, these results are not suitable for our
purposes. In this thesis, sublinear error bounds are derived which hold uniformly for all
stiff matrices A with an arbitrarily large field of values in the left complex half-plane. Our
bounds hold simultaneously for all reasonable space discretizations.
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Figure 1.2: Convergence of the polynomial (red dashed line) and the rational (blue solid
line) Krylov subspace approximation for the initial values u0(x) = x6(1 − x)6 (left) and
u0(x) = x8(1− x)8 (right).

1.2 Outline

The aim of this thesis is to analyze the convergence of rational and extended Krylov
subspace methods for the approximation of the product of the matrix ϕ-functions and a
vector, ϕ(A)v, appearing in exponential integrators. With regard to semi-linear problems
of the form (1.1) with stiff linear part, we are interested in error bounds that hold uniformly
for all matrices A ∈ CN×N with field of values in the closed left complex half-plane. That
means we are searching for convergence rates which are independent of the refinement of
the spatial discretization.

In Chapter 2, we define matrix functions via the Jordan canonical form, polynomial in-
terpolation and the Cauchy integral formula. Moreover, we give a brief overview of some
fundamental properties of matrix functions.

The basic concepts and ideas of spatial discretization methods, strongly continuous semi-
groups and exponential integrators, especially exponential Runge-Kutta methods, are re-
viewed in Chapter 3.

Chapter 4 contains a description of standard and general rational Krylov subspaces as
well as the approximation methods derived from these subspaces. In addition, the near-
optimality property of Krylov subspace methods and the efficient computation of the
approximation are discussed.

In the subsequent Chapter 5, a special class of rational Krylov subspace methods is intro-
duced, namely the shift-and-invert Krylov subspace approximation, which uses one single
repeated pole at γ > 0. We derive error bounds for a special class of functions and, in
particular, for the ϕ-functions. Furthermore, suitable choices of γ are suggested.

A convergence analysis of the extended Krylov subspace approximation, whose conver-
gence strongly depends on the abstract smoothness of the initial value, is presented in
Chapter 6.
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In Chapter 7, we turn to the approximation of matrix functions times a vector in a rational
Krylov subspace with different simple poles, which are equidistantly distributed on a line
in the right complex half-plane parallel to the imaginary axis.

All results obtained in Chapter 5, 6, and 7 are illustrated by several numerical experiments
at the end of each chapter.

Finally, we give a short conclusion and a brief outlook in Chapter 8.





Chapter 2

Matrix functions

Based on the books [38] by Higham and [47] by Horn and Johnson, we give a brief overview
on the theory of matrix functions in this chapter. The emphasis is placed on the different
definitions of matrix functions, as needed for the numerical solution of ordinary or semi-
discretized differential equations.

The most familiar matrix function is presumably the matrix exponential that can be used
to express the solution of the homogeneous system

u′(t) = Au(t) , u(0) = u0

by the formula u(t) = etAu0, where A is a constant matrix, whose entries do not depend
on the time t. The probably most obvious definition of the matrix exponential etA is given
by the well-known power series

etA =

∞∑
k=0

1

k!
tkAk ,

which converges for all matrices A, since we have

‖etA‖ ≤
∞∑
k=0

1

k!
tk‖A‖k = et‖A‖ <∞

for any sub-multiplicative matrix norm ‖ · ‖. This is just one of many possibilities for
the computation of etA. In the review [58] by Moler and Van Loan, the authors present
twenty different ways to compute the exponential of a matrix.

For a general complex-valued function f and an arbitrary square matrix A ∈ CN×N , there
are several more or less equivalent ways to define a matrix function f(A). In the following,
we will confine ourselves to the three most important representations determined in terms
of the Jordan canonical form, a Hermite interpolation polynomial as well as the Cauchy
integral formula. We will see that the definition of f(A) and its well-definedness are
strongly related to the spectrum σ(A) of A, which is given by

σ(A) := {λ ∈ C : λ eigenvalue of A} .

Moreover, it will turn out that every matrix function f(A) can be represented pointwise,
that means for a fixed matrix A, as a polynomial matrix function.

2.1 Jordan canonical form

Before we address the question of how a general function f : C→ C can be extended to a
mapping from CN×N to CN×N , we consider the simple case of a polynomial p ∈ Pm, where
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Pm denotes the set of all polynomials with degree less than or equal to m. In this case, the
polynomial function of a matrix A is defined by inserting A into the given polynomial.

Definition 2.1 For p(z) = amz
m + am−1z

m−1 + . . . + a1z + a0 ∈ Pm with z ∈ C and
coefficients a0, . . . , am ∈ C, the polynomial matrix function p(A) is defined as

p(A) := amA
m + am−1A

m−1 + . . .+ a1A+ a0I .

It is well-known that every matrix A ∈ CN×N can be represented in Jordan canonical
form

A = SJS−1, J = diag(Jn1 , . . . ,Jns) ,

where n1 + . . . + ns = N , S ∈ CN×N is nonsingular, and J ∈ CN×N is unique up to a
permutation of the Jordan blocks Jn1 , . . . ,Jns . Each Jordan block is of the form

Jnk = Jnk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cnk×nk ,

where the values λk are eigenvalues of the matrix A, which are not necessarily distinct.
By inserting A = SJS−1 into a polynomial p, we find

p(A) = Sp(J)S−1, p(J) = diag
(
p(Jn1), . . . , p(Jns)

)
.

Using the Taylor expansion

p(z) =

m∑
j=0

p(j)(λk)

j!
(z − λk)j

around the eigenvalue λk ∈ σ(A) and writing Jnk(λk) = λkI + N , with the nilpotent
matrix N = Jnk(0), we obtain

p(Jnk) =
m∑
j=0

p(j)(λk)

j!
(λkI +N − λkI)j =

min{m,nk−1}∑
j=0

p(j)(λk)

j!
N j ,

since N j = O for j ≥ nk. Due to the special structure of N , the matrix N j has the value
one on the jth upper diagonal and zeros elsewhere, and it follows that

p(Jnk) =


p(λk) p′(λk) · · ·

p(nk−1)(λk)

(nk − 1)!

p(λk)
. . .

...
. . . p′(λk)

p(λk)


∈ Cnk×nk .

This shows that p(A) is essentially determined by the derivatives of p(z) at the eigenvalues
of the matrix A. It seems reasonable to generalize the definition of polynomial matrix
functions p(A) to arbitrary matrix functions f(A). Therefore, we have to ensure that the
required derivatives of f exist on σ(A).
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We recall that the minimal polynomial pmin
A (z) of A is the unique monic polynomial of

smallest degree such that pmin
A (A) = O. If we assume that A ∈ CN×N has r distinct

eigenvalues λ1, . . . , λr, this polynomial is given as

pmin
A (z) =

∏
λk∈σ(A)

(z − λk)mk =
r∏

k=1

(z − λk)mk , (2.1)

where the exponent mk corresponds to the size of the largest Jordan block associated with
the eigenvalue λk ∈ σ(A). The minimal polynomial is a divisor of any other polynomial p
with p(A) = O.

Definition 2.2 Let pmin
A , as in (2.1), be the minimal polynomial of A. A function f is

said to be defined on the spectrum σ(A) of A, if f (j)(λk) exists for j = 0, . . . ,mk − 1 and
k = 1, . . . , r.

With these considerations in mind, we can state the next definition.

Definition 2.3 Let f be defined on σ(A) and let A = SJS−1 be the Jordan canonical
form of A with J = diag(Jn1 , . . . ,Jns) and Jnk = Jnk(λk) ∈ Cnk×nk . Then we set

f(A) := Sf(J)S−1 = S diag
(
f(Jn1), . . . , f(Jns)

)
S−1 ,

where

f(Jnk) =


f(λk) f ′(λk) · · · f (nk−1)(λk)

(nk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)


∈ Cnk×nk . (2.2)

The matrix function f(A) according to Definition 2.3 is well defined, that is, the defini-
tion does not depend on the particular Jordan canonical form (Horn and Johnson [47],
Theorem 6.2.9). For a diagonalizable matrix A, the blocks f(Jnk) are all of size one, and
Definition 2.3 yields

f(A) = S diag
(
f(λ1), . . . , f(λN )

)
S−1 , J = diag(λ1, . . . , λN ) .

In the case of multi-valued complex functions, such as the square root or the logarithm,
it is common practice to use a single branch for the function f in each Jordan block, if
an eigenvalue occurs in more than one block. These matrix functions are called primary.
Taking distinct branches for the same eigenvalue in different Jordan blocks, a nonprimary
matrix function is obtained. In this thesis, we will be only concerned with primary matrix
functions.

2.2 Polynomial interpolation

A further representation of the matrix function f(A) is based on polynomial interpolation.
We assume again that λ1, . . . , λr are the distinct eigenvalues of the matrixA ∈ CN×N . The
first lemma of this section shows that a matrix polynomial p(A) is completely determined
by the values of p on the spectrum of A.
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Lemma 2.4 Let pmin
A (z) = (z − λ1)m1 · · · (z − λr)mr be the minimal polynomial of A and

let p, q be two polynomials. Then we have p(A) = q(A) if and only if

p(j)(λk) = q(j)(λk) for j = 0, . . . ,mk − 1 , k = 1, . . . , r . (2.3)

Proof. Higham [38], Theorem 1.3. o

Lemma 2.4 says that we may replace a given polynomial p in p(A) by an arbitrary poly-
nomial q satisfying (2.3) without changing the result. Similar to the considerations in the
previous section, this property can be transferred to general functions. This leads to the
following representation of a matrix function via polynomial interpolation.

Theorem 2.5 Let f be defined on σ(A) and let pmin
A (z) = (z − λ1)m1 · · · (z − λr)

mr

be the minimal polynomial of the matrix A. We have f(A) = p(A) if and only if the
ν :=

∑r
k=1mk = deg(pmin

A ) interpolation conditions

p(j)(λk) = f (j)(λk) for j = 0, . . . ,mk − 1 , k = 1, . . . , r (2.4)

are fulfilled.

Proof. We have to check that the definition of f(A) via the Jordan canonical form in
Definition 2.3 complies with the representation as matrix polynomial p(A), where p has to
fulfill the Hermite interpolation condition (2.4). The equivalence of both representations
follows from the comparison of the individual blocks f(Jnk) defined in (2.2) corresponding
to f(A) = Sf(J)S−1 = S diag

(
f(Jn1), . . . , f(Jns)

)
S−1 and the blocks p(Jnk) corre-

sponding to the polynomial p(A) = S p(J)S−1 = S diag
(
p(Jn1), . . . , f(Jns)

)
S−1. o

By Theorem 2.5, every matrix function f(A) can be written as a polynomial p in A. The
properties of p depend on the values of the function f and its derivatives on σ(A). There
exists a uniquely determined polynomial p ∈ Pν−1 with ν = deg(pmin

A ) that satisfies the
Hermite interpolation condition (2.4). Theorem 2.5 implies further that f(A) and g(A)
are equal if and only if

f (j)(λk) = g(j)(λk) for j = 0, . . . ,mk − 1 , k = 1, . . . , r .

An explicit formula for the Hermite interpolation polynomial that fulfills (2.4) is given by
the Lagrange-Hermite formula

p(z) =
r∑

k=1

[(
mk−1∑
j=0

1

j!
Φ

(j)
k (λk)(z − λk)j

)
r∏
j=1
j 6=k

(z − λj)mj
]
, Φk(z) =

f(z)
r∏
j=1
j 6=k

(z − λj)mj
.

If A ∈ CN×N has N distinct eigenvalues, we have mk = 1 for k = 1, . . . , N in the minimal
polynomial and the above formula reduces to the Lagrange interpolation polynomial

p(z) =

N∑
k=1

f(λk)

N∏
j=1
j 6=k

z − λj
λk − λj

.
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It is also possible to use divided differences for the computation of the interpolation poly-
nomial. For this purpose, we define the tuple

(x1, . . . , xν) := (λ1, . . . , λ1︸ ︷︷ ︸
m1

, λ2, . . . , λ2︸ ︷︷ ︸
m2

, . . . , λr, . . . , λr︸ ︷︷ ︸
mr

)

that contains all distinct eigenvalues λ1, . . . , λr of A according to their multiplicity in the
minimal polynomial in the specified order. Then

p(z) =
ν∑
k=1

f [x1, . . . , xk]
k−1∏
j=1

(z − xj)

is the desired Hermite interpolation polynomial. For a function f and points xk, . . . , xk+i,
the divided differences are given as

f [xk] = f(xk) ,

f [xk, . . . , xk+i] =
f [xk+1, . . . , xk+i]− f [xk, . . . , xk+i−1]

xk+i − xk
for xk 6= xk+i ,

f [xk, . . . , xk+i] =
f (i)(xk)

i!
for xk = xk+i .

Example 2.6 We consider the exponential function f(z) = ez for the matrix

A =


4 1 0 1
1 1 −1 3
0 1 4 1
1 3 −1 1

 =


0 2 0 1
−1

2 0 1 0
0 2 0 0
1
2 0 1 0

 ·

−2 0 0 0
0 4 1 0
0 0 4 1
0 0 0 4

 ·


0 2 0 1
−1

2 0 1 0
0 2 0 0
1
2 0 1 0


−1

= SJS−1

with minimal polynomial pmin
A (z) = (z + 2)(z − 4)3. The corresponding Hermite interpo-

lation polynomial that fulfills the required conditions p(−2) = f(−2), p(j)(4) = f (j)(4) for
j = 0, 1, 2 is given by

p(z) = e4 + e4(z − 4) +
1

2
e4(z − 4)2 +

13e4 − e−2

216
(z − 4)3

=
13e4 − e−2

216
z3 − 4e4 − e−2

18
z2 − e4 + 2e−2

9
z +

31e4 + 8e−2

27
.

By construction, we have f(A) = p(A) such that the matrix exponential eA can be
computed by inserting A into the polynomial p. Alternatively, one can use Definition 2.3
to obtain

eA = S


f(−2) 0 0 0

0 f(4) f ′(4) 1
2f
′′(4)

0 0 f(4) f ′(4)

0 0 0 f(4)

 S−1 =


2e4 e4 −e4 e4

e4 e4+e−2

2 −e4 e4−e−2

2

e4 e4 0 e4

e4 e4−e−2

2 −e4 e4+e−2

2

 .
The exponential function is depicted in Figure 2.1 together with the associated Hermite
interpolation polynomial p and its first two derivatives. m

Some useful properties of matrix functions are collected in the following theorem, which
can be found as Theorem 1.13 in Higham [38]. The proof relies on the representation of
f(A) via polynomial interpolation.
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Figure 2.1: The exponential function and its Hermite interpolation polynomial p corre-
sponding to the matrix A.

Theorem 2.7 Let the function f be defined on σ(A), then

1. f(A) and A commute with each other,

2. f(AT ) = f(A)T ,

3. for invertible X, we have f(XAX−1) = Xf(A)X−1,

4. f(λk) are the eigenvalues of f(A), where λk are the eigenvalues of A,

5. X commutes with f(A), if X commutes with A.

2.3 Cauchy integral formula

A third way of representing the matrix function f(A) is via the Cauchy integral formula
from complex analysis. The generalization of the Cauchy integral theorem from scalar
functions to matrix functions gives rise to the following theorem.

Theorem 2.8 Let f : Ω→ C be analytic in the sim-
ply connected domain Ω ⊂ C and let σ(A) ⊂ Ω. We
have

f(A) =
1

2πi

∫
Γ
f(ξ)(ξI −A)−1 dξ ,

where Γ is an arbitrary simple closed rectifiable curve
that encloses σ(A) in Ω and has winding number one.

Ω

Γ

λ1

λ2

λr

For σ(A) ⊂ int(Γ), the curve Γ is disjoint from the spectrum of A and the resolvent
(ξI − A)−1 in the integrand is well-defined. The resolvent is a matrix function as well.
For better readability, we will often use the short notation 1

ξ−A in the following instead of

the equivalent expression (ξI −A)−1.
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Proof. [of Theorem 2.8] If we interpret the Cauchy integral as limit of Riemann sums in
the normed space of matrices and consider the Jordan canonical form A = SJS−1, we
have

1

2πi

∫
Γ

f(ξ)

ξ −A
dξ =

1

2πi

∫
Γ
S

f(ξ)

ξ − J
S−1 dξ = S

(
1

2πi

∫
Γ

f(ξ)

ξ − J
dξ

)
S−1 .

It follows further that

1

2πi

∫
Γ

f(ξ)

ξ − J
dξ =

1

2πi

∫
Γ
f(ξ) diag(ξI − Jn1 , . . . , ξI − Jns)−1 dξ

=
1

2πi

∫
Γ
f(ξ) diag

(
1

ξ − Jn1

, . . . ,
1

ξ − Jns

)
dξ

= diag

(
1

2πi

∫
Γ

f(ξ)

ξ − Jn1

dξ , . . . ,
1

2πi

∫
Γ

f(ξ)

ξ − Jns
dξ

)
.

We have to show that the last expression is equal to diag
(
f(Jn1), . . . , f(Jns)

)
. With

Jnk = λkI +N and the Neumann series, we obtain

(ξI − Jnk)−1 =
(
(ξ − λk)I −N

)−1
=

1

ξ − λk

(
I − 1

ξ − λk
N

)−1

=

nk−1∑
j=0

1

(ξ − λk)j+1
N j .

Cauchy’s differentiation formula

1

2πi

∫
Γ

f(ξ)

(ξ − λk)j+1
dξ =

1

j!
f (j)(λk)

now yields

1

2πi

∫
Γ

f(ξ)

ξ − Jnk
dξ =

nk−1∑
j=0

(
1

2πi

∫
Γ

f(ξ)

(ξ − λk)j+1
dξ

)
N j

=

nk−1∑
j=0

1

j!
f (j)(λk)N

j = f(Jnk)

in accordance with Definition 2.3. o

The Cauchy integral representation in Theorem 2.8 is helpful for many theoretical results
about matrix functions. Furthermore, this formula allows for the approximation of f(A)
by using a suitable quadrature rule, e.g., [75,83]. In contrast to the two previous represen-
tations of f(A), the expression in terms of the Cauchy integral formula can be generalized
to functions of operators (see [17], Section VII.3.6, Definition 9).

In general, the computation of f(A) requires knowledge of the spectrum σ(A) and the
eigenvectors of the matrix A. But in most cases, the eigenvalues and eigenvectors of A
are not known precisely and can, if at all, only be computed approximately. Moreover,
the computation of the Jordan canonical form is usually a numerically unstable process,
since this form is very sensitive to perturbations. The Jordan canonical form is therefore
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commonly avoided in numerical analysis. Consequently, the representations of f(A) based
on the Jordan canonical form or the corresponding Hermite interpolation polynomial yield
no adequate methods to determine f(A) exactly. The Cauchy integral formula is typically
not used for the exact computation of f(A) as well.

Hence, one has to carefully design algorithms that compute accurate approximations to
matrix functions for dense matrices of moderate size. This is still a subject of current
research. Fortunately, for the matrix exponential and the matrix ϕ-functions, which are
of interest in this thesis, algorithms for dense and moderate-sized matrices are known,
cf. [2, 38, 77]. An overview about the computation of f(A) for more general functions f
and dense matrices A can be found in [38,39].

In view of the numerical solution of differential equations, we are interested in the eval-
uation of the action of a matrix function f(A) on a vector v, without computing f(A)
explicitly. We will see that Krylov subspace methods are suitable to approximate f(A)v
efficiently. Here, the methods for dense matrices cannot be applied. The occurring ma-
trices A are sparse and large, but f(A) is usually a large non-sparse matrix. The idea
to circumvent the problems mentioned above is to project the large matrix A ∈ CN×N
onto some Krylov subspace of dimension m � N . This approach reduces A to a smaller
matrix Sm of size m ×m for which f(Sm) can be determined with standard algorithms
for dense matrices of moderate size. We will come back to this issue in Chapter 4.



Chapter 3

Discretized evolution equations and
exponential integrators

We are interested in the time integration of semi-linear problems of the form

u′(t) = Au(t) + g
(
t, u(t)

)
, u(0) = u0 , (3.1)

which represents either a system of ordinary differential equations in CN , that stems from
a suitable spatial discretization of a partial differential equation, or an abstract evolution
equation on some Banach space with a linear, usually unbounded, differential operator
A. Later on in this thesis, we will often restrict ourselves to Hilbert spaces, which are a
special case of Banach spaces.

In the first case, we denote by A ∈ CN×N the discretization matrix and by u ∈ CN the
approximation of the exact solution. For a finite-difference discretization, for example, this
vector u contains approximate values of the solution u at certain grid points of the spatial
domain. For a finite-element discretization, u is the coefficient vector of the nodal basis
functions. In the discrete case, we thus write equation (3.1) as u′(t) = Au(t) +g

(
t,u(t)

)
,

u(0) = u0 with bold letters.

In the second case, one usually has to discretize the operator A by some kind of dis-
cretization process, such as finite-difference, pseudospectral, or finite-element methods.
Therefore, we are concerned with matrices anyway. Nevertheless, we will study the fol-
lowing approximation methods in time for the abstract equation (3.1), in order to gain
insight in the convergence behavior.

In what follows, we will consider stiff problems, where A is an unbounded operator on some
Hilbert space H, or a huge matrix, whose norm can become arbitrarily large. Stiff dis-
cretization matrices A corresponding to the discretization of a partial differential equation
may be characterized by a large field of values

W (A) :=

{
(Ax,x)

(x,x)
: x ∈ CN , x 6= 0

}
= {(Ax,x) : x ∈ CN , ‖x‖ = 1}

located in the left complex half-plane, i.e., W (A) ⊆ C−0 with

C−0 := {z ∈ C : Re(z) ≤ 0} ,

see, for instance, [36,51]. By (· , ·) we always denote a suitable inner product on CN with
associated norm ‖x‖ =

√
(x ,x) for x ∈ CN .

As a consequence of their bounded stability region, explicit integrators usually fail to in-
tegrate the linear part of (3.1) for stiff problems, unless impractically small time steps are
used. Exponential integrators are an important class of numerical methods for the time
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integration of evolution equations which overcome this drawback. The name “exponential
integrators” arises from the fact that these special integrators contain the matrix expo-
nential or the operator exponential, i.e., the strongly continuous semigroup generated by
A, and so-called ϕ-functions that are closely related to the exponential function.

Before we explain the ideas of exponential integrators and their construction based on the
review [44] by Hochbruck and Ostermann, we outline the spatial discretization of partial
differential equations, e.g., [9,55]. For fine space discretizations, the discretization matrices
are huge and we might say that the matrix exponential corresponds to an approximation
of the semigroup. We will need this correspondence later on, in order to understand
the convergence of our methods. Therefore, we will summarize fundamental facts about
strongly continuous semigroups and their generators following the books by Miklavčič [57],
by Pazy [65], and by Engel and Nagel [19].

3.1 Spatial discretization

Using a spatial discretization, a partial differential equation is transformed into a system
of ordinary differential equations of the form (3.1) with A ∈ CN×N and u ∈ CN . This
system of ordinary differential equations can then be solved with the help of standard time
integration methods. As an example of a stiff system, we consider the two-dimensional
heat equation with homogeneous Dirichlet boundary conditions

u′ = ∆u for (x, y) ∈ Ω , t ≥ 0 ,

u(0, x, y) = u0(x, y) for (x, y) ∈ Ω ,

u(t, x, y) = 0 for (x, y) ∈ ∂Ω , t ≥ 0

on the Hilbert space L2(Ω) for a given domain Ω ⊂ R2. The space L2(Ω) contains all
functions that are quadratically Lebesgue integrable on Ω, that is,

L2(Ω) := {f : Ω→ R :

∫
Ω
|f |2 d(x, y) <∞} .

Moreover, ∆ denotes the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 on R2.

In the following, we will focus on the finite-difference, the finite-element, and the spectral
discretization, and present the basic ideas of these methods.

3.1.1 Finite differences

As domain Ω, we take a square. For the approximation, we discretize Ω by a uniform
grid with mesh size h = 1

n+1 and equidistant nodes (xi, yj) = (x0 + ih, y0 + jh) ∈ Ω,
i, j = 0, . . . , n+ 1, in each direction as depicted in Figure 3.1. If the solution u of the heat
equation is sufficiently smooth, Taylor expansion yields

∂2

∂x2
u(t, xi, yj) =

1

h2

(
u(t, xi + h, yj)− 2u(t, xi, yj) + u(t, xi − h, yj)

)
+O(h2) .

The same considerations apply to the second derivative of u with respect to the space
variable y. Neglecting the remainder term of order h2, which is small for a fine spatial
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x
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(x0, y0)

(xn+1, yn+1)

(xi, yj)

h

h

Ω

Figure 3.1: Two-dimensional grid for the finite-difference method on a square.

grid, we obtain

∆u(t, xi, yj) ≈
1

h2

(
u(t, xi − h, yj) + u(t, xi, yj − h)

− 4u(t, xi, yj) + u(t, xi + h, yj) + u(t, xi, yj + h)
)
.

The two-dimensional Laplacian is approximated by a so-called five-point-stencil, indicating
that ∆u(t, xi, yj) is represented by a suitable linear combination of values of the function
u at the point (t, xi, yj) itself and the four nearest neighbors in the spatial grid, see the
cross-marked points in Figure 3.1. If we denote with ui,j and u′i,j the approximations
to u(t, xi, yj) and u′(t, xi, yj), this procedure leads to the following system of ordinary
differential equations

1

h2
(ui−1,j + ui,j−1 − 4ui,j + ui+1,j + ui,j+1) = u′i,j for (xi, yj) ∈ Ω ,

ui,j = 0 for (xi, yj) ∈ ∂Ω .

In matrix form, the system can be written as

1

h2


T I

I T
. . .

. . .
. . . I
I T

 ·

u1,1

u2,1

...

un,n

 =


u′1,1
u′2,1

...

u′n,n

 , (3.2)

where T is the tridiagonal matrix

T =


−4 1

1 −4
. . .

. . .
. . . 1

1 −4

 ∈ Rn×n

and I is the identity matrix of dimension n. With regard to the domain Ω in Figure 3.1,
the n2 unknowns u1,1, u2,1, . . . , un,n are ordered row-wise from bottom left to top right.
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This allows to reformulate the considered heat equation as the system

u′(t) = Au(t) , u(0) = u0 ,

where A ∈ RN×N , N = n2, is the block tridiagonal matrix A = tridiag(I,T , I) and
u(t) ∈ RN is a vector containing the values u1,1, u2,1, . . . , which are approximations to
u(t, x1, y1), u(t, x2, y1), . . . on the inner grid points. A discrete approximation for the
solution u is then determined by solving u′(t) = Au(t) with a time integration method
for ordinary differential equations, where “discrete” means that the numerical solution is
known only at certain points of the space domain Ω.

To reveal the stiff character of the semi-discrete system u′(t) = Au(t), we compute the
eigenvalues of the discretization matrix A. With the help of the Kronecker product ⊗,
the matrix A is represented as

A = I ⊗L+L⊗ I, L =
1

h2


−2 1

1 −2
. . .

. . .
. . . 1

1 −2

 ∈ Rn×n .

The eigenvalues of the tridiagonal matrix L are well-known, cf. [51], Section 2.10. They are
given by λk = − 4

h2 sin2
(

kπ
2(n+1)

)
for k = 1, . . . , n. For two matrices B and C with eigen-

values µ1, . . . , µn and ν1, . . . , νn, the eigenvalues of the Kronecker product B⊗C are µiνj
for i, j = 1, . . . , n. With the Jordan canonical form L = SJS−1, J = diag(λ1, . . . , λn), it
follows that

I ⊗L+L⊗ I = (S ⊗ S)(I ⊗ J + J ⊗ I)(S ⊗ S)−1

by the properties of the Kronecker product. Since σ(A) = σ(I⊗J+J⊗I), the eigenvalues
of A are given by

− 4

h2

(
sin2

(
iπ

2(n+ 1)

)
+ sin2

(
jπ

2(n+ 1)

))
, i, j = 1, . . . , n .

For fine discretizations of the domain Ω, the mesh size h becomes small and σ(A) contains
negative eigenvalues of small as well as very large absolute value. This illustrates that we
are concerned with a stiff problem.

If we want to measure the quality of the numerical solution u, it is appropriate to scale
the standard Euclidean norm ‖ · ‖2 with the mesh size h of the space grid (e.g., [55],
Section 6.1). This scaled Euclidean norm,

‖u‖h := h‖u‖2 =

(
h2

n∑
i,j=1

u2
ij

) 1
2

≈
(∫

Ω
u2d(x, y)

) 1
2

,

can be interpreted as a discrete L2-norm. For an arbitrary matrix A ∈ CN×N , the induced
matrix norm ‖ · ‖h coincides with the spectral matrix norm ‖ · ‖2, since

‖A‖h = sup
x6=0

‖Ax‖h
‖x‖h

= sup
x6=0

‖Ax‖2
‖x‖2

= ‖A‖2 .
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3.1.2 Finite elements

In contrast to the finite-difference method, where the exact solution is approximated at
certain grid points, the finite-element method is based on taking an appropriate linear
combination of some fixed nodal basis functions φi on subregions of the space domain Ω,
that is,

u(t, x, y) ≈
N∑
i=1

ui(t)φi(x, y) .

We first state a variational formulation by rewriting our problem in a weak form. Sub-
sequently, we discretize the problem with respect to the space variables x and y, which

yields an approximate solution u(t) =
(
ui(t)

)N
i=1

in the finite-element space SN of dimen-
sion N . In the simplest case, this finite-element space contains continuous, piecewise linear
functions on a partition of the domain Ω containing triangular elements.

By (· , ·)L2(Ω) and ‖ · ‖L2(Ω) we denote the inner product and its induced matrix norm

(v, w)L2(Ω) =

∫
Ω
vw d(x, y) , ‖v‖L2(Ω) =

√
(v, v)L2(Ω) , v, w ∈ L2(Ω) .

We define the Sobolev space

Hk(Ω) := {v ∈ L2(Ω) :
∂α+β

∂αx ∂βy
v(x, y) ∈ L2(Ω) , α+ β ≤ k , α, β ∈ N0} ,

where the derivatives are understood in the weak sense. Moreover, we need the Sobolev
space H1

0 (Ω), which is the closure of C∞0 (Ω) with respect to the Sobolev norm ‖ · ‖H1(Ω).
Hereby, C∞0 (Ω) is the space of infinitely differentiable functions on Ω with compact support
and the H1-norm, induced by the inner product

(v, w)H1(Ω) =

∫
Ω
vw d(x, y) +

∫
Ω
∇v∇w d(x, y) ,

is given as

‖v‖H1(Ω) =
(
‖v‖2L2(Ω) + ‖∇v‖2L2(Ω)

) 1
2
,

where ∇v is a weak gradient vector that contains the weak partial derivatives of v. In
fact, H1

0 (Ω) contains all functions whose weak derivative belongs to the space L2(Ω) and
that vanish on the boundary ∂Ω of the considered domain Ω.

To find the weak formulation for the heat equation, we multiply the differential equation
by a test function φ ∈ H1

0 (Ω), integrate over Ω, and apply Green’s formula such that∫
Ω
φu′ d(x, y) =

∫
Ω
φ∆u d(x, y) = −

∫
Ω
∇φ∇u d(x, y) +

∫
∂Ω
φ∇nu ds

for all φ ∈ H1
0 (Ω), where ∇nu designates the normal derivative of u. The integral over ∂Ω

vanishes for φ ∈ H1
0 (Ω), since by assumption φ is equal to zero on ∂Ω. Using the inner

product on L2(Ω), one can briefly note

(φ, u′)L2(Ω) = −(∇φ,∇u)L2(Ω) .
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Let φ1, . . . , φN be a basis of the finite-element space SN . We replace u(t, x, y) by a linear
combination of these basis functions, that is, u(t, x, y) ≈

∑N
i=1 ui(t)φi(x, y) ∈ SN , and

search for coefficients ui(t) such that

N∑
i=1

u′i(t)(φi, φk)L2(Ω) = −
N∑
i=1

ui(t)(∇φi,∇φk)L2(Ω) for k = 1, . . . , N . (3.3)

If we approximate the initial function u0(x, y) by
∑N

i=1 γi φi(x, y) ∈ SN , we have ui(0) = γi
for i = 1, . . . , N . With the vectors u(t) =

(
ui(t)

)
)Ni=1 and u0 = (γi)

N
i=1, equation (3.3) reads

Mu′(t) = Su(t) , u(0) = u0

in matrix notation, where M is the so-called mass matrix and S the stiffness matrix,
whose entries are given by

(M)ij = mij = (φi, φj)L2(Ω) , (S)ij = sij = −(∇φi,∇φj)L2(Ω) , i, j = 1, . . . , N .

The solution of this system can then be approximated by standard methods for ordinary
initial value problems. The matrix M is symmetric positive definite and thus invertible.
Multiplying both sides with M−1 from the left yields the ordinary differential equation
u′(t) = M−1Su(t) which has the form (3.1) with the stiff matrix A = M−1S and g = 0 .

We have not yet considered the question of how the nodal basis functions φi look like in
our case. The first step consists of generating a suitable triangulation over the domain Ω.
First, the given domain is approximated by a polygon ΩT . The triangulation is composed
of triangles Ki, i = 1, . . . , E, such that the triangles meet edge-to-edge and vertex-to-
vertex and Ω = K1 ∪K2 ∪ . . . ∪KE . We denote by hi the diameter of the circumcircle of
the triangle Ki and by ρi the radius of the circle inscribed in Ki. We assume that the ratio
of hi to ρi is smaller than some constant, so that triangles with very small or large angles
are avoided. In the following, the inner nodes of our mesh are denoted by a1, . . . , aN . In
the simplest case, we construct piecewise linear basis functions with

φi(aj) =

{
1 , i = j ,

0 , i 6= j
for i, j = 1, . . . , N ,

so that φi is equal to zero on all triangles that do not contain the vertex ai. Since φi = 0
for all i with ai ∈ ∂ΩT , the basis functions are in H1

0 (ΩT ), and moreover form a basis of
the finite-element space SN .

A simple example, where the rectangular domain ΩT is discretized with congruent trian-
gles, is shown in Figure 3.2. Additionally, we depict one of the basis functions φi, that
takes the value one at the vertex ai and is equal to zero on all other vertices.

Since mij and sij are only different from zero, if the vertices ai and aj belong to the
same triangle, the mass matrix M and the stiffness matrix S are sparse. This is also
demonstrated in the following example.

Example 3.1 We take the simple 4×5 - grid with mesh size h and inner vertices a1, . . . , a6,
which is shown in Figure 3.3. If we want to compute, e.g., the entry s11 = (∇φ1,∇φ1)L2(Ω)

of the stiffness matrix S, it suffices to consider the six triangles K1, . . . ,K6 adjacent to a1

separately to obtain

s11 = −
6∑
j=1

∫
Kj

∇φ1∇φ1 d(x, y) = −1

2
h2

(
2

h2
+

1

h2
+

1

h2
+

2

h2
+

1

h2
+

1

h2

)
= −4 .
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ai

φi

ΩT

Figure 3.2: Basis function φi corresponding to the node ai.

In order to determine s12, we only have to investigate K3 and K4, since ∇φ1∇φ2 is zero
on the other triangles. This yields

s12 = −1

2
h2

(
− 1

h2
− 1

h2

)
= 1 .

Similar considerations apply to the remaining entries of the stiffness matrix S. For the
entries (M)ij = (φi, φj)L2(Ω), i, j = 1, . . . , 6, of the mass matrix, the computation is
simplified by using a quadrature formula. If K is a triangle with area |K| and (xk, yk),
k = 1, 2, 3, are the midpoints of the sides, the quadrature rule∫

K
p(x, y) d(x, y) ≈ |K|

3

(
p(x1, y1) + p(x2, y2) + p(x3, y3)

)
is exact for any quadratic polynomial p. By making use of these facts, one can easily
compute

M = h2 · 1

12



6 1 0 1 0 0
1 6 1 1 1 0
0 1 6 0 1 1
1 1 0 6 1 0
0 1 1 1 6 1
0 0 1 0 1 6

 , S =



−4 1 0 1 0 0
1 −4 1 0 1 0
0 1 −4 0 0 1
1 0 0 −4 1 0
0 1 0 1 −4 1
0 0 1 0 1 −4

 .

Note that S has the same structure as the matrix A = I ⊗ L + L ⊗ I from the finite-
difference discretization. The eigenvalues of M−1S all lie in the left complex half-plane.
Their proportionality to 1

h2 expresses again the stiff character of the heat equation. m

In practical computations, the inner products in the mass and the stiffness matrix, are
computed in a clever way by an assembling process. We consider the single triangles
element-wise, determine locally the corresponding integrals on each element, and assemble
the derived information. For a fast and effective computation, the triangles are mapped
by an affine transformation to a reference element K̂, and the integration is performed by
using an appropriate quadrature formula.

Analogously to the scaled Euclidean norm ‖ · ‖h = h‖ · ‖2 for the finite-difference method,
we have to use a suitable discrete L2-norm. This can be motivated by the equality∫

Ω
u2 d(x, y) ≈

N∑
i,j=1

ui(t)uj(t) (φi, φj)L2(Ω) = u(t)TMu(t) .
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Ω
K1

K2

K3

K4

K5

K6

h

a1 a2 a3

a4 a5 a6

Figure 3.3: Regular grid used in Example 3.1.

Since the mass matrixM ∈ RN×N is symmetric and positive definite, there exists a unique
matrix square root M1/2 which is also symmetric positive definite (cf. [26], Section 4.2.4).
The matrix M is unitary diagonalizable by M = Q diag(η1, . . . , ηN )QT and the matrix
square root M1/2 is thus given by Q diag(

√
η1, . . . ,

√
ηN )QT . For u := u(t) ∈ RN , we

therefore define

‖u‖M =
√

(u,u)M , (u,u)M = uTMu = ‖M1/2u‖22 .

For an arbitrary matrix A ∈ CN×N , we then obtain

‖A‖M = sup
x6=0

‖Ax‖M
‖x‖M

= sup
x6=0

‖M1/2AM−1/2M1/2x‖2
‖M1/2x‖2

= ‖M1/2AM−1/2‖2 .

3.1.3 Spectral methods

Later on in this thesis, we will also use a spectral discretization, but only for one-
dimensional problems. For this reason, we mention only briefly the idea behind this
discretization method. A detailed description is then given within the sections of the
corresponding numerical experiments.

The spectral method is based on approximating the unknown solution u by a finite linear
combination of the eigenfunctions ψj,k(x, y) of the Laplacian with homogeneous Dirichlet
boundary conditions. For instance, in the special case when Ω = (0, 1)2, these eigenfunc-
tions read

ψj,k(x, y) = C · sin(jπx) sin(kπy) , j, k ∈ N ,

where the constant C is chosen such that
∫

Ω ψ
2
j,k d(x, y) = 1. The functions ψj,k form an

orthonormal basis of L2(Ω). Because of

∆ψj,k(x, y) = −π2(j2 + k2)ψj,k(x, y) ,

the corresponding eigenvalues are −π2(j2 + k2) for j, k ∈ N. A discretization is now
obtained by substituting the ansatz

u(t, x, y) ≈
n∑

j,k=1

uj,k(t)ψj,k(x, y)
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in the given heat equation, which yields

n∑
j,k=1

u′j,k(t)ψj,k(x, y) = −
n∑

j,k=1

π2(j2 + k2)uj,k(t)ψj,k(x, y) .

This represents a system of ordinary differential equations

u′(t) = Au(t) ,

where u(t) ∈ RN , N = n2, contains the coefficients uj,k(t), that have to be determined.
The discretization matrix A ∈ RN×N is a diagonal matrix with entries −π2(j2 + k2) for
j, k = 1, . . . , n, and norm ‖A‖2 = 2π2N .

In conclusion of this section, the following can be said: Not only for the heat equation,
but also for general abstract or discretized differential equations, we should always keep
in mind that we are concerned with unbounded operators or huge discretization matrices,
whose norm can become arbitrarily large for very fine grids. In simple terms, one might
say that the discretization matrix is approaching more and more the associated unbounded
differential operator, if we refine the spatial grid. With regard to the approximation of
the matrix exponential and related matrix ϕ-functions in exponential integrators, it will
therefore be decisive to obtain error bounds that are not affected by the unboundedness
of the operator A and that do not depend on the norm of the discretization matrix A.

3.2 Strongly continuous semigroups

Let X be some Banach space. We denote by ‖ · ‖ the norm on X as well as the operator
norm that is for a bounded operator B : X → X defined as

‖B‖ = sup
x∈X
x 6=0

‖Bx‖
‖x‖

.

In the following, we are concerned with the abstract semi-linear problem

u′(t) = Au(t) + g
(
t, u(t)

)
, u(0) = u0 , (3.1)

where A : D(A) ⊆ X → X is a linear, in general unbounded, operator on X with domain
of definition D(A). If g

(
t, u(t)

)
= 0, (3.1) reduces to

u′(t) = Au(t) , u(0) = u0 . (3.4)

For u0 ∈ D(A), we assume that there exists a unique solution u(t) of (3.4). Then we can
define an operator semigroup T (t) such that

T (t)u0 := u(t) for t ≥ 0 ,

where T (0) = I is the identity on X and the mapping t 7→ T (t)u0 is continuous from R+
0

to the Banach space X. If we choose u(s) as initial value, the uniqueness of the solution
implies that

T (t)u(s) = T (t)T (s)u0 = u(t+ s) = T (t+ s)u0 ,

indicating the semigroup property T (t)T (s) = T (t + s). These fundamental facts are
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summarized in the following definition.

Definition 3.2 A family
(
T (t)

)
t≥0

of bounded linear operators on a Banach space X is

called a strongly continuous semigroup (or shortly C0-semigroup), if the following condi-
tions are fulfilled:

(a) We have T (t+ s) = T (t)T (s) for all t, s ≥ 0 and T (0) = I.

(b) For every x ∈ X, the orbit map

ξx : R+
0 → X , t 7→ T (t)x

is continuous.

It is well-known that right continuity of the orbit map at zero implies continuity of
ξx on [0,∞). That is, we can replace part (b) in Definition 3.2 by the requirement
limt↘0 ‖T (t)x− x‖ = 0 for all x ∈ X. We immediately derive from Definition 3.2 that the
operators commute, since

T (t)T (s) = T (t+ s) = T (s+ t) = T (s)T (t) .

Furthermore, one can easily prove by induction that

T (nt) = T (t+ . . .+ t) = T (t)n for n ∈ N .

By the continuity of the orbit map ξx, it follows that T (t) is locally bounded on compact
intervals [0, t0], that is ‖T (t)x‖ <∞ for all t ∈ [0, t0], t0 > 0, and every x ∈ X. From the
Uniform Boundedness Principle1, we conclude that a C0-semigroup is uniformly bounded
on each compact interval of R+

0 . This fact implies that every strongly continuous semigroup
is exponentially bounded. More exactly, there exist constants M ≥ 1 and ω ≥ 0 such that
the inequality

‖T (t)‖ ≤Meωt for all t ≥ 0 (3.5)

holds true. To see this, we choose t0 > 0 and M ≥ 1 with ‖T (s)‖ ≤ M for all s ∈ [0, t0]
and set t = s+ nt0 for n ∈ N0. Then

‖T (t)‖ ≤ ‖T (s)‖‖T (t0)‖n ≤Mn+1 ≤Meωnt0 ≤Meωt for all t ≥ 0 ,

where ω = ln(M)/t0 ≥ 0. If the semigroup satisfies inequality (3.5), we also say that T (t)
is of type (M,ω). At this point, it should be noted that there are also semigroups which
satisfy (3.5) with ω < 0.

Since T (t)u0 can be regarded as the unique solution of the abstract equation (3.4) with
initial value u0, we should analyze strongly continuous semigroups with respect to their
differentiability. First, we point out that right differentiability of the orbit map ξx at t = 0
is equivalent to differentiability of ξx on R+

0 . Its derivative is given by

ξ′x(t) = T (t) ξ′x(0) for all t ≥ 0 .

The right derivative ξ′x(0) at t = 0 yields an operator A that is called the infinitesimal
generator of the C0-semigroup.

1Uniform Boundedness Principle: If a set T of bounded linear operators is pointwise bounded, then it is
uniformly bounded (e.g., Theorem 3.17 in [74]).
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Definition 3.3 The infinitesimal generator (or simply generator) A : D(A) ⊆ X → X of
a strongly continuous semigroup

(
T (t)

)
t≥0

is defined as

Ax := ξ′x(0) =
d

dt
T (t)x

∣∣∣
t=0

= lim
h↘0

1

h

(
T (h)x− x

)
for every x in the domain

D(A) := {x ∈ X : lim
h↘0

1

h

(
T (h)x− x

)
exists} . (3.6)

The following example illustrates that every matrix A ∈ CN×N generates, as a special
case of a linear operator on CN , a C0-semigroup. In analogy to the matrix exponential, it
provides a motivation to think of the semigroup T (t) as an operator exponential etA. For
this reason, we will also write etA for T (t).

Example 3.4 We consider a matrix A ∈ CN×N on X = CN . It is well known that the
solution of the initial value problem u′(t) = Au(t), u(0) = u0, is given by

T (t)u0 := etAu0 , t ∈ R .

One can easily check that etA satisfies the semigroup properties and that d
dt e

tA = AetA

for all t ∈ R. Consequently, T (t) is not only a C0-semigroup, but moreover a C0-group
(i.e., Definition 3.2 holds for t ∈ R) with infinitesimal generator A. If the field of values
W (A) is contained in the left complex half-plane, the semigroup is bounded by one, that
is, ‖etA‖ ≤ 1 with M = 1 and ω = 0 in (3.5), cf. Lemma 7.1 below. Such semigroups of
type (1, 0) are called contraction semigroups. m

It follows directly from the definition that the generator A of a strongly continuous semi-
group T (t) is a linear operator. Another important property is that the C0-semigroup and
its generator commute on D(A). If x ∈ D(A), then also T (t)x ∈ D(A) and

d

dt
T (t)x = T (t)Ax = AT (t)x for all t ≥ 0 .

The infinitesimal generator A is a closed and densely defined operator that determines the
semigroup uniquely. Closedness means that xn → x and Axn → y in X for any sequence
(xn)n∈N in D(A) implies x ∈ D(A) and Ax = y. An operator A is called densely defined,
if its domain D(A) is dense in X.

It is also important to look at the spectral properties of the generator A. For this purpose,
we recall the following definition.

Definition 3.5 The resolvent set of a closed linear operator A : D(A) ⊆ X → X is
defined by

ρ(A) := {z ∈ C : zI −A is bijective} .
The spectrum of A is given as σ(A) := C \ ρ(A).

Assuming z ∈ ρ(A), the inverse R(z,A) := (zI−A)−1 exists. It is also called the resolvent
of A. If A is closed, the resolvent R(z,A) is closed as well. By definition, the domain of
R(z,A) is equal to X and we can conclude from the Closed Graph Theorem2 that

R(z,A) : X → D(A) , z ∈ ρ(A)

2Closed Graph Theorem: If X, Y are Banach spaces and B : D(B) ⊆ X → Y is a closed linear operator
with D(B) = X, then B is bounded (e.g., Theorem 3.10 in [74]).
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is a bounded operator on X. Furthermore, we have the identity

zR(z,A)− I = AR(z,A) , z ∈ ρ(A)

and, for all x ∈ D(A), the resolvent commutes with A, i.e., AR(z,A)x = R(z,A)Ax. The
mapping z 7→ R(z,A), z ∈ ρ(A), is infinitely many times complex differentiable with

dn

dzn
R(z,A) = (−1)n n!R(z,A)n+1 , n ∈ N .

For a strongly continuous semigroup of type (M,ω) with generator A, powers of the
resolvent are bounded by

‖R(z,A)n‖ ≤ M

(Re(z)− ω)n
for Re(z) > ω , n ∈ N . (3.7)

Conversely, the following theorem provides necessary and sufficient conditions, including
(3.7), for A to generate a C0-semigroup.

Theorem 3.6 (Hille-Yosida) A linear operator A : D(A) ⊆ X → X is the infinitesimal
generator of a C0-semigroup with

‖T (t)‖ ≤Meωt for M ≥ 1, ω ∈ R and all t ≥ 0

if and only if the following conditions are satisfied:

1. A is a closed and densely defined operator.

2. For every z ∈ C with Re(z) > ω it holds that z ∈ ρ(A) and inequality (3.7) is
satisfied for all n ∈ N.

Moreover, we mention another important generation theorem. For later purposes, this
theorem is only required for the case of a Hilbert space H.

Theorem 3.7 (Lumer-Phillips) Let A be a linear operator on some Hilbert space H.
If Re(Ax, x) ≤ 0 for all x ∈ D(A) and Range(z0I−A) = H for some z0 with Re(z0) > 0,
then A is the infinitesimal generator of a C0-semigroup of contractions on H.

Resolvents can be used for the approximation of the semigroup T (t) by a rational function.
If A is an infinitesimal generator of a strongly continuous semigroup, a common resolvent
based approximation is the implicit Euler scheme

etAx = T (t)x = lim
n→∞

(
n

t
R
(n
t
,A
))n

x = lim
n→∞

(
I − t

n
A

)−n
x , x ∈ X . (3.8)

Later on in this thesis, we will always be concerned with operators A generating a contrac-
tion semigroup of type (1, 0). In this case, we have ‖ntR(nt , A)n‖ ≤ 1 and the conditions
in Brenner and Thomée [10] for the rational approximation of a semigroup are fulfilled.
Under these assumptions, the implicit Euler method represents a special case of the results
in [10]. For x ∈ D(A2), Brenner and Thomée have shown that the implicit Euler scheme
is convergent of order one. More precisely, it holds∥∥∥∥∥T (t)x−

(
I − t

n
A

)−n
x

∥∥∥∥∥ ≤ C t2

n
‖A2x‖ .
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A similar bound of this form can also be obtained for general semigroups of type (M,ω),
if we consider a rescaled semigroup A−ωI and define a new norm being equivalent to ‖ · ‖
to avoid the constant M .

A second possible approximation to T (t), that is strongly related to the implicit Euler
method and represents a polynomial approach, is the explicit Euler scheme

etAx = T (t)x = lim
n→∞

(
I +

t

n
A

)n
x .

The existence of this limit is only ensured, if A is a bounded operator. Whereas (3.8)
involves powers of the bounded resolvent, the explicit Euler formula contains powers of
the possibly unbounded operator A, so that the explicit Euler scheme generally may fail
to exist or converge, respectively. To guarantee that (I + t

nA)nx is well defined for all
n ∈ N, we must assume that x ∈

⋂∞
n=1D(An), which imposes a strong restriction on x.

3.3 Exponential Runge-Kutta methods

Exponential integrators provide an interesting class of numerical methods for the time
integration of stiff ordinary differential equations. The basic idea of these integrators is
to separate the linear term of the differential equation u′(t) = Au(t) + g

(
t, u(t)

)
, that can

be solved exactly, from the nonlinear part g
(
t, u(t)

)
. An important class of exponential

integrators are exponential Runge-Kutta methods which rely on the variation of constants
formula

u(tn + τ) = eτAu(tn) +

∫ τ

0
e(τ−σ)Ag

(
tn + σ, u(tn + σ)

)
dσ (3.9)

for the solution of the semi-linear problem at time tn+1 = tn + τ . In the functional ana-
lytic framework, the notation eτA is here used for the C0-semigroup T (τ) = eτA generated
by the linear operator A on some Banach space X, or respectively, for the matrix ex-
ponential in the finite dimensional case. The following results hold for operators A, that
generate a strongly continuous semigroup, as well as for matrices, stemming from a spatial
discretization of an abstract differential operator.

The construction of exponential Runge-Kutta schemes is similar to standard Runge-Kutta
methods. We approximate the integral in (3.9) by a quadrature formula with nodes
0 ≤ ci ≤ 1 and weights bi(τA), i = 1, . . . , s, in which the nonlinearity is approximated
and the semigroup is treated exactly. Since the integral involves the unknown solution u,
internal stages are required. The internal stage values Uni ≈ u(tn + ciτ) are computed by
another quadrature formula with the same nodes ci and weights aij(τA) applied to

u(tn + ciτ) = eciτAu(tn) +

∫ ciτ

0
e(ciτ−σ)Ag

(
tn + σ, u(tn + σ)

)
dσ . (3.10)

Assume we are given an approximation un ≈ u(tn), this leads to the exponential Runge-
Kutta scheme

Uni = eciτAun + τ
s∑
j=1

aij(τA)Gnj ≈ u(tn + ciτ) ,

Gnj = g(tn + cjτ, Unj) ≈ g
(
tn + cjτ, u(tn + cjτ)

)
,

un+1 = eτAun + τ
s∑
i=1

bi(τA)Gni ≈ u(tn + τ) .
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If we set A equal to zero, this one-step method reduces to the standard Runge-Kutta
scheme with coefficients aij(0) and bi(0). A desirable feature of numerical time integration
methods is the preservation of equilibria u∗ satisfying Au∗ + g(t, u∗) = 0. By postulating
u∗ = un = Uni for all i and all n, it follows that the coefficients have to fulfill

s∑
i=1

bi(z) = ϕ1(z) ,
s∑
j=1

aij(z) = ciϕ1(ciz) . (3.11)

Replacing g
(
tn+σ, u(tn+σ)

)
in the variation of constants formulas (3.9) and (3.10) by an

interpolation polynomial with nodes c1, . . . , cs, we can conclude that the weights aij(z) and
bi(z) of the exponential Runge-Kutta method may be expressed as a linear combination
of the ϕ-functions

ϕ`(z) =

∫ 1

0
e(1−θ)z θ`−1

(`− 1)!
dθ , ` ≥ 1 . (3.12)

The first two of these ϕ-functions are given by

ϕ1(z) =
ez − 1

z
, ϕ2(z) =

ez − 1− z
z2

.

In the literature, a number of equivalent definitions for the ϕ-function can be found besides
the integral representation (3.12), for example,

ϕ`(z) =
ez − t`−1(z)

z`
, t`−1(z) =

`−1∑
k=0

zk

k!
, (3.13)

where t`−1(z) is the (`− 1)st order Taylor polynomial of the exponential function. These
functions can be extended holomorphically to the point zero by ϕ`(0) = 1

`! and are therefore
analytic for all z ∈ C. Moreover, the ϕ-functions fulfill the recurrence relation

ϕ`+1(z) =
ϕ`(z)− 1

`!

z
for ` ≥ 0 with ϕ0(z) := ez .

By our assumption, A generates a strongly continuous semigroup on some Banach space
X, so that we can use formula (3.12) and the bound (3.5) to conclude that the operator
functions ϕ`(τA) are bounded on X by

‖ϕ`(τA)‖ ≤
∫ 1

0
‖e(1−θ)τA‖︸ ︷︷ ︸
≤Meωτ(1−θ)

θ`−1

(`− 1)!
dθ ≤Mϕ`(ωτ) .

The simplest exponential Runge-Kutta method is to take s = 1 and c1 = 0, corresponding
to an approximation of the nonlinearity in the integral by g

(
tn +σ, u(tn +σ)

)
≈ g(tn, un).

This yields the exponential Euler method

un+1 = eτAun + τϕ1(τA)g(tn, un) . (3.14)

In practical applications, where the operator A is represented by a large matrixA ∈ CN×N
after a discretization in space, it is advantageous to replace the matrix exponential eτA

by the equivalent expression I + τϕ1(τA)A. This results in the representation

un+1 = un + τϕ1(τA)
(
Aun + g(tn,un)

)
,

which can be evaluated more efficiently than (3.14), since only one product of a matrix
function and a vector has to be computed instead of two. In the next chapter, we will
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discuss Krylov subspace methods that constitute a powerful tool for the approximation of
such products of a matrix function with some vector.

The construction of exponential Runge-Kutta methods can best be explained by means of
the linear problem

u′(t) = Au(t) + f(t) , u(0) = u0 . (3.15)

In this case, the variation of constants formula (3.9) simplifies to

u(tn + τ) = eτAu(tn) +

∫ τ

0
e(τ−σ)Af(tn + σ) dσ

= eτAu(tn) + τ

∫ 1

0
e(1−θ)τAf(tn + τθ) dθ .

(3.16)

Substituting f(tn + τθ) by the Lagrange interpolation polynomial

f(tn + τθ) =

s∑
i=1

f(tn + ciτ)`i(θ) , `i(θ) =

s∏
j=1
j 6=i

θ − cj
ci − cj

,

with 0 ≤ ci ≤ 1 and ci 6= cj for i 6= j, we obtain the exponential quadrature rule

un+1 = eτAun + τ

s∑
i=1

bi(τA)f(tn + ciτ) . (3.17)

For s = 2, for example, we have the weights

b1(z) =
1

c1 − c2
ϕ2(z)− c2

c1 − c2
ϕ1(z) ,

b2(z) =
1

c2 − c1
ϕ2(z)− c1

c2 − c1
ϕ1(z) ,

which satisfy the first requirement in (3.11). The exponential trapezoidal rule is obtained
by taking the nodes c1 = 0 and c2 = 1.

For the convergence analysis of the exponential quadrature rule (3.17), we compute the
Taylor expansion of f(tn + σ) around tn in the variation of constants formula (3.16).
Similarly, we expand the term f(tn + ciτ) in the numerical solution (3.17) in a Taylor
series and compare both expansions. Solving the error recursion en = un − u(tn), it is
proven in [43] by Hochbruck and Ostermann that the error is uniformly bounded by

‖un − u(tn)‖ ≤ Cτp
n−1∑
j=0

∫ tj+1

tj

‖f (p)(σ)‖ dσ , tn ∈ [0, T ] , (3.18)

for f (p) ∈ L1(0, T ;X), if the method satisfies the order conditions

ϕj(τA)−
s∑
i=1

bi(τA)
cj−1
i

(j − 1)!
= 0 , j = 1, . . . , p .

The space L1(0, T ;X) contains all functions g : [0, T ] → X such that
∫ T

0 ‖g(s)‖ ds < ∞
for the norm ‖ · ‖ on X. The constant C in (3.18) depends only on T , but not on the
chosen step size τ . Especially, for the exponential Euler method, we have the error bound

‖un − u(tn)‖ ≤ Cτ sup
0≤t≤tn

‖f ′(t)‖ ,
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whenever the function f : [0, T ]→ X is differentiable with supt∈[0,T ] ‖f ′(t)‖ <∞.

For a more general semi-linear problem (3.1), involving the nonlinearity g
(
t, u(t)

)
, the

construction and analysis becomes more complicated. In this case, we have expressions of
the form eτA

(
g(tn, un) − g

(
tn, u(tn)

))
that have to be bounded in a suitable way. For a

detailed description of exponential Runge-Kutta methods for this more general semi-linear
problem, we refer the reader to [42].

Usually, the semi-linear problem in (3.1) arises from a fixed linearization of some evolution
equation u′(t) = F

(
t, u(t)

)
, leading to F

(
t, u(t)

)
= Au(t)+g

(
t, u(t)

)
with A ≈ ∂F

∂u (t0, u0).
By using a continuous linearization along the current numerical solution un ≈ u(tn) in-
stead, we obtain so-called exponential Rosenbrock methods, whose simplest representative
is the exponential Rosenbrock-Euler method given by

un+1 = un + τϕ1(τAn)F (tn, un) , An =
∂F

∂u
(tn, un) .

Beside exponential one-step methods, it is also possible to construct exponential multistep
methods that are related to explicit Adams methods. The idea behind these multistep
methods is to exploit the information from previous time steps for the calculation of the
next approximate value un+1 (cf. Hochbruck and Ostermann [45]).



Chapter 4

Krylov subspace methods

In the previous chapter, we have seen that the application of an exponential integrator
to the semi-discrete problem u′(t) = Au(t) + g

(
t,u(t)

)
requires the evaluation of the

product of the matrix ϕ-functions with some vector v, that is, ϕ`(τA)v for some ` ∈ N.
In general, we are concerned with large and sparse discretization matrices A ∈ CN×N .
Since the matrix function f(A) is usually not sparse for arbitrary functions f defined on
σ(A), it is inconvenient to first compute f(A) and then to multiply the result by the
vector v. Instead, we will approximate the action of f(A) on the vector v by projecting
the problem onto a suitable Krylov subspace of much smaller dimension than N .

Principally, there are two main options available: The use of a standard (polynomial)
Krylov subspace yields an approximation of the form

f(A)v ≈ pm−1(A)v , pm−1 ∈ Pm−1 ,

whereas rational Krylov subspace methods lead to an approximation

f(A)v ≈ rm−1(A)v , rm−1 =
pm−1

qm−1
∈ Pm−1

qm−1
.

Hereby, we denote by
Pm−1

qm−1
=

{
pm−1(z)

qm−1(z)
: pm−1 ∈ Pm−1

}
the space of all rational functions with numerator polynomial of degree at most m − 1
and a fixed chosen denominator polynomial qm−1 ∈ Pm−1, whose roots have to be distinct
from the eigenvalues of A. The properties of the rational Krylov subspace approximation
are determined by the particular choice of qm−1.

Before we study standard and rational Krylov subspace methods on the basis of [30,
38, 41, 69, 70, 72, 73, 84], we first summarize the most important facts about orthogonal
projections following [30] and [73]. After that, we discuss the near-optimality property
and the efficient computation of Krylov subspace approximations, especially for the case
of the matrix ϕ-functions (see [72,77]).

4.1 Orthogonal projections

Since our approximation methods for f(A)v are based on the projection onto some Krylov
subspace, we resume here the basic results on projectors. Later on, we will solely deal
with orthogonal projections and, therefore, we only describe these.
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A projector P ∈ CN×N is a linear mapping from
a vector space CN to itself such that P 2 = P is
fulfilled. If P is a projector, the same holds true
for the so-called complementary projector I −P .
It is well-known that Range(P ) = Null(I − P ),
and conversely Range(I − P ) = Null(P ). Fur-
thermore, we have Range(P ) ∩ Null(P ) = {0}.
This shows that a projector separates the vector
space CN into two complementary subspaces, that
is, CN = Range(P )⊕Null(P ).

v

Pv

Pv − v

S

Figure 4.1: Orth. projection
of v onto the subspace S.

Let (· , ·) denote the inner product on CN . Then an orthogonal projector onto the subspace
S is defined by the requirement that

Pv ∈ S and Pv − v ⊥ S ,

where orthogonality is meant with respect to the inner product on CN . Alternatively, a
projector can be recognized as an orthogonal projector by the condition

(v,Pw) = (Pv,w) for all v,w ∈ CN .

That means P has to be self-adjoint with respect to the chosen inner product. For the
Euclidean inner product (v,w) = wHv, we simply have P = PH .

Given a matrix Vm ∈ CN×m, whose columns build an orthonormal basis of the m-dimensio-
nal subspace S, the orthogonal projector Pm reads VmVm

+, where Vm
+ ∈ Cm×N is the

Moore-Penrose pseudoinverse of Vm.

Definition 4.1 For Vm ∈ CN×m, the Moore-Penrose inverse of Vm is the unique solution
of the four equations

VmVm
+Vm = Vm , (Vm

+Vm)∗ = Vm
+Vm ,

Vm
+VmVm

+ = Vm
+ , (VmVm

+)∗ = VmVm
+ ,

where Vm
+Vm ∈ Cm×m and VmVm

+ ∈ CN×N .

The notation B∗ in Definition 4.1 indicates the adjoint of B with respect to the chosen
inner product (· , ·) on CN or Cm, fulfilling the property

(Bv,w) = (v,B∗w) for all v,w ∈ CN or v,w ∈ Cm .

Hereby, the vector space Cm is always endowed with the standard Euclidean inner product,
whereas the inner product on CN is customized for the current application.

Any inner product (· , ·) : CN × CN → C can be written as

(v,w)M = wHMv , v,w ∈ CN

with a positive definite Hermitian matrix M ∈ CN×N (e.g., [27]). The orthogonal projec-
tor onto S with respect to (· , ·)M is thus given as Pm = VmVm

+ = VmVm
HM . This can

easily be verified by checking that Vm
+ = Vm

HM fulfills all conditions in Definition 4.1.
Since M is a positive definite Hermitian matrix, we can conclude that

‖v‖M =
√

(v,v)M = ‖M1/2v‖2 .
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Considering, for example, the finite-element method, the matrix M is given as the mass
matrix. If CN is equipped with the standard Euclidean inner product, we have M = I
and Vm

+ = Vm
H, so that Pm = VmVm

H.

Of course, an orthogonal projector can also be defined in the continuous case: Let H
be some Hilbert space with inner product (· , ·) and let S ⊆ H be an m-dimensional
subspace onto which we want to project orthogonally. Since H is a Hilbert space, we
can find an orthonormal basis v1, . . . , vm of S, that we collect in the so-called quasi-
matrix1 Vm = [v1 v2 · · · vm]. For the projection operator, we use the analogue notation
Pm = VmV

+
m with

Vm :


Cm → H a1

...
am

 7→
m∑
j=1

ajvj
and V +

m :


H → Cm

v 7→

 (v, v1)
...

(v, vm)

 .
Then the orthogonal projection of an arbitrary vector v ∈ H onto S is given as

Pmv = VmV
+
m v = Vm

 (v, v1)
...

(v, vm)

 =
m∑
j=1

(v, vj)vj .

4.2 Standard Krylov subspace

Krylov methods have a long history
in numerical analysis. The standard
(also called polynomial) Krylov sub-
space goes back to 1931, when the
Russian applied mathematician Alek-
sey N. Krylov studied the computation
of eigenvalues by using the sequence
v,Av,A2v, . . ., in order to find the
characteristic polynomial coefficients of
the matrixA, see [49]. For that reason,
subspaces of the form as in the follow-
ing definition have later been named as
Krylov subspaces. Figure 4.2: Krylov in the 1930s2

Definition 4.2 For m ≥ 1, the mth Krylov subspace of the matrix A ∈ CN×N and the
vector v ∈ CN is defined by 2

Km(A,v) := span{v,Av, . . . ,Am−1v} = {p(A)v : p ∈ Pm−1} .

Km(A,v) contains all linear combinations of the images of the vector v under the kth
power of the matrix A for k = 0, . . . ,m− 1. These are exactly all matrix polynomials of

1The term “quasi-matrix” originates from Stewart [82].
2http://en.wikipedia.org/wiki/Aleksey Krylov
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degree smaller than or equal to m − 1 times v. The Krylov subspace is invariant under
arbitrary shifts, i.e., Km(A,v) = Km(A− γI,v) for any γ ∈ C.

Since we have seen in Chapter 2 that all matrix functions f(A) can be represented by a
matrix polynomial, it seems reasonable to use an approximation of the form

f(A)v ≈ p(A)v ∈ Km(A,v) , p ∈ Pm−1 .

Besides the minimal polynomial pmin
A (z) = (z−λ1)m1 · · · (z−λr)mr , see (2.1), we define the

minimal polynomial pmin
A,v(z) of A with respect to the vector v to be the monic polynomial

of lowest degree such that pmin
A,v(A)v = 0 . This polynomial has the form

pmin
A,v(z) = (z − λ1)l1 · · · (z − λr)lr with lk ≤ mk , k = 1, . . . , r ,

and divides any polynomial p with p(A)v = 0 , especially the minimal polynomial of A.
The dimension of Km(A,v) is for m = 1, 2, . . . equal to m, until m reaches deg(pmin

A,v) =: µ.
For m ≥ µ, the Krylov subspace is invariant under A and we have Km(A,v) = Kµ(A,v),
that is,

K1(A,v) ( K2(A,v) ( . . . ( Kµ(A,v) = Kµ+1(A,v) = . . . .

We therefore call µ the invariance index of the Krylov subspace Km(A,v). The next
theorem shows that for every function f , which is defined on the spectrum of A, we have
f(A)v ∈ Kµ(A,v) (see, e.g., Higham [38], Theorem 13.2).

Theorem 4.3 Let f be defined on σ(A) and let pmin
A,v(z) = (z − λ1)l1 · · · (z − λr)

lr be
the minimal polynomial of A with respect to v. If p is the unique Hermite interpolation
polynomial with deg(p) < µ = l1 + . . .+ lr satisfying

p(j)(λk) = f (j)(λk) for j = 0, . . . , lk − 1 , k = 1, . . . , r ,

then f(A)v = p(A)v holds true.

Usually, the invariance index µ can be quite large. In this case, we choose an approximation
for f(A)v in the mth Krylov subspace of order m < µ by using a suitable compression of
the matrix A onto Km(A,v). Before we can define the Krylov subspace approximation
of f(A)v, we have to construct an orthonormal basis Vm = [v1 v2 · · · vm] ∈ CN×m of
Km(A,v). Here, we restrict ourselves to the Euclidean inner product and its induced
matrix norm, the spectral norm, and write briefly ‖ · ‖ instead of ‖ · ‖2. In the subsequent
Section 4.5, we will then explain how the following facts and results can be easily adapted
to a general inner product on CN . For the computation of the orthonormal basis Vm, a
stabilized Gram-Schmidt process is used, which is also known as Arnoldi procedure. It is
described in Algorithm 4.4. Assuming that we are given an orthonormal basis Vm, the
new basis vector vm+1 is derived from

ṽm+1 = Avm −
m∑
j=1

hj,mvj , vm+1 =
1

hm+1,m
ṽm+1 , hm+1,m = ‖ṽm+1‖ .

The orthogonality condition vHj vm+1 = 0 for j = 1, . . . ,m implies that the coefficients

must satisfy hj,m = vHj Avm. This yields the Arnoldi decomposition

AVm = VmHm + hm+1,mvm+1e
T
m = Vm+1H̃m , (4.1)
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where em denotes the mth unit vector in Cm, Hm = (hi,j)
m
i,j=1 ∈ Cm×m is an unreduced

upper Hessenberg matrix and

H̃m =

[
Hm

0 · · · 0 hm+1,m

]
∈ C(m+1)×m .

A Hessenberg matrix is a special kind of matrix whose entries hi,j satisfy hi,j = 0 for all
i > j+1. We say that an upper Hessenberg matrix is unreduced, if the matrix has no zero
subdiagonal entries. With the help of the orthogonality condition Vm

HVm = I, we obtain
from (4.1) the compression

Vm
HAVm = Hm ∈ Cm×m

of A ∈ CN×N onto Km(A,v) with respect to Vm. If A is Hermitian or skew-Hermitian,
the matrix Hm is Hermitian or skew-Hermitian as well, since

Hm = Vm
HAVm = Vm

HAHVm = Hm
H for Hermitian A ,

Hm = Vm
HAVm = −VmHAHVm = −Hm

H for skew-Hermitian A .

As a result, Hm has to be tridiagonal and the Arnoldi process reduces to a short three-
term recurrence relation, which is then called the Hermitian or skew-Hermitian Lanczos
algorithm, see [63] and the references therein.

Algorithm 4.4 Arnoldi process

given: A ∈ CN×N , v ∈ CN

v1 = v/‖v‖
for m = 1, 2, . . . do

for j = 1, . . . ,m do

hj,m = vHj Avm

end for

ṽm+1 = Avm −
∑m

j=1 hj,mvj

hm+1,m = ‖ṽm+1‖
vm+1 = ṽm+1/hm+1,m

end for

With these considerations, we can now define the Arnoldi approximation of order m to
f(A)v as

f(A)v ≈ Vmf(Vm
HAVm)Vm

Hv = ‖v‖Vmf(Hm)e1 . (4.2)

A further motivation for the Arnoldi approximation, presented in [41] by Hochbruck and
Lubich, is based on the Full Orthogonalization Method (FOM) in [71] applied to the linear
system (ξI −A)x(ξ) = v, whose solution x depends on the shift ξ. The Full Orthogo-
nalization Method constitutes an iterative technique for solving large linear systems. It
determines an approximate solution x(ξ) ≈ xm(ξ) = Vmym(ξ) ∈ Km(A,v) such that the
residual rm(ξ) = v − (ξI −A)xm(ξ) is orthogonal to the Krylov subspace, which means

0 = Vm
H
(
v − (ξI −A)xm(ξ)

)
= ‖v‖e1 − (ξI −Hm)ym(ξ) , (4.3)
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where we assume that ξ 6∈ W (A). Since σ(Hm) ⊆ W (Hm) ⊆ W (A) (see relation (4.6)
below for Hm = Sm), the matrix ξI − Hm is invertible, and (4.3) is thus equivalent
to xm(ξ) = ‖v‖Vm(ξI −Hm)−1e1. Hence, the Full Orthogonalization Method uses the
approach

(ξI −A)−1v = x(ξ) ≈ xm(ξ) = ‖v‖Vm(ξI −Hm)−1e1 . (4.4)

We assume that the function f is analytic in a neighborhood Ω of W (A). The Arnoldi
approximation to f(A)v is now obtained by replacing (ξI−A)−1v in the Cauchy integral
formula in Theorem 2.8 by the relation (4.4). This gives

f(A)v =
1

2πi

∫
Γ

f(ξ)

ξ −A
v dξ ≈ ‖v‖Vm

1

2πi

∫
Γ

f(ξ)

ξ −Hm
e1 dξ = ‖v‖Vmf(Hm)e1 ,

where Γ is a closed contour in Ω which surrounds the field of values W (A) ⊇W (Hm).

Usually, (4.2) is a good approximation to f(A)v for m � N . The advantage of the
Arnoldi approximation is that the problem has been reduced from dimension N to m, and
we just have to evaluate a matrix function for the small matrix Hm. This can be done by
algorithms for dense matrices (see, e.g., Higham [38]).

For later purposes, especially in view of rational Krylov subspace methods, we are not only
interested in a basis Vm of Km(A,v) built by the Arnoldi process, but also in arbitrary
orthonormal bases Vm of the Krylov subspace. In the following, we therefore generalize the
Arnoldi approximation to any orthonormal basis of Km(A,v). For the sake of simplicity,
we restrict ourselves to orthonormal bases with respect to the standard Euclidean inner
product. However, all the following results remain valid for orthonormal bases with respect
to an arbitrary inner product. The case of a not necessarily orthonormal basis and an
arbitrary inner product, involving the Moore-Penrose inverse mentioned in the previous
section, is described in Güttel’s thesis [30]. In later applications, we will indicate, if a
different inner product is used.

For an arbitrary orthonormal basis Vm of Km(A,v), the compression Vm
HAVm of the

matrix A to the Krylov subspace does usually not coincide with the upper Hessenberg
matrix Hm from the Arnoldi decomposition. This suggests the introduction of a new
notation for the compression of A with respect to a general orthonormal basis given by
Sm = Vm

HAVm.

Definition 4.5 Let Vm be an orthonormal basis of Km(A,v) and let the function f be
analytic on W (A). The Krylov subspace approximation of order m to f(A)v is defined as

f(A)v ≈ Vmf(Sm)Vm
Hv , (4.5)

where Sm = Vm
HAVm ∈ Cm×m is the compression of A to Km(A,v).

A justification of this definition follows from the fact that the Krylov subspace approxima-
tion is independent of the chosen orthonormal basis. To see this, we take two orthonormal
bases Vm and Wm of Km(A,v). Then there exists a nonsingular matrix U ∈ Cm×m with
Wm = VmU . Since

I = Wm
HWm = UHVm

HVmU = UHU ,

the matrix U has to be unitary, i.e., U−1 = UH , and with Theorem 2.7, part 3, we obtain
the desired equality

Wmf(Wm
HAWm)Wm

Hv = VmUf(U−1Vm
HAVmU)U−1Vm

Hv = Vmf(Vm
HAVm)Vm

Hv .
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The eigenvalues of the compression Sm = Vm
HAVm of A onto Km(A,v) are known as

Ritz values of A (see [64]). They are also independent of the particular choice of the
basis, since, for arbitrary orthonormal bases Vm and Wm of Km(A,v), the compressions
Vm
HAVm and Wm

HAWm are similar.

An important property of this compression is that the field of values of Sm is contained
in the field of values of A: For an arbitrary x ∈ Cm with ‖x‖ = 1, it holds

xHSmx = xHVm
HAVmx = yHAy ∈W (A) , (4.6)

by setting y := Vmx ∈ CN with ‖y‖ = ‖Vmx‖ = ‖x‖ = 1, and so W (Sm) ⊆ W (A). This
guarantees the existence of f(Sm) in Definition 4.5, if we assume that f is analytic on
W (A).

It is easy to check that Pm = VmVm
H is an orthogonal projector fulfilling

Range(Pm) = Km(A,v) , Pm
2 = Pm , Pm

H = Pm .

The expression Am = PmAPm can thus be regarded as a restriction of A onto the Krylov
subspace Km(A,v) via orthogonal projection.

Lemma 4.6 Let Vm be an orthonormal basis of Km(A,v). If f is analytic on W (A) and,
in addition, defined at zero, we find

Vmf(Sm)Vm
Hv = f(Am)v ,

where Sm = Vm
HAVm, Am = PmAPm, and Pm = VmVm

H is the orthogonal projector onto
the Krylov subspace Km(A,v).

Proof. Because of Am = VmSmVm
H, we have σ(Am) = σ(Sm) ∪ {0}, where the eigenvalue

zero occurs in the minimal polynomial pmin
Am

with multiplicity one. Hence, the assumption
on f ensures that f(Am) is defined. Let now p be a polynomial that interpolates f at
σ(Sm) and zero in the Hermite sense. Then the relation

Vmf(Sm)Vm
Hv = Vmp(Sm)Vm

Hv = p(Am)v = f(Am)v

yields the desired result. o

If the function f is analytic on W (A), but not defined at zero, we still have the relation
Vmf(Sm)Vm

Hv = p(Am)v, where p is the polynomial that interpolates f at σ(Sm) in the
Hermite sense. Later, we will consider the ϕ-functions which are holomorphic on the
whole complex plane and thus, in particular, defined at zero. For functions of this type,
we can always write the Krylov subspace approximation of ϕ(A)v as ϕ(Am)v instead
of Vmϕ(Sm)Vm

Hv. On the one hand, the notation Vmϕ(Sm)Vm
Hv is more advantageous

in view of computational issues and, on the other hand, the alternative representation
ϕ(Am)v provides a shorter notation for the Krylov subspace approximation.

If f is a polynomial of degree less than or equal to m− 1, the Krylov approximation (4.5)
even yields the exact result (e.g., Saad [72], Lemma 3.1).

Lemma 4.7 Let Vm be an orthonormal basis of Km(A,v) and set Sm = Vm
HAVm and

Am = PmAPm for Pm = VmVm
H. Moreover, let p ∈ Pm−1 be arbitrary. Then we have

p(A)v = Vmp(Sm)Vm
Hv = p(Am)v.
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Proof. Since p is a polynomial of maximal degree m− 1, it is sufficient to show the claim
for the monomials p0(z) = 1, p1(z) = z, . . . , pm−1(z) = zm−1, that means

Ajv = VmSm
j Vm

Hv = Am
j v for 0 ≤ j ≤ m− 1 .

The statement is clearly true for j = 0, since

A0v = v = Pmv = VmVm
Hv = VmSm

0 Vm
Hv = Am

0 v .

So, we assume that the assertion holds true for some k with 0 ≤ k ≤ m − 2. Because of
Ak+1v ∈ Km(A,v) for 0 ≤ k ≤ m− 2, we obtain by induction

Ak+1v = PmAA
kv = (PmAPm)Akv

= (VmSmVm
H)VmSm

k Vm
Hv = VmSm

k+1Vm
Hv = Am

k+1 v ,

which proves the result. o

Not only for polynomials of degree less than the dimension of the Krylov subspace, but
also if we perform the Krylov iteration until the invariance index µ is reached, the Krylov
approximation (4.5) becomes exact. In this case, the Krylov subspace Kµ(A,v) is invariant
under multiplication with A. This means that there exists a matrix T ∈ Cm×m with
AVµ = VµT which is equal to Sµ, due to

Sµ = V H
µ AVµ = V H

µ VµT = T .

Using this relation, it follows for ξ 6∈W (A) ⊇W (Sµ) that

ξVµ −AVµ = ξVµ − VµSµ ⇐⇒ 1

ξ −A
VµV

H
µ = Vµ

1

ξ − Sµ
V H
µ

and hence
1

ξ −A
VµV

H
µ v =

1

ξ −A
v = Vµ

1

ξ − Sµ
V H
µ v .

The Cauchy integral formula then implies

f(A)v =
1

2πi

∫
Γ

f(ξ)

ξ −A
v dξ =

1

2πi

∫
Γ
Vµ

f(ξ)

ξ − Sµ
V H
µ v dξ = Vµf(Sµ)V H

µ v ,

where Γ is a simple closed rectifiable curve enclosing W (A). The Krylov subspace appro-
ximation in Kµ(A,v) thus yields the exact result.

In general, we do not iterate until the invariance index µ is reached, we rather com-
pute a polynomial approximation of f(A)v in Km(A,v): By Theorem 2.5, f(Sm) can
be represented as p(Sm), where p is a polynomial of degree less than or equal to m − 1.
This polynomial p interpolates f at the Ritz values of A, that is, in the eigenvalues of
Sm according to their multiplicity in the minimal polynomial of Sm. With the help of
Lemma 4.7, we conclude that

Vmf(Sm)Vm
Hv = Vmp(Sm)Vm

Hv = p(A)v ∈ Km(A,v) , (4.7)

where p ∈ Pm−1 is the polynomial that interpolates f at σ(Sm). This equality points out
that the Krylov subspace approximation can be interpreted as a polynomial interpolation,
where the nodes are the Ritz values of A. The approximation quality depends on how well
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p(A)v ∈ Km(A,v) approximates f(A)v, where p is the interpolation polynomial defined
in (4.7).

For the Arnoldi approximation, in the special case that f(z) = eτz for τ > 0, A is
Hermitian negative semi-definite with eigenvalues in the interval [−4ρ, 0], ρ > 0, and v is
a vector with ‖v‖ = 1, Theorem 2 in Hochbruck and Lubich [41] states the error bound

‖eτAv − VmeτHme1‖ ≤


10 e

−m2

5ρτ ,
√

4ρτ ≤ m ≤ 2ρτ ,

10
e−ρτ

ρτ

(eρτ
m

)m
, m ≥ 2ρτ ,

(4.8)

which yields a superlinear convergence after m ≥
√
‖τA‖ iteration steps. Furthermore,

for skew-Hermitian matrices A with eigenvalues in an interval on the imaginary axis of
length 4ρ, Theorem 4 in [41] yields

‖eτAv − VmeτHme1‖ ≤ 12 e−
(ρτ)2

m

(eρτ
m

)m
, m ≥ 2ρτ ,

which only leads to a substantial error reduction for m� ρτ .

These results show that the convergence of the Arnoldi method might set in very late,
if the norm of A is large. We either must accept that very many Krylov iterations have
to be performed or that a small time step size τ has to be chosen such that ‖τA‖ is of
moderate size.

Later on, we will see that this restriction does not exist for rational Krylov subspace
methods. For rational Krylov subspace methods, it is possible to obtain error bounds
that are independent of ‖A‖. Given a large matrix A, resulting from a discretization of a
partial differential equation, rational Krylov methods have the favorable and very useful
property that the convergence rate does not depend on the refinement of the space grid,
whereas the convergence of the standard Krylov subspace method starts the later the finer
the spatial domain is discretized.

4.3 Rational Krylov subspace

In contrast to the standard Krylov subspace, which contains powers of the matrix A
times a vector v, we now consider a different Krylov subspace based on rational matrix
functions with m− 1 poles distinct from σ(A). The rational Krylov subspace method was
developed by Ruhe, cf. [69], in the context of eigenvalue computations. It is a more general
version of the spectral transformation Lanczos method [20], where the Lanczos algorithm
is applied to the shifted and inverted matrix (γI −A)−1 to approximate eigenvalues close
to γ 6∈ σ(A).

Definition 4.8 Assume that the polynomial qm−1 ∈ Pm−1 has no roots in σ(A). Then
the rational Krylov subspace of order m ≥ 1 is defined by

Qm(A,v) := qm−1(A)−1Km(A,v) =

{
r(A)v : r ∈ Pm−1

qm−1

}
.
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The assumption on the prescribed denominator polynomial qm−1 in Definition 4.8 ensures
that the inverse qm−1(A)−1 exists. Using the fact that every matrix function f(A) com-
mutes with A, cf. Theorem 2.7, we have qm−1(A)−1Ajv = Ajqm−1(A)−1v for all j ≥ 0,
so that

Qm(A,v) = Km(A, qm−1(A)−1v) .

This natural link between the rational and the polynomial Krylov subspace, spanned by A
and the modified initial vector qm−1(A)−1v, allows to transfer results from the standard
to the rational Krylov subspace in a simple way.

Since qm−1(A)−1 has full rank, we can conclude

dim
(
Qm(A,v)

)
= dim

(
qm−1(A)−1Km(A,v)

)
= dim

(
Km(A,v)

)
.

Therefore, Qm(A,v) has the same invariance index µ as Km(A,v). Analogously to the
case of the polynomial Krylov subspace, we have f(A)v ∈ Qµ(A,v) and nested spaces

Q1(A,v) ( Q2(A,v) ( . . . ( Qµ(A,v) = Qµ+1(A,v) = . . . ,

if the denominator polynomials qm−1 and qm of all two consecutive spaces differ only by
a linear factor. Invariance in the rational case means that we can multiply every element
w of Qµ(A,v) with an arbitrary matrix function f(A) and the obtained product f(A)w
always stays in Qµ(A,v), provided that the function f is defined on σ(A).

The rational Krylov subspace Qm(A,v) possesses an alternative representation, which is
often useful. This is the subject of the following lemma.

Lemma 4.9 If the denominator polynomial qm−1 ∈ Pm−1 of the rational Krylov subspace
Qm(A,v) is of the form qm−1(z) = (z1 − z)n1 · · · (zs − z)ns with zk 6∈ σ(A), k = 1, . . . , s,
and

∑s
k=1 nk = m− 1, then Qm(A,v) can be written as

Qm(A,v) =

{
r(A)v : r ∈ Pm−1

qm−1

}
=

a0v +
s∑

k=1

ns∑
j=1

ak,j
(zk −A)j

v : a0, ak,j ∈ C


= span

{
v ,

1

(zk −A)j
v : 1 ≤ j ≤ nk , 1 ≤ k ≤ s

}
.

Proof. Since the last equality is clear, it remains to show the second equality. To this end,
we use partial fraction expansion. For every polynomial pm−1 ∈ Pm−1, there are unique
coefficients a0, ak,j ∈ C such that

pm−1(z)

qm−1(z)
= a0 +

s∑
k=1

ns∑
j=1

ak,j
(zk − z)j

for all z 6= zk , k = 1, . . . , s .

Replacing z ∈ C by the matrix A and multiplying with the vector v from the right,
we obtain the inclusion “⊆ ”. The missing inclusion “⊇ ” is obtained by reducing the
expression h(z) := a0 +

∑s
k=1

∑ns
j=1

ak,j
(zk−z)j

to the common denominator. This shows that

h ∈ Pm−1/qm−1. o

In general, the prescribed denominator polynomial qm−1 of the rational Krylov subspace
Qm(A,v) is of the form

qm−1(z) =

m−1∏
k=1

(zk − z)
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with a sequence {zk} of given poles, where the poles zk ∈ C\σ(A) do not have to be
distinct.

Whereas there is only one standard Krylov subspace method because of the shift in-
variance, there are various rational Krylov subspace methods. This is due to the fact
that we obtain a different method for any different choice of the poles z1, . . . , zm−1. If
all zj are equal to a fixed shift γ ∈ C, we obtain the shift-and-invert Krylov subspace
Qm(A,v) = Km

(
(γI−A)−1,v

)
(van den Eshof and Hochbruck [84]), also called restricted-

denominator rational Krylov subspace (Moret and Novati [59,60,62]), or resolvent Krylov
subspace in the case of operators (Grimm [29]). It is also possible to select the poles, for
example, on a straight line, a parabola, or a hyperbola in the complex plane lying outside
W (A). In addition, we can combine the polynomial and rational Krylov subspace to an
extended Krylov subspace

Kk,m(A,v) := span{A−k+1v, . . . ,A−1v,v,Av, . . . ,Am−1v} , k ≥ 1 , m ≥ 1 ,

introduced by Druskin and Knizhnerman in [15], provided that A is invertible. Of course,
it is also conceivable to choose poles different from zero for the rational part of the extended
subspace, see Chapter 6 below.

The rational Arnoldi decomposition presented in Algorithm 4.10 computes an orthonormal
basis Vm = [v1 v2 · · · vm] of Qm(A,v). This algorithm looks quite similar to the standard
Arnoldi Algorithm 4.4, but the matrix A is replaced by the shifted inverse (zmI −A)−1.

Algorithm 4.10 Rational Arnoldi process

given: A ∈ CN×N , v ∈ CN , poles z1, z2, . . . 6∈ σ(A)

v1 = v/‖v‖
for m = 1, 2, . . . do

for j = 1, . . . ,m do

hj,m = vHj (zmI −A)−1vm

end for

ṽm+1 = (zmI −A)−1vm −
∑m

j=1 hj,mvj

hm+1,m = ‖ṽm+1‖
vm+1 = ṽm+1/hm+1,m

end for

The new basis vector vm+1 is obtained by orthogonalizing (zmI − A)−1vm against the
already known vectors v1, . . . ,vm and by scaling the received vector ṽm+1 with the recip-
rocal of its norm. More precisely, we have

ṽm+1 = (zmI −A)−1vm −
m∑
j=1

hj,mvj , hj,m = vHj (zmI −A)−1vm (4.9)

and ṽm+1 = hm+1,mvm+1 with hm+1,m = ‖ṽm+1‖.
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In contrast to Algorithm 4.10, the rational Arnoldi algorithm originally considered by
Ruhe in [69,70] uses

w = Vmym ,

hj,m = vHj

(
I − 1

zm
A

)−1

Aw , j = 1, . . . ,m

ṽm+1 =

(
I − 1

zm
A

)−1

Aw −
m∑
j=1

hj,mvj ,

where the vector ym should be chosen such that (I− 1
zm
A)−1Aw ∈ Qm+1(A,v)\Qm(A,v).

Theoretically, it could happen that the rational Arnoldi process 4.10 yields vm+1 = 0
and thus breaks down, although the invariance index µ has not yet been reached. This
is the case, if the previously computed vector is of the form vm = pm−1(A)qm−1(A)−1v
and the new pole zm is a root of the polynomial pm−1 ∈ Pm−1. Such a breakdown might
also appear in the rational Krylov decomposition by Ruhe, if ym has not been suitably
selected. However, in numerical experiments we never have observed such an “unlucky
breakdown”.

To obtain a formula similar to the standard Arnoldi decomposition (4.1), we multiply (4.9)
by zmI −A and reorder the terms to obtain

A
m+1∑
j=1

hj,mvj = zm

m+1∑
j=1

hj,mvj − vm .

In matrix notation, this relation can also be written as

AVmHm + hm+1,mAvm+1e
T
m = Vm(HmDm − I) + zmhm+1,mvm+1e

T
m ,

where Hm = (hi,j)
m
i,j=1 ∈ Cm×m and Dm = diag(z1, . . . , zm).

For the shift-and-invert Krylov subspace Qm(A,v) = Km
(
(γI −A)−1,v

)
with zj = γ for

j = 1, . . . ,m− 1, we have the decomposition

(A− γI)VmHm = −Vm + (γI −A)hm+1,mvm+1e
T
m (4.10)

or

(γI −A)−1Vm = VmHm + hm+1,mvm+1e
T
m . (4.11)

This is just the standard Arnoldi decomposition, where A is replaced by (γI − A)−1.
Consequently, the rational process with a fixed pole γ only breaks down with hm+1,m = 0,
if the invariance index µ is reached, as is the case for the standard Arnoldi algorithm
(e.g., Saad [73], Proposition 6.6). This is called a “lucky breakdown”, since then f(A)v
belongs to the computed subspace Qµ(A,v). For the shift-and-invert Krylov subspace, a
rearrangement of (4.10) yields the compression

ĤHm := Vm
HAVm = γI −H−1

m − hm+1,mVm
HAvm+1e

T
mH

−1
m , (4.12)

whereas for the general case, we find

ĤHm := Vm
HAVm = (HmDm − I)H−1

m − hm+1,mVm
HAvm+1e

T
mH

−1
m .
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By analogy with the standard Arnoldi approximation (4.2) above, the rational Arnoldi
approximation reads

f(A)v ≈ Vmf(Vm
HAVm)Vm

Hv = ‖v‖Vmf( ĤHm)e1 . (4.13)

A slightly different approximation for symmetric and negative semi-definite matrices and
the function f(z) = ez, based on the shift-and-invert Krylov subspace, is discussed by
Hochbruck and van den Eshof in [84]. The authors consider the transformed function
gγ(t) = eγ−t

−1
such that gγ((γI −A)−1) = eA and therefore suggest the approximation

eAv ≈ ‖v‖Vmgγ(Hm)e1 = ‖v‖VmeγI−H
−1
m e1 ,

where Hm = Vm
H(γI−A)−1Vm is the matrix in the rational Arnoldi decomposition (4.11).

This approximation is motivated by the fact that eAv is mainly determined by the eigen-
values of A with smallest modulus. If we apply the Lanczos process to the shifted and
inverted matrix (γI − A)−1, these important eigenvalues are detected faster. Because
of relation (4.12), the matrix ĤHm can be seen as a rank-1 modification of γI − H−1

m .
This means that the approximation in [84] does not coincide with the rational Arnoldi
approximation defined in (4.13), but yields a similar approximation.

Reviewing our results, one can note that depending on how we compute an orthonormal
basis Vm of Qm(A,v) = Km(A, qm−1(A)−1v), the matrix Vm ∈ CN×m has a different
form. On the one hand, we might determine Vm by the standard Arnoldi Algorithm 4.4
using the matrix A and the vector qm−1(A)−1v and, on the other hand, a computation via
the rational Arnoldi Algorithm 4.10 would be possible. Both procedures lead to a different
basis of the same subspace. This is why all the following statements will be formulated for
a general orthonormal basis of Qm(A,v), which not necessarily coincides with the matrix
Vm obtained by the rational Arnoldi process.

Definition 4.11 Let Vm be an orthonormal basis of the rational Krylov subspace Qm(A,v)
and assume that the denominator qm−1 ∈ Pm−1 has no roots in W (A). For a function f
analytic on W (A), the rational Krylov subspace approximation reads

f(A)v ≈ Vmf(Sm)Vm
Hv , Sm = Vm

HAVm .

As for the standard Krylov subspace approximation, this definition is independent of the
particular choice of the orthonormal basis Vm of Qm(A,v). Applying the rational Arnoldi
process for the computation of Vm, we have Sm = ĤHm. Analogously to the Ritz values
above, we refer to the eigenvalues of the compression Sm = Vm

HAVm of A to Qm(A,v) as
rational Ritz values of A.

Defining Am = PmAPm, where Pm = VmVm
H is the orthogonal projection onto the

rational Krylov subspace Qm(A,v), similar to Lemma 4.6, we find again that

Vmf(Sm)Vm
Hv = f(Am)v ,

if the considered function f is, additionally, defined at zero.

The next theorem makes a statement about the exactness of the rational Krylov subspace
approximation for all rational functions in Pm−1/qm−1. According to Lemma 4.7, this
property is already known for the standard Krylov subspace and can directly be transferred
to rational Krylov subspace methods (see Beckermann and Reichel [4], p. 21).
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Lemma 4.12 Let Vm be an orthonormal basis of Qm(A,v) and Sm = Vm
HAVm. For any

rational function r ∈ Pm−1/qm−1, the rational Krylov subspace approximation is exact,
that means

r(A)v = Vmr(Sm)Vm
Hv ,

provided that r(Sm) is defined.

Proof. Let w = qm−1(A)−1v and Vm be a basis of Qm(A,v) = Km(A,w). For an
arbitrary polynomial pm−1 ∈ Pm−1, Lemma 4.7 gives

pm−1(A)w = Vmpm−1(Sm)Vm
Hw .

Furthermore, we have

v = qm−1(A)w = Vmqm−1(Sm)Vm
Hw ⇐⇒ qm−1(Sm)−1Vm

Hv = Vm
Hw

and therefore

r(A)v = pm−1(A)qm−1(A)−1v = pm−1(A)w = Vmpm−1(Sm)Vm
Hw

= Vmpm−1(Sm)qm−1(Sm)−1Vm
Hv = Vmr(Sm)Vm

Hv ,

which concludes the proof. o

Lemma 4.12 is now exploited to show the following interpolation result (see, e.g., Güttel
[30], Theorem 4.8), which is the analogue to relation (4.7) above in the polynomial case.

Lemma 4.13 Assume that f(Sm) is defined. On the condition that the roots of the de-
nominator polynomial qm−1 do not coincide with the eigenvalues of Sm, we have

Vmf(Sm)Vm
Hv = r(A)v , Sm = Vm

HAVm ,

where the rational function r ∈ Pm−1/qm−1 interpolates f at the rational Ritz values of
the matrix A.

Proof. We define g := qm−1f . By Theorem 2.5, we have g(Sm) = pm−1(Sm) for a poly-
nomial pm−1 ∈ Pm−1, where pm−1 interpolates g in the Hermite sense at the eigenvalues
of the matrix Sm, that is, at the rational Ritz values of A. From this, we can conclude
that r := pm−1/qm−1 interpolates the function f at σ(Sm) in the Hermite sense. For this
reason, we obtain f(Sm) = pm−1(Sm)/qm−1(Sm) and thus

Vmf(Sm)Vm
Hv = Vm

pm−1(Sm)

qm−1(Sm)
Vm
Hv = Vmr(Sm)Vm

Hv = r(A)v

with the help of Lemma 4.12. o

In a similar way, other important properties of the polynomial Krylov subspace process
can be transferred to the rational method. These properties include, for example, the
exactness property f(A)v = Vµf(Sµ)V H

µ v, if the invariance index µ is reached.
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Figure 4.3: Plot of error versus iteration steps of the standard (red dashed line) and the
rational (blue solid line) Krylov subspace method for the two-dimensional heat equation
and n = 10, 20, 30.

Example 4.14 In order to demonstrate the advantages of the rational over the stan-
dard Krylov subspace method, we consider the discretization of the two-dimensional heat
equation on Ω = (0, 1)2 with homogeneous Dirichlet boundary conditions for the initial
function

u(0, x, y) = u0(x, y) = 100 · x2(1− x)2y2(1− y)2

‖x2(1− x)2y2(1− y)2‖L2(Ω)
.

In Section 3.1.1, we have seen that the finite-difference discretization leads to the system
of ordinary differential equations u′(t) = Au(t), u(0) = u0, with solution u(t) = etAu0.
We choose n inner grid points in each space direction and set N = n2. Actually, we should
write Ah instead of A to indicate that the discretization matrix depends on the mesh size
h = 1

n+1 . This is the case in all our numerical experiments, but we will always omit the

subscript h. In this example, the discretization matrix A ∈ RN×N has the field of values

W (A) =

[
− 8

h2
sin2

(
nπ

2(n+ 1)

)
,− 8

h2
sin2

(
π

2(n+ 1)

)]
on the negative real line with the limit

W (A)→ (−∞,−2π2] for h→ 0 .

We approximate eτAu0 for τ = 0.05 by the standard and a rational Krylov subspace
method with denominator polynomial qm−1(z) = (1− z)m−1. For n = 10, 20, 30, the com-
parison of the obtained error curves is shown in Figure 4.3. It becomes evident that the
rational Krylov subspace method achieves a high accuracy in a few iteration steps inde-
pendent of the grid spacing h = 1

n+1 , whereas the convergence behavior of the polynomial
method deteriorates the larger the value n is chosen. This effect can be explained by the
error bound (4.8) that predicts a superlinear convergence only after m ≥

√
‖τA‖ Krylov

steps. Since ‖τA‖ is proportional to τ
h2 , it is not surprising that the convergence is worse,

if we decrease the mesh size h.

In order to prove a grid-independent convergence, we therefore need a uniform error bound
that applies to all matrices with an arbitrary field of values on the negative real line. With
regard to general evolution equations of parabolic or hyperbolic type, we have to look for
error estimates that are uniform for all matrices with an arbitrarily large field of values in
the left complex half-plane. This condition can never be fulfilled by a polynomial Krylov
subspace method, but we will see later in this thesis that rational Krylov subspace methods
are suitable to approximate uniformly matrix functions of such stiff matrices and hence
guarantee a grid-independent convergence. m
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4.4 Near-optimality of the Krylov subspace approximation

The exactness property of the standard and the rational Krylov subspace method in
Lemma 4.7 and 4.12 can be used to bound the error ‖f(A)v − Vmf(Sm)Vm

Hv‖ of the
Krylov subspace approximation by a scalar approximation problem on the field of values
W (A). For this purpose, we need a helpful theorem of Crouzeix [12].

Lemma 4.15 For an arbitrary matrix A and any polynomial p, we have

‖p(A)‖ ≤ C sup
z∈W (A)

|p(z)| , C ≤ 11.08 .

Crouzeix conjectures that this bound can be improved to C = 2. By Runge’s Theorem, cf.
Corollary 12.1.2 in [28], the function f can be uniformly approximated by a polynomial
on W (A), if f is analytic in a neighborhood of W (A). A density argument then makes it
possible to generalize Lemma 4.15 to any function f that is analytic in a neighborhood of
the field of values: Let Σ be a set with W (A) ⊆ Σ, then

‖f(A)‖ ≤ C sup
z∈Σ
|f(z)| (4.14)

holds true. This estimate is a very powerful tool, which enables us to formulate a well-
known result concerning the near-optimality of the polynomial and the rational Krylov
subspace approximation.

Theorem 4.16 Let Sm = Vm
HAVm be the compression of A onto the standard Krylov

subspace Km(A,v) and let the function f be analytic in a neighborhood of W (A). Then
for any set Σ ⊇W (A), we have

‖f(A)v − Vmf(Sm)Vm
Hv‖ ≤ 2 C‖v‖ min

p∈Pm−1

sup
z∈Σ
|f(z)− p(z)| .

The same holds true, if S̃m = Ṽ H
m AṼm is the compression of A onto the rational Krylov

subspace Qm(A,v), that is,

‖f(A)v − Ṽmf(S̃m)Ṽ H
m v‖ ≤ 2 C‖v‖ min

r∈Pm−1
qm−1

sup
z∈Σ
|f(z)− r(z)| .

Proof. Due to Lemma 4.7, we know in the first case that p(A)v = Vmp(Sm)Vm
Hv for

any polynomial p ∈ Pm−1. Since Vm has orthonormal columns by assumption, we have
‖Vmx‖ = ‖x‖ for all x ∈ CN . Moreover, VmVm

H is the projection onto Km(A,v), such
that VmVm

Hv = v and thus ‖VmHv‖ = (vHVmVm
Hv)1/2 = ‖v‖. This yields

‖f(A)v − Vmf(Sm)Vm
Hv‖ = ‖f(A)v − p(A)v + Vmp(Sm)Vm

Hv − Vmf(Sm)Vm
Hv‖

≤ ‖f(A)− p(A)‖‖v‖+ ‖p(Sm)− f(Sm)‖‖v‖

≤ 2 C‖v‖ sup
z∈Σ
|f(z)− p(z)| ,

where the last inequality is obtained by (4.14) and the fact that W (Sm) ⊆ W (A). If
we take the minimum over all polynomials p ∈ Pm−1, the first statement of the theorem
is proved. Analogously, using Lemma 4.12, the second estimate for the rational Krylov
subspace approximation can be shown. o
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For normal matrices, the bounds in Theorem 4.16 hold with C = 1 and Σ = σ(A) ∪ σ(Sm):
Since in this case A is unitary diagonalizable, that is, A = UDUH with unitary U and a
diagonal matrix D, it follows

‖f(A)v − p(A)v‖ ≤ ‖U
(
f(D)− p(D)

)
UH‖‖v‖ ≤ ‖v‖ sup

z∈σ(A)
|f(z)− p(z)|

for any polynomial p ∈ Pm−1. Analogously, we derive

‖f(A)v − r(A)v‖ ≤ ‖v‖ sup
z∈σ(A)

|f(z)− r(z)|

for any rational function r ∈ Pm−1/qm−1. The same applies for ‖f(Am)v− p(Am)v‖ and
‖f(Am)v − r(Am)v‖.

Theorem 4.16 has a far-reaching consequence: In order to find an error bound for the
Krylov subspace approximation, we may study the scalar best approximation problem

min
p∈Pm−1

sup
z∈Σ
|f(z)− p(z)| or min

r∈Pm−1
qm−1

sup
z∈Σ
|f(z)− r(z)|

on a set Σ ⊇ W (A). Whereas for the polynomial problem there exists a unique best ap-
proximation, the rational best approximation exists, but it might not be unique (e.g., [87]).

The exponential function f(z) = ez, for example, can be approximated by a truncated
Taylor series, Chebyshev or Faber polynomials, see, for instance, [6,41,72,81]. Since poly-
nomials are unbounded on unbounded domains, the results achieved with these approaches
are only useful, if W (A) is a bounded set of moderate size in the complex plane.

Possible rational approximations are Padé, Chebyshev-Padé or Carathéodory-Fejér ap-
proximations and methods which are based on the Faber transform for rational functions
or the application of a quadrature rule to a suitable contour integral, e.g., [4,34,75,83]. A
natural candidate for the latter is the Cauchy integral formula

f(z) =
1

2πi

∫
Γ

f(ξ)

ξ − z
dξ ,

where Γ is a path with parametrization Γ(t) winding around W (A). Applying the trun-
cated trapezoidal rule with m − 1 equally spaced nodes wk of distance h, we obtain the
rational approximation

f(z) ≈ r(z) =
h

2πi

m−1∑
k=1

f
(
Γ(wk)

)
Γ(wk)− z

Γ′(wk) .

Another way to obtain upper bounds for the standard and the rational Krylov subspace
approximation relies on a scalar problem of approximating f by an interpolating polyno-
mial p or an interpolating rational function r. This approach uses the following formulas
given in Walsh [87] (Chapter III, equation (4) and Chapter VIII, Theorem 2): Let the
function f be analytic in a domain Σ ⊂ C and let p ∈ Pm−1 interpolate f at the nodes
α1, . . . , αm ∈ Σ. If Γ is a contour in Σ encircling α1, . . . , αm, we have the error represen-
tation

f(z)− p(z) =
1

2πi

∫
Γ

sm,0(z)

sm,0(ξ)

f(ξ)

ξ − z
dξ , z ∈ int(Γ) ,
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where sm,0(z) = (z − α1) · · · (z − αm). Similarly, the error for the approximation of f by
a rational function r with interpolation nodes α1, . . . , αm and poles β1, . . . , βm−1 distinct
from the values αk, k = 1, . . . ,m, is given by

f(z)− r(z) =
1

2πi

∫
Γ

sm,m−1(z)

sm,m−1(ξ)

f(ξ)

ξ − z
dξ , z ∈ int(Γ) , z 6∈ {β1, . . . , βm−1}

with

sm,m−1(z) =
(z − α1) · · · (z − αm)

(z − β1) · · · (z − βm−1)
.

This leads to the difficult task to select the nodes αk, the poles βk, and the contour Γ in
such a way that

maxz∈Σ |sm,j(z)|
minξ∈Γ |sm,j(ξ)|

, j ∈ {0,m− 1} (4.15)

is as small as possible, in order to give a reasonable error estimate. This leads to tools
from logarithmic potential theory (see, for instance, [30]). However, it would go beyond
the scope of this thesis to get into further details about this theory here.

In all these cases, it has to be ensured that the roots z1, . . . , zm−1 of the prescribed
denominator polynomial qm−1(z) of the rational Krylov subspace method must coincide
with the poles of the chosen rational approximation r(z). This means, in particular, that
the poles have to be known in advance.

Moreover, there exist rational Krylov subspace methods that use an automated parameter
selection. For functions of Cauchy-Stieltjes type3, the authors in [32] suggest to choose the
next pole zm such that |sm,m−1(zm)| = minξ∈Γ |sm,m−1(ξ)|. This strategy aims to make
the denominator in (4.15) as large as possible.

4.5 Generalization and computation of the Krylov subspace
approximation

Previously, we only considered the Euclidean inner product. In this section, we generalize
the Krylov subspace approximation to arbitrary inner products (· , ·)M on CN , where
M ∈ CN×N is a fixed positive definite Hermitian matrix. In this case, we have the very
similar formula

f(A)v ≈ f(Am)v = Vmf(Sm)Vm
+v (4.16)

for any function f that is analytic on W (A) and defined at the point zero. Like before,
Sm = Vm

+AVm ∈ Cm×m is the compression andAm = PmAPm is the restriction ofA onto
the Krylov subspace. The matrix Pm = VmVm

+ = VmVm
HM designates the orthogonal

projection on the Krylov subspace with respect to the inner product (· , ·)M on CN and
Vm

+ = Vm
HM is the Moore-Penrose inverse of Vm defined in Definition 4.1 associated to

(· , ·)M . Using the approximation (4.16), the problem of computing f(A)v for a large
N -by-N matrix A is reduced to the evaluation of Vmf(Sm)Vm

+v. In this case, we only
have to evaluate a matrix function for the small matrix Sm of size m ×m with m � N .
This can be done by standard algorithms for dense matrices.

3Functions of Cauchy-Stieltjes type can be written in the form f(z) =
∫

Γ
(z−x)−1dµ(x) with some measure

µ supported on a closed set Γ ⊂ C.
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Krylov subspaces can also be defined for operators A on some Hilbert space H. For this
purpose, we replace the matrix A and the vector v by the operator A and a vector v ∈ H.
The Krylov subspace approximation to the operator function f(A) times v is defined
analogously by f(Am)v = f(PmAPm)v, where Pm is the orthogonal projector onto the
considered Krylov subspace Km(A, v) or Qm(A, v).

While it is clear how f(Am)v is computed in the discrete case, we have to think about what
is meant by the notation f(Am)v = f(PmAPm)v in the case of an operator. According to
Section 4.1, the projection operator Pm reads Pm = VmV

+
m , where Vm is the quasi-matrix

Vm = [v1 · · · vm] with vj ∈ H for j = 1, . . . ,m, that contains an orthonormal basis of the
Krylov subspace. The Moore-Penrose inverse V +

m applied to v ∈ H is understood as the
vector

V +
m v =


(v, v1)
(v, v2)

...
(v, vm)

 ∈ Cm ,

containing all inner products of v and the basis functions v1, . . . , vm of the space onto
which we want to project. We also need the compression V +

mAVm of the operator A onto
the Krylov subspace that is computed to

V +
mAVm =

 (Av1, v1) · · · (Avm, v1)
...

...
(Av1, vm) · · · (Avm, vm)

 ∈ Cm×m ,

which we also designate with Sm in analogy to the discrete case. Then the Krylov subspace
approximation for operator functions is given by

f(A)v ≈ f(Am)v = Vmf(Sm)V +
m v = Vm g =

m∑
j=1

gjvj ∈ H ,

where g = (gj)
m
j=1 = f(Sm)V +

m v ∈ Cm and Sm = V +
mAVm ∈ Cm×m. This shows that

even in the case of operators, we only have to compute a matrix function f(Sm) of a small
m×m - matrix, which is then multiplied by the vector V +

m v ∈ Cm.

For our purposes, mainly f(z) = ϕ`(z) is of great interest. In particular, we have seen
that, generally, every time step in the exponential integrator requires the evaluation of the
linear combination

ϕ0(τA)w0 + ϕ1(τA)w1 + . . .+ ϕs(τA)ws

of the matrix ϕ-functions acting on certain vectors wj . The approximation of ϕ`(τA)wj

by a Krylov subspace method leads to expressions of the type Vmϕ`(τSm)Vm
+wj .

For the computation of ϕ`(Sm) times a vector v, there exists an elegant way based on an
idea of Saad [72]. He used an augmented matrix H̃Sm and calculated the matrix exponential
of H̃Sm to obtain bTϕ1(Sm) for any vector b ∈ Cm. This result was generalized by Sidje [77]
to the computation of ϕ`(Sm)v for an arbitrary vector v ∈ Cm with the help of the
augmented matrix

H̃Sm+` =

 Sm v
I`−1

0 · · · 0

 ∈ C(m+`)×(m+`) ,
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where I`−1 is the identity matrix of dimension ` − 1. Sidje has shown that the matrix
exponential of this augmented matrix is

e S̃Sm+` =



ϕ0(Sm) ϕ1(Sm)v ϕ2(Sm)v · · · ϕ`(Sm)v

1
1

1!
· · · 1

(`− 1)!

1
. . .

...

. . .
1

1!

1


.

The desired vector ϕ`(Sm)v ∈ Cm is then obtained by taking the first m entries of the
last column of the matrix exponential of H̃Sm+`. For a matrix Sm of moderate size, one
can use the Matlab function expm to determine this matrix exponential of H̃Sm+`. This
Matlab function computes the matrix exponential by a Padé approximation with scaling
and squaring (see Higham [37]).



Chapter 5

Shift-and-invert Krylov subspace
approximation

In this chapter, we consider for γ > 0 the approximation of f(A)v in the so-called shift-
and-invert Krylov subspace Qm(A,v) with denominator qm−1(z) = (γ − z)m−1, that is

Qm(A,v) = Km
(
(γI −A)−1,v

)
= span

{
v,

1

γ −A
v, . . . ,

1

(γ −A)m−1
v

}
(5.1)

for an arbitrary vector v ∈ CN and a large matrix A ∈ CN×N with a field of values
somewhere in the left complex half-plane, that means

W (A) ⊆ C−0 = {z ∈ C : Re(z) ≤ 0} .

For the chosen inner product (· , ·) on CN , the required condition W (A) ⊆ C−0 is equivalent
to the relation Re(Av,v) ≤ 0 for all v ∈ CN . We designate by ‖ · ‖ the norm associated
with the inner product on CN . As matrix norm, we always choose the induced norm that
we denote with ‖ · ‖, too.

In the context of exponential integrators, we are particularly interested in the special case
f(z) = ϕ`(z) and matricesA stemming from a spatial discretization of a partial differential
equation. For fine discretizations, such matrices typically have a widely distributed field
of values in the left complex half-plane and a huge norm. Exponential integrators have
the favorable property that the temporal convergence results are independent of ‖A‖.
Furthermore, they can be regarded as explicit schemes without a severe restriction of the
time step size, even if the norm of the discretization matrix is very large. To preserve
these benefits, it is important to approximate the matrix ϕ-functions independent of ‖A‖.
We will derive error bounds for the shift-and-invert Krylov subspace method which satisfy
this requirement.

In order to do this, we first approximate the matrix function f(A) in the matrix subspace

Rm(A) = span

{
I,

1

γ −A
, . . . ,

1

(γ −A)m−1

}
. (5.2)

This result can then be used to bound the error for the approximation of f(A)v in the
rational Krylov subspace Rm(A)v = Qm(A,v). Since it will become apparent that f(A)
can be approximated uniformly in Rm(A) for every matrix A with W (A) ⊆ C−0 , this is
also true for the shift-and-invert Krylov subspace approximation to f(A)v. Whenever the
notation Qm(A,v) is used in this chapter, we always mean the shift-and-invert Krylov
subspace defined in (5.1) with denominator qm−1(z) = (γ − z)m−1.

We also discuss possible choices of the free parameter γ > 0, that speed up our convergence
rate. Moreover, following the paper [29] by Grimm, we resume the results for abstract
evolution equations and the approximation of operator functions f(A)v in a so-called
resolvent Krylov subspace spanned by powers of the resolvent (γI−A)−1 and the vector v.
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5.1 Transformation to the unit disk

In order to estimate the error for the approximation of f(A) in the rational matrix space
Rm(A) defined in (5.2), we first reduce the problem to a scalar approximation problem
on C−0 by using Crouzeix’s inequality (4.14). Afterwards, the problem of approximating
f(z) in the left complex half-plane is transformed to an approximation problem on the
unit circle, where well-known results for trigonometric approximation can be applied.

In the following, we denote by D the open unit disk in the complex plane and by D the
closed unit disk with boundary ∂D, that is,

D := {z ∈ C : |z| < 1} , D := {z ∈ C : |z| ≤ 1} , ∂D := {z ∈ C : |z| = 1} .

Similar to Lemma 4.9, the next lemma provides an alternative representation of the matrix
space Rm(A), that will be useful for later purposes.

Lemma 5.1 We have
(γ+A
γ−A

)m ∈ Rm+1(A) for m = 0, 1, 2, . . . and γ > 0. Moreover, it
holds that

Rm(A) = span

{
I,

1

γ −A
, . . . ,

1

(γ −A)m−1

}
= span

{
I,
γ +A

γ −A
, . . . ,

(
γ +A

γ −A

)m−1
}
.

Proof. We exploit the identity γ
γ−A −

A
γ−A = I to obtain

γ +A

γ −A
=

γ

γ −A
+

A

γ −A
=

2γ

γ −A
− I ∈ R2(A) . (5.3)

Since the identity matrix I commutes with any matrix, we can conclude(
γ +A

γ −A

)k
=

(
2γ

γ −A
− I

)k
=

k∑
j=0

(
k

j

)
(−1)k−j(2γ)j

(
1

γ −A

)j
∈ Rk+1(A)

by the binomial theorem. This proves the inclusion “⊇ ”. To show the missing inclusion
“⊆ ”, we use (5.3) to find

1

γ −A
=

1

2γ

(
I +

γ +A

γ −A

)
.

This gives(
1

γ −A

)k
=

(
1

2γ

)k (
I +

γ +A

γ −A

)k

=

(
1

2γ

)k k∑
j=0

(
k

j

)(
γ +A

γ −A

)j
∈ span

{
I,
γ +A

γ −A
, . . . ,

(
γ +A

γ −A

)k}

and our lemma is proved. o

This lemma enables us to turn the best approximation problem

inf
r∈Pm−1

qm−1

‖f(A)− r(A)‖ = inf
ak

∥∥∥∥∥f(A)−
m−1∑
k=0

ak
1

(γ −A)k

∥∥∥∥∥ ,
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C−0

Re

Im

T (z) = w

T−1(w) = z

D

Re

Im

Figure 5.1: Transformation of the left complex half-plane C−0 onto the unit disk D\{−1}
and vice versa.

cf. Lemma 4.9, into the best approximation problem

inf
ck

∥∥∥∥∥f(A)−
m−1∑
k=0

ck

(
γ +A

γ −A

)k∥∥∥∥∥ = inf
ck

∥∥∥∥∥∥f(A)−
m−1∑
k=0

ck

(
I + 1

γA

I − 1
γA

)k∥∥∥∥∥∥ .
Due to Crouzeix’s inequality (4.14), we know that for any function f that is analytic
in a neighborhood of W (A), the norm of the matrix function f(A) can be bounded by
‖f(A)‖ ≤ C supz∈Σ |f(z)|, C ≤ 11.08, for any set Σ with W (A) ⊆ Σ. For matrices A
whose field of values lies in a half-plane, von Neumann has shown (see Section 5.3 in [86])
that Crouzeix’s inequality holds with C = 1. By our assumption W (A) ⊆ C−0 , we thus
have

‖f(A)‖ ≤ sup
z∈C−0

|f(z)| , (5.4)

whenever f is analytic in the left complex half-plane including the imaginary axis. This
inequality is a powerful tool that makes it possible to reduce the approximation of f(A)
in the rational space Rm(A) to a polynomial approximation problem on the closed unit
disk D that is easier to handle. To see this, we set

T (z) := w =
1 + z

γ

1− z
γ

⇐⇒ z = T−1(w) = γ
w − 1

w + 1
, (5.5)

where T is the Möbius transformation that maps the left complex half-plane C−0 onto the
unit disk D\{−1}.

We now define the set

M := {f : C→ C : f analytic in C−0 and ∃ c ∈ C with f(z)
|z|→∞−−−−→ c , z ∈ C−0 } .

Then, for f ∈ M, the transformed function f̃(w) := f
(
T−1(w)

)
is analytic in D\{−1}.

Moreover, by setting f̃(−1) = c, the function f̃ can be extended continuously to the point
−1. With the help of the Möbius transformation T , relation (5.5), and inequality (5.4),
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we now obtain the estimate∥∥∥∥∥∥f(A)−
m−1∑
k=0

ck

(
I + 1

γA

I − 1
γA

)k∥∥∥∥∥∥ ≤ sup
z∈C−0

∣∣∣∣∣∣f(z)−
m−1∑
k=0

ck

(
1 + z

γ

1− z
γ

)k∣∣∣∣∣∣
≤ max

w∈D

∣∣∣∣∣f
(
γ
w − 1

w + 1

)
−
m−1∑
k=0

ckw
k

∣∣∣∣∣
= max

w∈D

∣∣∣∣∣f̃(w)−
m−1∑
k=0

ckw
k

∣∣∣∣∣ .
For the sake of brevity and a clear representation, we additionally introduce at this point
the short notations f̂(t) := f

(
T−1(eit)

)
and T := [0, 2π).

If we assume that f ∈M, the transformed function f̃ is analytic on D and continuous on
D and we can conclude with the Maximum Modulus Theorem from complex analysis that

max
w∈D

∣∣∣∣∣f̃(w)−
m−1∑
k=0

ckw
k

∣∣∣∣∣ = max
w∈∂D

∣∣∣∣∣f̃(w)−
m−1∑
k=0

ckw
k

∣∣∣∣∣ = max
t∈T

∣∣∣∣∣f̂(t)−
m−1∑
k=0

cke
itk

∣∣∣∣∣ .
So, we are now concerned with a trigonometric approximation problem for the 2π-periodic
function f̂(t) on T. For this purpose, we split f̂(t) into its real and imaginary part
and apply a result of Achyèser [1] to the 2π-periodic real-valued functions Re[f̂(t)] and
Im[f̂(t)]. His result, formulated in the subsequent theorem, is based on Jackson’s well-
known theorem about the error of the best uniform approximation to a real-valued periodic
function by a trigonometric polynomial. Achyèser’s theorem involves the modulus of
continuity ω(g, δ), which we state in the following definition.

Definition 5.2 The modulus of continuity ω(g, δ), δ > 0, of a real-valued continuous
function g is defined as

ω(g, δ) := sup
|s−t|≤δ

|g(s)− g(t)| .

In particular, if g is a 2π-periodic and continuous function, we have

ω(g, δ) = sup
0<h≤δ

max
t∈T
|g(t+ h)− g(t)| .

Theorem 5.3 (Achyèser [1], Section 4) Let g be a 2π-periodic real-valued function that
is n times continuously differentiable. Then there exists a trigonometric polynomial

Jm,n(g, t) =
a0

2
+
m−1∑
k=1

Dk(m,n)
(
ak cos(kt) + bk sin(kt)

)
, (5.6)

where ak, bk are the Fourier coefficients of the function g and Dk(m,n) are real constants
that depend on m and n, such that

max
t∈T
|g(t)− Jm,n(g, t)| ≤ C(n)

mn
ω

(
g(n),

1

m

)
with a constant C(n) that depends only on n.
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The proof of this theorem is based on the Jackson integral

Jn(x) =
1

2
λn

∫
T
f(x+ t)

(
sin
(
nt
2

)
n sin

(
t
2

))4

dt =
1

2
λn

∫
T
f(x+ t)Kn(t) dt , n ∈ N ,

where 1
2λnKn(t) is the so-called Jackson kernel and the constant λn is defined by the

relation
∫
T

1
2λnKn(t) dt = 1. In [1], Achyèser uses a slightly different representation of the

Jackson integral by de la Vallée Poussin [13] that is given as

J̃n(x) =
3

2π

∫
R
f

(
x+

2t

n

)(
sin(t)

t

)4

dt , n ∈ N .

The Jackson integrals Jn(x) and J̃n(x) are trigonometric polynomials of degree 2n − 2
(cf. [54], p. 55) respectively 2n− 1 (cf. [1]). They are applied in approximation theory in
order to bound the best trigonometric approximation of a periodic function. Using the
integral J̃n(x), Achyèser has proved the bound in Theorem 5.3 only for the case that m
is even. If we make use of the representation Jn(x) instead of J̃n(x), it turns out that the
result is also valid for odd values of m.

The expression Jm,n(g, t) in Theorem 5.3 looks quite similar to the (m−1)st partial Fourier
sum of the function g that is given by

Sm−1g(t) =
a0

2
+

m−1∑
k=1

ak cos(kt) + bk sin(kt)

with Fourier coefficients

ak =
1

π

∫ 2π

0
g(t) cos(kt) dt , bk =

1

π

∫ 2π

0
g(t) sin(kt) dt ,

except for the fact that the sum in (5.6) contains additional constants Dk(m,n). These
constants are specified by the Jackson kernel.

Achyèser’s Theorem 5.3 is only applicable to real-valued and not to complex-valued func-
tions. Therefore, we have to subdivide our problem into two real approximation problems:
one for the real part and one for the imaginary part. But since we want to examine the
expression infck maxt∈T |f̂(t)−

∑m−1
k=0 cke

itk|, it is not possible to simply approximate the

real and imaginary part of f̂(t) separately from each other. The trigonometric approxima-
tion of the two parts is coupled by the common coefficients ck. Only the special form of
the Fourier coefficients associated to Re[f̂(t)] and Im[f̂(t)] will allow us to consider these
two terms independently. More precisely, we exploit the fact that if the Fourier coefficients
of Re[f̂(t)] are given as aRe

k and bRe
k , then Im[f̂(t)] has the Fourier coefficients aIm

k = −bRe
k

and bImk = aRe
k . This is the content of the next lemma.

Lemma 5.4 Let the complex function f̃(w) be analytic in D and continuous on D. Denote
by aRe

k , bRe
k the Fourier coefficients of the real part Re[f̃(eit)] = Re[f̂(t)] and by aIm

k , bImk
the Fourier coefficients of the imaginary part Im[f̃(eit)] = Im[f̂(t)]. Then the Fourier
coefficients satisfy

aRe
k = bImk , bRe

k = −aIm
k , k ≥ 1 .
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Proof. For k ≥ 1, the function f̃(w)wk−1 = f
(
T−1(w)

)
wk−1 is holomorphic in D and

continuous on D. By Cauchy’s integral theorem, the integral of f̃(w)wk−1 over the closed
curve ∂D is zero. This yields

0 =

∫
∂D
f̃(w)wk−1 dw =

∫ 2π

0
f̃(eit)ieikt dt

=

∫ 2π

0

(
Re[f̂(t)] + i Im[f̂(t)]

)(
i cos(kt)− sin(kt)

)
dt

= −
∫ 2π

0
Re[f̂(t)] sin(kt) + Im[f̂(t)] cos(kt) dt

+ i

∫ 2π

0
Re[f̂(t)] cos(kt)− Im[f̂(t)] sin(kt) dt

= −π (bRe
k + aIm

k ) + i π (aRe
k − bImk ) .

This implies aRe
k = bImk and bRe

k = −aIm
k , which proves the assertion. o

With regard to Theorem 5.3, the idea is now to choose the coefficients ck in the approxi-
mation problem maxt∈T |f̂(t)−

∑m−1
k=0 cke

itk| as

c∗0 = a0 − ib0 , c∗k = Dk(m,n)(ak − ibk) ,

a0 =
aRe

0

2
, b0 = −a

Im
0

2
, ak = aRe

k , bk = bRe
k for 1 ≤ k ≤ m− 1 ,

(5.7)

where Dk(m,n) are the coefficients of the trigonometric polynomial Jm,n in Theorem 5.3.

This enables us to separate the approximation problem for f̂(t), t ∈ T, into two indepen-
dent subproblems for the real and imaginary part in the following way:

inf
ck

max
t∈T

∣∣∣f̂(t)−
m−1∑
k=0

cke
itk
∣∣∣ ≤ max

t∈T

∣∣∣∣∣f̂(t)−
m−1∑
k=0

c∗ke
itk

∣∣∣∣∣
≤max

t∈T

∣∣∣f̂(t)− (a0 − ib0)−
m−1∑
k=1

Dk(m,n)(ak − ibk)
(

cos(kt) + i sin(kt)
)∣∣∣

= max
t∈T

∣∣∣Re[f̂(t)]− a0 −
m−1∑
k=1

Dk(m,n)
(
ak cos(kt) + bk sin(kt)

)
+ i Im[f̂(t)] + ib0 − i

m−1∑
k=1

Dk(m,n)
(
− bk cos(kt) + ak sin(kt)

)∣∣∣
≤max

t∈T

∣∣∣Re[f̂(t)]− aRe
0

2
−
m−1∑
k=1

Dk(m,n)
(
aRe
k cos(kt) + bRe

k sin(kt)
)∣∣∣ (5.8)

+ max
t∈T

∣∣∣Im[f̂(t)]− aIm
0

2
−
m−1∑
k=1

Dk(m,n)
(
aIm
k cos(kt) + bImk sin(kt)

)∣∣∣ , (5.9)

where we have used Lemma 5.4 and (5.7) for the last inequality. The application of
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Theorem 5.3 to the terms (5.8) and (5.9) finally gives

inf
ck

max
t∈T

∣∣∣f̂(t)−
m−1∑
k=0

cke
itk
∣∣∣ ≤ C(n)

mn

[
ω

(
Re[ f̂ ](n),

1

m

)
+ ω

(
Im[ f̂ ](n),

1

m

)]
, (5.10)

if f̂ is n times continuously differentiable. The moduli for the real and imaginary part in
(5.10) can be combined to one modulus of continuity for f̂ (n) on T.

Lemma 5.5 The two moduli of continuity in (5.10) fulfill the inequality

ω

(
Re[ f̂ ](n),

1

m

)
+ ω

(
Im[ f̂ ](n),

1

m

)
≤ 2ω

(
f̂ (n),

1

m

)
,

where the last modulus ω(f̂ (n), 1
m) has to be understood as generalization of Definition 5.2

to complex-valued functions g : R→ C.

Proof. Because of∣∣∣Re[f̂(t+ h)](n) − Re[f̂(t)](n)
∣∣∣ ≤ ∣∣∣f̂ (n)(t+ h)− f̂ (n)(t)

∣∣∣ ,∣∣∣Im[f̂(t+ h)](n) − Im[f̂(t)](n)
∣∣∣ ≤ ∣∣∣f̂ (n)(t+ h)− f̂ (n)(t)

∣∣∣
for all t ∈ T and 0 < h ≤ 1

m , we conclude that

sup
0<h≤ 1

m

max
t∈T

∣∣∣Re[f̂(t+ h)](n) − Re[f̂(t)](n)
∣∣∣︸ ︷︷ ︸

= ω
(
Re[ f̂ ](n), 1

m

)
≤ sup

0<h≤ 1
m

max
t∈T

∣∣∣f̂ (n)(t+ h)− f̂ (n)(t)
∣∣∣︸ ︷︷ ︸

= ω
(
f̂ (n), 1

m

)
,

sup
0<h≤ 1

m

max
t∈T

∣∣∣Im[f̂(t+ h)](n) − Im[f̂(t)](n)
∣∣∣︸ ︷︷ ︸

= ω
(
Im[ f̂ ](n), 1

m

)
≤ sup

0<h≤ 1
m

max
t∈T

∣∣∣f̂ (n)(t+ h)− f̂ (n)(t)
∣∣∣︸ ︷︷ ︸

= ω
(
f̂ (n), 1

m

)
.

This yields the desired inequality. o

For practical computations, it is in general easier to estimate the moduli for the real and
imaginary part separately instead of investigating the modulus of continuity for the whole
function f̂ (n) on T.

How the inequality (5.10) for the best trigonometric approximation of f̂(t) can be used to
bound the Krylov subspace approximation error for functions f ∈M will be discussed in
the next section. Furthermore, we will estimate the two moduli of continuity of the real
and imaginary part for the special case f̂(t) = ϕ̂`(t), ` ≥ 1.

5.2 Error bounds for f ∈ M

Let W (A) ⊆ C−0 and f ∈ M. We summarize the ideas of the previous section and
conclude that the best approximation of f(A) in the rational matrix subspace Rm(A) can
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be bounded by

inf
r∈Pm−1

qm−1

‖f(A)− r(A)‖ ≤ inf
ck

sup
z∈C−0

∣∣∣∣∣∣f(z)−
m−1∑
k=0

ck

(
1 + z

γ

1− z
γ

)k∣∣∣∣∣∣
≤ inf

ck
max
t∈T

∣∣∣∣∣f̂(t)−
m−1∑
k=0

cke
itk

∣∣∣∣∣ ≤ max
t∈T

∣∣∣∣∣f̂(t)−
m−1∑
k=0

c∗ke
itk

∣∣∣∣∣ ≤ C(n)

mn
ω

(
f̂ (n),

1

m

)
,

(5.11)

whenever f̂(t) ∈ Cn(T). Hereby, the coefficients c∗k are chosen as suggested in (5.7). Recall

that f̂(t) is defined as f
(
T−1(eit)

)
, where T designates the Möbius transformation which

maps the left complex half-plane onto the unit disk. The estimate (5.11) is, in particular,
valid for the special rational function

r∗(z) =
m−1∑
k=0

c∗k

(
1 + z

γ

1− z
γ

)k
∈ Pm−1

qm−1
. (5.12)

With these considerations we now derive an upper bound for the error ‖f(A)v−f(Am)v‖
of the shift-and-invert Krylov subspace approximation, where Am is given by PmAPm
and Pm represents the orthogonal projection onto Qm(A,v) = Km

(
(γI −A)−1,v

)
. But

first of all, we must guarantee that W (Am) ⊆ C−0 , such that the projected matrix Am

actually fits in our framework.

Lemma 5.6 If W (A) ⊆ C−0 , the restriction Am = PmAPm of the matrix A ∈ CN×N to
the subspace Qm(A,v) satisfies W (Am) ⊆ C−0 as well.

Proof. The relation W (Am) ⊆ C−0 is equivalent to Re(Amx,x) ≤ 0 for all x ∈ CN .
Setting y = Pmx and using the fact that Pm is self-adjoint, cf. Definition 4.1, it follows

Re(Amx,x) = Re(PmAPmx,x) = Re(APmx,Pmx) = Re(Ay,y) ≤ 0 ,

since W (A) ⊆ C−0 by assumption. o

Theorem 5.7 Let A be a matrix with W (A) ⊆ C−0 and suppose f ∈ M. Moreover, for

f̂(t) = f
(
T−1(eit)

)
, we assume that the nth derivative f̂ (n) exists and is continuous on

T. Then the error of the approximation f(Am)v to f(A)v in the shift-and-invert Krylov
subspace Qm(A,v) is bounded by

‖f(A)v − f(Am)v‖ ≤ 2
C(n)

mn
ω

(
f̂ (n),

1

m

)
‖v‖ ,

where Am = PmAPm and Pm is the orthogonal projection onto Qm(A,v).

Proof. Because of Lemma 5.6 and Lemma 4.12, we know that W (Am) ⊆ C−0 and that

r(A)v = r(Am)v for every r ∈ Pm−1

qm−1
with qm−1(z) = (γ − z)m−1 .

We now consider the special rational function r∗ defined in (5.12). Then r∗(A)v belongs
to Qm(A,v) and we have r∗(A)v = r∗(Am)v. Since r∗ is determined solely by f and not
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by the matrices A or Am, the error bound (5.11) can be applied to ‖f(A) − r∗(A)‖ as
well as to ‖f(Am) − r∗(Am)‖. Using the triangle inequality and (5.11), we are now able
to conclude that

‖f(A)v − f(Am)v‖ ≤ ‖f(A)− r∗(A)‖ ‖v‖+ ‖f(Am)− r∗(Am)‖ ‖v‖

≤ 2
C(n)

mn
ω

(
f̂ (n),

1

m

)
‖v‖

holds true. o

In a nutshell, this theorem says that the convergence rate of the shift-and-invert Krylov
subspace approximation for f(A)v, f ∈M, depends only on the smoothness properties of
the transformed function f

(
T−1(w)

)
on the boundary of the unit circle. The obtained error

bound is completely independent of ‖A‖. Consequently, we have a uniform convergence
for all matrices A with a field of values somewhere in the left complex half-plane.

5.3 Error bounds for the ϕ-functions

The findings of Section 5.2 raise the question what is to be expected for f = ϕ`. For ` ≥ 1,
the modulus |ϕ`(z)| tends to zero for all |z| → ∞ with Re(z) ≤ 0, so that ϕ` ∈ M with
c = 0. In contrast, we have ϕ0 6∈ M, since |ez| → 0 for Re(z)→ −∞, whereas |ez| = 1 on
the imaginary axis. Thus, Theorem 5.7 can only be used for the ϕ`-functions with ` ≥ 1.
According to the previous considerations, we have to analyze the real and imaginary part
of ϕ̂`(t) = ϕ`

(
T−1(eit)

)
with respect to their differentiability. The next lemma will be

helpful for this purpose.

Lemma 5.8 Both functions x sin
(

1
x

)
and x cos

(
1
x

)
, x ∈ R, are 1

2 -Hölder continuous on
any bounded domain.

Proof. We show the assertion only for the first function x sin
(

1
x

)
, since the proof for the

second function x cos
(

1
x

)
can be conducted analogously. We start with∣∣∣∣y sin

(
1

y

)
− x sin

(
1

x

)∣∣∣∣2 =

∣∣∣∣y2 sin2

(
1

y

)
− 2xy sin

(
1

y

)
sin

(
1

x

)
+ x2 sin2

(
1

x

)∣∣∣∣ .
Due to 2xy = x2 + y2 − (y − x)2 and

∣∣ sin ( 1
x

)∣∣ ≤ 1, we get with the triangle inequality∣∣∣∣y sin

(
1

y

)
− x sin

(
1

x

)∣∣∣∣2 ≤ 2

∣∣∣∣y2 sin

(
1

y

)
− x2 sin

(
1

x

)∣∣∣∣+ |y − x|2 .

On a bounded domain, the function x2 sin
(

1
x

)
is Lipschitz continuous, because its deriva-

tive is bounded. It thus follows∣∣∣∣y sin

(
1

y

)
− x sin

(
1

x

)∣∣∣∣ ≤ C |y − x| 12
by taking the square root. o
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·10−3

Figure 5.2: Plot of Re[ϕ̂`(t)] for t ∈ [3, 3.28], ` = 2, and γ = 1.

Theorem 5.9 Let A satisfy W (A) ⊆ C−0 and let Pm be the orthogonal projection onto
the shift-and-invert Krylov subspace Qm(A,v). For the restriction Am = PmAPm of A
to Qm(A,v), we have the error bound

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ C(`, γ)

m
`
2

‖v‖ , ` ≥ 1 .

Proof. Due to Theorem 5.7, our task is to study the modulus of continuity ω(ϕ̂
(n)
` , 1

m).
This is equivalent to examine separately the real and imaginary part of ϕ̂`(t) with respect
to its smoothness. Here, we restrict ourselves to the analysis of Re[ϕ̂`(t)]. The imaginary
part can be estimated analogously. Before we start our investigation, it is worthwhile to
mention that

eit − 1

eit + 1
= i tan

(
t

2

)
,

so that ϕ̂`(t) = ϕ`
(
iγ tan

(
t
2

))
. As composition of infinitely many times differentiable

functions on T\{π}, T = [0, 2π), the function Re[ϕ̂`(t)] = Re
[
ϕ`
(
iγ tan

(
t
2

))]
is also

infinitely often differentiable for t 6= π. For this reason, we analyze Re[ϕ̂`(t)] on the
interval Tπ := (π − σ, π + σ) for 0 < σ < π, cf. Figure 5.2. Hereby, it is necessary to
distinguish whether the index ` of the ϕ`-function is odd or even. In the following, we will
analyze these two cases one after another.

(i) ` even: Using the representation (3.13) for ϕ`
(
iγ tan

(
t
2

))
, we find

Re[ϕ̂`(t)] = (−1)
`
2

cos
(
γ tan

(
t
2

))(
γ tan

(
t
2

))` −
`
2
−1∑
k=0

(−1)k
γ2k−`

(2k)!
tan2k−`

(
t

2

) .
There is no need to worry about the second term, containing the sum over k, since
tan2k−` ( t

2

)
is infinitely often differentiable on Tπ for all k ∈ {0, . . . , `2 − 1}. Differ-
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entiating the first term with respect to t,

d

dt

cos
(
γ tan

(
t
2

))(
γ tan

(
t
2

))` = −1

2

[
`γ

cos
(
γ tan

(
t
2

))(
γ tan

(
t
2

))`+1
+ γ

sin
(
γ tan

(
t
2

))(
γ tan

(
t
2

))`
+
`

γ

cos
(
γ tan

(
t
2

))(
γ tan

(
t
2

))`−1
+

1

γ

sin
(
γ tan

(
t
2

))(
γ tan

(
t
2

))`−2

]
,

we see that we obtain a linear combination of similar expressions, where the numera-
tor is partly replaced by sin

(
γ tan

(
t
2

))
and where the exponent of the denominator

has changed by +1, 0, −1 or −2. The different terms are continuously differen-
tiable as long as the exponent in the denominator is greater than 2. The functions
sin
(
γ tan

(
t
2

))
/ tan2

(
t
2

)
and cos

(
γ tan

(
t
2

))
/ tan2

(
t
2

)
have no continuous derivative,

but their derivatives are bounded on Tπ. This shows that Re[ϕ̂`(t)] ∈ C
`
2
−1(Tπ) and

ω

(
Re[ ϕ̂` ](

`
2
−1),

1

m

)
≤ C(`, γ)

m
,

using the mean value theorem with |Re[ϕ̂`(ξ)]
( `

2
)| ≤ C(`, γ) for all ξ ∈ Tπ.

(ii) ` odd: Since now

Re[ϕ̂`(t)] = (−1)
`−1

2

sin
(
γ tan

(
t
2

))(
γ tan

(
t
2

))` +

`−1
2
−1∑

k=0

(−1)k+1 γ
2k−`+1

(2k + 1)!
tan2k−`+1

(
t

2

) ,
the same considerations as in (i) apply with the exception that the first term
sin
(
γ tan

(
t
2

))
/ tan`

(
t
2

)
can only be differentiated continuously b `2c times for t ∈ Tπ,

until we get expressions of the form

g1(t) :=
sin
(
γ tan

(
t
2

))
γ tan

(
t
2

) or g2(t) :=
cos
(
γ tan

(
t
2

))
γ tan

(
t
2

) .

The application of Lemma 5.8 with x = 1/
(
γ tan

(
t
2

))
and y = 1/

(
γ tan

( t+1/m
2

))
gives for j ∈ {1, 2} the estimate

∣∣∣∣gj (t+
1

m

)
− gj(t)

∣∣∣∣ ≤ C
∣∣∣∣∣∣ 1

γ tan
(
t+1/m

2

) − 1

γ tan
(
t
2

)
∣∣∣∣∣∣

1
2

≤ C(γ)√
m

, t ∈ Tπ ,

where the second inequality follows by the mean value theorem. This yields

ω

(
Re[ ϕ̂` ]b

`
2
c,

1

m

)
≤ C(`, γ)√

m
.

Furthermore, note that m−b`/2cm−1/2 = m−`/2.

Together with Theorem 5.7 and a similar estimate for Im[ϕ̂`(t)], the statement of the
theorem is proved. o

For the best approximation of the matrix function ϕ`(A) in the rational matrix space
Rm(A), the proof of Theorem 5.9 shows, in particular, that

inf
r∈Pm−1

qm−1

‖ϕ`(A)− r(A)‖ ≤ ‖ϕ`(A)− r∗(A)‖ ≤ C(`, γ)

m
`
2

, (5.13)
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where r∗ is the rational function r∗(z) =
∑m−1

k=0 c
∗
k

(1+z/γ
1−z/γ

)k
in (5.12) with coefficients c∗k

defined by (5.7).

Remark 5.10 When applying numerical methods for the time integration of evolution
equations, one is interested in the approximation of ϕ`(τA)v, where τ > 0 denotes the
step size in time. Since

Re
(
(τA)x,x

)
= τ Re(Ax,x) ≤ 0 for all x ∈ CN ,

we have W (τA) ⊆ C−0 in the case that W (A) ⊆ C−0 . As a result, replacing A by τA leads
to exactly the same scalar approximation problem on the unit disk independent of the
step size τ . This has the far-reaching consequence that all of the above theorems remain
valid with the same constants for τA instead of A, that is,

‖ϕ`(τA)v − ϕ`(τAm)v‖ ≤ C(`, γ)

m
`
2

‖v‖ .

5.4 Choice of the shift γ

So far, the shift γ > 0 has been regarded as a free parameter of the rational matrix
subspace Rm(A) and the shift-and-invert Krylov subspace Qm(A,v). This section aims
to discuss a strategy for a best possible choice of γ. To this end, we will choose γ depending
on the dimension m of the approximation space. In order to obtain suitable conditions for
γ, which raise the asymptotic convergence rate, we need another modulus of smoothness,
the rth modulus of smoothness ωr(g, δ). In contrast to the previous sections, where we
used ω(g(n), δ) for g ∈ Cn(T), this modulus is given by the following definition (see [14]).

Definition 5.11 For δ > 0, the rth modulus of smoothness ωr(g, δ) of a continuous func-
tion g is defined as

ωr(g, δ) := sup
0<h≤δ

max
t∈T
|∆r

h(g, t)| , ∆r
h(g, t) =

r∑
k=0

(
r

k

)
(−1)r−kg(t+ kh) , (5.14)

where ∆r
h(g, t) is an rth order difference.

The first modulus of continuity ω1(g, δ) coincides with the modulus of continuity ω(g, δ) in
Definition 5.2. Compared to ω(g, δ), which only measures the continuity properties of the
function g, the modulus ωr(g, δ) is useful for measuring higher smoothness. Furthermore,
we have the relations

ωr(g, δ) ≤ δr max
t∈T
|g(r)(t)| and ωr+k(g, δ) ≤ δrωk(g(r), δ) , (5.15)

see [14], p. 46.

In order to measure the quality of approximation for a 2π-periodic real-valued function g
by its mth partial Fourier sum Smg(t), we make use of the Jackson-Stechkin inequality
for the best approximation of g by a trigonometric polynomial P ∈ Tm (see, e.g., [14],
Chapter 7, Theorem 2.3). The Jackson-Stechkin inequality reads

inf
P∈Tm

max
t∈T
|g(t)− P (t)| ≤ C(r)ωr

(
g,

1

m

)
, (5.16)

where Tm denotes the set of trigonometric polynomials of degree m. With the help of this
inequality, we can formulate the following lemma.
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Lemma 5.12 The approximation of a real 2π-periodic and continuous function g by its
mth partial Fourier sum Smg is bounded by

|g(t)− Smg(t)| ≤ C(r) ln(m)ωr

(
g,

1

m

)
. (5.17)

Proof. A relation between the approximation by the mth partial Fourier sum and the
best trigonometric approximation can be found as Proposition 1.5.2 in Pinsky [66]. This
proposition states

|g(t)− Smg(t)| ≤
(
5 + ln(m)

)
inf
P∈Tm

max
t∈T
|g(t)− P (t)| .

Due to the Jackson-Stechkin inequality (5.16), we obtain the desired result. o

The same ideas as in Section 5.1 for the estimate of infck maxt∈T |f̂(t) −
∑m−1

k=0 cke
itk| on

page 60, but this time with Dk(m,n) = 1, lead for f ∈M to the bound

‖f(A)v − f(Am)v‖ ≤ C(r) ln(m)

[
ωr

(
Re[ f̂ ],

1

m

)
+ ωr

(
Im[ f̂ ],

1

m

)]
‖v‖ . (5.18)

Since we approximate the real and imaginary part of the function f̂(t) by a trigonometric
polynomial of degree less than or equal to m − 1, it should read m − 1 instead of m
everywhere in inequality (5.18). It is nevertheless possible to write m, if we slightly
change the generic constant C(r).

In the case that f̂ is n - times continuously differentiable, we immediately get from (5.15)
for r = n, k = 1 and Lemma 5.5 that

‖f(A)v − f(Am)v‖ ≤ C(n)

mn
ln(m)ω

(
f̂ (n),

1

m

)
‖v‖ .

Compared to Theorem 5.7, we have an additional factor ln(m). This is caused by setting
the constantsDk(m,n) in the trigonometric approximation equal to one and by considering
the approximation of Re[f̂(t)] and Im[f̂(t)] by its (m − 1)st partial Fourier sum, which
is only the best trigonometric approximation in the L2-norm, but not in the maximum
norm. However, we do not have to worry about this extra factor, since ln(m) grows slower
than any positive power mβ with β > 0.

We now aim to find an optimal shift γ for the case f = ϕ`, ` ≥ 1, in (5.18). Of course, the
estimate of ωr(g, δ) requires more effort than the estimate of ω(g(n), δ), since differences
∆r
h(g, t) of order r are involved. These differences have to be bounded in a suitable manner

and necessitate several case distinctions. Thus, one may wonder why we should now work
with this apparently more complicated modulus of smoothness ωr(g, δ). The reason for
this is the following: If we use the Jackson-Stechkin bound (5.16), we can conclude how the
constants occurring in the estimates of the two moduli ωr(Re[ ϕ̂` ], 1

m) and ωr(Im[ ϕ̂` ], 1
m)

depend on the parameters γ and r. From this, it is possible to deduce an appropriate
parameter γ. In contrast, by analyzing the constants C(`, γ) in the error estimates of
the previous section, where the modulus ω(g(n), δ) for a function g ∈ Cn(T) was used, we
could not gain any insight into a suitable choice of γ.

For the shift γ, we choose the ansatz γ(m) := mα with α ∈ R. This choice enables us to
derive a condition for the parameter α, depending on ` and r, that raises our asymptotic
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` i j

` even
`
2

`
2 , . . . , `

r 1, . . . , `

`
2

`
2

` odd b `2c+ 1 b `2c, . . . , `

r 1, . . . , `

Table 5.1: Possible values of i and j in (5.19).

convergence rate of order O(m−`/2). The key advantage of the modulus ωr(g, δ) used here
is that the parameter r is not bounded by the smoothness of g ∈ Cn(T) and can thus be
chosen greater than n.

The estimates of the two moduli ωr(Re[ ϕ̂` ], δ) and ωr(Im[ ϕ̂` ], δ) are not very difficult,
since they partially rely on the ideas of the previous section. However, they are quite
tedious and require a case distinction whether r, ` and b`/2c are even or odd. This is why
we do not present here a detailed derivation of the results stated below.

The main ideas are as follows: As in the proof of Theorem 5.9, one has to treat separately
the two cases t ∈ Tπ = (π−σ, π+σ), 0 < σ < π, and t ∈ T\{π}. In the first case, the same
representation of Re[ϕ̂`(t)] and Im[ϕ̂`(t)] via formula (3.13) can be used. The occurring
rth order differences are estimated by a suitable Taylor expansion. The calculation reveals
that, thereby, the condition r > `

2 +1 has to be fulfilled. For t ∈ T\{π} on the other hand,
we represent ϕ̂`(t) by formula (3.12), use the bound

max
t∈[a,b]

|∆r
hg(t)| ≤ hr max

t∈[a,b]
|g(r)(t)| for g ∈ Cr([a, b]) , a, b ∈ R ,

and Faá die Bruno’s formula, a generalization of the chain rule to higher derivatives.
Altogether, the analysis shows that terms of the form

C(r)δi

γ j
and C(r)δrγk , k ∈ {1, . . . , r} (5.19)

appear with a generic constant C(r). Possible values of i and j are summarized in Ta-
ble 5.1. The decisive prefactors, being most restrictive, are δ`/2γ−`/2 and δrγr. They
lead with δ = 1

m and γ = mα to convergence rates of order m−`/2−α`/2 and m−r+αr. By
balancing these two expressions, we find the condition

− `
2
− α`

2
= −r + αr or α =

r − `
2

r + `
2

.

This choice of α leads to the improved convergence rate

O
(
m−

`
2

(1+α)
)
,
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which tends to O(m−`) for r → ∞. If we increase r, the rate of convergence becomes
faster and faster. But the analysis shows that the occurring constants grow in the worst
case like

(
0.792r/ ln(r+ 1)

)r
. This results from an estimate using Faà di Bruno’s formula

in combinatorial form and the bound in [5] on Bell numbers. By counting partitions, these
numbers indicate how many terms in Faà die Bruno’s formula appear. As a result, the
parameter r should not be chosen too large, in order to obtain a reasonable error bound.

For example, if we consider the ϕ1-function, we have an improved rate of order O(m−6/7)
for the choice r = 3 compared to O(m−`/2) = O(m−1/2). How the choice of γ affects the
approximation behavior is illustrated by the following simple numerical experiment.

Example 5.13 We consider the approxima-
tion of ϕ4(A)v in Qm(A,v) for a matrix A ∈
C1 000×1 000 with W (A) ⊆ [−100 i, 100 i] and
a random vector v of norm 1, which is gen-
erated by the Matlab function randn. The
shift γ is chosen as one (black solid line) and,
according to the discussion above, as γ = mα

with α = r−2
r+2 for r = 6, 12, 24 and m = 20.

In Figure 5.3, the approximation error is plot-
ted against the number of iteration steps. As
expected, we have a better convergence for
larger r. The apprehension that overly large
r have a negative effect cannot be observed
here. Hence, the worst case estimate for C(r)
above seems to be too pessimistic. m
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γ = 201/2

γ = 205/7

γ = 2011/13

Figure 5.3: Error ‖ϕ4(A)v − ϕ4(Am)v‖
versus m.

Remark 5.14 Probably, a result similar to Achyèser’s Theorem 5.3 holds true for the
rth modulus of smoothness which could not be found in standard literature. In this case,
estimate (5.18) above would hold true without the factor ln(m).

5.5 The case of operators

The approximation of operator functions f(A)v, especially of ϕ`(A)v, in the resolvent
space Qm(A, v) is analyzed in Grimm [29], where A is assumed to be a linear operator on
a Hilbert space H satisfying Range(λI−A) = H for some λ with Re(λ) > 0 and the dissi-
pativity property Re(Ax, x) ≤ 0 for every x ∈ D(A). The notation Qm(A, v) means that
the matrix A ∈ CN×N and the vector v ∈ CN in the rational Krylov subspace Qm(A,v)
are replaced by the operator A and v ∈ H. Using the Lumer-Phillips Theorem 3.7, we can
conclude that A generates a strongly continuous contraction semigroup with ‖eτA‖ ≤ 1
for all τ ≥ 0, where ‖ · ‖ designates the norm induced by the inner product on H.

We denote by f(0) : R → C the restriction of a function f : C → C to Re(z) = 0, that
is, f(0)(ζ) = f(iζ) for ζ ∈ R. Moreover, we assume that f is holomorphic and bounded

on C−0 and that f(0) ∈ C(R), Ff(0) ∈ L1(R) and supp(Ff(0)) ⊆ [0,∞), where Ff(0) is the
Fourier transform of f(0), given as

Ff(0)(s) =
1

2π

∫ ∞
−∞

e−ixsf(0)(x) dx .
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For a function f , fulfilling the above assumptions, we use the functional calculus (cf. [18])

f(A) :=

∫ ∞
0

esAFf(0)(s) ds ,

which defines a bounded linear operator f(A) with ‖f(A)‖ ≤ ‖Ff(0)‖L1(R). One can show
that the ϕ`-functions, ` ≥ 1, satisfy the required assumptions and that ϕ`(A), defined via
the functional calculus, coincides with the former definition

ϕ`(A) =

∫ 1

0
e(1−s)A s`−1

(`− 1)!
ds ,

see (3.12). It is shown in [29] that the best approximation of the operator function f(A)
in the resolvent subspace

R̃m(A) = span{(γI −A)−1, . . . , (γI −A)−m} , γ > 0

has the bound

inf
R∈R̃m(A)

‖f(A)−R‖ ≤ C ωrφ
(
f̃ ,

1√
m− 1

)
, f̃(s) = esFf(0)

(
s

γ

)
,

where r < m − 1 and C is a constant independent of f . The quality of approximation
is measured with the so-called weighted φ-modulus of smoothness ωrφ(g, δ) introduced by

De Bonis, Mastroianni and Viggiano in [7] to characterize the K-functional1 of a function
g by its structural properties. The main part of this modulus is defined by

Ωr
φ(g, δ) := sup

0<h≤δ
‖w∆r

hφ(g, ·)‖L1[4r2h2, 1
h2 ]

with the rth symmetric difference

∆r
hφ(g, t) =

r∑
j=0

(−1)j
(
r

j

)
g

(
t+

hφ(t)

2
(r − 2j)

)
,

where 0 < δ ≤ 1, φ(t) =
√
t and w(t) = e−t for t > 0. For the complete modulus, we now

compose ωrφ(g, δ) as

ωrφ(g, δ) := Ωr
φ(g, δ) + inf

p∈Pr−1

‖w(g − p)‖L1(0,4r2δ2) + inf
q∈Pr−1

‖w(g − q)‖L1( 1
δ2
,∞) .

A detailed analysis of ωrφ
(
ϕ̃`,

1√
m−1

)
for ϕ̃`(s) = esFϕ`,(0)

(
s
γ

)
and r = ` shows that

inf
R∈R̃m(A)

‖ϕ`(A)−R‖ ≤ C(`, γ)

m
`
2

. (5.20)

Like above, we define by Pm the orthogonal projection onto the resolvent Krylov subspace
Qm(A, v) and set Am = PmAPm. Then the resolvent Krylov subspace approximation has
the error bound

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ C(`, γ)

m
`
2

‖v‖ .

1The general K-functional is given by Kr,φ(f, δr)w,p = infg(r−1)∈ACloc
‖w(f−g)‖Lp +δr‖wφrg(r)‖Lp , where

0 < δ ≤ 1, 1 ≤ p ≤ ∞, w is a Laguerre weight of the form w(t) = tαe−t and ACloc is the set of locally
absolutely continuous functions.
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The bounds here look quite similar to our bounds in Section 5.3 for the matrix case, except
for the fact that the constants C(`, γ) are different. But the modulus of continuity from
Definition 5.2, used in the new derivation of this bound in Section 5.3, is more common
and much easier to calculate than the weighted φ-modulus of smoothness in this section.

In [29], the shift γ has been regarded as a fixed constant. To improve the convergence
rate in [29], we can proceed analogously to Section 5.4 to find an optimal γ. For this
purpose, we examine by a tedious calculation how the terms occurring in the estimate of
ωrφ
(
ϕ̃`,

1√
m−1

)
depend on γ > 0. Looking for the most restrictive terms and setting again

γ = mα, α ∈ R, we get a condition that the parameter α should fulfill, namely α = r−`
r+`

for ` < r < m− 1. With this choice, we achieve an upgraded convergence rate of order

O
(
m−

`
2

(1+α)
)
, α =

r − `
r + `

.

A sketch of the proof can be found in [25]. It should be noted that we do not end up with
the same optimal value for γ and the same improved rate as in Section 5.4. But this is not
surprising, since we used different moduli of smoothness. Again, we should keep in mind
that the predicted convergence is indeed faster for larger values of r, but at the cost of a
constant C(`, γ) in (5.20) that grows like Kr for a fixed constant K > 0.

5.6 Numerical experiments

In our first experiment, we consider a simple test example that validates the theoretical
bounds and that illustrates the faster convergence for ϕ`-functions of larger index ` . By
the example of a one-dimensional wave equation, the influence of the choice of the shift
γ on the convergence rate is demonstrated in Section 5.6.2. Finally, we compare the
shift-and-invert Krylov subspace method with the implicit Euler and the Crank-Nicolson
scheme for a finite-element discretization of a convection-diffusion equation.

5.6.1 Test example

We take a 5 000 × 5 000 - matrix with equidistant eigenvalues on the imaginary axis be-
tween −1 000 i and 1 000 i that we collect in a diagonal matrix D = diag(λ1, . . . , λ5 000).
Performing an orthogonal similarity transform, we obtain a dense matrix A = QHDQ,
where Q is chosen as an orthogonal test matrix from the Matlab gallery ’orthog’ of type
k = 1. The exact matrix function, that we need as a reference solution, can be easily
computed by ϕ`(A) = QHϕ`(D)Q. The initial vector v ∈ R5 000 is generated by randn

and scaled such that ‖v‖2 = 1. The matrix A is obviously normal and, therefore, we have
W (A) = [−1 000 i, 1 000 i] ⊆ C−0 so that our error estimates apply.

In Figure 5.4 on the left-hand side, the error curves for the approximation of ϕ`(A)v in the
shift-and-invert Krylov subspace Qm(A,v) with shift γ = 1 show a sublinear convergence
behavior that is significantly faster for larger indices `. From the top down, the plot shows
the approximation error for ` = 2, 4, 6, 8 (red, blue, green, black line) against the number
of rational Krylov steps. To compare the convergence rate with our predicted convergence
rate of order m−`/2, we draw the same error curves (solid lines) in a double logarithmic
scale together with some lines of order O(m−`/2), ` = 2, 4, 6, 8, on the right-hand side of
Figure 5.4.
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Figure 5.4: Left-hand side: Error ‖ϕ`(A)v − ϕ`(Am)v‖2 plotted against the number of
shift-and-invert Krylov steps for γ = 1. Right-hand side: Same plot as on the left but in
double logarithmic scale together with lines of order O(m−`/2), which correspond to the
predicted convergence rate.

5.6.2 One-dimensional wave equation

In a second example, we approximate the solution of a one-dimensional wave equation
with a source term f(t, x) on the right hand side that is given as

u′′ =
∂2

∂x2
u+ f(t, x) for x ∈ Ω , t ≥ 0 ,

u(0, x) = u0(x) , u′(0, x) = u′0(x) for x ∈ Ω ,

on the Hilbert space H = L2(Ω) with Ω = (0, 1). We assume homogeneous Dirichlet
boundary conditions, u(t, 0) = u(t, 1) = 0, and use a spectral method for the spatial dis-
cretization. The functions ψk(x) =

√
2 sin(kπx) are eigenfunctions of the second derivative

operator with homogeneous Dirichlet boundary conditions to the eigenvalues −(kπ)2 and
form an orthonormal basis of L2(Ω) (cf. Section 6.2 below). Hence, u(t, x) can be expanded
in a generalized Fourier series

u(t, x) =
∞∑
k=1

ãk(t)ψk(x) , ψk(x) =
√

2 sin(kπx) (5.21)

with the unknown Fourier coefficients

ãk(t) =

∫ 1

0
u(t, x)ψk(x) dx .

We search for an approximate solution of the wave equation in the finite dimensional
subspace span{ψ1(x), . . . , ψN (x)}. For this purpose, we approximate the source term
f(t, x) by the truncated generalized Fourier series

f(t, x) ≈
N∑
k=1

fk(t)ψk(x) , fk(t) =

∫ 1

0
f(t, x)ψk(x) dx , k = 1, . . . , N .
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In order to approximate the unknown solution u(t, x) in (5.21), we substitute the ansatz

uN (t, x) =

N∑
k=1

ak(t)ψk(x)

into the given partial differential equation which leads to

N∑
k=1

a′′k(t)ψk(x) = −
N∑
k=1

(kπ)2ak(t)ψk(x) +
N∑
k=1

fk(t)ψk(x) .

This is a system of ordinary differential equations

a′′(t) = −Ba(t) + f(t)

for the coefficients ak(t), where

a(t) =
(
ak(t)

)N
k=1

, f(t) =
(
fk(t)

)N
k=1

, B = diag
(
π2, (2π)2, . . . , (Nπ)2

)
.

The initial conditions a(0) =
(
ak(0)

)N
k=1

and a′(0) =
(
a′k(0)

)N
k=1

read

ak(0) =

∫ 1

0
u0(x)ψk(x) dx , a′k(0) =

∫ 1

0
u′0(x)ψk(x) dx , k = 1, . . . , N .

Setting v(t) = a(t) and w̃(t) = a′(t), the system a′′(t) = −Ba(t) + f(t) can also be
written as [

v(t)
w̃(t)

]′
=

[
O I
−B O

] [
v(t)
w̃(t)

]
+

[
0
f(t)

]
.

With the transformation w(t) = B−1/2w̃(t), we find the representation

y′(t) =

[
v(t)
w(t)

]′
=

[
O B1/2

−B1/2 O

] [
v(t)
w(t)

]
+

[
0

B−1/2f(t)

]
= Ay(t) + F (t)

(5.22)

with B1/2 = diag
(
π, 2π, . . . , Nπ

)
and initial value

y(0) = y0 =

[
v0

w0

]
, v0 =

(
ak(0)

)N
k=1

, w0 = B−1/2
(
a′k(0)

)N
k=1

.

The matrix A ∈ R2N×2N in (5.22) is skew-symmetric and hence has purely imaginary
eigenvalues. Since A is a normal matrix, the field of values W (A) is the convex hull of its
eigenvalues and lies on the imaginary axis. More precisely, we have W (A) = [−iNπ, iNπ]
and, thus, A fits in our framework above.

We choose f(t, x) = f(x) = sin(πx). Then the exponential Euler method yields the exact
solution of the semi-discrete problem (5.22), that is,

y(τ) = eτAy0 + τϕ1(τA)F = τϕ1(τA)(Ay0 + F ) + y0 .

As initial functions, we use

u0(x) = 0 , u′0(x) = 100x2(1− x)2 ,
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such that v0 = 0 . Because of

a′k(0) =

∫ 1

0
u′0(x)ψk(x) dx =

200
√

2

k5π5

(
cos(kπ)(k2π2 − 12)− k2π2 + 12

)
,

we further have

w0 = (w0,k)
N
k=1 , w0,k =


0 , k even ,

400
√

2

kπ
· 12− k2π2

k5π5
, k odd .

The orthonormality of the chosen basis functions ψk(x) on L2(Ω) gives∫ 1

0

(
N∑
k=1

ak(t)ψk(x)

)2

dx

 1
2

=

(
N∑
k=1

a2
k(t)

) 1
2

= ‖a‖2 ,

so that we can measure the approximation error in the standard Euclidean norm. This
identity is also known as Parseval’s equality.

In Figure 5.5, we see the obtained results using N = 31, 63, 1 023, 1 048 575 ansatz functions
(top left to bottom right) for the approximation of ϕ1(τA)(Ay0 + F ) in the subspace

Qm(τA,Ay0 +F ) = Km
(
(γI − τA

)−1
,Ay0 +F ) (blue solid and black dash-dotted line)

and, for comparison, in the polynomial Krylov subspace Km(τA,Ay0 + F ) (red dashed
line). The Krylov subspace approximation reads

ϕ1(τA)(Ay0 + F ) ≈ ϕ1(τAm)(Ay0 + F ) = Vmϕ1(τSm)Vm
H(Ay0 + F )

with the compression Sm = Vm
HAVm and the restriction Am = PmAPm of the matrix

A, where Pm = VmVm
H is the orthogonal projection onto the rational or, respectively,

standard Krylov subspace.

The approximation error is plotted against the number of iterations for m = 1, . . . , 20,
time step τ = 0.1, and different shifts γ = 1 (blue solid line), γ = 203/5 (black dash-dotted
line). The second shift is chosen as γ = m(r−1/2)/(r+1/2) according to the analysis in
Section 5.4 with m = 20, r = 2 and, therefore, results in a noticeably faster convergence
rate. As predicted by the error bounds above, the error curves corresponding to the
rational method show a sublinear convergence behavior.

The polynomial method only leads to success for very coarse space discretizations with
a small number (N = 31, 63) of basis functions ψk(x), k = 1, . . . , N . For larger values
of N , we observe a stagnation of the error curve after the third iteration step, whereas
the rational approximation performs well independent of the number of basis functions.
This effect is, roughly speaking, caused by the smoothness properties of the initial value
Ay0 +F . In the next chapter, we will explain this observation in detail. Furthermore, we
discuss how the standard and rational Krylov subspace method can be efficiently combined,
in order to exploit the decrease of the less expensive standard Krylov subspace method in
the first few iteration steps.

Moreover, we compare the performance of the standard and the shift-and-invert Krylov
subspace method with respect to approximation error versus computing time in seconds.
For the finest grid with N = 1 048 575 ansatz functions and time step τ = 0.1 as above,
the obtained results are shown in Figure 5.6. The computation has been conducted in
the software environment Matlab, Release 2014a, under Ubuntu, Release 13.10, on a dual
Xeon CPU workstation with a total of eight cores each running at 2.33 GHz.
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Figure 5.5: Plot of the error ‖ϕ1(τA)(Ay0 + F ) − ϕ1(τAm)(Ay0 + F )‖2 versus the di-
mension of the Krylov subspace for the standard Krylov subspace Km(τA,Ay0 +F ) (red
dashed line) and the shift-and-invert Krylov subspace Qm(τA,Ay0 +F ) with γ = 1 (blue
solid line) and γ = 203/5 (black dash-dotted line) for τ = 0.1, N = 31, 63, 1 023, 1 048 575.

5.6.3 Convection-diffusion equation

As a third numerical example, we consider the convection-diffusion equation

u′ = d∆u− bT∇u for (x, y) ∈ Ω , t ≥ 0 ,

u(0, x, y) = u0(x, y) for (x, y) ∈ Ω

with homogeneous Dirichlet boundary conditions on the unit square Ω = (0, 1)2 for the
Hilbert space H = L2(Ω). The coefficient d > 0 is called the diffusivity or diffusion
coefficient, bT represents the velocity, and u describes the concentration of a substance.
The spatial discretization is done by finite elements using a regular triangulation with
n+ 2 nodes in each space direction, such that we have a quadratic grid with N = n2 inner
nodes and mesh size h = 1

n+1 . We choose the standard N nodal linear basis functions φk,
k = 1, . . . , N , that take the value 1 at the kth vertex and 0 at all other nodes. According
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Figure 5.6: Plot of error versus computation time in seconds for the standard (red dotted
line) and the shift-and-invert Krylov subspace method with γ = 1 (blue solid line) and
γ = 203/5 (black dash-dotted line) for N = 1 048 575 and τ = 0.1.

to Section 3.1.2, this leads to the system of ordinary differential equations

Mu′(t) = Su(t) , u(0) = u0 , (5.23)

where M represents the mass matrix, S is the stiffness matrix, and the coefficient vector

u(t) =
(
uk(t)

)N
k=1
∈ CN contains the coefficients of the approximation

u(t, x, y) ≈
N∑
k=1

uk(t)φk(x, y) .

By multiplication with M−1 from the left, equation (5.23) can be written as

u′(t) = M−1Su(t) = Au(t) , u(0) = u0

with exact solution u(τ) = eτAu0. Since the error analysis above only states estimates for
the ϕ`-functions for ` > 0 and not for the exponential function, we rewrite the solution as

u(τ) = τϕ1(τA)Au0 + u0 (5.24)

and approximate instead the action of the matrix ϕ1-function of τA on Au0 in the shift-
and-invert Krylov subspace Qm(τA,Au0).

The corresponding inner product (v,w)M = wHMv, v,w ∈ CN , with associated norm
‖v‖M =

√
(v,v)M is determined by the mass matrixM , containing the L2-inner products

(φi, φj)L2(Ω) =

∫
Ω
φiφj d(x, y)

of the finite-element basis φk, k = 1, . . . , N . In order to apply the results from above, we
have to assure that the field of values with respect to the inner product (· , ·)M satisfies
W (A) = W (M−1S) ⊆ C−0 , which is the statement of the following lemma.

Lemma 5.15 The matrix A = M−1S of the finite-element discretization fulfills

Re(Av,v)M ≤ 0 .
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Proof. The stiffness matrix S = S1 + S2 stems from the spatial discretization of the
differential operator d∆− bT∇ in the convection diffusion equation, where S1 represents
the part that belongs to the Laplacian d∆ and S2 is assigned to −bT∇. Because of d > 0,
the first part S1 is symmetric negative definite and has a field of values on the negative
real axis. Moreover, since∫

Ω
(bT∇φi)φj d(x, y) = −

∫
Ω

(bT∇φj)φi d(x, y) ,

the second matrix S2 is skew-symmetric and has a field of values on the imaginary axis.
Denoting by W2(·) the field of values with respect to the standard Euclidean inner product
(· , ·)2, we have

W2(S) = W2(S1)︸ ︷︷ ︸
⊆R−

+W2(S2)︸ ︷︷ ︸
⊆ iR

⊆ C−0 .

For every vector v, we thus obtain

Re(Av,v)M = Re(Sv,v)2 ≤ 0 ,

which proves the result. o

We now approximate ϕ1(τA)Au0 in the rational Krylov subspace Qm(τA,Au0) for the
time step size τ = 0.005, diffusion coefficient d = 0.05 and velocity bT = [−50,−50] on
a grid with N = 10 000 inner nodes. The initial value u0 has the shape of a small peak
in the lower left corner of the unit square (see Figure 5.7 on the left), which moves to
the upper right corner as time progresses and meanwhile diffuses a bit. More exactly, the
initial value u0 is given by

u0(x, y) =

{
105 · (x− 0.05)2 (x− 0.5)2 (y − 0.05)2 (y − 0.5)2 , (x, y) ∈ [0.05, 0.5]2 ,

0 , elsewhere .

The computation of an orthonormal basis Vm of Qm(τA,Au0) is done by a rational
Arnoldi decomposition. In the most general sense, this process is, for a finite-element
discretization, realized by Algorithm 5.16, which is here given in a simplified and easily
readable form. For the numerical experiments, we made improvements concerning the
stability and efficiency. For example, a reorthogonalization is used in each step and we
compute (γM − τS)−1w only once for each iteration of the loop over m. Not only in this
numerical experiment, but also in all other experiments, we used improved versions of the
presented algorithms for the numerical computations.

The basis Vm obtained from Algorithm 5.16 is orthonormal with respect to the M -inner
product such that Vm

HMVm = I. In addition to the basis vector vm+1, we compute the
auxiliary vector w = Mvm+1 in each iteration step. This is motivated by the fact that,
in the calculation of hj,m, we have

(γI − τA)−1vm = (γI − τM−1S)−1vm = (γM − τS)−1w .

The projector onto the shift-and-invert Krylov subspace is given by Pm = VmVm
HM and

the restriction of A = M−1S onto the rational subspace reads

Am = PmAPm = VmSmVm
HM , Sm = Vm

HMAVm = Vm
HSVm .
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Algorithm 5.16 FE rational Arnoldi process

given: mass matrix M ∈ CN×N ,

given: stiffness matrix S ∈ CN×N ,

given: initial value v ∈ CN , shift γ > 0

w = Mv

v1 = v/‖v‖M , w = w/‖v‖M
for m = 1, 2, . . . do

for j = 1, . . . ,m do

hj,m =
(
(γM − τS)−1w,vj

)
M

end for

ṽm+1 = (γM − τS)−1w −
∑m

j=1 hj,mvj

w̃ = Mṽm+1

hm+1,m = ‖ṽm+1‖M
vm+1 = ṽm+1/hm+1,m

w = w̃/hm+1,m

end for

With this, the rational Krylov subspace approximation is calculated as

ϕ1(τA)Au0 ≈ ϕ1(τAm)Au0 = Vmϕ1(τSm)Vm
HMAu0 = ‖Au0‖MVmϕ1(τSm)e1 .

Even though the error estimates above provide no convergence result for the direct ap-
proximation of eτAu0 in the rational Krylov subspace Qm(τA,u0), relation (5.24) allows
us to use the available rational Krylov subspace approximation for ϕ1(τA)Au0. On the
right-hand side of Figure 5.7, we draw the approximation error (blue solid line)

Em := ‖eτAu0 − (u0 + τϕ1(τAm)Au0)‖M

against the number of iteration steps for the shift γ = 1. In this situation, Theorem 5.9
yields the sublinear bound

Em = τ‖ϕ1(τA)Au0︸ ︷︷ ︸
= 1

τ (eτAu0 − u0)

−ϕ1(τAm)Au0‖M ≤ τ
C(γ)√
m
‖Au0‖M . (5.25)

Finally, we compare the performance of the shift-and-invert Krylov method with the im-
plicit Euler and the Crank-Nicolson method. Applied to the system of ordinary differential
equations u′(t) = Au(t) = f

(
u(t)

)
, u0 = u(0), these schemes compute an approximation

of u(τ) = eτAu0 via the recursions

implicit Euler: uimE
k+1 = uimE

k + τ
mf(uimE

k+1) ,

Crank-Nicolson: uCN
k+1 = uCN

k + τ
mf
(

1
2(uCN

k + uCN
k+1)

)
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Figure 5.7: Left-hand side: Initial value u0 on the unit square. Right-hand side: Plot of the
approximation error Em versus m (blue solid line) together with the error of the implicit
Euler method (red dashed line) and the Crank-Nicolson scheme (green dash-dotted line).

for k = 0, . . . ,m− 1. In our case, we have

eτAu0 ≈ uimE
m =

(
I − τ

m
A
)−m

u0

and

eτAu0 ≈ uCN
m =

((
I − τ

2m
A
)−1 (

I +
τ

2m
A
))m

u0 .

It is well-known that the implicit Euler scheme is convergent of order one, whereas the
Crank-Nicolson method is convergent of order two, that means

‖u(τ)− uimE
m ‖ = O

( τ
m

)
and ‖u(τ)− uCN

m ‖ = O
(
τ2

m2

)
.

Via the relations

uimE
m ∈ Km+1

(
(mI − τA)−1,u0

)
and uCN

m ∈ Km+1

(
(2mI − τA)−1,u0

)
,

the implicit Euler and the Crank-Nicolson scheme are related to the shift-and-invert Krylov
subspace method.

For the direct comparison of the three methods, we do not approximate the solution
eτAu0 via the ϕ1-function but directly by eτAm+1u0, where Am+1 is the restriction of A
to Km+1

(
(mI − τA)−1,u0

)
or Km+1

(
(2mI − τA)−1,u0

)
, even though the error bounds

derived above make no statement in this case.

On the left-hand side of Figure 5.8, we draw the error for the approximation of eτAu0

for τ = 0.005 by the rational Krylov process with pole γ = m (blue solid line) and by
the implicit Euler method (red dashed line). On the right-hand side, the error curves for
the shift-and-invert Krylov subspace approximation with γ = 2m (blue solid line) and
for the Crank-Nicolson scheme (green dash-dotted line) are depicted. In both cases, the
rational Krylov subspace method converges significantly faster. The reason for this obser-
vation is the near-optimality property of Krylov subspace methods, which was discussed
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in Section 4.4. The implicit Euler and the Crank-Nicolson scheme can be interpreted as
a fixed rational approximation in Km+1

(
(mI − τA)−1,u0

)
or Km+1

(
(2mI − τA)−1,u0

)
.

In contrast, by Theorem 4.16 the rational Krylov process automatically yields a near-best
approximation in these subspaces.
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Figure 5.8: Left-hand side: Comparison of the implicit Euler scheme (red dashed line) with
the shift-and-invert method for γ = m (blue solid line). Right-hand side: Comparison of
the Crank-Nicolson scheme (red dashed line) with the shift-and-invert method for γ = 2m
(blue solid line). In both pictures, the error is plotted against m.

Even if we choose the fixed shift γ = 1 and compare the performance of the shift-and-invert
Krylov subspace approximation for eτAu0 via u0 +τϕ1(τAm)Au0 with the implicit Euler
and the Crank-Nicolson method in Figure 5.7 on the right-hand side, the convergence rate
of the rational Krylov process is considerably better.

In contrast to the fixed inverse (γI − τA)−1 used in the rational Krylov decomposition,
the inverse (I − τ

mA)−1 for the implicit Euler or (I − τ
2mA)−1 for the Crank-Nicolson

method varies depending on the iteration index m. Once the inverse of γI − τA is
known (e.g., in form of an LU decomposition), it can be applied in the rational Krylov
algorithm independent of the number m of iteration steps. Conversely, (I − τ

mA)−1 and
(I − τ

2mA)−1 have to be computed from scratch every time, if we raise the dimension m
of the approximation subspace, in order to approximate the solution more accurately.



Chapter 6

Extended Krylov subspace approximation

If the initial value v satisfies specific smoothness conditions, it is often worthwhile to con-
sider the extended Krylov subspace approximation of f(A)v, which combines the standard
and the rational Krylov subspace process. For a nonsingular and symmetric matrix A,
the extended Krylov subspace

Kq+1,m(A,v) = span{Aqv, . . . ,Av,v,A−1v, . . . ,A−(m−1)v} , q ≥ 0 , m ≥ 1

was first proposed by Druskin and Knizhnerman [15], in order to approximate the matrix
square root and related functions. Of course, the extended Krylov subspace method is
generalizable to non-symmetric matrices. In [48], Knizhnerman and Simoncini study the
approximation of Markov type functions by an extended Krylov subspace method for
symmetric and non-symmetric matrices as well.

Because of the relation Kq+1,m(A,v) = Kq+m(A,A−(m−1)v), the extended Krylov sub-
space can alternatively be seen as a standard Krylov subspace of order q + m with the
modified starting vector A−(m−1)v. Since we would like to approximate matrix functions
for matrices A with a field of values somewhere in the left complex half-plane and A thus
may have zero eigenvalues, we will study a shifted version of this subspace, namely

Kγq+1,m(A,v) = span

{
Aqv, . . . ,Av,v,

1

γ −A
v, . . . ,

1

(γ −A)m−1
v

}
, γ > 0 .

This subspace is of dimension q+m, if the invariance index has not been reached yet. The
purely polynomial and purely rational part of this subspace are given by

Kγq+1,1(A,v) = span {Aqv, . . . ,Av,v} = Kq+1(A,v)

and

Kγ1,m(A,v) = span

{
v,

1

γ −A
v, . . . ,

1

(γ −A)m−1
v

}
= Km

(
(γI −A)−1,v

)
.

That is, Kγ1,m(A,v) coincides with the shift-and-invert Krylov subspace in Chapter 5.

Assuming that A is a large discretization matrix with W (A) ⊆ C−0 , as in the previous
section, we are interested in error bounds for the approximation of ϕ`(A)v that guarantee a
uniform convergence over all possible grids in space. This is an important property for the
efficient application of the extended Krylov subspace method in exponential integrators.

In the first part of this chapter, it will turn out in which way the abstract smoothness
of the continuous function v in a Hilbert space H, that is associated with the discrete
vector v, leads to a restriction for the index q of the polynomial part Kγq+1,1(A,v) of the
extended Krylov subspace. Afterwards, we state error bounds for the extended Krylov
subspace approximation and illustrate our results by several numerical experiments. The
contents of this chapter can also be found in our paper [25].
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6.1 Smoothness of the initial value

We first motivate to what extent the abstract smoothness of the initial value v ∈ H is
represented by the discretized vector v and that its smoothness plays a central role in
the extended Krylov subspace approximation. In contrast to matrices, the differential
operator A can only be applied to elements of a subspace D(A) ⊆ H, where D(A) is
the domain of A defined in (3.6). If we think of A, for example, as the Laplace operator
with homogeneous Dirichlet boundary conditions, it is clear that A can only be applied
to functions v ∈ H that are twice differentiable and equal to zero at the boundary of the
spatial domain Ω. Setting D(A0) := D(I) := H, we define recursively spaces of smoother
and smoother functions by

D(An) := {v ∈ D(An−1) : An−1v ∈ D(A)} , n = 1, 2, . . . .

Approximating the action of an operator function f(A) on a vector v ∈ H in the polynomial
Krylov subspace Kq+1(A, v) or in the extended Krylov subspace Kγq+1,m(A, v), we would
have to assume that v ∈ D(Aq) to ensure that Av, . . . , Aqv are defined in the case of
operators. This smoothness requirement on v has a decisive effect on the discrete case
that must not be neglected.

In order to illustrate this fact, we examine the one-dimensional Laplace operator A = ∂2

∂x2

on the interval Ω = (0, 1) with homogeneous Dirichlet boundary conditions on the Hilbert
space H = L2(Ω). As initial value, we choose

v(x) =
x4(1− x)4

‖x4(1− x)4‖L2(Ω)
, x ∈ Ω . (6.1)

Then v is infinitely often differentiable, but the forth derivative v(4) does no longer fulfill the
zero boundary conditions, such that v ∈ D(Aj) for j ≤ 2 and v 6∈ D(A3). The discretized
operator is given by the matrix A = 1

h2 tridiag(1,−2, 1) ∈ RN×N , where h = 1
N+1 denotes

the mesh size and N is the number of inner discretization points of Ω. This matrix arises
from a finite-difference approximation of the second derivative. For the discretized initial
value v ∈ RN , we evaluate the continuous function in (6.1) at N inner grid points.

Let us consider the vectors Av, A2v and A3v corresponding to the continuous counter-
parts v(2), v(4) and v(6). Figure 6.1 clearly shows that Av replicates the necessary zero
boundary conditions very well. However, this is no longer the case for A2v and A3v. This
shows that a further multiplication of A2v with A is problematic. Moreover, we observe
that the entries of Akv become larger and larger, if we increase the value k ∈ N.

We compute the discrete L2-norm of Ajv for j = 1, . . . , 4 and plot them against the mesh
size h = 1

N+1 in Figure 6.3. The norms ‖Ajv‖, corresponding to the well-defined abstract

expressions Av and A2v for v ∈ D(A2), stay at the same level for smaller values of h. As
opposed to this, ‖A3v‖ and ‖A4v‖ grow rapidly for finer spatial meshes. The observed
behavior corresponds to the fact that the associated continuous initial value v does neither
belong to D(A3) nor to D(A4).

The situation is quite different, if we apply powers of (γI − A)−1 to the initial value v
instead. The boundedness and the smoothing property (γI − A)−1 : H → D(A) of the
resolvent is transferred to the discrete case. The vectors (γI − A)−kv all replicate the
homogeneous Dirichlet boundary conditions and remain uniformly bounded for all k ∈ N,
cf. Figure 6.2.
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Figure 6.1: Plot of Av, A2v and A3v for N = 39.
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Figure 6.2: Plot of (γI −A)−1v, (γI −A)−2v and (γI −A)−3v for γ = 1 and N = 39.

In summary, we can say that an approximation of f(A)v in the extended Krylov sub-
space Kγq+1,m(A,v) is only reasonable in the case that the continuous counterpart satisfies
the condition v ∈ D(Aq). The size of the polynomial part of the extended subspace is
therefore restricted by the maximal smoothness of the initial value v. In the following, we
will establish error bounds for the approximation of ϕ`(A)v in Kγq+1,m(A,v) that involve
‖Aqv‖. For this reason, we will always assume that the vector v corresponds to a continu-
ous value v ∈ D(Aq), where A is the operator associated withA. This requirement ensures
that ‖Aqv‖ does not grow for finer discretizations and yields a uniform grid-independent
convergence for the extended Krylov approximation.

6.2 Motivation

The standard Krylov subspace approximation has the benefit that the computation is
cheap, since we only have to evaluate matrix-vector multiplications. However, the con-
vergence can be very slow. This is, in particular, the case if A stems from a fine space
discretization and therefore has huge norm, or if the initial value is not sufficiently smooth.
In contrast, it was illustrated in Chapter 5 that the shift-and-invert Krylov method has
the great advantage that the convergence is independent of ‖A‖ and does not require any
smoothness assumptions on the initial data. But nevertheless, its computation is more
expensive, since we have to solve a large linear system in each iteration step. Thus, it may
be worthwhile to start with some standard Krylov steps, as long as the approximation is
improved, and then to continue with the rational Krylov subspace method. This leads to
the idea of searching an approximation in the extended space Kγq+1,m(A,v).
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Figure 6.3: Plot of the discrete L2-norm ‖Ajv‖ for j = 1, . . . , 4 against the mesh size h.

To further motivate this idea, we return to the one-dimensional wave equation in Sec-
tion 5.6.2. This time, we choose initial values with different smoothness properties. For
the sake of simplicity, we set f(t, x) = 0 and consider the abstract equation

u′′ = −Bu =
∂2

∂x2
u , u(0) = u0 , u′(0) = u′0

on the Hilbert space H = L2(Ω), where B is the negative Laplace operator − ∂2

∂x2 with
homogeneous Dirichlet boundary conditions on Ω = (0, 1). The eigenvalues λk and eigen-
functions ψk of B are given by

λk = (kπ)2 , ψk(x) =
√

2 sin(kπx) , k ∈ N .

These eigenfunctions are orthonormal with respect to the L2-inner product (· , ·)L2(Ω).
Since B is a positive and self-adjoint operator with a compact resolvent, the eigenfunctions
ψk build an orthonormal basis of the Hilbert space H by the spectral theorem ([56], p. 95).
So, every function in L2(Ω) can be written as an infinite series of these basis functions,
i.e., u =

∑∞
k=1 ãkψk, with generalized Fourier coefficients ãk = (u, ψk)L2(Ω). The action of

the operator B on a function u is defined as

Bu =

∞∑
k=1

(kπ)2ãkψk , ãk =

∫ 1

0
u(t, x)ψk(x) dx

with domain

D(B) = {u ∈ H :
∞∑
k=1

(kπ)4ã2
k <∞} .

For α ∈ R, we define fractional powers by

Bαu :=

∞∑
k=1

λαk ãkψk ,
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whose domain is

D(Bα) = {u ∈ H : ‖Bαu‖L2(Ω) <∞} .

Setting v = u and w = B−1/2u′, we can rewrite the wave equation in an abstract form as

y′(t) =

[
v(t)
w(t)

]′
=

[
0 B1/2

−B1/2 0

] [
v(t)
w(t)

]
= Ay(t)

with initial value

y(0) = y0 =

[
v0

w0

]
=

[
v(0)
w(0)

]
=

[
u(0)

B−1/2u′(0)

]
and D(A) = D(B1/2) × D(B1/2) = H1

0 (0, 1) × H1
0 (0, 1). As outlined in the previous

subsections, we are interested in the domain D(Ak) = D(Bk/2)×D(Bk/2), where D(Bk/2)
contains all functions that are k times weakly differentiable and whose (k−1)st derivative
is zero at the boundary points 0 and 1.

Let us consider the initial value

yq0 =

[
vq0

wq0

]
, vq0(x) =

xq(1− x)q

‖xq(1− x)q‖L2(Ω)
, wq0(x) = 0 ,

for which we have yq0 ∈ D(Aq), but yq0 6∈ D(Aq+1), since dq

dxq v
q
0(x) does no longer fulfill the

required zero boundary conditions.

For the spectral discretization, we approximate u =
∑∞

k=1 ãkψk by a linear combination

of the first N eigenfunctions ψ1, . . . , ψN . More precisely, we use uN =
∑N

k=1 akψk with
coefficients ak that have to be determined. This leads to the system of ordinary differential
equations

y′(t) =

[
v(t)
w(t)

]′
=

[
O B1/2

−B1/2 O

] [
v(t)
w(t)

]
= Ay(t) , y(0) = yq0 =

[
vq0

wq
0

]
(6.2)

with

B1/2 = diag(π, 2π, . . . , Nπ) , v(t) =
(
ak(t)

)N
k=1

, w(t) = B−1/2
(
a′k(t)

)N
k=1

.

The discretized initial values vq0 and wq
0 contain the first N Fourier coefficients of the

continuous counterparts vq0 and wq0.

We now approximate the solution eτAyq0 of (6.2) in the polynomial, the rational and
the extended Krylov subspace for time step size τ = 0.1, shift γ = 1, and N = 1 023
basis functions. According to the smoothness of the initial value, the polynomial part of
the extended Krylov subspace is restricted by the index q. For q = 2, 3, 4, 5, we see the
obtained error curves plotted against the number of Krylov steps in Figure 6.4.

The polynomial steps of the extended Krylov decomposition are not performed in the
indicated order of the subspace Kγq+1,m(τA,yq0). Instead, we proceed from yq0, Ayq0, . . .
up to Aqyq0, such that the first q + 1 steps coincide with the standard Krylov subspace
procedure, cf. Section 6.4. Therefore, the blue solid and the red dashed line are identical
at the beginning.
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Figure 6.4: Plot of the error ‖eτAyq0 − eτAq+myq0‖2 versus the dimension of the Krylov
subspace for the standard Krylov subspace Kγq+m,1(τA,yq0) (red dashed line), the ratio-
nal Krylov subspace Kγ1,q+m(τA,yq0) (green dash-dotted line), and the extended Krylov
subspace Kγq+1,m(τA,yq0) (blue solid line) with initial vectors yq0, q = 2, 3, 4, 5, whose con-

tinuous counterparts satisfy yq0 ∈ D(Aq) but yq0 6∈ D(Aq+1). The parameters are chosen as
γ = 1, τ = 0.1, and N = 1 023.

A first observation is that the accuracy of the rational and the extended Krylov subspace
approximation increases with the index q. The smoothness of the chosen initial function
has thus an influence on the convergence rate and affects how well eτAyq0 can be approxi-
mated in the considered Krylov subspaces. This dependence of the approximation quality
on the smoothness of the initial value may be expected for a very fine discretization in
space, in which case A represents more and more the differential operator A. It is as-
tonishing that this behavior can be observed even for a coarse discretization using only
N = 1 023 basis functions.

The approximation in the polynomial Krylov subspace Kγq+m,1(τA,yq0) works fine until

the subspace encloses vectors of the form Alyq0 with l > q. This point is marked in
Figure 6.4 by the vertical dashed line between the (q + 1)st standard Krylov step, that
does not use the vector Aq+1yq0, and the (q + 2)nd step, that does use Aq+1yq0. This
observation justifies the application of the extended Krylov subspace method, where we
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first perform q + 1 polynomial Krylov steps and then continue with the rational Krylov
subspace approximation.

The situation is a little bit different, if we use another initial value ỹq0 = [ṽq0, w̃
q
0]T . We

define the function g(x) = xq+2(x− 1
2)q and set

v̂q0(x) =

{
g(x) , x ∈ [0, 1

2 ]

(−1)q+1g(1− x) , x ∈ (1
2 , 1]

, ṽq0(x) =
v̂q0(x)

‖v̂q0(x)‖L2(Ω)
.

This function can be differentiated q times and the qth weak derivative has a discontinuity
at x = 1

2 , that is, ỹq0 ∈ D(Aq) and ỹq0 /∈ D(Aq+1). As before, the second component of the
initial value is chosen as w̃q0 = 0.

In Figure 6.5, we see that the polynomial Krylov method might stagnate before the vector
Aqỹq0 is used for the approximation of eτAỹq0. This happens one iteration step earlier
as expected, namely in the qth instead of the (q + 1)st step. Nevertheless, this imposes
no problem, since the abstract smoothness of the initial value is often not known in ad-
vance. In fact, we rely on heuristic methods to determine the point, where the polynomial
method achieves no further improvement and where we should start to use the rational
approximation. Two heuristic approaches will be presented in Section 6.5.1.
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Figure 6.5: Plot of the error ‖eτAỹq0 − eτAq+m ỹq0‖2 versus the dimension of the Krylov
subspace for the standard Krylov subspace Kγq+m,1(τA, ỹq0) (red dashed line), the rational
Krylov subspace Kγ1,q+m(τA, ỹq0) (green dash-dotted line), and the extended Krylov sub-
space Kγq+1,m(τA, ỹq0) (blue solid line) with initial vectors ỹq0, q = 3, 5, whose continuous

counterparts satisfy ỹq0 ∈ D(Aq) but ỹq0 6∈ D(Aq+1). The parameters are chosen as γ = 1,
τ = 0.1, and N = 1 023.

Applying the extended Krylov subspace process, we can achieve a speed-up, since the
standard Krylov method is, in general, cheap, due to the fact that only matrix-vector
multiplications have to be performed. In contrast, the rational approximation usually
performs better but is more expensive, because the rational Krylov decomposition requires
the solution of a linear system (γI − τA)−1v in each iteration step.
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6.3 Error bounds

The derivation of error bounds for the extended Krylov subspace approximation strongly
relies on the results of the shift-and-invert Krylov subspace method. As in Chapter 5, we
assume that the matrix A ∈ CN×N satisfies

W (A) ⊆ C−0 (6.3)

with respect to some inner product on CN . Given a Hilbert space H with inner product
(· , ·), such matrices typically originate from a differential operator A with Re(Av, v) ≤ 0
for all v ∈ D(A) and Range(λI − A) = H for some λ in the right complex half-plane,
such that A generates a strongly continuous contraction semigroup on H by the Lumer-
Phillips Theorem 3.7. Since the discretized operatorA ∈ CN×N retains properties inherent
to the continuous counterpart A, the assumption (6.3) is justified for a suitable spatial
discretization. According to the discussion above, we state the following assumption on
the initial vector v.

Assumption 6.1 Let A ∈ CN×N be a discretization matrix of some differential operator
A including boundary conditions, which generates a strongly continuous contraction semi-
group on H. Then we assume that the vector v ∈ CN stems from the discretization of a
function v ∈ D(Aq) ⊆ H. Moreover, we suppose that the discretization is suitably chosen
such that the smoothness requirements of the corresponding abstract problem are well re-
flected in the discrete case, that means ‖Aqv‖ ≤ K‖Aqv‖, v ∈ D(Aq), for a constant K
which does not depend on the spatial grid.

This assumption ensures that ‖Aqv‖ is bounded irrespectively of the spatial mesh size and
later guarantees that our error bounds hold uniformly, that is, independent of a refinement
of the discretization in space.

Example 6.2 We consider a differential operator A on L2(Ω), Ω = (0, 1), that is given
as the negative second derivative operator including homogeneous Dirichlet boundary
conditions. Moreover, we take a vector v ∈ D(Aq) which we represent in the eigenbasis
ψk(x) =

√
2 sin(kπx) of A via v =

∑∞
k=1 vk(t)ψk(x). Using a spectral discretization with

N ansatz function, we obtain the discretization matrix A = diag(π2, (2π)2, . . . , (Nπ)2)

and the vector v =
(
vk(t)

)N
k=1

. In this case it is easy to see that

‖Aqv‖2 =

(
N∑
k=1

(
(kπ)2qvk(t)

)2) 1
2

≤

( ∞∑
k=1

(
(kπ)2qvk(t)

)2) 1
2

= ‖Aqv‖L2(Ω) ,

i.e., the inequality ‖Aqv‖ ≤ K‖Aqv‖ in Assumption 6.1 holds with K = 1. m

We aim to derive error bounds for the approximation of ϕ`(A)v, ` ≥ 0, in the extended
Krylov subspace Kγq+1,m(A,v). A first step to this end is the following lemma that links
the best approximation of ϕ`(A)v in the extended Krylov subspace Kγq+1,m(A,v) with the
best approximation of ϕq+`(A)Aqv in the rational space Kγ1,m(A,v). This relation makes
it possible to fall back on the results that we established in Chapter 5 for the shift-and-
invert Krylov subspace approximation. This time, we apply the bounds to the product of
the matrix function ϕq+`(A) and the vector Aqv.
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Lemma 6.3 Let A ∈ CN×N be a matrix with W (A) ⊆ C−0 . Then

inf
z∈Kγq+1,m(A,v)

‖ϕ`(A)v − z‖ ≤ inf
y∈Kγ1,m(A,Aqv)

‖ϕq+`(A)Aqv − y‖

holds for any ϕ`-function with ` ≥ 0.

Proof. Our aim is to show that for any coefficients b0, . . . , bm−1 ∈ C in (6.4), one can find
coefficients a1, . . . , am−1 ∈ C and a polynomial pq ∈ Pq, so that

ϕq+`(A)Aqv −
m−1∑
k=0

bk
1

(γ −A)k
Aqv︸ ︷︷ ︸

∈ Kγ1,m(A,Aqv)

= ϕ`(A)v − pq(A)v −
m−1∑
k=1

ak
1

(γ −A)k
v︸ ︷︷ ︸

∈ Kγq+1,m(A,v)

. (6.4)

For this purpose, we consider the corresponding scalar problem. Since

pq(z)−
m−1∑
k=1

ak
1

(γ − z)k
∈ Pq+m−1

qm−1
, qm−1(z) = (γ − z)m−1 ,

we have to prove that, for any polynomial pm−1 ∈ Pm−1, we can find a polynomial
pq+m−1 ∈ Pq+m−1 with(

ϕq+`(z)−
pm−1(z)

(γ − z)m−1

)
zq = ϕ`(z)−

pq+m−1(z)

(γ − z)m−1
.

Using formula (3.13) for the ϕ-functions, we obtain

ϕq+`(z)z
q =

1

zq+`

(
ez −

q+`−1∑
k=0

zk

k!

)
zq = ϕ`(z)−

q−1∑
k=0

zk

(k + `)!
= ϕ`(z)− pq−1(z)

for some polynomial pq−1 ∈ Pq−1. This gives(
ϕq+`(z)−

pm−1(z)

(γ − z)m−1

)
zq = ϕq+`(z)z

q − pm−1(z)

(γ − z)m−1
zq

= ϕ`(z)− pq−1(z)− pm−1(z)

(γ − z)m−1
zq

= ϕ`(z)−
pq+m−1(z)

(γ − z)m−1

and thus the validity of the desired relation (6.4). Since (6.4) says that every element in
ϕq+`(A)Aqv + Kγ1,m(A,Aqv) can be expressed as an element in ϕ`(A)v + Kγq+1,m(A,v),
we deduce the inclusion

{‖ϕq+`(A)Aqv − y‖ : y ∈ Kγ1,m(A,Aqv)} ⊆ {‖ϕ`(A)v − z‖ : z ∈ Kγq+1,m(A,v)} .

This yields the statement of the lemma. o

According to Lemma 6.3, it is now possible to reduce the problem of bounding the best
approximation in the extended Krylov subspace to a problem of finding an estimate for the
best approximation in the shift-and-invert Krylov subspace. This results in the following
theorem.
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Theorem 6.4 Suppose that W (A) ⊆ C−0 , and let A and v fulfill Assumption 6.1. Then
the best approximation of ϕ`(A)v, ` ≥ 0, in the extended Krylov subspace Kγq+1,m(A,v) is
uniformly bounded by

inf
z∈Kγq+1,m(A,v)

‖ϕ`(A)v − z‖ ≤ C(`, q, γ)

m
q+`

2

‖Aqv‖ ≤ K C(`, q, γ)

m
q+`

2

‖Aqv‖ ,

where the constants K and C(`, q, γ) are independent of the spatial grid.

Proof. For y =
∑m−1

k=0 bk
1

(γ−A)k
Aqv ∈ Kγ1,m(A,Aqv), we have

‖ϕq+`(A)Aqv − y‖ ≤

∥∥∥∥∥ϕq+`(A)−
m−1∑
k=0

bk
1

(γ −A)k

∥∥∥∥∥ ‖Aqv‖ ≤ C(`, q, γ)

m
q+`

2

‖Aqv‖ ,

by choosing the coefficients b0, . . . , bm−1 according to relation (5.13) above. With Lemma 6.3,
we obtain

inf
z∈Kγq+1,m(A,v)

‖ϕ`(A)v − z‖ ≤ inf
y∈Kγ1,m(A,Aqv)

‖ϕq+`(A)Aqv − y‖ ≤ C(`, q, γ)

m
q+`

2

‖Aqv‖ ,

which proves the first inequality. The second inequality is just a consequence of Assump-
tion 6.1 on v and A. o

With “uniformly bounded” in Theorem 6.4, we mean that the error bound holds true for
arbitrary matrices with a field of values in the left complex half-plane and that the bound
is independent of the refinement of the space discretization. The latter is guaranteed by
our assumption on the discretization matrix A and the initial vector v, which is due to
the close connection between the continuous expression Aqv ∈ H, that is only defined
for v ∈ D(Aq), and its discrete counterpart Aqv ∈ CN , as explained in Section 6.1. The
smoothness of the initial data plays no important role for a coarse discretization, but is
indispensable for fine discretizations. If we waive the requirement that v and A have to
satisfy Assumption 6.1, the first inequality in Theorem 6.4 is still valid, since we always
have ‖Aqv‖ < ∞ in the discrete case, compared with ‖Aqv‖ that is only bounded for
v ∈ D(Aq). However, depending on the spatial mesh, ‖Aqv‖ can become arbitrarily large.

In contrast to the best approximation of ϕ`(A)v in the extended Krylov subspace, which
is usually unknown, the extended Krylov subspace approximation defined by

ϕ`(A)v ≈ ϕ`(Aq+m)v , Aq+m = Pq+mAPq+m ,

can be computed efficiently. As before, Pq+m is the orthogonal projection ontoKγq+1,m(A,v)

with respect to the chosen inner product on CN . To bound ‖ϕ`(A)v − ϕ`(Aq+m)v‖, we
need the fact that the extended Krylov subspace approximation is exact for all functions
belonging to Pq+m−1/qm−1 with qm−1(z) = (γ − z)m−1, cf. Lemma 4.12.

Lemma 6.5 Let Pq+m be the orthogonal projection onto the extended Krylov subspace
Kγq+1,m(A,v). Then for any pq ∈ Pq and arbitrary coefficients a1, . . . , am−1, we have

pq(A)v −
m−1∑
k=1

ak
1

(γ −A)k
v = pq(Aq+m)v −

m−1∑
k=1

ak
1

(γ −Aq+m)k
v ,

where Aq+m = Pq+mAPq+m.
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Proof. Since Pq+m is the orthogonal projection onto the extended Krylov subspace
Kγq+1,m(A,v), we have the relations

Pq+mA
kv = Akv , 0 ≤ k ≤ q ,

Pq+m
1

(γ −A)k
v =

1

(γ −A)k
v , 1 ≤ k ≤ m− 1 .

(6.5)

These properties of Pq+m immediately yield

Akv = Pq+mA
kv = Pq+mA

kPq+mv = (Pq+mAPq+m)kv = Aq+m
k v .

Thus, it remains to be shown that (γI −A)−kv = (γI −Aq+m)−kv for 1 ≤ k ≤ m− 1.
With the help of (6.5) and γ

γ−A − I = A
γ−A , the assertion is verified for k = 1 by

v =
γ

γ −A
v − Pq+m

(
γ

γ −A
− I

)
v =

γ

γ −A
v − Pq+m

A

γ −A
v

=
γ

γ −A
v − Pq+mAPq+m

1

γ −A
v = (γI −Aq+m)

1

γ −A
v

and multiplying both sides from the left with (γI−Aq+m)−1. For γ > 0, this inverse exists,
since analogously to Lemma 5.6, one can easily show that σ(Aq+m) ⊆ W (Aq+m) ⊆ C−0 .
Via induction with hypothesis (γI −A)−kv = (γI −Aq+m)−kv for some k ≤ m − 2, we
obtain with (6.5) that

1

(γ −Aq+m)k
v =

1

(γ −A)k
v

= Pq+m
1

(γ −A)k
v + γ

1

(γ −A)k+1
v − γPq+m

1

(γ −A)k+1
v

= γ
1

(γ −A)k+1
v − Pq+m

1

(γ −A)k

(
γ

γ −A
− I

)
v

= γ
1

(γ −A)k+1
v − Pq+mAPq+m

1

(γ −A)k+1
v

= (γI −Aq+m)
1

(γ −A)k+1
v ,

which is equivalent to
1

(γ −Aq+m)k+1
v =

1

(γ −A)k+1
v

and thus proves the desired claim. o

Theorem 6.6 Let A be a matrix with W (A) ⊆ C−0 and assume that v and A satisfy
Assumption 6.1. Moreover, let Pq+m be the orthogonal projection onto the extended Krylov
subspace Kγq+1,m(A,v) and Aq+m = Pq+mAPq+m. Then

‖ϕ`(A)v − ϕ`(Aq+m)v‖ ≤ C(`, q, γ)

m
q+`

2

‖Aqv‖ ≤ K C(`, q, γ)

m
q+`

2

‖Aqv‖ ,

holds uniformly for ` ≥ 0, where the constants K and C(`, q, γ) are independent of the
space discretization.
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Proof. Because of W (Aq+m) ⊆ C−0 , the matrix Aq+m fits in our framework and we are
able to apply the previous results. We choose z ∈ Kγq+1,m(A,v) = Kγq+1,m(Aq+m,v) with

z = pq(A)v −
m−1∑
k=1

ak
1

(γ −A)k
v = pq(Aq+m)v −

m−1∑
k=1

ak
1

(γ −Aq+m)k
v ,

cf. Lemma 6.5, such that, by relation (6.4), there exist coefficients b0, . . . , bm−1 with

ϕ`(A)v − z = ϕq+`(A)Aqv −
m−1∑
k=0

bk
1

(γ −A)k
Aqv

and

ϕ`(Aq+m)v − z = ϕq+`(Aq+m)Aq+m
q v −

m−1∑
k=0

bk
1

(γ −Aq+m)k
Aq+m
q v .

Using this, it follows

‖ϕ`(A)v − ϕ`(Aq+m)v‖ ≤ ‖ϕ`(A)v − z‖+ ‖ϕ`(Aq+m)v − z‖

=

∥∥∥∥∥ϕq+`(A)Aqv −
m−1∑
k=0

bk
1

(γ −A)k
Aqv

∥∥∥∥∥
+

∥∥∥∥∥ϕq+`(Aq+m)Aq+m
q v −

m−1∑
k=0

bk
1

(γ −Aq+m)k
Aq+m
q v

∥∥∥∥∥
≤

∥∥∥∥∥ϕq+`(A)−
m−1∑
k=0

bk
1

(γ −A)k

∥∥∥∥∥ ‖Aqv‖

+

∥∥∥∥∥ϕq+`(Aq+m)−
m−1∑
k=0

bk
1

(γ −Aq+m)k

∥∥∥∥∥ ‖Aqv‖ ,

since ‖Aq+m
q v‖ = ‖Aqv‖ by Lemma 6.5. The coefficients b0, . . . , bm−1 are now selected

according to the rational function r∗ in relation (5.13) for the shift-and-invert Krylov
subspace approximation. Since r∗ is independent of the matrix argument, as long as the
matrix has a field of values in C−0 , the estimate (5.13) can be applied to the first term
containing A as well as to the second term with Aq+m. Hence, we obtain

‖ϕ`(A)v − ϕ`(Aq+m)v‖ ≤ C(`, q, γ)

m
q+`

2

‖Aqv‖ ≤ K C(`, q, γ)

m
q+`

2

‖Aqv‖ ,

where we used Assumption 6.1 for the last inequality. o

Compared to the shift-and-invert Krylov subspace method in Chapter 5, we obtained the
same sublinear convergence rate as if we would approximate ϕq+`(A)v instead of ϕ`(A)v.

The statements above show that the extended Krylov subspace approximation is traced
back to a rational approximation in the shift-and-invert Krylov subspace. Because of the
inequality

inf
z∈Kγq+1,m(A,v)

‖ϕ`(A)v − z‖ ≤ inf
y∈Kγ1,m(A,Aqv)

‖ϕq+`(A)Aqv − y‖
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from Lemma 6.3, we can exploit the results for the shift-and-invert Krylov subspace ap-
proximation. In particular, we are able to refer to Section 5.4, where suitable choices of
the shift γ > 0 were discussed. We have seen, that an improvement of the convergence
rate is obtained by choosing the shift depending on the dimension m of the rational Krylov
subspace, i.e., γ = mα with an appropriate exponent α. The optimal γ for the approxi-
mation of ϕ`(A)v in the shift-and-invert subspace Km

(
(γI −A)−1,v

)
= Kγ1,m(A,v) was

given for α = (r − `
2)/(r + `

2) with r > `
2 + 1. Since the approximation of ϕ`(A)v in

the extended space Kγq+1,m(A,v) is related to the approximation of ϕq+`(A)Aqv in the
shift-and-invert space Kγ1,m(A,Aqv), we now have

γ = mα , α =
r − q+`

2

r + q+`
2

, r >
q + `

2
+ 1 ,

which gives the improved convergence rate

O
(
m−

q+`
2

(1+α)
)
.

6.4 Computation of the extended Krylov subspace
approximation

The first step of the extended Krylov subspace method is to determine an orthonormal
basis of Kγq+1,m(A,v). For this purpose, we use Algorithm 6.7 that combines the standard
and rational Arnoldi algorithm.

As already mentioned in the previous chapter, we are actually interested in the approxima-
tion of ϕ`(τA)v, where τ > 0 denotes the time step size of the numerical time integration
scheme. In this case, we have the error estimate

‖ϕ`(τA)v − ϕ`(τAq+m)v‖ ≤ C(`, q, γ)

m
q+`

2

τ q‖Aqv‖ , ` ≥ 0 .

We thus search for an approximation ϕ`(τAq+m)v to ϕ`(τA)v in the extended subspace
Kγq+1,m(τA,v). Since the polynomial part of this subspace fulfills

Kγq+1,1(τA,v) = Kγq+1,1(A,v) ,

it is common practice to exclude τ in the polynomial Arnoldi process. On the other hand,
we have (γI − τA)−1 = 1

τ (γτ I −A)−1 and therefore

Kγ/τ1,m(A,v) = Kγ1,m(τA,v) 6= Kγ1,m(A,v) .

This is why we cannot drop the time step size τ in the rational part of the extended
Arnoldi process. Otherwise, we would have to take the scaled shift γ

τ . We thus compute
an orthonormal basis of

Kγq+1,m(τA,v) = span

{
Aqv, . . . ,Av ,v,

1

γ − τA
v, . . . ,

1

(γ − τA)m−1
v

}
= Kγq+1,1(A,v) +Kγ1,m(τA,v) .
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Algorithm 6.7 Extended Arnoldi process

given: A ∈ CN×N , v ∈ CN , γ > 0

v1 = v/‖v‖
for m = 1, 2, . . . do

if m ≤ q
for j = 1, . . . ,m do

hj,m = (Avm,vj)

end for

ṽm+1 = Avm −
∑m

j=1 hj,mvj

hm+1,m = ‖ṽm+1‖
vm+1 = ṽm+1/hm+1,m

else

for j = 1, . . . ,m do

hj,m =
(
(γI − τA)−1vm,vj

)
end for

ṽm+1 = (γI − τA)−1vm −
∑m

j=1 hj,mvj

hm+1,m = ‖ṽm+1‖
vm+1 = ṽm+1/hm+1,m

end if

end for

According to Algorithm 6.7, the orthonormal basis of the extended Krylov subspace is not
calculated in the indicated order Aqv, Aq−1v, . . . up to (γI − τA)−m+1v. Instead, we
proceed as in the standard Arnoldi process: We first take the initial vector v and normalize
this vector to obtain v1. Then we orthogonalize Av,A2v, . . . ,Aqv successively against
all previously computed basis vectors v1,v2, . . . . If the iteration index q + 1 is reached,
we switch to the rational Arnoldi method and use the last computed vector vq+1 of the
polynomial Arnoldi decomposition as starting vector. This process yields an orthonormal
basis Vq+m = [v1 v2 · · · vq+m] ∈ CN×(q+m) of Kγq+1,m(τA,v) that is orthogonal with

respect to the chosen inner product on CN .

Like before, for a function f analytic on W (A) and the standard Euclidean inner product,
the extended Krylov subspace approximation is computed as

f(A)v ≈ ‖v‖Vq+mf(Sq+m)V q+m
H v = ‖v‖Vq+mf(Sq+m)e1

with a small matrix Sq+m = V q+m
H AVq+m ∈ C(q+m)×(q+m).
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6.5 Numerical experiments

In the following numerical experiments, we approximate the solution of a Schrödinger
equation on the unit square and of a wave equation on a non standard domain by the
extended Krylov subspace method. Our numerical results are compared with the standard
and the shift-and-invert Krylov subspace approximation.

6.5.1 Schrödinger equation

We consider the dimensionless time-dependent free Schrödinger equation on the unit
square Ω = (0, 1)2 given by

u′ = i∆u for (x, y) ∈ Ω , t ≥ 0 ,

u(0, x, y) = u0(x, y) for (x, y) ∈ Ω

with homogeneous Dirichlet boundary conditions for the Hilbert space L2(Ω). If we split
the solution u in its real and imaginary part, we obtain the system

(Reu)′ = −∆(Imu) ,

(Imu)′ = ∆(Reu) .

Setting v = Reu, w = Imu and defining the operator B as −∆ with homogeneous Dirichlet
boundary conditions, we can write the Schrödinger equation as

y′(t) = Ay(t) with A =

[
0 B
−B 0

]
, y(t) =

[
v(t)
w(t)

]
on L2(Ω)×L2(Ω). The domain of the operator A is given by D(A) = D(B)×D(B) with
D(B) = H1

0 (Ω) ∩H2(Ω). As initial value, we choose

y(0) = yq0 =

[
vq0

wq0

]
, vq0(x, y) = wq0(x, y) =

x2q(1− x)2qy2q(1− y)2q

‖x2q(1− x)2qy2q(1− y)2q‖L2(Ω)
, (6.6)

such that yq0 ∈ D(Aq) but yq0 6∈ D(Aq+1), since Aqyq0 does no longer fulfill the required zero
boundary conditions. Therefore, we can refer to q as the maximal index of smoothness for
the initial value yq0 with respect to the differential operator A.

A finite-difference discretization on the standard grid (ih, jh) for i, j = 0, . . . , n + 1, and
mesh width h = 1

n+1 gives with N = n2 the 2N × 2N - discretization matrix

A =

[
O B
−B O

]
, B =

1

h2
(T ⊗ I + I ⊗ T ) , T = tridiag(−1, 2,−1) , (6.7)

where B ∈ RN×N represents the five-point stencil for the negative Laplacian in two
dimensions. Moreover, we define the discretized initial values vq0, wq

0 as the functions vq0,
wq0 evaluated at the inner grid points, i.e.,

yq0 =

[
vq0

wq
0

]
=

[
vq0(ih, jh)ni,j=1

wq0(ih, jh)ni,j=1

]
.
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(0, 0) (1, 0)

(0, 1) (1, 1)

Ω

h

Figure 6.6: Regular triangulation of the unit square together with the used (n + 2)2 grid
nodes of the finite-difference and the finite-element discretization.

The appropriate inner product reads (x, z)h = h2zHx for x, z ∈ C2N and the associated
norm ‖ · ‖h is the standard Euclidean norm ‖ · ‖2 scaled by h, that is, ‖x‖h = h‖x‖2.
Overall, this results in the semi-discrete evolution equation

y′(t) = Ay(t) , y(t) =

[
v(t)
w(t)

]
, y(0) = yq0

with exact solution y(τ) = eτAyq0 at time τ .

For a regular triangulation of the unit square, the same matrix A arises by a linear
finite-element discretization with mass lumping. As depicted in Figure 6.6, we have the
same nodes as for the spatial grid of the finite-difference approximation before. Using the
standard N = n2 linear nodal basis functions φk and approximating the real part v and
imaginary part w of the function u by

v(t, x, y) ≈
N∑
k=1

vk(t)φk(x, y) , w(t, x, y) ≈
N∑
k=1

wk(t)φk(x, y) ,

we obtain the system of ordinary differential equations

My′(t) = Sy(t) , y(t) =

[
v(t)

w(t)

]
, yq0 =

[
vq0

wq
0

]

with the mass and stiffness matrices

M =

[
M̃ O

O M̃

]
∈ R2N×2N , S =

[
O S̃

−S̃ O

]
∈ R2N×2N .

The idea of mass lumping is to replace the mass matrix with a diagonal approximation
by applying a quadrature rule, rather than performing exact integrations, see [21], p. 83.
This approach has the advantage that inverting the diagonal mass lumped matrix is very
simple. More precisely, in order to compute the entries (M̃)ij of the mass matrix, we take
the quadrature formula∫

K
φiφj d(x, y) ≈ |K|

3

3∑
k=1

φi(x̃k, ỹk)φj(x̃k, ỹk) =: (M̃)ij
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for the integration over a triangle K with area |K|, where (x̃k, ỹk), k = 1, 2, 3, denote the

corners of K. Since (M̃)ij = 0 for i 6= j and (M̃)ij = h2 for i = j, the mass lumped matrix

reads M = h2I. The computation of the L2-inner products (S̃)ij = (∇φi,∇φj)L2(Ω)

reveals that S̃ = T ⊗ I + I ⊗T with the tridiagonal matrix T defined in (6.7). Hence, the
stiffness matrix for our regular grid is given by S = h2A, where A is the finite-difference
discretization matrix in (6.7). Altogether, we end up with the same initial value problem

y′(t) = M−1Sy(t) =
1

h2
h2A = Ay(t) , y(0) = yq0

as before. Note that the inner product (x, z)M = zHMx = h2zHx for x, z ∈ C2N ,
associated with the finite-element discretization, coincides with the inner product (· , ·)h
of the finite-difference method.

For the computation of the extended Krylov subspace approximation of eτAyq0, we apply
Algorithm 6.7 with the initial vector yq0 and use the inner product (· , ·) = (· , ·)M . The
projection Pq+m to Kγq+1,m(τA,yq0) is Pq+m = Vq+mV q+m

H M , where Vq+m ∈ C2N×(q+m)

contains an M -orthogonal basis of the Krylov subspace. Since M is in this special case
given as h2I, it is just as well possible to take the standard Euclidean inner product (· , ·)2

and the projector P̃q+m = Ṽq+mṼ v
H
q+m, where the columns of Ṽq+m = hVq+m are now

orthonormal with respect to (· , ·)2. This leads to exactly the same approximation

eτAyq0 ≈ ‖y
q
0‖MVq+me

τSq+me1 = ‖yq0‖2Ṽq+me
τ S̃q+me1

with compressions Sq+m = V q+m
H MAVq+m = V q+m

H SVq+m and S̃q+m = Ṽ vHq+mAṼq+m.

In a first numerical experiment, we would like to illustrate how the smoothness of the
initial value affects the convergence behavior of the Krylov subspace method. As men-
tioned above, we choose initial vectors yq0 stemming from continuous values yq0 defined in
(6.6) with yq0 ∈ D(Aq) and yq0 6∈ D(Aq+1). In Figure 6.7, the approximation of eτAyq0
in the extended Krylov subspace Kγq+1,m(τA,yq0) (blue solid line) is compared with the
approximation in the polynomial space Kγq+m,1(τA,yq0) (red dashed line) and in the ra-
tional space Kγ1,q+m(τA,yq0) (green dash-dotted line) for step size τ = 0.005, shift γ = 1,
different numbers N of discretization points, and various smoothness indices q. From top
left to bottom right, we have N = 16 129 and q = 6, N = 65 025 and q = 5, N = 261 121
and q = 4, N = 1 046 529 and q = 3.

The standard Krylov subspace method behaves as expected. According to the abstract
smoothness of the continuous initial value yq0, the polynomial Krylov process only works
well in the first q + 1 steps and then stagnates. The vertical dashed line indicates the
iteration step, at which the standard Krylov subspace involves vectors Alyq0 with l > q.
In contrast, the extended and the rational Krylov approximation both perform well.

It is also interesting to compare the performance of the three methods with respect to
error versus computation time. This is shown in Figure 6.8 for q = 5, N = 65 025 on
the left and for q = 4, N = 261 121 on the right. The convergence time comparison
illustrates that the extended method clearly outperforms the standard and the rational
Krylov subspace process. As above, the parameters are chosen as γ = 1 and τ = 0.005.
The computations have been conducted in the software environment Matlab, Release
R2013b, under Ubuntu, Release 12.04, on a dual core processor with frequency 3 GHz on
a desktop machine. In our example, one iteration of the standard Krylov subspace method
only requires a multiplication of the large but sparse stiffness matrix S with some vector.



98 6 Extended Krylov subspace approximation

0 5 10 15 20
10−4

10−3

10−2

10−1

100 q = 6

0 5 10 15 20
10−4

10−3

10−2

10−1

100 q = 5

0 5 10 15 20
10−4

10−3

10−2

10−1

100 q = 4

0 5 10 15 20
10−4

10−3

10−2

10−1

100 q = 3

Figure 6.7: Plot of the error ‖eτAyq0 − eτAq+myq0‖M versus the dimension of the Krylov
subspace for the standard Krylov subspace Kγq+m,1(τA,yq0) (red dashed line), the rational
Krylov subspace Kγ1,q+m(τA,yq0) (green dash-dotted line) and the extended Krylov sub-
space Kγq+1,m(τA,yq0) (blue solid line) for N = 16 129, q = 6 (top left), N = 65 025, q = 5
(top right), N = 261 121, q = 4 (bottom left), N = 1 046 529, q = 3 (bottom right), and
parameters γ = 1, τ = 0.005 in each case.

Of course, this is much cheaper and faster than solving a linear system of the form

(γI − τA)−1x = (γM − τS)−1Mx

in each step of the rational process. This justifies the application of the standard Krylov
subspace method in the first q + 1 iteration steps, according to our index q of maximal
smoothness, and the strategy to continue with the rational approximation afterwards. If,
however, one would discretize the differential equation by finite elements without mass
lumping, we would also have to solve a linear system of the form Ax = M−1Sx with a
non-diagonal mass matrixM for the polynomial Krylov process. In this case, the standard
Krylov subspace decomposition requires comparable numerical costs as the rational Krylov
subspace method.

The special structure of the matrix S enables us to solve the linear systems with the
help of the discrete sine transform. This is due to the fact that the tridiagonal matrix
T = tridiag(−1, 2,−1) ∈ Rn×n has eigenvalues λk and orthonormal eigenvectors rk that
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are given as

λk = 4 sin2

(
kπ

2(n+ 1)

)
,

rk =

√
2√

n+ 1

[
sin

(
kπ

n+ 1

)
, sin

(
2kπ

n+ 1

)
, . . . , sin

(
nkπ

n+ 1

) ]T
for k = 1, . . . , n. These eigenvectors are related to the discrete sine transform which
transforms a vector (xj)

n
j=1 into a vector (yk)

n
k=1 by

yk =
n∑
j=1

xj sin

(
jkπ

n+ 1

)
, k = 1, . . . , n .

If the eigenvectors rk are collected in the orthogonal matrix R, then T is diagonalizable
via the transformation T = RDRT with D = diag(λ1, . . . , λn). To compute T−1b for a
vector b ∈ Cn, we therefore have to consider T−1b = RD−1RTb. More exactly, we first
apply a discrete sine transform to the vector b, multiply with the diagonal matrix D−1

and finally transform the obtained result back via the inverse transformation. However,
we are not interested in T−1b, but in the solution of the linear system

(γI − τA)−1x =

[
γ(γ2I + τ2B2)−1 τB(γ2I + τ2B2)−1

−τB(γ2I + τ2B2)−1 γ(γ2I + τ2B2)−1

][
x1

x2

]
.

That is, we have to compute (γ2I + τ2B2)−1x1 = z1 and (γ2I + τ2B2)−1x2 = z2. Since
the eigenvalues ofB = 1

h2 (T⊗I+I⊗T ) are λj,k = 1
h2 (λj+λk) with associated eigenvectors

rj,k = rj ⊗ rk for j, k = 1, . . . , n (see Section 3.1.1), similar ideas can be used to compute
z1 and z2 using the discrete sine transform.
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Figure 6.8: Plot of error versus computation time in seconds for the standard (red dotted
line), the rational (green dash-dotted line) and the extended (blue solid line) Krylov sub-
space method for q = 5, N = 65 025 on the left-hand side and q = 4, N = 261 121 on the
right-hand side as well as γ = 1, τ = 0.005 in both cases.

An improvement of the convergence rate for the extended Krylov approximation based on
the subspace Kγq+1,m(τA,yq0) is achieved by choosing the shift γ appropriately, that is,

γ = mα , α =
r − q+`

2

r + q+`
2

, r >
q + `

2
+ 1 , (6.8)
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pursuant to Section 6.3. If we want to perform 20 extended Krylov steps for an initial value
with smoothness index q, it holds m = 20− q. Since the ϕ0-function ϕ0(τA)yq0 = eτAyq0
is approximated, we have ` = 0. In Figure 6.9, the error curves of the extended Krylov
subspace approximation with N = 1 046 529, τ = 0.005, and q = 2, 3 (left, right) are shown
for γ = 1 (blue solid line) and γ = 183/5 (black dash-dotted line) on the left-hand side as
well as γ = 1 (blue solid line) and γ = 175/11 (black dash-dotted line) on the right-hand
side. These values of γ correspond in both cases to the choice r = 4 in (6.8). The method
applied with γ = 183/5 and γ = 175/11, respectively, exhibits a faster convergence behavior
than the method applied with the shift γ = 1. Of course, the adaption of the parameter
γ only takes effect after the first (q + 1)st step, since the choice of γ has no influence on
the polynomial approximation.
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Figure 6.9: Comparison of the extended Krylov subspace approximation in Kγq+1,m(τA,yq0)

with N = 1 046 529 for q = 2, γ = 1 (blue solid line), γ = 183/5 (black dash-dotted line)
on the left and q = 3, γ = 1 (blue solid line), γ = 175/11 (black dash-dotted line) on the
right. The error ‖eτAyq0 − eτAq+myq0‖M is plotted versus the dimension of the extended
Krylov subspace for τ = 0.005.

This method might not lead to success for time steps τ that are too large. This behavior
is, roughly speaking, caused by the fact that the quality of the polynomial approximation
is principally measured via Taylor expansion (e.g., [72]). If τk‖Akyq0‖M is large for k ≤ q,
it can happen that the approximation error does not decrease, although we have not yet
reached the maximal index q of smoothness. This effect is depicted in Figure 6.10. Here,
the approximation error in the extended (blue solid line), the polynomial (red dashed line)
and in the shift-and-invert (green dash-dotted line) Krylov subspace are plotted versus the
number of iteration steps. On the left-hand side, we take τ1 = 0.005, N = 65 025, γ = 1,
and the initial value y4

0 with continuous counterpart y4
0 ∈ D(A4) but y4

0 6∈ D(A5). On
the right-hand side, we use the same data but τ2 = 0.05. Comparing the quantities of
τ4
i ‖A4y4

0‖M for i = 1, 2, we find

τ4
1 ‖A4y4

0‖M ≈ 2.8 , τ4
2 ‖A4y4

0‖M ≈ 2.8 · 104 .

This explains why the polynomial method for the approximation of eτ2Ay4
0 even fails in

the first iteration steps. For larger τ , the rational and extended Krylov subspace method
still converge, but the improvement of the approximation quality is notably slower.

Finally, we are left with the question of how the smoothness of the initial value, that is
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Figure 6.10: Plot of the error ‖eτiAy4
0 − eτiAq+my4

0‖M versus the dimension of the Krylov
subspace for the standard Krylov subspace Kγq+m,1(τiA,y

4
0) (red dashed line), the rational

Krylov subspace Kγ1,q+m(τiA,y
4
0) (green dash-dotted line) and the extended Krylov sub-

space Kγq+1,m(τiA,y
4
0) (blue solid line) with parameters N = 1 046 529, γ = 1, q = 4, and

time step sizes τ1 = 0.005, τ2 = 0.05.

usually not known in advance, can be detected in general. The simplest heuristic approach
to find the index q, at which it is reasonable to stop the polynomial approximation and
to continue with the rational Krylov process, is to compute

Em := ‖eτAmyq0 − e
τAm−1yq0‖M ,

where Am = PmAPm is the restriction onto the polynomial subspace Kγm,1(τA,yq0). If
Em is less than a given tolerance, we terminate the standard Krylov iteration and use the
rational method.

In Figure 6.11, we plot the error of the standard Krylov method (red dashed line) together
with Em (cyan dash-dotted line) against m for N = 65 025, q = 5 (on the left) and
N = 1 046 529, q = 3 (on the right). The vertical dashed line indicates as before the point,
where the polynomial approximation uses vectors Alyq0 with l > q. In both pictures, Em
decreases in the first q+1 steps and then stagnates. The “zig-zag” behavior of the standard
Krylov approximation error, which we also observed in some other numerical experiments
(see, e.g., the one-dimensional wave equation in Section 5.6.2), has the consequence that
the stagnation of Em is located at around 10−1 and, therefore, might not allow for clear
conclusions. It could lead to the wrong inference that the polynomial Krylov subspace
approximation improves by O(10−1) with each iteration step. For this reason, a clearer
indicator would be desirable. As an alternative heuristic detection, it is possible to take

Ẽm := min{‖eτAmyq0 − e
τAm−1yq0‖M , ‖eτAmyq0 − e

τAm−2yq0‖M} ,

which is depicted in Figure 6.11 by the orange solid line. The indication that the maximal
index of smoothness has been reached is now more obvious and we can choose for example
10−2 or 10−3 as threshold value to stop the standard method and to start with the rational
Krylov subspace approximation.
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Figure 6.11: Plot of Em (cyan dash-dotted line) and Ẽm (orange solid line) versus m to-
gether with the error ‖eτAyq0−eτAmyq0‖M of the standard Krylov subspace approximation
(red dashed line) for N = 65 025, q = 5 (left), N = 1 046 529, q = 3 (right), and τ = 0.005.

6.5.2 Wave equation on a non standard domain

For the non standard spatial domain Ω in Figure 6.13, consisting of two basins and a
semicircular pipeline between them, we consider the wave equation with homogeneous
Neumann boundary conditions

u′′ = ∆u− u for (x, y) ∈ Ω , t ≥ 0 ,

u(0, x, y) = u0(x, y) , u′(0, x, y) = u′0(x, y) for (x, y) ∈ Ω ,

∇nu = 0 for (x, y) ∈ ∂Ω

on the Hilbert space L2(Ω). In the following, we numerically approximate the solution u
in the polynomial, the shift-and-invert, and the extended Krylov subspace. This time, we
do not use the skew-symmetric first-order formulation as in Section 5.6.2, but instead the
representation

y′(t) =

[
u(t)
u′(t)

]′
=

[
0 I

∆− I 0

] [
u(t)
u′(t)

]
= Ay(t) , y(0) = y0 =

[
u0

u′0

]
,

where ∆ is the Laplacian with homogeneous Neumann boundary conditions. This for-
mulation requires the application of a suitable inner product. In the following, we as-
sume that z = [z1, z2]T and z̃ = [z̃1, z̃2]T are two arbitrary vectors with z1, z̃1 ∈ H1(Ω),
∇nz1 = ∇nz̃1 = 0 on ∂Ω, and z2, z̃2 ∈ L2(Ω). For B = diag(−∆ + I, I), we define the
inner product

(z, z̃)B = (Bz, z̃)L2(Ω)×L2(Ω) =

([
−∆ + I 0

0 I

] [
z1

z2

]
,

[
z̃1

z̃2

])
L2(Ω)×L2(Ω)

=
(
(−∆ + I)z1, z̃1

)
L2(Ω)

+ (z2, z̃2)L2(Ω)

=

∫
Ω
∇z1∇z̃1 d(x, y) +

∫
Ω
z1z̃1 d(x, y) +

∫
Ω
z2z̃2 d(x, y) .
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The last equality follows from Green’s formula and the assumed homogeneous Neumann
boundary conditions for the functions z1 and z̃1. Since (· , ·)B is linear and

(z, z)B = ‖z1‖2H1(Ω) + ‖z2‖2L2(Ω) ≥ 0 ,

(z, z)B = 0 ⇐⇒ z1 = z2 = 0 ,

(z, z̃)B = (z̃, z)B ,

the new inner product (· , ·)B is well-defined. Since −∆+I is positive and self-adjoint with
respect to (· , ·)L2(Ω), there exists a unique positive and self-adjoint square root

√
−∆ + I

(e.g. Proposition 5.13 in Schmüdgen [76]), and we obtain

‖Az‖2B = ‖(∆− I)z1‖2L2(Ω) + ‖
√
−∆ + I z2‖2L2(Ω) .

Hence, the domain of the operator A with respect to the new inner product is given as
D(A) = D(∆)×D(

√
−∆ + I).

We want to solve the wave equation numerically using
linear finite elements on the domain Ω shown in Fig-
ure 6.13 together with a coarse triangulation consist-
ing of 229 nodes and 294 triangles. This triangulation
is generated by the free Matlab Toolbox MESH2D1.
We use smaller triangles at the corners of Ω and for
the narrow pipe. Based on this coarse grid, we obtain
finer and finer discretizations, if we subdivide every
triangle into 4 smaller triangles. For this purpose, we
take the vertices and edge midpoints of the larger tri-
angles as new nodes of the sub-triangles.

Figure 6.12: Refinement
into 4 sub-triangles.

Figure 6.13: Left-hand side: Coarsest triangulation of the domain Ω with 229 nodes and
294 triangles. Right-hand side: Initial value uq0 = (uq0)′ for smoothness index q = 2.

The functions u and u′ are approximated by a linear combination of N linear nodal basis
functions φk ∈ H1(Ω) as

u(t, x, y) ≈
N∑
k=1

uk(t)φk(x, y) , u′(t, x, y) ≈
N∑
k=1

u′k(t)φk(x, y) .

1http://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-automatic-mesh-generation
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In contrast to evolution equations with homogeneous Dirichlet boundary conditions, we
additionally have to take basis functions φk(x, y) ∈ H1(Ω) for the nodes on the boundary
∂Ω. For every test function φk ∈ H1(Ω), the integral over ∂Ω in Green’s formula∫

Ω
φk∆u d(x, y) = −

∫
Ω
∇φk∇u d(x, y) +

∫
∂Ω
φk∇nu ds

vanishes because of the prescribed homogeneous Neumann boundary conditions. This
leads to the semi-discrete problem[

M O
O M

] [
v(t)
w(t)

]′
=

[
O M

S −M O

] [
v(t)
w(t)

]
,

[
v(0)
w(0)

]
=

[
v0

w0

]
(6.9)

with initial values v0 =
(
uk(0)

)N
k=1

and w0 =
(
u′k(0)

)N
k=1

. The mass matrix M and the
stiffness matrix S−M , which represents the discretization of ∆−I, consist of the L2-inner
products

(M)ij = (φi, φj)L2(Ω) , (S)ij = −(∇φi,∇φj)L2(Ω) , i, j = 1, . . . , N .

Multiplying equation (6.9) from the left with the block diagonal matrix diag(M−1,M−1),
the semi-discrete formulation reads

y′(t) =

[
v(t)
w(t)

]′
=

[
O I

M−1(S −M) O

] [
v(t)
w(t)

]
= Ay(t) , y(0) = y0 =

[
v0

w0

]
.

Since M and −S are symmetric positive definite, the same holds true for the composition
−(S −M) of both matrices. Therefore, the positive definite and symmetric matrix

B =

[
−(S −M) O

O M

]
,

corresponding to the operator counterpart B = diag(−∆ + I, I) from above, defines an
inner product (· , ·)B on C2N by([

z1

z2

]
,

[
z̃1

z̃2

])
B

=
[
z̃H1 z̃H2

] [ −(S −M) O
O M

] [
z1

z2

]
= −z̃H1 (S −M)z1 + z̃H2 Mz2 .

With respect to this inner product, we will show that W (A) ⊆ C−0 or, to be more precise,
W (A) ⊆ iR. Thus, the matrix A fits in our framework above. This underlines the
importance to consider arbitrary inner products.

Lemma 6.8 For the inner product (· , ·)B, we have W (A) ⊆ iR or, respectively,

Re(Az, z)B = 0 for all z ∈ C2N .

Proof. For an arbitrary z = [zT1 , z
T
2 ]T ∈ C2N , a short calculation yields

(Az, z)B =

([
O I

M−1(S −M) O

] [
z1

z2

]
,

[
z1

z2

])
B

=

([
z2

M−1(S −M)z1

]
,

[
z1

z2

])
B

= −zH1 (S −M)z2 + zH2 (S −M)z1 = 2i Im(zH2 (S −M)z1) ∈ iR .

This implies Re(Az, z)B = 0 and the lemma is proved. o



6.5 Numerical experiments 105

We now approximate the exact solution y(τ) of the semi-discrete problem at time τ in the
polynomial, the shift-and-invert, and the extended Krylov subspace by

y(τ) = eτAy0 ≈ eτAq+my0 = Vq+me
τSq+mV H

q+mBy0 ,

where Vq+m ∈ CN×(q+m) is an orthonormal basis of the considered Krylov subspace of
order q + m. With the orthogonal projection Pq+m = Vq+mV

H
q+mB, the restriction of A

reads Aq+m = Pq+mAPq+m and the compression is given as Sq+m = V H
q+mBAVq+m. The

computation of Sq+m requires no calculation of M−1(S −M), since

BA =

[
O −(S −M)

S −M O

]
.

The initial values uq0 and (uq0)′, whose index q refers to the abstract smoothness with
respect to the differential operator A, describe a peak in the right basin, each given by
the same function

g(x, y) =

{
(x− 1)2q+1(x− 3)2q+1y2q+1(y − 1)2q+1 , (x, y) ∈ [1, 3]× [0, 1] ,

0 , otherwise .

We normalize the vector [g, g]T with respect to the norm ‖ · ‖B associated to the inner
product (· , ·)B with B = diag(−∆ + I, I). This means that we scale the vector [g, g]T by
the reciprocal of ∥∥[g, g]T

∥∥2

B
=

∫
Ω

(
2g2 +∇g∇g

)
d(x, y) .

By construction, yq0 = [g, g]T /‖[g, g]T ‖B belongs to D(Aq) but not to D(Aq+1). The cor-
responding discrete initial value is designated by yq0 = [(vq0)T , (wq

0)T ]T = [(vq0)T , (vq0)T ]T

for vq0,w
q
0 ∈ CN .

On the basis of the considerations pre-
sented in the previous Section 6.1, we plot
in Figure 6.14 the quantities ‖A2y2

0‖B and
‖A3y2

0‖B for different refinements of the
triangulation. The value 1 on the horizon-
tal axis corresponds to the coarsest grid
shown in Figure 6.13 and the values 2, 3, 4
to the next three finer grids, that we ob-
tain by subdividing each triangle into 4
smaller sub-triangles, where the new tri-
angles are created by joining nodes intro-
duced at the edge midpoints. As expected
from the smoothness index q = 2, the
norm ‖A2y2

0‖B stays at the same level,
whereas ‖A3y2

0‖B increases, if we refine
the spatial mesh.

1 2 3 4
0

1 · 103

2 · 103

3 · 103

‖A2y2
0‖B

‖A3y2
0‖B

Figure 6.14: Values ‖Ajy2
0‖, j = 2, 3,

for different refinements of the mesh.

In Figure 6.15, we draw the error curves for a coarse grid with 18 816 triangles and 10 057
nodes for τ = 0.1, q = 1, 2 (left, right) and, in Figure 6.16, for a fine grid with 301 056
triangles, 153 121 nodes (on the left) and 1 204 224 triangles, 607 297 nodes (on the right)
for the parameters τ = 0.05 and q = 1. In the computations, the choice γ = 15 for the
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shift has turned out to be advantageous with regard to the multigrid solver used for the
approximate solution of the linear systems in the rational Krylov decomposition.

The error curve for the approximation of eτAyq0 in the polynomial subspaceKγq+m,1(τA,yq0)
is marked by a red dashed line, in the rational subspace Kγ1,q+m(τA,yq0) by a green dashed-
dotted line and in the extended Krylov subspace Kγq+1,m(τA,yq0) by a blue solid line.
As expected, the polynomial approximation virtually stagnates after q + 1 Krylov steps,
whereas the errors of the extended and the rational Krylov subspace process exhibit a
sublinear convergence behavior.
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Figure 6.15: Plot of the error ‖eτAyq0 − eτAq+myq0‖B versus the dimension of the Krylov
subspace for the standard Krylov subspace Kγq+m,1(τA,yq0) (red dashed line), the ratio-
nal Krylov subspace Kγ1,q+m(τA,yq0) (green dash-dotted line), and the extended Krylov
subspace Kγq+1,m(τA,yq0) (blue solid line) for a coarse grid with 18 816 triangles, 10 057
nodes, γ = 15, τ = 0.1, and smoothness indices q = 1, 2.

In the rational Krylov subspace decomposition, we have to solve linear systems of the form
(γI − τA)x = vm, where vm = [(v1

m)T , (v2
m)T ]T is the basis vector that is computed in

the mth iteration step. Noting that

(γI − τA)−1vm =

[
γM −τM

−τ(S −M) γM

]−1 [
M O

O M

][
v1
m

v2
m

]

=

[ (
γ2M − τ2(S −M)

)−1
(γMv1

m + τMv2
m)(

γ2M − τ2(S −M)
)−1

(τ(S −M)v1
m + γMv2

m)

]
,

(6.10)

we have to solve two linear systems with the matrix
(
γ2M − τ2(S −M)

)−1
and different

right-hand sides γMv1
m + τMv2

m and τ(S −M)v1
m + γMv2

m.

Since the matrices M and −(S −M) are both symmetric and positive definite, we can
use a standard geometric multigrid method which is based on the following idea (see, for
instance, Chapter V in [9]): Solving a large linear system Ax = b stemming from a spatial
discretization, we first apply a smoother (e.g., Gauss-Seidel or damped Jacobi iteration)
to some initial guess x0 of the solution x. This procedure removes high oscillations of
the error vector x− x0 on the actual fine grid, whereas low frequencies are only reduced
very slowly. On that account, we change to a coarser grid, on which the low frequency
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Figure 6.16: Plot of the error ‖eτAyq0 − eτAq+myq0‖B versus the dimension of the Krylov
space for the standard Krylov subspace Kγq+m,1(τA,yq0) (red dashed line), the rational
Krylov subspace Kγ1,q+m(τA,yq0) (green dash-dotted line), and the extended Krylov sub-
space Kγq+1,m(τA,yq0) (blue solid line) for fine grids with 153 121 nodes, 301 056 triangles
(left) and with 607 297 nodes, 1 204 224 triangles (right) for q = 1, γ = 15, and τ = 0.1.

parts appear as high frequencies and can be smoothed again. In this manner, we iterate
from the finest grid to coarser and coarser grids, using suitable restrictions, solve the small
linear system on the coarsest grid exactly, and finally prolongate the result back to the
finest grid.

In contrast to the previous numerical example of the Schrödinger equation, where we used
mass lumping to diagonalize the mass matrix M , the standard Krylov subspace method
requires here the solution of a linear system with a non-diagonal mass matrix M in each
iteration step, since

Avm =

[
O I

M−1(S −M) O

][
v1
m

v2
m

]
=

[
v2
m

M−1(S −M)v1
m

]
.

It became apparent in our numerical experiments that the multigrid method applied to
the matrix M and the vector (S −M)v1

m, required for the polynomial approximation,
converges exceptionally fast. More precisely, the computed starting vector for the multigrid
method via a nested iteration is already very accurate.

However, the situation is different for the linear systems of the form (6.10) in the rational
Krylov decomposition. In this case, we have noticed that for the parameter choice γ = 1,
the convergence of the geometric multigrid solver is quite slow and requires many iterations
to obtain a residual error of order O(10−5). This drawback can be resolved by setting
γ = 15. Then a few iteration steps suffice, most commonly, to reduce the error of the
multigrid solution to O(10−8), that is small enough in our case, if we want to approximate
eτAyq0 with an accuracy of O(10−4).

Nevertheless, one step of the polynomial Krylov subspace method is performed more
quickly than one iteration step of the rational approximation. So, it pays off to use the
cheaper standard Krylov subspace process as long as it improves the approximation quality
and then to proceed with the rational decomposition.
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Computing for q = 2 and τ = 0.05 recursively y2
k+1 ≈ eτAy2

k, k = 0, 1, . . ., with the
extended Krylov method, we obtain an approximation to the exact solutions u(t) and
u′(t) at time τ = 5 and τ = 10. In the first case, we iterate until m = 100 and, in the
second case, we iterate until m = 200. The approximate solutions for u(5) and u(10) are
depicted in Figure 6.18 and Figure 6.19.

Furthermore, we want to illustrate what happens, if we use a “wrong” inner product for
which the field of values ofA is not located in the left complex half-plane. For this purpose,
we take the standard inner product for the finite-element discretization with respect to
the block diagonal matrix B̃ = diag(M ,M) instead of B = diag(−(S −M),M) above.
Then for arbitrary vectors 0 6= z = [zT1 , z

T
2 ]T ∈ C2N , we have

(Az, z)
B̃

(z, z)
B̃

=
1

(z, z)
B̃

·
(
2i Im(zH1 Mz2) + zH2 Sz1

)
⊆W

B̃
(A) .

Choosing z in such a way that z1 = −z2, we can conclude that W
B̃

(A) contains quantities
in the right complex half-plane, since −S is positive definite. In Figure 6.17, we plot the
approximation error against the dimension of the Krylov subspace for the same parameters
as in Figure 6.16, but using the “wrong” inner product with respect to B̃. In this case,
no convergence can be observed anymore, regardless of whether we consider the extended,
the shift-and-invert, or the polynomial Krylov subspace approximation.
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Figure 6.17: Plot of the error ‖eτAyq0 − eτAq+myq0‖B̃ versus the dimension of the Krylov
subspace for the standard Krylov subspace Kγq+m,1(τA,yq0) (red dashed line), the rational
Krylov subspace Kγ1,q+m(τA,yq0) (green dash-dotted line), and the extended Krylov sub-
space Kγq+1,m(τA,yq0) (blue solid line) for the grid with 153 121 nodes, 301 056 triangles
(left) and with 607 297 nodes, 1 204 224 triangles (right) for q = 1, γ = 15, τ = 0.1, and
the “wrong” inner product with respect to B̃ = diag(M ,M).
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Figure 6.18: Approximation to the exact solution u at time τ = 5.

Figure 6.19: Approximation to the exact solution u at time τ = 10.





Chapter 7

Rational Krylov subspace approximation
with simple poles

So far, we have concentrated on the shift-and-invert Krylov subspace method, a special
case of the rational Krylov approximation, that uses only one single repeated pole at
γ > 0. This chapter will focus on a rational Krylov method for the approximation of
ϕ`(A)v, ` ≥ 1, taking different simple poles in the right complex half-plane. As before,
we consider matrices A ∈ CN×N of arbitrary dimension N that satisfy the condition
W (A) ⊆ C−0 with respect to some inner product (· , ·) on the vector space CN .

In this chapter, we aim to speed-up the convergence of the Krylov approximation of
ϕ`(A)v. Therefore, we choose 2m+ 1 equidistant poles zk ∈ C on the line Re(z) = γ > 0
in the right complex half-plane. For this choice of poles, we will prove a faster convergence
rate of order O(m−`). For comparison, we have seen that the error of the shift-and-invert
Krylov subspace approximation behaves like O(m−`/2). Moreover, the resulting rational
Krylov process is easily parallelizable, since for different poles zk the 2m+1 linear systems
(zkI − A)xk = v can be solved independently in parallel, which leads to an additional
speed-up.

The following results are based on our preprint [24]. Before we turn to the analysis of the
rational Krylov subspace method with simple poles, we first need some preliminaries that
we outline in the first section.

7.1 Preliminary notes

To guarantee the existence of (zkI −A)−1 under our assumption W (A) ⊆ C−0 , the poles
zk of the rational Krylov subspace have to be located in the right complex half-plane. We
choose 2m + 1 equidistant points zk = γ + ihk, k = −m, . . . ,m, with distance h on the
line Re(z) = γ > 0 (cf. Figure 7.1) and consider the rational Krylov subspace

Q2m+2(A,v) =

{
r(A)v : r ∈ P2m+1

q2m+1

}
with the prescribed denominator polynomial

q2m+1(z) =

m∏
k=−m

(zk − z) , zk = γ + ihk , k = −m, . . . ,m . (7.1)

By Lemma 4.9, this subspace can also be written as

Q2m+2(A,v) = span

{
v,

1

z−m −A
v,

1

z−m+1 −A
v, . . . ,

1

zm −A
v

}
.
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Figure 7.1: Locus of W (A) and the roots zk of the denominator polynomial q2m+1.

Our first goal is to analyze the approximation of ϕ`(A) for ` ≥ 1 in the rational matrix
subspace

R2m+1(A) = span

{
r(A) : r ∈ P2m

q2m+1

}
.

We will establish uniform error estimates that hold true for matrices A with an arbitrarily
large field of values in C−0 . Afterwards, these results will be used to bound the error
‖ϕ`(A)v − ϕ`(Am)v‖ of the Krylov approximation. As before, Am = PmAPm is the
restriction of A to Q2m+2(A,v), Pm denotes the orthogonal projector onto the rational
Krylov subspace, and Vm ∈ CN×(2m+2) contains an orthonormal basis [v1 v2 · · · v2m+2]
of Q2m+2(A,v).

This basis Vm can be determined in parallel by assigning to every computing node the
calculation of xk = (zkI −A)−1v, that is required for the rational Krylov decomposition.
This parallelization is possible by our choice of the poles leading to 2m+1 decoupled linear
systems for the 2m + 1 different poles zk, k = −m, . . . ,m. Subsequently, the computed
solutions xk are orthogonalized against each other to obtain an orthonormal basis of the
Krylov subspace. As opposed to this, it is only possible to compute the basis of the
shift-and-invert Krylov subspace with one fixed pole γ > 0 by a sequential process.

Whenever we write Q2m+2(A,v) or R2m+1(A), in what follows, we always mean the
rational subspace with the fixed denominator polynomial q2m+1 defined in (7.1).

In the following, we state a few definitions and lemmas, in order to lay a groundwork
for later examinations. The first lemma shows that the matrix exponential for arbitrary
matrices with a field of values in the left complex half-plane is bounded by one.

Lemma 7.1 For an arbitrary matrix A ∈ CN×N satisfying W (A) ⊆ C−0 and all τ ≥ 0,
it holds

‖eτA‖ ≤ 1 .

Proof. (cf. LeVeque [51], p. 300) We consider the initial value problem u′(t) = Au(t) with
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an arbitrary initial value u(0) = u0. By our assumption on W (A), we have

d

dt
‖u(t)‖2 =

(
u′(t),u(t)

)
+
(
u(t),u′(t)

)
=
(
Au(t),u(t)

)
+
(
u(t),Au(t)

)
= 2 Re

(
Au(t),u(t)) ≤ 0

and thus d
dt ‖u(t)‖ ≤ 0. It follows

‖eτAu0‖ = ‖u(τ)‖ ≤ ‖u(0)‖ = ‖u0‖ for any u0 ∈ CN .

As a consequence, the induced matrix norm of eτA is bounded by one. o

By equation (3.12), ϕ`(A) can be written as

ϕ`(A) =

∫ 1

0
e(1−θ)A θ`−1

(`− 1)!
dθ =

∫ 1

0
esA

(1− s)`−1

(`− 1)!
ds , ` ≥ 1 .

For our particular purposes, the representation

ϕ`(A) =

∫ ∞
0

esA
(1− s)`−1

(`− 1)!
· 1[0,1](s) ds , ` ≥ 1 , (7.2)

is useful, which looks, at first sight, more complicated than the previous formula. But this
representation of the matrix ϕ-functions provides the advantage that the rational matrix
functions r(A) ∈ R2m+1(A) possess a similar integral representation.

Lemma 7.2 Every rational matrix function r(A) ∈ R2m+1(A) can be expressed as

r(A) =
p2m(A)

q2m+1(A)
=

m∑
k=−m

ak
1

γ + ihk −A
=

∫ ∞
0

esA
m∑

k=−m
ake
−(γ+ihk)s ds ,

where q2m+1(z) =
∏m
k=−m(zk − z) with zk = γ + ihk, γ > 0.

Proof. The second equality follows directly from Lemma 4.9. In order to show the third
equality, we first note that, by Lemma 7.1, we have

‖esAe−(γ+ihk)s‖ ≤ |e−γs|‖esA‖ ≤ e−γs for all s ≥ 0 .

Consequently, the improper Riemann integral
∫∞

0 esAe−(γ+ihk)s ds exists and we conclude

that lims→∞ e
sAe−(γ+ihk)s = O. This yields∫ ∞

0
esAe−(γ+ihk)s ds = − 1

γ + ihk −A
esAe−(γ+ihk)s

∣∣∣∞
0

=
1

γ + ihk −A
(7.3)

and therefore∫ ∞
0

esA
m∑

k=−m
ake
−(γ+ihk)s ds =

m∑
k=−m

ak

∫ ∞
0

esAe−(γ+ihk)s ds =

m∑
k=−m

ak
1

γ + ihk −A

as claimed above. o
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Comparing equation (7.3) with the general formula of the Laplace transform, which is for
a function f : [0,∞)→ C defined as

Lf(t) =

∫ ∞
0

f(s)e−ts ds ,

the inverse (zkI −A)−1 can be understood as the Laplace transform of f(s) = esA at the
point t = zk = γ + ihk (e.g., [40], Section 11.1). In this context, the parameter γ > 0
causes an exponential damping that will be relevant for later purposes.

We have already seen above that if W (A) ⊆ C−0 , the same holds true for τA, that is,
W (τA) ⊆ C−0 for τ ≥ 0. Without loss of generality, we thus state our theorems in the
following for τ = 1. All subsequent results remain valid for τA, the matrix A has just to
be replaced by the scaled matrix τA everywhere.

The estimate for the best approximation of ϕ`(A) in the subspace R2m+1(A) will lead to
a problem of best trigonometric approximation in the space L1 on the unit circle T. We
refer to T as the real numbers with the identification of points modulo 2π, and the space
L1(T) consists of all 2π-periodic functions satisfying

∫
T |f(s)| ds <∞. To bound the error

of the approximation problem on L1(T), we will need a similar modulus of smoothness as
in Chapter 5 and the concept of bounded variation. Following [14], we state the following
two definitions.

Definition 7.3 A 2π-periodic function f is of bounded variation on the unit circle T, or
in short notation f ∈ BV (T), if

VarTf := sup
n−1∑
i=1

|f(xi+1)− f(xi)| <∞ ,

where the supremum is taken over all partitions x1 < x2 < . . . < xn, xi ∈ T, i = 1, . . . , n.

Functions of bounded variation can have a countable number of discontinuities αi, whereby
the left and right limits, lims↗αi f(s) and lims↘αi f(s), have to exist at each point αi. Fur-
thermore, we will require the modified variation Var∗T f , which is defined as the variation
of a correction f∗ of the function f . This corrected function f∗ coincides with f except
for the points αi of discontinuity.

Definition 7.4 For f ∈ BV (T) with a countable set of discontinuities αi, we define

Var∗T f := VarT f
∗ ,

where the corrected function f∗ is some function that coincides with f on T\
⋃
i{αi} and

takes values between lims↗αi f(s) and lims↘αi f(s) at the points αi of discontinuity.

With this newly defined variation, we can bound the rth modulus of smoothness ωr(f, δ)L1(T)

with respect to the space L1(T),

ωr(f, δ)L1(T) := sup
0<h≤δ

∫
T
|∆r

h(f, t)| dt , ∆r
h(f, t) =

r∑
k=0

(
r

k

)
(−1)r−kf(t+ kh) ,

for a function f ∈ L1(T) (see [14], Theorem 9.3 in Chapter 2 on page 53 for p = 1). This
modulus of smoothness has already been used in Section 5.4, cf. equation (5.14), for the
maximum norm.
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Lemma 7.5 Let f ∈ L1(T) be a 2π-periodic function which can be corrected on a set of
measure zero to a function g such that g(r−2) is absolutely continuous and the generalized
(weak) derivative g(r−1) is of bounded variation on T. Then the estimate

ωr(f, δ)L1(T) ≤ δr Var∗T g
(r−1) , δ > 0

holds true.

The Stechkin inequality, obtained in the next lemma, enables us to bound the best ap-
proximation of a function f ∈ L1(T) by a trigonometric polynomial using the rth modulus
of smoothness of f (see [14], Theorem 2.3 in Chapter 7 for the case p = 1).

Lemma 7.6 For r = 1, 2, . . . and a 2π-periodic functions f ∈ L1(T), there exists a con-
stant C(r) such that

Em(f) := inf
P∈Tm

∫
T
|f(s)− P (s)| ds ≤ C(r)ωr

(
f,

1

m

)
L1(T)

,

where Tm denotes the set of all trigonometric polynomials of degree m with functions of
the form

P (s) =
α0

2
+

m∑
k=1

αk cos(ks) + βk sin(ks) , αk, βk ∈ R .

Since Tm is a finite dimensional space, there exists an element P ∗ ∈ Tm of best approxi-
mation for which the infimum in Em(f) is attained.

Herewith, all key requirements for the estimate of ‖ϕ`(A)− r(A)‖ for r(A) ∈ R2m+1(A)
in the next section are provided.

7.2 Error bounds

The first theorem in this section states an upper bound for the best approximation of
ϕ`(A), ` ≥ 1, in the rational matrix space

R2m+1(A) =

{
r(A) : r ∈ P2m

q2m+1

}
, q2m+1(z) =

m∏
k=−m

(zk − z) ,

where the poles zk are given, as mentioned above, by zk = γ+ ihk for k = −m, . . . ,m and
shift γ > 0.

Theorem 7.7 Let A be a matrix with W (A) ⊆ C−0 . Then for the best approximation of
the matrix function ϕ`(A) for ` ≥ 1 in the subspace R2m+1(A), it holds

inf
r∈ P2m

q2m+1

‖ϕ`(A)− r(A)‖ ≤ C1(`, γ)
e−

γπ
h

1− e−
2γπ
h

+ C2(`, γ)
1

(hm)`
, (7.4)

where the constants C1 and C2 depend only on γ and `.



116 7 Rational Krylov subspace approximation with simple poles

Proof. With the auxiliary results in Section 7.1, we are able to reduce the approximation
problem on CN×N to a one-dimensional problem on the right semi-axis [0,∞). Splitting
this one-dimensional problem into two appropriate subproblems on two disjoint subinter-
vals of [0,∞), we finally obtain the two different terms on the right hand-side of the bound
(7.4). In this bound, the second term arises from a trigonometric approximation on a finite
spectrum and the first term is obtained due to the exponentially damping of the Laplace
transform in (7.3), caused by the shift γ.

We first note that via partial fraction expansion, cf. Lemma 4.9, we have

inf
r∈ P2m

q2m+1

‖ϕ`(A)− r(A)‖ = inf
ak

∥∥∥∥∥ϕ`(A)−
m∑

k=−m
ak

1

γ + ihk −A

∥∥∥∥∥ .
Using the integral representation of ϕ`(A) in (7.2) and of the rational function r(A) in
Lemma 7.2 as well as the inequality ‖esA‖ ≤ 1 in Lemma 7.1, the following one-dimensio-
nal expression is obtained:∥∥∥∥∥ϕ`(A)−

m∑
k=−m

ak
1

γ + ihk −A

∥∥∥∥∥ ≤
∫ ∞

0
‖esA‖

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds
≤
∫ ∞

0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds .
For the rest of the proof, we always assume that the distance h between the equidistant
poles zk is chosen such that h < π, which implies that π

h > 1. Now, the last integral is
splitted into

∫ ∞
0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds
=

∫ π
h

0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds+

∫ ∞
π
h

∣∣∣∣∣
m∑

k=−m
ake
−(γ+ihk)s

∣∣∣∣∣ ds (7.5)

=

∫ π
h

0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds+
∞∑
j=1

∫ (2j+1)π
h

(2j−1)π
h

∣∣∣∣∣
m∑

k=−m
ake
−(γ+ihk)s

∣∣∣∣∣ ds .
In order to exploit the results for the best trigonometric approximation on L1(T) in the
previous section, the first term, involving the indicator function 1[0,1](s), must be extended
to the interval [−π

h ,
π
h ) in a suitable way. A change of variables then leads to the required

domain T = [−π, π) of integration. For this purpose, we have to find a new function that
coincides with 1[0,1](s)(1−s)`−1/(`−1)! on [0, πh ) and that has sufficient smoothness prop-
erties. The last requirement is to guarantee a best possible trigonometric approximation.
With regard to this, we define the function

g(s) :=


C

∫ s

−1
e
− 1

1−(2t+1)2 dt , −1 < s < 0 ,

1 , s ≥ 0 ,

0 , s ≤ −1

(7.6)



7.2 Error bounds 117

with C = (
∫ 0
−1 e

− 1

1−(2t+1)2 dt)−1. This function g is infinitely many times differentiable,
that is, g ∈ C∞(R). Furthermore, we set

f`(s) := g(s) · eγs · 1[−1,1](s)
(1− s)`−1

(`− 1)!
∈ C`−2(R) .

This newly defined function belongs to C∞(R\{1}) and has a weak derivative of order
`− 1 (see Figure 7.2 for ` = 3).

−1 1

0.3

f3

−1 1

0.5

−0.5

f ′3

−1 1

5
f ′′3

Figure 7.2: Plot of f3, f ′3, and the weak derivative f ′′3 with jump discontinuity at 1.

Since g(s) = 1 for s ≥ 0, it follows∫ π
h

0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds
=

∫ π
h

0

∣∣∣∣∣e−γseγs · g(s) · 1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−γse−ihks

∣∣∣∣∣ ds
=

∫ π
h

0
e−γs

∣∣∣∣∣f`(s)−
m∑

k=−m
ake
−ihks

∣∣∣∣∣ ds ≤
∫ π

h

0

∣∣∣∣∣f`(s)−
m∑

k=−m
ake
−ihks

∣∣∣∣∣ ds
≤
∫ π

h

−π
h

∣∣∣∣∣f`(s)−
m∑

k=−m
ake
−ihks

∣∣∣∣∣ ds .
The coefficients a−m, . . . , am are now chosen according to the best approximation for f`(s)
in the space Tm of all real trigonometric polynomials of degree m. This leads to∫ π

h

−π
h

∣∣∣∣∣f`(s)−
m∑

k=−m
ake
−ihks

∣∣∣∣∣ ds = min
bk

∫ π
h

−π
h

∣∣∣∣∣f`(s)−
m∑

k=−m
bke
−ihks

∣∣∣∣∣ ds
=

1

h
·min
bk

∫ π

−π

∣∣∣∣∣f` ( sh)−
m∑

k=−m
bke
−iks

∣∣∣∣∣ ds =
1

h
· Em

(
f`

( ·
h

))
,

(7.7)

if the real function f`(
·
h)
∣∣
T is extended periodically to a function in L1(T). Since the best

approximation of a real function has to be real as well, the complex coefficients ak have
to be taken in such a way that a−k = ak. Then we have

ake
−iks + a−ke

iks = 2 Re(ak) cos(ks) + 2 Im(ak) sin(ks)
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and
∑m

k=−m ake
−iks is a real trigonometric polynomial. The application of Lemma 7.6

now yields

Em

(
f`

( ·
h

))
≤ C(r)ωr

(
f`

( ·
h

)
,

1

m

)
L1(T)

.

The (`−2)nd derivative of f`(
·
h) is absolutely continuous and the (`−1)st weak derivative

is of bounded variation on T. Hence, we are able to apply Lemma 7.5 with r equal to `,
to obtain

ωr

(
f`

( ·
h

)
,

1

m

)
L1(T)

≤ 1

m`
Var∗T f

(`−1)
`

( ·
h

)
=

1

m`
VarT

(
f

(`−1)
`

( ·
h

))∗
=:

1

m`
VarT u`(·) ,

where

u`(·) =
(
f

(`−1)
`

( ·
h

))∗
=

(
d`−1

ds`−1

[
f`

( ·
h

)])∗
∈ BV (T) .

According to Definition 7.4, the function u`(·) is a suitable correction of the function

f
(`−1)
` ( ·h) with jump discontinuity at h. In our case, we choose

u`(s) :=


f

(`−1)
`

( s
h

)
, s ∈ T\{h} ,

1

2

(
lim
s↗h

f
(`−1)
`

( s
h

)
+ lim
s↘h

f
(`−1)
`

( s
h

))
, s = h .

Moreover, we define the transformed function

ũ`(s) :=


f

(`−1)
` (s) , s ∈

[
−π
h ,

π
h

)
\{1} ,

1

2

(
lim
s↗1

f
(`−1)
` (s) + lim

s↘1
f

(`−1)
` (s)

)
, s = 1 ,

which does no longer depend on h. Due to the definition of f`(s), the function ũ`(s) is
equal to zero for s ≤ −1 and s > 1. With the chain rule we obtain

VarT u`(·) =
1

h`−1
Var[−π

h
,π
h

)ũ`(·) =
1

h`−1
Var[−1,1]ũ`(·) .

Altogether, we have

∫ π
h

−π
h

∣∣∣∣∣f`(s)−
m∑

k=−m
ake
−ihks

∣∣∣∣∣ ds ≤ C2(`, γ)
1

(hm)`
, C2(`, γ) = C(`)Var[−1,1]ũ`(·) ,

where the property ũ`(·) ∈ BV (T) assures that C2(`, γ) <∞. Consequently, the first term
in (7.5) is covered. Our next task is to bound the second term. As mentioned above, we
will take advantage of the fact that the parameter γ in the exponential function leads to
a damping in the remaining domain of integration. Noting that

e−γs ≤ e−γ(2j−1)π
h for s ∈

[
(2j − 1)

π

h
, (2j + 1)

π

h

]
, j = 1, 2, . . . ,
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we conclude by the periodicity of eihks and the geometric series that

∞∑
j=1

∫ (2j+1)π
h

(2j−1)π
h

∣∣∣∣∣
m∑

k=−m
ake
−(γ+ihk)s

∣∣∣∣∣ ds ≤
∞∑
j=1

e−γ(2j−1)π
h

∫ (2j+1)π
h

(2j−1)π
h

∣∣∣∣∣
m∑

k=−m
ake
−ihks

∣∣∣∣∣ ds
= eγ

π
h

( ∞∑
j=0

(
e−2γ π

h

)j
− 1

)
·
∫ π

h

−π
h

∣∣∣∣∣
m∑

k=−m
ake
−ihks

∣∣∣∣∣ ds
=

e−γ
π
h

1− e−2γ π
h

·
∫ π

h

−π
h

∣∣∣∣∣
m∑

k=−m
ake
−ihks

∣∣∣∣∣ ds .
The integral term can be estimated by exploiting that the coefficients a−m, . . . , am have
been chosen in (7.7) according to the best approximation. This gives∫ π

h

−π
h

∣∣∣∣∣
m∑

k=−m
ake
−ihks

∣∣∣∣∣ ds =

∫ π
h

−π
h

∣∣∣∣∣
m∑

k=−m
ake
−ihks − f`(s) + f`(s)

∣∣∣∣∣ ds
≤
∫ π

h

−π
h

|f`(s)| ds + min
bk

∫ π
h

−π
h

∣∣∣∣∣f`(s)−
m∑

k=−m
bke
−ihks

∣∣∣∣∣ ds
≤ 2

∫ π
h

−π
h

|f`(s)| ds ,

if we set b−m = . . . = bm = 0. Inserting the definition of f`, we get∫ π
h

−π
h

|f`(s)| ds =

∫ π
h

−π
h

∣∣∣∣g(s) · eγs · 1[−1,1](s)
(1− s)`−1

(`− 1)!

∣∣∣∣ ds
≤ eγ

∫ 1

−1

∣∣∣∣(1− s)`−1

(`− 1)!

∣∣∣∣ ds ≤ eγ 2`

`!
.

Thus, the second term in (7.5) fulfills the inequality

∞∑
j=1

∫ (2j+1)π
h

(2j−1)π
h

∣∣∣∣∣
m∑

k=−m
ake

(−γ−ihk)s

∣∣∣∣∣ ds ≤ C1(`, γ)
e−γ

π
h

1− e−2γ π
h

, C1(`, γ) = eγ
2`+1

`!
.

Finally, we obtain the desired error bound. o

The assumption h < π in the proof of Theorem 7.7 is not mandatory. Just as well, we
can choose another condition for the distance h between the simple poles zk = γ + ihk.
Then we need a suitable change of variables in the proof, in order to end up again with a
trigonometric approximation problem on L1(T).

The attentive reader may have recognized that we just considered the approximation
of ϕ`(A) in the space R2m+1(A), containing all rational matrix functions of the form
p2m(A)/q2m+1(A) with p2m ∈ P2m, whereas we are finally interested in an approximation
of ϕ`(A)v in the Krylov subspace

Q2m+2(A,v) =

{
r(A)v : r ∈ P2m+1

q2m+1

}
,
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whose numerator polynomial p2m+1 has a degree one larger than in the space R2m+1(A).
Compared to the subspace R2m+1(A)v = P2m(A)/q2m+1(A)v, one could say that the
rational Krylov subspace Q2m+2(A,v) contains in addition the vector v. This additional
vector is required to ensure that the condition r(A)v = r(Am)v holds for every rational
function r ∈ P2m/q2m+1, where Am = PmAPm and Pm is the orthogonal projection
onto Q2m+2(A,v). In particular, this requirement necessitates that Pmv = v, which is
only fulfilled if v is an element of the considered Krylov subspace. The following simple
example illustrates this claim.

We consider r(z) = 1
γ−z ∈ P2m/q2m+1 and assume that Pm is the orthogonal projection

onto R2m+1(A)v. The requirement r(A)v = r(Am)v is then equivalent to

1

γ −A
v =

1

γ − PmAPm
v

⇐⇒ (γI − PmAPm)
1

γ −A
v =

γ

γ −A
v − Pm

A

γ −A
v = v

⇐⇒ γ

γ −A
v + Pm

(
I − γ

γ −A

)
v = Pmv = v ,

showing that Pmv = v has to be fulfilled.

Due to the relation

R2m+1(A)v + span{v} =
P2m(A)

q2m+1(A)
v + span{v} =

P2m+1(A)

q2m+1(A)
v = Q2m+2(A,v) ,

we study, from now on, the approximation of ϕ`(A)v by ϕ`(Am) for ` ≥ 1, where Am

is the restriction of A to the rational Krylov subspace Q2m+2(A,v). With the help of
Theorem 7.7, we are able to bound the best approximation of ϕ`(A)v in the subspace
R2m+1(A)v. This raises the question whether Theorem 7.7 can nevertheless be applied
for the approximation of ϕ`(A)v in Q2m+2(A,v). The answer to this question is yes: Since
P2m/q2m+1 ⊂ P2m+1/q2m+1, adding the vector v to the subspace causes no problem.

Theorem 7.8 Let the matrix A satisfy W (A) ⊆ C−0 and let Am = PmAPm be the
restriction of A to Q2m+2(A,v) via orthogonal projection. Then the error of the rational
Krylov subspace approximation can be bounded by

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ 2

[
C1(`, γ)

e−
γπ
h

1− e−
2γπ
h

+ C2(`, γ)
1

(hm)`

]
‖v‖ ,

where C1 and C2 are the same constants as in Theorem 7.7.

Proof. By Lemma 4.12, the Krylov subspace approximation in Q2m+2(A,v) is exact for
every rational function r ∈ P2m+1/q2m+1, where q2m+1(z) =

∏m
k=−m(γ + ihk − z). With

r(A)v = r(Am)v, it follows

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ ‖ϕ`(A)− r(A)‖‖v‖+ ‖ϕ`(Am)− r(Am)‖‖v‖

for all r ∈ P2m+1/q2m+1. We pick this rational function r especially from the space
P2m/q2m+1 ⊆ P2m+1/q2m+1 and use the already known relation W (Am) ⊆W (A) ⊆ C−0 .
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In this case, we are able to estimate both terms on the right hand-side as in the proof of
Theorem 7.7. This gives

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ 2‖v‖
∫ ∞

0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds .
From here, the estimate of the one-dimensional approximation problem proceeds analo-
gously to the proof of Theorem 7.7 and we end up with

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ 2

[
C1(`, γ)

e−
γπ
h

1− e−
2γπ
h

+ C2(`, γ)
1

(hm)`

]
‖v‖ ,

which concludes the proof. o

If the first term of the error bound in Theorem 7.8 is small enough, the second term pre-
dicts a sublinear convergence behavior of order O

(
(hm)−`

)
. The obtained error bound is

completely independent of the matrix A and therefore guarantees a uniform approxima-
tion for arbitrary matrices whose field of values is located somewhere in the left complex
half-plane. In the case that A represents a spatial discretization matrix of a differential
operator, we proved a convergence rate that is entirely independent of the chosen mesh
size and the refinement of the grid.

It has to be taken into account that only the second term of our error bound decreases
with the dimension of the Krylov subspace. In order to obtain an efficient and useful
error estimate, it is of great importance that the occurring free parameters are reasonably
chosen. In contrast to the shift-and-invert and the extended Krylov subspace method,
where we use a single repeated pole γ, we not only have to think about a suitable choice of
the shift γ, but also about an appropriate selection for the distance h between the different
poles of our rational Krylov subspace method. This will be the content of the next section.

7.3 Choice of the parameters γ and h

In this section, we want to investigate suitable choices for the free parameters γ and h.
To this end, let us recall that the error for the approximation of ϕ`(A)v in the rational
Krylov subspace Q2m+2(A,v) behaves like

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ 2

[
C1(`, γ)

e−
γπ
h

1− e−
2γπ
h

+ C2(`, γ)
1

(hm)`

]
‖v‖ .

For the subsequent discussion, we have to understand in what way the two occurring
constants C1(`, γ) and C2(`, γ) depend on γ. Looking back to the proof of Theorem 7.7,
we already know that

C1(`, γ) = eγ
2`+1

`!
, C2(`, γ) = C(`)Var[−1,1]ũ`(·) ,

where ũ`(s) was defined as f
(`−1)
` (s) for s ∈ [−π

h ,
π
h )\{1} and as the mean of the left and

right limit of f
(`−1)
` (s) on the jump at the point 1. Hereby, the function f` was given as

f`(s) = g(s) · eγs · 1[−1,1](s)
(1− s)`−1

(`− 1)!
∈ C`−2(R)
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with the auxiliary function g defined in (7.6). To estimate the variation of ũ`, we exploit
the fact that ũ` is only supported on [−1, 1] and differentiable on [−1, 1). Moreover, it is
well-known that for a function f , which is differentiable on [a, b], we have

Var[a,b] f(·) =

∫ b

a
|f ′(s)| ds

(for instance, [68], Section 16.1). This leads to the inequality

Var[−1,1]ũ`(·) ≤
∫ 1

−1
|f (`)
` (s)| ds+ sup

s∈[−1,1)
|f (`−1)
` (s)| ,

where the last term is required to cover the jump discontinuity of ũ` at 1. Hence, we are

now concerned with the estimate of |f (`−1)
` (s)| as well as |f (`)

` (s)| for s ∈ [−1, 1). For the
function g in (7.6), we define the constant

Cg := max
k=0,...,`

max
s∈[−1,1]

|g(k)(s)| <∞ ,

which is independent of γ, since g itself does not depend on γ. The general Leibniz rule
yields

|f (`−1)
` (s)| =

∣∣∣∣∣
`−1∑
k=0

(
`− 1

k

)
g(`−1−k)(s)

(
eγs

(1− s)`−1

(`− 1)!

)(k)
∣∣∣∣∣

≤ Cg ·
`−1∑
k=0

(
`− 1

k

) ∣∣∣∣∣
(
eγs

(1− s)`−1

(`− 1)!

)(k)
∣∣∣∣∣ , s ∈ [−1, 1) .

Using the Leibniz rule once more, we obtain∣∣∣∣∣
(
eγs

(1− s)`−1

(`− 1)!

)(k)
∣∣∣∣∣ ≤

k∑
j=0

(
k

j

) ∣∣∣(eγs)(k−j)
∣∣∣ ∣∣∣∣∣
(

(1− s)`−1

(`− 1)!

)(j)
∣∣∣∣∣ ≤ 2 eγ(1 + γ)k

by the binomial identity. The last inequality follows from the fact that
∣∣( (1−s)`−1

(`−1)!

)(j)∣∣ ≤ 2

for all j = 0, . . . , k, ` ≥ 1, and s ∈ [−1, 1). Then a further application of the binomial
identity provides the bound

|f (`−1)
` (s)| ≤ 2Cge

γ ·
`−1∑
k=0

(
`− 1

k

)
(1 + γ)k = 2Cge

γ(2 + γ)`−1 .

An analogous estimate for the second term |f (`)
` (s)| yields |f (`)

` (s)| ≤ 2Cge
γ(2 + γ)`.

Altogether, this gives

Var[−1,1]ũ`(·) ≤
∫ 1

−1
2Cge

γ(2 + γ)` ds+ 2Cge
γ(2 + γ)`−1 ≤ 6Cge

γ(2 + γ)`

and thus

C2(`, γ) = C(`)Var[−1,1]ũ`(·) ≤ C(`)eγ(2 + γ)`

with a constant C(`) that depends only on `.
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We are now prepared to discuss suitable choices for γ and h, by taking the whole expression

C1(`, γ)
e−

γπ
h

1− e−
2γπ
h

+ C2(`, γ)
1

(hm)`
≤ 2`+1

`!

eγ(1−π
h

)

1− e−
2γπ
h

+ C(`) eγ(2 + γ)`
1

(hm)`
(7.8)

into account. We first observe that the shift γ > 0 should neither be chosen too small nor
too large, since otherwise either the first or the second term in (7.8) becomes quite large.
Apart from this, a suitable choice for h is also not obvious. What is certain is that the
parameter h is restricted by 0 < h < π, in accordance with the assumption in the proof
of Theorem 7.7.

The first term in (7.8) is independent of the iteration index and therefore does not decrease
with m. A first possibility for the choice of the two parameters might be to define h and
γ in such a way that

C1(`, γ)
e−

γπ
h

1− e−
2γπ
h

≤ tol ,

where tol is a given tolerance, e.g., tol = 10−4. We should avoid very small values for h,
since the second term in (7.8) is of order O(h−`). Furthermore, we would have to expect in-
stability problems in the orthogonalization process of the parallel rational Krylov subspace
decomposition for small h, since (zkI −A)−1v ≈ (zk+1I −A)−1v. This stability problem
can be overcome by using the serial rational Arnoldi decomposition in Algorithm 4.10 or
the rational Krylov subspace procedure by Ruhe. On the other hand, values of h greater
than one unfortunately imply that the prefactor eγ(2 + γ)` of the second term is quite
large. For the case ` = 1, the correlation between h, γ, and eγ(2 + γ)` is demonstrated in
the following table:

C1(`, γ) e−
γπ
h

1−e−
2γπ
h

h γ eγ(2 + γ)

≤ 10−4 0.25 ≥ 1 ≥ 8.2

≤ 10−4 0.5 ≥ 2.1 ≥ 33.5

≤ 10−4 1 ≥ 5 ≥ 1038.9

≤ 10−4 2 ≥ 18.6 ≥ 2.5 · 109

Table 7.1: Correlation between h, γ, and eγ(2 + γ)` for ` = 1.

A second possible strategy is to choose a fixed γ of moderate size, for example γ = 1, and
to select h such that both terms in (7.8) equally decrease with the dimension m of the
rational Krylov subspace. For this, we have to solve the equation e−γπ/h = (hm)−` for h.
If we rearrange this expression in a suitable way, we have

e−
γπ
h =

1

(hm)`
⇐⇒ (hm)` =

(
e
γπ
h`

)`
⇐⇒ hm = e

γπ
h`

⇐⇒ γπm

`
=
γπ

h`
e
γπ
h` . (7.9)
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At this point, the so-called Lambert W -function W (z) comes into play. It is given as
the inverse function of f(x) = xex = z and therefore provides a solution of the equation
z = W (z)eW (z). Identifying z with γπm

` and W (z) with γπ
h` in (7.9), the relation

W
(γπm

`

)
=
γπ

h`
or h =

γπ

`

1

W
(γπm

`

) (7.10)

is obtained. Using the well-known estimate (cf. [35])

ln(z)− ln
(

ln(z)
)
≤W (z) ≤ ln(z) , z ≥ e , z ∈ R ,

we find for h = γπ
` W

(γπm
`

)−1
the estimates

e−
γπ
h = e−`W( γπm` ) ≤ e−`[ln( γπm` )−ln(ln( γπm` ))] =

(
`

γπm

)̀(
ln
(γπm

`

))̀
= O

(
ln(m)`

m`

)
and

1

(hm)`
=

(
`

γπm

)`
W `
(γπm

`

)
≤
(

`

γπm

)` (
ln
(γπm

`

))̀
= O

(
ln(m)`

m`

)
.

Consequently, the terms in (7.8) behave like

C1(`, γ)
e−

γπ
h

1− e−
2γπ
h

+ C2(`, γ)
1

(hm)`
≤ C(`, γ)

(
ln(m)

m

)`
. (7.11)

7.4 Comparison with a fixed rational approximation

This section draws a comparison between the approximation of ϕ`(A)v, ` ≥ 2, in the
rational Krylov subspace Q2m+2(A,v) and a fixed rational approximation using the same
poles zk = γ + ihk, that is,

ϕ`(A)v ≈
m∑

k=−m

ck
zk −A

v

with given coefficients c−m, . . . , cm ∈ C. Such a fixed approximation is obtained with the
help of the ideas in Stenger [80] as well as López-Fernandéz and Palencia [53] applied to
the following useful representation of the ϕ`-functions by the Cauchy integral formula.

Lemma 7.9 For ` ≥ 2 and z ∈ C−0 , we have

ϕ`(z) =
1

2πi

∫
Γ

eξ

ξ`
1

ξ − z
dξ ,

where Γ is a curve with parametrization Γ(t) = γ + it, γ > 0, and the parameter t ∈ R
runs from −∞ to +∞.

Proof. We use the representation

ϕ`(z) =
ez

z`
−

`−1∑
k=0

zk−`

k!
, ϕ`(0) =

1

`!
,
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for the ϕ`-functions, cf. relation (3.13). Since ϕ` is analytic in C, the Cauchy integral
formula yields

ϕ`(z) =
1

2πi

∫
Γ̃

eξ

ξ`
1

ξ − z
dξ − 1

2πi

∫
Γ̃

`−1∑
k=0

ξk−`

k!

1

ξ − z
dξ , (7.12)

where Γ̃ is a simple closed rectifiable curve with winding number one around z ∈ C−0 . For

the contour Γ̃, we take particularly the boundary Γ̃1 + Γ̃2 of the left semicircle of the disk
with center point γ > 0 and radius R > 0, which is parametrized by

Γ̃1(t) = γ + it , t ∈ [−R,R] , Γ̃2(t) = γ +Reit , t ∈
(
π

2
,
3π

2

)
,

such that z ∈ int(Γ̃) = int(Γ̃1 + Γ̃2). Using the residue theorem, we see that the second
term on the right-hand side of (7.12) vanishes. Moreover, it is easy to verify that

lim
R→∞

1

2πi

∫
Γ̃2

eξ

ξ`
1

ξ − z
dξ = 0 .

Since, for ` ≥ 2, we have

lim
R→∞

∣∣∣∣∫
Γ̃1

eξ

ξ`
1

ξ − z
dξ

∣∣∣∣ ≤ lim
R→∞

∫ R

−R

eγ

|γ + it|`
1

|γ + it− z|
dt ≤ eγ

γ

∫ ∞
−∞

1

|γ + it|`
dt <∞ ,

the improper integral over Γ̃1 exists and the desired statement of the lemma is proved
with Γ(t) = Γ̃1(t) for t ∈ R. o

The limit

lim
t→±∞

eγ+it

(γ + it)`
1

γ + it− z
= 0

of the integrand in Lemma 7.9 suggests an approximation of ϕ`(z) by the application of a
truncated trapezoidal rule with step size h to the integral representation. More precisely,
we consider the approximation

ϕ`(z) ≈
h

2π

m∑
k=−m

eγ+ihk

(γ + ihk)`
1

γ + ihk − z
=: Sm(ϕ`, h, z) ,

where Sm(ϕ`, h, z) is a rational function with the same poles zk = γ+ihk as in our rational
Krylov subspace method above. The quadrature error of this approach will be estimated
in the next lemma.

Lemma 7.10 The error of the truncated trapezoidal rule applied to the integral represen-
tation of ϕ`(z), ` ≥ 2, in Lemma 7.9 is for all z ∈ C−0 bounded by

|ϕ`(z)− Sm(ϕ`, h, z)| ≤ C̃1(`, γ)
1

e
2πd
h − 1

+ C̃2(`, γ)
1

(hm)`−1
, 0 < d < γ . (7.13)

Proof. The proof follows the ideas of the proof of Theorem 1 given in [53]. First, we set

g(t) :=
eγ+it

(γ + it)`
1

γ + it− z
.
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Then we estimate∣∣∣∣∣
∫ ∞
−∞

g(t) dt− h
m∑

k=−m
g(kh)

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ ∞
−∞

g(t) dt− h
∞∑

k=−∞
g(kh) + h

∑
|k|≥m+1

g(kh)

∣∣∣∣∣∣
≤

∣∣∣∣∣
∫ ∞
−∞

g(t) dt− h
∞∑

k=−∞
g(kh)

∣∣∣∣∣+ h
∑

|k|≥m+1

|g(kh)| .

The first term satisfies the assumptions of Theorem 4.1 in [80] and can be bounded by∣∣∣∣∣
∫ ∞
−∞

g(t) dt− h
∞∑

k=−∞
g(kh)

∣∣∣∣∣ ≤ C(g, d)

e
2πd
h − 1

, 0 < d < γ .

A calculation of the second term gives

h
∑

|k|≥m+1

|g(kh)| = h
∑

k≥m+1

(
|g(kh)|+ |g(−kh)|

)
≤ 2h

eγ

γ

∞∑
k=m+1

1

|γ + ihk|`

≤ 2h
eγ

γ

∫ ∞
mh

1

s`
ds =

2eγ

γ(`− 1)

1

(hm)`−1
.

With C̃1(`, γ) := C(g, d) and C̃2(`, γ) = 2eγ

γ(`−1) the proof is finished. o

If we now replace z ∈ C−0 in (7.13) by a matrix A with W (A) ⊆ C−0 and use Crouzeix’s
inequality ‖f(A)‖ ≤ C supz∈C−0

|f(z)| with C = 1 (cf. Section 5.3 in von Neumann [86]),

we find

‖ϕ`(A)v − Sm(ϕ`, h,A)v‖ ≤ sup
z∈C−0

|ϕ`(z)− Sm(ϕ`, h, z)|‖v‖

≤
[
C̃1(`, γ)

1

e
2πd
h − 1

+ C̃2(`, γ)
1

(hm)`−1

]
‖v‖

for 0 < d < γ and ` ≥ 2. This bound looks quite similar to the result for the rational
Krylov subspace approximation in Theorem 7.7. There, we proved an error bound of
order O(m−`), whereas the convergence rate of the fixed rational approximation here is
only O(m−(`−1)).

7.5 Numerical experiments

In what follows, we contrast the rational Krylov subspace approximation in Q2m+2(A,v)
with the fixed rational approximation from Section 7.4 and check the predicted convergence
rates of Theorem 7.8 numerically. After that, the performance of a serial and a parallel
implementation of the rational Krylov subspace process with simple poles is compared with
respect to computing time. At the end, we come back to the wave equation considered in
Section 6.5.2.



7.5 Numerical experiments 127

7.5.1 Comparison with the fixed rational approximation

The first numerical experiment is meant to demonstrate the superiority of the rational
Krylov subspace approximation with simple poles zk = γ + ihk over the fixed rational
approximation discussed in Section 7.4.

In Figure 7.3, the fixed rational approximation (red dashed line) of ϕ`(A)v is compared to
the rational Krylov subspace approximation in Q2m+2(A,v) (blue solid line) for ` = 2, 4,
a random vector v with ‖v‖2 = 1, and a dense normal matrix A ∈ C1 000×1 000 with
eigenvalues located on the boundary of the semicircle with radius 100 and midpoint 0 in
the left complex half-plane. The parameters are chosen as γ = 2 and h = 0.5, such that
the first term on the right in (7.8) is of order O(10−4) for ` = 2 and of order O(10−9) for
` = 4. We see that the rational Krylov subspace method is better than the approximation
via the fixed rational matrix function Sm(ϕ`, h,A) times v.

On the one hand, this observation can be explained by the fact that, according to our
analysis above, the convergence rate of the rational Krylov subspace process behaves
like O(m−`) and, in contrast, the rate of the fixed approximation decreases only like
O(m−(`−1)). On the other hand, a faster convergence is to be expected by the near-
optimality property of Krylov subspace methods, cf. Section 4.4.
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Figure 7.3: Comparison of the fixed rational approximation from Section 7.4 and the ratio-
nal Krylov subspace approximation with simple poles. The errors ‖ϕ`(A)v − ϕ`(Am)v‖2
and ‖ϕ`(A)v − Sm(ϕ`, h,A)v‖2 are plotted versus m for γ = 2, h = 0.5, and ` = 2, 4.

7.5.2 Convergence rate testing

For the same test matrix A ∈ C1 000×1 000 as in the previous Section 7.5.1 and a random
vector v of norm one, we check how well the predicted convergence rates match the actual
approximation errors obtained in numerical experiments. By Em we denote the error
for the approximation of ϕ`(A)v in the rational Krylov subspace Q2m+2(A,v), that is,
Em = ‖ϕ`(A)v − ϕ`(Am)v‖2, where Am is the restriction of A to Q2m+2(A,v) via
orthogonal projection.

For the parameter choice γ = 2 and h = 0.5, according to Table 7.1, we plot in Figure 7.4
on the left hand-side the values ln(Em)/ ln(m) against the number m of iteration steps.
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As expected from our error analysis, this quantity tends to −`, confirming that the con-
vergence rate is of order O(m−`). Moreover, on the right-hand side of in Figure 7.4, we
draw the approximation error for the choice γ = 1 and h = π

`W (πm` )−1, as suggested in
Section 7.3, together with curves of the predicted convergence order O

(
ln(m)`/m`

)
, cf.

inequality (7.11).

0 20 40 60 80 100

−6

−5

−4

−3

−2

−1
` = 1

` = 2

` = 3

` = 4

0 10 20 30 40 50
10−14

10−11

10−8

10−5

10−2 ` = 2

` = 4

` = 6

` = 8

Figure 7.4: Left-hand side: Plot of ln(Em)/ ln(m) versus m for γ = 2, h = 0.5. Right-hand
side: Plot of the error Em for the rational Krylov subspace method with simple poles of
distance h = π

`W (πm` )−1 and shift γ = 1 together with curves of order O
(

ln(m)`/m`
)
.

7.5.3 Parallel test example

Nowadays, there exist several variants of parallel computing with various fields of appli-
cation. This technique is primary used either to treat extremely large problems, which
cannot be handled on a single computer, or to save computation time by solving problems
of medium or large size parallel in time. An implementation of a parallel Arnoldi method
is presented, for example, by Booten, Meijer, te Riele and van der Vorst in [8]. In their
algorithm, the computation of the matrix-vector products and of the inner products is
performed in parallel.

Here, we focus our attention on the second case, namely, the parallelization in time: Given
are different poles zk = γ+ihk for k = −m, . . . ,m and γ > 0. This provides the advantage
that the 2m + 1 linear systems (zkI −A)−1v, involving the discretization matrix A, are
decoupled and, therefore, can be solved independently of each other in the rational Krylov
subspace decomposition. This is why the rational Krylov subspace method with different
simple poles is perfectly suited for a parallel implementation in time. In each iteration
step, we solve p of the total 2m+1 single linear systems simultaneously on p processors or
kernels. In this way we achieve a tremendous speed-up which is illustrated by the following
simple test example.

In the thesis by Skoogh [78], possible realizations of a parallel rational Krylov subspace
algorithm are discussed in detail. His very general code, taken from Section 3.5 in [78]
and adapted to our case, is shown in Algorithm 7.11. The presented parallel algorithm de-
termines an orthonormal basis V2m+2 = [v1 v2 · · · v2m+2] of the rational Krylov subspace
Q2m+2(A,v) with the help of a Gram-Schmidt process. In each loop, p linear systems



7.5 Numerical experiments 129

wk = (zkI −A)−1w̃k are solved in parallel on p different processors (or kernels) for given
starting vectors w̃k. The resulting vectors wk are then orthogonalized against each other
and against all previously computed basis vectors vi. For the first iteration step with
j = 1, the starting vectors w̃k, k = 1, . . . , p, are set to v1. In the next iterations of the
while loop, each of the p processors can use its own orthogonalized w̃k of the previous step.
Taking w̃k = vk instead, this would lead to a sequential algorithm, since the solution of
(zkI −A)wk = vk is only available, if vk is known in advance. For our experiments, we
simply choose w̃k = v = v1 for all k.

Algorithm 7.11 Parallel rational Krylov subspace process

given: A ∈ CN×N , v ∈ CN

given: set of poles Z := {zk = γ + ihk , k = −m. . . ,m}
v1 = v/‖v‖
j = 1

while j ≤ 2m+ 1

choose vectors w̃k, k = 1, . . . , p

choose poles zk ∈ Z, k = 1, . . . , p

compute wk = (zkI−A)−1w̃k, k = 1, . . . , p (parallel step)

for k = 1, . . . , p do

for i = 1, . . . , j do

hi,j = (wk,vi)

end for

wk = wk −
∑j

i=1 hi,jvi

hj+1,j = ‖wk‖
vj+1 = wk/hj+1,j

j = j + 1

end for

end while

Skoogh discusses several implementations of the parallel rational Krylov subspace algo-
rithm. On the one hand, one can use an additional processor, also called master, that
performs the orthogonalization of the computed vectors wk. On the other hand, it is
also possible that each of the p so-called slave processors orthogonalizes its own computed
vector. However, this requires the exchange of the orthogonalized vectors between the
processors. More information and further details concerning, i.a., the advantages and dis-
advantages of the different implementations, especially the communication time, can be
found in [78]. We will not go into any more detail here.

For our purposes, we use the first variant: A master handles the program control, manages
the communication, and performs the orthogonalization, whereas every slave processor
solves one of the occurring linear systems.
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In order to demonstrate that a parallel computation of the rational Krylov subspace de-
composition can essentially outperform the serial implementation, we consider a dense
1 500× 1 500 - matrix A with the field of values W (A) = [−1 500,−1] ⊆ C−0 on the nega-
tive real axis and a random vector v of norm one. We apply a serial and a parallel version
of the rational Krylov subspace method for the approximation of ϕ1(τA)v and ϕ4(τA)v
with the parameter choice τ = 0.05, γ = 1, and h = 0.25, in accordance with Table 7.1.
The comparison is shown in Figure 7.2, where the approximation error is plotted against
the computing time in seconds. The smallest error corresponds to the dimension 100 of
the Krylov subspace, that is, m = 49 in Q2m+2(A,v).

The parallel version has been conducted on a local cluster of 13 heterogeneous workstation
computers using MPI and the C programming language, whereas the serial process has
been computed on one of these workstations. Even though the network is not a high-
performance network suited for parallel computations, the parallel-in-time version of the
rational Krylov subspace approximation with simple poles is enormously faster and thus
more efficient for our considered test problem.

Moreover, we display in Figure 7.2 the approximation error obtained by the implicit Euler
method applied to the system of ordinary differential equations

y′(t) = Ay(t) +
t`−1

(`− 1)!
v , y(0) = 0

with solution y(τ) = τ `ϕ`(τA)v. This serves as a reference for standard stiff integrators.
For a reasonable comparison, the results of the implicit Euler scheme are scaled by the
factor τ−`.
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Table 7.2: Comparison of a serial (red dashed line) with a parallel (blue solid line) imple-
mentation of the rational Krylov subspace method and with the implicit Euler method
(green dash-dotted line) for the approximation of ϕ1(τA)v (top) and ϕ4(τA)v (bottom),
where A is a dense matrix with W (A) = [−1 500,−1]. The error is plotted versus com-
puting time in seconds. The parameters are chosen as τ = 0.05, γ = 1, and h = 0.25.

We performed the same numerical experiment up to the Krylov subspace dimension 450,
requiring O(1012) floating point operations, which is equivalent to about 1 Tflop. For
the approximation of ϕ1(τA)v up to an accuracy of 1.044555 · 10−9, the parallel version
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needed 33.53 seconds and the serial variant needed 837.6 seconds, which is approximately
equal to 14 minutes.

Furthermore, we show in Figure 7.3 the error versus computing time for the approximation
of ϕ4(A)v, where A is a dense matrix with a field of values W (A) = [−1 500 i,−i] on the
imaginary axis. On the left-hand side, a local cluster of 13 heterogeneous workstations has
been used for the computation. On the right-hand side, we computed the approximation
on a single machine with 12 true kernels. Again, the parallel implementation exhibits a
significant speed-up.
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Table 7.3: Comparison of a serial (red dashed line) with a parallel (blue solid line) imple-
mentation of the rational Krylov subspace method and with the implicit Euler method
(green dash-dotted line) for the approximation of ϕ4(A)v, where A is a dense matrix with
W (A) = [−1 500 i,−i], γ = 1, and h = 0.25. The error is plotted versus computing time
in seconds. On the left-hand side, a local cluster of 13 heterogeneous workstations has
been used and, on the right-hand side, a single machine with 12 true kernels.

7.5.4 Wave equation on a non standard domain

In order to compare the shift-and-invert Krylov subspace method with the rational Krylov
subspace approximation with simple poles, we return to the wave equation in Section 6.5.2,

u′′ = ∆u− u for (x, y) ∈ Ω , t ≥ 0 ,

u(0, x, y) = u0(x, y) , u′(0, x, y) = u′0(x, y) for (x, y) ∈ Ω ,

∇nu = 0 for (x, y) ∈ ∂Ω

on L2(Ω) with homogeneous Neumann boundary conditions for the non standard spatial
domain shown in Figure 6.13 above. In Section 6.5.2, we have seen that for a finite-element
discretization, the semi-discrete first order formulation is given as

y′(t) =

[
v(t)
w(t)

]′
=

[
O I

M−1(S −M) O

] [
v(t)
w(t)

]
= Ay(t) , y(0) = y0 =

[
v0

w0

]
with (M)ij = (φi, φj)L2(Ω), (S)ij = −(∇φi,∇φj)L2(Ω), where φk(x, y) ∈ H1(Ω) are the
linear ansatz functions of the finite-element method. As initial value, we choose the vector
y0 = y1

0 from Section 6.5.2.
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This time, we do not approximate eτAy0, but ϕ1(τA)Ay0 in the alternative representation
eτAy0 = τϕ1(τA)Ay0 +y0. We compute approximations in the rational Krylov subspace
Q2m+2(τA,Ay0) with simple poles of distance h = 1 and in the shift-and-invert Krylov
subspace K2m+2((γI − τA)−1,Ay0). In both cases, we take γ = 3. For this choice of
parameters, the fixed term in the error bound (7.4), which does not depend on m, is of
size O(10−3).

A comparison of the two methods is shown in Figure 7.5 for two different choices of τ and
numbers of triangles of the finite-element mesh. The blue solid error curve refers to the
rational Krylov subspace with simple poles and the red dashed error curve to the Krylov
space with one single pole. The error ‖ϕ1(τA)Ay0 − ϕ1(τAm)Ay0‖B is plotted against
m, where Am is the restriction of A to Q2m+2(τA,Ay0) or K2m+2((γI − τA)−1,Ay0),
respectively. The error is measured with respect to ‖ · ‖B, where B was given as the block
diagonal matrix B = diag(−(S −M),M).

For the solution of the shifted linear systems
(
(γ + ihk)2M − τ2(S −M)

)
x = b, cf.

(6.10) above, we can no longer use a multigrid method with Gauss-Seidel smoother. For
complex shifts γ+ ihk, the matrix here is not real symmetric and positive definite like the
matrix γ2M−τ2(S−M) occurring in the shift-and-invert Krylov subspace approximation.
Instead of the Gauss-Seidel iteration, we apply the Quasi Minimal Residual method (cf.
[22]) for the smoothing process in the multigrid method as suggested in [79], Section 5.15.
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Figure 7.5: Plot of the error ‖ϕ1(τA)Ay0 − ϕ1(τAm)Ay0‖B versus m for the rational
Krylov subspaces Q2m+2(τA,Ay0) (blue solid line) and K2m+2((γI − τA)−1,Ay0) for
τ = 0.05 and a mesh with 18 816 triangles, 10 057 nodes (left), τ = 0.01 and a mesh with
301 056 triangles, 153 121 nodes (right), and parameters γ = 3, h = 1.
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Conclusion and outlook

The goal of this thesis was to study the convergence behavior of rational Krylov subspace
methods for the approximation of ϕ`(A)v. These ϕ-functions play a fundamental role in
the application of exponential integrators for the time integration of evolution equations.
Their efficient and reliable computation is presently of great interest and a subject of
current research. For large stiff matrices A, that arise from the discretization of some
unbounded differential operator and have a field of values in the left complex half-plane,
rational Krylov methods significantly outperform the well-established standard Krylov
subspace iteration and other standard methods for stiff problems such as the implicit
Euler or the Crank-Nicolson scheme.

We have analyzed the approximation of ϕ`(A)v in a rational Krylov subspace with one
single repeated pole γ > 0 and with equidistant simple poles γ + ihk, k = −m, . . . ,m,
on the line Re(z) = γ. For stiff matrices A with W (A) ⊆ C−0 , sublinear convergence
rates could be shown which do not depend on the norm of the discretization matrix A.
As a consequence, it is guaranteed that these rational Krylov subspace methods converge
independent of the refinement of the spatial mesh. In contrast, the standard Krylov
subspace approximation has error bounds that always involve ‖A‖, so that this method
is not suited for our purposes.

However, if the initial value is smooth enough, it became apparent that it is often advan-
tageous to first perform some cheaper standard Krylov steps and then to continue with
the more efficient but usually more expensive rational Krylov subspace process. This has
led us to study extended Krylov subspace methods. They represent a skillful combination
of the polynomial and the rational Krylov subspace iteration which results in a faster
grid-independent convergence, provided that the vector v satisfies certain smoothness
properties.

Since the obtained error bounds for rational and extended Krylov subspace methods hold
uniformly over all possible grids in space, the presented techniques constitute a promising
approximation method for the ϕ-functions evaluated at large discretization matrices A.
In order to achieve an approximation to ϕ`(A)v that is as optimal as possible, we also
discussed suitable choices for the shift γ and the free parameter h, which determines the
distance of the equidistant poles for the rational Krylov subspace process with different
simple poles.

In the next step, it would be interesting to examine more precisely the influence of the
smoothness of the initial data to the rational Krylov subspace approximation. The ob-
servations in our numerical experiments suggest that not only the convergence rate of
the extended method but also the rate of the rational Krylov subspace approximation is
affected by the smoothness properties of the initial vector.
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In the case that the field of values of the matrix A has a special geometry, that is, W (A)
is, for example, a subset of the negative real line or lies in a sector in the left complex
half-plane, better convergence rate are observed than predicted by our estimates. The
next important step could therefore be to improve the error bounds depending on the
opening angle of the sector, in which the field of values is located. Such matrices with a
field of values in some sector arise from the discretization of parabolic problems involving
sectorial operators.
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